From cd128d90a64c7c756b323f80f7edbc4bcaf6d6af Mon Sep 17 00:00:00 2001 From: Dario Alpern Date: Sun, 15 Dec 2024 17:59:33 -0300 Subject: [PATCH] Fixed reloading of integer factoring calculator when random function is being used and fixed crash when skipping primality test on integer factoring calculator. --- CONTFRAC.HTM | 8 +- CUAD.HTM | 8 +- CUADMOD.HTM | 8 +- ConsoleApplication1.vcxproj.user | 2 +- DIST.HTM | 6 +- DISTANCE.HTM | 6 +- ECM.HTM | 8 +- ECMC.HTM | 8 +- EULAM.HTM | 8 +- FACTPOL.HTM | 8 +- FCUBES.HTM | 8 +- FRACCONT.HTM | 8 +- FSQUARES.HTM | 8 +- GAUSIANO.HTM | 8 +- GAUSSIAN.HTM | 8 +- GAUSSPR.HTM | 8 +- POLFACT.HTM | 8 +- PRGAUSS.HTM | 8 +- QUAD.HTM | 8 +- QUADMOD.HTM | 8 +- SUMCUAD.HTM | 8 +- SUMCUBOS.HTM | 8 +- TCUADCUB.HTM | 8 +- TSQCUBES.HTM | 8 +- ULAM.HTM | 8 +- a.bat | 4 +- coverage.out.old | 1832 +++++++++++++++--------------- dilog.htm | 8 +- ecm.c | 55 +- ecmAndroid.js | 10 +- ecmNoAndroid.js | 12 +- ecmfront.c | 36 +- ecmfront.js | 24 +- expression.h | 4 +- factor.c | 13 +- factor.h | 1 + logdi.htm | 8 +- test.c | 5 +- 38 files changed, 1128 insertions(+), 1074 deletions(-) diff --git a/CONTFRAC.HTM b/CONTFRAC.HTM index c72fa02b..b65da44a 100644 --- a/CONTFRAC.HTM +++ b/CONTFRAC.HTM @@ -18,7 +18,7 @@ - + @@ -454,7 +454,7 @@ To enter numbers in hexadecimal format, you will need to precede them by the str

Source code

You can download the source of the current program and the old continued fraction applet from GitHub. Notice that the source code is in C language and you need the Emscripten environment in order to generate JavaScript.

-

Written by Dario Alpern. Last updated 10 November 2024.

+

Written by Dario Alpern. Last updated 15 December 2024.

@@ -555,8 +555,8 @@ self.onmessage=function(b){k?(m(e.getInputStringPtr(),b.data[0]),e.doWork()):Web "name": "Continued Fraction calculator", "description": "Web application that finds the continued fraction representation of rational numbers and quadratic irrationalities.", "image": ["https://www.alpertron.com.ar/contfrac.png"], - "datePublished": "2024-11-04", - "dateModified": "2024-11-04", + "datePublished": "2024-12-15", + "dateModified": "2024-12-15", "operatingSystem": "Any", "applicationCategory": "EducationalApplication", "author": { diff --git a/CUAD.HTM b/CUAD.HTM index c2a95ec7..32d4fa4d 100644 --- a/CUAD.HTM +++ b/CUAD.HTM @@ -19,7 +19,7 @@ - + @@ -323,7 +323,7 @@ button:disabled {color: #808080; background-color: #606060}

Código fuente

Puedes bajar el código fuente de esta aplicación y del viejo applet de ecuaciones cuadráticas enteras desde GitHub. El código fuente está escrito en lenguaje C, por lo que es necesario Emscripten para generar JavaScript.

-

Escrito por Dario Alpern. Actualizado el 10 de noviembre de 2024.

+

Escrito por Dario Alpern. Actualizado el 15 de diciembre de 2024.

-

Escrito por Dario Alpern. Actualizado el 10 de noviembre de 2024.

+

Escrito por Dario Alpern. Actualizado el 15 de diciembre de 2024.

"name": "Distancia entre ciudades", "description": "Aplicación Web que incluye dos tests de conocimiento de distancia entre ciudades.", "image": ["https://www.alpertron.com.ar/dist.png"], - "datePublished": "2024-11-04", - "dateModified": "2024-11-04", + "datePublished": "2024-12-15", + "dateModified": "2024-12-15", "operatingSystem": "Any", "applicationCategory": "EducationalApplication", "author": { diff --git a/DISTANCE.HTM b/DISTANCE.HTM index 1e8dcfd4..a9fe05b1 100644 --- a/DISTANCE.HTM +++ b/DISTANCE.HTM @@ -18,7 +18,7 @@ - + @@ -381,8 +381,8 @@ You will perform better playing a role player video game. "name": "Distance between cities", "description": "Web application which includes two tests about distance between cities.", "image": ["https://www.alpertron.com.ar/distance.png"], - "datePublished": "2024-11-04", - "dateModified": "2024-11-04", + "datePublished": "2024-12-15", + "dateModified": "2024-12-15", "operatingSystem": "Any", "applicationCategory": "EducationalApplication", "author": { diff --git a/ECM.HTM b/ECM.HTM index 79122625..078dad1d 100644 --- a/ECM.HTM +++ b/ECM.HTM @@ -18,7 +18,7 @@ - + @@ -1032,7 +1032,7 @@ The line to type is: x=1;x=x+1;x<10000;x;sumdigits(x, 10)==sumdigits(co

You can download the source of the current program and the old factorization applet from GitHub. Notice that the source code is in C language and you need the Emscripten environment in order to generate JavaScript.

-

Written by Dario Alpern. Last updated 10 November 2024.

+

Written by Dario Alpern. Last updated 15 December 2024.

@@ -1219,8 +1219,8 @@ The line to type is: x=1;x=x+1;x<10000;x;sumdigits(x, 10)==sumdigits(co "name": "Integer factorization calculator", "description": "Web application that factors integers using ECM and SIQS algorithms.", "image": ["https://www.alpertron.com.ar/ecm.png"], - "datePublished": "2024-11-04", - "dateModified": "2024-11-04", + "datePublished": "2024-12-15", + "dateModified": "2024-12-15", "operatingSystem": "Any", "applicationCategory": "EducationalApplication", "author": { diff --git a/ECMC.HTM b/ECMC.HTM index 30aa3610..c3c6db72 100644 --- a/ECMC.HTM +++ b/ECMC.HTM @@ -18,7 +18,7 @@ - + @@ -1019,7 +1019,7 @@ La línea a escribir es: x=1;x=x+1;x<10000;x;sumdigits(x, 10)==sumdigit

Puedes bajar el código fuente de esta aplicación y del viejo applet de factorización desde GitHub. El código fuente está escrito en lenguaje C, por lo que es necesario Emscripten para generar JavaScript.

-

Escrito por Dario Alpern. Actualizado el 10 de noviembre de 2024.

+

Escrito por Dario Alpern. Actualizado el 15 de diciembre de 2024.

@@ -1204,8 +1204,8 @@ La línea a escribir es: x=1;x=x+1;x<10000;x;sumdigits(x, 10)==sumdigit "name": "Calculadora de factorización de números enteros", "description": "Aplicación Web que factoriza números enteros utilizando los algoritmos ECM y SIQS.", "image": ["https://www.alpertron.com.ar/ecmc.png"], - "datePublished": "2024-11-04", - "dateModified": "2024-11-04", + "datePublished": "2024-12-15", + "dateModified": "2024-12-15", "operatingSystem": "Any", "applicationCategory": "EducationalApplication", "author": { diff --git a/EULAM.HTM b/EULAM.HTM index 54fbf1db..708cf9ef 100644 --- a/EULAM.HTM +++ b/EULAM.HTM @@ -18,7 +18,7 @@ - + @@ -217,7 +217,7 @@ Cualquier número en la línea diagonal menor que 412 = 1681 debe ser Las diagonales cuyos números no se pueden dividir por primos pequeños tienen mayor cantidad de números primos, porque la mayoría de los números compuestos son divisibles por primos pequeños.

Código fuente

Puede bajar el código fuente de esta aplicación y del viejo applet de visualización de la espiral de Ulam desde GitHub. El código fuente está escrito en lenguaje C, por lo que es necesario Emscripten para generar JavaScript.

-

Escrito por Dario Alpern. Actualizado el 10 de noviembre de 2024.

+

Escrito por Dario Alpern. Actualizado el 15 de diciembre de 2024.

No se puede mostrar la espiral cuando el valor del centro es menor que el valor inicial.

@@ -235,8 +235,8 @@ Las diagonales cuyos números no se pueden dividir por primos pequeños tienen m "name": "Espiral de Ulam", "description": "Aplicación Web que muestra una representación gráfica de los números primos.", "image": ["https://www.alpertron.com.ar/eulam.png"], - "datePublished": "2024-11-04", - "dateModified": "2024-11-04", + "datePublished": "2024-12-15", + "dateModified": "2024-12-15", "operatingSystem": "Any", "applicationCategory": "EducationalApplication", "author": { diff --git a/FACTPOL.HTM b/FACTPOL.HTM index 6f04fa57..76c0f47a 100644 --- a/FACTPOL.HTM +++ b/FACTPOL.HTM @@ -18,7 +18,7 @@ - + @@ -641,7 +641,7 @@ En caso contrario, solo se muestran funciones trigonométricas.

Puede bajar el código fuente del programa actual y del viejo applet de factorización de polinomios GitHub. El código fuente está escrito en lenguaje C, por lo que es necesario Emscripten para generar JavaScript.

-

Escrito por Dario Alpern. Actualizado el 10 de noviembre de 2024.

+

Escrito por Dario Alpern. Actualizado el 15 de diciembre de 2024.

-

Written by Dario Alpern. Last updated 10 November 2024.

+

Written by Dario Alpern. Last updated 15 December 2024.

@@ -544,8 +544,8 @@ The line to type is: x=3;x=n(x);c<=100;x-1.

"name": "Sum of four cubes", "description": "Web application that finds the decomposition of a number into cubes.", "image": ["https://www.alpertron.com.ar/fcubes.png"], - "datePublished": "2024-11-04", - "dateModified": "2024-11-04", + "datePublished": "2024-12-15", + "dateModified": "2024-12-15", "operatingSystem": "Any", "applicationCategory": "EducationalApplication", "author": { diff --git a/FRACCONT.HTM b/FRACCONT.HTM index 1db829fe..ec5795a0 100644 --- a/FRACCONT.HTM +++ b/FRACCONT.HTM @@ -18,7 +18,7 @@ - + @@ -453,7 +453,7 @@ Para ingresar números en el formato hexadecimal es necesario que tengan los car

Código fuente

Se puede bajar el código fuente de este programa y el del viejo applet de fracciones continuas desde GitHub. El código fuente está escrito en lenguaje C, por lo que es necesario Emscripten para generar JavaScript.

-

Escrito por Dario Alpern. Actualizado el 10 de noviembre de 2024.

+

Escrito por Dario Alpern. Actualizado el 15 de diciembre de 2024.

@@ -552,8 +552,8 @@ Para ingresar números en el formato hexadecimal es necesario que tengan los car "name": "Calculadora de fracciones continuas", "description": "Aplicación Web que muestra la fracción continua de números racionales e irracionalidades cuadráticas.", "image": ["https://www.alpertron.com.ar/fraccont.png"], - "datePublished": "2024-11-04", - "dateModified": "2024-11-04", + "datePublished": "2024-12-15", + "dateModified": "2024-12-15", "operatingSystem": "Any", "applicationCategory": "EducationalApplication", "author": { diff --git a/FSQUARES.HTM b/FSQUARES.HTM index 5bfe5412..3ec3aa69 100644 --- a/FSQUARES.HTM +++ b/FSQUARES.HTM @@ -19,7 +19,7 @@ - + @@ -328,7 +328,7 @@ The line to type is: x=3;x=n(x);c<=100;x-1.

Source code

You can download the source of the current program and the old sum of four squares applet from GitHub. Notice that the source code is in C language and you need the Emscripten environment in order to generate JavaScript.

-

Written by Dario Alpern. Last updated 10 November 2024.

+

Written by Dario Alpern. Last updated 15 December 2024.

@@ -471,8 +471,8 @@ The line to type is: x=3;x=n(x);c<=100;x-1.

"name": "Sum of squares", "description": "Web application that finds the decomposition of a number into squares.", "image": ["https://www.alpertron.com.ar/fsquares.png"], - "datePublished": "2024-11-04", - "dateModified": "2024-11-04", + "datePublished": "2024-12-15", + "dateModified": "2024-12-15", "operatingSystem": "Any", "applicationCategory": "EducationalApplication", "author": { diff --git a/GAUSIANO.HTM b/GAUSIANO.HTM index a9c848ee..fe4f395f 100644 --- a/GAUSIANO.HTM +++ b/GAUSIANO.HTM @@ -18,7 +18,7 @@ - + @@ -313,7 +313,7 @@ Para ingresar números en el formato hexadecimal es necesario que tengan los car

Código fuente

Puedes bajar el código fuente del programa actual y del viejo applet de factorización de enteros gaussianos desde GitHub. El código fuente está escrito en lenguaje C, por lo que es necesario Emscripten para generar JavaScript.

-

Escrito por Dario Alpern. Actualizado el 10 de noviembre de 2024.

+

Escrito por Dario Alpern. Actualizado el 15 de diciembre de 2024.

@@ -421,8 +421,8 @@ Para ingresar números en el formato hexadecimal es necesario que tengan los car "name": "Factorización de enteros gaussianos", "description": "Aplicación Web que factoriza enteros gaussianos de la forma (a+b*i).", "image": ["https://www.alpertron.com.ar/gausiano.png"], - "datePublished": "2024-11-04", - "dateModified": "2024-11-04", + "datePublished": "2024-12-15", + "dateModified": "2024-12-15", "operatingSystem": "Any", "applicationCategory": "EducationalApplication", "author": { diff --git a/GAUSSIAN.HTM b/GAUSSIAN.HTM index 3332aae3..743f3f52 100644 --- a/GAUSSIAN.HTM +++ b/GAUSSIAN.HTM @@ -18,7 +18,7 @@ - + @@ -313,7 +313,7 @@ To enter numbers in hexadecimal format, you will need to precede them by the str

Source code

You can download the source of the current program and the old sum polynomial factorization applet from GitHub. Notice that the source code is in C language and you need the Emscripten environment in order to generate JavaScript.

-

Written by Dario Alpern. Last updated 10 November 2024.

+

Written by Dario Alpern. Last updated 15 December 2024.

@@ -421,8 +421,8 @@ To enter numbers in hexadecimal format, you will need to precede them by the str "name": "Gaussian integer factorization calculator", "description": "Web application that factors Gaussian integers of the form (a+bi).", "image": ["https://www.alpertron.com.ar/gaussian.png"], - "datePublished": "2024-11-04", - "dateModified": "2024-11-04", + "datePublished": "2024-12-15", + "dateModified": "2024-12-15", "operatingSystem": "Any", "applicationCategory": "EducationalApplication", "author": { diff --git a/GAUSSPR.HTM b/GAUSSPR.HTM index ca5031bd..e0db71dd 100644 --- a/GAUSSPR.HTM +++ b/GAUSSPR.HTM @@ -18,7 +18,7 @@ - + @@ -214,7 +214,7 @@ For example: 79 + 43i = (1+i) (2-i) (28+5i

You can also see the position a + bi in the complex plane of any point of the graph by moving the cursor to that point.

Move the center by typing a new complex number in both input boxes (up to 9 digits each) and press the return key.

There is an unsolved mathematical problem named Gaussian moat regarding the graphical representation of Gaussian primes. It asks whether there is a path from zero to infinity with steps of bounded size. Nobuyuki Tsuchimura shown in 2004 that it is not possible to reach the distance 80015782 from the origin if the steps have length 6 or smaller.

-

Written by Dario Alpern. Last updated 10 November 2024.

+

Written by Dario Alpern. Last updated 15 December 2024.

Source code

You can download the source of the current program and the old Ulam spiral visualization applet from GitHub. Notice that the source code is in C language and you need the Emscripten environment in order to generate JavaScript.

@@ -235,8 +235,8 @@ For example: 79 + 43i = (1+i) (2-i) (28+5i "name": "Gaussian primes", "description": "Web application that shows a graphical view of gaussian prime numbers.", "image": ["https://www.alpertron.com.ar/gausspr.png"], - "datePublished": "2024-11-04", - "dateModified": "2024-11-04", + "datePublished": "2024-12-15", + "dateModified": "2024-12-15", "operatingSystem": "Any", "applicationCategory": "EducationalApplication", "author": { diff --git a/POLFACT.HTM b/POLFACT.HTM index 7bab5514..ac1f50e4 100644 --- a/POLFACT.HTM +++ b/POLFACT.HTM @@ -18,7 +18,7 @@ - + @@ -640,7 +640,7 @@ Otherwise, only trigonometric functions are shown.

You can download the source of the current program and the old sum polynomial factorization applet from GitHub. Notice that the source code is in C language and you need the Emscripten environment in order to generate JavaScript.

-

Written by Dario Alpern. Last updated 10 November 2024.

+

Written by Dario Alpern. Last updated 15 December 2024.

@@ -237,8 +237,8 @@ Por ejemplo: 79 + 43i = (1+i) (2-i) (28+5i "name": "Primos gaussianos", "description": "Aplicación Web que muestra gráficamente los primos gaussianos.", "image": ["https://www.alpertron.com.ar/prgauss.png"], - "datePublished": "2024-11-04", - "dateModified": "2024-11-04", + "datePublished": "2024-12-15", + "dateModified": "2024-12-15", "operatingSystem": "Any", "applicationCategory": "EducationalApplication", "author": { diff --git a/QUAD.HTM b/QUAD.HTM index 0bf75a8b..cc9a3e5e 100644 --- a/QUAD.HTM +++ b/QUAD.HTM @@ -19,7 +19,7 @@ - + @@ -325,7 +325,7 @@ button:disabled {color: #808080; background-color: #606060}

Source code

You can download the source of the current program and the old quadratic integer equation applet from GitHub. Notice that the source code is in C language and you need the Emscripten environment in order to generate JavaScript.

-

Written by Dario Alpern. Last updated 10 November 2024.

+

Written by Dario Alpern. Last updated 15 December 2024.

-

Written by Dario Alpern. Last updated 10 November 2024.

+

Written by Dario Alpern. Last updated 15 December 2024.

-

Escrito por Dario Alpern. Actualizado el 10 de noviembre de 2024.

+

Escrito por Dario Alpern. Actualizado el 15 de diciembre de 2024.

@@ -474,8 +474,8 @@ La línea a escribir es: x=3;x=n(x);c<=100;x-1.

"name": "Suma de cuatro cuadrados", "description": "Aplicación Web que descompone un número en una suma de hasta cuadrados.", "image": ["https://www.alpertron.com.ar/fsquares.png"], - "datePublished": "2024-11-04", - "dateModified": "2024-11-04", + "datePublished": "2024-12-15", + "dateModified": "2024-12-15", "operatingSystem": "Any", "applicationCategory": "EducationalApplication", "author": { diff --git a/SUMCUBOS.HTM b/SUMCUBOS.HTM index 5792589c..0d767997 100644 --- a/SUMCUBOS.HTM +++ b/SUMCUBOS.HTM @@ -19,7 +19,7 @@ - + @@ -400,7 +400,7 @@ La línea a escribir es: x=3;x=n(x);c<=100;x-1.

Código fuente

Se puede bajar el código fuente de este programa y el del viejo applet de suma de cuatro cubos desde GitHub. El código fuente está escrito en lenguaje C, por lo que es necesario Emscripten para generar JavaScript.

-

Escrito por Dario Alpern. Actualizado el 10 de noviembre de 2024.

+

Escrito por Dario Alpern. Actualizado el 15 de diciembre de 2024.

@@ -544,8 +544,8 @@ La línea a escribir es: x=3;x=n(x);c<=100;x-1.

"name": "Suma de cuatro cubos", "description": "Aplicación Web application que descompone un número en una suma de cuatro cubos.", "image": ["https://www.alpertron.com.ar/fcubes.png"], - "datePublished": "2024-11-04", - "dateModified": "2024-11-04", + "datePublished": "2024-12-15", + "dateModified": "2024-12-15", "operatingSystem": "Any", "applicationCategory": "EducationalApplication", "author": { diff --git a/TCUADCUB.HTM b/TCUADCUB.HTM index c6c660f8..6bf0e4d6 100644 --- a/TCUADCUB.HTM +++ b/TCUADCUB.HTM @@ -19,7 +19,7 @@ - + @@ -352,7 +352,7 @@ La línea a escribir es: x=3;x=n(x);c<=100;x-1.

Código fuente

Se puede bajar el código fuente de este programa desde GitHub. El código fuente está escrito en lenguaje C, por lo que es necesario Emscripten para generar JavaScript.

-

Escrito por Dario Alpern. Actualizado el 10 de noviembre de 2024.

+

Escrito por Dario Alpern. Actualizado el 15 de diciembre de 2024.

@@ -496,8 +496,8 @@ La línea a escribir es: x=3;x=n(x);c<=100;x-1.

"name": "Suma de dos cuadrados y una potencia perfecta", "description": "Aplicación Web application que descompone un número en una suma de dos cuadrados y un cubo, quinta o séptima potencia.", "image": ["https://www.alpertron.com.ar/tsqcubes.png"], - "datePublished": "2024-11-04", - "dateModified": "2024-11-04", + "datePublished": "2024-12-15", + "dateModified": "2024-12-15", "operatingSystem": "Any", "applicationCategory": "EducationalApplication", "author": { diff --git a/TSQCUBES.HTM b/TSQCUBES.HTM index 4c27a13a..8c64f86f 100644 --- a/TSQCUBES.HTM +++ b/TSQCUBES.HTM @@ -19,7 +19,7 @@ - + @@ -353,7 +353,7 @@ The line to type is: x=3;x=n(x);c<=100;x-1.

Source code

You can download the source of the this program from GitHub. Notice that the source code is in C language and you need the Emscripten environment in order to generate JavaScript.

-

Written by Dario Alpern. Last updated 10 November 2024.

+

Written by Dario Alpern. Last updated 15 December 2024.

@@ -497,8 +497,8 @@ The line to type is: x=3;x=n(x);c<=100;x-1.

"name": "Sum of two squares and a perfect power", "description": "Web application that finds the decomposition of a number into two perfect squares and a cube, a fifth power or seventh power.", "image": ["https://www.alpertron.com.ar/tsqcubes.png"], - "datePublished": "2024-11-04", - "dateModified": "2024-11-04", + "datePublished": "2024-12-15", + "dateModified": "2024-12-15", "operatingSystem": "Any", "applicationCategory": "EducationalApplication", "author": { diff --git a/ULAM.HTM b/ULAM.HTM index 94dd13a8..9dd9a62a 100644 --- a/ULAM.HTM +++ b/ULAM.HTM @@ -18,7 +18,7 @@ - + @@ -218,7 +218,7 @@ This is because the values that take the polynomial 4t2 + 2 Any number in the diagonal line less than 412 = 1681 must be prime, because it is not multiple of any prime less than its square root.

The numbers shown at the right of the polynomial are the primes less than 100 that cannot divide any value of the polynomial. The diagonals whose numbers cannot be divided by small prime numbers have more prime numbers in them, because most composite numbers are multiples of small prime numbers.

-

Written by Dario Alpern. Last updated 10 November 2024.

+

Written by Dario Alpern. Last updated 15 December 2024.

Source code

You can download the source of the current program and the old Ulam spiral visualization applet from GitHub. Notice that the source code is in C language and you need the Emscripten environment in order to generate JavaScript.

@@ -239,8 +239,8 @@ The diagonals whose numbers cannot be divided by small prime numbers have more p "name": "Ulam Spiral", "description": "Web application that shows a graphical representation of prime numbers.", "image": ["https://www.alpertron.com.ar/ulam.png"], - "datePublished": "2024-11-04", - "dateModified": "2024-11-04", + "datePublished": "2024-12-15", + "dateModified": "2024-12-15", "operatingSystem": "Any", "applicationCategory": "EducationalApplication", "author": { diff --git a/a.bat b/a.bat index bab7735c..538cf307 100644 --- a/a.bat +++ b/a.bat @@ -51,13 +51,13 @@ cmd /c emcc %jsCommon% %gaussianFiles% %gaussianOptions% -o gaussianW%1.js @if errorlevel 1 goto end set ecmFiles=batch.c fft.c expression.c parseexpr.c partition.c errors.c copyStr.c bigint.c division.c baseconv.c karatsuba.c modmult.c sqroot.c factor.c ecm.c siqs.c siqsLA.c ecmfront.c sumSquares.c gcdrings.c bignbr.c showtime.c inputstr.c fromBlockly.c linkedbignbr.c -set ecmOptions=-DFACTORIZATION_FUNCTIONS=1 -DFACTORIZATION_APP=1 -DUSING_BLOCKLY=1 -DENABLE_VERBOSE=1 -s EXPORTED_FUNCTIONS="['_doWork','_copyString','_getInputStringPtr','_getFactorsAsciiPtr']" -s TOTAL_MEMORY=280363008 +set ecmOptions=-DFACTORIZATION_FUNCTIONS=1 -DFACTORIZATION_APP=1 -DUSING_BLOCKLY=1 -DENABLE_VERBOSE=1 -s EXPORTED_FUNCTIONS="['_doWork','_copyString','_getInputStringPtr','_getFactorsAsciiPtr']" -s TOTAL_MEMORY=280625152 set ecmJS=--js blocklyextern.js --js buttons.js --js ecmfront.js --js config.js --js common.js --js feedback.js --js wizard.js cmd /c emcc %jsCommon% %ecmFiles% %ecmOptions% -o ecmW%1.js @if errorlevel 1 goto end set quadFiles=batch.c fft.c expression.c parseexpr.c partition.c errors.c copyStr.c bigint.c division.c baseconv.c karatsuba.c modmult.c sqroot.c factor.c ecm.c siqs.c siqsLA.c quad.c quadmodLL.c output.c bignbr.c showtime.c inputstr.c -set quadOptions=-DFACTORIZATION_FUNCTIONS=1 -DFACTORIZATION_APP=1 -s EXPORTED_FUNCTIONS="['_doWork','_copyString','_getInputStringPtr']" -s TOTAL_MEMORY=261095424 +set quadOptions=-DFACTORIZATION_FUNCTIONS=1 -DFACTORIZATION_APP=1 -s EXPORTED_FUNCTIONS="['_doWork','_copyString','_getInputStringPtr']" -s TOTAL_MEMORY=261423104 set quadJS=--js quadr.js --js config.js --js common.js --js buttons.js --js feedback.js cmd /c emcc %jsCommon% %quadFiles% %quadOptions% -o quadW%1.js @if errorlevel 1 goto end diff --git a/coverage.out.old b/coverage.out.old index 0bd21c9c..1260984c 100644 --- a/coverage.out.old +++ b/coverage.out.old @@ -1,235 +1,235 @@ **** ECM **** -2
  • Number too high (more than 100000 digits)

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • Intermediate number too high (more than 200000 digits)

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • Parenthesis mismatch

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • Parenthesis mismatch

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 20 = 2^2 * 5

Number of divisors: 6

Sum of divisors: 42

Euler's totient: 8

Möbius: 0

n = a^2 + b^2

a = 4

b = 2

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 10 = 2 * 5

Number of divisors: 4

Sum of divisors: 18

Euler's totient: 4

Möbius: 1

n = a^2 + b^2

a = 3

b = 1

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 10 = 2 * 5

Number of divisors: 4

Sum of divisors: 18

Euler's totient: 4

Möbius: 1

n = a^2 + b^2

a = 3

b = 1

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 20 = 2^2 * 5

Number of divisors: 6

Sum of divisors: 42

Euler's totient: 8

Möbius: 0

n = a^2 + b^2

a = 4

b = 2

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 0 = 0

n = a^2

a = 0

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • Invalid parameter

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • Division by zero

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • Only integer numbers are accepted

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 99 999999 999999 999999 999999 999998 959241 (38 digits) = 16186 374132 555391 * 6178 035870 236783 087351

Number of divisors: 4

Sum of divisors: 100 000000 000000 006178 052056 610914 601984 (39 digits)

Euler's totient: 99 999999 999999 993821 947943 389083 316500 (38 digits)

Möbius: 1

n = a^2 + b^2 + c^2

a = 9 994590 045938 929500

b = 328891 796216 426029

c = 20

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • -96 = -1 * 2^5 * 3

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 187 072209 578355 573530 071658 587684 226515 959365 494067 (51 digits) = 1 049227 * 4 376587 * 8 457643 * 1722 426679 * 2796 495718 765417 035239

Number of divisors: 32

Sum of divisors: 187 072452 844874 541930 407707 282947 447126 535363 891200 (51 digits)

Euler's totient: 187 071966 311970 634001 360184 458860 726827 993848 599968 (51 digits)

Möbius: -1

n = a^2 + b^2 + c^2

a = 13 020554 712438 061030 309517

b = 4 187763 670357 076795 247133

c = 33

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 10 000000 000000 000000 000000 000000 000000 000000 000013 892731 (56 digits) = 4353 994442 871310 881841 * 2296 741562 537535 293386 702920 797291 (34 digits)

Number of divisors: 4

Sum of divisors: 10 000000 000000 000000 002296 741562 541889 287829 574245 571864 (56 digits)

Euler's totient: 9 999999 999999 999999 997703 258437 458110 712170 425782 213600 (55 digits)

Möbius: 1

n = a^2 + b^2 + c^2 + d^2

a = 1969 847061 174964 576144 728300

b = 1749 675293 163153 801581 543471

c = 1708 117772 734699 048380 927207

d = 375 063459 354064 747330 684571

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 222019 = 7^2 * 23 * 197

Number of divisors: 12

Sum of divisors: 270864

Euler's totient: 181104

Möbius: 0

n = a^2 + b^2 + c^2 + d^2

a = 287

b = 280

c = 217

d = 119

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 3 000000 000000 000000 000000 010190 000000 000000 000000 000000 571083 (61 digits) = 1 000000 000000 000000 000000 000057 (31 digits) * 3 000000 000000 000000 000000 010019 (31 digits)

Number of divisors: 4

Sum of divisors: 3 000000 000000 000000 000000 010194 000000 000000 000000 000000 581160 (61 digits)

Euler's totient: 3 000000 000000 000000 000000 010186 000000 000000 000000 000000 561008 (61 digits)

Möbius: 1

n = a^2 + b^2 + c^2 + d^2

a = 1 377351 648877 995014 227391 008657 (31 digits)

b = 992241 436286 961796 666873 742769

c = 314104 806220 312094 854521 147108

d = 140347 918251 592380 016485 474347

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • F EE50B7 025C36 A0802F 236D04 753D5B 48E800 000000 0000D5(49 digits) = 2 B333E5 B66494 435DAC 1613FD * 5 E67B2F 74876A FA101E 857BB9

Number of divisors: 4

Sum of divisors: F EE50B7 025C36 A0802F 236D0D 0EEC70 73D3FF 3D6DCA 9B908C(49 digits)

Euler's totient: F EE50B7 025C36 A0802F 236CFB DB8E46 1DFC00 C29235 647120(49 digits)

Möbius: 1

n = a^2 + b^2

a = 3 E0A48F 188073 94B84F 05146E

b = F24CA1 7AFF2D BBA55C 1E71A9

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • Intermediate number too high (more than 200000 digits)

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 1 = 1

Number of divisors: 1

Sum of divisors: 1

Euler's totient: 1

Möbius: 1

n = a^2

a = 1

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 0 = 0

n = a^2

a = 0

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • -1 = -1

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • Intermediate number too high (more than 200000 digits)

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • Intermediate number too high (more than 200000 digits)

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 2520 = 2^3 * 3^2 * 5 * 7

Number of divisors: 48

Sum of divisors: 9360

Euler's totient: 576

Möbius: 0

n = a^2 + b^2 + c^2 + d^2

a = 42

b = 24

c = 12

d = 6

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 2 366569 = 349 * 6781

Number of divisors: 4

Sum of divisors: 2 373700

Euler's totient: 2 359440

Möbius: 1

n = a^2 + b^2

a = 1180

b = 987

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 58 = 2 * 29

Number of divisors: 4

Sum of divisors: 90

Euler's totient: 28

Möbius: 1

n = a^2 + b^2

a = 7

b = 3

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 6057 = 3^2 * 673

Number of divisors: 6

Sum of divisors: 8762

Euler's totient: 4032

Möbius: 0

n = a^2 + b^2

a = 69

b = 36

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 25852 016738 380658 380266 = 2 * 3 * 23 * 71 * 2 638499 360928 828167

Number of divisors: 32

Sum of divisors: 54711 922748 220180 891648

Euler's totient: 8126 578031 660790 751280

Möbius: -1

n = a^2 + b^2 + c^2

a = 140196 533164

b = 78720 701389

c = 7

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 1464 = 2^3 * 3 * 61

Number of divisors: 16

Sum of divisors: 3720

Euler's totient: 480

Möbius: 0

n = a^2 + b^2 + c^2 + d^2

a = 24

b = 22

c = 20

d = 2

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • -49 = -1 * 7^2

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • -22 = -1 * 2 * 11

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 2 is prime
  • 4 = 2^2
  • 6 = 2 * 3
  • 10 = 2 * 5
  • 12 = 2^2 * 3
  • 16 = 2^4
  • 18 = 2 * 3^2
  • 22 = 2 * 11
  • 28 = 2^2 * 7
  • 30 = 2 * 3 * 5

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 0 = 0

n = a^2

a = 0

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 200 = 2^3 * 5^2

Number of divisors: 12

Sum of divisors: 465

Euler's totient: 80

Möbius: 0

n = a^2 + b^2

a = 10

b = 10

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 288377 = 283 * 1019

Number of divisors: 4

Sum of divisors: 289680

Euler's totient: 287076

Möbius: 1

n = a^2 + b^2 + c^2

a = 537

b = 2

c = 2

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (301 digits) = 2^300 * 5^300

Number of divisors: 90601

Sum of divisors: 2 499999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 386363 316837 784180 863028 505626 715544 628098 060937 568804 361056 360351 611843 159785 517942 487764 495333 505965 352053 554358 515184 835492 185529 667094 014837 802781 690487 942627 620109 549133 614562 048949 759686 738543 248165 625531 (301 digits)

Euler's totient: 400000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (300 digits)

Möbius: 0

n = a^2

a = 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (151 digits)

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 760 988023 132059 809720 425867 265032 780727 896356 372077 865117 010037 035791 631439 306199 613044 145649 378522 557935 351570 949952 010001 833769 302566 531786 879537 190794 573524 (159 digits) = 2^2 * 7 * 19 * 37^2 * 223 * 18427 * 94573 * 107671 * 25 709599 * 56 737873 * 78 539161 * 93 463940 382121 * 64326 272436 179833 * 713529 181090 045029 900916 938579 427981 (36 digits) * 50808 749612 587553 507324 600395 708176 734541 295021 (47 digits)

Number of divisors: 73728

Sum of divisors: 1654 056118 300251 873020 182831 526696 087725 662856 708670 311642 259222 257773 255874 211007 633895 220248 717423 036271 057033 463898 778899 200435 738818 675457 525390 879227 904000 (160 digits)

Euler's totient: 299 251684 520440 022055 951023 032870 030502 893471 258164 240369 726264 866690 283165 833205 164545 350014 624538 277879 208847 496952 704494 894865 413851 429673 157051 967078 400000 (159 digits)

Möbius: 0

n = a^2 + b^2 + c^2 + d^2

a = 24 714523 115929 792915 156023 280015 852035 752404 292072 860398 232390 796002 154854 786956 (80 digits)

b = 10 785733 188310 408515 394020 374087 784156 754335 141485 277290 188716 473951 772992 006400 (80 digits)

c = 5 016322 769580 237549 875914 050942 449177 096729 937495 766725 536357 420056 481153 269712 (79 digits)

d = 2 947004 537865 860545 741032 233056 201190 989847 273754 756807 581067 644561 292563 489262 (79 digits)

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 5 575186 299632 655785 383929 568162 090376 495105 (43 digits) = 5 * 569 * 148 587949 * 4999 465853 * 5585 522857 * 472287 102421

Number of divisors: 64

Sum of divisors: 6 701981 469361 613977 758572 073726 130721 256000 (43 digits)

Euler's totient: 4 452310 433282 656544 371578 894225 927474 954240 (43 digits)

Möbius: 1

n = a^2 + b^2

a = 1943 632214 603129 942527

b = 1340 701351 528217 270624

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 240 741243 048404 481631 997242 823115 914817 262706 026923 524404 992349 445819 854736 328124 (81 digits) = 2^2 * 11 * 71 * 461 * 691 * 8971 * 689081 * 2 855911 * 29 028071 * 824 480311 * 17223 586571 * 332207 361361 * 100062 970166 640331

Number of divisors: 12288

Sum of divisors: 467 810062 595232 159948 990066 724674 037317 340625 178212 148940 996111 081621 538211 889152 (81 digits)

Euler's totient: 107 484600 672650 982052 459419 999031 332996 734612 729729 258434 478548 870272 000000 000000 (81 digits)

Möbius: 0

n = a^2 + b^2 + c^2 + d^2

a = 13732 323171 210662 760031 938582 936074 307070 (41 digits)

b = 4986 051126 223627 073007 245354 439855 152710 (40 digits)

c = 4481 849826 157673 633367 060152 385244 945282 (40 digits)

d = 2686 421350 475338 019119 679319 340810 110860 (40 digits)

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 11502 293424 567203 005419 002873 895813 644392 861937 196664 479488 352698 632452 958936 015243 142950 266727 781146 408375 872985 100271 086331 587290 272008 (137 digits) = 2^3 * 113 * 911 * 1289 * 49 613117 * 8 884810 040009 * 3 421093 417510 114543 * 51050 702647 066486 876606 286380 153477 (35 digits) * 140745 137728 109762 598398 979050 914020 691536 518797 429361 (54 digits)

Number of divisors: 1024

Sum of divisors: 21798 438530 769422 194363 915675 792587 657287 319570 557545 608265 281836 436223 815123 803772 548051 567683 609354 077460 535172 101030 405588 408272 896000 (137 digits)

Euler's totient: 5689 576983 649742 055545 749563 361891 191162 811832 466053 606082 015413 058651 522464 429617 862716 265666 333226 650053 978077 080411 105205 692556 902400 (136 digits)

Möbius: 0

n = a^2 + b^2 + c^2 + d^2

a = 101 410960 867233 895720 784798 023554 647452 217601 146262 825117 196044 065992 (69 digits)

b = 27 784261 166480 689350 416804 012946 528749 754288 881207 047815 364719 359458 (68 digits)

c = 19 133896 317735 826265 823003 225838 930032 705236 857811 665261 831555 343934 (68 digits)

d = 8 946467 665312 771153 663473 306845 447085 355738 333289 857644 506990 433768 (67 digits)

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 2 348542 582773 833227 889480 596789 337027 375682 548908 319870 707290 971532 209025 114608 443463 698998 384768 703031 934975 (109 digits) = 3^3 * 5^2 * 7 * 11 * 13 * 17 * 19 * 31 * 37 * 41 * 61 * 73 * 109 * 151 * 181 * 241 * 331 * 433 * 631 * 1321 * 23311 * 38737 * 54001 * 61681 * 18 837001 * 29 247661 * 4562 284561 * 168692 292721 * 469775 495062 434961

Number of divisors: 1610 612736

Sum of divisors: 7 467668 527167 657567 756740 428071 844363 848524 895093 641781 445583 682511 711467 153731 004238 100055 643046 824378 368000 (109 digits)

Euler's totient: 692423 677913 627100 517607 660407 338640 847941 292267 711341 018710 312755 633809 285592 383488 000000 000000 000000 000000 (108 digits)

Möbius: 0

n = a^2 + b^2 + c^2 + d^2

a = 1 036676 869232 664434 724814 586415 293483 485046 349741 063075 (55 digits)

b = 729711 211883 879079 469061 615332 556684 735507 710018 849155 (54 digits)

c = 617646 578484 717214 664389 408403 124786 748302 475286 151510 (54 digits)

d = 599898 243795 459848 484566 829945 804730 604368 372683 780765 (54 digits)

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (301 digits) = 2^300 * 5^300

Number of divisors: 90601

Sum of divisors: 2 499999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 386363 316837 784180 863028 505626 715544 628098 060937 568804 361056 360351 611843 159785 517942 487764 495333 505965 352053 554358 515184 835492 185529 667094 014837 802781 690487 942627 620109 549133 614562 048949 759686 738543 248165 625531 (301 digits)

Euler's totient: 400000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (300 digits)

Möbius: 0

n = a^2

a = 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (151 digits)

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 100 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (1101 digits) = 2^1100 * 5^1100

Number of divisors: 1 212201

Sum of divisors: 249 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999990 797310 213721 421655 703917 278568 793602 938581 209362 954563 915996 206911 736963 871703 448420 393534 719273 589927 767129 699779 344146 574722 410069 037295 900754 704870 621149 869622 416974 764232 936393 149795 960968 291597 093715 202086 964192 800104 852595 300134 562192 252401 313312 917665 764098 700407 928337 785628 333852 234731 268944 465216 490634 524996 859357 780374 745047 551965 239335 887113 074210 850335 666128 769714 216135 133740 966678 463893 588358 037543 308823 581569 825582 140556 385973 386307 657739 492836 008275 043330 799537 038848 544607 004209 380332 534956 804358 266060 018273 828637 325093 842685 087236 661336 747443 608744 087073 914735 261231 286846 884062 284894 310244 151856 582470 061364 466882 749805 897882 053351 422961 026790 156477 860732 237238 938316 894071 955066 555473 530746 757077 834197 223594 351341 709189 623792 800723 551447 741531 (1101 digits)

Euler's totient: 40 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (1100 digits)

Möbius: 0

n = a^2

a = 10000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (551 digits)

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 72667 006980 385333 565928 292938 889925 763077 487582 539982 424675 125363 472831 753169 017201 333796 341341 273008 218264 573022 195345 424489 059723 700566 662314 773302 254295 889312 457647 497977 853863 042157 354564 496698 482701 130753 323286 758612 205861 967796 343191 858131 002928 068599 375361 489711 955573 167082 152350 251926 682548 261810 352243 752628 728062 075698 309094 353839 917855 662220 230519 561659 303923 717372 165426 504245 330561 336531 394521 206972 376656 319044 759781 782531 367753 214675 926474 551313 397582 602429 279165 551217 508178 286951 973368 325401 600813 252492 715973 200800 085498 597530 107124 099855 140705 569768 373523 754687 692838 260083 916787 700273 811013 835835 350947 288075 424543 614544 277796 512520 484804 771653 681113 155782 672127 396480 017746 200430 207651 892985 299102 442574 824992 927392 648471 146556 033357 439172 318145 703266 692485 307896 079011 622345 086436 456869 015474 329351 181816 729993 722588 866629 779574 214090 371315 053902 641539 997756 304014 429647 932479 992980 866666 465626 257172 992838 769741 655146 789249 244810 499818 268084 117872 212841 107868 805243 478158 662470 334981 539983 119942 416064 547375 253939 977280 201195 151472 147419 623969 226556 803610 308846 378376 139404 546472 122298 686124 711434 159741 642296 163820 529985 809649 461390 355131 684403 486979 489995 312716 419307 313769 444520 153150 901222 847313 142181 447272 204666 960213 009957 801323 583455 353791 501067 898151 425856 699965 549831 846422 290686 426650 337714 906093 918443 466250 206713 570252 092365 443368 242871 109759 177250 455625 959783 802938 477021 558459 905557 684556 091956 431875 389521 015710 091193 395756 745102 054771 899768 946578 696678 319163 726191 640098 936923 770968 452867 055760 965880 438159 358981 762243 760240 056374 944920 023004 676382 847503 738465 360984 643768 523013 397881 071295 905031 098089 698891 494257 215584 727303 141345 674171 044795 594021 192835 805707 562387 078258 591908 399731 089909 898817 226093 695385 121493 869352 132605 141346 854886 893911 871095 598267 604544 030562 133807 157172 417964 011985 562131 080936 981684 296736 381769 366072 270640 297352 901151 754371 601989 663182 721220 425035 067809 123253 526722 846238 066538 699819 199993 129908 128545 850504 976380 092090 366537 214438 631213 813373 906049 371742 824529 230499 443014 992805 933917 454081 422586 104799 792284 967724 057489 205409 843465 045834 260178 573011 183127 327538 397501 878888 546219 083343 944398 116507 485435 085429 845211 710280 363162 234538 899043 203092 653075 039565 370510 665758 475105 299029 361041 189828 219987 863157 060400 820517 970893 633335 291193 528215 169482 346288 247160 044937 909061 609445 812547 327627 647076 151252 345098 720570 858181 533375 284628 893303 872716 468641 311339 022418 407061 871931 852329 760330 435973 189460 161072 929488 417217 252005 363438 340091 968812 490161 250110 104273 203535 684284 835799 701677 023640 004166 082484 019140 275988 017398 529483 647698 753555 748240 184583 306455 920603 545774 440735 038345 369423 921431 350896 074944 308042 760584 539262 681855 392087 390724 041852 549385 686481 318618 973112 007766 253789 425420 655758 429705 508341 095687 510171 573583 792528 650180 002064 594539 819897 585083 735219 940358 617217 391229 952636 259428 327330 484376 702194 865484 602525 342972 960210 004667 060691 662235 982445 149616 208071 968867 749197 215627 429641 471420 150495 260516 072305 056813 211732 961496 424809 933889 035896 932990 753215 016498 409854 814533 812373 432577 609825 761615 342205 365344 282149 928170 065746 906724 293573 507532 983037 454610 368909 509392 901681 100623 054688 288943 329916 933337 251214 169076 436972 028053 989725 976654 001452 237515 761147 995317 804214 675419 838161 347610 246313 780114 378631 952476 808891 936025 865836 655455 245176 055145 923550 321956 060168 609702 454633 005921 582348 138029 577382 174729 752847 794054 373301 532666 400465 680303 540372 215400 256010 528333 292448 128094 134664 930890 924872 017774 428127 050168 674731 593324 223340 589605 024579 189066 169459 083809 033204 617112 049263 953327 633669 044738 133740 245226 244288 450178 793235 088295 426458 643206 238222 372939 117433 226524 231266 685737 140841 159913 134145 715848 353199 617918 334947 145941 709176 032249 487137 098663 073269 417569 658539 681463 645514 569129 273587 717472 733061 817719 669299 027194 734676 931896 392181 295757 708261 545098 400084 416898 152017 247122 147581 843902 183885 621394 616372 617207 576706 685736 120437 364888 331020 537499 230809 840143 915772 273490 629957 690368 526562 258014 594354 296656 601246 895726 995607 766236 986440 951193 484514 567482 662216 554330 070762 690313 564588 855568 728895 145739 676168 817855 636066 870447 627712 646964 790923 741693 654876 684386 931429 513762 577956 105006 801005 467054 418801 851498 517282 817900 402502 915589 363861 582011 676154 289009 794066 887723 117115 980380 434896 299229 861444 134421 098205 007807 576792 027318 819809 355202 852691 230712 014238 078905 910684 962970 481268 547522 450557 400588 519952 892789 138066 962931 778381 111422 556383 137003 380147 242873 161370 515783 301720 537789 385638 268948 173216 152438 067616 745045 916656 724357 704730 062475 270057 373778 749899 711993 938090 360904 126820 860616 018080 129476 639839 559952 692384 776958 201434 666884 710165 884307 361446 677426 811065 836255 198248 545160 014939 310949 537604 563204 192423 353715 094257 764123 190871 723396 588028 848800 493596 374364 075303 586569 209086 680994 340241 660101 812114 547411 524662 210662 753756 096854 448355 124441 868819 828187 523840 152138 615090 518792 914332 430411 514833 977378 883538 887767 049222 510374 764258 633618 891709 429150 241456 495698 346529 569608 716723 436882 425197 455318 765520 352398 548292 843536 008507 409848 196271 735883 123913 444220 576017 746589 414688 721356 342253 294728 096326 773984 673851 322601 487737 753850 716992 740352 440010 510540 270283 407122 881629 659593 963025 886466 793792 600311 042960 749537 677292 476283 600788 855457 294423 101548 907877 796399 131120 959608 339956 294153 712985 218801 634039 742900 316979 339179 970114 104869 911463 975202 995508 133903 036795 677818 914859 359268 144999 973601 952415 586930 813073 719617 457591 694981 795995 759496 306242 940713 367801 646897 555371 351411 476462 270009 326622 066518 285357 267790 339868 171964 044950 664647 649037 515426 117953 018012 856695 121099 093216 049003 879505 541299 123881 550707 994500 164742 793715 658148 396159 118559 760021 635850 063183 275292 741249 902156 044700 304436 766879 495699 845588 286473 735777 015548 404155 863781 804523 782025 818134 457109 557476 186243 678247 808775 747249 041753 582160 390544 650532 591283 079349 946410 495542 907786 382217 287955 070477 987821 608727 103714 328812 145407 258012 573085 013316 820531 751885 520741 900582 543285 448000 754969 501439 110457 830670 952415 372102 643552 707246 533416 118870 072963 682298 649507 994597 540395 786018 682999 460641 202886 958475 968729 090445 301749 293476 680257 765773 219904 477800 699786 167614 512817 163186 014031 427706 283867 733171 269055 024526 655925 577784 669336 876094 995846 815207 773210 052934 589015 582401 470556 692392 567533 759431 832968 435914 842141 160150 334552 139251 502180 210696 334270 561328 604437 213257 215215 095288 304149 853814 574916 049871 318291 189487 533805 523439 137287 712978 043460 970393 380549 078361 466119 787361 307658 174479 962781 112900 305763 871129 825672 162161 853176 551065 321785 524668 764130 015030 693038 448391 950724 617914 214696 900346 866732 059139 717318 703950 339308 214494 798788 599721 287411 276356 748034 688558 833595 820402 418728 314062 521055 828894 956029 321747 220863 408029 624332 825356 702794 098612 305755 777531 276879 842844 364290 745370 043377 597874 414606 439191 688394 923354 137086 243390 065656 833218 530707 478981 909231 968903 009197 119964 486093 330206 023012 916454 037129 598199 933124 526933 023957 364503 445110 260366 838555 117115 539808 231702 429131 242858 752314 216200 988277 335663 829338 733278 079370 269611 751967 888091 761155 737556 744886 955977 396893 843522 161519 366416 860913 094906 024158 486824 374322 893510 598575 617055 043472 060698 491333 053841 454730 221887 731864 662674 961002 546941 827142 754568 891941 355957 106464 872056 873256 975717 174742 298010 919640 590862 298578 726541 372822 217607 784334 889204 309198 487336 507522 687243 761613 513936 317708 298192 207805 608228 972917 232813 239813 118215 209217 144405 230129 822124 041978 800259 643193 749882 383969 602355 049701 172179 516277 331753 713125 306285 357673 093208 000303 005592 821769 139524 034678 389378 457397 691754 646002 364431 362586 687528 560712 303694 063451 431138 459775 186178 369298 856249 173802 811311 485895 185312 455129 879410 052189 303362 032947 385626 422314 608975 113061 304564 489268 665998 226060 183971 931612 929265 518177 754497 076448 747233 959407 750417 109200 895080 724661 446670 635586 257041 402121 540023 476449 610503 383969 984054 427875 801929 244658 184835 871230 001028 517535 946008 526549 164317 584207 704865 875560 634004 691571 206448 320532 619877 695150 551683 183006 172452 903438 045494 527190 507439 580126 352030 735844 155765 043339 618071 120285 121377 796510 020916 433074 445216 597279 329890 912276 441443 799507 118738 574111 978649 379635 234374 408455 178108 725705 274362 020249 147675 442075 485469 117295 372055 608032 048242 814838 406583 368693 060128 975103 013919 891641 047149 628798 390183 213306 753103 576986 771196 263823 106944 155752 256916 740559 444466 490374 123276 512492 854703 733903 273564 208731 887920 114018 066226 339246 919760 578052 516597 922367 565013 925777 189507 880583 457133 184979 160194 294594 247382 751828 173058 446684 356504 430220 685806 506813 591257 553284 173835 984683 889699 530593 629450 496348 957981 680332 101862 447324 462206 805969 430489 668714 248252 702645 937234 282142 409762 125535 526913 656797 093087 631185 625884 462587 093047 357885 293901 085311 670592 551576 240474 072534 456111 363386 969604 128065 569663 318761 792310 875059 227524 330746 670063 556497 334099 128172 988994 933629 842466 189730 556254 538738 945519 419881 927253 669572 024503 265792 751318 493420 987619 904297 500633 894449 493246 393391 210819 085708 528007 615723 299915 904695 101122 456868 028403 652532 716561 049888 846117 549339 341555 660136 372963 286339 229989 726760 272560 379949 081429 648206 431892 048558 113239 021198 368427 686218 330263 999723 139638 620357 171255 359845 517292 073278 291112 565779 480119 521044 994524 841182 800402 175905 247114 567915 460464 170006 666658 765481 732233 681300 698753 263584 346432 871761 516368 338472 261082 564209 098896 612440 632135 432706 457825 301056 888948 497925 998033 207975 990523 678974 341319 573972 540570 997030 817516 319768 553780 326953 433510 311588 758371 854767 740782 594431 386836 985161 795423 600040 502839 080676 939367 441999 844982 446552 863667 536163 233981 992159 111158 196285 164258 866633 779787 281008 075540 119649 494617 709654 481862 471273 066137 847575 486980 925996 811255 930180 930010 853245 881908 892595 781120 013300 437657 000674 684778 213905 290737 232217 497961 092718 314762 213921 585277 479600 184543 917907 292328 635990 501162 242590 160470 068047 631003 197517 875510 905351 833499 896934 198185 665776 823762 488152 153967 319729 301518 135902 995941 924250 010714 721267 415779 602270 298991 096967 821942 238912 374824 642230 683124 970031 501346 743718 414751 473636 517574 151318 064057 704220 316442 344758 678640 475183 594180 167969 307164 613460 128340 991278 448090 097496 647516 223021 297185 639682 448365 694175 433434 049976 603228 915801 286835 975489 749676 998009 572962 099956 919248 793671 298726 621705 887246 250054 177111 998668 760807 815168 566427 025121 931684 402718 873083 528109 028953 489309 957449 617243 363311 650524 840654 467625 795216 254324 665086 034880 665233 217749 247330 644695 277436 653011 681639 792871 416867 950284 359429 845863 987672 563038 132010 941513 483226 051077 879134 145205 161705 100943 026989 176883 182391 548980 484730 125057 439695 114591 857541 089369 783684 938870 104495 401684 854021 112876 777230 562509 342864 363494 584904 981813 312149 253368 870329 431026 130347 196211 984626 030858 068624 646906 536659 043114 872661 570046 051810 867319 282737 590154 042422 191751 288638 842089 689041 494469 298760 884625 441305 812519 123480 105062 344316 035920 980523 628854 869129 924383 138191 662592 219285 376607 124601 336730 653597 118284 225899 853725 255481 595348 750598 803520 087807 191620 455428 922670 227431 985348 785954 713525 673112 921533 724246 979636 131282 469461 142633 001432 055339 398001 181681 834010 899626 426174 839651 882500 847136 801295 590797 514034 829328 874021 723662 769493 445687 400238 773447 929017 154670 883043 836518 936809 991734 602529 532528 048525 111767 917693 468953 990944 767629 469068 053700 015406 309941 604025 508277 702838 884490 476948 336639 125207 885053 779301 398022 304239 221207 903652 468714 766549 590158 276235 003912 373418 181403 334043 917765 518060 358866 696573 368193 664905 784347 386135 275456 585566 214728 748325 213604 430025 430019 596437 057957 884808 219002 038396 666642 304440 922779 647637 319653 926364 153901 714254 134064 311946 025605 013711 849115 442518 571909 023767 381967 241447 140998 209642 755788 074016 279898 473415 869315 734629 409508 553655 980716 149071 600048 456271 006777 381951 096756 992042 393438 106940 415391 904709 301916 245847 587839 475809 960214 132572 248856 233006 097165 727367 362989 095835 947002 604414 026081 167550 785978 242318 789103 914716 113441 895047 353736 041051 765182 418674 136512 929571 296397 572875 010458 398980 656546 017603 357356 007330 688801 115510 207765 493790 903033 076192 238263 067884 321916 464469 934881 443125 121387 635306 754183 311888 438781 504587 843009 963096 608523 859162 205053 826687 779659 580034 508426 842036 376918 207188 696804 603958 589639 382904 439778 328206 222059 996858 122988 048812 195926 689001 784298 361650 360441 014257 382643 949596 198072 107938 699701 166478 225167 178448 214688 050221 792561 944540 630542 238302 892932 112759 554656 701872 149660 638976 787315 710146 476875 858739 836824 586516 455323 069167 512130 146907 045748 944124 938494 594016 700006 402693 136697 869877 365906 201915 181548 435544 076480 007054 447946 301905 561053 706260 049924 711082 755321 330068 538628 563062 939965 286953 595102 458983 024756 823297 370126 693220 800173 359328 136081 039738 466961 344914 303826 414755 387916 278783 817611 630474 419108 977643 328573 626159 501440 807347 643863 249121 240555 154440 237534 576778 056116 553320 664367 209506 765962 662577 721088 283643 378378 022561 331104 926459 253969 951567 352407 399222 927997 206826 786850 260880 810056 699219 174236 915660 305554 161070 520526 826938 744721 504940 431123 782786 434368 571133 625602 475096 650916 089085 899348 377852 820908 984501 111965 397883 571431 031126 916809 704370 181005 381772 806247 411776 932860 588796 923251 842857 910306 921145 857466 625279 348487 027271 688155 619484 681886 146453 378997 044356 692014 150986 387239 446843 396401 533907 115240 908279 155565 388894 243001 209741 674939 907800 023155 003650 371637 852468 070640 121844 464150 398127 816415 642428 529641 616157 079911 327351 667319 920798 983988 084846 393337 357752 574628 802434 224727 758269 986853 984180 773968 903358 254810 420980 556974 339465 449874 471026 378372 974912 346191 478089 239175 919518 543137 848875 871101 261622 633422 571822 114566 694346 442657 149354 800179 565240 761559 962271 136702 965469 491515 874899 522297 657891 143495 104731 722176 570724 103220 979589 268425 227689 207403 572308 900572 809622 564998 336323 023436 047000 880052 069695 573757 097833 177053 707025 270657 249827 655583 459354 043921 708171 492432 335598 435531 545350 780546 024811 432828 991023 996689 182051 406513 888589 724380 428527 794771 438618 705716 484147 839752 552951 690725 268707 351674 095132 881619 031286 979741 812461 287453 178684 601807 746540 209315 962201 024674 313126 683431 350608 031861 023440 730673 362366 115916 713010 992089 229102 412571 253061 649096 737721 586776 335305 338883 859126 994500 120936 354699 940292 175478 144056 137297 029522 686213 534992 265686 150993 521986 299985 144829 921054 663374 841026 145118 876295 923578 037463 441574 227155 895023 462499 978941 980561 374458 524844 136724 419622 039863 810103 654973 986988 187152 824868 383131 671788 518164 002278 896492 459553 308146 528483 616336 378678 692970 570167 172861 088980 200952 760384 290412 012287 742617 357222 296347 339138 622469 670893 998540 310153 034308 553958 762449 581985 316957 542724 952574 639374 424602 625181 679824 816426 643923 185446 995091 045877 792453 865627 068152 805688 546467 691966 451541 510466 243306 513790 499606 092105 355479 169575 270618 337009 044512 682441 726991 935158 313313 858388 955991 332484 011842 036162 098379 988204 164111 074726 196178 482191 203732 668811 488516 945453 688307 581828 617797 970368 526435 840037 518309 852073 944855 992553 374454 440360 770617 680256 070109 764852 950476 467183 437317 000674 262207 767228 652860 899733 749484 405175 852335 416277 743404 034706 355925 659636 937721 434176 990891 700161 315377 701066 951601 230169 033175 709716 268999 251992 676700 691452 674091 287260 821149 451262 449892 635348 053200 663637 618329 363010 500838 159490 480832 256857 967751 399675 601646 675760 875171 412170 578770 874315 108341 583108 791321 359052 030281 554943 143210 812327 599989 232016 344846 285538 849920 065529 193667 738801 007372 428414 362671 230941 290571 022514 193303 507690 809569 408660 598642 926707 990547 879445 547511 096894 877470 326600 817530 872841 996351 732182 474190 318124 192822 688348 774301 163384 196705 457104 110632 043589 304227 885967 722117 515920 984560 667720 808197 356746 281477 415178 348755 604413 402139 978212 507696 051890 402998 403161 202295 391955 937599 758181 822973 337494 209815 781849 395632 499220 369869 191863 646179 338530 501152 608164 574910 138505 174794 056543 083867 975776 329883 795686 875831 799052 790221 608428 565911 175638 719182 755652 126675 345061 555622 401000 028041 936067 017030 806933 155626 262330 880453 176749 920680 828765 443344 145468 235439 918449 216566 121380 422061 242682 995982 206181 075966 757818 188770 033591 467549 749128 012321 820653 145147 522140 322139 464592 087169 035103 790638 148599 575229 819247 216261 387961 229590 861812 875732 324118 455429 261076 012185 802313 575474 641487 978815 846951 595020 997611 028460 774379 167231 272632 637142 510326 621912 120732 938792 323251 882671 296701 731233 238869 417021 231836 588391 101986 579921 630254 800933 163797 176427 382320 268431 294591 380796 777638 402361 212932 247755 944693 996588 027787 952172 776896 759010 442504 500432 407823 328678 173198 774602 803538 591576 550212 553073 953073 044820 150282 536965 121011 113274 325352 041348 929066 341585 869853 843337 197980 749039 890961 124845 914954 657760 055739 124754 925834 937319 495730 062525 410621 267510 524121 378675 230415 542330 294349 011522 712356 087532 841942 934504 592863 954314 357313 824648 916690 254529 870611 261533 602486 643877 233760 075999 558292 853335 994349 505115 327543 816313 024397 104409 771778 978562 030545 860681 831266 424006 853132 223296 848755 393519 797774 340591 493489 650025 263099 863487 706887 485378 780058 207928 763549 357176 841350 911101 401129 297709 369309 697301 330023 325164 662122 973196 581026 879226 617086 992104 808845 378455 926044 817983 957668 675221 088335 828097 850417 540001 598598 694972 288227 133358 246005 280860 225168 159832 940619 193621 230333 812689 850773 310686 950518 656965 605478 715904 147736 556052 142093 055775 350110 665923 917871 176288 628259 762052 088439 907223 067333 290178 084057 465544 739801 296758 575647 447412 667482 689063 218553 747259 004935 571896 517900 708759 585860 190655 882383 218278 593217 285035 684318 034433 895727 385431 042531 027445 919277 380151 519464 303762 289127 482417 847822 173915 624529 256222 826397 869018 893717 630229 204796 895552 671545 928293 462830 359846 742018 971496 873191 674351 129937 734552 205018 628837 529628 152803 870412 851816 937013 048720 713795 668875 243800 418934 488111 048217 220719 331066 670170 860954 314616 065911 908003 495817 963193 464644 891664 294883 518101 530020 946894 495987 200663 172436 250769 568051 773385 117434 052640 210919 170887 536445 512020 818993 433221 678888 162213 280811 911496 984648 916345 779214 711689 862957 940233 429652 425380 143293 755916 547425 204573 055955 396990 854657 461823 839439 835299 473025 147348 837129 480033 142333 266515 838367 807716 233483 095298 261806 446464 412483 080083 326023 849113 954065 167543 637322 491451 527864 101065 545994 357619 070728 119861 416314 164573 174281 581167 704095 247010 886445 886078 057232 596805 729868 977334 891759 690589 306295 059750 519658 122121 464642 019217 828117 827962 325873 540944 613093 002089 868531 351310 959249 050408 892598 380431 565725 092368 096602 337753 085081 204160 208596 376278 236336 592834 671832 519929 587769 135165 297019 946626 015539 871031 944856 505649 266481 164552 602529 770936 129191 139551 326425 955301 110014 992770 993022 528507 779131 002259 247202 894809 089295 652877 901767 493666 472711 203514 232840 010801 199176 175422 930269 808308 959500 266807 818781 823664 949587 898255 087235 131346 003231 394452 853570 190943 908669 468165 890723 534364 240554 776380 036806 224736 422886 348239 844890 457281 124152 653493 661615 093678 724741 966305 668397 451359 234414 732182 402061 166991 128403 879532 406227 886719 038626 158522 289165 468116 945969 871134 641678 498413 399817 391318 653563 171120 278650 564117 928859 777481 463026 309470 919896 401801 464589 221587 888182 237819 130384 338421 219002 687306 332161 456507 765072 119240 583459 227361 133819 861893 039142 771763 333019 202597 346829 216151 244162 171789 631327 384141 918189 723426 514399 762125 580548 154380 696788 269569 430030 761477 319939 368529 149270 721084 328044 382225 945443 775062 951057 592295 942263 044094 988460 925097 171383 015818 119048 429117 600389 200291 256005 343920 024090 240155 173505 989921 460661 581408 934506 702767 236144 557419 826663 184506 881486 588681 969057 751283 062269 000189 367026 543065 861908 204771 762907 212725 220351 471484 560090 190663 385374 400389 401826 375538 326210 397402 172014 960067 218009 328367 879855 835866 992421 677960 503917 990469 621177 596154 331689 868463 514846 490647 826984 026032 075611 650454 566432 726919 442397 754729 376265 336610 677825 469789 771829 790798 464941 922114 214906 051371 298137 691037 121009 918938 125493 490293 792074 939405 418566 447814 339601 741526 695813 813384 375093 166562 387381 247933 467806 730094 180217 570273 057688 954236 901300 290419 249267 401295 629846 776886 445640 272867 128575 640446 241917 613297 917119 896619 253937 313321 912573 794606 698228 444278 784866 850257 817202 914424 220558 915177 056587 366391 816585 113799 482893 406975 301962 154921 715424 267737 278799 824728 927914 971439 486139 558824 146950 283255 047847 615406 915644 942051 588826 628569 242937 095861 662034 014147 307425 804793 474472 995704 426546 062935 713482 984681 022581 345832 035659 514314 100854 737185 729680 700047 822543 837855 728393 093667 265149 511977 555682 457429 168128 857698 629946 188320 385714 910291 192478 673748 333485 376863 677827 764478 788758 526050 438270 634163 318846 299144 424384 014868 044877 408060 420400 036689 540539 039965 727351 760566 402380 017891 265749 936430 198615 919941 037865 781025 057938 425532 270964 706074 415046 269406 252443 773274 092806 237973 358356 513976 073010 666043 185621 972379 166162 755602 006370 780736 771976 953635 434373 557650 971639 753973 988755 558180 346245 631242 816533 555994 069609 471913 065808 866608 465589 795168 264429 742794 177940 543244 030363 416753 155515 004397 445596 567828 311324 269506 676626 952294 342262 583688 913620 108228 447492 903394 591978 920263 159056 016269 801242 932048 649125 867007 299787 802046 589663 211127 756579 885048 392903 407298 942709 543624 521167 496263 680708 158661 669518 761632 615605 162821 918993 229929 888542 772395 746896 235491 121986 281379 864008 732064 044529 778599 991364 954749 809175 537452 941980 675073 391953 960407 359439 537381 381002 038419 605514 422412 866893 423175 886321 326931 220342 127112 826888 232079 286748 295108 245879 982126 798330 833710 897733 491666 170019 077385 916385 932721 196639 344165 242515 378743 373877 734731 865056 773775 921438 408129 491576 694183 120721 321870 863723 572541 723391 587699 544991 475828 231262 172498 336202 621337 010086 373477 505980 484418 116507 316825 207406 314561 785522 022119 738413 284841 642767 920066 920386 148500 991298 642590 455747 265028 205102 383286 517604 030502 123099 841874 693951 987016 891548 275854 690439 432342 742990 174969 390129 567929 648020 315101 040074 014306 429258 208444 712077 199761 817184 433212 221282 043703 896366 218335 214548 069366 287417 187662 405395 233939 612660 148718 607356 213439 880785 045788 050880 381595 937463 001675 635152 410892 447462 652026 752153 298903 716656 386461 132618 544435 874448 574241 294023 890654 403435 353247 325162 087879 226821 471742 716095 265491 286191 759999 402694 163871 073392 089348 858581 569361 083499 558860 064952 002758 039328 380257 172911 386490 030023 023610 824006 001921 999431 176366 332051 973961 929200 303970 237152 500182 659393 823450 545983 318969 199558 964269 848858 996539 958454 600496 070250 738916 731169 810776 790190 781591 260036 488584 123291 678940 235443 380517 372709 812903 215238 158650 210640 673212 211543 796882 757999 853797 702343 939427 930538 439828 643362 071727 563795 301140 210195 855697 477926 295535 267613 500470 008876 183464 046406 431471 380867 708410 865174 384282 574887 337077 852637 547719 149526 286160 108484 655181 450933 515407 674090 799083 238551 095869 098217 036677 910721 636181 905898 299749 971139 706672 748686 267939 892570 206606 148580 947927 059678 631424 684775 342893 486682 445940 244795 403796 726822 580957 478930 597189 799150 247536 369182 314629 245810 322701 075911 741776 383139 871971 830447 989392 599194 086861 860770 401421 074618 051847 270169 329787 006343 784439 483172 931757 633375 090836 554033 261377 953496 901135 482225 257432 140637 204307 622916 480270 204832 055531 082652 999121 077480 794250 249619 271018 289310 958821 077308 482913 550543 064887 428528 264446 979451 214209 950489 626977 694772 730219 794389 853900 516161 674614 128208 147230 090456 831465 049399 516992 269193 170918 866226 178264 134570 389455 152310 964981 493828 669925 450036 435799 697948 685554 052583 303894 259484 463369 820632 195783 267258 727445 128318 056162 799909 443958 658320 502675 820339 818751 595810 132382 988069 178398 844153 810675 339198 931958 084464 603584 356889 366308 074601 775482 328659 175428 063691 746107 914423 423005 122126 831256 565956 086180 050646 375413 563267 973961 997345 176660 845949 892336 151321 901225 254259 201079 752039 232089 748387 475462 579456 732784 855178 785780 471917 812180 953553 953160 381229 896776 739233 967636 967597 667492 678429 569003 497897 394711 975403 163962 722442 673925 814985 001011 204846 741205 655631 040747 709984 745794 435701 856686 156065 152096 877322 339017 971840 033016 733727 570643 514390 052020 020474 966458 318690 305985 253823 197490 651777 561346 424819 174761 905606 695301 360453 355043 755393 049453 443645 327652 447002 718934 106432 972971 348651 412807 777116 178085 412827 503782 096682 981300 962011 212023 774421 656062 854049 467320 195945 136078 859290 901378 525245 431137 678319 476753 886516 695510 063276 615827 325071 462236 355302 981045 235679 296107 846271 665895 149185 186680 097003 731222 820933 512218 353943 825536 145143 572626 589420 418412 086433 337526 675515 553227 386307 696107 226965 232069 868728 838217 602958 761020 994592 003230 753964 685739 853645 860783 504373 416648 812544 517154 765733 102348 464715 312356 732480 455533 830569 919499 751409 430192 990973 417118 354676 790246 042158 627922 171921 179683 726082 636218 738448 804413 328314 103010 085530 173980 872558 457988 813238 575044 712367 146537 247966 764284 843760 716055 521616 542305 802868 530747 547723 058310 801870 984151 099063 963780 235854 355108 545503 905223 926256 663833 312604 458537 881603 505553 386701 289467 698289 380343 044033 294451 952405 309486 936694 949052 449000 866121 967403 677291 830521 791447 904933 622716 031591 276997 204183 480943 149462 137728 377237 113952 804670 235370 646035 717650 567617 911342 439772 375793 538560 289847 476910 688230 182412 882158 514578 911071 182465 695739 124120 719627 744012 052305 074142 430382 365480 709028 445727 337711 435193 896800 191347 573869 335910 490213 456250 231011 978409 171506 303498 328384 452794 237688 739676 204738 786179 374264 880323 567209 345389 520001 (25079 digits) = 3^12000 * 41^12000

Number of divisors: 144 024001

Sum of divisors: 111725 523232 342450 357614 750393 543260 860731 637158 155222 977938 005246 339478 820497 363947 050711 874812 207250 135581 781021 625343 590151 929325 189621 243308 963952 215979 929817 903633 028140 950314 427316 932642 913673 917152 988533 234553 391366 266512 775486 877657 481876 417001 905471 539618 290432 131693 744388 809238 512337 274417 952533 416574 769666 669395 441386 150232 569028 873703 080663 604423 826051 179782 715459 704343 250277 195738 054917 019076 355720 029109 090531 318164 490641 977920 567564 236954 622644 348783 251235 016717 034996 918824 116188 659053 800304 961250 375707 550808 796230 131454 093702 539703 303527 278834 813518 874292 772832 327738 824879 022061 089170 984433 772596 852081 455415 965235 807361 827112 138000 245387 336417 534711 477015 858395 872088 027284 783161 444264 785464 897370 005458 793426 625866 197024 387829 901287 062727 439149 018772 539696 160890 221480 369355 570396 052436 111291 781377 442043 222365 348480 382443 286095 354163 945896 895375 311367 746550 317422 185583 696187 989208 082499 690900 370403 476489 608477 794788 188470 713896 143470 587179 331228 527243 203348 288061 847668 943548 140034 117724 046911 464699 241589 452932 715068 309337 545388 426657 671852 685831 085550 849851 306753 314334 490200 888034 229916 743830 020602 775030 351874 064853 182336 046887 671014 964770 361230 965867 793301 494684 994920 520949 735469 510630 127743 956103 975181 014675 451327 502810 119535 009562 606454 432891 893407 817254 676197 032866 463874 271930 380974 894236 668119 399606 829359 692822 114262 592011 869178 673414 331254 735022 575524 913167 597017 908420 646132 104794 940004 991383 014008 411388 561654 265209 845975 995594 409211 795894 755364 746142 915714 229019 646652 115520 297863 996283 098232 485041 173670 014434 459449 781369 086676 477814 535369 689938 628036 997890 492513 889794 104133 099242 147117 453985 313312 912045 672420 468961 518228 579818 974037 981373 225807 583985 051275 377170 132822 585059 164586 550736 469431 485119 056654 624296 824128 903880 404820 789388 599389 501809 482336 441986 446989 280728 504152 592619 668427 801776 536940 609339 606232 186970 400336 116109 457180 085520 822346 338059 107143 433876 403491 416756 527002 297336 376091 027303 250972 019989 437233 747639 245151 401184 391588 938550 967199 395491 238062 380550 909054 592713 691892 893635 551439 123398 085650 187226 136129 680638 137875 738389 653317 634327 507970 175024 556004 694058 266090 286159 138791 139811 840641 314512 104130 258856 443848 387013 004556 058361 935603 557278 924754 954102 873331 757160 148603 655474 397257 642600 829360 888231 339603 980366 261546 380248 961253 010210 049630 823079 107418 180008 569092 035182 224522 936791 516227 507379 582550 480589 282877 694454 107564 500116 923454 704301 570536 016183 746968 300857 628095 222957 006508 045308 778794 997649 629088 441471 524958 246286 447891 402049 203622 922044 285320 050436 114587 935042 041328 423846 506405 351819 179428 174331 576750 239081 108336 833591 962919 283796 833675 977927 951628 202630 121456 005489 279200 702002 715226 873615 744398 729116 373352 665334 363238 214348 294680 492965 027376 671159 711940 615201 241584 258228 585672 219074 434619 546888 794385 081012 799651 753174 314104 973092 537066 242900 658301 373971 739016 052178 248871 053270 619729 179624 605682 576382 714820 926322 882175 605813 430687 823009 417534 919910 652134 164390 719027 173073 762308 481386 463043 461169 024850 313039 428300 753145 273354 392691 534473 283068 087866 305151 777345 736524 152588 075107 108483 588640 749216 833805 514561 476085 869088 601369 267831 961420 086463 442198 370691 586334 692207 946583 244250 369747 285006 023741 784955 021844 493133 009203 689105 527232 815180 482765 042801 123980 063458 001173 071950 753707 436925 857146 626933 093671 351639 768723 857762 439458 184786 857458 620007 442509 237417 523998 246604 432860 262220 475225 093646 995003 483358 598951 106474 590715 983466 693322 281177 893616 187312 437138 996944 732047 331244 796990 727328 183245 339634 337399 824735 993386 156517 725290 503189 235543 341356 388552 098809 775743 328241 236766 156284 880625 627035 350593 492149 894598 948254 218180 163929 591266 898393 893053 585781 005572 529320 854043 283366 443749 038116 843044 412549 439981 236885 377858 149583 586473 289194 475151 729513 350004 760250 354978 650036 258141 115614 327082 544743 991547 254311 904565 782790 702978 742227 476452 125588 790129 790980 908726 517450 301907 084999 607724 142894 222672 898956 649186 529319 285172 448515 808944 076405 067370 129221 270499 870491 843559 948941 609589 471697 438819 731109 524417 102180 255746 940589 366652 962459 982441 147504 593157 952282 483797 636357 105555 365436 920676 286574 752109 557453 040452 813313 227608 194708 366045 252853 994372 902244 907072 877409 963607 511447 956545 905596 168907 846678 970322 332521 868848 232718 646937 182342 952087 219352 558377 839874 292565 819834 918653 060065 911970 356672 438490 199504 149317 742002 685456 883624 386012 767219 721891 046317 837678 130567 114950 391815 767732 003404 849427 572663 299777 955507 609260 958812 180439 073142 696976 385917 485607 168016 826395 326851 180418 838507 816319 834373 528960 745508 096859 713699 971022 471055 727713 212184 827970 807190 679813 929890 094987 073197 127798 199070 333753 323427 264541 594573 234705 800335 241880 047122 568224 266543 722013 723242 367307 138183 522969 190584 914067 015926 445850 906336 957421 312339 405965 274722 254094 355030 758904 425584 765779 264350 158970 772028 798121 552406 536126 116645 219168 148893 983899 998913 714346 003829 373310 485838 317904 233913 120701 672644 105786 111757 704057 240220 033441 039941 838179 609701 200047 649189 046003 247318 496239 362136 207789 213273 401962 284206 728741 087552 601987 541812 768000 246936 613080 142641 601767 793920 303016 920489 135627 285381 225083 909085 376214 440644 448102 415001 436046 408499 787396 796545 477376 338291 876516 159955 665560 738451 430505 601625 718152 300442 695456 122978 228552 152414 178837 182286 036212 865265 590175 518631 445862 111963 664098 475397 822682 802261 333714 773907 512336 104709 237355 733989 204050 436237 488875 861874 605593 755875 919073 354646 581596 264874 772937 459413 001838 964906 125100 843911 841047 231034 511343 480225 570848 521346 802995 032104 991383 452795 145060 740139 339681 427271 863736 799227 647547 314394 719111 646895 760395 179967 656352 765194 767168 748689 855819 675343 464739 769747 402967 884213 541544 003292 045337 824403 159094 644785 631033 265119 472144 285762 589671 724564 918726 718071 529077 224638 511285 896236 300984 730162 822998 799060 336524 165856 616386 118323 068166 732735 178618 244643 074781 623437 132832 116605 346457 531922 237093 982947 713519 487428 782605 439205 466839 814012 494713 291429 935977 953287 303749 659887 365979 058959 772829 427423 998130 792018 795427 046743 302411 936992 124454 330264 866264 428435 848396 464508 627680 658226 106695 588954 441436 317419 884852 810893 468358 566943 167757 803697 269276 316817 522028 400213 438035 547401 947197 267012 853944 168054 232180 766981 859959 702829 292824 363930 596946 424026 515015 057750 304146 336315 978606 946213 310793 640629 304351 271953 736818 005141 806413 625025 648308 577615 295994 942148 505702 885798 541434 361504 668949 261197 682840 099418 391291 741102 460598 463437 054925 622811 541723 162282 449463 655706 997680 005596 311173 501156 068844 501630 758321 861271 734588 052947 937492 934308 596395 512157 855416 973214 685066 122415 995343 375647 814830 546722 881640 533262 889226 084209 135022 730321 854877 884483 444616 214878 754576 912144 778573 043455 380526 478907 593794 541421 566760 377875 005246 142910 628208 359595 175772 528593 825655 100071 741130 461945 065329 811357 570917 979511 521268 508274 737899 093357 659324 733051 948080 629805 679600 571754 953173 926637 957514 348568 400929 979319 308889 416306 538566 246101 903620 685292 335314 737210 237008 023135 071779 174507 370499 658470 273623 545076 687446 602133 452460 852976 385284 336770 897997 692123 603288 614054 697795 783542 202161 017065 036617 817981 240145 716684 553951 244009 976922 528927 745605 784383 229002 525540 291985 495481 782695 480680 926466 355641 291081 576510 634563 704020 213298 765229 476547 135792 156571 279148 980232 175735 280912 231110 931507 003022 151776 723360 030726 987791 535653 400960 239580 524732 352674 570937 934033 623499 604927 747866 778081 056630 135949 271675 541065 199859 812213 360075 734096 906997 583038 253713 522837 214864 843706 332150 454693 586146 603152 047412 840207 331787 704488 508995 722222 732583 639345 850008 700182 474463 234067 483416 822429 539252 067309 142320 257098 001083 655813 838152 914990 044089 593237 238714 826276 210574 883789 706827 551026 931501 083840 882465 663406 396052 925012 988617 665895 874774 480226 479292 806021 248027 260931 918190 851249 774932 517249 333783 634841 566109 171423 173554 590494 919054 429117 008442 015639 020945 263194 263908 137575 295313 430960 438447 202292 417459 927523 968195 755609 986537 511577 956434 034802 240673 792693 916278 159629 087720 822396 030191 306766 099048 821366 733813 917007 500991 811437 434165 070504 839303 466856 028146 551910 759238 388847 556956 804043 857360 897859 265616 749450 433965 041657 714825 662228 814311 140709 350780 161296 543337 807947 107128 127442 976467 908841 216835 117479 332491 357463 403403 802482 077782 505788 159309 189296 147856 844127 065175 699322 192969 559442 281732 629818 080169 263874 647196 084718 962078 624806 645057 391240 848189 544983 029100 369461 455407 206503 167770 155219 086735 271778 487463 549226 599917 175263 824526 350761 896384 195012 553236 390135 218493 827276 188812 715195 889324 855830 905058 096257 256716 076496 171179 508199 599411 453881 803434 007825 912071 771868 907666 737591 300717 992720 287042 291370 278201 735565 939443 121858 591688 768571 263127 998315 933119 681037 093418 994493 212904 502206 180815 063086 046880 819562 599903 159160 927950 268016 740323 206071 872273 688190 065178 801226 901029 870429 026053 842389 827310 438038 870781 561484 171842 800479 469131 959255 093616 260100 515456 620563 271934 979702 231384 075659 941336 796692 431939 467575 691478 013148 087189 199502 189959 602370 545028 966111 797990 560438 046798 705593 993874 278819 835041 133382 974810 149431 405086 355463 550436 646240 368391 175559 376532 975903 329003 854560 760215 312509 748904 219867 198639 712885 549291 436964 766718 185903 346802 072706 123633 758525 208028 812057 100671 978029 734176 243215 026384 458817 352908 006282 561820 108919 652391 640957 356163 082720 581847 201180 844637 157870 116647 153894 113196 684428 017818 815737 319240 895795 868605 484614 950885 881613 177329 587263 398144 917302 465339 930176 736965 936969 371415 058245 522494 464642 870750 645394 578082 702391 156107 356348 004608 179591 072729 213655 874208 144381 696372 952554 127267 610953 095291 976983 377940 130013 662737 487363 219796 334528 729464 547441 949176 610082 346174 062213 183855 383293 531487 098142 906707 028678 697534 265821 315711 135055 315261 885519 494754 818689 812625 496367 476869 324010 651583 357063 897484 394861 384247 419231 957828 731518 873125 276217 128228 845513 533956 156619 884848 084461 984231 035895 294423 013504 352114 225372 745680 990344 578615 640296 454694 679404 616270 837844 636502 097373 733349 074572 621268 570544 433920 611157 516987 756375 769047 475326 867690 797658 073693 756130 157965 831341 281574 504007 868153 320684 393303 548396 517604 607619 429385 634275 476037 383658 422451 325347 080950 436575 286537 732695 192574 319450 326383 414901 643078 614760 844289 054765 753445 553844 333971 983637 761059 896709 054613 767423 643824 807225 967573 604167 815432 888273 645518 065613 631966 764555 714916 037068 564116 915138 459813 114301 892243 999769 470606 336328 863367 519650 685821 404124 073003 762574 462454 615474 387499 868387 238817 871261 766196 382763 471801 308054 434302 142781 264544 357743 954609 020467 787250 360794 456898 470916 159815 488700 837628 027676 948804 633452 055520 401585 835871 693934 837483 920828 252567 032798 593454 643215 143802 684712 385971 409878 486630 890344 797797 257099 370154 898114 579918 378140 222952 061343 568702 586743 613815 381954 815835 870276 024754 147776 436739 661020 684646 605822 373387 584552 861018 103184 172770 545489 331258 062380 758843 016050 528326 896763 344818 064134 135027 306077 700175 075445 882229 212239 935803 488093 089631 911686 049418 837392 108242 176098 504241 726192 088752 182555 992015 321965 880197 305412 381516 260862 546761 820989 340958 820419 585228 215333 695474 328790 447451 484757 756426 337388 943657 965436 736759 929119 150921 315739 712722 255559 176011 167102 001340 803712 415293 870281 359071 805132 306937 425242 555518 075548 978638 137302 166944 963914 942350 209664 690547 479573 641941 192709 642420 940967 227828 507416 725362 774386 174775 009904 414291 107654 554272 803392 782823 460816 871688 877915 804629 428096 014601 874135 479135 090821 691295 357481 768398 450787 051165 113514 832284 338840 606966 394322 367595 068684 105458 753160 335597 801308 032420 063360 215098 005602 196205 220697 237236 854325 790423 622882 663318 514304 527446 773916 733353 424421 636278 901244 141270 791875 763627 280800 774960 951720 697935 264138 253387 872533 119160 401069 943131 241019 498377 780561 418979 837872 790566 541334 840256 277446 998618 599128 522801 033143 664646 294866 804429 010720 618128 125229 418295 286448 761310 125483 666053 386925 683814 526570 150468 583121 717417 865620 036112 840292 230076 253086 873655 366227 971570 566891 673743 767717 187377 641401 211913 482794 797282 799617 203425 878874 263918 650288 428932 701513 176616 116056 884351 429456 514542 556183 342005 451058 430900 483635 486326 194235 529805 025194 064090 857412 967460 804467 805044 072228 728229 710700 855373 579865 516183 484622 346586 989160 867495 145599 270998 083858 198886 174072 868773 219486 588220 126204 240248 205030 058708 374953 171956 065518 756986 236516 259653 429740 157236 001292 840573 140075 896229 300385 513052 982914 767378 726678 146379 246885 430826 084524 857014 736315 804274 789737 357806 142124 088809 887246 845213 276135 195515 889826 303004 517890 565604 914653 674247 147870 277700 032582 278179 430519 534018 500858 869208 960371 382097 194929 346779 055101 836189 777582 594689 760937 079612 947377 661127 356542 026225 038663 859216 350714 560118 100366 436912 764544 477428 408313 211839 332552 943399 799985 608256 034019 728072 663885 168065 591947 025824 262735 445724 979289 241253 937654 166104 506776 030206 767780 417138 323108 066957 010603 670095 912991 001616 252015 535797 802269 217244 295651 588255 464133 157686 284822 159781 995161 084587 841178 433454 226807 214257 983031 978130 488432 281605 350327 254801 231895 266741 877597 072276 437995 513408 728794 866990 290862 366986 357798 777676 073935 301114 693272 003872 965630 665940 730237 666106 783096 034947 348457 003147 630676 130736 872840 759546 262000 823881 226053 273537 358789 491018 574856 061952 356324 450250 742888 530404 307622 638402 274025 072339 770855 379388 709879 646206 852406 294746 966744 353933 641888 257199 850443 181497 665314 063209 114579 876069 390867 638883 887758 160856 238055 555407 795500 553928 354920 461142 155248 448237 341902 095885 945322 994461 027983 963617 935610 874509 222984 569047 079836 789853 193244 156413 439288 902965 522777 288519 728478 603353 389682 783454 109354 919516 267392 691862 292368 471649 416814 929718 168795 823060 996346 821769 495524 199837 235365 570579 574288 229795 422139 825218 795413 411144 012535 193582 713843 527828 443381 741922 686828 745737 636817 352738 699160 572152 785215 258318 492148 167810 251647 168912 868612 025900 668671 726704 584983 104937 348987 050897 755914 364804 805387 147102 217287 528011 647478 021421 200472 797964 084190 811274 362080 177667 342981 684270 558533 081326 346455 931565 315131 207994 393428 083437 914890 369143 110167 482698 656153 663459 057727 122112 797870 390155 166630 168216 601651 004024 843637 242207 698736 178950 318420 052568 026833 230270 186946 072277 707821 588963 880054 911116 154152 956065 083016 070676 025645 145923 065279 278662 452410 412379 980129 052193 623150 515256 859006 799363 162553 210926 543562 503409 802085 216441 936297 964829 339991 236353 571070 970713 879272 830274 651037 274814 586364 981671 795581 112223 858518 029766 364176 012959 167880 096573 300126 821768 583923 765157 854337 700090 920328 401515 904512 989211 792054 362784 541494 675779 834314 512350 505603 330062 913204 269319 117472 738026 227996 753940 787347 958999 577421 569300 580004 951959 143853 022442 804527 568302 308411 738038 742399 223933 738826 963207 345627 399997 197446 074854 301903 092119 203756 692877 457492 732510 321443 734180 811843 387630 757746 138399 826296 314012 193023 003605 754581 874258 742367 996974 671570 474025 720460 778950 499783 613542 842848 535565 563324 121487 231665 360389 365025 313488 316017 289789 413204 964683 928086 442782 481327 245019 746150 848000 320097 869216 046369 304112 235526 287560 873171 622140 624379 458052 215728 534467 485927 458743 435597 270176 478035 814066 385140 063390 760536 800948 352034 155433 922792 191817 888094 793847 727620 933163 972651 327838 856139 554168 953394 245618 948081 005472 183459 036037 626519 576199 397004 078069 695779 525249 289371 487428 951434 711012 072772 157012 690767 454213 186771 427948 125566 001962 580286 647945 905457 687924 825079 889451 083949 270129 733259 338291 982017 306704 609312 866987 624996 044489 315321 355677 973126 711141 537633 012377 413905 367833 759219 349575 935895 175666 935968 139746 258858 826407 787610 162457 967455 046401 221137 560939 675037 368922 030143 652775 019752 799861 129403 973465 610796 187364 392296 292521 717394 942351 181473 473038 371282 851108 361258 005002 914189 808824 027843 013760 615850 964452 894160 472922 543109 255311 981235 740907 435066 488544 470082 766880 852541 373363 140473 897337 194978 055790 498715 442843 881008 843131 515369 955884 366999 460388 540634 749593 074650 812661 908370 913760 167586 018186 076129 149800 985469 396795 948053 466388 252527 042853 122461 591702 660037 604239 129162 073387 784957 188594 285700 840796 155151 231663 610842 551340 793406 269791 144718 264588 144933 492277 114963 992516 548777 606241 364440 272576 304472 877162 836613 034464 675733 858725 891488 484629 556652 903311 623098 942588 905522 421172 055929 688674 578694 878373 819317 981465 531125 279874 624208 993047 961584 100185 677932 910166 372970 040957 933902 711447 405447 172338 842703 714295 294097 737490 325019 170941 629118 889050 185930 702658 389615 587059 954470 292590 281214 824537 681367 877941 315698 997013 595036 273976 677700 584947 446703 101255 252408 316969 654078 350006 700890 232882 230906 076051 134929 170260 467944 842515 120361 341379 242832 888871 531552 288179 325536 099990 958282 862188 613316 552409 278246 672186 376232 444937 855193 454353 404930 100237 185474 334470 866119 912292 024512 735857 421194 502205 170406 291825 559523 183619 632761 237036 058681 096143 662130 252113 448094 171870 420063 809733 846507 925913 228008 215582 429530 386722 226740 478611 361042 230593 796309 269553 083490 493514 393755 568573 158503 172724 834569 184907 681626 923669 259151 628613 818826 870827 930664 487787 287145 333708 750692 136723 363792 684839 696176 231460 488148 242562 221002 983372 443415 737278 836210 011635 784414 128026 152741 676344 863028 111870 482268 937866 636081 601887 741825 210920 897003 575333 308632 305382 038341 379458 476408 586203 748075 628083 661524 699099 887215 224743 677528 164896 270832 958611 944498 690019 427236 759536 890882 049948 586718 990658 518242 384994 394887 864290 066988 552124 349547 366215 382810 928647 491330 735888 751061 877267 414978 957363 090647 416856 724445 919841 430980 915168 493060 557956 971142 873683 868144 234889 308561 658251 608266 405162 803763 579649 913220 317861 056476 282681 758621 285126 397647 669189 749520 421098 275425 480504 152338 104004 193249 000061 718045 184355 914701 479574 961268 853310 562399 514411 868758 209235 664560 010809 283732 113412 731197 022248 048441 790211 439779 490975 427236 534995 267418 300359 800604 100843 003535 447100 359572 092799 414959 662898 708085 827654 769648 260286 161425 575081 412559 679319 877939 913915 795625 539323 432050 243146 114499 571969 193348 064451 278651 209867 229630 928930 086075 961288 772656 196759 061984 258551 275857 200506 794597 608874 315907 473985 491576 900503 856338 843194 093891 225782 569652 868267 511416 394931 287106 849351 235699 692669 557357 618399 988076 015772 614076 827685 656684 723544 031128 282673 204366 761736 421736 332754 394266 438474 936426 025553 867719 749564 585769 593699 532178 051290 600166 593555 418966 276769 625386 337221 140704 091253 123793 871274 128017 460511 584201 359817 384584 298071 933515 423595 155505 016506 744501 069863 835011 646395 804533 054967 754671 993541 611698 244103 334573 731440 802988 468480 821206 699357 685978 523011 926785 952806 726538 923659 805004 004366 713294 492625 275808 245537 074852 015481 956587 177873 152825 752894 570251 198354 575586 696491 934042 319906 309986 933607 991289 109386 149713 448354 352255 223484 621532 987594 187613 005553 839407 303531 979835 443203 197930 319474 710363 598512 946307 089029 931998 411722 117941 426314 715481 574444 255410 988287 130569 074763 584528 711823 305005 295601 249761 545059 791634 253628 638455 483119 482301 549216 672594 536681 305784 459368 482927 530662 976684 713886 079074 184181 103564 325242 716273 680595 374825 257919 020320 573013 911164 056664 564893 937179 240071 017034 727509 905109 862532 455687 173783 406982 125897 127339 427210 330679 908940 281332 229120 268991 277268 088699 999185 703195 496824 718519 372179 804211 497111 495843 440166 611140 023653 839952 829425 789492 778452 929031 181386 255880 641650 739414 913860 483861 743824 604449 467979 438551 467243 072960 400267 490549 248566 208254 977380 310649 044069 222923 107143 647596 426299 943198 080300 136262 328036 492850 222807 123600 368045 309626 902398 434831 063894 207882 116997 762858 726689 709069 053757 737636 400027 414920 625382 852354 556352 858625 963682 085414 656759 520055 387129 051374 926436 945311 014242 002846 544766 800677 853912 860485 771740 327124 453372 788049 497996 369554 811849 553272 551397 786642 073864 015947 935178 850814 813363 180831 119789 378620 485592 849420 739060 654803 970671 629725 528885 678499 238314 370279 605103 826103 937638 236075 817504 566958 962894 900502 975469 379283 324090 449721 433429 688770 171516 350054 175272 727413 303192 488009 909701 161833 899334 472381 437933 193427 479909 551661 574782 537623 563331 854103 046718 205504 579189 551578 053537 603513 474474 581876 843331 070951 401407 648929 656168 701375 004567 093661 786359 429364 157188 247310 135287 972146 936505 338588 487944 530023 478579 926314 033341 398905 694080 044884 711661 119383 568524 634367 471811 486371 767990 080360 841621 251499 740912 087822 216814 911229 567112 297222 853265 314869 649580 076417 851379 231903 964946 529778 661236 679779 308949 887776 613923 893072 352077 583696 682805 129509 476485 923547 485702 034060 617235 698765 368910 370352 926161 293830 781751 314564 652754 335288 442494 416252 462415 051670 392515 981419 731164 127800 458830 987689 542509 564668 290483 021891 314423 660504 106427 723251 546565 997889 163866 287246 722649 905029 743916 274463 335130 254029 681726 861922 271758 084456 442057 263752 451725 862693 043897 442490 915363 102770 468294 442043 245811 271804 567339 875502 015384 179481 242518 432814 742666 634222 318837 338720 308274 235025 603887 019151 967064 000746 556932 649624 436346 960473 320506 926770 867372 274697 483197 354653 635324 291606 168663 226598 521042 057021 714669 850388 141240 799478 342789 707256 129038 273072 519671 109015 651187 769511 845200 233130 577211 199148 098313 104544 462297 586781 594048 799046 306664 707919 791529 486384 411387 673555 821896 425140 590340 749227 014396 529612 920717 431950 244183 761720 553704 966477 628566 291870 589333 798360 791742 876355 268201 326800 023748 385823 358951 823613 581118 999341 601593 982777 231286 745931 344971 887637 069457 829366 950893 506283 127069 849055 132414 083116 422055 750893 651295 255268 039820 918553 206909 967755 561069 770002 474948 072438 867409 297515 893349 308626 792443 638345 494304 868931 798819 549194 761282 653072 090082 078003 966902 168756 180090 157916 142162 083390 793123 037667 498997 964883 884333 269320 210203 970049 148390 097160 888498 679687 457739 526043 283299 405277 595828 581746 697095 248193 140464 895989 692299 998391 916740 750031 832078 573611 550361 201909 717150 071321 568694 535248 671763 822013 802470 380462 712172 355272 103809 558395 223176 653411 247401 591887 639572 104858 478359 508275 479681 538176 274346 396567 415649 206739 480825 362342 790982 730466 315952 663559 344411 293319 538188 135944 360883 572365 879080 193857 168387 746440 937013 186903 514343 071961 398714 589173 556113 638639 758779 176790 490301 102699 131047 400442 254904 755773 018601 045483 357909 895044 704835 455131 638290 814400 663785 837636 278971 758090 012331 369768 036951 834910 068525 389137 340288 573699 952946 308472 862399 713664 235521 929881 177351 238142 185470 073958 119753 854030 688127 347953 308521 817612 174203 953115 472854 105941 392062 561403 207939 269367 048127 344885 476624 117802 253208 782139 530332 050937 253609 429716 170200 814160 636090 445636 155685 893093 462287 385799 302172 746679 039056 194441 116042 985382 181286 964190 329878 579683 166377 469164 852703 575572 939470 750581 813762 648546 701612 977057 217652 269619 382273 693659 282515 666048 881875 933776 203670 660204 782058 906472 281792 742463 389001 369070 574568 440009 886393 772407 008392 079360 137360 801757 050734 508226 320597 966779 476180 138899 527496 866897 624289 730517 330713 312564 896893 084048 608626 433590 191700 940936 246832 258528 838084 593753 093060 017839 573549 729788 528578 096759 863873 268549 531851 818761 873470 829342 438215 360572 435317 793610 748488 536124 327948 321223 804027 025527 905747 987739 111399 252115 212361 254768 499839 460963 002016 095612 062911 883206 654861 805269 353821 161608 924271 036636 953097 859654 841784 202127 759749 093100 453115 194679 740687 605616 307769 135857 519700 009644 916266 146269 791133 231992 228674 350602 990901 447835 114821 317414 824808 104482 496817 808185 185431 474973 556223 233690 403107 825162 829630 454900 046732 660624 389009 248921 983334 357959 547698 251674 788258 397135 739975 649683 002818 660759 192592 290933 344499 704141 599422 257519 322992 405735 860336 192521 587027 244841 441406 903922 551107 830378 838204 541815 789726 854904 528672 726481 112965 964983 041232 202640 569313 827751 593180 398814 177903 948479 713513 782876 185384 416834 075933 093214 123652 467027 343231 110192 199551 324015 083458 389958 846116 701088 151595 287223 541380 786650 346989 940106 499269 549609 349956 300791 463027 578660 680581 434210 401316 856272 363718 515762 679202 564942 413586 371029 784025 132525 176342 170382 950908 670657 630668 154120 940229 682893 423189 556900 680125 263166 729743 709701 392332 291749 378827 038601 475533 090292 183396 220577 399909 549449 705328 057595 961307 013315 666382 006480 214983 406955 850834 559585 507084 970494 061383 729550 044129 982966 184727 953759 714960 376366 529873 174549 070749 242416 181659 292136 439929 885998 841108 424483 164200 459102 722745 224622 976867 225939 699229 367560 970128 641252 672379 433732 632719 743804 409695 499995 820393 034735 351186 378475 304166 890808 745275 368745 573235 549040 900064 427519 496545 716641 922278 771542 614017 839426 116115 305751 755276 661684 356338 581939 976168 021010 880990 953849 958242 778439 424793 187190 657445 953263 757971 810397 509674 385199 711727 470292 207534 831883 829524 630961 576610 348855 425738 544092 727827 901073 450026 104570 098149 621853 155679 190297 582158 377037 414114 484265 029895 012064 166061 778202 352545 717029 655875 262661 265593 895374 865642 684092 930115 554445 796210 662901 969159 554400 619503 372971 623761 915009 599038 001858 900462 195604 038487 426939 873584 775852 595626 994976 519501 940326 955907 706650 874685 789590 582057 222370 359189 140738 584303 302133 315330 678389 345034 161729 965525 785124 838614 979914 606499 307782 503976 203516 094979 640743 009758 105914 497602 657984 074282 710596 859703 496501 588989 044921 765477 765554 479718 601918 801066 352673 184287 711111 194644 519604 719373 637131 689919 323916 960047 506905 786020 441359 185078 103897 417999 953250 896591 476066 794757 911965 053806 419933 401278 742440 759056 573246 884550 174990 656283 445806 834978 540334 774327 392887 734804 786838 512277 608504 831617 845100 409621 255977 949504 935246 881146 401023 955427 840066 804435 766253 897122 640641 974462 665222 491279 012001 (25080 digits)

Euler's totient: 47263 093970 982330 774587 507602 530033 016635 764281 326817 837187 073407 136801 140272 531513 062631 766726 031224 857407 852372 159574 259830 282747 122319 780367 332229 108485 131260 135055 283237 628528 807907 222480 973462 427773 093172 893194 639747 776170 385558 597197 956507 969384 109658 130316 416072 816632 954199 773886 342716 541494 804429 497394 310652 831259 886633 046565 433391 816491 487622 914159 064493 856210 547884 335236 750728 670283 796117 980176 394778 781565 085557 567337 744735 848945 180277 025349 301667 250460 229222 295392 228434 151660 674440 307881 837659 577764 717068 433153 301333 388942 177255 354227 056816 351678 419361 543755 287601 751439 518753 767016 390421 990903 307860 390860 024764 503768 204581 644095 292696 250279 526278 816984 166362 713578 794458 548127 610035 907415 865356 292099 149642 162597 025946 438030 014020 184297 521412 889850 863913 295925 403509 644885 608029 324511 516662 774292 246732 475978 360971 526887 067726 685901 927863 656139 872457 002627 640817 108302 068063 695921 946654 222222 091464 232307 637618 712027 092778 399511 703941 788499 686558 775851 845750 314061 011540 473599 130062 006492 058525 606466 612074 502357 888741 448637 529232 618843 673118 454614 131093 856006 704940 733903 180100 518030 648649 551951 031827 095766 921818 643135 304055 811154 121229 499272 640262 430555 765850 609896 858086 057736 224078 148390 830063 640528 872963 542941 271328 104203 583712 391104 769727 059376 586060 421561 902996 227619 869809 331006 367926 131154 691196 686890 353459 165040 784854 354635 507229 556662 271786 087648 245366 150000 624249 627927 464729 468917 011744 835483 637044 833740 090745 376071 604028 224882 435838 734810 991719 640051 184831 427098 358498 627706 625641 477052 652271 255779 490003 537014 217223 910402 445684 589512 159297 575938 000899 413010 561603 486819 280499 852366 437646 225233 108963 315830 698466 012525 018266 489302 856159 788078 728322 337574 759568 003712 235698 912688 515062 373808 838965 787848 602337 362852 111540 728033 907385 457786 572284 158641 867379 250905 759053 028007 891907 094095 881602 609421 503825 093292 345810 924706 589768 693380 338627 835676 683675 937802 667960 756541 607297 837421 182314 876912 862909 168284 921325 983622 243897 970671 953525 756426 000897 620871 783113 635407 239813 862357 012064 632027 853352 345040 288139 832719 306612 978264 339893 401495 799860 141609 143082 410022 662416 289973 502555 169438 167887 692707 900814 230171 412175 013557 037006 905045 518982 169385 265178 348149 829699 014334 243280 132092 782487 830611 623096 367972 991938 405872 755148 741351 687796 984167 193756 631231 200581 224933 522727 498026 126492 582951 705469 947927 095324 624029 796778 749676 518423 513009 655348 761346 899630 265609 941222 044425 283067 621880 527700 177182 703780 079305 269807 974198 657543 537860 267364 506984 336401 464718 935569 652092 337439 017991 056982 181641 107990 688965 746861 594586 682042 279132 411371 719766 033162 938145 385030 014763 416946 828123 697289 955418 484945 395625 652510 594045 768731 005809 008712 894272 720678 218266 367000 118279 929812 937056 287383 771958 170069 150321 283324 883100 002464 666940 263907 921759 680221 850853 665152 242981 328473 918816 261505 427342 972291 112249 583882 888038 125019 441450 375698 380115 985255 599594 603053 571046 895951 442584 039160 978645 242726 284381 126793 593246 314193 150483 088908 758131 661555 428565 951541 632855 981987 028821 601127 129428 568982 070822 137168 736904 554936 596096 526734 838721 178779 468343 160862 283977 458344 953069 451804 831330 124063 028763 768177 891078 362951 189990 483843 583344 976703 154876 783537 098499 726775 241194 960139 296960 284209 449140 806325 838474 147286 008140 332453 980694 506806 292955 992300 063486 339065 873245 124313 465025 566758 982781 050950 670214 793610 442371 332390 453304 754581 209562 572119 028241 679576 024734 684476 211206 343315 638409 348488 801734 244205 320522 627884 367740 003909 286720 840616 668679 111977 190823 365770 418064 668700 520434 910394 532243 397294 692426 032246 627034 906965 257761 972816 011129 788139 156635 859296 939667 078855 444049 589781 105807 345193 553362 878997 491516 252502 356383 165810 228633 646352 315926 595669 047097 973428 107868 847609 507589 160941 233132 818976 281137 877812 747097 933833 767524 981164 020464 159684 272604 405585 507299 338576 792012 793040 017687 632310 199607 409548 810248 915942 468356 682981 734567 903751 055038 795175 183025 810657 314728 205770 807939 887288 901291 785650 318626 556761 325202 751746 237491 977738 064058 946313 944955 139227 484887 541043 444979 903250 013480 972753 018690 722888 423540 477733 052021 243718 084117 119195 245732 399732 588987 791151 314302 228402 483158 137279 265331 790382 209407 994096 742564 978781 583341 093612 691878 099483 645532 878702 742799 621984 944064 076281 507577 497562 871928 041535 988300 277173 521307 183132 935104 466416 897808 412940 682425 926142 526452 746800 005078 098726 521833 378737 792001 855408 930544 399504 441564 819957 699492 995947 022778 829630 829651 069888 060350 658905 341744 246101 535884 589517 487481 873266 499429 698452 367989 139330 431082 527244 402567 917538 960935 328531 216290 027093 804460 295759 390227 817923 495140 650341 276093 618270 153433 578420 071945 377613 092342 529976 949562 726754 326476 878981 897160 787099 762151 129396 212960 527522 495125 332194 175713 830854 836389 943157 439482 401576 165017 947484 724632 969672 665623 797091 934179 182826 910155 496132 414028 753877 516093 879831 974049 959098 892625 381894 120756 262605 591450 047710 650043 491915 335406 519570 830659 261847 491897 830460 117340 822656 245449 680350 496108 649900 819755 944233 257638 303550 848227 799321 298015 184734 679420 303559 958947 918827 613215 457249 009690 112710 792543 745370 673071 997575 112769 511488 419005 252694 469326 448578 030150 466506 207953 233383 267632 308195 982179 829422 929333 799670 075025 977242 608481 476607 094063 662848 559085 504407 080628 808970 796950 271844 389943 204743 074005 594009 011679 541088 196129 370977 428552 280403 876168 025987 833595 910884 695155 534334 792130 287466 236865 021212 425931 649732 666798 696265 452945 064582 554678 969014 217410 175609 738928 099132 089060 691430 061539 809815 736573 525850 900485 402434 432984 304261 233754 507558 602544 049731 557729 643331 425377 746573 832709 164141 900464 419480 107087 901813 018163 328749 930414 866143 168194 532173 040002 523255 636617 316345 724037 720000 107149 784530 509364 810509 995811 226030 332260 203696 439214 791056 846930 760780 685812 531303 737040 549976 121283 730586 676779 449857 472378 409446 362293 215046 801372 069903 210564 993982 314650 892519 701953 549372 611736 358069 978070 295512 160266 988970 996934 232336 447450 452343 406713 241448 522741 026869 688069 761308 990624 398905 249126 342689 769588 228021 166364 519024 881280 976545 762899 402062 408075 038765 947026 151054 655880 402517 120626 785234 893988 939575 636029 779524 346666 315864 196999 647789 247953 879964 423901 979497 027809 928958 191807 790439 479535 718773 666872 951665 700183 042410 591133 484989 443287 820830 345317 448965 638593 090143 086729 635907 494770 766136 318058 915383 070280 775539 881322 770362 167784 348562 498953 600097 778570 497074 147759 486631 762127 194360 067926 642768 920465 102626 539284 457765 577181 170648 011896 708609 778084 893293 747829 406814 987616 891312 767836 798934 286907 178771 582216 698848 756280 398634 345212 273905 577672 950999 579301 821831 103600 341247 976669 928475 247504 681880 943560 727098 676225 626241 864541 176676 238906 474114 041826 480972 226854 373802 463356 927711 706038 821826 883639 557985 312994 025406 517759 888712 166523 136095 753407 094653 414200 211614 115638 438121 824881 806524 407726 727053 245067 151460 190814 697804 497305 001100 285134 909498 625747 150172 400427 208597 418346 327793 111695 589530 412485 931684 218597 287938 876756 368425 390002 990699 143495 627273 511516 985042 891128 624628 838084 629018 237273 646635 726264 222997 562480 791025 033025 909374 848350 395628 019102 614381 627296 187376 755223 243939 346267 938847 087410 629933 113183 327750 803845 915386 031972 999560 568665 296592 259236 173694 337217 600454 303306 051278 994946 485780 638611 162715 421790 274433 708710 734678 954108 198996 492009 672882 519191 528921 739669 787324 175375 994056 779563 399376 502648 596818 071112 123059 713299 829161 956112 316906 511618 545649 637533 852482 736784 135433 478320 151423 245406 906156 233637 167092 832604 762357 100474 016429 036223 577159 274126 570637 430699 949385 051237 288945 504471 743925 435884 938671 870115 775995 331231 960666 038815 212603 874730 206019 281952 757353 731763 699205 567942 961752 236391 174724 201479 795888 370275 678861 251253 861015 600582 234349 564312 116689 464838 571292 379152 771139 136464 786325 276787 840367 147491 815283 399063 534290 687227 921473 507757 889103 789560 160802 575224 553116 818992 452085 024170 046615 047535 776937 497314 822779 496877 795449 355427 631905 318943 611010 890834 591763 168279 675465 702462 403907 984747 423946 396232 653571 301177 648133 132729 239966 387338 289351 346439 383208 574312 957692 945325 558045 220936 915407 856992 749288 283475 873668 320871 296306 419697 639920 518055 298157 029641 915588 030750 783668 886033 457849 625695 686984 438446 815381 710331 859755 712816 376005 675255 462999 687966 925317 360699 502744 141330 323288 200346 047637 603146 931111 134109 307400 959416 594419 441717 754243 661007 083045 992394 636164 928121 477200 821998 768744 166342 931327 961339 476075 766096 990748 951214 864847 957010 259228 753646 756370 805865 408927 700323 199844 278408 140876 697474 839033 447659 960655 532086 801387 437384 819638 565589 754395 285741 901176 225485 760328 084696 381012 362155 181305 725713 283795 762396 025820 832906 425658 859413 956410 848996 489016 225902 089240 199004 507635 556887 315936 717168 089258 069686 120170 488153 188236 524746 076804 963372 764802 902495 670274 704315 638309 648983 200385 399399 180796 144737 857633 407080 955840 083294 679455 817080 840527 398412 505706 881786 452073 857884 444942 522388 935931 664149 491034 920149 955287 504870 858874 419435 399839 785087 495611 880190 407361 621737 227720 262957 723989 524845 198859 442856 072077 454119 367809 831364 747912 783541 529185 337800 343677 172379 002641 333261 038125 235342 661174 413096 827943 600871 043895 757242 453697 808096 963531 478508 248385 072232 919179 851185 930684 673963 141635 121771 147732 436004 664231 128354 807994 844408 644626 059043 564305 379541 459853 555240 845790 033109 103814 353115 746643 362605 962054 481614 134786 134179 316262 285258 111501 054804 238288 350225 860866 708428 682209 178823 175372 639158 671756 293370 334275 445805 527176 070228 286519 465999 571589 966811 408501 461483 458547 199849 465873 383384 346998 576643 094876 003100 969614 695565 129650 071649 948242 991896 262009 158163 863003 214308 842265 005888 041409 779618 363565 523355 519452 485388 724721 214070 751081 158379 236123 655056 581865 177011 045113 802454 026756 323626 332995 724225 568296 539955 076429 823249 354087 084615 142191 878569 390346 016698 981969 570019 701292 508759 348267 377377 765699 000924 608310 555837 518402 548232 385254 397392 195877 881359 453964 271900 898213 461800 244234 735188 184390 176867 771177 668797 934154 463838 799328 338035 318060 576197 070531 332845 535424 208954 416767 220988 812351 932987 201263 244821 056796 515271 989024 370752 195997 882093 277887 137324 564275 870775 976622 897053 864352 744558 490172 666786 077515 556402 801407 878673 254205 522782 730465 104062 860173 153184 583535 375403 218449 231984 021745 723562 018360 270439 861356 732025 853448 453989 966154 211354 093820 353607 348765 282410 333168 292718 163975 283686 998899 391979 555399 691136 215729 692825 283306 359745 709888 448331 679642 027475 358251 480016 156523 230976 126969 921511 977291 730003 684704 531869 429158 142891 237357 172690 524643 767721 246743 382298 770360 875358 691169 146691 467974 596106 330553 529156 344152 289564 332816 325816 602919 789842 720254 666003 567304 146378 822565 928189 826042 984955 956868 252923 645200 261258 441639 748212 538036 138217 458773 569752 575547 955650 934731 221703 330295 564895 044128 257698 851789 288362 971463 184979 861241 654058 453763 622794 180039 588500 346495 993596 125152 645041 488545 588351 017262 760630 438218 461545 002475 325215 690068 361016 158904 738810 393836 506572 272604 828867 081750 674856 727990 488850 162342 332832 945429 020022 260747 872341 629581 525430 081690 278712 252232 319753 141742 388728 603207 795348 803872 984406 941862 062786 162111 856673 906525 183389 361062 114752 556318 307643 044996 314803 837155 399138 107090 655285 103828 813850 790762 610754 360539 105054 779618 061459 151666 601781 316063 693669 694094 883280 544077 357274 791372 099206 200018 242943 162125 474922 581433 490045 377319 979881 660943 099451 258498 604244 233026 148187 892351 529722 495375 040785 616295 141009 039364 100318 192655 547091 036562 449788 351322 456087 807422 681898 004164 770109 865213 345079 908205 981511 133784 497499 697136 511307 496231 925571 521774 795658 675515 076439 304077 786300 525501 063289 898537 911152 303507 189880 274978 632609 638799 301700 262700 301953 908334 511834 813401 634934 536010 043914 518314 812206 427295 766794 888454 120092 849293 056270 751153 478644 467847 632279 290737 270670 556563 348989 658568 101639 679204 801269 006020 807832 451016 654920 595376 848591 415880 485104 122172 016786 965992 931754 308199 175938 924985 838938 122269 330625 006180 555716 439727 588650 917709 425898 399417 180303 163214 240681 205681 977919 847273 117836 836756 376956 940746 388861 795420 096897 987997 409823 321857 565743 537431 619844 037571 052872 132054 033295 764723 946591 428888 757378 819435 084959 428544 803451 547436 300415 244735 937943 312526 805266 086844 786446 962636 635244 084331 434168 785968 677747 237019 972155 249954 213956 806269 517336 220994 034605 672884 550802 031211 739064 842879 147318 233689 991317 307603 911712 118792 812745 494681 045813 788423 522912 666775 400616 725000 357867 832560 614335 369458 366375 865321 699355 807906 797965 625795 537545 877928 917168 440244 460968 999560 706677 369315 817344 723336 680915 151706 630325 163248 516433 626020 424515 861266 907237 311158 505310 687185 974337 610718 703775 250696 781727 194181 272364 260113 633224 556306 556142 138945 406870 204855 471189 330147 940801 967321 511087 720407 605346 861901 371920 738914 497390 872820 386936 132570 025857 162872 376444 759422 198682 549013 969198 912893 415388 293620 037299 280561 462843 083287 905326 983762 326359 711295 319232 952433 957402 774609 861839 168187 501556 668863 754511 434864 992819 026972 326222 668232 454779 140160 784927 991447 324150 120362 080792 958853 278478 247514 901509 281643 464675 606322 930042 556828 476609 063003 948704 797139 821201 073766 562007 089007 075026 224981 453334 056562 860412 078979 532440 271095 742679 792523 825543 288616 202781 744949 976453 283415 832753 112394 745460 720303 496116 649422 456762 073597 150884 345942 209075 368453 362183 214318 146983 016090 697133 916358 721240 400156 688311 645896 187898 694634 933165 317034 086373 998800 002374 225455 513800 371148 046728 106764 486587 197668 710522 620905 116199 726771 595025 474679 623283 892024 770631 800544 622928 503823 611339 333156 265541 454864 379954 974939 124135 450283 200637 760633 716725 495853 314488 701380 796690 956872 506074 301903 037085 231309 170000 566569 926258 623364 274355 846872 646729 393598 145921 821255 001782 609144 690908 056392 172663 083912 764162 290925 305945 459183 807955 591659 558194 538680 311927 979463 562724 687742 160851 317445 729835 814633 064275 137194 176911 141497 281102 812199 738428 082636 557414 810183 577123 678428 266246 532632 005314 791825 909332 315792 875024 897916 113698 492896 904731 054757 191578 150578 138920 145938 490099 378713 130808 914287 144161 196587 026310 042748 142248 684015 671631 142516 443113 482758 902413 845498 002396 488980 648156 233701 438829 934747 520732 802231 772753 191454 324189 093120 886091 782710 057242 921684 051448 723623 579227 088843 406648 186521 193694 529355 355529 752520 403861 043707 278238 813319 118085 292550 913510 690220 185360 823210 504711 233812 227632 614523 525889 211951 116114 565930 976452 633221 487781 100210 879450 988633 146341 449718 361340 731355 138110 007625 638778 562513 047221 889413 975276 869692 894223 338622 225553 507748 944571 639995 095644 428062 782753 571600 896701 588923 948076 209990 952182 244522 120575 148235 455146 499263 321770 599250 301878 778842 062370 080351 421237 745891 742412 203219 240315 653305 718845 497609 521544 341204 959467 759235 652960 418811 827933 004937 265611 572327 717481 019936 784187 672499 311848 098563 584043 085077 407343 414377 946084 784051 492406 680076 967160 354154 590206 001295 567582 642805 761553 792514 687794 479246 852788 356669 911027 098608 829090 208896 573782 896736 695161 943750 858831 667191 923140 564421 444142 131015 180512 207030 798096 874703 084587 560620 774218 387393 613174 679746 188522 244212 336379 471425 691495 455094 482750 343324 162428 454949 206618 440543 360180 646116 445337 467268 721715 081444 835237 067246 634251 262034 277116 716488 604987 989057 372173 183088 944385 480780 937530 194530 918543 623511 838219 479604 966080 034602 057650 483466 252364 553390 672839 337126 671127 133496 845317 464485 642771 300924 495720 701639 593050 476970 135355 311428 526212 702622 149556 515909 471432 585358 850091 931607 340187 869866 709287 280434 301659 191786 945310 154582 914433 359720 990253 133855 939961 502158 964982 503182 391354 790600 246793 852039 737817 806484 765268 824410 323799 672423 890850 389717 280080 775819 634698 389789 374558 827125 500555 519110 272253 206001 877052 176987 002225 030608 564371 257364 134469 126164 172473 722767 872789 204643 888268 297688 489034 408454 245958 505557 978507 926894 151662 974291 601622 250286 687381 720736 584858 777150 693895 054425 586036 098310 639456 634087 894962 715313 207507 696824 699691 921875 639471 138752 389627 831038 444506 384332 471960 142557 889855 041740 061828 654063 350243 920677 681994 807824 915078 475204 073060 735254 098699 135402 165050 694857 980792 348253 605495 425408 859434 420852 840769 428281 109711 268921 468499 634972 379571 686211 218945 048664 598798 793591 884318 908708 594856 642061 161043 115862 210471 268442 158859 978056 187291 856644 462967 724053 544142 084832 039724 235568 001504 764536 352187 303294 859805 915460 811454 327454 162197 832345 543175 698954 478261 217503 818362 887019 397236 996859 379968 605680 155362 222452 833714 854238 115113 222713 255450 277029 700030 683855 208013 182719 541197 646046 684642 863324 366134 795288 419313 168512 538398 668079 854892 200982 401628 943370 671755 010522 389072 373725 400675 506716 455422 798747 286551 573866 764411 406156 176267 390747 528684 254535 888823 636803 817791 117617 689743 576611 311194 227542 058507 094478 085033 577076 374526 788500 485027 682943 356501 637405 218940 734097 710839 377125 394698 544079 812914 528476 645166 136263 149830 214188 199878 910340 758822 929775 525600 820509 660153 914716 900006 553495 647670 148511 215837 076497 774012 238252 373591 612624 241807 465731 401981 047597 939035 072524 782525 023282 503255 540500 681479 245913 166497 333349 764617 797390 378463 405124 409793 956376 431576 817675 994374 576326 114555 640786 581664 843773 222779 398481 081055 592322 979529 677545 767211 051775 485427 888426 618565 735274 118808 894452 740381 026405 105962 627643 316161 752827 504537 972915 932361 158283 073280 103956 384142 564956 897778 089554 374486 706137 853995 874449 174295 099775 055438 410440 417621 499691 284624 823365 149834 911407 237892 528163 959960 915267 035663 928571 111582 091411 212878 892200 699608 095878 157712 318089 898246 339680 653616 632127 816520 786185 096494 432946 915371 198880 385832 380511 014190 591501 720798 299467 344735 627607 101969 027740 825667 839845 391302 427588 844111 983034 552539 353640 862697 800987 898352 930230 377103 671904 176615 237914 447369 339737 718386 322924 795571 820716 182073 323285 987003 986235 791628 066864 305959 578417 520008 486972 821980 922845 687024 662721 618283 608596 566321 516140 923688 364848 334709 636365 468620 159881 602077 050175 539293 850330 743480 669932 323183 412024 195553 282885 366354 190602 779437 474753 855375 746939 298138 235086 511883 459507 924046 620415 064854 166381 731054 949365 148842 783229 080773 894606 790395 726603 203499 280191 060758 730032 653380 849401 884221 694086 154031 765489 323772 014975 705592 739596 409777 653550 092042 821702 639165 029907 704259 032069 233472 788606 881355 008795 999423 709961 084581 227526 823708 310805 919392 225036 980565 249254 061698 482155 554193 934492 085312 327866 827324 153785 942164 590069 981662 263329 416152 775128 254041 825232 559187 329858 941217 212775 297052 245930 294609 642844 579476 171117 399733 247825 269145 339348 975875 702503 011662 806975 669832 908359 244067 047207 287258 672257 805709 422007 540055 071110 582068 024565 291164 420825 981545 375960 891728 094215 613430 417223 521660 229287 655893 417360 090765 090358 344911 291066 661964 873510 587647 336020 164071 055091 313696 968647 579107 578385 361734 291194 278708 444123 584260 942553 610031 174159 224916 396422 937761 182947 527586 959081 559840 707144 800875 449256 191514 051102 563215 550354 125636 351690 103651 538572 212279 698735 755926 128706 567960 874725 500670 649855 384386 121375 670685 349425 669141 898144 683810 884172 183533 269633 279343 823352 116769 044701 064532 708049 533998 236855 589019 151850 322689 197839 673764 812889 360207 254350 029996 929203 618938 490315 302426 967821 989899 785298 472716 399732 827049 032964 057118 133583 309542 256261 910443 142869 240005 050453 410888 184363 725112 932565 763832 870987 168626 558061 269982 014197 864163 410837 184903 825253 583181 735407 950196 106926 674553 223120 750816 713358 224110 198393 991204 760936 174653 105216 729160 538565 451854 273459 365894 602313 881168 092528 809167 472169 707380 274070 254190 646535 563653 723830 374173 174637 622061 804286 335060 275451 050355 421568 508233 453337 692856 738955 809703 952301 258215 857877 456053 313208 293517 438874 146464 628960 353213 568720 783591 390508 756244 045757 054624 104123 701244 478292 292936 196309 837748 504852 290993 282611 356141 280006 067231 141369 649344 385314 912494 636694 627947 721091 119449 971830 808756 757623 733754 684217 252703 789015 707612 726135 106939 474730 246978 456107 536006 944927 134822 615824 254177 863376 859911 684491 740729 299601 750268 046185 313130 488125 847345 555821 098800 272238 340041 846895 441643 379391 098136 178922 384756 024313 006785 995321 450467 759491 102616 622887 124706 927674 985638 536108 878891 466567 009357 037814 811620 896634 562891 864661 862307 588370 664467 807438 902973 601674 012752 324051 020669 128368 683094 515253 928080 793859 457025 727861 701718 254689 504910 232776 199658 732983 515396 237674 320479 530926 715270 847424 371667 958464 753706 762244 086669 949819 587256 530500 775318 106553 904760 483211 119259 617583 098632 395073 694174 617543 411840 277428 333616 724216 575402 291109 818427 340266 350773 398929 910364 702231 349624 600028 512426 490011 768238 871641 959009 792313 793449 865449 663543 824355 244436 023229 209945 491043 039836 314462 033732 473383 911856 122769 773040 935460 575065 573233 365297 186591 229182 468212 948331 980747 991342 790594 497538 684456 429636 684474 808384 563089 389548 096660 760937 260400 507983 777520 927175 460790 052731 326859 362215 448743 917576 645727 634454 216817 244862 486511 002304 510973 640571 815390 410147 646420 019991 396407 774722 233738 899285 184806 344048 122767 842718 924387 402434 352216 946988 012754 128073 538737 474216 888188 484662 285807 962792 961262 141947 336821 734473 597082 929689 395509 962815 161836 923256 375041 920191 442122 005651 325931 777709 559344 977817 620799 297732 135971 392695 805686 459869 040081 864720 194983 936290 464821 600733 500214 559381 068555 061657 848916 776341 151978 859358 491517 501568 565540 657972 432913 927038 646499 661743 016938 388550 079282 104384 469584 573255 196103 240366 858230 750308 937473 141300 688894 658505 978524 016307 897205 827907 225651 731630 166505 390842 019846 778805 116678 649220 088664 277678 842498 944463 627244 378588 153982 630964 712767 468049 950133 875584 323729 100270 679687 204803 848055 891200 778302 012465 198383 986174 552115 599825 603288 958553 444837 989027 311594 597842 680143 949184 301608 827669 413588 024520 029262 748506 166674 583738 755253 737454 965909 836408 133971 046776 010736 466227 777174 838739 372697 250159 179455 795018 954645 801669 541714 568130 726047 897619 808616 107335 417952 769617 247222 133659 917463 311788 418830 560661 392876 927385 164513 451930 239343 203232 123661 507596 519037 603317 749641 635321 254802 086793 308668 097406 059957 354934 778069 621921 233408 922494 448486 549181 325149 390349 531964 379798 122055 381280 395028 431505 613518 728967 837970 979899 796723 903528 868391 811962 567455 383432 033920 844815 425467 568430 004955 150852 601267 365360 191235 050832 132315 676908 829373 715693 806062 745848 921037 571051 243051 551219 123703 521216 958303 797950 477126 223974 688454 997632 562570 408297 911758 296102 226283 828611 401640 990966 389597 399624 064670 683815 500521 609080 929561 173313 975383 739956 201231 755089 786005 410711 674509 895460 064298 534334 932328 195444 598537 065962 101573 860667 831018 394530 900836 740542 519214 100123 730369 678385 283063 292945 180642 704813 145132 145178 674174 827240 818211 287022 895833 456538 491407 115335 702999 721448 821980 683668 429395 678502 424667 509291 230968 130386 997643 046155 477337 516404 150157 859129 017999 599533 382040 544440 879764 258679 121643 112949 664055 060280 618493 343354 584774 503468 773041 363166 893149 292148 234615 698329 694893 203089 412123 386453 820283 751505 621183 874215 381190 860440 364018 622064 835626 239280 316541 428253 817753 108160 472730 133956 083857 298985 235219 673194 386460 042035 281827 852163 301406 010911 468708 859819 076714 139442 340939 243487 389118 960273 869670 277624 240760 539698 865914 656546 005315 727972 444471 603796 132704 560245 823412 618624 703886 346297 327243 710118 779132 670094 442167 190589 322050 731135 660150 110081 463167 005540 350771 355330 781989 257179 545068 660089 384408 627282 588260 952331 675115 204538 338063 564370 597977 140748 303194 585114 880135 380312 253955 662741 495544 401295 784841 086776 498358 489927 892403 505336 684429 895922 922815 395073 463438 332227 445820 283287 188672 067573 502103 716012 891468 094818 385208 928419 595654 020268 487745 979810 509476 749707 850627 524391 281827 728379 179231 985950 467742 315886 399478 980135 339489 173062 996350 807354 845269 447468 181241 740115 813783 249501 082551 819840 729838 589435 164849 486946 374404 146610 447653 966804 551118 814088 355089 360869 041510 179658 701957 203954 310269 419245 364804 862089 482573 484738 117189 454166 160596 951012 002311 514250 654458 469448 285680 629357 377299 295930 197352 565205 527087 736398 032782 545666 811344 828569 635762 602283 710469 425174 410166 530567 616250 241167 112651 614104 816952 944453 253542 984727 136156 119035 273969 151638 058139 871232 533642 254607 036546 540478 213868 746335 383269 958599 300695 398219 125597 850602 510863 970760 166109 300457 524322 164326 794798 516379 906623 071851 283675 715647 334709 709323 845741 465874 534427 955317 698869 080991 072794 573049 010763 881183 867281 389319 583278 635042 943249 060902 555004 537726 105051 509274 837903 489968 991916 398202 507514 134013 161417 428362 826843 359931 804348 088897 624067 467461 997355 129898 116386 227990 988711 266749 001249 052625 747273 715464 504400 359822 690281 428362 424042 427362 516246 398840 717371 551883 573718 376085 043229 063895 839769 665550 246746 937657 764256 596523 424867 058438 025831 097467 793483 223111 434517 020812 846445 157849 099820 108694 864830 432680 352623 497835 558973 124997 545419 600792 675413 856528 994025 432852 088149 706654 226054 281618 740317 772386 804791 640024 226319 846689 329275 262475 136010 759223 286418 556583 770876 785893 204468 932781 202643 228474 950149 174054 338539 125348 895126 285420 040718 347016 508360 003611 958830 106970 860676 019735 313192 386635 416198 575276 056386 958733 300163 164957 377173 123441 840989 783055 547924 307457 581522 781786 799468 930694 731357 487953 416089 179806 702224 543330 501486 645626 385442 543962 562453 577751 894998 562502 424006 951694 427585 614412 042002 543786 134937 037879 105119 167237 557081 009629 316515 401874 709255 745709 558196 642413 941589 526374 108193 543980 055876 741602 247967 629926 490022 225369 953494 847729 725394 626139 017675 580317 909710 162123 499397 442087 379115 134960 (25079 digits)

Möbius: 0

n = a^2

a = 269568 186142 922536 017476 189933 672564 374669 496384 562507 284203 181995 009291 989759 532559 002677 766813 045555 035739 903868 432162 930281 905774 858853 321550 549212 327665 367253 639201 905285 237030 795766 055305 222626 840540 515597 301783 100018 662313 287966 939312 797431 873967 786742 119404 641675 068161 743005 951348 100824 962865 959409 731265 316281 150496 448577 605373 764831 096624 539177 976792 366247 079993 321279 819401 273393 616691 591046 321087 227038 260253 057978 257920 544615 626328 857887 211980 684988 222367 583617 860757 181332 337942 027985 466521 923502 310803 659813 597927 055003 451618 190300 046097 398478 004237 334938 213742 777863 871518 881322 503473 652309 710824 571400 779839 175890 335770 497757 625248 750813 301412 973108 302853 248877 628388 737842 302939 746557 259228 862661 084741 599890 284568 825285 595250 095506 538237 145539 454730 083451 428915 436823 188863 461543 213441 677085 230908 649334 852746 494608 669646 849477 465130 560362 247867 755555 922354 063583 596779 385209 514356 358057 239346 121611 157084 795935 301036 429985 734924 990983 883601 119009 878611 801338 360649 765286 205032 256517 662440 554766 102266 812707 497976 073716 401165 642397 824646 257890 317708 998504 912033 278358 854700 455641 425047 893093 440677 611373 381054 292498 080706 040733 117442 391633 229763 844665 631173 671787 157657 130379 466502 577681 553909 842756 415182 603596 610175 375106 177802 921810 079225 606634 739949 943656 734175 670283 810394 164045 957984 047112 499828 024136 298507 666970 616699 567253 578789 762912 969720 502024 915696 886093 729775 145338 749314 032579 647463 366799 569905 976297 132057 454308 669304 475802 068219 866796 442224 986085 553666 016918 647204 562189 950082 301743 248741 332991 773492 420406 261186 690088 139649 727008 235446 809549 918231 852240 955348 272066 327200 639607 256535 809374 649674 279990 382805 925927 081524 893810 113631 527041 476678 588706 408854 481672 065085 440662 224612 587070 120256 281868 073046 617583 922854 194701 174780 962563 627210 010264 569620 023102 876047 011976 040145 529256 746163 156053 631118 304066 238603 883022 631526 583835 973926 216406 645941 859754 100856 889162 506341 369435 575396 769167 215306 447276 164519 190163 402618 032877 472534 353849 501474 619797 118637 856985 887328 837068 741278 614775 810876 091644 072112 768500 082985 408996 055763 846533 337019 831431 939123 568358 333555 452967 486723 626041 361007 449966 489991 678817 738502 524384 365503 566231 696446 967381 699618 380778 811927 435433 762547 595053 534412 815430 924894 871442 209908 425127 775093 357827 906411 916968 670648 919289 568979 970593 816356 280165 924928 536259 666870 582408 765046 938829 038628 255925 215574 294518 725508 784101 781816 647239 839425 579459 370014 147787 677945 262346 263740 880466 479488 448320 966684 209058 100955 292579 402298 721822 827419 194948 073946 636347 323657 523599 595134 922505 702780 864844 182133 064865 917821 215659 435791 745971 116982 597317 511218 268339 906880 379420 970339 628177 467255 112229 210106 665527 919902 409843 599058 850256 341156 829307 965730 328532 047969 325895 880490 487002 802395 179827 449391 531977 207981 560060 460797 600904 016602 621132 985117 626310 911234 238769 809481 937383 617204 541519 437681 278521 168859 758555 794168 877891 661301 260122 797352 644169 556643 022390 923905 431783 012975 086665 408975 545564 216734 342106 774025 041400 232243 513823 262139 150358 657524 590655 275769 522599 952049 672432 434780 010294 238025 549347 613256 253141 142639 394739 728467 225862 952126 219954 585387 009530 785681 757544 104893 677651 568939 946715 850208 460569 209526 164488 443666 289343 683229 716548 959211 870107 792404 454898 893341 545417 424733 929320 639919 181112 586815 596490 820197 649554 651036 386815 397448 466331 802226 477196 318221 790926 861196 607305 729622 046051 688808 093187 467025 926521 492088 290400 562759 154345 383255 382239 014971 516167 618508 161344 133286 454086 158720 653803 848804 556099 637639 188316 136135 371811 183814 207981 249113 795505 367787 192514 794612 523536 886409 107644 468941 223309 298788 531889 818051 365830 065393 061641 914972 479023 786134 569935 558007 919544 817592 033063 618844 630203 843664 699218 534789 455640 771507 741172 788983 281328 646325 519699 419425 393452 583689 319663 542271 461238 892294 252943 221291 873773 041339 493143 485508 709218 816417 139935 570032 232629 338776 474733 522225 301293 512101 581669 922711 309780 734255 357185 150374 145083 398233 602665 587438 187648 617374 812324 884874 719985 360795 321225 065865 313629 290191 618349 225708 749174 529787 932891 157906 908584 831029 051541 710472 754548 681055 976163 551905 993403 768681 052717 358386 982477 028653 390253 492064 521532 244286 739281 552716 805722 656625 796744 392200 998535 977944 570525 105207 040600 605757 082882 428522 651401 045780 846359 875889 643343 115343 436201 557543 903223 252056 443846 999694 614614 739755 958700 883369 388868 409298 083151 848446 839477 110150 868369 925431 966320 599893 545057 071058 337471 128001 216437 116209 156446 790256 267294 994106 736636 063145 739966 377821 947143 984817 111204 949991 469970 512052 720189 584077 387647 774502 520769 363564 611987 024110 589244 636426 504764 328130 564535 299977 710483 634433 672139 942307 188892 745647 133013 241100 688731 522604 002054 554422 241816 963524 776275 888856 222451 858140 274355 687518 712554 974804 685141 837105 006358 211364 878623 751409 291567 920956 615802 763389 373367 569881 028573 444710 793248 240227 004613 258882 059805 914591 995021 513830 934308 178576 338262 356555 935703 858217 264017 141441 934438 506388 212719 371140 595538 806846 862606 507125 893482 259984 881309 144996 822195 746925 542750 911223 309222 805243 062809 335870 334045 604670 086680 533335 162899 736469 522385 847579 692700 390513 590294 917098 649027 320575 107598 552007 702005 368032 531056 227521 216491 189749 051045 938680 472393 939701 344582 314587 557994 234312 145457 676037 801410 226737 619792 128040 896218 671467 750687 935925 617078 482448 046795 129145 512216 726186 219215 674156 386606 765210 096790 790533 658132 864753 647233 122602 581435 242831 371215 856261 754448 751080 412489 201846 299221 183561 615082 449507 153789 818453 993946 410643 112799 342912 774586 052886 881751 174199 896802 458271 433189 021976 081179 776438 109471 108900 227891 870984 115388 791593 150678 322569 165525 010873 686380 881379 033274 157465 096543 754476 486174 432967 236352 683571 592235 876811 512639 992615 750871 511029 334198 619478 420739 187102 534961 246527 291149 701599 537337 104156 480877 064988 446141 397195 314370 980909 766835 210175 855660 066403 319482 704501 702397 598627 570218 680438 692309 348111 397312 769259 308668 411896 563005 859196 771922 397492 686867 241853 437422 577060 265096 710873 970866 429786 546854 112740 083015 046408 194600 482447 503418 427576 837965 159284 197185 862112 427587 257778 731128 842316 541836 376197 938451 241151 823479 919338 740079 763512 731098 361342 029163 493917 049822 965383 316816 418129 131175 551970 804104 275786 709909 443160 588668 010401 309472 625472 066706 557305 824863 689134 925695 902443 616449 544270 382202 326933 326214 283252 044446 814471 921865 462658 809856 661840 471045 257265 141442 688832 843921 624380 733982 894427 100675 658456 947629 088802 791663 850103 528423 892985 361860 400950 172766 112858 050736 216502 107136 700418 218893 525782 198481 858995 834121 263834 450633 615110 816660 655248 418223 670280 084588 329298 231188 207668 177948 912874 687643 490603 719541 909138 821639 496787 073864 429244 209706 852891 642008 282058 879245 081888 745319 762667 841505 922285 493459 521161 744701 054759 904555 168752 672953 952801 191744 383186 022759 004751 063318 477460 081478 206663 727539 497884 262277 872724 353982 011336 032356 785661 876902 427960 457325 954213 016678 133529 139237 193053 580171 378855 771915 466394 544675 471929 117450 513331 083291 374523 145382 727616 229744 837556 121676 352291 025541 874676 429626 020295 107658 486036 150611 989574 382948 961766 951184 034375 906270 050579 152689 711605 990408 296317 292169 992192 303971 513751 086991 575505 991885 954561 784100 209865 410415 443670 053035 555631 362059 769190 124576 046088 935187 212355 316482 291661 859473 230788 925562 482805 372673 141542 459785 396009 087538 119856 311141 730465 574722 249248 182807 147510 933823 476807 006110 554076 383727 226527 656357 986472 946548 772146 592005 391935 738061 810028 425734 861345 595219 086920 888801 848791 558412 807964 059538 680137 926630 756844 604939 688436 925030 762237 639847 270221 526641 708173 626288 718752 739706 463267 146958 582689 400758 461478 613396 860321 298589 414643 526883 604523 094097 973387 572096 280059 640682 552825 529955 647387 304121 340566 129508 743551 446947 139261 407732 901214 914291 080692 437739 462809 670848 977732 183546 490733 036751 842440 494742 062602 602989 003422 009532 521069 562544 694226 175471 099872 310731 870874 615660 674087 421111 150884 005187 361928 574256 624632 298076 539355 861624 178056 837388 745908 846965 857143 840656 719657 957841 868091 549912 631817 770175 435334 240344 563783 853333 039328 750173 925198 223037 915145 668001 828480 064699 264789 334285 468795 853906 937108 719506 937409 311815 788704 235333 912025 619476 145319 581007 076042 314505 598032 661714 142778 490062 321129 036596 166066 063008 138524 721362 615975 139931 052680 804369 457457 334134 859174 067068 784171 563683 976005 308889 252422 865994 372034 146173 776072 649510 569740 430731 394120 396303 976449 246487 566741 851365 715028 922196 994927 755253 409835 882727 029630 919655 009801 554461 365429 916069 013653 002726 534253 279992 297754 701415 827585 943115 536064 792067 263270 618868 907378 709395 123996 424815 516381 111348 327706 031607 366031 090412 686743 179112 058127 528665 105526 306708 476588 227015 950959 528784 547032 994133 511130 671538 343494 610955 891350 577663 075746 747709 809144 594790 691396 447931 035408 774777 773920 712992 935311 143771 900819 521635 921950 294583 402706 092839 384323 012567 842364 955222 934550 227026 516514 981108 253699 772485 885378 578543 541841 118509 402239 224531 666751 348243 726714 923256 125906 851616 652839 064496 945006 978972 038740 352266 771180 308507 205690 260346 058461 681726 286154 125097 589842 744355 621292 272405 427450 442422 714510 761329 728597 558674 799969 678984 824052 898708 144644 608445 958652 615184 355580 423038 538935 018431 050317 118613 084072 379432 766414 569011 632528 499993 660799 658624 323124 699222 965863 811549 824605 178806 302378 267026 454162 643005 907715 041596 202401 650301 032929 561074 235746 970509 117534 020384 804022 139764 861692 069653 553780 295217 245543 312899 530948 764566 156857 994086 005382 184705 051204 014617 381098 940656 570337 740436 082368 380619 988771 718294 574973 400350 457439 178028 414918 180519 749935 917845 547712 949222 098955 033488 839847 305758 649028 273136 289117 735605 752945 781473 266020 233141 926007 532252 585384 620517 296662 825061 844780 515852 542894 519408 313135 828328 025819 316032 211258 079892 190496 962513 268376 567740 297666 620668 720518 615348 356245 158817 752262 569570 030458 793066 503259 320135 229270 247196 821788 846087 172529 765311 648707 854704 790977 098715 423960 954385 873111 214887 162021 741982 524191 965834 206766 111441 748190 056804 397702 564231 381207 695353 354764 469139 439690 943421 204938 064323 077718 460271 693057 182047 099332 534829 703411 977523 914104 055747 861050 347464 430742 159039 051897 629216 572313 542491 057029 375546 601770 724476 746789 388922 843511 025327 786620 095701 494654 815506 459172 942561 057857 070951 512995 681084 741200 403972 783090 231961 663203 080365 615252 537301 873976 897777 693773 700405 660777 966074 251011 334029 160308 814124 395120 730053 001338 168933 639349 681207 827221 850039 585190 985355 795712 781071 208126 134582 481088 440825 108961 380375 147875 565193 182119 602763 811859 733365 711187 383525 412781 826492 796922 317592 872464 034533 964685 274082 519878 081952 406762 737629 366751 552199 710769 390315 753151 110908 202245 997682 053231 116769 491331 229035 922152 999401 175728 973150 288602 721488 870618 526066 948016 198418 493643 703354 408025 296332 803191 301537 459793 441220 918570 795659 867264 827225 575789 110159 320143 394302 479192 843047 635173 037862 710316 797028 951381 669798 053702 367166 680631 327638 677277 724928 244558 831577 354717 860650 467197 326257 257863 723800 160471 763242 899531 857803 059530 399932 229051 881363 583357 935026 814200 595543 071732 047152 416695 268799 325297 595937 472659 029533 520876 699168 604889 495107 837123 456148 452065 864892 701541 943272 720756 395465 977893 138734 367930 553486 066660 139733 139199 176168 517086 286506 924894 059524 966332 953728 084801 731510 059065 478884 419066 191269 111223 793422 384368 066638 712414 373256 880217 499132 604350 750092 692745 119181 843052 569576 311861 303240 697935 206708 495308 794846 142198 754304 611867 702724 794187 009086 157209 483268 586519 325765 585687 049811 797776 037817 176357 037442 816584 311871 433366 700135 857201 739059 552038 191752 114437 842477 378184 059951 192821 363868 093484 433183 296966 445541 246793 406048 749565 100627 941908 776588 532821 622107 179295 521078 770877 719876 013899 511795 485260 041251 463858 964821 240384 754821 895120 320563 911807 234405 195672 200629 367258 452734 321109 101756 667881 047725 681358 788857 447961 024712 485101 241786 193914 810649 721146 848430 931154 165668 162824 276060 522477 864011 854743 359956 634084 271752 795598 987750 430935 692605 938698 642940 365478 341234 258932 834773 555658 973450 312190 197138 823963 658028 979015 821820 280556 299745 236380 905474 673586 820300 376433 993549 316652 131831 617148 069735 841101 536916 390640 882411 644567 728963 349372 217538 138211 093054 842682 435454 817787 771185 036098 098039 399621 073214 392549 974096 266521 315434 168377 903608 491622 216423 832488 076240 230386 477860 918097 045675 386088 670377 522844 136912 432034 678088 063492 873930 098181 254101 487302 218203 028401 835222 230501 487832 779530 389170 672788 556778 608812 428645 107300 530153 688869 885283 949807 400030 879094 687035 410841 058054 463863 941936 549464 942078 772221 243346 096607 565345 121575 239320 371710 043784 475075 796012 890246 797787 543826 212965 554512 077823 260870 060819 734846 125436 776830 966647 460400 230756 886534 343933 364626 943894 760001 (12540 digits)

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • x: equal sign missing in first expression

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • x=: three or four semicolons expected but none found

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • x=23: three or four semicolons expected but none found

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • x=23;13: variable x missing in second expression

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • x=23;x=x+1: three or four semicolons expected but there are only one

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • Error in expression #4: The expression must not include variables

Written by Dario Alpern. Last updated on 10 November 2024.

-6
  • 25 = 5^2
  • 26 = 2 * 13
  • 27 = 3^3
  • 28 = 2^2 * 7
  • 29 is prime
  • 30 = 2 * 3 * 5
  • 31 is prime
  • 32 = 2^5
  • 33 = 3 * 11
  • 34 = 2 * 17
  • 35 = 5 * 7
  • 36 = 2^2 * 3^2
  • 37 is prime
  • 38 = 2 * 19
  • 39 = 3 * 13
  • 40 = 2^3 * 5
  • 41 is prime
  • 42 = 2 * 3 * 7
  • 43 is prime
  • 44 = 2^2 * 11
  • 45 = 3^2 * 5
  • 46 = 2 * 23
  • 47 is prime
  • 48 = 2^4 * 3
  • 49 = 7^2
  • 50 = 2 * 5^2
  • 51 = 3 * 17
  • 52 = 2^2 * 13
  • 53 is prime
  • 54 = 2 * 3^3
  • 55 = 5 * 11
  • 56 = 2^3 * 7
  • 57 = 3 * 19
  • 58 = 2 * 29
  • 59 is prime
  • 60 = 2^2 * 3 * 5
  • 61 is prime
  • 62 = 2 * 31
  • 63 = 3^2 * 7
  • 64 = 2^6
  • 65 = 5 * 13
  • 66 = 2 * 3 * 11
  • 67 is prime
  • 68 = 2^2 * 17
  • 69 = 3 * 23
  • 70 = 2 * 5 * 7
  • 71 is prime
  • 72 = 2^3 * 3^2
  • 73 is prime
  • 74 = 2 * 37
  • 75 = 3 * 5^2
  • 76 = 2^2 * 19
  • 77 = 7 * 11
  • 78 = 2 * 3 * 13
  • 79 is prime
  • 80 = 2^4 * 5
  • 81 = 3^4
  • 82 = 2 * 41
  • 83 is prime
  • 84 = 2^2 * 3 * 7
  • 85 = 5 * 17
  • 86 = 2 * 43
  • 87 = 3 * 29
  • 88 = 2^3 * 11
  • 89 is prime
  • 90 = 2 * 3^2 * 5
  • 91 = 7 * 13
  • 92 = 2^2 * 23
  • 93 = 3 * 31
  • 94 = 2 * 47
  • 95 = 5 * 19
  • 96 = 2^5 * 3
  • 97 is prime
  • 98 = 2 * 7^2
  • 99 = 3^2 * 11
  • 100 = 2^2 * 5^2
  • 101 is prime
  • 102 = 2 * 3 * 17
  • 103 is prime
  • 104 = 2^3 * 13
  • 105 = 3 * 5 * 7
  • 106 = 2 * 53
  • 107 is prime
  • 108 = 2^2 * 3^3
  • 109 is prime
  • 110 = 2 * 5 * 11
  • 111 = 3 * 37
  • 112 = 2^4 * 7
  • 113 is prime
  • 114 = 2 * 3 * 19
  • 115 = 5 * 23
  • 116 = 2^2 * 29
  • 117 = 3^2 * 13
  • 118 = 2 * 59
  • 119 = 7 * 17
  • 120 = 2^3 * 3 * 5
  • 121 = 11^2
  • 122 = 2 * 61
  • 123 = 3 * 41
  • 124 = 2^2 * 31
  • 125 = 5^3
  • 126 = 2 * 3^2 * 7
  • 127 is prime
  • 128 = 2^7
  • 129 = 3 * 43
  • 130 = 2 * 5 * 13
  • 131 is prime
  • 132 = 2^2 * 3 * 11
  • 133 = 7 * 19
  • 134 = 2 * 67
  • 135 = 3^3 * 5
  • 136 = 2^3 * 17
  • 137 is prime
  • 138 = 2 * 3 * 23
  • 139 is prime
  • 140 = 2^2 * 5 * 7
  • 141 = 3 * 47
  • 142 = 2 * 71
  • 143 = 11 * 13
  • 144 = 2^4 * 3^2
  • 145 = 5 * 29
  • 146 = 2 * 73
  • 147 = 3 * 7^2
  • 148 = 2^2 * 37
  • 149 is prime
  • 150 = 2 * 3 * 5^2
  • 151 is prime
  • 152 = 2^3 * 19
  • 153 = 3^2 * 17
  • 154 = 2 * 7 * 11
  • 155 = 5 * 31
  • 156 = 2^2 * 3 * 13
  • 157 is prime
  • 158 = 2 * 79
  • 159 = 3 * 53
  • 160 = 2^5 * 5
  • 161 = 7 * 23
  • 162 = 2 * 3^4
  • 163 is prime
  • 164 = 2^2 * 41
  • 165 = 3 * 5 * 11
  • 166 = 2 * 83
  • 167 is prime
  • 168 = 2^3 * 3 * 7
  • 169 = 13^2
  • 170 = 2 * 5 * 17
  • 171 = 3^2 * 19
  • 172 = 2^2 * 43
  • 173 is prime
  • 174 = 2 * 3 * 29
  • 175 = 5^2 * 7
  • 176 = 2^4 * 11
  • 177 = 3 * 59
  • 178 = 2 * 89
  • 179 is prime
  • 180 = 2^2 * 3^2 * 5
  • 181 is prime
  • 182 = 2 * 7 * 13
  • 183 = 3 * 61
  • 184 = 2^3 * 23
  • 185 = 5 * 37
  • 186 = 2 * 3 * 31
  • 187 = 11 * 17
  • 188 = 2^2 * 47
  • 189 = 3^3 * 7
  • 190 = 2 * 5 * 19
  • 191 is prime
  • 192 = 2^6 * 3
  • 193 is prime
  • 194 = 2 * 97
  • 195 = 3 * 5 * 13
  • 196 = 2^2 * 7^2
  • 197 is prime
  • 198 = 2 * 3^2 * 11
  • 199 is prime
  • 200 = 2^3 * 5^2
  • 201 = 3 * 67
  • 202 = 2 * 101
  • 203 = 7 * 29
  • 204 = 2^2 * 3 * 17
  • 205 = 5 * 41
  • 206 = 2 * 103
  • 207 = 3^2 * 23
  • 208 = 2^4 * 13
  • 209 = 11 * 19
  • 210 = 2 * 3 * 5 * 7
  • 211 is prime
  • 212 = 2^2 * 53
  • 213 = 3 * 71
  • 214 = 2 * 107
  • 215 = 5 * 43
  • 216 = 2^3 * 3^3
  • 217 = 7 * 31
  • 218 = 2 * 109
  • 219 = 3 * 73
  • 220 = 2^2 * 5 * 11
  • 221 = 13 * 17
  • 222 = 2 * 3 * 37
  • 223 is prime
  • 224 = 2^5 * 7
  • 225 = 3^2 * 5^2
  • 226 = 2 * 113
  • 227 is prime
  • 228 = 2^2 * 3 * 19
  • 229 is prime
  • 230 = 2 * 5 * 23
  • 231 = 3 * 7 * 11
  • 232 = 2^3 * 29
  • 233 is prime
  • 234 = 2 * 3^2 * 13
  • 235 = 5 * 47
  • 236 = 2^2 * 59
  • 237 = 3 * 79
  • 238 = 2 * 7 * 17
  • 239 is prime
  • 240 = 2^4 * 3 * 5
  • 241 is prime
  • 242 = 2 * 11^2
  • 243 = 3^5
  • 244 = 2^2 * 61
  • 245 = 5 * 7^2
  • 246 = 2 * 3 * 41
  • 247 = 13 * 19
  • 248 = 2^3 * 31
  • 249 = 3 * 83
  • 250 = 2 * 5^3
  • 251 is prime
  • 252 = 2^2 * 3^2 * 7
  • 253 = 11 * 23
  • 254 = 2 * 127
  • 255 = 3 * 5 * 17
  • 256 = 2^8
  • 257 is prime
  • 258 = 2 * 3 * 43
  • 259 = 7 * 37
  • 260 = 2^2 * 5 * 13
  • 261 = 3^2 * 29
  • 262 = 2 * 131
  • 263 is prime
  • 264 = 2^3 * 3 * 11
  • 265 = 5 * 53
  • 266 = 2 * 7 * 19
  • 267 = 3 * 89
  • 268 = 2^2 * 67
  • 269 is prime
  • 270 = 2 * 3^3 * 5
  • 271 is prime
  • 272 = 2^4 * 17
  • 273 = 3 * 7 * 13
  • 274 = 2 * 137
  • 275 = 5^2 * 11
  • 276 = 2^2 * 3 * 23
  • 277 is prime
  • 278 = 2 * 139
  • 279 = 3^2 * 31
  • 280 = 2^3 * 5 * 7
  • 281 is prime
  • 282 = 2 * 3 * 47
  • 283 is prime
  • 284 = 2^2 * 71
  • 285 = 3 * 5 * 19
  • 286 = 2 * 11 * 13
  • 287 = 7 * 41
  • 288 = 2^5 * 3^2
  • 289 = 17^2
  • 290 = 2 * 5 * 29
  • 291 = 3 * 97
  • 292 = 2^2 * 73
  • 293 is prime
  • 294 = 2 * 3 * 7^2
  • 295 = 5 * 59
  • 296 = 2^3 * 37
  • 297 = 3^3 * 11
  • 298 = 2 * 149
  • 299 = 13 * 23
  • 300 = 2^2 * 3 * 5^2
  • 301 = 7 * 43
  • 302 = 2 * 151
  • 303 = 3 * 101
  • 304 = 2^4 * 19
  • 305 = 5 * 61
  • 306 = 2 * 3^2 * 17
  • 307 is prime
  • 308 = 2^2 * 7 * 11
  • 309 = 3 * 103
  • 310 = 2 * 5 * 31
  • 311 is prime
  • 312 = 2^3 * 3 * 13
  • 313 is prime
  • 314 = 2 * 157
  • 315 = 3^2 * 5 * 7
  • 316 = 2^2 * 79
  • 317 is prime
  • 318 = 2 * 3 * 53
  • 319 = 11 * 29
  • 320 = 2^6 * 5
  • 321 = 3 * 107
  • 322 = 2 * 7 * 23
  • 323 = 17 * 19
  • 324 = 2^2 * 3^4
  • 325 = 5^2 * 13
  • 326 = 2 * 163
  • 327 = 3 * 109
  • 328 = 2^3 * 41
  • 329 = 7 * 47
  • 330 = 2 * 3 * 5 * 11
  • 331 is prime
  • 332 = 2^2 * 83
  • 333 = 3^2 * 37
  • 334 = 2 * 167
  • 335 = 5 * 67
  • 336 = 2^4 * 3 * 7
  • 337 is prime
  • 338 = 2 * 13^2
  • 339 = 3 * 113
  • 340 = 2^2 * 5 * 17
  • 341 = 11 * 31
  • 342 = 2 * 3^2 * 19
  • 343 = 7^3
  • 344 = 2^3 * 43
  • 345 = 3 * 5 * 23
  • 346 = 2 * 173
  • 347 is prime
  • 348 = 2^2 * 3 * 29
  • 349 is prime
  • 350 = 2 * 5^2 * 7
  • 351 = 3^3 * 13
  • 352 = 2^5 * 11
  • 353 is prime
  • 354 = 2 * 3 * 59
  • 355 = 5 * 71
  • 356 = 2^2 * 89
  • 357 = 3 * 7 * 17
  • 358 = 2 * 179
  • 359 is prime
  • 360 = 2^3 * 3^2 * 5
  • 361 = 19^2
  • 362 = 2 * 181
  • 363 = 3 * 11^2
  • 364 = 2^2 * 7 * 13
  • 365 = 5 * 73
  • 366 = 2 * 3 * 61
  • 367 is prime
  • 368 = 2^4 * 23
  • 369 = 3^2 * 41
  • 370 = 2 * 5 * 37
  • 371 = 7 * 53
  • 372 = 2^2 * 3 * 31
  • 373 is prime
  • 374 = 2 * 11 * 17
  • 375 = 3 * 5^3
  • 376 = 2^3 * 47
  • 377 = 13 * 29
  • 378 = 2 * 3^3 * 7
  • 379 is prime
  • 380 = 2^2 * 5 * 19
  • 381 = 3 * 127
  • 382 = 2 * 191
  • 383 is prime
  • 384 = 2^7 * 3
  • 385 = 5 * 7 * 11
  • 386 = 2 * 193
  • 387 = 3^2 * 43
  • 388 = 2^2 * 97
  • 389 is prime
  • 390 = 2 * 3 * 5 * 13
  • 391 = 17 * 23
  • 392 = 2^3 * 7^2
  • 393 = 3 * 131
  • 394 = 2 * 197
  • 395 = 5 * 79
  • 396 = 2^2 * 3^2 * 11
  • 397 is prime
  • 398 = 2 * 199
  • 399 = 3 * 7 * 19
  • 400 = 2^4 * 5^2
  • 401 is prime
  • 402 = 2 * 3 * 67
  • 403 = 13 * 31
  • 404 = 2^2 * 101
  • 405 = 3^4 * 5
  • 406 = 2 * 7 * 29
  • 407 = 11 * 37
  • 408 = 2^3 * 3 * 17
  • 409 is prime
  • 410 = 2 * 5 * 41
  • 411 = 3 * 137
  • 412 = 2^2 * 103
  • 413 = 7 * 59
  • 414 = 2 * 3^2 * 23
  • 415 = 5 * 83
  • 416 = 2^5 * 13
  • 417 = 3 * 139
  • 418 = 2 * 11 * 19
  • 419 is prime
  • 420 = 2^2 * 3 * 5 * 7
  • 421 is prime
  • 422 = 2 * 211
  • 423 = 3^2 * 47
  • 424 = 2^3 * 53
  • 425 = 5^2 * 17
  • 426 = 2 * 3 * 71
  • 427 = 7 * 61
  • 428 = 2^2 * 107
  • 429 = 3 * 11 * 13
  • 430 = 2 * 5 * 43
  • 431 is prime
  • 432 = 2^4 * 3^3
  • 433 is prime
  • 434 = 2 * 7 * 31
  • 435 = 3 * 5 * 29
  • 436 = 2^2 * 109
  • 437 = 19 * 23
  • 438 = 2 * 3 * 73
  • 439 is prime
  • 440 = 2^3 * 5 * 11
  • 441 = 3^2 * 7^2
  • 442 = 2 * 13 * 17
  • 443 is prime
  • 444 = 2^2 * 3 * 37
  • 445 = 5 * 89
  • 446 = 2 * 223
  • 447 = 3 * 149
  • 448 = 2^6 * 7
  • 449 is prime
  • 450 = 2 * 3^2 * 5^2
  • 451 = 11 * 41
  • 452 = 2^2 * 113
  • 453 = 3 * 151
  • 454 = 2 * 227
  • 455 = 5 * 7 * 13
  • 456 = 2^3 * 3 * 19
  • 457 is prime
  • 458 = 2 * 229
  • 459 = 3^3 * 17
  • 460 = 2^2 * 5 * 23
  • 461 is prime
  • 462 = 2 * 3 * 7 * 11
  • 463 is prime
  • 464 = 2^4 * 29
  • 465 = 3 * 5 * 31
  • 466 = 2 * 233
  • 467 is prime
  • 468 = 2^2 * 3^2 * 13
  • 469 = 7 * 67
  • 470 = 2 * 5 * 47
  • 471 = 3 * 157
  • 472 = 2^3 * 59
  • 473 = 11 * 43
  • 474 = 2 * 3 * 79
  • 475 = 5^2 * 19
  • 476 = 2^2 * 7 * 17
  • 477 = 3^2 * 53
  • 478 = 2 * 239
  • 479 is prime
  • 480 = 2^5 * 3 * 5
  • 481 = 13 * 37
  • 482 = 2 * 241
  • 483 = 3 * 7 * 23
  • 484 = 2^2 * 11^2
  • 485 = 5 * 97
  • 486 = 2 * 3^5
  • 487 is prime
  • 488 = 2^3 * 61
  • 489 = 3 * 163
  • 490 = 2 * 5 * 7^2
  • 491 is prime
  • 492 = 2^2 * 3 * 41
  • 493 = 17 * 29
  • 494 = 2 * 13 * 19
  • 495 = 3^2 * 5 * 11
  • 496 = 2^4 * 31
  • 497 = 7 * 71
  • 498 = 2 * 3 * 83
  • 499 is prime
  • 500 = 2^2 * 5^3
  • 501 = 3 * 167
  • 502 = 2 * 251
  • 503 is prime
  • 504 = 2^3 * 3^2 * 7
  • 505 = 5 * 101
  • 506 = 2 * 11 * 23
  • 507 = 3 * 13^2
  • 508 = 2^2 * 127
  • 509 is prime
  • 510 = 2 * 3 * 5 * 17
  • 511 = 7 * 73
  • 512 = 2^9
  • 513 = 3^3 * 19
  • 514 = 2 * 257
  • 515 = 5 * 103
  • 516 = 2^2 * 3 * 43
  • 517 = 11 * 47
  • 518 = 2 * 7 * 37
  • 519 = 3 * 173
  • 520 = 2^3 * 5 * 13
  • 521 is prime
  • 522 = 2 * 3^2 * 29
  • 523 is prime
  • 524 = 2^2 * 131
  • 525 = 3 * 5^2 * 7
  • 526 = 2 * 263
  • 527 = 17 * 31
  • 528 = 2^4 * 3 * 11
  • 529 = 23^2
  • 530 = 2 * 5 * 53
  • 531 = 3^2 * 59
  • 532 = 2^2 * 7 * 19
  • 533 = 13 * 41
  • 534 = 2 * 3 * 89
  • 535 = 5 * 107
  • 536 = 2^3 * 67
  • 537 = 3 * 179
  • 538 = 2 * 269
  • 539 = 7^2 * 11
  • 540 = 2^2 * 3^3 * 5
  • 541 is prime
  • 542 = 2 * 271
  • 543 = 3 * 181
  • 544 = 2^5 * 17
  • 545 = 5 * 109
  • 546 = 2 * 3 * 7 * 13
  • 547 is prime
  • 548 = 2^2 * 137
  • 549 = 3^2 * 61
  • 550 = 2 * 5^2 * 11
  • 551 = 19 * 29
  • 552 = 2^3 * 3 * 23
  • 553 = 7 * 79
  • 554 = 2 * 277
  • 555 = 3 * 5 * 37
  • 556 = 2^2 * 139
  • 557 is prime
  • 558 = 2 * 3^2 * 31
  • 559 = 13 * 43
  • 560 = 2^4 * 5 * 7
  • 561 = 3 * 11 * 17
  • 562 = 2 * 281
  • 563 is prime
  • 564 = 2^2 * 3 * 47
  • 565 = 5 * 113
  • 566 = 2 * 283
  • 567 = 3^4 * 7
  • 568 = 2^3 * 71
  • 569 is prime
  • 570 = 2 * 3 * 5 * 19
  • 571 is prime
  • 572 = 2^2 * 11 * 13
  • 573 = 3 * 191
  • 574 = 2 * 7 * 41
  • 575 = 5^2 * 23
  • 576 = 2^6 * 3^2
  • 577 is prime
  • 578 = 2 * 17^2
  • 579 = 3 * 193
  • 580 = 2^2 * 5 * 29
  • 581 = 7 * 83
  • 582 = 2 * 3 * 97
  • 583 = 11 * 53
  • 584 = 2^3 * 73
  • 585 = 3^2 * 5 * 13
  • 586 = 2 * 293
  • 587 is prime
  • 588 = 2^2 * 3 * 7^2
  • 589 = 19 * 31
  • 590 = 2 * 5 * 59
  • 591 = 3 * 197
  • 592 = 2^4 * 37
  • 593 is prime
  • 594 = 2 * 3^3 * 11
  • 595 = 5 * 7 * 17
  • 596 = 2^2 * 149
  • 597 = 3 * 199
  • 598 = 2 * 13 * 23
  • 599 is prime
  • 600 = 2^3 * 3 * 5^2
  • 601 is prime
  • 602 = 2 * 7 * 43
  • 603 = 3^2 * 67
  • 604 = 2^2 * 151
  • 605 = 5 * 11^2
  • 606 = 2 * 3 * 101
  • 607 is prime
  • 608 = 2^5 * 19
  • 609 = 3 * 7 * 29
  • 610 = 2 * 5 * 61
  • 611 = 13 * 47
  • 612 = 2^2 * 3^2 * 17
  • 613 is prime
  • 614 = 2 * 307
  • 615 = 3 * 5 * 41
  • 616 = 2^3 * 7 * 11
  • 617 is prime
  • 618 = 2 * 3 * 103
  • 619 is prime
  • 620 = 2^2 * 5 * 31
  • 621 = 3^3 * 23
  • 622 = 2 * 311
  • 623 = 7 * 89
  • 624 = 2^4 * 3 * 13
  • 625 = 5^4
  • 626 = 2 * 313
  • 627 = 3 * 11 * 19
  • 628 = 2^2 * 157
  • 629 = 17 * 37
  • 630 = 2 * 3^2 * 5 * 7
  • 631 is prime
  • 632 = 2^3 * 79
  • 633 = 3 * 211
  • 634 = 2 * 317
  • 635 = 5 * 127
  • 636 = 2^2 * 3 * 53
  • 637 = 7^2 * 13
  • 638 = 2 * 11 * 29
  • 639 = 3^2 * 71
  • 640 = 2^7 * 5
  • 641 is prime
  • 642 = 2 * 3 * 107
  • 643 is prime
  • 644 = 2^2 * 7 * 23
  • 645 = 3 * 5 * 43
  • 646 = 2 * 17 * 19
  • 647 is prime
  • 648 = 2^3 * 3^4
  • 649 = 11 * 59
  • 650 = 2 * 5^2 * 13
  • 651 = 3 * 7 * 31
  • 652 = 2^2 * 163
  • 653 is prime
  • 654 = 2 * 3 * 109
  • 655 = 5 * 131
  • 656 = 2^4 * 41
  • 657 = 3^2 * 73
  • 658 = 2 * 7 * 47
  • 659 is prime
  • 660 = 2^2 * 3 * 5 * 11
  • 661 is prime
  • 662 = 2 * 331
  • 663 = 3 * 13 * 17
  • 664 = 2^3 * 83
  • 665 = 5 * 7 * 19
  • 666 = 2 * 3^2 * 37
  • 667 = 23 * 29
  • 668 = 2^2 * 167
  • 669 = 3 * 223
  • 670 = 2 * 5 * 67
  • 671 = 11 * 61
  • 672 = 2^5 * 3 * 7
  • 673 is prime
  • 674 = 2 * 337
  • 675 = 3^3 * 5^2
  • 676 = 2^2 * 13^2
  • 677 is prime
  • 678 = 2 * 3 * 113
  • 679 = 7 * 97
  • 680 = 2^3 * 5 * 17
  • 681 = 3 * 227
  • 682 = 2 * 11 * 31
  • 683 is prime
  • 684 = 2^2 * 3^2 * 19
  • 685 = 5 * 137
  • 686 = 2 * 7^3
  • 687 = 3 * 229
  • 688 = 2^4 * 43
  • 689 = 13 * 53
  • 690 = 2 * 3 * 5 * 23
  • 691 is prime
  • 692 = 2^2 * 173
  • 693 = 3^2 * 7 * 11
  • 694 = 2 * 347
  • 695 = 5 * 139
  • 696 = 2^3 * 3 * 29
  • 697 = 17 * 41
  • 698 = 2 * 349
  • 699 = 3 * 233
  • 700 = 2^2 * 5^2 * 7
  • 701 is prime
  • 702 = 2 * 3^3 * 13
  • 703 = 19 * 37
  • 704 = 2^6 * 11
  • 705 = 3 * 5 * 47
  • 706 = 2 * 353
  • 707 = 7 * 101
  • 708 = 2^2 * 3 * 59
  • 709 is prime
  • 710 = 2 * 5 * 71
  • 711 = 3^2 * 79
  • 712 = 2^3 * 89
  • 713 = 23 * 31
  • 714 = 2 * 3 * 7 * 17
  • 715 = 5 * 11 * 13
  • 716 = 2^2 * 179
  • 717 = 3 * 239
  • 718 = 2 * 359
  • 719 is prime
  • 720 = 2^4 * 3^2 * 5
  • 721 = 7 * 103
  • 722 = 2 * 19^2
  • 723 = 3 * 241
  • 724 = 2^2 * 181
  • 725 = 5^2 * 29
  • 726 = 2 * 3 * 11^2
  • 727 is prime
  • 728 = 2^3 * 7 * 13
  • 729 = 3^6
  • 730 = 2 * 5 * 73
  • 731 = 17 * 43
  • 732 = 2^2 * 3 * 61
  • 733 is prime
  • 734 = 2 * 367
  • 735 = 3 * 5 * 7^2
  • 736 = 2^5 * 23
  • 737 = 11 * 67
  • 738 = 2 * 3^2 * 41
  • 739 is prime
  • 740 = 2^2 * 5 * 37
  • 741 = 3 * 13 * 19
  • 742 = 2 * 7 * 53
  • 743 is prime
  • 744 = 2^3 * 3 * 31
  • 745 = 5 * 149
  • 746 = 2 * 373
  • 747 = 3^2 * 83
  • 748 = 2^2 * 11 * 17
  • 749 = 7 * 107
  • 750 = 2 * 3 * 5^3
  • 751 is prime
  • 752 = 2^4 * 47
  • 753 = 3 * 251
  • 754 = 2 * 13 * 29
  • 755 = 5 * 151
  • 756 = 2^2 * 3^3 * 7
  • 757 is prime
  • 758 = 2 * 379
  • 759 = 3 * 11 * 23
  • 760 = 2^3 * 5 * 19
  • 761 is prime
  • 762 = 2 * 3 * 127
  • 763 = 7 * 109
  • 764 = 2^2 * 191
  • 765 = 3^2 * 5 * 17
  • 766 = 2 * 383
  • 767 = 13 * 59
  • 768 = 2^8 * 3
  • 769 is prime
  • 770 = 2 * 5 * 7 * 11
  • 771 = 3 * 257
  • 772 = 2^2 * 193
  • 773 is prime
  • 774 = 2 * 3^2 * 43
  • 775 = 5^2 * 31
  • 776 = 2^3 * 97
  • 777 = 3 * 7 * 37
  • 778 = 2 * 389
  • 779 = 19 * 41
  • 780 = 2^2 * 3 * 5 * 13
  • 781 = 11 * 71
  • 782 = 2 * 17 * 23
  • 783 = 3^3 * 29
  • 784 = 2^4 * 7^2
  • 785 = 5 * 157
  • 786 = 2 * 3 * 131
  • 787 is prime
  • 788 = 2^2 * 197
  • 789 = 3 * 263
  • 790 = 2 * 5 * 79
  • 791 = 7 * 113
  • 792 = 2^3 * 3^2 * 11
  • 793 = 13 * 61
  • 794 = 2 * 397
  • 795 = 3 * 5 * 53
  • 796 = 2^2 * 199
  • 797 is prime
  • 798 = 2 * 3 * 7 * 19
  • 799 = 17 * 47
  • 800 = 2^5 * 5^2
  • 801 = 3^2 * 89
  • 802 = 2 * 401
  • 803 = 11 * 73
  • 804 = 2^2 * 3 * 67
  • 805 = 5 * 7 * 23
  • 806 = 2 * 13 * 31
  • 807 = 3 * 269
  • 808 = 2^3 * 101
  • 809 is prime
  • 810 = 2 * 3^4 * 5
  • 811 is prime
  • 812 = 2^2 * 7 * 29
  • 813 = 3 * 271
  • 814 = 2 * 11 * 37
  • 815 = 5 * 163
  • 816 = 2^4 * 3 * 17
  • 817 = 19 * 43
  • 818 = 2 * 409
  • 819 = 3^2 * 7 * 13
  • 820 = 2^2 * 5 * 41
  • 821 is prime
  • 822 = 2 * 3 * 137
  • 823 is prime
  • 824 = 2^3 * 103
  • 825 = 3 * 5^2 * 11
  • 826 = 2 * 7 * 59
  • 827 is prime
  • 828 = 2^2 * 3^2 * 23
  • 829 is prime
  • 830 = 2 * 5 * 83
  • 831 = 3 * 277
  • 832 = 2^6 * 13
  • 833 = 7^2 * 17
  • 834 = 2 * 3 * 139
  • 835 = 5 * 167
  • 836 = 2^2 * 11 * 19
  • 837 = 3^3 * 31
  • 838 = 2 * 419
  • 839 is prime
  • 840 = 2^3 * 3 * 5 * 7
  • 841 = 29^2
  • 842 = 2 * 421
  • 843 = 3 * 281
  • 844 = 2^2 * 211
  • 845 = 5 * 13^2
  • 846 = 2 * 3^2 * 47
  • 847 = 7 * 11^2
  • 848 = 2^4 * 53
  • 849 = 3 * 283
  • 850 = 2 * 5^2 * 17
  • 851 = 23 * 37
  • 852 = 2^2 * 3 * 71
  • 853 is prime
  • 854 = 2 * 7 * 61
  • 855 = 3^2 * 5 * 19
  • 856 = 2^3 * 107
  • 857 is prime
  • 858 = 2 * 3 * 11 * 13
  • 859 is prime
  • 860 = 2^2 * 5 * 43
  • 861 = 3 * 7 * 41
  • 862 = 2 * 431
  • 863 is prime
  • 864 = 2^5 * 3^3
  • 865 = 5 * 173
  • 866 = 2 * 433
  • 867 = 3 * 17^2
  • 868 = 2^2 * 7 * 31
  • 869 = 11 * 79
  • 870 = 2 * 3 * 5 * 29
  • 871 = 13 * 67
  • 872 = 2^3 * 109
  • 873 = 3^2 * 97
  • 874 = 2 * 19 * 23
  • 875 = 5^3 * 7
  • 876 = 2^2 * 3 * 73
  • 877 is prime
  • 878 = 2 * 439
  • 879 = 3 * 293
  • 880 = 2^4 * 5 * 11
  • 881 is prime
  • 882 = 2 * 3^2 * 7^2
  • 883 is prime
  • 884 = 2^2 * 13 * 17
  • 885 = 3 * 5 * 59
  • 886 = 2 * 443
  • 887 is prime
  • 888 = 2^3 * 3 * 37
  • 889 = 7 * 127
  • 890 = 2 * 5 * 89
  • 891 = 3^4 * 11
  • 892 = 2^2 * 223
  • 893 = 19 * 47
  • 894 = 2 * 3 * 149
  • 895 = 5 * 179
  • 896 = 2^7 * 7
  • 897 = 3 * 13 * 23
  • 898 = 2 * 449
  • 899 = 29 * 31
  • 900 = 2^2 * 3^2 * 5^2
  • 901 = 17 * 53
  • 902 = 2 * 11 * 41
  • 903 = 3 * 7 * 43
  • 904 = 2^3 * 113
  • 905 = 5 * 181
  • 906 = 2 * 3 * 151
  • 907 is prime
  • 908 = 2^2 * 227
  • 909 = 3^2 * 101
  • 910 = 2 * 5 * 7 * 13
  • 911 is prime
  • 912 = 2^4 * 3 * 19
  • 913 = 11 * 83
  • 914 = 2 * 457
  • 915 = 3 * 5 * 61
  • 916 = 2^2 * 229
  • 917 = 7 * 131
  • 918 = 2 * 3^3 * 17
  • 919 is prime
  • 920 = 2^3 * 5 * 23
  • 921 = 3 * 307
  • 922 = 2 * 461
  • 923 = 13 * 71
  • 924 = 2^2 * 3 * 7 * 11
  • 925 = 5^2 * 37
  • 926 = 2 * 463
  • 927 = 3^2 * 103
  • 928 = 2^5 * 29
  • 929 is prime
  • 930 = 2 * 3 * 5 * 31
  • 931 = 7^2 * 19
  • 932 = 2^2 * 233
  • 933 = 3 * 311
  • 934 = 2 * 467
  • 935 = 5 * 11 * 17
  • 936 = 2^3 * 3^2 * 13
  • 937 is prime
  • 938 = 2 * 7 * 67
  • 939 = 3 * 313
  • 940 = 2^2 * 5 * 47
  • 941 is prime
  • 942 = 2 * 3 * 157
  • 943 = 23 * 41
  • 944 = 2^4 * 59
  • 945 = 3^3 * 5 * 7
  • 946 = 2 * 11 * 43
  • 947 is prime
  • 948 = 2^2 * 3 * 79
  • 949 = 13 * 73
  • 950 = 2 * 5^2 * 19
  • 951 = 3 * 317
  • 952 = 2^3 * 7 * 17
  • 953 is prime
  • 954 = 2 * 3^2 * 53
  • 955 = 5 * 191
  • 956 = 2^2 * 239
  • 957 = 3 * 11 * 29
  • 958 = 2 * 479
  • 959 = 7 * 137
  • 960 = 2^6 * 3 * 5
  • 961 = 31^2
  • 962 = 2 * 13 * 37
  • 963 = 3^2 * 107
  • 964 = 2^2 * 241
  • 965 = 5 * 193
  • 966 = 2 * 3 * 7 * 23
  • 967 is prime
  • 968 = 2^3 * 11^2
  • 969 = 3 * 17 * 19
  • 970 = 2 * 5 * 97
  • 971 is prime
  • 972 = 2^2 * 3^5
  • 973 = 7 * 139
  • 974 = 2 * 487
  • 975 = 3 * 5^2 * 13
  • 976 = 2^4 * 61
  • 977 is prime
  • 978 = 2 * 3 * 163
  • 979 = 11 * 89
  • 980 = 2^2 * 5 * 7^2
  • 981 = 3^2 * 109
  • 982 = 2 * 491
  • 983 is prime
  • 984 = 2^3 * 3 * 41
  • 985 = 5 * 197
  • 986 = 2 * 17 * 29
  • 987 = 3 * 7 * 47
  • 988 = 2^2 * 13 * 19
  • 989 = 23 * 43
  • 990 = 2 * 3^2 * 5 * 11
  • 991 is prime
  • 992 = 2^5 * 31
  • 993 = 3 * 331
  • 994 = 2 * 7 * 71
  • 995 = 5 * 199
  • 996 = 2^2 * 3 * 83
  • 997 is prime
  • 998 = 2 * 499
  • 999 = 3^3 * 37
  • 1000 = 2^3 * 5^3
  • 1001 = 7 * 11 * 13
  • 1002 = 2 * 3 * 167
  • 1003 = 17 * 59
  • 1004 = 2^2 * 251
  • 1005 = 3 * 5 * 67
  • 1006 = 2 * 503
  • 1007 = 19 * 53
  • 1008 = 2^4 * 3^2 * 7
  • 1009 is prime
  • 1010 = 2 * 5 * 101
  • 1011 = 3 * 337
  • 1012 = 2^2 * 11 * 23
  • 1013 is prime
  • 1014 = 2 * 3 * 13^2
  • 1015 = 5 * 7 * 29
  • 1016 = 2^3 * 127
  • 1017 = 3^2 * 113
  • 1018 = 2 * 509
  • 1019 is prime
  • 1020 = 2^2 * 3 * 5 * 17
  • 1021 is prime
  • 1022 = 2 * 7 * 73
  • 1023 = 3 * 11 * 31
  • 1024 = 2^10

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • Error in expression #3: Expression #3 must include the variable x and/or the counter c

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • Error in expression #3: Syntax error in expression #3:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 4 = 2^2
  • 22 = 2 * 11
  • 27 = 3^3
  • 58 = 2 * 29
  • 85 = 5 * 17
  • 94 = 2 * 47
  • 121 = 11^2
  • 166 = 2 * 83
  • 202 = 2 * 101
  • 265 = 5 * 53
  • 274 = 2 * 137
  • 319 = 11 * 29
  • 346 = 2 * 173
  • 355 = 5 * 71
  • 378 = 2 * 3^3 * 7
  • 382 = 2 * 191
  • 391 = 17 * 23
  • 438 = 2 * 3 * 73
  • 454 = 2 * 227
  • 483 = 3 * 7 * 23
  • 517 = 11 * 47
  • 526 = 2 * 263
  • 535 = 5 * 107
  • 562 = 2 * 281
  • 576 = 2^6 * 3^2
  • 588 = 2^2 * 3 * 7^2
  • 627 = 3 * 11 * 19
  • 634 = 2 * 317
  • 636 = 2^2 * 3 * 53
  • 645 = 3 * 5 * 43
  • 648 = 2^3 * 3^4
  • 654 = 2 * 3 * 109
  • 663 = 3 * 13 * 17
  • 666 = 2 * 3^2 * 37
  • 690 = 2 * 3 * 5 * 23
  • 706 = 2 * 353
  • 728 = 2^3 * 7 * 13
  • 729 = 3^6
  • 762 = 2 * 3 * 127
  • 778 = 2 * 389
  • 825 = 3 * 5^2 * 11
  • 852 = 2^2 * 3 * 71
  • 861 = 3 * 7 * 41
  • 895 = 5 * 179
  • 913 = 11 * 83
  • 915 = 3 * 5 * 61
  • 922 = 2 * 461
  • 958 = 2 * 479
  • 985 = 5 * 197
  • 1086 = 2 * 3 * 181
  • 1111 = 11 * 101
  • 1165 = 5 * 233
  • 1219 = 23 * 53
  • 1255 = 5 * 251
  • 1282 = 2 * 641
  • 1284 = 2^2 * 3 * 107
  • 1376 = 2^5 * 43
  • 1449 = 3^2 * 7 * 23
  • 1507 = 11 * 137
  • 1581 = 3 * 17 * 31
  • 1626 = 2 * 3 * 271
  • 1633 = 23 * 71
  • 1642 = 2 * 821
  • 1678 = 2 * 839
  • 1736 = 2^3 * 7 * 31
  • 1755 = 3^3 * 5 * 13
  • 1776 = 2^4 * 3 * 37
  • 1795 = 5 * 359
  • 1822 = 2 * 911
  • 1842 = 2 * 3 * 307
  • 1858 = 2 * 929
  • 1872 = 2^4 * 3^2 * 13
  • 1881 = 3^2 * 11 * 19
  • 1894 = 2 * 947
  • 1903 = 11 * 173
  • 1908 = 2^2 * 3^2 * 53
  • 1921 = 17 * 113
  • 1935 = 3^2 * 5 * 43
  • 1952 = 2^5 * 61
  • 1962 = 2 * 3^2 * 109
  • 1966 = 2 * 983
  • 2038 = 2 * 1019
  • 2067 = 3 * 13 * 53
  • 2079 = 3^3 * 7 * 11
  • 2155 = 5 * 431
  • 2173 = 41 * 53
  • 2182 = 2 * 1091
  • 2218 = 2 * 1109
  • 2227 = 17 * 131
  • 2265 = 3 * 5 * 151
  • 2286 = 2 * 3^2 * 127
  • 2326 = 2 * 1163
  • 2362 = 2 * 1181
  • 2366 = 2 * 7 * 13^2
  • 2373 = 3 * 7 * 113
  • 2409 = 3 * 11 * 73
  • 2434 = 2 * 1217
  • 2461 = 23 * 107
  • 2475 = 3^2 * 5^2 * 11
  • 2484 = 2^2 * 3^3 * 23
  • 2515 = 5 * 503
  • 2556 = 2^2 * 3^2 * 71
  • 2576 = 2^4 * 7 * 23
  • 2578 = 2 * 1289
  • 2583 = 3^2 * 7 * 41
  • 2605 = 5 * 521
  • 2614 = 2 * 1307
  • 2679 = 3 * 19 * 47
  • 2688 = 2^7 * 3 * 7
  • 2722 = 2 * 1361
  • 2745 = 3^2 * 5 * 61
  • 2751 = 3 * 7 * 131
  • 2785 = 5 * 557
  • 2839 = 17 * 167
  • 2888 = 2^3 * 19^2
  • 2902 = 2 * 1451
  • 2911 = 41 * 71
  • 2934 = 2 * 3^2 * 163
  • 2944 = 2^7 * 23
  • 2958 = 2 * 3 * 17 * 29
  • 2964 = 2^2 * 3 * 13 * 19
  • 2965 = 5 * 593
  • 2970 = 2 * 3^3 * 5 * 11
  • 2974 = 2 * 1487
  • 3046 = 2 * 1523
  • 3091 = 11 * 281
  • 3138 = 2 * 3 * 523
  • 3168 = 2^5 * 3^2 * 11
  • 3174 = 2 * 3 * 23^2
  • 3226 = 2 * 1613
  • 3246 = 2 * 3 * 541
  • 3258 = 2 * 3^2 * 181
  • 3294 = 2 * 3^3 * 61
  • 3345 = 3 * 5 * 223
  • 3366 = 2 * 3^2 * 11 * 17
  • 3390 = 2 * 3 * 5 * 113
  • 3442 = 2 * 1721
  • 3505 = 5 * 701
  • 3564 = 2^2 * 3^4 * 11
  • 3595 = 5 * 719
  • 3615 = 3 * 5 * 241
  • 3622 = 2 * 1811
  • 3649 = 41 * 89
  • 3663 = 3^2 * 11 * 37
  • 3690 = 2 * 3^2 * 5 * 41
  • 3694 = 2 * 1847
  • 3802 = 2 * 1901
  • 3852 = 2^2 * 3^2 * 107
  • 3864 = 2^3 * 3 * 7 * 23
  • 3865 = 5 * 773
  • 3930 = 2 * 3 * 5 * 131
  • 3946 = 2 * 1973
  • 3973 = 29 * 137
  • 4054 = 2 * 2027
  • 4126 = 2 * 2063
  • 4162 = 2 * 2081
  • 4173 = 3 * 13 * 107
  • 4185 = 3^3 * 5 * 31
  • 4189 = 59 * 71
  • 4191 = 3 * 11 * 127
  • 4198 = 2 * 2099
  • 4209 = 3 * 23 * 61
  • 4279 = 11 * 389
  • 4306 = 2 * 2153
  • 4369 = 17 * 257
  • 4414 = 2 * 2207
  • 4428 = 2^2 * 3^3 * 41
  • 4464 = 2^4 * 3^2 * 31
  • 4472 = 2^3 * 13 * 43
  • 4557 = 3 * 7^2 * 31
  • 4592 = 2^4 * 7 * 41
  • 4594 = 2 * 2297
  • 4702 = 2 * 2351
  • 4743 = 3^2 * 17 * 31
  • 4765 = 5 * 953
  • 4788 = 2^2 * 3^2 * 7 * 19
  • 4794 = 2 * 3 * 17 * 47
  • 4832 = 2^5 * 151
  • 4855 = 5 * 971
  • 4880 = 2^4 * 5 * 61
  • 4918 = 2 * 2459
  • 4954 = 2 * 2477
  • 4959 = 3^2 * 19 * 29
  • 4960 = 2^5 * 5 * 31
  • 4974 = 2 * 3 * 829
  • 4981 = 17 * 293
  • 5062 = 2 * 2531
  • 5071 = 11 * 461
  • 5088 = 2^5 * 3 * 53
  • 5098 = 2 * 2549
  • 5172 = 2^2 * 3 * 431
  • 5242 = 2 * 2621
  • 5248 = 2^7 * 41
  • 5253 = 3 * 17 * 103
  • 5269 = 11 * 479
  • 5298 = 2 * 3 * 883
  • 5305 = 5 * 1061
  • 5386 = 2 * 2693
  • 5388 = 2^2 * 3 * 449
  • 5397 = 3 * 7 * 257
  • 5422 = 2 * 2711
  • 5458 = 2 * 2729
  • 5485 = 5 * 1097
  • 5526 = 2 * 3^2 * 307
  • 5539 = 29 * 191
  • 5602 = 2 * 2801
  • 5638 = 2 * 2819
  • 5642 = 2 * 7 * 13 * 31
  • 5674 = 2 * 2837
  • 5772 = 2^2 * 3 * 13 * 37
  • 5818 = 2 * 2909
  • 5854 = 2 * 2927
  • 5874 = 2 * 3 * 11 * 89
  • 5915 = 5 * 7 * 13^2
  • 5926 = 2 * 2963
  • 5935 = 5 * 1187
  • 5936 = 2^4 * 7 * 53
  • 5946 = 2 * 3 * 991
  • 5998 = 2 * 2999
  • 6036 = 2^2 * 3 * 503
  • 6054 = 2 * 3 * 1009
  • 6084 = 2^2 * 3^2 * 13^2
  • 6096 = 2^4 * 3 * 127
  • 6115 = 5 * 1223
  • 6171 = 3 * 11^2 * 17
  • 6178 = 2 * 3089
  • 6187 = 23 * 269
  • 6188 = 2^2 * 7 * 13 * 17
  • 6252 = 2^2 * 3 * 521
  • 6259 = 11 * 569
  • 6295 = 5 * 1259
  • 6315 = 3 * 5 * 421
  • 6344 = 2^3 * 13 * 61
  • 6385 = 5 * 1277
  • 6439 = 47 * 137
  • 6457 = 11 * 587
  • 6502 = 2 * 3251
  • 6531 = 3 * 7 * 311
  • 6567 = 3 * 11 * 199
  • 6583 = 29 * 227
  • 6585 = 3 * 5 * 439
  • 6603 = 3 * 31 * 71
  • 6684 = 2^2 * 3 * 557
  • 6693 = 3 * 23 * 97
  • 6702 = 2 * 3 * 1117
  • 6718 = 2 * 3359
  • 6760 = 2^3 * 5 * 13^2
  • 6816 = 2^5 * 3 * 71
  • 6835 = 5 * 1367
  • 6855 = 3 * 5 * 457
  • 6880 = 2^5 * 5 * 43
  • 6934 = 2 * 3467
  • 6981 = 3 * 13 * 179
  • 7026 = 2 * 3 * 1171
  • 7051 = 11 * 641
  • 7062 = 2 * 3 * 11 * 107
  • 7068 = 2^2 * 3 * 19 * 31
  • 7078 = 2 * 3539
  • 7089 = 3 * 17 * 139
  • 7119 = 3^2 * 7 * 113
  • 7136 = 2^5 * 223
  • 7186 = 2 * 3593
  • 7195 = 5 * 1439
  • 7227 = 3^2 * 11 * 73
  • 7249 = 11 * 659
  • 7287 = 3 * 7 * 347
  • 7339 = 41 * 179
  • 7402 = 2 * 3701
  • 7438 = 2 * 3719
  • 7447 = 11 * 677
  • 7465 = 5 * 1493
  • 7503 = 3 * 41 * 61
  • 7627 = 29 * 263
  • 7674 = 2 * 3 * 1279
  • 7683 = 3 * 13 * 197
  • 7695 = 3^4 * 5 * 19
  • 7712 = 2^5 * 241
  • 7726 = 2 * 3863
  • 7762 = 2 * 3881
  • 7764 = 2^2 * 3 * 647
  • 7782 = 2 * 3 * 1297
  • 7784 = 2^3 * 7 * 139
  • 7809 = 3 * 19 * 137
  • 7824 = 2^4 * 3 * 163
  • 7834 = 2 * 3917
  • 7915 = 5 * 1583
  • 7952 = 2^4 * 7 * 71
  • 7978 = 2 * 3989
  • 8005 = 5 * 1601
  • 8014 = 2 * 4007
  • 8023 = 71 * 113
  • 8073 = 3^3 * 13 * 23
  • 8077 = 41 * 197
  • 8095 = 5 * 1619
  • 8149 = 29 * 281
  • 8154 = 2 * 3^3 * 151
  • 8158 = 2 * 4079
  • 8185 = 5 * 1637
  • 8196 = 2^2 * 3 * 683
  • 8253 = 3^2 * 7 * 131
  • 8257 = 23 * 359
  • 8277 = 3 * 31 * 89
  • 8307 = 3^2 * 13 * 71
  • 8347 = 17 * 491
  • 8372 = 2^2 * 7 * 13 * 23
  • 8412 = 2^2 * 3 * 701
  • 8421 = 3 * 7 * 401
  • 8466 = 2 * 3 * 17 * 83
  • 8518 = 2 * 4259
  • 8545 = 5 * 1709
  • 8568 = 2^3 * 3^2 * 7 * 17
  • 8628 = 2^2 * 3 * 719
  • 8653 = 17 * 509
  • 8680 = 2^3 * 5 * 7 * 31
  • 8736 = 2^5 * 3 * 7 * 13
  • 8754 = 2 * 3 * 1459
  • 8766 = 2 * 3^2 * 487
  • 8790 = 2 * 3 * 5 * 293
  • 8792 = 2^3 * 7 * 157
  • 8851 = 53 * 167
  • 8864 = 2^5 * 277
  • 8874 = 2 * 3^2 * 17 * 29
  • 8883 = 3^3 * 7 * 47
  • 8901 = 3^2 * 23 * 43
  • 8914 = 2 * 4457
  • 9015 = 3 * 5 * 601
  • 9031 = 11 * 821
  • 9036 = 2^2 * 3^2 * 251
  • 9094 = 2 * 4547
  • 9166 = 2 * 4583
  • 9184 = 2^5 * 7 * 41
  • 9193 = 29 * 317
  • 9229 = 11 * 839
  • 9274 = 2 * 4637
  • 9276 = 2^2 * 3 * 773
  • 9285 = 3 * 5 * 619
  • 9294 = 2 * 3 * 1549
  • 9296 = 2^4 * 7 * 83
  • 9301 = 71 * 131
  • 9330 = 2 * 3 * 5 * 311
  • 9346 = 2 * 4673
  • 9355 = 5 * 1871
  • 9382 = 2 * 4691
  • 9386 = 2 * 13 * 19^2
  • 9387 = 3^2 * 7 * 149
  • 9396 = 2^2 * 3^4 * 29
  • 9414 = 2 * 3^2 * 523
  • 9427 = 11 * 857
  • 9483 = 3 * 29 * 109
  • 9522 = 2 * 3^2 * 23^2
  • 9535 = 5 * 1907
  • 9571 = 17 * 563
  • 9598 = 2 * 4799
  • 9633 = 3 * 13^2 * 19
  • 9634 = 2 * 4817
  • 9639 = 3^4 * 7 * 17
  • 9648 = 2^4 * 3^2 * 67
  • 9657 = 3^2 * 29 * 37
  • 9684 = 2^2 * 3^2 * 269
  • 9708 = 2^2 * 3 * 809
  • 9717 = 3 * 41 * 79
  • 9735 = 3 * 5 * 11 * 59
  • 9742 = 2 * 4871
  • 9760 = 2^5 * 5 * 61
  • 9778 = 2 * 4889
  • 9840 = 2^4 * 3 * 5 * 41
  • 9843 = 3 * 17 * 193
  • 9849 = 3 * 7^2 * 67
  • 9861 = 3 * 19 * 173
  • 9880 = 2^3 * 5 * 13 * 19
  • 9895 = 5 * 1979
  • 9924 = 2^2 * 3 * 827
  • 9942 = 2 * 3 * 1657
  • 9968 = 2^4 * 7 * 89
  • 9975 = 3 * 5^2 * 7 * 19
  • 9985 = 5 * 1997

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 32 = 2^5

Number of divisors: 6

Sum of divisors: 63

Euler's totient: 16

Möbius: 0

n = a^2 + b^2

a = 4

b = 4

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 1 = 1

Number of divisors: 1

Sum of divisors: 1

Euler's totient: 1

Möbius: 1

n = a^2

a = 1

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 32 = 2^5

Number of divisors: 6

Sum of divisors: 63

Euler's totient: 16

Möbius: 0

n = a^2 + b^2

a = 4

b = 4

Time elapsed:

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • Error in expression #1: Invalid parameter

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • 2 is primeError in expression #2: Invalid parameter

Written by Dario Alpern. Last updated on 10 November 2024.

-2
  • Error in expression #4: Invalid parameter

Written by Dario Alpern. Last updated on 10 November 2024.

+2
  • Number too high (more than 100000 digits)

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • Intermediate number too high (more than 200000 digits)

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • Parenthesis mismatch

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • Parenthesis mismatch

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 20 = 2^2 * 5

Number of divisors: 6

Sum of divisors: 42

Euler's totient: 8

Möbius: 0

n = a^2 + b^2

a = 4

b = 2

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 10 = 2 * 5

Number of divisors: 4

Sum of divisors: 18

Euler's totient: 4

Möbius: 1

n = a^2 + b^2

a = 3

b = 1

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 10 = 2 * 5

Number of divisors: 4

Sum of divisors: 18

Euler's totient: 4

Möbius: 1

n = a^2 + b^2

a = 3

b = 1

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 20 = 2^2 * 5

Number of divisors: 6

Sum of divisors: 42

Euler's totient: 8

Möbius: 0

n = a^2 + b^2

a = 4

b = 2

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 0 = 0

n = a^2

a = 0

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • Invalid parameter

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • Division by zero

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • Only integer numbers are accepted

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 99 999999 999999 999999 999999 999998 959241 (38 digits) = 16186 374132 555391 * 6178 035870 236783 087351

Number of divisors: 4

Sum of divisors: 100 000000 000000 006178 052056 610914 601984 (39 digits)

Euler's totient: 99 999999 999999 993821 947943 389083 316500 (38 digits)

Möbius: 1

n = a^2 + b^2 + c^2

a = 9 994590 045938 929500

b = 328891 796216 426029

c = 20

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • -96 = -1 * 2^5 * 3

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 187 072209 578355 573530 071658 587684 226515 959365 494067 (51 digits) = 1 049227 * 4 376587 * 8 457643 * 1722 426679 * 2796 495718 765417 035239

Number of divisors: 32

Sum of divisors: 187 072452 844874 541930 407707 282947 447126 535363 891200 (51 digits)

Euler's totient: 187 071966 311970 634001 360184 458860 726827 993848 599968 (51 digits)

Möbius: -1

n = a^2 + b^2 + c^2

a = 13 020554 712438 061030 309517

b = 4 187763 670357 076795 247133

c = 33

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 10 000000 000000 000000 000000 000000 000000 000000 000013 892731 (56 digits) = 4353 994442 871310 881841 * 2296 741562 537535 293386 702920 797291 (34 digits)

Number of divisors: 4

Sum of divisors: 10 000000 000000 000000 002296 741562 541889 287829 574245 571864 (56 digits)

Euler's totient: 9 999999 999999 999999 997703 258437 458110 712170 425782 213600 (55 digits)

Möbius: 1

n = a^2 + b^2 + c^2 + d^2

a = 1969 847061 174964 576144 728300

b = 1749 675293 163153 801581 543471

c = 1708 117772 734699 048380 927207

d = 375 063459 354064 747330 684571

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 222019 = 7^2 * 23 * 197

Number of divisors: 12

Sum of divisors: 270864

Euler's totient: 181104

Möbius: 0

n = a^2 + b^2 + c^2 + d^2

a = 287

b = 280

c = 217

d = 119

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 3 000000 000000 000000 000000 010190 000000 000000 000000 000000 571083 (61 digits) = 1 000000 000000 000000 000000 000057 (31 digits) * 3 000000 000000 000000 000000 010019 (31 digits)

Number of divisors: 4

Sum of divisors: 3 000000 000000 000000 000000 010194 000000 000000 000000 000000 581160 (61 digits)

Euler's totient: 3 000000 000000 000000 000000 010186 000000 000000 000000 000000 561008 (61 digits)

Möbius: 1

n = a^2 + b^2 + c^2 + d^2

a = 1 377351 648877 995014 227391 008657 (31 digits)

b = 992241 436286 961796 666873 742769

c = 314104 806220 312094 854521 147108

d = 140347 918251 592380 016485 474347

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • F EE50B7 025C36 A0802F 236D04 753D5B 48E800 000000 0000D5(49 digits) = 2 B333E5 B66494 435DAC 1613FD * 5 E67B2F 74876A FA101E 857BB9

Number of divisors: 4

Sum of divisors: F EE50B7 025C36 A0802F 236D0D 0EEC70 73D3FF 3D6DCA 9B908C(49 digits)

Euler's totient: F EE50B7 025C36 A0802F 236CFB DB8E46 1DFC00 C29235 647120(49 digits)

Möbius: 1

n = a^2 + b^2

a = 3 E0A48F 188073 94B84F 05146E

b = F24CA1 7AFF2D BBA55C 1E71A9

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • Intermediate number too high (more than 200000 digits)

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 1 = 1

Number of divisors: 1

Sum of divisors: 1

Euler's totient: 1

Möbius: 1

n = a^2

a = 1

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 0 = 0

n = a^2

a = 0

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • -1 = -1

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • Intermediate number too high (more than 200000 digits)

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • Intermediate number too high (more than 200000 digits)

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 2520 = 2^3 * 3^2 * 5 * 7

Number of divisors: 48

Sum of divisors: 9360

Euler's totient: 576

Möbius: 0

n = a^2 + b^2 + c^2 + d^2

a = 42

b = 24

c = 12

d = 6

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 2 366569 = 349 * 6781

Number of divisors: 4

Sum of divisors: 2 373700

Euler's totient: 2 359440

Möbius: 1

n = a^2 + b^2

a = 1180

b = 987

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 58 = 2 * 29

Number of divisors: 4

Sum of divisors: 90

Euler's totient: 28

Möbius: 1

n = a^2 + b^2

a = 7

b = 3

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 6057 = 3^2 * 673

Number of divisors: 6

Sum of divisors: 8762

Euler's totient: 4032

Möbius: 0

n = a^2 + b^2

a = 69

b = 36

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 25852 016738 380658 380266 = 2 * 3 * 23 * 71 * 2 638499 360928 828167

Number of divisors: 32

Sum of divisors: 54711 922748 220180 891648

Euler's totient: 8126 578031 660790 751280

Möbius: -1

n = a^2 + b^2 + c^2

a = 140196 533164

b = 78720 701389

c = 7

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 1464 = 2^3 * 3 * 61

Number of divisors: 16

Sum of divisors: 3720

Euler's totient: 480

Möbius: 0

n = a^2 + b^2 + c^2 + d^2

a = 24

b = 22

c = 20

d = 2

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • -49 = -1 * 7^2

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • -22 = -1 * 2 * 11

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 2 is prime
  • 4 = 2^2
  • 6 = 2 * 3
  • 10 = 2 * 5
  • 12 = 2^2 * 3
  • 16 = 2^4
  • 18 = 2 * 3^2
  • 22 = 2 * 11
  • 28 = 2^2 * 7
  • 30 = 2 * 3 * 5

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 0 = 0

n = a^2

a = 0

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 200 = 2^3 * 5^2

Number of divisors: 12

Sum of divisors: 465

Euler's totient: 80

Möbius: 0

n = a^2 + b^2

a = 10

b = 10

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 288377 = 283 * 1019

Number of divisors: 4

Sum of divisors: 289680

Euler's totient: 287076

Möbius: 1

n = a^2 + b^2 + c^2

a = 537

b = 2

c = 2

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (301 digits) = 2^300 * 5^300

Number of divisors: 90601

Sum of divisors: 2 499999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 386363 316837 784180 863028 505626 715544 628098 060937 568804 361056 360351 611843 159785 517942 487764 495333 505965 352053 554358 515184 835492 185529 667094 014837 802781 690487 942627 620109 549133 614562 048949 759686 738543 248165 625531 (301 digits)

Euler's totient: 400000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (300 digits)

Möbius: 0

n = a^2

a = 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (151 digits)

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 760 988023 132059 809720 425867 265032 780727 896356 372077 865117 010037 035791 631439 306199 613044 145649 378522 557935 351570 949952 010001 833769 302566 531786 879537 190794 573524 (159 digits) = 2^2 * 7 * 19 * 37^2 * 223 * 18427 * 94573 * 107671 * 25 709599 * 56 737873 * 78 539161 * 93 463940 382121 * 64326 272436 179833 * 713529 181090 045029 900916 938579 427981 (36 digits) * 50808 749612 587553 507324 600395 708176 734541 295021 (47 digits)

Number of divisors: 73728

Sum of divisors: 1654 056118 300251 873020 182831 526696 087725 662856 708670 311642 259222 257773 255874 211007 633895 220248 717423 036271 057033 463898 778899 200435 738818 675457 525390 879227 904000 (160 digits)

Euler's totient: 299 251684 520440 022055 951023 032870 030502 893471 258164 240369 726264 866690 283165 833205 164545 350014 624538 277879 208847 496952 704494 894865 413851 429673 157051 967078 400000 (159 digits)

Möbius: 0

n = a^2 + b^2 + c^2 + d^2

a = 24 714523 115929 792915 156023 280015 852035 752404 292072 860398 232390 796002 154854 786956 (80 digits)

b = 10 785733 188310 408515 394020 374087 784156 754335 141485 277290 188716 473951 772992 006400 (80 digits)

c = 5 016322 769580 237549 875914 050942 449177 096729 937495 766725 536357 420056 481153 269712 (79 digits)

d = 2 947004 537865 860545 741032 233056 201190 989847 273754 756807 581067 644561 292563 489262 (79 digits)

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 5 575186 299632 655785 383929 568162 090376 495105 (43 digits) = 5 * 569 * 148 587949 * 4999 465853 * 5585 522857 * 472287 102421

Number of divisors: 64

Sum of divisors: 6 701981 469361 613977 758572 073726 130721 256000 (43 digits)

Euler's totient: 4 452310 433282 656544 371578 894225 927474 954240 (43 digits)

Möbius: 1

n = a^2 + b^2

a = 1943 632214 603129 942527

b = 1340 701351 528217 270624

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 240 741243 048404 481631 997242 823115 914817 262706 026923 524404 992349 445819 854736 328124 (81 digits) = 2^2 * 11 * 71 * 461 * 691 * 8971 * 689081 * 2 855911 * 29 028071 * 824 480311 * 17223 586571 * 332207 361361 * 100062 970166 640331

Number of divisors: 12288

Sum of divisors: 467 810062 595232 159948 990066 724674 037317 340625 178212 148940 996111 081621 538211 889152 (81 digits)

Euler's totient: 107 484600 672650 982052 459419 999031 332996 734612 729729 258434 478548 870272 000000 000000 (81 digits)

Möbius: 0

n = a^2 + b^2 + c^2 + d^2

a = 13732 323171 210662 760031 938582 936074 307070 (41 digits)

b = 4986 051126 223627 073007 245354 439855 152710 (40 digits)

c = 4481 849826 157673 633367 060152 385244 945282 (40 digits)

d = 2686 421350 475338 019119 679319 340810 110860 (40 digits)

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 11502 293424 567203 005419 002873 895813 644392 861937 196664 479488 352698 632452 958936 015243 142950 266727 781146 408375 872985 100271 086331 587290 272008 (137 digits) = 2^3 * 113 * 911 * 1289 * 49 613117 * 8 884810 040009 * 3 421093 417510 114543 * 51050 702647 066486 876606 286380 153477 (35 digits) * 140745 137728 109762 598398 979050 914020 691536 518797 429361 (54 digits)

Number of divisors: 1024

Sum of divisors: 21798 438530 769422 194363 915675 792587 657287 319570 557545 608265 281836 436223 815123 803772 548051 567683 609354 077460 535172 101030 405588 408272 896000 (137 digits)

Euler's totient: 5689 576983 649742 055545 749563 361891 191162 811832 466053 606082 015413 058651 522464 429617 862716 265666 333226 650053 978077 080411 105205 692556 902400 (136 digits)

Möbius: 0

n = a^2 + b^2 + c^2 + d^2

a = 101 410960 867233 895720 784798 023554 647452 217601 146262 825117 196044 065992 (69 digits)

b = 27 784261 166480 689350 416804 012946 528749 754288 881207 047815 364719 359458 (68 digits)

c = 19 133896 317735 826265 823003 225838 930032 705236 857811 665261 831555 343934 (68 digits)

d = 8 946467 665312 771153 663473 306845 447085 355738 333289 857644 506990 433768 (67 digits)

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 2 348542 582773 833227 889480 596789 337027 375682 548908 319870 707290 971532 209025 114608 443463 698998 384768 703031 934975 (109 digits) = 3^3 * 5^2 * 7 * 11 * 13 * 17 * 19 * 31 * 37 * 41 * 61 * 73 * 109 * 151 * 181 * 241 * 331 * 433 * 631 * 1321 * 23311 * 38737 * 54001 * 61681 * 18 837001 * 29 247661 * 4562 284561 * 168692 292721 * 469775 495062 434961

Number of divisors: 1610 612736

Sum of divisors: 7 467668 527167 657567 756740 428071 844363 848524 895093 641781 445583 682511 711467 153731 004238 100055 643046 824378 368000 (109 digits)

Euler's totient: 692423 677913 627100 517607 660407 338640 847941 292267 711341 018710 312755 633809 285592 383488 000000 000000 000000 000000 (108 digits)

Möbius: 0

n = a^2 + b^2 + c^2 + d^2

a = 1 036676 869232 664434 724814 586415 293483 485046 349741 063075 (55 digits)

b = 729711 211883 879079 469061 615332 556684 735507 710018 849155 (54 digits)

c = 617646 578484 717214 664389 408403 124786 748302 475286 151510 (54 digits)

d = 599898 243795 459848 484566 829945 804730 604368 372683 780765 (54 digits)

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (301 digits) = 2^300 * 5^300

Number of divisors: 90601

Sum of divisors: 2 499999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 386363 316837 784180 863028 505626 715544 628098 060937 568804 361056 360351 611843 159785 517942 487764 495333 505965 352053 554358 515184 835492 185529 667094 014837 802781 690487 942627 620109 549133 614562 048949 759686 738543 248165 625531 (301 digits)

Euler's totient: 400000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (300 digits)

Möbius: 0

n = a^2

a = 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (151 digits)

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 100 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (1101 digits) = 2^1100 * 5^1100

Number of divisors: 1 212201

Sum of divisors: 249 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999990 797310 213721 421655 703917 278568 793602 938581 209362 954563 915996 206911 736963 871703 448420 393534 719273 589927 767129 699779 344146 574722 410069 037295 900754 704870 621149 869622 416974 764232 936393 149795 960968 291597 093715 202086 964192 800104 852595 300134 562192 252401 313312 917665 764098 700407 928337 785628 333852 234731 268944 465216 490634 524996 859357 780374 745047 551965 239335 887113 074210 850335 666128 769714 216135 133740 966678 463893 588358 037543 308823 581569 825582 140556 385973 386307 657739 492836 008275 043330 799537 038848 544607 004209 380332 534956 804358 266060 018273 828637 325093 842685 087236 661336 747443 608744 087073 914735 261231 286846 884062 284894 310244 151856 582470 061364 466882 749805 897882 053351 422961 026790 156477 860732 237238 938316 894071 955066 555473 530746 757077 834197 223594 351341 709189 623792 800723 551447 741531 (1101 digits)

Euler's totient: 40 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (1100 digits)

Möbius: 0

n = a^2

a = 10000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (551 digits)

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 72667 006980 385333 565928 292938 889925 763077 487582 539982 424675 125363 472831 753169 017201 333796 341341 273008 218264 573022 195345 424489 059723 700566 662314 773302 254295 889312 457647 497977 853863 042157 354564 496698 482701 130753 323286 758612 205861 967796 343191 858131 002928 068599 375361 489711 955573 167082 152350 251926 682548 261810 352243 752628 728062 075698 309094 353839 917855 662220 230519 561659 303923 717372 165426 504245 330561 336531 394521 206972 376656 319044 759781 782531 367753 214675 926474 551313 397582 602429 279165 551217 508178 286951 973368 325401 600813 252492 715973 200800 085498 597530 107124 099855 140705 569768 373523 754687 692838 260083 916787 700273 811013 835835 350947 288075 424543 614544 277796 512520 484804 771653 681113 155782 672127 396480 017746 200430 207651 892985 299102 442574 824992 927392 648471 146556 033357 439172 318145 703266 692485 307896 079011 622345 086436 456869 015474 329351 181816 729993 722588 866629 779574 214090 371315 053902 641539 997756 304014 429647 932479 992980 866666 465626 257172 992838 769741 655146 789249 244810 499818 268084 117872 212841 107868 805243 478158 662470 334981 539983 119942 416064 547375 253939 977280 201195 151472 147419 623969 226556 803610 308846 378376 139404 546472 122298 686124 711434 159741 642296 163820 529985 809649 461390 355131 684403 486979 489995 312716 419307 313769 444520 153150 901222 847313 142181 447272 204666 960213 009957 801323 583455 353791 501067 898151 425856 699965 549831 846422 290686 426650 337714 906093 918443 466250 206713 570252 092365 443368 242871 109759 177250 455625 959783 802938 477021 558459 905557 684556 091956 431875 389521 015710 091193 395756 745102 054771 899768 946578 696678 319163 726191 640098 936923 770968 452867 055760 965880 438159 358981 762243 760240 056374 944920 023004 676382 847503 738465 360984 643768 523013 397881 071295 905031 098089 698891 494257 215584 727303 141345 674171 044795 594021 192835 805707 562387 078258 591908 399731 089909 898817 226093 695385 121493 869352 132605 141346 854886 893911 871095 598267 604544 030562 133807 157172 417964 011985 562131 080936 981684 296736 381769 366072 270640 297352 901151 754371 601989 663182 721220 425035 067809 123253 526722 846238 066538 699819 199993 129908 128545 850504 976380 092090 366537 214438 631213 813373 906049 371742 824529 230499 443014 992805 933917 454081 422586 104799 792284 967724 057489 205409 843465 045834 260178 573011 183127 327538 397501 878888 546219 083343 944398 116507 485435 085429 845211 710280 363162 234538 899043 203092 653075 039565 370510 665758 475105 299029 361041 189828 219987 863157 060400 820517 970893 633335 291193 528215 169482 346288 247160 044937 909061 609445 812547 327627 647076 151252 345098 720570 858181 533375 284628 893303 872716 468641 311339 022418 407061 871931 852329 760330 435973 189460 161072 929488 417217 252005 363438 340091 968812 490161 250110 104273 203535 684284 835799 701677 023640 004166 082484 019140 275988 017398 529483 647698 753555 748240 184583 306455 920603 545774 440735 038345 369423 921431 350896 074944 308042 760584 539262 681855 392087 390724 041852 549385 686481 318618 973112 007766 253789 425420 655758 429705 508341 095687 510171 573583 792528 650180 002064 594539 819897 585083 735219 940358 617217 391229 952636 259428 327330 484376 702194 865484 602525 342972 960210 004667 060691 662235 982445 149616 208071 968867 749197 215627 429641 471420 150495 260516 072305 056813 211732 961496 424809 933889 035896 932990 753215 016498 409854 814533 812373 432577 609825 761615 342205 365344 282149 928170 065746 906724 293573 507532 983037 454610 368909 509392 901681 100623 054688 288943 329916 933337 251214 169076 436972 028053 989725 976654 001452 237515 761147 995317 804214 675419 838161 347610 246313 780114 378631 952476 808891 936025 865836 655455 245176 055145 923550 321956 060168 609702 454633 005921 582348 138029 577382 174729 752847 794054 373301 532666 400465 680303 540372 215400 256010 528333 292448 128094 134664 930890 924872 017774 428127 050168 674731 593324 223340 589605 024579 189066 169459 083809 033204 617112 049263 953327 633669 044738 133740 245226 244288 450178 793235 088295 426458 643206 238222 372939 117433 226524 231266 685737 140841 159913 134145 715848 353199 617918 334947 145941 709176 032249 487137 098663 073269 417569 658539 681463 645514 569129 273587 717472 733061 817719 669299 027194 734676 931896 392181 295757 708261 545098 400084 416898 152017 247122 147581 843902 183885 621394 616372 617207 576706 685736 120437 364888 331020 537499 230809 840143 915772 273490 629957 690368 526562 258014 594354 296656 601246 895726 995607 766236 986440 951193 484514 567482 662216 554330 070762 690313 564588 855568 728895 145739 676168 817855 636066 870447 627712 646964 790923 741693 654876 684386 931429 513762 577956 105006 801005 467054 418801 851498 517282 817900 402502 915589 363861 582011 676154 289009 794066 887723 117115 980380 434896 299229 861444 134421 098205 007807 576792 027318 819809 355202 852691 230712 014238 078905 910684 962970 481268 547522 450557 400588 519952 892789 138066 962931 778381 111422 556383 137003 380147 242873 161370 515783 301720 537789 385638 268948 173216 152438 067616 745045 916656 724357 704730 062475 270057 373778 749899 711993 938090 360904 126820 860616 018080 129476 639839 559952 692384 776958 201434 666884 710165 884307 361446 677426 811065 836255 198248 545160 014939 310949 537604 563204 192423 353715 094257 764123 190871 723396 588028 848800 493596 374364 075303 586569 209086 680994 340241 660101 812114 547411 524662 210662 753756 096854 448355 124441 868819 828187 523840 152138 615090 518792 914332 430411 514833 977378 883538 887767 049222 510374 764258 633618 891709 429150 241456 495698 346529 569608 716723 436882 425197 455318 765520 352398 548292 843536 008507 409848 196271 735883 123913 444220 576017 746589 414688 721356 342253 294728 096326 773984 673851 322601 487737 753850 716992 740352 440010 510540 270283 407122 881629 659593 963025 886466 793792 600311 042960 749537 677292 476283 600788 855457 294423 101548 907877 796399 131120 959608 339956 294153 712985 218801 634039 742900 316979 339179 970114 104869 911463 975202 995508 133903 036795 677818 914859 359268 144999 973601 952415 586930 813073 719617 457591 694981 795995 759496 306242 940713 367801 646897 555371 351411 476462 270009 326622 066518 285357 267790 339868 171964 044950 664647 649037 515426 117953 018012 856695 121099 093216 049003 879505 541299 123881 550707 994500 164742 793715 658148 396159 118559 760021 635850 063183 275292 741249 902156 044700 304436 766879 495699 845588 286473 735777 015548 404155 863781 804523 782025 818134 457109 557476 186243 678247 808775 747249 041753 582160 390544 650532 591283 079349 946410 495542 907786 382217 287955 070477 987821 608727 103714 328812 145407 258012 573085 013316 820531 751885 520741 900582 543285 448000 754969 501439 110457 830670 952415 372102 643552 707246 533416 118870 072963 682298 649507 994597 540395 786018 682999 460641 202886 958475 968729 090445 301749 293476 680257 765773 219904 477800 699786 167614 512817 163186 014031 427706 283867 733171 269055 024526 655925 577784 669336 876094 995846 815207 773210 052934 589015 582401 470556 692392 567533 759431 832968 435914 842141 160150 334552 139251 502180 210696 334270 561328 604437 213257 215215 095288 304149 853814 574916 049871 318291 189487 533805 523439 137287 712978 043460 970393 380549 078361 466119 787361 307658 174479 962781 112900 305763 871129 825672 162161 853176 551065 321785 524668 764130 015030 693038 448391 950724 617914 214696 900346 866732 059139 717318 703950 339308 214494 798788 599721 287411 276356 748034 688558 833595 820402 418728 314062 521055 828894 956029 321747 220863 408029 624332 825356 702794 098612 305755 777531 276879 842844 364290 745370 043377 597874 414606 439191 688394 923354 137086 243390 065656 833218 530707 478981 909231 968903 009197 119964 486093 330206 023012 916454 037129 598199 933124 526933 023957 364503 445110 260366 838555 117115 539808 231702 429131 242858 752314 216200 988277 335663 829338 733278 079370 269611 751967 888091 761155 737556 744886 955977 396893 843522 161519 366416 860913 094906 024158 486824 374322 893510 598575 617055 043472 060698 491333 053841 454730 221887 731864 662674 961002 546941 827142 754568 891941 355957 106464 872056 873256 975717 174742 298010 919640 590862 298578 726541 372822 217607 784334 889204 309198 487336 507522 687243 761613 513936 317708 298192 207805 608228 972917 232813 239813 118215 209217 144405 230129 822124 041978 800259 643193 749882 383969 602355 049701 172179 516277 331753 713125 306285 357673 093208 000303 005592 821769 139524 034678 389378 457397 691754 646002 364431 362586 687528 560712 303694 063451 431138 459775 186178 369298 856249 173802 811311 485895 185312 455129 879410 052189 303362 032947 385626 422314 608975 113061 304564 489268 665998 226060 183971 931612 929265 518177 754497 076448 747233 959407 750417 109200 895080 724661 446670 635586 257041 402121 540023 476449 610503 383969 984054 427875 801929 244658 184835 871230 001028 517535 946008 526549 164317 584207 704865 875560 634004 691571 206448 320532 619877 695150 551683 183006 172452 903438 045494 527190 507439 580126 352030 735844 155765 043339 618071 120285 121377 796510 020916 433074 445216 597279 329890 912276 441443 799507 118738 574111 978649 379635 234374 408455 178108 725705 274362 020249 147675 442075 485469 117295 372055 608032 048242 814838 406583 368693 060128 975103 013919 891641 047149 628798 390183 213306 753103 576986 771196 263823 106944 155752 256916 740559 444466 490374 123276 512492 854703 733903 273564 208731 887920 114018 066226 339246 919760 578052 516597 922367 565013 925777 189507 880583 457133 184979 160194 294594 247382 751828 173058 446684 356504 430220 685806 506813 591257 553284 173835 984683 889699 530593 629450 496348 957981 680332 101862 447324 462206 805969 430489 668714 248252 702645 937234 282142 409762 125535 526913 656797 093087 631185 625884 462587 093047 357885 293901 085311 670592 551576 240474 072534 456111 363386 969604 128065 569663 318761 792310 875059 227524 330746 670063 556497 334099 128172 988994 933629 842466 189730 556254 538738 945519 419881 927253 669572 024503 265792 751318 493420 987619 904297 500633 894449 493246 393391 210819 085708 528007 615723 299915 904695 101122 456868 028403 652532 716561 049888 846117 549339 341555 660136 372963 286339 229989 726760 272560 379949 081429 648206 431892 048558 113239 021198 368427 686218 330263 999723 139638 620357 171255 359845 517292 073278 291112 565779 480119 521044 994524 841182 800402 175905 247114 567915 460464 170006 666658 765481 732233 681300 698753 263584 346432 871761 516368 338472 261082 564209 098896 612440 632135 432706 457825 301056 888948 497925 998033 207975 990523 678974 341319 573972 540570 997030 817516 319768 553780 326953 433510 311588 758371 854767 740782 594431 386836 985161 795423 600040 502839 080676 939367 441999 844982 446552 863667 536163 233981 992159 111158 196285 164258 866633 779787 281008 075540 119649 494617 709654 481862 471273 066137 847575 486980 925996 811255 930180 930010 853245 881908 892595 781120 013300 437657 000674 684778 213905 290737 232217 497961 092718 314762 213921 585277 479600 184543 917907 292328 635990 501162 242590 160470 068047 631003 197517 875510 905351 833499 896934 198185 665776 823762 488152 153967 319729 301518 135902 995941 924250 010714 721267 415779 602270 298991 096967 821942 238912 374824 642230 683124 970031 501346 743718 414751 473636 517574 151318 064057 704220 316442 344758 678640 475183 594180 167969 307164 613460 128340 991278 448090 097496 647516 223021 297185 639682 448365 694175 433434 049976 603228 915801 286835 975489 749676 998009 572962 099956 919248 793671 298726 621705 887246 250054 177111 998668 760807 815168 566427 025121 931684 402718 873083 528109 028953 489309 957449 617243 363311 650524 840654 467625 795216 254324 665086 034880 665233 217749 247330 644695 277436 653011 681639 792871 416867 950284 359429 845863 987672 563038 132010 941513 483226 051077 879134 145205 161705 100943 026989 176883 182391 548980 484730 125057 439695 114591 857541 089369 783684 938870 104495 401684 854021 112876 777230 562509 342864 363494 584904 981813 312149 253368 870329 431026 130347 196211 984626 030858 068624 646906 536659 043114 872661 570046 051810 867319 282737 590154 042422 191751 288638 842089 689041 494469 298760 884625 441305 812519 123480 105062 344316 035920 980523 628854 869129 924383 138191 662592 219285 376607 124601 336730 653597 118284 225899 853725 255481 595348 750598 803520 087807 191620 455428 922670 227431 985348 785954 713525 673112 921533 724246 979636 131282 469461 142633 001432 055339 398001 181681 834010 899626 426174 839651 882500 847136 801295 590797 514034 829328 874021 723662 769493 445687 400238 773447 929017 154670 883043 836518 936809 991734 602529 532528 048525 111767 917693 468953 990944 767629 469068 053700 015406 309941 604025 508277 702838 884490 476948 336639 125207 885053 779301 398022 304239 221207 903652 468714 766549 590158 276235 003912 373418 181403 334043 917765 518060 358866 696573 368193 664905 784347 386135 275456 585566 214728 748325 213604 430025 430019 596437 057957 884808 219002 038396 666642 304440 922779 647637 319653 926364 153901 714254 134064 311946 025605 013711 849115 442518 571909 023767 381967 241447 140998 209642 755788 074016 279898 473415 869315 734629 409508 553655 980716 149071 600048 456271 006777 381951 096756 992042 393438 106940 415391 904709 301916 245847 587839 475809 960214 132572 248856 233006 097165 727367 362989 095835 947002 604414 026081 167550 785978 242318 789103 914716 113441 895047 353736 041051 765182 418674 136512 929571 296397 572875 010458 398980 656546 017603 357356 007330 688801 115510 207765 493790 903033 076192 238263 067884 321916 464469 934881 443125 121387 635306 754183 311888 438781 504587 843009 963096 608523 859162 205053 826687 779659 580034 508426 842036 376918 207188 696804 603958 589639 382904 439778 328206 222059 996858 122988 048812 195926 689001 784298 361650 360441 014257 382643 949596 198072 107938 699701 166478 225167 178448 214688 050221 792561 944540 630542 238302 892932 112759 554656 701872 149660 638976 787315 710146 476875 858739 836824 586516 455323 069167 512130 146907 045748 944124 938494 594016 700006 402693 136697 869877 365906 201915 181548 435544 076480 007054 447946 301905 561053 706260 049924 711082 755321 330068 538628 563062 939965 286953 595102 458983 024756 823297 370126 693220 800173 359328 136081 039738 466961 344914 303826 414755 387916 278783 817611 630474 419108 977643 328573 626159 501440 807347 643863 249121 240555 154440 237534 576778 056116 553320 664367 209506 765962 662577 721088 283643 378378 022561 331104 926459 253969 951567 352407 399222 927997 206826 786850 260880 810056 699219 174236 915660 305554 161070 520526 826938 744721 504940 431123 782786 434368 571133 625602 475096 650916 089085 899348 377852 820908 984501 111965 397883 571431 031126 916809 704370 181005 381772 806247 411776 932860 588796 923251 842857 910306 921145 857466 625279 348487 027271 688155 619484 681886 146453 378997 044356 692014 150986 387239 446843 396401 533907 115240 908279 155565 388894 243001 209741 674939 907800 023155 003650 371637 852468 070640 121844 464150 398127 816415 642428 529641 616157 079911 327351 667319 920798 983988 084846 393337 357752 574628 802434 224727 758269 986853 984180 773968 903358 254810 420980 556974 339465 449874 471026 378372 974912 346191 478089 239175 919518 543137 848875 871101 261622 633422 571822 114566 694346 442657 149354 800179 565240 761559 962271 136702 965469 491515 874899 522297 657891 143495 104731 722176 570724 103220 979589 268425 227689 207403 572308 900572 809622 564998 336323 023436 047000 880052 069695 573757 097833 177053 707025 270657 249827 655583 459354 043921 708171 492432 335598 435531 545350 780546 024811 432828 991023 996689 182051 406513 888589 724380 428527 794771 438618 705716 484147 839752 552951 690725 268707 351674 095132 881619 031286 979741 812461 287453 178684 601807 746540 209315 962201 024674 313126 683431 350608 031861 023440 730673 362366 115916 713010 992089 229102 412571 253061 649096 737721 586776 335305 338883 859126 994500 120936 354699 940292 175478 144056 137297 029522 686213 534992 265686 150993 521986 299985 144829 921054 663374 841026 145118 876295 923578 037463 441574 227155 895023 462499 978941 980561 374458 524844 136724 419622 039863 810103 654973 986988 187152 824868 383131 671788 518164 002278 896492 459553 308146 528483 616336 378678 692970 570167 172861 088980 200952 760384 290412 012287 742617 357222 296347 339138 622469 670893 998540 310153 034308 553958 762449 581985 316957 542724 952574 639374 424602 625181 679824 816426 643923 185446 995091 045877 792453 865627 068152 805688 546467 691966 451541 510466 243306 513790 499606 092105 355479 169575 270618 337009 044512 682441 726991 935158 313313 858388 955991 332484 011842 036162 098379 988204 164111 074726 196178 482191 203732 668811 488516 945453 688307 581828 617797 970368 526435 840037 518309 852073 944855 992553 374454 440360 770617 680256 070109 764852 950476 467183 437317 000674 262207 767228 652860 899733 749484 405175 852335 416277 743404 034706 355925 659636 937721 434176 990891 700161 315377 701066 951601 230169 033175 709716 268999 251992 676700 691452 674091 287260 821149 451262 449892 635348 053200 663637 618329 363010 500838 159490 480832 256857 967751 399675 601646 675760 875171 412170 578770 874315 108341 583108 791321 359052 030281 554943 143210 812327 599989 232016 344846 285538 849920 065529 193667 738801 007372 428414 362671 230941 290571 022514 193303 507690 809569 408660 598642 926707 990547 879445 547511 096894 877470 326600 817530 872841 996351 732182 474190 318124 192822 688348 774301 163384 196705 457104 110632 043589 304227 885967 722117 515920 984560 667720 808197 356746 281477 415178 348755 604413 402139 978212 507696 051890 402998 403161 202295 391955 937599 758181 822973 337494 209815 781849 395632 499220 369869 191863 646179 338530 501152 608164 574910 138505 174794 056543 083867 975776 329883 795686 875831 799052 790221 608428 565911 175638 719182 755652 126675 345061 555622 401000 028041 936067 017030 806933 155626 262330 880453 176749 920680 828765 443344 145468 235439 918449 216566 121380 422061 242682 995982 206181 075966 757818 188770 033591 467549 749128 012321 820653 145147 522140 322139 464592 087169 035103 790638 148599 575229 819247 216261 387961 229590 861812 875732 324118 455429 261076 012185 802313 575474 641487 978815 846951 595020 997611 028460 774379 167231 272632 637142 510326 621912 120732 938792 323251 882671 296701 731233 238869 417021 231836 588391 101986 579921 630254 800933 163797 176427 382320 268431 294591 380796 777638 402361 212932 247755 944693 996588 027787 952172 776896 759010 442504 500432 407823 328678 173198 774602 803538 591576 550212 553073 953073 044820 150282 536965 121011 113274 325352 041348 929066 341585 869853 843337 197980 749039 890961 124845 914954 657760 055739 124754 925834 937319 495730 062525 410621 267510 524121 378675 230415 542330 294349 011522 712356 087532 841942 934504 592863 954314 357313 824648 916690 254529 870611 261533 602486 643877 233760 075999 558292 853335 994349 505115 327543 816313 024397 104409 771778 978562 030545 860681 831266 424006 853132 223296 848755 393519 797774 340591 493489 650025 263099 863487 706887 485378 780058 207928 763549 357176 841350 911101 401129 297709 369309 697301 330023 325164 662122 973196 581026 879226 617086 992104 808845 378455 926044 817983 957668 675221 088335 828097 850417 540001 598598 694972 288227 133358 246005 280860 225168 159832 940619 193621 230333 812689 850773 310686 950518 656965 605478 715904 147736 556052 142093 055775 350110 665923 917871 176288 628259 762052 088439 907223 067333 290178 084057 465544 739801 296758 575647 447412 667482 689063 218553 747259 004935 571896 517900 708759 585860 190655 882383 218278 593217 285035 684318 034433 895727 385431 042531 027445 919277 380151 519464 303762 289127 482417 847822 173915 624529 256222 826397 869018 893717 630229 204796 895552 671545 928293 462830 359846 742018 971496 873191 674351 129937 734552 205018 628837 529628 152803 870412 851816 937013 048720 713795 668875 243800 418934 488111 048217 220719 331066 670170 860954 314616 065911 908003 495817 963193 464644 891664 294883 518101 530020 946894 495987 200663 172436 250769 568051 773385 117434 052640 210919 170887 536445 512020 818993 433221 678888 162213 280811 911496 984648 916345 779214 711689 862957 940233 429652 425380 143293 755916 547425 204573 055955 396990 854657 461823 839439 835299 473025 147348 837129 480033 142333 266515 838367 807716 233483 095298 261806 446464 412483 080083 326023 849113 954065 167543 637322 491451 527864 101065 545994 357619 070728 119861 416314 164573 174281 581167 704095 247010 886445 886078 057232 596805 729868 977334 891759 690589 306295 059750 519658 122121 464642 019217 828117 827962 325873 540944 613093 002089 868531 351310 959249 050408 892598 380431 565725 092368 096602 337753 085081 204160 208596 376278 236336 592834 671832 519929 587769 135165 297019 946626 015539 871031 944856 505649 266481 164552 602529 770936 129191 139551 326425 955301 110014 992770 993022 528507 779131 002259 247202 894809 089295 652877 901767 493666 472711 203514 232840 010801 199176 175422 930269 808308 959500 266807 818781 823664 949587 898255 087235 131346 003231 394452 853570 190943 908669 468165 890723 534364 240554 776380 036806 224736 422886 348239 844890 457281 124152 653493 661615 093678 724741 966305 668397 451359 234414 732182 402061 166991 128403 879532 406227 886719 038626 158522 289165 468116 945969 871134 641678 498413 399817 391318 653563 171120 278650 564117 928859 777481 463026 309470 919896 401801 464589 221587 888182 237819 130384 338421 219002 687306 332161 456507 765072 119240 583459 227361 133819 861893 039142 771763 333019 202597 346829 216151 244162 171789 631327 384141 918189 723426 514399 762125 580548 154380 696788 269569 430030 761477 319939 368529 149270 721084 328044 382225 945443 775062 951057 592295 942263 044094 988460 925097 171383 015818 119048 429117 600389 200291 256005 343920 024090 240155 173505 989921 460661 581408 934506 702767 236144 557419 826663 184506 881486 588681 969057 751283 062269 000189 367026 543065 861908 204771 762907 212725 220351 471484 560090 190663 385374 400389 401826 375538 326210 397402 172014 960067 218009 328367 879855 835866 992421 677960 503917 990469 621177 596154 331689 868463 514846 490647 826984 026032 075611 650454 566432 726919 442397 754729 376265 336610 677825 469789 771829 790798 464941 922114 214906 051371 298137 691037 121009 918938 125493 490293 792074 939405 418566 447814 339601 741526 695813 813384 375093 166562 387381 247933 467806 730094 180217 570273 057688 954236 901300 290419 249267 401295 629846 776886 445640 272867 128575 640446 241917 613297 917119 896619 253937 313321 912573 794606 698228 444278 784866 850257 817202 914424 220558 915177 056587 366391 816585 113799 482893 406975 301962 154921 715424 267737 278799 824728 927914 971439 486139 558824 146950 283255 047847 615406 915644 942051 588826 628569 242937 095861 662034 014147 307425 804793 474472 995704 426546 062935 713482 984681 022581 345832 035659 514314 100854 737185 729680 700047 822543 837855 728393 093667 265149 511977 555682 457429 168128 857698 629946 188320 385714 910291 192478 673748 333485 376863 677827 764478 788758 526050 438270 634163 318846 299144 424384 014868 044877 408060 420400 036689 540539 039965 727351 760566 402380 017891 265749 936430 198615 919941 037865 781025 057938 425532 270964 706074 415046 269406 252443 773274 092806 237973 358356 513976 073010 666043 185621 972379 166162 755602 006370 780736 771976 953635 434373 557650 971639 753973 988755 558180 346245 631242 816533 555994 069609 471913 065808 866608 465589 795168 264429 742794 177940 543244 030363 416753 155515 004397 445596 567828 311324 269506 676626 952294 342262 583688 913620 108228 447492 903394 591978 920263 159056 016269 801242 932048 649125 867007 299787 802046 589663 211127 756579 885048 392903 407298 942709 543624 521167 496263 680708 158661 669518 761632 615605 162821 918993 229929 888542 772395 746896 235491 121986 281379 864008 732064 044529 778599 991364 954749 809175 537452 941980 675073 391953 960407 359439 537381 381002 038419 605514 422412 866893 423175 886321 326931 220342 127112 826888 232079 286748 295108 245879 982126 798330 833710 897733 491666 170019 077385 916385 932721 196639 344165 242515 378743 373877 734731 865056 773775 921438 408129 491576 694183 120721 321870 863723 572541 723391 587699 544991 475828 231262 172498 336202 621337 010086 373477 505980 484418 116507 316825 207406 314561 785522 022119 738413 284841 642767 920066 920386 148500 991298 642590 455747 265028 205102 383286 517604 030502 123099 841874 693951 987016 891548 275854 690439 432342 742990 174969 390129 567929 648020 315101 040074 014306 429258 208444 712077 199761 817184 433212 221282 043703 896366 218335 214548 069366 287417 187662 405395 233939 612660 148718 607356 213439 880785 045788 050880 381595 937463 001675 635152 410892 447462 652026 752153 298903 716656 386461 132618 544435 874448 574241 294023 890654 403435 353247 325162 087879 226821 471742 716095 265491 286191 759999 402694 163871 073392 089348 858581 569361 083499 558860 064952 002758 039328 380257 172911 386490 030023 023610 824006 001921 999431 176366 332051 973961 929200 303970 237152 500182 659393 823450 545983 318969 199558 964269 848858 996539 958454 600496 070250 738916 731169 810776 790190 781591 260036 488584 123291 678940 235443 380517 372709 812903 215238 158650 210640 673212 211543 796882 757999 853797 702343 939427 930538 439828 643362 071727 563795 301140 210195 855697 477926 295535 267613 500470 008876 183464 046406 431471 380867 708410 865174 384282 574887 337077 852637 547719 149526 286160 108484 655181 450933 515407 674090 799083 238551 095869 098217 036677 910721 636181 905898 299749 971139 706672 748686 267939 892570 206606 148580 947927 059678 631424 684775 342893 486682 445940 244795 403796 726822 580957 478930 597189 799150 247536 369182 314629 245810 322701 075911 741776 383139 871971 830447 989392 599194 086861 860770 401421 074618 051847 270169 329787 006343 784439 483172 931757 633375 090836 554033 261377 953496 901135 482225 257432 140637 204307 622916 480270 204832 055531 082652 999121 077480 794250 249619 271018 289310 958821 077308 482913 550543 064887 428528 264446 979451 214209 950489 626977 694772 730219 794389 853900 516161 674614 128208 147230 090456 831465 049399 516992 269193 170918 866226 178264 134570 389455 152310 964981 493828 669925 450036 435799 697948 685554 052583 303894 259484 463369 820632 195783 267258 727445 128318 056162 799909 443958 658320 502675 820339 818751 595810 132382 988069 178398 844153 810675 339198 931958 084464 603584 356889 366308 074601 775482 328659 175428 063691 746107 914423 423005 122126 831256 565956 086180 050646 375413 563267 973961 997345 176660 845949 892336 151321 901225 254259 201079 752039 232089 748387 475462 579456 732784 855178 785780 471917 812180 953553 953160 381229 896776 739233 967636 967597 667492 678429 569003 497897 394711 975403 163962 722442 673925 814985 001011 204846 741205 655631 040747 709984 745794 435701 856686 156065 152096 877322 339017 971840 033016 733727 570643 514390 052020 020474 966458 318690 305985 253823 197490 651777 561346 424819 174761 905606 695301 360453 355043 755393 049453 443645 327652 447002 718934 106432 972971 348651 412807 777116 178085 412827 503782 096682 981300 962011 212023 774421 656062 854049 467320 195945 136078 859290 901378 525245 431137 678319 476753 886516 695510 063276 615827 325071 462236 355302 981045 235679 296107 846271 665895 149185 186680 097003 731222 820933 512218 353943 825536 145143 572626 589420 418412 086433 337526 675515 553227 386307 696107 226965 232069 868728 838217 602958 761020 994592 003230 753964 685739 853645 860783 504373 416648 812544 517154 765733 102348 464715 312356 732480 455533 830569 919499 751409 430192 990973 417118 354676 790246 042158 627922 171921 179683 726082 636218 738448 804413 328314 103010 085530 173980 872558 457988 813238 575044 712367 146537 247966 764284 843760 716055 521616 542305 802868 530747 547723 058310 801870 984151 099063 963780 235854 355108 545503 905223 926256 663833 312604 458537 881603 505553 386701 289467 698289 380343 044033 294451 952405 309486 936694 949052 449000 866121 967403 677291 830521 791447 904933 622716 031591 276997 204183 480943 149462 137728 377237 113952 804670 235370 646035 717650 567617 911342 439772 375793 538560 289847 476910 688230 182412 882158 514578 911071 182465 695739 124120 719627 744012 052305 074142 430382 365480 709028 445727 337711 435193 896800 191347 573869 335910 490213 456250 231011 978409 171506 303498 328384 452794 237688 739676 204738 786179 374264 880323 567209 345389 520001 (25079 digits) = 3^12000 * 41^12000

Number of divisors: 144 024001

Sum of divisors: 111725 523232 342450 357614 750393 543260 860731 637158 155222 977938 005246 339478 820497 363947 050711 874812 207250 135581 781021 625343 590151 929325 189621 243308 963952 215979 929817 903633 028140 950314 427316 932642 913673 917152 988533 234553 391366 266512 775486 877657 481876 417001 905471 539618 290432 131693 744388 809238 512337 274417 952533 416574 769666 669395 441386 150232 569028 873703 080663 604423 826051 179782 715459 704343 250277 195738 054917 019076 355720 029109 090531 318164 490641 977920 567564 236954 622644 348783 251235 016717 034996 918824 116188 659053 800304 961250 375707 550808 796230 131454 093702 539703 303527 278834 813518 874292 772832 327738 824879 022061 089170 984433 772596 852081 455415 965235 807361 827112 138000 245387 336417 534711 477015 858395 872088 027284 783161 444264 785464 897370 005458 793426 625866 197024 387829 901287 062727 439149 018772 539696 160890 221480 369355 570396 052436 111291 781377 442043 222365 348480 382443 286095 354163 945896 895375 311367 746550 317422 185583 696187 989208 082499 690900 370403 476489 608477 794788 188470 713896 143470 587179 331228 527243 203348 288061 847668 943548 140034 117724 046911 464699 241589 452932 715068 309337 545388 426657 671852 685831 085550 849851 306753 314334 490200 888034 229916 743830 020602 775030 351874 064853 182336 046887 671014 964770 361230 965867 793301 494684 994920 520949 735469 510630 127743 956103 975181 014675 451327 502810 119535 009562 606454 432891 893407 817254 676197 032866 463874 271930 380974 894236 668119 399606 829359 692822 114262 592011 869178 673414 331254 735022 575524 913167 597017 908420 646132 104794 940004 991383 014008 411388 561654 265209 845975 995594 409211 795894 755364 746142 915714 229019 646652 115520 297863 996283 098232 485041 173670 014434 459449 781369 086676 477814 535369 689938 628036 997890 492513 889794 104133 099242 147117 453985 313312 912045 672420 468961 518228 579818 974037 981373 225807 583985 051275 377170 132822 585059 164586 550736 469431 485119 056654 624296 824128 903880 404820 789388 599389 501809 482336 441986 446989 280728 504152 592619 668427 801776 536940 609339 606232 186970 400336 116109 457180 085520 822346 338059 107143 433876 403491 416756 527002 297336 376091 027303 250972 019989 437233 747639 245151 401184 391588 938550 967199 395491 238062 380550 909054 592713 691892 893635 551439 123398 085650 187226 136129 680638 137875 738389 653317 634327 507970 175024 556004 694058 266090 286159 138791 139811 840641 314512 104130 258856 443848 387013 004556 058361 935603 557278 924754 954102 873331 757160 148603 655474 397257 642600 829360 888231 339603 980366 261546 380248 961253 010210 049630 823079 107418 180008 569092 035182 224522 936791 516227 507379 582550 480589 282877 694454 107564 500116 923454 704301 570536 016183 746968 300857 628095 222957 006508 045308 778794 997649 629088 441471 524958 246286 447891 402049 203622 922044 285320 050436 114587 935042 041328 423846 506405 351819 179428 174331 576750 239081 108336 833591 962919 283796 833675 977927 951628 202630 121456 005489 279200 702002 715226 873615 744398 729116 373352 665334 363238 214348 294680 492965 027376 671159 711940 615201 241584 258228 585672 219074 434619 546888 794385 081012 799651 753174 314104 973092 537066 242900 658301 373971 739016 052178 248871 053270 619729 179624 605682 576382 714820 926322 882175 605813 430687 823009 417534 919910 652134 164390 719027 173073 762308 481386 463043 461169 024850 313039 428300 753145 273354 392691 534473 283068 087866 305151 777345 736524 152588 075107 108483 588640 749216 833805 514561 476085 869088 601369 267831 961420 086463 442198 370691 586334 692207 946583 244250 369747 285006 023741 784955 021844 493133 009203 689105 527232 815180 482765 042801 123980 063458 001173 071950 753707 436925 857146 626933 093671 351639 768723 857762 439458 184786 857458 620007 442509 237417 523998 246604 432860 262220 475225 093646 995003 483358 598951 106474 590715 983466 693322 281177 893616 187312 437138 996944 732047 331244 796990 727328 183245 339634 337399 824735 993386 156517 725290 503189 235543 341356 388552 098809 775743 328241 236766 156284 880625 627035 350593 492149 894598 948254 218180 163929 591266 898393 893053 585781 005572 529320 854043 283366 443749 038116 843044 412549 439981 236885 377858 149583 586473 289194 475151 729513 350004 760250 354978 650036 258141 115614 327082 544743 991547 254311 904565 782790 702978 742227 476452 125588 790129 790980 908726 517450 301907 084999 607724 142894 222672 898956 649186 529319 285172 448515 808944 076405 067370 129221 270499 870491 843559 948941 609589 471697 438819 731109 524417 102180 255746 940589 366652 962459 982441 147504 593157 952282 483797 636357 105555 365436 920676 286574 752109 557453 040452 813313 227608 194708 366045 252853 994372 902244 907072 877409 963607 511447 956545 905596 168907 846678 970322 332521 868848 232718 646937 182342 952087 219352 558377 839874 292565 819834 918653 060065 911970 356672 438490 199504 149317 742002 685456 883624 386012 767219 721891 046317 837678 130567 114950 391815 767732 003404 849427 572663 299777 955507 609260 958812 180439 073142 696976 385917 485607 168016 826395 326851 180418 838507 816319 834373 528960 745508 096859 713699 971022 471055 727713 212184 827970 807190 679813 929890 094987 073197 127798 199070 333753 323427 264541 594573 234705 800335 241880 047122 568224 266543 722013 723242 367307 138183 522969 190584 914067 015926 445850 906336 957421 312339 405965 274722 254094 355030 758904 425584 765779 264350 158970 772028 798121 552406 536126 116645 219168 148893 983899 998913 714346 003829 373310 485838 317904 233913 120701 672644 105786 111757 704057 240220 033441 039941 838179 609701 200047 649189 046003 247318 496239 362136 207789 213273 401962 284206 728741 087552 601987 541812 768000 246936 613080 142641 601767 793920 303016 920489 135627 285381 225083 909085 376214 440644 448102 415001 436046 408499 787396 796545 477376 338291 876516 159955 665560 738451 430505 601625 718152 300442 695456 122978 228552 152414 178837 182286 036212 865265 590175 518631 445862 111963 664098 475397 822682 802261 333714 773907 512336 104709 237355 733989 204050 436237 488875 861874 605593 755875 919073 354646 581596 264874 772937 459413 001838 964906 125100 843911 841047 231034 511343 480225 570848 521346 802995 032104 991383 452795 145060 740139 339681 427271 863736 799227 647547 314394 719111 646895 760395 179967 656352 765194 767168 748689 855819 675343 464739 769747 402967 884213 541544 003292 045337 824403 159094 644785 631033 265119 472144 285762 589671 724564 918726 718071 529077 224638 511285 896236 300984 730162 822998 799060 336524 165856 616386 118323 068166 732735 178618 244643 074781 623437 132832 116605 346457 531922 237093 982947 713519 487428 782605 439205 466839 814012 494713 291429 935977 953287 303749 659887 365979 058959 772829 427423 998130 792018 795427 046743 302411 936992 124454 330264 866264 428435 848396 464508 627680 658226 106695 588954 441436 317419 884852 810893 468358 566943 167757 803697 269276 316817 522028 400213 438035 547401 947197 267012 853944 168054 232180 766981 859959 702829 292824 363930 596946 424026 515015 057750 304146 336315 978606 946213 310793 640629 304351 271953 736818 005141 806413 625025 648308 577615 295994 942148 505702 885798 541434 361504 668949 261197 682840 099418 391291 741102 460598 463437 054925 622811 541723 162282 449463 655706 997680 005596 311173 501156 068844 501630 758321 861271 734588 052947 937492 934308 596395 512157 855416 973214 685066 122415 995343 375647 814830 546722 881640 533262 889226 084209 135022 730321 854877 884483 444616 214878 754576 912144 778573 043455 380526 478907 593794 541421 566760 377875 005246 142910 628208 359595 175772 528593 825655 100071 741130 461945 065329 811357 570917 979511 521268 508274 737899 093357 659324 733051 948080 629805 679600 571754 953173 926637 957514 348568 400929 979319 308889 416306 538566 246101 903620 685292 335314 737210 237008 023135 071779 174507 370499 658470 273623 545076 687446 602133 452460 852976 385284 336770 897997 692123 603288 614054 697795 783542 202161 017065 036617 817981 240145 716684 553951 244009 976922 528927 745605 784383 229002 525540 291985 495481 782695 480680 926466 355641 291081 576510 634563 704020 213298 765229 476547 135792 156571 279148 980232 175735 280912 231110 931507 003022 151776 723360 030726 987791 535653 400960 239580 524732 352674 570937 934033 623499 604927 747866 778081 056630 135949 271675 541065 199859 812213 360075 734096 906997 583038 253713 522837 214864 843706 332150 454693 586146 603152 047412 840207 331787 704488 508995 722222 732583 639345 850008 700182 474463 234067 483416 822429 539252 067309 142320 257098 001083 655813 838152 914990 044089 593237 238714 826276 210574 883789 706827 551026 931501 083840 882465 663406 396052 925012 988617 665895 874774 480226 479292 806021 248027 260931 918190 851249 774932 517249 333783 634841 566109 171423 173554 590494 919054 429117 008442 015639 020945 263194 263908 137575 295313 430960 438447 202292 417459 927523 968195 755609 986537 511577 956434 034802 240673 792693 916278 159629 087720 822396 030191 306766 099048 821366 733813 917007 500991 811437 434165 070504 839303 466856 028146 551910 759238 388847 556956 804043 857360 897859 265616 749450 433965 041657 714825 662228 814311 140709 350780 161296 543337 807947 107128 127442 976467 908841 216835 117479 332491 357463 403403 802482 077782 505788 159309 189296 147856 844127 065175 699322 192969 559442 281732 629818 080169 263874 647196 084718 962078 624806 645057 391240 848189 544983 029100 369461 455407 206503 167770 155219 086735 271778 487463 549226 599917 175263 824526 350761 896384 195012 553236 390135 218493 827276 188812 715195 889324 855830 905058 096257 256716 076496 171179 508199 599411 453881 803434 007825 912071 771868 907666 737591 300717 992720 287042 291370 278201 735565 939443 121858 591688 768571 263127 998315 933119 681037 093418 994493 212904 502206 180815 063086 046880 819562 599903 159160 927950 268016 740323 206071 872273 688190 065178 801226 901029 870429 026053 842389 827310 438038 870781 561484 171842 800479 469131 959255 093616 260100 515456 620563 271934 979702 231384 075659 941336 796692 431939 467575 691478 013148 087189 199502 189959 602370 545028 966111 797990 560438 046798 705593 993874 278819 835041 133382 974810 149431 405086 355463 550436 646240 368391 175559 376532 975903 329003 854560 760215 312509 748904 219867 198639 712885 549291 436964 766718 185903 346802 072706 123633 758525 208028 812057 100671 978029 734176 243215 026384 458817 352908 006282 561820 108919 652391 640957 356163 082720 581847 201180 844637 157870 116647 153894 113196 684428 017818 815737 319240 895795 868605 484614 950885 881613 177329 587263 398144 917302 465339 930176 736965 936969 371415 058245 522494 464642 870750 645394 578082 702391 156107 356348 004608 179591 072729 213655 874208 144381 696372 952554 127267 610953 095291 976983 377940 130013 662737 487363 219796 334528 729464 547441 949176 610082 346174 062213 183855 383293 531487 098142 906707 028678 697534 265821 315711 135055 315261 885519 494754 818689 812625 496367 476869 324010 651583 357063 897484 394861 384247 419231 957828 731518 873125 276217 128228 845513 533956 156619 884848 084461 984231 035895 294423 013504 352114 225372 745680 990344 578615 640296 454694 679404 616270 837844 636502 097373 733349 074572 621268 570544 433920 611157 516987 756375 769047 475326 867690 797658 073693 756130 157965 831341 281574 504007 868153 320684 393303 548396 517604 607619 429385 634275 476037 383658 422451 325347 080950 436575 286537 732695 192574 319450 326383 414901 643078 614760 844289 054765 753445 553844 333971 983637 761059 896709 054613 767423 643824 807225 967573 604167 815432 888273 645518 065613 631966 764555 714916 037068 564116 915138 459813 114301 892243 999769 470606 336328 863367 519650 685821 404124 073003 762574 462454 615474 387499 868387 238817 871261 766196 382763 471801 308054 434302 142781 264544 357743 954609 020467 787250 360794 456898 470916 159815 488700 837628 027676 948804 633452 055520 401585 835871 693934 837483 920828 252567 032798 593454 643215 143802 684712 385971 409878 486630 890344 797797 257099 370154 898114 579918 378140 222952 061343 568702 586743 613815 381954 815835 870276 024754 147776 436739 661020 684646 605822 373387 584552 861018 103184 172770 545489 331258 062380 758843 016050 528326 896763 344818 064134 135027 306077 700175 075445 882229 212239 935803 488093 089631 911686 049418 837392 108242 176098 504241 726192 088752 182555 992015 321965 880197 305412 381516 260862 546761 820989 340958 820419 585228 215333 695474 328790 447451 484757 756426 337388 943657 965436 736759 929119 150921 315739 712722 255559 176011 167102 001340 803712 415293 870281 359071 805132 306937 425242 555518 075548 978638 137302 166944 963914 942350 209664 690547 479573 641941 192709 642420 940967 227828 507416 725362 774386 174775 009904 414291 107654 554272 803392 782823 460816 871688 877915 804629 428096 014601 874135 479135 090821 691295 357481 768398 450787 051165 113514 832284 338840 606966 394322 367595 068684 105458 753160 335597 801308 032420 063360 215098 005602 196205 220697 237236 854325 790423 622882 663318 514304 527446 773916 733353 424421 636278 901244 141270 791875 763627 280800 774960 951720 697935 264138 253387 872533 119160 401069 943131 241019 498377 780561 418979 837872 790566 541334 840256 277446 998618 599128 522801 033143 664646 294866 804429 010720 618128 125229 418295 286448 761310 125483 666053 386925 683814 526570 150468 583121 717417 865620 036112 840292 230076 253086 873655 366227 971570 566891 673743 767717 187377 641401 211913 482794 797282 799617 203425 878874 263918 650288 428932 701513 176616 116056 884351 429456 514542 556183 342005 451058 430900 483635 486326 194235 529805 025194 064090 857412 967460 804467 805044 072228 728229 710700 855373 579865 516183 484622 346586 989160 867495 145599 270998 083858 198886 174072 868773 219486 588220 126204 240248 205030 058708 374953 171956 065518 756986 236516 259653 429740 157236 001292 840573 140075 896229 300385 513052 982914 767378 726678 146379 246885 430826 084524 857014 736315 804274 789737 357806 142124 088809 887246 845213 276135 195515 889826 303004 517890 565604 914653 674247 147870 277700 032582 278179 430519 534018 500858 869208 960371 382097 194929 346779 055101 836189 777582 594689 760937 079612 947377 661127 356542 026225 038663 859216 350714 560118 100366 436912 764544 477428 408313 211839 332552 943399 799985 608256 034019 728072 663885 168065 591947 025824 262735 445724 979289 241253 937654 166104 506776 030206 767780 417138 323108 066957 010603 670095 912991 001616 252015 535797 802269 217244 295651 588255 464133 157686 284822 159781 995161 084587 841178 433454 226807 214257 983031 978130 488432 281605 350327 254801 231895 266741 877597 072276 437995 513408 728794 866990 290862 366986 357798 777676 073935 301114 693272 003872 965630 665940 730237 666106 783096 034947 348457 003147 630676 130736 872840 759546 262000 823881 226053 273537 358789 491018 574856 061952 356324 450250 742888 530404 307622 638402 274025 072339 770855 379388 709879 646206 852406 294746 966744 353933 641888 257199 850443 181497 665314 063209 114579 876069 390867 638883 887758 160856 238055 555407 795500 553928 354920 461142 155248 448237 341902 095885 945322 994461 027983 963617 935610 874509 222984 569047 079836 789853 193244 156413 439288 902965 522777 288519 728478 603353 389682 783454 109354 919516 267392 691862 292368 471649 416814 929718 168795 823060 996346 821769 495524 199837 235365 570579 574288 229795 422139 825218 795413 411144 012535 193582 713843 527828 443381 741922 686828 745737 636817 352738 699160 572152 785215 258318 492148 167810 251647 168912 868612 025900 668671 726704 584983 104937 348987 050897 755914 364804 805387 147102 217287 528011 647478 021421 200472 797964 084190 811274 362080 177667 342981 684270 558533 081326 346455 931565 315131 207994 393428 083437 914890 369143 110167 482698 656153 663459 057727 122112 797870 390155 166630 168216 601651 004024 843637 242207 698736 178950 318420 052568 026833 230270 186946 072277 707821 588963 880054 911116 154152 956065 083016 070676 025645 145923 065279 278662 452410 412379 980129 052193 623150 515256 859006 799363 162553 210926 543562 503409 802085 216441 936297 964829 339991 236353 571070 970713 879272 830274 651037 274814 586364 981671 795581 112223 858518 029766 364176 012959 167880 096573 300126 821768 583923 765157 854337 700090 920328 401515 904512 989211 792054 362784 541494 675779 834314 512350 505603 330062 913204 269319 117472 738026 227996 753940 787347 958999 577421 569300 580004 951959 143853 022442 804527 568302 308411 738038 742399 223933 738826 963207 345627 399997 197446 074854 301903 092119 203756 692877 457492 732510 321443 734180 811843 387630 757746 138399 826296 314012 193023 003605 754581 874258 742367 996974 671570 474025 720460 778950 499783 613542 842848 535565 563324 121487 231665 360389 365025 313488 316017 289789 413204 964683 928086 442782 481327 245019 746150 848000 320097 869216 046369 304112 235526 287560 873171 622140 624379 458052 215728 534467 485927 458743 435597 270176 478035 814066 385140 063390 760536 800948 352034 155433 922792 191817 888094 793847 727620 933163 972651 327838 856139 554168 953394 245618 948081 005472 183459 036037 626519 576199 397004 078069 695779 525249 289371 487428 951434 711012 072772 157012 690767 454213 186771 427948 125566 001962 580286 647945 905457 687924 825079 889451 083949 270129 733259 338291 982017 306704 609312 866987 624996 044489 315321 355677 973126 711141 537633 012377 413905 367833 759219 349575 935895 175666 935968 139746 258858 826407 787610 162457 967455 046401 221137 560939 675037 368922 030143 652775 019752 799861 129403 973465 610796 187364 392296 292521 717394 942351 181473 473038 371282 851108 361258 005002 914189 808824 027843 013760 615850 964452 894160 472922 543109 255311 981235 740907 435066 488544 470082 766880 852541 373363 140473 897337 194978 055790 498715 442843 881008 843131 515369 955884 366999 460388 540634 749593 074650 812661 908370 913760 167586 018186 076129 149800 985469 396795 948053 466388 252527 042853 122461 591702 660037 604239 129162 073387 784957 188594 285700 840796 155151 231663 610842 551340 793406 269791 144718 264588 144933 492277 114963 992516 548777 606241 364440 272576 304472 877162 836613 034464 675733 858725 891488 484629 556652 903311 623098 942588 905522 421172 055929 688674 578694 878373 819317 981465 531125 279874 624208 993047 961584 100185 677932 910166 372970 040957 933902 711447 405447 172338 842703 714295 294097 737490 325019 170941 629118 889050 185930 702658 389615 587059 954470 292590 281214 824537 681367 877941 315698 997013 595036 273976 677700 584947 446703 101255 252408 316969 654078 350006 700890 232882 230906 076051 134929 170260 467944 842515 120361 341379 242832 888871 531552 288179 325536 099990 958282 862188 613316 552409 278246 672186 376232 444937 855193 454353 404930 100237 185474 334470 866119 912292 024512 735857 421194 502205 170406 291825 559523 183619 632761 237036 058681 096143 662130 252113 448094 171870 420063 809733 846507 925913 228008 215582 429530 386722 226740 478611 361042 230593 796309 269553 083490 493514 393755 568573 158503 172724 834569 184907 681626 923669 259151 628613 818826 870827 930664 487787 287145 333708 750692 136723 363792 684839 696176 231460 488148 242562 221002 983372 443415 737278 836210 011635 784414 128026 152741 676344 863028 111870 482268 937866 636081 601887 741825 210920 897003 575333 308632 305382 038341 379458 476408 586203 748075 628083 661524 699099 887215 224743 677528 164896 270832 958611 944498 690019 427236 759536 890882 049948 586718 990658 518242 384994 394887 864290 066988 552124 349547 366215 382810 928647 491330 735888 751061 877267 414978 957363 090647 416856 724445 919841 430980 915168 493060 557956 971142 873683 868144 234889 308561 658251 608266 405162 803763 579649 913220 317861 056476 282681 758621 285126 397647 669189 749520 421098 275425 480504 152338 104004 193249 000061 718045 184355 914701 479574 961268 853310 562399 514411 868758 209235 664560 010809 283732 113412 731197 022248 048441 790211 439779 490975 427236 534995 267418 300359 800604 100843 003535 447100 359572 092799 414959 662898 708085 827654 769648 260286 161425 575081 412559 679319 877939 913915 795625 539323 432050 243146 114499 571969 193348 064451 278651 209867 229630 928930 086075 961288 772656 196759 061984 258551 275857 200506 794597 608874 315907 473985 491576 900503 856338 843194 093891 225782 569652 868267 511416 394931 287106 849351 235699 692669 557357 618399 988076 015772 614076 827685 656684 723544 031128 282673 204366 761736 421736 332754 394266 438474 936426 025553 867719 749564 585769 593699 532178 051290 600166 593555 418966 276769 625386 337221 140704 091253 123793 871274 128017 460511 584201 359817 384584 298071 933515 423595 155505 016506 744501 069863 835011 646395 804533 054967 754671 993541 611698 244103 334573 731440 802988 468480 821206 699357 685978 523011 926785 952806 726538 923659 805004 004366 713294 492625 275808 245537 074852 015481 956587 177873 152825 752894 570251 198354 575586 696491 934042 319906 309986 933607 991289 109386 149713 448354 352255 223484 621532 987594 187613 005553 839407 303531 979835 443203 197930 319474 710363 598512 946307 089029 931998 411722 117941 426314 715481 574444 255410 988287 130569 074763 584528 711823 305005 295601 249761 545059 791634 253628 638455 483119 482301 549216 672594 536681 305784 459368 482927 530662 976684 713886 079074 184181 103564 325242 716273 680595 374825 257919 020320 573013 911164 056664 564893 937179 240071 017034 727509 905109 862532 455687 173783 406982 125897 127339 427210 330679 908940 281332 229120 268991 277268 088699 999185 703195 496824 718519 372179 804211 497111 495843 440166 611140 023653 839952 829425 789492 778452 929031 181386 255880 641650 739414 913860 483861 743824 604449 467979 438551 467243 072960 400267 490549 248566 208254 977380 310649 044069 222923 107143 647596 426299 943198 080300 136262 328036 492850 222807 123600 368045 309626 902398 434831 063894 207882 116997 762858 726689 709069 053757 737636 400027 414920 625382 852354 556352 858625 963682 085414 656759 520055 387129 051374 926436 945311 014242 002846 544766 800677 853912 860485 771740 327124 453372 788049 497996 369554 811849 553272 551397 786642 073864 015947 935178 850814 813363 180831 119789 378620 485592 849420 739060 654803 970671 629725 528885 678499 238314 370279 605103 826103 937638 236075 817504 566958 962894 900502 975469 379283 324090 449721 433429 688770 171516 350054 175272 727413 303192 488009 909701 161833 899334 472381 437933 193427 479909 551661 574782 537623 563331 854103 046718 205504 579189 551578 053537 603513 474474 581876 843331 070951 401407 648929 656168 701375 004567 093661 786359 429364 157188 247310 135287 972146 936505 338588 487944 530023 478579 926314 033341 398905 694080 044884 711661 119383 568524 634367 471811 486371 767990 080360 841621 251499 740912 087822 216814 911229 567112 297222 853265 314869 649580 076417 851379 231903 964946 529778 661236 679779 308949 887776 613923 893072 352077 583696 682805 129509 476485 923547 485702 034060 617235 698765 368910 370352 926161 293830 781751 314564 652754 335288 442494 416252 462415 051670 392515 981419 731164 127800 458830 987689 542509 564668 290483 021891 314423 660504 106427 723251 546565 997889 163866 287246 722649 905029 743916 274463 335130 254029 681726 861922 271758 084456 442057 263752 451725 862693 043897 442490 915363 102770 468294 442043 245811 271804 567339 875502 015384 179481 242518 432814 742666 634222 318837 338720 308274 235025 603887 019151 967064 000746 556932 649624 436346 960473 320506 926770 867372 274697 483197 354653 635324 291606 168663 226598 521042 057021 714669 850388 141240 799478 342789 707256 129038 273072 519671 109015 651187 769511 845200 233130 577211 199148 098313 104544 462297 586781 594048 799046 306664 707919 791529 486384 411387 673555 821896 425140 590340 749227 014396 529612 920717 431950 244183 761720 553704 966477 628566 291870 589333 798360 791742 876355 268201 326800 023748 385823 358951 823613 581118 999341 601593 982777 231286 745931 344971 887637 069457 829366 950893 506283 127069 849055 132414 083116 422055 750893 651295 255268 039820 918553 206909 967755 561069 770002 474948 072438 867409 297515 893349 308626 792443 638345 494304 868931 798819 549194 761282 653072 090082 078003 966902 168756 180090 157916 142162 083390 793123 037667 498997 964883 884333 269320 210203 970049 148390 097160 888498 679687 457739 526043 283299 405277 595828 581746 697095 248193 140464 895989 692299 998391 916740 750031 832078 573611 550361 201909 717150 071321 568694 535248 671763 822013 802470 380462 712172 355272 103809 558395 223176 653411 247401 591887 639572 104858 478359 508275 479681 538176 274346 396567 415649 206739 480825 362342 790982 730466 315952 663559 344411 293319 538188 135944 360883 572365 879080 193857 168387 746440 937013 186903 514343 071961 398714 589173 556113 638639 758779 176790 490301 102699 131047 400442 254904 755773 018601 045483 357909 895044 704835 455131 638290 814400 663785 837636 278971 758090 012331 369768 036951 834910 068525 389137 340288 573699 952946 308472 862399 713664 235521 929881 177351 238142 185470 073958 119753 854030 688127 347953 308521 817612 174203 953115 472854 105941 392062 561403 207939 269367 048127 344885 476624 117802 253208 782139 530332 050937 253609 429716 170200 814160 636090 445636 155685 893093 462287 385799 302172 746679 039056 194441 116042 985382 181286 964190 329878 579683 166377 469164 852703 575572 939470 750581 813762 648546 701612 977057 217652 269619 382273 693659 282515 666048 881875 933776 203670 660204 782058 906472 281792 742463 389001 369070 574568 440009 886393 772407 008392 079360 137360 801757 050734 508226 320597 966779 476180 138899 527496 866897 624289 730517 330713 312564 896893 084048 608626 433590 191700 940936 246832 258528 838084 593753 093060 017839 573549 729788 528578 096759 863873 268549 531851 818761 873470 829342 438215 360572 435317 793610 748488 536124 327948 321223 804027 025527 905747 987739 111399 252115 212361 254768 499839 460963 002016 095612 062911 883206 654861 805269 353821 161608 924271 036636 953097 859654 841784 202127 759749 093100 453115 194679 740687 605616 307769 135857 519700 009644 916266 146269 791133 231992 228674 350602 990901 447835 114821 317414 824808 104482 496817 808185 185431 474973 556223 233690 403107 825162 829630 454900 046732 660624 389009 248921 983334 357959 547698 251674 788258 397135 739975 649683 002818 660759 192592 290933 344499 704141 599422 257519 322992 405735 860336 192521 587027 244841 441406 903922 551107 830378 838204 541815 789726 854904 528672 726481 112965 964983 041232 202640 569313 827751 593180 398814 177903 948479 713513 782876 185384 416834 075933 093214 123652 467027 343231 110192 199551 324015 083458 389958 846116 701088 151595 287223 541380 786650 346989 940106 499269 549609 349956 300791 463027 578660 680581 434210 401316 856272 363718 515762 679202 564942 413586 371029 784025 132525 176342 170382 950908 670657 630668 154120 940229 682893 423189 556900 680125 263166 729743 709701 392332 291749 378827 038601 475533 090292 183396 220577 399909 549449 705328 057595 961307 013315 666382 006480 214983 406955 850834 559585 507084 970494 061383 729550 044129 982966 184727 953759 714960 376366 529873 174549 070749 242416 181659 292136 439929 885998 841108 424483 164200 459102 722745 224622 976867 225939 699229 367560 970128 641252 672379 433732 632719 743804 409695 499995 820393 034735 351186 378475 304166 890808 745275 368745 573235 549040 900064 427519 496545 716641 922278 771542 614017 839426 116115 305751 755276 661684 356338 581939 976168 021010 880990 953849 958242 778439 424793 187190 657445 953263 757971 810397 509674 385199 711727 470292 207534 831883 829524 630961 576610 348855 425738 544092 727827 901073 450026 104570 098149 621853 155679 190297 582158 377037 414114 484265 029895 012064 166061 778202 352545 717029 655875 262661 265593 895374 865642 684092 930115 554445 796210 662901 969159 554400 619503 372971 623761 915009 599038 001858 900462 195604 038487 426939 873584 775852 595626 994976 519501 940326 955907 706650 874685 789590 582057 222370 359189 140738 584303 302133 315330 678389 345034 161729 965525 785124 838614 979914 606499 307782 503976 203516 094979 640743 009758 105914 497602 657984 074282 710596 859703 496501 588989 044921 765477 765554 479718 601918 801066 352673 184287 711111 194644 519604 719373 637131 689919 323916 960047 506905 786020 441359 185078 103897 417999 953250 896591 476066 794757 911965 053806 419933 401278 742440 759056 573246 884550 174990 656283 445806 834978 540334 774327 392887 734804 786838 512277 608504 831617 845100 409621 255977 949504 935246 881146 401023 955427 840066 804435 766253 897122 640641 974462 665222 491279 012001 (25080 digits)

Euler's totient: 47263 093970 982330 774587 507602 530033 016635 764281 326817 837187 073407 136801 140272 531513 062631 766726 031224 857407 852372 159574 259830 282747 122319 780367 332229 108485 131260 135055 283237 628528 807907 222480 973462 427773 093172 893194 639747 776170 385558 597197 956507 969384 109658 130316 416072 816632 954199 773886 342716 541494 804429 497394 310652 831259 886633 046565 433391 816491 487622 914159 064493 856210 547884 335236 750728 670283 796117 980176 394778 781565 085557 567337 744735 848945 180277 025349 301667 250460 229222 295392 228434 151660 674440 307881 837659 577764 717068 433153 301333 388942 177255 354227 056816 351678 419361 543755 287601 751439 518753 767016 390421 990903 307860 390860 024764 503768 204581 644095 292696 250279 526278 816984 166362 713578 794458 548127 610035 907415 865356 292099 149642 162597 025946 438030 014020 184297 521412 889850 863913 295925 403509 644885 608029 324511 516662 774292 246732 475978 360971 526887 067726 685901 927863 656139 872457 002627 640817 108302 068063 695921 946654 222222 091464 232307 637618 712027 092778 399511 703941 788499 686558 775851 845750 314061 011540 473599 130062 006492 058525 606466 612074 502357 888741 448637 529232 618843 673118 454614 131093 856006 704940 733903 180100 518030 648649 551951 031827 095766 921818 643135 304055 811154 121229 499272 640262 430555 765850 609896 858086 057736 224078 148390 830063 640528 872963 542941 271328 104203 583712 391104 769727 059376 586060 421561 902996 227619 869809 331006 367926 131154 691196 686890 353459 165040 784854 354635 507229 556662 271786 087648 245366 150000 624249 627927 464729 468917 011744 835483 637044 833740 090745 376071 604028 224882 435838 734810 991719 640051 184831 427098 358498 627706 625641 477052 652271 255779 490003 537014 217223 910402 445684 589512 159297 575938 000899 413010 561603 486819 280499 852366 437646 225233 108963 315830 698466 012525 018266 489302 856159 788078 728322 337574 759568 003712 235698 912688 515062 373808 838965 787848 602337 362852 111540 728033 907385 457786 572284 158641 867379 250905 759053 028007 891907 094095 881602 609421 503825 093292 345810 924706 589768 693380 338627 835676 683675 937802 667960 756541 607297 837421 182314 876912 862909 168284 921325 983622 243897 970671 953525 756426 000897 620871 783113 635407 239813 862357 012064 632027 853352 345040 288139 832719 306612 978264 339893 401495 799860 141609 143082 410022 662416 289973 502555 169438 167887 692707 900814 230171 412175 013557 037006 905045 518982 169385 265178 348149 829699 014334 243280 132092 782487 830611 623096 367972 991938 405872 755148 741351 687796 984167 193756 631231 200581 224933 522727 498026 126492 582951 705469 947927 095324 624029 796778 749676 518423 513009 655348 761346 899630 265609 941222 044425 283067 621880 527700 177182 703780 079305 269807 974198 657543 537860 267364 506984 336401 464718 935569 652092 337439 017991 056982 181641 107990 688965 746861 594586 682042 279132 411371 719766 033162 938145 385030 014763 416946 828123 697289 955418 484945 395625 652510 594045 768731 005809 008712 894272 720678 218266 367000 118279 929812 937056 287383 771958 170069 150321 283324 883100 002464 666940 263907 921759 680221 850853 665152 242981 328473 918816 261505 427342 972291 112249 583882 888038 125019 441450 375698 380115 985255 599594 603053 571046 895951 442584 039160 978645 242726 284381 126793 593246 314193 150483 088908 758131 661555 428565 951541 632855 981987 028821 601127 129428 568982 070822 137168 736904 554936 596096 526734 838721 178779 468343 160862 283977 458344 953069 451804 831330 124063 028763 768177 891078 362951 189990 483843 583344 976703 154876 783537 098499 726775 241194 960139 296960 284209 449140 806325 838474 147286 008140 332453 980694 506806 292955 992300 063486 339065 873245 124313 465025 566758 982781 050950 670214 793610 442371 332390 453304 754581 209562 572119 028241 679576 024734 684476 211206 343315 638409 348488 801734 244205 320522 627884 367740 003909 286720 840616 668679 111977 190823 365770 418064 668700 520434 910394 532243 397294 692426 032246 627034 906965 257761 972816 011129 788139 156635 859296 939667 078855 444049 589781 105807 345193 553362 878997 491516 252502 356383 165810 228633 646352 315926 595669 047097 973428 107868 847609 507589 160941 233132 818976 281137 877812 747097 933833 767524 981164 020464 159684 272604 405585 507299 338576 792012 793040 017687 632310 199607 409548 810248 915942 468356 682981 734567 903751 055038 795175 183025 810657 314728 205770 807939 887288 901291 785650 318626 556761 325202 751746 237491 977738 064058 946313 944955 139227 484887 541043 444979 903250 013480 972753 018690 722888 423540 477733 052021 243718 084117 119195 245732 399732 588987 791151 314302 228402 483158 137279 265331 790382 209407 994096 742564 978781 583341 093612 691878 099483 645532 878702 742799 621984 944064 076281 507577 497562 871928 041535 988300 277173 521307 183132 935104 466416 897808 412940 682425 926142 526452 746800 005078 098726 521833 378737 792001 855408 930544 399504 441564 819957 699492 995947 022778 829630 829651 069888 060350 658905 341744 246101 535884 589517 487481 873266 499429 698452 367989 139330 431082 527244 402567 917538 960935 328531 216290 027093 804460 295759 390227 817923 495140 650341 276093 618270 153433 578420 071945 377613 092342 529976 949562 726754 326476 878981 897160 787099 762151 129396 212960 527522 495125 332194 175713 830854 836389 943157 439482 401576 165017 947484 724632 969672 665623 797091 934179 182826 910155 496132 414028 753877 516093 879831 974049 959098 892625 381894 120756 262605 591450 047710 650043 491915 335406 519570 830659 261847 491897 830460 117340 822656 245449 680350 496108 649900 819755 944233 257638 303550 848227 799321 298015 184734 679420 303559 958947 918827 613215 457249 009690 112710 792543 745370 673071 997575 112769 511488 419005 252694 469326 448578 030150 466506 207953 233383 267632 308195 982179 829422 929333 799670 075025 977242 608481 476607 094063 662848 559085 504407 080628 808970 796950 271844 389943 204743 074005 594009 011679 541088 196129 370977 428552 280403 876168 025987 833595 910884 695155 534334 792130 287466 236865 021212 425931 649732 666798 696265 452945 064582 554678 969014 217410 175609 738928 099132 089060 691430 061539 809815 736573 525850 900485 402434 432984 304261 233754 507558 602544 049731 557729 643331 425377 746573 832709 164141 900464 419480 107087 901813 018163 328749 930414 866143 168194 532173 040002 523255 636617 316345 724037 720000 107149 784530 509364 810509 995811 226030 332260 203696 439214 791056 846930 760780 685812 531303 737040 549976 121283 730586 676779 449857 472378 409446 362293 215046 801372 069903 210564 993982 314650 892519 701953 549372 611736 358069 978070 295512 160266 988970 996934 232336 447450 452343 406713 241448 522741 026869 688069 761308 990624 398905 249126 342689 769588 228021 166364 519024 881280 976545 762899 402062 408075 038765 947026 151054 655880 402517 120626 785234 893988 939575 636029 779524 346666 315864 196999 647789 247953 879964 423901 979497 027809 928958 191807 790439 479535 718773 666872 951665 700183 042410 591133 484989 443287 820830 345317 448965 638593 090143 086729 635907 494770 766136 318058 915383 070280 775539 881322 770362 167784 348562 498953 600097 778570 497074 147759 486631 762127 194360 067926 642768 920465 102626 539284 457765 577181 170648 011896 708609 778084 893293 747829 406814 987616 891312 767836 798934 286907 178771 582216 698848 756280 398634 345212 273905 577672 950999 579301 821831 103600 341247 976669 928475 247504 681880 943560 727098 676225 626241 864541 176676 238906 474114 041826 480972 226854 373802 463356 927711 706038 821826 883639 557985 312994 025406 517759 888712 166523 136095 753407 094653 414200 211614 115638 438121 824881 806524 407726 727053 245067 151460 190814 697804 497305 001100 285134 909498 625747 150172 400427 208597 418346 327793 111695 589530 412485 931684 218597 287938 876756 368425 390002 990699 143495 627273 511516 985042 891128 624628 838084 629018 237273 646635 726264 222997 562480 791025 033025 909374 848350 395628 019102 614381 627296 187376 755223 243939 346267 938847 087410 629933 113183 327750 803845 915386 031972 999560 568665 296592 259236 173694 337217 600454 303306 051278 994946 485780 638611 162715 421790 274433 708710 734678 954108 198996 492009 672882 519191 528921 739669 787324 175375 994056 779563 399376 502648 596818 071112 123059 713299 829161 956112 316906 511618 545649 637533 852482 736784 135433 478320 151423 245406 906156 233637 167092 832604 762357 100474 016429 036223 577159 274126 570637 430699 949385 051237 288945 504471 743925 435884 938671 870115 775995 331231 960666 038815 212603 874730 206019 281952 757353 731763 699205 567942 961752 236391 174724 201479 795888 370275 678861 251253 861015 600582 234349 564312 116689 464838 571292 379152 771139 136464 786325 276787 840367 147491 815283 399063 534290 687227 921473 507757 889103 789560 160802 575224 553116 818992 452085 024170 046615 047535 776937 497314 822779 496877 795449 355427 631905 318943 611010 890834 591763 168279 675465 702462 403907 984747 423946 396232 653571 301177 648133 132729 239966 387338 289351 346439 383208 574312 957692 945325 558045 220936 915407 856992 749288 283475 873668 320871 296306 419697 639920 518055 298157 029641 915588 030750 783668 886033 457849 625695 686984 438446 815381 710331 859755 712816 376005 675255 462999 687966 925317 360699 502744 141330 323288 200346 047637 603146 931111 134109 307400 959416 594419 441717 754243 661007 083045 992394 636164 928121 477200 821998 768744 166342 931327 961339 476075 766096 990748 951214 864847 957010 259228 753646 756370 805865 408927 700323 199844 278408 140876 697474 839033 447659 960655 532086 801387 437384 819638 565589 754395 285741 901176 225485 760328 084696 381012 362155 181305 725713 283795 762396 025820 832906 425658 859413 956410 848996 489016 225902 089240 199004 507635 556887 315936 717168 089258 069686 120170 488153 188236 524746 076804 963372 764802 902495 670274 704315 638309 648983 200385 399399 180796 144737 857633 407080 955840 083294 679455 817080 840527 398412 505706 881786 452073 857884 444942 522388 935931 664149 491034 920149 955287 504870 858874 419435 399839 785087 495611 880190 407361 621737 227720 262957 723989 524845 198859 442856 072077 454119 367809 831364 747912 783541 529185 337800 343677 172379 002641 333261 038125 235342 661174 413096 827943 600871 043895 757242 453697 808096 963531 478508 248385 072232 919179 851185 930684 673963 141635 121771 147732 436004 664231 128354 807994 844408 644626 059043 564305 379541 459853 555240 845790 033109 103814 353115 746643 362605 962054 481614 134786 134179 316262 285258 111501 054804 238288 350225 860866 708428 682209 178823 175372 639158 671756 293370 334275 445805 527176 070228 286519 465999 571589 966811 408501 461483 458547 199849 465873 383384 346998 576643 094876 003100 969614 695565 129650 071649 948242 991896 262009 158163 863003 214308 842265 005888 041409 779618 363565 523355 519452 485388 724721 214070 751081 158379 236123 655056 581865 177011 045113 802454 026756 323626 332995 724225 568296 539955 076429 823249 354087 084615 142191 878569 390346 016698 981969 570019 701292 508759 348267 377377 765699 000924 608310 555837 518402 548232 385254 397392 195877 881359 453964 271900 898213 461800 244234 735188 184390 176867 771177 668797 934154 463838 799328 338035 318060 576197 070531 332845 535424 208954 416767 220988 812351 932987 201263 244821 056796 515271 989024 370752 195997 882093 277887 137324 564275 870775 976622 897053 864352 744558 490172 666786 077515 556402 801407 878673 254205 522782 730465 104062 860173 153184 583535 375403 218449 231984 021745 723562 018360 270439 861356 732025 853448 453989 966154 211354 093820 353607 348765 282410 333168 292718 163975 283686 998899 391979 555399 691136 215729 692825 283306 359745 709888 448331 679642 027475 358251 480016 156523 230976 126969 921511 977291 730003 684704 531869 429158 142891 237357 172690 524643 767721 246743 382298 770360 875358 691169 146691 467974 596106 330553 529156 344152 289564 332816 325816 602919 789842 720254 666003 567304 146378 822565 928189 826042 984955 956868 252923 645200 261258 441639 748212 538036 138217 458773 569752 575547 955650 934731 221703 330295 564895 044128 257698 851789 288362 971463 184979 861241 654058 453763 622794 180039 588500 346495 993596 125152 645041 488545 588351 017262 760630 438218 461545 002475 325215 690068 361016 158904 738810 393836 506572 272604 828867 081750 674856 727990 488850 162342 332832 945429 020022 260747 872341 629581 525430 081690 278712 252232 319753 141742 388728 603207 795348 803872 984406 941862 062786 162111 856673 906525 183389 361062 114752 556318 307643 044996 314803 837155 399138 107090 655285 103828 813850 790762 610754 360539 105054 779618 061459 151666 601781 316063 693669 694094 883280 544077 357274 791372 099206 200018 242943 162125 474922 581433 490045 377319 979881 660943 099451 258498 604244 233026 148187 892351 529722 495375 040785 616295 141009 039364 100318 192655 547091 036562 449788 351322 456087 807422 681898 004164 770109 865213 345079 908205 981511 133784 497499 697136 511307 496231 925571 521774 795658 675515 076439 304077 786300 525501 063289 898537 911152 303507 189880 274978 632609 638799 301700 262700 301953 908334 511834 813401 634934 536010 043914 518314 812206 427295 766794 888454 120092 849293 056270 751153 478644 467847 632279 290737 270670 556563 348989 658568 101639 679204 801269 006020 807832 451016 654920 595376 848591 415880 485104 122172 016786 965992 931754 308199 175938 924985 838938 122269 330625 006180 555716 439727 588650 917709 425898 399417 180303 163214 240681 205681 977919 847273 117836 836756 376956 940746 388861 795420 096897 987997 409823 321857 565743 537431 619844 037571 052872 132054 033295 764723 946591 428888 757378 819435 084959 428544 803451 547436 300415 244735 937943 312526 805266 086844 786446 962636 635244 084331 434168 785968 677747 237019 972155 249954 213956 806269 517336 220994 034605 672884 550802 031211 739064 842879 147318 233689 991317 307603 911712 118792 812745 494681 045813 788423 522912 666775 400616 725000 357867 832560 614335 369458 366375 865321 699355 807906 797965 625795 537545 877928 917168 440244 460968 999560 706677 369315 817344 723336 680915 151706 630325 163248 516433 626020 424515 861266 907237 311158 505310 687185 974337 610718 703775 250696 781727 194181 272364 260113 633224 556306 556142 138945 406870 204855 471189 330147 940801 967321 511087 720407 605346 861901 371920 738914 497390 872820 386936 132570 025857 162872 376444 759422 198682 549013 969198 912893 415388 293620 037299 280561 462843 083287 905326 983762 326359 711295 319232 952433 957402 774609 861839 168187 501556 668863 754511 434864 992819 026972 326222 668232 454779 140160 784927 991447 324150 120362 080792 958853 278478 247514 901509 281643 464675 606322 930042 556828 476609 063003 948704 797139 821201 073766 562007 089007 075026 224981 453334 056562 860412 078979 532440 271095 742679 792523 825543 288616 202781 744949 976453 283415 832753 112394 745460 720303 496116 649422 456762 073597 150884 345942 209075 368453 362183 214318 146983 016090 697133 916358 721240 400156 688311 645896 187898 694634 933165 317034 086373 998800 002374 225455 513800 371148 046728 106764 486587 197668 710522 620905 116199 726771 595025 474679 623283 892024 770631 800544 622928 503823 611339 333156 265541 454864 379954 974939 124135 450283 200637 760633 716725 495853 314488 701380 796690 956872 506074 301903 037085 231309 170000 566569 926258 623364 274355 846872 646729 393598 145921 821255 001782 609144 690908 056392 172663 083912 764162 290925 305945 459183 807955 591659 558194 538680 311927 979463 562724 687742 160851 317445 729835 814633 064275 137194 176911 141497 281102 812199 738428 082636 557414 810183 577123 678428 266246 532632 005314 791825 909332 315792 875024 897916 113698 492896 904731 054757 191578 150578 138920 145938 490099 378713 130808 914287 144161 196587 026310 042748 142248 684015 671631 142516 443113 482758 902413 845498 002396 488980 648156 233701 438829 934747 520732 802231 772753 191454 324189 093120 886091 782710 057242 921684 051448 723623 579227 088843 406648 186521 193694 529355 355529 752520 403861 043707 278238 813319 118085 292550 913510 690220 185360 823210 504711 233812 227632 614523 525889 211951 116114 565930 976452 633221 487781 100210 879450 988633 146341 449718 361340 731355 138110 007625 638778 562513 047221 889413 975276 869692 894223 338622 225553 507748 944571 639995 095644 428062 782753 571600 896701 588923 948076 209990 952182 244522 120575 148235 455146 499263 321770 599250 301878 778842 062370 080351 421237 745891 742412 203219 240315 653305 718845 497609 521544 341204 959467 759235 652960 418811 827933 004937 265611 572327 717481 019936 784187 672499 311848 098563 584043 085077 407343 414377 946084 784051 492406 680076 967160 354154 590206 001295 567582 642805 761553 792514 687794 479246 852788 356669 911027 098608 829090 208896 573782 896736 695161 943750 858831 667191 923140 564421 444142 131015 180512 207030 798096 874703 084587 560620 774218 387393 613174 679746 188522 244212 336379 471425 691495 455094 482750 343324 162428 454949 206618 440543 360180 646116 445337 467268 721715 081444 835237 067246 634251 262034 277116 716488 604987 989057 372173 183088 944385 480780 937530 194530 918543 623511 838219 479604 966080 034602 057650 483466 252364 553390 672839 337126 671127 133496 845317 464485 642771 300924 495720 701639 593050 476970 135355 311428 526212 702622 149556 515909 471432 585358 850091 931607 340187 869866 709287 280434 301659 191786 945310 154582 914433 359720 990253 133855 939961 502158 964982 503182 391354 790600 246793 852039 737817 806484 765268 824410 323799 672423 890850 389717 280080 775819 634698 389789 374558 827125 500555 519110 272253 206001 877052 176987 002225 030608 564371 257364 134469 126164 172473 722767 872789 204643 888268 297688 489034 408454 245958 505557 978507 926894 151662 974291 601622 250286 687381 720736 584858 777150 693895 054425 586036 098310 639456 634087 894962 715313 207507 696824 699691 921875 639471 138752 389627 831038 444506 384332 471960 142557 889855 041740 061828 654063 350243 920677 681994 807824 915078 475204 073060 735254 098699 135402 165050 694857 980792 348253 605495 425408 859434 420852 840769 428281 109711 268921 468499 634972 379571 686211 218945 048664 598798 793591 884318 908708 594856 642061 161043 115862 210471 268442 158859 978056 187291 856644 462967 724053 544142 084832 039724 235568 001504 764536 352187 303294 859805 915460 811454 327454 162197 832345 543175 698954 478261 217503 818362 887019 397236 996859 379968 605680 155362 222452 833714 854238 115113 222713 255450 277029 700030 683855 208013 182719 541197 646046 684642 863324 366134 795288 419313 168512 538398 668079 854892 200982 401628 943370 671755 010522 389072 373725 400675 506716 455422 798747 286551 573866 764411 406156 176267 390747 528684 254535 888823 636803 817791 117617 689743 576611 311194 227542 058507 094478 085033 577076 374526 788500 485027 682943 356501 637405 218940 734097 710839 377125 394698 544079 812914 528476 645166 136263 149830 214188 199878 910340 758822 929775 525600 820509 660153 914716 900006 553495 647670 148511 215837 076497 774012 238252 373591 612624 241807 465731 401981 047597 939035 072524 782525 023282 503255 540500 681479 245913 166497 333349 764617 797390 378463 405124 409793 956376 431576 817675 994374 576326 114555 640786 581664 843773 222779 398481 081055 592322 979529 677545 767211 051775 485427 888426 618565 735274 118808 894452 740381 026405 105962 627643 316161 752827 504537 972915 932361 158283 073280 103956 384142 564956 897778 089554 374486 706137 853995 874449 174295 099775 055438 410440 417621 499691 284624 823365 149834 911407 237892 528163 959960 915267 035663 928571 111582 091411 212878 892200 699608 095878 157712 318089 898246 339680 653616 632127 816520 786185 096494 432946 915371 198880 385832 380511 014190 591501 720798 299467 344735 627607 101969 027740 825667 839845 391302 427588 844111 983034 552539 353640 862697 800987 898352 930230 377103 671904 176615 237914 447369 339737 718386 322924 795571 820716 182073 323285 987003 986235 791628 066864 305959 578417 520008 486972 821980 922845 687024 662721 618283 608596 566321 516140 923688 364848 334709 636365 468620 159881 602077 050175 539293 850330 743480 669932 323183 412024 195553 282885 366354 190602 779437 474753 855375 746939 298138 235086 511883 459507 924046 620415 064854 166381 731054 949365 148842 783229 080773 894606 790395 726603 203499 280191 060758 730032 653380 849401 884221 694086 154031 765489 323772 014975 705592 739596 409777 653550 092042 821702 639165 029907 704259 032069 233472 788606 881355 008795 999423 709961 084581 227526 823708 310805 919392 225036 980565 249254 061698 482155 554193 934492 085312 327866 827324 153785 942164 590069 981662 263329 416152 775128 254041 825232 559187 329858 941217 212775 297052 245930 294609 642844 579476 171117 399733 247825 269145 339348 975875 702503 011662 806975 669832 908359 244067 047207 287258 672257 805709 422007 540055 071110 582068 024565 291164 420825 981545 375960 891728 094215 613430 417223 521660 229287 655893 417360 090765 090358 344911 291066 661964 873510 587647 336020 164071 055091 313696 968647 579107 578385 361734 291194 278708 444123 584260 942553 610031 174159 224916 396422 937761 182947 527586 959081 559840 707144 800875 449256 191514 051102 563215 550354 125636 351690 103651 538572 212279 698735 755926 128706 567960 874725 500670 649855 384386 121375 670685 349425 669141 898144 683810 884172 183533 269633 279343 823352 116769 044701 064532 708049 533998 236855 589019 151850 322689 197839 673764 812889 360207 254350 029996 929203 618938 490315 302426 967821 989899 785298 472716 399732 827049 032964 057118 133583 309542 256261 910443 142869 240005 050453 410888 184363 725112 932565 763832 870987 168626 558061 269982 014197 864163 410837 184903 825253 583181 735407 950196 106926 674553 223120 750816 713358 224110 198393 991204 760936 174653 105216 729160 538565 451854 273459 365894 602313 881168 092528 809167 472169 707380 274070 254190 646535 563653 723830 374173 174637 622061 804286 335060 275451 050355 421568 508233 453337 692856 738955 809703 952301 258215 857877 456053 313208 293517 438874 146464 628960 353213 568720 783591 390508 756244 045757 054624 104123 701244 478292 292936 196309 837748 504852 290993 282611 356141 280006 067231 141369 649344 385314 912494 636694 627947 721091 119449 971830 808756 757623 733754 684217 252703 789015 707612 726135 106939 474730 246978 456107 536006 944927 134822 615824 254177 863376 859911 684491 740729 299601 750268 046185 313130 488125 847345 555821 098800 272238 340041 846895 441643 379391 098136 178922 384756 024313 006785 995321 450467 759491 102616 622887 124706 927674 985638 536108 878891 466567 009357 037814 811620 896634 562891 864661 862307 588370 664467 807438 902973 601674 012752 324051 020669 128368 683094 515253 928080 793859 457025 727861 701718 254689 504910 232776 199658 732983 515396 237674 320479 530926 715270 847424 371667 958464 753706 762244 086669 949819 587256 530500 775318 106553 904760 483211 119259 617583 098632 395073 694174 617543 411840 277428 333616 724216 575402 291109 818427 340266 350773 398929 910364 702231 349624 600028 512426 490011 768238 871641 959009 792313 793449 865449 663543 824355 244436 023229 209945 491043 039836 314462 033732 473383 911856 122769 773040 935460 575065 573233 365297 186591 229182 468212 948331 980747 991342 790594 497538 684456 429636 684474 808384 563089 389548 096660 760937 260400 507983 777520 927175 460790 052731 326859 362215 448743 917576 645727 634454 216817 244862 486511 002304 510973 640571 815390 410147 646420 019991 396407 774722 233738 899285 184806 344048 122767 842718 924387 402434 352216 946988 012754 128073 538737 474216 888188 484662 285807 962792 961262 141947 336821 734473 597082 929689 395509 962815 161836 923256 375041 920191 442122 005651 325931 777709 559344 977817 620799 297732 135971 392695 805686 459869 040081 864720 194983 936290 464821 600733 500214 559381 068555 061657 848916 776341 151978 859358 491517 501568 565540 657972 432913 927038 646499 661743 016938 388550 079282 104384 469584 573255 196103 240366 858230 750308 937473 141300 688894 658505 978524 016307 897205 827907 225651 731630 166505 390842 019846 778805 116678 649220 088664 277678 842498 944463 627244 378588 153982 630964 712767 468049 950133 875584 323729 100270 679687 204803 848055 891200 778302 012465 198383 986174 552115 599825 603288 958553 444837 989027 311594 597842 680143 949184 301608 827669 413588 024520 029262 748506 166674 583738 755253 737454 965909 836408 133971 046776 010736 466227 777174 838739 372697 250159 179455 795018 954645 801669 541714 568130 726047 897619 808616 107335 417952 769617 247222 133659 917463 311788 418830 560661 392876 927385 164513 451930 239343 203232 123661 507596 519037 603317 749641 635321 254802 086793 308668 097406 059957 354934 778069 621921 233408 922494 448486 549181 325149 390349 531964 379798 122055 381280 395028 431505 613518 728967 837970 979899 796723 903528 868391 811962 567455 383432 033920 844815 425467 568430 004955 150852 601267 365360 191235 050832 132315 676908 829373 715693 806062 745848 921037 571051 243051 551219 123703 521216 958303 797950 477126 223974 688454 997632 562570 408297 911758 296102 226283 828611 401640 990966 389597 399624 064670 683815 500521 609080 929561 173313 975383 739956 201231 755089 786005 410711 674509 895460 064298 534334 932328 195444 598537 065962 101573 860667 831018 394530 900836 740542 519214 100123 730369 678385 283063 292945 180642 704813 145132 145178 674174 827240 818211 287022 895833 456538 491407 115335 702999 721448 821980 683668 429395 678502 424667 509291 230968 130386 997643 046155 477337 516404 150157 859129 017999 599533 382040 544440 879764 258679 121643 112949 664055 060280 618493 343354 584774 503468 773041 363166 893149 292148 234615 698329 694893 203089 412123 386453 820283 751505 621183 874215 381190 860440 364018 622064 835626 239280 316541 428253 817753 108160 472730 133956 083857 298985 235219 673194 386460 042035 281827 852163 301406 010911 468708 859819 076714 139442 340939 243487 389118 960273 869670 277624 240760 539698 865914 656546 005315 727972 444471 603796 132704 560245 823412 618624 703886 346297 327243 710118 779132 670094 442167 190589 322050 731135 660150 110081 463167 005540 350771 355330 781989 257179 545068 660089 384408 627282 588260 952331 675115 204538 338063 564370 597977 140748 303194 585114 880135 380312 253955 662741 495544 401295 784841 086776 498358 489927 892403 505336 684429 895922 922815 395073 463438 332227 445820 283287 188672 067573 502103 716012 891468 094818 385208 928419 595654 020268 487745 979810 509476 749707 850627 524391 281827 728379 179231 985950 467742 315886 399478 980135 339489 173062 996350 807354 845269 447468 181241 740115 813783 249501 082551 819840 729838 589435 164849 486946 374404 146610 447653 966804 551118 814088 355089 360869 041510 179658 701957 203954 310269 419245 364804 862089 482573 484738 117189 454166 160596 951012 002311 514250 654458 469448 285680 629357 377299 295930 197352 565205 527087 736398 032782 545666 811344 828569 635762 602283 710469 425174 410166 530567 616250 241167 112651 614104 816952 944453 253542 984727 136156 119035 273969 151638 058139 871232 533642 254607 036546 540478 213868 746335 383269 958599 300695 398219 125597 850602 510863 970760 166109 300457 524322 164326 794798 516379 906623 071851 283675 715647 334709 709323 845741 465874 534427 955317 698869 080991 072794 573049 010763 881183 867281 389319 583278 635042 943249 060902 555004 537726 105051 509274 837903 489968 991916 398202 507514 134013 161417 428362 826843 359931 804348 088897 624067 467461 997355 129898 116386 227990 988711 266749 001249 052625 747273 715464 504400 359822 690281 428362 424042 427362 516246 398840 717371 551883 573718 376085 043229 063895 839769 665550 246746 937657 764256 596523 424867 058438 025831 097467 793483 223111 434517 020812 846445 157849 099820 108694 864830 432680 352623 497835 558973 124997 545419 600792 675413 856528 994025 432852 088149 706654 226054 281618 740317 772386 804791 640024 226319 846689 329275 262475 136010 759223 286418 556583 770876 785893 204468 932781 202643 228474 950149 174054 338539 125348 895126 285420 040718 347016 508360 003611 958830 106970 860676 019735 313192 386635 416198 575276 056386 958733 300163 164957 377173 123441 840989 783055 547924 307457 581522 781786 799468 930694 731357 487953 416089 179806 702224 543330 501486 645626 385442 543962 562453 577751 894998 562502 424006 951694 427585 614412 042002 543786 134937 037879 105119 167237 557081 009629 316515 401874 709255 745709 558196 642413 941589 526374 108193 543980 055876 741602 247967 629926 490022 225369 953494 847729 725394 626139 017675 580317 909710 162123 499397 442087 379115 134960 (25079 digits)

Möbius: 0

n = a^2

a = 269568 186142 922536 017476 189933 672564 374669 496384 562507 284203 181995 009291 989759 532559 002677 766813 045555 035739 903868 432162 930281 905774 858853 321550 549212 327665 367253 639201 905285 237030 795766 055305 222626 840540 515597 301783 100018 662313 287966 939312 797431 873967 786742 119404 641675 068161 743005 951348 100824 962865 959409 731265 316281 150496 448577 605373 764831 096624 539177 976792 366247 079993 321279 819401 273393 616691 591046 321087 227038 260253 057978 257920 544615 626328 857887 211980 684988 222367 583617 860757 181332 337942 027985 466521 923502 310803 659813 597927 055003 451618 190300 046097 398478 004237 334938 213742 777863 871518 881322 503473 652309 710824 571400 779839 175890 335770 497757 625248 750813 301412 973108 302853 248877 628388 737842 302939 746557 259228 862661 084741 599890 284568 825285 595250 095506 538237 145539 454730 083451 428915 436823 188863 461543 213441 677085 230908 649334 852746 494608 669646 849477 465130 560362 247867 755555 922354 063583 596779 385209 514356 358057 239346 121611 157084 795935 301036 429985 734924 990983 883601 119009 878611 801338 360649 765286 205032 256517 662440 554766 102266 812707 497976 073716 401165 642397 824646 257890 317708 998504 912033 278358 854700 455641 425047 893093 440677 611373 381054 292498 080706 040733 117442 391633 229763 844665 631173 671787 157657 130379 466502 577681 553909 842756 415182 603596 610175 375106 177802 921810 079225 606634 739949 943656 734175 670283 810394 164045 957984 047112 499828 024136 298507 666970 616699 567253 578789 762912 969720 502024 915696 886093 729775 145338 749314 032579 647463 366799 569905 976297 132057 454308 669304 475802 068219 866796 442224 986085 553666 016918 647204 562189 950082 301743 248741 332991 773492 420406 261186 690088 139649 727008 235446 809549 918231 852240 955348 272066 327200 639607 256535 809374 649674 279990 382805 925927 081524 893810 113631 527041 476678 588706 408854 481672 065085 440662 224612 587070 120256 281868 073046 617583 922854 194701 174780 962563 627210 010264 569620 023102 876047 011976 040145 529256 746163 156053 631118 304066 238603 883022 631526 583835 973926 216406 645941 859754 100856 889162 506341 369435 575396 769167 215306 447276 164519 190163 402618 032877 472534 353849 501474 619797 118637 856985 887328 837068 741278 614775 810876 091644 072112 768500 082985 408996 055763 846533 337019 831431 939123 568358 333555 452967 486723 626041 361007 449966 489991 678817 738502 524384 365503 566231 696446 967381 699618 380778 811927 435433 762547 595053 534412 815430 924894 871442 209908 425127 775093 357827 906411 916968 670648 919289 568979 970593 816356 280165 924928 536259 666870 582408 765046 938829 038628 255925 215574 294518 725508 784101 781816 647239 839425 579459 370014 147787 677945 262346 263740 880466 479488 448320 966684 209058 100955 292579 402298 721822 827419 194948 073946 636347 323657 523599 595134 922505 702780 864844 182133 064865 917821 215659 435791 745971 116982 597317 511218 268339 906880 379420 970339 628177 467255 112229 210106 665527 919902 409843 599058 850256 341156 829307 965730 328532 047969 325895 880490 487002 802395 179827 449391 531977 207981 560060 460797 600904 016602 621132 985117 626310 911234 238769 809481 937383 617204 541519 437681 278521 168859 758555 794168 877891 661301 260122 797352 644169 556643 022390 923905 431783 012975 086665 408975 545564 216734 342106 774025 041400 232243 513823 262139 150358 657524 590655 275769 522599 952049 672432 434780 010294 238025 549347 613256 253141 142639 394739 728467 225862 952126 219954 585387 009530 785681 757544 104893 677651 568939 946715 850208 460569 209526 164488 443666 289343 683229 716548 959211 870107 792404 454898 893341 545417 424733 929320 639919 181112 586815 596490 820197 649554 651036 386815 397448 466331 802226 477196 318221 790926 861196 607305 729622 046051 688808 093187 467025 926521 492088 290400 562759 154345 383255 382239 014971 516167 618508 161344 133286 454086 158720 653803 848804 556099 637639 188316 136135 371811 183814 207981 249113 795505 367787 192514 794612 523536 886409 107644 468941 223309 298788 531889 818051 365830 065393 061641 914972 479023 786134 569935 558007 919544 817592 033063 618844 630203 843664 699218 534789 455640 771507 741172 788983 281328 646325 519699 419425 393452 583689 319663 542271 461238 892294 252943 221291 873773 041339 493143 485508 709218 816417 139935 570032 232629 338776 474733 522225 301293 512101 581669 922711 309780 734255 357185 150374 145083 398233 602665 587438 187648 617374 812324 884874 719985 360795 321225 065865 313629 290191 618349 225708 749174 529787 932891 157906 908584 831029 051541 710472 754548 681055 976163 551905 993403 768681 052717 358386 982477 028653 390253 492064 521532 244286 739281 552716 805722 656625 796744 392200 998535 977944 570525 105207 040600 605757 082882 428522 651401 045780 846359 875889 643343 115343 436201 557543 903223 252056 443846 999694 614614 739755 958700 883369 388868 409298 083151 848446 839477 110150 868369 925431 966320 599893 545057 071058 337471 128001 216437 116209 156446 790256 267294 994106 736636 063145 739966 377821 947143 984817 111204 949991 469970 512052 720189 584077 387647 774502 520769 363564 611987 024110 589244 636426 504764 328130 564535 299977 710483 634433 672139 942307 188892 745647 133013 241100 688731 522604 002054 554422 241816 963524 776275 888856 222451 858140 274355 687518 712554 974804 685141 837105 006358 211364 878623 751409 291567 920956 615802 763389 373367 569881 028573 444710 793248 240227 004613 258882 059805 914591 995021 513830 934308 178576 338262 356555 935703 858217 264017 141441 934438 506388 212719 371140 595538 806846 862606 507125 893482 259984 881309 144996 822195 746925 542750 911223 309222 805243 062809 335870 334045 604670 086680 533335 162899 736469 522385 847579 692700 390513 590294 917098 649027 320575 107598 552007 702005 368032 531056 227521 216491 189749 051045 938680 472393 939701 344582 314587 557994 234312 145457 676037 801410 226737 619792 128040 896218 671467 750687 935925 617078 482448 046795 129145 512216 726186 219215 674156 386606 765210 096790 790533 658132 864753 647233 122602 581435 242831 371215 856261 754448 751080 412489 201846 299221 183561 615082 449507 153789 818453 993946 410643 112799 342912 774586 052886 881751 174199 896802 458271 433189 021976 081179 776438 109471 108900 227891 870984 115388 791593 150678 322569 165525 010873 686380 881379 033274 157465 096543 754476 486174 432967 236352 683571 592235 876811 512639 992615 750871 511029 334198 619478 420739 187102 534961 246527 291149 701599 537337 104156 480877 064988 446141 397195 314370 980909 766835 210175 855660 066403 319482 704501 702397 598627 570218 680438 692309 348111 397312 769259 308668 411896 563005 859196 771922 397492 686867 241853 437422 577060 265096 710873 970866 429786 546854 112740 083015 046408 194600 482447 503418 427576 837965 159284 197185 862112 427587 257778 731128 842316 541836 376197 938451 241151 823479 919338 740079 763512 731098 361342 029163 493917 049822 965383 316816 418129 131175 551970 804104 275786 709909 443160 588668 010401 309472 625472 066706 557305 824863 689134 925695 902443 616449 544270 382202 326933 326214 283252 044446 814471 921865 462658 809856 661840 471045 257265 141442 688832 843921 624380 733982 894427 100675 658456 947629 088802 791663 850103 528423 892985 361860 400950 172766 112858 050736 216502 107136 700418 218893 525782 198481 858995 834121 263834 450633 615110 816660 655248 418223 670280 084588 329298 231188 207668 177948 912874 687643 490603 719541 909138 821639 496787 073864 429244 209706 852891 642008 282058 879245 081888 745319 762667 841505 922285 493459 521161 744701 054759 904555 168752 672953 952801 191744 383186 022759 004751 063318 477460 081478 206663 727539 497884 262277 872724 353982 011336 032356 785661 876902 427960 457325 954213 016678 133529 139237 193053 580171 378855 771915 466394 544675 471929 117450 513331 083291 374523 145382 727616 229744 837556 121676 352291 025541 874676 429626 020295 107658 486036 150611 989574 382948 961766 951184 034375 906270 050579 152689 711605 990408 296317 292169 992192 303971 513751 086991 575505 991885 954561 784100 209865 410415 443670 053035 555631 362059 769190 124576 046088 935187 212355 316482 291661 859473 230788 925562 482805 372673 141542 459785 396009 087538 119856 311141 730465 574722 249248 182807 147510 933823 476807 006110 554076 383727 226527 656357 986472 946548 772146 592005 391935 738061 810028 425734 861345 595219 086920 888801 848791 558412 807964 059538 680137 926630 756844 604939 688436 925030 762237 639847 270221 526641 708173 626288 718752 739706 463267 146958 582689 400758 461478 613396 860321 298589 414643 526883 604523 094097 973387 572096 280059 640682 552825 529955 647387 304121 340566 129508 743551 446947 139261 407732 901214 914291 080692 437739 462809 670848 977732 183546 490733 036751 842440 494742 062602 602989 003422 009532 521069 562544 694226 175471 099872 310731 870874 615660 674087 421111 150884 005187 361928 574256 624632 298076 539355 861624 178056 837388 745908 846965 857143 840656 719657 957841 868091 549912 631817 770175 435334 240344 563783 853333 039328 750173 925198 223037 915145 668001 828480 064699 264789 334285 468795 853906 937108 719506 937409 311815 788704 235333 912025 619476 145319 581007 076042 314505 598032 661714 142778 490062 321129 036596 166066 063008 138524 721362 615975 139931 052680 804369 457457 334134 859174 067068 784171 563683 976005 308889 252422 865994 372034 146173 776072 649510 569740 430731 394120 396303 976449 246487 566741 851365 715028 922196 994927 755253 409835 882727 029630 919655 009801 554461 365429 916069 013653 002726 534253 279992 297754 701415 827585 943115 536064 792067 263270 618868 907378 709395 123996 424815 516381 111348 327706 031607 366031 090412 686743 179112 058127 528665 105526 306708 476588 227015 950959 528784 547032 994133 511130 671538 343494 610955 891350 577663 075746 747709 809144 594790 691396 447931 035408 774777 773920 712992 935311 143771 900819 521635 921950 294583 402706 092839 384323 012567 842364 955222 934550 227026 516514 981108 253699 772485 885378 578543 541841 118509 402239 224531 666751 348243 726714 923256 125906 851616 652839 064496 945006 978972 038740 352266 771180 308507 205690 260346 058461 681726 286154 125097 589842 744355 621292 272405 427450 442422 714510 761329 728597 558674 799969 678984 824052 898708 144644 608445 958652 615184 355580 423038 538935 018431 050317 118613 084072 379432 766414 569011 632528 499993 660799 658624 323124 699222 965863 811549 824605 178806 302378 267026 454162 643005 907715 041596 202401 650301 032929 561074 235746 970509 117534 020384 804022 139764 861692 069653 553780 295217 245543 312899 530948 764566 156857 994086 005382 184705 051204 014617 381098 940656 570337 740436 082368 380619 988771 718294 574973 400350 457439 178028 414918 180519 749935 917845 547712 949222 098955 033488 839847 305758 649028 273136 289117 735605 752945 781473 266020 233141 926007 532252 585384 620517 296662 825061 844780 515852 542894 519408 313135 828328 025819 316032 211258 079892 190496 962513 268376 567740 297666 620668 720518 615348 356245 158817 752262 569570 030458 793066 503259 320135 229270 247196 821788 846087 172529 765311 648707 854704 790977 098715 423960 954385 873111 214887 162021 741982 524191 965834 206766 111441 748190 056804 397702 564231 381207 695353 354764 469139 439690 943421 204938 064323 077718 460271 693057 182047 099332 534829 703411 977523 914104 055747 861050 347464 430742 159039 051897 629216 572313 542491 057029 375546 601770 724476 746789 388922 843511 025327 786620 095701 494654 815506 459172 942561 057857 070951 512995 681084 741200 403972 783090 231961 663203 080365 615252 537301 873976 897777 693773 700405 660777 966074 251011 334029 160308 814124 395120 730053 001338 168933 639349 681207 827221 850039 585190 985355 795712 781071 208126 134582 481088 440825 108961 380375 147875 565193 182119 602763 811859 733365 711187 383525 412781 826492 796922 317592 872464 034533 964685 274082 519878 081952 406762 737629 366751 552199 710769 390315 753151 110908 202245 997682 053231 116769 491331 229035 922152 999401 175728 973150 288602 721488 870618 526066 948016 198418 493643 703354 408025 296332 803191 301537 459793 441220 918570 795659 867264 827225 575789 110159 320143 394302 479192 843047 635173 037862 710316 797028 951381 669798 053702 367166 680631 327638 677277 724928 244558 831577 354717 860650 467197 326257 257863 723800 160471 763242 899531 857803 059530 399932 229051 881363 583357 935026 814200 595543 071732 047152 416695 268799 325297 595937 472659 029533 520876 699168 604889 495107 837123 456148 452065 864892 701541 943272 720756 395465 977893 138734 367930 553486 066660 139733 139199 176168 517086 286506 924894 059524 966332 953728 084801 731510 059065 478884 419066 191269 111223 793422 384368 066638 712414 373256 880217 499132 604350 750092 692745 119181 843052 569576 311861 303240 697935 206708 495308 794846 142198 754304 611867 702724 794187 009086 157209 483268 586519 325765 585687 049811 797776 037817 176357 037442 816584 311871 433366 700135 857201 739059 552038 191752 114437 842477 378184 059951 192821 363868 093484 433183 296966 445541 246793 406048 749565 100627 941908 776588 532821 622107 179295 521078 770877 719876 013899 511795 485260 041251 463858 964821 240384 754821 895120 320563 911807 234405 195672 200629 367258 452734 321109 101756 667881 047725 681358 788857 447961 024712 485101 241786 193914 810649 721146 848430 931154 165668 162824 276060 522477 864011 854743 359956 634084 271752 795598 987750 430935 692605 938698 642940 365478 341234 258932 834773 555658 973450 312190 197138 823963 658028 979015 821820 280556 299745 236380 905474 673586 820300 376433 993549 316652 131831 617148 069735 841101 536916 390640 882411 644567 728963 349372 217538 138211 093054 842682 435454 817787 771185 036098 098039 399621 073214 392549 974096 266521 315434 168377 903608 491622 216423 832488 076240 230386 477860 918097 045675 386088 670377 522844 136912 432034 678088 063492 873930 098181 254101 487302 218203 028401 835222 230501 487832 779530 389170 672788 556778 608812 428645 107300 530153 688869 885283 949807 400030 879094 687035 410841 058054 463863 941936 549464 942078 772221 243346 096607 565345 121575 239320 371710 043784 475075 796012 890246 797787 543826 212965 554512 077823 260870 060819 734846 125436 776830 966647 460400 230756 886534 343933 364626 943894 760001 (12540 digits)

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • x: equal sign missing in first expression

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • x=: three or four semicolons expected but none found

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • x=23: three or four semicolons expected but none found

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • x=23;13: variable x missing in second expression

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • x=23;x=x+1: three or four semicolons expected but there are only one

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • Error in expression #4: The expression must not include variables

Written by Dario Alpern. Last updated on 15 December 2024.

+6
  • 25 = 5^2
  • 26 = 2 * 13
  • 27 = 3^3
  • 28 = 2^2 * 7
  • 29 is prime
  • 30 = 2 * 3 * 5
  • 31 is prime
  • 32 = 2^5
  • 33 = 3 * 11
  • 34 = 2 * 17
  • 35 = 5 * 7
  • 36 = 2^2 * 3^2
  • 37 is prime
  • 38 = 2 * 19
  • 39 = 3 * 13
  • 40 = 2^3 * 5
  • 41 is prime
  • 42 = 2 * 3 * 7
  • 43 is prime
  • 44 = 2^2 * 11
  • 45 = 3^2 * 5
  • 46 = 2 * 23
  • 47 is prime
  • 48 = 2^4 * 3
  • 49 = 7^2
  • 50 = 2 * 5^2
  • 51 = 3 * 17
  • 52 = 2^2 * 13
  • 53 is prime
  • 54 = 2 * 3^3
  • 55 = 5 * 11
  • 56 = 2^3 * 7
  • 57 = 3 * 19
  • 58 = 2 * 29
  • 59 is prime
  • 60 = 2^2 * 3 * 5
  • 61 is prime
  • 62 = 2 * 31
  • 63 = 3^2 * 7
  • 64 = 2^6
  • 65 = 5 * 13
  • 66 = 2 * 3 * 11
  • 67 is prime
  • 68 = 2^2 * 17
  • 69 = 3 * 23
  • 70 = 2 * 5 * 7
  • 71 is prime
  • 72 = 2^3 * 3^2
  • 73 is prime
  • 74 = 2 * 37
  • 75 = 3 * 5^2
  • 76 = 2^2 * 19
  • 77 = 7 * 11
  • 78 = 2 * 3 * 13
  • 79 is prime
  • 80 = 2^4 * 5
  • 81 = 3^4
  • 82 = 2 * 41
  • 83 is prime
  • 84 = 2^2 * 3 * 7
  • 85 = 5 * 17
  • 86 = 2 * 43
  • 87 = 3 * 29
  • 88 = 2^3 * 11
  • 89 is prime
  • 90 = 2 * 3^2 * 5
  • 91 = 7 * 13
  • 92 = 2^2 * 23
  • 93 = 3 * 31
  • 94 = 2 * 47
  • 95 = 5 * 19
  • 96 = 2^5 * 3
  • 97 is prime
  • 98 = 2 * 7^2
  • 99 = 3^2 * 11
  • 100 = 2^2 * 5^2
  • 101 is prime
  • 102 = 2 * 3 * 17
  • 103 is prime
  • 104 = 2^3 * 13
  • 105 = 3 * 5 * 7
  • 106 = 2 * 53
  • 107 is prime
  • 108 = 2^2 * 3^3
  • 109 is prime
  • 110 = 2 * 5 * 11
  • 111 = 3 * 37
  • 112 = 2^4 * 7
  • 113 is prime
  • 114 = 2 * 3 * 19
  • 115 = 5 * 23
  • 116 = 2^2 * 29
  • 117 = 3^2 * 13
  • 118 = 2 * 59
  • 119 = 7 * 17
  • 120 = 2^3 * 3 * 5
  • 121 = 11^2
  • 122 = 2 * 61
  • 123 = 3 * 41
  • 124 = 2^2 * 31
  • 125 = 5^3
  • 126 = 2 * 3^2 * 7
  • 127 is prime
  • 128 = 2^7
  • 129 = 3 * 43
  • 130 = 2 * 5 * 13
  • 131 is prime
  • 132 = 2^2 * 3 * 11
  • 133 = 7 * 19
  • 134 = 2 * 67
  • 135 = 3^3 * 5
  • 136 = 2^3 * 17
  • 137 is prime
  • 138 = 2 * 3 * 23
  • 139 is prime
  • 140 = 2^2 * 5 * 7
  • 141 = 3 * 47
  • 142 = 2 * 71
  • 143 = 11 * 13
  • 144 = 2^4 * 3^2
  • 145 = 5 * 29
  • 146 = 2 * 73
  • 147 = 3 * 7^2
  • 148 = 2^2 * 37
  • 149 is prime
  • 150 = 2 * 3 * 5^2
  • 151 is prime
  • 152 = 2^3 * 19
  • 153 = 3^2 * 17
  • 154 = 2 * 7 * 11
  • 155 = 5 * 31
  • 156 = 2^2 * 3 * 13
  • 157 is prime
  • 158 = 2 * 79
  • 159 = 3 * 53
  • 160 = 2^5 * 5
  • 161 = 7 * 23
  • 162 = 2 * 3^4
  • 163 is prime
  • 164 = 2^2 * 41
  • 165 = 3 * 5 * 11
  • 166 = 2 * 83
  • 167 is prime
  • 168 = 2^3 * 3 * 7
  • 169 = 13^2
  • 170 = 2 * 5 * 17
  • 171 = 3^2 * 19
  • 172 = 2^2 * 43
  • 173 is prime
  • 174 = 2 * 3 * 29
  • 175 = 5^2 * 7
  • 176 = 2^4 * 11
  • 177 = 3 * 59
  • 178 = 2 * 89
  • 179 is prime
  • 180 = 2^2 * 3^2 * 5
  • 181 is prime
  • 182 = 2 * 7 * 13
  • 183 = 3 * 61
  • 184 = 2^3 * 23
  • 185 = 5 * 37
  • 186 = 2 * 3 * 31
  • 187 = 11 * 17
  • 188 = 2^2 * 47
  • 189 = 3^3 * 7
  • 190 = 2 * 5 * 19
  • 191 is prime
  • 192 = 2^6 * 3
  • 193 is prime
  • 194 = 2 * 97
  • 195 = 3 * 5 * 13
  • 196 = 2^2 * 7^2
  • 197 is prime
  • 198 = 2 * 3^2 * 11
  • 199 is prime
  • 200 = 2^3 * 5^2
  • 201 = 3 * 67
  • 202 = 2 * 101
  • 203 = 7 * 29
  • 204 = 2^2 * 3 * 17
  • 205 = 5 * 41
  • 206 = 2 * 103
  • 207 = 3^2 * 23
  • 208 = 2^4 * 13
  • 209 = 11 * 19
  • 210 = 2 * 3 * 5 * 7
  • 211 is prime
  • 212 = 2^2 * 53
  • 213 = 3 * 71
  • 214 = 2 * 107
  • 215 = 5 * 43
  • 216 = 2^3 * 3^3
  • 217 = 7 * 31
  • 218 = 2 * 109
  • 219 = 3 * 73
  • 220 = 2^2 * 5 * 11
  • 221 = 13 * 17
  • 222 = 2 * 3 * 37
  • 223 is prime
  • 224 = 2^5 * 7
  • 225 = 3^2 * 5^2
  • 226 = 2 * 113
  • 227 is prime
  • 228 = 2^2 * 3 * 19
  • 229 is prime
  • 230 = 2 * 5 * 23
  • 231 = 3 * 7 * 11
  • 232 = 2^3 * 29
  • 233 is prime
  • 234 = 2 * 3^2 * 13
  • 235 = 5 * 47
  • 236 = 2^2 * 59
  • 237 = 3 * 79
  • 238 = 2 * 7 * 17
  • 239 is prime
  • 240 = 2^4 * 3 * 5
  • 241 is prime
  • 242 = 2 * 11^2
  • 243 = 3^5
  • 244 = 2^2 * 61
  • 245 = 5 * 7^2
  • 246 = 2 * 3 * 41
  • 247 = 13 * 19
  • 248 = 2^3 * 31
  • 249 = 3 * 83
  • 250 = 2 * 5^3
  • 251 is prime
  • 252 = 2^2 * 3^2 * 7
  • 253 = 11 * 23
  • 254 = 2 * 127
  • 255 = 3 * 5 * 17
  • 256 = 2^8
  • 257 is prime
  • 258 = 2 * 3 * 43
  • 259 = 7 * 37
  • 260 = 2^2 * 5 * 13
  • 261 = 3^2 * 29
  • 262 = 2 * 131
  • 263 is prime
  • 264 = 2^3 * 3 * 11
  • 265 = 5 * 53
  • 266 = 2 * 7 * 19
  • 267 = 3 * 89
  • 268 = 2^2 * 67
  • 269 is prime
  • 270 = 2 * 3^3 * 5
  • 271 is prime
  • 272 = 2^4 * 17
  • 273 = 3 * 7 * 13
  • 274 = 2 * 137
  • 275 = 5^2 * 11
  • 276 = 2^2 * 3 * 23
  • 277 is prime
  • 278 = 2 * 139
  • 279 = 3^2 * 31
  • 280 = 2^3 * 5 * 7
  • 281 is prime
  • 282 = 2 * 3 * 47
  • 283 is prime
  • 284 = 2^2 * 71
  • 285 = 3 * 5 * 19
  • 286 = 2 * 11 * 13
  • 287 = 7 * 41
  • 288 = 2^5 * 3^2
  • 289 = 17^2
  • 290 = 2 * 5 * 29
  • 291 = 3 * 97
  • 292 = 2^2 * 73
  • 293 is prime
  • 294 = 2 * 3 * 7^2
  • 295 = 5 * 59
  • 296 = 2^3 * 37
  • 297 = 3^3 * 11
  • 298 = 2 * 149
  • 299 = 13 * 23
  • 300 = 2^2 * 3 * 5^2
  • 301 = 7 * 43
  • 302 = 2 * 151
  • 303 = 3 * 101
  • 304 = 2^4 * 19
  • 305 = 5 * 61
  • 306 = 2 * 3^2 * 17
  • 307 is prime
  • 308 = 2^2 * 7 * 11
  • 309 = 3 * 103
  • 310 = 2 * 5 * 31
  • 311 is prime
  • 312 = 2^3 * 3 * 13
  • 313 is prime
  • 314 = 2 * 157
  • 315 = 3^2 * 5 * 7
  • 316 = 2^2 * 79
  • 317 is prime
  • 318 = 2 * 3 * 53
  • 319 = 11 * 29
  • 320 = 2^6 * 5
  • 321 = 3 * 107
  • 322 = 2 * 7 * 23
  • 323 = 17 * 19
  • 324 = 2^2 * 3^4
  • 325 = 5^2 * 13
  • 326 = 2 * 163
  • 327 = 3 * 109
  • 328 = 2^3 * 41
  • 329 = 7 * 47
  • 330 = 2 * 3 * 5 * 11
  • 331 is prime
  • 332 = 2^2 * 83
  • 333 = 3^2 * 37
  • 334 = 2 * 167
  • 335 = 5 * 67
  • 336 = 2^4 * 3 * 7
  • 337 is prime
  • 338 = 2 * 13^2
  • 339 = 3 * 113
  • 340 = 2^2 * 5 * 17
  • 341 = 11 * 31
  • 342 = 2 * 3^2 * 19
  • 343 = 7^3
  • 344 = 2^3 * 43
  • 345 = 3 * 5 * 23
  • 346 = 2 * 173
  • 347 is prime
  • 348 = 2^2 * 3 * 29
  • 349 is prime
  • 350 = 2 * 5^2 * 7
  • 351 = 3^3 * 13
  • 352 = 2^5 * 11
  • 353 is prime
  • 354 = 2 * 3 * 59
  • 355 = 5 * 71
  • 356 = 2^2 * 89
  • 357 = 3 * 7 * 17
  • 358 = 2 * 179
  • 359 is prime
  • 360 = 2^3 * 3^2 * 5
  • 361 = 19^2
  • 362 = 2 * 181
  • 363 = 3 * 11^2
  • 364 = 2^2 * 7 * 13
  • 365 = 5 * 73
  • 366 = 2 * 3 * 61
  • 367 is prime
  • 368 = 2^4 * 23
  • 369 = 3^2 * 41
  • 370 = 2 * 5 * 37
  • 371 = 7 * 53
  • 372 = 2^2 * 3 * 31
  • 373 is prime
  • 374 = 2 * 11 * 17
  • 375 = 3 * 5^3
  • 376 = 2^3 * 47
  • 377 = 13 * 29
  • 378 = 2 * 3^3 * 7
  • 379 is prime
  • 380 = 2^2 * 5 * 19
  • 381 = 3 * 127
  • 382 = 2 * 191
  • 383 is prime
  • 384 = 2^7 * 3
  • 385 = 5 * 7 * 11
  • 386 = 2 * 193
  • 387 = 3^2 * 43
  • 388 = 2^2 * 97
  • 389 is prime
  • 390 = 2 * 3 * 5 * 13
  • 391 = 17 * 23
  • 392 = 2^3 * 7^2
  • 393 = 3 * 131
  • 394 = 2 * 197
  • 395 = 5 * 79
  • 396 = 2^2 * 3^2 * 11
  • 397 is prime
  • 398 = 2 * 199
  • 399 = 3 * 7 * 19
  • 400 = 2^4 * 5^2
  • 401 is prime
  • 402 = 2 * 3 * 67
  • 403 = 13 * 31
  • 404 = 2^2 * 101
  • 405 = 3^4 * 5
  • 406 = 2 * 7 * 29
  • 407 = 11 * 37
  • 408 = 2^3 * 3 * 17
  • 409 is prime
  • 410 = 2 * 5 * 41
  • 411 = 3 * 137
  • 412 = 2^2 * 103
  • 413 = 7 * 59
  • 414 = 2 * 3^2 * 23
  • 415 = 5 * 83
  • 416 = 2^5 * 13
  • 417 = 3 * 139
  • 418 = 2 * 11 * 19
  • 419 is prime
  • 420 = 2^2 * 3 * 5 * 7
  • 421 is prime
  • 422 = 2 * 211
  • 423 = 3^2 * 47
  • 424 = 2^3 * 53
  • 425 = 5^2 * 17
  • 426 = 2 * 3 * 71
  • 427 = 7 * 61
  • 428 = 2^2 * 107
  • 429 = 3 * 11 * 13
  • 430 = 2 * 5 * 43
  • 431 is prime
  • 432 = 2^4 * 3^3
  • 433 is prime
  • 434 = 2 * 7 * 31
  • 435 = 3 * 5 * 29
  • 436 = 2^2 * 109
  • 437 = 19 * 23
  • 438 = 2 * 3 * 73
  • 439 is prime
  • 440 = 2^3 * 5 * 11
  • 441 = 3^2 * 7^2
  • 442 = 2 * 13 * 17
  • 443 is prime
  • 444 = 2^2 * 3 * 37
  • 445 = 5 * 89
  • 446 = 2 * 223
  • 447 = 3 * 149
  • 448 = 2^6 * 7
  • 449 is prime
  • 450 = 2 * 3^2 * 5^2
  • 451 = 11 * 41
  • 452 = 2^2 * 113
  • 453 = 3 * 151
  • 454 = 2 * 227
  • 455 = 5 * 7 * 13
  • 456 = 2^3 * 3 * 19
  • 457 is prime
  • 458 = 2 * 229
  • 459 = 3^3 * 17
  • 460 = 2^2 * 5 * 23
  • 461 is prime
  • 462 = 2 * 3 * 7 * 11
  • 463 is prime
  • 464 = 2^4 * 29
  • 465 = 3 * 5 * 31
  • 466 = 2 * 233
  • 467 is prime
  • 468 = 2^2 * 3^2 * 13
  • 469 = 7 * 67
  • 470 = 2 * 5 * 47
  • 471 = 3 * 157
  • 472 = 2^3 * 59
  • 473 = 11 * 43
  • 474 = 2 * 3 * 79
  • 475 = 5^2 * 19
  • 476 = 2^2 * 7 * 17
  • 477 = 3^2 * 53
  • 478 = 2 * 239
  • 479 is prime
  • 480 = 2^5 * 3 * 5
  • 481 = 13 * 37
  • 482 = 2 * 241
  • 483 = 3 * 7 * 23
  • 484 = 2^2 * 11^2
  • 485 = 5 * 97
  • 486 = 2 * 3^5
  • 487 is prime
  • 488 = 2^3 * 61
  • 489 = 3 * 163
  • 490 = 2 * 5 * 7^2
  • 491 is prime
  • 492 = 2^2 * 3 * 41
  • 493 = 17 * 29
  • 494 = 2 * 13 * 19
  • 495 = 3^2 * 5 * 11
  • 496 = 2^4 * 31
  • 497 = 7 * 71
  • 498 = 2 * 3 * 83
  • 499 is prime
  • 500 = 2^2 * 5^3
  • 501 = 3 * 167
  • 502 = 2 * 251
  • 503 is prime
  • 504 = 2^3 * 3^2 * 7
  • 505 = 5 * 101
  • 506 = 2 * 11 * 23
  • 507 = 3 * 13^2
  • 508 = 2^2 * 127
  • 509 is prime
  • 510 = 2 * 3 * 5 * 17
  • 511 = 7 * 73
  • 512 = 2^9
  • 513 = 3^3 * 19
  • 514 = 2 * 257
  • 515 = 5 * 103
  • 516 = 2^2 * 3 * 43
  • 517 = 11 * 47
  • 518 = 2 * 7 * 37
  • 519 = 3 * 173
  • 520 = 2^3 * 5 * 13
  • 521 is prime
  • 522 = 2 * 3^2 * 29
  • 523 is prime
  • 524 = 2^2 * 131
  • 525 = 3 * 5^2 * 7
  • 526 = 2 * 263
  • 527 = 17 * 31
  • 528 = 2^4 * 3 * 11
  • 529 = 23^2
  • 530 = 2 * 5 * 53
  • 531 = 3^2 * 59
  • 532 = 2^2 * 7 * 19
  • 533 = 13 * 41
  • 534 = 2 * 3 * 89
  • 535 = 5 * 107
  • 536 = 2^3 * 67
  • 537 = 3 * 179
  • 538 = 2 * 269
  • 539 = 7^2 * 11
  • 540 = 2^2 * 3^3 * 5
  • 541 is prime
  • 542 = 2 * 271
  • 543 = 3 * 181
  • 544 = 2^5 * 17
  • 545 = 5 * 109
  • 546 = 2 * 3 * 7 * 13
  • 547 is prime
  • 548 = 2^2 * 137
  • 549 = 3^2 * 61
  • 550 = 2 * 5^2 * 11
  • 551 = 19 * 29
  • 552 = 2^3 * 3 * 23
  • 553 = 7 * 79
  • 554 = 2 * 277
  • 555 = 3 * 5 * 37
  • 556 = 2^2 * 139
  • 557 is prime
  • 558 = 2 * 3^2 * 31
  • 559 = 13 * 43
  • 560 = 2^4 * 5 * 7
  • 561 = 3 * 11 * 17
  • 562 = 2 * 281
  • 563 is prime
  • 564 = 2^2 * 3 * 47
  • 565 = 5 * 113
  • 566 = 2 * 283
  • 567 = 3^4 * 7
  • 568 = 2^3 * 71
  • 569 is prime
  • 570 = 2 * 3 * 5 * 19
  • 571 is prime
  • 572 = 2^2 * 11 * 13
  • 573 = 3 * 191
  • 574 = 2 * 7 * 41
  • 575 = 5^2 * 23
  • 576 = 2^6 * 3^2
  • 577 is prime
  • 578 = 2 * 17^2
  • 579 = 3 * 193
  • 580 = 2^2 * 5 * 29
  • 581 = 7 * 83
  • 582 = 2 * 3 * 97
  • 583 = 11 * 53
  • 584 = 2^3 * 73
  • 585 = 3^2 * 5 * 13
  • 586 = 2 * 293
  • 587 is prime
  • 588 = 2^2 * 3 * 7^2
  • 589 = 19 * 31
  • 590 = 2 * 5 * 59
  • 591 = 3 * 197
  • 592 = 2^4 * 37
  • 593 is prime
  • 594 = 2 * 3^3 * 11
  • 595 = 5 * 7 * 17
  • 596 = 2^2 * 149
  • 597 = 3 * 199
  • 598 = 2 * 13 * 23
  • 599 is prime
  • 600 = 2^3 * 3 * 5^2
  • 601 is prime
  • 602 = 2 * 7 * 43
  • 603 = 3^2 * 67
  • 604 = 2^2 * 151
  • 605 = 5 * 11^2
  • 606 = 2 * 3 * 101
  • 607 is prime
  • 608 = 2^5 * 19
  • 609 = 3 * 7 * 29
  • 610 = 2 * 5 * 61
  • 611 = 13 * 47
  • 612 = 2^2 * 3^2 * 17
  • 613 is prime
  • 614 = 2 * 307
  • 615 = 3 * 5 * 41
  • 616 = 2^3 * 7 * 11
  • 617 is prime
  • 618 = 2 * 3 * 103
  • 619 is prime
  • 620 = 2^2 * 5 * 31
  • 621 = 3^3 * 23
  • 622 = 2 * 311
  • 623 = 7 * 89
  • 624 = 2^4 * 3 * 13
  • 625 = 5^4
  • 626 = 2 * 313
  • 627 = 3 * 11 * 19
  • 628 = 2^2 * 157
  • 629 = 17 * 37
  • 630 = 2 * 3^2 * 5 * 7
  • 631 is prime
  • 632 = 2^3 * 79
  • 633 = 3 * 211
  • 634 = 2 * 317
  • 635 = 5 * 127
  • 636 = 2^2 * 3 * 53
  • 637 = 7^2 * 13
  • 638 = 2 * 11 * 29
  • 639 = 3^2 * 71
  • 640 = 2^7 * 5
  • 641 is prime
  • 642 = 2 * 3 * 107
  • 643 is prime
  • 644 = 2^2 * 7 * 23
  • 645 = 3 * 5 * 43
  • 646 = 2 * 17 * 19
  • 647 is prime
  • 648 = 2^3 * 3^4
  • 649 = 11 * 59
  • 650 = 2 * 5^2 * 13
  • 651 = 3 * 7 * 31
  • 652 = 2^2 * 163
  • 653 is prime
  • 654 = 2 * 3 * 109
  • 655 = 5 * 131
  • 656 = 2^4 * 41
  • 657 = 3^2 * 73
  • 658 = 2 * 7 * 47
  • 659 is prime
  • 660 = 2^2 * 3 * 5 * 11
  • 661 is prime
  • 662 = 2 * 331
  • 663 = 3 * 13 * 17
  • 664 = 2^3 * 83
  • 665 = 5 * 7 * 19
  • 666 = 2 * 3^2 * 37
  • 667 = 23 * 29
  • 668 = 2^2 * 167
  • 669 = 3 * 223
  • 670 = 2 * 5 * 67
  • 671 = 11 * 61
  • 672 = 2^5 * 3 * 7
  • 673 is prime
  • 674 = 2 * 337
  • 675 = 3^3 * 5^2
  • 676 = 2^2 * 13^2
  • 677 is prime
  • 678 = 2 * 3 * 113
  • 679 = 7 * 97
  • 680 = 2^3 * 5 * 17
  • 681 = 3 * 227
  • 682 = 2 * 11 * 31
  • 683 is prime
  • 684 = 2^2 * 3^2 * 19
  • 685 = 5 * 137
  • 686 = 2 * 7^3
  • 687 = 3 * 229
  • 688 = 2^4 * 43
  • 689 = 13 * 53
  • 690 = 2 * 3 * 5 * 23
  • 691 is prime
  • 692 = 2^2 * 173
  • 693 = 3^2 * 7 * 11
  • 694 = 2 * 347
  • 695 = 5 * 139
  • 696 = 2^3 * 3 * 29
  • 697 = 17 * 41
  • 698 = 2 * 349
  • 699 = 3 * 233
  • 700 = 2^2 * 5^2 * 7
  • 701 is prime
  • 702 = 2 * 3^3 * 13
  • 703 = 19 * 37
  • 704 = 2^6 * 11
  • 705 = 3 * 5 * 47
  • 706 = 2 * 353
  • 707 = 7 * 101
  • 708 = 2^2 * 3 * 59
  • 709 is prime
  • 710 = 2 * 5 * 71
  • 711 = 3^2 * 79
  • 712 = 2^3 * 89
  • 713 = 23 * 31
  • 714 = 2 * 3 * 7 * 17
  • 715 = 5 * 11 * 13
  • 716 = 2^2 * 179
  • 717 = 3 * 239
  • 718 = 2 * 359
  • 719 is prime
  • 720 = 2^4 * 3^2 * 5
  • 721 = 7 * 103
  • 722 = 2 * 19^2
  • 723 = 3 * 241
  • 724 = 2^2 * 181
  • 725 = 5^2 * 29
  • 726 = 2 * 3 * 11^2
  • 727 is prime
  • 728 = 2^3 * 7 * 13
  • 729 = 3^6
  • 730 = 2 * 5 * 73
  • 731 = 17 * 43
  • 732 = 2^2 * 3 * 61
  • 733 is prime
  • 734 = 2 * 367
  • 735 = 3 * 5 * 7^2
  • 736 = 2^5 * 23
  • 737 = 11 * 67
  • 738 = 2 * 3^2 * 41
  • 739 is prime
  • 740 = 2^2 * 5 * 37
  • 741 = 3 * 13 * 19
  • 742 = 2 * 7 * 53
  • 743 is prime
  • 744 = 2^3 * 3 * 31
  • 745 = 5 * 149
  • 746 = 2 * 373
  • 747 = 3^2 * 83
  • 748 = 2^2 * 11 * 17
  • 749 = 7 * 107
  • 750 = 2 * 3 * 5^3
  • 751 is prime
  • 752 = 2^4 * 47
  • 753 = 3 * 251
  • 754 = 2 * 13 * 29
  • 755 = 5 * 151
  • 756 = 2^2 * 3^3 * 7
  • 757 is prime
  • 758 = 2 * 379
  • 759 = 3 * 11 * 23
  • 760 = 2^3 * 5 * 19
  • 761 is prime
  • 762 = 2 * 3 * 127
  • 763 = 7 * 109
  • 764 = 2^2 * 191
  • 765 = 3^2 * 5 * 17
  • 766 = 2 * 383
  • 767 = 13 * 59
  • 768 = 2^8 * 3
  • 769 is prime
  • 770 = 2 * 5 * 7 * 11
  • 771 = 3 * 257
  • 772 = 2^2 * 193
  • 773 is prime
  • 774 = 2 * 3^2 * 43
  • 775 = 5^2 * 31
  • 776 = 2^3 * 97
  • 777 = 3 * 7 * 37
  • 778 = 2 * 389
  • 779 = 19 * 41
  • 780 = 2^2 * 3 * 5 * 13
  • 781 = 11 * 71
  • 782 = 2 * 17 * 23
  • 783 = 3^3 * 29
  • 784 = 2^4 * 7^2
  • 785 = 5 * 157
  • 786 = 2 * 3 * 131
  • 787 is prime
  • 788 = 2^2 * 197
  • 789 = 3 * 263
  • 790 = 2 * 5 * 79
  • 791 = 7 * 113
  • 792 = 2^3 * 3^2 * 11
  • 793 = 13 * 61
  • 794 = 2 * 397
  • 795 = 3 * 5 * 53
  • 796 = 2^2 * 199
  • 797 is prime
  • 798 = 2 * 3 * 7 * 19
  • 799 = 17 * 47
  • 800 = 2^5 * 5^2
  • 801 = 3^2 * 89
  • 802 = 2 * 401
  • 803 = 11 * 73
  • 804 = 2^2 * 3 * 67
  • 805 = 5 * 7 * 23
  • 806 = 2 * 13 * 31
  • 807 = 3 * 269
  • 808 = 2^3 * 101
  • 809 is prime
  • 810 = 2 * 3^4 * 5
  • 811 is prime
  • 812 = 2^2 * 7 * 29
  • 813 = 3 * 271
  • 814 = 2 * 11 * 37
  • 815 = 5 * 163
  • 816 = 2^4 * 3 * 17
  • 817 = 19 * 43
  • 818 = 2 * 409
  • 819 = 3^2 * 7 * 13
  • 820 = 2^2 * 5 * 41
  • 821 is prime
  • 822 = 2 * 3 * 137
  • 823 is prime
  • 824 = 2^3 * 103
  • 825 = 3 * 5^2 * 11
  • 826 = 2 * 7 * 59
  • 827 is prime
  • 828 = 2^2 * 3^2 * 23
  • 829 is prime
  • 830 = 2 * 5 * 83
  • 831 = 3 * 277
  • 832 = 2^6 * 13
  • 833 = 7^2 * 17
  • 834 = 2 * 3 * 139
  • 835 = 5 * 167
  • 836 = 2^2 * 11 * 19
  • 837 = 3^3 * 31
  • 838 = 2 * 419
  • 839 is prime
  • 840 = 2^3 * 3 * 5 * 7
  • 841 = 29^2
  • 842 = 2 * 421
  • 843 = 3 * 281
  • 844 = 2^2 * 211
  • 845 = 5 * 13^2
  • 846 = 2 * 3^2 * 47
  • 847 = 7 * 11^2
  • 848 = 2^4 * 53
  • 849 = 3 * 283
  • 850 = 2 * 5^2 * 17
  • 851 = 23 * 37
  • 852 = 2^2 * 3 * 71
  • 853 is prime
  • 854 = 2 * 7 * 61
  • 855 = 3^2 * 5 * 19
  • 856 = 2^3 * 107
  • 857 is prime
  • 858 = 2 * 3 * 11 * 13
  • 859 is prime
  • 860 = 2^2 * 5 * 43
  • 861 = 3 * 7 * 41
  • 862 = 2 * 431
  • 863 is prime
  • 864 = 2^5 * 3^3
  • 865 = 5 * 173
  • 866 = 2 * 433
  • 867 = 3 * 17^2
  • 868 = 2^2 * 7 * 31
  • 869 = 11 * 79
  • 870 = 2 * 3 * 5 * 29
  • 871 = 13 * 67
  • 872 = 2^3 * 109
  • 873 = 3^2 * 97
  • 874 = 2 * 19 * 23
  • 875 = 5^3 * 7
  • 876 = 2^2 * 3 * 73
  • 877 is prime
  • 878 = 2 * 439
  • 879 = 3 * 293
  • 880 = 2^4 * 5 * 11
  • 881 is prime
  • 882 = 2 * 3^2 * 7^2
  • 883 is prime
  • 884 = 2^2 * 13 * 17
  • 885 = 3 * 5 * 59
  • 886 = 2 * 443
  • 887 is prime
  • 888 = 2^3 * 3 * 37
  • 889 = 7 * 127
  • 890 = 2 * 5 * 89
  • 891 = 3^4 * 11
  • 892 = 2^2 * 223
  • 893 = 19 * 47
  • 894 = 2 * 3 * 149
  • 895 = 5 * 179
  • 896 = 2^7 * 7
  • 897 = 3 * 13 * 23
  • 898 = 2 * 449
  • 899 = 29 * 31
  • 900 = 2^2 * 3^2 * 5^2
  • 901 = 17 * 53
  • 902 = 2 * 11 * 41
  • 903 = 3 * 7 * 43
  • 904 = 2^3 * 113
  • 905 = 5 * 181
  • 906 = 2 * 3 * 151
  • 907 is prime
  • 908 = 2^2 * 227
  • 909 = 3^2 * 101
  • 910 = 2 * 5 * 7 * 13
  • 911 is prime
  • 912 = 2^4 * 3 * 19
  • 913 = 11 * 83
  • 914 = 2 * 457
  • 915 = 3 * 5 * 61
  • 916 = 2^2 * 229
  • 917 = 7 * 131
  • 918 = 2 * 3^3 * 17
  • 919 is prime
  • 920 = 2^3 * 5 * 23
  • 921 = 3 * 307
  • 922 = 2 * 461
  • 923 = 13 * 71
  • 924 = 2^2 * 3 * 7 * 11
  • 925 = 5^2 * 37
  • 926 = 2 * 463
  • 927 = 3^2 * 103
  • 928 = 2^5 * 29
  • 929 is prime
  • 930 = 2 * 3 * 5 * 31
  • 931 = 7^2 * 19
  • 932 = 2^2 * 233
  • 933 = 3 * 311
  • 934 = 2 * 467
  • 935 = 5 * 11 * 17
  • 936 = 2^3 * 3^2 * 13
  • 937 is prime
  • 938 = 2 * 7 * 67
  • 939 = 3 * 313
  • 940 = 2^2 * 5 * 47
  • 941 is prime
  • 942 = 2 * 3 * 157
  • 943 = 23 * 41
  • 944 = 2^4 * 59
  • 945 = 3^3 * 5 * 7
  • 946 = 2 * 11 * 43
  • 947 is prime
  • 948 = 2^2 * 3 * 79
  • 949 = 13 * 73
  • 950 = 2 * 5^2 * 19
  • 951 = 3 * 317
  • 952 = 2^3 * 7 * 17
  • 953 is prime
  • 954 = 2 * 3^2 * 53
  • 955 = 5 * 191
  • 956 = 2^2 * 239
  • 957 = 3 * 11 * 29
  • 958 = 2 * 479
  • 959 = 7 * 137
  • 960 = 2^6 * 3 * 5
  • 961 = 31^2
  • 962 = 2 * 13 * 37
  • 963 = 3^2 * 107
  • 964 = 2^2 * 241
  • 965 = 5 * 193
  • 966 = 2 * 3 * 7 * 23
  • 967 is prime
  • 968 = 2^3 * 11^2
  • 969 = 3 * 17 * 19
  • 970 = 2 * 5 * 97
  • 971 is prime
  • 972 = 2^2 * 3^5
  • 973 = 7 * 139
  • 974 = 2 * 487
  • 975 = 3 * 5^2 * 13
  • 976 = 2^4 * 61
  • 977 is prime
  • 978 = 2 * 3 * 163
  • 979 = 11 * 89
  • 980 = 2^2 * 5 * 7^2
  • 981 = 3^2 * 109
  • 982 = 2 * 491
  • 983 is prime
  • 984 = 2^3 * 3 * 41
  • 985 = 5 * 197
  • 986 = 2 * 17 * 29
  • 987 = 3 * 7 * 47
  • 988 = 2^2 * 13 * 19
  • 989 = 23 * 43
  • 990 = 2 * 3^2 * 5 * 11
  • 991 is prime
  • 992 = 2^5 * 31
  • 993 = 3 * 331
  • 994 = 2 * 7 * 71
  • 995 = 5 * 199
  • 996 = 2^2 * 3 * 83
  • 997 is prime
  • 998 = 2 * 499
  • 999 = 3^3 * 37
  • 1000 = 2^3 * 5^3
  • 1001 = 7 * 11 * 13
  • 1002 = 2 * 3 * 167
  • 1003 = 17 * 59
  • 1004 = 2^2 * 251
  • 1005 = 3 * 5 * 67
  • 1006 = 2 * 503
  • 1007 = 19 * 53
  • 1008 = 2^4 * 3^2 * 7
  • 1009 is prime
  • 1010 = 2 * 5 * 101
  • 1011 = 3 * 337
  • 1012 = 2^2 * 11 * 23
  • 1013 is prime
  • 1014 = 2 * 3 * 13^2
  • 1015 = 5 * 7 * 29
  • 1016 = 2^3 * 127
  • 1017 = 3^2 * 113
  • 1018 = 2 * 509
  • 1019 is prime
  • 1020 = 2^2 * 3 * 5 * 17
  • 1021 is prime
  • 1022 = 2 * 7 * 73
  • 1023 = 3 * 11 * 31
  • 1024 = 2^10

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • Error in expression #3: Expression #3 must include the variable x and/or the counter c

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • Error in expression #3: Syntax error in expression #3:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 4 = 2^2
  • 22 = 2 * 11
  • 27 = 3^3
  • 58 = 2 * 29
  • 85 = 5 * 17
  • 94 = 2 * 47
  • 121 = 11^2
  • 166 = 2 * 83
  • 202 = 2 * 101
  • 265 = 5 * 53
  • 274 = 2 * 137
  • 319 = 11 * 29
  • 346 = 2 * 173
  • 355 = 5 * 71
  • 378 = 2 * 3^3 * 7
  • 382 = 2 * 191
  • 391 = 17 * 23
  • 438 = 2 * 3 * 73
  • 454 = 2 * 227
  • 483 = 3 * 7 * 23
  • 517 = 11 * 47
  • 526 = 2 * 263
  • 535 = 5 * 107
  • 562 = 2 * 281
  • 576 = 2^6 * 3^2
  • 588 = 2^2 * 3 * 7^2
  • 627 = 3 * 11 * 19
  • 634 = 2 * 317
  • 636 = 2^2 * 3 * 53
  • 645 = 3 * 5 * 43
  • 648 = 2^3 * 3^4
  • 654 = 2 * 3 * 109
  • 663 = 3 * 13 * 17
  • 666 = 2 * 3^2 * 37
  • 690 = 2 * 3 * 5 * 23
  • 706 = 2 * 353
  • 728 = 2^3 * 7 * 13
  • 729 = 3^6
  • 762 = 2 * 3 * 127
  • 778 = 2 * 389
  • 825 = 3 * 5^2 * 11
  • 852 = 2^2 * 3 * 71
  • 861 = 3 * 7 * 41
  • 895 = 5 * 179
  • 913 = 11 * 83
  • 915 = 3 * 5 * 61
  • 922 = 2 * 461
  • 958 = 2 * 479
  • 985 = 5 * 197
  • 1086 = 2 * 3 * 181
  • 1111 = 11 * 101
  • 1165 = 5 * 233
  • 1219 = 23 * 53
  • 1255 = 5 * 251
  • 1282 = 2 * 641
  • 1284 = 2^2 * 3 * 107
  • 1376 = 2^5 * 43
  • 1449 = 3^2 * 7 * 23
  • 1507 = 11 * 137
  • 1581 = 3 * 17 * 31
  • 1626 = 2 * 3 * 271
  • 1633 = 23 * 71
  • 1642 = 2 * 821
  • 1678 = 2 * 839
  • 1736 = 2^3 * 7 * 31
  • 1755 = 3^3 * 5 * 13
  • 1776 = 2^4 * 3 * 37
  • 1795 = 5 * 359
  • 1822 = 2 * 911
  • 1842 = 2 * 3 * 307
  • 1858 = 2 * 929
  • 1872 = 2^4 * 3^2 * 13
  • 1881 = 3^2 * 11 * 19
  • 1894 = 2 * 947
  • 1903 = 11 * 173
  • 1908 = 2^2 * 3^2 * 53
  • 1921 = 17 * 113
  • 1935 = 3^2 * 5 * 43
  • 1952 = 2^5 * 61
  • 1962 = 2 * 3^2 * 109
  • 1966 = 2 * 983
  • 2038 = 2 * 1019
  • 2067 = 3 * 13 * 53
  • 2079 = 3^3 * 7 * 11
  • 2155 = 5 * 431
  • 2173 = 41 * 53
  • 2182 = 2 * 1091
  • 2218 = 2 * 1109
  • 2227 = 17 * 131
  • 2265 = 3 * 5 * 151
  • 2286 = 2 * 3^2 * 127
  • 2326 = 2 * 1163
  • 2362 = 2 * 1181
  • 2366 = 2 * 7 * 13^2
  • 2373 = 3 * 7 * 113
  • 2409 = 3 * 11 * 73
  • 2434 = 2 * 1217
  • 2461 = 23 * 107
  • 2475 = 3^2 * 5^2 * 11
  • 2484 = 2^2 * 3^3 * 23
  • 2515 = 5 * 503
  • 2556 = 2^2 * 3^2 * 71
  • 2576 = 2^4 * 7 * 23
  • 2578 = 2 * 1289
  • 2583 = 3^2 * 7 * 41
  • 2605 = 5 * 521
  • 2614 = 2 * 1307
  • 2679 = 3 * 19 * 47
  • 2688 = 2^7 * 3 * 7
  • 2722 = 2 * 1361
  • 2745 = 3^2 * 5 * 61
  • 2751 = 3 * 7 * 131
  • 2785 = 5 * 557
  • 2839 = 17 * 167
  • 2888 = 2^3 * 19^2
  • 2902 = 2 * 1451
  • 2911 = 41 * 71
  • 2934 = 2 * 3^2 * 163
  • 2944 = 2^7 * 23
  • 2958 = 2 * 3 * 17 * 29
  • 2964 = 2^2 * 3 * 13 * 19
  • 2965 = 5 * 593
  • 2970 = 2 * 3^3 * 5 * 11
  • 2974 = 2 * 1487
  • 3046 = 2 * 1523
  • 3091 = 11 * 281
  • 3138 = 2 * 3 * 523
  • 3168 = 2^5 * 3^2 * 11
  • 3174 = 2 * 3 * 23^2
  • 3226 = 2 * 1613
  • 3246 = 2 * 3 * 541
  • 3258 = 2 * 3^2 * 181
  • 3294 = 2 * 3^3 * 61
  • 3345 = 3 * 5 * 223
  • 3366 = 2 * 3^2 * 11 * 17
  • 3390 = 2 * 3 * 5 * 113
  • 3442 = 2 * 1721
  • 3505 = 5 * 701
  • 3564 = 2^2 * 3^4 * 11
  • 3595 = 5 * 719
  • 3615 = 3 * 5 * 241
  • 3622 = 2 * 1811
  • 3649 = 41 * 89
  • 3663 = 3^2 * 11 * 37
  • 3690 = 2 * 3^2 * 5 * 41
  • 3694 = 2 * 1847
  • 3802 = 2 * 1901
  • 3852 = 2^2 * 3^2 * 107
  • 3864 = 2^3 * 3 * 7 * 23
  • 3865 = 5 * 773
  • 3930 = 2 * 3 * 5 * 131
  • 3946 = 2 * 1973
  • 3973 = 29 * 137
  • 4054 = 2 * 2027
  • 4126 = 2 * 2063
  • 4162 = 2 * 2081
  • 4173 = 3 * 13 * 107
  • 4185 = 3^3 * 5 * 31
  • 4189 = 59 * 71
  • 4191 = 3 * 11 * 127
  • 4198 = 2 * 2099
  • 4209 = 3 * 23 * 61
  • 4279 = 11 * 389
  • 4306 = 2 * 2153
  • 4369 = 17 * 257
  • 4414 = 2 * 2207
  • 4428 = 2^2 * 3^3 * 41
  • 4464 = 2^4 * 3^2 * 31
  • 4472 = 2^3 * 13 * 43
  • 4557 = 3 * 7^2 * 31
  • 4592 = 2^4 * 7 * 41
  • 4594 = 2 * 2297
  • 4702 = 2 * 2351
  • 4743 = 3^2 * 17 * 31
  • 4765 = 5 * 953
  • 4788 = 2^2 * 3^2 * 7 * 19
  • 4794 = 2 * 3 * 17 * 47
  • 4832 = 2^5 * 151
  • 4855 = 5 * 971
  • 4880 = 2^4 * 5 * 61
  • 4918 = 2 * 2459
  • 4954 = 2 * 2477
  • 4959 = 3^2 * 19 * 29
  • 4960 = 2^5 * 5 * 31
  • 4974 = 2 * 3 * 829
  • 4981 = 17 * 293
  • 5062 = 2 * 2531
  • 5071 = 11 * 461
  • 5088 = 2^5 * 3 * 53
  • 5098 = 2 * 2549
  • 5172 = 2^2 * 3 * 431
  • 5242 = 2 * 2621
  • 5248 = 2^7 * 41
  • 5253 = 3 * 17 * 103
  • 5269 = 11 * 479
  • 5298 = 2 * 3 * 883
  • 5305 = 5 * 1061
  • 5386 = 2 * 2693
  • 5388 = 2^2 * 3 * 449
  • 5397 = 3 * 7 * 257
  • 5422 = 2 * 2711
  • 5458 = 2 * 2729
  • 5485 = 5 * 1097
  • 5526 = 2 * 3^2 * 307
  • 5539 = 29 * 191
  • 5602 = 2 * 2801
  • 5638 = 2 * 2819
  • 5642 = 2 * 7 * 13 * 31
  • 5674 = 2 * 2837
  • 5772 = 2^2 * 3 * 13 * 37
  • 5818 = 2 * 2909
  • 5854 = 2 * 2927
  • 5874 = 2 * 3 * 11 * 89
  • 5915 = 5 * 7 * 13^2
  • 5926 = 2 * 2963
  • 5935 = 5 * 1187
  • 5936 = 2^4 * 7 * 53
  • 5946 = 2 * 3 * 991
  • 5998 = 2 * 2999
  • 6036 = 2^2 * 3 * 503
  • 6054 = 2 * 3 * 1009
  • 6084 = 2^2 * 3^2 * 13^2
  • 6096 = 2^4 * 3 * 127
  • 6115 = 5 * 1223
  • 6171 = 3 * 11^2 * 17
  • 6178 = 2 * 3089
  • 6187 = 23 * 269
  • 6188 = 2^2 * 7 * 13 * 17
  • 6252 = 2^2 * 3 * 521
  • 6259 = 11 * 569
  • 6295 = 5 * 1259
  • 6315 = 3 * 5 * 421
  • 6344 = 2^3 * 13 * 61
  • 6385 = 5 * 1277
  • 6439 = 47 * 137
  • 6457 = 11 * 587
  • 6502 = 2 * 3251
  • 6531 = 3 * 7 * 311
  • 6567 = 3 * 11 * 199
  • 6583 = 29 * 227
  • 6585 = 3 * 5 * 439
  • 6603 = 3 * 31 * 71
  • 6684 = 2^2 * 3 * 557
  • 6693 = 3 * 23 * 97
  • 6702 = 2 * 3 * 1117
  • 6718 = 2 * 3359
  • 6760 = 2^3 * 5 * 13^2
  • 6816 = 2^5 * 3 * 71
  • 6835 = 5 * 1367
  • 6855 = 3 * 5 * 457
  • 6880 = 2^5 * 5 * 43
  • 6934 = 2 * 3467
  • 6981 = 3 * 13 * 179
  • 7026 = 2 * 3 * 1171
  • 7051 = 11 * 641
  • 7062 = 2 * 3 * 11 * 107
  • 7068 = 2^2 * 3 * 19 * 31
  • 7078 = 2 * 3539
  • 7089 = 3 * 17 * 139
  • 7119 = 3^2 * 7 * 113
  • 7136 = 2^5 * 223
  • 7186 = 2 * 3593
  • 7195 = 5 * 1439
  • 7227 = 3^2 * 11 * 73
  • 7249 = 11 * 659
  • 7287 = 3 * 7 * 347
  • 7339 = 41 * 179
  • 7402 = 2 * 3701
  • 7438 = 2 * 3719
  • 7447 = 11 * 677
  • 7465 = 5 * 1493
  • 7503 = 3 * 41 * 61
  • 7627 = 29 * 263
  • 7674 = 2 * 3 * 1279
  • 7683 = 3 * 13 * 197
  • 7695 = 3^4 * 5 * 19
  • 7712 = 2^5 * 241
  • 7726 = 2 * 3863
  • 7762 = 2 * 3881
  • 7764 = 2^2 * 3 * 647
  • 7782 = 2 * 3 * 1297
  • 7784 = 2^3 * 7 * 139
  • 7809 = 3 * 19 * 137
  • 7824 = 2^4 * 3 * 163
  • 7834 = 2 * 3917
  • 7915 = 5 * 1583
  • 7952 = 2^4 * 7 * 71
  • 7978 = 2 * 3989
  • 8005 = 5 * 1601
  • 8014 = 2 * 4007
  • 8023 = 71 * 113
  • 8073 = 3^3 * 13 * 23
  • 8077 = 41 * 197
  • 8095 = 5 * 1619
  • 8149 = 29 * 281
  • 8154 = 2 * 3^3 * 151
  • 8158 = 2 * 4079
  • 8185 = 5 * 1637
  • 8196 = 2^2 * 3 * 683
  • 8253 = 3^2 * 7 * 131
  • 8257 = 23 * 359
  • 8277 = 3 * 31 * 89
  • 8307 = 3^2 * 13 * 71
  • 8347 = 17 * 491
  • 8372 = 2^2 * 7 * 13 * 23
  • 8412 = 2^2 * 3 * 701
  • 8421 = 3 * 7 * 401
  • 8466 = 2 * 3 * 17 * 83
  • 8518 = 2 * 4259
  • 8545 = 5 * 1709
  • 8568 = 2^3 * 3^2 * 7 * 17
  • 8628 = 2^2 * 3 * 719
  • 8653 = 17 * 509
  • 8680 = 2^3 * 5 * 7 * 31
  • 8736 = 2^5 * 3 * 7 * 13
  • 8754 = 2 * 3 * 1459
  • 8766 = 2 * 3^2 * 487
  • 8790 = 2 * 3 * 5 * 293
  • 8792 = 2^3 * 7 * 157
  • 8851 = 53 * 167
  • 8864 = 2^5 * 277
  • 8874 = 2 * 3^2 * 17 * 29
  • 8883 = 3^3 * 7 * 47
  • 8901 = 3^2 * 23 * 43
  • 8914 = 2 * 4457
  • 9015 = 3 * 5 * 601
  • 9031 = 11 * 821
  • 9036 = 2^2 * 3^2 * 251
  • 9094 = 2 * 4547
  • 9166 = 2 * 4583
  • 9184 = 2^5 * 7 * 41
  • 9193 = 29 * 317
  • 9229 = 11 * 839
  • 9274 = 2 * 4637
  • 9276 = 2^2 * 3 * 773
  • 9285 = 3 * 5 * 619
  • 9294 = 2 * 3 * 1549
  • 9296 = 2^4 * 7 * 83
  • 9301 = 71 * 131
  • 9330 = 2 * 3 * 5 * 311
  • 9346 = 2 * 4673
  • 9355 = 5 * 1871
  • 9382 = 2 * 4691
  • 9386 = 2 * 13 * 19^2
  • 9387 = 3^2 * 7 * 149
  • 9396 = 2^2 * 3^4 * 29
  • 9414 = 2 * 3^2 * 523
  • 9427 = 11 * 857
  • 9483 = 3 * 29 * 109
  • 9522 = 2 * 3^2 * 23^2
  • 9535 = 5 * 1907
  • 9571 = 17 * 563
  • 9598 = 2 * 4799
  • 9633 = 3 * 13^2 * 19
  • 9634 = 2 * 4817
  • 9639 = 3^4 * 7 * 17
  • 9648 = 2^4 * 3^2 * 67
  • 9657 = 3^2 * 29 * 37
  • 9684 = 2^2 * 3^2 * 269
  • 9708 = 2^2 * 3 * 809
  • 9717 = 3 * 41 * 79
  • 9735 = 3 * 5 * 11 * 59
  • 9742 = 2 * 4871
  • 9760 = 2^5 * 5 * 61
  • 9778 = 2 * 4889
  • 9840 = 2^4 * 3 * 5 * 41
  • 9843 = 3 * 17 * 193
  • 9849 = 3 * 7^2 * 67
  • 9861 = 3 * 19 * 173
  • 9880 = 2^3 * 5 * 13 * 19
  • 9895 = 5 * 1979
  • 9924 = 2^2 * 3 * 827
  • 9942 = 2 * 3 * 1657
  • 9968 = 2^4 * 7 * 89
  • 9975 = 3 * 5^2 * 7 * 19
  • 9985 = 5 * 1997

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 32 = 2^5

Number of divisors: 6

Sum of divisors: 63

Euler's totient: 16

Möbius: 0

n = a^2 + b^2

a = 4

b = 4

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 1 = 1

Number of divisors: 1

Sum of divisors: 1

Euler's totient: 1

Möbius: 1

n = a^2

a = 1

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 32 = 2^5

Number of divisors: 6

Sum of divisors: 63

Euler's totient: 16

Möbius: 0

n = a^2 + b^2

a = 4

b = 4

Time elapsed:

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • Error in expression #1: Invalid parameter

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • 2 is primeError in expression #2: Invalid parameter

Written by Dario Alpern. Last updated on 15 December 2024.

+2
  • Error in expression #4: Invalid parameter

Written by Dario Alpern. Last updated on 15 December 2024.

2
  • Error in expression #5: Invalid parameter -2
    • -10 is prime: no, -1 * 2 * 5
    • -9 is prime: no, -1 * 3^2
    • -8 is prime: no, -1 * 2^3
    • -7 is prime: no, -1 * 7
    • -6 is prime: no, -1 * 2 * 3
    • -5 is prime: no, -1 * 5
    • -4 is prime: no, -1 * 2^2
    • -3 is prime: no, -1 * 3
    • -2 is prime: no, -1 * 2
    • -1 is prime: no, -1
    • 0 is prime: no, 0
    • 1 is prime: no, 1
    • 2 is prime: yes, 2
    • 3 is prime: yes, 3
    • 4 is prime: no, 2^2
    • 5 is prime: yes, 5
    • 6 is prime: no, 2 * 3
    • 7 is prime: yes, 7
    • 8 is prime: no, 2^3
    • 9 is prime: no, 3^2

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • x=-10; x=x+1; x<10; "%d is prime: %l, %Fd":x: the number of conversion clauses is greater than the number of colons

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • There are no values for the requested expression.

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • x=-10; x=x+1; x<10; "%d=%x is prime: %l, %Fd":x:x:isprime(x):x:x: the number of conversion clauses is less than the number of colons

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • x=-10; x=x+1; x<10; "%d=%x is prime: %l, %Fd":x: the number of conversion clauses is greater than the number of colons

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • "-10=-A" is prime: no, -1 * 2 * 5, -1 * 2 * 5
    • "-9=-9" is prime: no, -1 * 3^2, -1 * 3^2
    • "-8=-8" is prime: no, -1 * 2^3, -1 * 2^3
    • "-7=-7" is prime: no, -1 * 7, -1 * 7
    • "-6=-6" is prime: no, -1 * 2 * 3, -1 * 2 * 3
    • "-5=-5" is prime: no, -1 * 5, -1 * 5
    • "-4=-4" is prime: no, -1 * 2^2, -1 * 2^2
    • "-3=-3" is prime: no, -1 * 3, -1 * 3
    • "-2=-2" is prime: no, -1 * 2, -1 * 2
    • "-1=-1" is prime: no, -1, -1
    • "0=0" is prime: no, 0, 0
    • "1=1" is prime: no, 1, 1
    • "2=2" is prime: yes, 2, 2
    • "3=3" is prime: yes, 3, 3
    • "4=4" is prime: no, 2^2, 2^2
    • "5=5" is prime: yes, 5, 5
    • "6=6" is prime: no, 2 * 3, 2 * 3
    • "7=7" is prime: yes, 7, 7
    • "8=8" is prime: no, 2^3, 2^3
    • "9=9" is prime: no, 3^2, 3^2

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • Factors are: Error in expression #4: Invalid parameter

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • Factors are: Error in expression #4: Invalid parameter

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • Factors are: Error in expression #4: Invalid parameter

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • Factors are: Error in expression #4: Invalid parameter

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • x-10; x=x+1; x<10; x: equal sign missing in first expression

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • Error in expression #1: Syntax error in expression #1:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • x=3: three or four semicolons expected but none found

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • x=3; x+1: equal sign missing in second expression

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • x=3; x=x+1: three or four semicolons expected but there are only one

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • x=3; x=x+1; x<10: three or four semicolons expected but there are only two

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • x=3; x=x+1; x<10; "23: missing closing quote

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • x=3; x=x+1; x<10; "23%y": strange character after %

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • # This is a comment
    • There are no values for the requested expression.

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 3785 = 5 * 757

    Number of divisors: 4

    Sum of divisors: 4548

    Euler's totient: 3024

    Möbius: 1

    n = a^2 + b^2

    a = 44

    b = 43

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 4242 = 2 * 3 * 7 * 101

    Number of divisors: 16

    Sum of divisors: 9792

    Euler's totient: 1200

    Möbius: 1

    n = a^2 + b^2 + c^2 + d^2

    a = 62

    b = 14

    c = 11

    d = 9

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 781 = 11 * 71

    Number of divisors: 4

    Sum of divisors: 864

    Euler's totient: 700

    Möbius: 1

    n = a^2 + b^2 + c^2

    a = 24

    b = 14

    c = 3

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 3 814862 063908 734437 887283 852543 533211 679454 142082 298637 873419 070347 852291 017785 520287 766610 190299 484540 521172 610165 243904 000000 000000 000000 000000 000000 000000 000000 000387 420489 (175 digits) = 37 * 397 * 7770 480733 * 4 565414 385793 * 29 349715 009141 * 25 000120 000144 000009 * 625 006000 021600 034335 019655 998704 000081 (39 digits) * 15963 508558 609093 665381 539730 827797 731224 066268 424929 211146 526896 477764 764561 (77 digits)

    Number of divisors: 256

    Sum of divisors: 3 927835 377629 200282 066170 191349 580388 346010 424926 311620 464739 159801 061135 837481 993242 614161 532052 731622 137283 765408 897573 926927 772705 545207 405333 527509 971807 992901 815215 013120 (175 digits)

    Euler's totient: 3 702408 167749 354712 445817 429304 630490 185977 901721 526732 152339 282762 024207 977757 856067 006883 309506 433369 991968 235438 565731 594313 965926 147954 636713 218937 459369 328800 289521 664000 (175 digits)

    Möbius: 1

    n = a^2 + b^2

    a = 1847 110847 896335 853000 176864 427227 435701 921553 937435 979267 876779 222573 715032 097003 166333 (88 digits)

    b = 634 857133 135017 767692 300414 913512 568089 917857 251469 916825 013056 083745 836299 371791 112440 (87 digits)

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 1953 185118 009909 687810 604660 830933 780202 750273 074318 121153 020274 393931 000000 000000 000000 000000 000000 000000 000000 000000 019683 (124 digits) = 7 * 23 * 163 * 289759 * 29 043307 * 310560 068323 * 211026 983241 657799 * 8627 918718 759696 849751 * 15 640739 301231 691252 401206 350232 479776 716460 585530 440831 (56 digits)

    Number of divisors: 512

    Sum of divisors: 2343 562373 416748 759263 409724 376023 760081 596159 405688 974615 745309 241989 065766 060117 839995 053707 192815 955604 091822 546092 032000 (124 digits)

    Euler's totient: 1591 539266 916351 288630 825894 098770 892840 794040 641705 732198 031291 281199 811480 793967 083005 034217 084834 697774 036006 889028 160000 (124 digits)

    Möbius: -1

    n = a^2 + b^2 + c^2

    a = 31 721882 652573 082741 468113 571154 218809 163309 110851 315323 884979 (62 digits)

    b = 30 771858 555932 116590 039543 190942 836815 564564 505801 175888 537619 (62 digits)

    c = 9

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 3 814937 598702 564187 847884 178575 041838 901000 039922 554438 052360 077843 567982 691735 702549 178902 260425 034094 849978 434634 977020 323276 519775 390624 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999612 579511 (229 digits) = 3^18 * 7 * 13 * 19 * 37 * 73 * 127 * 199 * 223 * 337 * 2287 * 3853 * 4861 * 9433 * 1 705973 * 22831 130137 * 6 103533 017634 265177 * 10725 085800 223616 496139 * 6 385185 994664 355546 311566 161393 980487 708609 791054 704485 156811 (61 digits) * 168771 028459 556367 243151 236703 031728 705868 529455 991179 749015 748031 496063 (72 digits)

    Number of divisors: 9 961472

    Sum of divisors: 7 884492 772617 768361 949591 471773 998534 464078 183074 802732 693836 231248 275317 025098 522078 602108 369176 842788 131969 743635 182278 326115 091904 163294 276830 433703 550680 031566 435303 584272 686853 351875 078910 215532 929075 630449 722635 593973 760000 (229 digits)

    Euler's totient: 1 790666 499935 777848 007252 504431 963941 691823 347576 749982 270732 407793 519645 275317 714215 682219 156009 508047 580320 809237 280472 542648 083453 663068 499954 154512 437792 638907 875315 252440 813813 132566 339409 125865 095810 510076 195742 735243 673600 (229 digits)

    Möbius: 0

    n = a^2 + b^2 + c^2 + d^2

    a = 1 574796 151316 121102 330815 752290 545195 315944 451784 418360 046076 505326 985503 297850 865520 518495 732985 075721 971728 481501 (115 digits)

    b = 1 141650 682122 229430 427261 267419 887726 516420 143850 385986 533944 025757 568981 201981 119078 350515 317274 370200 319409 818573 (115 digits)

    c = 170664 751511 939508 743346 625407 303395 497684 615957 660285 823763 973573 481825 644143 678110 874251 881965 422542 317892 109409 (114 digits)

    d = 49617 971579 992951 995621 240277 551203 783457 899651 090786 920142 729945 976263 665581 291001 748404 402816 201991 076884 350530 (113 digits)

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 110592 (91 digits) = 2^12 * 7 * 37 * 79 * 157 * 181 * 1039 * 87 113497 * 102 493548 486194 149357 * 131 079870 007944 530707 * 345 303867 403319 060773 480663

    Number of divisors: 13312

    Sum of divisors: 2 407585 602651 434830 785123 758005 325295 557289 751574 917739 783345 338799 889883 731255 027721 830400 (91 digits)

    Euler's totient: 406436 010682 807895 024223 177603 802996 605438 645020 736789 126880 620780 458355 571887 546323 435520 (90 digits)

    Möbius: 0

    n = a^2 + b^2 + c^2 + d^2

    a = 971 117118 480988 431137 746616 876931 944690 311424 (45 digits)

    b = 229 801978 085056 501936 791793 267544 710152 276544 (45 digits)

    c = 62 896552 731084 649927 188468 240226 197572 739904 (44 digits)

    d = 12 908009 758401 059424 931279 305508 989199 020608 (44 digits)

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    +2
    • -10 is prime: no, -1 * 2 * 5
    • -9 is prime: no, -1 * 3^2
    • -8 is prime: no, -1 * 2^3
    • -7 is prime: no, -1 * 7
    • -6 is prime: no, -1 * 2 * 3
    • -5 is prime: no, -1 * 5
    • -4 is prime: no, -1 * 2^2
    • -3 is prime: no, -1 * 3
    • -2 is prime: no, -1 * 2
    • -1 is prime: no, -1
    • 0 is prime: no, 0
    • 1 is prime: no, 1
    • 2 is prime: yes, 2
    • 3 is prime: yes, 3
    • 4 is prime: no, 2^2
    • 5 is prime: yes, 5
    • 6 is prime: no, 2 * 3
    • 7 is prime: yes, 7
    • 8 is prime: no, 2^3
    • 9 is prime: no, 3^2

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • x=-10; x=x+1; x<10; "%d is prime: %l, %Fd":x: the number of conversion clauses is greater than the number of colons

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • There are no values for the requested expression.

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • x=-10; x=x+1; x<10; "%d=%x is prime: %l, %Fd":x:x:isprime(x):x:x: the number of conversion clauses is less than the number of colons

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • x=-10; x=x+1; x<10; "%d=%x is prime: %l, %Fd":x: the number of conversion clauses is greater than the number of colons

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • "-10=-A" is prime: no, -1 * 2 * 5, -1 * 2 * 5
    • "-9=-9" is prime: no, -1 * 3^2, -1 * 3^2
    • "-8=-8" is prime: no, -1 * 2^3, -1 * 2^3
    • "-7=-7" is prime: no, -1 * 7, -1 * 7
    • "-6=-6" is prime: no, -1 * 2 * 3, -1 * 2 * 3
    • "-5=-5" is prime: no, -1 * 5, -1 * 5
    • "-4=-4" is prime: no, -1 * 2^2, -1 * 2^2
    • "-3=-3" is prime: no, -1 * 3, -1 * 3
    • "-2=-2" is prime: no, -1 * 2, -1 * 2
    • "-1=-1" is prime: no, -1, -1
    • "0=0" is prime: no, 0, 0
    • "1=1" is prime: no, 1, 1
    • "2=2" is prime: yes, 2, 2
    • "3=3" is prime: yes, 3, 3
    • "4=4" is prime: no, 2^2, 2^2
    • "5=5" is prime: yes, 5, 5
    • "6=6" is prime: no, 2 * 3, 2 * 3
    • "7=7" is prime: yes, 7, 7
    • "8=8" is prime: no, 2^3, 2^3
    • "9=9" is prime: no, 3^2, 3^2

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • Factors are: Error in expression #4: Invalid parameter

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • Factors are: Error in expression #4: Invalid parameter

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • Factors are: Error in expression #4: Invalid parameter

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • Factors are: Error in expression #4: Invalid parameter

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • x-10; x=x+1; x<10; x: equal sign missing in first expression

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • Error in expression #1: Syntax error in expression #1:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • x=3: three or four semicolons expected but none found

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • x=3; x+1: equal sign missing in second expression

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • x=3; x=x+1: three or four semicolons expected but there are only one

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • x=3; x=x+1; x<10: three or four semicolons expected but there are only two

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • x=3; x=x+1; x<10; "23: missing closing quote

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • x=3; x=x+1; x<10; "23%y": strange character after %

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • # This is a comment
    • There are no values for the requested expression.

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 3785 = 5 * 757

    Number of divisors: 4

    Sum of divisors: 4548

    Euler's totient: 3024

    Möbius: 1

    n = a^2 + b^2

    a = 44

    b = 43

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 4242 = 2 * 3 * 7 * 101

    Number of divisors: 16

    Sum of divisors: 9792

    Euler's totient: 1200

    Möbius: 1

    n = a^2 + b^2 + c^2 + d^2

    a = 62

    b = 14

    c = 11

    d = 9

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 781 = 11 * 71

    Number of divisors: 4

    Sum of divisors: 864

    Euler's totient: 700

    Möbius: 1

    n = a^2 + b^2 + c^2

    a = 24

    b = 14

    c = 3

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 3 814862 063908 734437 887283 852543 533211 679454 142082 298637 873419 070347 852291 017785 520287 766610 190299 484540 521172 610165 243904 000000 000000 000000 000000 000000 000000 000000 000387 420489 (175 digits) = 37 * 397 * 7770 480733 * 4 565414 385793 * 29 349715 009141 * 25 000120 000144 000009 * 625 006000 021600 034335 019655 998704 000081 (39 digits) * 15963 508558 609093 665381 539730 827797 731224 066268 424929 211146 526896 477764 764561 (77 digits)

    Number of divisors: 256

    Sum of divisors: 3 927835 377629 200282 066170 191349 580388 346010 424926 311620 464739 159801 061135 837481 993242 614161 532052 731622 137283 765408 897573 926927 772705 545207 405333 527509 971807 992901 815215 013120 (175 digits)

    Euler's totient: 3 702408 167749 354712 445817 429304 630490 185977 901721 526732 152339 282762 024207 977757 856067 006883 309506 433369 991968 235438 565731 594313 965926 147954 636713 218937 459369 328800 289521 664000 (175 digits)

    Möbius: 1

    n = a^2 + b^2

    a = 1847 110847 896335 853000 176864 427227 435701 921553 937435 979267 876779 222573 715032 097003 166333 (88 digits)

    b = 634 857133 135017 767692 300414 913512 568089 917857 251469 916825 013056 083745 836299 371791 112440 (87 digits)

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 1953 185118 009909 687810 604660 830933 780202 750273 074318 121153 020274 393931 000000 000000 000000 000000 000000 000000 000000 000000 019683 (124 digits) = 7 * 23 * 163 * 289759 * 29 043307 * 310560 068323 * 211026 983241 657799 * 8627 918718 759696 849751 * 15 640739 301231 691252 401206 350232 479776 716460 585530 440831 (56 digits)

    Number of divisors: 512

    Sum of divisors: 2343 562373 416748 759263 409724 376023 760081 596159 405688 974615 745309 241989 065766 060117 839995 053707 192815 955604 091822 546092 032000 (124 digits)

    Euler's totient: 1591 539266 916351 288630 825894 098770 892840 794040 641705 732198 031291 281199 811480 793967 083005 034217 084834 697774 036006 889028 160000 (124 digits)

    Möbius: -1

    n = a^2 + b^2 + c^2

    a = 31 721882 652573 082741 468113 571154 218809 163309 110851 315323 884979 (62 digits)

    b = 30 771858 555932 116590 039543 190942 836815 564564 505801 175888 537619 (62 digits)

    c = 9

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 3 814937 598702 564187 847884 178575 041838 901000 039922 554438 052360 077843 567982 691735 702549 178902 260425 034094 849978 434634 977020 323276 519775 390624 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999612 579511 (229 digits) = 3^18 * 7 * 13 * 19 * 37 * 73 * 127 * 199 * 223 * 337 * 2287 * 3853 * 4861 * 9433 * 1 705973 * 22831 130137 * 6 103533 017634 265177 * 10725 085800 223616 496139 * 6 385185 994664 355546 311566 161393 980487 708609 791054 704485 156811 (61 digits) * 168771 028459 556367 243151 236703 031728 705868 529455 991179 749015 748031 496063 (72 digits)

    Number of divisors: 9 961472

    Sum of divisors: 7 884492 772617 768361 949591 471773 998534 464078 183074 802732 693836 231248 275317 025098 522078 602108 369176 842788 131969 743635 182278 326115 091904 163294 276830 433703 550680 031566 435303 584272 686853 351875 078910 215532 929075 630449 722635 593973 760000 (229 digits)

    Euler's totient: 1 790666 499935 777848 007252 504431 963941 691823 347576 749982 270732 407793 519645 275317 714215 682219 156009 508047 580320 809237 280472 542648 083453 663068 499954 154512 437792 638907 875315 252440 813813 132566 339409 125865 095810 510076 195742 735243 673600 (229 digits)

    Möbius: 0

    n = a^2 + b^2 + c^2 + d^2

    a = 1 574796 151316 121102 330815 752290 545195 315944 451784 418360 046076 505326 985503 297850 865520 518495 732985 075721 971728 481501 (115 digits)

    b = 1 141650 682122 229430 427261 267419 887726 516420 143850 385986 533944 025757 568981 201981 119078 350515 317274 370200 319409 818573 (115 digits)

    c = 170664 751511 939508 743346 625407 303395 497684 615957 660285 823763 973573 481825 644143 678110 874251 881965 422542 317892 109409 (114 digits)

    d = 49617 971579 992951 995621 240277 551203 783457 899651 090786 920142 729945 976263 665581 291001 748404 402816 201991 076884 350530 (113 digits)

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 110592 (91 digits) = 2^12 * 7 * 37 * 79 * 157 * 181 * 1039 * 87 113497 * 102 493548 486194 149357 * 131 079870 007944 530707 * 345 303867 403319 060773 480663

    Number of divisors: 13312

    Sum of divisors: 2 407585 602651 434830 785123 758005 325295 557289 751574 917739 783345 338799 889883 731255 027721 830400 (91 digits)

    Euler's totient: 406436 010682 807895 024223 177603 802996 605438 645020 736789 126880 620780 458355 571887 546323 435520 (90 digits)

    Möbius: 0

    n = a^2 + b^2 + c^2 + d^2

    a = 971 117118 480988 431137 746616 876931 944690 311424 (45 digits)

    b = 229 801978 085056 501936 791793 267544 710152 276544 (45 digits)

    c = 62 896552 731084 649927 188468 240226 197572 739904 (44 digits)

    d = 12 908009 758401 059424 931279 305508 989199 020608 (44 digits)

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    **** ECM **** -2
    • Number too high (more than 100000 digits)

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • Intermediate number too high (more than 200000 digits)

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • Parenthesis mismatch

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • Parenthesis mismatch

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 20 = 2^2 * 5

    Number of divisors: 6

    Sum of divisors: 42

    Euler's totient: 8

    Möbius: 0

    n = a^2 + b^2

    a = 4

    b = 2

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 10 = 2 * 5

    Number of divisors: 4

    Sum of divisors: 18

    Euler's totient: 4

    Möbius: 1

    n = a^2 + b^2

    a = 3

    b = 1

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 10 = 2 * 5

    Number of divisors: 4

    Sum of divisors: 18

    Euler's totient: 4

    Möbius: 1

    n = a^2 + b^2

    a = 3

    b = 1

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 20 = 2^2 * 5

    Number of divisors: 6

    Sum of divisors: 42

    Euler's totient: 8

    Möbius: 0

    n = a^2 + b^2

    a = 4

    b = 2

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 0 = 0

    n = a^2

    a = 0

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • Invalid parameter

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • Division by zero

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • Only integer numbers are accepted

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 99 999999 999999 999999 999999 999998 959241 (38 digits) = 16186 374132 555391 * 6178 035870 236783 087351

    Number of divisors: 4

    Sum of divisors: 100 000000 000000 006178 052056 610914 601984 (39 digits)

    Euler's totient: 99 999999 999999 993821 947943 389083 316500 (38 digits)

    Möbius: 1

    n = a^2 + b^2 + c^2

    a = 9 994590 045938 929500

    b = 328891 796216 426029

    c = 20

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • -96 = -1 * 2^5 * 3

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 187 072209 578355 573530 071658 587684 226515 959365 494067 (51 digits) = 1 049227 * 4 376587 * 8 457643 * 1722 426679 * 2796 495718 765417 035239

    Number of divisors: 32

    Sum of divisors: 187 072452 844874 541930 407707 282947 447126 535363 891200 (51 digits)

    Euler's totient: 187 071966 311970 634001 360184 458860 726827 993848 599968 (51 digits)

    Möbius: -1

    n = a^2 + b^2 + c^2

    a = 13 020554 712438 061030 309517

    b = 4 187763 670357 076795 247133

    c = 33

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 10 000000 000000 000000 000000 000000 000000 000000 000013 892731 (56 digits) = 4353 994442 871310 881841 * 2296 741562 537535 293386 702920 797291 (34 digits)

    Number of divisors: 4

    Sum of divisors: 10 000000 000000 000000 002296 741562 541889 287829 574245 571864 (56 digits)

    Euler's totient: 9 999999 999999 999999 997703 258437 458110 712170 425782 213600 (55 digits)

    Möbius: 1

    n = a^2 + b^2 + c^2 + d^2

    a = 1969 847061 174964 576144 728300

    b = 1749 675293 163153 801581 543471

    c = 1708 117772 734699 048380 927207

    d = 375 063459 354064 747330 684571

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 222019 = 7^2 * 23 * 197

    Number of divisors: 12

    Sum of divisors: 270864

    Euler's totient: 181104

    Möbius: 0

    n = a^2 + b^2 + c^2 + d^2

    a = 287

    b = 280

    c = 217

    d = 119

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 3 000000 000000 000000 000000 010190 000000 000000 000000 000000 571083 (61 digits) = 1 000000 000000 000000 000000 000057 (31 digits) * 3 000000 000000 000000 000000 010019 (31 digits)

    Number of divisors: 4

    Sum of divisors: 3 000000 000000 000000 000000 010194 000000 000000 000000 000000 581160 (61 digits)

    Euler's totient: 3 000000 000000 000000 000000 010186 000000 000000 000000 000000 561008 (61 digits)

    Möbius: 1

    n = a^2 + b^2 + c^2 + d^2

    a = 1 377351 648877 995014 227391 008657 (31 digits)

    b = 992241 436286 961796 666873 742769

    c = 314104 806220 312094 854521 147108

    d = 140347 918251 592380 016485 474347

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • F EE50B7 025C36 A0802F 236D04 753D5B 48E800 000000 0000D5(49 digits) = 2 B333E5 B66494 435DAC 1613FD * 5 E67B2F 74876A FA101E 857BB9

    Number of divisors: 4

    Sum of divisors: F EE50B7 025C36 A0802F 236D0D 0EEC70 73D3FF 3D6DCA 9B908C(49 digits)

    Euler's totient: F EE50B7 025C36 A0802F 236CFB DB8E46 1DFC00 C29235 647120(49 digits)

    Möbius: 1

    n = a^2 + b^2

    a = 3 E0A48F 188073 94B84F 05146E

    b = F24CA1 7AFF2D BBA55C 1E71A9

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • Intermediate number too high (more than 200000 digits)

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 1 = 1

    Number of divisors: 1

    Sum of divisors: 1

    Euler's totient: 1

    Möbius: 1

    n = a^2

    a = 1

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 0 = 0

    n = a^2

    a = 0

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • -1 = -1

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • Intermediate number too high (more than 200000 digits)

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • Intermediate number too high (more than 200000 digits)

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 2520 = 2^3 * 3^2 * 5 * 7

    Number of divisors: 48

    Sum of divisors: 9360

    Euler's totient: 576

    Möbius: 0

    n = a^2 + b^2 + c^2 + d^2

    a = 42

    b = 24

    c = 12

    d = 6

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 2 366569 = 349 * 6781

    Number of divisors: 4

    Sum of divisors: 2 373700

    Euler's totient: 2 359440

    Möbius: 1

    n = a^2 + b^2

    a = 1180

    b = 987

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 58 = 2 * 29

    Number of divisors: 4

    Sum of divisors: 90

    Euler's totient: 28

    Möbius: 1

    n = a^2 + b^2

    a = 7

    b = 3

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 6057 = 3^2 * 673

    Number of divisors: 6

    Sum of divisors: 8762

    Euler's totient: 4032

    Möbius: 0

    n = a^2 + b^2

    a = 69

    b = 36

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 25852 016738 380658 380266 = 2 * 3 * 23 * 71 * 2 638499 360928 828167

    Number of divisors: 32

    Sum of divisors: 54711 922748 220180 891648

    Euler's totient: 8126 578031 660790 751280

    Möbius: -1

    n = a^2 + b^2 + c^2

    a = 140196 533164

    b = 78720 701389

    c = 7

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 1464 = 2^3 * 3 * 61

    Number of divisors: 16

    Sum of divisors: 3720

    Euler's totient: 480

    Möbius: 0

    n = a^2 + b^2 + c^2 + d^2

    a = 24

    b = 22

    c = 20

    d = 2

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • -49 = -1 * 7^2

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • -22 = -1 * 2 * 11

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 2 is prime
    • 4 = 2^2
    • 6 = 2 * 3
    • 10 = 2 * 5
    • 12 = 2^2 * 3
    • 16 = 2^4
    • 18 = 2 * 3^2
    • 22 = 2 * 11
    • 28 = 2^2 * 7
    • 30 = 2 * 3 * 5

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 0 = 0

    n = a^2

    a = 0

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 200 = 2^3 * 5^2

    Number of divisors: 12

    Sum of divisors: 465

    Euler's totient: 80

    Möbius: 0

    n = a^2 + b^2

    a = 10

    b = 10

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 288377 = 283 * 1019

    Number of divisors: 4

    Sum of divisors: 289680

    Euler's totient: 287076

    Möbius: 1

    n = a^2 + b^2 + c^2

    a = 537

    b = 2

    c = 2

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (301 digits) = 2^300 * 5^300

    Number of divisors: 90601

    Sum of divisors: 2 499999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 386363 316837 784180 863028 505626 715544 628098 060937 568804 361056 360351 611843 159785 517942 487764 495333 505965 352053 554358 515184 835492 185529 667094 014837 802781 690487 942627 620109 549133 614562 048949 759686 738543 248165 625531 (301 digits)

    Euler's totient: 400000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (300 digits)

    Möbius: 0

    n = a^2

    a = 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (151 digits)

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 760 988023 132059 809720 425867 265032 780727 896356 372077 865117 010037 035791 631439 306199 613044 145649 378522 557935 351570 949952 010001 833769 302566 531786 879537 190794 573524 (159 digits) = 2^2 * 7 * 19 * 37^2 * 223 * 18427 * 94573 * 107671 * 25 709599 * 56 737873 * 78 539161 * 93 463940 382121 * 64326 272436 179833 * 713529 181090 045029 900916 938579 427981 (36 digits) * 50808 749612 587553 507324 600395 708176 734541 295021 (47 digits)

    Number of divisors: 73728

    Sum of divisors: 1654 056118 300251 873020 182831 526696 087725 662856 708670 311642 259222 257773 255874 211007 633895 220248 717423 036271 057033 463898 778899 200435 738818 675457 525390 879227 904000 (160 digits)

    Euler's totient: 299 251684 520440 022055 951023 032870 030502 893471 258164 240369 726264 866690 283165 833205 164545 350014 624538 277879 208847 496952 704494 894865 413851 429673 157051 967078 400000 (159 digits)

    Möbius: 0

    n = a^2 + b^2 + c^2 + d^2

    a = 24 714523 115929 792915 156023 280015 852035 752404 292072 860398 232390 796002 154854 786956 (80 digits)

    b = 10 785733 188310 408515 394020 374087 784156 754335 141485 277290 188716 473951 772992 006400 (80 digits)

    c = 5 016322 769580 237549 875914 050942 449177 096729 937495 766725 536357 420056 481153 269712 (79 digits)

    d = 2 947004 537865 860545 741032 233056 201190 989847 273754 756807 581067 644561 292563 489262 (79 digits)

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 5 575186 299632 655785 383929 568162 090376 495105 (43 digits) = 5 * 569 * 148 587949 * 4999 465853 * 5585 522857 * 472287 102421

    Number of divisors: 64

    Sum of divisors: 6 701981 469361 613977 758572 073726 130721 256000 (43 digits)

    Euler's totient: 4 452310 433282 656544 371578 894225 927474 954240 (43 digits)

    Möbius: 1

    n = a^2 + b^2

    a = 1943 632214 603129 942527

    b = 1340 701351 528217 270624

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 240 741243 048404 481631 997242 823115 914817 262706 026923 524404 992349 445819 854736 328124 (81 digits) = 2^2 * 11 * 71 * 461 * 691 * 8971 * 689081 * 2 855911 * 29 028071 * 824 480311 * 17223 586571 * 332207 361361 * 100062 970166 640331

    Number of divisors: 12288

    Sum of divisors: 467 810062 595232 159948 990066 724674 037317 340625 178212 148940 996111 081621 538211 889152 (81 digits)

    Euler's totient: 107 484600 672650 982052 459419 999031 332996 734612 729729 258434 478548 870272 000000 000000 (81 digits)

    Möbius: 0

    n = a^2 + b^2 + c^2 + d^2

    a = 13732 323171 210662 760031 938582 936074 307070 (41 digits)

    b = 4986 051126 223627 073007 245354 439855 152710 (40 digits)

    c = 4481 849826 157673 633367 060152 385244 945282 (40 digits)

    d = 2686 421350 475338 019119 679319 340810 110860 (40 digits)

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 11502 293424 567203 005419 002873 895813 644392 861937 196664 479488 352698 632452 958936 015243 142950 266727 781146 408375 872985 100271 086331 587290 272008 (137 digits) = 2^3 * 113 * 911 * 1289 * 49 613117 * 8 884810 040009 * 3 421093 417510 114543 * 51050 702647 066486 876606 286380 153477 (35 digits) * 140745 137728 109762 598398 979050 914020 691536 518797 429361 (54 digits)

    Number of divisors: 1024

    Sum of divisors: 21798 438530 769422 194363 915675 792587 657287 319570 557545 608265 281836 436223 815123 803772 548051 567683 609354 077460 535172 101030 405588 408272 896000 (137 digits)

    Euler's totient: 5689 576983 649742 055545 749563 361891 191162 811832 466053 606082 015413 058651 522464 429617 862716 265666 333226 650053 978077 080411 105205 692556 902400 (136 digits)

    Möbius: 0

    n = a^2 + b^2 + c^2 + d^2

    a = 101 410960 867233 895720 784798 023554 647452 217601 146262 825117 196044 065992 (69 digits)

    b = 27 784261 166480 689350 416804 012946 528749 754288 881207 047815 364719 359458 (68 digits)

    c = 19 133896 317735 826265 823003 225838 930032 705236 857811 665261 831555 343934 (68 digits)

    d = 8 946467 665312 771153 663473 306845 447085 355738 333289 857644 506990 433768 (67 digits)

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 2 348542 582773 833227 889480 596789 337027 375682 548908 319870 707290 971532 209025 114608 443463 698998 384768 703031 934975 (109 digits) = 3^3 * 5^2 * 7 * 11 * 13 * 17 * 19 * 31 * 37 * 41 * 61 * 73 * 109 * 151 * 181 * 241 * 331 * 433 * 631 * 1321 * 23311 * 38737 * 54001 * 61681 * 18 837001 * 29 247661 * 4562 284561 * 168692 292721 * 469775 495062 434961

    Number of divisors: 1610 612736

    Sum of divisors: 7 467668 527167 657567 756740 428071 844363 848524 895093 641781 445583 682511 711467 153731 004238 100055 643046 824378 368000 (109 digits)

    Euler's totient: 692423 677913 627100 517607 660407 338640 847941 292267 711341 018710 312755 633809 285592 383488 000000 000000 000000 000000 (108 digits)

    Möbius: 0

    n = a^2 + b^2 + c^2 + d^2

    a = 1 036676 869232 664434 724814 586415 293483 485046 349741 063075 (55 digits)

    b = 729711 211883 879079 469061 615332 556684 735507 710018 849155 (54 digits)

    c = 617646 578484 717214 664389 408403 124786 748302 475286 151510 (54 digits)

    d = 599898 243795 459848 484566 829945 804730 604368 372683 780765 (54 digits)

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (301 digits) = 2^300 * 5^300

    Number of divisors: 90601

    Sum of divisors: 2 499999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 386363 316837 784180 863028 505626 715544 628098 060937 568804 361056 360351 611843 159785 517942 487764 495333 505965 352053 554358 515184 835492 185529 667094 014837 802781 690487 942627 620109 549133 614562 048949 759686 738543 248165 625531 (301 digits)

    Euler's totient: 400000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (300 digits)

    Möbius: 0

    n = a^2

    a = 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (151 digits)

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 100 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (1101 digits) = 2^1100 * 5^1100

    Number of divisors: 1 212201

    Sum of divisors: 249 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999990 797310 213721 421655 703917 278568 793602 938581 209362 954563 915996 206911 736963 871703 448420 393534 719273 589927 767129 699779 344146 574722 410069 037295 900754 704870 621149 869622 416974 764232 936393 149795 960968 291597 093715 202086 964192 800104 852595 300134 562192 252401 313312 917665 764098 700407 928337 785628 333852 234731 268944 465216 490634 524996 859357 780374 745047 551965 239335 887113 074210 850335 666128 769714 216135 133740 966678 463893 588358 037543 308823 581569 825582 140556 385973 386307 657739 492836 008275 043330 799537 038848 544607 004209 380332 534956 804358 266060 018273 828637 325093 842685 087236 661336 747443 608744 087073 914735 261231 286846 884062 284894 310244 151856 582470 061364 466882 749805 897882 053351 422961 026790 156477 860732 237238 938316 894071 955066 555473 530746 757077 834197 223594 351341 709189 623792 800723 551447 741531 (1101 digits)

    Euler's totient: 40 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (1100 digits)

    Möbius: 0

    n = a^2

    a = 10000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (551 digits)

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 72667 006980 385333 565928 292938 889925 763077 487582 539982 424675 125363 472831 753169 017201 333796 341341 273008 218264 573022 195345 424489 059723 700566 662314 773302 254295 889312 457647 497977 853863 042157 354564 496698 482701 130753 323286 758612 205861 967796 343191 858131 002928 068599 375361 489711 955573 167082 152350 251926 682548 261810 352243 752628 728062 075698 309094 353839 917855 662220 230519 561659 303923 717372 165426 504245 330561 336531 394521 206972 376656 319044 759781 782531 367753 214675 926474 551313 397582 602429 279165 551217 508178 286951 973368 325401 600813 252492 715973 200800 085498 597530 107124 099855 140705 569768 373523 754687 692838 260083 916787 700273 811013 835835 350947 288075 424543 614544 277796 512520 484804 771653 681113 155782 672127 396480 017746 200430 207651 892985 299102 442574 824992 927392 648471 146556 033357 439172 318145 703266 692485 307896 079011 622345 086436 456869 015474 329351 181816 729993 722588 866629 779574 214090 371315 053902 641539 997756 304014 429647 932479 992980 866666 465626 257172 992838 769741 655146 789249 244810 499818 268084 117872 212841 107868 805243 478158 662470 334981 539983 119942 416064 547375 253939 977280 201195 151472 147419 623969 226556 803610 308846 378376 139404 546472 122298 686124 711434 159741 642296 163820 529985 809649 461390 355131 684403 486979 489995 312716 419307 313769 444520 153150 901222 847313 142181 447272 204666 960213 009957 801323 583455 353791 501067 898151 425856 699965 549831 846422 290686 426650 337714 906093 918443 466250 206713 570252 092365 443368 242871 109759 177250 455625 959783 802938 477021 558459 905557 684556 091956 431875 389521 015710 091193 395756 745102 054771 899768 946578 696678 319163 726191 640098 936923 770968 452867 055760 965880 438159 358981 762243 760240 056374 944920 023004 676382 847503 738465 360984 643768 523013 397881 071295 905031 098089 698891 494257 215584 727303 141345 674171 044795 594021 192835 805707 562387 078258 591908 399731 089909 898817 226093 695385 121493 869352 132605 141346 854886 893911 871095 598267 604544 030562 133807 157172 417964 011985 562131 080936 981684 296736 381769 366072 270640 297352 901151 754371 601989 663182 721220 425035 067809 123253 526722 846238 066538 699819 199993 129908 128545 850504 976380 092090 366537 214438 631213 813373 906049 371742 824529 230499 443014 992805 933917 454081 422586 104799 792284 967724 057489 205409 843465 045834 260178 573011 183127 327538 397501 878888 546219 083343 944398 116507 485435 085429 845211 710280 363162 234538 899043 203092 653075 039565 370510 665758 475105 299029 361041 189828 219987 863157 060400 820517 970893 633335 291193 528215 169482 346288 247160 044937 909061 609445 812547 327627 647076 151252 345098 720570 858181 533375 284628 893303 872716 468641 311339 022418 407061 871931 852329 760330 435973 189460 161072 929488 417217 252005 363438 340091 968812 490161 250110 104273 203535 684284 835799 701677 023640 004166 082484 019140 275988 017398 529483 647698 753555 748240 184583 306455 920603 545774 440735 038345 369423 921431 350896 074944 308042 760584 539262 681855 392087 390724 041852 549385 686481 318618 973112 007766 253789 425420 655758 429705 508341 095687 510171 573583 792528 650180 002064 594539 819897 585083 735219 940358 617217 391229 952636 259428 327330 484376 702194 865484 602525 342972 960210 004667 060691 662235 982445 149616 208071 968867 749197 215627 429641 471420 150495 260516 072305 056813 211732 961496 424809 933889 035896 932990 753215 016498 409854 814533 812373 432577 609825 761615 342205 365344 282149 928170 065746 906724 293573 507532 983037 454610 368909 509392 901681 100623 054688 288943 329916 933337 251214 169076 436972 028053 989725 976654 001452 237515 761147 995317 804214 675419 838161 347610 246313 780114 378631 952476 808891 936025 865836 655455 245176 055145 923550 321956 060168 609702 454633 005921 582348 138029 577382 174729 752847 794054 373301 532666 400465 680303 540372 215400 256010 528333 292448 128094 134664 930890 924872 017774 428127 050168 674731 593324 223340 589605 024579 189066 169459 083809 033204 617112 049263 953327 633669 044738 133740 245226 244288 450178 793235 088295 426458 643206 238222 372939 117433 226524 231266 685737 140841 159913 134145 715848 353199 617918 334947 145941 709176 032249 487137 098663 073269 417569 658539 681463 645514 569129 273587 717472 733061 817719 669299 027194 734676 931896 392181 295757 708261 545098 400084 416898 152017 247122 147581 843902 183885 621394 616372 617207 576706 685736 120437 364888 331020 537499 230809 840143 915772 273490 629957 690368 526562 258014 594354 296656 601246 895726 995607 766236 986440 951193 484514 567482 662216 554330 070762 690313 564588 855568 728895 145739 676168 817855 636066 870447 627712 646964 790923 741693 654876 684386 931429 513762 577956 105006 801005 467054 418801 851498 517282 817900 402502 915589 363861 582011 676154 289009 794066 887723 117115 980380 434896 299229 861444 134421 098205 007807 576792 027318 819809 355202 852691 230712 014238 078905 910684 962970 481268 547522 450557 400588 519952 892789 138066 962931 778381 111422 556383 137003 380147 242873 161370 515783 301720 537789 385638 268948 173216 152438 067616 745045 916656 724357 704730 062475 270057 373778 749899 711993 938090 360904 126820 860616 018080 129476 639839 559952 692384 776958 201434 666884 710165 884307 361446 677426 811065 836255 198248 545160 014939 310949 537604 563204 192423 353715 094257 764123 190871 723396 588028 848800 493596 374364 075303 586569 209086 680994 340241 660101 812114 547411 524662 210662 753756 096854 448355 124441 868819 828187 523840 152138 615090 518792 914332 430411 514833 977378 883538 887767 049222 510374 764258 633618 891709 429150 241456 495698 346529 569608 716723 436882 425197 455318 765520 352398 548292 843536 008507 409848 196271 735883 123913 444220 576017 746589 414688 721356 342253 294728 096326 773984 673851 322601 487737 753850 716992 740352 440010 510540 270283 407122 881629 659593 963025 886466 793792 600311 042960 749537 677292 476283 600788 855457 294423 101548 907877 796399 131120 959608 339956 294153 712985 218801 634039 742900 316979 339179 970114 104869 911463 975202 995508 133903 036795 677818 914859 359268 144999 973601 952415 586930 813073 719617 457591 694981 795995 759496 306242 940713 367801 646897 555371 351411 476462 270009 326622 066518 285357 267790 339868 171964 044950 664647 649037 515426 117953 018012 856695 121099 093216 049003 879505 541299 123881 550707 994500 164742 793715 658148 396159 118559 760021 635850 063183 275292 741249 902156 044700 304436 766879 495699 845588 286473 735777 015548 404155 863781 804523 782025 818134 457109 557476 186243 678247 808775 747249 041753 582160 390544 650532 591283 079349 946410 495542 907786 382217 287955 070477 987821 608727 103714 328812 145407 258012 573085 013316 820531 751885 520741 900582 543285 448000 754969 501439 110457 830670 952415 372102 643552 707246 533416 118870 072963 682298 649507 994597 540395 786018 682999 460641 202886 958475 968729 090445 301749 293476 680257 765773 219904 477800 699786 167614 512817 163186 014031 427706 283867 733171 269055 024526 655925 577784 669336 876094 995846 815207 773210 052934 589015 582401 470556 692392 567533 759431 832968 435914 842141 160150 334552 139251 502180 210696 334270 561328 604437 213257 215215 095288 304149 853814 574916 049871 318291 189487 533805 523439 137287 712978 043460 970393 380549 078361 466119 787361 307658 174479 962781 112900 305763 871129 825672 162161 853176 551065 321785 524668 764130 015030 693038 448391 950724 617914 214696 900346 866732 059139 717318 703950 339308 214494 798788 599721 287411 276356 748034 688558 833595 820402 418728 314062 521055 828894 956029 321747 220863 408029 624332 825356 702794 098612 305755 777531 276879 842844 364290 745370 043377 597874 414606 439191 688394 923354 137086 243390 065656 833218 530707 478981 909231 968903 009197 119964 486093 330206 023012 916454 037129 598199 933124 526933 023957 364503 445110 260366 838555 117115 539808 231702 429131 242858 752314 216200 988277 335663 829338 733278 079370 269611 751967 888091 761155 737556 744886 955977 396893 843522 161519 366416 860913 094906 024158 486824 374322 893510 598575 617055 043472 060698 491333 053841 454730 221887 731864 662674 961002 546941 827142 754568 891941 355957 106464 872056 873256 975717 174742 298010 919640 590862 298578 726541 372822 217607 784334 889204 309198 487336 507522 687243 761613 513936 317708 298192 207805 608228 972917 232813 239813 118215 209217 144405 230129 822124 041978 800259 643193 749882 383969 602355 049701 172179 516277 331753 713125 306285 357673 093208 000303 005592 821769 139524 034678 389378 457397 691754 646002 364431 362586 687528 560712 303694 063451 431138 459775 186178 369298 856249 173802 811311 485895 185312 455129 879410 052189 303362 032947 385626 422314 608975 113061 304564 489268 665998 226060 183971 931612 929265 518177 754497 076448 747233 959407 750417 109200 895080 724661 446670 635586 257041 402121 540023 476449 610503 383969 984054 427875 801929 244658 184835 871230 001028 517535 946008 526549 164317 584207 704865 875560 634004 691571 206448 320532 619877 695150 551683 183006 172452 903438 045494 527190 507439 580126 352030 735844 155765 043339 618071 120285 121377 796510 020916 433074 445216 597279 329890 912276 441443 799507 118738 574111 978649 379635 234374 408455 178108 725705 274362 020249 147675 442075 485469 117295 372055 608032 048242 814838 406583 368693 060128 975103 013919 891641 047149 628798 390183 213306 753103 576986 771196 263823 106944 155752 256916 740559 444466 490374 123276 512492 854703 733903 273564 208731 887920 114018 066226 339246 919760 578052 516597 922367 565013 925777 189507 880583 457133 184979 160194 294594 247382 751828 173058 446684 356504 430220 685806 506813 591257 553284 173835 984683 889699 530593 629450 496348 957981 680332 101862 447324 462206 805969 430489 668714 248252 702645 937234 282142 409762 125535 526913 656797 093087 631185 625884 462587 093047 357885 293901 085311 670592 551576 240474 072534 456111 363386 969604 128065 569663 318761 792310 875059 227524 330746 670063 556497 334099 128172 988994 933629 842466 189730 556254 538738 945519 419881 927253 669572 024503 265792 751318 493420 987619 904297 500633 894449 493246 393391 210819 085708 528007 615723 299915 904695 101122 456868 028403 652532 716561 049888 846117 549339 341555 660136 372963 286339 229989 726760 272560 379949 081429 648206 431892 048558 113239 021198 368427 686218 330263 999723 139638 620357 171255 359845 517292 073278 291112 565779 480119 521044 994524 841182 800402 175905 247114 567915 460464 170006 666658 765481 732233 681300 698753 263584 346432 871761 516368 338472 261082 564209 098896 612440 632135 432706 457825 301056 888948 497925 998033 207975 990523 678974 341319 573972 540570 997030 817516 319768 553780 326953 433510 311588 758371 854767 740782 594431 386836 985161 795423 600040 502839 080676 939367 441999 844982 446552 863667 536163 233981 992159 111158 196285 164258 866633 779787 281008 075540 119649 494617 709654 481862 471273 066137 847575 486980 925996 811255 930180 930010 853245 881908 892595 781120 013300 437657 000674 684778 213905 290737 232217 497961 092718 314762 213921 585277 479600 184543 917907 292328 635990 501162 242590 160470 068047 631003 197517 875510 905351 833499 896934 198185 665776 823762 488152 153967 319729 301518 135902 995941 924250 010714 721267 415779 602270 298991 096967 821942 238912 374824 642230 683124 970031 501346 743718 414751 473636 517574 151318 064057 704220 316442 344758 678640 475183 594180 167969 307164 613460 128340 991278 448090 097496 647516 223021 297185 639682 448365 694175 433434 049976 603228 915801 286835 975489 749676 998009 572962 099956 919248 793671 298726 621705 887246 250054 177111 998668 760807 815168 566427 025121 931684 402718 873083 528109 028953 489309 957449 617243 363311 650524 840654 467625 795216 254324 665086 034880 665233 217749 247330 644695 277436 653011 681639 792871 416867 950284 359429 845863 987672 563038 132010 941513 483226 051077 879134 145205 161705 100943 026989 176883 182391 548980 484730 125057 439695 114591 857541 089369 783684 938870 104495 401684 854021 112876 777230 562509 342864 363494 584904 981813 312149 253368 870329 431026 130347 196211 984626 030858 068624 646906 536659 043114 872661 570046 051810 867319 282737 590154 042422 191751 288638 842089 689041 494469 298760 884625 441305 812519 123480 105062 344316 035920 980523 628854 869129 924383 138191 662592 219285 376607 124601 336730 653597 118284 225899 853725 255481 595348 750598 803520 087807 191620 455428 922670 227431 985348 785954 713525 673112 921533 724246 979636 131282 469461 142633 001432 055339 398001 181681 834010 899626 426174 839651 882500 847136 801295 590797 514034 829328 874021 723662 769493 445687 400238 773447 929017 154670 883043 836518 936809 991734 602529 532528 048525 111767 917693 468953 990944 767629 469068 053700 015406 309941 604025 508277 702838 884490 476948 336639 125207 885053 779301 398022 304239 221207 903652 468714 766549 590158 276235 003912 373418 181403 334043 917765 518060 358866 696573 368193 664905 784347 386135 275456 585566 214728 748325 213604 430025 430019 596437 057957 884808 219002 038396 666642 304440 922779 647637 319653 926364 153901 714254 134064 311946 025605 013711 849115 442518 571909 023767 381967 241447 140998 209642 755788 074016 279898 473415 869315 734629 409508 553655 980716 149071 600048 456271 006777 381951 096756 992042 393438 106940 415391 904709 301916 245847 587839 475809 960214 132572 248856 233006 097165 727367 362989 095835 947002 604414 026081 167550 785978 242318 789103 914716 113441 895047 353736 041051 765182 418674 136512 929571 296397 572875 010458 398980 656546 017603 357356 007330 688801 115510 207765 493790 903033 076192 238263 067884 321916 464469 934881 443125 121387 635306 754183 311888 438781 504587 843009 963096 608523 859162 205053 826687 779659 580034 508426 842036 376918 207188 696804 603958 589639 382904 439778 328206 222059 996858 122988 048812 195926 689001 784298 361650 360441 014257 382643 949596 198072 107938 699701 166478 225167 178448 214688 050221 792561 944540 630542 238302 892932 112759 554656 701872 149660 638976 787315 710146 476875 858739 836824 586516 455323 069167 512130 146907 045748 944124 938494 594016 700006 402693 136697 869877 365906 201915 181548 435544 076480 007054 447946 301905 561053 706260 049924 711082 755321 330068 538628 563062 939965 286953 595102 458983 024756 823297 370126 693220 800173 359328 136081 039738 466961 344914 303826 414755 387916 278783 817611 630474 419108 977643 328573 626159 501440 807347 643863 249121 240555 154440 237534 576778 056116 553320 664367 209506 765962 662577 721088 283643 378378 022561 331104 926459 253969 951567 352407 399222 927997 206826 786850 260880 810056 699219 174236 915660 305554 161070 520526 826938 744721 504940 431123 782786 434368 571133 625602 475096 650916 089085 899348 377852 820908 984501 111965 397883 571431 031126 916809 704370 181005 381772 806247 411776 932860 588796 923251 842857 910306 921145 857466 625279 348487 027271 688155 619484 681886 146453 378997 044356 692014 150986 387239 446843 396401 533907 115240 908279 155565 388894 243001 209741 674939 907800 023155 003650 371637 852468 070640 121844 464150 398127 816415 642428 529641 616157 079911 327351 667319 920798 983988 084846 393337 357752 574628 802434 224727 758269 986853 984180 773968 903358 254810 420980 556974 339465 449874 471026 378372 974912 346191 478089 239175 919518 543137 848875 871101 261622 633422 571822 114566 694346 442657 149354 800179 565240 761559 962271 136702 965469 491515 874899 522297 657891 143495 104731 722176 570724 103220 979589 268425 227689 207403 572308 900572 809622 564998 336323 023436 047000 880052 069695 573757 097833 177053 707025 270657 249827 655583 459354 043921 708171 492432 335598 435531 545350 780546 024811 432828 991023 996689 182051 406513 888589 724380 428527 794771 438618 705716 484147 839752 552951 690725 268707 351674 095132 881619 031286 979741 812461 287453 178684 601807 746540 209315 962201 024674 313126 683431 350608 031861 023440 730673 362366 115916 713010 992089 229102 412571 253061 649096 737721 586776 335305 338883 859126 994500 120936 354699 940292 175478 144056 137297 029522 686213 534992 265686 150993 521986 299985 144829 921054 663374 841026 145118 876295 923578 037463 441574 227155 895023 462499 978941 980561 374458 524844 136724 419622 039863 810103 654973 986988 187152 824868 383131 671788 518164 002278 896492 459553 308146 528483 616336 378678 692970 570167 172861 088980 200952 760384 290412 012287 742617 357222 296347 339138 622469 670893 998540 310153 034308 553958 762449 581985 316957 542724 952574 639374 424602 625181 679824 816426 643923 185446 995091 045877 792453 865627 068152 805688 546467 691966 451541 510466 243306 513790 499606 092105 355479 169575 270618 337009 044512 682441 726991 935158 313313 858388 955991 332484 011842 036162 098379 988204 164111 074726 196178 482191 203732 668811 488516 945453 688307 581828 617797 970368 526435 840037 518309 852073 944855 992553 374454 440360 770617 680256 070109 764852 950476 467183 437317 000674 262207 767228 652860 899733 749484 405175 852335 416277 743404 034706 355925 659636 937721 434176 990891 700161 315377 701066 951601 230169 033175 709716 268999 251992 676700 691452 674091 287260 821149 451262 449892 635348 053200 663637 618329 363010 500838 159490 480832 256857 967751 399675 601646 675760 875171 412170 578770 874315 108341 583108 791321 359052 030281 554943 143210 812327 599989 232016 344846 285538 849920 065529 193667 738801 007372 428414 362671 230941 290571 022514 193303 507690 809569 408660 598642 926707 990547 879445 547511 096894 877470 326600 817530 872841 996351 732182 474190 318124 192822 688348 774301 163384 196705 457104 110632 043589 304227 885967 722117 515920 984560 667720 808197 356746 281477 415178 348755 604413 402139 978212 507696 051890 402998 403161 202295 391955 937599 758181 822973 337494 209815 781849 395632 499220 369869 191863 646179 338530 501152 608164 574910 138505 174794 056543 083867 975776 329883 795686 875831 799052 790221 608428 565911 175638 719182 755652 126675 345061 555622 401000 028041 936067 017030 806933 155626 262330 880453 176749 920680 828765 443344 145468 235439 918449 216566 121380 422061 242682 995982 206181 075966 757818 188770 033591 467549 749128 012321 820653 145147 522140 322139 464592 087169 035103 790638 148599 575229 819247 216261 387961 229590 861812 875732 324118 455429 261076 012185 802313 575474 641487 978815 846951 595020 997611 028460 774379 167231 272632 637142 510326 621912 120732 938792 323251 882671 296701 731233 238869 417021 231836 588391 101986 579921 630254 800933 163797 176427 382320 268431 294591 380796 777638 402361 212932 247755 944693 996588 027787 952172 776896 759010 442504 500432 407823 328678 173198 774602 803538 591576 550212 553073 953073 044820 150282 536965 121011 113274 325352 041348 929066 341585 869853 843337 197980 749039 890961 124845 914954 657760 055739 124754 925834 937319 495730 062525 410621 267510 524121 378675 230415 542330 294349 011522 712356 087532 841942 934504 592863 954314 357313 824648 916690 254529 870611 261533 602486 643877 233760 075999 558292 853335 994349 505115 327543 816313 024397 104409 771778 978562 030545 860681 831266 424006 853132 223296 848755 393519 797774 340591 493489 650025 263099 863487 706887 485378 780058 207928 763549 357176 841350 911101 401129 297709 369309 697301 330023 325164 662122 973196 581026 879226 617086 992104 808845 378455 926044 817983 957668 675221 088335 828097 850417 540001 598598 694972 288227 133358 246005 280860 225168 159832 940619 193621 230333 812689 850773 310686 950518 656965 605478 715904 147736 556052 142093 055775 350110 665923 917871 176288 628259 762052 088439 907223 067333 290178 084057 465544 739801 296758 575647 447412 667482 689063 218553 747259 004935 571896 517900 708759 585860 190655 882383 218278 593217 285035 684318 034433 895727 385431 042531 027445 919277 380151 519464 303762 289127 482417 847822 173915 624529 256222 826397 869018 893717 630229 204796 895552 671545 928293 462830 359846 742018 971496 873191 674351 129937 734552 205018 628837 529628 152803 870412 851816 937013 048720 713795 668875 243800 418934 488111 048217 220719 331066 670170 860954 314616 065911 908003 495817 963193 464644 891664 294883 518101 530020 946894 495987 200663 172436 250769 568051 773385 117434 052640 210919 170887 536445 512020 818993 433221 678888 162213 280811 911496 984648 916345 779214 711689 862957 940233 429652 425380 143293 755916 547425 204573 055955 396990 854657 461823 839439 835299 473025 147348 837129 480033 142333 266515 838367 807716 233483 095298 261806 446464 412483 080083 326023 849113 954065 167543 637322 491451 527864 101065 545994 357619 070728 119861 416314 164573 174281 581167 704095 247010 886445 886078 057232 596805 729868 977334 891759 690589 306295 059750 519658 122121 464642 019217 828117 827962 325873 540944 613093 002089 868531 351310 959249 050408 892598 380431 565725 092368 096602 337753 085081 204160 208596 376278 236336 592834 671832 519929 587769 135165 297019 946626 015539 871031 944856 505649 266481 164552 602529 770936 129191 139551 326425 955301 110014 992770 993022 528507 779131 002259 247202 894809 089295 652877 901767 493666 472711 203514 232840 010801 199176 175422 930269 808308 959500 266807 818781 823664 949587 898255 087235 131346 003231 394452 853570 190943 908669 468165 890723 534364 240554 776380 036806 224736 422886 348239 844890 457281 124152 653493 661615 093678 724741 966305 668397 451359 234414 732182 402061 166991 128403 879532 406227 886719 038626 158522 289165 468116 945969 871134 641678 498413 399817 391318 653563 171120 278650 564117 928859 777481 463026 309470 919896 401801 464589 221587 888182 237819 130384 338421 219002 687306 332161 456507 765072 119240 583459 227361 133819 861893 039142 771763 333019 202597 346829 216151 244162 171789 631327 384141 918189 723426 514399 762125 580548 154380 696788 269569 430030 761477 319939 368529 149270 721084 328044 382225 945443 775062 951057 592295 942263 044094 988460 925097 171383 015818 119048 429117 600389 200291 256005 343920 024090 240155 173505 989921 460661 581408 934506 702767 236144 557419 826663 184506 881486 588681 969057 751283 062269 000189 367026 543065 861908 204771 762907 212725 220351 471484 560090 190663 385374 400389 401826 375538 326210 397402 172014 960067 218009 328367 879855 835866 992421 677960 503917 990469 621177 596154 331689 868463 514846 490647 826984 026032 075611 650454 566432 726919 442397 754729 376265 336610 677825 469789 771829 790798 464941 922114 214906 051371 298137 691037 121009 918938 125493 490293 792074 939405 418566 447814 339601 741526 695813 813384 375093 166562 387381 247933 467806 730094 180217 570273 057688 954236 901300 290419 249267 401295 629846 776886 445640 272867 128575 640446 241917 613297 917119 896619 253937 313321 912573 794606 698228 444278 784866 850257 817202 914424 220558 915177 056587 366391 816585 113799 482893 406975 301962 154921 715424 267737 278799 824728 927914 971439 486139 558824 146950 283255 047847 615406 915644 942051 588826 628569 242937 095861 662034 014147 307425 804793 474472 995704 426546 062935 713482 984681 022581 345832 035659 514314 100854 737185 729680 700047 822543 837855 728393 093667 265149 511977 555682 457429 168128 857698 629946 188320 385714 910291 192478 673748 333485 376863 677827 764478 788758 526050 438270 634163 318846 299144 424384 014868 044877 408060 420400 036689 540539 039965 727351 760566 402380 017891 265749 936430 198615 919941 037865 781025 057938 425532 270964 706074 415046 269406 252443 773274 092806 237973 358356 513976 073010 666043 185621 972379 166162 755602 006370 780736 771976 953635 434373 557650 971639 753973 988755 558180 346245 631242 816533 555994 069609 471913 065808 866608 465589 795168 264429 742794 177940 543244 030363 416753 155515 004397 445596 567828 311324 269506 676626 952294 342262 583688 913620 108228 447492 903394 591978 920263 159056 016269 801242 932048 649125 867007 299787 802046 589663 211127 756579 885048 392903 407298 942709 543624 521167 496263 680708 158661 669518 761632 615605 162821 918993 229929 888542 772395 746896 235491 121986 281379 864008 732064 044529 778599 991364 954749 809175 537452 941980 675073 391953 960407 359439 537381 381002 038419 605514 422412 866893 423175 886321 326931 220342 127112 826888 232079 286748 295108 245879 982126 798330 833710 897733 491666 170019 077385 916385 932721 196639 344165 242515 378743 373877 734731 865056 773775 921438 408129 491576 694183 120721 321870 863723 572541 723391 587699 544991 475828 231262 172498 336202 621337 010086 373477 505980 484418 116507 316825 207406 314561 785522 022119 738413 284841 642767 920066 920386 148500 991298 642590 455747 265028 205102 383286 517604 030502 123099 841874 693951 987016 891548 275854 690439 432342 742990 174969 390129 567929 648020 315101 040074 014306 429258 208444 712077 199761 817184 433212 221282 043703 896366 218335 214548 069366 287417 187662 405395 233939 612660 148718 607356 213439 880785 045788 050880 381595 937463 001675 635152 410892 447462 652026 752153 298903 716656 386461 132618 544435 874448 574241 294023 890654 403435 353247 325162 087879 226821 471742 716095 265491 286191 759999 402694 163871 073392 089348 858581 569361 083499 558860 064952 002758 039328 380257 172911 386490 030023 023610 824006 001921 999431 176366 332051 973961 929200 303970 237152 500182 659393 823450 545983 318969 199558 964269 848858 996539 958454 600496 070250 738916 731169 810776 790190 781591 260036 488584 123291 678940 235443 380517 372709 812903 215238 158650 210640 673212 211543 796882 757999 853797 702343 939427 930538 439828 643362 071727 563795 301140 210195 855697 477926 295535 267613 500470 008876 183464 046406 431471 380867 708410 865174 384282 574887 337077 852637 547719 149526 286160 108484 655181 450933 515407 674090 799083 238551 095869 098217 036677 910721 636181 905898 299749 971139 706672 748686 267939 892570 206606 148580 947927 059678 631424 684775 342893 486682 445940 244795 403796 726822 580957 478930 597189 799150 247536 369182 314629 245810 322701 075911 741776 383139 871971 830447 989392 599194 086861 860770 401421 074618 051847 270169 329787 006343 784439 483172 931757 633375 090836 554033 261377 953496 901135 482225 257432 140637 204307 622916 480270 204832 055531 082652 999121 077480 794250 249619 271018 289310 958821 077308 482913 550543 064887 428528 264446 979451 214209 950489 626977 694772 730219 794389 853900 516161 674614 128208 147230 090456 831465 049399 516992 269193 170918 866226 178264 134570 389455 152310 964981 493828 669925 450036 435799 697948 685554 052583 303894 259484 463369 820632 195783 267258 727445 128318 056162 799909 443958 658320 502675 820339 818751 595810 132382 988069 178398 844153 810675 339198 931958 084464 603584 356889 366308 074601 775482 328659 175428 063691 746107 914423 423005 122126 831256 565956 086180 050646 375413 563267 973961 997345 176660 845949 892336 151321 901225 254259 201079 752039 232089 748387 475462 579456 732784 855178 785780 471917 812180 953553 953160 381229 896776 739233 967636 967597 667492 678429 569003 497897 394711 975403 163962 722442 673925 814985 001011 204846 741205 655631 040747 709984 745794 435701 856686 156065 152096 877322 339017 971840 033016 733727 570643 514390 052020 020474 966458 318690 305985 253823 197490 651777 561346 424819 174761 905606 695301 360453 355043 755393 049453 443645 327652 447002 718934 106432 972971 348651 412807 777116 178085 412827 503782 096682 981300 962011 212023 774421 656062 854049 467320 195945 136078 859290 901378 525245 431137 678319 476753 886516 695510 063276 615827 325071 462236 355302 981045 235679 296107 846271 665895 149185 186680 097003 731222 820933 512218 353943 825536 145143 572626 589420 418412 086433 337526 675515 553227 386307 696107 226965 232069 868728 838217 602958 761020 994592 003230 753964 685739 853645 860783 504373 416648 812544 517154 765733 102348 464715 312356 732480 455533 830569 919499 751409 430192 990973 417118 354676 790246 042158 627922 171921 179683 726082 636218 738448 804413 328314 103010 085530 173980 872558 457988 813238 575044 712367 146537 247966 764284 843760 716055 521616 542305 802868 530747 547723 058310 801870 984151 099063 963780 235854 355108 545503 905223 926256 663833 312604 458537 881603 505553 386701 289467 698289 380343 044033 294451 952405 309486 936694 949052 449000 866121 967403 677291 830521 791447 904933 622716 031591 276997 204183 480943 149462 137728 377237 113952 804670 235370 646035 717650 567617 911342 439772 375793 538560 289847 476910 688230 182412 882158 514578 911071 182465 695739 124120 719627 744012 052305 074142 430382 365480 709028 445727 337711 435193 896800 191347 573869 335910 490213 456250 231011 978409 171506 303498 328384 452794 237688 739676 204738 786179 374264 880323 567209 345389 520001 (25079 digits) = 3^12000 * 41^12000

    Number of divisors: 144 024001

    Sum of divisors: 111725 523232 342450 357614 750393 543260 860731 637158 155222 977938 005246 339478 820497 363947 050711 874812 207250 135581 781021 625343 590151 929325 189621 243308 963952 215979 929817 903633 028140 950314 427316 932642 913673 917152 988533 234553 391366 266512 775486 877657 481876 417001 905471 539618 290432 131693 744388 809238 512337 274417 952533 416574 769666 669395 441386 150232 569028 873703 080663 604423 826051 179782 715459 704343 250277 195738 054917 019076 355720 029109 090531 318164 490641 977920 567564 236954 622644 348783 251235 016717 034996 918824 116188 659053 800304 961250 375707 550808 796230 131454 093702 539703 303527 278834 813518 874292 772832 327738 824879 022061 089170 984433 772596 852081 455415 965235 807361 827112 138000 245387 336417 534711 477015 858395 872088 027284 783161 444264 785464 897370 005458 793426 625866 197024 387829 901287 062727 439149 018772 539696 160890 221480 369355 570396 052436 111291 781377 442043 222365 348480 382443 286095 354163 945896 895375 311367 746550 317422 185583 696187 989208 082499 690900 370403 476489 608477 794788 188470 713896 143470 587179 331228 527243 203348 288061 847668 943548 140034 117724 046911 464699 241589 452932 715068 309337 545388 426657 671852 685831 085550 849851 306753 314334 490200 888034 229916 743830 020602 775030 351874 064853 182336 046887 671014 964770 361230 965867 793301 494684 994920 520949 735469 510630 127743 956103 975181 014675 451327 502810 119535 009562 606454 432891 893407 817254 676197 032866 463874 271930 380974 894236 668119 399606 829359 692822 114262 592011 869178 673414 331254 735022 575524 913167 597017 908420 646132 104794 940004 991383 014008 411388 561654 265209 845975 995594 409211 795894 755364 746142 915714 229019 646652 115520 297863 996283 098232 485041 173670 014434 459449 781369 086676 477814 535369 689938 628036 997890 492513 889794 104133 099242 147117 453985 313312 912045 672420 468961 518228 579818 974037 981373 225807 583985 051275 377170 132822 585059 164586 550736 469431 485119 056654 624296 824128 903880 404820 789388 599389 501809 482336 441986 446989 280728 504152 592619 668427 801776 536940 609339 606232 186970 400336 116109 457180 085520 822346 338059 107143 433876 403491 416756 527002 297336 376091 027303 250972 019989 437233 747639 245151 401184 391588 938550 967199 395491 238062 380550 909054 592713 691892 893635 551439 123398 085650 187226 136129 680638 137875 738389 653317 634327 507970 175024 556004 694058 266090 286159 138791 139811 840641 314512 104130 258856 443848 387013 004556 058361 935603 557278 924754 954102 873331 757160 148603 655474 397257 642600 829360 888231 339603 980366 261546 380248 961253 010210 049630 823079 107418 180008 569092 035182 224522 936791 516227 507379 582550 480589 282877 694454 107564 500116 923454 704301 570536 016183 746968 300857 628095 222957 006508 045308 778794 997649 629088 441471 524958 246286 447891 402049 203622 922044 285320 050436 114587 935042 041328 423846 506405 351819 179428 174331 576750 239081 108336 833591 962919 283796 833675 977927 951628 202630 121456 005489 279200 702002 715226 873615 744398 729116 373352 665334 363238 214348 294680 492965 027376 671159 711940 615201 241584 258228 585672 219074 434619 546888 794385 081012 799651 753174 314104 973092 537066 242900 658301 373971 739016 052178 248871 053270 619729 179624 605682 576382 714820 926322 882175 605813 430687 823009 417534 919910 652134 164390 719027 173073 762308 481386 463043 461169 024850 313039 428300 753145 273354 392691 534473 283068 087866 305151 777345 736524 152588 075107 108483 588640 749216 833805 514561 476085 869088 601369 267831 961420 086463 442198 370691 586334 692207 946583 244250 369747 285006 023741 784955 021844 493133 009203 689105 527232 815180 482765 042801 123980 063458 001173 071950 753707 436925 857146 626933 093671 351639 768723 857762 439458 184786 857458 620007 442509 237417 523998 246604 432860 262220 475225 093646 995003 483358 598951 106474 590715 983466 693322 281177 893616 187312 437138 996944 732047 331244 796990 727328 183245 339634 337399 824735 993386 156517 725290 503189 235543 341356 388552 098809 775743 328241 236766 156284 880625 627035 350593 492149 894598 948254 218180 163929 591266 898393 893053 585781 005572 529320 854043 283366 443749 038116 843044 412549 439981 236885 377858 149583 586473 289194 475151 729513 350004 760250 354978 650036 258141 115614 327082 544743 991547 254311 904565 782790 702978 742227 476452 125588 790129 790980 908726 517450 301907 084999 607724 142894 222672 898956 649186 529319 285172 448515 808944 076405 067370 129221 270499 870491 843559 948941 609589 471697 438819 731109 524417 102180 255746 940589 366652 962459 982441 147504 593157 952282 483797 636357 105555 365436 920676 286574 752109 557453 040452 813313 227608 194708 366045 252853 994372 902244 907072 877409 963607 511447 956545 905596 168907 846678 970322 332521 868848 232718 646937 182342 952087 219352 558377 839874 292565 819834 918653 060065 911970 356672 438490 199504 149317 742002 685456 883624 386012 767219 721891 046317 837678 130567 114950 391815 767732 003404 849427 572663 299777 955507 609260 958812 180439 073142 696976 385917 485607 168016 826395 326851 180418 838507 816319 834373 528960 745508 096859 713699 971022 471055 727713 212184 827970 807190 679813 929890 094987 073197 127798 199070 333753 323427 264541 594573 234705 800335 241880 047122 568224 266543 722013 723242 367307 138183 522969 190584 914067 015926 445850 906336 957421 312339 405965 274722 254094 355030 758904 425584 765779 264350 158970 772028 798121 552406 536126 116645 219168 148893 983899 998913 714346 003829 373310 485838 317904 233913 120701 672644 105786 111757 704057 240220 033441 039941 838179 609701 200047 649189 046003 247318 496239 362136 207789 213273 401962 284206 728741 087552 601987 541812 768000 246936 613080 142641 601767 793920 303016 920489 135627 285381 225083 909085 376214 440644 448102 415001 436046 408499 787396 796545 477376 338291 876516 159955 665560 738451 430505 601625 718152 300442 695456 122978 228552 152414 178837 182286 036212 865265 590175 518631 445862 111963 664098 475397 822682 802261 333714 773907 512336 104709 237355 733989 204050 436237 488875 861874 605593 755875 919073 354646 581596 264874 772937 459413 001838 964906 125100 843911 841047 231034 511343 480225 570848 521346 802995 032104 991383 452795 145060 740139 339681 427271 863736 799227 647547 314394 719111 646895 760395 179967 656352 765194 767168 748689 855819 675343 464739 769747 402967 884213 541544 003292 045337 824403 159094 644785 631033 265119 472144 285762 589671 724564 918726 718071 529077 224638 511285 896236 300984 730162 822998 799060 336524 165856 616386 118323 068166 732735 178618 244643 074781 623437 132832 116605 346457 531922 237093 982947 713519 487428 782605 439205 466839 814012 494713 291429 935977 953287 303749 659887 365979 058959 772829 427423 998130 792018 795427 046743 302411 936992 124454 330264 866264 428435 848396 464508 627680 658226 106695 588954 441436 317419 884852 810893 468358 566943 167757 803697 269276 316817 522028 400213 438035 547401 947197 267012 853944 168054 232180 766981 859959 702829 292824 363930 596946 424026 515015 057750 304146 336315 978606 946213 310793 640629 304351 271953 736818 005141 806413 625025 648308 577615 295994 942148 505702 885798 541434 361504 668949 261197 682840 099418 391291 741102 460598 463437 054925 622811 541723 162282 449463 655706 997680 005596 311173 501156 068844 501630 758321 861271 734588 052947 937492 934308 596395 512157 855416 973214 685066 122415 995343 375647 814830 546722 881640 533262 889226 084209 135022 730321 854877 884483 444616 214878 754576 912144 778573 043455 380526 478907 593794 541421 566760 377875 005246 142910 628208 359595 175772 528593 825655 100071 741130 461945 065329 811357 570917 979511 521268 508274 737899 093357 659324 733051 948080 629805 679600 571754 953173 926637 957514 348568 400929 979319 308889 416306 538566 246101 903620 685292 335314 737210 237008 023135 071779 174507 370499 658470 273623 545076 687446 602133 452460 852976 385284 336770 897997 692123 603288 614054 697795 783542 202161 017065 036617 817981 240145 716684 553951 244009 976922 528927 745605 784383 229002 525540 291985 495481 782695 480680 926466 355641 291081 576510 634563 704020 213298 765229 476547 135792 156571 279148 980232 175735 280912 231110 931507 003022 151776 723360 030726 987791 535653 400960 239580 524732 352674 570937 934033 623499 604927 747866 778081 056630 135949 271675 541065 199859 812213 360075 734096 906997 583038 253713 522837 214864 843706 332150 454693 586146 603152 047412 840207 331787 704488 508995 722222 732583 639345 850008 700182 474463 234067 483416 822429 539252 067309 142320 257098 001083 655813 838152 914990 044089 593237 238714 826276 210574 883789 706827 551026 931501 083840 882465 663406 396052 925012 988617 665895 874774 480226 479292 806021 248027 260931 918190 851249 774932 517249 333783 634841 566109 171423 173554 590494 919054 429117 008442 015639 020945 263194 263908 137575 295313 430960 438447 202292 417459 927523 968195 755609 986537 511577 956434 034802 240673 792693 916278 159629 087720 822396 030191 306766 099048 821366 733813 917007 500991 811437 434165 070504 839303 466856 028146 551910 759238 388847 556956 804043 857360 897859 265616 749450 433965 041657 714825 662228 814311 140709 350780 161296 543337 807947 107128 127442 976467 908841 216835 117479 332491 357463 403403 802482 077782 505788 159309 189296 147856 844127 065175 699322 192969 559442 281732 629818 080169 263874 647196 084718 962078 624806 645057 391240 848189 544983 029100 369461 455407 206503 167770 155219 086735 271778 487463 549226 599917 175263 824526 350761 896384 195012 553236 390135 218493 827276 188812 715195 889324 855830 905058 096257 256716 076496 171179 508199 599411 453881 803434 007825 912071 771868 907666 737591 300717 992720 287042 291370 278201 735565 939443 121858 591688 768571 263127 998315 933119 681037 093418 994493 212904 502206 180815 063086 046880 819562 599903 159160 927950 268016 740323 206071 872273 688190 065178 801226 901029 870429 026053 842389 827310 438038 870781 561484 171842 800479 469131 959255 093616 260100 515456 620563 271934 979702 231384 075659 941336 796692 431939 467575 691478 013148 087189 199502 189959 602370 545028 966111 797990 560438 046798 705593 993874 278819 835041 133382 974810 149431 405086 355463 550436 646240 368391 175559 376532 975903 329003 854560 760215 312509 748904 219867 198639 712885 549291 436964 766718 185903 346802 072706 123633 758525 208028 812057 100671 978029 734176 243215 026384 458817 352908 006282 561820 108919 652391 640957 356163 082720 581847 201180 844637 157870 116647 153894 113196 684428 017818 815737 319240 895795 868605 484614 950885 881613 177329 587263 398144 917302 465339 930176 736965 936969 371415 058245 522494 464642 870750 645394 578082 702391 156107 356348 004608 179591 072729 213655 874208 144381 696372 952554 127267 610953 095291 976983 377940 130013 662737 487363 219796 334528 729464 547441 949176 610082 346174 062213 183855 383293 531487 098142 906707 028678 697534 265821 315711 135055 315261 885519 494754 818689 812625 496367 476869 324010 651583 357063 897484 394861 384247 419231 957828 731518 873125 276217 128228 845513 533956 156619 884848 084461 984231 035895 294423 013504 352114 225372 745680 990344 578615 640296 454694 679404 616270 837844 636502 097373 733349 074572 621268 570544 433920 611157 516987 756375 769047 475326 867690 797658 073693 756130 157965 831341 281574 504007 868153 320684 393303 548396 517604 607619 429385 634275 476037 383658 422451 325347 080950 436575 286537 732695 192574 319450 326383 414901 643078 614760 844289 054765 753445 553844 333971 983637 761059 896709 054613 767423 643824 807225 967573 604167 815432 888273 645518 065613 631966 764555 714916 037068 564116 915138 459813 114301 892243 999769 470606 336328 863367 519650 685821 404124 073003 762574 462454 615474 387499 868387 238817 871261 766196 382763 471801 308054 434302 142781 264544 357743 954609 020467 787250 360794 456898 470916 159815 488700 837628 027676 948804 633452 055520 401585 835871 693934 837483 920828 252567 032798 593454 643215 143802 684712 385971 409878 486630 890344 797797 257099 370154 898114 579918 378140 222952 061343 568702 586743 613815 381954 815835 870276 024754 147776 436739 661020 684646 605822 373387 584552 861018 103184 172770 545489 331258 062380 758843 016050 528326 896763 344818 064134 135027 306077 700175 075445 882229 212239 935803 488093 089631 911686 049418 837392 108242 176098 504241 726192 088752 182555 992015 321965 880197 305412 381516 260862 546761 820989 340958 820419 585228 215333 695474 328790 447451 484757 756426 337388 943657 965436 736759 929119 150921 315739 712722 255559 176011 167102 001340 803712 415293 870281 359071 805132 306937 425242 555518 075548 978638 137302 166944 963914 942350 209664 690547 479573 641941 192709 642420 940967 227828 507416 725362 774386 174775 009904 414291 107654 554272 803392 782823 460816 871688 877915 804629 428096 014601 874135 479135 090821 691295 357481 768398 450787 051165 113514 832284 338840 606966 394322 367595 068684 105458 753160 335597 801308 032420 063360 215098 005602 196205 220697 237236 854325 790423 622882 663318 514304 527446 773916 733353 424421 636278 901244 141270 791875 763627 280800 774960 951720 697935 264138 253387 872533 119160 401069 943131 241019 498377 780561 418979 837872 790566 541334 840256 277446 998618 599128 522801 033143 664646 294866 804429 010720 618128 125229 418295 286448 761310 125483 666053 386925 683814 526570 150468 583121 717417 865620 036112 840292 230076 253086 873655 366227 971570 566891 673743 767717 187377 641401 211913 482794 797282 799617 203425 878874 263918 650288 428932 701513 176616 116056 884351 429456 514542 556183 342005 451058 430900 483635 486326 194235 529805 025194 064090 857412 967460 804467 805044 072228 728229 710700 855373 579865 516183 484622 346586 989160 867495 145599 270998 083858 198886 174072 868773 219486 588220 126204 240248 205030 058708 374953 171956 065518 756986 236516 259653 429740 157236 001292 840573 140075 896229 300385 513052 982914 767378 726678 146379 246885 430826 084524 857014 736315 804274 789737 357806 142124 088809 887246 845213 276135 195515 889826 303004 517890 565604 914653 674247 147870 277700 032582 278179 430519 534018 500858 869208 960371 382097 194929 346779 055101 836189 777582 594689 760937 079612 947377 661127 356542 026225 038663 859216 350714 560118 100366 436912 764544 477428 408313 211839 332552 943399 799985 608256 034019 728072 663885 168065 591947 025824 262735 445724 979289 241253 937654 166104 506776 030206 767780 417138 323108 066957 010603 670095 912991 001616 252015 535797 802269 217244 295651 588255 464133 157686 284822 159781 995161 084587 841178 433454 226807 214257 983031 978130 488432 281605 350327 254801 231895 266741 877597 072276 437995 513408 728794 866990 290862 366986 357798 777676 073935 301114 693272 003872 965630 665940 730237 666106 783096 034947 348457 003147 630676 130736 872840 759546 262000 823881 226053 273537 358789 491018 574856 061952 356324 450250 742888 530404 307622 638402 274025 072339 770855 379388 709879 646206 852406 294746 966744 353933 641888 257199 850443 181497 665314 063209 114579 876069 390867 638883 887758 160856 238055 555407 795500 553928 354920 461142 155248 448237 341902 095885 945322 994461 027983 963617 935610 874509 222984 569047 079836 789853 193244 156413 439288 902965 522777 288519 728478 603353 389682 783454 109354 919516 267392 691862 292368 471649 416814 929718 168795 823060 996346 821769 495524 199837 235365 570579 574288 229795 422139 825218 795413 411144 012535 193582 713843 527828 443381 741922 686828 745737 636817 352738 699160 572152 785215 258318 492148 167810 251647 168912 868612 025900 668671 726704 584983 104937 348987 050897 755914 364804 805387 147102 217287 528011 647478 021421 200472 797964 084190 811274 362080 177667 342981 684270 558533 081326 346455 931565 315131 207994 393428 083437 914890 369143 110167 482698 656153 663459 057727 122112 797870 390155 166630 168216 601651 004024 843637 242207 698736 178950 318420 052568 026833 230270 186946 072277 707821 588963 880054 911116 154152 956065 083016 070676 025645 145923 065279 278662 452410 412379 980129 052193 623150 515256 859006 799363 162553 210926 543562 503409 802085 216441 936297 964829 339991 236353 571070 970713 879272 830274 651037 274814 586364 981671 795581 112223 858518 029766 364176 012959 167880 096573 300126 821768 583923 765157 854337 700090 920328 401515 904512 989211 792054 362784 541494 675779 834314 512350 505603 330062 913204 269319 117472 738026 227996 753940 787347 958999 577421 569300 580004 951959 143853 022442 804527 568302 308411 738038 742399 223933 738826 963207 345627 399997 197446 074854 301903 092119 203756 692877 457492 732510 321443 734180 811843 387630 757746 138399 826296 314012 193023 003605 754581 874258 742367 996974 671570 474025 720460 778950 499783 613542 842848 535565 563324 121487 231665 360389 365025 313488 316017 289789 413204 964683 928086 442782 481327 245019 746150 848000 320097 869216 046369 304112 235526 287560 873171 622140 624379 458052 215728 534467 485927 458743 435597 270176 478035 814066 385140 063390 760536 800948 352034 155433 922792 191817 888094 793847 727620 933163 972651 327838 856139 554168 953394 245618 948081 005472 183459 036037 626519 576199 397004 078069 695779 525249 289371 487428 951434 711012 072772 157012 690767 454213 186771 427948 125566 001962 580286 647945 905457 687924 825079 889451 083949 270129 733259 338291 982017 306704 609312 866987 624996 044489 315321 355677 973126 711141 537633 012377 413905 367833 759219 349575 935895 175666 935968 139746 258858 826407 787610 162457 967455 046401 221137 560939 675037 368922 030143 652775 019752 799861 129403 973465 610796 187364 392296 292521 717394 942351 181473 473038 371282 851108 361258 005002 914189 808824 027843 013760 615850 964452 894160 472922 543109 255311 981235 740907 435066 488544 470082 766880 852541 373363 140473 897337 194978 055790 498715 442843 881008 843131 515369 955884 366999 460388 540634 749593 074650 812661 908370 913760 167586 018186 076129 149800 985469 396795 948053 466388 252527 042853 122461 591702 660037 604239 129162 073387 784957 188594 285700 840796 155151 231663 610842 551340 793406 269791 144718 264588 144933 492277 114963 992516 548777 606241 364440 272576 304472 877162 836613 034464 675733 858725 891488 484629 556652 903311 623098 942588 905522 421172 055929 688674 578694 878373 819317 981465 531125 279874 624208 993047 961584 100185 677932 910166 372970 040957 933902 711447 405447 172338 842703 714295 294097 737490 325019 170941 629118 889050 185930 702658 389615 587059 954470 292590 281214 824537 681367 877941 315698 997013 595036 273976 677700 584947 446703 101255 252408 316969 654078 350006 700890 232882 230906 076051 134929 170260 467944 842515 120361 341379 242832 888871 531552 288179 325536 099990 958282 862188 613316 552409 278246 672186 376232 444937 855193 454353 404930 100237 185474 334470 866119 912292 024512 735857 421194 502205 170406 291825 559523 183619 632761 237036 058681 096143 662130 252113 448094 171870 420063 809733 846507 925913 228008 215582 429530 386722 226740 478611 361042 230593 796309 269553 083490 493514 393755 568573 158503 172724 834569 184907 681626 923669 259151 628613 818826 870827 930664 487787 287145 333708 750692 136723 363792 684839 696176 231460 488148 242562 221002 983372 443415 737278 836210 011635 784414 128026 152741 676344 863028 111870 482268 937866 636081 601887 741825 210920 897003 575333 308632 305382 038341 379458 476408 586203 748075 628083 661524 699099 887215 224743 677528 164896 270832 958611 944498 690019 427236 759536 890882 049948 586718 990658 518242 384994 394887 864290 066988 552124 349547 366215 382810 928647 491330 735888 751061 877267 414978 957363 090647 416856 724445 919841 430980 915168 493060 557956 971142 873683 868144 234889 308561 658251 608266 405162 803763 579649 913220 317861 056476 282681 758621 285126 397647 669189 749520 421098 275425 480504 152338 104004 193249 000061 718045 184355 914701 479574 961268 853310 562399 514411 868758 209235 664560 010809 283732 113412 731197 022248 048441 790211 439779 490975 427236 534995 267418 300359 800604 100843 003535 447100 359572 092799 414959 662898 708085 827654 769648 260286 161425 575081 412559 679319 877939 913915 795625 539323 432050 243146 114499 571969 193348 064451 278651 209867 229630 928930 086075 961288 772656 196759 061984 258551 275857 200506 794597 608874 315907 473985 491576 900503 856338 843194 093891 225782 569652 868267 511416 394931 287106 849351 235699 692669 557357 618399 988076 015772 614076 827685 656684 723544 031128 282673 204366 761736 421736 332754 394266 438474 936426 025553 867719 749564 585769 593699 532178 051290 600166 593555 418966 276769 625386 337221 140704 091253 123793 871274 128017 460511 584201 359817 384584 298071 933515 423595 155505 016506 744501 069863 835011 646395 804533 054967 754671 993541 611698 244103 334573 731440 802988 468480 821206 699357 685978 523011 926785 952806 726538 923659 805004 004366 713294 492625 275808 245537 074852 015481 956587 177873 152825 752894 570251 198354 575586 696491 934042 319906 309986 933607 991289 109386 149713 448354 352255 223484 621532 987594 187613 005553 839407 303531 979835 443203 197930 319474 710363 598512 946307 089029 931998 411722 117941 426314 715481 574444 255410 988287 130569 074763 584528 711823 305005 295601 249761 545059 791634 253628 638455 483119 482301 549216 672594 536681 305784 459368 482927 530662 976684 713886 079074 184181 103564 325242 716273 680595 374825 257919 020320 573013 911164 056664 564893 937179 240071 017034 727509 905109 862532 455687 173783 406982 125897 127339 427210 330679 908940 281332 229120 268991 277268 088699 999185 703195 496824 718519 372179 804211 497111 495843 440166 611140 023653 839952 829425 789492 778452 929031 181386 255880 641650 739414 913860 483861 743824 604449 467979 438551 467243 072960 400267 490549 248566 208254 977380 310649 044069 222923 107143 647596 426299 943198 080300 136262 328036 492850 222807 123600 368045 309626 902398 434831 063894 207882 116997 762858 726689 709069 053757 737636 400027 414920 625382 852354 556352 858625 963682 085414 656759 520055 387129 051374 926436 945311 014242 002846 544766 800677 853912 860485 771740 327124 453372 788049 497996 369554 811849 553272 551397 786642 073864 015947 935178 850814 813363 180831 119789 378620 485592 849420 739060 654803 970671 629725 528885 678499 238314 370279 605103 826103 937638 236075 817504 566958 962894 900502 975469 379283 324090 449721 433429 688770 171516 350054 175272 727413 303192 488009 909701 161833 899334 472381 437933 193427 479909 551661 574782 537623 563331 854103 046718 205504 579189 551578 053537 603513 474474 581876 843331 070951 401407 648929 656168 701375 004567 093661 786359 429364 157188 247310 135287 972146 936505 338588 487944 530023 478579 926314 033341 398905 694080 044884 711661 119383 568524 634367 471811 486371 767990 080360 841621 251499 740912 087822 216814 911229 567112 297222 853265 314869 649580 076417 851379 231903 964946 529778 661236 679779 308949 887776 613923 893072 352077 583696 682805 129509 476485 923547 485702 034060 617235 698765 368910 370352 926161 293830 781751 314564 652754 335288 442494 416252 462415 051670 392515 981419 731164 127800 458830 987689 542509 564668 290483 021891 314423 660504 106427 723251 546565 997889 163866 287246 722649 905029 743916 274463 335130 254029 681726 861922 271758 084456 442057 263752 451725 862693 043897 442490 915363 102770 468294 442043 245811 271804 567339 875502 015384 179481 242518 432814 742666 634222 318837 338720 308274 235025 603887 019151 967064 000746 556932 649624 436346 960473 320506 926770 867372 274697 483197 354653 635324 291606 168663 226598 521042 057021 714669 850388 141240 799478 342789 707256 129038 273072 519671 109015 651187 769511 845200 233130 577211 199148 098313 104544 462297 586781 594048 799046 306664 707919 791529 486384 411387 673555 821896 425140 590340 749227 014396 529612 920717 431950 244183 761720 553704 966477 628566 291870 589333 798360 791742 876355 268201 326800 023748 385823 358951 823613 581118 999341 601593 982777 231286 745931 344971 887637 069457 829366 950893 506283 127069 849055 132414 083116 422055 750893 651295 255268 039820 918553 206909 967755 561069 770002 474948 072438 867409 297515 893349 308626 792443 638345 494304 868931 798819 549194 761282 653072 090082 078003 966902 168756 180090 157916 142162 083390 793123 037667 498997 964883 884333 269320 210203 970049 148390 097160 888498 679687 457739 526043 283299 405277 595828 581746 697095 248193 140464 895989 692299 998391 916740 750031 832078 573611 550361 201909 717150 071321 568694 535248 671763 822013 802470 380462 712172 355272 103809 558395 223176 653411 247401 591887 639572 104858 478359 508275 479681 538176 274346 396567 415649 206739 480825 362342 790982 730466 315952 663559 344411 293319 538188 135944 360883 572365 879080 193857 168387 746440 937013 186903 514343 071961 398714 589173 556113 638639 758779 176790 490301 102699 131047 400442 254904 755773 018601 045483 357909 895044 704835 455131 638290 814400 663785 837636 278971 758090 012331 369768 036951 834910 068525 389137 340288 573699 952946 308472 862399 713664 235521 929881 177351 238142 185470 073958 119753 854030 688127 347953 308521 817612 174203 953115 472854 105941 392062 561403 207939 269367 048127 344885 476624 117802 253208 782139 530332 050937 253609 429716 170200 814160 636090 445636 155685 893093 462287 385799 302172 746679 039056 194441 116042 985382 181286 964190 329878 579683 166377 469164 852703 575572 939470 750581 813762 648546 701612 977057 217652 269619 382273 693659 282515 666048 881875 933776 203670 660204 782058 906472 281792 742463 389001 369070 574568 440009 886393 772407 008392 079360 137360 801757 050734 508226 320597 966779 476180 138899 527496 866897 624289 730517 330713 312564 896893 084048 608626 433590 191700 940936 246832 258528 838084 593753 093060 017839 573549 729788 528578 096759 863873 268549 531851 818761 873470 829342 438215 360572 435317 793610 748488 536124 327948 321223 804027 025527 905747 987739 111399 252115 212361 254768 499839 460963 002016 095612 062911 883206 654861 805269 353821 161608 924271 036636 953097 859654 841784 202127 759749 093100 453115 194679 740687 605616 307769 135857 519700 009644 916266 146269 791133 231992 228674 350602 990901 447835 114821 317414 824808 104482 496817 808185 185431 474973 556223 233690 403107 825162 829630 454900 046732 660624 389009 248921 983334 357959 547698 251674 788258 397135 739975 649683 002818 660759 192592 290933 344499 704141 599422 257519 322992 405735 860336 192521 587027 244841 441406 903922 551107 830378 838204 541815 789726 854904 528672 726481 112965 964983 041232 202640 569313 827751 593180 398814 177903 948479 713513 782876 185384 416834 075933 093214 123652 467027 343231 110192 199551 324015 083458 389958 846116 701088 151595 287223 541380 786650 346989 940106 499269 549609 349956 300791 463027 578660 680581 434210 401316 856272 363718 515762 679202 564942 413586 371029 784025 132525 176342 170382 950908 670657 630668 154120 940229 682893 423189 556900 680125 263166 729743 709701 392332 291749 378827 038601 475533 090292 183396 220577 399909 549449 705328 057595 961307 013315 666382 006480 214983 406955 850834 559585 507084 970494 061383 729550 044129 982966 184727 953759 714960 376366 529873 174549 070749 242416 181659 292136 439929 885998 841108 424483 164200 459102 722745 224622 976867 225939 699229 367560 970128 641252 672379 433732 632719 743804 409695 499995 820393 034735 351186 378475 304166 890808 745275 368745 573235 549040 900064 427519 496545 716641 922278 771542 614017 839426 116115 305751 755276 661684 356338 581939 976168 021010 880990 953849 958242 778439 424793 187190 657445 953263 757971 810397 509674 385199 711727 470292 207534 831883 829524 630961 576610 348855 425738 544092 727827 901073 450026 104570 098149 621853 155679 190297 582158 377037 414114 484265 029895 012064 166061 778202 352545 717029 655875 262661 265593 895374 865642 684092 930115 554445 796210 662901 969159 554400 619503 372971 623761 915009 599038 001858 900462 195604 038487 426939 873584 775852 595626 994976 519501 940326 955907 706650 874685 789590 582057 222370 359189 140738 584303 302133 315330 678389 345034 161729 965525 785124 838614 979914 606499 307782 503976 203516 094979 640743 009758 105914 497602 657984 074282 710596 859703 496501 588989 044921 765477 765554 479718 601918 801066 352673 184287 711111 194644 519604 719373 637131 689919 323916 960047 506905 786020 441359 185078 103897 417999 953250 896591 476066 794757 911965 053806 419933 401278 742440 759056 573246 884550 174990 656283 445806 834978 540334 774327 392887 734804 786838 512277 608504 831617 845100 409621 255977 949504 935246 881146 401023 955427 840066 804435 766253 897122 640641 974462 665222 491279 012001 (25080 digits)

    Euler's totient: 47263 093970 982330 774587 507602 530033 016635 764281 326817 837187 073407 136801 140272 531513 062631 766726 031224 857407 852372 159574 259830 282747 122319 780367 332229 108485 131260 135055 283237 628528 807907 222480 973462 427773 093172 893194 639747 776170 385558 597197 956507 969384 109658 130316 416072 816632 954199 773886 342716 541494 804429 497394 310652 831259 886633 046565 433391 816491 487622 914159 064493 856210 547884 335236 750728 670283 796117 980176 394778 781565 085557 567337 744735 848945 180277 025349 301667 250460 229222 295392 228434 151660 674440 307881 837659 577764 717068 433153 301333 388942 177255 354227 056816 351678 419361 543755 287601 751439 518753 767016 390421 990903 307860 390860 024764 503768 204581 644095 292696 250279 526278 816984 166362 713578 794458 548127 610035 907415 865356 292099 149642 162597 025946 438030 014020 184297 521412 889850 863913 295925 403509 644885 608029 324511 516662 774292 246732 475978 360971 526887 067726 685901 927863 656139 872457 002627 640817 108302 068063 695921 946654 222222 091464 232307 637618 712027 092778 399511 703941 788499 686558 775851 845750 314061 011540 473599 130062 006492 058525 606466 612074 502357 888741 448637 529232 618843 673118 454614 131093 856006 704940 733903 180100 518030 648649 551951 031827 095766 921818 643135 304055 811154 121229 499272 640262 430555 765850 609896 858086 057736 224078 148390 830063 640528 872963 542941 271328 104203 583712 391104 769727 059376 586060 421561 902996 227619 869809 331006 367926 131154 691196 686890 353459 165040 784854 354635 507229 556662 271786 087648 245366 150000 624249 627927 464729 468917 011744 835483 637044 833740 090745 376071 604028 224882 435838 734810 991719 640051 184831 427098 358498 627706 625641 477052 652271 255779 490003 537014 217223 910402 445684 589512 159297 575938 000899 413010 561603 486819 280499 852366 437646 225233 108963 315830 698466 012525 018266 489302 856159 788078 728322 337574 759568 003712 235698 912688 515062 373808 838965 787848 602337 362852 111540 728033 907385 457786 572284 158641 867379 250905 759053 028007 891907 094095 881602 609421 503825 093292 345810 924706 589768 693380 338627 835676 683675 937802 667960 756541 607297 837421 182314 876912 862909 168284 921325 983622 243897 970671 953525 756426 000897 620871 783113 635407 239813 862357 012064 632027 853352 345040 288139 832719 306612 978264 339893 401495 799860 141609 143082 410022 662416 289973 502555 169438 167887 692707 900814 230171 412175 013557 037006 905045 518982 169385 265178 348149 829699 014334 243280 132092 782487 830611 623096 367972 991938 405872 755148 741351 687796 984167 193756 631231 200581 224933 522727 498026 126492 582951 705469 947927 095324 624029 796778 749676 518423 513009 655348 761346 899630 265609 941222 044425 283067 621880 527700 177182 703780 079305 269807 974198 657543 537860 267364 506984 336401 464718 935569 652092 337439 017991 056982 181641 107990 688965 746861 594586 682042 279132 411371 719766 033162 938145 385030 014763 416946 828123 697289 955418 484945 395625 652510 594045 768731 005809 008712 894272 720678 218266 367000 118279 929812 937056 287383 771958 170069 150321 283324 883100 002464 666940 263907 921759 680221 850853 665152 242981 328473 918816 261505 427342 972291 112249 583882 888038 125019 441450 375698 380115 985255 599594 603053 571046 895951 442584 039160 978645 242726 284381 126793 593246 314193 150483 088908 758131 661555 428565 951541 632855 981987 028821 601127 129428 568982 070822 137168 736904 554936 596096 526734 838721 178779 468343 160862 283977 458344 953069 451804 831330 124063 028763 768177 891078 362951 189990 483843 583344 976703 154876 783537 098499 726775 241194 960139 296960 284209 449140 806325 838474 147286 008140 332453 980694 506806 292955 992300 063486 339065 873245 124313 465025 566758 982781 050950 670214 793610 442371 332390 453304 754581 209562 572119 028241 679576 024734 684476 211206 343315 638409 348488 801734 244205 320522 627884 367740 003909 286720 840616 668679 111977 190823 365770 418064 668700 520434 910394 532243 397294 692426 032246 627034 906965 257761 972816 011129 788139 156635 859296 939667 078855 444049 589781 105807 345193 553362 878997 491516 252502 356383 165810 228633 646352 315926 595669 047097 973428 107868 847609 507589 160941 233132 818976 281137 877812 747097 933833 767524 981164 020464 159684 272604 405585 507299 338576 792012 793040 017687 632310 199607 409548 810248 915942 468356 682981 734567 903751 055038 795175 183025 810657 314728 205770 807939 887288 901291 785650 318626 556761 325202 751746 237491 977738 064058 946313 944955 139227 484887 541043 444979 903250 013480 972753 018690 722888 423540 477733 052021 243718 084117 119195 245732 399732 588987 791151 314302 228402 483158 137279 265331 790382 209407 994096 742564 978781 583341 093612 691878 099483 645532 878702 742799 621984 944064 076281 507577 497562 871928 041535 988300 277173 521307 183132 935104 466416 897808 412940 682425 926142 526452 746800 005078 098726 521833 378737 792001 855408 930544 399504 441564 819957 699492 995947 022778 829630 829651 069888 060350 658905 341744 246101 535884 589517 487481 873266 499429 698452 367989 139330 431082 527244 402567 917538 960935 328531 216290 027093 804460 295759 390227 817923 495140 650341 276093 618270 153433 578420 071945 377613 092342 529976 949562 726754 326476 878981 897160 787099 762151 129396 212960 527522 495125 332194 175713 830854 836389 943157 439482 401576 165017 947484 724632 969672 665623 797091 934179 182826 910155 496132 414028 753877 516093 879831 974049 959098 892625 381894 120756 262605 591450 047710 650043 491915 335406 519570 830659 261847 491897 830460 117340 822656 245449 680350 496108 649900 819755 944233 257638 303550 848227 799321 298015 184734 679420 303559 958947 918827 613215 457249 009690 112710 792543 745370 673071 997575 112769 511488 419005 252694 469326 448578 030150 466506 207953 233383 267632 308195 982179 829422 929333 799670 075025 977242 608481 476607 094063 662848 559085 504407 080628 808970 796950 271844 389943 204743 074005 594009 011679 541088 196129 370977 428552 280403 876168 025987 833595 910884 695155 534334 792130 287466 236865 021212 425931 649732 666798 696265 452945 064582 554678 969014 217410 175609 738928 099132 089060 691430 061539 809815 736573 525850 900485 402434 432984 304261 233754 507558 602544 049731 557729 643331 425377 746573 832709 164141 900464 419480 107087 901813 018163 328749 930414 866143 168194 532173 040002 523255 636617 316345 724037 720000 107149 784530 509364 810509 995811 226030 332260 203696 439214 791056 846930 760780 685812 531303 737040 549976 121283 730586 676779 449857 472378 409446 362293 215046 801372 069903 210564 993982 314650 892519 701953 549372 611736 358069 978070 295512 160266 988970 996934 232336 447450 452343 406713 241448 522741 026869 688069 761308 990624 398905 249126 342689 769588 228021 166364 519024 881280 976545 762899 402062 408075 038765 947026 151054 655880 402517 120626 785234 893988 939575 636029 779524 346666 315864 196999 647789 247953 879964 423901 979497 027809 928958 191807 790439 479535 718773 666872 951665 700183 042410 591133 484989 443287 820830 345317 448965 638593 090143 086729 635907 494770 766136 318058 915383 070280 775539 881322 770362 167784 348562 498953 600097 778570 497074 147759 486631 762127 194360 067926 642768 920465 102626 539284 457765 577181 170648 011896 708609 778084 893293 747829 406814 987616 891312 767836 798934 286907 178771 582216 698848 756280 398634 345212 273905 577672 950999 579301 821831 103600 341247 976669 928475 247504 681880 943560 727098 676225 626241 864541 176676 238906 474114 041826 480972 226854 373802 463356 927711 706038 821826 883639 557985 312994 025406 517759 888712 166523 136095 753407 094653 414200 211614 115638 438121 824881 806524 407726 727053 245067 151460 190814 697804 497305 001100 285134 909498 625747 150172 400427 208597 418346 327793 111695 589530 412485 931684 218597 287938 876756 368425 390002 990699 143495 627273 511516 985042 891128 624628 838084 629018 237273 646635 726264 222997 562480 791025 033025 909374 848350 395628 019102 614381 627296 187376 755223 243939 346267 938847 087410 629933 113183 327750 803845 915386 031972 999560 568665 296592 259236 173694 337217 600454 303306 051278 994946 485780 638611 162715 421790 274433 708710 734678 954108 198996 492009 672882 519191 528921 739669 787324 175375 994056 779563 399376 502648 596818 071112 123059 713299 829161 956112 316906 511618 545649 637533 852482 736784 135433 478320 151423 245406 906156 233637 167092 832604 762357 100474 016429 036223 577159 274126 570637 430699 949385 051237 288945 504471 743925 435884 938671 870115 775995 331231 960666 038815 212603 874730 206019 281952 757353 731763 699205 567942 961752 236391 174724 201479 795888 370275 678861 251253 861015 600582 234349 564312 116689 464838 571292 379152 771139 136464 786325 276787 840367 147491 815283 399063 534290 687227 921473 507757 889103 789560 160802 575224 553116 818992 452085 024170 046615 047535 776937 497314 822779 496877 795449 355427 631905 318943 611010 890834 591763 168279 675465 702462 403907 984747 423946 396232 653571 301177 648133 132729 239966 387338 289351 346439 383208 574312 957692 945325 558045 220936 915407 856992 749288 283475 873668 320871 296306 419697 639920 518055 298157 029641 915588 030750 783668 886033 457849 625695 686984 438446 815381 710331 859755 712816 376005 675255 462999 687966 925317 360699 502744 141330 323288 200346 047637 603146 931111 134109 307400 959416 594419 441717 754243 661007 083045 992394 636164 928121 477200 821998 768744 166342 931327 961339 476075 766096 990748 951214 864847 957010 259228 753646 756370 805865 408927 700323 199844 278408 140876 697474 839033 447659 960655 532086 801387 437384 819638 565589 754395 285741 901176 225485 760328 084696 381012 362155 181305 725713 283795 762396 025820 832906 425658 859413 956410 848996 489016 225902 089240 199004 507635 556887 315936 717168 089258 069686 120170 488153 188236 524746 076804 963372 764802 902495 670274 704315 638309 648983 200385 399399 180796 144737 857633 407080 955840 083294 679455 817080 840527 398412 505706 881786 452073 857884 444942 522388 935931 664149 491034 920149 955287 504870 858874 419435 399839 785087 495611 880190 407361 621737 227720 262957 723989 524845 198859 442856 072077 454119 367809 831364 747912 783541 529185 337800 343677 172379 002641 333261 038125 235342 661174 413096 827943 600871 043895 757242 453697 808096 963531 478508 248385 072232 919179 851185 930684 673963 141635 121771 147732 436004 664231 128354 807994 844408 644626 059043 564305 379541 459853 555240 845790 033109 103814 353115 746643 362605 962054 481614 134786 134179 316262 285258 111501 054804 238288 350225 860866 708428 682209 178823 175372 639158 671756 293370 334275 445805 527176 070228 286519 465999 571589 966811 408501 461483 458547 199849 465873 383384 346998 576643 094876 003100 969614 695565 129650 071649 948242 991896 262009 158163 863003 214308 842265 005888 041409 779618 363565 523355 519452 485388 724721 214070 751081 158379 236123 655056 581865 177011 045113 802454 026756 323626 332995 724225 568296 539955 076429 823249 354087 084615 142191 878569 390346 016698 981969 570019 701292 508759 348267 377377 765699 000924 608310 555837 518402 548232 385254 397392 195877 881359 453964 271900 898213 461800 244234 735188 184390 176867 771177 668797 934154 463838 799328 338035 318060 576197 070531 332845 535424 208954 416767 220988 812351 932987 201263 244821 056796 515271 989024 370752 195997 882093 277887 137324 564275 870775 976622 897053 864352 744558 490172 666786 077515 556402 801407 878673 254205 522782 730465 104062 860173 153184 583535 375403 218449 231984 021745 723562 018360 270439 861356 732025 853448 453989 966154 211354 093820 353607 348765 282410 333168 292718 163975 283686 998899 391979 555399 691136 215729 692825 283306 359745 709888 448331 679642 027475 358251 480016 156523 230976 126969 921511 977291 730003 684704 531869 429158 142891 237357 172690 524643 767721 246743 382298 770360 875358 691169 146691 467974 596106 330553 529156 344152 289564 332816 325816 602919 789842 720254 666003 567304 146378 822565 928189 826042 984955 956868 252923 645200 261258 441639 748212 538036 138217 458773 569752 575547 955650 934731 221703 330295 564895 044128 257698 851789 288362 971463 184979 861241 654058 453763 622794 180039 588500 346495 993596 125152 645041 488545 588351 017262 760630 438218 461545 002475 325215 690068 361016 158904 738810 393836 506572 272604 828867 081750 674856 727990 488850 162342 332832 945429 020022 260747 872341 629581 525430 081690 278712 252232 319753 141742 388728 603207 795348 803872 984406 941862 062786 162111 856673 906525 183389 361062 114752 556318 307643 044996 314803 837155 399138 107090 655285 103828 813850 790762 610754 360539 105054 779618 061459 151666 601781 316063 693669 694094 883280 544077 357274 791372 099206 200018 242943 162125 474922 581433 490045 377319 979881 660943 099451 258498 604244 233026 148187 892351 529722 495375 040785 616295 141009 039364 100318 192655 547091 036562 449788 351322 456087 807422 681898 004164 770109 865213 345079 908205 981511 133784 497499 697136 511307 496231 925571 521774 795658 675515 076439 304077 786300 525501 063289 898537 911152 303507 189880 274978 632609 638799 301700 262700 301953 908334 511834 813401 634934 536010 043914 518314 812206 427295 766794 888454 120092 849293 056270 751153 478644 467847 632279 290737 270670 556563 348989 658568 101639 679204 801269 006020 807832 451016 654920 595376 848591 415880 485104 122172 016786 965992 931754 308199 175938 924985 838938 122269 330625 006180 555716 439727 588650 917709 425898 399417 180303 163214 240681 205681 977919 847273 117836 836756 376956 940746 388861 795420 096897 987997 409823 321857 565743 537431 619844 037571 052872 132054 033295 764723 946591 428888 757378 819435 084959 428544 803451 547436 300415 244735 937943 312526 805266 086844 786446 962636 635244 084331 434168 785968 677747 237019 972155 249954 213956 806269 517336 220994 034605 672884 550802 031211 739064 842879 147318 233689 991317 307603 911712 118792 812745 494681 045813 788423 522912 666775 400616 725000 357867 832560 614335 369458 366375 865321 699355 807906 797965 625795 537545 877928 917168 440244 460968 999560 706677 369315 817344 723336 680915 151706 630325 163248 516433 626020 424515 861266 907237 311158 505310 687185 974337 610718 703775 250696 781727 194181 272364 260113 633224 556306 556142 138945 406870 204855 471189 330147 940801 967321 511087 720407 605346 861901 371920 738914 497390 872820 386936 132570 025857 162872 376444 759422 198682 549013 969198 912893 415388 293620 037299 280561 462843 083287 905326 983762 326359 711295 319232 952433 957402 774609 861839 168187 501556 668863 754511 434864 992819 026972 326222 668232 454779 140160 784927 991447 324150 120362 080792 958853 278478 247514 901509 281643 464675 606322 930042 556828 476609 063003 948704 797139 821201 073766 562007 089007 075026 224981 453334 056562 860412 078979 532440 271095 742679 792523 825543 288616 202781 744949 976453 283415 832753 112394 745460 720303 496116 649422 456762 073597 150884 345942 209075 368453 362183 214318 146983 016090 697133 916358 721240 400156 688311 645896 187898 694634 933165 317034 086373 998800 002374 225455 513800 371148 046728 106764 486587 197668 710522 620905 116199 726771 595025 474679 623283 892024 770631 800544 622928 503823 611339 333156 265541 454864 379954 974939 124135 450283 200637 760633 716725 495853 314488 701380 796690 956872 506074 301903 037085 231309 170000 566569 926258 623364 274355 846872 646729 393598 145921 821255 001782 609144 690908 056392 172663 083912 764162 290925 305945 459183 807955 591659 558194 538680 311927 979463 562724 687742 160851 317445 729835 814633 064275 137194 176911 141497 281102 812199 738428 082636 557414 810183 577123 678428 266246 532632 005314 791825 909332 315792 875024 897916 113698 492896 904731 054757 191578 150578 138920 145938 490099 378713 130808 914287 144161 196587 026310 042748 142248 684015 671631 142516 443113 482758 902413 845498 002396 488980 648156 233701 438829 934747 520732 802231 772753 191454 324189 093120 886091 782710 057242 921684 051448 723623 579227 088843 406648 186521 193694 529355 355529 752520 403861 043707 278238 813319 118085 292550 913510 690220 185360 823210 504711 233812 227632 614523 525889 211951 116114 565930 976452 633221 487781 100210 879450 988633 146341 449718 361340 731355 138110 007625 638778 562513 047221 889413 975276 869692 894223 338622 225553 507748 944571 639995 095644 428062 782753 571600 896701 588923 948076 209990 952182 244522 120575 148235 455146 499263 321770 599250 301878 778842 062370 080351 421237 745891 742412 203219 240315 653305 718845 497609 521544 341204 959467 759235 652960 418811 827933 004937 265611 572327 717481 019936 784187 672499 311848 098563 584043 085077 407343 414377 946084 784051 492406 680076 967160 354154 590206 001295 567582 642805 761553 792514 687794 479246 852788 356669 911027 098608 829090 208896 573782 896736 695161 943750 858831 667191 923140 564421 444142 131015 180512 207030 798096 874703 084587 560620 774218 387393 613174 679746 188522 244212 336379 471425 691495 455094 482750 343324 162428 454949 206618 440543 360180 646116 445337 467268 721715 081444 835237 067246 634251 262034 277116 716488 604987 989057 372173 183088 944385 480780 937530 194530 918543 623511 838219 479604 966080 034602 057650 483466 252364 553390 672839 337126 671127 133496 845317 464485 642771 300924 495720 701639 593050 476970 135355 311428 526212 702622 149556 515909 471432 585358 850091 931607 340187 869866 709287 280434 301659 191786 945310 154582 914433 359720 990253 133855 939961 502158 964982 503182 391354 790600 246793 852039 737817 806484 765268 824410 323799 672423 890850 389717 280080 775819 634698 389789 374558 827125 500555 519110 272253 206001 877052 176987 002225 030608 564371 257364 134469 126164 172473 722767 872789 204643 888268 297688 489034 408454 245958 505557 978507 926894 151662 974291 601622 250286 687381 720736 584858 777150 693895 054425 586036 098310 639456 634087 894962 715313 207507 696824 699691 921875 639471 138752 389627 831038 444506 384332 471960 142557 889855 041740 061828 654063 350243 920677 681994 807824 915078 475204 073060 735254 098699 135402 165050 694857 980792 348253 605495 425408 859434 420852 840769 428281 109711 268921 468499 634972 379571 686211 218945 048664 598798 793591 884318 908708 594856 642061 161043 115862 210471 268442 158859 978056 187291 856644 462967 724053 544142 084832 039724 235568 001504 764536 352187 303294 859805 915460 811454 327454 162197 832345 543175 698954 478261 217503 818362 887019 397236 996859 379968 605680 155362 222452 833714 854238 115113 222713 255450 277029 700030 683855 208013 182719 541197 646046 684642 863324 366134 795288 419313 168512 538398 668079 854892 200982 401628 943370 671755 010522 389072 373725 400675 506716 455422 798747 286551 573866 764411 406156 176267 390747 528684 254535 888823 636803 817791 117617 689743 576611 311194 227542 058507 094478 085033 577076 374526 788500 485027 682943 356501 637405 218940 734097 710839 377125 394698 544079 812914 528476 645166 136263 149830 214188 199878 910340 758822 929775 525600 820509 660153 914716 900006 553495 647670 148511 215837 076497 774012 238252 373591 612624 241807 465731 401981 047597 939035 072524 782525 023282 503255 540500 681479 245913 166497 333349 764617 797390 378463 405124 409793 956376 431576 817675 994374 576326 114555 640786 581664 843773 222779 398481 081055 592322 979529 677545 767211 051775 485427 888426 618565 735274 118808 894452 740381 026405 105962 627643 316161 752827 504537 972915 932361 158283 073280 103956 384142 564956 897778 089554 374486 706137 853995 874449 174295 099775 055438 410440 417621 499691 284624 823365 149834 911407 237892 528163 959960 915267 035663 928571 111582 091411 212878 892200 699608 095878 157712 318089 898246 339680 653616 632127 816520 786185 096494 432946 915371 198880 385832 380511 014190 591501 720798 299467 344735 627607 101969 027740 825667 839845 391302 427588 844111 983034 552539 353640 862697 800987 898352 930230 377103 671904 176615 237914 447369 339737 718386 322924 795571 820716 182073 323285 987003 986235 791628 066864 305959 578417 520008 486972 821980 922845 687024 662721 618283 608596 566321 516140 923688 364848 334709 636365 468620 159881 602077 050175 539293 850330 743480 669932 323183 412024 195553 282885 366354 190602 779437 474753 855375 746939 298138 235086 511883 459507 924046 620415 064854 166381 731054 949365 148842 783229 080773 894606 790395 726603 203499 280191 060758 730032 653380 849401 884221 694086 154031 765489 323772 014975 705592 739596 409777 653550 092042 821702 639165 029907 704259 032069 233472 788606 881355 008795 999423 709961 084581 227526 823708 310805 919392 225036 980565 249254 061698 482155 554193 934492 085312 327866 827324 153785 942164 590069 981662 263329 416152 775128 254041 825232 559187 329858 941217 212775 297052 245930 294609 642844 579476 171117 399733 247825 269145 339348 975875 702503 011662 806975 669832 908359 244067 047207 287258 672257 805709 422007 540055 071110 582068 024565 291164 420825 981545 375960 891728 094215 613430 417223 521660 229287 655893 417360 090765 090358 344911 291066 661964 873510 587647 336020 164071 055091 313696 968647 579107 578385 361734 291194 278708 444123 584260 942553 610031 174159 224916 396422 937761 182947 527586 959081 559840 707144 800875 449256 191514 051102 563215 550354 125636 351690 103651 538572 212279 698735 755926 128706 567960 874725 500670 649855 384386 121375 670685 349425 669141 898144 683810 884172 183533 269633 279343 823352 116769 044701 064532 708049 533998 236855 589019 151850 322689 197839 673764 812889 360207 254350 029996 929203 618938 490315 302426 967821 989899 785298 472716 399732 827049 032964 057118 133583 309542 256261 910443 142869 240005 050453 410888 184363 725112 932565 763832 870987 168626 558061 269982 014197 864163 410837 184903 825253 583181 735407 950196 106926 674553 223120 750816 713358 224110 198393 991204 760936 174653 105216 729160 538565 451854 273459 365894 602313 881168 092528 809167 472169 707380 274070 254190 646535 563653 723830 374173 174637 622061 804286 335060 275451 050355 421568 508233 453337 692856 738955 809703 952301 258215 857877 456053 313208 293517 438874 146464 628960 353213 568720 783591 390508 756244 045757 054624 104123 701244 478292 292936 196309 837748 504852 290993 282611 356141 280006 067231 141369 649344 385314 912494 636694 627947 721091 119449 971830 808756 757623 733754 684217 252703 789015 707612 726135 106939 474730 246978 456107 536006 944927 134822 615824 254177 863376 859911 684491 740729 299601 750268 046185 313130 488125 847345 555821 098800 272238 340041 846895 441643 379391 098136 178922 384756 024313 006785 995321 450467 759491 102616 622887 124706 927674 985638 536108 878891 466567 009357 037814 811620 896634 562891 864661 862307 588370 664467 807438 902973 601674 012752 324051 020669 128368 683094 515253 928080 793859 457025 727861 701718 254689 504910 232776 199658 732983 515396 237674 320479 530926 715270 847424 371667 958464 753706 762244 086669 949819 587256 530500 775318 106553 904760 483211 119259 617583 098632 395073 694174 617543 411840 277428 333616 724216 575402 291109 818427 340266 350773 398929 910364 702231 349624 600028 512426 490011 768238 871641 959009 792313 793449 865449 663543 824355 244436 023229 209945 491043 039836 314462 033732 473383 911856 122769 773040 935460 575065 573233 365297 186591 229182 468212 948331 980747 991342 790594 497538 684456 429636 684474 808384 563089 389548 096660 760937 260400 507983 777520 927175 460790 052731 326859 362215 448743 917576 645727 634454 216817 244862 486511 002304 510973 640571 815390 410147 646420 019991 396407 774722 233738 899285 184806 344048 122767 842718 924387 402434 352216 946988 012754 128073 538737 474216 888188 484662 285807 962792 961262 141947 336821 734473 597082 929689 395509 962815 161836 923256 375041 920191 442122 005651 325931 777709 559344 977817 620799 297732 135971 392695 805686 459869 040081 864720 194983 936290 464821 600733 500214 559381 068555 061657 848916 776341 151978 859358 491517 501568 565540 657972 432913 927038 646499 661743 016938 388550 079282 104384 469584 573255 196103 240366 858230 750308 937473 141300 688894 658505 978524 016307 897205 827907 225651 731630 166505 390842 019846 778805 116678 649220 088664 277678 842498 944463 627244 378588 153982 630964 712767 468049 950133 875584 323729 100270 679687 204803 848055 891200 778302 012465 198383 986174 552115 599825 603288 958553 444837 989027 311594 597842 680143 949184 301608 827669 413588 024520 029262 748506 166674 583738 755253 737454 965909 836408 133971 046776 010736 466227 777174 838739 372697 250159 179455 795018 954645 801669 541714 568130 726047 897619 808616 107335 417952 769617 247222 133659 917463 311788 418830 560661 392876 927385 164513 451930 239343 203232 123661 507596 519037 603317 749641 635321 254802 086793 308668 097406 059957 354934 778069 621921 233408 922494 448486 549181 325149 390349 531964 379798 122055 381280 395028 431505 613518 728967 837970 979899 796723 903528 868391 811962 567455 383432 033920 844815 425467 568430 004955 150852 601267 365360 191235 050832 132315 676908 829373 715693 806062 745848 921037 571051 243051 551219 123703 521216 958303 797950 477126 223974 688454 997632 562570 408297 911758 296102 226283 828611 401640 990966 389597 399624 064670 683815 500521 609080 929561 173313 975383 739956 201231 755089 786005 410711 674509 895460 064298 534334 932328 195444 598537 065962 101573 860667 831018 394530 900836 740542 519214 100123 730369 678385 283063 292945 180642 704813 145132 145178 674174 827240 818211 287022 895833 456538 491407 115335 702999 721448 821980 683668 429395 678502 424667 509291 230968 130386 997643 046155 477337 516404 150157 859129 017999 599533 382040 544440 879764 258679 121643 112949 664055 060280 618493 343354 584774 503468 773041 363166 893149 292148 234615 698329 694893 203089 412123 386453 820283 751505 621183 874215 381190 860440 364018 622064 835626 239280 316541 428253 817753 108160 472730 133956 083857 298985 235219 673194 386460 042035 281827 852163 301406 010911 468708 859819 076714 139442 340939 243487 389118 960273 869670 277624 240760 539698 865914 656546 005315 727972 444471 603796 132704 560245 823412 618624 703886 346297 327243 710118 779132 670094 442167 190589 322050 731135 660150 110081 463167 005540 350771 355330 781989 257179 545068 660089 384408 627282 588260 952331 675115 204538 338063 564370 597977 140748 303194 585114 880135 380312 253955 662741 495544 401295 784841 086776 498358 489927 892403 505336 684429 895922 922815 395073 463438 332227 445820 283287 188672 067573 502103 716012 891468 094818 385208 928419 595654 020268 487745 979810 509476 749707 850627 524391 281827 728379 179231 985950 467742 315886 399478 980135 339489 173062 996350 807354 845269 447468 181241 740115 813783 249501 082551 819840 729838 589435 164849 486946 374404 146610 447653 966804 551118 814088 355089 360869 041510 179658 701957 203954 310269 419245 364804 862089 482573 484738 117189 454166 160596 951012 002311 514250 654458 469448 285680 629357 377299 295930 197352 565205 527087 736398 032782 545666 811344 828569 635762 602283 710469 425174 410166 530567 616250 241167 112651 614104 816952 944453 253542 984727 136156 119035 273969 151638 058139 871232 533642 254607 036546 540478 213868 746335 383269 958599 300695 398219 125597 850602 510863 970760 166109 300457 524322 164326 794798 516379 906623 071851 283675 715647 334709 709323 845741 465874 534427 955317 698869 080991 072794 573049 010763 881183 867281 389319 583278 635042 943249 060902 555004 537726 105051 509274 837903 489968 991916 398202 507514 134013 161417 428362 826843 359931 804348 088897 624067 467461 997355 129898 116386 227990 988711 266749 001249 052625 747273 715464 504400 359822 690281 428362 424042 427362 516246 398840 717371 551883 573718 376085 043229 063895 839769 665550 246746 937657 764256 596523 424867 058438 025831 097467 793483 223111 434517 020812 846445 157849 099820 108694 864830 432680 352623 497835 558973 124997 545419 600792 675413 856528 994025 432852 088149 706654 226054 281618 740317 772386 804791 640024 226319 846689 329275 262475 136010 759223 286418 556583 770876 785893 204468 932781 202643 228474 950149 174054 338539 125348 895126 285420 040718 347016 508360 003611 958830 106970 860676 019735 313192 386635 416198 575276 056386 958733 300163 164957 377173 123441 840989 783055 547924 307457 581522 781786 799468 930694 731357 487953 416089 179806 702224 543330 501486 645626 385442 543962 562453 577751 894998 562502 424006 951694 427585 614412 042002 543786 134937 037879 105119 167237 557081 009629 316515 401874 709255 745709 558196 642413 941589 526374 108193 543980 055876 741602 247967 629926 490022 225369 953494 847729 725394 626139 017675 580317 909710 162123 499397 442087 379115 134960 (25079 digits)

    Möbius: 0

    n = a^2

    a = 269568 186142 922536 017476 189933 672564 374669 496384 562507 284203 181995 009291 989759 532559 002677 766813 045555 035739 903868 432162 930281 905774 858853 321550 549212 327665 367253 639201 905285 237030 795766 055305 222626 840540 515597 301783 100018 662313 287966 939312 797431 873967 786742 119404 641675 068161 743005 951348 100824 962865 959409 731265 316281 150496 448577 605373 764831 096624 539177 976792 366247 079993 321279 819401 273393 616691 591046 321087 227038 260253 057978 257920 544615 626328 857887 211980 684988 222367 583617 860757 181332 337942 027985 466521 923502 310803 659813 597927 055003 451618 190300 046097 398478 004237 334938 213742 777863 871518 881322 503473 652309 710824 571400 779839 175890 335770 497757 625248 750813 301412 973108 302853 248877 628388 737842 302939 746557 259228 862661 084741 599890 284568 825285 595250 095506 538237 145539 454730 083451 428915 436823 188863 461543 213441 677085 230908 649334 852746 494608 669646 849477 465130 560362 247867 755555 922354 063583 596779 385209 514356 358057 239346 121611 157084 795935 301036 429985 734924 990983 883601 119009 878611 801338 360649 765286 205032 256517 662440 554766 102266 812707 497976 073716 401165 642397 824646 257890 317708 998504 912033 278358 854700 455641 425047 893093 440677 611373 381054 292498 080706 040733 117442 391633 229763 844665 631173 671787 157657 130379 466502 577681 553909 842756 415182 603596 610175 375106 177802 921810 079225 606634 739949 943656 734175 670283 810394 164045 957984 047112 499828 024136 298507 666970 616699 567253 578789 762912 969720 502024 915696 886093 729775 145338 749314 032579 647463 366799 569905 976297 132057 454308 669304 475802 068219 866796 442224 986085 553666 016918 647204 562189 950082 301743 248741 332991 773492 420406 261186 690088 139649 727008 235446 809549 918231 852240 955348 272066 327200 639607 256535 809374 649674 279990 382805 925927 081524 893810 113631 527041 476678 588706 408854 481672 065085 440662 224612 587070 120256 281868 073046 617583 922854 194701 174780 962563 627210 010264 569620 023102 876047 011976 040145 529256 746163 156053 631118 304066 238603 883022 631526 583835 973926 216406 645941 859754 100856 889162 506341 369435 575396 769167 215306 447276 164519 190163 402618 032877 472534 353849 501474 619797 118637 856985 887328 837068 741278 614775 810876 091644 072112 768500 082985 408996 055763 846533 337019 831431 939123 568358 333555 452967 486723 626041 361007 449966 489991 678817 738502 524384 365503 566231 696446 967381 699618 380778 811927 435433 762547 595053 534412 815430 924894 871442 209908 425127 775093 357827 906411 916968 670648 919289 568979 970593 816356 280165 924928 536259 666870 582408 765046 938829 038628 255925 215574 294518 725508 784101 781816 647239 839425 579459 370014 147787 677945 262346 263740 880466 479488 448320 966684 209058 100955 292579 402298 721822 827419 194948 073946 636347 323657 523599 595134 922505 702780 864844 182133 064865 917821 215659 435791 745971 116982 597317 511218 268339 906880 379420 970339 628177 467255 112229 210106 665527 919902 409843 599058 850256 341156 829307 965730 328532 047969 325895 880490 487002 802395 179827 449391 531977 207981 560060 460797 600904 016602 621132 985117 626310 911234 238769 809481 937383 617204 541519 437681 278521 168859 758555 794168 877891 661301 260122 797352 644169 556643 022390 923905 431783 012975 086665 408975 545564 216734 342106 774025 041400 232243 513823 262139 150358 657524 590655 275769 522599 952049 672432 434780 010294 238025 549347 613256 253141 142639 394739 728467 225862 952126 219954 585387 009530 785681 757544 104893 677651 568939 946715 850208 460569 209526 164488 443666 289343 683229 716548 959211 870107 792404 454898 893341 545417 424733 929320 639919 181112 586815 596490 820197 649554 651036 386815 397448 466331 802226 477196 318221 790926 861196 607305 729622 046051 688808 093187 467025 926521 492088 290400 562759 154345 383255 382239 014971 516167 618508 161344 133286 454086 158720 653803 848804 556099 637639 188316 136135 371811 183814 207981 249113 795505 367787 192514 794612 523536 886409 107644 468941 223309 298788 531889 818051 365830 065393 061641 914972 479023 786134 569935 558007 919544 817592 033063 618844 630203 843664 699218 534789 455640 771507 741172 788983 281328 646325 519699 419425 393452 583689 319663 542271 461238 892294 252943 221291 873773 041339 493143 485508 709218 816417 139935 570032 232629 338776 474733 522225 301293 512101 581669 922711 309780 734255 357185 150374 145083 398233 602665 587438 187648 617374 812324 884874 719985 360795 321225 065865 313629 290191 618349 225708 749174 529787 932891 157906 908584 831029 051541 710472 754548 681055 976163 551905 993403 768681 052717 358386 982477 028653 390253 492064 521532 244286 739281 552716 805722 656625 796744 392200 998535 977944 570525 105207 040600 605757 082882 428522 651401 045780 846359 875889 643343 115343 436201 557543 903223 252056 443846 999694 614614 739755 958700 883369 388868 409298 083151 848446 839477 110150 868369 925431 966320 599893 545057 071058 337471 128001 216437 116209 156446 790256 267294 994106 736636 063145 739966 377821 947143 984817 111204 949991 469970 512052 720189 584077 387647 774502 520769 363564 611987 024110 589244 636426 504764 328130 564535 299977 710483 634433 672139 942307 188892 745647 133013 241100 688731 522604 002054 554422 241816 963524 776275 888856 222451 858140 274355 687518 712554 974804 685141 837105 006358 211364 878623 751409 291567 920956 615802 763389 373367 569881 028573 444710 793248 240227 004613 258882 059805 914591 995021 513830 934308 178576 338262 356555 935703 858217 264017 141441 934438 506388 212719 371140 595538 806846 862606 507125 893482 259984 881309 144996 822195 746925 542750 911223 309222 805243 062809 335870 334045 604670 086680 533335 162899 736469 522385 847579 692700 390513 590294 917098 649027 320575 107598 552007 702005 368032 531056 227521 216491 189749 051045 938680 472393 939701 344582 314587 557994 234312 145457 676037 801410 226737 619792 128040 896218 671467 750687 935925 617078 482448 046795 129145 512216 726186 219215 674156 386606 765210 096790 790533 658132 864753 647233 122602 581435 242831 371215 856261 754448 751080 412489 201846 299221 183561 615082 449507 153789 818453 993946 410643 112799 342912 774586 052886 881751 174199 896802 458271 433189 021976 081179 776438 109471 108900 227891 870984 115388 791593 150678 322569 165525 010873 686380 881379 033274 157465 096543 754476 486174 432967 236352 683571 592235 876811 512639 992615 750871 511029 334198 619478 420739 187102 534961 246527 291149 701599 537337 104156 480877 064988 446141 397195 314370 980909 766835 210175 855660 066403 319482 704501 702397 598627 570218 680438 692309 348111 397312 769259 308668 411896 563005 859196 771922 397492 686867 241853 437422 577060 265096 710873 970866 429786 546854 112740 083015 046408 194600 482447 503418 427576 837965 159284 197185 862112 427587 257778 731128 842316 541836 376197 938451 241151 823479 919338 740079 763512 731098 361342 029163 493917 049822 965383 316816 418129 131175 551970 804104 275786 709909 443160 588668 010401 309472 625472 066706 557305 824863 689134 925695 902443 616449 544270 382202 326933 326214 283252 044446 814471 921865 462658 809856 661840 471045 257265 141442 688832 843921 624380 733982 894427 100675 658456 947629 088802 791663 850103 528423 892985 361860 400950 172766 112858 050736 216502 107136 700418 218893 525782 198481 858995 834121 263834 450633 615110 816660 655248 418223 670280 084588 329298 231188 207668 177948 912874 687643 490603 719541 909138 821639 496787 073864 429244 209706 852891 642008 282058 879245 081888 745319 762667 841505 922285 493459 521161 744701 054759 904555 168752 672953 952801 191744 383186 022759 004751 063318 477460 081478 206663 727539 497884 262277 872724 353982 011336 032356 785661 876902 427960 457325 954213 016678 133529 139237 193053 580171 378855 771915 466394 544675 471929 117450 513331 083291 374523 145382 727616 229744 837556 121676 352291 025541 874676 429626 020295 107658 486036 150611 989574 382948 961766 951184 034375 906270 050579 152689 711605 990408 296317 292169 992192 303971 513751 086991 575505 991885 954561 784100 209865 410415 443670 053035 555631 362059 769190 124576 046088 935187 212355 316482 291661 859473 230788 925562 482805 372673 141542 459785 396009 087538 119856 311141 730465 574722 249248 182807 147510 933823 476807 006110 554076 383727 226527 656357 986472 946548 772146 592005 391935 738061 810028 425734 861345 595219 086920 888801 848791 558412 807964 059538 680137 926630 756844 604939 688436 925030 762237 639847 270221 526641 708173 626288 718752 739706 463267 146958 582689 400758 461478 613396 860321 298589 414643 526883 604523 094097 973387 572096 280059 640682 552825 529955 647387 304121 340566 129508 743551 446947 139261 407732 901214 914291 080692 437739 462809 670848 977732 183546 490733 036751 842440 494742 062602 602989 003422 009532 521069 562544 694226 175471 099872 310731 870874 615660 674087 421111 150884 005187 361928 574256 624632 298076 539355 861624 178056 837388 745908 846965 857143 840656 719657 957841 868091 549912 631817 770175 435334 240344 563783 853333 039328 750173 925198 223037 915145 668001 828480 064699 264789 334285 468795 853906 937108 719506 937409 311815 788704 235333 912025 619476 145319 581007 076042 314505 598032 661714 142778 490062 321129 036596 166066 063008 138524 721362 615975 139931 052680 804369 457457 334134 859174 067068 784171 563683 976005 308889 252422 865994 372034 146173 776072 649510 569740 430731 394120 396303 976449 246487 566741 851365 715028 922196 994927 755253 409835 882727 029630 919655 009801 554461 365429 916069 013653 002726 534253 279992 297754 701415 827585 943115 536064 792067 263270 618868 907378 709395 123996 424815 516381 111348 327706 031607 366031 090412 686743 179112 058127 528665 105526 306708 476588 227015 950959 528784 547032 994133 511130 671538 343494 610955 891350 577663 075746 747709 809144 594790 691396 447931 035408 774777 773920 712992 935311 143771 900819 521635 921950 294583 402706 092839 384323 012567 842364 955222 934550 227026 516514 981108 253699 772485 885378 578543 541841 118509 402239 224531 666751 348243 726714 923256 125906 851616 652839 064496 945006 978972 038740 352266 771180 308507 205690 260346 058461 681726 286154 125097 589842 744355 621292 272405 427450 442422 714510 761329 728597 558674 799969 678984 824052 898708 144644 608445 958652 615184 355580 423038 538935 018431 050317 118613 084072 379432 766414 569011 632528 499993 660799 658624 323124 699222 965863 811549 824605 178806 302378 267026 454162 643005 907715 041596 202401 650301 032929 561074 235746 970509 117534 020384 804022 139764 861692 069653 553780 295217 245543 312899 530948 764566 156857 994086 005382 184705 051204 014617 381098 940656 570337 740436 082368 380619 988771 718294 574973 400350 457439 178028 414918 180519 749935 917845 547712 949222 098955 033488 839847 305758 649028 273136 289117 735605 752945 781473 266020 233141 926007 532252 585384 620517 296662 825061 844780 515852 542894 519408 313135 828328 025819 316032 211258 079892 190496 962513 268376 567740 297666 620668 720518 615348 356245 158817 752262 569570 030458 793066 503259 320135 229270 247196 821788 846087 172529 765311 648707 854704 790977 098715 423960 954385 873111 214887 162021 741982 524191 965834 206766 111441 748190 056804 397702 564231 381207 695353 354764 469139 439690 943421 204938 064323 077718 460271 693057 182047 099332 534829 703411 977523 914104 055747 861050 347464 430742 159039 051897 629216 572313 542491 057029 375546 601770 724476 746789 388922 843511 025327 786620 095701 494654 815506 459172 942561 057857 070951 512995 681084 741200 403972 783090 231961 663203 080365 615252 537301 873976 897777 693773 700405 660777 966074 251011 334029 160308 814124 395120 730053 001338 168933 639349 681207 827221 850039 585190 985355 795712 781071 208126 134582 481088 440825 108961 380375 147875 565193 182119 602763 811859 733365 711187 383525 412781 826492 796922 317592 872464 034533 964685 274082 519878 081952 406762 737629 366751 552199 710769 390315 753151 110908 202245 997682 053231 116769 491331 229035 922152 999401 175728 973150 288602 721488 870618 526066 948016 198418 493643 703354 408025 296332 803191 301537 459793 441220 918570 795659 867264 827225 575789 110159 320143 394302 479192 843047 635173 037862 710316 797028 951381 669798 053702 367166 680631 327638 677277 724928 244558 831577 354717 860650 467197 326257 257863 723800 160471 763242 899531 857803 059530 399932 229051 881363 583357 935026 814200 595543 071732 047152 416695 268799 325297 595937 472659 029533 520876 699168 604889 495107 837123 456148 452065 864892 701541 943272 720756 395465 977893 138734 367930 553486 066660 139733 139199 176168 517086 286506 924894 059524 966332 953728 084801 731510 059065 478884 419066 191269 111223 793422 384368 066638 712414 373256 880217 499132 604350 750092 692745 119181 843052 569576 311861 303240 697935 206708 495308 794846 142198 754304 611867 702724 794187 009086 157209 483268 586519 325765 585687 049811 797776 037817 176357 037442 816584 311871 433366 700135 857201 739059 552038 191752 114437 842477 378184 059951 192821 363868 093484 433183 296966 445541 246793 406048 749565 100627 941908 776588 532821 622107 179295 521078 770877 719876 013899 511795 485260 041251 463858 964821 240384 754821 895120 320563 911807 234405 195672 200629 367258 452734 321109 101756 667881 047725 681358 788857 447961 024712 485101 241786 193914 810649 721146 848430 931154 165668 162824 276060 522477 864011 854743 359956 634084 271752 795598 987750 430935 692605 938698 642940 365478 341234 258932 834773 555658 973450 312190 197138 823963 658028 979015 821820 280556 299745 236380 905474 673586 820300 376433 993549 316652 131831 617148 069735 841101 536916 390640 882411 644567 728963 349372 217538 138211 093054 842682 435454 817787 771185 036098 098039 399621 073214 392549 974096 266521 315434 168377 903608 491622 216423 832488 076240 230386 477860 918097 045675 386088 670377 522844 136912 432034 678088 063492 873930 098181 254101 487302 218203 028401 835222 230501 487832 779530 389170 672788 556778 608812 428645 107300 530153 688869 885283 949807 400030 879094 687035 410841 058054 463863 941936 549464 942078 772221 243346 096607 565345 121575 239320 371710 043784 475075 796012 890246 797787 543826 212965 554512 077823 260870 060819 734846 125436 776830 966647 460400 230756 886534 343933 364626 943894 760001 (12540 digits)

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • x: equal sign missing in first expression

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • x=: three or four semicolons expected but none found

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • x=23: three or four semicolons expected but none found

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • x=23;13: variable x missing in second expression

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • x=23;x=x+1: three or four semicolons expected but there are only one

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • Error in expression #4: The expression must not include variables

    Written by Dario Alpern. Last updated on 10 November 2024.

    -6
    • 25 = 5^2
    • 26 = 2 * 13
    • 27 = 3^3
    • 28 = 2^2 * 7
    • 29 is prime
    • 30 = 2 * 3 * 5
    • 31 is prime
    • 32 = 2^5
    • 33 = 3 * 11
    • 34 = 2 * 17
    • 35 = 5 * 7
    • 36 = 2^2 * 3^2
    • 37 is prime
    • 38 = 2 * 19
    • 39 = 3 * 13
    • 40 = 2^3 * 5
    • 41 is prime
    • 42 = 2 * 3 * 7
    • 43 is prime
    • 44 = 2^2 * 11
    • 45 = 3^2 * 5
    • 46 = 2 * 23
    • 47 is prime
    • 48 = 2^4 * 3
    • 49 = 7^2
    • 50 = 2 * 5^2
    • 51 = 3 * 17
    • 52 = 2^2 * 13
    • 53 is prime
    • 54 = 2 * 3^3
    • 55 = 5 * 11
    • 56 = 2^3 * 7
    • 57 = 3 * 19
    • 58 = 2 * 29
    • 59 is prime
    • 60 = 2^2 * 3 * 5
    • 61 is prime
    • 62 = 2 * 31
    • 63 = 3^2 * 7
    • 64 = 2^6
    • 65 = 5 * 13
    • 66 = 2 * 3 * 11
    • 67 is prime
    • 68 = 2^2 * 17
    • 69 = 3 * 23
    • 70 = 2 * 5 * 7
    • 71 is prime
    • 72 = 2^3 * 3^2
    • 73 is prime
    • 74 = 2 * 37
    • 75 = 3 * 5^2
    • 76 = 2^2 * 19
    • 77 = 7 * 11
    • 78 = 2 * 3 * 13
    • 79 is prime
    • 80 = 2^4 * 5
    • 81 = 3^4
    • 82 = 2 * 41
    • 83 is prime
    • 84 = 2^2 * 3 * 7
    • 85 = 5 * 17
    • 86 = 2 * 43
    • 87 = 3 * 29
    • 88 = 2^3 * 11
    • 89 is prime
    • 90 = 2 * 3^2 * 5
    • 91 = 7 * 13
    • 92 = 2^2 * 23
    • 93 = 3 * 31
    • 94 = 2 * 47
    • 95 = 5 * 19
    • 96 = 2^5 * 3
    • 97 is prime
    • 98 = 2 * 7^2
    • 99 = 3^2 * 11
    • 100 = 2^2 * 5^2
    • 101 is prime
    • 102 = 2 * 3 * 17
    • 103 is prime
    • 104 = 2^3 * 13
    • 105 = 3 * 5 * 7
    • 106 = 2 * 53
    • 107 is prime
    • 108 = 2^2 * 3^3
    • 109 is prime
    • 110 = 2 * 5 * 11
    • 111 = 3 * 37
    • 112 = 2^4 * 7
    • 113 is prime
    • 114 = 2 * 3 * 19
    • 115 = 5 * 23
    • 116 = 2^2 * 29
    • 117 = 3^2 * 13
    • 118 = 2 * 59
    • 119 = 7 * 17
    • 120 = 2^3 * 3 * 5
    • 121 = 11^2
    • 122 = 2 * 61
    • 123 = 3 * 41
    • 124 = 2^2 * 31
    • 125 = 5^3
    • 126 = 2 * 3^2 * 7
    • 127 is prime
    • 128 = 2^7
    • 129 = 3 * 43
    • 130 = 2 * 5 * 13
    • 131 is prime
    • 132 = 2^2 * 3 * 11
    • 133 = 7 * 19
    • 134 = 2 * 67
    • 135 = 3^3 * 5
    • 136 = 2^3 * 17
    • 137 is prime
    • 138 = 2 * 3 * 23
    • 139 is prime
    • 140 = 2^2 * 5 * 7
    • 141 = 3 * 47
    • 142 = 2 * 71
    • 143 = 11 * 13
    • 144 = 2^4 * 3^2
    • 145 = 5 * 29
    • 146 = 2 * 73
    • 147 = 3 * 7^2
    • 148 = 2^2 * 37
    • 149 is prime
    • 150 = 2 * 3 * 5^2
    • 151 is prime
    • 152 = 2^3 * 19
    • 153 = 3^2 * 17
    • 154 = 2 * 7 * 11
    • 155 = 5 * 31
    • 156 = 2^2 * 3 * 13
    • 157 is prime
    • 158 = 2 * 79
    • 159 = 3 * 53
    • 160 = 2^5 * 5
    • 161 = 7 * 23
    • 162 = 2 * 3^4
    • 163 is prime
    • 164 = 2^2 * 41
    • 165 = 3 * 5 * 11
    • 166 = 2 * 83
    • 167 is prime
    • 168 = 2^3 * 3 * 7
    • 169 = 13^2
    • 170 = 2 * 5 * 17
    • 171 = 3^2 * 19
    • 172 = 2^2 * 43
    • 173 is prime
    • 174 = 2 * 3 * 29
    • 175 = 5^2 * 7
    • 176 = 2^4 * 11
    • 177 = 3 * 59
    • 178 = 2 * 89
    • 179 is prime
    • 180 = 2^2 * 3^2 * 5
    • 181 is prime
    • 182 = 2 * 7 * 13
    • 183 = 3 * 61
    • 184 = 2^3 * 23
    • 185 = 5 * 37
    • 186 = 2 * 3 * 31
    • 187 = 11 * 17
    • 188 = 2^2 * 47
    • 189 = 3^3 * 7
    • 190 = 2 * 5 * 19
    • 191 is prime
    • 192 = 2^6 * 3
    • 193 is prime
    • 194 = 2 * 97
    • 195 = 3 * 5 * 13
    • 196 = 2^2 * 7^2
    • 197 is prime
    • 198 = 2 * 3^2 * 11
    • 199 is prime
    • 200 = 2^3 * 5^2
    • 201 = 3 * 67
    • 202 = 2 * 101
    • 203 = 7 * 29
    • 204 = 2^2 * 3 * 17
    • 205 = 5 * 41
    • 206 = 2 * 103
    • 207 = 3^2 * 23
    • 208 = 2^4 * 13
    • 209 = 11 * 19
    • 210 = 2 * 3 * 5 * 7
    • 211 is prime
    • 212 = 2^2 * 53
    • 213 = 3 * 71
    • 214 = 2 * 107
    • 215 = 5 * 43
    • 216 = 2^3 * 3^3
    • 217 = 7 * 31
    • 218 = 2 * 109
    • 219 = 3 * 73
    • 220 = 2^2 * 5 * 11
    • 221 = 13 * 17
    • 222 = 2 * 3 * 37
    • 223 is prime
    • 224 = 2^5 * 7
    • 225 = 3^2 * 5^2
    • 226 = 2 * 113
    • 227 is prime
    • 228 = 2^2 * 3 * 19
    • 229 is prime
    • 230 = 2 * 5 * 23
    • 231 = 3 * 7 * 11
    • 232 = 2^3 * 29
    • 233 is prime
    • 234 = 2 * 3^2 * 13
    • 235 = 5 * 47
    • 236 = 2^2 * 59
    • 237 = 3 * 79
    • 238 = 2 * 7 * 17
    • 239 is prime
    • 240 = 2^4 * 3 * 5
    • 241 is prime
    • 242 = 2 * 11^2
    • 243 = 3^5
    • 244 = 2^2 * 61
    • 245 = 5 * 7^2
    • 246 = 2 * 3 * 41
    • 247 = 13 * 19
    • 248 = 2^3 * 31
    • 249 = 3 * 83
    • 250 = 2 * 5^3
    • 251 is prime
    • 252 = 2^2 * 3^2 * 7
    • 253 = 11 * 23
    • 254 = 2 * 127
    • 255 = 3 * 5 * 17
    • 256 = 2^8
    • 257 is prime
    • 258 = 2 * 3 * 43
    • 259 = 7 * 37
    • 260 = 2^2 * 5 * 13
    • 261 = 3^2 * 29
    • 262 = 2 * 131
    • 263 is prime
    • 264 = 2^3 * 3 * 11
    • 265 = 5 * 53
    • 266 = 2 * 7 * 19
    • 267 = 3 * 89
    • 268 = 2^2 * 67
    • 269 is prime
    • 270 = 2 * 3^3 * 5
    • 271 is prime
    • 272 = 2^4 * 17
    • 273 = 3 * 7 * 13
    • 274 = 2 * 137
    • 275 = 5^2 * 11
    • 276 = 2^2 * 3 * 23
    • 277 is prime
    • 278 = 2 * 139
    • 279 = 3^2 * 31
    • 280 = 2^3 * 5 * 7
    • 281 is prime
    • 282 = 2 * 3 * 47
    • 283 is prime
    • 284 = 2^2 * 71
    • 285 = 3 * 5 * 19
    • 286 = 2 * 11 * 13
    • 287 = 7 * 41
    • 288 = 2^5 * 3^2
    • 289 = 17^2
    • 290 = 2 * 5 * 29
    • 291 = 3 * 97
    • 292 = 2^2 * 73
    • 293 is prime
    • 294 = 2 * 3 * 7^2
    • 295 = 5 * 59
    • 296 = 2^3 * 37
    • 297 = 3^3 * 11
    • 298 = 2 * 149
    • 299 = 13 * 23
    • 300 = 2^2 * 3 * 5^2
    • 301 = 7 * 43
    • 302 = 2 * 151
    • 303 = 3 * 101
    • 304 = 2^4 * 19
    • 305 = 5 * 61
    • 306 = 2 * 3^2 * 17
    • 307 is prime
    • 308 = 2^2 * 7 * 11
    • 309 = 3 * 103
    • 310 = 2 * 5 * 31
    • 311 is prime
    • 312 = 2^3 * 3 * 13
    • 313 is prime
    • 314 = 2 * 157
    • 315 = 3^2 * 5 * 7
    • 316 = 2^2 * 79
    • 317 is prime
    • 318 = 2 * 3 * 53
    • 319 = 11 * 29
    • 320 = 2^6 * 5
    • 321 = 3 * 107
    • 322 = 2 * 7 * 23
    • 323 = 17 * 19
    • 324 = 2^2 * 3^4
    • 325 = 5^2 * 13
    • 326 = 2 * 163
    • 327 = 3 * 109
    • 328 = 2^3 * 41
    • 329 = 7 * 47
    • 330 = 2 * 3 * 5 * 11
    • 331 is prime
    • 332 = 2^2 * 83
    • 333 = 3^2 * 37
    • 334 = 2 * 167
    • 335 = 5 * 67
    • 336 = 2^4 * 3 * 7
    • 337 is prime
    • 338 = 2 * 13^2
    • 339 = 3 * 113
    • 340 = 2^2 * 5 * 17
    • 341 = 11 * 31
    • 342 = 2 * 3^2 * 19
    • 343 = 7^3
    • 344 = 2^3 * 43
    • 345 = 3 * 5 * 23
    • 346 = 2 * 173
    • 347 is prime
    • 348 = 2^2 * 3 * 29
    • 349 is prime
    • 350 = 2 * 5^2 * 7
    • 351 = 3^3 * 13
    • 352 = 2^5 * 11
    • 353 is prime
    • 354 = 2 * 3 * 59
    • 355 = 5 * 71
    • 356 = 2^2 * 89
    • 357 = 3 * 7 * 17
    • 358 = 2 * 179
    • 359 is prime
    • 360 = 2^3 * 3^2 * 5
    • 361 = 19^2
    • 362 = 2 * 181
    • 363 = 3 * 11^2
    • 364 = 2^2 * 7 * 13
    • 365 = 5 * 73
    • 366 = 2 * 3 * 61
    • 367 is prime
    • 368 = 2^4 * 23
    • 369 = 3^2 * 41
    • 370 = 2 * 5 * 37
    • 371 = 7 * 53
    • 372 = 2^2 * 3 * 31
    • 373 is prime
    • 374 = 2 * 11 * 17
    • 375 = 3 * 5^3
    • 376 = 2^3 * 47
    • 377 = 13 * 29
    • 378 = 2 * 3^3 * 7
    • 379 is prime
    • 380 = 2^2 * 5 * 19
    • 381 = 3 * 127
    • 382 = 2 * 191
    • 383 is prime
    • 384 = 2^7 * 3
    • 385 = 5 * 7 * 11
    • 386 = 2 * 193
    • 387 = 3^2 * 43
    • 388 = 2^2 * 97
    • 389 is prime
    • 390 = 2 * 3 * 5 * 13
    • 391 = 17 * 23
    • 392 = 2^3 * 7^2
    • 393 = 3 * 131
    • 394 = 2 * 197
    • 395 = 5 * 79
    • 396 = 2^2 * 3^2 * 11
    • 397 is prime
    • 398 = 2 * 199
    • 399 = 3 * 7 * 19
    • 400 = 2^4 * 5^2
    • 401 is prime
    • 402 = 2 * 3 * 67
    • 403 = 13 * 31
    • 404 = 2^2 * 101
    • 405 = 3^4 * 5
    • 406 = 2 * 7 * 29
    • 407 = 11 * 37
    • 408 = 2^3 * 3 * 17
    • 409 is prime
    • 410 = 2 * 5 * 41
    • 411 = 3 * 137
    • 412 = 2^2 * 103
    • 413 = 7 * 59
    • 414 = 2 * 3^2 * 23
    • 415 = 5 * 83
    • 416 = 2^5 * 13
    • 417 = 3 * 139
    • 418 = 2 * 11 * 19
    • 419 is prime
    • 420 = 2^2 * 3 * 5 * 7
    • 421 is prime
    • 422 = 2 * 211
    • 423 = 3^2 * 47
    • 424 = 2^3 * 53
    • 425 = 5^2 * 17
    • 426 = 2 * 3 * 71
    • 427 = 7 * 61
    • 428 = 2^2 * 107
    • 429 = 3 * 11 * 13
    • 430 = 2 * 5 * 43
    • 431 is prime
    • 432 = 2^4 * 3^3
    • 433 is prime
    • 434 = 2 * 7 * 31
    • 435 = 3 * 5 * 29
    • 436 = 2^2 * 109
    • 437 = 19 * 23
    • 438 = 2 * 3 * 73
    • 439 is prime
    • 440 = 2^3 * 5 * 11
    • 441 = 3^2 * 7^2
    • 442 = 2 * 13 * 17
    • 443 is prime
    • 444 = 2^2 * 3 * 37
    • 445 = 5 * 89
    • 446 = 2 * 223
    • 447 = 3 * 149
    • 448 = 2^6 * 7
    • 449 is prime
    • 450 = 2 * 3^2 * 5^2
    • 451 = 11 * 41
    • 452 = 2^2 * 113
    • 453 = 3 * 151
    • 454 = 2 * 227
    • 455 = 5 * 7 * 13
    • 456 = 2^3 * 3 * 19
    • 457 is prime
    • 458 = 2 * 229
    • 459 = 3^3 * 17
    • 460 = 2^2 * 5 * 23
    • 461 is prime
    • 462 = 2 * 3 * 7 * 11
    • 463 is prime
    • 464 = 2^4 * 29
    • 465 = 3 * 5 * 31
    • 466 = 2 * 233
    • 467 is prime
    • 468 = 2^2 * 3^2 * 13
    • 469 = 7 * 67
    • 470 = 2 * 5 * 47
    • 471 = 3 * 157
    • 472 = 2^3 * 59
    • 473 = 11 * 43
    • 474 = 2 * 3 * 79
    • 475 = 5^2 * 19
    • 476 = 2^2 * 7 * 17
    • 477 = 3^2 * 53
    • 478 = 2 * 239
    • 479 is prime
    • 480 = 2^5 * 3 * 5
    • 481 = 13 * 37
    • 482 = 2 * 241
    • 483 = 3 * 7 * 23
    • 484 = 2^2 * 11^2
    • 485 = 5 * 97
    • 486 = 2 * 3^5
    • 487 is prime
    • 488 = 2^3 * 61
    • 489 = 3 * 163
    • 490 = 2 * 5 * 7^2
    • 491 is prime
    • 492 = 2^2 * 3 * 41
    • 493 = 17 * 29
    • 494 = 2 * 13 * 19
    • 495 = 3^2 * 5 * 11
    • 496 = 2^4 * 31
    • 497 = 7 * 71
    • 498 = 2 * 3 * 83
    • 499 is prime
    • 500 = 2^2 * 5^3
    • 501 = 3 * 167
    • 502 = 2 * 251
    • 503 is prime
    • 504 = 2^3 * 3^2 * 7
    • 505 = 5 * 101
    • 506 = 2 * 11 * 23
    • 507 = 3 * 13^2
    • 508 = 2^2 * 127
    • 509 is prime
    • 510 = 2 * 3 * 5 * 17
    • 511 = 7 * 73
    • 512 = 2^9
    • 513 = 3^3 * 19
    • 514 = 2 * 257
    • 515 = 5 * 103
    • 516 = 2^2 * 3 * 43
    • 517 = 11 * 47
    • 518 = 2 * 7 * 37
    • 519 = 3 * 173
    • 520 = 2^3 * 5 * 13
    • 521 is prime
    • 522 = 2 * 3^2 * 29
    • 523 is prime
    • 524 = 2^2 * 131
    • 525 = 3 * 5^2 * 7
    • 526 = 2 * 263
    • 527 = 17 * 31
    • 528 = 2^4 * 3 * 11
    • 529 = 23^2
    • 530 = 2 * 5 * 53
    • 531 = 3^2 * 59
    • 532 = 2^2 * 7 * 19
    • 533 = 13 * 41
    • 534 = 2 * 3 * 89
    • 535 = 5 * 107
    • 536 = 2^3 * 67
    • 537 = 3 * 179
    • 538 = 2 * 269
    • 539 = 7^2 * 11
    • 540 = 2^2 * 3^3 * 5
    • 541 is prime
    • 542 = 2 * 271
    • 543 = 3 * 181
    • 544 = 2^5 * 17
    • 545 = 5 * 109
    • 546 = 2 * 3 * 7 * 13
    • 547 is prime
    • 548 = 2^2 * 137
    • 549 = 3^2 * 61
    • 550 = 2 * 5^2 * 11
    • 551 = 19 * 29
    • 552 = 2^3 * 3 * 23
    • 553 = 7 * 79
    • 554 = 2 * 277
    • 555 = 3 * 5 * 37
    • 556 = 2^2 * 139
    • 557 is prime
    • 558 = 2 * 3^2 * 31
    • 559 = 13 * 43
    • 560 = 2^4 * 5 * 7
    • 561 = 3 * 11 * 17
    • 562 = 2 * 281
    • 563 is prime
    • 564 = 2^2 * 3 * 47
    • 565 = 5 * 113
    • 566 = 2 * 283
    • 567 = 3^4 * 7
    • 568 = 2^3 * 71
    • 569 is prime
    • 570 = 2 * 3 * 5 * 19
    • 571 is prime
    • 572 = 2^2 * 11 * 13
    • 573 = 3 * 191
    • 574 = 2 * 7 * 41
    • 575 = 5^2 * 23
    • 576 = 2^6 * 3^2
    • 577 is prime
    • 578 = 2 * 17^2
    • 579 = 3 * 193
    • 580 = 2^2 * 5 * 29
    • 581 = 7 * 83
    • 582 = 2 * 3 * 97
    • 583 = 11 * 53
    • 584 = 2^3 * 73
    • 585 = 3^2 * 5 * 13
    • 586 = 2 * 293
    • 587 is prime
    • 588 = 2^2 * 3 * 7^2
    • 589 = 19 * 31
    • 590 = 2 * 5 * 59
    • 591 = 3 * 197
    • 592 = 2^4 * 37
    • 593 is prime
    • 594 = 2 * 3^3 * 11
    • 595 = 5 * 7 * 17
    • 596 = 2^2 * 149
    • 597 = 3 * 199
    • 598 = 2 * 13 * 23
    • 599 is prime
    • 600 = 2^3 * 3 * 5^2
    • 601 is prime
    • 602 = 2 * 7 * 43
    • 603 = 3^2 * 67
    • 604 = 2^2 * 151
    • 605 = 5 * 11^2
    • 606 = 2 * 3 * 101
    • 607 is prime
    • 608 = 2^5 * 19
    • 609 = 3 * 7 * 29
    • 610 = 2 * 5 * 61
    • 611 = 13 * 47
    • 612 = 2^2 * 3^2 * 17
    • 613 is prime
    • 614 = 2 * 307
    • 615 = 3 * 5 * 41
    • 616 = 2^3 * 7 * 11
    • 617 is prime
    • 618 = 2 * 3 * 103
    • 619 is prime
    • 620 = 2^2 * 5 * 31
    • 621 = 3^3 * 23
    • 622 = 2 * 311
    • 623 = 7 * 89
    • 624 = 2^4 * 3 * 13
    • 625 = 5^4
    • 626 = 2 * 313
    • 627 = 3 * 11 * 19
    • 628 = 2^2 * 157
    • 629 = 17 * 37
    • 630 = 2 * 3^2 * 5 * 7
    • 631 is prime
    • 632 = 2^3 * 79
    • 633 = 3 * 211
    • 634 = 2 * 317
    • 635 = 5 * 127
    • 636 = 2^2 * 3 * 53
    • 637 = 7^2 * 13
    • 638 = 2 * 11 * 29
    • 639 = 3^2 * 71
    • 640 = 2^7 * 5
    • 641 is prime
    • 642 = 2 * 3 * 107
    • 643 is prime
    • 644 = 2^2 * 7 * 23
    • 645 = 3 * 5 * 43
    • 646 = 2 * 17 * 19
    • 647 is prime
    • 648 = 2^3 * 3^4
    • 649 = 11 * 59
    • 650 = 2 * 5^2 * 13
    • 651 = 3 * 7 * 31
    • 652 = 2^2 * 163
    • 653 is prime
    • 654 = 2 * 3 * 109
    • 655 = 5 * 131
    • 656 = 2^4 * 41
    • 657 = 3^2 * 73
    • 658 = 2 * 7 * 47
    • 659 is prime
    • 660 = 2^2 * 3 * 5 * 11
    • 661 is prime
    • 662 = 2 * 331
    • 663 = 3 * 13 * 17
    • 664 = 2^3 * 83
    • 665 = 5 * 7 * 19
    • 666 = 2 * 3^2 * 37
    • 667 = 23 * 29
    • 668 = 2^2 * 167
    • 669 = 3 * 223
    • 670 = 2 * 5 * 67
    • 671 = 11 * 61
    • 672 = 2^5 * 3 * 7
    • 673 is prime
    • 674 = 2 * 337
    • 675 = 3^3 * 5^2
    • 676 = 2^2 * 13^2
    • 677 is prime
    • 678 = 2 * 3 * 113
    • 679 = 7 * 97
    • 680 = 2^3 * 5 * 17
    • 681 = 3 * 227
    • 682 = 2 * 11 * 31
    • 683 is prime
    • 684 = 2^2 * 3^2 * 19
    • 685 = 5 * 137
    • 686 = 2 * 7^3
    • 687 = 3 * 229
    • 688 = 2^4 * 43
    • 689 = 13 * 53
    • 690 = 2 * 3 * 5 * 23
    • 691 is prime
    • 692 = 2^2 * 173
    • 693 = 3^2 * 7 * 11
    • 694 = 2 * 347
    • 695 = 5 * 139
    • 696 = 2^3 * 3 * 29
    • 697 = 17 * 41
    • 698 = 2 * 349
    • 699 = 3 * 233
    • 700 = 2^2 * 5^2 * 7
    • 701 is prime
    • 702 = 2 * 3^3 * 13
    • 703 = 19 * 37
    • 704 = 2^6 * 11
    • 705 = 3 * 5 * 47
    • 706 = 2 * 353
    • 707 = 7 * 101
    • 708 = 2^2 * 3 * 59
    • 709 is prime
    • 710 = 2 * 5 * 71
    • 711 = 3^2 * 79
    • 712 = 2^3 * 89
    • 713 = 23 * 31
    • 714 = 2 * 3 * 7 * 17
    • 715 = 5 * 11 * 13
    • 716 = 2^2 * 179
    • 717 = 3 * 239
    • 718 = 2 * 359
    • 719 is prime
    • 720 = 2^4 * 3^2 * 5
    • 721 = 7 * 103
    • 722 = 2 * 19^2
    • 723 = 3 * 241
    • 724 = 2^2 * 181
    • 725 = 5^2 * 29
    • 726 = 2 * 3 * 11^2
    • 727 is prime
    • 728 = 2^3 * 7 * 13
    • 729 = 3^6
    • 730 = 2 * 5 * 73
    • 731 = 17 * 43
    • 732 = 2^2 * 3 * 61
    • 733 is prime
    • 734 = 2 * 367
    • 735 = 3 * 5 * 7^2
    • 736 = 2^5 * 23
    • 737 = 11 * 67
    • 738 = 2 * 3^2 * 41
    • 739 is prime
    • 740 = 2^2 * 5 * 37
    • 741 = 3 * 13 * 19
    • 742 = 2 * 7 * 53
    • 743 is prime
    • 744 = 2^3 * 3 * 31
    • 745 = 5 * 149
    • 746 = 2 * 373
    • 747 = 3^2 * 83
    • 748 = 2^2 * 11 * 17
    • 749 = 7 * 107
    • 750 = 2 * 3 * 5^3
    • 751 is prime
    • 752 = 2^4 * 47
    • 753 = 3 * 251
    • 754 = 2 * 13 * 29
    • 755 = 5 * 151
    • 756 = 2^2 * 3^3 * 7
    • 757 is prime
    • 758 = 2 * 379
    • 759 = 3 * 11 * 23
    • 760 = 2^3 * 5 * 19
    • 761 is prime
    • 762 = 2 * 3 * 127
    • 763 = 7 * 109
    • 764 = 2^2 * 191
    • 765 = 3^2 * 5 * 17
    • 766 = 2 * 383
    • 767 = 13 * 59
    • 768 = 2^8 * 3
    • 769 is prime
    • 770 = 2 * 5 * 7 * 11
    • 771 = 3 * 257
    • 772 = 2^2 * 193
    • 773 is prime
    • 774 = 2 * 3^2 * 43
    • 775 = 5^2 * 31
    • 776 = 2^3 * 97
    • 777 = 3 * 7 * 37
    • 778 = 2 * 389
    • 779 = 19 * 41
    • 780 = 2^2 * 3 * 5 * 13
    • 781 = 11 * 71
    • 782 = 2 * 17 * 23
    • 783 = 3^3 * 29
    • 784 = 2^4 * 7^2
    • 785 = 5 * 157
    • 786 = 2 * 3 * 131
    • 787 is prime
    • 788 = 2^2 * 197
    • 789 = 3 * 263
    • 790 = 2 * 5 * 79
    • 791 = 7 * 113
    • 792 = 2^3 * 3^2 * 11
    • 793 = 13 * 61
    • 794 = 2 * 397
    • 795 = 3 * 5 * 53
    • 796 = 2^2 * 199
    • 797 is prime
    • 798 = 2 * 3 * 7 * 19
    • 799 = 17 * 47
    • 800 = 2^5 * 5^2
    • 801 = 3^2 * 89
    • 802 = 2 * 401
    • 803 = 11 * 73
    • 804 = 2^2 * 3 * 67
    • 805 = 5 * 7 * 23
    • 806 = 2 * 13 * 31
    • 807 = 3 * 269
    • 808 = 2^3 * 101
    • 809 is prime
    • 810 = 2 * 3^4 * 5
    • 811 is prime
    • 812 = 2^2 * 7 * 29
    • 813 = 3 * 271
    • 814 = 2 * 11 * 37
    • 815 = 5 * 163
    • 816 = 2^4 * 3 * 17
    • 817 = 19 * 43
    • 818 = 2 * 409
    • 819 = 3^2 * 7 * 13
    • 820 = 2^2 * 5 * 41
    • 821 is prime
    • 822 = 2 * 3 * 137
    • 823 is prime
    • 824 = 2^3 * 103
    • 825 = 3 * 5^2 * 11
    • 826 = 2 * 7 * 59
    • 827 is prime
    • 828 = 2^2 * 3^2 * 23
    • 829 is prime
    • 830 = 2 * 5 * 83
    • 831 = 3 * 277
    • 832 = 2^6 * 13
    • 833 = 7^2 * 17
    • 834 = 2 * 3 * 139
    • 835 = 5 * 167
    • 836 = 2^2 * 11 * 19
    • 837 = 3^3 * 31
    • 838 = 2 * 419
    • 839 is prime
    • 840 = 2^3 * 3 * 5 * 7
    • 841 = 29^2
    • 842 = 2 * 421
    • 843 = 3 * 281
    • 844 = 2^2 * 211
    • 845 = 5 * 13^2
    • 846 = 2 * 3^2 * 47
    • 847 = 7 * 11^2
    • 848 = 2^4 * 53
    • 849 = 3 * 283
    • 850 = 2 * 5^2 * 17
    • 851 = 23 * 37
    • 852 = 2^2 * 3 * 71
    • 853 is prime
    • 854 = 2 * 7 * 61
    • 855 = 3^2 * 5 * 19
    • 856 = 2^3 * 107
    • 857 is prime
    • 858 = 2 * 3 * 11 * 13
    • 859 is prime
    • 860 = 2^2 * 5 * 43
    • 861 = 3 * 7 * 41
    • 862 = 2 * 431
    • 863 is prime
    • 864 = 2^5 * 3^3
    • 865 = 5 * 173
    • 866 = 2 * 433
    • 867 = 3 * 17^2
    • 868 = 2^2 * 7 * 31
    • 869 = 11 * 79
    • 870 = 2 * 3 * 5 * 29
    • 871 = 13 * 67
    • 872 = 2^3 * 109
    • 873 = 3^2 * 97
    • 874 = 2 * 19 * 23
    • 875 = 5^3 * 7
    • 876 = 2^2 * 3 * 73
    • 877 is prime
    • 878 = 2 * 439
    • 879 = 3 * 293
    • 880 = 2^4 * 5 * 11
    • 881 is prime
    • 882 = 2 * 3^2 * 7^2
    • 883 is prime
    • 884 = 2^2 * 13 * 17
    • 885 = 3 * 5 * 59
    • 886 = 2 * 443
    • 887 is prime
    • 888 = 2^3 * 3 * 37
    • 889 = 7 * 127
    • 890 = 2 * 5 * 89
    • 891 = 3^4 * 11
    • 892 = 2^2 * 223
    • 893 = 19 * 47
    • 894 = 2 * 3 * 149
    • 895 = 5 * 179
    • 896 = 2^7 * 7
    • 897 = 3 * 13 * 23
    • 898 = 2 * 449
    • 899 = 29 * 31
    • 900 = 2^2 * 3^2 * 5^2
    • 901 = 17 * 53
    • 902 = 2 * 11 * 41
    • 903 = 3 * 7 * 43
    • 904 = 2^3 * 113
    • 905 = 5 * 181
    • 906 = 2 * 3 * 151
    • 907 is prime
    • 908 = 2^2 * 227
    • 909 = 3^2 * 101
    • 910 = 2 * 5 * 7 * 13
    • 911 is prime
    • 912 = 2^4 * 3 * 19
    • 913 = 11 * 83
    • 914 = 2 * 457
    • 915 = 3 * 5 * 61
    • 916 = 2^2 * 229
    • 917 = 7 * 131
    • 918 = 2 * 3^3 * 17
    • 919 is prime
    • 920 = 2^3 * 5 * 23
    • 921 = 3 * 307
    • 922 = 2 * 461
    • 923 = 13 * 71
    • 924 = 2^2 * 3 * 7 * 11
    • 925 = 5^2 * 37
    • 926 = 2 * 463
    • 927 = 3^2 * 103
    • 928 = 2^5 * 29
    • 929 is prime
    • 930 = 2 * 3 * 5 * 31
    • 931 = 7^2 * 19
    • 932 = 2^2 * 233
    • 933 = 3 * 311
    • 934 = 2 * 467
    • 935 = 5 * 11 * 17
    • 936 = 2^3 * 3^2 * 13
    • 937 is prime
    • 938 = 2 * 7 * 67
    • 939 = 3 * 313
    • 940 = 2^2 * 5 * 47
    • 941 is prime
    • 942 = 2 * 3 * 157
    • 943 = 23 * 41
    • 944 = 2^4 * 59
    • 945 = 3^3 * 5 * 7
    • 946 = 2 * 11 * 43
    • 947 is prime
    • 948 = 2^2 * 3 * 79
    • 949 = 13 * 73
    • 950 = 2 * 5^2 * 19
    • 951 = 3 * 317
    • 952 = 2^3 * 7 * 17
    • 953 is prime
    • 954 = 2 * 3^2 * 53
    • 955 = 5 * 191
    • 956 = 2^2 * 239
    • 957 = 3 * 11 * 29
    • 958 = 2 * 479
    • 959 = 7 * 137
    • 960 = 2^6 * 3 * 5
    • 961 = 31^2
    • 962 = 2 * 13 * 37
    • 963 = 3^2 * 107
    • 964 = 2^2 * 241
    • 965 = 5 * 193
    • 966 = 2 * 3 * 7 * 23
    • 967 is prime
    • 968 = 2^3 * 11^2
    • 969 = 3 * 17 * 19
    • 970 = 2 * 5 * 97
    • 971 is prime
    • 972 = 2^2 * 3^5
    • 973 = 7 * 139
    • 974 = 2 * 487
    • 975 = 3 * 5^2 * 13
    • 976 = 2^4 * 61
    • 977 is prime
    • 978 = 2 * 3 * 163
    • 979 = 11 * 89
    • 980 = 2^2 * 5 * 7^2
    • 981 = 3^2 * 109
    • 982 = 2 * 491
    • 983 is prime
    • 984 = 2^3 * 3 * 41
    • 985 = 5 * 197
    • 986 = 2 * 17 * 29
    • 987 = 3 * 7 * 47
    • 988 = 2^2 * 13 * 19
    • 989 = 23 * 43
    • 990 = 2 * 3^2 * 5 * 11
    • 991 is prime
    • 992 = 2^5 * 31
    • 993 = 3 * 331
    • 994 = 2 * 7 * 71
    • 995 = 5 * 199
    • 996 = 2^2 * 3 * 83
    • 997 is prime
    • 998 = 2 * 499
    • 999 = 3^3 * 37
    • 1000 = 2^3 * 5^3
    • 1001 = 7 * 11 * 13
    • 1002 = 2 * 3 * 167
    • 1003 = 17 * 59
    • 1004 = 2^2 * 251
    • 1005 = 3 * 5 * 67
    • 1006 = 2 * 503
    • 1007 = 19 * 53
    • 1008 = 2^4 * 3^2 * 7
    • 1009 is prime
    • 1010 = 2 * 5 * 101
    • 1011 = 3 * 337
    • 1012 = 2^2 * 11 * 23
    • 1013 is prime
    • 1014 = 2 * 3 * 13^2
    • 1015 = 5 * 7 * 29
    • 1016 = 2^3 * 127
    • 1017 = 3^2 * 113
    • 1018 = 2 * 509
    • 1019 is prime
    • 1020 = 2^2 * 3 * 5 * 17
    • 1021 is prime
    • 1022 = 2 * 7 * 73
    • 1023 = 3 * 11 * 31
    • 1024 = 2^10

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • Error in expression #3: Expression #3 must include the variable x and/or the counter c

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • Error in expression #3: Syntax error in expression #3:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 4 = 2^2
    • 22 = 2 * 11
    • 27 = 3^3
    • 58 = 2 * 29
    • 85 = 5 * 17
    • 94 = 2 * 47
    • 121 = 11^2
    • 166 = 2 * 83
    • 202 = 2 * 101
    • 265 = 5 * 53
    • 274 = 2 * 137
    • 319 = 11 * 29
    • 346 = 2 * 173
    • 355 = 5 * 71
    • 378 = 2 * 3^3 * 7
    • 382 = 2 * 191
    • 391 = 17 * 23
    • 438 = 2 * 3 * 73
    • 454 = 2 * 227
    • 483 = 3 * 7 * 23
    • 517 = 11 * 47
    • 526 = 2 * 263
    • 535 = 5 * 107
    • 562 = 2 * 281
    • 576 = 2^6 * 3^2
    • 588 = 2^2 * 3 * 7^2
    • 627 = 3 * 11 * 19
    • 634 = 2 * 317
    • 636 = 2^2 * 3 * 53
    • 645 = 3 * 5 * 43
    • 648 = 2^3 * 3^4
    • 654 = 2 * 3 * 109
    • 663 = 3 * 13 * 17
    • 666 = 2 * 3^2 * 37
    • 690 = 2 * 3 * 5 * 23
    • 706 = 2 * 353
    • 728 = 2^3 * 7 * 13
    • 729 = 3^6
    • 762 = 2 * 3 * 127
    • 778 = 2 * 389
    • 825 = 3 * 5^2 * 11
    • 852 = 2^2 * 3 * 71
    • 861 = 3 * 7 * 41
    • 895 = 5 * 179
    • 913 = 11 * 83
    • 915 = 3 * 5 * 61
    • 922 = 2 * 461
    • 958 = 2 * 479
    • 985 = 5 * 197
    • 1086 = 2 * 3 * 181
    • 1111 = 11 * 101
    • 1165 = 5 * 233
    • 1219 = 23 * 53
    • 1255 = 5 * 251
    • 1282 = 2 * 641
    • 1284 = 2^2 * 3 * 107
    • 1376 = 2^5 * 43
    • 1449 = 3^2 * 7 * 23
    • 1507 = 11 * 137
    • 1581 = 3 * 17 * 31
    • 1626 = 2 * 3 * 271
    • 1633 = 23 * 71
    • 1642 = 2 * 821
    • 1678 = 2 * 839
    • 1736 = 2^3 * 7 * 31
    • 1755 = 3^3 * 5 * 13
    • 1776 = 2^4 * 3 * 37
    • 1795 = 5 * 359
    • 1822 = 2 * 911
    • 1842 = 2 * 3 * 307
    • 1858 = 2 * 929
    • 1872 = 2^4 * 3^2 * 13
    • 1881 = 3^2 * 11 * 19
    • 1894 = 2 * 947
    • 1903 = 11 * 173
    • 1908 = 2^2 * 3^2 * 53
    • 1921 = 17 * 113
    • 1935 = 3^2 * 5 * 43
    • 1952 = 2^5 * 61
    • 1962 = 2 * 3^2 * 109
    • 1966 = 2 * 983
    • 2038 = 2 * 1019
    • 2067 = 3 * 13 * 53
    • 2079 = 3^3 * 7 * 11
    • 2155 = 5 * 431
    • 2173 = 41 * 53
    • 2182 = 2 * 1091
    • 2218 = 2 * 1109
    • 2227 = 17 * 131
    • 2265 = 3 * 5 * 151
    • 2286 = 2 * 3^2 * 127
    • 2326 = 2 * 1163
    • 2362 = 2 * 1181
    • 2366 = 2 * 7 * 13^2
    • 2373 = 3 * 7 * 113
    • 2409 = 3 * 11 * 73
    • 2434 = 2 * 1217
    • 2461 = 23 * 107
    • 2475 = 3^2 * 5^2 * 11
    • 2484 = 2^2 * 3^3 * 23
    • 2515 = 5 * 503
    • 2556 = 2^2 * 3^2 * 71
    • 2576 = 2^4 * 7 * 23
    • 2578 = 2 * 1289
    • 2583 = 3^2 * 7 * 41
    • 2605 = 5 * 521
    • 2614 = 2 * 1307
    • 2679 = 3 * 19 * 47
    • 2688 = 2^7 * 3 * 7
    • 2722 = 2 * 1361
    • 2745 = 3^2 * 5 * 61
    • 2751 = 3 * 7 * 131
    • 2785 = 5 * 557
    • 2839 = 17 * 167
    • 2888 = 2^3 * 19^2
    • 2902 = 2 * 1451
    • 2911 = 41 * 71
    • 2934 = 2 * 3^2 * 163
    • 2944 = 2^7 * 23
    • 2958 = 2 * 3 * 17 * 29
    • 2964 = 2^2 * 3 * 13 * 19
    • 2965 = 5 * 593
    • 2970 = 2 * 3^3 * 5 * 11
    • 2974 = 2 * 1487
    • 3046 = 2 * 1523
    • 3091 = 11 * 281
    • 3138 = 2 * 3 * 523
    • 3168 = 2^5 * 3^2 * 11
    • 3174 = 2 * 3 * 23^2
    • 3226 = 2 * 1613
    • 3246 = 2 * 3 * 541
    • 3258 = 2 * 3^2 * 181
    • 3294 = 2 * 3^3 * 61
    • 3345 = 3 * 5 * 223
    • 3366 = 2 * 3^2 * 11 * 17
    • 3390 = 2 * 3 * 5 * 113
    • 3442 = 2 * 1721
    • 3505 = 5 * 701
    • 3564 = 2^2 * 3^4 * 11
    • 3595 = 5 * 719
    • 3615 = 3 * 5 * 241
    • 3622 = 2 * 1811
    • 3649 = 41 * 89
    • 3663 = 3^2 * 11 * 37
    • 3690 = 2 * 3^2 * 5 * 41
    • 3694 = 2 * 1847
    • 3802 = 2 * 1901
    • 3852 = 2^2 * 3^2 * 107
    • 3864 = 2^3 * 3 * 7 * 23
    • 3865 = 5 * 773
    • 3930 = 2 * 3 * 5 * 131
    • 3946 = 2 * 1973
    • 3973 = 29 * 137
    • 4054 = 2 * 2027
    • 4126 = 2 * 2063
    • 4162 = 2 * 2081
    • 4173 = 3 * 13 * 107
    • 4185 = 3^3 * 5 * 31
    • 4189 = 59 * 71
    • 4191 = 3 * 11 * 127
    • 4198 = 2 * 2099
    • 4209 = 3 * 23 * 61
    • 4279 = 11 * 389
    • 4306 = 2 * 2153
    • 4369 = 17 * 257
    • 4414 = 2 * 2207
    • 4428 = 2^2 * 3^3 * 41
    • 4464 = 2^4 * 3^2 * 31
    • 4472 = 2^3 * 13 * 43
    • 4557 = 3 * 7^2 * 31
    • 4592 = 2^4 * 7 * 41
    • 4594 = 2 * 2297
    • 4702 = 2 * 2351
    • 4743 = 3^2 * 17 * 31
    • 4765 = 5 * 953
    • 4788 = 2^2 * 3^2 * 7 * 19
    • 4794 = 2 * 3 * 17 * 47
    • 4832 = 2^5 * 151
    • 4855 = 5 * 971
    • 4880 = 2^4 * 5 * 61
    • 4918 = 2 * 2459
    • 4954 = 2 * 2477
    • 4959 = 3^2 * 19 * 29
    • 4960 = 2^5 * 5 * 31
    • 4974 = 2 * 3 * 829
    • 4981 = 17 * 293
    • 5062 = 2 * 2531
    • 5071 = 11 * 461
    • 5088 = 2^5 * 3 * 53
    • 5098 = 2 * 2549
    • 5172 = 2^2 * 3 * 431
    • 5242 = 2 * 2621
    • 5248 = 2^7 * 41
    • 5253 = 3 * 17 * 103
    • 5269 = 11 * 479
    • 5298 = 2 * 3 * 883
    • 5305 = 5 * 1061
    • 5386 = 2 * 2693
    • 5388 = 2^2 * 3 * 449
    • 5397 = 3 * 7 * 257
    • 5422 = 2 * 2711
    • 5458 = 2 * 2729
    • 5485 = 5 * 1097
    • 5526 = 2 * 3^2 * 307
    • 5539 = 29 * 191
    • 5602 = 2 * 2801
    • 5638 = 2 * 2819
    • 5642 = 2 * 7 * 13 * 31
    • 5674 = 2 * 2837
    • 5772 = 2^2 * 3 * 13 * 37
    • 5818 = 2 * 2909
    • 5854 = 2 * 2927
    • 5874 = 2 * 3 * 11 * 89
    • 5915 = 5 * 7 * 13^2
    • 5926 = 2 * 2963
    • 5935 = 5 * 1187
    • 5936 = 2^4 * 7 * 53
    • 5946 = 2 * 3 * 991
    • 5998 = 2 * 2999
    • 6036 = 2^2 * 3 * 503
    • 6054 = 2 * 3 * 1009
    • 6084 = 2^2 * 3^2 * 13^2
    • 6096 = 2^4 * 3 * 127
    • 6115 = 5 * 1223
    • 6171 = 3 * 11^2 * 17
    • 6178 = 2 * 3089
    • 6187 = 23 * 269
    • 6188 = 2^2 * 7 * 13 * 17
    • 6252 = 2^2 * 3 * 521
    • 6259 = 11 * 569
    • 6295 = 5 * 1259
    • 6315 = 3 * 5 * 421
    • 6344 = 2^3 * 13 * 61
    • 6385 = 5 * 1277
    • 6439 = 47 * 137
    • 6457 = 11 * 587
    • 6502 = 2 * 3251
    • 6531 = 3 * 7 * 311
    • 6567 = 3 * 11 * 199
    • 6583 = 29 * 227
    • 6585 = 3 * 5 * 439
    • 6603 = 3 * 31 * 71
    • 6684 = 2^2 * 3 * 557
    • 6693 = 3 * 23 * 97
    • 6702 = 2 * 3 * 1117
    • 6718 = 2 * 3359
    • 6760 = 2^3 * 5 * 13^2
    • 6816 = 2^5 * 3 * 71
    • 6835 = 5 * 1367
    • 6855 = 3 * 5 * 457
    • 6880 = 2^5 * 5 * 43
    • 6934 = 2 * 3467
    • 6981 = 3 * 13 * 179
    • 7026 = 2 * 3 * 1171
    • 7051 = 11 * 641
    • 7062 = 2 * 3 * 11 * 107
    • 7068 = 2^2 * 3 * 19 * 31
    • 7078 = 2 * 3539
    • 7089 = 3 * 17 * 139
    • 7119 = 3^2 * 7 * 113
    • 7136 = 2^5 * 223
    • 7186 = 2 * 3593
    • 7195 = 5 * 1439
    • 7227 = 3^2 * 11 * 73
    • 7249 = 11 * 659
    • 7287 = 3 * 7 * 347
    • 7339 = 41 * 179
    • 7402 = 2 * 3701
    • 7438 = 2 * 3719
    • 7447 = 11 * 677
    • 7465 = 5 * 1493
    • 7503 = 3 * 41 * 61
    • 7627 = 29 * 263
    • 7674 = 2 * 3 * 1279
    • 7683 = 3 * 13 * 197
    • 7695 = 3^4 * 5 * 19
    • 7712 = 2^5 * 241
    • 7726 = 2 * 3863
    • 7762 = 2 * 3881
    • 7764 = 2^2 * 3 * 647
    • 7782 = 2 * 3 * 1297
    • 7784 = 2^3 * 7 * 139
    • 7809 = 3 * 19 * 137
    • 7824 = 2^4 * 3 * 163
    • 7834 = 2 * 3917
    • 7915 = 5 * 1583
    • 7952 = 2^4 * 7 * 71
    • 7978 = 2 * 3989
    • 8005 = 5 * 1601
    • 8014 = 2 * 4007
    • 8023 = 71 * 113
    • 8073 = 3^3 * 13 * 23
    • 8077 = 41 * 197
    • 8095 = 5 * 1619
    • 8149 = 29 * 281
    • 8154 = 2 * 3^3 * 151
    • 8158 = 2 * 4079
    • 8185 = 5 * 1637
    • 8196 = 2^2 * 3 * 683
    • 8253 = 3^2 * 7 * 131
    • 8257 = 23 * 359
    • 8277 = 3 * 31 * 89
    • 8307 = 3^2 * 13 * 71
    • 8347 = 17 * 491
    • 8372 = 2^2 * 7 * 13 * 23
    • 8412 = 2^2 * 3 * 701
    • 8421 = 3 * 7 * 401
    • 8466 = 2 * 3 * 17 * 83
    • 8518 = 2 * 4259
    • 8545 = 5 * 1709
    • 8568 = 2^3 * 3^2 * 7 * 17
    • 8628 = 2^2 * 3 * 719
    • 8653 = 17 * 509
    • 8680 = 2^3 * 5 * 7 * 31
    • 8736 = 2^5 * 3 * 7 * 13
    • 8754 = 2 * 3 * 1459
    • 8766 = 2 * 3^2 * 487
    • 8790 = 2 * 3 * 5 * 293
    • 8792 = 2^3 * 7 * 157
    • 8851 = 53 * 167
    • 8864 = 2^5 * 277
    • 8874 = 2 * 3^2 * 17 * 29
    • 8883 = 3^3 * 7 * 47
    • 8901 = 3^2 * 23 * 43
    • 8914 = 2 * 4457
    • 9015 = 3 * 5 * 601
    • 9031 = 11 * 821
    • 9036 = 2^2 * 3^2 * 251
    • 9094 = 2 * 4547
    • 9166 = 2 * 4583
    • 9184 = 2^5 * 7 * 41
    • 9193 = 29 * 317
    • 9229 = 11 * 839
    • 9274 = 2 * 4637
    • 9276 = 2^2 * 3 * 773
    • 9285 = 3 * 5 * 619
    • 9294 = 2 * 3 * 1549
    • 9296 = 2^4 * 7 * 83
    • 9301 = 71 * 131
    • 9330 = 2 * 3 * 5 * 311
    • 9346 = 2 * 4673
    • 9355 = 5 * 1871
    • 9382 = 2 * 4691
    • 9386 = 2 * 13 * 19^2
    • 9387 = 3^2 * 7 * 149
    • 9396 = 2^2 * 3^4 * 29
    • 9414 = 2 * 3^2 * 523
    • 9427 = 11 * 857
    • 9483 = 3 * 29 * 109
    • 9522 = 2 * 3^2 * 23^2
    • 9535 = 5 * 1907
    • 9571 = 17 * 563
    • 9598 = 2 * 4799
    • 9633 = 3 * 13^2 * 19
    • 9634 = 2 * 4817
    • 9639 = 3^4 * 7 * 17
    • 9648 = 2^4 * 3^2 * 67
    • 9657 = 3^2 * 29 * 37
    • 9684 = 2^2 * 3^2 * 269
    • 9708 = 2^2 * 3 * 809
    • 9717 = 3 * 41 * 79
    • 9735 = 3 * 5 * 11 * 59
    • 9742 = 2 * 4871
    • 9760 = 2^5 * 5 * 61
    • 9778 = 2 * 4889
    • 9840 = 2^4 * 3 * 5 * 41
    • 9843 = 3 * 17 * 193
    • 9849 = 3 * 7^2 * 67
    • 9861 = 3 * 19 * 173
    • 9880 = 2^3 * 5 * 13 * 19
    • 9895 = 5 * 1979
    • 9924 = 2^2 * 3 * 827
    • 9942 = 2 * 3 * 1657
    • 9968 = 2^4 * 7 * 89
    • 9975 = 3 * 5^2 * 7 * 19
    • 9985 = 5 * 1997

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 32 = 2^5

    Number of divisors: 6

    Sum of divisors: 63

    Euler's totient: 16

    Möbius: 0

    n = a^2 + b^2

    a = 4

    b = 4

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 1 = 1

    Number of divisors: 1

    Sum of divisors: 1

    Euler's totient: 1

    Möbius: 1

    n = a^2

    a = 1

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 32 = 2^5

    Number of divisors: 6

    Sum of divisors: 63

    Euler's totient: 16

    Möbius: 0

    n = a^2 + b^2

    a = 4

    b = 4

    Time elapsed:

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • Error in expression #1: Invalid parameter

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • 2 is primeError in expression #2: Invalid parameter

    Written by Dario Alpern. Last updated on 10 November 2024.

    -2
    • Error in expression #4: Invalid parameter

    Written by Dario Alpern. Last updated on 10 November 2024.

    +2
    • Number too high (more than 100000 digits)

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • Intermediate number too high (more than 200000 digits)

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • Parenthesis mismatch

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • Parenthesis mismatch

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 20 = 2^2 * 5

    Number of divisors: 6

    Sum of divisors: 42

    Euler's totient: 8

    Möbius: 0

    n = a^2 + b^2

    a = 4

    b = 2

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 10 = 2 * 5

    Number of divisors: 4

    Sum of divisors: 18

    Euler's totient: 4

    Möbius: 1

    n = a^2 + b^2

    a = 3

    b = 1

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 10 = 2 * 5

    Number of divisors: 4

    Sum of divisors: 18

    Euler's totient: 4

    Möbius: 1

    n = a^2 + b^2

    a = 3

    b = 1

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 20 = 2^2 * 5

    Number of divisors: 6

    Sum of divisors: 42

    Euler's totient: 8

    Möbius: 0

    n = a^2 + b^2

    a = 4

    b = 2

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 0 = 0

    n = a^2

    a = 0

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • Invalid parameter

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • Division by zero

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • Only integer numbers are accepted

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 99 999999 999999 999999 999999 999998 959241 (38 digits) = 16186 374132 555391 * 6178 035870 236783 087351

    Number of divisors: 4

    Sum of divisors: 100 000000 000000 006178 052056 610914 601984 (39 digits)

    Euler's totient: 99 999999 999999 993821 947943 389083 316500 (38 digits)

    Möbius: 1

    n = a^2 + b^2 + c^2

    a = 9 994590 045938 929500

    b = 328891 796216 426029

    c = 20

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • -96 = -1 * 2^5 * 3

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 187 072209 578355 573530 071658 587684 226515 959365 494067 (51 digits) = 1 049227 * 4 376587 * 8 457643 * 1722 426679 * 2796 495718 765417 035239

    Number of divisors: 32

    Sum of divisors: 187 072452 844874 541930 407707 282947 447126 535363 891200 (51 digits)

    Euler's totient: 187 071966 311970 634001 360184 458860 726827 993848 599968 (51 digits)

    Möbius: -1

    n = a^2 + b^2 + c^2

    a = 13 020554 712438 061030 309517

    b = 4 187763 670357 076795 247133

    c = 33

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 10 000000 000000 000000 000000 000000 000000 000000 000013 892731 (56 digits) = 4353 994442 871310 881841 * 2296 741562 537535 293386 702920 797291 (34 digits)

    Number of divisors: 4

    Sum of divisors: 10 000000 000000 000000 002296 741562 541889 287829 574245 571864 (56 digits)

    Euler's totient: 9 999999 999999 999999 997703 258437 458110 712170 425782 213600 (55 digits)

    Möbius: 1

    n = a^2 + b^2 + c^2 + d^2

    a = 1969 847061 174964 576144 728300

    b = 1749 675293 163153 801581 543471

    c = 1708 117772 734699 048380 927207

    d = 375 063459 354064 747330 684571

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 222019 = 7^2 * 23 * 197

    Number of divisors: 12

    Sum of divisors: 270864

    Euler's totient: 181104

    Möbius: 0

    n = a^2 + b^2 + c^2 + d^2

    a = 287

    b = 280

    c = 217

    d = 119

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 3 000000 000000 000000 000000 010190 000000 000000 000000 000000 571083 (61 digits) = 1 000000 000000 000000 000000 000057 (31 digits) * 3 000000 000000 000000 000000 010019 (31 digits)

    Number of divisors: 4

    Sum of divisors: 3 000000 000000 000000 000000 010194 000000 000000 000000 000000 581160 (61 digits)

    Euler's totient: 3 000000 000000 000000 000000 010186 000000 000000 000000 000000 561008 (61 digits)

    Möbius: 1

    n = a^2 + b^2 + c^2 + d^2

    a = 1 377351 648877 995014 227391 008657 (31 digits)

    b = 992241 436286 961796 666873 742769

    c = 314104 806220 312094 854521 147108

    d = 140347 918251 592380 016485 474347

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • F EE50B7 025C36 A0802F 236D04 753D5B 48E800 000000 0000D5(49 digits) = 2 B333E5 B66494 435DAC 1613FD * 5 E67B2F 74876A FA101E 857BB9

    Number of divisors: 4

    Sum of divisors: F EE50B7 025C36 A0802F 236D0D 0EEC70 73D3FF 3D6DCA 9B908C(49 digits)

    Euler's totient: F EE50B7 025C36 A0802F 236CFB DB8E46 1DFC00 C29235 647120(49 digits)

    Möbius: 1

    n = a^2 + b^2

    a = 3 E0A48F 188073 94B84F 05146E

    b = F24CA1 7AFF2D BBA55C 1E71A9

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • Intermediate number too high (more than 200000 digits)

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 1 = 1

    Number of divisors: 1

    Sum of divisors: 1

    Euler's totient: 1

    Möbius: 1

    n = a^2

    a = 1

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 0 = 0

    n = a^2

    a = 0

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • -1 = -1

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • Intermediate number too high (more than 200000 digits)

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • Intermediate number too high (more than 200000 digits)

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 2520 = 2^3 * 3^2 * 5 * 7

    Number of divisors: 48

    Sum of divisors: 9360

    Euler's totient: 576

    Möbius: 0

    n = a^2 + b^2 + c^2 + d^2

    a = 42

    b = 24

    c = 12

    d = 6

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 2 366569 = 349 * 6781

    Number of divisors: 4

    Sum of divisors: 2 373700

    Euler's totient: 2 359440

    Möbius: 1

    n = a^2 + b^2

    a = 1180

    b = 987

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 58 = 2 * 29

    Number of divisors: 4

    Sum of divisors: 90

    Euler's totient: 28

    Möbius: 1

    n = a^2 + b^2

    a = 7

    b = 3

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 6057 = 3^2 * 673

    Number of divisors: 6

    Sum of divisors: 8762

    Euler's totient: 4032

    Möbius: 0

    n = a^2 + b^2

    a = 69

    b = 36

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 25852 016738 380658 380266 = 2 * 3 * 23 * 71 * 2 638499 360928 828167

    Number of divisors: 32

    Sum of divisors: 54711 922748 220180 891648

    Euler's totient: 8126 578031 660790 751280

    Möbius: -1

    n = a^2 + b^2 + c^2

    a = 140196 533164

    b = 78720 701389

    c = 7

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 1464 = 2^3 * 3 * 61

    Number of divisors: 16

    Sum of divisors: 3720

    Euler's totient: 480

    Möbius: 0

    n = a^2 + b^2 + c^2 + d^2

    a = 24

    b = 22

    c = 20

    d = 2

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • -49 = -1 * 7^2

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • -22 = -1 * 2 * 11

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 2 is prime
    • 4 = 2^2
    • 6 = 2 * 3
    • 10 = 2 * 5
    • 12 = 2^2 * 3
    • 16 = 2^4
    • 18 = 2 * 3^2
    • 22 = 2 * 11
    • 28 = 2^2 * 7
    • 30 = 2 * 3 * 5

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 0 = 0

    n = a^2

    a = 0

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 200 = 2^3 * 5^2

    Number of divisors: 12

    Sum of divisors: 465

    Euler's totient: 80

    Möbius: 0

    n = a^2 + b^2

    a = 10

    b = 10

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 288377 = 283 * 1019

    Number of divisors: 4

    Sum of divisors: 289680

    Euler's totient: 287076

    Möbius: 1

    n = a^2 + b^2 + c^2

    a = 537

    b = 2

    c = 2

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (301 digits) = 2^300 * 5^300

    Number of divisors: 90601

    Sum of divisors: 2 499999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 386363 316837 784180 863028 505626 715544 628098 060937 568804 361056 360351 611843 159785 517942 487764 495333 505965 352053 554358 515184 835492 185529 667094 014837 802781 690487 942627 620109 549133 614562 048949 759686 738543 248165 625531 (301 digits)

    Euler's totient: 400000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (300 digits)

    Möbius: 0

    n = a^2

    a = 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (151 digits)

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 760 988023 132059 809720 425867 265032 780727 896356 372077 865117 010037 035791 631439 306199 613044 145649 378522 557935 351570 949952 010001 833769 302566 531786 879537 190794 573524 (159 digits) = 2^2 * 7 * 19 * 37^2 * 223 * 18427 * 94573 * 107671 * 25 709599 * 56 737873 * 78 539161 * 93 463940 382121 * 64326 272436 179833 * 713529 181090 045029 900916 938579 427981 (36 digits) * 50808 749612 587553 507324 600395 708176 734541 295021 (47 digits)

    Number of divisors: 73728

    Sum of divisors: 1654 056118 300251 873020 182831 526696 087725 662856 708670 311642 259222 257773 255874 211007 633895 220248 717423 036271 057033 463898 778899 200435 738818 675457 525390 879227 904000 (160 digits)

    Euler's totient: 299 251684 520440 022055 951023 032870 030502 893471 258164 240369 726264 866690 283165 833205 164545 350014 624538 277879 208847 496952 704494 894865 413851 429673 157051 967078 400000 (159 digits)

    Möbius: 0

    n = a^2 + b^2 + c^2 + d^2

    a = 24 714523 115929 792915 156023 280015 852035 752404 292072 860398 232390 796002 154854 786956 (80 digits)

    b = 10 785733 188310 408515 394020 374087 784156 754335 141485 277290 188716 473951 772992 006400 (80 digits)

    c = 5 016322 769580 237549 875914 050942 449177 096729 937495 766725 536357 420056 481153 269712 (79 digits)

    d = 2 947004 537865 860545 741032 233056 201190 989847 273754 756807 581067 644561 292563 489262 (79 digits)

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 5 575186 299632 655785 383929 568162 090376 495105 (43 digits) = 5 * 569 * 148 587949 * 4999 465853 * 5585 522857 * 472287 102421

    Number of divisors: 64

    Sum of divisors: 6 701981 469361 613977 758572 073726 130721 256000 (43 digits)

    Euler's totient: 4 452310 433282 656544 371578 894225 927474 954240 (43 digits)

    Möbius: 1

    n = a^2 + b^2

    a = 1943 632214 603129 942527

    b = 1340 701351 528217 270624

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 240 741243 048404 481631 997242 823115 914817 262706 026923 524404 992349 445819 854736 328124 (81 digits) = 2^2 * 11 * 71 * 461 * 691 * 8971 * 689081 * 2 855911 * 29 028071 * 824 480311 * 17223 586571 * 332207 361361 * 100062 970166 640331

    Number of divisors: 12288

    Sum of divisors: 467 810062 595232 159948 990066 724674 037317 340625 178212 148940 996111 081621 538211 889152 (81 digits)

    Euler's totient: 107 484600 672650 982052 459419 999031 332996 734612 729729 258434 478548 870272 000000 000000 (81 digits)

    Möbius: 0

    n = a^2 + b^2 + c^2 + d^2

    a = 13732 323171 210662 760031 938582 936074 307070 (41 digits)

    b = 4986 051126 223627 073007 245354 439855 152710 (40 digits)

    c = 4481 849826 157673 633367 060152 385244 945282 (40 digits)

    d = 2686 421350 475338 019119 679319 340810 110860 (40 digits)

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 11502 293424 567203 005419 002873 895813 644392 861937 196664 479488 352698 632452 958936 015243 142950 266727 781146 408375 872985 100271 086331 587290 272008 (137 digits) = 2^3 * 113 * 911 * 1289 * 49 613117 * 8 884810 040009 * 3 421093 417510 114543 * 51050 702647 066486 876606 286380 153477 (35 digits) * 140745 137728 109762 598398 979050 914020 691536 518797 429361 (54 digits)

    Number of divisors: 1024

    Sum of divisors: 21798 438530 769422 194363 915675 792587 657287 319570 557545 608265 281836 436223 815123 803772 548051 567683 609354 077460 535172 101030 405588 408272 896000 (137 digits)

    Euler's totient: 5689 576983 649742 055545 749563 361891 191162 811832 466053 606082 015413 058651 522464 429617 862716 265666 333226 650053 978077 080411 105205 692556 902400 (136 digits)

    Möbius: 0

    n = a^2 + b^2 + c^2 + d^2

    a = 101 410960 867233 895720 784798 023554 647452 217601 146262 825117 196044 065992 (69 digits)

    b = 27 784261 166480 689350 416804 012946 528749 754288 881207 047815 364719 359458 (68 digits)

    c = 19 133896 317735 826265 823003 225838 930032 705236 857811 665261 831555 343934 (68 digits)

    d = 8 946467 665312 771153 663473 306845 447085 355738 333289 857644 506990 433768 (67 digits)

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 2 348542 582773 833227 889480 596789 337027 375682 548908 319870 707290 971532 209025 114608 443463 698998 384768 703031 934975 (109 digits) = 3^3 * 5^2 * 7 * 11 * 13 * 17 * 19 * 31 * 37 * 41 * 61 * 73 * 109 * 151 * 181 * 241 * 331 * 433 * 631 * 1321 * 23311 * 38737 * 54001 * 61681 * 18 837001 * 29 247661 * 4562 284561 * 168692 292721 * 469775 495062 434961

    Number of divisors: 1610 612736

    Sum of divisors: 7 467668 527167 657567 756740 428071 844363 848524 895093 641781 445583 682511 711467 153731 004238 100055 643046 824378 368000 (109 digits)

    Euler's totient: 692423 677913 627100 517607 660407 338640 847941 292267 711341 018710 312755 633809 285592 383488 000000 000000 000000 000000 (108 digits)

    Möbius: 0

    n = a^2 + b^2 + c^2 + d^2

    a = 1 036676 869232 664434 724814 586415 293483 485046 349741 063075 (55 digits)

    b = 729711 211883 879079 469061 615332 556684 735507 710018 849155 (54 digits)

    c = 617646 578484 717214 664389 408403 124786 748302 475286 151510 (54 digits)

    d = 599898 243795 459848 484566 829945 804730 604368 372683 780765 (54 digits)

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (301 digits) = 2^300 * 5^300

    Number of divisors: 90601

    Sum of divisors: 2 499999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 386363 316837 784180 863028 505626 715544 628098 060937 568804 361056 360351 611843 159785 517942 487764 495333 505965 352053 554358 515184 835492 185529 667094 014837 802781 690487 942627 620109 549133 614562 048949 759686 738543 248165 625531 (301 digits)

    Euler's totient: 400000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (300 digits)

    Möbius: 0

    n = a^2

    a = 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (151 digits)

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 100 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (1101 digits) = 2^1100 * 5^1100

    Number of divisors: 1 212201

    Sum of divisors: 249 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999990 797310 213721 421655 703917 278568 793602 938581 209362 954563 915996 206911 736963 871703 448420 393534 719273 589927 767129 699779 344146 574722 410069 037295 900754 704870 621149 869622 416974 764232 936393 149795 960968 291597 093715 202086 964192 800104 852595 300134 562192 252401 313312 917665 764098 700407 928337 785628 333852 234731 268944 465216 490634 524996 859357 780374 745047 551965 239335 887113 074210 850335 666128 769714 216135 133740 966678 463893 588358 037543 308823 581569 825582 140556 385973 386307 657739 492836 008275 043330 799537 038848 544607 004209 380332 534956 804358 266060 018273 828637 325093 842685 087236 661336 747443 608744 087073 914735 261231 286846 884062 284894 310244 151856 582470 061364 466882 749805 897882 053351 422961 026790 156477 860732 237238 938316 894071 955066 555473 530746 757077 834197 223594 351341 709189 623792 800723 551447 741531 (1101 digits)

    Euler's totient: 40 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (1100 digits)

    Möbius: 0

    n = a^2

    a = 10000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (551 digits)

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 72667 006980 385333 565928 292938 889925 763077 487582 539982 424675 125363 472831 753169 017201 333796 341341 273008 218264 573022 195345 424489 059723 700566 662314 773302 254295 889312 457647 497977 853863 042157 354564 496698 482701 130753 323286 758612 205861 967796 343191 858131 002928 068599 375361 489711 955573 167082 152350 251926 682548 261810 352243 752628 728062 075698 309094 353839 917855 662220 230519 561659 303923 717372 165426 504245 330561 336531 394521 206972 376656 319044 759781 782531 367753 214675 926474 551313 397582 602429 279165 551217 508178 286951 973368 325401 600813 252492 715973 200800 085498 597530 107124 099855 140705 569768 373523 754687 692838 260083 916787 700273 811013 835835 350947 288075 424543 614544 277796 512520 484804 771653 681113 155782 672127 396480 017746 200430 207651 892985 299102 442574 824992 927392 648471 146556 033357 439172 318145 703266 692485 307896 079011 622345 086436 456869 015474 329351 181816 729993 722588 866629 779574 214090 371315 053902 641539 997756 304014 429647 932479 992980 866666 465626 257172 992838 769741 655146 789249 244810 499818 268084 117872 212841 107868 805243 478158 662470 334981 539983 119942 416064 547375 253939 977280 201195 151472 147419 623969 226556 803610 308846 378376 139404 546472 122298 686124 711434 159741 642296 163820 529985 809649 461390 355131 684403 486979 489995 312716 419307 313769 444520 153150 901222 847313 142181 447272 204666 960213 009957 801323 583455 353791 501067 898151 425856 699965 549831 846422 290686 426650 337714 906093 918443 466250 206713 570252 092365 443368 242871 109759 177250 455625 959783 802938 477021 558459 905557 684556 091956 431875 389521 015710 091193 395756 745102 054771 899768 946578 696678 319163 726191 640098 936923 770968 452867 055760 965880 438159 358981 762243 760240 056374 944920 023004 676382 847503 738465 360984 643768 523013 397881 071295 905031 098089 698891 494257 215584 727303 141345 674171 044795 594021 192835 805707 562387 078258 591908 399731 089909 898817 226093 695385 121493 869352 132605 141346 854886 893911 871095 598267 604544 030562 133807 157172 417964 011985 562131 080936 981684 296736 381769 366072 270640 297352 901151 754371 601989 663182 721220 425035 067809 123253 526722 846238 066538 699819 199993 129908 128545 850504 976380 092090 366537 214438 631213 813373 906049 371742 824529 230499 443014 992805 933917 454081 422586 104799 792284 967724 057489 205409 843465 045834 260178 573011 183127 327538 397501 878888 546219 083343 944398 116507 485435 085429 845211 710280 363162 234538 899043 203092 653075 039565 370510 665758 475105 299029 361041 189828 219987 863157 060400 820517 970893 633335 291193 528215 169482 346288 247160 044937 909061 609445 812547 327627 647076 151252 345098 720570 858181 533375 284628 893303 872716 468641 311339 022418 407061 871931 852329 760330 435973 189460 161072 929488 417217 252005 363438 340091 968812 490161 250110 104273 203535 684284 835799 701677 023640 004166 082484 019140 275988 017398 529483 647698 753555 748240 184583 306455 920603 545774 440735 038345 369423 921431 350896 074944 308042 760584 539262 681855 392087 390724 041852 549385 686481 318618 973112 007766 253789 425420 655758 429705 508341 095687 510171 573583 792528 650180 002064 594539 819897 585083 735219 940358 617217 391229 952636 259428 327330 484376 702194 865484 602525 342972 960210 004667 060691 662235 982445 149616 208071 968867 749197 215627 429641 471420 150495 260516 072305 056813 211732 961496 424809 933889 035896 932990 753215 016498 409854 814533 812373 432577 609825 761615 342205 365344 282149 928170 065746 906724 293573 507532 983037 454610 368909 509392 901681 100623 054688 288943 329916 933337 251214 169076 436972 028053 989725 976654 001452 237515 761147 995317 804214 675419 838161 347610 246313 780114 378631 952476 808891 936025 865836 655455 245176 055145 923550 321956 060168 609702 454633 005921 582348 138029 577382 174729 752847 794054 373301 532666 400465 680303 540372 215400 256010 528333 292448 128094 134664 930890 924872 017774 428127 050168 674731 593324 223340 589605 024579 189066 169459 083809 033204 617112 049263 953327 633669 044738 133740 245226 244288 450178 793235 088295 426458 643206 238222 372939 117433 226524 231266 685737 140841 159913 134145 715848 353199 617918 334947 145941 709176 032249 487137 098663 073269 417569 658539 681463 645514 569129 273587 717472 733061 817719 669299 027194 734676 931896 392181 295757 708261 545098 400084 416898 152017 247122 147581 843902 183885 621394 616372 617207 576706 685736 120437 364888 331020 537499 230809 840143 915772 273490 629957 690368 526562 258014 594354 296656 601246 895726 995607 766236 986440 951193 484514 567482 662216 554330 070762 690313 564588 855568 728895 145739 676168 817855 636066 870447 627712 646964 790923 741693 654876 684386 931429 513762 577956 105006 801005 467054 418801 851498 517282 817900 402502 915589 363861 582011 676154 289009 794066 887723 117115 980380 434896 299229 861444 134421 098205 007807 576792 027318 819809 355202 852691 230712 014238 078905 910684 962970 481268 547522 450557 400588 519952 892789 138066 962931 778381 111422 556383 137003 380147 242873 161370 515783 301720 537789 385638 268948 173216 152438 067616 745045 916656 724357 704730 062475 270057 373778 749899 711993 938090 360904 126820 860616 018080 129476 639839 559952 692384 776958 201434 666884 710165 884307 361446 677426 811065 836255 198248 545160 014939 310949 537604 563204 192423 353715 094257 764123 190871 723396 588028 848800 493596 374364 075303 586569 209086 680994 340241 660101 812114 547411 524662 210662 753756 096854 448355 124441 868819 828187 523840 152138 615090 518792 914332 430411 514833 977378 883538 887767 049222 510374 764258 633618 891709 429150 241456 495698 346529 569608 716723 436882 425197 455318 765520 352398 548292 843536 008507 409848 196271 735883 123913 444220 576017 746589 414688 721356 342253 294728 096326 773984 673851 322601 487737 753850 716992 740352 440010 510540 270283 407122 881629 659593 963025 886466 793792 600311 042960 749537 677292 476283 600788 855457 294423 101548 907877 796399 131120 959608 339956 294153 712985 218801 634039 742900 316979 339179 970114 104869 911463 975202 995508 133903 036795 677818 914859 359268 144999 973601 952415 586930 813073 719617 457591 694981 795995 759496 306242 940713 367801 646897 555371 351411 476462 270009 326622 066518 285357 267790 339868 171964 044950 664647 649037 515426 117953 018012 856695 121099 093216 049003 879505 541299 123881 550707 994500 164742 793715 658148 396159 118559 760021 635850 063183 275292 741249 902156 044700 304436 766879 495699 845588 286473 735777 015548 404155 863781 804523 782025 818134 457109 557476 186243 678247 808775 747249 041753 582160 390544 650532 591283 079349 946410 495542 907786 382217 287955 070477 987821 608727 103714 328812 145407 258012 573085 013316 820531 751885 520741 900582 543285 448000 754969 501439 110457 830670 952415 372102 643552 707246 533416 118870 072963 682298 649507 994597 540395 786018 682999 460641 202886 958475 968729 090445 301749 293476 680257 765773 219904 477800 699786 167614 512817 163186 014031 427706 283867 733171 269055 024526 655925 577784 669336 876094 995846 815207 773210 052934 589015 582401 470556 692392 567533 759431 832968 435914 842141 160150 334552 139251 502180 210696 334270 561328 604437 213257 215215 095288 304149 853814 574916 049871 318291 189487 533805 523439 137287 712978 043460 970393 380549 078361 466119 787361 307658 174479 962781 112900 305763 871129 825672 162161 853176 551065 321785 524668 764130 015030 693038 448391 950724 617914 214696 900346 866732 059139 717318 703950 339308 214494 798788 599721 287411 276356 748034 688558 833595 820402 418728 314062 521055 828894 956029 321747 220863 408029 624332 825356 702794 098612 305755 777531 276879 842844 364290 745370 043377 597874 414606 439191 688394 923354 137086 243390 065656 833218 530707 478981 909231 968903 009197 119964 486093 330206 023012 916454 037129 598199 933124 526933 023957 364503 445110 260366 838555 117115 539808 231702 429131 242858 752314 216200 988277 335663 829338 733278 079370 269611 751967 888091 761155 737556 744886 955977 396893 843522 161519 366416 860913 094906 024158 486824 374322 893510 598575 617055 043472 060698 491333 053841 454730 221887 731864 662674 961002 546941 827142 754568 891941 355957 106464 872056 873256 975717 174742 298010 919640 590862 298578 726541 372822 217607 784334 889204 309198 487336 507522 687243 761613 513936 317708 298192 207805 608228 972917 232813 239813 118215 209217 144405 230129 822124 041978 800259 643193 749882 383969 602355 049701 172179 516277 331753 713125 306285 357673 093208 000303 005592 821769 139524 034678 389378 457397 691754 646002 364431 362586 687528 560712 303694 063451 431138 459775 186178 369298 856249 173802 811311 485895 185312 455129 879410 052189 303362 032947 385626 422314 608975 113061 304564 489268 665998 226060 183971 931612 929265 518177 754497 076448 747233 959407 750417 109200 895080 724661 446670 635586 257041 402121 540023 476449 610503 383969 984054 427875 801929 244658 184835 871230 001028 517535 946008 526549 164317 584207 704865 875560 634004 691571 206448 320532 619877 695150 551683 183006 172452 903438 045494 527190 507439 580126 352030 735844 155765 043339 618071 120285 121377 796510 020916 433074 445216 597279 329890 912276 441443 799507 118738 574111 978649 379635 234374 408455 178108 725705 274362 020249 147675 442075 485469 117295 372055 608032 048242 814838 406583 368693 060128 975103 013919 891641 047149 628798 390183 213306 753103 576986 771196 263823 106944 155752 256916 740559 444466 490374 123276 512492 854703 733903 273564 208731 887920 114018 066226 339246 919760 578052 516597 922367 565013 925777 189507 880583 457133 184979 160194 294594 247382 751828 173058 446684 356504 430220 685806 506813 591257 553284 173835 984683 889699 530593 629450 496348 957981 680332 101862 447324 462206 805969 430489 668714 248252 702645 937234 282142 409762 125535 526913 656797 093087 631185 625884 462587 093047 357885 293901 085311 670592 551576 240474 072534 456111 363386 969604 128065 569663 318761 792310 875059 227524 330746 670063 556497 334099 128172 988994 933629 842466 189730 556254 538738 945519 419881 927253 669572 024503 265792 751318 493420 987619 904297 500633 894449 493246 393391 210819 085708 528007 615723 299915 904695 101122 456868 028403 652532 716561 049888 846117 549339 341555 660136 372963 286339 229989 726760 272560 379949 081429 648206 431892 048558 113239 021198 368427 686218 330263 999723 139638 620357 171255 359845 517292 073278 291112 565779 480119 521044 994524 841182 800402 175905 247114 567915 460464 170006 666658 765481 732233 681300 698753 263584 346432 871761 516368 338472 261082 564209 098896 612440 632135 432706 457825 301056 888948 497925 998033 207975 990523 678974 341319 573972 540570 997030 817516 319768 553780 326953 433510 311588 758371 854767 740782 594431 386836 985161 795423 600040 502839 080676 939367 441999 844982 446552 863667 536163 233981 992159 111158 196285 164258 866633 779787 281008 075540 119649 494617 709654 481862 471273 066137 847575 486980 925996 811255 930180 930010 853245 881908 892595 781120 013300 437657 000674 684778 213905 290737 232217 497961 092718 314762 213921 585277 479600 184543 917907 292328 635990 501162 242590 160470 068047 631003 197517 875510 905351 833499 896934 198185 665776 823762 488152 153967 319729 301518 135902 995941 924250 010714 721267 415779 602270 298991 096967 821942 238912 374824 642230 683124 970031 501346 743718 414751 473636 517574 151318 064057 704220 316442 344758 678640 475183 594180 167969 307164 613460 128340 991278 448090 097496 647516 223021 297185 639682 448365 694175 433434 049976 603228 915801 286835 975489 749676 998009 572962 099956 919248 793671 298726 621705 887246 250054 177111 998668 760807 815168 566427 025121 931684 402718 873083 528109 028953 489309 957449 617243 363311 650524 840654 467625 795216 254324 665086 034880 665233 217749 247330 644695 277436 653011 681639 792871 416867 950284 359429 845863 987672 563038 132010 941513 483226 051077 879134 145205 161705 100943 026989 176883 182391 548980 484730 125057 439695 114591 857541 089369 783684 938870 104495 401684 854021 112876 777230 562509 342864 363494 584904 981813 312149 253368 870329 431026 130347 196211 984626 030858 068624 646906 536659 043114 872661 570046 051810 867319 282737 590154 042422 191751 288638 842089 689041 494469 298760 884625 441305 812519 123480 105062 344316 035920 980523 628854 869129 924383 138191 662592 219285 376607 124601 336730 653597 118284 225899 853725 255481 595348 750598 803520 087807 191620 455428 922670 227431 985348 785954 713525 673112 921533 724246 979636 131282 469461 142633 001432 055339 398001 181681 834010 899626 426174 839651 882500 847136 801295 590797 514034 829328 874021 723662 769493 445687 400238 773447 929017 154670 883043 836518 936809 991734 602529 532528 048525 111767 917693 468953 990944 767629 469068 053700 015406 309941 604025 508277 702838 884490 476948 336639 125207 885053 779301 398022 304239 221207 903652 468714 766549 590158 276235 003912 373418 181403 334043 917765 518060 358866 696573 368193 664905 784347 386135 275456 585566 214728 748325 213604 430025 430019 596437 057957 884808 219002 038396 666642 304440 922779 647637 319653 926364 153901 714254 134064 311946 025605 013711 849115 442518 571909 023767 381967 241447 140998 209642 755788 074016 279898 473415 869315 734629 409508 553655 980716 149071 600048 456271 006777 381951 096756 992042 393438 106940 415391 904709 301916 245847 587839 475809 960214 132572 248856 233006 097165 727367 362989 095835 947002 604414 026081 167550 785978 242318 789103 914716 113441 895047 353736 041051 765182 418674 136512 929571 296397 572875 010458 398980 656546 017603 357356 007330 688801 115510 207765 493790 903033 076192 238263 067884 321916 464469 934881 443125 121387 635306 754183 311888 438781 504587 843009 963096 608523 859162 205053 826687 779659 580034 508426 842036 376918 207188 696804 603958 589639 382904 439778 328206 222059 996858 122988 048812 195926 689001 784298 361650 360441 014257 382643 949596 198072 107938 699701 166478 225167 178448 214688 050221 792561 944540 630542 238302 892932 112759 554656 701872 149660 638976 787315 710146 476875 858739 836824 586516 455323 069167 512130 146907 045748 944124 938494 594016 700006 402693 136697 869877 365906 201915 181548 435544 076480 007054 447946 301905 561053 706260 049924 711082 755321 330068 538628 563062 939965 286953 595102 458983 024756 823297 370126 693220 800173 359328 136081 039738 466961 344914 303826 414755 387916 278783 817611 630474 419108 977643 328573 626159 501440 807347 643863 249121 240555 154440 237534 576778 056116 553320 664367 209506 765962 662577 721088 283643 378378 022561 331104 926459 253969 951567 352407 399222 927997 206826 786850 260880 810056 699219 174236 915660 305554 161070 520526 826938 744721 504940 431123 782786 434368 571133 625602 475096 650916 089085 899348 377852 820908 984501 111965 397883 571431 031126 916809 704370 181005 381772 806247 411776 932860 588796 923251 842857 910306 921145 857466 625279 348487 027271 688155 619484 681886 146453 378997 044356 692014 150986 387239 446843 396401 533907 115240 908279 155565 388894 243001 209741 674939 907800 023155 003650 371637 852468 070640 121844 464150 398127 816415 642428 529641 616157 079911 327351 667319 920798 983988 084846 393337 357752 574628 802434 224727 758269 986853 984180 773968 903358 254810 420980 556974 339465 449874 471026 378372 974912 346191 478089 239175 919518 543137 848875 871101 261622 633422 571822 114566 694346 442657 149354 800179 565240 761559 962271 136702 965469 491515 874899 522297 657891 143495 104731 722176 570724 103220 979589 268425 227689 207403 572308 900572 809622 564998 336323 023436 047000 880052 069695 573757 097833 177053 707025 270657 249827 655583 459354 043921 708171 492432 335598 435531 545350 780546 024811 432828 991023 996689 182051 406513 888589 724380 428527 794771 438618 705716 484147 839752 552951 690725 268707 351674 095132 881619 031286 979741 812461 287453 178684 601807 746540 209315 962201 024674 313126 683431 350608 031861 023440 730673 362366 115916 713010 992089 229102 412571 253061 649096 737721 586776 335305 338883 859126 994500 120936 354699 940292 175478 144056 137297 029522 686213 534992 265686 150993 521986 299985 144829 921054 663374 841026 145118 876295 923578 037463 441574 227155 895023 462499 978941 980561 374458 524844 136724 419622 039863 810103 654973 986988 187152 824868 383131 671788 518164 002278 896492 459553 308146 528483 616336 378678 692970 570167 172861 088980 200952 760384 290412 012287 742617 357222 296347 339138 622469 670893 998540 310153 034308 553958 762449 581985 316957 542724 952574 639374 424602 625181 679824 816426 643923 185446 995091 045877 792453 865627 068152 805688 546467 691966 451541 510466 243306 513790 499606 092105 355479 169575 270618 337009 044512 682441 726991 935158 313313 858388 955991 332484 011842 036162 098379 988204 164111 074726 196178 482191 203732 668811 488516 945453 688307 581828 617797 970368 526435 840037 518309 852073 944855 992553 374454 440360 770617 680256 070109 764852 950476 467183 437317 000674 262207 767228 652860 899733 749484 405175 852335 416277 743404 034706 355925 659636 937721 434176 990891 700161 315377 701066 951601 230169 033175 709716 268999 251992 676700 691452 674091 287260 821149 451262 449892 635348 053200 663637 618329 363010 500838 159490 480832 256857 967751 399675 601646 675760 875171 412170 578770 874315 108341 583108 791321 359052 030281 554943 143210 812327 599989 232016 344846 285538 849920 065529 193667 738801 007372 428414 362671 230941 290571 022514 193303 507690 809569 408660 598642 926707 990547 879445 547511 096894 877470 326600 817530 872841 996351 732182 474190 318124 192822 688348 774301 163384 196705 457104 110632 043589 304227 885967 722117 515920 984560 667720 808197 356746 281477 415178 348755 604413 402139 978212 507696 051890 402998 403161 202295 391955 937599 758181 822973 337494 209815 781849 395632 499220 369869 191863 646179 338530 501152 608164 574910 138505 174794 056543 083867 975776 329883 795686 875831 799052 790221 608428 565911 175638 719182 755652 126675 345061 555622 401000 028041 936067 017030 806933 155626 262330 880453 176749 920680 828765 443344 145468 235439 918449 216566 121380 422061 242682 995982 206181 075966 757818 188770 033591 467549 749128 012321 820653 145147 522140 322139 464592 087169 035103 790638 148599 575229 819247 216261 387961 229590 861812 875732 324118 455429 261076 012185 802313 575474 641487 978815 846951 595020 997611 028460 774379 167231 272632 637142 510326 621912 120732 938792 323251 882671 296701 731233 238869 417021 231836 588391 101986 579921 630254 800933 163797 176427 382320 268431 294591 380796 777638 402361 212932 247755 944693 996588 027787 952172 776896 759010 442504 500432 407823 328678 173198 774602 803538 591576 550212 553073 953073 044820 150282 536965 121011 113274 325352 041348 929066 341585 869853 843337 197980 749039 890961 124845 914954 657760 055739 124754 925834 937319 495730 062525 410621 267510 524121 378675 230415 542330 294349 011522 712356 087532 841942 934504 592863 954314 357313 824648 916690 254529 870611 261533 602486 643877 233760 075999 558292 853335 994349 505115 327543 816313 024397 104409 771778 978562 030545 860681 831266 424006 853132 223296 848755 393519 797774 340591 493489 650025 263099 863487 706887 485378 780058 207928 763549 357176 841350 911101 401129 297709 369309 697301 330023 325164 662122 973196 581026 879226 617086 992104 808845 378455 926044 817983 957668 675221 088335 828097 850417 540001 598598 694972 288227 133358 246005 280860 225168 159832 940619 193621 230333 812689 850773 310686 950518 656965 605478 715904 147736 556052 142093 055775 350110 665923 917871 176288 628259 762052 088439 907223 067333 290178 084057 465544 739801 296758 575647 447412 667482 689063 218553 747259 004935 571896 517900 708759 585860 190655 882383 218278 593217 285035 684318 034433 895727 385431 042531 027445 919277 380151 519464 303762 289127 482417 847822 173915 624529 256222 826397 869018 893717 630229 204796 895552 671545 928293 462830 359846 742018 971496 873191 674351 129937 734552 205018 628837 529628 152803 870412 851816 937013 048720 713795 668875 243800 418934 488111 048217 220719 331066 670170 860954 314616 065911 908003 495817 963193 464644 891664 294883 518101 530020 946894 495987 200663 172436 250769 568051 773385 117434 052640 210919 170887 536445 512020 818993 433221 678888 162213 280811 911496 984648 916345 779214 711689 862957 940233 429652 425380 143293 755916 547425 204573 055955 396990 854657 461823 839439 835299 473025 147348 837129 480033 142333 266515 838367 807716 233483 095298 261806 446464 412483 080083 326023 849113 954065 167543 637322 491451 527864 101065 545994 357619 070728 119861 416314 164573 174281 581167 704095 247010 886445 886078 057232 596805 729868 977334 891759 690589 306295 059750 519658 122121 464642 019217 828117 827962 325873 540944 613093 002089 868531 351310 959249 050408 892598 380431 565725 092368 096602 337753 085081 204160 208596 376278 236336 592834 671832 519929 587769 135165 297019 946626 015539 871031 944856 505649 266481 164552 602529 770936 129191 139551 326425 955301 110014 992770 993022 528507 779131 002259 247202 894809 089295 652877 901767 493666 472711 203514 232840 010801 199176 175422 930269 808308 959500 266807 818781 823664 949587 898255 087235 131346 003231 394452 853570 190943 908669 468165 890723 534364 240554 776380 036806 224736 422886 348239 844890 457281 124152 653493 661615 093678 724741 966305 668397 451359 234414 732182 402061 166991 128403 879532 406227 886719 038626 158522 289165 468116 945969 871134 641678 498413 399817 391318 653563 171120 278650 564117 928859 777481 463026 309470 919896 401801 464589 221587 888182 237819 130384 338421 219002 687306 332161 456507 765072 119240 583459 227361 133819 861893 039142 771763 333019 202597 346829 216151 244162 171789 631327 384141 918189 723426 514399 762125 580548 154380 696788 269569 430030 761477 319939 368529 149270 721084 328044 382225 945443 775062 951057 592295 942263 044094 988460 925097 171383 015818 119048 429117 600389 200291 256005 343920 024090 240155 173505 989921 460661 581408 934506 702767 236144 557419 826663 184506 881486 588681 969057 751283 062269 000189 367026 543065 861908 204771 762907 212725 220351 471484 560090 190663 385374 400389 401826 375538 326210 397402 172014 960067 218009 328367 879855 835866 992421 677960 503917 990469 621177 596154 331689 868463 514846 490647 826984 026032 075611 650454 566432 726919 442397 754729 376265 336610 677825 469789 771829 790798 464941 922114 214906 051371 298137 691037 121009 918938 125493 490293 792074 939405 418566 447814 339601 741526 695813 813384 375093 166562 387381 247933 467806 730094 180217 570273 057688 954236 901300 290419 249267 401295 629846 776886 445640 272867 128575 640446 241917 613297 917119 896619 253937 313321 912573 794606 698228 444278 784866 850257 817202 914424 220558 915177 056587 366391 816585 113799 482893 406975 301962 154921 715424 267737 278799 824728 927914 971439 486139 558824 146950 283255 047847 615406 915644 942051 588826 628569 242937 095861 662034 014147 307425 804793 474472 995704 426546 062935 713482 984681 022581 345832 035659 514314 100854 737185 729680 700047 822543 837855 728393 093667 265149 511977 555682 457429 168128 857698 629946 188320 385714 910291 192478 673748 333485 376863 677827 764478 788758 526050 438270 634163 318846 299144 424384 014868 044877 408060 420400 036689 540539 039965 727351 760566 402380 017891 265749 936430 198615 919941 037865 781025 057938 425532 270964 706074 415046 269406 252443 773274 092806 237973 358356 513976 073010 666043 185621 972379 166162 755602 006370 780736 771976 953635 434373 557650 971639 753973 988755 558180 346245 631242 816533 555994 069609 471913 065808 866608 465589 795168 264429 742794 177940 543244 030363 416753 155515 004397 445596 567828 311324 269506 676626 952294 342262 583688 913620 108228 447492 903394 591978 920263 159056 016269 801242 932048 649125 867007 299787 802046 589663 211127 756579 885048 392903 407298 942709 543624 521167 496263 680708 158661 669518 761632 615605 162821 918993 229929 888542 772395 746896 235491 121986 281379 864008 732064 044529 778599 991364 954749 809175 537452 941980 675073 391953 960407 359439 537381 381002 038419 605514 422412 866893 423175 886321 326931 220342 127112 826888 232079 286748 295108 245879 982126 798330 833710 897733 491666 170019 077385 916385 932721 196639 344165 242515 378743 373877 734731 865056 773775 921438 408129 491576 694183 120721 321870 863723 572541 723391 587699 544991 475828 231262 172498 336202 621337 010086 373477 505980 484418 116507 316825 207406 314561 785522 022119 738413 284841 642767 920066 920386 148500 991298 642590 455747 265028 205102 383286 517604 030502 123099 841874 693951 987016 891548 275854 690439 432342 742990 174969 390129 567929 648020 315101 040074 014306 429258 208444 712077 199761 817184 433212 221282 043703 896366 218335 214548 069366 287417 187662 405395 233939 612660 148718 607356 213439 880785 045788 050880 381595 937463 001675 635152 410892 447462 652026 752153 298903 716656 386461 132618 544435 874448 574241 294023 890654 403435 353247 325162 087879 226821 471742 716095 265491 286191 759999 402694 163871 073392 089348 858581 569361 083499 558860 064952 002758 039328 380257 172911 386490 030023 023610 824006 001921 999431 176366 332051 973961 929200 303970 237152 500182 659393 823450 545983 318969 199558 964269 848858 996539 958454 600496 070250 738916 731169 810776 790190 781591 260036 488584 123291 678940 235443 380517 372709 812903 215238 158650 210640 673212 211543 796882 757999 853797 702343 939427 930538 439828 643362 071727 563795 301140 210195 855697 477926 295535 267613 500470 008876 183464 046406 431471 380867 708410 865174 384282 574887 337077 852637 547719 149526 286160 108484 655181 450933 515407 674090 799083 238551 095869 098217 036677 910721 636181 905898 299749 971139 706672 748686 267939 892570 206606 148580 947927 059678 631424 684775 342893 486682 445940 244795 403796 726822 580957 478930 597189 799150 247536 369182 314629 245810 322701 075911 741776 383139 871971 830447 989392 599194 086861 860770 401421 074618 051847 270169 329787 006343 784439 483172 931757 633375 090836 554033 261377 953496 901135 482225 257432 140637 204307 622916 480270 204832 055531 082652 999121 077480 794250 249619 271018 289310 958821 077308 482913 550543 064887 428528 264446 979451 214209 950489 626977 694772 730219 794389 853900 516161 674614 128208 147230 090456 831465 049399 516992 269193 170918 866226 178264 134570 389455 152310 964981 493828 669925 450036 435799 697948 685554 052583 303894 259484 463369 820632 195783 267258 727445 128318 056162 799909 443958 658320 502675 820339 818751 595810 132382 988069 178398 844153 810675 339198 931958 084464 603584 356889 366308 074601 775482 328659 175428 063691 746107 914423 423005 122126 831256 565956 086180 050646 375413 563267 973961 997345 176660 845949 892336 151321 901225 254259 201079 752039 232089 748387 475462 579456 732784 855178 785780 471917 812180 953553 953160 381229 896776 739233 967636 967597 667492 678429 569003 497897 394711 975403 163962 722442 673925 814985 001011 204846 741205 655631 040747 709984 745794 435701 856686 156065 152096 877322 339017 971840 033016 733727 570643 514390 052020 020474 966458 318690 305985 253823 197490 651777 561346 424819 174761 905606 695301 360453 355043 755393 049453 443645 327652 447002 718934 106432 972971 348651 412807 777116 178085 412827 503782 096682 981300 962011 212023 774421 656062 854049 467320 195945 136078 859290 901378 525245 431137 678319 476753 886516 695510 063276 615827 325071 462236 355302 981045 235679 296107 846271 665895 149185 186680 097003 731222 820933 512218 353943 825536 145143 572626 589420 418412 086433 337526 675515 553227 386307 696107 226965 232069 868728 838217 602958 761020 994592 003230 753964 685739 853645 860783 504373 416648 812544 517154 765733 102348 464715 312356 732480 455533 830569 919499 751409 430192 990973 417118 354676 790246 042158 627922 171921 179683 726082 636218 738448 804413 328314 103010 085530 173980 872558 457988 813238 575044 712367 146537 247966 764284 843760 716055 521616 542305 802868 530747 547723 058310 801870 984151 099063 963780 235854 355108 545503 905223 926256 663833 312604 458537 881603 505553 386701 289467 698289 380343 044033 294451 952405 309486 936694 949052 449000 866121 967403 677291 830521 791447 904933 622716 031591 276997 204183 480943 149462 137728 377237 113952 804670 235370 646035 717650 567617 911342 439772 375793 538560 289847 476910 688230 182412 882158 514578 911071 182465 695739 124120 719627 744012 052305 074142 430382 365480 709028 445727 337711 435193 896800 191347 573869 335910 490213 456250 231011 978409 171506 303498 328384 452794 237688 739676 204738 786179 374264 880323 567209 345389 520001 (25079 digits) = 3^12000 * 41^12000

    Number of divisors: 144 024001

    Sum of divisors: 111725 523232 342450 357614 750393 543260 860731 637158 155222 977938 005246 339478 820497 363947 050711 874812 207250 135581 781021 625343 590151 929325 189621 243308 963952 215979 929817 903633 028140 950314 427316 932642 913673 917152 988533 234553 391366 266512 775486 877657 481876 417001 905471 539618 290432 131693 744388 809238 512337 274417 952533 416574 769666 669395 441386 150232 569028 873703 080663 604423 826051 179782 715459 704343 250277 195738 054917 019076 355720 029109 090531 318164 490641 977920 567564 236954 622644 348783 251235 016717 034996 918824 116188 659053 800304 961250 375707 550808 796230 131454 093702 539703 303527 278834 813518 874292 772832 327738 824879 022061 089170 984433 772596 852081 455415 965235 807361 827112 138000 245387 336417 534711 477015 858395 872088 027284 783161 444264 785464 897370 005458 793426 625866 197024 387829 901287 062727 439149 018772 539696 160890 221480 369355 570396 052436 111291 781377 442043 222365 348480 382443 286095 354163 945896 895375 311367 746550 317422 185583 696187 989208 082499 690900 370403 476489 608477 794788 188470 713896 143470 587179 331228 527243 203348 288061 847668 943548 140034 117724 046911 464699 241589 452932 715068 309337 545388 426657 671852 685831 085550 849851 306753 314334 490200 888034 229916 743830 020602 775030 351874 064853 182336 046887 671014 964770 361230 965867 793301 494684 994920 520949 735469 510630 127743 956103 975181 014675 451327 502810 119535 009562 606454 432891 893407 817254 676197 032866 463874 271930 380974 894236 668119 399606 829359 692822 114262 592011 869178 673414 331254 735022 575524 913167 597017 908420 646132 104794 940004 991383 014008 411388 561654 265209 845975 995594 409211 795894 755364 746142 915714 229019 646652 115520 297863 996283 098232 485041 173670 014434 459449 781369 086676 477814 535369 689938 628036 997890 492513 889794 104133 099242 147117 453985 313312 912045 672420 468961 518228 579818 974037 981373 225807 583985 051275 377170 132822 585059 164586 550736 469431 485119 056654 624296 824128 903880 404820 789388 599389 501809 482336 441986 446989 280728 504152 592619 668427 801776 536940 609339 606232 186970 400336 116109 457180 085520 822346 338059 107143 433876 403491 416756 527002 297336 376091 027303 250972 019989 437233 747639 245151 401184 391588 938550 967199 395491 238062 380550 909054 592713 691892 893635 551439 123398 085650 187226 136129 680638 137875 738389 653317 634327 507970 175024 556004 694058 266090 286159 138791 139811 840641 314512 104130 258856 443848 387013 004556 058361 935603 557278 924754 954102 873331 757160 148603 655474 397257 642600 829360 888231 339603 980366 261546 380248 961253 010210 049630 823079 107418 180008 569092 035182 224522 936791 516227 507379 582550 480589 282877 694454 107564 500116 923454 704301 570536 016183 746968 300857 628095 222957 006508 045308 778794 997649 629088 441471 524958 246286 447891 402049 203622 922044 285320 050436 114587 935042 041328 423846 506405 351819 179428 174331 576750 239081 108336 833591 962919 283796 833675 977927 951628 202630 121456 005489 279200 702002 715226 873615 744398 729116 373352 665334 363238 214348 294680 492965 027376 671159 711940 615201 241584 258228 585672 219074 434619 546888 794385 081012 799651 753174 314104 973092 537066 242900 658301 373971 739016 052178 248871 053270 619729 179624 605682 576382 714820 926322 882175 605813 430687 823009 417534 919910 652134 164390 719027 173073 762308 481386 463043 461169 024850 313039 428300 753145 273354 392691 534473 283068 087866 305151 777345 736524 152588 075107 108483 588640 749216 833805 514561 476085 869088 601369 267831 961420 086463 442198 370691 586334 692207 946583 244250 369747 285006 023741 784955 021844 493133 009203 689105 527232 815180 482765 042801 123980 063458 001173 071950 753707 436925 857146 626933 093671 351639 768723 857762 439458 184786 857458 620007 442509 237417 523998 246604 432860 262220 475225 093646 995003 483358 598951 106474 590715 983466 693322 281177 893616 187312 437138 996944 732047 331244 796990 727328 183245 339634 337399 824735 993386 156517 725290 503189 235543 341356 388552 098809 775743 328241 236766 156284 880625 627035 350593 492149 894598 948254 218180 163929 591266 898393 893053 585781 005572 529320 854043 283366 443749 038116 843044 412549 439981 236885 377858 149583 586473 289194 475151 729513 350004 760250 354978 650036 258141 115614 327082 544743 991547 254311 904565 782790 702978 742227 476452 125588 790129 790980 908726 517450 301907 084999 607724 142894 222672 898956 649186 529319 285172 448515 808944 076405 067370 129221 270499 870491 843559 948941 609589 471697 438819 731109 524417 102180 255746 940589 366652 962459 982441 147504 593157 952282 483797 636357 105555 365436 920676 286574 752109 557453 040452 813313 227608 194708 366045 252853 994372 902244 907072 877409 963607 511447 956545 905596 168907 846678 970322 332521 868848 232718 646937 182342 952087 219352 558377 839874 292565 819834 918653 060065 911970 356672 438490 199504 149317 742002 685456 883624 386012 767219 721891 046317 837678 130567 114950 391815 767732 003404 849427 572663 299777 955507 609260 958812 180439 073142 696976 385917 485607 168016 826395 326851 180418 838507 816319 834373 528960 745508 096859 713699 971022 471055 727713 212184 827970 807190 679813 929890 094987 073197 127798 199070 333753 323427 264541 594573 234705 800335 241880 047122 568224 266543 722013 723242 367307 138183 522969 190584 914067 015926 445850 906336 957421 312339 405965 274722 254094 355030 758904 425584 765779 264350 158970 772028 798121 552406 536126 116645 219168 148893 983899 998913 714346 003829 373310 485838 317904 233913 120701 672644 105786 111757 704057 240220 033441 039941 838179 609701 200047 649189 046003 247318 496239 362136 207789 213273 401962 284206 728741 087552 601987 541812 768000 246936 613080 142641 601767 793920 303016 920489 135627 285381 225083 909085 376214 440644 448102 415001 436046 408499 787396 796545 477376 338291 876516 159955 665560 738451 430505 601625 718152 300442 695456 122978 228552 152414 178837 182286 036212 865265 590175 518631 445862 111963 664098 475397 822682 802261 333714 773907 512336 104709 237355 733989 204050 436237 488875 861874 605593 755875 919073 354646 581596 264874 772937 459413 001838 964906 125100 843911 841047 231034 511343 480225 570848 521346 802995 032104 991383 452795 145060 740139 339681 427271 863736 799227 647547 314394 719111 646895 760395 179967 656352 765194 767168 748689 855819 675343 464739 769747 402967 884213 541544 003292 045337 824403 159094 644785 631033 265119 472144 285762 589671 724564 918726 718071 529077 224638 511285 896236 300984 730162 822998 799060 336524 165856 616386 118323 068166 732735 178618 244643 074781 623437 132832 116605 346457 531922 237093 982947 713519 487428 782605 439205 466839 814012 494713 291429 935977 953287 303749 659887 365979 058959 772829 427423 998130 792018 795427 046743 302411 936992 124454 330264 866264 428435 848396 464508 627680 658226 106695 588954 441436 317419 884852 810893 468358 566943 167757 803697 269276 316817 522028 400213 438035 547401 947197 267012 853944 168054 232180 766981 859959 702829 292824 363930 596946 424026 515015 057750 304146 336315 978606 946213 310793 640629 304351 271953 736818 005141 806413 625025 648308 577615 295994 942148 505702 885798 541434 361504 668949 261197 682840 099418 391291 741102 460598 463437 054925 622811 541723 162282 449463 655706 997680 005596 311173 501156 068844 501630 758321 861271 734588 052947 937492 934308 596395 512157 855416 973214 685066 122415 995343 375647 814830 546722 881640 533262 889226 084209 135022 730321 854877 884483 444616 214878 754576 912144 778573 043455 380526 478907 593794 541421 566760 377875 005246 142910 628208 359595 175772 528593 825655 100071 741130 461945 065329 811357 570917 979511 521268 508274 737899 093357 659324 733051 948080 629805 679600 571754 953173 926637 957514 348568 400929 979319 308889 416306 538566 246101 903620 685292 335314 737210 237008 023135 071779 174507 370499 658470 273623 545076 687446 602133 452460 852976 385284 336770 897997 692123 603288 614054 697795 783542 202161 017065 036617 817981 240145 716684 553951 244009 976922 528927 745605 784383 229002 525540 291985 495481 782695 480680 926466 355641 291081 576510 634563 704020 213298 765229 476547 135792 156571 279148 980232 175735 280912 231110 931507 003022 151776 723360 030726 987791 535653 400960 239580 524732 352674 570937 934033 623499 604927 747866 778081 056630 135949 271675 541065 199859 812213 360075 734096 906997 583038 253713 522837 214864 843706 332150 454693 586146 603152 047412 840207 331787 704488 508995 722222 732583 639345 850008 700182 474463 234067 483416 822429 539252 067309 142320 257098 001083 655813 838152 914990 044089 593237 238714 826276 210574 883789 706827 551026 931501 083840 882465 663406 396052 925012 988617 665895 874774 480226 479292 806021 248027 260931 918190 851249 774932 517249 333783 634841 566109 171423 173554 590494 919054 429117 008442 015639 020945 263194 263908 137575 295313 430960 438447 202292 417459 927523 968195 755609 986537 511577 956434 034802 240673 792693 916278 159629 087720 822396 030191 306766 099048 821366 733813 917007 500991 811437 434165 070504 839303 466856 028146 551910 759238 388847 556956 804043 857360 897859 265616 749450 433965 041657 714825 662228 814311 140709 350780 161296 543337 807947 107128 127442 976467 908841 216835 117479 332491 357463 403403 802482 077782 505788 159309 189296 147856 844127 065175 699322 192969 559442 281732 629818 080169 263874 647196 084718 962078 624806 645057 391240 848189 544983 029100 369461 455407 206503 167770 155219 086735 271778 487463 549226 599917 175263 824526 350761 896384 195012 553236 390135 218493 827276 188812 715195 889324 855830 905058 096257 256716 076496 171179 508199 599411 453881 803434 007825 912071 771868 907666 737591 300717 992720 287042 291370 278201 735565 939443 121858 591688 768571 263127 998315 933119 681037 093418 994493 212904 502206 180815 063086 046880 819562 599903 159160 927950 268016 740323 206071 872273 688190 065178 801226 901029 870429 026053 842389 827310 438038 870781 561484 171842 800479 469131 959255 093616 260100 515456 620563 271934 979702 231384 075659 941336 796692 431939 467575 691478 013148 087189 199502 189959 602370 545028 966111 797990 560438 046798 705593 993874 278819 835041 133382 974810 149431 405086 355463 550436 646240 368391 175559 376532 975903 329003 854560 760215 312509 748904 219867 198639 712885 549291 436964 766718 185903 346802 072706 123633 758525 208028 812057 100671 978029 734176 243215 026384 458817 352908 006282 561820 108919 652391 640957 356163 082720 581847 201180 844637 157870 116647 153894 113196 684428 017818 815737 319240 895795 868605 484614 950885 881613 177329 587263 398144 917302 465339 930176 736965 936969 371415 058245 522494 464642 870750 645394 578082 702391 156107 356348 004608 179591 072729 213655 874208 144381 696372 952554 127267 610953 095291 976983 377940 130013 662737 487363 219796 334528 729464 547441 949176 610082 346174 062213 183855 383293 531487 098142 906707 028678 697534 265821 315711 135055 315261 885519 494754 818689 812625 496367 476869 324010 651583 357063 897484 394861 384247 419231 957828 731518 873125 276217 128228 845513 533956 156619 884848 084461 984231 035895 294423 013504 352114 225372 745680 990344 578615 640296 454694 679404 616270 837844 636502 097373 733349 074572 621268 570544 433920 611157 516987 756375 769047 475326 867690 797658 073693 756130 157965 831341 281574 504007 868153 320684 393303 548396 517604 607619 429385 634275 476037 383658 422451 325347 080950 436575 286537 732695 192574 319450 326383 414901 643078 614760 844289 054765 753445 553844 333971 983637 761059 896709 054613 767423 643824 807225 967573 604167 815432 888273 645518 065613 631966 764555 714916 037068 564116 915138 459813 114301 892243 999769 470606 336328 863367 519650 685821 404124 073003 762574 462454 615474 387499 868387 238817 871261 766196 382763 471801 308054 434302 142781 264544 357743 954609 020467 787250 360794 456898 470916 159815 488700 837628 027676 948804 633452 055520 401585 835871 693934 837483 920828 252567 032798 593454 643215 143802 684712 385971 409878 486630 890344 797797 257099 370154 898114 579918 378140 222952 061343 568702 586743 613815 381954 815835 870276 024754 147776 436739 661020 684646 605822 373387 584552 861018 103184 172770 545489 331258 062380 758843 016050 528326 896763 344818 064134 135027 306077 700175 075445 882229 212239 935803 488093 089631 911686 049418 837392 108242 176098 504241 726192 088752 182555 992015 321965 880197 305412 381516 260862 546761 820989 340958 820419 585228 215333 695474 328790 447451 484757 756426 337388 943657 965436 736759 929119 150921 315739 712722 255559 176011 167102 001340 803712 415293 870281 359071 805132 306937 425242 555518 075548 978638 137302 166944 963914 942350 209664 690547 479573 641941 192709 642420 940967 227828 507416 725362 774386 174775 009904 414291 107654 554272 803392 782823 460816 871688 877915 804629 428096 014601 874135 479135 090821 691295 357481 768398 450787 051165 113514 832284 338840 606966 394322 367595 068684 105458 753160 335597 801308 032420 063360 215098 005602 196205 220697 237236 854325 790423 622882 663318 514304 527446 773916 733353 424421 636278 901244 141270 791875 763627 280800 774960 951720 697935 264138 253387 872533 119160 401069 943131 241019 498377 780561 418979 837872 790566 541334 840256 277446 998618 599128 522801 033143 664646 294866 804429 010720 618128 125229 418295 286448 761310 125483 666053 386925 683814 526570 150468 583121 717417 865620 036112 840292 230076 253086 873655 366227 971570 566891 673743 767717 187377 641401 211913 482794 797282 799617 203425 878874 263918 650288 428932 701513 176616 116056 884351 429456 514542 556183 342005 451058 430900 483635 486326 194235 529805 025194 064090 857412 967460 804467 805044 072228 728229 710700 855373 579865 516183 484622 346586 989160 867495 145599 270998 083858 198886 174072 868773 219486 588220 126204 240248 205030 058708 374953 171956 065518 756986 236516 259653 429740 157236 001292 840573 140075 896229 300385 513052 982914 767378 726678 146379 246885 430826 084524 857014 736315 804274 789737 357806 142124 088809 887246 845213 276135 195515 889826 303004 517890 565604 914653 674247 147870 277700 032582 278179 430519 534018 500858 869208 960371 382097 194929 346779 055101 836189 777582 594689 760937 079612 947377 661127 356542 026225 038663 859216 350714 560118 100366 436912 764544 477428 408313 211839 332552 943399 799985 608256 034019 728072 663885 168065 591947 025824 262735 445724 979289 241253 937654 166104 506776 030206 767780 417138 323108 066957 010603 670095 912991 001616 252015 535797 802269 217244 295651 588255 464133 157686 284822 159781 995161 084587 841178 433454 226807 214257 983031 978130 488432 281605 350327 254801 231895 266741 877597 072276 437995 513408 728794 866990 290862 366986 357798 777676 073935 301114 693272 003872 965630 665940 730237 666106 783096 034947 348457 003147 630676 130736 872840 759546 262000 823881 226053 273537 358789 491018 574856 061952 356324 450250 742888 530404 307622 638402 274025 072339 770855 379388 709879 646206 852406 294746 966744 353933 641888 257199 850443 181497 665314 063209 114579 876069 390867 638883 887758 160856 238055 555407 795500 553928 354920 461142 155248 448237 341902 095885 945322 994461 027983 963617 935610 874509 222984 569047 079836 789853 193244 156413 439288 902965 522777 288519 728478 603353 389682 783454 109354 919516 267392 691862 292368 471649 416814 929718 168795 823060 996346 821769 495524 199837 235365 570579 574288 229795 422139 825218 795413 411144 012535 193582 713843 527828 443381 741922 686828 745737 636817 352738 699160 572152 785215 258318 492148 167810 251647 168912 868612 025900 668671 726704 584983 104937 348987 050897 755914 364804 805387 147102 217287 528011 647478 021421 200472 797964 084190 811274 362080 177667 342981 684270 558533 081326 346455 931565 315131 207994 393428 083437 914890 369143 110167 482698 656153 663459 057727 122112 797870 390155 166630 168216 601651 004024 843637 242207 698736 178950 318420 052568 026833 230270 186946 072277 707821 588963 880054 911116 154152 956065 083016 070676 025645 145923 065279 278662 452410 412379 980129 052193 623150 515256 859006 799363 162553 210926 543562 503409 802085 216441 936297 964829 339991 236353 571070 970713 879272 830274 651037 274814 586364 981671 795581 112223 858518 029766 364176 012959 167880 096573 300126 821768 583923 765157 854337 700090 920328 401515 904512 989211 792054 362784 541494 675779 834314 512350 505603 330062 913204 269319 117472 738026 227996 753940 787347 958999 577421 569300 580004 951959 143853 022442 804527 568302 308411 738038 742399 223933 738826 963207 345627 399997 197446 074854 301903 092119 203756 692877 457492 732510 321443 734180 811843 387630 757746 138399 826296 314012 193023 003605 754581 874258 742367 996974 671570 474025 720460 778950 499783 613542 842848 535565 563324 121487 231665 360389 365025 313488 316017 289789 413204 964683 928086 442782 481327 245019 746150 848000 320097 869216 046369 304112 235526 287560 873171 622140 624379 458052 215728 534467 485927 458743 435597 270176 478035 814066 385140 063390 760536 800948 352034 155433 922792 191817 888094 793847 727620 933163 972651 327838 856139 554168 953394 245618 948081 005472 183459 036037 626519 576199 397004 078069 695779 525249 289371 487428 951434 711012 072772 157012 690767 454213 186771 427948 125566 001962 580286 647945 905457 687924 825079 889451 083949 270129 733259 338291 982017 306704 609312 866987 624996 044489 315321 355677 973126 711141 537633 012377 413905 367833 759219 349575 935895 175666 935968 139746 258858 826407 787610 162457 967455 046401 221137 560939 675037 368922 030143 652775 019752 799861 129403 973465 610796 187364 392296 292521 717394 942351 181473 473038 371282 851108 361258 005002 914189 808824 027843 013760 615850 964452 894160 472922 543109 255311 981235 740907 435066 488544 470082 766880 852541 373363 140473 897337 194978 055790 498715 442843 881008 843131 515369 955884 366999 460388 540634 749593 074650 812661 908370 913760 167586 018186 076129 149800 985469 396795 948053 466388 252527 042853 122461 591702 660037 604239 129162 073387 784957 188594 285700 840796 155151 231663 610842 551340 793406 269791 144718 264588 144933 492277 114963 992516 548777 606241 364440 272576 304472 877162 836613 034464 675733 858725 891488 484629 556652 903311 623098 942588 905522 421172 055929 688674 578694 878373 819317 981465 531125 279874 624208 993047 961584 100185 677932 910166 372970 040957 933902 711447 405447 172338 842703 714295 294097 737490 325019 170941 629118 889050 185930 702658 389615 587059 954470 292590 281214 824537 681367 877941 315698 997013 595036 273976 677700 584947 446703 101255 252408 316969 654078 350006 700890 232882 230906 076051 134929 170260 467944 842515 120361 341379 242832 888871 531552 288179 325536 099990 958282 862188 613316 552409 278246 672186 376232 444937 855193 454353 404930 100237 185474 334470 866119 912292 024512 735857 421194 502205 170406 291825 559523 183619 632761 237036 058681 096143 662130 252113 448094 171870 420063 809733 846507 925913 228008 215582 429530 386722 226740 478611 361042 230593 796309 269553 083490 493514 393755 568573 158503 172724 834569 184907 681626 923669 259151 628613 818826 870827 930664 487787 287145 333708 750692 136723 363792 684839 696176 231460 488148 242562 221002 983372 443415 737278 836210 011635 784414 128026 152741 676344 863028 111870 482268 937866 636081 601887 741825 210920 897003 575333 308632 305382 038341 379458 476408 586203 748075 628083 661524 699099 887215 224743 677528 164896 270832 958611 944498 690019 427236 759536 890882 049948 586718 990658 518242 384994 394887 864290 066988 552124 349547 366215 382810 928647 491330 735888 751061 877267 414978 957363 090647 416856 724445 919841 430980 915168 493060 557956 971142 873683 868144 234889 308561 658251 608266 405162 803763 579649 913220 317861 056476 282681 758621 285126 397647 669189 749520 421098 275425 480504 152338 104004 193249 000061 718045 184355 914701 479574 961268 853310 562399 514411 868758 209235 664560 010809 283732 113412 731197 022248 048441 790211 439779 490975 427236 534995 267418 300359 800604 100843 003535 447100 359572 092799 414959 662898 708085 827654 769648 260286 161425 575081 412559 679319 877939 913915 795625 539323 432050 243146 114499 571969 193348 064451 278651 209867 229630 928930 086075 961288 772656 196759 061984 258551 275857 200506 794597 608874 315907 473985 491576 900503 856338 843194 093891 225782 569652 868267 511416 394931 287106 849351 235699 692669 557357 618399 988076 015772 614076 827685 656684 723544 031128 282673 204366 761736 421736 332754 394266 438474 936426 025553 867719 749564 585769 593699 532178 051290 600166 593555 418966 276769 625386 337221 140704 091253 123793 871274 128017 460511 584201 359817 384584 298071 933515 423595 155505 016506 744501 069863 835011 646395 804533 054967 754671 993541 611698 244103 334573 731440 802988 468480 821206 699357 685978 523011 926785 952806 726538 923659 805004 004366 713294 492625 275808 245537 074852 015481 956587 177873 152825 752894 570251 198354 575586 696491 934042 319906 309986 933607 991289 109386 149713 448354 352255 223484 621532 987594 187613 005553 839407 303531 979835 443203 197930 319474 710363 598512 946307 089029 931998 411722 117941 426314 715481 574444 255410 988287 130569 074763 584528 711823 305005 295601 249761 545059 791634 253628 638455 483119 482301 549216 672594 536681 305784 459368 482927 530662 976684 713886 079074 184181 103564 325242 716273 680595 374825 257919 020320 573013 911164 056664 564893 937179 240071 017034 727509 905109 862532 455687 173783 406982 125897 127339 427210 330679 908940 281332 229120 268991 277268 088699 999185 703195 496824 718519 372179 804211 497111 495843 440166 611140 023653 839952 829425 789492 778452 929031 181386 255880 641650 739414 913860 483861 743824 604449 467979 438551 467243 072960 400267 490549 248566 208254 977380 310649 044069 222923 107143 647596 426299 943198 080300 136262 328036 492850 222807 123600 368045 309626 902398 434831 063894 207882 116997 762858 726689 709069 053757 737636 400027 414920 625382 852354 556352 858625 963682 085414 656759 520055 387129 051374 926436 945311 014242 002846 544766 800677 853912 860485 771740 327124 453372 788049 497996 369554 811849 553272 551397 786642 073864 015947 935178 850814 813363 180831 119789 378620 485592 849420 739060 654803 970671 629725 528885 678499 238314 370279 605103 826103 937638 236075 817504 566958 962894 900502 975469 379283 324090 449721 433429 688770 171516 350054 175272 727413 303192 488009 909701 161833 899334 472381 437933 193427 479909 551661 574782 537623 563331 854103 046718 205504 579189 551578 053537 603513 474474 581876 843331 070951 401407 648929 656168 701375 004567 093661 786359 429364 157188 247310 135287 972146 936505 338588 487944 530023 478579 926314 033341 398905 694080 044884 711661 119383 568524 634367 471811 486371 767990 080360 841621 251499 740912 087822 216814 911229 567112 297222 853265 314869 649580 076417 851379 231903 964946 529778 661236 679779 308949 887776 613923 893072 352077 583696 682805 129509 476485 923547 485702 034060 617235 698765 368910 370352 926161 293830 781751 314564 652754 335288 442494 416252 462415 051670 392515 981419 731164 127800 458830 987689 542509 564668 290483 021891 314423 660504 106427 723251 546565 997889 163866 287246 722649 905029 743916 274463 335130 254029 681726 861922 271758 084456 442057 263752 451725 862693 043897 442490 915363 102770 468294 442043 245811 271804 567339 875502 015384 179481 242518 432814 742666 634222 318837 338720 308274 235025 603887 019151 967064 000746 556932 649624 436346 960473 320506 926770 867372 274697 483197 354653 635324 291606 168663 226598 521042 057021 714669 850388 141240 799478 342789 707256 129038 273072 519671 109015 651187 769511 845200 233130 577211 199148 098313 104544 462297 586781 594048 799046 306664 707919 791529 486384 411387 673555 821896 425140 590340 749227 014396 529612 920717 431950 244183 761720 553704 966477 628566 291870 589333 798360 791742 876355 268201 326800 023748 385823 358951 823613 581118 999341 601593 982777 231286 745931 344971 887637 069457 829366 950893 506283 127069 849055 132414 083116 422055 750893 651295 255268 039820 918553 206909 967755 561069 770002 474948 072438 867409 297515 893349 308626 792443 638345 494304 868931 798819 549194 761282 653072 090082 078003 966902 168756 180090 157916 142162 083390 793123 037667 498997 964883 884333 269320 210203 970049 148390 097160 888498 679687 457739 526043 283299 405277 595828 581746 697095 248193 140464 895989 692299 998391 916740 750031 832078 573611 550361 201909 717150 071321 568694 535248 671763 822013 802470 380462 712172 355272 103809 558395 223176 653411 247401 591887 639572 104858 478359 508275 479681 538176 274346 396567 415649 206739 480825 362342 790982 730466 315952 663559 344411 293319 538188 135944 360883 572365 879080 193857 168387 746440 937013 186903 514343 071961 398714 589173 556113 638639 758779 176790 490301 102699 131047 400442 254904 755773 018601 045483 357909 895044 704835 455131 638290 814400 663785 837636 278971 758090 012331 369768 036951 834910 068525 389137 340288 573699 952946 308472 862399 713664 235521 929881 177351 238142 185470 073958 119753 854030 688127 347953 308521 817612 174203 953115 472854 105941 392062 561403 207939 269367 048127 344885 476624 117802 253208 782139 530332 050937 253609 429716 170200 814160 636090 445636 155685 893093 462287 385799 302172 746679 039056 194441 116042 985382 181286 964190 329878 579683 166377 469164 852703 575572 939470 750581 813762 648546 701612 977057 217652 269619 382273 693659 282515 666048 881875 933776 203670 660204 782058 906472 281792 742463 389001 369070 574568 440009 886393 772407 008392 079360 137360 801757 050734 508226 320597 966779 476180 138899 527496 866897 624289 730517 330713 312564 896893 084048 608626 433590 191700 940936 246832 258528 838084 593753 093060 017839 573549 729788 528578 096759 863873 268549 531851 818761 873470 829342 438215 360572 435317 793610 748488 536124 327948 321223 804027 025527 905747 987739 111399 252115 212361 254768 499839 460963 002016 095612 062911 883206 654861 805269 353821 161608 924271 036636 953097 859654 841784 202127 759749 093100 453115 194679 740687 605616 307769 135857 519700 009644 916266 146269 791133 231992 228674 350602 990901 447835 114821 317414 824808 104482 496817 808185 185431 474973 556223 233690 403107 825162 829630 454900 046732 660624 389009 248921 983334 357959 547698 251674 788258 397135 739975 649683 002818 660759 192592 290933 344499 704141 599422 257519 322992 405735 860336 192521 587027 244841 441406 903922 551107 830378 838204 541815 789726 854904 528672 726481 112965 964983 041232 202640 569313 827751 593180 398814 177903 948479 713513 782876 185384 416834 075933 093214 123652 467027 343231 110192 199551 324015 083458 389958 846116 701088 151595 287223 541380 786650 346989 940106 499269 549609 349956 300791 463027 578660 680581 434210 401316 856272 363718 515762 679202 564942 413586 371029 784025 132525 176342 170382 950908 670657 630668 154120 940229 682893 423189 556900 680125 263166 729743 709701 392332 291749 378827 038601 475533 090292 183396 220577 399909 549449 705328 057595 961307 013315 666382 006480 214983 406955 850834 559585 507084 970494 061383 729550 044129 982966 184727 953759 714960 376366 529873 174549 070749 242416 181659 292136 439929 885998 841108 424483 164200 459102 722745 224622 976867 225939 699229 367560 970128 641252 672379 433732 632719 743804 409695 499995 820393 034735 351186 378475 304166 890808 745275 368745 573235 549040 900064 427519 496545 716641 922278 771542 614017 839426 116115 305751 755276 661684 356338 581939 976168 021010 880990 953849 958242 778439 424793 187190 657445 953263 757971 810397 509674 385199 711727 470292 207534 831883 829524 630961 576610 348855 425738 544092 727827 901073 450026 104570 098149 621853 155679 190297 582158 377037 414114 484265 029895 012064 166061 778202 352545 717029 655875 262661 265593 895374 865642 684092 930115 554445 796210 662901 969159 554400 619503 372971 623761 915009 599038 001858 900462 195604 038487 426939 873584 775852 595626 994976 519501 940326 955907 706650 874685 789590 582057 222370 359189 140738 584303 302133 315330 678389 345034 161729 965525 785124 838614 979914 606499 307782 503976 203516 094979 640743 009758 105914 497602 657984 074282 710596 859703 496501 588989 044921 765477 765554 479718 601918 801066 352673 184287 711111 194644 519604 719373 637131 689919 323916 960047 506905 786020 441359 185078 103897 417999 953250 896591 476066 794757 911965 053806 419933 401278 742440 759056 573246 884550 174990 656283 445806 834978 540334 774327 392887 734804 786838 512277 608504 831617 845100 409621 255977 949504 935246 881146 401023 955427 840066 804435 766253 897122 640641 974462 665222 491279 012001 (25080 digits)

    Euler's totient: 47263 093970 982330 774587 507602 530033 016635 764281 326817 837187 073407 136801 140272 531513 062631 766726 031224 857407 852372 159574 259830 282747 122319 780367 332229 108485 131260 135055 283237 628528 807907 222480 973462 427773 093172 893194 639747 776170 385558 597197 956507 969384 109658 130316 416072 816632 954199 773886 342716 541494 804429 497394 310652 831259 886633 046565 433391 816491 487622 914159 064493 856210 547884 335236 750728 670283 796117 980176 394778 781565 085557 567337 744735 848945 180277 025349 301667 250460 229222 295392 228434 151660 674440 307881 837659 577764 717068 433153 301333 388942 177255 354227 056816 351678 419361 543755 287601 751439 518753 767016 390421 990903 307860 390860 024764 503768 204581 644095 292696 250279 526278 816984 166362 713578 794458 548127 610035 907415 865356 292099 149642 162597 025946 438030 014020 184297 521412 889850 863913 295925 403509 644885 608029 324511 516662 774292 246732 475978 360971 526887 067726 685901 927863 656139 872457 002627 640817 108302 068063 695921 946654 222222 091464 232307 637618 712027 092778 399511 703941 788499 686558 775851 845750 314061 011540 473599 130062 006492 058525 606466 612074 502357 888741 448637 529232 618843 673118 454614 131093 856006 704940 733903 180100 518030 648649 551951 031827 095766 921818 643135 304055 811154 121229 499272 640262 430555 765850 609896 858086 057736 224078 148390 830063 640528 872963 542941 271328 104203 583712 391104 769727 059376 586060 421561 902996 227619 869809 331006 367926 131154 691196 686890 353459 165040 784854 354635 507229 556662 271786 087648 245366 150000 624249 627927 464729 468917 011744 835483 637044 833740 090745 376071 604028 224882 435838 734810 991719 640051 184831 427098 358498 627706 625641 477052 652271 255779 490003 537014 217223 910402 445684 589512 159297 575938 000899 413010 561603 486819 280499 852366 437646 225233 108963 315830 698466 012525 018266 489302 856159 788078 728322 337574 759568 003712 235698 912688 515062 373808 838965 787848 602337 362852 111540 728033 907385 457786 572284 158641 867379 250905 759053 028007 891907 094095 881602 609421 503825 093292 345810 924706 589768 693380 338627 835676 683675 937802 667960 756541 607297 837421 182314 876912 862909 168284 921325 983622 243897 970671 953525 756426 000897 620871 783113 635407 239813 862357 012064 632027 853352 345040 288139 832719 306612 978264 339893 401495 799860 141609 143082 410022 662416 289973 502555 169438 167887 692707 900814 230171 412175 013557 037006 905045 518982 169385 265178 348149 829699 014334 243280 132092 782487 830611 623096 367972 991938 405872 755148 741351 687796 984167 193756 631231 200581 224933 522727 498026 126492 582951 705469 947927 095324 624029 796778 749676 518423 513009 655348 761346 899630 265609 941222 044425 283067 621880 527700 177182 703780 079305 269807 974198 657543 537860 267364 506984 336401 464718 935569 652092 337439 017991 056982 181641 107990 688965 746861 594586 682042 279132 411371 719766 033162 938145 385030 014763 416946 828123 697289 955418 484945 395625 652510 594045 768731 005809 008712 894272 720678 218266 367000 118279 929812 937056 287383 771958 170069 150321 283324 883100 002464 666940 263907 921759 680221 850853 665152 242981 328473 918816 261505 427342 972291 112249 583882 888038 125019 441450 375698 380115 985255 599594 603053 571046 895951 442584 039160 978645 242726 284381 126793 593246 314193 150483 088908 758131 661555 428565 951541 632855 981987 028821 601127 129428 568982 070822 137168 736904 554936 596096 526734 838721 178779 468343 160862 283977 458344 953069 451804 831330 124063 028763 768177 891078 362951 189990 483843 583344 976703 154876 783537 098499 726775 241194 960139 296960 284209 449140 806325 838474 147286 008140 332453 980694 506806 292955 992300 063486 339065 873245 124313 465025 566758 982781 050950 670214 793610 442371 332390 453304 754581 209562 572119 028241 679576 024734 684476 211206 343315 638409 348488 801734 244205 320522 627884 367740 003909 286720 840616 668679 111977 190823 365770 418064 668700 520434 910394 532243 397294 692426 032246 627034 906965 257761 972816 011129 788139 156635 859296 939667 078855 444049 589781 105807 345193 553362 878997 491516 252502 356383 165810 228633 646352 315926 595669 047097 973428 107868 847609 507589 160941 233132 818976 281137 877812 747097 933833 767524 981164 020464 159684 272604 405585 507299 338576 792012 793040 017687 632310 199607 409548 810248 915942 468356 682981 734567 903751 055038 795175 183025 810657 314728 205770 807939 887288 901291 785650 318626 556761 325202 751746 237491 977738 064058 946313 944955 139227 484887 541043 444979 903250 013480 972753 018690 722888 423540 477733 052021 243718 084117 119195 245732 399732 588987 791151 314302 228402 483158 137279 265331 790382 209407 994096 742564 978781 583341 093612 691878 099483 645532 878702 742799 621984 944064 076281 507577 497562 871928 041535 988300 277173 521307 183132 935104 466416 897808 412940 682425 926142 526452 746800 005078 098726 521833 378737 792001 855408 930544 399504 441564 819957 699492 995947 022778 829630 829651 069888 060350 658905 341744 246101 535884 589517 487481 873266 499429 698452 367989 139330 431082 527244 402567 917538 960935 328531 216290 027093 804460 295759 390227 817923 495140 650341 276093 618270 153433 578420 071945 377613 092342 529976 949562 726754 326476 878981 897160 787099 762151 129396 212960 527522 495125 332194 175713 830854 836389 943157 439482 401576 165017 947484 724632 969672 665623 797091 934179 182826 910155 496132 414028 753877 516093 879831 974049 959098 892625 381894 120756 262605 591450 047710 650043 491915 335406 519570 830659 261847 491897 830460 117340 822656 245449 680350 496108 649900 819755 944233 257638 303550 848227 799321 298015 184734 679420 303559 958947 918827 613215 457249 009690 112710 792543 745370 673071 997575 112769 511488 419005 252694 469326 448578 030150 466506 207953 233383 267632 308195 982179 829422 929333 799670 075025 977242 608481 476607 094063 662848 559085 504407 080628 808970 796950 271844 389943 204743 074005 594009 011679 541088 196129 370977 428552 280403 876168 025987 833595 910884 695155 534334 792130 287466 236865 021212 425931 649732 666798 696265 452945 064582 554678 969014 217410 175609 738928 099132 089060 691430 061539 809815 736573 525850 900485 402434 432984 304261 233754 507558 602544 049731 557729 643331 425377 746573 832709 164141 900464 419480 107087 901813 018163 328749 930414 866143 168194 532173 040002 523255 636617 316345 724037 720000 107149 784530 509364 810509 995811 226030 332260 203696 439214 791056 846930 760780 685812 531303 737040 549976 121283 730586 676779 449857 472378 409446 362293 215046 801372 069903 210564 993982 314650 892519 701953 549372 611736 358069 978070 295512 160266 988970 996934 232336 447450 452343 406713 241448 522741 026869 688069 761308 990624 398905 249126 342689 769588 228021 166364 519024 881280 976545 762899 402062 408075 038765 947026 151054 655880 402517 120626 785234 893988 939575 636029 779524 346666 315864 196999 647789 247953 879964 423901 979497 027809 928958 191807 790439 479535 718773 666872 951665 700183 042410 591133 484989 443287 820830 345317 448965 638593 090143 086729 635907 494770 766136 318058 915383 070280 775539 881322 770362 167784 348562 498953 600097 778570 497074 147759 486631 762127 194360 067926 642768 920465 102626 539284 457765 577181 170648 011896 708609 778084 893293 747829 406814 987616 891312 767836 798934 286907 178771 582216 698848 756280 398634 345212 273905 577672 950999 579301 821831 103600 341247 976669 928475 247504 681880 943560 727098 676225 626241 864541 176676 238906 474114 041826 480972 226854 373802 463356 927711 706038 821826 883639 557985 312994 025406 517759 888712 166523 136095 753407 094653 414200 211614 115638 438121 824881 806524 407726 727053 245067 151460 190814 697804 497305 001100 285134 909498 625747 150172 400427 208597 418346 327793 111695 589530 412485 931684 218597 287938 876756 368425 390002 990699 143495 627273 511516 985042 891128 624628 838084 629018 237273 646635 726264 222997 562480 791025 033025 909374 848350 395628 019102 614381 627296 187376 755223 243939 346267 938847 087410 629933 113183 327750 803845 915386 031972 999560 568665 296592 259236 173694 337217 600454 303306 051278 994946 485780 638611 162715 421790 274433 708710 734678 954108 198996 492009 672882 519191 528921 739669 787324 175375 994056 779563 399376 502648 596818 071112 123059 713299 829161 956112 316906 511618 545649 637533 852482 736784 135433 478320 151423 245406 906156 233637 167092 832604 762357 100474 016429 036223 577159 274126 570637 430699 949385 051237 288945 504471 743925 435884 938671 870115 775995 331231 960666 038815 212603 874730 206019 281952 757353 731763 699205 567942 961752 236391 174724 201479 795888 370275 678861 251253 861015 600582 234349 564312 116689 464838 571292 379152 771139 136464 786325 276787 840367 147491 815283 399063 534290 687227 921473 507757 889103 789560 160802 575224 553116 818992 452085 024170 046615 047535 776937 497314 822779 496877 795449 355427 631905 318943 611010 890834 591763 168279 675465 702462 403907 984747 423946 396232 653571 301177 648133 132729 239966 387338 289351 346439 383208 574312 957692 945325 558045 220936 915407 856992 749288 283475 873668 320871 296306 419697 639920 518055 298157 029641 915588 030750 783668 886033 457849 625695 686984 438446 815381 710331 859755 712816 376005 675255 462999 687966 925317 360699 502744 141330 323288 200346 047637 603146 931111 134109 307400 959416 594419 441717 754243 661007 083045 992394 636164 928121 477200 821998 768744 166342 931327 961339 476075 766096 990748 951214 864847 957010 259228 753646 756370 805865 408927 700323 199844 278408 140876 697474 839033 447659 960655 532086 801387 437384 819638 565589 754395 285741 901176 225485 760328 084696 381012 362155 181305 725713 283795 762396 025820 832906 425658 859413 956410 848996 489016 225902 089240 199004 507635 556887 315936 717168 089258 069686 120170 488153 188236 524746 076804 963372 764802 902495 670274 704315 638309 648983 200385 399399 180796 144737 857633 407080 955840 083294 679455 817080 840527 398412 505706 881786 452073 857884 444942 522388 935931 664149 491034 920149 955287 504870 858874 419435 399839 785087 495611 880190 407361 621737 227720 262957 723989 524845 198859 442856 072077 454119 367809 831364 747912 783541 529185 337800 343677 172379 002641 333261 038125 235342 661174 413096 827943 600871 043895 757242 453697 808096 963531 478508 248385 072232 919179 851185 930684 673963 141635 121771 147732 436004 664231 128354 807994 844408 644626 059043 564305 379541 459853 555240 845790 033109 103814 353115 746643 362605 962054 481614 134786 134179 316262 285258 111501 054804 238288 350225 860866 708428 682209 178823 175372 639158 671756 293370 334275 445805 527176 070228 286519 465999 571589 966811 408501 461483 458547 199849 465873 383384 346998 576643 094876 003100 969614 695565 129650 071649 948242 991896 262009 158163 863003 214308 842265 005888 041409 779618 363565 523355 519452 485388 724721 214070 751081 158379 236123 655056 581865 177011 045113 802454 026756 323626 332995 724225 568296 539955 076429 823249 354087 084615 142191 878569 390346 016698 981969 570019 701292 508759 348267 377377 765699 000924 608310 555837 518402 548232 385254 397392 195877 881359 453964 271900 898213 461800 244234 735188 184390 176867 771177 668797 934154 463838 799328 338035 318060 576197 070531 332845 535424 208954 416767 220988 812351 932987 201263 244821 056796 515271 989024 370752 195997 882093 277887 137324 564275 870775 976622 897053 864352 744558 490172 666786 077515 556402 801407 878673 254205 522782 730465 104062 860173 153184 583535 375403 218449 231984 021745 723562 018360 270439 861356 732025 853448 453989 966154 211354 093820 353607 348765 282410 333168 292718 163975 283686 998899 391979 555399 691136 215729 692825 283306 359745 709888 448331 679642 027475 358251 480016 156523 230976 126969 921511 977291 730003 684704 531869 429158 142891 237357 172690 524643 767721 246743 382298 770360 875358 691169 146691 467974 596106 330553 529156 344152 289564 332816 325816 602919 789842 720254 666003 567304 146378 822565 928189 826042 984955 956868 252923 645200 261258 441639 748212 538036 138217 458773 569752 575547 955650 934731 221703 330295 564895 044128 257698 851789 288362 971463 184979 861241 654058 453763 622794 180039 588500 346495 993596 125152 645041 488545 588351 017262 760630 438218 461545 002475 325215 690068 361016 158904 738810 393836 506572 272604 828867 081750 674856 727990 488850 162342 332832 945429 020022 260747 872341 629581 525430 081690 278712 252232 319753 141742 388728 603207 795348 803872 984406 941862 062786 162111 856673 906525 183389 361062 114752 556318 307643 044996 314803 837155 399138 107090 655285 103828 813850 790762 610754 360539 105054 779618 061459 151666 601781 316063 693669 694094 883280 544077 357274 791372 099206 200018 242943 162125 474922 581433 490045 377319 979881 660943 099451 258498 604244 233026 148187 892351 529722 495375 040785 616295 141009 039364 100318 192655 547091 036562 449788 351322 456087 807422 681898 004164 770109 865213 345079 908205 981511 133784 497499 697136 511307 496231 925571 521774 795658 675515 076439 304077 786300 525501 063289 898537 911152 303507 189880 274978 632609 638799 301700 262700 301953 908334 511834 813401 634934 536010 043914 518314 812206 427295 766794 888454 120092 849293 056270 751153 478644 467847 632279 290737 270670 556563 348989 658568 101639 679204 801269 006020 807832 451016 654920 595376 848591 415880 485104 122172 016786 965992 931754 308199 175938 924985 838938 122269 330625 006180 555716 439727 588650 917709 425898 399417 180303 163214 240681 205681 977919 847273 117836 836756 376956 940746 388861 795420 096897 987997 409823 321857 565743 537431 619844 037571 052872 132054 033295 764723 946591 428888 757378 819435 084959 428544 803451 547436 300415 244735 937943 312526 805266 086844 786446 962636 635244 084331 434168 785968 677747 237019 972155 249954 213956 806269 517336 220994 034605 672884 550802 031211 739064 842879 147318 233689 991317 307603 911712 118792 812745 494681 045813 788423 522912 666775 400616 725000 357867 832560 614335 369458 366375 865321 699355 807906 797965 625795 537545 877928 917168 440244 460968 999560 706677 369315 817344 723336 680915 151706 630325 163248 516433 626020 424515 861266 907237 311158 505310 687185 974337 610718 703775 250696 781727 194181 272364 260113 633224 556306 556142 138945 406870 204855 471189 330147 940801 967321 511087 720407 605346 861901 371920 738914 497390 872820 386936 132570 025857 162872 376444 759422 198682 549013 969198 912893 415388 293620 037299 280561 462843 083287 905326 983762 326359 711295 319232 952433 957402 774609 861839 168187 501556 668863 754511 434864 992819 026972 326222 668232 454779 140160 784927 991447 324150 120362 080792 958853 278478 247514 901509 281643 464675 606322 930042 556828 476609 063003 948704 797139 821201 073766 562007 089007 075026 224981 453334 056562 860412 078979 532440 271095 742679 792523 825543 288616 202781 744949 976453 283415 832753 112394 745460 720303 496116 649422 456762 073597 150884 345942 209075 368453 362183 214318 146983 016090 697133 916358 721240 400156 688311 645896 187898 694634 933165 317034 086373 998800 002374 225455 513800 371148 046728 106764 486587 197668 710522 620905 116199 726771 595025 474679 623283 892024 770631 800544 622928 503823 611339 333156 265541 454864 379954 974939 124135 450283 200637 760633 716725 495853 314488 701380 796690 956872 506074 301903 037085 231309 170000 566569 926258 623364 274355 846872 646729 393598 145921 821255 001782 609144 690908 056392 172663 083912 764162 290925 305945 459183 807955 591659 558194 538680 311927 979463 562724 687742 160851 317445 729835 814633 064275 137194 176911 141497 281102 812199 738428 082636 557414 810183 577123 678428 266246 532632 005314 791825 909332 315792 875024 897916 113698 492896 904731 054757 191578 150578 138920 145938 490099 378713 130808 914287 144161 196587 026310 042748 142248 684015 671631 142516 443113 482758 902413 845498 002396 488980 648156 233701 438829 934747 520732 802231 772753 191454 324189 093120 886091 782710 057242 921684 051448 723623 579227 088843 406648 186521 193694 529355 355529 752520 403861 043707 278238 813319 118085 292550 913510 690220 185360 823210 504711 233812 227632 614523 525889 211951 116114 565930 976452 633221 487781 100210 879450 988633 146341 449718 361340 731355 138110 007625 638778 562513 047221 889413 975276 869692 894223 338622 225553 507748 944571 639995 095644 428062 782753 571600 896701 588923 948076 209990 952182 244522 120575 148235 455146 499263 321770 599250 301878 778842 062370 080351 421237 745891 742412 203219 240315 653305 718845 497609 521544 341204 959467 759235 652960 418811 827933 004937 265611 572327 717481 019936 784187 672499 311848 098563 584043 085077 407343 414377 946084 784051 492406 680076 967160 354154 590206 001295 567582 642805 761553 792514 687794 479246 852788 356669 911027 098608 829090 208896 573782 896736 695161 943750 858831 667191 923140 564421 444142 131015 180512 207030 798096 874703 084587 560620 774218 387393 613174 679746 188522 244212 336379 471425 691495 455094 482750 343324 162428 454949 206618 440543 360180 646116 445337 467268 721715 081444 835237 067246 634251 262034 277116 716488 604987 989057 372173 183088 944385 480780 937530 194530 918543 623511 838219 479604 966080 034602 057650 483466 252364 553390 672839 337126 671127 133496 845317 464485 642771 300924 495720 701639 593050 476970 135355 311428 526212 702622 149556 515909 471432 585358 850091 931607 340187 869866 709287 280434 301659 191786 945310 154582 914433 359720 990253 133855 939961 502158 964982 503182 391354 790600 246793 852039 737817 806484 765268 824410 323799 672423 890850 389717 280080 775819 634698 389789 374558 827125 500555 519110 272253 206001 877052 176987 002225 030608 564371 257364 134469 126164 172473 722767 872789 204643 888268 297688 489034 408454 245958 505557 978507 926894 151662 974291 601622 250286 687381 720736 584858 777150 693895 054425 586036 098310 639456 634087 894962 715313 207507 696824 699691 921875 639471 138752 389627 831038 444506 384332 471960 142557 889855 041740 061828 654063 350243 920677 681994 807824 915078 475204 073060 735254 098699 135402 165050 694857 980792 348253 605495 425408 859434 420852 840769 428281 109711 268921 468499 634972 379571 686211 218945 048664 598798 793591 884318 908708 594856 642061 161043 115862 210471 268442 158859 978056 187291 856644 462967 724053 544142 084832 039724 235568 001504 764536 352187 303294 859805 915460 811454 327454 162197 832345 543175 698954 478261 217503 818362 887019 397236 996859 379968 605680 155362 222452 833714 854238 115113 222713 255450 277029 700030 683855 208013 182719 541197 646046 684642 863324 366134 795288 419313 168512 538398 668079 854892 200982 401628 943370 671755 010522 389072 373725 400675 506716 455422 798747 286551 573866 764411 406156 176267 390747 528684 254535 888823 636803 817791 117617 689743 576611 311194 227542 058507 094478 085033 577076 374526 788500 485027 682943 356501 637405 218940 734097 710839 377125 394698 544079 812914 528476 645166 136263 149830 214188 199878 910340 758822 929775 525600 820509 660153 914716 900006 553495 647670 148511 215837 076497 774012 238252 373591 612624 241807 465731 401981 047597 939035 072524 782525 023282 503255 540500 681479 245913 166497 333349 764617 797390 378463 405124 409793 956376 431576 817675 994374 576326 114555 640786 581664 843773 222779 398481 081055 592322 979529 677545 767211 051775 485427 888426 618565 735274 118808 894452 740381 026405 105962 627643 316161 752827 504537 972915 932361 158283 073280 103956 384142 564956 897778 089554 374486 706137 853995 874449 174295 099775 055438 410440 417621 499691 284624 823365 149834 911407 237892 528163 959960 915267 035663 928571 111582 091411 212878 892200 699608 095878 157712 318089 898246 339680 653616 632127 816520 786185 096494 432946 915371 198880 385832 380511 014190 591501 720798 299467 344735 627607 101969 027740 825667 839845 391302 427588 844111 983034 552539 353640 862697 800987 898352 930230 377103 671904 176615 237914 447369 339737 718386 322924 795571 820716 182073 323285 987003 986235 791628 066864 305959 578417 520008 486972 821980 922845 687024 662721 618283 608596 566321 516140 923688 364848 334709 636365 468620 159881 602077 050175 539293 850330 743480 669932 323183 412024 195553 282885 366354 190602 779437 474753 855375 746939 298138 235086 511883 459507 924046 620415 064854 166381 731054 949365 148842 783229 080773 894606 790395 726603 203499 280191 060758 730032 653380 849401 884221 694086 154031 765489 323772 014975 705592 739596 409777 653550 092042 821702 639165 029907 704259 032069 233472 788606 881355 008795 999423 709961 084581 227526 823708 310805 919392 225036 980565 249254 061698 482155 554193 934492 085312 327866 827324 153785 942164 590069 981662 263329 416152 775128 254041 825232 559187 329858 941217 212775 297052 245930 294609 642844 579476 171117 399733 247825 269145 339348 975875 702503 011662 806975 669832 908359 244067 047207 287258 672257 805709 422007 540055 071110 582068 024565 291164 420825 981545 375960 891728 094215 613430 417223 521660 229287 655893 417360 090765 090358 344911 291066 661964 873510 587647 336020 164071 055091 313696 968647 579107 578385 361734 291194 278708 444123 584260 942553 610031 174159 224916 396422 937761 182947 527586 959081 559840 707144 800875 449256 191514 051102 563215 550354 125636 351690 103651 538572 212279 698735 755926 128706 567960 874725 500670 649855 384386 121375 670685 349425 669141 898144 683810 884172 183533 269633 279343 823352 116769 044701 064532 708049 533998 236855 589019 151850 322689 197839 673764 812889 360207 254350 029996 929203 618938 490315 302426 967821 989899 785298 472716 399732 827049 032964 057118 133583 309542 256261 910443 142869 240005 050453 410888 184363 725112 932565 763832 870987 168626 558061 269982 014197 864163 410837 184903 825253 583181 735407 950196 106926 674553 223120 750816 713358 224110 198393 991204 760936 174653 105216 729160 538565 451854 273459 365894 602313 881168 092528 809167 472169 707380 274070 254190 646535 563653 723830 374173 174637 622061 804286 335060 275451 050355 421568 508233 453337 692856 738955 809703 952301 258215 857877 456053 313208 293517 438874 146464 628960 353213 568720 783591 390508 756244 045757 054624 104123 701244 478292 292936 196309 837748 504852 290993 282611 356141 280006 067231 141369 649344 385314 912494 636694 627947 721091 119449 971830 808756 757623 733754 684217 252703 789015 707612 726135 106939 474730 246978 456107 536006 944927 134822 615824 254177 863376 859911 684491 740729 299601 750268 046185 313130 488125 847345 555821 098800 272238 340041 846895 441643 379391 098136 178922 384756 024313 006785 995321 450467 759491 102616 622887 124706 927674 985638 536108 878891 466567 009357 037814 811620 896634 562891 864661 862307 588370 664467 807438 902973 601674 012752 324051 020669 128368 683094 515253 928080 793859 457025 727861 701718 254689 504910 232776 199658 732983 515396 237674 320479 530926 715270 847424 371667 958464 753706 762244 086669 949819 587256 530500 775318 106553 904760 483211 119259 617583 098632 395073 694174 617543 411840 277428 333616 724216 575402 291109 818427 340266 350773 398929 910364 702231 349624 600028 512426 490011 768238 871641 959009 792313 793449 865449 663543 824355 244436 023229 209945 491043 039836 314462 033732 473383 911856 122769 773040 935460 575065 573233 365297 186591 229182 468212 948331 980747 991342 790594 497538 684456 429636 684474 808384 563089 389548 096660 760937 260400 507983 777520 927175 460790 052731 326859 362215 448743 917576 645727 634454 216817 244862 486511 002304 510973 640571 815390 410147 646420 019991 396407 774722 233738 899285 184806 344048 122767 842718 924387 402434 352216 946988 012754 128073 538737 474216 888188 484662 285807 962792 961262 141947 336821 734473 597082 929689 395509 962815 161836 923256 375041 920191 442122 005651 325931 777709 559344 977817 620799 297732 135971 392695 805686 459869 040081 864720 194983 936290 464821 600733 500214 559381 068555 061657 848916 776341 151978 859358 491517 501568 565540 657972 432913 927038 646499 661743 016938 388550 079282 104384 469584 573255 196103 240366 858230 750308 937473 141300 688894 658505 978524 016307 897205 827907 225651 731630 166505 390842 019846 778805 116678 649220 088664 277678 842498 944463 627244 378588 153982 630964 712767 468049 950133 875584 323729 100270 679687 204803 848055 891200 778302 012465 198383 986174 552115 599825 603288 958553 444837 989027 311594 597842 680143 949184 301608 827669 413588 024520 029262 748506 166674 583738 755253 737454 965909 836408 133971 046776 010736 466227 777174 838739 372697 250159 179455 795018 954645 801669 541714 568130 726047 897619 808616 107335 417952 769617 247222 133659 917463 311788 418830 560661 392876 927385 164513 451930 239343 203232 123661 507596 519037 603317 749641 635321 254802 086793 308668 097406 059957 354934 778069 621921 233408 922494 448486 549181 325149 390349 531964 379798 122055 381280 395028 431505 613518 728967 837970 979899 796723 903528 868391 811962 567455 383432 033920 844815 425467 568430 004955 150852 601267 365360 191235 050832 132315 676908 829373 715693 806062 745848 921037 571051 243051 551219 123703 521216 958303 797950 477126 223974 688454 997632 562570 408297 911758 296102 226283 828611 401640 990966 389597 399624 064670 683815 500521 609080 929561 173313 975383 739956 201231 755089 786005 410711 674509 895460 064298 534334 932328 195444 598537 065962 101573 860667 831018 394530 900836 740542 519214 100123 730369 678385 283063 292945 180642 704813 145132 145178 674174 827240 818211 287022 895833 456538 491407 115335 702999 721448 821980 683668 429395 678502 424667 509291 230968 130386 997643 046155 477337 516404 150157 859129 017999 599533 382040 544440 879764 258679 121643 112949 664055 060280 618493 343354 584774 503468 773041 363166 893149 292148 234615 698329 694893 203089 412123 386453 820283 751505 621183 874215 381190 860440 364018 622064 835626 239280 316541 428253 817753 108160 472730 133956 083857 298985 235219 673194 386460 042035 281827 852163 301406 010911 468708 859819 076714 139442 340939 243487 389118 960273 869670 277624 240760 539698 865914 656546 005315 727972 444471 603796 132704 560245 823412 618624 703886 346297 327243 710118 779132 670094 442167 190589 322050 731135 660150 110081 463167 005540 350771 355330 781989 257179 545068 660089 384408 627282 588260 952331 675115 204538 338063 564370 597977 140748 303194 585114 880135 380312 253955 662741 495544 401295 784841 086776 498358 489927 892403 505336 684429 895922 922815 395073 463438 332227 445820 283287 188672 067573 502103 716012 891468 094818 385208 928419 595654 020268 487745 979810 509476 749707 850627 524391 281827 728379 179231 985950 467742 315886 399478 980135 339489 173062 996350 807354 845269 447468 181241 740115 813783 249501 082551 819840 729838 589435 164849 486946 374404 146610 447653 966804 551118 814088 355089 360869 041510 179658 701957 203954 310269 419245 364804 862089 482573 484738 117189 454166 160596 951012 002311 514250 654458 469448 285680 629357 377299 295930 197352 565205 527087 736398 032782 545666 811344 828569 635762 602283 710469 425174 410166 530567 616250 241167 112651 614104 816952 944453 253542 984727 136156 119035 273969 151638 058139 871232 533642 254607 036546 540478 213868 746335 383269 958599 300695 398219 125597 850602 510863 970760 166109 300457 524322 164326 794798 516379 906623 071851 283675 715647 334709 709323 845741 465874 534427 955317 698869 080991 072794 573049 010763 881183 867281 389319 583278 635042 943249 060902 555004 537726 105051 509274 837903 489968 991916 398202 507514 134013 161417 428362 826843 359931 804348 088897 624067 467461 997355 129898 116386 227990 988711 266749 001249 052625 747273 715464 504400 359822 690281 428362 424042 427362 516246 398840 717371 551883 573718 376085 043229 063895 839769 665550 246746 937657 764256 596523 424867 058438 025831 097467 793483 223111 434517 020812 846445 157849 099820 108694 864830 432680 352623 497835 558973 124997 545419 600792 675413 856528 994025 432852 088149 706654 226054 281618 740317 772386 804791 640024 226319 846689 329275 262475 136010 759223 286418 556583 770876 785893 204468 932781 202643 228474 950149 174054 338539 125348 895126 285420 040718 347016 508360 003611 958830 106970 860676 019735 313192 386635 416198 575276 056386 958733 300163 164957 377173 123441 840989 783055 547924 307457 581522 781786 799468 930694 731357 487953 416089 179806 702224 543330 501486 645626 385442 543962 562453 577751 894998 562502 424006 951694 427585 614412 042002 543786 134937 037879 105119 167237 557081 009629 316515 401874 709255 745709 558196 642413 941589 526374 108193 543980 055876 741602 247967 629926 490022 225369 953494 847729 725394 626139 017675 580317 909710 162123 499397 442087 379115 134960 (25079 digits)

    Möbius: 0

    n = a^2

    a = 269568 186142 922536 017476 189933 672564 374669 496384 562507 284203 181995 009291 989759 532559 002677 766813 045555 035739 903868 432162 930281 905774 858853 321550 549212 327665 367253 639201 905285 237030 795766 055305 222626 840540 515597 301783 100018 662313 287966 939312 797431 873967 786742 119404 641675 068161 743005 951348 100824 962865 959409 731265 316281 150496 448577 605373 764831 096624 539177 976792 366247 079993 321279 819401 273393 616691 591046 321087 227038 260253 057978 257920 544615 626328 857887 211980 684988 222367 583617 860757 181332 337942 027985 466521 923502 310803 659813 597927 055003 451618 190300 046097 398478 004237 334938 213742 777863 871518 881322 503473 652309 710824 571400 779839 175890 335770 497757 625248 750813 301412 973108 302853 248877 628388 737842 302939 746557 259228 862661 084741 599890 284568 825285 595250 095506 538237 145539 454730 083451 428915 436823 188863 461543 213441 677085 230908 649334 852746 494608 669646 849477 465130 560362 247867 755555 922354 063583 596779 385209 514356 358057 239346 121611 157084 795935 301036 429985 734924 990983 883601 119009 878611 801338 360649 765286 205032 256517 662440 554766 102266 812707 497976 073716 401165 642397 824646 257890 317708 998504 912033 278358 854700 455641 425047 893093 440677 611373 381054 292498 080706 040733 117442 391633 229763 844665 631173 671787 157657 130379 466502 577681 553909 842756 415182 603596 610175 375106 177802 921810 079225 606634 739949 943656 734175 670283 810394 164045 957984 047112 499828 024136 298507 666970 616699 567253 578789 762912 969720 502024 915696 886093 729775 145338 749314 032579 647463 366799 569905 976297 132057 454308 669304 475802 068219 866796 442224 986085 553666 016918 647204 562189 950082 301743 248741 332991 773492 420406 261186 690088 139649 727008 235446 809549 918231 852240 955348 272066 327200 639607 256535 809374 649674 279990 382805 925927 081524 893810 113631 527041 476678 588706 408854 481672 065085 440662 224612 587070 120256 281868 073046 617583 922854 194701 174780 962563 627210 010264 569620 023102 876047 011976 040145 529256 746163 156053 631118 304066 238603 883022 631526 583835 973926 216406 645941 859754 100856 889162 506341 369435 575396 769167 215306 447276 164519 190163 402618 032877 472534 353849 501474 619797 118637 856985 887328 837068 741278 614775 810876 091644 072112 768500 082985 408996 055763 846533 337019 831431 939123 568358 333555 452967 486723 626041 361007 449966 489991 678817 738502 524384 365503 566231 696446 967381 699618 380778 811927 435433 762547 595053 534412 815430 924894 871442 209908 425127 775093 357827 906411 916968 670648 919289 568979 970593 816356 280165 924928 536259 666870 582408 765046 938829 038628 255925 215574 294518 725508 784101 781816 647239 839425 579459 370014 147787 677945 262346 263740 880466 479488 448320 966684 209058 100955 292579 402298 721822 827419 194948 073946 636347 323657 523599 595134 922505 702780 864844 182133 064865 917821 215659 435791 745971 116982 597317 511218 268339 906880 379420 970339 628177 467255 112229 210106 665527 919902 409843 599058 850256 341156 829307 965730 328532 047969 325895 880490 487002 802395 179827 449391 531977 207981 560060 460797 600904 016602 621132 985117 626310 911234 238769 809481 937383 617204 541519 437681 278521 168859 758555 794168 877891 661301 260122 797352 644169 556643 022390 923905 431783 012975 086665 408975 545564 216734 342106 774025 041400 232243 513823 262139 150358 657524 590655 275769 522599 952049 672432 434780 010294 238025 549347 613256 253141 142639 394739 728467 225862 952126 219954 585387 009530 785681 757544 104893 677651 568939 946715 850208 460569 209526 164488 443666 289343 683229 716548 959211 870107 792404 454898 893341 545417 424733 929320 639919 181112 586815 596490 820197 649554 651036 386815 397448 466331 802226 477196 318221 790926 861196 607305 729622 046051 688808 093187 467025 926521 492088 290400 562759 154345 383255 382239 014971 516167 618508 161344 133286 454086 158720 653803 848804 556099 637639 188316 136135 371811 183814 207981 249113 795505 367787 192514 794612 523536 886409 107644 468941 223309 298788 531889 818051 365830 065393 061641 914972 479023 786134 569935 558007 919544 817592 033063 618844 630203 843664 699218 534789 455640 771507 741172 788983 281328 646325 519699 419425 393452 583689 319663 542271 461238 892294 252943 221291 873773 041339 493143 485508 709218 816417 139935 570032 232629 338776 474733 522225 301293 512101 581669 922711 309780 734255 357185 150374 145083 398233 602665 587438 187648 617374 812324 884874 719985 360795 321225 065865 313629 290191 618349 225708 749174 529787 932891 157906 908584 831029 051541 710472 754548 681055 976163 551905 993403 768681 052717 358386 982477 028653 390253 492064 521532 244286 739281 552716 805722 656625 796744 392200 998535 977944 570525 105207 040600 605757 082882 428522 651401 045780 846359 875889 643343 115343 436201 557543 903223 252056 443846 999694 614614 739755 958700 883369 388868 409298 083151 848446 839477 110150 868369 925431 966320 599893 545057 071058 337471 128001 216437 116209 156446 790256 267294 994106 736636 063145 739966 377821 947143 984817 111204 949991 469970 512052 720189 584077 387647 774502 520769 363564 611987 024110 589244 636426 504764 328130 564535 299977 710483 634433 672139 942307 188892 745647 133013 241100 688731 522604 002054 554422 241816 963524 776275 888856 222451 858140 274355 687518 712554 974804 685141 837105 006358 211364 878623 751409 291567 920956 615802 763389 373367 569881 028573 444710 793248 240227 004613 258882 059805 914591 995021 513830 934308 178576 338262 356555 935703 858217 264017 141441 934438 506388 212719 371140 595538 806846 862606 507125 893482 259984 881309 144996 822195 746925 542750 911223 309222 805243 062809 335870 334045 604670 086680 533335 162899 736469 522385 847579 692700 390513 590294 917098 649027 320575 107598 552007 702005 368032 531056 227521 216491 189749 051045 938680 472393 939701 344582 314587 557994 234312 145457 676037 801410 226737 619792 128040 896218 671467 750687 935925 617078 482448 046795 129145 512216 726186 219215 674156 386606 765210 096790 790533 658132 864753 647233 122602 581435 242831 371215 856261 754448 751080 412489 201846 299221 183561 615082 449507 153789 818453 993946 410643 112799 342912 774586 052886 881751 174199 896802 458271 433189 021976 081179 776438 109471 108900 227891 870984 115388 791593 150678 322569 165525 010873 686380 881379 033274 157465 096543 754476 486174 432967 236352 683571 592235 876811 512639 992615 750871 511029 334198 619478 420739 187102 534961 246527 291149 701599 537337 104156 480877 064988 446141 397195 314370 980909 766835 210175 855660 066403 319482 704501 702397 598627 570218 680438 692309 348111 397312 769259 308668 411896 563005 859196 771922 397492 686867 241853 437422 577060 265096 710873 970866 429786 546854 112740 083015 046408 194600 482447 503418 427576 837965 159284 197185 862112 427587 257778 731128 842316 541836 376197 938451 241151 823479 919338 740079 763512 731098 361342 029163 493917 049822 965383 316816 418129 131175 551970 804104 275786 709909 443160 588668 010401 309472 625472 066706 557305 824863 689134 925695 902443 616449 544270 382202 326933 326214 283252 044446 814471 921865 462658 809856 661840 471045 257265 141442 688832 843921 624380 733982 894427 100675 658456 947629 088802 791663 850103 528423 892985 361860 400950 172766 112858 050736 216502 107136 700418 218893 525782 198481 858995 834121 263834 450633 615110 816660 655248 418223 670280 084588 329298 231188 207668 177948 912874 687643 490603 719541 909138 821639 496787 073864 429244 209706 852891 642008 282058 879245 081888 745319 762667 841505 922285 493459 521161 744701 054759 904555 168752 672953 952801 191744 383186 022759 004751 063318 477460 081478 206663 727539 497884 262277 872724 353982 011336 032356 785661 876902 427960 457325 954213 016678 133529 139237 193053 580171 378855 771915 466394 544675 471929 117450 513331 083291 374523 145382 727616 229744 837556 121676 352291 025541 874676 429626 020295 107658 486036 150611 989574 382948 961766 951184 034375 906270 050579 152689 711605 990408 296317 292169 992192 303971 513751 086991 575505 991885 954561 784100 209865 410415 443670 053035 555631 362059 769190 124576 046088 935187 212355 316482 291661 859473 230788 925562 482805 372673 141542 459785 396009 087538 119856 311141 730465 574722 249248 182807 147510 933823 476807 006110 554076 383727 226527 656357 986472 946548 772146 592005 391935 738061 810028 425734 861345 595219 086920 888801 848791 558412 807964 059538 680137 926630 756844 604939 688436 925030 762237 639847 270221 526641 708173 626288 718752 739706 463267 146958 582689 400758 461478 613396 860321 298589 414643 526883 604523 094097 973387 572096 280059 640682 552825 529955 647387 304121 340566 129508 743551 446947 139261 407732 901214 914291 080692 437739 462809 670848 977732 183546 490733 036751 842440 494742 062602 602989 003422 009532 521069 562544 694226 175471 099872 310731 870874 615660 674087 421111 150884 005187 361928 574256 624632 298076 539355 861624 178056 837388 745908 846965 857143 840656 719657 957841 868091 549912 631817 770175 435334 240344 563783 853333 039328 750173 925198 223037 915145 668001 828480 064699 264789 334285 468795 853906 937108 719506 937409 311815 788704 235333 912025 619476 145319 581007 076042 314505 598032 661714 142778 490062 321129 036596 166066 063008 138524 721362 615975 139931 052680 804369 457457 334134 859174 067068 784171 563683 976005 308889 252422 865994 372034 146173 776072 649510 569740 430731 394120 396303 976449 246487 566741 851365 715028 922196 994927 755253 409835 882727 029630 919655 009801 554461 365429 916069 013653 002726 534253 279992 297754 701415 827585 943115 536064 792067 263270 618868 907378 709395 123996 424815 516381 111348 327706 031607 366031 090412 686743 179112 058127 528665 105526 306708 476588 227015 950959 528784 547032 994133 511130 671538 343494 610955 891350 577663 075746 747709 809144 594790 691396 447931 035408 774777 773920 712992 935311 143771 900819 521635 921950 294583 402706 092839 384323 012567 842364 955222 934550 227026 516514 981108 253699 772485 885378 578543 541841 118509 402239 224531 666751 348243 726714 923256 125906 851616 652839 064496 945006 978972 038740 352266 771180 308507 205690 260346 058461 681726 286154 125097 589842 744355 621292 272405 427450 442422 714510 761329 728597 558674 799969 678984 824052 898708 144644 608445 958652 615184 355580 423038 538935 018431 050317 118613 084072 379432 766414 569011 632528 499993 660799 658624 323124 699222 965863 811549 824605 178806 302378 267026 454162 643005 907715 041596 202401 650301 032929 561074 235746 970509 117534 020384 804022 139764 861692 069653 553780 295217 245543 312899 530948 764566 156857 994086 005382 184705 051204 014617 381098 940656 570337 740436 082368 380619 988771 718294 574973 400350 457439 178028 414918 180519 749935 917845 547712 949222 098955 033488 839847 305758 649028 273136 289117 735605 752945 781473 266020 233141 926007 532252 585384 620517 296662 825061 844780 515852 542894 519408 313135 828328 025819 316032 211258 079892 190496 962513 268376 567740 297666 620668 720518 615348 356245 158817 752262 569570 030458 793066 503259 320135 229270 247196 821788 846087 172529 765311 648707 854704 790977 098715 423960 954385 873111 214887 162021 741982 524191 965834 206766 111441 748190 056804 397702 564231 381207 695353 354764 469139 439690 943421 204938 064323 077718 460271 693057 182047 099332 534829 703411 977523 914104 055747 861050 347464 430742 159039 051897 629216 572313 542491 057029 375546 601770 724476 746789 388922 843511 025327 786620 095701 494654 815506 459172 942561 057857 070951 512995 681084 741200 403972 783090 231961 663203 080365 615252 537301 873976 897777 693773 700405 660777 966074 251011 334029 160308 814124 395120 730053 001338 168933 639349 681207 827221 850039 585190 985355 795712 781071 208126 134582 481088 440825 108961 380375 147875 565193 182119 602763 811859 733365 711187 383525 412781 826492 796922 317592 872464 034533 964685 274082 519878 081952 406762 737629 366751 552199 710769 390315 753151 110908 202245 997682 053231 116769 491331 229035 922152 999401 175728 973150 288602 721488 870618 526066 948016 198418 493643 703354 408025 296332 803191 301537 459793 441220 918570 795659 867264 827225 575789 110159 320143 394302 479192 843047 635173 037862 710316 797028 951381 669798 053702 367166 680631 327638 677277 724928 244558 831577 354717 860650 467197 326257 257863 723800 160471 763242 899531 857803 059530 399932 229051 881363 583357 935026 814200 595543 071732 047152 416695 268799 325297 595937 472659 029533 520876 699168 604889 495107 837123 456148 452065 864892 701541 943272 720756 395465 977893 138734 367930 553486 066660 139733 139199 176168 517086 286506 924894 059524 966332 953728 084801 731510 059065 478884 419066 191269 111223 793422 384368 066638 712414 373256 880217 499132 604350 750092 692745 119181 843052 569576 311861 303240 697935 206708 495308 794846 142198 754304 611867 702724 794187 009086 157209 483268 586519 325765 585687 049811 797776 037817 176357 037442 816584 311871 433366 700135 857201 739059 552038 191752 114437 842477 378184 059951 192821 363868 093484 433183 296966 445541 246793 406048 749565 100627 941908 776588 532821 622107 179295 521078 770877 719876 013899 511795 485260 041251 463858 964821 240384 754821 895120 320563 911807 234405 195672 200629 367258 452734 321109 101756 667881 047725 681358 788857 447961 024712 485101 241786 193914 810649 721146 848430 931154 165668 162824 276060 522477 864011 854743 359956 634084 271752 795598 987750 430935 692605 938698 642940 365478 341234 258932 834773 555658 973450 312190 197138 823963 658028 979015 821820 280556 299745 236380 905474 673586 820300 376433 993549 316652 131831 617148 069735 841101 536916 390640 882411 644567 728963 349372 217538 138211 093054 842682 435454 817787 771185 036098 098039 399621 073214 392549 974096 266521 315434 168377 903608 491622 216423 832488 076240 230386 477860 918097 045675 386088 670377 522844 136912 432034 678088 063492 873930 098181 254101 487302 218203 028401 835222 230501 487832 779530 389170 672788 556778 608812 428645 107300 530153 688869 885283 949807 400030 879094 687035 410841 058054 463863 941936 549464 942078 772221 243346 096607 565345 121575 239320 371710 043784 475075 796012 890246 797787 543826 212965 554512 077823 260870 060819 734846 125436 776830 966647 460400 230756 886534 343933 364626 943894 760001 (12540 digits)

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • x: equal sign missing in first expression

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • x=: three or four semicolons expected but none found

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • x=23: three or four semicolons expected but none found

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • x=23;13: variable x missing in second expression

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • x=23;x=x+1: three or four semicolons expected but there are only one

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • Error in expression #4: The expression must not include variables

    Written by Dario Alpern. Last updated on 15 December 2024.

    +6
    • 25 = 5^2
    • 26 = 2 * 13
    • 27 = 3^3
    • 28 = 2^2 * 7
    • 29 is prime
    • 30 = 2 * 3 * 5
    • 31 is prime
    • 32 = 2^5
    • 33 = 3 * 11
    • 34 = 2 * 17
    • 35 = 5 * 7
    • 36 = 2^2 * 3^2
    • 37 is prime
    • 38 = 2 * 19
    • 39 = 3 * 13
    • 40 = 2^3 * 5
    • 41 is prime
    • 42 = 2 * 3 * 7
    • 43 is prime
    • 44 = 2^2 * 11
    • 45 = 3^2 * 5
    • 46 = 2 * 23
    • 47 is prime
    • 48 = 2^4 * 3
    • 49 = 7^2
    • 50 = 2 * 5^2
    • 51 = 3 * 17
    • 52 = 2^2 * 13
    • 53 is prime
    • 54 = 2 * 3^3
    • 55 = 5 * 11
    • 56 = 2^3 * 7
    • 57 = 3 * 19
    • 58 = 2 * 29
    • 59 is prime
    • 60 = 2^2 * 3 * 5
    • 61 is prime
    • 62 = 2 * 31
    • 63 = 3^2 * 7
    • 64 = 2^6
    • 65 = 5 * 13
    • 66 = 2 * 3 * 11
    • 67 is prime
    • 68 = 2^2 * 17
    • 69 = 3 * 23
    • 70 = 2 * 5 * 7
    • 71 is prime
    • 72 = 2^3 * 3^2
    • 73 is prime
    • 74 = 2 * 37
    • 75 = 3 * 5^2
    • 76 = 2^2 * 19
    • 77 = 7 * 11
    • 78 = 2 * 3 * 13
    • 79 is prime
    • 80 = 2^4 * 5
    • 81 = 3^4
    • 82 = 2 * 41
    • 83 is prime
    • 84 = 2^2 * 3 * 7
    • 85 = 5 * 17
    • 86 = 2 * 43
    • 87 = 3 * 29
    • 88 = 2^3 * 11
    • 89 is prime
    • 90 = 2 * 3^2 * 5
    • 91 = 7 * 13
    • 92 = 2^2 * 23
    • 93 = 3 * 31
    • 94 = 2 * 47
    • 95 = 5 * 19
    • 96 = 2^5 * 3
    • 97 is prime
    • 98 = 2 * 7^2
    • 99 = 3^2 * 11
    • 100 = 2^2 * 5^2
    • 101 is prime
    • 102 = 2 * 3 * 17
    • 103 is prime
    • 104 = 2^3 * 13
    • 105 = 3 * 5 * 7
    • 106 = 2 * 53
    • 107 is prime
    • 108 = 2^2 * 3^3
    • 109 is prime
    • 110 = 2 * 5 * 11
    • 111 = 3 * 37
    • 112 = 2^4 * 7
    • 113 is prime
    • 114 = 2 * 3 * 19
    • 115 = 5 * 23
    • 116 = 2^2 * 29
    • 117 = 3^2 * 13
    • 118 = 2 * 59
    • 119 = 7 * 17
    • 120 = 2^3 * 3 * 5
    • 121 = 11^2
    • 122 = 2 * 61
    • 123 = 3 * 41
    • 124 = 2^2 * 31
    • 125 = 5^3
    • 126 = 2 * 3^2 * 7
    • 127 is prime
    • 128 = 2^7
    • 129 = 3 * 43
    • 130 = 2 * 5 * 13
    • 131 is prime
    • 132 = 2^2 * 3 * 11
    • 133 = 7 * 19
    • 134 = 2 * 67
    • 135 = 3^3 * 5
    • 136 = 2^3 * 17
    • 137 is prime
    • 138 = 2 * 3 * 23
    • 139 is prime
    • 140 = 2^2 * 5 * 7
    • 141 = 3 * 47
    • 142 = 2 * 71
    • 143 = 11 * 13
    • 144 = 2^4 * 3^2
    • 145 = 5 * 29
    • 146 = 2 * 73
    • 147 = 3 * 7^2
    • 148 = 2^2 * 37
    • 149 is prime
    • 150 = 2 * 3 * 5^2
    • 151 is prime
    • 152 = 2^3 * 19
    • 153 = 3^2 * 17
    • 154 = 2 * 7 * 11
    • 155 = 5 * 31
    • 156 = 2^2 * 3 * 13
    • 157 is prime
    • 158 = 2 * 79
    • 159 = 3 * 53
    • 160 = 2^5 * 5
    • 161 = 7 * 23
    • 162 = 2 * 3^4
    • 163 is prime
    • 164 = 2^2 * 41
    • 165 = 3 * 5 * 11
    • 166 = 2 * 83
    • 167 is prime
    • 168 = 2^3 * 3 * 7
    • 169 = 13^2
    • 170 = 2 * 5 * 17
    • 171 = 3^2 * 19
    • 172 = 2^2 * 43
    • 173 is prime
    • 174 = 2 * 3 * 29
    • 175 = 5^2 * 7
    • 176 = 2^4 * 11
    • 177 = 3 * 59
    • 178 = 2 * 89
    • 179 is prime
    • 180 = 2^2 * 3^2 * 5
    • 181 is prime
    • 182 = 2 * 7 * 13
    • 183 = 3 * 61
    • 184 = 2^3 * 23
    • 185 = 5 * 37
    • 186 = 2 * 3 * 31
    • 187 = 11 * 17
    • 188 = 2^2 * 47
    • 189 = 3^3 * 7
    • 190 = 2 * 5 * 19
    • 191 is prime
    • 192 = 2^6 * 3
    • 193 is prime
    • 194 = 2 * 97
    • 195 = 3 * 5 * 13
    • 196 = 2^2 * 7^2
    • 197 is prime
    • 198 = 2 * 3^2 * 11
    • 199 is prime
    • 200 = 2^3 * 5^2
    • 201 = 3 * 67
    • 202 = 2 * 101
    • 203 = 7 * 29
    • 204 = 2^2 * 3 * 17
    • 205 = 5 * 41
    • 206 = 2 * 103
    • 207 = 3^2 * 23
    • 208 = 2^4 * 13
    • 209 = 11 * 19
    • 210 = 2 * 3 * 5 * 7
    • 211 is prime
    • 212 = 2^2 * 53
    • 213 = 3 * 71
    • 214 = 2 * 107
    • 215 = 5 * 43
    • 216 = 2^3 * 3^3
    • 217 = 7 * 31
    • 218 = 2 * 109
    • 219 = 3 * 73
    • 220 = 2^2 * 5 * 11
    • 221 = 13 * 17
    • 222 = 2 * 3 * 37
    • 223 is prime
    • 224 = 2^5 * 7
    • 225 = 3^2 * 5^2
    • 226 = 2 * 113
    • 227 is prime
    • 228 = 2^2 * 3 * 19
    • 229 is prime
    • 230 = 2 * 5 * 23
    • 231 = 3 * 7 * 11
    • 232 = 2^3 * 29
    • 233 is prime
    • 234 = 2 * 3^2 * 13
    • 235 = 5 * 47
    • 236 = 2^2 * 59
    • 237 = 3 * 79
    • 238 = 2 * 7 * 17
    • 239 is prime
    • 240 = 2^4 * 3 * 5
    • 241 is prime
    • 242 = 2 * 11^2
    • 243 = 3^5
    • 244 = 2^2 * 61
    • 245 = 5 * 7^2
    • 246 = 2 * 3 * 41
    • 247 = 13 * 19
    • 248 = 2^3 * 31
    • 249 = 3 * 83
    • 250 = 2 * 5^3
    • 251 is prime
    • 252 = 2^2 * 3^2 * 7
    • 253 = 11 * 23
    • 254 = 2 * 127
    • 255 = 3 * 5 * 17
    • 256 = 2^8
    • 257 is prime
    • 258 = 2 * 3 * 43
    • 259 = 7 * 37
    • 260 = 2^2 * 5 * 13
    • 261 = 3^2 * 29
    • 262 = 2 * 131
    • 263 is prime
    • 264 = 2^3 * 3 * 11
    • 265 = 5 * 53
    • 266 = 2 * 7 * 19
    • 267 = 3 * 89
    • 268 = 2^2 * 67
    • 269 is prime
    • 270 = 2 * 3^3 * 5
    • 271 is prime
    • 272 = 2^4 * 17
    • 273 = 3 * 7 * 13
    • 274 = 2 * 137
    • 275 = 5^2 * 11
    • 276 = 2^2 * 3 * 23
    • 277 is prime
    • 278 = 2 * 139
    • 279 = 3^2 * 31
    • 280 = 2^3 * 5 * 7
    • 281 is prime
    • 282 = 2 * 3 * 47
    • 283 is prime
    • 284 = 2^2 * 71
    • 285 = 3 * 5 * 19
    • 286 = 2 * 11 * 13
    • 287 = 7 * 41
    • 288 = 2^5 * 3^2
    • 289 = 17^2
    • 290 = 2 * 5 * 29
    • 291 = 3 * 97
    • 292 = 2^2 * 73
    • 293 is prime
    • 294 = 2 * 3 * 7^2
    • 295 = 5 * 59
    • 296 = 2^3 * 37
    • 297 = 3^3 * 11
    • 298 = 2 * 149
    • 299 = 13 * 23
    • 300 = 2^2 * 3 * 5^2
    • 301 = 7 * 43
    • 302 = 2 * 151
    • 303 = 3 * 101
    • 304 = 2^4 * 19
    • 305 = 5 * 61
    • 306 = 2 * 3^2 * 17
    • 307 is prime
    • 308 = 2^2 * 7 * 11
    • 309 = 3 * 103
    • 310 = 2 * 5 * 31
    • 311 is prime
    • 312 = 2^3 * 3 * 13
    • 313 is prime
    • 314 = 2 * 157
    • 315 = 3^2 * 5 * 7
    • 316 = 2^2 * 79
    • 317 is prime
    • 318 = 2 * 3 * 53
    • 319 = 11 * 29
    • 320 = 2^6 * 5
    • 321 = 3 * 107
    • 322 = 2 * 7 * 23
    • 323 = 17 * 19
    • 324 = 2^2 * 3^4
    • 325 = 5^2 * 13
    • 326 = 2 * 163
    • 327 = 3 * 109
    • 328 = 2^3 * 41
    • 329 = 7 * 47
    • 330 = 2 * 3 * 5 * 11
    • 331 is prime
    • 332 = 2^2 * 83
    • 333 = 3^2 * 37
    • 334 = 2 * 167
    • 335 = 5 * 67
    • 336 = 2^4 * 3 * 7
    • 337 is prime
    • 338 = 2 * 13^2
    • 339 = 3 * 113
    • 340 = 2^2 * 5 * 17
    • 341 = 11 * 31
    • 342 = 2 * 3^2 * 19
    • 343 = 7^3
    • 344 = 2^3 * 43
    • 345 = 3 * 5 * 23
    • 346 = 2 * 173
    • 347 is prime
    • 348 = 2^2 * 3 * 29
    • 349 is prime
    • 350 = 2 * 5^2 * 7
    • 351 = 3^3 * 13
    • 352 = 2^5 * 11
    • 353 is prime
    • 354 = 2 * 3 * 59
    • 355 = 5 * 71
    • 356 = 2^2 * 89
    • 357 = 3 * 7 * 17
    • 358 = 2 * 179
    • 359 is prime
    • 360 = 2^3 * 3^2 * 5
    • 361 = 19^2
    • 362 = 2 * 181
    • 363 = 3 * 11^2
    • 364 = 2^2 * 7 * 13
    • 365 = 5 * 73
    • 366 = 2 * 3 * 61
    • 367 is prime
    • 368 = 2^4 * 23
    • 369 = 3^2 * 41
    • 370 = 2 * 5 * 37
    • 371 = 7 * 53
    • 372 = 2^2 * 3 * 31
    • 373 is prime
    • 374 = 2 * 11 * 17
    • 375 = 3 * 5^3
    • 376 = 2^3 * 47
    • 377 = 13 * 29
    • 378 = 2 * 3^3 * 7
    • 379 is prime
    • 380 = 2^2 * 5 * 19
    • 381 = 3 * 127
    • 382 = 2 * 191
    • 383 is prime
    • 384 = 2^7 * 3
    • 385 = 5 * 7 * 11
    • 386 = 2 * 193
    • 387 = 3^2 * 43
    • 388 = 2^2 * 97
    • 389 is prime
    • 390 = 2 * 3 * 5 * 13
    • 391 = 17 * 23
    • 392 = 2^3 * 7^2
    • 393 = 3 * 131
    • 394 = 2 * 197
    • 395 = 5 * 79
    • 396 = 2^2 * 3^2 * 11
    • 397 is prime
    • 398 = 2 * 199
    • 399 = 3 * 7 * 19
    • 400 = 2^4 * 5^2
    • 401 is prime
    • 402 = 2 * 3 * 67
    • 403 = 13 * 31
    • 404 = 2^2 * 101
    • 405 = 3^4 * 5
    • 406 = 2 * 7 * 29
    • 407 = 11 * 37
    • 408 = 2^3 * 3 * 17
    • 409 is prime
    • 410 = 2 * 5 * 41
    • 411 = 3 * 137
    • 412 = 2^2 * 103
    • 413 = 7 * 59
    • 414 = 2 * 3^2 * 23
    • 415 = 5 * 83
    • 416 = 2^5 * 13
    • 417 = 3 * 139
    • 418 = 2 * 11 * 19
    • 419 is prime
    • 420 = 2^2 * 3 * 5 * 7
    • 421 is prime
    • 422 = 2 * 211
    • 423 = 3^2 * 47
    • 424 = 2^3 * 53
    • 425 = 5^2 * 17
    • 426 = 2 * 3 * 71
    • 427 = 7 * 61
    • 428 = 2^2 * 107
    • 429 = 3 * 11 * 13
    • 430 = 2 * 5 * 43
    • 431 is prime
    • 432 = 2^4 * 3^3
    • 433 is prime
    • 434 = 2 * 7 * 31
    • 435 = 3 * 5 * 29
    • 436 = 2^2 * 109
    • 437 = 19 * 23
    • 438 = 2 * 3 * 73
    • 439 is prime
    • 440 = 2^3 * 5 * 11
    • 441 = 3^2 * 7^2
    • 442 = 2 * 13 * 17
    • 443 is prime
    • 444 = 2^2 * 3 * 37
    • 445 = 5 * 89
    • 446 = 2 * 223
    • 447 = 3 * 149
    • 448 = 2^6 * 7
    • 449 is prime
    • 450 = 2 * 3^2 * 5^2
    • 451 = 11 * 41
    • 452 = 2^2 * 113
    • 453 = 3 * 151
    • 454 = 2 * 227
    • 455 = 5 * 7 * 13
    • 456 = 2^3 * 3 * 19
    • 457 is prime
    • 458 = 2 * 229
    • 459 = 3^3 * 17
    • 460 = 2^2 * 5 * 23
    • 461 is prime
    • 462 = 2 * 3 * 7 * 11
    • 463 is prime
    • 464 = 2^4 * 29
    • 465 = 3 * 5 * 31
    • 466 = 2 * 233
    • 467 is prime
    • 468 = 2^2 * 3^2 * 13
    • 469 = 7 * 67
    • 470 = 2 * 5 * 47
    • 471 = 3 * 157
    • 472 = 2^3 * 59
    • 473 = 11 * 43
    • 474 = 2 * 3 * 79
    • 475 = 5^2 * 19
    • 476 = 2^2 * 7 * 17
    • 477 = 3^2 * 53
    • 478 = 2 * 239
    • 479 is prime
    • 480 = 2^5 * 3 * 5
    • 481 = 13 * 37
    • 482 = 2 * 241
    • 483 = 3 * 7 * 23
    • 484 = 2^2 * 11^2
    • 485 = 5 * 97
    • 486 = 2 * 3^5
    • 487 is prime
    • 488 = 2^3 * 61
    • 489 = 3 * 163
    • 490 = 2 * 5 * 7^2
    • 491 is prime
    • 492 = 2^2 * 3 * 41
    • 493 = 17 * 29
    • 494 = 2 * 13 * 19
    • 495 = 3^2 * 5 * 11
    • 496 = 2^4 * 31
    • 497 = 7 * 71
    • 498 = 2 * 3 * 83
    • 499 is prime
    • 500 = 2^2 * 5^3
    • 501 = 3 * 167
    • 502 = 2 * 251
    • 503 is prime
    • 504 = 2^3 * 3^2 * 7
    • 505 = 5 * 101
    • 506 = 2 * 11 * 23
    • 507 = 3 * 13^2
    • 508 = 2^2 * 127
    • 509 is prime
    • 510 = 2 * 3 * 5 * 17
    • 511 = 7 * 73
    • 512 = 2^9
    • 513 = 3^3 * 19
    • 514 = 2 * 257
    • 515 = 5 * 103
    • 516 = 2^2 * 3 * 43
    • 517 = 11 * 47
    • 518 = 2 * 7 * 37
    • 519 = 3 * 173
    • 520 = 2^3 * 5 * 13
    • 521 is prime
    • 522 = 2 * 3^2 * 29
    • 523 is prime
    • 524 = 2^2 * 131
    • 525 = 3 * 5^2 * 7
    • 526 = 2 * 263
    • 527 = 17 * 31
    • 528 = 2^4 * 3 * 11
    • 529 = 23^2
    • 530 = 2 * 5 * 53
    • 531 = 3^2 * 59
    • 532 = 2^2 * 7 * 19
    • 533 = 13 * 41
    • 534 = 2 * 3 * 89
    • 535 = 5 * 107
    • 536 = 2^3 * 67
    • 537 = 3 * 179
    • 538 = 2 * 269
    • 539 = 7^2 * 11
    • 540 = 2^2 * 3^3 * 5
    • 541 is prime
    • 542 = 2 * 271
    • 543 = 3 * 181
    • 544 = 2^5 * 17
    • 545 = 5 * 109
    • 546 = 2 * 3 * 7 * 13
    • 547 is prime
    • 548 = 2^2 * 137
    • 549 = 3^2 * 61
    • 550 = 2 * 5^2 * 11
    • 551 = 19 * 29
    • 552 = 2^3 * 3 * 23
    • 553 = 7 * 79
    • 554 = 2 * 277
    • 555 = 3 * 5 * 37
    • 556 = 2^2 * 139
    • 557 is prime
    • 558 = 2 * 3^2 * 31
    • 559 = 13 * 43
    • 560 = 2^4 * 5 * 7
    • 561 = 3 * 11 * 17
    • 562 = 2 * 281
    • 563 is prime
    • 564 = 2^2 * 3 * 47
    • 565 = 5 * 113
    • 566 = 2 * 283
    • 567 = 3^4 * 7
    • 568 = 2^3 * 71
    • 569 is prime
    • 570 = 2 * 3 * 5 * 19
    • 571 is prime
    • 572 = 2^2 * 11 * 13
    • 573 = 3 * 191
    • 574 = 2 * 7 * 41
    • 575 = 5^2 * 23
    • 576 = 2^6 * 3^2
    • 577 is prime
    • 578 = 2 * 17^2
    • 579 = 3 * 193
    • 580 = 2^2 * 5 * 29
    • 581 = 7 * 83
    • 582 = 2 * 3 * 97
    • 583 = 11 * 53
    • 584 = 2^3 * 73
    • 585 = 3^2 * 5 * 13
    • 586 = 2 * 293
    • 587 is prime
    • 588 = 2^2 * 3 * 7^2
    • 589 = 19 * 31
    • 590 = 2 * 5 * 59
    • 591 = 3 * 197
    • 592 = 2^4 * 37
    • 593 is prime
    • 594 = 2 * 3^3 * 11
    • 595 = 5 * 7 * 17
    • 596 = 2^2 * 149
    • 597 = 3 * 199
    • 598 = 2 * 13 * 23
    • 599 is prime
    • 600 = 2^3 * 3 * 5^2
    • 601 is prime
    • 602 = 2 * 7 * 43
    • 603 = 3^2 * 67
    • 604 = 2^2 * 151
    • 605 = 5 * 11^2
    • 606 = 2 * 3 * 101
    • 607 is prime
    • 608 = 2^5 * 19
    • 609 = 3 * 7 * 29
    • 610 = 2 * 5 * 61
    • 611 = 13 * 47
    • 612 = 2^2 * 3^2 * 17
    • 613 is prime
    • 614 = 2 * 307
    • 615 = 3 * 5 * 41
    • 616 = 2^3 * 7 * 11
    • 617 is prime
    • 618 = 2 * 3 * 103
    • 619 is prime
    • 620 = 2^2 * 5 * 31
    • 621 = 3^3 * 23
    • 622 = 2 * 311
    • 623 = 7 * 89
    • 624 = 2^4 * 3 * 13
    • 625 = 5^4
    • 626 = 2 * 313
    • 627 = 3 * 11 * 19
    • 628 = 2^2 * 157
    • 629 = 17 * 37
    • 630 = 2 * 3^2 * 5 * 7
    • 631 is prime
    • 632 = 2^3 * 79
    • 633 = 3 * 211
    • 634 = 2 * 317
    • 635 = 5 * 127
    • 636 = 2^2 * 3 * 53
    • 637 = 7^2 * 13
    • 638 = 2 * 11 * 29
    • 639 = 3^2 * 71
    • 640 = 2^7 * 5
    • 641 is prime
    • 642 = 2 * 3 * 107
    • 643 is prime
    • 644 = 2^2 * 7 * 23
    • 645 = 3 * 5 * 43
    • 646 = 2 * 17 * 19
    • 647 is prime
    • 648 = 2^3 * 3^4
    • 649 = 11 * 59
    • 650 = 2 * 5^2 * 13
    • 651 = 3 * 7 * 31
    • 652 = 2^2 * 163
    • 653 is prime
    • 654 = 2 * 3 * 109
    • 655 = 5 * 131
    • 656 = 2^4 * 41
    • 657 = 3^2 * 73
    • 658 = 2 * 7 * 47
    • 659 is prime
    • 660 = 2^2 * 3 * 5 * 11
    • 661 is prime
    • 662 = 2 * 331
    • 663 = 3 * 13 * 17
    • 664 = 2^3 * 83
    • 665 = 5 * 7 * 19
    • 666 = 2 * 3^2 * 37
    • 667 = 23 * 29
    • 668 = 2^2 * 167
    • 669 = 3 * 223
    • 670 = 2 * 5 * 67
    • 671 = 11 * 61
    • 672 = 2^5 * 3 * 7
    • 673 is prime
    • 674 = 2 * 337
    • 675 = 3^3 * 5^2
    • 676 = 2^2 * 13^2
    • 677 is prime
    • 678 = 2 * 3 * 113
    • 679 = 7 * 97
    • 680 = 2^3 * 5 * 17
    • 681 = 3 * 227
    • 682 = 2 * 11 * 31
    • 683 is prime
    • 684 = 2^2 * 3^2 * 19
    • 685 = 5 * 137
    • 686 = 2 * 7^3
    • 687 = 3 * 229
    • 688 = 2^4 * 43
    • 689 = 13 * 53
    • 690 = 2 * 3 * 5 * 23
    • 691 is prime
    • 692 = 2^2 * 173
    • 693 = 3^2 * 7 * 11
    • 694 = 2 * 347
    • 695 = 5 * 139
    • 696 = 2^3 * 3 * 29
    • 697 = 17 * 41
    • 698 = 2 * 349
    • 699 = 3 * 233
    • 700 = 2^2 * 5^2 * 7
    • 701 is prime
    • 702 = 2 * 3^3 * 13
    • 703 = 19 * 37
    • 704 = 2^6 * 11
    • 705 = 3 * 5 * 47
    • 706 = 2 * 353
    • 707 = 7 * 101
    • 708 = 2^2 * 3 * 59
    • 709 is prime
    • 710 = 2 * 5 * 71
    • 711 = 3^2 * 79
    • 712 = 2^3 * 89
    • 713 = 23 * 31
    • 714 = 2 * 3 * 7 * 17
    • 715 = 5 * 11 * 13
    • 716 = 2^2 * 179
    • 717 = 3 * 239
    • 718 = 2 * 359
    • 719 is prime
    • 720 = 2^4 * 3^2 * 5
    • 721 = 7 * 103
    • 722 = 2 * 19^2
    • 723 = 3 * 241
    • 724 = 2^2 * 181
    • 725 = 5^2 * 29
    • 726 = 2 * 3 * 11^2
    • 727 is prime
    • 728 = 2^3 * 7 * 13
    • 729 = 3^6
    • 730 = 2 * 5 * 73
    • 731 = 17 * 43
    • 732 = 2^2 * 3 * 61
    • 733 is prime
    • 734 = 2 * 367
    • 735 = 3 * 5 * 7^2
    • 736 = 2^5 * 23
    • 737 = 11 * 67
    • 738 = 2 * 3^2 * 41
    • 739 is prime
    • 740 = 2^2 * 5 * 37
    • 741 = 3 * 13 * 19
    • 742 = 2 * 7 * 53
    • 743 is prime
    • 744 = 2^3 * 3 * 31
    • 745 = 5 * 149
    • 746 = 2 * 373
    • 747 = 3^2 * 83
    • 748 = 2^2 * 11 * 17
    • 749 = 7 * 107
    • 750 = 2 * 3 * 5^3
    • 751 is prime
    • 752 = 2^4 * 47
    • 753 = 3 * 251
    • 754 = 2 * 13 * 29
    • 755 = 5 * 151
    • 756 = 2^2 * 3^3 * 7
    • 757 is prime
    • 758 = 2 * 379
    • 759 = 3 * 11 * 23
    • 760 = 2^3 * 5 * 19
    • 761 is prime
    • 762 = 2 * 3 * 127
    • 763 = 7 * 109
    • 764 = 2^2 * 191
    • 765 = 3^2 * 5 * 17
    • 766 = 2 * 383
    • 767 = 13 * 59
    • 768 = 2^8 * 3
    • 769 is prime
    • 770 = 2 * 5 * 7 * 11
    • 771 = 3 * 257
    • 772 = 2^2 * 193
    • 773 is prime
    • 774 = 2 * 3^2 * 43
    • 775 = 5^2 * 31
    • 776 = 2^3 * 97
    • 777 = 3 * 7 * 37
    • 778 = 2 * 389
    • 779 = 19 * 41
    • 780 = 2^2 * 3 * 5 * 13
    • 781 = 11 * 71
    • 782 = 2 * 17 * 23
    • 783 = 3^3 * 29
    • 784 = 2^4 * 7^2
    • 785 = 5 * 157
    • 786 = 2 * 3 * 131
    • 787 is prime
    • 788 = 2^2 * 197
    • 789 = 3 * 263
    • 790 = 2 * 5 * 79
    • 791 = 7 * 113
    • 792 = 2^3 * 3^2 * 11
    • 793 = 13 * 61
    • 794 = 2 * 397
    • 795 = 3 * 5 * 53
    • 796 = 2^2 * 199
    • 797 is prime
    • 798 = 2 * 3 * 7 * 19
    • 799 = 17 * 47
    • 800 = 2^5 * 5^2
    • 801 = 3^2 * 89
    • 802 = 2 * 401
    • 803 = 11 * 73
    • 804 = 2^2 * 3 * 67
    • 805 = 5 * 7 * 23
    • 806 = 2 * 13 * 31
    • 807 = 3 * 269
    • 808 = 2^3 * 101
    • 809 is prime
    • 810 = 2 * 3^4 * 5
    • 811 is prime
    • 812 = 2^2 * 7 * 29
    • 813 = 3 * 271
    • 814 = 2 * 11 * 37
    • 815 = 5 * 163
    • 816 = 2^4 * 3 * 17
    • 817 = 19 * 43
    • 818 = 2 * 409
    • 819 = 3^2 * 7 * 13
    • 820 = 2^2 * 5 * 41
    • 821 is prime
    • 822 = 2 * 3 * 137
    • 823 is prime
    • 824 = 2^3 * 103
    • 825 = 3 * 5^2 * 11
    • 826 = 2 * 7 * 59
    • 827 is prime
    • 828 = 2^2 * 3^2 * 23
    • 829 is prime
    • 830 = 2 * 5 * 83
    • 831 = 3 * 277
    • 832 = 2^6 * 13
    • 833 = 7^2 * 17
    • 834 = 2 * 3 * 139
    • 835 = 5 * 167
    • 836 = 2^2 * 11 * 19
    • 837 = 3^3 * 31
    • 838 = 2 * 419
    • 839 is prime
    • 840 = 2^3 * 3 * 5 * 7
    • 841 = 29^2
    • 842 = 2 * 421
    • 843 = 3 * 281
    • 844 = 2^2 * 211
    • 845 = 5 * 13^2
    • 846 = 2 * 3^2 * 47
    • 847 = 7 * 11^2
    • 848 = 2^4 * 53
    • 849 = 3 * 283
    • 850 = 2 * 5^2 * 17
    • 851 = 23 * 37
    • 852 = 2^2 * 3 * 71
    • 853 is prime
    • 854 = 2 * 7 * 61
    • 855 = 3^2 * 5 * 19
    • 856 = 2^3 * 107
    • 857 is prime
    • 858 = 2 * 3 * 11 * 13
    • 859 is prime
    • 860 = 2^2 * 5 * 43
    • 861 = 3 * 7 * 41
    • 862 = 2 * 431
    • 863 is prime
    • 864 = 2^5 * 3^3
    • 865 = 5 * 173
    • 866 = 2 * 433
    • 867 = 3 * 17^2
    • 868 = 2^2 * 7 * 31
    • 869 = 11 * 79
    • 870 = 2 * 3 * 5 * 29
    • 871 = 13 * 67
    • 872 = 2^3 * 109
    • 873 = 3^2 * 97
    • 874 = 2 * 19 * 23
    • 875 = 5^3 * 7
    • 876 = 2^2 * 3 * 73
    • 877 is prime
    • 878 = 2 * 439
    • 879 = 3 * 293
    • 880 = 2^4 * 5 * 11
    • 881 is prime
    • 882 = 2 * 3^2 * 7^2
    • 883 is prime
    • 884 = 2^2 * 13 * 17
    • 885 = 3 * 5 * 59
    • 886 = 2 * 443
    • 887 is prime
    • 888 = 2^3 * 3 * 37
    • 889 = 7 * 127
    • 890 = 2 * 5 * 89
    • 891 = 3^4 * 11
    • 892 = 2^2 * 223
    • 893 = 19 * 47
    • 894 = 2 * 3 * 149
    • 895 = 5 * 179
    • 896 = 2^7 * 7
    • 897 = 3 * 13 * 23
    • 898 = 2 * 449
    • 899 = 29 * 31
    • 900 = 2^2 * 3^2 * 5^2
    • 901 = 17 * 53
    • 902 = 2 * 11 * 41
    • 903 = 3 * 7 * 43
    • 904 = 2^3 * 113
    • 905 = 5 * 181
    • 906 = 2 * 3 * 151
    • 907 is prime
    • 908 = 2^2 * 227
    • 909 = 3^2 * 101
    • 910 = 2 * 5 * 7 * 13
    • 911 is prime
    • 912 = 2^4 * 3 * 19
    • 913 = 11 * 83
    • 914 = 2 * 457
    • 915 = 3 * 5 * 61
    • 916 = 2^2 * 229
    • 917 = 7 * 131
    • 918 = 2 * 3^3 * 17
    • 919 is prime
    • 920 = 2^3 * 5 * 23
    • 921 = 3 * 307
    • 922 = 2 * 461
    • 923 = 13 * 71
    • 924 = 2^2 * 3 * 7 * 11
    • 925 = 5^2 * 37
    • 926 = 2 * 463
    • 927 = 3^2 * 103
    • 928 = 2^5 * 29
    • 929 is prime
    • 930 = 2 * 3 * 5 * 31
    • 931 = 7^2 * 19
    • 932 = 2^2 * 233
    • 933 = 3 * 311
    • 934 = 2 * 467
    • 935 = 5 * 11 * 17
    • 936 = 2^3 * 3^2 * 13
    • 937 is prime
    • 938 = 2 * 7 * 67
    • 939 = 3 * 313
    • 940 = 2^2 * 5 * 47
    • 941 is prime
    • 942 = 2 * 3 * 157
    • 943 = 23 * 41
    • 944 = 2^4 * 59
    • 945 = 3^3 * 5 * 7
    • 946 = 2 * 11 * 43
    • 947 is prime
    • 948 = 2^2 * 3 * 79
    • 949 = 13 * 73
    • 950 = 2 * 5^2 * 19
    • 951 = 3 * 317
    • 952 = 2^3 * 7 * 17
    • 953 is prime
    • 954 = 2 * 3^2 * 53
    • 955 = 5 * 191
    • 956 = 2^2 * 239
    • 957 = 3 * 11 * 29
    • 958 = 2 * 479
    • 959 = 7 * 137
    • 960 = 2^6 * 3 * 5
    • 961 = 31^2
    • 962 = 2 * 13 * 37
    • 963 = 3^2 * 107
    • 964 = 2^2 * 241
    • 965 = 5 * 193
    • 966 = 2 * 3 * 7 * 23
    • 967 is prime
    • 968 = 2^3 * 11^2
    • 969 = 3 * 17 * 19
    • 970 = 2 * 5 * 97
    • 971 is prime
    • 972 = 2^2 * 3^5
    • 973 = 7 * 139
    • 974 = 2 * 487
    • 975 = 3 * 5^2 * 13
    • 976 = 2^4 * 61
    • 977 is prime
    • 978 = 2 * 3 * 163
    • 979 = 11 * 89
    • 980 = 2^2 * 5 * 7^2
    • 981 = 3^2 * 109
    • 982 = 2 * 491
    • 983 is prime
    • 984 = 2^3 * 3 * 41
    • 985 = 5 * 197
    • 986 = 2 * 17 * 29
    • 987 = 3 * 7 * 47
    • 988 = 2^2 * 13 * 19
    • 989 = 23 * 43
    • 990 = 2 * 3^2 * 5 * 11
    • 991 is prime
    • 992 = 2^5 * 31
    • 993 = 3 * 331
    • 994 = 2 * 7 * 71
    • 995 = 5 * 199
    • 996 = 2^2 * 3 * 83
    • 997 is prime
    • 998 = 2 * 499
    • 999 = 3^3 * 37
    • 1000 = 2^3 * 5^3
    • 1001 = 7 * 11 * 13
    • 1002 = 2 * 3 * 167
    • 1003 = 17 * 59
    • 1004 = 2^2 * 251
    • 1005 = 3 * 5 * 67
    • 1006 = 2 * 503
    • 1007 = 19 * 53
    • 1008 = 2^4 * 3^2 * 7
    • 1009 is prime
    • 1010 = 2 * 5 * 101
    • 1011 = 3 * 337
    • 1012 = 2^2 * 11 * 23
    • 1013 is prime
    • 1014 = 2 * 3 * 13^2
    • 1015 = 5 * 7 * 29
    • 1016 = 2^3 * 127
    • 1017 = 3^2 * 113
    • 1018 = 2 * 509
    • 1019 is prime
    • 1020 = 2^2 * 3 * 5 * 17
    • 1021 is prime
    • 1022 = 2 * 7 * 73
    • 1023 = 3 * 11 * 31
    • 1024 = 2^10

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • Error in expression #3: Expression #3 must include the variable x and/or the counter c

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • Error in expression #3: Syntax error in expression #3:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 4 = 2^2
    • 22 = 2 * 11
    • 27 = 3^3
    • 58 = 2 * 29
    • 85 = 5 * 17
    • 94 = 2 * 47
    • 121 = 11^2
    • 166 = 2 * 83
    • 202 = 2 * 101
    • 265 = 5 * 53
    • 274 = 2 * 137
    • 319 = 11 * 29
    • 346 = 2 * 173
    • 355 = 5 * 71
    • 378 = 2 * 3^3 * 7
    • 382 = 2 * 191
    • 391 = 17 * 23
    • 438 = 2 * 3 * 73
    • 454 = 2 * 227
    • 483 = 3 * 7 * 23
    • 517 = 11 * 47
    • 526 = 2 * 263
    • 535 = 5 * 107
    • 562 = 2 * 281
    • 576 = 2^6 * 3^2
    • 588 = 2^2 * 3 * 7^2
    • 627 = 3 * 11 * 19
    • 634 = 2 * 317
    • 636 = 2^2 * 3 * 53
    • 645 = 3 * 5 * 43
    • 648 = 2^3 * 3^4
    • 654 = 2 * 3 * 109
    • 663 = 3 * 13 * 17
    • 666 = 2 * 3^2 * 37
    • 690 = 2 * 3 * 5 * 23
    • 706 = 2 * 353
    • 728 = 2^3 * 7 * 13
    • 729 = 3^6
    • 762 = 2 * 3 * 127
    • 778 = 2 * 389
    • 825 = 3 * 5^2 * 11
    • 852 = 2^2 * 3 * 71
    • 861 = 3 * 7 * 41
    • 895 = 5 * 179
    • 913 = 11 * 83
    • 915 = 3 * 5 * 61
    • 922 = 2 * 461
    • 958 = 2 * 479
    • 985 = 5 * 197
    • 1086 = 2 * 3 * 181
    • 1111 = 11 * 101
    • 1165 = 5 * 233
    • 1219 = 23 * 53
    • 1255 = 5 * 251
    • 1282 = 2 * 641
    • 1284 = 2^2 * 3 * 107
    • 1376 = 2^5 * 43
    • 1449 = 3^2 * 7 * 23
    • 1507 = 11 * 137
    • 1581 = 3 * 17 * 31
    • 1626 = 2 * 3 * 271
    • 1633 = 23 * 71
    • 1642 = 2 * 821
    • 1678 = 2 * 839
    • 1736 = 2^3 * 7 * 31
    • 1755 = 3^3 * 5 * 13
    • 1776 = 2^4 * 3 * 37
    • 1795 = 5 * 359
    • 1822 = 2 * 911
    • 1842 = 2 * 3 * 307
    • 1858 = 2 * 929
    • 1872 = 2^4 * 3^2 * 13
    • 1881 = 3^2 * 11 * 19
    • 1894 = 2 * 947
    • 1903 = 11 * 173
    • 1908 = 2^2 * 3^2 * 53
    • 1921 = 17 * 113
    • 1935 = 3^2 * 5 * 43
    • 1952 = 2^5 * 61
    • 1962 = 2 * 3^2 * 109
    • 1966 = 2 * 983
    • 2038 = 2 * 1019
    • 2067 = 3 * 13 * 53
    • 2079 = 3^3 * 7 * 11
    • 2155 = 5 * 431
    • 2173 = 41 * 53
    • 2182 = 2 * 1091
    • 2218 = 2 * 1109
    • 2227 = 17 * 131
    • 2265 = 3 * 5 * 151
    • 2286 = 2 * 3^2 * 127
    • 2326 = 2 * 1163
    • 2362 = 2 * 1181
    • 2366 = 2 * 7 * 13^2
    • 2373 = 3 * 7 * 113
    • 2409 = 3 * 11 * 73
    • 2434 = 2 * 1217
    • 2461 = 23 * 107
    • 2475 = 3^2 * 5^2 * 11
    • 2484 = 2^2 * 3^3 * 23
    • 2515 = 5 * 503
    • 2556 = 2^2 * 3^2 * 71
    • 2576 = 2^4 * 7 * 23
    • 2578 = 2 * 1289
    • 2583 = 3^2 * 7 * 41
    • 2605 = 5 * 521
    • 2614 = 2 * 1307
    • 2679 = 3 * 19 * 47
    • 2688 = 2^7 * 3 * 7
    • 2722 = 2 * 1361
    • 2745 = 3^2 * 5 * 61
    • 2751 = 3 * 7 * 131
    • 2785 = 5 * 557
    • 2839 = 17 * 167
    • 2888 = 2^3 * 19^2
    • 2902 = 2 * 1451
    • 2911 = 41 * 71
    • 2934 = 2 * 3^2 * 163
    • 2944 = 2^7 * 23
    • 2958 = 2 * 3 * 17 * 29
    • 2964 = 2^2 * 3 * 13 * 19
    • 2965 = 5 * 593
    • 2970 = 2 * 3^3 * 5 * 11
    • 2974 = 2 * 1487
    • 3046 = 2 * 1523
    • 3091 = 11 * 281
    • 3138 = 2 * 3 * 523
    • 3168 = 2^5 * 3^2 * 11
    • 3174 = 2 * 3 * 23^2
    • 3226 = 2 * 1613
    • 3246 = 2 * 3 * 541
    • 3258 = 2 * 3^2 * 181
    • 3294 = 2 * 3^3 * 61
    • 3345 = 3 * 5 * 223
    • 3366 = 2 * 3^2 * 11 * 17
    • 3390 = 2 * 3 * 5 * 113
    • 3442 = 2 * 1721
    • 3505 = 5 * 701
    • 3564 = 2^2 * 3^4 * 11
    • 3595 = 5 * 719
    • 3615 = 3 * 5 * 241
    • 3622 = 2 * 1811
    • 3649 = 41 * 89
    • 3663 = 3^2 * 11 * 37
    • 3690 = 2 * 3^2 * 5 * 41
    • 3694 = 2 * 1847
    • 3802 = 2 * 1901
    • 3852 = 2^2 * 3^2 * 107
    • 3864 = 2^3 * 3 * 7 * 23
    • 3865 = 5 * 773
    • 3930 = 2 * 3 * 5 * 131
    • 3946 = 2 * 1973
    • 3973 = 29 * 137
    • 4054 = 2 * 2027
    • 4126 = 2 * 2063
    • 4162 = 2 * 2081
    • 4173 = 3 * 13 * 107
    • 4185 = 3^3 * 5 * 31
    • 4189 = 59 * 71
    • 4191 = 3 * 11 * 127
    • 4198 = 2 * 2099
    • 4209 = 3 * 23 * 61
    • 4279 = 11 * 389
    • 4306 = 2 * 2153
    • 4369 = 17 * 257
    • 4414 = 2 * 2207
    • 4428 = 2^2 * 3^3 * 41
    • 4464 = 2^4 * 3^2 * 31
    • 4472 = 2^3 * 13 * 43
    • 4557 = 3 * 7^2 * 31
    • 4592 = 2^4 * 7 * 41
    • 4594 = 2 * 2297
    • 4702 = 2 * 2351
    • 4743 = 3^2 * 17 * 31
    • 4765 = 5 * 953
    • 4788 = 2^2 * 3^2 * 7 * 19
    • 4794 = 2 * 3 * 17 * 47
    • 4832 = 2^5 * 151
    • 4855 = 5 * 971
    • 4880 = 2^4 * 5 * 61
    • 4918 = 2 * 2459
    • 4954 = 2 * 2477
    • 4959 = 3^2 * 19 * 29
    • 4960 = 2^5 * 5 * 31
    • 4974 = 2 * 3 * 829
    • 4981 = 17 * 293
    • 5062 = 2 * 2531
    • 5071 = 11 * 461
    • 5088 = 2^5 * 3 * 53
    • 5098 = 2 * 2549
    • 5172 = 2^2 * 3 * 431
    • 5242 = 2 * 2621
    • 5248 = 2^7 * 41
    • 5253 = 3 * 17 * 103
    • 5269 = 11 * 479
    • 5298 = 2 * 3 * 883
    • 5305 = 5 * 1061
    • 5386 = 2 * 2693
    • 5388 = 2^2 * 3 * 449
    • 5397 = 3 * 7 * 257
    • 5422 = 2 * 2711
    • 5458 = 2 * 2729
    • 5485 = 5 * 1097
    • 5526 = 2 * 3^2 * 307
    • 5539 = 29 * 191
    • 5602 = 2 * 2801
    • 5638 = 2 * 2819
    • 5642 = 2 * 7 * 13 * 31
    • 5674 = 2 * 2837
    • 5772 = 2^2 * 3 * 13 * 37
    • 5818 = 2 * 2909
    • 5854 = 2 * 2927
    • 5874 = 2 * 3 * 11 * 89
    • 5915 = 5 * 7 * 13^2
    • 5926 = 2 * 2963
    • 5935 = 5 * 1187
    • 5936 = 2^4 * 7 * 53
    • 5946 = 2 * 3 * 991
    • 5998 = 2 * 2999
    • 6036 = 2^2 * 3 * 503
    • 6054 = 2 * 3 * 1009
    • 6084 = 2^2 * 3^2 * 13^2
    • 6096 = 2^4 * 3 * 127
    • 6115 = 5 * 1223
    • 6171 = 3 * 11^2 * 17
    • 6178 = 2 * 3089
    • 6187 = 23 * 269
    • 6188 = 2^2 * 7 * 13 * 17
    • 6252 = 2^2 * 3 * 521
    • 6259 = 11 * 569
    • 6295 = 5 * 1259
    • 6315 = 3 * 5 * 421
    • 6344 = 2^3 * 13 * 61
    • 6385 = 5 * 1277
    • 6439 = 47 * 137
    • 6457 = 11 * 587
    • 6502 = 2 * 3251
    • 6531 = 3 * 7 * 311
    • 6567 = 3 * 11 * 199
    • 6583 = 29 * 227
    • 6585 = 3 * 5 * 439
    • 6603 = 3 * 31 * 71
    • 6684 = 2^2 * 3 * 557
    • 6693 = 3 * 23 * 97
    • 6702 = 2 * 3 * 1117
    • 6718 = 2 * 3359
    • 6760 = 2^3 * 5 * 13^2
    • 6816 = 2^5 * 3 * 71
    • 6835 = 5 * 1367
    • 6855 = 3 * 5 * 457
    • 6880 = 2^5 * 5 * 43
    • 6934 = 2 * 3467
    • 6981 = 3 * 13 * 179
    • 7026 = 2 * 3 * 1171
    • 7051 = 11 * 641
    • 7062 = 2 * 3 * 11 * 107
    • 7068 = 2^2 * 3 * 19 * 31
    • 7078 = 2 * 3539
    • 7089 = 3 * 17 * 139
    • 7119 = 3^2 * 7 * 113
    • 7136 = 2^5 * 223
    • 7186 = 2 * 3593
    • 7195 = 5 * 1439
    • 7227 = 3^2 * 11 * 73
    • 7249 = 11 * 659
    • 7287 = 3 * 7 * 347
    • 7339 = 41 * 179
    • 7402 = 2 * 3701
    • 7438 = 2 * 3719
    • 7447 = 11 * 677
    • 7465 = 5 * 1493
    • 7503 = 3 * 41 * 61
    • 7627 = 29 * 263
    • 7674 = 2 * 3 * 1279
    • 7683 = 3 * 13 * 197
    • 7695 = 3^4 * 5 * 19
    • 7712 = 2^5 * 241
    • 7726 = 2 * 3863
    • 7762 = 2 * 3881
    • 7764 = 2^2 * 3 * 647
    • 7782 = 2 * 3 * 1297
    • 7784 = 2^3 * 7 * 139
    • 7809 = 3 * 19 * 137
    • 7824 = 2^4 * 3 * 163
    • 7834 = 2 * 3917
    • 7915 = 5 * 1583
    • 7952 = 2^4 * 7 * 71
    • 7978 = 2 * 3989
    • 8005 = 5 * 1601
    • 8014 = 2 * 4007
    • 8023 = 71 * 113
    • 8073 = 3^3 * 13 * 23
    • 8077 = 41 * 197
    • 8095 = 5 * 1619
    • 8149 = 29 * 281
    • 8154 = 2 * 3^3 * 151
    • 8158 = 2 * 4079
    • 8185 = 5 * 1637
    • 8196 = 2^2 * 3 * 683
    • 8253 = 3^2 * 7 * 131
    • 8257 = 23 * 359
    • 8277 = 3 * 31 * 89
    • 8307 = 3^2 * 13 * 71
    • 8347 = 17 * 491
    • 8372 = 2^2 * 7 * 13 * 23
    • 8412 = 2^2 * 3 * 701
    • 8421 = 3 * 7 * 401
    • 8466 = 2 * 3 * 17 * 83
    • 8518 = 2 * 4259
    • 8545 = 5 * 1709
    • 8568 = 2^3 * 3^2 * 7 * 17
    • 8628 = 2^2 * 3 * 719
    • 8653 = 17 * 509
    • 8680 = 2^3 * 5 * 7 * 31
    • 8736 = 2^5 * 3 * 7 * 13
    • 8754 = 2 * 3 * 1459
    • 8766 = 2 * 3^2 * 487
    • 8790 = 2 * 3 * 5 * 293
    • 8792 = 2^3 * 7 * 157
    • 8851 = 53 * 167
    • 8864 = 2^5 * 277
    • 8874 = 2 * 3^2 * 17 * 29
    • 8883 = 3^3 * 7 * 47
    • 8901 = 3^2 * 23 * 43
    • 8914 = 2 * 4457
    • 9015 = 3 * 5 * 601
    • 9031 = 11 * 821
    • 9036 = 2^2 * 3^2 * 251
    • 9094 = 2 * 4547
    • 9166 = 2 * 4583
    • 9184 = 2^5 * 7 * 41
    • 9193 = 29 * 317
    • 9229 = 11 * 839
    • 9274 = 2 * 4637
    • 9276 = 2^2 * 3 * 773
    • 9285 = 3 * 5 * 619
    • 9294 = 2 * 3 * 1549
    • 9296 = 2^4 * 7 * 83
    • 9301 = 71 * 131
    • 9330 = 2 * 3 * 5 * 311
    • 9346 = 2 * 4673
    • 9355 = 5 * 1871
    • 9382 = 2 * 4691
    • 9386 = 2 * 13 * 19^2
    • 9387 = 3^2 * 7 * 149
    • 9396 = 2^2 * 3^4 * 29
    • 9414 = 2 * 3^2 * 523
    • 9427 = 11 * 857
    • 9483 = 3 * 29 * 109
    • 9522 = 2 * 3^2 * 23^2
    • 9535 = 5 * 1907
    • 9571 = 17 * 563
    • 9598 = 2 * 4799
    • 9633 = 3 * 13^2 * 19
    • 9634 = 2 * 4817
    • 9639 = 3^4 * 7 * 17
    • 9648 = 2^4 * 3^2 * 67
    • 9657 = 3^2 * 29 * 37
    • 9684 = 2^2 * 3^2 * 269
    • 9708 = 2^2 * 3 * 809
    • 9717 = 3 * 41 * 79
    • 9735 = 3 * 5 * 11 * 59
    • 9742 = 2 * 4871
    • 9760 = 2^5 * 5 * 61
    • 9778 = 2 * 4889
    • 9840 = 2^4 * 3 * 5 * 41
    • 9843 = 3 * 17 * 193
    • 9849 = 3 * 7^2 * 67
    • 9861 = 3 * 19 * 173
    • 9880 = 2^3 * 5 * 13 * 19
    • 9895 = 5 * 1979
    • 9924 = 2^2 * 3 * 827
    • 9942 = 2 * 3 * 1657
    • 9968 = 2^4 * 7 * 89
    • 9975 = 3 * 5^2 * 7 * 19
    • 9985 = 5 * 1997

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 32 = 2^5

    Number of divisors: 6

    Sum of divisors: 63

    Euler's totient: 16

    Möbius: 0

    n = a^2 + b^2

    a = 4

    b = 4

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 1 = 1

    Number of divisors: 1

    Sum of divisors: 1

    Euler's totient: 1

    Möbius: 1

    n = a^2

    a = 1

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 32 = 2^5

    Number of divisors: 6

    Sum of divisors: 63

    Euler's totient: 16

    Möbius: 0

    n = a^2 + b^2

    a = 4

    b = 4

    Time elapsed:

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • Error in expression #1: Invalid parameter

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • 2 is primeError in expression #2: Invalid parameter

    Written by Dario Alpern. Last updated on 15 December 2024.

    +2
    • Error in expression #4: Invalid parameter

    Written by Dario Alpern. Last updated on 15 December 2024.

    2
    • Error in expression #5: Invalid parameter -2
      • -10 is prime: no, -1 * 2 * 5
      • -9 is prime: no, -1 * 3^2
      • -8 is prime: no, -1 * 2^3
      • -7 is prime: no, -1 * 7
      • -6 is prime: no, -1 * 2 * 3
      • -5 is prime: no, -1 * 5
      • -4 is prime: no, -1 * 2^2
      • -3 is prime: no, -1 * 3
      • -2 is prime: no, -1 * 2
      • -1 is prime: no, -1
      • 0 is prime: no, 0
      • 1 is prime: no, 1
      • 2 is prime: yes, 2
      • 3 is prime: yes, 3
      • 4 is prime: no, 2^2
      • 5 is prime: yes, 5
      • 6 is prime: no, 2 * 3
      • 7 is prime: yes, 7
      • 8 is prime: no, 2^3
      • 9 is prime: no, 3^2

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • x=-10; x=x+1; x<10; "%d is prime: %l, %Fd":x: the number of conversion clauses is greater than the number of colons

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • There are no values for the requested expression.

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • x=-10; x=x+1; x<10; "%d=%x is prime: %l, %Fd":x:x:isprime(x):x:x: the number of conversion clauses is less than the number of colons

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • x=-10; x=x+1; x<10; "%d=%x is prime: %l, %Fd":x: the number of conversion clauses is greater than the number of colons

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • "-10=-A" is prime: no, -1 * 2 * 5, -1 * 2 * 5
      • "-9=-9" is prime: no, -1 * 3^2, -1 * 3^2
      • "-8=-8" is prime: no, -1 * 2^3, -1 * 2^3
      • "-7=-7" is prime: no, -1 * 7, -1 * 7
      • "-6=-6" is prime: no, -1 * 2 * 3, -1 * 2 * 3
      • "-5=-5" is prime: no, -1 * 5, -1 * 5
      • "-4=-4" is prime: no, -1 * 2^2, -1 * 2^2
      • "-3=-3" is prime: no, -1 * 3, -1 * 3
      • "-2=-2" is prime: no, -1 * 2, -1 * 2
      • "-1=-1" is prime: no, -1, -1
      • "0=0" is prime: no, 0, 0
      • "1=1" is prime: no, 1, 1
      • "2=2" is prime: yes, 2, 2
      • "3=3" is prime: yes, 3, 3
      • "4=4" is prime: no, 2^2, 2^2
      • "5=5" is prime: yes, 5, 5
      • "6=6" is prime: no, 2 * 3, 2 * 3
      • "7=7" is prime: yes, 7, 7
      • "8=8" is prime: no, 2^3, 2^3
      • "9=9" is prime: no, 3^2, 3^2

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • Factors are: Error in expression #4: Invalid parameter

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • Factors are: Error in expression #4: Invalid parameter

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • Factors are: Error in expression #4: Invalid parameter

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • Factors are: Error in expression #4: Invalid parameter

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • x-10; x=x+1; x<10; x: equal sign missing in first expression

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • Error in expression #1: Syntax error in expression #1:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • x=3: three or four semicolons expected but none found

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • x=3; x+1: equal sign missing in second expression

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • x=3; x=x+1: three or four semicolons expected but there are only one

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • x=3; x=x+1; x<10: three or four semicolons expected but there are only two

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • x=3; x=x+1; x<10; "23: missing closing quote

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • x=3; x=x+1; x<10; "23%y": strange character after %

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • # This is a comment
      • There are no values for the requested expression.

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 3785 = 5 * 757

      Number of divisors: 4

      Sum of divisors: 4548

      Euler's totient: 3024

      Möbius: 1

      n = a^2 + b^2

      a = 44

      b = 43

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 4242 = 2 * 3 * 7 * 101

      Number of divisors: 16

      Sum of divisors: 9792

      Euler's totient: 1200

      Möbius: 1

      n = a^2 + b^2 + c^2 + d^2

      a = 62

      b = 14

      c = 11

      d = 9

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 781 = 11 * 71

      Number of divisors: 4

      Sum of divisors: 864

      Euler's totient: 700

      Möbius: 1

      n = a^2 + b^2 + c^2

      a = 24

      b = 14

      c = 3

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 3 814862 063908 734437 887283 852543 533211 679454 142082 298637 873419 070347 852291 017785 520287 766610 190299 484540 521172 610165 243904 000000 000000 000000 000000 000000 000000 000000 000387 420489 (175 digits) = 37 * 397 * 7770 480733 * 4 565414 385793 * 29 349715 009141 * 25 000120 000144 000009 * 625 006000 021600 034335 019655 998704 000081 (39 digits) * 15963 508558 609093 665381 539730 827797 731224 066268 424929 211146 526896 477764 764561 (77 digits)

      Number of divisors: 256

      Sum of divisors: 3 927835 377629 200282 066170 191349 580388 346010 424926 311620 464739 159801 061135 837481 993242 614161 532052 731622 137283 765408 897573 926927 772705 545207 405333 527509 971807 992901 815215 013120 (175 digits)

      Euler's totient: 3 702408 167749 354712 445817 429304 630490 185977 901721 526732 152339 282762 024207 977757 856067 006883 309506 433369 991968 235438 565731 594313 965926 147954 636713 218937 459369 328800 289521 664000 (175 digits)

      Möbius: 1

      n = a^2 + b^2

      a = 1847 110847 896335 853000 176864 427227 435701 921553 937435 979267 876779 222573 715032 097003 166333 (88 digits)

      b = 634 857133 135017 767692 300414 913512 568089 917857 251469 916825 013056 083745 836299 371791 112440 (87 digits)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 1953 185118 009909 687810 604660 830933 780202 750273 074318 121153 020274 393931 000000 000000 000000 000000 000000 000000 000000 000000 019683 (124 digits) = 7 * 23 * 163 * 289759 * 29 043307 * 310560 068323 * 211026 983241 657799 * 8627 918718 759696 849751 * 15 640739 301231 691252 401206 350232 479776 716460 585530 440831 (56 digits)

      Number of divisors: 512

      Sum of divisors: 2343 562373 416748 759263 409724 376023 760081 596159 405688 974615 745309 241989 065766 060117 839995 053707 192815 955604 091822 546092 032000 (124 digits)

      Euler's totient: 1591 539266 916351 288630 825894 098770 892840 794040 641705 732198 031291 281199 811480 793967 083005 034217 084834 697774 036006 889028 160000 (124 digits)

      Möbius: -1

      n = a^2 + b^2 + c^2

      a = 31 721882 652573 082741 468113 571154 218809 163309 110851 315323 884979 (62 digits)

      b = 30 771858 555932 116590 039543 190942 836815 564564 505801 175888 537619 (62 digits)

      c = 9

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 3 814937 598702 564187 847884 178575 041838 901000 039922 554438 052360 077843 567982 691735 702549 178902 260425 034094 849978 434634 977020 323276 519775 390624 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999612 579511 (229 digits) = 3^18 * 7 * 13 * 19 * 37 * 73 * 127 * 199 * 223 * 337 * 2287 * 3853 * 4861 * 9433 * 1 705973 * 22831 130137 * 6 103533 017634 265177 * 10725 085800 223616 496139 * 6 385185 994664 355546 311566 161393 980487 708609 791054 704485 156811 (61 digits) * 168771 028459 556367 243151 236703 031728 705868 529455 991179 749015 748031 496063 (72 digits)

      Number of divisors: 9 961472

      Sum of divisors: 7 884492 772617 768361 949591 471773 998534 464078 183074 802732 693836 231248 275317 025098 522078 602108 369176 842788 131969 743635 182278 326115 091904 163294 276830 433703 550680 031566 435303 584272 686853 351875 078910 215532 929075 630449 722635 593973 760000 (229 digits)

      Euler's totient: 1 790666 499935 777848 007252 504431 963941 691823 347576 749982 270732 407793 519645 275317 714215 682219 156009 508047 580320 809237 280472 542648 083453 663068 499954 154512 437792 638907 875315 252440 813813 132566 339409 125865 095810 510076 195742 735243 673600 (229 digits)

      Möbius: 0

      n = a^2 + b^2 + c^2 + d^2

      a = 1 574796 151316 121102 330815 752290 545195 315944 451784 418360 046076 505326 985503 297850 865520 518495 732985 075721 971728 481501 (115 digits)

      b = 1 141650 682122 229430 427261 267419 887726 516420 143850 385986 533944 025757 568981 201981 119078 350515 317274 370200 319409 818573 (115 digits)

      c = 170664 751511 939508 743346 625407 303395 497684 615957 660285 823763 973573 481825 644143 678110 874251 881965 422542 317892 109409 (114 digits)

      d = 49617 971579 992951 995621 240277 551203 783457 899651 090786 920142 729945 976263 665581 291001 748404 402816 201991 076884 350530 (113 digits)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 110592 (91 digits) = 2^12 * 7 * 37 * 79 * 157 * 181 * 1039 * 87 113497 * 102 493548 486194 149357 * 131 079870 007944 530707 * 345 303867 403319 060773 480663

      Number of divisors: 13312

      Sum of divisors: 2 407585 602651 434830 785123 758005 325295 557289 751574 917739 783345 338799 889883 731255 027721 830400 (91 digits)

      Euler's totient: 406436 010682 807895 024223 177603 802996 605438 645020 736789 126880 620780 458355 571887 546323 435520 (90 digits)

      Möbius: 0

      n = a^2 + b^2 + c^2 + d^2

      a = 971 117118 480988 431137 746616 876931 944690 311424 (45 digits)

      b = 229 801978 085056 501936 791793 267544 710152 276544 (45 digits)

      c = 62 896552 731084 649927 188468 240226 197572 739904 (44 digits)

      d = 12 908009 758401 059424 931279 305508 989199 020608 (44 digits)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      +2
      • -10 is prime: no, -1 * 2 * 5
      • -9 is prime: no, -1 * 3^2
      • -8 is prime: no, -1 * 2^3
      • -7 is prime: no, -1 * 7
      • -6 is prime: no, -1 * 2 * 3
      • -5 is prime: no, -1 * 5
      • -4 is prime: no, -1 * 2^2
      • -3 is prime: no, -1 * 3
      • -2 is prime: no, -1 * 2
      • -1 is prime: no, -1
      • 0 is prime: no, 0
      • 1 is prime: no, 1
      • 2 is prime: yes, 2
      • 3 is prime: yes, 3
      • 4 is prime: no, 2^2
      • 5 is prime: yes, 5
      • 6 is prime: no, 2 * 3
      • 7 is prime: yes, 7
      • 8 is prime: no, 2^3
      • 9 is prime: no, 3^2

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • x=-10; x=x+1; x<10; "%d is prime: %l, %Fd":x: the number of conversion clauses is greater than the number of colons

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • There are no values for the requested expression.

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • x=-10; x=x+1; x<10; "%d=%x is prime: %l, %Fd":x:x:isprime(x):x:x: the number of conversion clauses is less than the number of colons

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • x=-10; x=x+1; x<10; "%d=%x is prime: %l, %Fd":x: the number of conversion clauses is greater than the number of colons

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • "-10=-A" is prime: no, -1 * 2 * 5, -1 * 2 * 5
      • "-9=-9" is prime: no, -1 * 3^2, -1 * 3^2
      • "-8=-8" is prime: no, -1 * 2^3, -1 * 2^3
      • "-7=-7" is prime: no, -1 * 7, -1 * 7
      • "-6=-6" is prime: no, -1 * 2 * 3, -1 * 2 * 3
      • "-5=-5" is prime: no, -1 * 5, -1 * 5
      • "-4=-4" is prime: no, -1 * 2^2, -1 * 2^2
      • "-3=-3" is prime: no, -1 * 3, -1 * 3
      • "-2=-2" is prime: no, -1 * 2, -1 * 2
      • "-1=-1" is prime: no, -1, -1
      • "0=0" is prime: no, 0, 0
      • "1=1" is prime: no, 1, 1
      • "2=2" is prime: yes, 2, 2
      • "3=3" is prime: yes, 3, 3
      • "4=4" is prime: no, 2^2, 2^2
      • "5=5" is prime: yes, 5, 5
      • "6=6" is prime: no, 2 * 3, 2 * 3
      • "7=7" is prime: yes, 7, 7
      • "8=8" is prime: no, 2^3, 2^3
      • "9=9" is prime: no, 3^2, 3^2

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • Factors are: Error in expression #4: Invalid parameter

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • Factors are: Error in expression #4: Invalid parameter

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • Factors are: Error in expression #4: Invalid parameter

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • Factors are: Error in expression #4: Invalid parameter

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • x-10; x=x+1; x<10; x: equal sign missing in first expression

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • Error in expression #1: Syntax error in expression #1:

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • x=3: three or four semicolons expected but none found

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • x=3; x+1: equal sign missing in second expression

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • x=3; x=x+1: three or four semicolons expected but there are only one

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • x=3; x=x+1; x<10: three or four semicolons expected but there are only two

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • x=3; x=x+1; x<10; "23: missing closing quote

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • x=3; x=x+1; x<10; "23%y": strange character after %

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • # This is a comment
      • There are no values for the requested expression.

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 3785 = 5 * 757

      Number of divisors: 4

      Sum of divisors: 4548

      Euler's totient: 3024

      Möbius: 1

      n = a^2 + b^2

      a = 44

      b = 43

      Time elapsed:

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 4242 = 2 * 3 * 7 * 101

      Number of divisors: 16

      Sum of divisors: 9792

      Euler's totient: 1200

      Möbius: 1

      n = a^2 + b^2 + c^2 + d^2

      a = 62

      b = 14

      c = 11

      d = 9

      Time elapsed:

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 781 = 11 * 71

      Number of divisors: 4

      Sum of divisors: 864

      Euler's totient: 700

      Möbius: 1

      n = a^2 + b^2 + c^2

      a = 24

      b = 14

      c = 3

      Time elapsed:

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 3 814862 063908 734437 887283 852543 533211 679454 142082 298637 873419 070347 852291 017785 520287 766610 190299 484540 521172 610165 243904 000000 000000 000000 000000 000000 000000 000000 000387 420489 (175 digits) = 37 * 397 * 7770 480733 * 4 565414 385793 * 29 349715 009141 * 25 000120 000144 000009 * 625 006000 021600 034335 019655 998704 000081 (39 digits) * 15963 508558 609093 665381 539730 827797 731224 066268 424929 211146 526896 477764 764561 (77 digits)

      Number of divisors: 256

      Sum of divisors: 3 927835 377629 200282 066170 191349 580388 346010 424926 311620 464739 159801 061135 837481 993242 614161 532052 731622 137283 765408 897573 926927 772705 545207 405333 527509 971807 992901 815215 013120 (175 digits)

      Euler's totient: 3 702408 167749 354712 445817 429304 630490 185977 901721 526732 152339 282762 024207 977757 856067 006883 309506 433369 991968 235438 565731 594313 965926 147954 636713 218937 459369 328800 289521 664000 (175 digits)

      Möbius: 1

      n = a^2 + b^2

      a = 1847 110847 896335 853000 176864 427227 435701 921553 937435 979267 876779 222573 715032 097003 166333 (88 digits)

      b = 634 857133 135017 767692 300414 913512 568089 917857 251469 916825 013056 083745 836299 371791 112440 (87 digits)

      Time elapsed:

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 1953 185118 009909 687810 604660 830933 780202 750273 074318 121153 020274 393931 000000 000000 000000 000000 000000 000000 000000 000000 019683 (124 digits) = 7 * 23 * 163 * 289759 * 29 043307 * 310560 068323 * 211026 983241 657799 * 8627 918718 759696 849751 * 15 640739 301231 691252 401206 350232 479776 716460 585530 440831 (56 digits)

      Number of divisors: 512

      Sum of divisors: 2343 562373 416748 759263 409724 376023 760081 596159 405688 974615 745309 241989 065766 060117 839995 053707 192815 955604 091822 546092 032000 (124 digits)

      Euler's totient: 1591 539266 916351 288630 825894 098770 892840 794040 641705 732198 031291 281199 811480 793967 083005 034217 084834 697774 036006 889028 160000 (124 digits)

      Möbius: -1

      n = a^2 + b^2 + c^2

      a = 31 721882 652573 082741 468113 571154 218809 163309 110851 315323 884979 (62 digits)

      b = 30 771858 555932 116590 039543 190942 836815 564564 505801 175888 537619 (62 digits)

      c = 9

      Time elapsed:

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 3 814937 598702 564187 847884 178575 041838 901000 039922 554438 052360 077843 567982 691735 702549 178902 260425 034094 849978 434634 977020 323276 519775 390624 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999612 579511 (229 digits) = 3^18 * 7 * 13 * 19 * 37 * 73 * 127 * 199 * 223 * 337 * 2287 * 3853 * 4861 * 9433 * 1 705973 * 22831 130137 * 6 103533 017634 265177 * 10725 085800 223616 496139 * 6 385185 994664 355546 311566 161393 980487 708609 791054 704485 156811 (61 digits) * 168771 028459 556367 243151 236703 031728 705868 529455 991179 749015 748031 496063 (72 digits)

      Number of divisors: 9 961472

      Sum of divisors: 7 884492 772617 768361 949591 471773 998534 464078 183074 802732 693836 231248 275317 025098 522078 602108 369176 842788 131969 743635 182278 326115 091904 163294 276830 433703 550680 031566 435303 584272 686853 351875 078910 215532 929075 630449 722635 593973 760000 (229 digits)

      Euler's totient: 1 790666 499935 777848 007252 504431 963941 691823 347576 749982 270732 407793 519645 275317 714215 682219 156009 508047 580320 809237 280472 542648 083453 663068 499954 154512 437792 638907 875315 252440 813813 132566 339409 125865 095810 510076 195742 735243 673600 (229 digits)

      Möbius: 0

      n = a^2 + b^2 + c^2 + d^2

      a = 1 574796 151316 121102 330815 752290 545195 315944 451784 418360 046076 505326 985503 297850 865520 518495 732985 075721 971728 481501 (115 digits)

      b = 1 141650 682122 229430 427261 267419 887726 516420 143850 385986 533944 025757 568981 201981 119078 350515 317274 370200 319409 818573 (115 digits)

      c = 170664 751511 939508 743346 625407 303395 497684 615957 660285 823763 973573 481825 644143 678110 874251 881965 422542 317892 109409 (114 digits)

      d = 49617 971579 992951 995621 240277 551203 783457 899651 090786 920142 729945 976263 665581 291001 748404 402816 201991 076884 350530 (113 digits)

      Time elapsed:

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 110592 (91 digits) = 2^12 * 7 * 37 * 79 * 157 * 181 * 1039 * 87 113497 * 102 493548 486194 149357 * 131 079870 007944 530707 * 345 303867 403319 060773 480663

      Number of divisors: 13312

      Sum of divisors: 2 407585 602651 434830 785123 758005 325295 557289 751574 917739 783345 338799 889883 731255 027721 830400 (91 digits)

      Euler's totient: 406436 010682 807895 024223 177603 802996 605438 645020 736789 126880 620780 458355 571887 546323 435520 (90 digits)

      Möbius: 0

      n = a^2 + b^2 + c^2 + d^2

      a = 971 117118 480988 431137 746616 876931 944690 311424 (45 digits)

      b = 229 801978 085056 501936 791793 267544 710152 276544 (45 digits)

      c = 62 896552 731084 649927 188468 240226 197572 739904 (44 digits)

      d = 12 908009 758401 059424 931279 305508 989199 020608 (44 digits)

      Time elapsed:

      Written by Dario Alpern. Last updated on 15 December 2024.

      **** BLOCKLY **** -2
      • 1
      • 1
      • 1
      • 1
      • 1

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 1

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 2

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • There is nothing to print

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 5

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 11
      • 12
      • 13
      • 3
      • 14
      • 15

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 1
      • 2
      • 3
      • 4
      • 5

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 1
      • 11
      • 11
      • 11
      • 11
      • 12
      • 2
      • 12
      • 12
      • 12
      • 13
      • 13
      • 3
      • 13
      • 13
      • 14
      • 14
      • 14
      • 4
      • 14
      • 15
      • 15
      • 15
      • 15
      • 5

      Written by Dario Alpern. Last updated on 10 November 2024.

      +2
      • 1
      • 1
      • 1
      • 1
      • 1

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 1

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 2

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • There is nothing to print

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 5

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 11
      • 12
      • 13
      • 3
      • 14
      • 15

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 1
      • 2
      • 3
      • 4
      • 5

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 1
      • 11
      • 11
      • 11
      • 11
      • 12
      • 2
      • 12
      • 12
      • 12
      • 13
      • 13
      • 3
      • 13
      • 13
      • 14
      • 14
      • 14
      • 4
      • 14
      • 15
      • 15
      • 15
      • 15
      • 5

      Written by Dario Alpern. Last updated on 15 December 2024.

      KThe detached block must be inside another block KThere must be only one set of joined blocks -2
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • There is nothing to print

      Written by Dario Alpern. Last updated on 10 November 2024.

      +2
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • There is nothing to print

      Written by Dario Alpern. Last updated on 15 December 2024.

      KVariable name is too long -2
      • 2 is prime
      • 4 = 2^2
      • 6 = 2 * 3

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 729

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 18
      • 729
      • 9

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 100007

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 1

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 132

      Written by Dario Alpern. Last updated on 10 November 2024.

      +2
      • 2 is prime
      • 4 = 2^2
      • 6 = 2 * 3

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 729

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 18
      • 729
      • 9

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 100007

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 1

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 132

      Written by Dario Alpern. Last updated on 15 December 2024.

      **** BLOCKLY **** -2
      • 1
      • 1
      • 1
      • 1
      • 1

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 1

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 2

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • There is nothing to print

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 5

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 11
      • 12
      • 13
      • 3
      • 14
      • 15

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 1
      • 2
      • 3
      • 4
      • 5

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 1
      • 11
      • 11
      • 11
      • 11
      • 12
      • 2
      • 12
      • 12
      • 12
      • 13
      • 13
      • 3
      • 13
      • 13
      • 14
      • 14
      • 14
      • 4
      • 14
      • 15
      • 15
      • 15
      • 15
      • 5

      Written by Dario Alpern. Last updated on 10 November 2024.

      +2
      • 1
      • 1
      • 1
      • 1
      • 1

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 1

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 2

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • There is nothing to print

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 5

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 11
      • 12
      • 13
      • 3
      • 14
      • 15

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 1
      • 2
      • 3
      • 4
      • 5

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 1
      • 11
      • 11
      • 11
      • 11
      • 12
      • 2
      • 12
      • 12
      • 12
      • 13
      • 13
      • 3
      • 13
      • 13
      • 14
      • 14
      • 14
      • 4
      • 14
      • 15
      • 15
      • 15
      • 15
      • 5

      Written by Dario Alpern. Last updated on 15 December 2024.

      KThe detached block must be inside another block KThere must be only one set of joined blocks -2
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • There is nothing to print

      Written by Dario Alpern. Last updated on 10 November 2024.

      +2
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • There is nothing to print

      Written by Dario Alpern. Last updated on 15 December 2024.

      KVariable name is too long -2
      • 2 is prime
      • 4 = 2^2
      • 6 = 2 * 3

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 729

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 18
      • 729
      • 9

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 100007

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 1

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2
      • 132

      Written by Dario Alpern. Last updated on 10 November 2024.

      +2
      • 2 is prime
      • 4 = 2^2
      • 6 = 2 * 3

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 729

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 18
      • 729
      • 9

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 100007

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 1

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5
      • 5

      Written by Dario Alpern. Last updated on 15 December 2024.

      +2
      • 132

      Written by Dario Alpern. Last updated on 15 December 2024.

      **** TESTMODMULT **** @@ -239,781 +239,781 @@ KVariable name is too long **** POLFACT **** -2

      Your polynomial

      x510 − 1

      Irreducible polynomial factors

      The 16 factors are:

      • x − 1
      • x + 1
      • x2x + 1
      • x2 + x + 1
      • x4x3 + x2x + 1
      • x4 + x3 + x2 + x + 1
      • x8x7 + x5x4 + x3x + 1
      • x8 + x7x5x4x3 + x + 1
      • x16x15 + x14x13 + x12x11 + x10x9 + x8x7 + x6x5 + x4x3 + x2x + 1
      • x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1
      • x32x31 + x29x28 + x26x25 + x23x22 + x20x19 + x17x16 + x15x13 + x12x10 + x9x7 + x6x4 + x3x + 1
      • x32 + x31x29x28 + x26 + x25x23x22 + x20 + x19x17x16x15 + x13 + x12x10x9 + x7 + x6x4x3 + x + 1
      • x64x63 + x59x58 + x54x53 + x49x48 + x47x46 + x44x43 + x42x41 + x39x38 + x37x36 + x34x33 + x32x31 + x30x28 + x27x26 + x25x23 + x22x21 + x20x18 + x17x16 + x15x11 + x10x6 + x5x + 1
      • x64 + x63x59x58 + x54 + x53x49x48x47x46 + x44 + x43 + x42 + x41x39x38x37x36 + x34 + x33 + x32 + x31 + x30x28x27x26x25 + x23 + x22 + x21 + x20x18x17x16x15 + x11 + x10x6x5 + x + 1
      • x128x127 + x126 + x123x122 + x121x113 + x112x110 + x109x108 + x107x105 + x104 + x98x97 + x95x94 + x93x92 + x90x89x83 + x82x80 + x79x78 + x76 − 2⁢x75 + x74x72 + x71x70 + x68x67 + x65x64 + x63x61 + x60x58 + x57x56 + x54 − 2⁢x53 + x52x50 + x49x48 + x46x45x39 + x38x36 + x35x34 + x33x31 + x30 + x24x23 + x21x20 + x19x18 + x16x15 + x7x6 + x5 + x2x + 1
      • x128 + x127 + x126x123x122x121 + x113 + x112x110x109x108x107 + x105 + x104 + x98 + x97x95x94x93x92 + x90 + x89 + x83 + x82x80x79x78 + x76 + 2⁢x75 + x74x72x71x70 + x68 + x67x65x64x63 + x61 + x60x58x57x56 + x54 + 2⁢x53 + x52x50x49x48 + x46 + x45 + x39 + x38x36x35x34x33 + x31 + x30 + x24 + x23x21x20x19x18 + x16 + x15x7x6x5 + x2 + x + 1

      Roots

      The 510 roots are:

      • x1 = 1
      • x2 = -1
      • x3 = 1212 3 i
      • x4 = 12 + 12 3 i
      • x5 = -1212 3 i
      • x6 = -12 + 12 3 i
      • x7 = 14 + 14 5 + i -18 5 + 58
      • x8 = 14 + 14 5 − i -18 5 + 58
      • x9 = 1414 5 + i 18 5 + 58
      • x10 = 1414 5 − i 18 5 + 58
      • x11 = -14 + 14 5 + i 18 5 + 58
      • x12 = -14 + 14 5 − i 18 5 + 58
      • x13 = -1414 5 + i -18 5 + 58
      • x14 = -1414 5 − i -18 5 + 58
      • x15 = cos 2π15 + i sin2π15 = 18 65−5+5+1 + i4 7−65+5+5
      • x16 = cos 4π15 + i sin4π15 = 18 65+55+1 + i4 7+65−55
      • x17 = cos 8π15 + i sin8π15 = −18 65−55−1 + i4 7+65+5+5
      • x18 = cos 14π15 + i sin14π15 = −18 65+5+5−1 + i4 7−65−55
      • x19 = cos 16π15 + i sin16π15 = −18 65+5+5−1i4 7−65−55
      • x20 = cos 22π15 + i sin22π15 = −18 65−55−1i4 7+65+5+5
      • x21 = cos 26π15 + i sin26π15 = 18 65+55+1i4 7+65−55
      • x22 = cos 28π15 + i sin28π15 = 18 65−5+5+1i4 7−65+5+5
      • x23 = cosπ15 + i sinπ15 = 18 65+5+5−1 + i4 7−65−55
      • x24 = cos 7π15 + i sin7π15 = 18 65−55−1 + i4 7+65+5+5
      • x25 = cos 11π15 + i sin11π15 = −18 65+55+1 + i4 7+65−55
      • x26 = cos 13π15 + i sin13π15 = −18 65−5+5+1 + i4 7−65+5+5
      • x27 = cos 17π15 + i sin17π15 = −18 65−5+5+1i4 7−65+5+5
      • x28 = cos 19π15 + i sin19π15 = −18 65+55+1i4 7+65−55
      • x29 = cos 23π15 + i sin23π15 = 18 65−55−1i4 7+65+5+5
      • x30 = cos 29π15 + i sin29π15 = 18 65+5+5−1i4 7−65−55
      • x31 = cosπ17 + i sinπ17 = 116 1−17+34−217+217+317+170+3817 + i8 34−217−234−217−417+317170+3817
      • x32 = cos 3π17 + i sin3π17 = 116 1+17+34+217+217−317170−3817 + i8 34+217−234+217−417−317+170−3817
      • x33 = cos 5π17 + i sin5π17 = 116 1+17+34+217−217−317170−3817 + i8 34+217−234+217+417−317+170−3817
      • x34 = cos 7π17 + i sin7π17 = 116 1+1734+217+217−317+170−3817 + i8 34+217+234+217+417−317170−3817
      • x35 = cos 9π17 + i sin9π17 = −116 −1+17+34−217−217+317170+3817 + i8 34−217+234−217+417+317+170+3817
      • x36 = cos 11π17 + i sin11π17 = −116 −1−17+34+217+217−317+170−3817 + i8 34+217+234+217−417−317170−3817
      • x37 = cos 13π17 + i sin13π17 = −116 −1+1734−217+217+317+170+3817 + i8 34−217−234−217+417+317170+3817
      • x38 = cos 15π17 + i sin15π17 = −116 −1+17+34−217+217+317170+3817 + i8 34−217+234−217−417+317+170+3817
      • x39 = cos 19π17 + i sin19π17 = −116 −1+17+34−217+217+317170+3817i8 34−217+234−217−417+317+170+3817
      • x40 = cos 21π17 + i sin21π17 = −116 −1+1734−217+217+317+170+3817i8 34−217−234−217+417+317170+3817
      • x41 = cos 23π17 + i sin23π17 = −116 −1−17+34+217+217−317+170−3817i8 34+217+234+217−417−317170−3817
      • x42 = cos 25π17 + i sin25π17 = −116 −1+17+34−217−217+317170+3817i8 34−217+234−217+417+317+170+3817
      • x43 = cos 27π17 + i sin27π17 = 116 1+1734+217+217−317+170−3817i8 34+217+234+217+417−317170−3817
      • x44 = cos 29π17 + i sin29π17 = 116 1+17+34+217−217−317170−3817i8 34+217−234+217+417−317+170−3817
      • x45 = cos 31π17 + i sin31π17 = 116 1+17+34+217+217−317170−3817i8 34+217−234+217−417−317+170−3817
      • x46 = cos 33π17 + i sin33π17 = 116 1−17+34−217+217+317+170+3817i8 34−217−234−217−417+317170+3817
      • x47 = cos 2π17 + i sin2π17 = 116 −1+17+34−217+217+317170+3817 + i8 34−217+234−217−417+317+170+3817
      • x48 = cos 4π17 + i sin4π17 = 116 −1+1734−217+217+317+170+3817 + i8 34−217−234−217+417+317170+3817
      • x49 = cos 6π17 + i sin6π17 = 116 −1−17+34+217+217−317+170−3817 + i8 34+217+234+217−417−317170−3817
      • x50 = cos 8π17 + i sin8π17 = 116 −1+17+34−217−217+317170+3817 + i8 34−217+234−217+417+317+170+3817
      • x51 = cos 10π17 + i sin10π17 = −116 1+1734+217+217−317+170−3817 + i8 34+217+234+217+417−317170−3817
      • x52 = cos 12π17 + i sin12π17 = −116 1+17+34+217−217−317170−3817 + i8 34+217−234+217+417−317+170−3817
      • x53 = cos 14π17 + i sin14π17 = −116 1+17+34+217+217−317170−3817 + i8 34+217−234+217−417−317+170−3817
      • x54 = cos 16π17 + i sin16π17 = −116 1−17+34−217+217+317+170+3817 + i8 34−217−234−217−417+317170+3817
      • x55 = cos 18π17 + i sin18π17 = −116 1−17+34−217+217+317+170+3817i8 34−217−234−217−417+317170+3817
      • x56 = cos 20π17 + i sin20π17 = −116 1+17+34+217+217−317170−3817i8 34+217−234+217−417−317+170−3817
      • x57 = cos 22π17 + i sin22π17 = −116 1+17+34+217−217−317170−3817i8 34+217−234+217+417−317+170−3817
      • x58 = cos 24π17 + i sin24π17 = −116 1+1734+217+217−317+170−3817i8 34+217+234+217+417−317170−3817
      • x59 = cos 26π17 + i sin26π17 = 116 −1+17+34−217−217+317170+3817i8 34−217+234−217+417+317+170+3817
      • x60 = cos 28π17 + i sin28π17 = 116 −1−17+34+217+217−317+170−3817i8 34+217+234+217−417−317170−3817
      • x61 = cos 30π17 + i sin30π17 = 116 −1+1734−217+217+317+170+3817i8 34−217−234−217+417+317170+3817
      • x62 = cos 32π17 + i sin32π17 = 116 −1+17+34−217+217+317170+3817i8 34−217+234−217−417+317+170+3817
      • x63 = cos 2π51 + i sin2π51 = 132 1+17+34+217−217−317170−3817 + 116 334+217−234+217+417−317+170−3817 + i32 31+17+34+217−217−317170−3817i16 34+217−234+217+417−317+170−3817
      • x64 = cos 4π51 + i sin4π51 = 132 1+1734+217+217−317+170−3817 + 116 334+217+234+217+417−317170−3817i32 31+1734+217+217−317+170−3817 + i16 34+217+234+217+417−317170−3817
      • x65 = cos 8π51 + i sin8π51 = 132 1+17+34+217+217−317170−3817 + 116 334+217−234+217−417−317+170−3817 + i32 31+17+34+217+217−317170−3817i16 34+217−234+217−417−317+170−3817
      • x66 = cos 10π51 + i sin10π51 = −132 −1+17+34−217−217+317170+3817 + 116 334−217+234−217+417+317+170+3817 + i32 3−1+17+34−217−217+317170+3817 + i16 34−217+234−217+417+317+170+3817
      • x67 = cos 14π51 + i sin14π51 = 132 1−17+34−217+217+317+170+3817 + 116 334−217−234−217−417+317170+3817 + i32 31−17+34−217+217+317+170+3817i16 34−217−234−217−417+317170+3817
      • x68 = cos 16π51 + i sin16π51 = −132 −1−17+34+217+217−317+170−3817 + 116 334+217+234+217−417−317170−3817 + i32 3−1−17+34+217+217−317+170−3817 + i16 34+217+234+217−417−317170−3817
      • x69 = cos 20π51 + i sin20π51 = 132 1−17+34−217+217+317+170+3817116 334−217−234−217−417+317170+3817 + i32 31−17+34−217+217+317+170+3817 + i16 34−217−234−217−417+317170+3817
      • x70 = cos 22π51 + i sin22π51 = −132 −1+1734−217+217+317+170+3817 + 116 334−217−234−217+417+317170+3817 + i32 3−1+1734−217+217+317+170+3817 + i16 34−217−234−217+417+317170+3817
      • x71 = cos 26π51 + i sin26π51 = 132 1+17+34+217+217−317170−3817116 334+217−234+217−417−317+170−3817 + i32 31+17+34+217+217−317170−3817 + i16 34+217−234+217−417−317+170−3817
      • x72 = cos 28π51 + i sin28π51 = −132 −1+17+34−217+217+317170+3817 + 116 334−217+234−217−417+317+170+3817 + i32 3−1+17+34−217+217+317170+3817 + i16 34−217+234−217−417+317+170+3817
      • x73 = cos 32π51 + i sin32π51 = 132 1+17+34+217−217−317170−3817116 334+217−234+217+417−317+170−3817 + i32 31+17+34+217−217−317170−3817 + i16 34+217−234+217+417−317+170−3817
      • x74 = cos 38π51 + i sin38π51 = 132 1+1734+217+217−317+170−3817116 334+217+234+217+417−317170−3817 + i32 31+1734+217+217−317+170−3817 + i16 34+217+234+217+417−317170−3817
      • x75 = cos 40π51 + i sin40π51 = −132 −1+17+34−217+217+317170+3817116 334−217+234−217−417+317+170+3817 + i32 3−1+17+34−217+217+317170+3817i16 34−217+234−217−417+317+170+3817
      • x76 = cos 44π51 + i sin44π51 = −132 −1+17+34−217−217+317170+3817116 334−217+234−217+417+317+170+3817i32 3−1+17+34−217−217+317170+3817 + i16 34−217+234−217+417+317+170+3817
      • x77 = cos 46π51 + i sin46π51 = −132 −1+1734−217+217+317+170+3817116 334−217−234−217+417+317170+3817 + i32 3−1+1734−217+217+317+170+3817i16 34−217−234−217+417+317170+3817
      • x78 = cos 50π51 + i sin50π51 = −132 −1−17+34+217+217−317+170−3817116 334+217+234+217−417−317170−3817i32 3−1−17+34+217+217−317+170−3817 + i16 34+217+234+217−417−317170−3817
      • x79 = cos 52π51 + i sin52π51 = −132 −1−17+34+217+217−317+170−3817116 334+217+234+217−417−317170−3817 + i32 3−1−17+34+217+217−317+170−3817i16 34+217+234+217−417−317170−3817
      • x80 = cos 56π51 + i sin56π51 = −132 −1+1734−217+217+317+170+3817116 334−217−234−217+417+317170+3817i32 3−1+1734−217+217+317+170+3817 + i16 34−217−234−217+417+317170+3817
      • x81 = cos 58π51 + i sin58π51 = −132 −1+17+34−217−217+317170+3817116 334−217+234−217+417+317+170+3817 + i32 3−1+17+34−217−217+317170+3817i16 34−217+234−217+417+317+170+3817
      • x82 = cos 62π51 + i sin62π51 = −132 −1+17+34−217+217+317170+3817116 334−217+234−217−417+317+170+3817i32 3−1+17+34−217+217+317170+3817 + i16 34−217+234−217−417+317+170+3817
      • x83 = cos 64π51 + i sin64π51 = 132 1+1734+217+217−317+170−3817116 334+217+234+217+417−317170−3817i32 31+1734+217+217−317+170−3817i16 34+217+234+217+417−317170−3817
      • x84 = cos 70π51 + i sin70π51 = 132 1+17+34+217−217−317170−3817116 334+217−234+217+417−317+170−3817i32 31+17+34+217−217−317170−3817i16 34+217−234+217+417−317+170−3817
      • x85 = cos 74π51 + i sin74π51 = −132 −1+17+34−217+217+317170+3817 + 116 334−217+234−217−417+317+170+3817i32 3−1+17+34−217+217+317170+3817i16 34−217+234−217−417+317+170+3817
      • x86 = cos 76π51 + i sin76π51 = 132 1+17+34+217+217−317170−3817116 334+217−234+217−417−317+170−3817i32 31+17+34+217+217−317170−3817i16 34+217−234+217−417−317+170−3817
      • x87 = cos 80π51 + i sin80π51 = −132 −1+1734−217+217+317+170+3817 + 116 334−217−234−217+417+317170+3817i32 3−1+1734−217+217+317+170+3817i16 34−217−234−217+417+317170+3817
      • x88 = cos 82π51 + i sin82π51 = 132 1−17+34−217+217+317+170+3817116 334−217−234−217−417+317170+3817i32 31−17+34−217+217+317+170+3817i16 34−217−234−217−417+317170+3817
      • x89 = cos 86π51 + i sin86π51 = −132 −1−17+34+217+217−317+170−3817 + 116 334+217+234+217−417−317170−3817i32 3−1−17+34+217+217−317+170−3817i16 34+217+234+217−417−317170−3817
      • x90 = cos 88π51 + i sin88π51 = 132 1−17+34−217+217+317+170+3817 + 116 334−217−234−217−417+317170+3817i32 31−17+34−217+217+317+170+3817 + i16 34−217−234−217−417+317170+3817
      • x91 = cos 92π51 + i sin92π51 = −132 −1+17+34−217−217+317170+3817 + 116 334−217+234−217+417+317+170+3817i32 3−1+17+34−217−217+317170+3817i16 34−217+234−217+417+317+170+3817
      • x92 = cos 94π51 + i sin94π51 = 132 1+17+34+217+217−317170−3817 + 116 334+217−234+217−417−317+170−3817i32 31+17+34+217+217−317170−3817 + i16 34+217−234+217−417−317+170−3817
      • x93 = cos 98π51 + i sin98π51 = 132 1+1734+217+217−317+170−3817 + 116 334+217+234+217+417−317170−3817 + i32 31+1734+217+217−317+170−3817i16 34+217+234+217+417−317170−3817
      • x94 = cos 100π51 + i sin100π51 = 132 1+17+34+217−217−317170−3817 + 116 334+217−234+217+417−317+170−3817i32 31+17+34+217−217−317170−3817 + i16 34+217−234+217+417−317+170−3817
      • x95 = cosπ51 + i sinπ51 = 132 −1−17+34+217+217−317+170−3817 + 116 334+217+234+217−417−317170−3817i32 3−1−17+34+217+217−317+170−3817 + i16 34+217+234+217−417−317170−3817
      • x96 = cos 5π51 + i sin5π51 = 132 −1+1734−217+217+317+170+3817 + 116 334−217−234−217+417+317170+3817 + i32 3−1+1734−217+217+317+170+3817i16 34−217−234−217+417+317170+3817
      • x97 = cos 7π51 + i sin7π51 = 132 −1+17+34−217−217+317170+3817 + 116 334−217+234−217+417+317+170+3817i32 3−1+17+34−217−217+317170+3817 + i16 34−217+234−217+417+317+170+3817
      • x98 = cos 11π51 + i sin11π51 = 132 −1+17+34−217+217+317170+3817 + 116 334−217+234−217−417+317+170+3817 + i32 3−1+17+34−217+217+317170+3817i16 34−217+234−217−417+317+170+3817
      • x99 = cos 13π51 + i sin13π51 = −132 1+1734+217+217−317+170−3817 + 116 334+217+234+217+417−317170−3817 + i32 31+1734+217+217−317+170−3817 + i16 34+217+234+217+417−317170−3817
      • x100 = cos 19π51 + i sin19π51 = −132 1+17+34+217−217−317170−3817 + 116 334+217−234+217+417−317+170−3817 + i32 31+17+34+217−217−317170−3817 + i16 34+217−234+217+417−317+170−3817
      • x101 = cos 23π51 + i sin23π51 = 132 −1+17+34−217+217+317170+3817116 334−217+234−217−417+317+170+3817 + i32 3−1+17+34−217+217+317170+3817 + i16 34−217+234−217−417+317+170+3817
      • x102 = cos 25π51 + i sin25π51 = −132 1+17+34+217+217−317170−3817 + 116 334+217−234+217−417−317+170−3817 + i32 31+17+34+217+217−317170−3817 + i16 34+217−234+217−417−317+170−3817
      • x103 = cos 29π51 + i sin29π51 = 132 −1+1734−217+217+317+170+3817116 334−217−234−217+417+317170+3817 + i32 3−1+1734−217+217+317+170+3817 + i16 34−217−234−217+417+317170+3817
      • x104 = cos 31π51 + i sin31π51 = −132 1−17+34−217+217+317+170+3817 + 116 334−217−234−217−417+317170+3817 + i32 31−17+34−217+217+317+170+3817 + i16 34−217−234−217−417+317170+3817
      • x105 = cos 35π51 + i sin35π51 = 132 −1−17+34+217+217−317+170−3817116 334+217+234+217−417−317170−3817 + i32 3−1−17+34+217+217−317+170−3817 + i16 34+217+234+217−417−317170−3817
      • x106 = cos 37π51 + i sin37π51 = −132 1−17+34−217+217+317+170+3817116 334−217−234−217−417+317170+3817 + i32 31−17+34−217+217+317+170+3817i16 34−217−234−217−417+317170+3817
      • x107 = cos 41π51 + i sin41π51 = 132 −1+17+34−217−217+317170+3817116 334−217+234−217+417+317+170+3817 + i32 3−1+17+34−217−217+317170+3817 + i16 34−217+234−217+417+317+170+3817
      • x108 = cos 43π51 + i sin43π51 = −132 1+17+34+217+217−317170−3817116 334+217−234+217−417−317+170−3817 + i32 31+17+34+217+217−317170−3817i16 34+217−234+217−417−317+170−3817
      • x109 = cos 47π51 + i sin47π51 = −132 1+1734+217+217−317+170−3817116 334+217+234+217+417−317170−3817i32 31+1734+217+217−317+170−3817 + i16 34+217+234+217+417−317170−3817
      • x110 = cos 49π51 + i sin49π51 = −132 1+17+34+217−217−317170−3817116 334+217−234+217+417−317+170−3817 + i32 31+17+34+217−217−317170−3817i16 34+217−234+217+417−317+170−3817
      • x111 = cos 53π51 + i sin53π51 = −132 1+17+34+217−217−317170−3817116 334+217−234+217+417−317+170−3817i32 31+17+34+217−217−317170−3817 + i16 34+217−234+217+417−317+170−3817
      • x112 = cos 55π51 + i sin55π51 = −132 1+1734+217+217−317+170−3817116 334+217+234+217+417−317170−3817 + i32 31+1734+217+217−317+170−3817i16 34+217+234+217+417−317170−3817
      • x113 = cos 59π51 + i sin59π51 = −132 1+17+34+217+217−317170−3817116 334+217−234+217−417−317+170−3817i32 31+17+34+217+217−317170−3817 + i16 34+217−234+217−417−317+170−3817
      • x114 = cos 61π51 + i sin61π51 = 132 −1+17+34−217−217+317170+3817116 334−217+234−217+417+317+170+3817i32 3−1+17+34−217−217+317170+3817i16 34−217+234−217+417+317+170+3817
      • x115 = cos 65π51 + i sin65π51 = −132 1−17+34−217+217+317+170+3817116 334−217−234−217−417+317170+3817i32 31−17+34−217+217+317+170+3817 + i16 34−217−234−217−417+317170+3817
      • x116 = cos 67π51 + i sin67π51 = 132 −1−17+34+217+217−317+170−3817116 334+217+234+217−417−317170−3817i32 3−1−17+34+217+217−317+170−3817i16 34+217+234+217−417−317170−3817
      • x117 = cos 71π51 + i sin71π51 = −132 1−17+34−217+217+317+170+3817 + 116 334−217−234−217−417+317170+3817i32 31−17+34−217+217+317+170+3817i16 34−217−234−217−417+317170+3817
      • x118 = cos 73π51 + i sin73π51 = 132 −1+1734−217+217+317+170+3817116 334−217−234−217+417+317170+3817i32 3−1+1734−217+217+317+170+3817i16 34−217−234−217+417+317170+3817
      • x119 = cos 77π51 + i sin77π51 = −132 1+17+34+217+217−317170−3817 + 116 334+217−234+217−417−317+170−3817i32 31+17+34+217+217−317170−3817i16 34+217−234+217−417−317+170−3817
      • x120 = cos 79π51 + i sin79π51 = 132 −1+17+34−217+217+317170+3817116 334−217+234−217−417+317+170+3817i32 3−1+17+34−217+217+317170+3817i16 34−217+234−217−417+317+170+3817
      • x121 = cos 83π51 + i sin83π51 = −132 1+17+34+217−217−317170−3817 + 116 334+217−234+217+417−317+170−3817i32 31+17+34+217−217−317170−3817i16 34+217−234+217+417−317+170−3817
      • x122 = cos 89π51 + i sin89π51 = −132 1+1734+217+217−317+170−3817 + 116 334+217+234+217+417−317170−3817i32 31+1734+217+217−317+170−3817i16 34+217+234+217+417−317170−3817
      • x123 = cos 91π51 + i sin91π51 = 132 −1+17+34−217+217+317170+3817 + 116 334−217+234−217−417+317+170+3817i32 3−1+17+34−217+217+317170+3817 + i16 34−217+234−217−417+317+170+3817
      • x124 = cos 95π51 + i sin95π51 = 132 −1+17+34−217−217+317170+3817 + 116 334−217+234−217+417+317+170+3817 + i32 3−1+17+34−217−217+317170+3817i16 34−217+234−217+417+317+170+3817
      • x125 = cos 97π51 + i sin97π51 = 132 −1+1734−217+217+317+170+3817 + 116 334−217−234−217+417+317170+3817i32 3−1+1734−217+217+317+170+3817 + i16 34−217−234−217+417+317170+3817
      • x126 = cos 101π51 + i sin101π51 = 132 −1−17+34+217+217−317+170−3817 + 116 334+217+234+217−417−317170−3817 + i32 3−1−17+34+217+217−317+170−3817i16 34+217+234+217−417−317170−3817
      • x127 = cos 2π85 + i sin2π85 = 164 5+11+17+34+217+217−317170−3817 + 132 10−2534+217−234+217−417−317+170−3817 + i64 10−251+17+34+217+217−317170−3817i32 5+134+217−234+217−417−317+170−3817
      • x128 = cos 4π85 + i sin4π85 = 164 5−1−1−17+34+217+217−317+170−3817 + 132 10+2534+217+234+217−417−317170−3817 + i64 10+25−1−17+34+217+217−317+170−3817i32 5−134+217+234+217−417−317170−3817
      • x129 = cos 6π85 + i sin6π85 = 164 5−1−1+17+34−217−217+317170+3817 + 132 10+2534−217+234−217+417+317+170+3817i64 10+25−1+17+34−217−217+317170+3817 + i32 5−134−217+234−217+417+317+170+3817
      • x130 = cos 8π85 + i sin8π85 = 164 5+11+17+34+217−217−317170−3817 + 132 10−2534+217−234+217+417−317+170−3817i64 10−251+17+34+217−217−317170−3817 + i32 5+134+217−234+217+417−317+170−3817
      • x131 = cos 12π85 + i sin12π85 = 164 5+11−17+34−217+217+317+170+3817 + 132 10−2534−217−234−217−417+317170+3817 + i64 10−251−17+34−217+217+317+170+3817i32 5+134−217−234−217−417+317170+3817
      • x132 = cos 14π85 + i sin14π85 = 164 5−1−1+1734−217+217+317+170+3817 + 132 10+2534−217−234−217+417+317170+3817 + i64 10+25−1+1734−217+217+317+170+3817i32 5−134−217−234−217+417+317170+3817
      • x133 = cos 16π85 + i sin16π85 = −164 5−11+1734+217+217−317+170−3817 + 132 10+2534+217+234+217+417−317170−3817 + i64 10+251+1734+217+217−317+170−3817 + i32 5−134+217+234+217+417−317170−3817
      • x134 = cos 18π85 + i sin18π85 = 164 5+11+1734+217+217−317+170−3817 + 132 10−2534+217+234+217+417−317170−3817i64 10−251+1734+217+217−317+170−3817 + i32 5+134+217+234+217+417−317170−3817
      • x135 = cos 22π85 + i sin22π85 = 164 5+11−17+34−217+217+317+170+3817132 10−2534−217−234−217−417+317170+3817 + i64 10−251−17+34−217+217+317+170+3817 + i32 5+134−217−234−217−417+317170+3817
      • x136 = cos 24π85 + i sin24π85 = 164 5−1−1+17+34−217+217+317170+3817 + 132 10+2534−217+234−217−417+317+170+3817 + i64 10+25−1+17+34−217+217+317170+3817i32 5−134−217+234−217−417+317+170+3817
      • x137 = cos 26π85 + i sin26π85 = −164 5−11+17+34+217−217−317170−3817 + 132 10+2534+217−234+217+417−317+170−3817 + i64 10+251+17+34+217−217−317170−3817 + i32 5−134+217−234+217+417−317+170−3817
      • x138 = cos 28π85 + i sin28π85 = −164 5+1−1+17+34−217−217+317170+3817 + 132 10−2534−217+234−217+417+317+170+3817 + i64 10−25−1+17+34−217−217+317170+3817 + i32 5+134−217+234−217+417+317+170+3817
      • x139 = cos 32π85 + i sin32π85 = 164 5+11+17+34+217+217−317170−3817132 10−2534+217−234+217−417−317+170−3817 + i64 10−251+17+34+217+217−317170−3817 + i32 5+134+217−234+217−417−317+170−3817
      • x140 = cos 36π85 + i sin36π85 = −164 5−11+17+34+217+217−317170−3817 + 132 10+2534+217−234+217−417−317+170−3817 + i64 10+251+17+34+217+217−317170−3817 + i32 5−134+217−234+217−417−317+170−3817
      • x141 = cos 38π85 + i sin38π85 = −164 5+1−1−17+34+217+217−317+170−3817 + 132 10−2534+217+234+217−417−317170−3817 + i64 10−25−1−17+34+217+217−317+170−3817 + i32 5+134+217+234+217−417−317170−3817
      • x142 = cos 42π85 + i sin42π85 = 164 5+11+17+34+217−217−317170−3817132 10−2534+217−234+217+417−317+170−3817 + i64 10−251+17+34+217−217−317170−3817 + i32 5+134+217−234+217+417−317+170−3817
      • x143 = cos 44π85 + i sin44π85 = 164 5−1−1+17+34−217+217+317170+3817132 10+2534−217+234−217−417+317+170+3817 + i64 10+25−1+17+34−217+217+317170+3817 + i32 5−134−217+234−217−417+317+170+3817
      • x144 = cos 46π85 + i sin46π85 = −164 5−11−17+34−217+217+317+170+3817 + 132 10+2534−217−234−217−417+317170+3817 + i64 10+251−17+34−217+217+317+170+3817 + i32 5−134−217−234−217−417+317170+3817
      • x145 = cos 48π85 + i sin48π85 = −164 5+1−1+1734−217+217+317+170+3817 + 132 10−2534−217−234−217+417+317170+3817 + i64 10−25−1+1734−217+217+317+170+3817 + i32 5+134−217−234−217+417+317170+3817
      • x146 = cos 52π85 + i sin52π85 = 164 5+11+1734+217+217−317+170−3817132 10−2534+217+234+217+417−317170−3817 + i64 10−251+1734+217+217−317+170−3817 + i32 5+134+217+234+217+417−317170−3817
      • x147 = cos 54π85 + i sin54π85 = 164 5−1−1+1734−217+217+317+170+3817132 10+2534−217−234−217+417+317170+3817 + i64 10+25−1+1734−217+217+317+170+3817 + i32 5−134−217−234−217+417+317170+3817
      • x148 = cos 56π85 + i sin56π85 = −164 5−11−17+34−217+217+317+170+3817132 10+2534−217−234−217−417+317170+3817 + i64 10+251−17+34−217+217+317+170+3817i32 5−134−217−234−217−417+317170+3817
      • x149 = cos 58π85 + i sin58π85 = −164 5+1−1+17+34−217+217+317170+3817 + 132 10−2534−217+234−217−417+317+170+3817 + i64 10−25−1+17+34−217+217+317170+3817 + i32 5+134−217+234−217−417+317+170+3817
      • x150 = cos 62π85 + i sin62π85 = −164 5+1−1+17+34−217−217+317170+3817132 10−2534−217+234−217+417+317+170+3817i64 10−25−1+17+34−217−217+317170+3817 + i32 5+134−217+234−217+417+317+170+3817
      • x151 = cos 64π85 + i sin64π85 = 164 5−1−1−17+34+217+217−317+170−3817132 10+2534+217+234+217−417−317170−3817 + i64 10+25−1−17+34+217+217−317+170−3817 + i32 5−134+217+234+217−417−317170−3817
      • x152 = cos 66π85 + i sin66π85 = −164 5−11+17+34+217+217−317170−3817132 10+2534+217−234+217−417−317+170−3817 + i64 10+251+17+34+217+217−317170−3817i32 5−134+217−234+217−417−317+170−3817
      • x153 = cos 72π85 + i sin72π85 = −164 5+1−1−17+34+217+217−317+170−3817132 10−2534+217+234+217−417−317170−3817i64 10−25−1−17+34+217+217−317+170−3817 + i32 5+134+217+234+217−417−317170−3817
      • x154 = cos 74π85 + i sin74π85 = 164 5−1−1+17+34−217−217+317170+3817132 10+2534−217+234−217+417+317+170+3817 + i64 10+25−1+17+34−217−217+317170+3817 + i32 5−134−217+234−217+417+317+170+3817
      • x155 = cos 76π85 + i sin76π85 = −164 5−11+17+34+217−217−317170−3817132 10+2534+217−234+217+417−317+170−3817 + i64 10+251+17+34+217−217−317170−3817i32 5−134+217−234+217+417−317+170−3817
      • x156 = cos 78π85 + i sin78π85 = −164 5+1−1+17+34−217+217+317170+3817132 10−2534−217+234−217−417+317+170+3817 + i64 10−25−1+17+34−217+217+317170+3817i32 5+134−217+234−217−417+317+170+3817
      • x157 = cos 82π85 + i sin82π85 = −164 5+1−1+1734−217+217+317+170+3817132 10−2534−217−234−217+417+317170+3817i64 10−25−1+1734−217+217+317+170+3817 + i32 5+134−217−234−217+417+317170+3817
      • x158 = cos 84π85 + i sin84π85 = −164 5−11+1734+217+217−317+170−3817132 10+2534+217+234+217+417−317170−3817i64 10+251+1734+217+217−317+170−3817 + i32 5−134+217+234+217+417−317170−3817
      • x159 = cos 86π85 + i sin86π85 = −164 5−11+1734+217+217−317+170−3817132 10+2534+217+234+217+417−317170−3817 + i64 10+251+1734+217+217−317+170−3817i32 5−134+217+234+217+417−317170−3817
      • x160 = cos 88π85 + i sin88π85 = −164 5+1−1+1734−217+217+317+170+3817132 10−2534−217−234−217+417+317170+3817 + i64 10−25−1+1734−217+217+317+170+3817i32 5+134−217−234−217+417+317170+3817
      • x161 = cos 92π85 + i sin92π85 = −164 5+1−1+17+34−217+217+317170+3817132 10−2534−217+234−217−417+317+170+3817i64 10−25−1+17+34−217+217+317170+3817 + i32 5+134−217+234−217−417+317+170+3817
      • x162 = cos 94π85 + i sin94π85 = −164 5−11+17+34+217−217−317170−3817132 10+2534+217−234+217+417−317+170−3817i64 10+251+17+34+217−217−317170−3817 + i32 5−134+217−234+217+417−317+170−3817
      • x163 = cos 96π85 + i sin96π85 = 164 5−1−1+17+34−217−217+317170+3817132 10+2534−217+234−217+417+317+170+3817i64 10+25−1+17+34−217−217+317170+3817i32 5−134−217+234−217+417+317+170+3817
      • x164 = cos 98π85 + i sin98π85 = −164 5+1−1−17+34+217+217−317+170−3817132 10−2534+217+234+217−417−317170−3817 + i64 10−25−1−17+34+217+217−317+170−3817i32 5+134+217+234+217−417−317170−3817
      • x165 = cos 104π85 + i sin104π85 = −164 5−11+17+34+217+217−317170−3817132 10+2534+217−234+217−417−317+170−3817i64 10+251+17+34+217+217−317170−3817 + i32 5−134+217−234+217−417−317+170−3817
      • x166 = cos 106π85 + i sin106π85 = 164 5−1−1−17+34+217+217−317+170−3817132 10+2534+217+234+217−417−317170−3817i64 10+25−1−17+34+217+217−317+170−3817i32 5−134+217+234+217−417−317170−3817
      • x167 = cos 108π85 + i sin108π85 = −164 5+1−1+17+34−217−217+317170+3817132 10−2534−217+234−217+417+317+170+3817 + i64 10−25−1+17+34−217−217+317170+3817i32 5+134−217+234−217+417+317+170+3817
      • x168 = cos 112π85 + i sin112π85 = −164 5+1−1+17+34−217+217+317170+3817 + 132 10−2534−217+234−217−417+317+170+3817i64 10−25−1+17+34−217+217+317170+3817i32 5+134−217+234−217−417+317+170+3817
      • x169 = cos 114π85 + i sin114π85 = −164 5−11−17+34−217+217+317+170+3817132 10+2534−217−234−217−417+317170+3817i64 10+251−17+34−217+217+317+170+3817 + i32 5−134−217−234−217−417+317170+3817
      • x170 = cos 116π85 + i sin116π85 = 164 5−1−1+1734−217+217+317+170+3817132 10+2534−217−234−217+417+317170+3817i64 10+25−1+1734−217+217+317+170+3817i32 5−134−217−234−217+417+317170+3817
      • x171 = cos 118π85 + i sin118π85 = 164 5+11+1734+217+217−317+170−3817132 10−2534+217+234+217+417−317170−3817i64 10−251+1734+217+217−317+170−3817i32 5+134+217+234+217+417−317170−3817
      • x172 = cos 122π85 + i sin122π85 = −164 5+1−1+1734−217+217+317+170+3817 + 132 10−2534−217−234−217+417+317170+3817i64 10−25−1+1734−217+217+317+170+3817i32 5+134−217−234−217+417+317170+3817
      • x173 = cos 124π85 + i sin124π85 = −164 5−11−17+34−217+217+317+170+3817 + 132 10+2534−217−234−217−417+317170+3817i64 10+251−17+34−217+217+317+170+3817i32 5−134−217−234−217−417+317170+3817
      • x174 = cos 126π85 + i sin126π85 = 164 5−1−1+17+34−217+217+317170+3817132 10+2534−217+234−217−417+317+170+3817i64 10+25−1+17+34−217+217+317170+3817i32 5−134−217+234−217−417+317+170+3817
      • x175 = cos 128π85 + i sin128π85 = 164 5+11+17+34+217−217−317170−3817132 10−2534+217−234+217+417−317+170−3817i64 10−251+17+34+217−217−317170−3817i32 5+134+217−234+217+417−317+170−3817
      • x176 = cos 132π85 + i sin132π85 = −164 5+1−1−17+34+217+217−317+170−3817 + 132 10−2534+217+234+217−417−317170−3817i64 10−25−1−17+34+217+217−317+170−3817i32 5+134+217+234+217−417−317170−3817
      • x177 = cos 134π85 + i sin134π85 = −164 5−11+17+34+217+217−317170−3817 + 132 10+2534+217−234+217−417−317+170−3817i64 10+251+17+34+217+217−317170−3817i32 5−134+217−234+217−417−317+170−3817
      • x178 = cos 138π85 + i sin138π85 = 164 5+11+17+34+217+217−317170−3817132 10−2534+217−234+217−417−317+170−3817i64 10−251+17+34+217+217−317170−3817i32 5+134+217−234+217−417−317+170−3817
      • x179 = cos 142π85 + i sin142π85 = −164 5+1−1+17+34−217−217+317170+3817 + 132 10−2534−217+234−217+417+317+170+3817i64 10−25−1+17+34−217−217+317170+3817i32 5+134−217+234−217+417+317+170+3817
      • x180 = cos 144π85 + i sin144π85 = −164 5−11+17+34+217−217−317170−3817 + 132 10+2534+217−234+217+417−317+170−3817i64 10+251+17+34+217−217−317170−3817i32 5−134+217−234+217+417−317+170−3817
      • x181 = cos 146π85 + i sin146π85 = 164 5−1−1+17+34−217+217+317170+3817 + 132 10+2534−217+234−217−417+317+170+3817i64 10+25−1+17+34−217+217+317170+3817 + i32 5−134−217+234−217−417+317+170+3817
      • x182 = cos 148π85 + i sin148π85 = 164 5+11−17+34−217+217+317+170+3817132 10−2534−217−234−217−417+317170+3817i64 10−251−17+34−217+217+317+170+3817i32 5+134−217−234−217−417+317170+3817
      • x183 = cos 152π85 + i sin152π85 = 164 5+11+1734+217+217−317+170−3817 + 132 10−2534+217+234+217+417−317170−3817 + i64 10−251+1734+217+217−317+170−3817i32 5+134+217+234+217+417−317170−3817
      • x184 = cos 154π85 + i sin154π85 = −164 5−11+1734+217+217−317+170−3817 + 132 10+2534+217+234+217+417−317170−3817i64 10+251+1734+217+217−317+170−3817i32 5−134+217+234+217+417−317170−3817
      • x185 = cos 156π85 + i sin156π85 = 164 5−1−1+1734−217+217+317+170+3817 + 132 10+2534−217−234−217+417+317170+3817i64 10+25−1+1734−217+217+317+170+3817 + i32 5−134−217−234−217+417+317170+3817
      • x186 = cos 158π85 + i sin158π85 = 164 5+11−17+34−217+217+317+170+3817 + 132 10−2534−217−234−217−417+317170+3817i64 10−251−17+34−217+217+317+170+3817 + i32 5+134−217−234−217−417+317170+3817
      • x187 = cos 162π85 + i sin162π85 = 164 5+11+17+34+217−217−317170−3817 + 132 10−2534+217−234+217+417−317+170−3817 + i64 10−251+17+34+217−217−317170−3817i32 5+134+217−234+217+417−317+170−3817
      • x188 = cos 164π85 + i sin164π85 = 164 5−1−1+17+34−217−217+317170+3817 + 132 10+2534−217+234−217+417+317+170+3817 + i64 10+25−1+17+34−217−217+317170+3817i32 5−134−217+234−217+417+317+170+3817
      • x189 = cos 166π85 + i sin166π85 = 164 5−1−1−17+34+217+217−317+170−3817 + 132 10+2534+217+234+217−417−317170−3817i64 10+25−1−17+34+217+217−317+170−3817 + i32 5−134+217+234+217−417−317170−3817
      • x190 = cos 168π85 + i sin168π85 = 164 5+11+17+34+217+217−317170−3817 + 132 10−2534+217−234+217−417−317+170−3817i64 10−251+17+34+217+217−317170−3817 + i32 5+134+217−234+217−417−317+170−3817
      • x191 = cosπ85 + i sinπ85 = 164 5−11+1734+217+217−317+170−3817 + 132 10+2534+217+234+217+417−317170−3817i64 10+251+1734+217+217−317+170−3817 + i32 5−134+217+234+217+417−317170−3817
      • x192 = cos 3π85 + i sin3π85 = 164 5+1−1+1734−217+217+317+170+3817 + 132 10−2534−217−234−217+417+317170+3817i64 10−25−1+1734−217+217+317+170+3817 + i32 5+134−217−234−217+417+317170+3817
      • x193 = cos 7π85 + i sin7π85 = 164 5+1−1+17+34−217+217+317170+3817 + 132 10−2534−217+234−217−417+317+170+3817 + i64 10−25−1+17+34−217+217+317170+3817i32 5+134−217+234−217−417+317+170+3817
      • x194 = cos 9π85 + i sin9π85 = 164 5−11+17+34+217−217−317170−3817 + 132 10+2534+217−234+217+417−317+170−3817 + i64 10+251+17+34+217−217−317170−3817i32 5−134+217−234+217+417−317+170−3817
      • x195 = cos 11π85 + i sin11π85 = −164 5−1−1+17+34−217−217+317170+3817 + 132 10+2534−217+234−217+417+317+170+3817 + i64 10+25−1+17+34−217−217+317170+3817 + i32 5−134−217+234−217+417+317+170+3817
      • x196 = cos 13π85 + i sin13π85 = 164 5+1−1−17+34+217+217−317+170−3817 + 132 10−2534+217+234+217−417−317170−3817i64 10−25−1−17+34+217+217−317+170−3817 + i32 5+134+217+234+217−417−317170−3817
      • x197 = cos 19π85 + i sin19π85 = 164 5−11+17+34+217+217−317170−3817 + 132 10+2534+217−234+217−417−317+170−3817 + i64 10+251+17+34+217+217−317170−3817i32 5−134+217−234+217−417−317+170−3817
      • x198 = cos 21π85 + i sin21π85 = −164 5−1−1−17+34+217+217−317+170−3817 + 132 10+2534+217+234+217−417−317170−3817 + i64 10+25−1−17+34+217+217−317+170−3817 + i32 5−134+217+234+217−417−317170−3817
      • x199 = cos 23π85 + i sin23π85 = 164 5+1−1+17+34−217−217+317170+3817 + 132 10−2534−217+234−217+417+317+170+3817i64 10−25−1+17+34−217−217+317170+3817 + i32 5+134−217+234−217+417+317+170+3817
      • x200 = cos 27π85 + i sin27π85 = 164 5+1−1+17+34−217+217+317170+3817132 10−2534−217+234−217−417+317+170+3817 + i64 10−25−1+17+34−217+217+317170+3817 + i32 5+134−217+234−217−417+317+170+3817
      • x201 = cos 29π85 + i sin29π85 = 164 5−11−17+34−217+217+317+170+3817 + 132 10+2534−217−234−217−417+317170+3817 + i64 10+251−17+34−217+217+317+170+3817i32 5−134−217−234−217−417+317170+3817
      • x202 = cos 31π85 + i sin31π85 = −164 5−1−1+1734−217+217+317+170+3817 + 132 10+2534−217−234−217+417+317170+3817 + i64 10+25−1+1734−217+217+317+170+3817 + i32 5−134−217−234−217+417+317170+3817
      • x203 = cos 33π85 + i sin33π85 = −164 5+11+1734+217+217−317+170−3817 + 132 10−2534+217+234+217+417−317170−3817 + i64 10−251+1734+217+217−317+170−3817 + i32 5+134+217+234+217+417−317170−3817
      • x204 = cos 37π85 + i sin37π85 = 164 5+1−1+1734−217+217+317+170+3817132 10−2534−217−234−217+417+317170+3817 + i64 10−25−1+1734−217+217+317+170+3817 + i32 5+134−217−234−217+417+317170+3817
      • x205 = cos 39π85 + i sin39π85 = 164 5−11−17+34−217+217+317+170+3817132 10+2534−217−234−217−417+317170+3817 + i64 10+251−17+34−217+217+317+170+3817 + i32 5−134−217−234−217−417+317170+3817
      • x206 = cos 41π85 + i sin41π85 = −164 5−1−1+17+34−217+217+317170+3817 + 132 10+2534−217+234−217−417+317+170+3817 + i64 10+25−1+17+34−217+217+317170+3817 + i32 5−134−217+234−217−417+317+170+3817
      • x207 = cos 43π85 + i sin43π85 = −164 5+11+17+34+217−217−317170−3817 + 132 10−2534+217−234+217+417−317+170−3817 + i64 10−251+17+34+217−217−317170−3817 + i32 5+134+217−234+217+417−317+170−3817
      • x208 = cos 47π85 + i sin47π85 = 164 5+1−1−17+34+217+217−317+170−3817132 10−2534+217+234+217−417−317170−3817 + i64 10−25−1−17+34+217+217−317+170−3817 + i32 5+134+217+234+217−417−317170−3817
      • x209 = cos 49π85 + i sin49π85 = 164 5−11+17+34+217+217−317170−3817132 10+2534+217−234+217−417−317+170−3817 + i64 10+251+17+34+217+217−317170−3817 + i32 5−134+217−234+217−417−317+170−3817
      • x210 = cos 53π85 + i sin53π85 = −164 5+11+17+34+217+217−317170−3817 + 132 10−2534+217−234+217−417−317+170−3817 + i64 10−251+17+34+217+217−317170−3817 + i32 5+134+217−234+217−417−317+170−3817
      • x211 = cos 57π85 + i sin57π85 = 164 5+1−1+17+34−217−217+317170+3817132 10−2534−217+234−217+417+317+170+3817 + i64 10−25−1+17+34−217−217+317170+3817 + i32 5+134−217+234−217+417+317+170+3817
      • x212 = cos 59π85 + i sin59π85 = 164 5−11+17+34+217−217−317170−3817132 10+2534+217−234+217+417−317+170−3817 + i64 10+251+17+34+217−217−317170−3817 + i32 5−134+217−234+217+417−317+170−3817
      • x213 = cos 61π85 + i sin61π85 = −164 5−1−1+17+34−217+217+317170+3817132 10+2534−217+234−217−417+317+170+3817 + i64 10+25−1+17+34−217+217+317170+3817i32 5−134−217+234−217−417+317+170+3817
      • x214 = cos 63π85 + i sin63π85 = −164 5+11−17+34−217+217+317+170+3817 + 132 10−2534−217−234−217−417+317170+3817 + i64 10−251−17+34−217+217+317+170+3817 + i32 5+134−217−234−217−417+317170+3817
      • x215 = cos 67π85 + i sin67π85 = −164 5+11+1734+217+217−317+170−3817132 10−2534+217+234+217+417−317170−3817i64 10−251+1734+217+217−317+170−3817 + i32 5+134+217+234+217+417−317170−3817
      • x216 = cos 69π85 + i sin69π85 = 164 5−11+1734+217+217−317+170−3817132 10+2534+217+234+217+417−317170−3817 + i64 10+251+1734+217+217−317+170−3817 + i32 5−134+217+234+217+417−317170−3817
      • x217 = cos 71π85 + i sin71π85 = −164 5−1−1+1734−217+217+317+170+3817132 10+2534−217−234−217+417+317170+3817 + i64 10+25−1+1734−217+217+317+170+3817i32 5−134−217−234−217+417+317170+3817
      • x218 = cos 73π85 + i sin73π85 = −164 5+11−17+34−217+217+317+170+3817132 10−2534−217−234−217−417+317170+3817 + i64 10−251−17+34−217+217+317+170+3817i32 5+134−217−234−217−417+317170+3817
      • x219 = cos 77π85 + i sin77π85 = −164 5+11+17+34+217−217−317170−3817132 10−2534+217−234+217+417−317+170−3817i64 10−251+17+34+217−217−317170−3817 + i32 5+134+217−234+217+417−317+170−3817
      • x220 = cos 79π85 + i sin79π85 = −164 5−1−1+17+34−217−217+317170+3817132 10+2534−217+234−217+417+317+170+3817i64 10+25−1+17+34−217−217+317170+3817 + i32 5−134−217+234−217+417+317+170+3817
      • x221 = cos 81π85 + i sin81π85 = −164 5−1−1−17+34+217+217−317+170−3817132 10+2534+217+234+217−417−317170−3817 + i64 10+25−1−17+34+217+217−317+170−3817i32 5−134+217+234+217−417−317170−3817
      • x222 = cos 83π85 + i sin83π85 = −164 5+11+17+34+217+217−317170−3817132 10−2534+217−234+217−417−317+170−3817 + i64 10−251+17+34+217+217−317170−3817i32 5+134+217−234+217−417−317+170−3817
      • x223 = cos 87π85 + i sin87π85 = −164 5+11+17+34+217+217−317170−3817132 10−2534+217−234+217−417−317+170−3817i64 10−251+17+34+217+217−317170−3817 + i32 5+134+217−234+217−417−317+170−3817
      • x224 = cos 89π85 + i sin89π85 = −164 5−1−1−17+34+217+217−317+170−3817132 10+2534+217+234+217−417−317170−3817i64 10+25−1−17+34+217+217−317+170−3817 + i32 5−134+217+234+217−417−317170−3817
      • x225 = cos 91π85 + i sin91π85 = −164 5−1−1+17+34−217−217+317170+3817132 10+2534−217+234−217+417+317+170+3817 + i64 10+25−1+17+34−217−217+317170+3817i32 5−134−217+234−217+417+317+170+3817
      • x226 = cos 93π85 + i sin93π85 = −164 5+11+17+34+217−217−317170−3817132 10−2534+217−234+217+417−317+170−3817 + i64 10−251+17+34+217−217−317170−3817i32 5+134+217−234+217+417−317+170−3817
      • x227 = cos 97π85 + i sin97π85 = −164 5+11−17+34−217+217+317+170+3817132 10−2534−217−234−217−417+317170+3817i64 10−251−17+34−217+217+317+170+3817 + i32 5+134−217−234−217−417+317170+3817
      • x228 = cos 99π85 + i sin99π85 = −164 5−1−1+1734−217+217+317+170+3817132 10+2534−217−234−217+417+317170+3817i64 10+25−1+1734−217+217+317+170+3817 + i32 5−134−217−234−217+417+317170+3817
      • x229 = cos 101π85 + i sin101π85 = 164 5−11+1734+217+217−317+170−3817132 10+2534+217+234+217+417−317170−3817i64 10+251+1734+217+217−317+170−3817i32 5−134+217+234+217+417−317170−3817
      • x230 = cos 103π85 + i sin103π85 = −164 5+11+1734+217+217−317+170−3817132 10−2534+217+234+217+417−317170−3817 + i64 10−251+1734+217+217−317+170−3817i32 5+134+217+234+217+417−317170−3817
      • x231 = cos 107π85 + i sin107π85 = −164 5+11−17+34−217+217+317+170+3817 + 132 10−2534−217−234−217−417+317170+3817i64 10−251−17+34−217+217+317+170+3817i32 5+134−217−234−217−417+317170+3817
      • x232 = cos 109π85 + i sin109π85 = −164 5−1−1+17+34−217+217+317170+3817132 10+2534−217+234−217−417+317+170+3817i64 10+25−1+17+34−217+217+317170+3817 + i32 5−134−217+234−217−417+317+170+3817
      • x233 = cos 111π85 + i sin111π85 = 164 5−11+17+34+217−217−317170−3817132 10+2534+217−234+217+417−317+170−3817i64 10+251+17+34+217−217−317170−3817i32 5−134+217−234+217+417−317+170−3817
      • x234 = cos 113π85 + i sin113π85 = 164 5+1−1+17+34−217−217+317170+3817132 10−2534−217+234−217+417+317+170+3817i64 10−25−1+17+34−217−217+317170+3817i32 5+134−217+234−217+417+317+170+3817
      • x235 = cos 117π85 + i sin117π85 = −164 5+11+17+34+217+217−317170−3817 + 132 10−2534+217−234+217−417−317+170−3817i64 10−251+17+34+217+217−317170−3817i32 5+134+217−234+217−417−317+170−3817
      • x236 = cos 121π85 + i sin121π85 = 164 5−11+17+34+217+217−317170−3817132 10+2534+217−234+217−417−317+170−3817i64 10+251+17+34+217+217−317170−3817i32 5−134+217−234+217−417−317+170−3817
      • x237 = cos 123π85 + i sin123π85 = 164 5+1−1−17+34+217+217−317+170−3817132 10−2534+217+234+217−417−317170−3817i64 10−25−1−17+34+217+217−317+170−3817i32 5+134+217+234+217−417−317170−3817
      • x238 = cos 127π85 + i sin127π85 = −164 5+11+17+34+217−217−317170−3817 + 132 10−2534+217−234+217+417−317+170−3817i64 10−251+17+34+217−217−317170−3817i32 5+134+217−234+217+417−317+170−3817
      • x239 = cos 129π85 + i sin129π85 = −164 5−1−1+17+34−217+217+317170+3817 + 132 10+2534−217+234−217−417+317+170+3817i64 10+25−1+17+34−217+217+317170+3817i32 5−134−217+234−217−417+317+170+3817
      • x240 = cos 131π85 + i sin131π85 = 164 5−11−17+34−217+217+317+170+3817132 10+2534−217−234−217−417+317170+3817i64 10+251−17+34−217+217+317+170+3817i32 5−134−217−234−217−417+317170+3817
      • x241 = cos 133π85 + i sin133π85 = 164 5+1−1+1734−217+217+317+170+3817132 10−2534−217−234−217+417+317170+3817i64 10−25−1+1734−217+217+317+170+3817i32 5+134−217−234−217+417+317170+3817
      • x242 = cos 137π85 + i sin137π85 = −164 5+11+1734+217+217−317+170−3817 + 132 10−2534+217+234+217+417−317170−3817i64 10−251+1734+217+217−317+170−3817i32 5+134+217+234+217+417−317170−3817
      • x243 = cos 139π85 + i sin139π85 = −164 5−1−1+1734−217+217+317+170+3817 + 132 10+2534−217−234−217+417+317170+3817i64 10+25−1+1734−217+217+317+170+3817i32 5−134−217−234−217+417+317170+3817
      • x244 = cos 141π85 + i sin141π85 = 164 5−11−17+34−217+217+317+170+3817 + 132 10+2534−217−234−217−417+317170+3817i64 10+251−17+34−217+217+317+170+3817 + i32 5−134−217−234−217−417+317170+3817
      • x245 = cos 143π85 + i sin143π85 = 164 5+1−1+17+34−217+217+317170+3817132 10−2534−217+234−217−417+317+170+3817i64 10−25−1+17+34−217+217+317170+3817i32 5+134−217+234−217−417+317+170+3817
      • x246 = cos 147π85 + i sin147π85 = 164 5+1−1+17+34−217−217+317170+3817 + 132 10−2534−217+234−217+417+317+170+3817 + i64 10−25−1+17+34−217−217+317170+3817i32 5+134−217+234−217+417+317+170+3817
      • x247 = cos 149π85 + i sin149π85 = −164 5−1−1−17+34+217+217−317+170−3817 + 132 10+2534+217+234+217−417−317170−3817i64 10+25−1−17+34+217+217−317+170−3817i32 5−134+217+234+217−417−317170−3817
      • x248 = cos 151π85 + i sin151π85 = 164 5−11+17+34+217+217−317170−3817 + 132 10+2534+217−234+217−417−317+170−3817i64 10+251+17+34+217+217−317170−3817 + i32 5−134+217−234+217−417−317+170−3817
      • x249 = cos 157π85 + i sin157π85 = 164 5+1−1−17+34+217+217−317+170−3817 + 132 10−2534+217+234+217−417−317170−3817 + i64 10−25−1−17+34+217+217−317+170−3817i32 5+134+217+234+217−417−317170−3817
      • x250 = cos 159π85 + i sin159π85 = −164 5−1−1+17+34−217−217+317170+3817 + 132 10+2534−217+234−217+417+317+170+3817i64 10+25−1+17+34−217−217+317170+3817i32 5−134−217+234−217+417+317+170+3817
      • x251 = cos 161π85 + i sin161π85 = 164 5−11+17+34+217−217−317170−3817 + 132 10+2534+217−234+217+417−317+170−3817i64 10+251+17+34+217−217−317170−3817 + i32 5−134+217−234+217+417−317+170−3817
      • x252 = cos 163π85 + i sin163π85 = 164 5+1−1+17+34−217+217+317170+3817 + 132 10−2534−217+234−217−417+317+170+3817i64 10−25−1+17+34−217+217+317170+3817 + i32 5+134−217+234−217−417+317+170+3817
      • x253 = cos 167π85 + i sin167π85 = 164 5+1−1+1734−217+217+317+170+3817 + 132 10−2534−217−234−217+417+317170+3817 + i64 10−25−1+1734−217+217+317+170+3817i32 5+134−217−234−217+417+317170+3817
      • x254 = cos 169π85 + i sin169π85 = 164 5−11+1734+217+217−317+170−3817 + 132 10+2534+217+234+217+417−317170−3817 + i64 10+251+1734+217+217−317+170−3817i32 5−134+217+234+217+417−317170−3817
      • x255 = cosπ255 + i sinπ255 = 1128 65−55−1−1+17+34−217−217+317170+3817 + 132 7+65+5+534−217+234−217+417+317+170+3817i64 7+65+5+5−1+17+34−217−217+317170+3817 + i64 65−55−134−217+234−217+417+317+170+3817
      • x256 = cos 7π255 + i sin7π255 = 1128 65+55+11+17+34+217−217−317170−3817 + 132 7+65−5534+217−234+217+417−317+170−3817i64 7+65−551+17+34+217−217−317170−3817 + i64 65+55+134+217−234+217+417−317+170−3817
      • x257 = cos 11π255 + i sin11π255 = 1128 65−5+5+11+17+34+217+217−317170−3817 + 132 7−65+5+534+217−234+217−417−317+170−3817i64 7−65+5+51+17+34+217+217−317170−3817 + i64 65−5+5+134+217−234+217−417−317+170−3817
      • x258 = cos 13π255 + i sin13π255 = 1128 65+5+5−1−1+17+34−217+217+317170+3817 + 132 7−65−5534−217+234−217−417+317+170+3817i64 7−65−55−1+17+34−217+217+317170+3817 + i64 65+5+5−134−217+234−217−417+317+170+3817
      • x259 = cos 19π255 + i sin19π255 = 1128 65−5+5+11−17+34−217+217+317+170+3817 + 132 7−65+5+534−217−234−217−417+317170+3817 + i64 7−65+5+51−17+34−217+217+317+170+3817i64 65−5+5+134−217−234−217−417+317170+3817
      • x260 = cos 23π255 + i sin23π255 = 1128 65+55+11+17+34+217+217−317170−3817 + 132 7+65−5534+217−234+217−417−317+170−3817 + i64 7+65−551+17+34+217+217−317170−3817i64 65+55+134+217−234+217−417−317+170−3817
      • x261 = cos 29π255 + i sin29π255 = 1128 65−55−1−1−17+34+217+217−317+170−3817 + 132 7+65+5+534+217+234+217−417−317170−3817 + i64 7+65+5+5−1−17+34+217+217−317+170−3817i64 65−55−134+217+234+217−417−317170−3817
      • x262 = cos 31π255 + i sin31π255 = −1128 65−55−11+1734+217+217−317+170−3817 + 132 7+65+5+534+217+234+217+417−317170−3817 + i64 7+65+5+51+1734+217+217−317+170−3817 + i64 65−55−134+217+234+217+417−317170−3817
      • x263 = cos 37π255 + i sin37π255 = 1128 65+55+11+1734+217+217−317+170−3817 + 132 7+65−5534+217+234+217+417−317170−3817i64 7+65−551+1734+217+217−317+170−3817 + i64 65+55+134+217+234+217+417−317170−3817
      • x264 = cos 41π255 + i sin41π255 = 1128 65−5+5+11+17+34+217−217−317170−3817 + 132 7−65+5+534+217−234+217+417−317+170−3817i64 7−65+5+51+17+34+217−217−317170−3817 + i64 65−5+5+134+217−234+217+417−317+170−3817
      • x265 = cos 43π255 + i sin43π255 = 1128 65+5+5−1−1+1734−217+217+317+170+3817 + 132 7−65−5534−217−234−217+417+317170+3817i64 7−65−55−1+1734−217+217+317+170+3817 + i64 65+5+5−134−217−234−217+417+317170+3817
      • x266 = cos 47π255 + i sin47π255 = 1128 65+5+5−1−1+17+34−217+217+317170+3817132 7−65−5534−217+234−217−417+317+170+3817 + i64 7−65−55−1+17+34−217+217+317170+3817 + i64 65+5+5−134−217+234−217−417+317+170+3817
      • x267 = cos 49π255 + i sin49π255 = 1128 65−5+5+11−17+34−217+217+317+170+3817132 7−65+5+534−217−234−217−417+317170+3817 + i64 7−65+5+51−17+34−217+217+317+170+3817 + i64 65−5+5+134−217−234−217−417+317170+3817
      • x268 = cos 53π255 + i sin53π255 = 1128 65+55+11−17+34−217+217+317+170+3817 + 132 7+65−5534−217−234−217−417+317170+3817 + i64 7+65−551−17+34−217+217+317+170+3817i64 65+55+134−217−234−217−417+317170+3817
      • x269 = cos 59π255 + i sin59π255 = 1128 65−55−1−1+1734−217+217+317+170+3817 + 132 7+65+5+534−217−234−217+417+317170+3817 + i64 7+65+5+5−1+1734−217+217+317+170+3817i64 65−55−134−217−234−217+417+317170+3817
      • x270 = cos 61π255 + i sin61π255 = −1128 65−55−11+17+34+217−217−317170−3817 + 132 7+65+5+534+217−234+217+417−317+170−3817 + i64 7+65+5+51+17+34+217−217−317170−3817 + i64 65−55−134+217−234+217+417−317+170−3817
      • x271 = cos 67π255 + i sin67π255 = −1128 65+55+1−1+17+34−217−217+317170+3817 + 132 7+65−5534−217+234−217+417+317+170+3817 + i64 7+65−55−1+17+34−217−217+317170+3817 + i64 65+55+134−217+234−217+417+317+170+3817
      • x272 = cos 71π255 + i sin71π255 = 1128 65−5+5+11+1734+217+217−317+170−3817 + 132 7−65+5+534+217+234+217+417−317170−3817i64 7−65+5+51+1734+217+217−317+170−3817 + i64 65−5+5+134+217+234+217+417−317170−3817
      • x273 = cos 73π255 + i sin73π255 = 1128 65+5+5−1−1−17+34+217+217−317+170−3817 + 132 7−65−5534+217+234+217−417−317170−3817i64 7−65−55−1−17+34+217+217−317+170−3817 + i64 65+5+5−134+217+234+217−417−317170−3817
      • x274 = cos 77π255 + i sin77π255 = 1128 65+5+5−1−1+1734−217+217+317+170+3817132 7−65−5534−217−234−217+417+317170+3817 + i64 7−65−55−1+1734−217+217+317+170+3817 + i64 65+5+5−134−217−234−217+417+317170+3817
      • x275 = cos 79π255 + i sin79π255 = 1128 65−5+5+11+17+34+217+217−317170−3817132 7−65+5+534+217−234+217−417−317+170−3817 + i64 7−65+5+51+17+34+217+217−317170−3817 + i64 65−5+5+134+217−234+217−417−317+170−3817
      • x276 = cos 83π255 + i sin83π255 = 1128 65+55+11−17+34−217+217+317+170+3817132 7+65−5534−217−234−217−417+317170+3817 + i64 7+65−551−17+34−217+217+317+170+3817 + i64 65+55+134−217−234−217−417+317170+3817
      • x277 = cos 89π255 + i sin89π255 = 1128 65−55−1−1+17+34−217+217+317170+3817 + 132 7+65+5+534−217+234−217−417+317+170+3817 + i64 7+65+5+5−1+17+34−217+217+317170+3817i64 65−55−134−217+234−217−417+317+170+3817
      • x278 = cos 91π255 + i sin91π255 = −1128 65−55−11+17+34+217+217−317170−3817 + 132 7+65+5+534+217−234+217−417−317+170−3817 + i64 7+65+5+51+17+34+217+217−317170−3817 + i64 65−55−134+217−234+217−417−317+170−3817
      • x279 = cos 97π255 + i sin97π255 = −1128 65+55+1−1−17+34+217+217−317+170−3817 + 132 7+65−5534+217+234+217−417−317170−3817 + i64 7+65−55−1−17+34+217+217−317+170−3817 + i64 65+55+134+217+234+217−417−317170−3817
      • x280 = cos 101π255 + i sin101π255 = −1128 65−5+5+1−1+17+34−217−217+317170+3817 + 132 7−65+5+534−217+234−217+417+317+170+3817 + i64 7−65+5+5−1+17+34−217−217+317170+3817 + i64 65−5+5+134−217+234−217+417+317+170+3817
      • x281 = cos 103π255 + i sin103π255 = 1128 65+5+5−1−1+17+34−217−217+317170+3817 + 132 7−65−5534−217+234−217+417+317+170+3817i64 7−65−55−1+17+34−217−217+317170+3817 + i64 65+5+5−134−217+234−217+417+317+170+3817
      • x282 = cos 107π255 + i sin107π255 = 1128 65+5+5−1−1−17+34+217+217−317+170−3817132 7−65−5534+217+234+217−417−317170−3817 + i64 7−65−55−1−17+34+217+217−317+170−3817 + i64 65+5+5−134+217+234+217−417−317170−3817
      • x283 = cos 109π255 + i sin109π255 = 1128 65−5+5+11+17+34+217−217−317170−3817132 7−65+5+534+217−234+217+417−317+170−3817 + i64 7−65+5+51+17+34+217−217−317170−3817 + i64 65−5+5+134+217−234+217+417−317+170−3817
      • x284 = cos 113π255 + i sin113π255 = 1128 65+55+11+17+34+217+217−317170−3817132 7+65−5534+217−234+217−417−317+170−3817 + i64 7+65−551+17+34+217+217−317170−3817 + i64 65+55+134+217−234+217−417−317+170−3817
      • x285 = cos 121π255 + i sin121π255 = −1128 65−55−11−17+34−217+217+317+170+3817 + 132 7+65+5+534−217−234−217−417+317170+3817 + i64 7+65+5+51−17+34−217+217+317+170+3817 + i64 65−55−134−217−234−217−417+317170+3817
      • x286 = cos 127π255 + i sin127π255 = −1128 65+55+1−1+1734−217+217+317+170+3817 + 132 7+65−5534−217−234−217+417+317170+3817 + i64 7+65−55−1+1734−217+217+317+170+3817 + i64 65+55+134−217−234−217+417+317170+3817
      • x287 = cos 131π255 + i sin131π255 = −1128 65−5+5+1−1−17+34+217+217−317+170−3817 + 132 7−65+5+534+217+234+217−417−317170−3817 + i64 7−65+5+5−1−17+34+217+217−317+170−3817 + i64 65−5+5+134+217+234+217−417−317170−3817
      • x288 = cos 133π255 + i sin133π255 = −1128 65+5+5−11+1734+217+217−317+170−3817 + 132 7−65−5534+217+234+217+417−317170−3817 + i64 7−65−551+1734+217+217−317+170−3817 + i64 65+5+5−134+217+234+217+417−317170−3817
      • x289 = cos 137π255 + i sin137π255 = 1128 65+5+5−1−1+17+34−217−217+317170+3817132 7−65−5534−217+234−217+417+317+170+3817 + i64 7−65−55−1+17+34−217−217+317170+3817 + i64 65+5+5−134−217+234−217+417+317+170+3817
      • x290 = cos 139π255 + i sin139π255 = 1128 65−5+5+11+1734+217+217−317+170−3817132 7−65+5+534+217+234+217+417−317170−3817 + i64 7−65+5+51+1734+217+217−317+170−3817 + i64 65−5+5+134+217+234+217+417−317170−3817
      • x291 = cos 143π255 + i sin143π255 = 1128 65+55+11+17+34+217−217−317170−3817132 7+65−5534+217−234+217+417−317+170−3817 + i64 7+65−551+17+34+217−217−317170−3817 + i64 65+55+134+217−234+217+417−317+170−3817
      • x292 = cos 149π255 + i sin149π255 = 1128 65−55−1−1+17+34−217+217+317170+3817132 7+65+5+534−217+234−217−417+317+170+3817 + i64 7+65+5+5−1+17+34−217+217+317170+3817 + i64 65−55−134−217+234−217−417+317+170+3817
      • x293 = cos 151π255 + i sin151π255 = −1128 65−55−11−17+34−217+217+317+170+3817132 7+65+5+534−217−234−217−417+317170+3817 + i64 7+65+5+51−17+34−217+217+317+170+3817i64 65−55−134−217−234−217−417+317170+3817
      • x294 = cos 157π255 + i sin157π255 = −1128 65+55+1−1+17+34−217+217+317170+3817 + 132 7+65−5534−217+234−217−417+317+170+3817 + i64 7+65−55−1+17+34−217+217+317170+3817 + i64 65+55+134−217+234−217−417+317+170+3817
      • x295 = cos 161π255 + i sin161π255 = −1128 65−5+5+1−1+1734−217+217+317+170+3817 + 132 7−65+5+534−217−234−217+417+317170+3817 + i64 7−65+5+5−1+1734−217+217+317+170+3817 + i64 65−5+5+134−217−234−217+417+317170+3817
      • x296 = cos 163π255 + i sin163π255 = −1128 65+5+5−11+17+34+217−217−317170−3817 + 132 7−65−5534+217−234+217+417−317+170−3817 + i64 7−65−551+17+34+217−217−317170−3817 + i64 65+5+5−134+217−234+217+417−317+170−3817
      • x297 = cos 167π255 + i sin167π255 = −1128 65+5+5−11+1734+217+217−317+170−3817132 7−65−5534+217+234+217+417−317170−3817i64 7−65−551+1734+217+217−317+170−3817 + i64 65+5+5−134+217+234+217+417−317170−3817
      • x298 = cos 169π255 + i sin169π255 = −1128 65−5+5+1−1+17+34−217−217+317170+3817132 7−65+5+534−217+234−217+417+317+170+3817i64 7−65+5+5−1+17+34−217−217+317170+3817 + i64 65−5+5+134−217+234−217+417+317+170+3817
      • x299 = cos 173π255 + i sin173π255 = 1128 65+55+11+1734+217+217−317+170−3817132 7+65−5534+217+234+217+417−317170−3817 + i64 7+65−551+1734+217+217−317+170−3817 + i64 65+55+134+217+234+217+417−317170−3817
      • x300 = cos 179π255 + i sin179π255 = 1128 65−55−1−1+1734−217+217+317+170+3817132 7+65+5+534−217−234−217+417+317170+3817 + i64 7+65+5+5−1+1734−217+217+317+170+3817 + i64 65−55−134−217−234−217+417+317170+3817
      • x301 = cos 181π255 + i sin181π255 = −1128 65−55−11+17+34+217+217−317170−3817132 7+65+5+534+217−234+217−417−317+170−3817 + i64 7+65+5+51+17+34+217+217−317170−3817i64 65−55−134+217−234+217−417−317+170−3817
      • x302 = cos 191π255 + i sin191π255 = −1128 65−5+5+1−1+17+34−217+217+317170+3817 + 132 7−65+5+534−217+234−217−417+317+170+3817 + i64 7−65+5+5−1+17+34−217+217+317170+3817 + i64 65−5+5+134−217+234−217−417+317+170+3817
      • x303 = cos 193π255 + i sin193π255 = −1128 65+5+5−11+17+34+217+217−317170−3817 + 132 7−65−5534+217−234+217−417−317+170−3817 + i64 7−65−551+17+34+217+217−317170−3817 + i64 65+5+5−134+217−234+217−417−317+170−3817
      • x304 = cos 197π255 + i sin197π255 = −1128 65+5+5−11+17+34+217−217−317170−3817132 7−65−5534+217−234+217+417−317+170−3817i64 7−65−551+17+34+217−217−317170−3817 + i64 65+5+5−134+217−234+217+417−317+170−3817
      • x305 = cos 199π255 + i sin199π255 = −1128 65−5+5+1−1−17+34+217+217−317+170−3817132 7−65+5+534+217+234+217−417−317170−3817i64 7−65+5+5−1−17+34+217+217−317+170−3817 + i64 65−5+5+134+217+234+217−417−317170−3817
      • x306 = cos 203π255 + i sin203π255 = −1128 65+55+1−1+17+34−217−217+317170+3817132 7+65−5534−217+234−217+417+317+170+3817i64 7+65−55−1+17+34−217−217+317170+3817 + i64 65+55+134−217+234−217+417+317+170+3817
      • x307 = cos 209π255 + i sin209π255 = 1128 65−55−1−1−17+34+217+217−317+170−3817132 7+65+5+534+217+234+217−417−317170−3817 + i64 7+65+5+5−1−17+34+217+217−317+170−3817 + i64 65−55−134+217+234+217−417−317170−3817
      • x308 = cos 211π255 + i sin211π255 = −1128 65−55−11+17+34+217−217−317170−3817132 7+65+5+534+217−234+217+417−317+170−3817 + i64 7+65+5+51+17+34+217−217−317170−3817i64 65−55−134+217−234+217+417−317+170−3817
      • x309 = cos 217π255 + i sin217π255 = −1128 65+55+1−1+17+34−217+217+317170+3817132 7+65−5534−217+234−217−417+317+170+3817 + i64 7+65−55−1+17+34−217+217+317170+3817i64 65+55+134−217+234−217−417+317+170+3817
      • x310 = cos 223π255 + i sin223π255 = −1128 65+5+5−11−17+34−217+217+317+170+3817 + 132 7−65−5534−217−234−217−417+317170+3817 + i64 7−65−551−17+34−217+217+317+170+3817 + i64 65+5+5−134−217−234−217−417+317170+3817
      • x311 = cos 227π255 + i sin227π255 = −1128 65+5+5−11+17+34+217+217−317170−3817132 7−65−5534+217−234+217−417−317+170−3817i64 7−65−551+17+34+217+217−317170−3817 + i64 65+5+5−134+217−234+217−417−317+170−3817
      • x312 = cos 229π255 + i sin229π255 = −1128 65−5+5+1−1+1734−217+217+317+170+3817132 7−65+5+534−217−234−217+417+317170+3817i64 7−65+5+5−1+1734−217+217+317+170+3817 + i64 65−5+5+134−217−234−217+417+317170+3817
      • x313 = cos 233π255 + i sin233π255 = −1128 65+55+1−1−17+34+217+217−317+170−3817132 7+65−5534+217+234+217−417−317170−3817i64 7+65−55−1−17+34+217+217−317+170−3817 + i64 65+55+134+217+234+217−417−317170−3817
      • x314 = cos 239π255 + i sin239π255 = 1128 65−55−1−1+17+34−217−217+317170+3817132 7+65+5+534−217+234−217+417+317+170+3817 + i64 7+65+5+5−1+17+34−217−217+317170+3817 + i64 65−55−134−217+234−217+417+317+170+3817
      • x315 = cos 241π255 + i sin241π255 = −1128 65−55−11+1734+217+217−317+170−3817132 7+65+5+534+217+234+217+417−317170−3817 + i64 7+65+5+51+1734+217+217−317+170−3817i64 65−55−134+217+234+217+417−317170−3817
      • x316 = cos 247π255 + i sin247π255 = −1128 65+55+1−1+1734−217+217+317+170+3817132 7+65−5534−217−234−217+417+317170+3817 + i64 7+65−55−1+1734−217+217+317+170+3817i64 65+55+134−217−234−217+417+317170+3817
      • x317 = cos 251π255 + i sin251π255 = −1128 65−5+5+1−1+17+34−217+217+317170+3817132 7−65+5+534−217+234−217−417+317+170+3817 + i64 7−65+5+5−1+17+34−217+217+317170+3817i64 65−5+5+134−217+234−217−417+317+170+3817
      • x318 = cos 253π255 + i sin253π255 = −1128 65+5+5−11−17+34−217+217+317+170+3817132 7−65−5534−217−234−217−417+317170+3817 + i64 7−65−551−17+34−217+217+317+170+3817i64 65+5+5−134−217−234−217−417+317170+3817
      • x319 = cos 257π255 + i sin257π255 = −1128 65+5+5−11−17+34−217+217+317+170+3817132 7−65−5534−217−234−217−417+317170+3817i64 7−65−551−17+34−217+217+317+170+3817 + i64 65+5+5−134−217−234−217−417+317170+3817
      • x320 = cos 259π255 + i sin259π255 = −1128 65−5+5+1−1+17+34−217+217+317170+3817132 7−65+5+534−217+234−217−417+317+170+3817i64 7−65+5+5−1+17+34−217+217+317170+3817 + i64 65−5+5+134−217+234−217−417+317+170+3817
      • x321 = cos 263π255 + i sin263π255 = −1128 65+55+1−1+1734−217+217+317+170+3817132 7+65−5534−217−234−217+417+317170+3817i64 7+65−55−1+1734−217+217+317+170+3817 + i64 65+55+134−217−234−217+417+317170+3817
      • x322 = cos 269π255 + i sin269π255 = −1128 65−55−11+1734+217+217−317+170−3817132 7+65+5+534+217+234+217+417−317170−3817i64 7+65+5+51+1734+217+217−317+170−3817 + i64 65−55−134+217+234+217+417−317170−3817
      • x323 = cos 271π255 + i sin271π255 = 1128 65−55−1−1+17+34−217−217+317170+3817132 7+65+5+534−217+234−217+417+317+170+3817i64 7+65+5+5−1+17+34−217−217+317170+3817i64 65−55−134−217+234−217+417+317+170+3817
      • x324 = cos 277π255 + i sin277π255 = −1128 65+55+1−1−17+34+217+217−317+170−3817132 7+65−5534+217+234+217−417−317170−3817 + i64 7+65−55−1−17+34+217+217−317+170−3817i64 65+55+134+217+234+217−417−317170−3817
      • x325 = cos 281π255 + i sin281π255 = −1128 65−5+5+1−1+1734−217+217+317+170+3817132 7−65+5+534−217−234−217+417+317170+3817 + i64 7−65+5+5−1+1734−217+217+317+170+3817i64 65−5+5+134−217−234−217+417+317170+3817
      • x326 = cos 283π255 + i sin283π255 = −1128 65+5+5−11+17+34+217+217−317170−3817132 7−65−5534+217−234+217−417−317+170−3817 + i64 7−65−551+17+34+217+217−317170−3817i64 65+5+5−134+217−234+217−417−317+170−3817
      • x327 = cos 287π255 + i sin287π255 = −1128 65+5+5−11−17+34−217+217+317+170+3817 + 132 7−65−5534−217−234−217−417+317170+3817i64 7−65−551−17+34−217+217+317+170+3817i64 65+5+5−134−217−234−217−417+317170+3817
      • x328 = cos 293π255 + i sin293π255 = −1128 65+55+1−1+17+34−217+217+317170+3817132 7+65−5534−217+234−217−417+317+170+3817i64 7+65−55−1+17+34−217+217+317170+3817 + i64 65+55+134−217+234−217−417+317+170+3817
      • x329 = cos 299π255 + i sin299π255 = −1128 65−55−11+17+34+217−217−317170−3817132 7+65+5+534+217−234+217+417−317+170−3817i64 7+65+5+51+17+34+217−217−317170−3817 + i64 65−55−134+217−234+217+417−317+170−3817
      • x330 = cos 301π255 + i sin301π255 = 1128 65−55−1−1−17+34+217+217−317+170−3817132 7+65+5+534+217+234+217−417−317170−3817i64 7+65+5+5−1−17+34+217+217−317+170−3817i64 65−55−134+217+234+217−417−317170−3817
      • x331 = cos 307π255 + i sin307π255 = −1128 65+55+1−1+17+34−217−217+317170+3817132 7+65−5534−217+234−217+417+317+170+3817 + i64 7+65−55−1+17+34−217−217+317170+3817i64 65+55+134−217+234−217+417+317+170+3817
      • x332 = cos 311π255 + i sin311π255 = −1128 65−5+5+1−1−17+34+217+217−317+170−3817132 7−65+5+534+217+234+217−417−317170−3817 + i64 7−65+5+5−1−17+34+217+217−317+170−3817i64 65−5+5+134+217+234+217−417−317170−3817
      • x333 = cos 313π255 + i sin313π255 = −1128 65+5+5−11+17+34+217−217−317170−3817132 7−65−5534+217−234+217+417−317+170−3817 + i64 7−65−551+17+34+217−217−317170−3817i64 65+5+5−134+217−234+217+417−317+170−3817
      • x334 = cos 317π255 + i sin317π255 = −1128 65+5+5−11+17+34+217+217−317170−3817 + 132 7−65−5534+217−234+217−417−317+170−3817i64 7−65−551+17+34+217+217−317170−3817i64 65+5+5−134+217−234+217−417−317+170−3817
      • x335 = cos 319π255 + i sin319π255 = −1128 65−5+5+1−1+17+34−217+217+317170+3817 + 132 7−65+5+534−217+234−217−417+317+170+3817i64 7−65+5+5−1+17+34−217+217+317170+3817i64 65−5+5+134−217+234−217−417+317+170+3817
      • x336 = cos 329π255 + i sin329π255 = −1128 65−55−11+17+34+217+217−317170−3817132 7+65+5+534+217−234+217−417−317+170−3817i64 7+65+5+51+17+34+217+217−317170−3817 + i64 65−55−134+217−234+217−417−317+170−3817
      • x337 = cos 331π255 + i sin331π255 = 1128 65−55−1−1+1734−217+217+317+170+3817132 7+65+5+534−217−234−217+417+317170+3817i64 7+65+5+5−1+1734−217+217+317+170+3817i64 65−55−134−217−234−217+417+317170+3817
      • x338 = cos 337π255 + i sin337π255 = 1128 65+55+11+1734+217+217−317+170−3817132 7+65−5534+217+234+217+417−317170−3817i64 7+65−551+1734+217+217−317+170−3817i64 65+55+134+217+234+217+417−317170−3817
      • x339 = cos 341π255 + i sin341π255 = −1128 65−5+5+1−1+17+34−217−217+317170+3817132 7−65+5+534−217+234−217+417+317+170+3817 + i64 7−65+5+5−1+17+34−217−217+317170+3817i64 65−5+5+134−217+234−217+417+317+170+3817
      • x340 = cos 343π255 + i sin343π255 = −1128 65+5+5−11+1734+217+217−317+170−3817132 7−65−5534+217+234+217+417−317170−3817 + i64 7−65−551+1734+217+217−317+170−3817i64 65+5+5−134+217+234+217+417−317170−3817
      • x341 = cos 347π255 + i sin347π255 = −1128 65+5+5−11+17+34+217−217−317170−3817 + 132 7−65−5534+217−234+217+417−317+170−3817i64 7−65−551+17+34+217−217−317170−3817i64 65+5+5−134+217−234+217+417−317+170−3817
      • x342 = cos 349π255 + i sin349π255 = −1128 65−5+5+1−1+1734−217+217+317+170+3817 + 132 7−65+5+534−217−234−217+417+317170+3817i64 7−65+5+5−1+1734−217+217+317+170+3817i64 65−5+5+134−217−234−217+417+317170+3817
      • x343 = cos 353π255 + i sin353π255 = −1128 65+55+1−1+17+34−217+217+317170+3817 + 132 7+65−5534−217+234−217−417+317+170+3817i64 7+65−55−1+17+34−217+217+317170+3817i64 65+55+134−217+234−217−417+317+170+3817
      • x344 = cos 359π255 + i sin359π255 = −1128 65−55−11−17+34−217+217+317+170+3817132 7+65+5+534−217−234−217−417+317170+3817i64 7+65+5+51−17+34−217+217+317+170+3817 + i64 65−55−134−217−234−217−417+317170+3817
      • x345 = cos 361π255 + i sin361π255 = 1128 65−55−1−1+17+34−217+217+317170+3817132 7+65+5+534−217+234−217−417+317+170+3817i64 7+65+5+5−1+17+34−217+217+317170+3817i64 65−55−134−217+234−217−417+317+170+3817
      • x346 = cos 367π255 + i sin367π255 = 1128 65+55+11+17+34+217−217−317170−3817132 7+65−5534+217−234+217+417−317+170−3817i64 7+65−551+17+34+217−217−317170−3817i64 65+55+134+217−234+217+417−317+170−3817
      • x347 = cos 371π255 + i sin371π255 = 1128 65−5+5+11+1734+217+217−317+170−3817132 7−65+5+534+217+234+217+417−317170−3817i64 7−65+5+51+1734+217+217−317+170−3817i64 65−5+5+134+217+234+217+417−317170−3817
      • x348 = cos 373π255 + i sin373π255 = 1128 65+5+5−1−1+17+34−217−217+317170+3817132 7−65−5534−217+234−217+417+317+170+3817i64 7−65−55−1+17+34−217−217+317170+3817i64 65+5+5−134−217+234−217+417+317+170+3817
      • x349 = cos 377π255 + i sin377π255 = −1128 65+5+5−11+1734+217+217−317+170−3817 + 132 7−65−5534+217+234+217+417−317170−3817i64 7−65−551+1734+217+217−317+170−3817i64 65+5+5−134+217+234+217+417−317170−3817
      • x350 = cos 379π255 + i sin379π255 = −1128 65−5+5+1−1−17+34+217+217−317+170−3817 + 132 7−65+5+534+217+234+217−417−317170−3817i64 7−65+5+5−1−17+34+217+217−317+170−3817i64 65−5+5+134+217+234+217−417−317170−3817
      • x351 = cos 383π255 + i sin383π255 = −1128 65+55+1−1+1734−217+217+317+170+3817 + 132 7+65−5534−217−234−217+417+317170+3817i64 7+65−55−1+1734−217+217+317+170+3817i64 65+55+134−217−234−217+417+317170+3817
      • x352 = cos 389π255 + i sin389π255 = −1128 65−55−11−17+34−217+217+317+170+3817 + 132 7+65+5+534−217−234−217−417+317170+3817i64 7+65+5+51−17+34−217+217+317+170+3817i64 65−55−134−217−234−217−417+317170+3817
      • x353 = cos 397π255 + i sin397π255 = 1128 65+55+11+17+34+217+217−317170−3817132 7+65−5534+217−234+217−417−317+170−3817i64 7+65−551+17+34+217+217−317170−3817i64 65+55+134+217−234+217−417−317+170−3817
      • x354 = cos 401π255 + i sin401π255 = 1128 65−5+5+11+17+34+217−217−317170−3817132 7−65+5+534+217−234+217+417−317+170−3817i64 7−65+5+51+17+34+217−217−317170−3817i64 65−5+5+134+217−234+217+417−317+170−3817
      • x355 = cos 403π255 + i sin403π255 = 1128 65+5+5−1−1−17+34+217+217−317+170−3817132 7−65−5534+217+234+217−417−317170−3817i64 7−65−55−1−17+34+217+217−317+170−3817i64 65+5+5−134+217+234+217−417−317170−3817
      • x356 = cos 407π255 + i sin407π255 = 1128 65+5+5−1−1+17+34−217−217+317170+3817 + 132 7−65−5534−217+234−217+417+317+170+3817 + i64 7−65−55−1+17+34−217−217+317170+3817i64 65+5+5−134−217+234−217+417+317+170+3817
      • x357 = cos 409π255 + i sin409π255 = −1128 65−5+5+1−1+17+34−217−217+317170+3817 + 132 7−65+5+534−217+234−217+417+317+170+3817i64 7−65+5+5−1+17+34−217−217+317170+3817i64 65−5+5+134−217+234−217+417+317+170+3817
      • x358 = cos 413π255 + i sin413π255 = −1128 65+55+1−1−17+34+217+217−317+170−3817 + 132 7+65−5534+217+234+217−417−317170−3817i64 7+65−55−1−17+34+217+217−317+170−3817i64 65+55+134+217+234+217−417−317170−3817
      • x359 = cos 419π255 + i sin419π255 = −1128 65−55−11+17+34+217+217−317170−3817 + 132 7+65+5+534+217−234+217−417−317+170−3817i64 7+65+5+51+17+34+217+217−317170−3817i64 65−55−134+217−234+217−417−317+170−3817
      • x360 = cos 421π255 + i sin421π255 = 1128 65−55−1−1+17+34−217+217+317170+3817 + 132 7+65+5+534−217+234−217−417+317+170+3817i64 7+65+5+5−1+17+34−217+217+317170+3817 + i64 65−55−134−217+234−217−417+317+170+3817
      • x361 = cos 427π255 + i sin427π255 = 1128 65+55+11−17+34−217+217+317+170+3817132 7+65−5534−217−234−217−417+317170+3817i64 7+65−551−17+34−217+217+317+170+3817i64 65+55+134−217−234−217−417+317170+3817
      • x362 = cos 431π255 + i sin431π255 = 1128 65−5+5+11+17+34+217+217−317170−3817132 7−65+5+534+217−234+217−417−317+170−3817i64 7−65+5+51+17+34+217+217−317170−3817i64 65−5+5+134+217−234+217−417−317+170−3817
      • x363 = cos 433π255 + i sin433π255 = 1128 65+5+5−1−1+1734−217+217+317+170+3817132 7−65−5534−217−234−217+417+317170+3817i64 7−65−55−1+1734−217+217+317+170+3817i64 65+5+5−134−217−234−217+417+317170+3817
      • x364 = cos 437π255 + i sin437π255 = 1128 65+5+5−1−1−17+34+217+217−317+170−3817 + 132 7−65−5534+217+234+217−417−317170−3817 + i64 7−65−55−1−17+34+217+217−317+170−3817i64 65+5+5−134+217+234+217−417−317170−3817
      • x365 = cos 439π255 + i sin439π255 = 1128 65−5+5+11+1734+217+217−317+170−3817 + 132 7−65+5+534+217+234+217+417−317170−3817 + i64 7−65+5+51+1734+217+217−317+170−3817i64 65−5+5+134+217+234+217+417−317170−3817
      • x366 = cos 443π255 + i sin443π255 = −1128 65+55+1−1+17+34−217−217+317170+3817 + 132 7+65−5534−217+234−217+417+317+170+3817i64 7+65−55−1+17+34−217−217+317170+3817i64 65+55+134−217+234−217+417+317+170+3817
      • x367 = cos 449π255 + i sin449π255 = −1128 65−55−11+17+34+217−217−317170−3817 + 132 7+65+5+534+217−234+217+417−317+170−3817i64 7+65+5+51+17+34+217−217−317170−3817i64 65−55−134+217−234+217+417−317+170−3817
      • x368 = cos 451π255 + i sin451π255 = 1128 65−55−1−1+1734−217+217+317+170+3817 + 132 7+65+5+534−217−234−217+417+317170+3817i64 7+65+5+5−1+1734−217+217+317+170+3817 + i64 65−55−134−217−234−217+417+317170+3817
      • x369 = cos 457π255 + i sin457π255 = 1128 65+55+11−17+34−217+217+317+170+3817 + 132 7+65−5534−217−234−217−417+317170+3817i64 7+65−551−17+34−217+217+317+170+3817 + i64 65+55+134−217−234−217−417+317170+3817
      • x370 = cos 461π255 + i sin461π255 = 1128 65−5+5+11−17+34−217+217+317+170+3817132 7−65+5+534−217−234−217−417+317170+3817i64 7−65+5+51−17+34−217+217+317+170+3817i64 65−5+5+134−217−234−217−417+317170+3817
      • x371 = cos 463π255 + i sin463π255 = 1128 65+5+5−1−1+17+34−217+217+317170+3817132 7−65−5534−217+234−217−417+317+170+3817i64 7−65−55−1+17+34−217+217+317170+3817i64 65+5+5−134−217+234−217−417+317+170+3817
      • x372 = cos 467π255 + i sin467π255 = 1128 65+5+5−1−1+1734−217+217+317+170+3817 + 132 7−65−5534−217−234−217+417+317170+3817 + i64 7−65−55−1+1734−217+217+317+170+3817i64 65+5+5−134−217−234−217+417+317170+3817
      • x373 = cos 469π255 + i sin469π255 = 1128 65−5+5+11+17+34+217−217−317170−3817 + 132 7−65+5+534+217−234+217+417−317+170−3817 + i64 7−65+5+51+17+34+217−217−317170−3817i64 65−5+5+134+217−234+217+417−317+170−3817
      • x374 = cos 473π255 + i sin473π255 = 1128 65+55+11+1734+217+217−317+170−3817 + 132 7+65−5534+217+234+217+417−317170−3817 + i64 7+65−551+1734+217+217−317+170−3817i64 65+55+134+217+234+217+417−317170−3817
      • x375 = cos 479π255 + i sin479π255 = −1128 65−55−11+1734+217+217−317+170−3817 + 132 7+65+5+534+217+234+217+417−317170−3817i64 7+65+5+51+1734+217+217−317+170−3817i64 65−55−134+217+234+217+417−317170−3817
      • x376 = cos 481π255 + i sin481π255 = 1128 65−55−1−1−17+34+217+217−317+170−3817 + 132 7+65+5+534+217+234+217−417−317170−3817i64 7+65+5+5−1−17+34+217+217−317+170−3817 + i64 65−55−134+217+234+217−417−317170−3817
      • x377 = cos 487π255 + i sin487π255 = 1128 65+55+11+17+34+217+217−317170−3817 + 132 7+65−5534+217−234+217−417−317+170−3817i64 7+65−551+17+34+217+217−317170−3817 + i64 65+55+134+217−234+217−417−317+170−3817
      • x378 = cos 491π255 + i sin491π255 = 1128 65−5+5+11−17+34−217+217+317+170+3817 + 132 7−65+5+534−217−234−217−417+317170+3817i64 7−65+5+51−17+34−217+217+317+170+3817 + i64 65−5+5+134−217−234−217−417+317170+3817
      • x379 = cos 497π255 + i sin497π255 = 1128 65+5+5−1−1+17+34−217+217+317170+3817 + 132 7−65−5534−217+234−217−417+317+170+3817 + i64 7−65−55−1+17+34−217+217+317170+3817i64 65+5+5−134−217+234−217−417+317+170+3817
      • x380 = cos 499π255 + i sin499π255 = 1128 65−5+5+11+17+34+217+217−317170−3817 + 132 7−65+5+534+217−234+217−417−317+170−3817 + i64 7−65+5+51+17+34+217+217−317170−3817i64 65−5+5+134+217−234+217−417−317+170−3817
      • x381 = cos 503π255 + i sin503π255 = 1128 65+55+11+17+34+217−217−317170−3817 + 132 7+65−5534+217−234+217+417−317+170−3817 + i64 7+65−551+17+34+217−217−317170−3817i64 65+55+134+217−234+217+417−317+170−3817
      • x382 = cos 509π255 + i sin509π255 = 1128 65−55−1−1+17+34−217−217+317170+3817 + 132 7+65+5+534−217+234−217+417+317+170+3817 + i64 7+65+5+5−1+17+34−217−217+317170+3817i64 65−55−134−217+234−217+417+317+170+3817
      • x383 = cos 2π255 + i sin2π255 = 1128 65+5+5−11−17+34−217+217+317+170+3817 + 132 7−65−5534−217−234−217−417+317170+3817 + i64 7−65−551−17+34−217+217+317+170+3817i64 65+5+5−134−217−234−217−417+317170+3817
      • x384 = cos 4π255 + i sin4π255 = 1128 65−5+5+1−1+17+34−217+217+317170+3817 + 132 7−65+5+534−217+234−217−417+317+170+3817 + i64 7−65+5+5−1+17+34−217+217+317170+3817i64 65−5+5+134−217+234−217−417+317+170+3817
      • x385 = cos 8π255 + i sin8π255 = 1128 65+55+1−1+1734−217+217+317+170+3817 + 132 7+65−5534−217−234−217+417+317170+3817 + i64 7+65−55−1+1734−217+217+317+170+3817i64 65+55+134−217−234−217+417+317170+3817
      • x386 = cos 14π255 + i sin14π255 = 1128 65−55−11+1734+217+217−317+170−3817 + 132 7+65+5+534+217+234+217+417−317170−3817 + i64 7+65+5+51+1734+217+217−317+170−3817i64 65−55−134+217+234+217+417−317170−3817
      • x387 = cos 16π255 + i sin16π255 = −1128 65−55−1−1+17+34−217−217+317170+3817 + 132 7+65+5+534−217+234−217+417+317+170+3817 + i64 7+65+5+5−1+17+34−217−217+317170+3817 + i64 65−55−134−217+234−217+417+317+170+3817
      • x388 = cos 22π255 + i sin22π255 = 1128 65+55+1−1−17+34+217+217−317+170−3817 + 132 7+65−5534+217+234+217−417−317170−3817i64 7+65−55−1−17+34+217+217−317+170−3817 + i64 65+55+134+217+234+217−417−317170−3817
      • x389 = cos 26π255 + i sin26π255 = 1128 65−5+5+1−1+1734−217+217+317+170+3817 + 132 7−65+5+534−217−234−217+417+317170+3817i64 7−65+5+5−1+1734−217+217+317+170+3817 + i64 65−5+5+134−217−234−217+417+317170+3817
      • x390 = cos 28π255 + i sin28π255 = 1128 65+5+5−11+17+34+217+217−317170−3817 + 132 7−65−5534+217−234+217−417−317+170−3817i64 7−65−551+17+34+217+217−317170−3817 + i64 65+5+5−134+217−234+217−417−317+170−3817
      • x391 = cos 32π255 + i sin32π255 = 1128 65+5+5−11−17+34−217+217+317+170+3817132 7−65−5534−217−234−217−417+317170+3817 + i64 7−65−551−17+34−217+217+317+170+3817 + i64 65+5+5−134−217−234−217−417+317170+3817
      • x392 = cos 38π255 + i sin38π255 = 1128 65+55+1−1+17+34−217+217+317170+3817 + 132 7+65−5534−217+234−217−417+317+170+3817 + i64 7+65−55−1+17+34−217+217+317170+3817i64 65+55+134−217+234−217−417+317+170+3817
      • x393 = cos 44π255 + i sin44π255 = 1128 65−55−11+17+34+217−217−317170−3817 + 132 7+65+5+534+217−234+217+417−317+170−3817 + i64 7+65+5+51+17+34+217−217−317170−3817i64 65−55−134+217−234+217+417−317+170−3817
      • x394 = cos 46π255 + i sin46π255 = −1128 65−55−1−1−17+34+217+217−317+170−3817 + 132 7+65+5+534+217+234+217−417−317170−3817 + i64 7+65+5+5−1−17+34+217+217−317+170−3817 + i64 65−55−134+217+234+217−417−317170−3817
      • x395 = cos 52π255 + i sin52π255 = 1128 65+55+1−1+17+34−217−217+317170+3817 + 132 7+65−5534−217+234−217+417+317+170+3817i64 7+65−55−1+17+34−217−217+317170+3817 + i64 65+55+134−217+234−217+417+317+170+3817
      • x396 = cos 56π255 + i sin56π255 = 1128 65−5+5+1−1−17+34+217+217−317+170−3817 + 132 7−65+5+534+217+234+217−417−317170−3817i64 7−65+5+5−1−17+34+217+217−317+170−3817 + i64 65−5+5+134+217+234+217−417−317170−3817
      • x397 = cos 58π255 + i sin58π255 = 1128 65+5+5−11+17+34+217−217−317170−3817 + 132 7−65−5534+217−234+217+417−317+170−3817i64 7−65−551+17+34+217−217−317170−3817 + i64 65+5+5−134+217−234+217+417−317+170−3817
      • x398 = cos 62π255 + i sin62π255 = 1128 65+5+5−11+17+34+217+217−317170−3817132 7−65−5534+217−234+217−417−317+170−3817 + i64 7−65−551+17+34+217+217−317170−3817 + i64 65+5+5−134+217−234+217−417−317+170−3817
      • x399 = cos 64π255 + i sin64π255 = 1128 65−5+5+1−1+17+34−217+217+317170+3817132 7−65+5+534−217+234−217−417+317+170+3817 + i64 7−65+5+5−1+17+34−217+217+317170+3817 + i64 65−5+5+134−217+234−217−417+317+170+3817
      • x400 = cos 74π255 + i sin74π255 = 1128 65−55−11+17+34+217+217−317170−3817 + 132 7+65+5+534+217−234+217−417−317+170−3817 + i64 7+65+5+51+17+34+217+217−317170−3817i64 65−55−134+217−234+217−417−317+170−3817
      • x401 = cos 76π255 + i sin76π255 = −1128 65−55−1−1+1734−217+217+317+170+3817 + 132 7+65+5+534−217−234−217+417+317170+3817 + i64 7+65+5+5−1+1734−217+217+317+170+3817 + i64 65−55−134−217−234−217+417+317170+3817
      • x402 = cos 82π255 + i sin82π255 = −1128 65+55+11+1734+217+217−317+170−3817 + 132 7+65−5534+217+234+217+417−317170−3817 + i64 7+65−551+1734+217+217−317+170−3817 + i64 65+55+134+217+234+217+417−317170−3817
      • x403 = cos 86π255 + i sin86π255 = 1128 65−5+5+1−1+17+34−217−217+317170+3817 + 132 7−65+5+534−217+234−217+417+317+170+3817i64 7−65+5+5−1+17+34−217−217+317170+3817 + i64 65−5+5+134−217+234−217+417+317+170+3817
      • x404 = cos 88π255 + i sin88π255 = 1128 65+5+5−11+1734+217+217−317+170−3817 + 132 7−65−5534+217+234+217+417−317170−3817i64 7−65−551+1734+217+217−317+170−3817 + i64 65+5+5−134+217+234+217+417−317170−3817
      • x405 = cos 92π255 + i sin92π255 = 1128 65+5+5−11+17+34+217−217−317170−3817132 7−65−5534+217−234+217+417−317+170−3817 + i64 7−65−551+17+34+217−217−317170−3817 + i64 65+5+5−134+217−234+217+417−317+170−3817
      • x406 = cos 94π255 + i sin94π255 = 1128 65−5+5+1−1+1734−217+217+317+170+3817132 7−65+5+534−217−234−217+417+317170+3817 + i64 7−65+5+5−1+1734−217+217+317+170+3817 + i64 65−5+5+134−217−234−217+417+317170+3817
      • x407 = cos 98π255 + i sin98π255 = 1128 65+55+1−1+17+34−217+217+317170+3817132 7+65−5534−217+234−217−417+317+170+3817 + i64 7+65−55−1+17+34−217+217+317170+3817 + i64 65+55+134−217+234−217−417+317+170+3817
      • x408 = cos 104π255 + i sin104π255 = 1128 65−55−11−17+34−217+217+317+170+3817 + 132 7+65+5+534−217−234−217−417+317170+3817 + i64 7+65+5+51−17+34−217+217+317+170+3817i64 65−55−134−217−234−217−417+317170+3817
      • x409 = cos 106π255 + i sin106π255 = −1128 65−55−1−1+17+34−217+217+317170+3817 + 132 7+65+5+534−217+234−217−417+317+170+3817 + i64 7+65+5+5−1+17+34−217+217+317170+3817 + i64 65−55−134−217+234−217−417+317+170+3817
      • x410 = cos 112π255 + i sin112π255 = −1128 65+55+11+17+34+217−217−317170−3817 + 132 7+65−5534+217−234+217+417−317+170−3817 + i64 7+65−551+17+34+217−217−317170−3817 + i64 65+55+134+217−234+217+417−317+170−3817
      • x411 = cos 116π255 + i sin116π255 = −1128 65−5+5+11+1734+217+217−317+170−3817 + 132 7−65+5+534+217+234+217+417−317170−3817 + i64 7−65+5+51+1734+217+217−317+170−3817 + i64 65−5+5+134+217+234+217+417−317170−3817
      • x412 = cos 118π255 + i sin118π255 = −1128 65+5+5−1−1+17+34−217−217+317170+3817 + 132 7−65−5534−217+234−217+417+317+170+3817 + i64 7−65−55−1+17+34−217−217+317170+3817 + i64 65+5+5−134−217+234−217+417+317+170+3817
      • x413 = cos 122π255 + i sin122π255 = 1128 65+5+5−11+1734+217+217−317+170−3817132 7−65−5534+217+234+217+417−317170−3817 + i64 7−65−551+1734+217+217−317+170−3817 + i64 65+5+5−134+217+234+217+417−317170−3817
      • x414 = cos 124π255 + i sin124π255 = 1128 65−5+5+1−1−17+34+217+217−317+170−3817132 7−65+5+534+217+234+217−417−317170−3817 + i64 7−65+5+5−1−17+34+217+217−317+170−3817 + i64 65−5+5+134+217+234+217−417−317170−3817
      • x415 = cos 128π255 + i sin128π255 = 1128 65+55+1−1+1734−217+217+317+170+3817132 7+65−5534−217−234−217+417+317170+3817 + i64 7+65−55−1+1734−217+217+317+170+3817 + i64 65+55+134−217−234−217+417+317170+3817
      • x416 = cos 134π255 + i sin134π255 = 1128 65−55−11−17+34−217+217+317+170+3817132 7+65+5+534−217−234−217−417+317170+3817 + i64 7+65+5+51−17+34−217+217+317+170+3817 + i64 65−55−134−217−234−217−417+317170+3817
      • x417 = cos 142π255 + i sin142π255 = −1128 65+55+11+17+34+217+217−317170−3817 + 132 7+65−5534+217−234+217−417−317+170−3817 + i64 7+65−551+17+34+217+217−317170−3817 + i64 65+55+134+217−234+217−417−317+170−3817
      • x418 = cos 146π255 + i sin146π255 = −1128 65−5+5+11+17+34+217−217−317170−3817 + 132 7−65+5+534+217−234+217+417−317+170−3817 + i64 7−65+5+51+17+34+217−217−317170−3817 + i64 65−5+5+134+217−234+217+417−317+170−3817
      • x419 = cos 148π255 + i sin148π255 = −1128 65+5+5−1−1−17+34+217+217−317+170−3817 + 132 7−65−5534+217+234+217−417−317170−3817 + i64 7−65−55−1−17+34+217+217−317+170−3817 + i64 65+5+5−134+217+234+217−417−317170−3817
      • x420 = cos 152π255 + i sin152π255 = −1128 65+5+5−1−1+17+34−217−217+317170+3817132 7−65−5534−217+234−217+417+317+170+3817i64 7−65−55−1+17+34−217−217+317170+3817 + i64 65+5+5−134−217+234−217+417+317+170+3817
      • x421 = cos 154π255 + i sin154π255 = 1128 65−5+5+1−1+17+34−217−217+317170+3817132 7−65+5+534−217+234−217+417+317+170+3817 + i64 7−65+5+5−1+17+34−217−217+317170+3817 + i64 65−5+5+134−217+234−217+417+317+170+3817
      • x422 = cos 158π255 + i sin158π255 = 1128 65+55+1−1−17+34+217+217−317+170−3817132 7+65−5534+217+234+217−417−317170−3817 + i64 7+65−55−1−17+34+217+217−317+170−3817 + i64 65+55+134+217+234+217−417−317170−3817
      • x423 = cos 164π255 + i sin164π255 = 1128 65−55−11+17+34+217+217−317170−3817132 7+65+5+534+217−234+217−417−317+170−3817 + i64 7+65+5+51+17+34+217+217−317170−3817 + i64 65−55−134+217−234+217−417−317+170−3817
      • x424 = cos 166π255 + i sin166π255 = −1128 65−55−1−1+17+34−217+217+317170+3817132 7+65+5+534−217+234−217−417+317+170+3817 + i64 7+65+5+5−1+17+34−217+217+317170+3817i64 65−55−134−217+234−217−417+317+170+3817
      • x425 = cos 172π255 + i sin172π255 = −1128 65+55+11−17+34−217+217+317+170+3817 + 132 7+65−5534−217−234−217−417+317170+3817 + i64 7+65−551−17+34−217+217+317+170+3817 + i64 65+55+134−217−234−217−417+317170+3817
      • x426 = cos 176π255 + i sin176π255 = −1128 65−5+5+11+17+34+217+217−317170−3817 + 132 7−65+5+534+217−234+217−417−317+170−3817 + i64 7−65+5+51+17+34+217+217−317170−3817 + i64 65−5+5+134+217−234+217−417−317+170−3817
      • x427 = cos 178π255 + i sin178π255 = −1128 65+5+5−1−1+1734−217+217+317+170+3817 + 132 7−65−5534−217−234−217+417+317170+3817 + i64 7−65−55−1+1734−217+217+317+170+3817 + i64 65+5+5−134−217−234−217+417+317170+3817
      • x428 = cos 182π255 + i sin182π255 = −1128 65+5+5−1−1−17+34+217+217−317+170−3817132 7−65−5534+217+234+217−417−317170−3817i64 7−65−55−1−17+34+217+217−317+170−3817 + i64 65+5+5−134+217+234+217−417−317170−3817
      • x429 = cos 184π255 + i sin184π255 = −1128 65−5+5+11+1734+217+217−317+170−3817132 7−65+5+534+217+234+217+417−317170−3817i64 7−65+5+51+1734+217+217−317+170−3817 + i64 65−5+5+134+217+234+217+417−317170−3817
      • x430 = cos 188π255 + i sin188π255 = 1128 65+55+1−1+17+34−217−217+317170+3817132 7+65−5534−217+234−217+417+317+170+3817 + i64 7+65−55−1+17+34−217−217+317170+3817 + i64 65+55+134−217+234−217+417+317+170+3817
      • x431 = cos 194π255 + i sin194π255 = 1128 65−55−11+17+34+217−217−317170−3817132 7+65+5+534+217−234+217+417−317+170−3817 + i64 7+65+5+51+17+34+217−217−317170−3817 + i64 65−55−134+217−234+217+417−317+170−3817
      • x432 = cos 196π255 + i sin196π255 = −1128 65−55−1−1+1734−217+217+317+170+3817132 7+65+5+534−217−234−217+417+317170+3817 + i64 7+65+5+5−1+1734−217+217+317+170+3817i64 65−55−134−217−234−217+417+317170+3817
      • x433 = cos 202π255 + i sin202π255 = −1128 65+55+11−17+34−217+217+317+170+3817132 7+65−5534−217−234−217−417+317170+3817 + i64 7+65−551−17+34−217+217+317+170+3817i64 65+55+134−217−234−217−417+317170+3817
      • x434 = cos 206π255 + i sin206π255 = −1128 65−5+5+11−17+34−217+217+317+170+3817 + 132 7−65+5+534−217−234−217−417+317170+3817 + i64 7−65+5+51−17+34−217+217+317+170+3817 + i64 65−5+5+134−217−234−217−417+317170+3817
      • x435 = cos 208π255 + i sin208π255 = −1128 65+5+5−1−1+17+34−217+217+317170+3817 + 132 7−65−5534−217+234−217−417+317+170+3817 + i64 7−65−55−1+17+34−217+217+317170+3817 + i64 65+5+5−134−217+234−217−417+317+170+3817
      • x436 = cos 212π255 + i sin212π255 = −1128 65+5+5−1−1+1734−217+217+317+170+3817132 7−65−5534−217−234−217+417+317170+3817i64 7−65−55−1+1734−217+217+317+170+3817 + i64 65+5+5−134−217−234−217+417+317170+3817
      • x437 = cos 214π255 + i sin214π255 = −1128 65−5+5+11+17+34+217−217−317170−3817132 7−65+5+534+217−234+217+417−317+170−3817i64 7−65+5+51+17+34+217−217−317170−3817 + i64 65−5+5+134+217−234+217+417−317+170−3817
      • x438 = cos 218π255 + i sin218π255 = −1128 65+55+11+1734+217+217−317+170−3817132 7+65−5534+217+234+217+417−317170−3817i64 7+65−551+1734+217+217−317+170−3817 + i64 65+55+134+217+234+217+417−317170−3817
      • x439 = cos 224π255 + i sin224π255 = 1128 65−55−11+1734+217+217−317+170−3817132 7+65+5+534+217+234+217+417−317170−3817 + i64 7+65+5+51+1734+217+217−317+170−3817 + i64 65−55−134+217+234+217+417−317170−3817
      • x440 = cos 226π255 + i sin226π255 = −1128 65−55−1−1−17+34+217+217−317+170−3817132 7+65+5+534+217+234+217−417−317170−3817 + i64 7+65+5+5−1−17+34+217+217−317+170−3817i64 65−55−134+217+234+217−417−317170−3817
      • x441 = cos 232π255 + i sin232π255 = −1128 65+55+11+17+34+217+217−317170−3817132 7+65−5534+217−234+217−417−317+170−3817 + i64 7+65−551+17+34+217+217−317170−3817i64 65+55+134+217−234+217−417−317+170−3817
      • x442 = cos 236π255 + i sin236π255 = −1128 65−5+5+11−17+34−217+217+317+170+3817132 7−65+5+534−217−234−217−417+317170+3817 + i64 7−65+5+51−17+34−217+217+317+170+3817i64 65−5+5+134−217−234−217−417+317170+3817
      • x443 = cos 242π255 + i sin242π255 = −1128 65+5+5−1−1+17+34−217+217+317170+3817132 7−65−5534−217+234−217−417+317+170+3817i64 7−65−55−1+17+34−217+217+317170+3817 + i64 65+5+5−134−217+234−217−417+317+170+3817
      • x444 = cos 244π255 + i sin244π255 = −1128 65−5+5+11+17+34+217+217−317170−3817132 7−65+5+534+217−234+217−417−317+170−3817i64 7−65+5+51+17+34+217+217−317170−3817 + i64 65−5+5+134+217−234+217−417−317+170−3817
      • x445 = cos 248π255 + i sin248π255 = −1128 65+55+11+17+34+217−217−317170−3817132 7+65−5534+217−234+217+417−317+170−3817i64 7+65−551+17+34+217−217−317170−3817 + i64 65+55+134+217−234+217+417−317+170−3817
      • x446 = cos 254π255 + i sin254π255 = −1128 65−55−1−1+17+34−217−217+317170+3817132 7+65+5+534−217+234−217+417+317+170+3817i64 7+65+5+5−1+17+34−217−217+317170+3817 + i64 65−55−134−217+234−217+417+317+170+3817
      • x447 = cos 256π255 + i sin256π255 = −1128 65−55−1−1+17+34−217−217+317170+3817132 7+65+5+534−217+234−217+417+317+170+3817 + i64 7+65+5+5−1+17+34−217−217+317170+3817i64 65−55−134−217+234−217+417+317+170+3817
      • x448 = cos 262π255 + i sin262π255 = −1128 65+55+11+17+34+217−217−317170−3817132 7+65−5534+217−234+217+417−317+170−3817 + i64 7+65−551+17+34+217−217−317170−3817i64 65+55+134+217−234+217+417−317+170−3817
      • x449 = cos 266π255 + i sin266π255 = −1128 65−5+5+11+17+34+217+217−317170−3817132 7−65+5+534+217−234+217−417−317+170−3817 + i64 7−65+5+51+17+34+217+217−317170−3817i64 65−5+5+134+217−234+217−417−317+170−3817
      • x450 = cos 268π255 + i sin268π255 = −1128 65+5+5−1−1+17+34−217+217+317170+3817132 7−65−5534−217+234−217−417+317+170+3817 + i64 7−65−55−1+17+34−217+217+317170+3817i64 65+5+5−134−217+234−217−417+317+170+3817
      • x451 = cos 274π255 + i sin274π255 = −1128 65−5+5+11−17+34−217+217+317+170+3817132 7−65+5+534−217−234−217−417+317170+3817i64 7−65+5+51−17+34−217+217+317+170+3817 + i64 65−5+5+134−217−234−217−417+317170+3817
      • x452 = cos 278π255 + i sin278π255 = −1128 65+55+11+17+34+217+217−317170−3817132 7+65−5534+217−234+217−417−317+170−3817i64 7+65−551+17+34+217+217−317170−3817 + i64 65+55+134+217−234+217−417−317+170−3817
      • x453 = cos 284π255 + i sin284π255 = −1128 65−55−1−1−17+34+217+217−317+170−3817132 7+65+5+534+217+234+217−417−317170−3817i64 7+65+5+5−1−17+34+217+217−317+170−3817 + i64 65−55−134+217+234+217−417−317170−3817
      • x454 = cos 286π255 + i sin286π255 = 1128 65−55−11+1734+217+217−317+170−3817132 7+65+5+534+217+234+217+417−317170−3817i64 7+65+5+51+1734+217+217−317+170−3817i64 65−55−134+217+234+217+417−317170−3817
      • x455 = cos 292π255 + i sin292π255 = −1128 65+55+11+1734+217+217−317+170−3817132 7+65−5534+217+234+217+417−317170−3817 + i64 7+65−551+1734+217+217−317+170−3817i64 65+55+134+217+234+217+417−317170−3817
      • x456 = cos 296π255 + i sin296π255 = −1128 65−5+5+11+17+34+217−217−317170−3817132 7−65+5+534+217−234+217+417−317+170−3817 + i64 7−65+5+51+17+34+217−217−317170−3817i64 65−5+5+134+217−234+217+417−317+170−3817
      • x457 = cos 298π255 + i sin298π255 = −1128 65+5+5−1−1+1734−217+217+317+170+3817132 7−65−5534−217−234−217+417+317170+3817 + i64 7−65−55−1+1734−217+217+317+170+3817i64 65+5+5−134−217−234−217+417+317170+3817
      • x458 = cos 302π255 + i sin302π255 = −1128 65+5+5−1−1+17+34−217+217+317170+3817 + 132 7−65−5534−217+234−217−417+317+170+3817i64 7−65−55−1+17+34−217+217+317170+3817i64 65+5+5−134−217+234−217−417+317+170+3817
      • x459 = cos 304π255 + i sin304π255 = −1128 65−5+5+11−17+34−217+217+317+170+3817 + 132 7−65+5+534−217−234−217−417+317170+3817i64 7−65+5+51−17+34−217+217+317+170+3817i64 65−5+5+134−217−234−217−417+317170+3817
      • x460 = cos 308π255 + i sin308π255 = −1128 65+55+11−17+34−217+217+317+170+3817132 7+65−5534−217−234−217−417+317170+3817i64 7+65−551−17+34−217+217+317+170+3817 + i64 65+55+134−217−234−217−417+317170+3817
      • x461 = cos 314π255 + i sin314π255 = −1128 65−55−1−1+1734−217+217+317+170+3817132 7+65+5+534−217−234−217+417+317170+3817i64 7+65+5+5−1+1734−217+217+317+170+3817 + i64 65−55−134−217−234−217+417+317170+3817
      • x462 = cos 316π255 + i sin316π255 = 1128 65−55−11+17+34+217−217−317170−3817132 7+65+5+534+217−234+217+417−317+170−3817i64 7+65+5+51+17+34+217−217−317170−3817i64 65−55−134+217−234+217+417−317+170−3817
      • x463 = cos 322π255 + i sin322π255 = 1128 65+55+1−1+17+34−217−217+317170+3817132 7+65−5534−217+234−217+417+317+170+3817i64 7+65−55−1+17+34−217−217+317170+3817i64 65+55+134−217+234−217+417+317+170+3817
      • x464 = cos 326π255 + i sin326π255 = −1128 65−5+5+11+1734+217+217−317+170−3817132 7−65+5+534+217+234+217+417−317170−3817 + i64 7−65+5+51+1734+217+217−317+170−3817i64 65−5+5+134+217+234+217+417−317170−3817
      • x465 = cos 328π255 + i sin328π255 = −1128 65+5+5−1−1−17+34+217+217−317+170−3817132 7−65−5534+217+234+217−417−317170−3817 + i64 7−65−55−1−17+34+217+217−317+170−3817i64 65+5+5−134+217+234+217−417−317170−3817
      • x466 = cos 332π255 + i sin332π255 = −1128 65+5+5−1−1+1734−217+217+317+170+3817 + 132 7−65−5534−217−234−217+417+317170+3817i64 7−65−55−1+1734−217+217+317+170+3817i64 65+5+5−134−217−234−217+417+317170+3817
      • x467 = cos 334π255 + i sin334π255 = −1128 65−5+5+11+17+34+217+217−317170−3817 + 132 7−65+5+534+217−234+217−417−317+170−3817i64 7−65+5+51+17+34+217+217−317170−3817i64 65−5+5+134+217−234+217−417−317+170−3817
      • x468 = cos 338π255 + i sin338π255 = −1128 65+55+11−17+34−217+217+317+170+3817 + 132 7+65−5534−217−234−217−417+317170+3817i64 7+65−551−17+34−217+217+317+170+3817i64 65+55+134−217−234−217−417+317170+3817
      • x469 = cos 344π255 + i sin344π255 = −1128 65−55−1−1+17+34−217+217+317170+3817132 7+65+5+534−217+234−217−417+317+170+3817i64 7+65+5+5−1+17+34−217+217+317170+3817 + i64 65−55−134−217+234−217−417+317+170+3817
      • x470 = cos 346π255 + i sin346π255 = 1128 65−55−11+17+34+217+217−317170−3817132 7+65+5+534+217−234+217−417−317+170−3817i64 7+65+5+51+17+34+217+217−317170−3817i64 65−55−134+217−234+217−417−317+170−3817
      • x471 = cos 352π255 + i sin352π255 = 1128 65+55+1−1−17+34+217+217−317+170−3817132 7+65−5534+217+234+217−417−317170−3817i64 7+65−55−1−17+34+217+217−317+170−3817i64 65+55+134+217+234+217−417−317170−3817
      • x472 = cos 356π255 + i sin356π255 = 1128 65−5+5+1−1+17+34−217−217+317170+3817132 7−65+5+534−217+234−217+417+317+170+3817i64 7−65+5+5−1+17+34−217−217+317170+3817i64 65−5+5+134−217+234−217+417+317+170+3817
      • x473 = cos 358π255 + i sin358π255 = −1128 65+5+5−1−1+17+34−217−217+317170+3817132 7−65−5534−217+234−217+417+317+170+3817 + i64 7−65−55−1+17+34−217−217+317170+3817i64 65+5+5−134−217+234−217+417+317+170+3817
      • x474 = cos 362π255 + i sin362π255 = −1128 65+5+5−1−1−17+34+217+217−317+170−3817 + 132 7−65−5534+217+234+217−417−317170−3817i64 7−65−55−1−17+34+217+217−317+170−3817i64 65+5+5−134+217+234+217−417−317170−3817
      • x475 = cos 364π255 + i sin364π255 = −1128 65−5+5+11+17+34+217−217−317170−3817 + 132 7−65+5+534+217−234+217+417−317+170−3817i64 7−65+5+51+17+34+217−217−317170−3817i64 65−5+5+134+217−234+217+417−317+170−3817
      • x476 = cos 368π255 + i sin368π255 = −1128 65+55+11+17+34+217+217−317170−3817 + 132 7+65−5534+217−234+217−417−317+170−3817i64 7+65−551+17+34+217+217−317170−3817i64 65+55+134+217−234+217−417−317+170−3817
      • x477 = cos 376π255 + i sin376π255 = 1128 65−55−11−17+34−217+217+317+170+3817132 7+65+5+534−217−234−217−417+317170+3817i64 7+65+5+51−17+34−217+217+317+170+3817i64 65−55−134−217−234−217−417+317170+3817
      • x478 = cos 382π255 + i sin382π255 = 1128 65+55+1−1+1734−217+217+317+170+3817132 7+65−5534−217−234−217+417+317170+3817i64 7+65−55−1+1734−217+217+317+170+3817i64 65+55+134−217−234−217+417+317170+3817
      • x479 = cos 386π255 + i sin386π255 = 1128 65−5+5+1−1−17+34+217+217−317+170−3817132 7−65+5+534+217+234+217−417−317170−3817i64 7−65+5+5−1−17+34+217+217−317+170−3817i64 65−5+5+134+217+234+217−417−317170−3817
      • x480 = cos 388π255 + i sin388π255 = 1128 65+5+5−11+1734+217+217−317+170−3817132 7−65−5534+217+234+217+417−317170−3817i64 7−65−551+1734+217+217−317+170−3817i64 65+5+5−134+217+234+217+417−317170−3817
      • x481 = cos 392π255 + i sin392π255 = −1128 65+5+5−1−1+17+34−217−217+317170+3817 + 132 7−65−5534−217+234−217+417+317+170+3817i64 7−65−55−1+17+34−217−217+317170+3817i64 65+5+5−134−217+234−217+417+317+170+3817
      • x482 = cos 394π255 + i sin394π255 = −1128 65−5+5+11+1734+217+217−317+170−3817 + 132 7−65+5+534+217+234+217+417−317170−3817i64 7−65+5+51+1734+217+217−317+170−3817i64 65−5+5+134+217+234+217+417−317170−3817
      • x483 = cos 398π255 + i sin398π255 = −1128 65+55+11+17+34+217−217−317170−3817 + 132 7+65−5534+217−234+217+417−317+170−3817i64 7+65−551+17+34+217−217−317170−3817i64 65+55+134+217−234+217+417−317+170−3817
      • x484 = cos 404π255 + i sin404π255 = −1128 65−55−1−1+17+34−217+217+317170+3817 + 132 7+65+5+534−217+234−217−417+317+170+3817i64 7+65+5+5−1+17+34−217+217+317170+3817i64 65−55−134−217+234−217−417+317+170+3817
      • x485 = cos 406π255 + i sin406π255 = 1128 65−55−11−17+34−217+217+317+170+3817 + 132 7+65+5+534−217−234−217−417+317170+3817i64 7+65+5+51−17+34−217+217+317+170+3817 + i64 65−55−134−217−234−217−417+317170+3817
      • x486 = cos 412π255 + i sin412π255 = 1128 65+55+1−1+17+34−217+217+317170+3817132 7+65−5534−217+234−217−417+317+170+3817i64 7+65−55−1+17+34−217+217+317170+3817i64 65+55+134−217+234−217−417+317+170+3817
      • x487 = cos 416π255 + i sin416π255 = 1128 65−5+5+1−1+1734−217+217+317+170+3817132 7−65+5+534−217−234−217+417+317170+3817i64 7−65+5+5−1+1734−217+217+317+170+3817i64 65−5+5+134−217−234−217+417+317170+3817
      • x488 = cos 418π255 + i sin418π255 = 1128 65+5+5−11+17+34+217−217−317170−3817132 7−65−5534+217−234+217+417−317+170−3817i64 7−65−551+17+34+217−217−317170−3817i64 65+5+5−134+217−234+217+417−317+170−3817
      • x489 = cos 422π255 + i sin422π255 = 1128 65+5+5−11+1734+217+217−317+170−3817 + 132 7−65−5534+217+234+217+417−317170−3817 + i64 7−65−551+1734+217+217−317+170−3817i64 65+5+5−134+217+234+217+417−317170−3817
      • x490 = cos 424π255 + i sin424π255 = 1128 65−5+5+1−1+17+34−217−217+317170+3817 + 132 7−65+5+534−217+234−217+417+317+170+3817 + i64 7−65+5+5−1+17+34−217−217+317170+3817i64 65−5+5+134−217+234−217+417+317+170+3817
      • x491 = cos 428π255 + i sin428π255 = −1128 65+55+11+1734+217+217−317+170−3817 + 132 7+65−5534+217+234+217+417−317170−3817i64 7+65−551+1734+217+217−317+170−3817i64 65+55+134+217+234+217+417−317170−3817
      • x492 = cos 434π255 + i sin434π255 = −1128 65−55−1−1+1734−217+217+317+170+3817 + 132 7+65+5+534−217−234−217+417+317170+3817i64 7+65+5+5−1+1734−217+217+317+170+3817i64 65−55−134−217−234−217+417+317170+3817
      • x493 = cos 436π255 + i sin436π255 = 1128 65−55−11+17+34+217+217−317170−3817 + 132 7+65+5+534+217−234+217−417−317+170−3817i64 7+65+5+51+17+34+217+217−317170−3817 + i64 65−55−134+217−234+217−417−317+170−3817
      • x494 = cos 446π255 + i sin446π255 = 1128 65−5+5+1−1+17+34−217+217+317170+3817132 7−65+5+534−217+234−217−417+317+170+3817i64 7−65+5+5−1+17+34−217+217+317170+3817i64 65−5+5+134−217+234−217−417+317+170+3817
      • x495 = cos 448π255 + i sin448π255 = 1128 65+5+5−11+17+34+217+217−317170−3817132 7−65−5534+217−234+217−417−317+170−3817i64 7−65−551+17+34+217+217−317170−3817i64 65+5+5−134+217−234+217−417−317+170−3817
      • x496 = cos 452π255 + i sin452π255 = 1128 65+5+5−11+17+34+217−217−317170−3817 + 132 7−65−5534+217−234+217+417−317+170−3817 + i64 7−65−551+17+34+217−217−317170−3817i64 65+5+5−134+217−234+217+417−317+170−3817
      • x497 = cos 454π255 + i sin454π255 = 1128 65−5+5+1−1−17+34+217+217−317+170−3817 + 132 7−65+5+534+217+234+217−417−317170−3817 + i64 7−65+5+5−1−17+34+217+217−317+170−3817i64 65−5+5+134+217+234+217−417−317170−3817
      • x498 = cos 458π255 + i sin458π255 = 1128 65+55+1−1+17+34−217−217+317170+3817 + 132 7+65−5534−217+234−217+417+317+170+3817 + i64 7+65−55−1+17+34−217−217+317170+3817i64 65+55+134−217+234−217+417+317+170+3817
      • x499 = cos 464π255 + i sin464π255 = −1128 65−55−1−1−17+34+217+217−317+170−3817 + 132 7+65+5+534+217+234+217−417−317170−3817i64 7+65+5+5−1−17+34+217+217−317+170−3817i64 65−55−134+217+234+217−417−317170−3817
      • x500 = cos 466π255 + i sin466π255 = 1128 65−55−11+17+34+217−217−317170−3817 + 132 7+65+5+534+217−234+217+417−317+170−3817i64 7+65+5+51+17+34+217−217−317170−3817 + i64 65−55−134+217−234+217+417−317+170−3817
      • x501 = cos 472π255 + i sin472π255 = 1128 65+55+1−1+17+34−217+217+317170+3817 + 132 7+65−5534−217+234−217−417+317+170+3817i64 7+65−55−1+17+34−217+217+317170+3817 + i64 65+55+134−217+234−217−417+317+170+3817
      • x502 = cos 478π255 + i sin478π255 = 1128 65+5+5−11−17+34−217+217+317+170+3817132 7−65−5534−217−234−217−417+317170+3817i64 7−65−551−17+34−217+217+317+170+3817i64 65+5+5−134−217−234−217−417+317170+3817
      • x503 = cos 482π255 + i sin482π255 = 1128 65+5+5−11+17+34+217+217−317170−3817 + 132 7−65−5534+217−234+217−417−317+170−3817 + i64 7−65−551+17+34+217+217−317170−3817i64 65+5+5−134+217−234+217−417−317+170−3817
      • x504 = cos 484π255 + i sin484π255 = 1128 65−5+5+1−1+1734−217+217+317+170+3817 + 132 7−65+5+534−217−234−217+417+317170+3817 + i64 7−65+5+5−1+1734−217+217+317+170+3817i64 65−5+5+134−217−234−217+417+317170+3817
      • x505 = cos 488π255 + i sin488π255 = 1128 65+55+1−1−17+34+217+217−317+170−3817 + 132 7+65−5534+217+234+217−417−317170−3817 + i64 7+65−55−1−17+34+217+217−317+170−3817i64 65+55+134+217+234+217−417−317170−3817
      • x506 = cos 494π255 + i sin494π255 = −1128 65−55−1−1+17+34−217−217+317170+3817 + 132 7+65+5+534−217+234−217+417+317+170+3817i64 7+65+5+5−1+17+34−217−217+317170+3817i64 65−55−134−217+234−217+417+317+170+3817
      • x507 = cos 496π255 + i sin496π255 = 1128 65−55−11+1734+217+217−317+170−3817 + 132 7+65+5+534+217+234+217+417−317170−3817i64 7+65+5+51+1734+217+217−317+170−3817 + i64 65−55−134+217+234+217+417−317170−3817
      • x508 = cos 502π255 + i sin502π255 = 1128 65+55+1−1+1734−217+217+317+170+3817 + 132 7+65−5534−217−234−217+417+317170+3817i64 7+65−55−1+1734−217+217+317+170+3817 + i64 65+55+134−217−234−217+417+317170+3817
      • x509 = cos 506π255 + i sin506π255 = 1128 65−5+5+1−1+17+34−217+217+317170+3817 + 132 7−65+5+534−217+234−217−417+317+170+3817i64 7−65+5+5−1+17+34−217+217+317170+3817 + i64 65−5+5+134−217+234−217−417+317+170+3817
      • x510 = cos 508π255 + i sin508π255 = 1128 65+5+5−11−17+34−217+217+317+170+3817 + 132 7−65−5534−217−234−217−417+317170+3817i64 7−65−551−17+34−217+217+317+170+3817 + i64 65+5+5−134−217−234−217−417+317170+3817

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x120 − 1

      Irreducible polynomial factors

      The 16 factors are:

      • x − 1
      • x + 1
      • x2x + 1
      • x2 + 1
      • x2 + x + 1
      • x4x3 + x2x + 1
      • x4x2 + 1
      • x4 + 1
      • x4 + x3 + x2 + x + 1
      • x8x7 + x5x4 + x3x + 1
      • x8x6 + x4x2 + 1
      • x8x4 + 1
      • x8 + x7x5x4x3 + x + 1
      • x16x12 + x8x4 + 1
      • x16 + x14x10x8x6 + x2 + 1
      • x32 + x28x20x16x12 + x4 + 1

      Roots

      The 120 roots are:

      • x1 = 1
      • x2 = -1
      • x3 = 1212 3 i
      • x4 = 12 + 12 3 i
      • x5 = − 1 i
      • x6 = 1 i
      • x7 = -1212 3 i
      • x8 = -12 + 12 3 i
      • x9 = 14 + 14 5 + i -18 5 + 58
      • x10 = 14 + 14 5 − i -18 5 + 58
      • x11 = 1414 5 + i 18 5 + 58
      • x12 = 1414 5 − i 18 5 + 58
      • x13 = 12 3 + 12i
      • x14 = 12 312i
      • x15 = −12 3 + 12i
      • x16 = −12 312i
      • x17 = 12 + 12i
      • x18 = 1212i
      • x19 = −12 + 12i
      • x20 = −1212i
      • x21 = -14 + 14 5 + i 18 5 + 58
      • x22 = -14 + 14 5 − i 18 5 + 58
      • x23 = -1414 5 + i -18 5 + 58
      • x24 = -1414 5 − i -18 5 + 58
      • x25 = cos 2π15 + i sin2π15 = 18 65−5+5+1 + i4 7−65+5+5
      • x26 = cos 4π15 + i sin4π15 = 18 65+55+1 + i4 7+65−55
      • x27 = cos 8π15 + i sin8π15 = −18 65−55−1 + i4 7+65+5+5
      • x28 = cos 14π15 + i sin14π15 = −18 65+5+5−1 + i4 7−65−55
      • x29 = cos 16π15 + i sin16π15 = −18 65+5+5−1i4 7−65−55
      • x30 = cos 22π15 + i sin22π15 = −18 65−55−1i4 7+65+5+5
      • x31 = cos 26π15 + i sin26π15 = 18 65+55+1i4 7+65−55
      • x32 = cos 28π15 + i sin28π15 = 18 65−5+5+1i4 7−65+5+5
      • x33 = cosπ10 + i sinπ10 = 14 10+25 + i4 5−1
      • x34 = cos 3π10 + i sin3π10 = 14 10−25 + i4 5+1
      • x35 = cos 7π10 + i sin7π10 = −14 10−25 + i4 5+1
      • x36 = cos 9π10 + i sin9π10 = −14 10+25 + i4 5−1
      • x37 = cos 11π10 + i sin11π10 = −14 10+25i4 5−1
      • x38 = cos 13π10 + i sin13π10 = −14 10−25i4 5+1
      • x39 = cos 17π10 + i sin17π10 = 14 10−25i4 5+1
      • x40 = cos 19π10 + i sin19π10 = 14 10+25i4 5−1
      • x41 = cosπ12 + i sinπ12 = 12 2 + 3 + i2 2 − 3
      • x42 = cos 5π12 + i sin5π12 = 12 2 − 3 + i2 2 + 3
      • x43 = cos 7π12 + i sin7π12 = −12 2 − 3 + i2 2 + 3
      • x44 = cos 11π12 + i sin11π12 = −12 2 + 3 + i2 2 − 3
      • x45 = cos 13π12 + i sin13π12 = −12 2 + 3i2 2 − 3
      • x46 = cos 17π12 + i sin17π12 = −12 2 − 3i2 2 + 3
      • x47 = cos 19π12 + i sin19π12 = 12 2 − 3i2 2 + 3
      • x48 = cos 23π12 + i sin23π12 = 12 2 + 3i2 2 − 3
      • x49 = cosπ15 + i sinπ15 = 18 65+5+5−1 + i4 7−65−55
      • x50 = cos 7π15 + i sin7π15 = 18 65−55−1 + i4 7+65+5+5
      • x51 = cos 11π15 + i sin11π15 = −18 65+55+1 + i4 7+65−55
      • x52 = cos 13π15 + i sin13π15 = −18 65−5+5+1 + i4 7−65+5+5
      • x53 = cos 17π15 + i sin17π15 = −18 65−5+5+1i4 7−65+5+5
      • x54 = cos 19π15 + i sin19π15 = −18 65+55+1i4 7+65−55
      • x55 = cos 23π15 + i sin23π15 = 18 65−55−1i4 7+65+5+5
      • x56 = cos 29π15 + i sin29π15 = 18 65+5+5−1i4 7−65−55
      • x57 = cosπ20 + i sinπ20 = 12 2 + 1210+25 + i2 2 − 1210+25
      • x58 = cos 3π20 + i sin3π20 = 12 2 + 1210−25 + i2 2 − 1210−25
      • x59 = cos 7π20 + i sin7π20 = 12 2 − 1210−25 + i2 2 + 1210−25
      • x60 = cos 9π20 + i sin9π20 = 12 2 − 1210+25 + i2 2 + 1210+25
      • x61 = cos 11π20 + i sin11π20 = −12 2 − 1210+25 + i2 2 + 1210+25
      • x62 = cos 13π20 + i sin13π20 = −12 2 − 1210−25 + i2 2 + 1210−25
      • x63 = cos 17π20 + i sin17π20 = −12 2 + 1210−25 + i2 2 − 1210−25
      • x64 = cos 19π20 + i sin19π20 = −12 2 + 1210+25 + i2 2 − 1210+25
      • x65 = cos 21π20 + i sin21π20 = −12 2 + 1210+25i2 2 − 1210+25
      • x66 = cos 23π20 + i sin23π20 = −12 2 + 1210−25i2 2 − 1210−25
      • x67 = cos 27π20 + i sin27π20 = −12 2 − 1210−25i2 2 + 1210−25
      • x68 = cos 29π20 + i sin29π20 = −12 2 − 1210+25i2 2 + 1210+25
      • x69 = cos 31π20 + i sin31π20 = 12 2 − 1210+25i2 2 + 1210+25
      • x70 = cos 33π20 + i sin33π20 = 12 2 − 1210−25i2 2 + 1210−25
      • x71 = cos 37π20 + i sin37π20 = 12 2 + 1210−25i2 2 − 1210−25
      • x72 = cos 39π20 + i sin39π20 = 12 2 + 1210+25i2 2 − 1210+25
      • x73 = cosπ30 + i sinπ30 = 14 7+65+5+5 + i8 65−55−1
      • x74 = cos 7π30 + i sin7π30 = 14 7+65−55 + i8 65+55+1
      • x75 = cos 11π30 + i sin11π30 = 14 7−65+5+5 + i8 65−5+5+1
      • x76 = cos 13π30 + i sin13π30 = 14 7−65−55 + i8 65+5+5−1
      • x77 = cos 17π30 + i sin17π30 = −14 7−65−55 + i8 65+5+5−1
      • x78 = cos 19π30 + i sin19π30 = −14 7−65+5+5 + i8 65−5+5+1
      • x79 = cos 23π30 + i sin23π30 = −14 7+65−55 + i8 65+55+1
      • x80 = cos 29π30 + i sin29π30 = −14 7+65+5+5 + i8 65−55−1
      • x81 = cos 31π30 + i sin31π30 = −14 7+65+5+5i8 65−55−1
      • x82 = cos 37π30 + i sin37π30 = −14 7+65−55i8 65+55+1
      • x83 = cos 41π30 + i sin41π30 = −14 7−65+5+5i8 65−5+5+1
      • x84 = cos 43π30 + i sin43π30 = −14 7−65−55i8 65+5+5−1
      • x85 = cos 47π30 + i sin47π30 = 14 7−65−55i8 65+5+5−1
      • x86 = cos 49π30 + i sin49π30 = 14 7−65+5+5i8 65−5+5+1
      • x87 = cos 53π30 + i sin53π30 = 14 7+65−55i8 65+55+1
      • x88 = cos 59π30 + i sin59π30 = 14 7+65+5+5i8 65−55−1
      • x89 = cosπ60 + i sinπ60 = 12 2 + 127+65+5+5 + i2 2 − 127+65+5+5
      • x90 = cos 7π60 + i sin7π60 = 12 2 + 127+65−55 + i2 2 − 127+65−55
      • x91 = cos 11π60 + i sin11π60 = 12 2 + 127−65+5+5 + i2 2 − 127−65+5+5
      • x92 = cos 13π60 + i sin13π60 = 12 2 + 127−65−55 + i2 2 − 127−65−55
      • x93 = cos 17π60 + i sin17π60 = 12 2 − 127−65−55 + i2 2 + 127−65−55
      • x94 = cos 19π60 + i sin19π60 = 12 2 − 127−65+5+5 + i2 2 + 127−65+5+5
      • x95 = cos 23π60 + i sin23π60 = 12 2 − 127+65−55 + i2 2 + 127+65−55
      • x96 = cos 29π60 + i sin29π60 = 12 2 − 127+65+5+5 + i2 2 + 127+65+5+5
      • x97 = cos 31π60 + i sin31π60 = −12 2 − 127+65+5+5 + i2 2 + 127+65+5+5
      • x98 = cos 37π60 + i sin37π60 = −12 2 − 127+65−55 + i2 2 + 127+65−55
      • x99 = cos 41π60 + i sin41π60 = −12 2 − 127−65+5+5 + i2 2 + 127−65+5+5
      • x100 = cos 43π60 + i sin43π60 = −12 2 − 127−65−55 + i2 2 + 127−65−55
      • x101 = cos 47π60 + i sin47π60 = −12 2 + 127−65−55 + i2 2 − 127−65−55
      • x102 = cos 49π60 + i sin49π60 = −12 2 + 127−65+5+5 + i2 2 − 127−65+5+5
      • x103 = cos 53π60 + i sin53π60 = −12 2 + 127+65−55 + i2 2 − 127+65−55
      • x104 = cos 59π60 + i sin59π60 = −12 2 + 127+65+5+5 + i2 2 − 127+65+5+5
      • x105 = cos 61π60 + i sin61π60 = −12 2 + 127+65+5+5i2 2 − 127+65+5+5
      • x106 = cos 67π60 + i sin67π60 = −12 2 + 127+65−55i2 2 − 127+65−55
      • x107 = cos 71π60 + i sin71π60 = −12 2 + 127−65+5+5i2 2 − 127−65+5+5
      • x108 = cos 73π60 + i sin73π60 = −12 2 + 127−65−55i2 2 − 127−65−55
      • x109 = cos 77π60 + i sin77π60 = −12 2 − 127−65−55i2 2 + 127−65−55
      • x110 = cos 79π60 + i sin79π60 = −12 2 − 127−65+5+5i2 2 + 127−65+5+5
      • x111 = cos 83π60 + i sin83π60 = −12 2 − 127+65−55i2 2 + 127+65−55
      • x112 = cos 89π60 + i sin89π60 = −12 2 − 127+65+5+5i2 2 + 127+65+5+5
      • x113 = cos 91π60 + i sin91π60 = 12 2 − 127+65+5+5i2 2 + 127+65+5+5
      • x114 = cos 97π60 + i sin97π60 = 12 2 − 127+65−55i2 2 + 127+65−55
      • x115 = cos 101π60 + i sin101π60 = 12 2 − 127−65+5+5i2 2 + 127−65+5+5
      • x116 = cos 103π60 + i sin103π60 = 12 2 − 127−65−55i2 2 + 127−65−55
      • x117 = cos 107π60 + i sin107π60 = 12 2 + 127−65−55i2 2 − 127−65−55
      • x118 = cos 109π60 + i sin109π60 = 12 2 + 127−65+5+5i2 2 − 127−65+5+5
      • x119 = cos 113π60 + i sin113π60 = 12 2 + 127+65−55i2 2 − 127+65−55
      • x120 = cos 119π60 + i sin119π60 = 12 2 + 127+65+5+5i2 2 − 127+65+5+5

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^{120} - 1

      Irreducible polynomial factors

      The 16 factors are:

      • \begin{array}{l}
      • \bullet\,\,x - 1\\
      • \bullet\,\,x + 1\\
      • \bullet\,\,x^{2} - x + 1\\
      • \bullet\,\,x^{2} + 1\\
      • \bullet\,\,x^{2} + x + 1\\
      • \bullet\,\,x^{4} - x^{3} + x^{2} - x + 1\\
      • \bullet\,\,x^{4} - x^{2} + 1\\
      • \bullet\,\,x^{4} + 1\\
      • \bullet\,\,x^{4} + x^{3} + x^{2} + x + 1\\
      • \bullet\,\,x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1\\
      • \bullet\,\,x^{8} - x^{6} + x^{4} - x^{2} + 1\\
      • \bullet\,\,x^{8} - x^{4} + 1\\
      • \bullet\,\,x^{8} + x^{7} - x^{5} - x^{4} - x^{3} + x + 1\\
      • \bullet\,\,x^{16} - x^{12} + x^{8} - x^{4} + 1\\
      • \bullet\,\,x^{16} + x^{14} - x^{10} - x^{8} - x^{6} + x^{2} + 1\\
      • \bullet\,\,x^{32} + x^{28} - x^{20} - x^{16} - x^{12} + x^{4} + 1\\
      • \end{array}

      Roots

      The 120 roots are:

      • \begin{array}{l}
      • \bullet\,\,x_{1} = 1\\
      • \bullet\,\,x_{2} = -1\\
      • \bullet\,\,x_{3} = \frac{1}{2} - \frac{1}{2}\sqrt{3} i\\
      • \bullet\,\,x_{4} = \frac{1}{2} + \frac{1}{2}\sqrt{3} i\\
      • \bullet\,\,x_{5} = - 1 i\\
      • \bullet\,\,x_{6} = 1 i\\
      • \bullet\,\,x_{7} = \frac{-1}{2} - \frac{1}{2}\sqrt{3} i\\
      • \bullet\,\,x_{8} = \frac{-1}{2} + \frac{1}{2}\sqrt{3} i\\
      • \bullet\,\,x_{9} = \frac{1}{4} + \frac{1}{4}\sqrt{5} + i \sqrt{\frac{-1}{8}\sqrt{5} + \frac{5}{8}}\\
      • \bullet\,\,x_{10} = \frac{1}{4} + \frac{1}{4}\sqrt{5} - i \sqrt{\frac{-1}{8}\sqrt{5} + \frac{5}{8}}\\
      • \bullet\,\,x_{11} = \frac{1}{4} - \frac{1}{4}\sqrt{5} + i \sqrt{\frac{1}{8}\sqrt{5} + \frac{5}{8}}\\
      • \bullet\,\,x_{12} = \frac{1}{4} - \frac{1}{4}\sqrt{5} - i \sqrt{\frac{1}{8}\sqrt{5} + \frac{5}{8}}\\
      • \bullet\,\,x_{13} = \frac{1}{2}\sqrt{3} + \frac{1}{2}i\\
      • \bullet\,\,x_{14} = \frac{1}{2}\sqrt{3} - \frac{1}{2}i\\
      • \bullet\,\,x_{15} = -\frac{1}{2}\sqrt{3} + \frac{1}{2}i\\
      • \bullet\,\,x_{16} = -\frac{1}{2}\sqrt{3} - \frac{1}{2}i\\
      • \bullet\,\,x_{17} = \sqrt{\frac{1}{2}} + \sqrt{\frac{1}{2}}i\\
      • \bullet\,\,x_{18} = \sqrt{\frac{1}{2}} - \sqrt{\frac{1}{2}}i\\
      • \bullet\,\,x_{19} = -\sqrt{\frac{1}{2}} + \sqrt{\frac{1}{2}}i\\
      • \bullet\,\,x_{20} = -\sqrt{\frac{1}{2}} - \sqrt{\frac{1}{2}}i\\
      • \bullet\,\,x_{21} = \frac{-1}{4} + \frac{1}{4}\sqrt{5} + i \sqrt{\frac{1}{8}\sqrt{5} + \frac{5}{8}}\\
      • \bullet\,\,x_{22} = \frac{-1}{4} + \frac{1}{4}\sqrt{5} - i \sqrt{\frac{1}{8}\sqrt{5} + \frac{5}{8}}\\
      • \bullet\,\,x_{23} = \frac{-1}{4} - \frac{1}{4}\sqrt{5} + i \sqrt{\frac{-1}{8}\sqrt{5} + \frac{5}{8}}\\
      • \bullet\,\,x_{24} = \frac{-1}{4} - \frac{1}{4}\sqrt{5} - i \sqrt{\frac{-1}{8}\sqrt{5} + \frac{5}{8}}\\
      • \bullet\,\,x_{25} = \cos{ \frac{2 \pi }{15}} + i \sin{\frac{2 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right) + \frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
      • \bullet\,\,x_{26} = \cos{ \frac{4 \pi }{15}} + i \sin{\frac{4 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right) + \frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
      • \bullet\,\,x_{27} = \cos{ \frac{8 \pi }{15}} + i \sin{\frac{8 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right) + \frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
      • \bullet\,\,x_{28} = \cos{ \frac{14 \pi }{15}} + i \sin{\frac{14 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right) + \frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
      • \bullet\,\,x_{29} = \cos{ \frac{16 \pi }{15}} + i \sin{\frac{16 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)-\frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
      • \bullet\,\,x_{30} = \cos{ \frac{22 \pi }{15}} + i \sin{\frac{22 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)-\frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
      • \bullet\,\,x_{31} = \cos{ \frac{26 \pi }{15}} + i \sin{\frac{26 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)-\frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
      • \bullet\,\,x_{32} = \cos{ \frac{28 \pi }{15}} + i \sin{\frac{28 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)-\frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
      • \bullet\,\,x_{33} = \cos{\frac{\pi }{10}} + i \sin{\frac{\pi }{10}} = \frac{1}{4}\sqrt{10+2\sqrt{5}} + \frac{i}{4}\left(\sqrt{5}-1\right)\\
      • \bullet\,\,x_{34} = \cos{ \frac{3 \pi }{10}} + i \sin{\frac{3 \pi }{10}} = \frac{1}{4}\sqrt{10-2\sqrt{5}} + \frac{i}{4}\left(\sqrt{5}+1\right)\\
      • \bullet\,\,x_{35} = \cos{ \frac{7 \pi }{10}} + i \sin{\frac{7 \pi }{10}} = -\frac{1}{4}\sqrt{10-2\sqrt{5}} + \frac{i}{4}\left(\sqrt{5}+1\right)\\
      • \bullet\,\,x_{36} = \cos{ \frac{9 \pi }{10}} + i \sin{\frac{9 \pi }{10}} = -\frac{1}{4}\sqrt{10+2\sqrt{5}} + \frac{i}{4}\left(\sqrt{5}-1\right)\\
      • \bullet\,\,x_{37} = \cos{ \frac{11 \pi }{10}} + i \sin{\frac{11 \pi }{10}} = -\frac{1}{4}\sqrt{10+2\sqrt{5}}-\frac{i}{4}\left(\sqrt{5}-1\right)\\
      • \bullet\,\,x_{38} = \cos{ \frac{13 \pi }{10}} + i \sin{\frac{13 \pi }{10}} = -\frac{1}{4}\sqrt{10-2\sqrt{5}}-\frac{i}{4}\left(\sqrt{5}+1\right)\\
      • \bullet\,\,x_{39} = \cos{ \frac{17 \pi }{10}} + i \sin{\frac{17 \pi }{10}} = \frac{1}{4}\sqrt{10-2\sqrt{5}}-\frac{i}{4}\left(\sqrt{5}+1\right)\\
      • \bullet\,\,x_{40} = \cos{ \frac{19 \pi }{10}} + i \sin{\frac{19 \pi }{10}} = \frac{1}{4}\sqrt{10+2\sqrt{5}}-\frac{i}{4}\left(\sqrt{5}-1\right)\\
      • \bullet\,\,x_{41} = \cos{\frac{\pi }{12}} + i \sin{\frac{\pi }{12}} = \frac{1}{2}\sqrt{2 + \sqrt{3}} + \frac{i}{2}\sqrt{2 - \sqrt{3}}\\
      • \bullet\,\,x_{42} = \cos{ \frac{5 \pi }{12}} + i \sin{\frac{5 \pi }{12}} = \frac{1}{2}\sqrt{2 - \sqrt{3}} + \frac{i}{2}\sqrt{2 + \sqrt{3}}\\
      • \bullet\,\,x_{43} = \cos{ \frac{7 \pi }{12}} + i \sin{\frac{7 \pi }{12}} = -\frac{1}{2}\sqrt{2 - \sqrt{3}} + \frac{i}{2}\sqrt{2 + \sqrt{3}}\\
      • \bullet\,\,x_{44} = \cos{ \frac{11 \pi }{12}} + i \sin{\frac{11 \pi }{12}} = -\frac{1}{2}\sqrt{2 + \sqrt{3}} + \frac{i}{2}\sqrt{2 - \sqrt{3}}\\
      • \bullet\,\,x_{45} = \cos{ \frac{13 \pi }{12}} + i \sin{\frac{13 \pi }{12}} = -\frac{1}{2}\sqrt{2 + \sqrt{3}}-\frac{i}{2}\sqrt{2 - \sqrt{3}}\\
      • \bullet\,\,x_{46} = \cos{ \frac{17 \pi }{12}} + i \sin{\frac{17 \pi }{12}} = -\frac{1}{2}\sqrt{2 - \sqrt{3}}-\frac{i}{2}\sqrt{2 + \sqrt{3}}\\
      • \bullet\,\,x_{47} = \cos{ \frac{19 \pi }{12}} + i \sin{\frac{19 \pi }{12}} = \frac{1}{2}\sqrt{2 - \sqrt{3}}-\frac{i}{2}\sqrt{2 + \sqrt{3}}\\
      • \bullet\,\,x_{48} = \cos{ \frac{23 \pi }{12}} + i \sin{\frac{23 \pi }{12}} = \frac{1}{2}\sqrt{2 + \sqrt{3}}-\frac{i}{2}\sqrt{2 - \sqrt{3}}\\
      • \bullet\,\,x_{49} = \cos{\frac{\pi }{15}} + i \sin{\frac{\pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right) + \frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
      • \bullet\,\,x_{50} = \cos{ \frac{7 \pi }{15}} + i \sin{\frac{7 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right) + \frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
      • \bullet\,\,x_{51} = \cos{ \frac{11 \pi }{15}} + i \sin{\frac{11 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right) + \frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
      • \bullet\,\,x_{52} = \cos{ \frac{13 \pi }{15}} + i \sin{\frac{13 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right) + \frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
      • \bullet\,\,x_{53} = \cos{ \frac{17 \pi }{15}} + i \sin{\frac{17 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)-\frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
      • \bullet\,\,x_{54} = \cos{ \frac{19 \pi }{15}} + i \sin{\frac{19 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)-\frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
      • \bullet\,\,x_{55} = \cos{ \frac{23 \pi }{15}} + i \sin{\frac{23 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)-\frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
      • \bullet\,\,x_{56} = \cos{ \frac{29 \pi }{15}} + i \sin{\frac{29 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)-\frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
      • \bullet\,\,x_{57} = \cos{\frac{\pi }{20}} + i \sin{\frac{\pi }{20}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
      • \bullet\,\,x_{58} = \cos{ \frac{3 \pi }{20}} + i \sin{\frac{3 \pi }{20}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
      • \bullet\,\,x_{59} = \cos{ \frac{7 \pi }{20}} + i \sin{\frac{7 \pi }{20}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
      • \bullet\,\,x_{60} = \cos{ \frac{9 \pi }{20}} + i \sin{\frac{9 \pi }{20}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
      • \bullet\,\,x_{61} = \cos{ \frac{11 \pi }{20}} + i \sin{\frac{11 \pi }{20}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
      • \bullet\,\,x_{62} = \cos{ \frac{13 \pi }{20}} + i \sin{\frac{13 \pi }{20}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
      • \bullet\,\,x_{63} = \cos{ \frac{17 \pi }{20}} + i \sin{\frac{17 \pi }{20}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
      • \bullet\,\,x_{64} = \cos{ \frac{19 \pi }{20}} + i \sin{\frac{19 \pi }{20}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
      • \bullet\,\,x_{65} = \cos{ \frac{21 \pi }{20}} + i \sin{\frac{21 \pi }{20}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
      • \bullet\,\,x_{66} = \cos{ \frac{23 \pi }{20}} + i \sin{\frac{23 \pi }{20}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
      • \bullet\,\,x_{67} = \cos{ \frac{27 \pi }{20}} + i \sin{\frac{27 \pi }{20}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
      • \bullet\,\,x_{68} = \cos{ \frac{29 \pi }{20}} + i \sin{\frac{29 \pi }{20}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
      • \bullet\,\,x_{69} = \cos{ \frac{31 \pi }{20}} + i \sin{\frac{31 \pi }{20}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
      • \bullet\,\,x_{70} = \cos{ \frac{33 \pi }{20}} + i \sin{\frac{33 \pi }{20}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
      • \bullet\,\,x_{71} = \cos{ \frac{37 \pi }{20}} + i \sin{\frac{37 \pi }{20}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
      • \bullet\,\,x_{72} = \cos{ \frac{39 \pi }{20}} + i \sin{\frac{39 \pi }{20}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
      • \bullet\,\,x_{73} = \cos{\frac{\pi }{30}} + i \sin{\frac{\pi }{30}} = \frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)\\
      • \bullet\,\,x_{74} = \cos{ \frac{7 \pi }{30}} + i \sin{\frac{7 \pi }{30}} = \frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)\\
      • \bullet\,\,x_{75} = \cos{ \frac{11 \pi }{30}} + i \sin{\frac{11 \pi }{30}} = \frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)\\
      • \bullet\,\,x_{76} = \cos{ \frac{13 \pi }{30}} + i \sin{\frac{13 \pi }{30}} = \frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)\\
      • \bullet\,\,x_{77} = \cos{ \frac{17 \pi }{30}} + i \sin{\frac{17 \pi }{30}} = -\frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)\\
      • \bullet\,\,x_{78} = \cos{ \frac{19 \pi }{30}} + i \sin{\frac{19 \pi }{30}} = -\frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)\\
      • \bullet\,\,x_{79} = \cos{ \frac{23 \pi }{30}} + i \sin{\frac{23 \pi }{30}} = -\frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)\\
      • \bullet\,\,x_{80} = \cos{ \frac{29 \pi }{30}} + i \sin{\frac{29 \pi }{30}} = -\frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)\\
      • \bullet\,\,x_{81} = \cos{ \frac{31 \pi }{30}} + i \sin{\frac{31 \pi }{30}} = -\frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)\\
      • \bullet\,\,x_{82} = \cos{ \frac{37 \pi }{30}} + i \sin{\frac{37 \pi }{30}} = -\frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)\\
      • \bullet\,\,x_{83} = \cos{ \frac{41 \pi }{30}} + i \sin{\frac{41 \pi }{30}} = -\frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)\\
      • \bullet\,\,x_{84} = \cos{ \frac{43 \pi }{30}} + i \sin{\frac{43 \pi }{30}} = -\frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)\\
      • \bullet\,\,x_{85} = \cos{ \frac{47 \pi }{30}} + i \sin{\frac{47 \pi }{30}} = \frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)\\
      • \bullet\,\,x_{86} = \cos{ \frac{49 \pi }{30}} + i \sin{\frac{49 \pi }{30}} = \frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)\\
      • \bullet\,\,x_{87} = \cos{ \frac{53 \pi }{30}} + i \sin{\frac{53 \pi }{30}} = \frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)\\
      • \bullet\,\,x_{88} = \cos{ \frac{59 \pi }{30}} + i \sin{\frac{59 \pi }{30}} = \frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)\\
      • \bullet\,\,x_{89} = \cos{\frac{\pi }{60}} + i \sin{\frac{\pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
      • \bullet\,\,x_{90} = \cos{ \frac{7 \pi }{60}} + i \sin{\frac{7 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
      • \bullet\,\,x_{91} = \cos{ \frac{11 \pi }{60}} + i \sin{\frac{11 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
      • \bullet\,\,x_{92} = \cos{ \frac{13 \pi }{60}} + i \sin{\frac{13 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
      • \bullet\,\,x_{93} = \cos{ \frac{17 \pi }{60}} + i \sin{\frac{17 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
      • \bullet\,\,x_{94} = \cos{ \frac{19 \pi }{60}} + i \sin{\frac{19 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
      • \bullet\,\,x_{95} = \cos{ \frac{23 \pi }{60}} + i \sin{\frac{23 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
      • \bullet\,\,x_{96} = \cos{ \frac{29 \pi }{60}} + i \sin{\frac{29 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
      • \bullet\,\,x_{97} = \cos{ \frac{31 \pi }{60}} + i \sin{\frac{31 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
      • \bullet\,\,x_{98} = \cos{ \frac{37 \pi }{60}} + i \sin{\frac{37 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
      • \bullet\,\,x_{99} = \cos{ \frac{41 \pi }{60}} + i \sin{\frac{41 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
      • \bullet\,\,x_{100} = \cos{ \frac{43 \pi }{60}} + i \sin{\frac{43 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
      • \bullet\,\,x_{101} = \cos{ \frac{47 \pi }{60}} + i \sin{\frac{47 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
      • \bullet\,\,x_{102} = \cos{ \frac{49 \pi }{60}} + i \sin{\frac{49 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
      • \bullet\,\,x_{103} = \cos{ \frac{53 \pi }{60}} + i \sin{\frac{53 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
      • \bullet\,\,x_{104} = \cos{ \frac{59 \pi }{60}} + i \sin{\frac{59 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
      • \bullet\,\,x_{105} = \cos{ \frac{61 \pi }{60}} + i \sin{\frac{61 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
      • \bullet\,\,x_{106} = \cos{ \frac{67 \pi }{60}} + i \sin{\frac{67 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
      • \bullet\,\,x_{107} = \cos{ \frac{71 \pi }{60}} + i \sin{\frac{71 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
      • \bullet\,\,x_{108} = \cos{ \frac{73 \pi }{60}} + i \sin{\frac{73 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
      • \bullet\,\,x_{109} = \cos{ \frac{77 \pi }{60}} + i \sin{\frac{77 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
      • \bullet\,\,x_{110} = \cos{ \frac{79 \pi }{60}} + i \sin{\frac{79 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
      • \bullet\,\,x_{111} = \cos{ \frac{83 \pi }{60}} + i \sin{\frac{83 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
      • \bullet\,\,x_{112} = \cos{ \frac{89 \pi }{60}} + i \sin{\frac{89 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
      • \bullet\,\,x_{113} = \cos{ \frac{91 \pi }{60}} + i \sin{\frac{91 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
      • \bullet\,\,x_{114} = \cos{ \frac{97 \pi }{60}} + i \sin{\frac{97 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
      • \bullet\,\,x_{115} = \cos{ \frac{101 \pi }{60}} + i \sin{\frac{101 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
      • \bullet\,\,x_{116} = \cos{ \frac{103 \pi }{60}} + i \sin{\frac{103 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
      • \bullet\,\,x_{117} = \cos{ \frac{107 \pi }{60}} + i \sin{\frac{107 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
      • \bullet\,\,x_{118} = \cos{ \frac{109 \pi }{60}} + i \sin{\frac{109 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
      • \bullet\,\,x_{119} = \cos{ \frac{113 \pi }{60}} + i \sin{\frac{113 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
      • \bullet\,\,x_{120} = \cos{ \frac{119 \pi }{60}} + i \sin{\frac{119 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^120 - 1

      Irreducible polynomial factors

      The 16 factors are:

      • x - 1
      • x + 1
      • x^2 - x + 1
      • x^2 + 1
      • x^2 + x + 1
      • x^4 - x^3 + x^2 - x + 1
      • x^4 - x^2 + 1
      • x^4 + 1
      • x^4 + x^3 + x^2 + x + 1
      • x^8 - x^7 + x^5 - x^4 + x^3 - x + 1
      • x^8 - x^6 + x^4 - x^2 + 1
      • x^8 - x^4 + 1
      • x^8 + x^7 - x^5 - x^4 - x^3 + x + 1
      • x^16 - x^12 + x^8 - x^4 + 1
      • x^16 + x^14 - x^10 - x^8 - x^6 + x^2 + 1
      • x^32 + x^28 - x^20 - x^16 - x^12 + x^4 + 1

      Roots

      The 120 roots are:

      • x1 = 1
      • x2 = -1
      • x3 = 1 / 2 - (1 / 2)*3^(1/2) *I
      • x4 = 1 / 2 + (1 / 2)*3^(1/2) *I
      • x5 = - 1 *I
      • x6 = 1 *I
      • x7 = -1 / 2 - (1 / 2)*3^(1/2) *I
      • x8 = -1 / 2 + (1 / 2)*3^(1/2) *I
      • x9 = 1 / 4 + (1 / 4)*5^(1/2) + I * ((-1 / 8)*5^(1/2) + 5 / 8)^(1/2)
      • x10 = 1 / 4 + (1 / 4)*5^(1/2) - I * ((-1 / 8)*5^(1/2) + 5 / 8)^(1/2)
      • x11 = 1 / 4 - (1 / 4)*5^(1/2) + I * ((1 / 8)*5^(1/2) + 5 / 8)^(1/2)
      • x12 = 1 / 4 - (1 / 4)*5^(1/2) - I * ((1 / 8)*5^(1/2) + 5 / 8)^(1/2)
      • x13 = (1 / 2)*3^(1/2) + (1 / 2)*I
      • x14 = (1 / 2)*3^(1/2) - (1 / 2)*I
      • x15 = -(1 / 2)*3^(1/2) + (1 / 2)*I
      • x16 = -(1 / 2)*3^(1/2) - (1 / 2)*I
      • x17 = (1 / 2)^(1/2) + (1 / 2)^(1/2)*I
      • x18 = (1 / 2)^(1/2) - (1 / 2)^(1/2)*I
      • x19 = -(1 / 2)^(1/2) + (1 / 2)^(1/2)*I
      • x20 = -(1 / 2)^(1/2) - (1 / 2)^(1/2)*I
      • x21 = -1 / 4 + (1 / 4)*5^(1/2) + I * ((1 / 8)*5^(1/2) + 5 / 8)^(1/2)
      • x22 = -1 / 4 + (1 / 4)*5^(1/2) - I * ((1 / 8)*5^(1/2) + 5 / 8)^(1/2)
      • x23 = -1 / 4 - (1 / 4)*5^(1/2) + I * ((-1 / 8)*5^(1/2) + 5 / 8)^(1/2)
      • x24 = -1 / 4 - (1 / 4)*5^(1/2) - I * ((-1 / 8)*5^(1/2) + 5 / 8)^(1/2)
      • x25 = cos (2*Pi/15) + I *sin(2*Pi/15) = (1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1) + (I/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
      • x26 = cos (4*Pi/15) + I *sin(4*Pi/15) = (1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1) + (I/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
      • x27 = cos (8*Pi/15) + I *sin(8*Pi/15) = -(1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1) + (I/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
      • x28 = cos (14*Pi/15) + I *sin(14*Pi/15) = -(1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1) + (I/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
      • x29 = cos (16*Pi/15) + I *sin(16*Pi/15) = -(1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)-(I/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
      • x30 = cos (22*Pi/15) + I *sin(22*Pi/15) = -(1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)-(I/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
      • x31 = cos (26*Pi/15) + I *sin(26*Pi/15) = (1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)-(I/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
      • x32 = cos (28*Pi/15) + I *sin(28*Pi/15) = (1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)-(I/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
      • x33 = cos(Pi/10) + I *sin(Pi/10) = (1/4)*(10+2*5^(1/2))^(1/2) + (I/4)*(5^(1/2)-1)
      • x34 = cos (3*Pi/10) + I *sin(3*Pi/10) = (1/4)*(10-2*5^(1/2))^(1/2) + (I/4)*(5^(1/2)+1)
      • x35 = cos (7*Pi/10) + I *sin(7*Pi/10) = -(1/4)*(10-2*5^(1/2))^(1/2) + (I/4)*(5^(1/2)+1)
      • x36 = cos (9*Pi/10) + I *sin(9*Pi/10) = -(1/4)*(10+2*5^(1/2))^(1/2) + (I/4)*(5^(1/2)-1)
      • x37 = cos (11*Pi/10) + I *sin(11*Pi/10) = -(1/4)*(10+2*5^(1/2))^(1/2)-(I/4)*(5^(1/2)-1)
      • x38 = cos (13*Pi/10) + I *sin(13*Pi/10) = -(1/4)*(10-2*5^(1/2))^(1/2)-(I/4)*(5^(1/2)+1)
      • x39 = cos (17*Pi/10) + I *sin(17*Pi/10) = (1/4)*(10-2*5^(1/2))^(1/2)-(I/4)*(5^(1/2)+1)
      • x40 = cos (19*Pi/10) + I *sin(19*Pi/10) = (1/4)*(10+2*5^(1/2))^(1/2)-(I/4)*(5^(1/2)-1)
      • x41 = cos(Pi/12) + I *sin(Pi/12) = (1/2)*(2 + (3)^(1/2))^(1/2) + (I/2)*(2 - (3)^(1/2))^(1/2)
      • x42 = cos (5*Pi/12) + I *sin(5*Pi/12) = (1/2)*(2 - (3)^(1/2))^(1/2) + (I/2)*(2 + (3)^(1/2))^(1/2)
      • x43 = cos (7*Pi/12) + I *sin(7*Pi/12) = -(1/2)*(2 - (3)^(1/2))^(1/2) + (I/2)*(2 + (3)^(1/2))^(1/2)
      • x44 = cos (11*Pi/12) + I *sin(11*Pi/12) = -(1/2)*(2 + (3)^(1/2))^(1/2) + (I/2)*(2 - (3)^(1/2))^(1/2)
      • x45 = cos (13*Pi/12) + I *sin(13*Pi/12) = -(1/2)*(2 + (3)^(1/2))^(1/2)-(I/2)*(2 - (3)^(1/2))^(1/2)
      • x46 = cos (17*Pi/12) + I *sin(17*Pi/12) = -(1/2)*(2 - (3)^(1/2))^(1/2)-(I/2)*(2 + (3)^(1/2))^(1/2)
      • x47 = cos (19*Pi/12) + I *sin(19*Pi/12) = (1/2)*(2 - (3)^(1/2))^(1/2)-(I/2)*(2 + (3)^(1/2))^(1/2)
      • x48 = cos (23*Pi/12) + I *sin(23*Pi/12) = (1/2)*(2 + (3)^(1/2))^(1/2)-(I/2)*(2 - (3)^(1/2))^(1/2)
      • x49 = cos(Pi/15) + I *sin(Pi/15) = (1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1) + (I/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
      • x50 = cos (7*Pi/15) + I *sin(7*Pi/15) = (1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1) + (I/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
      • x51 = cos (11*Pi/15) + I *sin(11*Pi/15) = -(1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1) + (I/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
      • x52 = cos (13*Pi/15) + I *sin(13*Pi/15) = -(1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1) + (I/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
      • x53 = cos (17*Pi/15) + I *sin(17*Pi/15) = -(1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)-(I/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
      • x54 = cos (19*Pi/15) + I *sin(19*Pi/15) = -(1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)-(I/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
      • x55 = cos (23*Pi/15) + I *sin(23*Pi/15) = (1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)-(I/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
      • x56 = cos (29*Pi/15) + I *sin(29*Pi/15) = (1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)-(I/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
      • x57 = cos(Pi/20) + I *sin(Pi/20) = (1/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
      • x58 = cos (3*Pi/20) + I *sin(3*Pi/20) = (1/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
      • x59 = cos (7*Pi/20) + I *sin(7*Pi/20) = (1/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
      • x60 = cos (9*Pi/20) + I *sin(9*Pi/20) = (1/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
      • x61 = cos (11*Pi/20) + I *sin(11*Pi/20) = -(1/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
      • x62 = cos (13*Pi/20) + I *sin(13*Pi/20) = -(1/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
      • x63 = cos (17*Pi/20) + I *sin(17*Pi/20) = -(1/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
      • x64 = cos (19*Pi/20) + I *sin(19*Pi/20) = -(1/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
      • x65 = cos (21*Pi/20) + I *sin(21*Pi/20) = -(1/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
      • x66 = cos (23*Pi/20) + I *sin(23*Pi/20) = -(1/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
      • x67 = cos (27*Pi/20) + I *sin(27*Pi/20) = -(1/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
      • x68 = cos (29*Pi/20) + I *sin(29*Pi/20) = -(1/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
      • x69 = cos (31*Pi/20) + I *sin(31*Pi/20) = (1/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
      • x70 = cos (33*Pi/20) + I *sin(33*Pi/20) = (1/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
      • x71 = cos (37*Pi/20) + I *sin(37*Pi/20) = (1/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
      • x72 = cos (39*Pi/20) + I *sin(39*Pi/20) = (1/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
      • x73 = cos(Pi/30) + I *sin(Pi/30) = (1/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)
      • x74 = cos (7*Pi/30) + I *sin(7*Pi/30) = (1/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)
      • x75 = cos (11*Pi/30) + I *sin(11*Pi/30) = (1/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)
      • x76 = cos (13*Pi/30) + I *sin(13*Pi/30) = (1/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)
      • x77 = cos (17*Pi/30) + I *sin(17*Pi/30) = -(1/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)
      • x78 = cos (19*Pi/30) + I *sin(19*Pi/30) = -(1/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)
      • x79 = cos (23*Pi/30) + I *sin(23*Pi/30) = -(1/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)
      • x80 = cos (29*Pi/30) + I *sin(29*Pi/30) = -(1/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)
      • x81 = cos (31*Pi/30) + I *sin(31*Pi/30) = -(1/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)
      • x82 = cos (37*Pi/30) + I *sin(37*Pi/30) = -(1/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)
      • x83 = cos (41*Pi/30) + I *sin(41*Pi/30) = -(1/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)
      • x84 = cos (43*Pi/30) + I *sin(43*Pi/30) = -(1/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)
      • x85 = cos (47*Pi/30) + I *sin(47*Pi/30) = (1/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)
      • x86 = cos (49*Pi/30) + I *sin(49*Pi/30) = (1/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)
      • x87 = cos (53*Pi/30) + I *sin(53*Pi/30) = (1/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)
      • x88 = cos (59*Pi/30) + I *sin(59*Pi/30) = (1/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)
      • x89 = cos(Pi/60) + I *sin(Pi/60) = (1/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
      • x90 = cos (7*Pi/60) + I *sin(7*Pi/60) = (1/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
      • x91 = cos (11*Pi/60) + I *sin(11*Pi/60) = (1/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
      • x92 = cos (13*Pi/60) + I *sin(13*Pi/60) = (1/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
      • x93 = cos (17*Pi/60) + I *sin(17*Pi/60) = (1/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
      • x94 = cos (19*Pi/60) + I *sin(19*Pi/60) = (1/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
      • x95 = cos (23*Pi/60) + I *sin(23*Pi/60) = (1/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
      • x96 = cos (29*Pi/60) + I *sin(29*Pi/60) = (1/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
      • x97 = cos (31*Pi/60) + I *sin(31*Pi/60) = -(1/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
      • x98 = cos (37*Pi/60) + I *sin(37*Pi/60) = -(1/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
      • x99 = cos (41*Pi/60) + I *sin(41*Pi/60) = -(1/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
      • x100 = cos (43*Pi/60) + I *sin(43*Pi/60) = -(1/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
      • x101 = cos (47*Pi/60) + I *sin(47*Pi/60) = -(1/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
      • x102 = cos (49*Pi/60) + I *sin(49*Pi/60) = -(1/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
      • x103 = cos (53*Pi/60) + I *sin(53*Pi/60) = -(1/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
      • x104 = cos (59*Pi/60) + I *sin(59*Pi/60) = -(1/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
      • x105 = cos (61*Pi/60) + I *sin(61*Pi/60) = -(1/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
      • x106 = cos (67*Pi/60) + I *sin(67*Pi/60) = -(1/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
      • x107 = cos (71*Pi/60) + I *sin(71*Pi/60) = -(1/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
      • x108 = cos (73*Pi/60) + I *sin(73*Pi/60) = -(1/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
      • x109 = cos (77*Pi/60) + I *sin(77*Pi/60) = -(1/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
      • x110 = cos (79*Pi/60) + I *sin(79*Pi/60) = -(1/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
      • x111 = cos (83*Pi/60) + I *sin(83*Pi/60) = -(1/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
      • x112 = cos (89*Pi/60) + I *sin(89*Pi/60) = -(1/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
      • x113 = cos (91*Pi/60) + I *sin(91*Pi/60) = (1/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
      • x114 = cos (97*Pi/60) + I *sin(97*Pi/60) = (1/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
      • x115 = cos (101*Pi/60) + I *sin(101*Pi/60) = (1/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
      • x116 = cos (103*Pi/60) + I *sin(103*Pi/60) = (1/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
      • x117 = cos (107*Pi/60) + I *sin(107*Pi/60) = (1/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
      • x118 = cos (109*Pi/60) + I *sin(109*Pi/60) = (1/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
      • x119 = cos (113*Pi/60) + I *sin(113*Pi/60) = (1/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
      • x120 = cos (119*Pi/60) + I *sin(119*Pi/60) = (1/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x10 + x5 + 6 (mod 7)

      Irreducible polynomial factors

      The 3 factors are:

      • x2 + 3⁢x + 6
      • x4 + 5⁢x2 + 3⁢x + 1
      • x4 + 4⁢x3 + 5⁢x2 + 1

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^{10} + x^{5} + 6 (\pmod 7)

      Irreducible polynomial factors

      The 3 factors are:

      • \begin{array}{l}
      • \bullet\,\,x^{2} + 3x + 6\\
      • \bullet\,\,x^{4} + 5x^{2} + 3x + 1\\
      • \bullet\,\,x^{4} + 4x^{3} + 5x^{2} + 1\\
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      Mod(x^10 + x^5 + 6, 7)

      Irreducible polynomial factors

      The 3 factors are:

      • x^2 + 3*x + 6
      • x^4 + 5*x^2 + 3*x + 1
      • x^4 + 4*x^3 + 5*x^2 + 1

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x + 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      • x1 = -23

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x + 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      • \begin{array}{l}
      • \bullet\,\,x_{1} = -23\\
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x + 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      • x1 = -23

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      6x2 + 79⁢x + 115

      Irreducible polynomial factors

      The 2 factors are:

      • 2x + 23
      • 3x + 5

      Roots

      The 2 roots are:

      • x1 = -232
      • x2 = -53

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      6x^{2} + 79x + 115

      Irreducible polynomial factors

      The 2 factors are:

      • \begin{array}{l}
      • \bullet\,\,2x + 23\\
      • \bullet\,\,3x + 5\\
      • \end{array}

      Roots

      The 2 roots are:

      • \begin{array}{l}
      • \bullet\,\,x_{1} = \frac{-23}{2}\\
      • \bullet\,\,x_{2} = \frac{-5}{3}\\
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      6*x^2 + 79*x + 115

      Irreducible polynomial factors

      The 2 factors are:

      • 2x + 23
      • 3x + 5

      Roots

      The 2 roots are:

      • x1 = -23 / 2
      • x2 = -5 / 3

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x2 + 7⁢x + 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 2 roots are:

      • x1 = -7212 43 i
      • x2 = -72 + 12 43 i

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^{2} + 7x + 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 2 roots are:

      • \begin{array}{l}
      • \bullet\,\,x_{1} = \frac{-7}{2} - \frac{1}{2}\sqrt{43} i\\
      • \bullet\,\,x_{2} = \frac{-7}{2} + \frac{1}{2}\sqrt{43} i\\
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^2 + 7*x + 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 2 roots are:

      • x1 = -7 / 2 - (1 / 2)*43^(1/2) *I
      • x2 = -7 / 2 + (1 / 2)*43^(1/2) *I

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x3 − 4⁢x2 + 12⁢x + 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 3 roots are:

      • r = -92554 + 56 13153
      • s = −92554 + 56 13153
      • x1 = 43 + r + s
      • x2 = 43r + s2 + i rs23
      • x3 = 43r + s2 − i rs23

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^{3} - 4x^{2} + 12x + 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 3 roots are:

      • \begin{array}{l}
      • \bullet\,\,r = \sqrt[3]{\frac{-925}{54} + \frac{5}{6}\sqrt{\frac{1315}{3}}}\\
      • \bullet\,\,s = -\sqrt[3]{\frac{925}{54} + \frac{5}{6}\sqrt{\frac{1315}{3}}}\\
      • \bullet\,\,x_{1} = \frac{4}{3} + r + s\\
      • \bullet\,\,x_{2} = \frac{4}{3} - \frac{r + s}{2} + i \frac{r - s}{2}\sqrt{3}\\
      • \bullet\,\,x_{3} = \frac{4}{3} - \frac{r + s}{2} - i \frac{r - s}{2}\sqrt{3}\\
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^3 - 4*x^2 + 12*x + 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 3 roots are:

      • r = (-925 / 54 + (5 / 6)*(1315 / 3)^(1/2))^(1/3)
      • s = -(925 / 54 + (5 / 6)*(1315 / 3)^(1/2))^(1/3)
      • x1 = 4 / 3 + r + s
      • x2 = 4 / 3 - (r + s) / 2 + (I/2) * (r - s) * 3^(1/2)
      • x3 = 4 / 3 - (r + s) / 2 - (I/2) * (r - s) * 3^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x3x2 + 2⁢x + 5

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 3 roots are:

      • r = -15154 + 16 8633
      • s = −15154 + 16 8633
      • x1 = 13 + r + s
      • x2 = 13r + s2 + i rs23
      • x3 = 13r + s2 − i rs23

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^{3} - x^{2} + 2x + 5

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 3 roots are:

      • \begin{array}{l}
      • \bullet\,\,r = \sqrt[3]{\frac{-151}{54} + \frac{1}{6}\sqrt{\frac{863}{3}}}\\
      • \bullet\,\,s = -\sqrt[3]{\frac{151}{54} + \frac{1}{6}\sqrt{\frac{863}{3}}}\\
      • \bullet\,\,x_{1} = \frac{1}{3} + r + s\\
      • \bullet\,\,x_{2} = \frac{1}{3} - \frac{r + s}{2} + i \frac{r - s}{2}\sqrt{3}\\
      • \bullet\,\,x_{3} = \frac{1}{3} - \frac{r + s}{2} - i \frac{r - s}{2}\sqrt{3}\\
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^3 - x^2 + 2*x + 5

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 3 roots are:

      • r = (-151 / 54 + (1 / 6)*(863 / 3)^(1/2))^(1/3)
      • s = -(151 / 54 + (1 / 6)*(863 / 3)^(1/2))^(1/3)
      • x1 = 1 / 3 + r + s
      • x2 = 1 / 3 - (r + s) / 2 + (I/2) * (r - s) * 3^(1/2)
      • x3 = 1 / 3 - (r + s) / 2 - (I/2) * (r - s) * 3^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x3 + 2

      Irreducible polynomial factors

      The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

      Roots

      The 3 roots are:

      • x1 = −2
      • x2 = 12 2 + i23 2
      • x3 = 12 2i23 2

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^{3} + 2

      Irreducible polynomial factors

      The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

      Roots

      The 3 roots are:

      • \begin{array}{l}
      • \bullet\,\,x_{1} = -\sqrt[3]{2}\\
      • \bullet\,\,x_{2} = \frac{1}{2} \sqrt[3]{2} + \frac{i}{2}\sqrt{3} \sqrt[3]{2}\\
      • \bullet\,\,x_{3} = \frac{1}{2} \sqrt[3]{2} - \frac{i}{2}\sqrt{3} \sqrt[3]{2}\\
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^3 + 2

      Irreducible polynomial factors

      The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

      Roots

      The 3 roots are:

      • x1 = -2^(1/3)
      • x2 = (1/2) *2^(1/3) + I/2*3^(1/2) *2^(1/3)
      • x3 = (1/2) *2^(1/3) - I/2*3^(1/2) *2^(1/3)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x3 − 2

      Irreducible polynomial factors

      The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

      Roots

      The 3 roots are:

      • x1 = 2
      • x2 = − 12 2 + i23 2
      • x3 = − 12 2i23 2

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^{3} - 2

      Irreducible polynomial factors

      The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

      Roots

      The 3 roots are:

      • \begin{array}{l}
      • \bullet\,\,x_{1} = \sqrt[3]{2}\\
      • \bullet\,\,x_{2} = - \frac{1}{2} \sqrt[3]{2} + \frac{i}{2}\sqrt{3} \sqrt[3]{2}\\
      • \bullet\,\,x_{3} = - \frac{1}{2} \sqrt[3]{2} - \frac{i}{2}\sqrt{3} \sqrt[3]{2}\\
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^3 - 2

      Irreducible polynomial factors

      The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

      Roots

      The 3 roots are:

      • x1 = 2^(1/3)
      • x2 = (-1/2) *2^(1/3) + I/2*3^(1/2) *2^(1/3)
      • x3 = (-1/2) *2^(1/3) - I/2*3^(1/2) *2^(1/3)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x3 + 6⁢x2 + 18

      Irreducible polynomial factors

      The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

      Roots

      The 3 roots are:

      • r = −2
      • s = −32
      • x1 = -2 + r + s
      • x2 = -2 − r + s2 + i rs23
      • x3 = -2 − r + s2 − i rs23

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^{3} + 6x^{2} + 18

      Irreducible polynomial factors

      The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

      Roots

      The 3 roots are:

      • \begin{array}{l}
      • \bullet\,\,r = -\sqrt[3]{2}\\
      • \bullet\,\,s = -\sqrt[3]{32}\\
      • \bullet\,\,x_{1} = -2 + r + s\\
      • \bullet\,\,x_{2} = -2 - \frac{r + s}{2} + i \frac{r - s}{2}\sqrt{3}\\
      • \bullet\,\,x_{3} = -2 - \frac{r + s}{2} - i \frac{r - s}{2}\sqrt{3}\\
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^3 + 6*x^2 + 18

      Irreducible polynomial factors

      The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

      Roots

      The 3 roots are:

      • r = -(2)^(1/3)
      • s = -(32)^(1/3)
      • x1 = -2 + r + s
      • x2 = -2 - (r + s) / 2 + (I/2) * (r - s) * 3^(1/2)
      • x3 = -2 - (r + s) / 2 - (I/2) * (r - s) * 3^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      3*x^3 + 3*x^2 + x - 5

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 3 roots are:

      • x1 = -1 / 3 + (46 / 27)^(1/3)
      • x2 = -1 / 3 + (-1/2) *(46 / 27)^(1/3) + I/2*3^(1/2) *(46 / 27)^(1/3)
      • x3 = -1 / 3 + (-1/2) *(46 / 27)^(1/3) - I/2*3^(1/2) *(46 / 27)^(1/3)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x4 + 7

      Irreducible polynomial factors

      The polynomial is irreducible because of Eisenstein's criterion (prime = 7)

      Roots

      The 4 roots are:

      • x1 = 12 7 + i 12 7
      • x2 = 12 7 − i 12 7
      • x3 = −12 7 + i 12 7
      • x4 = −12 7 − i 12 7

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x4 − 7

      Irreducible polynomial factors

      The polynomial is irreducible because of Eisenstein's criterion (prime = 7)

      Roots

      The 4 roots are:

      • x1 = 7
      • x2 = i 7
      • x3 = −7
      • x4 = −i 7

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^4 + x^2 - 2*x + 1

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • x1 = ((1 / 8)*17^(1/2) - 1 / 8)^(1/2) + I*((1 / 2) - ((1 / 8)*17^(1/2) + 1 / 8)^(1/2))
      • x2 = ((1 / 8)*17^(1/2) - 1 / 8)^(1/2) + I*(- (1 / 2) + ((1 / 8)*17^(1/2) + 1 / 8)^(1/2))
      • x3 = - ((1 / 8)*17^(1/2) - 1 / 8)^(1/2) + I*((1 / 2) + ((1 / 8)*17^(1/2) + 1 / 8)^(1/2))
      • x4 = - ((1 / 8)*17^(1/2) - 1 / 8)^(1/2) + I*(- (1 / 2) - ((1 / 8)*17^(1/2) + 1 / 8)^(1/2))

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x3 − 12⁢x2 + 12⁢x + 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 3 roots are:

      • t = 13arc cos1916 13
      • x1 = 4 + 4 3 cos(t)
      • x2 = 4 + 4 3 cost + 2π3
      • x3 = 4 + 4 3 cost + 4π3

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^{3} - 12x^{2} + 12x + 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 3 roots are:

      • \begin{array}{l}
      • \bullet\,\,t = \frac{1}{3}\arccos\left(\frac{19}{16}\sqrt{\frac{1}{3}}\right)\\
      • \bullet\,\,x_{1} = 4 + 4\sqrt{3} \cos{(t)\\
      • \bullet\,\,x_{2} = 4 + 4\sqrt{3} \cos{\left(t + \frac{2 \pi }{3}\right)}\\
      • \bullet\,\,x_{3} = 4 + 4\sqrt{3} \cos{\left(t + \frac{4 \pi }{3}\right)}\\
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^3 - 12*x^2 + 12*x + 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 3 roots are:

      • t = (1/3) * acos((19 / 16)*(1 / 3)^(1/2))
      • x1 = 4 + 4*3^(1/2)* cos(t)
      • x2 = 4 + 4*3^(1/2)* cos(t + 2 * Pi / 3)
      • x3 = 4 + 4*3^(1/2)* cos(t + 4 * Pi / 3)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x4 + 3⁢x2 + 12⁢x + 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • t = arccos-35 395
      • S = 12-2 + 23 285cost3
      • x1 = S + i24 S² + 6 + 12S
      • x2 = Si24 S² + 6 + 12S
      • x3 = − S + i24 S² + 6 − 12S
      • x4 = − Si24 S² + 6 − 12S

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^{4} + 3x^{2} + 12x + 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • \begin{array}{l}
      • \bullet\,\,t = \arccos\left(\frac{-3}{5}\sqrt{\frac{3}{95}}\right)\\
      • \bullet\,\,S = \frac{1}{2}\sqrt{-2 + \frac{2}{3}\sqrt{285}\cos{\frac{t}{3}}}\\
      • \bullet\,\,x_{1} = S + \frac{i}{2}\sqrt{4 S^2 + 6 + \frac{12}{S}}\\
      • \bullet\,\,x_{2} = S - \frac{i}{2}\sqrt{4 S^2 + 6 + \frac{12}{S}}\\
      • \bullet\,\,x_{3} = - S + \frac{i}{2}\sqrt{4 S^2 + 6 - \frac{12}{S}}\\
      • \bullet\,\,x_{4} = - S - \frac{i}{2}\sqrt{4 S^2 + 6 - \frac{12}{S}}\\
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^4 + 3*x^2 + 12*x + 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • t = acos((-3 / 5)*(3 / 95)^(1/2))
      • S = (1/2)*(-2 + (2 / 3)*285^(1/2)*cos(t / 3))^(1/2)
      • x1 = S + (I/2)*(4 *S^2 + 6 + 12 / S)^(1/2)
      • x2 = S - (I/2)*(4 *S^2 + 6 + 12 / S)^(1/2)
      • x3 = - S + (I/2)*(4 *S^2 + 6 - 12 / S)^(1/2)
      • x4 = - S - (I/2)*(4 *S^2 + 6 - 12 / S)^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x4 + 4⁢x2 + 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • x1 = 12 23 − 1 + i 12 23 + 1
      • x2 = 12 23 − 1 − i 12 23 + 1
      • x3 = −12 23 − 1 + i 12 23 + 1
      • x4 = −12 23 − 1 − i 12 23 + 1

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^{4} + 4x^{2} + 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • \begin{array}{l}
      • \bullet\,\,x_{1} = \sqrt{\frac{1}{2}\sqrt{23} - 1} + i \sqrt{\frac{1}{2}\sqrt{23} + 1}\\
      • \bullet\,\,x_{2} = \sqrt{\frac{1}{2}\sqrt{23} - 1} - i \sqrt{\frac{1}{2}\sqrt{23} + 1}\\
      • \bullet\,\,x_{3} = -\sqrt{\frac{1}{2}\sqrt{23} - 1} + i \sqrt{\frac{1}{2}\sqrt{23} + 1}\\
      • \bullet\,\,x_{4} = -\sqrt{\frac{1}{2}\sqrt{23} - 1} - i \sqrt{\frac{1}{2}\sqrt{23} + 1}\\
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^4 + 4*x^2 + 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • x1 = ((1 / 2)*23^(1/2) - 1)^(1/2) + I* ((1 / 2)*23^(1/2) + 1)^(1/2)
      • x2 = ((1 / 2)*23^(1/2) - 1)^(1/2) - I* ((1 / 2)*23^(1/2) + 1)^(1/2)
      • x3 = -((1 / 2)*23^(1/2) - 1)^(1/2) + I* ((1 / 2)*23^(1/2) + 1)^(1/2)
      • x4 = -((1 / 2)*23^(1/2) - 1)^(1/2) - I* ((1 / 2)*23^(1/2) + 1)^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x4 + 4⁢x2 − 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • x1 = (-2) + 3 3
      • x2 = i 2 + 3 3
      • x3 = −(-2) + 3 3
      • x4 = −i 2 + 3 3

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^{4} + 4x^{2} - 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • \begin{array}{l}
      • \bullet\,\,x_{1} = \sqrt{(-2) + 3\sqrt{3}}\\
      • \bullet\,\,x_{2} = i \sqrt{2 + 3\sqrt{3}}\\
      • \bullet\,\,x_{3} = -\sqrt{(-2) + 3\sqrt{3}}\\
      • \bullet\,\,x_{4} = -i \sqrt{2 + 3\sqrt{3}}\\
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^4 + 4*x^2 - 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • x1 = ((-2) + 3*3^(1/2))^(1/2)
      • x2 = I *(2 + 3*3^(1/2))^(1/2)
      • x3 = -((-2) + 3*3^(1/2))^(1/2)
      • x4 = -I *(2 + 3*3^(1/2))^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^4 + 18*x^2 + 25

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • x1 = I * (2^(1/2) + 7^(1/2))
      • x2 = I * (2^(1/2) - 7^(1/2))
      • x3 = -I * (2^(1/2) + 7^(1/2))
      • x4 = -I * (2^(1/2) - 7^(1/2))

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^4 - 18*x^2 + 25

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • x1 = 7^(1/2) + 2^(1/2)
      • x2 = 7^(1/2) - 2^(1/2)
      • x3 = -7^(1/2) + 2^(1/2)
      • x4 = -7^(1/2) - 2^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^4 + 18*x^2 + 144

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • x1 = (3 / 2)^(1/2) + (21 / 2)^(1/2)*I
      • x2 = (3 / 2)^(1/2) - (21 / 2)^(1/2)*I
      • x3 = -(3 / 2)^(1/2) + (21 / 2)^(1/2)*I
      • x4 = -(3 / 2)^(1/2) - (21 / 2)^(1/2)*I

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^4 - 18*x^2 + 144

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • x1 = (21 / 2)^(1/2) + (3 / 2)^(1/2)*I
      • x2 = (21 / 2)^(1/2) - (3 / 2)^(1/2)*I
      • x3 = -(21 / 2)^(1/2) + (3 / 2)^(1/2)*I
      • x4 = -(21 / 2)^(1/2) - (3 / 2)^(1/2)*I

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^4 + 18*x^2 + 24

      Irreducible polynomial factors

      The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

      Roots

      The 4 roots are:

      • x1 = I *(9 - 57^(1/2))^(1/2)
      • x2 = I *(9 + 57^(1/2))^(1/2)
      • x3 = -I *(9 - 57^(1/2))^(1/2)
      • x4 = -I *(9 + 57^(1/2))^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^4 - 18*x^2 + 24

      Irreducible polynomial factors

      The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

      Roots

      The 4 roots are:

      • x1 = (9 + 57^(1/2))^(1/2)
      • x2 = (9 - 57^(1/2))^(1/2)
      • x3 = -(9 + 57^(1/2))^(1/2)
      • x4 = -(9 - 57^(1/2))^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^4 + 18*x^2 + 95

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • x1 = ((1 / 2)*95^(1/2) - (9 / 2))^(1/2) + I* ((1 / 2)*95^(1/2) + (9 / 2))^(1/2)
      • x2 = ((1 / 2)*95^(1/2) - (9 / 2))^(1/2) - I* ((1 / 2)*95^(1/2) + (9 / 2))^(1/2)
      • x3 = -((1 / 2)*95^(1/2) - (9 / 2))^(1/2) + I* ((1 / 2)*95^(1/2) + (9 / 2))^(1/2)
      • x4 = -((1 / 2)*95^(1/2) - (9 / 2))^(1/2) - I* ((1 / 2)*95^(1/2) + (9 / 2))^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^4 - 18*x^2 + 95

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • x1 = ((1 / 2)*95^(1/2) + (9 / 2))^(1/2) + I* ((1 / 2)*95^(1/2) - (9 / 2))^(1/2)
      • x2 = ((1 / 2)*95^(1/2) + (9 / 2))^(1/2) - I* ((1 / 2)*95^(1/2) - (9 / 2))^(1/2)
      • x3 = -((1 / 2)*95^(1/2) + (9 / 2))^(1/2) + I* ((1 / 2)*95^(1/2) - (9 / 2))^(1/2)
      • x4 = -((1 / 2)*95^(1/2) + (9 / 2))^(1/2) - I* ((1 / 2)*95^(1/2) - (9 / 2))^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^4 + 18*x^2 - 25

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • x1 = ((-9) + 106^(1/2))^(1/2)
      • x2 = I *(9 + 106^(1/2))^(1/2)
      • x3 = -((-9) + 106^(1/2))^(1/2)
      • x4 = -I *(9 + 106^(1/2))^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^4 - 18*x^2 - 25

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • x1 = (9 + 106^(1/2))^(1/2)
      • x2 = I *((-9) + 106^(1/2))^(1/2)
      • x3 = -(9 + 106^(1/2))^(1/2)
      • x4 = -I *((-9) + 106^(1/2))^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^4 + 18*x^2 - 121

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • x1 = ((-9) + 202^(1/2))^(1/2)
      • x2 = I *(9 + 202^(1/2))^(1/2)
      • x3 = -((-9) + 202^(1/2))^(1/2)
      • x4 = -I *(9 + 202^(1/2))^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^4 - 18*x^2 - 121

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • x1 = (9 + 202^(1/2))^(1/2)
      • x2 = I *((-9) + 202^(1/2))^(1/2)
      • x3 = -(9 + 202^(1/2))^(1/2)
      • x4 = -I *((-9) + 202^(1/2))^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^4 + 18*x^2 - 24

      Irreducible polynomial factors

      The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

      Roots

      The 4 roots are:

      • x1 = ((-9) + 105^(1/2))^(1/2)
      • x2 = I *(9 + 105^(1/2))^(1/2)
      • x3 = -((-9) + 105^(1/2))^(1/2)
      • x4 = -I *(9 + 105^(1/2))^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^4 - 18*x^2 - 24

      Irreducible polynomial factors

      The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

      Roots

      The 4 roots are:

      • x1 = (9 + 105^(1/2))^(1/2)
      • x2 = I *((-9) + 105^(1/2))^(1/2)
      • x3 = -(9 + 105^(1/2))^(1/2)
      • x4 = -I *((-9) + 105^(1/2))^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^4 + 18*x^2 - 95

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • x1 = ((-9) + 4*11^(1/2))^(1/2)
      • x2 = I *(9 + 4*11^(1/2))^(1/2)
      • x3 = -((-9) + 4*11^(1/2))^(1/2)
      • x4 = -I *(9 + 4*11^(1/2))^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^4 - 18*x^2 - 95

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • x1 = (9 + 4*11^(1/2))^(1/2)
      • x2 = I *((-9) + 4*11^(1/2))^(1/2)
      • x3 = -(9 + 4*11^(1/2))^(1/2)
      • x4 = -I *((-9) + 4*11^(1/2))^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^4 - 18*x^2 + 3*x + 5

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • t = acos((-549 / 2048)*(3 / 2)^(1/2))
      • S = (1/2)*(12 + (16 / 3)*6^(1/2)*cos(t / 3))^(1/2)
      • x1 = S + (I/2)*(4 *S^2 - 36 + 3 / S)^(1/2)
      • x2 = S - (I/2)*(4 *S^2 - 36 + 3 / S)^(1/2)
      • x3 = - S + (I/2)*(4 *S^2 - 36 - 3 / S)^(1/2)
      • x4 = - S - (I/2)*(4 *S^2 - 36 - 3 / S)^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^4 - 18*x^2 - 3*x + 5

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • t = acos((-549 / 2048)*(3 / 2)^(1/2))
      • S = (1/2)*(12 + (16 / 3)*6^(1/2)*cos(t / 3))^(1/2)
      • x1 = S + (I/2)*(4 *S^2 - 36 - 3 / S)^(1/2)
      • x2 = S - (I/2)*(4 *S^2 - 36 - 3 / S)^(1/2)
      • x3 = - S + (I/2)*(4 *S^2 - 36 + 3 / S)^(1/2)
      • x4 = - S - (I/2)*(4 *S^2 - 36 + 3 / S)^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^4 + 3*x^2 + 79*x + 8

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • Q = (166833 / 2 + (3 / 2)*309 2068821^(1/2))^(1/3)
      • S = (1/2)*(-2 + Q / 3 + 35 / Q)^(1/2)
      • x1 = S + (I/2) * (4 *S^2 + 6 + 79 / S)^(1/2)
      • x2 = S - (I/2) * (4 *S^2 + 6 + 79 / S)^(1/2)
      • x3 = - S + (1/2) * (-4 *S^2 - 6 + 79 / S)^(1/2)
      • x4 = - S - (1/2) * (-4 *S^2 - 6 + 79 / S)^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      3x4 − 3⁢x2 + x − 5

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • Q = -1192 + -12 41597
      • S = 1223 + Q3193 Q
      • x1 = S + i2 4 S² − 2 + 13 S
      • x2 = Si2 4 S² − 2 + 13 S
      • x3 = − S + 12 −4 S² + 2 + 13 S
      • x4 = − S12 −4 S² + 2 + 13 S

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      3x^{4} - 3x^{2} + x - 5

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • \begin{array}{l}
      • \bullet\,\,Q = \sqrt[3]{\frac{-119}{2} + \frac{-1}{2}\sqrt{41597}}\\
      • \bullet\,\,S = \frac{1}{2}\sqrt{\frac{2}{3} + \frac{Q}{3}- \frac{19}{3 Q}}\\
      • \bullet\,\,x_{1} = S + \frac{i}{2} \sqrt{4 S^2 - 2 + \frac{1}{3 S}}\\
      • \bullet\,\,x_{2} = S - \frac{i}{2} \sqrt{4 S^2 - 2 + \frac{1}{3 S}}\\
      • \bullet\,\,x_{3} = - S + \frac{1}{2} \sqrt{-4 S^2 + 2 + \frac{1}{3 S}}\\
      • \bullet\,\,x_{4} = - S - \frac{1}{2} \sqrt{-4 S^2 + 2 + \frac{1}{3 S}}\\
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      3*x^4 - 3*x^2 + x - 5

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 4 roots are:

      • Q = (-119 / 2 + (-1 / 2)*41597^(1/2))^(1/3)
      • S = (1/2)*(2 / 3 + Q / 3 - 19 / (3 * Q))^(1/2)
      • x1 = S + (I/2) * (4 *S^2 - 2 + 1 / (3 * S))^(1/2)
      • x2 = S - (I/2) * (4 *S^2 - 2 + 1 / (3 * S))^(1/2)
      • x3 = - S + (1/2) * (-4 *S^2 + 2 + 1 / (3 * S))^(1/2)
      • x4 = - S - (1/2) * (-4 *S^2 + 2 + 1 / (3 * S))^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x5 + 15⁢x + 12

      Irreducible polynomial factors

      The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

      Roots

      The 5 roots are:

      • R1 = −35 + 2125 25
      • R2 = −-95 + 7225 25
      • R3 = 95 + 7225 25
      • R4 = −352125 25
      • S1 = (−1+5)(R1 + R4) + (−1−5)(R2 + R3)
      • S2 = (−1+5)(R2 + R3) + (−1−5)(R1 + R4)
      • T1 = 10 + 25(R4R1) +10 − 25(R3R2)
      • T2 = 10 + 25(R3R2) +10 − 25(R1R4)
      • x1 = R1 + R2 + R3 + R4
      • x2 = S14+ i T14
      • x3 = S14− i T14
      • x4 = S24+ i T24
      • x5 = S24− i T24

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^{5} + 15x + 12

      Irreducible polynomial factors

      The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

      Roots

      The 5 roots are:

      • \begin{array}{l}
      • \bullet\,\,R_1 = -\sqrt[5]{\frac{3}{5} + \frac{21}{25}\sqrt{\frac{2}{5}}}
      • \bullet\,\,R_2 = -\sqrt[5]{\frac{-9}{5} + \frac{72}{25}\sqrt{\frac{2}{5}}}
      • \bullet\,\,R_3 = \sqrt[5]{\frac{9}{5} + \frac{72}{25}\sqrt{\frac{2}{5}}}
      • \bullet\,\,R_4 = -\sqrt[5]{\frac{3}{5} - \frac{21}{25}\sqrt{\frac{2}{5}}}
      • \bullet\,\,S_1 = (-1+\sqrt{5})(R_1 + R_4) + (-1-\sqrt{5})(R_2 + R_3)\\
      • \bullet\,\,S_2 = (-1+\sqrt{5})(R_2 + R_3) + (-1-\sqrt{5})(R_1 + R_4)\\
      • \bullet\,\,T_1 = \sqrt{10 + 2\sqrt{5}}(R4 - R1) +\sqrt{10 - 2\sqrt{5}}(R_3 - R_2)\\
      • \bullet\,\,T_2 = \sqrt{10 + 2\sqrt{5}}(R_3 - R_2) +\sqrt{10 - 2\sqrt{5}}(R_1 - R_4)\\
      • \bullet\,\,x_{1} = R_1 + R_2 + R_3 + R_4\\
      • \bullet\,\,x_{2} = \frac{S_1}{4}+ i \frac{T_1}{4}\\
      • \bullet\,\,x_{3} = \frac{S_1}{4}- i \frac{T_1}{4}\\
      • \bullet\,\,x_{4} = \frac{S_2}{4}+ i \frac{T_2}{4}\\
      • \bullet\,\,x_{5} = \frac{S_2}{4}- i \frac{T_2}{4}\\
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^5 + 15*x + 12

      Irreducible polynomial factors

      The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

      Roots

      The 5 roots are:

      • R1 = -(3 / 5 + (21 / 25)*(2 / 5)^(1/2))^(1/5)
      • R2 = -(-9 / 5 + (72 / 25)*(2 / 5)^(1/2))^(1/5)
      • R3 = (9 / 5 + (72 / 25)*(2 / 5)^(1/2))^(1/5)
      • R4 = -(3 / 5 - (21 / 25)*(2 / 5)^(1/2))^(1/5)
      • S1 = (-1+5^(1/2))*(R1 + R4) + (-1-5^(1/2))*(R2 + R3)
      • S2 = (-1+5^(1/2))*(R2 + R3) + (-1-5^(1/2))*(R1 + R4)
      • T1 = (10 + 2 * 5^(1/2))^(1/2)*(R4 - R1) + (10 - 2 * 5^(1/2))^(1/2)*(R3 - R2)
      • T2 = (10 + 2 * 5^(1/2))^(1/2)*(R3 - R2) + (10 - 2 * 5^(1/2))^(1/2)*(R1 - R4)
      • x1 = R1 + R2 + R3 + R4
      • x2 = (S1 + I * T1) / 4
      • x3 = (S1 - I * T1) / 4
      • x4 = (S2 + I * T2) / 4
      • x5 = (S2 - I * T2) / 4

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x5 − 5⁢x + 12

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 5 roots are:

      • R1 = −1 + 25 595 + 99125 5
      • R2 = -1 + 25 5 + 9599125 5
      • R3 = −1 − 25 5 + 9599125 5
      • R4 = −1 + 25 5 + 95 + 99125 5
      • S1 = (−1+5)(R1 + R4) + (−1−5)(R2 + R3)
      • S2 = (−1+5)(R2 + R3) + (−1−5)(R1 + R4)
      • T1 = 10 + 25(R4R1) +10 − 25(R3R2)
      • T2 = 10 + 25(R3R2) +10 − 25(R1R4)
      • x1 = R1 + R2 + R3 + R4
      • x2 = S14+ i T14
      • x3 = S14− i T14
      • x4 = S24+ i T24
      • x5 = S24− i T24

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^{5} - 5x + 12

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 5 roots are:

      • \begin{array}{l}
      • \bullet\,\,R_1 = -\sqrt[5]{1 + \frac{2}{5}\sqrt{5} - \sqrt{\frac{9}{5} + \frac{99}{125}\sqrt{5}}}
      • \bullet\,\,R_2 = \sqrt[5]{-1 + \frac{2}{5}\sqrt{5} + \sqrt{\frac{9}{5} - \frac{99}{125}\sqrt{5}}}
      • \bullet\,\,R_3 = -\sqrt[5]{1 - \frac{2}{5}\sqrt{5} + \sqrt{\frac{9}{5} - \frac{99}{125}\sqrt{5}}}
      • \bullet\,\,R_4 = -\sqrt[5]{1 + \frac{2}{5}\sqrt{5} + \sqrt{\frac{9}{5} + \frac{99}{125}\sqrt{5}}}
      • \bullet\,\,S_1 = (-1+\sqrt{5})(R_1 + R_4) + (-1-\sqrt{5})(R_2 + R_3)\\
      • \bullet\,\,S_2 = (-1+\sqrt{5})(R_2 + R_3) + (-1-\sqrt{5})(R_1 + R_4)\\
      • \bullet\,\,T_1 = \sqrt{10 + 2\sqrt{5}}(R4 - R1) +\sqrt{10 - 2\sqrt{5}}(R_3 - R_2)\\
      • \bullet\,\,T_2 = \sqrt{10 + 2\sqrt{5}}(R_3 - R_2) +\sqrt{10 - 2\sqrt{5}}(R_1 - R_4)\\
      • \bullet\,\,x_{1} = R_1 + R_2 + R_3 + R_4\\
      • \bullet\,\,x_{2} = \frac{S_1}{4}+ i \frac{T_1}{4}\\
      • \bullet\,\,x_{3} = \frac{S_1}{4}- i \frac{T_1}{4}\\
      • \bullet\,\,x_{4} = \frac{S_2}{4}+ i \frac{T_2}{4}\\
      • \bullet\,\,x_{5} = \frac{S_2}{4}- i \frac{T_2}{4}\\
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^5 - 5*x + 12

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 5 roots are:

      • R1 = -(1 + (2 / 5)*5^(1/2) - (9 / 5 + (99 / 125)*5^(1/2))^(1/2))^(1/5)
      • R2 = (-1 + (2 / 5)*5^(1/2) + (9 / 5 - (99 / 125)*5^(1/2))^(1/2))^(1/5)
      • R3 = -(1 - (2 / 5)*5^(1/2) + (9 / 5 - (99 / 125)*5^(1/2))^(1/2))^(1/5)
      • R4 = -(1 + (2 / 5)*5^(1/2) + (9 / 5 + (99 / 125)*5^(1/2))^(1/2))^(1/5)
      • S1 = (-1+5^(1/2))*(R1 + R4) + (-1-5^(1/2))*(R2 + R3)
      • S2 = (-1+5^(1/2))*(R2 + R3) + (-1-5^(1/2))*(R1 + R4)
      • T1 = (10 + 2 * 5^(1/2))^(1/2)*(R4 - R1) + (10 - 2 * 5^(1/2))^(1/2)*(R3 - R2)
      • T2 = (10 + 2 * 5^(1/2))^(1/2)*(R3 - R2) + (10 - 2 * 5^(1/2))^(1/2)*(R1 - R4)
      • x1 = R1 + R2 + R3 + R4
      • x2 = (S1 + I * T1) / 4
      • x3 = (S1 - I * T1) / 4
      • x4 = (S2 + I * T2) / 4
      • x5 = (S2 - I * T2) / 4

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      17x5 − 20⁢x + 21

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 5 roots are:

      • x1 to x5 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 19 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      17x^{5} - 20x + 21

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 5 roots are:

      • \begin{array}{l}
      • \bullet\,\,x_{1} to x_{5} : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 19 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      17*x^5 - 20*x + 21

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 5 roots are:

      • x1 to x5 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 19 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x8 + x4 + 4

      Irreducible polynomial factors

      The 2 factors are:

      • −1
      • x8x4 − 4

      Roots

      The 8 roots are:

      • x1 = 412 + 12 17 cos 0π1 + i 412 + 12 17 sin0π1 = 412 + 12 17
      • x2 = 412 + 12 17 cosπ2 + i 412 + 12 17 sinπ2 = + i 412 + 12 17
      • x3 = 412 + 12 17 cosπ1 + i 412 + 12 17 sinπ1 = −412 + 12 17
      • x4 = 412 + 12 17 cos 3π2 + i 412 + 12 17 sin3π2 = −i 412 + 12 17
      • x5 = 4-12 + 12 17 cosπ4 + i 4-12 + 12 17 sinπ4 = 12 4-12 + 12 172 + i2 4-12 + 12 172
      • x6 = 4-12 + 12 17 cos 3π4 + i 4-12 + 12 17 sin3π4 = −12 4-12 + 12 172 + i2 4-12 + 12 172
      • x7 = 4-12 + 12 17 cos 5π4 + i 4-12 + 12 17 sin5π4 = −12 4-12 + 12 172i2 4-12 + 12 172
      • x8 = 4-12 + 12 17 cos 7π4 + i 4-12 + 12 17 sin7π4 = 12 4-12 + 12 172i2 4-12 + 12 172

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x5 + 20⁢x3 + 20⁢x2 + 30⁢x + 10

      Irreducible polynomial factors

      The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

      Roots

      The 5 roots are:

      • R1 = 2 + 6
      • R2 = −7 + 9
      • R3 = -7 + 9
      • R4 = −-2 + 6
      • S1 = (−1+5)(R1 + R4) + (−1−5)(R2 + R3)
      • S2 = (−1+5)(R2 + R3) + (−1−5)(R1 + R4)
      • T1 = 10 + 25(R4R1) +10 − 25(R3R2)
      • T2 = 10 + 25(R3R2) +10 − 25(R1R4)
      • x1 = R1 + R2 + R3 + R4
      • x2 = S14+ i T14
      • x3 = S14− i T14
      • x4 = S24+ i T24
      • x5 = S24− i T24

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^{5} + 20x^{3} + 20x^{2} + 30x + 10

      Irreducible polynomial factors

      The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

      Roots

      The 5 roots are:

      • \begin{array}{l}
      • \bullet\,\,R_1 = \sqrt[5]{2 + 6}
      • \bullet\,\,R_2 = -\sqrt[5]{7 + 9}
      • \bullet\,\,R_3 = \sqrt[5]{-7 + 9}
      • \bullet\,\,R_4 = -\sqrt[5]{-2 + 6}
      • \bullet\,\,S_1 = (-1+\sqrt{5})(R_1 + R_4) + (-1-\sqrt{5})(R_2 + R_3)\\
      • \bullet\,\,S_2 = (-1+\sqrt{5})(R_2 + R_3) + (-1-\sqrt{5})(R_1 + R_4)\\
      • \bullet\,\,T_1 = \sqrt{10 + 2\sqrt{5}}(R4 - R1) +\sqrt{10 - 2\sqrt{5}}(R_3 - R_2)\\
      • \bullet\,\,T_2 = \sqrt{10 + 2\sqrt{5}}(R_3 - R_2) +\sqrt{10 - 2\sqrt{5}}(R_1 - R_4)\\
      • \bullet\,\,x_{1} = R_1 + R_2 + R_3 + R_4\\
      • \bullet\,\,x_{2} = \frac{S_1}{4}+ i \frac{T_1}{4}\\
      • \bullet\,\,x_{3} = \frac{S_1}{4}- i \frac{T_1}{4}\\
      • \bullet\,\,x_{4} = \frac{S_2}{4}+ i \frac{T_2}{4}\\
      • \bullet\,\,x_{5} = \frac{S_2}{4}- i \frac{T_2}{4}\\
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^5 + 20*x^3 + 20*x^2 + 30*x + 10

      Irreducible polynomial factors

      The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

      Roots

      The 5 roots are:

      • R1 = (2 + 6)^(1/5)
      • R2 = -(7 + 9)^(1/5)
      • R3 = (-7 + 9)^(1/5)
      • R4 = -(-2 + 6)^(1/5)
      • S1 = (-1+5^(1/2))*(R1 + R4) + (-1-5^(1/2))*(R2 + R3)
      • S2 = (-1+5^(1/2))*(R2 + R3) + (-1-5^(1/2))*(R1 + R4)
      • T1 = (10 + 2 * 5^(1/2))^(1/2)*(R4 - R1) + (10 - 2 * 5^(1/2))^(1/2)*(R3 - R2)
      • T2 = (10 + 2 * 5^(1/2))^(1/2)*(R3 - R2) + (10 - 2 * 5^(1/2))^(1/2)*(R1 - R4)
      • x1 = R1 + R2 + R3 + R4
      • x2 = (S1 + I * T1) / 4
      • x3 = (S1 - I * T1) / 4
      • x4 = (S2 + I * T2) / 4
      • x5 = (S2 - I * T2) / 4

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x5 + 10⁢x3 − 20⁢x2 − 1505⁢x − 7412

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 5 roots are:

      • x1 to x5 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 7 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^{5} + 10x^{3} - 20x^{2} - 1505x - 7412

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 5 roots are:

      • \begin{array}{l}
      • \bullet\,\,x_{1} to x_{5} : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 7 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^5 + 10*x^3 - 20*x^2 - 1505*x - 7412

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 5 roots are:

      • x1 to x5 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 7 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^6 + x^5 + 3*x^4 + x^3 + 3*x^2 + x + 1

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 6 roots are:

      • x1 to x6 : I cannot determine whether the roots of the polynomial can be solved using radical expressions or not.

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x7 + x + 12

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 7 roots are:

      • x1 to x7 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 7 ÷ 2))

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^{7} + x + 12

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 7 roots are:

      • \begin{array}{l}
      • \bullet\,\,x_{1} to x_{7} : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 7 ÷ 2))
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^7 + x + 12

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 7 roots are:

      • x1 to x7 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 7 ÷ 2))

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^9 + 6*x^3 + 5

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 9 roots are:

      • x1 to x9 : The roots of the polynomial can be expressed by radicals. We set y = x^3. The polynomial has degree 3 which is less than 5.

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x10 + 2⁢x5 + 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 10 roots are:

      • x1 = 1023 cos15 π − arctan22 + i 1023 sin15 π − arctan22
      • x2 = 1023 cos15 π + arctan22 + i 1023 sin15 π + arctan22
      • x3 = 1023 cos15 3⁢ π − arctan22 + i 1023 sin15 3⁢ π − arctan22
      • x4 = 1023 cos15 3⁢ π + arctan22 + i 1023 sin15 3⁢ π + arctan22
      • x5 = 1023 cos15 5⁢ π − arctan22 + i 1023 sin15 5⁢ π − arctan22
      • x6 = 1023 cos15 5⁢ π + arctan22 + i 1023 sin15 5⁢ π + arctan22
      • x7 = 1023 cos15 7⁢ π − arctan22 + i 1023 sin15 7⁢ π − arctan22
      • x8 = 1023 cos15 7⁢ π + arctan22 + i 1023 sin15 7⁢ π + arctan22
      • x9 = 1023 cos15 9⁢ π − arctan22 + i 1023 sin15 9⁢ π − arctan22
      • x10 = 1023 cos15 9⁢ π + arctan22 + i 1023 sin15 9⁢ π + arctan22

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^{10} + 2x^{5} + 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 10 roots are:

      • \begin{array}{l}
      • \bullet\,\,x_{1} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(\pi - \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(\pi - \arctan{\sqrt{22}}\right)\right)}\\
      • \bullet\,\,x_{2} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(\pi + \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(\pi + \arctan{\sqrt{22}}\right)\right)}\\
      • \bullet\,\,x_{3} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(3\pi - \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(3\pi - \arctan{\sqrt{22}}\right)\right)}\\
      • \bullet\,\,x_{4} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(3\pi + \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(3\pi + \arctan{\sqrt{22}}\right)\right)}\\
      • \bullet\,\,x_{5} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(5\pi - \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(5\pi - \arctan{\sqrt{22}}\right)\right)}\\
      • \bullet\,\,x_{6} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(5\pi + \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(5\pi + \arctan{\sqrt{22}}\right)\right)}\\
      • \bullet\,\,x_{7} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(7\pi - \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(7\pi - \arctan{\sqrt{22}}\right)\right)}\\
      • \bullet\,\,x_{8} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(7\pi + \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(7\pi + \arctan{\sqrt{22}}\right)\right)}\\
      • \bullet\,\,x_{9} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(9\pi - \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(9\pi - \arctan{\sqrt{22}}\right)\right)}\\
      • \bullet\,\,x_{10} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(9\pi + \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(9\pi + \arctan{\sqrt{22}}\right)\right)}\\
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^10 + 2*x^5 + 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 10 roots are:

      • x1 = 23^(1/10) *cos(1/5*(Pi - atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(Pi - atan(22^(1/2))))
      • x2 = 23^(1/10) *cos(1/5*(Pi + atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(Pi + atan(22^(1/2))))
      • x3 = 23^(1/10) *cos(1/5*(3*Pi - atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(3*Pi - atan(22^(1/2))))
      • x4 = 23^(1/10) *cos(1/5*(3*Pi + atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(3*Pi + atan(22^(1/2))))
      • x5 = 23^(1/10) *cos(1/5*(5*Pi - atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(5*Pi - atan(22^(1/2))))
      • x6 = 23^(1/10) *cos(1/5*(5*Pi + atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(5*Pi + atan(22^(1/2))))
      • x7 = 23^(1/10) *cos(1/5*(7*Pi - atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(7*Pi - atan(22^(1/2))))
      • x8 = 23^(1/10) *cos(1/5*(7*Pi + atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(7*Pi + atan(22^(1/2))))
      • x9 = 23^(1/10) *cos(1/5*(9*Pi - atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(9*Pi - atan(22^(1/2))))
      • x10 = 23^(1/10) *cos(1/5*(9*Pi + atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(9*Pi + atan(22^(1/2))))

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x10 + 2⁢x5 − 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 10 roots are:

      • x1 = 5-1 + 2 6 cos 0π1 + i 5-1 + 2 6 sin0π1 = 5-1 + 2 6
      • x2 = 5-1 + 2 6 cos 2π5 + i 5-1 + 2 6 sin2π5 = 14 5-1 + 2 65−1 + i4 5-1 + 2 610+25
      • x3 = 5-1 + 2 6 cos 4π5 + i 5-1 + 2 6 sin4π5 = −14 5-1 + 2 65+1 + i4 5-1 + 2 610−25
      • x4 = 5-1 + 2 6 cos 6π5 + i 5-1 + 2 6 sin6π5 = −14 5-1 + 2 65+1i4 5-1 + 2 610−25
      • x5 = 5-1 + 2 6 cos 8π5 + i 5-1 + 2 6 sin8π5 = 14 5-1 + 2 65−1i4 5-1 + 2 610+25
      • x6 = 51 + 2 6 cosπ5 + i 51 + 2 6 sinπ5 = 14 51 + 2 65+1 + i4 51 + 2 610−25
      • x7 = 51 + 2 6 cos 3π5 + i 51 + 2 6 sin3π5 = −14 51 + 2 65−1 + i4 51 + 2 610+25
      • x8 = 51 + 2 6 cosπ1 + i 51 + 2 6 sinπ1 = −51 + 2 6
      • x9 = 51 + 2 6 cos 7π5 + i 51 + 2 6 sin7π5 = −14 51 + 2 65−1i4 51 + 2 610+25
      • x10 = 51 + 2 6 cos 9π5 + i 51 + 2 6 sin9π5 = 14 51 + 2 65+1i4 51 + 2 610−25

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^{10} + 2x^{5} - 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 10 roots are:

      • \begin{array}{l}
      • \bullet\,\,x_{1} = \sqrt[5]{-1 + 2\sqrt{6}} \cos{ \frac{0 \pi }{1}} + i \sqrt[5]{-1 + 2\sqrt{6}} \sin{\frac{0 \pi }{1}} = \sqrt[5]{-1 + 2\sqrt{6}}\\
      • \bullet\,\,x_{2} = \sqrt[5]{-1 + 2\sqrt{6}} \cos{ \frac{2 \pi }{5}} + i \sqrt[5]{-1 + 2\sqrt{6}} \sin{\frac{2 \pi }{5}} = \frac{1}{4}\sqrt[5]{-1 + 2\sqrt{6}}\left(\sqrt{5}-1\right) + \frac{i}{4}\sqrt[5]{-1 + 2\sqrt{6}}\sqrt{10+2\sqrt{5}}\\
      • \bullet\,\,x_{3} = \sqrt[5]{-1 + 2\sqrt{6}} \cos{ \frac{4 \pi }{5}} + i \sqrt[5]{-1 + 2\sqrt{6}} \sin{\frac{4 \pi }{5}} = -\frac{1}{4}\sqrt[5]{-1 + 2\sqrt{6}}\left(\sqrt{5}+1\right) + \frac{i}{4}\sqrt[5]{-1 + 2\sqrt{6}}\sqrt{10-2\sqrt{5}}\\
      • \bullet\,\,x_{4} = \sqrt[5]{-1 + 2\sqrt{6}} \cos{ \frac{6 \pi }{5}} + i \sqrt[5]{-1 + 2\sqrt{6}} \sin{\frac{6 \pi }{5}} = -\frac{1}{4}\sqrt[5]{-1 + 2\sqrt{6}}\left(\sqrt{5}+1\right)-\frac{i}{4}\sqrt[5]{-1 + 2\sqrt{6}}\sqrt{10-2\sqrt{5}}\\
      • \bullet\,\,x_{5} = \sqrt[5]{-1 + 2\sqrt{6}} \cos{ \frac{8 \pi }{5}} + i \sqrt[5]{-1 + 2\sqrt{6}} \sin{\frac{8 \pi }{5}} = \frac{1}{4}\sqrt[5]{-1 + 2\sqrt{6}}\left(\sqrt{5}-1\right)-\frac{i}{4}\sqrt[5]{-1 + 2\sqrt{6}}\sqrt{10+2\sqrt{5}}\\
      • \bullet\,\,x_{6} = \sqrt[5]{1 + 2\sqrt{6}} \cos{\frac{\pi }{5}} + i \sqrt[5]{1 + 2\sqrt{6}} \sin{\frac{\pi }{5}} = \frac{1}{4}\sqrt[5]{1 + 2\sqrt{6}}\left(\sqrt{5}+1\right) + \frac{i}{4}\sqrt[5]{1 + 2\sqrt{6}}\sqrt{10-2\sqrt{5}}\\
      • \bullet\,\,x_{7} = \sqrt[5]{1 + 2\sqrt{6}} \cos{ \frac{3 \pi }{5}} + i \sqrt[5]{1 + 2\sqrt{6}} \sin{\frac{3 \pi }{5}} = -\frac{1}{4}\sqrt[5]{1 + 2\sqrt{6}}\left(\sqrt{5}-1\right) + \frac{i}{4}\sqrt[5]{1 + 2\sqrt{6}}\sqrt{10+2\sqrt{5}}\\
      • \bullet\,\,x_{8} = \sqrt[5]{1 + 2\sqrt{6}} \cos{\frac{\pi }{1}} + i \sqrt[5]{1 + 2\sqrt{6}} \sin{\frac{\pi }{1}} = -\sqrt[5]{1 + 2\sqrt{6}}\\
      • \bullet\,\,x_{9} = \sqrt[5]{1 + 2\sqrt{6}} \cos{ \frac{7 \pi }{5}} + i \sqrt[5]{1 + 2\sqrt{6}} \sin{\frac{7 \pi }{5}} = -\frac{1}{4}\sqrt[5]{1 + 2\sqrt{6}}\left(\sqrt{5}-1\right)-\frac{i}{4}\sqrt[5]{1 + 2\sqrt{6}}\sqrt{10+2\sqrt{5}}\\
      • \bullet\,\,x_{10} = \sqrt[5]{1 + 2\sqrt{6}} \cos{ \frac{9 \pi }{5}} + i \sqrt[5]{1 + 2\sqrt{6}} \sin{\frac{9 \pi }{5}} = \frac{1}{4}\sqrt[5]{1 + 2\sqrt{6}}\left(\sqrt{5}+1\right)-\frac{i}{4}\sqrt[5]{1 + 2\sqrt{6}}\sqrt{10-2\sqrt{5}}\\
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^10 + 2*x^5 - 23

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 10 roots are:

      • x1 = (-1 + 2*6^(1/2))^(1/5)*cos (0*Pi/1) + I *(-1 + 2*6^(1/2))^(1/5) * sin(0*Pi/1) = (-1 + 2*6^(1/2))^(1/5)
      • x2 = (-1 + 2*6^(1/2))^(1/5)*cos (2*Pi/5) + I *(-1 + 2*6^(1/2))^(1/5) * sin(2*Pi/5) = (1/4)*(-1 + 2*6^(1/2))^(1/5)*(5^(1/2)-1) + (I/4)*(-1 + 2*6^(1/2))^(1/5)*(10+2*5^(1/2))^(1/2)
      • x3 = (-1 + 2*6^(1/2))^(1/5)*cos (4*Pi/5) + I *(-1 + 2*6^(1/2))^(1/5) * sin(4*Pi/5) = -(1/4)*(-1 + 2*6^(1/2))^(1/5)*(5^(1/2)+1) + (I/4)*(-1 + 2*6^(1/2))^(1/5)*(10-2*5^(1/2))^(1/2)
      • x4 = (-1 + 2*6^(1/2))^(1/5)*cos (6*Pi/5) + I *(-1 + 2*6^(1/2))^(1/5) * sin(6*Pi/5) = -(1/4)*(-1 + 2*6^(1/2))^(1/5)*(5^(1/2)+1)-(I/4)*(-1 + 2*6^(1/2))^(1/5)*(10-2*5^(1/2))^(1/2)
      • x5 = (-1 + 2*6^(1/2))^(1/5)*cos (8*Pi/5) + I *(-1 + 2*6^(1/2))^(1/5) * sin(8*Pi/5) = (1/4)*(-1 + 2*6^(1/2))^(1/5)*(5^(1/2)-1)-(I/4)*(-1 + 2*6^(1/2))^(1/5)*(10+2*5^(1/2))^(1/2)
      • x6 = (1 + 2*6^(1/2))^(1/5)*cos(Pi/5) + I *(1 + 2*6^(1/2))^(1/5) * sin(Pi/5) = (1/4)*(1 + 2*6^(1/2))^(1/5)*(5^(1/2)+1) + (I/4)*(1 + 2*6^(1/2))^(1/5)*(10-2*5^(1/2))^(1/2)
      • x7 = (1 + 2*6^(1/2))^(1/5)*cos (3*Pi/5) + I *(1 + 2*6^(1/2))^(1/5) * sin(3*Pi/5) = -(1/4)*(1 + 2*6^(1/2))^(1/5)*(5^(1/2)-1) + (I/4)*(1 + 2*6^(1/2))^(1/5)*(10+2*5^(1/2))^(1/2)
      • x8 = (1 + 2*6^(1/2))^(1/5)*cos(Pi/1) + I *(1 + 2*6^(1/2))^(1/5) * sin(Pi/1) = -(1 + 2*6^(1/2))^(1/5)
      • x9 = (1 + 2*6^(1/2))^(1/5)*cos (7*Pi/5) + I *(1 + 2*6^(1/2))^(1/5) * sin(7*Pi/5) = -(1/4)*(1 + 2*6^(1/2))^(1/5)*(5^(1/2)-1)-(I/4)*(1 + 2*6^(1/2))^(1/5)*(10+2*5^(1/2))^(1/2)
      • x10 = (1 + 2*6^(1/2))^(1/5)*cos (9*Pi/5) + I *(1 + 2*6^(1/2))^(1/5) * sin(9*Pi/5) = (1/4)*(1 + 2*6^(1/2))^(1/5)*(5^(1/2)+1)-(I/4)*(1 + 2*6^(1/2))^(1/5)*(10-2*5^(1/2))^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^12 + x + 5

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 12 roots are:

      • x1 to x12 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 2 are 3, 4 and 5 (the Galois group contains a cycle of length 3) and the degrees of the factors of polynomial modulo 7 are 1 and 11 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (11 > 12 ÷ 2))

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^13 + 3*x + 5

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 13 roots are:

      • x1 to x13 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 7 are 1, 5 and 7 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (7 > 13 ÷ 2) and less than the degree minus 2 (7 < 13 − 2))

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x17 − 1

      Irreducible polynomial factors

      The 2 factors are:

      • x − 1
      • x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1

      Roots

      The 17 roots are:

      • x1 = 1
      • x2 = cos 2π17 + i sin2π17 = 116 −1+17+34−217+217+317170+3817 + i8 34−217+234−217−417+317+170+3817
      • x3 = cos 4π17 + i sin4π17 = 116 −1+1734−217+217+317+170+3817 + i8 34−217−234−217+417+317170+3817
      • x4 = cos 6π17 + i sin6π17 = 116 −1−17+34+217+217−317+170−3817 + i8 34+217+234+217−417−317170−3817
      • x5 = cos 8π17 + i sin8π17 = 116 −1+17+34−217−217+317170+3817 + i8 34−217+234−217+417+317+170+3817
      • x6 = cos 10π17 + i sin10π17 = −116 1+1734+217+217−317+170−3817 + i8 34+217+234+217+417−317170−3817
      • x7 = cos 12π17 + i sin12π17 = −116 1+17+34+217−217−317170−3817 + i8 34+217−234+217+417−317+170−3817
      • x8 = cos 14π17 + i sin14π17 = −116 1+17+34+217+217−317170−3817 + i8 34+217−234+217−417−317+170−3817
      • x9 = cos 16π17 + i sin16π17 = −116 1−17+34−217+217+317+170+3817 + i8 34−217−234−217−417+317170+3817
      • x10 = cos 18π17 + i sin18π17 = −116 1−17+34−217+217+317+170+3817i8 34−217−234−217−417+317170+3817
      • x11 = cos 20π17 + i sin20π17 = −116 1+17+34+217+217−317170−3817i8 34+217−234+217−417−317+170−3817
      • x12 = cos 22π17 + i sin22π17 = −116 1+17+34+217−217−317170−3817i8 34+217−234+217+417−317+170−3817
      • x13 = cos 24π17 + i sin24π17 = −116 1+1734+217+217−317+170−3817i8 34+217+234+217+417−317170−3817
      • x14 = cos 26π17 + i sin26π17 = 116 −1+17+34−217−217+317170+3817i8 34−217+234−217+417+317+170+3817
      • x15 = cos 28π17 + i sin28π17 = 116 −1−17+34+217+217−317+170−3817i8 34+217+234+217−417−317170−3817
      • x16 = cos 30π17 + i sin30π17 = 116 −1+1734−217+217+317+170+3817i8 34−217−234−217+417+317170+3817
      • x17 = cos 32π17 + i sin32π17 = 116 −1+17+34−217+217+317170+3817i8 34−217+234−217−417+317+170+3817

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^{17} - 1

      Irreducible polynomial factors

      The 2 factors are:

      • \begin{array}{l}
      • \bullet\,\,x - 1\\
      • \bullet\,\,x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1\\
      • \end{array}

      Roots

      The 17 roots are:

      • \begin{array}{l}
      • \bullet\,\,x_{1} = 1\\
      • \bullet\,\,x_{2} = \cos{ \frac{2 \pi }{17}} + i \sin{\frac{2 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34-2\sqrt{17}+2\sqrt{34-2\sqrt{17}}-4\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}}\\
      • \bullet\,\,x_{3} = \cos{ \frac{4 \pi }{17}} + i \sin{\frac{4 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}-\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34-2\sqrt{17}-2\sqrt{34-2\sqrt{17}}+4\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}}\\
      • \bullet\,\,x_{4} = \cos{ \frac{6 \pi }{17}} + i \sin{\frac{6 \pi }{17}} = \frac{1}{16}\left(-1-\sqrt{17}+\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34+2\sqrt{17}+2\sqrt{34+2\sqrt{17}}-4\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}}\\
      • \bullet\,\,x_{5} = \cos{ \frac{8 \pi }{17}} + i \sin{\frac{8 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}-2\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34-2\sqrt{17}+2\sqrt{34-2\sqrt{17}}+4\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}}\\
      • \bullet\,\,x_{6} = \cos{ \frac{10 \pi }{17}} + i \sin{\frac{10 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}-\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34+2\sqrt{17}+2\sqrt{34+2\sqrt{17}}+4\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}}\\
      • \bullet\,\,x_{7} = \cos{ \frac{12 \pi }{17}} + i \sin{\frac{12 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}+\sqrt{34+2\sqrt{17}}-2\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34+2\sqrt{17}-2\sqrt{34+2\sqrt{17}}+4\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}}\\
      • \bullet\,\,x_{8} = \cos{ \frac{14 \pi }{17}} + i \sin{\frac{14 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}+\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34+2\sqrt{17}-2\sqrt{34+2\sqrt{17}}-4\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}}\\
      • \bullet\,\,x_{9} = \cos{ \frac{16 \pi }{17}} + i \sin{\frac{16 \pi }{17}} = -\frac{1}{16}\left(1-\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34-2\sqrt{17}-2\sqrt{34-2\sqrt{17}}-4\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}}\\
      • \bullet\,\,x_{10} = \cos{ \frac{18 \pi }{17}} + i \sin{\frac{18 \pi }{17}} = -\frac{1}{16}\left(1-\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34-2\sqrt{17}-2\sqrt{34-2\sqrt{17}}-4\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}}\\
      • \bullet\,\,x_{11} = \cos{ \frac{20 \pi }{17}} + i \sin{\frac{20 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}+\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34+2\sqrt{17}-2\sqrt{34+2\sqrt{17}}-4\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}}\\
      • \bullet\,\,x_{12} = \cos{ \frac{22 \pi }{17}} + i \sin{\frac{22 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}+\sqrt{34+2\sqrt{17}}-2\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34+2\sqrt{17}-2\sqrt{34+2\sqrt{17}}+4\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}}\\
      • \bullet\,\,x_{13} = \cos{ \frac{24 \pi }{17}} + i \sin{\frac{24 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}-\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34+2\sqrt{17}+2\sqrt{34+2\sqrt{17}}+4\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}}\\
      • \bullet\,\,x_{14} = \cos{ \frac{26 \pi }{17}} + i \sin{\frac{26 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}-2\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34-2\sqrt{17}+2\sqrt{34-2\sqrt{17}}+4\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}}\\
      • \bullet\,\,x_{15} = \cos{ \frac{28 \pi }{17}} + i \sin{\frac{28 \pi }{17}} = \frac{1}{16}\left(-1-\sqrt{17}+\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34+2\sqrt{17}+2\sqrt{34+2\sqrt{17}}-4\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}}\\
      • \bullet\,\,x_{16} = \cos{ \frac{30 \pi }{17}} + i \sin{\frac{30 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}-\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34-2\sqrt{17}-2\sqrt{34-2\sqrt{17}}+4\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}}\\
      • \bullet\,\,x_{17} = \cos{ \frac{32 \pi }{17}} + i \sin{\frac{32 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34-2\sqrt{17}+2\sqrt{34-2\sqrt{17}}-4\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}}\\
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^17 - 1

      Irreducible polynomial factors

      The 2 factors are:

      • x - 1
      • x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1

      Roots

      The 17 roots are:

      • x1 = 1
      • x2 = cos (2*Pi/17) + I *sin(2*Pi/17) = (1/16)*(-1+17^(1/2)+(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34-2*17^(1/2)+2*(34-2*17^(1/2))^(1/2)-4*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
      • x3 = cos (4*Pi/17) + I *sin(4*Pi/17) = (1/16)*(-1+17^(1/2)-(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34-2*17^(1/2)-2*(34-2*17^(1/2))^(1/2)+4*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
      • x4 = cos (6*Pi/17) + I *sin(6*Pi/17) = (1/16)*(-1-17^(1/2)+(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34+2*17^(1/2)+2*(34+2*17^(1/2))^(1/2)-4*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
      • x5 = cos (8*Pi/17) + I *sin(8*Pi/17) = (1/16)*(-1+17^(1/2)+(34-2*17^(1/2))^(1/2)-2*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34-2*17^(1/2)+2*(34-2*17^(1/2))^(1/2)+4*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
      • x6 = cos (10*Pi/17) + I *sin(10*Pi/17) = -(1/16)*(1+17^(1/2)-(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34+2*17^(1/2)+2*(34+2*17^(1/2))^(1/2)+4*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
      • x7 = cos (12*Pi/17) + I *sin(12*Pi/17) = -(1/16)*(1+17^(1/2)+(34+2*17^(1/2))^(1/2)-2*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34+2*17^(1/2)-2*(34+2*17^(1/2))^(1/2)+4*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
      • x8 = cos (14*Pi/17) + I *sin(14*Pi/17) = -(1/16)*(1+17^(1/2)+(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34+2*17^(1/2)-2*(34+2*17^(1/2))^(1/2)-4*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
      • x9 = cos (16*Pi/17) + I *sin(16*Pi/17) = -(1/16)*(1-17^(1/2)+(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34-2*17^(1/2)-2*(34-2*17^(1/2))^(1/2)-4*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
      • x10 = cos (18*Pi/17) + I *sin(18*Pi/17) = -(1/16)*(1-17^(1/2)+(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34-2*17^(1/2)-2*(34-2*17^(1/2))^(1/2)-4*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
      • x11 = cos (20*Pi/17) + I *sin(20*Pi/17) = -(1/16)*(1+17^(1/2)+(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34+2*17^(1/2)-2*(34+2*17^(1/2))^(1/2)-4*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
      • x12 = cos (22*Pi/17) + I *sin(22*Pi/17) = -(1/16)*(1+17^(1/2)+(34+2*17^(1/2))^(1/2)-2*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34+2*17^(1/2)-2*(34+2*17^(1/2))^(1/2)+4*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
      • x13 = cos (24*Pi/17) + I *sin(24*Pi/17) = -(1/16)*(1+17^(1/2)-(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34+2*17^(1/2)+2*(34+2*17^(1/2))^(1/2)+4*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
      • x14 = cos (26*Pi/17) + I *sin(26*Pi/17) = (1/16)*(-1+17^(1/2)+(34-2*17^(1/2))^(1/2)-2*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34-2*17^(1/2)+2*(34-2*17^(1/2))^(1/2)+4*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
      • x15 = cos (28*Pi/17) + I *sin(28*Pi/17) = (1/16)*(-1-17^(1/2)+(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34+2*17^(1/2)+2*(34+2*17^(1/2))^(1/2)-4*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
      • x16 = cos (30*Pi/17) + I *sin(30*Pi/17) = (1/16)*(-1+17^(1/2)-(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34-2*17^(1/2)-2*(34-2*17^(1/2))^(1/2)+4*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
      • x17 = cos (32*Pi/17) + I *sin(32*Pi/17) = (1/16)*(-1+17^(1/2)+(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34-2*17^(1/2)+2*(34-2*17^(1/2))^(1/2)-4*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^129 + 6*x^4 + 5

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 129 roots are:

      • x1 to x129 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 31 are 2, 22, 38 and 67 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (67 > 129 ÷ 2) and less than the degree minus 2 (67 < 129 − 2))

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x19 − 24⁢x18 + 22⁢x17 + 38⁢x16 − 335⁢x15 − 244⁢x14 + 361⁢x13 − 778⁢x12 − 2642⁢x11 − 2160⁢x10 − 575⁢x9

      Irreducible polynomial factors

      The 17 factors are:

      • x − 23
      • x9
      • (x + 1)5
      • (x2 − 3⁢x + 5)2

      Roots

      The 19 roots are:

      • x1 = 23
      • x2 to x10 = 0
      • x11 to x15 = -1
      • x16 = x17 = 3212 11 i
      • x18 = x19 = 32 + 12 11 i

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^{19} - 24x^{18} + 22x^{17} + 38x^{16} - 335x^{15} - 244x^{14} + 361x^{13} - 778x^{12} - 2642x^{11} - 2160x^{10} - 575x^{9}

      Irreducible polynomial factors

      The 17 factors are:

      • \begin{array}{l}
      • \bullet\,\,x - 23\\
      • \bullet\,\,x^{9}\\
      • \bullet\,\,(x + 1)^{5}\\
      • \bullet\,\,(x^{2} - 3x + 5)^{2}\\
      • \end{array}

      Roots

      The 19 roots are:

      • \begin{array}{l}
      • \bullet\,\,x_{1} = 23\\
      • \bullet\,\,x_{2} to x_{10} = 0\\
      • \bullet\,\,x_{11} to x_{15} = -1\\
      • \bullet\,\,x_{16} = x_{17} = \frac{3}{2} - \frac{1}{2}\sqrt{11} i\\
      • \bullet\,\,x_{18} = x_{19} = \frac{3}{2} + \frac{1}{2}\sqrt{11} i\\
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      x^19 - 24*x^18 + 22*x^17 + 38*x^16 - 335*x^15 - 244*x^14 + 361*x^13 - 778*x^12 - 2642*x^11 - 2160*x^10 - 575*x^9

      Irreducible polynomial factors

      The 17 factors are:

      • x - 23
      • x^9
      • (x + 1)^5
      • (x^2 - 3*x + 5)^2

      Roots

      The 19 roots are:

      • x1 = 23
      • x2 to x10 = 0
      • x11 to x15 = -1
      • x16 = x17 = 3 / 2 - (1 / 2)*11^(1/2) *I
      • x18 = x19 = 3 / 2 + (1 / 2)*11^(1/2) *I

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      8x7 + 1

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 7 roots are:

      • x1 = 718 cosπ7 + i 718 sinπ7
      • x2 = 718 cos 3π7 + i 718 sin3π7
      • x3 = 718 cos 5π7 + i 718 sin5π7
      • x4 = 718 cosπ1 + i 718 sinπ1 = −718
      • x5 = 718 cos 9π7 + i 718 sin9π7
      • x6 = 718 cos 11π7 + i 718 sin11π7
      • x7 = 718 cos 13π7 + i 718 sin13π7

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      8x^{7} + 1

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 7 roots are:

      • \begin{array}{l}
      • \bullet\,\,x_{1} = \sqrt[7]{\frac{1}{8}} \cos{\frac{\pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{\pi }{7}}\\
      • \bullet\,\,x_{2} = \sqrt[7]{\frac{1}{8}} \cos{ \frac{3 \pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{3 \pi }{7}}\\
      • \bullet\,\,x_{3} = \sqrt[7]{\frac{1}{8}} \cos{ \frac{5 \pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{5 \pi }{7}}\\
      • \bullet\,\,x_{4} = \sqrt[7]{\frac{1}{8}} \cos{\frac{\pi }{1}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{\pi }{1}} = -\sqrt[7]{\frac{1}{8}}\\
      • \bullet\,\,x_{5} = \sqrt[7]{\frac{1}{8}} \cos{ \frac{9 \pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{9 \pi }{7}}\\
      • \bullet\,\,x_{6} = \sqrt[7]{\frac{1}{8}} \cos{ \frac{11 \pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{11 \pi }{7}}\\
      • \bullet\,\,x_{7} = \sqrt[7]{\frac{1}{8}} \cos{ \frac{13 \pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{13 \pi }{7}}\\
      • \end{array}

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      8*x^7 + 1

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

      The 7 roots are:

      • x1 = ((1 / 8))^(1/7)*cos(Pi/7) + I *((1 / 8))^(1/7) * sin(Pi/7)
      • x2 = ((1 / 8))^(1/7)*cos (3*Pi/7) + I *((1 / 8))^(1/7) * sin(3*Pi/7)
      • x3 = ((1 / 8))^(1/7)*cos (5*Pi/7) + I *((1 / 8))^(1/7) * sin(5*Pi/7)
      • x4 = ((1 / 8))^(1/7)*cos(Pi/1) + I *((1 / 8))^(1/7) * sin(Pi/1) = -((1 / 8))^(1/7)
      • x5 = ((1 / 8))^(1/7)*cos (9*Pi/7) + I *((1 / 8))^(1/7) * sin(9*Pi/7)
      • x6 = ((1 / 8))^(1/7)*cos (11*Pi/7) + I *((1 / 8))^(1/7) * sin(11*Pi/7)
      • x7 = ((1 / 8))^(1/7)*cos (13*Pi/7) + I *((1 / 8))^(1/7) * sin(13*Pi/7)

      Time elapsed:

      Written by Dario Alpern. Last updated on 10 November 2024.

      -2

      Your polynomial

      4

      Irreducible polynomial factors

      The polynomial is irreducible

      Roots

        Time elapsed:

        Written by Dario Alpern. Last updated on 10 November 2024.

        -2

        Your polynomial

        x^2 + x + 3

        Irreducible polynomial factors

        The polynomial is irreducible

        Roots

        The 2 roots are:

        • x1 = -1 / 2 - (1 / 2)*11^(1/2) *I
        • x2 = -1 / 2 + (1 / 2)*11^(1/2) *I

        Time elapsed:

        Written by Dario Alpern. Last updated on 10 November 2024.

        -2

        Your polynomial

        x + 3

        Irreducible polynomial factors

        The polynomial is irreducible

        Roots

        • x1 = -3

        Time elapsed:

        Written by Dario Alpern. Last updated on 10 November 2024.

        -2

        Your polynomial

        x^2 + 1

        Irreducible polynomial factors

        The polynomial is irreducible

        Roots

        The 2 roots are:

        • x1 = - 1 *I
        • x2 = 1 *I

        Time elapsed:

        Written by Dario Alpern. Last updated on 10 November 2024.

        -2

        Your polynomial

        1

        Irreducible polynomial factors

        The polynomial is irreducible

        Roots

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          x^4 + x^3 - x - 1

          Irreducible polynomial factors

          The 3 factors are:

          • x - 1
          • x + 1
          • x^2 + x + 1

          Roots

          The 4 roots are:

          • x1 = 1
          • x2 = -1
          • x3 = -1 / 2 - (1 / 2)*3^(1/2) *I
          • x4 = -1 / 2 + (1 / 2)*3^(1/2) *I

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          x^3

          Irreducible polynomial factors

          The 3 factors are:

          • x^3

          Roots

          The 3 roots are:

          • x1 to x3 = 0

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          x^10 + x^6

          Irreducible polynomial factors

          The 7 factors are:

          • x^6
          • x^4 + 1

          Roots

          The 10 roots are:

          • x1 to x6 = 0
          • x7 = (1 / 2)^(1/2) + (1 / 2)^(1/2)*I
          • x8 = (1 / 2)^(1/2) - (1 / 2)^(1/2)*I
          • x9 = -(1 / 2)^(1/2) + (1 / 2)^(1/2)*I
          • x10 = -(1 / 2)^(1/2) - (1 / 2)^(1/2)*I

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          Mod(1, 3)

          Irreducible polynomial factors

          The polynomial is irreducible

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          Mod(x^2 + x, 3)

          Irreducible polynomial factors

          The 2 factors are:

          • x
          • x + 1

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          Mod(x, 3)

          Irreducible polynomial factors

          The polynomial is irreducible

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          Mod(x^2 + 1, 3)

          Irreducible polynomial factors

          The polynomial is irreducible

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          Mod(1, 3)

          Irreducible polynomial factors

          The polynomial is irreducible

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          Mod(x^4 + x^3 + 2*x + 2, 3)

          Irreducible polynomial factors

          The 4 factors are:

          • x + 1
          • (x + 2)^3

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          Mod(x^3, 3)

          Irreducible polynomial factors

          The 3 factors are:

          • x^3

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          Mod(x^10 + x^6, 3)

          Irreducible polynomial factors

          The 8 factors are:

          • x^6
          • x^2 + x + 2
          • x^2 + 2*x + 2

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          Mod(x^60 + 1, 2)

          Irreducible polynomial factors

          The 20 factors are:

          • (x + 1)^4
          • (x^2 + x + 1)^4
          • (x^4 + x + 1)^4
          • (x^4 + x^3 + 1)^4
          • (x^4 + x^3 + x^2 + x + 1)^4

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          Mod(x^5 + 2*x^4 + x^3 + 3, 11)

          Irreducible polynomial factors

          The polynomial is irreducible

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          Mod(x^5 + 2*x^4 + x^3 + 3, 11)

          Irreducible polynomial factors

          The polynomial is irreducible

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          Mod(10*x^5 + 10*x^3 + 10, 11)

          Irreducible polynomial factors

          The 3 factors are:

          • 10
          • x + 7
          • x^4 + 4*x^3 + 6*x^2 + 2*x + 8

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          Mod(x^25, 11)

          Irreducible polynomial factors

          The 25 factors are:

          • x^25

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          Mod(x^15 + x^3 + x^2, 11)

          Irreducible polynomial factors

          The 5 factors are:

          • x^2
          • x + 9
          • x^4 + x^3 + 6*x + 9
          • x^8 + x^7 + 3*x^6 + 10*x^5 + 2*x^4 + 3*x^3 + 7*x^2 + 8*x + 3

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          Mod(x^5 + 1, 11)

          Irreducible polynomial factors

          The 5 factors are:

          • x + 1
          • x + 3
          • x + 4
          • x + 5
          • x + 9

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          Mod(10*x^9 + x^5 + x^3 + 1, 11)

          Irreducible polynomial factors

          The 4 factors are:

          • 10
          • x + 1
          • x + 2
          • x^7 + 8*x^6 + 7*x^5 + 7*x^4 + 8*x^3 + 6*x^2 + 9*x + 5

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          Mod(4*x^4 + 5*x^3 + 6*x^2 + 6*x + 4, 11)

          Irreducible polynomial factors

          The 3 factors are:

          • 4
          • x^2 + x + 7
          • x^2 + 3*x + 8

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          4*x^4 + 5*x^3 + 6*x^2 + 6*x + 4

          Irreducible polynomial factors

          The polynomial is irreducible

          Roots

          The 4 roots are:

          • t = acos((-21 / 23)*(6 / 23)^(1/2))
          • S = (1/2)*(-39 / 64 + (1 / 3)*(69 / 2)^(1/2)*cos(t / 3))^(1/2)
          • x1 = -5 / 16 + S + (I/2)*(4 *S^2 + 117 / 64 + 413 / (512 * S))^(1/2)
          • x2 = -5 / 16 + S - (I/2)*(4 *S^2 + 117 / 64 + 413 / (512 * S))^(1/2)
          • x3 = -5 / 16 - S + (I/2)*(4 *S^2 + 117 / 64 - 413 / (512 * S))^(1/2)
          • x4 = -5 / 16 - S - (I/2)*(4 *S^2 + 117 / 64 - 413 / (512 * S))^(1/2)

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          Mod(x^7 + x^2, 11)

          Irreducible polynomial factors

          The 7 factors are:

          • x^2
          • x + 1
          • x + 3
          • x + 4
          • x + 5
          • x + 9

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          Mod(4*x^8 + 8*x^4 + 4, 11)

          Irreducible polynomial factors

          The 5 factors are:

          • 4
          • (x^2 + 3*x + 10)^2
          • (x^2 + 8*x + 10)^2

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          Mod(2*x, 11)

          Irreducible polynomial factors

          The 2 factors are:

          • 2
          • x

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          Mod(x^2 + x + 10, 11)

          Irreducible polynomial factors

          The 2 factors are:

          • x + 4
          • x + 8

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          −x^5

          Irreducible polynomial factors

          The 6 factors are:

          • −1
          • x^5

          Roots

          The 5 roots are:

          • x1 to x5 = 0

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          x^5 + x^4 - 4*x^3 - 3*x^2 + 3*x + 1

          Irreducible polynomial factors

          The polynomial is irreducible

          Roots

          The 5 roots are:

          • x1 = -1 / 5 + (2 / 5)*11^(1/2)*(cos((1/5)*acos((-89 / 484)*11^(1/2) + (25 / 484)*55^(1/2))) + cos((1/5)*(4*Pi + acos((-89 / 484)*11^(1/2) - (25 / 484)*55^(1/2)))))
          • x2 = -1 / 5 + (2 / 5)*11^(1/2)*(cos((1/5)*(2*Pi + acos((-89 / 484)*11^(1/2) + (25 / 484)*55^(1/2)))) + cos((1/5)*acos((-89 / 484)*11^(1/2) - (25 / 484)*55^(1/2))))
          • x3 = -1 / 5 + (2 / 5)*11^(1/2)*(cos((1/5)*(4*Pi + acos((-89 / 484)*11^(1/2) + (25 / 484)*55^(1/2)))) + cos((1/5)*(6*Pi + acos((-89 / 484)*11^(1/2) - (25 / 484)*55^(1/2)))))
          • x4 = -1 / 5 + (2 / 5)*11^(1/2)*(cos((1/5)*(6*Pi + acos((-89 / 484)*11^(1/2) + (25 / 484)*55^(1/2)))) + cos((1/5)*(2*Pi + acos((-89 / 484)*11^(1/2) - (25 / 484)*55^(1/2)))))
          • x5 = -1 / 5 + (2 / 5)*11^(1/2)*(cos((1/5)*(8*Pi + acos((-89 / 484)*11^(1/2) + (25 / 484)*55^(1/2)))) + cos((1/5)*(8*Pi + acos((-89 / 484)*11^(1/2) - (25 / 484)*55^(1/2)))))

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          423 6836605*x^4 + 323 2968453*x^3 + 53 6741668*x^2 + 3 7982461*x + 1709169

          Irreducible polynomial factors

          The 2 factors are:

          • 61415x^2 + 4334*x + 343
          • 68987x^2 + 47773*x + 4983

          Roots

          The 4 roots are:

          • x1 = -2167 / 61415 - (4 / 61415)*1023091^(1/2) *I
          • x2 = -2167 / 61415 + (4 / 61415)*1023091^(1/2) *I
          • x3 = -47773 / 137974 - (1 / 137974)*90 7210645^(1/2)
          • x4 = -47773 / 137974 + (1 / 137974)*90 7210645^(1/2)

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          25716 2225748 9453541*x^4 + 5339 6315345 9320416*x^3 + 16134 3373525 6062469*x^2 + 2053 2826762 2151128*x + 1478 5481680 9063573

          Irreducible polynomial factors

          The 2 factors are:

          • 67 8585781x^2 + 4 3213515*x + 34 2143153
          • 378 9678961x^2 + 54 5543121*x + 43 2143141

          Roots

          The 4 roots are:

          • x1 = -4 3213515 / 135 7171562 - (1 / 135 7171562)*9268 2650689 0574747^(1/2) *I
          • x2 = -4 3213515 / 135 7171562 + (1 / 135 7171562)*9268 2650689 0574747^(1/2) *I
          • x3 = -54 5543121 / 757 9357922 - (1 / 757 9357922)*62531 1778148 2205363^(1/2) *I
          • x4 = -54 5543121 / 757 9357922 + (1 / 757 9357922)*62531 1778148 2205363^(1/2) *I

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          45876 4056192 7400868 2906871x^{4} + 29158 6367947 3120381 2844366x^{3} + 2934 8677804 6745747 3595759x^{2} + 1495272 0835562 2151128x + 148600 1039580 9063573

          Irreducible polynomial factors

          The 2 factors are:

          • \begin{array}{l}
          • \bullet\,\,67896 7896891x^{2} + 43154 5543121x + 4343 2143141\\
          • \bullet\,\,6756785 6785781x^{2} + 4 3213515x + 34 2143153\\
          • \end{array}

          Roots

          The 4 roots are:

          • \begin{array}{l}
          • \bullet\,\,x_{1} = \frac{-43154 5543121}{135793 5793782} - \frac{1}{135793 5793782}\sqrt{68 2754322 4394430 6922117}\\
          • \bullet\,\,x_{2} = \frac{-43154 5543121}{135793 5793782} + \frac{1}{135793 5793782}\sqrt{68 2754322 4394430 6922117}\\
          • \bullet\,\,x_{3} = \frac{-4 3213515}{1 3513571 3571562} - \frac{1}{1 3513571 3571562}\sqrt{92 4715163 8115034 8974747} i\\
          • \bullet\,\,x_{4} = \frac{-4 3213515}{1 3513571 3571562} + \frac{1}{1 3513571 3571562}\sqrt{92 4715163 8115034 8974747} i\\
          • \end{array}

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          x^4 - 1

          Irreducible polynomial factors

          The 3 factors are:

          • x - 1
          • x + 1
          • x^2 + 1

          Roots

          The 4 roots are:

          • x1 = 1
          • x2 = -1
          • x3 = - 1 *I
          • x4 = 1 *I

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          Mod(x^4 + 6, 7)

          Irreducible polynomial factors

          The 3 factors are:

          • x + 1
          • x + 6
          • x^2 + 1

          Time elapsed:

          Written by Dario Alpern. Last updated on 10 November 2024.

          -2

          Your polynomial

          0

          Irreducible polynomial factors

          The polynomial is irreducible

          Roots

            Time elapsed:

            Written by Dario Alpern. Last updated on 10 November 2024.

            -2

            Your polynomial

            Mod(0, 7)

            Irreducible polynomial factors

            Leading coefficient multiple of prime

            Written by Dario Alpern. Last updated on 10 November 2024.

            -2

            Your polynomial

            x7 + 1 (mod 7)

            Irreducible polynomial factors

            The 7 factors are:

            • (x + 1)7

            Time elapsed:

            Written by Dario Alpern. Last updated on 10 November 2024.

            -2

            Your polynomial

            x^{7} + 1 (\pmod 7)

            Irreducible polynomial factors

            The 7 factors are:

            • \begin{array}{l}
            • \bullet\,\,(x + 1)^{7}\\
            • \end{array}

            Time elapsed:

            Written by Dario Alpern. Last updated on 10 November 2024.

            -2

            Your polynomial

            Mod(x^7 + 1, 7)

            Irreducible polynomial factors

            The 7 factors are:

            • (x + 1)^7

            Time elapsed:

            Written by Dario Alpern. Last updated on 10 November 2024.

            -2

            Your polynomial

            Mod(x^39 + 5585 4586408 3284006, 7^21)

            Irreducible polynomial factors

            The 6 factors are:

            • x + 1019 3584357 3231762
            • x + 4566 1002051 0052246
            • x + 5585 4586408 3284006
            • x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
            • x^12 + 1019 3584357 3231761*x^11 + 4566 1002051 0052245*x^10 + x^9 + 1019 3584357 3231761*x^8 + 4566 1002051 0052245*x^7 + x^6 + 1019 3584357 3231761*x^5 + 4566 1002051 0052245*x^4 + x^3 + 1019 3584357 3231761*x^2 + 4566 1002051 0052245*x + 1
            • x^12 + 4566 1002051 0052245*x^11 + 1019 3584357 3231761*x^10 + x^9 + 4566 1002051 0052245*x^8 + 1019 3584357 3231761*x^7 + x^6 + 4566 1002051 0052245*x^5 + 1019 3584357 3231761*x^4 + x^3 + 4566 1002051 0052245*x^2 + 1019 3584357 3231761*x + 1

            Time elapsed:

            Written by Dario Alpern. Last updated on 10 November 2024.

            -2

            Your polynomial

            Mod(x^39, 7^21)

            Irreducible polynomial factors

            Cannot lift because of duplicate factors modulo prime

            Written by Dario Alpern. Last updated on 10 November 2024.

            -2

            Your polynomial

            x4 + 100000 0000000 0000032⁢x3 + 99999 9999999 9999054⁢x2 + 2797⁢x + 99999 9999999 9998809 (mod 100000 0000000 0000051)

            Irreducible polynomial factors

            The 4 factors are:

            • x + 9624 0908064 2195803
            • x + 42561 5726276 4689743
            • x + 57438 4273723 5310331
            • x + 90375 9091935 7804206

            Time elapsed:

            Written by Dario Alpern. Last updated on 10 November 2024.

            -2

            Your polynomial

            x^{4} + 100000 0000000 0000032x^{3} + 99999 9999999 9999054x^{2} + 2797x + 99999 9999999 9998809 (\pmod 100000 0000000 0000051)

            Irreducible polynomial factors

            The 4 factors are:

            • \begin{array}{l}
            • \bullet\,\,x + 9624 0908064 2195803\\
            • \bullet\,\,x + 42561 5726276 4689743\\
            • \bullet\,\,x + 57438 4273723 5310331\\
            • \bullet\,\,x + 90375 9091935 7804206\\
            • \end{array}

            Time elapsed:

            Written by Dario Alpern. Last updated on 10 November 2024.

            -2

            Your polynomial

            Mod(x^4 + 100000 0000000 0000032*x^3 + 99999 9999999 9999054*x^2 + 2797*x + 99999 9999999 9998809, 100000 0000000 0000051)

            Irreducible polynomial factors

            The 4 factors are:

            • x + 9624 0908064 2195803
            • x + 42561 5726276 4689743
            • x + 57438 4273723 5310331
            • x + 90375 9091935 7804206

            Time elapsed:

            Written by Dario Alpern. Last updated on 10 November 2024.

            -2

            Only integer numbers are accepted

            Written by Dario Alpern. Last updated on 10 November 2024.

            -2

            Only integer numbers are accepted

            Written by Dario Alpern. Last updated on 10 November 2024.

            -2

            Only integer numbers are accepted

            Written by Dario Alpern. Last updated on 10 November 2024.

            -2

            Your polynomial fraction

            ( −x^3 + 3*x^2 + x - 1) / (x^3 - x)

            Irreducible numerator factors

            The 2 factors are:

            • −1
            • x^3 - 3*x^2 - x + 1

            Roots

            The 3 roots are:

            • t = (1/3) * acos((3 / 8)*3^(1/2))
            • x1 = 1 + 4*(1 / 3)^(1/2)* cos(t)
            • x2 = 1 + 4*(1 / 3)^(1/2)* cos(t + 2 * Pi / 3)
            • x3 = 1 + 4*(1 / 3)^(1/2)* cos(t + 4 * Pi / 3)

            Time elapsed:

            Written by Dario Alpern. Last updated on 10 November 2024.

            -2

            Your polynomial fraction

            (Mod(6*x^3 + 3*x^2 + x + 6, 7)) / (Mod(x^3 + 6*x, 7))

            Irreducible numerator factors

            The 2 factors are:

            • 6
            • x^3 + 4*x^2 + 6*x + 1

            Time elapsed:

            Written by Dario Alpern. Last updated on 10 November 2024.

            -2

            Your polynomial

            x^4 + 1

            Irreducible polynomial factors

            The polynomial is irreducible

            Roots

            The 4 roots are:

            • x1 = (1 / 2)^(1/2) + (1 / 2)^(1/2)*I
            • x2 = (1 / 2)^(1/2) - (1 / 2)^(1/2)*I
            • x3 = -(1 / 2)^(1/2) + (1 / 2)^(1/2)*I
            • x4 = -(1 / 2)^(1/2) - (1 / 2)^(1/2)*I

            Time elapsed:

            Written by Dario Alpern. Last updated on 10 November 2024.

            -2

            Your polynomial

            Mod(x^4 + 1, 7)

            Irreducible polynomial factors

            The 2 factors are:

            • x^2 + 3*x + 1
            • x^2 + 4*x + 1

            Time elapsed:

            Written by Dario Alpern. Last updated on 10 November 2024.

            -2

            Your polynomial fraction

            (4*x - 48) / (3)

            Irreducible numerator factors

            The 2 factors are:

            • 4
            • x - 12

            Roots

            • x1 = 12

            Time elapsed:

            Written by Dario Alpern. Last updated on 10 November 2024.

            -2

            Your polynomial

            0

            Irreducible polynomial factors

            The polynomial is irreducible

            Roots

              Time elapsed:

              Written by Dario Alpern. Last updated on 10 November 2024.

              -2

              Your polynomial

              2*x^3 + 6*x

              Irreducible polynomial factors

              The 3 factors are:

              • 2
              • x
              • x^2 + 3

              Roots

              The 3 roots are:

              • x1 = 0
              • x2 = - 3^(1/2) *I
              • x3 = 3^(1/2) *I

              Time elapsed:

              Written by Dario Alpern. Last updated on 10 November 2024.

              -2

              Your polynomial

              0

              Irreducible polynomial factors

              The polynomial is irreducible

              Roots

                Time elapsed:

                Written by Dario Alpern. Last updated on 10 November 2024.

                -2

                Your polynomial fraction

                (x^3 + 9*x^2 + 39*x + 111) / (4)

                Irreducible numerator factors

                The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                Roots

                The 3 roots are:

                • r = (-24 + 8*10^(1/2))^(1/3)
                • s = -(24 + 8*10^(1/2))^(1/3)
                • x1 = -3 + r + s
                • x2 = -3 - (r + s) / 2 + (I/2) * (r - s) * 3^(1/2)
                • x3 = -3 - (r + s) / 2 - (I/2) * (r - s) * 3^(1/2)

                Time elapsed:

                Written by Dario Alpern. Last updated on 10 November 2024.

                -2

                Your polynomial

                0

                Irreducible polynomial factors

                The polynomial is irreducible

                Roots

                  Time elapsed:

                  Written by Dario Alpern. Last updated on 10 November 2024.

                  -2

                  Division by zero

                  Written by Dario Alpern. Last updated on 10 November 2024.

                  -2

                  Division by zero

                  Written by Dario Alpern. Last updated on 10 November 2024.

                  -2

                  Your polynomial

                  1

                  Irreducible polynomial factors

                  The polynomial is irreducible

                  Roots

                    Time elapsed:

                    Written by Dario Alpern. Last updated on 10 November 2024.

                    -2

                    Your polynomial fraction

                    (1) / (x^3 - 3*x^2 + 3*x - 1)

                    Irreducible numerator factors

                    The polynomial is irreducible

                    Roots

                      Time elapsed:

                      Written by Dario Alpern. Last updated on 10 November 2024.

                      -2

                      Denominator must be constant

                      Written by Dario Alpern. Last updated on 10 November 2024.

                      -2

                      Your polynomial fraction

                      (1) / (x^3)

                      Irreducible numerator factors

                      The polynomial is irreducible

                      Roots

                        Time elapsed:

                        Written by Dario Alpern. Last updated on 10 November 2024.

                        -2

                        Your polynomial fraction

                        (1) / (x^3 + 6*x^2 + 12*x + 8)

                        Irreducible numerator factors

                        The polynomial is irreducible

                        Roots

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 10 November 2024.

                          -2

                          Your polynomial fraction

                          (x^3 + 6*x^2 + 12*x + 8) / (x^2)

                          Irreducible numerator factors

                          The 3 factors are:

                          • (x + 2)^3

                          Roots

                          The 3 roots are:

                          • x1 to x3 = -2

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 10 November 2024.

                          -2

                          Your polynomial

                          Mod(x^3 + 100000 0000000 0000050*x^2 + 100000 0000000 0000050*x + 1, 100000 0000000 0000051)

                          Irreducible polynomial factors

                          The 3 factors are:

                          • x + 1
                          • (x + 100000 0000000 0000050)^2

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 10 November 2024.

                          -2

                          Your polynomial

                          x + 6

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          • The equation to solve is:

                            x + 6 = 0

                            x1 = -6

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 10 November 2024.

                          -2

                          Your polynomial

                          5x + 6

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          • The equation to solve is:

                            5x + 6 = 0

                            Dividing the equation by the linear coefficient:

                            x + 65 = 0

                            x1 = -65

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 10 November 2024.

                          -2

                          Your polynomial

                          x2 + 6

                          Irreducible polynomial factors

                          The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                          Roots

                          The 2 roots are:

                          • The equation to solve is:

                            x2 + 6 = 0

                            x = ±(-6)

                            x1 = − 6 i

                            x2 = 6 i

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 10 November 2024.

                          -2

                          Your polynomial

                          x2 + 9

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 2 roots are:

                          • The equation to solve is:

                            x2 + 9 = 0

                            x = ±3 (-1)

                            x1 = − 3 i

                            x2 = 3 i

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 10 November 2024.

                          -2

                          Your polynomial

                          x2 − 9

                          Irreducible polynomial factors

                          The 2 factors are:

                          • x − 3
                          • x + 3

                          Roots

                          The 2 roots are:

                          • The equation to solve is:

                            x − 3 = 0

                            x1 = 3

                          • The equation to solve is:

                            x + 3 = 0

                            x2 = -3

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 10 November 2024.

                          -2

                          Your polynomial

                          x2 − 7⁢x + 9

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 2 roots are:

                          • The equation to solve is:

                            x2 − 7x + 9 = 0

                            To eliminate the linear term, we will perform the following substitution:

                            x = y + 72

                            The constant value in the substitution equals half of the linear coefficient.

                            y + 722 − 7y + 72 + 9 = 0

                            Expanding brackets:

                            y2 + 7y + 494 − 7y492 + 9 = 0

                            Simplifying:

                            y2134 = 0

                            y = ±12 13

                            x72 = ±12 13

                            x1 = 7212 13

                            x2 = 72 + 12 13

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 10 November 2024.

                          -2

                          Your polynomial

                          x3 − 9

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 3 roots are:

                          • The equation to solve is:

                            x3 − 9 = 0

                            The solutions are the real cube root of 9 and the multiplication by both non-real cube roots of 1:

                            e = − 12 + i23, f = − 12i23

                            x1 = 9

                            x2 = − 12 9 + i23 9

                            x3 = − 12 9i23 9

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 10 November 2024.

                          -2

                          Your polynomial

                          x3 − 23⁢x − 9

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 3 roots are:

                          • The equation to solve is:

                            x3 − 23x − 9 = 0

                            The nature of the roots depends on the value of the discriminant.

                            Δ = − 4p3 − 27q2

                            where p is the linear coefficient and q is the constant term.

                            Δ = −4-233 − 27-92 = 46481

                            The discriminant is positive, which implies that all three roots are real. In this case the roots cannot be represented by radical expressions of real numbers, so we must use trigonometry.

                            Starting with the formula of the triple angle:

                            4cos t3 − 3cos tcos3t = 0

                            Let x = u cos t. From the previous equation to the definition of the discriminant:

                            u3cos t3 − 23u cos t − 9 = 0

                            We will equate the terms of both equations from left to right. Dividing by u3 / 4:

                            4cos t392u2cos t36u3 = 0

                            The second coefficient must equal −3, so:

                            u = 2 233

                            Equating the last term:

                            cos3t = 36u3 = 2746 323

                          • t = 13arc cos2746 323

                            x1 = 2 233 cos(t)

                            x2 = 2 233 cost + 2π3

                            x3 = 2 233 cost + 4π3

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 10 November 2024.

                          -2

                          Your polynomial

                          x3 + 12⁢x2 + 23⁢x − 9

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 3 roots are:

                          • The equation to solve is:

                            x3 + 12x2 + 23x − 9 = 0

                            To eliminate the quadratic term, we will perform the following substitution:

                            x = y − 4

                            The constant value in the substitution equals a third of the quadratic coefficient.

                            y − 43 + 12y − 42 + 23y − 4 − 9 = 0

                            Expanding brackets:

                            y3 − 12y2 + 48y − 64 + 12y2 − 96y + 192 + 23y − 92 − 9 = 0

                            Simplifying:

                            y3 − 25y + 27 = 0

                            The nature of the roots depends on the value of the discriminant.

                            Δ = − 4p3 − 27q2

                            where p is the linear coefficient and q is the constant term.

                            Δ = −4-253 − 27272 = 42817

                            The discriminant is positive, which implies that all three roots are real. In this case the roots cannot be represented by radical expressions of real numbers, so we must use trigonometry.

                            Starting with the formula of the triple angle:

                            4cos t3 − 3cos tcos3t = 0

                            Let y = u cos t. From the previous equation to the definition of the discriminant:

                            u3cos t3 − 25u cos t + 27 = 0

                            We will equate the terms of both equations from left to right. Dividing by u3 / 4:

                            4cos t3100u2cos t + 108u3 = 0

                            The second coefficient must equal −3, so:

                            u = 10 13

                            Equating the last term:

                            cos3t = − 108u3 = -81250 3

                          • t = 13arc cos-81250 3

                            x1 = -4 + 10 13 cos(t)

                            x2 = -4 + 10 13 cost + 2π3

                            x3 = -4 + 10 13 cost + 4π3

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 10 November 2024.

                          -2

                          Your polynomial

                          x3x − 9

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 3 roots are:

                          • The equation to solve is:

                            x3x − 9 = 0

                            The nature of the roots depends on the value of the discriminant.

                            Δ = − 4p3 − 27q2

                            where p is the linear coefficient and q is the constant term.

                            Δ = −4-13 − 27-92 = -2183

                            The discriminant is negative, so there is a real root and two complex conjugate roots.

                            Using Cardano's method, setting x = r + s:

                            r + s3r + s − 9 = 0

                            r3 + 3r2s + 3rs2 + s3r + s − 9 = 0

                            r3 + s3 + 3rsr + sr + s − 9 = 0

                            r3 + s3 + 3rs − 1r + s − 9 = 0    (1)

                            Since there is an extra variable, we can impose an additional condition. In our case it is:

                            3rs − 1 = 0    (2)

                            rs = 13    (3)

                            r3s3 = 127    (4)

                            From (1) and (2):

                            r3 + s3 − 9 = 0    (5)

                            Multiplying by r3:

                            r6 + r3s3 − 9r3 = 0

                            From (4):

                            r6 + 127 − 9r3 = 0

                            r6 − 9r3 + 127 = 0

                            This is a quadratic equation in r3. If we multiplied (5) by s3 instead of r3, the equation coefficients would be the same, so the quadratic equation can also give us the value of s3. Let w = r3 or s3.

                            w2 − 9w + 127 = 0

                            To eliminate the linear term, we will perform the following substitution:

                            w = z + 92

                            The constant value in the substitution equals half of the linear coefficient.

                            z + 922 − 9z + 92 + 127 = 0

                            Expanding brackets:

                            z2 + 9z + 814 − 9z812 + 127 = 0

                            Simplifying:

                            z22183108 = 0

                            z = ±16 21833

                            w92 = ±16 21833

                            r = 92 + 16 21833

                            s = 9216 21833

                            A cubic root has three solutions in the complex field. But we cannot select any value for r and s because the condition (3) must be true. So their product must be a real number.

                            Let r1 = r, r2 = re, r3 = rf, s1 = s, s2 = se, s3 = sf, where

                            e = − 12 + i23, f = − 12i23

                            are the non-real cubic roots of 1. Since ef is real, but e2 and f2 are not, the values of x that follow the condition (3) are:

                            x1 = r1 + s1 = r + s

                            x2 = r2 + s3 = r 12 + i23 + s 12i23

                            x3 = r3 + s2 = r 12i23 + s 12 + i23

                            x1 = r + s

                            x2 = −r + s2 + i rs23

                            x3 = −r + s2 − i rs23

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 10 November 2024.

                          -2

                          Your polynomial

                          x3 + x2 − 9

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 3 roots are:

                          • The equation to solve is:

                            x3 + x2 − 9 = 0

                            To eliminate the quadratic term, we will perform the following substitution:

                            x = y13

                            The constant value in the substitution equals a third of the quadratic coefficient.

                            y133 + y132 − 9 = 0

                            Expanding brackets:

                            y3y2 + 13y127 + y223y + 19 − 9 = 0

                            Simplifying:

                            y313y24127 = 0

                            The nature of the roots depends on the value of the discriminant.

                            Δ = − 4p3 − 27q2

                            where p is the linear coefficient and q is the constant term.

                            Δ = −4-133 − 27-241272 = -2151

                            The discriminant is negative, so there is a real root and two complex conjugate roots.

                            Using Cardano's method, setting y = r + s:

                            r + s313r + s24127 = 0

                            r3 + 3r2s + 3rs2 + s313r + s24127 = 0

                            r3 + s3 + 3rsr + s13r + s24127 = 0

                            r3 + s3 + 3rs13r + s24127 = 0    (1)

                            Since there is an extra variable, we can impose an additional condition. In our case it is:

                            3rs13 = 0    (2)

                            rs = 19    (3)

                            r3s3 = 1729    (4)

                            From (1) and (2):

                            r3 + s324127 = 0    (5)

                            Multiplying by r3:

                            r6 + r3s324127r3 = 0

                            From (4):

                            r6 + 172924127r3 = 0

                            r624127r3 + 1729 = 0

                            This is a quadratic equation in r3. If we multiplied (5) by s3 instead of r3, the equation coefficients would be the same, so the quadratic equation can also give us the value of s3. Let w = r3 or s3.

                            w224127w + 1729 = 0

                            To eliminate the linear term, we will perform the following substitution:

                            w = z + 24154

                            The constant value in the substitution equals half of the linear coefficient.

                            z + 24154224127z + 24154 + 1729 = 0

                            Expanding brackets:

                            z2 + 24127z + 58081291624127z580811458 + 1729 = 0

                            Simplifying:

                            z223912 = 0

                            z = ±12 2393

                            w24154 = ±12 2393

                            r = 24154 + 12 2393

                            s = 2415412 2393

                            A cubic root has three solutions in the complex field. But we cannot select any value for r and s because the condition (3) must be true. So their product must be a real number.

                            Let r1 = r, r2 = re, r3 = rf, s1 = s, s2 = se, s3 = sf, where

                            e = − 12 + i23, f = − 12i23

                            are the non-real cubic roots of 1. Since ef is real, but e2 and f2 are not, the values of y that follow the condition (3) are:

                            y1 = x1 + 13 = r1 + s1 = r + s

                            y2 = x2 + 13 = r2 + s3 = r 12 + i23 + s 12i23

                            y3 = x3 + 13 = r3 + s2 = r 12i23 + s 12 + i23

                            x1 = -13 + r + s

                            x2 = -13r + s2 + i rs23

                            x3 = -13r + s2 − i rs23

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 10 November 2024.

                          -2

                          Your polynomial

                          x20 + 13⁢x + 6 (mod 811)

                          Irreducible polynomial factors

                          Dividing the polynomial by the leading coefficient:

                          f(x) ≡ x20 + 13⁢x + 6

                          Squarefree factorization

                          The derivative of f(x) is:

                          f '(x) ≡ x19 + 13

                          c0(x) = gcd(f(x), f '(x) ≡ 1

                          w0(x) = f(x)/c0(x) ≡ x20 + 13⁢x + 6

                          w1(x) = gcd(w0, c0) ≡ 1

                          z1(x) = w0(x) / w1(x) ≡ x20 + 13⁢x + 6 is a factor of f(x) with multiplicity 1

                          c1(x) = c0(x) / w1(x) ≡ 1

                          Distinct degree factorization

                          • Factoring f(x) ≡ x20 + 13⁢x + 6

                            For all degrees d between 1 and 10, the product of all factors of degree d is found by computing gcd(f(x), x811^dx)

                            gcd(f(x), x811^2x) ≡ x2 + 234⁢x + 416

                            This polynomial has 1 irreducible factor of degree 2

                            The new value of f(x) is the quotient between f(x) and the previous gcd.

                            For all degrees d between 3 and 9, the product of all factors of degree d is found by computing gcd(f(x), x811^dx)

                            gcd(f(x), x811^7x) ≡ x7 + 696⁢x6 + 693⁢x5 + 164⁢x4 + 43⁢x3 + 586⁢x2 + 355⁢x + 568

                            This polynomial has 1 irreducible factor of degree 7

                            The new value of f(x) is the quotient between f(x) and the previous gcd.

                            f(x) ≡ x11 + 692⁢x10 + 223⁢x9 + 218⁢x8 + 370⁢x7 + 209⁢x6 + 248⁢x5 + 217⁢x4 + 573⁢x3 + 611⁢x2 + 343⁢x + 195

                            This polynomial is irreducible.

                          Equal degree factorization

                          List of factors

                          The 3 factors are:

                          • x2 + 234⁢x + 416
                          • x7 + 696⁢x6 + 693⁢x5 + 164⁢x4 + 43⁢x3 + 586⁢x2 + 355⁢x + 568
                          • x11 + 692⁢x10 + 223⁢x9 + 218⁢x8 + 370⁢x7 + 209⁢x6 + 248⁢x5 + 217⁢x4 + 573⁢x3 + 611⁢x2 + 343⁢x + 195

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 10 November 2024.

                          -2

                          Your polynomial

                          x20 + x (mod 2)

                          Irreducible polynomial factors

                          Dividing the polynomial by the leading coefficient:

                          f(x) ≡ x20 + x

                          Squarefree factorization

                          The derivative of f(x) is:

                          f '(x) ≡ 1

                          c0(x) = gcd(f(x), f '(x) ≡ 1

                          w0(x) = f(x)/c0(x) ≡ x20 + x

                          w1(x) = gcd(w0, c0) ≡ 1

                          z1(x) = w0(x) / w1(x) ≡ x20 + x is a factor of f(x) with multiplicity 1

                          c1(x) = c0(x) / w1(x) ≡ 1

                          Distinct degree factorization

                          • Factoring f(x) ≡ x20 + x

                            For all degrees d between 1 and 10, the product of all factors of degree d is found by computing gcd(f(x), x2^dx)

                            gcd(f(x), x2^1x) ≡ x2 + x

                            This polynomial has 2 irreducible factors of degree 1

                            The new value of f(x) is the quotient between f(x) and the previous gcd.

                            For all degrees d between 2 and 9, the product of all factors of degree d is found by computing gcd(f(x), x2^dx)

                            f(x) ≡ x18 + x17 + x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1

                            This polynomial is irreducible.

                          Equal degree factorization

                          • Factoring in polynomials of degree 1 f(x) ≡ x2 + x

                            Choosing h(x) at random, let g = h + h2 (mod f), then compute gcd(g, f) until the gcd is not equal to one of its arguments.

                            r ≡ gcd(g, f) ≡ x + 1

                            f / rx

                          List of factors

                          The 3 factors are:

                          • x
                          • x + 1
                          • x18 + x17 + x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 10 November 2024.

                          -2

                          Your polynomial

                          Mod(x^3 + 100000 0000000 0000050*x^2 + 100000 0000000 0000050*x + 1, 100000 0000000 0000051)

                          Irreducible polynomial factors

                          Dividing the polynomial by the leading coefficient:

                          f(x) = Mod(x^3 + 100000 0000000 0000050*x^2 + 100000 0000000 0000050*x + 1, 100000 0000000 0000051)

                          Squarefree factorization

                          The derivative of f(x) is:

                          deriv(f(x)) = Mod(x^2 + 100000 0000000 0000049*x + 100000 0000000 0000050, 100000 0000000 0000051)

                          c0(x) = gcd(f(x), deriv(f(x)) = Mod(x + 100000 0000000 0000050, 100000 0000000 0000051)

                          w0(x) = f(x)/c0(x) = Mod(x^2 + 100000 0000000 0000050, 100000 0000000 0000051)

                          w1(x) = gcd(w0, c0) = Mod(x + 100000 0000000 0000050, 100000 0000000 0000051)

                          z1(x) = w0(x) / w1(x) = Mod(x + 1, 100000 0000000 0000051) is a factor of f(x) with multiplicity 1

                          c1(x) = c0(x) / w1(x) = Mod(1, 100000 0000000 0000051)

                          w2(x) = gcd(w1, c1) = Mod(1, 100000 0000000 0000051)

                          z2(x) = w1(x) / w2(x) = Mod(x + 100000 0000000 0000050, 100000 0000000 0000051) is a factor of f(x) with multiplicity 2

                          c2(x) = c1(x) / w2(x) = Mod(1, 100000 0000000 0000051)

                          Distinct degree factorization

                          Equal degree factorization

                          List of factors

                          The 3 factors are:

                          • x + 1
                          • (x + 100000 0000000 0000050)^2

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 10 November 2024.

                          -2

                          Your polynomial

                          Mod(7*x^3 + 2*x^2 + x + 56, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151^4)

                          Irreducible polynomial factors

                          Dividing the polynomial by the leading coefficient:

                          f(x) = Mod(x^3 + 2 8571428 5714285 7142857 1428571 4285714 2857142 8571472*x^2 + 1 4285714 2857142 8571428 5714285 7142857 1428571 4285736*x + 8, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                          Squarefree factorization

                          The derivative of f(x) is:

                          deriv(f(x)) = Mod(x^2 + 5 7142857 1428571 4285714 2857142 8571428 5714285 7142944*x + 1 4285714 2857142 8571428 5714285 7142857 1428571 4285736, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                          c0(x) = gcd(f(x), deriv(f(x)) = Mod(1, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                          w0(x) = f(x)/c0(x) = Mod(x^3 + 2 8571428 5714285 7142857 1428571 4285714 2857142 8571472*x^2 + 1 4285714 2857142 8571428 5714285 7142857 1428571 4285736*x + 8, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                          w1(x) = gcd(w0, c0) = Mod(1, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                          z1(x) = w0(x) / w1(x) = Mod(x^3 + 2 8571428 5714285 7142857 1428571 4285714 2857142 8571472*x^2 + 1 4285714 2857142 8571428 5714285 7142857 1428571 4285736*x + 8, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits)) is a factor of f(x) with multiplicity 1

                          c1(x) = c0(x) / w1(x) = Mod(1, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                          Distinct degree factorization

                          • Factoring f(x) = Mod(x^3 + 2 8571428 5714285 7142857 1428571 4285714 2857142 8571472*x^2 + 1 4285714 2857142 8571428 5714285 7142857 1428571 4285736*x + 8, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                            For all degrees d between 1 and 1, the product of all factors of degree d is found by computing gcd(f(x), x^10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits)^d - x)

                            gcd(f(x), x^10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits)^1 - x) = Mod(x + 2 4639512 5724756 3725390 7115163 5734626 8558610 1091198, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                            This polynomial has 1 irreducible factor of degree 1

                            The new value of f(x) is the quotient between f(x) and the previous gcd.

                            f(x) = Mod(x^2 + 3931915 9989529 3417466 4313407 8551087 4298532 7480274*x + 1 6428539 4662860 0860598 5329237 2966977 1971158 4894547, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                            This polynomial is irreducible.

                          Equal degree factorization

                          Hensel Lifting

                          f_1 = x^3 + 71 4285714 2857142 8571428 5714285 7142857 1428571 4287871 4285714 2857142 8571428 5714285 7142857 1428571 4302001*x^2 + 85 7142857 1428571 4285714 2857142 8571428 5714285 7145445 7142857 1428571 4285714 2857142 8571428 5714285 7162401*x + 8

                          f_{1, 1} = x^2 + 3931915 9989529 3417466 4313407 8551087 4298532 7480274*x + 1 6428539 4662860 0860598 5329237 2966977 1971158 4894547

                          f_{1, 2} = x + 2 4639512 5724756 3725390 7115163 5734626 8558610 1091198

                          Using the extended GCD algorithm, compute a_{1, 1}, ..., a_{1, n} such that

                          1 = (f_1(x)/f_{1, 1}(x)) * a_{1, 1}(x) + ... + (f_1(x)/f_{1, n}(x)) * a_{1, n}(x))

                          a_{1, 1} = + 1 3160115 3952276 4136291 8973667 2921447 2630406 2610884

                          a_{1, 2} =

                          u_1 = (1/p) * (f_1 - f_{1, 1} * f_{1, 2}) = + 7 1428571 4285714 2857142 8571428 5714285 7142857 1428679*x^2 + 8 4745480 7773845 2502410 1633522 2430285 1096333 8094302*x + 9 5952087 9527303 3695407 6753452 9915050 3820522 8742553

                          g_{1, 1} = u_1 * a_{1, 1} % f_{1, 1} = + 9 7373350 6874596 0399726 4235975 0759708 1270891 3729036*x + 2 4611772 2225230 1896976 6830857 0357003 0410851 5324877

                          f_{2, 1} = f_{1, 1} + p * g_{1, 1} = x^2 + 97 3733506 8745960 3997264 2359750 7597081 2708913 7291830 7307869 8053531 3776156 3945644 3267014 6203130 0564710*x + 24 6117722 2252301 8969766 8308570 3570030 4108515 3249143 2806145 0672618 7304077 6788649 6874436 4009739 8950974

                          g_{1, 2} = u_1 * a_{1, 2} % f_{1, 2} = + 7 4055220 7411118 2457416 4335453 4954577 5871965 7699794

                          f_{2, 2} = f_{1, 2} + p * g_{1, 2} = x + 74 0552207 4111182 4574164 3354534 9545775 8719657 6999060 6977844 4803611 4795272 1768641 3875842 5225441 3760092

                          v_1 = (1/p) * ((f_1(x)/f_{1, 1}(x)) * a_{1, 1}(x) + ... + (f_1(x)/f_{1, n}(x)) * a_{1, n}(x) - 1) = + x^2 + 7 2591960 6371318 1098876 2648409 4136731 6847824 8559775*x + 4 8470656 1970748 7944160 2649766 2460491 4177829 6593542

                          h_{1, 1} = v_1 * a_{1, 1} % f_{1, 1} = + 7 2591960 6371318 1098876 2648409 4136731 6847824 8559775*x + 4 8470656 1970748 7944160 2649766 2460491 4177829 6593542

                          a_{2, 1} = a_{1, 1} + p * g_{1, 1} = + 61 7046863 4366132 2126652 7212394 4067403 2519287 4480579 2232365 5718149 5108656 7650933 1413870 6012441 8539403*x + 77 3115030 1539214 0634022 0647783 1462531 7160295 8984538 7197070 7194408 7710025 0755192 8005676 1750874 3259771

                          h_{1, 2} = v_1 * a_{1, 2} % f_{1, 2} = + 4 8470656 1970748 7944160 2649766 2460491 4177829 6593542

                          a_{2, 2} = a_{1, 2} + p * g_{1, 2} = + 38 2953136 5633867 7873347 2787605 5932596 7480712 5522440 7767634 4281850 4891343 2349066 8586129 3987558 1483398

                          f_2 = x^3 + 7142 8571428 5714285 7142857 1428571 4285714 2857142 9002857 1428571 4285714 2857142 8571428 5714285 7142858 1200428 5714285 7142857 1428571 4285714 2857142 8571438 4084314 2857142 8571428 5714285 7142857 1428571 4285751 4204001*x^2 + 8571 4285714 2857142 8571428 5714285 7142857 1428571 4803428 5714285 7142857 1428571 4285714 2857142 8571429 7440514 2857142 8571428 5714285 7142857 1428571 4285726 0901177 1428571 4285714 2857142 8571428 5714285 7142901 7044801*x + 8

                          u_2 = (1/p^2) * (f_2 - f_{2, 1} * f_{2, 2}) = + 71 4285714 2857142 8571428 5714285 7142857 1428571 4287871 4285714 2857142 8571428 5714285 7142857 1428571 4301999*x^2 + 13 6042359 1967057 6205579 9994508 6808347 9053254 4734988 9119472 9767081 1922625 7445406 2136592 2938232 7860907*x + 81 7736977 5231093 4572919 7367903 1207675 6929907 8741840 3337941 4497191 1988195 2089509 1035764 5236286 5173201

                          g_{2, 1} = u_2 * a_{2, 1} % f_{2, 1} = + 91 7287773 0208782 3912398 5543038 2513545 7130829 6057840 6920457 0863439 7605511 0543777 1981632 7105190 8553225*x + 47 4188946 4178666 8810812 4570538 5001923 2694596 2041786 0196103 4675401 6750253 3500084 2844575 0228887 9920549

                          f_{4, 1} = f_{2, 1} + p^2 * g_{2, 1} = x^2 + 9172 8777302 0878239 1239855 4303825 1354571 3082960 6061090 1120231 6866797 5994739 4353238 9071324 5624495 2092995 2026556 6781339 9240085 1382058 3483671 0431138 2856950 0649895 5343511 7033707 2609539 6474447 1659822 2647935*x + 4741 8894641 7866688 1081245 7053850 0192326 9459620 4321807 0228528 7114148 3678955 3034699 0265776 0569335 9329902 0517467 9748916 0069717 1411452 3039066 4838302 8070156 4161308 4506210 9830711 2210419 6029533 2884846 7388723

                          g_{2, 2} = u_2 * a_{2, 2} % f_{2, 2} = + 79 6997941 2648360 4659030 0171247 4629311 4297741 8233050 7365257 1993703 0965917 5170508 5161224 4323380 5771575

                          f_{4, 2} = f_{2, 2} + p^2 * g_{2, 2} = x + 7969 9794126 4836046 5903001 7124746 2931142 9774182 3545767 0308339 7418916 6862403 4218189 6642961 1518364 2788033 3687729 0361517 2188486 2903655 9373471 8140313 8945404 2207247 3227916 8680578 4533317 4954124 2625981 1441667

                          List of factors

                          The 3 factors are:

                          • 7
                          • x + 7969 9794126 4836046 5903001 7124746 2931142 9774182 3545767 0308339 7418916 6862403 4218189 6642961 1518364 2788033 3687729 0361517 2188486 2903655 9373471 8140313 8945404 2207247 3227916 8680578 4533317 4954124 2625981 1441667
                          • x^2 + 9172 8777302 0878239 1239855 4303825 1354571 3082960 6061090 1120231 6866797 5994739 4353238 9071324 5624495 2092995 2026556 6781339 9240085 1382058 3483671 0431138 2856950 0649895 5343511 7033707 2609539 6474447 1659822 2647935*x + 4741 8894641 7866688 1081245 7053850 0192326 9459620 4321807 0228528 7114148 3678955 3034699 0265776 0569335 9329902 0517467 9748916 0069717 1411452 3039066 4838302 8070156 4161308 4506210 9830711 2210419 6029533 2884846 7388723

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 10 November 2024.

                          -2

                          Your polynomial

                          Mod(7*x^3 + 2*x^2 + x + 56, 1000003^2)

                          Irreducible polynomial factors

                          Dividing the polynomial by the leading coefficient:

                          f(x) = Mod(x^3 + 428573*x^2 + 714288*x + 8, 1000003)

                          Squarefree factorization

                          The derivative of f(x) is:

                          deriv(f(x)) = Mod(x^2 + 857146*x + 714288, 1000003)

                          c0(x) = gcd(f(x), deriv(f(x)) = Mod(1, 1000003)

                          w0(x) = f(x)/c0(x) = Mod(x^3 + 428573*x^2 + 714288*x + 8, 1000003)

                          w1(x) = gcd(w0, c0) = Mod(1, 1000003)

                          z1(x) = w0(x) / w1(x) = Mod(x^3 + 428573*x^2 + 714288*x + 8, 1000003) is a factor of f(x) with multiplicity 1

                          c1(x) = c0(x) / w1(x) = Mod(1, 1000003)

                          Distinct degree factorization

                          • Factoring f(x) = Mod(x^3 + 428573*x^2 + 714288*x + 8, 1000003)

                            For all degrees d between 1 and 1, the product of all factors of degree d is found by computing gcd(f(x), x^1000003^d - x)

                            gcd(f(x), x^1000003^1 - x) = Mod(x + 869779, 1000003)

                            This polynomial has 1 irreducible factor of degree 1

                            The new value of f(x) is the quotient between f(x) and the previous gcd.

                            f(x) = Mod(x^2 + 558797*x + 276509, 1000003)

                            This polynomial is irreducible.

                          Equal degree factorization

                          Hensel Lifting

                          f_1 = x^3 + 85714 8000008*x^2 + 42857 4000004*x + 8

                          f_{1, 1} = x^2 + 558797*x + 276509

                          f_{1, 2} = x + 869779

                          Using the extended GCD algorithm, compute a_{1, 1}, ..., a_{1, n} such that

                          1 = (f_1(x)/f_{1, 1}(x)) * a_{1, 1}(x) + ... + (f_1(x)/f_{1, n}(x)) * a_{1, n}(x))

                          a_{1, 1} = + 750647

                          a_{1, 2} =

                          u_1 = (1/p) * (f_1 - f_{1, 1} * f_{1, 2}) = + 857144*x^2 + 942547*x + 759502

                          g_{1, 1} = u_1 * a_{1, 1} % f_{1, 1} = + 459046*x + 268773

                          f_{2, 1} = f_{1, 1} + p * g_{1, 1} = x^2 + 45904 7935935*x + 26877 4082828

                          g_{1, 2} = u_1 * a_{1, 2} % f_{1, 2} = + 398098

                          f_{2, 2} = f_{1, 2} + p * g_{1, 2} = x + 39810 0064073

                          List of factors

                          The 3 factors are:

                          • 7
                          • x + 39810 0064073
                          • x^2 + 45904 7935935*x + 26877 4082828

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 10 November 2024.

                          -2

                          Your polynomial

                          Mod(56 6753065 4982595 8218168 2262176 1574133*x^6 + 2803 6554966 6932341 0486266 3017387 9303660*x^5 + 2895 0398372 6793829 2776012 0154654 5569830*x^4 + 1923 1010920 7024097 4270272 0058024 5797879*x^3 + 1263 8584679 3624922 7058494 7001115 6284296*x^2 + 2815 2989178 8748348 8584860 5683345 8826787*x + 364 7115866 7290440 0871817 0388300 6630495, 184467 4407370 9551629^2)

                          Irreducible polynomial factors

                          The 4 factors are:

                          • 56 6753065 4982595 8218168 2262176 1574133
                          • x + 2687 4717182 6361917 0394073 7732572 3539238
                          • x^2 + 1843 8715370 7781095 5098083 7197306 9495561*x + 2382 8968887 1479459 9477589 1471352 3490489
                          • x^3 + 458 7681861 6150180 8665114 8859207 8714229*x^2 + 455 1701927 5147396 9697077 3256933 4819770*x + 895 2943547 8800145 4409439 6732630 0793905

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 10 November 2024.

                          +2

                          Your polynomial

                          x510 − 1

                          Irreducible polynomial factors

                          The 16 factors are:

                          • x − 1
                          • x + 1
                          • x2x + 1
                          • x2 + x + 1
                          • x4x3 + x2x + 1
                          • x4 + x3 + x2 + x + 1
                          • x8x7 + x5x4 + x3x + 1
                          • x8 + x7x5x4x3 + x + 1
                          • x16x15 + x14x13 + x12x11 + x10x9 + x8x7 + x6x5 + x4x3 + x2x + 1
                          • x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1
                          • x32x31 + x29x28 + x26x25 + x23x22 + x20x19 + x17x16 + x15x13 + x12x10 + x9x7 + x6x4 + x3x + 1
                          • x32 + x31x29x28 + x26 + x25x23x22 + x20 + x19x17x16x15 + x13 + x12x10x9 + x7 + x6x4x3 + x + 1
                          • x64x63 + x59x58 + x54x53 + x49x48 + x47x46 + x44x43 + x42x41 + x39x38 + x37x36 + x34x33 + x32x31 + x30x28 + x27x26 + x25x23 + x22x21 + x20x18 + x17x16 + x15x11 + x10x6 + x5x + 1
                          • x64 + x63x59x58 + x54 + x53x49x48x47x46 + x44 + x43 + x42 + x41x39x38x37x36 + x34 + x33 + x32 + x31 + x30x28x27x26x25 + x23 + x22 + x21 + x20x18x17x16x15 + x11 + x10x6x5 + x + 1
                          • x128x127 + x126 + x123x122 + x121x113 + x112x110 + x109x108 + x107x105 + x104 + x98x97 + x95x94 + x93x92 + x90x89x83 + x82x80 + x79x78 + x76 − 2⁢x75 + x74x72 + x71x70 + x68x67 + x65x64 + x63x61 + x60x58 + x57x56 + x54 − 2⁢x53 + x52x50 + x49x48 + x46x45x39 + x38x36 + x35x34 + x33x31 + x30 + x24x23 + x21x20 + x19x18 + x16x15 + x7x6 + x5 + x2x + 1
                          • x128 + x127 + x126x123x122x121 + x113 + x112x110x109x108x107 + x105 + x104 + x98 + x97x95x94x93x92 + x90 + x89 + x83 + x82x80x79x78 + x76 + 2⁢x75 + x74x72x71x70 + x68 + x67x65x64x63 + x61 + x60x58x57x56 + x54 + 2⁢x53 + x52x50x49x48 + x46 + x45 + x39 + x38x36x35x34x33 + x31 + x30 + x24 + x23x21x20x19x18 + x16 + x15x7x6x5 + x2 + x + 1

                          Roots

                          The 510 roots are:

                          • x1 = 1
                          • x2 = -1
                          • x3 = 1212 3 i
                          • x4 = 12 + 12 3 i
                          • x5 = -1212 3 i
                          • x6 = -12 + 12 3 i
                          • x7 = 14 + 14 5 + i -18 5 + 58
                          • x8 = 14 + 14 5 − i -18 5 + 58
                          • x9 = 1414 5 + i 18 5 + 58
                          • x10 = 1414 5 − i 18 5 + 58
                          • x11 = -14 + 14 5 + i 18 5 + 58
                          • x12 = -14 + 14 5 − i 18 5 + 58
                          • x13 = -1414 5 + i -18 5 + 58
                          • x14 = -1414 5 − i -18 5 + 58
                          • x15 = cos 2π15 + i sin2π15 = 18 65−5+5+1 + i4 7−65+5+5
                          • x16 = cos 4π15 + i sin4π15 = 18 65+55+1 + i4 7+65−55
                          • x17 = cos 8π15 + i sin8π15 = −18 65−55−1 + i4 7+65+5+5
                          • x18 = cos 14π15 + i sin14π15 = −18 65+5+5−1 + i4 7−65−55
                          • x19 = cos 16π15 + i sin16π15 = −18 65+5+5−1i4 7−65−55
                          • x20 = cos 22π15 + i sin22π15 = −18 65−55−1i4 7+65+5+5
                          • x21 = cos 26π15 + i sin26π15 = 18 65+55+1i4 7+65−55
                          • x22 = cos 28π15 + i sin28π15 = 18 65−5+5+1i4 7−65+5+5
                          • x23 = cosπ15 + i sinπ15 = 18 65+5+5−1 + i4 7−65−55
                          • x24 = cos 7π15 + i sin7π15 = 18 65−55−1 + i4 7+65+5+5
                          • x25 = cos 11π15 + i sin11π15 = −18 65+55+1 + i4 7+65−55
                          • x26 = cos 13π15 + i sin13π15 = −18 65−5+5+1 + i4 7−65+5+5
                          • x27 = cos 17π15 + i sin17π15 = −18 65−5+5+1i4 7−65+5+5
                          • x28 = cos 19π15 + i sin19π15 = −18 65+55+1i4 7+65−55
                          • x29 = cos 23π15 + i sin23π15 = 18 65−55−1i4 7+65+5+5
                          • x30 = cos 29π15 + i sin29π15 = 18 65+5+5−1i4 7−65−55
                          • x31 = cosπ17 + i sinπ17 = 116 1−17+34−217+217+317+170+3817 + i8 34−217−234−217−417+317170+3817
                          • x32 = cos 3π17 + i sin3π17 = 116 1+17+34+217+217−317170−3817 + i8 34+217−234+217−417−317+170−3817
                          • x33 = cos 5π17 + i sin5π17 = 116 1+17+34+217−217−317170−3817 + i8 34+217−234+217+417−317+170−3817
                          • x34 = cos 7π17 + i sin7π17 = 116 1+1734+217+217−317+170−3817 + i8 34+217+234+217+417−317170−3817
                          • x35 = cos 9π17 + i sin9π17 = −116 −1+17+34−217−217+317170+3817 + i8 34−217+234−217+417+317+170+3817
                          • x36 = cos 11π17 + i sin11π17 = −116 −1−17+34+217+217−317+170−3817 + i8 34+217+234+217−417−317170−3817
                          • x37 = cos 13π17 + i sin13π17 = −116 −1+1734−217+217+317+170+3817 + i8 34−217−234−217+417+317170+3817
                          • x38 = cos 15π17 + i sin15π17 = −116 −1+17+34−217+217+317170+3817 + i8 34−217+234−217−417+317+170+3817
                          • x39 = cos 19π17 + i sin19π17 = −116 −1+17+34−217+217+317170+3817i8 34−217+234−217−417+317+170+3817
                          • x40 = cos 21π17 + i sin21π17 = −116 −1+1734−217+217+317+170+3817i8 34−217−234−217+417+317170+3817
                          • x41 = cos 23π17 + i sin23π17 = −116 −1−17+34+217+217−317+170−3817i8 34+217+234+217−417−317170−3817
                          • x42 = cos 25π17 + i sin25π17 = −116 −1+17+34−217−217+317170+3817i8 34−217+234−217+417+317+170+3817
                          • x43 = cos 27π17 + i sin27π17 = 116 1+1734+217+217−317+170−3817i8 34+217+234+217+417−317170−3817
                          • x44 = cos 29π17 + i sin29π17 = 116 1+17+34+217−217−317170−3817i8 34+217−234+217+417−317+170−3817
                          • x45 = cos 31π17 + i sin31π17 = 116 1+17+34+217+217−317170−3817i8 34+217−234+217−417−317+170−3817
                          • x46 = cos 33π17 + i sin33π17 = 116 1−17+34−217+217+317+170+3817i8 34−217−234−217−417+317170+3817
                          • x47 = cos 2π17 + i sin2π17 = 116 −1+17+34−217+217+317170+3817 + i8 34−217+234−217−417+317+170+3817
                          • x48 = cos 4π17 + i sin4π17 = 116 −1+1734−217+217+317+170+3817 + i8 34−217−234−217+417+317170+3817
                          • x49 = cos 6π17 + i sin6π17 = 116 −1−17+34+217+217−317+170−3817 + i8 34+217+234+217−417−317170−3817
                          • x50 = cos 8π17 + i sin8π17 = 116 −1+17+34−217−217+317170+3817 + i8 34−217+234−217+417+317+170+3817
                          • x51 = cos 10π17 + i sin10π17 = −116 1+1734+217+217−317+170−3817 + i8 34+217+234+217+417−317170−3817
                          • x52 = cos 12π17 + i sin12π17 = −116 1+17+34+217−217−317170−3817 + i8 34+217−234+217+417−317+170−3817
                          • x53 = cos 14π17 + i sin14π17 = −116 1+17+34+217+217−317170−3817 + i8 34+217−234+217−417−317+170−3817
                          • x54 = cos 16π17 + i sin16π17 = −116 1−17+34−217+217+317+170+3817 + i8 34−217−234−217−417+317170+3817
                          • x55 = cos 18π17 + i sin18π17 = −116 1−17+34−217+217+317+170+3817i8 34−217−234−217−417+317170+3817
                          • x56 = cos 20π17 + i sin20π17 = −116 1+17+34+217+217−317170−3817i8 34+217−234+217−417−317+170−3817
                          • x57 = cos 22π17 + i sin22π17 = −116 1+17+34+217−217−317170−3817i8 34+217−234+217+417−317+170−3817
                          • x58 = cos 24π17 + i sin24π17 = −116 1+1734+217+217−317+170−3817i8 34+217+234+217+417−317170−3817
                          • x59 = cos 26π17 + i sin26π17 = 116 −1+17+34−217−217+317170+3817i8 34−217+234−217+417+317+170+3817
                          • x60 = cos 28π17 + i sin28π17 = 116 −1−17+34+217+217−317+170−3817i8 34+217+234+217−417−317170−3817
                          • x61 = cos 30π17 + i sin30π17 = 116 −1+1734−217+217+317+170+3817i8 34−217−234−217+417+317170+3817
                          • x62 = cos 32π17 + i sin32π17 = 116 −1+17+34−217+217+317170+3817i8 34−217+234−217−417+317+170+3817
                          • x63 = cos 2π51 + i sin2π51 = 132 1+17+34+217−217−317170−3817 + 116 334+217−234+217+417−317+170−3817 + i32 31+17+34+217−217−317170−3817i16 34+217−234+217+417−317+170−3817
                          • x64 = cos 4π51 + i sin4π51 = 132 1+1734+217+217−317+170−3817 + 116 334+217+234+217+417−317170−3817i32 31+1734+217+217−317+170−3817 + i16 34+217+234+217+417−317170−3817
                          • x65 = cos 8π51 + i sin8π51 = 132 1+17+34+217+217−317170−3817 + 116 334+217−234+217−417−317+170−3817 + i32 31+17+34+217+217−317170−3817i16 34+217−234+217−417−317+170−3817
                          • x66 = cos 10π51 + i sin10π51 = −132 −1+17+34−217−217+317170+3817 + 116 334−217+234−217+417+317+170+3817 + i32 3−1+17+34−217−217+317170+3817 + i16 34−217+234−217+417+317+170+3817
                          • x67 = cos 14π51 + i sin14π51 = 132 1−17+34−217+217+317+170+3817 + 116 334−217−234−217−417+317170+3817 + i32 31−17+34−217+217+317+170+3817i16 34−217−234−217−417+317170+3817
                          • x68 = cos 16π51 + i sin16π51 = −132 −1−17+34+217+217−317+170−3817 + 116 334+217+234+217−417−317170−3817 + i32 3−1−17+34+217+217−317+170−3817 + i16 34+217+234+217−417−317170−3817
                          • x69 = cos 20π51 + i sin20π51 = 132 1−17+34−217+217+317+170+3817116 334−217−234−217−417+317170+3817 + i32 31−17+34−217+217+317+170+3817 + i16 34−217−234−217−417+317170+3817
                          • x70 = cos 22π51 + i sin22π51 = −132 −1+1734−217+217+317+170+3817 + 116 334−217−234−217+417+317170+3817 + i32 3−1+1734−217+217+317+170+3817 + i16 34−217−234−217+417+317170+3817
                          • x71 = cos 26π51 + i sin26π51 = 132 1+17+34+217+217−317170−3817116 334+217−234+217−417−317+170−3817 + i32 31+17+34+217+217−317170−3817 + i16 34+217−234+217−417−317+170−3817
                          • x72 = cos 28π51 + i sin28π51 = −132 −1+17+34−217+217+317170+3817 + 116 334−217+234−217−417+317+170+3817 + i32 3−1+17+34−217+217+317170+3817 + i16 34−217+234−217−417+317+170+3817
                          • x73 = cos 32π51 + i sin32π51 = 132 1+17+34+217−217−317170−3817116 334+217−234+217+417−317+170−3817 + i32 31+17+34+217−217−317170−3817 + i16 34+217−234+217+417−317+170−3817
                          • x74 = cos 38π51 + i sin38π51 = 132 1+1734+217+217−317+170−3817116 334+217+234+217+417−317170−3817 + i32 31+1734+217+217−317+170−3817 + i16 34+217+234+217+417−317170−3817
                          • x75 = cos 40π51 + i sin40π51 = −132 −1+17+34−217+217+317170+3817116 334−217+234−217−417+317+170+3817 + i32 3−1+17+34−217+217+317170+3817i16 34−217+234−217−417+317+170+3817
                          • x76 = cos 44π51 + i sin44π51 = −132 −1+17+34−217−217+317170+3817116 334−217+234−217+417+317+170+3817i32 3−1+17+34−217−217+317170+3817 + i16 34−217+234−217+417+317+170+3817
                          • x77 = cos 46π51 + i sin46π51 = −132 −1+1734−217+217+317+170+3817116 334−217−234−217+417+317170+3817 + i32 3−1+1734−217+217+317+170+3817i16 34−217−234−217+417+317170+3817
                          • x78 = cos 50π51 + i sin50π51 = −132 −1−17+34+217+217−317+170−3817116 334+217+234+217−417−317170−3817i32 3−1−17+34+217+217−317+170−3817 + i16 34+217+234+217−417−317170−3817
                          • x79 = cos 52π51 + i sin52π51 = −132 −1−17+34+217+217−317+170−3817116 334+217+234+217−417−317170−3817 + i32 3−1−17+34+217+217−317+170−3817i16 34+217+234+217−417−317170−3817
                          • x80 = cos 56π51 + i sin56π51 = −132 −1+1734−217+217+317+170+3817116 334−217−234−217+417+317170+3817i32 3−1+1734−217+217+317+170+3817 + i16 34−217−234−217+417+317170+3817
                          • x81 = cos 58π51 + i sin58π51 = −132 −1+17+34−217−217+317170+3817116 334−217+234−217+417+317+170+3817 + i32 3−1+17+34−217−217+317170+3817i16 34−217+234−217+417+317+170+3817
                          • x82 = cos 62π51 + i sin62π51 = −132 −1+17+34−217+217+317170+3817116 334−217+234−217−417+317+170+3817i32 3−1+17+34−217+217+317170+3817 + i16 34−217+234−217−417+317+170+3817
                          • x83 = cos 64π51 + i sin64π51 = 132 1+1734+217+217−317+170−3817116 334+217+234+217+417−317170−3817i32 31+1734+217+217−317+170−3817i16 34+217+234+217+417−317170−3817
                          • x84 = cos 70π51 + i sin70π51 = 132 1+17+34+217−217−317170−3817116 334+217−234+217+417−317+170−3817i32 31+17+34+217−217−317170−3817i16 34+217−234+217+417−317+170−3817
                          • x85 = cos 74π51 + i sin74π51 = −132 −1+17+34−217+217+317170+3817 + 116 334−217+234−217−417+317+170+3817i32 3−1+17+34−217+217+317170+3817i16 34−217+234−217−417+317+170+3817
                          • x86 = cos 76π51 + i sin76π51 = 132 1+17+34+217+217−317170−3817116 334+217−234+217−417−317+170−3817i32 31+17+34+217+217−317170−3817i16 34+217−234+217−417−317+170−3817
                          • x87 = cos 80π51 + i sin80π51 = −132 −1+1734−217+217+317+170+3817 + 116 334−217−234−217+417+317170+3817i32 3−1+1734−217+217+317+170+3817i16 34−217−234−217+417+317170+3817
                          • x88 = cos 82π51 + i sin82π51 = 132 1−17+34−217+217+317+170+3817116 334−217−234−217−417+317170+3817i32 31−17+34−217+217+317+170+3817i16 34−217−234−217−417+317170+3817
                          • x89 = cos 86π51 + i sin86π51 = −132 −1−17+34+217+217−317+170−3817 + 116 334+217+234+217−417−317170−3817i32 3−1−17+34+217+217−317+170−3817i16 34+217+234+217−417−317170−3817
                          • x90 = cos 88π51 + i sin88π51 = 132 1−17+34−217+217+317+170+3817 + 116 334−217−234−217−417+317170+3817i32 31−17+34−217+217+317+170+3817 + i16 34−217−234−217−417+317170+3817
                          • x91 = cos 92π51 + i sin92π51 = −132 −1+17+34−217−217+317170+3817 + 116 334−217+234−217+417+317+170+3817i32 3−1+17+34−217−217+317170+3817i16 34−217+234−217+417+317+170+3817
                          • x92 = cos 94π51 + i sin94π51 = 132 1+17+34+217+217−317170−3817 + 116 334+217−234+217−417−317+170−3817i32 31+17+34+217+217−317170−3817 + i16 34+217−234+217−417−317+170−3817
                          • x93 = cos 98π51 + i sin98π51 = 132 1+1734+217+217−317+170−3817 + 116 334+217+234+217+417−317170−3817 + i32 31+1734+217+217−317+170−3817i16 34+217+234+217+417−317170−3817
                          • x94 = cos 100π51 + i sin100π51 = 132 1+17+34+217−217−317170−3817 + 116 334+217−234+217+417−317+170−3817i32 31+17+34+217−217−317170−3817 + i16 34+217−234+217+417−317+170−3817
                          • x95 = cosπ51 + i sinπ51 = 132 −1−17+34+217+217−317+170−3817 + 116 334+217+234+217−417−317170−3817i32 3−1−17+34+217+217−317+170−3817 + i16 34+217+234+217−417−317170−3817
                          • x96 = cos 5π51 + i sin5π51 = 132 −1+1734−217+217+317+170+3817 + 116 334−217−234−217+417+317170+3817 + i32 3−1+1734−217+217+317+170+3817i16 34−217−234−217+417+317170+3817
                          • x97 = cos 7π51 + i sin7π51 = 132 −1+17+34−217−217+317170+3817 + 116 334−217+234−217+417+317+170+3817i32 3−1+17+34−217−217+317170+3817 + i16 34−217+234−217+417+317+170+3817
                          • x98 = cos 11π51 + i sin11π51 = 132 −1+17+34−217+217+317170+3817 + 116 334−217+234−217−417+317+170+3817 + i32 3−1+17+34−217+217+317170+3817i16 34−217+234−217−417+317+170+3817
                          • x99 = cos 13π51 + i sin13π51 = −132 1+1734+217+217−317+170−3817 + 116 334+217+234+217+417−317170−3817 + i32 31+1734+217+217−317+170−3817 + i16 34+217+234+217+417−317170−3817
                          • x100 = cos 19π51 + i sin19π51 = −132 1+17+34+217−217−317170−3817 + 116 334+217−234+217+417−317+170−3817 + i32 31+17+34+217−217−317170−3817 + i16 34+217−234+217+417−317+170−3817
                          • x101 = cos 23π51 + i sin23π51 = 132 −1+17+34−217+217+317170+3817116 334−217+234−217−417+317+170+3817 + i32 3−1+17+34−217+217+317170+3817 + i16 34−217+234−217−417+317+170+3817
                          • x102 = cos 25π51 + i sin25π51 = −132 1+17+34+217+217−317170−3817 + 116 334+217−234+217−417−317+170−3817 + i32 31+17+34+217+217−317170−3817 + i16 34+217−234+217−417−317+170−3817
                          • x103 = cos 29π51 + i sin29π51 = 132 −1+1734−217+217+317+170+3817116 334−217−234−217+417+317170+3817 + i32 3−1+1734−217+217+317+170+3817 + i16 34−217−234−217+417+317170+3817
                          • x104 = cos 31π51 + i sin31π51 = −132 1−17+34−217+217+317+170+3817 + 116 334−217−234−217−417+317170+3817 + i32 31−17+34−217+217+317+170+3817 + i16 34−217−234−217−417+317170+3817
                          • x105 = cos 35π51 + i sin35π51 = 132 −1−17+34+217+217−317+170−3817116 334+217+234+217−417−317170−3817 + i32 3−1−17+34+217+217−317+170−3817 + i16 34+217+234+217−417−317170−3817
                          • x106 = cos 37π51 + i sin37π51 = −132 1−17+34−217+217+317+170+3817116 334−217−234−217−417+317170+3817 + i32 31−17+34−217+217+317+170+3817i16 34−217−234−217−417+317170+3817
                          • x107 = cos 41π51 + i sin41π51 = 132 −1+17+34−217−217+317170+3817116 334−217+234−217+417+317+170+3817 + i32 3−1+17+34−217−217+317170+3817 + i16 34−217+234−217+417+317+170+3817
                          • x108 = cos 43π51 + i sin43π51 = −132 1+17+34+217+217−317170−3817116 334+217−234+217−417−317+170−3817 + i32 31+17+34+217+217−317170−3817i16 34+217−234+217−417−317+170−3817
                          • x109 = cos 47π51 + i sin47π51 = −132 1+1734+217+217−317+170−3817116 334+217+234+217+417−317170−3817i32 31+1734+217+217−317+170−3817 + i16 34+217+234+217+417−317170−3817
                          • x110 = cos 49π51 + i sin49π51 = −132 1+17+34+217−217−317170−3817116 334+217−234+217+417−317+170−3817 + i32 31+17+34+217−217−317170−3817i16 34+217−234+217+417−317+170−3817
                          • x111 = cos 53π51 + i sin53π51 = −132 1+17+34+217−217−317170−3817116 334+217−234+217+417−317+170−3817i32 31+17+34+217−217−317170−3817 + i16 34+217−234+217+417−317+170−3817
                          • x112 = cos 55π51 + i sin55π51 = −132 1+1734+217+217−317+170−3817116 334+217+234+217+417−317170−3817 + i32 31+1734+217+217−317+170−3817i16 34+217+234+217+417−317170−3817
                          • x113 = cos 59π51 + i sin59π51 = −132 1+17+34+217+217−317170−3817116 334+217−234+217−417−317+170−3817i32 31+17+34+217+217−317170−3817 + i16 34+217−234+217−417−317+170−3817
                          • x114 = cos 61π51 + i sin61π51 = 132 −1+17+34−217−217+317170+3817116 334−217+234−217+417+317+170+3817i32 3−1+17+34−217−217+317170+3817i16 34−217+234−217+417+317+170+3817
                          • x115 = cos 65π51 + i sin65π51 = −132 1−17+34−217+217+317+170+3817116 334−217−234−217−417+317170+3817i32 31−17+34−217+217+317+170+3817 + i16 34−217−234−217−417+317170+3817
                          • x116 = cos 67π51 + i sin67π51 = 132 −1−17+34+217+217−317+170−3817116 334+217+234+217−417−317170−3817i32 3−1−17+34+217+217−317+170−3817i16 34+217+234+217−417−317170−3817
                          • x117 = cos 71π51 + i sin71π51 = −132 1−17+34−217+217+317+170+3817 + 116 334−217−234−217−417+317170+3817i32 31−17+34−217+217+317+170+3817i16 34−217−234−217−417+317170+3817
                          • x118 = cos 73π51 + i sin73π51 = 132 −1+1734−217+217+317+170+3817116 334−217−234−217+417+317170+3817i32 3−1+1734−217+217+317+170+3817i16 34−217−234−217+417+317170+3817
                          • x119 = cos 77π51 + i sin77π51 = −132 1+17+34+217+217−317170−3817 + 116 334+217−234+217−417−317+170−3817i32 31+17+34+217+217−317170−3817i16 34+217−234+217−417−317+170−3817
                          • x120 = cos 79π51 + i sin79π51 = 132 −1+17+34−217+217+317170+3817116 334−217+234−217−417+317+170+3817i32 3−1+17+34−217+217+317170+3817i16 34−217+234−217−417+317+170+3817
                          • x121 = cos 83π51 + i sin83π51 = −132 1+17+34+217−217−317170−3817 + 116 334+217−234+217+417−317+170−3817i32 31+17+34+217−217−317170−3817i16 34+217−234+217+417−317+170−3817
                          • x122 = cos 89π51 + i sin89π51 = −132 1+1734+217+217−317+170−3817 + 116 334+217+234+217+417−317170−3817i32 31+1734+217+217−317+170−3817i16 34+217+234+217+417−317170−3817
                          • x123 = cos 91π51 + i sin91π51 = 132 −1+17+34−217+217+317170+3817 + 116 334−217+234−217−417+317+170+3817i32 3−1+17+34−217+217+317170+3817 + i16 34−217+234−217−417+317+170+3817
                          • x124 = cos 95π51 + i sin95π51 = 132 −1+17+34−217−217+317170+3817 + 116 334−217+234−217+417+317+170+3817 + i32 3−1+17+34−217−217+317170+3817i16 34−217+234−217+417+317+170+3817
                          • x125 = cos 97π51 + i sin97π51 = 132 −1+1734−217+217+317+170+3817 + 116 334−217−234−217+417+317170+3817i32 3−1+1734−217+217+317+170+3817 + i16 34−217−234−217+417+317170+3817
                          • x126 = cos 101π51 + i sin101π51 = 132 −1−17+34+217+217−317+170−3817 + 116 334+217+234+217−417−317170−3817 + i32 3−1−17+34+217+217−317+170−3817i16 34+217+234+217−417−317170−3817
                          • x127 = cos 2π85 + i sin2π85 = 164 5+11+17+34+217+217−317170−3817 + 132 10−2534+217−234+217−417−317+170−3817 + i64 10−251+17+34+217+217−317170−3817i32 5+134+217−234+217−417−317+170−3817
                          • x128 = cos 4π85 + i sin4π85 = 164 5−1−1−17+34+217+217−317+170−3817 + 132 10+2534+217+234+217−417−317170−3817 + i64 10+25−1−17+34+217+217−317+170−3817i32 5−134+217+234+217−417−317170−3817
                          • x129 = cos 6π85 + i sin6π85 = 164 5−1−1+17+34−217−217+317170+3817 + 132 10+2534−217+234−217+417+317+170+3817i64 10+25−1+17+34−217−217+317170+3817 + i32 5−134−217+234−217+417+317+170+3817
                          • x130 = cos 8π85 + i sin8π85 = 164 5+11+17+34+217−217−317170−3817 + 132 10−2534+217−234+217+417−317+170−3817i64 10−251+17+34+217−217−317170−3817 + i32 5+134+217−234+217+417−317+170−3817
                          • x131 = cos 12π85 + i sin12π85 = 164 5+11−17+34−217+217+317+170+3817 + 132 10−2534−217−234−217−417+317170+3817 + i64 10−251−17+34−217+217+317+170+3817i32 5+134−217−234−217−417+317170+3817
                          • x132 = cos 14π85 + i sin14π85 = 164 5−1−1+1734−217+217+317+170+3817 + 132 10+2534−217−234−217+417+317170+3817 + i64 10+25−1+1734−217+217+317+170+3817i32 5−134−217−234−217+417+317170+3817
                          • x133 = cos 16π85 + i sin16π85 = −164 5−11+1734+217+217−317+170−3817 + 132 10+2534+217+234+217+417−317170−3817 + i64 10+251+1734+217+217−317+170−3817 + i32 5−134+217+234+217+417−317170−3817
                          • x134 = cos 18π85 + i sin18π85 = 164 5+11+1734+217+217−317+170−3817 + 132 10−2534+217+234+217+417−317170−3817i64 10−251+1734+217+217−317+170−3817 + i32 5+134+217+234+217+417−317170−3817
                          • x135 = cos 22π85 + i sin22π85 = 164 5+11−17+34−217+217+317+170+3817132 10−2534−217−234−217−417+317170+3817 + i64 10−251−17+34−217+217+317+170+3817 + i32 5+134−217−234−217−417+317170+3817
                          • x136 = cos 24π85 + i sin24π85 = 164 5−1−1+17+34−217+217+317170+3817 + 132 10+2534−217+234−217−417+317+170+3817 + i64 10+25−1+17+34−217+217+317170+3817i32 5−134−217+234−217−417+317+170+3817
                          • x137 = cos 26π85 + i sin26π85 = −164 5−11+17+34+217−217−317170−3817 + 132 10+2534+217−234+217+417−317+170−3817 + i64 10+251+17+34+217−217−317170−3817 + i32 5−134+217−234+217+417−317+170−3817
                          • x138 = cos 28π85 + i sin28π85 = −164 5+1−1+17+34−217−217+317170+3817 + 132 10−2534−217+234−217+417+317+170+3817 + i64 10−25−1+17+34−217−217+317170+3817 + i32 5+134−217+234−217+417+317+170+3817
                          • x139 = cos 32π85 + i sin32π85 = 164 5+11+17+34+217+217−317170−3817132 10−2534+217−234+217−417−317+170−3817 + i64 10−251+17+34+217+217−317170−3817 + i32 5+134+217−234+217−417−317+170−3817
                          • x140 = cos 36π85 + i sin36π85 = −164 5−11+17+34+217+217−317170−3817 + 132 10+2534+217−234+217−417−317+170−3817 + i64 10+251+17+34+217+217−317170−3817 + i32 5−134+217−234+217−417−317+170−3817
                          • x141 = cos 38π85 + i sin38π85 = −164 5+1−1−17+34+217+217−317+170−3817 + 132 10−2534+217+234+217−417−317170−3817 + i64 10−25−1−17+34+217+217−317+170−3817 + i32 5+134+217+234+217−417−317170−3817
                          • x142 = cos 42π85 + i sin42π85 = 164 5+11+17+34+217−217−317170−3817132 10−2534+217−234+217+417−317+170−3817 + i64 10−251+17+34+217−217−317170−3817 + i32 5+134+217−234+217+417−317+170−3817
                          • x143 = cos 44π85 + i sin44π85 = 164 5−1−1+17+34−217+217+317170+3817132 10+2534−217+234−217−417+317+170+3817 + i64 10+25−1+17+34−217+217+317170+3817 + i32 5−134−217+234−217−417+317+170+3817
                          • x144 = cos 46π85 + i sin46π85 = −164 5−11−17+34−217+217+317+170+3817 + 132 10+2534−217−234−217−417+317170+3817 + i64 10+251−17+34−217+217+317+170+3817 + i32 5−134−217−234−217−417+317170+3817
                          • x145 = cos 48π85 + i sin48π85 = −164 5+1−1+1734−217+217+317+170+3817 + 132 10−2534−217−234−217+417+317170+3817 + i64 10−25−1+1734−217+217+317+170+3817 + i32 5+134−217−234−217+417+317170+3817
                          • x146 = cos 52π85 + i sin52π85 = 164 5+11+1734+217+217−317+170−3817132 10−2534+217+234+217+417−317170−3817 + i64 10−251+1734+217+217−317+170−3817 + i32 5+134+217+234+217+417−317170−3817
                          • x147 = cos 54π85 + i sin54π85 = 164 5−1−1+1734−217+217+317+170+3817132 10+2534−217−234−217+417+317170+3817 + i64 10+25−1+1734−217+217+317+170+3817 + i32 5−134−217−234−217+417+317170+3817
                          • x148 = cos 56π85 + i sin56π85 = −164 5−11−17+34−217+217+317+170+3817132 10+2534−217−234−217−417+317170+3817 + i64 10+251−17+34−217+217+317+170+3817i32 5−134−217−234−217−417+317170+3817
                          • x149 = cos 58π85 + i sin58π85 = −164 5+1−1+17+34−217+217+317170+3817 + 132 10−2534−217+234−217−417+317+170+3817 + i64 10−25−1+17+34−217+217+317170+3817 + i32 5+134−217+234−217−417+317+170+3817
                          • x150 = cos 62π85 + i sin62π85 = −164 5+1−1+17+34−217−217+317170+3817132 10−2534−217+234−217+417+317+170+3817i64 10−25−1+17+34−217−217+317170+3817 + i32 5+134−217+234−217+417+317+170+3817
                          • x151 = cos 64π85 + i sin64π85 = 164 5−1−1−17+34+217+217−317+170−3817132 10+2534+217+234+217−417−317170−3817 + i64 10+25−1−17+34+217+217−317+170−3817 + i32 5−134+217+234+217−417−317170−3817
                          • x152 = cos 66π85 + i sin66π85 = −164 5−11+17+34+217+217−317170−3817132 10+2534+217−234+217−417−317+170−3817 + i64 10+251+17+34+217+217−317170−3817i32 5−134+217−234+217−417−317+170−3817
                          • x153 = cos 72π85 + i sin72π85 = −164 5+1−1−17+34+217+217−317+170−3817132 10−2534+217+234+217−417−317170−3817i64 10−25−1−17+34+217+217−317+170−3817 + i32 5+134+217+234+217−417−317170−3817
                          • x154 = cos 74π85 + i sin74π85 = 164 5−1−1+17+34−217−217+317170+3817132 10+2534−217+234−217+417+317+170+3817 + i64 10+25−1+17+34−217−217+317170+3817 + i32 5−134−217+234−217+417+317+170+3817
                          • x155 = cos 76π85 + i sin76π85 = −164 5−11+17+34+217−217−317170−3817132 10+2534+217−234+217+417−317+170−3817 + i64 10+251+17+34+217−217−317170−3817i32 5−134+217−234+217+417−317+170−3817
                          • x156 = cos 78π85 + i sin78π85 = −164 5+1−1+17+34−217+217+317170+3817132 10−2534−217+234−217−417+317+170+3817 + i64 10−25−1+17+34−217+217+317170+3817i32 5+134−217+234−217−417+317+170+3817
                          • x157 = cos 82π85 + i sin82π85 = −164 5+1−1+1734−217+217+317+170+3817132 10−2534−217−234−217+417+317170+3817i64 10−25−1+1734−217+217+317+170+3817 + i32 5+134−217−234−217+417+317170+3817
                          • x158 = cos 84π85 + i sin84π85 = −164 5−11+1734+217+217−317+170−3817132 10+2534+217+234+217+417−317170−3817i64 10+251+1734+217+217−317+170−3817 + i32 5−134+217+234+217+417−317170−3817
                          • x159 = cos 86π85 + i sin86π85 = −164 5−11+1734+217+217−317+170−3817132 10+2534+217+234+217+417−317170−3817 + i64 10+251+1734+217+217−317+170−3817i32 5−134+217+234+217+417−317170−3817
                          • x160 = cos 88π85 + i sin88π85 = −164 5+1−1+1734−217+217+317+170+3817132 10−2534−217−234−217+417+317170+3817 + i64 10−25−1+1734−217+217+317+170+3817i32 5+134−217−234−217+417+317170+3817
                          • x161 = cos 92π85 + i sin92π85 = −164 5+1−1+17+34−217+217+317170+3817132 10−2534−217+234−217−417+317+170+3817i64 10−25−1+17+34−217+217+317170+3817 + i32 5+134−217+234−217−417+317+170+3817
                          • x162 = cos 94π85 + i sin94π85 = −164 5−11+17+34+217−217−317170−3817132 10+2534+217−234+217+417−317+170−3817i64 10+251+17+34+217−217−317170−3817 + i32 5−134+217−234+217+417−317+170−3817
                          • x163 = cos 96π85 + i sin96π85 = 164 5−1−1+17+34−217−217+317170+3817132 10+2534−217+234−217+417+317+170+3817i64 10+25−1+17+34−217−217+317170+3817i32 5−134−217+234−217+417+317+170+3817
                          • x164 = cos 98π85 + i sin98π85 = −164 5+1−1−17+34+217+217−317+170−3817132 10−2534+217+234+217−417−317170−3817 + i64 10−25−1−17+34+217+217−317+170−3817i32 5+134+217+234+217−417−317170−3817
                          • x165 = cos 104π85 + i sin104π85 = −164 5−11+17+34+217+217−317170−3817132 10+2534+217−234+217−417−317+170−3817i64 10+251+17+34+217+217−317170−3817 + i32 5−134+217−234+217−417−317+170−3817
                          • x166 = cos 106π85 + i sin106π85 = 164 5−1−1−17+34+217+217−317+170−3817132 10+2534+217+234+217−417−317170−3817i64 10+25−1−17+34+217+217−317+170−3817i32 5−134+217+234+217−417−317170−3817
                          • x167 = cos 108π85 + i sin108π85 = −164 5+1−1+17+34−217−217+317170+3817132 10−2534−217+234−217+417+317+170+3817 + i64 10−25−1+17+34−217−217+317170+3817i32 5+134−217+234−217+417+317+170+3817
                          • x168 = cos 112π85 + i sin112π85 = −164 5+1−1+17+34−217+217+317170+3817 + 132 10−2534−217+234−217−417+317+170+3817i64 10−25−1+17+34−217+217+317170+3817i32 5+134−217+234−217−417+317+170+3817
                          • x169 = cos 114π85 + i sin114π85 = −164 5−11−17+34−217+217+317+170+3817132 10+2534−217−234−217−417+317170+3817i64 10+251−17+34−217+217+317+170+3817 + i32 5−134−217−234−217−417+317170+3817
                          • x170 = cos 116π85 + i sin116π85 = 164 5−1−1+1734−217+217+317+170+3817132 10+2534−217−234−217+417+317170+3817i64 10+25−1+1734−217+217+317+170+3817i32 5−134−217−234−217+417+317170+3817
                          • x171 = cos 118π85 + i sin118π85 = 164 5+11+1734+217+217−317+170−3817132 10−2534+217+234+217+417−317170−3817i64 10−251+1734+217+217−317+170−3817i32 5+134+217+234+217+417−317170−3817
                          • x172 = cos 122π85 + i sin122π85 = −164 5+1−1+1734−217+217+317+170+3817 + 132 10−2534−217−234−217+417+317170+3817i64 10−25−1+1734−217+217+317+170+3817i32 5+134−217−234−217+417+317170+3817
                          • x173 = cos 124π85 + i sin124π85 = −164 5−11−17+34−217+217+317+170+3817 + 132 10+2534−217−234−217−417+317170+3817i64 10+251−17+34−217+217+317+170+3817i32 5−134−217−234−217−417+317170+3817
                          • x174 = cos 126π85 + i sin126π85 = 164 5−1−1+17+34−217+217+317170+3817132 10+2534−217+234−217−417+317+170+3817i64 10+25−1+17+34−217+217+317170+3817i32 5−134−217+234−217−417+317+170+3817
                          • x175 = cos 128π85 + i sin128π85 = 164 5+11+17+34+217−217−317170−3817132 10−2534+217−234+217+417−317+170−3817i64 10−251+17+34+217−217−317170−3817i32 5+134+217−234+217+417−317+170−3817
                          • x176 = cos 132π85 + i sin132π85 = −164 5+1−1−17+34+217+217−317+170−3817 + 132 10−2534+217+234+217−417−317170−3817i64 10−25−1−17+34+217+217−317+170−3817i32 5+134+217+234+217−417−317170−3817
                          • x177 = cos 134π85 + i sin134π85 = −164 5−11+17+34+217+217−317170−3817 + 132 10+2534+217−234+217−417−317+170−3817i64 10+251+17+34+217+217−317170−3817i32 5−134+217−234+217−417−317+170−3817
                          • x178 = cos 138π85 + i sin138π85 = 164 5+11+17+34+217+217−317170−3817132 10−2534+217−234+217−417−317+170−3817i64 10−251+17+34+217+217−317170−3817i32 5+134+217−234+217−417−317+170−3817
                          • x179 = cos 142π85 + i sin142π85 = −164 5+1−1+17+34−217−217+317170+3817 + 132 10−2534−217+234−217+417+317+170+3817i64 10−25−1+17+34−217−217+317170+3817i32 5+134−217+234−217+417+317+170+3817
                          • x180 = cos 144π85 + i sin144π85 = −164 5−11+17+34+217−217−317170−3817 + 132 10+2534+217−234+217+417−317+170−3817i64 10+251+17+34+217−217−317170−3817i32 5−134+217−234+217+417−317+170−3817
                          • x181 = cos 146π85 + i sin146π85 = 164 5−1−1+17+34−217+217+317170+3817 + 132 10+2534−217+234−217−417+317+170+3817i64 10+25−1+17+34−217+217+317170+3817 + i32 5−134−217+234−217−417+317+170+3817
                          • x182 = cos 148π85 + i sin148π85 = 164 5+11−17+34−217+217+317+170+3817132 10−2534−217−234−217−417+317170+3817i64 10−251−17+34−217+217+317+170+3817i32 5+134−217−234−217−417+317170+3817
                          • x183 = cos 152π85 + i sin152π85 = 164 5+11+1734+217+217−317+170−3817 + 132 10−2534+217+234+217+417−317170−3817 + i64 10−251+1734+217+217−317+170−3817i32 5+134+217+234+217+417−317170−3817
                          • x184 = cos 154π85 + i sin154π85 = −164 5−11+1734+217+217−317+170−3817 + 132 10+2534+217+234+217+417−317170−3817i64 10+251+1734+217+217−317+170−3817i32 5−134+217+234+217+417−317170−3817
                          • x185 = cos 156π85 + i sin156π85 = 164 5−1−1+1734−217+217+317+170+3817 + 132 10+2534−217−234−217+417+317170+3817i64 10+25−1+1734−217+217+317+170+3817 + i32 5−134−217−234−217+417+317170+3817
                          • x186 = cos 158π85 + i sin158π85 = 164 5+11−17+34−217+217+317+170+3817 + 132 10−2534−217−234−217−417+317170+3817i64 10−251−17+34−217+217+317+170+3817 + i32 5+134−217−234−217−417+317170+3817
                          • x187 = cos 162π85 + i sin162π85 = 164 5+11+17+34+217−217−317170−3817 + 132 10−2534+217−234+217+417−317+170−3817 + i64 10−251+17+34+217−217−317170−3817i32 5+134+217−234+217+417−317+170−3817
                          • x188 = cos 164π85 + i sin164π85 = 164 5−1−1+17+34−217−217+317170+3817 + 132 10+2534−217+234−217+417+317+170+3817 + i64 10+25−1+17+34−217−217+317170+3817i32 5−134−217+234−217+417+317+170+3817
                          • x189 = cos 166π85 + i sin166π85 = 164 5−1−1−17+34+217+217−317+170−3817 + 132 10+2534+217+234+217−417−317170−3817i64 10+25−1−17+34+217+217−317+170−3817 + i32 5−134+217+234+217−417−317170−3817
                          • x190 = cos 168π85 + i sin168π85 = 164 5+11+17+34+217+217−317170−3817 + 132 10−2534+217−234+217−417−317+170−3817i64 10−251+17+34+217+217−317170−3817 + i32 5+134+217−234+217−417−317+170−3817
                          • x191 = cosπ85 + i sinπ85 = 164 5−11+1734+217+217−317+170−3817 + 132 10+2534+217+234+217+417−317170−3817i64 10+251+1734+217+217−317+170−3817 + i32 5−134+217+234+217+417−317170−3817
                          • x192 = cos 3π85 + i sin3π85 = 164 5+1−1+1734−217+217+317+170+3817 + 132 10−2534−217−234−217+417+317170+3817i64 10−25−1+1734−217+217+317+170+3817 + i32 5+134−217−234−217+417+317170+3817
                          • x193 = cos 7π85 + i sin7π85 = 164 5+1−1+17+34−217+217+317170+3817 + 132 10−2534−217+234−217−417+317+170+3817 + i64 10−25−1+17+34−217+217+317170+3817i32 5+134−217+234−217−417+317+170+3817
                          • x194 = cos 9π85 + i sin9π85 = 164 5−11+17+34+217−217−317170−3817 + 132 10+2534+217−234+217+417−317+170−3817 + i64 10+251+17+34+217−217−317170−3817i32 5−134+217−234+217+417−317+170−3817
                          • x195 = cos 11π85 + i sin11π85 = −164 5−1−1+17+34−217−217+317170+3817 + 132 10+2534−217+234−217+417+317+170+3817 + i64 10+25−1+17+34−217−217+317170+3817 + i32 5−134−217+234−217+417+317+170+3817
                          • x196 = cos 13π85 + i sin13π85 = 164 5+1−1−17+34+217+217−317+170−3817 + 132 10−2534+217+234+217−417−317170−3817i64 10−25−1−17+34+217+217−317+170−3817 + i32 5+134+217+234+217−417−317170−3817
                          • x197 = cos 19π85 + i sin19π85 = 164 5−11+17+34+217+217−317170−3817 + 132 10+2534+217−234+217−417−317+170−3817 + i64 10+251+17+34+217+217−317170−3817i32 5−134+217−234+217−417−317+170−3817
                          • x198 = cos 21π85 + i sin21π85 = −164 5−1−1−17+34+217+217−317+170−3817 + 132 10+2534+217+234+217−417−317170−3817 + i64 10+25−1−17+34+217+217−317+170−3817 + i32 5−134+217+234+217−417−317170−3817
                          • x199 = cos 23π85 + i sin23π85 = 164 5+1−1+17+34−217−217+317170+3817 + 132 10−2534−217+234−217+417+317+170+3817i64 10−25−1+17+34−217−217+317170+3817 + i32 5+134−217+234−217+417+317+170+3817
                          • x200 = cos 27π85 + i sin27π85 = 164 5+1−1+17+34−217+217+317170+3817132 10−2534−217+234−217−417+317+170+3817 + i64 10−25−1+17+34−217+217+317170+3817 + i32 5+134−217+234−217−417+317+170+3817
                          • x201 = cos 29π85 + i sin29π85 = 164 5−11−17+34−217+217+317+170+3817 + 132 10+2534−217−234−217−417+317170+3817 + i64 10+251−17+34−217+217+317+170+3817i32 5−134−217−234−217−417+317170+3817
                          • x202 = cos 31π85 + i sin31π85 = −164 5−1−1+1734−217+217+317+170+3817 + 132 10+2534−217−234−217+417+317170+3817 + i64 10+25−1+1734−217+217+317+170+3817 + i32 5−134−217−234−217+417+317170+3817
                          • x203 = cos 33π85 + i sin33π85 = −164 5+11+1734+217+217−317+170−3817 + 132 10−2534+217+234+217+417−317170−3817 + i64 10−251+1734+217+217−317+170−3817 + i32 5+134+217+234+217+417−317170−3817
                          • x204 = cos 37π85 + i sin37π85 = 164 5+1−1+1734−217+217+317+170+3817132 10−2534−217−234−217+417+317170+3817 + i64 10−25−1+1734−217+217+317+170+3817 + i32 5+134−217−234−217+417+317170+3817
                          • x205 = cos 39π85 + i sin39π85 = 164 5−11−17+34−217+217+317+170+3817132 10+2534−217−234−217−417+317170+3817 + i64 10+251−17+34−217+217+317+170+3817 + i32 5−134−217−234−217−417+317170+3817
                          • x206 = cos 41π85 + i sin41π85 = −164 5−1−1+17+34−217+217+317170+3817 + 132 10+2534−217+234−217−417+317+170+3817 + i64 10+25−1+17+34−217+217+317170+3817 + i32 5−134−217+234−217−417+317+170+3817
                          • x207 = cos 43π85 + i sin43π85 = −164 5+11+17+34+217−217−317170−3817 + 132 10−2534+217−234+217+417−317+170−3817 + i64 10−251+17+34+217−217−317170−3817 + i32 5+134+217−234+217+417−317+170−3817
                          • x208 = cos 47π85 + i sin47π85 = 164 5+1−1−17+34+217+217−317+170−3817132 10−2534+217+234+217−417−317170−3817 + i64 10−25−1−17+34+217+217−317+170−3817 + i32 5+134+217+234+217−417−317170−3817
                          • x209 = cos 49π85 + i sin49π85 = 164 5−11+17+34+217+217−317170−3817132 10+2534+217−234+217−417−317+170−3817 + i64 10+251+17+34+217+217−317170−3817 + i32 5−134+217−234+217−417−317+170−3817
                          • x210 = cos 53π85 + i sin53π85 = −164 5+11+17+34+217+217−317170−3817 + 132 10−2534+217−234+217−417−317+170−3817 + i64 10−251+17+34+217+217−317170−3817 + i32 5+134+217−234+217−417−317+170−3817
                          • x211 = cos 57π85 + i sin57π85 = 164 5+1−1+17+34−217−217+317170+3817132 10−2534−217+234−217+417+317+170+3817 + i64 10−25−1+17+34−217−217+317170+3817 + i32 5+134−217+234−217+417+317+170+3817
                          • x212 = cos 59π85 + i sin59π85 = 164 5−11+17+34+217−217−317170−3817132 10+2534+217−234+217+417−317+170−3817 + i64 10+251+17+34+217−217−317170−3817 + i32 5−134+217−234+217+417−317+170−3817
                          • x213 = cos 61π85 + i sin61π85 = −164 5−1−1+17+34−217+217+317170+3817132 10+2534−217+234−217−417+317+170+3817 + i64 10+25−1+17+34−217+217+317170+3817i32 5−134−217+234−217−417+317+170+3817
                          • x214 = cos 63π85 + i sin63π85 = −164 5+11−17+34−217+217+317+170+3817 + 132 10−2534−217−234−217−417+317170+3817 + i64 10−251−17+34−217+217+317+170+3817 + i32 5+134−217−234−217−417+317170+3817
                          • x215 = cos 67π85 + i sin67π85 = −164 5+11+1734+217+217−317+170−3817132 10−2534+217+234+217+417−317170−3817i64 10−251+1734+217+217−317+170−3817 + i32 5+134+217+234+217+417−317170−3817
                          • x216 = cos 69π85 + i sin69π85 = 164 5−11+1734+217+217−317+170−3817132 10+2534+217+234+217+417−317170−3817 + i64 10+251+1734+217+217−317+170−3817 + i32 5−134+217+234+217+417−317170−3817
                          • x217 = cos 71π85 + i sin71π85 = −164 5−1−1+1734−217+217+317+170+3817132 10+2534−217−234−217+417+317170+3817 + i64 10+25−1+1734−217+217+317+170+3817i32 5−134−217−234−217+417+317170+3817
                          • x218 = cos 73π85 + i sin73π85 = −164 5+11−17+34−217+217+317+170+3817132 10−2534−217−234−217−417+317170+3817 + i64 10−251−17+34−217+217+317+170+3817i32 5+134−217−234−217−417+317170+3817
                          • x219 = cos 77π85 + i sin77π85 = −164 5+11+17+34+217−217−317170−3817132 10−2534+217−234+217+417−317+170−3817i64 10−251+17+34+217−217−317170−3817 + i32 5+134+217−234+217+417−317+170−3817
                          • x220 = cos 79π85 + i sin79π85 = −164 5−1−1+17+34−217−217+317170+3817132 10+2534−217+234−217+417+317+170+3817i64 10+25−1+17+34−217−217+317170+3817 + i32 5−134−217+234−217+417+317+170+3817
                          • x221 = cos 81π85 + i sin81π85 = −164 5−1−1−17+34+217+217−317+170−3817132 10+2534+217+234+217−417−317170−3817 + i64 10+25−1−17+34+217+217−317+170−3817i32 5−134+217+234+217−417−317170−3817
                          • x222 = cos 83π85 + i sin83π85 = −164 5+11+17+34+217+217−317170−3817132 10−2534+217−234+217−417−317+170−3817 + i64 10−251+17+34+217+217−317170−3817i32 5+134+217−234+217−417−317+170−3817
                          • x223 = cos 87π85 + i sin87π85 = −164 5+11+17+34+217+217−317170−3817132 10−2534+217−234+217−417−317+170−3817i64 10−251+17+34+217+217−317170−3817 + i32 5+134+217−234+217−417−317+170−3817
                          • x224 = cos 89π85 + i sin89π85 = −164 5−1−1−17+34+217+217−317+170−3817132 10+2534+217+234+217−417−317170−3817i64 10+25−1−17+34+217+217−317+170−3817 + i32 5−134+217+234+217−417−317170−3817
                          • x225 = cos 91π85 + i sin91π85 = −164 5−1−1+17+34−217−217+317170+3817132 10+2534−217+234−217+417+317+170+3817 + i64 10+25−1+17+34−217−217+317170+3817i32 5−134−217+234−217+417+317+170+3817
                          • x226 = cos 93π85 + i sin93π85 = −164 5+11+17+34+217−217−317170−3817132 10−2534+217−234+217+417−317+170−3817 + i64 10−251+17+34+217−217−317170−3817i32 5+134+217−234+217+417−317+170−3817
                          • x227 = cos 97π85 + i sin97π85 = −164 5+11−17+34−217+217+317+170+3817132 10−2534−217−234−217−417+317170+3817i64 10−251−17+34−217+217+317+170+3817 + i32 5+134−217−234−217−417+317170+3817
                          • x228 = cos 99π85 + i sin99π85 = −164 5−1−1+1734−217+217+317+170+3817132 10+2534−217−234−217+417+317170+3817i64 10+25−1+1734−217+217+317+170+3817 + i32 5−134−217−234−217+417+317170+3817
                          • x229 = cos 101π85 + i sin101π85 = 164 5−11+1734+217+217−317+170−3817132 10+2534+217+234+217+417−317170−3817i64 10+251+1734+217+217−317+170−3817i32 5−134+217+234+217+417−317170−3817
                          • x230 = cos 103π85 + i sin103π85 = −164 5+11+1734+217+217−317+170−3817132 10−2534+217+234+217+417−317170−3817 + i64 10−251+1734+217+217−317+170−3817i32 5+134+217+234+217+417−317170−3817
                          • x231 = cos 107π85 + i sin107π85 = −164 5+11−17+34−217+217+317+170+3817 + 132 10−2534−217−234−217−417+317170+3817i64 10−251−17+34−217+217+317+170+3817i32 5+134−217−234−217−417+317170+3817
                          • x232 = cos 109π85 + i sin109π85 = −164 5−1−1+17+34−217+217+317170+3817132 10+2534−217+234−217−417+317+170+3817i64 10+25−1+17+34−217+217+317170+3817 + i32 5−134−217+234−217−417+317+170+3817
                          • x233 = cos 111π85 + i sin111π85 = 164 5−11+17+34+217−217−317170−3817132 10+2534+217−234+217+417−317+170−3817i64 10+251+17+34+217−217−317170−3817i32 5−134+217−234+217+417−317+170−3817
                          • x234 = cos 113π85 + i sin113π85 = 164 5+1−1+17+34−217−217+317170+3817132 10−2534−217+234−217+417+317+170+3817i64 10−25−1+17+34−217−217+317170+3817i32 5+134−217+234−217+417+317+170+3817
                          • x235 = cos 117π85 + i sin117π85 = −164 5+11+17+34+217+217−317170−3817 + 132 10−2534+217−234+217−417−317+170−3817i64 10−251+17+34+217+217−317170−3817i32 5+134+217−234+217−417−317+170−3817
                          • x236 = cos 121π85 + i sin121π85 = 164 5−11+17+34+217+217−317170−3817132 10+2534+217−234+217−417−317+170−3817i64 10+251+17+34+217+217−317170−3817i32 5−134+217−234+217−417−317+170−3817
                          • x237 = cos 123π85 + i sin123π85 = 164 5+1−1−17+34+217+217−317+170−3817132 10−2534+217+234+217−417−317170−3817i64 10−25−1−17+34+217+217−317+170−3817i32 5+134+217+234+217−417−317170−3817
                          • x238 = cos 127π85 + i sin127π85 = −164 5+11+17+34+217−217−317170−3817 + 132 10−2534+217−234+217+417−317+170−3817i64 10−251+17+34+217−217−317170−3817i32 5+134+217−234+217+417−317+170−3817
                          • x239 = cos 129π85 + i sin129π85 = −164 5−1−1+17+34−217+217+317170+3817 + 132 10+2534−217+234−217−417+317+170+3817i64 10+25−1+17+34−217+217+317170+3817i32 5−134−217+234−217−417+317+170+3817
                          • x240 = cos 131π85 + i sin131π85 = 164 5−11−17+34−217+217+317+170+3817132 10+2534−217−234−217−417+317170+3817i64 10+251−17+34−217+217+317+170+3817i32 5−134−217−234−217−417+317170+3817
                          • x241 = cos 133π85 + i sin133π85 = 164 5+1−1+1734−217+217+317+170+3817132 10−2534−217−234−217+417+317170+3817i64 10−25−1+1734−217+217+317+170+3817i32 5+134−217−234−217+417+317170+3817
                          • x242 = cos 137π85 + i sin137π85 = −164 5+11+1734+217+217−317+170−3817 + 132 10−2534+217+234+217+417−317170−3817i64 10−251+1734+217+217−317+170−3817i32 5+134+217+234+217+417−317170−3817
                          • x243 = cos 139π85 + i sin139π85 = −164 5−1−1+1734−217+217+317+170+3817 + 132 10+2534−217−234−217+417+317170+3817i64 10+25−1+1734−217+217+317+170+3817i32 5−134−217−234−217+417+317170+3817
                          • x244 = cos 141π85 + i sin141π85 = 164 5−11−17+34−217+217+317+170+3817 + 132 10+2534−217−234−217−417+317170+3817i64 10+251−17+34−217+217+317+170+3817 + i32 5−134−217−234−217−417+317170+3817
                          • x245 = cos 143π85 + i sin143π85 = 164 5+1−1+17+34−217+217+317170+3817132 10−2534−217+234−217−417+317+170+3817i64 10−25−1+17+34−217+217+317170+3817i32 5+134−217+234−217−417+317+170+3817
                          • x246 = cos 147π85 + i sin147π85 = 164 5+1−1+17+34−217−217+317170+3817 + 132 10−2534−217+234−217+417+317+170+3817 + i64 10−25−1+17+34−217−217+317170+3817i32 5+134−217+234−217+417+317+170+3817
                          • x247 = cos 149π85 + i sin149π85 = −164 5−1−1−17+34+217+217−317+170−3817 + 132 10+2534+217+234+217−417−317170−3817i64 10+25−1−17+34+217+217−317+170−3817i32 5−134+217+234+217−417−317170−3817
                          • x248 = cos 151π85 + i sin151π85 = 164 5−11+17+34+217+217−317170−3817 + 132 10+2534+217−234+217−417−317+170−3817i64 10+251+17+34+217+217−317170−3817 + i32 5−134+217−234+217−417−317+170−3817
                          • x249 = cos 157π85 + i sin157π85 = 164 5+1−1−17+34+217+217−317+170−3817 + 132 10−2534+217+234+217−417−317170−3817 + i64 10−25−1−17+34+217+217−317+170−3817i32 5+134+217+234+217−417−317170−3817
                          • x250 = cos 159π85 + i sin159π85 = −164 5−1−1+17+34−217−217+317170+3817 + 132 10+2534−217+234−217+417+317+170+3817i64 10+25−1+17+34−217−217+317170+3817i32 5−134−217+234−217+417+317+170+3817
                          • x251 = cos 161π85 + i sin161π85 = 164 5−11+17+34+217−217−317170−3817 + 132 10+2534+217−234+217+417−317+170−3817i64 10+251+17+34+217−217−317170−3817 + i32 5−134+217−234+217+417−317+170−3817
                          • x252 = cos 163π85 + i sin163π85 = 164 5+1−1+17+34−217+217+317170+3817 + 132 10−2534−217+234−217−417+317+170+3817i64 10−25−1+17+34−217+217+317170+3817 + i32 5+134−217+234−217−417+317+170+3817
                          • x253 = cos 167π85 + i sin167π85 = 164 5+1−1+1734−217+217+317+170+3817 + 132 10−2534−217−234−217+417+317170+3817 + i64 10−25−1+1734−217+217+317+170+3817i32 5+134−217−234−217+417+317170+3817
                          • x254 = cos 169π85 + i sin169π85 = 164 5−11+1734+217+217−317+170−3817 + 132 10+2534+217+234+217+417−317170−3817 + i64 10+251+1734+217+217−317+170−3817i32 5−134+217+234+217+417−317170−3817
                          • x255 = cosπ255 + i sinπ255 = 1128 65−55−1−1+17+34−217−217+317170+3817 + 132 7+65+5+534−217+234−217+417+317+170+3817i64 7+65+5+5−1+17+34−217−217+317170+3817 + i64 65−55−134−217+234−217+417+317+170+3817
                          • x256 = cos 7π255 + i sin7π255 = 1128 65+55+11+17+34+217−217−317170−3817 + 132 7+65−5534+217−234+217+417−317+170−3817i64 7+65−551+17+34+217−217−317170−3817 + i64 65+55+134+217−234+217+417−317+170−3817
                          • x257 = cos 11π255 + i sin11π255 = 1128 65−5+5+11+17+34+217+217−317170−3817 + 132 7−65+5+534+217−234+217−417−317+170−3817i64 7−65+5+51+17+34+217+217−317170−3817 + i64 65−5+5+134+217−234+217−417−317+170−3817
                          • x258 = cos 13π255 + i sin13π255 = 1128 65+5+5−1−1+17+34−217+217+317170+3817 + 132 7−65−5534−217+234−217−417+317+170+3817i64 7−65−55−1+17+34−217+217+317170+3817 + i64 65+5+5−134−217+234−217−417+317+170+3817
                          • x259 = cos 19π255 + i sin19π255 = 1128 65−5+5+11−17+34−217+217+317+170+3817 + 132 7−65+5+534−217−234−217−417+317170+3817 + i64 7−65+5+51−17+34−217+217+317+170+3817i64 65−5+5+134−217−234−217−417+317170+3817
                          • x260 = cos 23π255 + i sin23π255 = 1128 65+55+11+17+34+217+217−317170−3817 + 132 7+65−5534+217−234+217−417−317+170−3817 + i64 7+65−551+17+34+217+217−317170−3817i64 65+55+134+217−234+217−417−317+170−3817
                          • x261 = cos 29π255 + i sin29π255 = 1128 65−55−1−1−17+34+217+217−317+170−3817 + 132 7+65+5+534+217+234+217−417−317170−3817 + i64 7+65+5+5−1−17+34+217+217−317+170−3817i64 65−55−134+217+234+217−417−317170−3817
                          • x262 = cos 31π255 + i sin31π255 = −1128 65−55−11+1734+217+217−317+170−3817 + 132 7+65+5+534+217+234+217+417−317170−3817 + i64 7+65+5+51+1734+217+217−317+170−3817 + i64 65−55−134+217+234+217+417−317170−3817
                          • x263 = cos 37π255 + i sin37π255 = 1128 65+55+11+1734+217+217−317+170−3817 + 132 7+65−5534+217+234+217+417−317170−3817i64 7+65−551+1734+217+217−317+170−3817 + i64 65+55+134+217+234+217+417−317170−3817
                          • x264 = cos 41π255 + i sin41π255 = 1128 65−5+5+11+17+34+217−217−317170−3817 + 132 7−65+5+534+217−234+217+417−317+170−3817i64 7−65+5+51+17+34+217−217−317170−3817 + i64 65−5+5+134+217−234+217+417−317+170−3817
                          • x265 = cos 43π255 + i sin43π255 = 1128 65+5+5−1−1+1734−217+217+317+170+3817 + 132 7−65−5534−217−234−217+417+317170+3817i64 7−65−55−1+1734−217+217+317+170+3817 + i64 65+5+5−134−217−234−217+417+317170+3817
                          • x266 = cos 47π255 + i sin47π255 = 1128 65+5+5−1−1+17+34−217+217+317170+3817132 7−65−5534−217+234−217−417+317+170+3817 + i64 7−65−55−1+17+34−217+217+317170+3817 + i64 65+5+5−134−217+234−217−417+317+170+3817
                          • x267 = cos 49π255 + i sin49π255 = 1128 65−5+5+11−17+34−217+217+317+170+3817132 7−65+5+534−217−234−217−417+317170+3817 + i64 7−65+5+51−17+34−217+217+317+170+3817 + i64 65−5+5+134−217−234−217−417+317170+3817
                          • x268 = cos 53π255 + i sin53π255 = 1128 65+55+11−17+34−217+217+317+170+3817 + 132 7+65−5534−217−234−217−417+317170+3817 + i64 7+65−551−17+34−217+217+317+170+3817i64 65+55+134−217−234−217−417+317170+3817
                          • x269 = cos 59π255 + i sin59π255 = 1128 65−55−1−1+1734−217+217+317+170+3817 + 132 7+65+5+534−217−234−217+417+317170+3817 + i64 7+65+5+5−1+1734−217+217+317+170+3817i64 65−55−134−217−234−217+417+317170+3817
                          • x270 = cos 61π255 + i sin61π255 = −1128 65−55−11+17+34+217−217−317170−3817 + 132 7+65+5+534+217−234+217+417−317+170−3817 + i64 7+65+5+51+17+34+217−217−317170−3817 + i64 65−55−134+217−234+217+417−317+170−3817
                          • x271 = cos 67π255 + i sin67π255 = −1128 65+55+1−1+17+34−217−217+317170+3817 + 132 7+65−5534−217+234−217+417+317+170+3817 + i64 7+65−55−1+17+34−217−217+317170+3817 + i64 65+55+134−217+234−217+417+317+170+3817
                          • x272 = cos 71π255 + i sin71π255 = 1128 65−5+5+11+1734+217+217−317+170−3817 + 132 7−65+5+534+217+234+217+417−317170−3817i64 7−65+5+51+1734+217+217−317+170−3817 + i64 65−5+5+134+217+234+217+417−317170−3817
                          • x273 = cos 73π255 + i sin73π255 = 1128 65+5+5−1−1−17+34+217+217−317+170−3817 + 132 7−65−5534+217+234+217−417−317170−3817i64 7−65−55−1−17+34+217+217−317+170−3817 + i64 65+5+5−134+217+234+217−417−317170−3817
                          • x274 = cos 77π255 + i sin77π255 = 1128 65+5+5−1−1+1734−217+217+317+170+3817132 7−65−5534−217−234−217+417+317170+3817 + i64 7−65−55−1+1734−217+217+317+170+3817 + i64 65+5+5−134−217−234−217+417+317170+3817
                          • x275 = cos 79π255 + i sin79π255 = 1128 65−5+5+11+17+34+217+217−317170−3817132 7−65+5+534+217−234+217−417−317+170−3817 + i64 7−65+5+51+17+34+217+217−317170−3817 + i64 65−5+5+134+217−234+217−417−317+170−3817
                          • x276 = cos 83π255 + i sin83π255 = 1128 65+55+11−17+34−217+217+317+170+3817132 7+65−5534−217−234−217−417+317170+3817 + i64 7+65−551−17+34−217+217+317+170+3817 + i64 65+55+134−217−234−217−417+317170+3817
                          • x277 = cos 89π255 + i sin89π255 = 1128 65−55−1−1+17+34−217+217+317170+3817 + 132 7+65+5+534−217+234−217−417+317+170+3817 + i64 7+65+5+5−1+17+34−217+217+317170+3817i64 65−55−134−217+234−217−417+317+170+3817
                          • x278 = cos 91π255 + i sin91π255 = −1128 65−55−11+17+34+217+217−317170−3817 + 132 7+65+5+534+217−234+217−417−317+170−3817 + i64 7+65+5+51+17+34+217+217−317170−3817 + i64 65−55−134+217−234+217−417−317+170−3817
                          • x279 = cos 97π255 + i sin97π255 = −1128 65+55+1−1−17+34+217+217−317+170−3817 + 132 7+65−5534+217+234+217−417−317170−3817 + i64 7+65−55−1−17+34+217+217−317+170−3817 + i64 65+55+134+217+234+217−417−317170−3817
                          • x280 = cos 101π255 + i sin101π255 = −1128 65−5+5+1−1+17+34−217−217+317170+3817 + 132 7−65+5+534−217+234−217+417+317+170+3817 + i64 7−65+5+5−1+17+34−217−217+317170+3817 + i64 65−5+5+134−217+234−217+417+317+170+3817
                          • x281 = cos 103π255 + i sin103π255 = 1128 65+5+5−1−1+17+34−217−217+317170+3817 + 132 7−65−5534−217+234−217+417+317+170+3817i64 7−65−55−1+17+34−217−217+317170+3817 + i64 65+5+5−134−217+234−217+417+317+170+3817
                          • x282 = cos 107π255 + i sin107π255 = 1128 65+5+5−1−1−17+34+217+217−317+170−3817132 7−65−5534+217+234+217−417−317170−3817 + i64 7−65−55−1−17+34+217+217−317+170−3817 + i64 65+5+5−134+217+234+217−417−317170−3817
                          • x283 = cos 109π255 + i sin109π255 = 1128 65−5+5+11+17+34+217−217−317170−3817132 7−65+5+534+217−234+217+417−317+170−3817 + i64 7−65+5+51+17+34+217−217−317170−3817 + i64 65−5+5+134+217−234+217+417−317+170−3817
                          • x284 = cos 113π255 + i sin113π255 = 1128 65+55+11+17+34+217+217−317170−3817132 7+65−5534+217−234+217−417−317+170−3817 + i64 7+65−551+17+34+217+217−317170−3817 + i64 65+55+134+217−234+217−417−317+170−3817
                          • x285 = cos 121π255 + i sin121π255 = −1128 65−55−11−17+34−217+217+317+170+3817 + 132 7+65+5+534−217−234−217−417+317170+3817 + i64 7+65+5+51−17+34−217+217+317+170+3817 + i64 65−55−134−217−234−217−417+317170+3817
                          • x286 = cos 127π255 + i sin127π255 = −1128 65+55+1−1+1734−217+217+317+170+3817 + 132 7+65−5534−217−234−217+417+317170+3817 + i64 7+65−55−1+1734−217+217+317+170+3817 + i64 65+55+134−217−234−217+417+317170+3817
                          • x287 = cos 131π255 + i sin131π255 = −1128 65−5+5+1−1−17+34+217+217−317+170−3817 + 132 7−65+5+534+217+234+217−417−317170−3817 + i64 7−65+5+5−1−17+34+217+217−317+170−3817 + i64 65−5+5+134+217+234+217−417−317170−3817
                          • x288 = cos 133π255 + i sin133π255 = −1128 65+5+5−11+1734+217+217−317+170−3817 + 132 7−65−5534+217+234+217+417−317170−3817 + i64 7−65−551+1734+217+217−317+170−3817 + i64 65+5+5−134+217+234+217+417−317170−3817
                          • x289 = cos 137π255 + i sin137π255 = 1128 65+5+5−1−1+17+34−217−217+317170+3817132 7−65−5534−217+234−217+417+317+170+3817 + i64 7−65−55−1+17+34−217−217+317170+3817 + i64 65+5+5−134−217+234−217+417+317+170+3817
                          • x290 = cos 139π255 + i sin139π255 = 1128 65−5+5+11+1734+217+217−317+170−3817132 7−65+5+534+217+234+217+417−317170−3817 + i64 7−65+5+51+1734+217+217−317+170−3817 + i64 65−5+5+134+217+234+217+417−317170−3817
                          • x291 = cos 143π255 + i sin143π255 = 1128 65+55+11+17+34+217−217−317170−3817132 7+65−5534+217−234+217+417−317+170−3817 + i64 7+65−551+17+34+217−217−317170−3817 + i64 65+55+134+217−234+217+417−317+170−3817
                          • x292 = cos 149π255 + i sin149π255 = 1128 65−55−1−1+17+34−217+217+317170+3817132 7+65+5+534−217+234−217−417+317+170+3817 + i64 7+65+5+5−1+17+34−217+217+317170+3817 + i64 65−55−134−217+234−217−417+317+170+3817
                          • x293 = cos 151π255 + i sin151π255 = −1128 65−55−11−17+34−217+217+317+170+3817132 7+65+5+534−217−234−217−417+317170+3817 + i64 7+65+5+51−17+34−217+217+317+170+3817i64 65−55−134−217−234−217−417+317170+3817
                          • x294 = cos 157π255 + i sin157π255 = −1128 65+55+1−1+17+34−217+217+317170+3817 + 132 7+65−5534−217+234−217−417+317+170+3817 + i64 7+65−55−1+17+34−217+217+317170+3817 + i64 65+55+134−217+234−217−417+317+170+3817
                          • x295 = cos 161π255 + i sin161π255 = −1128 65−5+5+1−1+1734−217+217+317+170+3817 + 132 7−65+5+534−217−234−217+417+317170+3817 + i64 7−65+5+5−1+1734−217+217+317+170+3817 + i64 65−5+5+134−217−234−217+417+317170+3817
                          • x296 = cos 163π255 + i sin163π255 = −1128 65+5+5−11+17+34+217−217−317170−3817 + 132 7−65−5534+217−234+217+417−317+170−3817 + i64 7−65−551+17+34+217−217−317170−3817 + i64 65+5+5−134+217−234+217+417−317+170−3817
                          • x297 = cos 167π255 + i sin167π255 = −1128 65+5+5−11+1734+217+217−317+170−3817132 7−65−5534+217+234+217+417−317170−3817i64 7−65−551+1734+217+217−317+170−3817 + i64 65+5+5−134+217+234+217+417−317170−3817
                          • x298 = cos 169π255 + i sin169π255 = −1128 65−5+5+1−1+17+34−217−217+317170+3817132 7−65+5+534−217+234−217+417+317+170+3817i64 7−65+5+5−1+17+34−217−217+317170+3817 + i64 65−5+5+134−217+234−217+417+317+170+3817
                          • x299 = cos 173π255 + i sin173π255 = 1128 65+55+11+1734+217+217−317+170−3817132 7+65−5534+217+234+217+417−317170−3817 + i64 7+65−551+1734+217+217−317+170−3817 + i64 65+55+134+217+234+217+417−317170−3817
                          • x300 = cos 179π255 + i sin179π255 = 1128 65−55−1−1+1734−217+217+317+170+3817132 7+65+5+534−217−234−217+417+317170+3817 + i64 7+65+5+5−1+1734−217+217+317+170+3817 + i64 65−55−134−217−234−217+417+317170+3817
                          • x301 = cos 181π255 + i sin181π255 = −1128 65−55−11+17+34+217+217−317170−3817132 7+65+5+534+217−234+217−417−317+170−3817 + i64 7+65+5+51+17+34+217+217−317170−3817i64 65−55−134+217−234+217−417−317+170−3817
                          • x302 = cos 191π255 + i sin191π255 = −1128 65−5+5+1−1+17+34−217+217+317170+3817 + 132 7−65+5+534−217+234−217−417+317+170+3817 + i64 7−65+5+5−1+17+34−217+217+317170+3817 + i64 65−5+5+134−217+234−217−417+317+170+3817
                          • x303 = cos 193π255 + i sin193π255 = −1128 65+5+5−11+17+34+217+217−317170−3817 + 132 7−65−5534+217−234+217−417−317+170−3817 + i64 7−65−551+17+34+217+217−317170−3817 + i64 65+5+5−134+217−234+217−417−317+170−3817
                          • x304 = cos 197π255 + i sin197π255 = −1128 65+5+5−11+17+34+217−217−317170−3817132 7−65−5534+217−234+217+417−317+170−3817i64 7−65−551+17+34+217−217−317170−3817 + i64 65+5+5−134+217−234+217+417−317+170−3817
                          • x305 = cos 199π255 + i sin199π255 = −1128 65−5+5+1−1−17+34+217+217−317+170−3817132 7−65+5+534+217+234+217−417−317170−3817i64 7−65+5+5−1−17+34+217+217−317+170−3817 + i64 65−5+5+134+217+234+217−417−317170−3817
                          • x306 = cos 203π255 + i sin203π255 = −1128 65+55+1−1+17+34−217−217+317170+3817132 7+65−5534−217+234−217+417+317+170+3817i64 7+65−55−1+17+34−217−217+317170+3817 + i64 65+55+134−217+234−217+417+317+170+3817
                          • x307 = cos 209π255 + i sin209π255 = 1128 65−55−1−1−17+34+217+217−317+170−3817132 7+65+5+534+217+234+217−417−317170−3817 + i64 7+65+5+5−1−17+34+217+217−317+170−3817 + i64 65−55−134+217+234+217−417−317170−3817
                          • x308 = cos 211π255 + i sin211π255 = −1128 65−55−11+17+34+217−217−317170−3817132 7+65+5+534+217−234+217+417−317+170−3817 + i64 7+65+5+51+17+34+217−217−317170−3817i64 65−55−134+217−234+217+417−317+170−3817
                          • x309 = cos 217π255 + i sin217π255 = −1128 65+55+1−1+17+34−217+217+317170+3817132 7+65−5534−217+234−217−417+317+170+3817 + i64 7+65−55−1+17+34−217+217+317170+3817i64 65+55+134−217+234−217−417+317+170+3817
                          • x310 = cos 223π255 + i sin223π255 = −1128 65+5+5−11−17+34−217+217+317+170+3817 + 132 7−65−5534−217−234−217−417+317170+3817 + i64 7−65−551−17+34−217+217+317+170+3817 + i64 65+5+5−134−217−234−217−417+317170+3817
                          • x311 = cos 227π255 + i sin227π255 = −1128 65+5+5−11+17+34+217+217−317170−3817132 7−65−5534+217−234+217−417−317+170−3817i64 7−65−551+17+34+217+217−317170−3817 + i64 65+5+5−134+217−234+217−417−317+170−3817
                          • x312 = cos 229π255 + i sin229π255 = −1128 65−5+5+1−1+1734−217+217+317+170+3817132 7−65+5+534−217−234−217+417+317170+3817i64 7−65+5+5−1+1734−217+217+317+170+3817 + i64 65−5+5+134−217−234−217+417+317170+3817
                          • x313 = cos 233π255 + i sin233π255 = −1128 65+55+1−1−17+34+217+217−317+170−3817132 7+65−5534+217+234+217−417−317170−3817i64 7+65−55−1−17+34+217+217−317+170−3817 + i64 65+55+134+217+234+217−417−317170−3817
                          • x314 = cos 239π255 + i sin239π255 = 1128 65−55−1−1+17+34−217−217+317170+3817132 7+65+5+534−217+234−217+417+317+170+3817 + i64 7+65+5+5−1+17+34−217−217+317170+3817 + i64 65−55−134−217+234−217+417+317+170+3817
                          • x315 = cos 241π255 + i sin241π255 = −1128 65−55−11+1734+217+217−317+170−3817132 7+65+5+534+217+234+217+417−317170−3817 + i64 7+65+5+51+1734+217+217−317+170−3817i64 65−55−134+217+234+217+417−317170−3817
                          • x316 = cos 247π255 + i sin247π255 = −1128 65+55+1−1+1734−217+217+317+170+3817132 7+65−5534−217−234−217+417+317170+3817 + i64 7+65−55−1+1734−217+217+317+170+3817i64 65+55+134−217−234−217+417+317170+3817
                          • x317 = cos 251π255 + i sin251π255 = −1128 65−5+5+1−1+17+34−217+217+317170+3817132 7−65+5+534−217+234−217−417+317+170+3817 + i64 7−65+5+5−1+17+34−217+217+317170+3817i64 65−5+5+134−217+234−217−417+317+170+3817
                          • x318 = cos 253π255 + i sin253π255 = −1128 65+5+5−11−17+34−217+217+317+170+3817132 7−65−5534−217−234−217−417+317170+3817 + i64 7−65−551−17+34−217+217+317+170+3817i64 65+5+5−134−217−234−217−417+317170+3817
                          • x319 = cos 257π255 + i sin257π255 = −1128 65+5+5−11−17+34−217+217+317+170+3817132 7−65−5534−217−234−217−417+317170+3817i64 7−65−551−17+34−217+217+317+170+3817 + i64 65+5+5−134−217−234−217−417+317170+3817
                          • x320 = cos 259π255 + i sin259π255 = −1128 65−5+5+1−1+17+34−217+217+317170+3817132 7−65+5+534−217+234−217−417+317+170+3817i64 7−65+5+5−1+17+34−217+217+317170+3817 + i64 65−5+5+134−217+234−217−417+317+170+3817
                          • x321 = cos 263π255 + i sin263π255 = −1128 65+55+1−1+1734−217+217+317+170+3817132 7+65−5534−217−234−217+417+317170+3817i64 7+65−55−1+1734−217+217+317+170+3817 + i64 65+55+134−217−234−217+417+317170+3817
                          • x322 = cos 269π255 + i sin269π255 = −1128 65−55−11+1734+217+217−317+170−3817132 7+65+5+534+217+234+217+417−317170−3817i64 7+65+5+51+1734+217+217−317+170−3817 + i64 65−55−134+217+234+217+417−317170−3817
                          • x323 = cos 271π255 + i sin271π255 = 1128 65−55−1−1+17+34−217−217+317170+3817132 7+65+5+534−217+234−217+417+317+170+3817i64 7+65+5+5−1+17+34−217−217+317170+3817i64 65−55−134−217+234−217+417+317+170+3817
                          • x324 = cos 277π255 + i sin277π255 = −1128 65+55+1−1−17+34+217+217−317+170−3817132 7+65−5534+217+234+217−417−317170−3817 + i64 7+65−55−1−17+34+217+217−317+170−3817i64 65+55+134+217+234+217−417−317170−3817
                          • x325 = cos 281π255 + i sin281π255 = −1128 65−5+5+1−1+1734−217+217+317+170+3817132 7−65+5+534−217−234−217+417+317170+3817 + i64 7−65+5+5−1+1734−217+217+317+170+3817i64 65−5+5+134−217−234−217+417+317170+3817
                          • x326 = cos 283π255 + i sin283π255 = −1128 65+5+5−11+17+34+217+217−317170−3817132 7−65−5534+217−234+217−417−317+170−3817 + i64 7−65−551+17+34+217+217−317170−3817i64 65+5+5−134+217−234+217−417−317+170−3817
                          • x327 = cos 287π255 + i sin287π255 = −1128 65+5+5−11−17+34−217+217+317+170+3817 + 132 7−65−5534−217−234−217−417+317170+3817i64 7−65−551−17+34−217+217+317+170+3817i64 65+5+5−134−217−234−217−417+317170+3817
                          • x328 = cos 293π255 + i sin293π255 = −1128 65+55+1−1+17+34−217+217+317170+3817132 7+65−5534−217+234−217−417+317+170+3817i64 7+65−55−1+17+34−217+217+317170+3817 + i64 65+55+134−217+234−217−417+317+170+3817
                          • x329 = cos 299π255 + i sin299π255 = −1128 65−55−11+17+34+217−217−317170−3817132 7+65+5+534+217−234+217+417−317+170−3817i64 7+65+5+51+17+34+217−217−317170−3817 + i64 65−55−134+217−234+217+417−317+170−3817
                          • x330 = cos 301π255 + i sin301π255 = 1128 65−55−1−1−17+34+217+217−317+170−3817132 7+65+5+534+217+234+217−417−317170−3817i64 7+65+5+5−1−17+34+217+217−317+170−3817i64 65−55−134+217+234+217−417−317170−3817
                          • x331 = cos 307π255 + i sin307π255 = −1128 65+55+1−1+17+34−217−217+317170+3817132 7+65−5534−217+234−217+417+317+170+3817 + i64 7+65−55−1+17+34−217−217+317170+3817i64 65+55+134−217+234−217+417+317+170+3817
                          • x332 = cos 311π255 + i sin311π255 = −1128 65−5+5+1−1−17+34+217+217−317+170−3817132 7−65+5+534+217+234+217−417−317170−3817 + i64 7−65+5+5−1−17+34+217+217−317+170−3817i64 65−5+5+134+217+234+217−417−317170−3817
                          • x333 = cos 313π255 + i sin313π255 = −1128 65+5+5−11+17+34+217−217−317170−3817132 7−65−5534+217−234+217+417−317+170−3817 + i64 7−65−551+17+34+217−217−317170−3817i64 65+5+5−134+217−234+217+417−317+170−3817
                          • x334 = cos 317π255 + i sin317π255 = −1128 65+5+5−11+17+34+217+217−317170−3817 + 132 7−65−5534+217−234+217−417−317+170−3817i64 7−65−551+17+34+217+217−317170−3817i64 65+5+5−134+217−234+217−417−317+170−3817
                          • x335 = cos 319π255 + i sin319π255 = −1128 65−5+5+1−1+17+34−217+217+317170+3817 + 132 7−65+5+534−217+234−217−417+317+170+3817i64 7−65+5+5−1+17+34−217+217+317170+3817i64 65−5+5+134−217+234−217−417+317+170+3817
                          • x336 = cos 329π255 + i sin329π255 = −1128 65−55−11+17+34+217+217−317170−3817132 7+65+5+534+217−234+217−417−317+170−3817i64 7+65+5+51+17+34+217+217−317170−3817 + i64 65−55−134+217−234+217−417−317+170−3817
                          • x337 = cos 331π255 + i sin331π255 = 1128 65−55−1−1+1734−217+217+317+170+3817132 7+65+5+534−217−234−217+417+317170+3817i64 7+65+5+5−1+1734−217+217+317+170+3817i64 65−55−134−217−234−217+417+317170+3817
                          • x338 = cos 337π255 + i sin337π255 = 1128 65+55+11+1734+217+217−317+170−3817132 7+65−5534+217+234+217+417−317170−3817i64 7+65−551+1734+217+217−317+170−3817i64 65+55+134+217+234+217+417−317170−3817
                          • x339 = cos 341π255 + i sin341π255 = −1128 65−5+5+1−1+17+34−217−217+317170+3817132 7−65+5+534−217+234−217+417+317+170+3817 + i64 7−65+5+5−1+17+34−217−217+317170+3817i64 65−5+5+134−217+234−217+417+317+170+3817
                          • x340 = cos 343π255 + i sin343π255 = −1128 65+5+5−11+1734+217+217−317+170−3817132 7−65−5534+217+234+217+417−317170−3817 + i64 7−65−551+1734+217+217−317+170−3817i64 65+5+5−134+217+234+217+417−317170−3817
                          • x341 = cos 347π255 + i sin347π255 = −1128 65+5+5−11+17+34+217−217−317170−3817 + 132 7−65−5534+217−234+217+417−317+170−3817i64 7−65−551+17+34+217−217−317170−3817i64 65+5+5−134+217−234+217+417−317+170−3817
                          • x342 = cos 349π255 + i sin349π255 = −1128 65−5+5+1−1+1734−217+217+317+170+3817 + 132 7−65+5+534−217−234−217+417+317170+3817i64 7−65+5+5−1+1734−217+217+317+170+3817i64 65−5+5+134−217−234−217+417+317170+3817
                          • x343 = cos 353π255 + i sin353π255 = −1128 65+55+1−1+17+34−217+217+317170+3817 + 132 7+65−5534−217+234−217−417+317+170+3817i64 7+65−55−1+17+34−217+217+317170+3817i64 65+55+134−217+234−217−417+317+170+3817
                          • x344 = cos 359π255 + i sin359π255 = −1128 65−55−11−17+34−217+217+317+170+3817132 7+65+5+534−217−234−217−417+317170+3817i64 7+65+5+51−17+34−217+217+317+170+3817 + i64 65−55−134−217−234−217−417+317170+3817
                          • x345 = cos 361π255 + i sin361π255 = 1128 65−55−1−1+17+34−217+217+317170+3817132 7+65+5+534−217+234−217−417+317+170+3817i64 7+65+5+5−1+17+34−217+217+317170+3817i64 65−55−134−217+234−217−417+317+170+3817
                          • x346 = cos 367π255 + i sin367π255 = 1128 65+55+11+17+34+217−217−317170−3817132 7+65−5534+217−234+217+417−317+170−3817i64 7+65−551+17+34+217−217−317170−3817i64 65+55+134+217−234+217+417−317+170−3817
                          • x347 = cos 371π255 + i sin371π255 = 1128 65−5+5+11+1734+217+217−317+170−3817132 7−65+5+534+217+234+217+417−317170−3817i64 7−65+5+51+1734+217+217−317+170−3817i64 65−5+5+134+217+234+217+417−317170−3817
                          • x348 = cos 373π255 + i sin373π255 = 1128 65+5+5−1−1+17+34−217−217+317170+3817132 7−65−5534−217+234−217+417+317+170+3817i64 7−65−55−1+17+34−217−217+317170+3817i64 65+5+5−134−217+234−217+417+317+170+3817
                          • x349 = cos 377π255 + i sin377π255 = −1128 65+5+5−11+1734+217+217−317+170−3817 + 132 7−65−5534+217+234+217+417−317170−3817i64 7−65−551+1734+217+217−317+170−3817i64 65+5+5−134+217+234+217+417−317170−3817
                          • x350 = cos 379π255 + i sin379π255 = −1128 65−5+5+1−1−17+34+217+217−317+170−3817 + 132 7−65+5+534+217+234+217−417−317170−3817i64 7−65+5+5−1−17+34+217+217−317+170−3817i64 65−5+5+134+217+234+217−417−317170−3817
                          • x351 = cos 383π255 + i sin383π255 = −1128 65+55+1−1+1734−217+217+317+170+3817 + 132 7+65−5534−217−234−217+417+317170+3817i64 7+65−55−1+1734−217+217+317+170+3817i64 65+55+134−217−234−217+417+317170+3817
                          • x352 = cos 389π255 + i sin389π255 = −1128 65−55−11−17+34−217+217+317+170+3817 + 132 7+65+5+534−217−234−217−417+317170+3817i64 7+65+5+51−17+34−217+217+317+170+3817i64 65−55−134−217−234−217−417+317170+3817
                          • x353 = cos 397π255 + i sin397π255 = 1128 65+55+11+17+34+217+217−317170−3817132 7+65−5534+217−234+217−417−317+170−3817i64 7+65−551+17+34+217+217−317170−3817i64 65+55+134+217−234+217−417−317+170−3817
                          • x354 = cos 401π255 + i sin401π255 = 1128 65−5+5+11+17+34+217−217−317170−3817132 7−65+5+534+217−234+217+417−317+170−3817i64 7−65+5+51+17+34+217−217−317170−3817i64 65−5+5+134+217−234+217+417−317+170−3817
                          • x355 = cos 403π255 + i sin403π255 = 1128 65+5+5−1−1−17+34+217+217−317+170−3817132 7−65−5534+217+234+217−417−317170−3817i64 7−65−55−1−17+34+217+217−317+170−3817i64 65+5+5−134+217+234+217−417−317170−3817
                          • x356 = cos 407π255 + i sin407π255 = 1128 65+5+5−1−1+17+34−217−217+317170+3817 + 132 7−65−5534−217+234−217+417+317+170+3817 + i64 7−65−55−1+17+34−217−217+317170+3817i64 65+5+5−134−217+234−217+417+317+170+3817
                          • x357 = cos 409π255 + i sin409π255 = −1128 65−5+5+1−1+17+34−217−217+317170+3817 + 132 7−65+5+534−217+234−217+417+317+170+3817i64 7−65+5+5−1+17+34−217−217+317170+3817i64 65−5+5+134−217+234−217+417+317+170+3817
                          • x358 = cos 413π255 + i sin413π255 = −1128 65+55+1−1−17+34+217+217−317+170−3817 + 132 7+65−5534+217+234+217−417−317170−3817i64 7+65−55−1−17+34+217+217−317+170−3817i64 65+55+134+217+234+217−417−317170−3817
                          • x359 = cos 419π255 + i sin419π255 = −1128 65−55−11+17+34+217+217−317170−3817 + 132 7+65+5+534+217−234+217−417−317+170−3817i64 7+65+5+51+17+34+217+217−317170−3817i64 65−55−134+217−234+217−417−317+170−3817
                          • x360 = cos 421π255 + i sin421π255 = 1128 65−55−1−1+17+34−217+217+317170+3817 + 132 7+65+5+534−217+234−217−417+317+170+3817i64 7+65+5+5−1+17+34−217+217+317170+3817 + i64 65−55−134−217+234−217−417+317+170+3817
                          • x361 = cos 427π255 + i sin427π255 = 1128 65+55+11−17+34−217+217+317+170+3817132 7+65−5534−217−234−217−417+317170+3817i64 7+65−551−17+34−217+217+317+170+3817i64 65+55+134−217−234−217−417+317170+3817
                          • x362 = cos 431π255 + i sin431π255 = 1128 65−5+5+11+17+34+217+217−317170−3817132 7−65+5+534+217−234+217−417−317+170−3817i64 7−65+5+51+17+34+217+217−317170−3817i64 65−5+5+134+217−234+217−417−317+170−3817
                          • x363 = cos 433π255 + i sin433π255 = 1128 65+5+5−1−1+1734−217+217+317+170+3817132 7−65−5534−217−234−217+417+317170+3817i64 7−65−55−1+1734−217+217+317+170+3817i64 65+5+5−134−217−234−217+417+317170+3817
                          • x364 = cos 437π255 + i sin437π255 = 1128 65+5+5−1−1−17+34+217+217−317+170−3817 + 132 7−65−5534+217+234+217−417−317170−3817 + i64 7−65−55−1−17+34+217+217−317+170−3817i64 65+5+5−134+217+234+217−417−317170−3817
                          • x365 = cos 439π255 + i sin439π255 = 1128 65−5+5+11+1734+217+217−317+170−3817 + 132 7−65+5+534+217+234+217+417−317170−3817 + i64 7−65+5+51+1734+217+217−317+170−3817i64 65−5+5+134+217+234+217+417−317170−3817
                          • x366 = cos 443π255 + i sin443π255 = −1128 65+55+1−1+17+34−217−217+317170+3817 + 132 7+65−5534−217+234−217+417+317+170+3817i64 7+65−55−1+17+34−217−217+317170+3817i64 65+55+134−217+234−217+417+317+170+3817
                          • x367 = cos 449π255 + i sin449π255 = −1128 65−55−11+17+34+217−217−317170−3817 + 132 7+65+5+534+217−234+217+417−317+170−3817i64 7+65+5+51+17+34+217−217−317170−3817i64 65−55−134+217−234+217+417−317+170−3817
                          • x368 = cos 451π255 + i sin451π255 = 1128 65−55−1−1+1734−217+217+317+170+3817 + 132 7+65+5+534−217−234−217+417+317170+3817i64 7+65+5+5−1+1734−217+217+317+170+3817 + i64 65−55−134−217−234−217+417+317170+3817
                          • x369 = cos 457π255 + i sin457π255 = 1128 65+55+11−17+34−217+217+317+170+3817 + 132 7+65−5534−217−234−217−417+317170+3817i64 7+65−551−17+34−217+217+317+170+3817 + i64 65+55+134−217−234−217−417+317170+3817
                          • x370 = cos 461π255 + i sin461π255 = 1128 65−5+5+11−17+34−217+217+317+170+3817132 7−65+5+534−217−234−217−417+317170+3817i64 7−65+5+51−17+34−217+217+317+170+3817i64 65−5+5+134−217−234−217−417+317170+3817
                          • x371 = cos 463π255 + i sin463π255 = 1128 65+5+5−1−1+17+34−217+217+317170+3817132 7−65−5534−217+234−217−417+317+170+3817i64 7−65−55−1+17+34−217+217+317170+3817i64 65+5+5−134−217+234−217−417+317+170+3817
                          • x372 = cos 467π255 + i sin467π255 = 1128 65+5+5−1−1+1734−217+217+317+170+3817 + 132 7−65−5534−217−234−217+417+317170+3817 + i64 7−65−55−1+1734−217+217+317+170+3817i64 65+5+5−134−217−234−217+417+317170+3817
                          • x373 = cos 469π255 + i sin469π255 = 1128 65−5+5+11+17+34+217−217−317170−3817 + 132 7−65+5+534+217−234+217+417−317+170−3817 + i64 7−65+5+51+17+34+217−217−317170−3817i64 65−5+5+134+217−234+217+417−317+170−3817
                          • x374 = cos 473π255 + i sin473π255 = 1128 65+55+11+1734+217+217−317+170−3817 + 132 7+65−5534+217+234+217+417−317170−3817 + i64 7+65−551+1734+217+217−317+170−3817i64 65+55+134+217+234+217+417−317170−3817
                          • x375 = cos 479π255 + i sin479π255 = −1128 65−55−11+1734+217+217−317+170−3817 + 132 7+65+5+534+217+234+217+417−317170−3817i64 7+65+5+51+1734+217+217−317+170−3817i64 65−55−134+217+234+217+417−317170−3817
                          • x376 = cos 481π255 + i sin481π255 = 1128 65−55−1−1−17+34+217+217−317+170−3817 + 132 7+65+5+534+217+234+217−417−317170−3817i64 7+65+5+5−1−17+34+217+217−317+170−3817 + i64 65−55−134+217+234+217−417−317170−3817
                          • x377 = cos 487π255 + i sin487π255 = 1128 65+55+11+17+34+217+217−317170−3817 + 132 7+65−5534+217−234+217−417−317+170−3817i64 7+65−551+17+34+217+217−317170−3817 + i64 65+55+134+217−234+217−417−317+170−3817
                          • x378 = cos 491π255 + i sin491π255 = 1128 65−5+5+11−17+34−217+217+317+170+3817 + 132 7−65+5+534−217−234−217−417+317170+3817i64 7−65+5+51−17+34−217+217+317+170+3817 + i64 65−5+5+134−217−234−217−417+317170+3817
                          • x379 = cos 497π255 + i sin497π255 = 1128 65+5+5−1−1+17+34−217+217+317170+3817 + 132 7−65−5534−217+234−217−417+317+170+3817 + i64 7−65−55−1+17+34−217+217+317170+3817i64 65+5+5−134−217+234−217−417+317+170+3817
                          • x380 = cos 499π255 + i sin499π255 = 1128 65−5+5+11+17+34+217+217−317170−3817 + 132 7−65+5+534+217−234+217−417−317+170−3817 + i64 7−65+5+51+17+34+217+217−317170−3817i64 65−5+5+134+217−234+217−417−317+170−3817
                          • x381 = cos 503π255 + i sin503π255 = 1128 65+55+11+17+34+217−217−317170−3817 + 132 7+65−5534+217−234+217+417−317+170−3817 + i64 7+65−551+17+34+217−217−317170−3817i64 65+55+134+217−234+217+417−317+170−3817
                          • x382 = cos 509π255 + i sin509π255 = 1128 65−55−1−1+17+34−217−217+317170+3817 + 132 7+65+5+534−217+234−217+417+317+170+3817 + i64 7+65+5+5−1+17+34−217−217+317170+3817i64 65−55−134−217+234−217+417+317+170+3817
                          • x383 = cos 2π255 + i sin2π255 = 1128 65+5+5−11−17+34−217+217+317+170+3817 + 132 7−65−5534−217−234−217−417+317170+3817 + i64 7−65−551−17+34−217+217+317+170+3817i64 65+5+5−134−217−234−217−417+317170+3817
                          • x384 = cos 4π255 + i sin4π255 = 1128 65−5+5+1−1+17+34−217+217+317170+3817 + 132 7−65+5+534−217+234−217−417+317+170+3817 + i64 7−65+5+5−1+17+34−217+217+317170+3817i64 65−5+5+134−217+234−217−417+317+170+3817
                          • x385 = cos 8π255 + i sin8π255 = 1128 65+55+1−1+1734−217+217+317+170+3817 + 132 7+65−5534−217−234−217+417+317170+3817 + i64 7+65−55−1+1734−217+217+317+170+3817i64 65+55+134−217−234−217+417+317170+3817
                          • x386 = cos 14π255 + i sin14π255 = 1128 65−55−11+1734+217+217−317+170−3817 + 132 7+65+5+534+217+234+217+417−317170−3817 + i64 7+65+5+51+1734+217+217−317+170−3817i64 65−55−134+217+234+217+417−317170−3817
                          • x387 = cos 16π255 + i sin16π255 = −1128 65−55−1−1+17+34−217−217+317170+3817 + 132 7+65+5+534−217+234−217+417+317+170+3817 + i64 7+65+5+5−1+17+34−217−217+317170+3817 + i64 65−55−134−217+234−217+417+317+170+3817
                          • x388 = cos 22π255 + i sin22π255 = 1128 65+55+1−1−17+34+217+217−317+170−3817 + 132 7+65−5534+217+234+217−417−317170−3817i64 7+65−55−1−17+34+217+217−317+170−3817 + i64 65+55+134+217+234+217−417−317170−3817
                          • x389 = cos 26π255 + i sin26π255 = 1128 65−5+5+1−1+1734−217+217+317+170+3817 + 132 7−65+5+534−217−234−217+417+317170+3817i64 7−65+5+5−1+1734−217+217+317+170+3817 + i64 65−5+5+134−217−234−217+417+317170+3817
                          • x390 = cos 28π255 + i sin28π255 = 1128 65+5+5−11+17+34+217+217−317170−3817 + 132 7−65−5534+217−234+217−417−317+170−3817i64 7−65−551+17+34+217+217−317170−3817 + i64 65+5+5−134+217−234+217−417−317+170−3817
                          • x391 = cos 32π255 + i sin32π255 = 1128 65+5+5−11−17+34−217+217+317+170+3817132 7−65−5534−217−234−217−417+317170+3817 + i64 7−65−551−17+34−217+217+317+170+3817 + i64 65+5+5−134−217−234−217−417+317170+3817
                          • x392 = cos 38π255 + i sin38π255 = 1128 65+55+1−1+17+34−217+217+317170+3817 + 132 7+65−5534−217+234−217−417+317+170+3817 + i64 7+65−55−1+17+34−217+217+317170+3817i64 65+55+134−217+234−217−417+317+170+3817
                          • x393 = cos 44π255 + i sin44π255 = 1128 65−55−11+17+34+217−217−317170−3817 + 132 7+65+5+534+217−234+217+417−317+170−3817 + i64 7+65+5+51+17+34+217−217−317170−3817i64 65−55−134+217−234+217+417−317+170−3817
                          • x394 = cos 46π255 + i sin46π255 = −1128 65−55−1−1−17+34+217+217−317+170−3817 + 132 7+65+5+534+217+234+217−417−317170−3817 + i64 7+65+5+5−1−17+34+217+217−317+170−3817 + i64 65−55−134+217+234+217−417−317170−3817
                          • x395 = cos 52π255 + i sin52π255 = 1128 65+55+1−1+17+34−217−217+317170+3817 + 132 7+65−5534−217+234−217+417+317+170+3817i64 7+65−55−1+17+34−217−217+317170+3817 + i64 65+55+134−217+234−217+417+317+170+3817
                          • x396 = cos 56π255 + i sin56π255 = 1128 65−5+5+1−1−17+34+217+217−317+170−3817 + 132 7−65+5+534+217+234+217−417−317170−3817i64 7−65+5+5−1−17+34+217+217−317+170−3817 + i64 65−5+5+134+217+234+217−417−317170−3817
                          • x397 = cos 58π255 + i sin58π255 = 1128 65+5+5−11+17+34+217−217−317170−3817 + 132 7−65−5534+217−234+217+417−317+170−3817i64 7−65−551+17+34+217−217−317170−3817 + i64 65+5+5−134+217−234+217+417−317+170−3817
                          • x398 = cos 62π255 + i sin62π255 = 1128 65+5+5−11+17+34+217+217−317170−3817132 7−65−5534+217−234+217−417−317+170−3817 + i64 7−65−551+17+34+217+217−317170−3817 + i64 65+5+5−134+217−234+217−417−317+170−3817
                          • x399 = cos 64π255 + i sin64π255 = 1128 65−5+5+1−1+17+34−217+217+317170+3817132 7−65+5+534−217+234−217−417+317+170+3817 + i64 7−65+5+5−1+17+34−217+217+317170+3817 + i64 65−5+5+134−217+234−217−417+317+170+3817
                          • x400 = cos 74π255 + i sin74π255 = 1128 65−55−11+17+34+217+217−317170−3817 + 132 7+65+5+534+217−234+217−417−317+170−3817 + i64 7+65+5+51+17+34+217+217−317170−3817i64 65−55−134+217−234+217−417−317+170−3817
                          • x401 = cos 76π255 + i sin76π255 = −1128 65−55−1−1+1734−217+217+317+170+3817 + 132 7+65+5+534−217−234−217+417+317170+3817 + i64 7+65+5+5−1+1734−217+217+317+170+3817 + i64 65−55−134−217−234−217+417+317170+3817
                          • x402 = cos 82π255 + i sin82π255 = −1128 65+55+11+1734+217+217−317+170−3817 + 132 7+65−5534+217+234+217+417−317170−3817 + i64 7+65−551+1734+217+217−317+170−3817 + i64 65+55+134+217+234+217+417−317170−3817
                          • x403 = cos 86π255 + i sin86π255 = 1128 65−5+5+1−1+17+34−217−217+317170+3817 + 132 7−65+5+534−217+234−217+417+317+170+3817i64 7−65+5+5−1+17+34−217−217+317170+3817 + i64 65−5+5+134−217+234−217+417+317+170+3817
                          • x404 = cos 88π255 + i sin88π255 = 1128 65+5+5−11+1734+217+217−317+170−3817 + 132 7−65−5534+217+234+217+417−317170−3817i64 7−65−551+1734+217+217−317+170−3817 + i64 65+5+5−134+217+234+217+417−317170−3817
                          • x405 = cos 92π255 + i sin92π255 = 1128 65+5+5−11+17+34+217−217−317170−3817132 7−65−5534+217−234+217+417−317+170−3817 + i64 7−65−551+17+34+217−217−317170−3817 + i64 65+5+5−134+217−234+217+417−317+170−3817
                          • x406 = cos 94π255 + i sin94π255 = 1128 65−5+5+1−1+1734−217+217+317+170+3817132 7−65+5+534−217−234−217+417+317170+3817 + i64 7−65+5+5−1+1734−217+217+317+170+3817 + i64 65−5+5+134−217−234−217+417+317170+3817
                          • x407 = cos 98π255 + i sin98π255 = 1128 65+55+1−1+17+34−217+217+317170+3817132 7+65−5534−217+234−217−417+317+170+3817 + i64 7+65−55−1+17+34−217+217+317170+3817 + i64 65+55+134−217+234−217−417+317+170+3817
                          • x408 = cos 104π255 + i sin104π255 = 1128 65−55−11−17+34−217+217+317+170+3817 + 132 7+65+5+534−217−234−217−417+317170+3817 + i64 7+65+5+51−17+34−217+217+317+170+3817i64 65−55−134−217−234−217−417+317170+3817
                          • x409 = cos 106π255 + i sin106π255 = −1128 65−55−1−1+17+34−217+217+317170+3817 + 132 7+65+5+534−217+234−217−417+317+170+3817 + i64 7+65+5+5−1+17+34−217+217+317170+3817 + i64 65−55−134−217+234−217−417+317+170+3817
                          • x410 = cos 112π255 + i sin112π255 = −1128 65+55+11+17+34+217−217−317170−3817 + 132 7+65−5534+217−234+217+417−317+170−3817 + i64 7+65−551+17+34+217−217−317170−3817 + i64 65+55+134+217−234+217+417−317+170−3817
                          • x411 = cos 116π255 + i sin116π255 = −1128 65−5+5+11+1734+217+217−317+170−3817 + 132 7−65+5+534+217+234+217+417−317170−3817 + i64 7−65+5+51+1734+217+217−317+170−3817 + i64 65−5+5+134+217+234+217+417−317170−3817
                          • x412 = cos 118π255 + i sin118π255 = −1128 65+5+5−1−1+17+34−217−217+317170+3817 + 132 7−65−5534−217+234−217+417+317+170+3817 + i64 7−65−55−1+17+34−217−217+317170+3817 + i64 65+5+5−134−217+234−217+417+317+170+3817
                          • x413 = cos 122π255 + i sin122π255 = 1128 65+5+5−11+1734+217+217−317+170−3817132 7−65−5534+217+234+217+417−317170−3817 + i64 7−65−551+1734+217+217−317+170−3817 + i64 65+5+5−134+217+234+217+417−317170−3817
                          • x414 = cos 124π255 + i sin124π255 = 1128 65−5+5+1−1−17+34+217+217−317+170−3817132 7−65+5+534+217+234+217−417−317170−3817 + i64 7−65+5+5−1−17+34+217+217−317+170−3817 + i64 65−5+5+134+217+234+217−417−317170−3817
                          • x415 = cos 128π255 + i sin128π255 = 1128 65+55+1−1+1734−217+217+317+170+3817132 7+65−5534−217−234−217+417+317170+3817 + i64 7+65−55−1+1734−217+217+317+170+3817 + i64 65+55+134−217−234−217+417+317170+3817
                          • x416 = cos 134π255 + i sin134π255 = 1128 65−55−11−17+34−217+217+317+170+3817132 7+65+5+534−217−234−217−417+317170+3817 + i64 7+65+5+51−17+34−217+217+317+170+3817 + i64 65−55−134−217−234−217−417+317170+3817
                          • x417 = cos 142π255 + i sin142π255 = −1128 65+55+11+17+34+217+217−317170−3817 + 132 7+65−5534+217−234+217−417−317+170−3817 + i64 7+65−551+17+34+217+217−317170−3817 + i64 65+55+134+217−234+217−417−317+170−3817
                          • x418 = cos 146π255 + i sin146π255 = −1128 65−5+5+11+17+34+217−217−317170−3817 + 132 7−65+5+534+217−234+217+417−317+170−3817 + i64 7−65+5+51+17+34+217−217−317170−3817 + i64 65−5+5+134+217−234+217+417−317+170−3817
                          • x419 = cos 148π255 + i sin148π255 = −1128 65+5+5−1−1−17+34+217+217−317+170−3817 + 132 7−65−5534+217+234+217−417−317170−3817 + i64 7−65−55−1−17+34+217+217−317+170−3817 + i64 65+5+5−134+217+234+217−417−317170−3817
                          • x420 = cos 152π255 + i sin152π255 = −1128 65+5+5−1−1+17+34−217−217+317170+3817132 7−65−5534−217+234−217+417+317+170+3817i64 7−65−55−1+17+34−217−217+317170+3817 + i64 65+5+5−134−217+234−217+417+317+170+3817
                          • x421 = cos 154π255 + i sin154π255 = 1128 65−5+5+1−1+17+34−217−217+317170+3817132 7−65+5+534−217+234−217+417+317+170+3817 + i64 7−65+5+5−1+17+34−217−217+317170+3817 + i64 65−5+5+134−217+234−217+417+317+170+3817
                          • x422 = cos 158π255 + i sin158π255 = 1128 65+55+1−1−17+34+217+217−317+170−3817132 7+65−5534+217+234+217−417−317170−3817 + i64 7+65−55−1−17+34+217+217−317+170−3817 + i64 65+55+134+217+234+217−417−317170−3817
                          • x423 = cos 164π255 + i sin164π255 = 1128 65−55−11+17+34+217+217−317170−3817132 7+65+5+534+217−234+217−417−317+170−3817 + i64 7+65+5+51+17+34+217+217−317170−3817 + i64 65−55−134+217−234+217−417−317+170−3817
                          • x424 = cos 166π255 + i sin166π255 = −1128 65−55−1−1+17+34−217+217+317170+3817132 7+65+5+534−217+234−217−417+317+170+3817 + i64 7+65+5+5−1+17+34−217+217+317170+3817i64 65−55−134−217+234−217−417+317+170+3817
                          • x425 = cos 172π255 + i sin172π255 = −1128 65+55+11−17+34−217+217+317+170+3817 + 132 7+65−5534−217−234−217−417+317170+3817 + i64 7+65−551−17+34−217+217+317+170+3817 + i64 65+55+134−217−234−217−417+317170+3817
                          • x426 = cos 176π255 + i sin176π255 = −1128 65−5+5+11+17+34+217+217−317170−3817 + 132 7−65+5+534+217−234+217−417−317+170−3817 + i64 7−65+5+51+17+34+217+217−317170−3817 + i64 65−5+5+134+217−234+217−417−317+170−3817
                          • x427 = cos 178π255 + i sin178π255 = −1128 65+5+5−1−1+1734−217+217+317+170+3817 + 132 7−65−5534−217−234−217+417+317170+3817 + i64 7−65−55−1+1734−217+217+317+170+3817 + i64 65+5+5−134−217−234−217+417+317170+3817
                          • x428 = cos 182π255 + i sin182π255 = −1128 65+5+5−1−1−17+34+217+217−317+170−3817132 7−65−5534+217+234+217−417−317170−3817i64 7−65−55−1−17+34+217+217−317+170−3817 + i64 65+5+5−134+217+234+217−417−317170−3817
                          • x429 = cos 184π255 + i sin184π255 = −1128 65−5+5+11+1734+217+217−317+170−3817132 7−65+5+534+217+234+217+417−317170−3817i64 7−65+5+51+1734+217+217−317+170−3817 + i64 65−5+5+134+217+234+217+417−317170−3817
                          • x430 = cos 188π255 + i sin188π255 = 1128 65+55+1−1+17+34−217−217+317170+3817132 7+65−5534−217+234−217+417+317+170+3817 + i64 7+65−55−1+17+34−217−217+317170+3817 + i64 65+55+134−217+234−217+417+317+170+3817
                          • x431 = cos 194π255 + i sin194π255 = 1128 65−55−11+17+34+217−217−317170−3817132 7+65+5+534+217−234+217+417−317+170−3817 + i64 7+65+5+51+17+34+217−217−317170−3817 + i64 65−55−134+217−234+217+417−317+170−3817
                          • x432 = cos 196π255 + i sin196π255 = −1128 65−55−1−1+1734−217+217+317+170+3817132 7+65+5+534−217−234−217+417+317170+3817 + i64 7+65+5+5−1+1734−217+217+317+170+3817i64 65−55−134−217−234−217+417+317170+3817
                          • x433 = cos 202π255 + i sin202π255 = −1128 65+55+11−17+34−217+217+317+170+3817132 7+65−5534−217−234−217−417+317170+3817 + i64 7+65−551−17+34−217+217+317+170+3817i64 65+55+134−217−234−217−417+317170+3817
                          • x434 = cos 206π255 + i sin206π255 = −1128 65−5+5+11−17+34−217+217+317+170+3817 + 132 7−65+5+534−217−234−217−417+317170+3817 + i64 7−65+5+51−17+34−217+217+317+170+3817 + i64 65−5+5+134−217−234−217−417+317170+3817
                          • x435 = cos 208π255 + i sin208π255 = −1128 65+5+5−1−1+17+34−217+217+317170+3817 + 132 7−65−5534−217+234−217−417+317+170+3817 + i64 7−65−55−1+17+34−217+217+317170+3817 + i64 65+5+5−134−217+234−217−417+317+170+3817
                          • x436 = cos 212π255 + i sin212π255 = −1128 65+5+5−1−1+1734−217+217+317+170+3817132 7−65−5534−217−234−217+417+317170+3817i64 7−65−55−1+1734−217+217+317+170+3817 + i64 65+5+5−134−217−234−217+417+317170+3817
                          • x437 = cos 214π255 + i sin214π255 = −1128 65−5+5+11+17+34+217−217−317170−3817132 7−65+5+534+217−234+217+417−317+170−3817i64 7−65+5+51+17+34+217−217−317170−3817 + i64 65−5+5+134+217−234+217+417−317+170−3817
                          • x438 = cos 218π255 + i sin218π255 = −1128 65+55+11+1734+217+217−317+170−3817132 7+65−5534+217+234+217+417−317170−3817i64 7+65−551+1734+217+217−317+170−3817 + i64 65+55+134+217+234+217+417−317170−3817
                          • x439 = cos 224π255 + i sin224π255 = 1128 65−55−11+1734+217+217−317+170−3817132 7+65+5+534+217+234+217+417−317170−3817 + i64 7+65+5+51+1734+217+217−317+170−3817 + i64 65−55−134+217+234+217+417−317170−3817
                          • x440 = cos 226π255 + i sin226π255 = −1128 65−55−1−1−17+34+217+217−317+170−3817132 7+65+5+534+217+234+217−417−317170−3817 + i64 7+65+5+5−1−17+34+217+217−317+170−3817i64 65−55−134+217+234+217−417−317170−3817
                          • x441 = cos 232π255 + i sin232π255 = −1128 65+55+11+17+34+217+217−317170−3817132 7+65−5534+217−234+217−417−317+170−3817 + i64 7+65−551+17+34+217+217−317170−3817i64 65+55+134+217−234+217−417−317+170−3817
                          • x442 = cos 236π255 + i sin236π255 = −1128 65−5+5+11−17+34−217+217+317+170+3817132 7−65+5+534−217−234−217−417+317170+3817 + i64 7−65+5+51−17+34−217+217+317+170+3817i64 65−5+5+134−217−234−217−417+317170+3817
                          • x443 = cos 242π255 + i sin242π255 = −1128 65+5+5−1−1+17+34−217+217+317170+3817132 7−65−5534−217+234−217−417+317+170+3817i64 7−65−55−1+17+34−217+217+317170+3817 + i64 65+5+5−134−217+234−217−417+317+170+3817
                          • x444 = cos 244π255 + i sin244π255 = −1128 65−5+5+11+17+34+217+217−317170−3817132 7−65+5+534+217−234+217−417−317+170−3817i64 7−65+5+51+17+34+217+217−317170−3817 + i64 65−5+5+134+217−234+217−417−317+170−3817
                          • x445 = cos 248π255 + i sin248π255 = −1128 65+55+11+17+34+217−217−317170−3817132 7+65−5534+217−234+217+417−317+170−3817i64 7+65−551+17+34+217−217−317170−3817 + i64 65+55+134+217−234+217+417−317+170−3817
                          • x446 = cos 254π255 + i sin254π255 = −1128 65−55−1−1+17+34−217−217+317170+3817132 7+65+5+534−217+234−217+417+317+170+3817i64 7+65+5+5−1+17+34−217−217+317170+3817 + i64 65−55−134−217+234−217+417+317+170+3817
                          • x447 = cos 256π255 + i sin256π255 = −1128 65−55−1−1+17+34−217−217+317170+3817132 7+65+5+534−217+234−217+417+317+170+3817 + i64 7+65+5+5−1+17+34−217−217+317170+3817i64 65−55−134−217+234−217+417+317+170+3817
                          • x448 = cos 262π255 + i sin262π255 = −1128 65+55+11+17+34+217−217−317170−3817132 7+65−5534+217−234+217+417−317+170−3817 + i64 7+65−551+17+34+217−217−317170−3817i64 65+55+134+217−234+217+417−317+170−3817
                          • x449 = cos 266π255 + i sin266π255 = −1128 65−5+5+11+17+34+217+217−317170−3817132 7−65+5+534+217−234+217−417−317+170−3817 + i64 7−65+5+51+17+34+217+217−317170−3817i64 65−5+5+134+217−234+217−417−317+170−3817
                          • x450 = cos 268π255 + i sin268π255 = −1128 65+5+5−1−1+17+34−217+217+317170+3817132 7−65−5534−217+234−217−417+317+170+3817 + i64 7−65−55−1+17+34−217+217+317170+3817i64 65+5+5−134−217+234−217−417+317+170+3817
                          • x451 = cos 274π255 + i sin274π255 = −1128 65−5+5+11−17+34−217+217+317+170+3817132 7−65+5+534−217−234−217−417+317170+3817i64 7−65+5+51−17+34−217+217+317+170+3817 + i64 65−5+5+134−217−234−217−417+317170+3817
                          • x452 = cos 278π255 + i sin278π255 = −1128 65+55+11+17+34+217+217−317170−3817132 7+65−5534+217−234+217−417−317+170−3817i64 7+65−551+17+34+217+217−317170−3817 + i64 65+55+134+217−234+217−417−317+170−3817
                          • x453 = cos 284π255 + i sin284π255 = −1128 65−55−1−1−17+34+217+217−317+170−3817132 7+65+5+534+217+234+217−417−317170−3817i64 7+65+5+5−1−17+34+217+217−317+170−3817 + i64 65−55−134+217+234+217−417−317170−3817
                          • x454 = cos 286π255 + i sin286π255 = 1128 65−55−11+1734+217+217−317+170−3817132 7+65+5+534+217+234+217+417−317170−3817i64 7+65+5+51+1734+217+217−317+170−3817i64 65−55−134+217+234+217+417−317170−3817
                          • x455 = cos 292π255 + i sin292π255 = −1128 65+55+11+1734+217+217−317+170−3817132 7+65−5534+217+234+217+417−317170−3817 + i64 7+65−551+1734+217+217−317+170−3817i64 65+55+134+217+234+217+417−317170−3817
                          • x456 = cos 296π255 + i sin296π255 = −1128 65−5+5+11+17+34+217−217−317170−3817132 7−65+5+534+217−234+217+417−317+170−3817 + i64 7−65+5+51+17+34+217−217−317170−3817i64 65−5+5+134+217−234+217+417−317+170−3817
                          • x457 = cos 298π255 + i sin298π255 = −1128 65+5+5−1−1+1734−217+217+317+170+3817132 7−65−5534−217−234−217+417+317170+3817 + i64 7−65−55−1+1734−217+217+317+170+3817i64 65+5+5−134−217−234−217+417+317170+3817
                          • x458 = cos 302π255 + i sin302π255 = −1128 65+5+5−1−1+17+34−217+217+317170+3817 + 132 7−65−5534−217+234−217−417+317+170+3817i64 7−65−55−1+17+34−217+217+317170+3817i64 65+5+5−134−217+234−217−417+317+170+3817
                          • x459 = cos 304π255 + i sin304π255 = −1128 65−5+5+11−17+34−217+217+317+170+3817 + 132 7−65+5+534−217−234−217−417+317170+3817i64 7−65+5+51−17+34−217+217+317+170+3817i64 65−5+5+134−217−234−217−417+317170+3817
                          • x460 = cos 308π255 + i sin308π255 = −1128 65+55+11−17+34−217+217+317+170+3817132 7+65−5534−217−234−217−417+317170+3817i64 7+65−551−17+34−217+217+317+170+3817 + i64 65+55+134−217−234−217−417+317170+3817
                          • x461 = cos 314π255 + i sin314π255 = −1128 65−55−1−1+1734−217+217+317+170+3817132 7+65+5+534−217−234−217+417+317170+3817i64 7+65+5+5−1+1734−217+217+317+170+3817 + i64 65−55−134−217−234−217+417+317170+3817
                          • x462 = cos 316π255 + i sin316π255 = 1128 65−55−11+17+34+217−217−317170−3817132 7+65+5+534+217−234+217+417−317+170−3817i64 7+65+5+51+17+34+217−217−317170−3817i64 65−55−134+217−234+217+417−317+170−3817
                          • x463 = cos 322π255 + i sin322π255 = 1128 65+55+1−1+17+34−217−217+317170+3817132 7+65−5534−217+234−217+417+317+170+3817i64 7+65−55−1+17+34−217−217+317170+3817i64 65+55+134−217+234−217+417+317+170+3817
                          • x464 = cos 326π255 + i sin326π255 = −1128 65−5+5+11+1734+217+217−317+170−3817132 7−65+5+534+217+234+217+417−317170−3817 + i64 7−65+5+51+1734+217+217−317+170−3817i64 65−5+5+134+217+234+217+417−317170−3817
                          • x465 = cos 328π255 + i sin328π255 = −1128 65+5+5−1−1−17+34+217+217−317+170−3817132 7−65−5534+217+234+217−417−317170−3817 + i64 7−65−55−1−17+34+217+217−317+170−3817i64 65+5+5−134+217+234+217−417−317170−3817
                          • x466 = cos 332π255 + i sin332π255 = −1128 65+5+5−1−1+1734−217+217+317+170+3817 + 132 7−65−5534−217−234−217+417+317170+3817i64 7−65−55−1+1734−217+217+317+170+3817i64 65+5+5−134−217−234−217+417+317170+3817
                          • x467 = cos 334π255 + i sin334π255 = −1128 65−5+5+11+17+34+217+217−317170−3817 + 132 7−65+5+534+217−234+217−417−317+170−3817i64 7−65+5+51+17+34+217+217−317170−3817i64 65−5+5+134+217−234+217−417−317+170−3817
                          • x468 = cos 338π255 + i sin338π255 = −1128 65+55+11−17+34−217+217+317+170+3817 + 132 7+65−5534−217−234−217−417+317170+3817i64 7+65−551−17+34−217+217+317+170+3817i64 65+55+134−217−234−217−417+317170+3817
                          • x469 = cos 344π255 + i sin344π255 = −1128 65−55−1−1+17+34−217+217+317170+3817132 7+65+5+534−217+234−217−417+317+170+3817i64 7+65+5+5−1+17+34−217+217+317170+3817 + i64 65−55−134−217+234−217−417+317+170+3817
                          • x470 = cos 346π255 + i sin346π255 = 1128 65−55−11+17+34+217+217−317170−3817132 7+65+5+534+217−234+217−417−317+170−3817i64 7+65+5+51+17+34+217+217−317170−3817i64 65−55−134+217−234+217−417−317+170−3817
                          • x471 = cos 352π255 + i sin352π255 = 1128 65+55+1−1−17+34+217+217−317+170−3817132 7+65−5534+217+234+217−417−317170−3817i64 7+65−55−1−17+34+217+217−317+170−3817i64 65+55+134+217+234+217−417−317170−3817
                          • x472 = cos 356π255 + i sin356π255 = 1128 65−5+5+1−1+17+34−217−217+317170+3817132 7−65+5+534−217+234−217+417+317+170+3817i64 7−65+5+5−1+17+34−217−217+317170+3817i64 65−5+5+134−217+234−217+417+317+170+3817
                          • x473 = cos 358π255 + i sin358π255 = −1128 65+5+5−1−1+17+34−217−217+317170+3817132 7−65−5534−217+234−217+417+317+170+3817 + i64 7−65−55−1+17+34−217−217+317170+3817i64 65+5+5−134−217+234−217+417+317+170+3817
                          • x474 = cos 362π255 + i sin362π255 = −1128 65+5+5−1−1−17+34+217+217−317+170−3817 + 132 7−65−5534+217+234+217−417−317170−3817i64 7−65−55−1−17+34+217+217−317+170−3817i64 65+5+5−134+217+234+217−417−317170−3817
                          • x475 = cos 364π255 + i sin364π255 = −1128 65−5+5+11+17+34+217−217−317170−3817 + 132 7−65+5+534+217−234+217+417−317+170−3817i64 7−65+5+51+17+34+217−217−317170−3817i64 65−5+5+134+217−234+217+417−317+170−3817
                          • x476 = cos 368π255 + i sin368π255 = −1128 65+55+11+17+34+217+217−317170−3817 + 132 7+65−5534+217−234+217−417−317+170−3817i64 7+65−551+17+34+217+217−317170−3817i64 65+55+134+217−234+217−417−317+170−3817
                          • x477 = cos 376π255 + i sin376π255 = 1128 65−55−11−17+34−217+217+317+170+3817132 7+65+5+534−217−234−217−417+317170+3817i64 7+65+5+51−17+34−217+217+317+170+3817i64 65−55−134−217−234−217−417+317170+3817
                          • x478 = cos 382π255 + i sin382π255 = 1128 65+55+1−1+1734−217+217+317+170+3817132 7+65−5534−217−234−217+417+317170+3817i64 7+65−55−1+1734−217+217+317+170+3817i64 65+55+134−217−234−217+417+317170+3817
                          • x479 = cos 386π255 + i sin386π255 = 1128 65−5+5+1−1−17+34+217+217−317+170−3817132 7−65+5+534+217+234+217−417−317170−3817i64 7−65+5+5−1−17+34+217+217−317+170−3817i64 65−5+5+134+217+234+217−417−317170−3817
                          • x480 = cos 388π255 + i sin388π255 = 1128 65+5+5−11+1734+217+217−317+170−3817132 7−65−5534+217+234+217+417−317170−3817i64 7−65−551+1734+217+217−317+170−3817i64 65+5+5−134+217+234+217+417−317170−3817
                          • x481 = cos 392π255 + i sin392π255 = −1128 65+5+5−1−1+17+34−217−217+317170+3817 + 132 7−65−5534−217+234−217+417+317+170+3817i64 7−65−55−1+17+34−217−217+317170+3817i64 65+5+5−134−217+234−217+417+317+170+3817
                          • x482 = cos 394π255 + i sin394π255 = −1128 65−5+5+11+1734+217+217−317+170−3817 + 132 7−65+5+534+217+234+217+417−317170−3817i64 7−65+5+51+1734+217+217−317+170−3817i64 65−5+5+134+217+234+217+417−317170−3817
                          • x483 = cos 398π255 + i sin398π255 = −1128 65+55+11+17+34+217−217−317170−3817 + 132 7+65−5534+217−234+217+417−317+170−3817i64 7+65−551+17+34+217−217−317170−3817i64 65+55+134+217−234+217+417−317+170−3817
                          • x484 = cos 404π255 + i sin404π255 = −1128 65−55−1−1+17+34−217+217+317170+3817 + 132 7+65+5+534−217+234−217−417+317+170+3817i64 7+65+5+5−1+17+34−217+217+317170+3817i64 65−55−134−217+234−217−417+317+170+3817
                          • x485 = cos 406π255 + i sin406π255 = 1128 65−55−11−17+34−217+217+317+170+3817 + 132 7+65+5+534−217−234−217−417+317170+3817i64 7+65+5+51−17+34−217+217+317+170+3817 + i64 65−55−134−217−234−217−417+317170+3817
                          • x486 = cos 412π255 + i sin412π255 = 1128 65+55+1−1+17+34−217+217+317170+3817132 7+65−5534−217+234−217−417+317+170+3817i64 7+65−55−1+17+34−217+217+317170+3817i64 65+55+134−217+234−217−417+317+170+3817
                          • x487 = cos 416π255 + i sin416π255 = 1128 65−5+5+1−1+1734−217+217+317+170+3817132 7−65+5+534−217−234−217+417+317170+3817i64 7−65+5+5−1+1734−217+217+317+170+3817i64 65−5+5+134−217−234−217+417+317170+3817
                          • x488 = cos 418π255 + i sin418π255 = 1128 65+5+5−11+17+34+217−217−317170−3817132 7−65−5534+217−234+217+417−317+170−3817i64 7−65−551+17+34+217−217−317170−3817i64 65+5+5−134+217−234+217+417−317+170−3817
                          • x489 = cos 422π255 + i sin422π255 = 1128 65+5+5−11+1734+217+217−317+170−3817 + 132 7−65−5534+217+234+217+417−317170−3817 + i64 7−65−551+1734+217+217−317+170−3817i64 65+5+5−134+217+234+217+417−317170−3817
                          • x490 = cos 424π255 + i sin424π255 = 1128 65−5+5+1−1+17+34−217−217+317170+3817 + 132 7−65+5+534−217+234−217+417+317+170+3817 + i64 7−65+5+5−1+17+34−217−217+317170+3817i64 65−5+5+134−217+234−217+417+317+170+3817
                          • x491 = cos 428π255 + i sin428π255 = −1128 65+55+11+1734+217+217−317+170−3817 + 132 7+65−5534+217+234+217+417−317170−3817i64 7+65−551+1734+217+217−317+170−3817i64 65+55+134+217+234+217+417−317170−3817
                          • x492 = cos 434π255 + i sin434π255 = −1128 65−55−1−1+1734−217+217+317+170+3817 + 132 7+65+5+534−217−234−217+417+317170+3817i64 7+65+5+5−1+1734−217+217+317+170+3817i64 65−55−134−217−234−217+417+317170+3817
                          • x493 = cos 436π255 + i sin436π255 = 1128 65−55−11+17+34+217+217−317170−3817 + 132 7+65+5+534+217−234+217−417−317+170−3817i64 7+65+5+51+17+34+217+217−317170−3817 + i64 65−55−134+217−234+217−417−317+170−3817
                          • x494 = cos 446π255 + i sin446π255 = 1128 65−5+5+1−1+17+34−217+217+317170+3817132 7−65+5+534−217+234−217−417+317+170+3817i64 7−65+5+5−1+17+34−217+217+317170+3817i64 65−5+5+134−217+234−217−417+317+170+3817
                          • x495 = cos 448π255 + i sin448π255 = 1128 65+5+5−11+17+34+217+217−317170−3817132 7−65−5534+217−234+217−417−317+170−3817i64 7−65−551+17+34+217+217−317170−3817i64 65+5+5−134+217−234+217−417−317+170−3817
                          • x496 = cos 452π255 + i sin452π255 = 1128 65+5+5−11+17+34+217−217−317170−3817 + 132 7−65−5534+217−234+217+417−317+170−3817 + i64 7−65−551+17+34+217−217−317170−3817i64 65+5+5−134+217−234+217+417−317+170−3817
                          • x497 = cos 454π255 + i sin454π255 = 1128 65−5+5+1−1−17+34+217+217−317+170−3817 + 132 7−65+5+534+217+234+217−417−317170−3817 + i64 7−65+5+5−1−17+34+217+217−317+170−3817i64 65−5+5+134+217+234+217−417−317170−3817
                          • x498 = cos 458π255 + i sin458π255 = 1128 65+55+1−1+17+34−217−217+317170+3817 + 132 7+65−5534−217+234−217+417+317+170+3817 + i64 7+65−55−1+17+34−217−217+317170+3817i64 65+55+134−217+234−217+417+317+170+3817
                          • x499 = cos 464π255 + i sin464π255 = −1128 65−55−1−1−17+34+217+217−317+170−3817 + 132 7+65+5+534+217+234+217−417−317170−3817i64 7+65+5+5−1−17+34+217+217−317+170−3817i64 65−55−134+217+234+217−417−317170−3817
                          • x500 = cos 466π255 + i sin466π255 = 1128 65−55−11+17+34+217−217−317170−3817 + 132 7+65+5+534+217−234+217+417−317+170−3817i64 7+65+5+51+17+34+217−217−317170−3817 + i64 65−55−134+217−234+217+417−317+170−3817
                          • x501 = cos 472π255 + i sin472π255 = 1128 65+55+1−1+17+34−217+217+317170+3817 + 132 7+65−5534−217+234−217−417+317+170+3817i64 7+65−55−1+17+34−217+217+317170+3817 + i64 65+55+134−217+234−217−417+317+170+3817
                          • x502 = cos 478π255 + i sin478π255 = 1128 65+5+5−11−17+34−217+217+317+170+3817132 7−65−5534−217−234−217−417+317170+3817i64 7−65−551−17+34−217+217+317+170+3817i64 65+5+5−134−217−234−217−417+317170+3817
                          • x503 = cos 482π255 + i sin482π255 = 1128 65+5+5−11+17+34+217+217−317170−3817 + 132 7−65−5534+217−234+217−417−317+170−3817 + i64 7−65−551+17+34+217+217−317170−3817i64 65+5+5−134+217−234+217−417−317+170−3817
                          • x504 = cos 484π255 + i sin484π255 = 1128 65−5+5+1−1+1734−217+217+317+170+3817 + 132 7−65+5+534−217−234−217+417+317170+3817 + i64 7−65+5+5−1+1734−217+217+317+170+3817i64 65−5+5+134−217−234−217+417+317170+3817
                          • x505 = cos 488π255 + i sin488π255 = 1128 65+55+1−1−17+34+217+217−317+170−3817 + 132 7+65−5534+217+234+217−417−317170−3817 + i64 7+65−55−1−17+34+217+217−317+170−3817i64 65+55+134+217+234+217−417−317170−3817
                          • x506 = cos 494π255 + i sin494π255 = −1128 65−55−1−1+17+34−217−217+317170+3817 + 132 7+65+5+534−217+234−217+417+317+170+3817i64 7+65+5+5−1+17+34−217−217+317170+3817i64 65−55−134−217+234−217+417+317+170+3817
                          • x507 = cos 496π255 + i sin496π255 = 1128 65−55−11+1734+217+217−317+170−3817 + 132 7+65+5+534+217+234+217+417−317170−3817i64 7+65+5+51+1734+217+217−317+170−3817 + i64 65−55−134+217+234+217+417−317170−3817
                          • x508 = cos 502π255 + i sin502π255 = 1128 65+55+1−1+1734−217+217+317+170+3817 + 132 7+65−5534−217−234−217+417+317170+3817i64 7+65−55−1+1734−217+217+317+170+3817 + i64 65+55+134−217−234−217+417+317170+3817
                          • x509 = cos 506π255 + i sin506π255 = 1128 65−5+5+1−1+17+34−217+217+317170+3817 + 132 7−65+5+534−217+234−217−417+317+170+3817i64 7−65+5+5−1+17+34−217+217+317170+3817 + i64 65−5+5+134−217+234−217−417+317+170+3817
                          • x510 = cos 508π255 + i sin508π255 = 1128 65+5+5−11−17+34−217+217+317+170+3817 + 132 7−65−5534−217−234−217−417+317170+3817i64 7−65−551−17+34−217+217+317+170+3817 + i64 65+5+5−134−217−234−217−417+317170+3817

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x120 − 1

                          Irreducible polynomial factors

                          The 16 factors are:

                          • x − 1
                          • x + 1
                          • x2x + 1
                          • x2 + 1
                          • x2 + x + 1
                          • x4x3 + x2x + 1
                          • x4x2 + 1
                          • x4 + 1
                          • x4 + x3 + x2 + x + 1
                          • x8x7 + x5x4 + x3x + 1
                          • x8x6 + x4x2 + 1
                          • x8x4 + 1
                          • x8 + x7x5x4x3 + x + 1
                          • x16x12 + x8x4 + 1
                          • x16 + x14x10x8x6 + x2 + 1
                          • x32 + x28x20x16x12 + x4 + 1

                          Roots

                          The 120 roots are:

                          • x1 = 1
                          • x2 = -1
                          • x3 = 1212 3 i
                          • x4 = 12 + 12 3 i
                          • x5 = − 1 i
                          • x6 = 1 i
                          • x7 = -1212 3 i
                          • x8 = -12 + 12 3 i
                          • x9 = 14 + 14 5 + i -18 5 + 58
                          • x10 = 14 + 14 5 − i -18 5 + 58
                          • x11 = 1414 5 + i 18 5 + 58
                          • x12 = 1414 5 − i 18 5 + 58
                          • x13 = 12 3 + 12i
                          • x14 = 12 312i
                          • x15 = −12 3 + 12i
                          • x16 = −12 312i
                          • x17 = 12 + 12i
                          • x18 = 1212i
                          • x19 = −12 + 12i
                          • x20 = −1212i
                          • x21 = -14 + 14 5 + i 18 5 + 58
                          • x22 = -14 + 14 5 − i 18 5 + 58
                          • x23 = -1414 5 + i -18 5 + 58
                          • x24 = -1414 5 − i -18 5 + 58
                          • x25 = cos 2π15 + i sin2π15 = 18 65−5+5+1 + i4 7−65+5+5
                          • x26 = cos 4π15 + i sin4π15 = 18 65+55+1 + i4 7+65−55
                          • x27 = cos 8π15 + i sin8π15 = −18 65−55−1 + i4 7+65+5+5
                          • x28 = cos 14π15 + i sin14π15 = −18 65+5+5−1 + i4 7−65−55
                          • x29 = cos 16π15 + i sin16π15 = −18 65+5+5−1i4 7−65−55
                          • x30 = cos 22π15 + i sin22π15 = −18 65−55−1i4 7+65+5+5
                          • x31 = cos 26π15 + i sin26π15 = 18 65+55+1i4 7+65−55
                          • x32 = cos 28π15 + i sin28π15 = 18 65−5+5+1i4 7−65+5+5
                          • x33 = cosπ10 + i sinπ10 = 14 10+25 + i4 5−1
                          • x34 = cos 3π10 + i sin3π10 = 14 10−25 + i4 5+1
                          • x35 = cos 7π10 + i sin7π10 = −14 10−25 + i4 5+1
                          • x36 = cos 9π10 + i sin9π10 = −14 10+25 + i4 5−1
                          • x37 = cos 11π10 + i sin11π10 = −14 10+25i4 5−1
                          • x38 = cos 13π10 + i sin13π10 = −14 10−25i4 5+1
                          • x39 = cos 17π10 + i sin17π10 = 14 10−25i4 5+1
                          • x40 = cos 19π10 + i sin19π10 = 14 10+25i4 5−1
                          • x41 = cosπ12 + i sinπ12 = 12 2 + 3 + i2 2 − 3
                          • x42 = cos 5π12 + i sin5π12 = 12 2 − 3 + i2 2 + 3
                          • x43 = cos 7π12 + i sin7π12 = −12 2 − 3 + i2 2 + 3
                          • x44 = cos 11π12 + i sin11π12 = −12 2 + 3 + i2 2 − 3
                          • x45 = cos 13π12 + i sin13π12 = −12 2 + 3i2 2 − 3
                          • x46 = cos 17π12 + i sin17π12 = −12 2 − 3i2 2 + 3
                          • x47 = cos 19π12 + i sin19π12 = 12 2 − 3i2 2 + 3
                          • x48 = cos 23π12 + i sin23π12 = 12 2 + 3i2 2 − 3
                          • x49 = cosπ15 + i sinπ15 = 18 65+5+5−1 + i4 7−65−55
                          • x50 = cos 7π15 + i sin7π15 = 18 65−55−1 + i4 7+65+5+5
                          • x51 = cos 11π15 + i sin11π15 = −18 65+55+1 + i4 7+65−55
                          • x52 = cos 13π15 + i sin13π15 = −18 65−5+5+1 + i4 7−65+5+5
                          • x53 = cos 17π15 + i sin17π15 = −18 65−5+5+1i4 7−65+5+5
                          • x54 = cos 19π15 + i sin19π15 = −18 65+55+1i4 7+65−55
                          • x55 = cos 23π15 + i sin23π15 = 18 65−55−1i4 7+65+5+5
                          • x56 = cos 29π15 + i sin29π15 = 18 65+5+5−1i4 7−65−55
                          • x57 = cosπ20 + i sinπ20 = 12 2 + 1210+25 + i2 2 − 1210+25
                          • x58 = cos 3π20 + i sin3π20 = 12 2 + 1210−25 + i2 2 − 1210−25
                          • x59 = cos 7π20 + i sin7π20 = 12 2 − 1210−25 + i2 2 + 1210−25
                          • x60 = cos 9π20 + i sin9π20 = 12 2 − 1210+25 + i2 2 + 1210+25
                          • x61 = cos 11π20 + i sin11π20 = −12 2 − 1210+25 + i2 2 + 1210+25
                          • x62 = cos 13π20 + i sin13π20 = −12 2 − 1210−25 + i2 2 + 1210−25
                          • x63 = cos 17π20 + i sin17π20 = −12 2 + 1210−25 + i2 2 − 1210−25
                          • x64 = cos 19π20 + i sin19π20 = −12 2 + 1210+25 + i2 2 − 1210+25
                          • x65 = cos 21π20 + i sin21π20 = −12 2 + 1210+25i2 2 − 1210+25
                          • x66 = cos 23π20 + i sin23π20 = −12 2 + 1210−25i2 2 − 1210−25
                          • x67 = cos 27π20 + i sin27π20 = −12 2 − 1210−25i2 2 + 1210−25
                          • x68 = cos 29π20 + i sin29π20 = −12 2 − 1210+25i2 2 + 1210+25
                          • x69 = cos 31π20 + i sin31π20 = 12 2 − 1210+25i2 2 + 1210+25
                          • x70 = cos 33π20 + i sin33π20 = 12 2 − 1210−25i2 2 + 1210−25
                          • x71 = cos 37π20 + i sin37π20 = 12 2 + 1210−25i2 2 − 1210−25
                          • x72 = cos 39π20 + i sin39π20 = 12 2 + 1210+25i2 2 − 1210+25
                          • x73 = cosπ30 + i sinπ30 = 14 7+65+5+5 + i8 65−55−1
                          • x74 = cos 7π30 + i sin7π30 = 14 7+65−55 + i8 65+55+1
                          • x75 = cos 11π30 + i sin11π30 = 14 7−65+5+5 + i8 65−5+5+1
                          • x76 = cos 13π30 + i sin13π30 = 14 7−65−55 + i8 65+5+5−1
                          • x77 = cos 17π30 + i sin17π30 = −14 7−65−55 + i8 65+5+5−1
                          • x78 = cos 19π30 + i sin19π30 = −14 7−65+5+5 + i8 65−5+5+1
                          • x79 = cos 23π30 + i sin23π30 = −14 7+65−55 + i8 65+55+1
                          • x80 = cos 29π30 + i sin29π30 = −14 7+65+5+5 + i8 65−55−1
                          • x81 = cos 31π30 + i sin31π30 = −14 7+65+5+5i8 65−55−1
                          • x82 = cos 37π30 + i sin37π30 = −14 7+65−55i8 65+55+1
                          • x83 = cos 41π30 + i sin41π30 = −14 7−65+5+5i8 65−5+5+1
                          • x84 = cos 43π30 + i sin43π30 = −14 7−65−55i8 65+5+5−1
                          • x85 = cos 47π30 + i sin47π30 = 14 7−65−55i8 65+5+5−1
                          • x86 = cos 49π30 + i sin49π30 = 14 7−65+5+5i8 65−5+5+1
                          • x87 = cos 53π30 + i sin53π30 = 14 7+65−55i8 65+55+1
                          • x88 = cos 59π30 + i sin59π30 = 14 7+65+5+5i8 65−55−1
                          • x89 = cosπ60 + i sinπ60 = 12 2 + 127+65+5+5 + i2 2 − 127+65+5+5
                          • x90 = cos 7π60 + i sin7π60 = 12 2 + 127+65−55 + i2 2 − 127+65−55
                          • x91 = cos 11π60 + i sin11π60 = 12 2 + 127−65+5+5 + i2 2 − 127−65+5+5
                          • x92 = cos 13π60 + i sin13π60 = 12 2 + 127−65−55 + i2 2 − 127−65−55
                          • x93 = cos 17π60 + i sin17π60 = 12 2 − 127−65−55 + i2 2 + 127−65−55
                          • x94 = cos 19π60 + i sin19π60 = 12 2 − 127−65+5+5 + i2 2 + 127−65+5+5
                          • x95 = cos 23π60 + i sin23π60 = 12 2 − 127+65−55 + i2 2 + 127+65−55
                          • x96 = cos 29π60 + i sin29π60 = 12 2 − 127+65+5+5 + i2 2 + 127+65+5+5
                          • x97 = cos 31π60 + i sin31π60 = −12 2 − 127+65+5+5 + i2 2 + 127+65+5+5
                          • x98 = cos 37π60 + i sin37π60 = −12 2 − 127+65−55 + i2 2 + 127+65−55
                          • x99 = cos 41π60 + i sin41π60 = −12 2 − 127−65+5+5 + i2 2 + 127−65+5+5
                          • x100 = cos 43π60 + i sin43π60 = −12 2 − 127−65−55 + i2 2 + 127−65−55
                          • x101 = cos 47π60 + i sin47π60 = −12 2 + 127−65−55 + i2 2 − 127−65−55
                          • x102 = cos 49π60 + i sin49π60 = −12 2 + 127−65+5+5 + i2 2 − 127−65+5+5
                          • x103 = cos 53π60 + i sin53π60 = −12 2 + 127+65−55 + i2 2 − 127+65−55
                          • x104 = cos 59π60 + i sin59π60 = −12 2 + 127+65+5+5 + i2 2 − 127+65+5+5
                          • x105 = cos 61π60 + i sin61π60 = −12 2 + 127+65+5+5i2 2 − 127+65+5+5
                          • x106 = cos 67π60 + i sin67π60 = −12 2 + 127+65−55i2 2 − 127+65−55
                          • x107 = cos 71π60 + i sin71π60 = −12 2 + 127−65+5+5i2 2 − 127−65+5+5
                          • x108 = cos 73π60 + i sin73π60 = −12 2 + 127−65−55i2 2 − 127−65−55
                          • x109 = cos 77π60 + i sin77π60 = −12 2 − 127−65−55i2 2 + 127−65−55
                          • x110 = cos 79π60 + i sin79π60 = −12 2 − 127−65+5+5i2 2 + 127−65+5+5
                          • x111 = cos 83π60 + i sin83π60 = −12 2 − 127+65−55i2 2 + 127+65−55
                          • x112 = cos 89π60 + i sin89π60 = −12 2 − 127+65+5+5i2 2 + 127+65+5+5
                          • x113 = cos 91π60 + i sin91π60 = 12 2 − 127+65+5+5i2 2 + 127+65+5+5
                          • x114 = cos 97π60 + i sin97π60 = 12 2 − 127+65−55i2 2 + 127+65−55
                          • x115 = cos 101π60 + i sin101π60 = 12 2 − 127−65+5+5i2 2 + 127−65+5+5
                          • x116 = cos 103π60 + i sin103π60 = 12 2 − 127−65−55i2 2 + 127−65−55
                          • x117 = cos 107π60 + i sin107π60 = 12 2 + 127−65−55i2 2 − 127−65−55
                          • x118 = cos 109π60 + i sin109π60 = 12 2 + 127−65+5+5i2 2 − 127−65+5+5
                          • x119 = cos 113π60 + i sin113π60 = 12 2 + 127+65−55i2 2 − 127+65−55
                          • x120 = cos 119π60 + i sin119π60 = 12 2 + 127+65+5+5i2 2 − 127+65+5+5

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^{120} - 1

                          Irreducible polynomial factors

                          The 16 factors are:

                          • \begin{array}{l}
                          • \bullet\,\,x - 1\\
                          • \bullet\,\,x + 1\\
                          • \bullet\,\,x^{2} - x + 1\\
                          • \bullet\,\,x^{2} + 1\\
                          • \bullet\,\,x^{2} + x + 1\\
                          • \bullet\,\,x^{4} - x^{3} + x^{2} - x + 1\\
                          • \bullet\,\,x^{4} - x^{2} + 1\\
                          • \bullet\,\,x^{4} + 1\\
                          • \bullet\,\,x^{4} + x^{3} + x^{2} + x + 1\\
                          • \bullet\,\,x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1\\
                          • \bullet\,\,x^{8} - x^{6} + x^{4} - x^{2} + 1\\
                          • \bullet\,\,x^{8} - x^{4} + 1\\
                          • \bullet\,\,x^{8} + x^{7} - x^{5} - x^{4} - x^{3} + x + 1\\
                          • \bullet\,\,x^{16} - x^{12} + x^{8} - x^{4} + 1\\
                          • \bullet\,\,x^{16} + x^{14} - x^{10} - x^{8} - x^{6} + x^{2} + 1\\
                          • \bullet\,\,x^{32} + x^{28} - x^{20} - x^{16} - x^{12} + x^{4} + 1\\
                          • \end{array}

                          Roots

                          The 120 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,x_{1} = 1\\
                          • \bullet\,\,x_{2} = -1\\
                          • \bullet\,\,x_{3} = \frac{1}{2} - \frac{1}{2}\sqrt{3} i\\
                          • \bullet\,\,x_{4} = \frac{1}{2} + \frac{1}{2}\sqrt{3} i\\
                          • \bullet\,\,x_{5} = - 1 i\\
                          • \bullet\,\,x_{6} = 1 i\\
                          • \bullet\,\,x_{7} = \frac{-1}{2} - \frac{1}{2}\sqrt{3} i\\
                          • \bullet\,\,x_{8} = \frac{-1}{2} + \frac{1}{2}\sqrt{3} i\\
                          • \bullet\,\,x_{9} = \frac{1}{4} + \frac{1}{4}\sqrt{5} + i \sqrt{\frac{-1}{8}\sqrt{5} + \frac{5}{8}}\\
                          • \bullet\,\,x_{10} = \frac{1}{4} + \frac{1}{4}\sqrt{5} - i \sqrt{\frac{-1}{8}\sqrt{5} + \frac{5}{8}}\\
                          • \bullet\,\,x_{11} = \frac{1}{4} - \frac{1}{4}\sqrt{5} + i \sqrt{\frac{1}{8}\sqrt{5} + \frac{5}{8}}\\
                          • \bullet\,\,x_{12} = \frac{1}{4} - \frac{1}{4}\sqrt{5} - i \sqrt{\frac{1}{8}\sqrt{5} + \frac{5}{8}}\\
                          • \bullet\,\,x_{13} = \frac{1}{2}\sqrt{3} + \frac{1}{2}i\\
                          • \bullet\,\,x_{14} = \frac{1}{2}\sqrt{3} - \frac{1}{2}i\\
                          • \bullet\,\,x_{15} = -\frac{1}{2}\sqrt{3} + \frac{1}{2}i\\
                          • \bullet\,\,x_{16} = -\frac{1}{2}\sqrt{3} - \frac{1}{2}i\\
                          • \bullet\,\,x_{17} = \sqrt{\frac{1}{2}} + \sqrt{\frac{1}{2}}i\\
                          • \bullet\,\,x_{18} = \sqrt{\frac{1}{2}} - \sqrt{\frac{1}{2}}i\\
                          • \bullet\,\,x_{19} = -\sqrt{\frac{1}{2}} + \sqrt{\frac{1}{2}}i\\
                          • \bullet\,\,x_{20} = -\sqrt{\frac{1}{2}} - \sqrt{\frac{1}{2}}i\\
                          • \bullet\,\,x_{21} = \frac{-1}{4} + \frac{1}{4}\sqrt{5} + i \sqrt{\frac{1}{8}\sqrt{5} + \frac{5}{8}}\\
                          • \bullet\,\,x_{22} = \frac{-1}{4} + \frac{1}{4}\sqrt{5} - i \sqrt{\frac{1}{8}\sqrt{5} + \frac{5}{8}}\\
                          • \bullet\,\,x_{23} = \frac{-1}{4} - \frac{1}{4}\sqrt{5} + i \sqrt{\frac{-1}{8}\sqrt{5} + \frac{5}{8}}\\
                          • \bullet\,\,x_{24} = \frac{-1}{4} - \frac{1}{4}\sqrt{5} - i \sqrt{\frac{-1}{8}\sqrt{5} + \frac{5}{8}}\\
                          • \bullet\,\,x_{25} = \cos{ \frac{2 \pi }{15}} + i \sin{\frac{2 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right) + \frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                          • \bullet\,\,x_{26} = \cos{ \frac{4 \pi }{15}} + i \sin{\frac{4 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right) + \frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                          • \bullet\,\,x_{27} = \cos{ \frac{8 \pi }{15}} + i \sin{\frac{8 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right) + \frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                          • \bullet\,\,x_{28} = \cos{ \frac{14 \pi }{15}} + i \sin{\frac{14 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right) + \frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                          • \bullet\,\,x_{29} = \cos{ \frac{16 \pi }{15}} + i \sin{\frac{16 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)-\frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                          • \bullet\,\,x_{30} = \cos{ \frac{22 \pi }{15}} + i \sin{\frac{22 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)-\frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                          • \bullet\,\,x_{31} = \cos{ \frac{26 \pi }{15}} + i \sin{\frac{26 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)-\frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                          • \bullet\,\,x_{32} = \cos{ \frac{28 \pi }{15}} + i \sin{\frac{28 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)-\frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                          • \bullet\,\,x_{33} = \cos{\frac{\pi }{10}} + i \sin{\frac{\pi }{10}} = \frac{1}{4}\sqrt{10+2\sqrt{5}} + \frac{i}{4}\left(\sqrt{5}-1\right)\\
                          • \bullet\,\,x_{34} = \cos{ \frac{3 \pi }{10}} + i \sin{\frac{3 \pi }{10}} = \frac{1}{4}\sqrt{10-2\sqrt{5}} + \frac{i}{4}\left(\sqrt{5}+1\right)\\
                          • \bullet\,\,x_{35} = \cos{ \frac{7 \pi }{10}} + i \sin{\frac{7 \pi }{10}} = -\frac{1}{4}\sqrt{10-2\sqrt{5}} + \frac{i}{4}\left(\sqrt{5}+1\right)\\
                          • \bullet\,\,x_{36} = \cos{ \frac{9 \pi }{10}} + i \sin{\frac{9 \pi }{10}} = -\frac{1}{4}\sqrt{10+2\sqrt{5}} + \frac{i}{4}\left(\sqrt{5}-1\right)\\
                          • \bullet\,\,x_{37} = \cos{ \frac{11 \pi }{10}} + i \sin{\frac{11 \pi }{10}} = -\frac{1}{4}\sqrt{10+2\sqrt{5}}-\frac{i}{4}\left(\sqrt{5}-1\right)\\
                          • \bullet\,\,x_{38} = \cos{ \frac{13 \pi }{10}} + i \sin{\frac{13 \pi }{10}} = -\frac{1}{4}\sqrt{10-2\sqrt{5}}-\frac{i}{4}\left(\sqrt{5}+1\right)\\
                          • \bullet\,\,x_{39} = \cos{ \frac{17 \pi }{10}} + i \sin{\frac{17 \pi }{10}} = \frac{1}{4}\sqrt{10-2\sqrt{5}}-\frac{i}{4}\left(\sqrt{5}+1\right)\\
                          • \bullet\,\,x_{40} = \cos{ \frac{19 \pi }{10}} + i \sin{\frac{19 \pi }{10}} = \frac{1}{4}\sqrt{10+2\sqrt{5}}-\frac{i}{4}\left(\sqrt{5}-1\right)\\
                          • \bullet\,\,x_{41} = \cos{\frac{\pi }{12}} + i \sin{\frac{\pi }{12}} = \frac{1}{2}\sqrt{2 + \sqrt{3}} + \frac{i}{2}\sqrt{2 - \sqrt{3}}\\
                          • \bullet\,\,x_{42} = \cos{ \frac{5 \pi }{12}} + i \sin{\frac{5 \pi }{12}} = \frac{1}{2}\sqrt{2 - \sqrt{3}} + \frac{i}{2}\sqrt{2 + \sqrt{3}}\\
                          • \bullet\,\,x_{43} = \cos{ \frac{7 \pi }{12}} + i \sin{\frac{7 \pi }{12}} = -\frac{1}{2}\sqrt{2 - \sqrt{3}} + \frac{i}{2}\sqrt{2 + \sqrt{3}}\\
                          • \bullet\,\,x_{44} = \cos{ \frac{11 \pi }{12}} + i \sin{\frac{11 \pi }{12}} = -\frac{1}{2}\sqrt{2 + \sqrt{3}} + \frac{i}{2}\sqrt{2 - \sqrt{3}}\\
                          • \bullet\,\,x_{45} = \cos{ \frac{13 \pi }{12}} + i \sin{\frac{13 \pi }{12}} = -\frac{1}{2}\sqrt{2 + \sqrt{3}}-\frac{i}{2}\sqrt{2 - \sqrt{3}}\\
                          • \bullet\,\,x_{46} = \cos{ \frac{17 \pi }{12}} + i \sin{\frac{17 \pi }{12}} = -\frac{1}{2}\sqrt{2 - \sqrt{3}}-\frac{i}{2}\sqrt{2 + \sqrt{3}}\\
                          • \bullet\,\,x_{47} = \cos{ \frac{19 \pi }{12}} + i \sin{\frac{19 \pi }{12}} = \frac{1}{2}\sqrt{2 - \sqrt{3}}-\frac{i}{2}\sqrt{2 + \sqrt{3}}\\
                          • \bullet\,\,x_{48} = \cos{ \frac{23 \pi }{12}} + i \sin{\frac{23 \pi }{12}} = \frac{1}{2}\sqrt{2 + \sqrt{3}}-\frac{i}{2}\sqrt{2 - \sqrt{3}}\\
                          • \bullet\,\,x_{49} = \cos{\frac{\pi }{15}} + i \sin{\frac{\pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right) + \frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                          • \bullet\,\,x_{50} = \cos{ \frac{7 \pi }{15}} + i \sin{\frac{7 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right) + \frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                          • \bullet\,\,x_{51} = \cos{ \frac{11 \pi }{15}} + i \sin{\frac{11 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right) + \frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                          • \bullet\,\,x_{52} = \cos{ \frac{13 \pi }{15}} + i \sin{\frac{13 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right) + \frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                          • \bullet\,\,x_{53} = \cos{ \frac{17 \pi }{15}} + i \sin{\frac{17 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)-\frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                          • \bullet\,\,x_{54} = \cos{ \frac{19 \pi }{15}} + i \sin{\frac{19 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)-\frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                          • \bullet\,\,x_{55} = \cos{ \frac{23 \pi }{15}} + i \sin{\frac{23 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)-\frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                          • \bullet\,\,x_{56} = \cos{ \frac{29 \pi }{15}} + i \sin{\frac{29 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)-\frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                          • \bullet\,\,x_{57} = \cos{\frac{\pi }{20}} + i \sin{\frac{\pi }{20}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                          • \bullet\,\,x_{58} = \cos{ \frac{3 \pi }{20}} + i \sin{\frac{3 \pi }{20}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                          • \bullet\,\,x_{59} = \cos{ \frac{7 \pi }{20}} + i \sin{\frac{7 \pi }{20}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                          • \bullet\,\,x_{60} = \cos{ \frac{9 \pi }{20}} + i \sin{\frac{9 \pi }{20}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                          • \bullet\,\,x_{61} = \cos{ \frac{11 \pi }{20}} + i \sin{\frac{11 \pi }{20}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                          • \bullet\,\,x_{62} = \cos{ \frac{13 \pi }{20}} + i \sin{\frac{13 \pi }{20}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                          • \bullet\,\,x_{63} = \cos{ \frac{17 \pi }{20}} + i \sin{\frac{17 \pi }{20}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                          • \bullet\,\,x_{64} = \cos{ \frac{19 \pi }{20}} + i \sin{\frac{19 \pi }{20}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                          • \bullet\,\,x_{65} = \cos{ \frac{21 \pi }{20}} + i \sin{\frac{21 \pi }{20}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                          • \bullet\,\,x_{66} = \cos{ \frac{23 \pi }{20}} + i \sin{\frac{23 \pi }{20}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                          • \bullet\,\,x_{67} = \cos{ \frac{27 \pi }{20}} + i \sin{\frac{27 \pi }{20}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                          • \bullet\,\,x_{68} = \cos{ \frac{29 \pi }{20}} + i \sin{\frac{29 \pi }{20}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                          • \bullet\,\,x_{69} = \cos{ \frac{31 \pi }{20}} + i \sin{\frac{31 \pi }{20}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                          • \bullet\,\,x_{70} = \cos{ \frac{33 \pi }{20}} + i \sin{\frac{33 \pi }{20}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                          • \bullet\,\,x_{71} = \cos{ \frac{37 \pi }{20}} + i \sin{\frac{37 \pi }{20}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                          • \bullet\,\,x_{72} = \cos{ \frac{39 \pi }{20}} + i \sin{\frac{39 \pi }{20}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                          • \bullet\,\,x_{73} = \cos{\frac{\pi }{30}} + i \sin{\frac{\pi }{30}} = \frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)\\
                          • \bullet\,\,x_{74} = \cos{ \frac{7 \pi }{30}} + i \sin{\frac{7 \pi }{30}} = \frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)\\
                          • \bullet\,\,x_{75} = \cos{ \frac{11 \pi }{30}} + i \sin{\frac{11 \pi }{30}} = \frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)\\
                          • \bullet\,\,x_{76} = \cos{ \frac{13 \pi }{30}} + i \sin{\frac{13 \pi }{30}} = \frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)\\
                          • \bullet\,\,x_{77} = \cos{ \frac{17 \pi }{30}} + i \sin{\frac{17 \pi }{30}} = -\frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)\\
                          • \bullet\,\,x_{78} = \cos{ \frac{19 \pi }{30}} + i \sin{\frac{19 \pi }{30}} = -\frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)\\
                          • \bullet\,\,x_{79} = \cos{ \frac{23 \pi }{30}} + i \sin{\frac{23 \pi }{30}} = -\frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)\\
                          • \bullet\,\,x_{80} = \cos{ \frac{29 \pi }{30}} + i \sin{\frac{29 \pi }{30}} = -\frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)\\
                          • \bullet\,\,x_{81} = \cos{ \frac{31 \pi }{30}} + i \sin{\frac{31 \pi }{30}} = -\frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)\\
                          • \bullet\,\,x_{82} = \cos{ \frac{37 \pi }{30}} + i \sin{\frac{37 \pi }{30}} = -\frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)\\
                          • \bullet\,\,x_{83} = \cos{ \frac{41 \pi }{30}} + i \sin{\frac{41 \pi }{30}} = -\frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)\\
                          • \bullet\,\,x_{84} = \cos{ \frac{43 \pi }{30}} + i \sin{\frac{43 \pi }{30}} = -\frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)\\
                          • \bullet\,\,x_{85} = \cos{ \frac{47 \pi }{30}} + i \sin{\frac{47 \pi }{30}} = \frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)\\
                          • \bullet\,\,x_{86} = \cos{ \frac{49 \pi }{30}} + i \sin{\frac{49 \pi }{30}} = \frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)\\
                          • \bullet\,\,x_{87} = \cos{ \frac{53 \pi }{30}} + i \sin{\frac{53 \pi }{30}} = \frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)\\
                          • \bullet\,\,x_{88} = \cos{ \frac{59 \pi }{30}} + i \sin{\frac{59 \pi }{30}} = \frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)\\
                          • \bullet\,\,x_{89} = \cos{\frac{\pi }{60}} + i \sin{\frac{\pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                          • \bullet\,\,x_{90} = \cos{ \frac{7 \pi }{60}} + i \sin{\frac{7 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                          • \bullet\,\,x_{91} = \cos{ \frac{11 \pi }{60}} + i \sin{\frac{11 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                          • \bullet\,\,x_{92} = \cos{ \frac{13 \pi }{60}} + i \sin{\frac{13 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                          • \bullet\,\,x_{93} = \cos{ \frac{17 \pi }{60}} + i \sin{\frac{17 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                          • \bullet\,\,x_{94} = \cos{ \frac{19 \pi }{60}} + i \sin{\frac{19 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                          • \bullet\,\,x_{95} = \cos{ \frac{23 \pi }{60}} + i \sin{\frac{23 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                          • \bullet\,\,x_{96} = \cos{ \frac{29 \pi }{60}} + i \sin{\frac{29 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                          • \bullet\,\,x_{97} = \cos{ \frac{31 \pi }{60}} + i \sin{\frac{31 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                          • \bullet\,\,x_{98} = \cos{ \frac{37 \pi }{60}} + i \sin{\frac{37 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                          • \bullet\,\,x_{99} = \cos{ \frac{41 \pi }{60}} + i \sin{\frac{41 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                          • \bullet\,\,x_{100} = \cos{ \frac{43 \pi }{60}} + i \sin{\frac{43 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                          • \bullet\,\,x_{101} = \cos{ \frac{47 \pi }{60}} + i \sin{\frac{47 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                          • \bullet\,\,x_{102} = \cos{ \frac{49 \pi }{60}} + i \sin{\frac{49 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                          • \bullet\,\,x_{103} = \cos{ \frac{53 \pi }{60}} + i \sin{\frac{53 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                          • \bullet\,\,x_{104} = \cos{ \frac{59 \pi }{60}} + i \sin{\frac{59 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                          • \bullet\,\,x_{105} = \cos{ \frac{61 \pi }{60}} + i \sin{\frac{61 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                          • \bullet\,\,x_{106} = \cos{ \frac{67 \pi }{60}} + i \sin{\frac{67 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                          • \bullet\,\,x_{107} = \cos{ \frac{71 \pi }{60}} + i \sin{\frac{71 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                          • \bullet\,\,x_{108} = \cos{ \frac{73 \pi }{60}} + i \sin{\frac{73 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                          • \bullet\,\,x_{109} = \cos{ \frac{77 \pi }{60}} + i \sin{\frac{77 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                          • \bullet\,\,x_{110} = \cos{ \frac{79 \pi }{60}} + i \sin{\frac{79 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                          • \bullet\,\,x_{111} = \cos{ \frac{83 \pi }{60}} + i \sin{\frac{83 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                          • \bullet\,\,x_{112} = \cos{ \frac{89 \pi }{60}} + i \sin{\frac{89 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                          • \bullet\,\,x_{113} = \cos{ \frac{91 \pi }{60}} + i \sin{\frac{91 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                          • \bullet\,\,x_{114} = \cos{ \frac{97 \pi }{60}} + i \sin{\frac{97 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                          • \bullet\,\,x_{115} = \cos{ \frac{101 \pi }{60}} + i \sin{\frac{101 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                          • \bullet\,\,x_{116} = \cos{ \frac{103 \pi }{60}} + i \sin{\frac{103 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                          • \bullet\,\,x_{117} = \cos{ \frac{107 \pi }{60}} + i \sin{\frac{107 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                          • \bullet\,\,x_{118} = \cos{ \frac{109 \pi }{60}} + i \sin{\frac{109 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                          • \bullet\,\,x_{119} = \cos{ \frac{113 \pi }{60}} + i \sin{\frac{113 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                          • \bullet\,\,x_{120} = \cos{ \frac{119 \pi }{60}} + i \sin{\frac{119 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^120 - 1

                          Irreducible polynomial factors

                          The 16 factors are:

                          • x - 1
                          • x + 1
                          • x^2 - x + 1
                          • x^2 + 1
                          • x^2 + x + 1
                          • x^4 - x^3 + x^2 - x + 1
                          • x^4 - x^2 + 1
                          • x^4 + 1
                          • x^4 + x^3 + x^2 + x + 1
                          • x^8 - x^7 + x^5 - x^4 + x^3 - x + 1
                          • x^8 - x^6 + x^4 - x^2 + 1
                          • x^8 - x^4 + 1
                          • x^8 + x^7 - x^5 - x^4 - x^3 + x + 1
                          • x^16 - x^12 + x^8 - x^4 + 1
                          • x^16 + x^14 - x^10 - x^8 - x^6 + x^2 + 1
                          • x^32 + x^28 - x^20 - x^16 - x^12 + x^4 + 1

                          Roots

                          The 120 roots are:

                          • x1 = 1
                          • x2 = -1
                          • x3 = 1 / 2 - (1 / 2)*3^(1/2) *I
                          • x4 = 1 / 2 + (1 / 2)*3^(1/2) *I
                          • x5 = - 1 *I
                          • x6 = 1 *I
                          • x7 = -1 / 2 - (1 / 2)*3^(1/2) *I
                          • x8 = -1 / 2 + (1 / 2)*3^(1/2) *I
                          • x9 = 1 / 4 + (1 / 4)*5^(1/2) + I * ((-1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                          • x10 = 1 / 4 + (1 / 4)*5^(1/2) - I * ((-1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                          • x11 = 1 / 4 - (1 / 4)*5^(1/2) + I * ((1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                          • x12 = 1 / 4 - (1 / 4)*5^(1/2) - I * ((1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                          • x13 = (1 / 2)*3^(1/2) + (1 / 2)*I
                          • x14 = (1 / 2)*3^(1/2) - (1 / 2)*I
                          • x15 = -(1 / 2)*3^(1/2) + (1 / 2)*I
                          • x16 = -(1 / 2)*3^(1/2) - (1 / 2)*I
                          • x17 = (1 / 2)^(1/2) + (1 / 2)^(1/2)*I
                          • x18 = (1 / 2)^(1/2) - (1 / 2)^(1/2)*I
                          • x19 = -(1 / 2)^(1/2) + (1 / 2)^(1/2)*I
                          • x20 = -(1 / 2)^(1/2) - (1 / 2)^(1/2)*I
                          • x21 = -1 / 4 + (1 / 4)*5^(1/2) + I * ((1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                          • x22 = -1 / 4 + (1 / 4)*5^(1/2) - I * ((1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                          • x23 = -1 / 4 - (1 / 4)*5^(1/2) + I * ((-1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                          • x24 = -1 / 4 - (1 / 4)*5^(1/2) - I * ((-1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                          • x25 = cos (2*Pi/15) + I *sin(2*Pi/15) = (1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1) + (I/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                          • x26 = cos (4*Pi/15) + I *sin(4*Pi/15) = (1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1) + (I/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                          • x27 = cos (8*Pi/15) + I *sin(8*Pi/15) = -(1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1) + (I/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                          • x28 = cos (14*Pi/15) + I *sin(14*Pi/15) = -(1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1) + (I/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                          • x29 = cos (16*Pi/15) + I *sin(16*Pi/15) = -(1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)-(I/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                          • x30 = cos (22*Pi/15) + I *sin(22*Pi/15) = -(1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)-(I/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                          • x31 = cos (26*Pi/15) + I *sin(26*Pi/15) = (1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)-(I/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                          • x32 = cos (28*Pi/15) + I *sin(28*Pi/15) = (1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)-(I/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                          • x33 = cos(Pi/10) + I *sin(Pi/10) = (1/4)*(10+2*5^(1/2))^(1/2) + (I/4)*(5^(1/2)-1)
                          • x34 = cos (3*Pi/10) + I *sin(3*Pi/10) = (1/4)*(10-2*5^(1/2))^(1/2) + (I/4)*(5^(1/2)+1)
                          • x35 = cos (7*Pi/10) + I *sin(7*Pi/10) = -(1/4)*(10-2*5^(1/2))^(1/2) + (I/4)*(5^(1/2)+1)
                          • x36 = cos (9*Pi/10) + I *sin(9*Pi/10) = -(1/4)*(10+2*5^(1/2))^(1/2) + (I/4)*(5^(1/2)-1)
                          • x37 = cos (11*Pi/10) + I *sin(11*Pi/10) = -(1/4)*(10+2*5^(1/2))^(1/2)-(I/4)*(5^(1/2)-1)
                          • x38 = cos (13*Pi/10) + I *sin(13*Pi/10) = -(1/4)*(10-2*5^(1/2))^(1/2)-(I/4)*(5^(1/2)+1)
                          • x39 = cos (17*Pi/10) + I *sin(17*Pi/10) = (1/4)*(10-2*5^(1/2))^(1/2)-(I/4)*(5^(1/2)+1)
                          • x40 = cos (19*Pi/10) + I *sin(19*Pi/10) = (1/4)*(10+2*5^(1/2))^(1/2)-(I/4)*(5^(1/2)-1)
                          • x41 = cos(Pi/12) + I *sin(Pi/12) = (1/2)*(2 + (3)^(1/2))^(1/2) + (I/2)*(2 - (3)^(1/2))^(1/2)
                          • x42 = cos (5*Pi/12) + I *sin(5*Pi/12) = (1/2)*(2 - (3)^(1/2))^(1/2) + (I/2)*(2 + (3)^(1/2))^(1/2)
                          • x43 = cos (7*Pi/12) + I *sin(7*Pi/12) = -(1/2)*(2 - (3)^(1/2))^(1/2) + (I/2)*(2 + (3)^(1/2))^(1/2)
                          • x44 = cos (11*Pi/12) + I *sin(11*Pi/12) = -(1/2)*(2 + (3)^(1/2))^(1/2) + (I/2)*(2 - (3)^(1/2))^(1/2)
                          • x45 = cos (13*Pi/12) + I *sin(13*Pi/12) = -(1/2)*(2 + (3)^(1/2))^(1/2)-(I/2)*(2 - (3)^(1/2))^(1/2)
                          • x46 = cos (17*Pi/12) + I *sin(17*Pi/12) = -(1/2)*(2 - (3)^(1/2))^(1/2)-(I/2)*(2 + (3)^(1/2))^(1/2)
                          • x47 = cos (19*Pi/12) + I *sin(19*Pi/12) = (1/2)*(2 - (3)^(1/2))^(1/2)-(I/2)*(2 + (3)^(1/2))^(1/2)
                          • x48 = cos (23*Pi/12) + I *sin(23*Pi/12) = (1/2)*(2 + (3)^(1/2))^(1/2)-(I/2)*(2 - (3)^(1/2))^(1/2)
                          • x49 = cos(Pi/15) + I *sin(Pi/15) = (1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1) + (I/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                          • x50 = cos (7*Pi/15) + I *sin(7*Pi/15) = (1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1) + (I/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                          • x51 = cos (11*Pi/15) + I *sin(11*Pi/15) = -(1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1) + (I/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                          • x52 = cos (13*Pi/15) + I *sin(13*Pi/15) = -(1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1) + (I/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                          • x53 = cos (17*Pi/15) + I *sin(17*Pi/15) = -(1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)-(I/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                          • x54 = cos (19*Pi/15) + I *sin(19*Pi/15) = -(1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)-(I/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                          • x55 = cos (23*Pi/15) + I *sin(23*Pi/15) = (1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)-(I/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                          • x56 = cos (29*Pi/15) + I *sin(29*Pi/15) = (1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)-(I/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                          • x57 = cos(Pi/20) + I *sin(Pi/20) = (1/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                          • x58 = cos (3*Pi/20) + I *sin(3*Pi/20) = (1/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                          • x59 = cos (7*Pi/20) + I *sin(7*Pi/20) = (1/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                          • x60 = cos (9*Pi/20) + I *sin(9*Pi/20) = (1/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                          • x61 = cos (11*Pi/20) + I *sin(11*Pi/20) = -(1/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                          • x62 = cos (13*Pi/20) + I *sin(13*Pi/20) = -(1/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                          • x63 = cos (17*Pi/20) + I *sin(17*Pi/20) = -(1/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                          • x64 = cos (19*Pi/20) + I *sin(19*Pi/20) = -(1/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                          • x65 = cos (21*Pi/20) + I *sin(21*Pi/20) = -(1/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                          • x66 = cos (23*Pi/20) + I *sin(23*Pi/20) = -(1/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                          • x67 = cos (27*Pi/20) + I *sin(27*Pi/20) = -(1/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                          • x68 = cos (29*Pi/20) + I *sin(29*Pi/20) = -(1/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                          • x69 = cos (31*Pi/20) + I *sin(31*Pi/20) = (1/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                          • x70 = cos (33*Pi/20) + I *sin(33*Pi/20) = (1/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                          • x71 = cos (37*Pi/20) + I *sin(37*Pi/20) = (1/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                          • x72 = cos (39*Pi/20) + I *sin(39*Pi/20) = (1/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                          • x73 = cos(Pi/30) + I *sin(Pi/30) = (1/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)
                          • x74 = cos (7*Pi/30) + I *sin(7*Pi/30) = (1/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)
                          • x75 = cos (11*Pi/30) + I *sin(11*Pi/30) = (1/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)
                          • x76 = cos (13*Pi/30) + I *sin(13*Pi/30) = (1/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)
                          • x77 = cos (17*Pi/30) + I *sin(17*Pi/30) = -(1/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)
                          • x78 = cos (19*Pi/30) + I *sin(19*Pi/30) = -(1/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)
                          • x79 = cos (23*Pi/30) + I *sin(23*Pi/30) = -(1/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)
                          • x80 = cos (29*Pi/30) + I *sin(29*Pi/30) = -(1/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)
                          • x81 = cos (31*Pi/30) + I *sin(31*Pi/30) = -(1/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)
                          • x82 = cos (37*Pi/30) + I *sin(37*Pi/30) = -(1/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)
                          • x83 = cos (41*Pi/30) + I *sin(41*Pi/30) = -(1/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)
                          • x84 = cos (43*Pi/30) + I *sin(43*Pi/30) = -(1/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)
                          • x85 = cos (47*Pi/30) + I *sin(47*Pi/30) = (1/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)
                          • x86 = cos (49*Pi/30) + I *sin(49*Pi/30) = (1/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)
                          • x87 = cos (53*Pi/30) + I *sin(53*Pi/30) = (1/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)
                          • x88 = cos (59*Pi/30) + I *sin(59*Pi/30) = (1/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)
                          • x89 = cos(Pi/60) + I *sin(Pi/60) = (1/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                          • x90 = cos (7*Pi/60) + I *sin(7*Pi/60) = (1/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                          • x91 = cos (11*Pi/60) + I *sin(11*Pi/60) = (1/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                          • x92 = cos (13*Pi/60) + I *sin(13*Pi/60) = (1/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                          • x93 = cos (17*Pi/60) + I *sin(17*Pi/60) = (1/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                          • x94 = cos (19*Pi/60) + I *sin(19*Pi/60) = (1/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                          • x95 = cos (23*Pi/60) + I *sin(23*Pi/60) = (1/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                          • x96 = cos (29*Pi/60) + I *sin(29*Pi/60) = (1/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                          • x97 = cos (31*Pi/60) + I *sin(31*Pi/60) = -(1/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                          • x98 = cos (37*Pi/60) + I *sin(37*Pi/60) = -(1/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                          • x99 = cos (41*Pi/60) + I *sin(41*Pi/60) = -(1/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                          • x100 = cos (43*Pi/60) + I *sin(43*Pi/60) = -(1/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                          • x101 = cos (47*Pi/60) + I *sin(47*Pi/60) = -(1/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                          • x102 = cos (49*Pi/60) + I *sin(49*Pi/60) = -(1/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                          • x103 = cos (53*Pi/60) + I *sin(53*Pi/60) = -(1/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                          • x104 = cos (59*Pi/60) + I *sin(59*Pi/60) = -(1/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                          • x105 = cos (61*Pi/60) + I *sin(61*Pi/60) = -(1/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                          • x106 = cos (67*Pi/60) + I *sin(67*Pi/60) = -(1/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                          • x107 = cos (71*Pi/60) + I *sin(71*Pi/60) = -(1/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                          • x108 = cos (73*Pi/60) + I *sin(73*Pi/60) = -(1/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                          • x109 = cos (77*Pi/60) + I *sin(77*Pi/60) = -(1/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                          • x110 = cos (79*Pi/60) + I *sin(79*Pi/60) = -(1/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                          • x111 = cos (83*Pi/60) + I *sin(83*Pi/60) = -(1/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                          • x112 = cos (89*Pi/60) + I *sin(89*Pi/60) = -(1/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                          • x113 = cos (91*Pi/60) + I *sin(91*Pi/60) = (1/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                          • x114 = cos (97*Pi/60) + I *sin(97*Pi/60) = (1/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                          • x115 = cos (101*Pi/60) + I *sin(101*Pi/60) = (1/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                          • x116 = cos (103*Pi/60) + I *sin(103*Pi/60) = (1/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                          • x117 = cos (107*Pi/60) + I *sin(107*Pi/60) = (1/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                          • x118 = cos (109*Pi/60) + I *sin(109*Pi/60) = (1/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                          • x119 = cos (113*Pi/60) + I *sin(113*Pi/60) = (1/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                          • x120 = cos (119*Pi/60) + I *sin(119*Pi/60) = (1/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x10 + x5 + 6 (mod 7)

                          Irreducible polynomial factors

                          The 3 factors are:

                          • x2 + 3⁢x + 6
                          • x4 + 5⁢x2 + 3⁢x + 1
                          • x4 + 4⁢x3 + 5⁢x2 + 1

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^{10} + x^{5} + 6 (\pmod 7)

                          Irreducible polynomial factors

                          The 3 factors are:

                          • \begin{array}{l}
                          • \bullet\,\,x^{2} + 3x + 6\\
                          • \bullet\,\,x^{4} + 5x^{2} + 3x + 1\\
                          • \bullet\,\,x^{4} + 4x^{3} + 5x^{2} + 1\\
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          Mod(x^10 + x^5 + 6, 7)

                          Irreducible polynomial factors

                          The 3 factors are:

                          • x^2 + 3*x + 6
                          • x^4 + 5*x^2 + 3*x + 1
                          • x^4 + 4*x^3 + 5*x^2 + 1

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x + 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          • x1 = -23

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x + 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          • \begin{array}{l}
                          • \bullet\,\,x_{1} = -23\\
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x + 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          • x1 = -23

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          6x2 + 79⁢x + 115

                          Irreducible polynomial factors

                          The 2 factors are:

                          • 2x + 23
                          • 3x + 5

                          Roots

                          The 2 roots are:

                          • x1 = -232
                          • x2 = -53

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          6x^{2} + 79x + 115

                          Irreducible polynomial factors

                          The 2 factors are:

                          • \begin{array}{l}
                          • \bullet\,\,2x + 23\\
                          • \bullet\,\,3x + 5\\
                          • \end{array}

                          Roots

                          The 2 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,x_{1} = \frac{-23}{2}\\
                          • \bullet\,\,x_{2} = \frac{-5}{3}\\
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          6*x^2 + 79*x + 115

                          Irreducible polynomial factors

                          The 2 factors are:

                          • 2x + 23
                          • 3x + 5

                          Roots

                          The 2 roots are:

                          • x1 = -23 / 2
                          • x2 = -5 / 3

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x2 + 7⁢x + 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 2 roots are:

                          • x1 = -7212 43 i
                          • x2 = -72 + 12 43 i

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^{2} + 7x + 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 2 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,x_{1} = \frac{-7}{2} - \frac{1}{2}\sqrt{43} i\\
                          • \bullet\,\,x_{2} = \frac{-7}{2} + \frac{1}{2}\sqrt{43} i\\
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^2 + 7*x + 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 2 roots are:

                          • x1 = -7 / 2 - (1 / 2)*43^(1/2) *I
                          • x2 = -7 / 2 + (1 / 2)*43^(1/2) *I

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x3 − 4⁢x2 + 12⁢x + 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 3 roots are:

                          • r = -92554 + 56 13153
                          • s = −92554 + 56 13153
                          • x1 = 43 + r + s
                          • x2 = 43r + s2 + i rs23
                          • x3 = 43r + s2 − i rs23

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^{3} - 4x^{2} + 12x + 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 3 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,r = \sqrt[3]{\frac{-925}{54} + \frac{5}{6}\sqrt{\frac{1315}{3}}}\\
                          • \bullet\,\,s = -\sqrt[3]{\frac{925}{54} + \frac{5}{6}\sqrt{\frac{1315}{3}}}\\
                          • \bullet\,\,x_{1} = \frac{4}{3} + r + s\\
                          • \bullet\,\,x_{2} = \frac{4}{3} - \frac{r + s}{2} + i \frac{r - s}{2}\sqrt{3}\\
                          • \bullet\,\,x_{3} = \frac{4}{3} - \frac{r + s}{2} - i \frac{r - s}{2}\sqrt{3}\\
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^3 - 4*x^2 + 12*x + 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 3 roots are:

                          • r = (-925 / 54 + (5 / 6)*(1315 / 3)^(1/2))^(1/3)
                          • s = -(925 / 54 + (5 / 6)*(1315 / 3)^(1/2))^(1/3)
                          • x1 = 4 / 3 + r + s
                          • x2 = 4 / 3 - (r + s) / 2 + (I/2) * (r - s) * 3^(1/2)
                          • x3 = 4 / 3 - (r + s) / 2 - (I/2) * (r - s) * 3^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x3x2 + 2⁢x + 5

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 3 roots are:

                          • r = -15154 + 16 8633
                          • s = −15154 + 16 8633
                          • x1 = 13 + r + s
                          • x2 = 13r + s2 + i rs23
                          • x3 = 13r + s2 − i rs23

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^{3} - x^{2} + 2x + 5

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 3 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,r = \sqrt[3]{\frac{-151}{54} + \frac{1}{6}\sqrt{\frac{863}{3}}}\\
                          • \bullet\,\,s = -\sqrt[3]{\frac{151}{54} + \frac{1}{6}\sqrt{\frac{863}{3}}}\\
                          • \bullet\,\,x_{1} = \frac{1}{3} + r + s\\
                          • \bullet\,\,x_{2} = \frac{1}{3} - \frac{r + s}{2} + i \frac{r - s}{2}\sqrt{3}\\
                          • \bullet\,\,x_{3} = \frac{1}{3} - \frac{r + s}{2} - i \frac{r - s}{2}\sqrt{3}\\
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^3 - x^2 + 2*x + 5

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 3 roots are:

                          • r = (-151 / 54 + (1 / 6)*(863 / 3)^(1/2))^(1/3)
                          • s = -(151 / 54 + (1 / 6)*(863 / 3)^(1/2))^(1/3)
                          • x1 = 1 / 3 + r + s
                          • x2 = 1 / 3 - (r + s) / 2 + (I/2) * (r - s) * 3^(1/2)
                          • x3 = 1 / 3 - (r + s) / 2 - (I/2) * (r - s) * 3^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x3 + 2

                          Irreducible polynomial factors

                          The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                          Roots

                          The 3 roots are:

                          • x1 = −2
                          • x2 = 12 2 + i23 2
                          • x3 = 12 2i23 2

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^{3} + 2

                          Irreducible polynomial factors

                          The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                          Roots

                          The 3 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,x_{1} = -\sqrt[3]{2}\\
                          • \bullet\,\,x_{2} = \frac{1}{2} \sqrt[3]{2} + \frac{i}{2}\sqrt{3} \sqrt[3]{2}\\
                          • \bullet\,\,x_{3} = \frac{1}{2} \sqrt[3]{2} - \frac{i}{2}\sqrt{3} \sqrt[3]{2}\\
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^3 + 2

                          Irreducible polynomial factors

                          The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                          Roots

                          The 3 roots are:

                          • x1 = -2^(1/3)
                          • x2 = (1/2) *2^(1/3) + I/2*3^(1/2) *2^(1/3)
                          • x3 = (1/2) *2^(1/3) - I/2*3^(1/2) *2^(1/3)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x3 − 2

                          Irreducible polynomial factors

                          The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                          Roots

                          The 3 roots are:

                          • x1 = 2
                          • x2 = − 12 2 + i23 2
                          • x3 = − 12 2i23 2

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^{3} - 2

                          Irreducible polynomial factors

                          The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                          Roots

                          The 3 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,x_{1} = \sqrt[3]{2}\\
                          • \bullet\,\,x_{2} = - \frac{1}{2} \sqrt[3]{2} + \frac{i}{2}\sqrt{3} \sqrt[3]{2}\\
                          • \bullet\,\,x_{3} = - \frac{1}{2} \sqrt[3]{2} - \frac{i}{2}\sqrt{3} \sqrt[3]{2}\\
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^3 - 2

                          Irreducible polynomial factors

                          The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                          Roots

                          The 3 roots are:

                          • x1 = 2^(1/3)
                          • x2 = (-1/2) *2^(1/3) + I/2*3^(1/2) *2^(1/3)
                          • x3 = (-1/2) *2^(1/3) - I/2*3^(1/2) *2^(1/3)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x3 + 6⁢x2 + 18

                          Irreducible polynomial factors

                          The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                          Roots

                          The 3 roots are:

                          • r = −2
                          • s = −32
                          • x1 = -2 + r + s
                          • x2 = -2 − r + s2 + i rs23
                          • x3 = -2 − r + s2 − i rs23

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^{3} + 6x^{2} + 18

                          Irreducible polynomial factors

                          The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                          Roots

                          The 3 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,r = -\sqrt[3]{2}\\
                          • \bullet\,\,s = -\sqrt[3]{32}\\
                          • \bullet\,\,x_{1} = -2 + r + s\\
                          • \bullet\,\,x_{2} = -2 - \frac{r + s}{2} + i \frac{r - s}{2}\sqrt{3}\\
                          • \bullet\,\,x_{3} = -2 - \frac{r + s}{2} - i \frac{r - s}{2}\sqrt{3}\\
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^3 + 6*x^2 + 18

                          Irreducible polynomial factors

                          The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                          Roots

                          The 3 roots are:

                          • r = -(2)^(1/3)
                          • s = -(32)^(1/3)
                          • x1 = -2 + r + s
                          • x2 = -2 - (r + s) / 2 + (I/2) * (r - s) * 3^(1/2)
                          • x3 = -2 - (r + s) / 2 - (I/2) * (r - s) * 3^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          3*x^3 + 3*x^2 + x - 5

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 3 roots are:

                          • x1 = -1 / 3 + (46 / 27)^(1/3)
                          • x2 = -1 / 3 + (-1/2) *(46 / 27)^(1/3) + I/2*3^(1/2) *(46 / 27)^(1/3)
                          • x3 = -1 / 3 + (-1/2) *(46 / 27)^(1/3) - I/2*3^(1/2) *(46 / 27)^(1/3)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x4 + 7

                          Irreducible polynomial factors

                          The polynomial is irreducible because of Eisenstein's criterion (prime = 7)

                          Roots

                          The 4 roots are:

                          • x1 = 12 7 + i 12 7
                          • x2 = 12 7 − i 12 7
                          • x3 = −12 7 + i 12 7
                          • x4 = −12 7 − i 12 7

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x4 − 7

                          Irreducible polynomial factors

                          The polynomial is irreducible because of Eisenstein's criterion (prime = 7)

                          Roots

                          The 4 roots are:

                          • x1 = 7
                          • x2 = i 7
                          • x3 = −7
                          • x4 = −i 7

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^4 + x^2 - 2*x + 1

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • x1 = ((1 / 8)*17^(1/2) - 1 / 8)^(1/2) + I*((1 / 2) - ((1 / 8)*17^(1/2) + 1 / 8)^(1/2))
                          • x2 = ((1 / 8)*17^(1/2) - 1 / 8)^(1/2) + I*(- (1 / 2) + ((1 / 8)*17^(1/2) + 1 / 8)^(1/2))
                          • x3 = - ((1 / 8)*17^(1/2) - 1 / 8)^(1/2) + I*((1 / 2) + ((1 / 8)*17^(1/2) + 1 / 8)^(1/2))
                          • x4 = - ((1 / 8)*17^(1/2) - 1 / 8)^(1/2) + I*(- (1 / 2) - ((1 / 8)*17^(1/2) + 1 / 8)^(1/2))

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x3 − 12⁢x2 + 12⁢x + 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 3 roots are:

                          • t = 13arc cos1916 13
                          • x1 = 4 + 4 3 cos(t)
                          • x2 = 4 + 4 3 cost + 2π3
                          • x3 = 4 + 4 3 cost + 4π3

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^{3} - 12x^{2} + 12x + 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 3 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,t = \frac{1}{3}\arccos\left(\frac{19}{16}\sqrt{\frac{1}{3}}\right)\\
                          • \bullet\,\,x_{1} = 4 + 4\sqrt{3} \cos{(t)\\
                          • \bullet\,\,x_{2} = 4 + 4\sqrt{3} \cos{\left(t + \frac{2 \pi }{3}\right)}\\
                          • \bullet\,\,x_{3} = 4 + 4\sqrt{3} \cos{\left(t + \frac{4 \pi }{3}\right)}\\
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^3 - 12*x^2 + 12*x + 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 3 roots are:

                          • t = (1/3) * acos((19 / 16)*(1 / 3)^(1/2))
                          • x1 = 4 + 4*3^(1/2)* cos(t)
                          • x2 = 4 + 4*3^(1/2)* cos(t + 2 * Pi / 3)
                          • x3 = 4 + 4*3^(1/2)* cos(t + 4 * Pi / 3)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x4 + 3⁢x2 + 12⁢x + 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • t = arccos-35 395
                          • S = 12-2 + 23 285cost3
                          • x1 = S + i24 S² + 6 + 12S
                          • x2 = Si24 S² + 6 + 12S
                          • x3 = − S + i24 S² + 6 − 12S
                          • x4 = − Si24 S² + 6 − 12S

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^{4} + 3x^{2} + 12x + 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,t = \arccos\left(\frac{-3}{5}\sqrt{\frac{3}{95}}\right)\\
                          • \bullet\,\,S = \frac{1}{2}\sqrt{-2 + \frac{2}{3}\sqrt{285}\cos{\frac{t}{3}}}\\
                          • \bullet\,\,x_{1} = S + \frac{i}{2}\sqrt{4 S^2 + 6 + \frac{12}{S}}\\
                          • \bullet\,\,x_{2} = S - \frac{i}{2}\sqrt{4 S^2 + 6 + \frac{12}{S}}\\
                          • \bullet\,\,x_{3} = - S + \frac{i}{2}\sqrt{4 S^2 + 6 - \frac{12}{S}}\\
                          • \bullet\,\,x_{4} = - S - \frac{i}{2}\sqrt{4 S^2 + 6 - \frac{12}{S}}\\
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^4 + 3*x^2 + 12*x + 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • t = acos((-3 / 5)*(3 / 95)^(1/2))
                          • S = (1/2)*(-2 + (2 / 3)*285^(1/2)*cos(t / 3))^(1/2)
                          • x1 = S + (I/2)*(4 *S^2 + 6 + 12 / S)^(1/2)
                          • x2 = S - (I/2)*(4 *S^2 + 6 + 12 / S)^(1/2)
                          • x3 = - S + (I/2)*(4 *S^2 + 6 - 12 / S)^(1/2)
                          • x4 = - S - (I/2)*(4 *S^2 + 6 - 12 / S)^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x4 + 4⁢x2 + 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • x1 = 12 23 − 1 + i 12 23 + 1
                          • x2 = 12 23 − 1 − i 12 23 + 1
                          • x3 = −12 23 − 1 + i 12 23 + 1
                          • x4 = −12 23 − 1 − i 12 23 + 1

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^{4} + 4x^{2} + 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,x_{1} = \sqrt{\frac{1}{2}\sqrt{23} - 1} + i \sqrt{\frac{1}{2}\sqrt{23} + 1}\\
                          • \bullet\,\,x_{2} = \sqrt{\frac{1}{2}\sqrt{23} - 1} - i \sqrt{\frac{1}{2}\sqrt{23} + 1}\\
                          • \bullet\,\,x_{3} = -\sqrt{\frac{1}{2}\sqrt{23} - 1} + i \sqrt{\frac{1}{2}\sqrt{23} + 1}\\
                          • \bullet\,\,x_{4} = -\sqrt{\frac{1}{2}\sqrt{23} - 1} - i \sqrt{\frac{1}{2}\sqrt{23} + 1}\\
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^4 + 4*x^2 + 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • x1 = ((1 / 2)*23^(1/2) - 1)^(1/2) + I* ((1 / 2)*23^(1/2) + 1)^(1/2)
                          • x2 = ((1 / 2)*23^(1/2) - 1)^(1/2) - I* ((1 / 2)*23^(1/2) + 1)^(1/2)
                          • x3 = -((1 / 2)*23^(1/2) - 1)^(1/2) + I* ((1 / 2)*23^(1/2) + 1)^(1/2)
                          • x4 = -((1 / 2)*23^(1/2) - 1)^(1/2) - I* ((1 / 2)*23^(1/2) + 1)^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x4 + 4⁢x2 − 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • x1 = (-2) + 3 3
                          • x2 = i 2 + 3 3
                          • x3 = −(-2) + 3 3
                          • x4 = −i 2 + 3 3

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^{4} + 4x^{2} - 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,x_{1} = \sqrt{(-2) + 3\sqrt{3}}\\
                          • \bullet\,\,x_{2} = i \sqrt{2 + 3\sqrt{3}}\\
                          • \bullet\,\,x_{3} = -\sqrt{(-2) + 3\sqrt{3}}\\
                          • \bullet\,\,x_{4} = -i \sqrt{2 + 3\sqrt{3}}\\
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^4 + 4*x^2 - 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • x1 = ((-2) + 3*3^(1/2))^(1/2)
                          • x2 = I *(2 + 3*3^(1/2))^(1/2)
                          • x3 = -((-2) + 3*3^(1/2))^(1/2)
                          • x4 = -I *(2 + 3*3^(1/2))^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^4 + 18*x^2 + 25

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • x1 = I * (2^(1/2) + 7^(1/2))
                          • x2 = I * (2^(1/2) - 7^(1/2))
                          • x3 = -I * (2^(1/2) + 7^(1/2))
                          • x4 = -I * (2^(1/2) - 7^(1/2))

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^4 - 18*x^2 + 25

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • x1 = 7^(1/2) + 2^(1/2)
                          • x2 = 7^(1/2) - 2^(1/2)
                          • x3 = -7^(1/2) + 2^(1/2)
                          • x4 = -7^(1/2) - 2^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^4 + 18*x^2 + 144

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • x1 = (3 / 2)^(1/2) + (21 / 2)^(1/2)*I
                          • x2 = (3 / 2)^(1/2) - (21 / 2)^(1/2)*I
                          • x3 = -(3 / 2)^(1/2) + (21 / 2)^(1/2)*I
                          • x4 = -(3 / 2)^(1/2) - (21 / 2)^(1/2)*I

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^4 - 18*x^2 + 144

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • x1 = (21 / 2)^(1/2) + (3 / 2)^(1/2)*I
                          • x2 = (21 / 2)^(1/2) - (3 / 2)^(1/2)*I
                          • x3 = -(21 / 2)^(1/2) + (3 / 2)^(1/2)*I
                          • x4 = -(21 / 2)^(1/2) - (3 / 2)^(1/2)*I

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^4 + 18*x^2 + 24

                          Irreducible polynomial factors

                          The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                          Roots

                          The 4 roots are:

                          • x1 = I *(9 - 57^(1/2))^(1/2)
                          • x2 = I *(9 + 57^(1/2))^(1/2)
                          • x3 = -I *(9 - 57^(1/2))^(1/2)
                          • x4 = -I *(9 + 57^(1/2))^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^4 - 18*x^2 + 24

                          Irreducible polynomial factors

                          The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                          Roots

                          The 4 roots are:

                          • x1 = (9 + 57^(1/2))^(1/2)
                          • x2 = (9 - 57^(1/2))^(1/2)
                          • x3 = -(9 + 57^(1/2))^(1/2)
                          • x4 = -(9 - 57^(1/2))^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^4 + 18*x^2 + 95

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • x1 = ((1 / 2)*95^(1/2) - (9 / 2))^(1/2) + I* ((1 / 2)*95^(1/2) + (9 / 2))^(1/2)
                          • x2 = ((1 / 2)*95^(1/2) - (9 / 2))^(1/2) - I* ((1 / 2)*95^(1/2) + (9 / 2))^(1/2)
                          • x3 = -((1 / 2)*95^(1/2) - (9 / 2))^(1/2) + I* ((1 / 2)*95^(1/2) + (9 / 2))^(1/2)
                          • x4 = -((1 / 2)*95^(1/2) - (9 / 2))^(1/2) - I* ((1 / 2)*95^(1/2) + (9 / 2))^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^4 - 18*x^2 + 95

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • x1 = ((1 / 2)*95^(1/2) + (9 / 2))^(1/2) + I* ((1 / 2)*95^(1/2) - (9 / 2))^(1/2)
                          • x2 = ((1 / 2)*95^(1/2) + (9 / 2))^(1/2) - I* ((1 / 2)*95^(1/2) - (9 / 2))^(1/2)
                          • x3 = -((1 / 2)*95^(1/2) + (9 / 2))^(1/2) + I* ((1 / 2)*95^(1/2) - (9 / 2))^(1/2)
                          • x4 = -((1 / 2)*95^(1/2) + (9 / 2))^(1/2) - I* ((1 / 2)*95^(1/2) - (9 / 2))^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^4 + 18*x^2 - 25

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • x1 = ((-9) + 106^(1/2))^(1/2)
                          • x2 = I *(9 + 106^(1/2))^(1/2)
                          • x3 = -((-9) + 106^(1/2))^(1/2)
                          • x4 = -I *(9 + 106^(1/2))^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^4 - 18*x^2 - 25

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • x1 = (9 + 106^(1/2))^(1/2)
                          • x2 = I *((-9) + 106^(1/2))^(1/2)
                          • x3 = -(9 + 106^(1/2))^(1/2)
                          • x4 = -I *((-9) + 106^(1/2))^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^4 + 18*x^2 - 121

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • x1 = ((-9) + 202^(1/2))^(1/2)
                          • x2 = I *(9 + 202^(1/2))^(1/2)
                          • x3 = -((-9) + 202^(1/2))^(1/2)
                          • x4 = -I *(9 + 202^(1/2))^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^4 - 18*x^2 - 121

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • x1 = (9 + 202^(1/2))^(1/2)
                          • x2 = I *((-9) + 202^(1/2))^(1/2)
                          • x3 = -(9 + 202^(1/2))^(1/2)
                          • x4 = -I *((-9) + 202^(1/2))^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^4 + 18*x^2 - 24

                          Irreducible polynomial factors

                          The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                          Roots

                          The 4 roots are:

                          • x1 = ((-9) + 105^(1/2))^(1/2)
                          • x2 = I *(9 + 105^(1/2))^(1/2)
                          • x3 = -((-9) + 105^(1/2))^(1/2)
                          • x4 = -I *(9 + 105^(1/2))^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^4 - 18*x^2 - 24

                          Irreducible polynomial factors

                          The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                          Roots

                          The 4 roots are:

                          • x1 = (9 + 105^(1/2))^(1/2)
                          • x2 = I *((-9) + 105^(1/2))^(1/2)
                          • x3 = -(9 + 105^(1/2))^(1/2)
                          • x4 = -I *((-9) + 105^(1/2))^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^4 + 18*x^2 - 95

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • x1 = ((-9) + 4*11^(1/2))^(1/2)
                          • x2 = I *(9 + 4*11^(1/2))^(1/2)
                          • x3 = -((-9) + 4*11^(1/2))^(1/2)
                          • x4 = -I *(9 + 4*11^(1/2))^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^4 - 18*x^2 - 95

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • x1 = (9 + 4*11^(1/2))^(1/2)
                          • x2 = I *((-9) + 4*11^(1/2))^(1/2)
                          • x3 = -(9 + 4*11^(1/2))^(1/2)
                          • x4 = -I *((-9) + 4*11^(1/2))^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^4 - 18*x^2 + 3*x + 5

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • t = acos((-549 / 2048)*(3 / 2)^(1/2))
                          • S = (1/2)*(12 + (16 / 3)*6^(1/2)*cos(t / 3))^(1/2)
                          • x1 = S + (I/2)*(4 *S^2 - 36 + 3 / S)^(1/2)
                          • x2 = S - (I/2)*(4 *S^2 - 36 + 3 / S)^(1/2)
                          • x3 = - S + (I/2)*(4 *S^2 - 36 - 3 / S)^(1/2)
                          • x4 = - S - (I/2)*(4 *S^2 - 36 - 3 / S)^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^4 - 18*x^2 - 3*x + 5

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • t = acos((-549 / 2048)*(3 / 2)^(1/2))
                          • S = (1/2)*(12 + (16 / 3)*6^(1/2)*cos(t / 3))^(1/2)
                          • x1 = S + (I/2)*(4 *S^2 - 36 - 3 / S)^(1/2)
                          • x2 = S - (I/2)*(4 *S^2 - 36 - 3 / S)^(1/2)
                          • x3 = - S + (I/2)*(4 *S^2 - 36 + 3 / S)^(1/2)
                          • x4 = - S - (I/2)*(4 *S^2 - 36 + 3 / S)^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^4 + 3*x^2 + 79*x + 8

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • Q = (166833 / 2 + (3 / 2)*309 2068821^(1/2))^(1/3)
                          • S = (1/2)*(-2 + Q / 3 + 35 / Q)^(1/2)
                          • x1 = S + (I/2) * (4 *S^2 + 6 + 79 / S)^(1/2)
                          • x2 = S - (I/2) * (4 *S^2 + 6 + 79 / S)^(1/2)
                          • x3 = - S + (1/2) * (-4 *S^2 - 6 + 79 / S)^(1/2)
                          • x4 = - S - (1/2) * (-4 *S^2 - 6 + 79 / S)^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          3x4 − 3⁢x2 + x − 5

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • Q = -1192 + -12 41597
                          • S = 1223 + Q3193 Q
                          • x1 = S + i2 4 S² − 2 + 13 S
                          • x2 = Si2 4 S² − 2 + 13 S
                          • x3 = − S + 12 −4 S² + 2 + 13 S
                          • x4 = − S12 −4 S² + 2 + 13 S

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          3x^{4} - 3x^{2} + x - 5

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,Q = \sqrt[3]{\frac{-119}{2} + \frac{-1}{2}\sqrt{41597}}\\
                          • \bullet\,\,S = \frac{1}{2}\sqrt{\frac{2}{3} + \frac{Q}{3}- \frac{19}{3 Q}}\\
                          • \bullet\,\,x_{1} = S + \frac{i}{2} \sqrt{4 S^2 - 2 + \frac{1}{3 S}}\\
                          • \bullet\,\,x_{2} = S - \frac{i}{2} \sqrt{4 S^2 - 2 + \frac{1}{3 S}}\\
                          • \bullet\,\,x_{3} = - S + \frac{1}{2} \sqrt{-4 S^2 + 2 + \frac{1}{3 S}}\\
                          • \bullet\,\,x_{4} = - S - \frac{1}{2} \sqrt{-4 S^2 + 2 + \frac{1}{3 S}}\\
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          3*x^4 - 3*x^2 + x - 5

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 4 roots are:

                          • Q = (-119 / 2 + (-1 / 2)*41597^(1/2))^(1/3)
                          • S = (1/2)*(2 / 3 + Q / 3 - 19 / (3 * Q))^(1/2)
                          • x1 = S + (I/2) * (4 *S^2 - 2 + 1 / (3 * S))^(1/2)
                          • x2 = S - (I/2) * (4 *S^2 - 2 + 1 / (3 * S))^(1/2)
                          • x3 = - S + (1/2) * (-4 *S^2 + 2 + 1 / (3 * S))^(1/2)
                          • x4 = - S - (1/2) * (-4 *S^2 + 2 + 1 / (3 * S))^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x5 + 15⁢x + 12

                          Irreducible polynomial factors

                          The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                          Roots

                          The 5 roots are:

                          • R1 = −35 + 2125 25
                          • R2 = −-95 + 7225 25
                          • R3 = 95 + 7225 25
                          • R4 = −352125 25
                          • S1 = (−1+5)(R1 + R4) + (−1−5)(R2 + R3)
                          • S2 = (−1+5)(R2 + R3) + (−1−5)(R1 + R4)
                          • T1 = 10 + 25(R4R1) +10 − 25(R3R2)
                          • T2 = 10 + 25(R3R2) +10 − 25(R1R4)
                          • x1 = R1 + R2 + R3 + R4
                          • x2 = S14+ i T14
                          • x3 = S14− i T14
                          • x4 = S24+ i T24
                          • x5 = S24− i T24

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^{5} + 15x + 12

                          Irreducible polynomial factors

                          The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                          Roots

                          The 5 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,R_1 = -\sqrt[5]{\frac{3}{5} + \frac{21}{25}\sqrt{\frac{2}{5}}}
                          • \bullet\,\,R_2 = -\sqrt[5]{\frac{-9}{5} + \frac{72}{25}\sqrt{\frac{2}{5}}}
                          • \bullet\,\,R_3 = \sqrt[5]{\frac{9}{5} + \frac{72}{25}\sqrt{\frac{2}{5}}}
                          • \bullet\,\,R_4 = -\sqrt[5]{\frac{3}{5} - \frac{21}{25}\sqrt{\frac{2}{5}}}
                          • \bullet\,\,S_1 = (-1+\sqrt{5})(R_1 + R_4) + (-1-\sqrt{5})(R_2 + R_3)\\
                          • \bullet\,\,S_2 = (-1+\sqrt{5})(R_2 + R_3) + (-1-\sqrt{5})(R_1 + R_4)\\
                          • \bullet\,\,T_1 = \sqrt{10 + 2\sqrt{5}}(R4 - R1) +\sqrt{10 - 2\sqrt{5}}(R_3 - R_2)\\
                          • \bullet\,\,T_2 = \sqrt{10 + 2\sqrt{5}}(R_3 - R_2) +\sqrt{10 - 2\sqrt{5}}(R_1 - R_4)\\
                          • \bullet\,\,x_{1} = R_1 + R_2 + R_3 + R_4\\
                          • \bullet\,\,x_{2} = \frac{S_1}{4}+ i \frac{T_1}{4}\\
                          • \bullet\,\,x_{3} = \frac{S_1}{4}- i \frac{T_1}{4}\\
                          • \bullet\,\,x_{4} = \frac{S_2}{4}+ i \frac{T_2}{4}\\
                          • \bullet\,\,x_{5} = \frac{S_2}{4}- i \frac{T_2}{4}\\
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^5 + 15*x + 12

                          Irreducible polynomial factors

                          The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                          Roots

                          The 5 roots are:

                          • R1 = -(3 / 5 + (21 / 25)*(2 / 5)^(1/2))^(1/5)
                          • R2 = -(-9 / 5 + (72 / 25)*(2 / 5)^(1/2))^(1/5)
                          • R3 = (9 / 5 + (72 / 25)*(2 / 5)^(1/2))^(1/5)
                          • R4 = -(3 / 5 - (21 / 25)*(2 / 5)^(1/2))^(1/5)
                          • S1 = (-1+5^(1/2))*(R1 + R4) + (-1-5^(1/2))*(R2 + R3)
                          • S2 = (-1+5^(1/2))*(R2 + R3) + (-1-5^(1/2))*(R1 + R4)
                          • T1 = (10 + 2 * 5^(1/2))^(1/2)*(R4 - R1) + (10 - 2 * 5^(1/2))^(1/2)*(R3 - R2)
                          • T2 = (10 + 2 * 5^(1/2))^(1/2)*(R3 - R2) + (10 - 2 * 5^(1/2))^(1/2)*(R1 - R4)
                          • x1 = R1 + R2 + R3 + R4
                          • x2 = (S1 + I * T1) / 4
                          • x3 = (S1 - I * T1) / 4
                          • x4 = (S2 + I * T2) / 4
                          • x5 = (S2 - I * T2) / 4

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x5 − 5⁢x + 12

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 5 roots are:

                          • R1 = −1 + 25 595 + 99125 5
                          • R2 = -1 + 25 5 + 9599125 5
                          • R3 = −1 − 25 5 + 9599125 5
                          • R4 = −1 + 25 5 + 95 + 99125 5
                          • S1 = (−1+5)(R1 + R4) + (−1−5)(R2 + R3)
                          • S2 = (−1+5)(R2 + R3) + (−1−5)(R1 + R4)
                          • T1 = 10 + 25(R4R1) +10 − 25(R3R2)
                          • T2 = 10 + 25(R3R2) +10 − 25(R1R4)
                          • x1 = R1 + R2 + R3 + R4
                          • x2 = S14+ i T14
                          • x3 = S14− i T14
                          • x4 = S24+ i T24
                          • x5 = S24− i T24

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^{5} - 5x + 12

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 5 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,R_1 = -\sqrt[5]{1 + \frac{2}{5}\sqrt{5} - \sqrt{\frac{9}{5} + \frac{99}{125}\sqrt{5}}}
                          • \bullet\,\,R_2 = \sqrt[5]{-1 + \frac{2}{5}\sqrt{5} + \sqrt{\frac{9}{5} - \frac{99}{125}\sqrt{5}}}
                          • \bullet\,\,R_3 = -\sqrt[5]{1 - \frac{2}{5}\sqrt{5} + \sqrt{\frac{9}{5} - \frac{99}{125}\sqrt{5}}}
                          • \bullet\,\,R_4 = -\sqrt[5]{1 + \frac{2}{5}\sqrt{5} + \sqrt{\frac{9}{5} + \frac{99}{125}\sqrt{5}}}
                          • \bullet\,\,S_1 = (-1+\sqrt{5})(R_1 + R_4) + (-1-\sqrt{5})(R_2 + R_3)\\
                          • \bullet\,\,S_2 = (-1+\sqrt{5})(R_2 + R_3) + (-1-\sqrt{5})(R_1 + R_4)\\
                          • \bullet\,\,T_1 = \sqrt{10 + 2\sqrt{5}}(R4 - R1) +\sqrt{10 - 2\sqrt{5}}(R_3 - R_2)\\
                          • \bullet\,\,T_2 = \sqrt{10 + 2\sqrt{5}}(R_3 - R_2) +\sqrt{10 - 2\sqrt{5}}(R_1 - R_4)\\
                          • \bullet\,\,x_{1} = R_1 + R_2 + R_3 + R_4\\
                          • \bullet\,\,x_{2} = \frac{S_1}{4}+ i \frac{T_1}{4}\\
                          • \bullet\,\,x_{3} = \frac{S_1}{4}- i \frac{T_1}{4}\\
                          • \bullet\,\,x_{4} = \frac{S_2}{4}+ i \frac{T_2}{4}\\
                          • \bullet\,\,x_{5} = \frac{S_2}{4}- i \frac{T_2}{4}\\
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^5 - 5*x + 12

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 5 roots are:

                          • R1 = -(1 + (2 / 5)*5^(1/2) - (9 / 5 + (99 / 125)*5^(1/2))^(1/2))^(1/5)
                          • R2 = (-1 + (2 / 5)*5^(1/2) + (9 / 5 - (99 / 125)*5^(1/2))^(1/2))^(1/5)
                          • R3 = -(1 - (2 / 5)*5^(1/2) + (9 / 5 - (99 / 125)*5^(1/2))^(1/2))^(1/5)
                          • R4 = -(1 + (2 / 5)*5^(1/2) + (9 / 5 + (99 / 125)*5^(1/2))^(1/2))^(1/5)
                          • S1 = (-1+5^(1/2))*(R1 + R4) + (-1-5^(1/2))*(R2 + R3)
                          • S2 = (-1+5^(1/2))*(R2 + R3) + (-1-5^(1/2))*(R1 + R4)
                          • T1 = (10 + 2 * 5^(1/2))^(1/2)*(R4 - R1) + (10 - 2 * 5^(1/2))^(1/2)*(R3 - R2)
                          • T2 = (10 + 2 * 5^(1/2))^(1/2)*(R3 - R2) + (10 - 2 * 5^(1/2))^(1/2)*(R1 - R4)
                          • x1 = R1 + R2 + R3 + R4
                          • x2 = (S1 + I * T1) / 4
                          • x3 = (S1 - I * T1) / 4
                          • x4 = (S2 + I * T2) / 4
                          • x5 = (S2 - I * T2) / 4

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          17x5 − 20⁢x + 21

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 5 roots are:

                          • x1 to x5 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 19 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          17x^{5} - 20x + 21

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 5 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,x_{1} to x_{5} : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 19 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          17*x^5 - 20*x + 21

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 5 roots are:

                          • x1 to x5 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 19 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x8 + x4 + 4

                          Irreducible polynomial factors

                          The 2 factors are:

                          • −1
                          • x8x4 − 4

                          Roots

                          The 8 roots are:

                          • x1 = 412 + 12 17 cos 0π1 + i 412 + 12 17 sin0π1 = 412 + 12 17
                          • x2 = 412 + 12 17 cosπ2 + i 412 + 12 17 sinπ2 = + i 412 + 12 17
                          • x3 = 412 + 12 17 cosπ1 + i 412 + 12 17 sinπ1 = −412 + 12 17
                          • x4 = 412 + 12 17 cos 3π2 + i 412 + 12 17 sin3π2 = −i 412 + 12 17
                          • x5 = 4-12 + 12 17 cosπ4 + i 4-12 + 12 17 sinπ4 = 12 4-12 + 12 172 + i2 4-12 + 12 172
                          • x6 = 4-12 + 12 17 cos 3π4 + i 4-12 + 12 17 sin3π4 = −12 4-12 + 12 172 + i2 4-12 + 12 172
                          • x7 = 4-12 + 12 17 cos 5π4 + i 4-12 + 12 17 sin5π4 = −12 4-12 + 12 172i2 4-12 + 12 172
                          • x8 = 4-12 + 12 17 cos 7π4 + i 4-12 + 12 17 sin7π4 = 12 4-12 + 12 172i2 4-12 + 12 172

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x5 + 20⁢x3 + 20⁢x2 + 30⁢x + 10

                          Irreducible polynomial factors

                          The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                          Roots

                          The 5 roots are:

                          • R1 = 2 + 6
                          • R2 = −7 + 9
                          • R3 = -7 + 9
                          • R4 = −-2 + 6
                          • S1 = (−1+5)(R1 + R4) + (−1−5)(R2 + R3)
                          • S2 = (−1+5)(R2 + R3) + (−1−5)(R1 + R4)
                          • T1 = 10 + 25(R4R1) +10 − 25(R3R2)
                          • T2 = 10 + 25(R3R2) +10 − 25(R1R4)
                          • x1 = R1 + R2 + R3 + R4
                          • x2 = S14+ i T14
                          • x3 = S14− i T14
                          • x4 = S24+ i T24
                          • x5 = S24− i T24

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^{5} + 20x^{3} + 20x^{2} + 30x + 10

                          Irreducible polynomial factors

                          The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                          Roots

                          The 5 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,R_1 = \sqrt[5]{2 + 6}
                          • \bullet\,\,R_2 = -\sqrt[5]{7 + 9}
                          • \bullet\,\,R_3 = \sqrt[5]{-7 + 9}
                          • \bullet\,\,R_4 = -\sqrt[5]{-2 + 6}
                          • \bullet\,\,S_1 = (-1+\sqrt{5})(R_1 + R_4) + (-1-\sqrt{5})(R_2 + R_3)\\
                          • \bullet\,\,S_2 = (-1+\sqrt{5})(R_2 + R_3) + (-1-\sqrt{5})(R_1 + R_4)\\
                          • \bullet\,\,T_1 = \sqrt{10 + 2\sqrt{5}}(R4 - R1) +\sqrt{10 - 2\sqrt{5}}(R_3 - R_2)\\
                          • \bullet\,\,T_2 = \sqrt{10 + 2\sqrt{5}}(R_3 - R_2) +\sqrt{10 - 2\sqrt{5}}(R_1 - R_4)\\
                          • \bullet\,\,x_{1} = R_1 + R_2 + R_3 + R_4\\
                          • \bullet\,\,x_{2} = \frac{S_1}{4}+ i \frac{T_1}{4}\\
                          • \bullet\,\,x_{3} = \frac{S_1}{4}- i \frac{T_1}{4}\\
                          • \bullet\,\,x_{4} = \frac{S_2}{4}+ i \frac{T_2}{4}\\
                          • \bullet\,\,x_{5} = \frac{S_2}{4}- i \frac{T_2}{4}\\
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^5 + 20*x^3 + 20*x^2 + 30*x + 10

                          Irreducible polynomial factors

                          The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                          Roots

                          The 5 roots are:

                          • R1 = (2 + 6)^(1/5)
                          • R2 = -(7 + 9)^(1/5)
                          • R3 = (-7 + 9)^(1/5)
                          • R4 = -(-2 + 6)^(1/5)
                          • S1 = (-1+5^(1/2))*(R1 + R4) + (-1-5^(1/2))*(R2 + R3)
                          • S2 = (-1+5^(1/2))*(R2 + R3) + (-1-5^(1/2))*(R1 + R4)
                          • T1 = (10 + 2 * 5^(1/2))^(1/2)*(R4 - R1) + (10 - 2 * 5^(1/2))^(1/2)*(R3 - R2)
                          • T2 = (10 + 2 * 5^(1/2))^(1/2)*(R3 - R2) + (10 - 2 * 5^(1/2))^(1/2)*(R1 - R4)
                          • x1 = R1 + R2 + R3 + R4
                          • x2 = (S1 + I * T1) / 4
                          • x3 = (S1 - I * T1) / 4
                          • x4 = (S2 + I * T2) / 4
                          • x5 = (S2 - I * T2) / 4

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x5 + 10⁢x3 − 20⁢x2 − 1505⁢x − 7412

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 5 roots are:

                          • x1 to x5 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 7 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^{5} + 10x^{3} - 20x^{2} - 1505x - 7412

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 5 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,x_{1} to x_{5} : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 7 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^5 + 10*x^3 - 20*x^2 - 1505*x - 7412

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 5 roots are:

                          • x1 to x5 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 7 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^6 + x^5 + 3*x^4 + x^3 + 3*x^2 + x + 1

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 6 roots are:

                          • x1 to x6 : I cannot determine whether the roots of the polynomial can be solved using radical expressions or not.

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x7 + x + 12

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 7 roots are:

                          • x1 to x7 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 7 ÷ 2))

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^{7} + x + 12

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 7 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,x_{1} to x_{7} : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 7 ÷ 2))
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^7 + x + 12

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 7 roots are:

                          • x1 to x7 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 7 ÷ 2))

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^9 + 6*x^3 + 5

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 9 roots are:

                          • x1 to x9 : The roots of the polynomial can be expressed by radicals. We set y = x^3. The polynomial has degree 3 which is less than 5.

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x10 + 2⁢x5 + 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 10 roots are:

                          • x1 = 1023 cos15 π − arctan22 + i 1023 sin15 π − arctan22
                          • x2 = 1023 cos15 π + arctan22 + i 1023 sin15 π + arctan22
                          • x3 = 1023 cos15 3⁢ π − arctan22 + i 1023 sin15 3⁢ π − arctan22
                          • x4 = 1023 cos15 3⁢ π + arctan22 + i 1023 sin15 3⁢ π + arctan22
                          • x5 = 1023 cos15 5⁢ π − arctan22 + i 1023 sin15 5⁢ π − arctan22
                          • x6 = 1023 cos15 5⁢ π + arctan22 + i 1023 sin15 5⁢ π + arctan22
                          • x7 = 1023 cos15 7⁢ π − arctan22 + i 1023 sin15 7⁢ π − arctan22
                          • x8 = 1023 cos15 7⁢ π + arctan22 + i 1023 sin15 7⁢ π + arctan22
                          • x9 = 1023 cos15 9⁢ π − arctan22 + i 1023 sin15 9⁢ π − arctan22
                          • x10 = 1023 cos15 9⁢ π + arctan22 + i 1023 sin15 9⁢ π + arctan22

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^{10} + 2x^{5} + 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 10 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,x_{1} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(\pi - \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(\pi - \arctan{\sqrt{22}}\right)\right)}\\
                          • \bullet\,\,x_{2} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(\pi + \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(\pi + \arctan{\sqrt{22}}\right)\right)}\\
                          • \bullet\,\,x_{3} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(3\pi - \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(3\pi - \arctan{\sqrt{22}}\right)\right)}\\
                          • \bullet\,\,x_{4} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(3\pi + \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(3\pi + \arctan{\sqrt{22}}\right)\right)}\\
                          • \bullet\,\,x_{5} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(5\pi - \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(5\pi - \arctan{\sqrt{22}}\right)\right)}\\
                          • \bullet\,\,x_{6} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(5\pi + \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(5\pi + \arctan{\sqrt{22}}\right)\right)}\\
                          • \bullet\,\,x_{7} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(7\pi - \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(7\pi - \arctan{\sqrt{22}}\right)\right)}\\
                          • \bullet\,\,x_{8} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(7\pi + \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(7\pi + \arctan{\sqrt{22}}\right)\right)}\\
                          • \bullet\,\,x_{9} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(9\pi - \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(9\pi - \arctan{\sqrt{22}}\right)\right)}\\
                          • \bullet\,\,x_{10} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(9\pi + \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(9\pi + \arctan{\sqrt{22}}\right)\right)}\\
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^10 + 2*x^5 + 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 10 roots are:

                          • x1 = 23^(1/10) *cos(1/5*(Pi - atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(Pi - atan(22^(1/2))))
                          • x2 = 23^(1/10) *cos(1/5*(Pi + atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(Pi + atan(22^(1/2))))
                          • x3 = 23^(1/10) *cos(1/5*(3*Pi - atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(3*Pi - atan(22^(1/2))))
                          • x4 = 23^(1/10) *cos(1/5*(3*Pi + atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(3*Pi + atan(22^(1/2))))
                          • x5 = 23^(1/10) *cos(1/5*(5*Pi - atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(5*Pi - atan(22^(1/2))))
                          • x6 = 23^(1/10) *cos(1/5*(5*Pi + atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(5*Pi + atan(22^(1/2))))
                          • x7 = 23^(1/10) *cos(1/5*(7*Pi - atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(7*Pi - atan(22^(1/2))))
                          • x8 = 23^(1/10) *cos(1/5*(7*Pi + atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(7*Pi + atan(22^(1/2))))
                          • x9 = 23^(1/10) *cos(1/5*(9*Pi - atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(9*Pi - atan(22^(1/2))))
                          • x10 = 23^(1/10) *cos(1/5*(9*Pi + atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(9*Pi + atan(22^(1/2))))

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x10 + 2⁢x5 − 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 10 roots are:

                          • x1 = 5-1 + 2 6 cos 0π1 + i 5-1 + 2 6 sin0π1 = 5-1 + 2 6
                          • x2 = 5-1 + 2 6 cos 2π5 + i 5-1 + 2 6 sin2π5 = 14 5-1 + 2 65−1 + i4 5-1 + 2 610+25
                          • x3 = 5-1 + 2 6 cos 4π5 + i 5-1 + 2 6 sin4π5 = −14 5-1 + 2 65+1 + i4 5-1 + 2 610−25
                          • x4 = 5-1 + 2 6 cos 6π5 + i 5-1 + 2 6 sin6π5 = −14 5-1 + 2 65+1i4 5-1 + 2 610−25
                          • x5 = 5-1 + 2 6 cos 8π5 + i 5-1 + 2 6 sin8π5 = 14 5-1 + 2 65−1i4 5-1 + 2 610+25
                          • x6 = 51 + 2 6 cosπ5 + i 51 + 2 6 sinπ5 = 14 51 + 2 65+1 + i4 51 + 2 610−25
                          • x7 = 51 + 2 6 cos 3π5 + i 51 + 2 6 sin3π5 = −14 51 + 2 65−1 + i4 51 + 2 610+25
                          • x8 = 51 + 2 6 cosπ1 + i 51 + 2 6 sinπ1 = −51 + 2 6
                          • x9 = 51 + 2 6 cos 7π5 + i 51 + 2 6 sin7π5 = −14 51 + 2 65−1i4 51 + 2 610+25
                          • x10 = 51 + 2 6 cos 9π5 + i 51 + 2 6 sin9π5 = 14 51 + 2 65+1i4 51 + 2 610−25

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^{10} + 2x^{5} - 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 10 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,x_{1} = \sqrt[5]{-1 + 2\sqrt{6}} \cos{ \frac{0 \pi }{1}} + i \sqrt[5]{-1 + 2\sqrt{6}} \sin{\frac{0 \pi }{1}} = \sqrt[5]{-1 + 2\sqrt{6}}\\
                          • \bullet\,\,x_{2} = \sqrt[5]{-1 + 2\sqrt{6}} \cos{ \frac{2 \pi }{5}} + i \sqrt[5]{-1 + 2\sqrt{6}} \sin{\frac{2 \pi }{5}} = \frac{1}{4}\sqrt[5]{-1 + 2\sqrt{6}}\left(\sqrt{5}-1\right) + \frac{i}{4}\sqrt[5]{-1 + 2\sqrt{6}}\sqrt{10+2\sqrt{5}}\\
                          • \bullet\,\,x_{3} = \sqrt[5]{-1 + 2\sqrt{6}} \cos{ \frac{4 \pi }{5}} + i \sqrt[5]{-1 + 2\sqrt{6}} \sin{\frac{4 \pi }{5}} = -\frac{1}{4}\sqrt[5]{-1 + 2\sqrt{6}}\left(\sqrt{5}+1\right) + \frac{i}{4}\sqrt[5]{-1 + 2\sqrt{6}}\sqrt{10-2\sqrt{5}}\\
                          • \bullet\,\,x_{4} = \sqrt[5]{-1 + 2\sqrt{6}} \cos{ \frac{6 \pi }{5}} + i \sqrt[5]{-1 + 2\sqrt{6}} \sin{\frac{6 \pi }{5}} = -\frac{1}{4}\sqrt[5]{-1 + 2\sqrt{6}}\left(\sqrt{5}+1\right)-\frac{i}{4}\sqrt[5]{-1 + 2\sqrt{6}}\sqrt{10-2\sqrt{5}}\\
                          • \bullet\,\,x_{5} = \sqrt[5]{-1 + 2\sqrt{6}} \cos{ \frac{8 \pi }{5}} + i \sqrt[5]{-1 + 2\sqrt{6}} \sin{\frac{8 \pi }{5}} = \frac{1}{4}\sqrt[5]{-1 + 2\sqrt{6}}\left(\sqrt{5}-1\right)-\frac{i}{4}\sqrt[5]{-1 + 2\sqrt{6}}\sqrt{10+2\sqrt{5}}\\
                          • \bullet\,\,x_{6} = \sqrt[5]{1 + 2\sqrt{6}} \cos{\frac{\pi }{5}} + i \sqrt[5]{1 + 2\sqrt{6}} \sin{\frac{\pi }{5}} = \frac{1}{4}\sqrt[5]{1 + 2\sqrt{6}}\left(\sqrt{5}+1\right) + \frac{i}{4}\sqrt[5]{1 + 2\sqrt{6}}\sqrt{10-2\sqrt{5}}\\
                          • \bullet\,\,x_{7} = \sqrt[5]{1 + 2\sqrt{6}} \cos{ \frac{3 \pi }{5}} + i \sqrt[5]{1 + 2\sqrt{6}} \sin{\frac{3 \pi }{5}} = -\frac{1}{4}\sqrt[5]{1 + 2\sqrt{6}}\left(\sqrt{5}-1\right) + \frac{i}{4}\sqrt[5]{1 + 2\sqrt{6}}\sqrt{10+2\sqrt{5}}\\
                          • \bullet\,\,x_{8} = \sqrt[5]{1 + 2\sqrt{6}} \cos{\frac{\pi }{1}} + i \sqrt[5]{1 + 2\sqrt{6}} \sin{\frac{\pi }{1}} = -\sqrt[5]{1 + 2\sqrt{6}}\\
                          • \bullet\,\,x_{9} = \sqrt[5]{1 + 2\sqrt{6}} \cos{ \frac{7 \pi }{5}} + i \sqrt[5]{1 + 2\sqrt{6}} \sin{\frac{7 \pi }{5}} = -\frac{1}{4}\sqrt[5]{1 + 2\sqrt{6}}\left(\sqrt{5}-1\right)-\frac{i}{4}\sqrt[5]{1 + 2\sqrt{6}}\sqrt{10+2\sqrt{5}}\\
                          • \bullet\,\,x_{10} = \sqrt[5]{1 + 2\sqrt{6}} \cos{ \frac{9 \pi }{5}} + i \sqrt[5]{1 + 2\sqrt{6}} \sin{\frac{9 \pi }{5}} = \frac{1}{4}\sqrt[5]{1 + 2\sqrt{6}}\left(\sqrt{5}+1\right)-\frac{i}{4}\sqrt[5]{1 + 2\sqrt{6}}\sqrt{10-2\sqrt{5}}\\
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^10 + 2*x^5 - 23

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 10 roots are:

                          • x1 = (-1 + 2*6^(1/2))^(1/5)*cos (0*Pi/1) + I *(-1 + 2*6^(1/2))^(1/5) * sin(0*Pi/1) = (-1 + 2*6^(1/2))^(1/5)
                          • x2 = (-1 + 2*6^(1/2))^(1/5)*cos (2*Pi/5) + I *(-1 + 2*6^(1/2))^(1/5) * sin(2*Pi/5) = (1/4)*(-1 + 2*6^(1/2))^(1/5)*(5^(1/2)-1) + (I/4)*(-1 + 2*6^(1/2))^(1/5)*(10+2*5^(1/2))^(1/2)
                          • x3 = (-1 + 2*6^(1/2))^(1/5)*cos (4*Pi/5) + I *(-1 + 2*6^(1/2))^(1/5) * sin(4*Pi/5) = -(1/4)*(-1 + 2*6^(1/2))^(1/5)*(5^(1/2)+1) + (I/4)*(-1 + 2*6^(1/2))^(1/5)*(10-2*5^(1/2))^(1/2)
                          • x4 = (-1 + 2*6^(1/2))^(1/5)*cos (6*Pi/5) + I *(-1 + 2*6^(1/2))^(1/5) * sin(6*Pi/5) = -(1/4)*(-1 + 2*6^(1/2))^(1/5)*(5^(1/2)+1)-(I/4)*(-1 + 2*6^(1/2))^(1/5)*(10-2*5^(1/2))^(1/2)
                          • x5 = (-1 + 2*6^(1/2))^(1/5)*cos (8*Pi/5) + I *(-1 + 2*6^(1/2))^(1/5) * sin(8*Pi/5) = (1/4)*(-1 + 2*6^(1/2))^(1/5)*(5^(1/2)-1)-(I/4)*(-1 + 2*6^(1/2))^(1/5)*(10+2*5^(1/2))^(1/2)
                          • x6 = (1 + 2*6^(1/2))^(1/5)*cos(Pi/5) + I *(1 + 2*6^(1/2))^(1/5) * sin(Pi/5) = (1/4)*(1 + 2*6^(1/2))^(1/5)*(5^(1/2)+1) + (I/4)*(1 + 2*6^(1/2))^(1/5)*(10-2*5^(1/2))^(1/2)
                          • x7 = (1 + 2*6^(1/2))^(1/5)*cos (3*Pi/5) + I *(1 + 2*6^(1/2))^(1/5) * sin(3*Pi/5) = -(1/4)*(1 + 2*6^(1/2))^(1/5)*(5^(1/2)-1) + (I/4)*(1 + 2*6^(1/2))^(1/5)*(10+2*5^(1/2))^(1/2)
                          • x8 = (1 + 2*6^(1/2))^(1/5)*cos(Pi/1) + I *(1 + 2*6^(1/2))^(1/5) * sin(Pi/1) = -(1 + 2*6^(1/2))^(1/5)
                          • x9 = (1 + 2*6^(1/2))^(1/5)*cos (7*Pi/5) + I *(1 + 2*6^(1/2))^(1/5) * sin(7*Pi/5) = -(1/4)*(1 + 2*6^(1/2))^(1/5)*(5^(1/2)-1)-(I/4)*(1 + 2*6^(1/2))^(1/5)*(10+2*5^(1/2))^(1/2)
                          • x10 = (1 + 2*6^(1/2))^(1/5)*cos (9*Pi/5) + I *(1 + 2*6^(1/2))^(1/5) * sin(9*Pi/5) = (1/4)*(1 + 2*6^(1/2))^(1/5)*(5^(1/2)+1)-(I/4)*(1 + 2*6^(1/2))^(1/5)*(10-2*5^(1/2))^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^12 + x + 5

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 12 roots are:

                          • x1 to x12 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 2 are 3, 4 and 5 (the Galois group contains a cycle of length 3) and the degrees of the factors of polynomial modulo 7 are 1 and 11 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (11 > 12 ÷ 2))

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^13 + 3*x + 5

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 13 roots are:

                          • x1 to x13 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 7 are 1, 5 and 7 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (7 > 13 ÷ 2) and less than the degree minus 2 (7 < 13 − 2))

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x17 − 1

                          Irreducible polynomial factors

                          The 2 factors are:

                          • x − 1
                          • x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1

                          Roots

                          The 17 roots are:

                          • x1 = 1
                          • x2 = cos 2π17 + i sin2π17 = 116 −1+17+34−217+217+317170+3817 + i8 34−217+234−217−417+317+170+3817
                          • x3 = cos 4π17 + i sin4π17 = 116 −1+1734−217+217+317+170+3817 + i8 34−217−234−217+417+317170+3817
                          • x4 = cos 6π17 + i sin6π17 = 116 −1−17+34+217+217−317+170−3817 + i8 34+217+234+217−417−317170−3817
                          • x5 = cos 8π17 + i sin8π17 = 116 −1+17+34−217−217+317170+3817 + i8 34−217+234−217+417+317+170+3817
                          • x6 = cos 10π17 + i sin10π17 = −116 1+1734+217+217−317+170−3817 + i8 34+217+234+217+417−317170−3817
                          • x7 = cos 12π17 + i sin12π17 = −116 1+17+34+217−217−317170−3817 + i8 34+217−234+217+417−317+170−3817
                          • x8 = cos 14π17 + i sin14π17 = −116 1+17+34+217+217−317170−3817 + i8 34+217−234+217−417−317+170−3817
                          • x9 = cos 16π17 + i sin16π17 = −116 1−17+34−217+217+317+170+3817 + i8 34−217−234−217−417+317170+3817
                          • x10 = cos 18π17 + i sin18π17 = −116 1−17+34−217+217+317+170+3817i8 34−217−234−217−417+317170+3817
                          • x11 = cos 20π17 + i sin20π17 = −116 1+17+34+217+217−317170−3817i8 34+217−234+217−417−317+170−3817
                          • x12 = cos 22π17 + i sin22π17 = −116 1+17+34+217−217−317170−3817i8 34+217−234+217+417−317+170−3817
                          • x13 = cos 24π17 + i sin24π17 = −116 1+1734+217+217−317+170−3817i8 34+217+234+217+417−317170−3817
                          • x14 = cos 26π17 + i sin26π17 = 116 −1+17+34−217−217+317170+3817i8 34−217+234−217+417+317+170+3817
                          • x15 = cos 28π17 + i sin28π17 = 116 −1−17+34+217+217−317+170−3817i8 34+217+234+217−417−317170−3817
                          • x16 = cos 30π17 + i sin30π17 = 116 −1+1734−217+217+317+170+3817i8 34−217−234−217+417+317170+3817
                          • x17 = cos 32π17 + i sin32π17 = 116 −1+17+34−217+217+317170+3817i8 34−217+234−217−417+317+170+3817

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^{17} - 1

                          Irreducible polynomial factors

                          The 2 factors are:

                          • \begin{array}{l}
                          • \bullet\,\,x - 1\\
                          • \bullet\,\,x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1\\
                          • \end{array}

                          Roots

                          The 17 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,x_{1} = 1\\
                          • \bullet\,\,x_{2} = \cos{ \frac{2 \pi }{17}} + i \sin{\frac{2 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34-2\sqrt{17}+2\sqrt{34-2\sqrt{17}}-4\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}}\\
                          • \bullet\,\,x_{3} = \cos{ \frac{4 \pi }{17}} + i \sin{\frac{4 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}-\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34-2\sqrt{17}-2\sqrt{34-2\sqrt{17}}+4\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}}\\
                          • \bullet\,\,x_{4} = \cos{ \frac{6 \pi }{17}} + i \sin{\frac{6 \pi }{17}} = \frac{1}{16}\left(-1-\sqrt{17}+\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34+2\sqrt{17}+2\sqrt{34+2\sqrt{17}}-4\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}}\\
                          • \bullet\,\,x_{5} = \cos{ \frac{8 \pi }{17}} + i \sin{\frac{8 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}-2\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34-2\sqrt{17}+2\sqrt{34-2\sqrt{17}}+4\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}}\\
                          • \bullet\,\,x_{6} = \cos{ \frac{10 \pi }{17}} + i \sin{\frac{10 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}-\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34+2\sqrt{17}+2\sqrt{34+2\sqrt{17}}+4\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}}\\
                          • \bullet\,\,x_{7} = \cos{ \frac{12 \pi }{17}} + i \sin{\frac{12 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}+\sqrt{34+2\sqrt{17}}-2\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34+2\sqrt{17}-2\sqrt{34+2\sqrt{17}}+4\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}}\\
                          • \bullet\,\,x_{8} = \cos{ \frac{14 \pi }{17}} + i \sin{\frac{14 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}+\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34+2\sqrt{17}-2\sqrt{34+2\sqrt{17}}-4\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}}\\
                          • \bullet\,\,x_{9} = \cos{ \frac{16 \pi }{17}} + i \sin{\frac{16 \pi }{17}} = -\frac{1}{16}\left(1-\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34-2\sqrt{17}-2\sqrt{34-2\sqrt{17}}-4\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}}\\
                          • \bullet\,\,x_{10} = \cos{ \frac{18 \pi }{17}} + i \sin{\frac{18 \pi }{17}} = -\frac{1}{16}\left(1-\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34-2\sqrt{17}-2\sqrt{34-2\sqrt{17}}-4\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}}\\
                          • \bullet\,\,x_{11} = \cos{ \frac{20 \pi }{17}} + i \sin{\frac{20 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}+\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34+2\sqrt{17}-2\sqrt{34+2\sqrt{17}}-4\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}}\\
                          • \bullet\,\,x_{12} = \cos{ \frac{22 \pi }{17}} + i \sin{\frac{22 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}+\sqrt{34+2\sqrt{17}}-2\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34+2\sqrt{17}-2\sqrt{34+2\sqrt{17}}+4\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}}\\
                          • \bullet\,\,x_{13} = \cos{ \frac{24 \pi }{17}} + i \sin{\frac{24 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}-\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34+2\sqrt{17}+2\sqrt{34+2\sqrt{17}}+4\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}}\\
                          • \bullet\,\,x_{14} = \cos{ \frac{26 \pi }{17}} + i \sin{\frac{26 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}-2\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34-2\sqrt{17}+2\sqrt{34-2\sqrt{17}}+4\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}}\\
                          • \bullet\,\,x_{15} = \cos{ \frac{28 \pi }{17}} + i \sin{\frac{28 \pi }{17}} = \frac{1}{16}\left(-1-\sqrt{17}+\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34+2\sqrt{17}+2\sqrt{34+2\sqrt{17}}-4\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}}\\
                          • \bullet\,\,x_{16} = \cos{ \frac{30 \pi }{17}} + i \sin{\frac{30 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}-\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34-2\sqrt{17}-2\sqrt{34-2\sqrt{17}}+4\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}}\\
                          • \bullet\,\,x_{17} = \cos{ \frac{32 \pi }{17}} + i \sin{\frac{32 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34-2\sqrt{17}+2\sqrt{34-2\sqrt{17}}-4\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}}\\
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^17 - 1

                          Irreducible polynomial factors

                          The 2 factors are:

                          • x - 1
                          • x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1

                          Roots

                          The 17 roots are:

                          • x1 = 1
                          • x2 = cos (2*Pi/17) + I *sin(2*Pi/17) = (1/16)*(-1+17^(1/2)+(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34-2*17^(1/2)+2*(34-2*17^(1/2))^(1/2)-4*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
                          • x3 = cos (4*Pi/17) + I *sin(4*Pi/17) = (1/16)*(-1+17^(1/2)-(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34-2*17^(1/2)-2*(34-2*17^(1/2))^(1/2)+4*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
                          • x4 = cos (6*Pi/17) + I *sin(6*Pi/17) = (1/16)*(-1-17^(1/2)+(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34+2*17^(1/2)+2*(34+2*17^(1/2))^(1/2)-4*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                          • x5 = cos (8*Pi/17) + I *sin(8*Pi/17) = (1/16)*(-1+17^(1/2)+(34-2*17^(1/2))^(1/2)-2*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34-2*17^(1/2)+2*(34-2*17^(1/2))^(1/2)+4*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
                          • x6 = cos (10*Pi/17) + I *sin(10*Pi/17) = -(1/16)*(1+17^(1/2)-(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34+2*17^(1/2)+2*(34+2*17^(1/2))^(1/2)+4*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                          • x7 = cos (12*Pi/17) + I *sin(12*Pi/17) = -(1/16)*(1+17^(1/2)+(34+2*17^(1/2))^(1/2)-2*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34+2*17^(1/2)-2*(34+2*17^(1/2))^(1/2)+4*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                          • x8 = cos (14*Pi/17) + I *sin(14*Pi/17) = -(1/16)*(1+17^(1/2)+(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34+2*17^(1/2)-2*(34+2*17^(1/2))^(1/2)-4*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                          • x9 = cos (16*Pi/17) + I *sin(16*Pi/17) = -(1/16)*(1-17^(1/2)+(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34-2*17^(1/2)-2*(34-2*17^(1/2))^(1/2)-4*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
                          • x10 = cos (18*Pi/17) + I *sin(18*Pi/17) = -(1/16)*(1-17^(1/2)+(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34-2*17^(1/2)-2*(34-2*17^(1/2))^(1/2)-4*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
                          • x11 = cos (20*Pi/17) + I *sin(20*Pi/17) = -(1/16)*(1+17^(1/2)+(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34+2*17^(1/2)-2*(34+2*17^(1/2))^(1/2)-4*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                          • x12 = cos (22*Pi/17) + I *sin(22*Pi/17) = -(1/16)*(1+17^(1/2)+(34+2*17^(1/2))^(1/2)-2*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34+2*17^(1/2)-2*(34+2*17^(1/2))^(1/2)+4*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                          • x13 = cos (24*Pi/17) + I *sin(24*Pi/17) = -(1/16)*(1+17^(1/2)-(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34+2*17^(1/2)+2*(34+2*17^(1/2))^(1/2)+4*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                          • x14 = cos (26*Pi/17) + I *sin(26*Pi/17) = (1/16)*(-1+17^(1/2)+(34-2*17^(1/2))^(1/2)-2*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34-2*17^(1/2)+2*(34-2*17^(1/2))^(1/2)+4*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
                          • x15 = cos (28*Pi/17) + I *sin(28*Pi/17) = (1/16)*(-1-17^(1/2)+(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34+2*17^(1/2)+2*(34+2*17^(1/2))^(1/2)-4*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                          • x16 = cos (30*Pi/17) + I *sin(30*Pi/17) = (1/16)*(-1+17^(1/2)-(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34-2*17^(1/2)-2*(34-2*17^(1/2))^(1/2)+4*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
                          • x17 = cos (32*Pi/17) + I *sin(32*Pi/17) = (1/16)*(-1+17^(1/2)+(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34-2*17^(1/2)+2*(34-2*17^(1/2))^(1/2)-4*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^129 + 6*x^4 + 5

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 129 roots are:

                          • x1 to x129 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 31 are 2, 22, 38 and 67 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (67 > 129 ÷ 2) and less than the degree minus 2 (67 < 129 − 2))

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x19 − 24⁢x18 + 22⁢x17 + 38⁢x16 − 335⁢x15 − 244⁢x14 + 361⁢x13 − 778⁢x12 − 2642⁢x11 − 2160⁢x10 − 575⁢x9

                          Irreducible polynomial factors

                          The 17 factors are:

                          • x − 23
                          • x9
                          • (x + 1)5
                          • (x2 − 3⁢x + 5)2

                          Roots

                          The 19 roots are:

                          • x1 = 23
                          • x2 to x10 = 0
                          • x11 to x15 = -1
                          • x16 = x17 = 3212 11 i
                          • x18 = x19 = 32 + 12 11 i

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^{19} - 24x^{18} + 22x^{17} + 38x^{16} - 335x^{15} - 244x^{14} + 361x^{13} - 778x^{12} - 2642x^{11} - 2160x^{10} - 575x^{9}

                          Irreducible polynomial factors

                          The 17 factors are:

                          • \begin{array}{l}
                          • \bullet\,\,x - 23\\
                          • \bullet\,\,x^{9}\\
                          • \bullet\,\,(x + 1)^{5}\\
                          • \bullet\,\,(x^{2} - 3x + 5)^{2}\\
                          • \end{array}

                          Roots

                          The 19 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,x_{1} = 23\\
                          • \bullet\,\,x_{2} to x_{10} = 0\\
                          • \bullet\,\,x_{11} to x_{15} = -1\\
                          • \bullet\,\,x_{16} = x_{17} = \frac{3}{2} - \frac{1}{2}\sqrt{11} i\\
                          • \bullet\,\,x_{18} = x_{19} = \frac{3}{2} + \frac{1}{2}\sqrt{11} i\\
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          x^19 - 24*x^18 + 22*x^17 + 38*x^16 - 335*x^15 - 244*x^14 + 361*x^13 - 778*x^12 - 2642*x^11 - 2160*x^10 - 575*x^9

                          Irreducible polynomial factors

                          The 17 factors are:

                          • x - 23
                          • x^9
                          • (x + 1)^5
                          • (x^2 - 3*x + 5)^2

                          Roots

                          The 19 roots are:

                          • x1 = 23
                          • x2 to x10 = 0
                          • x11 to x15 = -1
                          • x16 = x17 = 3 / 2 - (1 / 2)*11^(1/2) *I
                          • x18 = x19 = 3 / 2 + (1 / 2)*11^(1/2) *I

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          8x7 + 1

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 7 roots are:

                          • x1 = 718 cosπ7 + i 718 sinπ7
                          • x2 = 718 cos 3π7 + i 718 sin3π7
                          • x3 = 718 cos 5π7 + i 718 sin5π7
                          • x4 = 718 cosπ1 + i 718 sinπ1 = −718
                          • x5 = 718 cos 9π7 + i 718 sin9π7
                          • x6 = 718 cos 11π7 + i 718 sin11π7
                          • x7 = 718 cos 13π7 + i 718 sin13π7

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          8x^{7} + 1

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 7 roots are:

                          • \begin{array}{l}
                          • \bullet\,\,x_{1} = \sqrt[7]{\frac{1}{8}} \cos{\frac{\pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{\pi }{7}}\\
                          • \bullet\,\,x_{2} = \sqrt[7]{\frac{1}{8}} \cos{ \frac{3 \pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{3 \pi }{7}}\\
                          • \bullet\,\,x_{3} = \sqrt[7]{\frac{1}{8}} \cos{ \frac{5 \pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{5 \pi }{7}}\\
                          • \bullet\,\,x_{4} = \sqrt[7]{\frac{1}{8}} \cos{\frac{\pi }{1}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{\pi }{1}} = -\sqrt[7]{\frac{1}{8}}\\
                          • \bullet\,\,x_{5} = \sqrt[7]{\frac{1}{8}} \cos{ \frac{9 \pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{9 \pi }{7}}\\
                          • \bullet\,\,x_{6} = \sqrt[7]{\frac{1}{8}} \cos{ \frac{11 \pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{11 \pi }{7}}\\
                          • \bullet\,\,x_{7} = \sqrt[7]{\frac{1}{8}} \cos{ \frac{13 \pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{13 \pi }{7}}\\
                          • \end{array}

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          8*x^7 + 1

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                          The 7 roots are:

                          • x1 = ((1 / 8))^(1/7)*cos(Pi/7) + I *((1 / 8))^(1/7) * sin(Pi/7)
                          • x2 = ((1 / 8))^(1/7)*cos (3*Pi/7) + I *((1 / 8))^(1/7) * sin(3*Pi/7)
                          • x3 = ((1 / 8))^(1/7)*cos (5*Pi/7) + I *((1 / 8))^(1/7) * sin(5*Pi/7)
                          • x4 = ((1 / 8))^(1/7)*cos(Pi/1) + I *((1 / 8))^(1/7) * sin(Pi/1) = -((1 / 8))^(1/7)
                          • x5 = ((1 / 8))^(1/7)*cos (9*Pi/7) + I *((1 / 8))^(1/7) * sin(9*Pi/7)
                          • x6 = ((1 / 8))^(1/7)*cos (11*Pi/7) + I *((1 / 8))^(1/7) * sin(11*Pi/7)
                          • x7 = ((1 / 8))^(1/7)*cos (13*Pi/7) + I *((1 / 8))^(1/7) * sin(13*Pi/7)

                          Time elapsed:

                          Written by Dario Alpern. Last updated on 15 December 2024.

                          +2

                          Your polynomial

                          4

                          Irreducible polynomial factors

                          The polynomial is irreducible

                          Roots

                            Time elapsed:

                            Written by Dario Alpern. Last updated on 15 December 2024.

                            +2

                            Your polynomial

                            x^2 + x + 3

                            Irreducible polynomial factors

                            The polynomial is irreducible

                            Roots

                            The 2 roots are:

                            • x1 = -1 / 2 - (1 / 2)*11^(1/2) *I
                            • x2 = -1 / 2 + (1 / 2)*11^(1/2) *I

                            Time elapsed:

                            Written by Dario Alpern. Last updated on 15 December 2024.

                            +2

                            Your polynomial

                            x + 3

                            Irreducible polynomial factors

                            The polynomial is irreducible

                            Roots

                            • x1 = -3

                            Time elapsed:

                            Written by Dario Alpern. Last updated on 15 December 2024.

                            +2

                            Your polynomial

                            x^2 + 1

                            Irreducible polynomial factors

                            The polynomial is irreducible

                            Roots

                            The 2 roots are:

                            • x1 = - 1 *I
                            • x2 = 1 *I

                            Time elapsed:

                            Written by Dario Alpern. Last updated on 15 December 2024.

                            +2

                            Your polynomial

                            1

                            Irreducible polynomial factors

                            The polynomial is irreducible

                            Roots

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              x^4 + x^3 - x - 1

                              Irreducible polynomial factors

                              The 3 factors are:

                              • x - 1
                              • x + 1
                              • x^2 + x + 1

                              Roots

                              The 4 roots are:

                              • x1 = 1
                              • x2 = -1
                              • x3 = -1 / 2 - (1 / 2)*3^(1/2) *I
                              • x4 = -1 / 2 + (1 / 2)*3^(1/2) *I

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              x^3

                              Irreducible polynomial factors

                              The 3 factors are:

                              • x^3

                              Roots

                              The 3 roots are:

                              • x1 to x3 = 0

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              x^10 + x^6

                              Irreducible polynomial factors

                              The 7 factors are:

                              • x^6
                              • x^4 + 1

                              Roots

                              The 10 roots are:

                              • x1 to x6 = 0
                              • x7 = (1 / 2)^(1/2) + (1 / 2)^(1/2)*I
                              • x8 = (1 / 2)^(1/2) - (1 / 2)^(1/2)*I
                              • x9 = -(1 / 2)^(1/2) + (1 / 2)^(1/2)*I
                              • x10 = -(1 / 2)^(1/2) - (1 / 2)^(1/2)*I

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              Mod(1, 3)

                              Irreducible polynomial factors

                              The polynomial is irreducible

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              Mod(x^2 + x, 3)

                              Irreducible polynomial factors

                              The 2 factors are:

                              • x
                              • x + 1

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              Mod(x, 3)

                              Irreducible polynomial factors

                              The polynomial is irreducible

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              Mod(x^2 + 1, 3)

                              Irreducible polynomial factors

                              The polynomial is irreducible

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              Mod(1, 3)

                              Irreducible polynomial factors

                              The polynomial is irreducible

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              Mod(x^4 + x^3 + 2*x + 2, 3)

                              Irreducible polynomial factors

                              The 4 factors are:

                              • x + 1
                              • (x + 2)^3

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              Mod(x^3, 3)

                              Irreducible polynomial factors

                              The 3 factors are:

                              • x^3

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              Mod(x^10 + x^6, 3)

                              Irreducible polynomial factors

                              The 8 factors are:

                              • x^6
                              • x^2 + x + 2
                              • x^2 + 2*x + 2

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              Mod(x^60 + 1, 2)

                              Irreducible polynomial factors

                              The 20 factors are:

                              • (x + 1)^4
                              • (x^2 + x + 1)^4
                              • (x^4 + x + 1)^4
                              • (x^4 + x^3 + 1)^4
                              • (x^4 + x^3 + x^2 + x + 1)^4

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              Mod(x^5 + 2*x^4 + x^3 + 3, 11)

                              Irreducible polynomial factors

                              The polynomial is irreducible

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              Mod(x^5 + 2*x^4 + x^3 + 3, 11)

                              Irreducible polynomial factors

                              The polynomial is irreducible

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              Mod(10*x^5 + 10*x^3 + 10, 11)

                              Irreducible polynomial factors

                              The 3 factors are:

                              • 10
                              • x + 7
                              • x^4 + 4*x^3 + 6*x^2 + 2*x + 8

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              Mod(x^25, 11)

                              Irreducible polynomial factors

                              The 25 factors are:

                              • x^25

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              Mod(x^15 + x^3 + x^2, 11)

                              Irreducible polynomial factors

                              The 5 factors are:

                              • x^2
                              • x + 9
                              • x^4 + x^3 + 6*x + 9
                              • x^8 + x^7 + 3*x^6 + 10*x^5 + 2*x^4 + 3*x^3 + 7*x^2 + 8*x + 3

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              Mod(x^5 + 1, 11)

                              Irreducible polynomial factors

                              The 5 factors are:

                              • x + 1
                              • x + 3
                              • x + 4
                              • x + 5
                              • x + 9

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              Mod(10*x^9 + x^5 + x^3 + 1, 11)

                              Irreducible polynomial factors

                              The 4 factors are:

                              • 10
                              • x + 1
                              • x + 2
                              • x^7 + 8*x^6 + 7*x^5 + 7*x^4 + 8*x^3 + 6*x^2 + 9*x + 5

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              Mod(4*x^4 + 5*x^3 + 6*x^2 + 6*x + 4, 11)

                              Irreducible polynomial factors

                              The 3 factors are:

                              • 4
                              • x^2 + x + 7
                              • x^2 + 3*x + 8

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              4*x^4 + 5*x^3 + 6*x^2 + 6*x + 4

                              Irreducible polynomial factors

                              The polynomial is irreducible

                              Roots

                              The 4 roots are:

                              • t = acos((-21 / 23)*(6 / 23)^(1/2))
                              • S = (1/2)*(-39 / 64 + (1 / 3)*(69 / 2)^(1/2)*cos(t / 3))^(1/2)
                              • x1 = -5 / 16 + S + (I/2)*(4 *S^2 + 117 / 64 + 413 / (512 * S))^(1/2)
                              • x2 = -5 / 16 + S - (I/2)*(4 *S^2 + 117 / 64 + 413 / (512 * S))^(1/2)
                              • x3 = -5 / 16 - S + (I/2)*(4 *S^2 + 117 / 64 - 413 / (512 * S))^(1/2)
                              • x4 = -5 / 16 - S - (I/2)*(4 *S^2 + 117 / 64 - 413 / (512 * S))^(1/2)

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              Mod(x^7 + x^2, 11)

                              Irreducible polynomial factors

                              The 7 factors are:

                              • x^2
                              • x + 1
                              • x + 3
                              • x + 4
                              • x + 5
                              • x + 9

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              Mod(4*x^8 + 8*x^4 + 4, 11)

                              Irreducible polynomial factors

                              The 5 factors are:

                              • 4
                              • (x^2 + 3*x + 10)^2
                              • (x^2 + 8*x + 10)^2

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              Mod(2*x, 11)

                              Irreducible polynomial factors

                              The 2 factors are:

                              • 2
                              • x

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              Mod(x^2 + x + 10, 11)

                              Irreducible polynomial factors

                              The 2 factors are:

                              • x + 4
                              • x + 8

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              −x^5

                              Irreducible polynomial factors

                              The 6 factors are:

                              • −1
                              • x^5

                              Roots

                              The 5 roots are:

                              • x1 to x5 = 0

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              x^5 + x^4 - 4*x^3 - 3*x^2 + 3*x + 1

                              Irreducible polynomial factors

                              The polynomial is irreducible

                              Roots

                              The 5 roots are:

                              • x1 = -1 / 5 + (2 / 5)*11^(1/2)*(cos((1/5)*acos((-89 / 484)*11^(1/2) + (25 / 484)*55^(1/2))) + cos((1/5)*(4*Pi + acos((-89 / 484)*11^(1/2) - (25 / 484)*55^(1/2)))))
                              • x2 = -1 / 5 + (2 / 5)*11^(1/2)*(cos((1/5)*(2*Pi + acos((-89 / 484)*11^(1/2) + (25 / 484)*55^(1/2)))) + cos((1/5)*acos((-89 / 484)*11^(1/2) - (25 / 484)*55^(1/2))))
                              • x3 = -1 / 5 + (2 / 5)*11^(1/2)*(cos((1/5)*(4*Pi + acos((-89 / 484)*11^(1/2) + (25 / 484)*55^(1/2)))) + cos((1/5)*(6*Pi + acos((-89 / 484)*11^(1/2) - (25 / 484)*55^(1/2)))))
                              • x4 = -1 / 5 + (2 / 5)*11^(1/2)*(cos((1/5)*(6*Pi + acos((-89 / 484)*11^(1/2) + (25 / 484)*55^(1/2)))) + cos((1/5)*(2*Pi + acos((-89 / 484)*11^(1/2) - (25 / 484)*55^(1/2)))))
                              • x5 = -1 / 5 + (2 / 5)*11^(1/2)*(cos((1/5)*(8*Pi + acos((-89 / 484)*11^(1/2) + (25 / 484)*55^(1/2)))) + cos((1/5)*(8*Pi + acos((-89 / 484)*11^(1/2) - (25 / 484)*55^(1/2)))))

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              423 6836605*x^4 + 323 2968453*x^3 + 53 6741668*x^2 + 3 7982461*x + 1709169

                              Irreducible polynomial factors

                              The 2 factors are:

                              • 61415x^2 + 4334*x + 343
                              • 68987x^2 + 47773*x + 4983

                              Roots

                              The 4 roots are:

                              • x1 = -2167 / 61415 - (4 / 61415)*1023091^(1/2) *I
                              • x2 = -2167 / 61415 + (4 / 61415)*1023091^(1/2) *I
                              • x3 = -47773 / 137974 - (1 / 137974)*90 7210645^(1/2)
                              • x4 = -47773 / 137974 + (1 / 137974)*90 7210645^(1/2)

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              25716 2225748 9453541*x^4 + 5339 6315345 9320416*x^3 + 16134 3373525 6062469*x^2 + 2053 2826762 2151128*x + 1478 5481680 9063573

                              Irreducible polynomial factors

                              The 2 factors are:

                              • 67 8585781x^2 + 4 3213515*x + 34 2143153
                              • 378 9678961x^2 + 54 5543121*x + 43 2143141

                              Roots

                              The 4 roots are:

                              • x1 = -4 3213515 / 135 7171562 - (1 / 135 7171562)*9268 2650689 0574747^(1/2) *I
                              • x2 = -4 3213515 / 135 7171562 + (1 / 135 7171562)*9268 2650689 0574747^(1/2) *I
                              • x3 = -54 5543121 / 757 9357922 - (1 / 757 9357922)*62531 1778148 2205363^(1/2) *I
                              • x4 = -54 5543121 / 757 9357922 + (1 / 757 9357922)*62531 1778148 2205363^(1/2) *I

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              45876 4056192 7400868 2906871x^{4} + 29158 6367947 3120381 2844366x^{3} + 2934 8677804 6745747 3595759x^{2} + 1495272 0835562 2151128x + 148600 1039580 9063573

                              Irreducible polynomial factors

                              The 2 factors are:

                              • \begin{array}{l}
                              • \bullet\,\,67896 7896891x^{2} + 43154 5543121x + 4343 2143141\\
                              • \bullet\,\,6756785 6785781x^{2} + 4 3213515x + 34 2143153\\
                              • \end{array}

                              Roots

                              The 4 roots are:

                              • \begin{array}{l}
                              • \bullet\,\,x_{1} = \frac{-43154 5543121}{135793 5793782} - \frac{1}{135793 5793782}\sqrt{68 2754322 4394430 6922117}\\
                              • \bullet\,\,x_{2} = \frac{-43154 5543121}{135793 5793782} + \frac{1}{135793 5793782}\sqrt{68 2754322 4394430 6922117}\\
                              • \bullet\,\,x_{3} = \frac{-4 3213515}{1 3513571 3571562} - \frac{1}{1 3513571 3571562}\sqrt{92 4715163 8115034 8974747} i\\
                              • \bullet\,\,x_{4} = \frac{-4 3213515}{1 3513571 3571562} + \frac{1}{1 3513571 3571562}\sqrt{92 4715163 8115034 8974747} i\\
                              • \end{array}

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              x^4 - 1

                              Irreducible polynomial factors

                              The 3 factors are:

                              • x - 1
                              • x + 1
                              • x^2 + 1

                              Roots

                              The 4 roots are:

                              • x1 = 1
                              • x2 = -1
                              • x3 = - 1 *I
                              • x4 = 1 *I

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              Mod(x^4 + 6, 7)

                              Irreducible polynomial factors

                              The 3 factors are:

                              • x + 1
                              • x + 6
                              • x^2 + 1

                              Time elapsed:

                              Written by Dario Alpern. Last updated on 15 December 2024.

                              +2

                              Your polynomial

                              0

                              Irreducible polynomial factors

                              The polynomial is irreducible

                              Roots

                                Time elapsed:

                                Written by Dario Alpern. Last updated on 15 December 2024.

                                +2

                                Your polynomial

                                Mod(0, 7)

                                Irreducible polynomial factors

                                Leading coefficient multiple of prime

                                Written by Dario Alpern. Last updated on 15 December 2024.

                                +2

                                Your polynomial

                                x7 + 1 (mod 7)

                                Irreducible polynomial factors

                                The 7 factors are:

                                • (x + 1)7

                                Time elapsed:

                                Written by Dario Alpern. Last updated on 15 December 2024.

                                +2

                                Your polynomial

                                x^{7} + 1 (\pmod 7)

                                Irreducible polynomial factors

                                The 7 factors are:

                                • \begin{array}{l}
                                • \bullet\,\,(x + 1)^{7}\\
                                • \end{array}

                                Time elapsed:

                                Written by Dario Alpern. Last updated on 15 December 2024.

                                +2

                                Your polynomial

                                Mod(x^7 + 1, 7)

                                Irreducible polynomial factors

                                The 7 factors are:

                                • (x + 1)^7

                                Time elapsed:

                                Written by Dario Alpern. Last updated on 15 December 2024.

                                +2

                                Your polynomial

                                Mod(x^39 + 5585 4586408 3284006, 7^21)

                                Irreducible polynomial factors

                                The 6 factors are:

                                • x + 1019 3584357 3231762
                                • x + 4566 1002051 0052246
                                • x + 5585 4586408 3284006
                                • x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
                                • x^12 + 1019 3584357 3231761*x^11 + 4566 1002051 0052245*x^10 + x^9 + 1019 3584357 3231761*x^8 + 4566 1002051 0052245*x^7 + x^6 + 1019 3584357 3231761*x^5 + 4566 1002051 0052245*x^4 + x^3 + 1019 3584357 3231761*x^2 + 4566 1002051 0052245*x + 1
                                • x^12 + 4566 1002051 0052245*x^11 + 1019 3584357 3231761*x^10 + x^9 + 4566 1002051 0052245*x^8 + 1019 3584357 3231761*x^7 + x^6 + 4566 1002051 0052245*x^5 + 1019 3584357 3231761*x^4 + x^3 + 4566 1002051 0052245*x^2 + 1019 3584357 3231761*x + 1

                                Time elapsed:

                                Written by Dario Alpern. Last updated on 15 December 2024.

                                +2

                                Your polynomial

                                Mod(x^39, 7^21)

                                Irreducible polynomial factors

                                Cannot lift because of duplicate factors modulo prime

                                Written by Dario Alpern. Last updated on 15 December 2024.

                                +2

                                Your polynomial

                                x4 + 100000 0000000 0000032⁢x3 + 99999 9999999 9999054⁢x2 + 2797⁢x + 99999 9999999 9998809 (mod 100000 0000000 0000051)

                                Irreducible polynomial factors

                                The 4 factors are:

                                • x + 9624 0908064 2195803
                                • x + 42561 5726276 4689743
                                • x + 57438 4273723 5310331
                                • x + 90375 9091935 7804206

                                Time elapsed:

                                Written by Dario Alpern. Last updated on 15 December 2024.

                                +2

                                Your polynomial

                                x^{4} + 100000 0000000 0000032x^{3} + 99999 9999999 9999054x^{2} + 2797x + 99999 9999999 9998809 (\pmod 100000 0000000 0000051)

                                Irreducible polynomial factors

                                The 4 factors are:

                                • \begin{array}{l}
                                • \bullet\,\,x + 9624 0908064 2195803\\
                                • \bullet\,\,x + 42561 5726276 4689743\\
                                • \bullet\,\,x + 57438 4273723 5310331\\
                                • \bullet\,\,x + 90375 9091935 7804206\\
                                • \end{array}

                                Time elapsed:

                                Written by Dario Alpern. Last updated on 15 December 2024.

                                +2

                                Your polynomial

                                Mod(x^4 + 100000 0000000 0000032*x^3 + 99999 9999999 9999054*x^2 + 2797*x + 99999 9999999 9998809, 100000 0000000 0000051)

                                Irreducible polynomial factors

                                The 4 factors are:

                                • x + 9624 0908064 2195803
                                • x + 42561 5726276 4689743
                                • x + 57438 4273723 5310331
                                • x + 90375 9091935 7804206

                                Time elapsed:

                                Written by Dario Alpern. Last updated on 15 December 2024.

                                +2

                                Only integer numbers are accepted

                                Written by Dario Alpern. Last updated on 15 December 2024.

                                +2

                                Only integer numbers are accepted

                                Written by Dario Alpern. Last updated on 15 December 2024.

                                +2

                                Only integer numbers are accepted

                                Written by Dario Alpern. Last updated on 15 December 2024.

                                +2

                                Your polynomial fraction

                                ( −x^3 + 3*x^2 + x - 1) / (x^3 - x)

                                Irreducible numerator factors

                                The 2 factors are:

                                • −1
                                • x^3 - 3*x^2 - x + 1

                                Roots

                                The 3 roots are:

                                • t = (1/3) * acos((3 / 8)*3^(1/2))
                                • x1 = 1 + 4*(1 / 3)^(1/2)* cos(t)
                                • x2 = 1 + 4*(1 / 3)^(1/2)* cos(t + 2 * Pi / 3)
                                • x3 = 1 + 4*(1 / 3)^(1/2)* cos(t + 4 * Pi / 3)

                                Time elapsed:

                                Written by Dario Alpern. Last updated on 15 December 2024.

                                +2

                                Your polynomial fraction

                                (Mod(6*x^3 + 3*x^2 + x + 6, 7)) / (Mod(x^3 + 6*x, 7))

                                Irreducible numerator factors

                                The 2 factors are:

                                • 6
                                • x^3 + 4*x^2 + 6*x + 1

                                Time elapsed:

                                Written by Dario Alpern. Last updated on 15 December 2024.

                                +2

                                Your polynomial

                                x^4 + 1

                                Irreducible polynomial factors

                                The polynomial is irreducible

                                Roots

                                The 4 roots are:

                                • x1 = (1 / 2)^(1/2) + (1 / 2)^(1/2)*I
                                • x2 = (1 / 2)^(1/2) - (1 / 2)^(1/2)*I
                                • x3 = -(1 / 2)^(1/2) + (1 / 2)^(1/2)*I
                                • x4 = -(1 / 2)^(1/2) - (1 / 2)^(1/2)*I

                                Time elapsed:

                                Written by Dario Alpern. Last updated on 15 December 2024.

                                +2

                                Your polynomial

                                Mod(x^4 + 1, 7)

                                Irreducible polynomial factors

                                The 2 factors are:

                                • x^2 + 3*x + 1
                                • x^2 + 4*x + 1

                                Time elapsed:

                                Written by Dario Alpern. Last updated on 15 December 2024.

                                +2

                                Your polynomial fraction

                                (4*x - 48) / (3)

                                Irreducible numerator factors

                                The 2 factors are:

                                • 4
                                • x - 12

                                Roots

                                • x1 = 12

                                Time elapsed:

                                Written by Dario Alpern. Last updated on 15 December 2024.

                                +2

                                Your polynomial

                                0

                                Irreducible polynomial factors

                                The polynomial is irreducible

                                Roots

                                  Time elapsed:

                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                  +2

                                  Your polynomial

                                  2*x^3 + 6*x

                                  Irreducible polynomial factors

                                  The 3 factors are:

                                  • 2
                                  • x
                                  • x^2 + 3

                                  Roots

                                  The 3 roots are:

                                  • x1 = 0
                                  • x2 = - 3^(1/2) *I
                                  • x3 = 3^(1/2) *I

                                  Time elapsed:

                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                  +2

                                  Your polynomial

                                  0

                                  Irreducible polynomial factors

                                  The polynomial is irreducible

                                  Roots

                                    Time elapsed:

                                    Written by Dario Alpern. Last updated on 15 December 2024.

                                    +2

                                    Your polynomial fraction

                                    (x^3 + 9*x^2 + 39*x + 111) / (4)

                                    Irreducible numerator factors

                                    The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                                    Roots

                                    The 3 roots are:

                                    • r = (-24 + 8*10^(1/2))^(1/3)
                                    • s = -(24 + 8*10^(1/2))^(1/3)
                                    • x1 = -3 + r + s
                                    • x2 = -3 - (r + s) / 2 + (I/2) * (r - s) * 3^(1/2)
                                    • x3 = -3 - (r + s) / 2 - (I/2) * (r - s) * 3^(1/2)

                                    Time elapsed:

                                    Written by Dario Alpern. Last updated on 15 December 2024.

                                    +2

                                    Your polynomial

                                    0

                                    Irreducible polynomial factors

                                    The polynomial is irreducible

                                    Roots

                                      Time elapsed:

                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                      +2

                                      Division by zero

                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                      +2

                                      Division by zero

                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                      +2

                                      Your polynomial

                                      1

                                      Irreducible polynomial factors

                                      The polynomial is irreducible

                                      Roots

                                        Time elapsed:

                                        Written by Dario Alpern. Last updated on 15 December 2024.

                                        +2

                                        Your polynomial fraction

                                        (1) / (x^3 - 3*x^2 + 3*x - 1)

                                        Irreducible numerator factors

                                        The polynomial is irreducible

                                        Roots

                                          Time elapsed:

                                          Written by Dario Alpern. Last updated on 15 December 2024.

                                          +2

                                          Denominator must be constant

                                          Written by Dario Alpern. Last updated on 15 December 2024.

                                          +2

                                          Your polynomial fraction

                                          (1) / (x^3)

                                          Irreducible numerator factors

                                          The polynomial is irreducible

                                          Roots

                                            Time elapsed:

                                            Written by Dario Alpern. Last updated on 15 December 2024.

                                            +2

                                            Your polynomial fraction

                                            (1) / (x^3 + 6*x^2 + 12*x + 8)

                                            Irreducible numerator factors

                                            The polynomial is irreducible

                                            Roots

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 15 December 2024.

                                              +2

                                              Your polynomial fraction

                                              (x^3 + 6*x^2 + 12*x + 8) / (x^2)

                                              Irreducible numerator factors

                                              The 3 factors are:

                                              • (x + 2)^3

                                              Roots

                                              The 3 roots are:

                                              • x1 to x3 = -2

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 15 December 2024.

                                              +2

                                              Your polynomial

                                              Mod(x^3 + 100000 0000000 0000050*x^2 + 100000 0000000 0000050*x + 1, 100000 0000000 0000051)

                                              Irreducible polynomial factors

                                              The 3 factors are:

                                              • x + 1
                                              • (x + 100000 0000000 0000050)^2

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 15 December 2024.

                                              +2

                                              Your polynomial

                                              x + 6

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              • The equation to solve is:

                                                x + 6 = 0

                                                x1 = -6

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 15 December 2024.

                                              +2

                                              Your polynomial

                                              5x + 6

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              • The equation to solve is:

                                                5x + 6 = 0

                                                Dividing the equation by the linear coefficient:

                                                x + 65 = 0

                                                x1 = -65

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 15 December 2024.

                                              +2

                                              Your polynomial

                                              x2 + 6

                                              Irreducible polynomial factors

                                              The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                              Roots

                                              The 2 roots are:

                                              • The equation to solve is:

                                                x2 + 6 = 0

                                                x = ±(-6)

                                                x1 = − 6 i

                                                x2 = 6 i

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 15 December 2024.

                                              +2

                                              Your polynomial

                                              x2 + 9

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 2 roots are:

                                              • The equation to solve is:

                                                x2 + 9 = 0

                                                x = ±3 (-1)

                                                x1 = − 3 i

                                                x2 = 3 i

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 15 December 2024.

                                              +2

                                              Your polynomial

                                              x2 − 9

                                              Irreducible polynomial factors

                                              The 2 factors are:

                                              • x − 3
                                              • x + 3

                                              Roots

                                              The 2 roots are:

                                              • The equation to solve is:

                                                x − 3 = 0

                                                x1 = 3

                                              • The equation to solve is:

                                                x + 3 = 0

                                                x2 = -3

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 15 December 2024.

                                              +2

                                              Your polynomial

                                              x2 − 7⁢x + 9

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 2 roots are:

                                              • The equation to solve is:

                                                x2 − 7x + 9 = 0

                                                To eliminate the linear term, we will perform the following substitution:

                                                x = y + 72

                                                The constant value in the substitution equals half of the linear coefficient.

                                                y + 722 − 7y + 72 + 9 = 0

                                                Expanding brackets:

                                                y2 + 7y + 494 − 7y492 + 9 = 0

                                                Simplifying:

                                                y2134 = 0

                                                y = ±12 13

                                                x72 = ±12 13

                                                x1 = 7212 13

                                                x2 = 72 + 12 13

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 15 December 2024.

                                              +2

                                              Your polynomial

                                              x3 − 9

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 3 roots are:

                                              • The equation to solve is:

                                                x3 − 9 = 0

                                                The solutions are the real cube root of 9 and the multiplication by both non-real cube roots of 1:

                                                e = − 12 + i23, f = − 12i23

                                                x1 = 9

                                                x2 = − 12 9 + i23 9

                                                x3 = − 12 9i23 9

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 15 December 2024.

                                              +2

                                              Your polynomial

                                              x3 − 23⁢x − 9

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 3 roots are:

                                              • The equation to solve is:

                                                x3 − 23x − 9 = 0

                                                The nature of the roots depends on the value of the discriminant.

                                                Δ = − 4p3 − 27q2

                                                where p is the linear coefficient and q is the constant term.

                                                Δ = −4-233 − 27-92 = 46481

                                                The discriminant is positive, which implies that all three roots are real. In this case the roots cannot be represented by radical expressions of real numbers, so we must use trigonometry.

                                                Starting with the formula of the triple angle:

                                                4cos t3 − 3cos tcos3t = 0

                                                Let x = u cos t. From the previous equation to the definition of the discriminant:

                                                u3cos t3 − 23u cos t − 9 = 0

                                                We will equate the terms of both equations from left to right. Dividing by u3 / 4:

                                                4cos t392u2cos t36u3 = 0

                                                The second coefficient must equal −3, so:

                                                u = 2 233

                                                Equating the last term:

                                                cos3t = 36u3 = 2746 323

                                              • t = 13arc cos2746 323

                                                x1 = 2 233 cos(t)

                                                x2 = 2 233 cost + 2π3

                                                x3 = 2 233 cost + 4π3

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 15 December 2024.

                                              +2

                                              Your polynomial

                                              x3 + 12⁢x2 + 23⁢x − 9

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 3 roots are:

                                              • The equation to solve is:

                                                x3 + 12x2 + 23x − 9 = 0

                                                To eliminate the quadratic term, we will perform the following substitution:

                                                x = y − 4

                                                The constant value in the substitution equals a third of the quadratic coefficient.

                                                y − 43 + 12y − 42 + 23y − 4 − 9 = 0

                                                Expanding brackets:

                                                y3 − 12y2 + 48y − 64 + 12y2 − 96y + 192 + 23y − 92 − 9 = 0

                                                Simplifying:

                                                y3 − 25y + 27 = 0

                                                The nature of the roots depends on the value of the discriminant.

                                                Δ = − 4p3 − 27q2

                                                where p is the linear coefficient and q is the constant term.

                                                Δ = −4-253 − 27272 = 42817

                                                The discriminant is positive, which implies that all three roots are real. In this case the roots cannot be represented by radical expressions of real numbers, so we must use trigonometry.

                                                Starting with the formula of the triple angle:

                                                4cos t3 − 3cos tcos3t = 0

                                                Let y = u cos t. From the previous equation to the definition of the discriminant:

                                                u3cos t3 − 25u cos t + 27 = 0

                                                We will equate the terms of both equations from left to right. Dividing by u3 / 4:

                                                4cos t3100u2cos t + 108u3 = 0

                                                The second coefficient must equal −3, so:

                                                u = 10 13

                                                Equating the last term:

                                                cos3t = − 108u3 = -81250 3

                                              • t = 13arc cos-81250 3

                                                x1 = -4 + 10 13 cos(t)

                                                x2 = -4 + 10 13 cost + 2π3

                                                x3 = -4 + 10 13 cost + 4π3

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 15 December 2024.

                                              +2

                                              Your polynomial

                                              x3x − 9

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 3 roots are:

                                              • The equation to solve is:

                                                x3x − 9 = 0

                                                The nature of the roots depends on the value of the discriminant.

                                                Δ = − 4p3 − 27q2

                                                where p is the linear coefficient and q is the constant term.

                                                Δ = −4-13 − 27-92 = -2183

                                                The discriminant is negative, so there is a real root and two complex conjugate roots.

                                                Using Cardano's method, setting x = r + s:

                                                r + s3r + s − 9 = 0

                                                r3 + 3r2s + 3rs2 + s3r + s − 9 = 0

                                                r3 + s3 + 3rsr + sr + s − 9 = 0

                                                r3 + s3 + 3rs − 1r + s − 9 = 0    (1)

                                                Since there is an extra variable, we can impose an additional condition. In our case it is:

                                                3rs − 1 = 0    (2)

                                                rs = 13    (3)

                                                r3s3 = 127    (4)

                                                From (1) and (2):

                                                r3 + s3 − 9 = 0    (5)

                                                Multiplying by r3:

                                                r6 + r3s3 − 9r3 = 0

                                                From (4):

                                                r6 + 127 − 9r3 = 0

                                                r6 − 9r3 + 127 = 0

                                                This is a quadratic equation in r3. If we multiplied (5) by s3 instead of r3, the equation coefficients would be the same, so the quadratic equation can also give us the value of s3. Let w = r3 or s3.

                                                w2 − 9w + 127 = 0

                                                To eliminate the linear term, we will perform the following substitution:

                                                w = z + 92

                                                The constant value in the substitution equals half of the linear coefficient.

                                                z + 922 − 9z + 92 + 127 = 0

                                                Expanding brackets:

                                                z2 + 9z + 814 − 9z812 + 127 = 0

                                                Simplifying:

                                                z22183108 = 0

                                                z = ±16 21833

                                                w92 = ±16 21833

                                                r = 92 + 16 21833

                                                s = 9216 21833

                                                A cubic root has three solutions in the complex field. But we cannot select any value for r and s because the condition (3) must be true. So their product must be a real number.

                                                Let r1 = r, r2 = re, r3 = rf, s1 = s, s2 = se, s3 = sf, where

                                                e = − 12 + i23, f = − 12i23

                                                are the non-real cubic roots of 1. Since ef is real, but e2 and f2 are not, the values of x that follow the condition (3) are:

                                                x1 = r1 + s1 = r + s

                                                x2 = r2 + s3 = r 12 + i23 + s 12i23

                                                x3 = r3 + s2 = r 12i23 + s 12 + i23

                                                x1 = r + s

                                                x2 = −r + s2 + i rs23

                                                x3 = −r + s2 − i rs23

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 15 December 2024.

                                              +2

                                              Your polynomial

                                              x3 + x2 − 9

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 3 roots are:

                                              • The equation to solve is:

                                                x3 + x2 − 9 = 0

                                                To eliminate the quadratic term, we will perform the following substitution:

                                                x = y13

                                                The constant value in the substitution equals a third of the quadratic coefficient.

                                                y133 + y132 − 9 = 0

                                                Expanding brackets:

                                                y3y2 + 13y127 + y223y + 19 − 9 = 0

                                                Simplifying:

                                                y313y24127 = 0

                                                The nature of the roots depends on the value of the discriminant.

                                                Δ = − 4p3 − 27q2

                                                where p is the linear coefficient and q is the constant term.

                                                Δ = −4-133 − 27-241272 = -2151

                                                The discriminant is negative, so there is a real root and two complex conjugate roots.

                                                Using Cardano's method, setting y = r + s:

                                                r + s313r + s24127 = 0

                                                r3 + 3r2s + 3rs2 + s313r + s24127 = 0

                                                r3 + s3 + 3rsr + s13r + s24127 = 0

                                                r3 + s3 + 3rs13r + s24127 = 0    (1)

                                                Since there is an extra variable, we can impose an additional condition. In our case it is:

                                                3rs13 = 0    (2)

                                                rs = 19    (3)

                                                r3s3 = 1729    (4)

                                                From (1) and (2):

                                                r3 + s324127 = 0    (5)

                                                Multiplying by r3:

                                                r6 + r3s324127r3 = 0

                                                From (4):

                                                r6 + 172924127r3 = 0

                                                r624127r3 + 1729 = 0

                                                This is a quadratic equation in r3. If we multiplied (5) by s3 instead of r3, the equation coefficients would be the same, so the quadratic equation can also give us the value of s3. Let w = r3 or s3.

                                                w224127w + 1729 = 0

                                                To eliminate the linear term, we will perform the following substitution:

                                                w = z + 24154

                                                The constant value in the substitution equals half of the linear coefficient.

                                                z + 24154224127z + 24154 + 1729 = 0

                                                Expanding brackets:

                                                z2 + 24127z + 58081291624127z580811458 + 1729 = 0

                                                Simplifying:

                                                z223912 = 0

                                                z = ±12 2393

                                                w24154 = ±12 2393

                                                r = 24154 + 12 2393

                                                s = 2415412 2393

                                                A cubic root has three solutions in the complex field. But we cannot select any value for r and s because the condition (3) must be true. So their product must be a real number.

                                                Let r1 = r, r2 = re, r3 = rf, s1 = s, s2 = se, s3 = sf, where

                                                e = − 12 + i23, f = − 12i23

                                                are the non-real cubic roots of 1. Since ef is real, but e2 and f2 are not, the values of y that follow the condition (3) are:

                                                y1 = x1 + 13 = r1 + s1 = r + s

                                                y2 = x2 + 13 = r2 + s3 = r 12 + i23 + s 12i23

                                                y3 = x3 + 13 = r3 + s2 = r 12i23 + s 12 + i23

                                                x1 = -13 + r + s

                                                x2 = -13r + s2 + i rs23

                                                x3 = -13r + s2 − i rs23

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 15 December 2024.

                                              +2

                                              Your polynomial

                                              x20 + 13⁢x + 6 (mod 811)

                                              Irreducible polynomial factors

                                              Dividing the polynomial by the leading coefficient:

                                              f(x) ≡ x20 + 13⁢x + 6

                                              Squarefree factorization

                                              The derivative of f(x) is:

                                              f '(x) ≡ x19 + 13

                                              c0(x) = gcd(f(x), f '(x) ≡ 1

                                              w0(x) = f(x)/c0(x) ≡ x20 + 13⁢x + 6

                                              w1(x) = gcd(w0, c0) ≡ 1

                                              z1(x) = w0(x) / w1(x) ≡ x20 + 13⁢x + 6 is a factor of f(x) with multiplicity 1

                                              c1(x) = c0(x) / w1(x) ≡ 1

                                              Distinct degree factorization

                                              • Factoring f(x) ≡ x20 + 13⁢x + 6

                                                For all degrees d between 1 and 10, the product of all factors of degree d is found by computing gcd(f(x), x811^dx)

                                                gcd(f(x), x811^2x) ≡ x2 + 234⁢x + 416

                                                This polynomial has 1 irreducible factor of degree 2

                                                The new value of f(x) is the quotient between f(x) and the previous gcd.

                                                For all degrees d between 3 and 9, the product of all factors of degree d is found by computing gcd(f(x), x811^dx)

                                                gcd(f(x), x811^7x) ≡ x7 + 696⁢x6 + 693⁢x5 + 164⁢x4 + 43⁢x3 + 586⁢x2 + 355⁢x + 568

                                                This polynomial has 1 irreducible factor of degree 7

                                                The new value of f(x) is the quotient between f(x) and the previous gcd.

                                                f(x) ≡ x11 + 692⁢x10 + 223⁢x9 + 218⁢x8 + 370⁢x7 + 209⁢x6 + 248⁢x5 + 217⁢x4 + 573⁢x3 + 611⁢x2 + 343⁢x + 195

                                                This polynomial is irreducible.

                                              Equal degree factorization

                                              List of factors

                                              The 3 factors are:

                                              • x2 + 234⁢x + 416
                                              • x7 + 696⁢x6 + 693⁢x5 + 164⁢x4 + 43⁢x3 + 586⁢x2 + 355⁢x + 568
                                              • x11 + 692⁢x10 + 223⁢x9 + 218⁢x8 + 370⁢x7 + 209⁢x6 + 248⁢x5 + 217⁢x4 + 573⁢x3 + 611⁢x2 + 343⁢x + 195

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 15 December 2024.

                                              +2

                                              Your polynomial

                                              x20 + x (mod 2)

                                              Irreducible polynomial factors

                                              Dividing the polynomial by the leading coefficient:

                                              f(x) ≡ x20 + x

                                              Squarefree factorization

                                              The derivative of f(x) is:

                                              f '(x) ≡ 1

                                              c0(x) = gcd(f(x), f '(x) ≡ 1

                                              w0(x) = f(x)/c0(x) ≡ x20 + x

                                              w1(x) = gcd(w0, c0) ≡ 1

                                              z1(x) = w0(x) / w1(x) ≡ x20 + x is a factor of f(x) with multiplicity 1

                                              c1(x) = c0(x) / w1(x) ≡ 1

                                              Distinct degree factorization

                                              • Factoring f(x) ≡ x20 + x

                                                For all degrees d between 1 and 10, the product of all factors of degree d is found by computing gcd(f(x), x2^dx)

                                                gcd(f(x), x2^1x) ≡ x2 + x

                                                This polynomial has 2 irreducible factors of degree 1

                                                The new value of f(x) is the quotient between f(x) and the previous gcd.

                                                For all degrees d between 2 and 9, the product of all factors of degree d is found by computing gcd(f(x), x2^dx)

                                                f(x) ≡ x18 + x17 + x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1

                                                This polynomial is irreducible.

                                              Equal degree factorization

                                              • Factoring in polynomials of degree 1 f(x) ≡ x2 + x

                                                Choosing h(x) at random, let g = h + h2 (mod f), then compute gcd(g, f) until the gcd is not equal to one of its arguments.

                                                r ≡ gcd(g, f) ≡ x + 1

                                                f / rx

                                              List of factors

                                              The 3 factors are:

                                              • x
                                              • x + 1
                                              • x18 + x17 + x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 15 December 2024.

                                              +2

                                              Your polynomial

                                              Mod(x^3 + 100000 0000000 0000050*x^2 + 100000 0000000 0000050*x + 1, 100000 0000000 0000051)

                                              Irreducible polynomial factors

                                              Dividing the polynomial by the leading coefficient:

                                              f(x) = Mod(x^3 + 100000 0000000 0000050*x^2 + 100000 0000000 0000050*x + 1, 100000 0000000 0000051)

                                              Squarefree factorization

                                              The derivative of f(x) is:

                                              deriv(f(x)) = Mod(x^2 + 100000 0000000 0000049*x + 100000 0000000 0000050, 100000 0000000 0000051)

                                              c0(x) = gcd(f(x), deriv(f(x)) = Mod(x + 100000 0000000 0000050, 100000 0000000 0000051)

                                              w0(x) = f(x)/c0(x) = Mod(x^2 + 100000 0000000 0000050, 100000 0000000 0000051)

                                              w1(x) = gcd(w0, c0) = Mod(x + 100000 0000000 0000050, 100000 0000000 0000051)

                                              z1(x) = w0(x) / w1(x) = Mod(x + 1, 100000 0000000 0000051) is a factor of f(x) with multiplicity 1

                                              c1(x) = c0(x) / w1(x) = Mod(1, 100000 0000000 0000051)

                                              w2(x) = gcd(w1, c1) = Mod(1, 100000 0000000 0000051)

                                              z2(x) = w1(x) / w2(x) = Mod(x + 100000 0000000 0000050, 100000 0000000 0000051) is a factor of f(x) with multiplicity 2

                                              c2(x) = c1(x) / w2(x) = Mod(1, 100000 0000000 0000051)

                                              Distinct degree factorization

                                              Equal degree factorization

                                              List of factors

                                              The 3 factors are:

                                              • x + 1
                                              • (x + 100000 0000000 0000050)^2

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 15 December 2024.

                                              +2

                                              Your polynomial

                                              Mod(7*x^3 + 2*x^2 + x + 56, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151^4)

                                              Irreducible polynomial factors

                                              Dividing the polynomial by the leading coefficient:

                                              f(x) = Mod(x^3 + 2 8571428 5714285 7142857 1428571 4285714 2857142 8571472*x^2 + 1 4285714 2857142 8571428 5714285 7142857 1428571 4285736*x + 8, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                              Squarefree factorization

                                              The derivative of f(x) is:

                                              deriv(f(x)) = Mod(x^2 + 5 7142857 1428571 4285714 2857142 8571428 5714285 7142944*x + 1 4285714 2857142 8571428 5714285 7142857 1428571 4285736, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                              c0(x) = gcd(f(x), deriv(f(x)) = Mod(1, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                              w0(x) = f(x)/c0(x) = Mod(x^3 + 2 8571428 5714285 7142857 1428571 4285714 2857142 8571472*x^2 + 1 4285714 2857142 8571428 5714285 7142857 1428571 4285736*x + 8, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                              w1(x) = gcd(w0, c0) = Mod(1, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                              z1(x) = w0(x) / w1(x) = Mod(x^3 + 2 8571428 5714285 7142857 1428571 4285714 2857142 8571472*x^2 + 1 4285714 2857142 8571428 5714285 7142857 1428571 4285736*x + 8, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits)) is a factor of f(x) with multiplicity 1

                                              c1(x) = c0(x) / w1(x) = Mod(1, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                              Distinct degree factorization

                                              • Factoring f(x) = Mod(x^3 + 2 8571428 5714285 7142857 1428571 4285714 2857142 8571472*x^2 + 1 4285714 2857142 8571428 5714285 7142857 1428571 4285736*x + 8, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                                For all degrees d between 1 and 1, the product of all factors of degree d is found by computing gcd(f(x), x^10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits)^d - x)

                                                gcd(f(x), x^10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits)^1 - x) = Mod(x + 2 4639512 5724756 3725390 7115163 5734626 8558610 1091198, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                                This polynomial has 1 irreducible factor of degree 1

                                                The new value of f(x) is the quotient between f(x) and the previous gcd.

                                                f(x) = Mod(x^2 + 3931915 9989529 3417466 4313407 8551087 4298532 7480274*x + 1 6428539 4662860 0860598 5329237 2966977 1971158 4894547, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                                This polynomial is irreducible.

                                              Equal degree factorization

                                              Hensel Lifting

                                              f_1 = x^3 + 71 4285714 2857142 8571428 5714285 7142857 1428571 4287871 4285714 2857142 8571428 5714285 7142857 1428571 4302001*x^2 + 85 7142857 1428571 4285714 2857142 8571428 5714285 7145445 7142857 1428571 4285714 2857142 8571428 5714285 7162401*x + 8

                                              f_{1, 1} = x^2 + 3931915 9989529 3417466 4313407 8551087 4298532 7480274*x + 1 6428539 4662860 0860598 5329237 2966977 1971158 4894547

                                              f_{1, 2} = x + 2 4639512 5724756 3725390 7115163 5734626 8558610 1091198

                                              Using the extended GCD algorithm, compute a_{1, 1}, ..., a_{1, n} such that

                                              1 = (f_1(x)/f_{1, 1}(x)) * a_{1, 1}(x) + ... + (f_1(x)/f_{1, n}(x)) * a_{1, n}(x))

                                              a_{1, 1} = + 1 3160115 3952276 4136291 8973667 2921447 2630406 2610884

                                              a_{1, 2} =

                                              u_1 = (1/p) * (f_1 - f_{1, 1} * f_{1, 2}) = + 7 1428571 4285714 2857142 8571428 5714285 7142857 1428679*x^2 + 8 4745480 7773845 2502410 1633522 2430285 1096333 8094302*x + 9 5952087 9527303 3695407 6753452 9915050 3820522 8742553

                                              g_{1, 1} = u_1 * a_{1, 1} % f_{1, 1} = + 9 7373350 6874596 0399726 4235975 0759708 1270891 3729036*x + 2 4611772 2225230 1896976 6830857 0357003 0410851 5324877

                                              f_{2, 1} = f_{1, 1} + p * g_{1, 1} = x^2 + 97 3733506 8745960 3997264 2359750 7597081 2708913 7291830 7307869 8053531 3776156 3945644 3267014 6203130 0564710*x + 24 6117722 2252301 8969766 8308570 3570030 4108515 3249143 2806145 0672618 7304077 6788649 6874436 4009739 8950974

                                              g_{1, 2} = u_1 * a_{1, 2} % f_{1, 2} = + 7 4055220 7411118 2457416 4335453 4954577 5871965 7699794

                                              f_{2, 2} = f_{1, 2} + p * g_{1, 2} = x + 74 0552207 4111182 4574164 3354534 9545775 8719657 6999060 6977844 4803611 4795272 1768641 3875842 5225441 3760092

                                              v_1 = (1/p) * ((f_1(x)/f_{1, 1}(x)) * a_{1, 1}(x) + ... + (f_1(x)/f_{1, n}(x)) * a_{1, n}(x) - 1) = + x^2 + 7 2591960 6371318 1098876 2648409 4136731 6847824 8559775*x + 4 8470656 1970748 7944160 2649766 2460491 4177829 6593542

                                              h_{1, 1} = v_1 * a_{1, 1} % f_{1, 1} = + 7 2591960 6371318 1098876 2648409 4136731 6847824 8559775*x + 4 8470656 1970748 7944160 2649766 2460491 4177829 6593542

                                              a_{2, 1} = a_{1, 1} + p * g_{1, 1} = + 61 7046863 4366132 2126652 7212394 4067403 2519287 4480579 2232365 5718149 5108656 7650933 1413870 6012441 8539403*x + 77 3115030 1539214 0634022 0647783 1462531 7160295 8984538 7197070 7194408 7710025 0755192 8005676 1750874 3259771

                                              h_{1, 2} = v_1 * a_{1, 2} % f_{1, 2} = + 4 8470656 1970748 7944160 2649766 2460491 4177829 6593542

                                              a_{2, 2} = a_{1, 2} + p * g_{1, 2} = + 38 2953136 5633867 7873347 2787605 5932596 7480712 5522440 7767634 4281850 4891343 2349066 8586129 3987558 1483398

                                              f_2 = x^3 + 7142 8571428 5714285 7142857 1428571 4285714 2857142 9002857 1428571 4285714 2857142 8571428 5714285 7142858 1200428 5714285 7142857 1428571 4285714 2857142 8571438 4084314 2857142 8571428 5714285 7142857 1428571 4285751 4204001*x^2 + 8571 4285714 2857142 8571428 5714285 7142857 1428571 4803428 5714285 7142857 1428571 4285714 2857142 8571429 7440514 2857142 8571428 5714285 7142857 1428571 4285726 0901177 1428571 4285714 2857142 8571428 5714285 7142901 7044801*x + 8

                                              u_2 = (1/p^2) * (f_2 - f_{2, 1} * f_{2, 2}) = + 71 4285714 2857142 8571428 5714285 7142857 1428571 4287871 4285714 2857142 8571428 5714285 7142857 1428571 4301999*x^2 + 13 6042359 1967057 6205579 9994508 6808347 9053254 4734988 9119472 9767081 1922625 7445406 2136592 2938232 7860907*x + 81 7736977 5231093 4572919 7367903 1207675 6929907 8741840 3337941 4497191 1988195 2089509 1035764 5236286 5173201

                                              g_{2, 1} = u_2 * a_{2, 1} % f_{2, 1} = + 91 7287773 0208782 3912398 5543038 2513545 7130829 6057840 6920457 0863439 7605511 0543777 1981632 7105190 8553225*x + 47 4188946 4178666 8810812 4570538 5001923 2694596 2041786 0196103 4675401 6750253 3500084 2844575 0228887 9920549

                                              f_{4, 1} = f_{2, 1} + p^2 * g_{2, 1} = x^2 + 9172 8777302 0878239 1239855 4303825 1354571 3082960 6061090 1120231 6866797 5994739 4353238 9071324 5624495 2092995 2026556 6781339 9240085 1382058 3483671 0431138 2856950 0649895 5343511 7033707 2609539 6474447 1659822 2647935*x + 4741 8894641 7866688 1081245 7053850 0192326 9459620 4321807 0228528 7114148 3678955 3034699 0265776 0569335 9329902 0517467 9748916 0069717 1411452 3039066 4838302 8070156 4161308 4506210 9830711 2210419 6029533 2884846 7388723

                                              g_{2, 2} = u_2 * a_{2, 2} % f_{2, 2} = + 79 6997941 2648360 4659030 0171247 4629311 4297741 8233050 7365257 1993703 0965917 5170508 5161224 4323380 5771575

                                              f_{4, 2} = f_{2, 2} + p^2 * g_{2, 2} = x + 7969 9794126 4836046 5903001 7124746 2931142 9774182 3545767 0308339 7418916 6862403 4218189 6642961 1518364 2788033 3687729 0361517 2188486 2903655 9373471 8140313 8945404 2207247 3227916 8680578 4533317 4954124 2625981 1441667

                                              List of factors

                                              The 3 factors are:

                                              • 7
                                              • x + 7969 9794126 4836046 5903001 7124746 2931142 9774182 3545767 0308339 7418916 6862403 4218189 6642961 1518364 2788033 3687729 0361517 2188486 2903655 9373471 8140313 8945404 2207247 3227916 8680578 4533317 4954124 2625981 1441667
                                              • x^2 + 9172 8777302 0878239 1239855 4303825 1354571 3082960 6061090 1120231 6866797 5994739 4353238 9071324 5624495 2092995 2026556 6781339 9240085 1382058 3483671 0431138 2856950 0649895 5343511 7033707 2609539 6474447 1659822 2647935*x + 4741 8894641 7866688 1081245 7053850 0192326 9459620 4321807 0228528 7114148 3678955 3034699 0265776 0569335 9329902 0517467 9748916 0069717 1411452 3039066 4838302 8070156 4161308 4506210 9830711 2210419 6029533 2884846 7388723

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 15 December 2024.

                                              +2

                                              Your polynomial

                                              Mod(7*x^3 + 2*x^2 + x + 56, 1000003^2)

                                              Irreducible polynomial factors

                                              Dividing the polynomial by the leading coefficient:

                                              f(x) = Mod(x^3 + 428573*x^2 + 714288*x + 8, 1000003)

                                              Squarefree factorization

                                              The derivative of f(x) is:

                                              deriv(f(x)) = Mod(x^2 + 857146*x + 714288, 1000003)

                                              c0(x) = gcd(f(x), deriv(f(x)) = Mod(1, 1000003)

                                              w0(x) = f(x)/c0(x) = Mod(x^3 + 428573*x^2 + 714288*x + 8, 1000003)

                                              w1(x) = gcd(w0, c0) = Mod(1, 1000003)

                                              z1(x) = w0(x) / w1(x) = Mod(x^3 + 428573*x^2 + 714288*x + 8, 1000003) is a factor of f(x) with multiplicity 1

                                              c1(x) = c0(x) / w1(x) = Mod(1, 1000003)

                                              Distinct degree factorization

                                              • Factoring f(x) = Mod(x^3 + 428573*x^2 + 714288*x + 8, 1000003)

                                                For all degrees d between 1 and 1, the product of all factors of degree d is found by computing gcd(f(x), x^1000003^d - x)

                                                gcd(f(x), x^1000003^1 - x) = Mod(x + 869779, 1000003)

                                                This polynomial has 1 irreducible factor of degree 1

                                                The new value of f(x) is the quotient between f(x) and the previous gcd.

                                                f(x) = Mod(x^2 + 558797*x + 276509, 1000003)

                                                This polynomial is irreducible.

                                              Equal degree factorization

                                              Hensel Lifting

                                              f_1 = x^3 + 85714 8000008*x^2 + 42857 4000004*x + 8

                                              f_{1, 1} = x^2 + 558797*x + 276509

                                              f_{1, 2} = x + 869779

                                              Using the extended GCD algorithm, compute a_{1, 1}, ..., a_{1, n} such that

                                              1 = (f_1(x)/f_{1, 1}(x)) * a_{1, 1}(x) + ... + (f_1(x)/f_{1, n}(x)) * a_{1, n}(x))

                                              a_{1, 1} = + 750647

                                              a_{1, 2} =

                                              u_1 = (1/p) * (f_1 - f_{1, 1} * f_{1, 2}) = + 857144*x^2 + 942547*x + 759502

                                              g_{1, 1} = u_1 * a_{1, 1} % f_{1, 1} = + 459046*x + 268773

                                              f_{2, 1} = f_{1, 1} + p * g_{1, 1} = x^2 + 45904 7935935*x + 26877 4082828

                                              g_{1, 2} = u_1 * a_{1, 2} % f_{1, 2} = + 398098

                                              f_{2, 2} = f_{1, 2} + p * g_{1, 2} = x + 39810 0064073

                                              List of factors

                                              The 3 factors are:

                                              • 7
                                              • x + 39810 0064073
                                              • x^2 + 45904 7935935*x + 26877 4082828

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 15 December 2024.

                                              +2

                                              Your polynomial

                                              Mod(56 6753065 4982595 8218168 2262176 1574133*x^6 + 2803 6554966 6932341 0486266 3017387 9303660*x^5 + 2895 0398372 6793829 2776012 0154654 5569830*x^4 + 1923 1010920 7024097 4270272 0058024 5797879*x^3 + 1263 8584679 3624922 7058494 7001115 6284296*x^2 + 2815 2989178 8748348 8584860 5683345 8826787*x + 364 7115866 7290440 0871817 0388300 6630495, 184467 4407370 9551629^2)

                                              Irreducible polynomial factors

                                              The 4 factors are:

                                              • 56 6753065 4982595 8218168 2262176 1574133
                                              • x + 2687 4717182 6361917 0394073 7732572 3539238
                                              • x^2 + 1843 8715370 7781095 5098083 7197306 9495561*x + 2382 8968887 1479459 9477589 1471352 3490489
                                              • x^3 + 458 7681861 6150180 8665114 8859207 8714229*x^2 + 455 1701927 5147396 9697077 3256933 4819770*x + 895 2943547 8800145 4409439 6732630 0793905

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 15 December 2024.

                                              **** POLFACT **** -2

                                              Your polynomial

                                              x510 − 1

                                              Irreducible polynomial factors

                                              The 16 factors are:

                                              • x − 1
                                              • x + 1
                                              • x2x + 1
                                              • x2 + x + 1
                                              • x4x3 + x2x + 1
                                              • x4 + x3 + x2 + x + 1
                                              • x8x7 + x5x4 + x3x + 1
                                              • x8 + x7x5x4x3 + x + 1
                                              • x16x15 + x14x13 + x12x11 + x10x9 + x8x7 + x6x5 + x4x3 + x2x + 1
                                              • x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1
                                              • x32x31 + x29x28 + x26x25 + x23x22 + x20x19 + x17x16 + x15x13 + x12x10 + x9x7 + x6x4 + x3x + 1
                                              • x32 + x31x29x28 + x26 + x25x23x22 + x20 + x19x17x16x15 + x13 + x12x10x9 + x7 + x6x4x3 + x + 1
                                              • x64x63 + x59x58 + x54x53 + x49x48 + x47x46 + x44x43 + x42x41 + x39x38 + x37x36 + x34x33 + x32x31 + x30x28 + x27x26 + x25x23 + x22x21 + x20x18 + x17x16 + x15x11 + x10x6 + x5x + 1
                                              • x64 + x63x59x58 + x54 + x53x49x48x47x46 + x44 + x43 + x42 + x41x39x38x37x36 + x34 + x33 + x32 + x31 + x30x28x27x26x25 + x23 + x22 + x21 + x20x18x17x16x15 + x11 + x10x6x5 + x + 1
                                              • x128x127 + x126 + x123x122 + x121x113 + x112x110 + x109x108 + x107x105 + x104 + x98x97 + x95x94 + x93x92 + x90x89x83 + x82x80 + x79x78 + x76 − 2⁢x75 + x74x72 + x71x70 + x68x67 + x65x64 + x63x61 + x60x58 + x57x56 + x54 − 2⁢x53 + x52x50 + x49x48 + x46x45x39 + x38x36 + x35x34 + x33x31 + x30 + x24x23 + x21x20 + x19x18 + x16x15 + x7x6 + x5 + x2x + 1
                                              • x128 + x127 + x126x123x122x121 + x113 + x112x110x109x108x107 + x105 + x104 + x98 + x97x95x94x93x92 + x90 + x89 + x83 + x82x80x79x78 + x76 + 2⁢x75 + x74x72x71x70 + x68 + x67x65x64x63 + x61 + x60x58x57x56 + x54 + 2⁢x53 + x52x50x49x48 + x46 + x45 + x39 + x38x36x35x34x33 + x31 + x30 + x24 + x23x21x20x19x18 + x16 + x15x7x6x5 + x2 + x + 1

                                              Roots

                                              The 510 roots are:

                                              • x1 = 1
                                              • x2 = -1
                                              • x3 = 1212 3 i
                                              • x4 = 12 + 12 3 i
                                              • x5 = -1212 3 i
                                              • x6 = -12 + 12 3 i
                                              • x7 = 14 + 14 5 + i -18 5 + 58
                                              • x8 = 14 + 14 5 − i -18 5 + 58
                                              • x9 = 1414 5 + i 18 5 + 58
                                              • x10 = 1414 5 − i 18 5 + 58
                                              • x11 = -14 + 14 5 + i 18 5 + 58
                                              • x12 = -14 + 14 5 − i 18 5 + 58
                                              • x13 = -1414 5 + i -18 5 + 58
                                              • x14 = -1414 5 − i -18 5 + 58
                                              • x15 = cos 2π15 + i sin2π15 = 18 65−5+5+1 + i4 7−65+5+5
                                              • x16 = cos 4π15 + i sin4π15 = 18 65+55+1 + i4 7+65−55
                                              • x17 = cos 8π15 + i sin8π15 = −18 65−55−1 + i4 7+65+5+5
                                              • x18 = cos 14π15 + i sin14π15 = −18 65+5+5−1 + i4 7−65−55
                                              • x19 = cos 16π15 + i sin16π15 = −18 65+5+5−1i4 7−65−55
                                              • x20 = cos 22π15 + i sin22π15 = −18 65−55−1i4 7+65+5+5
                                              • x21 = cos 26π15 + i sin26π15 = 18 65+55+1i4 7+65−55
                                              • x22 = cos 28π15 + i sin28π15 = 18 65−5+5+1i4 7−65+5+5
                                              • x23 = cosπ15 + i sinπ15 = 18 65+5+5−1 + i4 7−65−55
                                              • x24 = cos 7π15 + i sin7π15 = 18 65−55−1 + i4 7+65+5+5
                                              • x25 = cos 11π15 + i sin11π15 = −18 65+55+1 + i4 7+65−55
                                              • x26 = cos 13π15 + i sin13π15 = −18 65−5+5+1 + i4 7−65+5+5
                                              • x27 = cos 17π15 + i sin17π15 = −18 65−5+5+1i4 7−65+5+5
                                              • x28 = cos 19π15 + i sin19π15 = −18 65+55+1i4 7+65−55
                                              • x29 = cos 23π15 + i sin23π15 = 18 65−55−1i4 7+65+5+5
                                              • x30 = cos 29π15 + i sin29π15 = 18 65+5+5−1i4 7−65−55
                                              • x31 = cosπ17 + i sinπ17 = 116 1−17+34−217+217+317+170+3817 + i8 34−217−234−217−417+317170+3817
                                              • x32 = cos 3π17 + i sin3π17 = 116 1+17+34+217+217−317170−3817 + i8 34+217−234+217−417−317+170−3817
                                              • x33 = cos 5π17 + i sin5π17 = 116 1+17+34+217−217−317170−3817 + i8 34+217−234+217+417−317+170−3817
                                              • x34 = cos 7π17 + i sin7π17 = 116 1+1734+217+217−317+170−3817 + i8 34+217+234+217+417−317170−3817
                                              • x35 = cos 9π17 + i sin9π17 = −116 −1+17+34−217−217+317170+3817 + i8 34−217+234−217+417+317+170+3817
                                              • x36 = cos 11π17 + i sin11π17 = −116 −1−17+34+217+217−317+170−3817 + i8 34+217+234+217−417−317170−3817
                                              • x37 = cos 13π17 + i sin13π17 = −116 −1+1734−217+217+317+170+3817 + i8 34−217−234−217+417+317170+3817
                                              • x38 = cos 15π17 + i sin15π17 = −116 −1+17+34−217+217+317170+3817 + i8 34−217+234−217−417+317+170+3817
                                              • x39 = cos 19π17 + i sin19π17 = −116 −1+17+34−217+217+317170+3817i8 34−217+234−217−417+317+170+3817
                                              • x40 = cos 21π17 + i sin21π17 = −116 −1+1734−217+217+317+170+3817i8 34−217−234−217+417+317170+3817
                                              • x41 = cos 23π17 + i sin23π17 = −116 −1−17+34+217+217−317+170−3817i8 34+217+234+217−417−317170−3817
                                              • x42 = cos 25π17 + i sin25π17 = −116 −1+17+34−217−217+317170+3817i8 34−217+234−217+417+317+170+3817
                                              • x43 = cos 27π17 + i sin27π17 = 116 1+1734+217+217−317+170−3817i8 34+217+234+217+417−317170−3817
                                              • x44 = cos 29π17 + i sin29π17 = 116 1+17+34+217−217−317170−3817i8 34+217−234+217+417−317+170−3817
                                              • x45 = cos 31π17 + i sin31π17 = 116 1+17+34+217+217−317170−3817i8 34+217−234+217−417−317+170−3817
                                              • x46 = cos 33π17 + i sin33π17 = 116 1−17+34−217+217+317+170+3817i8 34−217−234−217−417+317170+3817
                                              • x47 = cos 2π17 + i sin2π17 = 116 −1+17+34−217+217+317170+3817 + i8 34−217+234−217−417+317+170+3817
                                              • x48 = cos 4π17 + i sin4π17 = 116 −1+1734−217+217+317+170+3817 + i8 34−217−234−217+417+317170+3817
                                              • x49 = cos 6π17 + i sin6π17 = 116 −1−17+34+217+217−317+170−3817 + i8 34+217+234+217−417−317170−3817
                                              • x50 = cos 8π17 + i sin8π17 = 116 −1+17+34−217−217+317170+3817 + i8 34−217+234−217+417+317+170+3817
                                              • x51 = cos 10π17 + i sin10π17 = −116 1+1734+217+217−317+170−3817 + i8 34+217+234+217+417−317170−3817
                                              • x52 = cos 12π17 + i sin12π17 = −116 1+17+34+217−217−317170−3817 + i8 34+217−234+217+417−317+170−3817
                                              • x53 = cos 14π17 + i sin14π17 = −116 1+17+34+217+217−317170−3817 + i8 34+217−234+217−417−317+170−3817
                                              • x54 = cos 16π17 + i sin16π17 = −116 1−17+34−217+217+317+170+3817 + i8 34−217−234−217−417+317170+3817
                                              • x55 = cos 18π17 + i sin18π17 = −116 1−17+34−217+217+317+170+3817i8 34−217−234−217−417+317170+3817
                                              • x56 = cos 20π17 + i sin20π17 = −116 1+17+34+217+217−317170−3817i8 34+217−234+217−417−317+170−3817
                                              • x57 = cos 22π17 + i sin22π17 = −116 1+17+34+217−217−317170−3817i8 34+217−234+217+417−317+170−3817
                                              • x58 = cos 24π17 + i sin24π17 = −116 1+1734+217+217−317+170−3817i8 34+217+234+217+417−317170−3817
                                              • x59 = cos 26π17 + i sin26π17 = 116 −1+17+34−217−217+317170+3817i8 34−217+234−217+417+317+170+3817
                                              • x60 = cos 28π17 + i sin28π17 = 116 −1−17+34+217+217−317+170−3817i8 34+217+234+217−417−317170−3817
                                              • x61 = cos 30π17 + i sin30π17 = 116 −1+1734−217+217+317+170+3817i8 34−217−234−217+417+317170+3817
                                              • x62 = cos 32π17 + i sin32π17 = 116 −1+17+34−217+217+317170+3817i8 34−217+234−217−417+317+170+3817
                                              • x63 = cos 2π51 + i sin2π51 = 132 1+17+34+217−217−317170−3817 + 116 334+217−234+217+417−317+170−3817 + i32 31+17+34+217−217−317170−3817i16 34+217−234+217+417−317+170−3817
                                              • x64 = cos 4π51 + i sin4π51 = 132 1+1734+217+217−317+170−3817 + 116 334+217+234+217+417−317170−3817i32 31+1734+217+217−317+170−3817 + i16 34+217+234+217+417−317170−3817
                                              • x65 = cos 8π51 + i sin8π51 = 132 1+17+34+217+217−317170−3817 + 116 334+217−234+217−417−317+170−3817 + i32 31+17+34+217+217−317170−3817i16 34+217−234+217−417−317+170−3817
                                              • x66 = cos 10π51 + i sin10π51 = −132 −1+17+34−217−217+317170+3817 + 116 334−217+234−217+417+317+170+3817 + i32 3−1+17+34−217−217+317170+3817 + i16 34−217+234−217+417+317+170+3817
                                              • x67 = cos 14π51 + i sin14π51 = 132 1−17+34−217+217+317+170+3817 + 116 334−217−234−217−417+317170+3817 + i32 31−17+34−217+217+317+170+3817i16 34−217−234−217−417+317170+3817
                                              • x68 = cos 16π51 + i sin16π51 = −132 −1−17+34+217+217−317+170−3817 + 116 334+217+234+217−417−317170−3817 + i32 3−1−17+34+217+217−317+170−3817 + i16 34+217+234+217−417−317170−3817
                                              • x69 = cos 20π51 + i sin20π51 = 132 1−17+34−217+217+317+170+3817116 334−217−234−217−417+317170+3817 + i32 31−17+34−217+217+317+170+3817 + i16 34−217−234−217−417+317170+3817
                                              • x70 = cos 22π51 + i sin22π51 = −132 −1+1734−217+217+317+170+3817 + 116 334−217−234−217+417+317170+3817 + i32 3−1+1734−217+217+317+170+3817 + i16 34−217−234−217+417+317170+3817
                                              • x71 = cos 26π51 + i sin26π51 = 132 1+17+34+217+217−317170−3817116 334+217−234+217−417−317+170−3817 + i32 31+17+34+217+217−317170−3817 + i16 34+217−234+217−417−317+170−3817
                                              • x72 = cos 28π51 + i sin28π51 = −132 −1+17+34−217+217+317170+3817 + 116 334−217+234−217−417+317+170+3817 + i32 3−1+17+34−217+217+317170+3817 + i16 34−217+234−217−417+317+170+3817
                                              • x73 = cos 32π51 + i sin32π51 = 132 1+17+34+217−217−317170−3817116 334+217−234+217+417−317+170−3817 + i32 31+17+34+217−217−317170−3817 + i16 34+217−234+217+417−317+170−3817
                                              • x74 = cos 38π51 + i sin38π51 = 132 1+1734+217+217−317+170−3817116 334+217+234+217+417−317170−3817 + i32 31+1734+217+217−317+170−3817 + i16 34+217+234+217+417−317170−3817
                                              • x75 = cos 40π51 + i sin40π51 = −132 −1+17+34−217+217+317170+3817116 334−217+234−217−417+317+170+3817 + i32 3−1+17+34−217+217+317170+3817i16 34−217+234−217−417+317+170+3817
                                              • x76 = cos 44π51 + i sin44π51 = −132 −1+17+34−217−217+317170+3817116 334−217+234−217+417+317+170+3817i32 3−1+17+34−217−217+317170+3817 + i16 34−217+234−217+417+317+170+3817
                                              • x77 = cos 46π51 + i sin46π51 = −132 −1+1734−217+217+317+170+3817116 334−217−234−217+417+317170+3817 + i32 3−1+1734−217+217+317+170+3817i16 34−217−234−217+417+317170+3817
                                              • x78 = cos 50π51 + i sin50π51 = −132 −1−17+34+217+217−317+170−3817116 334+217+234+217−417−317170−3817i32 3−1−17+34+217+217−317+170−3817 + i16 34+217+234+217−417−317170−3817
                                              • x79 = cos 52π51 + i sin52π51 = −132 −1−17+34+217+217−317+170−3817116 334+217+234+217−417−317170−3817 + i32 3−1−17+34+217+217−317+170−3817i16 34+217+234+217−417−317170−3817
                                              • x80 = cos 56π51 + i sin56π51 = −132 −1+1734−217+217+317+170+3817116 334−217−234−217+417+317170+3817i32 3−1+1734−217+217+317+170+3817 + i16 34−217−234−217+417+317170+3817
                                              • x81 = cos 58π51 + i sin58π51 = −132 −1+17+34−217−217+317170+3817116 334−217+234−217+417+317+170+3817 + i32 3−1+17+34−217−217+317170+3817i16 34−217+234−217+417+317+170+3817
                                              • x82 = cos 62π51 + i sin62π51 = −132 −1+17+34−217+217+317170+3817116 334−217+234−217−417+317+170+3817i32 3−1+17+34−217+217+317170+3817 + i16 34−217+234−217−417+317+170+3817
                                              • x83 = cos 64π51 + i sin64π51 = 132 1+1734+217+217−317+170−3817116 334+217+234+217+417−317170−3817i32 31+1734+217+217−317+170−3817i16 34+217+234+217+417−317170−3817
                                              • x84 = cos 70π51 + i sin70π51 = 132 1+17+34+217−217−317170−3817116 334+217−234+217+417−317+170−3817i32 31+17+34+217−217−317170−3817i16 34+217−234+217+417−317+170−3817
                                              • x85 = cos 74π51 + i sin74π51 = −132 −1+17+34−217+217+317170+3817 + 116 334−217+234−217−417+317+170+3817i32 3−1+17+34−217+217+317170+3817i16 34−217+234−217−417+317+170+3817
                                              • x86 = cos 76π51 + i sin76π51 = 132 1+17+34+217+217−317170−3817116 334+217−234+217−417−317+170−3817i32 31+17+34+217+217−317170−3817i16 34+217−234+217−417−317+170−3817
                                              • x87 = cos 80π51 + i sin80π51 = −132 −1+1734−217+217+317+170+3817 + 116 334−217−234−217+417+317170+3817i32 3−1+1734−217+217+317+170+3817i16 34−217−234−217+417+317170+3817
                                              • x88 = cos 82π51 + i sin82π51 = 132 1−17+34−217+217+317+170+3817116 334−217−234−217−417+317170+3817i32 31−17+34−217+217+317+170+3817i16 34−217−234−217−417+317170+3817
                                              • x89 = cos 86π51 + i sin86π51 = −132 −1−17+34+217+217−317+170−3817 + 116 334+217+234+217−417−317170−3817i32 3−1−17+34+217+217−317+170−3817i16 34+217+234+217−417−317170−3817
                                              • x90 = cos 88π51 + i sin88π51 = 132 1−17+34−217+217+317+170+3817 + 116 334−217−234−217−417+317170+3817i32 31−17+34−217+217+317+170+3817 + i16 34−217−234−217−417+317170+3817
                                              • x91 = cos 92π51 + i sin92π51 = −132 −1+17+34−217−217+317170+3817 + 116 334−217+234−217+417+317+170+3817i32 3−1+17+34−217−217+317170+3817i16 34−217+234−217+417+317+170+3817
                                              • x92 = cos 94π51 + i sin94π51 = 132 1+17+34+217+217−317170−3817 + 116 334+217−234+217−417−317+170−3817i32 31+17+34+217+217−317170−3817 + i16 34+217−234+217−417−317+170−3817
                                              • x93 = cos 98π51 + i sin98π51 = 132 1+1734+217+217−317+170−3817 + 116 334+217+234+217+417−317170−3817 + i32 31+1734+217+217−317+170−3817i16 34+217+234+217+417−317170−3817
                                              • x94 = cos 100π51 + i sin100π51 = 132 1+17+34+217−217−317170−3817 + 116 334+217−234+217+417−317+170−3817i32 31+17+34+217−217−317170−3817 + i16 34+217−234+217+417−317+170−3817
                                              • x95 = cosπ51 + i sinπ51 = 132 −1−17+34+217+217−317+170−3817 + 116 334+217+234+217−417−317170−3817i32 3−1−17+34+217+217−317+170−3817 + i16 34+217+234+217−417−317170−3817
                                              • x96 = cos 5π51 + i sin5π51 = 132 −1+1734−217+217+317+170+3817 + 116 334−217−234−217+417+317170+3817 + i32 3−1+1734−217+217+317+170+3817i16 34−217−234−217+417+317170+3817
                                              • x97 = cos 7π51 + i sin7π51 = 132 −1+17+34−217−217+317170+3817 + 116 334−217+234−217+417+317+170+3817i32 3−1+17+34−217−217+317170+3817 + i16 34−217+234−217+417+317+170+3817
                                              • x98 = cos 11π51 + i sin11π51 = 132 −1+17+34−217+217+317170+3817 + 116 334−217+234−217−417+317+170+3817 + i32 3−1+17+34−217+217+317170+3817i16 34−217+234−217−417+317+170+3817
                                              • x99 = cos 13π51 + i sin13π51 = −132 1+1734+217+217−317+170−3817 + 116 334+217+234+217+417−317170−3817 + i32 31+1734+217+217−317+170−3817 + i16 34+217+234+217+417−317170−3817
                                              • x100 = cos 19π51 + i sin19π51 = −132 1+17+34+217−217−317170−3817 + 116 334+217−234+217+417−317+170−3817 + i32 31+17+34+217−217−317170−3817 + i16 34+217−234+217+417−317+170−3817
                                              • x101 = cos 23π51 + i sin23π51 = 132 −1+17+34−217+217+317170+3817116 334−217+234−217−417+317+170+3817 + i32 3−1+17+34−217+217+317170+3817 + i16 34−217+234−217−417+317+170+3817
                                              • x102 = cos 25π51 + i sin25π51 = −132 1+17+34+217+217−317170−3817 + 116 334+217−234+217−417−317+170−3817 + i32 31+17+34+217+217−317170−3817 + i16 34+217−234+217−417−317+170−3817
                                              • x103 = cos 29π51 + i sin29π51 = 132 −1+1734−217+217+317+170+3817116 334−217−234−217+417+317170+3817 + i32 3−1+1734−217+217+317+170+3817 + i16 34−217−234−217+417+317170+3817
                                              • x104 = cos 31π51 + i sin31π51 = −132 1−17+34−217+217+317+170+3817 + 116 334−217−234−217−417+317170+3817 + i32 31−17+34−217+217+317+170+3817 + i16 34−217−234−217−417+317170+3817
                                              • x105 = cos 35π51 + i sin35π51 = 132 −1−17+34+217+217−317+170−3817116 334+217+234+217−417−317170−3817 + i32 3−1−17+34+217+217−317+170−3817 + i16 34+217+234+217−417−317170−3817
                                              • x106 = cos 37π51 + i sin37π51 = −132 1−17+34−217+217+317+170+3817116 334−217−234−217−417+317170+3817 + i32 31−17+34−217+217+317+170+3817i16 34−217−234−217−417+317170+3817
                                              • x107 = cos 41π51 + i sin41π51 = 132 −1+17+34−217−217+317170+3817116 334−217+234−217+417+317+170+3817 + i32 3−1+17+34−217−217+317170+3817 + i16 34−217+234−217+417+317+170+3817
                                              • x108 = cos 43π51 + i sin43π51 = −132 1+17+34+217+217−317170−3817116 334+217−234+217−417−317+170−3817 + i32 31+17+34+217+217−317170−3817i16 34+217−234+217−417−317+170−3817
                                              • x109 = cos 47π51 + i sin47π51 = −132 1+1734+217+217−317+170−3817116 334+217+234+217+417−317170−3817i32 31+1734+217+217−317+170−3817 + i16 34+217+234+217+417−317170−3817
                                              • x110 = cos 49π51 + i sin49π51 = −132 1+17+34+217−217−317170−3817116 334+217−234+217+417−317+170−3817 + i32 31+17+34+217−217−317170−3817i16 34+217−234+217+417−317+170−3817
                                              • x111 = cos 53π51 + i sin53π51 = −132 1+17+34+217−217−317170−3817116 334+217−234+217+417−317+170−3817i32 31+17+34+217−217−317170−3817 + i16 34+217−234+217+417−317+170−3817
                                              • x112 = cos 55π51 + i sin55π51 = −132 1+1734+217+217−317+170−3817116 334+217+234+217+417−317170−3817 + i32 31+1734+217+217−317+170−3817i16 34+217+234+217+417−317170−3817
                                              • x113 = cos 59π51 + i sin59π51 = −132 1+17+34+217+217−317170−3817116 334+217−234+217−417−317+170−3817i32 31+17+34+217+217−317170−3817 + i16 34+217−234+217−417−317+170−3817
                                              • x114 = cos 61π51 + i sin61π51 = 132 −1+17+34−217−217+317170+3817116 334−217+234−217+417+317+170+3817i32 3−1+17+34−217−217+317170+3817i16 34−217+234−217+417+317+170+3817
                                              • x115 = cos 65π51 + i sin65π51 = −132 1−17+34−217+217+317+170+3817116 334−217−234−217−417+317170+3817i32 31−17+34−217+217+317+170+3817 + i16 34−217−234−217−417+317170+3817
                                              • x116 = cos 67π51 + i sin67π51 = 132 −1−17+34+217+217−317+170−3817116 334+217+234+217−417−317170−3817i32 3−1−17+34+217+217−317+170−3817i16 34+217+234+217−417−317170−3817
                                              • x117 = cos 71π51 + i sin71π51 = −132 1−17+34−217+217+317+170+3817 + 116 334−217−234−217−417+317170+3817i32 31−17+34−217+217+317+170+3817i16 34−217−234−217−417+317170+3817
                                              • x118 = cos 73π51 + i sin73π51 = 132 −1+1734−217+217+317+170+3817116 334−217−234−217+417+317170+3817i32 3−1+1734−217+217+317+170+3817i16 34−217−234−217+417+317170+3817
                                              • x119 = cos 77π51 + i sin77π51 = −132 1+17+34+217+217−317170−3817 + 116 334+217−234+217−417−317+170−3817i32 31+17+34+217+217−317170−3817i16 34+217−234+217−417−317+170−3817
                                              • x120 = cos 79π51 + i sin79π51 = 132 −1+17+34−217+217+317170+3817116 334−217+234−217−417+317+170+3817i32 3−1+17+34−217+217+317170+3817i16 34−217+234−217−417+317+170+3817
                                              • x121 = cos 83π51 + i sin83π51 = −132 1+17+34+217−217−317170−3817 + 116 334+217−234+217+417−317+170−3817i32 31+17+34+217−217−317170−3817i16 34+217−234+217+417−317+170−3817
                                              • x122 = cos 89π51 + i sin89π51 = −132 1+1734+217+217−317+170−3817 + 116 334+217+234+217+417−317170−3817i32 31+1734+217+217−317+170−3817i16 34+217+234+217+417−317170−3817
                                              • x123 = cos 91π51 + i sin91π51 = 132 −1+17+34−217+217+317170+3817 + 116 334−217+234−217−417+317+170+3817i32 3−1+17+34−217+217+317170+3817 + i16 34−217+234−217−417+317+170+3817
                                              • x124 = cos 95π51 + i sin95π51 = 132 −1+17+34−217−217+317170+3817 + 116 334−217+234−217+417+317+170+3817 + i32 3−1+17+34−217−217+317170+3817i16 34−217+234−217+417+317+170+3817
                                              • x125 = cos 97π51 + i sin97π51 = 132 −1+1734−217+217+317+170+3817 + 116 334−217−234−217+417+317170+3817i32 3−1+1734−217+217+317+170+3817 + i16 34−217−234−217+417+317170+3817
                                              • x126 = cos 101π51 + i sin101π51 = 132 −1−17+34+217+217−317+170−3817 + 116 334+217+234+217−417−317170−3817 + i32 3−1−17+34+217+217−317+170−3817i16 34+217+234+217−417−317170−3817
                                              • x127 = cos 2π85 + i sin2π85 = 164 5+11+17+34+217+217−317170−3817 + 132 10−2534+217−234+217−417−317+170−3817 + i64 10−251+17+34+217+217−317170−3817i32 5+134+217−234+217−417−317+170−3817
                                              • x128 = cos 4π85 + i sin4π85 = 164 5−1−1−17+34+217+217−317+170−3817 + 132 10+2534+217+234+217−417−317170−3817 + i64 10+25−1−17+34+217+217−317+170−3817i32 5−134+217+234+217−417−317170−3817
                                              • x129 = cos 6π85 + i sin6π85 = 164 5−1−1+17+34−217−217+317170+3817 + 132 10+2534−217+234−217+417+317+170+3817i64 10+25−1+17+34−217−217+317170+3817 + i32 5−134−217+234−217+417+317+170+3817
                                              • x130 = cos 8π85 + i sin8π85 = 164 5+11+17+34+217−217−317170−3817 + 132 10−2534+217−234+217+417−317+170−3817i64 10−251+17+34+217−217−317170−3817 + i32 5+134+217−234+217+417−317+170−3817
                                              • x131 = cos 12π85 + i sin12π85 = 164 5+11−17+34−217+217+317+170+3817 + 132 10−2534−217−234−217−417+317170+3817 + i64 10−251−17+34−217+217+317+170+3817i32 5+134−217−234−217−417+317170+3817
                                              • x132 = cos 14π85 + i sin14π85 = 164 5−1−1+1734−217+217+317+170+3817 + 132 10+2534−217−234−217+417+317170+3817 + i64 10+25−1+1734−217+217+317+170+3817i32 5−134−217−234−217+417+317170+3817
                                              • x133 = cos 16π85 + i sin16π85 = −164 5−11+1734+217+217−317+170−3817 + 132 10+2534+217+234+217+417−317170−3817 + i64 10+251+1734+217+217−317+170−3817 + i32 5−134+217+234+217+417−317170−3817
                                              • x134 = cos 18π85 + i sin18π85 = 164 5+11+1734+217+217−317+170−3817 + 132 10−2534+217+234+217+417−317170−3817i64 10−251+1734+217+217−317+170−3817 + i32 5+134+217+234+217+417−317170−3817
                                              • x135 = cos 22π85 + i sin22π85 = 164 5+11−17+34−217+217+317+170+3817132 10−2534−217−234−217−417+317170+3817 + i64 10−251−17+34−217+217+317+170+3817 + i32 5+134−217−234−217−417+317170+3817
                                              • x136 = cos 24π85 + i sin24π85 = 164 5−1−1+17+34−217+217+317170+3817 + 132 10+2534−217+234−217−417+317+170+3817 + i64 10+25−1+17+34−217+217+317170+3817i32 5−134−217+234−217−417+317+170+3817
                                              • x137 = cos 26π85 + i sin26π85 = −164 5−11+17+34+217−217−317170−3817 + 132 10+2534+217−234+217+417−317+170−3817 + i64 10+251+17+34+217−217−317170−3817 + i32 5−134+217−234+217+417−317+170−3817
                                              • x138 = cos 28π85 + i sin28π85 = −164 5+1−1+17+34−217−217+317170+3817 + 132 10−2534−217+234−217+417+317+170+3817 + i64 10−25−1+17+34−217−217+317170+3817 + i32 5+134−217+234−217+417+317+170+3817
                                              • x139 = cos 32π85 + i sin32π85 = 164 5+11+17+34+217+217−317170−3817132 10−2534+217−234+217−417−317+170−3817 + i64 10−251+17+34+217+217−317170−3817 + i32 5+134+217−234+217−417−317+170−3817
                                              • x140 = cos 36π85 + i sin36π85 = −164 5−11+17+34+217+217−317170−3817 + 132 10+2534+217−234+217−417−317+170−3817 + i64 10+251+17+34+217+217−317170−3817 + i32 5−134+217−234+217−417−317+170−3817
                                              • x141 = cos 38π85 + i sin38π85 = −164 5+1−1−17+34+217+217−317+170−3817 + 132 10−2534+217+234+217−417−317170−3817 + i64 10−25−1−17+34+217+217−317+170−3817 + i32 5+134+217+234+217−417−317170−3817
                                              • x142 = cos 42π85 + i sin42π85 = 164 5+11+17+34+217−217−317170−3817132 10−2534+217−234+217+417−317+170−3817 + i64 10−251+17+34+217−217−317170−3817 + i32 5+134+217−234+217+417−317+170−3817
                                              • x143 = cos 44π85 + i sin44π85 = 164 5−1−1+17+34−217+217+317170+3817132 10+2534−217+234−217−417+317+170+3817 + i64 10+25−1+17+34−217+217+317170+3817 + i32 5−134−217+234−217−417+317+170+3817
                                              • x144 = cos 46π85 + i sin46π85 = −164 5−11−17+34−217+217+317+170+3817 + 132 10+2534−217−234−217−417+317170+3817 + i64 10+251−17+34−217+217+317+170+3817 + i32 5−134−217−234−217−417+317170+3817
                                              • x145 = cos 48π85 + i sin48π85 = −164 5+1−1+1734−217+217+317+170+3817 + 132 10−2534−217−234−217+417+317170+3817 + i64 10−25−1+1734−217+217+317+170+3817 + i32 5+134−217−234−217+417+317170+3817
                                              • x146 = cos 52π85 + i sin52π85 = 164 5+11+1734+217+217−317+170−3817132 10−2534+217+234+217+417−317170−3817 + i64 10−251+1734+217+217−317+170−3817 + i32 5+134+217+234+217+417−317170−3817
                                              • x147 = cos 54π85 + i sin54π85 = 164 5−1−1+1734−217+217+317+170+3817132 10+2534−217−234−217+417+317170+3817 + i64 10+25−1+1734−217+217+317+170+3817 + i32 5−134−217−234−217+417+317170+3817
                                              • x148 = cos 56π85 + i sin56π85 = −164 5−11−17+34−217+217+317+170+3817132 10+2534−217−234−217−417+317170+3817 + i64 10+251−17+34−217+217+317+170+3817i32 5−134−217−234−217−417+317170+3817
                                              • x149 = cos 58π85 + i sin58π85 = −164 5+1−1+17+34−217+217+317170+3817 + 132 10−2534−217+234−217−417+317+170+3817 + i64 10−25−1+17+34−217+217+317170+3817 + i32 5+134−217+234−217−417+317+170+3817
                                              • x150 = cos 62π85 + i sin62π85 = −164 5+1−1+17+34−217−217+317170+3817132 10−2534−217+234−217+417+317+170+3817i64 10−25−1+17+34−217−217+317170+3817 + i32 5+134−217+234−217+417+317+170+3817
                                              • x151 = cos 64π85 + i sin64π85 = 164 5−1−1−17+34+217+217−317+170−3817132 10+2534+217+234+217−417−317170−3817 + i64 10+25−1−17+34+217+217−317+170−3817 + i32 5−134+217+234+217−417−317170−3817
                                              • x152 = cos 66π85 + i sin66π85 = −164 5−11+17+34+217+217−317170−3817132 10+2534+217−234+217−417−317+170−3817 + i64 10+251+17+34+217+217−317170−3817i32 5−134+217−234+217−417−317+170−3817
                                              • x153 = cos 72π85 + i sin72π85 = −164 5+1−1−17+34+217+217−317+170−3817132 10−2534+217+234+217−417−317170−3817i64 10−25−1−17+34+217+217−317+170−3817 + i32 5+134+217+234+217−417−317170−3817
                                              • x154 = cos 74π85 + i sin74π85 = 164 5−1−1+17+34−217−217+317170+3817132 10+2534−217+234−217+417+317+170+3817 + i64 10+25−1+17+34−217−217+317170+3817 + i32 5−134−217+234−217+417+317+170+3817
                                              • x155 = cos 76π85 + i sin76π85 = −164 5−11+17+34+217−217−317170−3817132 10+2534+217−234+217+417−317+170−3817 + i64 10+251+17+34+217−217−317170−3817i32 5−134+217−234+217+417−317+170−3817
                                              • x156 = cos 78π85 + i sin78π85 = −164 5+1−1+17+34−217+217+317170+3817132 10−2534−217+234−217−417+317+170+3817 + i64 10−25−1+17+34−217+217+317170+3817i32 5+134−217+234−217−417+317+170+3817
                                              • x157 = cos 82π85 + i sin82π85 = −164 5+1−1+1734−217+217+317+170+3817132 10−2534−217−234−217+417+317170+3817i64 10−25−1+1734−217+217+317+170+3817 + i32 5+134−217−234−217+417+317170+3817
                                              • x158 = cos 84π85 + i sin84π85 = −164 5−11+1734+217+217−317+170−3817132 10+2534+217+234+217+417−317170−3817i64 10+251+1734+217+217−317+170−3817 + i32 5−134+217+234+217+417−317170−3817
                                              • x159 = cos 86π85 + i sin86π85 = −164 5−11+1734+217+217−317+170−3817132 10+2534+217+234+217+417−317170−3817 + i64 10+251+1734+217+217−317+170−3817i32 5−134+217+234+217+417−317170−3817
                                              • x160 = cos 88π85 + i sin88π85 = −164 5+1−1+1734−217+217+317+170+3817132 10−2534−217−234−217+417+317170+3817 + i64 10−25−1+1734−217+217+317+170+3817i32 5+134−217−234−217+417+317170+3817
                                              • x161 = cos 92π85 + i sin92π85 = −164 5+1−1+17+34−217+217+317170+3817132 10−2534−217+234−217−417+317+170+3817i64 10−25−1+17+34−217+217+317170+3817 + i32 5+134−217+234−217−417+317+170+3817
                                              • x162 = cos 94π85 + i sin94π85 = −164 5−11+17+34+217−217−317170−3817132 10+2534+217−234+217+417−317+170−3817i64 10+251+17+34+217−217−317170−3817 + i32 5−134+217−234+217+417−317+170−3817
                                              • x163 = cos 96π85 + i sin96π85 = 164 5−1−1+17+34−217−217+317170+3817132 10+2534−217+234−217+417+317+170+3817i64 10+25−1+17+34−217−217+317170+3817i32 5−134−217+234−217+417+317+170+3817
                                              • x164 = cos 98π85 + i sin98π85 = −164 5+1−1−17+34+217+217−317+170−3817132 10−2534+217+234+217−417−317170−3817 + i64 10−25−1−17+34+217+217−317+170−3817i32 5+134+217+234+217−417−317170−3817
                                              • x165 = cos 104π85 + i sin104π85 = −164 5−11+17+34+217+217−317170−3817132 10+2534+217−234+217−417−317+170−3817i64 10+251+17+34+217+217−317170−3817 + i32 5−134+217−234+217−417−317+170−3817
                                              • x166 = cos 106π85 + i sin106π85 = 164 5−1−1−17+34+217+217−317+170−3817132 10+2534+217+234+217−417−317170−3817i64 10+25−1−17+34+217+217−317+170−3817i32 5−134+217+234+217−417−317170−3817
                                              • x167 = cos 108π85 + i sin108π85 = −164 5+1−1+17+34−217−217+317170+3817132 10−2534−217+234−217+417+317+170+3817 + i64 10−25−1+17+34−217−217+317170+3817i32 5+134−217+234−217+417+317+170+3817
                                              • x168 = cos 112π85 + i sin112π85 = −164 5+1−1+17+34−217+217+317170+3817 + 132 10−2534−217+234−217−417+317+170+3817i64 10−25−1+17+34−217+217+317170+3817i32 5+134−217+234−217−417+317+170+3817
                                              • x169 = cos 114π85 + i sin114π85 = −164 5−11−17+34−217+217+317+170+3817132 10+2534−217−234−217−417+317170+3817i64 10+251−17+34−217+217+317+170+3817 + i32 5−134−217−234−217−417+317170+3817
                                              • x170 = cos 116π85 + i sin116π85 = 164 5−1−1+1734−217+217+317+170+3817132 10+2534−217−234−217+417+317170+3817i64 10+25−1+1734−217+217+317+170+3817i32 5−134−217−234−217+417+317170+3817
                                              • x171 = cos 118π85 + i sin118π85 = 164 5+11+1734+217+217−317+170−3817132 10−2534+217+234+217+417−317170−3817i64 10−251+1734+217+217−317+170−3817i32 5+134+217+234+217+417−317170−3817
                                              • x172 = cos 122π85 + i sin122π85 = −164 5+1−1+1734−217+217+317+170+3817 + 132 10−2534−217−234−217+417+317170+3817i64 10−25−1+1734−217+217+317+170+3817i32 5+134−217−234−217+417+317170+3817
                                              • x173 = cos 124π85 + i sin124π85 = −164 5−11−17+34−217+217+317+170+3817 + 132 10+2534−217−234−217−417+317170+3817i64 10+251−17+34−217+217+317+170+3817i32 5−134−217−234−217−417+317170+3817
                                              • x174 = cos 126π85 + i sin126π85 = 164 5−1−1+17+34−217+217+317170+3817132 10+2534−217+234−217−417+317+170+3817i64 10+25−1+17+34−217+217+317170+3817i32 5−134−217+234−217−417+317+170+3817
                                              • x175 = cos 128π85 + i sin128π85 = 164 5+11+17+34+217−217−317170−3817132 10−2534+217−234+217+417−317+170−3817i64 10−251+17+34+217−217−317170−3817i32 5+134+217−234+217+417−317+170−3817
                                              • x176 = cos 132π85 + i sin132π85 = −164 5+1−1−17+34+217+217−317+170−3817 + 132 10−2534+217+234+217−417−317170−3817i64 10−25−1−17+34+217+217−317+170−3817i32 5+134+217+234+217−417−317170−3817
                                              • x177 = cos 134π85 + i sin134π85 = −164 5−11+17+34+217+217−317170−3817 + 132 10+2534+217−234+217−417−317+170−3817i64 10+251+17+34+217+217−317170−3817i32 5−134+217−234+217−417−317+170−3817
                                              • x178 = cos 138π85 + i sin138π85 = 164 5+11+17+34+217+217−317170−3817132 10−2534+217−234+217−417−317+170−3817i64 10−251+17+34+217+217−317170−3817i32 5+134+217−234+217−417−317+170−3817
                                              • x179 = cos 142π85 + i sin142π85 = −164 5+1−1+17+34−217−217+317170+3817 + 132 10−2534−217+234−217+417+317+170+3817i64 10−25−1+17+34−217−217+317170+3817i32 5+134−217+234−217+417+317+170+3817
                                              • x180 = cos 144π85 + i sin144π85 = −164 5−11+17+34+217−217−317170−3817 + 132 10+2534+217−234+217+417−317+170−3817i64 10+251+17+34+217−217−317170−3817i32 5−134+217−234+217+417−317+170−3817
                                              • x181 = cos 146π85 + i sin146π85 = 164 5−1−1+17+34−217+217+317170+3817 + 132 10+2534−217+234−217−417+317+170+3817i64 10+25−1+17+34−217+217+317170+3817 + i32 5−134−217+234−217−417+317+170+3817
                                              • x182 = cos 148π85 + i sin148π85 = 164 5+11−17+34−217+217+317+170+3817132 10−2534−217−234−217−417+317170+3817i64 10−251−17+34−217+217+317+170+3817i32 5+134−217−234−217−417+317170+3817
                                              • x183 = cos 152π85 + i sin152π85 = 164 5+11+1734+217+217−317+170−3817 + 132 10−2534+217+234+217+417−317170−3817 + i64 10−251+1734+217+217−317+170−3817i32 5+134+217+234+217+417−317170−3817
                                              • x184 = cos 154π85 + i sin154π85 = −164 5−11+1734+217+217−317+170−3817 + 132 10+2534+217+234+217+417−317170−3817i64 10+251+1734+217+217−317+170−3817i32 5−134+217+234+217+417−317170−3817
                                              • x185 = cos 156π85 + i sin156π85 = 164 5−1−1+1734−217+217+317+170+3817 + 132 10+2534−217−234−217+417+317170+3817i64 10+25−1+1734−217+217+317+170+3817 + i32 5−134−217−234−217+417+317170+3817
                                              • x186 = cos 158π85 + i sin158π85 = 164 5+11−17+34−217+217+317+170+3817 + 132 10−2534−217−234−217−417+317170+3817i64 10−251−17+34−217+217+317+170+3817 + i32 5+134−217−234−217−417+317170+3817
                                              • x187 = cos 162π85 + i sin162π85 = 164 5+11+17+34+217−217−317170−3817 + 132 10−2534+217−234+217+417−317+170−3817 + i64 10−251+17+34+217−217−317170−3817i32 5+134+217−234+217+417−317+170−3817
                                              • x188 = cos 164π85 + i sin164π85 = 164 5−1−1+17+34−217−217+317170+3817 + 132 10+2534−217+234−217+417+317+170+3817 + i64 10+25−1+17+34−217−217+317170+3817i32 5−134−217+234−217+417+317+170+3817
                                              • x189 = cos 166π85 + i sin166π85 = 164 5−1−1−17+34+217+217−317+170−3817 + 132 10+2534+217+234+217−417−317170−3817i64 10+25−1−17+34+217+217−317+170−3817 + i32 5−134+217+234+217−417−317170−3817
                                              • x190 = cos 168π85 + i sin168π85 = 164 5+11+17+34+217+217−317170−3817 + 132 10−2534+217−234+217−417−317+170−3817i64 10−251+17+34+217+217−317170−3817 + i32 5+134+217−234+217−417−317+170−3817
                                              • x191 = cosπ85 + i sinπ85 = 164 5−11+1734+217+217−317+170−3817 + 132 10+2534+217+234+217+417−317170−3817i64 10+251+1734+217+217−317+170−3817 + i32 5−134+217+234+217+417−317170−3817
                                              • x192 = cos 3π85 + i sin3π85 = 164 5+1−1+1734−217+217+317+170+3817 + 132 10−2534−217−234−217+417+317170+3817i64 10−25−1+1734−217+217+317+170+3817 + i32 5+134−217−234−217+417+317170+3817
                                              • x193 = cos 7π85 + i sin7π85 = 164 5+1−1+17+34−217+217+317170+3817 + 132 10−2534−217+234−217−417+317+170+3817 + i64 10−25−1+17+34−217+217+317170+3817i32 5+134−217+234−217−417+317+170+3817
                                              • x194 = cos 9π85 + i sin9π85 = 164 5−11+17+34+217−217−317170−3817 + 132 10+2534+217−234+217+417−317+170−3817 + i64 10+251+17+34+217−217−317170−3817i32 5−134+217−234+217+417−317+170−3817
                                              • x195 = cos 11π85 + i sin11π85 = −164 5−1−1+17+34−217−217+317170+3817 + 132 10+2534−217+234−217+417+317+170+3817 + i64 10+25−1+17+34−217−217+317170+3817 + i32 5−134−217+234−217+417+317+170+3817
                                              • x196 = cos 13π85 + i sin13π85 = 164 5+1−1−17+34+217+217−317+170−3817 + 132 10−2534+217+234+217−417−317170−3817i64 10−25−1−17+34+217+217−317+170−3817 + i32 5+134+217+234+217−417−317170−3817
                                              • x197 = cos 19π85 + i sin19π85 = 164 5−11+17+34+217+217−317170−3817 + 132 10+2534+217−234+217−417−317+170−3817 + i64 10+251+17+34+217+217−317170−3817i32 5−134+217−234+217−417−317+170−3817
                                              • x198 = cos 21π85 + i sin21π85 = −164 5−1−1−17+34+217+217−317+170−3817 + 132 10+2534+217+234+217−417−317170−3817 + i64 10+25−1−17+34+217+217−317+170−3817 + i32 5−134+217+234+217−417−317170−3817
                                              • x199 = cos 23π85 + i sin23π85 = 164 5+1−1+17+34−217−217+317170+3817 + 132 10−2534−217+234−217+417+317+170+3817i64 10−25−1+17+34−217−217+317170+3817 + i32 5+134−217+234−217+417+317+170+3817
                                              • x200 = cos 27π85 + i sin27π85 = 164 5+1−1+17+34−217+217+317170+3817132 10−2534−217+234−217−417+317+170+3817 + i64 10−25−1+17+34−217+217+317170+3817 + i32 5+134−217+234−217−417+317+170+3817
                                              • x201 = cos 29π85 + i sin29π85 = 164 5−11−17+34−217+217+317+170+3817 + 132 10+2534−217−234−217−417+317170+3817 + i64 10+251−17+34−217+217+317+170+3817i32 5−134−217−234−217−417+317170+3817
                                              • x202 = cos 31π85 + i sin31π85 = −164 5−1−1+1734−217+217+317+170+3817 + 132 10+2534−217−234−217+417+317170+3817 + i64 10+25−1+1734−217+217+317+170+3817 + i32 5−134−217−234−217+417+317170+3817
                                              • x203 = cos 33π85 + i sin33π85 = −164 5+11+1734+217+217−317+170−3817 + 132 10−2534+217+234+217+417−317170−3817 + i64 10−251+1734+217+217−317+170−3817 + i32 5+134+217+234+217+417−317170−3817
                                              • x204 = cos 37π85 + i sin37π85 = 164 5+1−1+1734−217+217+317+170+3817132 10−2534−217−234−217+417+317170+3817 + i64 10−25−1+1734−217+217+317+170+3817 + i32 5+134−217−234−217+417+317170+3817
                                              • x205 = cos 39π85 + i sin39π85 = 164 5−11−17+34−217+217+317+170+3817132 10+2534−217−234−217−417+317170+3817 + i64 10+251−17+34−217+217+317+170+3817 + i32 5−134−217−234−217−417+317170+3817
                                              • x206 = cos 41π85 + i sin41π85 = −164 5−1−1+17+34−217+217+317170+3817 + 132 10+2534−217+234−217−417+317+170+3817 + i64 10+25−1+17+34−217+217+317170+3817 + i32 5−134−217+234−217−417+317+170+3817
                                              • x207 = cos 43π85 + i sin43π85 = −164 5+11+17+34+217−217−317170−3817 + 132 10−2534+217−234+217+417−317+170−3817 + i64 10−251+17+34+217−217−317170−3817 + i32 5+134+217−234+217+417−317+170−3817
                                              • x208 = cos 47π85 + i sin47π85 = 164 5+1−1−17+34+217+217−317+170−3817132 10−2534+217+234+217−417−317170−3817 + i64 10−25−1−17+34+217+217−317+170−3817 + i32 5+134+217+234+217−417−317170−3817
                                              • x209 = cos 49π85 + i sin49π85 = 164 5−11+17+34+217+217−317170−3817132 10+2534+217−234+217−417−317+170−3817 + i64 10+251+17+34+217+217−317170−3817 + i32 5−134+217−234+217−417−317+170−3817
                                              • x210 = cos 53π85 + i sin53π85 = −164 5+11+17+34+217+217−317170−3817 + 132 10−2534+217−234+217−417−317+170−3817 + i64 10−251+17+34+217+217−317170−3817 + i32 5+134+217−234+217−417−317+170−3817
                                              • x211 = cos 57π85 + i sin57π85 = 164 5+1−1+17+34−217−217+317170+3817132 10−2534−217+234−217+417+317+170+3817 + i64 10−25−1+17+34−217−217+317170+3817 + i32 5+134−217+234−217+417+317+170+3817
                                              • x212 = cos 59π85 + i sin59π85 = 164 5−11+17+34+217−217−317170−3817132 10+2534+217−234+217+417−317+170−3817 + i64 10+251+17+34+217−217−317170−3817 + i32 5−134+217−234+217+417−317+170−3817
                                              • x213 = cos 61π85 + i sin61π85 = −164 5−1−1+17+34−217+217+317170+3817132 10+2534−217+234−217−417+317+170+3817 + i64 10+25−1+17+34−217+217+317170+3817i32 5−134−217+234−217−417+317+170+3817
                                              • x214 = cos 63π85 + i sin63π85 = −164 5+11−17+34−217+217+317+170+3817 + 132 10−2534−217−234−217−417+317170+3817 + i64 10−251−17+34−217+217+317+170+3817 + i32 5+134−217−234−217−417+317170+3817
                                              • x215 = cos 67π85 + i sin67π85 = −164 5+11+1734+217+217−317+170−3817132 10−2534+217+234+217+417−317170−3817i64 10−251+1734+217+217−317+170−3817 + i32 5+134+217+234+217+417−317170−3817
                                              • x216 = cos 69π85 + i sin69π85 = 164 5−11+1734+217+217−317+170−3817132 10+2534+217+234+217+417−317170−3817 + i64 10+251+1734+217+217−317+170−3817 + i32 5−134+217+234+217+417−317170−3817
                                              • x217 = cos 71π85 + i sin71π85 = −164 5−1−1+1734−217+217+317+170+3817132 10+2534−217−234−217+417+317170+3817 + i64 10+25−1+1734−217+217+317+170+3817i32 5−134−217−234−217+417+317170+3817
                                              • x218 = cos 73π85 + i sin73π85 = −164 5+11−17+34−217+217+317+170+3817132 10−2534−217−234−217−417+317170+3817 + i64 10−251−17+34−217+217+317+170+3817i32 5+134−217−234−217−417+317170+3817
                                              • x219 = cos 77π85 + i sin77π85 = −164 5+11+17+34+217−217−317170−3817132 10−2534+217−234+217+417−317+170−3817i64 10−251+17+34+217−217−317170−3817 + i32 5+134+217−234+217+417−317+170−3817
                                              • x220 = cos 79π85 + i sin79π85 = −164 5−1−1+17+34−217−217+317170+3817132 10+2534−217+234−217+417+317+170+3817i64 10+25−1+17+34−217−217+317170+3817 + i32 5−134−217+234−217+417+317+170+3817
                                              • x221 = cos 81π85 + i sin81π85 = −164 5−1−1−17+34+217+217−317+170−3817132 10+2534+217+234+217−417−317170−3817 + i64 10+25−1−17+34+217+217−317+170−3817i32 5−134+217+234+217−417−317170−3817
                                              • x222 = cos 83π85 + i sin83π85 = −164 5+11+17+34+217+217−317170−3817132 10−2534+217−234+217−417−317+170−3817 + i64 10−251+17+34+217+217−317170−3817i32 5+134+217−234+217−417−317+170−3817
                                              • x223 = cos 87π85 + i sin87π85 = −164 5+11+17+34+217+217−317170−3817132 10−2534+217−234+217−417−317+170−3817i64 10−251+17+34+217+217−317170−3817 + i32 5+134+217−234+217−417−317+170−3817
                                              • x224 = cos 89π85 + i sin89π85 = −164 5−1−1−17+34+217+217−317+170−3817132 10+2534+217+234+217−417−317170−3817i64 10+25−1−17+34+217+217−317+170−3817 + i32 5−134+217+234+217−417−317170−3817
                                              • x225 = cos 91π85 + i sin91π85 = −164 5−1−1+17+34−217−217+317170+3817132 10+2534−217+234−217+417+317+170+3817 + i64 10+25−1+17+34−217−217+317170+3817i32 5−134−217+234−217+417+317+170+3817
                                              • x226 = cos 93π85 + i sin93π85 = −164 5+11+17+34+217−217−317170−3817132 10−2534+217−234+217+417−317+170−3817 + i64 10−251+17+34+217−217−317170−3817i32 5+134+217−234+217+417−317+170−3817
                                              • x227 = cos 97π85 + i sin97π85 = −164 5+11−17+34−217+217+317+170+3817132 10−2534−217−234−217−417+317170+3817i64 10−251−17+34−217+217+317+170+3817 + i32 5+134−217−234−217−417+317170+3817
                                              • x228 = cos 99π85 + i sin99π85 = −164 5−1−1+1734−217+217+317+170+3817132 10+2534−217−234−217+417+317170+3817i64 10+25−1+1734−217+217+317+170+3817 + i32 5−134−217−234−217+417+317170+3817
                                              • x229 = cos 101π85 + i sin101π85 = 164 5−11+1734+217+217−317+170−3817132 10+2534+217+234+217+417−317170−3817i64 10+251+1734+217+217−317+170−3817i32 5−134+217+234+217+417−317170−3817
                                              • x230 = cos 103π85 + i sin103π85 = −164 5+11+1734+217+217−317+170−3817132 10−2534+217+234+217+417−317170−3817 + i64 10−251+1734+217+217−317+170−3817i32 5+134+217+234+217+417−317170−3817
                                              • x231 = cos 107π85 + i sin107π85 = −164 5+11−17+34−217+217+317+170+3817 + 132 10−2534−217−234−217−417+317170+3817i64 10−251−17+34−217+217+317+170+3817i32 5+134−217−234−217−417+317170+3817
                                              • x232 = cos 109π85 + i sin109π85 = −164 5−1−1+17+34−217+217+317170+3817132 10+2534−217+234−217−417+317+170+3817i64 10+25−1+17+34−217+217+317170+3817 + i32 5−134−217+234−217−417+317+170+3817
                                              • x233 = cos 111π85 + i sin111π85 = 164 5−11+17+34+217−217−317170−3817132 10+2534+217−234+217+417−317+170−3817i64 10+251+17+34+217−217−317170−3817i32 5−134+217−234+217+417−317+170−3817
                                              • x234 = cos 113π85 + i sin113π85 = 164 5+1−1+17+34−217−217+317170+3817132 10−2534−217+234−217+417+317+170+3817i64 10−25−1+17+34−217−217+317170+3817i32 5+134−217+234−217+417+317+170+3817
                                              • x235 = cos 117π85 + i sin117π85 = −164 5+11+17+34+217+217−317170−3817 + 132 10−2534+217−234+217−417−317+170−3817i64 10−251+17+34+217+217−317170−3817i32 5+134+217−234+217−417−317+170−3817
                                              • x236 = cos 121π85 + i sin121π85 = 164 5−11+17+34+217+217−317170−3817132 10+2534+217−234+217−417−317+170−3817i64 10+251+17+34+217+217−317170−3817i32 5−134+217−234+217−417−317+170−3817
                                              • x237 = cos 123π85 + i sin123π85 = 164 5+1−1−17+34+217+217−317+170−3817132 10−2534+217+234+217−417−317170−3817i64 10−25−1−17+34+217+217−317+170−3817i32 5+134+217+234+217−417−317170−3817
                                              • x238 = cos 127π85 + i sin127π85 = −164 5+11+17+34+217−217−317170−3817 + 132 10−2534+217−234+217+417−317+170−3817i64 10−251+17+34+217−217−317170−3817i32 5+134+217−234+217+417−317+170−3817
                                              • x239 = cos 129π85 + i sin129π85 = −164 5−1−1+17+34−217+217+317170+3817 + 132 10+2534−217+234−217−417+317+170+3817i64 10+25−1+17+34−217+217+317170+3817i32 5−134−217+234−217−417+317+170+3817
                                              • x240 = cos 131π85 + i sin131π85 = 164 5−11−17+34−217+217+317+170+3817132 10+2534−217−234−217−417+317170+3817i64 10+251−17+34−217+217+317+170+3817i32 5−134−217−234−217−417+317170+3817
                                              • x241 = cos 133π85 + i sin133π85 = 164 5+1−1+1734−217+217+317+170+3817132 10−2534−217−234−217+417+317170+3817i64 10−25−1+1734−217+217+317+170+3817i32 5+134−217−234−217+417+317170+3817
                                              • x242 = cos 137π85 + i sin137π85 = −164 5+11+1734+217+217−317+170−3817 + 132 10−2534+217+234+217+417−317170−3817i64 10−251+1734+217+217−317+170−3817i32 5+134+217+234+217+417−317170−3817
                                              • x243 = cos 139π85 + i sin139π85 = −164 5−1−1+1734−217+217+317+170+3817 + 132 10+2534−217−234−217+417+317170+3817i64 10+25−1+1734−217+217+317+170+3817i32 5−134−217−234−217+417+317170+3817
                                              • x244 = cos 141π85 + i sin141π85 = 164 5−11−17+34−217+217+317+170+3817 + 132 10+2534−217−234−217−417+317170+3817i64 10+251−17+34−217+217+317+170+3817 + i32 5−134−217−234−217−417+317170+3817
                                              • x245 = cos 143π85 + i sin143π85 = 164 5+1−1+17+34−217+217+317170+3817132 10−2534−217+234−217−417+317+170+3817i64 10−25−1+17+34−217+217+317170+3817i32 5+134−217+234−217−417+317+170+3817
                                              • x246 = cos 147π85 + i sin147π85 = 164 5+1−1+17+34−217−217+317170+3817 + 132 10−2534−217+234−217+417+317+170+3817 + i64 10−25−1+17+34−217−217+317170+3817i32 5+134−217+234−217+417+317+170+3817
                                              • x247 = cos 149π85 + i sin149π85 = −164 5−1−1−17+34+217+217−317+170−3817 + 132 10+2534+217+234+217−417−317170−3817i64 10+25−1−17+34+217+217−317+170−3817i32 5−134+217+234+217−417−317170−3817
                                              • x248 = cos 151π85 + i sin151π85 = 164 5−11+17+34+217+217−317170−3817 + 132 10+2534+217−234+217−417−317+170−3817i64 10+251+17+34+217+217−317170−3817 + i32 5−134+217−234+217−417−317+170−3817
                                              • x249 = cos 157π85 + i sin157π85 = 164 5+1−1−17+34+217+217−317+170−3817 + 132 10−2534+217+234+217−417−317170−3817 + i64 10−25−1−17+34+217+217−317+170−3817i32 5+134+217+234+217−417−317170−3817
                                              • x250 = cos 159π85 + i sin159π85 = −164 5−1−1+17+34−217−217+317170+3817 + 132 10+2534−217+234−217+417+317+170+3817i64 10+25−1+17+34−217−217+317170+3817i32 5−134−217+234−217+417+317+170+3817
                                              • x251 = cos 161π85 + i sin161π85 = 164 5−11+17+34+217−217−317170−3817 + 132 10+2534+217−234+217+417−317+170−3817i64 10+251+17+34+217−217−317170−3817 + i32 5−134+217−234+217+417−317+170−3817
                                              • x252 = cos 163π85 + i sin163π85 = 164 5+1−1+17+34−217+217+317170+3817 + 132 10−2534−217+234−217−417+317+170+3817i64 10−25−1+17+34−217+217+317170+3817 + i32 5+134−217+234−217−417+317+170+3817
                                              • x253 = cos 167π85 + i sin167π85 = 164 5+1−1+1734−217+217+317+170+3817 + 132 10−2534−217−234−217+417+317170+3817 + i64 10−25−1+1734−217+217+317+170+3817i32 5+134−217−234−217+417+317170+3817
                                              • x254 = cos 169π85 + i sin169π85 = 164 5−11+1734+217+217−317+170−3817 + 132 10+2534+217+234+217+417−317170−3817 + i64 10+251+1734+217+217−317+170−3817i32 5−134+217+234+217+417−317170−3817
                                              • x255 = cosπ255 + i sinπ255 = 1128 65−55−1−1+17+34−217−217+317170+3817 + 132 7+65+5+534−217+234−217+417+317+170+3817i64 7+65+5+5−1+17+34−217−217+317170+3817 + i64 65−55−134−217+234−217+417+317+170+3817
                                              • x256 = cos 7π255 + i sin7π255 = 1128 65+55+11+17+34+217−217−317170−3817 + 132 7+65−5534+217−234+217+417−317+170−3817i64 7+65−551+17+34+217−217−317170−3817 + i64 65+55+134+217−234+217+417−317+170−3817
                                              • x257 = cos 11π255 + i sin11π255 = 1128 65−5+5+11+17+34+217+217−317170−3817 + 132 7−65+5+534+217−234+217−417−317+170−3817i64 7−65+5+51+17+34+217+217−317170−3817 + i64 65−5+5+134+217−234+217−417−317+170−3817
                                              • x258 = cos 13π255 + i sin13π255 = 1128 65+5+5−1−1+17+34−217+217+317170+3817 + 132 7−65−5534−217+234−217−417+317+170+3817i64 7−65−55−1+17+34−217+217+317170+3817 + i64 65+5+5−134−217+234−217−417+317+170+3817
                                              • x259 = cos 19π255 + i sin19π255 = 1128 65−5+5+11−17+34−217+217+317+170+3817 + 132 7−65+5+534−217−234−217−417+317170+3817 + i64 7−65+5+51−17+34−217+217+317+170+3817i64 65−5+5+134−217−234−217−417+317170+3817
                                              • x260 = cos 23π255 + i sin23π255 = 1128 65+55+11+17+34+217+217−317170−3817 + 132 7+65−5534+217−234+217−417−317+170−3817 + i64 7+65−551+17+34+217+217−317170−3817i64 65+55+134+217−234+217−417−317+170−3817
                                              • x261 = cos 29π255 + i sin29π255 = 1128 65−55−1−1−17+34+217+217−317+170−3817 + 132 7+65+5+534+217+234+217−417−317170−3817 + i64 7+65+5+5−1−17+34+217+217−317+170−3817i64 65−55−134+217+234+217−417−317170−3817
                                              • x262 = cos 31π255 + i sin31π255 = −1128 65−55−11+1734+217+217−317+170−3817 + 132 7+65+5+534+217+234+217+417−317170−3817 + i64 7+65+5+51+1734+217+217−317+170−3817 + i64 65−55−134+217+234+217+417−317170−3817
                                              • x263 = cos 37π255 + i sin37π255 = 1128 65+55+11+1734+217+217−317+170−3817 + 132 7+65−5534+217+234+217+417−317170−3817i64 7+65−551+1734+217+217−317+170−3817 + i64 65+55+134+217+234+217+417−317170−3817
                                              • x264 = cos 41π255 + i sin41π255 = 1128 65−5+5+11+17+34+217−217−317170−3817 + 132 7−65+5+534+217−234+217+417−317+170−3817i64 7−65+5+51+17+34+217−217−317170−3817 + i64 65−5+5+134+217−234+217+417−317+170−3817
                                              • x265 = cos 43π255 + i sin43π255 = 1128 65+5+5−1−1+1734−217+217+317+170+3817 + 132 7−65−5534−217−234−217+417+317170+3817i64 7−65−55−1+1734−217+217+317+170+3817 + i64 65+5+5−134−217−234−217+417+317170+3817
                                              • x266 = cos 47π255 + i sin47π255 = 1128 65+5+5−1−1+17+34−217+217+317170+3817132 7−65−5534−217+234−217−417+317+170+3817 + i64 7−65−55−1+17+34−217+217+317170+3817 + i64 65+5+5−134−217+234−217−417+317+170+3817
                                              • x267 = cos 49π255 + i sin49π255 = 1128 65−5+5+11−17+34−217+217+317+170+3817132 7−65+5+534−217−234−217−417+317170+3817 + i64 7−65+5+51−17+34−217+217+317+170+3817 + i64 65−5+5+134−217−234−217−417+317170+3817
                                              • x268 = cos 53π255 + i sin53π255 = 1128 65+55+11−17+34−217+217+317+170+3817 + 132 7+65−5534−217−234−217−417+317170+3817 + i64 7+65−551−17+34−217+217+317+170+3817i64 65+55+134−217−234−217−417+317170+3817
                                              • x269 = cos 59π255 + i sin59π255 = 1128 65−55−1−1+1734−217+217+317+170+3817 + 132 7+65+5+534−217−234−217+417+317170+3817 + i64 7+65+5+5−1+1734−217+217+317+170+3817i64 65−55−134−217−234−217+417+317170+3817
                                              • x270 = cos 61π255 + i sin61π255 = −1128 65−55−11+17+34+217−217−317170−3817 + 132 7+65+5+534+217−234+217+417−317+170−3817 + i64 7+65+5+51+17+34+217−217−317170−3817 + i64 65−55−134+217−234+217+417−317+170−3817
                                              • x271 = cos 67π255 + i sin67π255 = −1128 65+55+1−1+17+34−217−217+317170+3817 + 132 7+65−5534−217+234−217+417+317+170+3817 + i64 7+65−55−1+17+34−217−217+317170+3817 + i64 65+55+134−217+234−217+417+317+170+3817
                                              • x272 = cos 71π255 + i sin71π255 = 1128 65−5+5+11+1734+217+217−317+170−3817 + 132 7−65+5+534+217+234+217+417−317170−3817i64 7−65+5+51+1734+217+217−317+170−3817 + i64 65−5+5+134+217+234+217+417−317170−3817
                                              • x273 = cos 73π255 + i sin73π255 = 1128 65+5+5−1−1−17+34+217+217−317+170−3817 + 132 7−65−5534+217+234+217−417−317170−3817i64 7−65−55−1−17+34+217+217−317+170−3817 + i64 65+5+5−134+217+234+217−417−317170−3817
                                              • x274 = cos 77π255 + i sin77π255 = 1128 65+5+5−1−1+1734−217+217+317+170+3817132 7−65−5534−217−234−217+417+317170+3817 + i64 7−65−55−1+1734−217+217+317+170+3817 + i64 65+5+5−134−217−234−217+417+317170+3817
                                              • x275 = cos 79π255 + i sin79π255 = 1128 65−5+5+11+17+34+217+217−317170−3817132 7−65+5+534+217−234+217−417−317+170−3817 + i64 7−65+5+51+17+34+217+217−317170−3817 + i64 65−5+5+134+217−234+217−417−317+170−3817
                                              • x276 = cos 83π255 + i sin83π255 = 1128 65+55+11−17+34−217+217+317+170+3817132 7+65−5534−217−234−217−417+317170+3817 + i64 7+65−551−17+34−217+217+317+170+3817 + i64 65+55+134−217−234−217−417+317170+3817
                                              • x277 = cos 89π255 + i sin89π255 = 1128 65−55−1−1+17+34−217+217+317170+3817 + 132 7+65+5+534−217+234−217−417+317+170+3817 + i64 7+65+5+5−1+17+34−217+217+317170+3817i64 65−55−134−217+234−217−417+317+170+3817
                                              • x278 = cos 91π255 + i sin91π255 = −1128 65−55−11+17+34+217+217−317170−3817 + 132 7+65+5+534+217−234+217−417−317+170−3817 + i64 7+65+5+51+17+34+217+217−317170−3817 + i64 65−55−134+217−234+217−417−317+170−3817
                                              • x279 = cos 97π255 + i sin97π255 = −1128 65+55+1−1−17+34+217+217−317+170−3817 + 132 7+65−5534+217+234+217−417−317170−3817 + i64 7+65−55−1−17+34+217+217−317+170−3817 + i64 65+55+134+217+234+217−417−317170−3817
                                              • x280 = cos 101π255 + i sin101π255 = −1128 65−5+5+1−1+17+34−217−217+317170+3817 + 132 7−65+5+534−217+234−217+417+317+170+3817 + i64 7−65+5+5−1+17+34−217−217+317170+3817 + i64 65−5+5+134−217+234−217+417+317+170+3817
                                              • x281 = cos 103π255 + i sin103π255 = 1128 65+5+5−1−1+17+34−217−217+317170+3817 + 132 7−65−5534−217+234−217+417+317+170+3817i64 7−65−55−1+17+34−217−217+317170+3817 + i64 65+5+5−134−217+234−217+417+317+170+3817
                                              • x282 = cos 107π255 + i sin107π255 = 1128 65+5+5−1−1−17+34+217+217−317+170−3817132 7−65−5534+217+234+217−417−317170−3817 + i64 7−65−55−1−17+34+217+217−317+170−3817 + i64 65+5+5−134+217+234+217−417−317170−3817
                                              • x283 = cos 109π255 + i sin109π255 = 1128 65−5+5+11+17+34+217−217−317170−3817132 7−65+5+534+217−234+217+417−317+170−3817 + i64 7−65+5+51+17+34+217−217−317170−3817 + i64 65−5+5+134+217−234+217+417−317+170−3817
                                              • x284 = cos 113π255 + i sin113π255 = 1128 65+55+11+17+34+217+217−317170−3817132 7+65−5534+217−234+217−417−317+170−3817 + i64 7+65−551+17+34+217+217−317170−3817 + i64 65+55+134+217−234+217−417−317+170−3817
                                              • x285 = cos 121π255 + i sin121π255 = −1128 65−55−11−17+34−217+217+317+170+3817 + 132 7+65+5+534−217−234−217−417+317170+3817 + i64 7+65+5+51−17+34−217+217+317+170+3817 + i64 65−55−134−217−234−217−417+317170+3817
                                              • x286 = cos 127π255 + i sin127π255 = −1128 65+55+1−1+1734−217+217+317+170+3817 + 132 7+65−5534−217−234−217+417+317170+3817 + i64 7+65−55−1+1734−217+217+317+170+3817 + i64 65+55+134−217−234−217+417+317170+3817
                                              • x287 = cos 131π255 + i sin131π255 = −1128 65−5+5+1−1−17+34+217+217−317+170−3817 + 132 7−65+5+534+217+234+217−417−317170−3817 + i64 7−65+5+5−1−17+34+217+217−317+170−3817 + i64 65−5+5+134+217+234+217−417−317170−3817
                                              • x288 = cos 133π255 + i sin133π255 = −1128 65+5+5−11+1734+217+217−317+170−3817 + 132 7−65−5534+217+234+217+417−317170−3817 + i64 7−65−551+1734+217+217−317+170−3817 + i64 65+5+5−134+217+234+217+417−317170−3817
                                              • x289 = cos 137π255 + i sin137π255 = 1128 65+5+5−1−1+17+34−217−217+317170+3817132 7−65−5534−217+234−217+417+317+170+3817 + i64 7−65−55−1+17+34−217−217+317170+3817 + i64 65+5+5−134−217+234−217+417+317+170+3817
                                              • x290 = cos 139π255 + i sin139π255 = 1128 65−5+5+11+1734+217+217−317+170−3817132 7−65+5+534+217+234+217+417−317170−3817 + i64 7−65+5+51+1734+217+217−317+170−3817 + i64 65−5+5+134+217+234+217+417−317170−3817
                                              • x291 = cos 143π255 + i sin143π255 = 1128 65+55+11+17+34+217−217−317170−3817132 7+65−5534+217−234+217+417−317+170−3817 + i64 7+65−551+17+34+217−217−317170−3817 + i64 65+55+134+217−234+217+417−317+170−3817
                                              • x292 = cos 149π255 + i sin149π255 = 1128 65−55−1−1+17+34−217+217+317170+3817132 7+65+5+534−217+234−217−417+317+170+3817 + i64 7+65+5+5−1+17+34−217+217+317170+3817 + i64 65−55−134−217+234−217−417+317+170+3817
                                              • x293 = cos 151π255 + i sin151π255 = −1128 65−55−11−17+34−217+217+317+170+3817132 7+65+5+534−217−234−217−417+317170+3817 + i64 7+65+5+51−17+34−217+217+317+170+3817i64 65−55−134−217−234−217−417+317170+3817
                                              • x294 = cos 157π255 + i sin157π255 = −1128 65+55+1−1+17+34−217+217+317170+3817 + 132 7+65−5534−217+234−217−417+317+170+3817 + i64 7+65−55−1+17+34−217+217+317170+3817 + i64 65+55+134−217+234−217−417+317+170+3817
                                              • x295 = cos 161π255 + i sin161π255 = −1128 65−5+5+1−1+1734−217+217+317+170+3817 + 132 7−65+5+534−217−234−217+417+317170+3817 + i64 7−65+5+5−1+1734−217+217+317+170+3817 + i64 65−5+5+134−217−234−217+417+317170+3817
                                              • x296 = cos 163π255 + i sin163π255 = −1128 65+5+5−11+17+34+217−217−317170−3817 + 132 7−65−5534+217−234+217+417−317+170−3817 + i64 7−65−551+17+34+217−217−317170−3817 + i64 65+5+5−134+217−234+217+417−317+170−3817
                                              • x297 = cos 167π255 + i sin167π255 = −1128 65+5+5−11+1734+217+217−317+170−3817132 7−65−5534+217+234+217+417−317170−3817i64 7−65−551+1734+217+217−317+170−3817 + i64 65+5+5−134+217+234+217+417−317170−3817
                                              • x298 = cos 169π255 + i sin169π255 = −1128 65−5+5+1−1+17+34−217−217+317170+3817132 7−65+5+534−217+234−217+417+317+170+3817i64 7−65+5+5−1+17+34−217−217+317170+3817 + i64 65−5+5+134−217+234−217+417+317+170+3817
                                              • x299 = cos 173π255 + i sin173π255 = 1128 65+55+11+1734+217+217−317+170−3817132 7+65−5534+217+234+217+417−317170−3817 + i64 7+65−551+1734+217+217−317+170−3817 + i64 65+55+134+217+234+217+417−317170−3817
                                              • x300 = cos 179π255 + i sin179π255 = 1128 65−55−1−1+1734−217+217+317+170+3817132 7+65+5+534−217−234−217+417+317170+3817 + i64 7+65+5+5−1+1734−217+217+317+170+3817 + i64 65−55−134−217−234−217+417+317170+3817
                                              • x301 = cos 181π255 + i sin181π255 = −1128 65−55−11+17+34+217+217−317170−3817132 7+65+5+534+217−234+217−417−317+170−3817 + i64 7+65+5+51+17+34+217+217−317170−3817i64 65−55−134+217−234+217−417−317+170−3817
                                              • x302 = cos 191π255 + i sin191π255 = −1128 65−5+5+1−1+17+34−217+217+317170+3817 + 132 7−65+5+534−217+234−217−417+317+170+3817 + i64 7−65+5+5−1+17+34−217+217+317170+3817 + i64 65−5+5+134−217+234−217−417+317+170+3817
                                              • x303 = cos 193π255 + i sin193π255 = −1128 65+5+5−11+17+34+217+217−317170−3817 + 132 7−65−5534+217−234+217−417−317+170−3817 + i64 7−65−551+17+34+217+217−317170−3817 + i64 65+5+5−134+217−234+217−417−317+170−3817
                                              • x304 = cos 197π255 + i sin197π255 = −1128 65+5+5−11+17+34+217−217−317170−3817132 7−65−5534+217−234+217+417−317+170−3817i64 7−65−551+17+34+217−217−317170−3817 + i64 65+5+5−134+217−234+217+417−317+170−3817
                                              • x305 = cos 199π255 + i sin199π255 = −1128 65−5+5+1−1−17+34+217+217−317+170−3817132 7−65+5+534+217+234+217−417−317170−3817i64 7−65+5+5−1−17+34+217+217−317+170−3817 + i64 65−5+5+134+217+234+217−417−317170−3817
                                              • x306 = cos 203π255 + i sin203π255 = −1128 65+55+1−1+17+34−217−217+317170+3817132 7+65−5534−217+234−217+417+317+170+3817i64 7+65−55−1+17+34−217−217+317170+3817 + i64 65+55+134−217+234−217+417+317+170+3817
                                              • x307 = cos 209π255 + i sin209π255 = 1128 65−55−1−1−17+34+217+217−317+170−3817132 7+65+5+534+217+234+217−417−317170−3817 + i64 7+65+5+5−1−17+34+217+217−317+170−3817 + i64 65−55−134+217+234+217−417−317170−3817
                                              • x308 = cos 211π255 + i sin211π255 = −1128 65−55−11+17+34+217−217−317170−3817132 7+65+5+534+217−234+217+417−317+170−3817 + i64 7+65+5+51+17+34+217−217−317170−3817i64 65−55−134+217−234+217+417−317+170−3817
                                              • x309 = cos 217π255 + i sin217π255 = −1128 65+55+1−1+17+34−217+217+317170+3817132 7+65−5534−217+234−217−417+317+170+3817 + i64 7+65−55−1+17+34−217+217+317170+3817i64 65+55+134−217+234−217−417+317+170+3817
                                              • x310 = cos 223π255 + i sin223π255 = −1128 65+5+5−11−17+34−217+217+317+170+3817 + 132 7−65−5534−217−234−217−417+317170+3817 + i64 7−65−551−17+34−217+217+317+170+3817 + i64 65+5+5−134−217−234−217−417+317170+3817
                                              • x311 = cos 227π255 + i sin227π255 = −1128 65+5+5−11+17+34+217+217−317170−3817132 7−65−5534+217−234+217−417−317+170−3817i64 7−65−551+17+34+217+217−317170−3817 + i64 65+5+5−134+217−234+217−417−317+170−3817
                                              • x312 = cos 229π255 + i sin229π255 = −1128 65−5+5+1−1+1734−217+217+317+170+3817132 7−65+5+534−217−234−217+417+317170+3817i64 7−65+5+5−1+1734−217+217+317+170+3817 + i64 65−5+5+134−217−234−217+417+317170+3817
                                              • x313 = cos 233π255 + i sin233π255 = −1128 65+55+1−1−17+34+217+217−317+170−3817132 7+65−5534+217+234+217−417−317170−3817i64 7+65−55−1−17+34+217+217−317+170−3817 + i64 65+55+134+217+234+217−417−317170−3817
                                              • x314 = cos 239π255 + i sin239π255 = 1128 65−55−1−1+17+34−217−217+317170+3817132 7+65+5+534−217+234−217+417+317+170+3817 + i64 7+65+5+5−1+17+34−217−217+317170+3817 + i64 65−55−134−217+234−217+417+317+170+3817
                                              • x315 = cos 241π255 + i sin241π255 = −1128 65−55−11+1734+217+217−317+170−3817132 7+65+5+534+217+234+217+417−317170−3817 + i64 7+65+5+51+1734+217+217−317+170−3817i64 65−55−134+217+234+217+417−317170−3817
                                              • x316 = cos 247π255 + i sin247π255 = −1128 65+55+1−1+1734−217+217+317+170+3817132 7+65−5534−217−234−217+417+317170+3817 + i64 7+65−55−1+1734−217+217+317+170+3817i64 65+55+134−217−234−217+417+317170+3817
                                              • x317 = cos 251π255 + i sin251π255 = −1128 65−5+5+1−1+17+34−217+217+317170+3817132 7−65+5+534−217+234−217−417+317+170+3817 + i64 7−65+5+5−1+17+34−217+217+317170+3817i64 65−5+5+134−217+234−217−417+317+170+3817
                                              • x318 = cos 253π255 + i sin253π255 = −1128 65+5+5−11−17+34−217+217+317+170+3817132 7−65−5534−217−234−217−417+317170+3817 + i64 7−65−551−17+34−217+217+317+170+3817i64 65+5+5−134−217−234−217−417+317170+3817
                                              • x319 = cos 257π255 + i sin257π255 = −1128 65+5+5−11−17+34−217+217+317+170+3817132 7−65−5534−217−234−217−417+317170+3817i64 7−65−551−17+34−217+217+317+170+3817 + i64 65+5+5−134−217−234−217−417+317170+3817
                                              • x320 = cos 259π255 + i sin259π255 = −1128 65−5+5+1−1+17+34−217+217+317170+3817132 7−65+5+534−217+234−217−417+317+170+3817i64 7−65+5+5−1+17+34−217+217+317170+3817 + i64 65−5+5+134−217+234−217−417+317+170+3817
                                              • x321 = cos 263π255 + i sin263π255 = −1128 65+55+1−1+1734−217+217+317+170+3817132 7+65−5534−217−234−217+417+317170+3817i64 7+65−55−1+1734−217+217+317+170+3817 + i64 65+55+134−217−234−217+417+317170+3817
                                              • x322 = cos 269π255 + i sin269π255 = −1128 65−55−11+1734+217+217−317+170−3817132 7+65+5+534+217+234+217+417−317170−3817i64 7+65+5+51+1734+217+217−317+170−3817 + i64 65−55−134+217+234+217+417−317170−3817
                                              • x323 = cos 271π255 + i sin271π255 = 1128 65−55−1−1+17+34−217−217+317170+3817132 7+65+5+534−217+234−217+417+317+170+3817i64 7+65+5+5−1+17+34−217−217+317170+3817i64 65−55−134−217+234−217+417+317+170+3817
                                              • x324 = cos 277π255 + i sin277π255 = −1128 65+55+1−1−17+34+217+217−317+170−3817132 7+65−5534+217+234+217−417−317170−3817 + i64 7+65−55−1−17+34+217+217−317+170−3817i64 65+55+134+217+234+217−417−317170−3817
                                              • x325 = cos 281π255 + i sin281π255 = −1128 65−5+5+1−1+1734−217+217+317+170+3817132 7−65+5+534−217−234−217+417+317170+3817 + i64 7−65+5+5−1+1734−217+217+317+170+3817i64 65−5+5+134−217−234−217+417+317170+3817
                                              • x326 = cos 283π255 + i sin283π255 = −1128 65+5+5−11+17+34+217+217−317170−3817132 7−65−5534+217−234+217−417−317+170−3817 + i64 7−65−551+17+34+217+217−317170−3817i64 65+5+5−134+217−234+217−417−317+170−3817
                                              • x327 = cos 287π255 + i sin287π255 = −1128 65+5+5−11−17+34−217+217+317+170+3817 + 132 7−65−5534−217−234−217−417+317170+3817i64 7−65−551−17+34−217+217+317+170+3817i64 65+5+5−134−217−234−217−417+317170+3817
                                              • x328 = cos 293π255 + i sin293π255 = −1128 65+55+1−1+17+34−217+217+317170+3817132 7+65−5534−217+234−217−417+317+170+3817i64 7+65−55−1+17+34−217+217+317170+3817 + i64 65+55+134−217+234−217−417+317+170+3817
                                              • x329 = cos 299π255 + i sin299π255 = −1128 65−55−11+17+34+217−217−317170−3817132 7+65+5+534+217−234+217+417−317+170−3817i64 7+65+5+51+17+34+217−217−317170−3817 + i64 65−55−134+217−234+217+417−317+170−3817
                                              • x330 = cos 301π255 + i sin301π255 = 1128 65−55−1−1−17+34+217+217−317+170−3817132 7+65+5+534+217+234+217−417−317170−3817i64 7+65+5+5−1−17+34+217+217−317+170−3817i64 65−55−134+217+234+217−417−317170−3817
                                              • x331 = cos 307π255 + i sin307π255 = −1128 65+55+1−1+17+34−217−217+317170+3817132 7+65−5534−217+234−217+417+317+170+3817 + i64 7+65−55−1+17+34−217−217+317170+3817i64 65+55+134−217+234−217+417+317+170+3817
                                              • x332 = cos 311π255 + i sin311π255 = −1128 65−5+5+1−1−17+34+217+217−317+170−3817132 7−65+5+534+217+234+217−417−317170−3817 + i64 7−65+5+5−1−17+34+217+217−317+170−3817i64 65−5+5+134+217+234+217−417−317170−3817
                                              • x333 = cos 313π255 + i sin313π255 = −1128 65+5+5−11+17+34+217−217−317170−3817132 7−65−5534+217−234+217+417−317+170−3817 + i64 7−65−551+17+34+217−217−317170−3817i64 65+5+5−134+217−234+217+417−317+170−3817
                                              • x334 = cos 317π255 + i sin317π255 = −1128 65+5+5−11+17+34+217+217−317170−3817 + 132 7−65−5534+217−234+217−417−317+170−3817i64 7−65−551+17+34+217+217−317170−3817i64 65+5+5−134+217−234+217−417−317+170−3817
                                              • x335 = cos 319π255 + i sin319π255 = −1128 65−5+5+1−1+17+34−217+217+317170+3817 + 132 7−65+5+534−217+234−217−417+317+170+3817i64 7−65+5+5−1+17+34−217+217+317170+3817i64 65−5+5+134−217+234−217−417+317+170+3817
                                              • x336 = cos 329π255 + i sin329π255 = −1128 65−55−11+17+34+217+217−317170−3817132 7+65+5+534+217−234+217−417−317+170−3817i64 7+65+5+51+17+34+217+217−317170−3817 + i64 65−55−134+217−234+217−417−317+170−3817
                                              • x337 = cos 331π255 + i sin331π255 = 1128 65−55−1−1+1734−217+217+317+170+3817132 7+65+5+534−217−234−217+417+317170+3817i64 7+65+5+5−1+1734−217+217+317+170+3817i64 65−55−134−217−234−217+417+317170+3817
                                              • x338 = cos 337π255 + i sin337π255 = 1128 65+55+11+1734+217+217−317+170−3817132 7+65−5534+217+234+217+417−317170−3817i64 7+65−551+1734+217+217−317+170−3817i64 65+55+134+217+234+217+417−317170−3817
                                              • x339 = cos 341π255 + i sin341π255 = −1128 65−5+5+1−1+17+34−217−217+317170+3817132 7−65+5+534−217+234−217+417+317+170+3817 + i64 7−65+5+5−1+17+34−217−217+317170+3817i64 65−5+5+134−217+234−217+417+317+170+3817
                                              • x340 = cos 343π255 + i sin343π255 = −1128 65+5+5−11+1734+217+217−317+170−3817132 7−65−5534+217+234+217+417−317170−3817 + i64 7−65−551+1734+217+217−317+170−3817i64 65+5+5−134+217+234+217+417−317170−3817
                                              • x341 = cos 347π255 + i sin347π255 = −1128 65+5+5−11+17+34+217−217−317170−3817 + 132 7−65−5534+217−234+217+417−317+170−3817i64 7−65−551+17+34+217−217−317170−3817i64 65+5+5−134+217−234+217+417−317+170−3817
                                              • x342 = cos 349π255 + i sin349π255 = −1128 65−5+5+1−1+1734−217+217+317+170+3817 + 132 7−65+5+534−217−234−217+417+317170+3817i64 7−65+5+5−1+1734−217+217+317+170+3817i64 65−5+5+134−217−234−217+417+317170+3817
                                              • x343 = cos 353π255 + i sin353π255 = −1128 65+55+1−1+17+34−217+217+317170+3817 + 132 7+65−5534−217+234−217−417+317+170+3817i64 7+65−55−1+17+34−217+217+317170+3817i64 65+55+134−217+234−217−417+317+170+3817
                                              • x344 = cos 359π255 + i sin359π255 = −1128 65−55−11−17+34−217+217+317+170+3817132 7+65+5+534−217−234−217−417+317170+3817i64 7+65+5+51−17+34−217+217+317+170+3817 + i64 65−55−134−217−234−217−417+317170+3817
                                              • x345 = cos 361π255 + i sin361π255 = 1128 65−55−1−1+17+34−217+217+317170+3817132 7+65+5+534−217+234−217−417+317+170+3817i64 7+65+5+5−1+17+34−217+217+317170+3817i64 65−55−134−217+234−217−417+317+170+3817
                                              • x346 = cos 367π255 + i sin367π255 = 1128 65+55+11+17+34+217−217−317170−3817132 7+65−5534+217−234+217+417−317+170−3817i64 7+65−551+17+34+217−217−317170−3817i64 65+55+134+217−234+217+417−317+170−3817
                                              • x347 = cos 371π255 + i sin371π255 = 1128 65−5+5+11+1734+217+217−317+170−3817132 7−65+5+534+217+234+217+417−317170−3817i64 7−65+5+51+1734+217+217−317+170−3817i64 65−5+5+134+217+234+217+417−317170−3817
                                              • x348 = cos 373π255 + i sin373π255 = 1128 65+5+5−1−1+17+34−217−217+317170+3817132 7−65−5534−217+234−217+417+317+170+3817i64 7−65−55−1+17+34−217−217+317170+3817i64 65+5+5−134−217+234−217+417+317+170+3817
                                              • x349 = cos 377π255 + i sin377π255 = −1128 65+5+5−11+1734+217+217−317+170−3817 + 132 7−65−5534+217+234+217+417−317170−3817i64 7−65−551+1734+217+217−317+170−3817i64 65+5+5−134+217+234+217+417−317170−3817
                                              • x350 = cos 379π255 + i sin379π255 = −1128 65−5+5+1−1−17+34+217+217−317+170−3817 + 132 7−65+5+534+217+234+217−417−317170−3817i64 7−65+5+5−1−17+34+217+217−317+170−3817i64 65−5+5+134+217+234+217−417−317170−3817
                                              • x351 = cos 383π255 + i sin383π255 = −1128 65+55+1−1+1734−217+217+317+170+3817 + 132 7+65−5534−217−234−217+417+317170+3817i64 7+65−55−1+1734−217+217+317+170+3817i64 65+55+134−217−234−217+417+317170+3817
                                              • x352 = cos 389π255 + i sin389π255 = −1128 65−55−11−17+34−217+217+317+170+3817 + 132 7+65+5+534−217−234−217−417+317170+3817i64 7+65+5+51−17+34−217+217+317+170+3817i64 65−55−134−217−234−217−417+317170+3817
                                              • x353 = cos 397π255 + i sin397π255 = 1128 65+55+11+17+34+217+217−317170−3817132 7+65−5534+217−234+217−417−317+170−3817i64 7+65−551+17+34+217+217−317170−3817i64 65+55+134+217−234+217−417−317+170−3817
                                              • x354 = cos 401π255 + i sin401π255 = 1128 65−5+5+11+17+34+217−217−317170−3817132 7−65+5+534+217−234+217+417−317+170−3817i64 7−65+5+51+17+34+217−217−317170−3817i64 65−5+5+134+217−234+217+417−317+170−3817
                                              • x355 = cos 403π255 + i sin403π255 = 1128 65+5+5−1−1−17+34+217+217−317+170−3817132 7−65−5534+217+234+217−417−317170−3817i64 7−65−55−1−17+34+217+217−317+170−3817i64 65+5+5−134+217+234+217−417−317170−3817
                                              • x356 = cos 407π255 + i sin407π255 = 1128 65+5+5−1−1+17+34−217−217+317170+3817 + 132 7−65−5534−217+234−217+417+317+170+3817 + i64 7−65−55−1+17+34−217−217+317170+3817i64 65+5+5−134−217+234−217+417+317+170+3817
                                              • x357 = cos 409π255 + i sin409π255 = −1128 65−5+5+1−1+17+34−217−217+317170+3817 + 132 7−65+5+534−217+234−217+417+317+170+3817i64 7−65+5+5−1+17+34−217−217+317170+3817i64 65−5+5+134−217+234−217+417+317+170+3817
                                              • x358 = cos 413π255 + i sin413π255 = −1128 65+55+1−1−17+34+217+217−317+170−3817 + 132 7+65−5534+217+234+217−417−317170−3817i64 7+65−55−1−17+34+217+217−317+170−3817i64 65+55+134+217+234+217−417−317170−3817
                                              • x359 = cos 419π255 + i sin419π255 = −1128 65−55−11+17+34+217+217−317170−3817 + 132 7+65+5+534+217−234+217−417−317+170−3817i64 7+65+5+51+17+34+217+217−317170−3817i64 65−55−134+217−234+217−417−317+170−3817
                                              • x360 = cos 421π255 + i sin421π255 = 1128 65−55−1−1+17+34−217+217+317170+3817 + 132 7+65+5+534−217+234−217−417+317+170+3817i64 7+65+5+5−1+17+34−217+217+317170+3817 + i64 65−55−134−217+234−217−417+317+170+3817
                                              • x361 = cos 427π255 + i sin427π255 = 1128 65+55+11−17+34−217+217+317+170+3817132 7+65−5534−217−234−217−417+317170+3817i64 7+65−551−17+34−217+217+317+170+3817i64 65+55+134−217−234−217−417+317170+3817
                                              • x362 = cos 431π255 + i sin431π255 = 1128 65−5+5+11+17+34+217+217−317170−3817132 7−65+5+534+217−234+217−417−317+170−3817i64 7−65+5+51+17+34+217+217−317170−3817i64 65−5+5+134+217−234+217−417−317+170−3817
                                              • x363 = cos 433π255 + i sin433π255 = 1128 65+5+5−1−1+1734−217+217+317+170+3817132 7−65−5534−217−234−217+417+317170+3817i64 7−65−55−1+1734−217+217+317+170+3817i64 65+5+5−134−217−234−217+417+317170+3817
                                              • x364 = cos 437π255 + i sin437π255 = 1128 65+5+5−1−1−17+34+217+217−317+170−3817 + 132 7−65−5534+217+234+217−417−317170−3817 + i64 7−65−55−1−17+34+217+217−317+170−3817i64 65+5+5−134+217+234+217−417−317170−3817
                                              • x365 = cos 439π255 + i sin439π255 = 1128 65−5+5+11+1734+217+217−317+170−3817 + 132 7−65+5+534+217+234+217+417−317170−3817 + i64 7−65+5+51+1734+217+217−317+170−3817i64 65−5+5+134+217+234+217+417−317170−3817
                                              • x366 = cos 443π255 + i sin443π255 = −1128 65+55+1−1+17+34−217−217+317170+3817 + 132 7+65−5534−217+234−217+417+317+170+3817i64 7+65−55−1+17+34−217−217+317170+3817i64 65+55+134−217+234−217+417+317+170+3817
                                              • x367 = cos 449π255 + i sin449π255 = −1128 65−55−11+17+34+217−217−317170−3817 + 132 7+65+5+534+217−234+217+417−317+170−3817i64 7+65+5+51+17+34+217−217−317170−3817i64 65−55−134+217−234+217+417−317+170−3817
                                              • x368 = cos 451π255 + i sin451π255 = 1128 65−55−1−1+1734−217+217+317+170+3817 + 132 7+65+5+534−217−234−217+417+317170+3817i64 7+65+5+5−1+1734−217+217+317+170+3817 + i64 65−55−134−217−234−217+417+317170+3817
                                              • x369 = cos 457π255 + i sin457π255 = 1128 65+55+11−17+34−217+217+317+170+3817 + 132 7+65−5534−217−234−217−417+317170+3817i64 7+65−551−17+34−217+217+317+170+3817 + i64 65+55+134−217−234−217−417+317170+3817
                                              • x370 = cos 461π255 + i sin461π255 = 1128 65−5+5+11−17+34−217+217+317+170+3817132 7−65+5+534−217−234−217−417+317170+3817i64 7−65+5+51−17+34−217+217+317+170+3817i64 65−5+5+134−217−234−217−417+317170+3817
                                              • x371 = cos 463π255 + i sin463π255 = 1128 65+5+5−1−1+17+34−217+217+317170+3817132 7−65−5534−217+234−217−417+317+170+3817i64 7−65−55−1+17+34−217+217+317170+3817i64 65+5+5−134−217+234−217−417+317+170+3817
                                              • x372 = cos 467π255 + i sin467π255 = 1128 65+5+5−1−1+1734−217+217+317+170+3817 + 132 7−65−5534−217−234−217+417+317170+3817 + i64 7−65−55−1+1734−217+217+317+170+3817i64 65+5+5−134−217−234−217+417+317170+3817
                                              • x373 = cos 469π255 + i sin469π255 = 1128 65−5+5+11+17+34+217−217−317170−3817 + 132 7−65+5+534+217−234+217+417−317+170−3817 + i64 7−65+5+51+17+34+217−217−317170−3817i64 65−5+5+134+217−234+217+417−317+170−3817
                                              • x374 = cos 473π255 + i sin473π255 = 1128 65+55+11+1734+217+217−317+170−3817 + 132 7+65−5534+217+234+217+417−317170−3817 + i64 7+65−551+1734+217+217−317+170−3817i64 65+55+134+217+234+217+417−317170−3817
                                              • x375 = cos 479π255 + i sin479π255 = −1128 65−55−11+1734+217+217−317+170−3817 + 132 7+65+5+534+217+234+217+417−317170−3817i64 7+65+5+51+1734+217+217−317+170−3817i64 65−55−134+217+234+217+417−317170−3817
                                              • x376 = cos 481π255 + i sin481π255 = 1128 65−55−1−1−17+34+217+217−317+170−3817 + 132 7+65+5+534+217+234+217−417−317170−3817i64 7+65+5+5−1−17+34+217+217−317+170−3817 + i64 65−55−134+217+234+217−417−317170−3817
                                              • x377 = cos 487π255 + i sin487π255 = 1128 65+55+11+17+34+217+217−317170−3817 + 132 7+65−5534+217−234+217−417−317+170−3817i64 7+65−551+17+34+217+217−317170−3817 + i64 65+55+134+217−234+217−417−317+170−3817
                                              • x378 = cos 491π255 + i sin491π255 = 1128 65−5+5+11−17+34−217+217+317+170+3817 + 132 7−65+5+534−217−234−217−417+317170+3817i64 7−65+5+51−17+34−217+217+317+170+3817 + i64 65−5+5+134−217−234−217−417+317170+3817
                                              • x379 = cos 497π255 + i sin497π255 = 1128 65+5+5−1−1+17+34−217+217+317170+3817 + 132 7−65−5534−217+234−217−417+317+170+3817 + i64 7−65−55−1+17+34−217+217+317170+3817i64 65+5+5−134−217+234−217−417+317+170+3817
                                              • x380 = cos 499π255 + i sin499π255 = 1128 65−5+5+11+17+34+217+217−317170−3817 + 132 7−65+5+534+217−234+217−417−317+170−3817 + i64 7−65+5+51+17+34+217+217−317170−3817i64 65−5+5+134+217−234+217−417−317+170−3817
                                              • x381 = cos 503π255 + i sin503π255 = 1128 65+55+11+17+34+217−217−317170−3817 + 132 7+65−5534+217−234+217+417−317+170−3817 + i64 7+65−551+17+34+217−217−317170−3817i64 65+55+134+217−234+217+417−317+170−3817
                                              • x382 = cos 509π255 + i sin509π255 = 1128 65−55−1−1+17+34−217−217+317170+3817 + 132 7+65+5+534−217+234−217+417+317+170+3817 + i64 7+65+5+5−1+17+34−217−217+317170+3817i64 65−55−134−217+234−217+417+317+170+3817
                                              • x383 = cos 2π255 + i sin2π255 = 1128 65+5+5−11−17+34−217+217+317+170+3817 + 132 7−65−5534−217−234−217−417+317170+3817 + i64 7−65−551−17+34−217+217+317+170+3817i64 65+5+5−134−217−234−217−417+317170+3817
                                              • x384 = cos 4π255 + i sin4π255 = 1128 65−5+5+1−1+17+34−217+217+317170+3817 + 132 7−65+5+534−217+234−217−417+317+170+3817 + i64 7−65+5+5−1+17+34−217+217+317170+3817i64 65−5+5+134−217+234−217−417+317+170+3817
                                              • x385 = cos 8π255 + i sin8π255 = 1128 65+55+1−1+1734−217+217+317+170+3817 + 132 7+65−5534−217−234−217+417+317170+3817 + i64 7+65−55−1+1734−217+217+317+170+3817i64 65+55+134−217−234−217+417+317170+3817
                                              • x386 = cos 14π255 + i sin14π255 = 1128 65−55−11+1734+217+217−317+170−3817 + 132 7+65+5+534+217+234+217+417−317170−3817 + i64 7+65+5+51+1734+217+217−317+170−3817i64 65−55−134+217+234+217+417−317170−3817
                                              • x387 = cos 16π255 + i sin16π255 = −1128 65−55−1−1+17+34−217−217+317170+3817 + 132 7+65+5+534−217+234−217+417+317+170+3817 + i64 7+65+5+5−1+17+34−217−217+317170+3817 + i64 65−55−134−217+234−217+417+317+170+3817
                                              • x388 = cos 22π255 + i sin22π255 = 1128 65+55+1−1−17+34+217+217−317+170−3817 + 132 7+65−5534+217+234+217−417−317170−3817i64 7+65−55−1−17+34+217+217−317+170−3817 + i64 65+55+134+217+234+217−417−317170−3817
                                              • x389 = cos 26π255 + i sin26π255 = 1128 65−5+5+1−1+1734−217+217+317+170+3817 + 132 7−65+5+534−217−234−217+417+317170+3817i64 7−65+5+5−1+1734−217+217+317+170+3817 + i64 65−5+5+134−217−234−217+417+317170+3817
                                              • x390 = cos 28π255 + i sin28π255 = 1128 65+5+5−11+17+34+217+217−317170−3817 + 132 7−65−5534+217−234+217−417−317+170−3817i64 7−65−551+17+34+217+217−317170−3817 + i64 65+5+5−134+217−234+217−417−317+170−3817
                                              • x391 = cos 32π255 + i sin32π255 = 1128 65+5+5−11−17+34−217+217+317+170+3817132 7−65−5534−217−234−217−417+317170+3817 + i64 7−65−551−17+34−217+217+317+170+3817 + i64 65+5+5−134−217−234−217−417+317170+3817
                                              • x392 = cos 38π255 + i sin38π255 = 1128 65+55+1−1+17+34−217+217+317170+3817 + 132 7+65−5534−217+234−217−417+317+170+3817 + i64 7+65−55−1+17+34−217+217+317170+3817i64 65+55+134−217+234−217−417+317+170+3817
                                              • x393 = cos 44π255 + i sin44π255 = 1128 65−55−11+17+34+217−217−317170−3817 + 132 7+65+5+534+217−234+217+417−317+170−3817 + i64 7+65+5+51+17+34+217−217−317170−3817i64 65−55−134+217−234+217+417−317+170−3817
                                              • x394 = cos 46π255 + i sin46π255 = −1128 65−55−1−1−17+34+217+217−317+170−3817 + 132 7+65+5+534+217+234+217−417−317170−3817 + i64 7+65+5+5−1−17+34+217+217−317+170−3817 + i64 65−55−134+217+234+217−417−317170−3817
                                              • x395 = cos 52π255 + i sin52π255 = 1128 65+55+1−1+17+34−217−217+317170+3817 + 132 7+65−5534−217+234−217+417+317+170+3817i64 7+65−55−1+17+34−217−217+317170+3817 + i64 65+55+134−217+234−217+417+317+170+3817
                                              • x396 = cos 56π255 + i sin56π255 = 1128 65−5+5+1−1−17+34+217+217−317+170−3817 + 132 7−65+5+534+217+234+217−417−317170−3817i64 7−65+5+5−1−17+34+217+217−317+170−3817 + i64 65−5+5+134+217+234+217−417−317170−3817
                                              • x397 = cos 58π255 + i sin58π255 = 1128 65+5+5−11+17+34+217−217−317170−3817 + 132 7−65−5534+217−234+217+417−317+170−3817i64 7−65−551+17+34+217−217−317170−3817 + i64 65+5+5−134+217−234+217+417−317+170−3817
                                              • x398 = cos 62π255 + i sin62π255 = 1128 65+5+5−11+17+34+217+217−317170−3817132 7−65−5534+217−234+217−417−317+170−3817 + i64 7−65−551+17+34+217+217−317170−3817 + i64 65+5+5−134+217−234+217−417−317+170−3817
                                              • x399 = cos 64π255 + i sin64π255 = 1128 65−5+5+1−1+17+34−217+217+317170+3817132 7−65+5+534−217+234−217−417+317+170+3817 + i64 7−65+5+5−1+17+34−217+217+317170+3817 + i64 65−5+5+134−217+234−217−417+317+170+3817
                                              • x400 = cos 74π255 + i sin74π255 = 1128 65−55−11+17+34+217+217−317170−3817 + 132 7+65+5+534+217−234+217−417−317+170−3817 + i64 7+65+5+51+17+34+217+217−317170−3817i64 65−55−134+217−234+217−417−317+170−3817
                                              • x401 = cos 76π255 + i sin76π255 = −1128 65−55−1−1+1734−217+217+317+170+3817 + 132 7+65+5+534−217−234−217+417+317170+3817 + i64 7+65+5+5−1+1734−217+217+317+170+3817 + i64 65−55−134−217−234−217+417+317170+3817
                                              • x402 = cos 82π255 + i sin82π255 = −1128 65+55+11+1734+217+217−317+170−3817 + 132 7+65−5534+217+234+217+417−317170−3817 + i64 7+65−551+1734+217+217−317+170−3817 + i64 65+55+134+217+234+217+417−317170−3817
                                              • x403 = cos 86π255 + i sin86π255 = 1128 65−5+5+1−1+17+34−217−217+317170+3817 + 132 7−65+5+534−217+234−217+417+317+170+3817i64 7−65+5+5−1+17+34−217−217+317170+3817 + i64 65−5+5+134−217+234−217+417+317+170+3817
                                              • x404 = cos 88π255 + i sin88π255 = 1128 65+5+5−11+1734+217+217−317+170−3817 + 132 7−65−5534+217+234+217+417−317170−3817i64 7−65−551+1734+217+217−317+170−3817 + i64 65+5+5−134+217+234+217+417−317170−3817
                                              • x405 = cos 92π255 + i sin92π255 = 1128 65+5+5−11+17+34+217−217−317170−3817132 7−65−5534+217−234+217+417−317+170−3817 + i64 7−65−551+17+34+217−217−317170−3817 + i64 65+5+5−134+217−234+217+417−317+170−3817
                                              • x406 = cos 94π255 + i sin94π255 = 1128 65−5+5+1−1+1734−217+217+317+170+3817132 7−65+5+534−217−234−217+417+317170+3817 + i64 7−65+5+5−1+1734−217+217+317+170+3817 + i64 65−5+5+134−217−234−217+417+317170+3817
                                              • x407 = cos 98π255 + i sin98π255 = 1128 65+55+1−1+17+34−217+217+317170+3817132 7+65−5534−217+234−217−417+317+170+3817 + i64 7+65−55−1+17+34−217+217+317170+3817 + i64 65+55+134−217+234−217−417+317+170+3817
                                              • x408 = cos 104π255 + i sin104π255 = 1128 65−55−11−17+34−217+217+317+170+3817 + 132 7+65+5+534−217−234−217−417+317170+3817 + i64 7+65+5+51−17+34−217+217+317+170+3817i64 65−55−134−217−234−217−417+317170+3817
                                              • x409 = cos 106π255 + i sin106π255 = −1128 65−55−1−1+17+34−217+217+317170+3817 + 132 7+65+5+534−217+234−217−417+317+170+3817 + i64 7+65+5+5−1+17+34−217+217+317170+3817 + i64 65−55−134−217+234−217−417+317+170+3817
                                              • x410 = cos 112π255 + i sin112π255 = −1128 65+55+11+17+34+217−217−317170−3817 + 132 7+65−5534+217−234+217+417−317+170−3817 + i64 7+65−551+17+34+217−217−317170−3817 + i64 65+55+134+217−234+217+417−317+170−3817
                                              • x411 = cos 116π255 + i sin116π255 = −1128 65−5+5+11+1734+217+217−317+170−3817 + 132 7−65+5+534+217+234+217+417−317170−3817 + i64 7−65+5+51+1734+217+217−317+170−3817 + i64 65−5+5+134+217+234+217+417−317170−3817
                                              • x412 = cos 118π255 + i sin118π255 = −1128 65+5+5−1−1+17+34−217−217+317170+3817 + 132 7−65−5534−217+234−217+417+317+170+3817 + i64 7−65−55−1+17+34−217−217+317170+3817 + i64 65+5+5−134−217+234−217+417+317+170+3817
                                              • x413 = cos 122π255 + i sin122π255 = 1128 65+5+5−11+1734+217+217−317+170−3817132 7−65−5534+217+234+217+417−317170−3817 + i64 7−65−551+1734+217+217−317+170−3817 + i64 65+5+5−134+217+234+217+417−317170−3817
                                              • x414 = cos 124π255 + i sin124π255 = 1128 65−5+5+1−1−17+34+217+217−317+170−3817132 7−65+5+534+217+234+217−417−317170−3817 + i64 7−65+5+5−1−17+34+217+217−317+170−3817 + i64 65−5+5+134+217+234+217−417−317170−3817
                                              • x415 = cos 128π255 + i sin128π255 = 1128 65+55+1−1+1734−217+217+317+170+3817132 7+65−5534−217−234−217+417+317170+3817 + i64 7+65−55−1+1734−217+217+317+170+3817 + i64 65+55+134−217−234−217+417+317170+3817
                                              • x416 = cos 134π255 + i sin134π255 = 1128 65−55−11−17+34−217+217+317+170+3817132 7+65+5+534−217−234−217−417+317170+3817 + i64 7+65+5+51−17+34−217+217+317+170+3817 + i64 65−55−134−217−234−217−417+317170+3817
                                              • x417 = cos 142π255 + i sin142π255 = −1128 65+55+11+17+34+217+217−317170−3817 + 132 7+65−5534+217−234+217−417−317+170−3817 + i64 7+65−551+17+34+217+217−317170−3817 + i64 65+55+134+217−234+217−417−317+170−3817
                                              • x418 = cos 146π255 + i sin146π255 = −1128 65−5+5+11+17+34+217−217−317170−3817 + 132 7−65+5+534+217−234+217+417−317+170−3817 + i64 7−65+5+51+17+34+217−217−317170−3817 + i64 65−5+5+134+217−234+217+417−317+170−3817
                                              • x419 = cos 148π255 + i sin148π255 = −1128 65+5+5−1−1−17+34+217+217−317+170−3817 + 132 7−65−5534+217+234+217−417−317170−3817 + i64 7−65−55−1−17+34+217+217−317+170−3817 + i64 65+5+5−134+217+234+217−417−317170−3817
                                              • x420 = cos 152π255 + i sin152π255 = −1128 65+5+5−1−1+17+34−217−217+317170+3817132 7−65−5534−217+234−217+417+317+170+3817i64 7−65−55−1+17+34−217−217+317170+3817 + i64 65+5+5−134−217+234−217+417+317+170+3817
                                              • x421 = cos 154π255 + i sin154π255 = 1128 65−5+5+1−1+17+34−217−217+317170+3817132 7−65+5+534−217+234−217+417+317+170+3817 + i64 7−65+5+5−1+17+34−217−217+317170+3817 + i64 65−5+5+134−217+234−217+417+317+170+3817
                                              • x422 = cos 158π255 + i sin158π255 = 1128 65+55+1−1−17+34+217+217−317+170−3817132 7+65−5534+217+234+217−417−317170−3817 + i64 7+65−55−1−17+34+217+217−317+170−3817 + i64 65+55+134+217+234+217−417−317170−3817
                                              • x423 = cos 164π255 + i sin164π255 = 1128 65−55−11+17+34+217+217−317170−3817132 7+65+5+534+217−234+217−417−317+170−3817 + i64 7+65+5+51+17+34+217+217−317170−3817 + i64 65−55−134+217−234+217−417−317+170−3817
                                              • x424 = cos 166π255 + i sin166π255 = −1128 65−55−1−1+17+34−217+217+317170+3817132 7+65+5+534−217+234−217−417+317+170+3817 + i64 7+65+5+5−1+17+34−217+217+317170+3817i64 65−55−134−217+234−217−417+317+170+3817
                                              • x425 = cos 172π255 + i sin172π255 = −1128 65+55+11−17+34−217+217+317+170+3817 + 132 7+65−5534−217−234−217−417+317170+3817 + i64 7+65−551−17+34−217+217+317+170+3817 + i64 65+55+134−217−234−217−417+317170+3817
                                              • x426 = cos 176π255 + i sin176π255 = −1128 65−5+5+11+17+34+217+217−317170−3817 + 132 7−65+5+534+217−234+217−417−317+170−3817 + i64 7−65+5+51+17+34+217+217−317170−3817 + i64 65−5+5+134+217−234+217−417−317+170−3817
                                              • x427 = cos 178π255 + i sin178π255 = −1128 65+5+5−1−1+1734−217+217+317+170+3817 + 132 7−65−5534−217−234−217+417+317170+3817 + i64 7−65−55−1+1734−217+217+317+170+3817 + i64 65+5+5−134−217−234−217+417+317170+3817
                                              • x428 = cos 182π255 + i sin182π255 = −1128 65+5+5−1−1−17+34+217+217−317+170−3817132 7−65−5534+217+234+217−417−317170−3817i64 7−65−55−1−17+34+217+217−317+170−3817 + i64 65+5+5−134+217+234+217−417−317170−3817
                                              • x429 = cos 184π255 + i sin184π255 = −1128 65−5+5+11+1734+217+217−317+170−3817132 7−65+5+534+217+234+217+417−317170−3817i64 7−65+5+51+1734+217+217−317+170−3817 + i64 65−5+5+134+217+234+217+417−317170−3817
                                              • x430 = cos 188π255 + i sin188π255 = 1128 65+55+1−1+17+34−217−217+317170+3817132 7+65−5534−217+234−217+417+317+170+3817 + i64 7+65−55−1+17+34−217−217+317170+3817 + i64 65+55+134−217+234−217+417+317+170+3817
                                              • x431 = cos 194π255 + i sin194π255 = 1128 65−55−11+17+34+217−217−317170−3817132 7+65+5+534+217−234+217+417−317+170−3817 + i64 7+65+5+51+17+34+217−217−317170−3817 + i64 65−55−134+217−234+217+417−317+170−3817
                                              • x432 = cos 196π255 + i sin196π255 = −1128 65−55−1−1+1734−217+217+317+170+3817132 7+65+5+534−217−234−217+417+317170+3817 + i64 7+65+5+5−1+1734−217+217+317+170+3817i64 65−55−134−217−234−217+417+317170+3817
                                              • x433 = cos 202π255 + i sin202π255 = −1128 65+55+11−17+34−217+217+317+170+3817132 7+65−5534−217−234−217−417+317170+3817 + i64 7+65−551−17+34−217+217+317+170+3817i64 65+55+134−217−234−217−417+317170+3817
                                              • x434 = cos 206π255 + i sin206π255 = −1128 65−5+5+11−17+34−217+217+317+170+3817 + 132 7−65+5+534−217−234−217−417+317170+3817 + i64 7−65+5+51−17+34−217+217+317+170+3817 + i64 65−5+5+134−217−234−217−417+317170+3817
                                              • x435 = cos 208π255 + i sin208π255 = −1128 65+5+5−1−1+17+34−217+217+317170+3817 + 132 7−65−5534−217+234−217−417+317+170+3817 + i64 7−65−55−1+17+34−217+217+317170+3817 + i64 65+5+5−134−217+234−217−417+317+170+3817
                                              • x436 = cos 212π255 + i sin212π255 = −1128 65+5+5−1−1+1734−217+217+317+170+3817132 7−65−5534−217−234−217+417+317170+3817i64 7−65−55−1+1734−217+217+317+170+3817 + i64 65+5+5−134−217−234−217+417+317170+3817
                                              • x437 = cos 214π255 + i sin214π255 = −1128 65−5+5+11+17+34+217−217−317170−3817132 7−65+5+534+217−234+217+417−317+170−3817i64 7−65+5+51+17+34+217−217−317170−3817 + i64 65−5+5+134+217−234+217+417−317+170−3817
                                              • x438 = cos 218π255 + i sin218π255 = −1128 65+55+11+1734+217+217−317+170−3817132 7+65−5534+217+234+217+417−317170−3817i64 7+65−551+1734+217+217−317+170−3817 + i64 65+55+134+217+234+217+417−317170−3817
                                              • x439 = cos 224π255 + i sin224π255 = 1128 65−55−11+1734+217+217−317+170−3817132 7+65+5+534+217+234+217+417−317170−3817 + i64 7+65+5+51+1734+217+217−317+170−3817 + i64 65−55−134+217+234+217+417−317170−3817
                                              • x440 = cos 226π255 + i sin226π255 = −1128 65−55−1−1−17+34+217+217−317+170−3817132 7+65+5+534+217+234+217−417−317170−3817 + i64 7+65+5+5−1−17+34+217+217−317+170−3817i64 65−55−134+217+234+217−417−317170−3817
                                              • x441 = cos 232π255 + i sin232π255 = −1128 65+55+11+17+34+217+217−317170−3817132 7+65−5534+217−234+217−417−317+170−3817 + i64 7+65−551+17+34+217+217−317170−3817i64 65+55+134+217−234+217−417−317+170−3817
                                              • x442 = cos 236π255 + i sin236π255 = −1128 65−5+5+11−17+34−217+217+317+170+3817132 7−65+5+534−217−234−217−417+317170+3817 + i64 7−65+5+51−17+34−217+217+317+170+3817i64 65−5+5+134−217−234−217−417+317170+3817
                                              • x443 = cos 242π255 + i sin242π255 = −1128 65+5+5−1−1+17+34−217+217+317170+3817132 7−65−5534−217+234−217−417+317+170+3817i64 7−65−55−1+17+34−217+217+317170+3817 + i64 65+5+5−134−217+234−217−417+317+170+3817
                                              • x444 = cos 244π255 + i sin244π255 = −1128 65−5+5+11+17+34+217+217−317170−3817132 7−65+5+534+217−234+217−417−317+170−3817i64 7−65+5+51+17+34+217+217−317170−3817 + i64 65−5+5+134+217−234+217−417−317+170−3817
                                              • x445 = cos 248π255 + i sin248π255 = −1128 65+55+11+17+34+217−217−317170−3817132 7+65−5534+217−234+217+417−317+170−3817i64 7+65−551+17+34+217−217−317170−3817 + i64 65+55+134+217−234+217+417−317+170−3817
                                              • x446 = cos 254π255 + i sin254π255 = −1128 65−55−1−1+17+34−217−217+317170+3817132 7+65+5+534−217+234−217+417+317+170+3817i64 7+65+5+5−1+17+34−217−217+317170+3817 + i64 65−55−134−217+234−217+417+317+170+3817
                                              • x447 = cos 256π255 + i sin256π255 = −1128 65−55−1−1+17+34−217−217+317170+3817132 7+65+5+534−217+234−217+417+317+170+3817 + i64 7+65+5+5−1+17+34−217−217+317170+3817i64 65−55−134−217+234−217+417+317+170+3817
                                              • x448 = cos 262π255 + i sin262π255 = −1128 65+55+11+17+34+217−217−317170−3817132 7+65−5534+217−234+217+417−317+170−3817 + i64 7+65−551+17+34+217−217−317170−3817i64 65+55+134+217−234+217+417−317+170−3817
                                              • x449 = cos 266π255 + i sin266π255 = −1128 65−5+5+11+17+34+217+217−317170−3817132 7−65+5+534+217−234+217−417−317+170−3817 + i64 7−65+5+51+17+34+217+217−317170−3817i64 65−5+5+134+217−234+217−417−317+170−3817
                                              • x450 = cos 268π255 + i sin268π255 = −1128 65+5+5−1−1+17+34−217+217+317170+3817132 7−65−5534−217+234−217−417+317+170+3817 + i64 7−65−55−1+17+34−217+217+317170+3817i64 65+5+5−134−217+234−217−417+317+170+3817
                                              • x451 = cos 274π255 + i sin274π255 = −1128 65−5+5+11−17+34−217+217+317+170+3817132 7−65+5+534−217−234−217−417+317170+3817i64 7−65+5+51−17+34−217+217+317+170+3817 + i64 65−5+5+134−217−234−217−417+317170+3817
                                              • x452 = cos 278π255 + i sin278π255 = −1128 65+55+11+17+34+217+217−317170−3817132 7+65−5534+217−234+217−417−317+170−3817i64 7+65−551+17+34+217+217−317170−3817 + i64 65+55+134+217−234+217−417−317+170−3817
                                              • x453 = cos 284π255 + i sin284π255 = −1128 65−55−1−1−17+34+217+217−317+170−3817132 7+65+5+534+217+234+217−417−317170−3817i64 7+65+5+5−1−17+34+217+217−317+170−3817 + i64 65−55−134+217+234+217−417−317170−3817
                                              • x454 = cos 286π255 + i sin286π255 = 1128 65−55−11+1734+217+217−317+170−3817132 7+65+5+534+217+234+217+417−317170−3817i64 7+65+5+51+1734+217+217−317+170−3817i64 65−55−134+217+234+217+417−317170−3817
                                              • x455 = cos 292π255 + i sin292π255 = −1128 65+55+11+1734+217+217−317+170−3817132 7+65−5534+217+234+217+417−317170−3817 + i64 7+65−551+1734+217+217−317+170−3817i64 65+55+134+217+234+217+417−317170−3817
                                              • x456 = cos 296π255 + i sin296π255 = −1128 65−5+5+11+17+34+217−217−317170−3817132 7−65+5+534+217−234+217+417−317+170−3817 + i64 7−65+5+51+17+34+217−217−317170−3817i64 65−5+5+134+217−234+217+417−317+170−3817
                                              • x457 = cos 298π255 + i sin298π255 = −1128 65+5+5−1−1+1734−217+217+317+170+3817132 7−65−5534−217−234−217+417+317170+3817 + i64 7−65−55−1+1734−217+217+317+170+3817i64 65+5+5−134−217−234−217+417+317170+3817
                                              • x458 = cos 302π255 + i sin302π255 = −1128 65+5+5−1−1+17+34−217+217+317170+3817 + 132 7−65−5534−217+234−217−417+317+170+3817i64 7−65−55−1+17+34−217+217+317170+3817i64 65+5+5−134−217+234−217−417+317+170+3817
                                              • x459 = cos 304π255 + i sin304π255 = −1128 65−5+5+11−17+34−217+217+317+170+3817 + 132 7−65+5+534−217−234−217−417+317170+3817i64 7−65+5+51−17+34−217+217+317+170+3817i64 65−5+5+134−217−234−217−417+317170+3817
                                              • x460 = cos 308π255 + i sin308π255 = −1128 65+55+11−17+34−217+217+317+170+3817132 7+65−5534−217−234−217−417+317170+3817i64 7+65−551−17+34−217+217+317+170+3817 + i64 65+55+134−217−234−217−417+317170+3817
                                              • x461 = cos 314π255 + i sin314π255 = −1128 65−55−1−1+1734−217+217+317+170+3817132 7+65+5+534−217−234−217+417+317170+3817i64 7+65+5+5−1+1734−217+217+317+170+3817 + i64 65−55−134−217−234−217+417+317170+3817
                                              • x462 = cos 316π255 + i sin316π255 = 1128 65−55−11+17+34+217−217−317170−3817132 7+65+5+534+217−234+217+417−317+170−3817i64 7+65+5+51+17+34+217−217−317170−3817i64 65−55−134+217−234+217+417−317+170−3817
                                              • x463 = cos 322π255 + i sin322π255 = 1128 65+55+1−1+17+34−217−217+317170+3817132 7+65−5534−217+234−217+417+317+170+3817i64 7+65−55−1+17+34−217−217+317170+3817i64 65+55+134−217+234−217+417+317+170+3817
                                              • x464 = cos 326π255 + i sin326π255 = −1128 65−5+5+11+1734+217+217−317+170−3817132 7−65+5+534+217+234+217+417−317170−3817 + i64 7−65+5+51+1734+217+217−317+170−3817i64 65−5+5+134+217+234+217+417−317170−3817
                                              • x465 = cos 328π255 + i sin328π255 = −1128 65+5+5−1−1−17+34+217+217−317+170−3817132 7−65−5534+217+234+217−417−317170−3817 + i64 7−65−55−1−17+34+217+217−317+170−3817i64 65+5+5−134+217+234+217−417−317170−3817
                                              • x466 = cos 332π255 + i sin332π255 = −1128 65+5+5−1−1+1734−217+217+317+170+3817 + 132 7−65−5534−217−234−217+417+317170+3817i64 7−65−55−1+1734−217+217+317+170+3817i64 65+5+5−134−217−234−217+417+317170+3817
                                              • x467 = cos 334π255 + i sin334π255 = −1128 65−5+5+11+17+34+217+217−317170−3817 + 132 7−65+5+534+217−234+217−417−317+170−3817i64 7−65+5+51+17+34+217+217−317170−3817i64 65−5+5+134+217−234+217−417−317+170−3817
                                              • x468 = cos 338π255 + i sin338π255 = −1128 65+55+11−17+34−217+217+317+170+3817 + 132 7+65−5534−217−234−217−417+317170+3817i64 7+65−551−17+34−217+217+317+170+3817i64 65+55+134−217−234−217−417+317170+3817
                                              • x469 = cos 344π255 + i sin344π255 = −1128 65−55−1−1+17+34−217+217+317170+3817132 7+65+5+534−217+234−217−417+317+170+3817i64 7+65+5+5−1+17+34−217+217+317170+3817 + i64 65−55−134−217+234−217−417+317+170+3817
                                              • x470 = cos 346π255 + i sin346π255 = 1128 65−55−11+17+34+217+217−317170−3817132 7+65+5+534+217−234+217−417−317+170−3817i64 7+65+5+51+17+34+217+217−317170−3817i64 65−55−134+217−234+217−417−317+170−3817
                                              • x471 = cos 352π255 + i sin352π255 = 1128 65+55+1−1−17+34+217+217−317+170−3817132 7+65−5534+217+234+217−417−317170−3817i64 7+65−55−1−17+34+217+217−317+170−3817i64 65+55+134+217+234+217−417−317170−3817
                                              • x472 = cos 356π255 + i sin356π255 = 1128 65−5+5+1−1+17+34−217−217+317170+3817132 7−65+5+534−217+234−217+417+317+170+3817i64 7−65+5+5−1+17+34−217−217+317170+3817i64 65−5+5+134−217+234−217+417+317+170+3817
                                              • x473 = cos 358π255 + i sin358π255 = −1128 65+5+5−1−1+17+34−217−217+317170+3817132 7−65−5534−217+234−217+417+317+170+3817 + i64 7−65−55−1+17+34−217−217+317170+3817i64 65+5+5−134−217+234−217+417+317+170+3817
                                              • x474 = cos 362π255 + i sin362π255 = −1128 65+5+5−1−1−17+34+217+217−317+170−3817 + 132 7−65−5534+217+234+217−417−317170−3817i64 7−65−55−1−17+34+217+217−317+170−3817i64 65+5+5−134+217+234+217−417−317170−3817
                                              • x475 = cos 364π255 + i sin364π255 = −1128 65−5+5+11+17+34+217−217−317170−3817 + 132 7−65+5+534+217−234+217+417−317+170−3817i64 7−65+5+51+17+34+217−217−317170−3817i64 65−5+5+134+217−234+217+417−317+170−3817
                                              • x476 = cos 368π255 + i sin368π255 = −1128 65+55+11+17+34+217+217−317170−3817 + 132 7+65−5534+217−234+217−417−317+170−3817i64 7+65−551+17+34+217+217−317170−3817i64 65+55+134+217−234+217−417−317+170−3817
                                              • x477 = cos 376π255 + i sin376π255 = 1128 65−55−11−17+34−217+217+317+170+3817132 7+65+5+534−217−234−217−417+317170+3817i64 7+65+5+51−17+34−217+217+317+170+3817i64 65−55−134−217−234−217−417+317170+3817
                                              • x478 = cos 382π255 + i sin382π255 = 1128 65+55+1−1+1734−217+217+317+170+3817132 7+65−5534−217−234−217+417+317170+3817i64 7+65−55−1+1734−217+217+317+170+3817i64 65+55+134−217−234−217+417+317170+3817
                                              • x479 = cos 386π255 + i sin386π255 = 1128 65−5+5+1−1−17+34+217+217−317+170−3817132 7−65+5+534+217+234+217−417−317170−3817i64 7−65+5+5−1−17+34+217+217−317+170−3817i64 65−5+5+134+217+234+217−417−317170−3817
                                              • x480 = cos 388π255 + i sin388π255 = 1128 65+5+5−11+1734+217+217−317+170−3817132 7−65−5534+217+234+217+417−317170−3817i64 7−65−551+1734+217+217−317+170−3817i64 65+5+5−134+217+234+217+417−317170−3817
                                              • x481 = cos 392π255 + i sin392π255 = −1128 65+5+5−1−1+17+34−217−217+317170+3817 + 132 7−65−5534−217+234−217+417+317+170+3817i64 7−65−55−1+17+34−217−217+317170+3817i64 65+5+5−134−217+234−217+417+317+170+3817
                                              • x482 = cos 394π255 + i sin394π255 = −1128 65−5+5+11+1734+217+217−317+170−3817 + 132 7−65+5+534+217+234+217+417−317170−3817i64 7−65+5+51+1734+217+217−317+170−3817i64 65−5+5+134+217+234+217+417−317170−3817
                                              • x483 = cos 398π255 + i sin398π255 = −1128 65+55+11+17+34+217−217−317170−3817 + 132 7+65−5534+217−234+217+417−317+170−3817i64 7+65−551+17+34+217−217−317170−3817i64 65+55+134+217−234+217+417−317+170−3817
                                              • x484 = cos 404π255 + i sin404π255 = −1128 65−55−1−1+17+34−217+217+317170+3817 + 132 7+65+5+534−217+234−217−417+317+170+3817i64 7+65+5+5−1+17+34−217+217+317170+3817i64 65−55−134−217+234−217−417+317+170+3817
                                              • x485 = cos 406π255 + i sin406π255 = 1128 65−55−11−17+34−217+217+317+170+3817 + 132 7+65+5+534−217−234−217−417+317170+3817i64 7+65+5+51−17+34−217+217+317+170+3817 + i64 65−55−134−217−234−217−417+317170+3817
                                              • x486 = cos 412π255 + i sin412π255 = 1128 65+55+1−1+17+34−217+217+317170+3817132 7+65−5534−217+234−217−417+317+170+3817i64 7+65−55−1+17+34−217+217+317170+3817i64 65+55+134−217+234−217−417+317+170+3817
                                              • x487 = cos 416π255 + i sin416π255 = 1128 65−5+5+1−1+1734−217+217+317+170+3817132 7−65+5+534−217−234−217+417+317170+3817i64 7−65+5+5−1+1734−217+217+317+170+3817i64 65−5+5+134−217−234−217+417+317170+3817
                                              • x488 = cos 418π255 + i sin418π255 = 1128 65+5+5−11+17+34+217−217−317170−3817132 7−65−5534+217−234+217+417−317+170−3817i64 7−65−551+17+34+217−217−317170−3817i64 65+5+5−134+217−234+217+417−317+170−3817
                                              • x489 = cos 422π255 + i sin422π255 = 1128 65+5+5−11+1734+217+217−317+170−3817 + 132 7−65−5534+217+234+217+417−317170−3817 + i64 7−65−551+1734+217+217−317+170−3817i64 65+5+5−134+217+234+217+417−317170−3817
                                              • x490 = cos 424π255 + i sin424π255 = 1128 65−5+5+1−1+17+34−217−217+317170+3817 + 132 7−65+5+534−217+234−217+417+317+170+3817 + i64 7−65+5+5−1+17+34−217−217+317170+3817i64 65−5+5+134−217+234−217+417+317+170+3817
                                              • x491 = cos 428π255 + i sin428π255 = −1128 65+55+11+1734+217+217−317+170−3817 + 132 7+65−5534+217+234+217+417−317170−3817i64 7+65−551+1734+217+217−317+170−3817i64 65+55+134+217+234+217+417−317170−3817
                                              • x492 = cos 434π255 + i sin434π255 = −1128 65−55−1−1+1734−217+217+317+170+3817 + 132 7+65+5+534−217−234−217+417+317170+3817i64 7+65+5+5−1+1734−217+217+317+170+3817i64 65−55−134−217−234−217+417+317170+3817
                                              • x493 = cos 436π255 + i sin436π255 = 1128 65−55−11+17+34+217+217−317170−3817 + 132 7+65+5+534+217−234+217−417−317+170−3817i64 7+65+5+51+17+34+217+217−317170−3817 + i64 65−55−134+217−234+217−417−317+170−3817
                                              • x494 = cos 446π255 + i sin446π255 = 1128 65−5+5+1−1+17+34−217+217+317170+3817132 7−65+5+534−217+234−217−417+317+170+3817i64 7−65+5+5−1+17+34−217+217+317170+3817i64 65−5+5+134−217+234−217−417+317+170+3817
                                              • x495 = cos 448π255 + i sin448π255 = 1128 65+5+5−11+17+34+217+217−317170−3817132 7−65−5534+217−234+217−417−317+170−3817i64 7−65−551+17+34+217+217−317170−3817i64 65+5+5−134+217−234+217−417−317+170−3817
                                              • x496 = cos 452π255 + i sin452π255 = 1128 65+5+5−11+17+34+217−217−317170−3817 + 132 7−65−5534+217−234+217+417−317+170−3817 + i64 7−65−551+17+34+217−217−317170−3817i64 65+5+5−134+217−234+217+417−317+170−3817
                                              • x497 = cos 454π255 + i sin454π255 = 1128 65−5+5+1−1−17+34+217+217−317+170−3817 + 132 7−65+5+534+217+234+217−417−317170−3817 + i64 7−65+5+5−1−17+34+217+217−317+170−3817i64 65−5+5+134+217+234+217−417−317170−3817
                                              • x498 = cos 458π255 + i sin458π255 = 1128 65+55+1−1+17+34−217−217+317170+3817 + 132 7+65−5534−217+234−217+417+317+170+3817 + i64 7+65−55−1+17+34−217−217+317170+3817i64 65+55+134−217+234−217+417+317+170+3817
                                              • x499 = cos 464π255 + i sin464π255 = −1128 65−55−1−1−17+34+217+217−317+170−3817 + 132 7+65+5+534+217+234+217−417−317170−3817i64 7+65+5+5−1−17+34+217+217−317+170−3817i64 65−55−134+217+234+217−417−317170−3817
                                              • x500 = cos 466π255 + i sin466π255 = 1128 65−55−11+17+34+217−217−317170−3817 + 132 7+65+5+534+217−234+217+417−317+170−3817i64 7+65+5+51+17+34+217−217−317170−3817 + i64 65−55−134+217−234+217+417−317+170−3817
                                              • x501 = cos 472π255 + i sin472π255 = 1128 65+55+1−1+17+34−217+217+317170+3817 + 132 7+65−5534−217+234−217−417+317+170+3817i64 7+65−55−1+17+34−217+217+317170+3817 + i64 65+55+134−217+234−217−417+317+170+3817
                                              • x502 = cos 478π255 + i sin478π255 = 1128 65+5+5−11−17+34−217+217+317+170+3817132 7−65−5534−217−234−217−417+317170+3817i64 7−65−551−17+34−217+217+317+170+3817i64 65+5+5−134−217−234−217−417+317170+3817
                                              • x503 = cos 482π255 + i sin482π255 = 1128 65+5+5−11+17+34+217+217−317170−3817 + 132 7−65−5534+217−234+217−417−317+170−3817 + i64 7−65−551+17+34+217+217−317170−3817i64 65+5+5−134+217−234+217−417−317+170−3817
                                              • x504 = cos 484π255 + i sin484π255 = 1128 65−5+5+1−1+1734−217+217+317+170+3817 + 132 7−65+5+534−217−234−217+417+317170+3817 + i64 7−65+5+5−1+1734−217+217+317+170+3817i64 65−5+5+134−217−234−217+417+317170+3817
                                              • x505 = cos 488π255 + i sin488π255 = 1128 65+55+1−1−17+34+217+217−317+170−3817 + 132 7+65−5534+217+234+217−417−317170−3817 + i64 7+65−55−1−17+34+217+217−317+170−3817i64 65+55+134+217+234+217−417−317170−3817
                                              • x506 = cos 494π255 + i sin494π255 = −1128 65−55−1−1+17+34−217−217+317170+3817 + 132 7+65+5+534−217+234−217+417+317+170+3817i64 7+65+5+5−1+17+34−217−217+317170+3817i64 65−55−134−217+234−217+417+317+170+3817
                                              • x507 = cos 496π255 + i sin496π255 = 1128 65−55−11+1734+217+217−317+170−3817 + 132 7+65+5+534+217+234+217+417−317170−3817i64 7+65+5+51+1734+217+217−317+170−3817 + i64 65−55−134+217+234+217+417−317170−3817
                                              • x508 = cos 502π255 + i sin502π255 = 1128 65+55+1−1+1734−217+217+317+170+3817 + 132 7+65−5534−217−234−217+417+317170+3817i64 7+65−55−1+1734−217+217+317+170+3817 + i64 65+55+134−217−234−217+417+317170+3817
                                              • x509 = cos 506π255 + i sin506π255 = 1128 65−5+5+1−1+17+34−217+217+317170+3817 + 132 7−65+5+534−217+234−217−417+317+170+3817i64 7−65+5+5−1+17+34−217+217+317170+3817 + i64 65−5+5+134−217+234−217−417+317+170+3817
                                              • x510 = cos 508π255 + i sin508π255 = 1128 65+5+5−11−17+34−217+217+317+170+3817 + 132 7−65−5534−217−234−217−417+317170+3817i64 7−65−551−17+34−217+217+317+170+3817 + i64 65+5+5−134−217−234−217−417+317170+3817

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x120 − 1

                                              Irreducible polynomial factors

                                              The 16 factors are:

                                              • x − 1
                                              • x + 1
                                              • x2x + 1
                                              • x2 + 1
                                              • x2 + x + 1
                                              • x4x3 + x2x + 1
                                              • x4x2 + 1
                                              • x4 + 1
                                              • x4 + x3 + x2 + x + 1
                                              • x8x7 + x5x4 + x3x + 1
                                              • x8x6 + x4x2 + 1
                                              • x8x4 + 1
                                              • x8 + x7x5x4x3 + x + 1
                                              • x16x12 + x8x4 + 1
                                              • x16 + x14x10x8x6 + x2 + 1
                                              • x32 + x28x20x16x12 + x4 + 1

                                              Roots

                                              The 120 roots are:

                                              • x1 = 1
                                              • x2 = -1
                                              • x3 = 1212 3 i
                                              • x4 = 12 + 12 3 i
                                              • x5 = − 1 i
                                              • x6 = 1 i
                                              • x7 = -1212 3 i
                                              • x8 = -12 + 12 3 i
                                              • x9 = 14 + 14 5 + i -18 5 + 58
                                              • x10 = 14 + 14 5 − i -18 5 + 58
                                              • x11 = 1414 5 + i 18 5 + 58
                                              • x12 = 1414 5 − i 18 5 + 58
                                              • x13 = 12 3 + 12i
                                              • x14 = 12 312i
                                              • x15 = −12 3 + 12i
                                              • x16 = −12 312i
                                              • x17 = 12 + 12i
                                              • x18 = 1212i
                                              • x19 = −12 + 12i
                                              • x20 = −1212i
                                              • x21 = -14 + 14 5 + i 18 5 + 58
                                              • x22 = -14 + 14 5 − i 18 5 + 58
                                              • x23 = -1414 5 + i -18 5 + 58
                                              • x24 = -1414 5 − i -18 5 + 58
                                              • x25 = cos 2π15 + i sin2π15 = 18 65−5+5+1 + i4 7−65+5+5
                                              • x26 = cos 4π15 + i sin4π15 = 18 65+55+1 + i4 7+65−55
                                              • x27 = cos 8π15 + i sin8π15 = −18 65−55−1 + i4 7+65+5+5
                                              • x28 = cos 14π15 + i sin14π15 = −18 65+5+5−1 + i4 7−65−55
                                              • x29 = cos 16π15 + i sin16π15 = −18 65+5+5−1i4 7−65−55
                                              • x30 = cos 22π15 + i sin22π15 = −18 65−55−1i4 7+65+5+5
                                              • x31 = cos 26π15 + i sin26π15 = 18 65+55+1i4 7+65−55
                                              • x32 = cos 28π15 + i sin28π15 = 18 65−5+5+1i4 7−65+5+5
                                              • x33 = cosπ10 + i sinπ10 = 14 10+25 + i4 5−1
                                              • x34 = cos 3π10 + i sin3π10 = 14 10−25 + i4 5+1
                                              • x35 = cos 7π10 + i sin7π10 = −14 10−25 + i4 5+1
                                              • x36 = cos 9π10 + i sin9π10 = −14 10+25 + i4 5−1
                                              • x37 = cos 11π10 + i sin11π10 = −14 10+25i4 5−1
                                              • x38 = cos 13π10 + i sin13π10 = −14 10−25i4 5+1
                                              • x39 = cos 17π10 + i sin17π10 = 14 10−25i4 5+1
                                              • x40 = cos 19π10 + i sin19π10 = 14 10+25i4 5−1
                                              • x41 = cosπ12 + i sinπ12 = 12 2 + 3 + i2 2 − 3
                                              • x42 = cos 5π12 + i sin5π12 = 12 2 − 3 + i2 2 + 3
                                              • x43 = cos 7π12 + i sin7π12 = −12 2 − 3 + i2 2 + 3
                                              • x44 = cos 11π12 + i sin11π12 = −12 2 + 3 + i2 2 − 3
                                              • x45 = cos 13π12 + i sin13π12 = −12 2 + 3i2 2 − 3
                                              • x46 = cos 17π12 + i sin17π12 = −12 2 − 3i2 2 + 3
                                              • x47 = cos 19π12 + i sin19π12 = 12 2 − 3i2 2 + 3
                                              • x48 = cos 23π12 + i sin23π12 = 12 2 + 3i2 2 − 3
                                              • x49 = cosπ15 + i sinπ15 = 18 65+5+5−1 + i4 7−65−55
                                              • x50 = cos 7π15 + i sin7π15 = 18 65−55−1 + i4 7+65+5+5
                                              • x51 = cos 11π15 + i sin11π15 = −18 65+55+1 + i4 7+65−55
                                              • x52 = cos 13π15 + i sin13π15 = −18 65−5+5+1 + i4 7−65+5+5
                                              • x53 = cos 17π15 + i sin17π15 = −18 65−5+5+1i4 7−65+5+5
                                              • x54 = cos 19π15 + i sin19π15 = −18 65+55+1i4 7+65−55
                                              • x55 = cos 23π15 + i sin23π15 = 18 65−55−1i4 7+65+5+5
                                              • x56 = cos 29π15 + i sin29π15 = 18 65+5+5−1i4 7−65−55
                                              • x57 = cosπ20 + i sinπ20 = 12 2 + 1210+25 + i2 2 − 1210+25
                                              • x58 = cos 3π20 + i sin3π20 = 12 2 + 1210−25 + i2 2 − 1210−25
                                              • x59 = cos 7π20 + i sin7π20 = 12 2 − 1210−25 + i2 2 + 1210−25
                                              • x60 = cos 9π20 + i sin9π20 = 12 2 − 1210+25 + i2 2 + 1210+25
                                              • x61 = cos 11π20 + i sin11π20 = −12 2 − 1210+25 + i2 2 + 1210+25
                                              • x62 = cos 13π20 + i sin13π20 = −12 2 − 1210−25 + i2 2 + 1210−25
                                              • x63 = cos 17π20 + i sin17π20 = −12 2 + 1210−25 + i2 2 − 1210−25
                                              • x64 = cos 19π20 + i sin19π20 = −12 2 + 1210+25 + i2 2 − 1210+25
                                              • x65 = cos 21π20 + i sin21π20 = −12 2 + 1210+25i2 2 − 1210+25
                                              • x66 = cos 23π20 + i sin23π20 = −12 2 + 1210−25i2 2 − 1210−25
                                              • x67 = cos 27π20 + i sin27π20 = −12 2 − 1210−25i2 2 + 1210−25
                                              • x68 = cos 29π20 + i sin29π20 = −12 2 − 1210+25i2 2 + 1210+25
                                              • x69 = cos 31π20 + i sin31π20 = 12 2 − 1210+25i2 2 + 1210+25
                                              • x70 = cos 33π20 + i sin33π20 = 12 2 − 1210−25i2 2 + 1210−25
                                              • x71 = cos 37π20 + i sin37π20 = 12 2 + 1210−25i2 2 − 1210−25
                                              • x72 = cos 39π20 + i sin39π20 = 12 2 + 1210+25i2 2 − 1210+25
                                              • x73 = cosπ30 + i sinπ30 = 14 7+65+5+5 + i8 65−55−1
                                              • x74 = cos 7π30 + i sin7π30 = 14 7+65−55 + i8 65+55+1
                                              • x75 = cos 11π30 + i sin11π30 = 14 7−65+5+5 + i8 65−5+5+1
                                              • x76 = cos 13π30 + i sin13π30 = 14 7−65−55 + i8 65+5+5−1
                                              • x77 = cos 17π30 + i sin17π30 = −14 7−65−55 + i8 65+5+5−1
                                              • x78 = cos 19π30 + i sin19π30 = −14 7−65+5+5 + i8 65−5+5+1
                                              • x79 = cos 23π30 + i sin23π30 = −14 7+65−55 + i8 65+55+1
                                              • x80 = cos 29π30 + i sin29π30 = −14 7+65+5+5 + i8 65−55−1
                                              • x81 = cos 31π30 + i sin31π30 = −14 7+65+5+5i8 65−55−1
                                              • x82 = cos 37π30 + i sin37π30 = −14 7+65−55i8 65+55+1
                                              • x83 = cos 41π30 + i sin41π30 = −14 7−65+5+5i8 65−5+5+1
                                              • x84 = cos 43π30 + i sin43π30 = −14 7−65−55i8 65+5+5−1
                                              • x85 = cos 47π30 + i sin47π30 = 14 7−65−55i8 65+5+5−1
                                              • x86 = cos 49π30 + i sin49π30 = 14 7−65+5+5i8 65−5+5+1
                                              • x87 = cos 53π30 + i sin53π30 = 14 7+65−55i8 65+55+1
                                              • x88 = cos 59π30 + i sin59π30 = 14 7+65+5+5i8 65−55−1
                                              • x89 = cosπ60 + i sinπ60 = 12 2 + 127+65+5+5 + i2 2 − 127+65+5+5
                                              • x90 = cos 7π60 + i sin7π60 = 12 2 + 127+65−55 + i2 2 − 127+65−55
                                              • x91 = cos 11π60 + i sin11π60 = 12 2 + 127−65+5+5 + i2 2 − 127−65+5+5
                                              • x92 = cos 13π60 + i sin13π60 = 12 2 + 127−65−55 + i2 2 − 127−65−55
                                              • x93 = cos 17π60 + i sin17π60 = 12 2 − 127−65−55 + i2 2 + 127−65−55
                                              • x94 = cos 19π60 + i sin19π60 = 12 2 − 127−65+5+5 + i2 2 + 127−65+5+5
                                              • x95 = cos 23π60 + i sin23π60 = 12 2 − 127+65−55 + i2 2 + 127+65−55
                                              • x96 = cos 29π60 + i sin29π60 = 12 2 − 127+65+5+5 + i2 2 + 127+65+5+5
                                              • x97 = cos 31π60 + i sin31π60 = −12 2 − 127+65+5+5 + i2 2 + 127+65+5+5
                                              • x98 = cos 37π60 + i sin37π60 = −12 2 − 127+65−55 + i2 2 + 127+65−55
                                              • x99 = cos 41π60 + i sin41π60 = −12 2 − 127−65+5+5 + i2 2 + 127−65+5+5
                                              • x100 = cos 43π60 + i sin43π60 = −12 2 − 127−65−55 + i2 2 + 127−65−55
                                              • x101 = cos 47π60 + i sin47π60 = −12 2 + 127−65−55 + i2 2 − 127−65−55
                                              • x102 = cos 49π60 + i sin49π60 = −12 2 + 127−65+5+5 + i2 2 − 127−65+5+5
                                              • x103 = cos 53π60 + i sin53π60 = −12 2 + 127+65−55 + i2 2 − 127+65−55
                                              • x104 = cos 59π60 + i sin59π60 = −12 2 + 127+65+5+5 + i2 2 − 127+65+5+5
                                              • x105 = cos 61π60 + i sin61π60 = −12 2 + 127+65+5+5i2 2 − 127+65+5+5
                                              • x106 = cos 67π60 + i sin67π60 = −12 2 + 127+65−55i2 2 − 127+65−55
                                              • x107 = cos 71π60 + i sin71π60 = −12 2 + 127−65+5+5i2 2 − 127−65+5+5
                                              • x108 = cos 73π60 + i sin73π60 = −12 2 + 127−65−55i2 2 − 127−65−55
                                              • x109 = cos 77π60 + i sin77π60 = −12 2 − 127−65−55i2 2 + 127−65−55
                                              • x110 = cos 79π60 + i sin79π60 = −12 2 − 127−65+5+5i2 2 + 127−65+5+5
                                              • x111 = cos 83π60 + i sin83π60 = −12 2 − 127+65−55i2 2 + 127+65−55
                                              • x112 = cos 89π60 + i sin89π60 = −12 2 − 127+65+5+5i2 2 + 127+65+5+5
                                              • x113 = cos 91π60 + i sin91π60 = 12 2 − 127+65+5+5i2 2 + 127+65+5+5
                                              • x114 = cos 97π60 + i sin97π60 = 12 2 − 127+65−55i2 2 + 127+65−55
                                              • x115 = cos 101π60 + i sin101π60 = 12 2 − 127−65+5+5i2 2 + 127−65+5+5
                                              • x116 = cos 103π60 + i sin103π60 = 12 2 − 127−65−55i2 2 + 127−65−55
                                              • x117 = cos 107π60 + i sin107π60 = 12 2 + 127−65−55i2 2 − 127−65−55
                                              • x118 = cos 109π60 + i sin109π60 = 12 2 + 127−65+5+5i2 2 − 127−65+5+5
                                              • x119 = cos 113π60 + i sin113π60 = 12 2 + 127+65−55i2 2 − 127+65−55
                                              • x120 = cos 119π60 + i sin119π60 = 12 2 + 127+65+5+5i2 2 − 127+65+5+5

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^{120} - 1

                                              Irreducible polynomial factors

                                              The 16 factors are:

                                              • \begin{array}{l}
                                              • \bullet\,\,x - 1\\
                                              • \bullet\,\,x + 1\\
                                              • \bullet\,\,x^{2} - x + 1\\
                                              • \bullet\,\,x^{2} + 1\\
                                              • \bullet\,\,x^{2} + x + 1\\
                                              • \bullet\,\,x^{4} - x^{3} + x^{2} - x + 1\\
                                              • \bullet\,\,x^{4} - x^{2} + 1\\
                                              • \bullet\,\,x^{4} + 1\\
                                              • \bullet\,\,x^{4} + x^{3} + x^{2} + x + 1\\
                                              • \bullet\,\,x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1\\
                                              • \bullet\,\,x^{8} - x^{6} + x^{4} - x^{2} + 1\\
                                              • \bullet\,\,x^{8} - x^{4} + 1\\
                                              • \bullet\,\,x^{8} + x^{7} - x^{5} - x^{4} - x^{3} + x + 1\\
                                              • \bullet\,\,x^{16} - x^{12} + x^{8} - x^{4} + 1\\
                                              • \bullet\,\,x^{16} + x^{14} - x^{10} - x^{8} - x^{6} + x^{2} + 1\\
                                              • \bullet\,\,x^{32} + x^{28} - x^{20} - x^{16} - x^{12} + x^{4} + 1\\
                                              • \end{array}

                                              Roots

                                              The 120 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,x_{1} = 1\\
                                              • \bullet\,\,x_{2} = -1\\
                                              • \bullet\,\,x_{3} = \frac{1}{2} - \frac{1}{2}\sqrt{3} i\\
                                              • \bullet\,\,x_{4} = \frac{1}{2} + \frac{1}{2}\sqrt{3} i\\
                                              • \bullet\,\,x_{5} = - 1 i\\
                                              • \bullet\,\,x_{6} = 1 i\\
                                              • \bullet\,\,x_{7} = \frac{-1}{2} - \frac{1}{2}\sqrt{3} i\\
                                              • \bullet\,\,x_{8} = \frac{-1}{2} + \frac{1}{2}\sqrt{3} i\\
                                              • \bullet\,\,x_{9} = \frac{1}{4} + \frac{1}{4}\sqrt{5} + i \sqrt{\frac{-1}{8}\sqrt{5} + \frac{5}{8}}\\
                                              • \bullet\,\,x_{10} = \frac{1}{4} + \frac{1}{4}\sqrt{5} - i \sqrt{\frac{-1}{8}\sqrt{5} + \frac{5}{8}}\\
                                              • \bullet\,\,x_{11} = \frac{1}{4} - \frac{1}{4}\sqrt{5} + i \sqrt{\frac{1}{8}\sqrt{5} + \frac{5}{8}}\\
                                              • \bullet\,\,x_{12} = \frac{1}{4} - \frac{1}{4}\sqrt{5} - i \sqrt{\frac{1}{8}\sqrt{5} + \frac{5}{8}}\\
                                              • \bullet\,\,x_{13} = \frac{1}{2}\sqrt{3} + \frac{1}{2}i\\
                                              • \bullet\,\,x_{14} = \frac{1}{2}\sqrt{3} - \frac{1}{2}i\\
                                              • \bullet\,\,x_{15} = -\frac{1}{2}\sqrt{3} + \frac{1}{2}i\\
                                              • \bullet\,\,x_{16} = -\frac{1}{2}\sqrt{3} - \frac{1}{2}i\\
                                              • \bullet\,\,x_{17} = \sqrt{\frac{1}{2}} + \sqrt{\frac{1}{2}}i\\
                                              • \bullet\,\,x_{18} = \sqrt{\frac{1}{2}} - \sqrt{\frac{1}{2}}i\\
                                              • \bullet\,\,x_{19} = -\sqrt{\frac{1}{2}} + \sqrt{\frac{1}{2}}i\\
                                              • \bullet\,\,x_{20} = -\sqrt{\frac{1}{2}} - \sqrt{\frac{1}{2}}i\\
                                              • \bullet\,\,x_{21} = \frac{-1}{4} + \frac{1}{4}\sqrt{5} + i \sqrt{\frac{1}{8}\sqrt{5} + \frac{5}{8}}\\
                                              • \bullet\,\,x_{22} = \frac{-1}{4} + \frac{1}{4}\sqrt{5} - i \sqrt{\frac{1}{8}\sqrt{5} + \frac{5}{8}}\\
                                              • \bullet\,\,x_{23} = \frac{-1}{4} - \frac{1}{4}\sqrt{5} + i \sqrt{\frac{-1}{8}\sqrt{5} + \frac{5}{8}}\\
                                              • \bullet\,\,x_{24} = \frac{-1}{4} - \frac{1}{4}\sqrt{5} - i \sqrt{\frac{-1}{8}\sqrt{5} + \frac{5}{8}}\\
                                              • \bullet\,\,x_{25} = \cos{ \frac{2 \pi }{15}} + i \sin{\frac{2 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right) + \frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                                              • \bullet\,\,x_{26} = \cos{ \frac{4 \pi }{15}} + i \sin{\frac{4 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right) + \frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                                              • \bullet\,\,x_{27} = \cos{ \frac{8 \pi }{15}} + i \sin{\frac{8 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right) + \frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                                              • \bullet\,\,x_{28} = \cos{ \frac{14 \pi }{15}} + i \sin{\frac{14 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right) + \frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                                              • \bullet\,\,x_{29} = \cos{ \frac{16 \pi }{15}} + i \sin{\frac{16 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)-\frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                                              • \bullet\,\,x_{30} = \cos{ \frac{22 \pi }{15}} + i \sin{\frac{22 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)-\frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                                              • \bullet\,\,x_{31} = \cos{ \frac{26 \pi }{15}} + i \sin{\frac{26 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)-\frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                                              • \bullet\,\,x_{32} = \cos{ \frac{28 \pi }{15}} + i \sin{\frac{28 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)-\frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                                              • \bullet\,\,x_{33} = \cos{\frac{\pi }{10}} + i \sin{\frac{\pi }{10}} = \frac{1}{4}\sqrt{10+2\sqrt{5}} + \frac{i}{4}\left(\sqrt{5}-1\right)\\
                                              • \bullet\,\,x_{34} = \cos{ \frac{3 \pi }{10}} + i \sin{\frac{3 \pi }{10}} = \frac{1}{4}\sqrt{10-2\sqrt{5}} + \frac{i}{4}\left(\sqrt{5}+1\right)\\
                                              • \bullet\,\,x_{35} = \cos{ \frac{7 \pi }{10}} + i \sin{\frac{7 \pi }{10}} = -\frac{1}{4}\sqrt{10-2\sqrt{5}} + \frac{i}{4}\left(\sqrt{5}+1\right)\\
                                              • \bullet\,\,x_{36} = \cos{ \frac{9 \pi }{10}} + i \sin{\frac{9 \pi }{10}} = -\frac{1}{4}\sqrt{10+2\sqrt{5}} + \frac{i}{4}\left(\sqrt{5}-1\right)\\
                                              • \bullet\,\,x_{37} = \cos{ \frac{11 \pi }{10}} + i \sin{\frac{11 \pi }{10}} = -\frac{1}{4}\sqrt{10+2\sqrt{5}}-\frac{i}{4}\left(\sqrt{5}-1\right)\\
                                              • \bullet\,\,x_{38} = \cos{ \frac{13 \pi }{10}} + i \sin{\frac{13 \pi }{10}} = -\frac{1}{4}\sqrt{10-2\sqrt{5}}-\frac{i}{4}\left(\sqrt{5}+1\right)\\
                                              • \bullet\,\,x_{39} = \cos{ \frac{17 \pi }{10}} + i \sin{\frac{17 \pi }{10}} = \frac{1}{4}\sqrt{10-2\sqrt{5}}-\frac{i}{4}\left(\sqrt{5}+1\right)\\
                                              • \bullet\,\,x_{40} = \cos{ \frac{19 \pi }{10}} + i \sin{\frac{19 \pi }{10}} = \frac{1}{4}\sqrt{10+2\sqrt{5}}-\frac{i}{4}\left(\sqrt{5}-1\right)\\
                                              • \bullet\,\,x_{41} = \cos{\frac{\pi }{12}} + i \sin{\frac{\pi }{12}} = \frac{1}{2}\sqrt{2 + \sqrt{3}} + \frac{i}{2}\sqrt{2 - \sqrt{3}}\\
                                              • \bullet\,\,x_{42} = \cos{ \frac{5 \pi }{12}} + i \sin{\frac{5 \pi }{12}} = \frac{1}{2}\sqrt{2 - \sqrt{3}} + \frac{i}{2}\sqrt{2 + \sqrt{3}}\\
                                              • \bullet\,\,x_{43} = \cos{ \frac{7 \pi }{12}} + i \sin{\frac{7 \pi }{12}} = -\frac{1}{2}\sqrt{2 - \sqrt{3}} + \frac{i}{2}\sqrt{2 + \sqrt{3}}\\
                                              • \bullet\,\,x_{44} = \cos{ \frac{11 \pi }{12}} + i \sin{\frac{11 \pi }{12}} = -\frac{1}{2}\sqrt{2 + \sqrt{3}} + \frac{i}{2}\sqrt{2 - \sqrt{3}}\\
                                              • \bullet\,\,x_{45} = \cos{ \frac{13 \pi }{12}} + i \sin{\frac{13 \pi }{12}} = -\frac{1}{2}\sqrt{2 + \sqrt{3}}-\frac{i}{2}\sqrt{2 - \sqrt{3}}\\
                                              • \bullet\,\,x_{46} = \cos{ \frac{17 \pi }{12}} + i \sin{\frac{17 \pi }{12}} = -\frac{1}{2}\sqrt{2 - \sqrt{3}}-\frac{i}{2}\sqrt{2 + \sqrt{3}}\\
                                              • \bullet\,\,x_{47} = \cos{ \frac{19 \pi }{12}} + i \sin{\frac{19 \pi }{12}} = \frac{1}{2}\sqrt{2 - \sqrt{3}}-\frac{i}{2}\sqrt{2 + \sqrt{3}}\\
                                              • \bullet\,\,x_{48} = \cos{ \frac{23 \pi }{12}} + i \sin{\frac{23 \pi }{12}} = \frac{1}{2}\sqrt{2 + \sqrt{3}}-\frac{i}{2}\sqrt{2 - \sqrt{3}}\\
                                              • \bullet\,\,x_{49} = \cos{\frac{\pi }{15}} + i \sin{\frac{\pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right) + \frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                                              • \bullet\,\,x_{50} = \cos{ \frac{7 \pi }{15}} + i \sin{\frac{7 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right) + \frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                                              • \bullet\,\,x_{51} = \cos{ \frac{11 \pi }{15}} + i \sin{\frac{11 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right) + \frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                                              • \bullet\,\,x_{52} = \cos{ \frac{13 \pi }{15}} + i \sin{\frac{13 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right) + \frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                                              • \bullet\,\,x_{53} = \cos{ \frac{17 \pi }{15}} + i \sin{\frac{17 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)-\frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                                              • \bullet\,\,x_{54} = \cos{ \frac{19 \pi }{15}} + i \sin{\frac{19 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)-\frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                                              • \bullet\,\,x_{55} = \cos{ \frac{23 \pi }{15}} + i \sin{\frac{23 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)-\frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                                              • \bullet\,\,x_{56} = \cos{ \frac{29 \pi }{15}} + i \sin{\frac{29 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)-\frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                                              • \bullet\,\,x_{57} = \cos{\frac{\pi }{20}} + i \sin{\frac{\pi }{20}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                                              • \bullet\,\,x_{58} = \cos{ \frac{3 \pi }{20}} + i \sin{\frac{3 \pi }{20}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                                              • \bullet\,\,x_{59} = \cos{ \frac{7 \pi }{20}} + i \sin{\frac{7 \pi }{20}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                                              • \bullet\,\,x_{60} = \cos{ \frac{9 \pi }{20}} + i \sin{\frac{9 \pi }{20}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                                              • \bullet\,\,x_{61} = \cos{ \frac{11 \pi }{20}} + i \sin{\frac{11 \pi }{20}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                                              • \bullet\,\,x_{62} = \cos{ \frac{13 \pi }{20}} + i \sin{\frac{13 \pi }{20}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                                              • \bullet\,\,x_{63} = \cos{ \frac{17 \pi }{20}} + i \sin{\frac{17 \pi }{20}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                                              • \bullet\,\,x_{64} = \cos{ \frac{19 \pi }{20}} + i \sin{\frac{19 \pi }{20}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                                              • \bullet\,\,x_{65} = \cos{ \frac{21 \pi }{20}} + i \sin{\frac{21 \pi }{20}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                                              • \bullet\,\,x_{66} = \cos{ \frac{23 \pi }{20}} + i \sin{\frac{23 \pi }{20}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                                              • \bullet\,\,x_{67} = \cos{ \frac{27 \pi }{20}} + i \sin{\frac{27 \pi }{20}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                                              • \bullet\,\,x_{68} = \cos{ \frac{29 \pi }{20}} + i \sin{\frac{29 \pi }{20}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                                              • \bullet\,\,x_{69} = \cos{ \frac{31 \pi }{20}} + i \sin{\frac{31 \pi }{20}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                                              • \bullet\,\,x_{70} = \cos{ \frac{33 \pi }{20}} + i \sin{\frac{33 \pi }{20}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                                              • \bullet\,\,x_{71} = \cos{ \frac{37 \pi }{20}} + i \sin{\frac{37 \pi }{20}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                                              • \bullet\,\,x_{72} = \cos{ \frac{39 \pi }{20}} + i \sin{\frac{39 \pi }{20}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                                              • \bullet\,\,x_{73} = \cos{\frac{\pi }{30}} + i \sin{\frac{\pi }{30}} = \frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)\\
                                              • \bullet\,\,x_{74} = \cos{ \frac{7 \pi }{30}} + i \sin{\frac{7 \pi }{30}} = \frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)\\
                                              • \bullet\,\,x_{75} = \cos{ \frac{11 \pi }{30}} + i \sin{\frac{11 \pi }{30}} = \frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)\\
                                              • \bullet\,\,x_{76} = \cos{ \frac{13 \pi }{30}} + i \sin{\frac{13 \pi }{30}} = \frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)\\
                                              • \bullet\,\,x_{77} = \cos{ \frac{17 \pi }{30}} + i \sin{\frac{17 \pi }{30}} = -\frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)\\
                                              • \bullet\,\,x_{78} = \cos{ \frac{19 \pi }{30}} + i \sin{\frac{19 \pi }{30}} = -\frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)\\
                                              • \bullet\,\,x_{79} = \cos{ \frac{23 \pi }{30}} + i \sin{\frac{23 \pi }{30}} = -\frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)\\
                                              • \bullet\,\,x_{80} = \cos{ \frac{29 \pi }{30}} + i \sin{\frac{29 \pi }{30}} = -\frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)\\
                                              • \bullet\,\,x_{81} = \cos{ \frac{31 \pi }{30}} + i \sin{\frac{31 \pi }{30}} = -\frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)\\
                                              • \bullet\,\,x_{82} = \cos{ \frac{37 \pi }{30}} + i \sin{\frac{37 \pi }{30}} = -\frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)\\
                                              • \bullet\,\,x_{83} = \cos{ \frac{41 \pi }{30}} + i \sin{\frac{41 \pi }{30}} = -\frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)\\
                                              • \bullet\,\,x_{84} = \cos{ \frac{43 \pi }{30}} + i \sin{\frac{43 \pi }{30}} = -\frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)\\
                                              • \bullet\,\,x_{85} = \cos{ \frac{47 \pi }{30}} + i \sin{\frac{47 \pi }{30}} = \frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)\\
                                              • \bullet\,\,x_{86} = \cos{ \frac{49 \pi }{30}} + i \sin{\frac{49 \pi }{30}} = \frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)\\
                                              • \bullet\,\,x_{87} = \cos{ \frac{53 \pi }{30}} + i \sin{\frac{53 \pi }{30}} = \frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)\\
                                              • \bullet\,\,x_{88} = \cos{ \frac{59 \pi }{30}} + i \sin{\frac{59 \pi }{30}} = \frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)\\
                                              • \bullet\,\,x_{89} = \cos{\frac{\pi }{60}} + i \sin{\frac{\pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                              • \bullet\,\,x_{90} = \cos{ \frac{7 \pi }{60}} + i \sin{\frac{7 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                              • \bullet\,\,x_{91} = \cos{ \frac{11 \pi }{60}} + i \sin{\frac{11 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                              • \bullet\,\,x_{92} = \cos{ \frac{13 \pi }{60}} + i \sin{\frac{13 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                              • \bullet\,\,x_{93} = \cos{ \frac{17 \pi }{60}} + i \sin{\frac{17 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                              • \bullet\,\,x_{94} = \cos{ \frac{19 \pi }{60}} + i \sin{\frac{19 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                              • \bullet\,\,x_{95} = \cos{ \frac{23 \pi }{60}} + i \sin{\frac{23 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                              • \bullet\,\,x_{96} = \cos{ \frac{29 \pi }{60}} + i \sin{\frac{29 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                              • \bullet\,\,x_{97} = \cos{ \frac{31 \pi }{60}} + i \sin{\frac{31 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                              • \bullet\,\,x_{98} = \cos{ \frac{37 \pi }{60}} + i \sin{\frac{37 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                              • \bullet\,\,x_{99} = \cos{ \frac{41 \pi }{60}} + i \sin{\frac{41 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                              • \bullet\,\,x_{100} = \cos{ \frac{43 \pi }{60}} + i \sin{\frac{43 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                              • \bullet\,\,x_{101} = \cos{ \frac{47 \pi }{60}} + i \sin{\frac{47 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                              • \bullet\,\,x_{102} = \cos{ \frac{49 \pi }{60}} + i \sin{\frac{49 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                              • \bullet\,\,x_{103} = \cos{ \frac{53 \pi }{60}} + i \sin{\frac{53 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                              • \bullet\,\,x_{104} = \cos{ \frac{59 \pi }{60}} + i \sin{\frac{59 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                              • \bullet\,\,x_{105} = \cos{ \frac{61 \pi }{60}} + i \sin{\frac{61 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                              • \bullet\,\,x_{106} = \cos{ \frac{67 \pi }{60}} + i \sin{\frac{67 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                              • \bullet\,\,x_{107} = \cos{ \frac{71 \pi }{60}} + i \sin{\frac{71 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                              • \bullet\,\,x_{108} = \cos{ \frac{73 \pi }{60}} + i \sin{\frac{73 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                              • \bullet\,\,x_{109} = \cos{ \frac{77 \pi }{60}} + i \sin{\frac{77 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                              • \bullet\,\,x_{110} = \cos{ \frac{79 \pi }{60}} + i \sin{\frac{79 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                              • \bullet\,\,x_{111} = \cos{ \frac{83 \pi }{60}} + i \sin{\frac{83 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                              • \bullet\,\,x_{112} = \cos{ \frac{89 \pi }{60}} + i \sin{\frac{89 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                              • \bullet\,\,x_{113} = \cos{ \frac{91 \pi }{60}} + i \sin{\frac{91 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                              • \bullet\,\,x_{114} = \cos{ \frac{97 \pi }{60}} + i \sin{\frac{97 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                              • \bullet\,\,x_{115} = \cos{ \frac{101 \pi }{60}} + i \sin{\frac{101 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                              • \bullet\,\,x_{116} = \cos{ \frac{103 \pi }{60}} + i \sin{\frac{103 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                              • \bullet\,\,x_{117} = \cos{ \frac{107 \pi }{60}} + i \sin{\frac{107 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                              • \bullet\,\,x_{118} = \cos{ \frac{109 \pi }{60}} + i \sin{\frac{109 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                              • \bullet\,\,x_{119} = \cos{ \frac{113 \pi }{60}} + i \sin{\frac{113 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                              • \bullet\,\,x_{120} = \cos{ \frac{119 \pi }{60}} + i \sin{\frac{119 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^120 - 1

                                              Irreducible polynomial factors

                                              The 16 factors are:

                                              • x - 1
                                              • x + 1
                                              • x^2 - x + 1
                                              • x^2 + 1
                                              • x^2 + x + 1
                                              • x^4 - x^3 + x^2 - x + 1
                                              • x^4 - x^2 + 1
                                              • x^4 + 1
                                              • x^4 + x^3 + x^2 + x + 1
                                              • x^8 - x^7 + x^5 - x^4 + x^3 - x + 1
                                              • x^8 - x^6 + x^4 - x^2 + 1
                                              • x^8 - x^4 + 1
                                              • x^8 + x^7 - x^5 - x^4 - x^3 + x + 1
                                              • x^16 - x^12 + x^8 - x^4 + 1
                                              • x^16 + x^14 - x^10 - x^8 - x^6 + x^2 + 1
                                              • x^32 + x^28 - x^20 - x^16 - x^12 + x^4 + 1

                                              Roots

                                              The 120 roots are:

                                              • x1 = 1
                                              • x2 = -1
                                              • x3 = 1 / 2 - (1 / 2)*3^(1/2) *I
                                              • x4 = 1 / 2 + (1 / 2)*3^(1/2) *I
                                              • x5 = - 1 *I
                                              • x6 = 1 *I
                                              • x7 = -1 / 2 - (1 / 2)*3^(1/2) *I
                                              • x8 = -1 / 2 + (1 / 2)*3^(1/2) *I
                                              • x9 = 1 / 4 + (1 / 4)*5^(1/2) + I * ((-1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                                              • x10 = 1 / 4 + (1 / 4)*5^(1/2) - I * ((-1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                                              • x11 = 1 / 4 - (1 / 4)*5^(1/2) + I * ((1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                                              • x12 = 1 / 4 - (1 / 4)*5^(1/2) - I * ((1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                                              • x13 = (1 / 2)*3^(1/2) + (1 / 2)*I
                                              • x14 = (1 / 2)*3^(1/2) - (1 / 2)*I
                                              • x15 = -(1 / 2)*3^(1/2) + (1 / 2)*I
                                              • x16 = -(1 / 2)*3^(1/2) - (1 / 2)*I
                                              • x17 = (1 / 2)^(1/2) + (1 / 2)^(1/2)*I
                                              • x18 = (1 / 2)^(1/2) - (1 / 2)^(1/2)*I
                                              • x19 = -(1 / 2)^(1/2) + (1 / 2)^(1/2)*I
                                              • x20 = -(1 / 2)^(1/2) - (1 / 2)^(1/2)*I
                                              • x21 = -1 / 4 + (1 / 4)*5^(1/2) + I * ((1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                                              • x22 = -1 / 4 + (1 / 4)*5^(1/2) - I * ((1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                                              • x23 = -1 / 4 - (1 / 4)*5^(1/2) + I * ((-1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                                              • x24 = -1 / 4 - (1 / 4)*5^(1/2) - I * ((-1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                                              • x25 = cos (2*Pi/15) + I *sin(2*Pi/15) = (1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1) + (I/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                                              • x26 = cos (4*Pi/15) + I *sin(4*Pi/15) = (1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1) + (I/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                                              • x27 = cos (8*Pi/15) + I *sin(8*Pi/15) = -(1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1) + (I/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                                              • x28 = cos (14*Pi/15) + I *sin(14*Pi/15) = -(1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1) + (I/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                                              • x29 = cos (16*Pi/15) + I *sin(16*Pi/15) = -(1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)-(I/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                                              • x30 = cos (22*Pi/15) + I *sin(22*Pi/15) = -(1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)-(I/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                                              • x31 = cos (26*Pi/15) + I *sin(26*Pi/15) = (1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)-(I/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                                              • x32 = cos (28*Pi/15) + I *sin(28*Pi/15) = (1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)-(I/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                                              • x33 = cos(Pi/10) + I *sin(Pi/10) = (1/4)*(10+2*5^(1/2))^(1/2) + (I/4)*(5^(1/2)-1)
                                              • x34 = cos (3*Pi/10) + I *sin(3*Pi/10) = (1/4)*(10-2*5^(1/2))^(1/2) + (I/4)*(5^(1/2)+1)
                                              • x35 = cos (7*Pi/10) + I *sin(7*Pi/10) = -(1/4)*(10-2*5^(1/2))^(1/2) + (I/4)*(5^(1/2)+1)
                                              • x36 = cos (9*Pi/10) + I *sin(9*Pi/10) = -(1/4)*(10+2*5^(1/2))^(1/2) + (I/4)*(5^(1/2)-1)
                                              • x37 = cos (11*Pi/10) + I *sin(11*Pi/10) = -(1/4)*(10+2*5^(1/2))^(1/2)-(I/4)*(5^(1/2)-1)
                                              • x38 = cos (13*Pi/10) + I *sin(13*Pi/10) = -(1/4)*(10-2*5^(1/2))^(1/2)-(I/4)*(5^(1/2)+1)
                                              • x39 = cos (17*Pi/10) + I *sin(17*Pi/10) = (1/4)*(10-2*5^(1/2))^(1/2)-(I/4)*(5^(1/2)+1)
                                              • x40 = cos (19*Pi/10) + I *sin(19*Pi/10) = (1/4)*(10+2*5^(1/2))^(1/2)-(I/4)*(5^(1/2)-1)
                                              • x41 = cos(Pi/12) + I *sin(Pi/12) = (1/2)*(2 + (3)^(1/2))^(1/2) + (I/2)*(2 - (3)^(1/2))^(1/2)
                                              • x42 = cos (5*Pi/12) + I *sin(5*Pi/12) = (1/2)*(2 - (3)^(1/2))^(1/2) + (I/2)*(2 + (3)^(1/2))^(1/2)
                                              • x43 = cos (7*Pi/12) + I *sin(7*Pi/12) = -(1/2)*(2 - (3)^(1/2))^(1/2) + (I/2)*(2 + (3)^(1/2))^(1/2)
                                              • x44 = cos (11*Pi/12) + I *sin(11*Pi/12) = -(1/2)*(2 + (3)^(1/2))^(1/2) + (I/2)*(2 - (3)^(1/2))^(1/2)
                                              • x45 = cos (13*Pi/12) + I *sin(13*Pi/12) = -(1/2)*(2 + (3)^(1/2))^(1/2)-(I/2)*(2 - (3)^(1/2))^(1/2)
                                              • x46 = cos (17*Pi/12) + I *sin(17*Pi/12) = -(1/2)*(2 - (3)^(1/2))^(1/2)-(I/2)*(2 + (3)^(1/2))^(1/2)
                                              • x47 = cos (19*Pi/12) + I *sin(19*Pi/12) = (1/2)*(2 - (3)^(1/2))^(1/2)-(I/2)*(2 + (3)^(1/2))^(1/2)
                                              • x48 = cos (23*Pi/12) + I *sin(23*Pi/12) = (1/2)*(2 + (3)^(1/2))^(1/2)-(I/2)*(2 - (3)^(1/2))^(1/2)
                                              • x49 = cos(Pi/15) + I *sin(Pi/15) = (1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1) + (I/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                                              • x50 = cos (7*Pi/15) + I *sin(7*Pi/15) = (1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1) + (I/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                                              • x51 = cos (11*Pi/15) + I *sin(11*Pi/15) = -(1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1) + (I/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                                              • x52 = cos (13*Pi/15) + I *sin(13*Pi/15) = -(1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1) + (I/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                                              • x53 = cos (17*Pi/15) + I *sin(17*Pi/15) = -(1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)-(I/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                                              • x54 = cos (19*Pi/15) + I *sin(19*Pi/15) = -(1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)-(I/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                                              • x55 = cos (23*Pi/15) + I *sin(23*Pi/15) = (1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)-(I/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                                              • x56 = cos (29*Pi/15) + I *sin(29*Pi/15) = (1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)-(I/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                                              • x57 = cos(Pi/20) + I *sin(Pi/20) = (1/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                                              • x58 = cos (3*Pi/20) + I *sin(3*Pi/20) = (1/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                                              • x59 = cos (7*Pi/20) + I *sin(7*Pi/20) = (1/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                                              • x60 = cos (9*Pi/20) + I *sin(9*Pi/20) = (1/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                                              • x61 = cos (11*Pi/20) + I *sin(11*Pi/20) = -(1/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                                              • x62 = cos (13*Pi/20) + I *sin(13*Pi/20) = -(1/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                                              • x63 = cos (17*Pi/20) + I *sin(17*Pi/20) = -(1/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                                              • x64 = cos (19*Pi/20) + I *sin(19*Pi/20) = -(1/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                                              • x65 = cos (21*Pi/20) + I *sin(21*Pi/20) = -(1/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                                              • x66 = cos (23*Pi/20) + I *sin(23*Pi/20) = -(1/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                                              • x67 = cos (27*Pi/20) + I *sin(27*Pi/20) = -(1/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                                              • x68 = cos (29*Pi/20) + I *sin(29*Pi/20) = -(1/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                                              • x69 = cos (31*Pi/20) + I *sin(31*Pi/20) = (1/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                                              • x70 = cos (33*Pi/20) + I *sin(33*Pi/20) = (1/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                                              • x71 = cos (37*Pi/20) + I *sin(37*Pi/20) = (1/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                                              • x72 = cos (39*Pi/20) + I *sin(39*Pi/20) = (1/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                                              • x73 = cos(Pi/30) + I *sin(Pi/30) = (1/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)
                                              • x74 = cos (7*Pi/30) + I *sin(7*Pi/30) = (1/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)
                                              • x75 = cos (11*Pi/30) + I *sin(11*Pi/30) = (1/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)
                                              • x76 = cos (13*Pi/30) + I *sin(13*Pi/30) = (1/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)
                                              • x77 = cos (17*Pi/30) + I *sin(17*Pi/30) = -(1/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)
                                              • x78 = cos (19*Pi/30) + I *sin(19*Pi/30) = -(1/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)
                                              • x79 = cos (23*Pi/30) + I *sin(23*Pi/30) = -(1/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)
                                              • x80 = cos (29*Pi/30) + I *sin(29*Pi/30) = -(1/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)
                                              • x81 = cos (31*Pi/30) + I *sin(31*Pi/30) = -(1/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)
                                              • x82 = cos (37*Pi/30) + I *sin(37*Pi/30) = -(1/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)
                                              • x83 = cos (41*Pi/30) + I *sin(41*Pi/30) = -(1/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)
                                              • x84 = cos (43*Pi/30) + I *sin(43*Pi/30) = -(1/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)
                                              • x85 = cos (47*Pi/30) + I *sin(47*Pi/30) = (1/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)
                                              • x86 = cos (49*Pi/30) + I *sin(49*Pi/30) = (1/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)
                                              • x87 = cos (53*Pi/30) + I *sin(53*Pi/30) = (1/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)
                                              • x88 = cos (59*Pi/30) + I *sin(59*Pi/30) = (1/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)
                                              • x89 = cos(Pi/60) + I *sin(Pi/60) = (1/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                              • x90 = cos (7*Pi/60) + I *sin(7*Pi/60) = (1/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                              • x91 = cos (11*Pi/60) + I *sin(11*Pi/60) = (1/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                              • x92 = cos (13*Pi/60) + I *sin(13*Pi/60) = (1/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                              • x93 = cos (17*Pi/60) + I *sin(17*Pi/60) = (1/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                              • x94 = cos (19*Pi/60) + I *sin(19*Pi/60) = (1/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                              • x95 = cos (23*Pi/60) + I *sin(23*Pi/60) = (1/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                              • x96 = cos (29*Pi/60) + I *sin(29*Pi/60) = (1/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                              • x97 = cos (31*Pi/60) + I *sin(31*Pi/60) = -(1/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                              • x98 = cos (37*Pi/60) + I *sin(37*Pi/60) = -(1/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                              • x99 = cos (41*Pi/60) + I *sin(41*Pi/60) = -(1/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                              • x100 = cos (43*Pi/60) + I *sin(43*Pi/60) = -(1/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                              • x101 = cos (47*Pi/60) + I *sin(47*Pi/60) = -(1/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                              • x102 = cos (49*Pi/60) + I *sin(49*Pi/60) = -(1/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                              • x103 = cos (53*Pi/60) + I *sin(53*Pi/60) = -(1/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                              • x104 = cos (59*Pi/60) + I *sin(59*Pi/60) = -(1/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                              • x105 = cos (61*Pi/60) + I *sin(61*Pi/60) = -(1/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                              • x106 = cos (67*Pi/60) + I *sin(67*Pi/60) = -(1/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                              • x107 = cos (71*Pi/60) + I *sin(71*Pi/60) = -(1/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                              • x108 = cos (73*Pi/60) + I *sin(73*Pi/60) = -(1/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                              • x109 = cos (77*Pi/60) + I *sin(77*Pi/60) = -(1/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                              • x110 = cos (79*Pi/60) + I *sin(79*Pi/60) = -(1/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                              • x111 = cos (83*Pi/60) + I *sin(83*Pi/60) = -(1/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                              • x112 = cos (89*Pi/60) + I *sin(89*Pi/60) = -(1/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                              • x113 = cos (91*Pi/60) + I *sin(91*Pi/60) = (1/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                              • x114 = cos (97*Pi/60) + I *sin(97*Pi/60) = (1/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                              • x115 = cos (101*Pi/60) + I *sin(101*Pi/60) = (1/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                              • x116 = cos (103*Pi/60) + I *sin(103*Pi/60) = (1/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                              • x117 = cos (107*Pi/60) + I *sin(107*Pi/60) = (1/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                              • x118 = cos (109*Pi/60) + I *sin(109*Pi/60) = (1/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                              • x119 = cos (113*Pi/60) + I *sin(113*Pi/60) = (1/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                              • x120 = cos (119*Pi/60) + I *sin(119*Pi/60) = (1/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x10 + x5 + 6 (mod 7)

                                              Irreducible polynomial factors

                                              The 3 factors are:

                                              • x2 + 3⁢x + 6
                                              • x4 + 5⁢x2 + 3⁢x + 1
                                              • x4 + 4⁢x3 + 5⁢x2 + 1

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^{10} + x^{5} + 6 (\pmod 7)

                                              Irreducible polynomial factors

                                              The 3 factors are:

                                              • \begin{array}{l}
                                              • \bullet\,\,x^{2} + 3x + 6\\
                                              • \bullet\,\,x^{4} + 5x^{2} + 3x + 1\\
                                              • \bullet\,\,x^{4} + 4x^{3} + 5x^{2} + 1\\
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              Mod(x^10 + x^5 + 6, 7)

                                              Irreducible polynomial factors

                                              The 3 factors are:

                                              • x^2 + 3*x + 6
                                              • x^4 + 5*x^2 + 3*x + 1
                                              • x^4 + 4*x^3 + 5*x^2 + 1

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x + 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              • x1 = -23

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x + 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              • \begin{array}{l}
                                              • \bullet\,\,x_{1} = -23\\
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x + 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              • x1 = -23

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              6x2 + 79⁢x + 115

                                              Irreducible polynomial factors

                                              The 2 factors are:

                                              • 2x + 23
                                              • 3x + 5

                                              Roots

                                              The 2 roots are:

                                              • x1 = -232
                                              • x2 = -53

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              6x^{2} + 79x + 115

                                              Irreducible polynomial factors

                                              The 2 factors are:

                                              • \begin{array}{l}
                                              • \bullet\,\,2x + 23\\
                                              • \bullet\,\,3x + 5\\
                                              • \end{array}

                                              Roots

                                              The 2 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,x_{1} = \frac{-23}{2}\\
                                              • \bullet\,\,x_{2} = \frac{-5}{3}\\
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              6*x^2 + 79*x + 115

                                              Irreducible polynomial factors

                                              The 2 factors are:

                                              • 2x + 23
                                              • 3x + 5

                                              Roots

                                              The 2 roots are:

                                              • x1 = -23 / 2
                                              • x2 = -5 / 3

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x2 + 7⁢x + 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 2 roots are:

                                              • x1 = -7212 43 i
                                              • x2 = -72 + 12 43 i

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^{2} + 7x + 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 2 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,x_{1} = \frac{-7}{2} - \frac{1}{2}\sqrt{43} i\\
                                              • \bullet\,\,x_{2} = \frac{-7}{2} + \frac{1}{2}\sqrt{43} i\\
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^2 + 7*x + 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 2 roots are:

                                              • x1 = -7 / 2 - (1 / 2)*43^(1/2) *I
                                              • x2 = -7 / 2 + (1 / 2)*43^(1/2) *I

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x3 − 4⁢x2 + 12⁢x + 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 3 roots are:

                                              • r = -92554 + 56 13153
                                              • s = −92554 + 56 13153
                                              • x1 = 43 + r + s
                                              • x2 = 43r + s2 + i rs23
                                              • x3 = 43r + s2 − i rs23

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^{3} - 4x^{2} + 12x + 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 3 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,r = \sqrt[3]{\frac{-925}{54} + \frac{5}{6}\sqrt{\frac{1315}{3}}}\\
                                              • \bullet\,\,s = -\sqrt[3]{\frac{925}{54} + \frac{5}{6}\sqrt{\frac{1315}{3}}}\\
                                              • \bullet\,\,x_{1} = \frac{4}{3} + r + s\\
                                              • \bullet\,\,x_{2} = \frac{4}{3} - \frac{r + s}{2} + i \frac{r - s}{2}\sqrt{3}\\
                                              • \bullet\,\,x_{3} = \frac{4}{3} - \frac{r + s}{2} - i \frac{r - s}{2}\sqrt{3}\\
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^3 - 4*x^2 + 12*x + 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 3 roots are:

                                              • r = (-925 / 54 + (5 / 6)*(1315 / 3)^(1/2))^(1/3)
                                              • s = -(925 / 54 + (5 / 6)*(1315 / 3)^(1/2))^(1/3)
                                              • x1 = 4 / 3 + r + s
                                              • x2 = 4 / 3 - (r + s) / 2 + (I/2) * (r - s) * 3^(1/2)
                                              • x3 = 4 / 3 - (r + s) / 2 - (I/2) * (r - s) * 3^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x3x2 + 2⁢x + 5

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 3 roots are:

                                              • r = -15154 + 16 8633
                                              • s = −15154 + 16 8633
                                              • x1 = 13 + r + s
                                              • x2 = 13r + s2 + i rs23
                                              • x3 = 13r + s2 − i rs23

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^{3} - x^{2} + 2x + 5

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 3 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,r = \sqrt[3]{\frac{-151}{54} + \frac{1}{6}\sqrt{\frac{863}{3}}}\\
                                              • \bullet\,\,s = -\sqrt[3]{\frac{151}{54} + \frac{1}{6}\sqrt{\frac{863}{3}}}\\
                                              • \bullet\,\,x_{1} = \frac{1}{3} + r + s\\
                                              • \bullet\,\,x_{2} = \frac{1}{3} - \frac{r + s}{2} + i \frac{r - s}{2}\sqrt{3}\\
                                              • \bullet\,\,x_{3} = \frac{1}{3} - \frac{r + s}{2} - i \frac{r - s}{2}\sqrt{3}\\
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^3 - x^2 + 2*x + 5

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 3 roots are:

                                              • r = (-151 / 54 + (1 / 6)*(863 / 3)^(1/2))^(1/3)
                                              • s = -(151 / 54 + (1 / 6)*(863 / 3)^(1/2))^(1/3)
                                              • x1 = 1 / 3 + r + s
                                              • x2 = 1 / 3 - (r + s) / 2 + (I/2) * (r - s) * 3^(1/2)
                                              • x3 = 1 / 3 - (r + s) / 2 - (I/2) * (r - s) * 3^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x3 + 2

                                              Irreducible polynomial factors

                                              The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                              Roots

                                              The 3 roots are:

                                              • x1 = −2
                                              • x2 = 12 2 + i23 2
                                              • x3 = 12 2i23 2

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^{3} + 2

                                              Irreducible polynomial factors

                                              The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                              Roots

                                              The 3 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,x_{1} = -\sqrt[3]{2}\\
                                              • \bullet\,\,x_{2} = \frac{1}{2} \sqrt[3]{2} + \frac{i}{2}\sqrt{3} \sqrt[3]{2}\\
                                              • \bullet\,\,x_{3} = \frac{1}{2} \sqrt[3]{2} - \frac{i}{2}\sqrt{3} \sqrt[3]{2}\\
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^3 + 2

                                              Irreducible polynomial factors

                                              The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                              Roots

                                              The 3 roots are:

                                              • x1 = -2^(1/3)
                                              • x2 = (1/2) *2^(1/3) + I/2*3^(1/2) *2^(1/3)
                                              • x3 = (1/2) *2^(1/3) - I/2*3^(1/2) *2^(1/3)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x3 − 2

                                              Irreducible polynomial factors

                                              The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                              Roots

                                              The 3 roots are:

                                              • x1 = 2
                                              • x2 = − 12 2 + i23 2
                                              • x3 = − 12 2i23 2

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^{3} - 2

                                              Irreducible polynomial factors

                                              The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                              Roots

                                              The 3 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,x_{1} = \sqrt[3]{2}\\
                                              • \bullet\,\,x_{2} = - \frac{1}{2} \sqrt[3]{2} + \frac{i}{2}\sqrt{3} \sqrt[3]{2}\\
                                              • \bullet\,\,x_{3} = - \frac{1}{2} \sqrt[3]{2} - \frac{i}{2}\sqrt{3} \sqrt[3]{2}\\
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^3 - 2

                                              Irreducible polynomial factors

                                              The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                              Roots

                                              The 3 roots are:

                                              • x1 = 2^(1/3)
                                              • x2 = (-1/2) *2^(1/3) + I/2*3^(1/2) *2^(1/3)
                                              • x3 = (-1/2) *2^(1/3) - I/2*3^(1/2) *2^(1/3)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x3 + 6⁢x2 + 18

                                              Irreducible polynomial factors

                                              The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                              Roots

                                              The 3 roots are:

                                              • r = −2
                                              • s = −32
                                              • x1 = -2 + r + s
                                              • x2 = -2 − r + s2 + i rs23
                                              • x3 = -2 − r + s2 − i rs23

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^{3} + 6x^{2} + 18

                                              Irreducible polynomial factors

                                              The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                              Roots

                                              The 3 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,r = -\sqrt[3]{2}\\
                                              • \bullet\,\,s = -\sqrt[3]{32}\\
                                              • \bullet\,\,x_{1} = -2 + r + s\\
                                              • \bullet\,\,x_{2} = -2 - \frac{r + s}{2} + i \frac{r - s}{2}\sqrt{3}\\
                                              • \bullet\,\,x_{3} = -2 - \frac{r + s}{2} - i \frac{r - s}{2}\sqrt{3}\\
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^3 + 6*x^2 + 18

                                              Irreducible polynomial factors

                                              The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                              Roots

                                              The 3 roots are:

                                              • r = -(2)^(1/3)
                                              • s = -(32)^(1/3)
                                              • x1 = -2 + r + s
                                              • x2 = -2 - (r + s) / 2 + (I/2) * (r - s) * 3^(1/2)
                                              • x3 = -2 - (r + s) / 2 - (I/2) * (r - s) * 3^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              3*x^3 + 3*x^2 + x - 5

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 3 roots are:

                                              • x1 = -1 / 3 + (46 / 27)^(1/3)
                                              • x2 = -1 / 3 + (-1/2) *(46 / 27)^(1/3) + I/2*3^(1/2) *(46 / 27)^(1/3)
                                              • x3 = -1 / 3 + (-1/2) *(46 / 27)^(1/3) - I/2*3^(1/2) *(46 / 27)^(1/3)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x4 + 7

                                              Irreducible polynomial factors

                                              The polynomial is irreducible because of Eisenstein's criterion (prime = 7)

                                              Roots

                                              The 4 roots are:

                                              • x1 = 12 7 + i 12 7
                                              • x2 = 12 7 − i 12 7
                                              • x3 = −12 7 + i 12 7
                                              • x4 = −12 7 − i 12 7

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x4 − 7

                                              Irreducible polynomial factors

                                              The polynomial is irreducible because of Eisenstein's criterion (prime = 7)

                                              Roots

                                              The 4 roots are:

                                              • x1 = 7
                                              • x2 = i 7
                                              • x3 = −7
                                              • x4 = −i 7

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^4 + x^2 - 2*x + 1

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • x1 = ((1 / 8)*17^(1/2) - 1 / 8)^(1/2) + I*((1 / 2) - ((1 / 8)*17^(1/2) + 1 / 8)^(1/2))
                                              • x2 = ((1 / 8)*17^(1/2) - 1 / 8)^(1/2) + I*(- (1 / 2) + ((1 / 8)*17^(1/2) + 1 / 8)^(1/2))
                                              • x3 = - ((1 / 8)*17^(1/2) - 1 / 8)^(1/2) + I*((1 / 2) + ((1 / 8)*17^(1/2) + 1 / 8)^(1/2))
                                              • x4 = - ((1 / 8)*17^(1/2) - 1 / 8)^(1/2) + I*(- (1 / 2) - ((1 / 8)*17^(1/2) + 1 / 8)^(1/2))

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x3 − 12⁢x2 + 12⁢x + 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 3 roots are:

                                              • t = 13arc cos1916 13
                                              • x1 = 4 + 4 3 cos(t)
                                              • x2 = 4 + 4 3 cost + 2π3
                                              • x3 = 4 + 4 3 cost + 4π3

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^{3} - 12x^{2} + 12x + 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 3 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,t = \frac{1}{3}\arccos\left(\frac{19}{16}\sqrt{\frac{1}{3}}\right)\\
                                              • \bullet\,\,x_{1} = 4 + 4\sqrt{3} \cos{(t)\\
                                              • \bullet\,\,x_{2} = 4 + 4\sqrt{3} \cos{\left(t + \frac{2 \pi }{3}\right)}\\
                                              • \bullet\,\,x_{3} = 4 + 4\sqrt{3} \cos{\left(t + \frac{4 \pi }{3}\right)}\\
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^3 - 12*x^2 + 12*x + 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 3 roots are:

                                              • t = (1/3) * acos((19 / 16)*(1 / 3)^(1/2))
                                              • x1 = 4 + 4*3^(1/2)* cos(t)
                                              • x2 = 4 + 4*3^(1/2)* cos(t + 2 * Pi / 3)
                                              • x3 = 4 + 4*3^(1/2)* cos(t + 4 * Pi / 3)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x4 + 3⁢x2 + 12⁢x + 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • t = arccos-35 395
                                              • S = 12-2 + 23 285cost3
                                              • x1 = S + i24 S² + 6 + 12S
                                              • x2 = Si24 S² + 6 + 12S
                                              • x3 = − S + i24 S² + 6 − 12S
                                              • x4 = − Si24 S² + 6 − 12S

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^{4} + 3x^{2} + 12x + 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,t = \arccos\left(\frac{-3}{5}\sqrt{\frac{3}{95}}\right)\\
                                              • \bullet\,\,S = \frac{1}{2}\sqrt{-2 + \frac{2}{3}\sqrt{285}\cos{\frac{t}{3}}}\\
                                              • \bullet\,\,x_{1} = S + \frac{i}{2}\sqrt{4 S^2 + 6 + \frac{12}{S}}\\
                                              • \bullet\,\,x_{2} = S - \frac{i}{2}\sqrt{4 S^2 + 6 + \frac{12}{S}}\\
                                              • \bullet\,\,x_{3} = - S + \frac{i}{2}\sqrt{4 S^2 + 6 - \frac{12}{S}}\\
                                              • \bullet\,\,x_{4} = - S - \frac{i}{2}\sqrt{4 S^2 + 6 - \frac{12}{S}}\\
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^4 + 3*x^2 + 12*x + 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • t = acos((-3 / 5)*(3 / 95)^(1/2))
                                              • S = (1/2)*(-2 + (2 / 3)*285^(1/2)*cos(t / 3))^(1/2)
                                              • x1 = S + (I/2)*(4 *S^2 + 6 + 12 / S)^(1/2)
                                              • x2 = S - (I/2)*(4 *S^2 + 6 + 12 / S)^(1/2)
                                              • x3 = - S + (I/2)*(4 *S^2 + 6 - 12 / S)^(1/2)
                                              • x4 = - S - (I/2)*(4 *S^2 + 6 - 12 / S)^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x4 + 4⁢x2 + 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • x1 = 12 23 − 1 + i 12 23 + 1
                                              • x2 = 12 23 − 1 − i 12 23 + 1
                                              • x3 = −12 23 − 1 + i 12 23 + 1
                                              • x4 = −12 23 − 1 − i 12 23 + 1

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^{4} + 4x^{2} + 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,x_{1} = \sqrt{\frac{1}{2}\sqrt{23} - 1} + i \sqrt{\frac{1}{2}\sqrt{23} + 1}\\
                                              • \bullet\,\,x_{2} = \sqrt{\frac{1}{2}\sqrt{23} - 1} - i \sqrt{\frac{1}{2}\sqrt{23} + 1}\\
                                              • \bullet\,\,x_{3} = -\sqrt{\frac{1}{2}\sqrt{23} - 1} + i \sqrt{\frac{1}{2}\sqrt{23} + 1}\\
                                              • \bullet\,\,x_{4} = -\sqrt{\frac{1}{2}\sqrt{23} - 1} - i \sqrt{\frac{1}{2}\sqrt{23} + 1}\\
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^4 + 4*x^2 + 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • x1 = ((1 / 2)*23^(1/2) - 1)^(1/2) + I* ((1 / 2)*23^(1/2) + 1)^(1/2)
                                              • x2 = ((1 / 2)*23^(1/2) - 1)^(1/2) - I* ((1 / 2)*23^(1/2) + 1)^(1/2)
                                              • x3 = -((1 / 2)*23^(1/2) - 1)^(1/2) + I* ((1 / 2)*23^(1/2) + 1)^(1/2)
                                              • x4 = -((1 / 2)*23^(1/2) - 1)^(1/2) - I* ((1 / 2)*23^(1/2) + 1)^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x4 + 4⁢x2 − 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • x1 = (-2) + 3 3
                                              • x2 = i 2 + 3 3
                                              • x3 = −(-2) + 3 3
                                              • x4 = −i 2 + 3 3

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^{4} + 4x^{2} - 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,x_{1} = \sqrt{(-2) + 3\sqrt{3}}\\
                                              • \bullet\,\,x_{2} = i \sqrt{2 + 3\sqrt{3}}\\
                                              • \bullet\,\,x_{3} = -\sqrt{(-2) + 3\sqrt{3}}\\
                                              • \bullet\,\,x_{4} = -i \sqrt{2 + 3\sqrt{3}}\\
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^4 + 4*x^2 - 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • x1 = ((-2) + 3*3^(1/2))^(1/2)
                                              • x2 = I *(2 + 3*3^(1/2))^(1/2)
                                              • x3 = -((-2) + 3*3^(1/2))^(1/2)
                                              • x4 = -I *(2 + 3*3^(1/2))^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^4 + 18*x^2 + 25

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • x1 = I * (2^(1/2) + 7^(1/2))
                                              • x2 = I * (2^(1/2) - 7^(1/2))
                                              • x3 = -I * (2^(1/2) + 7^(1/2))
                                              • x4 = -I * (2^(1/2) - 7^(1/2))

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^4 - 18*x^2 + 25

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • x1 = 7^(1/2) + 2^(1/2)
                                              • x2 = 7^(1/2) - 2^(1/2)
                                              • x3 = -7^(1/2) + 2^(1/2)
                                              • x4 = -7^(1/2) - 2^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^4 + 18*x^2 + 144

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • x1 = (3 / 2)^(1/2) + (21 / 2)^(1/2)*I
                                              • x2 = (3 / 2)^(1/2) - (21 / 2)^(1/2)*I
                                              • x3 = -(3 / 2)^(1/2) + (21 / 2)^(1/2)*I
                                              • x4 = -(3 / 2)^(1/2) - (21 / 2)^(1/2)*I

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^4 - 18*x^2 + 144

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • x1 = (21 / 2)^(1/2) + (3 / 2)^(1/2)*I
                                              • x2 = (21 / 2)^(1/2) - (3 / 2)^(1/2)*I
                                              • x3 = -(21 / 2)^(1/2) + (3 / 2)^(1/2)*I
                                              • x4 = -(21 / 2)^(1/2) - (3 / 2)^(1/2)*I

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^4 + 18*x^2 + 24

                                              Irreducible polynomial factors

                                              The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                                              Roots

                                              The 4 roots are:

                                              • x1 = I *(9 - 57^(1/2))^(1/2)
                                              • x2 = I *(9 + 57^(1/2))^(1/2)
                                              • x3 = -I *(9 - 57^(1/2))^(1/2)
                                              • x4 = -I *(9 + 57^(1/2))^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^4 - 18*x^2 + 24

                                              Irreducible polynomial factors

                                              The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                                              Roots

                                              The 4 roots are:

                                              • x1 = (9 + 57^(1/2))^(1/2)
                                              • x2 = (9 - 57^(1/2))^(1/2)
                                              • x3 = -(9 + 57^(1/2))^(1/2)
                                              • x4 = -(9 - 57^(1/2))^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^4 + 18*x^2 + 95

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • x1 = ((1 / 2)*95^(1/2) - (9 / 2))^(1/2) + I* ((1 / 2)*95^(1/2) + (9 / 2))^(1/2)
                                              • x2 = ((1 / 2)*95^(1/2) - (9 / 2))^(1/2) - I* ((1 / 2)*95^(1/2) + (9 / 2))^(1/2)
                                              • x3 = -((1 / 2)*95^(1/2) - (9 / 2))^(1/2) + I* ((1 / 2)*95^(1/2) + (9 / 2))^(1/2)
                                              • x4 = -((1 / 2)*95^(1/2) - (9 / 2))^(1/2) - I* ((1 / 2)*95^(1/2) + (9 / 2))^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^4 - 18*x^2 + 95

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • x1 = ((1 / 2)*95^(1/2) + (9 / 2))^(1/2) + I* ((1 / 2)*95^(1/2) - (9 / 2))^(1/2)
                                              • x2 = ((1 / 2)*95^(1/2) + (9 / 2))^(1/2) - I* ((1 / 2)*95^(1/2) - (9 / 2))^(1/2)
                                              • x3 = -((1 / 2)*95^(1/2) + (9 / 2))^(1/2) + I* ((1 / 2)*95^(1/2) - (9 / 2))^(1/2)
                                              • x4 = -((1 / 2)*95^(1/2) + (9 / 2))^(1/2) - I* ((1 / 2)*95^(1/2) - (9 / 2))^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^4 + 18*x^2 - 25

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • x1 = ((-9) + 106^(1/2))^(1/2)
                                              • x2 = I *(9 + 106^(1/2))^(1/2)
                                              • x3 = -((-9) + 106^(1/2))^(1/2)
                                              • x4 = -I *(9 + 106^(1/2))^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^4 - 18*x^2 - 25

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • x1 = (9 + 106^(1/2))^(1/2)
                                              • x2 = I *((-9) + 106^(1/2))^(1/2)
                                              • x3 = -(9 + 106^(1/2))^(1/2)
                                              • x4 = -I *((-9) + 106^(1/2))^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^4 + 18*x^2 - 121

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • x1 = ((-9) + 202^(1/2))^(1/2)
                                              • x2 = I *(9 + 202^(1/2))^(1/2)
                                              • x3 = -((-9) + 202^(1/2))^(1/2)
                                              • x4 = -I *(9 + 202^(1/2))^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^4 - 18*x^2 - 121

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • x1 = (9 + 202^(1/2))^(1/2)
                                              • x2 = I *((-9) + 202^(1/2))^(1/2)
                                              • x3 = -(9 + 202^(1/2))^(1/2)
                                              • x4 = -I *((-9) + 202^(1/2))^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^4 + 18*x^2 - 24

                                              Irreducible polynomial factors

                                              The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                                              Roots

                                              The 4 roots are:

                                              • x1 = ((-9) + 105^(1/2))^(1/2)
                                              • x2 = I *(9 + 105^(1/2))^(1/2)
                                              • x3 = -((-9) + 105^(1/2))^(1/2)
                                              • x4 = -I *(9 + 105^(1/2))^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^4 - 18*x^2 - 24

                                              Irreducible polynomial factors

                                              The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                                              Roots

                                              The 4 roots are:

                                              • x1 = (9 + 105^(1/2))^(1/2)
                                              • x2 = I *((-9) + 105^(1/2))^(1/2)
                                              • x3 = -(9 + 105^(1/2))^(1/2)
                                              • x4 = -I *((-9) + 105^(1/2))^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^4 + 18*x^2 - 95

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • x1 = ((-9) + 4*11^(1/2))^(1/2)
                                              • x2 = I *(9 + 4*11^(1/2))^(1/2)
                                              • x3 = -((-9) + 4*11^(1/2))^(1/2)
                                              • x4 = -I *(9 + 4*11^(1/2))^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^4 - 18*x^2 - 95

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • x1 = (9 + 4*11^(1/2))^(1/2)
                                              • x2 = I *((-9) + 4*11^(1/2))^(1/2)
                                              • x3 = -(9 + 4*11^(1/2))^(1/2)
                                              • x4 = -I *((-9) + 4*11^(1/2))^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^4 - 18*x^2 + 3*x + 5

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • t = acos((-549 / 2048)*(3 / 2)^(1/2))
                                              • S = (1/2)*(12 + (16 / 3)*6^(1/2)*cos(t / 3))^(1/2)
                                              • x1 = S + (I/2)*(4 *S^2 - 36 + 3 / S)^(1/2)
                                              • x2 = S - (I/2)*(4 *S^2 - 36 + 3 / S)^(1/2)
                                              • x3 = - S + (I/2)*(4 *S^2 - 36 - 3 / S)^(1/2)
                                              • x4 = - S - (I/2)*(4 *S^2 - 36 - 3 / S)^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^4 - 18*x^2 - 3*x + 5

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • t = acos((-549 / 2048)*(3 / 2)^(1/2))
                                              • S = (1/2)*(12 + (16 / 3)*6^(1/2)*cos(t / 3))^(1/2)
                                              • x1 = S + (I/2)*(4 *S^2 - 36 - 3 / S)^(1/2)
                                              • x2 = S - (I/2)*(4 *S^2 - 36 - 3 / S)^(1/2)
                                              • x3 = - S + (I/2)*(4 *S^2 - 36 + 3 / S)^(1/2)
                                              • x4 = - S - (I/2)*(4 *S^2 - 36 + 3 / S)^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^4 + 3*x^2 + 79*x + 8

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • Q = (166833 / 2 + (3 / 2)*309 2068821^(1/2))^(1/3)
                                              • S = (1/2)*(-2 + Q / 3 + 35 / Q)^(1/2)
                                              • x1 = S + (I/2) * (4 *S^2 + 6 + 79 / S)^(1/2)
                                              • x2 = S - (I/2) * (4 *S^2 + 6 + 79 / S)^(1/2)
                                              • x3 = - S + (1/2) * (-4 *S^2 - 6 + 79 / S)^(1/2)
                                              • x4 = - S - (1/2) * (-4 *S^2 - 6 + 79 / S)^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              3x4 − 3⁢x2 + x − 5

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • Q = -1192 + -12 41597
                                              • S = 1223 + Q3193 Q
                                              • x1 = S + i2 4 S² − 2 + 13 S
                                              • x2 = Si2 4 S² − 2 + 13 S
                                              • x3 = − S + 12 −4 S² + 2 + 13 S
                                              • x4 = − S12 −4 S² + 2 + 13 S

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              3x^{4} - 3x^{2} + x - 5

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,Q = \sqrt[3]{\frac{-119}{2} + \frac{-1}{2}\sqrt{41597}}\\
                                              • \bullet\,\,S = \frac{1}{2}\sqrt{\frac{2}{3} + \frac{Q}{3}- \frac{19}{3 Q}}\\
                                              • \bullet\,\,x_{1} = S + \frac{i}{2} \sqrt{4 S^2 - 2 + \frac{1}{3 S}}\\
                                              • \bullet\,\,x_{2} = S - \frac{i}{2} \sqrt{4 S^2 - 2 + \frac{1}{3 S}}\\
                                              • \bullet\,\,x_{3} = - S + \frac{1}{2} \sqrt{-4 S^2 + 2 + \frac{1}{3 S}}\\
                                              • \bullet\,\,x_{4} = - S - \frac{1}{2} \sqrt{-4 S^2 + 2 + \frac{1}{3 S}}\\
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              3*x^4 - 3*x^2 + x - 5

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 4 roots are:

                                              • Q = (-119 / 2 + (-1 / 2)*41597^(1/2))^(1/3)
                                              • S = (1/2)*(2 / 3 + Q / 3 - 19 / (3 * Q))^(1/2)
                                              • x1 = S + (I/2) * (4 *S^2 - 2 + 1 / (3 * S))^(1/2)
                                              • x2 = S - (I/2) * (4 *S^2 - 2 + 1 / (3 * S))^(1/2)
                                              • x3 = - S + (1/2) * (-4 *S^2 + 2 + 1 / (3 * S))^(1/2)
                                              • x4 = - S - (1/2) * (-4 *S^2 + 2 + 1 / (3 * S))^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x5 + 15⁢x + 12

                                              Irreducible polynomial factors

                                              The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                                              Roots

                                              The 5 roots are:

                                              • R1 = −35 + 2125 25
                                              • R2 = −-95 + 7225 25
                                              • R3 = 95 + 7225 25
                                              • R4 = −352125 25
                                              • S1 = (−1+5)(R1 + R4) + (−1−5)(R2 + R3)
                                              • S2 = (−1+5)(R2 + R3) + (−1−5)(R1 + R4)
                                              • T1 = 10 + 25(R4R1) +10 − 25(R3R2)
                                              • T2 = 10 + 25(R3R2) +10 − 25(R1R4)
                                              • x1 = R1 + R2 + R3 + R4
                                              • x2 = S14+ i T14
                                              • x3 = S14− i T14
                                              • x4 = S24+ i T24
                                              • x5 = S24− i T24

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^{5} + 15x + 12

                                              Irreducible polynomial factors

                                              The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                                              Roots

                                              The 5 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,R_1 = -\sqrt[5]{\frac{3}{5} + \frac{21}{25}\sqrt{\frac{2}{5}}}
                                              • \bullet\,\,R_2 = -\sqrt[5]{\frac{-9}{5} + \frac{72}{25}\sqrt{\frac{2}{5}}}
                                              • \bullet\,\,R_3 = \sqrt[5]{\frac{9}{5} + \frac{72}{25}\sqrt{\frac{2}{5}}}
                                              • \bullet\,\,R_4 = -\sqrt[5]{\frac{3}{5} - \frac{21}{25}\sqrt{\frac{2}{5}}}
                                              • \bullet\,\,S_1 = (-1+\sqrt{5})(R_1 + R_4) + (-1-\sqrt{5})(R_2 + R_3)\\
                                              • \bullet\,\,S_2 = (-1+\sqrt{5})(R_2 + R_3) + (-1-\sqrt{5})(R_1 + R_4)\\
                                              • \bullet\,\,T_1 = \sqrt{10 + 2\sqrt{5}}(R4 - R1) +\sqrt{10 - 2\sqrt{5}}(R_3 - R_2)\\
                                              • \bullet\,\,T_2 = \sqrt{10 + 2\sqrt{5}}(R_3 - R_2) +\sqrt{10 - 2\sqrt{5}}(R_1 - R_4)\\
                                              • \bullet\,\,x_{1} = R_1 + R_2 + R_3 + R_4\\
                                              • \bullet\,\,x_{2} = \frac{S_1}{4}+ i \frac{T_1}{4}\\
                                              • \bullet\,\,x_{3} = \frac{S_1}{4}- i \frac{T_1}{4}\\
                                              • \bullet\,\,x_{4} = \frac{S_2}{4}+ i \frac{T_2}{4}\\
                                              • \bullet\,\,x_{5} = \frac{S_2}{4}- i \frac{T_2}{4}\\
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^5 + 15*x + 12

                                              Irreducible polynomial factors

                                              The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                                              Roots

                                              The 5 roots are:

                                              • R1 = -(3 / 5 + (21 / 25)*(2 / 5)^(1/2))^(1/5)
                                              • R2 = -(-9 / 5 + (72 / 25)*(2 / 5)^(1/2))^(1/5)
                                              • R3 = (9 / 5 + (72 / 25)*(2 / 5)^(1/2))^(1/5)
                                              • R4 = -(3 / 5 - (21 / 25)*(2 / 5)^(1/2))^(1/5)
                                              • S1 = (-1+5^(1/2))*(R1 + R4) + (-1-5^(1/2))*(R2 + R3)
                                              • S2 = (-1+5^(1/2))*(R2 + R3) + (-1-5^(1/2))*(R1 + R4)
                                              • T1 = (10 + 2 * 5^(1/2))^(1/2)*(R4 - R1) + (10 - 2 * 5^(1/2))^(1/2)*(R3 - R2)
                                              • T2 = (10 + 2 * 5^(1/2))^(1/2)*(R3 - R2) + (10 - 2 * 5^(1/2))^(1/2)*(R1 - R4)
                                              • x1 = R1 + R2 + R3 + R4
                                              • x2 = (S1 + I * T1) / 4
                                              • x3 = (S1 - I * T1) / 4
                                              • x4 = (S2 + I * T2) / 4
                                              • x5 = (S2 - I * T2) / 4

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x5 − 5⁢x + 12

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 5 roots are:

                                              • R1 = −1 + 25 595 + 99125 5
                                              • R2 = -1 + 25 5 + 9599125 5
                                              • R3 = −1 − 25 5 + 9599125 5
                                              • R4 = −1 + 25 5 + 95 + 99125 5
                                              • S1 = (−1+5)(R1 + R4) + (−1−5)(R2 + R3)
                                              • S2 = (−1+5)(R2 + R3) + (−1−5)(R1 + R4)
                                              • T1 = 10 + 25(R4R1) +10 − 25(R3R2)
                                              • T2 = 10 + 25(R3R2) +10 − 25(R1R4)
                                              • x1 = R1 + R2 + R3 + R4
                                              • x2 = S14+ i T14
                                              • x3 = S14− i T14
                                              • x4 = S24+ i T24
                                              • x5 = S24− i T24

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^{5} - 5x + 12

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 5 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,R_1 = -\sqrt[5]{1 + \frac{2}{5}\sqrt{5} - \sqrt{\frac{9}{5} + \frac{99}{125}\sqrt{5}}}
                                              • \bullet\,\,R_2 = \sqrt[5]{-1 + \frac{2}{5}\sqrt{5} + \sqrt{\frac{9}{5} - \frac{99}{125}\sqrt{5}}}
                                              • \bullet\,\,R_3 = -\sqrt[5]{1 - \frac{2}{5}\sqrt{5} + \sqrt{\frac{9}{5} - \frac{99}{125}\sqrt{5}}}
                                              • \bullet\,\,R_4 = -\sqrt[5]{1 + \frac{2}{5}\sqrt{5} + \sqrt{\frac{9}{5} + \frac{99}{125}\sqrt{5}}}
                                              • \bullet\,\,S_1 = (-1+\sqrt{5})(R_1 + R_4) + (-1-\sqrt{5})(R_2 + R_3)\\
                                              • \bullet\,\,S_2 = (-1+\sqrt{5})(R_2 + R_3) + (-1-\sqrt{5})(R_1 + R_4)\\
                                              • \bullet\,\,T_1 = \sqrt{10 + 2\sqrt{5}}(R4 - R1) +\sqrt{10 - 2\sqrt{5}}(R_3 - R_2)\\
                                              • \bullet\,\,T_2 = \sqrt{10 + 2\sqrt{5}}(R_3 - R_2) +\sqrt{10 - 2\sqrt{5}}(R_1 - R_4)\\
                                              • \bullet\,\,x_{1} = R_1 + R_2 + R_3 + R_4\\
                                              • \bullet\,\,x_{2} = \frac{S_1}{4}+ i \frac{T_1}{4}\\
                                              • \bullet\,\,x_{3} = \frac{S_1}{4}- i \frac{T_1}{4}\\
                                              • \bullet\,\,x_{4} = \frac{S_2}{4}+ i \frac{T_2}{4}\\
                                              • \bullet\,\,x_{5} = \frac{S_2}{4}- i \frac{T_2}{4}\\
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^5 - 5*x + 12

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 5 roots are:

                                              • R1 = -(1 + (2 / 5)*5^(1/2) - (9 / 5 + (99 / 125)*5^(1/2))^(1/2))^(1/5)
                                              • R2 = (-1 + (2 / 5)*5^(1/2) + (9 / 5 - (99 / 125)*5^(1/2))^(1/2))^(1/5)
                                              • R3 = -(1 - (2 / 5)*5^(1/2) + (9 / 5 - (99 / 125)*5^(1/2))^(1/2))^(1/5)
                                              • R4 = -(1 + (2 / 5)*5^(1/2) + (9 / 5 + (99 / 125)*5^(1/2))^(1/2))^(1/5)
                                              • S1 = (-1+5^(1/2))*(R1 + R4) + (-1-5^(1/2))*(R2 + R3)
                                              • S2 = (-1+5^(1/2))*(R2 + R3) + (-1-5^(1/2))*(R1 + R4)
                                              • T1 = (10 + 2 * 5^(1/2))^(1/2)*(R4 - R1) + (10 - 2 * 5^(1/2))^(1/2)*(R3 - R2)
                                              • T2 = (10 + 2 * 5^(1/2))^(1/2)*(R3 - R2) + (10 - 2 * 5^(1/2))^(1/2)*(R1 - R4)
                                              • x1 = R1 + R2 + R3 + R4
                                              • x2 = (S1 + I * T1) / 4
                                              • x3 = (S1 - I * T1) / 4
                                              • x4 = (S2 + I * T2) / 4
                                              • x5 = (S2 - I * T2) / 4

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              17x5 − 20⁢x + 21

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 5 roots are:

                                              • x1 to x5 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 19 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              17x^{5} - 20x + 21

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 5 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,x_{1} to x_{5} : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 19 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              17*x^5 - 20*x + 21

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 5 roots are:

                                              • x1 to x5 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 19 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x8 + x4 + 4

                                              Irreducible polynomial factors

                                              The 2 factors are:

                                              • −1
                                              • x8x4 − 4

                                              Roots

                                              The 8 roots are:

                                              • x1 = 412 + 12 17 cos 0π1 + i 412 + 12 17 sin0π1 = 412 + 12 17
                                              • x2 = 412 + 12 17 cosπ2 + i 412 + 12 17 sinπ2 = + i 412 + 12 17
                                              • x3 = 412 + 12 17 cosπ1 + i 412 + 12 17 sinπ1 = −412 + 12 17
                                              • x4 = 412 + 12 17 cos 3π2 + i 412 + 12 17 sin3π2 = −i 412 + 12 17
                                              • x5 = 4-12 + 12 17 cosπ4 + i 4-12 + 12 17 sinπ4 = 12 4-12 + 12 172 + i2 4-12 + 12 172
                                              • x6 = 4-12 + 12 17 cos 3π4 + i 4-12 + 12 17 sin3π4 = −12 4-12 + 12 172 + i2 4-12 + 12 172
                                              • x7 = 4-12 + 12 17 cos 5π4 + i 4-12 + 12 17 sin5π4 = −12 4-12 + 12 172i2 4-12 + 12 172
                                              • x8 = 4-12 + 12 17 cos 7π4 + i 4-12 + 12 17 sin7π4 = 12 4-12 + 12 172i2 4-12 + 12 172

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x5 + 20⁢x3 + 20⁢x2 + 30⁢x + 10

                                              Irreducible polynomial factors

                                              The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                              Roots

                                              The 5 roots are:

                                              • R1 = 2 + 6
                                              • R2 = −7 + 9
                                              • R3 = -7 + 9
                                              • R4 = −-2 + 6
                                              • S1 = (−1+5)(R1 + R4) + (−1−5)(R2 + R3)
                                              • S2 = (−1+5)(R2 + R3) + (−1−5)(R1 + R4)
                                              • T1 = 10 + 25(R4R1) +10 − 25(R3R2)
                                              • T2 = 10 + 25(R3R2) +10 − 25(R1R4)
                                              • x1 = R1 + R2 + R3 + R4
                                              • x2 = S14+ i T14
                                              • x3 = S14− i T14
                                              • x4 = S24+ i T24
                                              • x5 = S24− i T24

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^{5} + 20x^{3} + 20x^{2} + 30x + 10

                                              Irreducible polynomial factors

                                              The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                              Roots

                                              The 5 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,R_1 = \sqrt[5]{2 + 6}
                                              • \bullet\,\,R_2 = -\sqrt[5]{7 + 9}
                                              • \bullet\,\,R_3 = \sqrt[5]{-7 + 9}
                                              • \bullet\,\,R_4 = -\sqrt[5]{-2 + 6}
                                              • \bullet\,\,S_1 = (-1+\sqrt{5})(R_1 + R_4) + (-1-\sqrt{5})(R_2 + R_3)\\
                                              • \bullet\,\,S_2 = (-1+\sqrt{5})(R_2 + R_3) + (-1-\sqrt{5})(R_1 + R_4)\\
                                              • \bullet\,\,T_1 = \sqrt{10 + 2\sqrt{5}}(R4 - R1) +\sqrt{10 - 2\sqrt{5}}(R_3 - R_2)\\
                                              • \bullet\,\,T_2 = \sqrt{10 + 2\sqrt{5}}(R_3 - R_2) +\sqrt{10 - 2\sqrt{5}}(R_1 - R_4)\\
                                              • \bullet\,\,x_{1} = R_1 + R_2 + R_3 + R_4\\
                                              • \bullet\,\,x_{2} = \frac{S_1}{4}+ i \frac{T_1}{4}\\
                                              • \bullet\,\,x_{3} = \frac{S_1}{4}- i \frac{T_1}{4}\\
                                              • \bullet\,\,x_{4} = \frac{S_2}{4}+ i \frac{T_2}{4}\\
                                              • \bullet\,\,x_{5} = \frac{S_2}{4}- i \frac{T_2}{4}\\
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^5 + 20*x^3 + 20*x^2 + 30*x + 10

                                              Irreducible polynomial factors

                                              The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                              Roots

                                              The 5 roots are:

                                              • R1 = (2 + 6)^(1/5)
                                              • R2 = -(7 + 9)^(1/5)
                                              • R3 = (-7 + 9)^(1/5)
                                              • R4 = -(-2 + 6)^(1/5)
                                              • S1 = (-1+5^(1/2))*(R1 + R4) + (-1-5^(1/2))*(R2 + R3)
                                              • S2 = (-1+5^(1/2))*(R2 + R3) + (-1-5^(1/2))*(R1 + R4)
                                              • T1 = (10 + 2 * 5^(1/2))^(1/2)*(R4 - R1) + (10 - 2 * 5^(1/2))^(1/2)*(R3 - R2)
                                              • T2 = (10 + 2 * 5^(1/2))^(1/2)*(R3 - R2) + (10 - 2 * 5^(1/2))^(1/2)*(R1 - R4)
                                              • x1 = R1 + R2 + R3 + R4
                                              • x2 = (S1 + I * T1) / 4
                                              • x3 = (S1 - I * T1) / 4
                                              • x4 = (S2 + I * T2) / 4
                                              • x5 = (S2 - I * T2) / 4

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x5 + 10⁢x3 − 20⁢x2 − 1505⁢x − 7412

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 5 roots are:

                                              • x1 to x5 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 7 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^{5} + 10x^{3} - 20x^{2} - 1505x - 7412

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 5 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,x_{1} to x_{5} : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 7 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^5 + 10*x^3 - 20*x^2 - 1505*x - 7412

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 5 roots are:

                                              • x1 to x5 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 7 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^6 + x^5 + 3*x^4 + x^3 + 3*x^2 + x + 1

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 6 roots are:

                                              • x1 to x6 : I cannot determine whether the roots of the polynomial can be solved using radical expressions or not.

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x7 + x + 12

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 7 roots are:

                                              • x1 to x7 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 7 ÷ 2))

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^{7} + x + 12

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 7 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,x_{1} to x_{7} : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 7 ÷ 2))
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^7 + x + 12

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 7 roots are:

                                              • x1 to x7 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 7 ÷ 2))

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^9 + 6*x^3 + 5

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 9 roots are:

                                              • x1 to x9 : The roots of the polynomial can be expressed by radicals. We set y = x^3. The polynomial has degree 3 which is less than 5.

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x10 + 2⁢x5 + 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 10 roots are:

                                              • x1 = 1023 cos15 π − arctan22 + i 1023 sin15 π − arctan22
                                              • x2 = 1023 cos15 π + arctan22 + i 1023 sin15 π + arctan22
                                              • x3 = 1023 cos15 3⁢ π − arctan22 + i 1023 sin15 3⁢ π − arctan22
                                              • x4 = 1023 cos15 3⁢ π + arctan22 + i 1023 sin15 3⁢ π + arctan22
                                              • x5 = 1023 cos15 5⁢ π − arctan22 + i 1023 sin15 5⁢ π − arctan22
                                              • x6 = 1023 cos15 5⁢ π + arctan22 + i 1023 sin15 5⁢ π + arctan22
                                              • x7 = 1023 cos15 7⁢ π − arctan22 + i 1023 sin15 7⁢ π − arctan22
                                              • x8 = 1023 cos15 7⁢ π + arctan22 + i 1023 sin15 7⁢ π + arctan22
                                              • x9 = 1023 cos15 9⁢ π − arctan22 + i 1023 sin15 9⁢ π − arctan22
                                              • x10 = 1023 cos15 9⁢ π + arctan22 + i 1023 sin15 9⁢ π + arctan22

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^{10} + 2x^{5} + 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 10 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,x_{1} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(\pi - \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(\pi - \arctan{\sqrt{22}}\right)\right)}\\
                                              • \bullet\,\,x_{2} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(\pi + \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(\pi + \arctan{\sqrt{22}}\right)\right)}\\
                                              • \bullet\,\,x_{3} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(3\pi - \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(3\pi - \arctan{\sqrt{22}}\right)\right)}\\
                                              • \bullet\,\,x_{4} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(3\pi + \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(3\pi + \arctan{\sqrt{22}}\right)\right)}\\
                                              • \bullet\,\,x_{5} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(5\pi - \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(5\pi - \arctan{\sqrt{22}}\right)\right)}\\
                                              • \bullet\,\,x_{6} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(5\pi + \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(5\pi + \arctan{\sqrt{22}}\right)\right)}\\
                                              • \bullet\,\,x_{7} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(7\pi - \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(7\pi - \arctan{\sqrt{22}}\right)\right)}\\
                                              • \bullet\,\,x_{8} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(7\pi + \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(7\pi + \arctan{\sqrt{22}}\right)\right)}\\
                                              • \bullet\,\,x_{9} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(9\pi - \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(9\pi - \arctan{\sqrt{22}}\right)\right)}\\
                                              • \bullet\,\,x_{10} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(9\pi + \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(9\pi + \arctan{\sqrt{22}}\right)\right)}\\
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^10 + 2*x^5 + 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 10 roots are:

                                              • x1 = 23^(1/10) *cos(1/5*(Pi - atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(Pi - atan(22^(1/2))))
                                              • x2 = 23^(1/10) *cos(1/5*(Pi + atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(Pi + atan(22^(1/2))))
                                              • x3 = 23^(1/10) *cos(1/5*(3*Pi - atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(3*Pi - atan(22^(1/2))))
                                              • x4 = 23^(1/10) *cos(1/5*(3*Pi + atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(3*Pi + atan(22^(1/2))))
                                              • x5 = 23^(1/10) *cos(1/5*(5*Pi - atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(5*Pi - atan(22^(1/2))))
                                              • x6 = 23^(1/10) *cos(1/5*(5*Pi + atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(5*Pi + atan(22^(1/2))))
                                              • x7 = 23^(1/10) *cos(1/5*(7*Pi - atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(7*Pi - atan(22^(1/2))))
                                              • x8 = 23^(1/10) *cos(1/5*(7*Pi + atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(7*Pi + atan(22^(1/2))))
                                              • x9 = 23^(1/10) *cos(1/5*(9*Pi - atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(9*Pi - atan(22^(1/2))))
                                              • x10 = 23^(1/10) *cos(1/5*(9*Pi + atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(9*Pi + atan(22^(1/2))))

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x10 + 2⁢x5 − 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 10 roots are:

                                              • x1 = 5-1 + 2 6 cos 0π1 + i 5-1 + 2 6 sin0π1 = 5-1 + 2 6
                                              • x2 = 5-1 + 2 6 cos 2π5 + i 5-1 + 2 6 sin2π5 = 14 5-1 + 2 65−1 + i4 5-1 + 2 610+25
                                              • x3 = 5-1 + 2 6 cos 4π5 + i 5-1 + 2 6 sin4π5 = −14 5-1 + 2 65+1 + i4 5-1 + 2 610−25
                                              • x4 = 5-1 + 2 6 cos 6π5 + i 5-1 + 2 6 sin6π5 = −14 5-1 + 2 65+1i4 5-1 + 2 610−25
                                              • x5 = 5-1 + 2 6 cos 8π5 + i 5-1 + 2 6 sin8π5 = 14 5-1 + 2 65−1i4 5-1 + 2 610+25
                                              • x6 = 51 + 2 6 cosπ5 + i 51 + 2 6 sinπ5 = 14 51 + 2 65+1 + i4 51 + 2 610−25
                                              • x7 = 51 + 2 6 cos 3π5 + i 51 + 2 6 sin3π5 = −14 51 + 2 65−1 + i4 51 + 2 610+25
                                              • x8 = 51 + 2 6 cosπ1 + i 51 + 2 6 sinπ1 = −51 + 2 6
                                              • x9 = 51 + 2 6 cos 7π5 + i 51 + 2 6 sin7π5 = −14 51 + 2 65−1i4 51 + 2 610+25
                                              • x10 = 51 + 2 6 cos 9π5 + i 51 + 2 6 sin9π5 = 14 51 + 2 65+1i4 51 + 2 610−25

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^{10} + 2x^{5} - 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 10 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,x_{1} = \sqrt[5]{-1 + 2\sqrt{6}} \cos{ \frac{0 \pi }{1}} + i \sqrt[5]{-1 + 2\sqrt{6}} \sin{\frac{0 \pi }{1}} = \sqrt[5]{-1 + 2\sqrt{6}}\\
                                              • \bullet\,\,x_{2} = \sqrt[5]{-1 + 2\sqrt{6}} \cos{ \frac{2 \pi }{5}} + i \sqrt[5]{-1 + 2\sqrt{6}} \sin{\frac{2 \pi }{5}} = \frac{1}{4}\sqrt[5]{-1 + 2\sqrt{6}}\left(\sqrt{5}-1\right) + \frac{i}{4}\sqrt[5]{-1 + 2\sqrt{6}}\sqrt{10+2\sqrt{5}}\\
                                              • \bullet\,\,x_{3} = \sqrt[5]{-1 + 2\sqrt{6}} \cos{ \frac{4 \pi }{5}} + i \sqrt[5]{-1 + 2\sqrt{6}} \sin{\frac{4 \pi }{5}} = -\frac{1}{4}\sqrt[5]{-1 + 2\sqrt{6}}\left(\sqrt{5}+1\right) + \frac{i}{4}\sqrt[5]{-1 + 2\sqrt{6}}\sqrt{10-2\sqrt{5}}\\
                                              • \bullet\,\,x_{4} = \sqrt[5]{-1 + 2\sqrt{6}} \cos{ \frac{6 \pi }{5}} + i \sqrt[5]{-1 + 2\sqrt{6}} \sin{\frac{6 \pi }{5}} = -\frac{1}{4}\sqrt[5]{-1 + 2\sqrt{6}}\left(\sqrt{5}+1\right)-\frac{i}{4}\sqrt[5]{-1 + 2\sqrt{6}}\sqrt{10-2\sqrt{5}}\\
                                              • \bullet\,\,x_{5} = \sqrt[5]{-1 + 2\sqrt{6}} \cos{ \frac{8 \pi }{5}} + i \sqrt[5]{-1 + 2\sqrt{6}} \sin{\frac{8 \pi }{5}} = \frac{1}{4}\sqrt[5]{-1 + 2\sqrt{6}}\left(\sqrt{5}-1\right)-\frac{i}{4}\sqrt[5]{-1 + 2\sqrt{6}}\sqrt{10+2\sqrt{5}}\\
                                              • \bullet\,\,x_{6} = \sqrt[5]{1 + 2\sqrt{6}} \cos{\frac{\pi }{5}} + i \sqrt[5]{1 + 2\sqrt{6}} \sin{\frac{\pi }{5}} = \frac{1}{4}\sqrt[5]{1 + 2\sqrt{6}}\left(\sqrt{5}+1\right) + \frac{i}{4}\sqrt[5]{1 + 2\sqrt{6}}\sqrt{10-2\sqrt{5}}\\
                                              • \bullet\,\,x_{7} = \sqrt[5]{1 + 2\sqrt{6}} \cos{ \frac{3 \pi }{5}} + i \sqrt[5]{1 + 2\sqrt{6}} \sin{\frac{3 \pi }{5}} = -\frac{1}{4}\sqrt[5]{1 + 2\sqrt{6}}\left(\sqrt{5}-1\right) + \frac{i}{4}\sqrt[5]{1 + 2\sqrt{6}}\sqrt{10+2\sqrt{5}}\\
                                              • \bullet\,\,x_{8} = \sqrt[5]{1 + 2\sqrt{6}} \cos{\frac{\pi }{1}} + i \sqrt[5]{1 + 2\sqrt{6}} \sin{\frac{\pi }{1}} = -\sqrt[5]{1 + 2\sqrt{6}}\\
                                              • \bullet\,\,x_{9} = \sqrt[5]{1 + 2\sqrt{6}} \cos{ \frac{7 \pi }{5}} + i \sqrt[5]{1 + 2\sqrt{6}} \sin{\frac{7 \pi }{5}} = -\frac{1}{4}\sqrt[5]{1 + 2\sqrt{6}}\left(\sqrt{5}-1\right)-\frac{i}{4}\sqrt[5]{1 + 2\sqrt{6}}\sqrt{10+2\sqrt{5}}\\
                                              • \bullet\,\,x_{10} = \sqrt[5]{1 + 2\sqrt{6}} \cos{ \frac{9 \pi }{5}} + i \sqrt[5]{1 + 2\sqrt{6}} \sin{\frac{9 \pi }{5}} = \frac{1}{4}\sqrt[5]{1 + 2\sqrt{6}}\left(\sqrt{5}+1\right)-\frac{i}{4}\sqrt[5]{1 + 2\sqrt{6}}\sqrt{10-2\sqrt{5}}\\
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^10 + 2*x^5 - 23

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 10 roots are:

                                              • x1 = (-1 + 2*6^(1/2))^(1/5)*cos (0*Pi/1) + I *(-1 + 2*6^(1/2))^(1/5) * sin(0*Pi/1) = (-1 + 2*6^(1/2))^(1/5)
                                              • x2 = (-1 + 2*6^(1/2))^(1/5)*cos (2*Pi/5) + I *(-1 + 2*6^(1/2))^(1/5) * sin(2*Pi/5) = (1/4)*(-1 + 2*6^(1/2))^(1/5)*(5^(1/2)-1) + (I/4)*(-1 + 2*6^(1/2))^(1/5)*(10+2*5^(1/2))^(1/2)
                                              • x3 = (-1 + 2*6^(1/2))^(1/5)*cos (4*Pi/5) + I *(-1 + 2*6^(1/2))^(1/5) * sin(4*Pi/5) = -(1/4)*(-1 + 2*6^(1/2))^(1/5)*(5^(1/2)+1) + (I/4)*(-1 + 2*6^(1/2))^(1/5)*(10-2*5^(1/2))^(1/2)
                                              • x4 = (-1 + 2*6^(1/2))^(1/5)*cos (6*Pi/5) + I *(-1 + 2*6^(1/2))^(1/5) * sin(6*Pi/5) = -(1/4)*(-1 + 2*6^(1/2))^(1/5)*(5^(1/2)+1)-(I/4)*(-1 + 2*6^(1/2))^(1/5)*(10-2*5^(1/2))^(1/2)
                                              • x5 = (-1 + 2*6^(1/2))^(1/5)*cos (8*Pi/5) + I *(-1 + 2*6^(1/2))^(1/5) * sin(8*Pi/5) = (1/4)*(-1 + 2*6^(1/2))^(1/5)*(5^(1/2)-1)-(I/4)*(-1 + 2*6^(1/2))^(1/5)*(10+2*5^(1/2))^(1/2)
                                              • x6 = (1 + 2*6^(1/2))^(1/5)*cos(Pi/5) + I *(1 + 2*6^(1/2))^(1/5) * sin(Pi/5) = (1/4)*(1 + 2*6^(1/2))^(1/5)*(5^(1/2)+1) + (I/4)*(1 + 2*6^(1/2))^(1/5)*(10-2*5^(1/2))^(1/2)
                                              • x7 = (1 + 2*6^(1/2))^(1/5)*cos (3*Pi/5) + I *(1 + 2*6^(1/2))^(1/5) * sin(3*Pi/5) = -(1/4)*(1 + 2*6^(1/2))^(1/5)*(5^(1/2)-1) + (I/4)*(1 + 2*6^(1/2))^(1/5)*(10+2*5^(1/2))^(1/2)
                                              • x8 = (1 + 2*6^(1/2))^(1/5)*cos(Pi/1) + I *(1 + 2*6^(1/2))^(1/5) * sin(Pi/1) = -(1 + 2*6^(1/2))^(1/5)
                                              • x9 = (1 + 2*6^(1/2))^(1/5)*cos (7*Pi/5) + I *(1 + 2*6^(1/2))^(1/5) * sin(7*Pi/5) = -(1/4)*(1 + 2*6^(1/2))^(1/5)*(5^(1/2)-1)-(I/4)*(1 + 2*6^(1/2))^(1/5)*(10+2*5^(1/2))^(1/2)
                                              • x10 = (1 + 2*6^(1/2))^(1/5)*cos (9*Pi/5) + I *(1 + 2*6^(1/2))^(1/5) * sin(9*Pi/5) = (1/4)*(1 + 2*6^(1/2))^(1/5)*(5^(1/2)+1)-(I/4)*(1 + 2*6^(1/2))^(1/5)*(10-2*5^(1/2))^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^12 + x + 5

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 12 roots are:

                                              • x1 to x12 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 2 are 3, 4 and 5 (the Galois group contains a cycle of length 3) and the degrees of the factors of polynomial modulo 7 are 1 and 11 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (11 > 12 ÷ 2))

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^13 + 3*x + 5

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 13 roots are:

                                              • x1 to x13 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 7 are 1, 5 and 7 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (7 > 13 ÷ 2) and less than the degree minus 2 (7 < 13 − 2))

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x17 − 1

                                              Irreducible polynomial factors

                                              The 2 factors are:

                                              • x − 1
                                              • x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1

                                              Roots

                                              The 17 roots are:

                                              • x1 = 1
                                              • x2 = cos 2π17 + i sin2π17 = 116 −1+17+34−217+217+317170+3817 + i8 34−217+234−217−417+317+170+3817
                                              • x3 = cos 4π17 + i sin4π17 = 116 −1+1734−217+217+317+170+3817 + i8 34−217−234−217+417+317170+3817
                                              • x4 = cos 6π17 + i sin6π17 = 116 −1−17+34+217+217−317+170−3817 + i8 34+217+234+217−417−317170−3817
                                              • x5 = cos 8π17 + i sin8π17 = 116 −1+17+34−217−217+317170+3817 + i8 34−217+234−217+417+317+170+3817
                                              • x6 = cos 10π17 + i sin10π17 = −116 1+1734+217+217−317+170−3817 + i8 34+217+234+217+417−317170−3817
                                              • x7 = cos 12π17 + i sin12π17 = −116 1+17+34+217−217−317170−3817 + i8 34+217−234+217+417−317+170−3817
                                              • x8 = cos 14π17 + i sin14π17 = −116 1+17+34+217+217−317170−3817 + i8 34+217−234+217−417−317+170−3817
                                              • x9 = cos 16π17 + i sin16π17 = −116 1−17+34−217+217+317+170+3817 + i8 34−217−234−217−417+317170+3817
                                              • x10 = cos 18π17 + i sin18π17 = −116 1−17+34−217+217+317+170+3817i8 34−217−234−217−417+317170+3817
                                              • x11 = cos 20π17 + i sin20π17 = −116 1+17+34+217+217−317170−3817i8 34+217−234+217−417−317+170−3817
                                              • x12 = cos 22π17 + i sin22π17 = −116 1+17+34+217−217−317170−3817i8 34+217−234+217+417−317+170−3817
                                              • x13 = cos 24π17 + i sin24π17 = −116 1+1734+217+217−317+170−3817i8 34+217+234+217+417−317170−3817
                                              • x14 = cos 26π17 + i sin26π17 = 116 −1+17+34−217−217+317170+3817i8 34−217+234−217+417+317+170+3817
                                              • x15 = cos 28π17 + i sin28π17 = 116 −1−17+34+217+217−317+170−3817i8 34+217+234+217−417−317170−3817
                                              • x16 = cos 30π17 + i sin30π17 = 116 −1+1734−217+217+317+170+3817i8 34−217−234−217+417+317170+3817
                                              • x17 = cos 32π17 + i sin32π17 = 116 −1+17+34−217+217+317170+3817i8 34−217+234−217−417+317+170+3817

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^{17} - 1

                                              Irreducible polynomial factors

                                              The 2 factors are:

                                              • \begin{array}{l}
                                              • \bullet\,\,x - 1\\
                                              • \bullet\,\,x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1\\
                                              • \end{array}

                                              Roots

                                              The 17 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,x_{1} = 1\\
                                              • \bullet\,\,x_{2} = \cos{ \frac{2 \pi }{17}} + i \sin{\frac{2 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34-2\sqrt{17}+2\sqrt{34-2\sqrt{17}}-4\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}}\\
                                              • \bullet\,\,x_{3} = \cos{ \frac{4 \pi }{17}} + i \sin{\frac{4 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}-\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34-2\sqrt{17}-2\sqrt{34-2\sqrt{17}}+4\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}}\\
                                              • \bullet\,\,x_{4} = \cos{ \frac{6 \pi }{17}} + i \sin{\frac{6 \pi }{17}} = \frac{1}{16}\left(-1-\sqrt{17}+\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34+2\sqrt{17}+2\sqrt{34+2\sqrt{17}}-4\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}}\\
                                              • \bullet\,\,x_{5} = \cos{ \frac{8 \pi }{17}} + i \sin{\frac{8 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}-2\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34-2\sqrt{17}+2\sqrt{34-2\sqrt{17}}+4\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}}\\
                                              • \bullet\,\,x_{6} = \cos{ \frac{10 \pi }{17}} + i \sin{\frac{10 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}-\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34+2\sqrt{17}+2\sqrt{34+2\sqrt{17}}+4\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}}\\
                                              • \bullet\,\,x_{7} = \cos{ \frac{12 \pi }{17}} + i \sin{\frac{12 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}+\sqrt{34+2\sqrt{17}}-2\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34+2\sqrt{17}-2\sqrt{34+2\sqrt{17}}+4\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}}\\
                                              • \bullet\,\,x_{8} = \cos{ \frac{14 \pi }{17}} + i \sin{\frac{14 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}+\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34+2\sqrt{17}-2\sqrt{34+2\sqrt{17}}-4\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}}\\
                                              • \bullet\,\,x_{9} = \cos{ \frac{16 \pi }{17}} + i \sin{\frac{16 \pi }{17}} = -\frac{1}{16}\left(1-\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34-2\sqrt{17}-2\sqrt{34-2\sqrt{17}}-4\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}}\\
                                              • \bullet\,\,x_{10} = \cos{ \frac{18 \pi }{17}} + i \sin{\frac{18 \pi }{17}} = -\frac{1}{16}\left(1-\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34-2\sqrt{17}-2\sqrt{34-2\sqrt{17}}-4\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}}\\
                                              • \bullet\,\,x_{11} = \cos{ \frac{20 \pi }{17}} + i \sin{\frac{20 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}+\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34+2\sqrt{17}-2\sqrt{34+2\sqrt{17}}-4\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}}\\
                                              • \bullet\,\,x_{12} = \cos{ \frac{22 \pi }{17}} + i \sin{\frac{22 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}+\sqrt{34+2\sqrt{17}}-2\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34+2\sqrt{17}-2\sqrt{34+2\sqrt{17}}+4\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}}\\
                                              • \bullet\,\,x_{13} = \cos{ \frac{24 \pi }{17}} + i \sin{\frac{24 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}-\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34+2\sqrt{17}+2\sqrt{34+2\sqrt{17}}+4\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}}\\
                                              • \bullet\,\,x_{14} = \cos{ \frac{26 \pi }{17}} + i \sin{\frac{26 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}-2\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34-2\sqrt{17}+2\sqrt{34-2\sqrt{17}}+4\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}}\\
                                              • \bullet\,\,x_{15} = \cos{ \frac{28 \pi }{17}} + i \sin{\frac{28 \pi }{17}} = \frac{1}{16}\left(-1-\sqrt{17}+\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34+2\sqrt{17}+2\sqrt{34+2\sqrt{17}}-4\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}}\\
                                              • \bullet\,\,x_{16} = \cos{ \frac{30 \pi }{17}} + i \sin{\frac{30 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}-\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34-2\sqrt{17}-2\sqrt{34-2\sqrt{17}}+4\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}}\\
                                              • \bullet\,\,x_{17} = \cos{ \frac{32 \pi }{17}} + i \sin{\frac{32 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34-2\sqrt{17}+2\sqrt{34-2\sqrt{17}}-4\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}}\\
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^17 - 1

                                              Irreducible polynomial factors

                                              The 2 factors are:

                                              • x - 1
                                              • x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1

                                              Roots

                                              The 17 roots are:

                                              • x1 = 1
                                              • x2 = cos (2*Pi/17) + I *sin(2*Pi/17) = (1/16)*(-1+17^(1/2)+(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34-2*17^(1/2)+2*(34-2*17^(1/2))^(1/2)-4*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                              • x3 = cos (4*Pi/17) + I *sin(4*Pi/17) = (1/16)*(-1+17^(1/2)-(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34-2*17^(1/2)-2*(34-2*17^(1/2))^(1/2)+4*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                              • x4 = cos (6*Pi/17) + I *sin(6*Pi/17) = (1/16)*(-1-17^(1/2)+(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34+2*17^(1/2)+2*(34+2*17^(1/2))^(1/2)-4*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                              • x5 = cos (8*Pi/17) + I *sin(8*Pi/17) = (1/16)*(-1+17^(1/2)+(34-2*17^(1/2))^(1/2)-2*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34-2*17^(1/2)+2*(34-2*17^(1/2))^(1/2)+4*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                              • x6 = cos (10*Pi/17) + I *sin(10*Pi/17) = -(1/16)*(1+17^(1/2)-(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34+2*17^(1/2)+2*(34+2*17^(1/2))^(1/2)+4*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                              • x7 = cos (12*Pi/17) + I *sin(12*Pi/17) = -(1/16)*(1+17^(1/2)+(34+2*17^(1/2))^(1/2)-2*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34+2*17^(1/2)-2*(34+2*17^(1/2))^(1/2)+4*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                              • x8 = cos (14*Pi/17) + I *sin(14*Pi/17) = -(1/16)*(1+17^(1/2)+(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34+2*17^(1/2)-2*(34+2*17^(1/2))^(1/2)-4*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                              • x9 = cos (16*Pi/17) + I *sin(16*Pi/17) = -(1/16)*(1-17^(1/2)+(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34-2*17^(1/2)-2*(34-2*17^(1/2))^(1/2)-4*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                              • x10 = cos (18*Pi/17) + I *sin(18*Pi/17) = -(1/16)*(1-17^(1/2)+(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34-2*17^(1/2)-2*(34-2*17^(1/2))^(1/2)-4*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                              • x11 = cos (20*Pi/17) + I *sin(20*Pi/17) = -(1/16)*(1+17^(1/2)+(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34+2*17^(1/2)-2*(34+2*17^(1/2))^(1/2)-4*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                              • x12 = cos (22*Pi/17) + I *sin(22*Pi/17) = -(1/16)*(1+17^(1/2)+(34+2*17^(1/2))^(1/2)-2*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34+2*17^(1/2)-2*(34+2*17^(1/2))^(1/2)+4*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                              • x13 = cos (24*Pi/17) + I *sin(24*Pi/17) = -(1/16)*(1+17^(1/2)-(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34+2*17^(1/2)+2*(34+2*17^(1/2))^(1/2)+4*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                              • x14 = cos (26*Pi/17) + I *sin(26*Pi/17) = (1/16)*(-1+17^(1/2)+(34-2*17^(1/2))^(1/2)-2*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34-2*17^(1/2)+2*(34-2*17^(1/2))^(1/2)+4*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                              • x15 = cos (28*Pi/17) + I *sin(28*Pi/17) = (1/16)*(-1-17^(1/2)+(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34+2*17^(1/2)+2*(34+2*17^(1/2))^(1/2)-4*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                              • x16 = cos (30*Pi/17) + I *sin(30*Pi/17) = (1/16)*(-1+17^(1/2)-(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34-2*17^(1/2)-2*(34-2*17^(1/2))^(1/2)+4*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                              • x17 = cos (32*Pi/17) + I *sin(32*Pi/17) = (1/16)*(-1+17^(1/2)+(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34-2*17^(1/2)+2*(34-2*17^(1/2))^(1/2)-4*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^129 + 6*x^4 + 5

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 129 roots are:

                                              • x1 to x129 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 31 are 2, 22, 38 and 67 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (67 > 129 ÷ 2) and less than the degree minus 2 (67 < 129 − 2))

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x19 − 24⁢x18 + 22⁢x17 + 38⁢x16 − 335⁢x15 − 244⁢x14 + 361⁢x13 − 778⁢x12 − 2642⁢x11 − 2160⁢x10 − 575⁢x9

                                              Irreducible polynomial factors

                                              The 17 factors are:

                                              • x − 23
                                              • x9
                                              • (x + 1)5
                                              • (x2 − 3⁢x + 5)2

                                              Roots

                                              The 19 roots are:

                                              • x1 = 23
                                              • x2 to x10 = 0
                                              • x11 to x15 = -1
                                              • x16 = x17 = 3212 11 i
                                              • x18 = x19 = 32 + 12 11 i

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^{19} - 24x^{18} + 22x^{17} + 38x^{16} - 335x^{15} - 244x^{14} + 361x^{13} - 778x^{12} - 2642x^{11} - 2160x^{10} - 575x^{9}

                                              Irreducible polynomial factors

                                              The 17 factors are:

                                              • \begin{array}{l}
                                              • \bullet\,\,x - 23\\
                                              • \bullet\,\,x^{9}\\
                                              • \bullet\,\,(x + 1)^{5}\\
                                              • \bullet\,\,(x^{2} - 3x + 5)^{2}\\
                                              • \end{array}

                                              Roots

                                              The 19 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,x_{1} = 23\\
                                              • \bullet\,\,x_{2} to x_{10} = 0\\
                                              • \bullet\,\,x_{11} to x_{15} = -1\\
                                              • \bullet\,\,x_{16} = x_{17} = \frac{3}{2} - \frac{1}{2}\sqrt{11} i\\
                                              • \bullet\,\,x_{18} = x_{19} = \frac{3}{2} + \frac{1}{2}\sqrt{11} i\\
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              x^19 - 24*x^18 + 22*x^17 + 38*x^16 - 335*x^15 - 244*x^14 + 361*x^13 - 778*x^12 - 2642*x^11 - 2160*x^10 - 575*x^9

                                              Irreducible polynomial factors

                                              The 17 factors are:

                                              • x - 23
                                              • x^9
                                              • (x + 1)^5
                                              • (x^2 - 3*x + 5)^2

                                              Roots

                                              The 19 roots are:

                                              • x1 = 23
                                              • x2 to x10 = 0
                                              • x11 to x15 = -1
                                              • x16 = x17 = 3 / 2 - (1 / 2)*11^(1/2) *I
                                              • x18 = x19 = 3 / 2 + (1 / 2)*11^(1/2) *I

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              8x7 + 1

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 7 roots are:

                                              • x1 = 718 cosπ7 + i 718 sinπ7
                                              • x2 = 718 cos 3π7 + i 718 sin3π7
                                              • x3 = 718 cos 5π7 + i 718 sin5π7
                                              • x4 = 718 cosπ1 + i 718 sinπ1 = −718
                                              • x5 = 718 cos 9π7 + i 718 sin9π7
                                              • x6 = 718 cos 11π7 + i 718 sin11π7
                                              • x7 = 718 cos 13π7 + i 718 sin13π7

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              8x^{7} + 1

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 7 roots are:

                                              • \begin{array}{l}
                                              • \bullet\,\,x_{1} = \sqrt[7]{\frac{1}{8}} \cos{\frac{\pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{\pi }{7}}\\
                                              • \bullet\,\,x_{2} = \sqrt[7]{\frac{1}{8}} \cos{ \frac{3 \pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{3 \pi }{7}}\\
                                              • \bullet\,\,x_{3} = \sqrt[7]{\frac{1}{8}} \cos{ \frac{5 \pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{5 \pi }{7}}\\
                                              • \bullet\,\,x_{4} = \sqrt[7]{\frac{1}{8}} \cos{\frac{\pi }{1}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{\pi }{1}} = -\sqrt[7]{\frac{1}{8}}\\
                                              • \bullet\,\,x_{5} = \sqrt[7]{\frac{1}{8}} \cos{ \frac{9 \pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{9 \pi }{7}}\\
                                              • \bullet\,\,x_{6} = \sqrt[7]{\frac{1}{8}} \cos{ \frac{11 \pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{11 \pi }{7}}\\
                                              • \bullet\,\,x_{7} = \sqrt[7]{\frac{1}{8}} \cos{ \frac{13 \pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{13 \pi }{7}}\\
                                              • \end{array}

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              8*x^7 + 1

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                              The 7 roots are:

                                              • x1 = ((1 / 8))^(1/7)*cos(Pi/7) + I *((1 / 8))^(1/7) * sin(Pi/7)
                                              • x2 = ((1 / 8))^(1/7)*cos (3*Pi/7) + I *((1 / 8))^(1/7) * sin(3*Pi/7)
                                              • x3 = ((1 / 8))^(1/7)*cos (5*Pi/7) + I *((1 / 8))^(1/7) * sin(5*Pi/7)
                                              • x4 = ((1 / 8))^(1/7)*cos(Pi/1) + I *((1 / 8))^(1/7) * sin(Pi/1) = -((1 / 8))^(1/7)
                                              • x5 = ((1 / 8))^(1/7)*cos (9*Pi/7) + I *((1 / 8))^(1/7) * sin(9*Pi/7)
                                              • x6 = ((1 / 8))^(1/7)*cos (11*Pi/7) + I *((1 / 8))^(1/7) * sin(11*Pi/7)
                                              • x7 = ((1 / 8))^(1/7)*cos (13*Pi/7) + I *((1 / 8))^(1/7) * sin(13*Pi/7)

                                              Time elapsed:

                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                              -2

                                              Your polynomial

                                              4

                                              Irreducible polynomial factors

                                              The polynomial is irreducible

                                              Roots

                                                Time elapsed:

                                                Written by Dario Alpern. Last updated on 10 November 2024.

                                                -2

                                                Your polynomial

                                                x^2 + x + 3

                                                Irreducible polynomial factors

                                                The polynomial is irreducible

                                                Roots

                                                The 2 roots are:

                                                • x1 = -1 / 2 - (1 / 2)*11^(1/2) *I
                                                • x2 = -1 / 2 + (1 / 2)*11^(1/2) *I

                                                Time elapsed:

                                                Written by Dario Alpern. Last updated on 10 November 2024.

                                                -2

                                                Your polynomial

                                                x + 3

                                                Irreducible polynomial factors

                                                The polynomial is irreducible

                                                Roots

                                                • x1 = -3

                                                Time elapsed:

                                                Written by Dario Alpern. Last updated on 10 November 2024.

                                                -2

                                                Your polynomial

                                                x^2 + 1

                                                Irreducible polynomial factors

                                                The polynomial is irreducible

                                                Roots

                                                The 2 roots are:

                                                • x1 = - 1 *I
                                                • x2 = 1 *I

                                                Time elapsed:

                                                Written by Dario Alpern. Last updated on 10 November 2024.

                                                -2

                                                Your polynomial

                                                1

                                                Irreducible polynomial factors

                                                The polynomial is irreducible

                                                Roots

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  x^4 + x^3 - x - 1

                                                  Irreducible polynomial factors

                                                  The 3 factors are:

                                                  • x - 1
                                                  • x + 1
                                                  • x^2 + x + 1

                                                  Roots

                                                  The 4 roots are:

                                                  • x1 = 1
                                                  • x2 = -1
                                                  • x3 = -1 / 2 - (1 / 2)*3^(1/2) *I
                                                  • x4 = -1 / 2 + (1 / 2)*3^(1/2) *I

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  x^3

                                                  Irreducible polynomial factors

                                                  The 3 factors are:

                                                  • x^3

                                                  Roots

                                                  The 3 roots are:

                                                  • x1 to x3 = 0

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  x^10 + x^6

                                                  Irreducible polynomial factors

                                                  The 7 factors are:

                                                  • x^6
                                                  • x^4 + 1

                                                  Roots

                                                  The 10 roots are:

                                                  • x1 to x6 = 0
                                                  • x7 = (1 / 2)^(1/2) + (1 / 2)^(1/2)*I
                                                  • x8 = (1 / 2)^(1/2) - (1 / 2)^(1/2)*I
                                                  • x9 = -(1 / 2)^(1/2) + (1 / 2)^(1/2)*I
                                                  • x10 = -(1 / 2)^(1/2) - (1 / 2)^(1/2)*I

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  Mod(1, 3)

                                                  Irreducible polynomial factors

                                                  The polynomial is irreducible

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  Mod(x^2 + x, 3)

                                                  Irreducible polynomial factors

                                                  The 2 factors are:

                                                  • x
                                                  • x + 1

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  Mod(x, 3)

                                                  Irreducible polynomial factors

                                                  The polynomial is irreducible

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  Mod(x^2 + 1, 3)

                                                  Irreducible polynomial factors

                                                  The polynomial is irreducible

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  Mod(1, 3)

                                                  Irreducible polynomial factors

                                                  The polynomial is irreducible

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  Mod(x^4 + x^3 + 2*x + 2, 3)

                                                  Irreducible polynomial factors

                                                  The 4 factors are:

                                                  • x + 1
                                                  • (x + 2)^3

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  Mod(x^3, 3)

                                                  Irreducible polynomial factors

                                                  The 3 factors are:

                                                  • x^3

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  Mod(x^10 + x^6, 3)

                                                  Irreducible polynomial factors

                                                  The 8 factors are:

                                                  • x^6
                                                  • x^2 + x + 2
                                                  • x^2 + 2*x + 2

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  Mod(x^60 + 1, 2)

                                                  Irreducible polynomial factors

                                                  The 20 factors are:

                                                  • (x + 1)^4
                                                  • (x^2 + x + 1)^4
                                                  • (x^4 + x + 1)^4
                                                  • (x^4 + x^3 + 1)^4
                                                  • (x^4 + x^3 + x^2 + x + 1)^4

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  Mod(x^5 + 2*x^4 + x^3 + 3, 11)

                                                  Irreducible polynomial factors

                                                  The polynomial is irreducible

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  Mod(x^5 + 2*x^4 + x^3 + 3, 11)

                                                  Irreducible polynomial factors

                                                  The polynomial is irreducible

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  Mod(10*x^5 + 10*x^3 + 10, 11)

                                                  Irreducible polynomial factors

                                                  The 3 factors are:

                                                  • 10
                                                  • x + 7
                                                  • x^4 + 4*x^3 + 6*x^2 + 2*x + 8

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  Mod(x^25, 11)

                                                  Irreducible polynomial factors

                                                  The 25 factors are:

                                                  • x^25

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  Mod(x^15 + x^3 + x^2, 11)

                                                  Irreducible polynomial factors

                                                  The 5 factors are:

                                                  • x^2
                                                  • x + 9
                                                  • x^4 + x^3 + 6*x + 9
                                                  • x^8 + x^7 + 3*x^6 + 10*x^5 + 2*x^4 + 3*x^3 + 7*x^2 + 8*x + 3

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  Mod(x^5 + 1, 11)

                                                  Irreducible polynomial factors

                                                  The 5 factors are:

                                                  • x + 1
                                                  • x + 3
                                                  • x + 4
                                                  • x + 5
                                                  • x + 9

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  Mod(10*x^9 + x^5 + x^3 + 1, 11)

                                                  Irreducible polynomial factors

                                                  The 4 factors are:

                                                  • 10
                                                  • x + 1
                                                  • x + 2
                                                  • x^7 + 8*x^6 + 7*x^5 + 7*x^4 + 8*x^3 + 6*x^2 + 9*x + 5

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  Mod(4*x^4 + 5*x^3 + 6*x^2 + 6*x + 4, 11)

                                                  Irreducible polynomial factors

                                                  The 3 factors are:

                                                  • 4
                                                  • x^2 + x + 7
                                                  • x^2 + 3*x + 8

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  4*x^4 + 5*x^3 + 6*x^2 + 6*x + 4

                                                  Irreducible polynomial factors

                                                  The polynomial is irreducible

                                                  Roots

                                                  The 4 roots are:

                                                  • t = acos((-21 / 23)*(6 / 23)^(1/2))
                                                  • S = (1/2)*(-39 / 64 + (1 / 3)*(69 / 2)^(1/2)*cos(t / 3))^(1/2)
                                                  • x1 = -5 / 16 + S + (I/2)*(4 *S^2 + 117 / 64 + 413 / (512 * S))^(1/2)
                                                  • x2 = -5 / 16 + S - (I/2)*(4 *S^2 + 117 / 64 + 413 / (512 * S))^(1/2)
                                                  • x3 = -5 / 16 - S + (I/2)*(4 *S^2 + 117 / 64 - 413 / (512 * S))^(1/2)
                                                  • x4 = -5 / 16 - S - (I/2)*(4 *S^2 + 117 / 64 - 413 / (512 * S))^(1/2)

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  Mod(x^7 + x^2, 11)

                                                  Irreducible polynomial factors

                                                  The 7 factors are:

                                                  • x^2
                                                  • x + 1
                                                  • x + 3
                                                  • x + 4
                                                  • x + 5
                                                  • x + 9

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  Mod(4*x^8 + 8*x^4 + 4, 11)

                                                  Irreducible polynomial factors

                                                  The 5 factors are:

                                                  • 4
                                                  • (x^2 + 3*x + 10)^2
                                                  • (x^2 + 8*x + 10)^2

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  Mod(2*x, 11)

                                                  Irreducible polynomial factors

                                                  The 2 factors are:

                                                  • 2
                                                  • x

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  Mod(x^2 + x + 10, 11)

                                                  Irreducible polynomial factors

                                                  The 2 factors are:

                                                  • x + 4
                                                  • x + 8

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  −x^5

                                                  Irreducible polynomial factors

                                                  The 6 factors are:

                                                  • −1
                                                  • x^5

                                                  Roots

                                                  The 5 roots are:

                                                  • x1 to x5 = 0

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  x^5 + x^4 - 4*x^3 - 3*x^2 + 3*x + 1

                                                  Irreducible polynomial factors

                                                  The polynomial is irreducible

                                                  Roots

                                                  The 5 roots are:

                                                  • x1 = -1 / 5 + (2 / 5)*11^(1/2)*(cos((1/5)*acos((-89 / 484)*11^(1/2) + (25 / 484)*55^(1/2))) + cos((1/5)*(4*Pi + acos((-89 / 484)*11^(1/2) - (25 / 484)*55^(1/2)))))
                                                  • x2 = -1 / 5 + (2 / 5)*11^(1/2)*(cos((1/5)*(2*Pi + acos((-89 / 484)*11^(1/2) + (25 / 484)*55^(1/2)))) + cos((1/5)*acos((-89 / 484)*11^(1/2) - (25 / 484)*55^(1/2))))
                                                  • x3 = -1 / 5 + (2 / 5)*11^(1/2)*(cos((1/5)*(4*Pi + acos((-89 / 484)*11^(1/2) + (25 / 484)*55^(1/2)))) + cos((1/5)*(6*Pi + acos((-89 / 484)*11^(1/2) - (25 / 484)*55^(1/2)))))
                                                  • x4 = -1 / 5 + (2 / 5)*11^(1/2)*(cos((1/5)*(6*Pi + acos((-89 / 484)*11^(1/2) + (25 / 484)*55^(1/2)))) + cos((1/5)*(2*Pi + acos((-89 / 484)*11^(1/2) - (25 / 484)*55^(1/2)))))
                                                  • x5 = -1 / 5 + (2 / 5)*11^(1/2)*(cos((1/5)*(8*Pi + acos((-89 / 484)*11^(1/2) + (25 / 484)*55^(1/2)))) + cos((1/5)*(8*Pi + acos((-89 / 484)*11^(1/2) - (25 / 484)*55^(1/2)))))

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  423 6836605*x^4 + 323 2968453*x^3 + 53 6741668*x^2 + 3 7982461*x + 1709169

                                                  Irreducible polynomial factors

                                                  The 2 factors are:

                                                  • 61415x^2 + 4334*x + 343
                                                  • 68987x^2 + 47773*x + 4983

                                                  Roots

                                                  The 4 roots are:

                                                  • x1 = -2167 / 61415 - (4 / 61415)*1023091^(1/2) *I
                                                  • x2 = -2167 / 61415 + (4 / 61415)*1023091^(1/2) *I
                                                  • x3 = -47773 / 137974 - (1 / 137974)*90 7210645^(1/2)
                                                  • x4 = -47773 / 137974 + (1 / 137974)*90 7210645^(1/2)

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  25716 2225748 9453541*x^4 + 5339 6315345 9320416*x^3 + 16134 3373525 6062469*x^2 + 2053 2826762 2151128*x + 1478 5481680 9063573

                                                  Irreducible polynomial factors

                                                  The 2 factors are:

                                                  • 67 8585781x^2 + 4 3213515*x + 34 2143153
                                                  • 378 9678961x^2 + 54 5543121*x + 43 2143141

                                                  Roots

                                                  The 4 roots are:

                                                  • x1 = -4 3213515 / 135 7171562 - (1 / 135 7171562)*9268 2650689 0574747^(1/2) *I
                                                  • x2 = -4 3213515 / 135 7171562 + (1 / 135 7171562)*9268 2650689 0574747^(1/2) *I
                                                  • x3 = -54 5543121 / 757 9357922 - (1 / 757 9357922)*62531 1778148 2205363^(1/2) *I
                                                  • x4 = -54 5543121 / 757 9357922 + (1 / 757 9357922)*62531 1778148 2205363^(1/2) *I

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  45876 4056192 7400868 2906871x^{4} + 29158 6367947 3120381 2844366x^{3} + 2934 8677804 6745747 3595759x^{2} + 1495272 0835562 2151128x + 148600 1039580 9063573

                                                  Irreducible polynomial factors

                                                  The 2 factors are:

                                                  • \begin{array}{l}
                                                  • \bullet\,\,67896 7896891x^{2} + 43154 5543121x + 4343 2143141\\
                                                  • \bullet\,\,6756785 6785781x^{2} + 4 3213515x + 34 2143153\\
                                                  • \end{array}

                                                  Roots

                                                  The 4 roots are:

                                                  • \begin{array}{l}
                                                  • \bullet\,\,x_{1} = \frac{-43154 5543121}{135793 5793782} - \frac{1}{135793 5793782}\sqrt{68 2754322 4394430 6922117}\\
                                                  • \bullet\,\,x_{2} = \frac{-43154 5543121}{135793 5793782} + \frac{1}{135793 5793782}\sqrt{68 2754322 4394430 6922117}\\
                                                  • \bullet\,\,x_{3} = \frac{-4 3213515}{1 3513571 3571562} - \frac{1}{1 3513571 3571562}\sqrt{92 4715163 8115034 8974747} i\\
                                                  • \bullet\,\,x_{4} = \frac{-4 3213515}{1 3513571 3571562} + \frac{1}{1 3513571 3571562}\sqrt{92 4715163 8115034 8974747} i\\
                                                  • \end{array}

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  x^4 - 1

                                                  Irreducible polynomial factors

                                                  The 3 factors are:

                                                  • x - 1
                                                  • x + 1
                                                  • x^2 + 1

                                                  Roots

                                                  The 4 roots are:

                                                  • x1 = 1
                                                  • x2 = -1
                                                  • x3 = - 1 *I
                                                  • x4 = 1 *I

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  Mod(x^4 + 6, 7)

                                                  Irreducible polynomial factors

                                                  The 3 factors are:

                                                  • x + 1
                                                  • x + 6
                                                  • x^2 + 1

                                                  Time elapsed:

                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                  -2

                                                  Your polynomial

                                                  0

                                                  Irreducible polynomial factors

                                                  The polynomial is irreducible

                                                  Roots

                                                    Time elapsed:

                                                    Written by Dario Alpern. Last updated on 10 November 2024.

                                                    -2

                                                    Your polynomial

                                                    Mod(0, 7)

                                                    Irreducible polynomial factors

                                                    Leading coefficient multiple of prime

                                                    Written by Dario Alpern. Last updated on 10 November 2024.

                                                    -2

                                                    Your polynomial

                                                    x7 + 1 (mod 7)

                                                    Irreducible polynomial factors

                                                    The 7 factors are:

                                                    • (x + 1)7

                                                    Time elapsed:

                                                    Written by Dario Alpern. Last updated on 10 November 2024.

                                                    -2

                                                    Your polynomial

                                                    x^{7} + 1 (\pmod 7)

                                                    Irreducible polynomial factors

                                                    The 7 factors are:

                                                    • \begin{array}{l}
                                                    • \bullet\,\,(x + 1)^{7}\\
                                                    • \end{array}

                                                    Time elapsed:

                                                    Written by Dario Alpern. Last updated on 10 November 2024.

                                                    -2

                                                    Your polynomial

                                                    Mod(x^7 + 1, 7)

                                                    Irreducible polynomial factors

                                                    The 7 factors are:

                                                    • (x + 1)^7

                                                    Time elapsed:

                                                    Written by Dario Alpern. Last updated on 10 November 2024.

                                                    -2

                                                    Your polynomial

                                                    Mod(x^39 + 5585 4586408 3284006, 7^21)

                                                    Irreducible polynomial factors

                                                    The 6 factors are:

                                                    • x + 1019 3584357 3231762
                                                    • x + 4566 1002051 0052246
                                                    • x + 5585 4586408 3284006
                                                    • x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
                                                    • x^12 + 1019 3584357 3231761*x^11 + 4566 1002051 0052245*x^10 + x^9 + 1019 3584357 3231761*x^8 + 4566 1002051 0052245*x^7 + x^6 + 1019 3584357 3231761*x^5 + 4566 1002051 0052245*x^4 + x^3 + 1019 3584357 3231761*x^2 + 4566 1002051 0052245*x + 1
                                                    • x^12 + 4566 1002051 0052245*x^11 + 1019 3584357 3231761*x^10 + x^9 + 4566 1002051 0052245*x^8 + 1019 3584357 3231761*x^7 + x^6 + 4566 1002051 0052245*x^5 + 1019 3584357 3231761*x^4 + x^3 + 4566 1002051 0052245*x^2 + 1019 3584357 3231761*x + 1

                                                    Time elapsed:

                                                    Written by Dario Alpern. Last updated on 10 November 2024.

                                                    -2

                                                    Your polynomial

                                                    Mod(x^39, 7^21)

                                                    Irreducible polynomial factors

                                                    Cannot lift because of duplicate factors modulo prime

                                                    Written by Dario Alpern. Last updated on 10 November 2024.

                                                    -2

                                                    Your polynomial

                                                    x4 + 100000 0000000 0000032⁢x3 + 99999 9999999 9999054⁢x2 + 2797⁢x + 99999 9999999 9998809 (mod 100000 0000000 0000051)

                                                    Irreducible polynomial factors

                                                    The 4 factors are:

                                                    • x + 9624 0908064 2195803
                                                    • x + 42561 5726276 4689743
                                                    • x + 57438 4273723 5310331
                                                    • x + 90375 9091935 7804206

                                                    Time elapsed:

                                                    Written by Dario Alpern. Last updated on 10 November 2024.

                                                    -2

                                                    Your polynomial

                                                    x^{4} + 100000 0000000 0000032x^{3} + 99999 9999999 9999054x^{2} + 2797x + 99999 9999999 9998809 (\pmod 100000 0000000 0000051)

                                                    Irreducible polynomial factors

                                                    The 4 factors are:

                                                    • \begin{array}{l}
                                                    • \bullet\,\,x + 9624 0908064 2195803\\
                                                    • \bullet\,\,x + 42561 5726276 4689743\\
                                                    • \bullet\,\,x + 57438 4273723 5310331\\
                                                    • \bullet\,\,x + 90375 9091935 7804206\\
                                                    • \end{array}

                                                    Time elapsed:

                                                    Written by Dario Alpern. Last updated on 10 November 2024.

                                                    -2

                                                    Your polynomial

                                                    Mod(x^4 + 100000 0000000 0000032*x^3 + 99999 9999999 9999054*x^2 + 2797*x + 99999 9999999 9998809, 100000 0000000 0000051)

                                                    Irreducible polynomial factors

                                                    The 4 factors are:

                                                    • x + 9624 0908064 2195803
                                                    • x + 42561 5726276 4689743
                                                    • x + 57438 4273723 5310331
                                                    • x + 90375 9091935 7804206

                                                    Time elapsed:

                                                    Written by Dario Alpern. Last updated on 10 November 2024.

                                                    -2

                                                    Only integer numbers are accepted

                                                    Written by Dario Alpern. Last updated on 10 November 2024.

                                                    -2

                                                    Only integer numbers are accepted

                                                    Written by Dario Alpern. Last updated on 10 November 2024.

                                                    -2

                                                    Only integer numbers are accepted

                                                    Written by Dario Alpern. Last updated on 10 November 2024.

                                                    -2

                                                    Your polynomial fraction

                                                    ( −x^3 + 3*x^2 + x - 1) / (x^3 - x)

                                                    Irreducible numerator factors

                                                    The 2 factors are:

                                                    • −1
                                                    • x^3 - 3*x^2 - x + 1

                                                    Roots

                                                    The 3 roots are:

                                                    • t = (1/3) * acos((3 / 8)*3^(1/2))
                                                    • x1 = 1 + 4*(1 / 3)^(1/2)* cos(t)
                                                    • x2 = 1 + 4*(1 / 3)^(1/2)* cos(t + 2 * Pi / 3)
                                                    • x3 = 1 + 4*(1 / 3)^(1/2)* cos(t + 4 * Pi / 3)

                                                    Time elapsed:

                                                    Written by Dario Alpern. Last updated on 10 November 2024.

                                                    -2

                                                    Your polynomial fraction

                                                    (Mod(6*x^3 + 3*x^2 + x + 6, 7)) / (Mod(x^3 + 6*x, 7))

                                                    Irreducible numerator factors

                                                    The 2 factors are:

                                                    • 6
                                                    • x^3 + 4*x^2 + 6*x + 1

                                                    Time elapsed:

                                                    Written by Dario Alpern. Last updated on 10 November 2024.

                                                    -2

                                                    Your polynomial

                                                    x^4 + 1

                                                    Irreducible polynomial factors

                                                    The polynomial is irreducible

                                                    Roots

                                                    The 4 roots are:

                                                    • x1 = (1 / 2)^(1/2) + (1 / 2)^(1/2)*I
                                                    • x2 = (1 / 2)^(1/2) - (1 / 2)^(1/2)*I
                                                    • x3 = -(1 / 2)^(1/2) + (1 / 2)^(1/2)*I
                                                    • x4 = -(1 / 2)^(1/2) - (1 / 2)^(1/2)*I

                                                    Time elapsed:

                                                    Written by Dario Alpern. Last updated on 10 November 2024.

                                                    -2

                                                    Your polynomial

                                                    Mod(x^4 + 1, 7)

                                                    Irreducible polynomial factors

                                                    The 2 factors are:

                                                    • x^2 + 3*x + 1
                                                    • x^2 + 4*x + 1

                                                    Time elapsed:

                                                    Written by Dario Alpern. Last updated on 10 November 2024.

                                                    -2

                                                    Your polynomial fraction

                                                    (4*x - 48) / (3)

                                                    Irreducible numerator factors

                                                    The 2 factors are:

                                                    • 4
                                                    • x - 12

                                                    Roots

                                                    • x1 = 12

                                                    Time elapsed:

                                                    Written by Dario Alpern. Last updated on 10 November 2024.

                                                    -2

                                                    Your polynomial

                                                    0

                                                    Irreducible polynomial factors

                                                    The polynomial is irreducible

                                                    Roots

                                                      Time elapsed:

                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                      -2

                                                      Your polynomial

                                                      2*x^3 + 6*x

                                                      Irreducible polynomial factors

                                                      The 3 factors are:

                                                      • 2
                                                      • x
                                                      • x^2 + 3

                                                      Roots

                                                      The 3 roots are:

                                                      • x1 = 0
                                                      • x2 = - 3^(1/2) *I
                                                      • x3 = 3^(1/2) *I

                                                      Time elapsed:

                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                      -2

                                                      Your polynomial

                                                      0

                                                      Irreducible polynomial factors

                                                      The polynomial is irreducible

                                                      Roots

                                                        Time elapsed:

                                                        Written by Dario Alpern. Last updated on 10 November 2024.

                                                        -2

                                                        Your polynomial fraction

                                                        (x^3 + 9*x^2 + 39*x + 111) / (4)

                                                        Irreducible numerator factors

                                                        The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                                                        Roots

                                                        The 3 roots are:

                                                        • r = (-24 + 8*10^(1/2))^(1/3)
                                                        • s = -(24 + 8*10^(1/2))^(1/3)
                                                        • x1 = -3 + r + s
                                                        • x2 = -3 - (r + s) / 2 + (I/2) * (r - s) * 3^(1/2)
                                                        • x3 = -3 - (r + s) / 2 - (I/2) * (r - s) * 3^(1/2)

                                                        Time elapsed:

                                                        Written by Dario Alpern. Last updated on 10 November 2024.

                                                        -2

                                                        Your polynomial

                                                        0

                                                        Irreducible polynomial factors

                                                        The polynomial is irreducible

                                                        Roots

                                                          Time elapsed:

                                                          Written by Dario Alpern. Last updated on 10 November 2024.

                                                          -2

                                                          Division by zero

                                                          Written by Dario Alpern. Last updated on 10 November 2024.

                                                          -2

                                                          Division by zero

                                                          Written by Dario Alpern. Last updated on 10 November 2024.

                                                          -2

                                                          Your polynomial

                                                          1

                                                          Irreducible polynomial factors

                                                          The polynomial is irreducible

                                                          Roots

                                                            Time elapsed:

                                                            Written by Dario Alpern. Last updated on 10 November 2024.

                                                            -2

                                                            Your polynomial fraction

                                                            (1) / (x^3 - 3*x^2 + 3*x - 1)

                                                            Irreducible numerator factors

                                                            The polynomial is irreducible

                                                            Roots

                                                              Time elapsed:

                                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                                              -2

                                                              Denominator must be constant

                                                              Written by Dario Alpern. Last updated on 10 November 2024.

                                                              -2

                                                              Your polynomial fraction

                                                              (1) / (x^3)

                                                              Irreducible numerator factors

                                                              The polynomial is irreducible

                                                              Roots

                                                                Time elapsed:

                                                                Written by Dario Alpern. Last updated on 10 November 2024.

                                                                -2

                                                                Your polynomial fraction

                                                                (1) / (x^3 + 6*x^2 + 12*x + 8)

                                                                Irreducible numerator factors

                                                                The polynomial is irreducible

                                                                Roots

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                                  -2

                                                                  Your polynomial fraction

                                                                  (x^3 + 6*x^2 + 12*x + 8) / (x^2)

                                                                  Irreducible numerator factors

                                                                  The 3 factors are:

                                                                  • (x + 2)^3

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • x1 to x3 = -2

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                                  -2

                                                                  Your polynomial

                                                                  Mod(x^3 + 100000 0000000 0000050*x^2 + 100000 0000000 0000050*x + 1, 100000 0000000 0000051)

                                                                  Irreducible polynomial factors

                                                                  The 3 factors are:

                                                                  • x + 1
                                                                  • (x + 100000 0000000 0000050)^2

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                                  -2

                                                                  Your polynomial

                                                                  x + 6

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  • The equation to solve is:

                                                                    x + 6 = 0

                                                                    x1 = -6

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                                  -2

                                                                  Your polynomial

                                                                  5x + 6

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  • The equation to solve is:

                                                                    5x + 6 = 0

                                                                    Dividing the equation by the linear coefficient:

                                                                    x + 65 = 0

                                                                    x1 = -65

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                                  -2

                                                                  Your polynomial

                                                                  x2 + 6

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                                                  Roots

                                                                  The 2 roots are:

                                                                  • The equation to solve is:

                                                                    x2 + 6 = 0

                                                                    x = ±(-6)

                                                                    x1 = − 6 i

                                                                    x2 = 6 i

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                                  -2

                                                                  Your polynomial

                                                                  x2 + 9

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 2 roots are:

                                                                  • The equation to solve is:

                                                                    x2 + 9 = 0

                                                                    x = ±3 (-1)

                                                                    x1 = − 3 i

                                                                    x2 = 3 i

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                                  -2

                                                                  Your polynomial

                                                                  x2 − 9

                                                                  Irreducible polynomial factors

                                                                  The 2 factors are:

                                                                  • x − 3
                                                                  • x + 3

                                                                  Roots

                                                                  The 2 roots are:

                                                                  • The equation to solve is:

                                                                    x − 3 = 0

                                                                    x1 = 3

                                                                  • The equation to solve is:

                                                                    x + 3 = 0

                                                                    x2 = -3

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                                  -2

                                                                  Your polynomial

                                                                  x2 − 7⁢x + 9

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 2 roots are:

                                                                  • The equation to solve is:

                                                                    x2 − 7x + 9 = 0

                                                                    To eliminate the linear term, we will perform the following substitution:

                                                                    x = y + 72

                                                                    The constant value in the substitution equals half of the linear coefficient.

                                                                    y + 722 − 7y + 72 + 9 = 0

                                                                    Expanding brackets:

                                                                    y2 + 7y + 494 − 7y492 + 9 = 0

                                                                    Simplifying:

                                                                    y2134 = 0

                                                                    y = ±12 13

                                                                    x72 = ±12 13

                                                                    x1 = 7212 13

                                                                    x2 = 72 + 12 13

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                                  -2

                                                                  Your polynomial

                                                                  x3 − 9

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • The equation to solve is:

                                                                    x3 − 9 = 0

                                                                    The solutions are the real cube root of 9 and the multiplication by both non-real cube roots of 1:

                                                                    e = − 12 + i23, f = − 12i23

                                                                    x1 = 9

                                                                    x2 = − 12 9 + i23 9

                                                                    x3 = − 12 9i23 9

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                                  -2

                                                                  Your polynomial

                                                                  x3 − 23⁢x − 9

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • The equation to solve is:

                                                                    x3 − 23x − 9 = 0

                                                                    The nature of the roots depends on the value of the discriminant.

                                                                    Δ = − 4p3 − 27q2

                                                                    where p is the linear coefficient and q is the constant term.

                                                                    Δ = −4-233 − 27-92 = 46481

                                                                    The discriminant is positive, which implies that all three roots are real. In this case the roots cannot be represented by radical expressions of real numbers, so we must use trigonometry.

                                                                    Starting with the formula of the triple angle:

                                                                    4cos t3 − 3cos tcos3t = 0

                                                                    Let x = u cos t. From the previous equation to the definition of the discriminant:

                                                                    u3cos t3 − 23u cos t − 9 = 0

                                                                    We will equate the terms of both equations from left to right. Dividing by u3 / 4:

                                                                    4cos t392u2cos t36u3 = 0

                                                                    The second coefficient must equal −3, so:

                                                                    u = 2 233

                                                                    Equating the last term:

                                                                    cos3t = 36u3 = 2746 323

                                                                  • t = 13arc cos2746 323

                                                                    x1 = 2 233 cos(t)

                                                                    x2 = 2 233 cost + 2π3

                                                                    x3 = 2 233 cost + 4π3

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                                  -2

                                                                  Your polynomial

                                                                  x3 + 12⁢x2 + 23⁢x − 9

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • The equation to solve is:

                                                                    x3 + 12x2 + 23x − 9 = 0

                                                                    To eliminate the quadratic term, we will perform the following substitution:

                                                                    x = y − 4

                                                                    The constant value in the substitution equals a third of the quadratic coefficient.

                                                                    y − 43 + 12y − 42 + 23y − 4 − 9 = 0

                                                                    Expanding brackets:

                                                                    y3 − 12y2 + 48y − 64 + 12y2 − 96y + 192 + 23y − 92 − 9 = 0

                                                                    Simplifying:

                                                                    y3 − 25y + 27 = 0

                                                                    The nature of the roots depends on the value of the discriminant.

                                                                    Δ = − 4p3 − 27q2

                                                                    where p is the linear coefficient and q is the constant term.

                                                                    Δ = −4-253 − 27272 = 42817

                                                                    The discriminant is positive, which implies that all three roots are real. In this case the roots cannot be represented by radical expressions of real numbers, so we must use trigonometry.

                                                                    Starting with the formula of the triple angle:

                                                                    4cos t3 − 3cos tcos3t = 0

                                                                    Let y = u cos t. From the previous equation to the definition of the discriminant:

                                                                    u3cos t3 − 25u cos t + 27 = 0

                                                                    We will equate the terms of both equations from left to right. Dividing by u3 / 4:

                                                                    4cos t3100u2cos t + 108u3 = 0

                                                                    The second coefficient must equal −3, so:

                                                                    u = 10 13

                                                                    Equating the last term:

                                                                    cos3t = − 108u3 = -81250 3

                                                                  • t = 13arc cos-81250 3

                                                                    x1 = -4 + 10 13 cos(t)

                                                                    x2 = -4 + 10 13 cost + 2π3

                                                                    x3 = -4 + 10 13 cost + 4π3

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                                  -2

                                                                  Your polynomial

                                                                  x3x − 9

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • The equation to solve is:

                                                                    x3x − 9 = 0

                                                                    The nature of the roots depends on the value of the discriminant.

                                                                    Δ = − 4p3 − 27q2

                                                                    where p is the linear coefficient and q is the constant term.

                                                                    Δ = −4-13 − 27-92 = -2183

                                                                    The discriminant is negative, so there is a real root and two complex conjugate roots.

                                                                    Using Cardano's method, setting x = r + s:

                                                                    r + s3r + s − 9 = 0

                                                                    r3 + 3r2s + 3rs2 + s3r + s − 9 = 0

                                                                    r3 + s3 + 3rsr + sr + s − 9 = 0

                                                                    r3 + s3 + 3rs − 1r + s − 9 = 0    (1)

                                                                    Since there is an extra variable, we can impose an additional condition. In our case it is:

                                                                    3rs − 1 = 0    (2)

                                                                    rs = 13    (3)

                                                                    r3s3 = 127    (4)

                                                                    From (1) and (2):

                                                                    r3 + s3 − 9 = 0    (5)

                                                                    Multiplying by r3:

                                                                    r6 + r3s3 − 9r3 = 0

                                                                    From (4):

                                                                    r6 + 127 − 9r3 = 0

                                                                    r6 − 9r3 + 127 = 0

                                                                    This is a quadratic equation in r3. If we multiplied (5) by s3 instead of r3, the equation coefficients would be the same, so the quadratic equation can also give us the value of s3. Let w = r3 or s3.

                                                                    w2 − 9w + 127 = 0

                                                                    To eliminate the linear term, we will perform the following substitution:

                                                                    w = z + 92

                                                                    The constant value in the substitution equals half of the linear coefficient.

                                                                    z + 922 − 9z + 92 + 127 = 0

                                                                    Expanding brackets:

                                                                    z2 + 9z + 814 − 9z812 + 127 = 0

                                                                    Simplifying:

                                                                    z22183108 = 0

                                                                    z = ±16 21833

                                                                    w92 = ±16 21833

                                                                    r = 92 + 16 21833

                                                                    s = 9216 21833

                                                                    A cubic root has three solutions in the complex field. But we cannot select any value for r and s because the condition (3) must be true. So their product must be a real number.

                                                                    Let r1 = r, r2 = re, r3 = rf, s1 = s, s2 = se, s3 = sf, where

                                                                    e = − 12 + i23, f = − 12i23

                                                                    are the non-real cubic roots of 1. Since ef is real, but e2 and f2 are not, the values of x that follow the condition (3) are:

                                                                    x1 = r1 + s1 = r + s

                                                                    x2 = r2 + s3 = r 12 + i23 + s 12i23

                                                                    x3 = r3 + s2 = r 12i23 + s 12 + i23

                                                                    x1 = r + s

                                                                    x2 = −r + s2 + i rs23

                                                                    x3 = −r + s2 − i rs23

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                                  -2

                                                                  Your polynomial

                                                                  x3 + x2 − 9

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • The equation to solve is:

                                                                    x3 + x2 − 9 = 0

                                                                    To eliminate the quadratic term, we will perform the following substitution:

                                                                    x = y13

                                                                    The constant value in the substitution equals a third of the quadratic coefficient.

                                                                    y133 + y132 − 9 = 0

                                                                    Expanding brackets:

                                                                    y3y2 + 13y127 + y223y + 19 − 9 = 0

                                                                    Simplifying:

                                                                    y313y24127 = 0

                                                                    The nature of the roots depends on the value of the discriminant.

                                                                    Δ = − 4p3 − 27q2

                                                                    where p is the linear coefficient and q is the constant term.

                                                                    Δ = −4-133 − 27-241272 = -2151

                                                                    The discriminant is negative, so there is a real root and two complex conjugate roots.

                                                                    Using Cardano's method, setting y = r + s:

                                                                    r + s313r + s24127 = 0

                                                                    r3 + 3r2s + 3rs2 + s313r + s24127 = 0

                                                                    r3 + s3 + 3rsr + s13r + s24127 = 0

                                                                    r3 + s3 + 3rs13r + s24127 = 0    (1)

                                                                    Since there is an extra variable, we can impose an additional condition. In our case it is:

                                                                    3rs13 = 0    (2)

                                                                    rs = 19    (3)

                                                                    r3s3 = 1729    (4)

                                                                    From (1) and (2):

                                                                    r3 + s324127 = 0    (5)

                                                                    Multiplying by r3:

                                                                    r6 + r3s324127r3 = 0

                                                                    From (4):

                                                                    r6 + 172924127r3 = 0

                                                                    r624127r3 + 1729 = 0

                                                                    This is a quadratic equation in r3. If we multiplied (5) by s3 instead of r3, the equation coefficients would be the same, so the quadratic equation can also give us the value of s3. Let w = r3 or s3.

                                                                    w224127w + 1729 = 0

                                                                    To eliminate the linear term, we will perform the following substitution:

                                                                    w = z + 24154

                                                                    The constant value in the substitution equals half of the linear coefficient.

                                                                    z + 24154224127z + 24154 + 1729 = 0

                                                                    Expanding brackets:

                                                                    z2 + 24127z + 58081291624127z580811458 + 1729 = 0

                                                                    Simplifying:

                                                                    z223912 = 0

                                                                    z = ±12 2393

                                                                    w24154 = ±12 2393

                                                                    r = 24154 + 12 2393

                                                                    s = 2415412 2393

                                                                    A cubic root has three solutions in the complex field. But we cannot select any value for r and s because the condition (3) must be true. So their product must be a real number.

                                                                    Let r1 = r, r2 = re, r3 = rf, s1 = s, s2 = se, s3 = sf, where

                                                                    e = − 12 + i23, f = − 12i23

                                                                    are the non-real cubic roots of 1. Since ef is real, but e2 and f2 are not, the values of y that follow the condition (3) are:

                                                                    y1 = x1 + 13 = r1 + s1 = r + s

                                                                    y2 = x2 + 13 = r2 + s3 = r 12 + i23 + s 12i23

                                                                    y3 = x3 + 13 = r3 + s2 = r 12i23 + s 12 + i23

                                                                    x1 = -13 + r + s

                                                                    x2 = -13r + s2 + i rs23

                                                                    x3 = -13r + s2 − i rs23

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                                  -2

                                                                  Your polynomial

                                                                  x20 + 13⁢x + 6 (mod 811)

                                                                  Irreducible polynomial factors

                                                                  Dividing the polynomial by the leading coefficient:

                                                                  f(x) ≡ x20 + 13⁢x + 6

                                                                  Squarefree factorization

                                                                  The derivative of f(x) is:

                                                                  f '(x) ≡ x19 + 13

                                                                  c0(x) = gcd(f(x), f '(x) ≡ 1

                                                                  w0(x) = f(x)/c0(x) ≡ x20 + 13⁢x + 6

                                                                  w1(x) = gcd(w0, c0) ≡ 1

                                                                  z1(x) = w0(x) / w1(x) ≡ x20 + 13⁢x + 6 is a factor of f(x) with multiplicity 1

                                                                  c1(x) = c0(x) / w1(x) ≡ 1

                                                                  Distinct degree factorization

                                                                  • Factoring f(x) ≡ x20 + 13⁢x + 6

                                                                    For all degrees d between 1 and 10, the product of all factors of degree d is found by computing gcd(f(x), x811^dx)

                                                                    gcd(f(x), x811^2x) ≡ x2 + 234⁢x + 416

                                                                    This polynomial has 1 irreducible factor of degree 2

                                                                    The new value of f(x) is the quotient between f(x) and the previous gcd.

                                                                    For all degrees d between 3 and 9, the product of all factors of degree d is found by computing gcd(f(x), x811^dx)

                                                                    gcd(f(x), x811^7x) ≡ x7 + 696⁢x6 + 693⁢x5 + 164⁢x4 + 43⁢x3 + 586⁢x2 + 355⁢x + 568

                                                                    This polynomial has 1 irreducible factor of degree 7

                                                                    The new value of f(x) is the quotient between f(x) and the previous gcd.

                                                                    f(x) ≡ x11 + 692⁢x10 + 223⁢x9 + 218⁢x8 + 370⁢x7 + 209⁢x6 + 248⁢x5 + 217⁢x4 + 573⁢x3 + 611⁢x2 + 343⁢x + 195

                                                                    This polynomial is irreducible.

                                                                  Equal degree factorization

                                                                  List of factors

                                                                  The 3 factors are:

                                                                  • x2 + 234⁢x + 416
                                                                  • x7 + 696⁢x6 + 693⁢x5 + 164⁢x4 + 43⁢x3 + 586⁢x2 + 355⁢x + 568
                                                                  • x11 + 692⁢x10 + 223⁢x9 + 218⁢x8 + 370⁢x7 + 209⁢x6 + 248⁢x5 + 217⁢x4 + 573⁢x3 + 611⁢x2 + 343⁢x + 195

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                                  -2

                                                                  Your polynomial

                                                                  x20 + x (mod 2)

                                                                  Irreducible polynomial factors

                                                                  Dividing the polynomial by the leading coefficient:

                                                                  f(x) ≡ x20 + x

                                                                  Squarefree factorization

                                                                  The derivative of f(x) is:

                                                                  f '(x) ≡ 1

                                                                  c0(x) = gcd(f(x), f '(x) ≡ 1

                                                                  w0(x) = f(x)/c0(x) ≡ x20 + x

                                                                  w1(x) = gcd(w0, c0) ≡ 1

                                                                  z1(x) = w0(x) / w1(x) ≡ x20 + x is a factor of f(x) with multiplicity 1

                                                                  c1(x) = c0(x) / w1(x) ≡ 1

                                                                  Distinct degree factorization

                                                                  • Factoring f(x) ≡ x20 + x

                                                                    For all degrees d between 1 and 10, the product of all factors of degree d is found by computing gcd(f(x), x2^dx)

                                                                    gcd(f(x), x2^1x) ≡ x2 + x

                                                                    This polynomial has 2 irreducible factors of degree 1

                                                                    The new value of f(x) is the quotient between f(x) and the previous gcd.

                                                                    For all degrees d between 2 and 9, the product of all factors of degree d is found by computing gcd(f(x), x2^dx)

                                                                    f(x) ≡ x18 + x17 + x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1

                                                                    This polynomial is irreducible.

                                                                  Equal degree factorization

                                                                  • Factoring in polynomials of degree 1 f(x) ≡ x2 + x

                                                                    Choosing h(x) at random, let g = h + h2 (mod f), then compute gcd(g, f) until the gcd is not equal to one of its arguments.

                                                                    r ≡ gcd(g, f) ≡ x + 1

                                                                    f / rx

                                                                  List of factors

                                                                  The 3 factors are:

                                                                  • x
                                                                  • x + 1
                                                                  • x18 + x17 + x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                                  -2

                                                                  Your polynomial

                                                                  Mod(x^3 + 100000 0000000 0000050*x^2 + 100000 0000000 0000050*x + 1, 100000 0000000 0000051)

                                                                  Irreducible polynomial factors

                                                                  Dividing the polynomial by the leading coefficient:

                                                                  f(x) = Mod(x^3 + 100000 0000000 0000050*x^2 + 100000 0000000 0000050*x + 1, 100000 0000000 0000051)

                                                                  Squarefree factorization

                                                                  The derivative of f(x) is:

                                                                  deriv(f(x)) = Mod(x^2 + 100000 0000000 0000049*x + 100000 0000000 0000050, 100000 0000000 0000051)

                                                                  c0(x) = gcd(f(x), deriv(f(x)) = Mod(x + 100000 0000000 0000050, 100000 0000000 0000051)

                                                                  w0(x) = f(x)/c0(x) = Mod(x^2 + 100000 0000000 0000050, 100000 0000000 0000051)

                                                                  w1(x) = gcd(w0, c0) = Mod(x + 100000 0000000 0000050, 100000 0000000 0000051)

                                                                  z1(x) = w0(x) / w1(x) = Mod(x + 1, 100000 0000000 0000051) is a factor of f(x) with multiplicity 1

                                                                  c1(x) = c0(x) / w1(x) = Mod(1, 100000 0000000 0000051)

                                                                  w2(x) = gcd(w1, c1) = Mod(1, 100000 0000000 0000051)

                                                                  z2(x) = w1(x) / w2(x) = Mod(x + 100000 0000000 0000050, 100000 0000000 0000051) is a factor of f(x) with multiplicity 2

                                                                  c2(x) = c1(x) / w2(x) = Mod(1, 100000 0000000 0000051)

                                                                  Distinct degree factorization

                                                                  Equal degree factorization

                                                                  List of factors

                                                                  The 3 factors are:

                                                                  • x + 1
                                                                  • (x + 100000 0000000 0000050)^2

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                                  -2

                                                                  Your polynomial

                                                                  Mod(7*x^3 + 2*x^2 + x + 56, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151^4)

                                                                  Irreducible polynomial factors

                                                                  Dividing the polynomial by the leading coefficient:

                                                                  f(x) = Mod(x^3 + 2 8571428 5714285 7142857 1428571 4285714 2857142 8571472*x^2 + 1 4285714 2857142 8571428 5714285 7142857 1428571 4285736*x + 8, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                                                  Squarefree factorization

                                                                  The derivative of f(x) is:

                                                                  deriv(f(x)) = Mod(x^2 + 5 7142857 1428571 4285714 2857142 8571428 5714285 7142944*x + 1 4285714 2857142 8571428 5714285 7142857 1428571 4285736, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                                                  c0(x) = gcd(f(x), deriv(f(x)) = Mod(1, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                                                  w0(x) = f(x)/c0(x) = Mod(x^3 + 2 8571428 5714285 7142857 1428571 4285714 2857142 8571472*x^2 + 1 4285714 2857142 8571428 5714285 7142857 1428571 4285736*x + 8, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                                                  w1(x) = gcd(w0, c0) = Mod(1, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                                                  z1(x) = w0(x) / w1(x) = Mod(x^3 + 2 8571428 5714285 7142857 1428571 4285714 2857142 8571472*x^2 + 1 4285714 2857142 8571428 5714285 7142857 1428571 4285736*x + 8, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits)) is a factor of f(x) with multiplicity 1

                                                                  c1(x) = c0(x) / w1(x) = Mod(1, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                                                  Distinct degree factorization

                                                                  • Factoring f(x) = Mod(x^3 + 2 8571428 5714285 7142857 1428571 4285714 2857142 8571472*x^2 + 1 4285714 2857142 8571428 5714285 7142857 1428571 4285736*x + 8, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                                                    For all degrees d between 1 and 1, the product of all factors of degree d is found by computing gcd(f(x), x^10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits)^d - x)

                                                                    gcd(f(x), x^10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits)^1 - x) = Mod(x + 2 4639512 5724756 3725390 7115163 5734626 8558610 1091198, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                                                    This polynomial has 1 irreducible factor of degree 1

                                                                    The new value of f(x) is the quotient between f(x) and the previous gcd.

                                                                    f(x) = Mod(x^2 + 3931915 9989529 3417466 4313407 8551087 4298532 7480274*x + 1 6428539 4662860 0860598 5329237 2966977 1971158 4894547, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                                                    This polynomial is irreducible.

                                                                  Equal degree factorization

                                                                  Hensel Lifting

                                                                  f_1 = x^3 + 71 4285714 2857142 8571428 5714285 7142857 1428571 4287871 4285714 2857142 8571428 5714285 7142857 1428571 4302001*x^2 + 85 7142857 1428571 4285714 2857142 8571428 5714285 7145445 7142857 1428571 4285714 2857142 8571428 5714285 7162401*x + 8

                                                                  f_{1, 1} = x^2 + 3931915 9989529 3417466 4313407 8551087 4298532 7480274*x + 1 6428539 4662860 0860598 5329237 2966977 1971158 4894547

                                                                  f_{1, 2} = x + 2 4639512 5724756 3725390 7115163 5734626 8558610 1091198

                                                                  Using the extended GCD algorithm, compute a_{1, 1}, ..., a_{1, n} such that

                                                                  1 = (f_1(x)/f_{1, 1}(x)) * a_{1, 1}(x) + ... + (f_1(x)/f_{1, n}(x)) * a_{1, n}(x))

                                                                  a_{1, 1} = + 1 3160115 3952276 4136291 8973667 2921447 2630406 2610884

                                                                  a_{1, 2} =

                                                                  u_1 = (1/p) * (f_1 - f_{1, 1} * f_{1, 2}) = + 7 1428571 4285714 2857142 8571428 5714285 7142857 1428679*x^2 + 8 4745480 7773845 2502410 1633522 2430285 1096333 8094302*x + 9 5952087 9527303 3695407 6753452 9915050 3820522 8742553

                                                                  g_{1, 1} = u_1 * a_{1, 1} % f_{1, 1} = + 9 7373350 6874596 0399726 4235975 0759708 1270891 3729036*x + 2 4611772 2225230 1896976 6830857 0357003 0410851 5324877

                                                                  f_{2, 1} = f_{1, 1} + p * g_{1, 1} = x^2 + 97 3733506 8745960 3997264 2359750 7597081 2708913 7291830 7307869 8053531 3776156 3945644 3267014 6203130 0564710*x + 24 6117722 2252301 8969766 8308570 3570030 4108515 3249143 2806145 0672618 7304077 6788649 6874436 4009739 8950974

                                                                  g_{1, 2} = u_1 * a_{1, 2} % f_{1, 2} = + 7 4055220 7411118 2457416 4335453 4954577 5871965 7699794

                                                                  f_{2, 2} = f_{1, 2} + p * g_{1, 2} = x + 74 0552207 4111182 4574164 3354534 9545775 8719657 6999060 6977844 4803611 4795272 1768641 3875842 5225441 3760092

                                                                  v_1 = (1/p) * ((f_1(x)/f_{1, 1}(x)) * a_{1, 1}(x) + ... + (f_1(x)/f_{1, n}(x)) * a_{1, n}(x) - 1) = + x^2 + 7 2591960 6371318 1098876 2648409 4136731 6847824 8559775*x + 4 8470656 1970748 7944160 2649766 2460491 4177829 6593542

                                                                  h_{1, 1} = v_1 * a_{1, 1} % f_{1, 1} = + 7 2591960 6371318 1098876 2648409 4136731 6847824 8559775*x + 4 8470656 1970748 7944160 2649766 2460491 4177829 6593542

                                                                  a_{2, 1} = a_{1, 1} + p * g_{1, 1} = + 61 7046863 4366132 2126652 7212394 4067403 2519287 4480579 2232365 5718149 5108656 7650933 1413870 6012441 8539403*x + 77 3115030 1539214 0634022 0647783 1462531 7160295 8984538 7197070 7194408 7710025 0755192 8005676 1750874 3259771

                                                                  h_{1, 2} = v_1 * a_{1, 2} % f_{1, 2} = + 4 8470656 1970748 7944160 2649766 2460491 4177829 6593542

                                                                  a_{2, 2} = a_{1, 2} + p * g_{1, 2} = + 38 2953136 5633867 7873347 2787605 5932596 7480712 5522440 7767634 4281850 4891343 2349066 8586129 3987558 1483398

                                                                  f_2 = x^3 + 7142 8571428 5714285 7142857 1428571 4285714 2857142 9002857 1428571 4285714 2857142 8571428 5714285 7142858 1200428 5714285 7142857 1428571 4285714 2857142 8571438 4084314 2857142 8571428 5714285 7142857 1428571 4285751 4204001*x^2 + 8571 4285714 2857142 8571428 5714285 7142857 1428571 4803428 5714285 7142857 1428571 4285714 2857142 8571429 7440514 2857142 8571428 5714285 7142857 1428571 4285726 0901177 1428571 4285714 2857142 8571428 5714285 7142901 7044801*x + 8

                                                                  u_2 = (1/p^2) * (f_2 - f_{2, 1} * f_{2, 2}) = + 71 4285714 2857142 8571428 5714285 7142857 1428571 4287871 4285714 2857142 8571428 5714285 7142857 1428571 4301999*x^2 + 13 6042359 1967057 6205579 9994508 6808347 9053254 4734988 9119472 9767081 1922625 7445406 2136592 2938232 7860907*x + 81 7736977 5231093 4572919 7367903 1207675 6929907 8741840 3337941 4497191 1988195 2089509 1035764 5236286 5173201

                                                                  g_{2, 1} = u_2 * a_{2, 1} % f_{2, 1} = + 91 7287773 0208782 3912398 5543038 2513545 7130829 6057840 6920457 0863439 7605511 0543777 1981632 7105190 8553225*x + 47 4188946 4178666 8810812 4570538 5001923 2694596 2041786 0196103 4675401 6750253 3500084 2844575 0228887 9920549

                                                                  f_{4, 1} = f_{2, 1} + p^2 * g_{2, 1} = x^2 + 9172 8777302 0878239 1239855 4303825 1354571 3082960 6061090 1120231 6866797 5994739 4353238 9071324 5624495 2092995 2026556 6781339 9240085 1382058 3483671 0431138 2856950 0649895 5343511 7033707 2609539 6474447 1659822 2647935*x + 4741 8894641 7866688 1081245 7053850 0192326 9459620 4321807 0228528 7114148 3678955 3034699 0265776 0569335 9329902 0517467 9748916 0069717 1411452 3039066 4838302 8070156 4161308 4506210 9830711 2210419 6029533 2884846 7388723

                                                                  g_{2, 2} = u_2 * a_{2, 2} % f_{2, 2} = + 79 6997941 2648360 4659030 0171247 4629311 4297741 8233050 7365257 1993703 0965917 5170508 5161224 4323380 5771575

                                                                  f_{4, 2} = f_{2, 2} + p^2 * g_{2, 2} = x + 7969 9794126 4836046 5903001 7124746 2931142 9774182 3545767 0308339 7418916 6862403 4218189 6642961 1518364 2788033 3687729 0361517 2188486 2903655 9373471 8140313 8945404 2207247 3227916 8680578 4533317 4954124 2625981 1441667

                                                                  List of factors

                                                                  The 3 factors are:

                                                                  • 7
                                                                  • x + 7969 9794126 4836046 5903001 7124746 2931142 9774182 3545767 0308339 7418916 6862403 4218189 6642961 1518364 2788033 3687729 0361517 2188486 2903655 9373471 8140313 8945404 2207247 3227916 8680578 4533317 4954124 2625981 1441667
                                                                  • x^2 + 9172 8777302 0878239 1239855 4303825 1354571 3082960 6061090 1120231 6866797 5994739 4353238 9071324 5624495 2092995 2026556 6781339 9240085 1382058 3483671 0431138 2856950 0649895 5343511 7033707 2609539 6474447 1659822 2647935*x + 4741 8894641 7866688 1081245 7053850 0192326 9459620 4321807 0228528 7114148 3678955 3034699 0265776 0569335 9329902 0517467 9748916 0069717 1411452 3039066 4838302 8070156 4161308 4506210 9830711 2210419 6029533 2884846 7388723

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                                  -2

                                                                  Your polynomial

                                                                  Mod(7*x^3 + 2*x^2 + x + 56, 1000003^2)

                                                                  Irreducible polynomial factors

                                                                  Dividing the polynomial by the leading coefficient:

                                                                  f(x) = Mod(x^3 + 428573*x^2 + 714288*x + 8, 1000003)

                                                                  Squarefree factorization

                                                                  The derivative of f(x) is:

                                                                  deriv(f(x)) = Mod(x^2 + 857146*x + 714288, 1000003)

                                                                  c0(x) = gcd(f(x), deriv(f(x)) = Mod(1, 1000003)

                                                                  w0(x) = f(x)/c0(x) = Mod(x^3 + 428573*x^2 + 714288*x + 8, 1000003)

                                                                  w1(x) = gcd(w0, c0) = Mod(1, 1000003)

                                                                  z1(x) = w0(x) / w1(x) = Mod(x^3 + 428573*x^2 + 714288*x + 8, 1000003) is a factor of f(x) with multiplicity 1

                                                                  c1(x) = c0(x) / w1(x) = Mod(1, 1000003)

                                                                  Distinct degree factorization

                                                                  • Factoring f(x) = Mod(x^3 + 428573*x^2 + 714288*x + 8, 1000003)

                                                                    For all degrees d between 1 and 1, the product of all factors of degree d is found by computing gcd(f(x), x^1000003^d - x)

                                                                    gcd(f(x), x^1000003^1 - x) = Mod(x + 869779, 1000003)

                                                                    This polynomial has 1 irreducible factor of degree 1

                                                                    The new value of f(x) is the quotient between f(x) and the previous gcd.

                                                                    f(x) = Mod(x^2 + 558797*x + 276509, 1000003)

                                                                    This polynomial is irreducible.

                                                                  Equal degree factorization

                                                                  Hensel Lifting

                                                                  f_1 = x^3 + 85714 8000008*x^2 + 42857 4000004*x + 8

                                                                  f_{1, 1} = x^2 + 558797*x + 276509

                                                                  f_{1, 2} = x + 869779

                                                                  Using the extended GCD algorithm, compute a_{1, 1}, ..., a_{1, n} such that

                                                                  1 = (f_1(x)/f_{1, 1}(x)) * a_{1, 1}(x) + ... + (f_1(x)/f_{1, n}(x)) * a_{1, n}(x))

                                                                  a_{1, 1} = + 750647

                                                                  a_{1, 2} =

                                                                  u_1 = (1/p) * (f_1 - f_{1, 1} * f_{1, 2}) = + 857144*x^2 + 942547*x + 759502

                                                                  g_{1, 1} = u_1 * a_{1, 1} % f_{1, 1} = + 459046*x + 268773

                                                                  f_{2, 1} = f_{1, 1} + p * g_{1, 1} = x^2 + 45904 7935935*x + 26877 4082828

                                                                  g_{1, 2} = u_1 * a_{1, 2} % f_{1, 2} = + 398098

                                                                  f_{2, 2} = f_{1, 2} + p * g_{1, 2} = x + 39810 0064073

                                                                  List of factors

                                                                  The 3 factors are:

                                                                  • 7
                                                                  • x + 39810 0064073
                                                                  • x^2 + 45904 7935935*x + 26877 4082828

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                                  -2

                                                                  Your polynomial

                                                                  Mod(56 6753065 4982595 8218168 2262176 1574133*x^6 + 2803 6554966 6932341 0486266 3017387 9303660*x^5 + 2895 0398372 6793829 2776012 0154654 5569830*x^4 + 1923 1010920 7024097 4270272 0058024 5797879*x^3 + 1263 8584679 3624922 7058494 7001115 6284296*x^2 + 2815 2989178 8748348 8584860 5683345 8826787*x + 364 7115866 7290440 0871817 0388300 6630495, 184467 4407370 9551629^2)

                                                                  Irreducible polynomial factors

                                                                  The 4 factors are:

                                                                  • 56 6753065 4982595 8218168 2262176 1574133
                                                                  • x + 2687 4717182 6361917 0394073 7732572 3539238
                                                                  • x^2 + 1843 8715370 7781095 5098083 7197306 9495561*x + 2382 8968887 1479459 9477589 1471352 3490489
                                                                  • x^3 + 458 7681861 6150180 8665114 8859207 8714229*x^2 + 455 1701927 5147396 9697077 3256933 4819770*x + 895 2943547 8800145 4409439 6732630 0793905

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 10 November 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x510 − 1

                                                                  Irreducible polynomial factors

                                                                  The 16 factors are:

                                                                  • x − 1
                                                                  • x + 1
                                                                  • x2x + 1
                                                                  • x2 + x + 1
                                                                  • x4x3 + x2x + 1
                                                                  • x4 + x3 + x2 + x + 1
                                                                  • x8x7 + x5x4 + x3x + 1
                                                                  • x8 + x7x5x4x3 + x + 1
                                                                  • x16x15 + x14x13 + x12x11 + x10x9 + x8x7 + x6x5 + x4x3 + x2x + 1
                                                                  • x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1
                                                                  • x32x31 + x29x28 + x26x25 + x23x22 + x20x19 + x17x16 + x15x13 + x12x10 + x9x7 + x6x4 + x3x + 1
                                                                  • x32 + x31x29x28 + x26 + x25x23x22 + x20 + x19x17x16x15 + x13 + x12x10x9 + x7 + x6x4x3 + x + 1
                                                                  • x64x63 + x59x58 + x54x53 + x49x48 + x47x46 + x44x43 + x42x41 + x39x38 + x37x36 + x34x33 + x32x31 + x30x28 + x27x26 + x25x23 + x22x21 + x20x18 + x17x16 + x15x11 + x10x6 + x5x + 1
                                                                  • x64 + x63x59x58 + x54 + x53x49x48x47x46 + x44 + x43 + x42 + x41x39x38x37x36 + x34 + x33 + x32 + x31 + x30x28x27x26x25 + x23 + x22 + x21 + x20x18x17x16x15 + x11 + x10x6x5 + x + 1
                                                                  • x128x127 + x126 + x123x122 + x121x113 + x112x110 + x109x108 + x107x105 + x104 + x98x97 + x95x94 + x93x92 + x90x89x83 + x82x80 + x79x78 + x76 − 2⁢x75 + x74x72 + x71x70 + x68x67 + x65x64 + x63x61 + x60x58 + x57x56 + x54 − 2⁢x53 + x52x50 + x49x48 + x46x45x39 + x38x36 + x35x34 + x33x31 + x30 + x24x23 + x21x20 + x19x18 + x16x15 + x7x6 + x5 + x2x + 1
                                                                  • x128 + x127 + x126x123x122x121 + x113 + x112x110x109x108x107 + x105 + x104 + x98 + x97x95x94x93x92 + x90 + x89 + x83 + x82x80x79x78 + x76 + 2⁢x75 + x74x72x71x70 + x68 + x67x65x64x63 + x61 + x60x58x57x56 + x54 + 2⁢x53 + x52x50x49x48 + x46 + x45 + x39 + x38x36x35x34x33 + x31 + x30 + x24 + x23x21x20x19x18 + x16 + x15x7x6x5 + x2 + x + 1

                                                                  Roots

                                                                  The 510 roots are:

                                                                  • x1 = 1
                                                                  • x2 = -1
                                                                  • x3 = 1212 3 i
                                                                  • x4 = 12 + 12 3 i
                                                                  • x5 = -1212 3 i
                                                                  • x6 = -12 + 12 3 i
                                                                  • x7 = 14 + 14 5 + i -18 5 + 58
                                                                  • x8 = 14 + 14 5 − i -18 5 + 58
                                                                  • x9 = 1414 5 + i 18 5 + 58
                                                                  • x10 = 1414 5 − i 18 5 + 58
                                                                  • x11 = -14 + 14 5 + i 18 5 + 58
                                                                  • x12 = -14 + 14 5 − i 18 5 + 58
                                                                  • x13 = -1414 5 + i -18 5 + 58
                                                                  • x14 = -1414 5 − i -18 5 + 58
                                                                  • x15 = cos 2π15 + i sin2π15 = 18 65−5+5+1 + i4 7−65+5+5
                                                                  • x16 = cos 4π15 + i sin4π15 = 18 65+55+1 + i4 7+65−55
                                                                  • x17 = cos 8π15 + i sin8π15 = −18 65−55−1 + i4 7+65+5+5
                                                                  • x18 = cos 14π15 + i sin14π15 = −18 65+5+5−1 + i4 7−65−55
                                                                  • x19 = cos 16π15 + i sin16π15 = −18 65+5+5−1i4 7−65−55
                                                                  • x20 = cos 22π15 + i sin22π15 = −18 65−55−1i4 7+65+5+5
                                                                  • x21 = cos 26π15 + i sin26π15 = 18 65+55+1i4 7+65−55
                                                                  • x22 = cos 28π15 + i sin28π15 = 18 65−5+5+1i4 7−65+5+5
                                                                  • x23 = cosπ15 + i sinπ15 = 18 65+5+5−1 + i4 7−65−55
                                                                  • x24 = cos 7π15 + i sin7π15 = 18 65−55−1 + i4 7+65+5+5
                                                                  • x25 = cos 11π15 + i sin11π15 = −18 65+55+1 + i4 7+65−55
                                                                  • x26 = cos 13π15 + i sin13π15 = −18 65−5+5+1 + i4 7−65+5+5
                                                                  • x27 = cos 17π15 + i sin17π15 = −18 65−5+5+1i4 7−65+5+5
                                                                  • x28 = cos 19π15 + i sin19π15 = −18 65+55+1i4 7+65−55
                                                                  • x29 = cos 23π15 + i sin23π15 = 18 65−55−1i4 7+65+5+5
                                                                  • x30 = cos 29π15 + i sin29π15 = 18 65+5+5−1i4 7−65−55
                                                                  • x31 = cosπ17 + i sinπ17 = 116 1−17+34−217+217+317+170+3817 + i8 34−217−234−217−417+317170+3817
                                                                  • x32 = cos 3π17 + i sin3π17 = 116 1+17+34+217+217−317170−3817 + i8 34+217−234+217−417−317+170−3817
                                                                  • x33 = cos 5π17 + i sin5π17 = 116 1+17+34+217−217−317170−3817 + i8 34+217−234+217+417−317+170−3817
                                                                  • x34 = cos 7π17 + i sin7π17 = 116 1+1734+217+217−317+170−3817 + i8 34+217+234+217+417−317170−3817
                                                                  • x35 = cos 9π17 + i sin9π17 = −116 −1+17+34−217−217+317170+3817 + i8 34−217+234−217+417+317+170+3817
                                                                  • x36 = cos 11π17 + i sin11π17 = −116 −1−17+34+217+217−317+170−3817 + i8 34+217+234+217−417−317170−3817
                                                                  • x37 = cos 13π17 + i sin13π17 = −116 −1+1734−217+217+317+170+3817 + i8 34−217−234−217+417+317170+3817
                                                                  • x38 = cos 15π17 + i sin15π17 = −116 −1+17+34−217+217+317170+3817 + i8 34−217+234−217−417+317+170+3817
                                                                  • x39 = cos 19π17 + i sin19π17 = −116 −1+17+34−217+217+317170+3817i8 34−217+234−217−417+317+170+3817
                                                                  • x40 = cos 21π17 + i sin21π17 = −116 −1+1734−217+217+317+170+3817i8 34−217−234−217+417+317170+3817
                                                                  • x41 = cos 23π17 + i sin23π17 = −116 −1−17+34+217+217−317+170−3817i8 34+217+234+217−417−317170−3817
                                                                  • x42 = cos 25π17 + i sin25π17 = −116 −1+17+34−217−217+317170+3817i8 34−217+234−217+417+317+170+3817
                                                                  • x43 = cos 27π17 + i sin27π17 = 116 1+1734+217+217−317+170−3817i8 34+217+234+217+417−317170−3817
                                                                  • x44 = cos 29π17 + i sin29π17 = 116 1+17+34+217−217−317170−3817i8 34+217−234+217+417−317+170−3817
                                                                  • x45 = cos 31π17 + i sin31π17 = 116 1+17+34+217+217−317170−3817i8 34+217−234+217−417−317+170−3817
                                                                  • x46 = cos 33π17 + i sin33π17 = 116 1−17+34−217+217+317+170+3817i8 34−217−234−217−417+317170+3817
                                                                  • x47 = cos 2π17 + i sin2π17 = 116 −1+17+34−217+217+317170+3817 + i8 34−217+234−217−417+317+170+3817
                                                                  • x48 = cos 4π17 + i sin4π17 = 116 −1+1734−217+217+317+170+3817 + i8 34−217−234−217+417+317170+3817
                                                                  • x49 = cos 6π17 + i sin6π17 = 116 −1−17+34+217+217−317+170−3817 + i8 34+217+234+217−417−317170−3817
                                                                  • x50 = cos 8π17 + i sin8π17 = 116 −1+17+34−217−217+317170+3817 + i8 34−217+234−217+417+317+170+3817
                                                                  • x51 = cos 10π17 + i sin10π17 = −116 1+1734+217+217−317+170−3817 + i8 34+217+234+217+417−317170−3817
                                                                  • x52 = cos 12π17 + i sin12π17 = −116 1+17+34+217−217−317170−3817 + i8 34+217−234+217+417−317+170−3817
                                                                  • x53 = cos 14π17 + i sin14π17 = −116 1+17+34+217+217−317170−3817 + i8 34+217−234+217−417−317+170−3817
                                                                  • x54 = cos 16π17 + i sin16π17 = −116 1−17+34−217+217+317+170+3817 + i8 34−217−234−217−417+317170+3817
                                                                  • x55 = cos 18π17 + i sin18π17 = −116 1−17+34−217+217+317+170+3817i8 34−217−234−217−417+317170+3817
                                                                  • x56 = cos 20π17 + i sin20π17 = −116 1+17+34+217+217−317170−3817i8 34+217−234+217−417−317+170−3817
                                                                  • x57 = cos 22π17 + i sin22π17 = −116 1+17+34+217−217−317170−3817i8 34+217−234+217+417−317+170−3817
                                                                  • x58 = cos 24π17 + i sin24π17 = −116 1+1734+217+217−317+170−3817i8 34+217+234+217+417−317170−3817
                                                                  • x59 = cos 26π17 + i sin26π17 = 116 −1+17+34−217−217+317170+3817i8 34−217+234−217+417+317+170+3817
                                                                  • x60 = cos 28π17 + i sin28π17 = 116 −1−17+34+217+217−317+170−3817i8 34+217+234+217−417−317170−3817
                                                                  • x61 = cos 30π17 + i sin30π17 = 116 −1+1734−217+217+317+170+3817i8 34−217−234−217+417+317170+3817
                                                                  • x62 = cos 32π17 + i sin32π17 = 116 −1+17+34−217+217+317170+3817i8 34−217+234−217−417+317+170+3817
                                                                  • x63 = cos 2π51 + i sin2π51 = 132 1+17+34+217−217−317170−3817 + 116 334+217−234+217+417−317+170−3817 + i32 31+17+34+217−217−317170−3817i16 34+217−234+217+417−317+170−3817
                                                                  • x64 = cos 4π51 + i sin4π51 = 132 1+1734+217+217−317+170−3817 + 116 334+217+234+217+417−317170−3817i32 31+1734+217+217−317+170−3817 + i16 34+217+234+217+417−317170−3817
                                                                  • x65 = cos 8π51 + i sin8π51 = 132 1+17+34+217+217−317170−3817 + 116 334+217−234+217−417−317+170−3817 + i32 31+17+34+217+217−317170−3817i16 34+217−234+217−417−317+170−3817
                                                                  • x66 = cos 10π51 + i sin10π51 = −132 −1+17+34−217−217+317170+3817 + 116 334−217+234−217+417+317+170+3817 + i32 3−1+17+34−217−217+317170+3817 + i16 34−217+234−217+417+317+170+3817
                                                                  • x67 = cos 14π51 + i sin14π51 = 132 1−17+34−217+217+317+170+3817 + 116 334−217−234−217−417+317170+3817 + i32 31−17+34−217+217+317+170+3817i16 34−217−234−217−417+317170+3817
                                                                  • x68 = cos 16π51 + i sin16π51 = −132 −1−17+34+217+217−317+170−3817 + 116 334+217+234+217−417−317170−3817 + i32 3−1−17+34+217+217−317+170−3817 + i16 34+217+234+217−417−317170−3817
                                                                  • x69 = cos 20π51 + i sin20π51 = 132 1−17+34−217+217+317+170+3817116 334−217−234−217−417+317170+3817 + i32 31−17+34−217+217+317+170+3817 + i16 34−217−234−217−417+317170+3817
                                                                  • x70 = cos 22π51 + i sin22π51 = −132 −1+1734−217+217+317+170+3817 + 116 334−217−234−217+417+317170+3817 + i32 3−1+1734−217+217+317+170+3817 + i16 34−217−234−217+417+317170+3817
                                                                  • x71 = cos 26π51 + i sin26π51 = 132 1+17+34+217+217−317170−3817116 334+217−234+217−417−317+170−3817 + i32 31+17+34+217+217−317170−3817 + i16 34+217−234+217−417−317+170−3817
                                                                  • x72 = cos 28π51 + i sin28π51 = −132 −1+17+34−217+217+317170+3817 + 116 334−217+234−217−417+317+170+3817 + i32 3−1+17+34−217+217+317170+3817 + i16 34−217+234−217−417+317+170+3817
                                                                  • x73 = cos 32π51 + i sin32π51 = 132 1+17+34+217−217−317170−3817116 334+217−234+217+417−317+170−3817 + i32 31+17+34+217−217−317170−3817 + i16 34+217−234+217+417−317+170−3817
                                                                  • x74 = cos 38π51 + i sin38π51 = 132 1+1734+217+217−317+170−3817116 334+217+234+217+417−317170−3817 + i32 31+1734+217+217−317+170−3817 + i16 34+217+234+217+417−317170−3817
                                                                  • x75 = cos 40π51 + i sin40π51 = −132 −1+17+34−217+217+317170+3817116 334−217+234−217−417+317+170+3817 + i32 3−1+17+34−217+217+317170+3817i16 34−217+234−217−417+317+170+3817
                                                                  • x76 = cos 44π51 + i sin44π51 = −132 −1+17+34−217−217+317170+3817116 334−217+234−217+417+317+170+3817i32 3−1+17+34−217−217+317170+3817 + i16 34−217+234−217+417+317+170+3817
                                                                  • x77 = cos 46π51 + i sin46π51 = −132 −1+1734−217+217+317+170+3817116 334−217−234−217+417+317170+3817 + i32 3−1+1734−217+217+317+170+3817i16 34−217−234−217+417+317170+3817
                                                                  • x78 = cos 50π51 + i sin50π51 = −132 −1−17+34+217+217−317+170−3817116 334+217+234+217−417−317170−3817i32 3−1−17+34+217+217−317+170−3817 + i16 34+217+234+217−417−317170−3817
                                                                  • x79 = cos 52π51 + i sin52π51 = −132 −1−17+34+217+217−317+170−3817116 334+217+234+217−417−317170−3817 + i32 3−1−17+34+217+217−317+170−3817i16 34+217+234+217−417−317170−3817
                                                                  • x80 = cos 56π51 + i sin56π51 = −132 −1+1734−217+217+317+170+3817116 334−217−234−217+417+317170+3817i32 3−1+1734−217+217+317+170+3817 + i16 34−217−234−217+417+317170+3817
                                                                  • x81 = cos 58π51 + i sin58π51 = −132 −1+17+34−217−217+317170+3817116 334−217+234−217+417+317+170+3817 + i32 3−1+17+34−217−217+317170+3817i16 34−217+234−217+417+317+170+3817
                                                                  • x82 = cos 62π51 + i sin62π51 = −132 −1+17+34−217+217+317170+3817116 334−217+234−217−417+317+170+3817i32 3−1+17+34−217+217+317170+3817 + i16 34−217+234−217−417+317+170+3817
                                                                  • x83 = cos 64π51 + i sin64π51 = 132 1+1734+217+217−317+170−3817116 334+217+234+217+417−317170−3817i32 31+1734+217+217−317+170−3817i16 34+217+234+217+417−317170−3817
                                                                  • x84 = cos 70π51 + i sin70π51 = 132 1+17+34+217−217−317170−3817116 334+217−234+217+417−317+170−3817i32 31+17+34+217−217−317170−3817i16 34+217−234+217+417−317+170−3817
                                                                  • x85 = cos 74π51 + i sin74π51 = −132 −1+17+34−217+217+317170+3817 + 116 334−217+234−217−417+317+170+3817i32 3−1+17+34−217+217+317170+3817i16 34−217+234−217−417+317+170+3817
                                                                  • x86 = cos 76π51 + i sin76π51 = 132 1+17+34+217+217−317170−3817116 334+217−234+217−417−317+170−3817i32 31+17+34+217+217−317170−3817i16 34+217−234+217−417−317+170−3817
                                                                  • x87 = cos 80π51 + i sin80π51 = −132 −1+1734−217+217+317+170+3817 + 116 334−217−234−217+417+317170+3817i32 3−1+1734−217+217+317+170+3817i16 34−217−234−217+417+317170+3817
                                                                  • x88 = cos 82π51 + i sin82π51 = 132 1−17+34−217+217+317+170+3817116 334−217−234−217−417+317170+3817i32 31−17+34−217+217+317+170+3817i16 34−217−234−217−417+317170+3817
                                                                  • x89 = cos 86π51 + i sin86π51 = −132 −1−17+34+217+217−317+170−3817 + 116 334+217+234+217−417−317170−3817i32 3−1−17+34+217+217−317+170−3817i16 34+217+234+217−417−317170−3817
                                                                  • x90 = cos 88π51 + i sin88π51 = 132 1−17+34−217+217+317+170+3817 + 116 334−217−234−217−417+317170+3817i32 31−17+34−217+217+317+170+3817 + i16 34−217−234−217−417+317170+3817
                                                                  • x91 = cos 92π51 + i sin92π51 = −132 −1+17+34−217−217+317170+3817 + 116 334−217+234−217+417+317+170+3817i32 3−1+17+34−217−217+317170+3817i16 34−217+234−217+417+317+170+3817
                                                                  • x92 = cos 94π51 + i sin94π51 = 132 1+17+34+217+217−317170−3817 + 116 334+217−234+217−417−317+170−3817i32 31+17+34+217+217−317170−3817 + i16 34+217−234+217−417−317+170−3817
                                                                  • x93 = cos 98π51 + i sin98π51 = 132 1+1734+217+217−317+170−3817 + 116 334+217+234+217+417−317170−3817 + i32 31+1734+217+217−317+170−3817i16 34+217+234+217+417−317170−3817
                                                                  • x94 = cos 100π51 + i sin100π51 = 132 1+17+34+217−217−317170−3817 + 116 334+217−234+217+417−317+170−3817i32 31+17+34+217−217−317170−3817 + i16 34+217−234+217+417−317+170−3817
                                                                  • x95 = cosπ51 + i sinπ51 = 132 −1−17+34+217+217−317+170−3817 + 116 334+217+234+217−417−317170−3817i32 3−1−17+34+217+217−317+170−3817 + i16 34+217+234+217−417−317170−3817
                                                                  • x96 = cos 5π51 + i sin5π51 = 132 −1+1734−217+217+317+170+3817 + 116 334−217−234−217+417+317170+3817 + i32 3−1+1734−217+217+317+170+3817i16 34−217−234−217+417+317170+3817
                                                                  • x97 = cos 7π51 + i sin7π51 = 132 −1+17+34−217−217+317170+3817 + 116 334−217+234−217+417+317+170+3817i32 3−1+17+34−217−217+317170+3817 + i16 34−217+234−217+417+317+170+3817
                                                                  • x98 = cos 11π51 + i sin11π51 = 132 −1+17+34−217+217+317170+3817 + 116 334−217+234−217−417+317+170+3817 + i32 3−1+17+34−217+217+317170+3817i16 34−217+234−217−417+317+170+3817
                                                                  • x99 = cos 13π51 + i sin13π51 = −132 1+1734+217+217−317+170−3817 + 116 334+217+234+217+417−317170−3817 + i32 31+1734+217+217−317+170−3817 + i16 34+217+234+217+417−317170−3817
                                                                  • x100 = cos 19π51 + i sin19π51 = −132 1+17+34+217−217−317170−3817 + 116 334+217−234+217+417−317+170−3817 + i32 31+17+34+217−217−317170−3817 + i16 34+217−234+217+417−317+170−3817
                                                                  • x101 = cos 23π51 + i sin23π51 = 132 −1+17+34−217+217+317170+3817116 334−217+234−217−417+317+170+3817 + i32 3−1+17+34−217+217+317170+3817 + i16 34−217+234−217−417+317+170+3817
                                                                  • x102 = cos 25π51 + i sin25π51 = −132 1+17+34+217+217−317170−3817 + 116 334+217−234+217−417−317+170−3817 + i32 31+17+34+217+217−317170−3817 + i16 34+217−234+217−417−317+170−3817
                                                                  • x103 = cos 29π51 + i sin29π51 = 132 −1+1734−217+217+317+170+3817116 334−217−234−217+417+317170+3817 + i32 3−1+1734−217+217+317+170+3817 + i16 34−217−234−217+417+317170+3817
                                                                  • x104 = cos 31π51 + i sin31π51 = −132 1−17+34−217+217+317+170+3817 + 116 334−217−234−217−417+317170+3817 + i32 31−17+34−217+217+317+170+3817 + i16 34−217−234−217−417+317170+3817
                                                                  • x105 = cos 35π51 + i sin35π51 = 132 −1−17+34+217+217−317+170−3817116 334+217+234+217−417−317170−3817 + i32 3−1−17+34+217+217−317+170−3817 + i16 34+217+234+217−417−317170−3817
                                                                  • x106 = cos 37π51 + i sin37π51 = −132 1−17+34−217+217+317+170+3817116 334−217−234−217−417+317170+3817 + i32 31−17+34−217+217+317+170+3817i16 34−217−234−217−417+317170+3817
                                                                  • x107 = cos 41π51 + i sin41π51 = 132 −1+17+34−217−217+317170+3817116 334−217+234−217+417+317+170+3817 + i32 3−1+17+34−217−217+317170+3817 + i16 34−217+234−217+417+317+170+3817
                                                                  • x108 = cos 43π51 + i sin43π51 = −132 1+17+34+217+217−317170−3817116 334+217−234+217−417−317+170−3817 + i32 31+17+34+217+217−317170−3817i16 34+217−234+217−417−317+170−3817
                                                                  • x109 = cos 47π51 + i sin47π51 = −132 1+1734+217+217−317+170−3817116 334+217+234+217+417−317170−3817i32 31+1734+217+217−317+170−3817 + i16 34+217+234+217+417−317170−3817
                                                                  • x110 = cos 49π51 + i sin49π51 = −132 1+17+34+217−217−317170−3817116 334+217−234+217+417−317+170−3817 + i32 31+17+34+217−217−317170−3817i16 34+217−234+217+417−317+170−3817
                                                                  • x111 = cos 53π51 + i sin53π51 = −132 1+17+34+217−217−317170−3817116 334+217−234+217+417−317+170−3817i32 31+17+34+217−217−317170−3817 + i16 34+217−234+217+417−317+170−3817
                                                                  • x112 = cos 55π51 + i sin55π51 = −132 1+1734+217+217−317+170−3817116 334+217+234+217+417−317170−3817 + i32 31+1734+217+217−317+170−3817i16 34+217+234+217+417−317170−3817
                                                                  • x113 = cos 59π51 + i sin59π51 = −132 1+17+34+217+217−317170−3817116 334+217−234+217−417−317+170−3817i32 31+17+34+217+217−317170−3817 + i16 34+217−234+217−417−317+170−3817
                                                                  • x114 = cos 61π51 + i sin61π51 = 132 −1+17+34−217−217+317170+3817116 334−217+234−217+417+317+170+3817i32 3−1+17+34−217−217+317170+3817i16 34−217+234−217+417+317+170+3817
                                                                  • x115 = cos 65π51 + i sin65π51 = −132 1−17+34−217+217+317+170+3817116 334−217−234−217−417+317170+3817i32 31−17+34−217+217+317+170+3817 + i16 34−217−234−217−417+317170+3817
                                                                  • x116 = cos 67π51 + i sin67π51 = 132 −1−17+34+217+217−317+170−3817116 334+217+234+217−417−317170−3817i32 3−1−17+34+217+217−317+170−3817i16 34+217+234+217−417−317170−3817
                                                                  • x117 = cos 71π51 + i sin71π51 = −132 1−17+34−217+217+317+170+3817 + 116 334−217−234−217−417+317170+3817i32 31−17+34−217+217+317+170+3817i16 34−217−234−217−417+317170+3817
                                                                  • x118 = cos 73π51 + i sin73π51 = 132 −1+1734−217+217+317+170+3817116 334−217−234−217+417+317170+3817i32 3−1+1734−217+217+317+170+3817i16 34−217−234−217+417+317170+3817
                                                                  • x119 = cos 77π51 + i sin77π51 = −132 1+17+34+217+217−317170−3817 + 116 334+217−234+217−417−317+170−3817i32 31+17+34+217+217−317170−3817i16 34+217−234+217−417−317+170−3817
                                                                  • x120 = cos 79π51 + i sin79π51 = 132 −1+17+34−217+217+317170+3817116 334−217+234−217−417+317+170+3817i32 3−1+17+34−217+217+317170+3817i16 34−217+234−217−417+317+170+3817
                                                                  • x121 = cos 83π51 + i sin83π51 = −132 1+17+34+217−217−317170−3817 + 116 334+217−234+217+417−317+170−3817i32 31+17+34+217−217−317170−3817i16 34+217−234+217+417−317+170−3817
                                                                  • x122 = cos 89π51 + i sin89π51 = −132 1+1734+217+217−317+170−3817 + 116 334+217+234+217+417−317170−3817i32 31+1734+217+217−317+170−3817i16 34+217+234+217+417−317170−3817
                                                                  • x123 = cos 91π51 + i sin91π51 = 132 −1+17+34−217+217+317170+3817 + 116 334−217+234−217−417+317+170+3817i32 3−1+17+34−217+217+317170+3817 + i16 34−217+234−217−417+317+170+3817
                                                                  • x124 = cos 95π51 + i sin95π51 = 132 −1+17+34−217−217+317170+3817 + 116 334−217+234−217+417+317+170+3817 + i32 3−1+17+34−217−217+317170+3817i16 34−217+234−217+417+317+170+3817
                                                                  • x125 = cos 97π51 + i sin97π51 = 132 −1+1734−217+217+317+170+3817 + 116 334−217−234−217+417+317170+3817i32 3−1+1734−217+217+317+170+3817 + i16 34−217−234−217+417+317170+3817
                                                                  • x126 = cos 101π51 + i sin101π51 = 132 −1−17+34+217+217−317+170−3817 + 116 334+217+234+217−417−317170−3817 + i32 3−1−17+34+217+217−317+170−3817i16 34+217+234+217−417−317170−3817
                                                                  • x127 = cos 2π85 + i sin2π85 = 164 5+11+17+34+217+217−317170−3817 + 132 10−2534+217−234+217−417−317+170−3817 + i64 10−251+17+34+217+217−317170−3817i32 5+134+217−234+217−417−317+170−3817
                                                                  • x128 = cos 4π85 + i sin4π85 = 164 5−1−1−17+34+217+217−317+170−3817 + 132 10+2534+217+234+217−417−317170−3817 + i64 10+25−1−17+34+217+217−317+170−3817i32 5−134+217+234+217−417−317170−3817
                                                                  • x129 = cos 6π85 + i sin6π85 = 164 5−1−1+17+34−217−217+317170+3817 + 132 10+2534−217+234−217+417+317+170+3817i64 10+25−1+17+34−217−217+317170+3817 + i32 5−134−217+234−217+417+317+170+3817
                                                                  • x130 = cos 8π85 + i sin8π85 = 164 5+11+17+34+217−217−317170−3817 + 132 10−2534+217−234+217+417−317+170−3817i64 10−251+17+34+217−217−317170−3817 + i32 5+134+217−234+217+417−317+170−3817
                                                                  • x131 = cos 12π85 + i sin12π85 = 164 5+11−17+34−217+217+317+170+3817 + 132 10−2534−217−234−217−417+317170+3817 + i64 10−251−17+34−217+217+317+170+3817i32 5+134−217−234−217−417+317170+3817
                                                                  • x132 = cos 14π85 + i sin14π85 = 164 5−1−1+1734−217+217+317+170+3817 + 132 10+2534−217−234−217+417+317170+3817 + i64 10+25−1+1734−217+217+317+170+3817i32 5−134−217−234−217+417+317170+3817
                                                                  • x133 = cos 16π85 + i sin16π85 = −164 5−11+1734+217+217−317+170−3817 + 132 10+2534+217+234+217+417−317170−3817 + i64 10+251+1734+217+217−317+170−3817 + i32 5−134+217+234+217+417−317170−3817
                                                                  • x134 = cos 18π85 + i sin18π85 = 164 5+11+1734+217+217−317+170−3817 + 132 10−2534+217+234+217+417−317170−3817i64 10−251+1734+217+217−317+170−3817 + i32 5+134+217+234+217+417−317170−3817
                                                                  • x135 = cos 22π85 + i sin22π85 = 164 5+11−17+34−217+217+317+170+3817132 10−2534−217−234−217−417+317170+3817 + i64 10−251−17+34−217+217+317+170+3817 + i32 5+134−217−234−217−417+317170+3817
                                                                  • x136 = cos 24π85 + i sin24π85 = 164 5−1−1+17+34−217+217+317170+3817 + 132 10+2534−217+234−217−417+317+170+3817 + i64 10+25−1+17+34−217+217+317170+3817i32 5−134−217+234−217−417+317+170+3817
                                                                  • x137 = cos 26π85 + i sin26π85 = −164 5−11+17+34+217−217−317170−3817 + 132 10+2534+217−234+217+417−317+170−3817 + i64 10+251+17+34+217−217−317170−3817 + i32 5−134+217−234+217+417−317+170−3817
                                                                  • x138 = cos 28π85 + i sin28π85 = −164 5+1−1+17+34−217−217+317170+3817 + 132 10−2534−217+234−217+417+317+170+3817 + i64 10−25−1+17+34−217−217+317170+3817 + i32 5+134−217+234−217+417+317+170+3817
                                                                  • x139 = cos 32π85 + i sin32π85 = 164 5+11+17+34+217+217−317170−3817132 10−2534+217−234+217−417−317+170−3817 + i64 10−251+17+34+217+217−317170−3817 + i32 5+134+217−234+217−417−317+170−3817
                                                                  • x140 = cos 36π85 + i sin36π85 = −164 5−11+17+34+217+217−317170−3817 + 132 10+2534+217−234+217−417−317+170−3817 + i64 10+251+17+34+217+217−317170−3817 + i32 5−134+217−234+217−417−317+170−3817
                                                                  • x141 = cos 38π85 + i sin38π85 = −164 5+1−1−17+34+217+217−317+170−3817 + 132 10−2534+217+234+217−417−317170−3817 + i64 10−25−1−17+34+217+217−317+170−3817 + i32 5+134+217+234+217−417−317170−3817
                                                                  • x142 = cos 42π85 + i sin42π85 = 164 5+11+17+34+217−217−317170−3817132 10−2534+217−234+217+417−317+170−3817 + i64 10−251+17+34+217−217−317170−3817 + i32 5+134+217−234+217+417−317+170−3817
                                                                  • x143 = cos 44π85 + i sin44π85 = 164 5−1−1+17+34−217+217+317170+3817132 10+2534−217+234−217−417+317+170+3817 + i64 10+25−1+17+34−217+217+317170+3817 + i32 5−134−217+234−217−417+317+170+3817
                                                                  • x144 = cos 46π85 + i sin46π85 = −164 5−11−17+34−217+217+317+170+3817 + 132 10+2534−217−234−217−417+317170+3817 + i64 10+251−17+34−217+217+317+170+3817 + i32 5−134−217−234−217−417+317170+3817
                                                                  • x145 = cos 48π85 + i sin48π85 = −164 5+1−1+1734−217+217+317+170+3817 + 132 10−2534−217−234−217+417+317170+3817 + i64 10−25−1+1734−217+217+317+170+3817 + i32 5+134−217−234−217+417+317170+3817
                                                                  • x146 = cos 52π85 + i sin52π85 = 164 5+11+1734+217+217−317+170−3817132 10−2534+217+234+217+417−317170−3817 + i64 10−251+1734+217+217−317+170−3817 + i32 5+134+217+234+217+417−317170−3817
                                                                  • x147 = cos 54π85 + i sin54π85 = 164 5−1−1+1734−217+217+317+170+3817132 10+2534−217−234−217+417+317170+3817 + i64 10+25−1+1734−217+217+317+170+3817 + i32 5−134−217−234−217+417+317170+3817
                                                                  • x148 = cos 56π85 + i sin56π85 = −164 5−11−17+34−217+217+317+170+3817132 10+2534−217−234−217−417+317170+3817 + i64 10+251−17+34−217+217+317+170+3817i32 5−134−217−234−217−417+317170+3817
                                                                  • x149 = cos 58π85 + i sin58π85 = −164 5+1−1+17+34−217+217+317170+3817 + 132 10−2534−217+234−217−417+317+170+3817 + i64 10−25−1+17+34−217+217+317170+3817 + i32 5+134−217+234−217−417+317+170+3817
                                                                  • x150 = cos 62π85 + i sin62π85 = −164 5+1−1+17+34−217−217+317170+3817132 10−2534−217+234−217+417+317+170+3817i64 10−25−1+17+34−217−217+317170+3817 + i32 5+134−217+234−217+417+317+170+3817
                                                                  • x151 = cos 64π85 + i sin64π85 = 164 5−1−1−17+34+217+217−317+170−3817132 10+2534+217+234+217−417−317170−3817 + i64 10+25−1−17+34+217+217−317+170−3817 + i32 5−134+217+234+217−417−317170−3817
                                                                  • x152 = cos 66π85 + i sin66π85 = −164 5−11+17+34+217+217−317170−3817132 10+2534+217−234+217−417−317+170−3817 + i64 10+251+17+34+217+217−317170−3817i32 5−134+217−234+217−417−317+170−3817
                                                                  • x153 = cos 72π85 + i sin72π85 = −164 5+1−1−17+34+217+217−317+170−3817132 10−2534+217+234+217−417−317170−3817i64 10−25−1−17+34+217+217−317+170−3817 + i32 5+134+217+234+217−417−317170−3817
                                                                  • x154 = cos 74π85 + i sin74π85 = 164 5−1−1+17+34−217−217+317170+3817132 10+2534−217+234−217+417+317+170+3817 + i64 10+25−1+17+34−217−217+317170+3817 + i32 5−134−217+234−217+417+317+170+3817
                                                                  • x155 = cos 76π85 + i sin76π85 = −164 5−11+17+34+217−217−317170−3817132 10+2534+217−234+217+417−317+170−3817 + i64 10+251+17+34+217−217−317170−3817i32 5−134+217−234+217+417−317+170−3817
                                                                  • x156 = cos 78π85 + i sin78π85 = −164 5+1−1+17+34−217+217+317170+3817132 10−2534−217+234−217−417+317+170+3817 + i64 10−25−1+17+34−217+217+317170+3817i32 5+134−217+234−217−417+317+170+3817
                                                                  • x157 = cos 82π85 + i sin82π85 = −164 5+1−1+1734−217+217+317+170+3817132 10−2534−217−234−217+417+317170+3817i64 10−25−1+1734−217+217+317+170+3817 + i32 5+134−217−234−217+417+317170+3817
                                                                  • x158 = cos 84π85 + i sin84π85 = −164 5−11+1734+217+217−317+170−3817132 10+2534+217+234+217+417−317170−3817i64 10+251+1734+217+217−317+170−3817 + i32 5−134+217+234+217+417−317170−3817
                                                                  • x159 = cos 86π85 + i sin86π85 = −164 5−11+1734+217+217−317+170−3817132 10+2534+217+234+217+417−317170−3817 + i64 10+251+1734+217+217−317+170−3817i32 5−134+217+234+217+417−317170−3817
                                                                  • x160 = cos 88π85 + i sin88π85 = −164 5+1−1+1734−217+217+317+170+3817132 10−2534−217−234−217+417+317170+3817 + i64 10−25−1+1734−217+217+317+170+3817i32 5+134−217−234−217+417+317170+3817
                                                                  • x161 = cos 92π85 + i sin92π85 = −164 5+1−1+17+34−217+217+317170+3817132 10−2534−217+234−217−417+317+170+3817i64 10−25−1+17+34−217+217+317170+3817 + i32 5+134−217+234−217−417+317+170+3817
                                                                  • x162 = cos 94π85 + i sin94π85 = −164 5−11+17+34+217−217−317170−3817132 10+2534+217−234+217+417−317+170−3817i64 10+251+17+34+217−217−317170−3817 + i32 5−134+217−234+217+417−317+170−3817
                                                                  • x163 = cos 96π85 + i sin96π85 = 164 5−1−1+17+34−217−217+317170+3817132 10+2534−217+234−217+417+317+170+3817i64 10+25−1+17+34−217−217+317170+3817i32 5−134−217+234−217+417+317+170+3817
                                                                  • x164 = cos 98π85 + i sin98π85 = −164 5+1−1−17+34+217+217−317+170−3817132 10−2534+217+234+217−417−317170−3817 + i64 10−25−1−17+34+217+217−317+170−3817i32 5+134+217+234+217−417−317170−3817
                                                                  • x165 = cos 104π85 + i sin104π85 = −164 5−11+17+34+217+217−317170−3817132 10+2534+217−234+217−417−317+170−3817i64 10+251+17+34+217+217−317170−3817 + i32 5−134+217−234+217−417−317+170−3817
                                                                  • x166 = cos 106π85 + i sin106π85 = 164 5−1−1−17+34+217+217−317+170−3817132 10+2534+217+234+217−417−317170−3817i64 10+25−1−17+34+217+217−317+170−3817i32 5−134+217+234+217−417−317170−3817
                                                                  • x167 = cos 108π85 + i sin108π85 = −164 5+1−1+17+34−217−217+317170+3817132 10−2534−217+234−217+417+317+170+3817 + i64 10−25−1+17+34−217−217+317170+3817i32 5+134−217+234−217+417+317+170+3817
                                                                  • x168 = cos 112π85 + i sin112π85 = −164 5+1−1+17+34−217+217+317170+3817 + 132 10−2534−217+234−217−417+317+170+3817i64 10−25−1+17+34−217+217+317170+3817i32 5+134−217+234−217−417+317+170+3817
                                                                  • x169 = cos 114π85 + i sin114π85 = −164 5−11−17+34−217+217+317+170+3817132 10+2534−217−234−217−417+317170+3817i64 10+251−17+34−217+217+317+170+3817 + i32 5−134−217−234−217−417+317170+3817
                                                                  • x170 = cos 116π85 + i sin116π85 = 164 5−1−1+1734−217+217+317+170+3817132 10+2534−217−234−217+417+317170+3817i64 10+25−1+1734−217+217+317+170+3817i32 5−134−217−234−217+417+317170+3817
                                                                  • x171 = cos 118π85 + i sin118π85 = 164 5+11+1734+217+217−317+170−3817132 10−2534+217+234+217+417−317170−3817i64 10−251+1734+217+217−317+170−3817i32 5+134+217+234+217+417−317170−3817
                                                                  • x172 = cos 122π85 + i sin122π85 = −164 5+1−1+1734−217+217+317+170+3817 + 132 10−2534−217−234−217+417+317170+3817i64 10−25−1+1734−217+217+317+170+3817i32 5+134−217−234−217+417+317170+3817
                                                                  • x173 = cos 124π85 + i sin124π85 = −164 5−11−17+34−217+217+317+170+3817 + 132 10+2534−217−234−217−417+317170+3817i64 10+251−17+34−217+217+317+170+3817i32 5−134−217−234−217−417+317170+3817
                                                                  • x174 = cos 126π85 + i sin126π85 = 164 5−1−1+17+34−217+217+317170+3817132 10+2534−217+234−217−417+317+170+3817i64 10+25−1+17+34−217+217+317170+3817i32 5−134−217+234−217−417+317+170+3817
                                                                  • x175 = cos 128π85 + i sin128π85 = 164 5+11+17+34+217−217−317170−3817132 10−2534+217−234+217+417−317+170−3817i64 10−251+17+34+217−217−317170−3817i32 5+134+217−234+217+417−317+170−3817
                                                                  • x176 = cos 132π85 + i sin132π85 = −164 5+1−1−17+34+217+217−317+170−3817 + 132 10−2534+217+234+217−417−317170−3817i64 10−25−1−17+34+217+217−317+170−3817i32 5+134+217+234+217−417−317170−3817
                                                                  • x177 = cos 134π85 + i sin134π85 = −164 5−11+17+34+217+217−317170−3817 + 132 10+2534+217−234+217−417−317+170−3817i64 10+251+17+34+217+217−317170−3817i32 5−134+217−234+217−417−317+170−3817
                                                                  • x178 = cos 138π85 + i sin138π85 = 164 5+11+17+34+217+217−317170−3817132 10−2534+217−234+217−417−317+170−3817i64 10−251+17+34+217+217−317170−3817i32 5+134+217−234+217−417−317+170−3817
                                                                  • x179 = cos 142π85 + i sin142π85 = −164 5+1−1+17+34−217−217+317170+3817 + 132 10−2534−217+234−217+417+317+170+3817i64 10−25−1+17+34−217−217+317170+3817i32 5+134−217+234−217+417+317+170+3817
                                                                  • x180 = cos 144π85 + i sin144π85 = −164 5−11+17+34+217−217−317170−3817 + 132 10+2534+217−234+217+417−317+170−3817i64 10+251+17+34+217−217−317170−3817i32 5−134+217−234+217+417−317+170−3817
                                                                  • x181 = cos 146π85 + i sin146π85 = 164 5−1−1+17+34−217+217+317170+3817 + 132 10+2534−217+234−217−417+317+170+3817i64 10+25−1+17+34−217+217+317170+3817 + i32 5−134−217+234−217−417+317+170+3817
                                                                  • x182 = cos 148π85 + i sin148π85 = 164 5+11−17+34−217+217+317+170+3817132 10−2534−217−234−217−417+317170+3817i64 10−251−17+34−217+217+317+170+3817i32 5+134−217−234−217−417+317170+3817
                                                                  • x183 = cos 152π85 + i sin152π85 = 164 5+11+1734+217+217−317+170−3817 + 132 10−2534+217+234+217+417−317170−3817 + i64 10−251+1734+217+217−317+170−3817i32 5+134+217+234+217+417−317170−3817
                                                                  • x184 = cos 154π85 + i sin154π85 = −164 5−11+1734+217+217−317+170−3817 + 132 10+2534+217+234+217+417−317170−3817i64 10+251+1734+217+217−317+170−3817i32 5−134+217+234+217+417−317170−3817
                                                                  • x185 = cos 156π85 + i sin156π85 = 164 5−1−1+1734−217+217+317+170+3817 + 132 10+2534−217−234−217+417+317170+3817i64 10+25−1+1734−217+217+317+170+3817 + i32 5−134−217−234−217+417+317170+3817
                                                                  • x186 = cos 158π85 + i sin158π85 = 164 5+11−17+34−217+217+317+170+3817 + 132 10−2534−217−234−217−417+317170+3817i64 10−251−17+34−217+217+317+170+3817 + i32 5+134−217−234−217−417+317170+3817
                                                                  • x187 = cos 162π85 + i sin162π85 = 164 5+11+17+34+217−217−317170−3817 + 132 10−2534+217−234+217+417−317+170−3817 + i64 10−251+17+34+217−217−317170−3817i32 5+134+217−234+217+417−317+170−3817
                                                                  • x188 = cos 164π85 + i sin164π85 = 164 5−1−1+17+34−217−217+317170+3817 + 132 10+2534−217+234−217+417+317+170+3817 + i64 10+25−1+17+34−217−217+317170+3817i32 5−134−217+234−217+417+317+170+3817
                                                                  • x189 = cos 166π85 + i sin166π85 = 164 5−1−1−17+34+217+217−317+170−3817 + 132 10+2534+217+234+217−417−317170−3817i64 10+25−1−17+34+217+217−317+170−3817 + i32 5−134+217+234+217−417−317170−3817
                                                                  • x190 = cos 168π85 + i sin168π85 = 164 5+11+17+34+217+217−317170−3817 + 132 10−2534+217−234+217−417−317+170−3817i64 10−251+17+34+217+217−317170−3817 + i32 5+134+217−234+217−417−317+170−3817
                                                                  • x191 = cosπ85 + i sinπ85 = 164 5−11+1734+217+217−317+170−3817 + 132 10+2534+217+234+217+417−317170−3817i64 10+251+1734+217+217−317+170−3817 + i32 5−134+217+234+217+417−317170−3817
                                                                  • x192 = cos 3π85 + i sin3π85 = 164 5+1−1+1734−217+217+317+170+3817 + 132 10−2534−217−234−217+417+317170+3817i64 10−25−1+1734−217+217+317+170+3817 + i32 5+134−217−234−217+417+317170+3817
                                                                  • x193 = cos 7π85 + i sin7π85 = 164 5+1−1+17+34−217+217+317170+3817 + 132 10−2534−217+234−217−417+317+170+3817 + i64 10−25−1+17+34−217+217+317170+3817i32 5+134−217+234−217−417+317+170+3817
                                                                  • x194 = cos 9π85 + i sin9π85 = 164 5−11+17+34+217−217−317170−3817 + 132 10+2534+217−234+217+417−317+170−3817 + i64 10+251+17+34+217−217−317170−3817i32 5−134+217−234+217+417−317+170−3817
                                                                  • x195 = cos 11π85 + i sin11π85 = −164 5−1−1+17+34−217−217+317170+3817 + 132 10+2534−217+234−217+417+317+170+3817 + i64 10+25−1+17+34−217−217+317170+3817 + i32 5−134−217+234−217+417+317+170+3817
                                                                  • x196 = cos 13π85 + i sin13π85 = 164 5+1−1−17+34+217+217−317+170−3817 + 132 10−2534+217+234+217−417−317170−3817i64 10−25−1−17+34+217+217−317+170−3817 + i32 5+134+217+234+217−417−317170−3817
                                                                  • x197 = cos 19π85 + i sin19π85 = 164 5−11+17+34+217+217−317170−3817 + 132 10+2534+217−234+217−417−317+170−3817 + i64 10+251+17+34+217+217−317170−3817i32 5−134+217−234+217−417−317+170−3817
                                                                  • x198 = cos 21π85 + i sin21π85 = −164 5−1−1−17+34+217+217−317+170−3817 + 132 10+2534+217+234+217−417−317170−3817 + i64 10+25−1−17+34+217+217−317+170−3817 + i32 5−134+217+234+217−417−317170−3817
                                                                  • x199 = cos 23π85 + i sin23π85 = 164 5+1−1+17+34−217−217+317170+3817 + 132 10−2534−217+234−217+417+317+170+3817i64 10−25−1+17+34−217−217+317170+3817 + i32 5+134−217+234−217+417+317+170+3817
                                                                  • x200 = cos 27π85 + i sin27π85 = 164 5+1−1+17+34−217+217+317170+3817132 10−2534−217+234−217−417+317+170+3817 + i64 10−25−1+17+34−217+217+317170+3817 + i32 5+134−217+234−217−417+317+170+3817
                                                                  • x201 = cos 29π85 + i sin29π85 = 164 5−11−17+34−217+217+317+170+3817 + 132 10+2534−217−234−217−417+317170+3817 + i64 10+251−17+34−217+217+317+170+3817i32 5−134−217−234−217−417+317170+3817
                                                                  • x202 = cos 31π85 + i sin31π85 = −164 5−1−1+1734−217+217+317+170+3817 + 132 10+2534−217−234−217+417+317170+3817 + i64 10+25−1+1734−217+217+317+170+3817 + i32 5−134−217−234−217+417+317170+3817
                                                                  • x203 = cos 33π85 + i sin33π85 = −164 5+11+1734+217+217−317+170−3817 + 132 10−2534+217+234+217+417−317170−3817 + i64 10−251+1734+217+217−317+170−3817 + i32 5+134+217+234+217+417−317170−3817
                                                                  • x204 = cos 37π85 + i sin37π85 = 164 5+1−1+1734−217+217+317+170+3817132 10−2534−217−234−217+417+317170+3817 + i64 10−25−1+1734−217+217+317+170+3817 + i32 5+134−217−234−217+417+317170+3817
                                                                  • x205 = cos 39π85 + i sin39π85 = 164 5−11−17+34−217+217+317+170+3817132 10+2534−217−234−217−417+317170+3817 + i64 10+251−17+34−217+217+317+170+3817 + i32 5−134−217−234−217−417+317170+3817
                                                                  • x206 = cos 41π85 + i sin41π85 = −164 5−1−1+17+34−217+217+317170+3817 + 132 10+2534−217+234−217−417+317+170+3817 + i64 10+25−1+17+34−217+217+317170+3817 + i32 5−134−217+234−217−417+317+170+3817
                                                                  • x207 = cos 43π85 + i sin43π85 = −164 5+11+17+34+217−217−317170−3817 + 132 10−2534+217−234+217+417−317+170−3817 + i64 10−251+17+34+217−217−317170−3817 + i32 5+134+217−234+217+417−317+170−3817
                                                                  • x208 = cos 47π85 + i sin47π85 = 164 5+1−1−17+34+217+217−317+170−3817132 10−2534+217+234+217−417−317170−3817 + i64 10−25−1−17+34+217+217−317+170−3817 + i32 5+134+217+234+217−417−317170−3817
                                                                  • x209 = cos 49π85 + i sin49π85 = 164 5−11+17+34+217+217−317170−3817132 10+2534+217−234+217−417−317+170−3817 + i64 10+251+17+34+217+217−317170−3817 + i32 5−134+217−234+217−417−317+170−3817
                                                                  • x210 = cos 53π85 + i sin53π85 = −164 5+11+17+34+217+217−317170−3817 + 132 10−2534+217−234+217−417−317+170−3817 + i64 10−251+17+34+217+217−317170−3817 + i32 5+134+217−234+217−417−317+170−3817
                                                                  • x211 = cos 57π85 + i sin57π85 = 164 5+1−1+17+34−217−217+317170+3817132 10−2534−217+234−217+417+317+170+3817 + i64 10−25−1+17+34−217−217+317170+3817 + i32 5+134−217+234−217+417+317+170+3817
                                                                  • x212 = cos 59π85 + i sin59π85 = 164 5−11+17+34+217−217−317170−3817132 10+2534+217−234+217+417−317+170−3817 + i64 10+251+17+34+217−217−317170−3817 + i32 5−134+217−234+217+417−317+170−3817
                                                                  • x213 = cos 61π85 + i sin61π85 = −164 5−1−1+17+34−217+217+317170+3817132 10+2534−217+234−217−417+317+170+3817 + i64 10+25−1+17+34−217+217+317170+3817i32 5−134−217+234−217−417+317+170+3817
                                                                  • x214 = cos 63π85 + i sin63π85 = −164 5+11−17+34−217+217+317+170+3817 + 132 10−2534−217−234−217−417+317170+3817 + i64 10−251−17+34−217+217+317+170+3817 + i32 5+134−217−234−217−417+317170+3817
                                                                  • x215 = cos 67π85 + i sin67π85 = −164 5+11+1734+217+217−317+170−3817132 10−2534+217+234+217+417−317170−3817i64 10−251+1734+217+217−317+170−3817 + i32 5+134+217+234+217+417−317170−3817
                                                                  • x216 = cos 69π85 + i sin69π85 = 164 5−11+1734+217+217−317+170−3817132 10+2534+217+234+217+417−317170−3817 + i64 10+251+1734+217+217−317+170−3817 + i32 5−134+217+234+217+417−317170−3817
                                                                  • x217 = cos 71π85 + i sin71π85 = −164 5−1−1+1734−217+217+317+170+3817132 10+2534−217−234−217+417+317170+3817 + i64 10+25−1+1734−217+217+317+170+3817i32 5−134−217−234−217+417+317170+3817
                                                                  • x218 = cos 73π85 + i sin73π85 = −164 5+11−17+34−217+217+317+170+3817132 10−2534−217−234−217−417+317170+3817 + i64 10−251−17+34−217+217+317+170+3817i32 5+134−217−234−217−417+317170+3817
                                                                  • x219 = cos 77π85 + i sin77π85 = −164 5+11+17+34+217−217−317170−3817132 10−2534+217−234+217+417−317+170−3817i64 10−251+17+34+217−217−317170−3817 + i32 5+134+217−234+217+417−317+170−3817
                                                                  • x220 = cos 79π85 + i sin79π85 = −164 5−1−1+17+34−217−217+317170+3817132 10+2534−217+234−217+417+317+170+3817i64 10+25−1+17+34−217−217+317170+3817 + i32 5−134−217+234−217+417+317+170+3817
                                                                  • x221 = cos 81π85 + i sin81π85 = −164 5−1−1−17+34+217+217−317+170−3817132 10+2534+217+234+217−417−317170−3817 + i64 10+25−1−17+34+217+217−317+170−3817i32 5−134+217+234+217−417−317170−3817
                                                                  • x222 = cos 83π85 + i sin83π85 = −164 5+11+17+34+217+217−317170−3817132 10−2534+217−234+217−417−317+170−3817 + i64 10−251+17+34+217+217−317170−3817i32 5+134+217−234+217−417−317+170−3817
                                                                  • x223 = cos 87π85 + i sin87π85 = −164 5+11+17+34+217+217−317170−3817132 10−2534+217−234+217−417−317+170−3817i64 10−251+17+34+217+217−317170−3817 + i32 5+134+217−234+217−417−317+170−3817
                                                                  • x224 = cos 89π85 + i sin89π85 = −164 5−1−1−17+34+217+217−317+170−3817132 10+2534+217+234+217−417−317170−3817i64 10+25−1−17+34+217+217−317+170−3817 + i32 5−134+217+234+217−417−317170−3817
                                                                  • x225 = cos 91π85 + i sin91π85 = −164 5−1−1+17+34−217−217+317170+3817132 10+2534−217+234−217+417+317+170+3817 + i64 10+25−1+17+34−217−217+317170+3817i32 5−134−217+234−217+417+317+170+3817
                                                                  • x226 = cos 93π85 + i sin93π85 = −164 5+11+17+34+217−217−317170−3817132 10−2534+217−234+217+417−317+170−3817 + i64 10−251+17+34+217−217−317170−3817i32 5+134+217−234+217+417−317+170−3817
                                                                  • x227 = cos 97π85 + i sin97π85 = −164 5+11−17+34−217+217+317+170+3817132 10−2534−217−234−217−417+317170+3817i64 10−251−17+34−217+217+317+170+3817 + i32 5+134−217−234−217−417+317170+3817
                                                                  • x228 = cos 99π85 + i sin99π85 = −164 5−1−1+1734−217+217+317+170+3817132 10+2534−217−234−217+417+317170+3817i64 10+25−1+1734−217+217+317+170+3817 + i32 5−134−217−234−217+417+317170+3817
                                                                  • x229 = cos 101π85 + i sin101π85 = 164 5−11+1734+217+217−317+170−3817132 10+2534+217+234+217+417−317170−3817i64 10+251+1734+217+217−317+170−3817i32 5−134+217+234+217+417−317170−3817
                                                                  • x230 = cos 103π85 + i sin103π85 = −164 5+11+1734+217+217−317+170−3817132 10−2534+217+234+217+417−317170−3817 + i64 10−251+1734+217+217−317+170−3817i32 5+134+217+234+217+417−317170−3817
                                                                  • x231 = cos 107π85 + i sin107π85 = −164 5+11−17+34−217+217+317+170+3817 + 132 10−2534−217−234−217−417+317170+3817i64 10−251−17+34−217+217+317+170+3817i32 5+134−217−234−217−417+317170+3817
                                                                  • x232 = cos 109π85 + i sin109π85 = −164 5−1−1+17+34−217+217+317170+3817132 10+2534−217+234−217−417+317+170+3817i64 10+25−1+17+34−217+217+317170+3817 + i32 5−134−217+234−217−417+317+170+3817
                                                                  • x233 = cos 111π85 + i sin111π85 = 164 5−11+17+34+217−217−317170−3817132 10+2534+217−234+217+417−317+170−3817i64 10+251+17+34+217−217−317170−3817i32 5−134+217−234+217+417−317+170−3817
                                                                  • x234 = cos 113π85 + i sin113π85 = 164 5+1−1+17+34−217−217+317170+3817132 10−2534−217+234−217+417+317+170+3817i64 10−25−1+17+34−217−217+317170+3817i32 5+134−217+234−217+417+317+170+3817
                                                                  • x235 = cos 117π85 + i sin117π85 = −164 5+11+17+34+217+217−317170−3817 + 132 10−2534+217−234+217−417−317+170−3817i64 10−251+17+34+217+217−317170−3817i32 5+134+217−234+217−417−317+170−3817
                                                                  • x236 = cos 121π85 + i sin121π85 = 164 5−11+17+34+217+217−317170−3817132 10+2534+217−234+217−417−317+170−3817i64 10+251+17+34+217+217−317170−3817i32 5−134+217−234+217−417−317+170−3817
                                                                  • x237 = cos 123π85 + i sin123π85 = 164 5+1−1−17+34+217+217−317+170−3817132 10−2534+217+234+217−417−317170−3817i64 10−25−1−17+34+217+217−317+170−3817i32 5+134+217+234+217−417−317170−3817
                                                                  • x238 = cos 127π85 + i sin127π85 = −164 5+11+17+34+217−217−317170−3817 + 132 10−2534+217−234+217+417−317+170−3817i64 10−251+17+34+217−217−317170−3817i32 5+134+217−234+217+417−317+170−3817
                                                                  • x239 = cos 129π85 + i sin129π85 = −164 5−1−1+17+34−217+217+317170+3817 + 132 10+2534−217+234−217−417+317+170+3817i64 10+25−1+17+34−217+217+317170+3817i32 5−134−217+234−217−417+317+170+3817
                                                                  • x240 = cos 131π85 + i sin131π85 = 164 5−11−17+34−217+217+317+170+3817132 10+2534−217−234−217−417+317170+3817i64 10+251−17+34−217+217+317+170+3817i32 5−134−217−234−217−417+317170+3817
                                                                  • x241 = cos 133π85 + i sin133π85 = 164 5+1−1+1734−217+217+317+170+3817132 10−2534−217−234−217+417+317170+3817i64 10−25−1+1734−217+217+317+170+3817i32 5+134−217−234−217+417+317170+3817
                                                                  • x242 = cos 137π85 + i sin137π85 = −164 5+11+1734+217+217−317+170−3817 + 132 10−2534+217+234+217+417−317170−3817i64 10−251+1734+217+217−317+170−3817i32 5+134+217+234+217+417−317170−3817
                                                                  • x243 = cos 139π85 + i sin139π85 = −164 5−1−1+1734−217+217+317+170+3817 + 132 10+2534−217−234−217+417+317170+3817i64 10+25−1+1734−217+217+317+170+3817i32 5−134−217−234−217+417+317170+3817
                                                                  • x244 = cos 141π85 + i sin141π85 = 164 5−11−17+34−217+217+317+170+3817 + 132 10+2534−217−234−217−417+317170+3817i64 10+251−17+34−217+217+317+170+3817 + i32 5−134−217−234−217−417+317170+3817
                                                                  • x245 = cos 143π85 + i sin143π85 = 164 5+1−1+17+34−217+217+317170+3817132 10−2534−217+234−217−417+317+170+3817i64 10−25−1+17+34−217+217+317170+3817i32 5+134−217+234−217−417+317+170+3817
                                                                  • x246 = cos 147π85 + i sin147π85 = 164 5+1−1+17+34−217−217+317170+3817 + 132 10−2534−217+234−217+417+317+170+3817 + i64 10−25−1+17+34−217−217+317170+3817i32 5+134−217+234−217+417+317+170+3817
                                                                  • x247 = cos 149π85 + i sin149π85 = −164 5−1−1−17+34+217+217−317+170−3817 + 132 10+2534+217+234+217−417−317170−3817i64 10+25−1−17+34+217+217−317+170−3817i32 5−134+217+234+217−417−317170−3817
                                                                  • x248 = cos 151π85 + i sin151π85 = 164 5−11+17+34+217+217−317170−3817 + 132 10+2534+217−234+217−417−317+170−3817i64 10+251+17+34+217+217−317170−3817 + i32 5−134+217−234+217−417−317+170−3817
                                                                  • x249 = cos 157π85 + i sin157π85 = 164 5+1−1−17+34+217+217−317+170−3817 + 132 10−2534+217+234+217−417−317170−3817 + i64 10−25−1−17+34+217+217−317+170−3817i32 5+134+217+234+217−417−317170−3817
                                                                  • x250 = cos 159π85 + i sin159π85 = −164 5−1−1+17+34−217−217+317170+3817 + 132 10+2534−217+234−217+417+317+170+3817i64 10+25−1+17+34−217−217+317170+3817i32 5−134−217+234−217+417+317+170+3817
                                                                  • x251 = cos 161π85 + i sin161π85 = 164 5−11+17+34+217−217−317170−3817 + 132 10+2534+217−234+217+417−317+170−3817i64 10+251+17+34+217−217−317170−3817 + i32 5−134+217−234+217+417−317+170−3817
                                                                  • x252 = cos 163π85 + i sin163π85 = 164 5+1−1+17+34−217+217+317170+3817 + 132 10−2534−217+234−217−417+317+170+3817i64 10−25−1+17+34−217+217+317170+3817 + i32 5+134−217+234−217−417+317+170+3817
                                                                  • x253 = cos 167π85 + i sin167π85 = 164 5+1−1+1734−217+217+317+170+3817 + 132 10−2534−217−234−217+417+317170+3817 + i64 10−25−1+1734−217+217+317+170+3817i32 5+134−217−234−217+417+317170+3817
                                                                  • x254 = cos 169π85 + i sin169π85 = 164 5−11+1734+217+217−317+170−3817 + 132 10+2534+217+234+217+417−317170−3817 + i64 10+251+1734+217+217−317+170−3817i32 5−134+217+234+217+417−317170−3817
                                                                  • x255 = cosπ255 + i sinπ255 = 1128 65−55−1−1+17+34−217−217+317170+3817 + 132 7+65+5+534−217+234−217+417+317+170+3817i64 7+65+5+5−1+17+34−217−217+317170+3817 + i64 65−55−134−217+234−217+417+317+170+3817
                                                                  • x256 = cos 7π255 + i sin7π255 = 1128 65+55+11+17+34+217−217−317170−3817 + 132 7+65−5534+217−234+217+417−317+170−3817i64 7+65−551+17+34+217−217−317170−3817 + i64 65+55+134+217−234+217+417−317+170−3817
                                                                  • x257 = cos 11π255 + i sin11π255 = 1128 65−5+5+11+17+34+217+217−317170−3817 + 132 7−65+5+534+217−234+217−417−317+170−3817i64 7−65+5+51+17+34+217+217−317170−3817 + i64 65−5+5+134+217−234+217−417−317+170−3817
                                                                  • x258 = cos 13π255 + i sin13π255 = 1128 65+5+5−1−1+17+34−217+217+317170+3817 + 132 7−65−5534−217+234−217−417+317+170+3817i64 7−65−55−1+17+34−217+217+317170+3817 + i64 65+5+5−134−217+234−217−417+317+170+3817
                                                                  • x259 = cos 19π255 + i sin19π255 = 1128 65−5+5+11−17+34−217+217+317+170+3817 + 132 7−65+5+534−217−234−217−417+317170+3817 + i64 7−65+5+51−17+34−217+217+317+170+3817i64 65−5+5+134−217−234−217−417+317170+3817
                                                                  • x260 = cos 23π255 + i sin23π255 = 1128 65+55+11+17+34+217+217−317170−3817 + 132 7+65−5534+217−234+217−417−317+170−3817 + i64 7+65−551+17+34+217+217−317170−3817i64 65+55+134+217−234+217−417−317+170−3817
                                                                  • x261 = cos 29π255 + i sin29π255 = 1128 65−55−1−1−17+34+217+217−317+170−3817 + 132 7+65+5+534+217+234+217−417−317170−3817 + i64 7+65+5+5−1−17+34+217+217−317+170−3817i64 65−55−134+217+234+217−417−317170−3817
                                                                  • x262 = cos 31π255 + i sin31π255 = −1128 65−55−11+1734+217+217−317+170−3817 + 132 7+65+5+534+217+234+217+417−317170−3817 + i64 7+65+5+51+1734+217+217−317+170−3817 + i64 65−55−134+217+234+217+417−317170−3817
                                                                  • x263 = cos 37π255 + i sin37π255 = 1128 65+55+11+1734+217+217−317+170−3817 + 132 7+65−5534+217+234+217+417−317170−3817i64 7+65−551+1734+217+217−317+170−3817 + i64 65+55+134+217+234+217+417−317170−3817
                                                                  • x264 = cos 41π255 + i sin41π255 = 1128 65−5+5+11+17+34+217−217−317170−3817 + 132 7−65+5+534+217−234+217+417−317+170−3817i64 7−65+5+51+17+34+217−217−317170−3817 + i64 65−5+5+134+217−234+217+417−317+170−3817
                                                                  • x265 = cos 43π255 + i sin43π255 = 1128 65+5+5−1−1+1734−217+217+317+170+3817 + 132 7−65−5534−217−234−217+417+317170+3817i64 7−65−55−1+1734−217+217+317+170+3817 + i64 65+5+5−134−217−234−217+417+317170+3817
                                                                  • x266 = cos 47π255 + i sin47π255 = 1128 65+5+5−1−1+17+34−217+217+317170+3817132 7−65−5534−217+234−217−417+317+170+3817 + i64 7−65−55−1+17+34−217+217+317170+3817 + i64 65+5+5−134−217+234−217−417+317+170+3817
                                                                  • x267 = cos 49π255 + i sin49π255 = 1128 65−5+5+11−17+34−217+217+317+170+3817132 7−65+5+534−217−234−217−417+317170+3817 + i64 7−65+5+51−17+34−217+217+317+170+3817 + i64 65−5+5+134−217−234−217−417+317170+3817
                                                                  • x268 = cos 53π255 + i sin53π255 = 1128 65+55+11−17+34−217+217+317+170+3817 + 132 7+65−5534−217−234−217−417+317170+3817 + i64 7+65−551−17+34−217+217+317+170+3817i64 65+55+134−217−234−217−417+317170+3817
                                                                  • x269 = cos 59π255 + i sin59π255 = 1128 65−55−1−1+1734−217+217+317+170+3817 + 132 7+65+5+534−217−234−217+417+317170+3817 + i64 7+65+5+5−1+1734−217+217+317+170+3817i64 65−55−134−217−234−217+417+317170+3817
                                                                  • x270 = cos 61π255 + i sin61π255 = −1128 65−55−11+17+34+217−217−317170−3817 + 132 7+65+5+534+217−234+217+417−317+170−3817 + i64 7+65+5+51+17+34+217−217−317170−3817 + i64 65−55−134+217−234+217+417−317+170−3817
                                                                  • x271 = cos 67π255 + i sin67π255 = −1128 65+55+1−1+17+34−217−217+317170+3817 + 132 7+65−5534−217+234−217+417+317+170+3817 + i64 7+65−55−1+17+34−217−217+317170+3817 + i64 65+55+134−217+234−217+417+317+170+3817
                                                                  • x272 = cos 71π255 + i sin71π255 = 1128 65−5+5+11+1734+217+217−317+170−3817 + 132 7−65+5+534+217+234+217+417−317170−3817i64 7−65+5+51+1734+217+217−317+170−3817 + i64 65−5+5+134+217+234+217+417−317170−3817
                                                                  • x273 = cos 73π255 + i sin73π255 = 1128 65+5+5−1−1−17+34+217+217−317+170−3817 + 132 7−65−5534+217+234+217−417−317170−3817i64 7−65−55−1−17+34+217+217−317+170−3817 + i64 65+5+5−134+217+234+217−417−317170−3817
                                                                  • x274 = cos 77π255 + i sin77π255 = 1128 65+5+5−1−1+1734−217+217+317+170+3817132 7−65−5534−217−234−217+417+317170+3817 + i64 7−65−55−1+1734−217+217+317+170+3817 + i64 65+5+5−134−217−234−217+417+317170+3817
                                                                  • x275 = cos 79π255 + i sin79π255 = 1128 65−5+5+11+17+34+217+217−317170−3817132 7−65+5+534+217−234+217−417−317+170−3817 + i64 7−65+5+51+17+34+217+217−317170−3817 + i64 65−5+5+134+217−234+217−417−317+170−3817
                                                                  • x276 = cos 83π255 + i sin83π255 = 1128 65+55+11−17+34−217+217+317+170+3817132 7+65−5534−217−234−217−417+317170+3817 + i64 7+65−551−17+34−217+217+317+170+3817 + i64 65+55+134−217−234−217−417+317170+3817
                                                                  • x277 = cos 89π255 + i sin89π255 = 1128 65−55−1−1+17+34−217+217+317170+3817 + 132 7+65+5+534−217+234−217−417+317+170+3817 + i64 7+65+5+5−1+17+34−217+217+317170+3817i64 65−55−134−217+234−217−417+317+170+3817
                                                                  • x278 = cos 91π255 + i sin91π255 = −1128 65−55−11+17+34+217+217−317170−3817 + 132 7+65+5+534+217−234+217−417−317+170−3817 + i64 7+65+5+51+17+34+217+217−317170−3817 + i64 65−55−134+217−234+217−417−317+170−3817
                                                                  • x279 = cos 97π255 + i sin97π255 = −1128 65+55+1−1−17+34+217+217−317+170−3817 + 132 7+65−5534+217+234+217−417−317170−3817 + i64 7+65−55−1−17+34+217+217−317+170−3817 + i64 65+55+134+217+234+217−417−317170−3817
                                                                  • x280 = cos 101π255 + i sin101π255 = −1128 65−5+5+1−1+17+34−217−217+317170+3817 + 132 7−65+5+534−217+234−217+417+317+170+3817 + i64 7−65+5+5−1+17+34−217−217+317170+3817 + i64 65−5+5+134−217+234−217+417+317+170+3817
                                                                  • x281 = cos 103π255 + i sin103π255 = 1128 65+5+5−1−1+17+34−217−217+317170+3817 + 132 7−65−5534−217+234−217+417+317+170+3817i64 7−65−55−1+17+34−217−217+317170+3817 + i64 65+5+5−134−217+234−217+417+317+170+3817
                                                                  • x282 = cos 107π255 + i sin107π255 = 1128 65+5+5−1−1−17+34+217+217−317+170−3817132 7−65−5534+217+234+217−417−317170−3817 + i64 7−65−55−1−17+34+217+217−317+170−3817 + i64 65+5+5−134+217+234+217−417−317170−3817
                                                                  • x283 = cos 109π255 + i sin109π255 = 1128 65−5+5+11+17+34+217−217−317170−3817132 7−65+5+534+217−234+217+417−317+170−3817 + i64 7−65+5+51+17+34+217−217−317170−3817 + i64 65−5+5+134+217−234+217+417−317+170−3817
                                                                  • x284 = cos 113π255 + i sin113π255 = 1128 65+55+11+17+34+217+217−317170−3817132 7+65−5534+217−234+217−417−317+170−3817 + i64 7+65−551+17+34+217+217−317170−3817 + i64 65+55+134+217−234+217−417−317+170−3817
                                                                  • x285 = cos 121π255 + i sin121π255 = −1128 65−55−11−17+34−217+217+317+170+3817 + 132 7+65+5+534−217−234−217−417+317170+3817 + i64 7+65+5+51−17+34−217+217+317+170+3817 + i64 65−55−134−217−234−217−417+317170+3817
                                                                  • x286 = cos 127π255 + i sin127π255 = −1128 65+55+1−1+1734−217+217+317+170+3817 + 132 7+65−5534−217−234−217+417+317170+3817 + i64 7+65−55−1+1734−217+217+317+170+3817 + i64 65+55+134−217−234−217+417+317170+3817
                                                                  • x287 = cos 131π255 + i sin131π255 = −1128 65−5+5+1−1−17+34+217+217−317+170−3817 + 132 7−65+5+534+217+234+217−417−317170−3817 + i64 7−65+5+5−1−17+34+217+217−317+170−3817 + i64 65−5+5+134+217+234+217−417−317170−3817
                                                                  • x288 = cos 133π255 + i sin133π255 = −1128 65+5+5−11+1734+217+217−317+170−3817 + 132 7−65−5534+217+234+217+417−317170−3817 + i64 7−65−551+1734+217+217−317+170−3817 + i64 65+5+5−134+217+234+217+417−317170−3817
                                                                  • x289 = cos 137π255 + i sin137π255 = 1128 65+5+5−1−1+17+34−217−217+317170+3817132 7−65−5534−217+234−217+417+317+170+3817 + i64 7−65−55−1+17+34−217−217+317170+3817 + i64 65+5+5−134−217+234−217+417+317+170+3817
                                                                  • x290 = cos 139π255 + i sin139π255 = 1128 65−5+5+11+1734+217+217−317+170−3817132 7−65+5+534+217+234+217+417−317170−3817 + i64 7−65+5+51+1734+217+217−317+170−3817 + i64 65−5+5+134+217+234+217+417−317170−3817
                                                                  • x291 = cos 143π255 + i sin143π255 = 1128 65+55+11+17+34+217−217−317170−3817132 7+65−5534+217−234+217+417−317+170−3817 + i64 7+65−551+17+34+217−217−317170−3817 + i64 65+55+134+217−234+217+417−317+170−3817
                                                                  • x292 = cos 149π255 + i sin149π255 = 1128 65−55−1−1+17+34−217+217+317170+3817132 7+65+5+534−217+234−217−417+317+170+3817 + i64 7+65+5+5−1+17+34−217+217+317170+3817 + i64 65−55−134−217+234−217−417+317+170+3817
                                                                  • x293 = cos 151π255 + i sin151π255 = −1128 65−55−11−17+34−217+217+317+170+3817132 7+65+5+534−217−234−217−417+317170+3817 + i64 7+65+5+51−17+34−217+217+317+170+3817i64 65−55−134−217−234−217−417+317170+3817
                                                                  • x294 = cos 157π255 + i sin157π255 = −1128 65+55+1−1+17+34−217+217+317170+3817 + 132 7+65−5534−217+234−217−417+317+170+3817 + i64 7+65−55−1+17+34−217+217+317170+3817 + i64 65+55+134−217+234−217−417+317+170+3817
                                                                  • x295 = cos 161π255 + i sin161π255 = −1128 65−5+5+1−1+1734−217+217+317+170+3817 + 132 7−65+5+534−217−234−217+417+317170+3817 + i64 7−65+5+5−1+1734−217+217+317+170+3817 + i64 65−5+5+134−217−234−217+417+317170+3817
                                                                  • x296 = cos 163π255 + i sin163π255 = −1128 65+5+5−11+17+34+217−217−317170−3817 + 132 7−65−5534+217−234+217+417−317+170−3817 + i64 7−65−551+17+34+217−217−317170−3817 + i64 65+5+5−134+217−234+217+417−317+170−3817
                                                                  • x297 = cos 167π255 + i sin167π255 = −1128 65+5+5−11+1734+217+217−317+170−3817132 7−65−5534+217+234+217+417−317170−3817i64 7−65−551+1734+217+217−317+170−3817 + i64 65+5+5−134+217+234+217+417−317170−3817
                                                                  • x298 = cos 169π255 + i sin169π255 = −1128 65−5+5+1−1+17+34−217−217+317170+3817132 7−65+5+534−217+234−217+417+317+170+3817i64 7−65+5+5−1+17+34−217−217+317170+3817 + i64 65−5+5+134−217+234−217+417+317+170+3817
                                                                  • x299 = cos 173π255 + i sin173π255 = 1128 65+55+11+1734+217+217−317+170−3817132 7+65−5534+217+234+217+417−317170−3817 + i64 7+65−551+1734+217+217−317+170−3817 + i64 65+55+134+217+234+217+417−317170−3817
                                                                  • x300 = cos 179π255 + i sin179π255 = 1128 65−55−1−1+1734−217+217+317+170+3817132 7+65+5+534−217−234−217+417+317170+3817 + i64 7+65+5+5−1+1734−217+217+317+170+3817 + i64 65−55−134−217−234−217+417+317170+3817
                                                                  • x301 = cos 181π255 + i sin181π255 = −1128 65−55−11+17+34+217+217−317170−3817132 7+65+5+534+217−234+217−417−317+170−3817 + i64 7+65+5+51+17+34+217+217−317170−3817i64 65−55−134+217−234+217−417−317+170−3817
                                                                  • x302 = cos 191π255 + i sin191π255 = −1128 65−5+5+1−1+17+34−217+217+317170+3817 + 132 7−65+5+534−217+234−217−417+317+170+3817 + i64 7−65+5+5−1+17+34−217+217+317170+3817 + i64 65−5+5+134−217+234−217−417+317+170+3817
                                                                  • x303 = cos 193π255 + i sin193π255 = −1128 65+5+5−11+17+34+217+217−317170−3817 + 132 7−65−5534+217−234+217−417−317+170−3817 + i64 7−65−551+17+34+217+217−317170−3817 + i64 65+5+5−134+217−234+217−417−317+170−3817
                                                                  • x304 = cos 197π255 + i sin197π255 = −1128 65+5+5−11+17+34+217−217−317170−3817132 7−65−5534+217−234+217+417−317+170−3817i64 7−65−551+17+34+217−217−317170−3817 + i64 65+5+5−134+217−234+217+417−317+170−3817
                                                                  • x305 = cos 199π255 + i sin199π255 = −1128 65−5+5+1−1−17+34+217+217−317+170−3817132 7−65+5+534+217+234+217−417−317170−3817i64 7−65+5+5−1−17+34+217+217−317+170−3817 + i64 65−5+5+134+217+234+217−417−317170−3817
                                                                  • x306 = cos 203π255 + i sin203π255 = −1128 65+55+1−1+17+34−217−217+317170+3817132 7+65−5534−217+234−217+417+317+170+3817i64 7+65−55−1+17+34−217−217+317170+3817 + i64 65+55+134−217+234−217+417+317+170+3817
                                                                  • x307 = cos 209π255 + i sin209π255 = 1128 65−55−1−1−17+34+217+217−317+170−3817132 7+65+5+534+217+234+217−417−317170−3817 + i64 7+65+5+5−1−17+34+217+217−317+170−3817 + i64 65−55−134+217+234+217−417−317170−3817
                                                                  • x308 = cos 211π255 + i sin211π255 = −1128 65−55−11+17+34+217−217−317170−3817132 7+65+5+534+217−234+217+417−317+170−3817 + i64 7+65+5+51+17+34+217−217−317170−3817i64 65−55−134+217−234+217+417−317+170−3817
                                                                  • x309 = cos 217π255 + i sin217π255 = −1128 65+55+1−1+17+34−217+217+317170+3817132 7+65−5534−217+234−217−417+317+170+3817 + i64 7+65−55−1+17+34−217+217+317170+3817i64 65+55+134−217+234−217−417+317+170+3817
                                                                  • x310 = cos 223π255 + i sin223π255 = −1128 65+5+5−11−17+34−217+217+317+170+3817 + 132 7−65−5534−217−234−217−417+317170+3817 + i64 7−65−551−17+34−217+217+317+170+3817 + i64 65+5+5−134−217−234−217−417+317170+3817
                                                                  • x311 = cos 227π255 + i sin227π255 = −1128 65+5+5−11+17+34+217+217−317170−3817132 7−65−5534+217−234+217−417−317+170−3817i64 7−65−551+17+34+217+217−317170−3817 + i64 65+5+5−134+217−234+217−417−317+170−3817
                                                                  • x312 = cos 229π255 + i sin229π255 = −1128 65−5+5+1−1+1734−217+217+317+170+3817132 7−65+5+534−217−234−217+417+317170+3817i64 7−65+5+5−1+1734−217+217+317+170+3817 + i64 65−5+5+134−217−234−217+417+317170+3817
                                                                  • x313 = cos 233π255 + i sin233π255 = −1128 65+55+1−1−17+34+217+217−317+170−3817132 7+65−5534+217+234+217−417−317170−3817i64 7+65−55−1−17+34+217+217−317+170−3817 + i64 65+55+134+217+234+217−417−317170−3817
                                                                  • x314 = cos 239π255 + i sin239π255 = 1128 65−55−1−1+17+34−217−217+317170+3817132 7+65+5+534−217+234−217+417+317+170+3817 + i64 7+65+5+5−1+17+34−217−217+317170+3817 + i64 65−55−134−217+234−217+417+317+170+3817
                                                                  • x315 = cos 241π255 + i sin241π255 = −1128 65−55−11+1734+217+217−317+170−3817132 7+65+5+534+217+234+217+417−317170−3817 + i64 7+65+5+51+1734+217+217−317+170−3817i64 65−55−134+217+234+217+417−317170−3817
                                                                  • x316 = cos 247π255 + i sin247π255 = −1128 65+55+1−1+1734−217+217+317+170+3817132 7+65−5534−217−234−217+417+317170+3817 + i64 7+65−55−1+1734−217+217+317+170+3817i64 65+55+134−217−234−217+417+317170+3817
                                                                  • x317 = cos 251π255 + i sin251π255 = −1128 65−5+5+1−1+17+34−217+217+317170+3817132 7−65+5+534−217+234−217−417+317+170+3817 + i64 7−65+5+5−1+17+34−217+217+317170+3817i64 65−5+5+134−217+234−217−417+317+170+3817
                                                                  • x318 = cos 253π255 + i sin253π255 = −1128 65+5+5−11−17+34−217+217+317+170+3817132 7−65−5534−217−234−217−417+317170+3817 + i64 7−65−551−17+34−217+217+317+170+3817i64 65+5+5−134−217−234−217−417+317170+3817
                                                                  • x319 = cos 257π255 + i sin257π255 = −1128 65+5+5−11−17+34−217+217+317+170+3817132 7−65−5534−217−234−217−417+317170+3817i64 7−65−551−17+34−217+217+317+170+3817 + i64 65+5+5−134−217−234−217−417+317170+3817
                                                                  • x320 = cos 259π255 + i sin259π255 = −1128 65−5+5+1−1+17+34−217+217+317170+3817132 7−65+5+534−217+234−217−417+317+170+3817i64 7−65+5+5−1+17+34−217+217+317170+3817 + i64 65−5+5+134−217+234−217−417+317+170+3817
                                                                  • x321 = cos 263π255 + i sin263π255 = −1128 65+55+1−1+1734−217+217+317+170+3817132 7+65−5534−217−234−217+417+317170+3817i64 7+65−55−1+1734−217+217+317+170+3817 + i64 65+55+134−217−234−217+417+317170+3817
                                                                  • x322 = cos 269π255 + i sin269π255 = −1128 65−55−11+1734+217+217−317+170−3817132 7+65+5+534+217+234+217+417−317170−3817i64 7+65+5+51+1734+217+217−317+170−3817 + i64 65−55−134+217+234+217+417−317170−3817
                                                                  • x323 = cos 271π255 + i sin271π255 = 1128 65−55−1−1+17+34−217−217+317170+3817132 7+65+5+534−217+234−217+417+317+170+3817i64 7+65+5+5−1+17+34−217−217+317170+3817i64 65−55−134−217+234−217+417+317+170+3817
                                                                  • x324 = cos 277π255 + i sin277π255 = −1128 65+55+1−1−17+34+217+217−317+170−3817132 7+65−5534+217+234+217−417−317170−3817 + i64 7+65−55−1−17+34+217+217−317+170−3817i64 65+55+134+217+234+217−417−317170−3817
                                                                  • x325 = cos 281π255 + i sin281π255 = −1128 65−5+5+1−1+1734−217+217+317+170+3817132 7−65+5+534−217−234−217+417+317170+3817 + i64 7−65+5+5−1+1734−217+217+317+170+3817i64 65−5+5+134−217−234−217+417+317170+3817
                                                                  • x326 = cos 283π255 + i sin283π255 = −1128 65+5+5−11+17+34+217+217−317170−3817132 7−65−5534+217−234+217−417−317+170−3817 + i64 7−65−551+17+34+217+217−317170−3817i64 65+5+5−134+217−234+217−417−317+170−3817
                                                                  • x327 = cos 287π255 + i sin287π255 = −1128 65+5+5−11−17+34−217+217+317+170+3817 + 132 7−65−5534−217−234−217−417+317170+3817i64 7−65−551−17+34−217+217+317+170+3817i64 65+5+5−134−217−234−217−417+317170+3817
                                                                  • x328 = cos 293π255 + i sin293π255 = −1128 65+55+1−1+17+34−217+217+317170+3817132 7+65−5534−217+234−217−417+317+170+3817i64 7+65−55−1+17+34−217+217+317170+3817 + i64 65+55+134−217+234−217−417+317+170+3817
                                                                  • x329 = cos 299π255 + i sin299π255 = −1128 65−55−11+17+34+217−217−317170−3817132 7+65+5+534+217−234+217+417−317+170−3817i64 7+65+5+51+17+34+217−217−317170−3817 + i64 65−55−134+217−234+217+417−317+170−3817
                                                                  • x330 = cos 301π255 + i sin301π255 = 1128 65−55−1−1−17+34+217+217−317+170−3817132 7+65+5+534+217+234+217−417−317170−3817i64 7+65+5+5−1−17+34+217+217−317+170−3817i64 65−55−134+217+234+217−417−317170−3817
                                                                  • x331 = cos 307π255 + i sin307π255 = −1128 65+55+1−1+17+34−217−217+317170+3817132 7+65−5534−217+234−217+417+317+170+3817 + i64 7+65−55−1+17+34−217−217+317170+3817i64 65+55+134−217+234−217+417+317+170+3817
                                                                  • x332 = cos 311π255 + i sin311π255 = −1128 65−5+5+1−1−17+34+217+217−317+170−3817132 7−65+5+534+217+234+217−417−317170−3817 + i64 7−65+5+5−1−17+34+217+217−317+170−3817i64 65−5+5+134+217+234+217−417−317170−3817
                                                                  • x333 = cos 313π255 + i sin313π255 = −1128 65+5+5−11+17+34+217−217−317170−3817132 7−65−5534+217−234+217+417−317+170−3817 + i64 7−65−551+17+34+217−217−317170−3817i64 65+5+5−134+217−234+217+417−317+170−3817
                                                                  • x334 = cos 317π255 + i sin317π255 = −1128 65+5+5−11+17+34+217+217−317170−3817 + 132 7−65−5534+217−234+217−417−317+170−3817i64 7−65−551+17+34+217+217−317170−3817i64 65+5+5−134+217−234+217−417−317+170−3817
                                                                  • x335 = cos 319π255 + i sin319π255 = −1128 65−5+5+1−1+17+34−217+217+317170+3817 + 132 7−65+5+534−217+234−217−417+317+170+3817i64 7−65+5+5−1+17+34−217+217+317170+3817i64 65−5+5+134−217+234−217−417+317+170+3817
                                                                  • x336 = cos 329π255 + i sin329π255 = −1128 65−55−11+17+34+217+217−317170−3817132 7+65+5+534+217−234+217−417−317+170−3817i64 7+65+5+51+17+34+217+217−317170−3817 + i64 65−55−134+217−234+217−417−317+170−3817
                                                                  • x337 = cos 331π255 + i sin331π255 = 1128 65−55−1−1+1734−217+217+317+170+3817132 7+65+5+534−217−234−217+417+317170+3817i64 7+65+5+5−1+1734−217+217+317+170+3817i64 65−55−134−217−234−217+417+317170+3817
                                                                  • x338 = cos 337π255 + i sin337π255 = 1128 65+55+11+1734+217+217−317+170−3817132 7+65−5534+217+234+217+417−317170−3817i64 7+65−551+1734+217+217−317+170−3817i64 65+55+134+217+234+217+417−317170−3817
                                                                  • x339 = cos 341π255 + i sin341π255 = −1128 65−5+5+1−1+17+34−217−217+317170+3817132 7−65+5+534−217+234−217+417+317+170+3817 + i64 7−65+5+5−1+17+34−217−217+317170+3817i64 65−5+5+134−217+234−217+417+317+170+3817
                                                                  • x340 = cos 343π255 + i sin343π255 = −1128 65+5+5−11+1734+217+217−317+170−3817132 7−65−5534+217+234+217+417−317170−3817 + i64 7−65−551+1734+217+217−317+170−3817i64 65+5+5−134+217+234+217+417−317170−3817
                                                                  • x341 = cos 347π255 + i sin347π255 = −1128 65+5+5−11+17+34+217−217−317170−3817 + 132 7−65−5534+217−234+217+417−317+170−3817i64 7−65−551+17+34+217−217−317170−3817i64 65+5+5−134+217−234+217+417−317+170−3817
                                                                  • x342 = cos 349π255 + i sin349π255 = −1128 65−5+5+1−1+1734−217+217+317+170+3817 + 132 7−65+5+534−217−234−217+417+317170+3817i64 7−65+5+5−1+1734−217+217+317+170+3817i64 65−5+5+134−217−234−217+417+317170+3817
                                                                  • x343 = cos 353π255 + i sin353π255 = −1128 65+55+1−1+17+34−217+217+317170+3817 + 132 7+65−5534−217+234−217−417+317+170+3817i64 7+65−55−1+17+34−217+217+317170+3817i64 65+55+134−217+234−217−417+317+170+3817
                                                                  • x344 = cos 359π255 + i sin359π255 = −1128 65−55−11−17+34−217+217+317+170+3817132 7+65+5+534−217−234−217−417+317170+3817i64 7+65+5+51−17+34−217+217+317+170+3817 + i64 65−55−134−217−234−217−417+317170+3817
                                                                  • x345 = cos 361π255 + i sin361π255 = 1128 65−55−1−1+17+34−217+217+317170+3817132 7+65+5+534−217+234−217−417+317+170+3817i64 7+65+5+5−1+17+34−217+217+317170+3817i64 65−55−134−217+234−217−417+317+170+3817
                                                                  • x346 = cos 367π255 + i sin367π255 = 1128 65+55+11+17+34+217−217−317170−3817132 7+65−5534+217−234+217+417−317+170−3817i64 7+65−551+17+34+217−217−317170−3817i64 65+55+134+217−234+217+417−317+170−3817
                                                                  • x347 = cos 371π255 + i sin371π255 = 1128 65−5+5+11+1734+217+217−317+170−3817132 7−65+5+534+217+234+217+417−317170−3817i64 7−65+5+51+1734+217+217−317+170−3817i64 65−5+5+134+217+234+217+417−317170−3817
                                                                  • x348 = cos 373π255 + i sin373π255 = 1128 65+5+5−1−1+17+34−217−217+317170+3817132 7−65−5534−217+234−217+417+317+170+3817i64 7−65−55−1+17+34−217−217+317170+3817i64 65+5+5−134−217+234−217+417+317+170+3817
                                                                  • x349 = cos 377π255 + i sin377π255 = −1128 65+5+5−11+1734+217+217−317+170−3817 + 132 7−65−5534+217+234+217+417−317170−3817i64 7−65−551+1734+217+217−317+170−3817i64 65+5+5−134+217+234+217+417−317170−3817
                                                                  • x350 = cos 379π255 + i sin379π255 = −1128 65−5+5+1−1−17+34+217+217−317+170−3817 + 132 7−65+5+534+217+234+217−417−317170−3817i64 7−65+5+5−1−17+34+217+217−317+170−3817i64 65−5+5+134+217+234+217−417−317170−3817
                                                                  • x351 = cos 383π255 + i sin383π255 = −1128 65+55+1−1+1734−217+217+317+170+3817 + 132 7+65−5534−217−234−217+417+317170+3817i64 7+65−55−1+1734−217+217+317+170+3817i64 65+55+134−217−234−217+417+317170+3817
                                                                  • x352 = cos 389π255 + i sin389π255 = −1128 65−55−11−17+34−217+217+317+170+3817 + 132 7+65+5+534−217−234−217−417+317170+3817i64 7+65+5+51−17+34−217+217+317+170+3817i64 65−55−134−217−234−217−417+317170+3817
                                                                  • x353 = cos 397π255 + i sin397π255 = 1128 65+55+11+17+34+217+217−317170−3817132 7+65−5534+217−234+217−417−317+170−3817i64 7+65−551+17+34+217+217−317170−3817i64 65+55+134+217−234+217−417−317+170−3817
                                                                  • x354 = cos 401π255 + i sin401π255 = 1128 65−5+5+11+17+34+217−217−317170−3817132 7−65+5+534+217−234+217+417−317+170−3817i64 7−65+5+51+17+34+217−217−317170−3817i64 65−5+5+134+217−234+217+417−317+170−3817
                                                                  • x355 = cos 403π255 + i sin403π255 = 1128 65+5+5−1−1−17+34+217+217−317+170−3817132 7−65−5534+217+234+217−417−317170−3817i64 7−65−55−1−17+34+217+217−317+170−3817i64 65+5+5−134+217+234+217−417−317170−3817
                                                                  • x356 = cos 407π255 + i sin407π255 = 1128 65+5+5−1−1+17+34−217−217+317170+3817 + 132 7−65−5534−217+234−217+417+317+170+3817 + i64 7−65−55−1+17+34−217−217+317170+3817i64 65+5+5−134−217+234−217+417+317+170+3817
                                                                  • x357 = cos 409π255 + i sin409π255 = −1128 65−5+5+1−1+17+34−217−217+317170+3817 + 132 7−65+5+534−217+234−217+417+317+170+3817i64 7−65+5+5−1+17+34−217−217+317170+3817i64 65−5+5+134−217+234−217+417+317+170+3817
                                                                  • x358 = cos 413π255 + i sin413π255 = −1128 65+55+1−1−17+34+217+217−317+170−3817 + 132 7+65−5534+217+234+217−417−317170−3817i64 7+65−55−1−17+34+217+217−317+170−3817i64 65+55+134+217+234+217−417−317170−3817
                                                                  • x359 = cos 419π255 + i sin419π255 = −1128 65−55−11+17+34+217+217−317170−3817 + 132 7+65+5+534+217−234+217−417−317+170−3817i64 7+65+5+51+17+34+217+217−317170−3817i64 65−55−134+217−234+217−417−317+170−3817
                                                                  • x360 = cos 421π255 + i sin421π255 = 1128 65−55−1−1+17+34−217+217+317170+3817 + 132 7+65+5+534−217+234−217−417+317+170+3817i64 7+65+5+5−1+17+34−217+217+317170+3817 + i64 65−55−134−217+234−217−417+317+170+3817
                                                                  • x361 = cos 427π255 + i sin427π255 = 1128 65+55+11−17+34−217+217+317+170+3817132 7+65−5534−217−234−217−417+317170+3817i64 7+65−551−17+34−217+217+317+170+3817i64 65+55+134−217−234−217−417+317170+3817
                                                                  • x362 = cos 431π255 + i sin431π255 = 1128 65−5+5+11+17+34+217+217−317170−3817132 7−65+5+534+217−234+217−417−317+170−3817i64 7−65+5+51+17+34+217+217−317170−3817i64 65−5+5+134+217−234+217−417−317+170−3817
                                                                  • x363 = cos 433π255 + i sin433π255 = 1128 65+5+5−1−1+1734−217+217+317+170+3817132 7−65−5534−217−234−217+417+317170+3817i64 7−65−55−1+1734−217+217+317+170+3817i64 65+5+5−134−217−234−217+417+317170+3817
                                                                  • x364 = cos 437π255 + i sin437π255 = 1128 65+5+5−1−1−17+34+217+217−317+170−3817 + 132 7−65−5534+217+234+217−417−317170−3817 + i64 7−65−55−1−17+34+217+217−317+170−3817i64 65+5+5−134+217+234+217−417−317170−3817
                                                                  • x365 = cos 439π255 + i sin439π255 = 1128 65−5+5+11+1734+217+217−317+170−3817 + 132 7−65+5+534+217+234+217+417−317170−3817 + i64 7−65+5+51+1734+217+217−317+170−3817i64 65−5+5+134+217+234+217+417−317170−3817
                                                                  • x366 = cos 443π255 + i sin443π255 = −1128 65+55+1−1+17+34−217−217+317170+3817 + 132 7+65−5534−217+234−217+417+317+170+3817i64 7+65−55−1+17+34−217−217+317170+3817i64 65+55+134−217+234−217+417+317+170+3817
                                                                  • x367 = cos 449π255 + i sin449π255 = −1128 65−55−11+17+34+217−217−317170−3817 + 132 7+65+5+534+217−234+217+417−317+170−3817i64 7+65+5+51+17+34+217−217−317170−3817i64 65−55−134+217−234+217+417−317+170−3817
                                                                  • x368 = cos 451π255 + i sin451π255 = 1128 65−55−1−1+1734−217+217+317+170+3817 + 132 7+65+5+534−217−234−217+417+317170+3817i64 7+65+5+5−1+1734−217+217+317+170+3817 + i64 65−55−134−217−234−217+417+317170+3817
                                                                  • x369 = cos 457π255 + i sin457π255 = 1128 65+55+11−17+34−217+217+317+170+3817 + 132 7+65−5534−217−234−217−417+317170+3817i64 7+65−551−17+34−217+217+317+170+3817 + i64 65+55+134−217−234−217−417+317170+3817
                                                                  • x370 = cos 461π255 + i sin461π255 = 1128 65−5+5+11−17+34−217+217+317+170+3817132 7−65+5+534−217−234−217−417+317170+3817i64 7−65+5+51−17+34−217+217+317+170+3817i64 65−5+5+134−217−234−217−417+317170+3817
                                                                  • x371 = cos 463π255 + i sin463π255 = 1128 65+5+5−1−1+17+34−217+217+317170+3817132 7−65−5534−217+234−217−417+317+170+3817i64 7−65−55−1+17+34−217+217+317170+3817i64 65+5+5−134−217+234−217−417+317+170+3817
                                                                  • x372 = cos 467π255 + i sin467π255 = 1128 65+5+5−1−1+1734−217+217+317+170+3817 + 132 7−65−5534−217−234−217+417+317170+3817 + i64 7−65−55−1+1734−217+217+317+170+3817i64 65+5+5−134−217−234−217+417+317170+3817
                                                                  • x373 = cos 469π255 + i sin469π255 = 1128 65−5+5+11+17+34+217−217−317170−3817 + 132 7−65+5+534+217−234+217+417−317+170−3817 + i64 7−65+5+51+17+34+217−217−317170−3817i64 65−5+5+134+217−234+217+417−317+170−3817
                                                                  • x374 = cos 473π255 + i sin473π255 = 1128 65+55+11+1734+217+217−317+170−3817 + 132 7+65−5534+217+234+217+417−317170−3817 + i64 7+65−551+1734+217+217−317+170−3817i64 65+55+134+217+234+217+417−317170−3817
                                                                  • x375 = cos 479π255 + i sin479π255 = −1128 65−55−11+1734+217+217−317+170−3817 + 132 7+65+5+534+217+234+217+417−317170−3817i64 7+65+5+51+1734+217+217−317+170−3817i64 65−55−134+217+234+217+417−317170−3817
                                                                  • x376 = cos 481π255 + i sin481π255 = 1128 65−55−1−1−17+34+217+217−317+170−3817 + 132 7+65+5+534+217+234+217−417−317170−3817i64 7+65+5+5−1−17+34+217+217−317+170−3817 + i64 65−55−134+217+234+217−417−317170−3817
                                                                  • x377 = cos 487π255 + i sin487π255 = 1128 65+55+11+17+34+217+217−317170−3817 + 132 7+65−5534+217−234+217−417−317+170−3817i64 7+65−551+17+34+217+217−317170−3817 + i64 65+55+134+217−234+217−417−317+170−3817
                                                                  • x378 = cos 491π255 + i sin491π255 = 1128 65−5+5+11−17+34−217+217+317+170+3817 + 132 7−65+5+534−217−234−217−417+317170+3817i64 7−65+5+51−17+34−217+217+317+170+3817 + i64 65−5+5+134−217−234−217−417+317170+3817
                                                                  • x379 = cos 497π255 + i sin497π255 = 1128 65+5+5−1−1+17+34−217+217+317170+3817 + 132 7−65−5534−217+234−217−417+317+170+3817 + i64 7−65−55−1+17+34−217+217+317170+3817i64 65+5+5−134−217+234−217−417+317+170+3817
                                                                  • x380 = cos 499π255 + i sin499π255 = 1128 65−5+5+11+17+34+217+217−317170−3817 + 132 7−65+5+534+217−234+217−417−317+170−3817 + i64 7−65+5+51+17+34+217+217−317170−3817i64 65−5+5+134+217−234+217−417−317+170−3817
                                                                  • x381 = cos 503π255 + i sin503π255 = 1128 65+55+11+17+34+217−217−317170−3817 + 132 7+65−5534+217−234+217+417−317+170−3817 + i64 7+65−551+17+34+217−217−317170−3817i64 65+55+134+217−234+217+417−317+170−3817
                                                                  • x382 = cos 509π255 + i sin509π255 = 1128 65−55−1−1+17+34−217−217+317170+3817 + 132 7+65+5+534−217+234−217+417+317+170+3817 + i64 7+65+5+5−1+17+34−217−217+317170+3817i64 65−55−134−217+234−217+417+317+170+3817
                                                                  • x383 = cos 2π255 + i sin2π255 = 1128 65+5+5−11−17+34−217+217+317+170+3817 + 132 7−65−5534−217−234−217−417+317170+3817 + i64 7−65−551−17+34−217+217+317+170+3817i64 65+5+5−134−217−234−217−417+317170+3817
                                                                  • x384 = cos 4π255 + i sin4π255 = 1128 65−5+5+1−1+17+34−217+217+317170+3817 + 132 7−65+5+534−217+234−217−417+317+170+3817 + i64 7−65+5+5−1+17+34−217+217+317170+3817i64 65−5+5+134−217+234−217−417+317+170+3817
                                                                  • x385 = cos 8π255 + i sin8π255 = 1128 65+55+1−1+1734−217+217+317+170+3817 + 132 7+65−5534−217−234−217+417+317170+3817 + i64 7+65−55−1+1734−217+217+317+170+3817i64 65+55+134−217−234−217+417+317170+3817
                                                                  • x386 = cos 14π255 + i sin14π255 = 1128 65−55−11+1734+217+217−317+170−3817 + 132 7+65+5+534+217+234+217+417−317170−3817 + i64 7+65+5+51+1734+217+217−317+170−3817i64 65−55−134+217+234+217+417−317170−3817
                                                                  • x387 = cos 16π255 + i sin16π255 = −1128 65−55−1−1+17+34−217−217+317170+3817 + 132 7+65+5+534−217+234−217+417+317+170+3817 + i64 7+65+5+5−1+17+34−217−217+317170+3817 + i64 65−55−134−217+234−217+417+317+170+3817
                                                                  • x388 = cos 22π255 + i sin22π255 = 1128 65+55+1−1−17+34+217+217−317+170−3817 + 132 7+65−5534+217+234+217−417−317170−3817i64 7+65−55−1−17+34+217+217−317+170−3817 + i64 65+55+134+217+234+217−417−317170−3817
                                                                  • x389 = cos 26π255 + i sin26π255 = 1128 65−5+5+1−1+1734−217+217+317+170+3817 + 132 7−65+5+534−217−234−217+417+317170+3817i64 7−65+5+5−1+1734−217+217+317+170+3817 + i64 65−5+5+134−217−234−217+417+317170+3817
                                                                  • x390 = cos 28π255 + i sin28π255 = 1128 65+5+5−11+17+34+217+217−317170−3817 + 132 7−65−5534+217−234+217−417−317+170−3817i64 7−65−551+17+34+217+217−317170−3817 + i64 65+5+5−134+217−234+217−417−317+170−3817
                                                                  • x391 = cos 32π255 + i sin32π255 = 1128 65+5+5−11−17+34−217+217+317+170+3817132 7−65−5534−217−234−217−417+317170+3817 + i64 7−65−551−17+34−217+217+317+170+3817 + i64 65+5+5−134−217−234−217−417+317170+3817
                                                                  • x392 = cos 38π255 + i sin38π255 = 1128 65+55+1−1+17+34−217+217+317170+3817 + 132 7+65−5534−217+234−217−417+317+170+3817 + i64 7+65−55−1+17+34−217+217+317170+3817i64 65+55+134−217+234−217−417+317+170+3817
                                                                  • x393 = cos 44π255 + i sin44π255 = 1128 65−55−11+17+34+217−217−317170−3817 + 132 7+65+5+534+217−234+217+417−317+170−3817 + i64 7+65+5+51+17+34+217−217−317170−3817i64 65−55−134+217−234+217+417−317+170−3817
                                                                  • x394 = cos 46π255 + i sin46π255 = −1128 65−55−1−1−17+34+217+217−317+170−3817 + 132 7+65+5+534+217+234+217−417−317170−3817 + i64 7+65+5+5−1−17+34+217+217−317+170−3817 + i64 65−55−134+217+234+217−417−317170−3817
                                                                  • x395 = cos 52π255 + i sin52π255 = 1128 65+55+1−1+17+34−217−217+317170+3817 + 132 7+65−5534−217+234−217+417+317+170+3817i64 7+65−55−1+17+34−217−217+317170+3817 + i64 65+55+134−217+234−217+417+317+170+3817
                                                                  • x396 = cos 56π255 + i sin56π255 = 1128 65−5+5+1−1−17+34+217+217−317+170−3817 + 132 7−65+5+534+217+234+217−417−317170−3817i64 7−65+5+5−1−17+34+217+217−317+170−3817 + i64 65−5+5+134+217+234+217−417−317170−3817
                                                                  • x397 = cos 58π255 + i sin58π255 = 1128 65+5+5−11+17+34+217−217−317170−3817 + 132 7−65−5534+217−234+217+417−317+170−3817i64 7−65−551+17+34+217−217−317170−3817 + i64 65+5+5−134+217−234+217+417−317+170−3817
                                                                  • x398 = cos 62π255 + i sin62π255 = 1128 65+5+5−11+17+34+217+217−317170−3817132 7−65−5534+217−234+217−417−317+170−3817 + i64 7−65−551+17+34+217+217−317170−3817 + i64 65+5+5−134+217−234+217−417−317+170−3817
                                                                  • x399 = cos 64π255 + i sin64π255 = 1128 65−5+5+1−1+17+34−217+217+317170+3817132 7−65+5+534−217+234−217−417+317+170+3817 + i64 7−65+5+5−1+17+34−217+217+317170+3817 + i64 65−5+5+134−217+234−217−417+317+170+3817
                                                                  • x400 = cos 74π255 + i sin74π255 = 1128 65−55−11+17+34+217+217−317170−3817 + 132 7+65+5+534+217−234+217−417−317+170−3817 + i64 7+65+5+51+17+34+217+217−317170−3817i64 65−55−134+217−234+217−417−317+170−3817
                                                                  • x401 = cos 76π255 + i sin76π255 = −1128 65−55−1−1+1734−217+217+317+170+3817 + 132 7+65+5+534−217−234−217+417+317170+3817 + i64 7+65+5+5−1+1734−217+217+317+170+3817 + i64 65−55−134−217−234−217+417+317170+3817
                                                                  • x402 = cos 82π255 + i sin82π255 = −1128 65+55+11+1734+217+217−317+170−3817 + 132 7+65−5534+217+234+217+417−317170−3817 + i64 7+65−551+1734+217+217−317+170−3817 + i64 65+55+134+217+234+217+417−317170−3817
                                                                  • x403 = cos 86π255 + i sin86π255 = 1128 65−5+5+1−1+17+34−217−217+317170+3817 + 132 7−65+5+534−217+234−217+417+317+170+3817i64 7−65+5+5−1+17+34−217−217+317170+3817 + i64 65−5+5+134−217+234−217+417+317+170+3817
                                                                  • x404 = cos 88π255 + i sin88π255 = 1128 65+5+5−11+1734+217+217−317+170−3817 + 132 7−65−5534+217+234+217+417−317170−3817i64 7−65−551+1734+217+217−317+170−3817 + i64 65+5+5−134+217+234+217+417−317170−3817
                                                                  • x405 = cos 92π255 + i sin92π255 = 1128 65+5+5−11+17+34+217−217−317170−3817132 7−65−5534+217−234+217+417−317+170−3817 + i64 7−65−551+17+34+217−217−317170−3817 + i64 65+5+5−134+217−234+217+417−317+170−3817
                                                                  • x406 = cos 94π255 + i sin94π255 = 1128 65−5+5+1−1+1734−217+217+317+170+3817132 7−65+5+534−217−234−217+417+317170+3817 + i64 7−65+5+5−1+1734−217+217+317+170+3817 + i64 65−5+5+134−217−234−217+417+317170+3817
                                                                  • x407 = cos 98π255 + i sin98π255 = 1128 65+55+1−1+17+34−217+217+317170+3817132 7+65−5534−217+234−217−417+317+170+3817 + i64 7+65−55−1+17+34−217+217+317170+3817 + i64 65+55+134−217+234−217−417+317+170+3817
                                                                  • x408 = cos 104π255 + i sin104π255 = 1128 65−55−11−17+34−217+217+317+170+3817 + 132 7+65+5+534−217−234−217−417+317170+3817 + i64 7+65+5+51−17+34−217+217+317+170+3817i64 65−55−134−217−234−217−417+317170+3817
                                                                  • x409 = cos 106π255 + i sin106π255 = −1128 65−55−1−1+17+34−217+217+317170+3817 + 132 7+65+5+534−217+234−217−417+317+170+3817 + i64 7+65+5+5−1+17+34−217+217+317170+3817 + i64 65−55−134−217+234−217−417+317+170+3817
                                                                  • x410 = cos 112π255 + i sin112π255 = −1128 65+55+11+17+34+217−217−317170−3817 + 132 7+65−5534+217−234+217+417−317+170−3817 + i64 7+65−551+17+34+217−217−317170−3817 + i64 65+55+134+217−234+217+417−317+170−3817
                                                                  • x411 = cos 116π255 + i sin116π255 = −1128 65−5+5+11+1734+217+217−317+170−3817 + 132 7−65+5+534+217+234+217+417−317170−3817 + i64 7−65+5+51+1734+217+217−317+170−3817 + i64 65−5+5+134+217+234+217+417−317170−3817
                                                                  • x412 = cos 118π255 + i sin118π255 = −1128 65+5+5−1−1+17+34−217−217+317170+3817 + 132 7−65−5534−217+234−217+417+317+170+3817 + i64 7−65−55−1+17+34−217−217+317170+3817 + i64 65+5+5−134−217+234−217+417+317+170+3817
                                                                  • x413 = cos 122π255 + i sin122π255 = 1128 65+5+5−11+1734+217+217−317+170−3817132 7−65−5534+217+234+217+417−317170−3817 + i64 7−65−551+1734+217+217−317+170−3817 + i64 65+5+5−134+217+234+217+417−317170−3817
                                                                  • x414 = cos 124π255 + i sin124π255 = 1128 65−5+5+1−1−17+34+217+217−317+170−3817132 7−65+5+534+217+234+217−417−317170−3817 + i64 7−65+5+5−1−17+34+217+217−317+170−3817 + i64 65−5+5+134+217+234+217−417−317170−3817
                                                                  • x415 = cos 128π255 + i sin128π255 = 1128 65+55+1−1+1734−217+217+317+170+3817132 7+65−5534−217−234−217+417+317170+3817 + i64 7+65−55−1+1734−217+217+317+170+3817 + i64 65+55+134−217−234−217+417+317170+3817
                                                                  • x416 = cos 134π255 + i sin134π255 = 1128 65−55−11−17+34−217+217+317+170+3817132 7+65+5+534−217−234−217−417+317170+3817 + i64 7+65+5+51−17+34−217+217+317+170+3817 + i64 65−55−134−217−234−217−417+317170+3817
                                                                  • x417 = cos 142π255 + i sin142π255 = −1128 65+55+11+17+34+217+217−317170−3817 + 132 7+65−5534+217−234+217−417−317+170−3817 + i64 7+65−551+17+34+217+217−317170−3817 + i64 65+55+134+217−234+217−417−317+170−3817
                                                                  • x418 = cos 146π255 + i sin146π255 = −1128 65−5+5+11+17+34+217−217−317170−3817 + 132 7−65+5+534+217−234+217+417−317+170−3817 + i64 7−65+5+51+17+34+217−217−317170−3817 + i64 65−5+5+134+217−234+217+417−317+170−3817
                                                                  • x419 = cos 148π255 + i sin148π255 = −1128 65+5+5−1−1−17+34+217+217−317+170−3817 + 132 7−65−5534+217+234+217−417−317170−3817 + i64 7−65−55−1−17+34+217+217−317+170−3817 + i64 65+5+5−134+217+234+217−417−317170−3817
                                                                  • x420 = cos 152π255 + i sin152π255 = −1128 65+5+5−1−1+17+34−217−217+317170+3817132 7−65−5534−217+234−217+417+317+170+3817i64 7−65−55−1+17+34−217−217+317170+3817 + i64 65+5+5−134−217+234−217+417+317+170+3817
                                                                  • x421 = cos 154π255 + i sin154π255 = 1128 65−5+5+1−1+17+34−217−217+317170+3817132 7−65+5+534−217+234−217+417+317+170+3817 + i64 7−65+5+5−1+17+34−217−217+317170+3817 + i64 65−5+5+134−217+234−217+417+317+170+3817
                                                                  • x422 = cos 158π255 + i sin158π255 = 1128 65+55+1−1−17+34+217+217−317+170−3817132 7+65−5534+217+234+217−417−317170−3817 + i64 7+65−55−1−17+34+217+217−317+170−3817 + i64 65+55+134+217+234+217−417−317170−3817
                                                                  • x423 = cos 164π255 + i sin164π255 = 1128 65−55−11+17+34+217+217−317170−3817132 7+65+5+534+217−234+217−417−317+170−3817 + i64 7+65+5+51+17+34+217+217−317170−3817 + i64 65−55−134+217−234+217−417−317+170−3817
                                                                  • x424 = cos 166π255 + i sin166π255 = −1128 65−55−1−1+17+34−217+217+317170+3817132 7+65+5+534−217+234−217−417+317+170+3817 + i64 7+65+5+5−1+17+34−217+217+317170+3817i64 65−55−134−217+234−217−417+317+170+3817
                                                                  • x425 = cos 172π255 + i sin172π255 = −1128 65+55+11−17+34−217+217+317+170+3817 + 132 7+65−5534−217−234−217−417+317170+3817 + i64 7+65−551−17+34−217+217+317+170+3817 + i64 65+55+134−217−234−217−417+317170+3817
                                                                  • x426 = cos 176π255 + i sin176π255 = −1128 65−5+5+11+17+34+217+217−317170−3817 + 132 7−65+5+534+217−234+217−417−317+170−3817 + i64 7−65+5+51+17+34+217+217−317170−3817 + i64 65−5+5+134+217−234+217−417−317+170−3817
                                                                  • x427 = cos 178π255 + i sin178π255 = −1128 65+5+5−1−1+1734−217+217+317+170+3817 + 132 7−65−5534−217−234−217+417+317170+3817 + i64 7−65−55−1+1734−217+217+317+170+3817 + i64 65+5+5−134−217−234−217+417+317170+3817
                                                                  • x428 = cos 182π255 + i sin182π255 = −1128 65+5+5−1−1−17+34+217+217−317+170−3817132 7−65−5534+217+234+217−417−317170−3817i64 7−65−55−1−17+34+217+217−317+170−3817 + i64 65+5+5−134+217+234+217−417−317170−3817
                                                                  • x429 = cos 184π255 + i sin184π255 = −1128 65−5+5+11+1734+217+217−317+170−3817132 7−65+5+534+217+234+217+417−317170−3817i64 7−65+5+51+1734+217+217−317+170−3817 + i64 65−5+5+134+217+234+217+417−317170−3817
                                                                  • x430 = cos 188π255 + i sin188π255 = 1128 65+55+1−1+17+34−217−217+317170+3817132 7+65−5534−217+234−217+417+317+170+3817 + i64 7+65−55−1+17+34−217−217+317170+3817 + i64 65+55+134−217+234−217+417+317+170+3817
                                                                  • x431 = cos 194π255 + i sin194π255 = 1128 65−55−11+17+34+217−217−317170−3817132 7+65+5+534+217−234+217+417−317+170−3817 + i64 7+65+5+51+17+34+217−217−317170−3817 + i64 65−55−134+217−234+217+417−317+170−3817
                                                                  • x432 = cos 196π255 + i sin196π255 = −1128 65−55−1−1+1734−217+217+317+170+3817132 7+65+5+534−217−234−217+417+317170+3817 + i64 7+65+5+5−1+1734−217+217+317+170+3817i64 65−55−134−217−234−217+417+317170+3817
                                                                  • x433 = cos 202π255 + i sin202π255 = −1128 65+55+11−17+34−217+217+317+170+3817132 7+65−5534−217−234−217−417+317170+3817 + i64 7+65−551−17+34−217+217+317+170+3817i64 65+55+134−217−234−217−417+317170+3817
                                                                  • x434 = cos 206π255 + i sin206π255 = −1128 65−5+5+11−17+34−217+217+317+170+3817 + 132 7−65+5+534−217−234−217−417+317170+3817 + i64 7−65+5+51−17+34−217+217+317+170+3817 + i64 65−5+5+134−217−234−217−417+317170+3817
                                                                  • x435 = cos 208π255 + i sin208π255 = −1128 65+5+5−1−1+17+34−217+217+317170+3817 + 132 7−65−5534−217+234−217−417+317+170+3817 + i64 7−65−55−1+17+34−217+217+317170+3817 + i64 65+5+5−134−217+234−217−417+317+170+3817
                                                                  • x436 = cos 212π255 + i sin212π255 = −1128 65+5+5−1−1+1734−217+217+317+170+3817132 7−65−5534−217−234−217+417+317170+3817i64 7−65−55−1+1734−217+217+317+170+3817 + i64 65+5+5−134−217−234−217+417+317170+3817
                                                                  • x437 = cos 214π255 + i sin214π255 = −1128 65−5+5+11+17+34+217−217−317170−3817132 7−65+5+534+217−234+217+417−317+170−3817i64 7−65+5+51+17+34+217−217−317170−3817 + i64 65−5+5+134+217−234+217+417−317+170−3817
                                                                  • x438 = cos 218π255 + i sin218π255 = −1128 65+55+11+1734+217+217−317+170−3817132 7+65−5534+217+234+217+417−317170−3817i64 7+65−551+1734+217+217−317+170−3817 + i64 65+55+134+217+234+217+417−317170−3817
                                                                  • x439 = cos 224π255 + i sin224π255 = 1128 65−55−11+1734+217+217−317+170−3817132 7+65+5+534+217+234+217+417−317170−3817 + i64 7+65+5+51+1734+217+217−317+170−3817 + i64 65−55−134+217+234+217+417−317170−3817
                                                                  • x440 = cos 226π255 + i sin226π255 = −1128 65−55−1−1−17+34+217+217−317+170−3817132 7+65+5+534+217+234+217−417−317170−3817 + i64 7+65+5+5−1−17+34+217+217−317+170−3817i64 65−55−134+217+234+217−417−317170−3817
                                                                  • x441 = cos 232π255 + i sin232π255 = −1128 65+55+11+17+34+217+217−317170−3817132 7+65−5534+217−234+217−417−317+170−3817 + i64 7+65−551+17+34+217+217−317170−3817i64 65+55+134+217−234+217−417−317+170−3817
                                                                  • x442 = cos 236π255 + i sin236π255 = −1128 65−5+5+11−17+34−217+217+317+170+3817132 7−65+5+534−217−234−217−417+317170+3817 + i64 7−65+5+51−17+34−217+217+317+170+3817i64 65−5+5+134−217−234−217−417+317170+3817
                                                                  • x443 = cos 242π255 + i sin242π255 = −1128 65+5+5−1−1+17+34−217+217+317170+3817132 7−65−5534−217+234−217−417+317+170+3817i64 7−65−55−1+17+34−217+217+317170+3817 + i64 65+5+5−134−217+234−217−417+317+170+3817
                                                                  • x444 = cos 244π255 + i sin244π255 = −1128 65−5+5+11+17+34+217+217−317170−3817132 7−65+5+534+217−234+217−417−317+170−3817i64 7−65+5+51+17+34+217+217−317170−3817 + i64 65−5+5+134+217−234+217−417−317+170−3817
                                                                  • x445 = cos 248π255 + i sin248π255 = −1128 65+55+11+17+34+217−217−317170−3817132 7+65−5534+217−234+217+417−317+170−3817i64 7+65−551+17+34+217−217−317170−3817 + i64 65+55+134+217−234+217+417−317+170−3817
                                                                  • x446 = cos 254π255 + i sin254π255 = −1128 65−55−1−1+17+34−217−217+317170+3817132 7+65+5+534−217+234−217+417+317+170+3817i64 7+65+5+5−1+17+34−217−217+317170+3817 + i64 65−55−134−217+234−217+417+317+170+3817
                                                                  • x447 = cos 256π255 + i sin256π255 = −1128 65−55−1−1+17+34−217−217+317170+3817132 7+65+5+534−217+234−217+417+317+170+3817 + i64 7+65+5+5−1+17+34−217−217+317170+3817i64 65−55−134−217+234−217+417+317+170+3817
                                                                  • x448 = cos 262π255 + i sin262π255 = −1128 65+55+11+17+34+217−217−317170−3817132 7+65−5534+217−234+217+417−317+170−3817 + i64 7+65−551+17+34+217−217−317170−3817i64 65+55+134+217−234+217+417−317+170−3817
                                                                  • x449 = cos 266π255 + i sin266π255 = −1128 65−5+5+11+17+34+217+217−317170−3817132 7−65+5+534+217−234+217−417−317+170−3817 + i64 7−65+5+51+17+34+217+217−317170−3817i64 65−5+5+134+217−234+217−417−317+170−3817
                                                                  • x450 = cos 268π255 + i sin268π255 = −1128 65+5+5−1−1+17+34−217+217+317170+3817132 7−65−5534−217+234−217−417+317+170+3817 + i64 7−65−55−1+17+34−217+217+317170+3817i64 65+5+5−134−217+234−217−417+317+170+3817
                                                                  • x451 = cos 274π255 + i sin274π255 = −1128 65−5+5+11−17+34−217+217+317+170+3817132 7−65+5+534−217−234−217−417+317170+3817i64 7−65+5+51−17+34−217+217+317+170+3817 + i64 65−5+5+134−217−234−217−417+317170+3817
                                                                  • x452 = cos 278π255 + i sin278π255 = −1128 65+55+11+17+34+217+217−317170−3817132 7+65−5534+217−234+217−417−317+170−3817i64 7+65−551+17+34+217+217−317170−3817 + i64 65+55+134+217−234+217−417−317+170−3817
                                                                  • x453 = cos 284π255 + i sin284π255 = −1128 65−55−1−1−17+34+217+217−317+170−3817132 7+65+5+534+217+234+217−417−317170−3817i64 7+65+5+5−1−17+34+217+217−317+170−3817 + i64 65−55−134+217+234+217−417−317170−3817
                                                                  • x454 = cos 286π255 + i sin286π255 = 1128 65−55−11+1734+217+217−317+170−3817132 7+65+5+534+217+234+217+417−317170−3817i64 7+65+5+51+1734+217+217−317+170−3817i64 65−55−134+217+234+217+417−317170−3817
                                                                  • x455 = cos 292π255 + i sin292π255 = −1128 65+55+11+1734+217+217−317+170−3817132 7+65−5534+217+234+217+417−317170−3817 + i64 7+65−551+1734+217+217−317+170−3817i64 65+55+134+217+234+217+417−317170−3817
                                                                  • x456 = cos 296π255 + i sin296π255 = −1128 65−5+5+11+17+34+217−217−317170−3817132 7−65+5+534+217−234+217+417−317+170−3817 + i64 7−65+5+51+17+34+217−217−317170−3817i64 65−5+5+134+217−234+217+417−317+170−3817
                                                                  • x457 = cos 298π255 + i sin298π255 = −1128 65+5+5−1−1+1734−217+217+317+170+3817132 7−65−5534−217−234−217+417+317170+3817 + i64 7−65−55−1+1734−217+217+317+170+3817i64 65+5+5−134−217−234−217+417+317170+3817
                                                                  • x458 = cos 302π255 + i sin302π255 = −1128 65+5+5−1−1+17+34−217+217+317170+3817 + 132 7−65−5534−217+234−217−417+317+170+3817i64 7−65−55−1+17+34−217+217+317170+3817i64 65+5+5−134−217+234−217−417+317+170+3817
                                                                  • x459 = cos 304π255 + i sin304π255 = −1128 65−5+5+11−17+34−217+217+317+170+3817 + 132 7−65+5+534−217−234−217−417+317170+3817i64 7−65+5+51−17+34−217+217+317+170+3817i64 65−5+5+134−217−234−217−417+317170+3817
                                                                  • x460 = cos 308π255 + i sin308π255 = −1128 65+55+11−17+34−217+217+317+170+3817132 7+65−5534−217−234−217−417+317170+3817i64 7+65−551−17+34−217+217+317+170+3817 + i64 65+55+134−217−234−217−417+317170+3817
                                                                  • x461 = cos 314π255 + i sin314π255 = −1128 65−55−1−1+1734−217+217+317+170+3817132 7+65+5+534−217−234−217+417+317170+3817i64 7+65+5+5−1+1734−217+217+317+170+3817 + i64 65−55−134−217−234−217+417+317170+3817
                                                                  • x462 = cos 316π255 + i sin316π255 = 1128 65−55−11+17+34+217−217−317170−3817132 7+65+5+534+217−234+217+417−317+170−3817i64 7+65+5+51+17+34+217−217−317170−3817i64 65−55−134+217−234+217+417−317+170−3817
                                                                  • x463 = cos 322π255 + i sin322π255 = 1128 65+55+1−1+17+34−217−217+317170+3817132 7+65−5534−217+234−217+417+317+170+3817i64 7+65−55−1+17+34−217−217+317170+3817i64 65+55+134−217+234−217+417+317+170+3817
                                                                  • x464 = cos 326π255 + i sin326π255 = −1128 65−5+5+11+1734+217+217−317+170−3817132 7−65+5+534+217+234+217+417−317170−3817 + i64 7−65+5+51+1734+217+217−317+170−3817i64 65−5+5+134+217+234+217+417−317170−3817
                                                                  • x465 = cos 328π255 + i sin328π255 = −1128 65+5+5−1−1−17+34+217+217−317+170−3817132 7−65−5534+217+234+217−417−317170−3817 + i64 7−65−55−1−17+34+217+217−317+170−3817i64 65+5+5−134+217+234+217−417−317170−3817
                                                                  • x466 = cos 332π255 + i sin332π255 = −1128 65+5+5−1−1+1734−217+217+317+170+3817 + 132 7−65−5534−217−234−217+417+317170+3817i64 7−65−55−1+1734−217+217+317+170+3817i64 65+5+5−134−217−234−217+417+317170+3817
                                                                  • x467 = cos 334π255 + i sin334π255 = −1128 65−5+5+11+17+34+217+217−317170−3817 + 132 7−65+5+534+217−234+217−417−317+170−3817i64 7−65+5+51+17+34+217+217−317170−3817i64 65−5+5+134+217−234+217−417−317+170−3817
                                                                  • x468 = cos 338π255 + i sin338π255 = −1128 65+55+11−17+34−217+217+317+170+3817 + 132 7+65−5534−217−234−217−417+317170+3817i64 7+65−551−17+34−217+217+317+170+3817i64 65+55+134−217−234−217−417+317170+3817
                                                                  • x469 = cos 344π255 + i sin344π255 = −1128 65−55−1−1+17+34−217+217+317170+3817132 7+65+5+534−217+234−217−417+317+170+3817i64 7+65+5+5−1+17+34−217+217+317170+3817 + i64 65−55−134−217+234−217−417+317+170+3817
                                                                  • x470 = cos 346π255 + i sin346π255 = 1128 65−55−11+17+34+217+217−317170−3817132 7+65+5+534+217−234+217−417−317+170−3817i64 7+65+5+51+17+34+217+217−317170−3817i64 65−55−134+217−234+217−417−317+170−3817
                                                                  • x471 = cos 352π255 + i sin352π255 = 1128 65+55+1−1−17+34+217+217−317+170−3817132 7+65−5534+217+234+217−417−317170−3817i64 7+65−55−1−17+34+217+217−317+170−3817i64 65+55+134+217+234+217−417−317170−3817
                                                                  • x472 = cos 356π255 + i sin356π255 = 1128 65−5+5+1−1+17+34−217−217+317170+3817132 7−65+5+534−217+234−217+417+317+170+3817i64 7−65+5+5−1+17+34−217−217+317170+3817i64 65−5+5+134−217+234−217+417+317+170+3817
                                                                  • x473 = cos 358π255 + i sin358π255 = −1128 65+5+5−1−1+17+34−217−217+317170+3817132 7−65−5534−217+234−217+417+317+170+3817 + i64 7−65−55−1+17+34−217−217+317170+3817i64 65+5+5−134−217+234−217+417+317+170+3817
                                                                  • x474 = cos 362π255 + i sin362π255 = −1128 65+5+5−1−1−17+34+217+217−317+170−3817 + 132 7−65−5534+217+234+217−417−317170−3817i64 7−65−55−1−17+34+217+217−317+170−3817i64 65+5+5−134+217+234+217−417−317170−3817
                                                                  • x475 = cos 364π255 + i sin364π255 = −1128 65−5+5+11+17+34+217−217−317170−3817 + 132 7−65+5+534+217−234+217+417−317+170−3817i64 7−65+5+51+17+34+217−217−317170−3817i64 65−5+5+134+217−234+217+417−317+170−3817
                                                                  • x476 = cos 368π255 + i sin368π255 = −1128 65+55+11+17+34+217+217−317170−3817 + 132 7+65−5534+217−234+217−417−317+170−3817i64 7+65−551+17+34+217+217−317170−3817i64 65+55+134+217−234+217−417−317+170−3817
                                                                  • x477 = cos 376π255 + i sin376π255 = 1128 65−55−11−17+34−217+217+317+170+3817132 7+65+5+534−217−234−217−417+317170+3817i64 7+65+5+51−17+34−217+217+317+170+3817i64 65−55−134−217−234−217−417+317170+3817
                                                                  • x478 = cos 382π255 + i sin382π255 = 1128 65+55+1−1+1734−217+217+317+170+3817132 7+65−5534−217−234−217+417+317170+3817i64 7+65−55−1+1734−217+217+317+170+3817i64 65+55+134−217−234−217+417+317170+3817
                                                                  • x479 = cos 386π255 + i sin386π255 = 1128 65−5+5+1−1−17+34+217+217−317+170−3817132 7−65+5+534+217+234+217−417−317170−3817i64 7−65+5+5−1−17+34+217+217−317+170−3817i64 65−5+5+134+217+234+217−417−317170−3817
                                                                  • x480 = cos 388π255 + i sin388π255 = 1128 65+5+5−11+1734+217+217−317+170−3817132 7−65−5534+217+234+217+417−317170−3817i64 7−65−551+1734+217+217−317+170−3817i64 65+5+5−134+217+234+217+417−317170−3817
                                                                  • x481 = cos 392π255 + i sin392π255 = −1128 65+5+5−1−1+17+34−217−217+317170+3817 + 132 7−65−5534−217+234−217+417+317+170+3817i64 7−65−55−1+17+34−217−217+317170+3817i64 65+5+5−134−217+234−217+417+317+170+3817
                                                                  • x482 = cos 394π255 + i sin394π255 = −1128 65−5+5+11+1734+217+217−317+170−3817 + 132 7−65+5+534+217+234+217+417−317170−3817i64 7−65+5+51+1734+217+217−317+170−3817i64 65−5+5+134+217+234+217+417−317170−3817
                                                                  • x483 = cos 398π255 + i sin398π255 = −1128 65+55+11+17+34+217−217−317170−3817 + 132 7+65−5534+217−234+217+417−317+170−3817i64 7+65−551+17+34+217−217−317170−3817i64 65+55+134+217−234+217+417−317+170−3817
                                                                  • x484 = cos 404π255 + i sin404π255 = −1128 65−55−1−1+17+34−217+217+317170+3817 + 132 7+65+5+534−217+234−217−417+317+170+3817i64 7+65+5+5−1+17+34−217+217+317170+3817i64 65−55−134−217+234−217−417+317+170+3817
                                                                  • x485 = cos 406π255 + i sin406π255 = 1128 65−55−11−17+34−217+217+317+170+3817 + 132 7+65+5+534−217−234−217−417+317170+3817i64 7+65+5+51−17+34−217+217+317+170+3817 + i64 65−55−134−217−234−217−417+317170+3817
                                                                  • x486 = cos 412π255 + i sin412π255 = 1128 65+55+1−1+17+34−217+217+317170+3817132 7+65−5534−217+234−217−417+317+170+3817i64 7+65−55−1+17+34−217+217+317170+3817i64 65+55+134−217+234−217−417+317+170+3817
                                                                  • x487 = cos 416π255 + i sin416π255 = 1128 65−5+5+1−1+1734−217+217+317+170+3817132 7−65+5+534−217−234−217+417+317170+3817i64 7−65+5+5−1+1734−217+217+317+170+3817i64 65−5+5+134−217−234−217+417+317170+3817
                                                                  • x488 = cos 418π255 + i sin418π255 = 1128 65+5+5−11+17+34+217−217−317170−3817132 7−65−5534+217−234+217+417−317+170−3817i64 7−65−551+17+34+217−217−317170−3817i64 65+5+5−134+217−234+217+417−317+170−3817
                                                                  • x489 = cos 422π255 + i sin422π255 = 1128 65+5+5−11+1734+217+217−317+170−3817 + 132 7−65−5534+217+234+217+417−317170−3817 + i64 7−65−551+1734+217+217−317+170−3817i64 65+5+5−134+217+234+217+417−317170−3817
                                                                  • x490 = cos 424π255 + i sin424π255 = 1128 65−5+5+1−1+17+34−217−217+317170+3817 + 132 7−65+5+534−217+234−217+417+317+170+3817 + i64 7−65+5+5−1+17+34−217−217+317170+3817i64 65−5+5+134−217+234−217+417+317+170+3817
                                                                  • x491 = cos 428π255 + i sin428π255 = −1128 65+55+11+1734+217+217−317+170−3817 + 132 7+65−5534+217+234+217+417−317170−3817i64 7+65−551+1734+217+217−317+170−3817i64 65+55+134+217+234+217+417−317170−3817
                                                                  • x492 = cos 434π255 + i sin434π255 = −1128 65−55−1−1+1734−217+217+317+170+3817 + 132 7+65+5+534−217−234−217+417+317170+3817i64 7+65+5+5−1+1734−217+217+317+170+3817i64 65−55−134−217−234−217+417+317170+3817
                                                                  • x493 = cos 436π255 + i sin436π255 = 1128 65−55−11+17+34+217+217−317170−3817 + 132 7+65+5+534+217−234+217−417−317+170−3817i64 7+65+5+51+17+34+217+217−317170−3817 + i64 65−55−134+217−234+217−417−317+170−3817
                                                                  • x494 = cos 446π255 + i sin446π255 = 1128 65−5+5+1−1+17+34−217+217+317170+3817132 7−65+5+534−217+234−217−417+317+170+3817i64 7−65+5+5−1+17+34−217+217+317170+3817i64 65−5+5+134−217+234−217−417+317+170+3817
                                                                  • x495 = cos 448π255 + i sin448π255 = 1128 65+5+5−11+17+34+217+217−317170−3817132 7−65−5534+217−234+217−417−317+170−3817i64 7−65−551+17+34+217+217−317170−3817i64 65+5+5−134+217−234+217−417−317+170−3817
                                                                  • x496 = cos 452π255 + i sin452π255 = 1128 65+5+5−11+17+34+217−217−317170−3817 + 132 7−65−5534+217−234+217+417−317+170−3817 + i64 7−65−551+17+34+217−217−317170−3817i64 65+5+5−134+217−234+217+417−317+170−3817
                                                                  • x497 = cos 454π255 + i sin454π255 = 1128 65−5+5+1−1−17+34+217+217−317+170−3817 + 132 7−65+5+534+217+234+217−417−317170−3817 + i64 7−65+5+5−1−17+34+217+217−317+170−3817i64 65−5+5+134+217+234+217−417−317170−3817
                                                                  • x498 = cos 458π255 + i sin458π255 = 1128 65+55+1−1+17+34−217−217+317170+3817 + 132 7+65−5534−217+234−217+417+317+170+3817 + i64 7+65−55−1+17+34−217−217+317170+3817i64 65+55+134−217+234−217+417+317+170+3817
                                                                  • x499 = cos 464π255 + i sin464π255 = −1128 65−55−1−1−17+34+217+217−317+170−3817 + 132 7+65+5+534+217+234+217−417−317170−3817i64 7+65+5+5−1−17+34+217+217−317+170−3817i64 65−55−134+217+234+217−417−317170−3817
                                                                  • x500 = cos 466π255 + i sin466π255 = 1128 65−55−11+17+34+217−217−317170−3817 + 132 7+65+5+534+217−234+217+417−317+170−3817i64 7+65+5+51+17+34+217−217−317170−3817 + i64 65−55−134+217−234+217+417−317+170−3817
                                                                  • x501 = cos 472π255 + i sin472π255 = 1128 65+55+1−1+17+34−217+217+317170+3817 + 132 7+65−5534−217+234−217−417+317+170+3817i64 7+65−55−1+17+34−217+217+317170+3817 + i64 65+55+134−217+234−217−417+317+170+3817
                                                                  • x502 = cos 478π255 + i sin478π255 = 1128 65+5+5−11−17+34−217+217+317+170+3817132 7−65−5534−217−234−217−417+317170+3817i64 7−65−551−17+34−217+217+317+170+3817i64 65+5+5−134−217−234−217−417+317170+3817
                                                                  • x503 = cos 482π255 + i sin482π255 = 1128 65+5+5−11+17+34+217+217−317170−3817 + 132 7−65−5534+217−234+217−417−317+170−3817 + i64 7−65−551+17+34+217+217−317170−3817i64 65+5+5−134+217−234+217−417−317+170−3817
                                                                  • x504 = cos 484π255 + i sin484π255 = 1128 65−5+5+1−1+1734−217+217+317+170+3817 + 132 7−65+5+534−217−234−217+417+317170+3817 + i64 7−65+5+5−1+1734−217+217+317+170+3817i64 65−5+5+134−217−234−217+417+317170+3817
                                                                  • x505 = cos 488π255 + i sin488π255 = 1128 65+55+1−1−17+34+217+217−317+170−3817 + 132 7+65−5534+217+234+217−417−317170−3817 + i64 7+65−55−1−17+34+217+217−317+170−3817i64 65+55+134+217+234+217−417−317170−3817
                                                                  • x506 = cos 494π255 + i sin494π255 = −1128 65−55−1−1+17+34−217−217+317170+3817 + 132 7+65+5+534−217+234−217+417+317+170+3817i64 7+65+5+5−1+17+34−217−217+317170+3817i64 65−55−134−217+234−217+417+317+170+3817
                                                                  • x507 = cos 496π255 + i sin496π255 = 1128 65−55−11+1734+217+217−317+170−3817 + 132 7+65+5+534+217+234+217+417−317170−3817i64 7+65+5+51+1734+217+217−317+170−3817 + i64 65−55−134+217+234+217+417−317170−3817
                                                                  • x508 = cos 502π255 + i sin502π255 = 1128 65+55+1−1+1734−217+217+317+170+3817 + 132 7+65−5534−217−234−217+417+317170+3817i64 7+65−55−1+1734−217+217+317+170+3817 + i64 65+55+134−217−234−217+417+317170+3817
                                                                  • x509 = cos 506π255 + i sin506π255 = 1128 65−5+5+1−1+17+34−217+217+317170+3817 + 132 7−65+5+534−217+234−217−417+317+170+3817i64 7−65+5+5−1+17+34−217+217+317170+3817 + i64 65−5+5+134−217+234−217−417+317+170+3817
                                                                  • x510 = cos 508π255 + i sin508π255 = 1128 65+5+5−11−17+34−217+217+317+170+3817 + 132 7−65−5534−217−234−217−417+317170+3817i64 7−65−551−17+34−217+217+317+170+3817 + i64 65+5+5−134−217−234−217−417+317170+3817

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x120 − 1

                                                                  Irreducible polynomial factors

                                                                  The 16 factors are:

                                                                  • x − 1
                                                                  • x + 1
                                                                  • x2x + 1
                                                                  • x2 + 1
                                                                  • x2 + x + 1
                                                                  • x4x3 + x2x + 1
                                                                  • x4x2 + 1
                                                                  • x4 + 1
                                                                  • x4 + x3 + x2 + x + 1
                                                                  • x8x7 + x5x4 + x3x + 1
                                                                  • x8x6 + x4x2 + 1
                                                                  • x8x4 + 1
                                                                  • x8 + x7x5x4x3 + x + 1
                                                                  • x16x12 + x8x4 + 1
                                                                  • x16 + x14x10x8x6 + x2 + 1
                                                                  • x32 + x28x20x16x12 + x4 + 1

                                                                  Roots

                                                                  The 120 roots are:

                                                                  • x1 = 1
                                                                  • x2 = -1
                                                                  • x3 = 1212 3 i
                                                                  • x4 = 12 + 12 3 i
                                                                  • x5 = − 1 i
                                                                  • x6 = 1 i
                                                                  • x7 = -1212 3 i
                                                                  • x8 = -12 + 12 3 i
                                                                  • x9 = 14 + 14 5 + i -18 5 + 58
                                                                  • x10 = 14 + 14 5 − i -18 5 + 58
                                                                  • x11 = 1414 5 + i 18 5 + 58
                                                                  • x12 = 1414 5 − i 18 5 + 58
                                                                  • x13 = 12 3 + 12i
                                                                  • x14 = 12 312i
                                                                  • x15 = −12 3 + 12i
                                                                  • x16 = −12 312i
                                                                  • x17 = 12 + 12i
                                                                  • x18 = 1212i
                                                                  • x19 = −12 + 12i
                                                                  • x20 = −1212i
                                                                  • x21 = -14 + 14 5 + i 18 5 + 58
                                                                  • x22 = -14 + 14 5 − i 18 5 + 58
                                                                  • x23 = -1414 5 + i -18 5 + 58
                                                                  • x24 = -1414 5 − i -18 5 + 58
                                                                  • x25 = cos 2π15 + i sin2π15 = 18 65−5+5+1 + i4 7−65+5+5
                                                                  • x26 = cos 4π15 + i sin4π15 = 18 65+55+1 + i4 7+65−55
                                                                  • x27 = cos 8π15 + i sin8π15 = −18 65−55−1 + i4 7+65+5+5
                                                                  • x28 = cos 14π15 + i sin14π15 = −18 65+5+5−1 + i4 7−65−55
                                                                  • x29 = cos 16π15 + i sin16π15 = −18 65+5+5−1i4 7−65−55
                                                                  • x30 = cos 22π15 + i sin22π15 = −18 65−55−1i4 7+65+5+5
                                                                  • x31 = cos 26π15 + i sin26π15 = 18 65+55+1i4 7+65−55
                                                                  • x32 = cos 28π15 + i sin28π15 = 18 65−5+5+1i4 7−65+5+5
                                                                  • x33 = cosπ10 + i sinπ10 = 14 10+25 + i4 5−1
                                                                  • x34 = cos 3π10 + i sin3π10 = 14 10−25 + i4 5+1
                                                                  • x35 = cos 7π10 + i sin7π10 = −14 10−25 + i4 5+1
                                                                  • x36 = cos 9π10 + i sin9π10 = −14 10+25 + i4 5−1
                                                                  • x37 = cos 11π10 + i sin11π10 = −14 10+25i4 5−1
                                                                  • x38 = cos 13π10 + i sin13π10 = −14 10−25i4 5+1
                                                                  • x39 = cos 17π10 + i sin17π10 = 14 10−25i4 5+1
                                                                  • x40 = cos 19π10 + i sin19π10 = 14 10+25i4 5−1
                                                                  • x41 = cosπ12 + i sinπ12 = 12 2 + 3 + i2 2 − 3
                                                                  • x42 = cos 5π12 + i sin5π12 = 12 2 − 3 + i2 2 + 3
                                                                  • x43 = cos 7π12 + i sin7π12 = −12 2 − 3 + i2 2 + 3
                                                                  • x44 = cos 11π12 + i sin11π12 = −12 2 + 3 + i2 2 − 3
                                                                  • x45 = cos 13π12 + i sin13π12 = −12 2 + 3i2 2 − 3
                                                                  • x46 = cos 17π12 + i sin17π12 = −12 2 − 3i2 2 + 3
                                                                  • x47 = cos 19π12 + i sin19π12 = 12 2 − 3i2 2 + 3
                                                                  • x48 = cos 23π12 + i sin23π12 = 12 2 + 3i2 2 − 3
                                                                  • x49 = cosπ15 + i sinπ15 = 18 65+5+5−1 + i4 7−65−55
                                                                  • x50 = cos 7π15 + i sin7π15 = 18 65−55−1 + i4 7+65+5+5
                                                                  • x51 = cos 11π15 + i sin11π15 = −18 65+55+1 + i4 7+65−55
                                                                  • x52 = cos 13π15 + i sin13π15 = −18 65−5+5+1 + i4 7−65+5+5
                                                                  • x53 = cos 17π15 + i sin17π15 = −18 65−5+5+1i4 7−65+5+5
                                                                  • x54 = cos 19π15 + i sin19π15 = −18 65+55+1i4 7+65−55
                                                                  • x55 = cos 23π15 + i sin23π15 = 18 65−55−1i4 7+65+5+5
                                                                  • x56 = cos 29π15 + i sin29π15 = 18 65+5+5−1i4 7−65−55
                                                                  • x57 = cosπ20 + i sinπ20 = 12 2 + 1210+25 + i2 2 − 1210+25
                                                                  • x58 = cos 3π20 + i sin3π20 = 12 2 + 1210−25 + i2 2 − 1210−25
                                                                  • x59 = cos 7π20 + i sin7π20 = 12 2 − 1210−25 + i2 2 + 1210−25
                                                                  • x60 = cos 9π20 + i sin9π20 = 12 2 − 1210+25 + i2 2 + 1210+25
                                                                  • x61 = cos 11π20 + i sin11π20 = −12 2 − 1210+25 + i2 2 + 1210+25
                                                                  • x62 = cos 13π20 + i sin13π20 = −12 2 − 1210−25 + i2 2 + 1210−25
                                                                  • x63 = cos 17π20 + i sin17π20 = −12 2 + 1210−25 + i2 2 − 1210−25
                                                                  • x64 = cos 19π20 + i sin19π20 = −12 2 + 1210+25 + i2 2 − 1210+25
                                                                  • x65 = cos 21π20 + i sin21π20 = −12 2 + 1210+25i2 2 − 1210+25
                                                                  • x66 = cos 23π20 + i sin23π20 = −12 2 + 1210−25i2 2 − 1210−25
                                                                  • x67 = cos 27π20 + i sin27π20 = −12 2 − 1210−25i2 2 + 1210−25
                                                                  • x68 = cos 29π20 + i sin29π20 = −12 2 − 1210+25i2 2 + 1210+25
                                                                  • x69 = cos 31π20 + i sin31π20 = 12 2 − 1210+25i2 2 + 1210+25
                                                                  • x70 = cos 33π20 + i sin33π20 = 12 2 − 1210−25i2 2 + 1210−25
                                                                  • x71 = cos 37π20 + i sin37π20 = 12 2 + 1210−25i2 2 − 1210−25
                                                                  • x72 = cos 39π20 + i sin39π20 = 12 2 + 1210+25i2 2 − 1210+25
                                                                  • x73 = cosπ30 + i sinπ30 = 14 7+65+5+5 + i8 65−55−1
                                                                  • x74 = cos 7π30 + i sin7π30 = 14 7+65−55 + i8 65+55+1
                                                                  • x75 = cos 11π30 + i sin11π30 = 14 7−65+5+5 + i8 65−5+5+1
                                                                  • x76 = cos 13π30 + i sin13π30 = 14 7−65−55 + i8 65+5+5−1
                                                                  • x77 = cos 17π30 + i sin17π30 = −14 7−65−55 + i8 65+5+5−1
                                                                  • x78 = cos 19π30 + i sin19π30 = −14 7−65+5+5 + i8 65−5+5+1
                                                                  • x79 = cos 23π30 + i sin23π30 = −14 7+65−55 + i8 65+55+1
                                                                  • x80 = cos 29π30 + i sin29π30 = −14 7+65+5+5 + i8 65−55−1
                                                                  • x81 = cos 31π30 + i sin31π30 = −14 7+65+5+5i8 65−55−1
                                                                  • x82 = cos 37π30 + i sin37π30 = −14 7+65−55i8 65+55+1
                                                                  • x83 = cos 41π30 + i sin41π30 = −14 7−65+5+5i8 65−5+5+1
                                                                  • x84 = cos 43π30 + i sin43π30 = −14 7−65−55i8 65+5+5−1
                                                                  • x85 = cos 47π30 + i sin47π30 = 14 7−65−55i8 65+5+5−1
                                                                  • x86 = cos 49π30 + i sin49π30 = 14 7−65+5+5i8 65−5+5+1
                                                                  • x87 = cos 53π30 + i sin53π30 = 14 7+65−55i8 65+55+1
                                                                  • x88 = cos 59π30 + i sin59π30 = 14 7+65+5+5i8 65−55−1
                                                                  • x89 = cosπ60 + i sinπ60 = 12 2 + 127+65+5+5 + i2 2 − 127+65+5+5
                                                                  • x90 = cos 7π60 + i sin7π60 = 12 2 + 127+65−55 + i2 2 − 127+65−55
                                                                  • x91 = cos 11π60 + i sin11π60 = 12 2 + 127−65+5+5 + i2 2 − 127−65+5+5
                                                                  • x92 = cos 13π60 + i sin13π60 = 12 2 + 127−65−55 + i2 2 − 127−65−55
                                                                  • x93 = cos 17π60 + i sin17π60 = 12 2 − 127−65−55 + i2 2 + 127−65−55
                                                                  • x94 = cos 19π60 + i sin19π60 = 12 2 − 127−65+5+5 + i2 2 + 127−65+5+5
                                                                  • x95 = cos 23π60 + i sin23π60 = 12 2 − 127+65−55 + i2 2 + 127+65−55
                                                                  • x96 = cos 29π60 + i sin29π60 = 12 2 − 127+65+5+5 + i2 2 + 127+65+5+5
                                                                  • x97 = cos 31π60 + i sin31π60 = −12 2 − 127+65+5+5 + i2 2 + 127+65+5+5
                                                                  • x98 = cos 37π60 + i sin37π60 = −12 2 − 127+65−55 + i2 2 + 127+65−55
                                                                  • x99 = cos 41π60 + i sin41π60 = −12 2 − 127−65+5+5 + i2 2 + 127−65+5+5
                                                                  • x100 = cos 43π60 + i sin43π60 = −12 2 − 127−65−55 + i2 2 + 127−65−55
                                                                  • x101 = cos 47π60 + i sin47π60 = −12 2 + 127−65−55 + i2 2 − 127−65−55
                                                                  • x102 = cos 49π60 + i sin49π60 = −12 2 + 127−65+5+5 + i2 2 − 127−65+5+5
                                                                  • x103 = cos 53π60 + i sin53π60 = −12 2 + 127+65−55 + i2 2 − 127+65−55
                                                                  • x104 = cos 59π60 + i sin59π60 = −12 2 + 127+65+5+5 + i2 2 − 127+65+5+5
                                                                  • x105 = cos 61π60 + i sin61π60 = −12 2 + 127+65+5+5i2 2 − 127+65+5+5
                                                                  • x106 = cos 67π60 + i sin67π60 = −12 2 + 127+65−55i2 2 − 127+65−55
                                                                  • x107 = cos 71π60 + i sin71π60 = −12 2 + 127−65+5+5i2 2 − 127−65+5+5
                                                                  • x108 = cos 73π60 + i sin73π60 = −12 2 + 127−65−55i2 2 − 127−65−55
                                                                  • x109 = cos 77π60 + i sin77π60 = −12 2 − 127−65−55i2 2 + 127−65−55
                                                                  • x110 = cos 79π60 + i sin79π60 = −12 2 − 127−65+5+5i2 2 + 127−65+5+5
                                                                  • x111 = cos 83π60 + i sin83π60 = −12 2 − 127+65−55i2 2 + 127+65−55
                                                                  • x112 = cos 89π60 + i sin89π60 = −12 2 − 127+65+5+5i2 2 + 127+65+5+5
                                                                  • x113 = cos 91π60 + i sin91π60 = 12 2 − 127+65+5+5i2 2 + 127+65+5+5
                                                                  • x114 = cos 97π60 + i sin97π60 = 12 2 − 127+65−55i2 2 + 127+65−55
                                                                  • x115 = cos 101π60 + i sin101π60 = 12 2 − 127−65+5+5i2 2 + 127−65+5+5
                                                                  • x116 = cos 103π60 + i sin103π60 = 12 2 − 127−65−55i2 2 + 127−65−55
                                                                  • x117 = cos 107π60 + i sin107π60 = 12 2 + 127−65−55i2 2 − 127−65−55
                                                                  • x118 = cos 109π60 + i sin109π60 = 12 2 + 127−65+5+5i2 2 − 127−65+5+5
                                                                  • x119 = cos 113π60 + i sin113π60 = 12 2 + 127+65−55i2 2 − 127+65−55
                                                                  • x120 = cos 119π60 + i sin119π60 = 12 2 + 127+65+5+5i2 2 − 127+65+5+5

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^{120} - 1

                                                                  Irreducible polynomial factors

                                                                  The 16 factors are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,x - 1\\
                                                                  • \bullet\,\,x + 1\\
                                                                  • \bullet\,\,x^{2} - x + 1\\
                                                                  • \bullet\,\,x^{2} + 1\\
                                                                  • \bullet\,\,x^{2} + x + 1\\
                                                                  • \bullet\,\,x^{4} - x^{3} + x^{2} - x + 1\\
                                                                  • \bullet\,\,x^{4} - x^{2} + 1\\
                                                                  • \bullet\,\,x^{4} + 1\\
                                                                  • \bullet\,\,x^{4} + x^{3} + x^{2} + x + 1\\
                                                                  • \bullet\,\,x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1\\
                                                                  • \bullet\,\,x^{8} - x^{6} + x^{4} - x^{2} + 1\\
                                                                  • \bullet\,\,x^{8} - x^{4} + 1\\
                                                                  • \bullet\,\,x^{8} + x^{7} - x^{5} - x^{4} - x^{3} + x + 1\\
                                                                  • \bullet\,\,x^{16} - x^{12} + x^{8} - x^{4} + 1\\
                                                                  • \bullet\,\,x^{16} + x^{14} - x^{10} - x^{8} - x^{6} + x^{2} + 1\\
                                                                  • \bullet\,\,x^{32} + x^{28} - x^{20} - x^{16} - x^{12} + x^{4} + 1\\
                                                                  • \end{array}

                                                                  Roots

                                                                  The 120 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,x_{1} = 1\\
                                                                  • \bullet\,\,x_{2} = -1\\
                                                                  • \bullet\,\,x_{3} = \frac{1}{2} - \frac{1}{2}\sqrt{3} i\\
                                                                  • \bullet\,\,x_{4} = \frac{1}{2} + \frac{1}{2}\sqrt{3} i\\
                                                                  • \bullet\,\,x_{5} = - 1 i\\
                                                                  • \bullet\,\,x_{6} = 1 i\\
                                                                  • \bullet\,\,x_{7} = \frac{-1}{2} - \frac{1}{2}\sqrt{3} i\\
                                                                  • \bullet\,\,x_{8} = \frac{-1}{2} + \frac{1}{2}\sqrt{3} i\\
                                                                  • \bullet\,\,x_{9} = \frac{1}{4} + \frac{1}{4}\sqrt{5} + i \sqrt{\frac{-1}{8}\sqrt{5} + \frac{5}{8}}\\
                                                                  • \bullet\,\,x_{10} = \frac{1}{4} + \frac{1}{4}\sqrt{5} - i \sqrt{\frac{-1}{8}\sqrt{5} + \frac{5}{8}}\\
                                                                  • \bullet\,\,x_{11} = \frac{1}{4} - \frac{1}{4}\sqrt{5} + i \sqrt{\frac{1}{8}\sqrt{5} + \frac{5}{8}}\\
                                                                  • \bullet\,\,x_{12} = \frac{1}{4} - \frac{1}{4}\sqrt{5} - i \sqrt{\frac{1}{8}\sqrt{5} + \frac{5}{8}}\\
                                                                  • \bullet\,\,x_{13} = \frac{1}{2}\sqrt{3} + \frac{1}{2}i\\
                                                                  • \bullet\,\,x_{14} = \frac{1}{2}\sqrt{3} - \frac{1}{2}i\\
                                                                  • \bullet\,\,x_{15} = -\frac{1}{2}\sqrt{3} + \frac{1}{2}i\\
                                                                  • \bullet\,\,x_{16} = -\frac{1}{2}\sqrt{3} - \frac{1}{2}i\\
                                                                  • \bullet\,\,x_{17} = \sqrt{\frac{1}{2}} + \sqrt{\frac{1}{2}}i\\
                                                                  • \bullet\,\,x_{18} = \sqrt{\frac{1}{2}} - \sqrt{\frac{1}{2}}i\\
                                                                  • \bullet\,\,x_{19} = -\sqrt{\frac{1}{2}} + \sqrt{\frac{1}{2}}i\\
                                                                  • \bullet\,\,x_{20} = -\sqrt{\frac{1}{2}} - \sqrt{\frac{1}{2}}i\\
                                                                  • \bullet\,\,x_{21} = \frac{-1}{4} + \frac{1}{4}\sqrt{5} + i \sqrt{\frac{1}{8}\sqrt{5} + \frac{5}{8}}\\
                                                                  • \bullet\,\,x_{22} = \frac{-1}{4} + \frac{1}{4}\sqrt{5} - i \sqrt{\frac{1}{8}\sqrt{5} + \frac{5}{8}}\\
                                                                  • \bullet\,\,x_{23} = \frac{-1}{4} - \frac{1}{4}\sqrt{5} + i \sqrt{\frac{-1}{8}\sqrt{5} + \frac{5}{8}}\\
                                                                  • \bullet\,\,x_{24} = \frac{-1}{4} - \frac{1}{4}\sqrt{5} - i \sqrt{\frac{-1}{8}\sqrt{5} + \frac{5}{8}}\\
                                                                  • \bullet\,\,x_{25} = \cos{ \frac{2 \pi }{15}} + i \sin{\frac{2 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right) + \frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                                                                  • \bullet\,\,x_{26} = \cos{ \frac{4 \pi }{15}} + i \sin{\frac{4 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right) + \frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                                                                  • \bullet\,\,x_{27} = \cos{ \frac{8 \pi }{15}} + i \sin{\frac{8 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right) + \frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                                                                  • \bullet\,\,x_{28} = \cos{ \frac{14 \pi }{15}} + i \sin{\frac{14 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right) + \frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                                                                  • \bullet\,\,x_{29} = \cos{ \frac{16 \pi }{15}} + i \sin{\frac{16 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)-\frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                                                                  • \bullet\,\,x_{30} = \cos{ \frac{22 \pi }{15}} + i \sin{\frac{22 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)-\frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                                                                  • \bullet\,\,x_{31} = \cos{ \frac{26 \pi }{15}} + i \sin{\frac{26 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)-\frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                                                                  • \bullet\,\,x_{32} = \cos{ \frac{28 \pi }{15}} + i \sin{\frac{28 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)-\frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                                                                  • \bullet\,\,x_{33} = \cos{\frac{\pi }{10}} + i \sin{\frac{\pi }{10}} = \frac{1}{4}\sqrt{10+2\sqrt{5}} + \frac{i}{4}\left(\sqrt{5}-1\right)\\
                                                                  • \bullet\,\,x_{34} = \cos{ \frac{3 \pi }{10}} + i \sin{\frac{3 \pi }{10}} = \frac{1}{4}\sqrt{10-2\sqrt{5}} + \frac{i}{4}\left(\sqrt{5}+1\right)\\
                                                                  • \bullet\,\,x_{35} = \cos{ \frac{7 \pi }{10}} + i \sin{\frac{7 \pi }{10}} = -\frac{1}{4}\sqrt{10-2\sqrt{5}} + \frac{i}{4}\left(\sqrt{5}+1\right)\\
                                                                  • \bullet\,\,x_{36} = \cos{ \frac{9 \pi }{10}} + i \sin{\frac{9 \pi }{10}} = -\frac{1}{4}\sqrt{10+2\sqrt{5}} + \frac{i}{4}\left(\sqrt{5}-1\right)\\
                                                                  • \bullet\,\,x_{37} = \cos{ \frac{11 \pi }{10}} + i \sin{\frac{11 \pi }{10}} = -\frac{1}{4}\sqrt{10+2\sqrt{5}}-\frac{i}{4}\left(\sqrt{5}-1\right)\\
                                                                  • \bullet\,\,x_{38} = \cos{ \frac{13 \pi }{10}} + i \sin{\frac{13 \pi }{10}} = -\frac{1}{4}\sqrt{10-2\sqrt{5}}-\frac{i}{4}\left(\sqrt{5}+1\right)\\
                                                                  • \bullet\,\,x_{39} = \cos{ \frac{17 \pi }{10}} + i \sin{\frac{17 \pi }{10}} = \frac{1}{4}\sqrt{10-2\sqrt{5}}-\frac{i}{4}\left(\sqrt{5}+1\right)\\
                                                                  • \bullet\,\,x_{40} = \cos{ \frac{19 \pi }{10}} + i \sin{\frac{19 \pi }{10}} = \frac{1}{4}\sqrt{10+2\sqrt{5}}-\frac{i}{4}\left(\sqrt{5}-1\right)\\
                                                                  • \bullet\,\,x_{41} = \cos{\frac{\pi }{12}} + i \sin{\frac{\pi }{12}} = \frac{1}{2}\sqrt{2 + \sqrt{3}} + \frac{i}{2}\sqrt{2 - \sqrt{3}}\\
                                                                  • \bullet\,\,x_{42} = \cos{ \frac{5 \pi }{12}} + i \sin{\frac{5 \pi }{12}} = \frac{1}{2}\sqrt{2 - \sqrt{3}} + \frac{i}{2}\sqrt{2 + \sqrt{3}}\\
                                                                  • \bullet\,\,x_{43} = \cos{ \frac{7 \pi }{12}} + i \sin{\frac{7 \pi }{12}} = -\frac{1}{2}\sqrt{2 - \sqrt{3}} + \frac{i}{2}\sqrt{2 + \sqrt{3}}\\
                                                                  • \bullet\,\,x_{44} = \cos{ \frac{11 \pi }{12}} + i \sin{\frac{11 \pi }{12}} = -\frac{1}{2}\sqrt{2 + \sqrt{3}} + \frac{i}{2}\sqrt{2 - \sqrt{3}}\\
                                                                  • \bullet\,\,x_{45} = \cos{ \frac{13 \pi }{12}} + i \sin{\frac{13 \pi }{12}} = -\frac{1}{2}\sqrt{2 + \sqrt{3}}-\frac{i}{2}\sqrt{2 - \sqrt{3}}\\
                                                                  • \bullet\,\,x_{46} = \cos{ \frac{17 \pi }{12}} + i \sin{\frac{17 \pi }{12}} = -\frac{1}{2}\sqrt{2 - \sqrt{3}}-\frac{i}{2}\sqrt{2 + \sqrt{3}}\\
                                                                  • \bullet\,\,x_{47} = \cos{ \frac{19 \pi }{12}} + i \sin{\frac{19 \pi }{12}} = \frac{1}{2}\sqrt{2 - \sqrt{3}}-\frac{i}{2}\sqrt{2 + \sqrt{3}}\\
                                                                  • \bullet\,\,x_{48} = \cos{ \frac{23 \pi }{12}} + i \sin{\frac{23 \pi }{12}} = \frac{1}{2}\sqrt{2 + \sqrt{3}}-\frac{i}{2}\sqrt{2 - \sqrt{3}}\\
                                                                  • \bullet\,\,x_{49} = \cos{\frac{\pi }{15}} + i \sin{\frac{\pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right) + \frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                                                                  • \bullet\,\,x_{50} = \cos{ \frac{7 \pi }{15}} + i \sin{\frac{7 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right) + \frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                                                                  • \bullet\,\,x_{51} = \cos{ \frac{11 \pi }{15}} + i \sin{\frac{11 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right) + \frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                                                                  • \bullet\,\,x_{52} = \cos{ \frac{13 \pi }{15}} + i \sin{\frac{13 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right) + \frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                                                                  • \bullet\,\,x_{53} = \cos{ \frac{17 \pi }{15}} + i \sin{\frac{17 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)-\frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                                                                  • \bullet\,\,x_{54} = \cos{ \frac{19 \pi }{15}} + i \sin{\frac{19 \pi }{15}} = -\frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)-\frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                                                                  • \bullet\,\,x_{55} = \cos{ \frac{23 \pi }{15}} + i \sin{\frac{23 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)-\frac{i}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}\\
                                                                  • \bullet\,\,x_{56} = \cos{ \frac{29 \pi }{15}} + i \sin{\frac{29 \pi }{15}} = \frac{1}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)-\frac{i}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}\\
                                                                  • \bullet\,\,x_{57} = \cos{\frac{\pi }{20}} + i \sin{\frac{\pi }{20}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{58} = \cos{ \frac{3 \pi }{20}} + i \sin{\frac{3 \pi }{20}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{59} = \cos{ \frac{7 \pi }{20}} + i \sin{\frac{7 \pi }{20}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{60} = \cos{ \frac{9 \pi }{20}} + i \sin{\frac{9 \pi }{20}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{61} = \cos{ \frac{11 \pi }{20}} + i \sin{\frac{11 \pi }{20}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{62} = \cos{ \frac{13 \pi }{20}} + i \sin{\frac{13 \pi }{20}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{63} = \cos{ \frac{17 \pi }{20}} + i \sin{\frac{17 \pi }{20}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{64} = \cos{ \frac{19 \pi }{20}} + i \sin{\frac{19 \pi }{20}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{65} = \cos{ \frac{21 \pi }{20}} + i \sin{\frac{21 \pi }{20}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{66} = \cos{ \frac{23 \pi }{20}} + i \sin{\frac{23 \pi }{20}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{67} = \cos{ \frac{27 \pi }{20}} + i \sin{\frac{27 \pi }{20}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{68} = \cos{ \frac{29 \pi }{20}} + i \sin{\frac{29 \pi }{20}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{69} = \cos{ \frac{31 \pi }{20}} + i \sin{\frac{31 \pi }{20}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{70} = \cos{ \frac{33 \pi }{20}} + i \sin{\frac{33 \pi }{20}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{71} = \cos{ \frac{37 \pi }{20}} + i \sin{\frac{37 \pi }{20}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10-2\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10-2\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{72} = \cos{ \frac{39 \pi }{20}} + i \sin{\frac{39 \pi }{20}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{10+2\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{10+2\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{73} = \cos{\frac{\pi }{30}} + i \sin{\frac{\pi }{30}} = \frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)\\
                                                                  • \bullet\,\,x_{74} = \cos{ \frac{7 \pi }{30}} + i \sin{\frac{7 \pi }{30}} = \frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)\\
                                                                  • \bullet\,\,x_{75} = \cos{ \frac{11 \pi }{30}} + i \sin{\frac{11 \pi }{30}} = \frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)\\
                                                                  • \bullet\,\,x_{76} = \cos{ \frac{13 \pi }{30}} + i \sin{\frac{13 \pi }{30}} = \frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)\\
                                                                  • \bullet\,\,x_{77} = \cos{ \frac{17 \pi }{30}} + i \sin{\frac{17 \pi }{30}} = -\frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)\\
                                                                  • \bullet\,\,x_{78} = \cos{ \frac{19 \pi }{30}} + i \sin{\frac{19 \pi }{30}} = -\frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)\\
                                                                  • \bullet\,\,x_{79} = \cos{ \frac{23 \pi }{30}} + i \sin{\frac{23 \pi }{30}} = -\frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)\\
                                                                  • \bullet\,\,x_{80} = \cos{ \frac{29 \pi }{30}} + i \sin{\frac{29 \pi }{30}} = -\frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}} + \frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)\\
                                                                  • \bullet\,\,x_{81} = \cos{ \frac{31 \pi }{30}} + i \sin{\frac{31 \pi }{30}} = -\frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)\\
                                                                  • \bullet\,\,x_{82} = \cos{ \frac{37 \pi }{30}} + i \sin{\frac{37 \pi }{30}} = -\frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)\\
                                                                  • \bullet\,\,x_{83} = \cos{ \frac{41 \pi }{30}} + i \sin{\frac{41 \pi }{30}} = -\frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)\\
                                                                  • \bullet\,\,x_{84} = \cos{ \frac{43 \pi }{30}} + i \sin{\frac{43 \pi }{30}} = -\frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)\\
                                                                  • \bullet\,\,x_{85} = \cos{ \frac{47 \pi }{30}} + i \sin{\frac{47 \pi }{30}} = \frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}-1\right)\\
                                                                  • \bullet\,\,x_{86} = \cos{ \frac{49 \pi }{30}} + i \sin{\frac{49 \pi }{30}} = \frac{1}{4}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}+\sqrt{5}+1\right)\\
                                                                  • \bullet\,\,x_{87} = \cos{ \frac{53 \pi }{30}} + i \sin{\frac{53 \pi }{30}} = \frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5+\sqrt{5}}-\sqrt{5}+1\right)\\
                                                                  • \bullet\,\,x_{88} = \cos{ \frac{59 \pi }{30}} + i \sin{\frac{59 \pi }{30}} = \frac{1}{4}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}-\frac{i}{8}\left(\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}-1\right)\\
                                                                  • \bullet\,\,x_{89} = \cos{\frac{\pi }{60}} + i \sin{\frac{\pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{90} = \cos{ \frac{7 \pi }{60}} + i \sin{\frac{7 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{91} = \cos{ \frac{11 \pi }{60}} + i \sin{\frac{11 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{92} = \cos{ \frac{13 \pi }{60}} + i \sin{\frac{13 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{93} = \cos{ \frac{17 \pi }{60}} + i \sin{\frac{17 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{94} = \cos{ \frac{19 \pi }{60}} + i \sin{\frac{19 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{95} = \cos{ \frac{23 \pi }{60}} + i \sin{\frac{23 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{96} = \cos{ \frac{29 \pi }{60}} + i \sin{\frac{29 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{97} = \cos{ \frac{31 \pi }{60}} + i \sin{\frac{31 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{98} = \cos{ \frac{37 \pi }{60}} + i \sin{\frac{37 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{99} = \cos{ \frac{41 \pi }{60}} + i \sin{\frac{41 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{100} = \cos{ \frac{43 \pi }{60}} + i \sin{\frac{43 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{101} = \cos{ \frac{47 \pi }{60}} + i \sin{\frac{47 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{102} = \cos{ \frac{49 \pi }{60}} + i \sin{\frac{49 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{103} = \cos{ \frac{53 \pi }{60}} + i \sin{\frac{53 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{104} = \cos{ \frac{59 \pi }{60}} + i \sin{\frac{59 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}} + \frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{105} = \cos{ \frac{61 \pi }{60}} + i \sin{\frac{61 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{106} = \cos{ \frac{67 \pi }{60}} + i \sin{\frac{67 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{107} = \cos{ \frac{71 \pi }{60}} + i \sin{\frac{71 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{108} = \cos{ \frac{73 \pi }{60}} + i \sin{\frac{73 \pi }{60}} = -\frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{109} = \cos{ \frac{77 \pi }{60}} + i \sin{\frac{77 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{110} = \cos{ \frac{79 \pi }{60}} + i \sin{\frac{79 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{111} = \cos{ \frac{83 \pi }{60}} + i \sin{\frac{83 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{112} = \cos{ \frac{89 \pi }{60}} + i \sin{\frac{89 \pi }{60}} = -\frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{113} = \cos{ \frac{91 \pi }{60}} + i \sin{\frac{91 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{114} = \cos{ \frac{97 \pi }{60}} + i \sin{\frac{97 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{115} = \cos{ \frac{101 \pi }{60}} + i \sin{\frac{101 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{116} = \cos{ \frac{103 \pi }{60}} + i \sin{\frac{103 \pi }{60}} = \frac{1}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{117} = \cos{ \frac{107 \pi }{60}} + i \sin{\frac{107 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{118} = \cos{ \frac{109 \pi }{60}} + i \sin{\frac{109 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7-\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{119} = \cos{ \frac{113 \pi }{60}} + i \sin{\frac{113 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5-\sqrt{5}}-\sqrt{5}}}\\
                                                                  • \bullet\,\,x_{120} = \cos{ \frac{119 \pi }{60}} + i \sin{\frac{119 \pi }{60}} = \frac{1}{2}\sqrt{2 + \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}-\frac{i}{2}\sqrt{2 - \frac{1}{2}\sqrt{7+\sqrt{6}\sqrt{5+\sqrt{5}}+\sqrt{5}}}\\
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^120 - 1

                                                                  Irreducible polynomial factors

                                                                  The 16 factors are:

                                                                  • x - 1
                                                                  • x + 1
                                                                  • x^2 - x + 1
                                                                  • x^2 + 1
                                                                  • x^2 + x + 1
                                                                  • x^4 - x^3 + x^2 - x + 1
                                                                  • x^4 - x^2 + 1
                                                                  • x^4 + 1
                                                                  • x^4 + x^3 + x^2 + x + 1
                                                                  • x^8 - x^7 + x^5 - x^4 + x^3 - x + 1
                                                                  • x^8 - x^6 + x^4 - x^2 + 1
                                                                  • x^8 - x^4 + 1
                                                                  • x^8 + x^7 - x^5 - x^4 - x^3 + x + 1
                                                                  • x^16 - x^12 + x^8 - x^4 + 1
                                                                  • x^16 + x^14 - x^10 - x^8 - x^6 + x^2 + 1
                                                                  • x^32 + x^28 - x^20 - x^16 - x^12 + x^4 + 1

                                                                  Roots

                                                                  The 120 roots are:

                                                                  • x1 = 1
                                                                  • x2 = -1
                                                                  • x3 = 1 / 2 - (1 / 2)*3^(1/2) *I
                                                                  • x4 = 1 / 2 + (1 / 2)*3^(1/2) *I
                                                                  • x5 = - 1 *I
                                                                  • x6 = 1 *I
                                                                  • x7 = -1 / 2 - (1 / 2)*3^(1/2) *I
                                                                  • x8 = -1 / 2 + (1 / 2)*3^(1/2) *I
                                                                  • x9 = 1 / 4 + (1 / 4)*5^(1/2) + I * ((-1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                                                                  • x10 = 1 / 4 + (1 / 4)*5^(1/2) - I * ((-1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                                                                  • x11 = 1 / 4 - (1 / 4)*5^(1/2) + I * ((1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                                                                  • x12 = 1 / 4 - (1 / 4)*5^(1/2) - I * ((1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                                                                  • x13 = (1 / 2)*3^(1/2) + (1 / 2)*I
                                                                  • x14 = (1 / 2)*3^(1/2) - (1 / 2)*I
                                                                  • x15 = -(1 / 2)*3^(1/2) + (1 / 2)*I
                                                                  • x16 = -(1 / 2)*3^(1/2) - (1 / 2)*I
                                                                  • x17 = (1 / 2)^(1/2) + (1 / 2)^(1/2)*I
                                                                  • x18 = (1 / 2)^(1/2) - (1 / 2)^(1/2)*I
                                                                  • x19 = -(1 / 2)^(1/2) + (1 / 2)^(1/2)*I
                                                                  • x20 = -(1 / 2)^(1/2) - (1 / 2)^(1/2)*I
                                                                  • x21 = -1 / 4 + (1 / 4)*5^(1/2) + I * ((1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                                                                  • x22 = -1 / 4 + (1 / 4)*5^(1/2) - I * ((1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                                                                  • x23 = -1 / 4 - (1 / 4)*5^(1/2) + I * ((-1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                                                                  • x24 = -1 / 4 - (1 / 4)*5^(1/2) - I * ((-1 / 8)*5^(1/2) + 5 / 8)^(1/2)
                                                                  • x25 = cos (2*Pi/15) + I *sin(2*Pi/15) = (1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1) + (I/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                                                                  • x26 = cos (4*Pi/15) + I *sin(4*Pi/15) = (1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1) + (I/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                                                                  • x27 = cos (8*Pi/15) + I *sin(8*Pi/15) = -(1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1) + (I/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                                                                  • x28 = cos (14*Pi/15) + I *sin(14*Pi/15) = -(1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1) + (I/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                                                                  • x29 = cos (16*Pi/15) + I *sin(16*Pi/15) = -(1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)-(I/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                                                                  • x30 = cos (22*Pi/15) + I *sin(22*Pi/15) = -(1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)-(I/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                                                                  • x31 = cos (26*Pi/15) + I *sin(26*Pi/15) = (1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)-(I/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                                                                  • x32 = cos (28*Pi/15) + I *sin(28*Pi/15) = (1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)-(I/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                                                                  • x33 = cos(Pi/10) + I *sin(Pi/10) = (1/4)*(10+2*5^(1/2))^(1/2) + (I/4)*(5^(1/2)-1)
                                                                  • x34 = cos (3*Pi/10) + I *sin(3*Pi/10) = (1/4)*(10-2*5^(1/2))^(1/2) + (I/4)*(5^(1/2)+1)
                                                                  • x35 = cos (7*Pi/10) + I *sin(7*Pi/10) = -(1/4)*(10-2*5^(1/2))^(1/2) + (I/4)*(5^(1/2)+1)
                                                                  • x36 = cos (9*Pi/10) + I *sin(9*Pi/10) = -(1/4)*(10+2*5^(1/2))^(1/2) + (I/4)*(5^(1/2)-1)
                                                                  • x37 = cos (11*Pi/10) + I *sin(11*Pi/10) = -(1/4)*(10+2*5^(1/2))^(1/2)-(I/4)*(5^(1/2)-1)
                                                                  • x38 = cos (13*Pi/10) + I *sin(13*Pi/10) = -(1/4)*(10-2*5^(1/2))^(1/2)-(I/4)*(5^(1/2)+1)
                                                                  • x39 = cos (17*Pi/10) + I *sin(17*Pi/10) = (1/4)*(10-2*5^(1/2))^(1/2)-(I/4)*(5^(1/2)+1)
                                                                  • x40 = cos (19*Pi/10) + I *sin(19*Pi/10) = (1/4)*(10+2*5^(1/2))^(1/2)-(I/4)*(5^(1/2)-1)
                                                                  • x41 = cos(Pi/12) + I *sin(Pi/12) = (1/2)*(2 + (3)^(1/2))^(1/2) + (I/2)*(2 - (3)^(1/2))^(1/2)
                                                                  • x42 = cos (5*Pi/12) + I *sin(5*Pi/12) = (1/2)*(2 - (3)^(1/2))^(1/2) + (I/2)*(2 + (3)^(1/2))^(1/2)
                                                                  • x43 = cos (7*Pi/12) + I *sin(7*Pi/12) = -(1/2)*(2 - (3)^(1/2))^(1/2) + (I/2)*(2 + (3)^(1/2))^(1/2)
                                                                  • x44 = cos (11*Pi/12) + I *sin(11*Pi/12) = -(1/2)*(2 + (3)^(1/2))^(1/2) + (I/2)*(2 - (3)^(1/2))^(1/2)
                                                                  • x45 = cos (13*Pi/12) + I *sin(13*Pi/12) = -(1/2)*(2 + (3)^(1/2))^(1/2)-(I/2)*(2 - (3)^(1/2))^(1/2)
                                                                  • x46 = cos (17*Pi/12) + I *sin(17*Pi/12) = -(1/2)*(2 - (3)^(1/2))^(1/2)-(I/2)*(2 + (3)^(1/2))^(1/2)
                                                                  • x47 = cos (19*Pi/12) + I *sin(19*Pi/12) = (1/2)*(2 - (3)^(1/2))^(1/2)-(I/2)*(2 + (3)^(1/2))^(1/2)
                                                                  • x48 = cos (23*Pi/12) + I *sin(23*Pi/12) = (1/2)*(2 + (3)^(1/2))^(1/2)-(I/2)*(2 - (3)^(1/2))^(1/2)
                                                                  • x49 = cos(Pi/15) + I *sin(Pi/15) = (1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1) + (I/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                                                                  • x50 = cos (7*Pi/15) + I *sin(7*Pi/15) = (1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1) + (I/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                                                                  • x51 = cos (11*Pi/15) + I *sin(11*Pi/15) = -(1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1) + (I/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                                                                  • x52 = cos (13*Pi/15) + I *sin(13*Pi/15) = -(1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1) + (I/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                                                                  • x53 = cos (17*Pi/15) + I *sin(17*Pi/15) = -(1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)-(I/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                                                                  • x54 = cos (19*Pi/15) + I *sin(19*Pi/15) = -(1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)-(I/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                                                                  • x55 = cos (23*Pi/15) + I *sin(23*Pi/15) = (1/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)-(I/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)
                                                                  • x56 = cos (29*Pi/15) + I *sin(29*Pi/15) = (1/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)-(I/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)
                                                                  • x57 = cos(Pi/20) + I *sin(Pi/20) = (1/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                                                                  • x58 = cos (3*Pi/20) + I *sin(3*Pi/20) = (1/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                                                                  • x59 = cos (7*Pi/20) + I *sin(7*Pi/20) = (1/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                                                                  • x60 = cos (9*Pi/20) + I *sin(9*Pi/20) = (1/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                                                                  • x61 = cos (11*Pi/20) + I *sin(11*Pi/20) = -(1/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                                                                  • x62 = cos (13*Pi/20) + I *sin(13*Pi/20) = -(1/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                                                                  • x63 = cos (17*Pi/20) + I *sin(17*Pi/20) = -(1/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                                                                  • x64 = cos (19*Pi/20) + I *sin(19*Pi/20) = -(1/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                                                                  • x65 = cos (21*Pi/20) + I *sin(21*Pi/20) = -(1/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                                                                  • x66 = cos (23*Pi/20) + I *sin(23*Pi/20) = -(1/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                                                                  • x67 = cos (27*Pi/20) + I *sin(27*Pi/20) = -(1/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                                                                  • x68 = cos (29*Pi/20) + I *sin(29*Pi/20) = -(1/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                                                                  • x69 = cos (31*Pi/20) + I *sin(31*Pi/20) = (1/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                                                                  • x70 = cos (33*Pi/20) + I *sin(33*Pi/20) = (1/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                                                                  • x71 = cos (37*Pi/20) + I *sin(37*Pi/20) = (1/2)*(2 + (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(10-2*5^(1/2))^(1/2))^(1/2)
                                                                  • x72 = cos (39*Pi/20) + I *sin(39*Pi/20) = (1/2)*(2 + (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(10+2*5^(1/2))^(1/2))^(1/2)
                                                                  • x73 = cos(Pi/30) + I *sin(Pi/30) = (1/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)
                                                                  • x74 = cos (7*Pi/30) + I *sin(7*Pi/30) = (1/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)
                                                                  • x75 = cos (11*Pi/30) + I *sin(11*Pi/30) = (1/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)
                                                                  • x76 = cos (13*Pi/30) + I *sin(13*Pi/30) = (1/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)
                                                                  • x77 = cos (17*Pi/30) + I *sin(17*Pi/30) = -(1/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)
                                                                  • x78 = cos (19*Pi/30) + I *sin(19*Pi/30) = -(1/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)
                                                                  • x79 = cos (23*Pi/30) + I *sin(23*Pi/30) = -(1/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)
                                                                  • x80 = cos (29*Pi/30) + I *sin(29*Pi/30) = -(1/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2) + (I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)
                                                                  • x81 = cos (31*Pi/30) + I *sin(31*Pi/30) = -(1/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)
                                                                  • x82 = cos (37*Pi/30) + I *sin(37*Pi/30) = -(1/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)
                                                                  • x83 = cos (41*Pi/30) + I *sin(41*Pi/30) = -(1/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)
                                                                  • x84 = cos (43*Pi/30) + I *sin(43*Pi/30) = -(1/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)
                                                                  • x85 = cos (47*Pi/30) + I *sin(47*Pi/30) = (1/4)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2)-1)
                                                                  • x86 = cos (49*Pi/30) + I *sin(49*Pi/30) = (1/4)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)+5^(1/2)+1)
                                                                  • x87 = cos (53*Pi/30) + I *sin(53*Pi/30) = (1/4)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5+5^(1/2))^(1/2)-5^(1/2)+1)
                                                                  • x88 = cos (59*Pi/30) + I *sin(59*Pi/30) = (1/4)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2)-(I/8)*(6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2)-1)
                                                                  • x89 = cos(Pi/60) + I *sin(Pi/60) = (1/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                                                  • x90 = cos (7*Pi/60) + I *sin(7*Pi/60) = (1/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                                                  • x91 = cos (11*Pi/60) + I *sin(11*Pi/60) = (1/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                                                  • x92 = cos (13*Pi/60) + I *sin(13*Pi/60) = (1/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                                                  • x93 = cos (17*Pi/60) + I *sin(17*Pi/60) = (1/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                                                  • x94 = cos (19*Pi/60) + I *sin(19*Pi/60) = (1/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                                                  • x95 = cos (23*Pi/60) + I *sin(23*Pi/60) = (1/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                                                  • x96 = cos (29*Pi/60) + I *sin(29*Pi/60) = (1/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                                                  • x97 = cos (31*Pi/60) + I *sin(31*Pi/60) = -(1/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                                                  • x98 = cos (37*Pi/60) + I *sin(37*Pi/60) = -(1/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                                                  • x99 = cos (41*Pi/60) + I *sin(41*Pi/60) = -(1/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                                                  • x100 = cos (43*Pi/60) + I *sin(43*Pi/60) = -(1/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                                                  • x101 = cos (47*Pi/60) + I *sin(47*Pi/60) = -(1/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                                                  • x102 = cos (49*Pi/60) + I *sin(49*Pi/60) = -(1/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                                                  • x103 = cos (53*Pi/60) + I *sin(53*Pi/60) = -(1/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                                                  • x104 = cos (59*Pi/60) + I *sin(59*Pi/60) = -(1/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2) + (I/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                                                  • x105 = cos (61*Pi/60) + I *sin(61*Pi/60) = -(1/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                                                  • x106 = cos (67*Pi/60) + I *sin(67*Pi/60) = -(1/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                                                  • x107 = cos (71*Pi/60) + I *sin(71*Pi/60) = -(1/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                                                  • x108 = cos (73*Pi/60) + I *sin(73*Pi/60) = -(1/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                                                  • x109 = cos (77*Pi/60) + I *sin(77*Pi/60) = -(1/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                                                  • x110 = cos (79*Pi/60) + I *sin(79*Pi/60) = -(1/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                                                  • x111 = cos (83*Pi/60) + I *sin(83*Pi/60) = -(1/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                                                  • x112 = cos (89*Pi/60) + I *sin(89*Pi/60) = -(1/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                                                  • x113 = cos (91*Pi/60) + I *sin(91*Pi/60) = (1/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                                                  • x114 = cos (97*Pi/60) + I *sin(97*Pi/60) = (1/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                                                  • x115 = cos (101*Pi/60) + I *sin(101*Pi/60) = (1/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                                                  • x116 = cos (103*Pi/60) + I *sin(103*Pi/60) = (1/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                                                  • x117 = cos (107*Pi/60) + I *sin(107*Pi/60) = (1/2)*(2 + (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7-6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                                                  • x118 = cos (109*Pi/60) + I *sin(109*Pi/60) = (1/2)*(2 + (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7-6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)
                                                                  • x119 = cos (113*Pi/60) + I *sin(113*Pi/60) = (1/2)*(2 + (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7+6^(1/2)*(5-5^(1/2))^(1/2)-5^(1/2))^(1/2))^(1/2)
                                                                  • x120 = cos (119*Pi/60) + I *sin(119*Pi/60) = (1/2)*(2 + (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)-(I/2)*(2 - (1/2)*(7+6^(1/2)*(5+5^(1/2))^(1/2)+5^(1/2))^(1/2))^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x10 + x5 + 6 (mod 7)

                                                                  Irreducible polynomial factors

                                                                  The 3 factors are:

                                                                  • x2 + 3⁢x + 6
                                                                  • x4 + 5⁢x2 + 3⁢x + 1
                                                                  • x4 + 4⁢x3 + 5⁢x2 + 1

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^{10} + x^{5} + 6 (\pmod 7)

                                                                  Irreducible polynomial factors

                                                                  The 3 factors are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,x^{2} + 3x + 6\\
                                                                  • \bullet\,\,x^{4} + 5x^{2} + 3x + 1\\
                                                                  • \bullet\,\,x^{4} + 4x^{3} + 5x^{2} + 1\\
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  Mod(x^10 + x^5 + 6, 7)

                                                                  Irreducible polynomial factors

                                                                  The 3 factors are:

                                                                  • x^2 + 3*x + 6
                                                                  • x^4 + 5*x^2 + 3*x + 1
                                                                  • x^4 + 4*x^3 + 5*x^2 + 1

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x + 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  • x1 = -23

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x + 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,x_{1} = -23\\
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x + 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  • x1 = -23

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  6x2 + 79⁢x + 115

                                                                  Irreducible polynomial factors

                                                                  The 2 factors are:

                                                                  • 2x + 23
                                                                  • 3x + 5

                                                                  Roots

                                                                  The 2 roots are:

                                                                  • x1 = -232
                                                                  • x2 = -53

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  6x^{2} + 79x + 115

                                                                  Irreducible polynomial factors

                                                                  The 2 factors are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,2x + 23\\
                                                                  • \bullet\,\,3x + 5\\
                                                                  • \end{array}

                                                                  Roots

                                                                  The 2 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,x_{1} = \frac{-23}{2}\\
                                                                  • \bullet\,\,x_{2} = \frac{-5}{3}\\
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  6*x^2 + 79*x + 115

                                                                  Irreducible polynomial factors

                                                                  The 2 factors are:

                                                                  • 2x + 23
                                                                  • 3x + 5

                                                                  Roots

                                                                  The 2 roots are:

                                                                  • x1 = -23 / 2
                                                                  • x2 = -5 / 3

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x2 + 7⁢x + 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 2 roots are:

                                                                  • x1 = -7212 43 i
                                                                  • x2 = -72 + 12 43 i

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^{2} + 7x + 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 2 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,x_{1} = \frac{-7}{2} - \frac{1}{2}\sqrt{43} i\\
                                                                  • \bullet\,\,x_{2} = \frac{-7}{2} + \frac{1}{2}\sqrt{43} i\\
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^2 + 7*x + 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 2 roots are:

                                                                  • x1 = -7 / 2 - (1 / 2)*43^(1/2) *I
                                                                  • x2 = -7 / 2 + (1 / 2)*43^(1/2) *I

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x3 − 4⁢x2 + 12⁢x + 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • r = -92554 + 56 13153
                                                                  • s = −92554 + 56 13153
                                                                  • x1 = 43 + r + s
                                                                  • x2 = 43r + s2 + i rs23
                                                                  • x3 = 43r + s2 − i rs23

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^{3} - 4x^{2} + 12x + 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,r = \sqrt[3]{\frac{-925}{54} + \frac{5}{6}\sqrt{\frac{1315}{3}}}\\
                                                                  • \bullet\,\,s = -\sqrt[3]{\frac{925}{54} + \frac{5}{6}\sqrt{\frac{1315}{3}}}\\
                                                                  • \bullet\,\,x_{1} = \frac{4}{3} + r + s\\
                                                                  • \bullet\,\,x_{2} = \frac{4}{3} - \frac{r + s}{2} + i \frac{r - s}{2}\sqrt{3}\\
                                                                  • \bullet\,\,x_{3} = \frac{4}{3} - \frac{r + s}{2} - i \frac{r - s}{2}\sqrt{3}\\
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^3 - 4*x^2 + 12*x + 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • r = (-925 / 54 + (5 / 6)*(1315 / 3)^(1/2))^(1/3)
                                                                  • s = -(925 / 54 + (5 / 6)*(1315 / 3)^(1/2))^(1/3)
                                                                  • x1 = 4 / 3 + r + s
                                                                  • x2 = 4 / 3 - (r + s) / 2 + (I/2) * (r - s) * 3^(1/2)
                                                                  • x3 = 4 / 3 - (r + s) / 2 - (I/2) * (r - s) * 3^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x3x2 + 2⁢x + 5

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • r = -15154 + 16 8633
                                                                  • s = −15154 + 16 8633
                                                                  • x1 = 13 + r + s
                                                                  • x2 = 13r + s2 + i rs23
                                                                  • x3 = 13r + s2 − i rs23

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^{3} - x^{2} + 2x + 5

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,r = \sqrt[3]{\frac{-151}{54} + \frac{1}{6}\sqrt{\frac{863}{3}}}\\
                                                                  • \bullet\,\,s = -\sqrt[3]{\frac{151}{54} + \frac{1}{6}\sqrt{\frac{863}{3}}}\\
                                                                  • \bullet\,\,x_{1} = \frac{1}{3} + r + s\\
                                                                  • \bullet\,\,x_{2} = \frac{1}{3} - \frac{r + s}{2} + i \frac{r - s}{2}\sqrt{3}\\
                                                                  • \bullet\,\,x_{3} = \frac{1}{3} - \frac{r + s}{2} - i \frac{r - s}{2}\sqrt{3}\\
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^3 - x^2 + 2*x + 5

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • r = (-151 / 54 + (1 / 6)*(863 / 3)^(1/2))^(1/3)
                                                                  • s = -(151 / 54 + (1 / 6)*(863 / 3)^(1/2))^(1/3)
                                                                  • x1 = 1 / 3 + r + s
                                                                  • x2 = 1 / 3 - (r + s) / 2 + (I/2) * (r - s) * 3^(1/2)
                                                                  • x3 = 1 / 3 - (r + s) / 2 - (I/2) * (r - s) * 3^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x3 + 2

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • x1 = −2
                                                                  • x2 = 12 2 + i23 2
                                                                  • x3 = 12 2i23 2

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^{3} + 2

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,x_{1} = -\sqrt[3]{2}\\
                                                                  • \bullet\,\,x_{2} = \frac{1}{2} \sqrt[3]{2} + \frac{i}{2}\sqrt{3} \sqrt[3]{2}\\
                                                                  • \bullet\,\,x_{3} = \frac{1}{2} \sqrt[3]{2} - \frac{i}{2}\sqrt{3} \sqrt[3]{2}\\
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^3 + 2

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • x1 = -2^(1/3)
                                                                  • x2 = (1/2) *2^(1/3) + I/2*3^(1/2) *2^(1/3)
                                                                  • x3 = (1/2) *2^(1/3) - I/2*3^(1/2) *2^(1/3)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x3 − 2

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • x1 = 2
                                                                  • x2 = − 12 2 + i23 2
                                                                  • x3 = − 12 2i23 2

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^{3} - 2

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,x_{1} = \sqrt[3]{2}\\
                                                                  • \bullet\,\,x_{2} = - \frac{1}{2} \sqrt[3]{2} + \frac{i}{2}\sqrt{3} \sqrt[3]{2}\\
                                                                  • \bullet\,\,x_{3} = - \frac{1}{2} \sqrt[3]{2} - \frac{i}{2}\sqrt{3} \sqrt[3]{2}\\
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^3 - 2

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • x1 = 2^(1/3)
                                                                  • x2 = (-1/2) *2^(1/3) + I/2*3^(1/2) *2^(1/3)
                                                                  • x3 = (-1/2) *2^(1/3) - I/2*3^(1/2) *2^(1/3)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x3 + 6⁢x2 + 18

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • r = −2
                                                                  • s = −32
                                                                  • x1 = -2 + r + s
                                                                  • x2 = -2 − r + s2 + i rs23
                                                                  • x3 = -2 − r + s2 − i rs23

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^{3} + 6x^{2} + 18

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,r = -\sqrt[3]{2}\\
                                                                  • \bullet\,\,s = -\sqrt[3]{32}\\
                                                                  • \bullet\,\,x_{1} = -2 + r + s\\
                                                                  • \bullet\,\,x_{2} = -2 - \frac{r + s}{2} + i \frac{r - s}{2}\sqrt{3}\\
                                                                  • \bullet\,\,x_{3} = -2 - \frac{r + s}{2} - i \frac{r - s}{2}\sqrt{3}\\
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^3 + 6*x^2 + 18

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • r = -(2)^(1/3)
                                                                  • s = -(32)^(1/3)
                                                                  • x1 = -2 + r + s
                                                                  • x2 = -2 - (r + s) / 2 + (I/2) * (r - s) * 3^(1/2)
                                                                  • x3 = -2 - (r + s) / 2 - (I/2) * (r - s) * 3^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  3*x^3 + 3*x^2 + x - 5

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • x1 = -1 / 3 + (46 / 27)^(1/3)
                                                                  • x2 = -1 / 3 + (-1/2) *(46 / 27)^(1/3) + I/2*3^(1/2) *(46 / 27)^(1/3)
                                                                  • x3 = -1 / 3 + (-1/2) *(46 / 27)^(1/3) - I/2*3^(1/2) *(46 / 27)^(1/3)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x4 + 7

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible because of Eisenstein's criterion (prime = 7)

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • x1 = 12 7 + i 12 7
                                                                  • x2 = 12 7 − i 12 7
                                                                  • x3 = −12 7 + i 12 7
                                                                  • x4 = −12 7 − i 12 7

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x4 − 7

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible because of Eisenstein's criterion (prime = 7)

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • x1 = 7
                                                                  • x2 = i 7
                                                                  • x3 = −7
                                                                  • x4 = −i 7

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^4 + x^2 - 2*x + 1

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • x1 = ((1 / 8)*17^(1/2) - 1 / 8)^(1/2) + I*((1 / 2) - ((1 / 8)*17^(1/2) + 1 / 8)^(1/2))
                                                                  • x2 = ((1 / 8)*17^(1/2) - 1 / 8)^(1/2) + I*(- (1 / 2) + ((1 / 8)*17^(1/2) + 1 / 8)^(1/2))
                                                                  • x3 = - ((1 / 8)*17^(1/2) - 1 / 8)^(1/2) + I*((1 / 2) + ((1 / 8)*17^(1/2) + 1 / 8)^(1/2))
                                                                  • x4 = - ((1 / 8)*17^(1/2) - 1 / 8)^(1/2) + I*(- (1 / 2) - ((1 / 8)*17^(1/2) + 1 / 8)^(1/2))

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x3 − 12⁢x2 + 12⁢x + 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • t = 13arc cos1916 13
                                                                  • x1 = 4 + 4 3 cos(t)
                                                                  • x2 = 4 + 4 3 cost + 2π3
                                                                  • x3 = 4 + 4 3 cost + 4π3

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^{3} - 12x^{2} + 12x + 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,t = \frac{1}{3}\arccos\left(\frac{19}{16}\sqrt{\frac{1}{3}}\right)\\
                                                                  • \bullet\,\,x_{1} = 4 + 4\sqrt{3} \cos{(t)\\
                                                                  • \bullet\,\,x_{2} = 4 + 4\sqrt{3} \cos{\left(t + \frac{2 \pi }{3}\right)}\\
                                                                  • \bullet\,\,x_{3} = 4 + 4\sqrt{3} \cos{\left(t + \frac{4 \pi }{3}\right)}\\
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^3 - 12*x^2 + 12*x + 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 3 roots are:

                                                                  • t = (1/3) * acos((19 / 16)*(1 / 3)^(1/2))
                                                                  • x1 = 4 + 4*3^(1/2)* cos(t)
                                                                  • x2 = 4 + 4*3^(1/2)* cos(t + 2 * Pi / 3)
                                                                  • x3 = 4 + 4*3^(1/2)* cos(t + 4 * Pi / 3)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x4 + 3⁢x2 + 12⁢x + 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • t = arccos-35 395
                                                                  • S = 12-2 + 23 285cost3
                                                                  • x1 = S + i24 S² + 6 + 12S
                                                                  • x2 = Si24 S² + 6 + 12S
                                                                  • x3 = − S + i24 S² + 6 − 12S
                                                                  • x4 = − Si24 S² + 6 − 12S

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^{4} + 3x^{2} + 12x + 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,t = \arccos\left(\frac{-3}{5}\sqrt{\frac{3}{95}}\right)\\
                                                                  • \bullet\,\,S = \frac{1}{2}\sqrt{-2 + \frac{2}{3}\sqrt{285}\cos{\frac{t}{3}}}\\
                                                                  • \bullet\,\,x_{1} = S + \frac{i}{2}\sqrt{4 S^2 + 6 + \frac{12}{S}}\\
                                                                  • \bullet\,\,x_{2} = S - \frac{i}{2}\sqrt{4 S^2 + 6 + \frac{12}{S}}\\
                                                                  • \bullet\,\,x_{3} = - S + \frac{i}{2}\sqrt{4 S^2 + 6 - \frac{12}{S}}\\
                                                                  • \bullet\,\,x_{4} = - S - \frac{i}{2}\sqrt{4 S^2 + 6 - \frac{12}{S}}\\
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^4 + 3*x^2 + 12*x + 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • t = acos((-3 / 5)*(3 / 95)^(1/2))
                                                                  • S = (1/2)*(-2 + (2 / 3)*285^(1/2)*cos(t / 3))^(1/2)
                                                                  • x1 = S + (I/2)*(4 *S^2 + 6 + 12 / S)^(1/2)
                                                                  • x2 = S - (I/2)*(4 *S^2 + 6 + 12 / S)^(1/2)
                                                                  • x3 = - S + (I/2)*(4 *S^2 + 6 - 12 / S)^(1/2)
                                                                  • x4 = - S - (I/2)*(4 *S^2 + 6 - 12 / S)^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x4 + 4⁢x2 + 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • x1 = 12 23 − 1 + i 12 23 + 1
                                                                  • x2 = 12 23 − 1 − i 12 23 + 1
                                                                  • x3 = −12 23 − 1 + i 12 23 + 1
                                                                  • x4 = −12 23 − 1 − i 12 23 + 1

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^{4} + 4x^{2} + 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,x_{1} = \sqrt{\frac{1}{2}\sqrt{23} - 1} + i \sqrt{\frac{1}{2}\sqrt{23} + 1}\\
                                                                  • \bullet\,\,x_{2} = \sqrt{\frac{1}{2}\sqrt{23} - 1} - i \sqrt{\frac{1}{2}\sqrt{23} + 1}\\
                                                                  • \bullet\,\,x_{3} = -\sqrt{\frac{1}{2}\sqrt{23} - 1} + i \sqrt{\frac{1}{2}\sqrt{23} + 1}\\
                                                                  • \bullet\,\,x_{4} = -\sqrt{\frac{1}{2}\sqrt{23} - 1} - i \sqrt{\frac{1}{2}\sqrt{23} + 1}\\
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^4 + 4*x^2 + 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • x1 = ((1 / 2)*23^(1/2) - 1)^(1/2) + I* ((1 / 2)*23^(1/2) + 1)^(1/2)
                                                                  • x2 = ((1 / 2)*23^(1/2) - 1)^(1/2) - I* ((1 / 2)*23^(1/2) + 1)^(1/2)
                                                                  • x3 = -((1 / 2)*23^(1/2) - 1)^(1/2) + I* ((1 / 2)*23^(1/2) + 1)^(1/2)
                                                                  • x4 = -((1 / 2)*23^(1/2) - 1)^(1/2) - I* ((1 / 2)*23^(1/2) + 1)^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x4 + 4⁢x2 − 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • x1 = (-2) + 3 3
                                                                  • x2 = i 2 + 3 3
                                                                  • x3 = −(-2) + 3 3
                                                                  • x4 = −i 2 + 3 3

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^{4} + 4x^{2} - 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,x_{1} = \sqrt{(-2) + 3\sqrt{3}}\\
                                                                  • \bullet\,\,x_{2} = i \sqrt{2 + 3\sqrt{3}}\\
                                                                  • \bullet\,\,x_{3} = -\sqrt{(-2) + 3\sqrt{3}}\\
                                                                  • \bullet\,\,x_{4} = -i \sqrt{2 + 3\sqrt{3}}\\
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^4 + 4*x^2 - 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • x1 = ((-2) + 3*3^(1/2))^(1/2)
                                                                  • x2 = I *(2 + 3*3^(1/2))^(1/2)
                                                                  • x3 = -((-2) + 3*3^(1/2))^(1/2)
                                                                  • x4 = -I *(2 + 3*3^(1/2))^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^4 + 18*x^2 + 25

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • x1 = I * (2^(1/2) + 7^(1/2))
                                                                  • x2 = I * (2^(1/2) - 7^(1/2))
                                                                  • x3 = -I * (2^(1/2) + 7^(1/2))
                                                                  • x4 = -I * (2^(1/2) - 7^(1/2))

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^4 - 18*x^2 + 25

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • x1 = 7^(1/2) + 2^(1/2)
                                                                  • x2 = 7^(1/2) - 2^(1/2)
                                                                  • x3 = -7^(1/2) + 2^(1/2)
                                                                  • x4 = -7^(1/2) - 2^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^4 + 18*x^2 + 144

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • x1 = (3 / 2)^(1/2) + (21 / 2)^(1/2)*I
                                                                  • x2 = (3 / 2)^(1/2) - (21 / 2)^(1/2)*I
                                                                  • x3 = -(3 / 2)^(1/2) + (21 / 2)^(1/2)*I
                                                                  • x4 = -(3 / 2)^(1/2) - (21 / 2)^(1/2)*I

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^4 - 18*x^2 + 144

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • x1 = (21 / 2)^(1/2) + (3 / 2)^(1/2)*I
                                                                  • x2 = (21 / 2)^(1/2) - (3 / 2)^(1/2)*I
                                                                  • x3 = -(21 / 2)^(1/2) + (3 / 2)^(1/2)*I
                                                                  • x4 = -(21 / 2)^(1/2) - (3 / 2)^(1/2)*I

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^4 + 18*x^2 + 24

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • x1 = I *(9 - 57^(1/2))^(1/2)
                                                                  • x2 = I *(9 + 57^(1/2))^(1/2)
                                                                  • x3 = -I *(9 - 57^(1/2))^(1/2)
                                                                  • x4 = -I *(9 + 57^(1/2))^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^4 - 18*x^2 + 24

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • x1 = (9 + 57^(1/2))^(1/2)
                                                                  • x2 = (9 - 57^(1/2))^(1/2)
                                                                  • x3 = -(9 + 57^(1/2))^(1/2)
                                                                  • x4 = -(9 - 57^(1/2))^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^4 + 18*x^2 + 95

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • x1 = ((1 / 2)*95^(1/2) - (9 / 2))^(1/2) + I* ((1 / 2)*95^(1/2) + (9 / 2))^(1/2)
                                                                  • x2 = ((1 / 2)*95^(1/2) - (9 / 2))^(1/2) - I* ((1 / 2)*95^(1/2) + (9 / 2))^(1/2)
                                                                  • x3 = -((1 / 2)*95^(1/2) - (9 / 2))^(1/2) + I* ((1 / 2)*95^(1/2) + (9 / 2))^(1/2)
                                                                  • x4 = -((1 / 2)*95^(1/2) - (9 / 2))^(1/2) - I* ((1 / 2)*95^(1/2) + (9 / 2))^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^4 - 18*x^2 + 95

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • x1 = ((1 / 2)*95^(1/2) + (9 / 2))^(1/2) + I* ((1 / 2)*95^(1/2) - (9 / 2))^(1/2)
                                                                  • x2 = ((1 / 2)*95^(1/2) + (9 / 2))^(1/2) - I* ((1 / 2)*95^(1/2) - (9 / 2))^(1/2)
                                                                  • x3 = -((1 / 2)*95^(1/2) + (9 / 2))^(1/2) + I* ((1 / 2)*95^(1/2) - (9 / 2))^(1/2)
                                                                  • x4 = -((1 / 2)*95^(1/2) + (9 / 2))^(1/2) - I* ((1 / 2)*95^(1/2) - (9 / 2))^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^4 + 18*x^2 - 25

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • x1 = ((-9) + 106^(1/2))^(1/2)
                                                                  • x2 = I *(9 + 106^(1/2))^(1/2)
                                                                  • x3 = -((-9) + 106^(1/2))^(1/2)
                                                                  • x4 = -I *(9 + 106^(1/2))^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^4 - 18*x^2 - 25

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • x1 = (9 + 106^(1/2))^(1/2)
                                                                  • x2 = I *((-9) + 106^(1/2))^(1/2)
                                                                  • x3 = -(9 + 106^(1/2))^(1/2)
                                                                  • x4 = -I *((-9) + 106^(1/2))^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^4 + 18*x^2 - 121

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • x1 = ((-9) + 202^(1/2))^(1/2)
                                                                  • x2 = I *(9 + 202^(1/2))^(1/2)
                                                                  • x3 = -((-9) + 202^(1/2))^(1/2)
                                                                  • x4 = -I *(9 + 202^(1/2))^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^4 - 18*x^2 - 121

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • x1 = (9 + 202^(1/2))^(1/2)
                                                                  • x2 = I *((-9) + 202^(1/2))^(1/2)
                                                                  • x3 = -(9 + 202^(1/2))^(1/2)
                                                                  • x4 = -I *((-9) + 202^(1/2))^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^4 + 18*x^2 - 24

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • x1 = ((-9) + 105^(1/2))^(1/2)
                                                                  • x2 = I *(9 + 105^(1/2))^(1/2)
                                                                  • x3 = -((-9) + 105^(1/2))^(1/2)
                                                                  • x4 = -I *(9 + 105^(1/2))^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^4 - 18*x^2 - 24

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • x1 = (9 + 105^(1/2))^(1/2)
                                                                  • x2 = I *((-9) + 105^(1/2))^(1/2)
                                                                  • x3 = -(9 + 105^(1/2))^(1/2)
                                                                  • x4 = -I *((-9) + 105^(1/2))^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^4 + 18*x^2 - 95

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • x1 = ((-9) + 4*11^(1/2))^(1/2)
                                                                  • x2 = I *(9 + 4*11^(1/2))^(1/2)
                                                                  • x3 = -((-9) + 4*11^(1/2))^(1/2)
                                                                  • x4 = -I *(9 + 4*11^(1/2))^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^4 - 18*x^2 - 95

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • x1 = (9 + 4*11^(1/2))^(1/2)
                                                                  • x2 = I *((-9) + 4*11^(1/2))^(1/2)
                                                                  • x3 = -(9 + 4*11^(1/2))^(1/2)
                                                                  • x4 = -I *((-9) + 4*11^(1/2))^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^4 - 18*x^2 + 3*x + 5

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • t = acos((-549 / 2048)*(3 / 2)^(1/2))
                                                                  • S = (1/2)*(12 + (16 / 3)*6^(1/2)*cos(t / 3))^(1/2)
                                                                  • x1 = S + (I/2)*(4 *S^2 - 36 + 3 / S)^(1/2)
                                                                  • x2 = S - (I/2)*(4 *S^2 - 36 + 3 / S)^(1/2)
                                                                  • x3 = - S + (I/2)*(4 *S^2 - 36 - 3 / S)^(1/2)
                                                                  • x4 = - S - (I/2)*(4 *S^2 - 36 - 3 / S)^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^4 - 18*x^2 - 3*x + 5

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • t = acos((-549 / 2048)*(3 / 2)^(1/2))
                                                                  • S = (1/2)*(12 + (16 / 3)*6^(1/2)*cos(t / 3))^(1/2)
                                                                  • x1 = S + (I/2)*(4 *S^2 - 36 - 3 / S)^(1/2)
                                                                  • x2 = S - (I/2)*(4 *S^2 - 36 - 3 / S)^(1/2)
                                                                  • x3 = - S + (I/2)*(4 *S^2 - 36 + 3 / S)^(1/2)
                                                                  • x4 = - S - (I/2)*(4 *S^2 - 36 + 3 / S)^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^4 + 3*x^2 + 79*x + 8

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • Q = (166833 / 2 + (3 / 2)*309 2068821^(1/2))^(1/3)
                                                                  • S = (1/2)*(-2 + Q / 3 + 35 / Q)^(1/2)
                                                                  • x1 = S + (I/2) * (4 *S^2 + 6 + 79 / S)^(1/2)
                                                                  • x2 = S - (I/2) * (4 *S^2 + 6 + 79 / S)^(1/2)
                                                                  • x3 = - S + (1/2) * (-4 *S^2 - 6 + 79 / S)^(1/2)
                                                                  • x4 = - S - (1/2) * (-4 *S^2 - 6 + 79 / S)^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  3x4 − 3⁢x2 + x − 5

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • Q = -1192 + -12 41597
                                                                  • S = 1223 + Q3193 Q
                                                                  • x1 = S + i2 4 S² − 2 + 13 S
                                                                  • x2 = Si2 4 S² − 2 + 13 S
                                                                  • x3 = − S + 12 −4 S² + 2 + 13 S
                                                                  • x4 = − S12 −4 S² + 2 + 13 S

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  3x^{4} - 3x^{2} + x - 5

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,Q = \sqrt[3]{\frac{-119}{2} + \frac{-1}{2}\sqrt{41597}}\\
                                                                  • \bullet\,\,S = \frac{1}{2}\sqrt{\frac{2}{3} + \frac{Q}{3}- \frac{19}{3 Q}}\\
                                                                  • \bullet\,\,x_{1} = S + \frac{i}{2} \sqrt{4 S^2 - 2 + \frac{1}{3 S}}\\
                                                                  • \bullet\,\,x_{2} = S - \frac{i}{2} \sqrt{4 S^2 - 2 + \frac{1}{3 S}}\\
                                                                  • \bullet\,\,x_{3} = - S + \frac{1}{2} \sqrt{-4 S^2 + 2 + \frac{1}{3 S}}\\
                                                                  • \bullet\,\,x_{4} = - S - \frac{1}{2} \sqrt{-4 S^2 + 2 + \frac{1}{3 S}}\\
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  3*x^4 - 3*x^2 + x - 5

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 4 roots are:

                                                                  • Q = (-119 / 2 + (-1 / 2)*41597^(1/2))^(1/3)
                                                                  • S = (1/2)*(2 / 3 + Q / 3 - 19 / (3 * Q))^(1/2)
                                                                  • x1 = S + (I/2) * (4 *S^2 - 2 + 1 / (3 * S))^(1/2)
                                                                  • x2 = S - (I/2) * (4 *S^2 - 2 + 1 / (3 * S))^(1/2)
                                                                  • x3 = - S + (1/2) * (-4 *S^2 + 2 + 1 / (3 * S))^(1/2)
                                                                  • x4 = - S - (1/2) * (-4 *S^2 + 2 + 1 / (3 * S))^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x5 + 15⁢x + 12

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                                                                  Roots

                                                                  The 5 roots are:

                                                                  • R1 = −35 + 2125 25
                                                                  • R2 = −-95 + 7225 25
                                                                  • R3 = 95 + 7225 25
                                                                  • R4 = −352125 25
                                                                  • S1 = (−1+5)(R1 + R4) + (−1−5)(R2 + R3)
                                                                  • S2 = (−1+5)(R2 + R3) + (−1−5)(R1 + R4)
                                                                  • T1 = 10 + 25(R4R1) +10 − 25(R3R2)
                                                                  • T2 = 10 + 25(R3R2) +10 − 25(R1R4)
                                                                  • x1 = R1 + R2 + R3 + R4
                                                                  • x2 = S14+ i T14
                                                                  • x3 = S14− i T14
                                                                  • x4 = S24+ i T24
                                                                  • x5 = S24− i T24

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^{5} + 15x + 12

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                                                                  Roots

                                                                  The 5 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,R_1 = -\sqrt[5]{\frac{3}{5} + \frac{21}{25}\sqrt{\frac{2}{5}}}
                                                                  • \bullet\,\,R_2 = -\sqrt[5]{\frac{-9}{5} + \frac{72}{25}\sqrt{\frac{2}{5}}}
                                                                  • \bullet\,\,R_3 = \sqrt[5]{\frac{9}{5} + \frac{72}{25}\sqrt{\frac{2}{5}}}
                                                                  • \bullet\,\,R_4 = -\sqrt[5]{\frac{3}{5} - \frac{21}{25}\sqrt{\frac{2}{5}}}
                                                                  • \bullet\,\,S_1 = (-1+\sqrt{5})(R_1 + R_4) + (-1-\sqrt{5})(R_2 + R_3)\\
                                                                  • \bullet\,\,S_2 = (-1+\sqrt{5})(R_2 + R_3) + (-1-\sqrt{5})(R_1 + R_4)\\
                                                                  • \bullet\,\,T_1 = \sqrt{10 + 2\sqrt{5}}(R4 - R1) +\sqrt{10 - 2\sqrt{5}}(R_3 - R_2)\\
                                                                  • \bullet\,\,T_2 = \sqrt{10 + 2\sqrt{5}}(R_3 - R_2) +\sqrt{10 - 2\sqrt{5}}(R_1 - R_4)\\
                                                                  • \bullet\,\,x_{1} = R_1 + R_2 + R_3 + R_4\\
                                                                  • \bullet\,\,x_{2} = \frac{S_1}{4}+ i \frac{T_1}{4}\\
                                                                  • \bullet\,\,x_{3} = \frac{S_1}{4}- i \frac{T_1}{4}\\
                                                                  • \bullet\,\,x_{4} = \frac{S_2}{4}+ i \frac{T_2}{4}\\
                                                                  • \bullet\,\,x_{5} = \frac{S_2}{4}- i \frac{T_2}{4}\\
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^5 + 15*x + 12

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                                                                  Roots

                                                                  The 5 roots are:

                                                                  • R1 = -(3 / 5 + (21 / 25)*(2 / 5)^(1/2))^(1/5)
                                                                  • R2 = -(-9 / 5 + (72 / 25)*(2 / 5)^(1/2))^(1/5)
                                                                  • R3 = (9 / 5 + (72 / 25)*(2 / 5)^(1/2))^(1/5)
                                                                  • R4 = -(3 / 5 - (21 / 25)*(2 / 5)^(1/2))^(1/5)
                                                                  • S1 = (-1+5^(1/2))*(R1 + R4) + (-1-5^(1/2))*(R2 + R3)
                                                                  • S2 = (-1+5^(1/2))*(R2 + R3) + (-1-5^(1/2))*(R1 + R4)
                                                                  • T1 = (10 + 2 * 5^(1/2))^(1/2)*(R4 - R1) + (10 - 2 * 5^(1/2))^(1/2)*(R3 - R2)
                                                                  • T2 = (10 + 2 * 5^(1/2))^(1/2)*(R3 - R2) + (10 - 2 * 5^(1/2))^(1/2)*(R1 - R4)
                                                                  • x1 = R1 + R2 + R3 + R4
                                                                  • x2 = (S1 + I * T1) / 4
                                                                  • x3 = (S1 - I * T1) / 4
                                                                  • x4 = (S2 + I * T2) / 4
                                                                  • x5 = (S2 - I * T2) / 4

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x5 − 5⁢x + 12

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 5 roots are:

                                                                  • R1 = −1 + 25 595 + 99125 5
                                                                  • R2 = -1 + 25 5 + 9599125 5
                                                                  • R3 = −1 − 25 5 + 9599125 5
                                                                  • R4 = −1 + 25 5 + 95 + 99125 5
                                                                  • S1 = (−1+5)(R1 + R4) + (−1−5)(R2 + R3)
                                                                  • S2 = (−1+5)(R2 + R3) + (−1−5)(R1 + R4)
                                                                  • T1 = 10 + 25(R4R1) +10 − 25(R3R2)
                                                                  • T2 = 10 + 25(R3R2) +10 − 25(R1R4)
                                                                  • x1 = R1 + R2 + R3 + R4
                                                                  • x2 = S14+ i T14
                                                                  • x3 = S14− i T14
                                                                  • x4 = S24+ i T24
                                                                  • x5 = S24− i T24

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^{5} - 5x + 12

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 5 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,R_1 = -\sqrt[5]{1 + \frac{2}{5}\sqrt{5} - \sqrt{\frac{9}{5} + \frac{99}{125}\sqrt{5}}}
                                                                  • \bullet\,\,R_2 = \sqrt[5]{-1 + \frac{2}{5}\sqrt{5} + \sqrt{\frac{9}{5} - \frac{99}{125}\sqrt{5}}}
                                                                  • \bullet\,\,R_3 = -\sqrt[5]{1 - \frac{2}{5}\sqrt{5} + \sqrt{\frac{9}{5} - \frac{99}{125}\sqrt{5}}}
                                                                  • \bullet\,\,R_4 = -\sqrt[5]{1 + \frac{2}{5}\sqrt{5} + \sqrt{\frac{9}{5} + \frac{99}{125}\sqrt{5}}}
                                                                  • \bullet\,\,S_1 = (-1+\sqrt{5})(R_1 + R_4) + (-1-\sqrt{5})(R_2 + R_3)\\
                                                                  • \bullet\,\,S_2 = (-1+\sqrt{5})(R_2 + R_3) + (-1-\sqrt{5})(R_1 + R_4)\\
                                                                  • \bullet\,\,T_1 = \sqrt{10 + 2\sqrt{5}}(R4 - R1) +\sqrt{10 - 2\sqrt{5}}(R_3 - R_2)\\
                                                                  • \bullet\,\,T_2 = \sqrt{10 + 2\sqrt{5}}(R_3 - R_2) +\sqrt{10 - 2\sqrt{5}}(R_1 - R_4)\\
                                                                  • \bullet\,\,x_{1} = R_1 + R_2 + R_3 + R_4\\
                                                                  • \bullet\,\,x_{2} = \frac{S_1}{4}+ i \frac{T_1}{4}\\
                                                                  • \bullet\,\,x_{3} = \frac{S_1}{4}- i \frac{T_1}{4}\\
                                                                  • \bullet\,\,x_{4} = \frac{S_2}{4}+ i \frac{T_2}{4}\\
                                                                  • \bullet\,\,x_{5} = \frac{S_2}{4}- i \frac{T_2}{4}\\
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^5 - 5*x + 12

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 5 roots are:

                                                                  • R1 = -(1 + (2 / 5)*5^(1/2) - (9 / 5 + (99 / 125)*5^(1/2))^(1/2))^(1/5)
                                                                  • R2 = (-1 + (2 / 5)*5^(1/2) + (9 / 5 - (99 / 125)*5^(1/2))^(1/2))^(1/5)
                                                                  • R3 = -(1 - (2 / 5)*5^(1/2) + (9 / 5 - (99 / 125)*5^(1/2))^(1/2))^(1/5)
                                                                  • R4 = -(1 + (2 / 5)*5^(1/2) + (9 / 5 + (99 / 125)*5^(1/2))^(1/2))^(1/5)
                                                                  • S1 = (-1+5^(1/2))*(R1 + R4) + (-1-5^(1/2))*(R2 + R3)
                                                                  • S2 = (-1+5^(1/2))*(R2 + R3) + (-1-5^(1/2))*(R1 + R4)
                                                                  • T1 = (10 + 2 * 5^(1/2))^(1/2)*(R4 - R1) + (10 - 2 * 5^(1/2))^(1/2)*(R3 - R2)
                                                                  • T2 = (10 + 2 * 5^(1/2))^(1/2)*(R3 - R2) + (10 - 2 * 5^(1/2))^(1/2)*(R1 - R4)
                                                                  • x1 = R1 + R2 + R3 + R4
                                                                  • x2 = (S1 + I * T1) / 4
                                                                  • x3 = (S1 - I * T1) / 4
                                                                  • x4 = (S2 + I * T2) / 4
                                                                  • x5 = (S2 - I * T2) / 4

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  17x5 − 20⁢x + 21

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 5 roots are:

                                                                  • x1 to x5 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 19 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  17x^{5} - 20x + 21

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 5 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,x_{1} to x_{5} : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 19 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  17*x^5 - 20*x + 21

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 5 roots are:

                                                                  • x1 to x5 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 19 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x8 + x4 + 4

                                                                  Irreducible polynomial factors

                                                                  The 2 factors are:

                                                                  • −1
                                                                  • x8x4 − 4

                                                                  Roots

                                                                  The 8 roots are:

                                                                  • x1 = 412 + 12 17 cos 0π1 + i 412 + 12 17 sin0π1 = 412 + 12 17
                                                                  • x2 = 412 + 12 17 cosπ2 + i 412 + 12 17 sinπ2 = + i 412 + 12 17
                                                                  • x3 = 412 + 12 17 cosπ1 + i 412 + 12 17 sinπ1 = −412 + 12 17
                                                                  • x4 = 412 + 12 17 cos 3π2 + i 412 + 12 17 sin3π2 = −i 412 + 12 17
                                                                  • x5 = 4-12 + 12 17 cosπ4 + i 4-12 + 12 17 sinπ4 = 12 4-12 + 12 172 + i2 4-12 + 12 172
                                                                  • x6 = 4-12 + 12 17 cos 3π4 + i 4-12 + 12 17 sin3π4 = −12 4-12 + 12 172 + i2 4-12 + 12 172
                                                                  • x7 = 4-12 + 12 17 cos 5π4 + i 4-12 + 12 17 sin5π4 = −12 4-12 + 12 172i2 4-12 + 12 172
                                                                  • x8 = 4-12 + 12 17 cos 7π4 + i 4-12 + 12 17 sin7π4 = 12 4-12 + 12 172i2 4-12 + 12 172

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x5 + 20⁢x3 + 20⁢x2 + 30⁢x + 10

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                                                  Roots

                                                                  The 5 roots are:

                                                                  • R1 = 2 + 6
                                                                  • R2 = −7 + 9
                                                                  • R3 = -7 + 9
                                                                  • R4 = −-2 + 6
                                                                  • S1 = (−1+5)(R1 + R4) + (−1−5)(R2 + R3)
                                                                  • S2 = (−1+5)(R2 + R3) + (−1−5)(R1 + R4)
                                                                  • T1 = 10 + 25(R4R1) +10 − 25(R3R2)
                                                                  • T2 = 10 + 25(R3R2) +10 − 25(R1R4)
                                                                  • x1 = R1 + R2 + R3 + R4
                                                                  • x2 = S14+ i T14
                                                                  • x3 = S14− i T14
                                                                  • x4 = S24+ i T24
                                                                  • x5 = S24− i T24

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^{5} + 20x^{3} + 20x^{2} + 30x + 10

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                                                  Roots

                                                                  The 5 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,R_1 = \sqrt[5]{2 + 6}
                                                                  • \bullet\,\,R_2 = -\sqrt[5]{7 + 9}
                                                                  • \bullet\,\,R_3 = \sqrt[5]{-7 + 9}
                                                                  • \bullet\,\,R_4 = -\sqrt[5]{-2 + 6}
                                                                  • \bullet\,\,S_1 = (-1+\sqrt{5})(R_1 + R_4) + (-1-\sqrt{5})(R_2 + R_3)\\
                                                                  • \bullet\,\,S_2 = (-1+\sqrt{5})(R_2 + R_3) + (-1-\sqrt{5})(R_1 + R_4)\\
                                                                  • \bullet\,\,T_1 = \sqrt{10 + 2\sqrt{5}}(R4 - R1) +\sqrt{10 - 2\sqrt{5}}(R_3 - R_2)\\
                                                                  • \bullet\,\,T_2 = \sqrt{10 + 2\sqrt{5}}(R_3 - R_2) +\sqrt{10 - 2\sqrt{5}}(R_1 - R_4)\\
                                                                  • \bullet\,\,x_{1} = R_1 + R_2 + R_3 + R_4\\
                                                                  • \bullet\,\,x_{2} = \frac{S_1}{4}+ i \frac{T_1}{4}\\
                                                                  • \bullet\,\,x_{3} = \frac{S_1}{4}- i \frac{T_1}{4}\\
                                                                  • \bullet\,\,x_{4} = \frac{S_2}{4}+ i \frac{T_2}{4}\\
                                                                  • \bullet\,\,x_{5} = \frac{S_2}{4}- i \frac{T_2}{4}\\
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^5 + 20*x^3 + 20*x^2 + 30*x + 10

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                                                  Roots

                                                                  The 5 roots are:

                                                                  • R1 = (2 + 6)^(1/5)
                                                                  • R2 = -(7 + 9)^(1/5)
                                                                  • R3 = (-7 + 9)^(1/5)
                                                                  • R4 = -(-2 + 6)^(1/5)
                                                                  • S1 = (-1+5^(1/2))*(R1 + R4) + (-1-5^(1/2))*(R2 + R3)
                                                                  • S2 = (-1+5^(1/2))*(R2 + R3) + (-1-5^(1/2))*(R1 + R4)
                                                                  • T1 = (10 + 2 * 5^(1/2))^(1/2)*(R4 - R1) + (10 - 2 * 5^(1/2))^(1/2)*(R3 - R2)
                                                                  • T2 = (10 + 2 * 5^(1/2))^(1/2)*(R3 - R2) + (10 - 2 * 5^(1/2))^(1/2)*(R1 - R4)
                                                                  • x1 = R1 + R2 + R3 + R4
                                                                  • x2 = (S1 + I * T1) / 4
                                                                  • x3 = (S1 - I * T1) / 4
                                                                  • x4 = (S2 + I * T2) / 4
                                                                  • x5 = (S2 - I * T2) / 4

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x5 + 10⁢x3 − 20⁢x2 − 1505⁢x − 7412

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 5 roots are:

                                                                  • x1 to x5 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 7 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^{5} + 10x^{3} - 20x^{2} - 1505x - 7412

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 5 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,x_{1} to x_{5} : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 7 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^5 + 10*x^3 - 20*x^2 - 1505*x - 7412

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 5 roots are:

                                                                  • x1 to x5 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 3 are 2 and 3 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 7 are 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 5 ÷ 2))

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^6 + x^5 + 3*x^4 + x^3 + 3*x^2 + x + 1

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 6 roots are:

                                                                  • x1 to x6 : I cannot determine whether the roots of the polynomial can be solved using radical expressions or not.

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x7 + x + 12

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 7 roots are:

                                                                  • x1 to x7 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 7 ÷ 2))

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^{7} + x + 12

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 7 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,x_{1} to x_{7} : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 7 ÷ 2))
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^7 + x + 12

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 7 roots are:

                                                                  • x1 to x7 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of length 2) and the degrees of the factors of polynomial modulo 13 are 2 and 5 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (5 > 7 ÷ 2))

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^9 + 6*x^3 + 5

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 9 roots are:

                                                                  • x1 to x9 : The roots of the polynomial can be expressed by radicals. We set y = x^3. The polynomial has degree 3 which is less than 5.

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x10 + 2⁢x5 + 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 10 roots are:

                                                                  • x1 = 1023 cos15 π − arctan22 + i 1023 sin15 π − arctan22
                                                                  • x2 = 1023 cos15 π + arctan22 + i 1023 sin15 π + arctan22
                                                                  • x3 = 1023 cos15 3⁢ π − arctan22 + i 1023 sin15 3⁢ π − arctan22
                                                                  • x4 = 1023 cos15 3⁢ π + arctan22 + i 1023 sin15 3⁢ π + arctan22
                                                                  • x5 = 1023 cos15 5⁢ π − arctan22 + i 1023 sin15 5⁢ π − arctan22
                                                                  • x6 = 1023 cos15 5⁢ π + arctan22 + i 1023 sin15 5⁢ π + arctan22
                                                                  • x7 = 1023 cos15 7⁢ π − arctan22 + i 1023 sin15 7⁢ π − arctan22
                                                                  • x8 = 1023 cos15 7⁢ π + arctan22 + i 1023 sin15 7⁢ π + arctan22
                                                                  • x9 = 1023 cos15 9⁢ π − arctan22 + i 1023 sin15 9⁢ π − arctan22
                                                                  • x10 = 1023 cos15 9⁢ π + arctan22 + i 1023 sin15 9⁢ π + arctan22

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^{10} + 2x^{5} + 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 10 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,x_{1} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(\pi - \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(\pi - \arctan{\sqrt{22}}\right)\right)}\\
                                                                  • \bullet\,\,x_{2} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(\pi + \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(\pi + \arctan{\sqrt{22}}\right)\right)}\\
                                                                  • \bullet\,\,x_{3} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(3\pi - \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(3\pi - \arctan{\sqrt{22}}\right)\right)}\\
                                                                  • \bullet\,\,x_{4} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(3\pi + \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(3\pi + \arctan{\sqrt{22}}\right)\right)}\\
                                                                  • \bullet\,\,x_{5} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(5\pi - \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(5\pi - \arctan{\sqrt{22}}\right)\right)}\\
                                                                  • \bullet\,\,x_{6} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(5\pi + \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(5\pi + \arctan{\sqrt{22}}\right)\right)}\\
                                                                  • \bullet\,\,x_{7} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(7\pi - \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(7\pi - \arctan{\sqrt{22}}\right)\right)}\\
                                                                  • \bullet\,\,x_{8} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(7\pi + \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(7\pi + \arctan{\sqrt{22}}\right)\right)}\\
                                                                  • \bullet\,\,x_{9} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(9\pi - \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(9\pi - \arctan{\sqrt{22}}\right)\right)}\\
                                                                  • \bullet\,\,x_{10} = \sqrt[10]{23} \cos{\left(\frac{1}{5} \left(9\pi + \arctan{\sqrt{22}}\right)\right)} + i \sqrt[10]{23} \sin{\left(\frac{1}{5} \left(9\pi + \arctan{\sqrt{22}}\right)\right)}\\
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^10 + 2*x^5 + 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 10 roots are:

                                                                  • x1 = 23^(1/10) *cos(1/5*(Pi - atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(Pi - atan(22^(1/2))))
                                                                  • x2 = 23^(1/10) *cos(1/5*(Pi + atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(Pi + atan(22^(1/2))))
                                                                  • x3 = 23^(1/10) *cos(1/5*(3*Pi - atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(3*Pi - atan(22^(1/2))))
                                                                  • x4 = 23^(1/10) *cos(1/5*(3*Pi + atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(3*Pi + atan(22^(1/2))))
                                                                  • x5 = 23^(1/10) *cos(1/5*(5*Pi - atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(5*Pi - atan(22^(1/2))))
                                                                  • x6 = 23^(1/10) *cos(1/5*(5*Pi + atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(5*Pi + atan(22^(1/2))))
                                                                  • x7 = 23^(1/10) *cos(1/5*(7*Pi - atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(7*Pi - atan(22^(1/2))))
                                                                  • x8 = 23^(1/10) *cos(1/5*(7*Pi + atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(7*Pi + atan(22^(1/2))))
                                                                  • x9 = 23^(1/10) *cos(1/5*(9*Pi - atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(9*Pi - atan(22^(1/2))))
                                                                  • x10 = 23^(1/10) *cos(1/5*(9*Pi + atan(22^(1/2)))) + I * 23^(1/10) *sin(1/5*(9*Pi + atan(22^(1/2))))

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x10 + 2⁢x5 − 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 10 roots are:

                                                                  • x1 = 5-1 + 2 6 cos 0π1 + i 5-1 + 2 6 sin0π1 = 5-1 + 2 6
                                                                  • x2 = 5-1 + 2 6 cos 2π5 + i 5-1 + 2 6 sin2π5 = 14 5-1 + 2 65−1 + i4 5-1 + 2 610+25
                                                                  • x3 = 5-1 + 2 6 cos 4π5 + i 5-1 + 2 6 sin4π5 = −14 5-1 + 2 65+1 + i4 5-1 + 2 610−25
                                                                  • x4 = 5-1 + 2 6 cos 6π5 + i 5-1 + 2 6 sin6π5 = −14 5-1 + 2 65+1i4 5-1 + 2 610−25
                                                                  • x5 = 5-1 + 2 6 cos 8π5 + i 5-1 + 2 6 sin8π5 = 14 5-1 + 2 65−1i4 5-1 + 2 610+25
                                                                  • x6 = 51 + 2 6 cosπ5 + i 51 + 2 6 sinπ5 = 14 51 + 2 65+1 + i4 51 + 2 610−25
                                                                  • x7 = 51 + 2 6 cos 3π5 + i 51 + 2 6 sin3π5 = −14 51 + 2 65−1 + i4 51 + 2 610+25
                                                                  • x8 = 51 + 2 6 cosπ1 + i 51 + 2 6 sinπ1 = −51 + 2 6
                                                                  • x9 = 51 + 2 6 cos 7π5 + i 51 + 2 6 sin7π5 = −14 51 + 2 65−1i4 51 + 2 610+25
                                                                  • x10 = 51 + 2 6 cos 9π5 + i 51 + 2 6 sin9π5 = 14 51 + 2 65+1i4 51 + 2 610−25

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^{10} + 2x^{5} - 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 10 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,x_{1} = \sqrt[5]{-1 + 2\sqrt{6}} \cos{ \frac{0 \pi }{1}} + i \sqrt[5]{-1 + 2\sqrt{6}} \sin{\frac{0 \pi }{1}} = \sqrt[5]{-1 + 2\sqrt{6}}\\
                                                                  • \bullet\,\,x_{2} = \sqrt[5]{-1 + 2\sqrt{6}} \cos{ \frac{2 \pi }{5}} + i \sqrt[5]{-1 + 2\sqrt{6}} \sin{\frac{2 \pi }{5}} = \frac{1}{4}\sqrt[5]{-1 + 2\sqrt{6}}\left(\sqrt{5}-1\right) + \frac{i}{4}\sqrt[5]{-1 + 2\sqrt{6}}\sqrt{10+2\sqrt{5}}\\
                                                                  • \bullet\,\,x_{3} = \sqrt[5]{-1 + 2\sqrt{6}} \cos{ \frac{4 \pi }{5}} + i \sqrt[5]{-1 + 2\sqrt{6}} \sin{\frac{4 \pi }{5}} = -\frac{1}{4}\sqrt[5]{-1 + 2\sqrt{6}}\left(\sqrt{5}+1\right) + \frac{i}{4}\sqrt[5]{-1 + 2\sqrt{6}}\sqrt{10-2\sqrt{5}}\\
                                                                  • \bullet\,\,x_{4} = \sqrt[5]{-1 + 2\sqrt{6}} \cos{ \frac{6 \pi }{5}} + i \sqrt[5]{-1 + 2\sqrt{6}} \sin{\frac{6 \pi }{5}} = -\frac{1}{4}\sqrt[5]{-1 + 2\sqrt{6}}\left(\sqrt{5}+1\right)-\frac{i}{4}\sqrt[5]{-1 + 2\sqrt{6}}\sqrt{10-2\sqrt{5}}\\
                                                                  • \bullet\,\,x_{5} = \sqrt[5]{-1 + 2\sqrt{6}} \cos{ \frac{8 \pi }{5}} + i \sqrt[5]{-1 + 2\sqrt{6}} \sin{\frac{8 \pi }{5}} = \frac{1}{4}\sqrt[5]{-1 + 2\sqrt{6}}\left(\sqrt{5}-1\right)-\frac{i}{4}\sqrt[5]{-1 + 2\sqrt{6}}\sqrt{10+2\sqrt{5}}\\
                                                                  • \bullet\,\,x_{6} = \sqrt[5]{1 + 2\sqrt{6}} \cos{\frac{\pi }{5}} + i \sqrt[5]{1 + 2\sqrt{6}} \sin{\frac{\pi }{5}} = \frac{1}{4}\sqrt[5]{1 + 2\sqrt{6}}\left(\sqrt{5}+1\right) + \frac{i}{4}\sqrt[5]{1 + 2\sqrt{6}}\sqrt{10-2\sqrt{5}}\\
                                                                  • \bullet\,\,x_{7} = \sqrt[5]{1 + 2\sqrt{6}} \cos{ \frac{3 \pi }{5}} + i \sqrt[5]{1 + 2\sqrt{6}} \sin{\frac{3 \pi }{5}} = -\frac{1}{4}\sqrt[5]{1 + 2\sqrt{6}}\left(\sqrt{5}-1\right) + \frac{i}{4}\sqrt[5]{1 + 2\sqrt{6}}\sqrt{10+2\sqrt{5}}\\
                                                                  • \bullet\,\,x_{8} = \sqrt[5]{1 + 2\sqrt{6}} \cos{\frac{\pi }{1}} + i \sqrt[5]{1 + 2\sqrt{6}} \sin{\frac{\pi }{1}} = -\sqrt[5]{1 + 2\sqrt{6}}\\
                                                                  • \bullet\,\,x_{9} = \sqrt[5]{1 + 2\sqrt{6}} \cos{ \frac{7 \pi }{5}} + i \sqrt[5]{1 + 2\sqrt{6}} \sin{\frac{7 \pi }{5}} = -\frac{1}{4}\sqrt[5]{1 + 2\sqrt{6}}\left(\sqrt{5}-1\right)-\frac{i}{4}\sqrt[5]{1 + 2\sqrt{6}}\sqrt{10+2\sqrt{5}}\\
                                                                  • \bullet\,\,x_{10} = \sqrt[5]{1 + 2\sqrt{6}} \cos{ \frac{9 \pi }{5}} + i \sqrt[5]{1 + 2\sqrt{6}} \sin{\frac{9 \pi }{5}} = \frac{1}{4}\sqrt[5]{1 + 2\sqrt{6}}\left(\sqrt{5}+1\right)-\frac{i}{4}\sqrt[5]{1 + 2\sqrt{6}}\sqrt{10-2\sqrt{5}}\\
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^10 + 2*x^5 - 23

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 10 roots are:

                                                                  • x1 = (-1 + 2*6^(1/2))^(1/5)*cos (0*Pi/1) + I *(-1 + 2*6^(1/2))^(1/5) * sin(0*Pi/1) = (-1 + 2*6^(1/2))^(1/5)
                                                                  • x2 = (-1 + 2*6^(1/2))^(1/5)*cos (2*Pi/5) + I *(-1 + 2*6^(1/2))^(1/5) * sin(2*Pi/5) = (1/4)*(-1 + 2*6^(1/2))^(1/5)*(5^(1/2)-1) + (I/4)*(-1 + 2*6^(1/2))^(1/5)*(10+2*5^(1/2))^(1/2)
                                                                  • x3 = (-1 + 2*6^(1/2))^(1/5)*cos (4*Pi/5) + I *(-1 + 2*6^(1/2))^(1/5) * sin(4*Pi/5) = -(1/4)*(-1 + 2*6^(1/2))^(1/5)*(5^(1/2)+1) + (I/4)*(-1 + 2*6^(1/2))^(1/5)*(10-2*5^(1/2))^(1/2)
                                                                  • x4 = (-1 + 2*6^(1/2))^(1/5)*cos (6*Pi/5) + I *(-1 + 2*6^(1/2))^(1/5) * sin(6*Pi/5) = -(1/4)*(-1 + 2*6^(1/2))^(1/5)*(5^(1/2)+1)-(I/4)*(-1 + 2*6^(1/2))^(1/5)*(10-2*5^(1/2))^(1/2)
                                                                  • x5 = (-1 + 2*6^(1/2))^(1/5)*cos (8*Pi/5) + I *(-1 + 2*6^(1/2))^(1/5) * sin(8*Pi/5) = (1/4)*(-1 + 2*6^(1/2))^(1/5)*(5^(1/2)-1)-(I/4)*(-1 + 2*6^(1/2))^(1/5)*(10+2*5^(1/2))^(1/2)
                                                                  • x6 = (1 + 2*6^(1/2))^(1/5)*cos(Pi/5) + I *(1 + 2*6^(1/2))^(1/5) * sin(Pi/5) = (1/4)*(1 + 2*6^(1/2))^(1/5)*(5^(1/2)+1) + (I/4)*(1 + 2*6^(1/2))^(1/5)*(10-2*5^(1/2))^(1/2)
                                                                  • x7 = (1 + 2*6^(1/2))^(1/5)*cos (3*Pi/5) + I *(1 + 2*6^(1/2))^(1/5) * sin(3*Pi/5) = -(1/4)*(1 + 2*6^(1/2))^(1/5)*(5^(1/2)-1) + (I/4)*(1 + 2*6^(1/2))^(1/5)*(10+2*5^(1/2))^(1/2)
                                                                  • x8 = (1 + 2*6^(1/2))^(1/5)*cos(Pi/1) + I *(1 + 2*6^(1/2))^(1/5) * sin(Pi/1) = -(1 + 2*6^(1/2))^(1/5)
                                                                  • x9 = (1 + 2*6^(1/2))^(1/5)*cos (7*Pi/5) + I *(1 + 2*6^(1/2))^(1/5) * sin(7*Pi/5) = -(1/4)*(1 + 2*6^(1/2))^(1/5)*(5^(1/2)-1)-(I/4)*(1 + 2*6^(1/2))^(1/5)*(10+2*5^(1/2))^(1/2)
                                                                  • x10 = (1 + 2*6^(1/2))^(1/5)*cos (9*Pi/5) + I *(1 + 2*6^(1/2))^(1/5) * sin(9*Pi/5) = (1/4)*(1 + 2*6^(1/2))^(1/5)*(5^(1/2)+1)-(I/4)*(1 + 2*6^(1/2))^(1/5)*(10-2*5^(1/2))^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^12 + x + 5

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 12 roots are:

                                                                  • x1 to x12 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 2 are 3, 4 and 5 (the Galois group contains a cycle of length 3) and the degrees of the factors of polynomial modulo 7 are 1 and 11 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (11 > 12 ÷ 2))

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^13 + 3*x + 5

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 13 roots are:

                                                                  • x1 to x13 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 7 are 1, 5 and 7 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (7 > 13 ÷ 2) and less than the degree minus 2 (7 < 13 − 2))

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x17 − 1

                                                                  Irreducible polynomial factors

                                                                  The 2 factors are:

                                                                  • x − 1
                                                                  • x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1

                                                                  Roots

                                                                  The 17 roots are:

                                                                  • x1 = 1
                                                                  • x2 = cos 2π17 + i sin2π17 = 116 −1+17+34−217+217+317170+3817 + i8 34−217+234−217−417+317+170+3817
                                                                  • x3 = cos 4π17 + i sin4π17 = 116 −1+1734−217+217+317+170+3817 + i8 34−217−234−217+417+317170+3817
                                                                  • x4 = cos 6π17 + i sin6π17 = 116 −1−17+34+217+217−317+170−3817 + i8 34+217+234+217−417−317170−3817
                                                                  • x5 = cos 8π17 + i sin8π17 = 116 −1+17+34−217−217+317170+3817 + i8 34−217+234−217+417+317+170+3817
                                                                  • x6 = cos 10π17 + i sin10π17 = −116 1+1734+217+217−317+170−3817 + i8 34+217+234+217+417−317170−3817
                                                                  • x7 = cos 12π17 + i sin12π17 = −116 1+17+34+217−217−317170−3817 + i8 34+217−234+217+417−317+170−3817
                                                                  • x8 = cos 14π17 + i sin14π17 = −116 1+17+34+217+217−317170−3817 + i8 34+217−234+217−417−317+170−3817
                                                                  • x9 = cos 16π17 + i sin16π17 = −116 1−17+34−217+217+317+170+3817 + i8 34−217−234−217−417+317170+3817
                                                                  • x10 = cos 18π17 + i sin18π17 = −116 1−17+34−217+217+317+170+3817i8 34−217−234−217−417+317170+3817
                                                                  • x11 = cos 20π17 + i sin20π17 = −116 1+17+34+217+217−317170−3817i8 34+217−234+217−417−317+170−3817
                                                                  • x12 = cos 22π17 + i sin22π17 = −116 1+17+34+217−217−317170−3817i8 34+217−234+217+417−317+170−3817
                                                                  • x13 = cos 24π17 + i sin24π17 = −116 1+1734+217+217−317+170−3817i8 34+217+234+217+417−317170−3817
                                                                  • x14 = cos 26π17 + i sin26π17 = 116 −1+17+34−217−217+317170+3817i8 34−217+234−217+417+317+170+3817
                                                                  • x15 = cos 28π17 + i sin28π17 = 116 −1−17+34+217+217−317+170−3817i8 34+217+234+217−417−317170−3817
                                                                  • x16 = cos 30π17 + i sin30π17 = 116 −1+1734−217+217+317+170+3817i8 34−217−234−217+417+317170+3817
                                                                  • x17 = cos 32π17 + i sin32π17 = 116 −1+17+34−217+217+317170+3817i8 34−217+234−217−417+317+170+3817

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^{17} - 1

                                                                  Irreducible polynomial factors

                                                                  The 2 factors are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,x - 1\\
                                                                  • \bullet\,\,x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1\\
                                                                  • \end{array}

                                                                  Roots

                                                                  The 17 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,x_{1} = 1\\
                                                                  • \bullet\,\,x_{2} = \cos{ \frac{2 \pi }{17}} + i \sin{\frac{2 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34-2\sqrt{17}+2\sqrt{34-2\sqrt{17}}-4\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}}\\
                                                                  • \bullet\,\,x_{3} = \cos{ \frac{4 \pi }{17}} + i \sin{\frac{4 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}-\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34-2\sqrt{17}-2\sqrt{34-2\sqrt{17}}+4\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}}\\
                                                                  • \bullet\,\,x_{4} = \cos{ \frac{6 \pi }{17}} + i \sin{\frac{6 \pi }{17}} = \frac{1}{16}\left(-1-\sqrt{17}+\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34+2\sqrt{17}+2\sqrt{34+2\sqrt{17}}-4\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}}\\
                                                                  • \bullet\,\,x_{5} = \cos{ \frac{8 \pi }{17}} + i \sin{\frac{8 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}-2\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34-2\sqrt{17}+2\sqrt{34-2\sqrt{17}}+4\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}}\\
                                                                  • \bullet\,\,x_{6} = \cos{ \frac{10 \pi }{17}} + i \sin{\frac{10 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}-\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34+2\sqrt{17}+2\sqrt{34+2\sqrt{17}}+4\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}}\\
                                                                  • \bullet\,\,x_{7} = \cos{ \frac{12 \pi }{17}} + i \sin{\frac{12 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}+\sqrt{34+2\sqrt{17}}-2\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34+2\sqrt{17}-2\sqrt{34+2\sqrt{17}}+4\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}}\\
                                                                  • \bullet\,\,x_{8} = \cos{ \frac{14 \pi }{17}} + i \sin{\frac{14 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}+\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34+2\sqrt{17}-2\sqrt{34+2\sqrt{17}}-4\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}}\\
                                                                  • \bullet\,\,x_{9} = \cos{ \frac{16 \pi }{17}} + i \sin{\frac{16 \pi }{17}} = -\frac{1}{16}\left(1-\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34-2\sqrt{17}-2\sqrt{34-2\sqrt{17}}-4\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}}\\
                                                                  • \bullet\,\,x_{10} = \cos{ \frac{18 \pi }{17}} + i \sin{\frac{18 \pi }{17}} = -\frac{1}{16}\left(1-\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34-2\sqrt{17}-2\sqrt{34-2\sqrt{17}}-4\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}}\\
                                                                  • \bullet\,\,x_{11} = \cos{ \frac{20 \pi }{17}} + i \sin{\frac{20 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}+\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34+2\sqrt{17}-2\sqrt{34+2\sqrt{17}}-4\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}}\\
                                                                  • \bullet\,\,x_{12} = \cos{ \frac{22 \pi }{17}} + i \sin{\frac{22 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}+\sqrt{34+2\sqrt{17}}-2\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34+2\sqrt{17}-2\sqrt{34+2\sqrt{17}}+4\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}}\\
                                                                  • \bullet\,\,x_{13} = \cos{ \frac{24 \pi }{17}} + i \sin{\frac{24 \pi }{17}} = -\frac{1}{16}\left(1+\sqrt{17}-\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34+2\sqrt{17}+2\sqrt{34+2\sqrt{17}}+4\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}}\\
                                                                  • \bullet\,\,x_{14} = \cos{ \frac{26 \pi }{17}} + i \sin{\frac{26 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}-2\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34-2\sqrt{17}+2\sqrt{34-2\sqrt{17}}+4\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}}\\
                                                                  • \bullet\,\,x_{15} = \cos{ \frac{28 \pi }{17}} + i \sin{\frac{28 \pi }{17}} = \frac{1}{16}\left(-1-\sqrt{17}+\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34+2\sqrt{17}+2\sqrt{34+2\sqrt{17}}-4\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}}\\
                                                                  • \bullet\,\,x_{16} = \cos{ \frac{30 \pi }{17}} + i \sin{\frac{30 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}-\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34-2\sqrt{17}-2\sqrt{34-2\sqrt{17}}+4\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}}\\
                                                                  • \bullet\,\,x_{17} = \cos{ \frac{32 \pi }{17}} + i \sin{\frac{32 \pi }{17}} = \frac{1}{16}\left(-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34-2\sqrt{17}+2\sqrt{34-2\sqrt{17}}-4\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}}\\
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^17 - 1

                                                                  Irreducible polynomial factors

                                                                  The 2 factors are:

                                                                  • x - 1
                                                                  • x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1

                                                                  Roots

                                                                  The 17 roots are:

                                                                  • x1 = 1
                                                                  • x2 = cos (2*Pi/17) + I *sin(2*Pi/17) = (1/16)*(-1+17^(1/2)+(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34-2*17^(1/2)+2*(34-2*17^(1/2))^(1/2)-4*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                                                  • x3 = cos (4*Pi/17) + I *sin(4*Pi/17) = (1/16)*(-1+17^(1/2)-(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34-2*17^(1/2)-2*(34-2*17^(1/2))^(1/2)+4*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                                                  • x4 = cos (6*Pi/17) + I *sin(6*Pi/17) = (1/16)*(-1-17^(1/2)+(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34+2*17^(1/2)+2*(34+2*17^(1/2))^(1/2)-4*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                                                  • x5 = cos (8*Pi/17) + I *sin(8*Pi/17) = (1/16)*(-1+17^(1/2)+(34-2*17^(1/2))^(1/2)-2*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34-2*17^(1/2)+2*(34-2*17^(1/2))^(1/2)+4*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                                                  • x6 = cos (10*Pi/17) + I *sin(10*Pi/17) = -(1/16)*(1+17^(1/2)-(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34+2*17^(1/2)+2*(34+2*17^(1/2))^(1/2)+4*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                                                  • x7 = cos (12*Pi/17) + I *sin(12*Pi/17) = -(1/16)*(1+17^(1/2)+(34+2*17^(1/2))^(1/2)-2*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34+2*17^(1/2)-2*(34+2*17^(1/2))^(1/2)+4*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                                                  • x8 = cos (14*Pi/17) + I *sin(14*Pi/17) = -(1/16)*(1+17^(1/2)+(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34+2*17^(1/2)-2*(34+2*17^(1/2))^(1/2)-4*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                                                  • x9 = cos (16*Pi/17) + I *sin(16*Pi/17) = -(1/16)*(1-17^(1/2)+(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2)) + (I/8)*(34-2*17^(1/2)-2*(34-2*17^(1/2))^(1/2)-4*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                                                  • x10 = cos (18*Pi/17) + I *sin(18*Pi/17) = -(1/16)*(1-17^(1/2)+(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34-2*17^(1/2)-2*(34-2*17^(1/2))^(1/2)-4*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                                                  • x11 = cos (20*Pi/17) + I *sin(20*Pi/17) = -(1/16)*(1+17^(1/2)+(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34+2*17^(1/2)-2*(34+2*17^(1/2))^(1/2)-4*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                                                  • x12 = cos (22*Pi/17) + I *sin(22*Pi/17) = -(1/16)*(1+17^(1/2)+(34+2*17^(1/2))^(1/2)-2*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34+2*17^(1/2)-2*(34+2*17^(1/2))^(1/2)+4*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                                                  • x13 = cos (24*Pi/17) + I *sin(24*Pi/17) = -(1/16)*(1+17^(1/2)-(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34+2*17^(1/2)+2*(34+2*17^(1/2))^(1/2)+4*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                                                  • x14 = cos (26*Pi/17) + I *sin(26*Pi/17) = (1/16)*(-1+17^(1/2)+(34-2*17^(1/2))^(1/2)-2*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34-2*17^(1/2)+2*(34-2*17^(1/2))^(1/2)+4*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                                                  • x15 = cos (28*Pi/17) + I *sin(28*Pi/17) = (1/16)*(-1-17^(1/2)+(34+2*17^(1/2))^(1/2)+2*(17-3*17^(1/2)+(170-38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34+2*17^(1/2)+2*(34+2*17^(1/2))^(1/2)-4*(17-3*17^(1/2)-(170-38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                                                  • x16 = cos (30*Pi/17) + I *sin(30*Pi/17) = (1/16)*(-1+17^(1/2)-(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34-2*17^(1/2)-2*(34-2*17^(1/2))^(1/2)+4*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)
                                                                  • x17 = cos (32*Pi/17) + I *sin(32*Pi/17) = (1/16)*(-1+17^(1/2)+(34-2*17^(1/2))^(1/2)+2*(17+3*17^(1/2)-(170+38*17^(1/2))^(1/2))^(1/2))-(I/8)*(34-2*17^(1/2)+2*(34-2*17^(1/2))^(1/2)-4*(17+3*17^(1/2)+(170+38*17^(1/2))^(1/2))^(1/2))^(1/2)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^129 + 6*x^4 + 5

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 129 roots are:

                                                                  • x1 to x129 : The roots of the polynomial cannot be expressed by radicals. The degrees of the factors of polynomial modulo 31 are 2, 22, 38 and 67 (the Galois group contains a cycle of prime length greater than half the degree of polynomial (67 > 129 ÷ 2) and less than the degree minus 2 (67 < 129 − 2))

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x19 − 24⁢x18 + 22⁢x17 + 38⁢x16 − 335⁢x15 − 244⁢x14 + 361⁢x13 − 778⁢x12 − 2642⁢x11 − 2160⁢x10 − 575⁢x9

                                                                  Irreducible polynomial factors

                                                                  The 17 factors are:

                                                                  • x − 23
                                                                  • x9
                                                                  • (x + 1)5
                                                                  • (x2 − 3⁢x + 5)2

                                                                  Roots

                                                                  The 19 roots are:

                                                                  • x1 = 23
                                                                  • x2 to x10 = 0
                                                                  • x11 to x15 = -1
                                                                  • x16 = x17 = 3212 11 i
                                                                  • x18 = x19 = 32 + 12 11 i

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^{19} - 24x^{18} + 22x^{17} + 38x^{16} - 335x^{15} - 244x^{14} + 361x^{13} - 778x^{12} - 2642x^{11} - 2160x^{10} - 575x^{9}

                                                                  Irreducible polynomial factors

                                                                  The 17 factors are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,x - 23\\
                                                                  • \bullet\,\,x^{9}\\
                                                                  • \bullet\,\,(x + 1)^{5}\\
                                                                  • \bullet\,\,(x^{2} - 3x + 5)^{2}\\
                                                                  • \end{array}

                                                                  Roots

                                                                  The 19 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,x_{1} = 23\\
                                                                  • \bullet\,\,x_{2} to x_{10} = 0\\
                                                                  • \bullet\,\,x_{11} to x_{15} = -1\\
                                                                  • \bullet\,\,x_{16} = x_{17} = \frac{3}{2} - \frac{1}{2}\sqrt{11} i\\
                                                                  • \bullet\,\,x_{18} = x_{19} = \frac{3}{2} + \frac{1}{2}\sqrt{11} i\\
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  x^19 - 24*x^18 + 22*x^17 + 38*x^16 - 335*x^15 - 244*x^14 + 361*x^13 - 778*x^12 - 2642*x^11 - 2160*x^10 - 575*x^9

                                                                  Irreducible polynomial factors

                                                                  The 17 factors are:

                                                                  • x - 23
                                                                  • x^9
                                                                  • (x + 1)^5
                                                                  • (x^2 - 3*x + 5)^2

                                                                  Roots

                                                                  The 19 roots are:

                                                                  • x1 = 23
                                                                  • x2 to x10 = 0
                                                                  • x11 to x15 = -1
                                                                  • x16 = x17 = 3 / 2 - (1 / 2)*11^(1/2) *I
                                                                  • x18 = x19 = 3 / 2 + (1 / 2)*11^(1/2) *I

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  8x7 + 1

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 7 roots are:

                                                                  • x1 = 718 cosπ7 + i 718 sinπ7
                                                                  • x2 = 718 cos 3π7 + i 718 sin3π7
                                                                  • x3 = 718 cos 5π7 + i 718 sin5π7
                                                                  • x4 = 718 cosπ1 + i 718 sinπ1 = −718
                                                                  • x5 = 718 cos 9π7 + i 718 sin9π7
                                                                  • x6 = 718 cos 11π7 + i 718 sin11π7
                                                                  • x7 = 718 cos 13π7 + i 718 sin13π7

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  8x^{7} + 1

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 7 roots are:

                                                                  • \begin{array}{l}
                                                                  • \bullet\,\,x_{1} = \sqrt[7]{\frac{1}{8}} \cos{\frac{\pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{\pi }{7}}\\
                                                                  • \bullet\,\,x_{2} = \sqrt[7]{\frac{1}{8}} \cos{ \frac{3 \pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{3 \pi }{7}}\\
                                                                  • \bullet\,\,x_{3} = \sqrt[7]{\frac{1}{8}} \cos{ \frac{5 \pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{5 \pi }{7}}\\
                                                                  • \bullet\,\,x_{4} = \sqrt[7]{\frac{1}{8}} \cos{\frac{\pi }{1}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{\pi }{1}} = -\sqrt[7]{\frac{1}{8}}\\
                                                                  • \bullet\,\,x_{5} = \sqrt[7]{\frac{1}{8}} \cos{ \frac{9 \pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{9 \pi }{7}}\\
                                                                  • \bullet\,\,x_{6} = \sqrt[7]{\frac{1}{8}} \cos{ \frac{11 \pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{11 \pi }{7}}\\
                                                                  • \bullet\,\,x_{7} = \sqrt[7]{\frac{1}{8}} \cos{ \frac{13 \pi }{7}} + i \sqrt[7]{\frac{1}{8}} \sin{\frac{13 \pi }{7}}\\
                                                                  • \end{array}

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  8*x^7 + 1

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                  The 7 roots are:

                                                                  • x1 = ((1 / 8))^(1/7)*cos(Pi/7) + I *((1 / 8))^(1/7) * sin(Pi/7)
                                                                  • x2 = ((1 / 8))^(1/7)*cos (3*Pi/7) + I *((1 / 8))^(1/7) * sin(3*Pi/7)
                                                                  • x3 = ((1 / 8))^(1/7)*cos (5*Pi/7) + I *((1 / 8))^(1/7) * sin(5*Pi/7)
                                                                  • x4 = ((1 / 8))^(1/7)*cos(Pi/1) + I *((1 / 8))^(1/7) * sin(Pi/1) = -((1 / 8))^(1/7)
                                                                  • x5 = ((1 / 8))^(1/7)*cos (9*Pi/7) + I *((1 / 8))^(1/7) * sin(9*Pi/7)
                                                                  • x6 = ((1 / 8))^(1/7)*cos (11*Pi/7) + I *((1 / 8))^(1/7) * sin(11*Pi/7)
                                                                  • x7 = ((1 / 8))^(1/7)*cos (13*Pi/7) + I *((1 / 8))^(1/7) * sin(13*Pi/7)

                                                                  Time elapsed:

                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                  +2

                                                                  Your polynomial

                                                                  4

                                                                  Irreducible polynomial factors

                                                                  The polynomial is irreducible

                                                                  Roots

                                                                    Time elapsed:

                                                                    Written by Dario Alpern. Last updated on 15 December 2024.

                                                                    +2

                                                                    Your polynomial

                                                                    x^2 + x + 3

                                                                    Irreducible polynomial factors

                                                                    The polynomial is irreducible

                                                                    Roots

                                                                    The 2 roots are:

                                                                    • x1 = -1 / 2 - (1 / 2)*11^(1/2) *I
                                                                    • x2 = -1 / 2 + (1 / 2)*11^(1/2) *I

                                                                    Time elapsed:

                                                                    Written by Dario Alpern. Last updated on 15 December 2024.

                                                                    +2

                                                                    Your polynomial

                                                                    x + 3

                                                                    Irreducible polynomial factors

                                                                    The polynomial is irreducible

                                                                    Roots

                                                                    • x1 = -3

                                                                    Time elapsed:

                                                                    Written by Dario Alpern. Last updated on 15 December 2024.

                                                                    +2

                                                                    Your polynomial

                                                                    x^2 + 1

                                                                    Irreducible polynomial factors

                                                                    The polynomial is irreducible

                                                                    Roots

                                                                    The 2 roots are:

                                                                    • x1 = - 1 *I
                                                                    • x2 = 1 *I

                                                                    Time elapsed:

                                                                    Written by Dario Alpern. Last updated on 15 December 2024.

                                                                    +2

                                                                    Your polynomial

                                                                    1

                                                                    Irreducible polynomial factors

                                                                    The polynomial is irreducible

                                                                    Roots

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      x^4 + x^3 - x - 1

                                                                      Irreducible polynomial factors

                                                                      The 3 factors are:

                                                                      • x - 1
                                                                      • x + 1
                                                                      • x^2 + x + 1

                                                                      Roots

                                                                      The 4 roots are:

                                                                      • x1 = 1
                                                                      • x2 = -1
                                                                      • x3 = -1 / 2 - (1 / 2)*3^(1/2) *I
                                                                      • x4 = -1 / 2 + (1 / 2)*3^(1/2) *I

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      x^3

                                                                      Irreducible polynomial factors

                                                                      The 3 factors are:

                                                                      • x^3

                                                                      Roots

                                                                      The 3 roots are:

                                                                      • x1 to x3 = 0

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      x^10 + x^6

                                                                      Irreducible polynomial factors

                                                                      The 7 factors are:

                                                                      • x^6
                                                                      • x^4 + 1

                                                                      Roots

                                                                      The 10 roots are:

                                                                      • x1 to x6 = 0
                                                                      • x7 = (1 / 2)^(1/2) + (1 / 2)^(1/2)*I
                                                                      • x8 = (1 / 2)^(1/2) - (1 / 2)^(1/2)*I
                                                                      • x9 = -(1 / 2)^(1/2) + (1 / 2)^(1/2)*I
                                                                      • x10 = -(1 / 2)^(1/2) - (1 / 2)^(1/2)*I

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      Mod(1, 3)

                                                                      Irreducible polynomial factors

                                                                      The polynomial is irreducible

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      Mod(x^2 + x, 3)

                                                                      Irreducible polynomial factors

                                                                      The 2 factors are:

                                                                      • x
                                                                      • x + 1

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      Mod(x, 3)

                                                                      Irreducible polynomial factors

                                                                      The polynomial is irreducible

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      Mod(x^2 + 1, 3)

                                                                      Irreducible polynomial factors

                                                                      The polynomial is irreducible

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      Mod(1, 3)

                                                                      Irreducible polynomial factors

                                                                      The polynomial is irreducible

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      Mod(x^4 + x^3 + 2*x + 2, 3)

                                                                      Irreducible polynomial factors

                                                                      The 4 factors are:

                                                                      • x + 1
                                                                      • (x + 2)^3

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      Mod(x^3, 3)

                                                                      Irreducible polynomial factors

                                                                      The 3 factors are:

                                                                      • x^3

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      Mod(x^10 + x^6, 3)

                                                                      Irreducible polynomial factors

                                                                      The 8 factors are:

                                                                      • x^6
                                                                      • x^2 + x + 2
                                                                      • x^2 + 2*x + 2

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      Mod(x^60 + 1, 2)

                                                                      Irreducible polynomial factors

                                                                      The 20 factors are:

                                                                      • (x + 1)^4
                                                                      • (x^2 + x + 1)^4
                                                                      • (x^4 + x + 1)^4
                                                                      • (x^4 + x^3 + 1)^4
                                                                      • (x^4 + x^3 + x^2 + x + 1)^4

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      Mod(x^5 + 2*x^4 + x^3 + 3, 11)

                                                                      Irreducible polynomial factors

                                                                      The polynomial is irreducible

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      Mod(x^5 + 2*x^4 + x^3 + 3, 11)

                                                                      Irreducible polynomial factors

                                                                      The polynomial is irreducible

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      Mod(10*x^5 + 10*x^3 + 10, 11)

                                                                      Irreducible polynomial factors

                                                                      The 3 factors are:

                                                                      • 10
                                                                      • x + 7
                                                                      • x^4 + 4*x^3 + 6*x^2 + 2*x + 8

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      Mod(x^25, 11)

                                                                      Irreducible polynomial factors

                                                                      The 25 factors are:

                                                                      • x^25

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      Mod(x^15 + x^3 + x^2, 11)

                                                                      Irreducible polynomial factors

                                                                      The 5 factors are:

                                                                      • x^2
                                                                      • x + 9
                                                                      • x^4 + x^3 + 6*x + 9
                                                                      • x^8 + x^7 + 3*x^6 + 10*x^5 + 2*x^4 + 3*x^3 + 7*x^2 + 8*x + 3

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      Mod(x^5 + 1, 11)

                                                                      Irreducible polynomial factors

                                                                      The 5 factors are:

                                                                      • x + 1
                                                                      • x + 3
                                                                      • x + 4
                                                                      • x + 5
                                                                      • x + 9

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      Mod(10*x^9 + x^5 + x^3 + 1, 11)

                                                                      Irreducible polynomial factors

                                                                      The 4 factors are:

                                                                      • 10
                                                                      • x + 1
                                                                      • x + 2
                                                                      • x^7 + 8*x^6 + 7*x^5 + 7*x^4 + 8*x^3 + 6*x^2 + 9*x + 5

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      Mod(4*x^4 + 5*x^3 + 6*x^2 + 6*x + 4, 11)

                                                                      Irreducible polynomial factors

                                                                      The 3 factors are:

                                                                      • 4
                                                                      • x^2 + x + 7
                                                                      • x^2 + 3*x + 8

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      4*x^4 + 5*x^3 + 6*x^2 + 6*x + 4

                                                                      Irreducible polynomial factors

                                                                      The polynomial is irreducible

                                                                      Roots

                                                                      The 4 roots are:

                                                                      • t = acos((-21 / 23)*(6 / 23)^(1/2))
                                                                      • S = (1/2)*(-39 / 64 + (1 / 3)*(69 / 2)^(1/2)*cos(t / 3))^(1/2)
                                                                      • x1 = -5 / 16 + S + (I/2)*(4 *S^2 + 117 / 64 + 413 / (512 * S))^(1/2)
                                                                      • x2 = -5 / 16 + S - (I/2)*(4 *S^2 + 117 / 64 + 413 / (512 * S))^(1/2)
                                                                      • x3 = -5 / 16 - S + (I/2)*(4 *S^2 + 117 / 64 - 413 / (512 * S))^(1/2)
                                                                      • x4 = -5 / 16 - S - (I/2)*(4 *S^2 + 117 / 64 - 413 / (512 * S))^(1/2)

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      Mod(x^7 + x^2, 11)

                                                                      Irreducible polynomial factors

                                                                      The 7 factors are:

                                                                      • x^2
                                                                      • x + 1
                                                                      • x + 3
                                                                      • x + 4
                                                                      • x + 5
                                                                      • x + 9

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      Mod(4*x^8 + 8*x^4 + 4, 11)

                                                                      Irreducible polynomial factors

                                                                      The 5 factors are:

                                                                      • 4
                                                                      • (x^2 + 3*x + 10)^2
                                                                      • (x^2 + 8*x + 10)^2

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      Mod(2*x, 11)

                                                                      Irreducible polynomial factors

                                                                      The 2 factors are:

                                                                      • 2
                                                                      • x

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      Mod(x^2 + x + 10, 11)

                                                                      Irreducible polynomial factors

                                                                      The 2 factors are:

                                                                      • x + 4
                                                                      • x + 8

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      −x^5

                                                                      Irreducible polynomial factors

                                                                      The 6 factors are:

                                                                      • −1
                                                                      • x^5

                                                                      Roots

                                                                      The 5 roots are:

                                                                      • x1 to x5 = 0

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      x^5 + x^4 - 4*x^3 - 3*x^2 + 3*x + 1

                                                                      Irreducible polynomial factors

                                                                      The polynomial is irreducible

                                                                      Roots

                                                                      The 5 roots are:

                                                                      • x1 = -1 / 5 + (2 / 5)*11^(1/2)*(cos((1/5)*acos((-89 / 484)*11^(1/2) + (25 / 484)*55^(1/2))) + cos((1/5)*(4*Pi + acos((-89 / 484)*11^(1/2) - (25 / 484)*55^(1/2)))))
                                                                      • x2 = -1 / 5 + (2 / 5)*11^(1/2)*(cos((1/5)*(2*Pi + acos((-89 / 484)*11^(1/2) + (25 / 484)*55^(1/2)))) + cos((1/5)*acos((-89 / 484)*11^(1/2) - (25 / 484)*55^(1/2))))
                                                                      • x3 = -1 / 5 + (2 / 5)*11^(1/2)*(cos((1/5)*(4*Pi + acos((-89 / 484)*11^(1/2) + (25 / 484)*55^(1/2)))) + cos((1/5)*(6*Pi + acos((-89 / 484)*11^(1/2) - (25 / 484)*55^(1/2)))))
                                                                      • x4 = -1 / 5 + (2 / 5)*11^(1/2)*(cos((1/5)*(6*Pi + acos((-89 / 484)*11^(1/2) + (25 / 484)*55^(1/2)))) + cos((1/5)*(2*Pi + acos((-89 / 484)*11^(1/2) - (25 / 484)*55^(1/2)))))
                                                                      • x5 = -1 / 5 + (2 / 5)*11^(1/2)*(cos((1/5)*(8*Pi + acos((-89 / 484)*11^(1/2) + (25 / 484)*55^(1/2)))) + cos((1/5)*(8*Pi + acos((-89 / 484)*11^(1/2) - (25 / 484)*55^(1/2)))))

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      423 6836605*x^4 + 323 2968453*x^3 + 53 6741668*x^2 + 3 7982461*x + 1709169

                                                                      Irreducible polynomial factors

                                                                      The 2 factors are:

                                                                      • 61415x^2 + 4334*x + 343
                                                                      • 68987x^2 + 47773*x + 4983

                                                                      Roots

                                                                      The 4 roots are:

                                                                      • x1 = -2167 / 61415 - (4 / 61415)*1023091^(1/2) *I
                                                                      • x2 = -2167 / 61415 + (4 / 61415)*1023091^(1/2) *I
                                                                      • x3 = -47773 / 137974 - (1 / 137974)*90 7210645^(1/2)
                                                                      • x4 = -47773 / 137974 + (1 / 137974)*90 7210645^(1/2)

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      25716 2225748 9453541*x^4 + 5339 6315345 9320416*x^3 + 16134 3373525 6062469*x^2 + 2053 2826762 2151128*x + 1478 5481680 9063573

                                                                      Irreducible polynomial factors

                                                                      The 2 factors are:

                                                                      • 67 8585781x^2 + 4 3213515*x + 34 2143153
                                                                      • 378 9678961x^2 + 54 5543121*x + 43 2143141

                                                                      Roots

                                                                      The 4 roots are:

                                                                      • x1 = -4 3213515 / 135 7171562 - (1 / 135 7171562)*9268 2650689 0574747^(1/2) *I
                                                                      • x2 = -4 3213515 / 135 7171562 + (1 / 135 7171562)*9268 2650689 0574747^(1/2) *I
                                                                      • x3 = -54 5543121 / 757 9357922 - (1 / 757 9357922)*62531 1778148 2205363^(1/2) *I
                                                                      • x4 = -54 5543121 / 757 9357922 + (1 / 757 9357922)*62531 1778148 2205363^(1/2) *I

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      45876 4056192 7400868 2906871x^{4} + 29158 6367947 3120381 2844366x^{3} + 2934 8677804 6745747 3595759x^{2} + 1495272 0835562 2151128x + 148600 1039580 9063573

                                                                      Irreducible polynomial factors

                                                                      The 2 factors are:

                                                                      • \begin{array}{l}
                                                                      • \bullet\,\,67896 7896891x^{2} + 43154 5543121x + 4343 2143141\\
                                                                      • \bullet\,\,6756785 6785781x^{2} + 4 3213515x + 34 2143153\\
                                                                      • \end{array}

                                                                      Roots

                                                                      The 4 roots are:

                                                                      • \begin{array}{l}
                                                                      • \bullet\,\,x_{1} = \frac{-43154 5543121}{135793 5793782} - \frac{1}{135793 5793782}\sqrt{68 2754322 4394430 6922117}\\
                                                                      • \bullet\,\,x_{2} = \frac{-43154 5543121}{135793 5793782} + \frac{1}{135793 5793782}\sqrt{68 2754322 4394430 6922117}\\
                                                                      • \bullet\,\,x_{3} = \frac{-4 3213515}{1 3513571 3571562} - \frac{1}{1 3513571 3571562}\sqrt{92 4715163 8115034 8974747} i\\
                                                                      • \bullet\,\,x_{4} = \frac{-4 3213515}{1 3513571 3571562} + \frac{1}{1 3513571 3571562}\sqrt{92 4715163 8115034 8974747} i\\
                                                                      • \end{array}

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      x^4 - 1

                                                                      Irreducible polynomial factors

                                                                      The 3 factors are:

                                                                      • x - 1
                                                                      • x + 1
                                                                      • x^2 + 1

                                                                      Roots

                                                                      The 4 roots are:

                                                                      • x1 = 1
                                                                      • x2 = -1
                                                                      • x3 = - 1 *I
                                                                      • x4 = 1 *I

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      Mod(x^4 + 6, 7)

                                                                      Irreducible polynomial factors

                                                                      The 3 factors are:

                                                                      • x + 1
                                                                      • x + 6
                                                                      • x^2 + 1

                                                                      Time elapsed:

                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                      +2

                                                                      Your polynomial

                                                                      0

                                                                      Irreducible polynomial factors

                                                                      The polynomial is irreducible

                                                                      Roots

                                                                        Time elapsed:

                                                                        Written by Dario Alpern. Last updated on 15 December 2024.

                                                                        +2

                                                                        Your polynomial

                                                                        Mod(0, 7)

                                                                        Irreducible polynomial factors

                                                                        Leading coefficient multiple of prime

                                                                        Written by Dario Alpern. Last updated on 15 December 2024.

                                                                        +2

                                                                        Your polynomial

                                                                        x7 + 1 (mod 7)

                                                                        Irreducible polynomial factors

                                                                        The 7 factors are:

                                                                        • (x + 1)7

                                                                        Time elapsed:

                                                                        Written by Dario Alpern. Last updated on 15 December 2024.

                                                                        +2

                                                                        Your polynomial

                                                                        x^{7} + 1 (\pmod 7)

                                                                        Irreducible polynomial factors

                                                                        The 7 factors are:

                                                                        • \begin{array}{l}
                                                                        • \bullet\,\,(x + 1)^{7}\\
                                                                        • \end{array}

                                                                        Time elapsed:

                                                                        Written by Dario Alpern. Last updated on 15 December 2024.

                                                                        +2

                                                                        Your polynomial

                                                                        Mod(x^7 + 1, 7)

                                                                        Irreducible polynomial factors

                                                                        The 7 factors are:

                                                                        • (x + 1)^7

                                                                        Time elapsed:

                                                                        Written by Dario Alpern. Last updated on 15 December 2024.

                                                                        +2

                                                                        Your polynomial

                                                                        Mod(x^39 + 5585 4586408 3284006, 7^21)

                                                                        Irreducible polynomial factors

                                                                        The 6 factors are:

                                                                        • x + 1019 3584357 3231762
                                                                        • x + 4566 1002051 0052246
                                                                        • x + 5585 4586408 3284006
                                                                        • x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
                                                                        • x^12 + 1019 3584357 3231761*x^11 + 4566 1002051 0052245*x^10 + x^9 + 1019 3584357 3231761*x^8 + 4566 1002051 0052245*x^7 + x^6 + 1019 3584357 3231761*x^5 + 4566 1002051 0052245*x^4 + x^3 + 1019 3584357 3231761*x^2 + 4566 1002051 0052245*x + 1
                                                                        • x^12 + 4566 1002051 0052245*x^11 + 1019 3584357 3231761*x^10 + x^9 + 4566 1002051 0052245*x^8 + 1019 3584357 3231761*x^7 + x^6 + 4566 1002051 0052245*x^5 + 1019 3584357 3231761*x^4 + x^3 + 4566 1002051 0052245*x^2 + 1019 3584357 3231761*x + 1

                                                                        Time elapsed:

                                                                        Written by Dario Alpern. Last updated on 15 December 2024.

                                                                        +2

                                                                        Your polynomial

                                                                        Mod(x^39, 7^21)

                                                                        Irreducible polynomial factors

                                                                        Cannot lift because of duplicate factors modulo prime

                                                                        Written by Dario Alpern. Last updated on 15 December 2024.

                                                                        +2

                                                                        Your polynomial

                                                                        x4 + 100000 0000000 0000032⁢x3 + 99999 9999999 9999054⁢x2 + 2797⁢x + 99999 9999999 9998809 (mod 100000 0000000 0000051)

                                                                        Irreducible polynomial factors

                                                                        The 4 factors are:

                                                                        • x + 9624 0908064 2195803
                                                                        • x + 42561 5726276 4689743
                                                                        • x + 57438 4273723 5310331
                                                                        • x + 90375 9091935 7804206

                                                                        Time elapsed:

                                                                        Written by Dario Alpern. Last updated on 15 December 2024.

                                                                        +2

                                                                        Your polynomial

                                                                        x^{4} + 100000 0000000 0000032x^{3} + 99999 9999999 9999054x^{2} + 2797x + 99999 9999999 9998809 (\pmod 100000 0000000 0000051)

                                                                        Irreducible polynomial factors

                                                                        The 4 factors are:

                                                                        • \begin{array}{l}
                                                                        • \bullet\,\,x + 9624 0908064 2195803\\
                                                                        • \bullet\,\,x + 42561 5726276 4689743\\
                                                                        • \bullet\,\,x + 57438 4273723 5310331\\
                                                                        • \bullet\,\,x + 90375 9091935 7804206\\
                                                                        • \end{array}

                                                                        Time elapsed:

                                                                        Written by Dario Alpern. Last updated on 15 December 2024.

                                                                        +2

                                                                        Your polynomial

                                                                        Mod(x^4 + 100000 0000000 0000032*x^3 + 99999 9999999 9999054*x^2 + 2797*x + 99999 9999999 9998809, 100000 0000000 0000051)

                                                                        Irreducible polynomial factors

                                                                        The 4 factors are:

                                                                        • x + 9624 0908064 2195803
                                                                        • x + 42561 5726276 4689743
                                                                        • x + 57438 4273723 5310331
                                                                        • x + 90375 9091935 7804206

                                                                        Time elapsed:

                                                                        Written by Dario Alpern. Last updated on 15 December 2024.

                                                                        +2

                                                                        Only integer numbers are accepted

                                                                        Written by Dario Alpern. Last updated on 15 December 2024.

                                                                        +2

                                                                        Only integer numbers are accepted

                                                                        Written by Dario Alpern. Last updated on 15 December 2024.

                                                                        +2

                                                                        Only integer numbers are accepted

                                                                        Written by Dario Alpern. Last updated on 15 December 2024.

                                                                        +2

                                                                        Your polynomial fraction

                                                                        ( −x^3 + 3*x^2 + x - 1) / (x^3 - x)

                                                                        Irreducible numerator factors

                                                                        The 2 factors are:

                                                                        • −1
                                                                        • x^3 - 3*x^2 - x + 1

                                                                        Roots

                                                                        The 3 roots are:

                                                                        • t = (1/3) * acos((3 / 8)*3^(1/2))
                                                                        • x1 = 1 + 4*(1 / 3)^(1/2)* cos(t)
                                                                        • x2 = 1 + 4*(1 / 3)^(1/2)* cos(t + 2 * Pi / 3)
                                                                        • x3 = 1 + 4*(1 / 3)^(1/2)* cos(t + 4 * Pi / 3)

                                                                        Time elapsed:

                                                                        Written by Dario Alpern. Last updated on 15 December 2024.

                                                                        +2

                                                                        Your polynomial fraction

                                                                        (Mod(6*x^3 + 3*x^2 + x + 6, 7)) / (Mod(x^3 + 6*x, 7))

                                                                        Irreducible numerator factors

                                                                        The 2 factors are:

                                                                        • 6
                                                                        • x^3 + 4*x^2 + 6*x + 1

                                                                        Time elapsed:

                                                                        Written by Dario Alpern. Last updated on 15 December 2024.

                                                                        +2

                                                                        Your polynomial

                                                                        x^4 + 1

                                                                        Irreducible polynomial factors

                                                                        The polynomial is irreducible

                                                                        Roots

                                                                        The 4 roots are:

                                                                        • x1 = (1 / 2)^(1/2) + (1 / 2)^(1/2)*I
                                                                        • x2 = (1 / 2)^(1/2) - (1 / 2)^(1/2)*I
                                                                        • x3 = -(1 / 2)^(1/2) + (1 / 2)^(1/2)*I
                                                                        • x4 = -(1 / 2)^(1/2) - (1 / 2)^(1/2)*I

                                                                        Time elapsed:

                                                                        Written by Dario Alpern. Last updated on 15 December 2024.

                                                                        +2

                                                                        Your polynomial

                                                                        Mod(x^4 + 1, 7)

                                                                        Irreducible polynomial factors

                                                                        The 2 factors are:

                                                                        • x^2 + 3*x + 1
                                                                        • x^2 + 4*x + 1

                                                                        Time elapsed:

                                                                        Written by Dario Alpern. Last updated on 15 December 2024.

                                                                        +2

                                                                        Your polynomial fraction

                                                                        (4*x - 48) / (3)

                                                                        Irreducible numerator factors

                                                                        The 2 factors are:

                                                                        • 4
                                                                        • x - 12

                                                                        Roots

                                                                        • x1 = 12

                                                                        Time elapsed:

                                                                        Written by Dario Alpern. Last updated on 15 December 2024.

                                                                        +2

                                                                        Your polynomial

                                                                        0

                                                                        Irreducible polynomial factors

                                                                        The polynomial is irreducible

                                                                        Roots

                                                                          Time elapsed:

                                                                          Written by Dario Alpern. Last updated on 15 December 2024.

                                                                          +2

                                                                          Your polynomial

                                                                          2*x^3 + 6*x

                                                                          Irreducible polynomial factors

                                                                          The 3 factors are:

                                                                          • 2
                                                                          • x
                                                                          • x^2 + 3

                                                                          Roots

                                                                          The 3 roots are:

                                                                          • x1 = 0
                                                                          • x2 = - 3^(1/2) *I
                                                                          • x3 = 3^(1/2) *I

                                                                          Time elapsed:

                                                                          Written by Dario Alpern. Last updated on 15 December 2024.

                                                                          +2

                                                                          Your polynomial

                                                                          0

                                                                          Irreducible polynomial factors

                                                                          The polynomial is irreducible

                                                                          Roots

                                                                            Time elapsed:

                                                                            Written by Dario Alpern. Last updated on 15 December 2024.

                                                                            +2

                                                                            Your polynomial fraction

                                                                            (x^3 + 9*x^2 + 39*x + 111) / (4)

                                                                            Irreducible numerator factors

                                                                            The polynomial is irreducible because of Eisenstein's criterion (prime = 3)

                                                                            Roots

                                                                            The 3 roots are:

                                                                            • r = (-24 + 8*10^(1/2))^(1/3)
                                                                            • s = -(24 + 8*10^(1/2))^(1/3)
                                                                            • x1 = -3 + r + s
                                                                            • x2 = -3 - (r + s) / 2 + (I/2) * (r - s) * 3^(1/2)
                                                                            • x3 = -3 - (r + s) / 2 - (I/2) * (r - s) * 3^(1/2)

                                                                            Time elapsed:

                                                                            Written by Dario Alpern. Last updated on 15 December 2024.

                                                                            +2

                                                                            Your polynomial

                                                                            0

                                                                            Irreducible polynomial factors

                                                                            The polynomial is irreducible

                                                                            Roots

                                                                              Time elapsed:

                                                                              Written by Dario Alpern. Last updated on 15 December 2024.

                                                                              +2

                                                                              Division by zero

                                                                              Written by Dario Alpern. Last updated on 15 December 2024.

                                                                              +2

                                                                              Division by zero

                                                                              Written by Dario Alpern. Last updated on 15 December 2024.

                                                                              +2

                                                                              Your polynomial

                                                                              1

                                                                              Irreducible polynomial factors

                                                                              The polynomial is irreducible

                                                                              Roots

                                                                                Time elapsed:

                                                                                Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                +2

                                                                                Your polynomial fraction

                                                                                (1) / (x^3 - 3*x^2 + 3*x - 1)

                                                                                Irreducible numerator factors

                                                                                The polynomial is irreducible

                                                                                Roots

                                                                                  Time elapsed:

                                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                  +2

                                                                                  Denominator must be constant

                                                                                  Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                  +2

                                                                                  Your polynomial fraction

                                                                                  (1) / (x^3)

                                                                                  Irreducible numerator factors

                                                                                  The polynomial is irreducible

                                                                                  Roots

                                                                                    Time elapsed:

                                                                                    Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                    +2

                                                                                    Your polynomial fraction

                                                                                    (1) / (x^3 + 6*x^2 + 12*x + 8)

                                                                                    Irreducible numerator factors

                                                                                    The polynomial is irreducible

                                                                                    Roots

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Your polynomial fraction

                                                                                      (x^3 + 6*x^2 + 12*x + 8) / (x^2)

                                                                                      Irreducible numerator factors

                                                                                      The 3 factors are:

                                                                                      • (x + 2)^3

                                                                                      Roots

                                                                                      The 3 roots are:

                                                                                      • x1 to x3 = -2

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Your polynomial

                                                                                      Mod(x^3 + 100000 0000000 0000050*x^2 + 100000 0000000 0000050*x + 1, 100000 0000000 0000051)

                                                                                      Irreducible polynomial factors

                                                                                      The 3 factors are:

                                                                                      • x + 1
                                                                                      • (x + 100000 0000000 0000050)^2

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Your polynomial

                                                                                      x + 6

                                                                                      Irreducible polynomial factors

                                                                                      The polynomial is irreducible

                                                                                      Roots

                                                                                      • The equation to solve is:

                                                                                        x + 6 = 0

                                                                                        x1 = -6

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Your polynomial

                                                                                      5x + 6

                                                                                      Irreducible polynomial factors

                                                                                      The polynomial is irreducible

                                                                                      Roots

                                                                                      • The equation to solve is:

                                                                                        5x + 6 = 0

                                                                                        Dividing the equation by the linear coefficient:

                                                                                        x + 65 = 0

                                                                                        x1 = -65

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Your polynomial

                                                                                      x2 + 6

                                                                                      Irreducible polynomial factors

                                                                                      The polynomial is irreducible because of Eisenstein's criterion (prime = 2)

                                                                                      Roots

                                                                                      The 2 roots are:

                                                                                      • The equation to solve is:

                                                                                        x2 + 6 = 0

                                                                                        x = ±(-6)

                                                                                        x1 = − 6 i

                                                                                        x2 = 6 i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Your polynomial

                                                                                      x2 + 9

                                                                                      Irreducible polynomial factors

                                                                                      The polynomial is irreducible

                                                                                      Roots

                                                                                      The 2 roots are:

                                                                                      • The equation to solve is:

                                                                                        x2 + 9 = 0

                                                                                        x = ±3 (-1)

                                                                                        x1 = − 3 i

                                                                                        x2 = 3 i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Your polynomial

                                                                                      x2 − 9

                                                                                      Irreducible polynomial factors

                                                                                      The 2 factors are:

                                                                                      • x − 3
                                                                                      • x + 3

                                                                                      Roots

                                                                                      The 2 roots are:

                                                                                      • The equation to solve is:

                                                                                        x − 3 = 0

                                                                                        x1 = 3

                                                                                      • The equation to solve is:

                                                                                        x + 3 = 0

                                                                                        x2 = -3

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Your polynomial

                                                                                      x2 − 7⁢x + 9

                                                                                      Irreducible polynomial factors

                                                                                      The polynomial is irreducible

                                                                                      Roots

                                                                                      The 2 roots are:

                                                                                      • The equation to solve is:

                                                                                        x2 − 7x + 9 = 0

                                                                                        To eliminate the linear term, we will perform the following substitution:

                                                                                        x = y + 72

                                                                                        The constant value in the substitution equals half of the linear coefficient.

                                                                                        y + 722 − 7y + 72 + 9 = 0

                                                                                        Expanding brackets:

                                                                                        y2 + 7y + 494 − 7y492 + 9 = 0

                                                                                        Simplifying:

                                                                                        y2134 = 0

                                                                                        y = ±12 13

                                                                                        x72 = ±12 13

                                                                                        x1 = 7212 13

                                                                                        x2 = 72 + 12 13

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Your polynomial

                                                                                      x3 − 9

                                                                                      Irreducible polynomial factors

                                                                                      The polynomial is irreducible

                                                                                      Roots

                                                                                      The 3 roots are:

                                                                                      • The equation to solve is:

                                                                                        x3 − 9 = 0

                                                                                        The solutions are the real cube root of 9 and the multiplication by both non-real cube roots of 1:

                                                                                        e = − 12 + i23, f = − 12i23

                                                                                        x1 = 9

                                                                                        x2 = − 12 9 + i23 9

                                                                                        x3 = − 12 9i23 9

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Your polynomial

                                                                                      x3 − 23⁢x − 9

                                                                                      Irreducible polynomial factors

                                                                                      The polynomial is irreducible

                                                                                      Roots

                                                                                      The 3 roots are:

                                                                                      • The equation to solve is:

                                                                                        x3 − 23x − 9 = 0

                                                                                        The nature of the roots depends on the value of the discriminant.

                                                                                        Δ = − 4p3 − 27q2

                                                                                        where p is the linear coefficient and q is the constant term.

                                                                                        Δ = −4-233 − 27-92 = 46481

                                                                                        The discriminant is positive, which implies that all three roots are real. In this case the roots cannot be represented by radical expressions of real numbers, so we must use trigonometry.

                                                                                        Starting with the formula of the triple angle:

                                                                                        4cos t3 − 3cos tcos3t = 0

                                                                                        Let x = u cos t. From the previous equation to the definition of the discriminant:

                                                                                        u3cos t3 − 23u cos t − 9 = 0

                                                                                        We will equate the terms of both equations from left to right. Dividing by u3 / 4:

                                                                                        4cos t392u2cos t36u3 = 0

                                                                                        The second coefficient must equal −3, so:

                                                                                        u = 2 233

                                                                                        Equating the last term:

                                                                                        cos3t = 36u3 = 2746 323

                                                                                      • t = 13arc cos2746 323

                                                                                        x1 = 2 233 cos(t)

                                                                                        x2 = 2 233 cost + 2π3

                                                                                        x3 = 2 233 cost + 4π3

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Your polynomial

                                                                                      x3 + 12⁢x2 + 23⁢x − 9

                                                                                      Irreducible polynomial factors

                                                                                      The polynomial is irreducible

                                                                                      Roots

                                                                                      The 3 roots are:

                                                                                      • The equation to solve is:

                                                                                        x3 + 12x2 + 23x − 9 = 0

                                                                                        To eliminate the quadratic term, we will perform the following substitution:

                                                                                        x = y − 4

                                                                                        The constant value in the substitution equals a third of the quadratic coefficient.

                                                                                        y − 43 + 12y − 42 + 23y − 4 − 9 = 0

                                                                                        Expanding brackets:

                                                                                        y3 − 12y2 + 48y − 64 + 12y2 − 96y + 192 + 23y − 92 − 9 = 0

                                                                                        Simplifying:

                                                                                        y3 − 25y + 27 = 0

                                                                                        The nature of the roots depends on the value of the discriminant.

                                                                                        Δ = − 4p3 − 27q2

                                                                                        where p is the linear coefficient and q is the constant term.

                                                                                        Δ = −4-253 − 27272 = 42817

                                                                                        The discriminant is positive, which implies that all three roots are real. In this case the roots cannot be represented by radical expressions of real numbers, so we must use trigonometry.

                                                                                        Starting with the formula of the triple angle:

                                                                                        4cos t3 − 3cos tcos3t = 0

                                                                                        Let y = u cos t. From the previous equation to the definition of the discriminant:

                                                                                        u3cos t3 − 25u cos t + 27 = 0

                                                                                        We will equate the terms of both equations from left to right. Dividing by u3 / 4:

                                                                                        4cos t3100u2cos t + 108u3 = 0

                                                                                        The second coefficient must equal −3, so:

                                                                                        u = 10 13

                                                                                        Equating the last term:

                                                                                        cos3t = − 108u3 = -81250 3

                                                                                      • t = 13arc cos-81250 3

                                                                                        x1 = -4 + 10 13 cos(t)

                                                                                        x2 = -4 + 10 13 cost + 2π3

                                                                                        x3 = -4 + 10 13 cost + 4π3

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Your polynomial

                                                                                      x3x − 9

                                                                                      Irreducible polynomial factors

                                                                                      The polynomial is irreducible

                                                                                      Roots

                                                                                      The 3 roots are:

                                                                                      • The equation to solve is:

                                                                                        x3x − 9 = 0

                                                                                        The nature of the roots depends on the value of the discriminant.

                                                                                        Δ = − 4p3 − 27q2

                                                                                        where p is the linear coefficient and q is the constant term.

                                                                                        Δ = −4-13 − 27-92 = -2183

                                                                                        The discriminant is negative, so there is a real root and two complex conjugate roots.

                                                                                        Using Cardano's method, setting x = r + s:

                                                                                        r + s3r + s − 9 = 0

                                                                                        r3 + 3r2s + 3rs2 + s3r + s − 9 = 0

                                                                                        r3 + s3 + 3rsr + sr + s − 9 = 0

                                                                                        r3 + s3 + 3rs − 1r + s − 9 = 0    (1)

                                                                                        Since there is an extra variable, we can impose an additional condition. In our case it is:

                                                                                        3rs − 1 = 0    (2)

                                                                                        rs = 13    (3)

                                                                                        r3s3 = 127    (4)

                                                                                        From (1) and (2):

                                                                                        r3 + s3 − 9 = 0    (5)

                                                                                        Multiplying by r3:

                                                                                        r6 + r3s3 − 9r3 = 0

                                                                                        From (4):

                                                                                        r6 + 127 − 9r3 = 0

                                                                                        r6 − 9r3 + 127 = 0

                                                                                        This is a quadratic equation in r3. If we multiplied (5) by s3 instead of r3, the equation coefficients would be the same, so the quadratic equation can also give us the value of s3. Let w = r3 or s3.

                                                                                        w2 − 9w + 127 = 0

                                                                                        To eliminate the linear term, we will perform the following substitution:

                                                                                        w = z + 92

                                                                                        The constant value in the substitution equals half of the linear coefficient.

                                                                                        z + 922 − 9z + 92 + 127 = 0

                                                                                        Expanding brackets:

                                                                                        z2 + 9z + 814 − 9z812 + 127 = 0

                                                                                        Simplifying:

                                                                                        z22183108 = 0

                                                                                        z = ±16 21833

                                                                                        w92 = ±16 21833

                                                                                        r = 92 + 16 21833

                                                                                        s = 9216 21833

                                                                                        A cubic root has three solutions in the complex field. But we cannot select any value for r and s because the condition (3) must be true. So their product must be a real number.

                                                                                        Let r1 = r, r2 = re, r3 = rf, s1 = s, s2 = se, s3 = sf, where

                                                                                        e = − 12 + i23, f = − 12i23

                                                                                        are the non-real cubic roots of 1. Since ef is real, but e2 and f2 are not, the values of x that follow the condition (3) are:

                                                                                        x1 = r1 + s1 = r + s

                                                                                        x2 = r2 + s3 = r 12 + i23 + s 12i23

                                                                                        x3 = r3 + s2 = r 12i23 + s 12 + i23

                                                                                        x1 = r + s

                                                                                        x2 = −r + s2 + i rs23

                                                                                        x3 = −r + s2 − i rs23

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Your polynomial

                                                                                      x3 + x2 − 9

                                                                                      Irreducible polynomial factors

                                                                                      The polynomial is irreducible

                                                                                      Roots

                                                                                      The 3 roots are:

                                                                                      • The equation to solve is:

                                                                                        x3 + x2 − 9 = 0

                                                                                        To eliminate the quadratic term, we will perform the following substitution:

                                                                                        x = y13

                                                                                        The constant value in the substitution equals a third of the quadratic coefficient.

                                                                                        y133 + y132 − 9 = 0

                                                                                        Expanding brackets:

                                                                                        y3y2 + 13y127 + y223y + 19 − 9 = 0

                                                                                        Simplifying:

                                                                                        y313y24127 = 0

                                                                                        The nature of the roots depends on the value of the discriminant.

                                                                                        Δ = − 4p3 − 27q2

                                                                                        where p is the linear coefficient and q is the constant term.

                                                                                        Δ = −4-133 − 27-241272 = -2151

                                                                                        The discriminant is negative, so there is a real root and two complex conjugate roots.

                                                                                        Using Cardano's method, setting y = r + s:

                                                                                        r + s313r + s24127 = 0

                                                                                        r3 + 3r2s + 3rs2 + s313r + s24127 = 0

                                                                                        r3 + s3 + 3rsr + s13r + s24127 = 0

                                                                                        r3 + s3 + 3rs13r + s24127 = 0    (1)

                                                                                        Since there is an extra variable, we can impose an additional condition. In our case it is:

                                                                                        3rs13 = 0    (2)

                                                                                        rs = 19    (3)

                                                                                        r3s3 = 1729    (4)

                                                                                        From (1) and (2):

                                                                                        r3 + s324127 = 0    (5)

                                                                                        Multiplying by r3:

                                                                                        r6 + r3s324127r3 = 0

                                                                                        From (4):

                                                                                        r6 + 172924127r3 = 0

                                                                                        r624127r3 + 1729 = 0

                                                                                        This is a quadratic equation in r3. If we multiplied (5) by s3 instead of r3, the equation coefficients would be the same, so the quadratic equation can also give us the value of s3. Let w = r3 or s3.

                                                                                        w224127w + 1729 = 0

                                                                                        To eliminate the linear term, we will perform the following substitution:

                                                                                        w = z + 24154

                                                                                        The constant value in the substitution equals half of the linear coefficient.

                                                                                        z + 24154224127z + 24154 + 1729 = 0

                                                                                        Expanding brackets:

                                                                                        z2 + 24127z + 58081291624127z580811458 + 1729 = 0

                                                                                        Simplifying:

                                                                                        z223912 = 0

                                                                                        z = ±12 2393

                                                                                        w24154 = ±12 2393

                                                                                        r = 24154 + 12 2393

                                                                                        s = 2415412 2393

                                                                                        A cubic root has three solutions in the complex field. But we cannot select any value for r and s because the condition (3) must be true. So their product must be a real number.

                                                                                        Let r1 = r, r2 = re, r3 = rf, s1 = s, s2 = se, s3 = sf, where

                                                                                        e = − 12 + i23, f = − 12i23

                                                                                        are the non-real cubic roots of 1. Since ef is real, but e2 and f2 are not, the values of y that follow the condition (3) are:

                                                                                        y1 = x1 + 13 = r1 + s1 = r + s

                                                                                        y2 = x2 + 13 = r2 + s3 = r 12 + i23 + s 12i23

                                                                                        y3 = x3 + 13 = r3 + s2 = r 12i23 + s 12 + i23

                                                                                        x1 = -13 + r + s

                                                                                        x2 = -13r + s2 + i rs23

                                                                                        x3 = -13r + s2 − i rs23

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Your polynomial

                                                                                      x20 + 13⁢x + 6 (mod 811)

                                                                                      Irreducible polynomial factors

                                                                                      Dividing the polynomial by the leading coefficient:

                                                                                      f(x) ≡ x20 + 13⁢x + 6

                                                                                      Squarefree factorization

                                                                                      The derivative of f(x) is:

                                                                                      f '(x) ≡ x19 + 13

                                                                                      c0(x) = gcd(f(x), f '(x) ≡ 1

                                                                                      w0(x) = f(x)/c0(x) ≡ x20 + 13⁢x + 6

                                                                                      w1(x) = gcd(w0, c0) ≡ 1

                                                                                      z1(x) = w0(x) / w1(x) ≡ x20 + 13⁢x + 6 is a factor of f(x) with multiplicity 1

                                                                                      c1(x) = c0(x) / w1(x) ≡ 1

                                                                                      Distinct degree factorization

                                                                                      • Factoring f(x) ≡ x20 + 13⁢x + 6

                                                                                        For all degrees d between 1 and 10, the product of all factors of degree d is found by computing gcd(f(x), x811^dx)

                                                                                        gcd(f(x), x811^2x) ≡ x2 + 234⁢x + 416

                                                                                        This polynomial has 1 irreducible factor of degree 2

                                                                                        The new value of f(x) is the quotient between f(x) and the previous gcd.

                                                                                        For all degrees d between 3 and 9, the product of all factors of degree d is found by computing gcd(f(x), x811^dx)

                                                                                        gcd(f(x), x811^7x) ≡ x7 + 696⁢x6 + 693⁢x5 + 164⁢x4 + 43⁢x3 + 586⁢x2 + 355⁢x + 568

                                                                                        This polynomial has 1 irreducible factor of degree 7

                                                                                        The new value of f(x) is the quotient between f(x) and the previous gcd.

                                                                                        f(x) ≡ x11 + 692⁢x10 + 223⁢x9 + 218⁢x8 + 370⁢x7 + 209⁢x6 + 248⁢x5 + 217⁢x4 + 573⁢x3 + 611⁢x2 + 343⁢x + 195

                                                                                        This polynomial is irreducible.

                                                                                      Equal degree factorization

                                                                                      List of factors

                                                                                      The 3 factors are:

                                                                                      • x2 + 234⁢x + 416
                                                                                      • x7 + 696⁢x6 + 693⁢x5 + 164⁢x4 + 43⁢x3 + 586⁢x2 + 355⁢x + 568
                                                                                      • x11 + 692⁢x10 + 223⁢x9 + 218⁢x8 + 370⁢x7 + 209⁢x6 + 248⁢x5 + 217⁢x4 + 573⁢x3 + 611⁢x2 + 343⁢x + 195

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Your polynomial

                                                                                      x20 + x (mod 2)

                                                                                      Irreducible polynomial factors

                                                                                      Dividing the polynomial by the leading coefficient:

                                                                                      f(x) ≡ x20 + x

                                                                                      Squarefree factorization

                                                                                      The derivative of f(x) is:

                                                                                      f '(x) ≡ 1

                                                                                      c0(x) = gcd(f(x), f '(x) ≡ 1

                                                                                      w0(x) = f(x)/c0(x) ≡ x20 + x

                                                                                      w1(x) = gcd(w0, c0) ≡ 1

                                                                                      z1(x) = w0(x) / w1(x) ≡ x20 + x is a factor of f(x) with multiplicity 1

                                                                                      c1(x) = c0(x) / w1(x) ≡ 1

                                                                                      Distinct degree factorization

                                                                                      • Factoring f(x) ≡ x20 + x

                                                                                        For all degrees d between 1 and 10, the product of all factors of degree d is found by computing gcd(f(x), x2^dx)

                                                                                        gcd(f(x), x2^1x) ≡ x2 + x

                                                                                        This polynomial has 2 irreducible factors of degree 1

                                                                                        The new value of f(x) is the quotient between f(x) and the previous gcd.

                                                                                        For all degrees d between 2 and 9, the product of all factors of degree d is found by computing gcd(f(x), x2^dx)

                                                                                        f(x) ≡ x18 + x17 + x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1

                                                                                        This polynomial is irreducible.

                                                                                      Equal degree factorization

                                                                                      • Factoring in polynomials of degree 1 f(x) ≡ x2 + x

                                                                                        Choosing h(x) at random, let g = h + h2 (mod f), then compute gcd(g, f) until the gcd is not equal to one of its arguments.

                                                                                        r ≡ gcd(g, f) ≡ x + 1

                                                                                        f / rx

                                                                                      List of factors

                                                                                      The 3 factors are:

                                                                                      • x
                                                                                      • x + 1
                                                                                      • x18 + x17 + x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Your polynomial

                                                                                      Mod(x^3 + 100000 0000000 0000050*x^2 + 100000 0000000 0000050*x + 1, 100000 0000000 0000051)

                                                                                      Irreducible polynomial factors

                                                                                      Dividing the polynomial by the leading coefficient:

                                                                                      f(x) = Mod(x^3 + 100000 0000000 0000050*x^2 + 100000 0000000 0000050*x + 1, 100000 0000000 0000051)

                                                                                      Squarefree factorization

                                                                                      The derivative of f(x) is:

                                                                                      deriv(f(x)) = Mod(x^2 + 100000 0000000 0000049*x + 100000 0000000 0000050, 100000 0000000 0000051)

                                                                                      c0(x) = gcd(f(x), deriv(f(x)) = Mod(x + 100000 0000000 0000050, 100000 0000000 0000051)

                                                                                      w0(x) = f(x)/c0(x) = Mod(x^2 + 100000 0000000 0000050, 100000 0000000 0000051)

                                                                                      w1(x) = gcd(w0, c0) = Mod(x + 100000 0000000 0000050, 100000 0000000 0000051)

                                                                                      z1(x) = w0(x) / w1(x) = Mod(x + 1, 100000 0000000 0000051) is a factor of f(x) with multiplicity 1

                                                                                      c1(x) = c0(x) / w1(x) = Mod(1, 100000 0000000 0000051)

                                                                                      w2(x) = gcd(w1, c1) = Mod(1, 100000 0000000 0000051)

                                                                                      z2(x) = w1(x) / w2(x) = Mod(x + 100000 0000000 0000050, 100000 0000000 0000051) is a factor of f(x) with multiplicity 2

                                                                                      c2(x) = c1(x) / w2(x) = Mod(1, 100000 0000000 0000051)

                                                                                      Distinct degree factorization

                                                                                      Equal degree factorization

                                                                                      List of factors

                                                                                      The 3 factors are:

                                                                                      • x + 1
                                                                                      • (x + 100000 0000000 0000050)^2

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Your polynomial

                                                                                      Mod(7*x^3 + 2*x^2 + x + 56, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151^4)

                                                                                      Irreducible polynomial factors

                                                                                      Dividing the polynomial by the leading coefficient:

                                                                                      f(x) = Mod(x^3 + 2 8571428 5714285 7142857 1428571 4285714 2857142 8571472*x^2 + 1 4285714 2857142 8571428 5714285 7142857 1428571 4285736*x + 8, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                                                                      Squarefree factorization

                                                                                      The derivative of f(x) is:

                                                                                      deriv(f(x)) = Mod(x^2 + 5 7142857 1428571 4285714 2857142 8571428 5714285 7142944*x + 1 4285714 2857142 8571428 5714285 7142857 1428571 4285736, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                                                                      c0(x) = gcd(f(x), deriv(f(x)) = Mod(1, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                                                                      w0(x) = f(x)/c0(x) = Mod(x^3 + 2 8571428 5714285 7142857 1428571 4285714 2857142 8571472*x^2 + 1 4285714 2857142 8571428 5714285 7142857 1428571 4285736*x + 8, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                                                                      w1(x) = gcd(w0, c0) = Mod(1, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                                                                      z1(x) = w0(x) / w1(x) = Mod(x^3 + 2 8571428 5714285 7142857 1428571 4285714 2857142 8571472*x^2 + 1 4285714 2857142 8571428 5714285 7142857 1428571 4285736*x + 8, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits)) is a factor of f(x) with multiplicity 1

                                                                                      c1(x) = c0(x) / w1(x) = Mod(1, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                                                                      Distinct degree factorization

                                                                                      • Factoring f(x) = Mod(x^3 + 2 8571428 5714285 7142857 1428571 4285714 2857142 8571472*x^2 + 1 4285714 2857142 8571428 5714285 7142857 1428571 4285736*x + 8, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                                                                        For all degrees d between 1 and 1, the product of all factors of degree d is found by computing gcd(f(x), x^10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits)^d - x)

                                                                                        gcd(f(x), x^10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits)^1 - x) = Mod(x + 2 4639512 5724756 3725390 7115163 5734626 8558610 1091198, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                                                                        This polynomial has 1 irreducible factor of degree 1

                                                                                        The new value of f(x) is the quotient between f(x) and the previous gcd.

                                                                                        f(x) = Mod(x^2 + 3931915 9989529 3417466 4313407 8551087 4298532 7480274*x + 1 6428539 4662860 0860598 5329237 2966977 1971158 4894547, 10 0000000 0000000 0000000 0000000 0000000 0000000 0000151 (51 digits))

                                                                                        This polynomial is irreducible.

                                                                                      Equal degree factorization

                                                                                      Hensel Lifting

                                                                                      f_1 = x^3 + 71 4285714 2857142 8571428 5714285 7142857 1428571 4287871 4285714 2857142 8571428 5714285 7142857 1428571 4302001*x^2 + 85 7142857 1428571 4285714 2857142 8571428 5714285 7145445 7142857 1428571 4285714 2857142 8571428 5714285 7162401*x + 8

                                                                                      f_{1, 1} = x^2 + 3931915 9989529 3417466 4313407 8551087 4298532 7480274*x + 1 6428539 4662860 0860598 5329237 2966977 1971158 4894547

                                                                                      f_{1, 2} = x + 2 4639512 5724756 3725390 7115163 5734626 8558610 1091198

                                                                                      Using the extended GCD algorithm, compute a_{1, 1}, ..., a_{1, n} such that

                                                                                      1 = (f_1(x)/f_{1, 1}(x)) * a_{1, 1}(x) + ... + (f_1(x)/f_{1, n}(x)) * a_{1, n}(x))

                                                                                      a_{1, 1} = + 1 3160115 3952276 4136291 8973667 2921447 2630406 2610884

                                                                                      a_{1, 2} =

                                                                                      u_1 = (1/p) * (f_1 - f_{1, 1} * f_{1, 2}) = + 7 1428571 4285714 2857142 8571428 5714285 7142857 1428679*x^2 + 8 4745480 7773845 2502410 1633522 2430285 1096333 8094302*x + 9 5952087 9527303 3695407 6753452 9915050 3820522 8742553

                                                                                      g_{1, 1} = u_1 * a_{1, 1} % f_{1, 1} = + 9 7373350 6874596 0399726 4235975 0759708 1270891 3729036*x + 2 4611772 2225230 1896976 6830857 0357003 0410851 5324877

                                                                                      f_{2, 1} = f_{1, 1} + p * g_{1, 1} = x^2 + 97 3733506 8745960 3997264 2359750 7597081 2708913 7291830 7307869 8053531 3776156 3945644 3267014 6203130 0564710*x + 24 6117722 2252301 8969766 8308570 3570030 4108515 3249143 2806145 0672618 7304077 6788649 6874436 4009739 8950974

                                                                                      g_{1, 2} = u_1 * a_{1, 2} % f_{1, 2} = + 7 4055220 7411118 2457416 4335453 4954577 5871965 7699794

                                                                                      f_{2, 2} = f_{1, 2} + p * g_{1, 2} = x + 74 0552207 4111182 4574164 3354534 9545775 8719657 6999060 6977844 4803611 4795272 1768641 3875842 5225441 3760092

                                                                                      v_1 = (1/p) * ((f_1(x)/f_{1, 1}(x)) * a_{1, 1}(x) + ... + (f_1(x)/f_{1, n}(x)) * a_{1, n}(x) - 1) = + x^2 + 7 2591960 6371318 1098876 2648409 4136731 6847824 8559775*x + 4 8470656 1970748 7944160 2649766 2460491 4177829 6593542

                                                                                      h_{1, 1} = v_1 * a_{1, 1} % f_{1, 1} = + 7 2591960 6371318 1098876 2648409 4136731 6847824 8559775*x + 4 8470656 1970748 7944160 2649766 2460491 4177829 6593542

                                                                                      a_{2, 1} = a_{1, 1} + p * g_{1, 1} = + 61 7046863 4366132 2126652 7212394 4067403 2519287 4480579 2232365 5718149 5108656 7650933 1413870 6012441 8539403*x + 77 3115030 1539214 0634022 0647783 1462531 7160295 8984538 7197070 7194408 7710025 0755192 8005676 1750874 3259771

                                                                                      h_{1, 2} = v_1 * a_{1, 2} % f_{1, 2} = + 4 8470656 1970748 7944160 2649766 2460491 4177829 6593542

                                                                                      a_{2, 2} = a_{1, 2} + p * g_{1, 2} = + 38 2953136 5633867 7873347 2787605 5932596 7480712 5522440 7767634 4281850 4891343 2349066 8586129 3987558 1483398

                                                                                      f_2 = x^3 + 7142 8571428 5714285 7142857 1428571 4285714 2857142 9002857 1428571 4285714 2857142 8571428 5714285 7142858 1200428 5714285 7142857 1428571 4285714 2857142 8571438 4084314 2857142 8571428 5714285 7142857 1428571 4285751 4204001*x^2 + 8571 4285714 2857142 8571428 5714285 7142857 1428571 4803428 5714285 7142857 1428571 4285714 2857142 8571429 7440514 2857142 8571428 5714285 7142857 1428571 4285726 0901177 1428571 4285714 2857142 8571428 5714285 7142901 7044801*x + 8

                                                                                      u_2 = (1/p^2) * (f_2 - f_{2, 1} * f_{2, 2}) = + 71 4285714 2857142 8571428 5714285 7142857 1428571 4287871 4285714 2857142 8571428 5714285 7142857 1428571 4301999*x^2 + 13 6042359 1967057 6205579 9994508 6808347 9053254 4734988 9119472 9767081 1922625 7445406 2136592 2938232 7860907*x + 81 7736977 5231093 4572919 7367903 1207675 6929907 8741840 3337941 4497191 1988195 2089509 1035764 5236286 5173201

                                                                                      g_{2, 1} = u_2 * a_{2, 1} % f_{2, 1} = + 91 7287773 0208782 3912398 5543038 2513545 7130829 6057840 6920457 0863439 7605511 0543777 1981632 7105190 8553225*x + 47 4188946 4178666 8810812 4570538 5001923 2694596 2041786 0196103 4675401 6750253 3500084 2844575 0228887 9920549

                                                                                      f_{4, 1} = f_{2, 1} + p^2 * g_{2, 1} = x^2 + 9172 8777302 0878239 1239855 4303825 1354571 3082960 6061090 1120231 6866797 5994739 4353238 9071324 5624495 2092995 2026556 6781339 9240085 1382058 3483671 0431138 2856950 0649895 5343511 7033707 2609539 6474447 1659822 2647935*x + 4741 8894641 7866688 1081245 7053850 0192326 9459620 4321807 0228528 7114148 3678955 3034699 0265776 0569335 9329902 0517467 9748916 0069717 1411452 3039066 4838302 8070156 4161308 4506210 9830711 2210419 6029533 2884846 7388723

                                                                                      g_{2, 2} = u_2 * a_{2, 2} % f_{2, 2} = + 79 6997941 2648360 4659030 0171247 4629311 4297741 8233050 7365257 1993703 0965917 5170508 5161224 4323380 5771575

                                                                                      f_{4, 2} = f_{2, 2} + p^2 * g_{2, 2} = x + 7969 9794126 4836046 5903001 7124746 2931142 9774182 3545767 0308339 7418916 6862403 4218189 6642961 1518364 2788033 3687729 0361517 2188486 2903655 9373471 8140313 8945404 2207247 3227916 8680578 4533317 4954124 2625981 1441667

                                                                                      List of factors

                                                                                      The 3 factors are:

                                                                                      • 7
                                                                                      • x + 7969 9794126 4836046 5903001 7124746 2931142 9774182 3545767 0308339 7418916 6862403 4218189 6642961 1518364 2788033 3687729 0361517 2188486 2903655 9373471 8140313 8945404 2207247 3227916 8680578 4533317 4954124 2625981 1441667
                                                                                      • x^2 + 9172 8777302 0878239 1239855 4303825 1354571 3082960 6061090 1120231 6866797 5994739 4353238 9071324 5624495 2092995 2026556 6781339 9240085 1382058 3483671 0431138 2856950 0649895 5343511 7033707 2609539 6474447 1659822 2647935*x + 4741 8894641 7866688 1081245 7053850 0192326 9459620 4321807 0228528 7114148 3678955 3034699 0265776 0569335 9329902 0517467 9748916 0069717 1411452 3039066 4838302 8070156 4161308 4506210 9830711 2210419 6029533 2884846 7388723

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Your polynomial

                                                                                      Mod(7*x^3 + 2*x^2 + x + 56, 1000003^2)

                                                                                      Irreducible polynomial factors

                                                                                      Dividing the polynomial by the leading coefficient:

                                                                                      f(x) = Mod(x^3 + 428573*x^2 + 714288*x + 8, 1000003)

                                                                                      Squarefree factorization

                                                                                      The derivative of f(x) is:

                                                                                      deriv(f(x)) = Mod(x^2 + 857146*x + 714288, 1000003)

                                                                                      c0(x) = gcd(f(x), deriv(f(x)) = Mod(1, 1000003)

                                                                                      w0(x) = f(x)/c0(x) = Mod(x^3 + 428573*x^2 + 714288*x + 8, 1000003)

                                                                                      w1(x) = gcd(w0, c0) = Mod(1, 1000003)

                                                                                      z1(x) = w0(x) / w1(x) = Mod(x^3 + 428573*x^2 + 714288*x + 8, 1000003) is a factor of f(x) with multiplicity 1

                                                                                      c1(x) = c0(x) / w1(x) = Mod(1, 1000003)

                                                                                      Distinct degree factorization

                                                                                      • Factoring f(x) = Mod(x^3 + 428573*x^2 + 714288*x + 8, 1000003)

                                                                                        For all degrees d between 1 and 1, the product of all factors of degree d is found by computing gcd(f(x), x^1000003^d - x)

                                                                                        gcd(f(x), x^1000003^1 - x) = Mod(x + 869779, 1000003)

                                                                                        This polynomial has 1 irreducible factor of degree 1

                                                                                        The new value of f(x) is the quotient between f(x) and the previous gcd.

                                                                                        f(x) = Mod(x^2 + 558797*x + 276509, 1000003)

                                                                                        This polynomial is irreducible.

                                                                                      Equal degree factorization

                                                                                      Hensel Lifting

                                                                                      f_1 = x^3 + 85714 8000008*x^2 + 42857 4000004*x + 8

                                                                                      f_{1, 1} = x^2 + 558797*x + 276509

                                                                                      f_{1, 2} = x + 869779

                                                                                      Using the extended GCD algorithm, compute a_{1, 1}, ..., a_{1, n} such that

                                                                                      1 = (f_1(x)/f_{1, 1}(x)) * a_{1, 1}(x) + ... + (f_1(x)/f_{1, n}(x)) * a_{1, n}(x))

                                                                                      a_{1, 1} = + 750647

                                                                                      a_{1, 2} =

                                                                                      u_1 = (1/p) * (f_1 - f_{1, 1} * f_{1, 2}) = + 857144*x^2 + 942547*x + 759502

                                                                                      g_{1, 1} = u_1 * a_{1, 1} % f_{1, 1} = + 459046*x + 268773

                                                                                      f_{2, 1} = f_{1, 1} + p * g_{1, 1} = x^2 + 45904 7935935*x + 26877 4082828

                                                                                      g_{1, 2} = u_1 * a_{1, 2} % f_{1, 2} = + 398098

                                                                                      f_{2, 2} = f_{1, 2} + p * g_{1, 2} = x + 39810 0064073

                                                                                      List of factors

                                                                                      The 3 factors are:

                                                                                      • 7
                                                                                      • x + 39810 0064073
                                                                                      • x^2 + 45904 7935935*x + 26877 4082828

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Your polynomial

                                                                                      Mod(56 6753065 4982595 8218168 2262176 1574133*x^6 + 2803 6554966 6932341 0486266 3017387 9303660*x^5 + 2895 0398372 6793829 2776012 0154654 5569830*x^4 + 1923 1010920 7024097 4270272 0058024 5797879*x^3 + 1263 8584679 3624922 7058494 7001115 6284296*x^2 + 2815 2989178 8748348 8584860 5683345 8826787*x + 364 7115866 7290440 0871817 0388300 6630495, 184467 4407370 9551629^2)

                                                                                      Irreducible polynomial factors

                                                                                      The 4 factors are:

                                                                                      • 56 6753065 4982595 8218168 2262176 1574133
                                                                                      • x + 2687 4717182 6361917 0394073 7732572 3539238
                                                                                      • x^2 + 1843 8715370 7781095 5098083 7197306 9495561*x + 2382 8968887 1479459 9477589 1471352 3490489
                                                                                      • x^3 + 458 7681861 6150180 8665114 8859207 8714229*x^2 + 455 1701927 5147396 9697077 3256933 4819770*x + 895 2943547 8800145 4409439 6732630 0793905

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      **** FSQUARES **** -2
                                                                                      • -2: Number too low

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • Number too high (more than 10000 digits)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • Intermediate number too high (more than 20000 digits)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 515377 520733 836131 399601 202892 980324 679964 105922 (48 digits) = 717897 987691 852588 770249² + 1 350851 717672 992089²

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 1 152921 754606 846976 = 1073 741824² + 500000²

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 0 = 0²

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 27 = 5² + 1² + 1²

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 100 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 054154 255642 (201 digits) = 9999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999991 (100 digits)² + 424 047833 956913 015656 076707 859050 110247 805593 252156 (51 digits)² + 13 543799 926546 787534 270424 387872 875156 984271 273835 (50 digits)²

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2
                                                                                      • -2: Number too low

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • Number too high (more than 10000 digits)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • Intermediate number too high (more than 20000 digits)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 515377 520733 836131 399601 202892 980324 679964 105922 (48 digits) = 717897 987691 852588 770249² + 1 350851 717672 992089²

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 1 152921 754606 846976 = 1073 741824² + 500000²

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 0 = 0²

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 27 = 5² + 1² + 1²

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 100 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 054154 255642 (201 digits) = 9999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999991 (100 digits)² + 424 047833 956913 015656 076707 859050 110247 805593 252156 (51 digits)² + 13 543799 926546 787534 270424 387872 875156 984271 273835 (50 digits)²

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      **** FSQUARES **** -2
                                                                                      • -2: Number too low

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • Number too high (more than 10000 digits)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • Intermediate number too high (more than 20000 digits)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 515377 520733 836131 399601 202892 980324 679964 105922 (48 digits) = 717897 987691 852588 770249² + 1 350851 717672 992089²

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 1 152921 754606 846976 = 1073 741824² + 500000²

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 0 = 0²

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 27 = 5² + 1² + 1²

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 100 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 054154 255642 (201 digits) = 9999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999991 (100 digits)² + 424 047833 956913 015656 076707 859050 110247 805593 252156 (51 digits)² + 13 543799 926546 787534 270424 387872 875156 984271 273835 (50 digits)²

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2
                                                                                      • -2: Number too low

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • Number too high (more than 10000 digits)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • Intermediate number too high (more than 20000 digits)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 515377 520733 836131 399601 202892 980324 679964 105922 (48 digits) = 717897 987691 852588 770249² + 1 350851 717672 992089²

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 1 152921 754606 846976 = 1073 741824² + 500000²

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 0 = 0²

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 27 = 5² + 1² + 1²

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 100 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 054154 255642 (201 digits) = 9999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999991 (100 digits)² + 424 047833 956913 015656 076707 859050 110247 805593 252156 (51 digits)² + 13 543799 926546 787534 270424 387872 875156 984271 273835 (50 digits)²

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      **** TSQCUBES **** -2
                                                                                      • -2 = 5² + (-3)³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (151 digits) = 100 000000 000000 000000 000000 000000 000000 000000 000000 (51 digits)³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (151 digits) = 1 000000 000000 000000 000000 000000 (31 digits)5

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (151 digits) = 383953 171876 501203 343315 449613 482099 590425 527404 944617 169884 594176 (66 digits)² + 163979 385202 505209 784905 288977 571362 531098 170265 126840 135267 549184 (66 digits)² + 2682 695795 279725 7476327

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • Intermediate number too high (more than 20000 digits)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 515377 520733 836131 399601 202892 980324 679964 105922 (48 digits) = 54474 554640 667059² + 21759 739520 559985² + 8017 552713 437006³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 1 152921 754606 846976 = 500000² + 1 048576³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 0 = 0³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 27 = 3³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 100 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 054154 255642 (201 digits) = 35 582477 757156 550091 990572 631106 798258 218151 638877 767220 298504 044193 (68 digits)² + 8 764940 056741 391829 284882 985493 014697 904750 359919 098528 883864 832357 (67 digits)² + 4 641588 833612 778892 410076 350919 446576 551349 125011 243637 650692 858664 (67 digits)³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2
                                                                                      • -2 = 5² + (-3)³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (151 digits) = 100 000000 000000 000000 000000 000000 000000 000000 000000 (51 digits)³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (151 digits) = 1 000000 000000 000000 000000 000000 (31 digits)5

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (151 digits) = 383953 171876 501203 343315 449613 482099 590425 527404 944617 169884 594176 (66 digits)² + 163979 385202 505209 784905 288977 571362 531098 170265 126840 135267 549184 (66 digits)² + 2682 695795 279725 7476327

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • Intermediate number too high (more than 20000 digits)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 515377 520733 836131 399601 202892 980324 679964 105922 (48 digits) = 54474 554640 667059² + 21759 739520 559985² + 8017 552713 437006³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 1 152921 754606 846976 = 500000² + 1 048576³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 0 = 0³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 27 = 3³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 100 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 054154 255642 (201 digits) = 35 582477 757156 550091 990572 631106 798258 218151 638877 767220 298504 044193 (68 digits)² + 8 764940 056741 391829 284882 985493 014697 904750 359919 098528 883864 832357 (67 digits)² + 4 641588 833612 778892 410076 350919 446576 551349 125011 243637 650692 858664 (67 digits)³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      **** TSQCUBES **** -2
                                                                                      • -2 = 5² + (-3)³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (151 digits) = 100 000000 000000 000000 000000 000000 000000 000000 000000 (51 digits)³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (151 digits) = 1 000000 000000 000000 000000 000000 (31 digits)5

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (151 digits) = 383953 171876 501203 343315 449613 482099 590425 527404 944617 169884 594176 (66 digits)² + 163979 385202 505209 784905 288977 571362 531098 170265 126840 135267 549184 (66 digits)² + 2682 695795 279725 7476327

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • Intermediate number too high (more than 20000 digits)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 515377 520733 836131 399601 202892 980324 679964 105922 (48 digits) = 54474 554640 667059² + 21759 739520 559985² + 8017 552713 437006³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 1 152921 754606 846976 = 500000² + 1 048576³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 0 = 0³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 27 = 3³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 100 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 054154 255642 (201 digits) = 35 582477 757156 550091 990572 631106 798258 218151 638877 767220 298504 044193 (68 digits)² + 8 764940 056741 391829 284882 985493 014697 904750 359919 098528 883864 832357 (67 digits)² + 4 641588 833612 778892 410076 350919 446576 551349 125011 243637 650692 858664 (67 digits)³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2
                                                                                      • -2 = 5² + (-3)³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (151 digits) = 100 000000 000000 000000 000000 000000 000000 000000 000000 (51 digits)³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (151 digits) = 1 000000 000000 000000 000000 000000 (31 digits)5

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 1 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 (151 digits) = 383953 171876 501203 343315 449613 482099 590425 527404 944617 169884 594176 (66 digits)² + 163979 385202 505209 784905 288977 571362 531098 170265 126840 135267 549184 (66 digits)² + 2682 695795 279725 7476327

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • Intermediate number too high (more than 20000 digits)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 515377 520733 836131 399601 202892 980324 679964 105922 (48 digits) = 54474 554640 667059² + 21759 739520 559985² + 8017 552713 437006³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 1 152921 754606 846976 = 500000² + 1 048576³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 0 = 0³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 27 = 3³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 100 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 054154 255642 (201 digits) = 35 582477 757156 550091 990572 631106 798258 218151 638877 767220 298504 044193 (68 digits)² + 8 764940 056741 391829 284882 985493 014697 904750 359919 098528 883864 832357 (67 digits)² + 4 641588 833612 778892 410076 350919 446576 551349 125011 243637 650692 858664 (67 digits)³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      **** FCUBES **** -2
                                                                                      • 0 = 1³ + (-1)³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 16 = (-13)³ + 12³ + 8³ + (-3)³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 27 = (-4)³ + 4³ + 3³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 2414 = (-5 966310 573931 208716 678652 543022 382688 761954 390118 758813 712170 336558 597385 173324 135514 344488 543871 449265 872631 531439 551066 760067 688367 704934 459428 157899 599713 514627 678306 775572 661978 522890 680275 352779 330547 904774 552743 808937 306225 935553 125332 763308 (247 digits))³ + 5 303387 176827 741081 492135 593797 673501 121737 235661 118945 521929 188052 086564 598510 342679 417323 150107 954902 997894 694612 934281 564504 611882 404386 186158 362577 421967 568557 903252 557357 906895 231315 671193 156924 099595 735993 783356 177001 406411 649244 098197 789673 (247 digits)³ + 4 198514 848321 961689 514607 345089 824855 054708 644898 385831 871527 273874 568530 307154 021287 872047 493835 464298 206666 633235 239639 571899 484406 903472 397375 370373 792390 991775 066459 185721 729233 318146 886433 598016 884356 133107 334306 239371 360663 712492 600165 759544 (247 digits)³ + (-2 209744 657011 558783 955056 497415 697292 134057 181525 466227 300803 828355 036068 582712 642783 090551 312544 981209 582456 122755 389283 985210 254951 001827 577565 984407 259153 153565 737795 996912 280425 379015 466890 550962 446502 854035 179474 736505 750540 031562 008541 815955 (247 digits))³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 1892 = 36 195328³ + (-36 193436)³ + (-12 073307)³ + 12 056279³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 100 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 054154 255642 (201 digits) = (-16 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 675692 375910 (200 digits))³ + 16 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 675692 375909 (200 digits)³ + 5 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 558564 125308 (199 digits)³ + (-5 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 558564 125299 (199 digits))³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2
                                                                                      • 0 = 1³ + (-1)³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 16 = (-13)³ + 12³ + 8³ + (-3)³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 27 = (-4)³ + 4³ + 3³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 2414 = (-5 966310 573931 208716 678652 543022 382688 761954 390118 758813 712170 336558 597385 173324 135514 344488 543871 449265 872631 531439 551066 760067 688367 704934 459428 157899 599713 514627 678306 775572 661978 522890 680275 352779 330547 904774 552743 808937 306225 935553 125332 763308 (247 digits))³ + 5 303387 176827 741081 492135 593797 673501 121737 235661 118945 521929 188052 086564 598510 342679 417323 150107 954902 997894 694612 934281 564504 611882 404386 186158 362577 421967 568557 903252 557357 906895 231315 671193 156924 099595 735993 783356 177001 406411 649244 098197 789673 (247 digits)³ + 4 198514 848321 961689 514607 345089 824855 054708 644898 385831 871527 273874 568530 307154 021287 872047 493835 464298 206666 633235 239639 571899 484406 903472 397375 370373 792390 991775 066459 185721 729233 318146 886433 598016 884356 133107 334306 239371 360663 712492 600165 759544 (247 digits)³ + (-2 209744 657011 558783 955056 497415 697292 134057 181525 466227 300803 828355 036068 582712 642783 090551 312544 981209 582456 122755 389283 985210 254951 001827 577565 984407 259153 153565 737795 996912 280425 379015 466890 550962 446502 854035 179474 736505 750540 031562 008541 815955 (247 digits))³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 1892 = 36 195328³ + (-36 193436)³ + (-12 073307)³ + 12 056279³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 100 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 054154 255642 (201 digits) = (-16 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 675692 375910 (200 digits))³ + 16 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 675692 375909 (200 digits)³ + 5 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 558564 125308 (199 digits)³ + (-5 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 558564 125299 (199 digits))³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      **** FCUBES **** -2
                                                                                      • 0 = 1³ + (-1)³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 16 = (-13)³ + 12³ + 8³ + (-3)³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 27 = (-4)³ + 4³ + 3³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 2414 = (-5 966310 573931 208716 678652 543022 382688 761954 390118 758813 712170 336558 597385 173324 135514 344488 543871 449265 872631 531439 551066 760067 688367 704934 459428 157899 599713 514627 678306 775572 661978 522890 680275 352779 330547 904774 552743 808937 306225 935553 125332 763308 (247 digits))³ + 5 303387 176827 741081 492135 593797 673501 121737 235661 118945 521929 188052 086564 598510 342679 417323 150107 954902 997894 694612 934281 564504 611882 404386 186158 362577 421967 568557 903252 557357 906895 231315 671193 156924 099595 735993 783356 177001 406411 649244 098197 789673 (247 digits)³ + 4 198514 848321 961689 514607 345089 824855 054708 644898 385831 871527 273874 568530 307154 021287 872047 493835 464298 206666 633235 239639 571899 484406 903472 397375 370373 792390 991775 066459 185721 729233 318146 886433 598016 884356 133107 334306 239371 360663 712492 600165 759544 (247 digits)³ + (-2 209744 657011 558783 955056 497415 697292 134057 181525 466227 300803 828355 036068 582712 642783 090551 312544 981209 582456 122755 389283 985210 254951 001827 577565 984407 259153 153565 737795 996912 280425 379015 466890 550962 446502 854035 179474 736505 750540 031562 008541 815955 (247 digits))³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 1892 = 36 195328³ + (-36 193436)³ + (-12 073307)³ + 12 056279³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2
                                                                                      • 100 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 054154 255642 (201 digits) = (-16 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 675692 375910 (200 digits))³ + 16 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 675692 375909 (200 digits)³ + 5 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 558564 125308 (199 digits)³ + (-5 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 558564 125299 (199 digits))³

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2
                                                                                      • 0 = 1³ + (-1)³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 16 = (-13)³ + 12³ + 8³ + (-3)³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 27 = (-4)³ + 4³ + 3³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 2414 = (-5 966310 573931 208716 678652 543022 382688 761954 390118 758813 712170 336558 597385 173324 135514 344488 543871 449265 872631 531439 551066 760067 688367 704934 459428 157899 599713 514627 678306 775572 661978 522890 680275 352779 330547 904774 552743 808937 306225 935553 125332 763308 (247 digits))³ + 5 303387 176827 741081 492135 593797 673501 121737 235661 118945 521929 188052 086564 598510 342679 417323 150107 954902 997894 694612 934281 564504 611882 404386 186158 362577 421967 568557 903252 557357 906895 231315 671193 156924 099595 735993 783356 177001 406411 649244 098197 789673 (247 digits)³ + 4 198514 848321 961689 514607 345089 824855 054708 644898 385831 871527 273874 568530 307154 021287 872047 493835 464298 206666 633235 239639 571899 484406 903472 397375 370373 792390 991775 066459 185721 729233 318146 886433 598016 884356 133107 334306 239371 360663 712492 600165 759544 (247 digits)³ + (-2 209744 657011 558783 955056 497415 697292 134057 181525 466227 300803 828355 036068 582712 642783 090551 312544 981209 582456 122755 389283 985210 254951 001827 577565 984407 259153 153565 737795 996912 280425 379015 466890 550962 446502 854035 179474 736505 750540 031562 008541 815955 (247 digits))³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 1892 = 36 195328³ + (-36 193436)³ + (-12 073307)³ + 12 056279³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2
                                                                                      • 100 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 054154 255642 (201 digits) = (-16 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 675692 375910 (200 digits))³ + 16 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 675692 375909 (200 digits)³ + 5 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 558564 125308 (199 digits)³ + (-5 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 558564 125299 (199 digits))³

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      **** DILOG **** -2

                                                                                      Base must be greater than zero

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Power must be greater than zero

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Modulus must be greater than one

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 3exp ≡ 22 (mod 23)

                                                                                      There is no such value of exp.

                                                                                      Computing discrete logarithm in subgroup of 2 elements.

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 3exp ≡ 7 (mod 29)

                                                                                      exp = 8 + 28k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 7exp ≡ 23 (mod 8)

                                                                                      exp = 1 + 2k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 28exp ≡ 43 (mod 120011)

                                                                                      There is no such value of exp.

                                                                                      Computing discrete logarithm in subgroup of 2 elements.

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 667exp ≡ 999 (mod 10000 000019)

                                                                                      exp = 5647 544343 + 10000 000018k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 2exp ≡ 173 (mod 226)

                                                                                      There is no such value of exp.

                                                                                      Computing discrete logarithm in subgroup of 7 elements modulo 113.

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 2exp ≡ 64 (mod 226)

                                                                                      exp = 6 + 28k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 34exp ≡ 166 (mod 774)

                                                                                      exp = 35 + 42k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 32exp ≡ 168 (mod 811)

                                                                                      There is no such value of exp.

                                                                                      Computing discrete logarithm in subgroup of 34 elements.

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 34exp ≡ 1632 173972 (mod 10779 215329)

                                                                                      exp = 77 + 5274 935161k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 401exp ≡ 1 (mod 2000)

                                                                                      exp = 0 + 5k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 801exp ≡ 1 (mod 2000)

                                                                                      exp = 0 + 5k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 2exp ≡ 2417 127491 429477 899985 762879 392273 445920 140573 547300 334342 743900 999888 057458 790592 924089 419742 390925 513922 941510 205867 199016 331428 593320 505481 033311 208857 985114 740620 125834 497392 020402 954225 388709 381025 496219 197170 126546 718142 841212 893378 397885 326167 327263 857609 817366 317978 224215 162857 904581 446145 152142 (304 digits) (mod 2644 233424 050979 919959 472773 551014 160896 585325 892159 594283 808864 074283 164412 198242 430622 504046 152302 216251 426005 808485 472118 356499 482789 461488 463475 451971 721075 109470 831515 836398 170407 749289 340517 906396 427118 712097 084818 355186 185714 843140 217934 670470 297724 600474 648108 502799 503321 625512 090834 701793 488115 (304 digits))

                                                                                      exp = 65537 + 3465 322692 531370 883302 654954 778611 066582 423382 247667 665567 945683 722601 190917 563200 (82 digits)k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 2exp ≡ 2423 072052 501243 993264 420946 146827 775567 704445 631403 974795 865782 059910 895997 138868 504591 041477 045161 686721 589514 120156 854407 528872 534293 238191 243915 370929 191316 393817 347290 803799 772484 045384 031796 250034 137988 702168 947236 501340 945874 745815 103090 057214 238941 603068 924321 095043 916203 234507 326087 230094 326178 (304 digits) (mod 2644 233424 050979 919959 472773 551014 160896 585325 892159 594283 808864 074283 164412 198242 430622 504046 152302 216251 426005 808485 472118 356499 482789 461488 463475 451971 721075 109470 831515 836398 170407 749289 340517 906396 427118 712097 084818 355186 185714 843140 217934 670470 297724 600474 648108 502799 503321 625512 090834 701793 488115 (304 digits))

                                                                                      exp = 2199 326986 712145 827778 282419 555654 849642 333826 800802 894452 548359 668912 427693 047231 (82 digits) + 3465 322692 531370 883302 654954 778611 066582 423382 247667 665567 945683 722601 190917 563200 (82 digits)k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 2032 414569 157564exp ≡ 1769 265429 188412 (mod 4503 599627 324003)

                                                                                      exp = 11 + 17k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2

                                                                                      Base must be greater than zero

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Power must be greater than zero

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Modulus must be greater than one

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 3exp ≡ 22 (mod 23)

                                                                                      There is no such value of exp.

                                                                                      Computing discrete logarithm in subgroup of 2 elements.

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 3exp ≡ 7 (mod 29)

                                                                                      exp = 8 + 28k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 7exp ≡ 23 (mod 8)

                                                                                      exp = 1 + 2k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 28exp ≡ 43 (mod 120011)

                                                                                      There is no such value of exp.

                                                                                      Computing discrete logarithm in subgroup of 2 elements.

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 667exp ≡ 999 (mod 10000 000019)

                                                                                      exp = 5647 544343 + 10000 000018k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 2exp ≡ 173 (mod 226)

                                                                                      There is no such value of exp.

                                                                                      Computing discrete logarithm in subgroup of 7 elements modulo 113.

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 2exp ≡ 64 (mod 226)

                                                                                      exp = 6 + 28k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 34exp ≡ 166 (mod 774)

                                                                                      exp = 35 + 42k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 32exp ≡ 168 (mod 811)

                                                                                      There is no such value of exp.

                                                                                      Computing discrete logarithm in subgroup of 34 elements.

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 34exp ≡ 1632 173972 (mod 10779 215329)

                                                                                      exp = 77 + 5274 935161k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 401exp ≡ 1 (mod 2000)

                                                                                      exp = 0 + 5k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 801exp ≡ 1 (mod 2000)

                                                                                      exp = 0 + 5k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 2exp ≡ 2417 127491 429477 899985 762879 392273 445920 140573 547300 334342 743900 999888 057458 790592 924089 419742 390925 513922 941510 205867 199016 331428 593320 505481 033311 208857 985114 740620 125834 497392 020402 954225 388709 381025 496219 197170 126546 718142 841212 893378 397885 326167 327263 857609 817366 317978 224215 162857 904581 446145 152142 (304 digits) (mod 2644 233424 050979 919959 472773 551014 160896 585325 892159 594283 808864 074283 164412 198242 430622 504046 152302 216251 426005 808485 472118 356499 482789 461488 463475 451971 721075 109470 831515 836398 170407 749289 340517 906396 427118 712097 084818 355186 185714 843140 217934 670470 297724 600474 648108 502799 503321 625512 090834 701793 488115 (304 digits))

                                                                                      exp = 65537 + 3465 322692 531370 883302 654954 778611 066582 423382 247667 665567 945683 722601 190917 563200 (82 digits)k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 2exp ≡ 2423 072052 501243 993264 420946 146827 775567 704445 631403 974795 865782 059910 895997 138868 504591 041477 045161 686721 589514 120156 854407 528872 534293 238191 243915 370929 191316 393817 347290 803799 772484 045384 031796 250034 137988 702168 947236 501340 945874 745815 103090 057214 238941 603068 924321 095043 916203 234507 326087 230094 326178 (304 digits) (mod 2644 233424 050979 919959 472773 551014 160896 585325 892159 594283 808864 074283 164412 198242 430622 504046 152302 216251 426005 808485 472118 356499 482789 461488 463475 451971 721075 109470 831515 836398 170407 749289 340517 906396 427118 712097 084818 355186 185714 843140 217934 670470 297724 600474 648108 502799 503321 625512 090834 701793 488115 (304 digits))

                                                                                      exp = 2199 326986 712145 827778 282419 555654 849642 333826 800802 894452 548359 668912 427693 047231 (82 digits) + 3465 322692 531370 883302 654954 778611 066582 423382 247667 665567 945683 722601 190917 563200 (82 digits)k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 2032 414569 157564exp ≡ 1769 265429 188412 (mod 4503 599627 324003)

                                                                                      exp = 11 + 17k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      **** DILOG **** -2

                                                                                      Base must be greater than zero

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Power must be greater than zero

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Modulus must be greater than one

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 3exp ≡ 22 (mod 23)

                                                                                      There is no such value of exp.

                                                                                      Computing discrete logarithm in subgroup of 2 elements.

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 3exp ≡ 7 (mod 29)

                                                                                      exp = 8 + 28k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 7exp ≡ 23 (mod 8)

                                                                                      exp = 1 + 2k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 28exp ≡ 43 (mod 120011)

                                                                                      There is no such value of exp.

                                                                                      Computing discrete logarithm in subgroup of 2 elements.

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 667exp ≡ 999 (mod 10000 000019)

                                                                                      exp = 5647 544343 + 10000 000018k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 2exp ≡ 173 (mod 226)

                                                                                      There is no such value of exp.

                                                                                      Computing discrete logarithm in subgroup of 7 elements modulo 113.

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 2exp ≡ 64 (mod 226)

                                                                                      exp = 6 + 28k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 34exp ≡ 166 (mod 774)

                                                                                      exp = 35 + 42k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 32exp ≡ 168 (mod 811)

                                                                                      There is no such value of exp.

                                                                                      Computing discrete logarithm in subgroup of 34 elements.

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 34exp ≡ 1632 173972 (mod 10779 215329)

                                                                                      exp = 77 + 5274 935161k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 401exp ≡ 1 (mod 2000)

                                                                                      exp = 0 + 5k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 801exp ≡ 1 (mod 2000)

                                                                                      exp = 0 + 5k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 2exp ≡ 2417 127491 429477 899985 762879 392273 445920 140573 547300 334342 743900 999888 057458 790592 924089 419742 390925 513922 941510 205867 199016 331428 593320 505481 033311 208857 985114 740620 125834 497392 020402 954225 388709 381025 496219 197170 126546 718142 841212 893378 397885 326167 327263 857609 817366 317978 224215 162857 904581 446145 152142 (304 digits) (mod 2644 233424 050979 919959 472773 551014 160896 585325 892159 594283 808864 074283 164412 198242 430622 504046 152302 216251 426005 808485 472118 356499 482789 461488 463475 451971 721075 109470 831515 836398 170407 749289 340517 906396 427118 712097 084818 355186 185714 843140 217934 670470 297724 600474 648108 502799 503321 625512 090834 701793 488115 (304 digits))

                                                                                      exp = 65537 + 3465 322692 531370 883302 654954 778611 066582 423382 247667 665567 945683 722601 190917 563200 (82 digits)k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 2exp ≡ 2423 072052 501243 993264 420946 146827 775567 704445 631403 974795 865782 059910 895997 138868 504591 041477 045161 686721 589514 120156 854407 528872 534293 238191 243915 370929 191316 393817 347290 803799 772484 045384 031796 250034 137988 702168 947236 501340 945874 745815 103090 057214 238941 603068 924321 095043 916203 234507 326087 230094 326178 (304 digits) (mod 2644 233424 050979 919959 472773 551014 160896 585325 892159 594283 808864 074283 164412 198242 430622 504046 152302 216251 426005 808485 472118 356499 482789 461488 463475 451971 721075 109470 831515 836398 170407 749289 340517 906396 427118 712097 084818 355186 185714 843140 217934 670470 297724 600474 648108 502799 503321 625512 090834 701793 488115 (304 digits))

                                                                                      exp = 2199 326986 712145 827778 282419 555654 849642 333826 800802 894452 548359 668912 427693 047231 (82 digits) + 3465 322692 531370 883302 654954 778611 066582 423382 247667 665567 945683 722601 190917 563200 (82 digits)k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Find exp such that 2032 414569 157564exp ≡ 1769 265429 188412 (mod 4503 599627 324003)

                                                                                      exp = 11 + 17k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2

                                                                                      Base must be greater than zero

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Power must be greater than zero

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Modulus must be greater than one

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 3exp ≡ 22 (mod 23)

                                                                                      There is no such value of exp.

                                                                                      Computing discrete logarithm in subgroup of 2 elements.

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 3exp ≡ 7 (mod 29)

                                                                                      exp = 8 + 28k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 7exp ≡ 23 (mod 8)

                                                                                      exp = 1 + 2k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 28exp ≡ 43 (mod 120011)

                                                                                      There is no such value of exp.

                                                                                      Computing discrete logarithm in subgroup of 2 elements.

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 667exp ≡ 999 (mod 10000 000019)

                                                                                      exp = 5647 544343 + 10000 000018k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 2exp ≡ 173 (mod 226)

                                                                                      There is no such value of exp.

                                                                                      Computing discrete logarithm in subgroup of 7 elements modulo 113.

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 2exp ≡ 64 (mod 226)

                                                                                      exp = 6 + 28k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 34exp ≡ 166 (mod 774)

                                                                                      exp = 35 + 42k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 32exp ≡ 168 (mod 811)

                                                                                      There is no such value of exp.

                                                                                      Computing discrete logarithm in subgroup of 34 elements.

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 34exp ≡ 1632 173972 (mod 10779 215329)

                                                                                      exp = 77 + 5274 935161k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 401exp ≡ 1 (mod 2000)

                                                                                      exp = 0 + 5k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 801exp ≡ 1 (mod 2000)

                                                                                      exp = 0 + 5k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 2exp ≡ 2417 127491 429477 899985 762879 392273 445920 140573 547300 334342 743900 999888 057458 790592 924089 419742 390925 513922 941510 205867 199016 331428 593320 505481 033311 208857 985114 740620 125834 497392 020402 954225 388709 381025 496219 197170 126546 718142 841212 893378 397885 326167 327263 857609 817366 317978 224215 162857 904581 446145 152142 (304 digits) (mod 2644 233424 050979 919959 472773 551014 160896 585325 892159 594283 808864 074283 164412 198242 430622 504046 152302 216251 426005 808485 472118 356499 482789 461488 463475 451971 721075 109470 831515 836398 170407 749289 340517 906396 427118 712097 084818 355186 185714 843140 217934 670470 297724 600474 648108 502799 503321 625512 090834 701793 488115 (304 digits))

                                                                                      exp = 65537 + 3465 322692 531370 883302 654954 778611 066582 423382 247667 665567 945683 722601 190917 563200 (82 digits)k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 2exp ≡ 2423 072052 501243 993264 420946 146827 775567 704445 631403 974795 865782 059910 895997 138868 504591 041477 045161 686721 589514 120156 854407 528872 534293 238191 243915 370929 191316 393817 347290 803799 772484 045384 031796 250034 137988 702168 947236 501340 945874 745815 103090 057214 238941 603068 924321 095043 916203 234507 326087 230094 326178 (304 digits) (mod 2644 233424 050979 919959 472773 551014 160896 585325 892159 594283 808864 074283 164412 198242 430622 504046 152302 216251 426005 808485 472118 356499 482789 461488 463475 451971 721075 109470 831515 836398 170407 749289 340517 906396 427118 712097 084818 355186 185714 843140 217934 670470 297724 600474 648108 502799 503321 625512 090834 701793 488115 (304 digits))

                                                                                      exp = 2199 326986 712145 827778 282419 555654 849642 333826 800802 894452 548359 668912 427693 047231 (82 digits) + 3465 322692 531370 883302 654954 778611 066582 423382 247667 665567 945683 722601 190917 563200 (82 digits)k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Find exp such that 2032 414569 157564exp ≡ 1769 265429 188412 (mod 4503 599627 324003)

                                                                                      exp = 11 + 17k

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      **** QUAD **** -2

                                                                                      0 = 0

                                                                                      x, y: any integer

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      5 ⁢y + 6 ⁢ = 0

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      5 ⁢y + 6 ⁢ = 0

                                                                                      The constant coefficient is not multiple of 5, which is the greatest common divisor of the other coefficients, so there are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      5 ⁢x + 6 ⁢ = 0

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      5 ⁢x + 6 ⁢ = 0

                                                                                      The constant coefficient is not multiple of 5, which is the greatest common divisor of the other coefficients, so there are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       y + 5 ⁢ = 0

                                                                                      x = t
                                                                                      y = -5

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x + 5 ⁢ = 0

                                                                                      x = -5
                                                                                      y = t

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       y + 5 ⁢ = 0

                                                                                      This is a linear equation  y + 5 ⁢ = 0

                                                                                      x = t
                                                                                      y = -5

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x + y + 5 ⁢ = 0

                                                                                      x = -2 + t
                                                                                      y = -3 − t

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x + y + 5 ⁢ = 0

                                                                                      This is a linear equation  x + y + 5 ⁢ = 0

                                                                                      Dividing the equation by the greatest common divisor we obtain:

                                                                                       x + y + 5 ⁢ = 0

                                                                                      Now we must apply the Generalized Euclidean algorithm:

                                                                                      Step 1: 1 × 1 + 0 × 1 = 1
                                                                                      Step 2: 0 × 1 + 1 × 1 = 1

                                                                                      Multiplying the last equation by (-5) we obtain:
                                                                                      0 × 1 + (-5) × 1 = -5

                                                                                      Adding and subtracting 1 × 1 t' we obtain:

                                                                                      (0 + 1 t') × 1 + (-5 - 1 t') × 1 = -5

                                                                                      So, the solution is given by the set:

                                                                                      x = t'
                                                                                      y = -5 − t'

                                                                                      By making the substitution t' = -2 + t we finally obtain:

                                                                                      x = -2 + t
                                                                                      y = -3 − t

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² + 2 ⁢x⁢y + 3 ⁢y² + 4 ⁢x + 5 ⁢y + 6 ⁢ = 0

                                                                                      The equation does not have integer solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² + 2 ⁢x⁢y + 3 ⁢y² + 4 ⁢x + 5 ⁢y + 6 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = -8

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = 14

                                                                                      β = 2⁢ae - bd = 2

                                                                                      X² + 2 XY + 3 ⁢Y² = -120

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      The algorithm requires the constant coefficient to be positive, so we multiply both RHS and LHS by −1.

                                                                                      X² − 2 XY − 3 ⁢Y² = 120 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      120 = 23 × 3 × 5

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve:−T² − 2 T − 3 ≡ 0 (mod 120 = 23 × 3 × 5)

                                                                                      There are no solutions modulo 23, so the modular equation does not have any solution.

                                                                                      Let 2⁢X' = X and 2⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain −X'² − 2 X'Y' − 3 ⁢Y'² = 120 / 2² = 30

                                                                                      We have to solve:−T² − 2 T − 3 ≡ 0 (mod 30 = 2 × 3 × 5)

                                                                                      Solutions modulo 2: 1

                                                                                      Solutions modulo 3: 0 and 1

                                                                                      There are no solutions modulo 5, so the modular equation does not have any solution.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² + 7 ⁢y - 12 ⁢ = 0

                                                                                      The equation does not have integer solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² + 7 ⁢y - 12 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 0

                                                                                      Multiplying by 4⁢a

                                                                                      ( 2 ⁢x )² + 28 ⁢y - 48 ⁢ = 0

                                                                                      Let t = 2 ⁢x (1)

                                                                                      (t + d)² = ( t )² = - 28 ⁢y + 48 ⁢ (2)

                                                                                      where the linear coefficient is 2⁢(bd − 2⁢ae) and the constant coefficient is d² − 4⁢af.

                                                                                      We have to solve T² = 48 (mod 28)

                                                                                      To solve this quadratic modular equation we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      28 = 22 × 7

                                                                                      Solutions modulo 22: 0 and 2

                                                                                      There are no solutions modulo 7, so the modular equation does not have any solution.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² + 2 ⁢x⁢y + 2 ⁢y² - 89 ⁢ = 0

                                                                                      x = -13
                                                                                      y = 5

                                                                                      and also:

                                                                                      x = 13
                                                                                      y = -5

                                                                                      and also:

                                                                                      x = -3
                                                                                      y = 8

                                                                                      and also:

                                                                                      x = 3
                                                                                      y = -8

                                                                                      and also:

                                                                                      x = -3
                                                                                      y = -5

                                                                                      and also:

                                                                                      x = 3
                                                                                      y = 5

                                                                                      and also:

                                                                                      x = 13
                                                                                      y = -8

                                                                                      and also:

                                                                                      x = -13
                                                                                      y = 8

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² + 2 ⁢x⁢y + 2 ⁢y² - 89 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = -4

                                                                                      X² + 2 XY + 2 ⁢Y² = 89 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      89 = 89

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve: T² + 2 T + 2 ≡ 0 (mod 89 = 89)

                                                                                      Solutions modulo 89: 33 and 54

                                                                                      1. T = 33
                                                                                      2. The transformation X = 33 ⁢Y - 89 ⁢k (2) converts X² + 2 XY + 2 ⁢Y² = 89 to PY² + QYk + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = 13, Q = −(2⁢aT + b) = -68, R = an = 89

                                                                                        To obtain solutions to the equation (3) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 68 / 26

                                                                                        The continued fraction is: 2+ //1, 1, 1, 1, 2// (4)

                                                                                        Solution of (3) found using the convergent Y / k = 5 / 2 of (4)

                                                                                        X = -13, Y = 5

                                                                                        x = -13
                                                                                        y = 5

                                                                                        X = 13, Y = -5

                                                                                        x = 13
                                                                                        y = -5

                                                                                        Solution of (3) found using the convergent Y / k = 8 / 3 of (4)

                                                                                        X = -3, Y = 8

                                                                                        x = -3
                                                                                        y = 8

                                                                                        X = 3, Y = -8

                                                                                        x = 3
                                                                                        y = -8

                                                                                      3. T = -35
                                                                                      4. The transformation X = - 35 ⁢Y - 89 ⁢k (5) converts X² + 2 XY + 2 ⁢Y² = 89 to PY² + QYk + Rk² = 1 (6)

                                                                                        where: P = (aT² + bT + c) / n = 13, Q = −(2⁢aT + b) = 68, R = an = 89

                                                                                        To obtain solutions to the equation (6) we have to compute the convergents of the continued fraction of −Q / 2⁢P = -68 / 26

                                                                                        The continued fraction is: -3+ //2, 1, 1, 2// (7)

                                                                                        Solution of (6) found using the convergent Y / k = -5 / 2 of (7)

                                                                                        X = -3, Y = -5

                                                                                        x = -3
                                                                                        y = -5

                                                                                        X = 3, Y = 5

                                                                                        x = 3
                                                                                        y = 5

                                                                                        Solution of (6) found using the convergent Y / k = -8 / 3 of (7)

                                                                                        X = 13, Y = -8

                                                                                        x = 13
                                                                                        y = -8

                                                                                        X = -13, Y = 8

                                                                                        x = -13
                                                                                        y = 8

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² + 3 ⁢x⁢y + 3 ⁢y² - 76 ⁢ = 0

                                                                                      x = 14
                                                                                      y = -4

                                                                                      and also:

                                                                                      x = -14
                                                                                      y = 4

                                                                                      and also:

                                                                                      x = 16
                                                                                      y = -10

                                                                                      and also:

                                                                                      x = -16
                                                                                      y = 10

                                                                                      and also:

                                                                                      x = 2
                                                                                      y = -6

                                                                                      and also:

                                                                                      x = -2
                                                                                      y = 6

                                                                                      and also:

                                                                                      x = -16
                                                                                      y = 6

                                                                                      and also:

                                                                                      x = 16
                                                                                      y = -6

                                                                                      and also:

                                                                                      x = -14
                                                                                      y = 10

                                                                                      and also:

                                                                                      x = 14
                                                                                      y = -10

                                                                                      and also:

                                                                                      x = 2
                                                                                      y = 4

                                                                                      and also:

                                                                                      x = -2
                                                                                      y = -4

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² + 3 ⁢x⁢y + 3 ⁢y² - 76 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = -3

                                                                                      X² + 3 XY + 3 ⁢Y² = 76 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      76 = 22 × 19

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve: T² + 3 T + 3 ≡ 0 (mod 76 = 22 × 19)

                                                                                      There are no solutions modulo 22, so the modular equation does not have any solution.

                                                                                      Let 2⁢X' = X and 2⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain X'² + 3 X'Y' + 3 ⁢Y'² = 76 / 2² = 19

                                                                                      We have to solve: T² + 3 T + 3 ≡ 0 (mod 19 = 19)

                                                                                      Solutions modulo 19: 6 and 10

                                                                                      1. T = 6
                                                                                      2. The transformation X' = 6 ⁢Y' - 19 ⁢k (2) converts X'² + 3 X'Y' + 3 ⁢Y'² = 19 to PY'² + QY'k + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = 3, Q = −(2⁢aT + b) = -15, R = an = 19

                                                                                        When the discriminant equals -3 and P = 3, a solution is (Y', k) = ((Q + 3)/6 = -2, -1)

                                                                                        From (2): X' = 7, Y' = -2

                                                                                        X = 14, Y = -4

                                                                                        x = 14
                                                                                        y = -4

                                                                                        X = -14, Y = 4

                                                                                        x = -14
                                                                                        y = 4

                                                                                        The second solution is (Y', k) = (Q/3 = -5, -2)

                                                                                        From (2): X' = 8, Y' = -5

                                                                                        X = 16, Y = -10

                                                                                        x = 16
                                                                                        y = -10

                                                                                        X = -16, Y = 10

                                                                                        x = -16
                                                                                        y = 10

                                                                                        The third solution is (Y', k) = ((Q − 3)/6 = -3, -1)

                                                                                        From (2): X' = 1, Y' = -3

                                                                                        X = 2, Y = -6

                                                                                        x = 2
                                                                                        y = -6

                                                                                        X = -2, Y = 6

                                                                                        x = -2
                                                                                        y = 6

                                                                                      3. T = -9
                                                                                      4. The transformation X' = - 9 ⁢Y' - 19 ⁢k (4) converts X'² + 3 X'Y' + 3 ⁢Y'² = 19 to PY'² + QY'k + Rk² = 1 (5)

                                                                                        where: P = (aT² + bT + c) / n = 3, Q = −(2⁢aT + b) = 15, R = an = 19

                                                                                        When the discriminant equals -3 and P = 3, a solution is (Y', k) = ((Q + 3)/6 = 3, -1)

                                                                                        From (4): X' = -8, Y' = 3

                                                                                        X = -16, Y = 6

                                                                                        x = -16
                                                                                        y = 6

                                                                                        X = 16, Y = -6

                                                                                        x = 16
                                                                                        y = -6

                                                                                        The second solution is (Y', k) = (Q/3 = 5, -2)

                                                                                        From (4): X' = -7, Y' = 5

                                                                                        X = -14, Y = 10

                                                                                        x = -14
                                                                                        y = 10

                                                                                        X = 14, Y = -10

                                                                                        x = 14
                                                                                        y = -10

                                                                                        The third solution is (Y', k) = ((Q − 3)/6 = 2, -1)

                                                                                        From (4): X' = 1, Y' = 2

                                                                                        X = 2, Y = 4

                                                                                        x = 2
                                                                                        y = 4

                                                                                        X = -2, Y = -4

                                                                                        x = -2
                                                                                        y = -4

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² + y² - 425 ⁢ = 0

                                                                                      x = -19
                                                                                      y = 8

                                                                                      and also:

                                                                                      x = 19
                                                                                      y = -8

                                                                                      and also:

                                                                                      x = 8
                                                                                      y = 19

                                                                                      and also:

                                                                                      x = -8
                                                                                      y = -19

                                                                                      and also:

                                                                                      x = 16
                                                                                      y = 13

                                                                                      and also:

                                                                                      x = -16
                                                                                      y = -13

                                                                                      and also:

                                                                                      x = -13
                                                                                      y = 16

                                                                                      and also:

                                                                                      x = 13
                                                                                      y = -16

                                                                                      and also:

                                                                                      x = 16
                                                                                      y = -13

                                                                                      and also:

                                                                                      x = -16
                                                                                      y = 13

                                                                                      and also:

                                                                                      x = -13
                                                                                      y = -16

                                                                                      and also:

                                                                                      x = 13
                                                                                      y = 16

                                                                                      and also:

                                                                                      x = -19
                                                                                      y = -8

                                                                                      and also:

                                                                                      x = 19
                                                                                      y = 8

                                                                                      and also:

                                                                                      x = 8
                                                                                      y = -19

                                                                                      and also:

                                                                                      x = -8
                                                                                      y = 19

                                                                                      and also:

                                                                                      x = 20
                                                                                      y = 5

                                                                                      and also:

                                                                                      x = -20
                                                                                      y = -5

                                                                                      and also:

                                                                                      x = 5
                                                                                      y = -20

                                                                                      and also:

                                                                                      x = -5
                                                                                      y = 20

                                                                                      and also:

                                                                                      x = -20
                                                                                      y = 5

                                                                                      and also:

                                                                                      x = 20
                                                                                      y = -5

                                                                                      and also:

                                                                                      x = 5
                                                                                      y = 20

                                                                                      and also:

                                                                                      x = -5
                                                                                      y = -20

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² - 5 ⁢y² + 4 ⁢ = 0

                                                                                      x = 1
                                                                                      y = 1

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = -1

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = 1

                                                                                      and also:

                                                                                      x = 1
                                                                                      y = -1

                                                                                      and also:

                                                                                      x = 4
                                                                                      y = 2

                                                                                      and also:

                                                                                      x = -4
                                                                                      y = -2

                                                                                      Recursive solutions:

                                                                                      xn+1 = 9 ⁢xn - 20 ⁢yn
                                                                                      yn+1 = - 4 ⁢xn + 9 ⁢yn

                                                                                      and also:

                                                                                      xn+1 = 9 ⁢xn + 20 ⁢yn
                                                                                      yn+1 = 4 ⁢xn + 9 ⁢yn

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² - 5 ⁢y² + 4 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 20

                                                                                      X² − 5 ⁢Y² = -4

                                                                                      The algorithm requires the constant coefficient to be positive, so we multiply both RHS and LHS by −1.

                                                                                      X² + 5 ⁢Y² = 4 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      4 = 22

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve:−T² + 5 ≡ 0 (mod 4 = 22)

                                                                                      Solutions modulo 22: 1 and 3

                                                                                      1. T = 1
                                                                                      2. The transformation X =  Y - 4 ⁢k (2) converts −X² + 5 ⁢Y² = 4 to PY² + QYk + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = 1, Q = −(2⁢aT + b) = 2, R = an = -4

                                                                                        The continued fraction expansion of (Q + D / 4) / R = (1 + 5) / (-4) is:

                                                                                        -1+ // 5, 4// (4)

                                                                                        Solution of (3) found using the convergent Y / (−k) = 5 / -4 of (4)

                                                                                        X = -11, Y = 5

                                                                                        x = -11
                                                                                        y = 5

                                                                                        X = 11, Y = -5

                                                                                        x = 11
                                                                                        y = -5

                                                                                        The continued fraction expansion of (−Q + D / 4) / (−R) = (-1 + 5) / 4 is:

                                                                                        0+ // 3, 4// (5)

                                                                                        Solution of (3) found using the convergent Y / (−k) = 1 / 0 of (5)

                                                                                        X = 1, Y = 1

                                                                                        x = 1
                                                                                        y = 1

                                                                                        X = -1, Y = -1

                                                                                        x = -1
                                                                                        y = -1

                                                                                        x = 1
                                                                                        y = 1

                                                                                        x = -1
                                                                                        y = -1

                                                                                      3. T = -1
                                                                                      4. The transformation X = - Y - 4 ⁢k (6) converts −X² + 5 ⁢Y² = 4 to PY² + QYk + Rk² = 1 (7)

                                                                                        where: P = (aT² + bT + c) / n = 1, Q = −(2⁢aT + b) = -2, R = an = -4

                                                                                        The continued fraction expansion of (Q + D / 4) / R = (-1 + 5) / (-4) is:

                                                                                        -1+ // 1, 2, 4// (8)

                                                                                        Solution of (7) found using the convergent Y / (−k) = 1 / 0 of (8)

                                                                                        X = -1, Y = 1

                                                                                        x = -1
                                                                                        y = 1

                                                                                        X = 1, Y = -1

                                                                                        x = 1
                                                                                        y = -1

                                                                                        The continued fraction expansion of (−Q + D / 4) / (−R) = (1 + 5) / 4 is:

                                                                                        0+ // 1, 4// (9)

                                                                                        Solution of (7) found using the convergent Y / (−k) = 1 / 0 of (9)

                                                                                        X = -1, Y = 1

                                                                                        x = -1
                                                                                        y = 1

                                                                                        X = 1, Y = -1

                                                                                        x = 1
                                                                                        y = -1

                                                                                        x = -1
                                                                                        y = 1

                                                                                        x = 1
                                                                                        y = -1

                                                                                      Let 2⁢X' = X and 2⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain −X'² + 5 ⁢Y'² = 4 / 2² = 1

                                                                                      We have to solve:−T² + 5 ≡ 0 (mod 1 = 1)

                                                                                      1. T = 0
                                                                                      2. The transformation X' = - k (10) converts −X'² + 5 ⁢Y'² = 1 to PY'² + QY'k + Rk² = 1 (11)

                                                                                        where: P = (aT² + bT + c) / n = 5, Q = −(2⁢aT + b) = 0, R = an = -1

                                                                                        The continued fraction expansion of (Q + D / 4) / R = 5 / (-1) is:

                                                                                        -3+ // 1, 3, 4// (12)

                                                                                        Solution of (11) found using the convergent Y' / (−k) = 1 / -2 of (12)

                                                                                        From (10): X' = -2, Y' = 1

                                                                                        X = -4, Y = 2

                                                                                        x = -4
                                                                                        y = 2

                                                                                        X = 4, Y = -2

                                                                                        x = 4
                                                                                        y = -2

                                                                                        The continued fraction expansion of (−Q + D / 4) / (−R) = 5 / 1 is:

                                                                                        2+ // 4// (13)

                                                                                        Solution of (11) found using the convergent Y' / (−k) = 1 / 2 of (13)

                                                                                        From (10): X' = 2, Y' = 1

                                                                                        X = 4, Y = 2

                                                                                        x = 4
                                                                                        y = 2

                                                                                        X = -4, Y = -2

                                                                                        x = -4
                                                                                        y = -2

                                                                                        x = 4
                                                                                        y = 2

                                                                                        x = -4
                                                                                        y = -2

                                                                                      Recursive solutions:

                                                                                      xn+1 = 9 ⁢xn - 20 ⁢yn
                                                                                      yn+1 = - 4 ⁢xn + 9 ⁢yn

                                                                                      and also:

                                                                                      xn+1 = 9 ⁢xn + 20 ⁢yn
                                                                                      yn+1 = 4 ⁢xn + 9 ⁢yn

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² - 991 ⁢y² -  1 = 0

                                                                                      x = 1
                                                                                      y = 0

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = 0

                                                                                      Recursive solutions:

                                                                                      xn+1 = P ⁢xn + Q ⁢yn
                                                                                      yn+1 = R ⁢xn + S ⁢yn

                                                                                      where:

                                                                                      P = 379516 400906 811930 638014 896080
                                                                                      Q = 11 947234 168218 377212 415555 918097 (32 digits)
                                                                                      R = 12055 735790 331359 447442 538767
                                                                                      S = 379516 400906 811930 638014 896080

                                                                                      and also:

                                                                                      P = 379516 400906 811930 638014 896080
                                                                                      Q = -11 947234 168218 377212 415555 918097 (32 digits)
                                                                                      R = -12055 735790 331359 447442 538767
                                                                                      S = 379516 400906 811930 638014 896080

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² - 991 ⁢y² -  1 = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 3964

                                                                                      X² − 991 ⁢Y² = 1 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      1 = 1

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve: T² − 991 ≡ 0 (mod 1 = 1)

                                                                                      1. T = 0
                                                                                      2. The transformation X = - k (2) converts X² − 991 ⁢Y² = 1 to PY² + QYk + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = -991, Q = −(2⁢aT + b) = 0, R = an = 1

                                                                                        The continued fraction expansion of (Q + D / 4) / R = 991 / 1 is:

                                                                                        31+ // 2, 12, 10, 2, 2, 2, 1, 1, 2, 6, 1, 1, 1, 1, 3, 1, 8, 4, 1, 2, 1, 2, 3, 1, 4, 1, 20, 6, 4, 31, 4, 6, 20, 1, 4, 1, 3, 2, 1, 2, 1, 4, 8, 1, 3, 1, 1, 1, 1, 6, 2, 1, 1, 2, 2, 2, 10, 12, 2, 62// (4)

                                                                                        Solution of (3) found using the convergent Y / (−k) = 0 / 1 of (4)

                                                                                        X = 1, Y = 0

                                                                                        x = 1
                                                                                        y = 0

                                                                                        X = -1, Y = 0

                                                                                        x = -1
                                                                                        y = 0

                                                                                        The continued fraction expansion of (−Q + D / 4) / (−R) = 991 / (-1) is:

                                                                                        -32+ // 1, 1, 12, 10, 2, 2, 2, 1, 1, 2, 6, 1, 1, 1, 1, 3, 1, 8, 4, 1, 2, 1, 2, 3, 1, 4, 1, 20, 6, 4, 31, 4, 6, 20, 1, 4, 1, 3, 2, 1, 2, 1, 4, 8, 1, 3, 1, 1, 1, 1, 6, 2, 1, 1, 2, 2, 2, 10, 12, 2, 62, 2// (5)

                                                                                        Solution of (3) found using the convergent Y / (−k) = 0 / 1 of (5)

                                                                                        X = 1, Y = 0

                                                                                        x = 1
                                                                                        y = 0

                                                                                        X = -1, Y = 0

                                                                                        x = -1
                                                                                        y = 0

                                                                                        x = 1
                                                                                        y = 0

                                                                                        x = -1
                                                                                        y = 0

                                                                                      Recursive solutions:

                                                                                      xn+1 = P ⁢xn + Q ⁢yn
                                                                                      yn+1 = R ⁢xn + S ⁢yn

                                                                                      where:

                                                                                      P = 379516 400906 811930 638014 896080
                                                                                      Q = 11 947234 168218 377212 415555 918097 (32 digits)
                                                                                      R = 12055 735790 331359 447442 538767
                                                                                      S = 379516 400906 811930 638014 896080

                                                                                      and also:

                                                                                      P = 379516 400906 811930 638014 896080
                                                                                      Q = -11 947234 168218 377212 415555 918097 (32 digits)
                                                                                      R = -12055 735790 331359 447442 538767
                                                                                      S = 379516 400906 811930 638014 896080

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      5 ⁢x² + 3 ⁢x⁢y - 991 ⁢y² + 23 ⁢x + 42 ⁢y -  1 = 0

                                                                                      The equation does not have integer solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      5 ⁢x² + 3 ⁢x⁢y - 991 ⁢y² + 23 ⁢x + 42 ⁢y -  1 = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 19829

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = -45712

                                                                                      β = 2⁢ae - bd = 351

                                                                                      5 X² + 3 XY − 991 ⁢Y² = 10670 897034 (1)

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      10670 897034 = 2 × 32 × 7 × 79 × 251 × 4271

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve:5 T² + 3 T − 991 ≡ 0 (mod 10670 897034 = 2 × 32 × 7 × 79 × 251 × 4271)

                                                                                      There are no solutions modulo 2, so the modular equation does not have any solution.

                                                                                      Let 3⁢X' = X and 3⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain 5 X'² + 3 X'Y' − 991 ⁢Y'² = 10670 897034 / 3² = 1185 655226

                                                                                      We have to solve:5 T² + 3 T − 991 ≡ 0 (mod 1185 655226 = 2 × 7 × 79 × 251 × 4271)

                                                                                      There are no solutions modulo 2, so the modular equation does not have any solution.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      2 ⁢x² + 3 ⁢x⁢y + 7 ⁢y² - 12 ⁢ = 0

                                                                                      x = 1
                                                                                      y = 1

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = -1

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      2 ⁢x² + 3 ⁢x⁢y + 7 ⁢y² - 12 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = -47

                                                                                      2 X² + 3 XY + 7 ⁢Y² = 12 (1)

                                                                                      The algorithm requires that the coefficient of X² and the right hand side are coprime. This does not happen, so we have to find a value of m such that applying one of the unimodular transformations

                                                                                      • X = mU + (m−1)V, Y = U + V
                                                                                      • X = U + V, Y = (m−1)U + mV

                                                                                      the coefficient of U² and the right hand side are coprime. This coefficient equals 2 m² + 3 m + 7 in the first case and 7 (m − 1)² + 3 (m − 1) + 2 in the second case.

                                                                                      We will use the first unimodular transformation with m = 6: X = 6 ⁢U + 5 ⁢V, Y = U + V (2)

                                                                                      Using (2), the equation (1) converts to:

                                                                                      97 U² + 167 UV + 72 ⁢V² = 12 (3)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      12 = 22 × 3

                                                                                      Searching for solutions U and V coprime.

                                                                                      We have to solve:97 T² + 167 T + 72 ≡ 0 (mod 12 = 22 × 3)

                                                                                      Solutions modulo 22: 0 and 1

                                                                                      Solutions modulo 3: 0 and 1

                                                                                      1. T = 0
                                                                                      2. The transformation U = - 12 ⁢k (4) converts 97 U² + 167 UV + 72 ⁢V² = 12 to PV² + QVk + Rk² = 1 (5)

                                                                                        where: P = (aT² + bT + c) / n = 6, Q = −(2⁢aT + b) = -167, R = an = 1164

                                                                                        To obtain solutions to the equation (5) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 167 / 12

                                                                                        The continued fraction is: 13+ //1, 11// (6)

                                                                                        There are no convergents for which (5) holds.

                                                                                      3. T = 4
                                                                                      4. The transformation U = 4 ⁢V - 12 ⁢k (7) converts 97 U² + 167 UV + 72 ⁢V² = 12 to PV² + QVk + Rk² = 1 (8)

                                                                                        where: P = (aT² + bT + c) / n = 191, Q = −(2⁢aT + b) = -943, R = an = 1164

                                                                                        To obtain solutions to the equation (8) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 943 / 382

                                                                                        The continued fraction is: 2+ //2, 7, 2, 5, 2// (9)

                                                                                        Solution of (8) found using the convergent V / k = 5 / 2 of (9)

                                                                                        U = -4, V = 5

                                                                                        From (2):

                                                                                        X = 1, Y = 1

                                                                                        x = 1
                                                                                        y = 1

                                                                                        U = 4, V = -5

                                                                                        From (2):

                                                                                        X = -1, Y = -1

                                                                                        x = -1
                                                                                        y = -1

                                                                                      5. T = -3
                                                                                      6. The transformation U = - 3 ⁢V - 12 ⁢k (10) converts 97 U² + 167 UV + 72 ⁢V² = 12 to PV² + QVk + Rk² = 1 (11)

                                                                                        where: P = (aT² + bT + c) / n = 37, Q = −(2⁢aT + b) = 415, R = an = 1164

                                                                                        To obtain solutions to the equation (11) we have to compute the convergents of the continued fraction of −Q / 2⁢P = -415 / 74

                                                                                        The continued fraction is: -6+ //2, 1, 1, 4, 3// (12)

                                                                                        There are no convergents for which (11) holds.

                                                                                      7. T = 1
                                                                                      8. The transformation U =  V - 12 ⁢k (13) converts 97 U² + 167 UV + 72 ⁢V² = 12 to PV² + QVk + Rk² = 1 (14)

                                                                                        where: P = (aT² + bT + c) / n = 28, Q = −(2⁢aT + b) = -361, R = an = 1164

                                                                                        To obtain solutions to the equation (14) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 361 / 56

                                                                                        The continued fraction is: 6+ //2, 4, 6// (15)

                                                                                        There are no convergents for which (14) holds.

                                                                                      Let 2⁢U' = U and 2⁢V' = V. Searching for solutions U' and V' coprime.

                                                                                      From equation (3) we obtain 97 U'² + 167 U'V' + 72 ⁢V'² = 12 / 2² = 3

                                                                                      We have to solve:97 T² + 167 T + 72 ≡ 0 (mod 3 = 3)

                                                                                      Solutions modulo 3: 0 and 1

                                                                                      1. T = 0
                                                                                      2. The transformation U' = - 3 ⁢k (16) converts 97 U'² + 167 U'V' + 72 ⁢V'² = 3 to PV'² + QV'k + Rk² = 1 (17)

                                                                                        where: P = (aT² + bT + c) / n = 24, Q = −(2⁢aT + b) = -167, R = an = 291

                                                                                        To obtain solutions to the equation (17) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 167 / 48

                                                                                        The continued fraction is: 3+ //2, 11, 2// (18)

                                                                                        There are no convergents for which (17) holds.

                                                                                      3. T = 1
                                                                                      4. The transformation U' =  V' - 3 ⁢k (19) converts 97 U'² + 167 U'V' + 72 ⁢V'² = 3 to PV'² + QV'k + Rk² = 1 (20)

                                                                                        where: P = (aT² + bT + c) / n = 112, Q = −(2⁢aT + b) = -361, R = an = 291

                                                                                        To obtain solutions to the equation (20) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 361 / 224

                                                                                        The continued fraction is: 1+ //1, 1, 1, 1, 2, 1, 5, 2// (21)

                                                                                        There are no convergents for which (20) holds.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      2 ⁢x² - 33 ⁢x⁢y + 7 ⁢y² - 12 ⁢ = 0

                                                                                      x = 1
                                                                                      y = 5

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = -5

                                                                                      and also:

                                                                                      x = -1321 493700 201781
                                                                                      y = -81 147513 783145

                                                                                      and also:

                                                                                      x = 1321 493700 201781
                                                                                      y = 81 147513 783145

                                                                                      and also:

                                                                                      x = 689 053051
                                                                                      y = 3206 081030

                                                                                      and also:

                                                                                      x = -689 053051
                                                                                      y = -3206 081030

                                                                                      and also:

                                                                                      x = -2 062831
                                                                                      y = -126670

                                                                                      and also:

                                                                                      x = 2 062831
                                                                                      y = 126670

                                                                                      and also:

                                                                                      x = 27224
                                                                                      y = 126670

                                                                                      and also:

                                                                                      x = -27224
                                                                                      y = -126670

                                                                                      and also:

                                                                                      x = -52211 283944
                                                                                      y = -3206 081030

                                                                                      and also:

                                                                                      x = 52211 283944
                                                                                      y = 3206 081030

                                                                                      Recursive solutions:

                                                                                      xn+1 = P ⁢xn + Q ⁢yn
                                                                                      yn+1 = R ⁢xn + S ⁢yn

                                                                                      where:

                                                                                      P = 141535 082611 518287 749732 424252 171881 (36 digits)
                                                                                      Q = -30418 813368 857281 792634 997945 318384 (35 digits)
                                                                                      R = 8691 089533 959223 369324 285127 233824 (34 digits)
                                                                                      S = -1867 894698 808897 844118 280347 186215 (34 digits)

                                                                                      and also:

                                                                                      P = -1867 894698 808897 844118 280347 186215 (34 digits)
                                                                                      Q = 30418 813368 857281 792634 997945 318384 (35 digits)
                                                                                      R = -8691 089533 959223 369324 285127 233824 (34 digits)
                                                                                      S = 141535 082611 518287 749732 424252 171881 (36 digits)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      2 ⁢x² - 33 ⁢x⁢y + 7 ⁢y² - 12 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 1033

                                                                                      2 X² − 33 XY + 7 ⁢Y² = 12 (1)

                                                                                      The algorithm requires that the coefficient of X² and the right hand side are coprime. This does not happen, so we have to find a value of m such that applying one of the unimodular transformations

                                                                                      • X = mU + (m−1)V, Y = U + V
                                                                                      • X = U + V, Y = (m−1)U + mV

                                                                                      the coefficient of U² and the right hand side are coprime. This coefficient equals 2 m² − 33 m + 7 in the first case and 7 (m − 1)² − 33 (m − 1) + 2 in the second case.

                                                                                      We will use the first unimodular transformation with m = 6: X = 6 ⁢U + 5 ⁢V, Y = U + V (2)

                                                                                      Using (2), the equation (1) converts to:

                                                                                      -119 U² − 229 UV − 108 ⁢V² = 12 (3)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      12 = 22 × 3

                                                                                      Searching for solutions U and V coprime.

                                                                                      We have to solve:-119 T² − 229 T − 108 ≡ 0 (mod 12 = 22 × 3)

                                                                                      Solutions modulo 22: 0 and 1

                                                                                      Solutions modulo 3: 0 and 1

                                                                                      1. T = 0
                                                                                      2. The transformation U = - 12 ⁢k (4) converts -119 U² − 229 UV − 108 ⁢V² = 12 to PV² + QVk + Rk² = 1 (5)

                                                                                        where: P = (aT² + bT + c) / n = -9, Q = −(2⁢aT + b) = 229, R = an = -1428

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (229 + 1033) / (-2856) is:

                                                                                        -1+ // 1, 9, 1, 14, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15// (6)

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-229 + 1033) / 2856 is:

                                                                                        -1+ // 1, 13, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3// (7)

                                                                                        Solution of (5) found using the convergent V / (−k) = 29 / -2 of (7)

                                                                                        U = -24, V = 29

                                                                                        From (2):

                                                                                        X = 1, Y = 5

                                                                                        x = 1
                                                                                        y = 5

                                                                                        U = 24, V = -29

                                                                                        From (2):

                                                                                        X = -1, Y = -5

                                                                                        x = -1
                                                                                        y = -5

                                                                                        x = 1
                                                                                        y = 5

                                                                                        x = -1
                                                                                        y = -5

                                                                                      3. T = 4
                                                                                      4. The transformation U = 4 ⁢V - 12 ⁢k (8) converts -119 U² − 229 UV − 108 ⁢V² = 12 to PV² + QVk + Rk² = 1 (9)

                                                                                        where: P = (aT² + bT + c) / n = -244, Q = −(2⁢aT + b) = 1181, R = an = -1428

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (1181 + 1033) / (-2856) is:

                                                                                        -1+ // 1, 1, 2, 1, 4, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3// (10)

                                                                                        Solution of (9) found using the convergent V / (−k) = 834 608617 502911 / -354 515883 441475 of (10)

                                                                                        U = -915 756131 286056, V = 834 608617 502911

                                                                                        From (2):

                                                                                        X = -1321 493700 201781, Y = -81 147513 783145

                                                                                        x = -1321 493700 201781
                                                                                        y = -81 147513 783145

                                                                                        U = 915 756131 286056, V = -834 608617 502911

                                                                                        From (2):

                                                                                        X = 1321 493700 201781, Y = 81 147513 783145

                                                                                        x = 1321 493700 201781
                                                                                        y = 81 147513 783145

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-1181 + 1033) / 2856 is:

                                                                                        -1+ // 1, 1, 2, 17, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15// (11)

                                                                                        x = -1321 493700 201781
                                                                                        y = -81 147513 783145

                                                                                        x = 1321 493700 201781
                                                                                        y = 81 147513 783145

                                                                                      5. T = -3
                                                                                      6. The transformation U = - 3 ⁢V - 12 ⁢k (12) converts -119 U² − 229 UV − 108 ⁢V² = 12 to PV² + QVk + Rk² = 1 (13)

                                                                                        where: P = (aT² + bT + c) / n = -41, Q = −(2⁢aT + b) = -485, R = an = -1428

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (-485 + 1033) / (-2856) is:

                                                                                        0+ // 6, 3, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5// (14)

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (485 + 1033) / 2856 is:

                                                                                        0+ // 5, 1, 1, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5// (15)

                                                                                        Solution of (13) found using the convergent V / (−k) = 18547 433129 / 3358 412274 of (15)

                                                                                        U = -15341 352099, V = 18547 433129

                                                                                        From (2):

                                                                                        X = 689 053051, Y = 3206 081030

                                                                                        x = 689 053051
                                                                                        y = 3206 081030

                                                                                        U = 15341 352099, V = -18547 433129

                                                                                        From (2):

                                                                                        X = -689 053051, Y = -3206 081030

                                                                                        x = -689 053051
                                                                                        y = -3206 081030

                                                                                        x = 689 053051
                                                                                        y = 3206 081030

                                                                                        x = -689 053051
                                                                                        y = -3206 081030

                                                                                      7. T = 1
                                                                                      8. The transformation U =  V - 12 ⁢k (16) converts -119 U² − 229 UV − 108 ⁢V² = 12 to PV² + QVk + Rk² = 1 (17)

                                                                                        where: P = (aT² + bT + c) / n = -38, Q = −(2⁢aT + b) = 467, R = an = -1428

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (467 + 1033) / (-2856) is:

                                                                                        -1+ // 1, 4, 1, 2, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4// (18)

                                                                                        Solution of (17) found using the convergent V / (−k) = 1 302811 / -227691 of (18)

                                                                                        U = -1 429481, V = 1 302811

                                                                                        From (2):

                                                                                        X = -2 062831, Y = -126670

                                                                                        x = -2 062831
                                                                                        y = -126670

                                                                                        U = 1 429481, V = -1 302811

                                                                                        From (2):

                                                                                        X = 2 062831, Y = 126670

                                                                                        x = 2 062831
                                                                                        y = 126670

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-467 + 1033) / 2856 is:

                                                                                        -1+ // 1, 5, 1, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4// (19)

                                                                                        x = -2 062831
                                                                                        y = -126670

                                                                                        x = 2 062831
                                                                                        y = 126670

                                                                                      Let 2⁢U' = U and 2⁢V' = V. Searching for solutions U' and V' coprime.

                                                                                      From equation (3) we obtain -119 U'² − 229 U'V' − 108 ⁢V'² = 12 / 2² = 3

                                                                                      We have to solve:-119 T² − 229 T − 108 ≡ 0 (mod 3 = 3)

                                                                                      Solutions modulo 3: 0 and 1

                                                                                      1. T = 0
                                                                                      2. The transformation U' = - 3 ⁢k (20) converts -119 U'² − 229 U'V' − 108 ⁢V'² = 3 to PV'² + QV'k + Rk² = 1 (21)

                                                                                        where: P = (aT² + bT + c) / n = -36, Q = −(2⁢aT + b) = 229, R = an = -357

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (229 + 1033) / (-714) is:

                                                                                        -1+ // 1, 1, 1, 2, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4// (22)

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-229 + 1033) / 714 is:

                                                                                        -1+ // 1, 2, 1, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4// (23)

                                                                                        Solution of (21) found using the convergent V' / (−k) = 366398 / -101021 of (23)

                                                                                        From (20): U' = -303063, V' = 366398

                                                                                        U = -606126, V = 732796

                                                                                        From (2):

                                                                                        X = 27224, Y = 126670

                                                                                        x = 27224
                                                                                        y = 126670

                                                                                        U = 606126, V = -732796

                                                                                        From (2):

                                                                                        X = -27224, Y = -126670

                                                                                        x = -27224
                                                                                        y = -126670

                                                                                        x = 27224
                                                                                        y = 126670

                                                                                        x = -27224
                                                                                        y = -126670

                                                                                      3. T = 1
                                                                                      4. The transformation U' =  V' - 3 ⁢k (24) converts -119 U'² − 229 U'V' − 108 ⁢V'² = 3 to PV'² + QV'k + Rk² = 1 (25)

                                                                                        where: P = (aT² + bT + c) / n = -152, Q = −(2⁢aT + b) = 467, R = an = -357

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (467 + 1033) / (-714) is:

                                                                                        -1+ // 3, 3, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5// (26)

                                                                                        Solution of (25) found using the convergent V' / (−k) = 16487 398882 / -11525 946093 of (26)

                                                                                        From (24): U' = -18090 439397, V' = 16487 398882

                                                                                        U = -36180 878794, V = 32974 797764

                                                                                        From (2):

                                                                                        X = -52211 283944, Y = -3206 081030

                                                                                        x = -52211 283944
                                                                                        y = -3206 081030

                                                                                        U = 36180 878794, V = -32974 797764

                                                                                        From (2):

                                                                                        X = 52211 283944, Y = 3206 081030

                                                                                        x = 52211 283944
                                                                                        y = 3206 081030

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-467 + 1033) / 714 is:

                                                                                        -1+ // 2, 1, 1, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5// (27)

                                                                                        x = -52211 283944
                                                                                        y = -3206 081030

                                                                                        x = 52211 283944
                                                                                        y = 3206 081030

                                                                                      Recursive solutions:

                                                                                      xn+1 = P ⁢xn + Q ⁢yn
                                                                                      yn+1 = R ⁢xn + S ⁢yn

                                                                                      where:

                                                                                      P = 141535 082611 518287 749732 424252 171881 (36 digits)
                                                                                      Q = -30418 813368 857281 792634 997945 318384 (35 digits)
                                                                                      R = 8691 089533 959223 369324 285127 233824 (34 digits)
                                                                                      S = -1867 894698 808897 844118 280347 186215 (34 digits)

                                                                                      and also:

                                                                                      P = -1867 894698 808897 844118 280347 186215 (34 digits)
                                                                                      Q = 30418 813368 857281 792634 997945 318384 (35 digits)
                                                                                      R = -8691 089533 959223 369324 285127 233824 (34 digits)
                                                                                      S = 141535 082611 518287 749732 424252 171881 (36 digits)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² - 6 ⁢y + 3 ⁢ = 0

                                                                                      x = 12 k − 3
                                                                                      y = 24 k² − 12 k + 2

                                                                                      and also:

                                                                                      x = 12 k + 3
                                                                                      y = 24 k² + 12 k + 2

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² - 6 ⁢y + 3 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 0

                                                                                      Multiplying by 4⁢a

                                                                                      ( 2 ⁢x )² - 24 ⁢y + 12 ⁢ = 0

                                                                                      Let t = 2 ⁢x (1)

                                                                                      (t + d)² = ( t )² = 24 ⁢y - 12 ⁢ (2)

                                                                                      where the linear coefficient is 2⁢(bd − 2⁢ae) and the constant coefficient is d² − 4⁢af.

                                                                                      We have to solve T² = -12 (mod 24)

                                                                                      To solve this quadratic modular equation we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      24 = 23 × 3

                                                                                      Solutions modulo 23: 2 and 6

                                                                                      Solutions modulo 3: 0

                                                                                      1. T = -6
                                                                                      2. t = Td + 24 ⁢k = -6 + 24 k (3) (where k is any integer).

                                                                                        Replacing t in equation (2) we can get the value of y:

                                                                                        y = 24 k² − 12 k + 2 (4)

                                                                                        From (1) and (3):

                                                                                        2 ⁢x = -6 + 24 k

                                                                                        x = 12 k − 3
                                                                                        y = 24 k² − 12 k + 2


                                                                                      3. T = 6
                                                                                      4. t = Td + 24 ⁢k = 6 + 24 k (5) (where k is any integer).

                                                                                        Replacing t in equation (2) we can get the value of y:

                                                                                        y = 24 k² + 12 k + 2 (6)

                                                                                        From (1) and (5):

                                                                                        2 ⁢x = 6 + 24 k

                                                                                        x = 12 k + 3
                                                                                        y = 24 k² + 12 k + 2


                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² - 3 ⁢x⁢y + y² +  1 = 0

                                                                                      x = 1
                                                                                      y = 1

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = -1

                                                                                      xn+1 =  yn
                                                                                      yn+1 = - xn + 3 ⁢yn

                                                                                      and also:

                                                                                      xn+1 = 3 ⁢xn - yn
                                                                                      yn+1 =  xn

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² - 3 ⁢x⁢y + y² +  1 = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 5

                                                                                      X² − 3 XY + Y² = -1

                                                                                      The algorithm requires the constant coefficient to be positive, so we multiply both RHS and LHS by −1.

                                                                                      X² + 3 XYY² = 1 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      1 = 1

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve:−T² + 3 T − 1 ≡ 0 (mod 1 = 1)

                                                                                      1. T = 0
                                                                                      2. The transformation X = - k (2) converts −X² + 3 XYY² = 1 to PY² + QYk + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = -1, Q = −(2⁢aT + b) = -3, R = an = -1

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (-3 + 5) / (-2) is:

                                                                                        0+ // 2, 1// (4)

                                                                                        X = 1, Y = 1

                                                                                        x = 1
                                                                                        y = 1

                                                                                        X = -1, Y = -1

                                                                                        x = -1
                                                                                        y = -1

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (3 + 5) / 2 is:

                                                                                        2+ // 1// (5)

                                                                                        Solution of (3) found using the convergent Y / (−k) = 1 / 2 of (5)

                                                                                        X = 2, Y = 1

                                                                                        x = 2
                                                                                        y = 1

                                                                                        X = -2, Y = -1

                                                                                        x = -2
                                                                                        y = -1

                                                                                        x = 1
                                                                                        y = 1

                                                                                        x = -1
                                                                                        y = -1

                                                                                      xn+1 =  yn
                                                                                      yn+1 = - xn + 3 ⁢yn

                                                                                      and also:

                                                                                      xn+1 = 3 ⁢xn - yn
                                                                                      yn+1 =  xn

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      2 ⁢x² - 6 ⁢x⁢y + 2 ⁢y² + 3 ⁢y - 11 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 20

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = 18

                                                                                      β = 2⁢ae - bd = 12

                                                                                      2 X² − 6 XY + 2 ⁢Y² = 4040

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      Dividing both sides by 2:

                                                                                      X² − 3 XY + Y² = 2020 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      2020 = 22 × 5 × 101

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve: T² − 3 T + 1 ≡ 0 (mod 2020 = 22 × 5 × 101)

                                                                                      There are no solutions modulo 22, so the modular equation does not have any solution.

                                                                                      Let 2⁢X' = X and 2⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain X'² − 3 X'Y' + Y'² = 2020 / 2² = 505

                                                                                      We have to solve: T² − 3 T + 1 ≡ 0 (mod 505 = 5 × 101)

                                                                                      Solutions modulo 5: 4

                                                                                      Solutions modulo 101: 24 and 80

                                                                                      1. T = 24
                                                                                      2. The transformation X' = 24 ⁢Y' - 505 ⁢k (2) converts X'² − 3 X'Y' + Y'² = 505 to PY'² + QY'k + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = 1, Q = −(2⁢aT + b) = -45, R = an = 505

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (-45 + 5) / 1010 is:

                                                                                        -1+ // 1, 22, 1// (4)

                                                                                        Solution of (3) found using the convergent Y' / (−k) = 1 / 0 of (4)

                                                                                        From (2): X' = 24, Y' = 1

                                                                                        X = 48, Y = 2

                                                                                        X + α = 66, Y + β = 14

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = -48, Y = -2

                                                                                        X + α = -30, Y + β = 10

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (3) found using the convergent Y' / (−k) = 24 / -1 of (4)

                                                                                        From (2): X' = 71, Y' = 24

                                                                                        X = 142, Y = 48

                                                                                        X + α = 160, Y + β = 60

                                                                                        Dividing these numbers by D = 20:

                                                                                        x = 8
                                                                                        y = 3

                                                                                        X = -142, Y = -48

                                                                                        X + α = -124, Y + β = -36

                                                                                        These numbers are not multiple of D = 20.

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (45 + 5) / (-1010) is:

                                                                                        -1+ // 1, 20, 2, 1// (5)

                                                                                        Solution of (3) found using the convergent Y' / (−k) = 1 / 0 of (5)

                                                                                        From (2): X' = 24, Y' = 1

                                                                                        X = 48, Y = 2

                                                                                        X + α = 66, Y + β = 14

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = -48, Y = -2

                                                                                        X + α = -30, Y + β = 10

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (3) found using the convergent Y' / (−k) = 21 / -1 of (5)

                                                                                        From (2): X' = -1, Y' = 21

                                                                                        X = -2, Y = 42

                                                                                        X + α = 16, Y + β = 54

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = 2, Y = -42

                                                                                        X + α = 20, Y + β = -30

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (3) found using the convergent Y' / (−k) = 64 / -3 of (5)

                                                                                        From (2): X' = 21, Y' = 64

                                                                                        X = 42, Y = 128

                                                                                        X + α = 60, Y + β = 140

                                                                                        Dividing these numbers by D = 20:

                                                                                        x = 3
                                                                                        y = 7

                                                                                        X = -42, Y = -128

                                                                                        X + α = -24, Y + β = -116

                                                                                        These numbers are not multiple of D = 20.

                                                                                        x = 3
                                                                                        y = 7

                                                                                      3. T = -21
                                                                                      4. The transformation X' = - 21 ⁢Y' - 505 ⁢k (6) converts X'² − 3 X'Y' + Y'² = 505 to PY'² + QY'k + Rk² = 1 (7)

                                                                                        where: P = (aT² + bT + c) / n = 1, Q = −(2⁢aT + b) = 45, R = an = 505

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (45 + 5) / 1010 is:

                                                                                        0+ // 21, 2, 1// (8)

                                                                                        Solution of (7) found using the convergent Y' / (−k) = 1 / 0 of (8)

                                                                                        From (6): X' = -21, Y' = 1

                                                                                        X = -42, Y = 2

                                                                                        X + α = -24, Y + β = 14

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = 42, Y = -2

                                                                                        X + α = 60, Y + β = 10

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (7) found using the convergent Y' / (−k) = 21 / 1 of (8)

                                                                                        From (6): X' = 64, Y' = 21

                                                                                        X = 128, Y = 42

                                                                                        X + α = 146, Y + β = 54

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = -128, Y = -42

                                                                                        X + α = -110, Y + β = -30

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (7) found using the convergent Y' / (−k) = 64 / 3 of (8)

                                                                                        From (6): X' = 171, Y' = 64

                                                                                        X = 342, Y = 128

                                                                                        X + α = 360, Y + β = 140

                                                                                        Dividing these numbers by D = 20:

                                                                                        x = 18
                                                                                        y = 7

                                                                                        X = -342, Y = -128

                                                                                        X + α = -324, Y + β = -116

                                                                                        These numbers are not multiple of D = 20.

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-45 + 5) / (-1010) is:

                                                                                        0+ // 23, 1// (9)

                                                                                        Solution of (7) found using the convergent Y' / (−k) = 1 / 0 of (9)

                                                                                        From (6): X' = -21, Y' = 1

                                                                                        X = -42, Y = 2

                                                                                        X + α = -24, Y + β = 14

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = 42, Y = -2

                                                                                        X + α = 60, Y + β = 10

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (7) found using the convergent Y' / (−k) = 24 / 1 of (9)

                                                                                        From (6): X' = 1, Y' = 24

                                                                                        X = 2, Y = 48

                                                                                        X + α = 20, Y + β = 60

                                                                                        Dividing these numbers by D = 20:

                                                                                        x = 1
                                                                                        y = 3

                                                                                        X = -2, Y = -48

                                                                                        X + α = 16, Y + β = -36

                                                                                        These numbers are not multiple of D = 20.

                                                                                        x = 1
                                                                                        y = 3

                                                                                      Recursive solutions:

                                                                                      xn+1 = - 21 ⁢xn + 8 ⁢yn + 15 ⁢
                                                                                      yn+1 = - 8 ⁢xn + 3 ⁢yn + 6 ⁢

                                                                                      and also:

                                                                                      xn+1 = 3 ⁢xn - 8 ⁢yn + 3 ⁢
                                                                                      yn+1 = 8 ⁢xn - 21 ⁢yn + 6 ⁢

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² - x⁢y + y² - x - y = 0

                                                                                      The discriminant is D = b² − 4⁢ac = -3

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = -3

                                                                                      β = 2⁢ae - bd = -3

                                                                                      X² − XY + Y² = 9 (1)

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      9 = 32

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve: T² − T⁢ + 1 ≡ 0 (mod 9 = 32)

                                                                                      There are no solutions modulo 32, so the modular equation does not have any solution.

                                                                                      Let 3⁢X' = X and 3⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain X'² − X'Y' + Y'² = 9 / 3² = 1

                                                                                      We have to solve: T² − T⁢ + 1 ≡ 0 (mod 1 = 1)

                                                                                      1. T = 0
                                                                                      2. The transformation X' = - k (2) converts X'² − X'Y' + Y'² = 1 to PY'² + QY'k + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = 1, Q = −(2⁢aT + b) = 1, R = an = 1

                                                                                        When the discriminant equals -3 and P = 1, a solution is (Y', k) = (1, 0)

                                                                                        From (2): X' = 0, Y' = 1

                                                                                        X = 0, Y = 3

                                                                                        X + α = -3, Y + β = 0

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 1
                                                                                        y = 0

                                                                                        X = 0, Y = -3

                                                                                        X + α = -3, Y + β = -6

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 1
                                                                                        y = 2

                                                                                        The second solution is (Y', k) = ((Q ‑ 1)/2 = 0, -1)

                                                                                        From (2): X' = 1, Y' = 0

                                                                                        X = 3, Y = 0

                                                                                        X + α = 0, Y + β = -3

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 0
                                                                                        y = 1

                                                                                        X = -3, Y = 0

                                                                                        X + α = -6, Y + β = -3

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 2
                                                                                        y = 1

                                                                                        The third solution is (Y', k) = ((Q + 1)/2 = 1, -1)

                                                                                        From (2): X' = 1, Y' = 1

                                                                                        X = 3, Y = 3

                                                                                        X + α = 0, Y + β = 0

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 0
                                                                                        y = 0

                                                                                        X = -3, Y = -3

                                                                                        X + α = -6, Y + β = -6

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 2
                                                                                        y = 2

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      - 6 ⁢x⁢y - 6 ⁢y² - 5 ⁢x + y + 5 ⁢ = 0

                                                                                      x = − t
                                                                                      y = 1 + t

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      - 6 ⁢x⁢y - 6 ⁢y² - 5 ⁢x + y + 5 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 36

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = 66

                                                                                      β = 2⁢ae - bd = -30

                                                                                      − 6 XY − 6 ⁢Y² = 0

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      Dividing both sides by 6:

                                                                                      XYY² = 0 (1)

                                                                                      ( - 6 ⁢X - 6 ⁢Y ) ⁢( Y ) = 0

                                                                                      ( - X - Y ) ⁢( Y ) = 0

                                                                                      The product is zero, so any of the values inside parenthesis equal zero.

                                                                                       Y = 0

                                                                                      This is a linear equation 36 ⁢y + 30 ⁢ = 0

                                                                                      This equation does not have integer solutions.

                                                                                      - X - Y = 0

                                                                                      This is a linear equation - 216 ⁢x - 216 ⁢y + 216 ⁢ = 0

                                                                                      To solve it, we first find the greatest common divisor of the linear coefficients, that is: gcd(-216, -216) = 216.

                                                                                      Dividing the equation by the greatest common divisor we obtain:

                                                                                      - x - y +  1 = 0

                                                                                      Now we must apply the Generalized Euclidean algorithm:

                                                                                      Step 1: 1 × (-1) + 0 × (-1) = (-1)
                                                                                      Step 2: 0 × (-1) + 1 × (-1) = (-1)

                                                                                      Adding and subtracting (-1) × (-1) t' we obtain:

                                                                                      (0 + (-1) t') × (-1) + (1 - (-1) t') × (-1) = -1

                                                                                      So, the solution is given by the set:

                                                                                      x = − t'
                                                                                      y = 1 + t'

                                                                                      By making the substitution t' = 0 + t we finally obtain:

                                                                                      x = − t
                                                                                      y = 1 + t

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      - 6 ⁢x² - 6 ⁢x⁢y + x - 5 ⁢y + 5 ⁢ = 0

                                                                                      x = − t
                                                                                      y = 1 + t

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      - 6 ⁢x² - 6 ⁢x⁢y + x - 5 ⁢y + 5 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 36

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = -30

                                                                                      β = 2⁢ae - bd = 66

                                                                                      -6 X² − 6 XY = 0

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      Dividing both sides by 6:

                                                                                      X² − XY = 0 (1)

                                                                                      Multiplying by 4⁢a:

                                                                                      ( - 12 ⁢X ) ⁢( - 12 ⁢X - 12 ⁢Y ) = 0

                                                                                      ( X ) ⁢( - X - Y ) = 0

                                                                                      The product is zero, so any of the values inside parenthesis equal zero.

                                                                                      - X - Y = 0

                                                                                      This is a linear equation - 432 ⁢x - 360 ⁢ = 0

                                                                                      This equation does not have integer solutions.

                                                                                       X = 0

                                                                                      This is a linear equation - 432 ⁢x - 432 ⁢y + 432 ⁢ = 0

                                                                                      To solve it, we first find the greatest common divisor of the linear coefficients, that is: gcd(-432, -432) = 432.

                                                                                      Dividing the equation by the greatest common divisor we obtain:

                                                                                      - x - y +  1 = 0

                                                                                      Now we must apply the Generalized Euclidean algorithm:

                                                                                      Step 1: 1 × (-1) + 0 × (-1) = (-1)
                                                                                      Step 2: 0 × (-1) + 1 × (-1) = (-1)

                                                                                      Adding and subtracting (-1) × (-1) t' we obtain:

                                                                                      (0 + (-1) t') × (-1) + (1 - (-1) t') × (-1) = -1

                                                                                      So, the solution is given by the set:

                                                                                      x = − t'
                                                                                      y = 1 + t'

                                                                                      By making the substitution t' = 0 + t we finally obtain:

                                                                                      x = − t
                                                                                      y = 1 + t

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      128 ⁢x² - 128 ⁢y² + 184 ⁢x - 12 ⁢y + 11 612128 ⁢ = 0

                                                                                      The equation does not have integer solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Coefficient a: The expression must not include variables

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2

                                                                                      0 = 0

                                                                                      x, y: any integer

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      5 ⁢y + 6 ⁢ = 0

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      5 ⁢y + 6 ⁢ = 0

                                                                                      The constant coefficient is not multiple of 5, which is the greatest common divisor of the other coefficients, so there are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      5 ⁢x + 6 ⁢ = 0

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      5 ⁢x + 6 ⁢ = 0

                                                                                      The constant coefficient is not multiple of 5, which is the greatest common divisor of the other coefficients, so there are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       y + 5 ⁢ = 0

                                                                                      x = t
                                                                                      y = -5

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x + 5 ⁢ = 0

                                                                                      x = -5
                                                                                      y = t

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       y + 5 ⁢ = 0

                                                                                      This is a linear equation  y + 5 ⁢ = 0

                                                                                      x = t
                                                                                      y = -5

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x + y + 5 ⁢ = 0

                                                                                      x = -2 + t
                                                                                      y = -3 − t

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x + y + 5 ⁢ = 0

                                                                                      This is a linear equation  x + y + 5 ⁢ = 0

                                                                                      Dividing the equation by the greatest common divisor we obtain:

                                                                                       x + y + 5 ⁢ = 0

                                                                                      Now we must apply the Generalized Euclidean algorithm:

                                                                                      Step 1: 1 × 1 + 0 × 1 = 1
                                                                                      Step 2: 0 × 1 + 1 × 1 = 1

                                                                                      Multiplying the last equation by (-5) we obtain:
                                                                                      0 × 1 + (-5) × 1 = -5

                                                                                      Adding and subtracting 1 × 1 t' we obtain:

                                                                                      (0 + 1 t') × 1 + (-5 - 1 t') × 1 = -5

                                                                                      So, the solution is given by the set:

                                                                                      x = t'
                                                                                      y = -5 − t'

                                                                                      By making the substitution t' = -2 + t we finally obtain:

                                                                                      x = -2 + t
                                                                                      y = -3 − t

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² + 2 ⁢x⁢y + 3 ⁢y² + 4 ⁢x + 5 ⁢y + 6 ⁢ = 0

                                                                                      The equation does not have integer solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² + 2 ⁢x⁢y + 3 ⁢y² + 4 ⁢x + 5 ⁢y + 6 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = -8

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = 14

                                                                                      β = 2⁢ae - bd = 2

                                                                                      X² + 2 XY + 3 ⁢Y² = -120

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      The algorithm requires the constant coefficient to be positive, so we multiply both RHS and LHS by −1.

                                                                                      X² − 2 XY − 3 ⁢Y² = 120 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      120 = 23 × 3 × 5

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve:−T² − 2 T − 3 ≡ 0 (mod 120 = 23 × 3 × 5)

                                                                                      There are no solutions modulo 23, so the modular equation does not have any solution.

                                                                                      Let 2⁢X' = X and 2⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain −X'² − 2 X'Y' − 3 ⁢Y'² = 120 / 2² = 30

                                                                                      We have to solve:−T² − 2 T − 3 ≡ 0 (mod 30 = 2 × 3 × 5)

                                                                                      Solutions modulo 2: 1

                                                                                      Solutions modulo 3: 0 and 1

                                                                                      There are no solutions modulo 5, so the modular equation does not have any solution.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² + 7 ⁢y - 12 ⁢ = 0

                                                                                      The equation does not have integer solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² + 7 ⁢y - 12 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 0

                                                                                      Multiplying by 4⁢a

                                                                                      ( 2 ⁢x )² + 28 ⁢y - 48 ⁢ = 0

                                                                                      Let t = 2 ⁢x (1)

                                                                                      (t + d)² = ( t )² = - 28 ⁢y + 48 ⁢ (2)

                                                                                      where the linear coefficient is 2⁢(bd − 2⁢ae) and the constant coefficient is d² − 4⁢af.

                                                                                      We have to solve T² = 48 (mod 28)

                                                                                      To solve this quadratic modular equation we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      28 = 22 × 7

                                                                                      Solutions modulo 22: 0 and 2

                                                                                      There are no solutions modulo 7, so the modular equation does not have any solution.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² + 2 ⁢x⁢y + 2 ⁢y² - 89 ⁢ = 0

                                                                                      x = -13
                                                                                      y = 5

                                                                                      and also:

                                                                                      x = 13
                                                                                      y = -5

                                                                                      and also:

                                                                                      x = -3
                                                                                      y = 8

                                                                                      and also:

                                                                                      x = 3
                                                                                      y = -8

                                                                                      and also:

                                                                                      x = -3
                                                                                      y = -5

                                                                                      and also:

                                                                                      x = 3
                                                                                      y = 5

                                                                                      and also:

                                                                                      x = 13
                                                                                      y = -8

                                                                                      and also:

                                                                                      x = -13
                                                                                      y = 8

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² + 2 ⁢x⁢y + 2 ⁢y² - 89 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = -4

                                                                                      X² + 2 XY + 2 ⁢Y² = 89 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      89 = 89

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve: T² + 2 T + 2 ≡ 0 (mod 89 = 89)

                                                                                      Solutions modulo 89: 33 and 54

                                                                                      1. T = 33
                                                                                      2. The transformation X = 33 ⁢Y - 89 ⁢k (2) converts X² + 2 XY + 2 ⁢Y² = 89 to PY² + QYk + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = 13, Q = −(2⁢aT + b) = -68, R = an = 89

                                                                                        To obtain solutions to the equation (3) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 68 / 26

                                                                                        The continued fraction is: 2+ //1, 1, 1, 1, 2// (4)

                                                                                        Solution of (3) found using the convergent Y / k = 5 / 2 of (4)

                                                                                        X = -13, Y = 5

                                                                                        x = -13
                                                                                        y = 5

                                                                                        X = 13, Y = -5

                                                                                        x = 13
                                                                                        y = -5

                                                                                        Solution of (3) found using the convergent Y / k = 8 / 3 of (4)

                                                                                        X = -3, Y = 8

                                                                                        x = -3
                                                                                        y = 8

                                                                                        X = 3, Y = -8

                                                                                        x = 3
                                                                                        y = -8

                                                                                      3. T = -35
                                                                                      4. The transformation X = - 35 ⁢Y - 89 ⁢k (5) converts X² + 2 XY + 2 ⁢Y² = 89 to PY² + QYk + Rk² = 1 (6)

                                                                                        where: P = (aT² + bT + c) / n = 13, Q = −(2⁢aT + b) = 68, R = an = 89

                                                                                        To obtain solutions to the equation (6) we have to compute the convergents of the continued fraction of −Q / 2⁢P = -68 / 26

                                                                                        The continued fraction is: -3+ //2, 1, 1, 2// (7)

                                                                                        Solution of (6) found using the convergent Y / k = -5 / 2 of (7)

                                                                                        X = -3, Y = -5

                                                                                        x = -3
                                                                                        y = -5

                                                                                        X = 3, Y = 5

                                                                                        x = 3
                                                                                        y = 5

                                                                                        Solution of (6) found using the convergent Y / k = -8 / 3 of (7)

                                                                                        X = 13, Y = -8

                                                                                        x = 13
                                                                                        y = -8

                                                                                        X = -13, Y = 8

                                                                                        x = -13
                                                                                        y = 8

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² + 3 ⁢x⁢y + 3 ⁢y² - 76 ⁢ = 0

                                                                                      x = 14
                                                                                      y = -4

                                                                                      and also:

                                                                                      x = -14
                                                                                      y = 4

                                                                                      and also:

                                                                                      x = 16
                                                                                      y = -10

                                                                                      and also:

                                                                                      x = -16
                                                                                      y = 10

                                                                                      and also:

                                                                                      x = 2
                                                                                      y = -6

                                                                                      and also:

                                                                                      x = -2
                                                                                      y = 6

                                                                                      and also:

                                                                                      x = -16
                                                                                      y = 6

                                                                                      and also:

                                                                                      x = 16
                                                                                      y = -6

                                                                                      and also:

                                                                                      x = -14
                                                                                      y = 10

                                                                                      and also:

                                                                                      x = 14
                                                                                      y = -10

                                                                                      and also:

                                                                                      x = 2
                                                                                      y = 4

                                                                                      and also:

                                                                                      x = -2
                                                                                      y = -4

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² + 3 ⁢x⁢y + 3 ⁢y² - 76 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = -3

                                                                                      X² + 3 XY + 3 ⁢Y² = 76 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      76 = 22 × 19

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve: T² + 3 T + 3 ≡ 0 (mod 76 = 22 × 19)

                                                                                      There are no solutions modulo 22, so the modular equation does not have any solution.

                                                                                      Let 2⁢X' = X and 2⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain X'² + 3 X'Y' + 3 ⁢Y'² = 76 / 2² = 19

                                                                                      We have to solve: T² + 3 T + 3 ≡ 0 (mod 19 = 19)

                                                                                      Solutions modulo 19: 6 and 10

                                                                                      1. T = 6
                                                                                      2. The transformation X' = 6 ⁢Y' - 19 ⁢k (2) converts X'² + 3 X'Y' + 3 ⁢Y'² = 19 to PY'² + QY'k + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = 3, Q = −(2⁢aT + b) = -15, R = an = 19

                                                                                        When the discriminant equals -3 and P = 3, a solution is (Y', k) = ((Q + 3)/6 = -2, -1)

                                                                                        From (2): X' = 7, Y' = -2

                                                                                        X = 14, Y = -4

                                                                                        x = 14
                                                                                        y = -4

                                                                                        X = -14, Y = 4

                                                                                        x = -14
                                                                                        y = 4

                                                                                        The second solution is (Y', k) = (Q/3 = -5, -2)

                                                                                        From (2): X' = 8, Y' = -5

                                                                                        X = 16, Y = -10

                                                                                        x = 16
                                                                                        y = -10

                                                                                        X = -16, Y = 10

                                                                                        x = -16
                                                                                        y = 10

                                                                                        The third solution is (Y', k) = ((Q − 3)/6 = -3, -1)

                                                                                        From (2): X' = 1, Y' = -3

                                                                                        X = 2, Y = -6

                                                                                        x = 2
                                                                                        y = -6

                                                                                        X = -2, Y = 6

                                                                                        x = -2
                                                                                        y = 6

                                                                                      3. T = -9
                                                                                      4. The transformation X' = - 9 ⁢Y' - 19 ⁢k (4) converts X'² + 3 X'Y' + 3 ⁢Y'² = 19 to PY'² + QY'k + Rk² = 1 (5)

                                                                                        where: P = (aT² + bT + c) / n = 3, Q = −(2⁢aT + b) = 15, R = an = 19

                                                                                        When the discriminant equals -3 and P = 3, a solution is (Y', k) = ((Q + 3)/6 = 3, -1)

                                                                                        From (4): X' = -8, Y' = 3

                                                                                        X = -16, Y = 6

                                                                                        x = -16
                                                                                        y = 6

                                                                                        X = 16, Y = -6

                                                                                        x = 16
                                                                                        y = -6

                                                                                        The second solution is (Y', k) = (Q/3 = 5, -2)

                                                                                        From (4): X' = -7, Y' = 5

                                                                                        X = -14, Y = 10

                                                                                        x = -14
                                                                                        y = 10

                                                                                        X = 14, Y = -10

                                                                                        x = 14
                                                                                        y = -10

                                                                                        The third solution is (Y', k) = ((Q − 3)/6 = 2, -1)

                                                                                        From (4): X' = 1, Y' = 2

                                                                                        X = 2, Y = 4

                                                                                        x = 2
                                                                                        y = 4

                                                                                        X = -2, Y = -4

                                                                                        x = -2
                                                                                        y = -4

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² + y² - 425 ⁢ = 0

                                                                                      x = -19
                                                                                      y = 8

                                                                                      and also:

                                                                                      x = 19
                                                                                      y = -8

                                                                                      and also:

                                                                                      x = 8
                                                                                      y = 19

                                                                                      and also:

                                                                                      x = -8
                                                                                      y = -19

                                                                                      and also:

                                                                                      x = 16
                                                                                      y = 13

                                                                                      and also:

                                                                                      x = -16
                                                                                      y = -13

                                                                                      and also:

                                                                                      x = -13
                                                                                      y = 16

                                                                                      and also:

                                                                                      x = 13
                                                                                      y = -16

                                                                                      and also:

                                                                                      x = 16
                                                                                      y = -13

                                                                                      and also:

                                                                                      x = -16
                                                                                      y = 13

                                                                                      and also:

                                                                                      x = -13
                                                                                      y = -16

                                                                                      and also:

                                                                                      x = 13
                                                                                      y = 16

                                                                                      and also:

                                                                                      x = -19
                                                                                      y = -8

                                                                                      and also:

                                                                                      x = 19
                                                                                      y = 8

                                                                                      and also:

                                                                                      x = 8
                                                                                      y = -19

                                                                                      and also:

                                                                                      x = -8
                                                                                      y = 19

                                                                                      and also:

                                                                                      x = 20
                                                                                      y = 5

                                                                                      and also:

                                                                                      x = -20
                                                                                      y = -5

                                                                                      and also:

                                                                                      x = 5
                                                                                      y = -20

                                                                                      and also:

                                                                                      x = -5
                                                                                      y = 20

                                                                                      and also:

                                                                                      x = -20
                                                                                      y = 5

                                                                                      and also:

                                                                                      x = 20
                                                                                      y = -5

                                                                                      and also:

                                                                                      x = 5
                                                                                      y = 20

                                                                                      and also:

                                                                                      x = -5
                                                                                      y = -20

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² - 5 ⁢y² + 4 ⁢ = 0

                                                                                      x = 1
                                                                                      y = 1

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = -1

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = 1

                                                                                      and also:

                                                                                      x = 1
                                                                                      y = -1

                                                                                      and also:

                                                                                      x = 4
                                                                                      y = 2

                                                                                      and also:

                                                                                      x = -4
                                                                                      y = -2

                                                                                      Recursive solutions:

                                                                                      xn+1 = 9 ⁢xn - 20 ⁢yn
                                                                                      yn+1 = - 4 ⁢xn + 9 ⁢yn

                                                                                      and also:

                                                                                      xn+1 = 9 ⁢xn + 20 ⁢yn
                                                                                      yn+1 = 4 ⁢xn + 9 ⁢yn

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² - 5 ⁢y² + 4 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 20

                                                                                      X² − 5 ⁢Y² = -4

                                                                                      The algorithm requires the constant coefficient to be positive, so we multiply both RHS and LHS by −1.

                                                                                      X² + 5 ⁢Y² = 4 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      4 = 22

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve:−T² + 5 ≡ 0 (mod 4 = 22)

                                                                                      Solutions modulo 22: 1 and 3

                                                                                      1. T = 1
                                                                                      2. The transformation X =  Y - 4 ⁢k (2) converts −X² + 5 ⁢Y² = 4 to PY² + QYk + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = 1, Q = −(2⁢aT + b) = 2, R = an = -4

                                                                                        The continued fraction expansion of (Q + D / 4) / R = (1 + 5) / (-4) is:

                                                                                        -1+ // 5, 4// (4)

                                                                                        Solution of (3) found using the convergent Y / (−k) = 5 / -4 of (4)

                                                                                        X = -11, Y = 5

                                                                                        x = -11
                                                                                        y = 5

                                                                                        X = 11, Y = -5

                                                                                        x = 11
                                                                                        y = -5

                                                                                        The continued fraction expansion of (−Q + D / 4) / (−R) = (-1 + 5) / 4 is:

                                                                                        0+ // 3, 4// (5)

                                                                                        Solution of (3) found using the convergent Y / (−k) = 1 / 0 of (5)

                                                                                        X = 1, Y = 1

                                                                                        x = 1
                                                                                        y = 1

                                                                                        X = -1, Y = -1

                                                                                        x = -1
                                                                                        y = -1

                                                                                        x = 1
                                                                                        y = 1

                                                                                        x = -1
                                                                                        y = -1

                                                                                      3. T = -1
                                                                                      4. The transformation X = - Y - 4 ⁢k (6) converts −X² + 5 ⁢Y² = 4 to PY² + QYk + Rk² = 1 (7)

                                                                                        where: P = (aT² + bT + c) / n = 1, Q = −(2⁢aT + b) = -2, R = an = -4

                                                                                        The continued fraction expansion of (Q + D / 4) / R = (-1 + 5) / (-4) is:

                                                                                        -1+ // 1, 2, 4// (8)

                                                                                        Solution of (7) found using the convergent Y / (−k) = 1 / 0 of (8)

                                                                                        X = -1, Y = 1

                                                                                        x = -1
                                                                                        y = 1

                                                                                        X = 1, Y = -1

                                                                                        x = 1
                                                                                        y = -1

                                                                                        The continued fraction expansion of (−Q + D / 4) / (−R) = (1 + 5) / 4 is:

                                                                                        0+ // 1, 4// (9)

                                                                                        Solution of (7) found using the convergent Y / (−k) = 1 / 0 of (9)

                                                                                        X = -1, Y = 1

                                                                                        x = -1
                                                                                        y = 1

                                                                                        X = 1, Y = -1

                                                                                        x = 1
                                                                                        y = -1

                                                                                        x = -1
                                                                                        y = 1

                                                                                        x = 1
                                                                                        y = -1

                                                                                      Let 2⁢X' = X and 2⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain −X'² + 5 ⁢Y'² = 4 / 2² = 1

                                                                                      We have to solve:−T² + 5 ≡ 0 (mod 1 = 1)

                                                                                      1. T = 0
                                                                                      2. The transformation X' = - k (10) converts −X'² + 5 ⁢Y'² = 1 to PY'² + QY'k + Rk² = 1 (11)

                                                                                        where: P = (aT² + bT + c) / n = 5, Q = −(2⁢aT + b) = 0, R = an = -1

                                                                                        The continued fraction expansion of (Q + D / 4) / R = 5 / (-1) is:

                                                                                        -3+ // 1, 3, 4// (12)

                                                                                        Solution of (11) found using the convergent Y' / (−k) = 1 / -2 of (12)

                                                                                        From (10): X' = -2, Y' = 1

                                                                                        X = -4, Y = 2

                                                                                        x = -4
                                                                                        y = 2

                                                                                        X = 4, Y = -2

                                                                                        x = 4
                                                                                        y = -2

                                                                                        The continued fraction expansion of (−Q + D / 4) / (−R) = 5 / 1 is:

                                                                                        2+ // 4// (13)

                                                                                        Solution of (11) found using the convergent Y' / (−k) = 1 / 2 of (13)

                                                                                        From (10): X' = 2, Y' = 1

                                                                                        X = 4, Y = 2

                                                                                        x = 4
                                                                                        y = 2

                                                                                        X = -4, Y = -2

                                                                                        x = -4
                                                                                        y = -2

                                                                                        x = 4
                                                                                        y = 2

                                                                                        x = -4
                                                                                        y = -2

                                                                                      Recursive solutions:

                                                                                      xn+1 = 9 ⁢xn - 20 ⁢yn
                                                                                      yn+1 = - 4 ⁢xn + 9 ⁢yn

                                                                                      and also:

                                                                                      xn+1 = 9 ⁢xn + 20 ⁢yn
                                                                                      yn+1 = 4 ⁢xn + 9 ⁢yn

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² - 991 ⁢y² -  1 = 0

                                                                                      x = 1
                                                                                      y = 0

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = 0

                                                                                      Recursive solutions:

                                                                                      xn+1 = P ⁢xn + Q ⁢yn
                                                                                      yn+1 = R ⁢xn + S ⁢yn

                                                                                      where:

                                                                                      P = 379516 400906 811930 638014 896080
                                                                                      Q = 11 947234 168218 377212 415555 918097 (32 digits)
                                                                                      R = 12055 735790 331359 447442 538767
                                                                                      S = 379516 400906 811930 638014 896080

                                                                                      and also:

                                                                                      P = 379516 400906 811930 638014 896080
                                                                                      Q = -11 947234 168218 377212 415555 918097 (32 digits)
                                                                                      R = -12055 735790 331359 447442 538767
                                                                                      S = 379516 400906 811930 638014 896080

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² - 991 ⁢y² -  1 = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 3964

                                                                                      X² − 991 ⁢Y² = 1 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      1 = 1

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve: T² − 991 ≡ 0 (mod 1 = 1)

                                                                                      1. T = 0
                                                                                      2. The transformation X = - k (2) converts X² − 991 ⁢Y² = 1 to PY² + QYk + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = -991, Q = −(2⁢aT + b) = 0, R = an = 1

                                                                                        The continued fraction expansion of (Q + D / 4) / R = 991 / 1 is:

                                                                                        31+ // 2, 12, 10, 2, 2, 2, 1, 1, 2, 6, 1, 1, 1, 1, 3, 1, 8, 4, 1, 2, 1, 2, 3, 1, 4, 1, 20, 6, 4, 31, 4, 6, 20, 1, 4, 1, 3, 2, 1, 2, 1, 4, 8, 1, 3, 1, 1, 1, 1, 6, 2, 1, 1, 2, 2, 2, 10, 12, 2, 62// (4)

                                                                                        Solution of (3) found using the convergent Y / (−k) = 0 / 1 of (4)

                                                                                        X = 1, Y = 0

                                                                                        x = 1
                                                                                        y = 0

                                                                                        X = -1, Y = 0

                                                                                        x = -1
                                                                                        y = 0

                                                                                        The continued fraction expansion of (−Q + D / 4) / (−R) = 991 / (-1) is:

                                                                                        -32+ // 1, 1, 12, 10, 2, 2, 2, 1, 1, 2, 6, 1, 1, 1, 1, 3, 1, 8, 4, 1, 2, 1, 2, 3, 1, 4, 1, 20, 6, 4, 31, 4, 6, 20, 1, 4, 1, 3, 2, 1, 2, 1, 4, 8, 1, 3, 1, 1, 1, 1, 6, 2, 1, 1, 2, 2, 2, 10, 12, 2, 62, 2// (5)

                                                                                        Solution of (3) found using the convergent Y / (−k) = 0 / 1 of (5)

                                                                                        X = 1, Y = 0

                                                                                        x = 1
                                                                                        y = 0

                                                                                        X = -1, Y = 0

                                                                                        x = -1
                                                                                        y = 0

                                                                                        x = 1
                                                                                        y = 0

                                                                                        x = -1
                                                                                        y = 0

                                                                                      Recursive solutions:

                                                                                      xn+1 = P ⁢xn + Q ⁢yn
                                                                                      yn+1 = R ⁢xn + S ⁢yn

                                                                                      where:

                                                                                      P = 379516 400906 811930 638014 896080
                                                                                      Q = 11 947234 168218 377212 415555 918097 (32 digits)
                                                                                      R = 12055 735790 331359 447442 538767
                                                                                      S = 379516 400906 811930 638014 896080

                                                                                      and also:

                                                                                      P = 379516 400906 811930 638014 896080
                                                                                      Q = -11 947234 168218 377212 415555 918097 (32 digits)
                                                                                      R = -12055 735790 331359 447442 538767
                                                                                      S = 379516 400906 811930 638014 896080

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      5 ⁢x² + 3 ⁢x⁢y - 991 ⁢y² + 23 ⁢x + 42 ⁢y -  1 = 0

                                                                                      The equation does not have integer solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      5 ⁢x² + 3 ⁢x⁢y - 991 ⁢y² + 23 ⁢x + 42 ⁢y -  1 = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 19829

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = -45712

                                                                                      β = 2⁢ae - bd = 351

                                                                                      5 X² + 3 XY − 991 ⁢Y² = 10670 897034 (1)

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      10670 897034 = 2 × 32 × 7 × 79 × 251 × 4271

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve:5 T² + 3 T − 991 ≡ 0 (mod 10670 897034 = 2 × 32 × 7 × 79 × 251 × 4271)

                                                                                      There are no solutions modulo 2, so the modular equation does not have any solution.

                                                                                      Let 3⁢X' = X and 3⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain 5 X'² + 3 X'Y' − 991 ⁢Y'² = 10670 897034 / 3² = 1185 655226

                                                                                      We have to solve:5 T² + 3 T − 991 ≡ 0 (mod 1185 655226 = 2 × 7 × 79 × 251 × 4271)

                                                                                      There are no solutions modulo 2, so the modular equation does not have any solution.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      2 ⁢x² + 3 ⁢x⁢y + 7 ⁢y² - 12 ⁢ = 0

                                                                                      x = 1
                                                                                      y = 1

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = -1

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      2 ⁢x² + 3 ⁢x⁢y + 7 ⁢y² - 12 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = -47

                                                                                      2 X² + 3 XY + 7 ⁢Y² = 12 (1)

                                                                                      The algorithm requires that the coefficient of X² and the right hand side are coprime. This does not happen, so we have to find a value of m such that applying one of the unimodular transformations

                                                                                      • X = mU + (m−1)V, Y = U + V
                                                                                      • X = U + V, Y = (m−1)U + mV

                                                                                      the coefficient of U² and the right hand side are coprime. This coefficient equals 2 m² + 3 m + 7 in the first case and 7 (m − 1)² + 3 (m − 1) + 2 in the second case.

                                                                                      We will use the first unimodular transformation with m = 6: X = 6 ⁢U + 5 ⁢V, Y = U + V (2)

                                                                                      Using (2), the equation (1) converts to:

                                                                                      97 U² + 167 UV + 72 ⁢V² = 12 (3)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      12 = 22 × 3

                                                                                      Searching for solutions U and V coprime.

                                                                                      We have to solve:97 T² + 167 T + 72 ≡ 0 (mod 12 = 22 × 3)

                                                                                      Solutions modulo 22: 0 and 1

                                                                                      Solutions modulo 3: 0 and 1

                                                                                      1. T = 0
                                                                                      2. The transformation U = - 12 ⁢k (4) converts 97 U² + 167 UV + 72 ⁢V² = 12 to PV² + QVk + Rk² = 1 (5)

                                                                                        where: P = (aT² + bT + c) / n = 6, Q = −(2⁢aT + b) = -167, R = an = 1164

                                                                                        To obtain solutions to the equation (5) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 167 / 12

                                                                                        The continued fraction is: 13+ //1, 11// (6)

                                                                                        There are no convergents for which (5) holds.

                                                                                      3. T = 4
                                                                                      4. The transformation U = 4 ⁢V - 12 ⁢k (7) converts 97 U² + 167 UV + 72 ⁢V² = 12 to PV² + QVk + Rk² = 1 (8)

                                                                                        where: P = (aT² + bT + c) / n = 191, Q = −(2⁢aT + b) = -943, R = an = 1164

                                                                                        To obtain solutions to the equation (8) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 943 / 382

                                                                                        The continued fraction is: 2+ //2, 7, 2, 5, 2// (9)

                                                                                        Solution of (8) found using the convergent V / k = 5 / 2 of (9)

                                                                                        U = -4, V = 5

                                                                                        From (2):

                                                                                        X = 1, Y = 1

                                                                                        x = 1
                                                                                        y = 1

                                                                                        U = 4, V = -5

                                                                                        From (2):

                                                                                        X = -1, Y = -1

                                                                                        x = -1
                                                                                        y = -1

                                                                                      5. T = -3
                                                                                      6. The transformation U = - 3 ⁢V - 12 ⁢k (10) converts 97 U² + 167 UV + 72 ⁢V² = 12 to PV² + QVk + Rk² = 1 (11)

                                                                                        where: P = (aT² + bT + c) / n = 37, Q = −(2⁢aT + b) = 415, R = an = 1164

                                                                                        To obtain solutions to the equation (11) we have to compute the convergents of the continued fraction of −Q / 2⁢P = -415 / 74

                                                                                        The continued fraction is: -6+ //2, 1, 1, 4, 3// (12)

                                                                                        There are no convergents for which (11) holds.

                                                                                      7. T = 1
                                                                                      8. The transformation U =  V - 12 ⁢k (13) converts 97 U² + 167 UV + 72 ⁢V² = 12 to PV² + QVk + Rk² = 1 (14)

                                                                                        where: P = (aT² + bT + c) / n = 28, Q = −(2⁢aT + b) = -361, R = an = 1164

                                                                                        To obtain solutions to the equation (14) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 361 / 56

                                                                                        The continued fraction is: 6+ //2, 4, 6// (15)

                                                                                        There are no convergents for which (14) holds.

                                                                                      Let 2⁢U' = U and 2⁢V' = V. Searching for solutions U' and V' coprime.

                                                                                      From equation (3) we obtain 97 U'² + 167 U'V' + 72 ⁢V'² = 12 / 2² = 3

                                                                                      We have to solve:97 T² + 167 T + 72 ≡ 0 (mod 3 = 3)

                                                                                      Solutions modulo 3: 0 and 1

                                                                                      1. T = 0
                                                                                      2. The transformation U' = - 3 ⁢k (16) converts 97 U'² + 167 U'V' + 72 ⁢V'² = 3 to PV'² + QV'k + Rk² = 1 (17)

                                                                                        where: P = (aT² + bT + c) / n = 24, Q = −(2⁢aT + b) = -167, R = an = 291

                                                                                        To obtain solutions to the equation (17) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 167 / 48

                                                                                        The continued fraction is: 3+ //2, 11, 2// (18)

                                                                                        There are no convergents for which (17) holds.

                                                                                      3. T = 1
                                                                                      4. The transformation U' =  V' - 3 ⁢k (19) converts 97 U'² + 167 U'V' + 72 ⁢V'² = 3 to PV'² + QV'k + Rk² = 1 (20)

                                                                                        where: P = (aT² + bT + c) / n = 112, Q = −(2⁢aT + b) = -361, R = an = 291

                                                                                        To obtain solutions to the equation (20) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 361 / 224

                                                                                        The continued fraction is: 1+ //1, 1, 1, 1, 2, 1, 5, 2// (21)

                                                                                        There are no convergents for which (20) holds.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      2 ⁢x² - 33 ⁢x⁢y + 7 ⁢y² - 12 ⁢ = 0

                                                                                      x = 1
                                                                                      y = 5

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = -5

                                                                                      and also:

                                                                                      x = -1321 493700 201781
                                                                                      y = -81 147513 783145

                                                                                      and also:

                                                                                      x = 1321 493700 201781
                                                                                      y = 81 147513 783145

                                                                                      and also:

                                                                                      x = 689 053051
                                                                                      y = 3206 081030

                                                                                      and also:

                                                                                      x = -689 053051
                                                                                      y = -3206 081030

                                                                                      and also:

                                                                                      x = -2 062831
                                                                                      y = -126670

                                                                                      and also:

                                                                                      x = 2 062831
                                                                                      y = 126670

                                                                                      and also:

                                                                                      x = 27224
                                                                                      y = 126670

                                                                                      and also:

                                                                                      x = -27224
                                                                                      y = -126670

                                                                                      and also:

                                                                                      x = -52211 283944
                                                                                      y = -3206 081030

                                                                                      and also:

                                                                                      x = 52211 283944
                                                                                      y = 3206 081030

                                                                                      Recursive solutions:

                                                                                      xn+1 = P ⁢xn + Q ⁢yn
                                                                                      yn+1 = R ⁢xn + S ⁢yn

                                                                                      where:

                                                                                      P = 141535 082611 518287 749732 424252 171881 (36 digits)
                                                                                      Q = -30418 813368 857281 792634 997945 318384 (35 digits)
                                                                                      R = 8691 089533 959223 369324 285127 233824 (34 digits)
                                                                                      S = -1867 894698 808897 844118 280347 186215 (34 digits)

                                                                                      and also:

                                                                                      P = -1867 894698 808897 844118 280347 186215 (34 digits)
                                                                                      Q = 30418 813368 857281 792634 997945 318384 (35 digits)
                                                                                      R = -8691 089533 959223 369324 285127 233824 (34 digits)
                                                                                      S = 141535 082611 518287 749732 424252 171881 (36 digits)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      2 ⁢x² - 33 ⁢x⁢y + 7 ⁢y² - 12 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 1033

                                                                                      2 X² − 33 XY + 7 ⁢Y² = 12 (1)

                                                                                      The algorithm requires that the coefficient of X² and the right hand side are coprime. This does not happen, so we have to find a value of m such that applying one of the unimodular transformations

                                                                                      • X = mU + (m−1)V, Y = U + V
                                                                                      • X = U + V, Y = (m−1)U + mV

                                                                                      the coefficient of U² and the right hand side are coprime. This coefficient equals 2 m² − 33 m + 7 in the first case and 7 (m − 1)² − 33 (m − 1) + 2 in the second case.

                                                                                      We will use the first unimodular transformation with m = 6: X = 6 ⁢U + 5 ⁢V, Y = U + V (2)

                                                                                      Using (2), the equation (1) converts to:

                                                                                      -119 U² − 229 UV − 108 ⁢V² = 12 (3)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      12 = 22 × 3

                                                                                      Searching for solutions U and V coprime.

                                                                                      We have to solve:-119 T² − 229 T − 108 ≡ 0 (mod 12 = 22 × 3)

                                                                                      Solutions modulo 22: 0 and 1

                                                                                      Solutions modulo 3: 0 and 1

                                                                                      1. T = 0
                                                                                      2. The transformation U = - 12 ⁢k (4) converts -119 U² − 229 UV − 108 ⁢V² = 12 to PV² + QVk + Rk² = 1 (5)

                                                                                        where: P = (aT² + bT + c) / n = -9, Q = −(2⁢aT + b) = 229, R = an = -1428

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (229 + 1033) / (-2856) is:

                                                                                        -1+ // 1, 9, 1, 14, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15// (6)

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-229 + 1033) / 2856 is:

                                                                                        -1+ // 1, 13, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3// (7)

                                                                                        Solution of (5) found using the convergent V / (−k) = 29 / -2 of (7)

                                                                                        U = -24, V = 29

                                                                                        From (2):

                                                                                        X = 1, Y = 5

                                                                                        x = 1
                                                                                        y = 5

                                                                                        U = 24, V = -29

                                                                                        From (2):

                                                                                        X = -1, Y = -5

                                                                                        x = -1
                                                                                        y = -5

                                                                                        x = 1
                                                                                        y = 5

                                                                                        x = -1
                                                                                        y = -5

                                                                                      3. T = 4
                                                                                      4. The transformation U = 4 ⁢V - 12 ⁢k (8) converts -119 U² − 229 UV − 108 ⁢V² = 12 to PV² + QVk + Rk² = 1 (9)

                                                                                        where: P = (aT² + bT + c) / n = -244, Q = −(2⁢aT + b) = 1181, R = an = -1428

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (1181 + 1033) / (-2856) is:

                                                                                        -1+ // 1, 1, 2, 1, 4, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3// (10)

                                                                                        Solution of (9) found using the convergent V / (−k) = 834 608617 502911 / -354 515883 441475 of (10)

                                                                                        U = -915 756131 286056, V = 834 608617 502911

                                                                                        From (2):

                                                                                        X = -1321 493700 201781, Y = -81 147513 783145

                                                                                        x = -1321 493700 201781
                                                                                        y = -81 147513 783145

                                                                                        U = 915 756131 286056, V = -834 608617 502911

                                                                                        From (2):

                                                                                        X = 1321 493700 201781, Y = 81 147513 783145

                                                                                        x = 1321 493700 201781
                                                                                        y = 81 147513 783145

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-1181 + 1033) / 2856 is:

                                                                                        -1+ // 1, 1, 2, 17, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15// (11)

                                                                                        x = -1321 493700 201781
                                                                                        y = -81 147513 783145

                                                                                        x = 1321 493700 201781
                                                                                        y = 81 147513 783145

                                                                                      5. T = -3
                                                                                      6. The transformation U = - 3 ⁢V - 12 ⁢k (12) converts -119 U² − 229 UV − 108 ⁢V² = 12 to PV² + QVk + Rk² = 1 (13)

                                                                                        where: P = (aT² + bT + c) / n = -41, Q = −(2⁢aT + b) = -485, R = an = -1428

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (-485 + 1033) / (-2856) is:

                                                                                        0+ // 6, 3, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5// (14)

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (485 + 1033) / 2856 is:

                                                                                        0+ // 5, 1, 1, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5// (15)

                                                                                        Solution of (13) found using the convergent V / (−k) = 18547 433129 / 3358 412274 of (15)

                                                                                        U = -15341 352099, V = 18547 433129

                                                                                        From (2):

                                                                                        X = 689 053051, Y = 3206 081030

                                                                                        x = 689 053051
                                                                                        y = 3206 081030

                                                                                        U = 15341 352099, V = -18547 433129

                                                                                        From (2):

                                                                                        X = -689 053051, Y = -3206 081030

                                                                                        x = -689 053051
                                                                                        y = -3206 081030

                                                                                        x = 689 053051
                                                                                        y = 3206 081030

                                                                                        x = -689 053051
                                                                                        y = -3206 081030

                                                                                      7. T = 1
                                                                                      8. The transformation U =  V - 12 ⁢k (16) converts -119 U² − 229 UV − 108 ⁢V² = 12 to PV² + QVk + Rk² = 1 (17)

                                                                                        where: P = (aT² + bT + c) / n = -38, Q = −(2⁢aT + b) = 467, R = an = -1428

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (467 + 1033) / (-2856) is:

                                                                                        -1+ // 1, 4, 1, 2, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4// (18)

                                                                                        Solution of (17) found using the convergent V / (−k) = 1 302811 / -227691 of (18)

                                                                                        U = -1 429481, V = 1 302811

                                                                                        From (2):

                                                                                        X = -2 062831, Y = -126670

                                                                                        x = -2 062831
                                                                                        y = -126670

                                                                                        U = 1 429481, V = -1 302811

                                                                                        From (2):

                                                                                        X = 2 062831, Y = 126670

                                                                                        x = 2 062831
                                                                                        y = 126670

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-467 + 1033) / 2856 is:

                                                                                        -1+ // 1, 5, 1, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4// (19)

                                                                                        x = -2 062831
                                                                                        y = -126670

                                                                                        x = 2 062831
                                                                                        y = 126670

                                                                                      Let 2⁢U' = U and 2⁢V' = V. Searching for solutions U' and V' coprime.

                                                                                      From equation (3) we obtain -119 U'² − 229 U'V' − 108 ⁢V'² = 12 / 2² = 3

                                                                                      We have to solve:-119 T² − 229 T − 108 ≡ 0 (mod 3 = 3)

                                                                                      Solutions modulo 3: 0 and 1

                                                                                      1. T = 0
                                                                                      2. The transformation U' = - 3 ⁢k (20) converts -119 U'² − 229 U'V' − 108 ⁢V'² = 3 to PV'² + QV'k + Rk² = 1 (21)

                                                                                        where: P = (aT² + bT + c) / n = -36, Q = −(2⁢aT + b) = 229, R = an = -357

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (229 + 1033) / (-714) is:

                                                                                        -1+ // 1, 1, 1, 2, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4// (22)

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-229 + 1033) / 714 is:

                                                                                        -1+ // 1, 2, 1, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4// (23)

                                                                                        Solution of (21) found using the convergent V' / (−k) = 366398 / -101021 of (23)

                                                                                        From (20): U' = -303063, V' = 366398

                                                                                        U = -606126, V = 732796

                                                                                        From (2):

                                                                                        X = 27224, Y = 126670

                                                                                        x = 27224
                                                                                        y = 126670

                                                                                        U = 606126, V = -732796

                                                                                        From (2):

                                                                                        X = -27224, Y = -126670

                                                                                        x = -27224
                                                                                        y = -126670

                                                                                        x = 27224
                                                                                        y = 126670

                                                                                        x = -27224
                                                                                        y = -126670

                                                                                      3. T = 1
                                                                                      4. The transformation U' =  V' - 3 ⁢k (24) converts -119 U'² − 229 U'V' − 108 ⁢V'² = 3 to PV'² + QV'k + Rk² = 1 (25)

                                                                                        where: P = (aT² + bT + c) / n = -152, Q = −(2⁢aT + b) = 467, R = an = -357

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (467 + 1033) / (-714) is:

                                                                                        -1+ // 3, 3, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5// (26)

                                                                                        Solution of (25) found using the convergent V' / (−k) = 16487 398882 / -11525 946093 of (26)

                                                                                        From (24): U' = -18090 439397, V' = 16487 398882

                                                                                        U = -36180 878794, V = 32974 797764

                                                                                        From (2):

                                                                                        X = -52211 283944, Y = -3206 081030

                                                                                        x = -52211 283944
                                                                                        y = -3206 081030

                                                                                        U = 36180 878794, V = -32974 797764

                                                                                        From (2):

                                                                                        X = 52211 283944, Y = 3206 081030

                                                                                        x = 52211 283944
                                                                                        y = 3206 081030

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-467 + 1033) / 714 is:

                                                                                        -1+ // 2, 1, 1, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5// (27)

                                                                                        x = -52211 283944
                                                                                        y = -3206 081030

                                                                                        x = 52211 283944
                                                                                        y = 3206 081030

                                                                                      Recursive solutions:

                                                                                      xn+1 = P ⁢xn + Q ⁢yn
                                                                                      yn+1 = R ⁢xn + S ⁢yn

                                                                                      where:

                                                                                      P = 141535 082611 518287 749732 424252 171881 (36 digits)
                                                                                      Q = -30418 813368 857281 792634 997945 318384 (35 digits)
                                                                                      R = 8691 089533 959223 369324 285127 233824 (34 digits)
                                                                                      S = -1867 894698 808897 844118 280347 186215 (34 digits)

                                                                                      and also:

                                                                                      P = -1867 894698 808897 844118 280347 186215 (34 digits)
                                                                                      Q = 30418 813368 857281 792634 997945 318384 (35 digits)
                                                                                      R = -8691 089533 959223 369324 285127 233824 (34 digits)
                                                                                      S = 141535 082611 518287 749732 424252 171881 (36 digits)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² - 6 ⁢y + 3 ⁢ = 0

                                                                                      x = 12 k − 3
                                                                                      y = 24 k² − 12 k + 2

                                                                                      and also:

                                                                                      x = 12 k + 3
                                                                                      y = 24 k² + 12 k + 2

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² - 6 ⁢y + 3 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 0

                                                                                      Multiplying by 4⁢a

                                                                                      ( 2 ⁢x )² - 24 ⁢y + 12 ⁢ = 0

                                                                                      Let t = 2 ⁢x (1)

                                                                                      (t + d)² = ( t )² = 24 ⁢y - 12 ⁢ (2)

                                                                                      where the linear coefficient is 2⁢(bd − 2⁢ae) and the constant coefficient is d² − 4⁢af.

                                                                                      We have to solve T² = -12 (mod 24)

                                                                                      To solve this quadratic modular equation we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      24 = 23 × 3

                                                                                      Solutions modulo 23: 2 and 6

                                                                                      Solutions modulo 3: 0

                                                                                      1. T = -6
                                                                                      2. t = Td + 24 ⁢k = -6 + 24 k (3) (where k is any integer).

                                                                                        Replacing t in equation (2) we can get the value of y:

                                                                                        y = 24 k² − 12 k + 2 (4)

                                                                                        From (1) and (3):

                                                                                        2 ⁢x = -6 + 24 k

                                                                                        x = 12 k − 3
                                                                                        y = 24 k² − 12 k + 2


                                                                                      3. T = 6
                                                                                      4. t = Td + 24 ⁢k = 6 + 24 k (5) (where k is any integer).

                                                                                        Replacing t in equation (2) we can get the value of y:

                                                                                        y = 24 k² + 12 k + 2 (6)

                                                                                        From (1) and (5):

                                                                                        2 ⁢x = 6 + 24 k

                                                                                        x = 12 k + 3
                                                                                        y = 24 k² + 12 k + 2


                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² - 3 ⁢x⁢y + y² +  1 = 0

                                                                                      x = 1
                                                                                      y = 1

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = -1

                                                                                      xn+1 =  yn
                                                                                      yn+1 = - xn + 3 ⁢yn

                                                                                      and also:

                                                                                      xn+1 = 3 ⁢xn - yn
                                                                                      yn+1 =  xn

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² - 3 ⁢x⁢y + y² +  1 = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 5

                                                                                      X² − 3 XY + Y² = -1

                                                                                      The algorithm requires the constant coefficient to be positive, so we multiply both RHS and LHS by −1.

                                                                                      X² + 3 XYY² = 1 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      1 = 1

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve:−T² + 3 T − 1 ≡ 0 (mod 1 = 1)

                                                                                      1. T = 0
                                                                                      2. The transformation X = - k (2) converts −X² + 3 XYY² = 1 to PY² + QYk + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = -1, Q = −(2⁢aT + b) = -3, R = an = -1

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (-3 + 5) / (-2) is:

                                                                                        0+ // 2, 1// (4)

                                                                                        X = 1, Y = 1

                                                                                        x = 1
                                                                                        y = 1

                                                                                        X = -1, Y = -1

                                                                                        x = -1
                                                                                        y = -1

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (3 + 5) / 2 is:

                                                                                        2+ // 1// (5)

                                                                                        Solution of (3) found using the convergent Y / (−k) = 1 / 2 of (5)

                                                                                        X = 2, Y = 1

                                                                                        x = 2
                                                                                        y = 1

                                                                                        X = -2, Y = -1

                                                                                        x = -2
                                                                                        y = -1

                                                                                        x = 1
                                                                                        y = 1

                                                                                        x = -1
                                                                                        y = -1

                                                                                      xn+1 =  yn
                                                                                      yn+1 = - xn + 3 ⁢yn

                                                                                      and also:

                                                                                      xn+1 = 3 ⁢xn - yn
                                                                                      yn+1 =  xn

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      2 ⁢x² - 6 ⁢x⁢y + 2 ⁢y² + 3 ⁢y - 11 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 20

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = 18

                                                                                      β = 2⁢ae - bd = 12

                                                                                      2 X² − 6 XY + 2 ⁢Y² = 4040

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      Dividing both sides by 2:

                                                                                      X² − 3 XY + Y² = 2020 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      2020 = 22 × 5 × 101

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve: T² − 3 T + 1 ≡ 0 (mod 2020 = 22 × 5 × 101)

                                                                                      There are no solutions modulo 22, so the modular equation does not have any solution.

                                                                                      Let 2⁢X' = X and 2⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain X'² − 3 X'Y' + Y'² = 2020 / 2² = 505

                                                                                      We have to solve: T² − 3 T + 1 ≡ 0 (mod 505 = 5 × 101)

                                                                                      Solutions modulo 5: 4

                                                                                      Solutions modulo 101: 24 and 80

                                                                                      1. T = 24
                                                                                      2. The transformation X' = 24 ⁢Y' - 505 ⁢k (2) converts X'² − 3 X'Y' + Y'² = 505 to PY'² + QY'k + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = 1, Q = −(2⁢aT + b) = -45, R = an = 505

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (-45 + 5) / 1010 is:

                                                                                        -1+ // 1, 22, 1// (4)

                                                                                        Solution of (3) found using the convergent Y' / (−k) = 1 / 0 of (4)

                                                                                        From (2): X' = 24, Y' = 1

                                                                                        X = 48, Y = 2

                                                                                        X + α = 66, Y + β = 14

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = -48, Y = -2

                                                                                        X + α = -30, Y + β = 10

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (3) found using the convergent Y' / (−k) = 24 / -1 of (4)

                                                                                        From (2): X' = 71, Y' = 24

                                                                                        X = 142, Y = 48

                                                                                        X + α = 160, Y + β = 60

                                                                                        Dividing these numbers by D = 20:

                                                                                        x = 8
                                                                                        y = 3

                                                                                        X = -142, Y = -48

                                                                                        X + α = -124, Y + β = -36

                                                                                        These numbers are not multiple of D = 20.

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (45 + 5) / (-1010) is:

                                                                                        -1+ // 1, 20, 2, 1// (5)

                                                                                        Solution of (3) found using the convergent Y' / (−k) = 1 / 0 of (5)

                                                                                        From (2): X' = 24, Y' = 1

                                                                                        X = 48, Y = 2

                                                                                        X + α = 66, Y + β = 14

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = -48, Y = -2

                                                                                        X + α = -30, Y + β = 10

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (3) found using the convergent Y' / (−k) = 21 / -1 of (5)

                                                                                        From (2): X' = -1, Y' = 21

                                                                                        X = -2, Y = 42

                                                                                        X + α = 16, Y + β = 54

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = 2, Y = -42

                                                                                        X + α = 20, Y + β = -30

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (3) found using the convergent Y' / (−k) = 64 / -3 of (5)

                                                                                        From (2): X' = 21, Y' = 64

                                                                                        X = 42, Y = 128

                                                                                        X + α = 60, Y + β = 140

                                                                                        Dividing these numbers by D = 20:

                                                                                        x = 3
                                                                                        y = 7

                                                                                        X = -42, Y = -128

                                                                                        X + α = -24, Y + β = -116

                                                                                        These numbers are not multiple of D = 20.

                                                                                        x = 3
                                                                                        y = 7

                                                                                      3. T = -21
                                                                                      4. The transformation X' = - 21 ⁢Y' - 505 ⁢k (6) converts X'² − 3 X'Y' + Y'² = 505 to PY'² + QY'k + Rk² = 1 (7)

                                                                                        where: P = (aT² + bT + c) / n = 1, Q = −(2⁢aT + b) = 45, R = an = 505

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (45 + 5) / 1010 is:

                                                                                        0+ // 21, 2, 1// (8)

                                                                                        Solution of (7) found using the convergent Y' / (−k) = 1 / 0 of (8)

                                                                                        From (6): X' = -21, Y' = 1

                                                                                        X = -42, Y = 2

                                                                                        X + α = -24, Y + β = 14

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = 42, Y = -2

                                                                                        X + α = 60, Y + β = 10

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (7) found using the convergent Y' / (−k) = 21 / 1 of (8)

                                                                                        From (6): X' = 64, Y' = 21

                                                                                        X = 128, Y = 42

                                                                                        X + α = 146, Y + β = 54

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = -128, Y = -42

                                                                                        X + α = -110, Y + β = -30

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (7) found using the convergent Y' / (−k) = 64 / 3 of (8)

                                                                                        From (6): X' = 171, Y' = 64

                                                                                        X = 342, Y = 128

                                                                                        X + α = 360, Y + β = 140

                                                                                        Dividing these numbers by D = 20:

                                                                                        x = 18
                                                                                        y = 7

                                                                                        X = -342, Y = -128

                                                                                        X + α = -324, Y + β = -116

                                                                                        These numbers are not multiple of D = 20.

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-45 + 5) / (-1010) is:

                                                                                        0+ // 23, 1// (9)

                                                                                        Solution of (7) found using the convergent Y' / (−k) = 1 / 0 of (9)

                                                                                        From (6): X' = -21, Y' = 1

                                                                                        X = -42, Y = 2

                                                                                        X + α = -24, Y + β = 14

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = 42, Y = -2

                                                                                        X + α = 60, Y + β = 10

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (7) found using the convergent Y' / (−k) = 24 / 1 of (9)

                                                                                        From (6): X' = 1, Y' = 24

                                                                                        X = 2, Y = 48

                                                                                        X + α = 20, Y + β = 60

                                                                                        Dividing these numbers by D = 20:

                                                                                        x = 1
                                                                                        y = 3

                                                                                        X = -2, Y = -48

                                                                                        X + α = 16, Y + β = -36

                                                                                        These numbers are not multiple of D = 20.

                                                                                        x = 1
                                                                                        y = 3

                                                                                      Recursive solutions:

                                                                                      xn+1 = - 21 ⁢xn + 8 ⁢yn + 15 ⁢
                                                                                      yn+1 = - 8 ⁢xn + 3 ⁢yn + 6 ⁢

                                                                                      and also:

                                                                                      xn+1 = 3 ⁢xn - 8 ⁢yn + 3 ⁢
                                                                                      yn+1 = 8 ⁢xn - 21 ⁢yn + 6 ⁢

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² - x⁢y + y² - x - y = 0

                                                                                      The discriminant is D = b² − 4⁢ac = -3

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = -3

                                                                                      β = 2⁢ae - bd = -3

                                                                                      X² − XY + Y² = 9 (1)

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      9 = 32

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve: T² − T⁢ + 1 ≡ 0 (mod 9 = 32)

                                                                                      There are no solutions modulo 32, so the modular equation does not have any solution.

                                                                                      Let 3⁢X' = X and 3⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain X'² − X'Y' + Y'² = 9 / 3² = 1

                                                                                      We have to solve: T² − T⁢ + 1 ≡ 0 (mod 1 = 1)

                                                                                      1. T = 0
                                                                                      2. The transformation X' = - k (2) converts X'² − X'Y' + Y'² = 1 to PY'² + QY'k + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = 1, Q = −(2⁢aT + b) = 1, R = an = 1

                                                                                        When the discriminant equals -3 and P = 1, a solution is (Y', k) = (1, 0)

                                                                                        From (2): X' = 0, Y' = 1

                                                                                        X = 0, Y = 3

                                                                                        X + α = -3, Y + β = 0

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 1
                                                                                        y = 0

                                                                                        X = 0, Y = -3

                                                                                        X + α = -3, Y + β = -6

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 1
                                                                                        y = 2

                                                                                        The second solution is (Y', k) = ((Q ‑ 1)/2 = 0, -1)

                                                                                        From (2): X' = 1, Y' = 0

                                                                                        X = 3, Y = 0

                                                                                        X + α = 0, Y + β = -3

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 0
                                                                                        y = 1

                                                                                        X = -3, Y = 0

                                                                                        X + α = -6, Y + β = -3

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 2
                                                                                        y = 1

                                                                                        The third solution is (Y', k) = ((Q + 1)/2 = 1, -1)

                                                                                        From (2): X' = 1, Y' = 1

                                                                                        X = 3, Y = 3

                                                                                        X + α = 0, Y + β = 0

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 0
                                                                                        y = 0

                                                                                        X = -3, Y = -3

                                                                                        X + α = -6, Y + β = -6

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 2
                                                                                        y = 2

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      - 6 ⁢x⁢y - 6 ⁢y² - 5 ⁢x + y + 5 ⁢ = 0

                                                                                      x = − t
                                                                                      y = 1 + t

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      - 6 ⁢x⁢y - 6 ⁢y² - 5 ⁢x + y + 5 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 36

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = 66

                                                                                      β = 2⁢ae - bd = -30

                                                                                      − 6 XY − 6 ⁢Y² = 0

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      Dividing both sides by 6:

                                                                                      XYY² = 0 (1)

                                                                                      ( - 6 ⁢X - 6 ⁢Y ) ⁢( Y ) = 0

                                                                                      ( - X - Y ) ⁢( Y ) = 0

                                                                                      The product is zero, so any of the values inside parenthesis equal zero.

                                                                                       Y = 0

                                                                                      This is a linear equation 36 ⁢y + 30 ⁢ = 0

                                                                                      This equation does not have integer solutions.

                                                                                      - X - Y = 0

                                                                                      This is a linear equation - 216 ⁢x - 216 ⁢y + 216 ⁢ = 0

                                                                                      To solve it, we first find the greatest common divisor of the linear coefficients, that is: gcd(-216, -216) = 216.

                                                                                      Dividing the equation by the greatest common divisor we obtain:

                                                                                      - x - y +  1 = 0

                                                                                      Now we must apply the Generalized Euclidean algorithm:

                                                                                      Step 1: 1 × (-1) + 0 × (-1) = (-1)
                                                                                      Step 2: 0 × (-1) + 1 × (-1) = (-1)

                                                                                      Adding and subtracting (-1) × (-1) t' we obtain:

                                                                                      (0 + (-1) t') × (-1) + (1 - (-1) t') × (-1) = -1

                                                                                      So, the solution is given by the set:

                                                                                      x = − t'
                                                                                      y = 1 + t'

                                                                                      By making the substitution t' = 0 + t we finally obtain:

                                                                                      x = − t
                                                                                      y = 1 + t

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      - 6 ⁢x² - 6 ⁢x⁢y + x - 5 ⁢y + 5 ⁢ = 0

                                                                                      x = − t
                                                                                      y = 1 + t

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      - 6 ⁢x² - 6 ⁢x⁢y + x - 5 ⁢y + 5 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 36

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = -30

                                                                                      β = 2⁢ae - bd = 66

                                                                                      -6 X² − 6 XY = 0

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      Dividing both sides by 6:

                                                                                      X² − XY = 0 (1)

                                                                                      Multiplying by 4⁢a:

                                                                                      ( - 12 ⁢X ) ⁢( - 12 ⁢X - 12 ⁢Y ) = 0

                                                                                      ( X ) ⁢( - X - Y ) = 0

                                                                                      The product is zero, so any of the values inside parenthesis equal zero.

                                                                                      - X - Y = 0

                                                                                      This is a linear equation - 432 ⁢x - 360 ⁢ = 0

                                                                                      This equation does not have integer solutions.

                                                                                       X = 0

                                                                                      This is a linear equation - 432 ⁢x - 432 ⁢y + 432 ⁢ = 0

                                                                                      To solve it, we first find the greatest common divisor of the linear coefficients, that is: gcd(-432, -432) = 432.

                                                                                      Dividing the equation by the greatest common divisor we obtain:

                                                                                      - x - y +  1 = 0

                                                                                      Now we must apply the Generalized Euclidean algorithm:

                                                                                      Step 1: 1 × (-1) + 0 × (-1) = (-1)
                                                                                      Step 2: 0 × (-1) + 1 × (-1) = (-1)

                                                                                      Adding and subtracting (-1) × (-1) t' we obtain:

                                                                                      (0 + (-1) t') × (-1) + (1 - (-1) t') × (-1) = -1

                                                                                      So, the solution is given by the set:

                                                                                      x = − t'
                                                                                      y = 1 + t'

                                                                                      By making the substitution t' = 0 + t we finally obtain:

                                                                                      x = − t
                                                                                      y = 1 + t

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      128 ⁢x² - 128 ⁢y² + 184 ⁢x - 12 ⁢y + 11 612128 ⁢ = 0

                                                                                      The equation does not have integer solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Coefficient a: The expression must not include variables

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      **** QUAD **** -2

                                                                                      0 = 0

                                                                                      x, y: any integer

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      5 ⁢y + 6 ⁢ = 0

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      5 ⁢y + 6 ⁢ = 0

                                                                                      The constant coefficient is not multiple of 5, which is the greatest common divisor of the other coefficients, so there are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      5 ⁢x + 6 ⁢ = 0

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      5 ⁢x + 6 ⁢ = 0

                                                                                      The constant coefficient is not multiple of 5, which is the greatest common divisor of the other coefficients, so there are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       y + 5 ⁢ = 0

                                                                                      x = t
                                                                                      y = -5

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x + 5 ⁢ = 0

                                                                                      x = -5
                                                                                      y = t

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       y + 5 ⁢ = 0

                                                                                      This is a linear equation  y + 5 ⁢ = 0

                                                                                      x = t
                                                                                      y = -5

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x + y + 5 ⁢ = 0

                                                                                      x = -2 + t
                                                                                      y = -3 − t

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x + y + 5 ⁢ = 0

                                                                                      This is a linear equation  x + y + 5 ⁢ = 0

                                                                                      Dividing the equation by the greatest common divisor we obtain:

                                                                                       x + y + 5 ⁢ = 0

                                                                                      Now we must apply the Generalized Euclidean algorithm:

                                                                                      Step 1: 1 × 1 + 0 × 1 = 1
                                                                                      Step 2: 0 × 1 + 1 × 1 = 1

                                                                                      Multiplying the last equation by (-5) we obtain:
                                                                                      0 × 1 + (-5) × 1 = -5

                                                                                      Adding and subtracting 1 × 1 t' we obtain:

                                                                                      (0 + 1 t') × 1 + (-5 - 1 t') × 1 = -5

                                                                                      So, the solution is given by the set:

                                                                                      x = t'
                                                                                      y = -5 − t'

                                                                                      By making the substitution t' = -2 + t we finally obtain:

                                                                                      x = -2 + t
                                                                                      y = -3 − t

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² + 2 ⁢x⁢y + 3 ⁢y² + 4 ⁢x + 5 ⁢y + 6 ⁢ = 0

                                                                                      The equation does not have integer solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² + 2 ⁢x⁢y + 3 ⁢y² + 4 ⁢x + 5 ⁢y + 6 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = -8

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = 14

                                                                                      β = 2⁢ae - bd = 2

                                                                                      X² + 2 XY + 3 ⁢Y² = -120

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      The algorithm requires the constant coefficient to be positive, so we multiply both RHS and LHS by −1.

                                                                                      X² − 2 XY − 3 ⁢Y² = 120 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      120 = 23 × 3 × 5

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve:−T² − 2 T − 3 ≡ 0 (mod 120 = 23 × 3 × 5)

                                                                                      There are no solutions modulo 23, so the modular equation does not have any solution.

                                                                                      Let 2⁢X' = X and 2⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain −X'² − 2 X'Y' − 3 ⁢Y'² = 120 / 2² = 30

                                                                                      We have to solve:−T² − 2 T − 3 ≡ 0 (mod 30 = 2 × 3 × 5)

                                                                                      Solutions modulo 2: 1

                                                                                      Solutions modulo 3: 0 and 1

                                                                                      There are no solutions modulo 5, so the modular equation does not have any solution.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² + 7 ⁢y - 12 ⁢ = 0

                                                                                      The equation does not have integer solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² + 7 ⁢y - 12 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 0

                                                                                      Multiplying by 4⁢a

                                                                                      ( 2 ⁢x )² + 28 ⁢y - 48 ⁢ = 0

                                                                                      Let t = 2 ⁢x (1)

                                                                                      (t + d)² = ( t )² = - 28 ⁢y + 48 ⁢ (2)

                                                                                      where the linear coefficient is 2⁢(bd − 2⁢ae) and the constant coefficient is d² − 4⁢af.

                                                                                      We have to solve T² = 48 (mod 28)

                                                                                      To solve this quadratic modular equation we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      28 = 22 × 7

                                                                                      Solutions modulo 22: 0 and 2

                                                                                      There are no solutions modulo 7, so the modular equation does not have any solution.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² + 2 ⁢x⁢y + 2 ⁢y² - 89 ⁢ = 0

                                                                                      x = -13
                                                                                      y = 5

                                                                                      and also:

                                                                                      x = 13
                                                                                      y = -5

                                                                                      and also:

                                                                                      x = -3
                                                                                      y = 8

                                                                                      and also:

                                                                                      x = 3
                                                                                      y = -8

                                                                                      and also:

                                                                                      x = -3
                                                                                      y = -5

                                                                                      and also:

                                                                                      x = 3
                                                                                      y = 5

                                                                                      and also:

                                                                                      x = 13
                                                                                      y = -8

                                                                                      and also:

                                                                                      x = -13
                                                                                      y = 8

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² + 2 ⁢x⁢y + 2 ⁢y² - 89 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = -4

                                                                                      X² + 2 XY + 2 ⁢Y² = 89 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      89 = 89

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve: T² + 2 T + 2 ≡ 0 (mod 89 = 89)

                                                                                      Solutions modulo 89: 33 and 54

                                                                                      1. T = 33
                                                                                      2. The transformation X = 33 ⁢Y - 89 ⁢k (2) converts X² + 2 XY + 2 ⁢Y² = 89 to PY² + QYk + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = 13, Q = −(2⁢aT + b) = -68, R = an = 89

                                                                                        To obtain solutions to the equation (3) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 68 / 26

                                                                                        The continued fraction is: 2+ //1, 1, 1, 1, 2// (4)

                                                                                        Solution of (3) found using the convergent Y / k = 5 / 2 of (4)

                                                                                        X = -13, Y = 5

                                                                                        x = -13
                                                                                        y = 5

                                                                                        X = 13, Y = -5

                                                                                        x = 13
                                                                                        y = -5

                                                                                        Solution of (3) found using the convergent Y / k = 8 / 3 of (4)

                                                                                        X = -3, Y = 8

                                                                                        x = -3
                                                                                        y = 8

                                                                                        X = 3, Y = -8

                                                                                        x = 3
                                                                                        y = -8

                                                                                      3. T = -35
                                                                                      4. The transformation X = - 35 ⁢Y - 89 ⁢k (5) converts X² + 2 XY + 2 ⁢Y² = 89 to PY² + QYk + Rk² = 1 (6)

                                                                                        where: P = (aT² + bT + c) / n = 13, Q = −(2⁢aT + b) = 68, R = an = 89

                                                                                        To obtain solutions to the equation (6) we have to compute the convergents of the continued fraction of −Q / 2⁢P = -68 / 26

                                                                                        The continued fraction is: -3+ //2, 1, 1, 2// (7)

                                                                                        Solution of (6) found using the convergent Y / k = -5 / 2 of (7)

                                                                                        X = -3, Y = -5

                                                                                        x = -3
                                                                                        y = -5

                                                                                        X = 3, Y = 5

                                                                                        x = 3
                                                                                        y = 5

                                                                                        Solution of (6) found using the convergent Y / k = -8 / 3 of (7)

                                                                                        X = 13, Y = -8

                                                                                        x = 13
                                                                                        y = -8

                                                                                        X = -13, Y = 8

                                                                                        x = -13
                                                                                        y = 8

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² + 3 ⁢x⁢y + 3 ⁢y² - 76 ⁢ = 0

                                                                                      x = 14
                                                                                      y = -4

                                                                                      and also:

                                                                                      x = -14
                                                                                      y = 4

                                                                                      and also:

                                                                                      x = 16
                                                                                      y = -10

                                                                                      and also:

                                                                                      x = -16
                                                                                      y = 10

                                                                                      and also:

                                                                                      x = 2
                                                                                      y = -6

                                                                                      and also:

                                                                                      x = -2
                                                                                      y = 6

                                                                                      and also:

                                                                                      x = -16
                                                                                      y = 6

                                                                                      and also:

                                                                                      x = 16
                                                                                      y = -6

                                                                                      and also:

                                                                                      x = -14
                                                                                      y = 10

                                                                                      and also:

                                                                                      x = 14
                                                                                      y = -10

                                                                                      and also:

                                                                                      x = 2
                                                                                      y = 4

                                                                                      and also:

                                                                                      x = -2
                                                                                      y = -4

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² + 3 ⁢x⁢y + 3 ⁢y² - 76 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = -3

                                                                                      X² + 3 XY + 3 ⁢Y² = 76 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      76 = 22 × 19

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve: T² + 3 T + 3 ≡ 0 (mod 76 = 22 × 19)

                                                                                      There are no solutions modulo 22, so the modular equation does not have any solution.

                                                                                      Let 2⁢X' = X and 2⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain X'² + 3 X'Y' + 3 ⁢Y'² = 76 / 2² = 19

                                                                                      We have to solve: T² + 3 T + 3 ≡ 0 (mod 19 = 19)

                                                                                      Solutions modulo 19: 6 and 10

                                                                                      1. T = 6
                                                                                      2. The transformation X' = 6 ⁢Y' - 19 ⁢k (2) converts X'² + 3 X'Y' + 3 ⁢Y'² = 19 to PY'² + QY'k + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = 3, Q = −(2⁢aT + b) = -15, R = an = 19

                                                                                        When the discriminant equals -3 and P = 3, a solution is (Y', k) = ((Q + 3)/6 = -2, -1)

                                                                                        From (2): X' = 7, Y' = -2

                                                                                        X = 14, Y = -4

                                                                                        x = 14
                                                                                        y = -4

                                                                                        X = -14, Y = 4

                                                                                        x = -14
                                                                                        y = 4

                                                                                        The second solution is (Y', k) = (Q/3 = -5, -2)

                                                                                        From (2): X' = 8, Y' = -5

                                                                                        X = 16, Y = -10

                                                                                        x = 16
                                                                                        y = -10

                                                                                        X = -16, Y = 10

                                                                                        x = -16
                                                                                        y = 10

                                                                                        The third solution is (Y', k) = ((Q − 3)/6 = -3, -1)

                                                                                        From (2): X' = 1, Y' = -3

                                                                                        X = 2, Y = -6

                                                                                        x = 2
                                                                                        y = -6

                                                                                        X = -2, Y = 6

                                                                                        x = -2
                                                                                        y = 6

                                                                                      3. T = -9
                                                                                      4. The transformation X' = - 9 ⁢Y' - 19 ⁢k (4) converts X'² + 3 X'Y' + 3 ⁢Y'² = 19 to PY'² + QY'k + Rk² = 1 (5)

                                                                                        where: P = (aT² + bT + c) / n = 3, Q = −(2⁢aT + b) = 15, R = an = 19

                                                                                        When the discriminant equals -3 and P = 3, a solution is (Y', k) = ((Q + 3)/6 = 3, -1)

                                                                                        From (4): X' = -8, Y' = 3

                                                                                        X = -16, Y = 6

                                                                                        x = -16
                                                                                        y = 6

                                                                                        X = 16, Y = -6

                                                                                        x = 16
                                                                                        y = -6

                                                                                        The second solution is (Y', k) = (Q/3 = 5, -2)

                                                                                        From (4): X' = -7, Y' = 5

                                                                                        X = -14, Y = 10

                                                                                        x = -14
                                                                                        y = 10

                                                                                        X = 14, Y = -10

                                                                                        x = 14
                                                                                        y = -10

                                                                                        The third solution is (Y', k) = ((Q − 3)/6 = 2, -1)

                                                                                        From (4): X' = 1, Y' = 2

                                                                                        X = 2, Y = 4

                                                                                        x = 2
                                                                                        y = 4

                                                                                        X = -2, Y = -4

                                                                                        x = -2
                                                                                        y = -4

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² + y² - 425 ⁢ = 0

                                                                                      x = -19
                                                                                      y = 8

                                                                                      and also:

                                                                                      x = 19
                                                                                      y = -8

                                                                                      and also:

                                                                                      x = 8
                                                                                      y = 19

                                                                                      and also:

                                                                                      x = -8
                                                                                      y = -19

                                                                                      and also:

                                                                                      x = 16
                                                                                      y = 13

                                                                                      and also:

                                                                                      x = -16
                                                                                      y = -13

                                                                                      and also:

                                                                                      x = -13
                                                                                      y = 16

                                                                                      and also:

                                                                                      x = 13
                                                                                      y = -16

                                                                                      and also:

                                                                                      x = 16
                                                                                      y = -13

                                                                                      and also:

                                                                                      x = -16
                                                                                      y = 13

                                                                                      and also:

                                                                                      x = -13
                                                                                      y = -16

                                                                                      and also:

                                                                                      x = 13
                                                                                      y = 16

                                                                                      and also:

                                                                                      x = -19
                                                                                      y = -8

                                                                                      and also:

                                                                                      x = 19
                                                                                      y = 8

                                                                                      and also:

                                                                                      x = 8
                                                                                      y = -19

                                                                                      and also:

                                                                                      x = -8
                                                                                      y = 19

                                                                                      and also:

                                                                                      x = 20
                                                                                      y = 5

                                                                                      and also:

                                                                                      x = -20
                                                                                      y = -5

                                                                                      and also:

                                                                                      x = 5
                                                                                      y = -20

                                                                                      and also:

                                                                                      x = -5
                                                                                      y = 20

                                                                                      and also:

                                                                                      x = -20
                                                                                      y = 5

                                                                                      and also:

                                                                                      x = 20
                                                                                      y = -5

                                                                                      and also:

                                                                                      x = 5
                                                                                      y = 20

                                                                                      and also:

                                                                                      x = -5
                                                                                      y = -20

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² - 5 ⁢y² + 4 ⁢ = 0

                                                                                      x = 1
                                                                                      y = 1

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = -1

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = 1

                                                                                      and also:

                                                                                      x = 1
                                                                                      y = -1

                                                                                      and also:

                                                                                      x = 4
                                                                                      y = 2

                                                                                      and also:

                                                                                      x = -4
                                                                                      y = -2

                                                                                      Recursive solutions:

                                                                                      xn+1 = 9 ⁢xn - 20 ⁢yn
                                                                                      yn+1 = - 4 ⁢xn + 9 ⁢yn

                                                                                      and also:

                                                                                      xn+1 = 9 ⁢xn + 20 ⁢yn
                                                                                      yn+1 = 4 ⁢xn + 9 ⁢yn

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² - 5 ⁢y² + 4 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 20

                                                                                      X² − 5 ⁢Y² = -4

                                                                                      The algorithm requires the constant coefficient to be positive, so we multiply both RHS and LHS by −1.

                                                                                      X² + 5 ⁢Y² = 4 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      4 = 22

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve:−T² + 5 ≡ 0 (mod 4 = 22)

                                                                                      Solutions modulo 22: 1 and 3

                                                                                      1. T = 1
                                                                                      2. The transformation X =  Y - 4 ⁢k (2) converts −X² + 5 ⁢Y² = 4 to PY² + QYk + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = 1, Q = −(2⁢aT + b) = 2, R = an = -4

                                                                                        The continued fraction expansion of (Q + D / 4) / R = (1 + 5) / (-4) is:

                                                                                        -1+ // 5, 4// (4)

                                                                                        Solution of (3) found using the convergent Y / (−k) = 5 / -4 of (4)

                                                                                        X = -11, Y = 5

                                                                                        x = -11
                                                                                        y = 5

                                                                                        X = 11, Y = -5

                                                                                        x = 11
                                                                                        y = -5

                                                                                        The continued fraction expansion of (−Q + D / 4) / (−R) = (-1 + 5) / 4 is:

                                                                                        0+ // 3, 4// (5)

                                                                                        Solution of (3) found using the convergent Y / (−k) = 1 / 0 of (5)

                                                                                        X = 1, Y = 1

                                                                                        x = 1
                                                                                        y = 1

                                                                                        X = -1, Y = -1

                                                                                        x = -1
                                                                                        y = -1

                                                                                        x = 1
                                                                                        y = 1

                                                                                        x = -1
                                                                                        y = -1

                                                                                      3. T = -1
                                                                                      4. The transformation X = - Y - 4 ⁢k (6) converts −X² + 5 ⁢Y² = 4 to PY² + QYk + Rk² = 1 (7)

                                                                                        where: P = (aT² + bT + c) / n = 1, Q = −(2⁢aT + b) = -2, R = an = -4

                                                                                        The continued fraction expansion of (Q + D / 4) / R = (-1 + 5) / (-4) is:

                                                                                        -1+ // 1, 2, 4// (8)

                                                                                        Solution of (7) found using the convergent Y / (−k) = 1 / 0 of (8)

                                                                                        X = -1, Y = 1

                                                                                        x = -1
                                                                                        y = 1

                                                                                        X = 1, Y = -1

                                                                                        x = 1
                                                                                        y = -1

                                                                                        The continued fraction expansion of (−Q + D / 4) / (−R) = (1 + 5) / 4 is:

                                                                                        0+ // 1, 4// (9)

                                                                                        Solution of (7) found using the convergent Y / (−k) = 1 / 0 of (9)

                                                                                        X = -1, Y = 1

                                                                                        x = -1
                                                                                        y = 1

                                                                                        X = 1, Y = -1

                                                                                        x = 1
                                                                                        y = -1

                                                                                        x = -1
                                                                                        y = 1

                                                                                        x = 1
                                                                                        y = -1

                                                                                      Let 2⁢X' = X and 2⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain −X'² + 5 ⁢Y'² = 4 / 2² = 1

                                                                                      We have to solve:−T² + 5 ≡ 0 (mod 1 = 1)

                                                                                      1. T = 0
                                                                                      2. The transformation X' = - k (10) converts −X'² + 5 ⁢Y'² = 1 to PY'² + QY'k + Rk² = 1 (11)

                                                                                        where: P = (aT² + bT + c) / n = 5, Q = −(2⁢aT + b) = 0, R = an = -1

                                                                                        The continued fraction expansion of (Q + D / 4) / R = 5 / (-1) is:

                                                                                        -3+ // 1, 3, 4// (12)

                                                                                        Solution of (11) found using the convergent Y' / (−k) = 1 / -2 of (12)

                                                                                        From (10): X' = -2, Y' = 1

                                                                                        X = -4, Y = 2

                                                                                        x = -4
                                                                                        y = 2

                                                                                        X = 4, Y = -2

                                                                                        x = 4
                                                                                        y = -2

                                                                                        The continued fraction expansion of (−Q + D / 4) / (−R) = 5 / 1 is:

                                                                                        2+ // 4// (13)

                                                                                        Solution of (11) found using the convergent Y' / (−k) = 1 / 2 of (13)

                                                                                        From (10): X' = 2, Y' = 1

                                                                                        X = 4, Y = 2

                                                                                        x = 4
                                                                                        y = 2

                                                                                        X = -4, Y = -2

                                                                                        x = -4
                                                                                        y = -2

                                                                                        x = 4
                                                                                        y = 2

                                                                                        x = -4
                                                                                        y = -2

                                                                                      Recursive solutions:

                                                                                      xn+1 = 9 ⁢xn - 20 ⁢yn
                                                                                      yn+1 = - 4 ⁢xn + 9 ⁢yn

                                                                                      and also:

                                                                                      xn+1 = 9 ⁢xn + 20 ⁢yn
                                                                                      yn+1 = 4 ⁢xn + 9 ⁢yn

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² - 991 ⁢y² -  1 = 0

                                                                                      x = 1
                                                                                      y = 0

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = 0

                                                                                      Recursive solutions:

                                                                                      xn+1 = P ⁢xn + Q ⁢yn
                                                                                      yn+1 = R ⁢xn + S ⁢yn

                                                                                      where:

                                                                                      P = 379516 400906 811930 638014 896080
                                                                                      Q = 11 947234 168218 377212 415555 918097 (32 digits)
                                                                                      R = 12055 735790 331359 447442 538767
                                                                                      S = 379516 400906 811930 638014 896080

                                                                                      and also:

                                                                                      P = 379516 400906 811930 638014 896080
                                                                                      Q = -11 947234 168218 377212 415555 918097 (32 digits)
                                                                                      R = -12055 735790 331359 447442 538767
                                                                                      S = 379516 400906 811930 638014 896080

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² - 991 ⁢y² -  1 = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 3964

                                                                                      X² − 991 ⁢Y² = 1 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      1 = 1

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve: T² − 991 ≡ 0 (mod 1 = 1)

                                                                                      1. T = 0
                                                                                      2. The transformation X = - k (2) converts X² − 991 ⁢Y² = 1 to PY² + QYk + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = -991, Q = −(2⁢aT + b) = 0, R = an = 1

                                                                                        The continued fraction expansion of (Q + D / 4) / R = 991 / 1 is:

                                                                                        31+ // 2, 12, 10, 2, 2, 2, 1, 1, 2, 6, 1, 1, 1, 1, 3, 1, 8, 4, 1, 2, 1, 2, 3, 1, 4, 1, 20, 6, 4, 31, 4, 6, 20, 1, 4, 1, 3, 2, 1, 2, 1, 4, 8, 1, 3, 1, 1, 1, 1, 6, 2, 1, 1, 2, 2, 2, 10, 12, 2, 62// (4)

                                                                                        Solution of (3) found using the convergent Y / (−k) = 0 / 1 of (4)

                                                                                        X = 1, Y = 0

                                                                                        x = 1
                                                                                        y = 0

                                                                                        X = -1, Y = 0

                                                                                        x = -1
                                                                                        y = 0

                                                                                        The continued fraction expansion of (−Q + D / 4) / (−R) = 991 / (-1) is:

                                                                                        -32+ // 1, 1, 12, 10, 2, 2, 2, 1, 1, 2, 6, 1, 1, 1, 1, 3, 1, 8, 4, 1, 2, 1, 2, 3, 1, 4, 1, 20, 6, 4, 31, 4, 6, 20, 1, 4, 1, 3, 2, 1, 2, 1, 4, 8, 1, 3, 1, 1, 1, 1, 6, 2, 1, 1, 2, 2, 2, 10, 12, 2, 62, 2// (5)

                                                                                        Solution of (3) found using the convergent Y / (−k) = 0 / 1 of (5)

                                                                                        X = 1, Y = 0

                                                                                        x = 1
                                                                                        y = 0

                                                                                        X = -1, Y = 0

                                                                                        x = -1
                                                                                        y = 0

                                                                                        x = 1
                                                                                        y = 0

                                                                                        x = -1
                                                                                        y = 0

                                                                                      Recursive solutions:

                                                                                      xn+1 = P ⁢xn + Q ⁢yn
                                                                                      yn+1 = R ⁢xn + S ⁢yn

                                                                                      where:

                                                                                      P = 379516 400906 811930 638014 896080
                                                                                      Q = 11 947234 168218 377212 415555 918097 (32 digits)
                                                                                      R = 12055 735790 331359 447442 538767
                                                                                      S = 379516 400906 811930 638014 896080

                                                                                      and also:

                                                                                      P = 379516 400906 811930 638014 896080
                                                                                      Q = -11 947234 168218 377212 415555 918097 (32 digits)
                                                                                      R = -12055 735790 331359 447442 538767
                                                                                      S = 379516 400906 811930 638014 896080

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      5 ⁢x² + 3 ⁢x⁢y - 991 ⁢y² + 23 ⁢x + 42 ⁢y -  1 = 0

                                                                                      The equation does not have integer solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      5 ⁢x² + 3 ⁢x⁢y - 991 ⁢y² + 23 ⁢x + 42 ⁢y -  1 = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 19829

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = -45712

                                                                                      β = 2⁢ae - bd = 351

                                                                                      5 X² + 3 XY − 991 ⁢Y² = 10670 897034 (1)

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      10670 897034 = 2 × 32 × 7 × 79 × 251 × 4271

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve:5 T² + 3 T − 991 ≡ 0 (mod 10670 897034 = 2 × 32 × 7 × 79 × 251 × 4271)

                                                                                      There are no solutions modulo 2, so the modular equation does not have any solution.

                                                                                      Let 3⁢X' = X and 3⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain 5 X'² + 3 X'Y' − 991 ⁢Y'² = 10670 897034 / 3² = 1185 655226

                                                                                      We have to solve:5 T² + 3 T − 991 ≡ 0 (mod 1185 655226 = 2 × 7 × 79 × 251 × 4271)

                                                                                      There are no solutions modulo 2, so the modular equation does not have any solution.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      2 ⁢x² + 3 ⁢x⁢y + 7 ⁢y² - 12 ⁢ = 0

                                                                                      x = 1
                                                                                      y = 1

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = -1

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      2 ⁢x² + 3 ⁢x⁢y + 7 ⁢y² - 12 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = -47

                                                                                      2 X² + 3 XY + 7 ⁢Y² = 12 (1)

                                                                                      The algorithm requires that the coefficient of X² and the right hand side are coprime. This does not happen, so we have to find a value of m such that applying one of the unimodular transformations

                                                                                      • X = mU + (m−1)V, Y = U + V
                                                                                      • X = U + V, Y = (m−1)U + mV

                                                                                      the coefficient of U² and the right hand side are coprime. This coefficient equals 2 m² + 3 m + 7 in the first case and 7 (m − 1)² + 3 (m − 1) + 2 in the second case.

                                                                                      We will use the first unimodular transformation with m = 6: X = 6 ⁢U + 5 ⁢V, Y = U + V (2)

                                                                                      Using (2), the equation (1) converts to:

                                                                                      97 U² + 167 UV + 72 ⁢V² = 12 (3)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      12 = 22 × 3

                                                                                      Searching for solutions U and V coprime.

                                                                                      We have to solve:97 T² + 167 T + 72 ≡ 0 (mod 12 = 22 × 3)

                                                                                      Solutions modulo 22: 0 and 1

                                                                                      Solutions modulo 3: 0 and 1

                                                                                      1. T = 0
                                                                                      2. The transformation U = - 12 ⁢k (4) converts 97 U² + 167 UV + 72 ⁢V² = 12 to PV² + QVk + Rk² = 1 (5)

                                                                                        where: P = (aT² + bT + c) / n = 6, Q = −(2⁢aT + b) = -167, R = an = 1164

                                                                                        To obtain solutions to the equation (5) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 167 / 12

                                                                                        The continued fraction is: 13+ //1, 11// (6)

                                                                                        There are no convergents for which (5) holds.

                                                                                      3. T = 4
                                                                                      4. The transformation U = 4 ⁢V - 12 ⁢k (7) converts 97 U² + 167 UV + 72 ⁢V² = 12 to PV² + QVk + Rk² = 1 (8)

                                                                                        where: P = (aT² + bT + c) / n = 191, Q = −(2⁢aT + b) = -943, R = an = 1164

                                                                                        To obtain solutions to the equation (8) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 943 / 382

                                                                                        The continued fraction is: 2+ //2, 7, 2, 5, 2// (9)

                                                                                        Solution of (8) found using the convergent V / k = 5 / 2 of (9)

                                                                                        U = -4, V = 5

                                                                                        From (2):

                                                                                        X = 1, Y = 1

                                                                                        x = 1
                                                                                        y = 1

                                                                                        U = 4, V = -5

                                                                                        From (2):

                                                                                        X = -1, Y = -1

                                                                                        x = -1
                                                                                        y = -1

                                                                                      5. T = -3
                                                                                      6. The transformation U = - 3 ⁢V - 12 ⁢k (10) converts 97 U² + 167 UV + 72 ⁢V² = 12 to PV² + QVk + Rk² = 1 (11)

                                                                                        where: P = (aT² + bT + c) / n = 37, Q = −(2⁢aT + b) = 415, R = an = 1164

                                                                                        To obtain solutions to the equation (11) we have to compute the convergents of the continued fraction of −Q / 2⁢P = -415 / 74

                                                                                        The continued fraction is: -6+ //2, 1, 1, 4, 3// (12)

                                                                                        There are no convergents for which (11) holds.

                                                                                      7. T = 1
                                                                                      8. The transformation U =  V - 12 ⁢k (13) converts 97 U² + 167 UV + 72 ⁢V² = 12 to PV² + QVk + Rk² = 1 (14)

                                                                                        where: P = (aT² + bT + c) / n = 28, Q = −(2⁢aT + b) = -361, R = an = 1164

                                                                                        To obtain solutions to the equation (14) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 361 / 56

                                                                                        The continued fraction is: 6+ //2, 4, 6// (15)

                                                                                        There are no convergents for which (14) holds.

                                                                                      Let 2⁢U' = U and 2⁢V' = V. Searching for solutions U' and V' coprime.

                                                                                      From equation (3) we obtain 97 U'² + 167 U'V' + 72 ⁢V'² = 12 / 2² = 3

                                                                                      We have to solve:97 T² + 167 T + 72 ≡ 0 (mod 3 = 3)

                                                                                      Solutions modulo 3: 0 and 1

                                                                                      1. T = 0
                                                                                      2. The transformation U' = - 3 ⁢k (16) converts 97 U'² + 167 U'V' + 72 ⁢V'² = 3 to PV'² + QV'k + Rk² = 1 (17)

                                                                                        where: P = (aT² + bT + c) / n = 24, Q = −(2⁢aT + b) = -167, R = an = 291

                                                                                        To obtain solutions to the equation (17) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 167 / 48

                                                                                        The continued fraction is: 3+ //2, 11, 2// (18)

                                                                                        There are no convergents for which (17) holds.

                                                                                      3. T = 1
                                                                                      4. The transformation U' =  V' - 3 ⁢k (19) converts 97 U'² + 167 U'V' + 72 ⁢V'² = 3 to PV'² + QV'k + Rk² = 1 (20)

                                                                                        where: P = (aT² + bT + c) / n = 112, Q = −(2⁢aT + b) = -361, R = an = 291

                                                                                        To obtain solutions to the equation (20) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 361 / 224

                                                                                        The continued fraction is: 1+ //1, 1, 1, 1, 2, 1, 5, 2// (21)

                                                                                        There are no convergents for which (20) holds.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      2 ⁢x² - 33 ⁢x⁢y + 7 ⁢y² - 12 ⁢ = 0

                                                                                      x = 1
                                                                                      y = 5

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = -5

                                                                                      and also:

                                                                                      x = -1321 493700 201781
                                                                                      y = -81 147513 783145

                                                                                      and also:

                                                                                      x = 1321 493700 201781
                                                                                      y = 81 147513 783145

                                                                                      and also:

                                                                                      x = 689 053051
                                                                                      y = 3206 081030

                                                                                      and also:

                                                                                      x = -689 053051
                                                                                      y = -3206 081030

                                                                                      and also:

                                                                                      x = -2 062831
                                                                                      y = -126670

                                                                                      and also:

                                                                                      x = 2 062831
                                                                                      y = 126670

                                                                                      and also:

                                                                                      x = 27224
                                                                                      y = 126670

                                                                                      and also:

                                                                                      x = -27224
                                                                                      y = -126670

                                                                                      and also:

                                                                                      x = -52211 283944
                                                                                      y = -3206 081030

                                                                                      and also:

                                                                                      x = 52211 283944
                                                                                      y = 3206 081030

                                                                                      Recursive solutions:

                                                                                      xn+1 = P ⁢xn + Q ⁢yn
                                                                                      yn+1 = R ⁢xn + S ⁢yn

                                                                                      where:

                                                                                      P = 141535 082611 518287 749732 424252 171881 (36 digits)
                                                                                      Q = -30418 813368 857281 792634 997945 318384 (35 digits)
                                                                                      R = 8691 089533 959223 369324 285127 233824 (34 digits)
                                                                                      S = -1867 894698 808897 844118 280347 186215 (34 digits)

                                                                                      and also:

                                                                                      P = -1867 894698 808897 844118 280347 186215 (34 digits)
                                                                                      Q = 30418 813368 857281 792634 997945 318384 (35 digits)
                                                                                      R = -8691 089533 959223 369324 285127 233824 (34 digits)
                                                                                      S = 141535 082611 518287 749732 424252 171881 (36 digits)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      2 ⁢x² - 33 ⁢x⁢y + 7 ⁢y² - 12 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 1033

                                                                                      2 X² − 33 XY + 7 ⁢Y² = 12 (1)

                                                                                      The algorithm requires that the coefficient of X² and the right hand side are coprime. This does not happen, so we have to find a value of m such that applying one of the unimodular transformations

                                                                                      • X = mU + (m−1)V, Y = U + V
                                                                                      • X = U + V, Y = (m−1)U + mV

                                                                                      the coefficient of U² and the right hand side are coprime. This coefficient equals 2 m² − 33 m + 7 in the first case and 7 (m − 1)² − 33 (m − 1) + 2 in the second case.

                                                                                      We will use the first unimodular transformation with m = 6: X = 6 ⁢U + 5 ⁢V, Y = U + V (2)

                                                                                      Using (2), the equation (1) converts to:

                                                                                      -119 U² − 229 UV − 108 ⁢V² = 12 (3)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      12 = 22 × 3

                                                                                      Searching for solutions U and V coprime.

                                                                                      We have to solve:-119 T² − 229 T − 108 ≡ 0 (mod 12 = 22 × 3)

                                                                                      Solutions modulo 22: 0 and 1

                                                                                      Solutions modulo 3: 0 and 1

                                                                                      1. T = 0
                                                                                      2. The transformation U = - 12 ⁢k (4) converts -119 U² − 229 UV − 108 ⁢V² = 12 to PV² + QVk + Rk² = 1 (5)

                                                                                        where: P = (aT² + bT + c) / n = -9, Q = −(2⁢aT + b) = 229, R = an = -1428

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (229 + 1033) / (-2856) is:

                                                                                        -1+ // 1, 9, 1, 14, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15// (6)

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-229 + 1033) / 2856 is:

                                                                                        -1+ // 1, 13, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3// (7)

                                                                                        Solution of (5) found using the convergent V / (−k) = 29 / -2 of (7)

                                                                                        U = -24, V = 29

                                                                                        From (2):

                                                                                        X = 1, Y = 5

                                                                                        x = 1
                                                                                        y = 5

                                                                                        U = 24, V = -29

                                                                                        From (2):

                                                                                        X = -1, Y = -5

                                                                                        x = -1
                                                                                        y = -5

                                                                                        x = 1
                                                                                        y = 5

                                                                                        x = -1
                                                                                        y = -5

                                                                                      3. T = 4
                                                                                      4. The transformation U = 4 ⁢V - 12 ⁢k (8) converts -119 U² − 229 UV − 108 ⁢V² = 12 to PV² + QVk + Rk² = 1 (9)

                                                                                        where: P = (aT² + bT + c) / n = -244, Q = −(2⁢aT + b) = 1181, R = an = -1428

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (1181 + 1033) / (-2856) is:

                                                                                        -1+ // 1, 1, 2, 1, 4, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3// (10)

                                                                                        Solution of (9) found using the convergent V / (−k) = 834 608617 502911 / -354 515883 441475 of (10)

                                                                                        U = -915 756131 286056, V = 834 608617 502911

                                                                                        From (2):

                                                                                        X = -1321 493700 201781, Y = -81 147513 783145

                                                                                        x = -1321 493700 201781
                                                                                        y = -81 147513 783145

                                                                                        U = 915 756131 286056, V = -834 608617 502911

                                                                                        From (2):

                                                                                        X = 1321 493700 201781, Y = 81 147513 783145

                                                                                        x = 1321 493700 201781
                                                                                        y = 81 147513 783145

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-1181 + 1033) / 2856 is:

                                                                                        -1+ // 1, 1, 2, 17, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15// (11)

                                                                                        x = -1321 493700 201781
                                                                                        y = -81 147513 783145

                                                                                        x = 1321 493700 201781
                                                                                        y = 81 147513 783145

                                                                                      5. T = -3
                                                                                      6. The transformation U = - 3 ⁢V - 12 ⁢k (12) converts -119 U² − 229 UV − 108 ⁢V² = 12 to PV² + QVk + Rk² = 1 (13)

                                                                                        where: P = (aT² + bT + c) / n = -41, Q = −(2⁢aT + b) = -485, R = an = -1428

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (-485 + 1033) / (-2856) is:

                                                                                        0+ // 6, 3, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5// (14)

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (485 + 1033) / 2856 is:

                                                                                        0+ // 5, 1, 1, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5// (15)

                                                                                        Solution of (13) found using the convergent V / (−k) = 18547 433129 / 3358 412274 of (15)

                                                                                        U = -15341 352099, V = 18547 433129

                                                                                        From (2):

                                                                                        X = 689 053051, Y = 3206 081030

                                                                                        x = 689 053051
                                                                                        y = 3206 081030

                                                                                        U = 15341 352099, V = -18547 433129

                                                                                        From (2):

                                                                                        X = -689 053051, Y = -3206 081030

                                                                                        x = -689 053051
                                                                                        y = -3206 081030

                                                                                        x = 689 053051
                                                                                        y = 3206 081030

                                                                                        x = -689 053051
                                                                                        y = -3206 081030

                                                                                      7. T = 1
                                                                                      8. The transformation U =  V - 12 ⁢k (16) converts -119 U² − 229 UV − 108 ⁢V² = 12 to PV² + QVk + Rk² = 1 (17)

                                                                                        where: P = (aT² + bT + c) / n = -38, Q = −(2⁢aT + b) = 467, R = an = -1428

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (467 + 1033) / (-2856) is:

                                                                                        -1+ // 1, 4, 1, 2, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4// (18)

                                                                                        Solution of (17) found using the convergent V / (−k) = 1 302811 / -227691 of (18)

                                                                                        U = -1 429481, V = 1 302811

                                                                                        From (2):

                                                                                        X = -2 062831, Y = -126670

                                                                                        x = -2 062831
                                                                                        y = -126670

                                                                                        U = 1 429481, V = -1 302811

                                                                                        From (2):

                                                                                        X = 2 062831, Y = 126670

                                                                                        x = 2 062831
                                                                                        y = 126670

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-467 + 1033) / 2856 is:

                                                                                        -1+ // 1, 5, 1, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4// (19)

                                                                                        x = -2 062831
                                                                                        y = -126670

                                                                                        x = 2 062831
                                                                                        y = 126670

                                                                                      Let 2⁢U' = U and 2⁢V' = V. Searching for solutions U' and V' coprime.

                                                                                      From equation (3) we obtain -119 U'² − 229 U'V' − 108 ⁢V'² = 12 / 2² = 3

                                                                                      We have to solve:-119 T² − 229 T − 108 ≡ 0 (mod 3 = 3)

                                                                                      Solutions modulo 3: 0 and 1

                                                                                      1. T = 0
                                                                                      2. The transformation U' = - 3 ⁢k (20) converts -119 U'² − 229 U'V' − 108 ⁢V'² = 3 to PV'² + QV'k + Rk² = 1 (21)

                                                                                        where: P = (aT² + bT + c) / n = -36, Q = −(2⁢aT + b) = 229, R = an = -357

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (229 + 1033) / (-714) is:

                                                                                        -1+ // 1, 1, 1, 2, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4// (22)

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-229 + 1033) / 714 is:

                                                                                        -1+ // 1, 2, 1, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4// (23)

                                                                                        Solution of (21) found using the convergent V' / (−k) = 366398 / -101021 of (23)

                                                                                        From (20): U' = -303063, V' = 366398

                                                                                        U = -606126, V = 732796

                                                                                        From (2):

                                                                                        X = 27224, Y = 126670

                                                                                        x = 27224
                                                                                        y = 126670

                                                                                        U = 606126, V = -732796

                                                                                        From (2):

                                                                                        X = -27224, Y = -126670

                                                                                        x = -27224
                                                                                        y = -126670

                                                                                        x = 27224
                                                                                        y = 126670

                                                                                        x = -27224
                                                                                        y = -126670

                                                                                      3. T = 1
                                                                                      4. The transformation U' =  V' - 3 ⁢k (24) converts -119 U'² − 229 U'V' − 108 ⁢V'² = 3 to PV'² + QV'k + Rk² = 1 (25)

                                                                                        where: P = (aT² + bT + c) / n = -152, Q = −(2⁢aT + b) = 467, R = an = -357

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (467 + 1033) / (-714) is:

                                                                                        -1+ // 3, 3, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5// (26)

                                                                                        Solution of (25) found using the convergent V' / (−k) = 16487 398882 / -11525 946093 of (26)

                                                                                        From (24): U' = -18090 439397, V' = 16487 398882

                                                                                        U = -36180 878794, V = 32974 797764

                                                                                        From (2):

                                                                                        X = -52211 283944, Y = -3206 081030

                                                                                        x = -52211 283944
                                                                                        y = -3206 081030

                                                                                        U = 36180 878794, V = -32974 797764

                                                                                        From (2):

                                                                                        X = 52211 283944, Y = 3206 081030

                                                                                        x = 52211 283944
                                                                                        y = 3206 081030

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-467 + 1033) / 714 is:

                                                                                        -1+ // 2, 1, 1, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5// (27)

                                                                                        x = -52211 283944
                                                                                        y = -3206 081030

                                                                                        x = 52211 283944
                                                                                        y = 3206 081030

                                                                                      Recursive solutions:

                                                                                      xn+1 = P ⁢xn + Q ⁢yn
                                                                                      yn+1 = R ⁢xn + S ⁢yn

                                                                                      where:

                                                                                      P = 141535 082611 518287 749732 424252 171881 (36 digits)
                                                                                      Q = -30418 813368 857281 792634 997945 318384 (35 digits)
                                                                                      R = 8691 089533 959223 369324 285127 233824 (34 digits)
                                                                                      S = -1867 894698 808897 844118 280347 186215 (34 digits)

                                                                                      and also:

                                                                                      P = -1867 894698 808897 844118 280347 186215 (34 digits)
                                                                                      Q = 30418 813368 857281 792634 997945 318384 (35 digits)
                                                                                      R = -8691 089533 959223 369324 285127 233824 (34 digits)
                                                                                      S = 141535 082611 518287 749732 424252 171881 (36 digits)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² - 6 ⁢y + 3 ⁢ = 0

                                                                                      x = 12 k − 3
                                                                                      y = 24 k² − 12 k + 2

                                                                                      and also:

                                                                                      x = 12 k + 3
                                                                                      y = 24 k² + 12 k + 2

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² - 6 ⁢y + 3 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 0

                                                                                      Multiplying by 4⁢a

                                                                                      ( 2 ⁢x )² - 24 ⁢y + 12 ⁢ = 0

                                                                                      Let t = 2 ⁢x (1)

                                                                                      (t + d)² = ( t )² = 24 ⁢y - 12 ⁢ (2)

                                                                                      where the linear coefficient is 2⁢(bd − 2⁢ae) and the constant coefficient is d² − 4⁢af.

                                                                                      We have to solve T² = -12 (mod 24)

                                                                                      To solve this quadratic modular equation we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      24 = 23 × 3

                                                                                      Solutions modulo 23: 2 and 6

                                                                                      Solutions modulo 3: 0

                                                                                      1. T = -6
                                                                                      2. t = Td + 24 ⁢k = -6 + 24 k (3) (where k is any integer).

                                                                                        Replacing t in equation (2) we can get the value of y:

                                                                                        y = 24 k² − 12 k + 2 (4)

                                                                                        From (1) and (3):

                                                                                        2 ⁢x = -6 + 24 k

                                                                                        x = 12 k − 3
                                                                                        y = 24 k² − 12 k + 2


                                                                                      3. T = 6
                                                                                      4. t = Td + 24 ⁢k = 6 + 24 k (5) (where k is any integer).

                                                                                        Replacing t in equation (2) we can get the value of y:

                                                                                        y = 24 k² + 12 k + 2 (6)

                                                                                        From (1) and (5):

                                                                                        2 ⁢x = 6 + 24 k

                                                                                        x = 12 k + 3
                                                                                        y = 24 k² + 12 k + 2


                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² - 3 ⁢x⁢y + y² +  1 = 0

                                                                                      x = 1
                                                                                      y = 1

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = -1

                                                                                      xn+1 =  yn
                                                                                      yn+1 = - xn + 3 ⁢yn

                                                                                      and also:

                                                                                      xn+1 = 3 ⁢xn - yn
                                                                                      yn+1 =  xn

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² - 3 ⁢x⁢y + y² +  1 = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 5

                                                                                      X² − 3 XY + Y² = -1

                                                                                      The algorithm requires the constant coefficient to be positive, so we multiply both RHS and LHS by −1.

                                                                                      X² + 3 XYY² = 1 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      1 = 1

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve:−T² + 3 T − 1 ≡ 0 (mod 1 = 1)

                                                                                      1. T = 0
                                                                                      2. The transformation X = - k (2) converts −X² + 3 XYY² = 1 to PY² + QYk + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = -1, Q = −(2⁢aT + b) = -3, R = an = -1

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (-3 + 5) / (-2) is:

                                                                                        0+ // 2, 1// (4)

                                                                                        X = 1, Y = 1

                                                                                        x = 1
                                                                                        y = 1

                                                                                        X = -1, Y = -1

                                                                                        x = -1
                                                                                        y = -1

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (3 + 5) / 2 is:

                                                                                        2+ // 1// (5)

                                                                                        Solution of (3) found using the convergent Y / (−k) = 1 / 2 of (5)

                                                                                        X = 2, Y = 1

                                                                                        x = 2
                                                                                        y = 1

                                                                                        X = -2, Y = -1

                                                                                        x = -2
                                                                                        y = -1

                                                                                        x = 1
                                                                                        y = 1

                                                                                        x = -1
                                                                                        y = -1

                                                                                      xn+1 =  yn
                                                                                      yn+1 = - xn + 3 ⁢yn

                                                                                      and also:

                                                                                      xn+1 = 3 ⁢xn - yn
                                                                                      yn+1 =  xn

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      2 ⁢x² - 6 ⁢x⁢y + 2 ⁢y² + 3 ⁢y - 11 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 20

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = 18

                                                                                      β = 2⁢ae - bd = 12

                                                                                      2 X² − 6 XY + 2 ⁢Y² = 4040

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      Dividing both sides by 2:

                                                                                      X² − 3 XY + Y² = 2020 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      2020 = 22 × 5 × 101

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve: T² − 3 T + 1 ≡ 0 (mod 2020 = 22 × 5 × 101)

                                                                                      There are no solutions modulo 22, so the modular equation does not have any solution.

                                                                                      Let 2⁢X' = X and 2⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain X'² − 3 X'Y' + Y'² = 2020 / 2² = 505

                                                                                      We have to solve: T² − 3 T + 1 ≡ 0 (mod 505 = 5 × 101)

                                                                                      Solutions modulo 5: 4

                                                                                      Solutions modulo 101: 24 and 80

                                                                                      1. T = 24
                                                                                      2. The transformation X' = 24 ⁢Y' - 505 ⁢k (2) converts X'² − 3 X'Y' + Y'² = 505 to PY'² + QY'k + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = 1, Q = −(2⁢aT + b) = -45, R = an = 505

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (-45 + 5) / 1010 is:

                                                                                        -1+ // 1, 22, 1// (4)

                                                                                        Solution of (3) found using the convergent Y' / (−k) = 1 / 0 of (4)

                                                                                        From (2): X' = 24, Y' = 1

                                                                                        X = 48, Y = 2

                                                                                        X + α = 66, Y + β = 14

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = -48, Y = -2

                                                                                        X + α = -30, Y + β = 10

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (3) found using the convergent Y' / (−k) = 24 / -1 of (4)

                                                                                        From (2): X' = 71, Y' = 24

                                                                                        X = 142, Y = 48

                                                                                        X + α = 160, Y + β = 60

                                                                                        Dividing these numbers by D = 20:

                                                                                        x = 8
                                                                                        y = 3

                                                                                        X = -142, Y = -48

                                                                                        X + α = -124, Y + β = -36

                                                                                        These numbers are not multiple of D = 20.

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (45 + 5) / (-1010) is:

                                                                                        -1+ // 1, 20, 2, 1// (5)

                                                                                        Solution of (3) found using the convergent Y' / (−k) = 1 / 0 of (5)

                                                                                        From (2): X' = 24, Y' = 1

                                                                                        X = 48, Y = 2

                                                                                        X + α = 66, Y + β = 14

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = -48, Y = -2

                                                                                        X + α = -30, Y + β = 10

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (3) found using the convergent Y' / (−k) = 21 / -1 of (5)

                                                                                        From (2): X' = -1, Y' = 21

                                                                                        X = -2, Y = 42

                                                                                        X + α = 16, Y + β = 54

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = 2, Y = -42

                                                                                        X + α = 20, Y + β = -30

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (3) found using the convergent Y' / (−k) = 64 / -3 of (5)

                                                                                        From (2): X' = 21, Y' = 64

                                                                                        X = 42, Y = 128

                                                                                        X + α = 60, Y + β = 140

                                                                                        Dividing these numbers by D = 20:

                                                                                        x = 3
                                                                                        y = 7

                                                                                        X = -42, Y = -128

                                                                                        X + α = -24, Y + β = -116

                                                                                        These numbers are not multiple of D = 20.

                                                                                        x = 3
                                                                                        y = 7

                                                                                      3. T = -21
                                                                                      4. The transformation X' = - 21 ⁢Y' - 505 ⁢k (6) converts X'² − 3 X'Y' + Y'² = 505 to PY'² + QY'k + Rk² = 1 (7)

                                                                                        where: P = (aT² + bT + c) / n = 1, Q = −(2⁢aT + b) = 45, R = an = 505

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (45 + 5) / 1010 is:

                                                                                        0+ // 21, 2, 1// (8)

                                                                                        Solution of (7) found using the convergent Y' / (−k) = 1 / 0 of (8)

                                                                                        From (6): X' = -21, Y' = 1

                                                                                        X = -42, Y = 2

                                                                                        X + α = -24, Y + β = 14

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = 42, Y = -2

                                                                                        X + α = 60, Y + β = 10

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (7) found using the convergent Y' / (−k) = 21 / 1 of (8)

                                                                                        From (6): X' = 64, Y' = 21

                                                                                        X = 128, Y = 42

                                                                                        X + α = 146, Y + β = 54

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = -128, Y = -42

                                                                                        X + α = -110, Y + β = -30

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (7) found using the convergent Y' / (−k) = 64 / 3 of (8)

                                                                                        From (6): X' = 171, Y' = 64

                                                                                        X = 342, Y = 128

                                                                                        X + α = 360, Y + β = 140

                                                                                        Dividing these numbers by D = 20:

                                                                                        x = 18
                                                                                        y = 7

                                                                                        X = -342, Y = -128

                                                                                        X + α = -324, Y + β = -116

                                                                                        These numbers are not multiple of D = 20.

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-45 + 5) / (-1010) is:

                                                                                        0+ // 23, 1// (9)

                                                                                        Solution of (7) found using the convergent Y' / (−k) = 1 / 0 of (9)

                                                                                        From (6): X' = -21, Y' = 1

                                                                                        X = -42, Y = 2

                                                                                        X + α = -24, Y + β = 14

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = 42, Y = -2

                                                                                        X + α = 60, Y + β = 10

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (7) found using the convergent Y' / (−k) = 24 / 1 of (9)

                                                                                        From (6): X' = 1, Y' = 24

                                                                                        X = 2, Y = 48

                                                                                        X + α = 20, Y + β = 60

                                                                                        Dividing these numbers by D = 20:

                                                                                        x = 1
                                                                                        y = 3

                                                                                        X = -2, Y = -48

                                                                                        X + α = 16, Y + β = -36

                                                                                        These numbers are not multiple of D = 20.

                                                                                        x = 1
                                                                                        y = 3

                                                                                      Recursive solutions:

                                                                                      xn+1 = - 21 ⁢xn + 8 ⁢yn + 15 ⁢
                                                                                      yn+1 = - 8 ⁢xn + 3 ⁢yn + 6 ⁢

                                                                                      and also:

                                                                                      xn+1 = 3 ⁢xn - 8 ⁢yn + 3 ⁢
                                                                                      yn+1 = 8 ⁢xn - 21 ⁢yn + 6 ⁢

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                       x² - x⁢y + y² - x - y = 0

                                                                                      The discriminant is D = b² − 4⁢ac = -3

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = -3

                                                                                      β = 2⁢ae - bd = -3

                                                                                      X² − XY + Y² = 9 (1)

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      9 = 32

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve: T² − T⁢ + 1 ≡ 0 (mod 9 = 32)

                                                                                      There are no solutions modulo 32, so the modular equation does not have any solution.

                                                                                      Let 3⁢X' = X and 3⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain X'² − X'Y' + Y'² = 9 / 3² = 1

                                                                                      We have to solve: T² − T⁢ + 1 ≡ 0 (mod 1 = 1)

                                                                                      1. T = 0
                                                                                      2. The transformation X' = - k (2) converts X'² − X'Y' + Y'² = 1 to PY'² + QY'k + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = 1, Q = −(2⁢aT + b) = 1, R = an = 1

                                                                                        When the discriminant equals -3 and P = 1, a solution is (Y', k) = (1, 0)

                                                                                        From (2): X' = 0, Y' = 1

                                                                                        X = 0, Y = 3

                                                                                        X + α = -3, Y + β = 0

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 1
                                                                                        y = 0

                                                                                        X = 0, Y = -3

                                                                                        X + α = -3, Y + β = -6

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 1
                                                                                        y = 2

                                                                                        The second solution is (Y', k) = ((Q ‑ 1)/2 = 0, -1)

                                                                                        From (2): X' = 1, Y' = 0

                                                                                        X = 3, Y = 0

                                                                                        X + α = 0, Y + β = -3

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 0
                                                                                        y = 1

                                                                                        X = -3, Y = 0

                                                                                        X + α = -6, Y + β = -3

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 2
                                                                                        y = 1

                                                                                        The third solution is (Y', k) = ((Q + 1)/2 = 1, -1)

                                                                                        From (2): X' = 1, Y' = 1

                                                                                        X = 3, Y = 3

                                                                                        X + α = 0, Y + β = 0

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 0
                                                                                        y = 0

                                                                                        X = -3, Y = -3

                                                                                        X + α = -6, Y + β = -6

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 2
                                                                                        y = 2

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      - 6 ⁢x⁢y - 6 ⁢y² - 5 ⁢x + y + 5 ⁢ = 0

                                                                                      x = − t
                                                                                      y = 1 + t

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      - 6 ⁢x⁢y - 6 ⁢y² - 5 ⁢x + y + 5 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 36

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = 66

                                                                                      β = 2⁢ae - bd = -30

                                                                                      − 6 XY − 6 ⁢Y² = 0

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      Dividing both sides by 6:

                                                                                      XYY² = 0 (1)

                                                                                      ( - 6 ⁢X - 6 ⁢Y ) ⁢( Y ) = 0

                                                                                      ( - X - Y ) ⁢( Y ) = 0

                                                                                      The product is zero, so any of the values inside parenthesis equal zero.

                                                                                       Y = 0

                                                                                      This is a linear equation 36 ⁢y + 30 ⁢ = 0

                                                                                      This equation does not have integer solutions.

                                                                                      - X - Y = 0

                                                                                      This is a linear equation - 216 ⁢x - 216 ⁢y + 216 ⁢ = 0

                                                                                      To solve it, we first find the greatest common divisor of the linear coefficients, that is: gcd(-216, -216) = 216.

                                                                                      Dividing the equation by the greatest common divisor we obtain:

                                                                                      - x - y +  1 = 0

                                                                                      Now we must apply the Generalized Euclidean algorithm:

                                                                                      Step 1: 1 × (-1) + 0 × (-1) = (-1)
                                                                                      Step 2: 0 × (-1) + 1 × (-1) = (-1)

                                                                                      Adding and subtracting (-1) × (-1) t' we obtain:

                                                                                      (0 + (-1) t') × (-1) + (1 - (-1) t') × (-1) = -1

                                                                                      So, the solution is given by the set:

                                                                                      x = − t'
                                                                                      y = 1 + t'

                                                                                      By making the substitution t' = 0 + t we finally obtain:

                                                                                      x = − t
                                                                                      y = 1 + t

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      - 6 ⁢x² - 6 ⁢x⁢y + x - 5 ⁢y + 5 ⁢ = 0

                                                                                      x = − t
                                                                                      y = 1 + t

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      - 6 ⁢x² - 6 ⁢x⁢y + x - 5 ⁢y + 5 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 36

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = -30

                                                                                      β = 2⁢ae - bd = 66

                                                                                      -6 X² − 6 XY = 0

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      Dividing both sides by 6:

                                                                                      X² − XY = 0 (1)

                                                                                      Multiplying by 4⁢a:

                                                                                      ( - 12 ⁢X ) ⁢( - 12 ⁢X - 12 ⁢Y ) = 0

                                                                                      ( X ) ⁢( - X - Y ) = 0

                                                                                      The product is zero, so any of the values inside parenthesis equal zero.

                                                                                      - X - Y = 0

                                                                                      This is a linear equation - 432 ⁢x - 360 ⁢ = 0

                                                                                      This equation does not have integer solutions.

                                                                                       X = 0

                                                                                      This is a linear equation - 432 ⁢x - 432 ⁢y + 432 ⁢ = 0

                                                                                      To solve it, we first find the greatest common divisor of the linear coefficients, that is: gcd(-432, -432) = 432.

                                                                                      Dividing the equation by the greatest common divisor we obtain:

                                                                                      - x - y +  1 = 0

                                                                                      Now we must apply the Generalized Euclidean algorithm:

                                                                                      Step 1: 1 × (-1) + 0 × (-1) = (-1)
                                                                                      Step 2: 0 × (-1) + 1 × (-1) = (-1)

                                                                                      Adding and subtracting (-1) × (-1) t' we obtain:

                                                                                      (0 + (-1) t') × (-1) + (1 - (-1) t') × (-1) = -1

                                                                                      So, the solution is given by the set:

                                                                                      x = − t'
                                                                                      y = 1 + t'

                                                                                      By making the substitution t' = 0 + t we finally obtain:

                                                                                      x = − t
                                                                                      y = 1 + t

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      128 ⁢x² - 128 ⁢y² + 184 ⁢x - 12 ⁢y + 11 612128 ⁢ = 0

                                                                                      The equation does not have integer solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Coefficient a: The expression must not include variables

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2

                                                                                      0 = 0

                                                                                      x, y: any integer

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      5 ⁢y + 6 ⁢ = 0

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      5 ⁢y + 6 ⁢ = 0

                                                                                      The constant coefficient is not multiple of 5, which is the greatest common divisor of the other coefficients, so there are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      5 ⁢x + 6 ⁢ = 0

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      5 ⁢x + 6 ⁢ = 0

                                                                                      The constant coefficient is not multiple of 5, which is the greatest common divisor of the other coefficients, so there are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       y + 5 ⁢ = 0

                                                                                      x = t
                                                                                      y = -5

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x + 5 ⁢ = 0

                                                                                      x = -5
                                                                                      y = t

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       y + 5 ⁢ = 0

                                                                                      This is a linear equation  y + 5 ⁢ = 0

                                                                                      x = t
                                                                                      y = -5

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x + y + 5 ⁢ = 0

                                                                                      x = -2 + t
                                                                                      y = -3 − t

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x + y + 5 ⁢ = 0

                                                                                      This is a linear equation  x + y + 5 ⁢ = 0

                                                                                      Dividing the equation by the greatest common divisor we obtain:

                                                                                       x + y + 5 ⁢ = 0

                                                                                      Now we must apply the Generalized Euclidean algorithm:

                                                                                      Step 1: 1 × 1 + 0 × 1 = 1
                                                                                      Step 2: 0 × 1 + 1 × 1 = 1

                                                                                      Multiplying the last equation by (-5) we obtain:
                                                                                      0 × 1 + (-5) × 1 = -5

                                                                                      Adding and subtracting 1 × 1 t' we obtain:

                                                                                      (0 + 1 t') × 1 + (-5 - 1 t') × 1 = -5

                                                                                      So, the solution is given by the set:

                                                                                      x = t'
                                                                                      y = -5 − t'

                                                                                      By making the substitution t' = -2 + t we finally obtain:

                                                                                      x = -2 + t
                                                                                      y = -3 − t

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² + 2 ⁢x⁢y + 3 ⁢y² + 4 ⁢x + 5 ⁢y + 6 ⁢ = 0

                                                                                      The equation does not have integer solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² + 2 ⁢x⁢y + 3 ⁢y² + 4 ⁢x + 5 ⁢y + 6 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = -8

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = 14

                                                                                      β = 2⁢ae - bd = 2

                                                                                      X² + 2 XY + 3 ⁢Y² = -120

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      The algorithm requires the constant coefficient to be positive, so we multiply both RHS and LHS by −1.

                                                                                      X² − 2 XY − 3 ⁢Y² = 120 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      120 = 23 × 3 × 5

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve:−T² − 2 T − 3 ≡ 0 (mod 120 = 23 × 3 × 5)

                                                                                      There are no solutions modulo 23, so the modular equation does not have any solution.

                                                                                      Let 2⁢X' = X and 2⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain −X'² − 2 X'Y' − 3 ⁢Y'² = 120 / 2² = 30

                                                                                      We have to solve:−T² − 2 T − 3 ≡ 0 (mod 30 = 2 × 3 × 5)

                                                                                      Solutions modulo 2: 1

                                                                                      Solutions modulo 3: 0 and 1

                                                                                      There are no solutions modulo 5, so the modular equation does not have any solution.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² + 7 ⁢y - 12 ⁢ = 0

                                                                                      The equation does not have integer solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² + 7 ⁢y - 12 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 0

                                                                                      Multiplying by 4⁢a

                                                                                      ( 2 ⁢x )² + 28 ⁢y - 48 ⁢ = 0

                                                                                      Let t = 2 ⁢x (1)

                                                                                      (t + d)² = ( t )² = - 28 ⁢y + 48 ⁢ (2)

                                                                                      where the linear coefficient is 2⁢(bd − 2⁢ae) and the constant coefficient is d² − 4⁢af.

                                                                                      We have to solve T² = 48 (mod 28)

                                                                                      To solve this quadratic modular equation we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      28 = 22 × 7

                                                                                      Solutions modulo 22: 0 and 2

                                                                                      There are no solutions modulo 7, so the modular equation does not have any solution.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² + 2 ⁢x⁢y + 2 ⁢y² - 89 ⁢ = 0

                                                                                      x = -13
                                                                                      y = 5

                                                                                      and also:

                                                                                      x = 13
                                                                                      y = -5

                                                                                      and also:

                                                                                      x = -3
                                                                                      y = 8

                                                                                      and also:

                                                                                      x = 3
                                                                                      y = -8

                                                                                      and also:

                                                                                      x = -3
                                                                                      y = -5

                                                                                      and also:

                                                                                      x = 3
                                                                                      y = 5

                                                                                      and also:

                                                                                      x = 13
                                                                                      y = -8

                                                                                      and also:

                                                                                      x = -13
                                                                                      y = 8

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² + 2 ⁢x⁢y + 2 ⁢y² - 89 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = -4

                                                                                      X² + 2 XY + 2 ⁢Y² = 89 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      89 = 89

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve: T² + 2 T + 2 ≡ 0 (mod 89 = 89)

                                                                                      Solutions modulo 89: 33 and 54

                                                                                      1. T = 33
                                                                                      2. The transformation X = 33 ⁢Y - 89 ⁢k (2) converts X² + 2 XY + 2 ⁢Y² = 89 to PY² + QYk + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = 13, Q = −(2⁢aT + b) = -68, R = an = 89

                                                                                        To obtain solutions to the equation (3) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 68 / 26

                                                                                        The continued fraction is: 2+ //1, 1, 1, 1, 2// (4)

                                                                                        Solution of (3) found using the convergent Y / k = 5 / 2 of (4)

                                                                                        X = -13, Y = 5

                                                                                        x = -13
                                                                                        y = 5

                                                                                        X = 13, Y = -5

                                                                                        x = 13
                                                                                        y = -5

                                                                                        Solution of (3) found using the convergent Y / k = 8 / 3 of (4)

                                                                                        X = -3, Y = 8

                                                                                        x = -3
                                                                                        y = 8

                                                                                        X = 3, Y = -8

                                                                                        x = 3
                                                                                        y = -8

                                                                                      3. T = -35
                                                                                      4. The transformation X = - 35 ⁢Y - 89 ⁢k (5) converts X² + 2 XY + 2 ⁢Y² = 89 to PY² + QYk + Rk² = 1 (6)

                                                                                        where: P = (aT² + bT + c) / n = 13, Q = −(2⁢aT + b) = 68, R = an = 89

                                                                                        To obtain solutions to the equation (6) we have to compute the convergents of the continued fraction of −Q / 2⁢P = -68 / 26

                                                                                        The continued fraction is: -3+ //2, 1, 1, 2// (7)

                                                                                        Solution of (6) found using the convergent Y / k = -5 / 2 of (7)

                                                                                        X = -3, Y = -5

                                                                                        x = -3
                                                                                        y = -5

                                                                                        X = 3, Y = 5

                                                                                        x = 3
                                                                                        y = 5

                                                                                        Solution of (6) found using the convergent Y / k = -8 / 3 of (7)

                                                                                        X = 13, Y = -8

                                                                                        x = 13
                                                                                        y = -8

                                                                                        X = -13, Y = 8

                                                                                        x = -13
                                                                                        y = 8

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² + 3 ⁢x⁢y + 3 ⁢y² - 76 ⁢ = 0

                                                                                      x = 14
                                                                                      y = -4

                                                                                      and also:

                                                                                      x = -14
                                                                                      y = 4

                                                                                      and also:

                                                                                      x = 16
                                                                                      y = -10

                                                                                      and also:

                                                                                      x = -16
                                                                                      y = 10

                                                                                      and also:

                                                                                      x = 2
                                                                                      y = -6

                                                                                      and also:

                                                                                      x = -2
                                                                                      y = 6

                                                                                      and also:

                                                                                      x = -16
                                                                                      y = 6

                                                                                      and also:

                                                                                      x = 16
                                                                                      y = -6

                                                                                      and also:

                                                                                      x = -14
                                                                                      y = 10

                                                                                      and also:

                                                                                      x = 14
                                                                                      y = -10

                                                                                      and also:

                                                                                      x = 2
                                                                                      y = 4

                                                                                      and also:

                                                                                      x = -2
                                                                                      y = -4

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² + 3 ⁢x⁢y + 3 ⁢y² - 76 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = -3

                                                                                      X² + 3 XY + 3 ⁢Y² = 76 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      76 = 22 × 19

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve: T² + 3 T + 3 ≡ 0 (mod 76 = 22 × 19)

                                                                                      There are no solutions modulo 22, so the modular equation does not have any solution.

                                                                                      Let 2⁢X' = X and 2⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain X'² + 3 X'Y' + 3 ⁢Y'² = 76 / 2² = 19

                                                                                      We have to solve: T² + 3 T + 3 ≡ 0 (mod 19 = 19)

                                                                                      Solutions modulo 19: 6 and 10

                                                                                      1. T = 6
                                                                                      2. The transformation X' = 6 ⁢Y' - 19 ⁢k (2) converts X'² + 3 X'Y' + 3 ⁢Y'² = 19 to PY'² + QY'k + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = 3, Q = −(2⁢aT + b) = -15, R = an = 19

                                                                                        When the discriminant equals -3 and P = 3, a solution is (Y', k) = ((Q + 3)/6 = -2, -1)

                                                                                        From (2): X' = 7, Y' = -2

                                                                                        X = 14, Y = -4

                                                                                        x = 14
                                                                                        y = -4

                                                                                        X = -14, Y = 4

                                                                                        x = -14
                                                                                        y = 4

                                                                                        The second solution is (Y', k) = (Q/3 = -5, -2)

                                                                                        From (2): X' = 8, Y' = -5

                                                                                        X = 16, Y = -10

                                                                                        x = 16
                                                                                        y = -10

                                                                                        X = -16, Y = 10

                                                                                        x = -16
                                                                                        y = 10

                                                                                        The third solution is (Y', k) = ((Q − 3)/6 = -3, -1)

                                                                                        From (2): X' = 1, Y' = -3

                                                                                        X = 2, Y = -6

                                                                                        x = 2
                                                                                        y = -6

                                                                                        X = -2, Y = 6

                                                                                        x = -2
                                                                                        y = 6

                                                                                      3. T = -9
                                                                                      4. The transformation X' = - 9 ⁢Y' - 19 ⁢k (4) converts X'² + 3 X'Y' + 3 ⁢Y'² = 19 to PY'² + QY'k + Rk² = 1 (5)

                                                                                        where: P = (aT² + bT + c) / n = 3, Q = −(2⁢aT + b) = 15, R = an = 19

                                                                                        When the discriminant equals -3 and P = 3, a solution is (Y', k) = ((Q + 3)/6 = 3, -1)

                                                                                        From (4): X' = -8, Y' = 3

                                                                                        X = -16, Y = 6

                                                                                        x = -16
                                                                                        y = 6

                                                                                        X = 16, Y = -6

                                                                                        x = 16
                                                                                        y = -6

                                                                                        The second solution is (Y', k) = (Q/3 = 5, -2)

                                                                                        From (4): X' = -7, Y' = 5

                                                                                        X = -14, Y = 10

                                                                                        x = -14
                                                                                        y = 10

                                                                                        X = 14, Y = -10

                                                                                        x = 14
                                                                                        y = -10

                                                                                        The third solution is (Y', k) = ((Q − 3)/6 = 2, -1)

                                                                                        From (4): X' = 1, Y' = 2

                                                                                        X = 2, Y = 4

                                                                                        x = 2
                                                                                        y = 4

                                                                                        X = -2, Y = -4

                                                                                        x = -2
                                                                                        y = -4

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² + y² - 425 ⁢ = 0

                                                                                      x = -19
                                                                                      y = 8

                                                                                      and also:

                                                                                      x = 19
                                                                                      y = -8

                                                                                      and also:

                                                                                      x = 8
                                                                                      y = 19

                                                                                      and also:

                                                                                      x = -8
                                                                                      y = -19

                                                                                      and also:

                                                                                      x = 16
                                                                                      y = 13

                                                                                      and also:

                                                                                      x = -16
                                                                                      y = -13

                                                                                      and also:

                                                                                      x = -13
                                                                                      y = 16

                                                                                      and also:

                                                                                      x = 13
                                                                                      y = -16

                                                                                      and also:

                                                                                      x = 16
                                                                                      y = -13

                                                                                      and also:

                                                                                      x = -16
                                                                                      y = 13

                                                                                      and also:

                                                                                      x = -13
                                                                                      y = -16

                                                                                      and also:

                                                                                      x = 13
                                                                                      y = 16

                                                                                      and also:

                                                                                      x = -19
                                                                                      y = -8

                                                                                      and also:

                                                                                      x = 19
                                                                                      y = 8

                                                                                      and also:

                                                                                      x = 8
                                                                                      y = -19

                                                                                      and also:

                                                                                      x = -8
                                                                                      y = 19

                                                                                      and also:

                                                                                      x = 20
                                                                                      y = 5

                                                                                      and also:

                                                                                      x = -20
                                                                                      y = -5

                                                                                      and also:

                                                                                      x = 5
                                                                                      y = -20

                                                                                      and also:

                                                                                      x = -5
                                                                                      y = 20

                                                                                      and also:

                                                                                      x = -20
                                                                                      y = 5

                                                                                      and also:

                                                                                      x = 20
                                                                                      y = -5

                                                                                      and also:

                                                                                      x = 5
                                                                                      y = 20

                                                                                      and also:

                                                                                      x = -5
                                                                                      y = -20

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² - 5 ⁢y² + 4 ⁢ = 0

                                                                                      x = 1
                                                                                      y = 1

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = -1

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = 1

                                                                                      and also:

                                                                                      x = 1
                                                                                      y = -1

                                                                                      and also:

                                                                                      x = 4
                                                                                      y = 2

                                                                                      and also:

                                                                                      x = -4
                                                                                      y = -2

                                                                                      Recursive solutions:

                                                                                      xn+1 = 9 ⁢xn - 20 ⁢yn
                                                                                      yn+1 = - 4 ⁢xn + 9 ⁢yn

                                                                                      and also:

                                                                                      xn+1 = 9 ⁢xn + 20 ⁢yn
                                                                                      yn+1 = 4 ⁢xn + 9 ⁢yn

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² - 5 ⁢y² + 4 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 20

                                                                                      X² − 5 ⁢Y² = -4

                                                                                      The algorithm requires the constant coefficient to be positive, so we multiply both RHS and LHS by −1.

                                                                                      X² + 5 ⁢Y² = 4 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      4 = 22

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve:−T² + 5 ≡ 0 (mod 4 = 22)

                                                                                      Solutions modulo 22: 1 and 3

                                                                                      1. T = 1
                                                                                      2. The transformation X =  Y - 4 ⁢k (2) converts −X² + 5 ⁢Y² = 4 to PY² + QYk + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = 1, Q = −(2⁢aT + b) = 2, R = an = -4

                                                                                        The continued fraction expansion of (Q + D / 4) / R = (1 + 5) / (-4) is:

                                                                                        -1+ // 5, 4// (4)

                                                                                        Solution of (3) found using the convergent Y / (−k) = 5 / -4 of (4)

                                                                                        X = -11, Y = 5

                                                                                        x = -11
                                                                                        y = 5

                                                                                        X = 11, Y = -5

                                                                                        x = 11
                                                                                        y = -5

                                                                                        The continued fraction expansion of (−Q + D / 4) / (−R) = (-1 + 5) / 4 is:

                                                                                        0+ // 3, 4// (5)

                                                                                        Solution of (3) found using the convergent Y / (−k) = 1 / 0 of (5)

                                                                                        X = 1, Y = 1

                                                                                        x = 1
                                                                                        y = 1

                                                                                        X = -1, Y = -1

                                                                                        x = -1
                                                                                        y = -1

                                                                                        x = 1
                                                                                        y = 1

                                                                                        x = -1
                                                                                        y = -1

                                                                                      3. T = -1
                                                                                      4. The transformation X = - Y - 4 ⁢k (6) converts −X² + 5 ⁢Y² = 4 to PY² + QYk + Rk² = 1 (7)

                                                                                        where: P = (aT² + bT + c) / n = 1, Q = −(2⁢aT + b) = -2, R = an = -4

                                                                                        The continued fraction expansion of (Q + D / 4) / R = (-1 + 5) / (-4) is:

                                                                                        -1+ // 1, 2, 4// (8)

                                                                                        Solution of (7) found using the convergent Y / (−k) = 1 / 0 of (8)

                                                                                        X = -1, Y = 1

                                                                                        x = -1
                                                                                        y = 1

                                                                                        X = 1, Y = -1

                                                                                        x = 1
                                                                                        y = -1

                                                                                        The continued fraction expansion of (−Q + D / 4) / (−R) = (1 + 5) / 4 is:

                                                                                        0+ // 1, 4// (9)

                                                                                        Solution of (7) found using the convergent Y / (−k) = 1 / 0 of (9)

                                                                                        X = -1, Y = 1

                                                                                        x = -1
                                                                                        y = 1

                                                                                        X = 1, Y = -1

                                                                                        x = 1
                                                                                        y = -1

                                                                                        x = -1
                                                                                        y = 1

                                                                                        x = 1
                                                                                        y = -1

                                                                                      Let 2⁢X' = X and 2⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain −X'² + 5 ⁢Y'² = 4 / 2² = 1

                                                                                      We have to solve:−T² + 5 ≡ 0 (mod 1 = 1)

                                                                                      1. T = 0
                                                                                      2. The transformation X' = - k (10) converts −X'² + 5 ⁢Y'² = 1 to PY'² + QY'k + Rk² = 1 (11)

                                                                                        where: P = (aT² + bT + c) / n = 5, Q = −(2⁢aT + b) = 0, R = an = -1

                                                                                        The continued fraction expansion of (Q + D / 4) / R = 5 / (-1) is:

                                                                                        -3+ // 1, 3, 4// (12)

                                                                                        Solution of (11) found using the convergent Y' / (−k) = 1 / -2 of (12)

                                                                                        From (10): X' = -2, Y' = 1

                                                                                        X = -4, Y = 2

                                                                                        x = -4
                                                                                        y = 2

                                                                                        X = 4, Y = -2

                                                                                        x = 4
                                                                                        y = -2

                                                                                        The continued fraction expansion of (−Q + D / 4) / (−R) = 5 / 1 is:

                                                                                        2+ // 4// (13)

                                                                                        Solution of (11) found using the convergent Y' / (−k) = 1 / 2 of (13)

                                                                                        From (10): X' = 2, Y' = 1

                                                                                        X = 4, Y = 2

                                                                                        x = 4
                                                                                        y = 2

                                                                                        X = -4, Y = -2

                                                                                        x = -4
                                                                                        y = -2

                                                                                        x = 4
                                                                                        y = 2

                                                                                        x = -4
                                                                                        y = -2

                                                                                      Recursive solutions:

                                                                                      xn+1 = 9 ⁢xn - 20 ⁢yn
                                                                                      yn+1 = - 4 ⁢xn + 9 ⁢yn

                                                                                      and also:

                                                                                      xn+1 = 9 ⁢xn + 20 ⁢yn
                                                                                      yn+1 = 4 ⁢xn + 9 ⁢yn

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² - 991 ⁢y² -  1 = 0

                                                                                      x = 1
                                                                                      y = 0

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = 0

                                                                                      Recursive solutions:

                                                                                      xn+1 = P ⁢xn + Q ⁢yn
                                                                                      yn+1 = R ⁢xn + S ⁢yn

                                                                                      where:

                                                                                      P = 379516 400906 811930 638014 896080
                                                                                      Q = 11 947234 168218 377212 415555 918097 (32 digits)
                                                                                      R = 12055 735790 331359 447442 538767
                                                                                      S = 379516 400906 811930 638014 896080

                                                                                      and also:

                                                                                      P = 379516 400906 811930 638014 896080
                                                                                      Q = -11 947234 168218 377212 415555 918097 (32 digits)
                                                                                      R = -12055 735790 331359 447442 538767
                                                                                      S = 379516 400906 811930 638014 896080

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² - 991 ⁢y² -  1 = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 3964

                                                                                      X² − 991 ⁢Y² = 1 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      1 = 1

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve: T² − 991 ≡ 0 (mod 1 = 1)

                                                                                      1. T = 0
                                                                                      2. The transformation X = - k (2) converts X² − 991 ⁢Y² = 1 to PY² + QYk + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = -991, Q = −(2⁢aT + b) = 0, R = an = 1

                                                                                        The continued fraction expansion of (Q + D / 4) / R = 991 / 1 is:

                                                                                        31+ // 2, 12, 10, 2, 2, 2, 1, 1, 2, 6, 1, 1, 1, 1, 3, 1, 8, 4, 1, 2, 1, 2, 3, 1, 4, 1, 20, 6, 4, 31, 4, 6, 20, 1, 4, 1, 3, 2, 1, 2, 1, 4, 8, 1, 3, 1, 1, 1, 1, 6, 2, 1, 1, 2, 2, 2, 10, 12, 2, 62// (4)

                                                                                        Solution of (3) found using the convergent Y / (−k) = 0 / 1 of (4)

                                                                                        X = 1, Y = 0

                                                                                        x = 1
                                                                                        y = 0

                                                                                        X = -1, Y = 0

                                                                                        x = -1
                                                                                        y = 0

                                                                                        The continued fraction expansion of (−Q + D / 4) / (−R) = 991 / (-1) is:

                                                                                        -32+ // 1, 1, 12, 10, 2, 2, 2, 1, 1, 2, 6, 1, 1, 1, 1, 3, 1, 8, 4, 1, 2, 1, 2, 3, 1, 4, 1, 20, 6, 4, 31, 4, 6, 20, 1, 4, 1, 3, 2, 1, 2, 1, 4, 8, 1, 3, 1, 1, 1, 1, 6, 2, 1, 1, 2, 2, 2, 10, 12, 2, 62, 2// (5)

                                                                                        Solution of (3) found using the convergent Y / (−k) = 0 / 1 of (5)

                                                                                        X = 1, Y = 0

                                                                                        x = 1
                                                                                        y = 0

                                                                                        X = -1, Y = 0

                                                                                        x = -1
                                                                                        y = 0

                                                                                        x = 1
                                                                                        y = 0

                                                                                        x = -1
                                                                                        y = 0

                                                                                      Recursive solutions:

                                                                                      xn+1 = P ⁢xn + Q ⁢yn
                                                                                      yn+1 = R ⁢xn + S ⁢yn

                                                                                      where:

                                                                                      P = 379516 400906 811930 638014 896080
                                                                                      Q = 11 947234 168218 377212 415555 918097 (32 digits)
                                                                                      R = 12055 735790 331359 447442 538767
                                                                                      S = 379516 400906 811930 638014 896080

                                                                                      and also:

                                                                                      P = 379516 400906 811930 638014 896080
                                                                                      Q = -11 947234 168218 377212 415555 918097 (32 digits)
                                                                                      R = -12055 735790 331359 447442 538767
                                                                                      S = 379516 400906 811930 638014 896080

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      5 ⁢x² + 3 ⁢x⁢y - 991 ⁢y² + 23 ⁢x + 42 ⁢y -  1 = 0

                                                                                      The equation does not have integer solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      5 ⁢x² + 3 ⁢x⁢y - 991 ⁢y² + 23 ⁢x + 42 ⁢y -  1 = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 19829

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = -45712

                                                                                      β = 2⁢ae - bd = 351

                                                                                      5 X² + 3 XY − 991 ⁢Y² = 10670 897034 (1)

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      10670 897034 = 2 × 32 × 7 × 79 × 251 × 4271

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve:5 T² + 3 T − 991 ≡ 0 (mod 10670 897034 = 2 × 32 × 7 × 79 × 251 × 4271)

                                                                                      There are no solutions modulo 2, so the modular equation does not have any solution.

                                                                                      Let 3⁢X' = X and 3⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain 5 X'² + 3 X'Y' − 991 ⁢Y'² = 10670 897034 / 3² = 1185 655226

                                                                                      We have to solve:5 T² + 3 T − 991 ≡ 0 (mod 1185 655226 = 2 × 7 × 79 × 251 × 4271)

                                                                                      There are no solutions modulo 2, so the modular equation does not have any solution.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      2 ⁢x² + 3 ⁢x⁢y + 7 ⁢y² - 12 ⁢ = 0

                                                                                      x = 1
                                                                                      y = 1

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = -1

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      2 ⁢x² + 3 ⁢x⁢y + 7 ⁢y² - 12 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = -47

                                                                                      2 X² + 3 XY + 7 ⁢Y² = 12 (1)

                                                                                      The algorithm requires that the coefficient of X² and the right hand side are coprime. This does not happen, so we have to find a value of m such that applying one of the unimodular transformations

                                                                                      • X = mU + (m−1)V, Y = U + V
                                                                                      • X = U + V, Y = (m−1)U + mV

                                                                                      the coefficient of U² and the right hand side are coprime. This coefficient equals 2 m² + 3 m + 7 in the first case and 7 (m − 1)² + 3 (m − 1) + 2 in the second case.

                                                                                      We will use the first unimodular transformation with m = 6: X = 6 ⁢U + 5 ⁢V, Y = U + V (2)

                                                                                      Using (2), the equation (1) converts to:

                                                                                      97 U² + 167 UV + 72 ⁢V² = 12 (3)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      12 = 22 × 3

                                                                                      Searching for solutions U and V coprime.

                                                                                      We have to solve:97 T² + 167 T + 72 ≡ 0 (mod 12 = 22 × 3)

                                                                                      Solutions modulo 22: 0 and 1

                                                                                      Solutions modulo 3: 0 and 1

                                                                                      1. T = 0
                                                                                      2. The transformation U = - 12 ⁢k (4) converts 97 U² + 167 UV + 72 ⁢V² = 12 to PV² + QVk + Rk² = 1 (5)

                                                                                        where: P = (aT² + bT + c) / n = 6, Q = −(2⁢aT + b) = -167, R = an = 1164

                                                                                        To obtain solutions to the equation (5) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 167 / 12

                                                                                        The continued fraction is: 13+ //1, 11// (6)

                                                                                        There are no convergents for which (5) holds.

                                                                                      3. T = 4
                                                                                      4. The transformation U = 4 ⁢V - 12 ⁢k (7) converts 97 U² + 167 UV + 72 ⁢V² = 12 to PV² + QVk + Rk² = 1 (8)

                                                                                        where: P = (aT² + bT + c) / n = 191, Q = −(2⁢aT + b) = -943, R = an = 1164

                                                                                        To obtain solutions to the equation (8) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 943 / 382

                                                                                        The continued fraction is: 2+ //2, 7, 2, 5, 2// (9)

                                                                                        Solution of (8) found using the convergent V / k = 5 / 2 of (9)

                                                                                        U = -4, V = 5

                                                                                        From (2):

                                                                                        X = 1, Y = 1

                                                                                        x = 1
                                                                                        y = 1

                                                                                        U = 4, V = -5

                                                                                        From (2):

                                                                                        X = -1, Y = -1

                                                                                        x = -1
                                                                                        y = -1

                                                                                      5. T = -3
                                                                                      6. The transformation U = - 3 ⁢V - 12 ⁢k (10) converts 97 U² + 167 UV + 72 ⁢V² = 12 to PV² + QVk + Rk² = 1 (11)

                                                                                        where: P = (aT² + bT + c) / n = 37, Q = −(2⁢aT + b) = 415, R = an = 1164

                                                                                        To obtain solutions to the equation (11) we have to compute the convergents of the continued fraction of −Q / 2⁢P = -415 / 74

                                                                                        The continued fraction is: -6+ //2, 1, 1, 4, 3// (12)

                                                                                        There are no convergents for which (11) holds.

                                                                                      7. T = 1
                                                                                      8. The transformation U =  V - 12 ⁢k (13) converts 97 U² + 167 UV + 72 ⁢V² = 12 to PV² + QVk + Rk² = 1 (14)

                                                                                        where: P = (aT² + bT + c) / n = 28, Q = −(2⁢aT + b) = -361, R = an = 1164

                                                                                        To obtain solutions to the equation (14) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 361 / 56

                                                                                        The continued fraction is: 6+ //2, 4, 6// (15)

                                                                                        There are no convergents for which (14) holds.

                                                                                      Let 2⁢U' = U and 2⁢V' = V. Searching for solutions U' and V' coprime.

                                                                                      From equation (3) we obtain 97 U'² + 167 U'V' + 72 ⁢V'² = 12 / 2² = 3

                                                                                      We have to solve:97 T² + 167 T + 72 ≡ 0 (mod 3 = 3)

                                                                                      Solutions modulo 3: 0 and 1

                                                                                      1. T = 0
                                                                                      2. The transformation U' = - 3 ⁢k (16) converts 97 U'² + 167 U'V' + 72 ⁢V'² = 3 to PV'² + QV'k + Rk² = 1 (17)

                                                                                        where: P = (aT² + bT + c) / n = 24, Q = −(2⁢aT + b) = -167, R = an = 291

                                                                                        To obtain solutions to the equation (17) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 167 / 48

                                                                                        The continued fraction is: 3+ //2, 11, 2// (18)

                                                                                        There are no convergents for which (17) holds.

                                                                                      3. T = 1
                                                                                      4. The transformation U' =  V' - 3 ⁢k (19) converts 97 U'² + 167 U'V' + 72 ⁢V'² = 3 to PV'² + QV'k + Rk² = 1 (20)

                                                                                        where: P = (aT² + bT + c) / n = 112, Q = −(2⁢aT + b) = -361, R = an = 291

                                                                                        To obtain solutions to the equation (20) we have to compute the convergents of the continued fraction of −Q / 2⁢P = 361 / 224

                                                                                        The continued fraction is: 1+ //1, 1, 1, 1, 2, 1, 5, 2// (21)

                                                                                        There are no convergents for which (20) holds.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      2 ⁢x² - 33 ⁢x⁢y + 7 ⁢y² - 12 ⁢ = 0

                                                                                      x = 1
                                                                                      y = 5

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = -5

                                                                                      and also:

                                                                                      x = -1321 493700 201781
                                                                                      y = -81 147513 783145

                                                                                      and also:

                                                                                      x = 1321 493700 201781
                                                                                      y = 81 147513 783145

                                                                                      and also:

                                                                                      x = 689 053051
                                                                                      y = 3206 081030

                                                                                      and also:

                                                                                      x = -689 053051
                                                                                      y = -3206 081030

                                                                                      and also:

                                                                                      x = -2 062831
                                                                                      y = -126670

                                                                                      and also:

                                                                                      x = 2 062831
                                                                                      y = 126670

                                                                                      and also:

                                                                                      x = 27224
                                                                                      y = 126670

                                                                                      and also:

                                                                                      x = -27224
                                                                                      y = -126670

                                                                                      and also:

                                                                                      x = -52211 283944
                                                                                      y = -3206 081030

                                                                                      and also:

                                                                                      x = 52211 283944
                                                                                      y = 3206 081030

                                                                                      Recursive solutions:

                                                                                      xn+1 = P ⁢xn + Q ⁢yn
                                                                                      yn+1 = R ⁢xn + S ⁢yn

                                                                                      where:

                                                                                      P = 141535 082611 518287 749732 424252 171881 (36 digits)
                                                                                      Q = -30418 813368 857281 792634 997945 318384 (35 digits)
                                                                                      R = 8691 089533 959223 369324 285127 233824 (34 digits)
                                                                                      S = -1867 894698 808897 844118 280347 186215 (34 digits)

                                                                                      and also:

                                                                                      P = -1867 894698 808897 844118 280347 186215 (34 digits)
                                                                                      Q = 30418 813368 857281 792634 997945 318384 (35 digits)
                                                                                      R = -8691 089533 959223 369324 285127 233824 (34 digits)
                                                                                      S = 141535 082611 518287 749732 424252 171881 (36 digits)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      2 ⁢x² - 33 ⁢x⁢y + 7 ⁢y² - 12 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 1033

                                                                                      2 X² − 33 XY + 7 ⁢Y² = 12 (1)

                                                                                      The algorithm requires that the coefficient of X² and the right hand side are coprime. This does not happen, so we have to find a value of m such that applying one of the unimodular transformations

                                                                                      • X = mU + (m−1)V, Y = U + V
                                                                                      • X = U + V, Y = (m−1)U + mV

                                                                                      the coefficient of U² and the right hand side are coprime. This coefficient equals 2 m² − 33 m + 7 in the first case and 7 (m − 1)² − 33 (m − 1) + 2 in the second case.

                                                                                      We will use the first unimodular transformation with m = 6: X = 6 ⁢U + 5 ⁢V, Y = U + V (2)

                                                                                      Using (2), the equation (1) converts to:

                                                                                      -119 U² − 229 UV − 108 ⁢V² = 12 (3)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      12 = 22 × 3

                                                                                      Searching for solutions U and V coprime.

                                                                                      We have to solve:-119 T² − 229 T − 108 ≡ 0 (mod 12 = 22 × 3)

                                                                                      Solutions modulo 22: 0 and 1

                                                                                      Solutions modulo 3: 0 and 1

                                                                                      1. T = 0
                                                                                      2. The transformation U = - 12 ⁢k (4) converts -119 U² − 229 UV − 108 ⁢V² = 12 to PV² + QVk + Rk² = 1 (5)

                                                                                        where: P = (aT² + bT + c) / n = -9, Q = −(2⁢aT + b) = 229, R = an = -1428

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (229 + 1033) / (-2856) is:

                                                                                        -1+ // 1, 9, 1, 14, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15// (6)

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-229 + 1033) / 2856 is:

                                                                                        -1+ // 1, 13, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3// (7)

                                                                                        Solution of (5) found using the convergent V / (−k) = 29 / -2 of (7)

                                                                                        U = -24, V = 29

                                                                                        From (2):

                                                                                        X = 1, Y = 5

                                                                                        x = 1
                                                                                        y = 5

                                                                                        U = 24, V = -29

                                                                                        From (2):

                                                                                        X = -1, Y = -5

                                                                                        x = -1
                                                                                        y = -5

                                                                                        x = 1
                                                                                        y = 5

                                                                                        x = -1
                                                                                        y = -5

                                                                                      3. T = 4
                                                                                      4. The transformation U = 4 ⁢V - 12 ⁢k (8) converts -119 U² − 229 UV − 108 ⁢V² = 12 to PV² + QVk + Rk² = 1 (9)

                                                                                        where: P = (aT² + bT + c) / n = -244, Q = −(2⁢aT + b) = 1181, R = an = -1428

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (1181 + 1033) / (-2856) is:

                                                                                        -1+ // 1, 1, 2, 1, 4, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3// (10)

                                                                                        Solution of (9) found using the convergent V / (−k) = 834 608617 502911 / -354 515883 441475 of (10)

                                                                                        U = -915 756131 286056, V = 834 608617 502911

                                                                                        From (2):

                                                                                        X = -1321 493700 201781, Y = -81 147513 783145

                                                                                        x = -1321 493700 201781
                                                                                        y = -81 147513 783145

                                                                                        U = 915 756131 286056, V = -834 608617 502911

                                                                                        From (2):

                                                                                        X = 1321 493700 201781, Y = 81 147513 783145

                                                                                        x = 1321 493700 201781
                                                                                        y = 81 147513 783145

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-1181 + 1033) / 2856 is:

                                                                                        -1+ // 1, 1, 2, 17, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15// (11)

                                                                                        x = -1321 493700 201781
                                                                                        y = -81 147513 783145

                                                                                        x = 1321 493700 201781
                                                                                        y = 81 147513 783145

                                                                                      5. T = -3
                                                                                      6. The transformation U = - 3 ⁢V - 12 ⁢k (12) converts -119 U² − 229 UV − 108 ⁢V² = 12 to PV² + QVk + Rk² = 1 (13)

                                                                                        where: P = (aT² + bT + c) / n = -41, Q = −(2⁢aT + b) = -485, R = an = -1428

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (-485 + 1033) / (-2856) is:

                                                                                        0+ // 6, 3, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5// (14)

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (485 + 1033) / 2856 is:

                                                                                        0+ // 5, 1, 1, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5// (15)

                                                                                        Solution of (13) found using the convergent V / (−k) = 18547 433129 / 3358 412274 of (15)

                                                                                        U = -15341 352099, V = 18547 433129

                                                                                        From (2):

                                                                                        X = 689 053051, Y = 3206 081030

                                                                                        x = 689 053051
                                                                                        y = 3206 081030

                                                                                        U = 15341 352099, V = -18547 433129

                                                                                        From (2):

                                                                                        X = -689 053051, Y = -3206 081030

                                                                                        x = -689 053051
                                                                                        y = -3206 081030

                                                                                        x = 689 053051
                                                                                        y = 3206 081030

                                                                                        x = -689 053051
                                                                                        y = -3206 081030

                                                                                      7. T = 1
                                                                                      8. The transformation U =  V - 12 ⁢k (16) converts -119 U² − 229 UV − 108 ⁢V² = 12 to PV² + QVk + Rk² = 1 (17)

                                                                                        where: P = (aT² + bT + c) / n = -38, Q = −(2⁢aT + b) = 467, R = an = -1428

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (467 + 1033) / (-2856) is:

                                                                                        -1+ // 1, 4, 1, 2, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4// (18)

                                                                                        Solution of (17) found using the convergent V / (−k) = 1 302811 / -227691 of (18)

                                                                                        U = -1 429481, V = 1 302811

                                                                                        From (2):

                                                                                        X = -2 062831, Y = -126670

                                                                                        x = -2 062831
                                                                                        y = -126670

                                                                                        U = 1 429481, V = -1 302811

                                                                                        From (2):

                                                                                        X = 2 062831, Y = 126670

                                                                                        x = 2 062831
                                                                                        y = 126670

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-467 + 1033) / 2856 is:

                                                                                        -1+ // 1, 5, 1, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4// (19)

                                                                                        x = -2 062831
                                                                                        y = -126670

                                                                                        x = 2 062831
                                                                                        y = 126670

                                                                                      Let 2⁢U' = U and 2⁢V' = V. Searching for solutions U' and V' coprime.

                                                                                      From equation (3) we obtain -119 U'² − 229 U'V' − 108 ⁢V'² = 12 / 2² = 3

                                                                                      We have to solve:-119 T² − 229 T − 108 ≡ 0 (mod 3 = 3)

                                                                                      Solutions modulo 3: 0 and 1

                                                                                      1. T = 0
                                                                                      2. The transformation U' = - 3 ⁢k (20) converts -119 U'² − 229 U'V' − 108 ⁢V'² = 3 to PV'² + QV'k + Rk² = 1 (21)

                                                                                        where: P = (aT² + bT + c) / n = -36, Q = −(2⁢aT + b) = 229, R = an = -357

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (229 + 1033) / (-714) is:

                                                                                        -1+ // 1, 1, 1, 2, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4// (22)

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-229 + 1033) / 714 is:

                                                                                        -1+ // 1, 2, 1, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5, 3, 1, 4// (23)

                                                                                        Solution of (21) found using the convergent V' / (−k) = 366398 / -101021 of (23)

                                                                                        From (20): U' = -303063, V' = 366398

                                                                                        U = -606126, V = 732796

                                                                                        From (2):

                                                                                        X = 27224, Y = 126670

                                                                                        x = 27224
                                                                                        y = 126670

                                                                                        U = 606126, V = -732796

                                                                                        From (2):

                                                                                        X = -27224, Y = -126670

                                                                                        x = -27224
                                                                                        y = -126670

                                                                                        x = 27224
                                                                                        y = 126670

                                                                                        x = -27224
                                                                                        y = -126670

                                                                                      3. T = 1
                                                                                      4. The transformation U' =  V' - 3 ⁢k (24) converts -119 U'² − 229 U'V' − 108 ⁢V'² = 3 to PV'² + QV'k + Rk² = 1 (25)

                                                                                        where: P = (aT² + bT + c) / n = -152, Q = −(2⁢aT + b) = 467, R = an = -357

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (467 + 1033) / (-714) is:

                                                                                        -1+ // 3, 3, 10, 1, 1, 10, 5, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5// (26)

                                                                                        Solution of (25) found using the convergent V' / (−k) = 16487 398882 / -11525 946093 of (26)

                                                                                        From (24): U' = -18090 439397, V' = 16487 398882

                                                                                        U = -36180 878794, V = 32974 797764

                                                                                        From (2):

                                                                                        X = -52211 283944, Y = -3206 081030

                                                                                        x = -52211 283944
                                                                                        y = -3206 081030

                                                                                        U = 36180 878794, V = -32974 797764

                                                                                        From (2):

                                                                                        X = 52211 283944, Y = 3206 081030

                                                                                        x = 52211 283944
                                                                                        y = 3206 081030

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-467 + 1033) / 714 is:

                                                                                        -1+ // 2, 1, 1, 3, 1, 4, 1, 1, 2, 7, 1, 1, 1, 3, 1, 15, 3, 1, 1, 31, 1, 1, 3, 15, 1, 3, 1, 1, 1, 7, 2, 1, 1, 4, 1, 3, 5, 10, 1, 1, 10, 5// (27)

                                                                                        x = -52211 283944
                                                                                        y = -3206 081030

                                                                                        x = 52211 283944
                                                                                        y = 3206 081030

                                                                                      Recursive solutions:

                                                                                      xn+1 = P ⁢xn + Q ⁢yn
                                                                                      yn+1 = R ⁢xn + S ⁢yn

                                                                                      where:

                                                                                      P = 141535 082611 518287 749732 424252 171881 (36 digits)
                                                                                      Q = -30418 813368 857281 792634 997945 318384 (35 digits)
                                                                                      R = 8691 089533 959223 369324 285127 233824 (34 digits)
                                                                                      S = -1867 894698 808897 844118 280347 186215 (34 digits)

                                                                                      and also:

                                                                                      P = -1867 894698 808897 844118 280347 186215 (34 digits)
                                                                                      Q = 30418 813368 857281 792634 997945 318384 (35 digits)
                                                                                      R = -8691 089533 959223 369324 285127 233824 (34 digits)
                                                                                      S = 141535 082611 518287 749732 424252 171881 (36 digits)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² - 6 ⁢y + 3 ⁢ = 0

                                                                                      x = 12 k − 3
                                                                                      y = 24 k² − 12 k + 2

                                                                                      and also:

                                                                                      x = 12 k + 3
                                                                                      y = 24 k² + 12 k + 2

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² - 6 ⁢y + 3 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 0

                                                                                      Multiplying by 4⁢a

                                                                                      ( 2 ⁢x )² - 24 ⁢y + 12 ⁢ = 0

                                                                                      Let t = 2 ⁢x (1)

                                                                                      (t + d)² = ( t )² = 24 ⁢y - 12 ⁢ (2)

                                                                                      where the linear coefficient is 2⁢(bd − 2⁢ae) and the constant coefficient is d² − 4⁢af.

                                                                                      We have to solve T² = -12 (mod 24)

                                                                                      To solve this quadratic modular equation we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      24 = 23 × 3

                                                                                      Solutions modulo 23: 2 and 6

                                                                                      Solutions modulo 3: 0

                                                                                      1. T = -6
                                                                                      2. t = Td + 24 ⁢k = -6 + 24 k (3) (where k is any integer).

                                                                                        Replacing t in equation (2) we can get the value of y:

                                                                                        y = 24 k² − 12 k + 2 (4)

                                                                                        From (1) and (3):

                                                                                        2 ⁢x = -6 + 24 k

                                                                                        x = 12 k − 3
                                                                                        y = 24 k² − 12 k + 2


                                                                                      3. T = 6
                                                                                      4. t = Td + 24 ⁢k = 6 + 24 k (5) (where k is any integer).

                                                                                        Replacing t in equation (2) we can get the value of y:

                                                                                        y = 24 k² + 12 k + 2 (6)

                                                                                        From (1) and (5):

                                                                                        2 ⁢x = 6 + 24 k

                                                                                        x = 12 k + 3
                                                                                        y = 24 k² + 12 k + 2


                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² - 3 ⁢x⁢y + y² +  1 = 0

                                                                                      x = 1
                                                                                      y = 1

                                                                                      and also:

                                                                                      x = -1
                                                                                      y = -1

                                                                                      xn+1 =  yn
                                                                                      yn+1 = - xn + 3 ⁢yn

                                                                                      and also:

                                                                                      xn+1 = 3 ⁢xn - yn
                                                                                      yn+1 =  xn

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² - 3 ⁢x⁢y + y² +  1 = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 5

                                                                                      X² − 3 XY + Y² = -1

                                                                                      The algorithm requires the constant coefficient to be positive, so we multiply both RHS and LHS by −1.

                                                                                      X² + 3 XYY² = 1 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      1 = 1

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve:−T² + 3 T − 1 ≡ 0 (mod 1 = 1)

                                                                                      1. T = 0
                                                                                      2. The transformation X = - k (2) converts −X² + 3 XYY² = 1 to PY² + QYk + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = -1, Q = −(2⁢aT + b) = -3, R = an = -1

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (-3 + 5) / (-2) is:

                                                                                        0+ // 2, 1// (4)

                                                                                        X = 1, Y = 1

                                                                                        x = 1
                                                                                        y = 1

                                                                                        X = -1, Y = -1

                                                                                        x = -1
                                                                                        y = -1

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (3 + 5) / 2 is:

                                                                                        2+ // 1// (5)

                                                                                        Solution of (3) found using the convergent Y / (−k) = 1 / 2 of (5)

                                                                                        X = 2, Y = 1

                                                                                        x = 2
                                                                                        y = 1

                                                                                        X = -2, Y = -1

                                                                                        x = -2
                                                                                        y = -1

                                                                                        x = 1
                                                                                        y = 1

                                                                                        x = -1
                                                                                        y = -1

                                                                                      xn+1 =  yn
                                                                                      yn+1 = - xn + 3 ⁢yn

                                                                                      and also:

                                                                                      xn+1 = 3 ⁢xn - yn
                                                                                      yn+1 =  xn

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      2 ⁢x² - 6 ⁢x⁢y + 2 ⁢y² + 3 ⁢y - 11 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 20

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = 18

                                                                                      β = 2⁢ae - bd = 12

                                                                                      2 X² − 6 XY + 2 ⁢Y² = 4040

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      Dividing both sides by 2:

                                                                                      X² − 3 XY + Y² = 2020 (1)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      2020 = 22 × 5 × 101

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve: T² − 3 T + 1 ≡ 0 (mod 2020 = 22 × 5 × 101)

                                                                                      There are no solutions modulo 22, so the modular equation does not have any solution.

                                                                                      Let 2⁢X' = X and 2⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain X'² − 3 X'Y' + Y'² = 2020 / 2² = 505

                                                                                      We have to solve: T² − 3 T + 1 ≡ 0 (mod 505 = 5 × 101)

                                                                                      Solutions modulo 5: 4

                                                                                      Solutions modulo 101: 24 and 80

                                                                                      1. T = 24
                                                                                      2. The transformation X' = 24 ⁢Y' - 505 ⁢k (2) converts X'² − 3 X'Y' + Y'² = 505 to PY'² + QY'k + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = 1, Q = −(2⁢aT + b) = -45, R = an = 505

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (-45 + 5) / 1010 is:

                                                                                        -1+ // 1, 22, 1// (4)

                                                                                        Solution of (3) found using the convergent Y' / (−k) = 1 / 0 of (4)

                                                                                        From (2): X' = 24, Y' = 1

                                                                                        X = 48, Y = 2

                                                                                        X + α = 66, Y + β = 14

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = -48, Y = -2

                                                                                        X + α = -30, Y + β = 10

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (3) found using the convergent Y' / (−k) = 24 / -1 of (4)

                                                                                        From (2): X' = 71, Y' = 24

                                                                                        X = 142, Y = 48

                                                                                        X + α = 160, Y + β = 60

                                                                                        Dividing these numbers by D = 20:

                                                                                        x = 8
                                                                                        y = 3

                                                                                        X = -142, Y = -48

                                                                                        X + α = -124, Y + β = -36

                                                                                        These numbers are not multiple of D = 20.

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (45 + 5) / (-1010) is:

                                                                                        -1+ // 1, 20, 2, 1// (5)

                                                                                        Solution of (3) found using the convergent Y' / (−k) = 1 / 0 of (5)

                                                                                        From (2): X' = 24, Y' = 1

                                                                                        X = 48, Y = 2

                                                                                        X + α = 66, Y + β = 14

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = -48, Y = -2

                                                                                        X + α = -30, Y + β = 10

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (3) found using the convergent Y' / (−k) = 21 / -1 of (5)

                                                                                        From (2): X' = -1, Y' = 21

                                                                                        X = -2, Y = 42

                                                                                        X + α = 16, Y + β = 54

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = 2, Y = -42

                                                                                        X + α = 20, Y + β = -30

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (3) found using the convergent Y' / (−k) = 64 / -3 of (5)

                                                                                        From (2): X' = 21, Y' = 64

                                                                                        X = 42, Y = 128

                                                                                        X + α = 60, Y + β = 140

                                                                                        Dividing these numbers by D = 20:

                                                                                        x = 3
                                                                                        y = 7

                                                                                        X = -42, Y = -128

                                                                                        X + α = -24, Y + β = -116

                                                                                        These numbers are not multiple of D = 20.

                                                                                        x = 3
                                                                                        y = 7

                                                                                      3. T = -21
                                                                                      4. The transformation X' = - 21 ⁢Y' - 505 ⁢k (6) converts X'² − 3 X'Y' + Y'² = 505 to PY'² + QY'k + Rk² = 1 (7)

                                                                                        where: P = (aT² + bT + c) / n = 1, Q = −(2⁢aT + b) = 45, R = an = 505

                                                                                        The continued fraction expansion of (Q + D) / (2R) = (45 + 5) / 1010 is:

                                                                                        0+ // 21, 2, 1// (8)

                                                                                        Solution of (7) found using the convergent Y' / (−k) = 1 / 0 of (8)

                                                                                        From (6): X' = -21, Y' = 1

                                                                                        X = -42, Y = 2

                                                                                        X + α = -24, Y + β = 14

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = 42, Y = -2

                                                                                        X + α = 60, Y + β = 10

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (7) found using the convergent Y' / (−k) = 21 / 1 of (8)

                                                                                        From (6): X' = 64, Y' = 21

                                                                                        X = 128, Y = 42

                                                                                        X + α = 146, Y + β = 54

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = -128, Y = -42

                                                                                        X + α = -110, Y + β = -30

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (7) found using the convergent Y' / (−k) = 64 / 3 of (8)

                                                                                        From (6): X' = 171, Y' = 64

                                                                                        X = 342, Y = 128

                                                                                        X + α = 360, Y + β = 140

                                                                                        Dividing these numbers by D = 20:

                                                                                        x = 18
                                                                                        y = 7

                                                                                        X = -342, Y = -128

                                                                                        X + α = -324, Y + β = -116

                                                                                        These numbers are not multiple of D = 20.

                                                                                        The continued fraction expansion of (−Q + D) / (−2R) = (-45 + 5) / (-1010) is:

                                                                                        0+ // 23, 1// (9)

                                                                                        Solution of (7) found using the convergent Y' / (−k) = 1 / 0 of (9)

                                                                                        From (6): X' = -21, Y' = 1

                                                                                        X = -42, Y = 2

                                                                                        X + α = -24, Y + β = 14

                                                                                        These numbers are not multiple of D = 20.

                                                                                        X = 42, Y = -2

                                                                                        X + α = 60, Y + β = 10

                                                                                        These numbers are not multiple of D = 20.

                                                                                        Solution of (7) found using the convergent Y' / (−k) = 24 / 1 of (9)

                                                                                        From (6): X' = 1, Y' = 24

                                                                                        X = 2, Y = 48

                                                                                        X + α = 20, Y + β = 60

                                                                                        Dividing these numbers by D = 20:

                                                                                        x = 1
                                                                                        y = 3

                                                                                        X = -2, Y = -48

                                                                                        X + α = 16, Y + β = -36

                                                                                        These numbers are not multiple of D = 20.

                                                                                        x = 1
                                                                                        y = 3

                                                                                      Recursive solutions:

                                                                                      xn+1 = - 21 ⁢xn + 8 ⁢yn + 15 ⁢
                                                                                      yn+1 = - 8 ⁢xn + 3 ⁢yn + 6 ⁢

                                                                                      and also:

                                                                                      xn+1 = 3 ⁢xn - 8 ⁢yn + 3 ⁢
                                                                                      yn+1 = 8 ⁢xn - 21 ⁢yn + 6 ⁢

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                       x² - x⁢y + y² - x - y = 0

                                                                                      The discriminant is D = b² − 4⁢ac = -3

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = -3

                                                                                      β = 2⁢ae - bd = -3

                                                                                      X² − XY + Y² = 9 (1)

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

                                                                                      The different moduli are divisors of the right hand side, so we only have to factor it once.

                                                                                      9 = 32

                                                                                      Searching for solutions X and Y coprime.

                                                                                      We have to solve: T² − T⁢ + 1 ≡ 0 (mod 9 = 32)

                                                                                      There are no solutions modulo 32, so the modular equation does not have any solution.

                                                                                      Let 3⁢X' = X and 3⁢Y' = Y. Searching for solutions X' and Y' coprime.

                                                                                      From equation (1) we obtain X'² − X'Y' + Y'² = 9 / 3² = 1

                                                                                      We have to solve: T² − T⁢ + 1 ≡ 0 (mod 1 = 1)

                                                                                      1. T = 0
                                                                                      2. The transformation X' = - k (2) converts X'² − X'Y' + Y'² = 1 to PY'² + QY'k + Rk² = 1 (3)

                                                                                        where: P = (aT² + bT + c) / n = 1, Q = −(2⁢aT + b) = 1, R = an = 1

                                                                                        When the discriminant equals -3 and P = 1, a solution is (Y', k) = (1, 0)

                                                                                        From (2): X' = 0, Y' = 1

                                                                                        X = 0, Y = 3

                                                                                        X + α = -3, Y + β = 0

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 1
                                                                                        y = 0

                                                                                        X = 0, Y = -3

                                                                                        X + α = -3, Y + β = -6

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 1
                                                                                        y = 2

                                                                                        The second solution is (Y', k) = ((Q ‑ 1)/2 = 0, -1)

                                                                                        From (2): X' = 1, Y' = 0

                                                                                        X = 3, Y = 0

                                                                                        X + α = 0, Y + β = -3

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 0
                                                                                        y = 1

                                                                                        X = -3, Y = 0

                                                                                        X + α = -6, Y + β = -3

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 2
                                                                                        y = 1

                                                                                        The third solution is (Y', k) = ((Q + 1)/2 = 1, -1)

                                                                                        From (2): X' = 1, Y' = 1

                                                                                        X = 3, Y = 3

                                                                                        X + α = 0, Y + β = 0

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 0
                                                                                        y = 0

                                                                                        X = -3, Y = -3

                                                                                        X + α = -6, Y + β = -6

                                                                                        Dividing these numbers by D = -3:

                                                                                        x = 2
                                                                                        y = 2

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      - 6 ⁢x⁢y - 6 ⁢y² - 5 ⁢x + y + 5 ⁢ = 0

                                                                                      x = − t
                                                                                      y = 1 + t

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      - 6 ⁢x⁢y - 6 ⁢y² - 5 ⁢x + y + 5 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 36

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = 66

                                                                                      β = 2⁢ae - bd = -30

                                                                                      − 6 XY − 6 ⁢Y² = 0

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      Dividing both sides by 6:

                                                                                      XYY² = 0 (1)

                                                                                      ( - 6 ⁢X - 6 ⁢Y ) ⁢( Y ) = 0

                                                                                      ( - X - Y ) ⁢( Y ) = 0

                                                                                      The product is zero, so any of the values inside parenthesis equal zero.

                                                                                       Y = 0

                                                                                      This is a linear equation 36 ⁢y + 30 ⁢ = 0

                                                                                      This equation does not have integer solutions.

                                                                                      - X - Y = 0

                                                                                      This is a linear equation - 216 ⁢x - 216 ⁢y + 216 ⁢ = 0

                                                                                      To solve it, we first find the greatest common divisor of the linear coefficients, that is: gcd(-216, -216) = 216.

                                                                                      Dividing the equation by the greatest common divisor we obtain:

                                                                                      - x - y +  1 = 0

                                                                                      Now we must apply the Generalized Euclidean algorithm:

                                                                                      Step 1: 1 × (-1) + 0 × (-1) = (-1)
                                                                                      Step 2: 0 × (-1) + 1 × (-1) = (-1)

                                                                                      Adding and subtracting (-1) × (-1) t' we obtain:

                                                                                      (0 + (-1) t') × (-1) + (1 - (-1) t') × (-1) = -1

                                                                                      So, the solution is given by the set:

                                                                                      x = − t'
                                                                                      y = 1 + t'

                                                                                      By making the substitution t' = 0 + t we finally obtain:

                                                                                      x = − t
                                                                                      y = 1 + t

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      - 6 ⁢x² - 6 ⁢x⁢y + x - 5 ⁢y + 5 ⁢ = 0

                                                                                      x = − t
                                                                                      y = 1 + t

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      - 6 ⁢x² - 6 ⁢x⁢y + x - 5 ⁢y + 5 ⁢ = 0

                                                                                      The discriminant is D = b² − 4⁢ac = 36

                                                                                      We apply the transformation of Legendre Dx = X + α, Dy = Y + β, and we obtain:

                                                                                      α = 2⁢cd - be = -30

                                                                                      β = 2⁢ae - bd = 66

                                                                                      -6 X² − 6 XY = 0

                                                                                      where the right hand side equals −D (ae² − bed + cd² + fD)

                                                                                      Dividing both sides by 6:

                                                                                      X² − XY = 0 (1)

                                                                                      Multiplying by 4⁢a:

                                                                                      ( - 12 ⁢X ) ⁢( - 12 ⁢X - 12 ⁢Y ) = 0

                                                                                      ( X ) ⁢( - X - Y ) = 0

                                                                                      The product is zero, so any of the values inside parenthesis equal zero.

                                                                                      - X - Y = 0

                                                                                      This is a linear equation - 432 ⁢x - 360 ⁢ = 0

                                                                                      This equation does not have integer solutions.

                                                                                       X = 0

                                                                                      This is a linear equation - 432 ⁢x - 432 ⁢y + 432 ⁢ = 0

                                                                                      To solve it, we first find the greatest common divisor of the linear coefficients, that is: gcd(-432, -432) = 432.

                                                                                      Dividing the equation by the greatest common divisor we obtain:

                                                                                      - x - y +  1 = 0

                                                                                      Now we must apply the Generalized Euclidean algorithm:

                                                                                      Step 1: 1 × (-1) + 0 × (-1) = (-1)
                                                                                      Step 2: 0 × (-1) + 1 × (-1) = (-1)

                                                                                      Adding and subtracting (-1) × (-1) t' we obtain:

                                                                                      (0 + (-1) t') × (-1) + (1 - (-1) t') × (-1) = -1

                                                                                      So, the solution is given by the set:

                                                                                      x = − t'
                                                                                      y = 1 + t'

                                                                                      By making the substitution t' = 0 + t we finally obtain:

                                                                                      x = − t
                                                                                      y = 1 + t

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      128 ⁢x² - 128 ⁢y² + 184 ⁢x - 12 ⁢y + 11 612128 ⁢ = 0

                                                                                      The equation does not have integer solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Coefficient a: The expression must not include variables

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      **** CONTFRAC **** -2

                                                                                      x = the fraction whose numerator is 1 + 2 and the denominator is 3

                                                                                      The expansion in continued fraction of x = 0 + //1, start periodic part4, 8//
                                                                                      (the period has 2 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2

                                                                                      x = the fraction whose numerator is 1 + 2 and the denominator is 3

                                                                                      The expansion in continued fraction of x = 0 + //1, start periodic part4, 8//
                                                                                      (the period has 2 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      2

                                                                                      x = the fraction whose numerator is 1 + 0 and the denominator is 991

                                                                                      The expansion in continued fraction of x = 0 + //991// -2

                                                                                      x = the fraction whose numerator is 5 + 27 and the denominator is 991

                                                                                      The expansion in continued fraction of x = 0 + //97, start periodic part5, 5, 1, 44, 1, 1, 7, 1, 2, 1, 5, 1, 1, 3, 2, 1, 1, 4, 1, 1, 2, 1, 1, 12, 1, 5, 2, 6, 1, 16, 2, 8, 2, 3, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 4, 1, 3, 4, 9, 2, 2, 1, 1, 8, 1, 1, 1, 2, 1, 20, 1, 2, 5, 1, 3, 1, 7, 1, 3, 1, 9, 6, 14, 1, 1, 2, 3, 1, 20, 1, 1, 2, 6, 2, 4, 1, 14, 1, 4, 3, 2, 7, 4, 7, 3, 2, 1, 3, 3, 3, 3, 1, 6, 6, 3, 6, 1, 1, 2, 1, 2, 1, 4, 30, 1, 2, 1, 1, 12, 3, 1, 18, 3, 1, 1, 4, 2, 14, 4, 1, 1, 4, 1, 4, 2, 14, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 3, 1, 3, 1, 7, 1, 1, 223, 2, 1, 4, 5, 2, 3, 1, 1, 5, 13, 144, 1, 43, 53, 2, 1, 19, 1, 2, 5, 1, 7, 10, 5, 1, 1, 32, 1, 1, 3, 19, 9, 10, 1, 1, 2, 2, 10, 12, 2, 1, 3, 1, 140, 3, 2, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 5, 1, 2, 10, 7, 3, 3, 1, 12, 1, 1, 1, 13, 1, 1, 1, 83, 1, 3, 8, 2, 1, 8, 5, 1, 2, 4, 2, 1, 1, 3, 1, 29, 1, 2, 4, 1, 108, 1, 2, 1, 51, 3, 1, 3, 1, 1, 6, 2, 1, 2, 4, 2, 1, 1, 105, 1, 1, 2, 1, 1, 2, 1, 5, 1, 1, 1, 1, 32, 5, 5, 190, 1, 1, 9, 4, 3, 2, 2, 56, 2, 20, 1, 10, 1, 5, 2, 1, 1, 3, 1, 1, 7, 1, 1, 1, 1, 1, 2, 467, 1, 2, 1, 11, 2, 2, 1, 3, 2, 2, 2, 1, 40, 3, 11, 1, 9, 14, 4, 8, 1, 1, 8, 1, 5, 1, 2, 2, 5, 1, 2, 2, 3, 30, 3, 1, 2, 1, 2, 6, 1, 9, 4, 2, 24, 1, 6, 15, 1, 1, 7, 2, 1, 2, 1, 93, 1, 3, 10, 2, 3, 1, 18, 1, 1, 1, 1, 1, 1, 1, 3, 16, 1, 1, 9, 1, 3, 1, 6, 13, 2, 5, 2, 1, 1, 5, 2, 1, 43, 3, 15, 1, 3, 1, 2, 9, 1, 35, 9, 2, 2, 2, 1, 24, 5, 1, 7, 2, 5, 2, 2, 24, 1, 3, 2, 2, 2, 15, 2, 4, 1, 7, 1, 13, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 8, 3, 20, 30, 1, 7, 5, 61, 1, 5, 2, 12, 1, 2, 1, 1, 1, 3, 2, 1, 2, 1, 4, 8, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 11, 61, 1, 1, 2, 1, 1, 38, 1, 1, 2, 1, 4, 6, 3, 1, 1, 4, 4, 1, 1, 4, 5, 1, 2, 3, 2, 12, 2, 1, 1, 3, 1, 1, 21, 1, 38, 2, 1, 5, 10, 1, 2, 11, 1, 3, 7, 4, 1, 16, 1, 1, 7, 6, 3, 1, 5, 1, 2, 4, 1, 1, 1, 2, 1, 3, 4, 1, 5, 6, 2, 1, 1, 1, 1, 4, 2, 2, 1, 9, 4, 571, 1, 10, 6, 3, 1, 4, 3, 1, 1, 3, 1, 8, 1, 6, 1, 3, 16, 1, 26, 1, 2, 57, 5, 17, 7, 4, 1, 3, 3, 1, 26, 5, 7, 2, 1, 1, 3, 1, 3, 2, 2, 16, 23, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 41, 1, 42, 8, 1, 2, 1, 1, 1, 15, 4, 3, 2, 15, 6, 1, 3, 1, 2, 2, 1, 3, 4, 1, 21, 4, 8, 2, 3, 35, 1, 2, 1, 1, 2, 4, 1, 5, 1, 1, 1, 6, 4, 9, 1, 277, 2, 3, 1, 7, 5, 1, 1, 11, 1, 1, 8, 14, 1, 1, 4, 5, 6, 1, 1, 1, 1, 1, 23, 3, 1, 2, 22, 8, 8, 5, 1, 24, 25, 3, 1, 3, 1, 3, 4, 1, 2, 1, 2, 8, 15, 1, 395, 5, 1, 12, 1, 1, 1, 1, 2, 1, 7, 1, 5, 2, 9, 1, 5, 1, 1, 2, 3, 3, 1, 1, 173, 1, 95, 3, 1, 9, 1, 2, 1, 25, 5, 15, 2, 10, 2, 1, 2, 1, 1, 10, 5, 1, 4, 1, 4, 9, 2, 2, 1, 11, 1, 2, 2, 5, 1, 2, 2, 5, 9, 5, 8, 4, 2, 3, 1, 2, 1, 4, 1, 6, 1, 3, 4, 3, 3, 13, 11, 12, 12, 51, 1, 13, 1, 1, 5, 17, 24, 1, 1, 11, 3, 2, 18, 6, 3, 1, 2, 1, 2, 1, 10, 6, 1, 189, 1, 6, 10, 1, 2, 1, 2, 1, 3, 6, 18, 2, 3, 11, 1, 1, 24, 17, 5, 1, 1, 13, 1, 51, 12, 12, 11, 13, 3, 3, 4, 3, 1, 6, 1, 4, 1, 2, 1, 3, 2, 4, 8, 5, 9, 5, 2, 2, 1, 5, 2, 2, 1, 11, 1, 2, 2, 9, 4, 1, 4, 1, 5, 10, 1, 1, 2, 1, 2, 10, 2, 15, 5, 25, 1, 2, 1, 9, 1, 3, 95, 1, 173, 1, 1, 3, 3, 2, 1, 1, 5, 1, 9, 2, 5, 1, 7, 1, 2, 1, 1, 1, 1, 12, 1, 5, 395, 1, 15, 8, 2, 1, 2, 1, 4, 3, 1, 3, 1, 3, 25, 24, 1, 5, 8, 8, 22, 2, 1, 3, 23, 1, 1, 1, 1, 1, 6, 5, 4, 1, 1, 14, 8, 1, 1, 11, 1, 1, 5, 7, 1, 3, 2, 277, 1, 9, 4, 6, 1, 1, 1, 5, 1, 4, 2, 1, 1, 2, 1, 35, 3, 2, 8, 4, 21, 1, 4, 3, 1, 2, 2, 1, 3, 1, 6, 15, 2, 3, 4, 15, 1, 1, 1, 2, 1, 8, 42, 1, 41, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 23, 16, 2, 2, 3, 1, 3, 1, 1, 2, 7, 5, 26, 1, 3, 3, 1, 4, 7, 17, 5, 57, 2, 1, 26, 1, 16, 3, 1, 6, 1, 8, 1, 3, 1, 1, 3, 4, 1, 3, 6, 10, 1, 571, 4, 9, 1, 2, 2, 4, 1, 1, 1, 1, 2, 6, 5, 1, 4, 3, 1, 2, 1, 1, 1, 4, 2, 1, 5, 1, 3, 6, 7, 1, 1, 16, 1, 4, 7, 3, 1, 11, 2, 1, 10, 5, 1, 2, 38, 1, 21, 1, 1, 3, 1, 1, 2, 12, 2, 3, 2, 1, 5, 4, 1, 1, 4, 4, 1, 1, 3, 6, 4, 1, 2, 1, 1, 38, 1, 1, 2, 1, 1, 61, 11, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 4, 8, 4, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 12, 2, 5, 1, 61, 5, 7, 1, 30, 20, 3, 8, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 13, 1, 7, 1, 4, 2, 15, 2, 2, 2, 3, 1, 24, 2, 2, 5, 2, 7, 1, 5, 24, 1, 2, 2, 2, 9, 35, 1, 9, 2, 1, 3, 1, 15, 3, 43, 1, 2, 5, 1, 1, 2, 5, 2, 13, 6, 1, 3, 1, 9, 1, 1, 16, 3, 1, 1, 1, 1, 1, 1, 1, 18, 1, 3, 2, 10, 3, 1, 93, 1, 2, 1, 2, 7, 1, 1, 15, 6, 1, 24, 2, 4, 9, 1, 6, 2, 1, 2, 1, 3, 30, 3, 2, 2, 1, 5, 2, 2, 1, 5, 1, 8, 1, 1, 8, 4, 14, 9, 1, 11, 3, 40, 1, 2, 2, 2, 3, 1, 2, 2, 11, 1, 2, 1, 467, 2, 1, 1, 1, 1, 1, 7, 1, 1, 3, 1, 1, 2, 5, 1, 10, 1, 20, 2, 56, 2, 2, 3, 4, 9, 1, 1, 190, 5, 5, 32, 1, 1, 1, 1, 5, 1, 2, 1, 1, 2, 1, 1, 105, 1, 1, 2, 4, 2, 1, 2, 6, 1, 1, 3, 1, 3, 51, 1, 2, 1, 108, 1, 4, 2, 1, 29, 1, 3, 1, 1, 2, 4, 2, 1, 5, 8, 1, 2, 8, 3, 1, 83, 1, 1, 1, 13, 1, 1, 1, 12, 1, 3, 3, 7, 10, 2, 1, 5, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 3, 140, 1, 3, 1, 2, 12, 10, 2, 2, 1, 1, 10, 9, 19, 3, 1, 1, 32, 1, 1, 5, 10, 7, 1, 5, 2, 1, 19, 1, 2, 53, 43, 1, 144, 13, 5, 1, 1, 3, 2, 5, 4, 1, 2, 223, 1, 1, 7, 1, 3, 1, 3, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 14, 2, 4, 1, 4, 1, 1, 4, 14, 2, 4, 1, 1, 3, 18, 1, 3, 12, 1, 1, 2, 1, 30, 4, 1, 2, 1, 2, 1, 1, 6, 3, 6, 6, 1, 3, 3, 3, 3, 1, 2, 3, 7, 4, 7, 2, 3, 4, 1, 14, 1, 4, 2, 6, 2, 1, 1, 20, 1, 3, 2, 1, 1, 14, 6, 9, 1, 3, 1, 7, 1, 3, 1, 5, 2, 1, 20, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 9, 4, 3, 1, 4, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 2, 8, 2, 16, 1, 6, 2, 5, 1, 12, 1, 1, 2, 1, 1, 4, 1, 1, 2, 3, 1, 1, 5, 1, 2, 1, 7, 1, 1, 44, 1, 5, 5, 5149//
                                                                                      (the period has 1634 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x = the fraction whose numerator is 1 + 2 and the denominator is 3

                                                                                      A[0]/B[0] = 0/1, a[0] = 0
                                                                                      A[1]/B[1] = 1/1, a[1] = 1
                                                                                      start periodic partA[2]/B[2] = 4/5, a[2] = 4
                                                                                      A[3]/B[3] = 33/41, a[3] = 8

                                                                                      (the period has 2 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2

                                                                                      x = the fraction whose numerator is 5 + 27 and the denominator is 991

                                                                                      The expansion in continued fraction of x = 0 + //97, start periodic part5, 5, 1, 44, 1, 1, 7, 1, 2, 1, 5, 1, 1, 3, 2, 1, 1, 4, 1, 1, 2, 1, 1, 12, 1, 5, 2, 6, 1, 16, 2, 8, 2, 3, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 4, 1, 3, 4, 9, 2, 2, 1, 1, 8, 1, 1, 1, 2, 1, 20, 1, 2, 5, 1, 3, 1, 7, 1, 3, 1, 9, 6, 14, 1, 1, 2, 3, 1, 20, 1, 1, 2, 6, 2, 4, 1, 14, 1, 4, 3, 2, 7, 4, 7, 3, 2, 1, 3, 3, 3, 3, 1, 6, 6, 3, 6, 1, 1, 2, 1, 2, 1, 4, 30, 1, 2, 1, 1, 12, 3, 1, 18, 3, 1, 1, 4, 2, 14, 4, 1, 1, 4, 1, 4, 2, 14, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 3, 1, 3, 1, 7, 1, 1, 223, 2, 1, 4, 5, 2, 3, 1, 1, 5, 13, 144, 1, 43, 53, 2, 1, 19, 1, 2, 5, 1, 7, 10, 5, 1, 1, 32, 1, 1, 3, 19, 9, 10, 1, 1, 2, 2, 10, 12, 2, 1, 3, 1, 140, 3, 2, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 5, 1, 2, 10, 7, 3, 3, 1, 12, 1, 1, 1, 13, 1, 1, 1, 83, 1, 3, 8, 2, 1, 8, 5, 1, 2, 4, 2, 1, 1, 3, 1, 29, 1, 2, 4, 1, 108, 1, 2, 1, 51, 3, 1, 3, 1, 1, 6, 2, 1, 2, 4, 2, 1, 1, 105, 1, 1, 2, 1, 1, 2, 1, 5, 1, 1, 1, 1, 32, 5, 5, 190, 1, 1, 9, 4, 3, 2, 2, 56, 2, 20, 1, 10, 1, 5, 2, 1, 1, 3, 1, 1, 7, 1, 1, 1, 1, 1, 2, 467, 1, 2, 1, 11, 2, 2, 1, 3, 2, 2, 2, 1, 40, 3, 11, 1, 9, 14, 4, 8, 1, 1, 8, 1, 5, 1, 2, 2, 5, 1, 2, 2, 3, 30, 3, 1, 2, 1, 2, 6, 1, 9, 4, 2, 24, 1, 6, 15, 1, 1, 7, 2, 1, 2, 1, 93, 1, 3, 10, 2, 3, 1, 18, 1, 1, 1, 1, 1, 1, 1, 3, 16, 1, 1, 9, 1, 3, 1, 6, 13, 2, 5, 2, 1, 1, 5, 2, 1, 43, 3, 15, 1, 3, 1, 2, 9, 1, 35, 9, 2, 2, 2, 1, 24, 5, 1, 7, 2, 5, 2, 2, 24, 1, 3, 2, 2, 2, 15, 2, 4, 1, 7, 1, 13, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 8, 3, 20, 30, 1, 7, 5, 61, 1, 5, 2, 12, 1, 2, 1, 1, 1, 3, 2, 1, 2, 1, 4, 8, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 11, 61, 1, 1, 2, 1, 1, 38, 1, 1, 2, 1, 4, 6, 3, 1, 1, 4, 4, 1, 1, 4, 5, 1, 2, 3, 2, 12, 2, 1, 1, 3, 1, 1, 21, 1, 38, 2, 1, 5, 10, 1, 2, 11, 1, 3, 7, 4, 1, 16, 1, 1, 7, 6, 3, 1, 5, 1, 2, 4, 1, 1, 1, 2, 1, 3, 4, 1, 5, 6, 2, 1, 1, 1, 1, 4, 2, 2, 1, 9, 4, 571, 1, 10, 6, 3, 1, 4, 3, 1, 1, 3, 1, 8, 1, 6, 1, 3, 16, 1, 26, 1, 2, 57, 5, 17, 7, 4, 1, 3, 3, 1, 26, 5, 7, 2, 1, 1, 3, 1, 3, 2, 2, 16, 23, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 41, 1, 42, 8, 1, 2, 1, 1, 1, 15, 4, 3, 2, 15, 6, 1, 3, 1, 2, 2, 1, 3, 4, 1, 21, 4, 8, 2, 3, 35, 1, 2, 1, 1, 2, 4, 1, 5, 1, 1, 1, 6, 4, 9, 1, 277, 2, 3, 1, 7, 5, 1, 1, 11, 1, 1, 8, 14, 1, 1, 4, 5, 6, 1, 1, 1, 1, 1, 23, 3, 1, 2, 22, 8, 8, 5, 1, 24, 25, 3, 1, 3, 1, 3, 4, 1, 2, 1, 2, 8, 15, 1, 395, 5, 1, 12, 1, 1, 1, 1, 2, 1, 7, 1, 5, 2, 9, 1, 5, 1, 1, 2, 3, 3, 1, 1, 173, 1, 95, 3, 1, 9, 1, 2, 1, 25, 5, 15, 2, 10, 2, 1, 2, 1, 1, 10, 5, 1, 4, 1, 4, 9, 2, 2, 1, 11, 1, 2, 2, 5, 1, 2, 2, 5, 9, 5, 8, 4, 2, 3, 1, 2, 1, 4, 1, 6, 1, 3, 4, 3, 3, 13, 11, 12, 12, 51, 1, 13, 1, 1, 5, 17, 24, 1, 1, 11, 3, 2, 18, 6, 3, 1, 2, 1, 2, 1, 10, 6, 1, 189, 1, 6, 10, 1, 2, 1, 2, 1, 3, 6, 18, 2, 3, 11, 1, 1, 24, 17, 5, 1, 1, 13, 1, 51, 12, 12, 11, 13, 3, 3, 4, 3, 1, 6, 1, 4, 1, 2, 1, 3, 2, 4, 8, 5, 9, 5, 2, 2, 1, 5, 2, 2, 1, 11, 1, 2, 2, 9, 4, 1, 4, 1, 5, 10, 1, 1, 2, 1, 2, 10, 2, 15, 5, 25, 1, 2, 1, 9, 1, 3, 95, 1, 173, 1, 1, 3, 3, 2, 1, 1, 5, 1, 9, 2, 5, 1, 7, 1, 2, 1, 1, 1, 1, 12, 1, 5, 395, 1, 15, 8, 2, 1, 2, 1, 4, 3, 1, 3, 1, 3, 25, 24, 1, 5, 8, 8, 22, 2, 1, 3, 23, 1, 1, 1, 1, 1, 6, 5, 4, 1, 1, 14, 8, 1, 1, 11, 1, 1, 5, 7, 1, 3, 2, 277, 1, 9, 4, 6, 1, 1, 1, 5, 1, 4, 2, 1, 1, 2, 1, 35, 3, 2, 8, 4, 21, 1, 4, 3, 1, 2, 2, 1, 3, 1, 6, 15, 2, 3, 4, 15, 1, 1, 1, 2, 1, 8, 42, 1, 41, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 23, 16, 2, 2, 3, 1, 3, 1, 1, 2, 7, 5, 26, 1, 3, 3, 1, 4, 7, 17, 5, 57, 2, 1, 26, 1, 16, 3, 1, 6, 1, 8, 1, 3, 1, 1, 3, 4, 1, 3, 6, 10, 1, 571, 4, 9, 1, 2, 2, 4, 1, 1, 1, 1, 2, 6, 5, 1, 4, 3, 1, 2, 1, 1, 1, 4, 2, 1, 5, 1, 3, 6, 7, 1, 1, 16, 1, 4, 7, 3, 1, 11, 2, 1, 10, 5, 1, 2, 38, 1, 21, 1, 1, 3, 1, 1, 2, 12, 2, 3, 2, 1, 5, 4, 1, 1, 4, 4, 1, 1, 3, 6, 4, 1, 2, 1, 1, 38, 1, 1, 2, 1, 1, 61, 11, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 4, 8, 4, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 12, 2, 5, 1, 61, 5, 7, 1, 30, 20, 3, 8, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 13, 1, 7, 1, 4, 2, 15, 2, 2, 2, 3, 1, 24, 2, 2, 5, 2, 7, 1, 5, 24, 1, 2, 2, 2, 9, 35, 1, 9, 2, 1, 3, 1, 15, 3, 43, 1, 2, 5, 1, 1, 2, 5, 2, 13, 6, 1, 3, 1, 9, 1, 1, 16, 3, 1, 1, 1, 1, 1, 1, 1, 18, 1, 3, 2, 10, 3, 1, 93, 1, 2, 1, 2, 7, 1, 1, 15, 6, 1, 24, 2, 4, 9, 1, 6, 2, 1, 2, 1, 3, 30, 3, 2, 2, 1, 5, 2, 2, 1, 5, 1, 8, 1, 1, 8, 4, 14, 9, 1, 11, 3, 40, 1, 2, 2, 2, 3, 1, 2, 2, 11, 1, 2, 1, 467, 2, 1, 1, 1, 1, 1, 7, 1, 1, 3, 1, 1, 2, 5, 1, 10, 1, 20, 2, 56, 2, 2, 3, 4, 9, 1, 1, 190, 5, 5, 32, 1, 1, 1, 1, 5, 1, 2, 1, 1, 2, 1, 1, 105, 1, 1, 2, 4, 2, 1, 2, 6, 1, 1, 3, 1, 3, 51, 1, 2, 1, 108, 1, 4, 2, 1, 29, 1, 3, 1, 1, 2, 4, 2, 1, 5, 8, 1, 2, 8, 3, 1, 83, 1, 1, 1, 13, 1, 1, 1, 12, 1, 3, 3, 7, 10, 2, 1, 5, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 3, 140, 1, 3, 1, 2, 12, 10, 2, 2, 1, 1, 10, 9, 19, 3, 1, 1, 32, 1, 1, 5, 10, 7, 1, 5, 2, 1, 19, 1, 2, 53, 43, 1, 144, 13, 5, 1, 1, 3, 2, 5, 4, 1, 2, 223, 1, 1, 7, 1, 3, 1, 3, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 14, 2, 4, 1, 4, 1, 1, 4, 14, 2, 4, 1, 1, 3, 18, 1, 3, 12, 1, 1, 2, 1, 30, 4, 1, 2, 1, 2, 1, 1, 6, 3, 6, 6, 1, 3, 3, 3, 3, 1, 2, 3, 7, 4, 7, 2, 3, 4, 1, 14, 1, 4, 2, 6, 2, 1, 1, 20, 1, 3, 2, 1, 1, 14, 6, 9, 1, 3, 1, 7, 1, 3, 1, 5, 2, 1, 20, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 9, 4, 3, 1, 4, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 2, 8, 2, 16, 1, 6, 2, 5, 1, 12, 1, 1, 2, 1, 1, 4, 1, 1, 2, 3, 1, 1, 5, 1, 2, 1, 7, 1, 1, 44, 1, 5, 5, 5149//
                                                                                      (the period has 1634 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x = the fraction whose numerator is 1 + 2 and the denominator is 3

                                                                                      A[0]/B[0] = 0/1, a[0] = 0
                                                                                      A[1]/B[1] = 1/1, a[1] = 1
                                                                                      start periodic partA[2]/B[2] = 4/5, a[2] = 4
                                                                                      A[3]/B[3] = 33/41, a[3] = 8

                                                                                      (the period has 2 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      2

                                                                                      x = the fraction whose numerator is 1 + 0 and the denominator is 991

                                                                                      A[0]/B[0] = 0/1, a[0] = 0
                                                                                      A[1]/B[1] = 1/991, a[1] = 991
                                                                                      -2

                                                                                      x = the fraction whose numerator is 5 + 27 and the denominator is 991

                                                                                      A[0]/B[0] = 0/1, a[0] = 0
                                                                                      A[1]/B[1] = 1/97, a[1] = 97
                                                                                      start periodic partA[2]/B[2] = 5/486, a[2] = 5
                                                                                      A[3]/B[3] = 26/2527, a[3] = 5
                                                                                      A[4]/B[4] = 31/3013, a[4] = 1
                                                                                      A[5]/B[5] = 1390/135099, a[5] = 44
                                                                                      A[6]/B[6] = 1421/138112, a[6] = 1
                                                                                      A[7]/B[7] = 2811/273211, a[7] = 1
                                                                                      A[8]/B[8] = 21098/2 050589, a[8] = 7
                                                                                      A[9]/B[9] = 23909/2 323800, a[9] = 1
                                                                                      A[10]/B[10] = 68916/6 698189, a[10] = 2
                                                                                      A[11]/B[11] = 92825/9 021989, a[11] = 1
                                                                                      A[12]/B[12] = 533041/51 808134, a[12] = 5
                                                                                      A[13]/B[13] = 625866/60 830123, a[13] = 1
                                                                                      A[14]/B[14] = 1 158907/112 638257, a[14] = 1
                                                                                      A[15]/B[15] = 4 102587/398 744894, a[15] = 3
                                                                                      A[16]/B[16] = 9 364081/910 128045, a[16] = 2
                                                                                      A[17]/B[17] = 13 466668/1308 872939, a[17] = 1
                                                                                      A[18]/B[18] = 22 830749/2219 000984, a[18] = 1
                                                                                      A[19]/B[19] = 104 789664/10184 876875, a[19] = 4
                                                                                      A[20]/B[20] = 127 620413/12403 877859, a[20] = 1
                                                                                      A[21]/B[21] = 232 410077/22588 754734, a[21] = 1
                                                                                      A[22]/B[22] = 592 440567/57581 387327, a[22] = 2
                                                                                      A[23]/B[23] = 824 850644/80170 142061, a[23] = 1
                                                                                      A[24]/B[24] = 1417 291211/137751 529388, a[24] = 1
                                                                                      A[25]/B[25] = 17832 345176/1 733188 494717, a[25] = 12
                                                                                      A[26]/B[26] = 19249 636387/1 870940 024105, a[26] = 1
                                                                                      A[27]/B[27] = 114080 527111/11 087888 615242, a[27] = 5
                                                                                      A[28]/B[28] = 247410 690609/24 046717 254589, a[28] = 2
                                                                                      A[29]/B[29] = 1 598544 670765/155 368192 142776, a[29] = 6
                                                                                      A[30]/B[30] = 1 845955 361374/179 414909 397365, a[30] = 1
                                                                                      A[31]/B[31] = 31 133830 452749/3026 006742 500616, a[31] = 16
                                                                                      A[32]/B[32] = 64 113616 266872/6231 428394 398597, a[32] = 2
                                                                                      A[33]/B[33] = 544 042760 587725/52877 433897 689392, a[33] = 8
                                                                                      A[34]/B[34] = 1152 199137 442322/111986 296189 777381, a[34] = 2
                                                                                      A[35]/B[35] = 4000 640172 914691/388836 322467 021535, a[35] = 3
                                                                                      A[36]/B[36] = 5152 839310 357013/500822 618656 798916, a[36] = 1
                                                                                      A[37]/B[37] = 9153 479483 271704/889658 941123 820451, a[37] = 1
                                                                                      A[38]/B[38] = 23459 798276 900421/2 280140 500904 439818, a[38] = 2
                                                                                      A[39]/B[39] = 56073 076037 072546/5 449939 942932 700087, a[39] = 2
                                                                                      A[40]/B[40] = 135605 950351 045513/13 180020 386769 839992, a[40] = 2
                                                                                      A[41]/B[41] = 191679 026388 118059/18 629960 329702 540079, a[41] = 1
                                                                                      A[42]/B[42] = 327284 976739 163572/31 809980 716472 380071, a[42] = 1
                                                                                      A[43]/B[43] = 846248 979866 445203/82 249921 762647 300221, a[43] = 2
                                                                                      A[44]/B[44] = 1 173533 956605 608775/114 059902 479119 680292, a[44] = 1
                                                                                      A[45]/B[45] = 3 193316 893077 662753/310 369726 720886 660805, a[45] = 2
                                                                                      A[46]/B[46] = 4 366850 849683 271528/424 429629 200006 341097, a[46] = 1
                                                                                      A[47]/B[47] = 20 660720 291810 748865/2008 088243 520912 025193, a[47] = 4
                                                                                      A[48]/B[48] = 25 027571 141494 020393/2432 517872 720918 366290, a[48] = 1
                                                                                      A[49]/B[49] = 95 743433 716292 810044/9305 641861 683667 124063, a[49] = 3
                                                                                      A[50]/B[50] = 408 001306 006665 260569/39655 085319 455586 862542, a[50] = 4
                                                                                      A[51]/B[51] = 3767 755187 776280 155165/366201 409736 783948 886941, a[51] = 9
                                                                                      A[52]/B[52] = 7943 511681 559225 570899/772057 904793 023484 636424, a[52] = 2
                                                                                      A[53]/B[53] = 19654 778550 894731 296963/1 910317 219322 830918 159789, a[53] = 2
                                                                                      A[54]/B[54] = 27598 290232 453956 867862/2 682375 124115 854402 796213, a[54] = 1
                                                                                      A[55]/B[55] = 47253 068783 348688 164825/4 592692 343438 685320 956002, a[55] = 1
                                                                                      A[56]/B[56] = 405622 840499 243462 186462/39 423913 871625 336970 444229, a[56] = 8
                                                                                      A[57]/B[57] = 452875 909282 592150 351287/44 016606 215064 022291 400231, a[57] = 1
                                                                                      A[58]/B[58] = 858498 749781 835612 537749/83 440520 086689 359261 844460, a[58] = 1
                                                                                      A[59]/B[59] = 1 311374 659064 427762 889036/127 457126 301753 381553 244691, a[59] = 1
                                                                                      A[60]/B[60] = 3 481248 067910 691138 315821/338 354772 690196 122368 333842, a[60] = 2
                                                                                      A[61]/B[61] = 4 792622 726975 118901 204857/465 811898 991949 503921 578533, a[61] = 1
                                                                                      A[62]/B[62] = 99 333702 607413 069162 412961/9654 592752 529186 200799 904502, a[62] = 20
                                                                                      A[63]/B[63] = 104 126325 334388 188063 617818/10120 404651 521135 704721 483035, a[63] = 1
                                                                                      A[64]/B[64] = 307 586353 276189 445289 648597/29895 402055 571457 610242 870572, a[64] = 2
                                                                                      A[65]/B[65] = 1642 058091 715335 414511 860803/159597 414929 378423 755935 835895, a[65] = 5
                                                                                      A[66]/B[66] = 1949 644444 991524 859801 509400/189492 816984 949881 366178 706467, a[66] = 1
                                                                                      A[67]/B[67] = 7490 991426 689909 993916 389003/728075 865884 228067 854471 955296, a[67] = 3
                                                                                      A[68]/B[68] = 9440 635871 681434 853717 898403/917568 682869 177949 220650 661763, a[68] = 1
                                                                                      A[69]/B[69] = 73575 442528 459953 969941 677824/7 151056 645968 473712 399026 587637 (31 digits), a[69] = 7
                                                                                      A[70]/B[70] = 83016 078400 141388 823659 576227/8 068625 328837 651661 619677 249400 (31 digits), a[70] = 1
                                                                                      A[71]/B[71] = 322623 677728 884120 440920 406505/31 356932 632481 428697 258058 335837 (32 digits), a[71] = 3
                                                                                      A[72]/B[72] = 405639 756129 025509 264579 982732/39 425557 961319 080358 877735 585237 (32 digits), a[72] = 1
                                                                                      A[73]/B[73] = 3 973381 482890 113703 822140 251093 (31 digits)/386 186954 284353 151927 157678 602970 (33 digits), a[73] = 9
                                                                                      A[74]/B[74] = 24 245928 653469 707732 197421 489290 (32 digits)/2356 547283 667437 991921 823807 203057 (34 digits), a[74] = 6
                                                                                      A[75]/B[75] = 343 416382 631466 021954 586041 101153 (33 digits)/33377 848925 628485 038832 690979 445768 (35 digits), a[75] = 14
                                                                                      A[76]/B[76] = 367 662311 284935 729686 783462 590443 (33 digits)/35734 396209 295923 030754 514786 648825 (35 digits), a[76] = 1
                                                                                      A[77]/B[77] = 711 078693 916401 751641 369503 691596 (33 digits)/69112 245134 924408 069587 205766 094593 (35 digits), a[77] = 1
                                                                                      A[78]/B[78] = 1789 819699 117739 232969 522469 973635 (34 digits)/173958 886479 144739 169928 926318 838011 (36 digits), a[78] = 2
                                                                                      A[79]/B[79] = 6080 537791 269619 450549 936913 612501 (34 digits)/590988 904572 358625 579373 984722 608626 (36 digits), a[79] = 3
                                                                                      A[80]/B[80] = 7870 357490 387358 683519 459383 586136 (34 digits)/764947 791051 503364 749302 911041 446637 (36 digits), a[80] = 1
                                                                                      A[81]/B[81] = 163487 687599 016793 120939 124585 335221 (36 digits)/15 889944 725602 425920 565432 205551 541366 (38 digits), a[81] = 20
                                                                                      A[82]/B[82] = 171358 045089 404151 804458 583968 921357 (36 digits)/16 654892 516653 929285 314735 116592 988003 (38 digits), a[82] = 1
                                                                                      A[83]/B[83] = 334845 732688 420944 925397 708554 256578 (36 digits)/32 544837 242256 355205 880167 322144 529369 (38 digits), a[83] = 1
                                                                                      A[84]/B[84] = 841049 510466 246041 655254 001077 434513 (36 digits)/81 744567 001166 639697 075069 760882 046741 (38 digits), a[84] = 2
                                                                                      A[85]/B[85] = 5 381142 795485 897194 856921 715018 863656 (37 digits)/523 012239 249256 193388 330585 887436 809815 (39 digits), a[85] = 6
                                                                                      A[86]/B[86] = 11 603335 101438 040431 369097 431115 161825 (38 digits)/1127 769045 499679 026473 736241 535755 666371 (40 digits), a[86] = 2
                                                                                      A[87]/B[87] = 51 794483 201238 058920 333311 439479 510956 (38 digits)/5034 088421 247972 299283 275552 030459 475299 (40 digits), a[87] = 4
                                                                                      A[88]/B[88] = 63 397818 302676 099351 702408 870594 672781 (38 digits)/6161 857466 747651 325757 011793 566215 141670 (40 digits), a[88] = 1
                                                                                      A[89]/B[89] = 939 363939 438703 449844 167035 627804 929890 (39 digits)/91300 092955 715090 859881 440661 957471 458679 (41 digits), a[89] = 14
                                                                                      A[90]/B[90] = 1002 761757 741379 549195 869444 498399 602671 (40 digits)/97461 950422 462742 185638 452455 523686 600349 (41 digits), a[90] = 1
                                                                                      A[91]/B[91] = 4950 410970 404221 646627 644813 621403 340574 (40 digits)/481147 894645 566059 602435 250484 052217 860075 (42 digits), a[91] = 4
                                                                                      A[92]/B[92] = 15853 994668 954044 489078 803885 362609 624393 (41 digits)/1 540905 634359 160920 992944 203907 680340 180574 (43 digits), a[92] = 3
                                                                                      A[93]/B[93] = 36658 400308 312310 624785 252584 346622 589360 (41 digits)/3 562959 163363 887901 588323 658299 412898 221223 (43 digits), a[93] = 2
                                                                                      A[94]/B[94] = 272462 796827 140218 862575 571975 788967 749913 (42 digits)/26 481619 777906 376232 111209 812003 570627 729135 (44 digits), a[94] = 7
                                                                                      A[95]/B[95] = 1 126509 587616 873186 075087 540487 502493 589012 (43 digits)/109 489438 274989 392830 033162 906313 695409 137763 (45 digits), a[95] = 4
                                                                                      A[96]/B[96] = 8 158029 910145 252521 388188 355388 306422 872997 (43 digits)/792 907687 702832 126042 343350 156199 438491 693476 (45 digits), a[96] = 7
                                                                                      A[97]/B[97] = 25 600599 318052 630750 239652 606652 421762 208003 (44 digits)/2488 212501 383485 770957 063213 374912 010884 218191 (46 digits), a[97] = 3
                                                                                      A[98]/B[98] = 59 359228 546250 514021 867493 568693 149947 289003 (44 digits)/5769 332690 469803 667956 469776 906023 460260 129858 (46 digits), a[98] = 2
                                                                                      A[99]/B[99] = 84 959827 864303 144772 107146 175345 571709 497006 (44 digits)/8257 545191 853289 438913 532990 280935 471144 348049 (46 digits), a[99] = 1
                                                                                      A[100]/B[100] = 314 238712 139159 948338 188932 094729 865075 780021 (45 digits)/30541 968266 029671 984697 068747 748829 873693 174005 (47 digits), a[100] = 3
                                                                                      A[101]/B[101] = 1027 675964 281782 989786 673942 459535 166936 837069 (46 digits)/99883 449989 942305 393004 739233 527425 092223 870064 (47 digits), a[101] = 3
                                                                                      A[102]/B[102] = 3397 266604 984508 917698 210759 473335 365886 291228 (46 digits)/330192 318235 856588 163711 286448 331105 150364 784197 (48 digits), a[102] = 3
                                                                                      A[103]/B[103] = 11219 475779 235309 742881 306220 879541 264595 710753 (47 digits)/1 090460 404697 512069 884138 598578 520740 543318 222655 (49 digits), a[103] = 3
                                                                                      A[104]/B[104] = 14616 742384 219818 660579 516980 352876 630482 001981 (47 digits)/1 420652 722933 368658 047849 885026 851845 693683 006852 (49 digits), a[104] = 1
                                                                                      A[105]/B[105] = 98919 930084 554221 706358 408102 996801 047487 722639 (47 digits)/9 614376 742297 724018 171237 908739 631814 705416 263767 (49 digits), a[105] = 6
                                                                                      A[106]/B[106] = 608136 322891 545148 898729 965598 333682 915408 337815 (48 digits)/59 106913 176719 712767 075277 337464 642733 926180 589454 (50 digits), a[106] = 6
                                                                                      A[107]/B[107] = 1 923328 898759 189668 402548 304897 997849 793712 736084 (49 digits)/186 935116 272456 862319 397069 921133 560016 483958 032129 (51 digits), a[107] = 3
                                                                                      A[108]/B[108] = 12 148109 715446 683159 314019 794986 320781 677684 754319 (50 digits)/1180 717610 811460 886683 457696 864266 002832 829928 782228 (52 digits), a[108] = 6
                                                                                      A[109]/B[109] = 14 071438 614205 872827 716568 099884 318631 471397 490403 (50 digits)/1367 652727 083917 749002 854766 785399 562849 313886 814357 (52 digits), a[109] = 1
                                                                                      A[110]/B[110] = 26 219548 329652 555987 030587 894870 639413 149082 244722 (50 digits)/2548 370337 895378 635686 312463 649665 565682 143815 596585 (52 digits), a[110] = 1
                                                                                      A[111]/B[111] = 66 510535 273510 984801 777743 889625 597457 769561 979847 (50 digits)/6464 393402 874675 020375 479694 084730 694213 601518 007527 (52 digits), a[111] = 2
                                                                                      A[112]/B[112] = 92 730083 603163 540788 808331 784496 236870 918644 224569 (50 digits)/9012 763740 770053 656061 792157 734396 259895 745333 604112 (52 digits), a[112] = 1
                                                                                      A[113]/B[113] = 251 970702 479838 066379 394407 458618 071199 606850 428985 (51 digits)/24489 920884 414782 332499 064009 553523 214005 092185 215751 (53 digits), a[113] = 2
                                                                                      A[114]/B[114] = 344 700786 083001 607168 202739 243114 308070 525494 653554 (51 digits)/33502 684625 184835 988560 856167 287919 473900 837518 819863 (53 digits), a[114] = 1
                                                                                      A[115]/B[115] = 1630 773846 811844 495052 205364 431075 303481 708829 043201 (52 digits)/158500 659385 154126 286742 488678 705201 109608 442260 495203 (54 digits), a[115] = 4
                                                                                      A[116]/B[116] = 49267 916190 438336 458734 363672 175373 412521 790365 949584 (53 digits)/4 788522 466179 808624 590835 516528 443952 762154 105333 675953 (55 digits), a[116] = 30
                                                                                      A[117]/B[117] = 50898 690037 250180 953786 569036 606448 716003 499194 992785 (53 digits)/4 947023 125564 962750 877578 005207 149153 871762 547594 171156 (55 digits), a[117] = 1
                                                                                      A[118]/B[118] = 151065 296264 938698 366307 501745 388270 844528 788755 935154 (54 digits)/14 682568 717309 734126 345991 526942 742260 505679 200522 018265 (56 digits), a[118] = 2
                                                                                      A[119]/B[119] = 201963 986302 188879 320094 070781 994719 560532 287950 927939 (54 digits)/19 629591 842874 696877 223569 532149 891414 377441 748116 189421 (56 digits), a[119] = 1
                                                                                      A[120]/B[120] = 353029 282567 127577 686401 572527 382990 405061 076706 863093 (54 digits)/34 312160 560184 431003 569561 059092 633674 883120 948638 207686 (56 digits), a[120] = 1
                                                                                      A[121]/B[121] = 4 438315 377107 719811 556912 941110 590604 421265 208433 285055 (55 digits)/431 375518 565087 868920 058302 241261 495512 974893 131774 681653 (57 digits), a[121] = 12
                                                                                      A[122]/B[122] = 13 667975 413890 287012 357140 395859 154803 668856 702006 718258 (56 digits)/1328 438716 255448 037763 744467 782877 120213 807800 343962 252645 (58 digits), a[122] = 3
                                                                                      A[123]/B[123] = 18 106290 790998 006823 914053 336969 745408 090121 910440 003313 (56 digits)/1759 814234 820535 906683 802770 024138 615726 782693 475736 934298 (58 digits), a[123] = 1
                                                                                      A[124]/B[124] = 339 581209 651854 409842 810100 461314 572149 291051 089926 777892 (57 digits)/33005 094943 025094 358072 194328 217372 203295 896282 907227 070009 (59 digits), a[124] = 18
                                                                                      A[125]/B[125] = 1036 849919 746561 236352 344354 720913 461855 963275 180220 336989 (58 digits)/100775 099063 895818 980900 385754 676255 225614 471542 197418 144325 (60 digits), a[125] = 3
                                                                                      A[126]/B[126] = 1376 431129 398415 646195 154455 182228 034005 254326 270147 114881 (58 digits)/133780 194006 920913 338972 580082 893627 428910 367825 104645 214334 (60 digits), a[126] = 1
                                                                                      A[127]/B[127] = 2413 281049 144976 882547 498809 903141 495861 217601 450367 451870 (58 digits)/234555 293070 816732 319872 965837 569882 654524 839367 302063 358659 (60 digits), a[127] = 1
                                                                                      A[128]/B[128] = 11029 555325 978323 176385 149694 794794 017450 124732 071616 922361 (59 digits)/1 072001 366290 187842 618464 443433 173158 047009 725294 312898 648970 (61 digits), a[128] = 4
                                                                                      A[129]/B[129] = 24472 391701 101623 235317 798199 492729 530761 467065 593601 296592 (59 digits)/2 378558 025651 192417 556801 852703 916198 748544 289955 927860 656599 (61 digits), a[129] = 2
                                                                                      A[130]/B[130] = 353643 039141 401048 470834 324487 693007 448110 663650 382035 074649 (60 digits)/34 371813 725406 881688 413690 381287 999940 526629 784677 302947 841356 (62 digits), a[130] = 14
                                                                                      A[131]/B[131] = 1 439044 548266 705817 118655 096150 264759 323204 121667 121741 595188 (61 digits)/139 865812 927278 719171 211563 377855 915960 855063 428665 139652 022023 (63 digits), a[131] = 4
                                                                                      A[132]/B[132] = 1 792687 587408 106865 589489 420637 957766 771314 785317 503776 669837 (61 digits)/174 237626 652685 600859 625253 759143 915901 381693 213342 442599 863379 (63 digits), a[132] = 1
                                                                                      A[133]/B[133] = 3 231732 135674 812682 708144 516788 222526 094518 906984 625518 265025 (61 digits)/314 103439 579964 320030 836817 136999 831862 236756 642007 582251 885402 (63 digits), a[133] = 1
                                                                                      A[134]/B[134] = 14 719616 130107 357596 422067 487790 847871 149390 413256 005849 729937 (62 digits)/1430 651384 972542 880982 972522 307143 243350 328719 781372 771607 404987 (64 digits), a[134] = 4
                                                                                      A[135]/B[135] = 17 951348 265782 170279 130212 004579 070397 243909 320240 631367 994962 (62 digits)/1744 754824 552507 201013 809339 444143 075212 565476 423380 353859 290389 (64 digits), a[135] = 1
                                                                                      A[136]/B[136] = 86 525009 193236 038712 942915 506107 129460 125027 694218 531321 709785 (62 digits)/8409 670683 182571 685038 209880 083715 544200 590625 474894 187044 566543 (64 digits), a[136] = 4
                                                                                      A[137]/B[137] = 191 001366 652254 247705 016043 016793 329317 493964 708677 694011 414532 (63 digits)/18564 096190 917650 571090 229099 611574 163613 746727 373168 727948 423475 (65 digits), a[137] = 2
                                                                                      A[138]/B[138] = 2760 544142 324795 506583 167517 741213 739905 040533 615706 247481 513233 (64 digits)/268307 017356 029679 680301 417274 645753 834793 044808 699256 378322 495193 (66 digits), a[138] = 14
                                                                                      A[139]/B[139] = 5712 089651 301845 260871 351078 499220 809127 575031 940090 188974 440998 (64 digits)/555178 130902 977009 931693 063648 903081 833199 836344 771681 484593 413861 (66 digits), a[139] = 2
                                                                                      A[140]/B[140] = 8472 633793 626640 767454 518596 240434 549032 615565 555796 436455 954231 (64 digits)/823485 148259 006689 611994 480923 548835 667992 881153 470937 862915 909054 (66 digits), a[140] = 1
                                                                                      A[141]/B[141] = 14184 723444 928486 028325 869674 739655 358160 190597 495886 625430 395229 (65 digits)/1 378663 279161 983699 543687 544572 451917 501192 717498 242619 347509 322915 (67 digits), a[141] = 1
                                                                                      A[142]/B[142] = 36842 080683 483612 824106 257945 719745 265352 996760 547569 687316 744689 (65 digits)/3 580811 706582 974088 699369 570068 452670 670378 316149 956176 557934 554884 (67 digits), a[142] = 2
                                                                                      A[143]/B[143] = 87868 884811 895711 676538 385566 179145 888866 184118 591026 000063 884607 (65 digits)/8 540286 692327 931876 942426 684709 357258 841949 349798 154972 463378 432683 (67 digits), a[143] = 2
                                                                                      A[144]/B[144] = 212579 850307 275036 177183 029078 078037 043085 364997 729621 687444 513903 (66 digits)/20 661385 091238 837842 584222 939487 167188 354277 015746 266121 484691 420250 (68 digits), a[144] = 2
                                                                                      A[145]/B[145] = 513028 585426 445784 030904 443722 335219 975036 914114 050269 374952 912413 (66 digits)/49 863056 874805 607562 110872 563683 691635 550503 381290 687215 432761 273183 (68 digits), a[145] = 2
                                                                                      A[146]/B[146] = 725608 435733 720820 208087 472800 413257 018122 279111 779891 062397 426316 (66 digits)/70 524441 966044 445404 695095 503170 858823 904780 397036 953336 917452 693433 (68 digits), a[146] = 1
                                                                                      A[147]/B[147] = 1 238637 021160 166604 238991 916522 748476 993159 193225 830160 437350 338729 (67 digits)/120 387498 840850 052966 805968 066854 550459 455283 778327 640552 350213 966616 (69 digits), a[147] = 1
                                                                                      A[148]/B[148] = 1 964245 456893 887424 447079 389323 161734 011281 472337 610051 499747 765045 (67 digits)/190 911940 806894 498371 501063 570025 409283 360064 175364 593889 267666 660049 (69 digits), a[148] = 1
                                                                                      A[149]/B[149] = 7 131373 391841 828877 580230 084492 233679 027003 610238 660314 936593 633864 (67 digits)/693 123321 261533 548081 309158 776930 778309 535476 304421 422220 153213 946763 (69 digits), a[149] = 3
                                                                                      A[150]/B[150] = 9 095618 848735 716302 027309 473815 395413 038285 082576 270366 436341 398909 (67 digits)/884 035262 068428 046452 810222 346956 187592 895540 479786 016109 420880 606812 (69 digits), a[150] = 1
                                                                                      A[151]/B[151] = 34 418229 938048 977783 662158 505938 419918 141858 857967 471414 245617 830591 (68 digits)/3345 229107 466817 687439 739825 817799 341088 222097 743779 470548 415855 767199 (70 digits), a[151] = 3
                                                                                      A[152]/B[152] = 43 513848 786784 694085 689467 979753 815331 180143 940543 741780 681959 229500 (68 digits)/4229 264369 535245 733892 550048 164755 528681 117638 223565 486657 836736 374011 (70 digits), a[152] = 1
                                                                                      A[153]/B[153] = 339 015171 445541 836383 488434 364215 127236 402866 441773 663879 019332 437091 (69 digits)/32950 079694 213537 824687 590162 971088 041856 045565 308737 877153 273010 385276 (71 digits), a[153] = 7
                                                                                      A[154]/B[154] = 382 529020 232326 530469 177902 343968 942567 583010 382317 405659 701291 666591 (69 digits)/37179 344063 748783 558580 140211 135843 570537 163203 532303 363811 109746 759287 (71 digits), a[154] = 1
                                                                                      A[155]/B[155] = 721 544191 677868 366852 666336 708184 069803 985876 824091 069538 720624 103682 (69 digits)/70129 423757 962321 383267 730374 106931 612393 208768 841041 240964 382757 144563 (71 digits), a[155] = 1
                                                                                      A[156]/B[156] = 161286 883764 396972 338613 770988 269016 508856 433542 154625 912794 400466 787677 (72 digits)/15 676040 842089 346452 027284 013636 981593 134222 718655 084500 098868 464589 996836 (74 digits), a[156] = 223
                                                                                      A[157]/B[157] = 323295 311720 471813 044080 208313 246217 087516 852961 133342 895127 521557 679036 (72 digits)/31 422211 107936 655225 437835 757648 070117 880838 646079 010041 438701 311937 138235 (74 digits), a[157] = 2
                                                                                      A[158]/B[158] = 484582 195484 868785 382693 979301 515233 596373 286503 287968 807921 922024 466713 (72 digits)/47 098251 950026 001677 465119 771285 051711 015061 364734 094541 537569 776527 135071 (74 digits), a[158] = 1
                                                                                      A[159]/B[159] = 2 261624 093659 946954 574856 125519 307151 473009 998974 285218 126815 209655 545888 (73 digits)/219 815218 908040 661935 298314 842788 276961 941084 105015 388207 588980 418045 678519 (75 digits), a[159] = 4
                                                                                      A[160]/B[160] = 11 792702 663784 603558 256974 606898 050990 961423 281374 714059 441997 970302 196153 (74 digits)/1146 174346 490229 311353 956693 985226 436520 720481 889811 035579 482471 866755 527666 (76 digits), a[160] = 5
                                                                                      A[161]/B[161] = 25 847029 421229 154071 088805 339315 409133 395856 561723 713337 010811 150259 938194 (74 digits)/2512 163911 888499 284643 211702 813241 150003 382047 884637 459366 553924 151556 733851 (76 digits), a[161] = 2
                                                                                      A[162]/B[162] = 89 333790 927472 065771 523390 624844 278391 148992 966545 854070 474431 421082 010735 (74 digits)/8682 666082 155727 165283 591802 424949 886530 866625 543723 413679 144244 321425 729219 (76 digits), a[162] = 3
                                                                                      A[163]/B[163] = 115 180820 348701 219842 612195 964159 687524 544849 528269 567407 485242 571341 948929 (75 digits)/11194 829994 044226 449926 803505 238191 036534 248673 428360 873045 698168 472982 463070 (77 digits), a[163] = 1
                                                                                      A[164]/B[164] = 204 514611 276173 285614 135586 589003 965915 693842 494815 421477 959673 992423 959664 (75 digits)/19877 496076 199953 615210 395307 663140 923065 115298 972084 286724 842412 794408 192289 (77 digits), a[164] = 1
                                                                                      A[165]/B[165] = 1137 753876 729567 647913 290128 909179 517103 014062 002346 674797 283612 533461 747249 (76 digits)/110582 310375 043994 525978 780043 553895 651859 825168 288782 306669 910232 445023 424515 (78 digits), a[165] = 5
                                                                                      A[166]/B[166] = 14995 315008 760552 708486 907262 408337 688254 876648 525322 193842 646636 927426 673901 (77 digits)/1 457447 530951 771882 452934 535873 863784 397242 842486 726254 273433 675434 579712 710984 (79 digits), a[166] = 13
                                                                                      A[167]/B[167] = 2 160463 115138 249157 670027 935915 709806 625805 251449 648742 588138 399330 082902 788993 (79 digits)/209 983026 767430 195067 748551 945879 938848 854829 143256 869397 681119 172811 923653 806211 (81 digits), a[167] = 144
                                                                                      A[168]/B[168] = 2 175458 430147 009710 378514 843178 118144 314060 128098 174064 781981 045967 010329 462894 (79 digits)/211 440474 298381 966950 201486 481753 802633 252071 985743 595651 954552 848246 503366 517195 (81 digits), a[168] = 1
                                                                                      A[169]/B[169] = 95 705175 611459 666703 946166 192574 790012 130390 759671 133528 213323 375911 527069 693435 (80 digits)/9301 923421 597854 773926 412470 661293 452078 693924 530231 482431 726891 647411 568414 045596 (82 digits), a[169] = 43
                                                                                      A[170]/B[170] = 5074 549765 837509 345019 525323 049641 988787 224770 390668 251060 088119 969277 945023 214949 (82 digits)/493213 381818 984684 985050 062431 530306 762804 030072 088012 164533 479810 161059 629310 933783 (84 digits), a[170] = 53
                                                                                      A[171]/B[171] = 10244 804707 286478 356742 996812 291858 767586 579931 541007 635648 389563 314467 417116 123333 (83 digits)/995728 687059 567224 744026 537333 721906 977686 754068 706255 811498 686511 969530 827035 913162 (84 digits), a[171] = 2
                                                                                      A[172]/B[172] = 15319 354473 123987 701762 522135 341500 756373 804701 931675 886708 477683 283745 362139 338282 (83 digits)/1 488942 068878 551909 729076 599765 252213 740490 784140 794267 976032 166322 130590 456346 846945 (85 digits), a[172] = 1
                                                                                      A[173]/B[173] = 301312 539696 642244 690230 917383 780373 138688 869268 242849 483109 465545 705629 297763 550691 (84 digits)/29 285627 995752 053509 596481 932873 513968 047011 652743 797347 356109 846632 450749 497626 005117 (86 digits), a[173] = 19
                                                                                      A[174]/B[174] = 316631 894169 766232 391993 439519 121873 895062 673970 174525 369817 943228 989374 659902 888973 (84 digits)/30 774570 064630 605419 325558 532638 766181 787502 436884 591615 332142 012954 581339 953972 852062 (86 digits), a[174] = 1
                                                                                      A[175]/B[175] = 934576 328036 174709 474217 796422 024120 928814 217208 591900 222745 352003 684378 617569 328637 (84 digits)/90 834768 125013 264348 247598 998151 046331 622016 526512 980578 020393 872541 613429 405571 709241 (86 digits), a[175] = 2
                                                                                      A[176]/B[176] = 4 989513 534350 639779 763082 421629 242478 539133 760013 134026 483544 703247 411267 747749 532158 (85 digits)/484 948410 689696 927160 563553 523393 997839 897585 069449 494505 434111 375662 648486 981831 398267 (87 digits), a[176] = 5
                                                                                      A[177]/B[177] = 5 924089 862386 814489 237300 218051 266599 467947 977221 725926 706290 055251 095646 365318 860795 (85 digits)/575 783178 814710 191508 811152 521545 044171 519601 595962 475083 454505 248204 261916 387403 107508 (87 digits), a[177] = 1
                                                                                      A[178]/B[178] = 46 458142 571058 341204 424183 947988 108674 814769 600565 215513 427575 090005 080792 304981 557723 (86 digits)/4515 430662 392668 267722 241621 174209 307040 534796 241186 820089 615648 113092 481901 693653 150823 (88 digits), a[178] = 7
                                                                                      A[179]/B[179] = 470 505515 572970 226533 479139 697932 353347 615643 982873 881060 982040 955301 903569 415134 438025 (87 digits)/45730 089802 741392 868731 227364 263638 114576 867564 007830 675979 610986 379129 080933 323934 615738 (89 digits), a[179] = 10
                                                                                      A[180]/B[180] = 2398 985720 435909 473871 819882 437649 875412 892989 514934 620818 337779 866514 598639 380653 747848 (88 digits)/233165 879676 099632 611378 378442 492399 879924 872616 280340 199987 670580 008737 886568 313326 229513 (90 digits), a[180] = 5
                                                                                      A[181]/B[181] = 2869 491236 008879 700405 299022 135582 228760 508633 497808 501879 319820 821816 502208 795788 185873 (88 digits)/278895 969478 841025 480109 605806 756037 994501 740180 288170 875967 281566 387866 967501 637260 845251 (90 digits), a[181] = 1
                                                                                      A[182]/B[182] = 5268 476956 444789 174277 118904 573232 104173 401623 012743 122697 657600 688331 100848 176441 933721 (88 digits)/512061 849154 940658 091487 984249 248437 874426 612796 568511 075954 952146 396604 854069 950587 074764 (90 digits), a[182] = 1
                                                                                      A[183]/B[183] = 171460 753842 242133 277273 103968 479009 562309 360569 905588 428204 363042 848411 729350 441930 064945 (90 digits)/16 664875 142436 942084 407725 101782 706049 976153 349670 480525 306525 750251 079222 297740 056047 237699 (92 digits), a[183] = 32
                                                                                      A[184]/B[184] = 176729 230798 686922 451550 222873 052241 666482 762192 918331 550902 020643 536742 830198 618371 998666 (90 digits)/17 176936 991591 882742 499213 086031 954487 850579 962467 049036 382480 702397 475827 151810 006634 312463 (92 digits), a[184] = 1
                                                                                      A[185]/B[185] = 348189 984640 929055 728823 326841 531251 228792 122762 823919 979106 383686 385154 559549 060302 063611 (90 digits)/33 841812 134028 824826 906938 187814 660537 826733 312137 529561 689006 452648 555049 449550 062681 550162 (92 digits), a[185] = 1
                                                                                      A[186]/B[186] = 1 221299 184721 474089 638020 203397 645995 352859 130481 390091 488221 171702 692206 508845 799278 189499 (91 digits)/118 702373 393678 357223 220027 649475 936101 330779 898879 637721 449500 060343 140975 500460 194678 962949 (93 digits), a[186] = 3
                                                                                      A[187]/B[187] = 23 552874 494348 936758 851207 191396 805162 933115 601909 235658 255308 646037 537078 227619 246587 664092 (92 digits)/2289 186906 613917 612068 087463 527857 446463 111551 390850 646269 229507 599168 233583 958293 761581 846193 (94 digits), a[187] = 19
                                                                                      A[188]/B[188] = 213 197169 633861 904919 298884 925968 892461 750899 547664 511015 785998 986040 525910 557419 018567 166327 (93 digits)/20721 384532 918936 865836 007199 400192 954269 334742 416535 454144 515068 452857 243231 125104 048915 578686 (95 digits), a[188] = 9
                                                                                      A[189]/B[189] = 2155 524570 832967 985951 840056 451085 729780 442111 078554 345816 115298 506442 796183 801809 432259 327362 (94 digits)/209503 032235 803286 270428 159457 529786 989156 458975 556205 187714 380192 127740 665895 209334 250737 633053 (96 digits), a[189] = 10
                                                                                      A[190]/B[190] = 2368 721740 466829 890871 138941 377054 622242 193010 626218 856831 901297 492483 322094 359228 450826 493689 (94 digits)/230224 416768 722223 136264 166656 929979 943425 793717 972740 641858 895260 580597 909126 334438 299653 211739 (96 digits), a[190] = 1
                                                                                      A[191]/B[191] = 4524 246311 299797 876822 978997 828140 352022 635121 704773 202648 016595 998926 118278 161037 883085 821051 (94 digits)/439727 449004 525509 406692 326114 459766 932582 252693 528945 829573 275452 708338 575021 543772 550390 844792 (96 digits), a[191] = 1
                                                                                      A[192]/B[192] = 11417 214363 066425 644517 096937 033335 326287 463254 035765 262127 934489 490335 558650 681304 216998 135791 (95 digits)/1 109679 314777 773241 949648 818885 849513 808590 299105 030632 301005 446165 997275 059169 421983 400434 901323 (97 digits), a[192] = 2
                                                                                      A[193]/B[193] = 27358 675037 432649 165857 172871 894811 004597 561629 776303 726903 885574 979597 235579 523646 317082 092633 (95 digits)/2 659086 078560 071993 305989 963886 158794 549762 850903 590210 431584 167784 702888 693360 387739 351260 647438 (97 digits), a[193] = 2
                                                                                      A[194]/B[194] = 285003 964737 392917 303088 825655 981445 372263 079551 798802 531166 790239 286307 914445 917767 387819 062121 (96 digits)/27 700540 100378 493175 009548 457747 437459 306218 808140 932736 616847 124013 026161 992773 299376 913041 375703 (98 digits), a[194] = 10
                                                                                      A[195]/B[195] = 3 447406 251886 147656 802923 080743 672155 471754 516251 361934 100905 368446 415292 208930 536854 970910 838085 (97 digits)/335 065567 283101 990093 420571 456855 408306 224388 548594 783049 833749 655941 016832 606639 980262 307757 155874 (99 digits), a[195] = 12
                                                                                      A[196]/B[196] = 7 179816 468509 688230 908934 987143 325756 315772 112054 522670 732977 527132 116892 332306 991477 329640 738291 (97 digits)/697 831674 666582 473361 850691 371458 254071 754995 905330 498836 284346 435895 059827 206053 259901 528555 687451 (99 digits), a[196] = 2
                                                                                      A[197]/B[197] = 10 627222 720395 835887 711858 067886 997911 787526 628305 884604 833882 895578 532184 541237 528332 300551 576376 (98 digits)/1032 897241 949684 463455 271262 828313 662377 979384 453925 281886 118096 091836 076659 812693 240163 836312 843325 (100 digits), a[197] = 1
                                                                                      A[198]/B[198] = 39 061484 629697 195894 044509 190804 319491 678351 996972 176485 234626 213867 713445 956019 576474 231295 467419 (98 digits)/3796 523400 515635 863727 664479 856399 241205 693149 267106 344494 638634 711403 289806 644132 980393 037494 217426 (100 digits), a[198] = 3
                                                                                      A[199]/B[199] = 49 688707 350093 031781 756367 258691 317403 465878 625278 061090 068509 109446 245630 497257 104806 531847 043795 (98 digits)/4829 420642 465320 327182 935742 684712 903583 672533 721031 626380 756730 803239 366466 456826 220556 873807 060751 (100 digits), a[199] = 1
                                                                                      A[200]/B[200] = 6995 480513 642721 645339 935925 407588 755976 901359 535900 729094 825901 536342 101715 572014 249388 689881 598719 (100 digits)/679915 413345 660481 669338 668455 716205 742919 847870 211534 037800 580947 164914 595110 599803 858355 370482 722566 (102 digits), a[200] = 140
                                                                                      A[201]/B[201] = 21036 130248 278257 967801 564143 481457 585334 169957 232980 248374 546213 718472 550777 213299 852972 601491 839952 (101 digits)/2 044575 660679 446765 335198 941109 833330 132343 216144 355633 739782 499572 297983 151798 256237 795622 985255 228449 (103 digits), a[201] = 3
                                                                                      A[202]/B[202] = 49067 741010 199237 580943 064212 370503 926645 241274 001861 225843 918328 973287 203269 998613 955333 892865 278623 (101 digits)/4 769066 734704 554012 339736 550675 382866 007606 280158 922801 517365 580091 760880 898707 112279 449601 340993 179464 (103 digits), a[202] = 2
                                                                                      A[203]/B[203] = 119171 612268 676733 129687 692568 222465 438624 652505 236702 700062 382871 665046 957317 210527 763640 387222 397198 (102 digits)/11 582709 130088 554790 014672 042460 599062 147555 776462 201236 774513 659755 819744 949212 480796 694825 667241 587377 (104 digits), a[203] = 2
                                                                                      A[204]/B[204] = 287410 965547 552703 840318 449348 815434 803894 546284 475266 625968 684072 303381 117904 419669 482614 667310 073019 (102 digits)/27 934484 994881 663592 369080 635596 580990 302717 833083 325275 066392 899603 400370 797132 073872 839252 675476 354218 (104 digits), a[204] = 2
                                                                                      A[205]/B[205] = 406582 577816 229436 970006 141917 037900 242519 198789 711969 326031 066943 968428 075221 630197 246255 054532 470217 (102 digits)/39 517194 124970 218382 383752 678057 180052 450273 609545 526511 840906 559359 220115 746344 554669 534078 342717 941595 (104 digits), a[205] = 1
                                                                                      A[206]/B[206] = 693993 543363 782140 810324 591265 853335 046413 745074 187235 951999 751016 271809 193126 049866 728869 721842 543236 (102 digits)/67 451679 119851 881974 752833 313653 761042 752991 442628 851786 907299 458962 620486 543476 628542 373331 018194 295813 (104 digits), a[206] = 1
                                                                                      A[207]/B[207] = 1 100576 121180 011577 780330 733182 891235 288932 943863 899205 278030 817960 240237 268347 680063 975124 776375 013453 (103 digits)/106 968873 244822 100357 136585 991710 941095 203265 052174 378298 748206 018321 840602 289821 183211 907409 360912 237408 (105 digits), a[207] = 1
                                                                                      A[208]/B[208] = 1 794569 664543 793718 590655 324448 744570 335346 688938 086441 230030 568976 512046 461473 729930 703994 498217 556689 (103 digits)/174 420552 364673 982331 889419 305364 702137 956256 494803 230085 655505 477284 461088 833297 811754 280740 379106 533221 (105 digits), a[208] = 1
                                                                                      A[209]/B[209] = 4 689715 450267 599014 961641 382080 380375 959626 321740 072087 738091 955913 264330 191295 139925 383113 772810 126831 (103 digits)/455 809977 974170 065020 915424 602440 345371 115778 041780 838470 059216 972890 762779 956416 806720 468890 119125 303850 (105 digits), a[209] = 2
                                                                                      A[210]/B[210] = 6 484285 114811 392733 552296 706529 124946 294973 010678 158528 968122 524889 776376 652768 869856 087108 271027 683520 (103 digits)/630 230530 338844 047352 804843 907805 047509 072034 536584 068555 714722 450175 223868 789714 618474 749630 498231 837071 (105 digits), a[210] = 1
                                                                                      A[211]/B[211] = 17 658285 679890 384482 066234 795138 630268 549572 343096 389145 674337 005692 817083 496832 879637 557330 314865 493871 (104 digits)/1716 271038 651858 159726 525112 418050 440389 259847 114948 975581 488661 873241 210517 535846 043669 968151 115588 977992 (106 digits), a[211] = 2
                                                                                      A[212]/B[212] = 24 142570 794701 777215 618531 501667 755214 844545 353774 547674 642459 530582 593460 149601 749493 644438 585893 177391 (104 digits)/2346 501568 990702 207079 329956 325855 487898 331881 651533 044137 203384 323416 434386 325560 662144 717781 613820 815063 (106 digits), a[212] = 1
                                                                                      A[213]/B[213] = 138 371139 653399 270560 158892 303477 406342 772299 111969 127518 886634 658605 784384 244841 627105 779523 244331 380826 (105 digits)/13448 778883 605369 195123 174894 047327 879880 919255 372614 196267 505583 490323 382449 163649 354393 557059 184693 053307 (107 digits), a[213] = 5
                                                                                      A[214]/B[214] = 162 513710 448101 047775 777423 805145 161557 616844 465743 675193 529094 189188 377844 394443 376599 423961 830224 558217 (105 digits)/15795 280452 596071 402202 504850 373183 367779 251137 024147 240404 708967 813739 816835 489210 016538 274840 798513 868370 (107 digits), a[214] = 1
                                                                                      A[215]/B[215] = 463 398560 549601 366111 713739 913767 729458 005988 043456 477905 944823 036982 540073 033728 380304 627446 904780 497260 (105 digits)/45039 339788 797511 999528 184594 793694 615439 421529 420908 677076 923519 117803 016120 142069 387470 106740 781720 790047 (107 digits), a[215] = 2
                                                                                      A[216]/B[216] = 4796 499315 944114 708892 914822 942822 456137 676724 900308 454252 977324 559013 778574 731727 179645 698430 878029 530817 (106 digits)/466188 678340 571191 397484 350798 310129 522173 466431 233234 011173 944158 991769 978036 909903 891239 342248 615721 768840 (108 digits), a[216] = 10
                                                                                      A[217]/B[217] = 34038 893772 158404 328362 117500 513524 922421 743062 345615 657676 786094 950078 990096 155818 637824 516463 050987 212979 (107 digits)/3 308360 088172 795851 781918 640182 964601 270653 686548 053546 755294 532632 060192 862378 511396 626145 502481 091773 171927 (109 digits), a[217] = 7
                                                                                      A[218]/B[218] = 106913 180632 419327 693979 267324 483397 223402 905911 937155 427283 335609 409250 748863 199183 093119 247820 030991 169754 (108 digits)/10 391268 942858 958746 743240 271347 203933 334134 526075 393874 277057 542055 172348 565172 444093 769675 849691 891041 284621 (110 digits), a[218] = 3
                                                                                      A[219]/B[219] = 354778 435669 416387 410299 919473 963716 592630 460798 157081 939526 792923 177831 236685 753367 917182 259923 143960 722241 (108 digits)/34 482166 916749 672092 011639 454224 576401 273057 264774 235169 586467 158797 577238 557895 843677 935173 051556 764897 025790 (110 digits), a[219] = 3
                                                                                      A[220]/B[220] = 461691 616301 835715 104279 186798 447113 816033 366710 094237 366810 128532 587081 985548 952551 010301 507743 174951 891995 (108 digits)/44 873435 859608 630838 754879 725571 780334 607191 790849 629043 863524 700852 749587 123068 287771 704848 901248 655938 310411 (110 digits), a[220] = 1
                                                                                      A[221]/B[221] = 5 895077 831291 444968 661650 161055 329082 385030 861319 287930 341248 335314 222815 063273 183980 040800 352841 243383 426181 (109 digits)/572 963397 232053 242157 070196 161085 940416 559358 754969 783695 948763 569030 572284 034715 296938 393359 866540 636156 750722 (111 digits), a[221] = 12
                                                                                      A[222]/B[222] = 6 356769 447593 280683 765929 347853 776196 201064 228029 382167 708058 463846 809897 048822 136531 051101 860584 418335 318176 (109 digits)/617 836833 091661 872995 825075 886657 720751 166550 545819 412739 812288 269883 321871 157783 584710 098208 767789 292095 061133 (111 digits), a[222] = 1
                                                                                      A[223]/B[223] = 12 251847 278884 725652 427579 508909 105278 586095 089348 670098 049306 799161 032712 112095 320511 091902 213425 661718 744357 (110 digits)/1190 800230 323715 115152 895272 047743 661167 725909 300789 196435 761051 838913 894155 192498 881648 491568 634329 928251 811855 (112 digits), a[223] = 1
                                                                                      A[224]/B[224] = 18 608616 726478 006336 193508 856762 881474 787159 317378 052265 757365 263007 842609 160917 457042 143004 074010 080054 062533 (110 digits)/1808 637063 415376 988148 720347 934401 381918 892459 846608 609175 573340 108797 216026 350282 466358 589777 402119 220346 872988 (112 digits), a[224] = 1
                                                                                      A[225]/B[225] = 254 163864 723098 808022 943194 646826 564450 819166 215263 349552 895055 218262 986631 204022 262058 950955 175556 702421 557286 (111 digits)/24703 082054 723615 961086 259795 194961 626113 327887 306701 115718 214473 253277 702497 746170 944310 158674 861879 792761 160699 (113 digits), a[225] = 13
                                                                                      A[226]/B[226] = 272 772481 449576 814359 136703 503589 445925 606325 532641 401818 652420 481270 829240 364939 719101 093959 249566 782475 619819 (111 digits)/26511 719118 138992 949234 980143 129363 008032 220347 153309 724893 787813 362074 918524 096453 410668 748452 263999 013108 033687 (113 digits), a[226] = 1
                                                                                      A[227]/B[227] = 526 936346 172675 622382 079898 150416 010376 425491 747904 751371 547475 699533 815871 568961 981160 044914 425123 484897 177105 (111 digits)/51214 801172 862608 910321 239938 324324 634145 548234 460010 840612 002286 615352 621021 842624 354978 907127 125878 805869 194386 (113 digits), a[227] = 1
                                                                                      A[228]/B[228] = 799 708827 622252 436741 216601 654005 456302 031817 280546 153190 199896 180804 645111 933901 700261 138873 674690 267372 796924 (111 digits)/77726 520291 001601 859556 220081 453687 642177 768581 613320 565505 790099 977427 539545 939077 765647 655579 389877 818977 228073 (113 digits), a[228] = 1
                                                                                      A[229]/B[229] = 66902 769038 819627 871903 057835 432868 883445 066326 033235 466158 138858 706319 360162 082803 102834 571429 424415 676839 321797 (113 digits)/6 502515 985325 995563 253487 506698 980398 934900 340508 365617 777592 580584 741838 403334 786078 903734 320216 485737 780979 124445 (115 digits), a[229] = 83
                                                                                      A[230]/B[230] = 67702 477866 441880 308644 274437 086874 339747 098143 313781 619348 338754 887124 005274 016704 803095 710303 099105 944212 118721 (113 digits)/6 580242 505616 997165 113043 726780 434086 577078 109089 978938 343098 370684 719265 942880 725156 669381 975795 875615 599956 352518 (115 digits), a[230] = 1
                                                                                      A[231]/B[231] = 270010 202638 145268 797835 881146 693491 902686 360755 974580 324203 155123 367691 375984 132917 512121 702338 721733 509475 677960 (114 digits)/26 243243 502176 987058 592618 687040 282658 666134 667778 302432 806887 692638 899636 231976 961548 911880 247604 112584 580848 181999 (116 digits), a[231] = 3
                                                                                      A[232]/B[232] = 2 227784 098971 604030 691331 323610 634809 561237 984191 110424 212973 579741 828655 013147 080044 900069 329012 872974 020017 542401 (115 digits)/216 526190 523032 893633 853993 223102 695355 906155 451316 398400 798199 911795 916355 798696 417547 964423 956628 776292 246741 808510 (117 digits), a[232] = 8
                                                                                      A[233]/B[233] = 4 725578 400581 353330 180498 528367 963111 025162 329138 195428 750150 314607 025001 402278 293007 312260 360364 467681 549510 762762 (115 digits)/459 295624 548242 774326 300605 133245 673370 478445 570411 099234 403287 516230 732347 829369 796644 840728 160861 665169 074331 799019 (117 digits), a[233] = 2
                                                                                      A[234]/B[234] = 6 953362 499552 957360 871829 851978 597920 586400 313329 305852 963123 894348 853656 415425 373052 212329 689377 340655 569528 305163 (115 digits)/675 821815 071275 667960 154598 356348 368726 384601 021727 497635 201487 428026 648703 628066 214192 805152 117490 441461 321073 607529 (117 digits), a[234] = 1
                                                                                      A[235]/B[235] = 60 352478 397005 012217 155137 344196 746475 716364 835772 642252 455141 469397 854252 725681 277425 010897 875383 192926 105737 204066 (116 digits)/5865 870145 118448 118007 537391 984032 623181 555253 744231 080316 015186 940443 921976 853899 510187 281945 100785 196859 642920 659251 (118 digits), a[235] = 8
                                                                                      A[236]/B[236] = 308 715754 484578 018446 647516 572962 330299 168224 492192 517115 238831 241338 124920 043831 760177 266819 066293 305286 098214 325493 (117 digits)/30005 172540 663516 257997 841558 276511 484634 160869 742882 899215 277422 130246 258587 897563 765129 214877 621416 425759 535676 903784 (119 digits), a[236] = 5
                                                                                      A[237]/B[237] = 369 068232 881583 030663 802653 917159 076774 884589 327965 159367 693972 710735 979172 769513 037602 277716 941676 498212 203951 529559 (117 digits)/35871 042685 781964 376005 378950 260544 107815 716123 487113 979531 292609 070690 180564 751463 275316 496822 722201 622619 178597 563035 (119 digits), a[237] = 1
                                                                                      A[238]/B[238] = 1046 852220 247744 079774 252824 407280 483848 937403 148122 835850 626776 662810 083265 582857 835381 822252 949646 301710 506117 384611 (118 digits)/101747 257912 227445 010008 599458 797599 700265 593116 717110 858277 862640 271626 619717 400490 315762 208523 065819 670997 892872 029854 (120 digits), a[238] = 2
                                                                                      A[239]/B[239] = 4556 477113 872559 349760 813951 546281 012170 634201 920456 502770 201079 361976 312235 100944 379129 566728 740261 705054 228421 068003 (118 digits)/442860 074334 691744 416039 776785 450942 908878 088590 355557 412642 743170 157196 659434 353424 538365 330914 985480 306610 750085 682451 (120 digits), a[239] = 4
                                                                                      A[240]/B[240] = 10159 806447 992862 779295 880727 499842 508190 205806 989035 841391 028935 386762 707735 784746 593640 955710 430169 711818 962959 520617 (119 digits)/987467 406581 610933 842088 153029 699485 518021 770297 428225 683563 348980 586019 938586 107339 392492 870353 036780 284219 393043 394756 (120 digits), a[240] = 2
                                                                                      A[241]/B[241] = 14716 283561 865422 129056 694679 046123 520360 840008 909492 344161 230014 748739 019970 885690 972770 522439 170431 416873 191380 588620 (119 digits)/1 430327 480916 302678 258127 929815 150428 426899 858887 783783 096206 092150 743216 598020 460763 930858 201268 022260 590830 143129 077207 (121 digits), a[241] = 1
                                                                                      A[242]/B[242] = 24876 090009 858284 908352 575406 545966 028551 045815 898528 185552 258950 135501 727706 670437 566411 478149 600601 128692 154340 109237 (119 digits)/2 417794 887497 913612 100216 082844 849913 944921 629185 212008 779769 441131 329236 536606 568103 323351 071621 059040 875049 536172 471963 (121 digits), a[242] = 1
                                                                                      A[243]/B[243] = 89344 553591 440276 854114 420898 684021 606013 977456 605076 900818 006865 155244 203090 897003 672004 956887 972234 802949 654400 916331 (119 digits)/8 683712 143410 043514 558776 178349 700170 261664 746443 419809 435514 415544 730926 207840 165073 900911 416131 199383 215978 751646 493096 (121 digits), a[243] = 3
                                                                                      A[244]/B[244] = 114220 643601 298561 762466 996305 229987 634565 023272 503605 086370 265815 290745 930797 567441 238416 435037 572835 931641 808741 025568 (120 digits)/11 101507 030907 957126 658992 261194 550084 206586 375628 631818 215283 856676 060162 744446 733177 224262 487752 258424 091028 287818 965059 (122 digits), a[244] = 1
                                                                                      A[245]/B[245] = 3 401743 218029 098567 965657 313750 353663 008399 652359 209624 405555 715508 586876 196220 352799 586081 572977 584476 820562 107890 657803 (121 digits)/330 627416 039740 800187 669551 752991 652612 252669 639673 742537 678746 259150 475645 796795 427213 404523 560946 693681 855799 098396 479807 (123 digits), a[245] = 29
                                                                                      A[246]/B[246] = 3 515963 861630 397129 728124 310055 583650 642964 675631 713229 491925 981323 877622 127017 920240 824498 008015 157312 752203 916631 683371 (121 digits)/341 728923 070648 757314 328544 014186 202696 459256 015302 374355 894030 115826 535808 541242 160390 628786 048698 952105 946827 386215 444866 (123 digits), a[246] = 1
                                                                                      A[247]/B[247] = 10 433670 941289 892827 421905 933861 520964 294329 003622 636083 389407 678156 342120 450256 193281 235077 589007 899102 324969 941154 024545 (122 digits)/1014 085262 181038 314816 326639 781364 058005 171181 670278 491249 466806 490803 547262 879279 747994 662095 658344 597893 749453 870827 369539 (124 digits), a[247] = 2
                                                                                      A[248]/B[248] = 45 250647 626789 968439 415748 045501 667507 820280 690122 257563 049556 693949 246103 928042 693365 764808 364046 753722 052083 681247 781551 (122 digits)/4398 069971 794802 016579 635103 139642 434717 143982 696416 339353 761256 079040 724860 058361 152369 277168 682077 343680 944642 869524 923022 (124 digits), a[248] = 4
                                                                                      A[249]/B[249] = 55 684318 568079 861266 837653 979363 188472 114609 693744 893646 438964 372105 588224 378298 886646 999885 953054 652824 377053 622401 806096 (122 digits)/5412 155233 975840 331395 961742 921006 492722 315164 366694 830603 228062 569844 272122 937640 900363 939264 340421 941574 694096 740352 292561 (124 digits), a[249] = 1
                                                                                      A[250]/B[250] = 6059 157052 979414 985257 882377 816726 022496 198127 614570 771378 457708 881352 774336 784322 451241 752491 293949 258754 773874 900642 839919 (124 digits)/588910 835241 185557 807343 503338 608343 648727 181734 299458 044502 392013 622222 114137 323578 391674 717717 447647 033747 907090 827572 519610 (126 digits), a[250] = 108
                                                                                      A[251]/B[251] = 6114 841371 547494 846524 720031 796089 210968 312737 308315 665024 896673 253458 362561 162621 337888 752377 247003 911579 150928 523044 646015 (124 digits)/594322 990475 161398 138739 465081 529350 141449 496898 666152 875105 620076 192066 386260 261219 292038 656981 788068 975322 601187 567924 812171 (126 digits), a[251] = 1
                                                                                      A[252]/B[252] = 18288 839796 074404 678307 322441 408904 444432 823602 231202 101428 251055 388269 499459 109565 127019 257245 787957 081913 075731 946732 131949 (125 digits)/1 777556 816191 508354 084822 433501 667043 931626 175531 631763 794713 632166 006354 886657 846016 975752 031681 023784 984393 109465 963422 143952 (127 digits), a[252] = 2
                                                                                      A[253]/B[253] = 24403 681167 621899 524832 042473 204993 655401 136339 539517 766453 147728 641727 862020 272186 464908 009623 034960 993492 226660 469776 777964 (125 digits)/2 371879 806666 669752 223561 898583 196394 073075 672430 297916 669819 252242 198421 272918 107236 267790 688662 811853 959715 710653 531346 956123 (127 digits), a[253] = 1
                                                                                      A[254]/B[254] = 1 262876 579344 791280 444741 488574 863580 869890 776918 746608 190538 785216 116390 462492 991074 837327 748020 570967 750016 635415 905347 808113 (127 digits)/122 743426 956191 665717 486479 261244 683141 658485 469476 825513 955495 496518 125839 805481 315066 633077 153484 428336 929894 352796 062116 906225 (129 digits), a[254] = 51
                                                                                      A[255]/B[255] = 3 813033 419201 995740 859056 508197 795736 265073 467095 779342 338069 503376 990899 249499 245410 976891 253684 747864 243542 132908 185820 202303 (127 digits)/370 602160 675241 666904 682999 682317 245819 048532 080860 774458 536305 741796 575940 689362 052436 167022 149116 096864 749398 769041 717697 674798 (129 digits), a[255] = 3
                                                                                      A[256]/B[256] = 5 075909 998546 787021 303797 996772 659317 134964 244014 525950 528608 288593 107289 711992 236485 814219 001705 318831 993558 768324 091168 010416 (127 digits)/493 345587 631433 332622 169478 943561 928960 707017 550337 599972 491801 238314 701780 494843 367502 800099 302600 525201 679293 121837 779814 581023 (129 digits), a[256] = 1
                                                                                      A[257]/B[257] = 19 040763 414842 356804 770450 498515 773687 669966 199139 357193 923894 369156 312768 385475 954868 419548 258800 704360 224218 437880 459324 233551 (128 digits)/1850 638923 569541 664771 191436 513003 032701 169584 731873 574376 011709 456740 681282 173892 154944 567320 056917 672469 787278 134555 057141 417867 (130 digits), a[257] = 3
                                                                                      A[258]/B[258] = 24 116673 413389 143826 074248 495288 433004 804930 443153 883144 452502 657749 420058 097468 191354 233767 260506 023192 217777 206204 550492 243967 (128 digits)/2343 984511 200974 997393 360915 456564 961661 876602 282211 174348 503510 695055 383062 668735 522447 367419 359518 197671 466571 256392 836955 998890 (130 digits), a[258] = 1
                                                                                      A[259]/B[259] = 43 157436 828231 500630 844698 993804 206692 474896 642293 240338 376397 026905 732826 482944 146222 653315 519306 727552 441995 644085 009816 477518 (128 digits)/4194 623434 770516 662164 552351 969567 994363 046187 014084 748724 515220 151796 064344 842627 677391 934739 416435 870141 253849 390947 894097 416757 (130 digits), a[259] = 1
                                                                                      A[260]/B[260] = 283 061294 382778 147611 142442 458113 673159 654310 296913 325174 710884 819183 817016 995133 068690 153660 376346 388506 869751 070714 609391 109075 (129 digits)/27511 725119 824074 970380 675027 273972 927840 153724 366719 666695 594831 605831 769131 724501 586798 975855 858133 418518 989667 602080 201540 499432 (131 digits), a[260] = 6
                                                                                      A[261]/B[261] = 609 280025 593787 795853 129583 910031 553011 783517 236119 890687 798166 665273 366860 473210 283602 960636 271999 504566 181497 785514 228598 695668 (129 digits)/59218 073674 418666 602925 902406 517513 850043 353635 747524 082115 704883 363459 602608 291630 850989 886451 132702 707179 233184 595108 297178 415621 (131 digits), a[261] = 2
                                                                                      A[262]/B[262] = 892 341319 976565 943464 272026 368145 226171 437827 533033 215862 509051 484457 183877 468343 352293 114296 648345 893073 051248 856228 837989 804743 (129 digits)/86729 798794 242741 573306 577433 791486 777883 507360 114243 748811 299714 969291 371740 016132 437788 862306 990836 125698 222852 197188 498718 915053 (131 digits), a[262] = 1
                                                                                      A[263]/B[263] = 2393 962665 546919 682781 673636 646322 005354 659172 302186 322412 816269 634187 734615 409896 988189 189229 568691 290712 283995 497971 904578 305154 (130 digits)/232677 671262 904149 749539 057274 100487 405810 368355 976011 579738 304313 302042 346088 323895 726567 611065 114374 958575 678888 989485 294616 245727 (132 digits), a[263] = 2
                                                                                      A[264]/B[264] = 10468 191982 164244 674590 966572 953433 247590 074516 741778 505513 774130 021208 122339 107931 305049 871214 923111 055922 187230 848116 456303 025359 (131 digits)/1 017440 483845 859340 571462 806530 193436 401124 980784 018290 067764 516968 177460 756093 311715 344059 306567 448335 960000 938408 155129 677183 897961 (133 digits), a[264] = 4
                                                                                      A[265]/B[265] = 23330 346629 875409 031963 606782 553188 500534 808205 785743 333440 364529 676603 979293 625759 598288 931659 414913 402556 658457 194204 817184 355872 (131 digits)/2 267558 638954 622830 892464 670334 487360 208060 329924 012591 715267 338249 656963 858274 947326 414686 224200 011046 878577 555705 299744 648984 041649 (133 digits), a[265] = 2
                                                                                      A[266]/B[266] = 33798 538612 039653 706554 573355 506621 748124 882722 527521 838954 138659 697812 101632 733690 903338 802874 338024 458478 845688 042321 273487 381231 (131 digits)/3 284999 122800 482171 463927 476864 680796 609185 310708 030881 783031 855217 834424 614368 259041 758745 530767 459382 838578 494113 454874 326167 939610 (133 digits), a[266] = 1
                                                                                      A[267]/B[267] = 57128 885241 915062 738518 180138 059810 248659 690928 313265 172394 503189 374416 080926 359450 501627 734533 752937 861035 504145 236526 090671 737103 (131 digits)/5 552557 761755 105002 356392 147199 168156 817245 640632 043473 498299 193467 491388 472643 206368 173431 754967 470429 717156 049818 754618 975151 981259 (133 digits), a[267] = 1
                                                                                      A[268]/B[268] = 6 032331 489013 121241 250963 487851 786697 857392 430195 420364 940376 973544 011500 598900 475993 574250 928918 396499 867206 780937 877560 794019 777046 (133 digits)/586 303564 107086 507418 885102 932777 337262 419977 577072 595599 104447 169304 430214 241904 927699 969079 802351 854503 139963 725082 689866 717125 971805 (135 digits), a[268] = 105
                                                                                      A[269]/B[269] = 6 089460 374255 036303 989481 667989 846508 106052 121123 733630 112771 476733 385916 679826 835444 075878 663452 149437 728242 285083 114086 884691 514149 (133 digits)/591 856121 868841 612421 241495 079976 505419 237223 217704 639072 602746 362771 921602 714548 134068 142511 557319 324932 857119 774901 444485 692277 953064 (135 digits), a[269] = 1
                                                                                      A[270]/B[270] = 12 121791 863268 157545 240445 155841 633205 963444 551319 153995 053148 450277 397417 278727 311437 650129 592370 545937 595449 066020 991647 678711 291195 (134 digits)/1178 159685 975928 119840 126598 012753 842681 657200 794777 234671 707193 532076 351816 956453 061768 111591 359671 179435 997083 499984 134352 409403 924869 (136 digits), a[270] = 1
                                                                                      A[271]/B[271] = 30 333044 100791 351394 470371 979673 112920 032941 223762 041620 219068 377288 180751 237281 458319 376137 848193 241312 919140 417125 097382 242114 096539 (134 digits)/2948 175493 820697 852101 494691 105484 190782 551624 807259 108416 017133 426924 625236 627454 257604 365694 276661 683804 851286 774869 713190 511085 802802 (136 digits), a[271] = 2
                                                                                      A[272]/B[272] = 42 454835 964059 508939 710817 135514 746125 996385 775081 195615 272216 827565 578168 516008 769757 026267 440563 787250 514589 483146 089029 920825 387734 (134 digits)/4126 335179 796625 971941 621289 118238 033464 208825 602036 343087 724326 959000 977053 583907 319372 477285 636332 863240 848370 274853 847542 920489 727671 (136 digits), a[272] = 1
                                                                                      A[273]/B[273] = 72 787880 064850 860334 181189 115187 859046 029326 998843 237235 491285 204853 758919 753290 228076 402405 288757 028563 433729 900271 186412 162939 484273 (134 digits)/7074 510673 617323 824043 115980 223722 224246 760450 409295 451503 741460 385925 602290 211361 576976 842979 912994 547045 699657 049723 560733 431575 530473 (136 digits), a[273] = 1
                                                                                      A[274]/B[274] = 188 030596 093761 229608 073195 365890 464218 055039 772767 670086 254787 237273 096008 022589 225909 831078 018077 844377 382049 283688 461854 246704 356280 (135 digits)/18275 356527 031273 620027 853249 565682 481957 729726 420627 246095 207247 730852 181634 006630 473326 163245 462321 957332 247684 374300 969009 783640 788617 (137 digits), a[274] = 2
                                                                                      A[275]/B[275] = 260 818476 158612 089942 254384 481078 323264 084366 771610 907321 746072 442126 854927 775879 453986 233483 306834 872940 815779 183959 648266 409643 840553 (135 digits)/25349 867200 648597 444070 969229 789404 706204 490176 829922 697598 948708 116777 783924 217992 050303 006225 375316 504377 947341 424024 529743 215216 319090 (137 digits), a[275] = 1
                                                                                      A[276]/B[276] = 1492 122976 886821 679319 345117 771282 080538 476873 630822 206694 985149 447907 370646 901986 495840 998494 552252 209081 460945 203486 703186 294923 559045 (136 digits)/145024 692530 274260 840382 699398 512706 012980 180610 570240 734089 950788 314741 101255 096590 724841 194372 338904 479221 984391 494423 617725 859722 384067 (138 digits), a[276] = 5
                                                                                      A[277]/B[277] = 1752 941453 045433 769261 599502 252360 403802 561240 402433 114016 731221 890034 225574 677865 949827 231977 859087 082022 276724 387446 351452 704567 399598 (136 digits)/170374 559730 922858 284453 668628 302110 719184 670787 400163 431688 899496 431518 885179 314582 775144 200597 714220 983599 931732 918448 147469 074938 703157 (138 digits), a[277] = 1
                                                                                      A[278]/B[278] = 3245 064429 932255 448580 944620 023642 484341 038114 033255 320711 716371 337941 596221 579852 445668 230472 411339 291103 737669 590933 054638 999490 958643 (136 digits)/315399 252261 197119 124836 368026 814816 732164 851397 970404 165778 850284 746259 986434 411173 499985 394970 053125 462821 916124 412871 765194 934661 087224 (138 digits), a[278] = 1
                                                                                      A[279]/B[279] = 4998 005882 977689 217842 544122 276002 888143 599354 435688 434728 447593 227975 821796 257718 395495 462450 270426 373126 014393 978379 406091 704058 358241 (136 digits)/485773 811992 119977 409290 036655 116927 451349 522185 370567 597467 749781 177778 871613 725756 275129 595567 767346 446421 847857 331319 912664 009599 790381 (138 digits), a[279] = 1
                                                                                      A[280]/B[280] = 8243 070312 909944 666423 488742 299645 372484 637468 468943 755440 163964 565917 418017 837570 841163 692922 681765 664229 752063 569312 460730 703549 316884 (136 digits)/801173 064253 317096 534126 404681 931744 183514 373583 340971 763246 600065 924038 858048 136929 775114 990537 820471 909243 763981 744191 677858 944260 877605 (138 digits), a[280] = 1
                                                                                      A[281]/B[281] = 268776 255896 095918 543394 183875 864654 807651 998345 441888 608813 694459 337333 198367 059985 312733 635976 086927 628478 080428 196378 149474 217636 498529 (138 digits)/26 123311 868098 267066 501334 986476 932741 323809 476852 281664 021358 951890 747022 329154 107509 078809 292778 022447 542222 295273 145453 604150 225947 873741 (140 digits), a[281] = 32
                                                                                      A[282]/B[282] = 1 352124 349793 389537 383394 408121 622919 410744 629195 678386 799508 636261 252583 409853 137497 404831 872803 116403 806620 154204 551203 208101 791731 809529 (139 digits)/131 417732 404744 652429 040801 337066 595450 802561 757844 749291 870041 359519 659150 503818 674475 169161 454427 932709 620355 240347 471459 698610 074000 246310 (141 digits), a[282] = 5
                                                                                      A[283]/B[283] = 7 029398 004863 043605 460366 224483 979251 861375 144323 833822 606356 875765 600250 247632 747472 336892 999991 668946 661578 851450 952394 189983 176295 546174 (139 digits)/683 211973 891821 529211 705341 671809 909995 336618 266076 028123 371565 749489 042774 848247 479884 924616 564917 685995 643998 497010 502752 097200 595949 105291 (141 digits), a[283] = 5
                                                                                      A[284]/B[284] = 1336 937745 273771 674574 852977 060077 680773 072022 050724 104682 007315 031725 300130 460075 157241 414501 871220 216269 506601 929885 506099 304905 287885 582589 (142 digits)/129941 692771 850835 202653 055718 980949 494564 760032 312290 092732 467533 762437 786371 670839 852610 846308 788788 271881 980069 672342 994358 166723 304330 251600 (144 digits), a[284] = 190
                                                                                      A[285]/B[285] = 1343 967143 278634 718180 313343 284561 660024 933397 195047 938504 613671 907490 900380 707707 904713 751394 871211 885216 168180 781336 458493 494888 464181 128763 (142 digits)/130624 904745 742656 731864 761060 652759 404560 096650 578366 120855 839099 511926 829146 519087 332495 770925 353705 957877 624068 169353 497110 263923 900279 356891 (144 digits), a[285] = 1
                                                                                      A[286]/B[286] = 2680 904888 552406 392755 166320 344639 340798 005419 245772 043186 620986 939216 200511 167783 061955 165896 742432 101485 674782 711221 964592 799793 752066 711352 (142 digits)/260566 597517 593491 934517 816779 633708 899124 856682 890656 213588 306633 274364 615518 189927 185106 617234 142494 229759 604137 841696 491468 430647 204609 608491 (144 digits), a[286] = 1
                                                                                      A[287]/B[287] = 25472 111140 250292 252976 810226 386315 727206 982170 406996 327184 202554 360436 704981 217755 462310 244465 553100 798587 241225 182334 139828 693032 232781 530931 (143 digits)/2 475724 282404 084084 142525 112077 356139 496683 806796 594272 043150 598798 981208 368810 228431 998455 326032 636154 025714 061308 744621 920326 139748 741765 833310 (145 digits), a[287] = 9
                                                                                      A[288]/B[288] = 104569 349449 553575 404662 407225 889902 249625 934100 873757 351923 431204 380963 020436 038804 911196 143758 954835 295834 639683 440558 523907 571922 683192 835076 (144 digits)/10 163463 727133 929828 504618 265089 058266 885860 083869 267744 386190 701829 199198 090759 103655 178927 921364 687110 332615 849372 820184 172772 989642 171672 941731 (146 digits), a[288] = 4
                                                                                      A[289]/B[289] = 339180 159488 911018 466964 031904 056022 476084 784473 028268 382954 496167 503325 766289 334170 195898 675742 417606 686091 160275 504009 711551 408800 282360 036159 (144 digits)/32 966115 463805 873569 656379 907344 530940 154264 058404 397505 201722 704286 578802 641087 539397 535239 090126 697485 023561 609427 205174 438645 108675 256784 658503 (146 digits), a[289] = 3
                                                                                      A[290]/B[290] = 782929 668427 375612 338590 471034 001947 201795 503046 930294 117832 423539 387614 553014 707145 302993 495243 790048 668016 960234 448577 947010 389523 247912 907394 (144 digits)/76 095694 654745 676967 817378 079778 120147 194388 200678 062754 789636 110402 356803 372934 182450 249406 101618 082080 379739 068227 230533 050063 206992 685242 258737 (146 digits), a[290] = 2
                                                                                      A[291]/B[291] = 1 905039 496343 662243 144144 973972 059916 879675 790566 888856 618619 343246 278554 872318 748460 801885 666229 997704 022125 080744 401165 605572 187846 778185 850947 (145 digits)/185 157504 773297 227505 291136 066900 771234 543040 459760 523014 780994 925091 292409 386955 904298 034051 293362 861645 783039 745881 666240 538771 522660 627269 175977 (147 digits), a[291] = 2
                                                                                      A[292]/B[292] = 107 465141 463672 461228 410709 013469 357292 463639 774792 706264 760515 645330 986687 402864 620950 208590 804123 661473 907021 481920 913851 859052 908942 826320 560426 (147 digits)/10444 915961 959390 417264 120997 826221 309281 604653 947267 351582 525351 915514 731729 042464 823140 156278 529938 334244 229964 837600 540003 221268 475987 812316 113449 (149 digits), a[292] = 56
                                                                                      A[293]/B[293] = 216 835322 423688 584699 965563 000910 774501 806955 340152 301386 139650 633908 251929 678047 990361 219067 274477 320651 836168 044586 228869 323678 005732 430826 971799 (147 digits)/21074 989428 692078 062033 533131 719343 389797 752348 354295 226179 831698 756120 755867 471885 550578 346608 353239 530134 242969 421082 746246 981308 474636 251901 402875 (149 digits), a[293] = 2
                                                                                      A[294]/B[294] = 4444 171589 937444 155227 721969 031684 847328 602746 577838 733987 553528 323496 025280 963824 428174 589936 293670 074510 630382 373645 491238 332613 023591 442859 996406 (148 digits)/431944 704535 800951 657934 783632 213089 105236 651621 033171 875179 159327 037929 849078 480175 834707 088445 594728 936929 089353 259255 464942 847437 968712 850344 170949 (150 digits), a[294] = 20
                                                                                      A[295]/B[295] = 4661 006912 361132 739927 687532 032595 621830 409701 917991 035373 693178 957404 277210 641872 418535 809003 568147 395162 466550 418231 720107 656291 029323 873686 968205 (148 digits)/453019 693964 493029 719968 316763 932432 495034 403969 387467 101358 991025 794050 604945 952061 385285 435053 947968 467063 332322 680338 211189 828746 443349 102245 573824 (150 digits), a[295] = 1
                                                                                      A[296]/B[296] = 51054 240713 548771 554504 597289 357641 065632 699765 757749 087724 485317 897538 797387 382548 613532 679971 975144 026135 295886 555962 692314 895523 316830 179729 678456 (149 digits)/4 962141 644180 731248 857617 951271 537414 055580 691314 907842 888769 069584 978435 898538 000789 687561 438985 074413 607562 412580 062637 576841 134902 402203 872799 909189 (151 digits), a[296] = 10
                                                                                      A[297]/B[297] = 55715 247625 909904 294432 284821 390236 687463 109467 675740 123098 178496 854943 074598 024421 032068 488975 543291 421297 762436 974194 412422 551814 346154 053416 646661 (149 digits)/5 415161 338145 224278 577586 268035 469846 550615 095284 295309 990128 060610 772486 503483 952851 072846 874039 022382 074625 744902 742975 788030 963648 845552 975045 483013 (151 digits), a[297] = 1
                                                                                      A[298]/B[298] = 329630 478843 098293 026666 021396 308824 502948 247104 136449 703215 377802 172254 170377 504653 773875 124849 691601 132624 108071 426934 754427 654595 047600 446812 911761 (150 digits)/32 037948 334906 852641 745549 291448 886646 808656 167736 384392 839409 372638 840868 415957 765045 051795 809180 186323 980691 137093 777516 516995 953146 629968 748027 324254 (152 digits), a[298] = 5
                                                                                      A[299]/B[299] = 714976 205312 106490 347764 327614 007885 693359 603675 948639 529528 934101 199451 415353 033728 579818 738674 926493 686545 978579 828063 921277 861004 441354 947042 470183 (150 digits)/69 491058 007958 929562 068684 850933 243140 167927 430757 064095 668946 805888 454223 335399 482941 176438 492399 395030 036008 019090 298008 822022 869942 105490 471100 131521 (152 digits), a[299] = 2
                                                                                      A[300]/B[300] = 1 044606 684155 204783 374430 349010 316710 196307 850780 085089 232744 311903 371705 585730 538382 353693 863524 618094 819170 086651 254998 675705 515599 488955 393855 381944 (151 digits)/101 529006 342865 782203 814234 142382 129786 976583 598493 448488 508356 178527 295091 751357 247986 228234 301579 581354 016699 156184 075525 339018 823088 735459 219127 455775 (153 digits), a[300] = 1
                                                                                      A[301]/B[301] = 1 759582 889467 311273 722194 676624 324595 889667 454456 033728 762273 246004 571157 001083 572110 933512 602199 544588 505716 065231 083062 596983 376603 930310 340897 852127 (151 digits)/171 020064 350824 711765 882918 993315 372927 144511 029250 512584 177302 984415 749315 086756 730927 404672 793978 976384 052707 175274 373534 161041 693030 840949 690227 587296 (153 digits), a[301] = 1
                                                                                      A[302]/B[302] = 6 323355 352557 138604 541014 378883 290497 865310 214148 186275 519564 049917 085176 588981 254715 154231 670123 251860 336318 282344 504186 466655 645411 279886 416548 938325 (151 digits)/614 589199 395339 917501 462991 122328 248568 410116 686244 986241 040265 131774 543037 011627 440768 442252 683516 510506 174820 682007 196127 822143 902181 258308 289810 217663 (153 digits), a[302] = 3
                                                                                      A[303]/B[303] = 8 082938 242024 449878 263209 055507 615093 754977 668604 220004 281837 295921 656333 590064 826826 087744 272322 796448 842034 347575 587249 063639 022015 210196 757446 790452 (151 digits)/785 609263 746164 629267 345910 115643 621495 554627 715495 498825 217568 116190 292352 098384 171695 846925 477495 486890 227527 857281 569661 983185 595212 099257 980037 804959 (153 digits), a[303] = 1
                                                                                      A[304]/B[304] = 14 406293 594581 588482 804223 434390 905591 620287 882752 406279 801401 345838 741510 179046 081541 241975 942446 048309 178352 629920 091435 530294 667426 490083 173995 728777 (152 digits)/1400 198463 141504 546768 808901 237971 870063 964744 401740 485066 257833 247964 835389 110011 612464 289178 161011 997396 402348 539288 765789 805329 497393 357566 269848 022622 (154 digits), a[304] = 1
                                                                                      A[305]/B[305] = 108 926993 404095 569257 892773 096243 954235 096992 847871 063962 891646 716792 846904 843387 397614 781575 869445 134613 090502 757016 227297 775701 694000 640778 975416 891891 (153 digits)/10586 998505 736696 456649 008218 781446 711943 307838 527678 894289 022400 851944 140075 868465 458945 871172 604579 468665 043967 632302 930190 620492 076965 602221 868973 963313 (155 digits), a[305] = 7
                                                                                      A[306]/B[306] = 123 333286 998677 157740 696996 530634 859826 717280 730623 470242 693048 062631 588415 022433 479156 023551 811891 182922 268855 386936 318733 305996 361427 130862 149412 620668 (153 digits)/11987 196968 878201 003417 817120 019418 582007 272582 929419 379355 280234 099908 975464 978477 071410 160350 765591 466061 446316 171591 695980 425821 574358 959788 138821 985935 (155 digits), a[306] = 1
                                                                                      A[307]/B[307] = 232 260280 402772 726998 589769 626878 814061 814273 578494 534205 584694 779424 435319 865820 876770 805127 681336 317535 359358 143952 546031 081698 055427 771641 124829 512559 (153 digits)/22574 195474 614897 460066 825338 800865 293950 580421 457098 273644 302634 951853 115540 846942 530356 031523 370170 934726 490283 803894 626171 046313 651324 562010 007795 949248 (155 digits), a[307] = 1
                                                                                      A[308]/B[308] = 355 593567 401449 884739 286766 157513 673888 531554 309118 004448 277742 842056 023734 888254 355926 828679 493227 500457 628213 530888 864764 387694 416854 902503 274242 133227 (153 digits)/34561 392443 493098 463484 642458 820283 875957 853004 386517 652999 582869 051762 091005 825419 601766 191874 135762 400787 936599 975486 322151 472135 225683 521798 146617 935183 (155 digits), a[308] = 1
                                                                                      A[309]/B[309] = 587 853847 804222 611737 876535 784392 487950 345827 887612 538653 862437 621480 459054 754075 232697 633807 174563 817992 987571 674841 410795 469392 472282 674144 399071 645786 (153 digits)/57135 587918 107995 923551 467797 621149 169908 433425 843615 926643 885504 003615 206546 672362 132122 223397 505933 335514 426883 779380 948322 518448 877008 083808 154413 884431 (155 digits), a[309] = 1
                                                                                      A[310]/B[310] = 943 447415 205672 496477 163301 941906 161838 877382 196730 543102 140180 463536 482789 642329 588624 462486 667791 318450 615785 205730 275559 857086 889137 576647 673313 779013 (153 digits)/91696 980361 601094 387036 110256 441433 045866 286430 230133 579643 468373 055377 297552 497781 733888 415271 641695 736302 363483 754867 270473 990584 102691 605606 301031 819614 (155 digits), a[310] = 1
                                                                                      A[311]/B[311] = 2474 748678 215567 604692 203139 668204 811628 100592 281073 624858 142798 548553 424634 038734 409946 558780 510146 454894 219142 086301 961915 183566 250557 827439 745699 203812 (154 digits)/240529 548641 310184 697623 688310 504015 261641 006286 303883 085930 822250 114369 801651 667925 599899 053940 789324 808119 153851 289115 489270 499617 082391 295020 756477 523659 (156 digits), a[311] = 2
                                                                                      A[312]/B[312] = 1 156651 080141 875743 887736 029526 993553 192161 853977 458113 351854 827102 637985 786885 731299 033667 412984 906185 754050 955139 508746 489950 582525 899642 991008 914841 959217 (157 digits)/112 418996 195853 457348 177298 551261 816560 232216 222134 143534 709337 459176 466074 668881 419036 886746 605620 256381 127947 212035 771800 759797 311761 579426 380299 576035 368367 (159 digits), a[312] = 467
                                                                                      A[313]/B[313] = 1 159125 828820 091311 492428 232666 661758 003789 954569 739186 976712 969901 186539 211519 770033 443613 971765 416332 208945 174281 595048 451865 766092 150200 818448 660541 163029 (157 digits)/112 659525 744494 767532 874922 239572 320575 493857 228420 447417 795268 281426 580444 470533 086962 486645 659561 045705 936066 365887 060916 249067 811378 661817 675320 332512 892026 (159 digits), a[313] = 1
                                                                                      A[314]/B[314] = 3 474902 737782 058366 872592 494860 317069 199741 763116 936487 305280 766905 011064 209925 271365 920895 356515 738850 171941 303702 698843 393682 114710 200044 627906 235924 285275 (157 digits)/337 738047 684842 992413 927143 030406 457711 219930 678975 038370 299874 022029 626963 609947 592961 860037 924742 347793 000079 943809 893633 257932 934518 903061 730940 241061 152419 (159 digits), a[314] = 2
                                                                                      A[315]/B[315] = 4 634028 566602 149678 365020 727526 978827 203531 717686 675674 281993 736806 197603 421445 041399 364509 328281 155182 380886 477984 293891 845547 880802 350245 446354 896465 448304 (157 digits)/450 397573 429337 759946 802065 269978 778286 713787 907395 485788 095142 303456 207408 080480 679924 346683 584303 393498 936146 309696 954549 507000 745897 564879 406260 573574 044445 (159 digits), a[315] = 1
                                                                                      A[316]/B[316] = 54 449216 970405 704828 887820 497657 084168 438590 657670 368904 407211 871773 184701 845820 726758 930497 967608 445856 361692 561529 931653 694708 803536 052744 537810 097044 216619 (158 digits)/5292 111355 407558 351828 749861 000173 018865 071597 660325 382039 346439 360047 908452 495235 072129 673557 352079 676281 297689 350476 393677 834941 139392 116735 199806 550375 641314 (160 digits), a[316] = 11
                                                                                      A[317]/B[317] = 113 532462 507413 559336 140661 722841 147164 080713 033027 413483 096417 480352 567007 113086 494917 225505 263498 046895 104271 601044 157199 234965 487874 455734 521975 090553 881542 (159 digits)/11034 620284 244454 463604 301787 270324 816016 856983 228046 249866 788021 023552 024313 070950 824183 693798 288462 746061 531525 010649 741905 176883 024681 798349 805873 674325 327073 (161 digits), a[317] = 2
                                                                                      A[318]/B[318] = 281 514141 985232 823501 169143 943339 378496 600016 723725 195870 600046 832478 318716 071993 716593 381508 494604 539646 570235 763618 246052 164639 779284 964213 581760 278151 979703 (159 digits)/27361 351923 896467 279037 353435 540822 650898 785564 116417 881772 922481 407151 957078 637136 720497 061153 929005 168404 360739 371775 877488 188707 188755 713434 811553 899026 295460 (161 digits), a[318] = 2
                                                                                      A[319]/B[319] = 395 046604 492646 382837 309805 666180 525660 680729 756752 609353 696464 312830 885723 185080 211510 607013 758102 586541 674507 364662 403251 399605 267159 419948 103735 368705 861245 (159 digits)/38395 972208 140921 742641 655222 811147 466915 642547 344464 131639 710502 430703 981391 708087 544680 754952 217467 914465 892264 382425 619393 365590 213437 511784 617427 573351 622533 (161 digits), a[319] = 1
                                                                                      A[320]/B[320] = 1466 653955 463171 972013 098560 941880 955478 642205 993983 023931 689439 770970 975885 627234 351125 202549 768912 299271 593757 857605 455806 363455 580763 224057 892966 384269 563438 (160 digits)/142549 268548 319232 506962 319103 974265 051645 713206 149810 276692 053988 699263 901253 761399 354539 326010 581408 911802 037532 519052 735668 285477 829068 248788 663836 619081 163059 (162 digits), a[320] = 3
                                                                                      A[321]/B[321] = 3328 354515 418990 326863 506927 549942 436617 965141 744718 657217 075343 854772 837494 439548 913761 012113 295927 185084 862023 079873 314864 126516 428685 868063 889668 137244 988121 (160 digits)/323494 509304 779386 756566 293430 759677 570207 068959 644084 685023 818479 829231 783899 230886 253759 406973 380285 738069 967329 420531 090729 936545 871574 009361 945100 811513 948651 (162 digits), a[321] = 2
                                                                                      A[322]/B[322] = 8123 362986 301152 625740 112416 041765 828714 572489 483420 338365 840127 480516 650874 506332 178647 226776 360766 669441 317804 017352 085534 616488 438134 960185 672302 658759 539680 (160 digits)/789538 287157 878006 020094 905965 493620 192059 851125 437979 646739 690948 357727 469052 223171 862058 139957 341980 387941 972191 360114 917128 158569 572216 267512 554038 242109 060361 (162 digits), a[322] = 2
                                                                                      A[323]/B[323] = 19575 080488 021295 578343 731759 633474 094047 110120 711559 333948 755598 815806 139243 452213 271055 465666 017460 523967 497631 114577 485933 359493 304955 788435 234273 454764 067481 (161 digits)/1 902571 083620 535398 796756 105361 746917 954326 771210 520043 978503 200376 544686 722003 677229 977875 686888 064246 513953 911712 140760 924986 253685 016006 544387 053177 295732 069373 (163 digits), a[323] = 2
                                                                                      A[324]/B[324] = 27698 443474 322448 204083 844175 675239 922761 682610 194979 672314 595726 296322 790117 958545 449702 692442 378227 193408 815435 131929 571467 975981 743090 748620 906576 113523 607161 (161 digits)/2 692109 370778 413404 816851 011327 240538 146386 622335 958023 625242 891324 902414 191055 900401 839933 826845 406226 901895 883903 500875 842114 412254 588222 811899 607215 537841 129734 (163 digits), a[324] = 1
                                                                                      A[325]/B[325] = 1 127512 819460 919223 741697 498786 643071 004514 414528 510746 226532 584650 668717 743961 794031 259163 163361 146548 260320 115036 391760 344652 398763 028585 733271 497317 995708 353921 (163 digits)/109 586945 914757 071591 470796 558451 368443 809791 664648 840988 988218 853372 641254 364239 693303 575228 760704 313322 589789 267852 175794 609562 743868 544919 020371 341798 809377 258733 (165 digits), a[325] = 40
                                                                                      A[326]/B[326] = 3 410236 901857 080119 429176 340535 604452 936304 926195 727218 351912 349678 302476 022003 340639 227192 182525 817871 974369 160544 307210 605425 172270 828847 948435 398530 100648 668924 (163 digits)/331 452947 115049 628179 229240 686681 345869 575761 616282 480990 589899 451442 826177 283774 980312 565620 108958 346194 671263 687460 028259 670802 643860 222979 873013 632611 965972 905933 (165 digits), a[326] = 3
                                                                                      A[327]/B[327] = 38 640118 739888 800537 462637 244678 292053 303868 602681 510148 097568 431111 995953 985998 541062 758277 171145 143139 978380 881023 771077 004329 293742 145913 166060 881149 102843 712085 (164 digits)/3755 569364 180302 981562 992444 111946 173009 143169 443756 131885 477112 819243 729204 485764 476741 797049 959246 121463 973689 829912 486650 988391 826330 997697 623521 300530 435079 223996 (166 digits), a[327] = 11
                                                                                      A[328]/B[328] = 42 050355 641745 880656 891813 585213 896506 240173 528877 237366 449480 780790 298430 008001 881701 985469 353670 961011 952750 041568 078287 609754 466012 974761 114496 279679 203492 381009 (164 digits)/4087 022311 295352 609742 221684 798627 518878 718931 060038 612876 067012 270686 555381 769539 457054 362670 068204 467658 644953 517372 514910 659194 470191 220677 496534 933142 401052 129929 (166 digits), a[328] = 1
                                                                                      A[329]/B[329] = 417 093319 515601 726449 488959 511603 360609 465430 362576 646446 142895 458224 681824 058015 476380 627501 354183 792247 553131 255136 475665 492119 487858 918763 196527 398261 934275 141166 (165 digits)/40538 770165 838476 469242 987607 299593 842917 613548 984103 647770 080223 255422 727640 411619 590231 061080 573086 330391 778271 486265 120846 921142 058051 983795 092335 698812 044548 393357 (167 digits), a[329] = 9
                                                                                      A[330]/B[330] = 5881 356828 860170 050949 737246 747660 945038 756198 604950 287612 450017 195935 843966 820218 551030 770488 312244 052477 696587 613478 737604 499427 296037 837445 865879 855346 283344 357333 (166 digits)/571629 804633 034023 179144 048186 992941 319725 308616 837489 681657 190137 846604 742347 532213 720289 217798 091413 093143 540754 325084 206767 555183 282918 993808 789234 716511 024729 636927 (168 digits), a[330] = 14
                                                                                      A[331]/B[331] = 23942 520634 956281 930248 437946 502247 140764 490224 782377 796895 942964 241968 057691 338889 680503 709454 603160 002158 339481 709051 426083 489828 672010 268546 660046 819647 067652 570498 (167 digits)/2 327057 988697 974569 185819 180355 271359 121818 848016 334062 374398 840774 641841 697030 540474 471387 932272 938738 702965 941288 786601 947917 141875 189727 959030 249274 564856 143466 941065 (169 digits), a[331] = 4
                                                                                      A[332]/B[332] = 197421 521908 510425 492937 240818 765638 071154 677996 863972 662779 993731 131680 305497 531335 995060 446125 137524 069744 412441 285890 146272 418056 672119 985819 146254 412522 824564 921317 (168 digits)/19 188093 714216 830576 665697 491029 163814 294276 092747 509988 676847 916334 981338 318591 856009 491392 675981 601322 716871 071064 617899 790104 690184 800742 666050 783431 235360 172465 165447 (170 digits), a[332] = 8
                                                                                      A[333]/B[333] = 221364 042543 466707 423185 678765 267885 211919 168221 646350 459675 936695 373648 363188 870225 675564 155579 740684 071902 751922 994941 572355 907885 344130 254365 806301 232169 892217 491815 (168 digits)/21 515151 702914 805145 851516 671384 435173 416094 940763 844051 051246 757109 623180 015622 396483 962780 608254 540061 419837 012353 404501 738021 832059 990470 625081 032705 800216 315932 106512 (170 digits), a[333] = 1
                                                                                      A[334]/B[334] = 418785 564451 977132 916122 919584 033523 283073 846218 510323 122455 930426 505328 668686 401561 670624 601704 878208 141647 164364 280831 718628 325942 016250 240184 952555 644692 716782 413132 (168 digits)/40 703245 417131 635722 517214 162413 598987 710371 033511 354039 728094 673444 604518 334214 252493 454173 284236 141384 136708 083418 022401 528126 522244 791213 291131 816137 035576 488397 271959 (170 digits), a[334] = 1
                                                                                      A[335]/B[335] = 3 571648 558159 283770 752169 035437 536071 476509 937969 728935 439323 380107 416277 712680 082719 040560 969218 766349 205080 066837 241595 321382 515421 474132 175845 426746 389711 626476 796871 (169 digits)/347 141115 039967 890925 989229 970693 227075 099063 208854 676368 876004 144666 459326 689336 416431 596166 882143 671134 513501 679697 583713 963034 010018 320176 954135 561802 084828 223110 282184 (171 digits), a[335] = 8
                                                                                      A[336]/B[336] = 3 990434 122611 260903 668291 955021 569594 759583 784188 239258 561779 310533 921606 381366 484280 711185 570923 644557 346727 231201 522427 040010 841363 490382 416030 379302 034404 343259 210003 (169 digits)/387 844360 457099 526648 506444 133106 826062 809434 242366 030408 604098 818111 063845 023550 668925 050340 166379 812518 650209 763115 606115 491160 532263 111390 245267 377939 120404 711507 554143 (171 digits), a[336] = 1
                                                                                      A[337]/B[337] = 23 523819 171215 588289 093628 810545 384045 274428 858910 925228 248219 932777 024309 619512 504122 596488 823836 989135 938716 222844 853730 521436 722238 926044 255997 323256 561733 342772 846886 (170 digits)/2286 362917 325465 524168 521450 636227 357389 146234 420684 828411 896498 235221 778551 807089 761056 847867 714042 733727 764550 495275 614291 418836 671333 877128 180472 451497 686851 780648 052899 (172 digits), a[337] = 5
                                                                                      A[338]/B[338] = 27 514253 293826 849192 761920 765566 953640 034012 643099 164486 809999 243310 945916 000878 988403 307674 394760 633693 285443 454046 376157 561447 563602 416426 672027 702558 596137 686032 056889 (170 digits)/2674 207277 782565 050817 027894 769334 183451 955668 663050 858820 500597 053332 842396 830640 429981 898207 880422 546246 414760 258391 220406 909997 203596 988518 425739 829436 807256 492155 607042 (172 digits), a[338] = 1
                                                                                      A[339]/B[339] = 78 552325 758869 286674 617470 341679 291325 342454 145109 254201 868218 419398 916141 621270 480929 211837 613358 256522 509603 130937 606045 644331 849443 758897 600052 728373 754008 714836 960664 (170 digits)/7634 777472 890595 625802 577240 174895 724293 057571 746786 546052 897692 341887 463345 468370 621020 644283 474887 826220 594071 012058 055105 238831 078527 854165 031952 110371 301364 764959 266983 (172 digits), a[339] = 2
                                                                                      A[340]/B[340] = 184 618904 811565 422541 996861 448925 536290 718920 933317 672890 546436 082108 778199 243419 950261 731349 621477 146738 304649 715921 588248 850111 262489 934221 872133 159306 104155 115705 978217 (171 digits)/17943 762223 563756 302422 182375 119125 632038 070812 156623 950926 295981 737107 769087 767381 672023 186774 830198 198687 602902 282507 330617 387659 360652 696848 489644 050179 409986 022074 141008 (173 digits), a[340] = 2
                                                                                      A[341]/B[341] = 1001 646849 816696 399384 601777 586306 972778 937058 811697 618654 600398 829942 807137 838370 232237 868585 720743 990214 032851 710545 547289 894888 161893 430006 960718 524904 274784 293366 851749 (172 digits)/97353 588590 709377 137913 489115 770523 884483 411632 529906 300684 377601 027426 308784 305278 981136 578157 625878 819658 608582 424594 708192 177127 881791 338407 480172 361268 351294 875329 972023 (173 digits), a[341] = 5
                                                                                      A[342]/B[342] = 1186 265754 628261 821926 598639 035232 509069 655979 745015 291545 146834 912051 585337 081790 182499 599935 342221 136952 337501 426467 135538 744999 424383 364228 832851 684210 378939 409072 829966 (172 digits)/115297 350814 273133 440335 671490 889649 516521 482444 686530 251610 673582 764534 077872 072660 653159 764932 456077 018346 211484 707102 038809 564787 242444 035255 969816 411447 761280 897404 113031 (174 digits), a[342] = 1
                                                                                      A[343]/B[343] = 3374 178359 073220 043237 799055 656771 990918 249018 301728 201744 894068 654045 977812 001950 597237 068456 405186 264118 707854 563479 818367 384887 010660 158464 626421 893325 032663 111512 511681 (172 digits)/327948 290219 255644 018584 832097 549822 917526 376521 902966 803905 724766 556494 464528 450600 287456 108022 538032 856351 031551 838798 785811 306702 366679 408919 419805 184163 873856 670138 198085 (174 digits), a[343] = 2
                                                                                      A[344]/B[344] = 7934 622472 774701 908402 196750 348776 490906 154016 348471 695034 934972 220143 540961 085691 376973 736848 152593 665189 753210 553426 772273 514773 445703 681158 085695 470860 444265 632097 853328 (172 digits)/771193 931252 784421 477505 335685 989295 351574 235488 492463 859422 123115 877523 006928 973861 228071 980977 532142 731048 274588 384699 610432 178191 975802 853094 809426 779775 508994 237680 509201 (174 digits), a[344] = 2
                                                                                      A[345]/B[345] = 27178 045777 397325 768444 389306 703101 463636 711067 347143 286849 698985 314476 600695 259024 728158 279000 862967 259687 967486 223760 135187 929207 347771 201938 883508 305906 365460 007806 071665 (173 digits)/2 641530 083977 608908 451100 839155 517708 972249 082987 380358 382172 094114 189063 485315 372183 971672 050955 134461 049495 855316 992897 617107 841278 294087 968203 848085 523490 400839 383179 725688 (175 digits), a[345] = 3
                                                                                      A[346]/B[346] = 823275 995794 694474 961733 875951 441820 400007 486036 762770 300525 904531 654441 561818 856433 221722 106874 041611 455828 777797 266230 827911 390993 878839 739324 590944 648051 408065 866280 003278 (174 digits)/80 017096 450581 051675 010530 510351 520564 519046 725109 903215 324584 946541 549427 566390 139380 378233 509631 565974 215923 934098 171628 123667 416540 798441 899210 251992 484487 534175 733072 279841 (176 digits), a[346] = 30
                                                                                      A[347]/B[347] = 2 497006 033161 480750 653646 017161 028562 663659 169177 635454 188427 412580 277801 286151 828324 393324 599622 987801 627174 300878 022452 618922 102188 984290 419912 656342 250060 589657 606646 081499 (175 digits)/242 692819 435720 763933 482692 370210 079402 529389 258317 090004 355926 933738 837346 184485 790325 106372 579849 832383 697267 657611 507781 988110 090900 689413 665834 604062 976953 003366 582396 565211 (177 digits), a[347] = 3
                                                                                      A[348]/B[348] = 3 320282 028956 175225 615379 893112 470383 063666 655214 398224 488953 317111 932242 847970 684757 615046 706497 029413 083003 078675 288683 446833 493182 863130 159237 247286 898111 997723 472926 084777 (175 digits)/322 709915 886301 815608 493222 880561 599967 048435 983426 993219 680511 880280 386773 750875 929705 484606 089481 398357 913191 591709 679410 111777 507441 487855 565044 856055 461440 537542 315468 845052 (177 digits), a[348] = 1
                                                                                      A[349]/B[349] = 9 137570 091073 831201 884405 803385 969328 790992 479606 431903 166334 046804 142286 982093 197839 623418 012617 046627 793180 458228 599819 512589 088554 710550 738387 150916 046284 585104 552498 251053 (175 digits)/888 112651 208324 395150 469138 131333 279336 626261 225171 076443 716950 694299 610893 686237 649736 075584 758812 629099 523650 841030 866602 211665 105783 665124 795924 316173 899834 078451 213334 255315 (177 digits), a[349] = 2
                                                                                      A[350]/B[350] = 12 457852 120030 006427 499785 696498 439711 854659 134820 830127 655287 363916 074529 830063 882597 238464 719114 076040 876183 536903 888502 959422 581737 573680 897624 398202 944396 582828 025424 335830 (176 digits)/1210 822567 094626 210758 962361 011894 879303 674697 208598 069663 397462 574579 997667 437113 579441 560190 848294 027457 436842 432740 546012 323442 613225 152980 360969 172229 361274 615993 528803 100367 (178 digits), a[350] = 1
                                                                                      A[351]/B[351] = 34 053274 331133 844056 883977 196382 848752 500310 749248 092158 476908 774636 291346 642220 963034 100347 450845 198709 545547 532036 376825 431434 252029 857912 533635 947321 935077 750760 603346 922713 (176 digits)/3309 757785 397576 816668 393860 155123 037943 975655 642367 215770 511875 843459 606228 560464 808619 195966 455400 684014 397335 706511 958626 858550 332233 971085 517862 660632 622383 310438 270940 456049 (178 digits), a[351] = 2
                                                                                      A[352]/B[352] = 216 777498 106833 070768 803648 874795 532226 856523 630309 383078 516740 011733 822609 683389 660801 840549 424185 268298 149468 729122 149455 548028 093916 721156 099440 082134 554863 087391 645505 872108 (177 digits)/21069 369279 480087 110769 325521 942633 106967 528631 062801 364286 468717 635337 635038 799902 431156 735989 580698 131543 820856 671812 297773 474744 606628 979493 468145 136025 095574 478623 154445 836661 (179 digits), a[352] = 6
                                                                                      A[353]/B[353] = 250 830772 437966 914825 687626 071178 380979 356834 379557 475236 993648 786370 113956 325610 623835 940896 875030 467007 695016 261158 526280 979462 345946 579068 633076 029456 489940 838152 248852 794821 (177 digits)/24379 127064 877663 927437 719382 097756 144911 504286 705168 580056 980593 478797 241267 360367 239775 931956 036098 815558 218192 378324 256400 333294 938862 950578 986007 796657 717957 789061 425386 292710 (179 digits), a[353] = 1
                                                                                      A[354]/B[354] = 2474 254450 048535 304199 992283 515400 961041 068033 046326 660211 459579 089064 848216 613885 275325 308621 299459 471367 404615 079548 885984 363189 207435 932773 797124 347242 964330 630761 885181 025497 (178 digits)/240481 512863 379062 457708 799960 822438 411171 067211 409318 584799 294058 944512 806445 043207 589140 123593 905587 471567 784588 076730 605376 474399 056395 534704 342215 305944 557194 580175 982922 471051 (180 digits), a[354] = 9
                                                                                      A[355]/B[355] = 10147 848572 632108 131625 656760 132782 225143 628966 564864 116082 831965 142629 506822 781151 725137 175382 072868 352477 313476 579354 070218 432219 175690 310163 821573 418428 347263 361199 789576 896809 (179 digits)/986305 178518 393913 758272 919225 387509 789595 773132 342442 919254 156829 256848 467047 533197 596336 426331 658448 701829 356544 685246 677906 230891 164445 089396 354869 020435 946736 109765 357076 176914 (180 digits), a[355] = 4
                                                                                      A[356]/B[356] = 22769 951595 312751 567451 305803 780965 411328 325966 176054 892377 123509 374323 861862 176188 725599 659385 445196 176322 031568 238257 026421 227627 558816 553101 440271 184099 658857 353161 464334 819115 (179 digits)/2 213091 869900 166889 974254 638411 597457 990362 613476 094204 423307 607717 458209 740540 109602 781812 976257 222484 875226 497677 447223 961188 936181 385285 713497 051953 346816 450666 799706 697074 824879 (181 digits), a[356] = 2
                                                                                      A[357]/B[357] = 556626 686860 138145 750456 996050 875952 097023 452154 790181 533133 796190 126402 191515 009681 139529 000632 757576 584206 071114 297522 704327 895280 587287 584598 388081 836820 159839 837074 933612 555569 (180 digits)/54 100510 056122 399273 140384 241103 726501 558298 496558 603349 078636 742048 253882 240010 163664 359847 856504 998085 707265 300803 418621 746440 699244 411302 213325 601749 344030 762739 302726 086871 974010 (182 digits), a[357] = 24
                                                                                      A[358]/B[358] = 579396 638455 450897 317908 301854 656917 508351 778120 966236 425510 919699 500726 053377 185869 865128 660018 202772 760528 102682 535779 730749 122908 146104 137699 828353 020919 818697 190236 397947 374684 (180 digits)/56 313601 926022 566163 114638 879515 323959 548661 110034 697553 501944 349765 712091 980550 273267 141660 832762 220570 582491 798480 865845 707629 635425 796587 926822 653702 690847 213406 102432 783946 798889 (182 digits), a[358] = 1
                                                                                      A[359]/B[359] = 4 033006 517592 843529 657906 807178 817457 147134 120880 587600 086199 314387 130758 511778 124900 330300 960741 974213 147374 687209 512201 088822 632729 463912 410797 358199 962339 072022 978493 321296 803673 (181 digits)/391 982121 612257 796251 828217 518195 670258 850265 156766 788670 090302 840642 526434 123311 803267 209812 853078 321509 202216 091688 613695 992218 511799 190829 774261 523965 489114 043175 917322 790552 767344 (183 digits), a[359] = 6
                                                                                      A[360]/B[360] = 61 074494 402348 103842 186510 409536 918774 715363 591329 780237 718500 635506 462103 730049 059374 819643 071147 815969 971148 410825 218796 063088 613850 104790 299660 201352 456005 899041 867636 217399 429779 (182 digits)/5936 045426 109889 509940 537901 652450 377842 302638 461536 527604 856486 959403 608603 830227 322275 288853 628937 043208 615733 173810 071285 590907 312413 659034 540745 513185 027557 861044 862274 642238 309049 (184 digits), a[360] = 15
                                                                                      A[361]/B[361] = 65 107500 919940 947371 844417 216715 736231 862497 712210 367837 804699 949893 592862 241827 184275 149944 031889 790183 118523 098034 730997 151911 246579 568702 710457 559552 418344 971064 846129 538696 233452 (182 digits)/6328 027547 722147 306192 366119 170646 048101 152903 618303 316274 946789 800046 135037 953539 125542 498666 482015 364717 817949 265498 684981 583125 824212 849864 315007 037150 516671 904220 779597 432791 076393 (184 digits), a[361] = 1
                                                                                      A[362]/B[362] = 126 181995 322289 051214 030927 626252 655006 577861 303540 148075 523200 585400 054965 971876 243649 969587 103037 606153 089671 508859 949793 214999 860429 673493 010117 760904 874350 870106 713765 756095 663231 (183 digits)/12264 072973 832036 816132 904020 823096 425943 455542 079839 843879 803276 759449 743641 783766 447817 787520 110952 407926 433682 439308 756267 174033 136626 508898 855752 550335 544229 765265 641872 075029 385442 (185 digits), a[362] = 1
                                                                                      A[363]/B[363] = 948 381468 175964 305870 060910 600484 321277 907526 836991 404366 467104 047693 977624 044960 889824 937053 753153 033254 746223 660054 379549 656910 269587 283153 781281 885886 538801 061811 842489 831365 876069 (183 digits)/92176 538364 546405 019122 694264 932321 029705 341698 177182 223433 569727 116194 340530 439904 260267 011307 258682 220202 853726 340659 978851 801357 780598 412156 305274 889499 326280 261080 272701 957996 774487 (185 digits), a[363] = 7
                                                                                      A[364]/B[364] = 2022 944931 674217 662954 152748 827221 297562 392914 977522 956808 457408 680788 010214 061798 023299 843694 609343 672662 582118 828968 708892 528820 399604 239800 572681 532677 951952 993730 398745 418827 415369 (184 digits)/196617 149702 924846 854378 292550 687738 485354 138938 434204 290746 942730 991838 424702 663574 968351 810134 628316 848332 141135 120628 713970 776748 697823 333211 466302 329334 196790 287426 187275 991022 934416 (186 digits), a[364] = 2
                                                                                      A[365]/B[365] = 2971 326399 850181 968824 213659 427705 618840 300441 814514 361174 924512 728481 987838 106758 913124 780748 362496 705917 328342 489023 088442 185730 669191 522954 353963 418564 490754 055542 241235 250193 291438 (184 digits)/288793 688067 471251 873500 986815 620059 515059 480636 611386 514180 512458 108032 765233 103479 228618 821441 886999 068534 994861 461288 692822 578106 478421 745367 771577 218833 523070 548506 459977 949019 708903 (186 digits), a[365] = 1
                                                                                      A[366]/B[366] = 7965 597731 374581 600602 580067 682632 535242 993798 606551 679158 306434 137751 985890 275315 849549 405191 334337 084497 238803 807014 885776 900281 737987 285709 280608 369806 933461 104814 881215 919213 998245 (184 digits)/774204 525837 867350 601380 266181 927857 515473 100211 656977 319107 967647 207903 955168 870533 425589 453018 402314 985402 130858 043206 099615 932961 654666 823947 009456 767001 242931 384439 107231 889062 352222 (186 digits), a[366] = 2
                                                                                      A[367]/B[367] = 10936 924131 224763 569426 793727 110338 154083 294240 421066 040333 230946 866233 973728 382074 762674 185939 696833 790414 567146 296037 974219 086012 407178 808663 634571 788371 424215 160357 122451 169407 289683 (185 digits)/1 062998 213905 338602 474881 252997 547917 030532 580848 268363 833288 480105 315936 720401 974012 654208 274460 289314 053937 125719 504494 792438 511068 133088 569314 781033 985834 766001 932945 567209 838082 061125 (187 digits), a[367] = 1
                                                                                      A[368]/B[368] = 1 025099 541935 277593 557294 396688 944080 864989 358157 765693 430148 784492 697511 542629 808268 778248 697583 139879 593051 983409 338546 488151 899435 605616 491427 295784 688349 385471 018027 269174 674091 938764 (187 digits)/99 633038 419034 357380 765336 794953 884141 355003 119100 614813 814936 617441 590018 952552 453710 266958 977825 308522 001554 822771 961221 796397 462298 031903 770221 645617 449634 481111 148376 857746 830694 036847 (188 digits), a[368] = 93
                                                                                      A[369]/B[369] = 1 036036 466066 502357 126721 190416 054419 019072 652398 186759 470482 015439 563745 516358 190343 540922 883522 836713 383466 550555 634584 462370 985448 012795 300090 930356 476720 809686 178384 391625 843499 228447 (187 digits)/100 696036 632939 695983 240218 047951 432058 385535 699948 883177 648225 097546 905955 672954 427722 921167 252285 597836 055491 948491 465716 588835 973366 164992 339536 426651 435469 247113 081322 424956 668776 097972 (189 digits), a[369] = 1
                                                                                      A[370]/B[370] = 4 133208 940134 784664 937457 967937 107337 922207 315352 325971 841594 830811 388748 091704 379299 401017 348151 650019 743451 635076 242299 875264 855779 644002 391700 086854 118511 814529 553180 444052 204589 624105 (187 digits)/401 721148 317853 445330 485990 938808 180316 511610 218947 264346 759611 910082 307885 971415 736879 030460 734682 102030 168030 668246 358371 562905 382396 526880 788830 925571 756042 222450 392344 132616 837022 330763 (189 digits), a[370] = 3
                                                                                      A[371]/B[371] = 42 368125 867414 349006 501300 869787 127798 241145 805921 446477 886430 323553 451226 433401 983337 551096 365039 336910 817982 901318 057583 215019 543244 452819 217091 798897 661838 954981 710188 832147 889395 469497 (188 digits)/4117 907519 811474 149288 100127 436033 235223 501637 889421 526645 244344 198369 984815 387111 796513 225774 599106 618137 735798 630955 049432 217889 797331 433800 227845 682368 995891 471617 004763 751125 038999 405602 (190 digits), a[371] = 10
                                                                                      A[372]/B[372] = 88 869460 674963 482677 940059 707511 362934 404498 927195 218927 614455 477918 291200 958508 345974 503210 078230 323841 379417 437712 357466 305303 942268 549640 825883 684649 442189 724492 973558 108347 983380 563099 (188 digits)/8637 536187 940801 743906 686245 810874 650763 514885 997790 317637 248300 306822 277516 745639 329905 482009 932895 338305 639627 930156 457235 998684 977059 394481 244522 290309 747825 165684 401871 634866 915021 141967 (190 digits), a[372] = 2
                                                                                      A[373]/B[373] = 308 976507 892304 797040 321479 992321 216601 454642 587507 103260 729796 757308 324829 308927 021261 060726 599730 308434 956235 214455 129982 130931 370050 101741 694742 852845 988408 128460 630863 157191 839537 158794 (189 digits)/30030 516083 633879 381008 158864 868657 187514 046295 882792 479556 989245 118836 817365 624029 786229 671804 397792 633054 654682 421424 421140 213944 728509 617243 961412 553298 239366 968670 210378 655725 784062 831503 (191 digits), a[373] = 3
                                                                                      A[374]/B[374] = 397 845968 567268 279718 261539 699832 579535 859141 514702 322188 344252 235226 616030 267435 367235 563936 677960 632276 335652 652167 487448 436235 312318 651382 520626 537495 430597 852953 604421 265539 822917 721893 (189 digits)/38668 052271 574681 124914 845110 679531 838277 561181 880582 797194 237545 425659 094882 369669 116135 153814 330687 971360 294310 351580 878376 212629 705569 011725 205934 843607 987192 134354 612250 290592 699083 973470 (191 digits), a[374] = 1
                                                                                      A[375]/B[375] = 7470 203942 103133 831969 029194 589307 648246 919189 852148 902650 926336 991387 413374 122763 631501 211586 803021 689408 997982 953469 904053 983166 991785 826627 066020 527763 739169 481625 510445 936908 652056 152868 (190 digits)/726055 456971 978139 629475 370857 100230 276510 147569 733282 829053 265062 780700 525248 278073 876662 440462 350176 117539 952268 749880 231912 041279 428751 828297 668239 738242 008825 387053 230883 886394 367574 353963 (192 digits), a[375] = 18
                                                                                      A[376]/B[376] = 7868 049910 670402 111687 290734 289140 227782 778331 366851 224839 270589 226614 029404 390198 998736 775523 480982 321685 333635 605637 391502 419402 304104 478009 586647 065259 169767 334579 114867 202448 474973 874761 (190 digits)/764723 509243 552820 754390 215967 779762 114787 708751 613865 626247 502608 206359 620130 647742 992797 594276 680864 088900 246579 101461 110288 253909 134320 840022 874174 581849 996017 521407 843134 176987 066658 327433 (192 digits), a[376] = 1
                                                                                      A[377]/B[377] = 15338 253852 773535 943656 319928 878447 876029 697521 219000 127490 196926 218001 442778 512962 630237 987110 284004 011094 331618 559107 295556 402569 295890 304636 652667 593022 908936 816204 625313 139357 127030 027629 (191 digits)/1 490778 966215 530960 383865 586824 879992 391297 856321 347148 455300 767670 987060 145378 925816 869460 034739 031040 206440 198847 851341 342200 295188 563072 668320 542414 320092 004842 908461 074018 063381 434232 681396 (193 digits), a[377] = 1
                                                                                      A[378]/B[378] = 23206 303763 443938 055343 610663 167588 103812 475852 585851 352329 467515 444615 472182 903161 628974 762633 764986 332779 665254 164744 687058 821971 599994 782646 239314 658282 078704 150783 740180 341805 602003 902390 (191 digits)/2 255502 475459 083781 138255 802792 659754 506085 565072 961014 081548 270279 193419 765509 573559 862257 629015 711904 295340 445426 952802 452488 549097 697393 508343 416588 901942 000860 429868 917152 240368 500891 008829 (193 digits), a[378] = 1
                                                                                      A[379]/B[379] = 38544 557616 217473 998999 930592 046035 979842 173373 804851 479819 664441 662616 914961 416124 259212 749744 048990 343873 996872 723851 982615 224540 895885 087282 891982 251304 987640 966988 365493 481162 729033 930019 (191 digits)/3 746281 441674 614741 522121 389617 539746 897383 421394 308162 536849 037950 180479 910888 499376 731717 663754 742944 501780 644274 804143 794688 844286 260466 176663 959003 222034 005703 338329 991170 303749 935123 690225 (193 digits), a[379] = 1
                                                                                      A[380]/B[380] = 61750 861379 661412 054343 541255 213624 083654 649226 390702 832149 131957 107232 387144 319285 888187 512377 813976 676653 662126 888596 669674 046512 495879 869929 131296 909587 066345 117772 105673 822968 331037 832409 (191 digits)/6 001783 917133 698522 660377 192410 199501 403468 986467 269176 618397 308229 373899 676398 072936 593975 292770 454848 797121 089701 756946 247177 393383 957859 685007 375592 123976 006563 768198 908322 544118 436014 699054 (193 digits), a[380] = 1
                                                                                      A[381]/B[381] = 100295 418995 878886 053343 471847 259660 063496 822600 195554 311968 796398 769849 302105 735410 147400 262121 862967 020527 658999 612448 652289 271053 391764 957212 023279 160892 053986 084760 471167 304131 060071 762428 (192 digits)/9 748065 358808 313264 182498 582027 739248 300852 407861 577339 155246 346179 554379 587286 572313 325692 956525 197793 298901 733976 561090 041866 237670 218325 861671 334595 346010 012267 106528 899492 847868 371138 389279 (193 digits), a[381] = 1
                                                                                      A[382]/B[382] = 162046 280375 540298 107687 013102 473284 147151 471826 586257 144117 928355 877081 689250 054696 035587 774499 676943 697181 321126 501045 321963 317565 887644 827141 154576 070479 120331 202532 576841 127099 391109 594837 (192 digits)/15 749849 275942 011786 842875 774437 938749 704321 394328 846515 773643 654408 928279 263684 645249 919668 249295 652642 096022 823678 318036 289043 631054 176185 546678 710187 469986 018830 874727 807815 391986 807153 088333 (194 digits), a[382] = 1
                                                                                      A[383]/B[383] = 586434 260122 499780 376404 511154 679512 504951 238079 954325 744322 581466 401094 369855 899498 254163 585620 893798 112071 622379 115584 618179 223751 054699 438635 487007 372329 414979 692358 201690 685429 233400 546939 (192 digits)/56 997613 186634 348624 711125 905341 555497 413816 590848 116886 476177 309406 339217 378340 508063 084697 704412 155719 586970 205011 515198 908997 130832 746882 501707 465157 755968 068759 730712 322939 023828 792597 654278 (194 digits), a[383] = 3
                                                                                      A[384]/B[384] = 9 544994 442335 536784 130159 191577 345484 226371 281105 855469 053279 231818 294591 606944 446668 102205 144433 977713 490327 279192 350399 212830 897582 762835 845308 946694 027749 760006 280263 803892 093967 125518 345861 (193 digits)/927 711660 262091 589782 220890 259902 826708 325386 847898 716699 392480 604910 355757 317132 774259 274831 519890 144155 487546 103862 561218 832997 724378 126305 573998 152711 565475 118986 566124 974839 773247 488715 556781 (195 digits), a[384] = 16
                                                                                      A[385]/B[385] = 10 131428 702458 036564 506563 702732 024996 731322 519185 809794 797601 813284 695685 976800 346166 356368 730054 871511 602398 901571 465983 831010 121333 817535 283944 433701 400079 174985 972622 005582 779396 358918 892800 (194 digits)/984 709273 448725 938406 932016 165244 382205 739203 438746 833585 868657 914316 694974 695473 282322 359529 224302 299875 074516 308874 076417 741994 855210 873188 075705 617869 321443 187746 296837 297778 797076 281313 211059 (195 digits), a[385] = 1
                                                                                      A[386]/B[386] = 19 676423 144793 573348 636722 894309 370480 957693 800291 665263 850881 045102 990277 583744 792834 458573 874488 849225 092726 180763 816383 043841 018916 580371 129253 380395 427828 934992 252885 809474 873363 484437 238661 (194 digits)/1912 420933 710817 528189 152906 425147 208914 064590 286645 550285 261138 519227 050732 012606 056581 634360 744192 444030 562062 412736 637636 574992 579588 999493 649703 770580 886918 306732 862962 272618 570323 770028 767840 (196 digits), a[386] = 1
                                                                                      A[387]/B[387] = 187 219237 005600 196702 237069 751516 359325 350566 721810 797169 455531 219211 608184 230503 481676 483533 600454 514537 436934 528445 813431 225579 291583 040875 447224 857260 250539 589916 248594 290856 639667 718854 040749 (195 digits)/18196 497676 846083 692109 308173 991569 262432 320516 018556 786153 218904 587360 151562 808927 791557 068775 922034 296150 133078 023503 815146 916928 071511 868630 923039 553097 303707 948342 063497 751345 929990 211572 121619 (197 digits), a[387] = 9
                                                                                      A[388]/B[388] = 206 895660 150393 770050 873792 645825 729806 308260 522102 462433 306412 264314 598461 814248 274510 942107 474943 363762 529660 709209 629814 269420 310499 621246 576478 237655 678368 524908 501480 100331 513031 203291 279410 (195 digits)/20108 918610 556901 220298 461080 416716 471346 385106 305202 336438 480043 106587 202294 821533 848138 703136 666226 740180 695140 436240 452783 491920 651100 868124 572743 323678 190626 255074 926460 023964 500313 981600 889459 (197 digits), a[388] = 1
                                                                                      A[389]/B[389] = 807 906217 456781 506854 858447 688993 548744 275348 288118 184469 374768 012155 403569 673248 305209 309856 025284 605825 025916 656074 702874 033840 223081 904615 176659 570227 285645 164641 753034 591851 178761 328727 878979 (195 digits)/78523 253508 516787 353004 691415 241718 676471 475834 934163 795468 659033 907121 758447 273529 335973 178185 920714 516692 218499 332225 173497 392690 024814 473004 641269 524131 875586 713566 842877 823239 430932 156374 789996 (197 digits), a[389] = 3
                                                                                      A[390]/B[390] = 1014 801877 607175 276905 732240 334819 278550 583608 810220 646902 681180 276470 002031 487496 579720 251963 500227 969587 555577 365284 332688 303260 533581 525861 753137 807882 964013 689550 254514 692182 691792 532019 158389 (196 digits)/98632 172119 073688 573303 152495 658435 147817 860941 239366 131907 139077 013708 960742 095063 184111 881322 586941 256872 913639 768465 626280 884610 675915 341129 214012 847810 066212 968641 769337 847203 931246 137975 679455 (197 digits), a[390] = 1
                                                                                      A[391]/B[391] = 6896 717483 099833 168289 251889 697909 220047 777001 149442 065885 461849 670975 415758 598227 783530 821637 026652 423350 359380 847780 699003 853403 424571 059785 695486 417525 069727 301943 280122 744947 329516 520842 829313 (196 digits)/670316 286222 958918 792823 606389 192329 563378 641482 370360 586911 493495 989375 522899 843908 440644 466121 442362 057929 700337 943018 931182 700354 080306 519779 925346 610992 272864 525417 458904 906463 018408 984228 866726 (198 digits), a[391] = 6
                                                                                      A[392]/B[392] = 90672 129157 905006 464666 006806 407639 139171 684623 752967 503413 685225 999150 406893 264457 765620 933244 846709 473142 227528 386433 419738 397505 053005 303075 794461 235708 870468 614812 896110 376497 975507 302975 939458 (197 digits)/8 812743 893017 539632 880010 035555 158719 471740 200212 054053 761756 554524 875590 758440 065872 912489 940901 337648 009959 018033 027711 731655 989213 719900 098268 243518 790709 613451 799068 735101 631223 170562 932950 946893 (199 digits), a[392] = 13
                                                                                      A[393]/B[393] = 188240 975798 909846 097621 265502 513187 498391 146248 655377 072712 832301 669276 229545 127143 314772 688126 720071 369634 814437 620647 538480 648413 530581 665937 284408 888942 810664 531569 072343 497943 280531 126794 708229 (198 digits)/18 295804 072258 038184 552843 677499 509768 506859 041906 478468 110424 602545 740557 039779 975654 265624 347924 117658 077847 736403 998442 394494 678781 520106 716316 412384 192411 499768 123554 929108 168909 359534 850130 760512 (200 digits), a[393] = 2
                                                                                      A[394]/B[394] = 1 031877 008152 454236 952772 334318 973576 631127 415867 029852 866977 846734 345531 554618 900174 339484 373878 447066 321316 299716 489671 112141 639572 705913 632762 216505 680422 923791 272658 257827 866214 378162 936949 480603 (199 digits)/100 291764 254307 730555 644228 423052 707562 006035 409744 446394 313879 567253 578375 957339 944144 240611 680521 925938 399197 700053 019923 704129 383121 320433 679850 305439 752767 112292 416843 380642 475769 968237 183604 749453 (201 digits), a[394] = 5
                                                                                      A[395]/B[395] = 2 251994 992103 818320 003165 934140 460340 760645 977982 715082 806668 525770 360339 338782 927491 993741 435883 614204 012267 413870 599989 762763 927558 942408 931461 717420 249788 658247 076885 587999 230372 036857 000693 669435 (199 digits)/218 879332 580873 499295 841300 523604 924892 518929 861395 371256 738183 737052 897308 954459 863942 746847 708967 969534 876243 136510 038289 802753 445024 160974 076017 023263 697945 724352 957241 690393 120449 296009 217340 259418 (201 digits), a[395] = 2
                                                                                      A[396]/B[396] = 3 283872 000256 272556 955938 268459 433917 391773 393849 744935 673646 372504 705870 893401 827666 333225 809762 061270 333583 713587 089660 874905 567131 648322 564223 933925 930211 582038 349543 845827 096586 415019 937643 150038 (199 digits)/319 171096 835181 229851 485528 946657 632454 524965 271139 817651 052063 304306 475684 911799 808086 987459 389489 895473 275440 836563 058213 506882 828145 481407 755867 328703 450712 836645 374085 071035 596219 264246 400945 008871 (201 digits), a[396] = 1
                                                                                      A[397]/B[397] = 5 535866 992360 090876 959104 202599 894258 152419 371832 460018 480314 898275 066210 232184 755158 326967 245645 675474 345851 127457 689650 637669 494690 590731 495685 651346 180000 240285 426429 433826 326958 451876 938336 819473 (199 digits)/538 050429 416054 729147 326829 470262 557347 043895 132535 188907 790247 041359 372993 866259 672029 734307 098457 865008 151683 973073 096503 309636 273169 642381 831884 351967 148658 560998 331326 761428 716668 560255 618285 268289 (201 digits), a[397] = 1
                                                                                      A[398]/B[398] = 30 963206 962056 726941 751459 281458 905208 153870 253012 045028 075220 863880 036922 054325 603457 968062 037990 438642 062839 350875 537914 063253 040584 601980 042652 190656 830212 783465 481691 014958 731378 674404 629327 247403 (200 digits)/3009 423243 915454 875588 119676 297970 419189 744440 933815 762190 003298 511103 340654 243098 168235 658994 881779 220514 033860 701928 540730 055064 193993 693316 915289 088539 194005 641637 030718 878179 179562 065524 492371 350316 (202 digits), a[398] = 5
                                                                                      A[399]/B[399] = 67 462280 916473 544760 462022 765517 704674 460159 877856 550074 630756 626035 140054 340835 962074 263091 321626 552758 471529 829208 765478 764175 575859 794691 580990 032659 840425 807216 389811 463743 789715 800686 196991 314279 (200 digits)/6556 896917 246964 480323 566182 066203 395726 532777 000166 713287 796844 063566 054302 352456 008501 052296 862016 306036 219405 376930 177963 419764 661157 029015 662462 529045 536669 844272 392764 517787 075792 691304 603027 968921 (202 digits), a[399] = 2
                                                                                      A[400]/B[400] = 98 425487 878530 271702 213482 046976 609882 614030 130868 595102 705977 489915 176976 395161 565532 231153 359616 991400 534369 180084 303392 827428 616444 396671 623642 223316 670638 590681 871502 478702 521094 475090 826318 561682 (200 digits)/9566 320161 162419 355911 685858 364173 814916 277217 933982 475477 800142 574669 394956 595554 176736 711291 743795 526550 253266 078858 718693 474828 855150 722332 577751 617584 730675 485909 423483 395966 255354 756829 095399 319237 (202 digits), a[400] = 1
                                                                                      A[401]/B[401] = 4299 758259 693275 227955 641750 785511 929626 863455 505206 139490 987788 692387 750039 332783 279960 202685 785157 182981 449404 572833 811370 343606 082968 851571 397605 635276 677885 206536 864418 047952 196778 229591 728689 466605 (202 digits)/417908 663847 230996 784526 058091 725677 437126 453148 161413 158833 202974 774350 037435 961285 608179 637841 845223 947697 109846 767855 081782 837405 432638 089316 505782 085188 955715 738377 602550 544336 056047 234955 705198 696112 (204 digits), a[401] = 43
                                                                                      A[402]/B[402] = 12997 700266 958355 955569 138734 403512 398763 204396 646487 013575 669343 567078 427094 393511 405412 839210 715088 540344 882582 898585 737503 858246 865350 951385 816459 129146 704294 210292 464756 622559 111429 163866 012386 961497 (203 digits)/1 263292 311702 855409 709489 860133 541206 126295 636662 418221 951977 409066 897719 507264 479411 001275 624817 279467 369641 582806 382423 964041 987045 153064 990282 095097 873151 597822 701042 231135 028974 423496 461696 210995 407573 (205 digits), a[402] = 3
                                                                                      A[403]/B[403] = 199265 262264 068614 561492 722766 838197 911074 929405 202511 343126 027942 198564 156455 235454 361152 790846 511485 288154 688148 051619 873928 217309 063233 122358 644492 572477 242298 360923 835767 386338 868215 687581 914493 889060 (204 digits)/19 367293 339390 062142 426873 960094 843769 331561 003084 434742 438494 338978 240142 646403 152450 627314 010101 037234 492320 851942 504214 542412 643082 728612 943547 932250 182462 923056 254011 069575 978952 408494 160398 870129 809707 (206 digits), a[403] = 15
                                                                                      A[404]/B[404] = 212262 962531 026970 517061 861501 241710 309838 133801 848998 356701 697285 765642 583549 628965 766565 630057 226573 828499 570730 950205 611432 075555 928584 073744 460951 701623 946592 571216 300524 008897 979644 851447 926880 850557 (204 digits)/20 630585 651092 917552 136363 820228 384975 457856 639746 852964 390471 748045 137862 153667 631861 628589 634918 316701 861962 434748 886638 506454 630127 881677 933830 027348 055614 520878 955053 300711 007926 831990 622095 081125 217280 (206 digits), a[404] = 1
                                                                                      A[405]/B[405] = 836054 149857 149526 112678 307270 563328 840589 330810 749506 413231 119799 495491 907104 122351 660849 681018 191206 773653 400340 902236 708224 443976 848985 343592 027347 677349 082076 074572 737339 413032 807150 241925 695136 440731 (204 digits)/81 259050 292668 814798 835965 420779 998695 705130 922324 993635 609909 583113 653729 107406 048035 513082 914855 987340 078208 156189 164130 061776 533466 373646 745038 014294 349306 485693 119170 971709 002732 904466 026684 113505 461547 (206 digits), a[405] = 3
                                                                                      A[406]/B[406] = 1 048317 112388 176496 629740 168771 805039 150427 464612 598504 769932 817085 261134 490653 751317 427415 311075 417780 602152 971071 852442 319656 519532 777569 417336 488299 378973 028668 645789 037863 421930 786795 093373 622017 291288 (205 digits)/101 889635 943761 732350 972329 241008 383671 162987 562071 846600 000381 331158 791591 261073 679897 141672 549774 304041 940170 590938 050768 568231 163594 255324 678868 041642 404921 006572 074224 272420 010659 736456 648779 194630 678827 (207 digits), a[406] = 1
                                                                                      A[407]/B[407] = 2 932688 374633 502519 372158 644814 173407 141444 260035 946515 953096 753970 017760 888411 624986 515680 303169 026767 977959 342484 607121 347537 483042 404124 178265 003946 435295 139413 366150 813066 256894 380740 428672 939171 023307 (205 digits)/285 038322 180192 279500 780623 902796 766038 031106 046468 686835 610672 245431 236911 629553 407829 796428 014404 595423 958549 338065 265667 198238 860654 884296 102774 097579 159148 498837 267619 516549 024052 377379 324242 502766 819201 (207 digits), a[407] = 2
                                                                                      A[408]/B[408] = 27 442512 484089 699170 979167 972099 365703 423425 804936 117148 347803 602815 420982 486358 376196 068538 039596 658692 403787 053433 316534 447493 866914 414687 021721 523817 296629 283388 941146 355459 733980 213458 951430 074556 501051 (206 digits)/2667 234535 565492 247857 997944 366179 278013 442941 980290 028120 496431 540039 923795 927054 350365 309524 679415 662857 567114 633525 441773 352380 909488 213989 603834 919854 837257 496107 482799 921361 227131 132870 566961 719532 051636 (208 digits), a[408] = 9
                                                                                      A[409]/B[409] = 30 375200 858723 201690 351326 616913 539110 564870 064972 063664 300900 356785 438743 374770 001182 584218 342765 685460 381746 395917 923655 795031 349956 818811 199986 527763 731924 422802 307297 168525 990874 594199 380103 013727 524358 (206 digits)/2952 272857 745684 527358 778568 268976 044051 474048 026758 714956 107103 785471 160707 556607 758195 105952 693820 258281 525663 971590 707440 550619 770143 098285 706609 017433 996405 994944 750419 437910 251183 510249 891204 222298 870837 (208 digits), a[409] = 1
                                                                                      A[410]/B[410] = 1090 574542 539401 758333 275599 564073 234573 193878 078958 345398 879316 090305 777000 603308 417586 516180 036395 649805 764910 910560 644487 273591 115403 073079 021249 995547 913984 081469 696547 253869 414591 010437 255035 555019 853581 (208 digits)/105996 784556 664450 705415 247833 780340 819815 034622 916845 051584 245064 031530 548560 408325 887194 017868 963124 702710 965353 639200 202192 624072 864496 653989 335150 530044 711467 319173 747480 248220 018553 991616 759109 499992 530931 (210 digits), a[410] = 35
                                                                                      A[411]/B[411] = 9845 546083 713339 026689 831722 693572 650269 309772 775597 172254 214745 169537 431748 804545 759461 229838 670326 533712 265944 590963 724041 257351 388584 476522 391236 487694 957781 156029 576222 453350 722193 688134 675423 008906 206587 (208 digits)/956923 333867 725740 876096 009072 292043 422386 785654 278364 179214 312680 069246 097751 231540 742941 266773 361942 582680 213846 724392 527174 167275 550612 984189 722963 787836 399611 867508 477741 671890 418169 434800 723189 722231 649216 (210 digits), a[411] = 9
                                                                                      A[412]/B[412] = 20781 666709 966079 811712 939044 951218 535111 813423 630152 689907 308806 429380 640498 212399 936508 975857 377048 717230 296800 092488 092569 788293 892572 026123 803722 970937 829546 393528 848992 160570 858978 386706 605881 572832 266755 (209 digits)/2 019843 452292 115932 457607 265978 364427 664588 605931 473573 410012 870424 170022 744062 871407 373076 551415 687009 868071 393047 087985 256540 958623 965722 622368 781078 105717 510691 054190 702963 592000 854892 861218 205488 944455 829363 (211 digits), a[412] = 2
                                                                                      A[413]/B[413] = 51408 879503 645498 650115 709812 596009 720492 936620 035902 552068 832358 028298 712745 229345 632479 181553 424423 968172 859544 775939 909180 833939 173728 528769 998682 429570 616873 943087 274206 774492 440150 461547 887186 154570 740097 (209 digits)/4 996610 238451 957605 791310 541029 020898 751563 997517 225510 999240 053528 409291 585876 974355 489094 369604 735962 318822 999940 900363 040256 084523 482058 228927 285119 999271 420993 975889 883668 855892 127955 157237 134167 611143 307942 (211 digits), a[413] = 2
                                                                                      A[414]/B[414] = 123599 425717 257077 111944 358670 143237 976097 686663 701957 794044 973522 485978 065988 671091 201467 338964 225896 653576 015889 644367 910931 456172 240029 083663 801087 830079 063294 279703 397405 709555 739279 309802 380253 881973 746949 (210 digits)/12 013063 929196 031144 040228 348036 406225 167716 600965 924595 408492 977480 988605 915816 820118 351265 290625 158934 505717 392928 888711 337053 127670 929839 080223 351318 104260 352679 005970 470301 303785 110803 175692 473824 166742 445247 (212 digits), a[414] = 2
                                                                                      A[415]/B[415] = 175008 305220 902575 762060 068482 739247 696590 623283 737860 346113 805880 514276 778733 900436 833946 520517 650320 621748 875434 420307 820112 290111 413757 612433 799770 259649 680168 222790 671612 484048 179429 771350 267440 036544 487046 (210 digits)/17 009674 167647 988749 831538 889065 427123 919280 598483 150106 407733 031009 397897 501693 794473 840359 660229 894896 824540 392869 789074 377309 212194 411897 309150 636438 103531 773672 981860 353970 159677 238758 332929 607991 777885 753189 (212 digits), a[415] = 1
                                                                                      A[416]/B[416] = 4 323798 751018 918895 401386 002255 885182 694272 645473 410606 100776 314654 828620 755602 281575 216183 831387 833591 575549 026315 731755 593626 418846 170211 782074 995574 061671 387331 626679 516105 326712 045593 822208 798814 759041 436053 (211 digits)/420 245243 952747 761139 997161 685606 657199 230450 964561 527149 194085 721706 538145 956467 887490 519897 136142 636458 294686 821803 826496 392474 220336 815374 499838 625832 589022 920830 570618 965585 136038 841003 166003 065626 836000 521783 (213 digits), a[416] = 24
                                                                                      A[417]/B[417] = 21 794002 060315 497052 768990 079762 165161 167953 850650 790890 849995 379154 657380 556745 308312 914865 677456 818278 499494 007013 079085 788244 384342 264816 522808 777640 568006 616826 356188 252139 117608 407398 882394 261513 831751 667311 (212 digits)/2118 235893 931386 794449 817347 317098 713120 071535 421290 785852 378161 639542 088627 284033 231926 439845 340943 077188 297974 501888 921556 339680 313878 488769 808343 765601 048646 377825 834955 181895 839871 443774 162944 936125 957888 362104 (214 digits), a[417] = 5
                                                                                      A[418]/B[418] = 26 117800 811334 415948 170376 082018 050343 862226 496124 201496 950771 693809 486001 312347 589888 131049 508844 651870 075043 033328 810841 381870 803188 435028 304883 773214 629678 004157 982867 768244 444320 452992 704603 060328 590793 103364 (212 digits)/2538 481137 884134 555589 814509 002705 370319 301986 385852 313001 572247 361248 626773 240501 119416 959742 477085 713646 592661 323692 748052 732154 534215 304144 308182 391433 637669 298656 405574 147480 975910 284777 328948 001752 793888 883887 (214 digits), a[418] = 1
                                                                                      A[419]/B[419] = 204 618607 739656 408689 961622 653888 517568 203539 323520 201369 505397 235821 059389 743178 437529 832212 239369 381369 024795 240314 754975 461340 006661 310014 656995 190142 975752 645932 236262 629850 227851 578347 814615 683813 967303 390859 (213 digits)/19887 603859 120328 683578 518910 336036 305355 185440 122256 976863 383893 168282 476039 967541 067845 158042 680543 072714 446603 767738 157925 464762 053385 617779 965620 505636 512331 468420 673974 214262 671243 437215 465580 948395 515110 549313 (215 digits), a[419] = 7
                                                                                      A[420]/B[420] = 435 355016 290647 233328 093621 389795 085480 269305 143164 604235 961566 165451 604780 798704 464947 795473 987583 414608 124633 513958 320792 304550 816511 055057 618874 153500 581183 296022 455393 027944 900023 609688 333834 427956 525399 885082 (213 digits)/42313 688856 124791 922746 852329 674777 981029 672866 630366 266728 340033 697813 578853 175583 255107 275827 838171 859075 485868 859169 063903 661678 640986 539704 239423 402706 662332 235497 753522 576006 318397 159208 260109 898543 824109 982513 (215 digits), a[420] = 2
                                                                                      A[421]/B[421] = 2381 393689 192892 575330 429729 602863 944969 550065 039343 222549 313228 063079 083293 736700 762268 809582 177286 454409 647962 810106 358936 984094 089216 585302 751365 957645 881669 126044 513227 769574 727969 626789 483787 823596 594302 816269 (214 digits)/231456 048139 744288 297312 780558 709926 210503 549773 274088 310505 084061 657350 370305 845457 343381 537181 871402 368091 875948 063583 477443 773155 258318 316301 162737 519169 823992 645909 441587 094294 263229 233256 766130 441114 635660 461878 (216 digits), a[421] = 5
                                                                                      A[422]/B[422] = 5198 142394 676432 383988 953080 595522 975419 369435 221851 049334 588022 291609 771368 272105 989485 414638 342156 323427 420559 134171 038666 272738 994944 225663 121606 068792 344521 548111 481848 567094 355962 863267 301410 075149 714005 517620 (214 digits)/505225 785135 613368 517372 413447 094630 402036 772413 178542 887738 508157 012514 319464 866497 941870 350191 580976 595259 237764 986336 018791 207989 157623 172306 564898 441046 310317 527316 636696 764594 844855 625721 792370 780773 095430 906269 (216 digits), a[422] = 2
                                                                                      A[423]/B[423] = 12777 678478 545757 343308 335890 793909 895808 288935 483045 321218 489272 646298 626030 280912 741239 638858 861599 101264 489081 078448 436269 529572 079105 036628 994578 095230 570712 222267 476924 903763 439895 353324 086607 973896 022313 851509 (215 digits)/1 241907 618410 971025 332057 607452 899187 014577 094599 631174 085982 100375 682379 009235 578453 227122 237565 033355 558610 351478 036255 515026 189133 573564 660914 292534 401262 444627 700542 714980 623483 952940 484700 350872 002660 826522 274416 (217 digits), a[423] = 2
                                                                                      A[424]/B[424] = 311862 425879 774608 623389 014459 649360 474818 303886 814938 758578 330565 802776 796095 014011 779236 747251 020534 753775 158505 016933 509134 982468 893465 104758 991480 354326 041614 882530 928046 257416 913451 343045 380001 448654 249537 953836 (216 digits)/30 311008 626998 917976 486754 992316 675118 751887 042804 326720 951308 917173 389610 541118 749375 392804 051752 381510 001907 673237 856468 379419 747194 923175 034249 585724 071344 981382 340341 796231 728209 715427 258530 213298 844632 931965 492253 (218 digits), a[424] = 24
                                                                                      A[425]/B[425] = 324640 104358 320365 966697 350350 443270 370626 592822 297984 079796 819838 449075 422125 294924 520476 386109 882133 855039 647586 095381 945404 512040 972570 141387 986058 449556 612327 104798 404971 161180 353346 696369 466609 422550 271851 805345 (216 digits)/31 552916 245409 889001 818812 599769 574305 766464 137403 957895 037291 017549 071989 550354 327828 619926 289317 414865 560518 024715 892723 894445 936328 496739 695163 878258 472607 426010 040884 511212 351693 668367 743230 564170 847293 758487 766669 (218 digits), a[425] = 1
                                                                                      A[426]/B[426] = 1 285782 738954 735706 523481 065510 979171 586698 082353 708890 997968 790081 150003 062470 898785 340665 905580 666936 318894 101263 303079 345348 518591 811175 528922 949655 702995 878596 196926 142959 740957 973491 432153 779829 716305 065093 369871 (217 digits)/124 969757 363228 584981 943192 791625 398036 051279 455016 200406 063181 969820 605579 192181 732861 252582 919704 626106 683461 747385 534640 062757 556180 413394 119741 220499 489167 259412 462995 329868 783290 720530 488221 905811 386514 207428 792260 (219 digits), a[426] = 3
                                                                                      A[427]/B[427] = 2 896205 582267 791779 013659 481372 401613 544022 757529 715766 075734 400000 749081 547067 092495 201808 197271 216006 492827 850112 701540 636101 549224 594921 199233 885369 855548 369519 498650 690890 643096 300329 560677 026268 855160 402038 545087 (217 digits)/281 492430 971867 058965 705198 183020 370377 869023 047436 358707 163654 957190 283147 934717 793551 125092 128726 667078 927441 519486 962004 019961 048689 323527 934646 319257 450941 944834 966875 170949 918275 109428 719674 375793 620322 173345 351189 (219 digits), a[427] = 2
                                                                                      A[428]/B[428] = 7 078193 903490 319264 550800 028255 782398 674743 597413 140423 149437 590082 648166 156605 083775 744282 300123 098949 304549 801488 706160 617551 617041 001017 927390 720395 414092 617635 194227 524741 027150 574150 553507 832367 426625 869170 460045 (217 digits)/687 954619 306962 702913 353589 157666 138791 789325 549888 917820 390491 884201 171875 061617 319963 502767 177157 960264 538344 786359 458648 102679 653559 060449 989033 859014 391051 149082 396745 671768 619840 939387 927570 657398 627158 554119 494638 (219 digits), a[428] = 2
                                                                                      A[429]/B[429] = 17 052593 389248 430308 115259 537883 966410 893509 952355 996612 374609 580166 045413 860277 260046 690372 797517 413905 101927 453090 113861 871204 783306 596957 054015 326160 683733 604789 887105 740372 697397 448630 667692 691003 708412 140379 465177 (218 digits)/1657 401669 585792 464792 412376 498352 647961 447674 147214 194347 944638 725592 626898 057952 433478 130626 483042 587608 004131 092205 879300 225320 355807 444427 912714 037286 233044 242999 760366 514487 157956 988204 574815 690590 874639 281584 340465 (220 digits), a[429] = 2
                                                                                      A[430]/B[430] = 262 867094 742216 773886 279693 096515 278562 077392 882753 089608 768581 292573 329374 060763 984476 099874 262884 307525 833461 597840 414088 685623 366639 955373 737620 612805 670096 689483 500813 630331 488112 303610 568898 197423 052807 974862 437700 (219 digits)/25548 979663 093849 674799 539236 632955 858213 504437 758101 833039 560072 768090 575345 930903 822135 462164 422796 774384 600311 169447 648151 482484 990670 726868 679744 418307 886714 794078 802243 389075 989195 762456 549806 016261 746747 777884 601613 (221 digits), a[430] = 15
                                                                                      A[431]/B[431] = 542 786782 873681 978080 674645 730914 523535 048295 717862 175829 911772 165312 704161 981805 228998 890121 323286 028956 768850 648770 942039 242451 516586 507704 529256 551772 023926 983756 888733 001035 673622 055851 805489 085849 814028 090104 340577 (219 digits)/52755 360995 773491 814391 490849 764264 364388 456549 663417 860427 064784 261773 777589 919760 077749 054955 328636 136377 204753 431101 175603 190290 337148 898165 272202 873902 006473 831157 364853 292639 136348 513117 674427 723114 368134 837353 543691 (221 digits), a[431] = 2
                                                                                      A[432]/B[432] = 2434 014226 236944 686208 978276 020173 372702 270575 754201 792928 415669 953824 146021 987984 900471 660359 556028 423352 908864 192924 182245 655429 432985 986191 854646 819893 765804 624511 055745 634474 182600 527017 790854 540822 308920 335279 800008 (220 digits)/236570 423646 187816 932365 502635 690013 315767 330636 411773 274747 819209 815185 685705 609944 133131 681985 737341 319893 419324 893852 350564 243646 339266 319529 768555 913915 912610 118708 261656 559632 534589 814927 247516 908719 219287 127298 776377 (222 digits), a[432] = 4
                                                                                      A[433]/B[433] = 2976 801009 110626 664289 652921 751087 896237 318871 472063 968758 327442 119136 850183 969790 129470 550480 879314 452309 677714 841695 124284 897880 949572 493896 383903 371665 789731 608267 944478 635509 856222 582869 596343 626672 122948 425384 140585 (220 digits)/289325 784641 961308 746756 993485 454277 680155 787186 075191 135174 883994 076959 463295 529704 210880 736941 065977 456270 624078 324953 526167 433936 676415 217695 040758 787817 919083 949865 626509 852271 670938 328044 921944 631833 587421 964652 320068 (222 digits), a[433] = 1
                                                                                      A[434]/B[434] = 23271 621290 011331 336236 548728 277788 646363 502676 058649 574236 707764 787782 097309 776515 806765 513725 711229 589520 652868 084790 052239 940596 079993 443466 541970 421554 293925 882386 667096 083043 176158 607104 965259 927527 169559 312968 784103 (221 digits)/2 261850 916139 916978 159664 457033 869957 076857 840938 938111 220972 007168 353901 928774 317873 609296 840573 199183 513787 787873 168527 033736 281203 074172 843395 053867 428641 346197 767767 647225 525534 231158 111241 701129 331554 331240 879865 016853 (223 digits), a[434] = 7
                                                                                      A[435]/B[435] = 26248 422299 121958 000526 201650 028876 542600 821547 530713 542995 035206 906918 947493 746305 936236 064206 590544 041830 330582 926485 176524 838477 029565 937362 925873 793220 083657 490654 611574 718553 032381 189974 561603 554199 292507 738352 924688 (221 digits)/2 551176 700781 878286 906421 450519 324234 757013 628125 013302 356146 891162 430861 392069 847577 820177 577514 265160 970058 411951 493480 559903 715139 750588 061090 094626 216459 265281 717633 273735 377805 902096 439286 623073 963387 918662 844517 336921 (223 digits), a[435] = 1
                                                                                      A[436]/B[436] = 364501 111178 596785 343077 170178 653183 700174 182793 957925 633172 165454 577728 414728 478492 977834 348411 388302 133314 950446 129097 347062 840797 464350 629184 578329 733415 381473 260896 617567 424232 597114 076774 266106 132117 972159 911556 805047 (222 digits)/35 427148 026304 334707 943143 313785 085008 918035 006564 111041 850881 592279 955100 025682 336385 271605 348258 646276 124547 143242 583774 312484 578019 831817 637566 284008 242611 794860 097000 205785 437010 958411 821967 801090 855597 273857 858590 396826 (224 digits), a[436] = 13
                                                                                      A[437]/B[437] = 390749 533477 718743 343603 371828 682060 242775 004341 488639 176167 200661 484647 362222 224798 914070 412617 978846 175145 281029 055582 523587 679274 493916 566547 504203 526635 465130 751551 229142 142785 629495 266748 827709 686317 264667 649909 729735 (222 digits)/37 978324 727086 212994 849564 764304 409243 675048 634689 124344 207028 483442 385961 417752 183963 091782 925772 911437 094605 555194 077254 872388 293159 582405 698656 378634 459071 060141 814633 479520 814816 860508 261254 424164 818985 192520 703107 733747 (224 digits), a[437] = 1
                                                                                      A[438]/B[438] = 1 536749 711611 753015 373887 285664 699364 428499 195818 423843 161673 767439 031670 501395 152889 720045 586265 324840 658750 793533 295844 917825 878620 946100 328827 090940 313321 776865 515550 304993 852589 485599 877020 749235 191069 766162 861285 994252 (223 digits)/149 362122 207562 973692 491837 606698 312739 943180 910631 484074 471967 042607 112984 278938 888274 546954 125577 380587 408363 808824 815538 929649 457498 579034 733535 419911 619824 975285 540900 644347 881461 539936 605731 073585 312552 851419 967913 598067 (225 digits), a[438] = 3
                                                                                      A[439]/B[439] = 1 927499 245089 471758 717490 657493 381424 671274 200159 912482 337840 968100 516317 863617 377688 634115 998883 303686 833896 074562 351427 441413 557895 440016 895374 595143 839957 241996 267101 534135 995375 115095 143769 576944 877387 030830 511195 723987 (223 digits)/187 340446 934649 186687 341402 371002 721983 618229 545320 608418 678995 526049 498945 696691 072237 638737 051350 292024 502969 364018 892793 802037 750658 161440 432191 798546 078896 035427 355534 123868 696278 400444 866985 497750 131538 043940 671021 331814 (225 digits), a[439] = 1
                                                                                      A[440]/B[440] = 3 464248 956701 224774 091377 943158 080789 099773 395978 336325 499514 735539 547988 365012 530578 354161 585148 628527 492646 868095 647272 359239 436516 386117 224201 686084 153279 018861 782651 839129 847964 600695 020790 326180 068456 796993 372481 718239 (223 digits)/336 702569 142212 160379 833239 977701 034723 561410 455952 092493 150962 568656 611929 975629 960512 185691 176927 672611 911333 172843 708332 731687 208156 740475 165727 218457 698721 010712 896434 768216 577739 940381 472716 571335 444090 895360 638934 929881 (225 digits), a[440] = 1
                                                                                      A[441]/B[441] = 5 391748 201790 696532 808868 600651 462213 771047 596138 248807 837355 703640 064306 228629 908266 988277 584031 932214 326542 942657 998699 800652 994411 826134 119576 281227 993236 260858 049753 373265 843339 715790 164559 903124 945843 827823 883677 442226 (223 digits)/524 043016 076861 347067 174642 348703 756707 179640 001272 700911 829958 094706 110875 672321 032749 824428 228277 964636 414302 536862 601126 533724 958814 901915 597919 017003 777617 046140 251968 892085 274018 340826 339702 069085 575628 939301 309956 261695 (225 digits), a[441] = 1
                                                                                      A[442]/B[442] = 14 247745 360282 617839 709115 144461 005216 641868 588254 833941 174226 142819 676600 822272 347112 330716 753212 492956 145732 753411 644671 960545 425340 038385 463354 248540 139751 540577 882158 585661 534644 032275 349910 132429 960144 452641 139836 602691 (224 digits)/1384 788601 295934 854514 182524 675108 548137 920690 458497 494316 810878 758068 833681 320272 026011 834547 633483 601884 739938 246568 910585 799137 125786 544306 361565 252465 253955 102993 400372 552387 125776 622034 152120 709506 595348 773963 258847 453271 (226 digits), a[442] = 2
                                                                                      A[443]/B[443] = 33 887238 922355 932212 227098 889573 472647 054784 772647 916690 185807 989279 417507 873174 602491 649711 090456 918126 618008 449481 288043 721743 845091 902905 046284 778308 272739 342013 814070 544588 912627 780340 864380 167984 866132 733106 163350 647608 (224 digits)/3293 620218 668731 056095 539691 698920 852983 021020 918267 689545 451715 610843 778238 312865 084773 493523 495245 168405 894179 030000 422298 131999 210387 990528 321049 521934 285527 252127 052713 996859 525571 584894 643943 488098 766326 487227 827651 168237 (226 digits), a[443] = 2
                                                                                      A[444]/B[444] = 48 134984 282638 550051 936214 034034 477863 696653 360902 750631 360034 132099 094108 695446 949603 980427 843669 411082 763741 202892 932715 682289 270431 941290 509639 026848 412490 882591 696229 130250 447271 812616 214290 300414 826277 185747 303187 250299 (224 digits)/4678 408819 964665 910609 722216 374029 401120 941711 376765 183862 262594 368912 611919 633137 110785 328071 128728 770290 634117 276569 332883 931136 336174 534834 682614 774399 539482 355120 453086 549246 651348 206928 796064 197605 361675 261191 086498 621508 (226 digits), a[444] = 1
                                                                                      A[445]/B[445] = 82 022223 204994 482264 163312 923607 950510 751438 133550 667321 545842 121378 511616 568621 552095 630138 934126 329209 381749 652374 220759 404033 115523 844195 555923 805156 685230 224605 510299 674839 359899 592957 078670 468399 692409 918853 466537 897907 (224 digits)/7972 029038 633396 966705 261908 072950 254103 962732 295032 873407 714309 979756 390157 946002 195558 821594 623973 938696 528296 306569 755182 063135 546562 525363 003664 296333 825009 607247 505800 546106 176919 791823 440007 685704 128001 748418 914149 789745 (226 digits), a[445] = 1
                                                                                      A[446]/B[446] = 130 157207 487633 032316 099526 957642 428374 448091 494453 417952 905876 253477 605725 264068 501699 610566 777795 740292 145490 855267 153475 086322 385955 785486 065562 832005 097721 107197 206528 805089 807171 405573 292960 768814 518687 104600 769725 148206 (225 digits)/12650 437858 598062 877314 984124 446979 655224 904443 671798 057269 976904 348669 002077 579139 306344 149665 752702 708987 162413 583139 088065 994271 882737 060197 686279 070733 364491 962367 958887 095352 828267 998752 236071 883309 489677 009610 000648 411253 (227 digits), a[446] = 1
                                                                                      A[447]/B[447] = 212 179430 692627 514580 262839 881250 378885 199529 628004 085274 451718 374856 117341 832690 053795 240705 711922 069501 527240 507641 374234 490355 501479 629681 621486 637161 782951 331802 716828 479929 167070 998530 371631 237214 211097 023454 236263 046113 (225 digits)/20622 466897 231459 844020 246032 519929 909328 867175 966830 930677 691214 328425 392235 525141 501902 971260 376676 647683 690709 889708 843248 057407 429299 585560 689943 367067 189501 569615 464687 641459 005187 790575 676079 569013 617678 758028 914798 200998 (227 digits), a[447] = 1
                                                                                      A[448]/B[448] = 342 336638 180260 546896 362366 838892 807259 647621 122457 503227 357594 628333 723067 096758 555494 851272 489717 809793 672731 362908 527709 576677 887435 415167 687049 469166 880672 438999 923357 285018 974242 404103 664592 006028 729784 128055 005988 194319 (225 digits)/33272 904755 829522 721335 230156 966909 564553 771619 638628 987947 668118 677094 394313 104280 808247 120926 129379 356670 853123 472847 931314 051679 312036 645758 376222 437800 553993 531983 423574 736811 833455 789327 912151 452323 107355 767638 915446 612251 (227 digits), a[448] = 1
                                                                                      A[449]/B[449] = 2950 872536 134711 889751 161774 592392 836962 380498 607664 111093 312475 401525 901878 606758 497754 050885 629664 547850 909091 410909 595911 103778 600962 951023 117882 390496 828330 843802 103686 760080 961010 231359 688367 285444 049370 047894 284168 600665 (226 digits)/286805 704943 867641 614702 087288 255206 425759 040133 075862 834259 036163 745180 546740 359387 967879 938669 411711 501050 515697 672492 293760 470841 925592 751627 699722 869471 621449 825482 853285 535953 672834 105198 973291 187598 476524 899140 238371 099006 (228 digits), a[449] = 8
                                                                                      A[450]/B[450] = 9194 954246 584396 216149 847690 616071 318146 789116 945449 836507 295020 832911 428702 917034 048757 003929 378711 453346 400005 595637 315442 888013 690324 268237 040696 640657 365664 970406 234417 565261 857273 098182 729693 862360 877894 271737 858493 996314 (226 digits)/893690 019587 432447 565441 492021 732528 841830 892018 866217 490724 776609 912636 034534 182444 711886 936934 364513 859822 400216 490324 812595 464205 088814 900641 475391 046215 418343 008431 983431 344672 851958 104924 832025 015118 536930 465059 630559 909269 (228 digits), a[450] = 3
                                                                                      A[451]/B[451] = 186849 957467 822636 212748 115586 913819 199898 162837 516660 841239 212892 059754 475936 947439 472894 129473 203893 614778 909203 323655 904768 864052 407448 315763 931815 203644 141630 251926 792038 065318 106472 195014 282244 532661 607255 482651 454048 526945 (228 digits)/18 160606 096692 516592 923531 927722 905783 262376 880510 400212 648754 568361 997901 237424 008282 205618 677356 701988 697498 520027 478988 545669 754943 701890 764457 207543 793779 988309 994122 521912 429410 711996 203695 613791 489969 215134 200332 849569 284386 (230 digits), a[451] = 20
                                                                                      A[452]/B[452] = 5 614693 678281 263482 598593 315298 030647 315091 674242 445275 073683 681782 625545 706811 340218 235580 888125 495519 896713 676105 305314 458508 809585 913773 741154 995152 749981 614572 528209 995559 524805 051438 948611 197029 842209 095558 751281 479949 804664 (229 digits)/545 711872 920362 930235 271399 323708 906026 713137 307330 872596 953361 827469 849673 157254 430910 880447 257635 424174 784778 001040 859981 182688 112516 145537 834357 701704 859615 067642 832107 640804 226994 211844 215793 245769 714194 990956 475045 117638 440849 (231 digits), a[452] = 30
                                                                                      A[453]/B[453] = 5 801543 635749 086118 811341 430884 944466 514989 837079 961935 914922 894674 685300 182748 287657 708475 017598 699413 511492 585308 628970 363277 673638 321222 056918 926967 953625 756202 780136 787597 590123 157911 143625 479274 374870 702814 233932 933998 331609 (229 digits)/563 872479 017055 446828 194931 251431 811809 975514 187841 272809 602116 395831 847574 394678 439193 086065 934992 126163 482276 521068 338969 728357 867459 847428 598814 909248 653395 055952 826230 162716 656404 923840 419488 859561 204164 206090 675377 967207 725235 (231 digits), a[453] = 1
                                                                                      A[454]/B[454] = 46 225499 128524 866314 277983 331492 641912 920020 533802 178826 478143 944505 422646 986049 353822 194906 011316 391414 477161 773265 708107 001452 525054 162328 139587 483928 425361 907991 989167 508742 655667 156816 953989 551950 466304 015258 388812 017938 125927 (230 digits)/4492 819226 039751 058032 635918 083731 588696 541736 622219 782264 168176 598292 782693 920003 505262 482908 802580 307319 160713 648519 232769 281193 184735 077538 026062 066445 433380 459312 615718 779820 821828 678727 152215 262698 143344 433591 202690 888092 517494 (232 digits), a[454] = 7
                                                                                      A[455]/B[455] = 236 929039 278373 417690 201258 088348 154031 115092 506090 856068 305642 617201 798535 112995 056768 683005 074180 656485 897301 451637 169505 370540 298909 132862 754856 346610 080435 296162 725974 331310 868458 941995 913573 239026 706390 779106 177993 023688 961244 (231 digits)/23027 968609 215810 736991 374521 670089 755292 684197 298940 184130 442999 387295 761043 994695 965505 500609 947893 662759 285844 763664 502816 134323 791135 235118 729125 241475 820297 352515 904824 061820 765548 317476 180565 173051 920886 374046 688832 407670 312705 (233 digits), a[455] = 5
                                                                                      A[456]/B[456] = 14498 896895 109303 345416 554726 720730 037810 940663 405344 398993 122343 593815 133288 878747 816711 858215 536336 437054 212550 323133 047934 604410 758511 266956 185824 627143 331914 973918 273601 718705 631662 618567 681957 132579 556141 540735 246386 462964 761811 (233 digits)/1 409198 904388 204206 014506 481739 959206 661550 277771 857571 014221 191139 223334 206377 596457 401098 020115 624093 735635 597244 232053 904553 474944 443984 419780 502701 796470 471518 962782 809986 550887 520276 044774 166690 818865 317413 250439 221467 755981 592499 (235 digits), a[456] = 61
                                                                                      A[457]/B[457] = 14735 825934 387676 763106 755984 809078 191842 055755 911435 255061 427986 211016 931823 991742 873480 541220 610517 093540 109851 774770 217439 974951 057420 399818 940680 973753 412350 270080 999576 050016 500121 560563 595530 371606 262532 319841 424379 486653 723055 (233 digits)/1 432226 872997 420016 751497 856261 629296 416842 961969 156511 198351 634138 610629 967421 591153 366603 520725 571987 398394 883088 995718 407369 609268 235119 654899 231827 037946 291816 315298 714810 612708 285824 362250 347255 991917 238299 624485 910300 163651 905204 (235 digits), a[457] = 1
                                                                                      A[458]/B[458] = 88178 026567 047687 160950 334650 766120 997021 219442 962520 674300 262274 648899 792408 837462 184114 564318 588921 904754 761809 196984 135134 479166 045613 266050 889229 495910 393666 324323 271481 968788 132270 421385 659608 990610 868803 139942 368283 896233 377086 (233 digits)/8 570333 269375 304289 771995 763048 105688 745765 087617 640127 005979 361832 276484 043485 552224 234115 623743 484030 727610 012689 210645 941401 521285 619582 694276 661836 986201 930600 539276 384039 614428 949397 856025 902970 778451 508911 372868 772968 574241 118519 (235 digits), a[458] = 5
                                                                                      A[459]/B[459] = 191091 879068 483051 085007 425286 341320 185884 494641 836476 603661 952535 508816 516641 666667 241709 669857 788360 903049 633470 168738 487708 933283 148646 931920 719139 965574 199682 918727 542539 987592 764662 403334 914748 352828 000138 599726 160947 279120 477227 (234 digits)/18 572893 411748 028596 295489 382357 840673 908373 137204 436765 210310 357803 163598 054392 695601 834834 768212 540048 853614 908467 417010 290172 651839 474285 043452 555501 010350 153017 393851 482889 841566 184620 074302 153197 548820 256122 370223 456237 312134 142242 (236 digits), a[459] = 2
                                                                                      A[460]/B[460] = 2 381280 575388 844300 181039 438086 861963 227635 155145 000239 918243 692700 754697 992108 837469 084630 602612 049252 741350 363451 221845 987641 678563 829376 449099 518909 082800 789861 349053 781961 819901 308219 261404 636589 224546 870466 336656 299651 245679 103810 (235 digits)/231 445054 210351 647445 317868 351342 193775 646242 734070 881309 529703 655470 239660 696197 899446 252132 842293 964616 970988 914298 214769 423473 343359 311003 215707 327849 110403 766809 265494 178717 713223 164838 747651 741341 364294 582379 815550 247816 319850 825423 (237 digits), a[460] = 12
                                                                                      A[461]/B[461] = 2 572372 454457 327351 266046 863373 203283 413519 649786 836716 521905 645236 263514 508750 504136 326340 272469 837613 644399 996921 390584 475350 611846 978023 381020 238049 048374 989544 267781 324501 807494 072881 664739 551337 577374 870604 936382 460598 524799 581037 (235 digits)/250 017947 622099 676041 613357 733700 034449 554615 871275 318074 740014 013273 403258 750590 595048 086967 610506 504665 824603 822765 631779 713645 995198 785288 259159 883350 120753 919826 659345 661607 554789 349458 821953 894538 913114 838502 185773 704053 631984 967665 (237 digits), a[461] = 1
                                                                                      A[462]/B[462] = 7 526025 484303 499002 713133 164833 268530 054674 454718 673672 962054 983173 281727 009609 845741 737311 147551 724480 030150 357294 003014 938342 902257 785423 211139 995007 179550 768949 884616 430965 434889 453982 590883 739264 379296 611676 209421 220848 295278 265884 (235 digits)/731 480949 454550 999528 544583 818742 262674 755474 476621 517459 009731 682017 046178 197379 089542 426068 063306 973948 620196 559829 478328 850765 333756 881579 734027 094549 351911 606462 584185 501932 822801 863756 391559 530419 190524 259384 187097 655923 583820 760753 (237 digits), a[462] = 2
                                                                                      A[463]/B[463] = 10 098397 938760 826353 979180 028206 471813 468194 104505 510389 483960 628409 545241 518360 349878 063651 420021 562093 674550 354215 393599 413693 514104 763446 592160 233056 227925 758494 152397 755467 242383 526864 255623 290601 956671 482281 145803 681446 820077 846921 (236 digits)/981 498897 076650 675570 157941 552442 297124 310090 347896 835533 749745 695290 449436 947969 684590 513035 673813 478614 444800 382595 110108 564411 328955 666867 993186 977899 472665 526289 243531 163540 377591 213215 213513 424958 103639 097886 372871 359977 215805 728418 (237 digits), a[463] = 1
                                                                                      A[464]/B[464] = 17 624423 423064 325356 692313 193039 740343 522868 559224 184062 446015 611582 826968 527970 195619 800962 567573 286573 704700 711509 396614 352036 416362 548869 803300 228063 407476 527444 037014 186432 677272 980846 846507 029866 335968 093957 355224 902295 115356 112805 (236 digits)/1712 979846 531201 675098 702525 371184 559799 065564 824518 352992 759477 377307 495615 145348 774132 939103 737120 452563 064996 942424 588437 415176 662712 548447 727214 072448 824577 132751 827716 665473 200393 076971 605072 955377 294163 357270 559969 015900 799626 489171 (238 digits), a[464] = 1
                                                                                      A[465]/B[465] = 27 722821 361825 151710 671493 221246 212156 991062 663729 694451 929976 239992 372210 046330 545497 864613 987594 848667 379251 065724 790213 765729 930467 312316 395460 461119 635402 285938 189411 941899 919656 507711 102130 320468 292639 576238 501028 583741 935433 959726 (236 digits)/2694 478743 607852 350668 860466 923626 856923 375655 172415 188526 509223 072597 945052 093318 458723 452139 410933 931177 509797 325019 698545 979587 991668 215315 720401 050348 297242 659041 071247 829013 577984 290186 818586 380335 397802 455156 932840 375878 015432 217589 (238 digits), a[465] = 1
                                                                                      A[466]/B[466] = 100 792887 508539 780488 706792 856778 376814 496056 550413 267418 235944 331559 943598 666961 832113 394804 530357 832575 842453 908683 767255 649226 207764 485818 989681 611422 313683 385258 605250 012132 436242 503980 152897 991271 213886 822672 858310 653520 921657 991983 (237 digits)/9796 416077 354758 727105 283926 142065 130569 192530 341763 918572 287146 595101 330771 425304 150303 295521 969922 246095 594388 917483 684075 353940 637717 194394 888417 223493 716305 109875 041460 152513 934345 947532 060832 096383 487570 722741 358490 143534 845923 141938 (238 digits), a[466] = 3
                                                                                      A[467]/B[467] = 229 308596 378904 712688 085078 934802 965785 983175 764556 229288 401864 903112 259407 380254 209724 654223 048310 513819 064158 883092 324725 064182 345996 283954 374823 683964 262769 056455 399911 966164 792141 515671 407926 303010 720413 221584 217649 890783 778749 943692 (237 digits)/22287 310898 317369 804879 428319 207757 118061 760715 855943 025671 083516 262800 606594 943926 759330 043183 350778 423368 698575 159987 066696 687469 267102 604105 497235 497335 729852 878791 154168 134041 446676 185250 940250 573102 372943 900639 649820 662947 707278 501465 (239 digits), a[467] = 2
                                                                                      A[468]/B[468] = 330 101483 887444 493176 791871 791581 342600 479232 314969 496706 637809 234672 203006 047216 041838 049027 578668 346394 906612 791776 091980 713408 553760 769773 364505 295386 576452 441714 005161 978297 228384 019651 560824 294281 934300 044257 075960 544304 700407 935675 (237 digits)/32083 726975 672128 531984 712245 349822 248630 953246 197706 944243 370662 857901 937366 369230 909633 338705 320700 669464 292964 077470 750772 041409 904819 798500 385652 720829 446157 988666 195628 286555 381022 132783 001082 669485 860514 623381 008310 806482 553201 643403 (239 digits), a[468] = 1
                                                                                      A[469]/B[469] = 889 511564 153793 699041 668822 517965 650986 941640 394495 222701 677483 372456 665419 474686 293400 752278 205647 206608 877384 466644 508686 490999 453517 823501 103834 274737 415673 939883 410235 922759 248909 554974 529574 891574 589013 310098 369570 979393 179565 815042 (237 digits)/86454 764849 661626 868848 852809 907401 615323 667208 251356 914157 824841 978604 481327 682388 578596 720593 992179 762297 284503 314928 568240 770289 076742 201106 268540 938994 622168 856123 545424 707152 208720 450816 942415 912074 093973 147401 666442 275912 813681 788271 (239 digits), a[469] = 2
                                                                                      A[470]/B[470] = 1219 613048 041238 192218 460694 309546 993587 420872 709464 719408 315292 607128 868425 521902 335238 801305 784315 553003 783997 258420 600667 204408 007278 593274 468339 570123 992126 381597 415397 901056 477293 574626 090399 185856 523313 354355 445531 523697 879973 750717 (238 digits)/118538 491825 333755 400833 565055 257223 863954 620454 449063 858401 195504 836506 418694 051619 488230 059299 312880 431761 577467 392399 319012 811698 981561 999606 654193 659824 068326 844789 741052 993707 589742 583599 943498 581559 954487 770782 674753 082395 366883 431674 (240 digits), a[470] = 1
                                                                                      A[471]/B[471] = 5767 963756 318746 467915 511599 756153 625336 625131 232354 100334 938653 800972 139121 562295 634355 957501 342909 418624 013373 500326 911355 308631 482632 196598 977192 555233 384179 466273 071827 526985 158083 853478 891171 635000 682266 727520 151697 074184 699460 817910 (238 digits)/560608 732150 996648 472183 113030 936297 071142 149026 047612 347762 606861 324630 156103 888866 531516 957791 243701 489343 594372 884525 844292 017085 002990 199532 885315 578290 895476 235282 509636 681982 567690 785216 716410 238313 911924 230532 365454 605494 281215 514967 (240 digits), a[471] = 4
                                                                                      A[472]/B[472] = 47363 323098 591209 935542 553492 358775 996280 421922 568297 522087 824523 014905 981398 020267 410086 461316 527590 901995 890985 261035 891509 673459 868336 166066 285880 011991 065562 111781 990018 116937 741964 402457 219772 265861 981447 174516 659108 117175 475660 293997 (239 digits)/4 603408 349033 306943 178298 469302 747600 433091 812662 829962 640502 050395 433547 667525 162551 740365 721629 262492 346510 332450 468606 073348 948379 005483 595869 736718 286151 232136 727049 818146 449568 131268 865333 674780 488071 249881 615041 598389 926349 616607 551410 (241 digits), a[472] = 8
                                                                                      A[473]/B[473] = 195221 256150 683586 210085 725569 191257 610458 312821 505544 188686 236745 860596 064713 643365 274701 802767 453273 026607 577314 544470 477394 002470 955976 860864 120712 603197 646427 913401 031899 994736 125941 463307 770260 698448 608055 425586 788129 542886 602101 993898 (240 digits)/18 974242 128284 224421 185376 990241 926698 803509 399677 367462 909770 808443 058820 826204 539073 492979 844308 293670 875384 924174 758950 137687 810601 024924 583011 832188 722895 824023 143481 782222 480255 092766 246551 415532 190598 911450 690698 759014 310892 747645 720607 (242 digits), a[473] = 4
                                                                                      A[474]/B[474] = 242584 579249 274796 145628 279061 550033 606738 734744 073841 710774 061268 875502 046111 663632 684788 264083 980863 928603 468299 805506 368903 675930 824313 026930 406592 615188 711990 025183 021918 111673 867905 865764 990032 964310 589502 600103 447237 660062 077762 287895 (240 digits)/23 577650 477317 531364 363675 459544 674299 236601 212340 197425 550272 858838 492368 493729 701625 233345 565937 556163 221895 256625 227556 211036 758980 030408 178881 568907 009047 056159 870531 600368 929823 224035 111885 090312 678670 161332 305740 357404 237242 364253 272017 (242 digits), a[474] = 1
                                                                                      A[475]/B[475] = 437805 835399 958382 355714 004630 741291 217197 047565 579385 899460 298014 736098 110825 306997 959490 066851 434136 955211 045614 349976 846297 678401 780289 887794 527305 218386 358417 938584 053818 106409 993847 329072 760293 662759 197558 025690 235367 202948 679864 281793 (240 digits)/42 551892 605601 755785 549052 449786 600998 040110 612017 564888 460043 667281 551189 319934 240698 726325 410245 849834 097280 180799 986506 348724 569581 055332 761893 401095 731942 880183 014013 382591 410078 316801 358436 505844 869269 072782 996439 116418 548135 111898 992624 (242 digits), a[475] = 1
                                                                                      A[476]/B[476] = 680390 414649 233178 501342 283692 291324 823935 782309 653227 610234 359283 611600 156936 970630 644278 330935 415000 883814 513914 155483 215201 354332 604602 914724 933897 833575 070407 963767 075736 218083 861753 194837 750326 627069 787060 625793 682604 863010 757626 569688 (240 digits)/66 129543 082919 287149 912727 909331 275297 276711 824357 762314 010316 526120 043557 813663 942323 959670 976183 405997 319175 437425 214062 559761 328561 085740 940774 970002 740989 936342 884544 982960 339901 540836 470321 596157 547939 234115 302179 473822 785377 476152 264641 (242 digits), a[476] = 1
                                                                                      A[477]/B[477] = 1 118196 250049 191560 857056 288323 032616 041132 829875 232613 509694 657298 347698 267762 277628 603768 397786 849137 839025 559528 505460 061499 032734 384892 802519 461203 051961 428825 902351 129554 324493 855600 523910 510620 289828 984618 651483 917972 065959 437490 851481 (241 digits)/108 681435 688521 042935 461780 359117 876295 316822 436375 327202 470360 193401 594747 133598 183022 685996 386429 255831 416455 618225 200568 908485 898142 141073 702668 371098 472932 816525 898558 365551 749979 857637 828758 102002 417208 306898 298618 590241 333512 588051 257265 (243 digits), a[477] = 1
                                                                                      A[478]/B[478] = 1 798586 664698 424739 358398 572015 323940 865068 612184 885841 119929 016581 959298 424699 248259 248046 728722 264138 722840 073442 660943 276700 387066 989495 717244 395100 885536 499233 866118 205290 542577 717353 718748 260946 916898 771679 277277 600576 928970 195117 421169 (241 digits)/174 810978 771440 330085 374508 268449 151592 593534 260733 089516 480676 719521 638304 947262 125346 645667 362612 661828 735631 055650 414631 468247 226703 226814 643443 341101 213922 752868 783103 348512 089881 398474 299079 698159 965147 541013 600798 064064 118890 064203 521906 (243 digits), a[478] = 1
                                                                                      A[479]/B[479] = 8 312542 908842 890518 290650 576384 328379 501407 278614 775977 989410 723626 184891 966559 270665 595955 312675 905692 730385 853299 149233 168300 581002 342875 671497 041606 594107 425761 366823 950716 494804 725015 398903 554407 957424 071335 760594 320279 781840 217960 536157 (241 digits)/807 925350 774282 363276 959813 432914 482665 690959 479307 685268 393067 071488 147966 922646 684409 268665 836879 903146 358979 840826 859094 781474 804955 048332 276441 735503 328623 828001 030971 759600 109505 451535 025076 894642 277798 470952 701810 846497 809072 844865 344889 (243 digits), a[479] = 4
                                                                                      A[480]/B[480] = 10 111129 573541 315257 649049 148399 652320 366475 890799 661819 109339 740208 144190 391258 518924 844002 041398 169831 453225 926741 810176 445000 968069 332371 388741 436707 479643 924995 232942 156007 037382 442369 117651 815354 874322 843015 037871 920856 710810 413077 957326 (242 digits)/982 736329 545722 693362 334321 701363 634258 284493 740040 774784 873743 791009 786271 869908 809755 914333 199492 564975 094610 896477 273726 249722 031658 275146 919885 076604 542546 580869 814075 108112 199386 850009 324156 592802 242946 011966 302608 910561 927962 909068 866795 (243 digits), a[480] = 1
                                                                                      A[481]/B[481] = 18 423672 482384 205775 939699 724783 980699 867883 169414 437797 098750 463834 329082 357817 789590 439957 354074 075524 183611 780040 959409 613301 549071 675247 060238 478314 073751 350756 599766 106723 532187 167384 516555 369762 831746 914350 798466 241136 492650 631038 493483 (242 digits)/1790 661680 320005 056639 294135 134278 116923 975453 219348 460053 266810 862497 934238 792555 494165 182999 036372 468121 453590 737304 132821 031196 836613 323479 196326 812107 871170 408870 845046 867712 308892 301544 349233 487444 520744 482919 004419 757059 737035 753934 211684 (244 digits), a[481] = 1
                                                                                      A[482]/B[482] = 28 534802 055925 521033 588748 873183 633020 234359 060214 099616 208090 204042 473272 749076 308515 283959 395472 245355 636837 706782 769586 058302 517141 007618 448979 915021 553395 275751 832708 262730 569569 609753 634207 185117 706069 757365 836338 161993 203461 044116 450809 (242 digits)/2773 398009 865727 750001 628456 835641 751182 259946 959389 234838 140554 653507 720510 662464 303921 097332 235865 033096 548201 633781 406547 280918 868271 598626 116211 888712 413716 989740 659121 975824 508279 151553 673390 080246 763690 494885 307028 667621 664998 663003 078479 (244 digits), a[482] = 1
                                                                                      A[483]/B[483] = 46 958474 538309 726809 528448 597967 613720 102242 229628 537413 306840 667876 802355 106894 098105 723916 749546 320879 820449 486823 728995 671604 066212 682865 509218 393335 627146 626508 432474 369454 101756 777138 150762 554880 537816 671716 634804 403129 696111 675154 944292 (242 digits)/4564 059690 185732 806640 922591 969919 868106 235400 178737 694891 407365 516005 654749 455019 798086 280331 272237 501218 001792 371085 539368 312115 704884 922105 312538 700820 284887 398611 504168 843536 817171 453098 022623 567691 284434 977804 311448 424681 402034 416937 290163 (244 digits), a[483] = 1
                                                                                      A[484]/B[484] = 545 078021 977332 515938 401683 450827 383941 359023 586128 011162 583337 550687 299178 924911 387678 247043 640481 775033 661782 061843 788538 445947 245480 519139 050382 241713 452008 167344 589926 326725 688894 158273 292595 288803 622053 146248 819186 596419 860689 470820 838021 (243 digits)/52978 054601 908788 623051 776968 504760 300350 849348 925503 878643 621575 329569 922754 667682 082870 180976 230477 546494 567917 715722 339598 714191 622005 741784 554137 597735 547478 374467 204979 254729 497165 135631 922249 324850 892475 250732 732961 339117 087377 249313 270272 (245 digits), a[484] = 11
                                                                                      A[485]/B[485] = 33296 717815 155593 199052 031139 098438 034143 002680 983437 218330 890431 259802 052269 526488 746478 793578 818934 597933 189155 259294 829840 874386 040524 350347 582535 137856 199644 834528 417980 299721 124300 431808 999075 171901 483058 592894 605186 784741 198169 395226 063573 (245 digits)/3 236225 390406 621838 812799 317670 760298 189508 045684 634474 292152 323460 619770 942784 183626 853167 319881 331367 837386 644773 030148 254889 877804 647235 170963 114932 162688 681068 241111 007903 382036 144244 726645 279832 383595 725425 272501 022090 110823 732046 625046 776755 (247 digits), a[485] = 61
                                                                                      A[486]/B[486] = 33841 795837 132925 714990 432822 549265 418084 361704 569565 229493 473768 810489 351448 451400 134157 040622 459416 372966 850937 321138 618379 320333 286004 869486 632917 379569 651653 001873 007906 626446 813194 590082 291670 460705 105111 739143 424373 381161 058858 866046 901594 (245 digits)/3 289203 445008 530627 435851 094639 265058 489858 895033 559978 170795 945035 949340 865538 851308 936037 500857 561845 383881 212690 745870 594488 591996 269240 912747 669069 760424 228546 615578 212882 636765 641409 862277 202081 708446 617900 523233 755051 449940 819423 874360 047027 (247 digits), a[486] = 1
                                                                                      A[487]/B[487] = 67138 513652 288518 914042 463961 647703 452227 364385 553002 447824 364200 070291 403717 977888 880635 834201 278350 970900 040092 580433 448220 194719 326529 219834 215452 517425 851297 836401 425886 926167 937495 021891 290745 632606 588170 332038 029560 165902 257028 261272 965167 (245 digits)/6 525428 835415 152466 248650 412310 025356 679366 940718 194452 462948 268496 569111 808323 034935 789204 820738 893213 221267 857463 776018 849378 469800 916476 083710 784001 923112 909614 856689 220786 018801 785654 588922 481914 092042 343325 795734 777141 560764 551470 499406 823782 (247 digits), a[487] = 1
                                                                                      A[488]/B[488] = 168118 823141 709963 543075 360745 844672 322539 090475 675570 125142 202168 951072 158884 407177 895428 709025 016118 314766 931122 482005 514819 709771 939063 309155 063822 414421 354248 674675 859680 478782 688184 633864 873161 725918 281452 403219 483493 712965 572915 388592 831928 (246 digits)/16 340061 115838 835559 933151 919259 315771 848592 776469 948883 096692 482029 087564 482184 921180 514447 142335 348271 826416 927618 297908 293245 531598 102193 080169 237073 606650 047776 328956 654454 674369 212719 040122 165909 892531 304552 114703 309334 571469 922364 873173 694591 (248 digits), a[488] = 2
                                                                                      A[489]/B[489] = 235257 336793 998482 457117 824707 492375 774766 454861 228572 572966 566369 021363 562602 385066 776064 543226 294469 285666 971215 062438 963039 904491 265592 528989 279274 931847 205546 511077 285567 404950 625679 655756 163907 358524 869622 735257 513053 878867 829943 649865 797095 (246 digits)/22 865489 951253 988026 181802 331569 341128 527959 717188 143335 559640 750525 656676 290507 956116 303651 963074 241485 047684 785082 073927 142624 001399 018669 163880 021075 529762 957391 185645 875240 693170 998373 629044 647823 984573 647877 910438 086476 132234 473835 372580 518373 (248 digits), a[489] = 1
                                                                                      A[490]/B[490] = 403376 159935 708446 000193 185453 337048 097305 545336 904142 698108 768537 972435 721486 792244 671493 252251 310587 600433 902337 544444 477859 614263 204655 838144 343097 346268 559795 185753 145247 883733 313864 289621 037069 084443 151075 138476 996547 591833 402859 038458 629023 (246 digits)/39 205551 067092 823586 114954 250828 656900 376552 493658 092218 656333 232554 744240 772692 877296 818099 105409 589756 874101 712700 371835 435869 532997 120862 244049 258149 136413 005167 514602 529695 367540 211092 669166 813733 877104 952430 025141 395810 703704 396200 245754 212964 (248 digits), a[490] = 1
                                                                                      A[491]/B[491] = 15 563551 414350 919430 464458 871934 300203 472377 177663 585995 101099 770811 973920 979100 490364 292808 128776 096798 102155 260041 751329 121705 246493 042514 378474 316974 090052 477763 569696 804986 986816 552522 661355 572532 567364 610477 997383 381862 368537 138587 111293 699969 (248 digits)/1512 676430 500781 284298 550063 863058 303342 836954 476195 647644 500303 587605 937825 652837 293395 391417 968638 652246 263549 867696 203673 705666 255289 611434 437751 830742 713457 153756 740542 003664 659699 019895 057383 569711 314561 840218 865811 127282 873001 529444 711240 611005 (250 digits), a[491] = 38
                                                                                      A[492]/B[492] = 15 966927 574286 627876 464652 057387 637251 569682 723000 490137 799208 539349 946356 700587 282608 964301 381027 407385 702589 162379 295773 599564 860756 247170 216618 660071 436321 037558 755449 950234 870549 866386 950976 609601 651807 761553 135860 378409 960370 541446 149752 328992 (248 digits)/1551 881981 567874 107884 665018 113886 960243 213506 969853 739863 156636 820160 682066 425530 170692 209517 074048 242003 137651 580396 575509 141535 788286 732296 681801 088891 849870 158924 255144 533360 027239 230987 726550 383445 191666 792648 890952 523093 576705 925644 956994 823969 (250 digits), a[492] = 1
                                                                                      A[493]/B[493] = 31 530478 988637 547306 929110 929321 937455 042059 900664 076132 900308 310161 920277 679687 772973 257109 509803 504183 804744 422421 047102 721270 107249 289684 595092 977045 526373 515322 325146 755221 857366 418909 612332 182134 219172 372031 133243 760272 328907 680033 261046 028961 (248 digits)/3064 558412 068655 392183 215081 976945 263586 050461 446049 387507 656940 407766 619892 078367 464087 600935 042686 894249 401201 448092 779182 847202 043576 343731 119552 919634 563327 312680 995686 537024 686938 250882 783933 953156 506228 632867 756763 650376 449707 455089 668235 434974 (250 digits), a[493] = 1
                                                                                      A[494]/B[494] = 79 027885 551561 722490 322873 916031 512161 653802 524328 642403 599825 159673 786912 059962 828555 478520 400634 415753 312078 007221 389979 042105 075254 826539 406804 614162 489068 068203 405743 460678 585282 704206 175640 973870 090152 505615 402347 898954 618185 901512 671844 386914 (248 digits)/7680 998805 705184 892251 095182 067777 487415 314429 861952 514878 470517 635693 921850 582265 098867 411387 159422 030501 940054 476582 133874 835939 875439 419758 920906 928160 976524 784286 246517 607409 401115 732753 294418 289758 204124 058384 404479 823846 476120 835824 293465 693917 (250 digits), a[494] = 2
                                                                                      A[495]/B[495] = 110 558364 540199 269797 251984 845353 449616 695862 424992 718536 500133 469835 707189 739650 601528 735629 910437 919937 116822 429642 437081 763375 182504 116224 001897 591208 015441 583525 730890 215900 442649 123115 787973 156004 309324 877646 535591 659226 947093 581545 932890 415875 (249 digits)/10745 557217 773840 284434 310264 044722 751001 364891 308001 902386 127458 043460 541742 660632 562955 012322 202108 924751 341255 924674 913057 683141 919015 763490 040459 847795 539852 096967 242204 144434 088053 983636 078352 242914 710352 691252 161243 474222 925828 290913 961701 128891 (251 digits), a[495] = 1
                                                                                      A[496]/B[496] = 521 261343 712358 801679 330813 297445 310628 437252 224299 516549 600359 039016 615671 018565 234670 421040 042386 095501 779367 725791 138306 095605 805271 291435 414394 978994 550834 402306 329304 324280 355879 196669 327533 597887 327452 016201 544714 535862 406560 227696 403406 050414 (249 digits)/50663 227676 800546 029988 336238 246668 491420 773995 093960 124422 980349 809536 088821 224795 350687 460675 967857 729507 305078 175281 786105 568507 551502 473719 082746 319343 135933 172155 215334 185145 753331 667297 607827 261417 045534 823393 049453 720738 179433 999480 140270 209481 (251 digits), a[496] = 4
                                                                                      A[497]/B[497] = 3238 126426 814352 079873 236864 630025 313387 319375 770789 817834 102287 703935 401215 851042 009551 261870 164754 492947 793028 784389 266918 337010 014131 864836 488267 465175 320447 997363 706716 161582 577924 303131 753174 743328 274036 974855 803878 874401 386454 947724 353326 718359 (250 digits)/314724 923278 577116 464364 327693 524733 699526 008861 871762 648924 009556 900677 074670 009404 667079 776378 009255 301795 171724 976365 629691 094187 228030 605804 536937 763854 355451 129898 534209 255308 608043 987421 725315 811416 983561 631610 457965 798652 002432 287794 803322 385777 (252 digits), a[497] = 6
                                                                                      A[498]/B[498] = 10235 640624 155415 041299 041407 187521 250790 395379 536668 970051 907222 150822 819318 571691 263324 206650 536649 574345 158454 078958 939061 106635 847666 885944 879197 374520 512178 394397 449452 809028 089652 106064 587057 827872 149562 940768 956351 159066 565925 070869 463386 205491 (251 digits)/994837 997512 531895 423081 319318 820869 589998 800580 709248 071195 009020 511567 312831 253009 351926 789809 995623 634892 820253 104378 675178 851069 235594 291132 693559 610906 202286 561850 817961 951071 577463 629562 783774 695667 996219 718224 423351 116694 186730 862864 550237 366812 (252 digits), a[498] = 3
                                                                                      A[499]/B[499] = 13473 767050 969767 121172 278271 817546 564177 714755 307458 787886 009509 854758 220534 422733 272875 468520 701404 067292 951482 863348 205979 443645 861798 750781 367464 839695 832626 391761 156168 970610 667576 409196 340232 571200 423599 915624 760230 033467 952380 018593 816712 923850 (251 digits)/1 309562 920791 109011 887445 647012 345603 289524 809442 581010 720119 018577 412244 387501 262414 019006 566188 004878 936687 991978 080744 304869 945256 463624 896937 230497 374760 557737 691749 352171 206380 185507 616984 509090 507084 979781 349834 881316 915346 189163 150659 353559 752589 (253 digits), a[499] = 1
                                                                                      A[500]/B[500] = 23709 407675 125182 162471 319679 005067 814968 110134 844127 757937 916732 005581 039852 994424 536199 675171 238053 641638 109936 942307 145040 550281 709465 636726 246662 214216 344804 786158 605621 779638 757228 515260 927290 399072 573162 856393 716581 192534 518305 089463 280099 129341 (251 digits)/2 304400 918303 640907 310526 966331 166472 879523 610023 290258 791314 027597 923811 700332 515423 370933 355998 000502 571580 812231 185122 980048 796325 699219 188069 924056 985666 760024 253600 170133 157451 762971 246547 292865 202752 976001 068059 304668 032040 375894 013523 903797 119401 (253 digits), a[500] = 1
                                                                                      A[501]/B[501] = 108311 397751 470495 771057 556987 837817 824050 155294 683969 819637 676437 877082 379946 400431 417674 169205 653618 633845 391230 632576 786141 644772 699661 297686 354113 696561 211845 536395 578656 089165 696490 470240 049394 167490 716251 341199 626554 803606 025600 376446 937109 441214 (252 digits)/10 527166 594005 672641 129553 512337 011494 807619 249535 742045 885375 128969 107491 188831 324107 502739 990180 006889 223011 240902 821236 225065 130559 260501 649216 926725 317427 597834 706150 032703 836187 237392 603173 680551 318096 883785 622072 099989 043507 692739 204754 968748 230193 (254 digits), a[501] = 4
                                                                                      A[502]/B[502] = 456954 998681 007165 246701 547630 356339 111168 731313 580007 036488 622483 513910 559638 596150 206896 351993 852528 177019 674859 472614 289607 129372 508110 827471 663117 000461 192186 931740 920246 136301 543190 396221 124867 069035 438168 221192 222800 406958 620706 595251 028536 894197 (252 digits)/44 413067 294326 331471 828741 015679 212452 110000 608166 258442 332814 543474 353776 455657 811853 381893 316718 028059 463625 775842 470067 880309 318562 741225 784937 630958 255377 151363 078200 300948 502200 712541 659242 015070 475140 511143 556347 704624 206071 146850 832543 778790 040173 (254 digits), a[502] = 4
                                                                                      A[503]/B[503] = 565266 396432 477661 017759 104618 194156 935218 886608 263976 856126 298921 390992 939584 996581 624570 521199 506146 810865 066090 105191 075748 774145 207772 125158 017230 697022 404032 468136 498902 225467 239680 866461 174261 236526 154419 562391 849355 210564 646306 971697 965646 335411 (252 digits)/54 940233 888332 004112 958294 528016 223946 917619 857702 000488 218189 672443 461267 644489 135960 884633 306898 034948 686637 016745 291304 105374 449122 001727 434154 557683 572804 749197 784350 333652 338387 949934 262415 695621 793237 394929 178419 804613 249578 839590 037298 747538 270366 (254 digits), a[503] = 1
                                                                                      A[504]/B[504] = 1 022221 395113 484826 264460 652248 550496 046387 617921 843983 892614 921404 904903 499223 592731 831466 873193 358674 987884 740949 577805 365355 903517 715882 952629 680347 697483 596219 399877 419148 361768 782871 262682 299128 305561 592587 783584 072155 617523 267013 566948 994183 229608 (253 digits)/99 353301 182658 335584 787035 543695 436399 027620 465868 258930 551004 215917 815044 100146 947814 266526 623616 063008 150262 792587 761371 985683 767684 742953 219092 188641 828181 900560 862550 634600 840588 662475 921657 710692 268377 906072 734767 509237 455649 986440 869842 526328 310539 (254 digits), a[504] = 1
                                                                                      A[505]/B[505] = 4 654151 976886 416966 075601 713612 396141 120769 358295 639912 426585 984541 010606 936479 367508 950438 013972 940846 762404 029888 416412 537172 388216 071303 935676 738621 486956 788910 067646 175495 672542 371165 917190 370774 458772 524770 696728 137977 680657 714361 239493 942379 253843 (253 digits)/452 353438 618965 346452 106436 702797 969543 028101 721175 036210 422206 536114 721444 045076 927217 950739 801362 286981 287688 187096 336792 048109 519860 973540 310523 312250 885532 351441 234552 872055 700742 599837 949046 538390 866749 019220 117489 841563 072178 785353 516668 852851 512522 (255 digits), a[505] = 4
                                                                                      A[506]/B[506] = 24 292981 279545 569656 642469 220310 531201 650234 409400 043546 025544 844109 957938 181620 430276 583656 943058 062908 799904 890391 659868 051217 844598 072402 631013 373455 132267 540769 738108 296626 724480 638700 848634 153000 599424 216441 267224 762044 020811 838819 764418 706079 498823 (254 digits)/2361 120494 277485 067845 319219 057685 284114 168129 071743 439982 662036 896491 422264 325531 583904 020225 630427 497914 588703 728069 445332 226231 366989 610654 771708 749896 255843 657767 035314 994879 344301 661665 666890 402646 602123 002173 322216 717052 816543 913208 453186 790585 873149 (256 digits), a[506] = 5
                                                                                      A[507]/B[507] = 28 947133 256431 986622 718070 933922 927342 771003 767695 683458 452130 828650 968545 118099 797785 534094 957031 003755 562308 920280 076280 588390 232814 143706 566690 112076 619224 329679 805754 472122 397023 009866 765824 523775 058196 741211 963952 900021 701469 553181 003912 648458 752666 (254 digits)/2813 473932 896450 414297 425655 760483 253657 196230 792918 476193 084243 432606 143708 370608 511121 970965 431789 784895 876391 915165 782124 274340 886850 584195 082232 062147 141376 009208 269867 866935 045044 261503 615936 941037 468872 021393 439706 558615 888722 698561 969855 643437 385671 (256 digits), a[507] = 1
                                                                                      A[508]/B[508] = 82 187247 792409 542902 078611 088156 385887 192241 944791 410462 929806 501411 895028 417820 025847 651846 857120 070419 924522 730951 812429 227998 310226 359815 764393 597608 370716 200129 349617 240871 518526 658434 380283 200550 715817 698865 195130 562087 423750 945181 772244 002997 004155 (254 digits)/7988 068360 070385 896440 170530 578651 791428 560590 657580 392368 830523 761703 709681 066748 606147 962156 494007 067706 341487 558401 009580 774913 140690 779044 936172 874190 538595 676183 575050 728749 434390 184672 898764 284721 539867 044960 201629 834284 593989 310332 392898 077460 644491 (256 digits), a[508] = 2
                                                                                      A[509]/B[509] = 275 508876 633660 615328 953904 198392 085004 347729 602069 914847 241550 332886 653630 371559 875328 489635 528391 215015 335877 113135 513568 272385 163493 223153 859870 904901 731372 930067 854606 194736 952602 985169 906674 125427 205649 837807 549344 586283 972722 388726 320644 657449 765131 (255 digits)/26777 679013 107608 103617 937247 496438 627942 878002 765659 653299 575814 717717 272751 570854 329565 857434 913810 988014 900854 590368 810866 599080 308922 921329 890750 684718 757163 037758 995020 053183 348214 815522 312229 795202 088473 156274 044596 061469 670690 629559 148549 875819 319144 (257 digits), a[509] = 3
                                                                                      A[510]/B[510] = 633 205001 059730 773559 986419 484940 555895 887701 148931 240157 412907 167185 202289 160939 776504 631117 913902 500450 596276 957222 839565 772768 637212 806123 484135 407411 833462 060265 058829 630345 423732 628774 193631 451405 127117 374480 293819 734655 369195 722634 413533 317896 534417 (255 digits)/61543 426386 285602 103676 045025 571529 047314 316596 188899 698967 982153 197138 255184 208457 265279 677026 321629 043736 143196 739138 631313 973073 758536 621704 717674 243628 052921 751701 565090 835116 130819 815717 523223 875125 716813 357508 290821 957223 935370 569450 689997 829099 282779 (257 digits), a[510] = 2
                                                                                      A[511]/B[511] = 7873 968889 350429 898048 790938 017678 755755 000143 389244 796736 196436 339109 081100 302837 193384 063050 495221 220422 491200 599809 588357 545608 810046 896635 669495 793843 732917 653248 560561 758882 037394 530460 230251 542288 731058 331571 075181 402148 403071 060339 283044 472208 178135 (256 digits)/765298 795648 534833 347730 477554 354787 195714 677157 032456 040915 361653 083376 334962 072341 512921 981750 773359 512848 619215 460032 386634 275965 411362 381786 502841 608255 392224 058177 776110 074576 918052 604132 590916 296710 690233 446373 534459 548156 895137 462967 428523 825010 712492 (258 digits), a[511] = 12
                                                                                      A[512]/B[512] = 16381 142779 760590 569657 568295 520298 067405 887987 927420 833629 805779 845403 364489 766614 163272 757218 904344 941295 578678 156842 016280 863986 257306 599394 823126 995099 299297 366762 179953 148109 498521 689694 654134 535982 589234 037622 444182 538952 175337 843312 979622 262312 890687 (257 digits)/1 592141 017683 355268 799137 000134 281103 438743 670910 253811 780798 705459 363890 925108 353140 291123 640527 868348 069433 381627 659203 404582 525004 581261 385277 723357 460138 837369 868057 117310 984269 966925 023982 705056 468547 097280 250255 359741 053537 725645 495385 547045 479120 707763 (259 digits), a[512] = 2
                                                                                      A[513]/B[513] = 24255 111669 111020 467706 359233 537976 823160 888131 316665 630366 002216 184512 445590 069451 356656 820269 399566 161718 069878 756651 604638 409595 067353 496030 492622 788943 032215 020010 740514 906991 535916 220154 884386 078271 320292 369193 519363 941100 578408 903652 262666 734521 068822 (257 digits)/2 357439 813331 890102 146867 477688 635890 634458 348067 286267 821714 067112 447267 260070 425481 804045 622278 641707 582282 000843 119235 791216 800969 992623 767064 226199 068394 229593 926234 893421 058846 884977 628115 295972 765257 787513 696628 894200 601694 620782 958352 975569 304131 420255 (259 digits), a[513] = 1
                                                                                      A[514]/B[514] = 40636 254448 871611 037363 927529 058274 890566 776119 244086 463995 807996 029915 810079 836065 519929 577488 303911 103013 648556 913493 620919 273581 324660 095425 315749 784042 331512 386772 920468 055101 034437 909849 538520 614253 909526 406815 963546 480052 753746 746965 242288 996833 959509 (257 digits)/3 949580 831015 245370 946004 477822 916994 073202 018977 540079 602512 772571 811158 185178 778622 095169 262806 510055 651715 382470 778439 195799 325974 573885 152341 949556 528533 066963 794292 010732 043116 851902 652098 001029 233804 884793 946884 253941 655232 346428 453738 522614 783252 128018 (259 digits), a[514] = 1
                                                                                      A[515]/B[515] = 146163 875015 725853 579798 141820 712801 494861 216489 048925 022353 426204 274259 875829 577647 916445 552734 311299 470759 015549 497132 467396 230339 041333 782306 439872 141070 026752 180329 501919 072294 639229 949703 499947 921033 048871 589641 410003 381258 839649 144547 989533 725022 947349 (258 digits)/14 206182 306377 626214 984880 911157 386872 854064 404999 906506 629252 384827 880741 815606 761348 089553 410698 171874 537428 148255 454553 378614 778893 714279 224090 074868 653993 430485 309110 925617 188197 440685 584409 299060 466672 441895 537281 656025 567391 660068 319568 543413 653887 804309 (260 digits), a[515] = 3
                                                                                      A[516]/B[516] = 186800 129464 597464 617162 069349 771076 385427 992608 293011 486349 234200 304175 685909 413713 436375 130222 615210 573772 664106 410626 088315 503920 365993 877731 755621 925112 358264 567102 422387 127395 673667 859553 038468 535286 958397 996457 373549 861311 593395 891513 231822 721856 906858 (258 digits)/18 155763 137392 871585 930885 388980 303866 927266 423977 446586 231765 157399 691900 000785 539970 184722 673504 681930 189143 530726 232992 574414 104868 288164 376432 024425 182526 497449 103402 936349 231314 292588 236507 300089 700477 326689 484165 909967 222624 006496 773307 066028 437139 932327 (260 digits), a[516] = 1
                                                                                      A[517]/B[517] = 332964 004480 323318 196960 211170 483877 880289 209097 341936 508702 660404 578435 561738 991361 352820 682956 926510 044531 679655 907758 555711 734259 407327 660038 195494 066182 385016 747431 924306 199690 312897 809256 538416 456320 007269 586098 783553 242570 433045 036061 221356 446879 854207 (258 digits)/32 361945 443770 497800 915766 300137 690739 781330 828977 353092 861017 542227 572641 816392 301318 274276 084202 853804 726571 678981 687545 953028 883762 002443 600522 099293 836519 927934 412513 861966 419511 733273 820916 599150 167149 768585 021447 565992 790015 666565 092875 609442 091027 736636 (260 digits), a[517] = 1
                                                                                      A[518]/B[518] = 7 179044 223551 387146 753326 503929 932511 871501 383652 473678 169105 102696 451322 482428 232301 845609 472318 071921 508937 936880 473555 758261 923367 919874 738533 860997 314942 443616 263172 832817 320892 244521 853940 345214 118007 111059 304531 828167 955290 687341 648798 880308 106333 845205 (259 digits)/697 756617 456573 325405 161977 691871 809402 335213 832501 861536 313133 544178 717378 145023 867653 944520 441764 611829 447148 789341 671457 588020 663870 339479 987396 109595 749444 984071 766194 037644 041060 691338 475755 882243 210622 466974 934564 795815 812953 004363 723694 864312 348722 401683 (261 digits), a[518] = 21
                                                                                      A[519]/B[519] = 7 512008 228031 710464 950286 715100 416389 751790 592749 815614 677807 763101 029758 044167 223663 198430 155274 998431 553469 616536 381314 313973 657627 327202 398572 056491 381124 828633 010604 757123 520582 557419 663196 883630 574327 118328 890630 611721 197861 120386 684860 101664 553213 699412 (259 digits)/730 118562 900343 823206 077743 992009 500142 116544 661479 214629 174151 086406 290019 961416 168972 218796 525967 465634 173720 468323 359003 541049 547632 341923 587918 208889 585964 912006 178707 899610 460572 424612 296672 481393 377772 235559 956012 361808 602968 670928 816570 473754 439750 138319 (261 digits), a[519] = 1
                                                                                      A[520]/B[520] = 292 635356 888756 384814 864221 677745 755322 439543 908145 467035 925800 100535 582128 160782 731503 385955 372768 012320 540783 365262 963499 689260 913206 353565 884272 007669 797685 931670 666153 603511 103029 426469 055421 923175 942437 607557 148495 073573 474013 262035 673482 743561 128454 422861 (261 digits)/28442 262007 669638 607236 116249 388232 814802 763910 968712 017444 930874 827617 738136 678838 288598 258788 428528 305928 048526 585629 313592 147903 473899 332576 328288 047400 016111 640306 557094 222841 542812 826605 749310 175191 565967 418253 263034 544542 725762 499658 753372 866981 059227 657805 (263 digits), a[520] = 38
                                                                                      A[521]/B[521] = 592 782722 005544 480094 678730 070591 927034 630878 409040 749686 529407 964172 194014 365732 686669 970340 900811 023072 635036 347062 308313 692495 484040 034334 167116 071830 976496 691974 342911 964145 726641 410357 774040 729982 459202 333443 187620 758868 145887 644458 031825 588786 810122 545134 (261 digits)/57614 642578 239621 037678 310242 768475 129747 644366 598903 249519 035900 741641 766293 319092 746168 736373 383024 077490 270773 639581 986187 836856 495431 007076 244494 303689 618188 192619 292896 345293 546198 077823 795292 831776 509707 072066 482081 450894 054493 670246 323316 207716 558205 453929 (263 digits), a[521] = 2
                                                                                      A[522]/B[522] = 885 418078 894300 864909 542951 748337 682357 070422 317186 216722 455208 064707 776142 526515 418173 356296 273579 035393 175819 712325 271813 381756 397246 387900 051388 079500 774182 623645 009065 567656 829670 836826 829462 653158 401639 941000 336115 832441 619900 906493 705308 332347 938576 967995 (261 digits)/86056 904585 909259 644914 426492 156707 944550 408277 567615 266963 966775 569259 504429 997931 034766 995161 811552 383418 319300 225211 299779 984759 969330 339652 572782 351089 634299 832925 849990 568135 089010 904429 544603 006968 075674 490319 745115 995436 780256 169905 076689 074697 617433 111734 (263 digits), a[522] = 1
                                                                                      A[523]/B[523] = 5019 873116 477048 804642 393488 812280 338819 982989 994971 833298 805448 287711 074726 998309 777536 751822 268706 200038 514134 908688 667380 601277 470271 973834 424056 469334 847409 810199 388239 802429 874995 594491 921353 995774 467402 038444 868199 921076 245392 176926 558367 250526 503007 385109 (262 digits)/487899 165507 785919 262250 442703 552014 852499 685754 436979 584338 869778 587939 288443 308747 920003 712182 440785 994581 867274 765638 485087 760656 342082 705339 108406 059137 789687 357248 542849 185968 991252 599971 518307 866616 888079 523665 207661 428077 955774 519771 706761 581204 645371 012599 (264 digits), a[523] = 5
                                                                                      A[524]/B[524] = 51084 149243 664788 911333 477839 871141 070556 900322 266904 549710 509690 941818 523412 509613 193540 874518 960641 035778 317168 799211 945619 394531 099966 126244 291952 772849 248280 725638 891463 591955 579626 781746 043002 610903 075660 325449 018115 043204 073822 675759 288980 837612 968650 819085 (263 digits)/4 965048 559663 768452 267418 853527 676856 469547 265821 937411 110352 664561 448652 388863 085410 234804 116986 219412 329236 992047 881596 150657 591323 390157 393043 656842 942467 531173 405411 278482 427825 001536 904144 727681 673136 956469 726971 821730 276216 338001 367622 144304 886744 071143 237724 (265 digits), a[524] = 10
                                                                                      A[525]/B[525] = 56104 022360 141837 715975 871328 683421 409376 883312 261876 383009 315139 229529 598139 507922 971077 626341 229347 235816 831303 707900 612999 995808 570238 100078 716009 242184 095690 535838 279703 394385 454622 376237 964356 606677 543062 363893 886314 964280 319214 852685 847348 088139 471658 204194 (263 digits)/5 452947 725171 554371 529669 296231 228871 322046 951576 374390 694691 534340 036591 677306 394158 154807 829168 660198 323818 859322 647234 635745 351979 732240 098382 765249 001605 320860 762659 821331 613793 992789 504116 245989 539753 844549 250637 029391 704294 293775 887393 851066 467948 716514 250323 (265 digits), a[525] = 1
                                                                                      A[526]/B[526] = 163292 193963 948464 343285 220497 237983 889310 666946 790657 315729 139969 400877 719691 525459 135696 127201 419335 507411 979776 215013 171619 386148 240442 326401 723971 257217 439661 797315 450870 380726 488871 534221 971715 824258 161785 053236 790744 971764 712252 381130 983677 013891 911967 227473 (264 digits)/15 870944 010006 877195 326757 445990 134599 113641 168974 686192 499735 733241 521835 743475 873726 544419 775323 539808 976874 710693 176065 422148 295282 854637 589809 187340 945678 172894 930730 921145 655412 987115 912377 219660 752644 645568 228245 880513 684804 925553 142409 846437 822641 504171 738370 (266 digits), a[526] = 2
                                                                                      A[527]/B[527] = 1 852318 155963 574945 492113 296798 301244 191794 219726 959106 856029 854802 639184 514746 287973 463735 025556 842037 817348 608842 073045 500813 243439 215103 690497 679693 071575 931970 306308 239277 582376 832209 252679 653230 673517 322697 949498 584509 653692 153991 045126 667795 240950 503297 706397 (265 digits)/180 033331 835247 203520 124001 202122 709461 572099 810297 922508 191784 599996 776784 855541 005150 143425 357727 598097 069440 676947 583954 279376 600091 133253 586283 825999 404065 222705 000699 953933 823336 851064 540265 662257 818844 945799 761341 715042 237148 474860 453902 161882 517005 262403 372393 (267 digits), a[527] = 11
                                                                                      A[528]/B[528] = 2 015610 349927 523409 835398 517295 539228 081104 886673 749764 171758 994772 040062 234437 813432 599431 152758 261373 324760 588618 288058 672432 629587 455546 016899 403664 328793 371632 103623 690147 963103 321080 786901 624946 497775 484483 002735 375254 625456 866243 426257 651472 254842 415264 933870 (265 digits)/195 904275 845254 080715 450758 648112 844060 685740 979272 608700 691520 333238 298620 599016 878876 687845 133051 137906 046315 387640 760019 701524 895373 987891 176093 013340 349743 395599 931430 875079 478749 838180 452642 881918 571489 591367 989587 595555 921953 400413 596312 008320 339646 766575 110763 (267 digits), a[528] = 1
                                                                                      A[529]/B[529] = 7 899149 205746 145174 998308 848684 918928 435108 879748 208399 371306 839118 759371 218059 728271 262028 483831 626157 791630 374696 937221 518111 132201 581741 741195 890686 057956 046866 617179 309721 471686 795451 613384 528070 166843 776146 957704 710273 530062 752721 323899 622212 005477 749092 508007 (265 digits)/767 746159 371009 445666 476277 146461 241643 629322 748115 748610 266345 599711 672646 652591 641780 206960 756881 011815 208386 839869 864013 383951 286213 096927 114562 866020 453295 409504 794992 579172 259586 365605 898194 308013 533313 719903 730104 501710 003008 676101 242838 186843 535945 562128 704682 (267 digits), a[529] = 3
                                                                                      A[530]/B[530] = 57 309654 790150 539634 823560 458089 971727 126867 044911 208559 770906 868603 355660 760855 911331 433630 539579 644477 866173 211496 848609 299210 554998 527738 205270 638466 734485 699698 423878 858198 264910 889242 080593 321437 665681 917511 706668 347169 335896 135292 693555 006956 293186 658912 489919 (266 digits)/5570 127391 442320 200380 784698 673341 535566 091000 216082 848972 555939 531220 007147 167158 371338 136570 431218 220612 505023 266729 808113 389183 898865 666380 978033 075483 522811 262133 496378 929285 295854 397421 740003 038013 304685 630694 100319 107525 943014 133122 296179 316225 091265 701476 043537 (268 digits), a[530] = 7
                                                                                      A[531]/B[531] = 237 137768 366348 303714 292550 681044 805836 942577 059393 042638 454934 313532 182014 261483 373596 996550 642150 204069 256323 220684 331658 714953 352195 692694 562278 444552 995898 845660 312694 742514 531330 352419 935757 813820 829571 446193 784378 098950 873647 293892 098119 650037 178224 384742 467683 (267 digits)/23048 255725 140290 247189 615071 839827 383907 993323 612447 144500 490103 724591 701235 321225 127132 753242 481753 894265 228479 906789 096466 940686 881675 762451 026695 167954 544540 458038 780508 296313 443003 955292 858206 460066 752056 242680 131380 931813 775065 208590 427555 451743 901008 368032 878830 (269 digits), a[531] = 4
                                                                                      A[532]/B[532] = 294 447423 156498 843349 116111 139134 777564 069444 104304 251198 225841 182135 537675 022339 284928 430181 181729 848547 122496 432181 180268 014163 907194 220432 767549 083019 730384 545358 736573 600712 796241 241662 016351 135258 495253 363705 491046 446120 209543 429184 791674 656993 471411 043654 957602 (267 digits)/28618 383116 582610 447570 399770 513168 919474 084323 828529 993473 046043 255811 708382 488383 498470 889812 912972 114877 733503 173518 904580 329870 780541 428832 004728 243438 067351 720172 276887 225598 738858 352714 598209 498080 056741 873374 231700 039339 718079 341712 723734 767968 992274 069508 922367 (269 digits), a[532] = 1
                                                                                      A[533]/B[533] = 4948 296538 870329 797300 150328 907201 246862 053682 728261 061810 068393 227700 784814 618911 932451 879449 549827 780823 216266 135583 215946 941575 867303 219618 843063 772868 682051 571400 097872 353919 271190 219012 197375 977956 753625 265481 641121 236874 226342 160848 764914 161932 720801 083221 789315 (268 digits)/480942 385590 462057 408316 011400 050530 095493 342504 868927 040069 226795 817579 035355 135361 102666 990249 089307 732308 964530 683091 569752 218619 370338 623763 102347 062963 622167 980795 210703 905893 264737 598726 429558 429347 659926 216667 838581 561249 264334 675994 007311 739247 777393 480175 636702 (270 digits), a[533] = 16
                                                                                      A[534]/B[534] = 5242 743962 026828 640649 266440 046336 024426 123126 832565 313008 294234 409836 322489 641251 217380 309630 731557 629370 338762 567764 396214 955739 774497 440051 610612 855888 412436 116758 834445 954632 067431 460674 213727 113215 248878 629187 132167 682994 435885 590033 556588 818926 192212 126876 746917 (268 digits)/509560 768707 044667 855886 411170 563699 014967 426828 697457 033542 272839 073390 743737 623744 601137 880062 002279 847186 698033 856610 474332 548490 150880 052595 107075 306401 689519 700967 487591 131492 003595 951441 027767 927427 716668 090042 070281 600588 982414 017706 731046 507216 769667 549684 559069 (270 digits), a[534] = 1
                                                                                      A[535]/B[535] = 10191 040500 897158 437949 416768 953537 271288 176809 560826 374818 362627 637537 107304 260163 149832 189080 281385 410193 555028 703347 612161 897315 641800 659670 453676 628757 094487 688158 932318 308551 338621 679686 411103 091172 002503 894668 773288 919868 662227 750882 321502 980858 913013 210098 536232 (269 digits)/990503 154297 506725 264202 422570 614229 110460 769333 566384 073611 499634 890969 779092 759105 703804 870311 091587 579495 662564 539702 044084 767109 521218 676358 209422 369365 311687 681762 698295 037385 268333 550167 457326 356775 376594 306709 908863 161838 246748 693700 738358 246464 547061 029860 195771 (270 digits), a[535] = 1
                                                                                      A[536]/B[536] = 76580 027468 306937 706295 183822 721096 923443 360793 758349 936736 832627 872596 073619 462393 266205 633192 701255 500725 223963 491197 681348 236949 267102 057744 786349 257188 073849 933871 360674 114491 437783 218479 091448 751419 266405 891868 545190 122075 071479 846209 807109 684938 583304 597566 500541 (269 digits)/7 443082 848789 591744 705303 369164 863302 788192 812163 662145 548822 770283 310179 197386 937484 527771 972239 643392 903656 335985 634524 782925 918256 799410 787102 573031 891958 871333 473306 375656 393188 881930 802613 229052 424855 352828 237011 432323 733456 709654 873611 899554 232468 599094 758705 929466 (271 digits), a[536] = 7
                                                                                      A[537]/B[537] = 469671 205310 738784 675720 519705 280118 811948 341572 110925 995239 358394 873113 549021 034522 747065 988236 488918 414544 898809 650533 700251 319011 244413 006139 171772 171885 537587 291387 096362 995499 965320 990560 959795 599687 600939 245880 044429 652319 091106 828141 164161 090490 412840 795497 539478 (270 digits)/45 649000 247035 057193 496022 637559 794045 839617 642315 539257 366548 121334 752044 963414 384012 870436 703748 951945 001433 678478 346850 741640 276650 317683 398973 647613 721118 539688 521600 952233 396518 559918 365846 831640 905907 493563 728778 502805 562578 504677 935372 135683 641276 141629 582095 772567 (272 digits), a[537] = 6
                                                                                      A[538]/B[538] = 1 485593 643400 523291 733456 742938 561453 359288 385510 091127 922454 907812 491936 720682 565961 507403 597902 168010 744359 920392 442798 782102 193983 000341 076162 301665 772844 686611 808032 649763 100991 333746 190161 970835 550482 069223 629508 678479 079032 344800 330633 299592 956409 821826 984059 118975 (271 digits)/144 390083 589894 763325 193371 281844 245440 307045 739110 279917 648467 134287 566314 087630 089523 139082 083486 499227 907957 371420 675077 007846 748207 752460 984023 515873 055314 490399 038109 232356 582744 561685 900153 723975 142577 833519 423346 940740 421192 223688 679728 306605 156297 023983 504993 247167 (273 digits), a[538] = 3
                                                                                      A[539]/B[539] = 1 955264 848711 262076 409177 262643 841572 171236 727082 202053 917694 266207 365050 269703 600484 254469 586138 656929 158904 819202 093332 482353 512994 244754 082301 473437 944730 224199 099419 746126 096491 299067 180722 930631 150169 670162 875388 722908 731351 435907 158774 463754 046900 234667 779556 658453 (271 digits)/190 039083 836929 820518 689393 919404 039486 146663 381425 819175 015015 255622 318359 051044 473536 009518 787235 451172 909391 049899 021927 749487 024858 070144 382997 163486 776433 030087 559710 184589 979263 121604 266000 555616 048485 327083 152125 443545 983770 728366 615100 442288 797573 165613 087089 019734 (273 digits), a[539] = 1
                                                                                      A[540]/B[540] = 11 261917 886956 833673 779343 056157 769314 215472 020921 101397 510926 238849 317188 069200 568382 779751 528595 452656 538884 016402 909461 193869 758954 224111 487669 668855 496495 807607 305131 380393 583447 829082 093776 623991 301330 420038 006452 293022 735789 524336 124505 618363 190910 995165 881842 411240 (272 digits)/1094 585502 774543 865918 640340 878864 442871 040362 646239 375792 723543 412399 158109 342852 457203 186676 019663 755092 454912 620915 784715 755281 872498 103182 899009 333306 937479 640836 836660 155306 479060 169707 230156 502055 385004 468935 183974 158470 340045 865521 755230 518049 144162 852048 940438 345837 (274 digits), a[540] = 5
                                                                                      A[541]/B[541] = 13 217182 735668 095750 188520 318801 610886 386708 748003 303451 428620 505056 682238 338904 168867 034221 114734 109585 697788 835605 002793 676223 271948 468865 569971 142293 441226 031806 404551 126519 679939 128149 274499 554622 451500 090200 881841 015931 467140 960243 283280 082117 237811 229833 661399 069693 (272 digits)/1284 624586 611473 686437 329734 798268 482357 187026 027665 194967 738558 668021 476468 393896 930739 196194 806899 206265 364303 670814 806643 504768 897356 173327 282006 496793 713912 670924 396370 339896 458323 291311 496157 057671 433489 796018 336099 602016 323816 593888 370330 960337 941736 017662 027527 365571 (274 digits), a[541] = 1
                                                                                      A[542]/B[542] = 37 696283 358293 025174 156383 693760 991086 988889 516927 708300 368167 248962 681664 747008 906116 848193 758063 671827 934461 687612 915048 546316 302851 161842 627611 953442 378947 871220 114233 633432 943326 085380 642775 733236 204330 600439 770134 324885 670071 444822 691065 782597 666533 454833 204640 550626 (272 digits)/3663 834675 997491 238793 299810 475401 407585 414414 701569 765728 200660 748442 111046 130646 318681 579065 633462 167623 183519 962545 398002 764819 667210 449837 463022 326894 365304 982685 629400 835099 395706 752330 222470 617398 251984 060971 856173 362502 987679 053298 495892 438725 027634 887372 995493 076979 (274 digits), a[542] = 2
                                                                                      A[543]/B[543] = 164 002316 168840 196446 814055 093845 575234 342266 815714 136652 901289 500907 408897 326939 793334 426996 146988 796897 435635 586056 662987 861488 483353 116236 080418 956062 957017 516686 861485 660251 453243 469671 845602 487567 268822 491959 962378 315474 147426 739534 047543 212507 903945 049166 479961 272197 (273 digits)/15939 963290 601438 641610 528976 699874 112698 844684 833944 257880 541201 661789 920652 916482 205465 512457 340747 876758 098383 520996 398654 564047 566197 972677 134095 804371 175132 601666 913973 680294 041150 300632 386039 527264 441426 039905 760793 052028 274532 807082 353900 715238 052275 567154 009499 673487 (275 digits), a[543] = 4
                                                                                      A[544]/B[544] = 201 698599 527133 221620 970438 787606 566321 331156 332641 844953 269456 749870 090562 073948 699451 275189 905052 468725 370097 273669 578036 407804 786204 278078 708030 909505 335965 387906 975719 293684 396569 555052 488378 220803 473153 092399 732512 640359 817498 184356 738608 995105 570478 503999 684601 822823 (273 digits)/19603 797966 598929 880403 828787 175275 520284 259099 535514 023608 741862 410232 031699 047128 524147 091522 974210 044381 281903 483541 796657 328867 233408 422514 597118 131265 540437 584352 543374 515393 436857 052962 608510 144662 693410 100877 616966 414531 262211 860380 849793 153963 079910 454527 004992 750466 (275 digits), a[544] = 1
                                                                                      A[545]/B[545] = 365 700915 695973 418067 784493 881452 141555 673423 148355 981606 170746 250777 499459 400888 492785 702186 052041 265622 805732 859726 241024 269293 269557 394314 788449 865568 292982 904593 837204 953935 849813 024724 333980 708370 741975 584359 694890 955833 964924 923890 786152 207613 474423 553166 164563 095020 (273 digits)/35543 761257 200368 522014 357763 875149 632983 103784 369458 281489 283064 072021 952351 963610 729612 603980 314957 921139 380287 004538 195311 892914 799606 395191 731213 935636 715570 186019 457348 195687 478007 353594 994549 671927 134836 140783 377759 466559 536744 667463 203693 869201 132186 021681 014492 423953 (275 digits), a[545] = 1
                                                                                      A[546]/B[546] = 567 399515 223106 639688 754932 669058 707877 004579 480997 826559 440203 000647 590021 474837 192236 977375 957093 734348 175830 133395 819060 677098 055761 672393 496480 775073 628948 292500 812924 247620 246382 579776 822358 929174 215128 676759 427403 596193 782423 108247 524761 202719 044902 057165 849164 917843 (273 digits)/55147 559223 799298 402418 186551 050425 153267 362883 904972 305098 024926 482253 984051 010739 253759 695503 289167 965520 662190 488079 991969 221782 033014 817706 328332 066902 256007 770372 000722 711080 914864 406557 603059 816589 828246 241660 994725 881090 798956 527844 053487 023164 212096 476208 019485 174419 (275 digits), a[546] = 1
                                                                                      A[547]/B[547] = 1500 499946 142186 697445 294359 219569 557309 682582 110351 634725 051152 252072 679502 350562 877259 656937 966228 734319 157393 126517 879145 623489 381080 739101 781411 415715 550879 489595 463053 449176 342578 184277 978698 566719 172232 937878 549698 148221 529771 140385 835674 613051 564227 667497 862892 930706 (274 digits)/145838 879704 798965 326850 730865 975999 939517 829552 179402 891685 332917 036529 920453 985089 237131 994986 893293 852180 704667 980698 179250 336478 865636 030604 387878 069441 227585 726763 458793 617849 307736 166710 200669 305106 791328 624105 367211 228741 134657 723151 310667 915529 556378 974097 053462 772791 (276 digits), a[547] = 2
                                                                                      A[548]/B[548] = 2067 899461 365293 337134 049291 888628 265186 687161 591349 461284 491355 252720 269523 825400 069496 634313 923322 468667 333223 259913 698206 300587 436842 411495 277892 190789 179827 782096 275977 696796 588960 764054 801057 495893 387361 614637 977101 744415 312194 248633 360435 815770 609129 724663 712057 848549 (274 digits)/200986 438928 598263 729268 917417 026425 092785 192436 084375 196783 357843 518783 904504 995828 490891 690490 182461 817701 366858 468778 171219 558260 898650 848310 716210 136343 483593 497135 459516 328930 222600 573267 803729 121696 619574 865766 361937 109831 933614 250995 364154 938693 768475 450305 072947 947210 (276 digits), a[548] = 1
                                                                                      A[549]/B[549] = 7704 198330 238066 708847 442234 885454 352869 744066 884400 018578 525218 010233 488073 826763 085749 559879 736196 140321 157062 906258 973764 525251 691607 973587 615087 988083 090362 835884 290986 539566 109460 476442 381871 054399 334317 781792 481003 381467 466353 886285 916982 060363 391616 841488 999066 476353 (274 digits)/748798 196490 593756 514657 483117 055275 217873 406860 432528 482035 406447 592881 633968 972574 709807 066457 440679 305284 805243 387032 692909 011261 561588 575536 536508 478471 678366 218169 837342 604639 975537 886513 611856 670196 650053 221404 453022 558236 935500 476137 403132 731610 861805 325012 272306 614421 (276 digits), a[549] = 3
                                                                                      A[550]/B[550] = 32884 692782 317560 172523 818231 430445 676665 663429 128949 535598 592227 293654 221819 132452 412494 873832 868107 029951 961474 884949 593264 401594 203274 305845 738244 143121 541279 125633 439923 855061 026802 669824 328541 713490 724632 741807 901115 270285 177609 793777 028364 057224 175597 090619 708323 753961 (275 digits)/3 196179 224890 973289 787898 849885 247525 964278 819877 814489 124924 983633 890310 440380 886127 330119 956319 945179 038840 587832 016908 942855 603307 145005 150456 862244 050230 197058 369814 808886 747490 124752 119322 251155 802483 219787 751384 174027 342779 675616 155544 976685 865137 215696 750354 162174 404894 (277 digits), a[550] = 4
                                                                                      A[551]/B[551] = 40588 891112 555626 881371 260466 315900 029535 407496 013349 554177 117445 303887 709892 959215 498244 433712 604303 170273 118537 791208 567028 926845 894882 279433 353332 131204 631641 961517 730910 394627 136263 146266 710412 767890 058950 523600 382118 651752 643963 680062 945346 117587 567213 932108 707390 230314 (275 digits)/3 944977 421381 567046 302556 333002 302801 182152 226738 247017 606960 390081 483192 074349 858702 039927 022777 385858 344125 393075 403941 635764 614568 706593 725993 398752 528701 875424 587984 646229 352130 100290 005835 863012 472679 869840 972788 627049 901016 611116 631682 379818 596748 077502 075366 434481 019315 (277 digits), a[551] = 1
                                                                                      A[552]/B[552] = 235829 148345 095694 579380 120563 009945 824342 700909 195697 306484 179453 813092 771283 928529 903717 042395 889622 881317 554163 840992 428409 035823 677685 703012 504904 799144 699488 933222 094475 828196 708118 401157 880605 552941 019385 359809 811708 529048 397428 194091 755094 645162 011666 751163 245274 905531 (276 digits)/22 921066 331798 808521 300680 514896 761531 875039 953569 049577 159726 934041 306270 812130 179637 529755 070206 874470 759467 553209 036617 121678 676150 677973 780423 856006 693739 574181 309738 040033 508140 626202 148501 566218 165882 568992 615327 309276 847862 731199 313956 875778 848877 603207 127186 334579 501469 (278 digits), a[552] = 5
                                                                                      A[553]/B[553] = 1 455563 781183 129794 357651 983844 375574 975591 612951 187533 393082 194168 182444 337596 530394 920546 688087 942040 458178 443520 837163 137483 141787 960996 497508 382760 926072 828575 560850 297765 363807 384973 553213 994046 085536 175262 682459 252369 826043 028532 844613 475913 988559 637214 439088 179039 663500 (277 digits)/141 471375 412174 418174 106639 422382 871992 432391 948152 544480 565321 994329 320816 947130 936527 218457 444018 632682 900930 712329 623644 365836 671472 774436 408536 534792 691139 320512 446412 886430 400973 857502 896845 260321 467975 283796 664752 482710 988192 998312 515423 634491 690013 696744 838484 441958 028129 (279 digits), a[553] = 6
                                                                                      A[554]/B[554] = 3 146956 710711 355283 294684 088251 761095 775525 926811 570764 092648 567790 177981 446476 989319 744810 418571 773703 797674 441205 515318 703375 319399 599678 698029 270426 651290 356640 054922 690006 555811 478065 507585 868697 724013 369910 724728 316448 181134 454493 883318 706922 622281 286095 629339 603354 232531 (277 digits)/305 863817 156147 644869 513959 359662 505516 739823 849874 138538 290370 922699 947904 706392 052691 966669 958244 139836 561328 977868 283905 853352 019096 226846 597496 925592 076018 215206 202563 812894 310088 341207 942192 086861 101833 136585 944832 274698 824248 727824 344804 144762 228904 996696 804155 218495 557727 (279 digits), a[554] = 2
                                                                                      A[555]/B[555] = 4 602520 491894 485077 652336 072096 136670 751117 539762 758297 485730 761958 360425 784073 519714 665357 106659 715744 255852 884726 352481 840858 461187 560675 195537 653187 577363 185215 615772 987771 919618 863039 060799 862743 809549 545173 407187 568818 007177 483026 727932 182836 610840 923310 068427 782393 896031 (277 digits)/447 335192 568322 063043 620598 782045 377509 172215 798026 683018 855692 917029 268721 653522 989219 185127 402262 772519 462259 690197 907550 219188 690569 001283 006033 460384 767157 535718 648976 699324 711062 198710 839037 347182 569808 420382 609584 757409 812441 726136 860227 779253 918918 693441 642639 660453 585856 (279 digits), a[555] = 1
                                                                                      A[556]/B[556] = 7 749477 202605 840360 947020 160347 897766 526643 466574 329061 578379 329748 538407 230550 509034 410167 525231 489448 053527 325931 867800 544233 780587 160353 893566 923614 228653 541855 670695 677778 475430 341104 568385 731441 533562 915084 131915 885266 188311 937520 611250 889759 233122 209405 697767 385748 128562 (277 digits)/753 199009 724469 707913 134558 141707 883025 912039 647900 821557 146063 839729 216626 359915 041911 151797 360506 912356 023588 668066 191456 072540 709665 228129 603530 385976 843175 750924 851540 512219 021150 539918 781229 434043 671641 556968 554417 032108 636690 453961 205031 924016 147823 690138 446794 878949 143583 (279 digits), a[556] = 1
                                                                                      A[557]/B[557] = 12 351997 694500 325438 599356 232444 034437 277761 006337 087359 064110 091706 898833 014624 028749 075524 631891 205192 309380 210658 220282 385092 241774 721029 089104 576801 806016 727071 286468 665550 395049 204143 629185 594185 343112 460257 539103 454084 195489 420547 339183 072595 843963 132715 766195 168142 024593 (278 digits)/1200 534202 292791 770956 755156 923753 260535 084255 445927 504576 001756 756758 485348 013438 031130 336924 762769 684875 485848 358264 099006 291729 400234 229412 609563 846361 610333 286643 500517 211543 732212 738629 620266 781226 241449 977351 164001 789518 449132 180098 065259 703270 066742 383580 089434 539402 729439 (280 digits), a[557] = 1
                                                                                      A[558]/B[558] = 20 101474 897106 165799 546376 392791 932203 804404 472911 416420 642489 421455 437240 245174 537783 485692 157122 694640 362907 536590 088082 929326 022361 881382 982671 500416 034670 268926 957164 343328 870479 545248 197571 325626 876675 375341 671019 339350 383801 358067 950433 962355 077085 342121 463962 553890 153155 (278 digits)/1953 733212 017261 478869 889715 065461 143560 996295 093828 326133 147820 596487 701974 373353 073041 488722 123276 597231 509437 026330 290462 364270 109899 457542 213094 232338 453509 037568 352057 723762 753363 278548 401496 215269 913091 534319 718418 821627 085822 634059 270291 627286 214566 073718 536229 418351 873022 (280 digits), a[558] = 1
                                                                                      A[559]/B[559] = 92 757897 282924 988636 784861 803611 763252 495378 897982 753041 634067 777528 647793 995322 179883 018293 260381 983753 761010 357018 572614 102396 331222 246561 019790 578465 944697 802779 115126 038865 876967 385136 419470 896692 849813 961624 223180 811485 730694 852819 140918 922016 152304 501201 622045 383702 637213 (278 digits)/9015 467050 361837 686436 314017 185597 834779 069435 821240 809108 593039 142709 293245 506850 323296 291813 255876 073801 523596 463585 260855 748809 839832 059581 461940 775715 424369 436916 908748 106594 745665 852823 226251 642305 893816 114630 037677 076026 792422 716335 146426 212414 925006 678454 234352 212810 221527 (280 digits), a[559] = 4
                                                                                      A[560]/B[560] = 205 617269 462956 143073 116100 000015 458708 795162 268876 922503 910624 976512 732828 235818 897549 522278 677886 662147 884928 250627 233311 134118 684806 374505 022252 657347 924065 874485 187416 421060 624414 315521 036513 119012 576303 298590 117380 962321 845191 063706 232271 806387 381694 344524 708053 321295 427581 (279 digits)/19984 667312 740936 851742 517749 436656 813119 135166 736309 944350 333898 881906 288465 387053 719634 072348 635028 744834 556629 953500 812173 861889 789563 576705 136975 783769 302247 911402 169553 936952 244694 984194 853999 499881 700723 763579 793772 973680 670668 066729 563144 052116 064579 430627 004933 843972 316076 (281 digits), a[560] = 2
                                                                                      A[561]/B[561] = 503 992436 208837 274783 017061 803642 680670 085703 435736 598049 455317 730554 113450 466959 974982 062850 616155 308049 530866 858273 039236 370633 700834 995571 064295 893161 792829 551749 489958 880987 125796 016178 492497 134718 002420 558804 457942 736129 421076 980231 605462 534790 915693 190251 038152 026293 492375 (279 digits)/48984 801675 843711 389921 349516 058911 461017 339769 293860 697809 260836 906521 870176 280957 762564 436510 525933 563470 636856 370586 885203 472589 418959 212991 735892 343254 028865 259721 247855 980499 235055 821212 934250 642069 295263 641789 625223 023388 133758 849794 272714 316647 054165 539708 244219 900754 853679 (281 digits), a[561] = 2
                                                                                      A[562]/B[562] = 709 609705 671793 417856 133161 803658 139378 880865 704613 520553 365942 707066 846278 702778 872531 585129 294041 970197 415795 108900 272547 504752 385641 370076 086548 550509 716895 426234 677375 302047 750210 331699 529010 253730 578723 857394 575323 698451 266268 043937 837734 341178 297387 534775 746205 347588 919956 (279 digits)/68969 468988 584648 241663 867265 495568 274136 474936 030170 642159 594735 788428 158641 668011 482198 508859 160962 308305 193486 324087 697377 334479 208522 789696 872868 127023 331113 171123 417409 917451 479750 805407 788250 141950 995987 405369 418995 997068 804426 916523 835858 368763 118744 970335 249153 744727 169755 (281 digits), a[562] = 1
                                                                                      A[563]/B[563] = 6890 479787 254978 035488 215518 036565 935080 013494 777258 283029 748802 094155 729958 791969 827766 329014 262533 039826 273022 838375 492163 913405 171607 326255 843232 847749 244888 387861 586336 599416 877689 001474 253589 418293 210935 275355 635856 022190 817489 375672 145071 605395 592181 003232 754000 154593 771979 (280 digits)/669710 022573 105545 564896 154905 519025 928245 614193 565396 477245 613459 002375 297951 293061 102351 016242 974594 338217 378233 287376 161599 482902 295664 320263 591705 486464 008883 799832 004545 237562 552813 069883 028501 919628 259150 290114 396186 997007 373601 098508 795439 635515 122870 272725 486603 603299 381474 (282 digits), a[563] = 9
                                                                                      A[564]/B[564] = 28271 528854 691705 559808 995233 949921 879698 934844 813646 652672 361151 083689 766113 870658 183596 901186 344174 129502 507886 462402 241203 158373 072070 675099 459479 941506 696448 977681 022721 699715 260966 337596 543367 926903 422464 958817 118747 787214 536225 546626 418020 762760 666111 547706 762205 965964 007872 (281 digits)/2 747809 559281 006830 501248 486887 571671 987118 931710 291756 551142 048571 797929 350446 840255 891602 573831 059339 661174 706419 473592 343775 266088 391180 070751 239690 072879 366648 370451 435590 867701 691003 084939 902257 820464 032588 565827 003743 985098 298831 310559 017616 910823 610226 061237 195568 157924 695651 (283 digits), a[564] = 4
                                                                                      A[565]/B[565] = 16 149933 455816 218852 686424 494103 441959 243171 809883 369496 958947 966070 881012 180978 937792 661596 906416 785960 985758 276192 870055 219167 344429 323962 808047 206279 448072 917254 643725 560427 136830 889467 769100 516675 680147 438426 759930 440842 521691 002276 499356 834927 141735 941874 743793 973606 720042 266891 (284 digits)/1569 668968 372028 005761 777782 167708 943730 573155 620770 158387 179355 347955 620034 403097 079175 207420 673777 857540 868974 743752 708604 457276 419373 659484 719221 454737 100582 365103 327601 726930 695228 115574 570567 217717 404590 867221 377333 534002 488136 006279 427707 854695 715796 561951 239164 156021 778300 598195 (286 digits), a[565] = 571
                                                                                      A[566]/B[566] = 16 178204 984670 910558 246233 489337 391881 122870 744728 183143 611620 327221 964701 947092 808450 845193 807603 130135 115260 784079 332457 460370 502802 396033 483146 665759 389579 613703 621406 583148 836546 150434 106697 060043 607050 860891 718747 559590 308905 538502 045983 252947 904496 607986 291500 735812 686006 274763 (284 digits)/1572 416777 931309 012592 279030 654596 515402 560274 552480 450143 730497 396527 417963 753543 919431 099023 247608 916880 530149 450172 182196 801051 685462 050664 789972 694427 173461 731751 698053 162521 562929 806577 655507 119975 225054 899809 943160 537746 473234 305110 738266 872312 626620 172177 300401 351589 936225 293846 (286 digits), a[566] = 1
                                                                                      A[567]/B[567] = 177 931983 302525 324435 148759 387477 360770 471879 257165 200933 075151 238290 528031 651907 022301 113534 982448 087312 138366 116986 194629 822872 372453 284297 639513 863873 343869 054290 857791 391915 502292 393808 836071 117111 750656 047343 947406 036745 610746 387296 959189 364406 186702 021737 658801 331733 580105 014521 (285 digits)/17293 836747 685118 131684 568088 713674 097756 175901 145574 659824 484329 313229 799671 938536 273486 197653 149867 026346 170469 245474 530572 467793 273994 166132 618948 399008 835199 682620 308133 352146 324526 181351 125638 417469 655139 865320 808938 911467 220479 057386 810376 577821 981998 283724 243177 671921 140553 536655 (287 digits), a[567] = 10
                                                                                      A[568]/B[568] = 1083 770104 799822 857169 138789 814201 556503 954146 287719 388742 062527 756965 132891 858534 942257 526403 702291 654007 945457 485996 500236 397604 737522 101819 320229 848999 452793 939448 768154 934641 850300 513287 123123 762714 110987 144955 403183 780063 973383 862283 801119 439385 024708 738412 244308 726214 166636 361889 (286 digits)/105335 437264 042017 802699 687562 936641 101939 615681 425928 409090 636473 275906 215995 384761 560348 284942 146811 074957 552964 923019 365631 607811 329427 047460 503663 088480 184659 827473 546853 275399 510086 894684 409337 624793 155894 091734 796794 006549 796108 649431 600526 339244 518609 874522 759467 383116 779546 513776 (288 digits), a[568] = 6
                                                                                      A[569]/B[569] = 3429 242297 701993 895942 565128 830082 030282 334318 120323 367159 262734 509185 926707 227511 849073 692746 089323 049335 974738 574975 695339 015686 585019 589755 600203 410871 702250 872637 162256 195841 053193 933670 205442 405254 083617 482210 156957 376937 530897 974148 362547 682561 260828 236974 391727 510376 080014 100188 (286 digits)/333300 148539 811171 539783 630777 523597 403575 022945 423359 887096 393749 140948 447658 092820 954531 052479 590300 251218 829364 014532 627467 291227 262275 308514 129937 664449 389179 165040 948693 178344 854786 865404 353651 291849 122822 140525 199320 931116 608805 005681 611955 595555 537827 907292 521579 821271 479193 077983 (288 digits), a[569] = 3
                                                                                      A[570]/B[570] = 4513 012402 501816 753111 703918 644283 586786 288464 408042 755901 325262 266151 059599 086046 791331 219149 791614 703343 920196 060972 195575 413291 322541 691574 920433 259871 155044 812085 930411 130482 903494 446957 328566 167968 194604 627165 560141 157001 504281 836432 163667 121946 285536 975386 636036 236590 246650 462077 (286 digits)/438635 585803 853189 342483 318340 460238 505514 638626 849288 296187 030222 416854 663653 477582 514879 337421 737111 326176 382328 937551 993098 899038 591702 355974 633600 752929 573838 992514 495546 453744 364873 760088 762988 916642 278716 232259 996114 937666 404913 655113 212481 934800 056437 781815 281047 204388 258739 591759 (288 digits), a[570] = 1
                                                                                      A[571]/B[571] = 21481 291907 709260 908389 380803 407216 377427 488175 752494 390764 563783 573790 165103 571699 014398 569345 255781 862711 655522 818864 477640 668851 875186 356055 281936 450356 322430 120980 883900 717772 667171 721499 519707 077126 862035 990872 397522 004943 548025 319877 017216 170346 402976 138520 935872 456737 066615 948496 (287 digits)/2 087842 491755 223928 909716 904139 364551 425633 577452 820513 071844 514638 808367 102272 003151 014048 402166 538745 555924 358679 764740 599862 887381 629084 732412 664340 676167 684535 135098 930878 993322 314281 905759 405606 958418 237687 069565 183780 681782 228459 626134 461883 334755 763579 034553 645768 638824 514151 445019 (289 digits), a[571] = 4
                                                                                      A[572]/B[572] = 68956 888125 629599 478279 846328 865932 719068 752991 665525 928195 016612 987521 554909 801143 834526 927185 558960 291478 886764 517565 628497 419846 948100 759740 766242 610940 122335 175028 582113 283800 905009 611455 887687 399348 780712 599782 752707 171832 148357 796063 215315 632985 494465 390949 443653 606801 446498 307565 (287 digits)/6 702163 061069 524976 071634 030758 553892 782415 370985 310827 511720 574138 841955 970469 487035 557024 543921 353347 993949 458368 231773 792687 561183 478956 553212 626622 781432 627444 397811 288183 433711 307719 477366 979809 791896 991777 440955 547456 983013 090292 533516 598131 939067 347174 885476 218353 120861 801193 926816 (289 digits), a[572] = 3
                                                                                      A[573]/B[573] = 90438 180033 338860 386669 227132 273149 096496 241167 418020 318959 580396 561311 720013 372842 848925 496530 814742 154190 542287 336430 106138 088698 823287 115796 048179 061296 444765 296009 466014 001573 572181 332955 407394 476475 642748 590655 150229 176775 696383 115940 232531 803331 897441 529470 379526 063538 513114 256061 (287 digits)/8 790005 552824 748904 981350 934897 918444 208048 948438 131340 583565 088777 650323 072741 490186 571072 946087 892093 549873 817047 996514 392550 448565 108041 285625 290963 457600 311979 532910 219062 427033 622001 383126 385416 750315 229464 510520 731237 664795 318752 159651 060015 273823 110753 920029 864121 759686 315345 371835 (289 digits), a[573] = 1
                                                                                      A[574]/B[574] = 159395 068158 968459 864949 073461 139081 815564 994159 083546 247154 597009 548833 274923 173986 683452 423716 373702 445669 429051 853995 734635 508545 771387 875536 814421 672236 567100 471038 048127 285374 477190 944411 295081 875824 423461 190437 902936 348607 844740 912003 447847 436317 391906 920419 823179 670339 959612 563626 (288 digits)/15 492168 613894 273881 052984 965656 472336 990464 319423 442168 095285 662916 492279 043210 977222 128097 490009 245441 543823 275416 228288 185238 009748 586997 838837 917586 239032 939423 930721 507245 860744 929720 860493 365226 542212 221241 951476 278694 647808 409044 693167 658147 212890 457928 805506 082474 880548 116539 298651 (290 digits), a[574] = 1
                                                                                      A[575]/B[575] = 568623 384510 244239 981516 447515 690394 543191 223644 668659 060423 371425 207811 544782 894802 899282 767679 935849 491198 829442 898417 310044 614336 137450 742406 491444 078006 146066 709123 610395 857697 003754 166189 292640 103948 913132 161968 859038 222599 230605 851950 576074 112284 073162 290729 849065 074558 391951 946939 (288 digits)/55 266511 394507 570548 140305 831867 335455 179441 906708 457844 869422 077527 127160 202374 421852 955365 416115 628418 181343 643296 681378 948264 477810 869034 802139 043722 174699 130251 325074 740800 009268 411163 964606 481096 376951 893190 364949 567321 608220 545886 239154 034456 912494 484540 336548 111546 401330 664963 267788 (290 digits), a[575] = 3
                                                                                      A[576]/B[576] = 728018 452669 212699 846465 520976 829476 358756 217803 752205 307577 968434 756644 819706 068789 582735 191396 309551 936868 258494 752413 044680 122881 908838 617943 305865 750242 713167 180161 658523 143071 480945 110600 587721 979773 336593 352406 761974 571207 075346 763954 023921 548601 465069 211149 672244 744898 351564 510565 (288 digits)/70 758680 008401 844429 193290 797523 807792 169906 226131 900012 964707 740443 619439 245585 399075 083462 906124 873859 725166 918712 909667 133502 487559 456032 640976 961308 413732 069675 255796 248045 870013 340884 825099 846322 919164 114432 316425 846016 256028 954930 932321 692604 125384 942469 142054 194021 281878 781502 566439 (290 digits), a[576] = 1
                                                                                      A[577]/B[577] = 6 392771 005863 945838 753240 615330 326205 413240 966074 686301 521047 118903 260970 102431 445119 561164 298850 412264 986144 897400 917721 667485 597391 408159 685952 938370 079947 851404 150416 878581 002268 851315 050993 994415 942135 605878 981222 954834 792255 833379 963582 767446 501095 793715 979927 227023 033745 204468 031459 (289 digits)/621 335951 461722 325981 686632 212057 797792 538691 715763 657948 587084 001076 082674 167057 614453 623068 665114 619295 982678 992999 958716 016284 378286 517295 929954 734189 484555 687653 371444 725166 969375 138242 565405 251679 730264 808648 896356 335451 656452 185333 697727 575289 915574 024293 472981 663716 656360 916983 799300 (291 digits), a[577] = 8
                                                                                      A[578]/B[578] = 7 120789 458533 158538 599706 136307 155681 771997 183878 438506 828625 087338 017614 922137 513909 143899 490246 721816 923013 155895 670134 712165 720273 316998 303896 244235 830190 564571 330578 537104 145340 332260 161594 582137 921908 942472 333629 716809 363462 908726 727536 791368 049697 258785 191076 899267 778643 556032 542024 (289 digits)/692 094631 470124 170410 879923 009581 605584 708597 941895 557961 551791 741519 702113 412643 013528 706531 571239 493155 707845 911712 868383 149786 865845 973328 570931 695497 898287 757328 627240 973212 839388 479127 390505 098002 649428 923081 212782 181467 912481 140264 630049 267894 040958 966762 615035 857737 938239 698486 365739 (291 digits), a[578] = 1
                                                                                      A[579]/B[579] = 49 117507 757062 897070 351477 433173 260296 045224 069345 317342 492797 642931 366659 635256 528574 424561 240330 743166 524223 832774 938529 940479 919031 310149 509330 403785 061091 238832 133888 101205 874310 844876 020561 487243 473589 260712 983001 255690 973033 285740 328803 515654 799279 346427 126388 622629 705606 540663 283603 (290 digits)/4773 903740 282467 348446 966170 269547 431300 790279 367137 005717 897834 450194 295354 642915 695625 862258 092551 578230 229754 463277 169014 915005 573362 357267 355544 907176 874282 231625 134890 564444 005706 013006 908435 839695 626838 347136 173049 424259 131339 026921 478023 182654 161327 824869 163196 810144 285799 107901 993734 (292 digits), a[579] = 6
                                                                                      A[580]/B[580] = 56 238297 215596 055608 951183 569480 415977 817221 253223 755849 321422 730269 384274 557394 042483 568460 730577 464983 447236 988670 608664 652645 639304 627147 813226 648020 891281 803403 464466 638310 019651 177136 182156 069381 395498 203185 316630 972500 336496 194467 056340 307022 848976 605212 317465 521897 484250 096695 825627 (290 digits)/5465 998371 752591 518857 846093 279129 036885 498877 309032 563679 449626 191713 997468 055558 709154 568789 663791 071385 937600 374990 037398 064792 439208 330595 926476 602674 772569 988953 762131 537656 845094 492134 298940 937698 276267 270217 385831 605727 043820 167186 108072 450548 202286 791631 778232 667882 224038 806388 359473 (292 digits), a[580] = 1
                                                                                      A[581]/B[581] = 217 832399 403851 063897 205028 141614 508229 496887 829016 584890 457065 833739 519483 307438 656025 129943 432063 138116 865934 798786 764523 898416 836945 191592 949010 347847 734936 649042 527288 016135 933264 376284 567029 695387 660083 870268 932894 173191 982521 869141 497824 436723 346209 162064 078785 188322 158356 830750 760484 (291 digits)/21171 898855 540241 905020 504450 106934 541957 286911 294234 696756 246713 025336 287758 809591 823089 568627 083924 792388 042555 588247 281209 109382 890987 349055 134974 715201 191992 198486 421285 177414 540989 489409 805258 652790 455640 157788 330544 241440 262799 528479 802240 534298 768188 199764 497894 813790 957915 527067 072153 (293 digits), a[581] = 3
                                                                                      A[582]/B[582] = 3541 556687 677213 077964 231633 835312 547649 767426 517489 114096 634476 070101 696007 476412 538885 647555 643587 674853 302193 769258 841047 027315 030427 692634 997392 213584 650268 188083 901074 896484 951881 197689 254631 195583 956840 127488 242937 743572 056846 100731 021531 294596 388323 198237 578028 535052 017959 388707 993371 (292 digits)/344216 380060 396461 999185 917294 990081 708202 089458 016787 711779 397034 597094 601609 009027 878587 666823 006587 749594 618489 786946 536743 814918 695005 915478 086072 045893 844445 164736 502694 376289 500926 322691 183079 382345 566509 794830 674539 468771 248612 622862 943920 999328 493297 987863 744549 688537 550687 239461 513921 (294 digits), a[582] = 16
                                                                                      A[583]/B[583] = 3759 389087 081064 141861 436661 976927 055879 264314 346505 698987 091541 903841 215490 783851 194910 777499 075650 812970 168128 568045 605570 925731 867372 884227 946402 561432 385204 837126 428362 912620 885145 573973 821660 890971 616923 997757 175831 916764 039367 969872 519355 731319 734532 360301 656813 723374 176316 219458 753855 (292 digits)/365388 278915 936703 904206 421745 097016 250159 376369 311022 408535 643747 622430 889367 818619 701677 235450 090512 541982 661045 375193 817952 924301 585993 264533 221046 761095 036437 363222 923979 553704 041915 812100 988338 035136 022149 952619 005083 710211 511412 151342 746161 533627 261486 187628 242444 502328 508602 766528 586074 (294 digits), a[583] = 1
                                                                                      A[584]/B[584] = 101285 672951 784880 766361 584845 235416 000510 639599 526637 287761 014565 569973 298767 856543 606565 862531 610508 812077 673536 538444 585891 096343 582122 682561 603858 810826 665593 953371 038510 624627 965666 121008 617814 360845 996864 069174 814567 579437 080413 317416 524780 308909 486164 566080 655185 342780 602181 094635 593601 (294 digits)/9 844311 631874 750763 508552 882667 512504 212345 875060 103370 333706 134472 780297 725172 293140 122195 788525 359913 841143 805669 541985 803519 846759 930830 793341 833287 834364 791816 608532 526162 772594 590737 437316 879868 295882 142408 562924 806715 934270 545328 557774 344120 873637 291938 866198 048106 749078 774359 169204 751845 (295 digits), a[584] = 26
                                                                                      A[585]/B[585] = 105045 062038 865944 908223 021507 212343 056389 903913 873142 986748 106107 473814 514258 640394 801476 640030 686159 625047 841665 106490 191462 022075 449495 566789 550261 372259 050798 790497 466873 537248 850811 694982 439475 251817 613788 066931 990399 496201 119781 287289 044136 040229 220696 926382 311999 066154 778497 314094 347456 (294 digits)/10 209699 910790 687467 412759 304412 609520 462505 251429 414392 742241 778220 402728 614540 111759 823873 023975 450426 383126 466714 917179 621472 771061 516824 057875 054334 595459 828253 971755 450142 326298 632653 249417 868206 331018 164558 515543 811799 644482 056740 709117 090282 407264 553425 053826 290551 251407 282961 935733 337919 (296 digits), a[585] = 1
                                                                                      A[586]/B[586] = 311375 797029 516770 582807 627859 660102 113290 447427 272923 261257 226780 517602 327285 137333 209519 142592 982828 062173 356866 751424 968815 140494 481113 816140 704381 555344 767191 534365 972257 699125 667289 510973 496764 864481 224440 203038 795366 571839 319975 891994 613052 389367 927558 418845 279183 475090 159175 722824 288513 (294 digits)/30 263711 453456 125698 334071 491492 731545 137356 377918 932155 818189 690913 585754 954252 516659 769941 836476 260766 607396 739099 376345 046465 388882 964478 909091 941957 025284 448324 552043 426447 425191 856043 936152 616280 957918 471525 594012 430315 223234 658809 976008 524685 688166 398788 973850 629209 251893 340283 040671 427683 (296 digits), a[586] = 2
                                                                                      A[587]/B[587] = 17 853465 492721 321868 128257 809507 838163 513945 407268 429768 878410 032596 977147 169511 468387 744067 767830 707359 168929 183069 937713 413925 030260 872983 086809 700010 026910 780716 249357 885562 387411 886313 820471 755072 527247 406879 640143 326294 091042 358407 130981 988122 234201 091526 800563 225457 146293 851513 515078 792697 (296 digits)/1735 241252 757789 852272 454834 319498 307593 291818 792808 547274 379054 160294 790761 006933 561366 710557 703122 314123 004740 595379 368847 269999 937390 492121 876115 745885 036673 382753 438230 757645 562234 427157 610116 996220 932371 041517 374252 339767 368857 608909 341602 997366 632749 284396 563312 155478 609327 679095 254004 715850 (298 digits), a[587] = 57
                                                                                      A[588]/B[588] = 89 578703 260636 126111 224096 675398 850919 683017 483769 421767 653307 389765 403338 174842 479271 929857 981746 519623 906819 272216 439992 038440 291798 846029 250189 204431 689898 670772 781155 400069 636185 098858 613332 272127 500718 258838 403755 426837 027051 112011 546904 553663 560373 385192 421661 406469 206559 416743 298218 251998 (296 digits)/8706 469975 242405 387060 608243 088984 269511 596450 341961 668527 713460 492387 539559 988920 323493 322730 352087 831381 631099 715996 220581 396465 075835 425088 289670 671382 208651 362091 743197 214675 236363 991831 986737 597385 619773 679112 465274 129152 067522 703356 684023 511518 851912 820771 790411 406602 298531 735759 310695 006933 (298 digits), a[588] = 5
                                                                                      A[589]/B[589] = 1540 691420 923535 465758 937901 291288 303798 125242 631348 599818 984635 658608 833896 141833 616010 551653 457521 540965 584856 810749 417578 067409 990841 255480 340026 175348 755188 183853 528999 686746 202558 566910 247120 381240 039457 807132 503985 582523 550911 262603 428359 400402 760548 639797 968807 135433 657803 936149 584789 076663 (298 digits)/149745 230831 878681 432302 794966 832230 889290 431474 606156 912245 507882 530882 963280 818579 060753 196973 688615 447610 733435 767315 118731 009906 226592 718622 800517 159382 583746 538313 072583 407124 580422 288301 384656 151776 468523 586429 283912 535352 516743 565972 970002 693187 115267 237517 000306 067717 684367 187003 535819 833711 (300 digits), a[589] = 17
                                                                                      A[590]/B[590] = 10874 418649 725384 386423 789405 714416 977506 559715 903209 620500 545757 000027 240611 167677 791345 791432 184397 306383 000816 947462 363038 510310 227687 634391 630372 431872 976215 957747 484153 207293 054095 067230 343174 940807 776922 908765 931654 504501 883429 950235 545420 356482 884213 863778 203311 354504 811186 969790 391741 788639 (299 digits)/1 056923 085798 393175 413180 173010 914600 494544 616772 585060 054246 268638 208568 282525 718973 748765 701546 172395 964656 765150 087202 051698 465808 661984 455447 893290 787060 294877 130283 251281 064547 299320 009941 679330 659820 899438 784117 452661 876619 684727 665167 474042 363828 658783 483390 792553 880626 089102 044784 061433 842910 (301 digits), a[590] = 7
                                                                                      A[591]/B[591] = 45038 366019 825073 011454 095524 148956 213824 364106 244187 081821 167663 658717 796340 812544 781393 717382 195110 766497 588124 600598 869732 108650 901591 793046 861515 902840 660052 014843 465612 515918 418938 835831 619820 144471 147149 442196 230603 600531 084631 063545 610040 826334 297404 094910 782052 553452 902551 815311 151756 231219 (299 digits)/4 377437 574025 451383 085023 487010 490632 867468 898564 946397 129230 582435 365156 093383 694474 055816 003158 378199 306237 794036 116123 325524 873140 874530 540414 373680 307623 763255 059446 077707 665313 777702 328068 101978 791060 066278 722899 094560 041831 255654 226642 866172 148501 750401 171080 170521 590222 040775 366139 781555 205351 (301 digits), a[591] = 4
                                                                                      A[592]/B[592] = 55912 784669 550457 397877 884929 863373 191330 923822 147396 702321 713420 658745 036951 980222 572739 508814 379508 072880 588941 548061 232770 618961 129279 427438 491888 334713 636267 972590 949765 723211 473033 903061 962995 085278 924072 350962 162258 105032 968061 013781 155461 182817 181617 958688 985363 907957 713738 785101 543498 019858 (299 digits)/5 434360 659823 844558 498203 660021 405233 362013 515337 531457 183476 851073 573724 375909 413447 804581 704704 550595 270894 559186 203325 377223 338949 536514 995862 266971 094684 058132 189729 328988 729861 077022 338009 781309 450880 965717 507016 547221 918450 940381 891810 340214 512330 409184 654470 963075 470848 129877 410923 842989 048261 (301 digits), a[592] = 1
                                                                                      A[593]/B[593] = 212776 720028 476445 205087 750313 739075 787817 135572 686377 188786 307925 634952 907196 753212 499612 243825 333634 985139 354949 244782 568043 965534 289430 075362 337180 906981 568855 932616 314909 685552 838040 545017 508805 400307 919366 495082 717377 915629 988814 104889 076424 374785 842257 970977 738144 277326 043768 170615 782250 290793 (300 digits)/20 680519 553496 985058 579634 467074 706332 953509 444577 540768 679661 135656 086329 221111 934817 469561 117272 029985 118921 471594 726099 457194 889989 484075 528001 174593 591675 937651 628634 064673 854897 008769 342097 445907 143702 963431 243948 736225 797184 076799 902073 886815 685492 977955 134493 059748 002766 430407 598911 310522 350134 (302 digits), a[593] = 3
                                                                                      A[594]/B[594] = 694242 944754 979793 013141 135871 080600 554782 330540 206528 268680 637197 563603 758542 239860 071576 240290 380413 028298 653789 282408 936902 515563 997569 653525 503431 055658 342835 770439 894494 779869 987155 538114 489411 286202 682171 836210 314391 851922 934503 328448 384734 307174 708391 871622 199796 739935 845043 296948 890248 892237 (300 digits)/67 475919 320314 799734 237107 061245 524232 222541 849070 153763 222460 258041 832712 039245 217900 213265 056520 640550 627658 973970 381623 748808 008917 988741 579865 790751 869711 871087 075631 523010 294552 103330 364302 119030 881989 856011 238862 755899 310003 170781 598032 000661 568809 343050 057950 142319 479147 421100 207657 774556 098663 (302 digits), a[594] = 3
                                                                                      A[595]/B[595] = 907019 664783 456238 218228 886184 819676 342599 466112 892905 457466 945123 198556 665738 993072 571188 484115 714048 013438 008738 527191 504946 481098 286999 728887 840611 962639 911691 703056 209404 465422 825196 083131 998216 686510 601538 331293 031769 767552 923317 433337 461158 681960 550649 842599 937941 017261 888811 467564 672499 183030 (300 digits)/88 156438 873811 784792 816741 528320 230565 176051 293647 694531 902121 393697 919041 260357 152717 682826 173792 670535 746580 445565 107723 206002 898907 472817 107866 965345 461387 808738 704265 587684 149449 112099 706399 564938 025692 819442 482811 492125 107187 247581 500105 887477 254302 321005 192443 202067 481913 851507 806569 085078 448797 (302 digits), a[595] = 1
                                                                                      A[596]/B[596] = 24 276754 229124 841986 687092 176676 392185 462368 449475 422070 162821 210400 726077 067756 059746 922476 827298 945661 377686 880990 989388 065511 024119 459562 604609 359342 084296 046820 049901 339010 880863 442253 699546 443045 135478 322168 449829 140405 808298 940756 595222 374860 038149 025287 779220 586263 188744 954141 453630 375227 651017 (302 digits)/2359 543330 039421 204347 472386 797571 518926 799875 483910 211592 677616 494187 727784 808531 188559 966745 575130 074480 038750 558663 182427 104883 380512 281986 384406 889733 865794 898293 386536 802798 180229 017922 730690 807419 550003 161515 791961 551152 096871 607900 600785 075070 180669 689185 061473 396074 008907 560303 178453 986595 767385 (304 digits), a[596] = 26
                                                                                      A[597]/B[597] = 122 290790 810407 666171 653689 769566 780603 654441 713490 003256 271572 997126 828942 004519 291807 183572 620610 442354 901872 413693 474131 832501 601695 584812 751934 637322 384120 145791 952562 904458 869740 036464 580864 213442 363902 212380 580438 733798 809047 627100 409449 335458 872705 677088 738702 869256 960986 659518 735716 548637 438115 (303 digits)/11885 873089 070917 806530 178675 516177 825199 175428 713198 752495 290203 864636 557965 303013 095517 516554 049443 042935 940333 238881 019858 730419 801468 882749 029901 414014 790362 300205 636949 601675 050594 201713 359853 602035 775708 627021 442619 247885 591545 287084 504031 262828 157650 766930 499810 182437 526451 653023 698839 018057 285722 (305 digits), a[597] = 5
                                                                                      A[598]/B[598] = 880 312289 901978 505188 262920 563643 856411 043460 443905 444864 063832 190288 528671 099391 102397 207485 171572 042145 690793 776845 308310 893022 235988 553251 868151 820598 773137 067363 717841 670222 969043 697505 765595 937141 682793 808832 512900 276997 471632 330459 461367 723072 147088 764908 950140 671061 915651 570772 603646 215689 717822 (303 digits)/85560 654953 535845 850058 723115 410816 295321 027876 476301 479059 709043 546643 633541 929622 857182 582623 921231 375031 621083 230830 321438 217821 990794 461229 593716 787837 398330 999732 845184 014523 534388 429916 249666 021669 979963 550665 890296 286351 237688 617492 129003 914867 284225 057698 560144 673136 694069 131469 070327 112996 767439 (305 digits), a[598] = 7
                                                                                      A[599]/B[599] = 1882 915370 614364 676548 179530 896854 493425 741362 601300 892984 399237 377703 886284 203301 496601 598542 963754 526646 283459 967384 090753 618546 073672 691316 488238 278519 930394 280519 388246 244904 807827 431476 112056 087725 729489 830045 606239 287793 752312 288019 332184 781603 166883 206906 638984 211380 792289 801063 943008 980016 873759 (304 digits)/183007 182996 142609 506647 624906 337810 415841 231181 665801 710614 708290 957923 825049 162258 809882 681801 891905 792999 182499 700541 662735 166063 783057 805208 217334 989689 587024 299671 327317 630722 119371 061545 859185 645375 735635 728353 223211 820588 066922 522068 762039 092562 726100 882327 620099 528710 914589 915961 839493 244050 820600 (306 digits), a[599] = 2
                                                                                      A[600]/B[600] = 2763 227660 516343 181736 442451 460498 349836 784823 045206 337848 463069 567992 414955 302692 598998 806028 135326 568791 974253 744229 399064 511568 309661 244568 356390 099118 703531 347883 106087 915127 776871 128981 877652 024867 412283 638878 119139 564791 223944 618478 793552 504675 313971 971815 589124 882442 707941 371836 546655 195706 591581 (304 digits)/268567 837949 678455 356706 348021 748626 711162 259058 142103 189674 417334 504567 458591 091881 667065 264425 813137 168030 803582 931371 984173 383885 773852 266437 811051 777526 985355 299404 172501 645245 653759 491462 108851 667045 715599 279019 113508 106939 304611 139560 891043 007430 010325 940026 180244 201847 608659 047430 909820 357047 588039 (306 digits), a[600] = 1
                                                                                      A[601]/B[601] = 4646 143031 130707 858284 621982 357352 843262 526185 646507 230832 862306 945696 301239 505994 095600 404571 099081 095438 257713 711613 489818 130114 383333 935884 844628 377638 633925 628402 494334 160032 584698 560457 989708 112593 141773 468923 725378 852584 976256 906498 125737 286278 480855 178722 228109 093823 500231 172900 489664 175723 465340 (304 digits)/451575 020945 821064 863353 972928 086437 127003 490239 807904 900289 125625 462491 283640 254140 476947 946227 705042 961029 986082 631913 646908 549949 556910 071646 028386 767216 572379 599075 499819 275967 773130 553007 968037 312421 451235 007372 336719 927527 371533 661629 653082 099992 736426 822353 800343 730558 523248 963392 749313 601098 408639 (306 digits), a[601] = 1
                                                                                      A[602]/B[602] = 16701 656753 908466 756590 308398 532556 879624 363379 984728 030347 049990 405081 318673 820674 885800 019741 432569 855106 747394 879069 868518 901911 459663 052222 890275 232034 605308 233090 589090 395225 530966 810355 846776 362646 837604 045649 295276 122546 152715 337973 170764 363510 756537 507982 273452 163913 208634 890538 015647 722876 987601 (305 digits)/1 623292 900787 141649 946768 266806 007938 092172 729777 565817 890541 794210 892041 309511 854303 097909 103108 928266 051120 761830 827112 924899 033734 444582 481375 896212 079176 702494 096630 671959 473148 973151 150486 012963 604310 069304 301136 123667 889521 419212 124449 850289 307408 219606 407087 581275 393523 178405 937609 157761 160342 813956 (307 digits), a[602] = 3
                                                                                      A[603]/B[603] = 21347 799785 039174 614874 930380 889909 722886 889565 631235 261179 912297 350777 619913 326668 981400 424312 531650 950545 005108 590683 358337 032025 842996 988107 734903 609673 239233 861493 083424 555258 115665 370813 836484 475239 979377 514573 020654 975131 128972 244471 296501 649789 237392 686704 501561 257736 708866 063438 505311 898600 452941 (305 digits)/2 074867 921732 962714 810122 239734 094375 219176 220017 373722 790830 919836 354532 593152 108443 574857 049336 633309 012150 747913 459026 571807 583684 001492 553021 924598 846393 274873 695706 171778 749116 746281 703493 981000 916731 520539 308508 460387 817048 790745 786079 503371 407400 956033 229441 381619 124081 701654 901001 907074 761441 222595 (307 digits), a[603] = 1
                                                                                      A[604]/B[604] = 80745 056109 025990 601215 099541 202286 048285 032076 878433 813886 786882 457414 178413 800681 830001 292679 027522 706741 762720 651119 943529 997988 988654 016546 094986 061054 323009 817569 839364 060999 877962 922797 356229 788366 775736 589368 357241 047939 539632 071387 060269 312878 468715 568095 778135 937123 335233 080853 531583 418678 346424 (305 digits)/7 847896 665986 029794 377134 986008 291063 749701 389829 686986 263034 553719 955639 088968 179633 822480 251118 828193 087573 005571 204192 640321 784786 449060 140441 670008 618356 527115 183749 187295 720499 211996 260967 955966 354504 630922 226661 504831 340667 791449 482688 360403 529611 087706 095411 726132 765768 283370 640614 878985 444666 481741 (307 digits), a[604] = 3
                                                                                      A[605]/B[605] = 182837 912003 091155 817305 129463 294481 819456 953719 388102 888953 486062 265605 976740 928032 641403 009670 586696 364028 530549 892923 245397 028003 820305 021199 924875 731781 885253 496632 762152 677257 871591 216408 548944 051973 530850 693309 735137 071010 208236 387245 417040 275546 174823 822896 057833 131983 379332 225145 568478 735957 145789 (306 digits)/17 770661 253705 022303 564392 211750 676502 718578 999676 747695 316900 027276 265810 771088 467711 219817 551574 289695 187296 759055 867411 852451 153256 899612 833905 264616 083106 329104 063204 546370 190115 170274 225429 892933 625740 782383 761831 470050 498384 373644 751456 224178 466623 131445 420264 833884 655618 268396 182231 665045 650774 186077 (308 digits), a[605] = 2
                                                                                      A[606]/B[606] = 446420 880115 208302 235825 358467 791249 687198 939515 654639 591793 759006 988626 131895 656747 112807 312020 200915 434798 823820 436966 434324 053996 629264 058945 944737 524618 093516 810835 363669 415515 621145 355614 454117 892313 837437 975987 827515 189959 956104 845877 894349 863970 818363 213887 893802 201090 093897 531144 668540 890592 638002 (306 digits)/43 389219 173396 074401 505919 409509 644069 186859 389183 182376 896834 608272 487260 631145 115056 262115 354267 407583 462166 523682 939016 345224 091300 248285 808252 199240 784569 185323 310158 280036 100729 552544 711827 741833 605986 195689 750324 444932 337436 538738 985600 808760 462857 350596 935941 393902 077004 820163 005078 209076 746214 853895 (308 digits), a[606] = 2
                                                                                      A[607]/B[607] = 7 325571 993846 423991 590510 864947 954476 814639 985969 862336 357653 630174 083624 087071 435986 446320 001993 801343 320809 711676 884386 194581 891949 888529 964335 040676 125671 381522 469998 580863 325507 809916 906239 814830 328994 929858 309114 975380 110369 505913 921291 726638 099079 268635 245102 358668 349424 881692 723460 265132 985439 353821 (307 digits)/711 998168 028042 212727 659102 763904 981609 708329 226607 665725 666253 759636 061980 869410 308611 413663 219852 811030 581961 137982 891673 376036 614060 872185 765940 452468 636213 294277 025737 026947 801788 010989 614673 762271 321519 913419 767022 588967 897368 993468 521069 164345 872340 740996 395327 136317 887695 391004 263483 010273 590211 848397 (309 digits), a[607] = 16
                                                                                      A[608]/B[608] = 168 934576 738582 960108 817575 252270 744216 423918 616822 488375 817827 253010 911980 134538 684435 378167 357877 631811 813422 192388 777848 909707 568844 065453 238651 880288 415059 868533 620802 723525 902195 249234 199130 195215 459197 224179 085632 261257 728458 592125 035587 607026 142793 996973 851242 143174 237862 372830 170730 766599 555697 775885 (309 digits)/16419 347083 818366 967137 665282 979324 221092 478431 601159 494067 220671 079901 912820 627582 213118 776369 410882 061286 847272 697289 447503 994066 214700 308558 424882 606019 417474 953694 902109 899835 541853 805305 849324 274074 000944 204344 391843 991193 976923 388514 970191 588715 526694 393514 028465 529213 493998 813261 065187 445369 321087 367026 (311 digits), a[608] = 23
                                                                                      A[609]/B[609] = 176 260148 732429 384100 408086 117218 698693 238558 602792 350712 175480 883184 995604 221610 120421 824487 359871 433155 134231 904065 662235 104289 460793 953983 202986 920964 540731 250056 090801 304389 227703 059151 105370 010045 788192 154037 394747 236637 838828 098038 956879 333664 241873 265609 096344 501842 587287 254522 894191 031732 541137 129706 (309 digits)/17131 345251 846409 179865 324385 743229 202702 186760 827767 159792 886924 839537 974801 496992 521730 190032 630734 872317 429233 835272 339177 370102 828761 180744 190823 058488 053688 247971 927846 926783 343641 816295 463998 036345 322464 117764 158866 580161 874292 381983 491260 753061 399035 134510 423792 665531 381694 204265 328670 455642 911299 215423 (311 digits), a[609] = 1
                                                                                      A[610]/B[610] = 521 454874 203441 728309 633747 486708 141602 901035 822407 189800 168789 019380 903188 577758 925279 027142 077620 498122 081886 000520 102319 118286 490431 973419 644625 722217 496522 368645 802405 332304 357601 367536 409870 215307 035581 532253 875126 734533 406114 788202 949346 274354 626540 528192 043931 146859 412436 881875 959112 830064 637972 035297 (309 digits)/50682 037587 511185 326868 314054 465782 626496 851953 256693 813652 994520 758977 862423 621567 256579 156434 672351 805921 705740 367834 125858 734271 872222 670046 806528 722995 524851 449638 757803 753402 229137 437896 777320 346764 645872 439872 709577 151517 725508 152481 952713 094838 324764 662534 876050 860276 257387 221791 722528 356655 143685 797872 (311 digits), a[610] = 2
                                                                                      A[611]/B[611] = 697 715022 935871 112410 041833 603926 840296 139594 425199 540512 344269 902565 898792 799369 045700 851629 437491 931277 216117 904585 764554 222575 951225 927402 847612 643182 037253 618701 893206 636693 585304 426687 515240 225352 823773 686291 269873 971171 244942 886241 906225 608018 868413 793801 140275 648701 999724 136398 853303 861797 179109 165003 (309 digits)/67813 382839 357594 506733 638440 209011 829199 038714 084460 973445 881445 598515 837225 118559 778309 346467 303086 678239 134974 203106 465036 104374 700983 850790 997351 781483 578539 697610 685650 680185 572779 254192 241318 383109 968336 557636 868443 731679 599800 534465 443973 847899 723799 797045 299843 525807 639081 426057 051198 812298 054985 013295 (311 digits), a[611] = 1
                                                                                      A[612]/B[612] = 1219 169897 139312 840719 675581 090634 981899 040630 247606 730312 513058 921946 801981 377127 970979 878771 515112 429399 298003 905105 866873 340862 441657 900822 492238 365399 533775 987347 695611 968997 942905 794223 925110 440659 859355 218545 145000 705704 651057 674444 855571 882373 494954 321993 184206 795561 412161 018274 812416 691861 817081 200300 (310 digits)/118495 420426 868779 833601 952494 674794 455695 890667 341154 787098 875966 357493 699648 740127 034888 502901 975438 484160 840714 570940 590894 838646 573206 520837 803880 504479 103391 147249 443454 433587 801916 692089 018638 729874 614208 997509 578020 883197 325308 686947 396686 942738 048564 459580 175894 386083 896468 647848 773727 168953 198670 811167 (312 digits), a[612] = 1
                                                                                      A[613]/B[613] = 1916 884920 075183 953129 717414 694561 822195 180224 672806 270824 857328 824512 700774 176497 016680 730400 952604 360676 514121 809691 631427 563438 392883 828225 339851 008581 571029 606049 588818 605691 528210 220911 440350 666012 683128 904836 414874 676875 896000 560686 761797 490392 363368 115794 324482 444263 411885 154673 665720 553658 996190 365303 (310 digits)/186308 803266 226374 340335 590934 883806 284894 929381 425615 760544 757411 956009 536873 858686 813197 849369 278525 162399 975688 774047 055930 943021 274190 371628 801232 285962 681930 844860 129105 113773 374695 946281 259957 112984 582545 555146 446464 614876 925109 221412 840660 790637 772364 256625 475737 911891 535550 073905 824925 981251 253655 824462 (312 digits), a[613] = 1
                                                                                      A[614]/B[614] = 3136 054817 214496 793849 392995 785196 804094 220854 920413 001137 370387 746459 502755 553624 987660 609172 467716 790075 812125 714797 498300 904300 834541 729047 832089 373981 104805 593397 284430 574689 471116 015135 365461 106672 542484 123381 559875 382580 547058 235131 617369 372765 858322 437787 508689 239824 824046 172948 478137 245520 813271 565603 (310 digits)/304804 223693 095154 173937 543429 558600 740590 820048 766770 547643 633378 313503 236522 598813 848086 352271 253963 646560 816403 344987 646825 781667 847396 892466 605112 790441 785321 992109 572559 547361 176612 638370 278595 842859 196754 552656 024485 498074 250417 908360 237347 733375 820928 716205 651632 297975 432018 721754 598653 150204 452326 635629 (312 digits), a[614] = 1
                                                                                      A[615]/B[615] = 5052 939737 289680 746979 110410 479758 626289 401079 593219 271962 227716 570972 203529 730122 004341 339573 420321 150752 326247 524489 129728 467739 227425 557273 171940 382562 675835 199446 873249 180380 999326 236046 805811 772685 225613 028217 974750 059456 443058 795818 379166 863158 221690 553581 833171 684088 235931 327622 143857 799179 809461 930906 (310 digits)/491113 026959 321528 514273 134364 442407 025485 749430 192386 308188 390790 269512 773396 457500 661284 201640 532488 808960 792092 119034 702756 724689 121587 264095 406345 076404 467252 836969 701664 661134 551308 584651 538552 955843 779300 107802 470950 112951 175527 129773 078008 524013 593292 972831 127370 209866 967568 795660 423579 131455 705982 460091 (312 digits), a[615] = 1
                                                                                      A[616]/B[616] = 13241 934291 793858 287807 613816 744714 056673 023014 106851 545061 825820 888403 909815 013868 996343 288319 308359 091580 464620 763775 757757 839779 289392 843594 175970 139106 456475 992291 030928 935451 469768 487228 977084 652042 993710 179817 509375 501493 433175 826768 375703 099082 301703 544951 175032 608001 295908 828192 765852 843880 432195 427415 (311 digits)/1 287030 277611 738211 202483 812158 443414 791562 318909 151543 164020 414958 852528 783315 513815 170654 755552 318941 264482 400587 583057 052339 231046 090571 420657 417802 943250 719827 666048 975888 869630 279229 807673 355701 754546 755354 768260 966385 723976 601472 167906 393364 781403 007514 661867 906372 717709 367156 313075 445811 413115 864291 555811 (313 digits), a[616] = 2
                                                                                      A[617]/B[617] = 18294 874029 083539 034786 724227 224472 682962 424093 700070 817024 053537 459376 113344 743991 000684 627892 728680 242332 790868 288264 887486 307518 516818 400867 347910 521669 132311 191737 904178 115832 469094 723275 782896 424728 219323 208035 484125 560949 876234 622586 754869 962240 523394 098533 008204 292089 531840 155814 909710 643060 241657 358321 (311 digits)/1 778143 304571 059739 716756 946522 885821 817048 068339 343929 472208 805749 122041 556711 971315 831938 957192 851430 073443 192679 702091 755095 955735 212158 684752 824148 019655 187080 503018 677553 530764 830538 392324 894254 710390 534654 876063 437335 836927 776999 297679 471373 305416 600807 634699 033742 927576 334725 108735 869390 544571 570274 015902 (313 digits), a[617] = 1
                                                                                      A[618]/B[618] = 31536 808320 877397 322594 338043 969186 739635 447107 806922 362085 879358 347780 023159 757859 997027 916212 037039 333913 255489 052040 645244 147297 806211 244461 523880 660775 588787 184028 935107 051283 938863 210504 759981 076771 213033 387852 993501 062443 309410 449355 130573 061322 825097 643484 183236 900090 827748 984007 675563 486940 673852 785736 (311 digits)/3 065173 582182 797950 919240 758681 329236 608610 387248 495472 636229 220707 974570 340027 485131 002593 712745 170371 337925 593267 285148 807435 186781 302730 105410 241950 962905 906908 169067 653442 400395 109768 199998 249956 464937 290009 644324 403721 560904 378471 465585 864738 086819 608322 296566 940115 645285 701881 421811 315201 957687 434565 571713 (313 digits), a[618] = 1
                                                                                      A[619]/B[619] = 1 311304 015185 056829 261154 584029 961129 008015 755513 783887 662545 107229 718357 062894 816250 878829 192586 247292 932776 265919 421931 342496 346728 571479 423789 827017 613468 272585 736924 243567 218473 962486 353970 942120 572347 953692 110008 217669 121125 562063 046147 108365 476476 352397 481384 520917 195813 469548 500129 607813 607627 869621 573497 (313 digits)/127 450260 174065 775727 405628 052457 384522 770073 945527 658307 557606 854776 079425 497838 861686 938281 179744 836654 928392 516638 393192 859938 613768 624093 006572 744137 498797 370315 434792 468691 946964 331034 592253 142469 772819 425050 293363 989919 834007 294329 386699 925634 865020 542021 793943 578484 384290 111863 402999 792670 809756 387462 456135 (315 digits), a[619] = 41
                                                                                      A[620]/B[620] = 1 342840 823505 934226 583748 922073 930315 747651 202621 590810 024630 986588 066137 086054 574110 875857 108798 284332 266689 521408 473971 987740 494026 377690 668251 350898 274243 861372 920953 178674 269757 901349 564475 702101 649119 166725 497861 211170 183568 871473 495502 238938 537799 177495 124868 704154 095904 297297 484137 283377 094568 543474 359233 (313 digits)/130 515433 756248 573678 324868 811138 713759 378684 332776 153780 193836 075484 053995 837866 346817 940874 892490 007026 266318 109905 678341 667373 800549 926823 111982 986088 461703 277223 603860 122134 347359 440802 792251 392426 237756 715059 937688 393641 394911 672800 852285 790372 951840 150344 090510 518600 029575 813744 824811 107872 767443 822028 027848 (315 digits), a[620] = 1
                                                                                      A[621]/B[621] = 57 710618 602434 294345 778609 311135 034390 409366 265620 597908 697046 543928 496114 677186 928907 664827 762114 189248 133736 165075 328754 827597 095836 434487 490346 564745 131710 450248 416957 747886 548305 819168 061950 430389 835352 956163 020179 086816 831018 163949 857241 143784 064041 807192 725870 095389 223793 956042 833895 509651 579506 695544 661283 (314 digits)/5609 098477 936505 870217 050118 120283 362416 674815 922126 117075 698722 025106 347250 688225 428040 455026 664325 131758 113753 132676 883542 889638 236865 550663 709858 159852 890335 013706 796917 598334 536060 844751 866811 624371 758601 457567 676276 522858 420297 551965 182703 121298 842306 856473 595385 359685 626474 289146 045066 323327 042396 912639 625751 (316 digits), a[621] = 42
                                                                                      A[622]/B[622] = 463 027789 642980 288992 812623 411154 205439 022581 327586 374079 601003 338016 035054 503550 005372 194479 205711 798317 336578 842011 104010 608517 260717 853590 591023 868859 327927 463360 256615 161766 656204 454694 060079 145220 331942 816029 659293 905704 831714 183072 353431 389211 050133 635036 931829 467267 886255 945640 155301 360589 730622 107831 649497 (315 digits)/45003 303257 248295 535414 725813 773405 613092 777211 709785 090385 783612 276334 832001 343669 771141 581088 207091 061091 176343 171320 746684 784479 695474 332132 790848 264911 584383 386877 979200 908810 635846 198817 726744 387400 306568 375601 347900 576508 757292 088522 313910 760763 690295 002132 853593 396085 041370 126913 185341 694489 106619 123145 033856 (317 digits), a[622] = 8
                                                                                      A[623]/B[623] = 520 738408 245414 583338 591232 722289 239829 431947 593206 971988 298049 881944 531169 180736 934279 859306 967825 987565 470315 007086 432765 436114 356554 288078 081370 433604 459637 913608 673572 909653 204510 273862 122029 575610 167295 772192 679472 992521 662732 347022 210672 532995 114175 442229 657699 562657 110049 901682 989196 870241 310128 803376 310780 (315 digits)/50612 401735 184801 405631 775931 893688 975509 452027 631911 207461 482334 301441 179252 031895 199182 036114 871416 192849 290096 303997 630227 674117 932339 882796 500706 424764 474718 400584 776118 507145 171907 043569 593556 011772 065169 833169 024177 099367 177589 640487 496613 882062 532601 858606 448978 755770 667844 416059 230408 017816 149016 035784 659607 (317 digits), a[623] = 1
                                                                                      A[624]/B[624] = 1504 504606 133809 455669 995088 855732 685097 886476 514000 318056 197103 101905 097392 865023 873931 913093 141363 773448 277208 856183 969541 480745 973826 429746 753764 736068 247203 290577 603760 981073 065225 002418 304138 296440 666534 360415 018239 890748 157178 877116 774776 455201 278484 519496 247228 592582 106355 749006 133695 101072 350879 714584 271057 (316 digits)/146228 106727 617898 346678 277677 560783 564111 681266 973607 505308 748280 879217 190505 407460 169505 653317 949923 446789 756535 779316 007140 132715 560154 097725 792261 114440 533820 188047 531437 923100 979660 285956 913856 410944 436908 041939 396254 775243 112471 369497 307138 524888 755498 719345 751550 907626 377058 959031 646157 730121 404651 194714 353070 (318 digits), a[624] = 2
                                                                                      A[625]/B[625] = 2025 243014 379224 039008 586321 578021 924927 318424 107207 290044 495152 983849 628562 045760 808211 772400 109189 761013 747523 863270 402306 916860 330380 717824 835135 169672 706841 204186 277333 890726 269735 276280 426167 872050 833830 132607 697712 883269 819911 224138 985448 988196 392659 961725 904928 155239 216405 650689 122891 971313 661008 517960 581837 (316 digits)/196840 508462 802699 752310 053609 454472 539621 133294 605518 712770 230615 180658 369757 439355 368687 689432 821339 639639 046632 083313 637367 806833 492493 980522 292967 539205 008538 588632 307556 430246 151567 329526 507412 422716 502077 875108 420431 874610 290061 009984 803752 406951 288100 577952 200529 663397 044903 375090 876565 747937 553667 230499 012677 (318 digits), a[625] = 1
                                                                                      A[626]/B[626] = 3529 747620 513033 494678 581410 433754 610025 204900 621207 608100 692256 085754 725954 910784 682143 685493 250553 534462 024732 719454 371848 397606 304207 147571 588899 905740 954044 494763 881094 871799 334960 278698 730306 168491 500364 493022 715952 774017 977090 101255 760225 443397 671144 481222 152156 747821 322761 399695 256587 072386 011888 232544 852894 (316 digits)/343068 615190 420598 098988 331287 015256 103732 814561 579126 218078 978896 059875 560262 846815 538193 342750 771263 086428 803167 862629 644507 939549 052648 078248 085228 653645 542358 776679 838994 353347 131227 615483 421268 833660 938985 917047 816686 649853 402532 379482 110890 931840 043599 297297 952080 571023 421962 334122 522723 478058 958318 425213 365747 (318 digits), a[626] = 1
                                                                                      A[627]/B[627] = 5554 990634 892257 533687 167732 011776 534952 523324 728414 898145 187409 069604 354516 956545 490355 457893 359743 295475 772256 582724 774155 314466 634587 865396 424035 075413 660885 698950 158428 762525 604695 554979 156474 040542 334194 625630 413665 657287 797001 325394 745674 431594 063804 442948 057084 903060 539167 050384 379479 043699 672896 750505 434731 (316 digits)/539909 123653 223297 851298 384896 469728 643353 947856 184644 930849 209511 240533 930020 286170 906881 032183 592602 726067 849799 945943 281875 746382 545142 058770 378196 192850 550897 365312 146550 783593 282794 945009 928681 256377 441063 792156 237118 524463 692593 389466 914643 338791 331699 875250 152610 234420 466865 709213 399289 225996 511985 655712 378424 (318 digits), a[627] = 1
                                                                                      A[628]/B[628] = 86854 607143 896896 499986 097390 610402 634313 054771 547431 080278 503392 129820 043709 258967 037475 553893 646702 966598 608581 460325 984178 114605 823025 128517 949426 036945 867329 979016 257526 309683 405393 603386 077416 776626 513283 877478 920937 633334 932109 982176 945341 917308 628211 125443 008430 293729 410267 155460 948772 727881 105339 490126 373859 (317 digits)/8 441705 469988 770065 868464 104734 061185 754042 032404 348800 180817 121564 667884 510567 139379 141408 825504 660303 977446 550167 051778 872644 135287 229778 959803 758171 546403 805819 256362 037256 107246 373151 790632 351487 679322 554942 799391 373464 516808 791433 221485 830541 013710 019097 426050 241234 087330 424947 972323 512061 868006 638103 260899 042107 (319 digits), a[628] = 15
                                                                                      A[629]/B[629] = 352973 419210 479843 533631 557294 453387 072204 742410 918139 219259 200977 588884 529353 992413 640257 673467 946555 161870 206582 424028 710867 772889 926688 379468 221739 223197 130205 615015 188534 001259 226269 968523 466141 147048 387330 135546 097416 190627 525441 254102 527042 100828 576648 944720 090806 077978 180235 672228 174569 955224 094254 711010 930167 (318 digits)/34 306731 003608 303561 325154 803832 714471 659522 077473 579845 654117 695769 912071 972288 843687 472516 334202 233818 635854 050468 153058 772452 287531 464257 897985 410882 378465 774174 390760 295575 212578 775402 107539 334631 973667 660834 989721 730976 591698 858326 275410 236807 393631 408089 579451 117546 583742 166657 598507 447536 698023 064398 699308 546852 (320 digits), a[629] = 4
                                                                                      A[630]/B[630] = 1 145774 864775 336427 100880 769273 970563 850927 282004 301848 738056 106324 896473 631771 236207 958248 574297 486368 452209 228328 732412 116781 433275 603090 266922 614643 706537 257946 824061 823128 313461 084203 508956 475840 217771 675274 284117 213186 205217 508433 744484 526468 219794 358157 959603 280848 527663 950974 172145 472482 593553 388103 623159 164360 (319 digits)/111 361898 480813 680749 843928 516232 204600 732608 264825 088337 143170 208874 404100 427433 670441 558957 828111 361759 885008 701571 510955 190000 997881 622552 653759 990818 681801 128342 428642 923981 744982 699358 113250 355383 600325 537447 768556 566394 291905 366412 047716 540963 194604 243366 164403 593873 838556 924920 767845 854671 962075 831299 358824 682663 (321 digits), a[630] = 3
                                                                                      A[631]/B[631] = 2 644523 148761 152697 735393 095842 394514 774059 306419 521836 695371 413627 381831 792896 464829 556754 822062 919292 066288 663239 888852 944430 639441 132868 913313 451026 636271 646099 263138 834790 628181 394676 986436 417821 582591 737878 703780 523788 601062 542308 743071 579978 540417 292964 863926 652503 133306 082184 016519 119535 142330 870461 957329 258887 (319 digits)/257 030527 965235 665061 013011 836297 123673 124738 607123 756519 940458 113518 720272 827156 184570 590431 990424 957338 405871 453611 174969 152454 283294 709363 205505 392519 742068 030859 248046 143538 702544 174118 334040 045399 174318 735730 526834 863765 175509 591150 370843 318733 782839 894821 908258 305294 260856 016499 134199 156880 622174 726997 416957 912178 (321 digits), a[631] = 2
                                                                                      A[632]/B[632] = 40 813622 096192 626893 131777 206909 888285 461816 878297 129399 168627 310735 623950 525218 208651 309570 905241 275749 446539 176927 065206 283241 024892 596123 966624 380043 250611 949435 771144 344987 736182 004358 305502 743163 956647 743454 840825 070015 221155 643064 890558 226146 326053 752630 918503 068395 527255 183734 419932 265509 728516 445032 983098 047665 (320 digits)/3966 819817 959348 656665 039106 060689 059697 603687 371681 436136 250041 911655 208192 834776 439000 415437 684485 721835 973080 505739 135492 476815 247302 263000 736340 878614 812821 591231 149335 077062 283145 311133 123851 036371 215106 573405 671079 522871 924549 233667 610366 321969 937202 665694 788278 173287 751397 172407 780833 207881 294696 736260 613193 365333 (322 digits), a[632] = 15
                                                                                      A[633]/B[633] = 247 526255 725916 914056 526056 337301 724227 544960 576202 298231 707135 278041 125534 944205 716737 414180 253510 573788 745523 724802 280090 643876 788796 709612 713059 731286 139943 342713 890004 904717 045273 420826 819452 876805 322478 198607 748730 943879 927996 400698 086420 936856 496739 808750 374945 062876 296837 184590 536112 712593 513429 540659 855917 544877 (321 digits)/24057 949435 721327 605051 247648 200431 481858 746862 837212 373337 440709 583449 969429 835814 818573 083058 097339 288354 244354 488045 987924 013345 767108 287367 623550 664208 618997 578246 144056 605912 401416 040917 077146 263626 464958 176164 553312 000996 722804 993156 033041 250553 406055 888990 637927 345020 769239 050945 819198 404168 390355 144561 096118 104176 (323 digits), a[633] = 6
                                                                                      A[634]/B[634] = 288 339877 822109 540949 657833 544211 612513 006777 454499 427630 875762 588776 749485 469423 925388 723751 158751 849538 192062 901729 345296 927117 813689 305736 679684 111329 390555 292149 661149 249704 781455 425185 124955 619969 279125 942062 589556 013895 149152 043762 976979 163002 822793 561381 293448 131271 824092 368324 956044 978103 241945 985692 839015 592542 (321 digits)/28024 769253 680676 261716 286754 261120 541556 350550 208893 809473 690751 495105 177622 670591 257573 498495 781825 010190 217434 993785 123416 490161 014410 550368 359891 542823 431819 169477 293391 682974 684561 352050 200997 299997 680064 749570 224391 523868 647354 226823 643407 572523 343258 554685 426205 518308 520636 223353 600031 612049 685051 880821 709311 469509 (323 digits), a[634] = 1
                                                                                      A[635]/B[635] = 1112 545889 192245 536905 499556 969936 561766 565292 939700 581124 334423 044371 373991 352477 492903 585433 729766 122403 321712 429990 315981 425230 229864 626822 752112 065274 311609 219162 873452 653831 389639 696382 194319 736713 159856 024795 517398 985565 375452 531987 017358 425864 965120 492894 255289 456691 769114 289565 404247 646903 239267 497738 372964 322503 (322 digits)/108132 257196 763356 390200 107910 983793 106527 798513 463893 801758 512964 068765 502297 847588 591293 578545 442814 318924 896659 469401 358173 483828 810339 938472 703225 292678 914455 086678 024231 654836 455100 097067 680138 163619 505152 424875 226486 572602 664867 673626 963263 968123 435831 553046 916543 899946 331147 721006 619293 240317 445510 787026 224052 512703 (324 digits), a[635] = 3
                                                                                      A[636]/B[636] = 1400 885767 014355 077855 157390 514148 174279 572070 394200 008755 210185 633148 123476 821901 418292 309184 888517 971941 513775 331719 661278 352348 043553 932559 431796 176603 702164 511312 534601 903536 171095 121567 319275 356682 438981 966858 106954 999460 524604 575749 994337 588867 787914 054275 548737 587963 593206 657890 360292 625006 481213 483431 211979 915045 (322 digits)/136157 026450 444032 651916 394665 244913 648084 149063 672787 611232 203715 563870 679920 518179 848867 077041 224639 329115 114094 463186 481589 973989 824750 488841 063116 835502 346274 256155 317623 337811 139661 449117 881135 463617 185217 174445 450878 096471 312221 900450 606671 540646 779090 107732 342749 418254 851783 944360 219324 852367 130562 667847 933363 982212 (324 digits), a[636] = 1
                                                                                      A[637]/B[637] = 3914 317423 220955 692615 814337 998232 910325 709433 728100 598634 754794 310667 620944 996280 329488 203803 506802 066286 349263 093429 638538 129926 316972 491941 615704 418481 715938 241787 942656 460903 731829 939516 832870 450078 037819 958511 731308 984486 424661 683487 006033 603600 540948 601445 352764 632618 955527 605346 124832 896916 201694 464600 796924 152593 (322 digits)/380446 310097 651421 694032 897241 473620 402696 096640 809469 024222 920395 196506 862138 883948 289027 732627 892092 977155 124848 395774 321353 431808 459840 916154 829458 963683 607003 598988 659478 330458 734422 995303 442409 090853 875586 773766 128242 765545 289311 474528 176607 049416 994011 768511 602042 736456 034715 609727 057942 945051 706636 122722 090780 477127 (324 digits), a[637] = 2
                                                                                      A[638]/B[638] = 9229 520613 456266 463086 786066 510613 994930 990937 850401 206024 719774 254483 365366 814462 077268 716791 902122 104514 212301 518578 938354 612200 677498 916442 663205 013567 134040 994888 419914 825343 634755 000600 985016 256838 514621 883881 569572 968433 373927 942724 006404 796068 869811 257166 254266 853201 504261 868582 609958 418838 884602 412632 805828 220231 (322 digits)/897049 646645 746876 039982 189148 192154 453476 342345 291725 659678 044505 956884 404198 286076 426922 542297 008825 283425 363791 254735 124296 837606 744432 321150 722034 762869 560281 454132 636579 998728 608507 439724 765953 645324 936390 721977 707363 627561 890844 849506 959885 639480 767113 644755 546834 891166 921215 163814 335210 742470 543834 913292 114924 936466 (324 digits), a[638] = 2
                                                                                      A[639]/B[639] = 13143 838036 677222 155702 600404 508846 905256 700371 578501 804659 474568 565150 986311 810742 406756 920595 408924 170800 561564 612008 576892 742126 994471 408384 278909 432048 849979 236676 362571 286247 366584 940117 817886 706916 552441 842393 300881 952919 798589 626211 012438 399669 410759 858611 607031 485820 459789 473928 734791 315755 086296 877233 602752 372824 (323 digits)/1 277495 956743 398297 734015 086389 665774 856172 438986 101194 683900 964901 153391 266337 170024 715950 274924 900918 260580 488639 650509 445650 269415 204273 237305 551493 726553 167285 053121 296058 329187 342930 435028 208362 736178 811977 495743 835606 393107 180156 324035 136492 688897 761125 413267 148877 627622 955930 773541 393153 687522 250471 036014 205705 413593 (325 digits), a[639] = 1
                                                                                      A[640]/B[640] = 48661 034723 487932 930194 587280 037154 710701 092052 585906 620003 143479 949936 324302 246689 297539 478578 128894 616915 896995 354604 669032 838581 660913 141595 499933 309713 683978 704917 507628 684085 734509 820954 438676 377588 171947 411061 472218 827192 769696 821357 043719 995077 102090 833001 075361 310662 883630 290368 814332 366104 143493 044333 614085 338703 (323 digits)/4 729537 516875 941769 242027 448317 189479 021993 659303 595309 711380 939209 417058 203209 796150 574773 367071 711580 065166 829710 206263 461247 645852 357252 033067 376515 942529 062136 613496 524754 986290 637298 744809 391041 853861 372323 209209 214182 806883 431313 821612 369363 706174 050489 884556 993467 774035 789007 484438 514671 805037 295248 021334 732041 177245 (325 digits), a[640] = 3
                                                                                      A[641]/B[641] = 207787 976930 628953 876480 949524 657465 748061 068581 922128 284672 048488 364896 283520 797499 596914 834907 924502 638464 149546 030427 253024 096453 638123 974766 278642 670903 585894 056346 393086 022590 304624 223935 572592 217269 240231 486639 189757 261690 877376 911639 187318 379977 819123 190615 908476 728471 994310 635403 992120 780171 660269 054568 059093 727636 (324 digits)/20 195646 024247 165374 702124 879658 423690 944147 076200 482433 529424 721738 821624 079176 354627 015043 743211 747238 521247 807480 475563 290640 852824 633281 369575 057557 496669 415831 507107 395078 274349 892125 414265 772530 151624 301270 332580 692337 620640 905411 610484 613947 513593 963084 951495 122748 723766 111960 711295 451840 907671 431463 121353 133870 122573 (326 digits), a[641] = 4
                                                                                      A[642]/B[642] = 256449 011654 116886 806675 536804 694620 458762 160634 508034 904675 191968 314832 607823 044188 894454 313486 053397 255380 046541 385031 922056 935035 299037 116361 778575 980617 269872 761263 900714 706676 039134 044890 011268 594857 412178 897700 661976 088883 647073 732996 231038 375054 921214 023616 983838 039134 877940 925772 806453 146275 803762 098901 673179 066339 (324 digits)/24 925183 541123 107143 944152 327975 613169 966140 735504 077743 240805 660948 238682 282386 150777 589817 110283 458818 586414 637190 681826 751888 498676 990533 402642 434073 439198 477968 120603 919833 260640 529424 159075 163572 005485 673593 541789 906520 427524 336725 432096 983311 219768 013574 836052 116216 497801 900968 195733 966512 712708 726711 142687 865911 299818 (326 digits), a[642] = 1
                                                                                      A[643]/B[643] = 5 593217 221667 083576 816667 222423 244495 382066 441906 590861 282851 079822 976381 047804 725466 380455 418115 045845 001445 126915 116097 616219 732194 917903 418363 628738 263866 253222 042888 308094 862787 126439 166625 809232 709274 895988 338353 091255 128247 465925 304560 039124 256131 164617 686572 569075 550304 431070 076632 927636 851963 539273 131503 195854 120755 (325 digits)/543 624500 387832 415397 529323 767146 300260 233102 521786 115041 586343 601651 833952 009285 520956 401203 059164 382428 835955 188484 793925 080299 325041 434482 825066 173099 719837 453162 039789 711576 747801 010032 754844 207542 266823 446734 710168 729266 598651 976645 684521 263483 128722 248156 508589 563295 177606 032292 821708 748607 874554 692397 117798 318007 418751 (327 digits), a[643] = 21
                                                                                      A[644]/B[644] = 22 629317 898322 451194 073344 426497 672601 987027 928260 871480 036079 511260 220356 799041 946054 416275 985946 236777 261160 554201 849422 386935 863814 970650 789816 293529 036082 282760 932817 133094 157824 544890 711393 248199 431956 996132 251113 026996 601873 510774 951236 387535 399579 579684 769907 260140 240352 602221 232304 517000 554129 960854 624914 456595 549359 (326 digits)/2199 423185 092452 768734 061447 396560 814210 898550 822648 537909 586180 067555 574490 319528 234603 194629 346940 988533 930235 391129 857527 073085 798842 728464 702907 126472 318548 290616 279762 766140 251844 569555 178451 993741 072779 460532 382464 823586 822132 243308 170182 037243 734657 006200 870410 369397 208226 030139 482568 960944 210927 496299 613881 137940 974822 (328 digits), a[644] = 4
                                                                                      A[645]/B[645] = 186 627760 408246 693129 403422 634404 625311 278289 867993 562701 571487 169904 739235 440140 293901 710663 305684 940063 090729 560529 911476 711706 642714 683109 736893 976970 552524 515309 505425 372848 125383 485564 857771 794828 164930 865046 347257 307227 943235 552124 914451 139407 452767 802095 845830 650197 473125 248839 935069 063641 285003 226110 130818 848618 515627 (327 digits)/18139 009981 127454 565270 020902 939632 813947 421509 102974 418318 275784 142096 429874 565511 397781 958237 834692 290700 277838 317523 654141 664985 715783 262200 448323 184878 268223 778092 277891 840698 762557 566474 182460 157470 849059 130993 769887 317961 175709 923111 045977 561433 005978 297763 471872 518472 843414 273408 682260 436161 561974 662794 028847 421535 217327 (329 digits), a[645] = 8
                                                                                      A[646]/B[646] = 395 884838 714815 837452 880189 695306 923224 543607 664247 996883 179053 851069 698827 679322 533857 837602 597316 116903 442619 675261 672375 810349 149244 336870 263604 247470 141131 313379 943667 878790 408591 516020 426936 837855 761818 726224 945627 641452 488344 615024 780138 666350 305115 183876 461568 560535 186603 099901 102442 644283 124136 413074 886552 153832 580613 (327 digits)/38477 443147 347361 899274 103253 275826 442105 741569 028597 374546 137748 351748 434239 450551 030167 111105 016325 569934 485912 026177 165810 403057 230409 252865 599553 496228 854995 846800 835546 447537 776959 702503 543372 308682 770897 722519 922239 459509 173552 089530 262137 160109 746613 601727 814155 406342 895054 576956 847089 833267 334876 821887 671575 981011 409476 (329 digits), a[646] = 2
                                                                                      A[647]/B[647] = 1374 282276 552694 205488 043991 720325 394984 909112 860737 553351 108648 723113 835718 478107 895475 223471 097633 290773 418588 586314 928604 142754 090447 693720 527706 719380 975918 455449 336429 009219 351158 033626 138582 308395 450387 043721 184140 231585 408269 397199 254867 138458 368113 353725 230536 331803 032934 548543 242396 996490 657412 465334 790475 310116 257466 (328 digits)/133571 339423 169540 263092 330662 767112 140264 646216 188766 541956 689029 197341 732592 917164 488283 291552 883669 000503 735574 396055 151572 874157 407011 020797 246983 673564 833211 318494 784531 183312 093436 673984 812577 083519 161752 298553 536605 696488 696366 191701 832389 041762 245819 102946 914338 737501 528578 004279 223529 935963 566605 128457 043575 364569 445755 (330 digits), a[647] = 3
                                                                                      A[648]/B[648] = 48495 764518 059113 029534 419899 906695 747696 362557 790062 364171 981759 160053 948974 413098 875490 659091 014481 293973 093220 196284 173520 806742 314913 617088 733339 425804 298277 254106 718683 201467 699122 692935 277317 631696 525365 256466 390535 746941 777773 516998 700488 512393 189082 564259 530340 173641 339312 298914 586337 521456 133572 699792 553188 007901 591923 (329 digits)/4 713474 322958 281271 107505 676450 124751 351368 359135 635426 343030 253770 258709 074991 551308 120082 315455 944740 587565 231015 888107 470860 998566 475794 980769 243982 070998 017391 994118 294137 863461 047243 291971 983570 231853 432228 171893 703438 836613 546368 799094 395753 621788 350282 204869 816011 218896 395284 726729 670637 591992 166056 317884 196713 740942 010901 (331 digits), a[648] = 35
                                                                                      A[649]/B[649] = 49870 046794 611807 235022 463891 627021 142681 271670 650799 917523 090407 883167 784692 891206 770965 882562 112114 584746 511808 782599 102124 949496 405361 310809 261046 145185 274195 709556 055112 210687 050280 726561 415899 940091 975752 300187 574675 978527 186042 914197 955355 650851 557195 917984 760876 505444 372246 847457 828734 517946 790985 165127 343663 318017 849389 (329 digits)/4 847045 662381 450811 370598 007112 891863 491633 005351 824192 884986 942799 456050 807584 468472 608365 607008 828409 588068 966590 284162 622433 872723 882806 001566 490965 744562 850603 312613 078669 046773 140679 965956 796147 315372 593980 470447 240044 533102 242734 990796 228142 663550 596101 307816 730349 956397 923862 731008 894167 527955 732661 446341 240289 105511 456656 (331 digits), a[649] = 1
                                                                                      A[650]/B[650] = 148235 858107 282727 499579 347683 160738 033058 905899 091662 199218 162574 926389 518360 195512 417422 424215 238710 463466 116837 761482 377770 705735 125636 238707 255431 716174 846668 673218 828907 622841 799684 146058 109117 511880 476869 856841 539887 703996 149859 345394 611199 814096 303474 400229 052093 184530 083805 993830 243806 557349 715543 030047 240514 643937 290701 (330 digits)/14 407565 647721 182893 848701 690675 908478 334634 369839 283812 113004 139369 170810 690160 488253 336813 529473 601559 763703 164196 456432 715728 744014 241406 983902 225913 560123 718598 619344 451475 957007 328603 223885 575864 862598 620189 112788 183527 902818 031838 780686 852038 948889 542484 820503 276711 131692 243010 188747 458972 647903 631379 210566 677291 951964 924213 (332 digits), a[650] = 2
                                                                                      A[651]/B[651] = 198105 904901 894534 734601 811574 787759 175740 177569 742462 116741 252982 809557 303053 086719 188388 306777 350825 048212 628646 544081 479895 655231 530997 549516 516477 861360 120864 382774 884019 833528 849964 872619 525017 451972 452622 157029 114563 682523 335902 259592 566555 464947 860670 318213 812969 689974 456052 841288 072541 075296 506528 195174 584177 961955 140090 (330 digits)/19 254611 310102 633705 219299 697788 800341 826267 375191 108004 997991 082168 626861 497744 956725 945179 136482 429969 351772 130786 740595 338162 616738 124212 985468 716879 304686 569201 931957 530145 003780 469283 189842 372012 177971 214169 583235 423572 435920 274573 771483 080181 612440 138586 128320 007061 088090 166872 919756 353140 175859 364040 656907 917581 057476 380869 (332 digits), a[651] = 1
                                                                                      A[652]/B[652] = 346341 763009 177262 234181 159257 948497 208799 083468 834124 315959 415557 735946 821413 282231 605810 730992 589535 511678 745484 305563 857666 360966 656633 788223 771909 577534 967533 055993 712927 456370 649649 018677 634134 963852 929492 013870 654451 386519 485761 604987 177755 279044 164144 718442 865062 874504 539858 835118 316347 632646 222071 225221 824692 605892 430791 (330 digits)/33 662176 957823 816599 068001 388464 708820 160901 745030 391817 110995 221537 797672 187905 444979 281992 665956 031529 115475 294983 197028 053891 360752 365619 969370 942792 864810 287800 551301 981620 960787 797886 413727 947877 040569 834358 696023 607100 338738 306412 552169 932220 561329 681070 948823 283772 219782 409883 108503 812112 823762 995419 867474 594873 009441 305082 (332 digits), a[652] = 1
                                                                                      A[653]/B[653] = 890789 430920 249059 202964 130090 684753 593338 344507 410710 748660 084098 281450 945879 651182 400009 768762 529896 071570 119615 155209 195228 377164 844265 125964 060297 016430 055930 494762 309874 746270 149262 909974 793287 379678 311606 184770 423466 455562 307425 469566 922066 023036 188959 755099 543095 438983 535770 511524 705236 340588 950670 645618 233563 173740 001672 (330 digits)/86 578965 225750 266903 355302 474718 217982 148070 865251 891639 219981 525244 222205 873555 846684 509164 468394 493027 582722 720753 134651 445945 338242 855452 924210 602465 034307 144803 034561 493386 925356 065056 017298 267766 259110 882886 975282 637773 113396 887398 875822 944622 735099 500728 025966 574605 527654 986639 136763 977365 823385 354880 391857 107327 076358 991033 (332 digits), a[653] = 2
                                                                                      A[654]/B[654] = 3 909499 486690 173499 046037 679620 687511 582152 461498 476967 310599 751950 861750 604931 886961 205849 806042 709119 797959 223944 926400 638579 869626 033694 292080 013097 643255 191255 035042 952426 441451 246700 658576 807284 482566 175916 752952 348317 208768 715463 483254 866019 371188 919983 738841 037444 630438 682940 881217 137292 995002 024753 807694 758945 300852 437479 (331 digits)/379 978037 860824 884212 489211 287337 580748 753185 206037 958373 990921 322514 686495 682128 831717 318650 539534 003639 446366 177995 735633 837672 713723 787431 666213 352653 002038 867012 689547 955168 662212 058110 482921 018942 077013 365906 597154 158192 792325 856008 055461 710711 501727 683983 052689 582194 330402 356439 655559 721576 117304 414941 434903 024181 314877 269214 (333 digits), a[654] = 4
                                                                                      A[655]/B[655] = 4 800288 917610 422558 249001 809711 372265 175490 806005 887678 059259 836049 143201 550811 538143 605859 574805 239015 869529 343560 081609 833808 246790 877959 418044 073394 659685 247185 529805 262301 187721 395963 568551 600571 862244 487522 937722 771783 664331 022888 952821 788085 394225 108943 493940 580540 069422 218711 392741 842529 335590 975424 453312 992508 474592 439151 (331 digits)/466 557003 086575 151115 844513 762055 798730 901256 071289 850013 210902 847758 908701 555684 678401 827815 007928 496667 029088 898748 870285 283618 051966 642884 590423 955118 036346 011815 724109 448555 587568 123166 500219 286708 336124 248793 572436 795965 905722 743406 931284 655334 236827 184711 078656 156799 858057 343078 792323 698941 940689 769821 826760 131508 391236 260247 (333 digits), a[655] = 1
                                                                                      A[656]/B[656] = 27 910944 074742 286290 291046 728177 548837 459606 491527 915357 606898 932196 577758 358989 577679 235147 680068 904199 145605 941745 334449 807621 103580 423491 382300 380070 941681 427182 684069 263932 380058 226518 501334 810143 793788 613531 441566 207235 530423 829908 247363 806446 342314 464701 208543 940144 977549 776497 844926 349939 672956 901876 074259 721487 673814 633234 (332 digits)/2712 763053 293700 639791 711780 097616 574403 259465 562487 208440 045435 561309 230003 460552 223726 457725 579176 486974 591810 671740 087060 255762 973557 001854 618333 128243 183768 926091 310095 197946 600052 673942 984017 452483 757634 609874 459338 138022 320939 573042 711884 987382 685863 607538 445970 366193 620689 071833 617178 216285 820753 264050 568703 681723 271058 570449 (334 digits), a[656] = 5
                                                                                      A[657]/B[657] = 32 711232 992352 708848 540048 537888 921102 635097 297533 803035 666158 768245 720959 909801 115822 841007 254874 143215 015135 285305 416059 641429 350371 301450 800344 453465 601366 674368 213874 526233 567779 622482 069886 410715 656033 101054 379288 979019 194754 852797 200185 594531 736539 573644 702484 520685 046971 995209 237668 192469 008547 877300 527572 713996 148407 072385 (332 digits)/3179 320056 380275 790907 556293 859672 373134 160721 633777 058453 256338 409068 138705 016236 902128 285540 587104 983641 620899 570488 957345 539381 025523 644739 208757 083361 220114 937907 034204 646502 187620 797109 484236 739192 093758 858668 031774 933988 226662 316449 643169 642716 922690 792249 524626 522993 478746 414912 409501 915227 761443 033872 395463 813231 662294 830696 (334 digits), a[657] = 1
                                                                                      A[658]/B[658] = 60 622177 067094 995138 831095 266066 469940 094703 789061 718393 273057 700442 298718 268790 693502 076154 934943 047414 160741 227050 750509 449050 453951 724942 182644 833536 543048 101550 897943 790165 947837 849000 571221 220859 449821 714585 820855 186254 725178 682705 447549 400978 078854 038345 911028 460830 024521 771707 082594 542408 681504 779176 601832 435483 822221 705619 (332 digits)/5892 083109 673976 430699 268073 957288 947537 420187 196264 266893 301773 970377 368708 476789 125854 743266 166281 470616 212710 242229 044405 795143 999080 646593 827090 211604 403883 863998 344299 844448 787673 471052 468254 191675 851393 468542 491113 072010 547601 889492 355054 630099 608554 399787 970596 889187 099435 486746 026680 131513 582196 297922 964167 494954 933353 401145 (334 digits), a[658] = 1
                                                                                      A[659]/B[659] = 93 333410 059447 703987 371143 803955 391042 729801 086595 521428 939216 468688 019678 178591 809324 917162 189817 190629 175876 512356 166569 090479 804323 026392 982989 287002 144414 775919 111818 316399 515617 471482 641107 631575 105854 815640 200144 165273 919933 535502 647734 995509 815393 611990 613512 981515 071493 766916 320262 734877 690052 656477 129405 149479 970628 778004 (332 digits)/9071 403166 054252 221606 824367 816961 320671 580908 830041 325346 558112 379445 507413 493026 027983 028806 753386 454257 833609 812718 001751 334525 024604 291333 035847 294965 623998 801905 378504 490950 975294 268161 952490 930867 945152 327210 522888 005998 774264 205941 998224 272816 531245 192037 495223 412180 578181 901658 436182 046741 343639 331795 359631 308186 595648 231841 (334 digits), a[659] = 1
                                                                                      A[660]/B[660] = 620 622637 423781 219063 057958 089798 816196 473510 308634 846966 908356 512570 416787 340341 549451 579128 073846 191189 216000 301187 749923 991929 279889 883300 080580 555549 409536 757065 568853 688563 041542 677896 417867 010310 084950 608427 021720 177898 244779 895721 333959 374036 971215 710289 592106 349920 453484 373205 004170 951674 821820 718039 378263 332363 645994 373643 (333 digits)/60320 502105 999489 760340 214280 859056 871566 905640 176512 218972 650448 247050 413189 434945 293752 916106 686600 196163 214369 118537 054913 802294 146706 394592 042173 981398 147876 675430 615326 790154 639439 080024 183199 776883 522307 431805 628441 108003 193187 125144 344400 266998 796025 552012 941937 362270 568526 896696 643772 411961 644032 288695 121955 344074 507242 792191 (335 digits), a[660] = 6
                                                                                      A[661]/B[661] = 2575 823959 754572 580239 602976 163150 655828 623842 321134 909296 572642 518969 686827 539958 007131 233674 485201 955386 039877 717107 166265 058196 923882 559593 305311 509199 782561 804181 387233 070651 681788 183068 312575 672815 445657 249348 287024 876866 899053 118387 983572 491657 700256 453148 981938 381196 885431 259736 336946 541576 977335 528634 642458 478934 554606 272576 (334 digits)/250353 411590 052211 262967 681491 253188 806939 203469 536090 201237 159905 367647 160171 232807 202994 693233 499787 238910 691086 286866 221406 543701 611429 869701 204543 220558 215505 503627 839811 651569 533050 588258 685290 038402 034382 054433 036652 438011 547012 706519 375825 340811 715347 400089 262972 861262 852289 488445 011271 694587 919768 486575 847452 684484 624619 400605 (336 digits), a[661] = 4
                                                                                      A[662]/B[662] = 23803 038275 214934 441219 484743 558154 718654 088091 198849 030636 062139 183297 598235 199963 613632 682198 440663 789663 574899 755152 246309 515701 594832 919639 828384 138347 452592 994698 053951 324428 177636 325511 231048 065649 095865 852561 604944 069700 336257 961213 186111 798956 273523 788630 429551 780692 422365 710832 036689 825867 617840 475751 160389 642774 637450 826827 (335 digits)/2 313501 206416 469391 127049 347702 137756 134019 736866 001324 030107 089596 555874 854730 530210 120705 155208 184685 346359 434145 700333 047572 695608 649575 221902 883062 966422 087426 208081 173631 654280 436894 374352 350810 122501 831745 921702 958313 050107 116301 483818 726828 334304 234152 152816 308693 113636 239132 292701 745217 663252 921948 667877 749029 504436 128817 397636 (337 digits), a[662] = 9
                                                                                      A[663]/B[663] = 26378 862234 969507 021459 087719 721305 374482 711933 519983 939932 634781 702267 285062 739921 620763 915872 925865 745049 614777 472259 412574 573898 518715 479233 133695 647547 235154 798879 441184 395079 859424 508579 543623 738464 541523 101909 891968 946567 235311 079601 169684 290613 973780 241779 411490 161889 307796 970568 373636 367444 595176 004385 802848 121709 192057 099403 (335 digits)/2 563854 618006 521602 390017 029193 390944 940958 940335 537414 231344 249501 923522 014901 763017 323699 848441 684472 585270 125231 987199 268979 239310 261005 091604 087606 186980 302931 711709 013443 305849 969944 962611 036100 160903 866127 976135 994965 488118 663314 190338 102653 675115 949499 552905 571665 974899 091421 781146 756489 357840 841717 154453 596482 188920 753436 798241 (337 digits), a[663] = 1
                                                                                      A[664]/B[664] = 7 330747 877361 768379 385386 783106 359743 450365 293676 234400 391975 896670 711335 560614 158252 565237 378998 905475 168406 868259 571009 529466 485591 279020 667217 862078 508931 590472 284303 262028 761549 238225 202044 814823 620327 097765 081601 680342 268824 517427 010737 188660 299027 010650 761527 412326 624030 682126 558271 533963 608020 481593 690618 549319 356220 837267 361458 (337 digits)/712 501230 394222 953253 161766 434271 429504 779646 209809 865066 112464 201629 371472 982518 886008 785563 173554 783591 466184 123406 154530 554821 984550 947985 596235 149976 759965 999510 351477 897427 374722 111649 017609 350554 692872 749195 311373 563753 258976 854332 207473 161896 341422 245528 307659 660168 160684 562965 670353 292769 785166 077600 451523 974595 835484 830810 510393 (339 digits), a[664] = 277
                                                                                      A[665]/B[665] = 14 687874 616958 506265 792232 653932 440792 275213 299285 988784 723884 428123 124938 406291 056426 751238 673870 736816 081863 351296 614278 471507 545081 076756 813668 857852 665410 416099 367485 965241 918178 335874 912669 173270 979118 737053 265113 252653 484216 270165 101075 547004 888667 995081 764834 236143 409950 672050 087111 441563 583485 558363 385622 901486 834150 866591 822319 (338 digits)/1427 566315 406452 428108 713549 897736 249954 500251 359955 267546 456272 652760 666467 979939 535034 894826 195551 251655 517638 372044 296260 378623 208412 156976 284074 387559 706912 301952 414664 808298 055294 193242 997829 737209 546649 364518 598883 122472 006072 371978 605284 426446 357960 440556 168224 892002 296268 217353 121853 342028 928172 996918 057501 545673 859890 415057 819027 (340 digits), a[665] = 2
                                                                                      A[666]/B[666] = 51 394371 728237 287176 762084 744903 682120 276005 191534 200754 563629 181040 086150 779487 327532 818953 400611 115923 413996 922149 413844 943989 120834 509291 108224 435636 505162 838770 386761 157754 516084 245849 940052 334636 557683 308924 876941 438302 721473 327922 313963 829674 965030 995896 056030 120756 853882 698276 819605 858654 358477 156683 847487 253779 858673 437042 828415 (338 digits)/4995 200176 613580 237579 302416 127480 179368 280400 289675 667705 481282 159911 370876 922337 491113 470041 760208 538558 019099 239539 043311 690691 609787 418914 448458 312655 880702 905367 595472 322321 540604 691378 011098 562183 332820 842751 108022 931169 277193 970268 023326 441235 415303 567196 812334 336175 049489 215025 035913 318856 569685 068354 624028 611617 415156 075983 967474 (340 digits), a[666] = 3
                                                                                      A[667]/B[667] = 66 082246 345195 793442 554317 398836 122912 551218 490820 189539 287513 609163 211089 185778 383959 570192 074481 852739 495860 273446 028123 415496 665915 586047 921893 293489 170573 254869 754247 122996 434262 581724 852721 507907 536802 045978 142054 690956 205689 598087 415039 376679 853698 990977 820864 356900 263833 370326 906717 300217 941962 715047 233110 155266 692824 303634 650734 (338 digits)/6422 766492 020032 665688 015966 025216 429322 780651 649630 935251 937554 812672 037344 902277 026148 364867 955759 790213 536737 611583 339572 069314 818199 575890 732532 700215 587615 207320 010137 130619 595898 884621 008928 299392 879470 207269 706906 053641 283266 342246 628610 867681 773264 007752 980559 228177 345757 432378 157766 660885 497858 065272 681530 157291 275046 491041 786501 (340 digits), a[667] = 1
                                                                                      A[668]/B[668] = 513 970096 144607 841274 642306 536756 542508 134534 627275 527529 576224 445182 563775 079936 015249 810297 921984 085099 885018 836271 610708 852465 782243 611626 561477 490060 699175 622858 666491 018729 555922 317923 909102 889989 315297 630771 871324 274996 161300 514534 219239 466433 940923 932740 802080 619058 700716 290565 166626 960179 952216 162014 479258 340646 708443 562485 383553 (339 digits)/49954 565620 753808 897395 414178 303995 184627 744961 837092 214469 044165 848615 632291 238276 674152 024117 450527 070052 776262 520622 420316 175895 337184 450149 576187 214164 994009 356607 666432 236658 711896 883725 073596 657933 489112 293639 056365 306658 260058 365994 423602 515007 828151 621467 676248 933416 469791 241672 140279 945055 054691 525263 394739 712656 340481 513276 472981 (341 digits), a[668] = 7
                                                                                      A[669]/B[669] = 2635 932727 068234 999815 765850 082618 835453 223891 627197 827187 168635 835076 029964 585458 460208 621681 684402 278238 920954 454804 081667 677825 577133 644180 729280 743792 666451 369163 086702 216644 213874 171344 398235 957854 113290 199837 498676 065937 012192 170758 511236 708849 558318 654681 831267 452193 767414 823152 739852 101117 703043 525119 629401 858500 235042 116061 568499 (340 digits)/256195 594595 789077 152665 086857 545192 352461 505460 835092 007597 158384 055750 198801 093660 396908 485455 208395 140477 418050 214695 441152 948791 504121 826638 613468 771040 557661 990358 342298 313913 155383 303246 376911 589060 325031 675464 988732 586932 583558 172218 746623 442720 914022 115091 361803 895259 694713 640738 859166 386160 771315 691589 655228 720572 977454 057424 151406 (342 digits), a[669] = 5
                                                                                      A[670]/B[670] = 3149 902823 212842 841090 408156 619375 377961 358426 254473 354716 744860 280258 593739 665394 475458 431979 606386 363338 805973 291075 692376 530291 359377 255807 290758 233853 365626 992021 753193 235373 769796 489268 307338 847843 428587 830609 370000 340933 173492 685292 730476 175283 499242 587422 633348 071252 468131 113717 906479 061297 655259 687134 108660 199146 943485 678546 952052 (340 digits)/306150 160216 542886 050060 501035 849187 537089 250422 672184 222066 202549 904365 831092 331937 071060 509572 658922 210530 194312 735317 861469 124686 841306 276788 189655 985205 551671 346966 008730 550571 867280 186971 450508 246993 814143 969104 045097 893590 843616 538213 170225 957728 742173 736559 038052 828676 164504 882410 999446 331215 826007 216853 049968 433229 317935 570700 624387 (342 digits), a[670] = 1
                                                                                      A[671]/B[671] = 5785 835550 281077 840906 174006 701994 213414 582317 881671 181903 913496 115334 623704 250852 935667 053661 290788 641577 726927 745879 774044 208116 936510 899988 020038 977646 032078 361184 839895 452017 983670 660612 705574 805697 541878 030446 868676 406870 185684 856051 241712 884133 057561 242104 464615 523446 235545 936870 646331 162415 358303 212253 738062 057647 178527 794608 520551 (340 digits)/562345 754812 331963 202725 587893 394379 889550 755883 507276 229663 360933 960116 029893 425597 467968 995027 867317 351007 612362 950013 302622 073478 345428 103426 803124 756246 109333 337324 351028 864485 022663 490217 827419 836054 139175 644569 033830 480523 427174 710431 916849 400449 656195 851650 399856 723935 859218 523149 858612 717376 597322 908442 705197 153802 295389 628124 775793 (342 digits), a[671] = 1
                                                                                      A[672]/B[672] = 66794 093876 304699 091058 322230 341311 725521 763922 952856 355659 793317 548939 454486 424776 767796 022253 805061 420693 802178 495753 206862 819577 660997 155675 511186 987959 718488 965054 992043 207571 590173 756008 068661 710516 389246 165524 925440 816505 216026 101856 389317 900747 132416 250571 744118 829161 059136 419295 016121 847866 596595 021925 227342 833265 907291 419240 678113 (341 digits)/6 491953 463152 194481 280041 967863 187366 322147 565141 252222 748363 172823 465642 159920 013509 218719 454879 199413 071613 930305 185464 190311 932948 641015 414483 024028 303912 754338 057533 870048 059907 116578 579367 552126 443589 345076 059363 417233 179348 542538 352964 255569 362674 960328 104713 436476 791970 615908 637059 444186 222358 396559 209722 807137 125054 567221 480073 158110 (343 digits), a[672] = 11
                                                                                      A[673]/B[673] = 72579 929426 585776 931964 496237 043305 938936 346240 834527 537563 706813 664274 078190 675629 703463 075915 095850 062271 529106 241632 980907 027694 597508 055663 531225 965605 750567 326239 831938 659589 573844 416620 774236 516213 931124 195971 794117 223375 401710 957907 631030 784880 189977 492676 208734 352607 294682 356165 662453 010281 954898 234178 965404 890913 085819 213849 198664 (341 digits)/7 054299 217964 526444 482767 555756 581746 211698 321024 759498 978026 533757 425758 189813 439106 686688 449907 066730 422621 542668 135477 492934 006426 986443 517909 827153 060158 863671 394858 221076 924392 139242 069585 379546 279643 484251 703932 451063 659871 969713 063396 172418 763124 616523 956363 836333 515906 475127 160209 302798 939734 993882 118165 512334 278856 862611 108197 933903 (343 digits), a[673] = 1
                                                                                      A[674]/B[674] = 139374 023302 890476 023022 818467 384617 664458 110163 787383 893223 500131 213213 532677 100406 471259 098168 900911 482965 331284 737386 187769 847272 258505 211339 042412 953565 469056 291294 823981 867161 164018 172628 842898 226730 320370 361496 719558 039880 617737 059764 020348 685627 322393 743247 952853 181768 353818 775460 678574 858148 551493 256104 192747 724178 993110 633089 876777 (342 digits)/13 546252 681116 720925 762809 523619 769112 533845 886166 011721 726389 706580 891400 349733 452615 905407 904786 266143 494235 472973 320941 683245 939375 627458 932392 851181 364071 618009 452392 091124 984299 255820 648952 931672 723232 829327 763295 868296 839220 512251 416360 427988 125799 576852 061077 272810 307877 091035 797268 746985 162093 390441 327888 319471 403911 429832 588271 092013 (344 digits), a[674] = 1
                                                                                      A[675]/B[675] = 1 187572 115849 709585 116147 043976 120247 254601 227551 133598 683351 707863 369982 339607 478881 473535 861266 303141 925994 179384 140722 483065 805872 665549 746375 870529 594129 503017 656598 423793 596878 885989 797651 517422 330056 494087 087945 550581 542420 343607 436019 793820 269898 769127 438659 831559 806754 125232 559851 091051 875470 366844 283012 507386 684345 030704 278568 212880 (343 digits)/115 424320 666898 293850 585243 744714 734646 482465 410352 853272 789144 186404 556960 987681 060033 929951 688197 195878 376505 326454 703010 958901 521432 006114 977052 636603 972731 807747 013994 950076 798786 185807 261208 832928 065506 118873 810299 397438 373636 067724 394279 596323 769521 231340 444982 018815 978923 203413 538359 278680 236482 117412 741272 068105 510148 301271 814366 670007 (345 digits), a[675] = 8
                                                                                      A[676]/B[676] = 16 765383 645198 824667 649081 434133 068079 228875 295879 657765 460147 410218 392966 287181 804747 100761 155897 144898 446883 842662 707500 950691 129489 576201 660601 229827 271378 511303 483672 757092 223465 567875 339750 086810 847521 237589 592734 427699 633765 428241 164041 133832 464210 090177 884485 594690 476326 107074 613375 953301 114733 687313 218279 296161 305009 422970 533044 857097 (344 digits)/1629 486742 017692 834833 956221 949626 054163 288361 631105 957540 774408 316244 688854 177268 293090 924731 539547 008440 765310 043339 163095 107867 239423 713068 611129 763636 982316 926467 648321 392200 167305 857122 305876 592665 640318 493561 107487 432434 070125 460392 936274 776520 899096 815618 290825 536234 012801 938825 334298 648508 472843 034219 705697 272948 545987 647637 989404 472111 (346 digits), a[676] = 14
                                                                                      A[677]/B[677] = 17 952955 761048 534252 765228 478109 188326 483476 523430 791364 143499 118081 762948 626789 283628 574297 017163 448040 372878 022046 848223 433756 935362 241751 406977 100356 865508 014321 140271 180885 820344 453865 137401 604233 177577 731676 680679 978281 176185 771848 600060 927652 734108 859305 323145 426250 283080 232307 173227 044352 990204 054157 501291 803547 989354 453674 811613 069977 (344 digits)/1744 911062 684591 128684 541465 694340 788809 770827 041458 810813 563552 502649 245815 164949 353124 854683 227744 204319 141815 369793 866106 066768 760855 719183 588182 400240 955048 734214 662316 342276 966092 042929 567085 425593 705824 612434 917786 829872 443761 528117 330554 372844 668618 046958 735807 555049 991725 142238 872657 927188 709325 151632 446969 341054 056135 948909 803771 142118 (346 digits), a[677] = 1
                                                                                      A[678]/B[678] = 34 718339 406247 358920 414309 912242 256405 712351 819310 449129 603646 528300 155914 913971 088375 675058 173060 592938 819761 864709 555724 384448 064851 817953 067578 330184 136886 525624 623943 937978 043810 021740 477151 691044 025098 969266 273414 405980 809951 200089 764102 061485 198318 949483 207631 020940 759406 339381 786602 997654 104937 741470 719571 099709 294363 876645 344657 927074 (344 digits)/3374 397804 702283 963518 497687 643966 842973 059188 672564 768354 337960 818893 934669 342217 646215 779414 767291 212759 907125 413133 029201 174636 000279 432252 199312 163877 937365 660682 310637 734477 133397 900051 872962 018259 346143 105996 025274 262306 513886 988510 266829 149365 567714 862577 026633 091284 004527 081064 206956 575697 182168 185852 152666 614002 602123 596547 793175 614229 (346 digits), a[678] = 1
                                                                                      A[679]/B[679] = 156 826313 386037 969934 422468 127078 213949 332883 800672 587882 558085 231282 386608 282673 637131 274529 709405 819795 651925 480885 071120 971549 194769 513563 677290 421093 413054 116819 636046 932797 995584 540827 046008 368409 277973 608741 774337 602204 415990 572207 656469 173593 527384 657238 153669 510013 320705 589834 319639 034969 409955 020040 379576 202385 166809 960256 190244 778273 (345 digits)/15242 502281 493726 982758 532216 270208 160702 007581 731717 884230 915395 778224 984492 533819 937987 972342 296909 055358 770317 022325 982910 765312 761973 448192 385431 055752 704511 376943 904867 280185 499683 643137 058933 498631 090397 036419 018883 879098 499309 482158 397870 970306 939477 497266 842339 920186 009833 466495 700484 229977 437997 895041 057635 797064 464630 335100 976473 599034 (347 digits), a[679] = 4
                                                                                      A[680]/B[680] = 818 849906 336437 208592 526650 547633 326152 376770 822673 388542 394072 684712 088956 327339 274032 047706 720089 691917 079389 269134 911329 242194 038699 385771 454030 435651 202157 109722 804178 601968 021732 725875 707193 533090 414967 012975 145102 417002 889904 061128 046447 929452 835242 235673 975978 571007 362934 288553 384798 172501 154712 841672 617452 111635 128413 677926 295881 818439 (345 digits)/79586 909212 170918 877311 158768 995007 646483 097097 331154 189508 914939 710018 857132 011317 336155 641126 251836 489553 758710 524762 943755 001199 810146 673214 126467 442641 459922 545401 834974 135404 631816 115737 167629 511414 798128 288091 119693 657799 010434 399302 256184 000900 265102 348911 238332 692214 053694 413542 709377 725584 372157 661057 440845 599324 925275 272052 675543 609399 (347 digits), a[680] = 5
                                                                                      A[681]/B[681] = 5069 925751 404661 221489 582371 412878 170863 593508 736712 919136 922521 339554 920346 246709 281323 560770 029943 971298 128261 095694 539096 424713 426965 828192 401473 035000 625996 775156 461118 544606 125980 896081 289169 566951 767775 686592 644952 104221 755414 938975 935156 750310 538838 071282 009540 936057 498311 321154 628428 069976 338232 070076 084288 872195 937292 027813 965535 688907 (346 digits)/492763 957554 519240 246625 484830 240254 039600 590165 718643 021284 405034 038338 127284 601723 954921 819099 807927 992681 322580 170903 645440 772511 622853 487477 144235 711601 464046 649354 914712 092613 290580 337560 064710 567119 879166 764965 737045 825892 561915 877971 934974 975708 530091 590734 272336 073470 331999 947751 956750 583483 670943 861385 702709 393014 016281 967417 029735 255428 (348 digits), a[681] = 6
                                                                                      A[682]/B[682] = 5888 775657 741098 430082 109021 960511 497015 970279 559386 307679 316594 024267 009302 574048 555355 608476 750033 663215 207650 364829 450425 666907 465665 213963 855503 470651 828153 884879 265297 146574 147713 621956 996363 100042 182742 699567 790054 521224 645319 000103 981604 679763 374080 306955 985519 507064 861245 609708 013226 242477 492944 911748 701740 983831 065705 705740 261417 507346 (346 digits)/572350 866766 690159 123936 643599 235261 686083 687263 049797 210793 319973 748356 984416 613041 291077 460226 059764 482235 081290 695666 589195 773711 433000 160691 270703 154242 923969 194756 749686 228017 922396 453297 232340 078534 677295 053056 856739 483691 572350 277274 191158 976608 795193 939645 510668 765684 385694 361294 666128 309068 043101 522443 143554 992338 941557 239469 705278 864827 (348 digits), a[682] = 1
                                                                                      A[683]/B[683] = 10958 701409 145759 651571 691393 373389 667879 563788 296099 226816 239115 363821 929648 820757 836679 169246 779977 634513 335911 460523 989522 091620 892631 042156 256976 505652 454150 660035 726415 691180 273694 518038 285532 666993 950518 386160 435006 625446 400733 939079 916761 430073 912918 378237 995060 443122 359556 930862 641654 312453 831176 981824 786029 856027 002997 733554 226953 196253 (347 digits)/1 065114 824321 209399 370562 128429 475515 725684 277428 768440 232077 725007 786695 111701 214765 245999 279325 867692 474916 403870 866570 234636 546223 055853 648168 414938 865844 388015 844111 664398 320631 212976 790857 297050 645654 556461 818022 593785 309584 134266 155246 126133 952317 325285 530379 783004 839154 717694 309046 622878 892551 714045 383828 846264 385352 957839 206886 735014 120255 (349 digits), a[683] = 1
                                                                                      A[684]/B[684] = 16847 477066 886858 081653 800415 333901 164895 534067 855485 534495 555709 388088 938951 394806 392034 777723 530011 297728 543561 825353 439947 758528 358296 256120 112479 976304 282304 544914 991712 837754 421408 139995 281895 767036 133261 085728 225061 146671 046052 939183 898366 109837 286998 685193 980579 950187 220802 540570 654880 554931 324121 893573 487770 839858 068703 439294 488370 703599 (347 digits)/1 637465 691087 899558 494498 772028 710777 411767 964691 818237 442871 044981 535052 096117 827806 537076 739551 927456 957151 485161 562236 823832 319934 488853 808859 685642 020087 311985 038868 414084 548649 135373 244154 529390 724189 233756 871079 450524 793275 706616 432520 317292 928926 120479 470025 293673 604839 103388 670341 289007 201619 757146 906271 989819 377691 899396 446356 440292 985082 (349 digits), a[684] = 1
                                                                                      A[685]/B[685] = 27806 178476 032617 733225 491808 707290 832775 097856 151584 761311 794824 751910 868600 215564 228713 946970 309988 932241 879473 285877 429469 850149 250927 298276 369456 481956 736455 204950 718128 528934 695102 658033 567428 434030 083779 471888 660067 772117 446786 878263 815127 539911 199917 063431 975640 393309 580359 471433 296534 867385 155298 875398 273800 695885 071701 172848 715323 899852 (347 digits)/2 702580 515409 108957 865060 900458 186293 137452 242120 586677 674948 769989 321747 207819 042571 783076 018877 795149 432067 889032 428807 058468 866157 544707 457028 100580 885931 700000 882980 078482 869280 348350 035011 826441 369843 790218 689102 044310 102859 840882 587766 443426 881243 445765 000405 076678 443993 821082 979387 911886 094171 471192 290100 836083 763044 857235 653243 175307 105337 (349 digits), a[685] = 1
                                                                                      A[686]/B[686] = 44653 655542 919475 814879 292224 041191 997670 631924 007070 295807 350534 139999 807551 610370 620748 724693 840000 229970 423035 111230 869417 608677 609223 554396 481936 458261 018759 749865 709841 366689 116510 798028 849324 201066 217040 557616 885128 918788 492839 817447 713493 649748 486915 748625 956220 343496 801162 012003 951415 422316 479420 768971 761571 535743 140404 612143 203694 603451 (347 digits)/4 340046 206497 008516 359559 672486 897070 549220 206812 404915 117819 814970 856799 303936 870378 320152 758429 722606 389219 374193 991043 882301 186092 033561 265887 786222 906019 011985 921848 492567 417929 483723 279166 355832 094033 023975 560181 494834 896135 547499 020286 760719 810169 566244 470430 370352 048832 924471 649729 200893 295791 228339 196372 825903 140736 756632 099599 615600 090419 (349 digits), a[686] = 1
                                                                                      A[687]/B[687] = 1 054840 255963 180561 475449 212961 654706 779199 632108 314201 564880 857109 971906 442287 254088 505934 614928 629994 221561 609280 844187 426074 849734 263069 049395 453995 021960 167929 451862 044479 962784 374851 012697 101885 058553 075712 297077 018032 904252 782102 679561 225481 484126 398979 281828 968708 293736 007085 747524 179089 580664 181976 561748 789946 017977 301007 252142 400299 779225 (349 digits)/102 523643 264840 304834 134933 367656 818915 769516 998805 899725 384804 514319 028131 198367 061273 146589 462761 415096 384113 495494 222816 351396 146274 316616 572447 183707 724368 975677 085495 407533 481658 473985 455838 010579 532603 341656 573276 425512 713977 433360 054361 939982 515143 469387 820303 594775 567151 083930 923159 532431 897369 722993 806675 831855 999990 259773 944034 334109 184974 (351 digits), a[687] = 23
                                                                                      A[688]/B[688] = 3 209174 423432 461160 241226 931109 005312 335269 528248 949674 990449 921864 055719 134413 372636 138552 569479 729982 894655 250877 643793 147642 157880 398430 702582 843921 524141 522548 105451 843281 255042 241063 836120 154979 376725 444177 448847 939227 631546 839147 856131 389938 102127 683853 594112 862345 224704 822419 254576 488684 164309 025350 454218 131409 589675 043426 368570 404593 941126 (349 digits)/311 910976 001017 923018 764359 775457 353817 857771 203230 104091 272233 357927 941192 899038 054197 759921 146713 967895 541559 860676 659492 936489 624914 983410 983229 337346 079125 939017 178334 715167 862904 905679 646680 387570 691843 048945 280010 771373 038067 847579 183372 580667 355599 974407 931341 154678 750286 176264 419207 798188 987900 397320 616400 321471 140707 535953 931702 617927 645341 (351 digits), a[688] = 3
                                                                                      A[689]/B[689] = 4 264014 679395 641721 716676 144070 660019 114469 160357 263876 555330 778974 027625 576700 626724 644487 184408 359977 116216 860158 487980 573717 007614 661499 751978 297916 546101 690477 557313 887761 217826 615914 848817 256864 435278 519889 745924 957260 535799 621250 535692 615419 586254 082832 875941 831053 518440 829505 002100 667773 744973 207327 015966 921355 607652 344433 620712 804893 720351 (349 digits)/414 434619 265858 227852 899293 143114 172733 627288 202036 003816 657037 872246 969324 097405 115470 906510 609475 382991 925673 356170 882309 287885 771189 300027 555676 521053 803494 914694 263830 122701 344563 379665 102518 398150 224446 390601 853287 196885 752045 280939 237734 520649 870743 443795 751644 749454 317437 260195 342367 330620 885270 120314 423076 153327 140697 795727 875736 952036 830315 (351 digits), a[689] = 1
                                                                                      A[690]/B[690] = 11 737203 782223 744603 674579 219250 325350 564207 848963 477428 101111 479812 110970 287814 626085 427526 938296 449937 127088 971194 619754 295076 173109 721430 206539 439754 616344 903503 220079 618803 690695 472893 533754 668708 247282 483956 940697 853748 703146 081648 927516 620777 274635 849519 345996 524452 261586 481429 258777 824231 654255 440004 486151 974120 804979 732293 609996 014381 381828 (350 digits)/1140 780214 532734 378724 562946 061685 699285 112347 607302 111724 586309 102421 879841 093848 285139 572942 365664 733879 392906 573018 424111 512261 167293 583466 094582 379453 686115 768405 705994 960570 552031 665009 851717 183871 140735 830148 986585 165144 542158 409457 658841 621967 097086 861999 434630 653587 385160 696655 103942 459430 758440 637949 462552 628125 422103 127409 683176 522001 305971 (352 digits), a[690] = 2
                                                                                      A[691]/B[691] = 262 482497 888318 023002 557418 967577 817731 527041 837553 767294 779783 334840 468971 908622 400604 050079 826930 258593 912174 226440 122575 065392 816028 532964 295845 972518 105689 567548 399065 501442 413127 019572 591419 968445 875493 166942 441277 739732 005013 417526 941058 272519 628242 772258 487865 369003 273343 420948 695212 800870 138592 887425 711310 352013 317206 454893 040625 121284 120567 (351 digits)/25511 599338 986014 559793 284106 500199 557006 098935 562682 461757 555838 125528 325828 162067 388541 511242 654099 528338 569617 962576 212762 557631 451648 136281 636488 869034 898041 819619 795719 255253 489260 009881 840296 443315 320634 653879 558160 830065 679530 289007 732250 203926 006654 407783 313519 128376 790972 586607 629101 438097 570964 155202 599233 972086 426966 598740 905620 436065 561677 (353 digits), a[691] = 22
                                                                                      A[692]/B[692] = 2111 597186 888767 928624 133930 959872 867202 780542 549393 615786 339378 158535 862745 556793 830917 828165 553738 518688 424482 782715 600354 818218 701337 985144 573307 219899 461861 443890 412603 630342 995711 629474 265114 416275 251227 819496 470919 771604 743253 421864 455982 800934 300578 027587 248919 476478 448333 849018 820480 231192 762998 539410 176634 790227 342631 371437 934996 984654 346364 (352 digits)/205233 574926 420850 857070 835798 063282 155333 903832 108761 805785 033014 106648 486466 390387 393471 662883 598460 960587 949850 273628 126211 973312 780478 673719 186493 331732 870450 325364 071749 002598 466111 744064 574088 730393 705813 061185 451871 805669 978400 721519 516843 253375 150322 124265 942783 680601 712941 389516 136753 964211 326153 879570 256424 404816 837835 917336 928140 010525 799387 (354 digits), a[692] = 8
                                                                                      A[693]/B[693] = 17155 259992 998461 451995 628866 646560 755353 771382 232702 693585 494808 603127 370936 362973 047946 675404 256838 408101 308036 488164 925413 611142 426732 414120 882303 731713 800581 118671 699894 544186 378820 055366 712335 298647 885315 722914 208635 912569 951040 792442 588920 679994 032866 992956 479221 180830 860014 213099 259054 650412 242581 202707 124388 673832 058257 426396 520600 998518 891479 (353 digits)/1 667380 198750 352821 416359 970491 006456 799677 329592 432776 908037 819950 978716 217559 285166 536314 814311 441787 213042 168420 151601 222458 344133 695477 526035 128435 522897 861644 422532 369711 276041 218153 962398 433006 286464 967139 143363 173135 275425 506736 061163 866996 230927 209231 401910 855788 573190 494503 702736 723133 151788 180195 191764 650629 210621 129653 937436 330740 520271 956773 (355 digits), a[693] = 8
                                                                                      A[694]/B[694] = 87887 897151 881075 188602 278264 192676 643971 637453 712907 083713 813421 174172 717427 371659 070651 205186 837930 559194 964665 223540 227422 873930 835000 055748 984825 878468 464767 037248 912076 351274 889811 906307 826790 909514 677806 434067 514099 334454 498457 384077 400586 200904 464912 992369 645025 380632 748404 914515 115753 483253 975904 552945 798578 159387 633918 503420 538001 977248 803759 (353 digits)/8 542134 568678 184957 938870 688253 095566 153720 551794 272646 345974 132769 000229 574262 816220 075045 734440 807397 025798 791951 031634 238503 693981 257866 303894 828670 946222 178672 438025 920305 382804 556881 556056 739120 162718 541508 778001 317548 182797 512081 027338 851824 408011 196479 133820 221726 546554 185459 903199 752419 723152 227129 838393 509570 457922 486105 604518 581842 611885 583252 (355 digits), a[694] = 5
                                                                                      A[695]/B[695] = 105043 157144 879536 640597 907130 839237 399325 408835 945609 777299 308229 777300 088363 734632 118597 880591 094768 967296 272701 711705 152836 485073 261732 469869 867129 610182 265348 155920 611970 895461 268631 961674 539126 208162 563122 156981 722735 247024 449498 176519 989506 880898 497779 985326 124246 561463 608419 127614 374808 133666 218485 755652 922966 833219 692175 929817 058602 975767 695238 (354 digits)/10 209514 767428 537779 355230 658744 102022 953397 881386 705423 254011 952719 978945 791822 101386 611360 548752 249184 238840 960371 183235 460962 038114 953343 829929 957106 469120 040316 860558 290016 658845 775035 518455 172126 449183 508647 921364 490683 458223 018817 088502 718820 638938 405710 535731 077515 119744 679963 605936 475552 874940 407325 030158 160199 668543 615759 541954 912583 132157 540025 (356 digits), a[695] = 1
                                                                                      A[696]/B[696] = 2 608923 668628 989954 562952 049404 334374 227781 449516 407541 738897 210935 829374 838157 002829 917000 339373 112385 774305 509506 304463 895498 515689 116579 332625 795936 522842 833122 779343 599377 842345 336978 986496 765819 905416 192738 201628 859745 263041 286413 620557 148751 342468 411632 640196 626942 855759 350463 977260 111148 691243 219562 688615 949782 156660 246140 819029 944473 395673 489471 (355 digits)/253 570488 986963 091662 464406 498111 544117 035269 705075 202804 442260 998048 494928 577993 249498 747698 904494 787818 757981 840859 429285 301592 608740 138118 222213 799226 205103 146277 091424 880705 195103 157733 998980 870154 943122 749058 890749 093951 180149 963691 151404 103519 742532 933531 991366 082089 420426 504586 445675 165688 721722 002930 562189 354362 502969 264334 611436 483837 783666 543852 (357 digits), a[696] = 24
                                                                                      A[697]/B[697] = 65 328134 872869 628400 714399 142239 198593 093861 646746 134153 249729 581625 511671 042288 805380 043606 364918 904413 324934 010359 323302 540299 377301 176215 785514 765542 681253 093417 639510 596416 954094 693106 624093 684623 843567 381577 197703 216366 823056 609838 690448 708290 442608 788595 990241 797817 955447 370018 559117 153525 414746 707552 971051 667520 749725 845696 405565 670437 867604 932013 (356 digits)/6349 471739 441505 829340 965393 111532 704948 835140 508266 775534 310536 903932 352160 241653 338855 303833 161121 944653 188386 981856 915368 000777 256618 406299 385274 937761 596698 697244 146180 307646 536424 718385 492976 926000 027252 235120 190091 839462 961972 111095 873605 306814 202261 744010 319883 129750 630407 294624 747815 617770 917990 480589 084892 019262 242775 224124 827867 008527 723821 136325 (358 digits), a[697] = 25
                                                                                      A[698]/B[698] = 198 593328 287237 875156 706149 476121 930153 509366 389754 810001 488085 955812 364387 965023 418970 047819 434129 825625 749107 540584 274371 516396 647592 645226 689170 092564 566602 113375 697875 388628 704629 416298 858777 819691 436118 337469 794738 508845 732211 115929 691903 273622 670294 777420 610922 020396 722101 460519 654611 571724 935483 342221 601770 952344 405837 783230 035726 955786 998488 285510 (357 digits)/19301 985707 311480 579685 360585 832709 658963 540691 229875 529407 373871 709845 551409 302953 266064 659198 387860 621778 323142 786430 175389 303924 378595 357016 378038 612510 995199 238009 529965 803644 804377 312890 477911 648155 024879 454419 461024 612340 066066 296978 772220 023962 349318 165562 951015 471341 311648 388460 689122 019001 475693 444697 816865 412149 231294 936709 095037 509420 955129 952827 (359 digits), a[698] = 3
                                                                                      A[699]/B[699] = 263 921463 160107 503557 420548 618361 128746 603228 036500 944154 737815 537437 876059 007312 224350 091425 799048 730039 074041 550943 597674 056696 024893 821442 474684 858107 247855 206793 337385 985045 658724 109405 482871 504315 279685 719046 992441 725212 555267 725768 382351 981913 112903 566016 601163 818214 677548 830538 213728 725250 350230 049774 572822 619865 155563 628926 441292 626224 866093 217523 (357 digits)/25651 457446 752986 409026 325978 944242 363912 375831 738142 304941 684408 613777 903569 544606 604919 963031 548982 566431 511529 768287 090757 304701 635213 763315 763313 550272 591897 935253 676146 111291 340802 031275 970888 574155 052131 689539 651116 451803 028038 408074 645825 330776 551579 909573 270898 601091 942055 683085 436937 636772 393683 925286 901757 431411 474070 160833 922904 517948 678951 089152 (359 digits), a[699] = 1
                                                                                      A[700]/B[700] = 990 357717 767560 385828 967795 331205 316393 319050 499257 642465 701532 568125 992564 986960 092020 322096 831276 015742 971232 193415 067393 686484 722274 109554 113224 666886 310167 733755 710033 343765 680801 744515 307392 332637 275175 494610 772063 684483 398014 293234 838959 219362 009005 475470 414413 475040 754747 952134 295797 747475 986173 491545 320238 811939 872528 670009 359604 834461 596767 938079 (357 digits)/96256 358047 570439 806764 338522 665436 750700 668186 444302 444232 427097 551179 262117 936773 080824 548293 034808 321072 857732 091291 447661 218029 284236 646963 667979 263328 770893 043770 558404 137518 826783 406718 390577 370620 181274 523038 414373 967749 150181 521202 709696 016292 004057 894282 763711 274617 137815 437716 999934 929318 656745 220558 522137 706383 653505 419210 863751 063266 991983 220283 (359 digits), a[700] = 3
                                                                                      A[701]/B[701] = 1254 279180 927667 889386 388343 949566 445139 922278 535758 586620 439348 105563 868623 994272 316370 413522 630324 745782 045273 744358 665067 743180 747167 930996 587909 524993 558022 940549 047419 328811 339525 853920 790263 836952 554861 213657 764505 409695 953282 019003 221311 201275 121909 041487 015577 293255 432296 782672 509526 472726 336403 541319 893061 431805 028092 298935 800897 460686 462861 155602 (358 digits)/121907 815494 323426 215790 664501 609679 114613 044018 182444 749174 111506 164957 165687 481379 685744 511324 583790 887504 369261 859578 538418 522730 919450 410279 431292 813601 362790 979024 234550 248810 167585 437994 361465 944775 233406 212578 065490 419552 178219 929277 355521 347068 555637 803856 034609 875709 079871 120802 436872 566091 050429 145845 423895 137795 127575 580044 786655 581215 670934 309435 (360 digits), a[701] = 1
                                                                                      A[702]/B[702] = 4753 195260 550564 053988 132827 179904 651813 085886 106533 402327 019576 884817 598436 969777 041131 562664 722250 253089 107053 426491 062596 916026 963777 902543 876953 241866 984236 555402 852291 330199 699379 306277 678183 843494 939759 135584 065579 913571 257860 350244 502892 823187 374732 599931 461145 354807 051638 300151 824377 165654 995384 115504 999423 107354 956805 566816 762297 216520 985351 404885 (358 digits)/461979 804530 540718 454136 332027 494474 094539 800240 991636 691754 761616 046050 759180 380912 138058 082266 786180 983585 965517 670027 062916 786222 042587 877801 961857 704132 859265 980843 262054 883949 329539 720701 474975 204945 881493 160772 610845 226405 684841 309034 776260 057497 670971 305850 867540 901744 377428 800124 310552 627591 808032 658094 793823 119769 036232 159345 223717 806914 004786 148588 (360 digits), a[702] = 3
                                                                                      A[703]/B[703] = 20267 060223 129924 105338 919652 669185 052392 265822 961892 195928 517655 644834 262371 873380 480896 664181 519325 758138 473487 450322 915455 407288 602279 541172 095722 492461 494969 162160 456584 649610 137043 079031 502999 210932 313897 755994 026825 063980 984723 419981 232882 494024 620839 441212 860158 712483 638849 983279 807035 135346 317940 003339 890753 861224 855314 566202 850086 326770 404266 775142 (359 digits)/1 969827 033616 486300 032335 992611 587575 492772 244982 148991 516193 157970 349160 202409 005028 237976 840391 728514 821848 231332 539686 790085 667619 089801 921487 278723 630132 799854 902397 282769 784607 485744 320800 261366 764558 759378 855668 508871 325174 917585 165416 460561 577059 239523 027259 504773 482686 589586 321299 679083 076458 282559 778224 599187 616871 272504 217425 681526 808871 690078 903787 (361 digits), a[703] = 4
                                                                                      A[704]/B[704] = 25020 255483 680488 159327 052479 849089 704205 351709 068425 598255 537232 529651 860808 843157 522028 226846 241576 011227 580540 876813 978052 323315 566057 443715 972675 734328 479205 717563 308875 979809 836422 385309 181183 054427 253656 891578 092404 977552 242583 770225 735775 317211 995572 041144 321304 067290 690488 283431 631412 301001 313324 118844 890176 968579 812120 133019 612383 543291 389618 180027 (359 digits)/2 431806 838147 027018 486472 324639 082049 587312 045223 140628 207947 919586 395210 961589 385940 376034 922658 514695 805434 196850 209713 853002 453841 132389 799289 240581 334265 659120 883240 544824 668556 815284 041501 736341 969504 640872 016441 119716 551580 602426 474451 236821 634556 910494 333110 372314 384430 967015 121423 989635 704050 090592 436319 393010 736640 308736 376770 905244 615785 694865 052375 (361 digits), a[704] = 1
                                                                                      A[705]/B[705] = 70307 571190 490900 423993 024612 367364 460802 969241 098743 392439 592120 704137 983989 559695 524953 117874 002477 780593 634569 203950 871560 053919 734394 428604 041073 961118 453380 597287 074336 609229 809887 849649 865365 319786 821211 539150 211635 019085 469890 960432 704433 128448 611983 523501 502766 847065 019826 550143 069859 737348 944588 241029 671107 798384 479554 832242 074853 413353 183503 135196 (359 digits)/6 833440 709910 540337 005280 641889 751674 667396 335428 430247 932088 997143 139582 125587 776908 990046 685708 757906 432716 625032 959114 496090 575301 354581 520065 759886 298664 118096 668878 372419 121721 116312 403803 734050 703568 041122 888550 748304 428336 122438 114318 934204 846173 060511 693480 249402 251548 523616 564147 658354 484558 463744 650863 385209 090151 889976 970967 492016 040443 079809 008537 (361 digits), a[705] = 2
                                                                                      A[706]/B[706] = 95327 826674 171388 583320 077092 216454 165008 320950 167168 990695 129353 233789 844798 402853 046981 344720 244053 791821 215110 080764 849612 377235 300451 872320 013749 695446 932586 314850 383212 589039 646310 234959 046548 374214 074868 430728 304039 996637 712474 730658 440208 445660 607555 564645 824070 914355 710314 833574 701272 038350 257912 359874 561284 766964 291674 965261 687236 956644 573121 315223 (359 digits)/9 265247 548057 567355 491752 966528 833724 254708 380651 570876 140036 916729 534793 087177 162849 366081 608367 272602 238150 821883 168828 349093 029142 486971 319355 000467 632929 777217 552118 917243 790277 931596 445305 470392 673072 681994 904991 868020 979916 724864 588770 171026 480729 971006 026590 621716 635979 490631 685571 647990 188608 554337 087182 778219 826792 198713 347738 397260 656228 774674 060912 (361 digits), a[706] = 1
                                                                                      A[707]/B[707] = 260963 224538 833677 590633 178796 800272 790819 611141 433081 373829 850827 171717 673586 365401 618915 807314 490585 364236 064789 365480 570784 808390 335298 173244 068573 352012 318553 226987 840761 787309 102508 319567 958462 068214 970948 400606 819715 012360 894840 421749 584850 019769 827094 652793 150908 675776 440456 217292 472403 814049 460412 960778 793677 332313 062904 762765 449327 326642 329745 765642 (360 digits)/25 363935 806025 675047 988786 574947 419123 176813 096731 572000 212162 830602 209168 299942 102607 722209 902443 303110 909018 268799 296771 194276 633586 328524 158775 760821 564523 672531 773116 206906 702276 979505 294414 674836 049713 405112 698534 484346 388169 572167 291859 276257 807633 002523 746661 492835 523507 504879 935290 954334 861775 572418 825228 941648 743736 287403 666444 286537 352900 629157 130361 (362 digits), a[707] = 2
                                                                                      A[708]/B[708] = 2 183033 622984 840809 308385 507466 618636 491565 210081 631819 981333 935970 607531 233489 326065 998307 803236 168736 705709 733425 004609 415890 844357 982837 258272 562336 511545 481012 130753 109306 887512 466376 791502 714244 919933 842455 635582 861760 095524 871198 104655 119008 603819 224312 786991 031340 320567 233964 571914 480502 550745 941216 046104 910703 425468 794913 067385 281855 569783 211087 440359 (361 digits)/212 176733 996262 967739 402045 566108 186709 669213 154504 146877 837339 561547 208139 486713 983711 143760 827913 697489 510296 972277 542997 903306 097833 115164 589561 087040 149119 157471 737048 572497 408493 767638 800622 869081 070779 922896 493267 742792 085273 302202 923644 381088 941793 991195 999882 564400 824039 529671 167899 282669 082813 133687 689014 311409 776682 497942 679292 689559 479433 807931 103800 (363 digits), a[708] = 8
                                                                                      A[709]/B[709] = 33 006467 569311 445817 216415 790796 079820 164297 762365 910381 093838 890386 284686 175926 256391 593532 855857 021635 949882 066164 434621 809147 473760 077857 047332 503621 025194 533735 188284 480365 099996 098160 192108 672135 867222 607782 934349 746116 445233 962811 991576 369979 077058 191786 457658 621013 484284 949924 796009 679942 075238 578653 652352 454228 714344 986600 773544 677160 873390 496057 371027 (362 digits)/3208 014945 749970 191139 019470 066570 219768 215010 414293 775167 772256 253810 331260 600651 858274 878622 321148 765453 563472 852962 441739 743868 101083 055993 002192 066423 801311 034607 828844 794367 829683 494087 303757 711052 111412 248560 097550 626227 667269 105211 146524 992591 934542 870463 744899 958847 884100 449947 453780 194371 103972 577734 160443 612795 393973 756543 855834 629929 544407 748123 687361 (364 digits), a[709] = 15
                                                                                      A[710]/B[710] = 35 189501 192296 286626 524801 298262 698456 655862 972447 542201 075172 826356 892217 409415 582457 591840 659093 190372 655591 799589 439231 225038 318118 060694 305605 065957 536740 014747 319037 589671 987508 564536 983611 386380 787156 450238 569932 607876 540758 834010 096231 488987 680877 416099 244649 652353 804852 183889 367924 160444 625984 519869 698457 364932 139813 781513 840929 959016 443173 707144 811386 (362 digits)/3420 191679 746233 158878 421515 632678 406477 884223 568797 922045 609595 815357 539400 087365 841986 022383 149062 462943 073769 825239 984737 647174 198916 171157 591753 153463 950430 192079 565893 366865 238177 261726 104380 580133 182192 171456 590818 369019 752542 407414 070169 373680 876336 861659 744782 523248 708139 979618 621679 477040 186785 711421 849457 924205 170656 254486 535127 319489 023841 556054 791161 (364 digits), a[710] = 1
                                                                                      A[711]/B[711] = 13932 859438 526344 663294 512928 604561 970199 230171 879145 079805 787105 301358 710562 895081 327140 370593 197667 218834 908642 903992 930955 699283 130394 052107 761333 556848 037500 358926 208132 400800 165879 090268 718606 292546 794020 452018 057729 857350 044973 396800 003014 520113 023637 550988 094271 300766 400897 586225 126053 055569 339123 927184 543011 602423 940788 684567 940878 488655 927004 818257 868497 (365 digits)/1 354183 728445 512067 948115 518144 974540 778532 483320 089472 983183 562603 320038 394295 110159 442753 719966 200821 627967 702553 822756 413110 377676 672970 663241 744687 684684 221236 906036 356724 706136 909701 875898 534086 863659 077319 973913 470806 389029 921520 033768 863427 596538 087603 226062 933996 642087 599392 399303 017173 625244 884328 589364 696323 673837 803194 278725 231125 828093 961822 389766 195956 (367 digits), a[711] = 395
                                                                                      A[712]/B[712] = 69699 486693 824019 603099 089444 321072 549452 806722 368172 941230 010699 333150 445031 884822 218159 444806 647429 284547 198806 319554 094009 721453 970088 321233 112272 850197 724241 809378 359699 593672 816904 015880 576642 849114 757258 710328 858581 894626 765625 818010 111304 089552 799065 171039 716006 156185 809340 115014 998189 438291 321604 155792 413515 377051 843757 204353 545322 402296 078197 798434 153871 (365 digits)/6 774338 833907 306572 899456 012240 505382 299140 300824 016162 837963 422612 415549 510875 638163 055754 622214 153170 602781 586538 939022 050289 535557 563769 487366 315191 576885 056614 722261 349516 897549 786686 641218 774814 898428 568792 041023 944850 314169 360142 576258 387307 356371 314352 991974 414765 733686 705101 976133 707547 603264 608428 658245 331076 293394 186627 648112 690756 459958 832953 504885 770941 (367 digits), a[712] = 5
                                                                                      A[713]/B[713] = 83632 346132 350364 266393 602372 925634 519652 036894 247318 021035 797804 634509 155594 779903 545299 815399 845096 503382 107449 223547 024965 420737 100482 373340 873606 407045 761742 168304 567831 994472 982783 106149 295249 141661 551279 162346 916311 751976 810599 214810 114318 609665 822702 722027 810277 456952 210237 701240 124242 493860 660728 082976 956526 979475 784545 888921 486200 890952 005202 616692 022368 (365 digits)/8 128522 562352 818640 847571 530385 479923 077672 784144 105635 821146 985215 735587 905170 748322 498508 342180 353992 230749 289092 761778 463399 913234 236740 150608 059879 261569 277851 628297 706241 603686 696388 517117 308901 762087 646112 014937 415656 703199 281662 610027 250734 952909 401956 218037 348762 375774 304494 375436 724721 228509 492757 247610 027399 967231 989821 926837 921882 288052 794775 894651 966897 (367 digits), a[713] = 1
                                                                                      A[714]/B[714] = 1 073287 640282 028390 799822 317919 428686 785277 249453 335989 193659 584354 947260 312169 243664 761757 229604 788587 325132 488197 002118 393594 770299 175876 801323 595549 734746 865147 829033 173683 527348 610301 289672 119632 549053 372608 658491 854322 918348 492816 395731 483127 405542 671497 835373 439335 639612 332192 529896 489099 364619 250341 151515 891839 130761 258307 871411 379733 093720 140629 198738 422287 (367 digits)/104 316609 582141 130263 070314 376866 264459 231213 710553 283792 691727 245201 242604 372924 618033 037854 728378 401077 371773 055652 080363 611088 494368 404651 294663 033742 715716 390834 261833 824416 141790 143348 846626 481636 043480 322136 220272 932730 752560 740093 896585 396126 791284 137827 608422 599914 242978 359034 481374 404202 345378 521515 629565 659875 900178 064490 770167 753343 916592 370264 240709 373705 (369 digits), a[714] = 12
                                                                                      A[715]/B[715] = 1 156919 986414 378755 066215 920292 354321 304929 286347 583307 214695 382159 581769 467764 023568 307057 045004 633683 828514 595646 225665 418560 191036 276359 174664 469156 141792 626889 997337 741515 521821 593084 395821 414881 690714 923887 820838 770634 670325 303415 610541 597446 015208 494200 557401 249613 096564 542430 231136 613341 858479 911069 234492 848366 110237 042853 760332 865933 984672 145831 815430 444655 (367 digits)/112 445132 144493 948903 917885 907251 744382 308886 494697 389428 512874 230416 978192 278095 366355 536363 070558 755069 602522 344744 842142 074488 407602 641391 445271 093621 977285 668685 890131 530657 745476 839737 363743 790537 805567 968248 235210 348387 455760 021756 506612 646861 744193 539783 826459 948676 618752 663528 856811 128923 573888 014272 877175 687275 867410 054312 697005 675226 204645 165040 135361 340602 (369 digits), a[715] = 1
                                                                                      A[716]/B[716] = 2 230207 626696 407145 866038 238211 783008 090206 535800 919296 408354 966514 529029 779933 267233 068814 274609 422271 153647 083843 227783 812154 961335 452235 975988 064705 876539 492037 826370 915199 049170 203385 685493 534514 239768 296496 479330 624957 588673 796232 006273 080573 420751 165698 392774 688948 736176 874622 761033 102441 223099 161410 386008 740205 240998 301161 631744 245667 078392 286461 014168 866942 (367 digits)/216 761741 726635 079166 988200 284118 008841 540100 205250 673221 204601 475618 220796 651019 984388 574217 798937 156146 974295 400396 922505 685576 901971 046042 739934 127364 693002 059520 151965 355073 887266 983086 210370 272173 849048 290384 455483 281118 208320 761850 403198 042988 535477 677611 434882 548590 861731 022563 338185 533125 919266 535788 506741 347151 767588 118803 467173 428570 121237 535304 376070 714307 (369 digits), a[716] = 1
                                                                                      A[717]/B[717] = 3 387127 613110 785900 932254 158504 137329 395135 822148 502603 623050 348674 110799 247697 290801 375871 319614 055954 982161 679489 453449 230715 152371 728595 150652 533862 018332 118927 823708 656714 570991 796470 081314 949395 930483 220384 300169 395592 258999 099647 616814 678019 435959 659898 950175 938561 832741 417052 992169 715783 081579 072479 620501 588571 351235 344015 392077 111601 063064 432292 829599 311597 (367 digits)/329 206873 871129 028070 906086 191369 753223 848986 699948 062649 717475 706035 198988 929115 350744 110580 869495 911216 576817 745141 764647 760065 309573 687434 185205 220986 670287 728206 042096 885731 632743 822823 574114 062711 654616 258632 690693 629505 664080 783606 909810 689850 279671 217395 261342 497267 480483 686092 194996 662049 493154 550061 383917 034427 634998 173116 164179 103796 325882 700344 511432 054909 (369 digits), a[717] = 1
                                                                                      A[718]/B[718] = 5 617335 239807 193046 798292 396715 920337 485342 357949 421900 031405 315188 639829 027630 558034 444685 594223 478226 135808 763332 681233 042870 113707 180831 126640 598567 894871 610965 650079 571913 620161 999855 766808 483910 170251 516880 779500 020549 847672 895879 623087 758592 856710 825597 342950 627510 568918 291675 753202 818224 304678 233890 006510 328776 592233 645177 023821 357268 141456 718753 843768 178539 (367 digits)/545 968615 597764 107237 894286 475487 762065 389086 905198 735870 922077 181653 419785 580135 335132 684798 668433 067363 551113 145538 687153 445642 211544 733476 925139 348351 363289 787726 194062 240805 520010 805909 784484 334885 503664 549017 146176 910623 872401 545457 313008 732838 815148 895006 696225 045858 342214 708655 533182 195175 412421 085849 890658 381579 402586 291919 631352 532366 447120 235648 887502 769216 (369 digits), a[718] = 1
                                                                                      A[719]/B[719] = 14 621798 092725 171994 528838 951935 978004 365820 538047 346403 685860 979051 390457 302958 406870 265242 508061 012407 253779 206154 815915 316455 379786 090257 403933 730997 808075 340859 123867 800541 811315 796181 614931 917216 270986 254145 859169 436691 954344 891406 862990 195205 149381 311093 636077 193582 970578 000404 498575 352231 690935 540259 633522 246124 535702 634369 439719 826137 345977 869800 517135 668675 (368 digits)/1421 144105 066657 242546 694659 142345 277354 627160 510345 534391 561630 069342 038560 089386 021009 480178 206362 045943 679044 036219 138954 651349 732663 154388 035483 917689 396867 303658 430221 367342 672765 434643 143082 732482 661945 356666 983047 450753 408883 874521 535828 155527 909969 007408 653792 588984 164913 103403 261361 052400 317996 721761 165233 797586 440170 756955 426884 168529 220123 171642 286437 593341 (370 digits), a[719] = 2
                                                                                      A[720]/B[720] = 20 239133 332532 365041 327131 348651 898341 851162 895996 768303 717266 294240 030286 330588 964904 709928 102284 490633 389587 969487 497148 359325 493493 271088 530574 329565 702946 951824 773947 372455 431477 796037 381740 401126 441237 771026 638669 457241 802017 787286 486077 953798 006092 136690 979027 821093 539496 292080 251778 170455 995613 774149 640032 574901 127936 279546 463541 183405 487434 588554 360903 847214 (368 digits)/1967 112720 664421 349784 588945 617833 039420 016247 415544 270262 483707 250995 458345 669521 356142 164976 874795 113307 230157 181757 826108 096991 944207 887864 960623 266040 760157 091384 624283 608148 192776 240552 927567 067368 165609 905684 129224 361377 281285 419978 848836 888366 725117 902415 350017 634842 507127 812058 794543 247575 730417 807611 055892 179165 842757 048875 058236 700895 667243 407291 173940 362557 (370 digits), a[720] = 1
                                                                                      A[721]/B[721] = 156 295731 420451 727283 818758 392499 266397 323960 810024 724529 706725 038731 602461 617081 161203 234739 224052 446840 980894 992567 295953 831733 834238 987877 117954 037957 728704 003632 541499 407729 831660 368443 287114 725101 359650 651332 329855 637384 568469 402412 265535 871791 192026 267930 489271 941237 747052 044966 261022 545423 660231 959307 113750 270432 431256 591194 684508 109975 758019 989681 043462 599173 (369 digits)/15190 933149 717606 691038 817278 467176 553294 740892 419155 426228 947580 826310 246979 776035 514004 635016 329927 839094 290144 308523 921711 330293 342118 369442 759846 779974 717966 943350 800206 624380 022199 118513 636052 204059 821214 696455 887617 980394 377881 814373 477686 374094 985794 324316 103916 032881 714807 787814 823163 785430 430921 375038 556479 051747 339470 099080 834541 074798 890827 022680 504020 131240 (371 digits), a[721] = 7
                                                                                      A[722]/B[722] = 176 534864 752984 092325 145889 741151 164739 175123 706021 492833 423991 332971 632747 947670 126107 944667 326336 937474 370482 962054 793102 191059 327732 258965 648528 367523 431650 955457 315446 780185 263138 164480 668855 126227 800888 422358 968525 094626 370487 189698 751613 825589 198118 404621 468299 762331 286548 337046 512800 715879 655845 733456 753782 845333 559192 870741 148049 293381 245454 578235 404366 446387 (369 digits)/17158 045870 382028 040823 406224 085009 592714 757139 834699 696491 431288 077305 705325 445556 870146 799993 204722 952401 520301 490281 747819 427285 286326 257307 720470 046015 478124 034735 424490 232528 214975 359066 563619 271427 986824 602140 016842 341771 659167 234352 326523 262461 710912 226731 453933 667724 221935 599873 617707 033006 161339 182649 612371 230913 182227 147955 892777 775694 558070 429971 677960 493797 (371 digits), a[722] = 1
                                                                                      A[723]/B[723] = 1038 970055 185372 188909 548207 098255 090093 199579 340132 188696 826681 703589 766201 355431 791742 958075 855737 134212 833309 802841 261464 787030 472900 282705 360595 875574 886958 780919 118733 308656 147351 190846 631390 356240 364092 763127 172481 110516 420905 350906 023604 999737 182618 291037 830770 752894 179793 730198 825026 124821 939460 626590 882664 497100 227220 944900 424754 576881 985292 880858 065294 831108 (370 digits)/100981 162501 627746 895155 848398 892224 516868 526591 592653 908686 104021 212838 773607 003819 864738 634982 353542 601101 891651 759932 660808 466719 773749 655981 362197 010052 108587 117027 922657 787021 097075 913846 454148 561199 755337 707155 971829 689252 673717 986135 110302 686403 540355 457973 373584 371502 824485 787182 911698 950461 237617 288286 618335 206313 250605 838860 298429 953271 681179 172538 893822 600225 (372 digits), a[723] = 5
                                                                                      A[724]/B[724] = 2254 474975 123728 470144 242303 937661 344925 574282 386285 870227 077354 740151 165150 658533 709593 860819 037811 205900 037102 567737 316031 765120 273532 824376 369720 118673 205568 517295 552913 397497 557840 546173 931635 838708 529073 948613 313487 315659 212297 891510 798823 825063 563354 986697 129841 268119 646135 797444 162852 965523 534766 986638 519111 839534 013634 760541 997558 447145 216040 339951 534956 108603 (370 digits)/219120 370873 637521 831135 103021 869458 626451 810323 020007 513863 639330 502983 252539 453196 599624 069957 911808 154605 303605 010147 069436 360724 833825 569270 444864 066119 695298 268791 269805 806570 409127 186759 471916 393827 497500 016451 960501 720277 006603 206622 547128 635268 791623 142678 201102 410729 870907 174239 441104 933928 636573 759222 849041 643539 683438 825676 489637 682237 920428 775049 465605 694247 (372 digits), a[724] = 2
                                                                                      A[725]/B[725] = 21329 244831 298928 420207 728942 537207 194423 368120 816705 020740 522874 364950 252557 282235 178087 705447 196037 987313 167232 912477 105750 673112 934695 702092 688076 943633 737075 436579 094953 886134 167916 106412 016112 904617 125758 300646 993866 951449 331586 374503 213019 425309 252813 171311 999342 165970 995015 907196 290702 814533 752363 506337 554671 052906 349933 789778 402780 601188 929655 940421 879899 808535 (371 digits)/2 073064 500364 365443 375371 775595 717352 154934 819498 772721 533458 857995 739688 046462 082589 261355 264603 559815 992549 624096 851256 285735 713243 278179 779415 365973 605129 366271 536149 350910 046154 779220 594681 701396 105647 232837 855223 616345 171745 733146 845738 034460 403822 664963 742077 183506 068071 662650 355337 881643 355818 966781 121292 259709 998170 401555 269948 705169 093412 965038 147984 084273 848448 (373 digits), a[725] = 9
                                                                                      A[726]/B[726] = 23583 719806 422656 890351 971246 474868 539348 942403 202990 890967 600229 105101 417707 940768 887681 566266 233849 193213 204335 480214 421782 438233 208228 526469 057797 062306 942643 953874 647867 283631 725756 652585 947748 743325 654832 249260 307354 267108 543884 266014 011843 250372 816168 158009 129183 434090 641151 704640 453555 780057 287130 492976 073782 892440 363568 550320 400339 048334 145696 280373 414855 917138 (371 digits)/2 292184 871238 002965 206506 878617 586810 781386 629821 792729 047322 497326 242671 299001 535785 860979 334561 471624 147154 927701 861403 355172 073968 112005 348685 810837 671249 061569 804940 620715 852725 188347 781441 173312 499474 730337 871675 576846 892022 739750 052360 581589 039091 456586 884755 384608 478801 533557 529577 322748 289747 603354 880515 108751 641710 084994 095625 194806 775650 885466 923033 549879 542695 (373 digits), a[726] = 1
                                                                                      A[727]/B[727] = 139247 843863 412212 871967 585174 911549 891168 080136 831659 475578 524019 890457 341096 986079 616495 536778 365283 953379 188910 313549 214662 864278 975838 334437 977062 255168 450295 205952 334290 304292 796699 369341 754856 621245 399919 546948 530638 286992 051007 704573 272235 677173 333653 961357 645259 336424 200774 430398 558481 714820 188015 971217 923585 515108 167776 541380 404475 842859 658137 342288 954179 394225 (372 digits)/13 533988 856554 380269 407906 168683 651406 061867 968607 736366 770071 344626 953044 541469 761518 566251 937410 917936 728324 262606 158273 061596 083083 838206 522844 420161 961374 674120 560852 454489 309780 720959 501887 567958 603020 884527 213601 500579 631859 431897 107540 942405 599279 947898 165854 106548 462079 330438 003224 495384 804556 983555 523867 803468 206720 826525 748074 679202 971667 392372 763151 833671 561923 (374 digits), a[727] = 5
                                                                                      A[728]/B[728] = 162831 563669 834869 762319 556421 386418 430517 022540 034650 366546 124248 995558 758804 926848 504177 103044 599133 146592 393245 793763 636445 302512 184066 860907 034859 317475 392939 159826 982157 587924 522456 021927 702605 364571 054751 796208 837992 554100 594891 970587 284078 927546 149822 119366 774442 770514 841926 135039 012037 494877 475146 464193 997368 407548 531345 091700 804814 891193 803833 622662 369035 311363 (372 digits)/15 826173 727792 383234 614413 047301 238216 843254 598429 529095 817393 841953 195715 840471 297304 427231 271972 389560 875479 190308 019676 416768 157051 950211 871530 230999 632623 735690 365793 075205 162505 909307 283328 741271 102495 614865 085277 077426 523882 171647 159901 523994 638371 404485 050609 491156 940880 863995 532801 818133 094304 586910 404382 912219 848430 911519 843699 874009 747318 277839 686185 383551 104618 (374 digits), a[728] = 1
                                                                                      A[729]/B[729] = 302079 407533 247082 634287 141596 297968 321685 102676 866309 842124 648268 886016 099901 912928 120672 639822 964417 099971 582156 107312 851108 166791 159905 195345 011921 572643 843234 365779 316447 892217 319155 391269 457461 985816 454671 343157 368630 841092 645899 675160 556314 604719 483476 080724 419702 106939 042700 565437 570519 209697 663162 435411 920953 922656 699121 633081 209290 734053 461970 964951 323214 705588 (372 digits)/29 360162 584346 763504 022319 215984 889622 905122 567037 265462 587465 186580 148760 381941 058822 993483 209383 307497 603803 452914 177949 478364 240135 788418 394374 651161 593998 409810 926645 529694 472286 630266 785216 309229 705516 499392 298878 578006 155741 603544 267442 466400 237651 352383 216463 597705 402960 194433 536026 313517 898861 570465 928250 715688 055151 738045 591774 553212 718985 670212 449337 217222 666541 (374 digits), a[729] = 1
                                                                                      A[730]/B[730] = 766990 378736 329035 030893 839613 982355 073887 227893 767270 050795 420786 767590 958608 752704 745522 382690 527967 346535 557558 008389 338661 636094 503877 251597 058702 462763 079407 891385 615053 372359 160766 804466 617529 336203 964094 482523 575254 236285 886691 320908 396708 136985 116774 280815 613846 984392 927327 265914 153075 914272 801471 335017 839276 252861 929588 357863 223396 359300 727775 552565 015464 722539 (372 digits)/74 546498 896485 910242 659051 479271 017462 653499 732504 060020 992324 215113 493236 604353 414950 414197 690739 004556 083086 096136 375575 373496 637323 527048 660279 533322 820620 555312 219084 134594 107079 169840 853761 359730 513528 613649 683034 233438 835365 378735 694786 456795 113674 109251 483536 686567 746801 252862 604854 445168 892027 727842 260884 343595 958734 387611 027248 980435 185289 618264 584859 817996 437700 (374 digits), a[730] = 2
                                                                                      A[731]/B[731] = 2 603050 543742 234187 726968 660438 245033 543346 786358 168119 994510 910629 188788 975728 171042 357239 787894 548319 139578 254830 132480 867093 075074 671536 950136 188028 960933 081458 039936 161608 009294 801455 804669 310049 994428 346954 790728 094393 549950 305973 637885 746439 015674 833798 923171 261243 060117 824682 363180 029746 952516 067576 440465 438782 681242 487886 706670 879479 811955 645297 622646 369608 873205 (373 digits)/252 999659 273804 494231 999473 653797 942010 865621 764549 445525 564437 831920 628470 195001 303674 236076 281600 321165 853061 741323 304675 598854 152106 369564 375213 251130 055860 075747 583897 933476 793524 139789 346500 388421 246102 340341 347981 278322 661837 739751 351801 836785 578673 680137 667073 657408 643363 953021 350589 649024 574944 753992 710903 746475 931354 900878 673521 494518 274854 525006 203916 671211 979641 (375 digits), a[731] = 3
                                                                                      A[732]/B[732] = 8 576142 009963 031598 211799 820928 717455 703927 586968 271630 034328 152674 333957 885793 265831 817241 746374 172924 765270 322048 405831 939940 861318 518488 102005 622789 345562 323782 011194 099877 400243 565134 218474 547679 319489 004958 854707 858434 886136 804612 234565 636025 184009 618171 050329 397576 164746 401374 355454 242316 771821 004200 656414 155624 296589 393248 477875 861835 795167 663668 420504 124291 342154 (373 digits)/833 545476 717899 392938 657472 440664 843495 250365 026152 396597 685637 710875 378647 189357 325973 122426 535539 968053 642271 320106 289602 170059 093642 635741 785919 286712 988200 782554 970777 935024 487651 589208 893262 524994 251835 634673 726978 068406 820878 597989 750191 967151 849695 149664 484757 658793 676893 111926 656623 392242 616861 989820 393595 583023 752799 090247 047813 463990 009853 193283 196609 831632 376623 (375 digits), a[732] = 3
                                                                                      A[733]/B[733] = 11 179192 553705 265785 938768 481366 962489 247274 373326 439750 028839 063303 522746 861521 436874 174481 534268 721243 904848 576878 538312 807033 936393 190025 052141 810818 306495 405240 051130 261485 409538 366590 023143 857729 313917 351913 645435 952828 436087 110585 872451 382464 199684 451969 973500 658819 224864 226056 718634 272063 724337 071777 096879 594406 977831 881135 184546 741315 607123 308966 043150 493900 215359 (374 digits)/1086 545135 991703 887170 656946 094462 785506 115986 790701 842123 250075 542796 007117 384358 629647 358502 817140 289219 495333 061429 594277 768913 245749 005306 161132 537843 044060 858302 554675 868501 281175 728998 239762 913415 497937 975015 074959 346729 482716 337741 101993 803937 428368 829802 151831 316202 320257 064948 007213 041267 191806 743813 104499 329499 684153 991125 721334 958508 284707 718289 400526 502844 356264 (376 digits), a[733] = 1
                                                                                      A[734]/B[734] = 19 755334 563668 297384 150568 302295 679944 951201 960294 711380 063167 215977 856704 747314 702705 991723 280642 894168 670118 898926 944144 746974 797711 708513 154147 433607 652057 729022 062324 361362 809781 931724 241618 405408 633406 356872 500143 811263 322223 915198 107017 018489 383694 070141 023830 056395 389610 627431 074088 514380 496158 075977 753293 750031 274421 274383 662422 603151 402290 972634 463654 618191 557513 (374 digits)/1920 090612 709603 280109 314418 535127 629001 366351 816854 238720 935713 253671 385764 573715 955620 480929 352680 257273 137604 381535 883879 938972 339391 641047 947051 824556 032261 640857 525453 803525 768827 318207 133025 438409 749773 609688 801937 415136 303594 935730 852185 771089 278063 979466 636588 974995 997150 176874 663836 433509 808668 733633 498094 912523 436953 081372 769148 422498 294560 911572 597136 334476 732887 (376 digits), a[734] = 1
                                                                                      A[735]/B[735] = 3428 852072 068320 713243 987084 778519 592965 805213 504311 508500 956767 427472 732668 146965 005010 742609 085489 412423 835418 091239 875354 033673 940518 762800 719647 824942 112482 526056 833244 777251 501812 554883 823127 993422 893217 090856 170315 301383 180824 439858 386395 581127 578758 586367 096100 415221 627502 771632 535947 259889 559684 215928 416698 349817 452712 349508 783657 086508 203461 574728 255399 441039 665108 (376 digits)/333262 221134 753071 346082 051352 671542 602742 494851 106485 140845 128468 427945 744388 637218 951990 559280 830824 797472 300891 067137 505507 211127 960502 906601 001098 186036 625324 726654 458183 878459 288301 778832 253163 758302 208772 451177 810132 165310 004640 219178 530132 202382 533437 277530 281723 990509 827237 664264 850916 038464 091497 662408 274919 196054 277037 068614 784012 050713 243745 420348 705112 367319 145715 (378 digits), a[735] = 173
                                                                                      A[736]/B[736] = 3448 607406 631989 010628 137653 080815 272910 756415 464606 219881 019934 643450 589372 894279 707716 734332 366132 306592 505536 990166 819498 780648 738230 471313 873795 258549 764540 255078 895569 138614 311594 486608 064746 398831 526623 447728 670459 112646 503048 355056 493412 599616 962452 656508 119930 471617 017113 399063 610035 774270 055842 291906 169992 099848 727133 623892 446079 689659 605752 547362 719054 059231 222621 (376 digits)/335182 311747 462674 626191 365771 206670 231743 861202 923339 379566 064181 681617 130153 210934 907611 040210 183505 054745 438495 448673 389387 150100 299894 547648 948150 010592 657586 367511 983637 681985 057129 097039 386189 196711 958546 060866 612069 580446 308235 154909 382317 973471 811501 256996 918312 965505 824387 841139 514752 471973 900166 396041 773014 108577 713990 149987 553160 473211 538306 331921 302248 701795 878602 (378 digits), a[736] = 1
                                                                                      A[737]/B[737] = 331046 555702 107276 722917 064127 455970 519487 664682 641902 397197 850558 555278 723093 103537 238100 504183 868058 538711 861432 157087 727738 195304 072413 537618 730197 387169 743806 758551 912312 945611 103288 782649 974035 882417 922444 625079 863931 002800 970418 170225 260592 544739 011760 954638 489495 218838 253275 682675 489345 815544 864701 947014 565947 835446 530406 619291 161227 604170 749953 574186 565535 068005 814103 (378 digits)/32 175581 837143 707160 834261 799617 305214 618409 309128 823726 199621 225728 181573 108943 676035 175039 379248 263804 998288 957958 691109 497286 470656 450484 933251 075349 192339 096029 640292 903763 667039 715565 997573 941137 445938 270648 233505 956742 307709 286979 935569 850339 682204 626056 692237 521455 713563 144082 572518 752400 875984 607305 286376 711259 510937 106101 317432 334257 005809 382846 952872 418739 037927 612905 (380 digits), a[737] = 95
                                                                                      A[738]/B[738] = 996588 274512 953819 179379 330035 448726 831373 750463 390313 411474 571610 309286 758652 204891 422018 246883 970307 922728 089833 461430 002713 366560 955471 084170 064387 420058 995960 530734 632507 975447 621460 834557 986854 046085 293957 322968 262252 121049 414302 865732 275190 233833 997735 520423 588416 128131 776940 447090 078073 220904 649948 132949 867835 606188 318353 481765 929762 502171 855613 269922 415659 263248 664930 (378 digits)/96 861927 823178 584157 128976 764623 122314 086971 788589 394517 978429 741366 226336 456984 239040 432729 177954 974920 049612 312371 522001 881246 562069 651349 347402 174197 587609 945675 288390 694928 683104 203827 089761 209601 534526 770490 761384 482296 503574 169174 961618 933337 020085 689671 333709 482680 106195 256635 558695 771955 099927 722082 255171 906792 641389 032294 102284 555931 490639 686847 190538 558465 815578 717317 (380 digits), a[738] = 3
                                                                                      A[739]/B[739] = 1 327634 830215 061095 902296 394162 904697 350861 415146 032215 808672 422168 864565 481745 308428 660118 751067 838366 461439 951265 618517 730451 561865 027884 621788 794584 807228 739767 289286 544820 921058 724749 617207 960889 928503 216401 948048 126183 123850 384721 035957 535782 778573 009496 475062 077911 346970 030216 129765 567419 036449 514650 079964 433783 441634 848760 101057 090990 106342 605566 844108 981194 331254 479033 (379 digits)/129 037509 660322 291317 963238 564240 427528 705381 097718 218244 178050 967094 407909 565927 915075 607768 557203 238725 047901 270330 213111 378533 032726 101834 280653 249546 779949 041704 928683 598692 350143 919393 087335 150738 980465 041138 994890 439038 811283 456154 897188 783676 702290 315728 025947 004135 819758 400718 131214 524355 975912 329387 541548 618052 152326 138395 419716 890188 496449 069694 143410 977204 853506 330222 (381 digits), a[739] = 1
                                                                                      A[740]/B[740] = 12 945301 746448 503682 300046 877501 591002 989126 486777 680255 689526 371130 090376 094359 980749 363087 006494 515606 075687 651224 028089 576777 423346 206432 680269 215650 685117 653866 134313 535896 264976 144207 389429 634863 402614 241574 855401 397900 235702 876792 189350 097235 240991 083203 795982 289618 250862 048885 614980 184844 548950 281798 852629 771886 580901 957194 391279 748673 459255 305714 866903 246408 244538 976227 (380 digits)/1258 199514 766079 206018 798123 842786 970072 435401 668053 358715 580888 445215 897522 550335 474720 902646 192784 123445 480723 745343 440004 288043 856604 567857 873281 420118 607151 321019 646543 083159 834399 478364 875777 566252 358712 140741 715398 433645 805125 274569 036317 986427 340698 531223 567232 519902 484020 863098 739626 491158 883138 686570 129109 469262 012324 277852 879736 567627 958681 314094 481237 353309 497135 689315 (382 digits), a[740] = 9
                                                                                      A[741]/B[741] = 14 272936 576663 564778 202343 271664 495700 339987 901923 712471 498198 793298 954941 576105 289178 023205 757562 353972 537127 602489 646607 307228 985211 234317 302058 010235 492346 393633 423600 080717 186034 868957 006637 595753 331117 457976 803449 524083 359553 261513 225307 633018 019564 092700 271044 367529 597832 079101 744745 752263 585399 796448 932594 205670 022536 805954 492336 839663 565597 911281 711012 227602 575793 455260 (380 digits)/1387 237024 426401 497336 761362 407027 397601 140782 765771 576959 758939 412310 305432 116263 389796 510414 749987 362170 528625 015673 653115 666576 889330 669692 153934 669665 387100 362724 575226 681852 184543 397757 963112 716991 339177 181880 710288 872684 616408 730723 933506 770104 042988 846951 593179 524038 303779 263816 870841 015514 859051 015957 670658 087314 164650 416248 299453 457816 455130 383788 624648 330514 350642 019537 (382 digits), a[741] = 1
                                                                                      A[742]/B[742] = 41 491174 899775 633238 704733 420830 582403 669102 290625 105198 685923 957728 000259 246570 559105 409498 521619 223551 149942 856203 321304 191235 393768 675067 284385 236121 669810 441132 981513 697330 637045 882121 402704 826370 064849 157528 462300 446066 954809 399818 639965 363271 280119 268604 338071 024677 446526 207089 104471 689371 719749 874696 717818 183226 625975 569103 375953 428000 590451 128278 288927 701613 396125 886747 (380 digits)/4032 673563 618882 200692 320848 656841 765274 716967 199596 512635 098767 269836 508386 782862 254313 923475 692758 847786 537973 776690 746235 621197 635265 907242 181150 759449 381352 046468 796996 446864 203486 273880 802003 000235 037066 504503 135976 179015 037942 736016 903331 526635 426676 225126 753591 567979 091579 390732 481308 522188 601240 718485 470425 643890 341625 110349 478643 483260 868942 081671 730534 014338 198419 728389 (382 digits), a[742] = 2
                                                                                      A[743]/B[743] = 55 764111 476439 198016 907076 692495 078104 009090 192548 817670 184122 751026 955200 822675 848283 432704 279181 577523 687070 458692 967911 498464 378979 909384 586443 246357 162156 834766 405113 778047 823080 751078 409342 422123 395966 615505 265749 970150 314362 661331 865272 996289 299683 361304 609115 392207 044358 286190 849217 441635 305149 671145 650412 388896 648512 375057 868290 267664 156049 039559 999939 929215 971919 342007 (380 digits)/5419 910588 045283 698029 082211 063869 162875 857749 965368 089594 857706 682146 813818 899125 644110 433890 442746 209957 066598 792364 399351 287774 524596 576934 335085 429114 768452 409193 372223 128716 388029 671638 765115 717226 376243 686383 846265 051699 654351 466740 836838 296739 469665 072078 346771 092017 395358 654549 352149 537703 460291 734443 141083 731204 506275 526597 778096 941077 324072 465460 355182 344852 549061 747926 (382 digits), a[743] = 1
                                                                                      A[744]/B[744] = 1435 593961 810755 583661 381650 733207 535003 896357 104345 546953 288992 733401 880279 813466 766191 227105 501158 661643 326704 323527 519091 652844 868266 409681 945466 395050 723731 310293 109358 148526 214064 659081 636265 379454 964014 545160 106049 699824 813875 933115 271790 270503 772203 301219 565955 829853 555483 361860 334907 730254 348491 653337 978127 905642 838784 945550 083210 119604 491677 117278 287425 932012 694109 436922 (382 digits)/139530 438264 750974 651419 376125 253570 837171 160716 333798 752506 541434 323506 853859 261003 357074 770736 761414 096713 202943 585800 730017 815560 750180 330600 558286 487318 592662 276303 102574 664773 904228 064849 929895 930894 443158 664099 292602 471506 396729 404537 824288 945122 168303 027085 422868 868413 975545 754466 285046 964775 108534 079563 997518 924002 998513 275293 931067 010193 970753 718180 610092 635651 924963 426539 (384 digits), a[744] = 25
                                                                                      A[745]/B[745] = 7233 733920 530217 116323 815330 358532 753123 490875 714276 552436 629086 418036 356599 890009 679239 568231 784974 885740 320592 076330 563369 762688 720311 957794 313775 221610 780813 386231 951904 520678 893404 046486 590669 319398 216039 341305 795998 469274 383742 326908 224224 348808 160699 867402 438894 541474 821775 095492 523756 092907 047607 937835 541051 917110 842437 102808 284340 865686 614434 625951 437069 589279 442466 526617 (382 digits)/703072 101911 800156 955125 962837 331723 348731 661331 634361 852127 564878 299681 083115 204142 429484 287574 249816 693523 081316 721368 049440 365578 275498 229937 126517 865707 731763 790708 885096 452585 909169 995888 414595 371698 592037 006880 309277 409231 637998 489429 958283 022350 311180 207505 461115 434087 273087 426880 777384 361579 002962 132263 128678 351219 498841 903067 433431 992047 177841 056363 405645 523112 173878 880621 (384 digits), a[745] = 5
                                                                                      A[746]/B[746] = 109941 602769 764012 328518 611606 111198 831856 259492 818493 833502 725289 003947 229278 163611 954784 750582 275781 947748 135585 468485 969638 093175 672945 776596 652094 719212 435932 103772 387925 958709 615125 356380 496305 170428 204604 664747 046026 738940 570010 836738 635155 502626 182701 312256 149373 951975 882109 794248 191249 123860 062610 720871 093906 662305 475341 487674 348323 104903 708196 506549 843469 771204 331107 336177 (384 digits)/10 685611 966941 753328 978308 818685 229421 068146 080690 849226 534420 014608 818723 100587 323139 799339 084350 508664 499559 422694 406321 471623 299234 882653 779657 456054 472934 569119 136936 379021 453562 541778 003176 148826 506373 323713 767303 931763 609980 966706 745987 198534 280376 836006 139667 339600 379723 071857 157677 945812 388460 152966 063510 927694 192295 481141 821305 432546 890901 638369 563631 694775 482334 533146 635854 (386 digits), a[746] = 15
                                                                                      A[747]/B[747] = 227116 939460 058241 773361 038542 580930 416836 009861 351264 219442 079664 425930 815156 217233 588809 069396 336538 781236 591763 013302 502645 949040 066203 510987 617964 660035 652677 593776 727756 438098 123654 759247 583279 660254 625248 670799 888051 947155 523764 000385 494535 354060 526102 491914 737642 445426 585994 683988 906254 340627 172829 379577 728865 241721 793120 078156 980987 075494 030827 639051 124009 131688 104681 198971 (384 digits)/22 074296 035795 306814 911743 600207 790565 485023 822713 332814 920967 594095 937127 284289 850422 028162 456275 267145 692641 926705 534010 992686 964048 040805 789252 038626 811576 870002 064581 643139 359710 992726 002240 712248 384445 239464 541488 172804 629193 571411 981404 355351 583103 983192 486840 140316 193533 416801 742236 669009 138499 308894 259284 984066 735810 461125 545678 298525 773850 454580 183626 795196 487781 240172 152329 (386 digits), a[747] = 2
                                                                                      A[748]/B[748] = 2 381110 997370 346430 062128 997031 920503 000216 358106 331136 027923 521933 263255 380840 335947 842875 444545 641169 760114 053215 601510 996097 583576 334980 886472 831741 319568 962708 041539 665490 339690 851672 948856 329101 772974 457091 372745 926546 210495 807650 840593 580509 043231 443726 231403 525798 406241 742056 634137 253792 530131 790904 516648 382559 079523 406542 269244 158193 859844 016472 897061 083561 088085 377919 325887 (385 digits)/231 428572 324894 821478 095744 820763 135075 918384 307824 177375 744095 955568 189995 943485 827360 080963 647103 180121 425978 689749 746431 398492 939715 290711 672177 842322 588703 269139 782752 810415 050672 469038 025583 271310 350825 718359 182185 659809 901916 680826 560030 752050 111416 667931 008068 742762 315057 239874 580044 635903 773453 241908 656360 768361 550400 092397 278088 417804 629406 184171 399899 646740 360146 934868 159144 (387 digits), a[748] = 10
                                                                                      A[749]/B[749] = 4 989338 934200 751101 897619 032606 421936 417268 726074 013536 275289 123530 952441 576836 889129 274559 958487 618878 301464 698194 216324 494841 116192 736165 283933 281447 299173 578093 676856 058737 117479 827000 656960 241483 206203 539431 416291 741144 368147 139065 681572 655553 440523 413554 954721 789239 257910 070107 952263 413839 400890 754638 412874 493983 400768 606204 616645 297374 795182 063773 433173 291131 307858 860519 850745 (385 digits)/484 931440 685584 949771 103233 241734 060717 321792 438361 687566 409159 505232 317119 171261 505142 190089 750481 627388 544599 306205 026873 789672 843478 622229 133607 723271 988983 408281 630087 263969 461055 930802 053407 254869 086096 676182 905859 492424 433026 933065 101465 859451 805937 319054 502977 625840 823647 896550 902325 940816 685405 792711 572006 520789 836610 645920 101855 134135 032662 822922 983426 088677 208075 109908 470617 (387 digits), a[749] = 2
                                                                                      A[750]/B[750] = 7 370449 931571 097531 959748 029638 342439 417485 084180 344672 303212 645464 215696 957677 225077 117435 403033 260048 061578 751409 817835 490938 699769 071146 170406 113188 618742 540801 718395 724227 457170 678673 605816 570584 979177 996522 789037 667690 578642 946716 522166 236062 483754 857281 186125 315037 664151 812164 586400 667631 931022 545542 929522 876542 480292 012746 885889 455568 655026 080246 330234 374692 395944 238439 176632 (385 digits)/716 360013 010479 771249 198978 062497 195793 240176 746185 864942 153255 460800 507115 114747 332502 271053 397584 807509 970577 995954 773305 188165 783193 912940 805785 565594 577686 677421 412840 074384 511728 399840 078990 526179 436922 394542 088045 152234 334943 613891 661496 611501 917353 986985 511046 368603 138705 136425 482370 576720 458859 034620 228367 289151 387010 738317 379943 551939 662069 007094 383325 735417 568222 044776 629761 (387 digits), a[750] = 1
                                                                                      A[751]/B[751] = 19 730238 797342 946165 817115 091883 106815 252238 894434 702880 881714 414459 383835 492191 339283 509430 764554 138974 424622 201013 851995 476718 515730 878457 624745 507824 536658 659697 113647 507192 031821 184347 868593 382653 164559 532476 994367 076525 525433 032498 725905 127678 408033 128117 326972 419314 586213 694437 125064 749103 262935 845724 271920 247068 361352 631698 388424 208512 105234 224266 093642 040516 099747 337398 204009 (386 digits)/1917 651466 706544 492269 501189 366728 452303 802145 930733 417450 715670 426833 331349 400756 170146 732196 545651 242408 485755 298114 573484 166004 409866 448110 745178 854461 144356 763124 455767 412738 484512 730482 211388 307227 959941 465267 081949 796893 102914 160848 424459 082455 640645 293025 525070 363047 101058 169401 867067 094257 603123 861952 028741 099092 610632 122554 861742 238014 356800 837111 750077 559512 344519 199461 730139 (388 digits), a[751] = 2
                                                                                      A[752]/B[752] = 27 100688 728914 043697 776863 121521 449254 669723 978615 047553 184927 059923 599532 449868 564360 626866 167587 399022 486200 952423 669830 967657 215499 949603 795151 621013 155401 200498 832043 231419 488991 863021 474409 953238 143737 528999 783404 744216 104075 979215 248071 363740 891787 985398 513097 734352 250365 506601 711465 416735 193958 391267 201443 123610 841644 644445 274313 664080 760260 304512 423876 415208 495691 575837 380641 (386 digits)/2634 011479 717024 263518 700167 429225 648097 042322 676919 282392 868925 887633 838464 515503 502649 003249 943236 049918 456333 294069 346789 354170 193060 361051 550964 420055 722043 440545 868607 487122 996241 130322 290378 833407 396863 859809 169994 949127 437857 774740 085955 693957 557999 280011 036116 731650 239763 305827 349437 670978 061982 896572 257108 388243 997642 860872 241685 789954 018869 844206 133403 294929 912741 244238 359900 (388 digits), a[752] = 1
                                                                                      A[753]/B[753] = 46 830927 526256 989863 593978 213404 556069 921962 873049 750434 066641 474382 983367 942059 903644 136296 932141 537996 910823 153437 521826 444375 731230 828061 419897 128837 692059 860195 945690 738611 520813 047369 343003 335891 308297 061476 777771 820741 629509 011713 973976 491419 299821 113515 840070 153666 836579 201038 836530 165838 456894 236991 473363 370679 202997 276143 662737 872592 865494 528778 517518 455724 595438 913235 584650 (386 digits)/4551 662946 423568 755788 201356 795954 100400 844468 607652 699843 584596 314467 169813 916259 672795 735446 488887 292326 942088 592183 920273 520174 602926 809162 296143 274516 866400 203670 324374 899861 480753 860804 501767 140635 356805 325076 251944 746020 540771 935588 510414 776413 198644 573036 561187 094697 340821 475229 216504 765235 665106 758524 285849 487336 608274 983427 103428 027968 375670 681317 883480 854442 257260 443700 090039 (388 digits), a[753] = 1
                                                                                      A[754]/B[754] = 495 409963 991483 942333 716645 255567 009953 889352 709112 551893 851341 803753 433211 870467 600801 989835 489002 778991 594432 486798 888095 411414 527808 230217 994122 909390 075999 802458 288950 617534 697122 336714 904443 312151 226708 143767 561122 951632 399166 096354 987836 277933 889999 120556 913799 271020 616157 516990 076767 075119 762900 761181 935076 830402 871617 405881 901692 390009 415205 592297 599060 972454 450080 708193 227141 (387 digits)/48150 640943 952711 821400 713735 388766 652105 487008 753446 280828 714889 032305 536603 678100 230606 357714 832108 973187 877219 215908 549524 555916 222328 452674 512397 165224 386045 477249 112356 485737 803779 738367 308050 239760 964917 110571 689442 409332 845577 130625 190103 458089 544445 010376 647987 678623 647978 058119 514485 323334 713050 481815 115603 261610 080392 695143 275966 069637 775576 657384 968211 839352 485345 681239 260290 (389 digits), a[754] = 10
                                                                                      A[755]/B[755] = 2523 880747 483676 701532 177204 491239 605839 368726 418612 509903 323350 493150 149427 294397 907654 085474 377155 432954 882985 587431 962303 501448 370271 979151 390511 675788 072058 872487 390443 826285 006424 730943 865219 896647 441837 780314 583386 578903 625339 493488 913157 881088 749816 716300 409066 508769 917366 785989 220365 541437 271398 042901 148747 522693 561084 305553 171199 822639 941522 490266 512823 317996 845842 454201 720355 (388 digits)/245304 867666 187127 862791 770033 739787 360928 279512 374884 103987 159041 475994 852832 306760 825827 524020 649432 158266 328184 671726 667896 299755 714569 072534 858129 100638 796627 589915 886157 328550 499652 552641 042018 339440 181390 877934 699156 792684 768657 588714 460932 066860 920869 624919 801125 487815 580711 765826 788931 381909 230359 167599 863865 795387 010238 459143 483258 376157 253553 968242 724540 051204 683988 849896 391489 (390 digits), a[755] = 5
                                                                                      A[756]/B[756] = 3019 290711 475160 643865 893849 746806 615793 258079 127725 061797 174692 296903 582639 164865 508456 075309 866158 211946 477418 074230 850398 912862 898080 209369 384634 585178 148058 674945 679394 443819 703547 067658 769663 208798 668545 924082 144509 530536 024505 589843 900994 159022 639815 836857 322865 779790 533524 302979 297132 616557 034298 804083 083824 353096 432701 711435 072892 212649 356728 082564 111884 290451 295923 162394 947496 (388 digits)/293455 508610 139839 684192 483769 128554 013033 766521 128330 384815 873930 508300 389435 984861 056433 881735 481541 131454 205403 887635 217420 855671 936897 525209 370526 265863 182673 067164 998513 814288 303432 291008 350068 579201 146307 988506 388599 202017 614234 719339 651035 524950 465314 635296 449113 166439 228689 823946 303416 705243 943409 649414 979469 056997 090631 154286 759224 445795 029130 625627 692751 890557 169334 531135 651779 (390 digits), a[756] = 1
                                                                                      A[757]/B[757] = 14601 043593 384319 276995 752603 478466 069012 401042 929512 757092 022119 680764 479983 953859 941478 386713 841788 280740 792657 884355 363899 152899 962592 816628 929050 016500 664293 572270 108021 601563 820613 001578 943872 731842 116021 476643 161424 701047 723361 852864 517134 517179 309080 063729 700529 627932 051463 997906 408896 007665 408593 259233 484044 935079 291891 151293 462768 673237 368434 820522 960360 479802 029535 103781 510339 (389 digits)/1 419126 902106 746486 599561 705110 254003 413063 345596 888205 643250 654763 509196 410576 246205 051563 050962 575596 684083 149800 222267 537579 722443 462159 173372 340234 164091 527319 858575 880212 585703 713381 716674 442292 656244 766622 831960 253553 600755 225596 466073 065074 166662 782128 166105 597578 153572 495471 061612 002598 202885 003997 765259 781742 023375 372763 076290 520156 159337 370076 470753 495547 613433 361326 974438 998605 (391 digits), a[757] = 4
                                                                                      A[758]/B[758] = 17620 334304 859479 920861 646453 225272 684805 659122 057237 818889 196811 977668 062623 118725 449934 462023 707946 492687 270075 958586 214298 065762 860673 025998 313684 601678 812352 247215 787416 045383 524160 069237 713535 940640 784567 400725 305934 231583 747867 442708 418128 676201 948895 900587 023395 407722 584988 300885 706028 624222 442892 063316 567869 288175 724592 862728 535660 885886 725162 903087 072244 770253 325458 266176 457835 (389 digits)/1 712582 410716 886326 283754 188879 382557 426097 112118 016536 028066 528694 017496 800012 231066 107996 932698 057137 815537 355204 109902 755000 578115 399056 698581 710760 429954 709992 925740 878726 399992 016814 007682 792361 235445 912930 820466 642152 802772 839831 185412 716109 691613 247442 801402 046691 320011 724160 885558 306014 908128 947407 414674 761211 080372 463394 230577 279380 605132 399207 096381 188299 503990 530661 505574 650384 (391 digits), a[758] = 1
                                                                                      A[759]/B[759] = 85082 380812 822238 960442 338416 379556 808235 037531 158464 032648 809367 591436 730476 428761 741216 234808 673574 251489 872961 718700 221091 415951 405284 920622 183788 423215 913702 561133 257685 783097 917253 278529 798016 494405 254291 079544 385161 627382 714831 623698 189649 221987 104663 666077 794111 258822 391417 201449 233010 504555 180161 512499 755522 087782 190262 602207 605412 216784 269086 432871 249339 560815 331368 168487 341679 (389 digits)/8 269456 544974 291791 734578 460627 784233 117451 794068 954349 755516 769539 579183 610625 170469 483550 781754 804147 946232 570616 661878 557582 034905 058385 967699 183275 883910 367291 561539 395118 185671 780637 747405 611737 598028 418346 113826 822164 811846 584921 207723 929512 933115 771899 371713 784343 433619 392114 603845 226657 835400 793627 423958 826586 344865 226339 998599 637678 579866 966904 856278 248745 629395 483972 996737 600141 (391 digits), a[759] = 4
                                                                                      A[760]/B[760] = 783361 761620 259630 564842 692200 641283 958920 996902 483414 112728 481120 300598 636910 977581 120880 575301 770114 756096 126731 426888 204120 809325 508237 311597 967780 410622 035675 297415 106588 093264 779439 576005 895684 390288 073187 116624 772388 878028 181352 055992 124971 674085 890868 895287 170396 737124 107743 113928 803123 165219 064345 675814 367568 078215 436956 282596 984370 836945 146940 798928 316300 817591 307771 782562 532946 (390 digits)/76 137691 315485 512451 894960 334529 440655 483163 258738 605683 827717 454550 230149 295638 765291 459953 968491 294469 331630 490754 066809 773238 892260 924530 407874 360243 385148 015616 979595 434790 071038 042553 734333 297999 617701 678045 844908 041636 109392 104122 054928 081726 089655 194537 146826 105782 222586 253192 320165 345935 426736 090054 230304 200488 184159 500454 217974 018487 823935 101350 802885 427010 168549 886418 476213 051653 (392 digits), a[760] = 9
                                                                                      A[761]/B[761] = 1 651805 904053 341500 090127 722817 662124 726077 031336 125292 258105 771608 192634 004298 383923 982977 385412 213803 763682 126424 572476 629333 034602 421759 543818 119349 244459 985053 155963 470861 969627 476132 430541 589385 274981 400665 312793 929939 383439 077535 735682 439592 570158 886401 456652 134904 733070 606903 429306 839256 834993 308852 864128 490658 244213 064175 167401 574153 890674 562968 030727 881941 195997 946911 733612 407571 (391 digits)/160 544839 175945 316695 524499 129686 665544 083778 311546 165717 410951 678640 039482 201902 701052 403458 718737 393086 609493 552124 795498 104059 819426 907446 783447 903762 654206 398525 520730 264698 327747 865745 216072 207736 833431 774437 803642 905437 030630 793165 317580 092965 112426 160973 665365 995907 878791 898499 244175 918528 688872 973735 884567 227562 713184 227248 434547 674654 227737 169606 462049 102765 966495 256809 949163 703447 (393 digits), a[761] = 2
                                                                                      A[762]/B[762] = 4 086973 569726 942630 745098 137835 965533 411075 059574 733998 628940 024336 685866 645507 745429 086835 346126 197722 283460 379580 571841 462786 878530 351756 399234 206478 899542 005781 609342 048312 032519 731704 437089 074454 940250 874517 742212 632267 644906 336423 527357 004156 814403 663671 808591 440206 203265 321549 972542 481636 835205 682051 404071 348884 566641 565306 617400 132678 618294 272876 860384 080183 209587 201595 249787 348088 (391 digits)/397 227369 667376 145842 943958 593902 771743 650719 881830 937118 649620 811830 309113 699444 167396 266871 405966 080642 550617 595003 657805 981358 531114 739423 974770 167768 693560 812668 021055 964186 726533 774044 166477 713473 284565 226921 452193 852510 170653 690452 690088 267656 314507 516484 477558 097597 980170 050190 808517 182992 804482 037525 999438 655613 610527 954951 087069 367796 279409 440563 726983 632542 101540 400038 374540 458547 (393 digits), a[762] = 2
                                                                                      A[763]/B[763] = 5 738779 473780 284130 835225 860653 627658 137152 090910 859290 887045 795944 878500 649806 129353 069812 731538 411526 047142 506005 144318 092119 913132 773515 943052 325828 144001 990834 765305 519174 002147 207836 867630 663840 215232 275183 055006 562207 028345 413959 263039 443749 384562 550073 265243 575110 936335 928453 401849 320893 670198 990904 268199 839542 810854 629481 784801 706832 508968 835844 891111 962124 405585 148506 983399 755659 (391 digits)/557 772208 843321 462538 468457 723589 437287 734498 193377 102836 060572 490470 348595 901346 868448 670330 124703 473729 160111 147128 453304 085418 350541 646870 758218 071531 347767 211193 541786 228885 054281 639789 382549 921210 117997 001359 255836 757947 201284 483618 007668 360621 426933 677458 142924 093505 858961 948690 052693 101521 493355 011261 884005 883176 323712 182199 521617 042450 507146 610170 189032 735308 068035 656848 323704 161994 (393 digits), a[763] = 1
                                                                                      A[764]/B[764] = 67 213547 781310 068069 932582 605025 869772 919748 059594 186198 386443 779730 349373 793375 168312 854775 393048 724508 802027 945637 159340 476105 922990 860431 772809 790588 483563 904964 027702 759226 056139 017909 981026 376697 307805 901531 347284 816544 956705 889975 420790 885400 044591 714477 726270 766426 502960 534537 392885 011467 207394 581998 354269 583855 486042 489606 250218 907836 216951 467170 662615 663551 671023 835172 067184 660337 (392 digits)/6532 721666 943912 233766 096993 553386 581908 730200 008979 068315 315918 207004 143668 614259 720331 640502 777704 291663 311840 213416 644150 920960 387072 855002 315168 954613 519000 135796 980704 481922 323631 811727 374526 846784 582532 241873 266398 189929 384783 010250 774440 234492 010777 968524 049723 126162 428751 485781 388141 299729 231387 161406 723503 370553 171361 959145 824856 834751 858022 152435 806343 720930 849932 625369 935286 240481 (394 digits), a[764] = 11
                                                                                      A[765]/B[765] = 72 952327 255090 352200 767808 465679 497431 056900 150505 045489 273489 575675 227874 443181 297665 924588 124587 136034 849170 451642 303658 568225 836123 633947 715862 116416 627565 895798 793008 278400 058286 225746 848657 040537 523038 176714 402291 378751 985051 303934 683830 329149 429154 264550 991514 341537 439296 462990 794734 332360 877593 572902 622469 423398 296897 119088 035020 614668 725920 303015 553727 625676 076608 983679 050584 415996 (392 digits)/7090 493875 787233 696304 565451 276976 019196 464698 202356 171151 376490 697474 492264 515606 588780 310832 902407 765392 471951 360545 097455 006378 737614 501873 073387 026144 866767 346990 522490 710807 377913 451516 757076 767994 700529 243232 522234 947876 586067 493868 782108 595113 437711 645982 192647 219668 287713 434471 440834 401250 724742 172668 607509 253729 495074 141345 346473 877202 365168 762605 995376 456238 917968 282218 258990 402475 (394 digits), a[765] = 1
                                                                                      A[766]/B[766] = 213 118202 291490 772471 468199 536384 864635 033548 360604 277176 933422 931080 805122 679737 763644 703951 642222 996578 500368 848921 766657 612557 595238 128327 204534 023421 738695 696561 613719 316026 172711 469403 678340 457772 353882 254960 151867 574048 926808 497844 788451 543698 902900 243579 709299 449501 381553 460518 982353 676188 962581 727803 599208 430652 079836 727782 320260 137173 668792 073201 770070 914903 824241 802530 168353 492329 (393 digits)/20713 709418 518379 626375 227896 107338 620301 659596 413691 410618 068899 601953 128197 645472 897892 262168 582519 822448 255742 934506 839060 933717 862301 858748 461943 006903 252534 829778 025685 903537 079458 714760 888680 382773 983590 728338 310868 085682 556917 997988 338657 424718 886201 260488 435017 565499 004178 354724 269810 102230 680871 506743 938521 878012 161510 241836 517804 589156 588359 677647 797096 633408 685869 189806 453267 045431 (395 digits), a[766] = 2
                                                                                      A[767]/B[767] = 499 188731 838071 897143 704207 538449 226701 123996 871713 599843 140335 437836 838119 802656 824955 332491 409033 129191 849908 149485 836973 793341 026599 890602 124930 163260 104957 288922 020446 910452 403709 164554 205337 956082 230802 686634 706026 526849 838668 299624 260733 416547 234954 751710 410113 240540 202403 384028 759441 684738 802757 028509 820886 284702 456570 574652 675540 889016 063504 449419 093869 455483 725092 588739 387291 400654 (393 digits)/48517 912712 823992 949055 021243 491653 259799 783891 029738 992387 514289 901380 748659 806552 384564 835170 067447 410288 983437 229558 775576 873814 462218 219369 997273 039951 371837 006546 573862 517881 536830 881038 534437 533542 667710 699909 143971 119241 699903 489845 459423 444551 210114 166959 062682 350666 296070 143919 980454 605712 086485 186156 484553 009753 818094 625018 382083 055515 541888 117901 589569 723056 289706 661831 165524 493337 (395 digits), a[767] = 2
                                                                                      A[768]/B[768] = 2709 061861 481850 258189 989237 228630 998140 653532 719172 276392 635100 120264 995721 693021 888421 366408 687388 642537 749909 596350 951526 579262 728237 581337 829184 839722 263482 141171 715953 868288 191257 292174 705030 238183 507895 688133 682000 208298 120149 995966 092118 626435 077674 002131 759865 652202 393570 380662 779562 099882 976366 870352 703639 854164 362689 601045 697964 582253 986314 320297 239418 192322 449704 746227 104810 495599 (394 digits)/263303 272982 638344 371650 334113 565604 919300 579051 562386 372555 640349 108856 871496 678234 820716 438018 919756 873893 172929 082300 716945 302790 173392 955598 448308 206660 111719 862510 894998 492944 763613 119953 560868 050487 322144 227884 030723 681891 056435 447215 635774 647474 936772 095283 748429 318830 484529 074324 172083 130791 113297 437526 361286 926781 251983 366928 428219 866734 297800 267155 744945 248690 134402 498962 280889 512116 (396 digits), a[768] = 5
                                                                                      A[769]/B[769] = 3208 250593 319922 155333 693444 767080 224841 777529 590885 876235 775435 558101 833841 495678 713376 698900 096421 771729 599817 745836 788500 372603 754837 471939 954115 002982 368439 430093 736400 778740 594966 456728 910368 194265 738698 374768 388026 735147 958818 295590 352852 042982 312628 753842 169978 892742 595973 764691 539003 784621 779123 898862 524526 138866 819260 175698 373505 471270 049818 769716 333287 647806 174797 334966 492101 896253 (394 digits)/311821 185695 462337 320705 355357 057258 179100 362942 592125 364943 154639 010237 620156 484787 205281 273188 987204 284182 156366 311859 492522 176604 635611 174968 445581 246611 483556 869057 468861 010826 300444 000992 095305 584029 989854 927793 174694 801132 756338 937061 095198 092026 146886 262242 811111 669496 780599 218244 152537 736503 199782 623682 845839 936535 070077 991946 810302 922249 839688 385057 334514 971746 424109 160793 446414 005453 (396 digits), a[769] = 1
                                                                                      A[770]/B[770] = 9125 563048 121694 568857 376126 762791 447824 208591 900944 028864 185971 236468 663404 684379 315174 764208 880232 185996 949545 088024 528527 324470 237912 525217 737414 845687 000361 001359 188755 425769 381190 205632 525766 626714 985292 437670 458053 678594 037786 587146 797822 712399 702931 509816 099823 437687 585517 910045 857569 669126 534614 668077 752692 131898 001209 952442 444975 524794 085951 859729 905993 487934 799299 416160 089014 288105 (394 digits)/886945 644373 563019 013061 044827 680121 277501 304936 746637 102441 949627 129332 111809 647809 231278 984396 894165 442257 485661 706019 701989 655999 444615 305535 339470 699883 078833 600625 832720 514597 364501 121937 751479 218547 301854 083470 380113 284156 569113 321337 826170 831527 230544 619769 370652 657824 045727 510812 477158 603797 512862 684892 052966 799851 392139 350822 048825 711233 977177 037270 413975 192182 982620 820549 173717 523022 (396 digits), a[770] = 2
                                                                                      A[771]/B[771] = 21459 376689 563311 293048 445698 292663 120490 194713 392773 933964 147378 031039 160650 864437 343726 227317 856886 143723 498907 921885 845555 021544 230662 522375 428944 694356 369161 432812 113911 630279 357346 867993 961901 447695 709283 250109 304134 092336 034391 469883 948497 467781 718491 773474 369625 768117 767009 584783 254143 122874 848353 235018 029910 402662 821680 080583 263456 520858 221722 489176 145274 623675 773396 167286 670130 472463 (395 digits)/2 085712 474442 588375 346827 445012 417500 734102 972816 085399 569827 053893 268901 843775 780405 667839 241982 775535 168697 127689 723898 896501 488603 524841 786039 124522 646377 641224 070309 134302 040021 029446 244867 598264 021124 593563 094733 934921 369445 894565 579736 747539 755080 607975 501781 552416 985144 872054 239869 106854 944098 225507 993466 951773 536237 854356 693590 907954 344717 794042 459598 162465 356112 389350 801891 793849 051497 (397 digits), a[771] = 2
                                                                                      A[772]/B[772] = 116422 446495 938251 034099 604618 226107 050275 182158 864813 698684 922861 391664 466659 006566 033805 900798 164662 904614 444084 697453 756302 432191 391225 137094 882138 317468 846168 165419 758313 577166 167924 545602 335273 865193 531708 688216 978724 140274 209743 936566 540310 051308 295390 377187 947952 278276 420565 833962 128285 283500 776380 843167 902244 145212 109610 355358 762258 129085 194564 305610 632366 606313 666280 252593 439666 650420 (396 digits)/11 315508 016586 504895 747198 269889 767624 948016 169017 173634 951577 219093 473841 330688 549837 570475 194310 771841 285743 124110 325514 184497 099017 068824 235730 962083 931771 284953 952171 504230 714702 511732 346275 742799 324170 269669 557140 054720 131386 041941 220021 563869 606930 270422 128677 132737 583548 405998 710158 011433 324288 640402 652226 811834 481040 663922 818776 588597 434822 947389 335261 226301 972744 929374 830008 142962 780507 (398 digits), a[772] = 5
                                                                                      A[773]/B[773] = 1 069261 395153 007570 599944 887262 327626 572966 834143 176097 222128 453130 556019 360581 923531 647979 334501 338852 285253 495670 198969 652276 911266 751688 756229 368189 551575 984674 921589 938733 824774 868667 778414 979366 234437 494661 444062 112651 354803 922086 898982 811287 929556 377005 168165 901196 272605 552102 090442 408710 674381 835780 823529 150107 709571 808173 278812 123779 682624 972801 239671 836574 080498 769918 440627 627130 326243 (397 digits)/103 925284 623721 132437 071611 874020 326125 266248 493970 648114 134022 025734 533473 819972 728943 802115 990779 722106 740385 244682 653526 556975 379757 144259 907617 783278 032319 205809 639852 672378 472343 635037 361349 283457 938657 020589 108994 427402 551920 272036 559930 822366 217453 041774 659875 747055 237080 526042 631291 209754 862695 989131 863508 258283 865603 829662 062580 205331 258124 320546 476949 199183 110816 753724 271965 080514 076060 (399 digits), a[773] = 9
                                                                                      A[774]/B[774] = 5 462729 422260 976104 033824 040929 864239 915109 352874 745299 809327 188514 171761 269568 624224 273702 573304 858924 330881 922435 692302 017686 988525 149668 918241 723086 075348 769542 773369 451982 701040 511263 437677 232105 037381 005015 908527 541980 914293 820178 431480 596749 699090 180416 218017 453933 641304 181076 286174 171838 655409 955284 960813 652782 693071 150476 749419 381156 542210 058570 503969 815237 008807 515872 455731 575318 281635 (397 digits)/530 941931 135192 167081 105257 639991 398251 279258 638870 414205 621687 347766 141210 430552 194556 581055 148209 382374 987669 347523 593146 969373 997802 790123 773819 878474 093367 314002 151434 866123 076420 686919 153022 160089 017455 372615 102112 191732 890987 402124 019675 675700 694195 479295 428055 868013 768951 036211 866614 060207 637768 586061 969768 103253 809059 812233 131677 615253 725444 550121 720007 222217 526828 697996 189833 545533 160807 (399 digits), a[774] = 5
                                                                                      A[775]/B[775] = 44 771096 773240 816402 870537 214701 241545 893841 657141 138495 696745 961243 930109 517130 917325 837599 920940 210246 932308 875155 737385 793772 819467 949040 102163 152878 154366 141017 108545 554595 433098 958775 279832 836206 533485 534788 712282 448498 669154 483514 350827 585285 522277 820334 912305 532665 403039 000712 379835 783419 917661 478060 510038 372369 254141 011987 274167 173032 020305 441365 271430 358470 150958 896898 086480 229676 579323 (398 digits)/4351 460733 705258 469085 913672 993951 512135 500317 604933 961759 107520 807863 663157 264390 285396 450557 176454 781106 641740 024871 398702 311967 362179 465250 098176 811070 779257 717826 851331 601363 083709 130390 585526 564170 078300 001509 925891 961265 679819 489028 717336 227971 771016 876138 084322 691165 388688 815737 564203 691415 964844 677627 621653 084314 338082 327527 116001 127361 061680 721520 237006 976923 325446 337693 790633 444779 362516 (400 digits), a[775] = 8
                                                                                      A[776]/B[776] = 184 547116 515224 241715 515972 899734 830423 490475 981439 299282 596311 033489 892199 338092 293527 624102 257065 699912 060117 423058 641845 192778 266396 945829 326894 334598 692813 333611 207551 670364 433436 346364 557008 576931 171323 144170 757657 335975 590911 754235 834790 937891 788201 461755 867239 584595 253460 183925 805517 305518 326055 867527 000967 142259 709635 198425 846088 073284 623431 824031 589691 249117 612643 103464 801652 494024 598927 (399 digits)/17936 784865 956226 043424 759949 615797 446793 280529 058606 261242 051770 579220 793839 488113 336142 383283 854028 506801 554629 447009 187956 217243 446520 651124 166527 122757 210398 185309 556761 271575 411257 208481 495128 416769 330655 378654 805680 036795 610265 358238 889020 587587 778262 983847 765346 632675 323706 299162 123428 825871 497147 296572 456380 440511 161389 122341 595682 124697 972167 436202 668035 129910 828614 048771 352367 324650 610871 (401 digits), a[776] = 4
                                                                                      A[777]/B[777] = 413 865329 803689 299833 902483 014170 902392 874793 620019 737060 889368 028223 714508 193315 504381 085804 435071 610071 052543 721273 021076 179329 352261 840698 755951 822075 539992 808239 523648 895324 299971 651504 393849 990068 876131 823130 227597 120449 850977 991986 020409 461069 098680 743846 646784 701855 909959 368563 990870 394456 569773 213114 511972 656888 673411 408838 966343 319601 267169 089428 450812 856705 376245 103827 689785 217725 777177 (399 digits)/40225 030465 617710 555935 433572 225546 405722 061375 722146 484243 211061 966305 250836 240616 957681 217124 884511 794709 750998 918889 774614 746454 255220 767498 431231 056585 200054 088445 964854 144513 906223 547353 575783 397708 739610 758819 537252 034856 900350 205506 495377 403147 327542 843833 615015 956516 036101 414061 811061 343158 959139 270772 534413 965336 660860 572210 307365 376757 006015 593925 573077 236744 982674 435236 495368 094080 584258 (401 digits), a[777] = 2
                                                                                      A[778]/B[778] = 1426 143105 926292 141217 223421 942247 537602 114856 841498 510465 264415 118161 035723 918038 806670 881515 562280 530125 217748 586877 705073 730766 323182 467925 594749 800825 312791 758329 778498 356337 333351 300877 738558 547137 799718 613561 440448 697325 143845 730193 896019 321099 084243 693295 807593 690162 983338 289617 778128 488888 035375 506870 536885 112925 729869 424942 745118 032088 424939 092316 942129 819233 741378 414947 871008 147201 930458 (400 digits)/138611 876262 809357 711231 060666 292436 663959 464656 225045 713971 684956 478136 546348 209964 209186 034658 507563 890930 807626 203678 511800 456606 212182 953619 460220 292512 810560 450647 451323 705117 129927 850542 222478 609895 549487 655113 417436 141366 311315 974758 375152 797029 760891 515348 610394 502223 432010 541347 556612 855348 374565 108890 059622 336521 143970 838972 517778 254968 990214 217979 387266 840145 776637 354480 838471 606892 363645 (402 digits), a[778] = 3
                                                                                      A[779]/B[779] = 1840 008435 729981 441051 125904 956418 439994 989650 461518 247526 153783 146384 750232 111354 311051 967319 997352 140196 270292 308150 726149 910095 675444 308624 350701 622900 852784 566569 302147 251661 633322 952382 132408 537206 675850 436691 668045 817774 994823 722179 916428 782168 182924 437142 454378 392018 893297 658181 768998 883344 605148 719985 048857 769814 403280 833781 711461 351689 692108 181745 392942 675939 117623 518775 560793 364927 707635 (400 digits)/178836 906728 427068 267166 494238 517983 069681 526031 947192 198214 896018 444441 797184 450581 166867 251783 392075 685640 558625 122568 286415 203060 467403 721117 891451 349098 010614 539093 416177 849631 036151 397895 798262 007604 289098 413932 954688 176223 211666 180264 870530 200177 088434 359182 225410 458739 468111 955409 367674 198507 333704 379662 594036 301857 804831 411182 825143 631725 996229 811904 960344 076890 759311 789717 333839 700972 947903 (402 digits), a[779] = 1
                                                                                      A[780]/B[780] = 5106 159977 386255 023319 475231 855084 417592 094157 764535 005517 571981 410930 536188 140747 428774 816155 556984 810517 758333 203179 157373 550957 674071 085174 296153 046627 018360 891468 382792 859660 599997 205642 003375 621551 151419 486944 776540 332875 133493 174553 728876 885435 450092 567580 716350 474200 769933 605981 316126 255577 245672 946840 634600 652554 536431 092506 168040 735467 809155 455807 728015 171111 976625 452498 992594 877057 345728 (400 digits)/496285 689719 663494 245564 049143 328402 803322 516720 119430 110401 476993 367020 140717 111126 542920 538225 291715 262211 924876 448815 084630 862727 146990 395855 243122 990708 831789 528834 283679 404379 202230 646333 819002 625104 127684 482979 326812 493812 734648 335288 116213 197383 937760 233713 061215 419702 368234 452166 291961 252363 041973 868215 247694 940236 753633 661338 168065 518420 982673 841789 307954 993927 295260 933915 506151 008838 259451 (402 digits), a[780] = 2
                                                                                      A[781]/B[781] = 6946 168413 116236 464370 601136 811502 857587 083808 226053 253043 725764 557315 286420 252101 739826 783475 554336 950714 028625 511329 883523 461053 349515 393798 646854 669527 871145 458037 684940 111322 233320 158024 135784 158757 827269 923636 444586 150650 128316 896733 645305 667603 633017 004723 170728 866219 663231 264163 085125 138921 850821 666825 683458 422368 939711 926287 879502 087157 501263 637553 120957 847051 094248 971274 553388 241985 053363 (400 digits)/675122 596448 090562 512730 543381 846385 873004 042752 066622 308616 373011 811461 937901 561707 709787 790008 683790 947852 483501 571383 371046 065787 614394 116973 134574 339806 842404 067927 699857 254010 238382 044229 617264 632708 416782 896912 281500 670035 946314 515552 986743 397561 026194 592895 286625 878441 836346 407575 659635 450870 375678 247877 841731 242094 558465 072520 993209 150146 978903 653694 268299 070818 054572 723632 839990 709811 207354 (402 digits), a[781] = 1
                                                                                      A[782]/B[782] = 32890 833629 851200 880801 879779 101095 847940 429390 668748 017692 475039 640191 681869 149154 388081 950057 774332 613373 872835 248498 691467 395171 072132 660368 883571 724738 502942 723619 122553 304949 533277 837738 546512 256582 460499 181490 554884 935475 646760 761488 310099 555849 982160 586473 399265 939079 422858 662633 656626 811264 648959 614143 368434 342030 295278 797657 686049 084097 814210 006020 211846 559316 353621 337597 206147 844997 559180 (401 digits)/3 196776 075512 025744 296486 222670 713946 295338 687728 385919 344866 969040 612867 892323 357957 382071 698260 026879 053621 858882 734348 568815 125877 604566 863747 781420 349936 201405 800545 083108 420420 155758 823252 288061 155937 794816 070628 452815 173956 519906 397500 063186 787628 042538 605294 207718 933469 713620 082468 930503 055844 544686 859726 614619 908614 987493 951422 140902 119008 898288 456566 381151 277199 513551 828446 866113 848083 088867 (403 digits), a[782] = 4
                                                                                      A[783]/B[783] = 39837 002042 967437 345172 480915 912598 705527 513198 894801 270736 200804 197506 968289 401256 127908 733533 328669 564087 901460 759828 574990 856224 421648 054167 530426 394266 374088 181656 807493 416271 766597 995762 682296 415340 287769 105126 999471 086125 775077 658221 955405 223453 615177 591196 569994 805299 086089 926796 741751 950186 499781 280969 051892 764399 234990 723945 565551 171255 315473 643573 332804 406367 447870 308871 759536 086982 612543 (401 digits)/3 871898 671960 116306 809216 766052 560332 168342 730480 452541 653483 342052 424329 830224 919665 091859 488268 710670 001474 342384 305731 939861 191665 218960 980720 915994 689743 043809 868472 782965 674430 394140 867481 905325 788646 211598 967540 734315 843992 466220 913053 049930 185189 068733 198189 494344 811911 549966 490044 590138 506714 920365 107604 456351 150709 545959 023943 134111 269155 877192 110260 649450 348017 568124 552079 706104 557894 296221 (403 digits), a[783] = 1
                                                                                      A[784]/B[784] = 271912 845887 655824 951836 765274 576688 081105 508584 037555 642109 679864 825233 491605 556691 155534 351257 746349 997901 281599 807470 141412 532517 602020 985374 066130 090336 747471 813559 967513 802580 132865 812314 640290 748624 187113 812252 551711 452230 297226 710820 042530 896571 673226 133652 819234 770873 939398 223414 107138 512383 647647 299957 679790 928425 705223 141331 079356 111629 707051 867460 208672 997521 040843 190827 763364 366893 234438 (402 digits)/26 428168 107272 723585 151786 818986 075939 305395 070611 101169 265767 021355 158846 873672 875947 933228 627872 290899 062467 913188 568740 207982 275868 918332 748073 277388 488394 464265 011381 780902 467002 520604 028143 720015 887815 064409 875872 858710 237911 317231 875818 362767 898762 454937 794431 173787 804939 013419 022736 471334 096134 066877 505353 352726 812872 263248 095080 945569 733944 161441 118130 277853 365304 922299 140925 102741 195448 866193 (404 digits), a[784] = 6
                                                                                      A[785]/B[785] = 311749 847930 623262 297009 246190 489286 786633 021782 932356 912845 880669 022740 459894 957947 283443 084791 075019 561989 183060 567298 716403 388742 023669 039541 596556 484603 121559 995216 775007 218851 899463 808077 322587 163964 474882 917379 551182 538356 072304 369041 997936 120025 288403 724849 389229 576173 025488 150210 848890 462570 147428 580926 731683 692824 940213 865276 644907 282885 022525 511033 541477 403888 488713 499699 522900 453875 846981 (402 digits)/30 300066 779232 839891 961003 585038 636271 473737 801091 553710 919250 363407 583176 703897 795613 025088 116141 001569 063942 255572 874472 147843 467534 137293 728794 193383 178137 508074 879854 563868 141432 914744 895625 625341 676461 276008 843413 593026 081903 783452 788871 412698 083951 523670 992620 668132 616850 563385 512781 061472 602848 987242 612957 809077 963581 809207 119024 079681 003100 038633 228390 927303 713322 490423 693004 808845 753343 162414 (404 digits), a[785] = 1
                                                                                      A[786]/B[786] = 1 207162 389679 525611 842864 503846 044548 441004 573932 834626 380647 321871 893454 871290 430533 005863 605630 971408 683868 830781 509366 290622 698743 673028 103998 855799 544146 112151 799210 292535 459135 831257 236546 608052 240517 611762 564391 205259 067298 514139 817946 036339 256647 538437 308200 986923 499393 015862 674046 653809 900094 089933 042737 874842 006900 525864 737161 014077 960284 774628 400560 833105 209186 506983 689926 332065 728520 775381 (403 digits)/117 328368 444971 243261 034797 574101 984753 726608 473885 762302 023518 111577 908376 985366 262787 008492 976295 295606 254294 679907 192156 651512 678471 330213 934455 857538 022806 988489 650945 472506 891301 264838 715020 596040 917198 892436 406113 637788 483622 667590 242432 600862 150617 025950 772293 178185 655490 703575 561079 655751 904681 028605 344226 779960 703617 690869 452153 184612 743244 277340 803303 059764 505272 393570 219939 529278 455478 353435 (405 digits), a[786] = 3
                                                                                      A[787]/B[787] = 5 140399 406648 725709 668467 261574 667480 550651 317514 270862 435435 168156 596559 945056 680079 306897 507314 960654 297464 506186 604763 878894 183716 715781 455537 019754 661187 570167 192057 945149 055395 224492 754263 754796 126034 921933 174944 372218 807550 128863 640826 143293 146615 442152 957653 336923 573745 088938 846397 464130 062946 507160 751878 231051 720427 043672 813920 701219 124024 121039 113276 873898 240634 516648 259404 851163 367958 948505 (403 digits)/499 613540 559117 812936 100193 881446 575286 380171 696634 602919 013322 809719 216684 645362 846761 059060 021322 183994 081120 975201 643098 753894 181419 458149 466617 623535 269365 462033 483636 453895 706637 974099 755708 009505 345256 845754 467868 144180 016394 453813 758601 816146 686419 627474 081793 380875 238813 377687 757099 684480 221573 101663 989864 928920 778052 572684 927636 818131 976077 147996 441603 166361 734412 064704 572762 925959 575256 576154 (405 digits), a[787] = 4
                                                                                      A[788]/B[788] = 16 628360 609625 702740 848266 288570 046990 092958 526475 647213 686952 826341 683134 706460 470770 926556 127575 853371 576262 349341 323657 927305 249893 820372 470609 915063 527708 822653 375384 127982 625321 504735 499337 872440 618622 377562 089224 321915 489948 900730 740424 466218 696493 864896 181160 997694 220628 282679 213239 046200 088933 611415 298372 567997 168181 656883 178923 117735 332357 137745 740391 454799 931090 056928 468140 885555 832397 620896 (404 digits)/1616 168990 122324 682069 335379 218441 710612 867123 563789 571059 063486 540735 558430 921454 803070 185673 040261 847588 497657 605512 121452 913195 222729 704662 334308 728143 830903 374590 101854 834194 011215 187137 982144 624556 952969 429699 809718 070328 532806 029031 518238 049302 209875 908373 017673 320811 371930 836638 832378 709192 569400 333597 313821 566723 037775 408924 235063 639008 671475 721330 128112 558849 708508 587683 938228 307157 181248 081897 (406 digits), a[788] = 3
                                                                                      A[789]/B[789] = 55 025481 235525 833932 213266 127284 808450 829526 896941 212503 496293 647181 645964 064438 092392 086565 890042 520769 026251 554210 575737 660809 933398 176898 867366 764945 244314 038127 318210 329096 931359 738699 252277 372117 981902 054619 442617 337965 277396 831055 862099 541949 236097 036841 501136 330006 235629 936976 486114 602730 329747 341406 646995 935043 224972 014322 350690 054425 121095 534276 334451 238298 033904 687433 663827 507830 865151 811193 (404 digits)/5348 120510 926091 859144 106331 536771 707124 981542 388003 316096 203782 431925 891977 409727 255971 616079 142107 726759 574093 791738 007457 493479 849608 572136 469543 807966 762075 585803 789200 956477 740283 535513 702141 883176 204165 134853 897022 355165 614812 540908 313315 964053 316047 352593 134813 343309 354605 887604 254235 812057 929774 102455 931329 629089 891378 799457 632827 735157 990504 311986 825940 842910 859937 827756 387447 847431 119000 821845 (406 digits), a[789] = 3
                                                                                      A[790]/B[790] = 731 959616 671461 543859 620725 943272 556850 876808 186711 409759 138770 239703 080667 544155 671868 051912 698128 623368 917532 554078 808247 517834 384070 120057 746377 859351 703791 318308 512118 406242 732998 107825 778943 709974 383349 087614 843249 715464 096107 704456 947718 511558 765755 343835 695933 287775 283817 463373 532728 881694 375649 049701 709319 723559 092817 843073 737893 825261 906599 083338 088257 552674 371850 993566 097898 487357 079371 166405 (405 digits)/71141 735632 161518 850942 717689 196473 903237 627174 607832 680309 712658 155772 154137 247909 130701 194701 887662 295462 960876 898106 218400 328433 267641 142436 438378 231711 737885 990039 361467 268404 634901 148816 109989 105847 607116 182800 471008 687481 525369 060839 591345 581995 318491 492083 770246 783832 981807 375494 137444 265945 656463 665524 421106 744891 625699 801873 461824 196062 548031 777158 865343 516690 887700 348516 975050 323761 728258 765882 (407 digits), a[790] = 13
                                                                                      A[791]/B[791] = 8106 581264 621602 816388 041251 503282 933810 474416 950766 719854 022766 283915 533307 050150 482940 657605 569457 377827 119109 649077 466460 356988 158169 497534 077523 217813 986018 539520 951512 797766 994338 924782 820658 181836 198742 018382 718364 208070 334581 580082 287003 169095 659405 819034 156402 495534 357622 034085 346132 301368 461886 888125 449512 894193 245968 288133 467522 132306 093685 450995 305284 317716 124265 616660 740710 868758 738234 641648 (406 digits)/787907 212464 702799 219514 000912 697984 642738 880463 074162 799503 043022 145419 587487 136727 693684 757799 906392 976852 143739 670906 409861 106245 793661 138937 291704 356795 878821 476236 765340 908928 724196 172490 912022 047499 882443 145659 078117 917462 393872 210143 818117 366001 819453 765514 607527 965472 154487 018039 766122 737460 150874 423224 563503 822897 774076 620065 712893 891846 018853 860734 344719 526510 624641 661443 113001 408810 129847 246547 (408 digits), a[791] = 11
                                                                                      A[792]/B[792] = 98010 934792 130695 340516 115743 982667 762576 569811 595912 048007 411965 646689 480352 145961 467155 943179 531617 157294 346848 343008 405771 801692 282104 090466 676656 473119 536013 792559 930271 979446 665065 205219 626841 892008 768253 308207 463620 212308 111086 665444 391756 540706 678625 172245 572763 234187 575281 872397 686316 498115 918291 707207 103474 453878 044437 300675 348159 412935 030824 495281 751669 365267 863038 393494 986428 912461 938186 866181 (407 digits)/9 526028 285208 595109 485110 728641 572289 616104 192731 497786 274346 228923 900807 203982 888641 454918 288300 764378 017688 685752 948983 136733 603382 791574 809683 938830 513262 283743 704880 545558 175549 325255 218707 054253 675846 196433 930709 408423 697030 251835 582565 408753 974017 151936 678259 060582 369498 835651 591971 330917 115467 466956 744219 183152 619664 914619 242662 016550 898214 774278 105971 001977 834818 383400 285834 331067 229483 286425 724446 (409 digits), a[792] = 12
                                                                                      A[793]/B[793] = 1 184237 798770 189946 902581 430179 295296 084729 312156 101711 295942 966354 044189 297532 801688 088811 975759 948863 265359 281289 765178 335721 977295 543418 583134 197400 895248 418184 050240 114776 551126 975121 387418 342760 885941 417781 716872 281806 755767 667621 565414 988081 657575 802907 885981 029561 305785 261004 502857 581930 278759 481387 374610 691206 340729 779215 896237 645435 087526 463579 394376 325316 700930 480726 338600 577857 818301 996477 035820 (409 digits)/115 100246 634967 844113 040842 744611 565460 035989 193241 047598 091657 790108 955106 035281 800425 152704 217409 078929 189116 372775 058704 050664 346839 292558 855144 557670 515943 283745 934803 312039 015520 627258 796975 563066 157654 239650 314171 979202 281825 415899 200928 723165 054207 642693 904623 334516 399458 182306 121695 737128 123069 754355 353854 761335 258876 749507 532009 911504 670423 310191 132386 368453 544331 225445 091455 085808 162609 566955 939899 (411 digits), a[793] = 12
                                                                                      A[794]/B[794] = 60 494138 672071 817987 372169 054888 042768 083771 489772 783188 141098 696021 900343 654525 032053 996566 706936 923643 690617 692626 367103 527592 643764 996451 830310 744102 130788 863400 354805 783876 086922 396255 963555 107647 075021 075120 868693 835764 756459 159786 501608 783921 077072 626927 357278 080389 829235 886511 518134 364760 714849 469047 812352 354997 831096 784448 008795 265348 876784 673373 608474 342821 112722 380081 662124 457177 645863 758515 693001 (410 digits)/5879 638606 668568 644874 568090 703831 410751 451553 048024 925288 948893 524480 611215 003354 710324 242833 376163 789766 662623 697280 942889 720615 292186 712076 422056 380026 826369 754786 379849 459547 967101 315453 864460 770627 716212 418599 953480 347740 070126 462694 829930 290171 738606 929325 814049 120918 741866 133263 798453 924451 392024 939079 790812 011250 822379 139503 375167 503289 089803 594025 857675 793108 595710 881099 950043 707283 522571 201178 659295 (412 digits), a[794] = 51
                                                                                      A[795]/B[795] = 61 678376 470842 007934 274750 485067 338064 168500 801928 884899 437041 662375 944532 952057 833742 085378 682696 872506 955976 973916 132281 863314 621060 539870 413444 941503 026037 281584 405045 898652 638049 371377 350973 450407 960962 492902 585566 117571 512226 827408 067023 772002 734648 429835 243259 109951 135021 147516 020991 946690 993608 950435 186963 046204 171826 563663 905032 910783 964311 136953 002850 668137 813652 860808 000725 035035 464165 754992 728821 (410 digits)/5994 738853 303536 488987 608933 448442 976211 487542 241265 972887 040551 314589 566321 038636 510749 395537 593572 868695 851740 070056 001593 771279 639026 004635 277200 937697 342313 038532 314652 771586 982621 942712 661436 333693 873866 658250 267652 326942 351951 878594 030859 013336 792814 572019 718672 455435 141324 315569 920149 661579 515094 693435 144666 772586 081255 889010 907177 414793 760226 904216 990062 161562 140042 106545 041498 793091 685180 768134 599194 (412 digits), a[795] = 1
                                                                                      A[796]/B[796] = 862 313032 793017 921132 943925 360763 437602 274281 914848 286880 822640 306909 179272 031276 870701 106489 581996 266234 118318 353536 086767 750682 717552 014767 205094 983641 469273 523997 620402 466360 381564 224161 526209 962950 567533 482854 481053 364194 415407 916091 372917 819956 627502 214785 519646 509754 584510 804219 791029 671743 631765 824705 242871 955652 064842 112078 774223 105540 412829 453762 645533 028612 690209 570585 671549 912638 680018 573421 167674 (411 digits)/83811 243699 614543 001713 484225 533590 101500 789602 184482 572820 476060 614144 973388 505629 350066 384822 092611 082812 735244 608008 963608 747250 599524 772335 025668 570092 276439 255706 470335 490178 741186 570718 463133 108648 076478 975853 432960 597990 645500 884417 231097 463550 045196 365582 156791 041575 579082 235672 760399 524985 088255 953736 671480 054869 878705 696645 168473 895607 972753 348846 728483 893416 416258 266185 489528 017475 429921 186928 448817 (413 digits), a[796] = 13
                                                                                      A[797]/B[797] = 923 991409 263859 929067 218675 845830 775666 442782 716777 171780 259681 969285 123804 983334 704443 191868 264693 138741 074295 327452 219049 613997 338612 554637 618539 925144 495310 805582 025448 365013 019613 595538 877183 413358 528495 975757 066619 481765 927634 743499 439941 591959 362150 644620 762905 619705 719531 951735 812021 618434 625374 775140 429835 001856 236668 675742 679256 016324 377140 590715 648383 696750 503862 431393 672274 947674 144184 328413 896495 (411 digits)/89805 982552 918079 490701 093158 982033 077712 277144 425748 545707 516611 928734 539709 544265 860815 780359 686183 951508 586984 678064 965202 518530 238550 776970 302869 507789 618752 294238 784988 261765 723808 513431 124569 442341 950345 634103 700612 924932 997452 763011 261956 476886 838010 937601 875463 497010 720406 551242 680549 186564 603350 647171 816146 827455 959961 585656 075651 310401 732980 253063 718546 054978 556300 372730 531026 810567 115101 955063 048011 (413 digits), a[797] = 1
                                                                                      A[798]/B[798] = 1786 304442 056877 850200 162601 206594 213268 717064 631625 458661 082322 276194 303077 014611 575144 298357 846689 404975 192613 680988 305817 364680 056164 569404 823634 908785 964584 329579 645850 831373 401177 819700 403393 376309 096029 458611 547672 845960 343042 659590 812859 411915 989652 859406 282552 129460 304042 755955 603051 290178 257140 599845 672706 957508 301510 787821 453479 121864 789970 044478 293916 725363 194072 001979 343824 860312 824202 901835 064169 (412 digits)/173617 226252 532622 492414 577384 515623 179213 066746 610231 118527 992672 542879 513098 049895 210882 165181 778795 034321 322229 286073 928811 265780 838075 549305 328538 077881 895191 549945 255323 751944 464995 084149 587702 550990 026824 609957 133573 522923 642953 647428 493053 940436 883207 303184 032254 538586 299488 786915 440948 711549 691606 600908 487626 882325 838667 282301 244125 206009 705733 601910 447029 948394 972558 638916 020554 828042 545023 141991 496828 (414 digits), a[798] = 1
                                                                                      A[799]/B[799] = 9855 513619 548249 180068 031681 878801 842010 028105 874904 465085 671293 350256 639190 056392 580164 683657 498140 163617 037363 732393 748136 437397 619435 401661 736714 469074 318232 453480 254702 521880 025502 694040 894150 294904 008643 268814 804983 711567 642848 041453 504238 651539 310414 941652 175666 267007 239745 731513 827278 069325 911077 774368 793369 789397 744222 614849 946651 625648 326990 813107 117967 323566 474222 441290 391399 249238 265198 837589 217340 (412 digits)/957892 113815 581191 952773 980081 560148 973777 610877 476904 138347 479974 643132 105199 793741 915226 606268 580159 123115 198131 108434 609258 847434 428928 523496 945559 897199 094710 043965 061607 021488 048783 934179 063082 197292 084468 683889 368480 539551 212221 000153 727226 179071 254047 453522 036736 189942 217850 485819 885292 744313 061383 651714 254281 239085 153297 997162 296277 340450 261648 262615 953695 796953 419093 567310 633800 950779 840217 665020 532151 (414 digits), a[799] = 5
                                                                                      A[800]/B[800] = 169330 035974 377113 911356 701193 146225 527439 194864 505001 365117 494309 230557 169307 973285 437943 920535 315072 186464 827797 131682 024136 800439 586566 397654 347780 883049 374536 038743 975793 703333 834723 618395 603948 389677 242965 028463 232395 942610 271459 364300 384916 488084 266706 867493 268878 668583 379720 191690 666778 468718 745462 764115 159993 377269 953295 240270 546556 757886 348813 867299 299361 225993 255853 503915 997612 097363 332583 140851 758949 (414 digits)/16 457783 161117 412885 689572 238771 038155 733432 451663 717601 470435 152241 476125 301494 543507 769734 471747 641500 127279 690458 129462 286211 672166 129860 448753 403056 330266 505262 297351 302643 117241 294321 965193 660099 904955 462792 236076 397742 695294 250710 650041 855898 984648 202014 013058 656769 767604 002947 045853 490925 364871 735128 680050 810407 946773 444733 234060 280839 993664 153754 066381 659858 496603 097149 283196 795170 991299 828723 447340 543395 (416 digits), a[800] = 17
                                                                                      A[801]/B[801] = 4 073776 377004 598983 052628 860317 388214 500550 704853 994937 227905 534714 883628 702581 415243 090818 776505 059872 638772 904494 892762 327419 647947 697028 945366 083455 662259 307097 383335 673751 401892 058869 535535 388911 647157 839803 951932 382486 334214 157872 784662 742234 365561 711379 761490 628754 313008 353030 332089 829961 318575 802184 113132 633210 843876 623308 381343 064013 814920 698523 628290 302636 747404 614706 535274 334089 585958 247194 218031 432116 (415 digits)/395 944687 980633 490448 502507 710586 475886 576156 450806 699339 428791 133770 070139 341068 837928 388853 928211 976162 177827 769126 215529 478338 979421 545579 293578 618911 823595 221005 180396 325041 835279 112511 098826 905479 916223 191482 349722 914305 226613 229276 601158 268801 810628 102383 766929 799210 612438 288579 586303 667501 501234 704471 972933 704071 961647 826895 614609 036437 188389 951745 855775 790299 715427 750676 364033 717904 741975 729580 401193 573631 (417 digits), a[801] = 24
                                                                                      A[802]/B[802] = 4 243106 412978 976096 963985 561510 534440 027989 899718 499938 593023 029024 114185 871889 388528 528762 697040 374944 825237 732292 024444 351556 448387 283595 343020 431236 545308 681633 422079 649545 105225 893593 153930 992860 036835 082768 980395 614882 276824 429332 148963 127150 853645 978086 628983 897632 981591 732750 523780 496739 787294 547646 877247 793204 221146 576603 621613 610570 572807 047337 495589 601997 973397 870560 039190 331701 683321 579777 358883 191065 (415 digits)/412 402471 141750 903334 192079 949357 514042 309588 902470 416940 899226 286011 546264 642563 381436 158588 399959 617662 305107 459584 344991 764550 651587 675439 742332 021968 153861 726267 477747 627684 952520 406833 064020 565579 821178 654274 585799 312047 921907 479987 251200 124700 795276 304397 779988 455980 380042 291526 632157 158426 866106 439600 652984 514479 908421 271628 848669 317277 182054 105499 922157 450158 212030 847825 647230 513075 733275 558303 848534 117026 (417 digits), a[802] = 1
                                                                                      A[803]/B[803] = 8 316882 789983 575080 016614 421827 922654 528540 604572 494875 820928 563738 997814 574470 803771 619581 473545 434817 464010 636786 917206 678976 096334 980624 288386 514692 207567 988730 805415 323296 507117 952462 689466 381771 683992 922572 932327 997368 611038 587204 933625 869385 219207 689466 390474 526387 294600 085780 855870 326701 105870 349830 990380 426415 065023 199912 002956 674584 387727 745861 123879 904634 720802 485266 574464 665791 269279 826971 576914 623181 (415 digits)/808 347159 122384 393782 694587 659943 989928 885745 353277 116280 328017 419781 616403 983632 219364 547442 328171 593824 482935 228710 560521 242889 631009 221019 035910 640879 977456 947272 658143 952726 787799 519344 162847 471059 737401 845756 935522 226353 148520 709263 852358 393502 605904 406781 546918 255190 992480 580106 218460 825928 367341 144072 625918 218551 870069 098524 463278 353714 370444 057245 777933 240457 927458 598502 011264 230980 475251 287884 249727 690657 (417 digits), a[803] = 1
                                                                                      A[804]/B[804] = 95 728817 102798 301977 146744 201617 683639 841936 550015 943572 623237 230153 090146 191068 230016 344158 906040 157936 929354 736948 113717 820293 508072 070462 515272 092850 828556 557672 281648 205806 683523 370682 738061 192348 560757 231071 236003 585936 998248 888586 418847 690388 264930 562216 924203 687893 222192 676339 938354 090451 951868 395787 771432 483769 936401 775635 654137 030998 837812 251809 858268 552979 902225 208492 358301 655405 645399 676464 704944 046056 (416 digits)/9304 221221 487979 234943 832544 208741 403260 052787 788518 696024 507417 903609 326708 462517 794446 180454 009847 149731 617394 975400 510725 436336 592689 106649 137349 071647 905888 146266 717331 107679 618315 119618 855342 747236 932598 957600 876543 801932 555635 281889 627142 453229 460224 778994 796089 263081 297328 672695 035226 243638 906859 024399 538084 918550 479181 355397 944731 208135 256938 735203 479423 095195 414075 431347 771137 053860 961039 725030 595538 714253 (418 digits), a[804] = 11
                                                                                      A[805]/B[805] = 295 503334 098378 481011 456847 026680 973574 054350 254620 325593 690640 254198 268253 147675 493820 652058 191665 908628 252074 847631 258360 139856 620551 192011 834202 793244 693237 661747 650359 940716 557688 064510 903649 958817 366264 615786 640338 755179 605785 252964 190168 940550 013999 376117 163085 590066 961178 114800 670932 598056 961475 537194 304677 877724 874228 526818 965367 767580 901164 501290 698685 563574 427478 110743 649369 632008 205478 856365 691746 761349 (417 digits)/28721 010823 586322 098614 192220 286168 199709 044108 718833 204353 850271 130609 596529 371185 602703 088804 357713 043019 335120 154912 092697 551899 409076 540966 447957 855823 695121 386072 810137 275765 642744 878200 728875 712770 535198 718559 565153 632150 815426 554932 733785 753190 986578 743765 935186 044434 884466 598191 324139 556845 087918 217271 240172 974203 307613 164718 297471 978120 141260 262856 216202 526044 169684 892545 324675 392563 358370 462976 036343 833416 (419 digits), a[805] = 3
                                                                                      A[806]/B[806] = 686 735485 299555 264000 060438 254979 630787 950637 059256 594760 004517 738549 626652 486419 217657 648275 289371 975193 433504 432210 630438 100006 749174 454486 183677 679340 215031 881167 582368 087239 798899 499704 545361 109983 293286 462644 516681 096296 209819 394514 799185 571488 292929 314451 250374 868027 144548 905941 280219 286565 874819 470176 380788 239219 684858 829273 584872 566160 640141 254391 255639 680128 757181 429979 657040 919422 056357 389196 088437 568754 (417 digits)/66746 242868 660623 432172 216984 781077 802678 141005 226185 104732 207960 164828 519767 204888 999852 358062 725273 235770 287635 285224 696120 540135 410842 188582 033264 783295 296130 918412 337605 659210 903804 876020 313094 172778 002996 394720 006851 066234 186488 391755 094713 959611 433382 266526 666461 351951 066261 869077 683505 357329 082695 458942 018430 866957 094407 684834 539675 164375 539459 260915 911828 147283 753445 216438 420487 838987 677780 650982 668226 381085 (419 digits), a[806] = 2
                                                                                      A[807]/B[807] = 12656 742069 490373 233012 544735 616314 327757 165817 321239 031273 771959 548091 547997 903221 411658 321013 400361 462110 055154 627422 606245 939978 105691 372763 140401 021368 563811 522764 132985 511032 937879 059192 720149 938516 645420 943387 940598 488511 382534 354230 575509 227339 286727 036239 669833 214555 563058 421743 714879 756242 708226 000369 158866 183679 201687 453743 493073 958472 423707 080333 300199 805892 056743 850377 476106 181605 219911 861895 283622 998921 (419 digits)/1 230153 382459 477543 877714 097946 345568 647915 582202 790165 089533 593554 097522 952339 059187 600045 533933 412631 286884 512555 288956 622867 274336 804235 935443 046723 955139 025477 917494 887039 141561 911232 646566 364570 822774 589133 823519 688472 824366 172217 606524 438637 026196 787459 541245 931490 379554 077180 241589 627235 988768 576436 478227 571928 579431 006951 491740 011624 936879 851526 959342 629109 177151 731698 788436 893456 494341 558422 180664 064418 692946 (421 digits), a[807] = 18
                                                                                      A[808]/B[808] = 76627 187902 241794 662075 328851 952865 597330 945540 986690 782402 636275 027098 914639 905747 687607 574355 691540 747853 764432 196746 267913 739875 383322 691065 026083 807551 597901 017752 380281 153437 426173 854860 866260 741083 165812 122972 160272 027364 505025 519898 252240 935524 013291 531889 269374 155360 522899 436403 569497 824022 124175 472391 333985 341294 894983 551734 543316 316995 182383 736391 056838 515481 097644 532244 513678 009053 375828 560567 790175 562280 (419 digits)/7 447666 537625 525886 698456 804662 854489 690171 634221 967175 641933 769284 749966 233801 560014 600125 561663 201060 957077 362967 018964 433324 186156 236257 801240 313608 514129 448998 423381 659840 508582 371200 755418 500519 109425 537799 335838 137688 012431 219794 030901 726536 116792 158139 514002 255403 629275 529343 318615 446921 289940 541314 328307 450002 343543 136116 635274 609424 785654 648621 016971 686483 210194 143637 947059 781226 805037 028313 734967 054738 538761 (421 digits), a[808] = 6
                                                                                      A[809]/B[809] = 242538 305776 215757 219238 531291 474911 119750 002440 281311 378481 680784 629388 291917 620464 474481 044080 474983 705671 348451 217661 409987 159604 255659 445958 218652 444023 357514 576021 273828 971345 216400 623775 318932 161766 142857 312304 421414 570604 897610 913925 332232 033911 326601 631907 477955 680637 131756 730954 423373 228309 080752 417543 160822 207563 886638 108947 123022 909457 970858 289506 470715 352335 349677 447111 017140 208765 347397 543598 654149 685761 (420 digits)/23 573152 995336 055203 973084 511934 909037 718430 484868 691692 015334 901408 347421 653743 739231 400422 218923 015814 158116 601456 345849 922839 832805 513009 339163 987549 497527 372473 187639 866560 667309 024834 912821 866128 151051 202531 831034 101536 861659 831599 699229 618245 376573 261878 083252 697701 267380 665210 197435 967999 858590 200379 463149 921935 610060 415301 397563 839899 293843 797390 010257 688558 807734 162612 629616 237136 909452 643363 385565 228634 309229 (422 digits), a[809] = 3
                                                                                      A[810]/B[810] = 319165 493678 457551 881313 860143 427776 717080 947981 268002 160884 317059 656487 206557 526212 162088 618436 166524 453525 112883 414407 677900 899479 638982 137023 244736 251574 955415 593773 654110 124782 642574 478636 185192 902849 308669 435276 581686 597969 402636 433823 584472 969435 339893 163796 747329 835997 654656 167357 992871 052331 204927 889934 494807 548858 781621 660681 666339 226453 153242 025897 527553 867816 447321 979355 530818 217818 723226 104166 444325 248041 (420 digits)/31 020819 532961 581090 671541 316597 763527 408602 119090 658867 657268 670693 097387 887545 299246 000547 780586 216875 115193 964423 364814 356164 018961 749267 140404 301158 011656 821471 611021 526401 175891 396035 668240 366647 260476 740331 166872 239224 874091 051393 730131 344781 493365 420017 597254 953104 896656 194553 516051 414921 148530 741693 791457 371937 953603 551418 032838 449324 079498 446011 027229 375042 017928 306250 576676 018363 714489 671677 120532 283372 847990 (422 digits), a[810] = 1
                                                                                      A[811]/B[811] = 880869 293133 130860 981866 251578 330464 553911 898402 817315 700250 314903 942362 705032 672888 798658 280952 808032 612721 574218 046476 765788 958563 533623 720004 708124 947173 268345 763568 582049 220910 501549 581047 689317 967464 760196 182857 584787 766543 702883 781572 501177 972782 006387 959500 972615 352632 441069 065670 409115 332971 490608 197412 150437 305281 449881 430310 455701 362364 277342 341301 525823 087968 244321 405822 078776 644402 793849 751931 542800 181843 (420 digits)/85 614792 061259 217385 316167 145130 436092 535634 723050 009427 329872 242794 542197 428834 337723 401517 780095 449564 388504 530303 075478 635167 870729 011543 619972 589865 520841 015416 409682 919363 019091 816906 249302 599422 672004 683194 164778 579986 609841 934387 159492 307808 363304 101913 277762 603911 060693 054317 229538 797842 155651 683767 046064 665811 517267 518137 463240 738547 452840 689412 064716 438642 843590 775113 782968 273864 338431 986717 626629 795380 005209 (422 digits), a[811] = 2
                                                                                      A[812]/B[812] = 1 200034 786811 588412 863180 111721 758241 270992 846384 085317 861134 631963 598849 911590 199100 960746 899388 974557 066246 687101 460884 443689 858043 172605 857027 952861 198748 223761 357342 236159 345693 144124 059683 874510 870314 068865 618134 166474 364513 105520 215396 085650 942217 346281 123297 719945 188630 095725 233028 401986 385302 695536 087346 645244 854140 231503 090992 122040 588817 430584 367199 053376 955784 691643 385177 609594 862221 517075 856097 987125 429884 (421 digits)/116 635611 594220 798475 987708 461728 199619 944236 842140 668294 987140 913487 639585 316379 636969 402065 560681 666439 503698 494726 440292 991331 889690 760810 760376 891023 532497 836888 020704 445764 194983 212941 917542 966069 932481 423525 331650 819211 483932 985780 889623 652589 856669 521930 875017 557015 957349 248870 745590 212763 304182 425460 837522 037749 470871 069555 496079 187871 532339 135423 091945 813684 861519 081364 359644 292228 052921 658394 747162 078752 853199 (423 digits), a[812] = 1
                                                                                      A[813]/B[813] = 3 280938 866756 307686 708226 475021 846947 095897 591170 987951 422519 578831 140062 528213 071090 720152 079730 757146 745214 948420 968245 653168 674649 878835 434060 613847 344669 715868 478253 054367 912296 789797 700415 438339 708092 897927 419125 917736 495569 913924 212364 672479 857216 698950 206096 412505 729892 632519 531727 213088 103576 881680 372105 440927 013561 912887 612294 699782 539999 138511 075699 632576 999537 627608 176177 297966 368845 828001 464127 517051 041611 (421 digits)/318 886015 249700 814337 291584 068586 835332 424108 407331 346017 304154 069769 821368 061593 611662 205648 901458 782443 395901 519755 956064 617831 650110 533165 140726 371912 585836 689192 451091 810891 409058 242790 084388 531562 536967 530244 828080 218409 577707 905948 938739 612988 076643 145775 027797 717942 975391 552058 720719 223368 764016 534688 721108 741310 459009 657248 455399 114290 517518 960258 248608 066012 566628 937842 502256 858320 444275 303507 120953 952885 711607 (423 digits), a[813] = 2
                                                                                      A[814]/B[814] = 4 480973 653567 896099 571406 586743 605188 366890 437555 073269 283654 210794 738912 439803 270191 680898 979119 731703 811461 635522 429130 096858 532693 051441 291088 566708 543417 939629 835595 290527 257989 933921 760099 312850 578406 966793 037260 084210 860083 019444 427760 758130 799434 045231 329394 132450 918522 728244 764755 615074 488879 577216 459452 086171 867702 144390 703286 821823 128816 569095 442898 685953 955322 319251 561354 907561 231067 345077 320225 504176 471495 (421 digits)/435 521626 843921 612813 279292 530315 034952 368345 249472 014312 291294 983257 460953 377973 248631 607714 462140 448882 899600 014482 396357 609163 539801 293975 901103 262936 118334 526080 471796 256655 604041 455732 001931 497632 469448 953770 159731 037621 061640 891729 828363 265577 933312 667705 902815 274958 932740 800929 466309 436132 068198 960149 558630 779059 929880 726803 951478 302162 049858 095681 340553 879697 428148 019206 861901 150548 497196 961901 868116 031638 564806 (423 digits), a[814] = 1
                                                                                      A[815]/B[815] = 48 090675 402435 268682 422292 342457 898830 764801 966721 720644 259061 686778 529186 926245 773007 529141 870928 074184 859831 303645 259546 621754 001580 393248 344946 280932 778849 112166 834205 959640 492196 129015 301408 566845 492162 565857 791726 759845 096400 108368 489972 253787 851557 151263 500037 737014 915119 914967 179283 363832 992372 653844 966626 302645 690583 356794 645162 918013 828164 829465 504686 492116 552760 820123 789726 373578 679519 278774 666382 558815 756561 (422 digits)/4674 102283 688916 942470 084509 371737 184856 107560 902051 489140 217103 902344 430901 841326 097978 282793 522863 271272 391901 664579 919640 709467 048123 472924 151759 001273 769181 949997 169054 377447 449472 800110 103703 507887 231457 067946 425390 594620 194116 823247 222372 268767 409769 822834 055950 467532 302799 561353 383813 584689 446006 136184 307416 531909 757816 925287 970182 135911 016099 917071 654146 862986 848109 129911 121268 363805 416244 922525 802114 269271 359667 (424 digits), a[815] = 10
                                                                                      A[816]/B[816] = 293 025026 068179 508194 105160 641490 998172 955702 237885 397134 838024 331465 914033 997277 908236 855750 204688 176812 970449 457393 986409 827382 542175 410931 360766 252305 216512 612630 840831 048370 211166 708013 568550 713923 531382 361939 787620 643281 438483 669655 367594 280857 908776 952812 329620 554540 409242 218047 840455 798072 443115 500286 259209 902046 011202 285158 574264 329906 097805 545888 471017 638653 271887 239994 299713 149033 308183 017725 318520 857071 010861 (423 digits)/28480 135328 977423 267633 786348 760738 144089 013710 661780 949153 593918 397324 046364 425929 836501 304475 599320 076517 251010 001961 914201 865965 828542 131520 811657 270578 733426 226063 486122 521340 300878 256392 624152 544955 858191 361448 712074 605342 226341 831213 162596 878182 391931 604710 238518 080152 749538 169049 769190 944268 744235 777255 403129 970518 476782 278531 772571 117628 146457 598111 265435 057618 516802 798673 589511 333380 994666 497056 680801 647266 722808 (425 digits), a[816] = 6
                                                                                      A[817]/B[817] = 341 115701 470614 776876 527452 983948 897003 720504 204607 117779 097086 018244 443220 923523 681244 384892 075616 250997 830280 761039 245956 449136 543755 804179 705712 533237 995361 724797 675037 008010 703362 837028 869959 280769 023544 927797 579347 403126 534883 778023 857566 534645 760334 104075 829658 291555 324362 133015 019739 161905 435488 154131 225836 204691 701785 641953 219427 247919 925970 375353 975704 130769 824648 060118 089439 522611 987702 296499 984903 415886 767422 (423 digits)/33154 237612 666340 210103 870858 132475 328945 121271 563832 438293 811022 299668 477266 267255 934479 587269 122183 347789 642911 666541 833842 575432 876665 604444 963416 271852 502608 176060 655176 898787 750351 056502 727856 052843 089648 429395 137465 199962 420458 654460 384969 146949 801701 427544 294468 547685 052337 730403 153004 528958 190241 913439 710546 502428 234599 203819 742753 253539 162557 515182 919581 920605 364911 928584 710779 697186 410911 419582 482915 916538 082475 (425 digits), a[817] = 1
                                                                                      A[818]/B[818] = 64763 892604 014372 337857 793774 607832 531876 130996 908630 657384 187281 779665 682788 543253 663425 600352 496159 615402 893513 293811 472178 714189 312022 400895 740435 034286 339878 599391 422825 562393 146742 906469 990854 779268 981373 715682 284279 834196 531517 716164 447669 328906 611922 623144 135037 658496 713685 357886 571157 398199 750376 631087 942252 588777 648688 614317 046014 186772 106206 487789 879098 354150 130370 602313 203782 922698 983917 056222 465266 459670 053619 (425 digits)/6 294631 044122 915722 977265 378535 798575 314716 934036 226111 786683 877133 034666 249688 937301 453143 298339 691972 808759 761314 978368 510448 622779 518341 371618 897332 650701 726371 501527 314556 392225 117227 935408 188946 532299 801744 517129 692997 398239 693027 524225 921765 651694 913501 410581 893073 592627 641369 215245 687046 917366 699957 417360 696418 929454 816031 800463 152936 036529 869827 967683 066418 052032 485157 301183 926874 101612 656924 798145 951909 872964 310583 (427 digits), a[818] = 189
                                                                                      A[819]/B[819] = 65105 008305 484987 114734 321227 591781 428879 851501 113237 775163 284367 797910 126009 466777 344669 985244 571775 866400 723794 054850 718135 163325 855778 205075 446147 567524 335240 324189 097862 570403 850105 743498 860814 060038 004918 643479 863627 237323 066401 494188 305235 863552 372256 727219 964695 950052 038047 490901 590896 560105 185864 785219 168088 793469 350474 256270 265441 434692 032176 863143 854802 484919 955018 662431 293222 445310 971619 352722 450169 875556 821041 (425 digits)/6 327785 281735 582063 187369 249393 931050 643662 055307 789944 224977 688155 334334 726955 204557 387622 885608 814156 156549 404226 644910 344291 198212 395006 976063 860748 922554 228979 677587 969733 291012 867578 991910 916802 585142 891392 946524 830462 598202 113486 178686 306734 798644 715202 838126 187542 140312 693706 945648 840051 446324 890199 330800 406965 431883 050631 004282 895689 290069 032385 482865 985999 972637 850069 229768 637653 798799 067836 217728 434825 789502 393058 (427 digits), a[819] = 1
                                                                                      A[820]/B[820] = 455393 942436 924295 026263 721140 158521 105155 240003 588057 308363 893488 567126 438845 343917 731445 511819 926814 813807 236277 622915 780989 694144 446691 631348 417320 439432 351320 544526 010000 984816 247377 367463 155739 139497 010885 576561 466043 258134 929926 681294 279084 510220 845462 986463 923213 358808 941970 303296 116536 758830 865565 342402 950785 349593 751534 151938 638662 794924 299267 666653 007913 263669 860482 576900 963117 594564 813633 172557 166285 713010 979865 (426 digits)/44 261342 734536 408102 101480 874899 384879 176689 265882 965777 136550 006065 040674 611420 164645 778880 611992 576909 748056 186674 847830 576195 812053 888383 228002 061826 186027 100249 567055 132956 138302 322701 886873 689762 043157 150102 196278 675772 987452 373944 596343 762174 443563 204718 439339 018326 434503 803610 889138 727355 595316 041153 402163 138211 520753 119817 826160 527071 776944 064140 864878 982417 887859 585572 679795 752796 894407 063942 104516 560864 609978 668931 (428 digits), a[820] = 6
                                                                                      A[821]/B[821] = 4 619044 432674 727937 377371 532629 176992 480432 251536 993810 858802 219253 469174 514462 905954 659125 103443 839924 004473 086570 284008 528032 104770 322694 518559 619351 961847 848445 769449 197872 418566 323879 418130 418205 455008 113774 409094 524059 818672 365668 307131 096080 965760 826886 591859 196829 538141 457750 523862 756264 148413 841518 209248 675942 289406 865815 775656 652069 383935 024853 529673 933935 121618 559844 431440 924398 390959 107951 078294 113027 005666 619691 (427 digits)/448 941212 627099 663084 202177 998387 779842 410554 714137 447715 590477 748805 741080 841156 851015 176429 005534 583253 637111 270975 123216 106249 318751 278839 256084 479010 782825 231475 348139 299294 674036 094597 860647 814423 016714 392414 909311 588192 472725 852932 142123 928479 234276 762387 231516 370806 485350 729815 837036 113607 399485 301733 352431 789080 639414 248809 265888 166407 059509 673794 131655 810178 851233 705796 027726 165622 742869 707257 262894 043471 889289 082368 (429 digits), a[821] = 10
                                                                                      A[822]/B[822] = 5 074438 375111 652232 403635 253769 335513 585587 491540 581868 167166 112742 036300 953308 249872 390570 615263 766738 818280 322847 906924 309021 798914 769386 149908 036672 401280 199766 313975 207873 403382 571256 785593 573944 594505 124659 985655 990103 076807 295594 988425 375165 475981 672349 578323 120042 896950 399720 827158 872800 907244 707083 551651 626727 639000 617349 927595 290732 178859 324121 196326 941848 385288 420327 008341 887515 985523 921584 250851 279312 718677 599556 (427 digits)/493 202555 361636 071186 303658 873287 164721 587243 980020 413492 727027 754870 781755 452577 015660 955309 617527 160163 385167 457649 971046 682445 130805 167222 484086 540836 968852 331724 915194 432250 812338 417299 747521 504185 059871 542517 105590 263965 460178 226876 738467 690653 677839 967105 670855 389132 919854 533426 726174 840962 994801 342886 754594 927292 160167 368627 092048 693478 836453 737934 996534 792596 739093 291368 707521 918419 637276 771199 367410 604336 499267 751299 (429 digits), a[822] = 1
                                                                                      A[823]/B[823] = 14 767921 182898 032402 184642 040167 848019 651607 234618 157547 193134 444737 541776 421079 405699 440266 333971 373401 641033 732266 097857 146075 702599 861466 818375 692696 764408 247978 397399 613619 225331 466392 989317 566094 644018 363094 380406 504265 972286 956858 283981 846411 917724 171585 748505 436915 332042 257192 178180 501865 962903 255685 312551 929397 567408 100515 630847 233533 741653 673095 922327 817631 892195 400498 448124 699430 362006 951119 579996 671652 443021 818803 (428 digits)/1435 346323 350371 805456 809495 744962 109285 585042 674178 274701 044533 258547 304591 746310 882337 087048 240588 903580 407446 186275 065309 471139 580361 613284 224257 560684 720529 894925 178528 163796 298712 929197 355690 822793 136457 477449 120492 116123 393082 306685 619059 309786 589956 696598 573227 149072 325059 796669 289385 795533 389087 987506 861621 643664 959748 986063 449985 553364 732417 149664 124725 395372 329420 288533 442770 002462 017423 249655 997715 252144 887824 584966 (430 digits), a[823] = 2
                                                                                      A[824]/B[824] = 19 842359 558009 684634 588277 293937 183533 237194 726158 739415 360300 557479 578077 374387 655571 830836 949235 140140 459314 055114 004781 455097 501514 630852 968283 729369 165688 447744 711374 821492 628714 037649 774911 140039 238523 487754 366062 494369 049094 252453 272407 221577 393705 843935 326828 556958 228992 656913 005339 374666 870147 962768 864203 556125 206408 717865 558442 524265 920512 997217 118654 759480 277483 820825 456466 586946 347530 872703 830847 950965 161699 418359 (428 digits)/1928 548878 712007 876643 113154 618249 274007 172286 654198 688193 771561 013418 086347 198887 897998 042357 858116 063743 792613 643925 036356 153584 711166 780506 708344 101521 689382 226650 093722 596047 111051 346497 103212 326978 196329 019966 226082 380088 853260 533562 357527 000440 267796 663704 244082 538205 244914 330096 015560 636496 383889 330393 616216 570957 119916 354690 542034 246843 568870 887599 121260 187969 068513 579902 150291 920881 654700 020855 365125 856481 387092 336265 (430 digits), a[824] = 1
                                                                                      A[825]/B[825] = 54 452640 298917 401671 361196 628042 215086 125996 686935 636377 913735 559696 697931 169854 716843 101940 232441 653682 559661 842494 107420 056270 705629 123172 754943 151435 095785 143467 820149 256604 482759 541692 539139 846173 121065 338603 112531 493004 070475 461764 828796 289566 705135 859456 402162 550831 790027 571018 188859 251199 703199 181223 040959 041647 980225 536246 747732 282065 582679 667530 159637 336592 447163 042149 361057 873323 057068 696527 241692 573582 766420 655521 (428 digits)/5292 444080 774387 558743 035804 981460 657299 929615 982575 651088 587655 285383 477286 144086 678333 171763 956821 031067 992673 474125 138021 778309 002695 174297 640945 763728 099294 348225 365973 355890 520815 622191 562115 476749 529115 517381 572656 876301 099603 373810 334113 310667 125550 024007 061392 225482 814888 456861 320507 068526 156866 648294 094054 785579 199581 695444 534054 047051 870158 924862 367245 771310 466447 448337 743353 844225 326823 291366 727966 965107 662009 257496 (430 digits), a[825] = 2
                                                                                      A[826]/B[826] = 74 294999 856927 086305 949473 921979 398619 363191 413094 375793 274036 117176 276008 544242 372414 932777 181676 793823 018975 897608 112201 511368 207143 754025 723226 880804 261473 591212 531524 078097 111473 579342 314050 986212 359588 826357 478593 987373 119569 714218 101203 511144 098841 703391 728991 107790 019020 227931 194198 625866 573347 143991 905162 597773 186634 254112 306174 806331 503192 664747 278292 096072 724646 862974 817524 460269 404599 569231 072540 524547 928120 073880 (428 digits)/7220 992959 486395 435386 148959 599709 931307 101902 636774 339282 359216 298801 563633 342974 576331 214121 814937 094811 785287 118050 174377 931893 713861 954804 349289 865249 788676 574875 459695 951937 631866 968688 665327 803727 725444 537347 798739 256389 952863 907372 691640 311107 393346 687711 305474 763688 059802 786957 336067 705022 540755 978687 710271 356536 319498 050135 076088 293895 439029 812461 488505 959279 534961 028239 893645 765106 981523 312222 093092 821589 049101 593761 (430 digits), a[826] = 1
                                                                                      A[827]/B[827] = 277 337639 869698 660589 209618 393980 410944 215570 926218 763757 735843 911225 525956 802581 834087 900271 777472 035151 616589 535318 444024 590375 327060 385249 924623 793847 880205 917105 414721 490895 817180 279719 481292 804810 199831 817675 548313 455123 429184 604419 132406 822999 001660 969631 589135 874201 847088 254811 771455 128799 423240 613198 756446 834967 540128 298583 666256 701060 092257 661771 994513 624810 621103 631073 813631 254131 270867 404220 459314 147226 550780 877161 (429 digits)/26955 422959 233573 864901 482683 780590 451221 235323 892898 668935 665304 181788 168186 173010 407326 814129 401632 315503 348534 828275 661155 573990 144281 038710 688815 359477 465324 072851 745061 211703 416416 528257 558098 887932 705449 129424 968874 645470 958195 095928 409034 243989 305590 087140 977816 516546 994296 817733 328710 183593 779134 584357 224868 855188 158075 845849 762318 928738 187248 362246 832763 649149 071330 533057 424291 139546 271393 228033 007245 429874 809314 038779 (431 digits), a[827] = 3
                                                                                      A[828]/B[828] = 1738 320839 075119 049841 207184 285861 864284 656616 970406 958339 689099 584529 431749 359733 376942 334407 846509 004732 718513 109518 776349 053620 169506 065525 270969 643891 542709 093845 019853 023472 014555 257659 201807 815073 558579 732410 768474 718113 694677 340732 895644 449138 108807 521181 263806 353001 101549 756801 822929 398663 112790 823184 443843 607578 427404 045614 303715 012692 056738 635379 245373 844936 451268 649417 699311 985057 029803 994553 828425 407907 232805 336846 (430 digits)/168953 530714 887838 624795 045062 283252 638634 513845 994166 352896 351041 389530 572750 381037 020292 098898 224730 987831 876496 087704 141311 375834 579548 187068 482182 022114 580621 011985 930063 222158 130366 138234 013921 131323 958139 313897 611987 129215 702034 482943 145845 775043 226887 210557 172373 862970 025583 693357 308328 806585 215563 484831 059484 487665 267953 125233 650001 866324 562519 985942 485087 854173 962944 226584 439392 602384 609882 680420 136565 400837 904985 826435 (432 digits), a[828] = 6
                                                                                      A[829]/B[829] = 31567 112743 221841 557730 938935 539493 968068 034676 393544 013872 139636 432755 297445 277782 619049 919613 014634 120340 549825 506656 418307 555538 378169 564704 802077 383895 648969 606315 772075 913392 079174 917585 113833 476134 254267 001069 380858 381169 933376 737611 254006 907484 960196 350894 337650 228221 674983 877244 584184 304735 453475 430518 745631 771379 233401 119641 133126 929517 113553 098598 411242 833666 743939 320592 401246 985157 807339 306189 370971 489556 741276 940389 (431 digits)/3 068118 975827 214669 111212 293804 879137 946642 484551 787893 021069 984049 193338 477693 031676 772584 594297 446790 096477 125464 406950 204760 339012 576148 405943 368091 757539 916502 288598 486199 210549 763007 016469 808679 251763 951956 779581 984642 971353 594815 788905 034258 194767 389559 877170 080546 050007 454803 298164 878628 702127 659277 311316 295589 633162 981232 100055 462352 522580 312608 109211 564345 024280 404326 611577 333357 982469 249281 475595 465422 644957 099058 914609 (433 digits), a[829] = 18
                                                                                      A[830]/B[830] = 64872 546325 518802 165303 085055 364849 800420 725969 757494 986083 968372 450040 026639 915298 615042 173633 875777 245413 818164 122831 612964 164696 925845 194934 875124 411682 840648 306476 564004 850256 172905 092829 429474 767342 067113 734549 530191 480453 561430 815955 403658 264108 029200 222969 939106 809444 451517 511290 991298 008134 019741 684221 935107 150336 894206 284896 569968 871726 283844 832576 067859 512269 939147 290602 501805 955372 644482 606932 570368 387020 715359 217624 (431 digits)/6 305191 482369 317176 847219 632672 041528 531919 482949 569952 395036 319139 776207 528136 444390 565461 287493 118311 180786 127424 901604 550832 053859 731844 998955 218365 537194 413625 589182 902461 643257 656380 171173 631279 634851 862052 873061 581273 071922 891666 060753 214362 164578 006006 964897 333465 962984 935190 289687 065586 210840 534118 107463 650663 753991 230417 325344 574706 911485 187736 204365 613777 902734 771597 449739 106108 567323 108445 631611 067410 690752 103103 655653 (433 digits), a[830] = 2
                                                                                      A[831]/B[831] = 226184 751719 778248 053640 194101 634043 369330 212585 666028 972124 044753 782875 377365 023678 464176 440514 641965 856582 004317 875151 257200 049629 155705 149509 427450 618944 170914 525745 464090 464160 597890 196073 402257 778160 455608 204717 971432 822530 617669 185477 464981 699809 047797 019804 154970 656555 029536 411117 558078 329137 512700 483184 550953 222389 916019 974330 843033 544695 965087 596326 614821 370476 561381 192399 906664 851275 740787 126987 082076 650618 887354 593261 (432 digits)/21 983693 422935 166199 652871 191821 003723 542400 933400 497750 206178 941468 521961 062102 364848 468968 456776 801723 638835 507739 111763 857256 500591 771683 402809 023188 369123 157379 056147 193584 140322 732147 529990 702518 156319 538115 398766 728462 187122 269813 971164 677344 688501 407580 771862 080943 938962 260374 167226 075387 334649 261631 633707 247580 895136 672484 076089 186473 257035 875816 722308 405678 732484 719118 960794 651683 684438 574618 370428 667654 717213 408369 881568 (434 digits), a[831] = 3
                                                                                      A[832]/B[832] = 2 552904 815243 079530 755345 220173 339326 863053 064412 083813 679448 460664 061669 177655 175761 720983 019294 937401 667815 865660 749495 442164 710617 638601 839538 577081 220068 720708 089676 668999 956022 749697 249636 854310 327107 078803 986447 215952 528290 355791 856207 518456 962007 554967 440815 643784 031549 776418 033584 130159 628646 659446 999251 995592 596625 970426 002535 843337 863381 899808 392168 830894 587512 114340 407001 475119 319405 793141 003790 473211 543828 476259 743495 (433 digits)/248 125819 134656 145373 028802 742703 082487 498329 750355 045204 663004 675293 517779 211262 457723 724114 312037 937271 207976 712555 131006 980653 560369 220362 429854 473437 597549 144795 206802 031887 186807 710003 001071 358979 354366 781322 259495 594357 130267 859619 743564 665153 738093 489395 455380 223849 291569 799306 129173 894846 891982 412066 078243 374053 600494 627742 162325 625912 738879 821720 149758 076243 960066 681906 018480 274629 096147 429247 706326 411612 580099 595172 352901 (435 digits), a[832] = 11
                                                                                      A[833]/B[833] = 2 779089 566962 857778 808985 414274 973370 232383 276997 749842 651572 505417 844544 555020 199440 185159 459809 579367 524397 869978 624646 699364 760246 794306 989048 004531 839012 891622 615422 133090 420183 347587 445710 256568 105267 534412 191165 187385 350820 973461 041684 983438 661816 602764 460619 798754 688104 805954 444701 688237 957784 172147 482436 546545 819015 886445 976866 686371 408077 864895 988495 445715 957988 675721 599401 381784 170681 533928 130777 555288 194447 363614 336756 (433 digits)/270 109512 557591 311572 681673 934524 086211 040730 683755 542954 869183 616762 039740 273364 822572 193082 768814 738994 846812 220294 242770 837910 060960 992045 832663 496625 966672 302174 262949 225471 327130 442150 531062 061497 510686 319437 658262 322819 317390 129433 714729 342498 426594 896976 227242 304793 230532 059680 296399 970234 226631 673697 711950 621634 495631 300226 238414 812385 995915 697536 872066 481922 692551 401024 979274 926312 780586 003866 076755 079267 297313 003542 234469 (435 digits), a[833] = 1
                                                                                      A[834]/B[834] = 5 331994 382205 937309 564330 634448 312697 095436 341409 833656 331020 966081 906213 732675 375201 906142 479104 516769 192213 735639 374142 141529 470864 432908 828586 581613 059081 612330 705098 802090 376206 097284 695347 110878 432374 613216 177612 403337 879111 329252 897892 501895 623824 157731 901435 442538 719654 582372 478285 818397 586430 831594 481688 542138 415641 856871 979402 529709 271459 764704 380664 276610 545500 790062 006402 856903 490087 327069 134568 028499 738275 839874 080251 (433 digits)/518 235331 692247 456945 710476 677227 168698 539060 434110 588159 532188 292055 557519 484627 280295 917197 080852 676266 054788 932849 373777 818563 621330 212408 262517 970063 564221 446969 469751 257358 513938 152153 532133 420476 865053 100759 917757 917176 447657 989053 458294 007652 164688 386371 682622 528642 522101 858986 425573 865081 118614 085763 790193 995688 096125 927968 400740 438298 734795 519257 021824 558166 652618 082930 997755 200941 876733 433113 783081 490879 877412 598714 587370 (435 digits), a[834] = 1
                                                                                      A[835]/B[835] = 130 746954 739905 353208 352920 641034 478100 522855 470833 757594 596075 691383 593674 139229 204285 932578 958317 981828 137527 525323 604058 096072 060993 184118 875125 963245 256971 587559 537793 383259 449129 682420 134040 917650 482258 251600 453862 867494 449492 875530 591105 028933 633596 388330 095070 419683 959814 782893 923561 329780 032124 130415 042961 557867 794420 451373 482527 399393 923112 217801 124438 084369 050007 637209 753069 947467 932777 383587 360410 239281 913067 520592 262780 (435 digits)/12707 757473 171530 278269 733114 187976 134975 978181 102409 658783 641702 626095 420207 904419 549674 205812 709278 969380 161746 608679 213438 483436 972886 089844 133094 778151 507987 029441 536979 402075 661646 093835 302264 152942 271960 737675 684452 335054 061181 866716 713785 526150 379116 169896 610182 992213 760976 675354 510172 732181 073369 732028 676606 518148 802653 571467 856185 331555 631008 159705 395855 877922 355385 391368 925399 748917 822188 398596 870710 860384 355215 372692 331349 (437 digits), a[835] = 24
                                                                                      A[836]/B[836] = 2228 030224 960596 941851 563981 532034 440405 983979 345583 712764 464307 719602 998674 099571 848062 759984 770510 207847 530181 666140 643129 774754 507748 562929 705727 956782 427598 600842 847586 317501 011410 698426 974042 710936 630764 890423 893281 150743 520490 213272 946677 993767 394962 759343 517632 577166 036505 891569 178828 424658 132541 048650 212035 025890 920789 530221 182368 319405 964367 467323 496111 710884 395630 622627 808591 963858 347302 848054 261542 096292 260423 689942 547511 (436 digits)/216550 112375 608262 187531 173417 872821 463290 168139 175074 787481 441132 935677 701053 859759 624757 416013 138595 155728 804481 280396 002232 036992 160393 739758 525129 198639 200000 947475 598401 092644 761921 747353 670624 020495 488385 641246 553447 613095 487749 723237 592647 952208 609663 274614 055733 396276 458705 340013 098510 312159 365899 530251 292504 804217 741236 642921 955891 074744 461934 234248 751374 482846 694169 736202 729550 932544 853936 209260 585166 117413 916073 934484 220303 (438 digits), a[836] = 17
                                                                                      A[837]/B[837] = 11270 898079 542890 062466 172828 301206 680130 442752 198752 321416 917614 289398 587044 637088 444599 732502 810869 021065 788435 856026 819706 969844 599735 998767 403765 747157 394964 591773 775724 970764 506183 174555 004254 472333 636082 703719 920268 621212 051943 941895 324494 997770 608410 185047 683233 305514 142344 240739 817703 453070 694829 373666 103136 687322 398368 102479 394368 996423 744949 554418 604996 638791 028160 750348 796029 766759 669291 623858 668120 720743 215185 970305 000335 (437 digits)/1 095458 319351 212841 215925 600203 552083 451426 818876 977783 596190 847367 304483 925477 203217 673461 285878 402254 748024 184153 010659 224598 668397 774854 788636 758740 771347 507991 766819 528984 865299 471254 830603 655384 255419 713888 943908 451690 400531 499930 482904 677025 287193 427432 542966 888849 973596 054503 375420 002724 292977 902867 383285 139130 539237 508836 786077 635640 705277 940679 330949 152728 292155 826234 072382 573154 411642 091869 444899 796541 447453 935585 045113 432864 (439 digits), a[837] = 5
                                                                                      A[838]/B[838] = 13498 928304 503487 004317 736809 833241 120536 426731 544336 034181 381922 009001 585718 736660 292662 492487 581379 228913 318617 522167 462836 744599 107484 561697 109493 703939 822563 192616 623311 288265 517593 872981 978297 183270 266847 594143 813549 771955 572434 155168 271172 991538 003372 944391 200865 882680 178850 132308 996531 877728 827370 422316 315171 713213 319157 632700 576737 315829 709317 021742 101108 349675 423791 372976 604621 730618 016594 471912 929662 817035 475609 660247 547846 (437 digits)/1 312008 431726 821103 403456 773621 424904 914716 987016 152858 383672 288500 240161 626531 062977 298218 701891 540849 903752 988634 291055 226830 705389 935248 528395 283869 969986 707992 714295 127385 957944 233176 577957 326008 275915 202274 585155 005138 013626 987680 206142 269673 239402 037095 817580 944583 369872 513208 715433 101234 605137 268766 913536 431635 343455 250073 428999 591531 780022 402613 565197 904102 775002 520403 808585 302705 344186 945805 654160 381707 564867 851658 979597 653167 (439 digits), a[838] = 1
                                                                                      A[839]/B[839] = 24769 826384 046377 066783 909638 134447 800666 869483 743088 355598 299536 298400 172763 373748 737262 224990 392248 249979 107053 378194 282543 714443 707220 560464 513259 451097 217527 784390 399036 259030 023777 047536 982551 655603 902930 297863 733818 393167 624378 097063 595667 989308 611783 129438 884099 188194 321194 373048 814235 330799 522199 795982 418308 400535 717525 735179 971106 312253 454266 576160 706104 988466 451952 123325 400651 497377 685886 095771 597783 537778 690795 630552 548181 (437 digits)/2 407466 751078 033944 619382 373824 976988 366143 805893 130641 979863 135867 544645 552008 266194 971679 987769 943104 651777 172787 301714 451429 373787 710103 317032 042610 741334 215984 481114 656370 823243 704431 408560 981392 531334 916163 529063 456828 414158 487610 689046 946698 526595 464528 360547 833433 343468 567712 090853 103958 898115 171634 296821 570765 882692 758910 215077 227172 485300 343292 896147 056831 067158 346637 880967 875859 755829 037675 099060 178249 012321 787244 024711 086031 (439 digits), a[839] = 1
                                                                                      A[840]/B[840] = 335506 671297 106388 872508 562105 581062 529205 730020 204484 656959 275893 888203 831642 595393 877071 417362 680606 478641 710311 438693 135905 032367 301351 847735 781866 568203 650424 389691 810782 655655 826695 490962 751468 706121 004941 466372 353188 883134 689349 416995 014856 852549 956553 627096 694155 329206 354376 981943 581591 178122 615967 770087 753180 920177 646992 190040 201119 375124 614782 511831 280473 199739 299168 976206 813091 196527 933113 716943 700848 808158 455952 857430 674199 (438 digits)/32 609076 195741 262383 455427 633346 125753 674586 463626 851204 121893 054778 320553 802638 523511 930058 542900 801210 376856 234869 213343 095412 564630 166591 649811 837809 607331 515790 968785 660206 660112 390784 889250 084111 183269 112400 462979 943907 397687 326619 163752 576754 085143 075964 504702 779216 834963 893465 896523 452700 280634 500012 772216 851591 818461 115906 225003 544774 088926 865421 215109 642906 648061 026696 261167 688882 169964 435581 941942 698944 725051 085831 300841 771570 (440 digits), a[840] = 13
                                                                                      A[841]/B[841] = 360276 497681 152765 939292 471743 715510 329872 599503 947573 012557 575430 186604 004405 969142 614333 642353 072854 728620 817364 816887 418448 746811 008572 408200 295126 019300 867952 174082 209818 914685 850472 538499 734020 361724 907871 764236 087007 276302 313727 514058 610524 841858 568336 756535 578254 517400 675571 354992 395826 508922 138167 566070 171489 320713 364517 925220 172225 687378 069049 087991 986578 188205 751121 099532 213742 693905 618999 812715 298632 345937 146748 487983 222380 (438 digits)/35 016542 946819 296328 074810 007171 102742 040730 269519 981846 101756 190645 865199 354646 789706 901738 530670 744315 028633 407656 515057 546841 938417 876694 966843 880420 348665 731775 449900 316577 483356 095216 297811 065503 714604 028563 992043 400735 811845 814229 852799 523452 611738 540492 865250 612650 178432 461177 987376 556659 178749 671647 069038 422357 701153 874816 440080 771946 574227 208714 111256 699737 715219 373334 142135 564741 925793 473257 041002 877193 737372 873075 325552 857601 (440 digits), a[841] = 1
                                                                                      A[842]/B[842] = 18 709608 053035 897451 776424 621035 072089 352708 304721 530708 297395 622833 405008 056347 021667 208087 177369 396197 638303 395917 099951 476791 119728 738544 665950 833293 552547 915985 267884 511547 304634 200794 954449 186507 154091 306401 442412 790559 974552 689452 633984 151623 787336 941728 210411 185135 716640 808516 086555 768743 133151 662513 639666 499136 276559 237406 376268 984629 431406 136285 999422 595960 798232 606345 052349 713968 585714 502104 165423 931098 450952 940125 744575 015579 (440 digits)/1818 452766 483525 375115 270737 999072 365597 751830 209145 925355 311458 777717 445720 889624 798563 918723 607108 761276 837160 025351 481277 984351 423941 878034 958849 739247 389283 836338 913701 805658 311273 246816 077614 424800 628074 569164 057193 381433 801823 852341 656528 272837 283808 641100 632484 024375 935019 413543 252727 842318 396867 754013 293176 391834 577308 731544 669122 914049 374514 509840 889201 329530 124249 066737 510081 490720 385431 571691 033089 435825 331067 612672 904037 509221 (442 digits), a[842] = 51
                                                                                      A[843]/B[843] = 224 875573 134111 922187 256387 924164 580582 562372 256162 316072 581305 049431 046700 680570 229149 111379 770785 827226 388261 568370 016305 139942 183555 871108 399610 294648 649875 859775 388696 348386 570296 260011 991889 972106 210820 584689 073189 573726 970934 587159 121868 430010 289901 869075 281469 799883 117090 377764 393661 620744 106742 088331 242068 161124 639424 213394 440447 987778 864251 704481 081063 138107 766997 027261 727728 781365 722479 644249 797802 471813 757372 428257 422883 409328 (441 digits)/21856 449740 749123 797711 323665 996039 489915 062692 779271 086109 839261 523255 213850 030144 372473 926421 815975 879637 074553 711874 290393 359059 025720 413114 473040 751389 020071 767842 414321 984477 218635 057009 229184 163111 251498 858532 678363 977941 433732 042329 731138 797500 017442 233700 455058 905161 398665 423697 020110 664479 941162 719806 587155 124372 628858 653352 469555 740539 068401 326804 781672 654099 206208 174184 263113 453386 550972 333549 438076 107097 710184 225150 174002 968253 (443 digits), a[843] = 12
                                                                                      A[844]/B[844] = 2717 216485 662378 963698 853079 711010 039080 101175 378669 323579 273056 216005 965416 223189 771456 544644 426799 322914 297442 216357 295613 156097 322399 191845 461274 369077 351058 233289 932240 692186 148189 320938 857128 851781 683938 322670 320687 675283 625767 735362 096405 311747 266159 370631 588048 783733 121725 341688 810495 217672 414056 722488 544484 432631 949649 798139 661644 837975 802426 590058 972180 253254 002196 933485 785095 090357 255470 233101 739053 592863 539422 079214 819175 927515 (442 digits)/264095 849655 473010 947651 154729 951546 244578 504143 560398 958673 382597 056780 011921 251357 268251 035785 398819 316921 731804 567842 965998 293059 732586 835408 635338 755915 630145 050447 885565 619384 934893 930926 827824 382135 646060 871556 197561 116731 006608 360298 430193 842837 493115 445506 093190 886312 719004 497907 494055 816077 690820 391692 339037 884306 123612 571774 303791 800518 195330 431498 269273 178720 598747 156948 667442 931358 997099 574284 290002 720997 853278 314474 992073 128257 (444 digits), a[844] = 12
                                                                                      A[845]/B[845] = 30114 256915 420280 522874 640264 745275 010463 675301 421524 875444 584923 425496 666279 135657 715171 102468 465578 379283 660125 948300 268049 857012 729946 981408 473628 354499 511516 425964 643343 962434 200378 790339 420307 341704 734142 134062 600754 001846 854379 676142 182326 859230 217654 946022 750006 420947 456069 136341 309109 015140 661366 035705 231396 920076 085571 992930 718541 205512 690944 195129 775045 923901 791163 295605 363774 775295 532652 208368 927391 993312 691015 299620 433818 611993 (443 digits)/2 926910 795950 952244 221874 025695 463048 180278 608271 943659 631517 047829 147835 344983 795074 323235 320061 202988 365776 124403 958146 916374 582716 084175 602609 461767 066460 951667 322769 155543 797711 502468 297204 335252 366603 358168 445650 851536 261982 506424 005612 463271 068712 441712 134267 480158 654601 307714 900679 454724 641334 540187 028422 316571 851739 988596 942869 811265 546239 217036 073285 743677 620025 792426 900619 604985 698335 519067 650676 628106 038074 096245 684375 086807 379080 (445 digits), a[845] = 11
                                                                                      A[846]/B[846] = 394202 556386 126025 761069 176521 399585 175107 880093 858492 704358 877060 747462 627044 986740 068680 876734 479318 253601 879079 544260 780261 297262 811709 950155 618442 977571 000771 770830 295712 203830 753113 595351 321124 293943 227786 065484 130489 699292 732703 525210 466654 481740 095673 668927 338132 256050 050624 114125 828912 414501 011815 186656 552644 393621 062085 706239 002680 509640 784701 126746 047777 263977 287319 776355 514167 169199 179948 941897 795149 505928 522620 974280 458817 883424 (444 digits)/38 313936 197017 852185 832013 488770 971172 588200 411678 827974 168395 004375 978639 496710 587323 470310 196581 037668 072011 349056 023752 878867 868368 826869 669331 638310 619908 001820 246446 907634 989634 466981 794583 186105 147979 302250 665017 267532 522503 590120 433260 452717 736099 235373 190983 335253 396129 719298 206740 405476 153426 713251 761182 454471 956925 975372 829081 850243 901628 016799 384212 937082 239055 900296 865003 532257 009720 744979 033080 455381 215961 104472 211351 120569 056297 (446 digits), a[846] = 13
                                                                                      A[847]/B[847] = 1 212721 926073 798357 806082 169828 944030 535787 315582 997002 988521 216105 667884 547414 095877 921213 732671 903533 140089 297364 581082 608833 748801 165076 831875 328957 287212 513831 738455 530480 573926 459719 576393 383680 223534 417500 330514 992223 099725 052490 251773 582290 304450 504675 952804 764403 189097 607941 478718 795846 258643 696811 595674 889330 100939 271829 111647 726582 734435 045047 575367 918377 715833 653122 624671 906276 282893 072499 034062 312840 511098 258878 222461 810272 262265 (445 digits)/117 868719 387004 508801 717914 492008 376565 944879 843308 427582 136702 060957 083753 835115 557044 734165 909804 315992 581810 171572 029405 552978 187822 564784 610604 376698 926184 957128 062109 878448 766614 903413 680953 893567 810541 264920 440702 654133 829493 276785 305393 821424 277010 147831 707217 485918 842990 465609 520900 671153 101614 679942 311969 679987 722517 914715 430115 361997 251123 267434 225924 554924 337193 493317 495630 201756 727497 754004 749917 994249 685957 409662 318428 448514 547971 (447 digits), a[847] = 3
                                                                                      A[848]/B[848] = 4 032368 334607 521099 179315 686008 231676 782469 826842 849501 669922 525377 751116 269287 274373 832322 074750 189917 673869 771173 287508 606762 543666 306940 445781 605314 839208 542266 986196 887153 925610 132272 324531 472164 964546 480287 057029 107158 998467 890174 280531 213525 395091 609701 527341 631341 823342 874448 550282 216451 190432 102249 973681 220634 696438 877573 041182 182428 712945 919843 852849 802910 411478 246687 650371 232996 017878 397446 044084 733671 039223 299255 641665 889634 670219 (445 digits)/391 920094 358031 378590 985756 964796 100870 422839 941604 110720 578501 187247 229901 002057 258457 672807 925993 985645 817441 863772 111969 537802 431836 521223 501144 768407 398462 873204 432776 542981 289479 177222 837444 866808 579603 097011 987125 229934 010983 420476 349441 916990 567129 678868 312635 793009 925101 116126 769442 418935 458270 753078 697091 494435 124479 719519 119427 936235 654997 819102 061986 601855 250636 380249 351894 137527 192214 006993 282834 438130 273833 333459 166636 466112 700210 (447 digits), a[848] = 3
                                                                                      A[849]/B[849] = 17 342195 264503 882754 523344 913861 870737 665666 622954 395009 668211 317616 672349 624563 193373 250502 031672 663203 835568 382057 731117 035883 923466 392838 615001 750216 644046 682899 683243 079096 276366 988808 874519 272340 081720 338648 558631 420859 093596 613187 373898 436391 884816 943482 062171 289770 482469 105735 679847 661651 020372 105811 490399 771868 886694 782121 276376 456297 586218 724422 986767 130019 361746 639873 226156 838260 354406 662283 210401 247524 667991 455900 789125 368810 943141 (446 digits)/1685 549096 819130 023165 660942 351192 780047 636239 609724 870464 450706 809946 003357 843344 590875 425397 613780 258575 851577 626660 477283 704187 915168 649678 615183 450328 520036 449945 793216 050373 924531 612305 030733 360802 128953 652968 389203 573869 873426 958690 703161 489386 545528 863304 957760 657958 543394 930116 598670 346894 934697 692257 100335 657728 220436 792791 907827 106939 871114 543842 473870 962345 339739 014314 903206 751865 496353 781977 881255 746770 781290 743498 984974 312965 348811 (448 digits), a[849] = 4
                                                                                      A[850]/B[850] = 56 058954 128119 169362 749350 427593 843889 779469 695706 034530 674556 478227 768165 142976 854493 583828 169768 179529 180574 917346 480859 714414 314065 485456 290786 855964 771348 590966 035926 124442 754711 098698 948089 289185 209707 496232 732923 369736 279257 729736 402226 522701 049542 440147 713855 500653 270750 191655 589825 201404 251548 419684 444880 536241 356523 223936 870311 551321 471602 093112 813151 192968 496718 166307 328841 747777 081098 384295 675288 476245 043197 666958 009041 996067 499642 (446 digits)/5448 567384 815421 448087 968584 018374 441013 331558 770778 722113 930621 617085 239974 532091 031083 949000 767334 761373 372174 743753 543820 650366 177342 470259 346695 119392 958572 223041 812424 694103 063074 014137 929644 949214 966464 055917 154735 951543 631264 296548 458926 385150 203716 268783 185917 766885 555285 906476 565453 459620 262363 829849 998098 467619 785790 097894 842909 257055 268341 450629 483599 488891 269853 423194 061514 393123 681275 352926 926601 678442 617705 563956 121559 405008 746643 (448 digits), a[850] = 3
                                                                                      A[851]/B[851] = 73 401149 392623 052117 272695 341455 714627 445136 318660 429540 342767 795844 440514 767540 047866 834330 201440 842733 016143 299404 211976 750298 237531 878294 905788 606181 415395 273865 719169 203539 031078 087507 822608 561525 291427 834881 291554 790595 372854 342923 776124 959092 934359 383629 776026 790423 753219 297391 269672 863055 271920 525495 935280 308110 243218 006058 146688 007619 057820 817535 799918 322987 858464 806180 554998 586037 435505 046578 885689 723769 711189 122858 798167 364878 442783 (446 digits)/7134 116481 634551 471253 629526 369567 221060 967798 380503 592578 381328 427031 243332 375435 621959 374398 381115 019949 223752 370414 021104 354554 092511 119937 961878 569721 478608 672987 605640 744476 987605 626442 960378 310017 095417 708885 543939 525413 504691 255239 162087 874536 749245 132088 143678 424844 098680 836593 164123 806515 197061 522107 098434 125348 006226 890686 750736 363995 139455 994471 957470 451236 609592 437508 964721 144989 177629 134904 807857 425213 398996 307455 106533 717974 095454 (448 digits), a[851] = 1
                                                                                      A[852]/B[852] = 496 465850 483857 482066 385522 476328 131654 450287 607668 611772 731163 253294 411253 748217 141694 589809 378413 235927 277434 713771 752720 216203 739256 755225 725518 493053 263720 234160 350941 345676 941179 623745 883740 658336 958274 505520 482252 113308 516383 787279 058976 277258 655698 741926 370016 243195 790065 976003 207862 379735 883071 572660 056562 384902 815831 260285 750439 597035 818526 998327 612661 130895 647507 003390 658833 264001 694128 663768 989426 818863 310332 404110 798046 185338 156340 (447 digits)/48253 266274 622730 275609 745742 235777 767379 138349 053800 277584 218592 179272 699968 784704 762840 195391 054024 881068 714688 966237 670446 777690 732409 189887 117966 537721 830224 260967 446269 160964 988707 772795 691914 809317 538970 309230 418373 104024 659411 827983 431453 632370 699187 061312 047988 315950 147370 926035 550196 298711 444732 962492 588703 219707 823151 442015 347327 441026 105077 417461 228422 196310 927408 048247 849841 263058 747050 162355 773746 229723 011683 408686 760761 712853 319367 (449 digits), a[852] = 6
                                                                                      A[853]/B[853] = 569 866999 876480 534183 658217 817783 846281 895423 926329 041313 073931 049138 851768 515757 189561 424139 579854 078660 293578 013175 964696 966501 976788 633520 631307 099234 679115 508026 070110 549215 972257 711253 706349 219862 249702 340401 773806 903903 889238 130202 835101 236351 590058 125556 146043 033619 543285 273394 477535 242791 154992 098155 991842 693013 059049 266343 897127 604654 876347 815863 412579 453883 505971 809571 213831 850039 129633 710347 875116 542633 021521 526969 596213 550216 599123 (447 digits)/55387 382756 257281 746863 375268 605344 988440 106147 434303 870162 599920 606303 943301 160140 384799 569789 435139 901017 938441 336651 691551 132244 824920 309825 079845 107443 308832 933955 051909 905441 976313 399238 652293 119334 634388 018115 962312 629438 164103 083222 593541 506907 448432 193400 191666 740794 246051 762628 714320 105226 641794 484599 687137 345055 829378 332702 098063 805021 244533 411933 185892 647547 537000 485756 814562 408047 924679 297260 581603 654936 410679 716141 867295 430827 414821 (449 digits), a[853] = 1
                                                                                      A[854]/B[854] = 2775 933849 989779 618801 018393 747463 516782 031983 312984 777025 026887 449849 818327 811245 899940 286367 697829 550568 451746 766475 611508 082211 646411 289308 250746 889991 980182 266264 631383 542540 830210 468760 709137 537785 957083 867127 577479 728924 073336 308090 399381 222665 015931 244150 954188 377673 963207 069581 118003 350900 503039 965284 023933 156955 052028 325661 338950 015655 323918 261781 262978 946429 671394 241675 514160 664158 212663 505160 489892 989395 396418 511989 182900 386204 552832 (448 digits)/269802 797299 651857 263063 246816 657157 721139 562938 791015 758234 618274 604488 473173 425266 302038 474548 794584 485140 468454 312844 436651 306670 032090 429187 437346 967495 065555 996787 653908 782732 893961 369750 301087 286656 076522 381694 267623 621777 315824 160873 805619 660000 492915 834912 814655 279127 131577 976550 407476 719618 011910 900891 337252 599931 140664 772823 739582 661111 083211 065193 971992 786501 075409 991275 108090 895250 445767 351398 100160 849468 654402 273254 229943 436162 978651 (450 digits), a[854] = 4
                                                                                      A[855]/B[855] = 3345 800849 866260 152984 676611 565247 363063 927407 239313 818338 100818 498988 670096 327003 089501 710507 277683 629228 745324 779651 576205 048713 623199 922828 882053 989226 659297 774290 701494 091756 802468 180014 415486 757648 206786 207529 351286 632827 962574 438293 234482 459016 605989 369707 100231 411293 506492 342975 595538 593691 658032 063440 015775 849968 111077 592005 236077 620310 200266 077644 675558 400313 177366 051246 727992 514197 342297 215508 365009 532028 417940 038958 779113 936421 151955 (448 digits)/325190 180055 909139 009926 622085 262502 709579 669086 225319 628397 218195 210792 416474 585406 686838 044338 229724 386158 406895 649496 128202 438914 857010 739012 517192 074938 374388 930742 705818 688174 870274 768988 953380 405990 710910 399810 229936 251215 479927 244096 399161 166907 941348 028313 006322 019921 377629 739179 121796 824844 653705 385491 024389 944986 970043 105525 837646 466132 327744 477127 157885 434048 612410 477031 922653 303298 370446 648658 681764 504405 065081 989396 097238 866990 393472 (450 digits), a[855] = 1
                                                                                      A[856]/B[856] = 9467 535549 722299 924770 371616 877958 242909 886797 791612 413701 228524 447827 158520 465252 078943 707382 253196 809025 942396 325778 763918 179638 892811 134966 014854 868445 298777 814846 034371 726054 435146 828789 540111 053082 370656 282186 280052 994579 998485 184676 868346 140698 227909 983565 154651 200260 976191 755532 309080 538283 819104 092164 055484 856891 274183 509671 811105 256275 724450 417070 614095 747056 026126 344168 970145 692552 897257 936177 219912 053452 232298 589906 741128 259046 856742 (448 digits)/920183 157411 470135 282916 490987 182163 140298 901111 241655 015029 054665 026073 306122 596079 675714 563225 254033 257457 282245 611836 693056 184499 746111 907212 471731 117371 814333 858273 065546 159082 634510 907728 207848 098637 498343 181314 727496 124208 275678 649066 603941 993816 375611 891538 827299 318969 886837 454908 651070 369307 319321 671873 386032 489905 080750 983875 414875 593375 738700 019448 287763 654598 300230 945338 953397 501847 186660 648715 463689 858278 784566 252046 424421 170143 765595 (450 digits), a[856] = 2
                                                                                      A[857]/B[857] = 12813 336399 588560 077755 048228 443205 605973 814205 030926 232039 329342 946815 828616 792255 168445 417889 530880 438254 687721 105430 340123 228352 516011 057794 896908 857671 958075 589136 735865 817811 237615 008803 955597 810730 577442 489715 631339 627407 961059 622970 102828 599714 833899 353272 254882 611554 482684 098507 904619 131975 477136 155604 071260 706859 385261 101677 047182 876585 924716 494715 289654 147369 203492 395415 698138 206750 239555 151685 584921 585480 650238 628865 520242 195468 008697 (449 digits)/1 245373 337467 379274 292843 113072 444665 849878 570197 466974 643426 272860 236865 722597 181486 362552 607563 483757 643615 689141 261332 821258 623414 603122 646224 988923 192310 188722 789015 771364 847257 504785 676717 161228 504628 209253 581124 957432 375423 755605 893163 003103 160724 316959 919851 833621 338891 264467 194087 772867 194151 973027 057364 410422 434892 050794 089401 252522 059508 066444 496575 445649 088646 912641 422370 876050 805145 557107 297374 145454 362683 849648 241442 521660 037134 159067 (451 digits), a[857] = 1
                                                                                      A[858]/B[858] = 47907 544748 487980 158035 516302 207575 060831 329412 884391 109819 216553 288274 644370 842017 584279 961050 845838 123790 005559 642069 784287 864696 440844 308350 705581 441461 173004 582256 241969 179488 147991 855201 406904 485274 102983 751333 174071 876803 881664 053587 176831 939842 729608 043381 919299 034924 424244 051056 022937 934210 250512 558976 269266 977469 429966 814702 952653 886033 498599 901216 483058 189163 636603 530416 064560 312803 615923 391233 974676 809894 183014 476503 301854 845450 882833 (449 digits)/4 656303 169813 607958 161445 830204 516160 689934 611703 642578 945307 873245 736670 473914 140538 763372 385915 705306 188304 349669 395835 156832 054743 555479 845887 438500 694302 380502 225320 379640 700855 148867 937879 691533 612522 126103 924689 599793 250479 542496 328555 613251 475989 326491 651094 328163 335643 680239 037171 969671 951763 238402 843966 617299 794581 233133 252079 172441 771899 938033 509174 624710 920539 038155 212451 581549 917283 857982 540837 900052 946330 333510 976373 989401 281546 242796 (451 digits), a[858] = 3
                                                                                      A[859]/B[859] = 108628 425896 564520 393826 080832 858355 727636 473030 799708 451677 762449 523365 117358 476290 337005 339991 222556 685834 698840 389569 908698 957745 397699 674496 308071 740594 304084 753649 219804 176787 533598 719206 769406 781278 783409 992381 979483 381015 724387 730144 456492 479400 293115 440036 093480 681403 331172 200619 950495 000395 978161 273556 609794 661798 245194 731082 952490 648652 921916 297148 255770 525696 476699 456247 827258 832357 471401 934153 534275 205269 016267 581872 123951 886369 774363 (450 digits)/10 557979 677094 595190 615734 773481 476987 229747 793604 752132 534042 019351 710206 670425 462563 889297 379394 894370 020224 388480 053003 134922 732901 714082 337999 865924 580914 949727 239656 530646 248967 802521 552476 544295 729672 461461 430504 157018 876382 840598 550274 229606 112702 969943 222040 489948 010178 624945 268431 712211 097678 449832 745297 645022 024054 517060 593559 597405 603307 942511 514924 695070 929724 988951 847274 039150 639713 273072 379049 945560 255344 516670 194190 500462 600226 644659 (452 digits), a[859] = 2
                                                                                      A[860]/B[860] = 482421 248334 746061 733339 839633 640997 971377 221536 083224 916530 266351 381735 113804 747178 932301 321015 736064 867128 800921 200349 419083 695678 031643 006335 937868 403838 389343 596853 121185 886638 282386 732028 484531 610389 236623 720861 092005 400866 779214 974165 002801 857443 902069 803526 293221 760537 748932 853535 824917 935794 163157 653202 708445 624662 410745 739034 762616 480645 186265 089809 506140 291949 543401 355407 373595 642233 501531 127848 111777 630970 248084 803991 797662 390929 980285 (450 digits)/46 888221 878191 988720 624384 924130 424109 608925 786122 651109 081475 950652 577497 155615 990794 320561 903495 282786 269201 903589 607847 696522 986350 411809 197886 902199 017962 179411 183946 502225 696726 358954 147785 868716 531211 971949 646706 227868 756010 904890 529652 531675 926801 206264 539256 287955 376358 180020 110898 818516 342477 037733 825157 197387 890799 301375 626317 562064 185131 708079 568873 404994 639438 993962 601547 738152 476136 950272 057037 682293 967708 400191 753135 991251 682452 821432 (452 digits), a[860] = 4
                                                                                      A[861]/B[861] = 3 967998 412574 533014 260544 797901 986339 498654 245319 465507 783919 893260 577246 027796 453721 795415 908117 111075 622865 106209 992365 261368 523169 650843 725183 811018 971301 418833 528474 189291 269893 792692 575434 645659 664392 676399 759270 715526 587949 958107 523464 478907 338951 509673 868246 439254 765705 322635 028906 549838 486749 283422 499178 277359 659097 531160 643361 053422 493814 412037 015624 304892 861292 823910 299506 816023 970225 483650 956938 428496 253031 000946 013806 505251 013809 616643 (451 digits)/385 663754 702630 504955 610814 166524 869864 101154 082585 961005 185849 624572 330183 915353 388918 453792 607357 156660 173839 617196 915784 707106 623705 008555 921095 083516 724612 385016 711228 548451 822778 674154 734763 494027 979368 237058 604153 979968 924470 079722 787494 483013 527112 620059 536090 793591 021044 065106 155622 260341 837494 751703 346555 224125 150448 928065 604100 093919 084361 607148 065911 935028 045236 940652 659655 944370 448808 875248 835351 403911 997011 718204 219278 430476 059849 216115 (453 digits), a[861] = 8
                                                                                      A[862]/B[862] = 20 322413 311207 411133 036063 829143 572695 464648 448133 410763 836129 732654 267965 252787 015787 909380 861601 291442 981454 331971 162175 725926 311526 285861 632254 992963 260345 483511 239224 067642 236107 245849 609201 712829 932352 618622 517214 669638 340616 569752 591487 397338 552201 450439 144758 489495 589064 362107 998068 574110 369540 580270 149094 095243 920150 066548 955840 029728 949717 246450 167931 030604 598413 662952 852941 453715 493360 919785 912540 254258 896125 252814 873024 323917 459978 063500 (452 digits)/1975 206995 391344 513498 678455 756754 773430 114696 199052 456135 010724 073514 228416 732382 935386 589524 940281 066087 138399 989574 186771 232056 104875 454588 803362 319782 641024 104494 740089 244484 810619 729727 821603 338856 428053 157242 667476 127713 378361 303504 467124 946743 562364 306562 219710 255910 481578 505550 889010 120225 529950 796250 557933 318013 643043 941703 646818 031659 606939 743819 898433 080134 865623 697225 899827 460004 720181 326516 233794 701853 952766 991212 849528 143631 981698 902007 (454 digits), a[862] = 5
                                                                                      A[863]/B[863] = 186 869718 213441 233211 585119 260194 140598 680490 278520 162382 309087 487148 988933 302879 595812 979843 662528 734062 455954 093950 451946 794705 326906 223598 415478 747688 314410 770434 681490 798071 394859 005339 058250 061129 055566 244002 414202 742271 653499 085880 846851 054954 308764 563626 171072 844715 067284 581607 011523 716831 812614 505853 841025 134554 940448 130101 245921 320983 041269 630088 527003 580334 247015 790485 975979 899463 410473 761724 169800 716826 318158 276279 871025 420508 153612 188143 (453 digits)/18162 526713 224731 126443 716915 977317 830735 133419 874058 066220 282366 286200 385934 506799 807397 759517 069886 751444 419439 523364 596725 795611 567584 099855 151355 961560 493829 325469 372031 748815 118356 241705 129193 543735 831846 652242 611439 129389 329721 811262 991619 003705 588391 379119 513483 096785 355250 615064 156713 342371 607051 917958 367955 086247 937844 403398 425462 378855 546819 301527 151809 656241 835850 215685 758103 084412 930440 813894 939503 720597 571914 639119 865031 723163 895139 334178 (455 digits), a[863] = 9
                                                                                      A[864]/B[864] = 954 671004 378413 577190 961660 130114 275688 867099 840734 222675 381567 168399 212631 767184 994852 808599 174244 961755 261224 801723 421909 699452 946057 403853 709648 731404 832399 335684 646678 057999 210402 272544 900452 018475 210183 838634 588228 380996 608111 999156 825742 672110 096024 268570 000122 713070 925487 270143 055687 158269 432613 109539 354219 768018 622390 717055 185446 634644 156065 396892 802948 932275 833492 615382 732840 951032 545729 728406 761543 838390 486916 634214 228151 426458 228039 004215 (453 digits)/92787 840561 515000 145717 263035 643343 927105 781795 569342 787236 422555 504516 158089 266381 972375 387110 289714 823309 235597 606397 170400 210113 942795 953864 560142 127585 110170 731841 600247 988560 402400 938253 467571 057535 587286 418455 724671 774660 026970 359819 425219 965271 504321 202159 787125 739837 257831 580871 672576 832083 565210 386042 397708 749253 332265 958695 774129 925937 341036 251455 657481 361344 044874 775654 690342 882069 372385 395990 931313 304841 812340 186812 174686 759451 457395 572897 (455 digits), a[864] = 5
                                                                                      A[865]/B[865] = 2096 211726 970268 387593 508439 520422 691976 414689 959988 607733 072221 823947 414196 837249 585518 597042 011018 657572 978403 697397 295766 193611 219021 031305 834776 210497 979209 441803 974846 914069 815663 550428 859154 098079 475933 921271 590659 504264 869723 084194 498336 399174 500813 100766 171318 270856 918259 121893 122898 033370 677840 724932 549464 670592 185229 564211 616814 590271 353400 423874 132901 444885 914001 021251 441661 801528 501933 218537 692888 393607 291991 544708 327328 273424 609690 196573 (454 digits)/203738 207836 254731 417878 242987 264005 684946 697011 012743 640693 127477 295232 702113 039563 752148 533737 649316 398062 890634 736158 937526 215839 453176 007584 271640 216730 714170 789152 572527 725935 923158 118212 064335 658807 006419 489154 060782 678709 383662 530901 842058 934248 597033 783439 087734 576459 870913 776807 501867 006538 737472 690043 163372 584754 602376 320789 973722 230730 228891 804438 466772 378929 925599 766995 138788 848551 675211 605876 802130 330281 196595 012744 214405 242066 809930 479972 (456 digits), a[865] = 2
                                                                                      A[866]/B[866] = 5147 094458 318950 352377 978539 170959 659641 696479 760711 438141 526010 816294 041025 441684 165890 002683 196282 276901 218032 196518 013442 086675 384099 466465 379201 152400 790818 219292 596371 886138 841729 373402 618760 214634 162051 681177 769547 389526 347558 167545 822415 470459 097650 470102 342759 254784 762005 513929 301483 225010 788294 559404 453149 109202 992849 845478 419075 815186 862866 244641 068751 822047 661494 657885 616164 554089 549596 165482 147320 625605 070899 723630 882807 973307 447419 397361 (454 digits)/500264 256234 024462 981473 749010 171355 296999 175817 594830 068622 677510 094981 562315 345509 476672 454585 588347 619435 016867 078715 045452 641792 849147 969033 103422 561046 538512 310146 745303 440432 248717 174677 596242 375149 600125 396763 846237 132078 794295 421623 109337 833768 698388 769037 962594 892756 999659 134486 676310 845161 040155 766128 724453 918762 537018 600275 721574 387397 798819 860332 591026 119203 896074 309644 967920 579172 722808 607744 535573 965404 205530 212300 603497 243585 077256 532841 (456 digits), a[866] = 2
                                                                                      A[867]/B[867] = 7243 306185 289218 739971 486978 691382 351618 111169 720700 045874 598232 640241 455222 278933 751408 599725 207300 934474 196435 893915 309208 280286 603120 497771 213977 362898 770027 661096 571218 800208 657392 923831 477914 312713 637985 602449 360206 893791 217281 251740 320751 869633 598463 570868 514077 525641 680264 635822 424381 258381 466135 284337 002613 779795 178079 409690 035890 405458 216266 668515 201653 266933 575495 679137 057826 355618 051529 384019 840209 019212 362891 268339 210136 246732 057109 593934 (454 digits)/704002 464070 279194 399351 991997 435360 981945 872828 607573 709315 804987 390214 264428 385073 228820 988323 237664 017497 907501 814873 982978 857632 302323 976617 375062 777777 252683 099299 317831 166368 171875 292889 660578 033956 606544 885917 907019 810788 177957 952524 951396 768017 295422 552477 050329 469216 870572 911294 178177 851699 777628 456171 887826 503517 139394 921065 695296 618128 027711 664771 057798 498133 821674 076640 106709 427724 398020 213621 337704 295685 402125 225044 817902 485651 887187 012813 (456 digits), a[867] = 1
                                                                                      A[868]/B[868] = 41363 625384 765044 052235 413432 627871 417732 252328 364211 667514 517174 017501 317136 836352 922933 001309 232786 949272 200211 666094 559483 488108 399701 955321 449087 966894 640956 524775 452465 887182 128693 992560 008331 778202 351979 693424 570581 858482 433964 426247 426174 818627 089968 324444 913146 882993 163328 693041 423389 516918 118970 981089 466218 008178 883246 893928 598527 842477 944199 587217 077018 156715 538973 053570 905296 332179 807243 085581 348365 721666 885356 065326 933489 206967 732967 367031 (455 digits)/4 020276 576585 420434 978233 708997 348160 206728 539960 632698 615201 702447 046052 884457 270875 620777 396201 776667 706924 554376 153084 960346 929954 360767 852119 978736 449932 801927 806643 334459 272273 108093 639125 899132 544932 632849 826353 381336 186019 684085 184247 866321 673855 175501 531423 214242 238841 352523 690957 567200 103659 928298 046988 163586 436348 233993 205604 198057 478037 937378 184187 880018 609873 004444 692845 501467 717794 712909 675851 224095 443831 216156 337524 693009 671844 513191 596906 (457 digits), a[868] = 5
                                                                                      A[869]/B[869] = 89970 556954 819306 844442 313843 947125 187082 615826 449123 380903 632580 675244 089495 951639 597274 602343 672874 833018 596859 226104 428175 256503 402524 408414 112153 296688 051940 710647 476150 574572 914780 908951 494577 869118 341944 989298 501370 610756 085210 104235 173101 506887 778400 219758 340371 291628 006922 021905 271160 292217 704077 246515 935049 796152 944573 197547 232946 090414 104665 842949 355689 580364 653441 786278 868419 019977 666015 555182 536940 462546 133603 398993 077114 660667 523044 327996 (455 digits)/8 744555 617241 120064 355819 409992 131681 395402 952749 872970 939719 209881 482320 033342 926824 470375 780726 790999 431347 016254 121043 903672 717541 023859 680857 332535 677642 856538 712585 986749 710914 388062 571141 458843 123821 872244 538624 669692 182827 546128 321020 684040 115727 646425 615323 478813 946899 575620 293209 312578 059019 634224 550148 214999 376213 607381 332274 091411 574203 902468 033146 817835 717879 830563 462331 109644 863313 823839 565323 785895 183347 834437 900094 203921 829340 913570 206625 (457 digits), a[869] = 2
                                                                                      A[870]/B[870] = 221304 739294 403657 741120 041120 522121 791897 483981 262458 429321 782335 367989 496128 739632 117482 205996 578536 615309 393930 118303 415834 001115 204750 772149 673394 560270 744837 946070 404767 036327 958255 810462 997487 516439 035869 672021 573323 079994 604384 634717 772377 832402 646768 763961 593889 466249 177172 736851 965710 101353 527125 474121 336317 600484 772393 289023 064420 023306 153531 273115 788397 317444 845856 626128 642134 372135 139274 195946 422246 646759 152562 863313 087718 528302 779056 023023 (456 digits)/21 509387 811067 660563 689872 528981 611522 997534 445460 378640 494640 122210 010692 951143 124524 561528 957655 358666 569618 586884 395172 767692 365036 408487 213834 643807 805218 515005 231815 307958 694101 884218 781408 816818 792576 377338 903602 720720 551674 776341 826289 234401 905310 468352 762070 171870 132640 503764 277376 192356 221699 196747 147284 593585 188775 448755 870152 380880 626445 742314 250481 515690 045632 665571 617507 720757 444422 360588 806498 795885 810526 885032 137713 100853 330526 340332 010156 (458 digits), a[870] = 2
                                                                                      A[871]/B[871] = 311275 296249 222964 585562 354964 469246 978980 099807 711581 810225 414916 043233 585624 691271 714756 808340 251411 448327 990789 344407 844009 257618 607275 180563 785547 856958 796778 656717 880917 610900 873036 719414 492065 385557 377814 661320 074693 690750 689594 738952 945479 339290 425168 983719 934260 757877 184094 758757 236870 393571 231202 720637 271367 396637 716966 486570 297366 113720 258197 116065 144086 897809 499298 412407 510553 392112 805289 751128 959187 109305 286166 262306 164833 188970 302100 351019 (456 digits)/30 253943 428308 780628 045691 938973 743204 392937 398210 251611 434359 332091 493012 984486 051349 031904 738382 149666 000965 603138 516216 671365 082577 432346 894691 976343 482861 371543 944401 294708 405016 272281 352550 275661 916398 249583 442227 390412 734502 322470 147309 918442 021038 114778 377393 650684 079540 079384 570585 504934 280718 830971 697432 808584 564989 056137 202426 472292 200649 644782 283628 333525 763512 496135 079838 830402 307736 184428 371822 581780 993874 719470 037807 304775 159867 253902 216781 (458 digits), a[871] = 1
                                                                                      A[872]/B[872] = 3 645332 998035 856268 182305 945729 683838 560678 581866 089858 341801 346411 843558 938000 343620 979807 097739 344062 546917 292612 906789 699935 834919 884777 758351 314420 986817 509403 169967 094860 756237 561659 724022 410206 757570 191830 946542 394953 678252 189926 763200 172650 564597 323627 584880 870757 802898 202215 083181 571284 430637 070355 401131 321358 963499 659024 641296 335447 274228 993699 549832 373353 193349 338139 162611 258221 685375 997461 458364 973304 849117 300391 748680 900883 606976 102159 884232 (457 digits)/354 302765 522464 247472 192483 857692 786771 319845 825773 146366 272592 775216 433835 780489 689363 912481 079859 004992 580240 221408 073556 152708 273388 164303 055446 383586 116693 601988 620229 549751 149280 879313 659461 849099 872957 122756 768104 015260 631200 323513 446698 337264 136729 730914 913400 329395 007581 376994 553816 746633 309606 337435 819045 488015 403655 066265 096843 576094 833591 834919 370393 184473 444270 123057 495734 855182 829520 389300 896547 195476 743148 799202 553593 453380 089066 133256 394747 (459 digits), a[872] = 11
                                                                                      A[873]/B[873] = 3 956608 294285 079232 767868 300694 153085 539658 681673 801440 152026 761327 886792 523625 034892 694563 906079 595473 995245 283402 251197 543945 092538 492052 938915 099968 843776 306181 826684 975778 367138 434696 443436 902272 143127 569645 607862 469647 369002 879521 502153 118129 903887 748796 568600 805018 560775 386309 841938 808154 824208 301558 121768 592726 360137 375991 127866 632813 387949 251896 665897 517440 091158 837437 575018 768775 077488 802751 209493 932491 958422 586558 010987 065716 795946 404260 235251 (457 digits)/384 556708 950773 028100 238175 796666 529975 712783 223983 397977 706952 107307 926848 764975 740712 944385 818241 154658 581205 824546 589772 824073 355965 596649 950138 359929 599554 973532 564630 844459 554297 151595 012012 124761 789355 372340 210331 405673 365702 645983 594008 255706 157767 845693 290793 980079 087121 456379 124402 251567 590325 168407 516478 296599 968644 122402 299270 048387 034241 479701 654021 517999 207782 619192 575573 685585 137256 573729 268369 777257 737023 518672 591400 758155 248933 387158 611528 (459 digits), a[873] = 1
                                                                                      A[874]/B[874] = 11 558549 586606 014733 718042 547117 990009 639995 945213 692738 645854 869067 617143 985250 413406 368934 909898 535010 537407 859417 409184 787826 019996 868883 636181 514358 674370 121766 823337 046417 490514 431052 610896 214751 043825 331122 162267 334248 416257 948969 767506 408910 372372 821220 722082 480794 924448 974834 767059 187594 079053 673471 644668 506811 683774 411006 897029 601074 050127 497492 881627 408233 375667 013014 312648 795771 840353 602963 877352 838288 765962 473507 770655 032317 198868 910680 354734 (458 digits)/1123 416183 424010 303672 668835 451025 846722 745412 273739 942321 686496 989832 287533 310441 170789 801252 716341 314309 742651 870501 253101 800854 985319 357602 955723 103445 315803 549053 749491 238670 257875 182503 683486 098623 451667 867437 188766 826607 362605 615480 634714 848676 452265 422301 494988 289553 181824 289752 802621 249768 490256 674250 852002 081215 340943 311069 695383 672868 902074 794322 678436 220471 859835 361442 646882 226353 104033 536759 433286 749992 217195 836547 736394 969690 586932 907573 617803 (460 digits), a[874] = 2
                                                                                      A[875]/B[875] = 27 073707 467497 108700 203953 394930 133104 819650 572101 186917 443736 499463 121080 494125 861705 432433 725876 665495 070061 002237 069567 119597 132532 229820 211278 128686 192516 549715 473359 068613 348167 296801 665229 331774 230778 231889 932397 138144 201518 777461 037165 935950 648633 391238 012765 766608 409673 335979 376057 183342 982315 648501 411105 606349 727686 198004 921925 834961 488204 246882 429152 333906 842492 863466 200316 360318 758196 008678 964199 609069 490347 533573 552297 130351 193684 225620 944719 (458 digits)/2631 389075 798793 635445 575846 698718 223421 203607 771463 282621 079946 086972 501915 385858 082292 546891 250923 783278 066509 565549 095976 425783 326604 311855 861584 566820 231162 071640 063613 321800 070047 516602 378984 322008 692691 107214 587865 058888 090913 876944 863437 953059 062298 690296 280770 559185 450770 035884 729644 751104 570838 516909 220482 459030 650530 744541 690037 394124 838391 068347 010893 958942 927453 342077 869338 138291 345323 647248 134943 277242 171415 191768 064190 697536 422799 202305 847134 (460 digits), a[875] = 2
                                                                                      A[876]/B[876] = 255 221916 794079 993035 553623 101489 187953 016851 094124 374995 639483 364235 706868 432383 168755 260838 442788 524466 167956 879551 035288 864200 212786 937265 537684 672534 407019 069206 083568 663937 624020 102267 597960 200719 120829 418131 553841 577546 229926 946119 101999 832466 210073 342362 836974 380270 611508 998649 151573 837680 919894 509984 344618 963959 232950 193051 194362 115727 443965 719434 743998 413394 958102 784210 115496 038640 664117 681074 555149 319914 179090 275669 741329 205477 942026 941268 857205 (459 digits)/24805 917865 613153 022682 851455 739489 857513 577882 216909 485911 406011 772584 804771 783163 911422 723273 974655 363812 341237 960443 116889 632904 924758 164305 709984 204827 396262 193814 322011 134870 888302 831925 094344 996701 685887 832368 479552 356600 180830 507984 405656 426208 012953 634968 021923 322222 238754 612715 369424 009709 627803 326433 836344 212491 195720 011944 905720 219992 447594 409445 776481 850958 206915 440143 470925 470975 211946 361992 647776 245171 759932 562460 314111 247518 392125 728326 242009 (461 digits), a[876] = 9
                                                                                      A[877]/B[877] = 1047 961374 643817 080842 418445 800886 884916 887054 948598 686900 001669 956405 948554 223658 536726 475787 497030 763359 741888 520441 210722 576397 983679 978882 362016 818823 820592 826539 807633 724363 844247 705872 057070 134650 714095 904416 147763 448329 121226 561937 445165 265815 488926 760689 360663 287690 855709 330575 982352 534066 661893 688438 789581 462186 659486 970209 699374 297871 264067 124621 405145 987486 674904 000306 662300 514881 414666 732977 184796 888726 206708 636252 517613 952262 961791 990696 373539 (460 digits)/101855 060538 251405 726176 981669 656677 653475 515136 639101 226266 703993 177311 721002 518513 727983 439987 149545 238527 431461 407321 563534 957403 025636 969078 701521 386129 816210 846897 351657 861283 623258 844302 756364 308815 436242 436688 506074 485288 814235 908882 486063 657891 114113 230168 368463 848074 405788 486746 207340 789943 082051 822644 565859 308995 433410 792321 312918 274094 628768 706130 116821 362775 755115 102651 753040 022192 193109 095218 726048 257929 211145 441609 320635 687609 991302 115610 815170 (462 digits), a[877] = 4
                                                                                      A[878]/B[878] = 1303 183291 437897 073877 972068 902376 072869 903906 042723 061895 641153 320641 655422 656041 705481 736625 939819 287825 909845 399992 246011 440598 196466 916147 899701 491358 227611 895745 891202 388301 468267 808139 655030 335369 834925 322547 701605 025875 351153 508056 547165 098281 699000 103052 197637 667961 467218 329225 133926 371747 581788 198423 134200 426145 892437 163260 893736 413598 708032 844056 149144 400881 633006 784516 777796 553522 078784 414051 739946 208640 385798 911922 258943 157740 903818 931965 230744 (460 digits)/126660 978403 864558 748859 833125 396167 510989 093018 856010 712178 110004 949896 525774 301677 639406 163261 124200 602339 772699 367764 680424 590307 950395 133384 411505 590957 212473 040711 673668 996154 511561 676227 850709 305517 122130 269056 985626 841888 995066 416866 891720 084099 127066 865136 390387 170296 644543 099461 576764 799652 709855 149078 402203 521486 629130 804266 218638 494087 076363 115575 893303 213733 962030 542795 223965 493167 405055 457211 373824 503100 971078 004069 634746 935128 383427 843937 057179 (462 digits), a[878] = 1
                                                                                      A[879]/B[879] = 6260 694540 395405 376354 306721 410391 176396 502679 119490 934482 566283 238972 570244 847825 358653 422291 256307 914663 381270 120410 194768 338790 769547 643473 960822 784256 731040 409523 372443 277569 717318 938430 677191 476130 053797 194606 954183 551830 525840 594163 633825 658942 284927 172898 151213 959536 724582 647476 518058 021056 989046 482131 326383 166770 229235 623253 274319 952266 096198 500846 001723 591013 206931 138373 773486 728969 729804 389184 144581 723287 749904 283941 553386 583226 577067 718557 296515 (460 digits)/608498 974153 709640 721616 314171 241347 697431 887212 063144 074979 144012 976897 824099 725224 285608 093031 646347 647886 522258 878380 285233 318634 827217 502616 347543 749958 666103 009744 046333 845901 669505 549214 159201 530883 924763 512916 448581 852844 794501 576350 052943 994287 622380 690713 930012 529260 983960 884592 514399 988553 921472 418958 174673 394941 949934 009386 187472 250442 934221 168433 690034 217711 603237 273832 648901 994861 813330 924064 221346 270333 095457 457887 859623 428123 525013 491359 043886 (462 digits), a[879] = 4
                                                                                      A[880]/B[880] = 7563 877831 833302 450232 278790 312767 249266 406585 162213 996378 207436 559614 225667 503867 064135 158917 196127 202489 291115 520402 440779 779388 966014 559621 860524 275614 958652 305269 263645 665871 185586 746570 332221 811499 888722 517154 655788 577705 876994 102220 180990 757223 983927 275950 348851 627498 191800 976701 651984 392804 570834 680554 460583 592916 121672 786514 168056 365864 804231 344902 150867 991894 839937 922890 551283 282491 808588 803235 884527 931928 135703 195863 812329 740967 480886 650522 527259 (460 digits)/735159 952557 574199 470476 147296 637515 208420 980230 919154 787157 254017 926794 349874 026901 925014 256292 770548 250226 294958 246144 965657 908942 777612 636000 759049 340915 878576 050455 720002 842056 181067 225442 009910 836401 046893 781973 434208 694733 789567 993216 944664 078386 749447 555850 320399 699557 628503 984054 091164 788206 631327 568036 576876 916428 579064 813652 406110 744530 010584 284009 583337 431445 565267 816627 872867 488029 218386 381275 595170 773434 066535 461957 494370 363251 908441 335296 101065 (462 digits), a[880] = 1
                                                                                      A[881]/B[881] = 44080 083699 561917 627515 700672 974227 422728 535604 930560 916373 603466 037043 698582 367160 679329 216877 236943 927109 836847 722422 398667 235735 599620 441583 263444 162331 524301 935869 690671 606925 645252 671282 338300 533629 497409 780380 233126 440359 910811 105264 538779 445062 204563 552649 895472 097027 683587 530984 777979 985079 843219 884903 629301 131350 837599 555824 114601 781590 117355 225356 756063 550487 406620 752826 529903 141428 772748 405363 567221 382928 428420 263260 615035 288063 981500 971169 932810 (461 digits)/4 284298 736941 580638 073997 050654 428923 739536 788366 658918 010765 414102 610869 573469 859733 910679 374495 499088 899017 997050 109105 113522 863348 715280 682620 142790 454538 058983 262022 646348 056182 574841 676424 208755 712889 159232 422783 619625 326513 742341 542434 776264 386221 369618 469965 532011 027049 126480 804862 970223 929587 078110 259141 059057 977084 845258 077648 218025 973092 987142 588481 606721 374939 429576 356972 013239 435007 905262 830442 197200 137503 428134 767675 331475 244383 067220 167839 549211 (463 digits), a[881] = 5
                                                                                      A[882]/B[882] = 448364 714827 452478 725389 285520 055041 476551 762634 467823 160114 242096 930051 211491 175473 857427 327689 565566 473587 659592 744626 427452 136744 962218 975454 494965 898930 201671 663966 170361 735127 638113 459393 715227 147794 862820 320956 987052 981304 985105 154865 568785 207846 029562 802449 303572 597775 027676 286549 431784 243603 003033 529590 753594 906424 497668 344755 314074 181765 977783 598469 711503 496768 906145 451155 850314 696779 536072 856871 556741 761212 419905 828469 962682 621607 295896 362221 855359 (462 digits)/43 578147 321973 380580 210446 653840 926752 603788 863897 508334 894811 395044 035490 084572 624241 031808 001247 761437 240406 265459 337196 100886 542429 930419 462202 186953 886296 468408 670682 183483 403881 929483 989684 097467 965292 639218 009809 630461 959871 212983 417564 707307 940600 445632 255505 640509 970048 893312 032683 793404 084077 412430 159447 167456 687277 031645 590134 586370 475459 882010 168825 650551 180839 861031 386348 005261 838108 271014 685697 567172 148468 347883 138710 809122 807082 580643 013691 593175 (464 digits), a[882] = 10
                                                                                      A[883]/B[883] = 492444 798527 014396 352904 986193 029268 899280 298239 398384 076487 845562 967094 910073 542634 536756 544566 802510 400697 496440 467048 826119 372480 561839 417037 758410 061261 725973 599835 861033 342053 283366 130676 053527 681424 360230 101337 220179 421664 895916 260130 107564 652908 234126 355099 199044 694802 711263 817534 209764 228682 846253 414494 382896 037775 335267 900579 428675 963356 095138 823826 467567 047256 312766 203982 380217 838208 308821 262235 123963 144140 848326 091730 577717 909671 277397 333391 788169 (462 digits)/47 862446 058914 961218 284443 704495 355676 343325 652264 167252 905576 809146 646359 658042 483974 942487 375743 260526 139424 262509 446301 214409 405778 645700 144822 329744 340834 527391 932704 829831 460064 504325 666108 306223 678181 798450 432593 250087 286384 955324 959999 483572 326821 815250 725471 172520 997098 019792 837546 763628 013664 490540 418588 226514 664361 876903 667782 804396 448552 869152 757307 257272 555779 290607 743320 018501 273116 176277 516139 764372 285971 776017 906386 140598 051465 647863 181531 142386 (464 digits), a[883] = 1
                                                                                      A[884]/B[884] = 940809 513354 466875 078294 271713 084310 375832 060873 866207 236602 087659 897146 121564 718108 394183 872256 368076 874285 156033 211675 253571 509225 524058 392492 253375 960191 927645 263802 031395 077180 921479 590069 768754 829219 223050 422294 207232 402969 881021 414995 676349 860754 263689 157548 502617 292577 738940 104083 641548 472285 849286 944085 136490 944199 832936 245334 742750 145122 072922 422296 179070 544025 218911 655138 230532 534987 844894 119106 680704 905353 268231 920200 540400 531278 573293 695613 643528 (462 digits)/91 440593 380888 341798 494890 358336 282428 947114 516161 675587 800388 204190 681849 742615 108215 974295 376991 021963 379830 527968 783497 315295 948208 576119 607024 516698 227130 995800 603387 013314 863946 433809 655792 403691 643474 437668 442402 880549 246256 168308 377564 190880 267422 260882 980976 813030 967146 913104 870230 557032 097741 902970 578035 393971 351638 908549 257917 390766 924012 751162 926132 907823 736619 151639 129668 023763 111224 447292 201837 331544 434440 123901 045096 949720 858548 228506 195222 735561 (464 digits), a[884] = 1
                                                                                      A[885]/B[885] = 2 374063 825235 948146 509493 529619 197889 650944 419987 130798 549692 020882 761387 153202 978851 325124 289079 538664 149267 808506 890399 333262 390931 609956 202022 265161 981645 581264 127439 923823 496415 126325 310815 591037 339862 806330 945925 634644 227604 657959 090121 460264 374416 761504 670196 204279 279958 189144 025701 492861 173254 544827 302664 655877 926175 001140 391248 914176 253600 240983 668418 825708 135306 750589 514258 841282 908183 998609 500448 485372 954847 384789 932131 658518 972228 423984 724619 075225 (463 digits)/230 743632 820691 644815 274224 421167 920534 237554 684587 518428 506353 217528 010059 143272 700406 891078 129725 304452 899085 318447 013295 845001 302195 797939 358871 363140 795096 518993 139478 856461 187957 371944 977693 113606 965130 673787 317399 011185 778897 291941 715127 865332 861666 337016 687424 798582 931391 846002 578007 877692 209148 296481 574659 014457 367639 694002 183617 585930 296578 371478 609573 072920 029017 593886 002656 066027 495565 070861 919814 427461 154852 023819 996580 040039 768562 104875 571976 613508 (465 digits), a[885] = 2
                                                                                      A[886]/B[886] = 3 314873 338590 415021 587787 801332 282200 026776 480860 997005 786294 108542 658533 274767 696959 719308 161335 906741 023552 964540 102074 586833 900157 134014 594514 518537 941837 508909 391241 955218 573596 047804 900885 359792 169082 029381 368219 841876 630574 538980 505117 136614 235171 025193 827744 706896 572535 928084 129785 134409 645540 394114 246749 792368 870374 834076 636583 656926 398722 313906 090715 004778 679331 969501 169397 071815 443171 843503 619555 166077 860200 653021 852332 198919 503506 997278 420232 718753 (463 digits)/322 184226 201579 986613 769114 779504 202963 184669 200749 194016 306741 421718 691908 885887 808622 865373 506716 326416 278915 846415 796793 160297 250404 374058 965895 879839 022227 514793 742865 869776 051903 805754 633485 517298 608605 111455 759801 891735 025153 460250 092692 056213 129088 597899 668401 611613 898538 759107 448238 434724 306890 199452 152694 408428 719278 602551 441534 976697 220591 122641 535705 980743 765636 745525 132324 089790 606789 518154 121651 759005 589292 147721 041676 989760 627110 333381 767199 349069 (465 digits), a[886] = 1
                                                                                      A[887]/B[887] = 9 003810 502416 778189 685069 132283 762289 704497 381709 124810 122280 237968 078453 702738 372770 763740 611751 352146 196373 737587 094548 506930 191245 877985 391051 302237 865320 599082 909923 834260 643607 221935 112586 310621 678026 865093 682365 318397 488753 735920 100355 733492 844758 811892 325685 618072 425030 045312 285271 761680 464335 333055 796164 240615 666924 669293 664416 228029 051044 868795 849848 835265 493970 689591 853052 984913 794527 685616 739558 817528 675248 690833 636796 056357 979242 418541 565084 512731 (463 digits)/875 112085 223851 618042 812453 980176 326460 606893 086085 906461 119836 060965 393876 915048 317652 621825 143157 957285 456917 011278 606882 165595 803004 546057 290663 122818 839551 548580 625210 596013 291764 983454 244664 148204 182340 896698 837002 794655 829204 212441 900511 977759 119843 532816 024228 021810 728469 364217 474484 747140 822928 695385 880047 831314 806196 899105 066687 539324 737760 616761 680985 034407 560291 084936 267304 245608 709144 107170 163117 945472 333436 319262 079934 019561 022782 771639 106375 311646 (465 digits), a[887] = 2
                                                                                      A[888]/B[888] = 93 352978 362758 196918 438479 124169 905097 071750 297952 245107 009096 488223 443070 302151 424667 356714 278849 428202 987290 340411 047559 656135 812615 913868 505027 540916 595043 499738 490480 297825 009668 267156 026748 466008 949350 680318 191873 025851 518111 898181 508674 471542 682759 144117 084600 887620 822836 381206 982502 751214 288893 724672 208392 198525 539621 527013 280745 937216 909171 001864 589203 357433 619038 865419 699926 920953 388448 699671 015143 341364 612687 561358 220292 762499 295931 182694 071077 846063 (464 digits)/9073 305078 440096 167041 893654 581267 467569 253600 061608 258627 505102 031372 630678 036370 985149 083624 938295 899270 848085 959201 865614 816255 280449 834631 872527 108027 417743 000599 994971 829908 969553 640297 080126 999340 432014 078444 129829 838293 317195 584669 097811 833804 327523 926059 910681 829721 183232 401282 193085 906132 536177 153310 953172 721576 781247 593602 108410 369944 598197 290258 345556 324819 368547 594887 805366 545877 698230 589855 752831 213728 923655 340341 841017 185370 854938 049772 830952 465529 (466 digits), a[888] = 10
                                                                                      A[889]/B[889] = 195 709767 227933 172026 562027 380623 572483 847997 977613 615024 140473 214414 964594 307041 222105 477169 169450 208552 170954 418409 189667 819201 816477 705722 401106 384071 055407 598559 890884 429910 662943 756247 166083 242639 576728 225730 066111 370100 524977 532283 117704 676578 210277 100126 494887 393314 070702 807726 250277 264109 042122 782400 212948 637666 746167 723320 225908 102462 869386 872525 028255 550132 732048 420431 252906 826820 571425 084958 769845 500257 900623 813550 077381 581356 571104 783929 707240 204857 (465 digits)/19021 722242 104043 952126 599763 142711 261599 114093 209302 423716 130040 123710 655232 987790 287950 789075 019749 755827 153088 929682 338111 798106 363904 215321 035717 338873 675037 549780 615154 255831 230872 264048 404918 146885 046369 053587 096662 471242 463595 381780 096135 645367 774891 384935 845591 681253 094934 166781 860656 559405 895283 002007 786393 274468 368692 086309 283508 279213 934155 197278 372097 684046 297386 274711 878037 337364 105605 286881 668780 372930 180746 999945 761968 390302 732658 871184 768280 242704 (467 digits), a[889] = 2
                                                                                      A[890]/B[890] = 3028 999486 781755 777316 868889 833523 492354 791719 962156 470469 116194 704447 911984 907769 756249 514251 820602 556485 551606 616548 892576 944163 059781 499704 521623 301982 426157 478136 853746 746484 953824 610863 517997 105602 600274 066269 183543 577359 392774 882428 274244 620215 836915 646014 507911 787331 883378 497100 736661 712849 920735 460675 402621 763526 732137 376816 669367 474159 949974 089740 013036 609424 599765 171888 493529 323261 959824 974052 562825 845233 122044 764609 381016 482847 862502 941639 679680 918918 (466 digits)/294399 138710 000755 448940 890101 721936 391555 964998 201144 614369 455703 887032 459172 853225 304410 919750 234542 236678 144419 904436 937291 787850 739013 064447 408287 191132 543306 247309 222285 667377 432637 601023 153899 202616 127549 882250 579766 906930 271126 311370 539846 514320 950894 700097 594557 048517 607244 903010 102934 297220 965422 183427 749071 838602 311628 888241 361034 558153 610525 249433 927021 585513 829341 715565 975926 606339 282309 893080 784536 807681 634860 339528 270543 039911 844821 117544 355156 106089 (468 digits), a[890] = 15
                                                                                      A[891]/B[891] = 15340 707201 136712 058610 906476 548241 034257 806597 788395 967369 721446 736654 524518 845890 003353 048428 272462 990979 928987 501153 652552 540017 115385 204245 009222 893983 186194 989244 159618 162335 432066 810564 756068 770652 578098 557075 983829 256897 488851 944424 488927 777657 394855 330199 034446 329973 487595 293229 933585 828358 645800 085777 226057 455300 406854 607403 572745 473262 619257 321225 093438 597255 730874 279873 720553 443130 370549 955221 583974 726423 510847 636596 982463 995595 883619 492128 105644 799447 (467 digits)/1 491017 415792 107821 196831 050271 752393 219378 939084 215025 495563 408559 558872 951097 253916 810005 387826 192460 939217 875188 451867 024570 737360 058969 537558 077153 294536 391568 786326 726582 592718 394060 269164 174414 159965 684118 464839 995497 005893 819226 938632 795368 216972 529364 885423 818376 923841 131158 681832 375328 045510 722393 919146 531752 467479 926836 527516 088681 069981 986781 444448 007205 611615 444094 852541 757670 369060 517154 752285 591464 411338 355048 697587 114683 589861 956764 458906 544060 773149 (469 digits), a[891] = 5
                                                                                      A[892]/B[892] = 386546 679515 199557 242589 530803 539549 348799 956664 672055 654712 152363 120811 024956 055019 840075 724958 632177 330983 776294 145390 206390 444590 944411 605829 752195 651562 081032 209240 844200 804870 755494 874982 419716 371917 052737 993168 779274 999796 614073 493040 497439 061650 708298 900990 369070 036669 073260 827849 076307 421816 065737 605106 054058 146036 903502 561905 988004 305725 431407 120367 349001 540817 871622 168731 507365 401521 223573 854592 162194 005820 893235 679533 942616 372744 952990 244842 320800 905093 (468 digits)/37 569834 533512 696285 369717 146895 531766 876029 442103 576782 003454 669692 858856 236604 201145 554545 615405 046065 717125 024131 201112 551560 221852 213251 503399 337119 554542 332525 905477 386850 485337 284144 330127 514253 201758 230511 503250 467192 054275 751799 777190 424051 938634 185016 835693 053980 144545 886211 948819 486135 434989 025270 162091 042883 525600 482542 076143 578061 307703 280061 360634 107161 875899 931713 029109 917685 832852 211178 700220 571147 091140 511077 779206 137632 786460 763932 590207 956675 434814 (470 digits), a[892] = 25
                                                                                      A[893]/B[893] = 401887 386716 336269 301200 437280 087790 383057 763262 460451 622081 873809 857465 549474 900909 843428 773386 904640 321963 705281 646543 858942 984608 059796 810074 761418 545545 267227 198485 003818 967206 187561 685547 175785 142569 630836 550244 763104 256694 102925 437464 986366 839308 103154 231189 403516 366642 560856 121079 009893 250174 711537 690883 280115 601337 310357 169309 560749 778988 050664 441592 442440 138073 602496 448605 227918 844651 594123 809813 746168 732244 404083 316130 925080 368340 836609 736970 426445 704540 (468 digits)/39 060851 949304 804106 566548 197167 284160 095408 381187 791807 499018 078252 417729 187701 455062 364551 003231 238526 656342 899319 652979 576130 959212 272221 040957 414272 849078 724094 691804 113433 078055 678204 599291 688667 361723 914629 968090 462689 060169 571026 715823 219420 155606 714381 721116 872357 068387 017370 630651 861463 480499 747664 081237 574635 993080 409378 603659 666742 377685 266842 805082 114367 487515 375807 881651 675356 201912 728333 452506 162611 502478 866126 476793 252316 376322 720697 049114 500736 207963 (470 digits), a[893] = 1
                                                                                      A[894]/B[894] = 1 190321 452947 872095 844990 405363 715130 114915 483189 592958 898875 899982 835742 123905 856839 526933 271732 441457 974911 186857 438477 924276 413807 064005 225979 275032 742652 615486 606210 851838 739283 130618 246076 771286 657056 314411 093658 305483 513184 819924 367970 470172 740266 914607 363369 176102 769954 194973 070007 096093 922165 488812 986872 614289 348711 524216 900525 109503 863701 532736 003552 233881 816965 076615 065941 963203 090824 411821 474219 654531 470309 701402 311795 792777 109426 626209 718783 173692 314173 (469 digits)/115 691538 432122 304498 502813 541230 100087 066846 204479 160397 001490 826197 694314 612007 111270 283647 621867 523119 029810 822770 507071 703822 140276 757693 585314 165665 252699 780715 289085 613716 641448 640553 528710 891587 925206 059771 439431 392570 174614 893853 208836 862892 249847 613780 277926 798694 281319 920953 210123 209062 395988 520598 324566 192155 511761 301299 283462 911546 063073 813746 970798 335896 850930 683328 792413 268398 236677 667845 605232 896370 096098 243330 732792 642265 539106 205326 688436 958147 850740 (471 digits), a[894] = 2
                                                                                      A[895]/B[895] = 1 592208 839664 208365 146190 842643 802920 497973 246452 053410 520957 773792 693207 673380 757749 370362 045119 346098 296874 892139 085021 783219 398415 123802 036054 036451 288197 882713 804695 855657 706489 318179 931623 947071 799625 945247 643903 068587 769878 922849 805435 456539 579575 017761 594558 579619 136596 755829 191086 105987 172340 200350 677755 894404 950048 834574 069834 670253 642689 583400 445144 676321 955038 679111 514547 191121 935476 005945 284033 400700 202554 105485 627926 717857 477767 462819 455753 600138 018713 (469 digits)/154 752390 381427 108605 069361 738397 384247 162254 585666 952204 500508 904450 112043 799708 566332 648198 625098 761645 686153 722090 160051 279953 099489 029914 626271 579938 101778 504809 980889 727149 719504 318758 128002 580255 286929 974401 407521 855259 234784 464879 924660 082312 405454 328161 999043 671051 349706 938323 840775 070525 876488 268262 405803 766791 504841 710677 887122 578288 440759 080589 775880 450264 338446 059136 674064 943754 438590 396179 057739 058981 598577 109457 209585 894581 915428 926023 737551 458884 058703 (471 digits), a[895] = 1
                                                                                      A[896]/B[896] = 15 520201 009925 747382 160707 989157 941414 596674 701258 073653 587495 864117 074611 184332 676583 860191 677806 556342 646785 216109 203673 973250 999543 178223 550465 603094 336433 559910 848473 552758 097686 994237 630692 294932 853689 821639 888785 922773 442095 125572 616889 579028 956442 074461 714396 392674 999324 997435 789782 049978 473227 291969 086675 663933 899151 035383 529037 141786 647907 783340 009854 320779 412313 188618 696866 683300 510108 465329 030520 260833 293296 650772 963136 253494 409333 791584 820565 574934 482590 (470 digits)/1508 463051 864966 281944 127069 186806 558311 527137 475481 730237 506070 966248 702708 809384 208264 117435 247756 377930 205194 321581 947533 223400 035678 026925 221758 385108 168706 324005 117093 158064 116987 509376 680734 113885 507575 829384 107128 089903 287675 077772 530777 603703 898936 567238 269319 838156 428682 365867 777098 843795 284382 934959 976800 093279 055336 697400 267566 116142 029905 539054 953722 388275 896945 215558 858997 762188 183991 233457 124884 427204 483292 228445 619065 693502 777966 539540 326400 088104 379067 (472 digits), a[896] = 9
                                                                                      A[897]/B[897] = 17 112409 849589 955747 306898 831801 744335 094647 947710 127064 108453 637909 767818 857713 434333 230553 722925 902440 943660 108248 288695 756470 397958 302025 586519 639545 624631 442624 653169 408415 804176 312417 562316 242004 653315 766887 532688 991361 211974 048422 422325 035568 536017 092223 308954 972294 135921 753264 980868 155965 645567 492319 764431 558338 849199 869957 598871 812040 290597 366740 454998 997101 367351 867730 211413 874422 445584 471274 314553 661533 495850 756258 591062 971351 887101 254404 276319 175072 501303 (470 digits)/1663 215442 246393 390549 196430 925203 942558 689392 061148 682442 006579 870698 814752 609092 774596 765633 872855 139575 891348 043672 107584 503353 135167 056839 848029 965046 270484 828815 097982 885213 836491 828134 808736 694140 794505 803785 514649 945162 522459 542652 455437 686016 304390 895400 268363 509207 778389 304191 617873 914321 160871 203222 382603 860070 560178 408078 154688 694430 470664 619644 729602 838540 235391 274695 533062 705942 622581 629636 182623 486186 081869 337902 828651 588084 693395 465564 063951 546988 437770 (472 digits), a[897] = 1
                                                                                      A[898]/B[898] = 66 857430 558695 614624 081404 484563 174419 880618 544388 454845 912856 777846 378067 757472 979583 551852 846584 263665 477765 540854 069761 242662 193418 084300 310024 521731 210327 887784 807981 778005 510215 931490 317641 020946 813637 122302 486852 896857 078017 270839 883864 685734 564493 351131 641261 309557 407090 257230 732386 517875 409929 768928 379970 338950 446750 645256 325652 577907 519699 883561 374851 312083 514368 791809 331108 306567 846861 879151 974181 245433 780848 919548 736325 167550 070637 554797 649523 100151 986499 (470 digits)/6498 109378 604146 453591 716361 962418 385987 595313 658927 777563 525810 578345 146966 636662 532054 414336 866321 796657 879238 452598 270286 733459 441179 197444 765848 280246 980160 810450 411041 813705 626462 993781 106944 196307 891093 240740 651077 925390 855053 705729 897090 661752 812109 253439 074410 365779 763850 278442 630720 586758 766996 544627 124611 673490 735871 921634 731632 199433 441899 397989 142530 903896 603119 039645 458185 880016 051736 122365 672754 885762 728900 242154 105020 457756 858152 936232 518254 729069 692377 (472 digits), a[898] = 3
                                                                                      A[899]/B[899] = 6368 568312 925673 345035 040324 865303 314223 753409 664613 337425 829847 533315 684255 817646 494770 656574 148430 950661 331386 489384 916013 809378 772676 310555 038849 204010 605780 782181 411438 318939 274689 803997 738213 231951 948842 385623 783714 192783 623614 778211 389470 180352 162885 449729 228779 380247 809496 190184 557587 354129 588895 540515 861613 758631 290511 169308 535866 713254 662086 305071 065873 645035 232387 089616 666702 998367 897462 990711 861771 977742 676498 113388 541953 888608 597668 960180 981013 689511 218708 (472 digits)/618983 606409 640306 481762 250817 354950 611380 244189 659287 550976 958584 813487 776583 092033 319766 127636 173425 822074 419001 040507 784824 182000 047190 814092 603616 588509 385761 821604 146955 187248 350476 237339 968435 343390 448363 674147 367052 857293 752561 586992 679050 552533 454769 972112 337348 258285 344165 756241 536329 656404 025542 942799 220712 841690 468010 963377 659747 640607 451107 428613 270038 708717 531700 041014 060721 307467 537513 254375 094337 633645 327392 342542 805595 074986 217924 407653 298150 808609 213585 (474 digits), a[899] = 95
                                                                                      A[900]/B[900] = 6435 425743 484368 959659 121729 349866 488643 634028 209001 792271 742704 311162 062323 575119 474354 208426 995015 214326 809152 030238 985775 052040 966094 394855 348873 725741 816108 669966 219420 096944 784905 735488 055854 252898 762479 507926 270567 089640 701632 049051 273334 866086 727378 800860 870040 689805 216586 447415 289973 872004 998825 309444 241584 097581 737261 814564 861519 291162 181786 188632 440724 957118 746755 881425 997811 304935 744324 869863 835953 223176 457347 032937 278279 056158 668306 514978 630536 789663 205207 (472 digits)/625481 715788 244452 935353 967179 317368 997367 839503 318215 328540 484395 391832 923549 728695 851820 541973 039747 618732 298239 493106 055110 915459 488370 011537 369464 868756 365922 632054 557997 000953 976939 231121 075379 539698 339456 914888 018130 782684 607615 292722 576141 214286 266879 225551 411758 624065 108016 034684 167050 243162 792539 487426 345324 515181 203882 885012 391379 840040 893006 826602 412569 612614 134819 080659 518907 187483 589249 376740 767092 519408 056292 584696 910615 532743 076077 343885 816405 537678 905962 (474 digits), a[900] = 1
                                                                                      A[901]/B[901] = 1 119697 221935 721503 366063 099502 392205 849572 440289 821923 400437 317693 364352 466234 313315 558048 714444 286063 029199 314687 720729 455097 812465 907006 620530 394003 757344 792580 686337 371115 090387 063382 043431 400998 983437 857797 256868 591820 700625 005959 264081 676402 013355 999417 998659 745818 716550 278951 593029 723067 210994 385674 074369 655662 640271 836805 089029 578704 084312 111096 938483 311291 226578 421154 576314 288058 752251 665665 477155 481679 587269 797534 811537 684230 604058 214696 051484 063878 301245 719519 (475 digits)/108 827320 437775 930664 297998 572839 259787 156016 478263 710539 388480 758987 600583 550686 156415 684719 888972 049763 862762 014433 347855 319012 556491 535202 810057 521038 883360 690377 167042 680436 352286 360963 221286 009095 711203 174409 949774 503678 261730 870007 227998 351480 624057 624875 992506 571590 221549 030939 756602 436021 723567 134874 267556 961853 968038 739750 070521 368459 967681 941288 430830 644581 690962 855400 995110 831664 742128 477655 430527 801343 491239 066009 495108 342082 239538 379304 899899 536308 827059 945011 (477 digits), a[901] = 173
                                                                                      A[902]/B[902] = 1 126132 647679 205872 325722 221231 742072 338216 074318 030925 192709 060397 675514 528557 888435 032402 922871 281078 243526 123839 750968 440872 864506 873101 015385 742877 483086 608689 356303 590535 187331 848287 778919 456853 236336 620276 764794 862387 790265 707591 313132 949736 879442 726796 799520 615859 406355 495538 040445 013041 082999 384499 383813 897246 737853 574066 903594 440223 375474 292883 127115 752016 183697 167910 457740 285870 057187 409990 347019 317632 810446 254881 844474 962509 660216 883002 566462 694415 090908 924726 (475 digits)/109 452802 153564 175117 233352 540018 577156 153384 317767 028754 717021 243382 992416 474235 885111 536540 430945 089511 481494 312672 840961 374123 471951 023572 821594 890503 752117 056299 799097 238433 353240 337902 452407 084475 250901 513866 864662 521809 044415 477622 520720 927621 838343 891755 218057 983348 845614 138955 791286 603071 966729 927413 754983 307178 483219 943632 955533 759839 807722 834295 257433 057151 303576 990220 075770 350571 929612 066904 807268 568436 010647 122302 079805 252697 772281 455382 243785 352714 364738 850973 (477 digits), a[902] = 1
                                                                                      A[903]/B[903] = 2 245829 869614 927375 691785 320734 134278 187788 514607 852848 593146 378091 039866 994792 201750 590451 637315 567141 272725 438527 471697 895970 676972 780107 635916 136881 240431 401270 042640 961650 277718 911669 822350 857852 219774 478074 021663 454208 490890 713550 577214 626138 892798 726214 798180 361678 122905 774489 633474 736108 293993 770173 458183 552909 378125 410871 992624 018927 459786 403980 065599 063307 410275 589065 034054 573928 809439 075655 824174 799312 397716 052416 656012 646740 264275 097698 617946 758293 392154 644245 (475 digits)/218 280122 591340 105781 531351 112857 836943 309400 796030 739294 105502 002370 593000 024922 041527 221260 319917 139275 344256 327106 188816 693136 028442 558775 631652 411542 635477 746676 966139 918869 705526 698865 673693 093570 962104 688276 814437 025487 306146 347629 748719 279102 462401 516631 210564 554939 067163 169895 547889 039093 690297 062288 022540 269032 451258 683383 026055 128299 775404 775583 688263 701732 994539 845621 070881 182236 671740 544560 237796 369779 501886 188311 574913 594780 011819 834687 143684 889023 191798 795984 (477 digits), a[903] = 1
                                                                                      A[904]/B[904] = 7 863622 256523 987999 401078 183434 144906 901581 618141 589470 972148 194670 795115 512934 493686 803757 834817 982502 061702 439422 166062 128784 895425 213423 923134 153521 204380 812499 484226 475486 020488 583297 245972 030409 895660 054498 829785 225013 262937 848243 044776 828153 557838 905441 194061 700893 775072 819006 940869 221365 964980 695019 758364 555974 872229 806682 881466 497005 754833 504823 323912 941938 414523 935105 559904 007656 485504 636957 819543 715570 003594 412131 812512 902730 453042 176098 420302 969295 267372 857461 (475 digits)/764 293169 927584 492461 827405 878592 087986 081586 705859 246637 033527 250494 771416 549002 009693 200321 390696 507337 514263 293991 407411 453531 557278 699899 716552 125131 658550 296330 697516 995042 469820 434499 473486 365188 137215 578697 307973 598270 962854 520511 766878 764929 225548 441648 849751 648166 047103 648642 434953 720353 037621 114277 822604 114275 836995 993782 033699 144739 133937 161046 322224 162350 287196 527083 288413 897281 944833 700585 520657 677774 516305 687236 804546 037037 807740 959443 674840 019783 940135 238925 (477 digits), a[904] = 3
                                                                                      A[905]/B[905] = 25 836696 639186 891373 895019 871036 568998 892533 369032 621261 509590 962103 425213 533595 682811 001725 141769 514647 457832 756793 969884 282325 363248 420379 405318 597444 853573 838768 495320 388108 339184 661561 560266 949081 906754 641570 511019 129248 279704 258279 711545 110599 566315 442538 380365 464359 448124 231510 456082 400206 188935 855232 733277 220833 994814 830920 637023 509944 724286 918450 037337 889122 653847 394381 713766 596898 265952 986529 282805 946022 408499 288812 093551 354931 623401 625993 878855 666179 194273 216628 (476 digits)/2511 159632 374093 583167 013568 748634 100901 554160 913608 479205 206083 753854 907249 671928 070606 822224 492006 661287 887046 209080 411051 053730 700278 658474 781308 786937 611128 635669 058690 903997 114988 002364 094152 189135 373751 424368 738357 820300 194709 909165 049355 573890 139046 841577 759819 499437 208474 115822 852750 200152 803160 405121 490352 611859 962246 664729 127152 562517 177216 258722 654936 188783 856129 426870 936122 874082 506241 646316 799769 403103 050803 250021 988551 705893 435042 713018 168204 948375 012204 512759 (478 digits), a[905] = 3
                                                                                      A[906]/B[906] = 59 537015 534897 770747 191117 925507 282904 686648 356206 831993 991330 118877 645542 580125 859308 807208 118357 011796 977367 953010 105830 693435 621922 054182 733771 348410 911528 490036 474867 251702 698857 906420 366505 928573 709169 337639 851823 483509 822346 364802 467867 049352 690469 790517 954792 629612 671321 282027 853034 021778 342852 405485 224918 997642 861859 468524 155513 516895 203407 341723 398588 720183 722218 723868 987437 201453 017410 610016 385155 607614 820592 989755 999615 612593 699845 428086 178014 301653 655919 290717 (476 digits)/5786 612434 675771 658795 854543 375860 289789 189908 533076 205047 445694 758204 585915 892858 150906 844770 374709 829913 288355 712152 229513 560992 957836 016849 279169 699006 880807 567668 814898 803036 699796 439227 661790 743458 884718 427434 784689 238871 352274 338841 865589 912709 503642 124804 369390 647040 464051 880288 140454 120658 643941 924520 803309 337995 761489 323240 288004 269773 488369 678491 632096 539917 999455 380825 160659 645446 957316 993219 120196 483980 617912 187280 781649 448824 677826 385480 011249 916533 964544 264443 (478 digits), a[906] = 2
                                                                                      A[907]/B[907] = 85 373712 174084 662121 086137 796543 851903 579181 725239 453255 500921 080981 070756 113721 542119 808933 260126 526444 435200 709804 075714 975760 985170 474562 139089 945855 765102 328804 970187 639811 038042 567981 926772 877655 615923 979210 362842 612758 102050 623082 179412 159952 256785 233056 335158 093972 119445 513538 309116 421984 531788 260717 958196 218476 856674 299444 792537 026839 927694 260173 435926 609306 376066 118250 701203 798351 283363 596545 667961 553637 229092 278568 093166 967525 323247 054080 056869 967832 850192 507345 (476 digits)/8297 772067 049865 241962 868112 124494 390690 744069 446684 684252 651778 512059 493165 564786 221513 666994 866716 491201 175401 921232 640564 614723 658114 675324 060478 485944 491936 203337 873589 707033 814784 441591 755942 932594 258469 851803 523047 059171 546984 248006 914945 486599 642688 966382 129210 146477 672525 996110 993204 320811 447102 329642 293661 949855 723735 987969 415156 832290 665585 937214 287032 728701 855584 807696 096782 519529 463558 639535 919965 887083 668715 437302 770201 154718 112869 098498 179454 864908 976748 777202 (478 digits), a[907] = 1
                                                                                      A[908]/B[908] = 144 910727 708982 432868 277255 722051 134808 265830 081446 285249 492251 199858 716298 693847 401428 616141 378483 538241 412568 662814 181545 669196 607092 528744 872861 294266 676630 818841 445054 891513 736900 474402 293278 806229 325093 316850 214666 096267 924396 987884 647279 209304 947255 023574 289950 723584 790766 795566 162150 443762 874640 666203 183115 216119 718533 767968 948050 543735 131101 601896 834515 329490 098284 842119 688640 999804 300774 206562 053117 161252 049685 268324 092782 580119 023092 482166 234884 269486 506111 798062 (477 digits)/14084 384501 725636 900758 722655 500354 680479 933977 979760 889300 097473 270264 079081 457644 372420 511765 241426 321114 463757 633384 870078 175716 615950 692173 339648 184951 372743 771006 688488 510070 514580 880819 417733 676053 143188 279238 307736 298042 899258 586848 780535 399309 146331 091186 498600 793518 136577 876399 133658 441470 091044 254163 096971 287851 485225 311209 703161 102064 153955 615705 919129 268619 855040 188521 257442 164976 420875 632755 040162 371064 286627 624583 551850 603542 790695 483978 190704 781442 941293 041645 (479 digits), a[908] = 1
                                                                                      A[909]/B[909] = 809 927350 718996 826462 472416 406799 525944 908332 132470 879502 962177 080274 652249 582958 549262 889640 152544 217651 498044 023874 983443 321744 020633 118286 503396 417189 148256 423012 195462 097379 722544 939993 393166 908802 241390 563461 436173 094097 724035 562505 415808 206476 993060 350927 784911 711896 073279 491369 119868 640798 904991 591733 873772 299075 449343 139289 532789 745515 583202 269657 608503 256756 867490 328849 144408 797372 787234 629355 933547 359897 477518 620188 557079 868120 438709 464911 231291 315265 380751 497655 (477 digits)/78719 694575 678049 745756 481389 626267 793090 413959 345489 130753 139144 863379 888572 853008 083616 225821 073848 096773 494190 088156 990955 493306 737868 136190 758719 410701 355655 058371 316032 257386 387688 845688 844611 312859 974411 247995 061728 549386 043277 182250 817622 483145 374344 422314 622214 114068 355415 378106 661496 528161 902323 600457 778518 389113 149862 544017 930962 342611 435364 015743 882679 071801 130785 750302 383993 344411 567936 803311 120777 742405 101853 560220 529454 172432 066346 518389 132978 772123 683213 985427 (479 digits), a[909] = 5
                                                                                      A[910]/B[910] = 954 838078 427979 259330 749672 128850 660753 174162 213917 164752 454428 280133 368548 276805 950691 505781 531027 755892 910612 686689 164988 990940 627725 647031 376257 711455 824887 241853 640516 988893 459445 414395 686445 715031 566483 880311 650839 190365 648432 550390 063087 415781 940315 374502 074862 435480 864046 286935 282019 084561 779632 257937 056887 515195 167876 907258 480840 289250 714303 871554 443018 586246 965775 170968 833049 797177 088008 835917 986664 521149 527203 888512 649862 448239 461801 947077 466175 584751 886863 295717 (477 digits)/92804 079077 403686 646515 204045 126622 473570 347937 325250 020053 236618 133643 967654 310652 456036 737586 315274 417887 957947 721541 861033 669023 353818 828364 098367 595652 728398 829378 004520 767456 902269 726508 262344 988913 117599 527233 369464 847428 942535 769099 598157 882454 520675 513501 120814 907586 491993 254505 795154 969631 993367 854620 875489 676964 635087 855227 634123 444675 589319 631449 801808 340420 985825 938823 641435 509387 988812 436066 160940 113469 388481 184804 081304 775974 857042 002367 323683 553566 624507 027072 (479 digits), a[910] = 1
                                                                                      A[911]/B[911] = 9403 470056 570810 160439 219465 566455 472723 475792 057725 362275 052031 601474 969184 074212 105486 441673 931794 020687 693558 204077 468344 240209 670163 941568 889715 820291 572241 599694 960114 997420 857553 669554 571178 344086 339745 486266 293725 807388 559928 516015 983594 948514 455898 721446 458673 631223 849696 073786 658040 401854 921681 913167 385759 935831 960235 304615 860352 348772 011937 113647 595670 532979 559466 867568 641856 971966 579314 152617 813528 050243 222353 616802 405841 902275 594926 988608 426871 578032 362521 159108 (478 digits)/913956 406272 311229 564393 317795 765870 055223 545395 272739 311232 268708 066175 597461 648880 187946 864097 911317 857765 115719 582033 740258 514516 922237 591467 644027 771575 911244 522773 356719 164498 508116 384263 205716 213078 032806 993095 386912 176246 526099 104147 201043 425236 060424 043824 709548 282346 783354 668658 817891 254849 842634 292045 657925 481794 865653 241066 638073 344691 739240 698792 098954 135590 003219 199715 156912 928903 467248 727906 569238 763629 598184 223457 261197 156205 779724 539695 046130 754223 303777 229075 (480 digits), a[911] = 9
                                                                                      A[912]/B[912] = 19761 778191 569599 580209 188603 261761 606200 125746 329367 889302 558491 483083 306916 425230 161664 389129 394615 797268 297729 094844 101677 471359 968053 530169 155689 352038 969370 441243 560746 983735 174552 753504 828802 403204 245974 852844 238290 805142 768289 582422 030277 312810 852112 817394 992209 697928 563438 434508 598099 888271 622996 084271 828407 386859 088347 516490 201544 986794 738178 098849 634359 652206 084708 906106 116763 741110 246637 141153 613720 621635 971911 122117 461546 252790 651655 924294 319918 740816 611905 613933 (479 digits)/1 920716 891622 026145 775301 839636 658362 584017 438727 870728 642517 774034 265995 162577 608412 831930 465782 137910 133418 189386 885609 341550 698057 198294 011299 386423 138804 550887 874924 717959 096453 918502 495034 673777 415069 183213 513424 143289 199921 994733 977394 000244 732926 641523 601150 539911 472280 058702 591823 430937 479331 678636 438712 191340 640554 366394 337360 910270 134059 067801 029033 999716 611600 992264 338253 955261 367194 923309 891879 299417 640728 584849 631718 603699 088386 416491 081757 415945 062013 232061 485222 (481 digits), a[912] = 2
                                                                                      A[913]/B[913] = 108212 361014 418808 061485 162481 875263 503724 104523 704564 808787 844489 016891 503766 200362 913808 387320 904873 007029 182203 678297 976731 597009 510431 592414 668162 580486 419093 805912 763849 916096 730317 437078 715190 360107 569619 750487 485179 833102 401376 428126 134981 512568 716462 808421 419722 120866 666888 246329 648539 843213 036662 334526 527796 870127 401972 887066 868077 282745 702827 607895 767468 794009 983011 398099 225675 677517 812499 858385 882131 158423 081909 227389 713573 166228 853206 610080 026465 282115 422049 228773 (480 digits)/10 517540 864382 441958 440902 515979 057682 975310 739034 626382 523821 138879 396151 410349 690944 347599 193008 600868 524856 062654 010080 448012 004802 913707 647964 576143 465598 665683 897396 946514 646768 100628 859436 574603 288423 948874 560216 103358 175856 499768 991117 202267 089869 268042 049577 409105 643747 076867 627775 972578 651508 235816 485606 614628 684566 697624 927871 189424 014987 078245 843962 097537 193594 964540 890984 933219 764878 083798 187303 066326 967272 522432 382050 279692 598137 862179 948482 125856 064289 464084 655185 (482 digits), a[913] = 5
                                                                                      A[914]/B[914] = 127974 139205 988407 641694 351085 137025 109924 230270 033932 698090 402980 499974 810682 625593 075472 776450 299488 804297 479932 773142 078409 068369 478485 122583 823851 932525 388464 247156 324596 899831 904870 190583 543992 763311 815594 603331 723470 638245 169666 010548 165258 825379 568575 625816 411931 818795 230326 680838 246639 731484 659658 418798 356204 256986 490320 403557 069622 269540 441005 706745 401828 446216 067720 304205 342439 418628 059136 999539 495851 780059 053820 349507 175119 419019 504862 534374 346384 022932 033954 842706 (480 digits)/12 438257 756004 468104 216204 355615 716045 559328 177762 497111 166338 912913 662146 572927 299357 179529 658790 738778 658274 252040 895689 789562 702860 112001 659263 962566 604403 216571 772321 664473 743222 019131 354471 248380 703493 132088 073640 246647 375778 494502 968511 202511 822795 909565 650727 949017 116027 135570 219599 403516 130839 914452 924318 805969 325121 064019 265232 099694 149046 146046 872996 097253 805195 956805 229238 888481 132073 007108 079182 365744 608001 107282 013768 883391 686524 278671 030239 541801 126302 696146 140407 (482 digits), a[914] = 1
                                                                                      A[915]/B[915] = 1 004031 335456 337661 553345 620077 834439 273193 716413 942093 695420 665352 516715 178544 579514 442117 822473 001294 637111 541733 090292 525595 075595 859827 450501 435126 108164 138343 536007 036028 214920 064408 771163 523139 703290 278781 973809 549474 300818 589038 501963 291793 290225 696492 189136 303244 852433 279175 012197 375017 963605 654271 266115 021226 669032 834215 711966 355433 169528 789867 555113 580267 917522 457053 527536 622751 607914 226458 855162 353093 618836 458651 673939 939409 099365 387244 350700 451153 442639 659733 127715 (481 digits)/97 585345 156413 718687 954333 005289 070001 890607 983372 106160 688193 529275 031177 420840 786444 604306 804543 772319 132775 826940 279908 974950 924823 697719 262812 314109 696421 181686 303648 597830 849322 234548 340735 313268 212875 873491 075697 829889 806305 961289 770695 619849 849440 635001 604673 052225 455937 025859 164971 797191 567387 636986 955838 256413 960414 145759 784495 887283 058310 100573 954934 778313 829966 662177 495657 152587 689389 133554 741579 626539 223280 273406 478432 463434 403807 812877 160158 918463 948408 337107 638034 (482 digits), a[915] = 7
                                                                                      A[916]/B[916] = 1 132005 474662 326069 195039 971162 971464 383117 946683 976026 393511 068333 016689 989227 205107 517590 598923 300783 441409 021665 863434 604004 143965 338312 573085 258978 040689 526807 783163 360625 114751 969278 961747 067132 466602 094376 577141 272944 939063 758704 512511 457052 115605 265067 814952 715176 671228 509501 693035 621657 695090 313929 684913 377430 926019 324536 115523 425055 439069 230873 261858 982096 363738 524773 831741 965191 026542 285595 854701 848945 398895 512472 023447 114528 518384 892106 885074 797537 465571 693687 970421 (481 digits)/110 023602 912418 186792 170537 360904 786047 449936 161134 603271 854532 442188 693323 993768 085801 783836 463334 511097 791050 078981 175598 764513 627683 809720 922076 276676 300824 398258 075970 262304 592544 253679 695206 561648 916369 005579 149338 076537 182084 455792 739206 822361 672236 544567 255401 001242 571964 161429 384571 200707 698227 551439 880157 062383 285535 209779 049727 986977 207356 246620 827930 875567 635162 618982 724896 041068 821462 140662 820761 992283 831281 380688 492201 346826 090332 091548 190398 460265 074711 033253 778441 (483 digits), a[916] = 1
                                                                                      A[917]/B[917] = 3 268042 284780 989799 943425 562403 777368 039429 609781 894146 482442 802018 550095 156998 989729 477299 020319 602861 519929 585064 817161 733603 363526 536452 596671 953082 189543 191959 102333 757278 444424 002966 694657 657404 636494 467535 128092 095364 178946 106447 526986 205897 521436 226627 819041 733598 194890 298178 398268 618333 353786 282130 635941 776088 521071 483287 943013 205544 047667 251614 078831 544460 644999 506601 191020 553133 660998 797650 564566 050984 416627 483595 720834 168466 136135 171458 120850 046228 373783 047109 068557 (481 digits)/317 632550 981250 092272 295407 727098 642096 790480 305641 312704 397258 413652 417825 408376 958048 171979 731212 794514 714875 984902 631106 503978 180191 317161 106964 867462 298069 978202 455589 122440 034410 741907 731148 436566 045613 884649 374373 982964 170474 872875 249109 264573 193913 724136 115475 054710 599865 348717 934114 198606 963842 739866 716152 381180 531484 565317 883951 861237 473022 593815 610796 529449 100291 900142 945449 234725 332313 414880 383103 611106 885843 034783 462835 157086 584471 995973 540955 838994 097830 403615 194916 (483 digits), a[917] = 2
                                                                                      A[918]/B[918] = 4 400047 759443 315869 138465 533566 748832 422547 556465 870172 875953 870351 566785 146226 194836 994889 619242 903644 961338 606730 680596 337607 507491 874765 169757 212060 230232 718766 885497 117903 559175 972245 656404 724537 103096 561911 705233 368309 118009 865152 039497 662949 637041 491695 633994 448774 866118 807680 091304 239991 048876 596060 320855 153519 447090 807824 058536 630599 486736 482487 340690 526557 008738 031375 022762 518324 687541 083246 419267 899929 815522 996067 744281 282994 654520 063565 005924 843765 839354 740797 038978 (481 digits)/427 656153 893668 279064 465945 088003 428144 240416 466775 915976 251790 855841 111149 402145 043849 955816 194547 305612 505926 063883 806705 268491 807875 126882 029041 144138 598894 376460 531559 384744 626954 995587 426354 998214 961982 890228 523712 059501 352559 328667 988316 086934 866150 268703 370876 055953 171829 510147 318685 399314 662070 291306 596309 443563 817019 775096 933679 848214 680378 840436 438727 405016 735454 519125 670345 275794 153775 555543 203865 603390 717124 415471 955036 503912 674804 087521 731354 299259 172541 436868 973357 (483 digits), a[918] = 1
                                                                                      A[919]/B[919] = 7 668090 044224 305669 081891 095970 526200 461977 166247 764319 358396 672370 116880 303225 184566 472188 639562 506506 481268 191795 497758 071210 871018 411217 766429 165142 419775 910725 987830 875182 003599 975212 351062 381941 739591 029446 833325 463673 296955 971599 566483 868847 158477 718323 453036 182373 061009 105858 489572 858324 402662 878190 956796 929607 968162 291112 001549 836143 534403 734101 419522 071017 653737 537976 213783 071458 348539 880896 983833 950914 232150 479663 465115 451460 790655 235023 126774 889994 213137 787906 107535 (481 digits)/745 288704 874918 371336 761352 815102 070241 030896 772417 228680 649049 269493 528974 810522 001898 127795 925760 100127 220802 048786 437811 772469 988066 444043 136006 011600 896964 354662 987148 507184 661365 737495 157503 434781 007596 774877 898086 042465 523034 201543 237425 351508 060063 992839 486351 110663 771694 858865 252799 597921 625913 031173 312461 824744 348504 340414 817631 709452 153401 434252 049523 934465 835746 419268 615794 510519 486088 970423 586969 214497 602967 450255 417871 660999 259276 083495 272310 138253 270371 840484 168273 (483 digits), a[919] = 1
                                                                                      A[920]/B[920] = 12 068137 803667 621538 220356 629537 275032 884524 722713 634492 234350 542721 683665 449451 379403 467078 258805 410151 442606 798526 178354 408818 378510 285982 936186 377202 650008 629492 873327 993085 562775 947458 007467 106478 842687 591358 538558 831982 414965 836751 605981 531796 795519 210019 087030 631147 927127 913538 580877 098315 451539 474251 277652 083127 415253 098936 060086 466743 021140 216588 760212 597574 662475 569351 236545 589783 036080 964143 403101 850844 047673 475731 209396 734455 445175 298588 132699 733760 052492 528703 146513 (482 digits)/1172 944858 768586 650401 227297 903105 498385 271313 239193 144656 900840 125334 640124 212667 045748 083612 120307 405739 726728 112670 244517 040961 795941 570925 165047 155739 495858 731123 518707 891929 288320 733082 583858 432995 969579 665106 421798 101966 875593 530211 225741 438442 926214 261542 857227 166616 943524 369012 571484 997236 287983 322479 908771 268308 165524 115511 751311 557666 833780 274688 488251 339482 571200 938394 286139 786313 639864 525966 790834 817888 320091 865727 372908 164911 934080 171017 003664 437512 442913 277353 141630 (484 digits), a[920] = 1
                                                                                      A[921]/B[921] = 19 736227 847891 927207 302247 725507 801233 346501 888961 398811 592747 215091 800545 752676 563969 939266 898367 916657 923874 990321 676112 480029 249528 697200 702615 542345 069784 540218 861158 868267 566375 922670 358529 488420 582278 620805 371884 295655 711921 808351 172465 400643 953996 928342 540066 813520 988137 019397 070449 956639 854202 352442 234449 012735 383415 390048 061636 302886 555543 950690 179734 668592 316213 107327 450328 661241 384620 845040 386935 801758 279823 955394 674512 185916 235830 533611 259474 623754 265630 316609 254048 (482 digits)/1918 233563 643505 021737 988650 718207 568626 302210 011610 373337 549889 394828 169099 023189 047646 211408 046067 505866 947530 161456 682328 813431 784008 014968 301053 167340 392823 085786 505856 399113 949686 470577 741361 867776 977176 439984 319884 144432 398627 731754 463166 789950 986278 254382 343578 277280 715219 227877 824284 595157 913896 353653 221233 093052 514028 455926 568943 267118 987181 708940 537775 273948 406947 357662 901934 296833 125953 496390 377804 032385 923059 315982 790779 825911 193356 254512 275974 575765 713285 117837 309903 (484 digits), a[921] = 1
                                                                                      A[922]/B[922] = 248 902871 978370 748025 847329 335630 889833 042547 390250 420231 347317 123823 290214 481570 147042 738281 039220 410046 529106 682386 291704 169169 372854 652391 367572 885343 487423 112119 207234 412296 359287 019502 309820 967525 830031 041023 001170 379850 958027 536965 675566 339524 243482 350129 567832 393399 784772 146303 426276 577993 701967 703558 091040 235952 016237 779512 799722 101381 687667 624870 917028 620682 457032 857280 640489 524679 651531 104628 046331 471943 405560 940467 303542 965450 275141 701923 246395 218811 240056 328014 195089 (483 digits)/24191 747622 490646 911257 091106 521596 321900 897833 378517 624707 499512 863272 669312 490935 617502 620508 673117 476143 097090 050150 432462 802143 204037 750544 777685 163824 209735 760561 588984 681296 684558 380015 480200 846319 695696 944918 260407 835155 659126 311264 783742 917854 761553 314130 980166 493985 526155 103546 462900 139131 254739 566318 563568 384938 333865 586630 578630 763094 679960 781974 941554 626863 454569 230349 109351 348311 151306 482651 324483 206519 396803 657520 862266 075846 254355 225164 315359 346701 002334 691400 860466 (485 digits), a[922] = 12
                                                                                      A[923]/B[923] = 268 639099 826262 675233 149577 061138 691066 389049 279211 819042 940064 338915 090760 234246 711012 677547 937588 326704 452981 672707 967816 649198 622383 349592 070188 427688 557207 652338 068393 280563 925662 942172 668350 455946 412309 661828 373054 675506 669949 345316 848031 740168 197479 278472 107899 206920 772909 165700 496726 534633 556170 056000 325489 248687 399653 169560 861358 404268 243211 575561 096763 289274 773245 964608 090818 185921 036151 949668 433267 273701 685384 895861 978055 151366 510972 235534 505869 842565 505686 644623 449137 (483 digits)/26109 981186 134151 932995 079757 239803 890527 200043 390127 998045 049402 258100 838411 514124 665148 831916 719184 982010 044620 211607 114791 615574 988045 765513 078738 331164 602558 846348 094841 080410 634244 850593 221562 714096 672873 384902 580291 979588 057754 043019 246909 707805 747831 568513 323744 771266 241374 331424 287184 734289 168635 919971 784801 477990 847894 042557 147574 030213 667142 490915 479329 900811 861516 588012 011285 645144 277259 979041 702287 238905 319862 973503 653045 901757 447711 479676 591333 922466 715619 809238 170369 (485 digits), a[923] = 1
                                                                                      A[924]/B[924] = 1592 098371 109684 124191 595214 641324 345164 987793 786309 515446 047638 818398 744015 652803 702106 126020 727162 043568 794015 045926 130787 415162 484771 400351 718515 023786 273461 373809 549200 815115 987601 730365 651573 247257 891579 350164 866443 757384 307774 263549 915725 040365 230878 742490 107328 428003 649317 974805 909909 251161 482817 983559 718486 479389 014503 627317 106514 122722 903725 502676 400845 067056 323262 680321 094580 454284 832290 852970 212667 840451 832485 419777 193818 722282 830002 879595 775744 431638 768489 551131 440774 (484 digits)/154741 653553 161406 576232 489892 720615 774536 898050 329157 614932 746524 153776 861370 061558 943246 780092 269042 386193 320191 108186 006420 880018 144266 578110 171376 819647 222529 992302 063190 083349 855782 632981 588014 416803 060063 869431 161867 733095 947896 526361 018291 456883 500711 156697 598890 350316 733026 760667 898823 810577 097919 166177 487575 774892 573335 799416 316500 914163 015673 236552 338204 130922 762152 170409 165779 574032 537606 377859 835919 401045 996118 525039 127495 584633 492912 623547 272028 959034 580433 737591 712311 (486 digits), a[924] = 5
                                                                                      A[925]/B[925] = 629147 495688 151491 730913 259360 384255 031236 567594 871470 420231 757397 606418 976943 091709 042932 455735 166595 536378 088924 813529 628845 638380 107086 488520 883622 823266 574450 307110 002715 251379 028346 436605 039783 122813 586152 976950 618338 842308 240783 447533 559422 684434 394582 562064 502628 268362 253509 214034 910880 743419 269273 562089 127648 607348 128585 959817 934436 879815 214785 132739 430564 776522 462004 691440 450097 628429 791038 872902 437064 252175 517125 707853 536450 453084 362109 675865 924920 339879 059059 341542 554867 (486 digits)/61 149063 134684 889749 544828 587381 883034 832601 929923 407385 896479 926442 999961 079585 829907 247626 968362 990927 528371 520107 945079 651039 222741 973344 119030 772582 091817 501905 805663 054924 003603 668384 878320 487257 351305 398101 810211 518046 552487 476881 955621 472035 176788 528738 464064 885433 146375 786944 795244 322589 912242 846706 560079 377232 560557 315534 812002 165435 124604 858070 929089 069961 615302 911623 899632 494217 387996 631779 233676 890450 652073 786680 363959 013801 831987 148197 780849 042772 741125 986946 157964 533214 (488 digits), a[925] = 395
                                                                                      A[926]/B[926] = 630739 594059 261175 855104 854575 025579 376401 555388 657779 935677 805036 424817 720958 744512 745038 581755 893757 579946 882939 859455 759633 053542 591857 888872 602137 847052 847911 680919 551916 066495 015948 166970 691356 370071 477732 327115 484782 599692 548557 711083 475147 724799 625461 304554 609956 696365 902827 188840 820789 994580 752091 545648 846135 086737 143089 587135 040951 002538 118510 635415 831409 843578 785267 371761 544678 082714 623329 725872 649732 092627 349611 127630 730269 175367 192112 555461 700664 771517 827548 892673 995641 (486 digits)/61 303804 788238 051156 121061 077274 603650 607138 827973 736543 511412 672967 153737 940955 891466 190873 748455 259969 914564 840299 053265 657460 102760 117610 697140 943958 911464 724435 797965 118114 086953 524167 511302 075271 768108 458165 679642 679914 285583 424778 481982 490326 633672 029449 620762 484323 496692 519971 555912 221413 722819 944625 726256 864808 335449 888870 611418 481936 038767 873744 165641 408165 746225 673776 070041 659996 962029 169385 611536 726370 053119 782798 888998 141297 416620 641110 404396 314801 700160 567379 895556 245525 (488 digits), a[926] = 1
                                                                                      A[927]/B[927] = 10 090241 406577 069129 557486 077985 767945 677259 898424 738169 455398 832943 978684 791324 259400 218511 182073 572959 235581 333022 705366 023341 441518 984954 821609 915690 529059 293125 520903 281456 248804 267568 941165 410128 673885 752137 883682 890077 837696 469149 113785 686638 556428 776502 130383 651978 713850 795917 046647 222730 662130 550646 746821 819674 908405 274929 766843 548701 917886 992444 663976 901712 430204 241015 267863 620268 869149 140984 760992 183045 641585 761292 622314 490488 083592 243798 007791 434891 912646 472292 731652 489482 (488 digits)/980 706134 958255 657091 360744 746500 937793 939684 349529 455538 567670 020950 306030 193924 201900 110733 195191 890476 246844 124593 744064 512940 764143 737504 576144 931965 763788 368442 775139 826635 307906 530897 547851 616333 872932 270587 004851 716760 836238 848559 185358 826934 681868 970482 775502 150285 596763 586518 133927 643795 754542 016092 453932 349357 592305 648593 983279 394475 706122 964233 413710 192447 808688 018264 950257 394171 818434 172563 406727 786001 448870 528663 698931 133263 081296 764853 846793 764798 243534 497644 591308 216089 (489 digits), a[927] = 15
                                                                                      A[928]/B[928] = 81 352670 846675 814212 314993 478461 169144 794480 742786 563135 578868 468588 254296 051552 819714 493128 038344 477431 464597 547121 502383 946364 585694 471496 461751 927662 079527 192915 848145 803566 056929 156499 696293 972385 761157 494835 396578 605405 301264 301750 621368 968256 176229 837478 347623 825786 407172 270163 562018 602635 291625 157265 520223 403534 353979 342527 721883 430566 345634 058067 947231 045109 285212 713389 514670 506829 035907 751207 813810 114097 225313 439952 106146 654173 844105 142496 617793 179800 072689 605890 745893 911497 (488 digits)/7906 952884 454283 307887 007019 049282 106002 124613 624209 380852 052772 840569 601979 492349 506667 076739 309990 383779 889317 837049 005781 760986 215910 017647 306300 399685 021771 671977 999083 731196 550205 771347 894115 005942 751566 622861 718456 414000 975494 213251 964853 105804 088623 793311 824779 686608 270801 212116 627333 371779 759156 073365 357715 659669 073895 077622 477653 637741 687751 587611 475322 947748 215729 819895 672100 813371 509502 549892 865359 014381 644084 012108 480447 207402 066994 759941 178746 433187 648436 548536 626021 974237 (490 digits), a[928] = 8
                                                                                      A[929]/B[929] = 172 795583 099928 697554 187473 034908 106235 266221 383997 864440 613135 770120 487276 894429 898829 204767 258762 527822 164776 427265 710133 916070 612907 927947 745113 771014 688113 678957 217194 888588 362662 580568 333753 354900 196200 741808 676840 100888 440225 072650 356523 623150 908888 451458 825631 303551 528195 336244 170684 428001 245380 865177 787268 626743 616363 959985 210610 409834 609155 108580 558438 991931 000629 667794 297204 633926 940964 643400 388612 411240 092212 641196 834607 798835 771802 528791 243377 794492 058025 684074 223440 312476 (489 digits)/16794 611903 866822 272865 374782 845065 149798 188911 597948 217242 673215 702089 509989 178623 215234 264211 815172 658036 025479 798691 755628 034913 195963 772799 188745 731335 807331 712398 773307 289028 408318 073593 336081 628219 376065 516310 441764 544762 787227 275063 115065 038542 859116 557106 425061 523502 138366 010751 388594 387355 272854 162823 169363 668695 740095 803838 938586 669959 081626 139456 364356 087944 240147 658056 294459 020914 837439 272349 137445 814764 737038 552880 659825 548067 215286 284736 204286 631173 540407 594717 843352 164563 (491 digits), a[929] = 2
                                                                                      A[930]/B[930] = 254 148253 946604 511766 502466 513369 275380 060702 126784 427576 192004 238708 741572 945982 718543 697895 297107 005253 629373 974387 212517 862435 198602 399444 206865 698676 767640 871873 065340 692154 419591 737068 030047 327285 957358 236644 073418 706293 741489 374400 977892 591407 085118 288937 173255 129337 935367 606407 732703 030636 537006 022443 307492 030277 970343 302512 932493 840400 954789 166648 505670 037040 285842 381183 811875 140755 976872 394608 202422 525337 317526 081148 940754 453009 615907 671287 861170 974292 130715 289964 969334 223973 (489 digits)/24701 564788 321105 580752 381801 894347 255800 313525 222157 598094 725988 542659 111968 670972 721901 340951 125163 041815 914797 635740 761409 795899 411873 790446 495046 131020 829103 384376 772391 020224 958523 844941 230196 634162 127632 139172 160220 958763 762721 488315 079918 144346 947740 350418 249841 210110 409167 222868 015927 759135 032010 236188 527079 328364 813990 881461 416240 307700 769377 727067 839679 035692 455877 477951 966559 834286 346941 822242 002804 829146 381122 564989 140272 755469 282281 044677 383033 064361 188844 143254 469374 138800 (491 digits), a[930] = 1
                                                                                      A[931]/B[931] = 681 092090 993137 721087 192406 061646 656995 387625 637566 719592 997144 247537 970422 786395 335916 600557 852976 538329 423524 376040 135169 640941 010112 726836 158845 168368 223395 422703 347876 272897 201846 054704 393848 009472 110917 215096 823677 513475 923203 821452 312308 805965 079125 029333 172141 562227 398930 549059 636090 489274 319392 910064 402252 687299 557050 565011 075598 090636 518733 441877 569779 066011 572314 430161 920954 915438 894709 432616 793457 461914 727264 803494 716116 704855 003617 871366 965719 743076 319456 264004 162108 760422 (489 digits)/66197 741480 509033 434370 138386 633759 661398 815962 042263 413432 125192 787407 733926 520568 659036 946114 065498 741667 855075 070173 278447 626712 019711 353692 178837 993377 465538 481152 318089 329478 325365 763475 796474 896543 631329 794654 762206 462290 312670 251693 274901 327236 754597 257942 924743 943722 956700 456487 420449 905625 336874 635200 223522 325425 368077 566761 771067 285360 620381 593592 043714 159329 151902 613960 227578 689487 531322 916833 143055 473057 499283 682858 940371 059005 779848 374090 970352 759895 918095 881226 782100 442163 (491 digits), a[931] = 2
                                                                                      A[932]/B[932] = 935 240344 939742 232853 694872 575015 932375 448327 764351 147169 189148 486246 711995 732378 054460 298453 150083 543583 052898 350427 347687 503376 208715 126280 365710 867044 991036 294576 413216 965051 621437 791772 423895 336758 068275 451740 897096 219769 664693 195853 290201 397372 164243 318270 345396 691565 334298 155467 368793 519910 856398 932507 709744 717577 527393 867524 008091 931037 473522 608526 075449 103051 858156 811345 732830 056194 871581 827224 995879 987252 044790 884643 656871 157864 619525 542654 826890 717368 450171 553969 131442 984395 (489 digits)/90899 306268 830139 015122 520188 528106 917199 129487 264421 011526 851181 330066 845895 191541 380938 287065 190661 783483 769872 705914 039857 422611 431585 144138 673884 124398 294641 865529 090480 349703 283889 608417 026671 530705 758961 933826 922427 421054 075391 740008 354819 471583 702337 608361 174585 153833 365867 679355 436377 664760 368884 871388 750601 653790 182068 448223 187307 593061 389759 320659 883393 195021 607780 091912 194138 523773 878264 739075 145860 302203 880406 247848 080643 814475 062129 418768 353385 824257 106940 024481 251474 580963 (491 digits), a[932] = 1
                                                                                      A[933]/B[933] = 4422 053470 752106 652501 971896 361710 386497 180936 694971 308269 753738 192524 818405 715907 553757 794370 453310 712661 635117 777749 525919 654445 844973 231957 621688 636548 187540 601009 000744 133103 687597 221794 089429 356504 384019 022060 412062 392554 581976 604865 473114 395453 736098 302414 553728 328488 736123 170929 111264 568917 744988 640095 241231 557609 666626 035107 107965 814786 412823 875981 871575 478219 004941 675544 852275 140218 381036 741516 776977 410922 906428 342069 343601 336313 481720 041986 273282 612550 120142 479880 687880 698002 (490 digits)/429794 966555 829589 494860 219140 746187 330195 333911 099947 459539 529918 107675 117507 286734 182790 094374 828145 875602 934565 893829 437877 317157 746051 930246 874374 490970 644105 943268 680010 728291 460924 197143 903161 019366 667177 529962 451916 146506 614237 211726 694179 213571 563947 691387 623084 559056 420171 173909 165960 564666 812414 120755 225928 940586 096351 359654 520297 657606 179418 876231 577286 939415 583022 981609 004132 784583 044381 873133 726496 681873 020908 674251 262946 316906 028366 049164 383896 056924 345855 979151 787998 766015 (492 digits), a[933] = 4
                                                                                      A[934]/B[934] = 14201 400757 196062 190359 610561 660147 091866 991137 849265 071978 450363 063821 167212 880100 715733 681564 510015 681567 958251 683675 925446 466713 743634 822153 230776 776689 553658 097603 415449 364362 684229 457154 692183 406271 220332 517922 133283 397433 410623 010449 709544 583733 372538 225514 006581 677031 542667 668254 702587 226664 091364 852793 433439 390406 527271 972845 331989 375396 711994 236471 690175 537708 872981 837980 289655 476850 014692 051775 326812 220020 764075 910851 687675 166805 064685 668613 646738 555018 810598 993611 195085 078401 (491 digits)/1 380284 205936 318907 499703 177610 766668 907785 131220 564263 390145 440935 653092 198417 051743 929308 570189 675099 410292 573570 387402 353489 374084 669740 934879 297007 597310 226959 695335 130512 534577 666662 199848 736154 588805 760494 523714 278175 860573 918103 375188 437357 112298 394180 682524 043838 831002 626381 201082 934259 358760 806127 233654 428388 475548 471122 527186 748200 565879 928015 949354 615254 013268 356849 036739 206536 877523 011410 358476 325350 347822 943132 270601 869482 765193 147227 566261 505073 995030 144507 961936 615470 879008 (493 digits), a[934] = 3
                                                                                      A[935]/B[935] = 18623 454227 948168 842861 582458 021857 478364 172074 544236 380248 204101 256345 985618 596008 269491 475934 963326 394229 593369 461425 451366 121159 588608 054110 852465 413237 741198 698612 416193 497466 371826 678948 781612 762775 604351 539982 545345 789987 992599 615315 182658 979187 108636 527928 560310 005520 278790 839183 813851 795581 836353 492888 674670 948016 193898 007952 439955 190183 124818 112453 561751 015927 877923 513525 141930 617068 395728 793292 103789 630943 670504 252921 031276 503118 546405 710599 920021 167568 930741 473491 882965 776403 (491 digits)/1 810079 172492 148496 994563 396751 512856 237980 465131 664210 849684 970853 760767 315924 338478 112098 664564 503245 285895 508136 281231 791366 691242 415792 865126 171382 088280 871065 638603 810523 262869 127586 396992 639315 608172 427672 053676 730092 007080 532340 586915 131536 325869 958128 373911 666923 390059 046552 374992 100219 923427 618541 354409 654317 416134 567473 886841 268498 223486 107434 825586 192540 952683 939872 018348 210669 662106 055792 231610 051847 029695 964040 944853 132429 082099 175593 615425 888970 051954 490363 941088 403469 645023 (493 digits), a[935] = 1
                                                                                      A[936]/B[936] = 70071 763441 040568 718944 357935 725719 526959 507361 481974 212723 062666 832859 124068 668125 524208 109369 399994 864256 738360 067952 279544 830192 509458 984485 788173 016402 777254 193440 664029 856761 799709 494001 037021 694598 033387 137869 769320 767397 388421 856395 257521 521294 698447 809299 687511 693592 379040 185806 144142 613409 600425 331459 457452 234455 108965 996702 651854 945946 086448 573832 375428 585492 506752 378555 715447 328055 201878 431651 638181 112851 775588 669614 781504 676160 703902 800413 406802 057725 602823 414086 843982 407610 (491 digits)/6 810521 723412 764398 483393 367865 305237 621726 526615 556895 939200 353496 935394 146190 067178 265604 563883 184835 267979 097979 231097 727589 447811 917119 530257 811153 862152 840156 611146 562082 323185 049421 390826 654101 413323 043510 684744 468451 881815 515125 135933 831966 089908 268565 804259 044609 001179 766038 326059 234919 129043 661751 296883 391340 723952 173544 187710 553695 236338 250320 426113 192876 871320 176465 091783 838545 863841 178787 053306 480891 436910 835255 105161 266770 011490 674008 412539 171984 150893 615599 785201 825879 814077 (493 digits), a[936] = 3
                                                                                      A[937]/B[937] = 88695 217668 988737 561805 940393 747577 005323 679436 026210 592971 266768 089205 109687 264133 793699 585304 363321 258486 331729 529377 730910 951352 098067 038596 640638 429640 518452 892053 080223 354228 171536 172949 818634 457373 637738 677852 314666 557385 381021 471710 440180 500481 807084 337228 247821 699112 657831 024989 957994 408991 436778 824348 132123 182471 302864 004655 091810 136129 211266 686285 937179 601420 384675 892080 857377 945123 597607 224943 741970 743795 446092 922535 812781 179279 250308 511013 326823 225294 533564 887578 726948 184013 (491 digits)/8 620600 895904 912895 477956 764616 818093 859706 991747 221106 788885 324350 696161 462114 405656 377703 228447 688080 553874 606115 512329 518956 139054 332912 395383 982535 950433 711222 249750 372605 586054 177007 787819 293417 021495 471182 738421 198543 888896 047465 722848 963502 415778 226694 178170 711532 391238 812590 701051 335139 052471 280292 651293 045658 140086 741018 074551 822193 459824 357755 251699 385417 824004 116337 110132 049215 525947 234579 284916 532738 466606 799296 050014 399199 093589 849602 027965 060954 202848 105963 726290 229349 459100 (493 digits), a[937] = 1
                                                                                      A[938]/B[938] = 336157 416448 006781 404362 179116 968450 542930 545669 560605 991636 862971 100474 453130 460526 905306 865282 489958 639715 733548 656085 472277 684248 803660 100275 710088 305324 332612 869599 904699 919446 314318 012850 492925 066718 946603 171426 713320 439553 531486 271526 578063 022740 119700 820984 430976 790930 352533 260776 018125 840383 910761 804503 853821 781869 017558 010667 927285 354333 720248 632690 186967 389753 660780 054798 287581 163425 994700 106482 864093 344238 113867 437222 219848 213998 454828 333453 387271 733609 203518 076823 024826 959649 (492 digits)/32 672324 411127 503084 917263 661715 759519 200847 501857 220216 305856 326549 023878 532533 284147 398714 249226 249076 929602 916325 768086 284457 864974 915856 716409 758761 713453 973823 360397 679899 081347 580444 754284 534352 477809 457058 900008 064083 548503 657522 304480 722473 337242 948648 338771 179206 174896 203810 429213 240336 286457 502629 250762 528315 144212 396598 411366 020275 615811 323586 181211 349130 343332 525476 422179 986192 441682 882524 908056 079106 836731 233143 255204 464367 292260 222814 496434 354846 759437 933490 964072 513928 191377 (494 digits), a[938] = 3
                                                                                      A[939]/B[939] = 8 492630 628869 158272 670860 418317 958840 578587 321175 041360 383892 841045 601066 437948 777306 426371 217366 612287 251379 670445 931514 537853 057572 189569 545489 392846 062748 833774 632050 697721 340386 029486 494212 141761 125347 302817 963520 147677 546223 668178 259874 891756 068984 799604 861839 022241 472371 471162 544390 411140 418589 205823 936944 477667 729196 741814 271353 273943 994472 217482 503540 611364 345261 904177 262038 046907 030773 465109 887015 344304 349748 292778 853091 308986 529240 621016 847348 008616 565524 621516 808154 347622 175238 (493 digits)/825 428711 174092 490018 409548 307510 806073 880894 538177 726514 435293 488076 293124 775446 509341 345559 459103 915003 793947 514259 714486 630402 763427 229330 305627 951578 786783 056806 259692 370082 619743 688126 644932 652228 966731 897655 238622 800632 601487 485523 334867 025335 846851 942902 647450 191686 763643 907851 431382 343546 213908 846023 920356 253536 745396 655978 358702 329083 855107 447409 781983 113676 407317 253247 664631 704026 568019 297701 986318 510409 384887 627877 430126 008381 400095 419964 438823 932123 188796 443237 828103 077554 243525 (495 digits), a[939] = 25
                                                                                      A[940]/B[940] = 204 159292 509307 805325 505012 218747 980624 429026 253870 553255 205065 048065 526068 963901 115881 138216 082081 184852 672827 824251 012434 380751 065981 353329 192021 138393 811296 343204 038816 650012 088711 021993 873941 895192 075054 214234 295910 257581 548921 567764 508523 980208 678375 310217 505120 964772 127845 660434 326145 885495 886524 850536 291171 317847 282590 821100 523146 501941 221666 939828 717664 859711 676039 361034 343711 413349 901989 157337 394851 127397 738197 140559 911413 635524 915773 359232 669805 594069 306200 119921 472527 367759 165361 (495 digits)/19842 961392 589347 263526 746423 041975 105292 342316 418122 656562 752900 040380 058873 143249 508339 692141 267720 209167 984343 258558 915765 414124 187228 419784 051480 596652 596247 337173 593014 561881 955196 095484 232668 187847 679375 000784 626955 279265 984203 310082 341289 330533 661689 578311 877575 779688 502349 992244 782389 485445 420269 807203 339312 613197 033732 140079 020221 918288 138390 061420 948806 077364 118946 603420 373340 882830 074146 027372 579700 328932 074034 302201 578228 665520 894550 301961 028208 725803 290552 571198 838546 375230 035977 (497 digits), a[940] = 24
                                                                                      A[941]/B[941] = 212 651923 138176 963598 175872 637065 939465 007613 575045 594615 588957 889111 127135 401849 893187 564587 299447 797139 924207 494696 943948 918604 123553 542898 737510 531239 874045 176978 670867 347733 429097 051480 368154 036953 200401 517052 259430 405259 095145 235942 768398 871964 747360 109822 366959 987013 600217 131596 870536 296636 305114 056360 228115 795515 011787 562914 794499 775885 216139 157311 221205 471076 021301 265211 605749 460256 932762 622447 281866 471702 087945 433338 764504 944511 445013 980249 517153 602685 871724 741438 280681 715381 340599 (495 digits)/20668 390103 763439 753545 155971 349485 911366 223210 956300 383077 188193 528456 351997 918696 017681 037700 726824 124171 778290 772818 630252 044526 950655 649114 357108 548231 383030 393979 852706 931964 574939 783610 877600 840076 646106 898439 865578 079898 585690 795605 676156 355869 508541 521214 525025 971375 265993 900096 213771 828991 634178 653227 259668 866733 779128 796057 378924 247371 993497 508830 730789 191040 526263 856668 037972 586856 642165 325074 566018 839341 458921 930079 008354 673902 294645 721925 467032 657926 479349 014436 666649 452784 279502 (497 digits), a[941] = 1
                                                                                      A[942]/B[942] = 1267 418908 200192 623316 384375 404077 677949 467094 129098 526333 149854 493621 161745 973150 581818 961152 579320 170552 293865 297735 732178 973771 683749 067822 879573 794593 181522 228097 393153 388679 234196 279395 714712 079958 077061 799495 593062 283877 024647 747478 350518 340032 415175 859329 339920 899840 128931 318418 678827 368677 412095 132337 431750 295422 341528 635674 495645 381367 302362 726384 823692 215091 782545 687092 372458 714634 565802 269573 804183 485908 177924 307253 733938 358082 140843 260480 255573 607498 664823 827112 875935 944665 868356 (496 digits)/123184 911911 406546 031252 526279 789404 662123 458371 199624 571948 693867 682661 818862 736729 596744 880644 901840 830026 875797 122652 067025 636758 940506 665355 837023 337809 511399 307072 856549 221704 829895 013538 620672 388230 909909 492983 954845 678758 912657 288110 722071 109881 204397 184384 502705 636564 832319 492725 851248 630403 591163 073339 637656 946865 929376 120365 914843 155148 105877 605574 602752 032566 750265 886760 563203 817113 284972 652745 409794 525639 368643 952596 620002 035032 367778 911588 363372 015435 687297 643382 171793 639151 433487 (498 digits), a[942] = 5
                                                                                      A[943]/B[943] = 10352 003188 739717 950129 250875 869687 363060 744366 607833 805280 787793 838080 421103 187054 547739 253807 934009 161558 275129 876582 801380 708777 593546 085481 774100 887985 326223 001757 816094 457167 302667 286646 085850 676617 816895 913017 003928 676275 292327 215769 572545 592224 068766 984457 086327 185734 631667 678946 301155 246055 601875 115059 682118 158893 744016 648310 759662 826823 635040 968389 810743 191810 281666 761950 585419 177333 459180 779037 715334 358967 511339 891368 636011 809168 571760 064091 561742 462675 190315 358341 288169 272708 287447 (497 digits)/1 006147 685395 015808 003565 366209 664723 208353 890180 553296 958666 739134 989750 902899 812532 791640 082859 941550 764386 784667 754035 166457 138598 474708 971961 053295 250707 474224 850562 705100 705603 214099 891919 842979 945923 925382 842311 504343 509969 886949 100491 452725 234919 143718 996290 546671 063893 924549 841903 023760 872220 363483 239944 360924 441661 214137 758984 697669 488556 840518 353427 552805 451574 528390 950752 543603 123762 921946 547037 844375 044456 408073 550851 968370 954161 236877 014632 374008 781411 977730 161494 040998 565995 747398 (499 digits), a[943] = 8
                                                                                      A[944]/B[944] = 84083 444418 117936 224350 391382 361576 582435 422026 991768 968579 452205 198264 530571 469586 963732 991616 051393 463018 494904 310398 143224 643992 432117 751677 072380 898475 791306 242159 921909 046017 655534 572564 401517 492900 612229 103631 624491 694079 363265 473634 930883 077824 965311 734986 030538 385717 182272 749989 088069 337122 227096 052814 888695 566572 293661 822160 572947 995956 382690 473503 309637 749574 035879 782697 055812 133302 239248 501875 526858 357648 268643 438202 822032 831430 714923 773212 749513 308900 187346 693843 181290 126332 167932 (497 digits)/8 172366 395071 533010 059775 455957 107190 328954 579815 626000 241282 606947 600669 042061 236991 929865 543524 434246 945121 153139 154933 398682 745546 738178 441044 263385 343469 305198 111574 497354 866530 542694 148897 364511 955622 312972 231475 989593 758518 008250 092042 343872 989234 354149 154708 876074 147716 228718 227950 041335 608166 499028 992894 525052 480155 642478 192243 496199 063602 830024 432995 025195 645162 977393 492780 912028 807216 660545 029048 164794 881290 633232 359412 366969 668322 262795 028647 355442 266731 509138 935334 499782 167117 412671 (499 digits), a[944] = 8
                                                                                      A[945]/B[945] = 1 860187 780387 334314 885837 861287 824372 176640 028960 426751 114028 736308 199900 093675 517967 749865 069361 064665 347965 163024 705341 952322 876611 100136 622377 366480 654452 734960 329276 098093 469555 724427 883062 919235 520431 285936 192912 742745 946021 284167 635738 051973 304373 305625 154149 758171 671512 641668 178706 238680 662744 597988 276987 233420 623484 204576 735843 364518 737864 054231 385462 622773 682439 071021 981285 813286 109982 722647 820299 306218 227229 421495 531830 720734 100644 300083 074772 051035 258479 311942 622891 276552 052015 981951 (499 digits)/180 798208 376968 742029 318625 397266 022910 445354 646124 325302 266884 091982 204469 828247 026355 248682 040397 494983 557052 153729 162569 937477 540626 714634 674934 847772 807032 188583 305201 646907 769275 153371 167661 862242 969614 810771 934783 275406 197366 068451 125423 017930 998074 935000 399885 820302 313650 956350 856803 933144 251883 342121 083623 912079 005085 348657 988341 614048 887819 101055 879318 107109 645160 031047 791932 608236 882529 453937 186097 469862 432850 339185 457924 041703 657251 018367 644874 193738 649505 178786 738853 036206 242578 826160 (501 digits), a[945] = 22
                                                                                      A[946]/B[946] = 3 804459 005192 786565 996026 113958 010320 935715 479947 845271 196636 924821 598064 717922 505522 463463 130338 180724 158948 820953 721082 047870 397214 632390 996431 805342 207381 261226 900712 118095 985129 104390 338690 239988 533763 184101 489457 109983 586121 931600 745111 034829 686571 576562 043285 546881 728742 465609 107401 565430 662611 423072 606789 355536 813540 702815 293847 301985 471684 491153 244428 555185 114452 177923 745268 682384 353267 684544 142474 139294 812107 111634 501864 263501 032719 315089 922756 851583 825858 811231 939625 734394 230364 131834 (499 digits)/369 768783 149009 017068 697026 250489 153011 219663 872064 276604 775050 790912 009608 698555 289702 427229 624319 424214 059225 460597 480073 273637 826800 167447 790913 958930 957533 682364 721977 791170 405080 849436 484221 088997 894851 934516 101042 540406 153250 145152 342888 379734 985384 224149 954480 516678 775018 141419 941557 907624 111933 183271 160142 349210 490326 339794 168926 724296 839241 032136 191631 239414 935483 039489 076646 128502 572275 568419 401243 104519 746991 311603 275260 450376 982824 299530 318395 742919 565741 866712 413040 572194 652275 064991 (501 digits), a[946] = 2
                                                                                      A[947]/B[947] = 5 664646 785580 120880 881863 975245 834693 112355 508908 272022 310665 661129 797964 811598 023490 213328 199699 245389 506913 983978 426424 000193 273825 732527 618809 171822 861833 996187 229988 216189 454684 828818 221753 159224 054194 470037 682369 852729 532143 215768 380849 086802 990944 882187 197435 305053 400255 107277 286107 804111 325356 021060 883776 588957 437024 907392 029690 666504 209548 545384 629891 177958 796891 248945 726554 495670 463250 407191 962773 445513 039336 533130 033694 984235 133363 615172 997528 902619 084338 123174 562517 010946 282380 113785 (499 digits)/550 566991 525977 759098 015651 647755 175921 665018 518188 601907 041934 882894 214078 526802 316057 675911 664716 919197 616277 614326 642643 211115 367426 882082 465848 806703 764565 870948 027179 438078 174356 002807 651882 951240 864466 745288 035825 815812 350616 213603 468311 397665 983459 159150 354366 336981 088669 097770 798361 840768 363816 525392 243766 261289 495411 688452 157268 338345 727060 133192 070949 346524 580643 070536 868578 736739 454805 022356 587340 574382 179841 650788 733184 492080 640075 317897 963269 936658 215247 045499 151893 608400 894853 891151 (501 digits), a[947] = 1
                                                                                      A[948]/B[948] = 20 798399 361933 149208 641618 039695 514400 272782 006672 661338 128633 908210 991959 152716 575993 103447 729435 916892 679690 772889 000354 048450 218691 829973 852859 320810 792883 249788 590676 766664 349183 590845 003949 717660 696346 594214 536566 668172 182551 578905 887658 295238 659406 223123 635591 462041 929507 787440 965724 977764 638679 486255 258119 122409 124615 424991 382919 301498 100330 127307 134102 089061 505125 924760 924932 169395 743018 906120 030794 475833 930116 711024 602949 216206 432810 160608 915343 559441 078873 180755 627176 767233 077504 473189 (500 digits)/2021 469757 726942 294362 743981 193754 680776 214719 426630 082325 900855 439594 651844 278962 237875 454964 618470 181806 908058 303577 408002 906983 929080 813695 188460 379042 251231 295208 803516 105404 928148 857859 439869 942720 488252 170380 208519 987843 205098 785962 747822 572732 935761 701601 017579 527622 041025 434732 336643 429929 203382 759447 891441 133078 976561 405150 640731 739334 020421 431712 404479 278988 677412 251099 682382 338720 936690 635489 163264 827666 286516 263969 474813 926618 903050 253224 208205 552894 211483 003209 868721 397397 336836 738444 (502 digits), a[948] = 3
                                                                                      A[949]/B[949] = 484 027832 110042 552679 639078 888242 665899 386341 662379 482799 269245 549982 613025 324079 271331 592625 976725 333921 139801 760425 434567 114548 303737 821926 234573 550471 098148 741324 815553 849469 485907 418253 312596 665420 070166 136972 023403 220689 730829 530603 796989 877292 157288 014030 816038 932017 778934 218419 497782 292698 014984 204931 820516 404367 303179 682193 836834 600960 517141 473448 714239 226373 414787 518446 999994 391772 552685 247952 671046 389693 432020 886695 901526 956983 087997 309178 050430 769763 898421 280553 987582 657307 064982 997132 (501 digits)/47044 371419 245650 529441 127219 104112 833774 603565 330680 495402 761609 993571 206496 942933 787193 140097 889531 100756 501618 596607 026710 071745 736285 597071 800437 524675 542885 660750 508049 862391 521779 733574 768891 633812 094266 664032 831785 536206 067888 290746 668230 570523 505978 295973 758695 472288 032254 096614 541160 729140 041619 992693 746912 322105 956324 006916 894098 343028 196753 062577 373972 763264 161124 845829 563372 527320 998689 638607 342431 610706 769715 722086 653904 804315 410231 142054 751997 653225 079356 119326 132485 748539 642098 875363 (503 digits), a[949] = 23
                                                                                      A[950]/B[950] = 504 826231 471975 701888 280696 927938 180299 659123 669052 144137 397879 458193 604984 476795 847324 696073 706161 250813 819492 533314 434921 162998 522429 651900 087432 871281 891031 991113 406230 616133 835091 009098 316546 383080 766512 731186 559969 888861 913381 109509 684648 172530 816694 237154 451630 394059 708442 005860 463507 270462 653663 691187 078635 526776 427795 107185 219753 902458 617471 600755 848341 315434 919913 443207 924926 561168 295704 154072 701840 865527 362137 597720 504476 173189 520807 469786 965774 329204 977294 461309 614759 424540 142487 470321 (501 digits)/49065 841176 972592 823803 871200 297867 514550 818284 757310 577728 662465 433165 858341 221896 025068 595062 508001 282563 409676 900184 434712 978729 665366 410766 988897 903717 794116 955959 311565 967796 449928 591434 208761 576532 582518 834413 040305 524049 272987 076709 416053 143256 441739 997574 776274 999910 073279 531346 877804 159069 245002 752141 638353 455184 932885 412067 534830 082362 217174 494289 778452 042252 838537 096929 245754 866041 935380 274096 505696 438373 056231 986056 128718 730934 313281 395278 960203 206119 290839 122536 001207 145936 978935 613807 (503 digits), a[950] = 1
                                                                                      A[951]/B[951] = 988 854063 582018 254567 919775 816180 846199 045465 331431 626936 667125 008176 218009 800875 118656 288699 682886 584734 959294 293739 869488 277546 826167 473826 322006 421752 989180 732438 221784 465603 320998 427351 629143 048500 836678 868158 583373 109551 644210 640113 481638 049822 973982 251185 267669 326077 487376 224279 961289 563160 668647 896118 899151 931143 730974 789379 056588 503419 134613 074204 562580 541808 334700 961654 924920 952940 848389 402025 372887 255220 794158 484416 406003 130172 608804 778965 016205 098968 875715 741863 602342 081847 207470 467453 (501 digits)/96110 212596 218243 353244 998419 401980 348325 421850 087991 073131 424075 426737 064838 164829 812261 735160 397532 383319 911295 496791 461423 050475 401652 007838 789335 428393 337002 616709 819615 830187 971708 325008 977653 210344 676785 498445 872091 060255 340875 367456 084283 713779 947718 293548 534970 472198 105533 627961 418964 888209 286622 744835 385265 777290 889209 418984 428928 425390 413927 556867 152424 805516 999661 942758 809127 393362 934069 912703 848128 049079 825947 708142 782623 535249 723512 537333 712200 859344 370195 241862 133692 894476 621034 489170 (503 digits), a[951] = 1
                                                                                      A[952]/B[952] = 1493 680295 053993 956456 200472 744119 026498 704589 000483 771074 065004 466369 822994 277670 965980 984773 389047 835548 778786 827054 304409 440545 348597 125726 409439 293034 880212 723551 628015 081737 156089 436449 945689 431581 603191 599345 143342 998413 557591 749623 166286 222353 790676 488339 719299 720137 195818 230140 424796 833623 322311 587305 977787 457920 158769 896564 276342 405877 752084 674960 410921 857243 254614 404862 849847 514109 144093 556098 074728 120748 156296 082136 910479 303362 129612 248751 981979 428173 853010 203173 217101 506387 349957 937774 (502 digits)/145176 053773 190836 177048 869619 699847 862876 240134 845301 650860 086540 859902 923179 386725 837330 330222 905533 665883 320972 396975 896136 029205 067018 418605 778233 332111 131119 572669 131181 797984 421636 916443 186414 786877 259304 332858 912396 584304 613862 444165 500336 857036 389458 291123 311245 472108 178813 159308 296769 047278 531625 496977 023619 232475 822094 831051 963758 507752 631102 051156 930876 847769 838199 039688 054882 259404 869450 186800 353824 487452 882179 694198 911342 266184 036793 932612 672404 065463 661034 364398 134900 040413 599970 102977 (504 digits), a[952] = 1
                                                                                      A[953]/B[953] = 2482 534358 636012 211024 120248 560299 872697 750054 331915 398010 732129 474546 041004 078546 084637 273473 071934 420283 738081 120794 173897 718092 174764 599552 731445 714787 869393 455989 849799 547340 477087 863801 574832 480082 439870 467503 726716 107965 201802 389736 647924 272176 764658 739524 986969 046214 683194 454420 386086 396783 990959 483424 876939 389063 889744 685943 332930 909296 886697 749164 973502 399051 589315 366517 774768 467049 992482 958123 447615 375968 950454 566553 316482 433534 738417 027716 998184 527142 728725 945036 819443 588234 557428 405227 (502 digits)/241286 266369 409079 530293 868039 101828 211201 661984 933292 723991 510616 286639 988017 551555 649592 065383 303066 049203 232267 893767 357559 079680 468670 426444 567568 760504 468122 189378 950797 628172 393345 241452 164067 997221 936089 831304 784487 644559 954737 811621 584620 570816 337176 584671 846215 944306 284346 787269 715733 935487 818248 241812 408885 009766 711304 250036 392686 933143 045029 608024 083301 653286 837860 982446 864009 652767 803520 099504 201952 536532 708127 402341 693965 801433 760306 469946 384604 924808 031229 606260 268592 934890 221004 592147 (504 digits), a[953] = 1
                                                                                      A[954]/B[954] = 3976 214653 690006 167480 320721 304418 899196 454643 332399 169084 797133 940915 863998 356217 050618 258246 460982 255832 516867 947848 478307 158637 523361 725279 140885 007822 749606 179541 477814 629077 633177 300251 520521 911664 043062 066848 870059 106378 759394 139359 814210 494530 555335 227864 706268 766351 879012 684560 810883 230407 313271 070730 854726 846984 048514 582507 609273 315174 638782 424125 384424 256294 843929 771380 624615 981159 136576 514221 522343 496717 106750 648690 226961 736896 868029 276468 980163 955316 581736 148210 036545 094621 907386 343001 (502 digits)/386462 320142 599915 707342 737658 801676 074077 902119 778594 374851 597157 146542 911196 938281 486922 395606 208599 715086 553240 290743 253695 108885 535688 845050 345802 092615 599241 762048 081979 426156 814982 157895 350482 784099 195394 164163 696884 228864 568600 255787 084957 427852 726634 875795 157461 416414 463159 946578 012502 982766 349873 738789 432504 242242 533399 081088 356445 440895 676131 659181 014178 501056 676060 022134 918891 912172 672970 286304 555777 023985 590307 096540 605308 067617 797100 402559 057008 990271 692263 970658 403492 975303 820974 695124 (504 digits), a[954] = 1
                                                                                      A[955]/B[955] = 26339 822280 776049 215906 044576 386813 267876 477914 326310 412519 514933 120041 224994 215848 388346 822951 837827 955278 839288 807885 043740 669917 314934 951227 576755 761724 367030 533238 716687 321806 276151 665310 697963 950066 698242 868596 947070 746237 758167 225895 533187 239360 096670 106713 224581 644325 957270 561785 251385 779227 870585 907810 005300 470968 180832 180988 988570 800344 719392 293917 280047 936820 652893 994801 522464 354004 811942 043452 581676 356271 590958 458694 678252 854915 946592 686530 879168 259042 219142 834297 038714 155966 001746 463233 (503 digits)/2 560060 187225 008573 774350 293991 911884 655669 074703 604858 973101 093559 165897 455199 181244 571126 439020 554664 339722 551709 638226 879729 732993 682803 496746 642381 316198 063572 761667 442674 185113 283238 188824 266964 701817 108454 816286 965793 017747 366339 346344 094365 137932 696985 839442 790984 442793 063306 466737 790751 832085 917490 674549 003910 463221 911698 736566 531359 578517 101819 563110 168372 659626 894221 115256 377361 125803 841341 817331 536614 680446 249969 981585 325814 207140 542908 885300 726658 866438 184813 430210 689550 786713 146852 762891 (505 digits), a[955] = 6
                                                                                      A[956]/B[956] = 135675 326057 570252 247010 543603 238485 238578 844214 963951 231682 371799 541121 988969 435458 992352 373005 650122 032226 713311 987273 697010 508224 098036 481417 024663 816444 584758 845735 061251 238109 013935 626805 010341 661997 534276 409833 605412 837567 550230 268837 480146 691331 038685 761430 829176 987981 665365 493487 067812 126546 666200 609780 881229 201824 952675 487452 552127 316898 235743 893711 784663 940398 108399 745388 236937 751183 196286 731484 430725 278075 061542 942163 618226 011476 600992 709123 376005 250527 677450 319695 230115 874451 916118 659166 (504 digits)/13 186763 256267 642784 579094 207618 361099 352423 275637 802889 240357 064952 976030 187192 844504 342554 590708 981921 413699 311788 481877 652343 773853 949706 328783 557708 673605 917105 570385 295350 351723 231173 102016 685306 293184 737668 245598 525849 317601 400296 987507 556783 117516 211564 073009 112383 630379 779692 280266 966262 143195 937327 111534 452056 558352 091892 763921 013243 333481 185229 474731 856041 799191 147165 598416 805697 541191 879679 372962 238850 426216 840157 004467 234379 103320 511644 829062 690303 322462 616331 121711 851246 908869 555238 509579 (506 digits), a[956] = 5
                                                                                      A[957]/B[957] = 569041 126511 057058 203948 218989 340754 222191 854774 182115 339249 002131 284529 180871 957684 357756 314974 438316 084185 692536 756979 831782 702813 707080 876895 675411 027502 706065 916178 961692 274242 331894 172530 739330 598056 835348 507931 368722 096507 959088 301245 453774 004684 251413 152436 541289 596252 618732 535733 522634 285414 535388 346933 530217 278267 991534 130799 197080 067937 662367 868764 418703 698413 086492 976354 470215 358737 597088 969390 304577 468571 837130 227349 151156 900822 350563 523024 383189 261152 928944 113077 959177 653773 666221 099897 (504 digits)/55 307113 212295 579712 090727 124465 356282 065362 177254 816415 934529 353371 070018 203970 559261 941344 801856 482349 994519 798863 565737 489104 828409 481628 811880 873216 010621 731995 043208 624075 592006 207930 596891 008189 874556 059127 798681 069190 288152 967527 296374 321497 607997 543242 131479 240518 964312 182075 587805 655800 404869 666799 120686 812136 696630 279269 792250 584332 912441 842737 462037 592539 856391 482883 508923 600151 290571 360059 309180 492016 385313 610597 999454 263330 620422 589488 201551 487872 156288 650137 917058 094538 422191 367806 801207 (506 digits), a[957] = 4
                                                                                      A[958]/B[958] = 704716 452568 627310 450958 762592 579239 460770 698989 146066 570931 373930 825651 169841 393143 350108 687980 088438 116412 405848 744253 528793 211037 805117 358312 700074 843947 290824 761914 022943 512351 345829 799335 749672 260054 369624 917764 974134 934075 509318 570082 933920 696015 290098 913867 370466 584234 284098 029220 590446 411961 201588 956714 411446 480092 944209 618251 749207 384835 898111 762476 203367 638811 194892 721742 707153 109920 793375 700874 735302 746646 898673 169512 769382 912298 951556 232147 759194 511680 606394 432773 189293 528225 582339 759063 (504 digits)/68 493876 468563 222496 669821 332083 717381 417785 452892 619305 174886 418324 046048 391163 403766 283899 392565 464271 408219 110652 047615 141448 602263 431335 140664 430924 684227 649100 613593 919425 943729 439103 698907 693496 167740 796796 044279 595039 605754 367824 283881 878280 725513 754806 204488 352902 594691 961767 868072 622062 548065 604126 232221 264193 254982 371162 556171 597576 245923 027966 936769 448581 655582 630049 107340 405848 831763 239738 682142 730866 811530 450755 003921 497709 723743 101133 030614 178175 478751 266469 038769 945785 331060 923045 310786 (506 digits), a[958] = 1
                                                                                      A[959]/B[959] = 1 273757 579079 684368 654906 981581 919993 682962 553763 328181 910180 376062 110180 350713 350827 707865 002954 526754 200598 098385 501233 360575 913851 512198 235208 375485 871449 996890 678092 984635 786593 677723 971866 489002 858111 204973 425696 342857 030583 468406 871328 387694 700699 541512 066303 911756 180486 902830 564954 113080 697375 736977 303647 941663 758360 935743 749050 946287 452773 560479 631240 622071 337224 281385 698097 177368 468658 390464 670265 039880 215218 735803 396861 920539 813121 302119 755172 142383 772833 535338 545851 148471 181999 248560 858960 (505 digits)/123 800989 680858 802208 760548 456549 073663 483147 630147 435721 109415 771695 116066 595133 963028 225244 194421 946621 402738 909515 613352 630553 430672 912963 952545 304140 694849 381095 656802 543501 535735 647034 295798 701686 042296 855923 842960 664229 893907 335351 580256 199778 333511 298048 335967 593421 559004 143843 455878 277862 952935 270925 352908 076329 951612 650432 348422 181909 158364 870704 398807 041121 511974 112932 616264 006000 122334 599797 991323 222883 196844 061353 003375 761040 344165 690621 232165 666047 635039 916606 955828 040323 753252 290852 111993 (507 digits), a[959] = 1
                                                                                      A[960]/B[960] = 18 537322 559684 208471 619656 504739 459151 022246 451675 740613 313456 638800 368176 079828 304731 260218 729343 462996 924785 783245 761520 576856 004958 975892 651229 956877 044247 247294 255215 807844 524662 833965 405466 595712 273611 239252 877513 774133 362244 067014 768680 361646 505808 871267 842122 135053 111050 923725 938578 173576 175221 519271 207785 594739 097146 044622 104964 997231 723665 744826 599844 912366 359951 134292 495103 190311 671138 259881 084585 293625 759709 199920 725579 656940 295997 181232 804557 752567 331350 101134 074689 267890 076215 062191 784503 (506 digits)/1801 707732 000586 453419 317499 723770 748670 181852 274956 719400 706707 222055 670980 723038 886161 437318 114472 716971 046563 843870 634551 969196 631684 212830 476298 688894 412118 984439 808829 528447 444028 497583 840089 517100 759896 779729 845728 894258 120457 062746 407468 675177 394671 927482 908034 660804 420749 975576 250368 512143 889159 397081 172934 332812 577559 477215 434082 144304 463031 217828 520068 024282 823220 211105 735036 489850 544447 636910 560667 851231 567347 309697 051182 152274 542062 769830 280933 502842 369310 098966 420362 510317 876592 994974 878688 (508 digits), a[960] = 14
                                                                                      A[961]/B[961] = 149 572338 056553 352141 612159 019497 593201 860934 167169 253088 417833 486465 055588 989339 788677 789614 837702 230729 598884 364351 593397 975423 953523 319339 445048 030502 225427 975244 719819 447391 983896 349447 215599 254701 047001 118996 445806 535923 928536 004525 020771 280866 747170 511654 803280 992181 068894 292638 073579 501690 099147 891146 965932 699576 535529 292720 588770 924141 242099 519092 429999 921002 216833 355725 658922 699861 837764 469513 346947 388886 292892 335169 201499 176062 181098 751982 191634 162922 423634 344411 143365 291591 791719 746095 134984 (507 digits)/14537 462845 685550 429563 300546 246715 063024 937965 829801 190926 763073 548140 483912 379445 052319 723789 110203 682389 775249 660480 689768 384126 484146 615607 762934 815295 991801 256614 127438 771081 087963 627705 016514 838492 121471 093762 608791 818294 857563 837322 840005 601197 490886 717911 600244 879856 925003 948453 458826 375014 066210 447574 736382 738830 572088 468155 821079 336344 862614 613332 559351 235384 097735 801778 496555 924804 477915 695082 476666 032735 735622 538929 412832 979236 680667 849263 479633 688786 589520 708338 318728 122866 765996 250651 141497 (509 digits), a[961] = 8
                                                                                      A[962]/B[962] = 168 109660 616237 560613 231815 524237 052352 883180 618844 993701 731290 125265 423765 069168 093409 049833 567045 693726 523670 147597 354918 552279 958482 295232 096277 987379 269675 222538 975035 255236 508559 183412 621065 850413 320612 358249 323320 310057 290780 071539 789451 642513 252979 382922 645403 127234 179945 216364 012157 675266 274369 410418 173718 294315 632675 337342 693735 921372 965765 263919 029844 833368 576784 490018 154025 890173 508902 729394 431532 682512 052601 535089 927078 833002 477095 933214 996191 915489 754984 445545 218054 559481 867934 808286 919487 (507 digits)/16339 170577 686136 882982 618045 970485 811695 119818 104757 910327 469780 770196 154893 102483 938481 161107 224676 399360 821813 504351 324320 353323 115830 828438 239233 504190 403920 241053 936268 299528 531992 125288 856604 355592 881367 873492 454520 712552 978020 900069 247474 276374 885558 645394 508279 540661 345753 924029 709194 887157 955369 844655 909317 071643 149647 945371 255161 480649 325645 831161 079419 259666 920956 012884 231592 414655 022363 331993 037333 883967 302969 848626 464015 131511 222730 619093 760567 191628 958830 807304 739090 633184 642589 245626 020185 (509 digits), a[962] = 1
                                                                                      A[963]/B[963] = 317 681998 672790 912754 843974 543734 645554 744114 786014 246790 149123 611730 479354 058507 882086 839448 404747 924456 122554 511948 948316 527703 912005 614571 541326 017881 495103 197783 694854 702628 492455 532859 836665 105114 367613 477245 769126 845981 219316 076064 810222 923380 000149 894577 448684 119415 248839 509002 085737 176956 373517 301565 139650 993892 168204 630063 282506 845514 207864 783011 459844 754370 793617 845743 812948 590035 346667 198907 778480 071398 345493 870259 128578 009064 658194 685197 187826 078412 178618 789956 361419 851073 659654 554382 054471 (507 digits)/30876 633423 371687 312545 918592 217200 874720 057783 934559 101254 232854 318336 638805 481928 990800 884896 334880 081750 597063 164832 014088 737449 599977 444046 002168 319486 395721 497668 063707 070609 619955 752993 873119 194085 002838 967255 063312 530847 835584 737392 087479 877572 376445 363306 108524 420518 270757 872483 168021 262172 021580 292230 645699 810473 721736 413527 076240 816994 188260 444493 638770 495051 018691 814662 728148 339459 500279 027075 513999 916703 038592 387555 876848 110747 903398 468357 240200 880415 548351 515643 057818 756051 408585 496277 161682 (509 digits), a[963] = 1
                                                                                      A[964]/B[964] = 3662 611646 016937 600916 515535 505318 153455 068443 265001 708393 371649 854300 696659 712754 796364 283766 019272 862743 871769 779035 786400 357022 990544 055519 050864 184075 715810 398159 618436 984149 925570 044870 824382 006671 364360 607952 783715 615850 703256 908252 701903 799693 254628 223274 580928 440801 917179 815386 955266 621786 383059 727634 709879 227129 482926 268038 801311 222029 252277 877045 088137 131447 306580 793200 096460 380562 322241 917379 994813 467893 853034 107940 341436 932713 717237 470384 062278 778023 719791 135065 193672 921292 124134 906489 518668 (508 digits)/355982 138234 774697 320987 722560 359695 433615 755441 384908 024124 031178 271899 181753 403702 837290 894966 908357 298617 389508 317503 479296 465268 715582 712944 263085 018540 756856 715402 637046 076234 351505 408221 460915 490527 912596 513298 150958 551879 169453 011382 209752 929671 026457 641761 702048 166362 324090 521344 557428 771050 192753 059193 012014 986854 088748 494169 093810 467585 396510 720591 105894 705228 126565 974174 241224 148709 525432 629823 691332 967700 727486 111741 109344 349738 160113 771023 402776 876199 990697 479378 375096 949750 137029 704674 798687 (510 digits), a[964] = 11
                                                                                      A[965]/B[965] = 3980 293644 689728 513671 359510 049052 799009 812558 051015 955183 520773 466031 176013 771262 678451 123214 424020 787199 994324 290984 734716 884726 902549 670090 592190 201957 210913 595943 313291 686778 418025 577730 661047 111785 731974 085198 552842 461831 922572 984317 512126 723073 254778 117852 029612 560217 166019 324389 041003 798742 756577 029199 849530 221021 651130 898102 083818 067543 460142 660056 547981 885818 100198 638943 909408 970597 668909 116287 773293 539292 198527 978199 470014 941778 375432 155581 250104 856435 898409 925021 555092 772365 783789 460871 573139 (508 digits)/386858 771658 146384 633533 641152 576896 308335 813225 319467 125378 264032 590235 820558 885631 828091 779863 243237 380367 986571 482335 493385 202718 315560 156990 265253 338027 152578 213070 700753 146843 971461 161215 334034 684612 915435 480553 214271 082727 005037 748774 297232 807243 402903 005067 810572 586880 594848 393827 725450 033222 214333 351423 657714 797327 810484 907696 170051 284579 584771 165084 744665 200279 145257 788836 969372 488169 025711 656899 205332 884403 766078 499296 986192 460486 063512 239380 642977 756615 539048 995021 432915 705801 545615 200951 960369 (510 digits), a[965] = 1
                                                                                      A[966]/B[966] = 7642 905290 706666 114587 875045 554370 952464 881001 316017 663576 892423 320331 872673 484017 474815 406980 443293 649943 866094 070020 521117 241749 893093 725609 643054 386032 926723 994102 931728 670928 343595 622601 485429 118457 096334 693151 336558 077682 625829 892570 214030 522766 509406 341126 610541 001019 083199 139775 996270 420529 139636 756834 559409 448151 134057 166140 885129 289572 712420 537101 636119 017265 406779 432144 005869 351159 991151 033667 768107 007186 051562 086139 811451 874492 092669 625965 312383 634459 618201 060086 748765 693657 907924 367361 091807 (508 digits)/742840 909892 921081 954521 363712 936591 741951 568666 704375 149502 295210 862135 002312 289334 665382 674830 151594 678985 376079 799838 972681 667987 031142 869934 528338 356567 909434 928473 337799 223078 322966 569436 794950 175140 828031 993851 365229 634606 174490 760156 506985 736914 429360 646829 512620 753242 918938 915172 282878 804272 407086 410616 669729 784181 899233 401865 263861 752164 981281 885675 850559 905507 271823 763011 210596 636878 551144 286722 896665 852104 493564 611038 095536 810224 223626 010404 045754 632815 529746 474399 808012 655551 682644 905626 759056 (510 digits), a[966] = 1
                                                                                      A[967]/B[967] = 42194 820098 223059 086610 734737 820907 561334 217564 631104 273067 982890 067690 539381 191350 052528 158116 640489 036919 324794 641087 340303 093476 368018 298138 807462 132121 844533 566457 971935 041420 136003 690738 088192 704071 213647 550955 235632 850245 051722 447168 582279 336905 801809 823485 082317 565312 582015 023269 022355 901388 454760 813372 646577 461777 321416 728806 509464 515407 022245 345564 728576 972145 134095 799663 938755 726397 624664 284626 613828 575222 456338 408898 527274 314238 838780 285407 812023 028733 989415 225455 298921 240655 323411 297677 032174 (509 digits)/4 101063 321122 751794 406140 459717 259855 018093 656558 841342 872889 740086 900910 832120 332305 155005 154014 001210 775294 866970 481530 356793 542653 471274 506662 906945 120866 699752 855437 389749 262235 586294 008399 308785 560317 055595 449810 040419 255757 877491 549556 832161 491815 549706 239215 373676 353095 189542 969689 139844 054584 249765 404507 006363 718237 306651 917022 489360 045404 491180 593463 997464 727815 504376 603893 022355 672561 781433 090513 688662 144926 233901 554487 463876 511607 181642 291400 871750 920693 187781 367020 472978 983559 958839 729085 755649 (511 digits), a[967] = 5
                                                                                      A[968]/B[968] = 303006 645978 268079 720863 018210 300723 881804 403953 733747 575052 772653 794165 648341 823467 842512 513796 926716 908379 139656 557631 903238 896084 469221 812581 295289 310885 838458 959308 735273 960869 295621 457768 102778 046955 591867 549837 985988 029397 987887 022750 289985 881107 122075 105522 186763 958207 157304 302659 152761 730248 322962 450443 085451 680592 383974 267786 451380 897421 868137 956054 736157 822281 345450 029791 577159 435943 363801 026054 064907 033743 245930 948429 502372 074163 964131 623819 996544 835597 544107 638273 841214 378245 171803 451100 317025 (510 digits)/29 450284 157752 183642 797504 581733 755576 868607 164578 593775 259730 475819 168510 827154 615470 750418 752928 160070 106049 444873 170551 470236 466561 330064 416574 876954 202634 807704 916535 066044 058727 427024 628231 956449 097360 217200 142521 648164 424911 316931 607054 332116 179623 277304 321337 128355 224909 245739 702996 261787 186362 155444 242165 714275 811843 045796 821022 689382 069996 419546 039923 832813 000215 802459 990262 367086 344811 021175 920318 717300 866588 130875 492450 342672 391474 495122 050210 148011 077667 844216 043543 118865 540471 394523 009227 048599 (512 digits), a[968] = 7
                                                                                      A[969]/B[969] = 345201 466076 491138 807473 752948 121631 443138 621518 364851 848120 755543 861856 187723 014817 895040 671913 567205 945298 464451 198719 243541 989560 837240 110720 102751 443007 682992 525766 707209 002289 431625 148506 190970 751026 805515 100793 221620 879643 039609 469918 872265 218012 923884 929007 269081 523519 739319 325928 175117 631636 777723 263815 732029 142369 705390 996592 960845 412828 890383 301619 464734 794426 479545 829455 515915 162340 988465 310680 678735 608965 702269 357328 029646 388402 802911 909227 808567 864331 533522 863729 140135 618900 495214 748777 349199 (510 digits)/33 551347 478874 935437 203645 041451 015431 886700 821137 435118 132620 215906 069421 659274 947775 905423 906942 161280 881344 311843 652081 827030 009214 801338 923237 783899 323501 507457 771972 455793 320963 013318 636631 265234 657677 272795 592331 688583 680669 194423 156611 164277 671438 827010 560552 502031 578004 435282 672685 401631 240946 405209 646672 720639 530080 352448 738045 178742 115400 910726 633387 830277 728031 306836 594155 389442 017372 802609 010832 405963 011514 364777 046937 806548 903081 676764 341611 019761 998361 031997 410563 591844 524031 353362 738312 804248 (512 digits), a[969] = 1
                                                                                      A[970]/B[970] = 1 338611 044207 741496 143284 277054 665618 211220 268508 828303 119415 039285 379734 211510 867921 527634 529537 628334 744274 533010 153789 633864 864766 980942 144741 603543 639908 887436 536608 856900 967737 590496 903286 675690 300036 008412 852217 650850 668327 106715 432506 906781 535145 893729 892543 994008 528766 375262 280443 678114 625158 656132 241890 281539 107701 500147 257565 333917 135908 539287 860913 130362 205560 784087 518158 124904 922966 329196 958096 101113 860640 352739 020413 591311 239372 372867 351503 422248 428592 144676 229461 261621 234946 657447 697432 364622 (511 digits)/130 104326 594376 989954 408439 706086 801872 528709 627990 899129 657591 123537 376775 804979 458798 466690 473754 643912 750082 380404 126796 951326 494205 734081 186288 228652 173139 330078 232452 433424 021616 466980 538125 752153 070392 035586 919516 713915 466918 900201 076887 824949 193939 758336 002994 634449 958922 551587 721052 466680 909201 371073 182183 876194 402084 103143 035158 225608 416199 151725 940087 323646 184309 722969 772728 535412 396929 429002 952815 935189 901131 225206 633263 762319 100719 525415 075043 207297 072750 940208 275233 894399 112565 454611 224165 461343 (513 digits), a[970] = 3
                                                                                      A[971]/B[971] = 3 022423 554491 974131 094042 307057 452867 865579 158536 021458 086950 834114 621324 610744 750660 950309 730988 823875 433847 530471 506298 511271 719094 799124 400203 309838 722825 457865 598984 421010 937764 612618 955079 542351 351098 822340 805228 523322 216297 253040 334932 685828 288304 711344 714095 257098 581052 489843 886815 531346 881954 089987 747596 295107 357772 705685 511723 628679 684645 968959 023445 725459 205548 047720 865771 765725 008273 646859 226872 880963 330246 407747 398155 212268 867147 548646 612234 653064 721515 822875 322651 663378 088793 810110 143642 078443 (511 digits)/293 760000 667628 915346 020524 453624 619176 944120 077119 233377 447802 462980 822973 269233 865372 838804 854451 449106 381509 072651 905675 729682 997626 269501 295814 241203 669780 167614 236877 322641 364195 947279 712882 769540 798461 343969 431365 116414 614506 994825 310386 814176 059318 343682 566541 770931 495849 538458 114790 334993 059349 147356 011040 473028 334248 558734 808361 629958 947799 214178 513562 477570 096650 752776 139612 460266 811231 660614 916464 276342 813776 815190 313465 331187 104520 727594 491697 434356 143862 912413 961031 380642 749162 262585 186643 726934 (513 digits), a[971] = 2
                                                                                      A[972]/B[972] = 838 549935 638484 575809 193003 331969 110016 976647 182986 772193 204796 089035 486651 387806 801004 763430 013441 841829 920040 473617 398477 256131 054026 338401 001058 428869 862560 716207 455293 476930 728535 285947 460319 907014 554409 796815 900518 611104 582666 198888 208860 881217 395550 936215 696930 210315 480306 062018 928345 861200 926441 582738 326064 026277 210740 975034 005010 478189 782841 940937 355379 082562 142370 002767 336937 230732 214766 509202 801884 127956 338895 298768 309407 389787 439243 347978 940502 321176 288475 081140 603972 017351 830832 057957 486288 093333 (513 digits)/81501 624511 527586 540802 093713 360106 313886 049970 990018 544682 698873 369225 340371 382760 167074 815635 156806 046380 428095 504981 998974 073516 836682 385940 126833 042068 702245 759221 847470 805081 903893 863461 006652 914954 244184 315119 407653 960763 685356 466812 054035 351717 625120 958406 935065 182474 309244 704485 517975 259758 348915 188688 240394 905042 988934 872684 951329 724236 956581 479174 196893 610562 956568 241960 445380 029319 108099 419334 813420 482149 317309 032923 463160 501147 052961 069089 275232 523948 922777 678875 480926 332440 630512 190707 924477 822061 (515 digits), a[972] = 277
                                                                                      A[973]/B[973] = 841 572359 192976 549940 287045 639026 562884 842226 341522 793651 291746 923150 107975 998551 551665 713739 744430 665705 353888 004088 904775 767402 773121 137525 401261 738708 585386 174073 054277 897941 666299 898566 415399 449365 905508 619156 705747 134426 798963 451928 543793 567045 683855 647560 411025 467414 061358 551862 815161 392547 808395 672726 073660 321384 568513 680719 516734 106869 467487 909896 378824 808021 347918 050488 202708 996457 223040 156062 028757 008919 669141 706515 707562 602056 306390 896625 552736 974241 009990 904015 926623 680729 919625 868067 629930 171776 (513 digits)/81795 384512 195215 456148 114237 813730 933062 994091 067137 778060 146675 832206 163344 651994 032447 654440 011257 495486 809604 577633 904649 803199 834308 655441 422647 283272 372025 926836 084348 127723 268089 810740 719535 684495 042645 659088 839019 077178 299863 461637 364422 165893 684439 302089 501606 953405 805094 242943 632765 594751 408264 336044 251435 378071 323183 431419 759691 354195 904380 693352 710456 088133 053218 994736 584992 489585 919331 079949 729884 758492 131085 848113 776625 832334 157481 796683 766929 958305 066640 591289 441957 713083 379674 453293 111121 548995 (515 digits), a[973] = 1
                                                                                      A[974]/B[974] = 8412 701168 375273 525271 776414 083208 175980 556684 256691 915054 830518 397386 458435 374770 765996 187087 713317 833178 105032 510417 541459 162756 012116 576129 612414 077247 131036 282864 943794 558405 725234 373045 198914 951307 703987 369226 252242 820945 773337 266245 103002 984628 550251 764259 396159 417042 032533 028784 264798 394131 202002 637272 989006 918738 327364 101509 655617 440014 990233 130004 764802 354754 273632 457161 161318 198847 222127 913761 060697 208233 361170 657409 677470 808294 196761 417608 915135 089345 378393 217283 943585 143921 107464 870566 155659 639317 (514 digits)/817660 085121 284525 646135 121853 683684 711452 996790 594258 547224 018955 859080 810473 250706 459103 705595 258123 505761 714536 703687 140822 302315 345460 284912 930658 591520 050479 100746 606603 954591 316702 160127 482474 075409 627995 246918 958825 655368 384127 621548 333834 844760 785074 677212 449527 763126 555092 890978 212865 612521 023294 213086 503313 307684 897585 755462 788551 912000 096007 719348 590998 403760 435539 194589 710312 435592 382079 138882 382383 308578 497081 665947 452792 992154 470297 239243 177602 148694 522543 000480 458545 750191 047582 270345 924571 763016 (516 digits), a[974] = 9
                                                                                      A[975]/B[975] = 34492 377032 694070 651027 392701 971859 266807 068963 368290 453870 613820 512695 941717 497634 615650 462090 597701 998417 774018 045759 070612 418426 821587 442043 850918 047697 109531 305532 829456 131564 567237 390747 211059 254596 721458 096061 714718 418209 892312 516908 955805 505559 884862 704597 995663 135582 191490 666999 874354 969072 616406 221818 029687 996337 877970 086758 139203 866929 428420 429915 438034 227038 442447 879132 847981 791846 111551 811106 271545 841853 113824 336154 417445 835233 093436 567061 213277 331622 523563 773151 700964 256414 349485 350332 252568 729044 (515 digits)/3 352435 724997 333318 040688 601652 548469 778874 981253 444171 966956 222499 268529 405237 654819 868862 476821 043751 518533 667751 392382 467939 012461 216149 795093 145281 649352 573942 329822 510763 946088 534898 451250 649431 986133 554626 646764 674321 698651 836373 947830 699761 544936 824738 010939 299718 005912 025465 806856 484228 044835 501441 188390 264688 608810 913526 453270 913899 002196 288411 570747 074449 703174 795375 773095 426242 231955 447647 635479 259417 992806 119412 511903 587797 800952 038670 753656 477338 553083 156812 593211 276140 713847 570003 534676 809408 601059 (517 digits), a[975] = 4
                                                                                      A[976]/B[976] = 215366 963364 539697 431436 132625 914363 776822 970464 466434 638278 513441 473562 108740 360578 459898 959631 299529 823684 749140 784971 965133 673316 941641 228392 717922 363429 788224 116061 920531 347793 128658 717528 465270 478888 032735 945596 540553 330205 127212 367698 837836 017987 859427 991847 370138 230535 181477 030783 510928 208566 900439 968181 167134 896765 595184 622058 490840 641591 560755 709497 393007 716984 928319 731958 249208 949923 891438 780398 689972 259352 044116 674336 182145 819692 757380 819976 194799 079080 519775 856194 149370 682407 204376 972559 671072 013581 (516 digits)/20 932274 435105 284433 890266 731768 974503 384702 884311 259290 348961 353951 470257 241899 179625 672278 566521 520632 616963 721045 057981 948456 377082 642359 055471 802348 487635 494133 079681 671187 631122 526092 867631 379065 992210 955755 127507 004755 847279 402371 308532 532404 114381 733502 742848 247835 798598 707887 732117 118233 881534 031941 343428 091444 960550 378744 475088 271945 925177 826477 143831 037696 622809 207793 833162 267765 827325 067964 951757 938891 265415 213556 737368 979579 797866 702321 761182 041633 467193 463418 559748 115390 033276 467603 478406 781023 369370 (518 digits), a[976] = 6
                                                                                      A[977]/B[977] = 249859 340397 233768 082463 525327 886223 043630 039427 834725 092149 127261 986258 050457 858213 075549 421721 897231 822102 523158 830731 035746 091743 763228 670436 568840 411126 897755 421594 749987 479357 695896 108275 676329 733484 754194 041658 255271 748415 019524 884607 793641 523547 744290 696445 365801 366117 372967 697783 385283 177639 516846 189999 196822 893103 473154 708816 630044 508520 989176 139412 831041 944023 370767 611091 097190 741770 002990 591504 961518 101205 157941 010490 599591 654925 850817 387037 408076 410703 043339 629345 850334 938821 553862 322891 923640 742625 (516 digits)/24 284710 160102 617751 930955 333421 522973 163577 865564 703462 315917 576450 738786 647136 834445 541141 043342 564384 135497 388796 450364 416395 389543 858508 850564 947630 136988 068075 409504 181951 577211 060991 318882 028497 978344 510381 774271 679077 545931 238745 256363 232165 659318 558240 753787 547553 804510 733353 538973 602461 926369 533382 531818 356133 569361 292270 928359 185844 927374 114888 714578 112146 325984 003169 606257 694008 059280 515612 587237 198309 258221 332969 249272 567377 598818 740992 514838 518972 020276 620231 152959 391530 747124 037607 013083 590431 970429 (518 digits), a[977] = 1
                                                                                      A[978]/B[978] = 465226 303761 773465 513899 657953 800586 820453 009892 301159 730427 640703 459820 159198 218791 535448 381353 196761 645787 272299 615703 000879 765060 704869 898829 286762 774556 685979 537656 670518 827150 824554 825804 141600 212372 786929 987254 795825 078620 146737 252306 631477 541535 603718 688292 735939 596652 554444 728566 896211 386206 417286 158180 363957 789869 068339 330875 120885 150112 549931 848910 224049 661008 299087 343049 346399 691693 894429 371903 651490 360557 202057 684826 781737 474618 608198 207013 602875 489783 563115 485539 999705 621228 758239 295451 594712 756206 (516 digits)/45 216984 595207 902185 821222 065190 497476 548280 749875 962752 664878 930402 209043 889036 014071 213419 609864 085016 752461 109841 508346 364851 766626 500867 906036 749978 624623 562208 489185 853139 208333 587084 186513 407563 970555 466136 901778 683833 393210 641116 564895 764569 773700 291743 496635 795389 603109 441241 271090 720695 807903 565323 875246 447578 529911 671015 403447 457790 852551 941365 858409 149842 948793 210963 439419 961773 886605 583577 538995 137200 523636 546525 986641 546957 396685 443314 276020 560605 487470 083649 712707 506920 780400 505210 491490 371455 339799 (518 digits), a[978] = 1
                                                                                      A[979]/B[979] = 715085 644159 007233 596363 183281 686809 864083 049320 135884 822576 767965 446078 209656 077004 610997 803075 093993 467889 795458 446434 036625 856804 468098 569265 855603 185683 583734 959251 420506 306508 520450 934079 817929 945857 541124 028913 051096 827035 166262 136914 425119 065083 348009 384738 101740 962769 927412 426350 281494 563845 934132 348179 560780 682972 541494 039691 750929 658633 539107 988323 055091 605031 669854 954140 443590 433463 897419 963408 613008 461762 359998 695317 381329 129544 459015 594051 010951 900486 606455 114885 850040 560050 312101 618343 518353 498831 (516 digits)/69 501694 755310 519937 752177 398612 020449 711858 615440 666214 980796 506852 947830 536172 848516 754560 653206 649400 887958 498637 958710 781247 156170 359376 756601 697608 761611 630283 898690 035090 785544 648075 505395 436061 948899 976518 676050 362910 939141 879861 821258 996735 433018 849984 250423 342943 407620 174594 810064 323157 734273 098706 407064 803712 099272 963286 331806 643635 779926 056254 572987 261989 274777 214133 045677 655781 945886 099190 126232 335509 781857 879495 235914 114334 995504 184306 790859 079577 507746 703880 865666 898451 527524 542817 504573 961887 310228 (518 digits), a[979] = 1
                                                                                      A[980]/B[980] = 4 040654 524556 809633 495715 574362 234636 140868 256492 980583 843311 480530 690211 207478 603814 590437 396728 666728 985236 249591 847873 184009 049083 045362 745158 564778 702974 604654 333913 773050 359693 426809 496203 231249 941660 492550 131820 051309 213795 978047 936878 757072 866952 343765 611983 244644 410502 191506 860318 303684 205436 087947 899078 167861 204731 775809 529333 875533 443280 245471 790525 499507 686166 648362 113751 564351 859013 381529 188946 716532 669369 002051 161413 688383 122340 903276 177268 657634 992216 595391 059969 249908 421480 318747 387169 186480 250361 (517 digits)/392 725458 371760 501874 582109 058250 599725 107573 827079 293827 568861 464666 948196 569900 256654 986222 875897 332021 192253 603031 301900 271087 547478 297751 689045 238022 432681 713627 982636 028593 136056 827461 713490 587873 715055 348730 282030 498388 088920 040425 671190 748246 938794 541664 748752 510106 641210 314215 321412 336484 479269 058855 910570 466139 026276 487447 062480 675969 752182 222638 723345 459789 322679 281628 667808 240683 616036 079528 170156 814749 432925 944002 166212 118632 374206 364848 230315 958493 026203 603054 041041 999178 418023 219298 014360 180891 890939 (519 digits), a[980] = 5
                                                                                      A[981]/B[981] = 4 755740 168715 816867 092078 757643 921446 004951 305813 116468 665888 248496 136289 417134 680819 201435 199803 760722 453126 045050 294307 220634 905887 513461 314424 420381 888658 188389 293165 193556 666201 947260 430283 049179 887518 033674 160733 102406 040831 144310 073793 182191 932035 691774 996721 346385 373272 118919 286668 585178 769282 022080 247257 728641 887704 317303 569025 626463 101913 784579 778848 554599 291198 318217 067892 007942 292477 278949 152355 329541 131131 362049 856731 069712 251885 362291 771319 668586 892703 201846 174855 099948 981530 630849 005512 704833 749192 (517 digits)/462 227153 127071 021812 334286 456862 620174 819432 442519 960042 549657 971519 896027 106073 105171 740783 529103 981422 080212 101669 260611 052334 703648 657128 445646 935631 194293 343911 881326 063683 921601 475537 218886 023935 663955 325248 958080 861299 028061 920287 492449 744982 371813 391648 999175 853050 048830 488810 131476 659642 213542 157562 317635 269851 125549 450733 394287 319605 532108 278893 296332 721778 597456 495761 713485 896465 561922 178718 296389 150259 214783 823497 402126 232967 369710 549155 021175 038070 533950 306934 906708 897629 945547 762115 518934 142779 201167 (519 digits), a[981] = 1
                                                                                      A[982]/B[982] = 23 063615 199420 077101 864030 604937 920420 160673 479745 446458 506864 474515 235368 876017 327091 396178 195943 709618 797740 429793 025102 066548 672633 099208 002856 246306 257607 358211 506574 547277 024501 215851 217335 427969 491732 627246 774752 460933 377120 555288 232051 485840 595095 110865 598868 630185 903590 667184 006992 644399 282564 176268 888109 082428 755549 045023 805436 381385 850935 383790 905919 717904 850959 921230 385319 596121 028922 497325 798368 034697 193894 450250 588337 967232 129882 352443 262547 331982 563029 402775 759389 649704 347602 842143 409220 005815 247129 (518 digits)/2241 634070 880044 589123 919254 885701 080424 385303 597159 133997 767493 350746 532304 994192 677341 949356 992313 257709 513102 009708 344344 480426 362072 926265 471632 980547 209855 089275 507940 283328 822462 729610 589034 683616 370876 649726 114353 943584 201167 721575 640989 728176 426048 108260 745455 922306 836532 269455 847318 975053 333437 689105 181111 545543 528474 290380 639629 954391 880615 338211 908676 346903 712505 264675 521751 826545 863724 794401 355713 415786 292061 237991 774717 050501 853048 561468 315016 110775 162004 830793 667877 589698 200214 267760 090096 752008 695607 (520 digits), a[982] = 4
                                                                                      A[983]/B[983] = 50 882970 567555 971070 820139 967519 762286 326298 265304 009385 679617 197526 607027 169169 335001 993791 591691 179960 048606 904636 344511 353732 251153 711877 320136 912994 403872 904812 306314 288110 715204 378962 864953 905118 870983 288167 710238 024272 795072 254886 537896 153873 122225 913506 194458 606757 180453 453287 300653 873977 334410 374618 023475 893499 398802 407351 179898 389234 803784 552161 590687 990408 993118 160677 838531 200184 350322 273600 749091 398935 518920 262551 033407 004176 511650 067178 296414 332552 018762 007397 693634 399357 676736 315135 823952 716464 243450 (518 digits)/4945 495294 887160 200060 172796 228264 781023 590039 636838 228038 084644 673012 960637 094458 459855 639497 513730 496841 106416 121085 949300 013187 427794 509659 388912 896725 614003 522462 897206 630341 566526 934758 396955 391168 405708 624701 186788 748467 430397 363438 774429 201335 223909 608170 490087 697663 721895 027721 826114 609748 880417 535772 679858 360938 182498 031494 673547 228389 293338 955317 113685 415586 022467 025112 756989 549557 289371 767521 007815 981831 798906 299480 951560 333971 075807 672091 651207 259620 857959 968522 242464 077026 345976 297635 699127 646796 592381 (520 digits), a[983] = 2
                                                                                      A[984]/B[984] = 73 946585 766976 048172 684170 572457 682706 486971 745049 455844 186481 672041 842396 045186 662093 389969 787634 889578 846347 334429 369613 420280 923786 811085 322993 159300 661480 263023 812888 835387 739705 594814 082289 333088 362715 915414 484990 485206 172192 810174 769947 639713 717321 024371 793327 236943 084044 120471 307646 518376 616974 550886 911584 975928 154351 452374 985334 770620 654719 935952 496607 708313 844078 081908 223850 796305 379244 770926 547459 433632 712814 712801 621744 971408 641532 419621 558961 664534 581791 410173 453024 049062 024339 157279 233172 722279 490579 (518 digits)/7187 129365 767204 789184 092051 113965 861447 975343 233997 362035 852138 023759 492942 088651 137197 588854 506043 754550 619518 130794 293644 493613 789867 435924 860545 877272 823858 611738 405146 913670 388989 664368 985990 074784 776585 274427 301142 692051 631565 085014 415418 929511 649957 716431 235543 619970 558427 297177 673433 584802 213855 224877 860969 906481 710972 321875 313177 182781 173954 293529 022361 762489 734972 289788 278741 376103 153096 561922 363529 397618 090967 537472 726277 384472 928856 233559 966223 370396 019964 799315 910341 666724 546190 565395 789224 398805 287988 (520 digits), a[984] = 1
                                                                                      A[985]/B[985] = 124 829556 334532 019243 504310 539977 444992 813270 010353 465229 866098 869568 449423 214355 997095 383761 379326 069538 894954 239065 714124 774013 174940 522962 643130 072295 065353 167836 119203 123498 454909 973776 947243 238207 233699 203582 195228 509478 967265 065061 307843 793586 839546 937877 987785 843700 264497 573758 608300 392353 951384 925504 935060 869427 553153 859726 165233 159855 458504 488114 087295 698722 837196 242586 062381 996489 729567 044527 296550 832568 231734 975352 655151 975585 153182 486799 855375 997086 600553 417571 146658 448419 701075 472415 057125 438743 734029 (519 digits)/12132 624660 654364 989244 264847 342230 642471 565382 870835 590073 936782 696772 453579 183109 597053 228352 019774 251391 725934 251880 242944 506801 217661 945584 249458 773998 437862 134201 302353 544011 955516 599127 382945 465953 182293 899128 487931 440519 061962 448453 189848 130846 873867 324601 725631 317634 280322 324899 499548 194551 094272 760650 540828 267419 893470 353369 986724 411170 467293 248846 136047 178075 757439 314901 035730 925660 442468 329443 371345 379449 889873 836953 677837 718444 004663 905651 617430 630016 877924 767838 152805 743750 892166 863031 488352 045601 880369 (521 digits), a[985] = 1
                                                                                      A[986]/B[986] = 323 605698 436040 086659 692791 652412 572692 113511 765756 386303 918679 411178 741242 473898 656284 157492 546287 028656 636255 812560 797862 968307 273667 857010 609253 303890 792186 598696 051295 082384 649525 542367 976775 809502 830114 322578 875447 504164 106722 940297 385635 226887 396414 900127 768898 924343 613039 267988 524247 303084 519744 401896 781706 714783 260659 171827 315801 090331 571728 912180 671199 105759 518470 567080 348614 789284 838378 859981 140561 098769 176284 663506 932048 922578 947897 393221 269713 658707 782898 245315 746340 945901 426490 102109 347423 599766 958637 (519 digits)/31452 378687 075934 767672 621745 798427 146391 106108 975668 542183 725703 417304 400100 454870 331304 045558 545592 257334 071386 634554 779533 507216 225191 327093 359463 425269 699582 880141 009854 001694 300022 862623 751881 006691 141173 072684 277005 573089 755489 981920 795115 191205 397692 365634 686806 255239 119071 946976 672529 973904 402400 746178 942626 441321 497913 028615 286626 005122 108540 791221 294456 118641 249850 919590 350203 227424 038033 220809 106220 156517 870715 211380 081952 821360 938184 044863 201084 630429 775814 334992 215953 154226 330524 291458 765928 490009 048726 (521 digits), a[986] = 2
                                                                                      A[987]/B[987] = 448 435254 770572 105903 197102 192390 017684 926781 776109 851533 784778 280747 190665 688254 653379 541253 925613 098195 531210 051626 511987 742320 448608 379973 252383 376185 857539 766532 170498 205883 104435 516144 924019 047710 063813 526161 070676 013643 073988 005358 693479 020474 235961 838005 756684 768043 877536 841747 132547 695438 471129 327401 716767 584210 813813 031553 481034 250187 030233 400294 758494 804482 355666 809666 410996 785774 567945 904508 437111 931337 408019 638859 587200 898164 101079 880021 125089 655794 383451 662886 892999 394321 127565 574524 404549 038510 692666 (519 digits)/43585 003347 730299 756916 886593 140657 788862 671491 846504 132257 662486 114076 853679 637979 928357 273910 565366 508725 797320 886435 022478 014017 442853 272677 608922 199268 137445 014342 312207 545706 255539 461751 134826 472644 323466 971812 764937 013608 817452 430373 984963 322052 271559 690236 412437 572873 399394 271876 172078 168455 496673 506829 483454 708741 391383 381985 273350 416292 575834 040067 430503 296717 007290 234491 385934 153084 480501 550252 477565 535967 760589 048333 759790 539804 942847 950514 818515 260446 653739 102830 368758 897977 222691 154490 254280 535610 929095 (521 digits), a[987] = 1
                                                                                      A[988]/B[988] = 16018 839615 406063 793271 591368 386063 191664 550873 929601 189986 385919 237330 414541 562811 524568 101379 942745 465500 228607 619488 717433 949522 974961 156074 442671 470395 806078 427322 018732 288293 304768 607440 317442 479355 063587 738216 349107 981671 696303 127851 657400 943485 655079 230329 252865 805879 326828 729138 163416 643431 009270 860956 868572 162161 744115 276199 151999 846877 629897 922497 218517 262641 966808 905404 733502 291394 716485 517776 439478 695578 456972 023592 484080 358322 485693 193960 647851 611511 203706 446357 001319 747140 891285 210463 506639 947641 201947 (521 digits)/1 556927 495857 636426 259763 652505 721449 756584 608323 603313 171201 912717 409994 278887 784167 823808 632428 333420 062736 977617 659780 566263 997826 725055 870809 671740 399654 510158 382121 937118 101413 243904 023913 470807 549242 462517 086131 049801 049398 366325 045010 268831 463034 902281 523909 122121 305808 097871 462642 695265 869846 785973 485210 863541 247270 196331 398099 853890 575362 262732 193581 362071 503736 505009 126788 857898 585380 855587 479645 821013 915389 491331 903061 674621 714533 937862 312881 849118 746062 656682 934055 122514 583429 124714 698617 665747 236391 567051 (523 digits), a[988] = 35
                                                                                      A[989]/B[989] = 48504 954100 988763 485717 971207 350579 592678 579403 564913 421492 942535 992738 434290 376689 227083 845393 753849 494696 217032 910092 664289 590889 373491 848196 580397 787373 275775 048498 226695 070763 018741 338465 876346 485775 254576 740810 117999 958658 162897 388913 665681 850931 201199 528993 515282 185681 858023 029161 622797 625731 498941 910272 322484 070696 046158 860150 937033 790819 919927 167786 414046 592408 256093 525880 611503 659958 717402 457837 755548 018072 778935 709637 039441 973131 558159 461903 068644 490327 994571 001957 896958 635743 801421 205914 924468 881434 298507 (521 digits)/4 714367 490920 639578 536207 844110 305007 058616 496462 656443 645863 400638 344059 690342 990483 399783 171195 565626 696936 730173 865776 721270 007497 618020 885106 624143 398231 667920 160708 123561 849945 987251 533491 547249 120371 711018 230205 914340 161803 916427 565404 791457 711156 978404 261963 778801 490297 693008 659804 257875 777995 854593 962462 074078 450551 980377 576284 835022 142379 364030 620811 516717 807926 522317 614857 959629 909227 047263 989189 940607 282136 234584 757518 783655 683406 756434 889160 365871 498634 623787 904995 736302 648264 596835 250343 251522 244785 630248 (523 digits), a[989] = 3
                                                                                      A[990]/B[990] = 113028 747817 383590 764707 533783 087222 377021 709681 059428 032972 270991 222807 283122 316189 978735 792167 450444 454892 662673 439674 046013 131301 721944 852467 603467 045142 357628 524318 472122 429819 342251 284372 070135 450905 572741 219836 585107 898988 022097 905678 988764 645348 057478 288316 283430 177243 042874 787461 409011 894894 007154 681501 513540 303553 836432 996501 026067 428517 469752 258070 046610 447458 478995 957165 956509 611312 151290 433451 950574 731724 014843 442866 562964 304585 602012 117766 785140 592167 192848 450272 795237 018628 494127 622293 355577 710509 798961 (522 digits)/10 985662 477698 915583 332179 340726 331463 873817 601248 916200 462928 713994 098113 659573 765134 623374 974819 464673 456610 437965 391334 008804 012821 961097 641022 920027 196117 845998 703538 184241 801305 218407 090896 565305 789985 884553 546542 878481 373006 199180 175819 851746 885348 859090 047836 679724 286403 483888 782251 211017 425838 495161 410135 011698 148374 157086 550669 523934 860120 990793 435204 395507 119589 549644 356504 777158 403834 950115 458025 702228 479661 960501 418099 241933 081347 450732 091202 580861 743331 904258 744046 595119 879958 318385 199304 168791 725962 827547 (524 digits), a[990] = 2
                                                                                      A[991]/B[991] = 952734 936640 057489 603378 241472 048358 608852 256852 040337 685271 110465 775196 699268 906209 056970 182733 357405 133837 518420 427485 032394 641303 149050 667937 408134 148512 136803 243046 003674 509317 756751 613442 437430 093019 836506 499502 798863 150562 339680 634345 575799 013715 661025 835523 782723 603626 201021 328852 894892 784883 556179 362284 430806 499126 737622 832159 145573 218959 677945 232346 786930 172076 088061 183208 263580 550455 927725 925453 360145 871864 897683 252569 543156 409816 374256 404037 349769 227665 537358 604140 258854 784771 754442 184261 769090 565512 690195 (522 digits)/92 599667 312511 964245 193642 569920 956718 049157 306453 986047 349293 112591 128968 966933 111560 386782 969751 283014 349820 233896 996448 791702 110073 306802 013289 984360 967174 435909 789013 597496 260387 734508 260664 069695 440258 787446 602548 942191 145853 509868 971963 605432 793947 851124 644657 216595 781525 564118 917813 946015 184703 815885 243542 167663 637545 237069 981641 026501 023347 290378 102446 680774 764642 919472 466896 176897 139906 648187 653395 558435 119431 918596 102312 719120 334186 362291 618781 012765 445289 857857 857368 497261 687931 143916 844776 601856 052488 250624 (524 digits), a[991] = 8
                                                                                      A[992]/B[992] = 3 923968 494377 613549 178220 499671 280656 812430 737089 220778 774056 712854 323594 080197 941026 206616 523100 880064 990242 736355 149614 175591 696514 318147 524217 236003 639190 904841 496502 486820 467090 369257 738141 819855 822984 918767 217847 780560 501237 380820 443061 291960 700210 701581 630411 414324 591747 846960 102872 988583 034428 231872 130639 236766 300060 786924 325137 608360 304356 181533 187457 194331 135762 831240 689999 010831 813135 862194 135265 391158 219183 605576 453144 735589 943851 099037 733916 184217 502829 342282 866833 830656 157715 511896 359340 431939 972560 559741 (523 digits)/381 384331 727746 772564 106749 620410 158336 070446 827064 860389 860101 164358 613989 527306 211376 170506 853824 596730 855891 373553 377129 175612 453115 188305 694182 857471 064815 589637 859592 574226 842856 156440 133552 844087 551021 034339 956738 647245 956420 238656 063674 273478 061140 263588 626465 546107 412505 740364 453506 995078 164653 758702 384303 682352 698555 105366 477233 629938 953510 152305 844991 118606 178161 227534 224089 484746 963461 542866 071607 935968 957389 634885 827350 118414 418092 899898 566326 631923 524491 335690 173520 584166 631682 894052 578410 576215 935915 830043 (525 digits), a[992] = 4
                                                                                      A[993]/B[993] = 83 356073 318569 942022 346008 734568 942151 669897 735725 676691 940462 080406 570672 383425 667759 395917 167851 838769 928934 981878 569382 719820 268103 830148 676499 364210 571521 138474 669598 226904 318215 511164 114420 654402 375703 130618 074306 190633 676547 336909 938632 706973 718140 394240 074163 483540 030330 987183 489185 655136 507876 425494 105708 402898 800403 263033 660048 921139 610439 490142 168947 867884 023095 544115 673187 491048 626309 033802 766026 574468 474720 614788 768608 990545 230689 454048 816277 218336 787081 725298 807650 702634 096797 504265 730410 839829 989284 444756 (524 digits)/8101 670633 595194 188091 435384 598534 281775 528540 674816 054234 411417 564122 022749 040363 550459 967426 900067 814362 323539 078517 916161 479563 625492 261221 591129 991253 328301 818304 840457 656259 960367 019751 065273 795534 011700 508585 694060 534356 230678 521646 309123 348472 077893 386485 800433 684851 444146 111772 441460 842656 642432 748635 313919 497070 307202 449766 003547 255219 047060 488800 847260 171504 506028 697691 172775 356583 372599 048375 157162 213783 224614 251198 476665 205823 114137 260161 511640 283159 459607 907351 501300 764760 953271 919020 991398 702390 706720 681527 (526 digits), a[993] = 21
                                                                                      A[994]/B[994] = 87 280041 812947 555571 524229 234240 222808 482328 472814 897470 714518 793260 894266 463623 608785 602533 690952 718834 919177 718233 718996 895411 964618 148296 200716 600214 210712 043316 166100 713724 785305 880421 852562 474258 198688 049385 292153 971194 177784 717730 381693 998934 418351 095821 704574 897864 622078 834143 592058 643719 542304 657366 236347 639665 100464 049957 985186 529499 914795 671675 356405 062215 158858 375356 363186 501880 439444 895996 901291 965626 693904 220365 221753 726135 174540 553086 550193 402554 289911 067581 674484 533290 254513 016162 089751 271769 961845 004497 (524 digits)/8483 054965 322940 960655 542134 218944 440111 598987 501880 914624 271518 728480 636738 567669 761836 137933 753892 411093 179430 452071 293290 655176 078607 449527 285312 848724 393117 407942 700050 230486 803223 176191 198826 639621 562721 542925 650799 181602 187098 760302 372797 621950 139033 650074 426899 230958 856651 852136 894967 837734 807086 507337 698223 179423 005757 555132 480780 885158 000570 641106 692251 290110 684189 925225 396864 841330 336060 591241 228770 149752 182003 886084 304015 324237 532230 160060 077966 915082 984099 243041 674821 348927 584954 813073 569809 278606 642636 511570 (526 digits), a[994] = 1
                                                                                      A[995]/B[995] = 432 476240 570360 164308 442925 671529 833385 599211 626985 266574 798537 253450 147738 237920 102901 806051 931662 714109 605645 854813 445370 301468 126576 423333 479365 765067 414369 311739 334001 081803 459439 032851 524670 551435 170455 328159 242922 075410 387686 207831 465408 702711 391544 777526 892463 074998 518646 323757 857420 230014 677095 054959 051098 961559 202259 462865 600795 039139 269622 176843 594568 116744 658529 045541 125933 498570 384088 617790 371194 436975 250337 496249 655623 895085 928851 666395 017050 828553 946725 995625 505588 835795 114849 568914 089415 926909 836664 462744 (525 digits)/42033 890494 886958 030713 603921 474312 042221 924490 682339 712731 497492 478044 569703 311042 597804 519161 915637 458735 041260 886803 089324 100267 939922 059330 732381 386150 900771 450075 640658 578207 173259 724515 860580 354020 262586 680288 297257 260764 979073 562855 800313 836272 634027 986783 508030 608686 870753 520320 021332 193595 870778 777986 106812 214762 330232 670295 926670 795851 049343 053227 616265 331947 242788 398592 760234 721904 716841 413340 072242 812791 952629 795535 692726 502773 243057 900401 823507 943491 396004 879518 200586 160471 293091 171315 270635 816817 277266 727807 (527 digits), a[995] = 4
                                                                                      A[996]/B[996] = 1384 708763 524028 048496 853006 248829 722965 279963 353770 697195 110130 553611 337481 177383 917491 020689 485940 861163 736115 282674 055107 799816 344347 418296 638813 895416 453819 978534 168103 959135 163622 978976 426574 128563 710054 033863 020920 197425 340843 341224 777920 107068 592985 428402 381964 122860 178017 805417 164319 333763 573589 822243 389644 524342 707242 438554 787571 646917 723662 202206 140109 412449 134445 511979 740986 997591 591710 749368 014875 276552 444916 709114 188625 411392 961095 552271 601345 888216 130089 054458 191251 040675 599061 722904 357999 052499 471838 392729 (526 digits)/134584 726449 983815 052796 353898 641880 566777 372459 548900 052818 763996 162614 345848 500797 555249 695419 500804 787298 303213 112480 561262 955979 898373 627519 482457 007177 095431 758169 622025 965108 323002 349738 780567 701682 350481 583790 542570 963897 124319 448869 773739 130768 041117 610424 950991 057019 468912 413096 958964 418522 419422 841296 018659 823709 996455 566020 260793 272711 148599 800789 541047 285952 412555 121003 677569 007044 486584 831261 445498 588128 039893 272691 382194 832557 261403 861265 548490 745557 172113 881596 276579 830341 464228 327019 381716 729058 474436 694991 (528 digits), a[996] = 3
                                                                                      A[997]/B[997] = 1817 185004 094388 212805 295931 920359 556350 879174 980755 963769 908667 807061 485219 415304 020392 826741 417603 575273 341761 137487 500478 101284 470923 841630 118179 660483 868189 290273 502105 040938 623062 011827 951244 679998 880509 362022 263842 272835 728529 549056 243328 809779 984530 205929 274427 197858 696664 129175 021739 563778 250684 877202 440743 485901 909501 901420 388366 686056 993284 379049 734677 529193 792974 557520 866920 496161 975799 367158 386069 713527 695254 205363 844249 306478 889947 218666 618396 716770 076815 050083 696839 876470 713911 291818 447414 979409 308502 855473 (526 digits)/176618 616944 870773 083509 957820 116192 608999 296950 231239 765550 261488 640658 915551 811840 153054 214581 416442 246033 344473 999283 650587 056247 838295 686850 214838 393327 996203 208245 262684 543315 496262 074254 641148 055702 613068 264078 839828 224662 103393 011725 574052 967040 675145 597208 459021 665706 339665 933416 980296 612118 290201 619282 125472 038472 326688 236316 187464 068562 197942 854017 157312 617899 655343 519596 437803 728949 203426 244601 517741 400919 992523 068227 074921 335330 504461 761667 371998 689048 568118 761114 477165 990812 757319 498334 652352 545875 751703 422798 (528 digits), a[997] = 1
                                                                                      A[998]/B[998] = 5019 078771 712804 474107 444870 089548 835667 038313 315282 624734 927466 167734 307920 007991 958276 674172 321148 011710 419637 557649 056064 002385 286195 101556 875173 216384 190198 559081 172314 041012 409747 002632 329063 488561 471072 757907 548604 743096 797902 439337 264577 726628 562045 840260 930818 518577 571346 063767 207798 461320 074959 576648 271131 496146 526246 241395 564305 019031 710230 960305 609464 470836 720394 627021 474827 989915 543309 483684 787014 703607 835425 119841 877124 024350 740989 989604 838139 321756 283719 154625 584930 793617 026884 306541 252829 011318 088844 103675 (526 digits)/487821 960339 725361 219816 269538 874265 784775 966360 011379 583919 286973 443932 176952 124477 861358 124582 333689 279364 992161 111047 862437 068475 574965 001219 912133 793833 087838 174660 147395 051739 315526 498248 062863 813087 576618 111948 222227 413221 331105 472320 921845 064849 391408 804841 869034 388432 148244 279930 919557 642758 999826 079860 269603 900654 649832 038652 635721 409835 544485 508823 855672 521751 723242 160196 553176 464942 893437 320464 480981 389968 024939 409145 532037 503218 270327 384600 292488 123654 308351 403825 230911 811966 978867 323688 686421 820809 977843 540587 (528 digits), a[998] = 2
                                                                                      A[999]/B[999] = 11855 342547 519997 161020 185672 099457 227684 955801 611321 213239 763600 142530 101059 431287 936946 175086 059899 598694 181036 252785 612606 106055 043314 044743 868526 093252 248586 408435 846733 122963 442556 017092 609371 657121 822654 877837 361051 759029 324334 427730 772484 263037 108621 886451 136064 235013 839356 256709 437336 486418 400604 030498 983006 478194 961994 384211 516976 724120 413746 299660 953606 470867 233763 811563 816576 475993 062418 334527 960099 120743 366104 445047 598497 355180 371927 197876 294675 360282 644253 359334 866701 463704 767679 904900 953073 002045 486191 062823 (527 digits)/1 152262 537624 321495 523142 496897 864724 178551 229670 253998 933388 835435 528523 269456 060795 875770 463746 083820 804763 328796 221379 375461 193198 988225 689290 039105 980994 171879 557565 557474 646794 127315 070750 766875 681877 766304 487975 284283 051104 765603 956367 417743 096739 457963 206892 197090 442570 636154 493278 819411 897636 289853 779002 664679 839781 626352 313621 458906 888233 286913 871664 868657 661403 101827 839989 544156 658834 990300 885530 479704 180856 042401 886518 138996 341767 045116 530867 956974 936357 184821 568764 938989 614746 715054 145712 025196 187495 707390 503972 (529 digits), a[999] = 2
                                                                                      A[1000]/B[1000] = 16874 421319 232801 635127 630542 189006 063351 994114 926603 837974 691066 310264 408979 439279 895222 849258 381047 610404 600673 810434 668670 108440 329509 146300 743699 309636 438784 967517 019047 163975 852303 019724 938435 145683 293727 635744 909656 502126 122236 867068 037061 989665 670667 726712 066882 753591 410702 320476 645134 947738 475563 607147 254137 974341 488240 625607 081281 743152 123977 259966 563070 941703 954158 438585 291404 465908 605727 818212 747113 824351 201529 564889 475621 379531 112917 187481 132814 682038 927972 513960 451632 257321 794564 211442 205902 013363 575035 166498 (527 digits)/1 640084 497964 046856 742958 766436 738989 963327 196030 265378 517308 122408 972455 446408 185273 737128 588328 417510 084128 320957 332427 237898 261674 563190 690509 951239 774827 259717 732225 704869 698533 442841 568998 829739 494965 342922 599923 506510 464326 096709 428688 339588 161588 849372 011734 066124 831002 784398 773209 738969 540395 289679 858862 934283 740436 276184 352274 094628 298068 831399 380488 724330 183154 825070 000186 097333 123777 883738 205994 960685 570824 067341 295663 671033 844985 315443 915468 249463 060011 493172 972590 169901 426713 693921 469400 711618 008305 685234 044559 (529 digits), a[1000] = 1
                                                                                      A[1001]/B[1001] = 62478 606505 218402 066403 077298 666475 417740 938146 391132 727163 836799 073323 327997 749127 622614 722861 203042 429907 983057 684089 618616 431376 031841 483646 099624 022161 564941 310986 903874 614890 999465 076267 424677 094171 703837 785072 090021 265407 691045 028934 883670 232034 120625 066587 336712 495788 071463 218139 372741 329633 827294 851940 745420 401219 426716 261032 760821 953576 785678 079560 642819 295979 096239 127319 690789 873718 879601 789166 201440 593796 970693 139716 025361 493773 710678 760319 693119 406399 428170 901216 221598 235670 151372 539227 570779 042136 211296 562317 (527 digits)/6 072516 031516 462065 752018 796208 081694 068532 817761 050134 485313 202662 445889 608680 616617 087156 228731 336351 057148 291668 218661 089155 978222 677797 760819 892825 305475 951032 754242 672083 742394 455839 777747 256094 166773 795072 287745 803814 444083 055732 242432 436507 581506 006079 242094 395464 935578 989350 812908 036320 518822 158893 355591 467531 061090 454905 370443 742791 782439 781112 013131 041648 210867 577037 840547 836156 030168 641515 503515 361760 893328 244425 773509 152097 876722 991448 277272 705364 116391 664340 486535 448693 894887 796818 553914 160050 212412 763092 637649 (529 digits), a[1001] = 3
                                                                                      A[1002]/B[1002] = 79353 027824 451203 701530 707840 855481 481092 932261 317736 565138 527865 383587 736977 188407 517837 572119 584090 040312 583731 494524 287286 539816 361350 629946 843323 331798 003726 278503 922921 778866 851768 095992 363112 239854 997565 420816 999677 767533 813281 896002 920732 221699 791292 793299 403595 249379 482165 538616 017876 277372 302858 459087 999558 375560 914956 886639 842103 696728 909655 339527 205890 237683 050397 565904 982194 339627 485329 607378 948554 418148 172222 704605 500982 873304 823595 947800 825934 088438 356143 415176 673230 492991 945936 750669 776681 055499 786331 728815 (527 digits)/7 712600 529480 508922 494977 562644 820684 031860 013791 315513 002621 325071 418345 055088 801890 824284 817059 753861 141276 612625 551088 327054 239897 240988 451329 844065 080303 210750 486468 376953 440927 898681 346746 085833 661739 137994 887669 310324 908409 152441 671120 776095 743094 855451 253828 461589 766581 773749 586117 775290 059217 448573 214454 401814 801526 731089 722717 837420 080508 612511 393619 765978 394022 402107 840733 933489 153946 525253 709510 322446 464152 311767 069172 823131 721708 306892 192740 954827 176403 157513 459125 618595 321601 490740 023314 871668 220718 448326 682208 (529 digits), a[1002] = 1
                                                                                      A[1003]/B[1003] = 538596 773451 925624 275587 324343 799364 304298 531714 297552 117995 003991 374849 749860 879572 729640 155578 707582 671783 485446 651235 342335 670274 199945 263327 159564 012949 587298 982010 441405 288092 110073 652221 603350 533301 689230 309974 088087 870610 570736 404952 408063 562232 868381 826383 758283 992064 964456 449835 479998 993867 644445 606468 742770 654584 916457 580871 813444 133950 243610 116723 878160 722077 398624 522749 583955 911483 791579 433439 892767 102686 004029 367349 031258 733602 652254 447124 648723 937029 565031 392276 260981 193621 826993 043246 230865 375134 929286 935207 (528 digits)/52 348119 208399 515600 721884 172077 005798 259692 900508 943212 501041 153090 955959 939213 427962 032865 131089 859517 904807 967421 525191 051481 417606 123728 468798 957215 787295 215535 673052 933804 387961 847927 858223 771096 137208 623041 613761 665763 894537 970382 269157 093082 040075 138786 765065 165003 535069 631848 329614 688060 874126 850332 642317 878419 870250 841443 706750 767312 265491 456180 374849 637518 575001 989684 884951 437090 953847 793037 760577 296439 678242 115028 188546 090888 206972 832801 433718 434327 174810 609421 241289 160265 824496 741258 693803 390059 536723 453052 730897 (530 digits), a[1003] = 6
                                                                                      A[1004]/B[1004] = 8 158304 629603 335567 835340 572997 845946 045570 907975 781018 335063 587736 006333 984890 381998 462439 905800 197830 117064 865431 263054 422321 593929 360529 579854 236783 526041 813211 008660 544001 100248 502872 879316 413370 239380 336020 070428 320995 826692 374327 970289 041685 655192 817020 189055 777855 130353 949012 286148 217861 185386 969542 556119 141118 194334 661820 599717 043765 705982 563807 090385 378301 068844 029765 407148 741533 011884 359021 108977 340060 958438 232663 214840 969863 877344 607412 654670 556793 143881 831614 299320 587948 397319 350832 399363 239661 682523 725635 756920 (529 digits)/792 934388 655473 242933 323240 143799 907657 927253 521425 463700 518238 621435 757744 143290 221321 317261 783407 646629 713396 123948 428954 099275 503989 096915 483314 202301 889731 443785 582262 384019 260355 617599 220102 652275 719868 483619 094094 296783 326478 708175 708477 172326 344221 937252 729805 936642 792626 251474 530338 096203 171120 203562 849222 578112 855289 352745 323979 347104 062880 455217 016364 328757 019052 247381 115005 489853 461663 420820 118169 769041 637784 037189 897364 186454 826300 798913 698517 469734 798562 298832 078463 022582 689052 609620 430365 722561 271570 244117 645663 (531 digits), a[1004] = 15
                                                                                      A[1005]/B[1005] = 16 855206 032658 596759 946268 470339 491256 395440 347665 859588 788122 179463 387517 719641 643569 654519 967179 103242 905913 216309 177344 186978 858132 921004 423035 633131 065033 213720 999331 529407 488589 115819 410854 430091 012062 361270 450830 730079 523995 319392 345530 491434 872618 502422 204495 313994 252772 862481 022131 915721 364641 583530 718707 025007 043254 240098 780305 900975 545915 371224 297494 634762 859765 458155 337047 067021 935252 509621 651394 572889 019562 469355 797030 970986 488291 867079 756465 762310 224793 228259 990917 436877 988260 528657 841972 710188 740182 380558 449047 (530 digits)/1638 216896 519346 001467 368364 459676 821114 114199 943359 870613 537518 395962 471448 225793 870604 667388 697905 152777 331600 215318 383099 250032 425584 317559 435427 361819 566758 103106 837577 701842 908673 083126 298429 075647 576945 590279 801950 259330 547495 386733 686111 437734 728519 013292 224677 038289 120322 134797 390290 880467 216367 257458 340763 034645 580829 546934 354709 461520 391252 366614 407578 295032 613106 484447 114962 416797 877174 634677 996916 834522 953810 189407 983274 463797 859574 430628 830753 373796 771935 207085 398215 205431 202601 960499 554534 835182 079863 941288 022223 (532 digits), a[1005] = 2
                                                                                      A[1006]/B[1006] = 58 723922 727579 125847 674145 984016 319715 231891 950973 359784 699430 126126 168887 143815 312707 425999 807337 507558 834804 514358 795086 983258 168328 123542 848961 136176 721141 454374 006655 132223 566015 850331 111879 703643 275567 419831 422920 511234 398678 332505 006880 515990 273048 324286 802541 719837 888672 536455 352543 965025 279311 720134 712240 216139 324097 382116 940634 746692 343728 677479 982869 282589 648140 404231 418289 942598 817641 887886 063161 058728 017125 640730 605933 882823 342220 208651 924067 843723 818261 516394 272072 898582 362100 936805 925281 370227 903070 867311 104061 (530 digits)/5707 585078 213511 247335 428333 522830 371000 269853 351505 075541 130793 809323 172088 820671 833135 319427 877123 104961 708196 769903 578251 849372 780742 049593 789596 287760 590005 753106 094995 489547 986374 866978 115389 879218 450705 254458 499945 074774 968964 868376 766811 485530 529778 977129 403837 051510 153592 655866 701210 737604 820221 975937 871511 682049 597777 993548 388107 731665 236637 555060 239099 213854 858371 700722 459892 740247 093187 324854 108920 272610 499214 605413 847187 577848 405024 090800 190777 591125 114367 920088 273108 638876 296858 491119 093970 228107 511162 067981 712332 (532 digits), a[1006] = 3
                                                                                      A[1007]/B[1007] = 251 750896 942975 100150 642852 406404 770117 323008 151559 298727 585842 683968 063066 294902 894399 358519 196529 133478 245131 273744 357692 120011 531445 415175 818880 177837 949599 031217 025952 058301 752652 517143 858373 244664 114332 040596 142512 775017 118708 649412 373052 555395 964811 799569 414662 193345 807463 008302 432307 775822 481888 464069 567667 889564 339643 768566 542844 887744 920830 081144 228971 765121 452327 075081 010206 837417 205820 061165 904038 807801 088065 032278 220766 502279 857172 701687 452737 137205 497839 293837 079209 031207 436664 275881 543098 191100 352465 849802 865291 (531 digits)/24468 557209 373390 990809 081698 550998 305115 193613 349380 172778 060693 633255 159803 508481 203145 945100 206397 572624 164387 294932 696106 647523 548552 515934 593812 512861 926781 115531 217559 660034 854172 551038 759988 592521 379766 608113 801730 558430 423354 860240 753357 379856 847634 921809 840025 244329 734692 758264 195133 830886 497255 161209 826809 762843 971941 521127 907140 388181 337802 586855 363975 150452 046593 287336 954533 377786 249923 934094 432597 924964 950668 611063 372024 775191 479670 793829 593863 738297 229406 887438 490649 760936 390035 924975 930415 747612 124512 213214 871551 (533 digits), a[1007] = 4
                                                                                      A[1008]/B[1008] = 3834 987376 872205 628107 316932 080087 871475 077014 224362 840698 487070 385647 114881 567358 728697 803787 755274 509732 511773 620524 160468 783431 140009 351180 132163 803745 965126 922629 395936 006749 855803 607488 987478 373604 990548 028773 560612 136491 179308 073690 602668 846929 745225 317828 022474 620025 000617 660991 837160 602362 507638 681178 227258 559604 418753 910615 083308 062866 156179 894643 417445 759411 433046 530446 571392 503856 904942 805374 623743 175744 338101 124903 917431 417021 199810 733963 715124 901806 285850 923950 460208 366693 912065 075029 071754 236733 190058 614354 083426 (532 digits)/372735 943218 814376 109471 653811 787804 947728 174053 592207 667212 041198 308150 569141 447889 880324 495930 973086 694324 174006 193894 019851 562226 009029 788612 696783 980689 491722 486074 358390 390070 798963 132559 515218 767039 147204 376165 525903 451231 319287 771988 067172 183383 244302 804277 004215 716456 173984 029829 628218 200902 279049 394085 273658 124709 176900 810466 995213 554385 303676 357890 698726 470635 557271 010776 777893 407040 842046 336270 597889 147084 759243 771364 427559 205720 600085 998244 098733 665583 555471 231665 632855 052922 147397 365758 050206 442289 378845 266204 785597 (534 digits), a[1008] = 15
                                                                                      A[1009]/B[1009] = 4086 738273 815180 728257 959784 486492 641592 400022 375922 139426 072913 069615 177947 862261 623097 162306 951803 643210 756904 894268 518160 903442 671454 766355 951043 981583 914725 953846 421888 065051 608456 124632 845851 618269 104880 069369 703124 911508 298016 723102 975721 402325 710037 117397 437136 813370 808080 669294 269468 378184 989527 145247 794926 449168 758397 679181 626152 950611 077009 975787 646417 524532 885373 605527 581599 341274 110762 866540 527781 983545 426166 157182 138197 919301 056983 435651 167862 039011 783690 217787 539417 397901 348729 350910 614852 427833 542524 464156 948717 (532 digits)/397204 500428 187767 100280 735510 338803 252843 367666 941587 839990 101891 941405 728944 956371 083470 441031 179484 266948 338393 488826 715958 209749 557582 304547 290596 493551 418503 601605 575950 050105 653135 683598 275207 359560 526970 984279 327634 009661 742642 632228 820529 563240 091937 726086 844240 960785 908676 788093 823352 031788 776304 555295 100467 887553 148842 331594 902353 942566 641478 944746 062701 621087 603864 298113 732426 784827 091970 270365 030487 072049 709912 382427 799583 980912 079756 792073 692597 403880 784878 119104 123504 813858 537433 290733 980622 189901 503357 479419 657148 (534 digits), a[1009] = 1
                                                                                      A[1010]/B[1010] = 7921 725650 687386 356365 276716 566580 513067 477036 600284 980124 559983 455262 292829 429620 351794 966094 707078 152943 268678 514792 678629 686873 811464 117536 083207 785329 879852 876475 817824 071801 464259 732121 833329 991874 095428 098143 263737 047999 477324 796793 578390 249255 455262 435225 459611 433395 808698 330286 106628 980547 497165 826426 022185 008773 177151 589796 709461 013477 233189 870431 063863 283944 318420 135974 152991 845131 015705 671915 151525 159289 764267 282086 055629 336322 256794 169614 882986 940818 069541 141737 999625 764595 260794 425939 686606 664566 732583 078511 032143 (532 digits)/769940 443647 002143 209752 389322 126608 200571 541720 533795 507202 143090 249556 298086 404260 963794 936962 152570 961272 512399 682720 735809 771975 566612 093159 987380 474240 910226 087679 934340 440176 452098 816157 790426 126599 674175 360444 853537 460893 061930 404216 887701 746623 336240 530363 848456 677242 082660 817923 451570 232691 055353 949380 374126 012262 325743 142061 897567 496951 945155 302636 761428 091723 161135 308890 510320 191867 934016 606635 628376 219134 469156 153792 227143 186632 679842 790317 791331 069464 340349 350769 756359 866780 684830 656492 030828 632190 882202 745624 442745 (534 digits), a[1010] = 1
                                                                                      A[1011]/B[1011] = 12008 463924 502567 084623 236501 053073 154659 877058 976207 119550 632896 524877 470777 291881 974892 128401 658881 796154 025583 409061 196790 590316 482918 883892 034251 766913 794578 830322 239712 136853 072715 856754 679181 610143 200308 167512 966861 959507 775341 519896 554111 651581 165299 552622 896748 246766 616778 999580 376097 358732 486692 971673 817111 457941 935549 268978 335613 964088 310199 846218 710280 808477 203793 741501 734591 186405 126468 538455 679307 142835 190433 439268 193827 255623 313777 605266 050848 979829 853231 359525 539043 162496 609523 776850 301459 092400 275107 542667 980860 (533 digits)/1 167144 944075 189910 310033 124832 465411 453414 909387 475383 347192 244982 190962 027031 360632 047265 377993 332055 228220 850793 171547 451767 981725 124194 397707 277976 967792 328729 689285 510290 490282 105234 499756 065633 486160 201146 344724 181171 470554 804573 036445 708231 309863 428178 256450 692697 638027 991337 606017 274922 264479 831658 504675 474593 899815 474585 473656 799921 439518 586634 247382 824129 712810 764999 607004 242746 976695 025986 877000 658863 291184 179068 536220 026727 167544 759599 582391 483928 473345 125227 469873 879864 680639 222263 947226 011450 822092 385560 225044 099893 (535 digits), a[1011] = 1
                                                                                      A[1012]/B[1012] = 31938 653499 692520 525611 749718 672726 822387 231154 552699 219225 825776 505017 234384 013384 301579 222898 024841 745251 319845 332915 072210 867506 777301 885320 151711 319157 469010 537120 297248 345507 609691 445631 191693 212160 496044 433169 197460 967015 028007 836586 686613 552417 785861 540471 253107 926929 042256 329446 858823 698012 470551 769773 656407 924657 048250 127753 380688 941653 853589 562868 484424 900898 726007 618977 622174 217941 268642 748826 510139 444960 145134 160622 443283 847568 884349 380146 984684 900477 776003 860789 077712 089588 479841 979640 289524 849367 282798 163846 993863 (533 digits)/3 104230 331797 381963 829818 638987 057431 107401 360495 484562 201586 633054 631480 352149 125525 058325 692948 816681 417714 213986 025815 639345 735425 815000 888574 543334 409825 567685 466250 954921 420740 662567 815669 921693 098920 076468 049893 215880 402002 671076 477108 304164 366350 192597 043265 233851 953298 065336 029958 001414 761650 718670 958731 323313 811893 274914 089375 497410 375989 118423 797402 409687 517344 691134 522898 995814 145257 985990 360636 946102 801502 827293 226232 280597 521722 199041 955100 759188 016154 590804 290517 516089 228059 129358 550944 053730 276375 653323 195712 642531 (535 digits), a[1012] = 2
                                                                                      A[1013]/B[1013] = 43947 117424 195087 610234 986219 725799 977047 108213 528906 338776 458673 029894 705161 305266 276471 351299 683723 541405 345428 741976 269001 457823 260220 769212 185963 086071 263589 367442 536960 482360 682407 302385 870874 822303 696352 600682 164322 926522 803349 356483 240725 203998 951161 093094 149856 173695 659035 329027 234921 056744 957244 741447 473519 382598 983799 396731 716302 905742 163789 409087 194705 709375 929801 360479 356765 404346 395111 287282 189446 587795 335567 599890 637111 103192 198126 985413 035533 880307 629235 220314 616755 252085 089365 756490 590983 941767 557905 706514 974723 (533 digits)/4 271375 275872 571874 139851 763819 522842 560816 269882 959945 548778 878036 822442 379180 486157 105591 070942 148736 645935 064779 197363 091113 717150 939195 286281 821311 377617 896415 155536 465211 911022 767802 315425 987326 585080 277614 394617 397051 872557 475649 513554 012395 676213 620775 299715 926549 591326 056673 635975 276337 026130 550329 463406 797907 711708 749499 563032 297331 815507 705058 044785 233817 230155 456134 129903 238561 121953 011977 237637 604966 092687 006361 762452 307324 689266 958641 537492 243116 489499 716031 760391 395953 908698 351622 498170 065181 098468 038883 420756 742424 (535 digits), a[1013] = 1
                                                                                      A[1014]/B[1014] = 383515 592893 253221 407491 639476 479126 638764 096862 783949 929437 495160 744174 875674 455514 513350 033295 494630 076494 083275 268725 224222 530092 859068 039017 639416 007727 577725 476660 592932 204393 068949 864718 158691 790590 066865 238626 512044 379197 454802 688452 612415 184409 395150 285224 451957 316494 314538 961664 738192 151972 128509 701353 444562 985448 918645 301607 111112 187591 163904 835566 042070 575906 164418 502812 476297 452712 429533 047084 025712 147322 829674 959747 540172 673106 469365 263451 268955 942938 809885 623306 011754 106269 194768 031565 017396 383507 746043 815966 791647 (534 digits)/37 275232 538777 956956 948632 749543 240171 593931 519559 164126 591817 657349 211019 385593 014781 903054 260486 006574 585194 732219 604720 368255 472633 328563 178829 113825 430768 739006 710542 676616 708922 804986 339077 820305 779562 297383 206832 392295 382462 476272 585540 403329 776059 158799 440992 646248 683906 518725 117760 212110 970695 121306 665985 706575 505563 270910 593633 876064 900050 758888 155684 280225 358588 340207 562124 904303 120882 081808 261737 785831 542998 878187 325850 739195 035857 868174 255038 704119 932152 319058 373648 683720 497645 942338 536304 575179 064119 964390 561766 581923 (536 digits), a[1014] = 8
                                                                                      A[1015]/B[1015] = 16 151602 018940 830386 724883 844231 849118 805139 176450 454803 375151 255424 285239 483488 436875 837172 749710 458186 754156 842990 028435 686347 721723 341078 407953 041435 410629 528059 387187 440113 066869 578301 620548 535930 027086 504692 622995 670186 852815 905062 271492 962162 949193 547473 072521 132063 466456 869671 718946 238991 439574 354652 198292 145164 771453 566902 064230 383014 784571 047792 502860 961669 897434 835378 478603 361258 418268 435499 264811 269356 775354 181915 909287 324363 373663 911468 050366 331683 483737 644431 399167 110427 715391 269623 082221 321632 049092 891745 977120 223897 (536 digits)/1569 831141 904546 764065 982427 244635 610049 505940 091367 853262 405120 486703 685256 574087 106997 033870 011354 424869 224113 818002 595618 557843 567750 738848 797104 601979 469904 934696 998328 883113 685780 577228 556694 440169 326696 767709 081577 873457 935981 479098 106250 952246 270698 290351 821407 068994 315399 843128 581904 184997 795325 645209 434806 474078 945366 127744 495655 092057 617639 578360 583525 003282 290865 744851 739149 219292 199000 447924 230624 609890 898639 890229 448183 353516 195297 421960 249117 816153 639897 116483 453636 112214 809827 929841 022962 222701 791506 543287 014953 183190 (538 digits), a[1015] = 42
                                                                                      A[1016]/B[1016] = 16 535117 611834 083608 132375 483708 328245 443903 273313 238753 304588 750585 029414 359162 892390 350522 783005 952816 830650 926265 297160 910570 251816 200146 446970 680851 418357 105784 863848 033045 271262 647251 485266 694621 817676 571557 861622 182231 232013 359864 959945 574578 133602 942623 357745 584020 782951 184210 680610 977183 591546 483161 899645 589727 756902 485547 365837 494126 972162 211697 338427 003740 473340 999796 981415 837555 870980 865032 311895 295068 922677 011590 869034 864536 046770 380833 313817 600639 426676 454317 022473 122181 821660 464391 113786 339028 432600 637789 793087 015544 (536 digits)/1607 106374 443324 721022 931059 994178 850221 099871 610927 017388 996938 144052 896275 959680 121778 936924 271840 431443 809308 550222 200338 926099 040384 067411 975933 715804 900673 673703 708871 559730 394703 382214 895772 260475 106259 065092 288410 265753 318443 955370 691791 355576 046757 449151 262399 715242 999306 361853 699664 397108 766020 766516 100792 180654 450929 398655 089288 968122 517690 337248 739209 283507 649454 085059 301274 123595 319882 529732 492362 395722 441638 768416 774034 092711 231155 290134 504156 520273 572049 435541 827284 795935 307473 872179 559266 797880 855626 507677 576719 765113 (538 digits), a[1016] = 1
                                                                                      A[1017]/B[1017] = 694 091424 104138 258320 152278 676273 307182 005173 382293 243688 863290 029410 491228 209167 024880 208606 852954 523676 810844 819867 212033 019728 046187 547082 733750 956343 563270 865238 804956 794969 188638 115612 516483 015424 551825 938564 949505 141667 365363 659525 629261 519866 426914 195030 740090 076915 567455 422309 623996 303518 692980 164290 083761 324002 804455 474344 063567 642220 643221 727383 378368 115029 304415 827054 716652 701049 128483 901824 052518 367182 605111 657141 539716 770341 291249 525633 916887 957899 977472 271429 320565 119882 403470 309658 747461 221797 785719 041127 493687 861201 (537 digits)/67461 192494 080860 326006 155887 005968 469114 600676 139375 566211 279584 392872 432570 920972 099933 447765 156812 114065 405764 377112 809514 527904 223497 502739 810386 949980 397525 556549 062062 832059 868619 248039 283357 119648 683318 436492 906398 769343 992183 649296 469696 530864 187753 705553 579795 393957 286960 679130 268144 466457 202177 072369 567285 880911 433471 472603 156502 785080 842943 405558 891105 627095 918483 232283 091388 286700 314184 166956 417482 834511 005829 395317 183581 154676 672664 317474 919535 147370 093923 973698 372312 745562 416256 689202 952900 935816 872193 358067 660463 552823 (539 digits), a[1017] = 41
                                                                                      A[1018]/B[1018] = 710 626541 715972 341928 284654 159981 635427 449076 655606 482442 167878 779995 520642 568329 917270 559129 635960 476493 641495 746132 509193 930298 298003 747229 180721 637194 981627 971023 668804 828014 459900 762864 001749 710046 369502 510122 811127 323898 597377 019390 589207 094444 560517 137654 097835 660936 350406 606520 304607 280702 284526 647451 983406 913730 561357 959891 429405 136347 615383 939080 716795 118769 777756 826851 698068 538604 999464 766856 364413 662251 527788 668732 408751 634877 338019 906467 230705 558539 404148 725746 343038 242064 225130 774049 861247 560826 218319 678917 286774 876745 (537 digits)/69068 298868 524185 047029 086947 000147 319335 700547 750302 583600 276522 536925 328846 880652 221712 384689 428652 545509 215072 927335 009853 454003 263881 570151 786320 665785 298199 230252 770934 391790 263322 630254 179129 380123 789577 501585 194809 035097 310627 604667 161487 886440 234511 154704 842195 109200 286267 040983 967808 863565 968197 838885 668078 061565 884400 871258 245791 753203 360633 742807 630314 910603 567937 317342 392662 410295 634066 696688 909845 230233 447468 163733 957615 247387 903819 607609 423691 667643 665973 409240 199597 541497 723730 561382 512167 733697 727819 865745 237183 317936 (539 digits), a[1018] = 1
                                                                                      A[1019]/B[1019] = 1404 717965 820110 600248 436932 836254 942609 454250 037899 726131 031168 809406 011870 777496 942150 767736 488915 000170 452340 565999 721226 950026 344191 294311 914472 593538 544898 836262 473761 622983 648538 878476 518232 725470 921328 448687 760632 465565 962740 678916 218468 614310 987431 332684 837925 737851 917862 028829 928603 584220 977506 811742 067168 237733 365813 434235 492972 778568 258605 666464 095163 233799 082172 653906 414721 239654 127948 668680 416932 029434 132900 325873 948468 405218 629269 432101 147593 516439 381620 997175 663603 361946 628601 083708 608708 782624 004038 720044 780462 737946 (538 digits)/136529 491362 605045 373035 242834 006115 788450 301223 889678 149811 556106 929797 761417 801624 321645 832454 585464 659574 620837 304447 819367 981907 487379 072891 596707 615765 695724 786801 832997 223850 131941 878293 462486 499772 472895 938078 101207 804441 302811 253963 631184 417304 422264 860258 421990 503157 573227 720114 235953 330023 170374 911255 235363 942477 317872 343861 402294 538284 203577 148366 521420 537699 486420 549625 484050 696995 948250 863645 327328 064744 453297 559051 141196 402064 576483 925084 343226 815013 759897 382938 571910 287060 139987 250585 465068 669514 600013 223812 897646 870759 (540 digits), a[1019] = 1
                                                                                      A[1020]/B[1020] = 3520 062473 356193 542425 158519 832491 520646 357576 731405 934704 230216 398807 544384 123323 801572 094602 613790 476834 546176 878131 951647 830350 986386 335853 009666 824272 071425 643548 616328 073981 756978 519817 038215 160988 212159 407498 332392 255030 522858 377223 026144 323066 535379 803023 773687 136640 186130 664180 161814 449144 239540 270936 117743 389197 292984 828362 415350 693484 132595 272008 907121 586367 942102 134664 527511 017913 255362 104217 198277 721119 793589 320480 305688 445314 596558 770669 525892 591418 167390 720097 670244 965957 482332 941467 078665 126074 226397 119006 847700 352637 (538 digits)/342127 281593 734275 793099 572615 012378 896236 302995 529658 883223 388736 396520 851682 483900 865004 049598 599581 864658 456747 536230 648589 417818 238639 715934 979735 897316 689648 803856 436928 839490 527206 386841 104102 379668 735369 377741 397224 643979 916250 112594 423856 721049 079040 875221 686176 115515 432722 481212 439715 523612 308947 661396 138805 946520 520145 558981 050380 829771 767788 039540 673155 986002 540778 416593 360763 804287 530568 423979 564501 359722 354063 281836 240008 051517 056787 457778 110145 297671 185768 175117 343418 115618 003705 062553 442305 072726 927846 313371 032477 059454 (540 digits), a[1020] = 2
                                                                                      A[1021]/B[1021] = 4924 780439 176304 142673 595452 668746 463255 811826 769305 660835 261385 208213 556254 900820 743722 862339 102705 477004 998517 444131 672874 780377 330577 630164 924139 417810 616324 479811 090089 696965 405517 398293 556447 886459 133487 856186 093024 720596 485599 056139 244612 937377 522811 135708 611612 874492 103992 693010 090418 033365 217047 082678 184911 626930 658798 262597 908323 472052 391200 938473 002284 820167 024274 788570 942232 257567 383310 772897 615209 750553 926489 646354 254156 850533 225828 202770 673486 107857 549011 717273 333848 327904 110934 025175 687373 908698 230435 839051 628163 090583 (538 digits)/478656 772956 339321 166134 815449 018494 684686 604219 419337 033034 944843 326318 613100 285525 186649 882053 185046 524233 077584 840678 467957 399725 726018 788826 576443 513082 385373 590658 269926 063340 659148 265134 566588 879441 208265 315819 498432 448421 219061 366558 055041 138353 501305 735480 108166 618673 005950 201326 675668 853635 479322 572651 374169 888997 838017 902842 452675 368055 971365 187907 194576 523702 027198 966218 844814 501283 478819 287624 891829 424466 807360 840887 381204 453581 633271 382862 453372 112684 945665 558055 915328 402678 143692 313138 907373 742241 527859 537183 930123 930213 (540 digits), a[1021] = 1
                                                                                      A[1022]/B[1022] = 8444 842912 532497 685098 753972 501237 983902 169403 500711 595539 491601 607021 100639 024144 545294 956941 716495 953839 544694 322263 624522 610728 316963 966017 933806 242082 687750 123359 706417 770947 162495 918110 594663 047447 345647 263684 425416 975627 008457 433362 270757 260444 058190 938732 385300 011132 290123 357190 252232 482509 456587 353614 302655 016127 951783 090960 323674 165536 523796 210481 909406 406534 966376 923235 469743 275480 638672 877114 813487 471673 720078 966834 559845 295847 822386 973440 199378 699275 716402 437371 004093 293861 593266 966642 766039 034772 456832 958058 475863 443220 (538 digits)/820784 054550 073596 959234 388064 030873 580922 907214 948995 916258 333579 722839 464782 769426 051653 931651 784628 388891 534332 376909 116546 817543 964658 504761 556179 410399 075022 394514 706854 902831 186354 651975 670691 259109 943634 693560 895657 092401 135311 479152 478897 859402 580346 610701 794342 734188 438672 682539 115384 377247 788270 234047 512975 835518 358163 461823 503056 197827 739153 227447 867732 509704 567977 382812 205578 305571 009387 711604 456330 784189 161424 122723 621212 505098 690058 840640 563517 410356 131433 733173 258746 518296 147397 375692 349678 814968 455705 850554 962600 989667 (540 digits), a[1022] = 1
                                                                                      A[1023]/B[1023] = 13369 623351 708801 827772 349425 169984 447157 981230 270017 256374 752986 815234 656893 924965 289017 819280 819201 430844 543211 766395 297397 391105 647541 596182 857945 659893 304074 603170 796507 467912 568013 316404 151110 933906 479135 119870 518441 696223 494056 489501 515370 197821 581002 074440 996912 885624 394116 050200 342650 515874 673634 436292 487566 643058 610581 353558 231997 637588 914997 148954 911691 226701 990651 711806 411975 533048 021983 650012 428697 222227 646568 613188 814002 146381 048215 176210 872864 807133 265414 154644 337941 621765 704200 991818 453412 943470 687268 797110 104026 533803 (539 digits)/1 299440 827506 412918 125369 203513 049368 265609 511434 368332 949293 278423 049158 077883 054951 238303 813704 969674 913124 611917 217587 584504 217269 690677 293588 132622 923481 460395 985172 976780 966171 845502 917110 237280 138551 151900 009380 394089 540822 354372 845710 533938 997756 081652 346181 902509 352861 444622 883865 791053 230883 267592 806698 887145 724516 196181 364665 955731 565883 710518 415355 062309 033406 595176 349031 050392 806854 488206 999229 348160 208655 968784 963611 002416 958680 323330 223503 016889 523041 077099 291229 174074 920974 291089 688831 257052 557209 983565 387738 892724 919880 (541 digits), a[1023] = 1
                                                                                      A[1024]/B[1024] = 21814 466264 241299 512871 103397 671222 431060 150633 770728 851914 244588 422255 757532 949109 834312 776222 535697 384684 087906 088658 921920 001833 964505 562200 791751 901975 991824 726530 502925 238859 730509 234514 745773 981353 824782 383554 943858 671850 502513 922863 786127 458265 639193 013173 382212 896756 684239 407390 594882 998384 130221 789906 790221 659186 562364 444518 555671 803125 438793 359436 821097 633236 957028 635041 881718 808528 660656 527127 242184 693901 366647 580023 373847 442228 870602 149651 072243 506408 981816 592015 342034 915627 297467 958461 219451 978243 144101 755168 579889 977023 (539 digits)/2 120224 882056 486515 084603 591577 080241 846532 418649 317328 865551 612002 771997 542665 824377 289957 745356 754303 302016 146249 594496 701051 034813 655335 798349 688802 333880 535418 379687 683635 869003 031857 569085 907971 397661 095534 702941 289746 633223 489684 324863 012836 857158 661998 956883 696852 087049 883295 566404 906437 608131 055863 040746 400121 560034 554344 826489 458787 763711 449671 642802 930041 543111 163153 731843 255971 112425 497594 710833 804490 992845 130209 086334 623629 463779 013389 064143 580406 933397 208533 024402 432821 439270 438487 064523 606731 372178 439271 238293 855325 909547 (541 digits), a[1024] = 1
                                                                                      A[1025]/B[1025] = 35184 089615 950101 340643 452822 841206 878218 131864 040746 108288 997575 237490 414426 874075 123330 595503 354898 815528 631117 855054 219317 392939 612047 158383 649697 561869 295899 329701 299432 706772 298522 550918 896884 915260 303917 503425 462300 368073 996570 412365 301497 656087 220195 087614 379125 782381 078355 457590 937533 514258 803856 226199 277788 302245 172945 798076 787669 440714 353790 508391 732788 859938 947680 346848 293694 341576 682640 177139 670881 916129 013216 193212 187849 588609 918817 325861 945108 313542 247230 746659 679976 537393 001668 950279 672864 921713 831370 552278 683916 510826 (539 digits)/3 419665 709562 899433 209972 795090 129610 112141 930083 685661 814844 890425 821155 620548 879328 528261 559061 723978 215140 758166 812084 285555 252083 346013 091937 821425 257361 995814 364860 660416 835174 877360 486196 145251 536212 247434 712321 683836 174045 844057 170573 546775 854914 743651 303065 599361 439911 327918 450270 697490 839014 323455 847445 287267 284550 750526 191155 414519 329595 160190 058157 992350 576517 758330 080874 306363 919279 985801 710063 152651 201501 098994 049945 626046 422459 336719 287646 597296 456438 285632 315631 606896 360244 729576 753354 863783 929388 422836 626032 748050 829427 (541 digits), a[1025] = 1
                                                                                      A[1026]/B[1026] = 92182 645496 141502 194158 009043 353636 187496 414361 852221 068492 239738 897236 586386 697260 080973 967229 245495 015741 350141 798767 360554 787713 188599 878968 091147 025714 583623 385933 101790 652404 327554 336352 539543 811874 432617 390405 868459 407998 495654 747594 389122 770440 079583 188402 140464 461518 840950 322572 469950 026901 737934 242305 345798 263676 908256 040672 131010 684554 146374 376220 286675 353114 852389 328738 469107 491682 025936 881406 583948 526159 393079 966447 749546 619448 708236 801374 962460 133493 476278 085334 701987 990413 300805 859020 565181 821670 806842 859725 947722 998675 (539 digits)/8 959556 301182 285381 504549 181757 339462 070816 278816 688652 495241 392854 414308 783763 583034 346480 863480 202259 732297 662583 218665 272161 538980 347361 982225 331652 848604 527047 109409 004469 539352 786578 541478 198474 470085 590404 127584 657418 981315 177798 666010 106388 566988 149301 563014 895574 966872 539132 466946 301419 286159 702774 735636 974656 129136 055397 208800 287826 422901 770051 759118 914742 696146 679813 893591 868698 950985 469198 130960 109793 395847 328197 186225 875722 308697 686827 639436 774999 846273 779797 655665 646614 159759 897640 571233 334299 230955 284944 490359 351427 568401 (541 digits), a[1026] = 2
                                                                                      A[1027]/B[1027] = 127366 735112 091603 534801 461866 194843 065714 546225 892967 176781 237314 134727 000813 571335 204304 562732 600393 831269 981259 653821 579872 180652 800647 037351 740844 587583 879522 715634 401223 359176 626076 887271 436428 727134 736534 893831 330759 776072 492225 159959 690620 426527 299778 276016 519590 243899 919305 780163 407483 541160 541790 468504 623586 565922 081201 838748 918680 125268 500164 884612 019464 213053 800069 675586 762801 833258 708577 058546 254830 442288 406296 159659 937396 208058 627054 127236 907568 447035 723508 831994 381964 527806 302474 809300 238046 743384 638213 412004 631639 509501 (540 digits)/12 379222 010745 184814 714521 976847 469072 182958 208900 374314 310086 283280 235464 404312 462362 874742 422541 926237 947438 420750 030749 557716 791063 693375 074163 153078 105966 522861 474269 664886 374527 663939 027674 343726 006297 837838 839906 341255 155361 021855 836583 653164 421902 892952 866080 494936 406783 867050 917216 998910 125174 026230 583082 261923 413686 805923 399955 702345 752496 930241 817276 907093 272664 438143 974466 175062 870265 454999 841023 262444 597348 427191 236171 501768 731157 023546 927083 372296 302712 065429 971297 253510 520004 627217 324588 198083 160343 707781 116392 099478 397828 (542 digits), a[1027] = 1
                                                                                      A[1028]/B[1028] = 3 021617 553074 248383 494591 631965 835026 698930 977557 390466 134460 697963 995957 605098 837969 779978 910079 054553 134950 919113 836663 697614 942727 603481 738058 130572 540143 812645 845524 329927 913466 727322 743595 577404 535973 372919 948526 475934 257665 816833 426667 273392 580567 974483 536782 091040 071216 984983 266330 842071 473594 199115 017911 688289 279884 775898 331897 260653 565729 650166 722296 734352 253352 253991 867234 013549 656632 323209 227970 445048 698792 737891 638626 309659 404797 130481 727823 836534 415315 116981 221205 487172 129958 257726 472926 040256 919517 485751 335832 475431 717198 (541 digits)/293 681662 548321 536119 938554 649249 128122 278855 083525 297881 627225 908299 829990 082950 217380 465556 581944 505732 523381 339833 925905 099647 733445 294988 687977 852449 285834 552861 017611 296856 153489 057176 177988 104172 614935 860697 445430 506287 554618 680482 907434 129170 270754 687217 482866 279112 322901 481303 562937 276352 165162 306078 146528 998894 643932 591635 407781 441778 730331 165613 556487 777887 967428 757125 306313 895144 967090 934194 474495 146019 134861 153595 618170 416403 125309 228406 962354 337814 808651 284686 995502 477356 119866 323639 036761 890211 918860 563910 167377 639430 718445 (543 digits), a[1028] = 23
                                                                                      A[1029]/B[1029] = 48 473247 584300 065739 448267 573319 555270 248610 187144 140425 328152 404738 070048 682394 978851 683967 123997 473243 990484 687081 040440 741711 264294 456354 846281 830005 229884 881856 244023 680069 974644 263240 784800 674901 302708 703254 070254 945707 898725 561559 986636 064901 715614 891514 864529 976231 383371 679038 041456 880627 118667 727630 755091 636215 044078 495575 149105 089137 176942 902832 441359 769100 266689 863939 551330 979596 339375 879924 706073 375609 622972 212562 377680 891946 684812 714761 772418 292119 092077 595208 371282 176718 607138 426098 376116 882157 455664 410234 785324 238546 984669 (542 digits)/4711 285822 783889 762733 731396 364833 519028 644639 545305 140420 345700 816077 515305 731515 940450 323647 733654 017958 321539 858092 845231 152080 526188 413194 081808 792266 679319 368637 756050 414584 830352 578757 875484 010487 845271 608997 966794 441856 029259 909582 355529 719888 753977 888432 591940 960733 573207 567907 924213 420544 767770 923480 927546 244237 716608 272089 924458 770805 437795 580058 721081 353300 751524 552148 875488 497382 343720 402111 432945 598750 755126 884721 126898 164218 736104 678058 324752 777333 241132 620421 899336 891208 437865 805441 912778 441473 862112 730343 794434 330369 892948 (544 digits), a[1029] = 16
                                                                                      A[1030]/B[1030] = 99 968112 721674 379862 391126 778604 945567 196151 351845 671316 790765 507440 136054 969888 795673 147913 158074 001041 115920 293275 917545 181037 471316 516191 430621 790582 999913 576358 333571 690067 862755 253804 313196 927207 141390 779428 089036 367350 055116 939953 399939 403196 011797 757513 265842 043502 837960 343059 349244 603325 710929 654376 528094 960719 368041 767048 630107 438927 919615 455831 605016 272552 786731 981870 969895 972742 335384 083058 640117 196267 944737 163016 393988 093552 774422 560005 272660 420772 599470 307397 963769 840609 344235 109923 225159 804571 830846 306220 906480 952525 686536 (542 digits)/9716 253308 116101 061587 401347 378916 166179 568134 174135 578722 318627 540454 860601 545982 098281 112852 049252 541649 166461 056019 616367 403808 785822 121376 851595 436982 644473 290136 529712 126025 814194 214691 928956 125148 305479 078693 379019 389999 613138 499647 618493 568947 778710 464082 666748 200579 469316 617119 411364 117441 700704 153040 001621 487370 077149 135815 256698 983389 605922 325730 998650 484489 470477 861423 057290 889909 654531 738417 340386 343520 645114 923037 871966 744840 597518 584523 611859 892481 290916 525530 794176 259772 995597 934522 862318 773159 643086 024597 756246 300170 504341 (544 digits), a[1030] = 2
                                                                                      A[1031]/B[1031] = 248 409473 027648 825464 230521 130529 446404 640912 890835 483058 909683 419618 342158 622172 570197 979793 440145 475326 222325 273632 875531 103786 206927 488737 707525 411171 229712 034572 911167 060205 700154 770849 411194 529315 585490 262110 248327 680408 008959 441466 786514 871293 739210 406541 396214 063237 059292 365156 739946 087278 540527 036383 811281 557653 780162 029672 409319 966993 016173 814495 651392 314205 840153 827681 491122 925081 010144 046041 986307 768145 512446 538595 165657 079052 233657 834772 317739 133664 291018 210004 298821 857937 295608 645944 826436 491301 117357 022676 598286 143598 357741 (543 digits)/24143 792439 016091 885908 534091 122665 851387 780907 893576 297864 982955 896987 236508 823480 137012 549351 832159 101256 654461 970132 077965 959698 097832 655947 784999 666231 968265 948910 815474 666636 458741 008141 733396 260784 456229 766384 724833 221855 255536 908877 592516 857784 311398 816597 925437 361892 511840 802146 746941 655428 169179 229560 930789 218977 870906 543720 437856 737584 649640 231520 718382 322279 692480 274994 990070 277201 652783 878946 113718 285792 045356 730796 870831 653899 931141 847105 548472 562295 822965 671483 487689 410754 429061 674487 637415 987793 148284 779539 306926 930710 901630 (545 digits), a[1031] = 2
                                                                                      A[1032]/B[1032] = 845 196531 804620 856255 082690 170193 284781 118890 024352 120493 519815 766295 162530 836406 506267 087293 478510 427019 782896 114174 544138 492396 092098 982404 553198 024096 689049 680077 067072 870684 963219 566352 546780 515153 897861 565758 834019 408574 081995 264353 759484 017077 229428 977137 454484 233214 015837 438529 569082 865161 332510 763527 961939 633680 708527 856065 858067 339906 968136 899318 559193 215170 307193 464915 443264 747985 365816 221184 599040 500704 482076 778801 890959 330709 475396 064322 225877 821765 472524 937410 860235 414421 231061 047757 704469 278475 182917 374250 701339 383320 759759 (543 digits)/82147 630625 164376 719313 003620 746913 720342 910857 854864 472317 267495 231416 570128 016422 509318 760907 545729 845419 129846 966415 850265 282903 079320 089220 206594 435678 549271 136868 976136 125935 190417 239117 129144 907501 674168 377847 553519 055565 379749 226280 396044 142300 712906 913876 443060 286257 004839 023559 652189 083726 208241 841722 793989 144303 689868 766976 570269 196143 554843 020293 153797 451328 547918 686408 027501 721514 612883 375255 681541 200896 781185 115428 484461 706540 390944 125840 257277 579368 759813 539981 257244 492036 282782 957985 774566 736539 087940 363215 677027 092303 209231 (545 digits), a[1032] = 3
                                                                                      A[1033]/B[1033] = 1093 606004 832269 681719 313211 300722 731185 759802 915187 603552 429499 185913 504689 458579 076465 067086 918655 902346 005221 387807 419669 596182 299026 471142 260723 435267 918761 714649 978239 930890 663374 337201 957975 044469 483351 827869 082347 088982 090954 705820 545998 888370 968639 383678 850698 296451 075129 803686 309028 952439 873037 799911 773221 191334 488689 885738 267387 306899 984310 713814 210585 529376 147347 292596 934387 673066 375960 267226 585348 268849 994523 317397 056616 409761 709053 899094 543616 955429 763543 147415 159057 272358 526669 693702 530905 769776 300274 396927 299625 526919 117500 (544 digits)/106291 423064 180468 605221 537711 869579 571730 691765 748440 770182 250451 128403 806636 839902 646331 310259 377888 946675 784308 936547 928231 242601 177152 745167 991594 101910 517537 085779 791610 792571 649158 247258 862541 168286 130398 144232 278352 277420 635286 135157 988561 000085 024305 730474 368497 648149 516679 825706 399130 739154 377421 071283 724778 363281 560775 310697 008125 933728 204483 251813 872179 773608 240398 961403 017571 998716 265667 254201 795259 486688 826541 846225 355293 360440 322085 972945 805750 141664 582779 211464 744933 902790 711844 632473 411982 724332 236225 142754 983954 023014 110861 (546 digits), a[1033] = 1
                                                                                      A[1034]/B[1034] = 4126 014546 301429 901413 022324 072361 478338 398298 769914 931150 808313 324035 676599 212143 735662 288554 234478 134057 798560 277596 803147 280942 989178 395831 335368 329900 445334 824027 001792 663356 953342 577958 420705 648562 347917 049366 081060 675520 354859 381815 397480 682190 135347 128174 006579 122567 241226 849588 496169 722480 951624 163263 281603 207684 174597 513280 660229 260606 921069 040761 190949 803298 749235 342706 246427 767184 493697 022864 355085 307254 465646 730993 060808 559994 602557 761605 856728 688054 763154 379656 337407 231496 811070 128865 297186 587804 083740 565032 600215 964078 112259 (544 digits)/401021 899817 705782 534977 616756 355652 435534 986155 100186 782864 018848 616627 990038 536130 448312 691685 679396 685446 482773 776059 634959 010706 610778 324724 181376 741410 101882 394208 350968 503650 137891 980893 716768 412360 065362 810544 388575 887827 285607 631754 361727 142555 785824 105299 548553 230705 554878 500678 849581 301189 340505 055573 968324 234148 372194 699067 594646 997328 168292 775734 770336 772153 269115 570617 080217 717663 409885 137861 067319 660963 260810 654104 550341 787861 357202 044677 674528 004362 508151 174375 492046 200408 418316 855406 010514 909535 796615 791480 628889 161345 541814 (546 digits), a[1034] = 3
                                                                                      A[1035]/B[1035] = 5219 620551 133699 583132 335535 373084 209524 158101 685102 534703 237812 509949 181288 670722 812127 355641 153134 036403 803781 665404 222816 877125 288204 866973 596091 765168 364096 538676 980032 594247 616716 915160 378680 693031 831268 877235 163407 764502 445814 087635 943479 570561 103986 511852 857277 419018 316356 653274 805198 674920 824661 963175 054824 399018 663287 399018 927616 567506 905379 754575 401535 332674 896582 635303 180815 440250 869657 290090 940433 576104 460170 048390 117424 969756 311611 660700 400345 643484 526697 527071 496464 503855 337739 822567 828092 357580 384014 961959 899841 490997 229759 (544 digits)/507313 322881 886251 140199 154468 225232 007265 677920 848627 553046 269299 745031 796675 376033 094644 001945 057285 632122 267082 712607 563190 253307 787931 069892 172970 843320 619419 479988 142579 296221 787050 228152 579309 580646 195760 954776 666928 165247 920893 766912 350288 142640 810129 835773 917050 878855 071558 326385 248712 040343 717926 126857 693102 597429 932970 009764 602772 931056 372776 027548 642516 545761 509514 532020 097789 716379 675552 392062 862579 147652 087352 500329 905635 148301 679288 017623 480278 146027 090930 385840 236980 103199 130161 487879 422497 633868 032840 934235 612843 184359 652675 (546 digits), a[1035] = 1
                                                                                      A[1036]/B[1036] = 9345 635097 435129 484545 357859 445445 687862 556400 455017 465854 046125 833984 857887 882866 547789 644195 387612 170461 602341 943001 025964 158068 277383 262804 931460 095068 809431 362703 981825 257604 570059 493118 799386 341594 179185 926601 244468 440022 800673 469451 340960 252751 239333 640026 863856 541585 557583 502863 301368 397401 776286 126438 336427 606702 837884 912299 587845 828113 826448 795336 592485 135973 645817 978009 427243 207435 363354 312955 295518 883358 925816 779383 178233 529750 914169 422306 257074 331539 289851 906727 833871 735352 148809 951433 125278 945384 467755 526992 500057 455075 342018 (544 digits)/908335 222699 592033 675176 771224 580884 442800 664075 948814 335910 288148 361659 786713 912163 542956 693630 736682 317568 749856 488667 198149 264014 398709 394616 354347 584730 721301 874196 493547 799871 924942 209046 296077 993006 261123 765321 055504 053075 206501 398666 712015 285196 595953 941073 465604 109560 626436 827064 098293 341533 058431 182431 661426 831578 305164 708832 197419 928384 541068 803283 412853 317914 778630 102637 178007 434043 085437 529923 929898 808615 348163 154434 455976 936163 036490 062301 154806 150389 599081 560215 729026 303607 548478 343285 433012 543403 829456 725716 241732 345705 194489 (546 digits), a[1036] = 1
                                                                                      A[1037]/B[1037] = 23910 890746 003958 552223 051254 263975 585249 270902 595137 466411 330064 177918 897064 436455 907706 644031 928358 377327 008465 551406 274745 193261 842971 392583 459011 955305 982959 264084 943683 109456 756835 901397 977453 376220 189640 730437 652344 644548 047161 026538 625400 076063 582653 791906 584990 502189 431523 659001 407935 469724 377234 216051 727679 612424 339057 223618 103308 223734 558277 345248 586505 604622 188218 591322 035301 855121 596365 916001 531471 342822 311803 607156 473892 029258 139950 505312 914494 306563 106401 340527 164207 974559 635359 725434 078650 248349 319526 015944 899956 401147 913795 (545 digits)/2 323983 768281 070318 490552 696917 387000 892867 006072 746256 224866 845596 468351 370103 200360 180557 389206 530650 267259 766795 689941 959488 781336 585349 859124 881666 012782 062023 228381 129674 895965 636934 646245 171465 566658 718008 485418 777936 271398 333896 564245 774318 713034 002037 717920 848259 097976 324431 980513 445298 723409 834788 491721 015956 260586 543299 427428 997612 787825 454913 634115 468223 181591 066774 737294 453804 584465 846427 451910 722376 764882 783678 809198 817589 020627 752268 142225 789890 446806 289093 506271 695032 710414 227118 174450 288522 720675 691754 385668 096307 875770 041653 (547 digits), a[1037] = 2
                                                                                      A[1038]/B[1038] = 176721 870319 462839 350106 716639 293274 784607 452718 620979 730733 356575 079417 137338 938057 901736 152418 886120 811750 661600 802844 949180 510901 178183 010889 144543 782210 690146 211298 587607 023801 867910 802904 641559 975135 506671 039664 810880 951859 130800 655221 718760 785196 317910 183372 958790 056911 578249 115873 156916 685472 416925 638800 430184 893673 211285 477626 311003 394255 734390 212076 698024 368328 963348 117263 674356 193286 537915 724966 015818 283115 108442 029478 495477 734557 893822 959496 658534 477481 034661 290417 983327 557269 596328 029471 675830 683829 704437 638606 799752 263110 738583 (546 digits)/17 176221 600667 084263 109045 649646 289890 692869 706585 172607 909978 207323 640119 377436 314684 806858 418076 451234 188387 117426 318260 914570 733370 496158 408490 526009 674205 155464 472864 401272 071631 383484 732762 496336 959617 287183 163252 501057 952863 543777 348387 132246 276434 610217 966519 403417 795394 897460 690658 215384 405401 901950 624478 773120 655684 108260 700835 180709 443162 725464 242091 690415 589052 246053 263698 354639 525304 010429 693298 986536 162794 833914 818826 179100 080557 302367 057881 684039 278033 622736 104117 594255 276507 138305 564437 452671 588133 671737 425392 915887 476095 486060 (548 digits), a[1038] = 7
                                                                                      A[1039]/B[1039] = 907520 242343 318155 302756 634450 730349 508286 534495 700036 120078 112939 575004 583759 126745 416387 406126 358962 436080 316469 565631 020647 747767 733886 447029 181730 866359 433690 320577 881718 228466 096389 915921 185253 251897 722995 928761 706749 403843 701164 302647 219204 002045 172204 708771 378940 786747 322769 238367 192518 897086 461862 410053 878604 080790 395484 611749 658325 195013 230228 405632 076627 446267 004959 177640 407082 821554 285944 540831 610562 758397 854013 754548 951280 702047 609065 302796 207166 693968 279707 792617 080845 760907 616999 872792 457803 667497 841714 208978 898717 716701 606710 (546 digits)/88 205091 771616 491634 035780 945148 836454 357215 538998 609295 774757 882214 668948 257284 773784 214849 479588 786821 209195 353927 281246 532342 448189 066141 901577 511714 383807 839345 592703 136035 254122 554358 310057 653150 364745 153924 301681 283226 035716 052783 306181 435550 095207 053127 550517 865348 074950 811735 433804 522220 750419 344541 614114 881559 539007 084602 931604 901160 003639 082234 844573 920301 126852 297041 055786 227002 210985 898575 918405 655057 578856 953252 903329 713089 423414 264103 431634 210086 836974 402774 026859 666309 092949 918645 996637 551880 661344 050441 512632 675745 256247 471953 (548 digits), a[1039] = 5
                                                                                      A[1040]/B[1040] = 23 772248 171245 734877 221779 212358 282362 000057 349606 821918 852764 293004 029536 315076 233438 727808 711704 219144 149838 889809 509251 486021 952862 259230 633647 869546 307555 966094 546323 512280 963920 374048 616855 458144 524476 304565 187469 186365 451795 361072 524049 418064 838370 795232 611428 811250 512341 970249 313420 162408 009720 425348 300201 273890 994223 493885 383117 427458 464599 720328 758510 690337 971271 092286 735914 258509 553697 972473 786587 890450 001459 312799 647751 228775 987795 729520 832198 044868 520656 307063 898462 085317 340867 638324 722075 578726 038773 589007 072058 166412 897352 513043 (548 digits)/2310 508607 662695 866748 039350 223516 037703 980473 720549 014298 053683 144905 032774 066840 433074 392944 887384 908585 627466 319535 630670 755474 386286 215847 849505 830583 653208 978449 883145 938188 678817 796800 794261 478246 442991 289215 006965 864934 881480 916143 309104 456548 751817 991534 279983 902467 744116 002581 969575 793123 916304 860032 591465 693668 669868 307936 922562 610869 537778 863570 201013 618244 887211 969120 714140 256697 010937 373403 571846 018033 213075 618490 305398 719425 089328 169056 280371 146297 039368 094860 802468 918291 693205 023101 477013 801568 783078 983216 753842 485264 138529 756838 (550 digits), a[1040] = 26
                                                                                      A[1041]/B[1041] = 24 679768 413589 053032 524535 846809 012711 508343 884102 521954 972842 405943 604540 898835 360184 144196 117830 578106 585919 206279 074882 506669 700629 993117 080677 051277 173915 399784 866901 393999 192386 470438 532776 643397 776374 027561 116230 893114 855639 062236 826696 637268 840415 967437 320200 190191 299089 293018 551787 354926 906806 887210 710255 152495 075013 889369 994867 085783 659612 950557 164142 766965 417538 097245 913554 665592 375252 258418 327419 501012 759857 166813 402300 180056 689843 338586 134994 252035 214624 586771 691079 166163 101775 255324 594868 036529 706271 430721 281037 065130 614054 119753 (548 digits)/2398 713699 434312 358382 075131 168664 874158 337689 259547 623593 828441 027119 701722 324125 206858 607794 366973 695406 836661 673462 911917 287816 834475 281989 751083 342298 037016 817795 475849 074223 932940 351159 104319 131396 807736 443139 308647 148160 917196 968926 615285 892098 847025 044661 830501 767815 819066 814317 403380 315344 666724 204574 205580 575228 208875 392539 854167 512029 541417 945805 045587 538546 014064 266161 769926 483699 221923 271979 490251 673090 791932 571743 208728 432514 512742 433159 712005 356383 876342 497634 829328 584600 786154 941747 473651 353449 444423 033658 266475 161009 394777 228791 (550 digits), a[1041] = 1
                                                                                      A[1042]/B[1042] = 97 811553 412012 893974 795386 752785 320496 525089 001914 387783 771291 510834 843159 011582 313991 160397 065195 953463 907596 508646 733899 006031 054752 238581 875679 023377 829302 165449 147027 694278 541079 785364 215185 388337 853598 387248 536161 865710 018712 547783 004139 329871 359618 697544 572029 381824 409609 849304 968782 227188 730141 086980 430966 731376 219265 161995 367718 684809 443438 572000 250938 991234 223885 384024 476578 255286 679454 747728 768846 393488 281030 813239 854651 768946 057325 745279 237180 800974 164530 067378 971699 583806 646193 404298 506679 688315 157587 881170 915169 361804 739514 872302 (548 digits)/9506 649705 965632 941894 264743 729510 660178 993541 499191 885079 539006 226264 137941 039216 053650 216327 988305 994806 137451 339924 366422 618924 889712 061817 102755 857477 764259 431836 310693 160860 477638 850278 107218 872436 866200 618632 932907 309417 633071 822923 154962 132845 292893 125519 771489 205915 201316 445534 179716 739157 916477 473755 208207 419353 296494 485556 485065 146958 162032 700985 337776 233882 929404 767606 023919 707794 676707 189342 042601 037305 588873 333719 931584 016968 627555 468535 416387 215448 668395 587765 290454 672094 051669 848343 897967 861917 116348 084191 553267 968292 322861 443211 (550 digits), a[1042] = 3
                                                                                      A[1043]/B[1043] = 318 114428 649627 734956 910696 105164 974201 083610 889845 685306 286716 938448 134017 933582 302157 625387 313418 438498 308708 732219 276579 524762 864886 708862 707714 121410 661821 896132 307984 476834 815625 826531 178332 808411 337169 189306 724716 490244 911776 705585 839114 626882 919272 060071 036288 335664 527918 840933 458134 036493 097230 148152 003155 346623 732809 375356 098023 140211 989928 666557 916959 740668 089194 249319 343289 431452 413616 501604 633958 681477 602949 606532 966255 486894 861820 574423 846536 654957 708214 788908 606177 917583 040355 468220 114907 101475 179035 074234 026545 150544 832598 736659 (549 digits)/30918 662817 331211 184064 869362 357196 854695 318313 757123 278832 445459 705912 115545 441773 367809 256778 331891 679825 249015 693236 011185 144591 503611 467441 059350 914731 329795 113304 407928 556805 365856 901993 425975 748707 406338 299038 107369 076413 816412 437696 080172 290634 725704 421221 144969 385561 423016 150919 942530 532818 416156 625839 830202 833288 098358 849209 309362 952904 027516 048761 058916 240194 802278 568979 841685 607083 252044 840005 618054 785007 558552 572903 003480 483420 395408 838765 961167 002729 881529 260930 700692 600882 941164 486779 167554 939200 793467 286232 926279 065886 363361 558424 (551 digits), a[1043] = 3
                                                                                      A[1044]/B[1044] = 415 925982 061640 628931 706082 857950 294697 608699 891760 073090 058008 449282 977176 945164 616148 785784 378614 391962 216305 240866 010478 530793 919638 947444 583393 144788 491124 061581 455012 171113 356705 611895 393518 196749 190767 576555 260878 355954 930489 253368 843253 956754 278890 757615 608317 717488 937528 690238 426916 263681 827371 235132 434122 077999 952074 537351 465741 825021 433367 238558 167898 731902 313079 633343 819867 686739 093071 249333 402805 074965 883980 419772 820907 255840 919146 319703 083717 455931 872744 856287 577877 501389 686548 872518 621586 789790 336622 955404 941714 512349 572113 608961 (549 digits)/40425 312523 296844 125959 134106 086707 514874 311855 256315 163911 984465 932176 253486 480989 421459 473106 320197 674631 386467 033160 377607 763516 393323 529258 162106 772209 094054 545140 718621 717665 843495 752271 533194 621144 272538 917671 040276 385831 449484 260619 235134 423480 018597 546740 916458 591476 624332 596454 122247 271976 332634 099595 038410 252641 394853 334765 794428 099862 189548 749746 396692 474077 731683 336585 865605 314877 928752 029347 660655 822313 147425 906622 935064 500389 022964 307301 377554 218178 549924 848695 991147 272976 992834 335123 065522 801117 909815 370424 479547 034178 686223 001635 (551 digits), a[1044] = 1
                                                                                      A[1045]/B[1045] = 1981 818356 896190 250683 735027 536966 152991 518410 456885 977666 518750 735580 042725 714240 766752 768524 827876 006347 173929 695683 318493 647938 543442 498641 041286 700564 626318 142458 128033 161288 242448 274112 752405 595408 100239 495527 768229 914064 633733 719061 212130 453900 034835 090533 469559 205620 278033 601887 165799 091220 406715 088681 739643 658623 541107 524761 960990 440297 723397 620790 588554 668277 341512 782694 622760 178408 785901 498938 245178 981341 138871 285624 249884 510258 538405 853236 181406 478685 199194 214058 917687 923141 786550 958294 601254 260636 525526 895853 793403 199943 121053 172503 (550 digits)/192619 912910 518587 687901 405786 704026 914192 565734 782383 934480 383323 434617 129491 365731 053647 149203 612682 378350 794883 825877 521616 198657 076905 584473 707778 003567 706013 293867 282415 427468 739839 911079 558754 233284 496493 969722 268474 619739 614349 480173 020709 984554 800094 608184 810803 751467 920346 536736 431519 620723 746693 024219 983843 843853 677772 188272 487075 352352 785711 047746 645686 136505 729011 915323 304106 866594 967052 957396 260678 074260 148256 199394 743738 484976 487266 067971 471383 875444 081228 655714 665281 692790 912501 827271 429646 143672 432728 767930 844467 202601 108253 564964 (552 digits), a[1045] = 4
                                                                                      A[1046]/B[1046] = 14288 654480 334972 383717 851275 616713 365638 237573 089961 916755 689263 598343 276256 944849 983418 165458 173746 436392 433813 110649 239934 066363 723736 437931 872400 048740 875351 058788 351244 300131 053843 530684 660357 364605 892444 045249 638487 754407 366625 286797 328167 134054 522736 391349 895232 156830 883763 903448 587509 902224 674376 855904 611627 688364 739827 210685 192674 907105 497150 584092 287781 409843 703669 112206 179188 935600 594381 741901 119057 944353 856079 419142 570098 827650 687987 292356 353562 806728 267104 354700 001692 963382 192405 580580 830366 614246 015311 226381 495536 911951 419485 816482 (551 digits)/1 388764 702896 926957 941268 974613 014895 914222 271998 733002 705274 667729 974496 159926 041106 796989 517531 608974 323086 950653 814303 028921 154115 931662 620574 116552 797183 036147 602211 695529 709947 022375 129828 444474 254135 747996 705726 919598 724008 749930 621830 380104 315363 619259 804034 592084 851752 066758 353609 142884 617042 559485 269134 925317 159617 139258 652673 203955 566331 689526 083972 916495 429617 834766 743848 994353 381042 698122 731121 485402 342134 185219 302386 141233 895224 433826 783101 677241 346287 118525 438698 648119 122513 380347 126023 073045 806824 938916 745940 390817 452386 443997 956383 (553 digits), a[1046] = 7
                                                                                      A[1047]/B[1047] = 244888 944522 590720 773887 206713 021093 368841 557152 986238 562513 236231 907415 739093 776690 484861 581313 781565 425018 548752 576720 397372 776121 846961 943482 872087 529159 507286 141860 099186 263516 157788 295751 978480 793708 271788 264771 622521 738989 866363 594615 790971 732826 921353 743481 688505 871745 302019 960513 153467 429039 871121 639060 137314 360824 118170 106410 236463 861091 174957 550359 480838 635620 303887 690199 668972 083618 890391 111257 269164 035356 692221 411047 941564 580320 234189 823294 191974 193065 739968 243958 946468 300639 057445 828168 717486 702818 785817 744339 217530 703117 252312 052697 (552 digits)/23 801619 862158 276872 689473 974207 957257 455971 189713 243429 924149 734733 001051 848234 064546 602468 947240 965245 870828 955998 669029 013275 818627 915170 134233 689175 555679 320522 531466 106420 496568 120217 118163 114816 553592 212437 967079 901652 927888 363170 051289 482483 345736 327511 276772 876246 231253 055238 548091 860558 110447 257942 599513 714235 557345 045169 283716 954319 979991 507654 475286 226108 440008 920046 560756 208114 344320 835139 386461 512517 890541 296984 339959 144714 703791 862321 380699 984486 762325 096161 113591 683306 775518 378402 969663 671424 859696 394313 448917 488363 893170 656218 823475 (554 digits), a[1047] = 17
                                                                                      A[1048]/B[1048] = 1 238733 377093 288576 253153 884840 722180 209846 023338 021154 729321 870423 135421 971725 828302 407726 072027 081573 561485 177575 994251 226797 946972 958546 155346 232837 694538 411781 768088 847175 617711 842785 009444 552761 333147 251385 369107 751096 449356 698443 259876 283025 798189 129505 108758 337761 515557 393863 706014 354847 047424 029985 051205 298199 492485 330677 742736 374994 212561 371938 335889 691974 587945 223107 563204 524049 353695 046337 298187 464878 121137 317186 474382 277921 729251 858936 408827 313433 772056 966945 574494 734034 466577 479634 721424 417800 128339 944399 948077 583190 427537 681046 079967 (553 digits)/120 396864 013688 311321 388638 845652 801183 194078 220564 950152 326023 341394 979755 401096 363839 809334 253736 435203 677231 730647 159448 095300 247255 507513 291742 562430 575579 638760 259542 227632 192787 623460 720644 018557 022096 810186 541126 427863 363450 565780 878277 792521 044045 256816 187898 973316 008017 342951 094068 445675 169278 849198 266703 496494 946342 365105 071257 975555 466289 227798 460404 047037 629662 434999 547630 034925 102646 873819 663429 047991 794840 670141 002181 864807 414183 745433 686601 599675 157912 599331 006657 064653 000105 272361 974341 430170 105306 910483 990527 832636 918239 725092 073758 (555 digits), a[1048] = 5
                                                                                      A[1049]/B[1049] = 70 852691 438840 039567 203658 642634 185365 330064 887420 192058 133859 850350 626468 127465 989927 725247 686857 431258 429673 670584 249040 324855 753580 484092 798218 143836 117848 978846 922924 388196 473091 196533 834091 485876 783101 600754 303913 435019 352321 677629 407563 923442 229607 303144 942706 940912 258516 752251 203331 379749 132209 580269 557762 134685 432487 966801 442383 611133 977089 375442 696071 923390 148498 021018 792857 539785 244236 531617 107942 767216 940183 771850 450837 783103 147676 193565 126451 057699 200312 855865 990158 786432 895555 396624 949360 532094 018195 616614 784761 459385 072765 071938 610816 (554 digits)/6886 422868 642392 022191 841888 176417 624699 518429 761915 402112 507480 194246 847109 710726 803415 734521 410217 771855 473037 602886 757570 445389 912191 843427 763559 747718 363718 729857 325373 081455 485462 657478 194872 172566 813110 393070 811286 289864 644570 612680 113123 656182 856315 966033 987014 355258 688241 603450 909993 264042 759341 662243 801613 014447 498859 856158 345421 560981 558477 492166 718316 907253 330767 715020 775668 198845 195192 642860 201917 248050 196459 495021 464325 438737 312265 352041 516991 165970 763343 258028 493044 368527 781518 903035 507125 191120 862190 291900 909003 948668 232834 986467 027681 (556 digits), a[1049] = 57
                                                                                      A[1050]/B[1050] = 142 944116 254773 367710 660471 170109 092910 869975 798178 405270 997041 571124 388358 226657 808157 858221 445741 944090 420832 518744 492331 876509 454133 926731 751782 520509 930236 369475 613937 623568 563894 235852 677627 524514 899350 452893 976934 621135 154000 053702 075004 129910 257403 735794 994172 219586 032590 898366 112677 114345 311843 190524 166729 567570 357461 264280 627503 597262 166740 122823 728033 538754 884941 265145 148919 603619 842168 109571 514072 999312 001504 860887 376057 844128 024604 246066 661729 428832 172682 678677 554812 306900 257688 272884 620145 481988 164731 177629 517600 501960 573067 824923 301599 (555 digits)/13893 242601 298472 355705 072415 198488 050582 230937 744395 754377 340983 729888 673974 822549 970671 278377 074171 978914 623306 936420 674588 986080 071639 194368 818862 057867 303017 098474 910288 390543 163712 938417 110388 363690 648317 596328 163699 007592 652591 791141 104525 104886 756677 188884 161927 683833 384500 549852 914054 973760 687962 173685 869929 525389 944062 077421 762101 097518 583244 212131 897037 861544 291197 865041 098966 432615 493032 159540 067263 544092 187759 660183 930832 742282 038714 449516 720583 931616 684599 115387 992745 801708 563143 078432 988591 812411 829687 494285 808535 729973 383909 698026 129120 (557 digits), a[1050] = 2
                                                                                      A[1051]/B[1051] = 213 796807 693613 407277 864129 812743 278276 200040 685598 597329 130901 421475 014826 354123 798085 583469 132599 375348 850506 189328 741372 201365 207714 410824 550000 664346 048085 348322 536862 011765 036985 432386 511719 010391 682452 053648 280848 056154 506321 731331 482568 053352 487011 038939 936879 160498 291107 650617 316008 494094 444052 770793 724491 702255 789949 231082 069887 208396 143829 498266 424105 462145 033439 286163 941777 143405 086404 641188 622015 766528 941688 632737 826895 627231 172280 439631 788180 486531 372995 534543 544971 093333 153243 669509 569506 014082 182926 794244 302361 961345 645832 896861 912415 (555 digits)/20779 665469 940864 377896 914303 374905 675281 749367 506311 156489 848463 924135 521084 533276 774087 012898 484389 750770 096344 539307 432159 431469 983831 037796 582421 805585 666735 828332 235661 471998 649175 595895 305260 536257 461427 989398 974985 297457 297162 403821 217648 761069 612993 154918 148942 039092 072742 153303 824048 237803 447303 835929 671542 539837 442921 933580 107522 658500 141721 704298 615354 768797 621965 580061 874634 631460 688224 802400 269180 792142 384219 155205 395158 181019 350979 801558 237575 097587 447942 373416 485790 170236 344661 981468 495717 003532 691877 786186 717539 678641 616744 684493 156801 (557 digits), a[1051] = 1
                                                                                      A[1052]/B[1052] = 5701 661116 288721 956935 127846 301434 328092 071033 623741 935828 400478 529474 773843 433876 558383 028418 893325 703160 533993 441291 768009 112004 854708 608170 051799 793507 180455 425861 572349 929459 525515 477901 982321 794698 643103 847749 278984 081152 318365 068320 621773 517074 919690 748233 353030 392541 601389 814416 328897 960800 857215 231161 003513 826220 896141 272414 444571 015561 906307 077750 754775 554525 754362 705407 635125 332152 088688 780475 686482 929064 485409 312070 875344 152138 503895 676493 154422 078647 870566 576809 724060 733562 242023 680133 427301 848124 920827 827981 379011 496947 364723 143333 024389 (556 digits)/554164 544819 760946 181024 844302 946035 607907 714492 908485 823113 401045 757412 222172 687746 096933 613737 668305 498937 128264 958413 910734 204299 651246 177079 961829 003094 638148 635113 037486 662508 042278 431695 047162 306384 645445 320701 513316 741482 378814 290492 763392 892696 694499 216756 034420 700227 275796 535752 339309 156650 317861 907857 330035 561163 460032 350504 557690 218522 268008 523895 896261 850282 462302 946649 839466 850593 386877 021947 065964 139794 177457 695524 204945 448785 164189 290030 897536 468890 331100 824216 623290 227853 524354 596613 877233 904261 818509 935140 464567 374655 419271 494848 205946 (558 digits), a[1052] = 26
                                                                                      A[1053]/B[1053] = 5915 457923 982335 364212 991976 114177 606368 271074 309340 533157 531379 950949 788669 788000 356468 611888 025925 078509 384499 630620 509381 313370 062423 018994 601800 457853 228540 774184 109211 941224 562500 910288 494040 805090 325555 901397 559832 137306 824686 799652 104341 570427 406701 787173 289909 553039 892497 465033 644906 454895 301268 001954 728005 528476 686090 503496 514458 223958 050136 576017 178881 016670 787801 991571 576902 475557 175093 421664 308498 695593 427097 944808 702239 779369 676176 116124 942602 565179 243562 111353 269031 826895 395267 349642 996807 862207 103754 622225 681373 458293 010556 040194 936804 (556 digits)/574944 210289 701810 558921 758606 320941 283189 463860 414796 979603 249509 681547 743257 221022 871020 626636 152695 249707 224609 497721 342893 635769 635077 214876 544250 808680 304884 463445 273148 134506 691454 027590 352422 842642 106873 310100 488302 038939 675976 694313 981041 653766 307492 371674 183362 739319 348538 689056 163357 394453 765165 743787 001578 101000 902954 284084 665212 877022 409730 228194 511616 619080 084268 526711 714101 482054 075101 824347 335144 931936 561676 850729 600103 629804 515169 091589 135111 566477 779043 197633 109080 398089 869016 578082 372950 907794 510387 721327 182107 053297 036016 179341 362747 (558 digits), a[1053] = 1
                                                                                      A[1054]/B[1054] = 100348 987900 006087 784342 999464 128276 029984 408222 573190 466348 902557 744671 392560 041882 261880 818627 308126 959310 685987 531219 918110 125925 853476 912083 680607 119158 837107 812807 319740 989052 525530 042517 886974 676143 851998 270110 236298 278061 513353 862754 291238 643913 426919 343005 991583 241179 881349 254954 647401 239125 677503 262436 651602 281847 873589 328358 675902 598890 708492 294025 616871 821258 359194 570552 865564 941066 890183 527104 622462 058559 318976 429010 111180 622053 322713 534492 236063 121515 767560 358462 028569 963888 566301 274421 376227 643438 580901 783592 280986 829635 533619 786452 013253 (558 digits)/9 753271 909454 989915 123772 982004 081096 138939 136259 545237 496765 393200 662176 114288 224112 033263 639916 111429 494252 722016 921955 397032 376613 812481 615104 669841 941979 516300 050237 407856 814615 105542 873140 685927 788658 355418 282309 326149 364517 194441 399516 460059 352957 614377 163542 968224 529336 852415 560650 953027 467910 560513 808449 355285 177177 907300 895859 201096 250880 823692 175008 082127 755563 810599 374037 265090 563458 588506 211504 428283 050779 164287 307197 806603 525657 406894 755457 059321 532534 795791 986346 368576 597291 428619 845931 844448 428973 984713 476375 378280 227407 995530 364310 009898 (559 digits), a[1054] = 16
                                                                                      A[1055]/B[1055] = 306962 421624 000598 717241 990368 499005 696321 495742 028911 932204 239053 184963 966349 913647 142111 067769 950305 956441 442462 224280 263711 691147 622853 755245 643621 815329 739864 212606 068434 908382 139091 037842 154964 833521 881550 711728 268726 971491 364748 387914 978057 502167 687459 816191 264659 276579 536545 229897 587110 172272 333777 789264 682812 374020 306858 488572 542166 020630 175613 458094 029496 480445 865385 703230 173597 298757 845644 002978 175884 871271 384027 231839 035781 645529 644316 719601 650791 929726 546243 186739 354741 718561 094171 172907 125490 792522 846459 973002 524333 947199 611415 399550 976563 (558 digits)/29 834759 938654 671555 930240 704618 564229 700006 872639 050509 469899 429111 668076 086121 893358 970811 546384 486983 732465 390660 263587 533990 765611 072522 060190 553776 634618 853784 614157 496718 578352 008082 647012 410206 208617 173128 157028 466750 132491 259300 892863 361219 712639 150623 862303 088036 327329 905785 371009 022439 798185 446707 169135 067433 632534 624856 971662 268501 629664 880806 753218 757999 885771 516066 648823 509373 172429 840620 458860 619994 084274 054538 772323 019914 206776 735853 357960 313076 164082 166419 156672 214810 189964 154876 115877 906296 194716 464528 150453 316947 735521 022607 272271 392441 (560 digits), a[1055] = 3
                                                                                      A[1056]/B[1056] = 407311 409524 006686 501584 989832 627281 726305 903964 602102 398553 141610 929635 358909 955529 403991 886397 258432 915752 128449 755500 181821 817073 476330 667329 324228 934488 576972 025413 388175 897434 664621 080360 041939 509665 733548 981838 505025 249552 878102 250669 269296 146081 114379 159197 256242 517759 417894 484852 234511 411398 011281 051701 334414 655868 180447 816931 218068 619520 884105 752119 646368 301704 224580 273783 039162 239824 735827 530082 798346 929830 703003 660849 146962 267582 967030 254093 886855 051242 313803 545201 383311 682449 660472 447328 501718 435961 427361 756594 805320 776835 145035 186002 989816 (558 digits)/39 588031 848109 661471 054013 686622 645325 838946 008898 595746 966664 822312 330252 200410 117471 004075 186300 598413 226718 112677 185542 931023 142224 885003 675295 223618 576598 370084 664394 904575 392967 113625 520153 096133 997275 528546 439337 792899 497008 453742 292379 821279 065596 765001 025846 056260 856666 758200 931659 975467 266096 007220 977584 422718 809712 532157 867521 469597 880545 704498 928226 840127 641335 326666 022860 774463 735888 429126 670365 048277 135053 218826 079520 826517 732434 142748 113417 372397 696616 962211 143018 583386 787255 583495 961809 750744 623690 449241 626828 695227 962929 018137 636581 402339 (560 digits), a[1056] = 1
                                                                                      A[1057]/B[1057] = 2 750830 878768 040717 726751 929364 262696 054156 919529 641526 323523 088718 762776 119809 646823 566062 386153 500903 450954 213160 757281 354642 593588 480837 759221 588995 422261 201696 365086 397490 292990 126817 520002 406601 891516 282844 602759 298878 468808 633361 891930 593834 378654 373734 771374 802114 383136 043912 139010 994178 640660 401464 099472 689300 309229 389545 390159 850577 737755 480247 970811 907706 290671 212867 345928 408570 737706 260609 183474 965966 450255 602049 196933 917555 251027 446498 244164 971922 237180 429064 457947 654611 813259 057005 856878 135801 408291 410630 512571 356258 608210 481626 515568 915459 (559 digits)/267 362951 027312 640382 254322 824354 436184 733682 926030 624991 269888 362985 649589 288582 598184 995262 664188 077463 092774 066723 376845 120129 618960 382544 111961 895488 094209 074292 600526 924170 936154 689835 767930 987010 192270 344406 793055 224147 114541 981754 647142 288894 106219 740630 017379 425601 467330 454990 960968 875243 394761 490033 034641 603746 490809 817804 176791 086088 912939 107800 322579 798765 733783 476062 785988 156155 587760 415380 481050 909656 894593 367495 249447 979020 601381 592342 038464 547462 343783 939686 014783 715130 913497 655851 886736 410763 936859 159977 911425 488315 513095 131433 091759 806475 (561 digits), a[1057] = 6
                                                                                      A[1058]/B[1058] = 3 158142 288292 047404 228336 919196 889977 780462 823494 243628 722076 230329 692411 478719 602352 970054 272550 759336 366706 341610 512781 536464 410661 957168 426550 913224 356749 778668 390499 785666 190424 791438 600362 448541 401182 016393 584597 803903 718361 511464 142599 863130 524735 488113 930572 058356 900895 461806 623863 228690 052058 412745 151174 023714 965097 569993 207091 068646 357276 364353 722931 554074 592375 437447 619711 447732 977530 996436 713557 764313 380086 305052 857783 064517 518610 413528 498258 858777 288422 742868 003149 037923 495708 717478 304206 637519 844252 837992 269166 161579 385045 626661 701571 905275 (559 digits)/306 950982 875422 301853 308336 510977 081510 572628 934929 220738 236553 185297 979841 488992 715655 999337 850488 675876 319492 179400 562388 051152 761185 267547 787257 119106 670807 444377 264921 828746 329121 803461 288084 083144 189545 872953 232393 017046 611550 435496 939522 110173 171816 505631 043225 481862 323997 213191 892628 850710 660857 497254 012226 026465 300522 349962 044312 555686 793484 812299 250806 638893 375118 802728 808848 930619 323648 844507 151415 957934 029646 586321 328968 805538 333815 735090 151881 919860 040400 901897 157802 298517 700753 239347 848546 161508 560549 609219 538254 183543 476024 149570 728341 208814 (561 digits), a[1058] = 1
                                                                                      A[1059]/B[1059] = 28 015969 185104 419951 553447 282939 382518 297859 507483 590556 100132 931356 302067 949566 465647 326496 566559 575594 384604 946044 859533 646357 878884 138185 171628 894790 276259 431043 489084 682819 816388 458326 322901 994933 100972 413993 279541 730108 215700 725075 032729 498878 576538 278646 215951 268969 590299 738365 129916 823699 057127 703425 308864 879020 030009 949491 046888 399748 595966 395077 754264 340303 029674 712448 303619 990434 557954 232102 891937 080473 490946 042472 059198 433695 399910 754726 230235 842140 544562 372008 483139 957999 778928 796832 290531 235960 162314 114568 665900 648893 688575 494920 128144 157659 (560 digits)/2722 970814 030691 055208 721014 912171 088269 314714 405464 390897 162313 845369 488321 200524 323432 989965 468097 484473 648711 501927 875949 529351 708442 522926 410018 848341 460668 629310 719901 554141 569129 117526 072603 652163 708637 328032 652199 360520 006945 465730 163319 170279 480751 785678 363183 280500 059308 160526 101999 680928 681621 468065 132449 815468 894988 617500 531291 531583 260817 606194 329032 909912 734733 897893 256779 601110 176951 171437 692378 573129 131766 058065 881198 423327 271907 473063 253519 906342 666991 154863 277202 103272 519523 570634 675105 702832 421256 033734 217458 956663 321288 327998 918489 476987 (562 digits), a[1059] = 8
                                                                                      A[1060]/B[1060] = 31 174111 473396 467355 781784 202136 272496 078322 330977 834184 822209 161685 994479 428286 068000 296550 839110 334930 751311 287655 372315 182822 289546 095353 598179 808014 633009 209711 879584 468486 006813 249764 923264 443474 502154 430386 864139 534011 934062 236539 175329 362009 101273 766760 146523 327326 491195 200171 753780 052389 109186 116170 460038 902734 995107 519484 253979 468394 953242 759431 477195 894377 622050 149895 923331 438167 535485 228539 605494 844786 871032 347524 916981 498212 918521 168254 728494 700917 832985 114876 486288 995923 274637 514310 594737 873480 006566 952560 935066 810473 073621 121581 829716 062934 (560 digits)/3029 921796 906113 357062 029351 423148 169779 887343 340393 611635 398867 030667 468162 689517 039088 989303 318586 160349 968203 681328 438337 580504 469627 790474 197275 967448 131476 073687 984823 382887 898250 920987 360687 735307 898183 200985 884592 377566 618495 901227 102841 280452 652568 291309 406408 762362 383305 373717 994628 531639 342478 965319 144675 841934 195510 967462 575604 087270 054302 418493 579839 548806 109852 700622 065628 531729 500600 015944 843794 531063 161412 644387 210167 228865 605723 208153 405401 826202 707392 056760 435004 401790 220276 809982 523651 864340 981805 642953 755713 140206 797312 477569 646830 685801 (562 digits), a[1060] = 1
                                                                                      A[1061]/B[1061] = 121 538303 605293 822018 898799 889348 200006 532826 500417 093110 566760 416414 285506 234424 669648 216149 083890 580386 638538 809010 976479 194824 747522 424245 966168 318834 175287 060179 127838 088277 836828 207621 092695 325356 607435 705153 871960 332144 017887 434692 558717 584905 880359 578926 655521 250949 063885 338880 391256 980866 384686 051936 688981 587225 015332 507943 808826 804933 455694 673372 185852 023435 895825 162136 073614 304937 164409 917721 708421 614834 104043 085046 810142 928334 155474 259490 415719 944894 043517 716637 942006 945769 602841 339764 074744 856400 182014 972251 471101 080312 909438 859665 617292 346461 (561 digits)/11812 736204 749031 126394 809069 181615 597608 976744 426645 225803 358914 937371 892809 269075 440699 957875 423855 965523 553322 545913 190962 270865 117325 894349 001846 750685 855096 850374 674371 702805 263881 880488 154666 858087 403186 930990 305976 493219 862433 169411 471843 011637 438456 659606 582409 567587 209224 281680 085885 275846 709058 364022 566477 341271 481521 519888 258103 793393 423724 861675 068551 556331 064291 999759 453665 196298 678751 219272 223762 166318 616003 991227 511700 109924 089077 097523 469725 384950 789167 325144 582215 308643 180354 000582 246061 295855 366672 962595 484598 377283 713225 760707 858981 534390 (563 digits), a[1061] = 3
                                                                                      A[1062]/B[1062] = 152 712415 078690 289374 680584 091484 472502 611148 831394 927295 388969 578100 279985 662710 737648 512699 923000 915317 389850 096666 348794 377647 037068 519599 564348 126848 808296 269891 007422 556763 843641 457386 015959 768831 109590 135540 736099 866155 951949 671231 734046 946914 981633 345686 802044 578275 555080 539052 145037 033255 493872 168107 149020 489960 010440 027428 062806 273328 408937 432803 663047 917813 517875 312031 996945 743104 699895 146261 313916 459620 975075 432571 727124 426547 073995 427745 144214 645811 876502 831514 428295 941692 877478 854074 669482 729880 188581 924812 406167 890785 983059 981247 447008 409395 (561 digits)/14842 658001 655144 483456 838420 604763 767388 864087 767038 837438 757781 968039 360971 958592 479788 947178 742442 125873 521526 227241 629299 851369 586953 684823 199122 718133 986572 924062 659195 085693 162132 801475 515354 593395 301370 131976 190568 870786 480929 070638 574684 292090 091024 950915 988818 329949 592529 655398 080513 807486 051537 329341 711153 183205 677032 487350 833707 880663 478027 280168 648391 105137 174144 700381 519293 728028 179351 235217 067556 697381 777416 635614 721867 338789 694800 305676 875127 211153 496559 381905 017219 710433 400630 810564 769713 160196 348478 605549 240311 517490 510538 238277 505812 220191 (563 digits), a[1062] = 1
                                                                                      A[1063]/B[1063] = 274 250718 683984 111393 579383 980832 672509 143975 331812 020405 955729 994514 565491 897135 407296 728849 006891 495704 028388 905677 325273 572471 784590 943845 530516 445682 983583 330070 135260 645041 680469 665007 108655 094187 717025 840694 608060 198299 969837 105924 292764 531820 861992 924613 457565 829224 618965 877932 536294 014121 878558 220043 838002 077185 025772 535371 871633 078261 864632 106175 848899 941249 413700 474168 070560 048041 864305 063983 022338 074455 079118 517618 537267 354881 229469 687235 559934 590705 920020 548152 370302 887462 480320 193838 744227 586280 370596 897063 877268 971098 892498 840913 064300 755856 (561 digits)/26655 394206 404175 609851 647489 786379 364997 840832 193684 063242 116696 905411 253781 227667 920488 905054 166298 091397 074848 773154 820262 122234 704279 579172 200969 468819 841669 774437 333566 788498 426014 681963 670021 451482 704557 062966 496545 364006 343362 240050 046527 303727 529481 610522 571227 897536 801753 937078 166399 083332 760595 693364 277630 524477 158554 007239 091811 674056 901752 141843 716942 661468 238436 700140 972958 924326 858102 454489 291318 863700 393420 626842 233567 448713 783877 403200 344852 596104 285726 707049 599435 019076 580984 811147 015774 456051 715151 568144 724909 894774 223763 998985 364793 754581 (563 digits), a[1063] = 1
                                                                                      A[1064]/B[1064] = 975 464571 130642 623555 418736 033982 490030 043074 826830 988513 256159 561643 976461 354116 959538 699246 943675 402429 475016 813698 324615 095062 390841 351136 155897 463897 759046 260101 413204 491888 885050 452407 341925 051394 260667 657624 560280 461055 861460 989004 612340 542377 567612 119527 174742 065949 411978 172849 753919 075621 129546 828238 663026 721515 087757 633543 677705 508114 002833 751331 209747 741561 758976 734536 208625 887230 292810 338210 380930 682986 212430 985427 338926 491190 762404 489451 824018 417929 636564 475971 539204 604080 318439 435590 902165 488721 300372 616004 037974 804082 660556 503986 639910 676963 (561 digits)/94808 840620 867671 313011 780889 963901 862382 386584 348091 027165 107872 684273 122315 641596 241255 662341 241336 400064 746072 546706 090086 218073 699792 422339 802031 124593 511582 247374 659895 451188 440176 847366 525418 947843 415041 320875 680204 962805 511015 790788 714266 203272 679469 782483 702502 022559 997791 466632 579711 057484 333324 409434 544044 756637 152694 509068 109142 902834 183283 705699 799219 089541 889454 800804 438170 501008 753658 598684 941513 288482 957678 516141 422569 684931 046432 515277 909684 999466 353739 503053 815524 767663 143585 244005 817036 528351 493933 309983 415041 201813 181830 235233 600193 483934 (563 digits), a[1064] = 3
                                                                                      A[1065]/B[1065] = 4176 109003 206554 605615 254328 116762 632629 316274 639135 974458 980368 241090 471337 313603 245451 525836 781593 105421 928456 160470 623733 952721 347956 348390 154106 301274 019768 370475 788078 612597 220671 474636 476355 299764 759696 471192 849182 042523 415681 061942 742126 701331 132441 402722 156534 093022 266878 569331 551970 316606 396745 532998 490108 963245 376803 069546 582455 110717 875967 111500 687890 907496 449607 412312 905063 596963 035546 416824 546060 806399 928842 459327 892973 319644 279087 645042 856008 262424 466278 452038 527121 303783 754077 936202 352889 541165 572087 361080 029168 187429 534724 856859 623943 463708 (562 digits)/405890 756689 874860 861898 771049 641986 814527 387169 586048 171902 548187 642503 743043 794052 885511 554419 131643 691656 059138 959979 180606 994529 503449 268531 409093 967193 887998 763935 973148 593252 186722 071429 771697 242856 364722 346469 217365 215228 387425 403204 903592 116818 247360 740457 381235 987776 792919 803608 485243 313270 093893 331102 453809 551025 769332 043511 528383 285393 634886 964642 913819 019635 796255 903358 725640 928361 872736 849229 057372 017632 224134 691407 923846 188437 969607 464311 983592 593969 700684 719264 861534 089729 155325 787170 283920 569457 690884 808078 385074 702026 951084 939919 765567 690317 (564 digits), a[1065] = 4
                                                                                      A[1066]/B[1066] = 5151 573574 337197 229170 673064 150745 122659 359349 465966 962972 236527 802734 447798 667720 204990 225083 725268 507851 403472 974168 948349 047783 738797 699526 310003 765171 778814 630577 201283 104486 105721 927043 818280 351159 020364 128817 409462 503579 277142 050947 354467 243708 700053 522249 331276 158971 678856 742181 305889 392227 526292 361237 153135 684760 464560 703090 260160 618831 878800 862831 897638 649058 208584 146849 113689 484193 328356 755034 926991 489386 141273 444755 231899 810835 041492 134494 680026 680354 102842 928010 066325 907864 072517 371793 255055 029886 872459 977084 067142 991512 195281 360846 263854 140671 (562 digits)/500699 597310 742532 174910 551939 605888 676909 773753 934139 199067 656060 326776 865359 435649 126767 216760 372980 091720 805211 506685 270693 212603 203241 690871 211125 091787 399581 011310 633044 044440 626898 918796 297116 190699 779763 667344 897570 178033 898441 193993 617858 320090 926830 522941 083738 010336 790711 270241 064954 370754 427217 740536 997854 307662 922026 552579 637526 188227 818170 670342 713038 109177 685710 704163 163811 429370 626395 447913 998885 306115 181813 207549 346415 873369 016039 979589 893277 593436 054424 222318 677058 857392 298911 031176 100957 097809 184818 118061 800115 903840 132915 175153 365761 174251 (564 digits), a[1066] = 1
                                                                                      A[1067]/B[1067] = 19630 829726 218146 293127 273520 568998 000607 394323 037036 863375 689951 649293 814733 316763 860422 201087 957398 628976 138875 082977 468781 096072 564349 446969 084117 596789 356212 262207 391927 926055 537837 255767 931196 353241 820788 857645 077569 553261 247107 214784 805528 432457 232601 969470 150362 569937 303448 795875 469638 493288 975622 616709 949516 017526 770485 178817 362936 967213 512369 699996 380806 854671 075359 852860 246132 049543 020616 681929 327035 274558 352662 793593 588672 752149 403564 048526 896088 303486 774807 236068 726099 027375 971630 051582 118054 630826 189467 292332 230597 161966 120568 939398 415505 885721 (563 digits)/1 907989 548622 102457 386630 426868 459652 845256 708431 388465 769105 516368 622834 339122 101000 265813 204700 250583 966818 474773 480034 992686 632339 113174 341145 042469 242556 086741 797867 872280 726574 067418 827818 663045 814955 704013 348503 910075 749330 082748 985185 757167 077091 027852 309280 632450 018787 165053 614331 680106 425533 375546 552713 447372 474014 535411 701250 440961 850077 089398 975671 052933 347168 853388 015848 217075 216473 751923 192971 054027 935977 769574 314055 963093 808545 017727 403081 663425 374277 863957 386220 892710 661906 052058 880698 586791 862885 245339 162263 785422 413547 349830 465379 862851 213070 (565 digits), a[1067] = 3
                                                                                      A[1068]/B[1068] = 122936 551931 646074 987934 314187 564733 126303 725287 688188 143226 376237 698497 336198 568303 367523 431611 469660 281708 236723 472033 761035 624219 124894 381340 814709 345907 916088 203821 552850 660819 332745 461651 405458 470609 945097 274687 874879 823146 759785 339656 187637 838452 095665 339070 233451 578595 499549 517434 123720 351961 380028 061496 850231 789921 087471 775994 437782 422112 953019 062810 182479 777084 660743 264010 590481 781451 452056 846610 889203 136736 257250 206316 763936 323731 462876 425656 056556 501274 751686 344422 422920 072119 902297 681285 963382 814844 009263 731077 450725 963308 918694 997236 756889 454997 (564 digits)/11 948636 889043 357276 494693 113150 363805 748450 024342 264933 813700 754272 063782 900092 041650 721646 444961 876483 892631 653852 386895 226813 006637 882287 737741 465940 547123 920031 798517 866728 403885 031411 885708 275391 080434 003843 758368 358024 674014 394935 105108 160860 782637 093944 378624 878438 123059 781032 956231 145592 923954 680497 056817 682089 151750 134496 760082 283297 288690 354564 524369 030638 192190 806038 799252 466262 728213 137934 605740 323052 921981 799259 091885 124978 724639 122404 398079 873829 839103 238168 539644 033322 828828 611264 315367 621708 275120 656853 091644 512650 385124 231897 967432 542868 452671 (566 digits), a[1068] = 6
                                                                                      A[1069]/B[1069] = 1 248996 349042 678896 172470 415396 216329 263644 647199 918918 295639 452328 634267 176718 999797 535656 517202 654001 446058 506109 803315 079137 338263 813293 260377 231211 055868 517094 300422 920434 534248 865291 872281 985781 059341 271761 604523 826367 784728 844960 611346 681906 816978 189255 360172 484878 355892 298943 970216 706842 012902 775903 231678 451833 916737 645202 938761 740761 188343 042560 328098 205604 625517 682792 492966 150949 864057 541185 148038 219066 641920 925164 856761 228035 989464 032328 305087 461653 316234 291670 680292 955299 748574 994606 864441 751882 779266 282104 603106 737856 795055 307518 911765 984400 435691 (565 digits)/121 394358 439055 675222 333561 558372 097710 329756 951854 037803 906113 059089 260663 340042 517507 482277 654319 015422 893135 013297 348987 260816 698717 936051 718559 701874 713795 287059 783046 539564 765424 381537 684901 416956 619295 742450 932187 490322 489474 032100 036267 365774 903461 967296 095529 416831 249384 975383 176643 136035 665080 180517 120890 268263 991515 880379 302073 273934 736980 635044 219361 359315 269076 913776 008372 879702 498605 131269 250374 284557 155795 762165 232907 212881 054936 241771 383880 401723 765310 245642 782661 225938 950192 164702 034374 803874 614091 813870 078708 911926 264789 668810 139705 291535 739780 (567 digits), a[1069] = 10
                                                                                      A[1070]/B[1070] = 1 371932 900974 324971 160404 729583 781062 389948 372487 607106 438865 828566 332764 512917 568100 903179 948814 123661 727766 742833 275348 840172 962482 938187 641718 045920 401776 433182 504244 473285 195068 198037 333933 391239 529951 216858 879211 701247 607875 604745 951002 869544 655430 284920 699242 718329 934487 798493 487650 830562 364864 155931 293175 302065 706658 732674 714756 178543 610455 995579 390908 388084 402602 343535 756976 741431 645508 993241 994649 108269 778657 182415 063077 991972 313195 495204 730743 518209 817509 043357 024715 378219 820694 896904 545727 715265 594110 291368 334184 188582 758364 226213 909002 741289 890688 (565 digits)/133 342995 328099 032498 828254 671522 461516 078206 976196 302737 719813 813361 324446 240134 559158 203924 099280 891906 785766 667149 735882 487629 705355 818339 456301 167815 260919 207091 581564 406293 169309 412949 570609 692347 699729 746294 690555 848347 163488 427035 141375 526635 686099 061240 474154 295269 372444 756416 132874 281628 589034 861014 177707 950353 143266 014876 062155 557232 025670 989608 743730 389953 461267 719814 807625 345965 226818 269203 856114 607610 077777 561424 324792 337859 779575 364175 781960 275553 604413 483811 322305 259261 779020 775966 349742 425582 889212 470723 170353 424576 649913 900708 107137 834404 192451 (567 digits), a[1070] = 1
                                                                                      A[1071]/B[1071] = 784 622682 805382 237428 763571 007735 202953 924165 337623 576694 888027 563704 642804 052650 385413 251407 290067 264848 000868 663910 027502 817898 916021 518436 681381 451760 470211 864304 224017 166280 918189 944609 548248 383552 661486 098181 634405 238751 881699 154898 633985 191905 067670 878974 627764 651270 948425 238725 418840 957952 350335 812671 634775 931352 418874 002465 064539 689162 758716 518392 536787 801798 511455 841709 726685 508419 449692 682364 092679 041110 255172 084165 874294 644226 824091 794229 559636 359459 113898 048531 792773 918817 365361 127102 474967 168537 016242 653423 422278 418611 821028 475660 952331 260928 018539 (567 digits)/76260 244690 783603 232053 266978 997697 623390 985940 359942 901041 919800 488405 519466 456875 796841 922938 343708 294197 565901 955796 537887 697378 456890 207881 266526 524388 698662 536352 856322 532964 441099 175742 503035 747493 164980 876719 239576 896552 841365 869165 761693 074751 666025 935606 837632 015642 915340 888995 047857 945960 003985 819612 592129 919908 796410 374610 792896 453421 395115 701636 889414 022741 652944 928031 162445 425847 011836 846671 091815 229911 566783 335454 689332 130815 192469 186142 883197 742831 885409 501907 818964 264414 771055 241487 737299 811704 354412 596800 350514 345193 365626 973139 315408 736329 629301 (569 digits), a[1071] = 571
                                                                                      A[1072]/B[1072] = 3139 862664 122503 274686 214688 760524 592878 086609 722981 913885 990976 083384 903980 723519 109753 908809 109083 183053 731241 398473 385360 111768 626569 011934 367243 852962 282623 890399 400313 138408 867827 976475 526926 925450 175895 609585 416832 656255 134672 224340 486943 637164 926113 800819 210301 323413 728188 753395 163014 662371 766207 406617 832279 027475 382154 742534 972914 935194 645322 069149 538059 595278 448425 710374 663718 775109 444279 722698 365365 272710 799345 519078 560256 568879 609562 672122 969288 956046 273101 237484 195811 053489 282139 405314 445596 389413 659080 905062 023297 863030 042478 128857 718327 785001 964844 (568 digits)/305174 321758 462511 960711 896170 662312 955080 021968 415967 906905 399015 766983 402312 067637 746525 895677 474114 068697 049374 490335 887433 277143 532916 649864 522407 265370 055569 352503 006854 538150 933706 115919 582752 682320 359653 253171 648863 434558 528951 903698 188147 825642 350202 803667 824682 357841 033808 312396 324306 065468 604978 139464 546227 629988 328907 513319 233741 370917 606133 796156 301386 480920 073047 431939 457407 049353 274165 655888 223375 527256 344910 903243 082120 861120 549452 108747 314751 246881 146051 491442 598162 316920 863241 741917 298941 672400 306862 857924 572410 805350 112421 793265 368772 779722 709655 (570 digits), a[1072] = 4
                                                                                      A[1073]/B[1073] = 29043 386659 907911 709604 695769 852456 538856 703652 844460 801668 806812 314168 778630 564322 373198 430689 271815 912331 582041 250170 495743 823816 555142 625845 986576 128421 013826 877898 826835 411960 728641 732889 290590 712604 244546 584450 385899 145048 093749 173963 016477 926389 402695 086347 520476 561994 502124 019281 885972 919298 246202 472232 125287 178630 858266 685279 820774 105914 566615 140738 379324 159304 547287 235081 700154 484404 448210 186649 380966 495507 449281 755872 916603 764143 310155 843336 283236 963875 571809 185889 555073 400220 904615 774932 485334 673259 947970 798981 631959 185882 203331 635380 417281 325945 702135 (569 digits)/2 822829 140516 946210 878460 332514 958514 219111 183656 103654 063190 510942 391256 140275 065615 515574 984035 610734 912471 010272 368819 524787 191670 253140 056661 968191 912719 198786 708879 918013 376322 844454 219018 747809 888376 401860 155264 079347 807579 601933 002449 455023 505532 817851 168617 259773 236212 219615 700561 966612 535177 448789 074793 508178 589803 756577 994483 896568 791679 850319 867043 601892 351022 310371 815486 279108 870026 479327 749665 102194 975218 670981 464642 428419 880900 137538 164868 715958 964762 199872 924891 202425 116702 540230 918743 427774 863307 116178 318121 502211 593344 377423 112527 634363 753834 016196 (571 digits), a[1073] = 9
                                                                                      A[1074]/B[1074] = 32183 249324 030414 984290 910458 612981 131734 790262 567442 715554 797788 397553 682611 287841 482952 339498 380899 095385 313282 648643 881103 935585 181711 637780 353819 981383 296450 768298 227148 550369 596469 709364 817517 638054 420442 194035 802731 801303 228421 398303 503421 563554 328808 887166 730777 885408 230312 772677 048987 581670 012409 878849 957566 206106 240421 427814 793689 041109 211937 209887 917383 754582 995712 945456 363873 259513 892489 909347 746331 768218 248627 274951 476860 333022 919718 515459 252525 919921 844910 423373 750884 453710 186755 180246 930931 062673 607051 704043 655257 048912 245809 764238 135609 110947 666979 (569 digits)/3 128003 462275 408722 839172 228685 620827 174191 205624 519621 970095 909958 158239 542587 133253 262100 879713 084848 981168 059646 859155 412220 468813 786056 706526 490599 178089 254356 061382 924867 914473 778160 334938 330562 570696 761513 408435 728211 242138 130884 906147 643171 331175 168053 972285 084455 594053 253424 012958 290918 600646 053767 214258 054406 219792 085485 507803 130310 162597 456453 663199 903278 831942 383419 247425 736515 919379 753493 405553 325570 502475 015892 367885 510540 742020 686990 273616 030710 211643 345924 416333 800587 433623 403472 660660 726716 535707 423041 176046 074622 398694 489844 905793 003136 533556 725851 (571 digits), a[1074] = 1
                                                                                      A[1075]/B[1075] = 93409 885307 968741 678186 516687 078418 802326 284177 979346 232778 402389 109276 143853 140005 339103 109686 033614 103102 208606 547458 257951 694986 918565 901406 694216 091187 606728 414495 281132 512699 921581 151618 925625 988713 085430 972521 991362 747654 550591 970570 023321 053498 060312 860680 982032 332810 962749 564635 983948 082638 271022 229932 040419 590843 339109 540909 408152 188132 990489 560514 214091 668470 538713 125994 427901 003432 233190 005344 873630 031943 946536 305775 870324 430189 149592 874254 788288 803719 261630 032637 056842 307641 278126 135426 347196 798607 162074 207068 942473 283706 694951 163856 688499 547841 036093 (569 digits)/9 078836 065067 763656 556804 789886 200168 567493 594905 142898 003382 330858 707735 225449 332122 039776 743461 780432 874807 129566 087130 349228 129297 825253 469714 949390 268897 707498 831645 767749 205270 400774 888895 408935 029769 924886 972135 535770 291855 863702 814744 741366 167883 153959 113187 428684 424318 726463 726478 548449 736469 556323 503309 616991 029387 927549 010090 157189 116874 763227 193443 408450 014907 077210 310337 752140 708785 986314 560771 753335 980168 702766 200413 449501 364941 511518 712100 777379 388048 891721 757558 803599 983949 347176 240064 881207 934721 962260 670213 651456 390733 357112 924113 640636 820947 467898 (571 digits), a[1075] = 2
                                                                                      A[1076]/B[1076] = 219003 019939 967898 340663 943832 769818 736387 358618 526135 181111 602566 616105 970317 567852 161158 558870 448127 301589 730495 743560 397007 325559 018843 440593 742252 163758 509907 597288 789413 575769 439632 012602 668769 615480 591304 139079 785457 296612 329605 339443 550063 670550 449434 608528 694842 551030 155811 901949 016883 746946 554454 338714 038405 387792 918640 509633 609993 417375 192916 330916 345567 091524 073139 197445 219675 266378 358869 920037 493591 832106 141699 886503 217509 193401 218904 263968 829103 527360 368170 488647 864569 068992 743007 451099 625324 659887 931200 118181 540203 616325 635712 091951 512608 206629 739165 (570 digits)/21 285675 592410 936035 952781 808458 021164 309178 395434 805417 976860 571675 573709 993485 797497 341654 366636 645714 730782 318779 033416 110676 727409 436563 645956 389379 715884 669353 724674 460366 325014 579710 112729 148432 630236 611287 352706 799751 825849 858290 535637 125903 666941 475972 198659 941824 442690 706351 465915 387818 073585 166414 220877 288388 278567 940583 527983 444688 396346 982908 050086 720178 861756 537839 868101 240797 336951 726122 527096 832242 462812 421424 768712 409543 471903 710027 697817 585468 987741 129367 931451 407787 401522 097825 140790 489132 405151 347562 516473 377535 180161 204070 754020 284410 175451 661647 (572 digits), a[1076] = 2
                                                                                      A[1077]/B[1077] = 969421 965067 840335 040842 292018 157693 747875 718652 083886 957224 812655 573700 025123 411413 983737 345167 826123 309461 130589 521699 845980 997222 993939 663781 663224 746221 646358 803650 438786 815777 680109 202029 600704 450635 450647 528841 133191 934103 869013 328344 223575 735699 858051 294795 761402 536931 585997 172432 051483 070424 488839 584788 194041 142015 013671 579443 848125 857633 762154 884179 596360 034566 831269 915775 306602 068945 668669 685494 847997 360368 513335 851788 740361 203794 025209 930130 104702 913160 734311 987228 515118 583612 250155 939824 848495 438158 886874 679795 103287 749009 237799 531662 738932 374359 992753 (570 digits)/94 221538 434711 507800 367932 023718 284825 804207 176644 364569 910824 617561 002575 199392 522111 406394 210008 363291 797936 404682 220794 791935 038935 571508 053540 506909 132436 384913 730343 609214 505328 719615 339812 002665 550716 370036 382962 734777 595255 296864 957293 244980 835649 057847 907827 195982 195081 551869 590140 099722 030810 221980 386818 770544 143659 689883 122023 935942 702262 694859 393790 289165 461933 228569 782742 715330 056592 890804 669159 082305 831418 388465 275263 087675 252556 351629 503371 119255 339013 409193 483364 434749 590037 738476 803226 837737 555327 352510 736107 161597 111378 173395 940194 778277 522754 114486 (572 digits), a[1077] = 4
                                                                                      A[1078]/B[1078] = 1 188424 985007 808233 381506 235850 927512 484263 077270 610022 138336 415222 189805 995440 979266 144895 904038 274250 611050 861085 265260 242988 322782 012783 104375 405476 909980 156266 400939 228200 391547 119741 214632 269474 066116 041951 667920 918649 230716 198618 667787 773639 406250 307485 903324 456245 087961 741809 074381 068366 817371 043293 923502 232446 529807 932312 089077 458119 275008 955071 215095 941927 126090 904409 113220 526277 335324 027539 605532 341589 192474 655035 738291 957870 397195 244114 194098 933806 440521 102482 475876 379687 652604 993163 390924 473820 098046 818074 797976 643491 365334 873511 623614 251540 580989 731918 (571 digits)/115 507214 027122 443836 320713 832176 305990 113385 572079 169987 887685 189236 576285 192878 319608 748048 576645 009006 528718 723461 254210 902611 766345 008071 699496 896288 848321 054267 455018 069580 830343 299325 452541 151098 180952 981323 735669 534529 421105 155155 492930 370884 502590 533820 106487 137806 637772 258221 056055 487540 104395 388394 607696 058932 422227 630466 650007 380631 098609 677767 443877 009344 323689 766409 650843 956127 393544 616927 196255 914548 294230 809890 043975 497218 724460 061657 201188 704724 326754 538561 414815 842536 991559 836301 944017 326869 960478 700073 252580 539132 291539 377466 694215 062687 698205 776133 (573 digits), a[1078] = 1
                                                                                      A[1079]/B[1079] = 2 157846 950075 648568 422348 527869 085206 232138 795922 693909 095561 227877 763506 020564 390680 128633 249206 100373 920511 991674 786960 088969 320005 006722 768157 068701 656201 802625 204589 666987 207324 799850 416661 870178 516751 492599 196762 051841 164820 067631 996131 997215 141950 165537 198120 217647 624893 327806 246813 119849 887795 532133 508290 426487 671822 945983 668521 306245 132642 717226 099275 538287 160657 735679 028995 832879 404269 696209 291027 189586 552843 168371 590080 698231 600989 269324 124229 038509 353681 836794 463104 894806 236217 243319 330749 322315 536205 704949 477771 746779 114344 111311 155276 990472 955349 724671 (571 digits)/209 728752 461833 951636 688645 855894 590815 917592 748723 534557 798509 806797 578860 392270 841720 154442 786653 372298 326655 128143 475005 694546 805280 579579 753037 403197 980757 439181 185361 678795 335672 018940 792353 153763 731669 351360 118632 269307 016360 452020 450223 615865 338239 591668 014314 333788 832853 810090 646195 587262 135205 610374 994514 829476 565887 320349 772031 316573 800872 372626 837667 298509 785622 994979 433586 671457 450137 507731 865414 996854 125649 198355 319238 584893 977016 413286 704559 823979 665767 947754 898180 277286 581597 574778 747244 164607 515806 052583 988687 700729 402917 550862 634409 840965 220959 890619 (573 digits), a[1079] = 1
                                                                                      A[1080]/B[1080] = 3 346271 935083 456801 803854 763720 012718 716401 873193 303931 233897 643099 953312 016005 369946 273529 153244 374624 531562 852760 052220 331957 642787 019505 872532 474178 566181 958891 605528 895187 598871 919591 631294 139652 582867 534550 864682 970490 395536 266250 663919 770854 548200 473023 101444 673892 712855 069615 321194 188216 705166 575427 431792 658934 201630 878295 757598 764364 407651 672297 314371 480214 286748 640088 142216 359156 739593 723748 896559 531175 745317 823407 328372 656101 998184 513438 318327 972315 794202 939276 938981 274493 888822 236482 721673 796135 634252 523024 275748 390270 479678 984822 778891 242013 536339 456589 (571 digits)/325 235966 488956 395473 009359 688070 896806 030978 320802 704545 686194 996034 155145 585149 161328 902491 363298 381304 855373 851604 729216 597158 571625 587651 452534 299486 829078 493448 640379 748376 166015 318266 244894 304861 912622 332683 854301 803836 437465 607175 943153 986749 840830 125488 120801 471595 470626 068311 702251 074802 239600 998769 602210 888408 988114 950816 422038 697204 899482 050394 281544 307854 109312 761389 084430 627584 843682 124659 061670 911402 419880 008245 363214 082112 701476 474943 905748 528703 992522 486316 312996 119823 573157 411080 691261 491477 476284 752657 241268 239861 694456 928329 328624 903652 919165 666752 (573 digits), a[1080] = 1
                                                                                      A[1081]/B[1081] = 5 504118 885159 105370 226203 291589 097924 948540 669115 997840 329458 870977 716818 036569 760626 402162 402450 474998 452074 844434 839180 420926 962792 026228 640689 542880 222383 761516 810118 562174 806196 719442 047956 009831 099619 027150 061445 022331 560356 333882 660051 768069 690150 638560 299564 891540 337748 397421 568007 308066 592962 107560 940083 085421 873453 824279 426120 070609 540294 389523 413647 018501 447406 375767 171212 192036 143863 419958 187586 720762 298160 991778 918453 354333 599173 782762 442557 010825 147884 776071 402086 169300 125039 479802 052423 118451 170458 227973 753520 137049 594023 096133 934168 232486 491689 181260 (571 digits)/534 964718 950790 347109 698005 543965 487621 948571 069526 239103 484704 802831 734005 977420 003049 056934 149951 753603 182028 979748 204222 291705 376906 167231 205571 702684 809835 932629 825741 427171 501687 337207 037247 458625 644291 684043 972934 073143 453826 059196 393377 602615 179069 717156 135115 805384 303479 878402 348446 662064 374806 609144 596725 717885 554002 271166 194070 013778 700354 423021 119211 606363 894935 756368 518017 299042 293819 632390 927085 908256 545529 206600 682452 667006 678492 888230 610308 352683 658290 434071 211176 397110 154754 985859 438505 656084 992090 805241 229955 940591 097374 479191 963034 744618 140125 557371 (573 digits), a[1081] = 1
                                                                                      A[1082]/B[1082] = 14 354509 705401 667542 256261 346898 208568 613483 211425 299611 892815 385055 386948 089144 891199 077853 958145 324621 435712 541629 730581 173811 568371 071963 153911 559939 010949 481925 225766 019537 211265 358475 727206 159314 782105 588850 987573 015153 516248 934015 984023 306993 928501 750143 700574 456973 388351 864458 457208 804349 891090 790549 311958 829777 948538 526854 609838 905583 488240 451344 141665 517217 181561 391622 484640 743229 027320 563665 271732 972700 341639 806965 165279 364769 196532 078963 203441 993966 089972 491419 743153 613094 138901 196086 826520 033037 975168 978971 782788 664369 667725 177090 647227 706986 519717 819109 (572 digits)/1395 165404 390537 089692 405370 776001 872049 928120 459855 182752 655604 601697 623157 539989 167427 016359 663201 888511 219431 811101 137661 180569 325437 922113 863677 704856 448750 358708 291862 602719 169389 992680 319389 222113 201205 700771 800169 950123 345117 725568 729909 191980 198969 559800 391033 082364 077585 825116 399144 398930 989214 217058 795662 324180 096119 493148 810178 724762 300190 896436 519967 520581 899184 274126 120465 225669 431321 389440 915842 727915 510938 421446 728119 416126 058462 251405 126365 234071 309103 354458 735348 914043 882667 382799 568272 803647 460466 363139 701180 121043 889205 886713 254694 392889 199416 781494 (574 digits), a[1082] = 2
                                                                                      A[1083]/B[1083] = 91 631177 117569 110623 763771 372978 349336 629439 937667 795511 686351 181310 038506 571439 107820 869286 151322 422727 066350 094213 222667 463796 373018 458007 564158 902514 288080 653068 164714 679398 073788 870296 411192 965719 792252 560255 986883 113252 657849 937978 564191 610033 261161 139422 503011 633380 667859 584172 311260 134165 939506 850856 811836 064089 564684 985407 085153 504110 469737 097588 263640 121804 536774 725502 079056 651410 307786 801949 817984 556964 347999 833569 910129 542948 778366 256541 663208 974621 687719 724589 861007 847864 958446 656323 011543 316679 021472 101804 450252 123267 600374 158677 817534 474405 609996 095914 (572 digits)/8905 957145 294012 885264 130230 199976 719921 517293 828657 335619 418332 413017 472951 217355 007611 155092 129163 084670 498619 846355 030189 375121 329533 699914 387637 931823 502338 084879 576917 043486 518027 293288 953582 791304 851525 888674 773953 773883 524532 412608 772832 754496 372887 075958 481314 299568 768994 829100 743313 055650 310091 911497 370699 662966 130719 230059 055142 362352 501499 801640 239016 729855 290041 401125 240808 653058 881747 969036 422142 275749 611159 735281 051169 163763 029266 396661 368499 757111 512910 560823 623269 881373 450759 282656 848142 477969 754888 984079 437036 666854 432609 799471 491201 101953 336626 246335 (574 digits), a[1083] = 6
                                                                                      A[1084]/B[1084] = 472 510395 293247 220661 075118 211789 955251 760682 899764 277170 324571 291605 579480 946340 430303 424284 714757 438256 767463 012695 843918 492793 433463 362000 974706 072510 451352 747266 049339 416527 580209 709957 783170 987913 743368 390130 921988 581416 805498 623908 804981 357160 234307 447256 215632 623876 727649 785320 013509 475179 588625 044833 371139 150225 771963 453890 035606 426135 836925 939285 459866 126239 865435 019132 879924 000280 566254 573414 361655 757522 081638 974814 715927 079513 088363 361671 519486 867074 528571 114369 048192 852418 931134 477701 884236 616433 082529 487994 034049 280707 669595 970479 734900 079014 569698 298679 (573 digits)/45924 951130 860601 516013 056521 775885 471657 514589 603141 860849 747266 666784 987913 626764 205482 791820 309017 311863 712531 042876 288608 056175 973106 421685 801867 363973 960440 783106 176447 820151 759526 459125 087303 178637 458835 144145 669938 819540 967779 788612 594072 964462 063404 939592 797604 580207 922559 970620 115709 677182 539673 774545 649160 639010 749715 643444 085890 536524 807689 904637 715051 169858 349391 279752 324508 490963 840061 234623 026554 106663 566737 097851 983965 234941 204794 234711 968864 019628 873656 158576 851698 320911 136463 796083 808985 193496 234911 283536 886363 455316 052254 884070 710699 902655 882548 013169 (575 digits), a[1084] = 5
                                                                                      A[1085]/B[1085] = 564 141572 410816 331284 838889 584768 304588 390122 837432 072682 010922 472915 617987 517779 538124 293570 866079 860983 833813 106909 066585 956589 806481 820008 538864 975024 739433 400334 214054 095925 653998 580254 194363 953633 535620 950386 908871 694669 463348 561887 369172 967193 495468 586678 718644 257257 395509 369492 324769 609345 528131 895690 182975 214315 336648 439297 120759 930246 306663 036873 723506 248044 402209 744634 958980 651690 874041 375364 179640 314486 429638 808384 626056 622461 866729 618213 182695 841696 216290 838958 909200 700283 889581 134024 895779 933112 104001 589798 484301 403975 269970 129157 552434 553420 179694 394593 (573 digits)/54830 908276 154614 401277 186751 975862 191579 031883 431799 196469 165599 079802 460864 844119 213093 946912 438180 396534 211150 889231 318797 431297 302640 121600 189505 295797 462778 867985 753364 863638 277553 752414 040885 969942 310361 032820 443892 593424 492312 201221 366905 718958 436292 015551 278918 879776 691554 799720 859022 732832 849765 686043 019860 301976 880434 873503 141032 898877 309189 706277 954067 899713 639432 680877 565317 144022 721809 203659 448696 382413 177896 833133 035134 398704 234060 631373 337363 776740 386566 719400 474968 202284 587223 078740 657127 671465 989800 267616 323400 122170 484864 683542 201901 004609 219174 259504 (575 digits), a[1085] = 1
                                                                                      A[1086]/B[1086] = 2729 076684 936512 545800 430676 550863 173605 321174 249492 567898 368261 183268 051431 017458 582800 598568 179076 882192 102715 440332 110262 319152 659390 642035 130165 972609 409086 348602 905555 800230 196204 030974 560626 802447 885852 191678 557475 360094 658892 871458 281673 225934 216181 793971 090209 652906 309687 263289 312587 912561 701152 627594 103040 007487 118557 211078 518646 147121 063578 086780 353891 118417 474273 997672 715846 607044 062420 074871 080217 015467 800194 208353 220153 569360 555281 834524 250270 233859 393734 470204 684995 653554 489459 013801 467356 348881 498535 847187 971254 896608 749476 487109 944638 292695 288475 877051 (574 digits)/265248 584235 479059 121121 803529 679334 237973 642123 330338 646726 409662 985994 831373 003241 057858 579470 061738 898000 557134 599801 563797 781365 183666 908086 559888 547163 811556 255049 189907 274704 869741 468781 250847 058406 700279 275427 445509 193238 937028 593498 061695 840295 808573 001797 913280 099314 688779 169503 551800 608513 938736 518717 728601 846918 271455 137456 650022 132034 044448 729749 531322 768712 907122 003262 585777 067054 727298 049260 821339 636316 278324 430384 124502 829758 141036 760205 318319 126590 419923 036178 751571 130049 485356 111046 437495 879360 194112 354002 179963 943997 991713 618239 518303 921092 759245 051185 (576 digits), a[1086] = 4
                                                                                      A[1087]/B[1087] = 8751 371627 220353 968686 130919 237357 825404 353645 585909 776377 115706 022719 772280 570155 286526 089275 403310 507560 141959 427905 397372 914047 784653 746113 929362 892852 966692 446142 930721 496616 242610 673177 876244 360977 193177 525422 581297 774953 440027 176262 214192 644996 144013 968591 989273 215976 324571 159360 262533 347030 631589 778472 492095 236776 692320 072532 676698 371609 497397 297214 785179 603296 825031 737653 106520 472823 061301 599977 420291 360889 830221 433444 286517 330543 532575 121785 933506 543274 397494 249572 964187 660947 357958 175429 297848 979756 599609 131362 398066 093801 518399 590487 386349 431506 045122 025746 (574 digits)/850576 660982 591791 764642 597341 013864 905499 958253 422815 136648 394588 037786 954983 853842 386669 685322 623397 090535 882554 688636 010190 775392 853640 845859 869170 937288 897447 633133 323086 687752 886778 158757 793427 145162 411198 859102 780420 173141 303397 981715 551993 239845 862011 020945 018759 177720 757892 308231 514424 558374 665975 242196 205665 842731 694800 285873 091099 294979 442535 895526 548036 205852 360798 690665 322648 345186 903703 351441 912715 291362 012870 124285 408642 887978 657170 911989 292321 156511 646335 827936 729681 592433 043291 411879 969615 309546 572137 329622 863291 954164 460005 538260 756812 767887 496909 413059 (576 digits), a[1087] = 3
                                                                                      A[1088]/B[1088] = 11480 448312 156866 514486 561595 788220 999009 674819 835402 344275 483967 205987 823711 587613 869326 687843 582387 389752 244674 868237 507635 233200 444044 388149 059528 865462 375778 794745 836277 296846 438814 704152 436871 163425 079029 717101 138773 135048 098920 047720 495865 870930 360195 762563 079482 868882 634258 422649 575121 259592 332742 406066 595135 244263 810877 283611 195344 518730 560975 383995 139070 721714 299305 735325 822367 079867 123721 674848 500508 376357 630415 641797 506670 899904 087856 956310 183776 777133 791228 719777 649183 314501 847417 189230 765205 328638 098144 978550 369320 990410 267876 077597 330987 724201 333597 902797 (575 digits)/1 115825 245218 070850 885764 400870 693199 143473 600376 753153 783374 804251 023781 786356 857083 444528 264792 685135 988536 439689 288437 573988 556758 037307 753946 429059 484452 709003 888182 512993 962457 756519 627539 044274 203569 111478 134530 225929 366380 240426 575213 613689 080141 670584 022742 932039 277035 446671 477735 066225 166888 604711 760913 934267 689649 966255 423329 741121 427013 486984 625276 079358 974565 267920 693927 908425 412241 631001 400702 734054 927678 291194 554669 533145 717736 798207 672194 610640 283102 066258 864115 481252 722482 528647 522926 407111 188906 766249 683625 043255 898162 451719 156500 275116 688980 256154 464244 (577 digits), a[1088] = 1
                                                                                      A[1089]/B[1089] = 31712 268251 534086 997659 254110 813799 823423 703285 256714 464928 083640 434695 419703 745383 025179 464962 568085 287064 631309 164380 412643 380448 672742 522412 048420 623777 718250 035634 603276 090309 120240 081482 749986 687827 351236 959624 858844 045049 637867 271703 205924 386856 864405 493718 148238 953741 593088 004659 412775 866215 297074 590605 682365 725304 314074 639755 067387 409070 619348 065205 063321 046725 423643 208304 751254 632557 308744 949674 421308 113605 091052 717039 299859 130351 708289 034406 301060 097541 979951 689128 262554 289951 052792 553890 828259 637032 795899 088463 136708 074622 054151 745682 048324 879908 712317 831340 (575 digits)/3 082227 151418 733493 536171 399082 400263 192447 159006 929122 703398 003090 085350 527697 568009 275726 214907 993669 067608 761933 265511 158167 888908 928256 353752 727289 906194 315455 409498 349074 612668 399817 413835 881975 552300 634155 128163 232278 905901 784251 132142 779371 400129 203179 066430 882837 731791 651235 263701 646874 892151 875398 764024 074201 222031 627311 132532 573342 149006 416505 146078 706754 154982 896640 078521 139499 169670 165706 152847 380825 146718 595259 233624 474934 323452 253586 256378 513601 722715 778853 556167 692187 037398 100586 457732 783837 687360 104636 696872 949803 750489 363443 851261 307046 145848 009218 341547 (577 digits), a[1089] = 2
                                                                                      A[1090]/B[1090] = 43192 716563 690953 512145 815706 602020 822433 378105 092116 809203 567607 640683 243415 332996 894506 152806 150472 676816 875984 032617 920278 613649 116786 910561 107949 489240 094028 830380 439553 387155 559054 785635 186857 851252 430266 676725 997617 180097 736787 319423 701790 257787 224601 256281 227721 822624 227346 427308 987897 125807 629816 996672 277500 969568 124951 923366 262731 927801 180323 449200 202391 768439 722948 943630 573621 712424 432466 624522 921816 489962 721468 358836 806530 030255 796145 990716 484836 874675 771180 408905 911737 604452 900209 743121 593464 965670 894044 067013 506029 065032 322027 823279 379312 604110 045915 734137 (575 digits)/4 198052 396636 804344 421935 799953 093462 335920 759383 682276 486772 807341 109132 314054 425092 720254 479700 678805 056145 201622 553948 732156 445666 965564 107699 156349 390647 024459 297680 862068 575126 156337 041374 926249 755869 745633 262693 458208 272282 024677 707356 393060 480270 873763 089173 814877 008827 097906 741436 713100 059040 480110 524938 008468 911681 593566 555862 314463 576019 903489 771354 786113 129548 164560 772449 047924 581911 796707 553550 114880 074396 886453 788294 008080 041189 051793 928573 124242 005817 845112 420283 173439 759880 629233 980659 190948 876266 870886 380497 993059 648651 815163 007761 582162 834828 265372 805791 (577 digits), a[1090] = 1
                                                                                      A[1091]/B[1091] = 74904 984815 225040 509805 069817 415820 645857 081390 348831 274131 651248 075378 663119 078379 919685 617768 718557 963881 507293 196998 332921 994097 789529 432973 156370 113017 812278 866015 042829 477464 679294 867117 936844 539079 781503 636350 856461 225147 374654 591126 907714 644644 089006 749999 375960 776365 820434 431968 400672 992022 926891 587277 959866 694872 439026 563121 330119 336871 799671 514405 265712 815165 146592 151935 324876 344981 741211 574197 343124 603567 812521 075876 106389 160607 504435 025122 785896 972217 751132 098034 174291 894403 953002 297012 421724 602703 689943 155476 642737 139654 376179 568961 427637 484018 758233 565477 (575 digits)/7 280279 548055 537837 958107 199035 493725 528367 918390 611399 190170 810431 194482 841751 993101 995980 694608 672474 123753 963555 819459 890324 334575 893820 461451 883639 296841 339914 707179 211143 187794 556154 455210 808225 308170 379788 390856 690487 178183 808928 839499 172431 880400 076942 155604 697714 740618 749142 005138 359974 951192 355509 288962 082670 133713 220877 688394 887805 725026 319994 917433 492867 284531 061200 850970 187423 751581 962413 706397 495705 221115 481713 021918 483014 364641 305380 184951 637843 728533 623965 976450 865626 797278 729820 438391 974786 563626 975523 077370 942863 399141 178606 859022 889208 980676 274591 147338 (577 digits), a[1091] = 1
                                                                                      A[1092]/B[1092] = 118097 701378 915994 021950 885524 017841 468290 459495 440948 083335 218855 716061 906534 411376 814191 770574 869030 640698 383277 229616 253200 607746 906316 343534 264319 602257 906307 696395 482382 864620 238349 652753 123702 390332 211770 313076 854078 405245 111441 910550 609504 902431 313608 006280 603682 598990 047780 859277 388570 117830 556708 583950 237367 664440 563978 486487 592851 264672 979994 963605 468104 583604 869541 095565 898498 057406 173678 198720 264941 093530 533989 434712 912919 190863 300581 015839 270733 846893 522312 506940 086029 498856 853212 040134 015189 568374 583987 222490 148766 204686 698207 392240 806950 088128 804149 299614 (576 digits)/11 478331 944692 342182 380042 998988 587187 864288 677774 293675 676943 617772 303615 155806 418194 716235 174309 351279 179899 165178 373408 622480 780242 859384 569151 039988 687488 364374 004860 073211 762920 712491 496585 734475 064040 125421 653550 148695 450465 833606 546855 565492 360670 950705 244778 512591 749445 847048 746575 073075 010232 835619 813900 091139 045394 814444 244257 202269 301046 223484 688788 278980 414079 225761 623419 235348 333493 759121 259947 610585 295512 368166 810212 491094 405830 357174 113524 762085 734351 469078 396734 039066 557159 359054 419051 165735 439893 846409 457868 935923 047792 993769 866784 471371 815504 539963 953129 (578 digits), a[1092] = 1
                                                                                      A[1093]/B[1093] = 547295 790330 889016 597608 611913 487186 519018 919372 112623 607472 526670 939626 289256 723887 176452 700068 194680 526675 040402 115463 345724 425085 414794 807110 213648 522049 437509 651596 972360 935945 632693 478130 431654 100408 628584 888658 272774 846127 820422 233329 345734 254369 343438 775121 790691 172326 011557 869077 954953 463345 153725 923078 909337 352634 694940 509071 701524 395563 719651 368827 138131 149584 624756 534198 918868 574606 435924 369078 402888 977689 948478 814727 758065 924060 706759 088479 868832 359791 840382 125794 518409 889831 365850 457548 482482 876202 025892 045437 237801 958401 169009 137924 655437 836533 974830 763933 (576 digits)/53 193607 326824 906567 478279 194989 842476 985522 629487 786101 897945 281520 408943 464977 665880 860921 391846 077590 843350 624269 313094 380247 455547 331358 738056 043594 046794 797410 726619 503990 239477 406120 441553 746125 564330 881475 005057 285268 980047 143355 026921 434401 323083 879763 134718 748081 738402 137336 991438 652274 992123 697988 544562 447226 315292 478654 665423 696882 929211 213933 672586 608788 940847 964247 344647 128817 085556 998898 746187 938046 403164 954380 262768 447391 987962 734076 639050 686186 665939 500279 563387 021893 025916 166038 114596 637728 323202 361160 908846 686555 590313 153686 326160 774696 242694 434446 959854 (578 digits), a[1093] = 4
                                                                                      A[1094]/B[1094] = 1 212689 282040 694027 217168 109350 992214 506328 298239 666195 298280 272197 595314 485047 859151 167097 170711 258391 694048 464081 460542 944649 457917 735905 957754 691616 646356 781326 999589 427104 736511 503736 609013 987010 591149 468940 090393 399628 097500 752286 377209 300973 411170 000485 556524 185064 943642 070896 597433 298477 044520 864160 430108 056042 369709 953859 504630 995900 055800 419297 701259 744366 882774 119054 163963 736235 206619 045526 936877 070719 048910 430947 064168 429051 038984 714099 192799 008398 566477 203076 758529 122849 278519 584912 955230 980155 320778 635771 313364 624370 121489 036225 668090 117825 761196 753810 827480 (577 digits)/117 865546 598342 155317 336601 388968 272141 835333 936749 865879 472834 180813 121502 085761 749956 438077 958001 506460 866600 413716 999597 382975 691337 522102 045263 127176 781077 959195 458099 081192 241875 524732 379693 226726 192701 888371 663664 719233 410560 120316 600698 434295 006838 710231 514216 008755 226250 121722 729452 377624 994480 231596 903024 985591 675979 771753 575104 596035 159468 651352 033961 496558 295775 154256 312713 492982 504607 756918 752323 486678 101842 276927 335749 385878 381755 825327 391626 134459 066230 469637 523508 082852 608991 691130 648244 441192 086298 568731 275562 309034 228419 301142 519106 020764 300893 408857 872837 (579 digits), a[1094] = 2
                                                                                      A[1095]/B[1095] = 1 759985 072371 583043 814776 721264 479401 025347 217611 778818 905752 798868 534940 774304 583038 343549 870779 453072 220723 504483 576006 290373 883003 150700 764864 905265 168406 218836 651186 399465 672457 136430 087144 418664 691558 097524 979051 672402 943628 572708 610538 646707 665539 343924 331645 975756 115968 082454 466511 253430 507866 017886 353186 965379 722344 648800 013702 697424 451364 138949 070086 882498 032358 743810 698162 655103 781225 481451 305955 473608 026600 379425 878896 187116 963045 420858 281278 877230 926269 043458 884323 641259 168350 950763 412779 462638 196980 661663 358801 862172 079890 205234 806014 773263 597730 728641 591413 (577 digits)/171 059153 925167 061884 814880 583958 114618 820856 566237 651981 370779 462333 530445 550739 415837 298999 349847 584051 709951 037986 312691 763223 146884 853460 783319 170770 827872 756606 184718 585182 481352 930852 821246 972851 757032 769846 668722 004502 390607 263671 627619 868696 329922 589994 648934 756836 964652 259059 720891 029899 986603 929585 447587 432817 991272 250408 240528 292918 088679 865285 706548 105347 236623 118503 657360 621799 590164 755817 498511 424724 505007 231307 598517 833270 369718 559404 030676 820645 732169 969917 086895 104745 634907 857168 762841 078920 409500 929892 184408 995589 818732 454828 845266 795460 543587 843304 832691 (579 digits), a[1095] = 1
                                                                                      A[1096]/B[1096] = 10 012614 643898 609246 291051 715673 389219 633064 386298 560289 827044 266540 270018 356570 774342 884846 524608 523752 797665 986499 340574 396518 872933 489409 782079 217942 488387 875510 255521 424433 098797 185887 044736 080334 048939 956564 985651 761642 815643 615829 429902 534511 738866 720107 214754 063845 523482 483168 929989 565629 583850 953592 196042 882940 981433 197859 573144 483022 312621 114043 051694 156857 044567 838107 654777 011754 112746 452783 466654 438759 181912 328076 458649 364635 854211 818390 599193 394553 197822 420371 180147 329145 120274 338730 019128 293346 305681 944088 107373 935230 520940 062399 698163 984143 749850 397018 784545 (578 digits)/973 161316 224177 464741 411004 308758 845235 939616 767938 125786 326731 492480 773729 839458 829142 933074 707239 426719 416355 603648 563056 199091 425761 789405 961858 981030 920441 742226 381692 007104 648640 178996 485928 090984 977865 737605 007274 741745 363596 438674 738797 777776 656451 660204 758889 792940 049511 417021 333907 527124 927499 879524 140962 149681 632341 023794 777746 060625 602867 977780 566702 023294 478890 746774 599516 601980 455431 536006 244880 610300 626878 433465 328338 552230 230348 622347 545010 237687 727080 319222 957983 606580 783530 976974 462449 835794 133803 218192 197607 286983 322081 575286 745439 998067 018832 625382 036292 (579 digits), a[1096] = 5
                                                                                      A[1097]/B[1097] = 11 772599 716270 192290 105828 436937 868620 658411 603910 339108 732797 065408 804959 130875 357381 228396 395387 976825 018389 490982 916580 686892 755936 640110 546944 123207 656794 094346 906707 823898 771254 322317 131880 498998 740498 054089 964703 434045 759272 188538 040441 181219 404406 064031 546400 039601 639450 565623 396500 819060 091716 971478 549229 848320 703777 846659 586847 180446 763985 252992 121781 039355 076926 581918 352939 666857 893971 934234 772609 912367 208512 707502 337545 551752 817257 239248 880472 271784 124091 463830 064470 970404 288625 289493 431907 755984 502662 605751 466175 797402 600830 267634 504178 757407 347581 125660 375958 (578 digits)/1144 220470 149344 526626 225884 892716 959854 760473 334175 777767 697510 954814 304175 390198 244980 232074 057087 010771 126306 641634 875747 962314 572646 642866 745178 151801 748314 498832 566410 592287 129993 109849 307175 063836 734898 507451 675996 746247 754203 702346 366417 646472 986374 250199 407824 549777 014163 676081 054798 557024 914103 809109 588549 582499 623613 274203 018274 353543 691547 843066 273250 128641 715513 865278 256877 223780 045596 291823 743392 035025 131885 664772 926856 385500 600067 181751 575687 058333 459250 289140 044878 711326 418438 834143 225290 914714 543304 148084 382016 282573 140814 030115 590706 793527 562420 468686 868983 (580 digits), a[1097] = 1
                                                                                      A[1098]/B[1098] = 45 330413 792709 186116 608537 026486 995081 608299 198029 577616 025435 462766 684895 749196 846486 570035 710772 454227 852834 459448 090316 457197 140743 409741 422911 587565 458770 158550 975644 896129 412560 152838 440377 577330 270434 118834 879762 063780 093460 181443 551226 078169 952084 912201 853954 182650 441834 180039 119492 022809 859001 868027 843732 427903 092766 737838 333686 024362 604576 873019 417037 274922 275347 583862 713596 012327 794662 255487 784484 175860 807450 450583 471286 019894 305983 536137 240610 209905 570096 811861 373560 240357 986150 207210 314851 561299 813669 761342 505901 327438 323430 865303 210700 256365 792593 773999 912419 (578 digits)/4405 822726 672211 044620 088658 986909 724800 221036 770465 459089 419264 356923 686256 010053 564083 629296 878500 459032 795275 528553 190300 086035 143701 718006 197393 436436 165385 238724 080923 783966 038619 508544 407453 282495 182561 259960 035264 980488 626207 545713 838050 717195 615574 410802 982363 442271 092002 445264 498303 198199 669811 306852 906610 897180 503180 846403 832569 121256 677511 506979 386452 409219 625432 342609 370148 273320 592220 411477 475056 715376 022535 427784 108907 708732 030550 167602 272071 412688 104831 186643 092619 740560 038847 479404 138322 579937 763715 662445 343656 134702 744523 665633 517560 378649 706094 031442 643241 (580 digits), a[1098] = 3
                                                                                      A[1099]/B[1099] = 283 755082 472525 308989 757050 595859 839110 308206 792087 804804 885409 842008 914333 626056 436300 648610 660022 702192 135396 247671 458479 430075 600397 098559 084413 648600 409415 045652 760577 200675 246615 239347 774145 962980 363102 767099 243275 816726 320033 277199 347797 650239 116915 537242 670125 135504 290455 645858 113452 955919 245728 179645 611624 415739 260378 273689 588963 326622 391446 491108 624004 688888 729012 085094 634515 740824 661945 467161 479514 967532 053215 411003 165261 671118 653158 456072 324133 531217 544672 334998 305832 412552 205526 532755 321017 123783 384681 173806 501583 762032 541415 459453 768380 295602 103143 769659 850472 (579 digits)/27579 156830 182610 794346 757838 814175 308656 086693 956968 532304 213097 096356 421711 450519 629482 007855 328089 764967 897959 812954 017548 478525 434856 950903 929538 770418 740625 931177 051953 296083 361710 161115 751894 758807 830266 067211 887586 629179 511448 976629 394721 949646 679820 715017 302005 203403 566178 347668 044617 746222 932971 650227 028214 965582 642698 352626 013689 081083 756616 884942 591964 583959 468107 920934 477766 863703 598918 760688 593732 327281 267098 231477 580302 637892 783368 187365 208115 534462 088237 408998 600597 154686 651523 710568 055226 394341 125598 122756 443953 090789 607956 023916 696069 065425 798984 657342 728429 (581 digits), a[1099] = 6
                                                                                      A[1100]/B[1100] = 2031 615991 100386 349044 907891 197505 868853 765746 742644 211250 223304 356829 085231 131591 900591 110310 330931 369572 800608 193148 299672 467726 343523 099655 013807 127768 324675 478120 299685 300856 138866 828272 859399 318192 812153 488529 582692 780864 333693 121838 985809 629843 770493 672900 544830 131180 475023 701045 913662 714244 579099 125547 125103 338077 915414 653665 456429 310719 344702 310779 785070 097143 378432 179525 155206 198100 428280 525618 141088 948585 179958 327605 628117 717724 878092 728643 509544 928428 382803 156849 514387 128223 424835 936497 561971 427783 506437 977988 016987 661666 113339 081479 589362 325580 514600 161618 865723 (580 digits)/197459 920537 950486 605047 393530 686136 885392 827894 469245 185218 910944 031418 638236 163690 970457 684284 175128 813808 080994 219231 313139 435713 187700 374333 704164 829367 349766 756963 444596 856549 570590 636354 670716 594149 994423 730443 248371 384745 206350 382119 601104 364722 374319 415924 096399 866096 055250 878940 810627 421760 200612 858442 104115 656259 002069 314785 928392 688842 973829 701577 530204 496935 902187 789150 714516 319245 784651 736297 631183 006344 892223 048127 171026 173981 514127 479158 728880 153922 722493 049633 296799 823366 599513 453380 524907 340325 642902 521740 451327 770230 000215 833050 390043 836630 298986 632841 742244 (582 digits), a[1100] = 7
                                                                                      A[1101]/B[1101] = 2315 371073 572911 658034 664941 793365 707964 073953 534732 016055 108714 198837 999564 757648 336891 758920 990954 071764 936004 440819 758151 897801 943920 198214 098220 776368 734090 523773 060262 501531 385482 067620 633545 281173 175256 255628 825968 597590 653726 399038 333607 280082 887409 210143 214955 266684 765479 346904 027115 670163 824827 305192 736727 753817 175792 927355 045392 637341 736148 801888 409074 786032 107444 264619 789721 938925 090225 992779 620603 916117 233173 738608 793379 388843 531251 184715 833678 459645 927475 491847 820219 540775 630362 469252 882988 551566 891119 151794 518571 423698 654754 540933 357742 621182 617743 931278 716195 (580 digits)/225039 077368 133097 399394 151369 500312 194048 914588 426213 717523 124041 127775 059947 614210 599939 692139 503218 578775 978954 032185 330687 914238 622557 325237 633703 599786 090392 688140 496550 152632 932300 797470 422611 352957 824689 797655 135958 013924 717799 358748 995826 314369 054140 130941 398405 069499 621429 226608 855245 167983 133584 508669 132330 621841 644767 667411 942081 769926 730446 586520 122169 080895 370295 710085 192283 182949 383570 496986 224915 333626 159321 279604 751328 811874 297495 666523 936995 688384 810730 458631 897396 978053 251037 163948 580133 734666 768500 644496 895280 861019 608171 856967 086112 902056 097971 290184 470673 (582 digits), a[1101] = 1
                                                                                      A[1102]/B[1102] = 4346 987064 673298 007079 572832 990871 576817 839700 277376 227305 332018 555667 084795 889240 237482 869231 321885 441337 736612 633968 057824 365528 287443 297869 112027 904137 058766 001893 359947 802387 524348 895893 492944 599365 987409 744158 408661 378454 987419 520877 319416 909926 657902 883043 759785 397865 240503 047949 940778 384408 403926 430739 861831 091895 091207 581020 501821 948061 080851 112668 194144 883175 485876 444144 944928 137025 518506 518397 761692 864702 413132 066214 421497 106568 409343 913359 343223 388074 310278 648697 334606 668999 055198 405750 444959 979350 397557 129782 535559 085364 768093 622412 947104 946763 132344 092897 581918 (580 digits)/422498 997906 083584 004441 544900 186449 079441 742482 895458 902742 034985 159193 698183 777901 570397 376423 678347 392584 059948 251416 643827 349951 810257 699571 337868 429153 440159 445103 941147 009182 502891 433825 093327 947107 819113 528098 384329 398669 924149 740868 596930 679091 428459 546865 494804 935595 676680 105549 665872 589743 334197 367111 236446 278100 646836 982197 870474 458769 704276 288097 652373 577831 272483 499235 906799 502195 168222 233283 856098 339971 051544 327731 922354 985855 811623 145682 665875 842307 533223 508265 194196 801419 850550 617329 105041 074992 411403 166237 346608 631249 608387 690017 476156 738686 396957 923026 212917 (582 digits), a[1102] = 1
                                                                                      A[1103]/B[1103] = 71867 164108 345679 771307 830269 647310 937049 509157 972751 652940 421011 089511 356298 985492 136617 666622 141121 133168 721806 584308 683341 746254 543012 964119 890667 242561 674346 554066 819427 339731 775064 401916 520658 871028 973812 162163 364550 652870 452438 733075 444277 838909 413855 338843 371521 632528 613528 114103 079569 820698 287650 197030 526025 224138 635114 223683 074543 806319 029766 604579 515392 916839 881467 370938 908572 131333 386330 287143 807689 751355 843286 798039 537333 093938 080753 798465 325252 668834 891933 871005 173926 244760 513536 961260 002348 221173 252033 228315 087516 789534 944252 499540 511421 769392 735249 417640 026883 (581 digits)/6 985023 043865 470441 470458 869772 483497 465116 794314 753556 161395 683803 674874 230888 060635 726297 714918 356776 860120 938126 054851 631925 513467 586680 518379 039598 466241 132943 809803 554902 299552 978563 738671 915858 506682 930506 247229 285228 392643 504195 212646 546717 179831 909492 880789 315284 039030 448310 915403 509206 603876 480742 382448 915471 071451 994159 382577 869673 110241 998867 196082 560146 326195 730031 697859 701075 218072 075126 229527 922488 773162 984030 523315 509008 585567 283465 997446 591009 165305 342306 590875 004545 800770 859847 041214 260790 934545 350951 304294 441018 961013 342374 897246 704620 721038 449298 058603 877345 (583 digits), a[1103] = 16
                                                                                      A[1104]/B[1104] = 76214 151173 018977 778387 403102 638182 513867 348858 250127 880245 753029 645178 441094 874732 374100 535853 463006 574506 458419 218276 741166 111782 830456 261989 002695 146698 733112 555960 179375 142119 299413 297810 013603 470394 961221 906321 773212 031325 439858 253952 763694 748836 071758 221887 131307 030393 854031 162053 020348 205106 691576 627770 387856 316033 726321 804703 576365 754380 110617 717247 709537 800015 367343 815083 853500 268358 904836 805541 569382 616058 256418 864253 958830 200506 490097 711824 668476 056909 202212 519702 508532 913759 568735 367010 447308 200523 649590 358097 623075 874899 712346 121953 458526 716155 867593 510537 608801 (581 digits)/7 407522 041771 554025 474900 414672 669946 544558 536797 649015 064137 718788 834067 929071 838537 296695 091342 035124 252704 998074 306268 275752 863419 396938 217950 377466 895394 573103 254907 496049 308735 481455 172497 009186 453790 749619 775327 669557 791313 428344 953515 143647 858923 337952 427654 810088 974626 124991 020953 175079 193619 814939 749560 151917 349552 640996 364775 740147 569011 703143 484180 212519 904027 002515 197095 607874 720267 243348 462811 778587 113134 035574 851047 431363 571423 095089 143129 256885 007612 875530 099140 198742 602190 710397 658543 365832 009537 762354 470531 787627 592262 950762 587264 180777 459724 846255 981630 090262 (583 digits), a[1104] = 1
                                                                                      A[1105]/B[1105] = 376723 768800 421590 884857 442680 200040 992518 904590 973263 173923 433129 670225 120678 484421 633019 810035 993147 431194 555483 457415 648006 193385 864838 012075 901447 829356 606796 777907 536927 908208 972717 593156 575072 752608 818699 787450 457398 778172 211871 748886 499056 834253 700888 226391 896749 754104 029652 762315 160962 641125 053956 708112 077450 488273 540401 442497 380006 823839 472237 473570 353544 116901 350842 631274 322573 204769 005677 509310 085220 215588 868962 255055 372653 895964 041144 645763 999156 896471 700783 949815 208057 899798 788478 429301 791581 023267 850394 660705 579820 289133 793636 987354 345528 634016 205623 459790 462087 (582 digits)/36 615111 210951 686543 370060 528463 163283 643350 941505 349616 417946 558959 011145 947175 414784 913078 080286 497273 870940 930423 279924 734936 967145 174433 390180 549466 047819 425356 829433 539099 534494 904384 428659 952604 321845 928985 348539 963459 557897 217575 026707 121308 615525 261302 591408 555639 937534 948274 999216 209523 378355 740501 380689 523140 469662 558144 841680 830263 386288 811441 132803 410225 942303 740092 486242 132574 099141 048520 080775 036837 225699 126329 927505 234462 871259 663822 569963 618549 195756 844426 987435 799516 209533 701437 675387 724118 972696 400369 186421 591529 330065 145425 246303 427730 559937 834321 985124 238393 (584 digits), a[1105] = 4
                                                                                      A[1106]/B[1106] = 2 713280 532775 970113 972389 501864 038469 461499 680995 062970 097709 784937 336754 285844 265683 805239 206105 415038 592868 346803 420186 277209 465483 884322 346520 312829 952194 980690 001312 937870 499582 108436 449906 039112 738656 692120 418474 975003 478530 922960 496158 257092 588611 977975 806630 408555 309122 061600 498259 147086 692982 069273 584554 930009 733948 509131 902185 236413 521256 416280 032240 184346 618324 823242 234004 111512 701741 944579 370712 165924 125180 339154 649641 567407 472254 778110 232172 662574 332211 107700 168408 964938 212351 088084 372122 988375 363398 602352 983036 681817 898836 267805 033433 877227 154269 306957 729070 843410 (583 digits)/263 713300 518433 359829 065324 113914 812932 048015 127335 096329 989763 631501 912089 559299 742031 688241 653347 516041 349291 511037 265741 420311 633435 617971 949214 223729 230130 550601 060942 269746 050199 812146 173116 677416 706712 252517 215107 413774 696593 951370 140464 992808 167600 167070 567514 699568 537370 762916 015466 641742 842109 998449 414386 813900 637190 548010 256541 551991 273033 383231 413804 084101 500153 183162 600790 535893 414254 582989 028237 036447 693027 919884 343584 072603 670240 741847 132874 586729 377910 786519 011190 795356 068926 620461 386257 434664 818412 564938 775482 928332 902718 968739 311388 174891 379289 686509 877499 759013 (585 digits), a[1106] = 7
                                                                                      A[1107]/B[1107] = 8 516565 367128 331932 802025 948272 315449 377017 947576 162173 467052 787941 680487 978211 281473 048737 428352 238263 209799 595893 717974 479634 589837 517805 051636 839937 685941 548866 781846 350539 406955 298026 942874 692410 968578 895061 042875 382409 213764 980753 237361 270334 600089 634815 646283 122415 681470 214454 257092 602222 720071 261777 461776 867479 690119 067797 149053 089247 387608 721077 570290 906583 971875 820569 333286 657111 309994 839415 621446 582992 591129 886426 203980 074876 312728 375475 342281 986879 893105 023884 455042 102872 536852 052731 545670 756707 113463 657453 609815 625273 985642 597052 087655 977210 096824 126496 647002 992317 (583 digits)/827 755012 766251 766030 566032 870207 602079 787396 323510 638606 387237 453464 747414 625074 640879 977803 040329 045397 918815 463535 077148 995871 867452 028349 237823 220653 738211 077160 012260 348337 685094 340822 948009 984854 441982 686536 993862 204783 647679 071685 448102 099733 118325 762514 293952 654345 549647 237023 045616 134751 904685 735849 623849 964842 381234 202175 611305 486237 205388 961135 374215 662530 442763 289580 288613 740254 341904 797487 165486 146180 304782 885982 958257 452273 881981 889363 968587 378737 329489 203984 021008 185584 416313 562821 834160 028113 427934 095185 512870 376528 038222 051643 180467 952404 697806 893851 617623 515432 (585 digits), a[1107] = 3
                                                                                      A[1108]/B[1108] = 11 229845 899904 302046 774415 450136 353918 838517 628571 225143 564762 572879 017242 264055 547156 853976 634457 653301 802667 942697 138160 756844 055321 402127 398157 152767 638136 529556 783159 288409 906537 406463 392780 731523 707235 587181 461350 357412 692295 903713 733519 527427 188701 612791 452913 530970 990592 276054 755351 749309 413053 331051 046331 797489 424067 576929 051238 325660 908865 137357 602531 090930 590200 643811 567290 768624 011736 783994 992158 748916 716310 225580 853621 642283 784983 153585 574454 649454 225316 131584 623451 067810 749203 140815 917793 745082 476862 259806 592852 307091 884478 864857 121089 854437 251093 433454 376073 835727 (584 digits)/1091 468313 284685 125859 631356 984122 415011 835411 450845 734936 377001 084966 659504 184374 382911 666044 693676 561439 268106 974572 342890 416183 500887 646321 187037 444382 968341 627761 073202 618083 735294 152969 121126 662271 148694 939054 208969 618558 344273 023055 588567 092541 285925 929584 861467 353914 087017 999939 061082 776494 746795 734299 038236 778743 018424 750185 867847 038228 478422 344366 788019 746631 942916 472742 889404 276147 756159 380476 193723 182627 997810 805867 301841 524877 552222 631211 101461 965466 707399 990503 032198 980940 485240 183283 220417 462778 246346 660124 288353 304860 940941 020382 491856 127296 077096 580361 495123 274445 (586 digits), a[1108] = 1
                                                                                      A[1109]/B[1109] = 132 044870 266075 654447 320595 899772 208556 600711 861859 638752 679441 089610 870152 882822 300198 442480 407386 424583 039146 965562 237742 804919 198372 941206 431365 520381 705443 373991 396598 523048 378866 769124 263462 739171 748170 354057 117729 313948 829019 921604 306076 072033 675807 375521 628331 963096 577985 251056 565961 844626 263657 903338 971426 639863 354862 414016 712674 671517 385125 232011 198132 906820 464082 902496 573485 111975 439099 463360 535192 821076 470542 367815 593818 139997 947543 064916 661283 130876 371582 471315 313003 848790 778086 601706 641401 952614 358948 515326 131191 003284 714910 110480 419644 376019 858851 894494 783815 185314 (585 digits)/12833 906458 897788 150486 510959 695554 167209 976922 282813 722906 534249 388098 001960 653192 852908 304294 670771 221229 867992 183830 848943 573890 377216 137882 295235 108866 389968 982531 817489 147258 773330 023483 280403 269837 077627 016133 292528 008925 434682 325296 922340 117687 263510 987947 770093 547400 506845 236352 717526 676194 119438 813139 044454 531015 583906 454220 157622 906750 468034 749170 042432 875481 814844 489752 072060 777879 659657 982725 296441 155088 280701 750523 278514 225926 956430 832686 084668 998871 110889 099517 375196 975929 753955 578937 258752 118674 137747 356552 684756 729998 388573 275850 590885 352661 545869 277828 063979 534327 (587 digits), a[1109] = 11
                                                                                      A[1110]/B[1110] = 275 319586 432055 610941 415607 249680 771032 039941 352290 502648 923644 752100 757548 029700 147553 738937 449230 502467 880961 873821 613646 366682 452067 284540 260888 193531 049023 277539 576356 334506 664270 944711 919706 209867 203576 295295 696808 985310 350335 746922 345671 671494 540316 363834 709577 457164 146562 778167 887275 438561 940369 137728 989185 077216 133792 404962 476587 668695 679115 601379 998796 904571 518366 448804 714260 992574 889935 710716 062544 391069 657394 961212 041257 922279 680069 283418 897020 911206 968481 074215 249458 765392 305376 344229 200597 650311 194759 290458 855234 313661 314299 085817 960378 606476 968797 222443 943704 206355 (585 digits)/26759 281231 080261 426832 653276 375230 749431 789256 016473 180749 445499 861162 663425 490760 088728 274634 035219 003899 004091 342234 040777 563964 255319 922085 777507 662115 748279 592824 708180 912601 281954 199935 681933 201945 303948 971320 794025 636409 213637 673649 433247 327915 812947 905480 401654 448715 100708 472644 496136 128882 985673 360577 127145 840774 186237 658626 183092 851729 414491 842706 872885 497595 572605 452247 033525 831907 075475 345926 786605 492804 559214 306913 858869 976731 465084 296583 270799 963208 929178 189537 782592 932799 993151 341157 737921 700126 521841 373229 657866 764857 718087 572083 673626 832619 168835 136017 623082 343099 (587 digits), a[1110] = 2
                                                                                      A[1111]/B[1111] = 407 364456 698131 265388 736203 149452 979588 640653 214150 141401 603085 841711 627700 912522 447752 181417 856616 927050 920108 839383 851389 171601 650440 225746 692253 713912 754466 651530 972954 857555 043137 713836 183168 949038 951746 649352 814538 299259 179355 668526 651747 743528 216123 739356 337909 420260 724548 029224 453237 283188 204027 041067 960611 717079 488654 818979 189262 340213 064240 833391 196929 811391 982449 351301 287746 104550 329035 174076 597737 212146 127937 329027 635076 062277 627612 348335 558304 042083 340063 545530 562462 614183 083462 945935 841999 602925 553707 805784 986425 316946 029209 196298 380022 982496 827649 116938 727519 391669 (585 digits)/39593 187689 978049 577319 164236 070784 916641 766178 299286 903655 979749 249260 665386 143952 941636 578928 705990 225128 872083 526064 889721 137854 632536 059968 072742 770982 138248 575356 525670 059860 055284 223418 962336 471782 381575 987454 086553 645334 648319 998946 355587 445603 076458 893428 171747 996115 607553 708997 213662 805077 105112 173716 171600 371789 770144 112846 340715 758479 882526 591876 915318 373077 387449 941999 105586 609786 735133 328652 083046 647892 839916 057437 137384 202658 421515 129269 355468 962080 040067 289055 157789 908729 747106 920094 996673 818800 659588 729782 342623 494856 106660 847934 264512 185280 714704 413845 687061 877426 (587 digits), a[1111] = 1
                                                                                      A[1112]/B[1112] = 4348 964153 413368 264828 777638 744210 566918 446473 493791 916664 954503 169217 034557 154924 625075 553116 015399 772977 082050 267660 127538 082698 956469 542007 183425 332658 593689 792849 305904 910057 095648 083073 751395 700256 721042 788823 842191 977902 143892 432188 863149 106776 701553 757398 088671 659771 392043 070412 419648 270443 980639 548408 595302 248011 020340 594754 369211 070826 321523 935291 968095 018491 342859 961817 591722 038078 180287 451482 039916 512530 936768 251488 392018 545055 956192 766774 480061 332040 369116 529520 874084 907223 140005 803587 620593 679566 731837 348308 719487 483121 606391 048801 760608 431445 245288 391831 218898 123045 (586 digits)/422691 158130 860757 200024 295637 083079 915849 451039 009342 217309 242992 353769 317286 930289 505094 063921 095121 255187 724926 602882 937988 942510 580680 521766 504935 371937 130765 346389 964881 511201 834796 434125 305297 919769 119708 845861 659562 089755 696837 663112 989121 783946 577536 839762 119134 409871 176245 562616 632764 179654 036795 097738 843149 558671 887678 787089 590250 436528 239757 761476 026069 228369 447104 872238 089391 929774 426808 632447 617071 971732 958374 881285 232712 003315 680235 589276 825489 584009 329851 080089 360492 020097 464220 542107 704659 888133 117728 671053 084101 713418 784696 051426 318748 685426 315879 274474 493701 117359 (588 digits), a[1112] = 10
                                                                                      A[1113]/B[1113] = 22152 185223 764972 589532 624396 870505 814180 873020 683109 724726 375601 687796 800486 687145 573129 946997 933615 791936 330360 177684 489079 585096 432787 935782 609380 377205 722915 615777 502479 407840 521378 129204 940147 450322 556960 593472 025498 188769 898817 829470 967493 277411 723892 526346 781267 719117 684763 381286 551478 635408 107224 783110 937122 957134 590357 792751 035317 694344 671860 509851 037404 903848 696749 160389 246356 294941 230472 431486 797319 774800 811778 586469 595168 787557 408576 182207 958610 702285 185646 193134 932887 150298 783491 963873 944968 000759 212894 547328 583862 732554 061164 440307 183065 139723 054091 076094 822010 006894 (587 digits)/2 153048 978344 281835 577440 642421 486184 495889 021373 345997 990202 194711 018107 251820 795400 467106 898534 181596 501067 496716 540479 579665 850407 535938 668800 597419 630667 792075 307306 350077 615869 229266 394045 488826 070627 980120 216762 384364 094113 132508 314511 301196 365335 964143 092238 767420 045471 488781 522080 377483 703347 289087 662410 387348 165149 208538 048294 291967 941121 081315 399257 045664 514924 622974 303189 552546 258658 869176 490890 168406 506557 631790 463863 300944 219236 822693 075653 482916 882126 689322 689501 960250 009217 068209 630633 519973 259466 248232 085047 763132 061950 030141 105065 858255 612412 294100 786218 155567 464221 (589 digits), a[1113] = 5
                                                                                      A[1114]/B[1114] = 26501 149377 178340 854361 402035 614716 381099 319494 176901 641391 330104 857013 835043 842070 198205 500113 949015 564913 412410 445344 616617 667795 389257 477789 792805 709864 316605 408626 808384 317897 617026 212278 691543 150579 278003 382295 867690 166672 042710 261659 830642 384188 425446 283744 869939 378889 076806 451698 971126 905852 087864 331519 532425 205145 610698 387505 404528 765170 993384 445143 005499 922340 039609 122206 838078 333019 410759 882968 837236 287331 748546 837957 987187 332613 364768 948982 438672 034325 554762 722655 806972 057521 923497 767461 565561 680325 944731 895637 303350 215675 667555 489108 943673 571168 299379 467926 040908 129939 (587 digits)/2 575740 136475 142592 777464 938058 569264 411738 472412 355340 207511 437703 371876 569107 725689 972200 962455 276717 756255 221643 143362 517654 792918 116619 190567 102355 002604 922840 653696 314959 127071 064062 828170 794123 990397 099829 062624 043926 183868 829345 977624 290318 149282 541679 932000 886554 455342 665027 084697 010247 883001 325882 760149 230497 723821 096216 835383 882218 377649 321073 160733 071733 743294 070079 175427 641938 188433 295985 123337 785478 478290 590165 345148 533656 222552 502928 664930 308406 466136 019173 769591 320742 029314 532430 172741 224633 147599 365960 756100 847233 775368 814837 156492 177004 297838 609980 060692 649268 581580 (589 digits), a[1114] = 1
                                                                                      A[1115]/B[1115] = 75154 483978 121654 298255 428468 099938 576379 512009 036913 007509 035811 401824 470574 371285 969540 947225 831646 921763 155181 068373 722314 920687 211302 891362 194991 796934 356126 433031 119248 043635 755430 553762 323233 751481 112967 358063 760878 522113 984238 352790 628778 045788 574785 093836 521146 476895 838376 284684 493732 447112 282953 446150 001973 367425 811754 567761 844375 224686 658629 400137 048404 748528 775967 404802 922512 960980 051992 197424 471792 349464 308872 262385 569543 452784 138114 080172 835954 770936 295171 638446 546831 265342 630487 498797 076091 361411 102358 338603 190563 163905 396275 418525 070412 282059 652850 011946 903826 266772 (587 digits)/7 304529 251294 567021 132370 518538 624713 319365 966198 056678 405225 070117 761860 390036 246780 411508 823444 735032 013577 940002 827204 614975 436243 769177 049934 802129 635877 637756 614698 979995 870011 357392 050387 077074 051422 179778 342010 472216 461850 791200 269759 881832 663901 047502 956240 540528 956156 818835 691474 397979 469349 940853 182708 848343 612791 400971 719062 056404 696419 723461 720723 189132 001512 763132 654044 836422 635525 461146 737565 739363 463138 812121 154160 368256 664341 828550 405514 099729 814398 727670 228684 601734 067846 133069 976115 969239 554664 980153 597249 457599 612687 659815 418050 212264 208089 514060 907603 454104 627381 (589 digits), a[1115] = 2
                                                                                      A[1116]/B[1116] = 2 882371 540545 801204 188067 683823 412382 283520 775837 579595 926734 690938 126343 716869 950937 040761 494695 551598 591913 309291 043546 064584 653909 418767 349553 202493 993369 849409 863809 339809 976056 323387 255246 974425 706861 570762 988718 781074 007003 443767 667703 724208 124154 267279 849532 673505 500930 935105 269709 732959 896118 840095 285219 607413 167326 457371 962455 490787 303264 021301 650350 844880 366433 526370 504717 893570 850261 386463 385098 765345 566975 485692 808609 629838 538410 613103 995550 204953 329904 771284 983624 586560 140541 882022 721750 457033 413947 834348 762558 544750 444080 726021 393061 619340 289435 107679 921908 386306 267275 (589 digits)/280 147851 685668 689395 807544 642526 308370 547645 187938 509119 606064 102178 322571 390485 103345 609536 253355 207934 272216 941750 577137 886721 370181 345347 088089 583281 165955 157592 012257 554802 187502 644960 742879 722937 944439 931406 059021 988151 734198 894956 228499 799959 377522 346792 269141 426654 789301 780783 360724 133467 718299 078303 703085 467555 009894 333142 159742 025596 841598 812618 548214 258749 800779 069120 029131 425998 338400 819561 150835 881290 077565 450769 203242 527409 467541 987844 074466 098139 413287 670642 459606 186636 607467 589089 265148 055736 224868 611797 451580 236019 057499 887823 042400 243044 205240 144294 549623 905244 422058 (591 digits), a[1116] = 38
                                                                                      A[1117]/B[1117] = 2 957526 024523 922858 486323 112291 512320 859900 287846 616508 934243 726749 528168 187444 322223 010302 441921 383245 513676 464472 111919 786899 574596 630070 240915 397485 790304 205536 296840 459058 019692 078817 809009 297659 458342 683730 346782 541952 529117 428006 020494 352986 169942 842064 943369 194651 977826 773481 554394 226692 343231 123048 731369 609386 534752 269126 530217 335162 527950 679931 050487 893285 114962 302337 909520 816083 811241 438455 582523 237137 916439 794565 070995 199381 991194 751218 075723 040908 100841 066456 622071 133391 405884 512510 220547 533124 775358 936707 101161 735313 607986 122296 811586 689752 571494 760529 933855 290132 534047 (589 digits)/287 452380 936963 256416 939915 161064 933083 867011 154136 565798 011289 172296 084431 780521 350126 021045 076799 942966 285794 881753 404342 501696 806425 114524 138024 385410 801832 795348 626956 534798 057514 002352 793266 800011 995862 111184 401032 460368 196049 686156 498259 681792 041423 394295 225381 967183 745458 599619 052198 531447 187649 019156 885794 315898 622685 734113 878804 082001 538018 536080 268937 447881 802291 832252 683176 262420 973926 280707 888401 620653 540704 262890 357402 895666 131883 816394 479980 197869 227686 398312 688290 788370 675313 722159 241264 024975 779533 591951 048829 693618 670187 547638 460450 455308 413329 658355 457227 359349 049439 (591 digits), a[1117] = 1
                                                                                      A[1118]/B[1118] = 64 990418 055548 181232 400853 041945 171120 341426 820616 526283 545852 952678 217875 653200 717620 257112 775044 599754 379119 063205 393861 589475 720438 650242 408776 549695 589758 165672 097458 980028 389589 978561 244442 225274 332057 929100 271152 162077 118469 431894 098085 136917 692953 950643 660285 761197 035293 178217 911988 493499 103972 424118 643981 404530 397124 109029 097019 529200 390228 299853 710596 603867 780641 875466 604655 031330 886331 594030 618086 745241 812211 171559 299508 816860 353500 388683 585734 064023 447567 166874 047118 387779 664116 644737 353248 652653 696485 505197 886954 986336 211789 294254 436382 104144 290825 078808 532869 479089 482262 (590 digits)/6316 647851 361897 074151 545763 024889 903131 754879 424806 390877 843136 720396 095638 781433 455992 051482 866154 010226 273909 458572 068330 422354 305108 750353 986601 676908 004443 859913 178344 785561 395296 694369 401482 523189 857544 266278 480703 655883 851242 304242 691953 117592 247413 626992 002162 737513 443932 372783 456893 293858 658928 480598 304766 101426 086294 749533 614627 747629 139988 070304 195900 664267 648907 546426 375832 936838 790852 714426 807269 915014 432354 971466 708703 336398 237102 132128 154050 253393 194702 035208 913712 742420 789055 754433 331692 580227 595074 042769 477003 802011 131438 388230 711859 804520 885162 969759 151398 451574 460277 (592 digits), a[1118] = 21
                                                                                      A[1119]/B[1119] = 67 947944 080072 104090 887176 154236 683441 201327 108463 142792 480096 679427 746043 840645 039843 267415 216965 982999 892795 527677 505781 376375 295035 280312 649691 947181 380062 371208 394299 439086 409282 057379 053451 522933 790400 612830 617934 704029 647586 859900 118579 489903 862896 792708 603654 955849 013119 951699 466382 720191 447203 547167 375351 013916 931876 378155 627236 864362 918178 979784 761084 497152 895604 177804 514175 847414 697573 032486 200609 982379 728650 966124 370504 016242 344695 139901 661457 104931 548408 233330 669189 521171 070001 157247 573796 185778 471844 441904 988116 721649 819775 416551 247968 793896 862319 839338 466724 769222 016309 (590 digits)/6604 100232 298860 330568 485678 185954 836215 621890 578942 956675 854425 892692 180070 561954 806118 072527 942953 953192 559704 340325 472672 924051 111533 864878 124626 062318 806276 655261 805301 320359 452810 696722 194749 323201 853406 377462 881736 116252 047291 990399 190212 799384 288837 021287 227544 704697 189390 972402 509091 825305 846577 499755 190560 417324 708980 483647 493431 829630 678006 606384 464838 112149 451199 378679 059009 199259 764778 995134 695671 535667 973059 234357 066106 232064 368985 948522 634030 451262 422388 433521 602003 530791 464369 476592 572956 605203 374607 634720 525833 495629 801625 935869 172310 259829 298492 628114 608625 810923 509716 (592 digits), a[1119] = 1
                                                                                      A[1120]/B[1120] = 132 938362 135620 285323 288029 196181 854561 542753 929079 669076 025949 632105 963919 493845 757463 524527 992010 582754 271914 590882 899642 965851 015473 930555 058468 496876 969820 536880 491758 419114 798872 035940 297893 748208 122458 541930 889086 866106 766056 291794 216664 626821 555850 743352 263940 717046 048413 129917 378371 213690 551175 971286 019332 418447 329000 487184 724256 393563 308407 279638 471681 101020 676246 053271 118830 878745 583904 626516 818696 727621 540862 137683 670012 833102 698195 528585 247191 168954 995975 400204 716307 908950 734117 801984 927044 838432 168329 947102 875071 707986 031564 710805 684350 898041 153144 918146 999594 248311 498571 (591 digits)/12920 748083 660757 404720 031441 210844 739347 376770 003749 347553 697562 613088 275709 343388 262110 124010 809107 963418 833613 798897 541003 346405 416642 615232 111227 739226 810720 515174 983646 105920 848107 391091 596231 846391 710950 643741 362439 772135 898534 294641 882165 916976 536250 648279 229707 442210 633323 345185 965985 119164 505505 980353 495326 518750 795275 233181 108059 577259 817994 676688 660738 776417 100106 925105 434842 136098 555631 709561 502941 450682 405414 205823 774809 568462 606088 080650 788080 704655 617090 468730 515716 273212 253425 231025 904649 185430 969681 677490 002837 297640 933064 324099 884170 064350 183655 597873 760024 262497 969993 (593 digits), a[1120] = 1
                                                                                      A[1121]/B[1121] = 466 763030 486932 960060 751263 742782 247125 829588 895702 150020 557945 575745 637802 322182 312233 840999 192997 731262 708539 300326 204710 273928 341457 071977 825097 437812 289523 981849 869574 696430 805898 165199 947132 767558 157776 238623 285195 302349 945755 735282 768573 370368 530449 022765 395477 106987 158359 341451 601496 361263 100731 461025 433348 269258 918877 839709 800006 045052 843400 818700 176127 800214 924342 337617 870668 483651 449286 912036 656700 165244 351237 379175 380542 515550 439281 725657 403030 611796 536334 433944 818113 248023 272354 563202 354930 701074 976834 283213 613331 845607 914469 548968 301021 488020 321754 593779 465507 514156 512022 (591 digits)/45366 344483 281132 544728 580001 818489 054257 752200 590190 999336 947113 731957 007198 592119 592448 444560 370277 843449 060545 737018 095682 963267 361461 710574 458309 279999 238438 200786 756239 638121 997132 869996 983444 862376 986258 308686 969055 432659 742894 874324 836710 550313 897588 966124 916667 031329 089361 007960 407047 182799 363095 440815 676539 973577 094806 183190 817610 561410 131990 636450 447054 441400 751520 153995 363535 607555 431674 123819 204495 887715 189301 851828 390534 937452 187250 190474 998272 565229 273659 839713 149152 350428 224645 169670 286904 161496 283652 667190 534345 388552 600818 908168 824820 452879 849459 421735 888698 598417 419695 (593 digits), a[1121] = 3
                                                                                      A[1122]/B[1122] = 599 701392 622553 245384 039292 938964 101687 372342 824781 819096 583895 207851 601721 816028 069697 365527 185008 314016 980453 891209 104353 239779 356931 002532 883565 934689 259344 518730 361333 115545 604770 201140 245026 515766 280234 780554 174282 168456 711812 027076 985237 997190 086299 766117 659417 824033 206772 471368 979867 574953 651907 432311 452680 687706 247878 326894 524262 438616 151808 098338 647808 901235 600588 390888 989499 362397 033191 538553 475396 892865 892099 516859 050555 348653 137477 254242 650221 780751 532309 834149 534421 156974 006472 365187 281975 539507 145164 230316 488403 553593 946034 259773 985372 386061 474899 511926 465101 762468 010593 (591 digits)/58287 092566 941889 949448 611443 029333 793605 128970 593940 346890 644676 345045 282907 935507 854558 568571 179385 806867 894159 535915 636686 309672 778104 325806 569537 019226 049158 715961 739885 744042 845240 261088 579676 708768 697208 952428 331495 204795 641429 168966 718876 467290 433839 614404 146374 473539 722684 353146 373032 301963 868601 421169 171866 492327 890081 416371 925670 138669 949985 313139 107793 217817 851627 079100 798377 743653 987305 833380 707437 338397 594716 057652 165344 505914 793338 271125 786353 269884 890750 308443 664868 623640 478070 400696 191553 346927 253334 344680 537182 686193 533883 232268 708990 517230 033115 019609 648722 860915 389688 (593 digits), a[1122] = 1
                                                                                      A[1123]/B[1123] = 1066 464423 109486 205444 790556 681746 348813 201931 720483 969117 141840 783597 239524 138210 381931 206526 378006 045279 688993 191535 309063 513707 698388 074510 708663 372501 548868 500580 230907 811976 410668 366340 192159 283324 438011 019177 459477 470806 657567 762359 753811 367558 616748 788883 054894 931020 365131 812820 581363 936216 752638 893336 886028 956965 166756 166604 324268 483668 995208 917038 823936 701450 524930 728506 860167 846048 482478 450590 132097 058110 243336 896034 431097 864203 576758 979900 053252 392548 068644 268094 352534 404997 278826 928389 636906 240582 121998 513530 101735 399201 860503 808742 286393 874081 796654 105705 930609 276624 522615 (592 digits)/103653 437050 223022 494177 191444 847822 847862 881171 184131 346227 591790 077002 290106 527627 447007 013131 549663 650316 954705 272933 732369 272940 139566 036381 027846 299225 287596 916748 496125 382164 842373 131085 563121 571145 683467 261115 300550 637455 384324 043291 555587 017604 331428 580529 063041 504868 812045 361106 780079 484763 231696 861984 848406 465904 984887 599562 743280 700080 081975 949589 554847 659218 603147 233096 161913 351209 418979 957199 911933 226112 784017 909480 555879 443366 980588 461600 784625 835114 164410 148156 814020 974068 702715 570366 478457 508423 536987 011871 071528 074746 134702 140437 533810 970109 882574 441345 537421 459332 809383 (594 digits), a[1123] = 1
                                                                                      A[1124]/B[1124] = 2732 630238 841525 656273 620406 302456 799313 776206 265749 757330 867576 775046 080770 092448 833559 778579 941020 404576 358440 274279 722480 267194 753707 151554 300892 679692 357081 519890 823148 739498 426106 933820 629345 082415 156256 818909 093237 110070 026947 551796 492860 732307 319797 343883 769207 686073 937036 097010 142595 447387 157185 218985 224738 601636 581390 660103 172799 405954 142225 932416 295682 304136 650449 847902 709835 054493 998148 439733 739591 009086 378773 308927 912751 077060 290995 214042 756726 565847 669598 370338 239489 966968 564126 221966 555788 020671 389161 257376 691874 351997 667041 877258 558160 134225 068207 723338 326320 315717 055823 (592 digits)/265593 966667 387934 937802 994332 724979 489330 891312 962203 039345 828256 499049 863120 990762 748572 594834 278713 107501 803570 081783 101424 855553 057236 398568 625229 617676 624352 549458 732136 508372 529986 523259 705919 851060 064143 474658 932596 479706 410077 255549 830050 502499 096696 775462 272457 483277 346775 075359 933191 271490 331995 145138 868679 424137 859856 615497 412231 538830 113937 212318 217488 536255 057921 545293 122204 446072 825265 747780 531303 790623 162751 876613 277103 392648 754515 194327 355604 940113 219570 604757 292910 571777 883501 541429 148468 363774 327308 368422 680238 835685 803287 513143 776612 457449 798263 902300 723565 779581 008454 (594 digits), a[1124] = 2
                                                                                      A[1125]/B[1125] = 33858 027289 207794 080728 235432 311227 940578 516406 909481 057087 552762 084150 208765 247596 384648 549485 670250 900195 990276 482891 978826 720044 742873 893162 319375 528809 833846 739270 108692 685957 523951 572187 744300 272306 313092 846086 578322 791646 980938 383917 668140 155246 454316 915488 285387 163907 609564 976942 292509 304862 638861 521159 582892 176604 143444 087842 397861 355118 701920 106034 372124 351090 330328 903339 378188 499976 460259 727395 007189 167146 788616 603169 384110 788927 068701 548413 133971 182720 103824 712153 226414 008620 048341 591988 306362 488638 791933 602050 404227 623173 865006 335844 984315 484782 615146 785765 846453 065229 192491 (593 digits)/3 290781 037058 878241 747813 123437 547576 719833 576926 730567 818377 530868 065600 647558 416780 429878 151142 894220 940338 597546 254330 949467 539576 826402 819204 530601 711344 779827 510253 281763 482635 202211 410202 034159 783866 453188 957022 491708 393932 305251 109889 516193 047593 491789 886076 332531 304196 973346 265425 978374 742647 215638 603651 272559 555559 303166 985531 690059 166041 449222 497408 164710 094279 298205 776613 628366 704083 322168 930566 287578 713590 737040 428839 881120 155152 034770 793529 051885 116472 799257 405244 328947 835403 304734 067516 260077 873715 464687 432943 234394 102975 774152 298162 853160 459507 461741 268954 220210 814304 910831 (595 digits), a[1125] = 12
                                                                                      A[1126]/B[1126] = 70448 684817 257113 817730 091270 924912 680470 809020 084711 871505 973100 943346 498300 587641 602856 877551 281522 204968 338993 240063 680133 707284 239454 937878 939643 737312 024774 998431 040534 111413 474010 078196 117945 627027 782442 511082 249882 693363 988824 319631 829141 042800 228431 174860 339982 013889 156166 050894 727614 057112 434908 261304 390522 954844 868278 835787 968522 116191 546066 144485 039931 006317 311107 654581 466212 054446 918667 894523 753969 343379 956006 515266 680972 654914 428398 310869 024668 931287 877247 794644 692317 984208 660809 405943 168512 997948 973028 461477 500329 598345 397054 548948 526791 103790 298501 294870 019226 446175 440805 (593 digits)/6 847156 040785 144418 433429 241207 820132 928998 045166 423338 676100 889992 630251 158237 824323 608328 897120 067154 988178 998662 590445 000359 934706 710042 036977 686433 040366 184007 569965 295663 473642 934409 343663 774239 418792 970521 388703 916013 267571 020579 475328 862436 597686 080276 547614 937520 091671 293467 606211 889940 756784 763272 352441 413798 535256 466190 586560 792349 870913 012382 207134 546908 724813 654333 098520 378937 854239 469603 608913 106461 217804 636832 734293 039343 702952 824056 781385 459375 173058 818085 415245 950806 242584 492969 676461 668624 111205 256683 234309 149027 041637 351592 109469 482933 376464 721746 440209 163987 408190 830116 (595 digits), a[1126] = 2
                                                                                      A[1127]/B[1127] = 245204 081740 979135 533918 509245 085965 981990 943467 163616 671605 472064 914189 703667 010521 193219 182139 514817 515101 007256 203083 019227 841897 461238 706799 138306 740745 908171 734563 230295 020197 945981 806776 098137 153389 660420 379333 327970 871738 947411 342813 155563 283647 139610 440069 305333 205575 078063 129626 475351 476199 943586 305072 754461 041138 748280 595206 303427 703693 340118 539489 491917 370042 263651 867083 776824 663317 216263 410966 269097 197286 656636 148969 427028 753670 353896 481020 207977 976583 735568 096087 303367 961246 030769 809817 811901 482485 711018 986482 905216 418210 056169 982690 564688 796153 510650 670375 904132 403755 514906 (594 digits)/23 832249 159414 311497 048100 847061 007975 506827 712426 000583 846680 200845 956354 122271 889751 254864 842503 095685 904875 593534 025665 950547 343696 956528 930137 589900 832443 331850 220149 168753 903564 005439 441193 356878 040245 364753 123134 239748 196645 366989 535876 103502 840651 732619 528921 145091 579210 853749 084061 648197 013001 505455 660975 513955 161328 701738 745214 067108 778780 486369 118811 805436 268720 261205 072174 765180 266801 730979 757305 606962 367004 647538 631718 999151 264010 506941 137685 430010 635649 253513 650982 181366 563156 783643 096901 265950 207331 234737 135870 681475 227887 828928 626571 301960 588901 626980 589581 712173 038877 401179 (596 digits), a[1127] = 3
                                                                                      A[1128]/B[1128] = 560856 848299 215384 885567 109761 096844 644452 695954 411945 214716 917230 771725 905634 608683 989295 241830 311157 235170 353505 646229 718589 391079 161932 351477 216257 218803 841118 467557 501124 151809 365973 691748 314219 933807 103283 269748 905824 436841 883647 005258 140267 610094 507652 054998 950648 425039 312292 310147 678317 009512 322080 871449 899445 037122 364840 026200 575377 523578 226303 223464 023765 746401 838411 388749 019861 381081 351194 716456 292163 737953 269278 813205 535030 162255 136191 272909 440624 884455 348383 986819 299053 906700 722349 025578 792315 962920 395066 434443 310762 434765 509394 514329 656168 696097 319802 635621 827491 253686 470617 (594 digits)/54 511654 359613 767412 529630 935329 836083 942653 470018 424506 369461 291684 542959 402781 603826 118058 582126 258526 797930 185730 641776 901454 622100 623099 897252 866234 705252 847708 010263 633171 280770 945288 226050 487995 499283 700027 634972 395509 660861 754558 547081 069442 278989 545515 605457 227703 250093 000965 774335 186334 782787 774183 674392 441708 857913 869668 076988 926567 428473 985120 444758 157781 262254 176743 242869 909298 387842 931563 123524 320385 951813 931909 997731 037646 230973 837939 056756 319396 444357 325112 717210 313539 368898 060255 870264 200524 525867 726157 506050 511977 497413 009449 362612 086854 554267 975707 619372 588333 485945 632474 (596 digits), a[1128] = 2
                                                                                      A[1129]/B[1129] = 806060 930040 194520 419485 619006 182810 626443 639421 575561 886322 389295 685915 609301 619205 182514 423969 825974 750271 360761 849312 737817 232976 623171 058276 354563 959549 749290 202120 731419 172007 311955 498524 412357 087196 763703 649082 233795 308580 831058 348071 295830 893741 647262 495068 255981 630614 390355 439774 153668 485712 265667 176522 653906 078261 113120 621406 878805 227271 566421 762953 515683 116444 102063 255832 796686 044398 567458 127422 561260 935239 925914 962174 962058 915925 490087 753929 648602 861039 083952 082906 602421 867946 753118 835396 604217 445406 106085 420926 215978 852975 565564 497020 220857 492250 830453 305997 731623 657441 985523 (594 digits)/78 343903 519028 078909 577731 782390 844059 449481 182444 425090 216141 492530 499313 525053 493577 372923 424629 354212 702805 779264 667442 852001 965797 579628 827390 456135 537696 179558 230412 801925 184334 950727 667243 844873 539529 064780 758106 635257 857507 121548 082957 172945 119641 278135 134378 372794 829303 854714 858396 834531 795789 279639 335367 955664 019242 571406 822202 993676 207254 471489 563569 963217 530974 437948 315044 674478 654644 662542 880829 927348 318818 579448 629450 036797 494984 344880 194441 749407 080006 578626 368192 494905 932054 843898 967165 466474 733198 960894 641921 193452 725300 838377 989183 388815 143169 602688 208954 300506 524823 033653 (596 digits), a[1129] = 1
                                                                                      A[1130]/B[1130] = 4 591161 498500 187986 982995 204792 010897 776670 893062 289754 646328 863709 201303 952142 704709 901867 361679 441030 986527 157314 892793 407675 555962 277787 642858 989077 016552 587569 478161 158220 011845 925751 184370 376005 369790 921801 515160 074800 979746 038938 745614 619422 078802 743964 530340 230556 578111 264069 509018 446659 438073 650416 754063 168975 428427 930443 133234 969403 659936 058412 038231 602181 328622 348727 667913 003291 603074 188485 353569 098468 414152 898853 624080 345324 741882 586630 042557 683639 189650 768144 401352 311163 246434 487943 202561 813403 189950 925493 539074 390656 699643 337216 999430 760456 157351 472069 165610 485609 540896 398232 (595 digits)/446 231171 954754 161960 418289 847284 056381 190059 382240 549957 450168 754337 039527 028049 071712 982675 705273 029590 311959 082053 978991 161464 451088 521244 034205 146912 393733 745499 162327 642797 202445 698926 562269 712363 196929 023931 425505 571798 948397 362298 961866 934167 877195 936191 277349 091677 396612 274540 066319 358993 761734 172380 351232 220028 954126 726702 188003 894948 464746 342568 262607 973868 917126 366484 818093 281691 661066 244277 527673 957127 545906 829153 144981 221633 705895 562340 028965 066431 844390 218244 558172 788069 029172 279750 706091 532898 191862 530630 715656 479241 123917 201339 308529 030930 270115 989148 664144 090866 110060 800739 (597 digits), a[1130] = 5
                                                                                      A[1131]/B[1131] = 19 170706 924040 946468 351466 438174 226401 733127 211670 734580 471637 844132 491131 417872 438044 789983 870687 590098 696379 990021 420486 368519 456825 734321 629712 310872 025760 099568 114765 364299 219391 014960 236005 916378 566360 450909 709722 532999 227564 986813 330529 773519 208952 623120 616429 178207 943059 446633 475847 940306 238006 867334 192775 329807 791972 834893 154346 756419 867015 800069 915879 924408 430933 496973 927484 809852 456695 321399 541698 955134 591851 521329 458496 343357 883455 836607 924160 383159 619642 156529 688315 847074 853684 704891 645643 857830 205209 808059 577223 778605 651548 914432 494743 262682 121656 718729 968439 674061 821027 578451 (596 digits)/1863 268591 338044 726751 250891 171527 069584 209718 711406 624920 016816 509878 657421 637249 780429 303626 245721 472573 950642 107480 583407 497859 770151 664604 964211 043785 112631 161554 879723 373113 994117 746433 916322 694326 327245 160506 460128 922453 651096 570743 930424 909616 628425 022900 243774 739504 415752 952875 123674 270506 842725 969160 740296 835779 835749 478215 574218 573470 066239 841762 614001 858693 199479 903887 587417 801245 298909 639652 991525 755858 502445 896061 209374 923332 318566 594240 310302 015134 457567 451604 600883 647182 048743 962901 791531 598067 500649 083417 504547 110417 220969 643735 223299 512536 223633 559282 865530 663970 965066 236609 (598 digits), a[1131] = 4
                                                                                      A[1132]/B[1132] = 23 761868 422541 134455 334461 642966 237299 509798 104733 024335 117966 707841 692435 370015 142754 691851 232367 031129 682907 147336 313279 776195 012788 012109 272571 299949 042312 687137 592926 522519 231236 940711 420376 292383 936151 372711 224882 607800 207311 025752 076144 392941 287755 367085 146769 408764 521170 710702 984866 386965 676080 517750 946838 498783 220400 765336 287581 725823 526951 858481 954111 526589 759555 845701 595397 813144 059769 509884 895268 053603 006004 420183 082576 688682 625338 423237 966718 066798 809292 924674 089668 158238 100119 192834 848205 671233 395160 733553 116298 169262 351192 251649 494174 023138 279008 190799 134050 159671 361923 976683 (596 digits)/2309 499763 292798 888711 669181 018811 125965 399778 093647 174877 466985 264215 696948 665298 852142 286301 950994 502164 262601 189534 562398 659324 221240 185848 998416 190697 506364 907054 042051 015911 196563 445360 478592 406689 524174 184437 885634 494252 599493 933042 892291 843784 505620 959091 521123 831181 812365 227415 189993 629500 604460 141541 091529 055808 789876 204917 762222 468418 530986 184330 876609 832562 116606 270372 405511 082936 959975 883930 519199 712986 048352 725214 354356 144966 024462 156580 339267 081566 301957 669849 159056 435251 077916 242652 497623 130965 692511 614048 220203 589658 344886 845074 531828 543466 493749 548431 529674 754837 075127 037348 (598 digits), a[1132] = 1
                                                                                      A[1133]/B[1133] = 42 932575 346582 080923 685928 081140 463701 242925 316403 758915 589604 551974 183566 787887 580799 481835 103054 621228 379287 137357 733766 144714 469613 746430 902283 610821 068072 786705 707691 886818 450627 955671 656382 208762 502511 823620 934605 140799 434876 012565 406674 166460 496707 990205 763198 586972 464230 157336 460714 327271 914087 385085 139613 828591 012373 600229 441928 482243 393967 658551 869991 450998 190489 342675 522882 622996 516464 831284 436967 008737 597855 941512 541073 032040 508794 259845 890878 449958 428935 081203 777984 005312 953803 897726 493849 529063 600370 541612 693521 947868 002741 166081 988917 285820 400664 909529 102489 833733 182951 555134 (596 digits)/4172 768354 630843 615462 920072 190338 195549 609496 805053 799797 483801 774094 354370 302548 632571 589928 196715 974738 213243 297015 145806 157183 991391 850453 962627 234482 618996 068608 921774 389025 190681 191794 394915 101015 851419 344944 345763 416706 250590 503786 822716 753401 134045 981991 764898 570686 228118 180290 313667 900007 447186 110701 831825 891588 625625 683133 336441 041888 597226 026093 490611 691255 316086 174259 992928 884182 258885 523583 510725 468844 550798 621275 563731 068298 343028 750820 649569 096700 759525 121453 759940 082433 126660 205554 289154 729033 193160 697465 724750 700075 565856 488809 755128 056002 717383 107714 395205 418808 040193 273957 (598 digits), a[1133] = 1
                                                                                      A[1134]/B[1134] = 195 492169 808869 458150 078173 967528 092104 481499 370348 059997 476384 915738 426702 521565 465952 619191 644585 516043 200055 696767 248344 355052 891242 997832 881705 743233 314603 833960 423694 069793 033748 763398 045905 127433 946198 667194 963303 170997 946815 076013 702841 058783 274587 327908 199563 756654 378091 340048 827723 696053 332430 058091 505293 813147 269895 166254 055295 654797 102822 492689 434077 330582 521513 216403 686928 305130 125628 835022 643136 088553 397428 186233 246868 816844 660515 462621 530231 866632 525033 249489 201604 179489 915334 783740 823603 787487 796642 900003 890385 960734 362156 915977 449843 166419 881667 828915 544009 494604 093730 197219 (597 digits)/19000 573181 816173 350563 349469 780163 908163 837765 313862 374067 402192 360593 114429 875493 382428 646014 737858 401117 115574 377595 145623 288060 186807 587664 848925 128627 982349 181489 729148 572011 959288 212538 058252 810752 929851 564215 268688 161077 601855 948190 183158 857389 041804 887058 580718 113926 724837 948576 444665 229530 393204 584348 418832 622163 292378 937451 107986 635972 919890 288704 839056 597583 380950 967412 377226 619665 995517 978264 562101 588364 251547 210316 609280 418159 396577 159862 937543 468369 340058 155664 198816 764983 584557 064869 654242 047098 465154 403911 119206 389960 608312 800313 552340 767477 363281 979289 110496 430069 235900 133176 (599 digits), a[1134] = 4
                                                                                      A[1135]/B[1135] = 824 901254 582059 913523 998623 951252 832119 168922 797795 998905 495144 214927 890376 874149 444609 958601 681396 685401 179509 924426 727143 564926 034585 737762 429106 583754 326488 122547 402468 165990 585623 009263 840002 718498 287306 492400 787817 824791 222136 316620 218038 401593 595057 301838 561453 613589 976595 517531 771609 111485 243807 617451 160789 081180 091954 265245 663111 101431 805257 629309 606300 773328 276542 208290 270595 843517 018980 171375 009511 362951 187568 686445 528548 299419 150856 110332 011805 916488 529068 079160 584400 723272 615143 032689 788264 679014 786942 141628 255065 790805 451368 829991 788289 951499 927336 225191 278527 812149 557872 344010 (597 digits)/80175 061081 895537 017716 317951 310993 828204 960558 060503 296067 092571 216466 812089 804522 162286 173987 148149 579206 675540 807395 728299 309424 738622 201113 358327 748994 548392 794567 838368 677073 027834 041946 627926 344027 570825 601805 420516 061016 658014 296547 555352 182957 301265 530226 087771 026393 127469 974596 092328 818129 020004 448095 507156 380241 795141 432937 768387 585780 276787 180912 846838 081588 839890 043909 501835 362846 240957 436641 759131 822301 556987 462542 000852 740935 929337 390272 399742 970178 119757 744110 555207 142367 464888 465032 906122 917427 053778 313110 201576 259917 999107 690063 964491 125912 170511 024870 837191 139084 983793 806661 (599 digits), a[1135] = 4
                                                                                      A[1136]/B[1136] = 1020 393424 390929 371674 076797 918780 924223 650422 168144 058902 971529 130666 317079 395714 910562 577793 325982 201444 379565 621193 975487 919978 925828 735595 310812 326987 641091 956507 826162 235783 619371 772661 885907 845932 233505 159595 751120 995789 168951 392633 920879 460376 869644 629746 761017 370244 354686 857580 599332 807538 576237 675542 666082 894327 361849 431499 718406 756228 908080 121999 040378 103910 798055 424693 957524 148647 144609 006397 652647 451504 584996 872678 775417 116263 811371 572953 542037 783121 054101 328649 786004 902762 530477 816430 611868 466502 583585 041632 145451 751539 813525 745969 238133 117919 809004 054106 822537 306753 651602 541229 (598 digits)/99175 634263 711710 368279 667421 091157 736368 798323 374365 670134 494763 577059 926519 680015 544714 820001 886007 980323 791115 184990 873922 597484 925429 788778 207252 877622 530741 976057 567517 249084 987122 254484 686179 154780 500677 166020 689204 222094 259870 244737 738511 040346 343070 417284 668489 140319 852307 923172 536994 047659 413209 032443 925989 002405 087520 370388 876374 221753 196677 469617 685894 679172 220841 011321 879061 982512 236475 414906 321233 410665 808534 672858 610133 159095 325914 550135 337286 438547 459815 899774 754023 907351 049445 529902 560364 964525 518932 717021 320782 649878 607420 490377 516831 893389 533793 004159 947687 569154 219693 939837 (599 digits), a[1136] = 1
                                                                                      A[1137]/B[1137] = 1845 294678 972989 285198 075421 870033 756342 819344 965940 057808 466673 345594 207456 269864 355172 536395 007378 886845 559075 545620 702631 484904 960414 473357 739918 910741 967580 079055 228630 401774 204994 781925 725910 564430 520811 651996 538938 820580 391087 709254 138917 861970 464701 931585 322470 983834 331282 375112 370941 919023 820045 292993 826871 975507 453803 696745 381517 857660 713337 751308 646678 877239 074597 632984 228119 992164 163589 177772 662158 814455 772565 559124 303965 415682 962227 683285 553843 699609 583169 407810 370405 626035 145620 849120 400133 145517 370527 183260 400517 542345 264894 575961 026423 069419 736340 279298 101065 118903 209474 885239 (598 digits)/179350 695345 607247 385995 985372 402151 564573 758881 434868 966201 587334 793526 738609 484537 707000 993989 034157 559530 466655 992386 602221 906909 664051 989891 565580 626617 079134 770625 405885 926158 014956 296431 314105 498808 071502 767826 109720 283110 917884 541285 293863 223303 644335 947510 756260 166712 979777 897768 629322 865788 433213 480539 433145 382646 882661 803326 644761 807533 473464 650530 532732 760761 060731 055231 380897 345358 477432 851548 080365 232967 365522 135400 610985 900031 255251 940407 737029 408725 579573 643885 309231 049718 514333 994935 466487 881952 572711 030131 522358 909796 606528 180441 481323 019301 704304 029030 784878 708239 203487 746498 (600 digits), a[1137] = 1
                                                                                      A[1138]/B[1138] = 6556 277461 309897 227268 303063 528882 193252 108457 065964 232328 371549 167448 939448 205307 976080 186978 348118 861981 056792 258056 083382 374693 807072 155668 530569 059213 543832 193673 512053 441106 234356 118439 063639 539223 795940 115585 367937 457530 342214 520396 337633 046288 263750 424502 728430 321747 348533 982917 712158 564610 036373 554524 146698 820849 723260 521735 862960 329211 048093 375924 980414 735628 021848 323646 641884 125139 635376 539715 639123 894871 902693 550051 687313 363312 698054 622810 203568 881949 803609 552080 897221 780867 967340 363791 812267 903054 695166 591413 347004 378575 608209 473852 317402 326179 018024 892001 125732 663463 280027 196946 (598 digits)/637227 720300 533452 526267 623538 297612 430090 074967 678972 568739 256767 957640 142348 133628 665717 801968 988480 658915 191083 162150 680588 318213 917585 758452 903994 757473 768146 287933 785175 027559 031991 143778 628495 651204 715185 469499 018365 071427 013523 868593 620100 710257 276078 259816 937269 640458 791641 616478 424962 645024 712849 474062 225425 150345 735505 780368 810659 644353 617071 421209 284092 961455 403034 177016 021754 018587 668773 969550 562329 109567 905101 079060 443090 859189 091670 371358 548374 664724 198536 831430 681717 056506 592447 514708 959828 610383 237065 807415 887859 379268 427005 031701 960800 951294 646705 091252 302323 693871 830157 179331 (600 digits), a[1138] = 3
                                                                                      A[1139]/B[1139] = 41182 959446 832372 648807 893803 043326 915855 470087 361725 451778 695968 350287 844145 501712 211653 658265 096092 058731 899829 093957 202925 733067 802847 407368 923333 266023 230573 241096 300951 048411 611131 492560 107747 799773 296452 345508 746563 565762 444374 831632 164716 139700 047204 478601 693052 914318 422486 272618 643893 306684 038286 620138 707064 900605 793366 827160 559279 832927 001898 006858 529167 291007 205687 574864 079424 743001 975848 416066 496902 183687 188726 859434 427845 595559 150555 420146 775256 991308 404826 720295 753736 311242 949663 031871 273740 563845 541526 731740 482543 813798 914151 419074 930837 026493 844489 631304 855461 099682 889638 066915 (599 digits)/4 002717 017148 807962 543601 726602 187826 145114 208687 508704 378637 127942 539367 592698 286309 701307 805802 965041 513021 613154 965290 685751 816193 169566 540608 989549 171459 688012 498228 116936 091512 206903 159103 085079 406036 362615 584820 219910 711672 999027 752847 014467 484847 300805 506412 379878 009465 729627 596639 179098 735936 710310 324912 785696 284721 295696 485539 508719 673655 175893 177786 237290 529493 478936 117327 511421 456884 490076 668851 454339 890374 796128 609763 269531 055165 805274 168559 027277 397070 770794 632469 399533 388758 069019 083189 225459 544251 995105 874626 849515 185407 168558 370653 246128 727069 584534 576544 598820 871470 184430 822484 (601 digits), a[1139] = 6
                                                                                      A[1140]/B[1140] = 171288 115248 639387 822499 878275 702189 856673 988806 512866 039443 155422 568600 316030 212156 822694 820038 732487 096908 656108 633884 895085 306965 018461 785144 223902 123306 466125 158058 715857 634752 678882 088679 494630 738316 981749 497620 354191 720580 119713 846924 996497 605088 452568 338909 500641 979021 038479 073392 287731 791346 189520 035078 974958 423272 896727 830378 100079 660919 055685 403359 097083 899656 844598 623102 959583 097147 538770 203981 626732 629620 657600 987789 398695 745549 300276 303397 304596 847183 422916 433263 912167 025839 765992 491276 907230 158436 861273 518375 277179 633771 264815 150152 040750 432154 395983 417220 547577 062194 838579 464606 (600 digits)/16 648095 788895 765302 700674 529947 048917 010546 909717 713790 083287 768538 115110 513141 278867 470949 025180 848646 711001 643703 023313 423595 582986 595851 920888 862191 443312 520196 280846 252919 393607 859603 780190 968813 275350 165647 808779 898007 918119 009634 879981 677970 649646 479300 285466 456781 678321 710152 003035 141357 588771 554090 773713 368210 289230 918291 722526 845538 338974 320644 132354 233255 079429 318778 646326 067439 846125 629080 644956 379688 671067 089615 518113 521215 079852 312767 045594 657484 253007 281715 361308 279850 611538 868523 847465 861666 787391 217489 305923 285920 120897 101238 514314 945315 859572 984843 397430 697607 179752 567880 469267 (602 digits), a[1140] = 4
                                                                                      A[1141]/B[1141] = 212471 074695 471760 471307 772078 745516 772529 458893 874591 491221 851390 918888 160175 713869 034348 478303 828579 155640 555937 727842 098011 040032 821309 192513 147235 389329 696698 399155 016808 683164 290013 581239 602378 538090 278201 843129 100755 286342 564088 678557 161213 744788 499772 817511 193694 893339 460965 346010 931625 098030 227806 655217 682023 323878 690094 657538 659359 493846 057583 410217 626251 190664 050286 197967 039007 840149 514618 620048 123634 813307 846327 847223 826541 341108 450831 723544 079853 838491 827743 153559 665903 337082 715655 523148 180970 722282 402800 250115 759723 447570 178966 569226 971587 458648 240473 048525 403038 161877 728217 531521 (600 digits)/20 650812 806044 573265 244276 256549 236743 155661 118405 222494 461924 896480 654478 105839 565177 172256 830983 813688 224023 256857 988604 109347 399179 765418 461497 851740 614772 208208 779074 369855 485120 066506 939294 053892 681386 528263 393600 117918 629792 008662 632828 692438 134493 780105 791878 836659 687787 439779 599674 320456 324708 264401 098626 153906 573952 213988 208066 354258 012629 496537 310140 470545 608922 797714 763653 578861 303010 119157 313807 834028 561441 885744 127876 790746 135018 118041 214153 684761 650078 052509 993777 679384 000296 937542 930655 087126 331643 212595 180550 135435 306304 269796 884968 191444 586642 569377 973975 296428 051222 752311 291751 (602 digits), a[1141] = 1
                                                                                      A[1142]/B[1142] = 596230 264639 582908 765115 422433 193223 401732 906594 262049 021886 858204 406376 636381 639894 891391 776646 389645 408189 767984 089569 091107 387030 661080 170170 518372 901965 859521 956368 749475 001081 258909 251158 699387 814497 538153 183878 555702 293265 247891 204039 318925 094665 452113 973931 888031 765699 960409 765414 150981 987406 645133 345514 339005 071030 276917 145455 418798 648611 170852 223794 349586 280984 945171 019037 037598 777446 568007 444077 874002 256236 350256 682237 051778 427766 201939 750485 464304 524167 078402 740383 243973 700005 197303 537573 269171 603001 666874 018606 796626 528911 622748 288605 983925 349450 876929 514271 353653 385950 295014 527648 (600 digits)/57 949721 400984 911833 189227 043045 522403 321869 146528 158779 007137 561499 424066 724820 409221 815462 687148 476023 159048 157419 000521 642290 381346 126688 843884 565672 672856 936613 838994 992630 363847 992617 658779 076598 638123 222174 595980 133845 177703 026960 145639 062846 918634 039511 869224 130101 053896 589711 202383 782270 238188 082892 970965 676023 437135 346268 138659 554054 364233 313718 752635 174346 297274 914208 173633 225162 452145 867395 272572 047745 793950 861103 773867 102707 349888 548849 473902 027007 553163 386735 348863 638618 612132 743609 708776 035919 450677 642679 667023 556790 733505 640832 284251 328205 032858 123599 345381 290463 282198 072503 052769 (602 digits), a[1142] = 2
                                                                                      A[1143]/B[1143] = 808701 339335 054669 236423 194511 938740 174262 365488 136640 513108 709595 325264 796557 353763 925740 254950 218224 563830 323921 817411 189118 427063 482389 362683 665608 291295 556220 355523 766283 684245 548922 832398 301766 352587 816355 027007 656457 579607 811979 882596 480138 839453 951886 791443 081726 659039 421375 111425 082607 085436 872940 000732 021028 394908 967011 802994 078158 142457 228435 634011 975837 471648 995457 217004 076606 617596 082626 064125 997637 069544 196584 529460 878319 768874 652771 474029 544158 362658 906145 893942 909877 037087 912959 060721 450142 325284 069674 268722 556349 976481 801714 857832 955512 808099 117402 562796 756691 547828 023232 059169 (600 digits)/78 600534 207029 485098 433503 299594 759146 477530 264933 381273 469062 457980 078544 830659 974398 987719 518132 289711 383071 414276 989125 751637 780525 892107 305382 417413 287629 144822 618069 362485 848968 059124 598073 130491 319509 750437 989580 251763 807495 035622 778467 755285 053127 819617 661102 966760 741684 029490 802058 102726 562896 347294 069591 829930 011087 560256 346725 908312 376862 810256 062775 644891 906197 711922 937286 804023 755155 986552 586379 881774 355392 746847 901743 893453 484906 666890 688055 711769 203241 439245 342641 318002 612429 681152 639431 123045 782320 855274 847573 692226 039809 910629 169219 519649 619500 692977 319356 586891 333420 824814 344520 (602 digits), a[1143] = 1
                                                                                      A[1144]/B[1144] = 1 404931 603974 637578 001538 616945 131963 575995 272082 398689 534995 567799 731641 432938 993658 817132 031596 607869 972020 091905 906980 280225 814094 143469 532854 183981 193261 415742 311892 515758 685326 807832 083557 001154 167085 354508 210886 212159 872873 059871 086635 799063 934119 404000 765374 969758 424739 381784 876839 233589 072843 518073 346246 360033 465939 243928 948449 496956 791068 399287 857806 325423 752633 940628 236041 114205 395042 650633 508203 871639 325780 546841 211697 930098 196640 854711 224515 008462 886825 984548 634326 153850 737093 110262 598294 719313 928285 736548 287329 352976 505393 424463 146438 939438 157549 994332 077068 110344 933778 318246 586817 (601 digits)/136 550255 608014 396931 622730 342640 281549 799399 411461 540052 476200 019479 502611 555480 383620 803182 205280 765734 542119 571695 989647 393928 161872 018796 149266 983085 960486 081436 457064 355116 212816 051742 256852 207089 957632 972612 585560 385608 985198 062582 924106 818131 971761 859129 530327 096861 795580 619202 004441 884996 801084 430187 040557 505953 448222 906524 485385 462366 741096 123974 815410 819238 203472 626131 110920 029186 207301 853947 858951 929520 149343 607951 675610 996160 834795 215740 161957 738776 756404 825980 691504 956621 224562 424762 348207 158965 232998 497954 514597 249016 773315 551461 453470 847854 652358 816576 664737 877354 615618 897317 397289 (603 digits), a[1144] = 1
                                                                                      A[1145]/B[1145] = 54 196102 290371 282633 294890 638426 953356 062082 704619 286842 842940 285985 127639 248239 112798 976757 455621 317283 500593 816346 282661 837699 362640 934231 611142 656893 635229 354428 207439 365113 726664 246542 007564 345624 701831 287667 040683 718532 748784 087081 174756 844568 335991 303915 875691 932546 799135 929200 431315 958991 853490 559727 158093 702300 100600 236311 844074 962516 203056 401374 230652 341940 071738 739330 186566 416411 629216 806699 375873 119931 449204 976550 573982 222051 241227 131798 005599 865748 062046 318993 998336 756205 046626 102937 795920 784071 600142 058509 187237 969457 181431 931314 422512 654162 794998 902021 491384 949799 031404 116602 358215 (602 digits)/5267 510247 311576 568500 097256 319925 458038 854707 900471 903267 564663 198201 177783 938914 551989 508643 318801 387623 983615 138724 595726 720907 931662 606360 977527 774679 786100 239407 986514 856901 935978 025330 358456 999909 709562 709716 240874 904905 245021 413773 894526 844299 980078 466539 813532 647508 973747 559166 970849 732605 004104 694401 610777 056161 043558 008186 791373 478248 538515 521299 048386 775943 638157 504905 152247 913099 632626 436571 226553 203540 030449 849011 574961 747565 207124 865016 842449 785285 946624 826511 619829 669609 145801 822121 871303 163724 636263 777546 402269 154863 425800 866164 401111 738126 409135 722890 579395 926366 726938 922875 441502 (604 digits), a[1145] = 38
                                                                                      A[1146]/B[1146] = 55 601033 894345 920211 296429 255372 085319 638077 976701 685532 377935 853784 859280 681178 106457 793889 487217 925153 472613 908252 189642 117925 176735 077701 143996 840874 828490 770170 519331 880872 411991 054374 091121 346778 868916 642175 251569 930692 621657 146952 261392 643632 270110 707916 641066 902305 223875 310985 308155 192580 926334 077800 504340 062333 566539 480240 792524 459472 994124 800662 088458 667363 824372 679958 422607 530617 024259 457332 884076 991570 774985 523391 785680 152149 437867 986509 230114 874210 948872 303542 632662 910055 783719 213200 394215 503385 528427 795057 474567 322433 686825 355777 568951 593600 952548 896353 568453 060143 965182 434848 945032 (602 digits)/5404 060502 919590 965431 719986 662565 739588 654107 311933 443320 040863 217680 680395 494394 935610 311825 524082 153358 525734 710420 585374 114836 093534 625157 126794 757765 746586 320844 443579 212018 148794 077072 615309 206999 667195 682328 826435 290514 230219 476356 818633 662431 951840 325669 343859 744370 769328 178368 975291 617601 805189 124588 651334 562114 491780 914711 276758 940615 279611 645273 863797 595181 841630 131036 263167 942285 839928 290519 085505 133060 179793 456963 250572 743726 041920 080757 004407 524062 703029 652492 311334 626230 370364 246884 219510 322689 869262 275500 916866 403880 199116 417625 854582 585981 061494 539467 244133 803721 342557 820192 838791 (604 digits), a[1146] = 1
                                                                                      A[1147]/B[1147] = 109 797136 184717 202844 591319 893799 038675 700160 681320 972375 220876 139769 986919 929417 219256 770646 942839 242436 973207 724598 472303 955624 539376 011932 755139 497768 463720 124598 726771 245986 138655 300916 098685 692403 570747 929842 292253 649225 370441 234033 436149 488200 606102 011832 516758 834852 023011 240185 739471 151572 779824 637527 662433 764633 667139 716552 636599 421989 197181 202036 319111 009303 896111 419288 609173 947028 653476 264032 259950 111502 224190 499942 359662 374200 679095 118307 235714 739959 010918 622536 630999 666260 830345 316138 190136 287457 128569 853566 661805 291890 868257 287091 991464 247763 747547 798375 059838 009942 996586 551451 303247 (603 digits)/10671 570750 231167 533931 817242 982491 197627 508815 212405 346587 605526 415881 858179 433309 487599 820468 842883 540982 509349 849145 181100 835744 025197 231518 104322 532445 532686 560252 430094 068920 084772 102402 973766 206909 376758 392045 067310 195419 475240 890130 713160 506731 931918 792209 157392 391879 743075 737535 946141 350206 809293 818990 262111 618275 535338 922898 068132 418863 818127 166572 912184 371125 479787 635941 415415 855385 472554 727090 312058 336600 210243 305974 825534 491291 249044 945773 846857 309348 649654 479003 931164 295839 516166 069006 090813 486414 505526 053047 319135 558743 624917 283790 255694 324107 470630 262357 823529 730088 069496 743068 280293 (605 digits), a[1147] = 1
                                                                                      A[1148]/B[1148] = 275 195306 263780 325900 479069 042970 162671 038399 339343 630282 819688 133324 833120 540012 544971 335183 372896 410027 419029 357449 134250 029174 255487 101566 654275 836411 755931 019367 972874 372844 689301 656206 288492 731586 010412 501859 836077 229143 362539 615019 133691 620033 482314 731581 674584 572009 269897 791356 787097 495726 485983 352855 829207 591600 900818 913346 065723 303451 388487 204734 726680 685971 616595 518535 640955 424674 331211 985397 403977 214575 223366 523276 505004 900550 796058 223123 701544 354128 970709 548615 894662 242577 444409 845476 774488 078299 785567 502190 798177 906215 423339 929961 551880 089128 447644 493103 688129 080029 958355 537751 551526 (603 digits)/26747 202003 381926 033295 354472 627548 134843 671737 736744 136495 251916 049444 396754 361013 910809 952763 209849 235323 544434 408710 947575 786324 143929 088193 335439 822656 811959 441349 303767 349858 318338 281878 562841 620818 420712 466418 961055 681353 180701 256618 244954 675895 815677 910087 658644 528130 255479 653440 867574 318015 423776 762569 175557 798665 562458 760507 413023 778342 915865 978419 688166 337432 801205 402919 093999 653056 785037 744699 709621 806260 600280 068912 901641 726308 540009 972304 698122 142760 002338 610500 173663 217909 402696 384896 401137 295518 880314 381595 555137 521367 448950 985206 365971 234196 002755 064182 891193 263897 481551 306329 399377 (605 digits), a[1148] = 2
                                                                                      A[1149]/B[1149] = 384 992442 448497 528745 070388 936769 201346 738560 020664 602658 040564 273094 820040 469429 764228 105830 315735 652464 392237 082047 606553 984798 794863 113499 409415 334180 219651 143966 699645 618830 827956 957122 387178 423989 581160 431702 128330 878368 732980 849052 569841 108234 088416 743414 191343 406861 292909 031542 526568 647299 265807 990383 491641 356234 567958 629898 702322 725440 585668 406771 045791 695275 512706 937824 250129 371702 984688 249429 663927 326077 447557 023218 864667 274751 475153 341430 937259 094087 981628 171152 525661 908838 274755 161614 964624 365756 914137 355757 459983 198106 291597 217053 543344 336892 195192 291478 747967 089972 954942 089202 854773 (603 digits)/37418 772753 613093 567227 171715 610039 332471 180552 949149 483082 857442 465326 254933 794323 398409 773232 052732 776306 053784 257856 128676 622068 169126 319711 439762 355102 344646 001601 733861 418778 403110 384281 536607 827727 797470 858464 028365 876772 655942 146748 958115 182627 747596 702296 816036 920009 998555 390976 813715 668222 233070 581559 437669 416941 097797 683405 481156 197206 733993 144992 600350 708558 280993 038860 509415 508442 257592 471790 021680 142860 810523 374887 727176 217599 789054 918078 544979 452108 651993 089504 104827 513748 918862 453902 491950 781933 385840 434642 874273 080111 073868 268996 621665 558303 473385 326540 714722 993985 551048 049397 679670 (605 digits), a[1149] = 1
                                                                                      A[1150]/B[1150] = 660 187748 712277 854645 549457 979739 364017 776959 360008 232940 860252 406419 653161 009442 309199 441013 688632 062491 811266 439496 740804 013973 050350 215066 063691 170591 975582 163334 672519 991675 517258 613328 675671 155575 591572 933561 964408 107512 095520 464071 703532 728267 570731 474995 865927 978870 562806 822899 313666 143025 751791 343239 320848 947835 468777 543244 768046 028891 974155 611505 772472 381247 129302 456359 891084 796377 315900 234827 067904 540652 670923 546495 369672 175302 271211 564554 638803 448216 952337 719768 420324 151415 719165 007091 739112 444056 699704 857948 258161 104321 714937 147015 095224 426020 642836 784582 436096 170002 913297 626954 406299 (603 digits)/64165 974756 995019 600522 526188 237587 467314 852290 685893 619578 109358 514770 651688 155337 309219 725995 262582 011629 598218 666567 076252 408392 313055 407904 775202 177759 156605 442951 037628 768636 721448 666160 099449 448546 218183 324882 989421 558125 836643 403367 203069 858523 563274 612384 474681 448140 254035 044417 681289 986237 656847 344128 613227 215606 660256 443912 894179 975549 649859 123412 288517 045991 082198 441779 603415 161499 042630 216489 731301 949121 410803 443800 628817 943908 329064 890383 243101 594868 654331 700004 278490 731658 321558 838798 893088 077452 266154 816238 429410 601478 522819 254202 987636 792499 476140 390723 605916 257883 032599 355727 079047 (605 digits), a[1150] = 1
                                                                                      A[1151]/B[1151] = 40656 445113 897446 662123 587325 700870 406431 133080 981166 812050 515961 064693 662862 045410 625394 007665 322291 464464 879489 891348 795598 837154 866226 232529 294576 740290 730163 107381 723365 111037 380732 370171 603118 914100 667109 378981 957225 436606 559729 157426 485337 532555 903036 718162 012950 117965 624125 228400 660203 371870 125079 927982 063427 174198 163388 767829 553130 487851 009160 708623 166606 951350 400156 775777 606301 950719 254602 573880 806104 305890 373893 359436 414669 968190 019058 779263 904269 435322 074229 077026 165435 145197 143820 594211 050483 453215 596133 690601 207810 561730 902763 184974 352034 324151 408236 151007 349833 460150 666097 333421 639012 (605 digits)/3 951543 232930 309289 199101 269198 102874 838677 170284 788660 277347 528311 866336 007911 269899 260813 058943 070235 485711 545122 918447 780073 533999 265506 201902 727095 198410 897578 021615 029216 305618 411479 020047 603024 189047 106653 676326 383080 922448 691189 752148 345376 552565 107348 057749 771605 256565 494693 100455 372404 828719 300758 573404 844529 568947 373440 762092 026134 705735 375399 673142 199890 514014 295097 987416 317740 359883 858035 677663 631099 039266 869533 446726 085070 796007 862013 231456 374176 739096 566226 789765 092762 144906 533951 620634 970323 506521 621284 225187 068319 770300 965842 775378 867509 900771 517949 160680 675614 724850 539608 748749 501537 (607 digits), a[1151] = 61
                                                                                      A[1152]/B[1152] = 447881 084001 584191 138005 010040 689313 834760 240850 152843 165496 535824 118049 944643 508959 188533 525332 233838 171605 485655 244333 492391 222676 578838 772888 304035 313790 007376 344533 629536 213086 705314 685216 309979 210682 929776 102363 493887 910184 252541 195763 042245 586382 504135 374778 008379 276492 428184 335306 575903 233597 127670 551042 018547 864015 266053 989369 852481 395253 074923 406360 605148 846101 531026 989913 560406 254289 116528 547515 935051 905446 783750 500295 931041 825392 480858 136457 585767 236759 768857 567056 240110 748584 301191 543413 294430 429428 257175 454561 544077 283361 645332 181732 967601 991686 133434 445663 284264 231660 240368 294592 435431 (606 digits)/43 531141 536990 397200 790636 487367 369210 692763 725423 361156 670400 920789 044466 738712 124229 178163 374369 035172 354456 594570 769492 657061 282384 233623 628834 773249 360279 029963 680716 359008 130439 247717 886683 732715 528064 391373 764473 203311 705061 439730 676999 002211 936739 744103 247631 962339 270360 695659 149426 777743 102149 965191 651581 903052 474027 768104 826925 181661 738638 779255 527976 487312 700148 328276 303359 098559 120221 481022 670789 673391 381056 975671 357787 564596 699994 811210 436403 359045 724930 882826 387420 298874 325630 195026 665783 566646 649190 100281 293296 180928 074789 147089 783370 530245 700986 173581 158211 037678 231238 968295 591971 595954 (608 digits), a[1152] = 11
                                                                                      A[1153]/B[1153] = 488537 529115 481637 800128 597366 390184 241191 373931 134009 977547 051785 182743 607505 554369 813927 532997 556129 636070 365145 135682 287990 059831 445065 005417 598612 054080 737539 451915 352901 324124 086047 055387 913098 124783 596885 481345 451113 346790 812270 353189 527583 118938 407172 092940 021329 394458 052309 563707 236106 605467 252750 479024 081975 038213 429442 757199 405611 883104 084084 114983 771755 797451 931183 765691 166708 205008 371131 121396 741156 211337 157643 859732 345711 793582 499916 915721 490036 672081 843086 644082 405545 893781 445012 137624 344913 882643 853309 145162 751887 845092 548095 366707 319636 315837 541670 596670 634097 691810 906465 628014 074443 (606 digits)/47 482684 769920 706489 989737 756565 472085 531440 895708 149816 947748 449100 910802 746623 394128 438976 433312 105407 840168 139693 687940 437134 816383 499129 830737 500344 558689 927541 702331 388224 436057 659196 906731 335739 717111 498027 440799 586392 627510 130920 429147 347588 489304 851451 305381 733944 526926 190352 249882 150147 930869 265950 224986 747582 042975 141545 589017 207796 444374 154655 201118 687203 214162 623374 290775 416299 480105 339058 348453 304490 420323 845204 804513 649667 496002 673223 667859 733222 464027 449053 177185 391636 470536 728978 286418 536970 155711 721565 518483 249247 845090 112932 558749 397755 601757 691530 318891 713292 956089 507904 340721 097491 (608 digits), a[1153] = 1
                                                                                      A[1154]/B[1154] = 936418 613117 065828 938133 607407 079498 075951 614781 286853 143043 587609 300793 552149 063329 002461 058329 789967 807675 850800 380015 780381 282508 023903 778305 902647 367870 744915 796448 982437 537210 791361 740604 223077 335466 526661 583708 945001 256975 064811 548952 569828 705320 911307 467718 029708 670950 480493 899013 812009 839064 380421 030066 100522 902228 695496 746569 258093 278357 159007 521344 376904 643553 462210 755604 727114 459297 487659 668912 676208 116783 941394 360028 276753 618974 980775 052179 075803 908841 611944 211138 645656 642365 746203 681037 639344 312072 110484 599724 295965 128454 193427 548440 287238 307523 675105 042333 918361 923471 146833 922606 509874 (606 digits)/91 013826 306911 103690 780374 243932 841296 224204 621131 510973 618149 369889 955269 485335 518357 617139 807681 140580 194624 734264 457433 094196 098767 732753 459572 273593 918968 957505 383047 747232 566496 906914 793415 068455 245175 889401 205272 789704 332571 570651 106146 349800 426044 595554 553013 696283 797286 886011 399308 927891 033019 231141 876568 650634 517002 909650 415942 389458 183012 933910 729095 174515 914310 951650 594134 514858 600326 820081 019242 977881 801380 820876 162301 214264 195997 484434 104263 092268 188958 331879 564605 690510 796166 924004 952202 103616 804901 821846 811779 430175 919879 260022 342119 928001 302743 865111 477102 750971 187328 476199 932692 693445 (608 digits), a[1154] = 1
                                                                                      A[1155]/B[1155] = 1 424956 142232 547466 738262 204773 469682 317142 988712 420863 120590 639394 483537 159654 617698 816388 591327 346097 443746 215945 515698 068371 342339 468968 783723 501259 421951 482455 248364 335338 861334 877408 795992 136175 460250 123547 065054 396114 603765 877081 902142 097411 824259 318479 560658 051038 065408 532803 462721 048116 444531 633171 509090 182497 940442 124939 503768 663705 161461 243091 636328 148660 441005 393394 521295 893822 664305 858790 790309 417364 328121 099038 219760 622465 412557 480691 967900 565840 580923 455030 855221 051202 536147 191215 818661 984258 194715 963793 744887 047852 973546 741522 915147 606874 623361 216775 639004 552459 615282 053299 550620 584317 (607 digits)/138 496511 076831 810180 770112 000498 313381 755645 516839 660790 565897 818990 866072 231958 912486 056116 240993 245988 034792 873958 145373 531330 915151 231883 290309 773938 477658 885047 085379 135457 002554 566111 700146 404194 962287 387428 646072 376096 960081 701571 535293 697388 915349 447005 858395 430228 324213 076363 649191 078038 963888 497092 101555 398216 559978 051196 004959 597254 627387 088565 930213 861719 128473 575024 884909 931158 080432 159139 367696 282372 221704 666080 966814 863931 692000 157657 772122 825490 652985 780932 741791 082147 266703 652983 238620 640586 960613 543412 330262 679423 764969 372954 900869 325756 904501 556641 795994 464264 143417 984104 273413 790936 (609 digits), a[1155] = 1
                                                                                      A[1156]/B[1156] = 2 361374 755349 613295 676395 812180 549180 393094 603493 707716 263634 227003 784330 711803 681027 818849 649657 136065 251422 066745 895713 848752 624847 492872 562029 403906 789822 227371 044813 317776 398545 668770 536596 359252 795716 650208 648763 341115 860740 941893 451094 667240 529580 229787 028376 080746 736359 013297 361734 860126 283596 013592 539156 283020 842670 820436 250337 921798 439818 402099 157672 525565 084558 855605 276900 620937 123603 346450 459222 093572 444905 040432 579788 899219 031532 461467 020079 641644 489765 066975 066359 696859 178512 937419 499699 623602 506788 074278 344611 343818 102000 934950 463587 894112 930884 891880 681338 470821 538753 200133 473227 094191 (607 digits)/229 510337 383742 913871 550486 244431 154677 979850 137971 171764 184047 188880 821341 717294 430843 673256 048674 386568 229417 608222 602806 625527 013918 964636 749882 047532 396627 842552 468426 882689 569051 473026 493561 472650 207463 276829 851345 165801 292653 272222 641440 047189 341394 042560 411409 126512 121499 962375 048500 005929 996907 728233 978124 048851 076980 960846 420901 986712 810400 022476 659309 036235 042784 526675 479044 446016 680758 979220 386939 260254 023085 486957 129116 078195 887997 642091 876385 917758 841944 112812 306396 772658 062870 576988 190822 744203 765515 365259 142042 109599 684848 632977 242989 253758 207245 421753 273097 215235 330746 460304 206106 484381 (609 digits), a[1156] = 1
                                                                                      A[1157]/B[1157] = 10 870455 163631 000649 443845 453495 666403 889521 402687 251728 175127 547409 620860 006869 341810 091787 189955 890358 449434 482929 098553 463381 841729 440459 031841 116886 581240 391939 427617 606444 455517 552490 942377 573186 643116 724381 660107 760578 046729 644655 706520 766373 942580 237627 674162 374025 010844 585992 909660 488621 578915 687541 665715 314581 311125 406684 505120 350898 920734 851488 267018 250920 779240 815815 628898 377571 158719 244592 627197 791654 107741 260768 538916 219341 538687 326560 048219 132418 539983 722931 120659 838639 250198 940893 817460 478668 221868 260907 123332 423125 381550 481324 769499 183326 346900 784298 364358 435745 770294 853833 443528 961081 (608 digits)/1056 537860 611803 465666 972056 978222 932093 675046 068724 347847 302086 574514 151439 101136 635860 749140 435690 792260 952463 306848 556600 033438 970827 090430 289837 964068 064170 255256 959086 666215 278760 458217 674392 294795 792140 494748 051453 039302 130694 790462 101053 886146 280925 617247 504031 936276 810212 925863 843191 101758 951519 410028 014051 593620 867901 894581 688567 544105 868987 178472 567450 006659 299611 681726 801087 715224 803468 076020 915453 323388 314046 613909 483279 176715 243990 726025 277666 496526 020762 232181 967378 172779 518185 960936 001911 617402 022675 004448 898431 117822 504363 904863 872826 340789 733483 243654 888383 325205 466403 825321 097839 728460 (610 digits), a[1157] = 4
                                                                                      A[1158]/B[1158] = 13 231829 918980 613945 120241 265676 215584 282616 006180 959444 438761 774413 405190 718673 022837 910636 839613 026423 700856 549674 994267 312134 466576 933331 593870 520793 371062 619310 472430 924220 854063 221261 478973 932439 438833 374590 308871 101693 907470 586549 157615 433614 472160 467414 702538 454771 747203 599290 271395 348747 862511 701134 204871 597602 153796 227120 755458 272697 360553 253587 424690 776485 863799 671420 905798 998508 282322 591043 086419 885226 552646 301201 118705 118560 570219 788027 068298 774063 029748 789906 187019 535498 428711 878313 317160 102270 728656 335185 467943 766943 483551 416275 233087 077439 277785 676179 045696 906567 309048 053966 916756 055272 (608 digits)/1286 048197 995546 379538 522543 222654 086771 654896 206695 519611 486133 763394 972780 818431 066704 422396 484365 178829 181880 915071 159406 658965 984746 055067 039720 011600 460798 097809 427513 548904 847811 931244 167953 767445 999603 771577 902798 205103 423348 062684 742493 933335 622319 659807 915441 062788 931712 888238 891691 107688 948427 138261 992175 642471 944882 855428 109469 530818 679387 200949 226759 042894 342396 208402 280132 161241 484227 055241 302392 583642 337132 100866 612395 254911 131988 368117 154052 414284 862706 344994 273774 945437 581056 537924 192734 361605 788190 369708 040473 227422 189212 537841 115815 594547 940728 665408 161480 540440 797150 285625 303946 212841 (610 digits), a[1158] = 1
                                                                                      A[1159]/B[1159] = 24 102285 082611 614594 564086 719171 881988 172137 408868 211172 613889 321823 026050 725542 364648 002424 029568 916782 150291 032604 092820 775516 308306 373790 625711 637679 952303 011249 900048 530665 309580 773752 421351 505626 081950 098971 968978 862271 954200 231204 864136 199988 414740 705042 376700 828796 758048 185283 181055 837369 441427 388675 870586 912183 464921 633805 260578 623596 281288 105075 691709 027406 643040 487236 534697 376079 441041 835635 713617 676880 660387 561969 657621 337902 108907 114587 116517 906481 569732 512837 307679 374137 678910 819207 134620 580938 950524 596092 591276 190068 865101 897600 002586 260765 624686 460477 410055 342313 079342 907800 360285 016353 (608 digits)/2342 586058 607349 845205 494600 200877 018865 329942 275419 867458 788220 337909 124219 919567 702565 171536 920055 971090 134344 221919 716006 692404 955573 145497 329557 975668 524968 353066 386600 215120 126572 389461 842346 062241 791744 266325 954251 244405 554042 853146 843547 819481 903245 277055 419472 999065 741925 814102 734882 209447 899946 548290 006227 236092 812784 750009 798037 074924 548374 379421 794209 049553 642007 890129 081219 876466 287695 131262 217845 907030 651178 714776 095674 431626 375979 094142 431718 910810 883468 577176 241153 118217 099242 498860 194645 979007 810865 374156 938904 345244 693576 442704 988641 935337 674211 909063 049863 865646 263554 110946 401785 941301 (610 digits), a[1159] = 1
                                                                                      A[1160]/B[1160] = 37 334115 001592 228539 684327 984848 097572 454753 415049 170617 052651 096236 431241 444215 387485 913060 869181 943205 851147 582279 087088 087650 774883 307122 219582 158473 323365 630560 372479 454886 163643 995013 900325 438065 520783 473562 277849 963965 861670 817754 021751 633602 886901 172457 079239 283568 505251 784573 452451 186117 303939 089810 075458 509785 618717 860926 016036 896293 641841 358663 116399 803892 506840 158657 440496 374587 723364 426678 800037 562107 213033 863170 776326 456462 679126 902614 184816 680544 599481 302743 494698 909636 107622 697520 451780 683209 679180 931278 059219 957012 348653 313875 235673 338204 902472 136656 455752 248880 388390 961767 277041 071625 (608 digits)/3628 634256 602896 224744 017143 423531 105636 984838 482115 387070 274354 101304 097000 737998 769269 593933 404421 149919 316225 136990 875413 351370 940319 200564 369277 987268 985766 450875 814113 764024 974384 320706 010299 829687 791348 037903 857049 449508 977390 915831 586041 752817 525564 936863 334914 061854 673638 702341 626573 317136 848373 686551 998402 878564 757667 605437 907506 605743 227761 580371 020968 092447 984404 098531 361352 037707 771922 186503 520238 490672 988310 815642 708069 686537 507967 462259 585771 325095 746174 922170 514928 063654 680299 036784 387380 340613 599055 743864 979377 572666 882788 980546 104457 529885 614940 574471 211344 406087 060704 396571 705732 154142 (610 digits), a[1160] = 1
                                                                                      A[1161]/B[1161] = 61 436400 084203 843134 248414 704019 979560 626890 823917 381789 666540 418059 457292 169757 752133 915484 898750 859988 001438 614883 179908 863167 083189 680912 845293 796153 275668 641810 272527 985551 473224 768766 321676 943691 602733 572534 246828 826237 815871 048958 885887 833591 301641 877499 455940 112365 263299 969856 633507 023486 745366 478485 946045 421969 083639 494731 276615 519889 923129 463738 808108 831299 149880 645893 975193 750667 164406 262314 513655 238987 873421 425140 433947 794364 788034 017201 301334 587026 169213 815580 802378 283773 786533 516727 586401 264148 629705 527370 650496 147081 213755 211475 238259 598970 527158 597133 865807 591193 467733 869567 637326 087978 (608 digits)/5971 220315 210246 069949 511743 624408 124502 314780 757535 254529 062574 439213 221220 657566 471834 765470 324477 121009 450569 358910 591420 043775 895892 346061 698835 962937 510734 803942 200713 979145 100956 710167 852645 891929 583092 304229 811300 693914 531433 768978 429589 572299 428810 213918 754387 060920 415564 516444 361455 526584 748320 234842 004630 114657 570452 355447 705543 680667 776135 959792 815177 142001 626411 988660 442571 914174 059617 317765 738084 397703 639489 530418 803744 118163 883946 556402 017490 235906 629643 499346 756081 181871 779541 535644 582026 319621 409921 118021 918281 917911 576365 423251 093099 465223 289152 483534 261208 271733 324258 507518 107518 095443 (610 digits), a[1161] = 1
                                                                                      A[1162]/B[1162] = 98 770515 085796 071673 932742 688868 077133 081644 238966 552406 719191 514295 888533 613973 139619 828545 767932 803193 852586 197162 266996 950817 858072 988035 064875 954626 599034 272370 645007 440437 636868 763780 222002 381757 123517 046096 524678 790203 677541 866712 907639 467194 188543 049956 535179 395933 768551 754430 085958 209604 049305 568296 021503 931754 702357 355657 292652 416183 564970 822401 924508 635191 656720 804551 415690 125254 887770 688993 313692 801095 086455 288311 210274 250827 467160 919815 486151 267570 768695 118324 297077 193409 894156 214248 038181 947358 308886 458648 709716 104093 562408 525350 473932 937175 429630 733790 321559 840073 856124 831334 914367 159603 (608 digits)/9599 854571 813142 294693 528887 047939 230139 299619 239650 641599 336928 540517 318221 395565 241104 359403 728898 270928 766794 495901 466833 395146 836211 546626 068113 950206 496501 254818 014827 743170 075341 030873 862945 721617 374440 342133 668350 143423 508824 684810 015631 325116 954375 150782 089301 122775 089203 218785 988028 843721 596693 921394 003032 993222 328119 960885 613050 286411 003897 540163 836145 234449 610816 087191 803923 951881 831539 504269 258322 888376 627800 346061 511813 804701 391914 018661 603261 561002 375818 421517 271009 245526 459840 572428 969406 660235 008976 861886 897659 490578 459154 403797 197556 995108 904093 058005 472552 677820 384962 904089 813250 249585 (610 digits), a[1162] = 1
                                                                                      A[1163]/B[1163] = 456 518460 427388 129829 979385 459492 288092 953467 779783 591416 543306 475243 011426 625650 310613 229667 970482 072763 411783 403532 247896 666438 515481 633053 104797 614659 671805 731292 852557 747302 020699 823887 209686 470720 096801 756920 345543 987052 526038 515810 516445 702368 055814 077325 596657 696100 337506 987576 977339 861902 942588 751670 032061 148987 893068 917360 447225 184624 183012 753346 506143 372065 776763 864099 637954 251686 715489 018287 768426 443368 219242 578385 275044 797674 656677 696463 245939 657309 243994 288877 990687 057413 363158 373719 739129 053581 865251 361965 489360 563455 463389 312877 133991 347672 245681 532295 152046 951488 892233 194907 294794 726390 (609 digits)/44370 638602 462815 248723 627291 816165 045059 513257 716137 820926 410288 601282 494106 239827 436252 203085 240070 204724 517747 342516 458753 624363 240738 532565 971291 763763 496739 823214 260024 951825 402320 833663 304428 778399 080853 672764 484701 267608 566732 508218 492114 872767 246310 817047 111591 552020 772377 391588 313570 901471 135095 920418 016762 087546 882932 198990 157744 826311 791726 120448 159758 079800 069676 337427 658267 721701 385775 334842 771375 951210 150690 914664 850999 336969 451602 631048 430536 479916 132917 185415 840118 163977 618903 825360 459652 960561 445828 565569 508919 880225 412983 038439 883327 445658 905524 715556 151418 983014 864110 123877 360519 093783 (611 digits), a[1163] = 4
                                                                                      A[1164]/B[1164] = 3750 918198 504901 110313 767826 364806 381876 709386 477235 283739 065643 316239 979946 619175 624525 665889 531789 385301 146853 425420 250170 282325 981926 052459 903256 871903 973480 122713 465469 418853 802467 354877 899494 147517 897931 101459 289030 686623 885849 993197 039205 086138 635055 668561 308440 964736 468607 655045 904677 104827 590015 581656 277993 123657 846908 694540 870453 893177 029072 849173 973655 611717 870831 717348 519324 138748 611682 835295 461104 348040 840395 915393 410632 632224 720582 491521 453668 526044 720649 429348 222573 652716 799423 204005 951214 376013 230897 354372 624600 611737 269523 028367 545863 718553 395082 992151 537935 451984 993990 390593 272724 970723 (610 digits)/364564 963391 515664 284482 547221 577259 590615 405680 968753 209010 619237 350777 271071 314184 731121 984085 649459 908724 908773 236033 136862 390052 762119 807153 838448 060314 470419 840532 095027 357773 293907 700180 298375 948810 021269 724249 545960 284292 042684 750557 952550 307254 924861 687158 982033 538941 268222 351492 496596 055490 677461 284738 137129 693597 391577 552806 875008 896905 337706 503749 114209 872850 168226 786613 070065 725492 917742 183011 429330 498057 833327 663380 319808 500457 004735 067049 047553 400331 439155 904843 991954 557347 411071 175312 646630 344726 575605 386442 969018 532381 763018 711316 264176 560380 148290 782454 683904 541939 297843 895108 697402 999849 (612 digits), a[1164] = 8
                                                                                      A[1165]/B[1165] = 15460 191254 446992 571085 050690 918717 815599 791013 688724 726372 805879 740202 931213 102352 808715 893226 097639 613967 999197 105213 248577 795742 443185 842892 717825 102275 565726 222146 714435 422717 230569 243398 807663 060791 688526 162757 501666 733548 069438 488598 673266 046922 596036 751570 830421 555046 211937 607760 596048 281213 302651 078295 144033 643619 280703 695523 929040 757332 299304 150042 400765 818937 260090 733493 715250 806681 162220 359469 612843 835531 580826 239958 917575 326573 539007 662549 060613 761488 126592 006270 880981 668280 560851 189743 543986 557634 788840 779455 987763 010404 541481 426347 317446 221885 826013 500901 303788 759428 868194 757280 385694 609282 (611 digits)/1 502630 492168 525472 386653 816178 125203 407521 135981 591150 656968 887238 004391 578391 496566 360740 139427 837909 839624 152840 286649 006203 184574 289217 761181 325084 005021 378419 185342 640134 382918 577951 634384 497932 573639 165932 569762 668542 404776 737471 510450 302316 101786 945757 565683 039725 707785 845266 797558 299955 123433 844941 059370 565280 861936 449242 410217 657780 413933 142552 135444 616597 571200 742583 483879 938530 623673 056744 066888 488697 943441 484001 568186 130233 338797 470542 899244 620750 081241 889540 804791 807936 393367 263188 526611 046174 339467 748250 111341 384994 009752 465057 883704 940033 687179 498687 845374 887037 150772 055485 704312 150131 093179 (613 digits), a[1165] = 4
                                                                                      A[1166]/B[1166] = 19211 109452 951893 681398 818517 283524 197476 500400 165960 010111 871523 056442 911159 721528 433241 559115 629428 999269 146050 530633 498748 078068 425111 895352 621081 974179 539206 344860 179904 841571 033036 598276 707157 208309 586457 264216 790697 420171 955288 481795 712471 133061 231092 420132 138862 519782 680545 262806 500725 386040 892666 659951 422026 767277 127612 390064 799494 650509 328376 999216 374421 430655 130922 450842 234574 945429 773903 194765 073948 183572 421222 155352 328207 958798 259590 154070 514282 287532 847241 435619 103555 320997 360274 393749 495200 933648 019738 133828 612363 622141 811004 454714 863309 940439 221096 493052 841724 211413 862185 147873 658419 580005 (611 digits)/1 867195 455560 041136 671136 363399 702462 998136 541662 559903 865979 506475 355168 849462 810751 091862 123513 487369 748349 061613 522682 143065 574627 051337 568335 163532 065335 848839 025874 735161 740691 871859 334564 796308 522449 187202 294012 214502 689068 780156 261008 254866 409041 870619 252842 021759 246727 113489 149050 796551 178924 522402 344108 702410 555533 840819 963024 532789 310838 480258 639193 730807 444050 910810 270493 008596 349165 974486 249899 918028 441499 317329 231566 450041 839254 475277 966293 668303 481573 328696 709635 799890 950714 674259 701923 692804 684194 323855 497784 354012 542134 228076 595021 204210 247559 646978 627829 570941 692711 353329 599420 847534 093028 (613 digits), a[1166] = 1
                                                                                      A[1167]/B[1167] = 53882 410160 350779 933882 687725 485766 210552 791814 020644 746596 548925 853088 753532 545409 675199 011457 356497 612506 291298 166480 246073 951879 293409 633597 959989 050634 644138 911867 074245 105859 296642 439952 221977 477410 861440 691191 083061 573891 980015 452190 098208 313045 058221 591835 108146 594611 573028 133373 597499 053295 087984 398197 988087 178173 535928 475653 528030 058350 956058 148475 149608 680247 521935 635178 184400 697540 710026 748999 760740 202676 423270 550663 573991 244170 058187 970690 089178 336553 821074 877509 088092 310275 281399 977242 534388 424930 828317 047113 212490 254688 163490 335777 044066 102764 268206 487006 987237 182256 592565 053027 702533 769292 (611 digits)/5 237021 403288 607745 728926 542977 530129 403794 219306 710958 388927 900188 714729 277317 118068 544464 386454 812649 336322 276067 332013 292334 333828 391892 897851 652148 135693 076097 237092 110457 864302 321670 303514 090549 618537 540337 157787 097547 782914 297784 032466 812048 919870 686996 071367 083244 201240 072245 095659 893057 481282 889745 747587 970101 973004 130882 336266 723359 035610 103069 413832 078212 459302 564204 024865 955723 322005 005716 566688 324754 826440 118660 031319 030317 017306 421098 831831 957357 044388 546934 224063 407718 294796 611707 930458 431783 707856 395961 106910 093019 094020 921211 073747 348454 182298 792645 101034 028920 536194 762144 903153 845199 279235 (613 digits), a[1167] = 2
                                                                                      A[1168]/B[1168] = 73093 519613 302673 615281 506242 769290 408029 292214 186604 756708 420448 909531 664692 266938 108440 570572 985926 611775 437348 697113 744822 029947 718521 528950 581071 024814 183345 256727 254149 947430 329679 038228 929134 685720 447897 955407 873758 994063 935303 933985 810679 446106 289314 011967 247009 114394 253573 396180 098224 439335 980651 058149 410113 945450 663540 865718 327524 708860 284435 147691 524030 110902 652858 086020 418975 642970 483929 943764 834688 386248 844492 706015 902199 202968 317778 124760 603460 624086 668316 313128 191647 631272 641674 370992 029589 358578 848055 180941 824853 876829 974494 790491 907376 043203 489302 980059 828961 393670 454750 200901 360953 349297 (611 digits)/7 104216 858848 648882 400062 906377 232592 401930 760969 270862 254907 406664 069898 126779 928819 636326 509968 300019 084671 337680 854695 435399 908455 443230 466186 815680 201028 924936 262966 845619 604994 193529 638078 886858 140986 727539 451799 312050 471983 077940 293475 066915 328912 557615 324209 105003 447967 185734 244710 689608 660207 412148 091696 672512 528537 971702 299291 256148 346448 583328 053025 809019 903353 475014 295358 964319 671170 980202 816588 242783 267939 435989 262885 480358 856560 896376 798125 625660 525961 875630 933699 207609 245511 285967 632382 124588 392050 719816 604694 447031 636155 149287 668768 552664 429858 439623 728863 599862 228906 115474 502574 692733 372263 (613 digits), a[1168] = 1
                                                                                      A[1169]/B[1169] = 200069 449386 956127 164445 700211 024347 026611 376242 393854 260013 389823 672152 082917 079285 892080 152603 328350 836057 165995 560707 735718 011774 730452 691499 122131 100263 010829 425321 582545 000719 956000 516410 080246 848851 757236 602006 830579 562019 850623 320161 719567 205257 636849 615769 602164 823400 080174 925733 793947 931967 049286 514496 808315 069074 863010 207090 183079 476071 524928 443858 197668 902052 827651 807219 022351 983481 677886 636529 430116 975174 112255 962695 378389 650106 693744 220211 296099 584727 157707 503765 471387 572820 564748 719226 593567 142088 524427 408996 862198 008348 112479 916760 858818 189171 246812 447126 645159 969597 502065 454830 424440 467886 (612 digits)/19 445455 120985 905510 529052 355731 995314 207655 741245 252682 898742 713516 854525 530876 975707 817117 406391 412687 505664 951429 041404 163134 150739 278353 830225 283508 537750 925969 763025 801697 074290 708729 579671 864265 900510 995416 061385 721648 726880 453664 619416 945879 577695 802226 719785 293251 097174 443713 585081 272274 801697 714041 930981 315127 030080 074286 934849 235655 728507 269725 519883 696252 266009 514232 615583 884362 664346 966122 199864 810321 362318 990638 557089 991034 730428 213852 428083 208678 096312 298196 091461 822936 785819 183643 195222 680960 491957 835594 316298 987082 366331 219786 411284 453783 042015 671892 558761 228644 994006 993093 908303 230666 023761 (614 digits), a[1169] = 2
                                                                                      A[1170]/B[1170] = 673301 867774 171055 108618 606875 842331 487863 420941 368167 536748 589919 925987 913443 504795 784681 028382 970979 119946 935335 379236 951976 065271 909879 603447 947464 325603 215833 532692 001784 949590 197680 587459 169875 232275 719607 761428 365497 680123 487173 894470 969381 061879 199862 859276 053503 584594 494098 173381 480068 235237 128510 601639 835059 152675 252571 486988 876763 137074 859220 479266 117036 817061 135813 507677 486031 593415 517589 853353 125039 311771 181260 594102 037368 153288 399010 785394 491759 378268 141438 824424 605810 349734 335920 528671 810290 784844 421337 407932 411447 901874 311934 540774 483830 610717 229740 321439 764441 302462 960946 565392 634274 752955 (612 digits)/65 440582 221806 365413 987219 973573 218535 024897 984705 028910 951135 547214 633474 719410 855943 087678 729142 538081 601666 191967 978907 924802 360673 278291 956862 666205 814281 702845 552044 250710 827866 319718 377094 479655 842519 713787 635956 476996 652624 438934 151725 904554 061999 964295 483564 984756 739490 516874 999954 506433 065300 554273 884640 617893 618778 194563 103838 963115 531970 392504 612676 897776 701382 017712 142110 617407 664211 878569 416182 673747 354896 407904 934155 453463 047845 537934 082375 251694 814898 770219 208084 676419 602968 836897 218050 167469 867924 226599 553591 408278 735148 808646 902621 914013 555905 455301 405147 285797 210927 094756 227484 384731 443546 (614 digits), a[1170] = 3
                                                                                      A[1171]/B[1171] = 873371 317161 127182 273064 307086 866678 514474 797183 762021 796761 979743 598139 996360 584081 676761 180986 299329 956004 101330 939944 687694 077046 640332 294947 069595 425866 226662 958013 584329 950310 153681 103869 250122 081127 476844 363435 196077 242143 337797 214632 688948 267136 836712 475045 655668 407994 574273 099115 274016 167204 177797 116136 643374 221750 115581 694079 059842 613146 384148 923124 314705 719113 963465 314896 508383 576897 195476 489882 555156 286945 293516 556797 415757 803395 092755 005605 787858 962995 299146 328190 077197 922554 900669 247898 403857 926932 945764 816929 273645 910222 424414 457535 342648 799888 476552 768566 409601 272060 463012 020223 058715 220841 (612 digits)/84 886037 342792 270924 516272 329305 213849 232553 725950 281593 849878 260731 488000 250287 831650 904796 135533 950769 107331 143397 020312 087936 511412 556645 787087 949714 352032 628815 315070 052407 902157 028447 956766 343921 743030 709203 697342 198645 379504 892598 771142 850433 639695 766522 203350 278007 836664 960588 585035 778707 866998 268315 815621 933020 648858 268850 038688 198771 260477 662230 132560 594028 967391 531944 757694 501770 328558 844691 616047 484068 717215 398543 491245 444497 778273 751786 510458 460372 911211 068415 299546 499356 388788 020540 413272 848430 359882 062193 869890 395361 101480 028433 313906 367796 597921 127193 963908 514442 204934 087850 135787 615397 467307 (614 digits), a[1171] = 1
                                                                                      A[1172]/B[1172] = 1 546673 184935 298237 381682 913962 709010 002338 218125 130189 333510 569663 524127 909804 088877 461442 209369 270309 075951 036666 319181 639670 142318 550211 898395 017059 751469 442496 490705 586114 899900 351361 691328 419997 313403 196452 124863 561574 922266 824971 109103 658329 329016 036575 334321 709171 992589 068371 272496 754084 402441 306307 717776 478433 374425 368153 181067 936605 750221 243369 402390 431742 536175 099278 822573 994415 170312 713066 343235 680195 598716 474777 150899 453125 956683 491765 791000 279618 341263 440585 152614 683008 272289 236589 776570 214148 711777 367102 224861 685093 812096 736348 998309 826479 410605 706293 090006 174042 574523 423958 585615 692989 973796 (613 digits)/150 326619 564598 636338 503492 302878 432384 257451 710655 310504 801013 807946 121474 969698 687593 992474 864676 488850 708997 335364 999220 012738 872085 834937 743950 615920 166314 331660 867114 303118 730023 348166 333860 823577 585550 422991 333298 675642 032129 331532 922868 754987 701695 730817 686915 262764 576155 477463 584990 285140 932298 822589 700262 550914 267636 463413 142527 161886 792448 054734 745237 491805 668773 549656 899805 119177 992770 723261 032230 157816 072111 806448 425400 897960 826119 289720 592833 712067 726109 838634 507631 175775 991756 857437 631323 015900 227806 288793 423481 803639 836628 837080 216528 281810 153826 582495 369055 800239 415861 182606 363272 000128 910853 (615 digits), a[1172] = 1
                                                                                      A[1173]/B[1173] = 2 420044 502096 425419 654747 221049 575688 516813 015308 892211 130272 549407 122267 906164 672959 138203 390355 569639 031955 137997 259126 327364 219365 190544 193342 086655 177335 669159 448719 170444 850210 505042 795197 670119 394530 673296 488298 757652 164410 162768 323736 347277 596152 873287 809367 364840 400583 642644 371612 028100 569645 484104 833913 121807 596175 483734 875146 996448 363367 627518 325514 746448 255289 062744 137470 502798 747209 908542 833118 235351 885661 768293 707696 868883 760078 584520 796606 067477 304258 739731 480804 760206 194844 137259 024468 618006 638710 312867 041790 958739 722319 160763 455845 169128 210494 182845 858572 583643 846583 886970 605838 751705 194637 (613 digits)/235 212656 907390 907263 019764 632183 646233 490005 436605 592098 650892 068677 609475 219986 519244 897271 000210 439619 816328 478762 019532 100675 383498 391583 531038 565634 518346 960476 182184 355526 632180 376614 290627 167499 328581 132195 030640 874287 411634 224131 694011 605421 341391 497339 890265 540772 412820 438052 170026 063848 799297 090905 515884 483934 916494 732263 181215 360658 052925 716964 877798 085834 636165 081601 657499 620948 321329 567952 648277 641884 789327 204991 916646 342458 604393 041507 103292 172440 637320 907049 807177 675132 380544 877978 044595 864330 587688 350987 293372 199000 938108 865513 530434 649606 751747 709689 332964 314681 620795 270456 499059 615526 378160 (615 digits), a[1173] = 1
                                                                                      A[1174]/B[1174] = 6 386762 189128 149076 691177 356061 860387 035964 248742 914611 594055 668477 768663 722133 434795 737848 990080 409587 139861 312660 837434 294398 581048 931300 285079 190370 106140 780815 388143 927004 600321 361447 281723 760236 102464 543045 101461 076879 251087 150507 756576 352884 521321 783150 953056 438852 793756 353660 015720 810285 541732 274517 385602 722048 566776 335622 931361 929502 476956 498406 053419 924639 046753 224767 097515 000012 664732 530152 009472 150899 370040 011364 566293 190893 476840 660807 384212 414572 949780 920048 114224 203420 661977 511107 825507 450161 989197 992836 308443 602573 256735 057875 910000 164735 831594 071984 807151 341330 267691 197899 797293 196400 363070 (613 digits)/620 751933 379380 450864 543021 567245 724851 237462 583866 494702 102797 945301 340425 409671 726083 787016 865097 368090 341654 292889 038284 214089 639082 618104 806027 747189 203008 252613 231483 014171 994384 101394 915115 158576 242712 687381 394580 424216 855397 779796 310891 965830 384478 725497 467446 344309 401796 353567 925042 412838 530893 004400 732031 518784 100625 927939 504957 883202 898299 488664 500833 663474 941103 712860 214804 361074 635429 859166 328785 441585 650766 216432 258693 582878 034905 372734 799418 056949 000751 652734 121986 526040 752846 613393 720514 744561 403182 990768 010226 201641 712846 568107 277397 581023 657322 001874 034984 429602 657451 723519 361391 231181 667173 (615 digits), a[1174] = 2
                                                                                      A[1175]/B[1175] = 8 806806 691224 574496 345924 577111 436075 552777 264051 806822 724328 217884 890931 628298 107754 876052 380435 979226 171816 450658 096560 621762 800414 121844 478421 277025 283476 449974 836863 097449 450531 866490 076921 430355 496995 216341 589759 834531 415497 313276 080312 700162 117474 656438 762423 803693 194339 996304 387332 838386 111377 758622 219515 843856 162951 819357 806508 925950 840324 125924 378934 671087 302042 287511 234985 502811 411942 438694 842590 386251 255701 779658 273990 059777 236919 245328 180818 482050 254039 659779 595028 963626 856821 648366 849976 068168 627908 305703 350234 561312 979054 218639 365845 333864 042088 254830 665723 924974 114275 084870 403131 948105 557707 (613 digits)/855 964590 286771 358127 562786 199429 371084 727468 020472 086800 753690 013978 949900 629658 245328 684287 865307 807710 157982 771651 057816 314765 022581 009688 337066 312823 721355 213089 413667 369698 626564 478009 205742 326075 571293 819576 425221 298504 267032 003928 004903 571251 725870 222837 357711 885081 814616 791620 095068 476687 330190 095306 247916 002719 017120 660202 686173 243860 951225 205629 378631 749309 577268 794461 872303 982022 956759 427118 977063 083470 440093 421424 175339 925336 639298 414241 902710 229389 638072 559783 929164 201173 133391 491371 765110 608891 990871 341755 303598 400642 650955 433620 807832 230630 409069 711563 367948 744284 278246 993975 860450 846708 045333 (615 digits), a[1175] = 1
                                                                                      A[1176]/B[1176] = 112 068442 483823 043032 842272 281399 093293 669291 417364 596484 285994 283096 459843 261710 727854 250477 555312 160301 201658 720557 996161 755552 186018 393434 026134 514673 507858 180513 430501 096398 006703 759328 204780 924502 066407 139144 178579 091256 237054 909820 720328 754829 931017 660416 102142 083171 125836 309312 663714 870918 878265 377984 019792 848322 522198 167916 609469 040912 560846 009498 600635 977686 671260 674901 917341 033749 608041 794490 120556 785914 438461 367263 854173 908220 319871 604745 554034 199175 998256 837403 254571 766942 943837 291510 025220 268185 524097 661276 511258 338329 005385 681548 300144 171104 336653 129952 795838 441019 638992 216344 634876 573667 055554 (615 digits)/10892 327016 820636 748395 296455 960398 177867 967078 829531 536311 147078 113048 739232 965570 670027 998471 248791 060612 237447 552701 732079 991269 910054 734364 850823 501073 859270 809686 195491 450555 513157 837505 384023 071483 098238 522298 497236 006268 059781 826932 369734 820851 094921 399545 759988 965291 177197 853009 065864 133086 493174 148075 707023 551412 306073 850371 739036 809534 313001 956217 044414 655189 868329 246402 682452 145350 116542 984594 053542 443230 931887 273522 362772 686917 706486 343637 631940 809624 657622 370141 271956 940118 353544 509854 901842 051265 293639 091831 653407 009353 524311 771556 971384 348588 566158 540634 450369 361013 996415 651229 686801 391678 211169 (617 digits), a[1176] = 12
                                                                                      A[1177]/B[1177] = 232 943691 658870 660562 030469 139909 622662 891360 098780 999791 296316 784077 810618 151719 563463 377007 491060 299828 575133 891774 088884 132867 172450 908712 530690 306372 299192 811001 697865 290245 463939 385146 486483 279359 629809 494629 946918 017043 889607 132917 520970 209821 979509 977270 966707 970035 446012 614929 714762 580223 867908 514590 259101 540501 207348 155191 025447 007775 962016 144921 580206 626460 644563 637315 069667 570310 628026 027675 083703 958080 132624 514185 982337 876217 876662 454819 288886 880402 250553 334586 104172 497512 744496 231386 900416 604539 676103 628256 372751 237970 989825 581735 966133 676072 715394 514736 257400 807013 392259 517559 672885 095439 668815 (615 digits)/22640 618623 928044 854918 155698 120225 726820 661625 679535 159423 047846 240076 428366 560799 585384 681230 362889 928934 632877 877054 521976 297304 842690 478418 038713 314971 439896 832461 804650 270809 652880 153019 973788 469041 767770 864173 419693 311040 386595 657792 744373 212953 915713 021928 877689 815664 169012 497638 226796 742860 316538 391457 661963 105543 629268 360946 164246 862929 577229 118063 467461 059689 313927 287267 237208 272723 189845 396307 084147 969932 303867 968468 900885 299172 052271 101517 166591 848638 953317 300066 473078 081409 840480 511081 568794 711422 578149 525418 610412 419349 699578 976734 750600 927807 541386 792832 268687 466312 271078 296435 234053 630064 467671 (617 digits), a[1177] = 2
                                                                                      A[1178]/B[1178] = 1276 786900 778176 345842 994617 980947 206608 126091 911269 595440 767578 203485 512934 020308 545171 135515 010613 659444 077328 179428 440582 419888 048272 936996 679586 046535 003822 235521 919827 547625 326400 685060 637197 321300 215454 612293 913169 176475 685090 574408 325179 803939 828567 546770 935681 933348 355899 383961 237527 772038 217807 950935 315300 550828 558938 943871 736704 079792 370926 734106 501669 109989 894078 861477 265678 885302 748171 932865 539076 576315 101583 938193 765863 289309 703183 878841 998468 601187 251023 510333 775434 254506 666318 448444 527303 290883 904615 802558 375014 528183 954513 590228 130812 551467 913625 703634 082842 476086 600289 804142 999302 050865 399629 (616 digits)/124095 420136 460861 022986 074946 561526 811971 275207 227207 333426 386309 313430 881065 769568 596951 404623 063240 705285 401836 937974 341961 477794 123507 126455 044390 075931 058754 971995 218742 804603 777558 602605 252965 416691 937092 843165 595702 561469 992760 115896 091600 885620 673486 509190 148438 043612 022260 341200 199847 847388 075866 105364 016839 079130 452415 655102 560271 124182 199147 546534 381719 953636 437965 682738 868493 508966 065769 966129 474282 292892 451227 115866 867199 182777 967841 851223 464900 052819 424208 870473 637347 347167 555947 065262 745815 608378 184386 718924 705469 106102 022206 655230 724388 987626 273092 504795 793806 692575 351807 133405 857069 542000 549524 (618 digits), a[1178] = 5
                                                                                      A[1179]/B[1179] = 1509 730592 437047 006405 025087 120856 829271 017452 010050 595232 063894 987563 323552 172028 108634 512522 501673 959272 652462 071202 529466 552755 220723 845709 210276 352907 303015 046523 617692 837870 790340 070207 123680 600659 845264 106923 860087 193519 574697 707325 846150 013761 808077 524041 902389 903383 801911 998890 952290 352262 085716 465525 574402 091329 766287 099062 762151 087568 332942 879028 081875 736450 538642 498792 335346 455613 376197 960540 622780 534395 234208 452379 748201 165527 579846 333661 287355 481589 501576 844919 879606 752019 410814 679831 427719 895423 580719 430814 747765 766154 944339 171964 096946 227540 629020 218370 340243 283099 992549 321702 672187 146305 068444 (616 digits)/146736 038760 388905 877904 230644 681752 538791 936832 906742 492849 434155 553507 309432 330368 182336 085853 426130 634220 034714 815028 863937 775098 966197 604873 083103 390902 498651 804457 023393 075413 430438 755625 226753 885733 704863 707339 015395 872510 379355 773688 835974 098574 589199 531119 026127 859276 191272 838838 426644 590248 392404 496821 678802 184674 081684 016048 724517 987111 776376 664597 849181 013325 751892 970006 105701 781689 255615 362436 558430 262824 755095 084335 768084 481950 020112 952740 631491 901458 377526 170540 110425 428577 396427 576344 314610 319800 762536 244343 315881 525451 721785 631965 474989 915433 814479 297628 062494 158887 622885 429841 091123 172065 017195 (618 digits), a[1179] = 1
                                                                                      A[1180]/B[1180] = 93370 353039 438043 736549 524932 353213 792140 190664 524355 904596 665172 444848 249616 514023 171876 399387 612725 175075 877514 522782 738042 137956 512427 525258 506443 573880 487740 073462 599090 657743 537144 967695 181713 961550 776565 134649 378487 981169 741650 721284 940330 643410 121296 513326 981466 039760 272531 316309 327239 260025 446512 347995 353828 121944 302451 986700 227920 421460 680442 354819 496089 033472 751271 287809 721812 677718 696247 525843 528689 174424 388299 533358 406134 386492 073810 232180 527152 978146 847211 050446 431446 127690 726013 918161 618216 911722 328501 082257 988726 263635 559203 080038 044532 431446 283859 024224 837682 745186 145798 428006 002717 975474 574713 (617 digits)/9 074993 784520 184119 575144 144272 148431 678279 422014 538499 397241 869798 077376 756437 922027 719452 641682 057209 392707 519440 654735 042165 758831 061561 023713 113696 920983 476515 043873 645720 404823 034322 695744 084952 446447 933778 990845 534850 784603 133462 310915 086020 898670 614657 907450 742237 459459 689903 510344 225167 852540 012540 411486 423772 344249 435140 634074 755868 338000 558124 087003 181761 766507 303436 853111 316302 192010 658307 074759 538528 325202 512027 260348 720352 581729 194731 968401 985906 041780 453305 273420 373298 490388 738029 222265 937045 116224 699097 623866 974242 158657 051130 205124 698773 829088 956329 660107 605950 384720 347818 353712 415583 037966 598419 (619 digits), a[1180] = 61
                                                                                      A[1181]/B[1181] = 468361 495789 627265 689152 649748 886925 789971 970774 631830 118215 389757 211804 571634 742143 968016 509460 565299 834652 040034 685116 219677 242537 782861 472001 742494 222309 741715 413836 613146 126588 476064 908683 032250 408413 728089 780170 752527 099368 282951 313750 547803 230812 414560 090676 809720 102185 164568 580437 588486 652389 318278 205502 343542 701051 278547 032563 901753 194871 735154 653125 562320 903814 294998 937840 944409 844206 857435 589758 266226 406517 175706 119171 778873 097987 948897 494563 923120 372323 737632 097152 036837 390473 040884 270639 518804 454035 223224 842104 691397 084332 740354 572154 319608 384772 048315 339494 528657 009030 721541 461732 685777 023677 942009 (618 digits)/45 521704 961361 309503 753624 952005 423910 930189 046905 599239 479058 783145 940391 091621 940506 779599 294263 712177 597757 631918 088704 074766 569254 274002 723438 651587 995819 881227 023825 251995 099528 602052 234345 651516 117973 373758 661566 689649 795526 046667 328264 266078 591927 662489 068372 737315 156574 640790 390559 552483 852948 455106 554253 797663 905921 257387 186422 503859 677114 566997 099613 757989 845862 269077 235562 687212 741742 547150 736234 251071 888837 315231 386079 369847 390595 993772 794750 561022 110360 644052 537641 976917 880521 086573 687673 999835 900924 258024 363678 187092 318736 977436 657588 968859 060878 596127 598166 092246 082489 361977 198403 169038 361898 009290 (620 digits), a[1181] = 5
                                                                                      A[1182]/B[1182] = 3 371900 823566 828903 560618 073174 561694 321943 986086 947166 732104 393472 927480 251059 709030 947991 965611 569824 017640 157757 318596 275782 835720 992457 829270 703903 130048 679747 970318 891113 543862 869599 328476 407466 820446 873193 595844 646177 676747 722309 917538 774953 259097 023217 148064 649506 755056 424511 379372 446645 826750 674459 786511 758627 029303 252281 214647 540192 785562 826524 926698 432335 360172 816263 852696 332681 587166 698296 654151 392274 020044 618242 367560 858246 072407 716092 694127 988995 584413 010635 730510 689307 861002 012203 812638 249848 089968 891074 976990 828505 853964 741685 085118 281791 124850 622066 400686 538281 808401 196588 660134 803157 141220 168776 (619 digits)/327 726928 514049 350645 850518 808310 115808 189602 750353 733175 750653 351819 660114 397791 505575 176647 701528 042452 577010 942867 275663 565531 743610 979580 087783 674812 891722 645104 210650 409686 101523 248688 336163 645565 272261 550089 621812 362399 353285 460133 608764 948571 042164 252081 386059 903443 555482 175436 244261 092554 823179 198286 291263 007419 685698 236850 939032 282886 077802 527103 784299 487690 687543 186977 502050 126791 384208 488362 228399 296031 547063 718646 962904 309284 315901 151141 531655 913060 814304 961673 036914 211723 654036 344045 035983 935896 422694 505268 169614 283888 389815 893186 808247 480787 255239 129222 847270 251672 962145 881658 742534 598851 571252 663449 (621 digits), a[1182] = 7
                                                                                      A[1183]/B[1183] = 3 840262 319356 456169 249770 722923 448620 111915 956861 578996 850319 783230 139284 822694 451174 916008 475072 135123 852292 197792 003712 495460 078258 775319 301272 446397 352358 421463 384155 504259 670451 345664 237159 439717 228860 601283 376015 398704 776116 005261 231289 322756 489909 437777 238741 459226 857241 589079 959810 035132 479139 992737 992014 102169 730354 530828 247211 441945 980434 561679 579823 994656 263987 111262 790537 277091 431373 555732 243909 658500 426561 793948 486732 637119 170395 664990 188691 912115 956736 748267 827662 726145 251475 053088 083277 768652 544004 114299 819095 519902 938297 482039 657272 601399 509622 670381 740181 066938 817431 918130 121867 488934 164898 110785 (619 digits)/373 248633 475410 660149 604143 760315 539719 119791 797259 332415 229712 134965 600505 489413 446081 956246 995791 754630 174768 574785 364367 640298 312865 253582 811222 326400 887542 526331 234475 661681 201051 850740 570509 297081 390234 923848 283379 052049 148811 506800 937029 214649 634091 914570 454432 640758 712056 816226 634820 645038 676127 653392 845516 805083 591619 494238 125454 786745 754917 094100 883913 245680 533405 456054 737612 814004 125951 035512 964633 547103 435901 033878 348983 679131 706497 144914 326406 474082 924665 605725 574556 188641 534557 430618 723657 935732 323618 763292 533292 470980 708552 870623 465836 449646 316117 725350 445436 343919 044635 243635 940937 767889 933150 672739 (621 digits), a[1183] = 1
                                                                                      A[1184]/B[1184] = 118 579770 404260 513981 053739 760878 020297 679422 691934 317072 241697 890377 106024 931893 244278 428246 217775 623539 586406 091517 429971 139585 183484 252036 867444 095823 700801 323649 494984 018903 657403 239526 443259 598983 686264 911694 876306 607320 960227 880146 856218 457647 956380 156534 310308 426312 472304 096910 173673 500620 200950 456599 546934 823718 939939 177128 630990 798572 198599 676912 321418 272023 279786 154147 568814 645424 528373 370263 971441 147286 816898 436696 969539 971821 184277 665798 354885 352474 286515 458670 560392 473665 405253 604846 310971 309424 410092 320069 549856 425594 002889 202874 803296 323776 413530 733518 606118 546446 331358 740492 316159 471182 088163 492326 (621 digits)/11525 185932 776369 155133 974831 617776 307381 783356 668133 705632 642017 400787 675279 080194 888033 864057 575280 681357 820068 186428 206692 774481 129568 587064 424453 466839 517998 435041 244920 260122 133078 770905 451442 558006 979309 265538 123183 923873 817630 664161 719641 388060 064921 689195 019039 126204 917186 662235 288880 443715 107008 800071 656767 159927 434283 063994 702675 885258 725315 350130 301696 858106 689706 868619 630434 546915 162739 553751 167405 709134 624094 734997 432414 683235 510815 498571 323850 135548 554273 133440 273599 870969 690759 262606 745722 007866 131257 404044 168388 413309 646402 011890 783340 970176 738770 889736 210360 569244 301203 190736 970667 635549 565772 845619 (623 digits), a[1184] = 30
                                                                                      A[1185]/B[1185] = 2375 435670 404566 735790 324565 940483 854573 700369 795547 920441 684277 590772 259783 460559 336743 480932 830584 605915 580414 028140 603135 287163 747943 816056 650154 362871 368384 894453 283835 882332 818516 136193 102351 419390 954158 835180 902147 545123 980673 608198 355658 475715 617512 568463 444909 985476 303323 527283 433280 047536 498149 124728 930710 576548 529138 073400 867027 413389 952428 099926 008189 435121 859710 194214 166830 185581 998840 961011 672732 604236 764530 527887 877532 073542 855948 980957 286398 961601 687045 921679 035512 199453 356547 150014 302703 957140 745850 515690 816224 031782 996081 539535 723199 076927 780237 340753 862551 995865 444606 727976 445056 912575 928167 957305 (622 digits)/230876 967289 002793 762829 100776 115841 687354 786925 159933 445068 070060 150719 106087 093311 206759 237398 501405 381786 576132 303349 498223 129920 904236 994871 300291 663191 247511 227156 132880 864123 862627 268849 599360 457220 976420 234610 747057 529525 501424 790035 329856 975850 932525 698470 835215 164857 055790 060932 412429 519340 816303 654825 980860 003632 277280 774132 178972 491920 261224 096706 917850 407814 327542 828447 346303 752307 380742 110536 312747 729795 917795 733826 997277 343841 922807 116340 803409 185054 010128 274531 046553 608035 349742 682753 638098 093054 948766 844175 901060 737173 636593 108439 132655 853181 091535 520074 652647 728805 068699 058375 354290 478881 248607 585119 (624 digits), a[1185] = 20
                                                                                      A[1186]/B[1186] = 7244 886781 617960 721352 027437 582329 584018 780532 078578 078397 294530 662693 885375 313571 254508 871044 709529 441286 327648 175939 239377 001076 427315 700206 817907 184437 805956 007009 346491 665902 112951 648105 750313 857156 548741 417237 582749 242692 902248 704741 923193 884794 808917 861924 645038 382741 382274 678760 473513 643229 695397 830786 339066 553364 527353 397331 232073 038742 055883 976690 345986 577388 858916 736790 069305 202170 524896 253298 989638 959997 110490 020360 602136 192449 752124 608670 214082 237279 347653 223707 666929 072025 474895 054889 219083 180846 647643 867141 998528 520942 991133 821481 972893 554559 754242 755780 193774 534042 665178 924421 651330 208909 872667 364241 (622 digits)/704156 087799 784750 443621 277159 965301 369446 144132 147934 040836 852197 852944 993540 360128 508311 576253 079496 826717 548465 096476 701362 164243 842279 571678 325328 456413 260532 116509 643562 852493 720960 577454 249523 929669 908569 969370 364356 512450 321905 034267 709212 315612 862498 784607 524684 620776 084556 845032 526169 001737 555919 764549 599347 170824 266125 386391 239593 361019 508987 640251 055248 081549 672335 353961 669345 803837 304965 885360 105648 898522 377481 936478 424246 714761 279236 847593 734077 690710 584657 957033 413260 695075 739987 310867 660016 287030 977557 936571 871570 624830 556181 337208 181308 529720 013377 449960 168303 755659 507300 365863 033539 072193 311595 600976 (624 digits), a[1186] = 3
                                                                                      A[1187]/B[1187] = 60334 529923 348252 506606 544066 599120 526723 944626 424172 547620 040522 892323 342785 969129 372814 449290 506820 136206 201599 435654 518151 295775 166469 417711 193411 838373 816032 950528 055769 209549 722129 321039 104862 276643 344090 173081 564141 486667 198663 246133 741209 554074 088855 463860 605217 047407 361520 957367 221389 193374 061331 771019 643243 003464 747965 252050 723611 723326 399499 913448 776082 054232 731044 088534 721271 802946 198010 987403 589844 284213 648450 690772 694621 613140 872945 850318 999056 859836 468271 711340 370944 775657 155707 589128 055369 403913 927001 452826 804452 199326 925152 111391 506347 513405 814179 386995 412748 268206 766038 123349 655698 583854 909506 871233 (623 digits)/5 864125 669687 280797 311799 318055 838252 642923 939982 343405 771762 887642 974279 054409 974339 273251 847423 137379 995526 963853 075163 109120 443871 642473 568297 902919 314497 331768 159233 281383 684073 630311 888483 595551 894580 244979 989573 661909 629128 076665 064177 003555 500753 832515 975331 032692 131065 732244 821192 621781 533241 263661 771222 775637 370226 406283 865262 095719 380076 333125 218715 359835 060211 706225 660140 701070 183005 820469 193417 157938 917974 937651 225654 391251 061932 156701 897090 676030 710738 687391 930798 352639 168641 269641 169694 918228 389302 769230 336750 873625 735818 086043 806104 583124 090941 198555 119755 999077 774081 127101 985279 622603 056427 741372 392927 (625 digits), a[1187] = 8
                                                                                      A[1188]/B[1188] = 67579 416704 966213 227958 571504 181450 110742 725158 502750 626017 335053 555017 228161 282700 627323 320335 216349 577492 529247 611593 757528 296851 593785 117918 011319 022811 621988 957537 402260 875451 835080 969144 855176 133799 892831 590319 146890 729360 100911 950875 664403 438868 897773 325785 250255 430148 743795 636127 694902 836603 756729 601805 982309 556829 275318 649381 955684 762068 455383 890139 122068 631621 589960 825324 790577 005116 722907 240702 579483 244210 758940 711133 296757 805590 625070 458989 213139 097115 815924 935048 037873 847682 630602 644017 274452 584760 574645 319968 802980 720269 916285 932873 479241 067965 568422 142775 606522 802249 431217 047771 307028 792764 782174 235474 (623 digits)/6 568281 757487 065547 755420 595215 803554 012370 084114 491339 812599 739840 827224 047950 334467 781563 423676 216876 822244 512318 171639 810482 608115 484753 139976 228247 770910 592300 275742 924946 536567 351272 465937 845075 824250 153549 958944 026266 141578 398570 098444 712767 816366 695014 759938 557376 751841 816801 666225 147950 534978 819581 535772 374984 541050 672409 251653 335312 741095 842112 858966 415083 141761 378561 014102 370415 986843 125435 078777 263587 816497 315133 162132 815497 776693 435938 744684 410108 401449 272049 887831 765899 863717 009628 480562 578244 676333 746788 273322 745196 360648 642225 143312 764432 620661 211932 569716 167381 529740 634402 351142 656142 128621 052967 993903 (625 digits), a[1188] = 1
                                                                                      A[1189]/B[1189] = 127913 946628 314465 734565 115570 780570 637466 669784 926923 173637 375576 447340 570947 251830 000137 769625 723169 713698 730847 047248 275679 592626 760254 535629 204730 861185 438021 908065 458030 085001 557210 290183 960038 410443 236921 763400 711032 216027 299575 197009 405612 992942 986628 789645 855472 477556 105316 593494 916292 029977 818061 372825 625552 560294 023283 901432 679296 485394 854883 803587 898150 685854 321004 913859 511848 808062 920918 228106 169327 528424 407391 401905 991379 418731 498016 309308 212195 956952 284196 646388 408818 623339 786310 233145 329821 988674 501646 772795 607432 919596 841438 044264 985588 581371 382601 529771 019271 070456 197255 171120 962727 376619 691681 106707 (624 digits)/12 432407 427174 346345 067219 913271 641806 655294 024096 834745 584362 627483 801503 102360 308807 054815 271099 354256 817771 476171 246802 919603 051987 127226 708274 131167 085407 924068 434976 206330 220640 981584 354421 440627 718830 398529 948517 688175 770706 475235 162621 716323 317120 527530 735269 590068 882907 549046 487417 769732 068220 083243 306995 150621 911277 078693 116915 431032 121172 175238 077681 774918 201973 084786 674243 071486 169848 945904 272194 421526 734472 252784 387787 206748 838625 592640 641775 086139 112187 959441 818630 118539 032358 279269 650257 496473 065636 516018 610073 618822 096466 728268 949417 347556 711602 410487 689472 166459 303821 761504 336422 278745 185048 794340 386830 (626 digits), a[1189] = 1
                                                                                      A[1190]/B[1190] = 195493 363333 280678 962523 687074 962020 748209 394943 429673 799654 710630 002357 799108 534530 627461 089960 939519 291191 260094 658842 033207 889478 354039 653547 216049 883997 060010 865602 860290 960453 392291 259328 815214 544243 129753 353719 857922 945387 400487 147885 070016 431811 884402 115431 105727 907704 849112 229622 611194 866581 574790 974631 607862 117123 298602 550814 634981 247463 310267 693727 020219 317475 910965 739184 302425 813179 643825 468808 748810 772635 166332 113039 288137 224322 123086 768297 425335 054068 100121 581436 446692 471022 416912 877162 604274 573435 076292 092764 410413 639866 757723 977138 464829 649336 951023 672546 625793 872705 628472 218892 269756 169384 473855 342181 (624 digits)/19 000689 184661 411892 822640 508487 445360 667664 108211 326085 396962 367324 628727 150310 643274 836378 694775 571133 640015 988489 418442 730085 660102 611979 848250 359414 856318 516368 710719 131276 757208 332856 820359 285703 543080 552079 907461 714441 912284 873805 261066 429091 133487 222545 495208 147445 634749 365848 153642 917682 603198 902824 842767 525606 452327 751102 368568 766344 862268 017350 936648 190001 343734 463347 688345 441902 156692 071339 350971 685114 550969 567917 549920 022246 615319 028579 386459 496247 513637 231491 706461 884438 896075 288898 130820 074717 741970 262806 883396 364018 457115 370494 092730 111989 332263 622420 259188 333840 833562 395906 687564 934887 313669 847308 380733 (626 digits), a[1190] = 1
                                                                                      A[1191]/B[1191] = 323407 309961 595144 697088 802645 742591 385676 064728 356596 973292 086206 449698 370055 786360 627598 859586 662689 004889 990941 706090 308887 482105 114294 189176 420780 745182 498032 773668 318321 045454 949501 549512 775252 954686 366675 117120 568955 161414 700062 344894 475629 424754 871030 905076 961200 385260 954428 823117 527486 896559 392852 347457 233414 677417 321886 452247 314277 732858 165151 497314 918370 003330 231970 653043 814274 621242 564743 696914 918138 301059 573723 514945 279516 643053 621103 077605 637531 011020 384318 227824 855511 094362 203223 110307 934096 562109 577938 865560 017846 559463 599162 021403 450418 230708 333625 202317 645064 943161 825727 390013 232483 546004 165536 448888 (624 digits)/31 433096 611835 758237 889860 421759 087167 322958 132308 160830 981324 994808 430230 252670 952081 891193 965874 925390 457787 464660 665245 649688 712089 739206 556524 490581 941726 440437 145695 337606 977849 314441 174780 726331 261910 950609 855979 402617 682991 349040 423688 145414 450607 750076 230477 737514 517656 914894 641060 687414 671418 986068 149762 676228 363604 829795 485484 197376 983440 192589 014329 964919 545707 548134 362588 513388 326541 017243 623166 106641 285441 820701 937707 228995 453944 621220 028234 582386 625825 190933 525092 002977 928433 568167 781077 571190 807606 778825 493469 982840 553582 098763 042147 459546 043866 032907 948660 500300 137384 157411 023987 213632 498718 641648 767563 (626 digits), a[1191] = 1
                                                                                      A[1192]/B[1192] = 518900 673294 875823 659612 489720 704612 133885 459671 786270 772946 796836 452056 169164 320891 255059 949547 602208 296081 251036 364932 342095 371583 468333 842723 636830 629179 558043 639271 178612 005908 341792 808841 590467 498929 496428 470840 426878 106802 100549 492779 545645 856566 755433 020508 066928 292965 803541 052740 138681 763140 967643 322088 841276 794540 620489 003061 949258 980321 475419 191041 938589 320806 142936 392228 116700 434422 208569 165723 666949 073694 740055 627984 567653 867375 744189 845903 062866 065088 484439 809261 302203 565384 620135 987470 538371 135544 654230 958324 428260 199330 356885 998541 915247 880045 284648 874864 270858 815867 454199 608905 502239 715388 639391 791069 (624 digits)/50 433785 796497 170130 712500 930246 532527 990622 240519 486916 378287 362133 058957 402981 595356 727572 660650 496524 097803 453150 083688 379774 372192 351186 404774 849996 798044 956805 856414 468883 735057 647297 995140 012034 804991 502689 763441 117059 595276 222845 684754 574505 584094 972621 725685 884960 152406 280742 794703 605097 274617 888892 992530 201834 815932 580897 854052 963721 845708 209939 950978 154920 889442 011482 050933 955290 483233 088582 974137 791755 836411 388619 487627 251242 069263 649799 414694 078634 139462 422425 231553 887416 824508 857065 911897 645908 549577 041632 376866 346859 010697 469257 134877 571535 376129 655328 207848 834140 970946 553317 711552 148519 812388 488957 148296 (626 digits), a[1192] = 1
                                                                                      A[1193]/B[1193] = 1 361208 656551 346792 016313 782087 151815 653446 984071 929138 519185 679879 353810 708384 428143 137718 758681 867105 597052 493014 435954 993078 225272 050961 874623 694442 003541 614120 052210 675545 057271 633087 167195 956187 952545 359532 058801 422711 375018 901161 330453 566921 137888 381896 946093 095056 971192 561510 928597 804850 422841 328138 991634 915968 266498 562864 458371 212795 693501 115989 879398 795548 644942 517843 437500 047675 490086 981882 028362 252036 448449 053834 770914 414824 377805 109482 769411 763263 141197 353197 846347 459918 225131 443495 085249 010838 833198 886400 782208 874366 958124 312934 018487 280913 990798 902922 952046 186782 574896 734126 607824 236962 976781 444320 031026 (625 digits)/132 300668 204830 098499 314862 282252 152223 304202 613347 134663 737899 719074 548145 058634 142795 346339 287175 918438 653394 370960 832622 409237 456474 441579 366074 190575 537816 354048 858524 275374 447964 609037 165060 750400 871893 955989 382861 636736 873543 794731 793197 294425 618797 695319 681849 507434 822469 476380 230467 897609 220654 763854 134823 079897 995469 991591 193590 124820 674856 612468 916286 274761 324591 571098 464456 423969 293007 194409 571441 690152 958264 597940 912961 731479 592471 920818 857622 739654 904750 035783 988199 777811 577451 282299 604872 863007 906760 862090 247202 676558 574977 037277 311902 602616 796125 343564 364358 168582 079277 264046 447091 510672 123495 619563 064155 (627 digits), a[1193] = 2
                                                                                      A[1194]/B[1194] = 3 241317 986397 569407 692240 053895 008243 440779 427815 644547 811318 156595 159677 585933 177177 530497 466911 336419 490186 237065 236842 328251 822127 570257 591971 025714 636262 786283 743692 529702 120451 607967 143233 502843 404020 215492 588443 272300 856839 902872 153686 679488 132343 519226 912694 257042 235350 926562 909935 748382 608823 623921 305358 673213 327537 746217 919804 374850 367323 707398 949839 529686 610691 178623 267228 212051 414596 172333 222448 171021 970592 847725 169813 397302 622985 963155 384726 589392 347483 190835 501956 222040 015647 507126 157968 560048 801942 427032 522742 176994 115578 982754 035516 477075 861643 090494 778956 644423 965660 922452 824553 976165 668951 528031 853121 (625 digits)/315 035122 206157 367129 342225 494750 836974 599027 467213 756243 854086 800282 155247 520249 880947 420251 235002 333401 404592 195071 748933 198249 285141 234345 136923 231147 873677 664903 573463 019632 630986 865372 325261 512836 548779 414668 529164 390533 342363 812309 271149 163356 821690 363261 089384 899829 797345 233503 255639 400315 715927 416601 262176 361630 806872 564080 241233 213363 195421 434877 783550 704443 538625 153678 979846 803229 069247 477402 117021 172061 752940 584501 313550 714201 254207 491437 129939 557943 948962 493993 207953 443039 979411 421665 121643 371924 363098 765812 871271 699976 160651 543811 758682 776768 968380 342456 936565 171305 129501 081410 605735 169864 059379 728083 276606 (627 digits), a[1194] = 2
                                                                                      A[1195]/B[1195] = 4 602526 642948 916199 708553 835982 160059 094226 411887 573686 330503 836474 513488 294317 605320 668216 225593 203525 087238 730079 672797 321330 047399 621219 466594 720156 639804 400403 795903 205247 177723 241054 310429 459031 356565 575024 647244 695012 231858 804033 484140 246409 270231 901123 858787 352099 206543 488073 838533 553233 031664 952060 296993 589181 594036 309082 378175 587646 060824 823388 829238 325235 255633 696466 704728 259726 904683 154215 250810 423058 419041 901559 940727 812127 000791 072638 154138 352655 488680 544033 348303 681958 240778 950621 243217 570887 635141 313433 304951 051361 073703 295688 054003 757989 852441 993417 731002 831206 540557 656579 432378 213128 645732 972351 884147 (625 digits)/447 335790 410987 465628 657087 777002 989197 903230 080560 890907 591986 519356 703392 578884 023742 766590 522178 251840 057986 566032 581555 607486 741615 675924 502997 421723 411494 018952 431987 295007 078951 474409 490322 263237 420673 370657 912026 027270 215907 607041 064346 457782 440488 058580 771234 407264 619814 709883 486107 297924 936582 180455 396999 441528 802342 555671 434823 338183 870278 047346 699836 979204 863216 724777 444303 227198 362254 671811 688462 862214 711205 182442 226512 445680 846679 412255 987562 297598 853712 529777 196153 220851 556862 703964 726516 234932 269859 627903 118474 376534 735628 581089 070585 379385 764505 686021 300923 339887 208778 345457 052826 680536 182875 347646 340761 (627 digits), a[1195] = 1
                                                                                      A[1196]/B[1196] = 7 843844 629346 485607 400793 889877 168302 535005 839703 218234 141821 993069 673165 880250 782498 198713 692504 539944 577424 967144 909639 649581 869527 191477 058565 745871 276067 186687 539595 734949 298174 849021 453662 961874 760585 790517 235687 967313 088698 706905 637826 925897 402575 420350 771481 609141 441894 414636 748469 301615 640488 575981 602352 262394 921574 055300 297979 962496 428148 530787 779077 854921 866324 875089 971956 471778 319279 326548 473258 594080 389634 749285 110541 209429 623777 035793 538864 942047 836163 734868 850259 903998 256426 457747 401186 130936 437083 740465 827693 228355 189282 278442 089520 235065 714085 083912 509959 475630 506218 579032 256932 189294 314684 500383 737268 (625 digits)/762 370912 617144 832757 999313 271753 826172 502257 547774 647151 446073 319638 858640 099133 904690 186841 757180 585241 462578 761104 330488 805736 026756 910269 639920 652871 285171 683856 005450 314639 709938 339781 815583 776073 969452 785326 441190 417803 558271 419350 335495 621139 262178 421841 860619 307094 417159 943386 741746 698240 652509 597056 659175 803159 609215 119751 676056 551547 065699 482224 483387 683648 401841 878456 424150 030427 431502 149213 805484 034276 464145 766943 540063 159882 100886 903693 117501 855542 802675 023770 404106 663891 536274 125629 848159 606856 632958 393715 989746 076510 896280 124900 829268 156154 732886 028478 237488 511192 338279 426867 658561 850400 242255 075729 617367 (627 digits), a[1196] = 1
                                                                                      A[1197]/B[1197] = 12 446371 272295 401807 109347 725859 328361 629232 251590 791920 472325 829544 186654 174568 387818 866929 918097 743469 664663 697224 582436 970911 916926 812696 525160 466027 915871 587091 335498 940196 475898 090075 764092 420906 117151 365541 882932 662325 320557 510939 121967 172306 672807 321474 630268 961240 648437 902710 587002 854848 672153 528041 899345 851576 515610 364382 676155 550142 488973 354176 608316 180157 121958 571556 676684 731505 223962 480763 724069 017138 808676 650845 051269 021556 624568 108431 693003 294703 324844 278902 198563 585956 497205 408368 644403 701824 072225 053899 132644 279716 262985 574130 143523 993055 566527 077330 240962 306837 046776 235611 689310 402422 960417 472735 621415 (626 digits)/1209 706703 028132 298386 656401 048756 815370 405487 628335 538059 038059 838995 562032 678017 928432 953432 279358 837081 520565 327136 912044 413222 768372 586194 142918 074594 696665 702808 437437 609646 788889 814191 305906 039311 390126 155984 353216 445073 774179 026391 399842 078921 702666 480422 631853 714359 036974 653270 227853 996165 589091 777512 056175 244688 411557 675423 110879 889730 935977 529571 183224 662853 265058 603233 868453 257625 793756 821025 493946 896491 175350 949385 766575 605562 947566 315949 105064 153141 656387 553547 600259 884743 093136 829594 574675 841788 902818 021619 108220 453045 631908 705989 899853 535540 497391 714499 538411 851079 547057 772324 711388 530936 425130 423375 958128 (628 digits), a[1197] = 1
                                                                                      A[1198]/B[1198] = 45 182958 446232 691028 728837 067455 153387 422702 594475 593995 558799 481702 233128 403955 945954 799503 446797 770353 571416 058818 656950 562317 620307 629566 634047 143955 023681 947961 546092 555538 725869 119248 745940 224593 112039 887142 884485 954289 050371 239723 003728 442817 420997 384774 662288 492863 387208 122768 509477 866161 656949 160107 300389 817124 468405 148448 326446 612923 895068 593317 604026 395393 232200 589760 002010 666293 991166 768839 645465 645496 815664 701820 264348 274099 497481 361088 617874 826157 810696 571575 445950 661867 748042 682853 334397 236408 653758 902163 225626 067503 978239 000832 520092 214232 413666 315903 232846 396141 646547 285867 324863 396563 195936 918590 601513 (626 digits)/4391 491021 701541 727917 968516 418024 272283 718720 432781 261328 560252 836625 544738 133187 689989 047138 595257 096486 024274 742515 066622 045404 331874 668852 068674 876655 375168 792281 317763 143580 076607 782355 733301 894008 139831 253279 500839 753024 880808 498524 535021 857904 370177 863109 756180 450171 528083 903197 425308 686737 419784 929592 827701 537224 843888 146021 008696 220739 873632 070938 033061 672208 197017 688158 029509 803304 812772 612290 287324 723749 990198 615100 839789 976570 943585 851540 432694 314967 771837 684413 204886 318120 815684 614413 572187 132223 341412 458573 314407 435647 792006 242870 528828 762776 225061 171976 852724 064430 979452 743841 792727 443209 517646 345857 491751 (628 digits), a[1198] = 3
                                                                                      A[1199]/B[1199] = 57 629329 718528 092835 838184 793314 481749 051934 846066 385916 031125 311246 419782 578524 333773 666433 364895 513823 236079 756043 239387 533229 537234 442263 159207 609982 939553 535052 881591 495735 201767 209324 510032 645499 229191 252684 767418 616614 370928 750662 125695 615124 093804 706249 292557 454104 035646 025479 096480 721010 329102 688149 199735 668700 984015 512831 002602 163066 384041 947494 212342 575550 354159 161316 678695 397799 215129 249603 369534 662635 624341 352665 315617 295656 122049 469520 310878 120861 135540 850477 644514 247824 245248 091221 978800 938232 725983 956062 358270 347220 241224 574962 663616 207287 980193 393233 473808 702978 693323 521479 014173 798986 156354 391326 222928 (626 digits)/5601 197724 729674 026304 624917 466781 087654 124208 061116 799387 598312 675621 106770 811205 618422 000570 874615 933567 544840 069651 978666 458627 100247 255046 211592 951250 071834 495089 755200 753226 865497 596547 039207 933319 529957 409263 854056 198098 654987 524915 934863 936826 072844 343532 388034 164530 565058 556467 653162 682903 008876 707104 883876 781913 255445 821444 119576 110470 809609 600509 216286 335061 462076 291391 897963 060930 606529 433315 781271 620241 165549 564486 606365 582133 891152 167489 537758 468109 428225 237960 805146 202863 908821 444008 146862 974012 244230 480192 422627 888693 423914 948860 428682 298316 722452 886476 391135 915510 526510 516166 504115 974145 942776 769233 449879 (628 digits), a[1199] = 1
                                                                                      A[1200]/B[1200] = 794 364244 787097 897894 625239 380543 416125 097855 593338 610903 963428 527905 690301 924772 285012 463137 190439 450055 640452 887380 768988 494301 604355 378987 703746 073733 237877 903649 006782 000096 348842 840467 376364 616083 091526 172044 860927 970275 872444 998330 637771 439430 640458 566015 465535 396215 850606 453996 763727 239295 935284 106046 896953 510237 260606 815251 360274 732786 887613 910742 364479 877547 836269 686876 825050 837683 787847 013683 449416 259759 932102 286469 367373 117629 084124 464852 659290 397352 572727 627784 824635 883582 936267 868739 058809 433434 091550 330973 883140 581367 114158 475347 147102 908976 156180 427938 392359 534864 659753 065094 509122 783383 228544 005831 499577 (627 digits)/77207 061443 187304 069878 092443 486178 411787 333425 227299 653367 338317 619699 932758 678860 729475 054559 965264 232864 107195 647990 789286 007556 635088 984452 819383 242906 309017 228448 135372 935529 328076 537467 243005 027162 029277 573709 603570 328307 395646 322431 688253 036643 317154 329030 800624 589068 873845 137276 916423 564476 535182 121956 318099 702097 164683 824794 563185 656860 398556 877557 844784 028007 204009 476252 703029 595402 697655 245395 443855 786885 142342 953426 722542 544311 528564 028904 423554 400390 338765 777903 671786 955351 630363 386519 481405 794382 516408 701074 808569 988662 302900 578056 101698 640893 616948 696169 937490 966067 824089 454006 346235 107106 773744 345892 340178 (629 digits), a[1200] = 13
                                                                                      A[1201]/B[1201] = 851 993574 505625 990730 463424 173857 897874 149790 439404 996819 994553 839152 110084 503296 618786 129570 555334 963878 876532 643424 008376 027531 141589 821250 862953 683716 177431 438701 888373 495831 550610 049791 886397 261582 320717 424729 628346 586890 243373 748992 763467 054554 734263 272264 758092 850319 886252 479475 860207 960306 264386 794196 096689 178938 244622 328082 362876 895853 271655 858236 576822 453098 190428 848193 503746 235483 002976 263286 818950 922395 556443 639134 682990 413285 206173 934372 970168 518213 708268 478262 469150 131407 181515 959961 037610 371666 817534 287036 241410 928587 355383 050309 810719 116264 136373 821171 866168 237843 353076 586573 523296 582369 384898 397157 722505 (627 digits)/82808 259167 916978 096182 717360 952959 499441 457633 288416 452754 936630 295321 039529 490066 347897 055130 839880 166431 652035 717642 767952 466183 735336 239499 030976 194156 380851 723537 890573 688756 193574 134014 282212 960481 559234 982973 457626 526406 050633 847347 623116 973469 389998 672563 188658 753599 438903 693744 569586 247379 544058 829061 201976 484010 420129 646238 682761 767331 208166 478067 061070 363068 666085 767644 600992 656333 304184 678711 225127 407126 307892 517913 328908 126445 419716 196393 961312 868499 766991 015864 476933 158215 539184 830527 628268 768394 760639 181267 231197 877355 726815 526916 530380 939210 339401 582646 328626 881578 350599 970172 850351 081252 716521 115125 790057 (629 digits), a[1201] = 1
                                                                                      A[1202]/B[1202] = 6758 319266 326479 833007 869208 597548 701244 146388 669173 588643 925305 401970 460893 447848 616515 370131 077784 197207 776181 391348 827620 687019 595484 127743 744421 859746 479897 974562 225396 470917 203113 189010 581145 447159 336548 145152 259354 078507 576061 241279 982040 821313 780301 471868 772185 348455 054373 810327 785182 961439 785991 665419 573777 762804 972963 111827 900413 003759 789204 918398 402237 049235 169271 624231 351274 486064 808680 856691 182072 716528 827207 760412 148306 010625 527342 005463 450470 024848 530606 975622 108686 803433 206879 588466 322082 035101 814290 340227 573017 081478 601839 827515 822136 722825 110797 176141 455537 199768 131289 171109 172198 859968 922832 785935 557112 (628 digits)/656864 875618 606150 743157 113970 156894 907877 536858 246214 822651 894729 686947 209465 109325 164754 440475 844425 397885 671445 671490 164953 270842 782442 660946 036216 602000 974979 293213 369388 756822 683095 475567 218495 750532 943922 454523 806956 013149 750083 253865 050071 850929 047145 036973 121235 864264 946170 993488 903527 296133 343593 925384 731935 090170 105591 348465 342518 028178 855722 224027 272276 569487 866609 849764 909978 189735 826947 996374 019747 636769 297590 578820 024899 429429 466577 403662 152744 479888 707702 888955 010319 062860 404657 200212 879287 173145 840882 969945 426955 130152 390609 266471 814365 215365 992759 774694 237879 137116 278289 245216 298692 675875 789392 151772 870577 (630 digits), a[1202] = 7
                                                                                      A[1203]/B[1203] = 7610 312840 832105 823738 332632 771406 599118 296179 108578 585463 919859 241122 570977 951145 235301 499701 633119 161086 652714 034772 835996 714550 737073 948994 607375 543462 657329 413264 113769 966748 753723 238802 467542 708741 657265 569881 887700 665397 819434 990272 745507 875868 514564 744133 530278 198774 940626 289803 645390 921746 050378 459615 670466 941743 217585 439910 263289 899613 060860 776634 979059 502333 359700 472424 855020 721547 811657 119978 001023 638924 383651 399546 831296 423910 733515 939836 420638 543062 238875 453884 577836 934840 388395 548427 359692 406768 631824 627263 814428 010065 957222 877825 632855 839089 247170 997313 321705 437611 484365 757682 695495 442338 307731 183093 279617 (628 digits)/739673 134786 523128 839339 831331 109854 407318 994491 534631 275406 831359 982268 248994 599391 512651 495606 684305 564317 323481 389132 932905 737026 517778 900445 067192 796157 355831 016751 259962 445578 876669 609581 500708 711014 503157 437497 264582 539555 800717 101212 673188 824398 437143 709536 309894 617864 385074 687233 473113 543512 887652 754445 933911 574180 525720 994704 025279 795510 063888 702094 333346 932556 532695 617409 510970 846069 131132 675085 244875 043895 605483 096733 353807 555874 886293 600056 114057 348388 474693 904819 487252 221075 943842 030740 507555 941540 601522 151212 658153 007508 117424 793388 344746 154576 332161 357340 566506 018694 628889 215389 149043 757128 505913 266898 660634 (630 digits), a[1203] = 1
                                                                                      A[1204]/B[1204] = 37199 570629 654903 127961 199739 683175 097717 331105 103487 930499 604742 366460 744805 252429 557721 368937 610260 841554 387037 530440 171607 545222 543779 923722 173924 033597 109215 627618 680476 337912 218006 144220 451316 282125 965610 424679 810156 740098 853801 202370 964072 324787 838560 448402 893298 143554 816878 969542 366746 648423 987505 503882 255645 529777 843304 871468 953572 602212 032648 024938 318475 058568 608073 513930 771357 372256 055309 336603 186167 272226 361813 358599 473491 706268 461405 764809 133024 197097 486108 791160 420034 542794 760461 782175 760851 662176 341588 849282 830729 121742 430731 338818 353560 079182 099481 165394 742358 950214 068752 201839 954180 629322 153757 518308 675580 (629 digits)/3 615557 414764 698666 100516 439294 596312 537153 514824 384739 924279 220169 616020 205443 506891 215360 422902 581647 655154 965371 228021 896576 218948 853558 262726 304987 786630 398303 360218 409238 539138 189773 913893 221330 594590 956552 204512 865286 171372 952951 658715 742827 148522 795719 875118 360814 335722 486469 742422 795981 470184 894204 943168 467581 386892 208475 327281 443637 210219 111277 032404 605664 299713 997392 319402 953861 574012 351478 696714 999247 812351 719522 965753 440129 652929 011751 803886 608973 873442 606478 508232 959327 947164 180025 323174 909510 939308 246971 574796 059567 160184 860308 440025 193349 833671 321405 204056 503903 211894 793846 106772 894867 704389 813045 219367 513113 (631 digits), a[1204] = 4
                                                                                      A[1205]/B[1205] = 82009 454100 141912 079660 732112 137756 794552 958389 315554 446463 129343 974044 060588 456004 350744 237576 853640 844195 426789 095653 179211 804995 824633 796438 955223 610656 875760 668501 474722 642573 189735 527243 370175 272993 588486 419241 508014 145595 527037 395014 673652 525444 191685 640939 316874 485884 574384 228888 378884 218594 025389 467380 181758 001298 904195 182848 170435 104037 126156 826511 616009 619470 575847 500286 397735 466059 922275 793184 373358 183377 107278 116745 778279 836447 656327 469454 686686 937257 211093 036205 417906 020429 909319 112778 881395 731121 315002 325829 475886 253550 818685 555462 339975 997453 446133 328102 806423 338039 621870 161362 603856 700982 615246 219710 630777 (629 digits)/7 970787 964315 920461 040372 709920 302479 481626 024140 304111 123965 271699 214308 659881 613173 943372 341411 847600 874627 254223 845176 726058 174924 224895 425897 677168 369418 152437 737188 078439 523855 256217 437367 943369 900196 416261 846522 995154 882301 706620 418644 158843 121444 028583 459773 031523 289309 358014 172079 065076 483882 676062 640782 869074 347964 942671 649266 912554 215948 286442 766903 544675 531984 527480 256215 418693 994093 834090 068515 243370 668599 044529 028240 234066 861732 909797 207829 332005 095273 687650 921285 405908 115404 303892 677090 326577 820157 095465 300804 777287 327877 838041 673438 731445 821918 974971 765453 574312 442484 216581 428934 938779 165908 132003 705633 686860 (631 digits), a[1205] = 2
                                                                                      A[1206]/B[1206] = 1 267341 382131 783584 322872 181421 749527 016011 706944 836804 627446 544901 977121 653632 092494 818884 932590 414873 504485 788873 965237 859784 620159 913286 870306 502278 193450 245625 655140 801315 976510 064039 052871 003945 377029 792906 713302 430368 924031 759362 127591 068860 206450 713845 062492 646415 431823 432642 402868 050009 927334 368347 514584 982015 549261 406232 614191 510099 162768 925000 422612 558619 350627 245786 018226 737389 363154 889446 234368 786540 022882 970985 109786 147689 252983 306317 806629 433328 255955 652504 334241 688624 849243 400248 473858 981787 628996 066623 736724 969022 925004 711014 670753 453200 040983 791481 086936 838709 020808 396804 622279 012031 144061 382450 813968 137235 (631 digits)/123 177376 879503 505581 706107 088099 133504 761543 876928 946406 783758 295657 830650 103667 704500 365945 544080 295660 774563 778728 905672 787448 842812 226989 651191 462513 327902 684869 418039 585831 396967 033035 474412 371879 097537 200479 902357 792609 405898 552257 938378 125473 970183 224471 771713 833663 675362 856682 323608 772128 728425 035144 554911 503696 606366 348550 066285 131950 449443 407918 535957 775797 279481 909596 162634 234271 485419 862829 724443 649807 841337 387458 389356 951132 578922 658709 921326 589050 302547 921242 327514 047949 678228 738415 479529 808178 241664 678951 086867 718877 078352 430933 541606 165037 162455 945981 685860 118589 849158 042567 540796 976555 193011 793100 803872 816013 (633 digits), a[1206] = 15
                                                                                      A[1207]/B[1207] = 2 616692 218363 709080 725405 094955 636810 826576 372278 989163 701356 219147 928287 367852 640993 988514 102757 683387 853167 004537 026128 898781 045315 651207 537051 959779 997557 367011 978783 077354 595593 317813 632985 378066 027053 174299 845846 368751 993659 045761 650196 811372 938345 619375 765924 609705 349531 439669 034624 478904 073262 762084 496550 145789 099821 716660 411231 190633 429574 976157 671736 733248 320725 067419 536739 872514 192369 701168 261921 946438 229143 049248 336318 073658 342414 268963 082713 553343 449168 516101 704688 795155 718916 709816 060496 844970 989113 448249 799279 413932 103560 240714 896969 246376 079421 029095 501976 483841 379656 415479 405920 627918 989105 380147 847646 905247 (631 digits)/254 325541 723322 931624 452586 886118 569489 004713 777998 196924 691481 863014 875608 867217 022174 675263 429572 438922 423754 811681 656522 300955 860548 678874 728280 602195 025223 522176 573267 250102 317789 322288 386192 687128 095270 817221 651238 580373 694098 811136 295400 409791 061810 477527 003200 698850 640035 071378 819296 609333 940732 746351 750605 876467 560697 639771 781837 176455 114835 102279 838819 096270 090948 346672 581483 887236 964933 559749 517402 542986 351273 819445 806954 136332 019578 227217 050482 510105 700369 530135 576313 501807 471861 780723 636149 942934 303486 453367 474540 215041 484582 699908 756651 061520 146830 866935 137173 811492 140800 301716 510528 891889 551931 718205 313379 318886 (633 digits), a[1207] = 2
                                                                                      A[1208]/B[1208] = 6 500725 818859 201745 773682 371333 023148 669164 451502 815132 030158 983197 833696 389337 374482 795913 138105 781649 210819 797948 017495 657346 710791 215701 944410 421838 188564 979649 612706 956025 167696 699666 318841 760077 431136 141506 404995 167872 911349 850885 427984 691606 083141 952596 594341 865826 130886 311980 472117 007818 073859 892516 507685 273593 748904 839553 436653 891366 021918 877315 766086 025115 992077 380625 091706 482417 747894 291782 758212 679416 481169 069481 782422 295005 937811 844243 972056 540015 154292 684707 743619 278936 287076 819880 594852 671729 607222 963123 335283 796887 132125 192444 464691 945952 199825 849672 090889 806391 780121 227763 434120 267869 122272 142746 509261 947729 (631 digits)/631 828460 326149 368830 611280 860336 272482 770971 432925 340256 166722 021687 581867 838101 748849 716472 403225 173505 622073 402092 218717 389360 563909 584739 107752 666903 378349 729222 564574 086036 032545 677612 246797 746135 288078 834923 204834 953356 794096 174530 529178 945056 093804 179525 778115 231364 955432 999439 962201 990796 609890 527848 056123 256631 727761 628093 629959 484860 679113 612478 213595 968337 461378 602941 325602 008745 415286 982328 759248 735780 543885 026350 003265 223796 618079 113144 022291 609261 703286 981513 480141 051564 621952 299862 751829 694046 848637 585686 035948 148960 047517 830751 054908 288077 456117 679851 960207 741574 130758 646000 561854 760334 296875 229511 430631 453785 (633 digits), a[1208] = 2
                                                                                      A[1209]/B[1209] = 15 618143 856082 112572 272769 837621 683108 164905 275284 619427 761674 185543 595680 146527 389959 580340 378969 246686 274806 600433 061120 213474 466898 082611 425872 803456 374687 326311 204196 989404 930986 717146 270668 898220 889325 457312 655836 704497 816358 747532 506166 194585 104629 524568 954608 341357 611304 063629 978858 494540 220982 547117 511920 692976 597631 395767 284538 973365 473412 730789 203908 783480 304879 828669 720152 837349 688158 284733 778347 305271 191481 188211 901162 663670 218037 957451 026826 633373 757753 885517 191927 353028 293070 349577 250202 188430 203559 374496 469847 007706 367810 625603 826353 138280 479072 728439 683756 096624 939898 871006 274161 163657 233649 665640 866170 800705 (632 digits)/1517 982462 375621 669285 675148 606791 114454 546656 643848 877437 024925 906390 039344 543420 519874 108208 236022 785933 667901 615866 093957 079676 988367 848352 943785 936001 781922 980621 702415 422174 382880 677512 879788 179398 671428 487068 060908 487087 282291 160197 353758 299903 249418 836578 559431 161580 550901 070258 743700 590927 160513 802047 862852 389731 016220 895959 041756 146176 473062 327236 266011 032945 013705 552555 232687 904727 795507 524407 035900 014547 439043 872145 813484 583925 255736 453505 095065 728629 106943 493162 536595 604936 715766 380449 139809 331028 000761 624739 546436 512961 579618 361410 866467 637675 059066 226639 057589 294640 402317 593717 634238 412558 145682 177228 174642 226456 (634 digits), a[1209] = 2
                                                                                      A[1210]/B[1210] = 53 355157 387105 539462 591991 884198 072473 163880 277356 673415 315181 539828 620736 828919 544361 536934 275013 521708 035239 599247 200856 297770 111485 463536 222028 832207 312626 958583 225297 924239 960656 851105 130848 454740 099112 513444 372505 281366 360426 093482 946483 275361 397030 526303 458166 889898 964798 502870 408692 491438 736807 533869 043447 352523 541799 026855 290270 811462 442157 069683 377812 375556 906716 866634 252164 994466 812369 145984 093254 595230 055612 634117 485910 286016 591925 716597 052536 440136 427554 341259 319401 338021 166287 868612 345459 237020 217901 086612 744824 820006 235557 069255 943751 360793 637044 034991 142158 096266 599817 840782 256603 758840 823221 139669 107774 349844 (632 digits)/5185 775847 453014 376687 636726 680709 615846 410941 364471 972567 241499 740857 699901 468363 308472 041097 111293 531306 625778 249690 500588 628391 529013 129797 939110 474908 724118 671087 671820 352559 181187 710150 886162 284331 302364 296127 387560 414618 640969 655122 590453 844765 842060 689261 456408 716106 608136 210216 193303 763578 091431 933991 644680 425824 776424 315970 755227 923390 098300 594187 011629 067172 502495 260607 023665 722928 801809 555549 866948 779422 861016 642787 443718 975572 385288 473659 307488 795149 024117 461001 089927 866374 769251 441210 171257 687130 850922 459904 675257 687844 786372 914983 654311 201102 633316 359769 132975 625495 337711 427153 464569 998008 733921 761195 954558 133153 (634 digits), a[1210] = 3
                                                                                      A[1211]/B[1211] = 68 973301 243187 652034 864761 721819 755581 328785 552641 292843 076855 725372 216416 975446 934321 117274 653982 768394 310046 199680 261976 511244 578383 546147 647901 635663 687314 284894 429494 913644 891643 568251 401517 352960 988437 970757 028341 985864 176784 841015 452649 469946 501660 050872 412775 231256 576102 566500 387550 985978 957790 080986 555368 045500 139430 422622 574809 784827 915569 800472 581721 159037 211596 695303 972317 831816 500527 430717 871601 900501 247093 822329 387072 949686 809963 674048 079363 073510 185308 226776 511328 691049 459358 218189 595661 425450 421460 461109 214671 827712 603367 694859 770104 499074 116116 763430 825914 192891 539716 711788 530764 922498 056870 805309 973945 150549 (632 digits)/6703 758309 828636 045973 311875 287500 730300 957598 008320 850004 266425 647247 739246 011783 828346 149305 347316 317240 293679 865556 594545 708068 517380 978150 882896 410910 506041 651709 374235 774733 564068 387663 765950 463729 973792 783195 448468 901705 923260 815319 944212 144669 091479 525840 015839 877687 159037 280474 937004 354505 251945 736039 507532 815555 792645 211929 796984 069566 571362 921423 277640 100117 516200 813162 256353 627656 597317 079956 902848 793970 300060 514933 257203 559497 641024 927164 402554 523778 131060 954163 626523 471311 485017 821659 311067 018158 851684 084644 221694 200806 365991 276394 520778 838777 692382 586408 190564 920135 740029 020871 098808 410566 879603 938424 129200 359609 (634 digits), a[1211] = 1
                                                                                      A[1212]/B[1212] = 1708 714387 223609 188299 346273 207872 206425 054733 540747 701649 159718 948761 814744 239645 968068 351525 970599 963171 476348 391573 488292 567639 992690 571079 771668 088135 808169 796049 533175 851717 360102 489138 767264 925803 821623 811613 052712 942106 603262 277853 810070 554077 436871 747241 364772 440056 791260 098879 709916 154933 723769 477546 372280 444526 888129 169797 085705 647332 415832 281025 339120 192449 985037 553929 587792 958062 825027 483213 011700 207259 985864 370022 775661 078500 031053 893750 957250 204380 874951 783895 591289 923208 190885 105162 641333 447830 332952 153233 896948 685108 716381 745890 426259 338572 423846 357330 964098 725663 553018 923706 994961 898794 188120 467108 482457 963020 (634 digits)/166075 975283 340279 480047 121733 580727 143069 393293 564172 372669 635715 274803 441805 751175 188779 624425 446885 145073 674095 023048 769685 622035 946156 605419 128624 336760 869118 312112 653478 946164 718829 014081 268973 413850 673391 092818 150814 055560 799229 222801 251545 316824 037569 309421 836565 780598 425030 941614 681408 271704 138129 598939 825467 999163 799909 402285 882845 592987 811010 708345 674991 469992 891314 776501 176152 786687 137419 474515 535319 834710 062469 001185 616604 403515 769886 725604 968797 365824 169580 360928 126491 177850 409679 161033 636866 122943 291340 491365 995918 507197 570163 548452 153003 331767 250498 433565 706533 708753 098407 928059 835971 851613 844416 283375 055366 763769 (636 digits), a[1212] = 24
                                                                                      A[1213]/B[1213] = 3486 402075 690406 028633 557308 137564 168431 438252 634136 696141 396293 622895 845905 454738 870457 820326 595182 694737 262742 982827 238561 646524 563764 688307 191237 811935 303653 876993 495846 617079 611848 546528 936047 204568 631685 593983 133767 870077 383309 396723 072790 578101 375403 545355 142320 111370 158622 764259 807383 295846 405329 036079 299928 934553 915688 762216 746221 079492 747234 362523 259961 543937 181671 803163 147903 747942 150582 397143 895002 315021 218822 562374 938395 106686 872071 461549 993863 482271 935211 794567 693908 537465 841128 428514 878328 321111 087364 767577 008569 197930 036131 186640 622623 176218 963809 478092 754111 644218 645754 559202 520688 720086 433111 739526 938861 076589 (634 digits)/338855 708876 509195 006067 555342 448955 016439 744185 136665 595343 537856 196854 622857 514134 205905 398156 241086 607387 641869 911654 133916 952140 409694 188989 140145 084432 244278 275934 681193 667063 001726 415826 303897 291431 320574 968831 750097 012827 521719 260922 447302 778317 166618 144683 688971 438884 009099 163704 299820 897913 528204 933919 158468 813883 392464 016501 562675 255542 193384 338114 627623 040103 298830 366164 608659 201030 872156 028987 973488 463390 424998 517304 490412 366529 180798 378374 340149 255426 470221 676019 879505 827012 304376 143726 584799 264045 434365 067376 213531 215201 506318 373298 826785 502312 193379 453539 603632 337641 936844 876990 770752 113794 568436 505174 239933 887147 (636 digits), a[1213] = 2
                                                                                      A[1214]/B[1214] = 8681 518538 604421 245566 460889 483000 543287 931238 809021 093931 952306 194553 506555 149123 708983 992179 160965 352646 001834 357227 965415 860689 120219 947694 154143 712006 415477 550036 524869 085876 583799 582196 639359 334941 084994 999579 320248 682261 369881 071299 955651 710280 187678 837951 649412 662797 108505 627399 324682 746626 534427 549704 972138 313634 719506 694230 578147 806317 910301 006071 859043 280324 348381 160255 883600 453947 126192 277500 801704 837302 423509 494772 652451 291873 775196 816850 944977 168924 745375 373030 979106 998139 873141 962192 397990 090052 507681 688387 914087 080968 788644 119171 671505 691010 351465 313516 472322 014100 844528 042112 036339 338967 054343 946162 360180 116198 (634 digits)/843787 393036 358669 492182 232418 478637 175948 881663 837503 563356 711427 668512 687520 779443 600590 420737 929058 359848 957834 846357 037519 526316 765544 983397 408914 505625 357674 863982 015866 280290 722281 845733 876767 996713 314541 030481 651008 081215 842667 744646 146150 873458 370805 598789 214508 658366 443229 269023 281050 067531 194539 466778 142405 626930 584837 435289 008196 104072 197779 384574 930237 550199 488975 508830 393471 188748 881731 532491 482296 761490 912466 035794 597429 136574 131483 482353 649095 876677 110023 712967 885502 831875 018431 448486 806464 651034 160070 626118 422980 937600 582800 295049 806574 336391 637257 340644 913798 384036 972097 682041 377476 079202 981289 293723 535234 538063 (636 digits), a[1214] = 2
                                                                                      A[1215]/B[1215] = 46893 994768 712512 256465 861755 552566 884871 094446 679242 165801 157824 595663 378681 200357 415377 781222 400009 457967 271914 768967 065640 949970 164864 426777 961956 371967 381041 627176 120192 046462 530846 457512 132843 879274 056660 591879 735011 281384 232714 753222 851049 129502 313797 735113 389383 425355 701150 901256 430797 028979 077466 784604 160620 502727 513222 233369 636960 111082 298739 392882 555177 945558 923577 604442 565906 017677 781543 784647 903526 501533 336370 036238 200651 566055 748055 545804 718749 326895 662088 659722 589443 528165 206838 239476 868278 771373 625773 209516 579004 602773 979351 782498 980151 631270 721136 045675 115721 714722 868394 769762 702385 414921 704831 470338 739761 657579 (635 digits)/4 557792 674058 302542 466978 717434 842140 896184 152504 324183 412127 094994 539418 060461 411352 208857 501845 886378 406632 431044 143439 321514 583724 237419 105976 184717 612559 032652 595844 760525 068516 613135 644495 687737 274997 893280 121240 005137 418906 735057 984153 178057 145609 020646 138629 761514 730716 225245 508820 705071 235569 500902 267809 870496 948536 316651 192946 603655 775903 182281 260989 278810 791100 743707 910316 576015 144775 280813 691445 384972 270844 987328 696277 477558 049399 838215 790142 585628 638812 020340 240859 307019 986387 396533 386160 617122 519216 234718 197968 328435 903204 420319 848547 859657 184270 379666 156764 172624 257826 797333 287197 658132 509809 474882 973791 916106 577462 (637 digits), a[1215] = 5
                                                                                      A[1216]/B[1216] = 102469 508076 029445 758498 184400 588134 313030 120132 167505 425534 267955 385880 263917 549838 539739 554623 960984 268580 545663 895162 096697 760629 449948 801250 078056 455941 177560 804388 765253 178801 645492 497220 905047 093489 198316 183338 790271 245029 835310 577745 657749 969284 815274 308178 428179 513508 510807 429912 186276 804584 689361 118913 293379 319089 745951 160969 852068 028482 507779 791836 969399 171442 195536 369141 015412 489302 689279 846796 608757 840369 096249 567249 053754 423985 271307 908460 382475 822716 069552 692476 157994 054470 286818 441146 134547 632799 759228 107421 072096 286516 747347 684169 631808 953551 793737 404866 703765 443546 581317 581637 441110 168810 464006 886839 839703 431356 (636 digits)/9 959372 741152 963754 426139 667288 162918 968317 186672 485870 387610 901416 747348 808443 602148 018305 424429 701815 173113 819923 133235 680548 693765 240383 195349 778349 730743 422980 055671 536916 417323 948553 134725 252242 546709 101101 272961 661282 919029 312783 712952 502265 164676 412097 876048 737538 119798 893720 286664 691192 538670 196344 002397 883399 524003 218139 821182 215507 655878 562341 906553 487859 132400 976391 329463 545501 478299 443358 915382 252241 303180 887123 428349 552545 235373 807915 062638 820353 154301 150704 194686 499542 804649 811498 220808 040709 689466 629507 022055 079852 744009 423439 992145 525888 704932 396589 654173 259046 899690 566764 256436 693741 098821 931055 241307 367447 692987 (637 digits), a[1216] = 2
                                                                                      A[1217]/B[1217] = 764180 551300 918632 565953 152559 669507 076081 935371 851780 144541 033512 296825 226104 049227 193554 663590 126899 338031 091562 035101 742525 274376 314506 035528 508351 563555 623967 257897 476964 298074 049293 938058 468173 533698 444873 875251 266909 996593 079888 797442 455298 914496 020717 892362 386640 019915 276802 910641 734734 661071 902994 616997 214275 736355 734880 360158 601436 310459 853197 935741 340972 145654 292332 188429 673793 442796 606502 712224 164831 384117 010117 006981 576932 533952 647210 905027 396080 085908 148957 507055 695401 909457 214567 327499 810112 200971 940369 961464 083678 608391 210785 571686 402814 306133 277297 879742 042079 819548 937617 841224 790156 596594 952879 678217 617685 677071 (636 digits)/74 273401 862129 048823 449956 388451 982573 674404 459211 725276 125403 404911 770859 719566 626388 336995 472853 799084 618429 170506 076089 085355 440080 920101 473424 633165 727762 993512 985545 518939 989784 253007 587572 453435 101961 600989 031971 634117 852111 924543 974820 693913 298343 905331 270970 924281 569308 481287 515473 543419 006260 875310 284595 054293 616558 843629 941222 112209 367053 118674 606863 693824 717907 578447 216561 394525 492871 384326 099121 150661 393111 197192 694724 345374 697016 493621 228614 328100 718920 075269 603664 803819 618936 077020 931816 902090 345482 641267 352353 887405 111270 384399 793566 540878 118797 155793 735976 985952 555660 764683 082254 514320 201562 992269 662943 488240 428371 (638 digits), a[1217] = 7
                                                                                      A[1218]/B[1218] = 866650 059376 948078 324451 336960 257641 389112 055504 019285 570075 301467 682705 490021 599065 733294 218214 087883 606611 637225 930263 839223 035005 764454 836778 586408 019496 801528 062286 242217 476875 694786 435279 373220 627187 643190 058590 057181 241622 915199 375188 113048 883780 835992 200540 814819 533423 787610 340553 921011 465656 592355 735910 507655 055445 480831 521128 453504 338942 360977 727578 310371 317096 487868 557570 689205 932099 295782 559020 773589 224486 106366 574230 630686 957937 918518 813487 778555 908624 218510 199531 853395 963927 501385 768645 944659 833771 699598 068885 155774 894907 958133 255856 034623 259685 071035 284608 745845 263095 518935 422862 231266 765405 416886 565057 457389 108427 (636 digits)/84 232774 603282 012577 876096 055740 145492 642721 645884 211146 513014 306328 518208 528010 228536 355300 897283 500899 791542 990429 209324 765904 133846 160484 668774 411515 458506 416493 041217 055856 407108 201560 722297 705677 648670 702090 304933 295400 771141 237327 687773 196178 463020 317429 147019 661819 689107 375007 802138 234611 544931 071654 286992 937693 140562 061769 762404 327717 022931 681016 513417 181683 850308 554838 546024 940026 971170 827685 014503 402902 696292 084316 123073 897919 932390 301536 291253 148453 873221 225973 798351 303362 423585 888519 152624 942800 034949 270774 374408 967257 855279 807839 785712 066766 823729 552383 390150 244999 455351 331447 338691 208061 300384 923324 904250 855688 121358 (638 digits), a[1218] = 1
                                                                                      A[1219]/B[1219] = 5 097430 848185 659024 188209 837360 957714 021642 212891 948207 994917 540850 710352 676212 044555 860025 754660 566317 371089 277691 686420 938640 449405 136780 219421 440391 661039 631607 569328 688051 682452 523226 114455 334276 669636 660824 168201 552816 204707 655885 673383 020543 333400 200678 895066 460737 687034 214854 613411 339791 989354 864773 296549 752551 013583 139037 965800 868958 005171 658086 573632 892828 731136 731674 976283 119823 103293 085415 507328 032777 506547 541949 878134 730367 323642 239804 972466 288859 629029 241508 504714 962381 729094 721496 170729 533411 369830 438360 305889 862553 082931 001451 850966 575930 604558 632474 302785 771306 135026 532294 955535 946490 423622 037312 503504 904631 219206 (637 digits)/495 437274 878539 111712 830436 667152 710036 888012 688632 781008 690474 936554 361902 359617 769070 113499 959271 303583 576144 122652 122712 914876 109311 722524 817296 690743 020295 075978 191630 798222 025325 260811 199060 981823 345315 111440 556638 111121 707818 111182 413686 674805 613445 492477 006069 233380 014845 356326 526164 716476 730916 233581 719559 742759 319369 152478 753243 750794 481711 523757 173949 602243 969450 352639 946686 094660 348725 522751 171638 165174 874571 618773 310093 834974 358968 001302 684880 070370 085026 205138 595421 320631 736865 519616 694941 616090 520228 995139 224398 723694 387669 423598 722126 874712 237444 917710 686728 210949 832417 421919 775710 554626 703487 608894 184197 766681 035161 (639 digits), a[1219] = 5
                                                                                      A[1220]/B[1220] = 123 204990 415832 764658 841487 433623 242777 908525 164910 776277 448096 281884 731169 719110 668406 373912 330067 679500 512754 301826 404366 366593 820729 047180 102893 155807 884447 960109 726174 755457 855736 252213 182207 395860 698467 502970 095427 324770 154606 656455 536380 606088 885385 652285 682135 872524 022244 944121 062426 076019 210173 346914 853104 568879 381440 817742 700349 308496 463062 155055 494767 738260 864378 048067 988365 564960 411133 345754 734893 560249 381627 113163 649464 159502 725351 673838 152678 711187 005326 014714 312690 950557 462200 817293 866154 746532 709702 220245 410241 857048 885251 992977 679053 856957 769092 250418 551467 257192 503732 294014 355724 947036 932334 312386 649175 168538 369371 (639 digits)/11974 727371 688220 693685 806576 067405 186377 955026 173070 955355 084412 783633 203865 158836 686219 079299 919794 786905 619001 934080 154434 722930 757327 501080 283894 989347 945588 239969 640356 213185 014914 461029 499761 269437 936233 376663 664247 962321 758775 905705 616253 391513 185712 136877 292681 262940 045395 926844 430091 430053 086920 677615 556426 763916 805421 721259 840254 346784 584008 251188 688207 635539 117117 018197 266491 211875 340583 373713 133819 367099 686010 934875 565325 937304 547622 332800 728374 837335 913850 149300 088462 998524 108358 359319 831223 728972 520445 154115 759978 335923 159345 974209 116757 059860 522407 577439 871627 307795 433369 457521 955744 519102 184087 536785 324997 256032 965222 (641 digits), a[1220] = 24
                                                                                      A[1221]/B[1221] = 128 302421 264018 423683 029697 270984 200491 930167 377802 724485 443013 822735 441522 395322 712962 233938 084728 245817 883843 579518 090787 305234 270134 183960 322314 596199 545487 591717 295503 443509 538188 775439 296662 730137 368104 163794 263628 877586 359314 312341 209763 626632 218785 852964 577202 333261 709279 158975 675837 415811 199528 211688 149654 321430 395023 956780 666150 177454 468233 813142 068400 631089 595514 779742 964648 684783 514426 431170 242221 593026 888174 655113 527598 889870 048993 913643 125145 000046 634355 256222 817405 912939 191295 538790 036884 279944 079532 658605 716131 719601 968182 994429 530020 432888 373650 882892 854253 028498 638758 826309 311260 893527 355956 349699 152680 073169 588577 (639 digits)/12470 164646 566759 805398 637012 734557 896414 843038 861703 736363 774887 720187 565767 518454 455289 192799 879066 090489 195146 056732 277147 637806 866639 223605 101191 680090 965883 315947 831987 011407 040239 721840 698822 251261 281548 488104 220886 073443 466594 016888 029940 066318 799157 629354 298750 496320 060241 283170 956256 146529 817836 911197 275986 506676 124790 873738 593498 097579 065719 774945 862157 237783 086567 370837 213177 306535 689308 896464 305457 532274 560582 553648 875419 772278 906590 334103 413254 907705 998876 354438 683884 319155 845223 878936 526165 345063 040674 149254 984377 059617 547015 397807 838883 934572 759852 495150 558355 518745 265786 879441 731455 073728 887575 145679 509195 022714 000383 (641 digits), a[1221] = 1
                                                                                      A[1222]/B[1222] = 379 809832 943869 612024 900881 975591 643761 768859 920516 225248 334123 927355 614214 509756 094330 841788 499524 171136 280441 460862 585940 977062 360997 415100 747522 348206 975423 143544 317181 642476 932113 803091 775532 856135 434675 830558 622685 079942 873235 281137 955907 859353 322957 358214 836540 539047 440803 262072 414100 907641 609229 770291 152413 211740 171488 731304 032649 663405 399529 781339 631569 000440 055407 607553 917662 934527 439986 208095 219336 746303 157976 423390 704661 939242 823339 501124 402968 711280 274036 527159 947502 776435 844791 894873 939923 306420 868767 537456 842505 296252 821617 981836 739094 722734 516394 016204 259973 314189 781249 946632 978246 734091 644247 011784 954535 314877 546525 (639 digits)/36915 056664 821740 304483 080601 536520 979207 641103 896478 428082 634188 224008 335400 195745 596797 464899 677926 967884 009294 047544 708729 998544 490605 948290 486278 349529 877354 871865 304330 235999 095393 904710 897405 771960 499330 352872 106020 109208 691963 939481 676133 524150 784027 395585 890182 255580 165878 493186 342603 723112 722594 500010 108399 777269 055003 468737 027250 541942 715447 801080 412522 111105 290251 759871 692845 824946 719201 166641 744734 431648 807176 042173 316165 481862 360803 001007 554884 652747 911602 858177 456231 636835 798806 117192 883554 419098 601793 452625 728732 455158 253376 769824 794524 929006 042112 567740 988338 345285 964943 216405 418654 666559 959237 828144 343387 301460 965988 (641 digits), a[1222] = 2
                                                                                      A[1223]/B[1223] = 887 922087 151757 647732 831461 222167 488015 467887 218835 174982 111261 677446 669951 414834 901623 917515 083776 588090 444726 501243 262669 259358 992129 014161 817359 292613 496333 878805 929866 728463 402416 381622 847728 442408 237455 824911 508999 037472 105784 874617 121579 345338 864700 569394 250283 411356 590885 683120 504039 231094 417987 752270 454480 744910 738001 419388 731449 504265 267293 375821 331538 631969 706329 994850 799974 553838 394398 847360 680895 085633 204127 501894 936922 768355 695672 915891 931082 422607 182428 310542 712411 465810 880879 328537 916730 892785 817067 733519 401142 312107 611418 958103 008209 878357 406438 915301 374199 656878 201258 719575 267754 361710 644450 373269 061750 702924 681627 (639 digits)/86300 277976 210240 414364 798215 807599 854830 125246 654660 592529 043264 168204 236567 909945 648884 122599 234920 026257 213734 151821 694607 634895 847851 120186 073748 379150 720593 059678 440647 483405 231027 531262 493633 795182 280209 193848 432926 291860 850521 895851 382207 114620 367212 420526 079115 007480 391998 269543 641463 592755 263025 911217 492786 061214 234797 811212 647999 181464 496615 377106 687201 459993 667070 890580 598868 956429 127711 229747 794926 395572 174934 637995 507750 736003 628196 336118 523024 213201 822082 070793 596347 592827 442836 113322 293274 183260 244261 054506 441841 969934 053768 937457 427933 792584 844077 630632 535032 209317 195673 312252 568764 406848 806050 801968 195969 625635 932359 (641 digits), a[1223] = 2
                                                                                      A[1224]/B[1224] = 2155 654007 247384 907490 563804 419926 619792 704634 358186 575212 556647 282248 954117 339425 897578 676818 667077 347317 169894 463349 111279 495780 345255 443424 382240 933433 968090 901156 176915 099403 736946 566337 470989 740951 909587 480381 640683 154887 084805 030372 199066 550031 052358 497003 337107 361760 622574 628313 422179 369830 445205 274832 061374 701561 647491 570081 495548 671935 934116 532982 294646 264379 468067 597255 517612 042204 228783 902816 581126 917569 566231 427180 578507 475954 214685 332908 265133 556494 638893 148245 372325 708057 606550 551949 773385 091992 502903 004495 644789 920468 044455 898042 755514 479449 329271 846807 008372 627946 183767 385783 513755 457512 933147 758323 078036 720726 909779 (640 digits)/209515 612617 242221 133212 677033 151720 688867 891597 205799 613140 720716 560416 808536 015636 894565 710098 147767 020398 436762 351188 097945 268336 186308 188662 633775 107831 318540 991222 185625 202809 557448 967235 884673 362325 059748 740568 971872 692930 393007 731184 440547 753391 518452 236638 048412 270540 949875 032273 625530 908623 248646 322445 093971 899697 524599 091162 323248 904871 708678 555293 786925 031092 624393 541032 890583 737804 974623 626137 334587 222793 157045 318164 331666 953869 617195 673244 600933 079151 555766 999764 648926 822490 684478 343837 470102 785619 090315 561638 612416 395026 360914 644739 650392 514175 730267 829006 058402 763920 356289 840910 556183 480257 571339 432080 735326 552732 830706 (642 digits), a[1224] = 2
                                                                                      A[1225]/B[1225] = 20288 808152 378221 815147 905701 001507 066149 809596 442514 351895 121087 217687 257007 469667 979832 008883 087472 713944 973776 671385 264184 721382 099428 004981 257527 693519 209151 989211 522102 623097 034935 478660 086636 110975 423743 148346 275147 431455 869030 147966 913178 295618 335927 042424 284249 667202 194057 337941 303653 559568 424835 225759 006853 058965 565425 550122 191387 551688 674342 172661 983355 011384 918938 370150 458482 933676 453453 972709 911037 343759 300210 346520 143490 051943 627840 912066 317284 431058 932466 644751 063342 838329 339834 296085 877196 720718 343194 773980 204251 596320 011522 040487 807840 193401 369885 536564 449553 308393 855165 191626 891553 479327 042780 198176 764081 189466 869638 (641 digits)/1 971940 791531 390230 613278 891514 173086 054641 149621 506857 110795 529713 211955 513392 050677 699975 513482 564823 209843 144595 312514 576115 049921 524624 818149 777724 349632 587461 980678 111274 308691 248068 236385 455694 056107 817947 858969 179780 528234 387591 476511 347136 895144 033282 550268 514825 442348 940873 560006 271241 770364 500842 813223 338533 158491 956189 631673 557239 325309 874722 374750 769526 739827 286612 759876 614122 596673 899323 864983 806211 400710 588342 501474 492753 320830 182957 395319 931421 925565 823985 068675 436688 995243 603141 207859 524199 253832 057101 109253 953589 525171 302000 740114 281466 420166 416488 091687 060657 084600 402281 880447 574415 729166 948105 690694 813908 600231 408713 (643 digits), a[1225] = 9
                                                                                      A[1226]/B[1226] = 712263 939340 485148 437667 263339 472673 935036 040509 846188 891541 794699 901302 949378 777805 191698 987726 728622 335391 252077 961833 357744 744153 825235 617768 395710 206606 288410 523559 450506 907799 959688 319440 503253 625091 740597 672501 270843 255842 500860 209214 160306 896672 809804 981853 285845 713837 414581 456259 050053 954725 314438 176397 301231 765356 437385 824358 194112 981039 536092 576151 712071 662851 630910 552521 564514 720880 099672 947663 467433 949145 073593 555385 600659 293981 189117 255229 370088 643557 275225 714532 589325 049584 500750 914955 475270 317134 514720 093802 793595 791668 447727 315116 029921 248497 275265 626562 742738 421731 114549 092724 718127 233959 430454 694509 820878 352067 347109 (642 digits)/69 227443 316215 900292 597973 880029 209732 601308 128349 945798 490984 260678 978859 777257 789356 393708 681987 916579 364908 497598 289198 261972 015589 548176 823904 854127 344971 879710 314956 080226 007003 239837 240726 833965 326098 687923 804490 264191 181133 958709 409081 590339 083432 683341 496036 067302 752753 880449 632493 118992 871380 778144 785261 942632 446915 991236 199736 826625 290717 323961 671570 720360 925047 655840 136714 384874 621391 450958 900570 551986 247663 749032 869771 578033 182926 020704 509442 200700 473955 395244 403404 933041 656016 794420 618920 817076 669741 088854 385526 988049 776021 930940 548739 501717 220000 307351 038053 181400 724934 436155 656575 660734 001100 755038 606399 222127 560832 135661 (644 digits), a[1226] = 35
                                                                                      A[1227]/B[1227] = 732552 747492 863370 252815 169040 474181 001185 850106 288703 243436 915787 118990 206386 247473 171530 996609 816095 049336 225854 633218 621929 465535 924663 622749 653237 900125 497562 512770 972609 530896 994623 798100 589889 736067 164340 820847 545990 687298 369890 357181 073485 192291 145732 024277 570095 381039 608638 794200 353707 514293 739273 402156 308084 824322 002811 374480 385500 532728 210434 748813 695426 674236 549848 922672 022997 654556 553126 920373 378471 292904 373803 901905 744149 345924 816958 167295 687373 074616 207692 359283 652667 887913 840585 211041 352467 037852 857914 867782 997847 387988 459249 355603 837761 441898 645151 163127 192291 730124 969714 284351 609680 713286 473234 892686 584959 541534 216747 (642 digits)/71 199384 107747 290523 211252 771543 382818 655949 277971 452655 601779 790392 190815 290649 840034 093684 195470 481402 574751 642193 601712 838087 065511 072801 642054 631851 694604 467172 295634 191500 315694 487905 477112 289659 382206 505871 663459 443971 709368 346300 885592 937475 978576 716624 046304 582128 195102 821323 192499 390234 641745 278987 598485 281165 605407 947425 831410 383864 616027 198684 046321 489887 664874 942452 896590 998997 218065 350282 765554 358197 648374 337375 371246 070786 503756 203661 904762 132122 399521 219229 472080 369730 651260 397561 826780 341275 923573 145955 494780 941639 301193 232941 288853 783183 640166 723839 129740 242057 809534 838437 537023 235149 730267 703144 297094 036036 161063 544374 (644 digits), a[1227] = 1
                                                                                      A[1228]/B[1228] = 7 305238 666776 255480 713003 784703 740302 945708 691466 444518 082474 036783 972214 806855 005063 735477 957215 073477 779417 284769 660800 955109 933977 147208 222515 274851 307735 766473 138498 203992 685872 911302 502345 812261 249696 219665 060129 184759 441527 829873 423843 821673 627293 121393 200351 416704 143193 892330 604062 233421 583368 967898 795804 073995 184254 462688 194681 663617 775593 430005 315474 970911 730980 579550 856569 771493 611889 077815 231023 873675 585284 437828 672537 298003 407304 541740 760890 556446 315103 144456 948085 463336 040809 066017 814327 647473 657810 235953 903849 774222 283564 580971 515550 569774 225585 081626 094707 473363 992855 841977 651889 205253 653537 689568 728689 085514 225875 297832 (643 digits)/710 021900 285941 515001 499248 823919 655100 504851 630093 019698 907002 374208 696197 393106 349663 236866 441222 249202 537673 277340 704613 804755 605189 203391 602396 540792 596412 084260 975663 803728 848253 630986 534737 440899 765957 240768 775625 259936 565449 075417 379418 027622 890623 132957 912777 306456 508679 272358 364987 631104 647088 289033 171629 473122 895587 518068 682430 281406 834962 112118 088464 129349 908922 137916 206033 375849 583979 603503 790559 775765 083032 785411 210986 215111 716731 853661 652301 389802 069646 368309 652128 260617 517360 372477 059943 888559 981899 402453 838555 462803 486761 027412 148423 550369 981500 821903 205715 359921 010747 982093 489784 777081 573510 083337 280245 546453 010404 035027 (645 digits), a[1228] = 9
                                                                                      A[1229]/B[1229] = 15 343030 081045 374331 678822 738447 954786 892603 233039 177739 408384 989355 063419 820096 257600 642486 911039 963050 608170 795393 954820 532149 333490 219080 067780 202940 515597 030508 789767 380594 902642 817228 802792 214412 235459 603670 941105 915509 570354 029637 204868 716832 446877 388518 424980 403503 667427 393300 002324 820550 681031 675070 993764 456075 192830 928187 763843 712736 083915 070445 379763 637250 136197 708950 635811 565984 878334 708757 382421 125822 463473 249461 246980 340156 160533 900439 689076 800265 704822 496606 255454 579339 969531 972620 839696 647414 353473 329822 675482 546291 955117 621192 386704 977309 893068 808403 352542 139019 715836 653669 588130 020188 020361 852372 350064 755987 993284 812411 (644 digits)/1491 243184 679630 320526 209750 419382 693019 665652 538157 492053 415784 538809 583210 076862 539360 567417 077914 979807 650098 196875 010940 447598 275889 479584 846847 713436 887428 635694 246961 798958 012201 749878 546587 171458 914120 987409 214709 963844 840266 497135 644428 992721 759822 982539 871859 195041 212461 366039 922474 652443 935921 857053 941744 227411 396582 983563 196270 946678 285951 422920 223249 748587 482719 218285 308657 750696 386024 557290 346673 909727 814439 908197 793218 501009 937219 910985 209364 911726 538813 955848 776336 890965 685981 142515 946668 118395 887371 950863 171891 867246 274715 287765 585700 883923 603168 367645 541170 961899 831030 802624 516592 789312 877287 869818 857585 128942 181871 614428 (646 digits), a[1229] = 2
                                                                                      A[1230]/B[1230] = 22 648268 747821 629812 391826 523151 695089 838311 924505 622257 490859 026139 035634 626951 262664 377964 868255 036528 387588 080163 615621 487259 267467 366288 290295 477791 823332 796981 928265 584587 588515 728531 305138 026673 485155 823336 001235 100269 011881 859510 628712 538506 074170 509911 625331 820207 810621 285630 606387 053972 264400 642969 789568 530070 377085 390875 958525 376353 859508 500450 695238 608161 867178 288501 492381 337478 490223 786572 613444 999498 048757 687289 919517 638159 567838 442180 449967 356712 019925 641063 203540 042676 010341 038638 654024 294888 011283 565776 579332 320514 238682 202163 902255 547084 118653 890029 447249 612383 708692 495647 240019 225441 673899 541941 078753 841502 219160 110243 (644 digits)/2201 265084 965571 835527 708999 243302 348120 170504 168250 511752 322786 913018 279407 469968 889023 804283 519137 229010 187771 474215 715554 252353 881078 682976 449244 254229 483840 719955 222625 602686 860455 380865 081324 612358 680078 228177 990335 223781 405715 572553 023847 020344 650446 115497 784636 501497 721140 638398 287462 283548 583010 146087 113373 700534 292170 501631 878701 228085 120913 535038 311713 877937 391641 356201 514691 126545 970004 160794 137233 685492 897472 693609 004204 716121 653951 764646 861666 301528 608460 324158 428465 151583 203341 514993 006612 006955 869271 353317 010447 330049 761476 315177 734124 434293 584669 189548 746886 321820 841778 784718 006377 566394 450797 953156 137830 675395 192275 649455 (646 digits), a[1230] = 1
                                                                                      A[1231]/B[1231] = 83 287836 324510 263768 854302 307903 040056 407539 006556 044511 880962 067772 170323 700950 045593 776381 515805 072635 770935 035884 801684 993927 135892 317944 938666 636315 985595 421454 574564 134357 668190 002822 718206 294432 690927 073678 944811 216316 605999 608169 091006 332350 669388 918253 300975 864127 099291 250191 821485 982467 474233 603980 362470 046286 324087 100815 639419 841797 662440 571797 465479 461735 737732 574455 112955 578420 349006 068475 222756 124316 609746 311331 005533 254634 864049 226981 038978 870401 764599 419795 866074 707368 000555 088536 801769 532078 387324 027152 413479 507834 671164 227684 093471 618562 249030 478491 694290 976170 841914 140611 308187 696513 042060 478195 586326 280494 650765 143140 (644 digits)/8095 038439 576345 827109 336748 149289 737380 177165 042909 027310 384145 277864 421432 486769 206431 980267 635326 666838 213412 619522 157603 204659 919125 528514 194580 476125 338950 795559 914838 607018 593567 892473 790561 008534 954355 671943 185715 635189 057413 214794 715970 053755 711161 329033 225768 699534 375883 281234 784861 503089 684952 295315 281865 329014 273094 488458 832374 630933 648692 028035 158391 382399 657643 286889 852731 130334 296037 039672 758374 966206 506857 989024 805832 649374 899075 204925 794363 816312 364194 928324 061732 345715 296005 687494 966504 139263 495186 010814 203233 857395 559144 233298 788074 186804 357175 936291 781829 927362 356367 156778 535725 488496 229681 729287 271077 155127 758698 562793 (646 digits), a[1231] = 3
                                                                                      A[1232]/B[1232] = 105 936105 072331 893581 246128 831054 735146 245850 931061 666769 371821 093911 205958 327901 308258 154346 384060 109164 158523 116048 417306 481186 403359 684233 228962 114107 808928 218436 502829 718945 256705 731354 023344 321106 176082 897014 946046 316585 617881 467679 719718 870856 743559 428164 926307 684334 909912 535822 427873 036439 738634 246950 152038 576356 701172 491691 597945 218151 521949 072248 160718 069897 604910 862956 605336 915898 839229 855047 836201 123814 658503 998620 925050 892794 431887 669161 488946 227113 784525 060859 069614 750044 010896 127175 455793 826966 398607 592928 992811 828348 909846 429847 995727 165646 367684 368521 141540 588554 550606 636258 548206 921954 715960 020136 665080 121996 869925 253383 (645 digits)/10296 303524 541917 662637 045747 392592 085500 347669 211159 539062 706932 190882 700839 956738 095455 784551 154463 895848 401184 093737 873157 457013 800204 211490 643824 730354 822791 515515 137464 209705 454023 273338 871885 620893 634433 900121 176050 858970 463128 787347 739817 074100 361607 444531 010405 201032 097023 919633 072323 786638 267962 441402 395239 029548 565264 990090 711075 859018 769605 563073 470105 260337 049284 643091 367422 256880 266041 200466 895608 651699 404330 682633 810037 365496 553026 969572 656030 117840 972655 252482 490197 497298 499347 202487 973116 146219 364457 364131 213681 187445 320620 548476 522198 621097 941845 125840 528716 249183 198145 941496 542103 054890 680479 682443 408907 830522 950974 212248 (647 digits), a[1232] = 1
                                                                                      A[1233]/B[1233] = 1672 329412 409488 667487 546234 773724 067250 095302 972481 046052 458278 476440 259698 619469 669466 091577 276706 710098 148781 776611 061282 211723 186287 581443 373098 347933 119518 698002 117009 918536 518775 973133 068371 111025 332170 528903 135505 965100 874221 623364 886789 395201 822780 340727 195591 129150 747979 287528 239581 529063 553747 308232 643048 691636 841674 476189 608598 114070 491676 655519 876250 510199 811395 518804 193009 316902 937453 894192 765772 981536 487306 290644 881296 646551 342364 264403 373172 277108 532475 332681 910295 958028 163996 996168 638676 936574 366437 921087 305656 933068 318860 675404 029379 103257 764296 006308 817399 804489 101013 684489 531291 525833 781460 780245 562528 110447 699643 943885 (646 digits)/162539 591307 705110 766665 022959 038171 019885 392203 210302 113250 988128 141104 934031 837840 638268 748534 952285 104564 231174 025590 254965 059866 922188 700873 851951 431447 680823 528286 976801 752600 403916 992556 868845 321939 470864 173760 826478 519746 004345 025010 813226 165261 135272 996998 381846 715015 831242 075730 869718 302663 704388 916351 210450 772242 752069 339819 498512 516215 192775 474137 209970 287455 396912 933260 364064 983538 286655 046676 192504 741697 571818 228531 956393 131823 194479 748515 634815 583926 954023 715561 414694 805192 786213 724814 563246 332553 962046 472782 408451 669075 368452 460446 621053 503273 484852 823899 712573 665110 328556 279226 667271 311856 436876 965938 404694 612972 023311 746513 (648 digits), a[1233] = 15
                                                                                      A[1234]/B[1234] = 5122 924342 300797 896043 884833 152226 936896 531759 848504 804926 746656 523231 985054 186310 316656 429078 214180 239458 604868 445881 601153 116355 962222 428563 348257 157907 167484 312442 853859 474554 813033 650753 228457 654182 172594 483724 352564 211888 240546 337774 380087 056462 211900 450346 513081 071787 153850 398407 146617 623630 399876 171648 081184 651267 226195 920260 423739 560362 996979 038807 789469 600497 039097 419369 184364 866607 651591 537626 133520 068424 120422 870555 568940 832448 458980 462371 608463 058439 381951 058904 800502 624128 502887 115681 371824 636689 497921 356190 909782 627553 866428 456060 083864 475419 660572 387447 593740 002021 853647 689727 142081 499456 060342 360873 352664 453339 968857 085038 (646 digits)/497915 077447 657249 962632 114624 507105 145156 524278 842065 878815 671316 614197 502935 470260 010262 030156 011319 209541 094706 170508 638052 636614 566770 314112 199679 024697 865262 100376 067869 467506 665774 251009 478421 586712 047026 421403 655486 418208 476163 862380 179495 569883 767426 435526 155945 346079 590750 146825 681478 694629 381129 190456 026591 346276 821473 009549 206613 407664 347931 985485 100016 122703 240023 442872 459617 207495 126006 340495 473122 876792 119785 368229 679216 760966 136466 215119 560476 869621 834726 399166 734281 912876 857988 376931 662855 143881 250596 782478 439036 194671 425977 929816 385359 130918 396403 597539 666437 244514 183814 779176 543916 990459 991110 580258 622991 669439 020909 451787 (648 digits), a[1234] = 3
                                                                                      A[1235]/B[1235] = 221958 076131 343798 197374 594060 319482 353800 960976 458187 657902 564508 975415 617028 630813 285692 541940 486457 006818 158124 949519 910866 215029 561852 009667 348156 137941 321344 133044 832967 324393 479222 955521 892050 240858 753733 329050 295767 076295 217714 147663 230532 823076 934499 705627 258077 215998 363546 419035 544139 345170 748422 689100 133988 696127 568099 047387 829399 209679 361775 324254 823443 331572 492584 551679 120698 581031 955890 012116 507135 923773 665489 724534 345752 441835 078524 146382 537083 790001 956370 865588 331908 795553 788142 970467 627136 314222 777056 237296 426309 917884 575284 285987 635551 546303 168908 666555 348219 891428 807864 342756 640796 002444 376182 297799 727099 604066 360498 600519 (648 digits)/21 572887 921556 966859 159845 951812 843692 261615 936193 419134 902324 854742 551597 560257 059021 079536 045243 439011 114831 303539 357461 691228 434293 293312 207698 438149 493455 887093 844457 895188 855387 032209 785964 440973 550557 493000 294118 012394 502710 479391 107358 531535 670263 134609 724623 087496 596438 233498 389235 173302 171727 092944 105960 353878 662146 075408 750435 382889 045782 153850 849996 510663 563694 717920 976776 127604 905828 704927 687981 536788 443758 722589 062408 162713 853367 062526 998656 735320 977665 847258 879730 988817 058897 679713 932876 066017 519447 737708 119355 287008 039946 685503 442551 191496 132764 530207 518105 369375 179220 232591 783818 055701 901636 054631 917059 193336 398849 922418 173354 (650 digits), a[1235] = 43
                                                                                      A[1236]/B[1236] = 227081 000473 644596 093418 478893 471709 290697 492736 306692 462829 311165 498647 602082 817123 602348 971018 700637 246276 762993 395401 512019 331385 524074 438230 696413 295848 488828 445487 686826 798948 292256 606275 120507 895040 926327 812774 648331 288183 458260 485437 610619 879539 146400 155973 771158 287785 517396 817442 690756 968801 148298 860748 215173 347394 794294 967648 253138 770042 358754 363062 612912 932069 531681 971048 305063 447639 607481 549742 640655 992197 785912 595089 914693 274283 537504 608754 145546 848441 338321 924493 132411 419682 291030 086148 998960 950912 274977 593487 336092 545438 441712 742047 719416 021722 829481 054002 941959 893450 661512 032483 782877 501900 436524 658673 079764 057406 329355 685557 (648 digits)/22 070802 999004 624109 122478 066437 350797 406772 460472 261200 781140 526059 165795 063192 529281 089798 075399 450330 324372 398245 527970 329281 070907 860082 521810 637828 518153 752355 944833 963058 322893 697984 036973 919395 137269 540026 715521 667880 920918 955554 969738 711031 240146 902036 160149 243441 942517 824248 536060 854780 866356 474073 296416 380470 008422 896881 759984 589502 453446 501782 835481 610679 686397 957944 419648 587222 113323 830934 028477 009911 320550 842374 430637 841930 614333 198993 213776 295797 847287 681985 278897 723098 971774 537702 309807 728872 663328 988304 901833 726044 234618 111481 372367 576855 263682 926611 115645 035812 423734 416406 562994 599618 892096 045742 497317 816328 068288 943327 625141 (650 digits), a[1236] = 1
                                                                                      A[1237]/B[1237] = 676120 077078 632990 384211 551847 262900 935195 946449 071572 583561 186839 972710 821194 265060 490390 483977 887731 499371 684111 740322 934904 877800 610000 886128 740982 729638 299001 024020 206620 922290 063736 168072 133066 030940 606388 954599 592429 652662 134235 118538 451772 582155 227300 017574 800393 791569 398340 053920 925653 282773 045020 410596 564335 390917 156688 982684 335676 749764 079284 050380 049269 195711 555948 493775 730825 476311 170853 111601 788447 908169 237314 914714 175138 990402 153533 363890 828177 486884 633014 714574 596731 634918 370203 142765 625058 216047 327011 424271 098495 008761 458709 770083 074383 589748 827870 774561 232139 678330 130888 407724 206551 006245 249231 615145 886627 718879 019209 971633 (648 digits)/65 714493 919566 215077 404802 084687 545287 075160 857137 941536 464605 906860 883187 686642 117583 259132 196042 339671 763576 100030 413402 349790 576109 013477 251319 713806 529763 391805 734125 821305 501174 428177 859912 279763 825096 573053 725161 348156 344548 390501 046835 953598 150556 938682 044921 574380 481473 881995 461356 882863 904440 041090 698793 114818 678991 869172 270404 561893 952675 157416 520959 732022 936490 633809 816073 302049 132476 366795 744935 556611 084860 407337 923683 846575 082033 460513 426209 326916 672241 211229 437526 435015 002446 755118 552491 523762 846105 714317 923022 739096 509182 908466 187286 345206 660130 383429 749395 441000 026689 065404 909807 254939 685828 146116 911694 825992 535427 809073 423636 (650 digits), a[1237] = 2
                                                                                      A[1238]/B[1238] = 3 607681 385866 809548 014476 238129 786213 966677 224981 664555 380635 245365 362201 708054 142426 054301 390908 139294 743135 183552 097016 186543 720388 574078 868874 401326 944039 983833 565588 719931 410398 610937 446635 785838 049743 958272 585772 610479 551494 129436 078129 869482 790315 282900 243847 773127 245632 509097 087047 319023 382666 373400 913731 036850 301980 577739 881069 931522 518862 755174 614962 859258 910627 311424 439926 959190 829195 461747 107751 582895 533043 972487 168660 790388 226294 305171 428208 286434 282864 503395 497366 116069 594274 142045 799977 124252 031148 910034 714842 828567 589245 735261 592463 091333 970466 968834 926809 102658 285101 315954 071104 815632 533126 682682 734402 512902 651801 425405 543722 (649 digits)/350 643272 596835 699496 146488 489875 077232 782576 746161 968883 104170 060363 581733 496403 117197 385459 055611 148689 142252 898397 594982 078233 951452 927468 778409 206861 166970 711384 615463 069585 828765 838873 336535 318214 262752 405295 341328 408662 643660 908060 203918 479021 992931 595446 384757 115344 349887 234225 842845 269100 388556 679526 790381 954563 403382 242743 112007 398972 216822 288865 440280 270794 368851 126993 500015 097467 775705 664912 753154 792966 744852 879064 049057 074806 024500 501560 344822 930381 208493 738132 466529 898173 984008 313295 072265 347686 893857 559894 516947 421526 780532 653812 308799 302888 564334 843759 862622 240812 557179 743431 112030 874317 321236 776327 055791 946290 745427 988694 743321 (651 digits), a[1238] = 5
                                                                                      A[1239]/B[1239] = 4 283801 462945 442538 398687 789977 049114 901873 171430 736127 964196 432205 334912 529248 407486 544691 874886 027026 242506 867663 837339 121448 598189 184079 755003 142309 673678 282834 589608 926552 332688 674673 614707 918904 080684 564661 540372 202909 204156 263671 196668 321255 372470 510200 261422 573521 037201 907437 140968 244676 665439 418421 324327 601185 692897 734428 863754 267199 268626 834458 665342 908528 106338 867372 933702 690016 305506 632600 219353 371343 441213 209802 083374 965527 216696 458704 792099 114611 769749 136410 211940 712801 229192 512248 942742 749310 247196 237046 139113 927062 598007 193971 362546 165717 560215 796705 701370 334797 963431 446842 478829 022183 539371 931914 349548 399530 370680 444615 515355 (649 digits)/416 357766 516401 914573 551290 574562 622519 857737 603299 910419 568775 967224 464921 183045 234780 644591 251653 488360 905828 998428 008384 428024 527561 940946 029728 920667 696734 103190 349588 890891 329940 267051 196447 597978 087848 978349 066489 756818 988209 298561 250754 432620 143488 534128 429678 689724 831361 116221 304202 151964 292996 720617 489175 069382 082374 111915 382411 960866 169497 446281 961240 002817 305341 760803 316088 399516 908182 031708 498090 349577 829713 286401 972740 921381 106533 962073 771032 257297 880734 949361 904056 333188 986455 068413 624756 871449 739963 274212 439970 160623 289715 562278 496085 648095 224465 227189 612017 681812 583868 808836 021838 129257 007064 922443 967486 772283 280855 797768 166957 (651 digits), a[1239] = 1
                                                                                      A[1240]/B[1240] = 7 891482 848812 252086 413164 028106 835328 868550 396412 400683 344831 677570 697114 237302 549912 598993 265794 166320 985642 051215 934355 307992 318577 758158 623877 543636 617718 266668 155197 646483 743087 285611 061343 704742 130428 522934 126144 813388 755650 393107 274798 190738 162785 793100 505270 346648 282834 416534 228015 563700 048105 791822 238058 638035 994878 312168 744824 198721 787489 589633 280305 767787 016966 178797 373629 649207 134702 094347 327104 954238 974257 182289 252035 755915 442990 763876 220307 401046 052613 639805 709306 828870 823466 654294 742719 873562 278345 147080 853956 755630 187252 929232 955009 257051 530682 765540 628179 437456 248532 762796 549933 837816 072498 614597 083950 912433 022481 870021 059077 (649 digits)/767 001039 113237 614069 697779 064437 699752 640314 349461 879302 672946 027588 046654 679448 351978 030050 307264 637050 048081 896825 603366 506258 479014 868414 808138 127528 863704 814574 965051 960477 158706 105924 532982 916192 350601 383644 407818 165481 631870 206621 454672 911642 136420 129574 814435 805069 181248 350447 147047 421064 681553 400144 279557 023945 485756 354658 494419 359838 386319 735147 401520 273611 674192 887796 816103 496984 683887 696621 251245 142544 574566 165466 021797 996187 131034 463634 115855 187679 089228 687494 370586 231362 970463 381708 697022 219136 633820 834106 956917 582150 070248 216090 804884 950983 788800 070949 474639 922625 141048 552267 133869 003574 328301 698771 023278 718574 026283 786462 910278 (651 digits), a[1240] = 1
                                                                                      A[1241]/B[1241] = 20 066767 160569 946711 225015 846190 719772 638973 964255 537494 653859 787346 729141 003853 507311 742678 406474 359668 213790 970095 706049 737433 235344 700397 002758 229582 909114 816170 900004 219519 818863 245895 737395 328388 341541 610529 792661 829686 715457 049885 746264 702731 698042 096401 271963 266817 602870 740505 596999 372076 761651 002065 800444 877257 682654 358766 353402 664642 843606 013725 225954 444102 140271 224967 680961 988430 574910 821294 873563 279821 389727 574380 587446 477358 102677 986457 232713 916703 874976 416021 630554 370542 876125 820838 428182 496434 803886 531207 847027 438322 972513 052437 272564 679820 621581 327786 957729 209710 460496 972435 578696 697815 684369 161108 517450 224396 415644 184657 633509 (650 digits)/1950 359844 742877 142712 946848 703438 022025 138366 302223 669024 914668 022400 558230 541941 938736 704691 866182 762461 001992 792079 215117 440541 485591 677775 646005 175725 424143 732340 279692 811845 647352 478900 262413 430362 789051 745637 882126 087782 251949 711804 160100 255904 416328 793278 058550 299863 193857 817115 598296 994093 656103 520906 048289 117273 053886 821232 371250 680542 942136 916576 764280 550040 653727 536396 948295 393486 275957 424951 000580 634666 978845 617334 016336 913755 368602 889342 002742 632656 059192 324350 645228 795914 927381 831831 018801 309723 007604 942426 353805 324923 430211 994460 105855 550062 802065 369088 561297 527062 865965 913370 289576 136405 663668 319986 014044 209431 333423 370693 987513 (652 digits), a[1241] = 2
                                                                                      A[1242]/B[1242] = 108 225318 651661 985642 538243 259060 434192 063420 217690 088156 614130 614304 342819 256570 086471 312385 298165 964662 054596 901694 464603 995158 495301 260143 637668 691551 163292 347522 655218 744082 837403 515089 748320 346683 838136 575583 089453 961822 332935 642536 006121 704396 652996 275106 865086 680736 297188 119062 213012 424083 856360 802151 240283 024324 408150 106000 511837 521936 005519 658259 410077 988297 718322 303635 778439 591360 009256 200821 694921 353345 922895 054192 189268 142705 956380 696162 383876 984565 427495 719913 862078 681585 204095 758486 883632 355736 297777 803120 089093 947245 049818 191419 317832 656154 638589 404475 416825 486008 551017 624974 443417 326894 494344 420139 671202 034415 100702 793309 226622 (651 digits)/10518 800262 827623 327634 432022 581627 809878 332145 860580 224427 246286 139590 837807 389158 045661 553509 638178 449355 058045 857221 678953 708965 906973 257293 038164 006155 984423 476276 363516 019705 395468 500425 845050 068006 295860 111833 818448 604392 891618 765642 255174 191164 218064 095965 107187 304385 150537 436025 138532 391532 962071 004674 521002 610310 755190 460820 350672 762553 097004 318031 222923 023814 942830 569781 557580 464416 063674 821376 254148 315879 468794 252136 103482 564963 974048 910344 129568 350959 385190 309247 596730 210937 607372 540863 791028 767751 671845 546238 725944 206767 221308 188391 334162 701297 799126 916392 281127 557939 470878 119118 581749 685602 646643 298701 093499 765730 693400 639932 847843 (653 digits), a[1242] = 5
                                                                                      A[1243]/B[1243] = 236 517404 463893 917996 301502 364311 588156 765814 399635 713807 882121 015955 414779 516993 680254 367449 002806 288992 322984 773484 635257 727750 225947 220684 278095 612685 235699 511216 210441 707685 493670 276075 234036 021756 017814 761695 971569 753331 381328 334957 758508 111525 004034 646615 002136 628290 197246 978630 023024 220244 474372 606368 281010 925906 498954 570767 377077 708514 854645 330244 046110 420697 576915 832239 237841 171150 593423 222938 263405 986513 235517 682764 965982 762770 015439 378782 000467 885834 729967 855849 354711 733713 284317 337812 195447 207907 399442 137448 025215 332813 072149 435275 908229 992129 898760 136737 791380 181727 562532 222384 465531 351604 673058 001387 859854 293226 617049 771276 086753 (651 digits)/22987 960370 398123 797981 810893 866693 641781 802658 023384 117879 407240 301582 233845 320258 030059 811711 142539 661171 118084 506522 573024 858473 299538 192361 722333 188037 392990 684893 006724 851256 438289 479751 952513 566375 380771 969305 519023 296568 035187 243088 670448 638232 852456 985208 272924 908633 494932 689165 875361 777159 580245 530255 090294 337894 564267 742873 072596 205649 136145 552639 210126 597670 539388 675960 063456 322318 403307 067703 508877 266425 916434 121606 223302 043683 316700 710030 261879 334574 829572 942845 838689 217790 142126 913558 600858 845226 351296 034903 805693 738457 872828 371242 774180 952658 400319 201873 123552 642941 807722 151607 453075 507610 956954 917388 201043 740892 720224 650559 683199 (653 digits), a[1243] = 2
                                                                                      A[1244]/B[1244] = 3182 951576 682282 919594 457773 995111 080230 019007 412954 367659 081703 821724 734952 977487 929778 089222 334647 721562 253398 956994 722954 455911 432615 129039 252911 656459 227385 993333 390960 943994 255117 104067 790788 629512 069728 477630 719860 755130 290203 996986 866727 154221 705446 681101 892862 848508 861398 841252 512327 287262 023204 684938 893425 061108 894559 525976 413847 732629 115908 951432 009513 457366 218228 122745 870374 816317 723758 099019 119199 178017 984624 930136 747044 058716 157092 620328 389959 500416 917077 845955 473331 219857 900221 150045 424446 058532 490525 589944 416893 273814 987760 850006 124822 553843 322471 182066 704767 848466 863936 515972 495324 897755 244098 438181 849307 846361 122349 819898 354411 (652 digits)/309362 285078 003232 701397 973642 848645 153041 766700 164573 756859 540410 060159 877796 552512 436439 105754 491194 044579 593144 442015 128276 869118 800969 757995 428495 450642 093302 379885 450939 086039 093231 737201 227726 430886 245895 712805 565751 459777 349052 925794 971006 488191 300004 903672 655211 116620 584662 395181 518235 494607 505262 897990 694829 002940 090671 118170 294423 435991 866896 502340 954568 793531 954883 357262 382512 654555 306666 701521 869552 779416 382437 833017 006409 132847 091158 140737 533999 700432 169638 566243 499690 042209 455022 417125 602193 755694 238693 999988 199962 806719 568077 014547 398515 085857 003276 540742 887311 916182 971266 090015 471731 284545 087057 224747 707068 397336 056321 097208 729430 (654 digits), a[1244] = 13
                                                                                      A[1245]/B[1245] = 19334 226864 557591 435563 048146 334978 069536 879858 877361 919762 372343 946303 824497 381921 258922 902783 010692 618365 843378 515452 972984 463218 821637 994919 795565 551440 600015 471216 556207 371651 024372 900481 978767 798828 436185 627480 290734 284113 122552 316878 958871 036855 236714 733226 359313 719343 365640 026145 096987 943816 613600 716001 641561 292559 866311 726625 860164 104289 550099 038836 103191 164894 886284 568714 460090 069056 935971 817052 978601 054621 143267 263585 448247 115066 957995 100752 340224 888336 232434 931582 194699 052860 685644 238084 742123 559102 342595 677114 526574 975702 998714 535312 657165 315189 833587 229138 019987 272528 746151 318219 437480 738136 137648 630478 955701 371393 351148 690666 213219 (653 digits)/1 879161 670838 417520 006369 652750 958564 560032 402859 010826 659036 649700 662541 500624 635332 648694 446238 089703 928648 676951 158613 342686 073186 105356 740334 293305 891889 952804 964205 712359 367490 997679 902959 318872 151692 856146 246138 913532 055232 129504 797858 496487 567380 652486 407244 204191 608357 002907 060254 984774 744804 611822 918199 259268 355535 108294 451894 839136 821600 337524 566684 937539 358862 268688 819534 358532 249650 243307 276834 726193 942924 211061 119708 261756 840765 863649 554455 465877 537167 847404 340306 836829 471046 872261 416312 214021 379391 783460 034833 005470 578775 281290 458527 165271 467800 419978 446330 447424 140039 635318 691700 283463 214881 479298 265874 443454 124909 058151 233812 059779 (655 digits), a[1245] = 6
                                                                                      A[1246]/B[1246] = 22517 178441 239874 355157 505920 330089 149766 898866 290316 287421 454047 768028 559450 359409 188700 992005 345340 339928 096777 472447 695938 919130 254253 123959 048477 207899 827401 464549 947168 315645 279490 004549 769556 428340 505914 105111 010595 039243 412756 313865 825598 191076 942161 414328 252176 567852 227038 867397 609315 231078 636805 400940 534986 353668 760871 252602 274011 836918 666007 990268 112704 622261 104512 691460 330464 885374 659729 916072 097800 232639 127892 193722 195291 173783 115087 721080 730184 388753 149512 777537 668030 272718 585865 388130 166569 617634 833121 267058 943468 249517 986475 385318 781987 869033 156058 411204 724755 120995 610087 834191 932805 635891 381747 068660 805009 217754 473498 510564 567630 (653 digits)/2 188523 955916 420752 707767 626393 807209 713074 169559 175400 415896 190110 722701 378421 187845 085133 551992 580897 973228 270095 600628 470962 942304 906326 498329 721801 342532 046107 344091 163298 453530 090911 640160 546598 582579 102041 958944 479283 515009 478557 723653 467494 055571 952491 310916 859402 724977 587569 455436 503010 239412 117085 816189 954097 358475 198965 570065 133560 257592 204421 069025 892108 152394 223572 176796 741044 904205 549973 978356 595746 722340 593498 952725 268165 973612 954807 695192 999877 237600 017042 906550 336519 513256 327283 833437 816215 135086 022154 034821 205433 385494 849367 473074 563786 553657 423254 987073 334736 056222 606584 781715 755194 499426 566355 490622 150522 522245 114472 331020 789209 (655 digits), a[1246] = 1
                                                                                      A[1247]/B[1247] = 86885 762188 277214 501035 565907 325245 518837 576457 748310 782026 734487 250389 502848 460148 825025 878799 046713 638150 133710 932796 060801 220609 584397 366796 940997 175140 082219 864866 397712 318586 862842 914131 287437 083849 953927 942813 322519 401843 360821 258476 435665 610086 063198 976211 115843 422900 046756 628337 924933 637052 524016 918823 246520 353566 148925 484432 682199 615045 548123 009640 441305 031678 199822 643095 451484 725180 915161 565269 272001 752538 526943 844752 034120 636416 303258 263994 530778 054595 680973 264195 198789 871016 443240 402475 241832 412006 841959 478291 356979 724256 958140 691269 003128 922289 301762 462752 194252 635515 576414 820795 235897 645810 282889 836461 370729 024656 771644 222359 916109 (653 digits)/8 444733 538587 679778 129672 531932 380193 699254 911536 537027 906725 220032 830645 635888 198867 904095 102215 832397 848333 487237 960498 755574 900100 824336 235323 458709 919486 091126 996479 202254 728081 270414 823440 958667 899430 162272 122972 351382 600260 565177 968818 898969 734096 509960 339994 782399 783289 765615 426564 493805 463040 963080 366769 121560 430960 705191 162090 239817 594376 950787 773762 613863 816044 939405 349924 581666 962266 893229 211904 513434 109945 991557 977884 066254 761604 728072 640034 465509 249967 898533 059957 846388 010815 854112 916625 662666 784649 849922 139296 621770 735259 829392 877750 856631 128772 689743 407550 451632 308707 455073 036847 549046 713161 178364 737740 895021 691644 401568 226874 427406 (655 digits), a[1247] = 3
                                                                                      A[1248]/B[1248] = 109402 940629 517088 856193 071827 655334 668604 475324 038627 069448 188535 018418 062298 819558 013726 870804 392053 978078 230488 405243 756740 139739 838650 490755 989474 383039 909621 329416 344880 634232 142332 918681 056993 512190 459842 047924 333114 441086 773577 572342 261263 801163 005360 390539 368019 990752 273795 495735 534248 868131 160822 319763 781506 707234 909796 737034 956211 451964 214130 999908 554009 653939 304335 334555 781949 610555 574891 481341 369801 985177 654836 038474 229411 810199 418345 985075 260962 443348 830486 041732 866820 143735 029105 790605 408402 029641 675080 745350 300447 973774 944616 076587 785116 791322 457820 873956 919007 756511 186502 654987 168703 281701 664636 905122 175738 242411 245142 732924 483739 (654 digits)/10 633257 494504 100530 837440 158326 187403 412329 081095 712428 322621 410143 553347 014309 386712 989228 654208 413295 821561 757333 561127 226537 842405 730662 733653 180511 262018 137234 340570 365553 181611 361326 463601 505266 482009 264314 081916 830666 115270 043735 692472 366463 789668 462451 650911 641802 508267 353184 882000 996815 702453 080166 182959 075657 789435 904156 732155 373377 851969 155208 842788 505971 968439 162977 526721 322711 866472 443203 190261 109180 832286 585056 930609 334420 735217 682880 335227 465386 487567 915575 966508 182907 524072 181396 750063 478881 919735 872076 174117 827204 120754 678760 350825 420417 682430 112998 394623 786368 364930 061657 818563 304241 212587 744720 228363 045544 213889 516040 557895 216615 (656 digits), a[1248] = 1
                                                                                      A[1249]/B[1249] = 1 071512 227853 931014 206773 212356 223257 536277 854374 095954 407060 431302 416152 063537 836170 948567 716038 575199 440854 208106 579989 871462 478268 132251 783600 846266 622499 268811 829613 501638 026676 143839 182260 800378 693564 092506 374132 320549 371624 323019 409556 787039 820553 111442 491065 428023 339670 510916 089957 733173 450232 971417 796697 280080 718680 337096 117747 288102 682723 475302 008817 427391 917131 938840 654097 489031 220181 089184 897341 600219 619137 420468 191020 098826 928211 068372 129671 879440 044735 155347 639791 000171 164631 705192 517923 917450 678781 917686 186444 061011 488231 459685 380559 069180 044191 422150 328364 465322 444116 254938 715679 754227 181125 264621 982560 952373 206357 977928 818680 269760 (655 digits)/104 144050 989124 584555 666633 956868 066824 410216 641397 948882 810317 911324 810768 764672 679284 807152 990091 552060 242389 303240 010643 794415 481752 400300 838202 083311 277649 326236 061612 492233 362583 522352 995854 506066 237513 541098 860223 827377 637690 958799 201070 197143 841112 672025 198199 558622 357695 944279 364573 465146 785118 684576 013400 802480 535883 842601 751488 600218 262099 347667 358859 167611 531997 406203 090416 486073 760518 882057 924254 496061 600525 257070 353368 076041 378563 873995 657081 653987 638079 138716 758531 492555 727465 486683 667196 972604 062272 698607 706357 066607 822051 938236 035179 640390 270643 706728 959164 528947 593078 009993 403917 287217 626450 880846 793008 304919 616650 045933 247931 376941 (657 digits), a[1249] = 9
                                                                                      A[1250]/B[1250] = 1 180915 168483 448103 062966 284183 878592 204882 329698 134581 476508 619837 434570 125836 655728 962294 586842 967253 418932 438594 985233 628202 618007 970902 274356 835741 005539 178433 159029 846518 660908 286172 100941 857372 205754 552348 422056 653663 812711 096596 981899 048303 621716 116802 881604 796043 330422 784711 585693 267422 318364 132240 116461 061587 425915 246892 854782 244314 134687 689433 008725 981401 571071 243175 988653 270980 830736 664076 378682 970021 604315 075304 229494 328238 738410 486718 114747 140402 488083 985833 681523 866991 308366 734298 308529 325852 708423 592766 931794 361459 462006 404301 457146 854296 835513 879971 202321 384330 200627 441441 370666 922930 462826 929258 887683 128111 448769 223071 551604 753499 (655 digits)/114 777308 483628 685086 504074 115194 254227 822545 722493 661311 132939 321468 364115 778982 065997 796381 644299 965356 063951 060573 571771 020953 324158 130963 571855 263822 539667 463470 402182 857786 544194 883679 459456 011332 719522 805412 942140 658043 752961 002534 893542 563607 630781 134476 849111 200424 865963 297464 246574 461962 487571 764742 196359 878138 325319 746758 483643 973596 114068 502876 201647 673583 500436 569180 617137 808785 626991 325261 114515 605242 432811 842127 283977 410462 113781 556875 992309 119374 125647 054292 725039 675463 251537 668080 417260 451485 982008 570683 880474 893811 942806 616996 386005 060807 953073 819727 353788 315315 958008 071651 222480 591458 839038 625567 021371 350463 830539 561973 805826 593556 (657 digits), a[1250] = 1
                                                                                      A[1251]/B[1251] = 2 252427 396337 379117 269739 496540 101849 741160 184072 230535 883569 051139 850722 189374 491899 910862 302881 542452 859786 646701 565223 499665 096276 103154 057957 682007 628038 447244 988643 348156 687584 430011 283202 657750 899318 644854 796188 974213 184335 419616 391455 835343 442269 228245 372670 224066 670093 295627 675651 000595 768597 103657 913158 341668 144595 583988 972529 532416 817411 164735 017543 408793 488203 182016 642750 760012 050917 753261 276024 570241 223452 495772 420514 427065 666621 555090 244419 019842 532819 141181 321314 867162 472998 439490 826453 243303 387205 510453 118238 422470 950237 863986 837705 923476 879705 302121 530685 849652 644743 696380 086346 677157 643952 193880 870244 080484 655127 201000 370285 023259 (655 digits)/218 921359 472753 269642 170708 072062 321052 232762 363891 610193 943257 232793 174884 543654 745282 603534 634391 517416 306340 363813 582414 815368 805910 531264 410057 347133 817316 789706 463795 350019 906778 406032 455310 517398 957036 346511 802364 485421 390651 961334 094612 760751 471893 806502 047310 759047 223659 241743 611147 927109 272690 449318 209760 680618 861203 589360 235132 573814 376167 850543 560506 841195 032433 975383 707554 294859 387510 207319 038770 101304 033337 099197 637345 486503 492345 430871 649390 773361 763726 193009 483571 168018 979003 154764 084457 424090 044281 269291 586831 960419 764858 555232 421184 701198 223717 526456 312952 844263 551086 081644 626397 878676 465489 506413 814379 655383 447189 607907 053757 970497 (657 digits), a[1251] = 1
                                                                                      A[1252]/B[1252] = 37 219753 509881 513979 378798 228825 508188 063445 274853 823155 613613 438075 046125 155828 526127 536091 432947 646499 175518 785820 028809 622844 158425 621367 201679 747863 054154 334352 977323 417025 662259 166352 632184 381386 594852 870025 161080 241074 762077 810459 245192 413798 698023 768728 844328 381110 051915 514754 396109 276954 615917 790766 726994 528277 739444 590716 415254 762983 213266 325193 289420 522097 382322 155442 272665 431173 645420 716256 795076 093881 179555 007662 957725 161289 404355 368162 025451 457883 013190 244734 822561 741590 876341 766151 531781 218706 903711 760016 823609 120994 665812 228090 860441 629926 910798 713915 693294 978772 516526 583522 752213 757452 766062 031352 811588 415865 930804 439077 476165 125643 (656 digits)/3617 519060 047680 999361 235403 268191 391063 546743 544759 424414 225055 046159 162268 477457 990519 452935 794564 244016 965396 881590 890408 066854 218726 631194 132772 817963 616736 098773 822908 458105 052649 380198 744424 289716 032104 349601 779972 424786 003392 383880 407346 735631 181082 038509 606083 345180 444511 165362 024941 295710 850618 953833 552530 768040 104577 176522 245765 154626 132754 111573 169757 132704 019380 175319 938006 526535 827154 642365 734837 226106 966205 429289 481505 194517 991308 450822 382561 493162 345266 142444 462178 363766 915588 144305 768579 236926 690508 879349 269786 260528 180543 500715 124960 279979 532554 243028 361033 823532 775385 377965 244846 650282 286870 728188 051445 836598 985573 288486 665954 121508 (658 digits), a[1252] = 16
                                                                                      A[1253]/B[1253] = 113 911687 925981 921055 406134 183016 626413 931496 008633 700002 724409 365364 989097 656860 070282 519136 601724 481950 386343 004161 651652 368197 571552 967255 662996 925596 790501 450303 920613 599233 674361 929069 179755 801910 683877 254930 279429 697437 470568 850994 127033 076739 536340 534431 905655 367396 825839 839890 863978 831459 616350 475958 094141 926501 362929 356138 218293 821366 457210 140314 885804 975085 635169 648343 460747 053532 987179 902031 661252 851884 762117 518761 293689 910933 879687 659576 320773 393491 572389 875385 789000 091935 102023 737945 421796 899424 098340 790503 589065 785454 947674 548259 419030 813257 612101 443868 610570 785970 194323 446948 342987 949515 942138 287939 305009 328082 447540 518232 798780 400188 (657 digits)/11071 478539 615796 267725 876917 876636 494242 872992 998169 883436 618422 371270 661689 976028 716840 962342 018084 249467 202531 008586 253639 015931 462090 424846 808375 801024 667525 086027 932520 724335 064726 546628 688583 386547 053349 395317 142281 759779 400829 112975 316652 967645 015139 922030 865560 794588 557192 737829 685971 814241 824547 310818 867352 984739 174935 118926 972428 037692 774430 185263 069778 239307 090574 501343 521573 874466 868974 134416 243281 779624 931953 387066 081861 070057 466270 783338 797075 252848 799524 620342 870106 259319 725767 587681 390195 134870 115807 907339 396190 742004 306489 057377 796065 541136 821380 255541 396054 314861 877242 215540 360937 829523 326101 690977 968717 165180 403909 473367 051620 335021 (659 digits), a[1253] = 3
                                                                                      A[1254]/B[1254] = 151 131441 435863 435034 784932 411842 134601 994941 283487 523158 338022 803440 035222 812688 596410 055228 034672 128449 561861 789981 680461 991041 729978 588622 864676 673459 844655 784656 897937 016259 336621 095421 811940 183297 278730 124955 440509 938512 232646 661453 372225 490538 234364 303160 749983 748506 877755 354645 260088 108414 232268 266724 821136 454779 102373 946854 633548 584349 670476 465508 175225 497183 017491 803785 733412 484706 632600 618288 456328 945765 941672 526424 251415 072223 284043 027738 346224 851374 585580 120120 611561 833525 978365 504096 953578 118131 002052 550520 412674 906449 613486 776350 279472 443184 522900 157784 303865 764742 710850 030471 095201 706968 708200 319292 116597 743948 378344 957310 274945 525831 (657 digits)/14688 997599 663477 267087 112321 144827 885306 419736 542929 307850 843477 417429 823958 453486 707360 415277 812648 493484 167927 890177 144047 082785 680817 056040 941148 618988 284261 184801 755429 182440 117375 926827 433007 676263 085453 744918 922254 184565 404221 496855 723999 703276 196221 960540 471644 139769 001703 903191 710913 109952 675166 264652 419883 752779 279512 295449 218193 192318 907184 296836 239535 372011 109954 676663 459580 401002 696128 776781 978119 005731 898158 816355 563366 264575 457579 234161 179636 746011 144790 762787 332284 623086 641355 731987 158774 371796 806316 786688 665977 002532 487032 558092 921025 821116 353934 498569 757088 138394 652627 593505 605784 479805 612972 419166 020163 001779 389482 761853 717574 456529 (659 digits), a[1254] = 1
                                                                                      A[1255]/B[1255] = 265 043129 361845 356090 191066 594858 761015 926437 292121 223161 062432 168805 024320 469548 666692 574364 636396 610399 948204 794143 332114 359239 301531 555878 527673 599056 635157 234960 818550 615493 010983 024490 991695 985207 962607 379885 719939 635949 703215 512447 499258 567277 770704 837592 655639 115903 703595 194536 124066 939873 848618 742682 915278 381280 465303 302992 851842 405716 127686 605823 061030 472268 652661 452129 194159 538239 619780 520320 117581 797650 703790 045185 545104 983157 163730 687314 666998 244866 157969 995506 400561 925461 080389 242042 375375 017555 100393 341024 001740 691904 561161 324609 698503 256442 135001 601652 914436 550712 905173 477419 438189 656484 650338 607231 421607 072030 825885 475543 073725 926019 (657 digits)/25760 476139 279273 534812 989239 021464 379549 292729 541099 191287 461899 788700 485648 429515 424201 377619 830732 742951 370458 898763 397686 098717 142907 480887 749524 420012 951786 270829 687949 906775 182102 473456 121591 062810 138803 140236 064535 944344 805050 609831 040652 670921 211361 882571 337204 934357 558896 641021 396884 924194 499713 575471 287236 737518 454447 414376 190621 230011 681614 482099 309313 611318 200529 178006 981154 275469 565102 911198 221400 785356 830112 203421 645227 334632 923850 017499 976711 998859 944315 383130 202390 882406 367123 319668 548969 506666 922124 694028 062167 744536 793521 615470 717091 362253 175314 754111 153142 453256 529869 809045 966722 309328 939074 110143 988880 166959 793392 235220 769194 791550 (659 digits), a[1255] = 1
                                                                                      A[1256]/B[1256] = 416 174570 797708 791124 975999 006700 895617 921378 575608 746319 400454 972245 059543 282237 263102 629592 671068 738849 510066 584125 012576 350281 031510 144501 392350 272516 479813 019617 716487 631752 347604 119912 803636 168505 241337 504841 160449 574461 935862 173900 871484 057816 005069 140753 405622 864410 581350 549181 384155 048288 080887 009407 736414 836059 567677 249847 485390 990065 798163 071331 236255 969451 670153 255914 927572 022946 252381 138608 573910 743416 645462 571609 796520 055380 447773 715053 013223 096240 743550 115627 012123 758987 058754 746139 328953 135686 102445 891544 414415 598354 174648 100959 977975 699626 657901 759437 218302 315455 616023 507890 533391 363453 358538 926523 538204 815979 204230 432853 348671 451850 (657 digits)/40449 473738 942750 801900 101560 166292 264855 712466 084028 499138 305377 206130 309606 883002 131561 792897 643381 236435 538386 788940 541733 181502 823724 536928 690673 039001 236047 455631 443379 089215 299478 400283 554598 739073 224256 885154 986790 128910 209272 106686 764652 374197 407583 843111 808849 074126 560600 544213 107798 034147 174879 840123 707120 490297 733959 709825 408814 422330 588798 778935 548848 983329 310483 854670 440734 676472 261231 687980 199519 791088 728271 019777 208593 599208 381429 251661 156348 744871 089106 145917 534675 505493 008479 051655 707743 878463 728441 480716 728144 747069 280554 173563 638117 183369 529249 252680 910230 591651 182497 402551 572506 789134 552046 529310 009043 168739 182874 997074 486769 248079 (659 digits), a[1256] = 1
                                                                                      A[1257]/B[1257] = 681 217700 159554 147215 167065 601559 656633 847815 867729 969480 462887 141050 083863 751785 929795 203957 307465 349249 458271 378268 344690 709520 333041 700379 920023 871573 114970 254578 535038 247245 358587 144403 795332 153713 203944 884726 880389 210411 639077 686348 370742 625093 775773 978346 061261 980314 284945 743717 508221 988161 929505 752090 651693 217340 032980 552840 337233 395781 925849 677154 297286 441720 322814 708044 121731 561185 872161 658928 691492 541067 349252 616795 341625 038537 611504 402367 680221 341106 901520 111133 412685 684448 139143 988181 704328 153241 202839 232568 416156 290258 735809 425569 676478 956068 792903 361090 132738 866168 521196 985309 971581 019938 008877 533754 959811 888010 030115 908396 422397 377869 (657 digits)/66209 949878 222024 336713 090799 187756 644405 005195 625127 690425 767276 994830 795255 312517 555763 170517 474113 979386 908845 687703 939419 280219 966632 017816 440197 459014 187833 726461 131328 995990 481580 873739 676189 801883 363060 025391 051326 073255 014322 716517 805305 045118 618945 725683 146054 008484 119497 185234 504682 958341 674593 415594 994357 227816 188407 124201 599435 652342 270413 261034 858162 594647 511013 032677 421888 951941 826334 599178 420920 576445 558383 223198 853820 933841 305279 269161 133060 743731 033421 529047 737066 387899 375602 371324 256713 385130 650566 174744 790312 491606 074075 789034 355208 545622 704564 006792 063373 044907 712367 211597 539229 098463 491120 639453 997923 335698 976267 232295 255964 039629 (659 digits), a[1257] = 1
                                                                                      A[1258]/B[1258] = 1097 392270 957262 938340 143064 608260 552251 769194 443338 715799 863342 113295 143407 034023 192897 833549 978534 088098 968337 962393 357267 059801 364551 844881 312374 144089 594783 274196 251525 878997 706191 264316 598968 322218 445282 389568 040838 784873 574939 860249 242226 682909 780843 119099 466884 844724 866296 292898 892377 036450 010392 761498 388108 053399 600657 802687 822624 385847 724012 748485 533542 411171 992967 963959 049303 584132 124542 797537 265403 284483 994715 188405 138145 093918 059278 117420 693444 437347 645070 226760 424809 443435 197898 734321 033281 288927 305285 124112 830571 888612 910457 526529 654454 655695 450805 120527 351041 181624 137220 493200 504972 383391 367416 460278 498016 703989 234346 341249 771068 829719 (658 digits)/106659 423617 164775 138613 192359 354048 909260 717661 709156 189564 072654 200961 104862 195519 687324 963415 117495 215822 447232 476644 481152 461722 790356 554745 130870 498015 423881 182092 574708 085205 781059 274023 230788 540956 587316 910546 038116 202165 223594 823204 569957 419316 026529 568794 954903 082610 680097 729447 612480 992488 849473 255718 701477 718113 922366 834027 008250 074672 859212 039970 407011 577976 821496 887347 862623 628414 087566 287158 620440 367534 286654 242976 062414 533049 686708 520822 289409 488602 122527 674965 271741 893392 384081 422979 964457 263594 379007 655461 518457 238675 354629 962597 993325 728992 233813 259472 973603 636558 894864 614149 111735 887598 043167 168764 006966 504438 159142 229369 742733 287708 (660 digits), a[1258] = 1
                                                                                      A[1259]/B[1259] = 1778 609971 116817 085555 310130 209820 208885 617010 311068 685280 326229 254345 227270 785809 122693 037507 285999 437348 426609 340661 701957 769321 697593 545261 232398 015662 709753 528774 786564 126243 064778 408720 394300 475931 649227 274294 921227 995285 214017 546597 612969 308003 556617 097445 528146 825039 151242 036616 400599 024611 939898 513589 039801 270739 633638 355528 159857 781629 649862 425639 830828 852892 315782 672003 171035 145317 996704 456465 956895 825551 343967 805200 479770 132455 670782 519788 373665 778454 546590 337893 837495 127883 337042 722502 737609 442168 508124 356681 246728 178871 646266 952099 330933 611764 243708 481617 483780 047792 658417 478510 476553 403329 376293 994033 457828 591999 264462 249646 193466 207588 (658 digits)/172869 373495 386799 475326 283158 541805 553665 722857 334283 879989 839931 195791 900117 508037 243088 133932 591609 195209 356078 164348 420571 741942 756988 572561 571067 957029 611714 908553 706037 081196 262640 147762 906978 342839 950376 935937 089442 275420 237917 539722 375262 464434 645475 294478 100957 091094 799594 914682 117163 950830 524066 671313 695834 945930 110773 958228 607685 727015 129625 301005 265174 172624 332509 920025 284512 580355 913900 886337 041360 943979 845037 466174 916235 466890 991987 789983 422470 232333 155949 204013 008808 281291 759683 794304 221170 648725 029573 830206 308769 730281 428705 751632 348534 274614 938377 266265 036976 681466 607231 825746 650964 986061 534287 808218 004889 840137 135409 461664 998697 327337 (660 digits), a[1259] = 1
                                                                                      A[1260]/B[1260] = 2876 002242 074080 023895 453194 818080 761137 386204 754407 401080 189571 367640 370677 819832 315590 871057 264533 525447 394947 303055 059224 829123 062145 390142 544772 159752 304536 802971 038090 005240 770969 673036 993268 798150 094509 663862 962066 780158 788957 406846 855195 990913 337460 216544 995031 669764 017538 329515 292976 061061 950291 275087 427909 324139 234296 158215 982482 167477 373875 174125 364371 264064 308750 635962 220338 729450 121247 254003 222299 110035 338682 993605 617915 226373 730060 637209 067110 215802 191660 564654 262304 571318 534941 456823 770890 731095 813409 480794 077300 067484 556724 478628 985388 267459 694513 602144 834821 229416 795637 971710 981525 786720 743710 454311 955845 295988 498808 590895 964535 037307 (658 digits)/279528 797112 551574 613939 475517 895854 462926 440519 043440 069553 912585 396753 004979 703556 930413 097347 709104 411031 803310 640992 901724 203665 547345 127306 701938 455045 035596 090646 280745 166402 043699 421786 137766 883796 537693 846483 127558 477585 461512 362926 945219 883750 672004 863273 055860 173705 479692 644129 729644 943319 373539 927032 397312 664044 033140 792255 615935 801687 988837 340975 672185 750601 154006 807373 147136 208770 001467 173495 661801 311514 131691 709150 978649 999940 678696 310805 711879 720935 278476 878978 280550 174684 143765 217284 185627 912319 408581 485667 827226 968956 783335 714230 341860 003607 172190 525738 010580 318025 502096 439895 762700 873659 577454 976982 011856 344575 294551 691034 741430 615045 (660 digits), a[1260] = 1
                                                                                      A[1261]/B[1261] = 53546 650328 450257 515673 467636 935273 909358 568695 890401 904723 738513 871871 899471 542790 803328 716538 047602 895401 535660 795652 768004 693536 816210 567827 038296 891204 191415 982253 472184 220576 942232 523386 273138 842633 350401 223828 238430 038143 415250 869841 006497 144443 630900 995255 438716 880791 466931 967891 674168 123727 045141 465162 742169 105245 850969 203415 844536 796222 379615 559896 389511 606049 873294 119323 137132 275420 179155 028523 958279 806187 440261 690101 602244 207182 811873 989551 581649 662893 996480 501670 558977 411616 965988 945330 613642 601893 149495 010974 638129 393593 667307 567421 067922 426038 744953 320224 510562 177294 979900 969308 144017 564302 763082 171648 663043 919792 243016 885773 555096 879114 (659 digits)/5 204387 721521 315142 526236 842480 667185 886341 652200 116205 131960 266468 337345 989752 172061 990523 886191 355488 593781 815669 702220 651607 407922 609200 864082 205960 147840 252444 540186 759450 076433 049229 739913 386782 251177 628866 172633 385494 871958 545140 072407 389220 371946 741562 833393 106440 217793 434062 509017 250772 930579 247785 357896 847462 898722 707308 218829 694530 157398 928697 438567 364517 683445 104632 452741 932964 338215 940310 009258 953784 551234 215488 230892 531935 465823 208521 384486 236305 209168 168533 025622 058711 425606 347457 705419 562473 070474 384040 572227 198855 171503 528748 607778 502014 339544 037806 729549 227422 405925 644967 743870 379580 711933 928477 393894 218304 042492 437339 900290 344448 398147 (661 digits), a[1261] = 18
                                                                                      A[1262]/B[1262] = 56422 652570 524337 539568 920831 753354 670495 954900 644809 305803 928085 239512 270149 362623 118919 587595 312136 420848 930608 098707 827229 522659 878355 957969 583069 050956 495952 785224 510274 225817 713202 196423 266407 640783 444910 887691 200496 818302 204208 276687 861693 135356 968361 211800 433748 550555 484470 297406 967144 184788 995432 740250 170078 429385 085265 361631 827018 963699 753490 734021 753882 870114 182044 755285 357471 004870 300402 282527 180578 916222 778944 683707 220159 433556 541934 626760 648759 878696 188141 066324 821281 982935 500930 402154 384533 332988 962904 491768 715429 461078 224032 046050 053310 693498 439466 922369 345383 406711 775538 941019 125543 351023 506792 625960 618889 215780 741825 476669 519631 916421 (659 digits)/5 483916 518633 866717 140176 317998 563040 349268 092719 159645 201514 179053 734098 994731 875618 920936 983539 064593 004813 618980 343213 553331 611588 156545 991388 907898 602885 288040 630833 040195 242835 092929 161699 524549 134974 166560 019116 513053 349544 006652 435334 334440 255697 413567 696666 162300 391498 913755 153146 980417 873898 621325 284929 244775 562766 740449 011085 310465 959086 917534 779543 036703 434046 258639 260115 080100 546985 941777 182754 615585 862748 347179 940043 510585 465763 887217 695291 948184 930103 447009 904600 339261 600290 491222 922703 748100 982793 792622 057895 026082 140460 312084 322008 843874 343151 209997 255287 238002 723951 147064 183766 142281 585593 505932 370876 230160 387067 731891 591325 085879 013192 (661 digits), a[1262] = 1
                                                                                      A[1263]/B[1263] = 222814 608040 023270 134380 230132 195337 920846 433397 824829 822135 522769 590408 709919 630660 160087 479323 984012 157948 327485 091776 249693 261516 451278 441735 787504 044073 679274 337927 003006 898030 081839 112656 072361 764983 685133 886901 839920 493050 027875 699904 591576 550514 535984 630656 739962 532457 920342 860112 575600 678094 031439 685913 252404 393401 106765 288311 325593 687321 640087 761961 651160 216392 419428 385179 209545 290031 080361 876105 500016 554855 777095 741223 262722 507852 437677 869833 527929 298982 560903 700645 022823 360423 468780 151793 767242 600860 038208 486280 784417 776828 339403 705571 227854 506534 063354 087332 546712 397430 306517 792365 520647 617373 283460 049530 519711 567134 468493 315782 113992 628377 (660 digits)/21 656137 277422 915293 946765 796476 356306 934145 930357 595140 736502 803629 539642 973947 798918 753334 836808 549267 608222 672610 731861 311602 242687 078838 838248 929655 956496 116566 432685 880035 804938 328017 225011 960429 656100 128546 229982 924654 920590 565097 378410 392541 139038 982265 923391 593341 392290 175327 968458 192026 552275 111761 212684 581789 587022 928655 252085 625928 034659 681301 777196 474627 985583 880550 233087 173265 979173 765641 557522 800542 139479 257028 051023 063691 863114 870174 470362 080859 999478 509562 739423 076496 226477 821126 473530 806776 018855 761906 745912 277101 592884 465001 573805 033637 368997 667798 495410 941430 577779 086160 295168 806425 468714 446274 506522 908785 203695 633014 674265 602085 437723 (662 digits), a[1263] = 3
                                                                                      A[1264]/B[1264] = 502051 868650 570877 808329 381096 144030 512188 821696 294468 950074 973624 420329 689988 623943 439094 546243 280160 736745 585578 282260 326616 045692 780912 841441 158077 139103 854501 461078 516288 021877 876880 421735 411131 170750 815178 661494 880337 804402 259959 676497 044846 236386 040330 473113 913673 615471 325156 017632 118345 540977 058312 112076 674887 216187 298795 938254 478206 338343 033666 257945 056203 302899 020901 525643 776561 584932 461126 034738 180612 025934 333136 166153 745604 449261 417290 366427 704618 476661 309948 467614 866928 703782 438490 705741 919018 534709 039321 464330 284265 014734 902839 457192 509019 706566 566175 097034 438808 201572 388574 525750 166838 585770 073712 725021 658312 350049 678812 108233 747617 173175 (660 digits)/48 796191 073479 697305 033707 910951 275654 217559 953434 349926 674519 786312 813384 942627 473456 427606 657156 163128 221258 964201 806936 176536 096962 314223 667886 767210 515877 521173 496204 800266 852711 748963 611723 445408 447174 423652 479082 362363 190725 136847 192155 119522 533775 378099 543449 348983 176079 264411 090063 364470 978448 844847 710298 408354 736812 597759 515256 562322 028406 280138 333935 985959 405214 019739 726289 426632 505333 473060 297800 216670 141706 861236 042089 637969 191993 627566 636016 109904 929060 466135 383446 492254 053246 133475 869765 361653 020505 316435 549719 580285 326229 242087 469618 911149 081146 545594 246109 120863 879509 319384 774103 755132 523022 398481 383922 047730 794458 997920 939856 290049 888638 (662 digits), a[1264] = 2
                                                                                      A[1265]/B[1265] = 5 243333 294545 732048 217674 041093 635643 042734 650360 769519 322885 259013 793705 609805 870094 551032 941756 785619 525404 183267 914379 515853 718444 260406 856147 368275 435112 224288 948712 165887 116808 850643 330010 183673 472491 836920 501850 643298 537072 627472 464875 040038 914374 939289 361795 876698 687171 171903 036433 759056 087864 614560 806680 001276 555274 094724 670856 107657 070751 976750 341412 213193 245382 628443 641616 975161 139355 691622 223487 306136 814199 108457 402760 718767 000466 610581 534110 574114 065595 660388 376793 692110 398247 853687 209212 957427 947950 431423 129583 627067 924177 367798 277496 318051 572199 725105 057676 934794 413154 192263 049867 189033 475074 020587 299747 102835 067631 256614 398119 590164 360127 (661 digits)/509 618048 012219 888344 283844 905989 112849 109745 464701 094407 481700 666757 673492 400222 533483 029401 408370 180549 820812 314628 801223 076963 212310 221075 517116 601761 115271 328301 394733 882704 332055 817653 342246 414514 127844 365071 020806 548286 827841 933569 299961 587766 476792 763261 357885 083173 153082 819438 869091 836736 336763 560238 315668 665336 955148 906250 404651 249148 318722 482685 116556 334222 037724 077947 495981 439591 032508 496244 535524 967243 556547 869388 471919 443383 783051 145840 830523 179909 290083 170916 573887 999036 758939 155885 171184 423306 223908 926262 243108 079954 855176 885876 269994 145128 180463 123740 956502 150069 372872 280008 036206 357750 698938 431088 345743 386093 148285 612224 072828 502584 324103 (663 digits), a[1265] = 10
                                                                                      A[1266]/B[1266] = 16 232051 752287 767022 461351 504377 050959 640392 772778 603026 918730 750665 801446 519406 234227 092193 371513 637019 312958 135382 025398 874177 201025 562133 409883 262903 444440 527368 307215 013949 372304 428810 411765 962151 588226 325940 167046 810233 415620 142377 071122 164962 979510 858198 558501 543769 676984 840865 126933 395513 804570 901994 532116 678716 882009 582969 950822 801177 550598 963917 282181 695783 039046 906232 450494 702045 002999 535992 705200 099022 468531 658508 374435 901905 450661 249034 968759 426960 673448 291113 597995 943259 898525 999552 333380 791302 378560 333590 853081 165468 787267 006234 289681 463174 423165 741490 270065 243191 441034 965363 675351 733939 010992 135474 624262 966817 552943 448655 302592 518110 253556 (662 digits)/1577 650335 110139 362337 885242 628918 614201 546796 347537 633149 119621 786585 833862 143295 073905 515810 882266 704777 683695 908088 210605 407425 733892 977450 219236 572493 861691 506077 680406 448379 848879 201923 638462 688950 830707 518865 541502 007223 674250 937555 092039 882821 964153 667883 617104 598502 635327 722727 697338 874679 988739 525562 657304 404365 602259 316510 729210 309766 984573 728193 683604 988625 518386 253582 214233 745405 602858 961793 904375 118400 811350 469401 457847 968120 541147 065089 127585 649632 799309 978885 105110 489364 330063 601131 383318 631571 692232 095222 279043 820149 891759 899716 279601 346533 622535 916817 115615 571071 998126 159408 882722 828384 619837 691746 421152 206010 239315 834593 158341 797802 860947 (664 digits), a[1266] = 3
                                                                                      A[1267]/B[1267] = 21 475385 046833 499070 679025 545470 686602 683127 423139 372546 241616 009679 595152 129212 104321 643226 313270 422638 838362 318649 939778 390030 919469 822540 266030 631178 879552 751657 255927 179836 489113 279453 741776 145825 060718 162860 668897 453531 952692 769849 535997 205001 893885 797487 920297 420468 364156 012768 163367 154569 892435 516555 338796 679993 437283 677694 621678 908834 621350 940667 623593 908976 284429 534676 092111 677206 142355 227614 928687 405159 282730 766965 777196 620672 451127 859616 502870 001074 739043 951501 974789 635370 296773 853239 542593 748730 326510 765013 982664 792536 711444 374032 567177 781225 995365 466595 327742 177985 854189 157626 725218 922972 486066 156061 924010 069652 620574 705269 700712 108274 613683 (662 digits)/2087 268383 122359 250682 169087 534907 727050 656541 812238 727556 601322 453343 507354 543517 607388 545212 290636 885327 504508 222717 011828 484388 946203 198525 736353 174254 976962 834379 075140 331084 180935 019576 980709 103464 958551 883936 562308 555510 502092 871124 392001 470588 440946 431144 974989 681675 788410 542166 566430 711416 325503 085800 972973 069702 557408 222761 133861 558915 303296 210878 800161 322847 556110 331529 710215 184996 635367 458038 439900 085644 367898 338789 929767 411504 324198 210929 958108 829542 089393 149801 678998 488401 089002 757016 554503 054877 916141 021484 522151 900104 746936 785592 549595 491661 802999 040558 072117 721141 370998 439416 918929 186135 318776 122834 766895 592103 387601 446817 231170 300387 185050 (664 digits), a[1267] = 1
                                                                                      A[1268]/B[1268] = 2013 442861 107803 180595 610727 233150 905009 171243 124740 249827 389019 650868 150594 536131 936139 912240 505662 942431 280653 769826 424789 147052 711719 058378 150731 962539 242846 431493 108442 738742 859839 418008 396947 523882 235015 471982 374509 988705 016047 738383 918862 230139 110890 024575 146161 647327 543494 028304 320078 770513 801073 941641 040207 918106 549391 608569 766961 322797 336236 446006 276415 230577 490993 631109 016880 682216 242035 704181 073128 778835 762492 986325 653721 624443 405552 193369 735669 526911 404535 780797 253432 032697 498494 350829 794599 423222 744061 479891 240906 871382 951593 791263 037215 117191 992154 134855 750087 795875 880626 624649 120711 570380 215144 649233 557199 444511 266391 038737 468818 587649 326075 (664 digits)/195693 609965 489549 675779 610383 375337 229912 605184 885739 295913 042609 947532 017834 690432 561040 220553 911497 040235 602960 620770 310654 455597 730790 440343 700081 778206 719235 103331 668457 239208 675836 022582 844409 311191 976032 724965 836197 669700 368887 952123 548176 647546 972171 764366 291144 994350 957508 144218 375395 036398 260526 505053 143799 886703 441224 033296 178335 288890 191121 339922 098608 013448 236647 085845 264245 950092 692032 559368 815083 083327 025895 976864 926217 238022 691580 681575 231706 797047 112872 910441 251969 910665 607320 003670 952102 735217 893347 093282 839170 529891 356880 959823 391982 071081 301446 688717 822563 637219 500981 025182 343137 138969 266017 115379 742442 271625 286250 388595 657179 733811 070597 (666 digits), a[1268] = 93
                                                                                      A[1269]/B[1269] = 2034 918246 154636 679666 289752 778621 591611 854370 547879 622373 630635 660547 745746 665344 040461 555466 818933 365070 119016 088476 364567 537083 631188 880918 416762 593718 122399 183150 364369 918579 348952 697462 138723 669707 295733 634843 043407 442236 968740 508233 454859 435141 004775 822063 066459 067795 907650 041072 483445 925083 693509 458196 379004 598099 986675 286264 388640 231631 957587 386673 900009 139553 775423 165785 108992 359422 384390 931796 001816 183995 045223 753291 430918 245115 856680 052986 238539 527986 143579 732299 228221 668067 795268 204069 337193 171953 070572 244905 223571 663919 663038 165295 604392 898417 987519 601451 077829 973861 734815 782275 845930 493352 701210 805295 481209 514163 886965 744007 169530 695923 939758 (664 digits)/197780 878348 611908 926461 779470 910244 956963 261726 697978 023469 643932 400875 525189 233950 168428 765766 202133 925563 107468 843487 322482 939986 676993 638869 436434 952461 696197 937710 743597 570292 856771 042159 825118 414656 934584 608902 398506 225210 870980 823247 940178 118135 413118 195511 266134 676026 745918 686384 941825 747814 586029 590854 116772 956405 998632 256057 312196 847805 494417 550800 898769 336295 792757 417374 974461 135089 327400 017407 254983 168971 393794 315654 855984 649527 015778 892505 189815 626589 202266 060242 930968 399066 696322 760687 506605 790095 809488 114767 361322 429996 103817 745415 941577 562743 104445 729275 894681 358360 871979 464599 262066 325104 584793 238214 509337 863728 673851 835412 888350 034198 255647 (666 digits), a[1269] = 1
                                                                                      A[1270]/B[1270] = 6083 279353 417076 539928 190232 790394 088232 879984 220499 494574 650290 971963 642087 866820 017063 023174 143529 672571 518685 946779 153924 221219 974096 820214 984257 149975 487644 797793 837182 575901 557744 812932 674394 863296 826482 741668 461324 873178 953528 754850 828581 100421 120441 668701 279079 782919 358794 110449 286970 620681 188092 858033 798217 114306 522742 181098 544241 786061 251411 219354 076433 509685 041839 962679 234865 401061 010817 567773 076761 146825 852940 492908 515558 114675 118912 299342 212748 582883 691695 245395 709875 368833 089030 758968 468985 767128 885205 969701 688050 199222 277670 121854 246000 914027 967193 337757 905747 743599 350258 189200 812572 557085 617566 259824 519618 472839 040322 526751 807879 979497 205591 (664 digits)/591255 366662 713367 528703 169325 195827 143839 128638 281695 342852 330474 749283 068213 158332 897897 752086 315764 891361 817898 307744 955620 335571 084777 718082 572951 683130 111630 978753 155652 379794 389378 106902 494646 140505 845201 942770 633210 120122 110849 598619 428532 883817 798408 155388 823414 346404 449345 516988 259046 532027 432585 686761 377345 799515 438488 545410 802728 984501 179956 441523 896146 686039 822161 920595 213168 220271 346832 594183 325049 421269 813484 608174 638186 537076 723138 466585 611338 050225 517405 030927 113906 708798 999965 525045 965314 315409 512323 322817 561815 389883 564516 450655 275137 196567 510338 147269 611926 353941 244939 954380 867269 789178 435603 591808 761117 999082 633954 059421 433879 802207 581891 (666 digits), a[1270] = 2
                                                                                      A[1271]/B[1271] = 8118 197599 571713 219594 479985 569015 679844 734354 768379 116948 280926 632511 387834 532164 057524 578640 962463 037641 637702 035255 518491 758303 605285 701133 401019 743693 610043 980944 201552 494480 906697 510394 813118 533004 122216 376511 504732 315415 922269 263084 283440 535562 125217 490764 345538 850715 266444 151521 770416 545764 881602 316230 177221 712406 509417 467362 932882 017693 208998 606027 976442 649238 817263 128464 343857 760483 395208 499569 078577 330820 898164 246199 946476 359790 975592 352328 451288 110869 835274 977694 938097 036900 884298 963037 806178 939081 955778 214606 911621 863141 940708 287149 850393 812445 954712 939208 983577 717461 085073 971476 658503 050438 318777 065120 000827 987002 927288 270758 977410 675421 145349 (664 digits)/789036 245011 325276 455164 948796 106072 100802 390364 979673 366321 974407 150158 593402 392283 066326 517852 517898 816924 925367 151232 278103 275557 761771 356952 009386 635591 807828 916463 899249 950087 246149 149062 319764 555162 779786 551673 031716 345332 981830 421867 368711 001953 211526 350900 089549 022431 195264 203373 200872 279842 018615 277615 494118 755921 437120 801468 114925 832306 674373 992324 794916 022335 614919 337970 187629 355360 674232 611590 580032 590241 207278 923829 494171 186603 738917 359090 801153 676814 719671 091170 044875 107865 696288 285733 471920 105505 321811 437584 923137 819879 668334 196071 216714 759310 614783 876545 506607 712302 116919 418980 129336 114283 020396 830023 270455 862811 307805 894834 322229 836405 837538 (666 digits), a[1271] = 1
                                                                                      A[1272]/B[1272] = 22319 674552 560502 979117 150203 928425 447922 348693 757257 728471 212144 236986 417756 931148 132112 180456 068455 747854 794090 017290 190907 737827 184668 222481 786296 637362 707732 759682 240287 564863 371139 833722 300631 929305 070915 494691 470789 504010 798067 281019 395462 171545 370876 650229 970157 484349 891682 413492 827803 712210 951297 490494 152660 539119 541577 115824 410005 821447 669408 431410 029318 808162 676366 219607 922580 922027 801234 566911 233915 808467 649268 985308 408510 834257 070097 003999 115324 804623 362245 200785 586069 442634 857628 685044 081343 645292 796762 398915 511293 925506 159086 696153 946788 538919 876619 216175 872903 178521 520406 132154 129578 657962 255120 390064 521274 446844 894899 068269 762701 330339 496289 (665 digits)/2 169327 856685 363920 439033 066917 407971 345443 909368 241042 075496 279289 049600 255017 942899 030550 787791 351562 525211 668632 610209 511826 886686 608320 431986 591724 954313 727288 811680 954152 279968 881676 405027 134175 250831 404775 046116 696642 810788 074510 442354 165954 887724 221460 857189 002512 391266 839873 923734 660791 091711 469816 241992 365583 311358 312730 148347 032580 649114 528704 426173 485978 730711 052000 596535 588426 930992 695297 817364 485114 601752 228042 455833 626528 910284 200973 184767 213645 403854 956747 213267 203656 924530 392542 096512 909154 526420 155946 197987 408091 029642 901184 842797 708566 715188 739905 900360 625141 778545 478778 792341 125942 017744 476397 251855 302029 724705 249565 849090 078339 475019 256967 (667 digits), a[1272] = 2
                                                                                      A[1273]/B[1273] = 164355 919467 495234 073414 531413 067993 815301 175211 069183 216246 765936 291416 312133 050200 982309 841833 441653 272625 196332 156286 854845 923093 897963 258505 905096 205232 564173 298719 883565 448524 504676 346450 917542 038139 618624 839351 800258 843491 508740 230220 051675 736379 721354 042374 136641 241164 508221 045971 565042 531241 540684 749689 245845 486243 300457 278133 802922 767826 894857 625898 181674 306377 551826 665719 801924 214678 003850 467947 715987 990094 443047 143358 806052 199590 466271 380322 258561 743233 370991 383194 040583 135344 887699 758346 375584 456131 533115 007015 490679 341685 054315 160227 477913 584885 091047 452440 093899 967111 727916 896555 565553 656174 104619 795571 649749 114917 191581 748647 316319 987797 619372 (666 digits)/15 974331 241808 872719 528396 417217 961871 518909 755942 666967 894795 929430 497360 378527 992576 280182 032391 978836 493406 605795 422698 860891 482364 020014 380858 151461 315787 898850 598230 578315 909869 417883 984252 258991 310982 613211 874489 908216 020849 503403 518346 530395 216022 761752 351223 107135 761299 074381 669515 826409 921822 307328 971562 053201 935429 626231 839897 342990 376108 375304 975539 196767 137312 978923 513719 306617 872309 541317 333141 975834 802506 803576 114664 879873 558593 145729 652461 296671 503799 416901 584040 470473 579578 444082 961323 836001 790446 413434 823496 779775 027379 976628 095655 176681 765631 794125 179069 882600 162120 468370 965368 010930 238494 355177 593010 384663 935748 054766 838464 870606 161540 636307 (668 digits), a[1273] = 7
                                                                                      A[1274]/B[1274] = 186675 594020 055737 052531 681616 996419 263223 523904 826440 944717 978080 528402 729889 981349 114422 022289 510109 020479 990422 173577 045753 660921 082631 480987 691392 842595 271906 058402 123853 013387 875816 180173 218173 967444 689540 334043 271048 347502 306807 511239 447137 907925 092230 692604 106798 725514 399903 459464 392846 243452 491982 240183 398506 025362 842034 393958 212928 589274 564266 057308 210993 114540 228192 885327 724505 136705 805085 034858 949903 798562 092316 128667 214563 033847 536368 384321 373886 547856 733236 583979 626652 577979 745328 443390 456928 101424 329877 405931 001973 267191 213401 856381 424702 123804 967666 668615 966803 145633 248323 028709 695132 314136 359740 185636 171023 561762 086480 816917 079021 318137 115661 (666 digits)/18 143659 098494 236639 967429 484135 369842 864353 665310 908009 970292 208719 546960 633545 935475 310732 820183 330399 018618 274428 032908 372718 369050 628334 812844 743186 270101 626139 409911 532468 189838 299560 389279 393166 561814 017986 920606 604858 831637 577913 960700 696350 103746 983213 208412 109648 152565 914255 593250 487201 013533 777145 213554 418785 246787 938961 988244 375571 025222 904009 401712 682745 868024 030924 110254 895044 803302 236615 150506 460949 404259 031618 570498 506402 468877 346702 837228 510316 907654 373648 797307 674130 504108 836625 057836 745156 316866 569381 021484 187866 057022 877812 938452 885248 480820 534031 079430 507741 940665 947149 757709 136872 256238 831574 844865 686693 660453 304332 687554 948945 636559 893274 (668 digits), a[1274] = 1
                                                                                      A[1275]/B[1275] = 351031 513487 550971 125946 213030 064413 078524 699115 895624 160964 744016 819819 042023 031550 096731 864122 951762 293105 186754 329863 900599 584014 980594 739493 596489 047827 836079 357122 007418 461912 380492 526624 135716 005584 308165 173395 071307 190993 815547 741459 498813 644304 813584 734978 243439 966678 908124 505435 957888 774694 032666 989872 644351 511606 142491 672092 015851 357101 459123 683206 392667 420917 780019 551047 526429 351383 808935 502806 665891 788656 535363 272026 020615 233438 002639 764643 632448 291090 104227 967173 667235 713324 633028 201736 832512 557555 862992 412946 492652 608876 267717 016608 902615 708690 058714 121056 060703 112744 976239 925265 260685 970310 464359 981207 820772 676679 278062 565564 395341 305934 735033 (666 digits)/34 117990 340303 109359 495825 901353 331714 383263 421253 574977 865088 138150 044321 012073 928051 590914 852575 309235 512024 880223 455607 233609 851414 648349 193702 894647 585889 524990 008142 110784 099707 717444 373531 652157 872796 631198 795096 513074 852487 081317 479047 226745 319769 744965 559635 216783 913864 988637 262766 313610 935356 084474 185116 471987 182217 565193 828141 718561 401331 279314 377251 879513 005337 009847 623974 201662 675611 777932 483648 436784 206765 835194 685163 386276 027470 492432 489689 806988 411453 790550 381348 144604 083687 280708 019160 581158 107312 982815 844980 967641 084402 854441 034108 061930 246452 328156 258500 390342 102786 415520 723077 147802 494733 186752 437876 071357 596201 359099 526019 819551 798100 529581 (668 digits), a[1275] = 1
                                                                                      A[1276]/B[1276] = 5 452148 296333 320303 941724 877067 962615 441094 010643 260803 359189 138332 825688 360235 454600 565399 984133 786543 417057 791737 121535 554747 421145 791552 573391 638728 560012 813096 415232 235129 942073 583204 079535 253914 051209 312017 934969 340656 212409 540023 633131 929342 572497 296001 717277 758398 225698 021771 041003 761177 863862 981987 088273 063778 699454 979409 475338 450698 945796 451121 305404 101004 428306 928486 151040 620945 407462 939117 576958 938280 628410 122765 209057 523791 535417 575964 853975 860610 914208 296656 091584 635188 277849 240751 469442 944616 464762 274763 600128 391762 400335 229157 105514 963937 754155 848378 484456 877349 836807 891921 907688 605421 868793 325139 903753 482613 711951 257419 300383 009140 907158 141156 (667 digits)/529 913514 203040 877032 404818 004435 345558 613304 984114 532677 946614 280970 211775 814654 856249 174455 608812 968931 698991 477779 867016 876866 140270 353572 718388 162900 058444 500989 532043 194229 685454 061225 992254 175534 653763 485968 847054 300981 618943 797676 146409 097529 900293 157696 602940 361406 860540 743814 534745 191365 043875 044257 990301 498592 980051 416869 410370 153992 045192 093725 060490 875440 948079 178638 469867 919984 937478 905602 405233 012712 505746 559538 847949 300542 880934 733190 182575 615143 079461 231904 517529 843191 759418 047245 345245 462527 926561 311618 696198 702482 323065 694428 450073 814202 177605 456374 956936 362873 482462 179960 603866 353909 677236 632861 413006 757057 603473 690825 577852 242222 608067 836989 (669 digits), a[1276] = 15
                                                                                      A[1277]/B[1277] = 33 063921 291487 472794 776295 475437 840105 725088 762975 460444 316099 574013 773949 203435 759153 489131 768925 671022 795451 937177 059077 229084 110889 729910 179843 428860 407904 714657 848515 418198 114353 879717 003835 659200 312840 180272 783211 115244 465451 055689 540251 074869 079288 589595 038644 793829 320867 038750 751458 524955 957871 924589 519511 027023 708336 018948 524122 720045 031880 165851 515630 998693 990759 350936 457291 252101 796161 443640 964560 295575 559117 271954 526371 163364 445943 458428 888498 796113 776339 884164 516681 478365 380420 077537 018394 500211 346129 511574 013716 843227 010887 642659 649698 686242 233625 148985 027797 324802 133592 327771 371396 893217 183070 415199 403728 716454 948386 822578 367862 450186 748883 581969 (668 digits)/3213 599075 558548 371553 924733 927965 405066 063093 325940 771045 544773 823971 314975 900003 065546 637648 505453 122825 705973 746902 657708 494806 693036 769785 504031 872047 936556 530927 200401 276162 212432 084800 327056 705365 795377 547011 877422 318964 566149 867374 357501 811924 721528 691145 177277 385225 077109 451524 471237 461801 198606 350022 126925 463545 062526 066410 290362 642513 672483 841664 740197 132158 693812 081678 443181 721572 300485 211546 915046 513059 241245 192427 772859 189533 313078 891573 585143 497846 888221 181977 486527 203754 640195 564180 090633 356325 666680 852528 022173 182535 022797 021011 734550 947143 312085 066406 000118 567582 997559 495284 346275 271260 558152 983920 915916 613703 217043 504052 993133 272887 446507 551515 (670 digits), a[1277] = 6
                                                                                      A[1278]/B[1278] = 38 516069 587820 793098 718020 352505 802721 166182 773618 721247 675288 712346 599637 563671 213754 054531 753059 457566 212509 728914 180612 783831 532035 521462 753235 067588 967917 527754 263747 653328 056427 462921 083370 913114 364049 492290 718180 455900 677860 595713 173383 004211 651785 885596 755922 552227 546565 060521 792462 286133 821734 906576 607784 090802 407790 998357 999461 170743 977676 616972 821035 099698 419066 279422 608331 873047 203624 382758 541519 233856 187527 394719 735428 687155 981361 034393 742474 656724 690548 180820 608266 113553 658269 318288 487837 444827 810891 786337 613845 234989 411222 871816 755213 650179 987780 997363 512254 202151 970400 219693 279085 498639 051863 740339 307482 199068 660338 079997 668245 459327 656041 723125 (668 digits)/3743 512589 761589 248586 329551 932400 750624 676398 310055 303723 491388 104941 526751 714657 921795 812104 114266 091757 404965 224682 524725 371672 833307 123358 222420 034947 995001 031916 732444 470391 897886 146026 319310 880900 449141 032980 724476 619946 185093 665050 503910 909454 621821 848841 780217 746631 937650 195339 005982 653166 242481 394280 117226 962138 042577 483279 700732 796505 717675 935389 800688 007599 641891 260316 913049 641557 237964 117149 320279 525771 746991 751966 620808 490076 194013 624763 767719 112989 967682 413882 004057 046946 399613 611425 435878 818853 593242 164146 718371 885017 345862 715440 184624 761345 489690 522780 957054 930456 480021 675244 950141 625170 235389 616782 328923 370760 820517 194878 570985 515110 054575 388504 (670 digits), a[1278] = 1
                                                                                      A[1279]/B[1279] = 957 449591 399186 507164 008783 935577 105413 713475 329824 770388 523028 670332 165250 731544 889250 797893 842352 652611 895685 431117 393784 041040 879742 245016 257485 050995 637925 380760 178459 098071 468612 989823 004737 573945 050027 995250 019542 056860 734105 352805 701443 175948 722149 843917 180786 047290 438428 491273 770553 392167 679509 682428 106329 206281 495319 979540 511190 817900 496118 973199 220473 391456 048350 057079 057256 205234 683146 629845 961021 908124 059774 745228 176659 655107 998608 283878 707890 557506 349496 223859 115068 203653 178883 716460 726493 176078 807532 383676 746002 482972 880236 566261 774826 290561 940369 085709 321898 176449 423197 600410 069448 860554 427800 183342 783301 494102 796500 742522 405753 474050 493884 936969 (669 digits)/93057 901229 836690 337625 833980 305583 420058 296652 767268 060409 338088 342567 957017 051793 188646 128147 247839 325003 425139 139283 251117 414954 692407 730382 842112 710799 816581 296928 779068 565567 761699 589431 990517 846976 574762 338549 264861 197673 008397 828586 451363 638835 645253 063347 902503 304391 580714 139660 614821 137791 018159 812744 940372 554858 084385 665123 107949 758650 896706 291019 956709 314550 099202 329284 356373 118946 011624 023130 601755 131581 169047 239626 672262 951361 969405 885904 010402 209606 112599 115145 583896 330468 230922 238390 551725 008811 904492 792049 263098 422951 323502 191576 165545 219435 064657 613148 969436 898538 518079 701163 149674 275346 207503 786696 810077 511962 909456 181138 696785 635528 756316 875611 (671 digits), a[1279] = 24
                                                                                      A[1280]/B[1280] = 1953 415252 386193 807426 735588 223660 013548 593133 433268 262024 721346 053010 930139 026760 992255 650319 437764 762790 003880 591148 968180 865913 291520 011495 268205 169580 243768 289274 620665 849470 993653 442567 092846 061004 464105 482790 757264 569622 146071 301324 576269 356109 096085 573431 117494 646808 423422 043069 333569 070469 180754 271432 820442 503365 398430 957439 021842 806544 969914 563371 261981 882610 515766 393580 722844 283516 569917 642450 463563 050104 307076 885176 088747 997371 978577 602151 158255 771737 389540 628538 838402 520860 016036 751209 940823 796985 425956 553691 105850 200935 171696 004340 304866 231303 868519 168782 156050 555050 816795 420513 417983 219747 907464 107024 874085 187274 253339 565042 479752 407428 643811 597063 (670 digits)/189859 315049 434969 923837 997512 543567 590741 269703 844591 424542 167564 790077 440785 818244 299088 068398 609944 741764 255243 503249 026960 201582 218122 584123 906645 456547 628163 625774 290581 601527 421285 324890 300346 574853 598665 710079 254199 015292 201889 322223 406638 187125 912327 975537 585224 355415 099078 474660 235624 928748 278801 019769 997972 071854 211348 813525 916632 313807 511088 517429 714106 636699 840295 918885 625795 879449 261212 163410 523789 788934 085086 231219 965334 392800 132825 396571 788523 532202 192880 644173 171849 707882 861458 088206 539328 836477 402227 748245 244568 730919 992867 098592 515715 200215 619005 749078 895928 727533 516181 077571 249490 175862 650397 190175 949078 394686 639429 557155 964556 786167 567209 139726 (672 digits), a[1280] = 2
                                                                                      A[1281]/B[1281] = 8771 110600 943961 736870 951136 830217 159608 086009 062897 818487 408412 882375 885806 838588 858273 399171 593411 703771 911207 795713 266507 504694 045822 290997 330305 729316 612998 537858 661122 495955 443226 760091 376121 817962 906449 926413 048600 335349 318390 558104 006520 600385 106492 137641 650764 634524 132116 663551 104829 674044 402526 768159 388099 219743 089043 809296 598562 044080 375777 226684 268400 921898 111415 631401 948633 339300 962817 199647 815274 108541 288082 285932 531651 644595 912918 692483 340913 644455 907658 738014 468678 287093 243030 721300 489788 364020 511358 598441 169403 286713 567020 583622 994291 215777 414445 760837 946100 396652 690379 282463 741381 739546 057656 611442 279642 243199 809859 002692 324763 103765 069131 325221 (670 digits)/852495 161427 576570 032977 824030 479853 783023 375468 145633 758578 008347 502877 720160 324770 384998 401741 687618 292060 446113 152279 358958 221283 564898 066878 468694 536990 329235 800025 941394 971677 446840 888993 191904 146390 969425 178866 281657 258841 815955 117480 077916 387339 294564 965498 243400 726051 977028 038301 557320 852784 133363 891824 932260 842274 929780 919226 774479 013880 941060 360738 813135 861349 460386 004826 859556 636743 056472 676772 696914 287317 509392 164506 533600 522562 500707 472191 164496 338414 884121 691838 271295 161999 676754 591216 709040 354721 513403 785030 241373 346631 294970 585946 228406 020297 540680 609464 553151 808672 582804 011448 147634 978796 809092 547400 606391 090709 467174 409762 555012 780199 025153 434515 (672 digits), a[1281] = 4
                                                                                      A[1282]/B[1282] = 80893 410660 881849 439265 295819 695614 450021 367214 999348 628411 397061 994393 902400 574060 716716 242863 778470 096737 204750 752568 366748 408159 703920 630471 240956 733429 760755 130002 570768 313069 982694 283389 477942 422670 622154 820508 194667 587766 011586 324260 634954 759575 054514 812205 974376 357525 612472 015029 277036 136868 803495 184867 313335 481053 199825 241108 408901 203268 351909 603529 677590 179693 518507 076198 260544 337225 235272 439280 801030 026975 899817 458568 873612 798735 194845 834501 226478 571840 558469 270669 056507 104699 203313 242914 348919 073170 028183 939661 630479 781357 274881 256947 253487 173300 598531 016323 670954 124925 030208 962687 090418 875662 426373 610005 390865 376072 542070 589273 402620 341314 265993 524052 (671 digits)/7 862315 767897 624100 220638 413786 862251 637951 648917 155295 251744 242692 315976 922228 741177 764073 684073 798509 370308 270261 873763 257584 193134 302205 186030 124896 289460 591285 826007 763136 346624 442853 325829 027483 892372 323492 319875 789114 344868 545485 379544 107885 673179 563412 665021 775830 889882 892330 819374 251512 603805 479076 046194 388319 652328 579377 086566 886943 438735 980631 764079 032329 388844 983769 962327 361805 610136 769466 254364 796018 374791 669615 711778 767739 095862 639192 646292 268990 577936 149975 870717 613506 165879 952249 409156 920692 028971 022861 813517 416928 850601 647602 372108 571369 382893 485131 234259 874295 005586 761417 180604 578204 985033 932230 116781 406598 211071 843999 245018 959671 807958 793590 050361 (673 digits), a[1282] = 9
                                                                                      A[1283]/B[1283] = 89664 521261 825811 176136 246956 525831 609629 453224 062246 446898 805474 876769 788207 412649 574989 642035 371881 800509 115958 548281 633255 912853 749742 921468 571262 462746 373753 667861 231890 809025 425921 043480 854064 240633 528604 746921 243267 923115 329976 882364 641475 359960 161006 949847 625140 992049 744588 678580 381865 810913 206021 953026 701434 700796 288869 050405 007463 247348 727686 830213 945991 101591 629922 707600 209177 676526 198089 638928 616304 135517 187899 744501 405264 443331 107764 526984 567392 216296 466128 008683 525185 391792 446343 964214 838707 437190 539542 538102 799883 068070 841901 840570 247778 389078 012976 777161 617054 521577 720588 245150 831800 615208 484030 221447 670507 619272 351929 591965 727383 445079 335124 849273 (671 digits)/8 714810 929325 200670 253616 237817 342105 420975 024385 300929 010322 251039 818854 642389 065948 149072 085815 486127 662368 716375 026042 616542 414417 867103 252908 593590 826450 920521 626033 704531 318301 889694 214822 219388 038763 292917 498742 070771 603710 361440 497024 185802 060518 857977 630520 019231 615934 869358 857675 808833 456589 612439 938019 320580 494603 509158 005793 661422 452616 921692 124817 845465 250194 444155 967154 221362 246879 825938 931137 492932 662109 179007 876285 301339 618425 139900 118483 433486 916351 034097 562555 884801 327879 629004 000373 629732 383692 536265 598547 658302 197232 942572 958054 799775 403191 025811 843724 427446 814259 344221 192052 725839 963830 741322 664182 012989 301781 311173 654781 514684 588157 818743 484876 (673 digits), a[1283] = 1
                                                                                      A[1284]/B[1284] = 618880 538231 836716 496082 777558 850604 107798 086559 372827 309804 229911 255012 631645 049958 166654 095076 009760 899791 900502 042258 166283 885282 202378 159282 668531 509908 003277 137169 962113 167222 538220 544274 602327 866471 793783 302035 654275 126457 991447 618448 483806 919336 020556 511291 725222 309824 080004 086511 568231 002348 039626 903027 521943 685830 933039 543538 453680 687360 718030 584813 353536 789243 298043 321799 515610 396382 423810 272852 498854 840079 027215 925577 305199 458721 841432 996408 630831 869619 355237 322770 207619 455453 881377 028203 381163 696313 265439 168278 429778 189782 326292 300368 740157 507768 676391 679293 373281 254391 353738 433592 081222 566913 330554 938691 413911 091706 653648 141067 766921 011790 276742 619690 (672 digits)/60 151181 343848 828121 742335 840690 914884 163801 795228 960869 313677 748931 229104 776563 136866 658506 198966 715275 344520 568512 030018 956838 679641 504824 703481 686441 248166 114415 582209 990324 256435 781018 614762 343812 124952 080997 312328 213743 967130 714128 361689 222698 036292 711278 448141 891220 585492 108483 965429 104513 343343 153715 674310 311802 619949 634325 121328 855478 154437 510784 512986 105120 890011 648705 765252 689979 091415 725099 841189 753614 347446 743662 969490 575776 806413 478593 357192 869912 076042 354561 246052 922314 133157 726273 411398 699086 331126 240455 404803 366742 033999 303040 120437 370021 802039 640002 296606 438975 891142 826744 332920 933244 768018 380166 101873 484534 021759 711041 173708 047779 336905 706050 959617 (674 digits), a[1284] = 6
                                                                                      A[1285]/B[1285] = 1 327425 597725 499244 168301 802074 227039 825225 626342 807901 066507 265297 386795 051497 512565 908297 832187 391403 600092 916962 632797 965823 683418 154499 240033 908325 482562 380307 942201 156117 143470 502362 132030 058719 973577 116171 350992 551818 176031 312872 119261 609089 198632 202119 972431 075585 611697 904596 851603 518327 815609 285275 759081 745322 072458 154948 137481 914824 622070 163747 999840 653064 680078 226009 351199 240398 469291 045710 184633 614013 815675 242331 595656 015663 360774 790630 519801 829055 955535 176602 654223 940424 302700 209098 020621 601034 829817 070420 874659 659439 447635 494486 441307 728093 404615 365760 135748 363617 030360 428065 112334 994245 749035 145140 098830 498329 802685 659225 874101 261225 468659 888610 088653 (673 digits)/129 017173 617022 856913 738287 919199 171873 748578 614843 222667 637677 748902 277064 195515 339681 466084 483748 916678 351409 853399 086080 530219 773700 876752 659871 966473 322783 149352 790453 685179 831173 451731 444346 907012 288667 454912 123398 498259 537971 789697 220402 631198 133104 280534 526803 801672 786919 086326 788534 017860 143275 919871 286639 944185 734502 777808 248451 372378 761491 943261 150790 055707 030217 741567 497659 601320 429711 276138 613517 000161 357002 666333 815266 452893 231252 097086 832869 173311 068435 743220 054661 729429 594195 081550 823171 027905 045945 017176 408154 391786 265231 548653 198929 539819 007270 305816 436937 305398 596544 997709 857894 592329 499867 501654 867928 982057 345300 733256 002197 610243 261969 230845 404110 (675 digits), a[1285] = 2
                                                                                      A[1286]/B[1286] = 1 946306 135957 335960 664384 579633 077643 933023 712902 180728 376311 495208 641807 683142 562524 074951 927263 401164 499884 817464 675056 132107 568700 356877 399316 576856 992470 383585 079371 118230 310693 040582 676304 661047 840048 909954 653028 206093 302489 304319 737710 092896 117968 222676 483722 800807 921521 984600 938115 086558 817957 324902 662109 267265 758289 087987 681020 368505 309430 881778 584654 006601 469321 524052 672998 756008 865673 469520 457486 112868 655754 269547 521233 320862 819496 632063 516210 459887 825154 531839 976994 148043 758154 090475 048824 982198 526130 335860 042938 089217 637417 820778 741676 468250 912384 042151 815041 736898 284751 781803 545927 075468 315948 475695 037521 912240 894392 312874 015169 028146 480450 165352 708343 (673 digits)/189 168354 960871 685035 480623 759890 086757 912380 410072 183536 951355 497833 506168 972078 476548 124590 682715 631953 695930 421911 116099 487058 453342 381577 363353 652914 570949 263768 372663 675504 087609 232750 059109 250824 413619 535909 435726 712003 505102 503825 582091 853896 169396 991812 974945 692893 372411 194810 753963 122373 486619 073586 960950 255988 354452 412133 369780 227856 915929 454045 663776 160827 920229 390273 262912 291299 521127 001238 454706 753775 704449 409996 784757 028670 037665 575680 190062 043223 144478 097781 300714 651743 727352 807824 234569 726991 377071 257631 812957 758528 299230 851693 319366 909840 809309 945818 733543 744374 487687 824454 190815 525574 267885 881820 969802 466591 367060 444297 175905 658022 598874 936896 363727 (675 digits), a[1286] = 1
                                                                                      A[1287]/B[1287] = 5 220037 869640 171165 497070 961340 382327 691273 052147 169357 819130 255714 670410 417782 637614 058201 686714 193732 599862 551891 982910 230038 820818 868254 038667 062039 467503 147478 100943 392577 764856 583527 484639 380815 653674 936080 657048 964004 781009 921511 594681 794881 434568 647472 939876 677201 454741 873798 727833 691445 451523 935081 083300 279853 589036 330923 499522 651835 240931 927305 169148 666267 618721 274114 697196 752416 200637 984751 099605 839751 127183 781426 638122 657388 999768 054757 552222 748831 605844 240282 608212 236511 819008 390048 118271 565431 882077 742140 960535 837874 722471 136043 924660 664595 229383 450063 765831 837413 599863 991672 204189 145182 380932 096530 173874 322811 591470 284973 904439 317518 429560 219315 505339 (673 digits)/507 353883 538766 226984 699535 438979 345389 573339 434987 589741 540388 744569 289402 139672 292777 715265 849180 180585 743270 697221 318279 504336 680385 639907 386579 272302 464681 676889 535781 036188 006391 917231 562565 408661 115906 526730 994851 922266 548176 797348 384586 338990 471898 264160 476695 187459 531741 475948 296460 262607 116514 067045 208540 456162 443407 602074 988011 828092 593350 851352 478342 377362 870676 522114 023484 183919 471965 278615 522930 507712 765901 486327 384780 510233 306583 248447 212993 259757 357391 938782 656091 032917 048900 697199 292310 481887 800087 532440 034069 908842 863693 252039 837663 359500 625890 197453 904024 794147 571920 646618 239525 643478 035639 265296 807533 915240 079421 621850 354008 926288 459719 104638 131564 (675 digits), a[1287] = 2
                                                                                      A[1288]/B[1288] = 7 166344 005597 507126 161455 540973 459971 624296 765049 350086 195441 750923 312218 100925 200138 133153 613977 594897 099747 369356 657966 362146 389519 225131 437983 638896 459973 531063 180314 510808 075549 624110 160944 041863 493723 846035 310077 170098 083499 225831 332391 887777 552536 870149 423599 478009 376263 858399 665948 778004 269481 259983 745409 547119 347325 418911 180543 020340 550362 809083 753802 672869 088042 798167 370195 508425 066311 454271 557091 952619 782938 050974 159355 978251 819264 686821 068433 208719 430998 772122 585206 384555 577162 480523 167096 547630 408208 078001 003473 927092 359888 956822 666337 132846 141767 492215 580873 574311 884615 773475 750116 220650 696880 572225 211396 235052 485862 597847 919608 345664 910010 384668 213682 (673 digits)/696 522238 499637 912020 180159 198869 432147 485719 845059 773278 491744 242402 795571 111750 769325 839856 531895 812539 439201 119132 434378 991395 133728 021484 749932 925217 035630 940657 908444 711692 094001 149981 621674 659485 529526 062640 430578 634270 053279 301173 966678 192886 641295 255973 451640 880352 904152 670759 050423 384980 603133 140632 169490 712150 797860 014208 357792 055949 509280 305398 142118 538190 790905 912387 286396 475218 993092 279853 977637 261488 470350 896324 169537 538903 344248 824127 403055 302980 501870 036563 956805 684660 776253 505023 526880 208879 177158 790071 847027 667371 162924 103733 157030 269341 435200 143272 637568 538522 059608 471072 430341 169052 303525 147117 777336 381831 446482 066147 529914 584311 058594 041534 495291 (675 digits), a[1288] = 1
                                                                                      A[1289]/B[1289] = 26 719069 886432 692543 981437 584260 762242 564163 347295 219616 405455 508484 607064 720558 238028 457662 528646 978423 899104 659961 956809 316477 989376 543648 352617 978728 847423 740667 641886 925001 991505 455857 967471 506406 134846 474186 587280 474299 031507 599005 591857 458214 092179 257921 210675 111229 583533 448997 725680 025458 259967 715032 319528 921211 631012 587657 041151 712856 892020 354556 430556 684874 882849 668616 807783 277691 399572 347565 770881 697610 475997 934349 116190 592144 457562 115220 757522 374989 898840 556650 363831 390178 550495 831617 619561 208323 106701 976143 970957 619151 802138 006511 923672 063133 654685 926710 508452 560349 253711 312099 454537 807134 471573 813205 808063 027969 049058 078517 663264 354513 159591 373320 146385 (674 digits)/2596 920599 037679 963045 240013 035587 641832 030498 970166 909577 015621 471777 676115 474924 600755 234835 444867 618204 060874 054618 621416 478522 081569 704361 636378 047953 571574 498863 261115 171264 288395 367176 427589 387117 704484 714652 286587 825076 708014 700870 284620 917650 395784 032080 831617 828518 244199 488225 447730 417548 925913 488941 717012 592614 836987 644700 061387 995941 121191 767546 904697 991935 243394 259275 882673 609576 451242 118177 455842 292178 176954 175299 893393 126943 339329 720829 422159 168698 863002 048474 526508 086899 377661 212269 872951 108525 331563 902655 575152 910956 352465 563239 308754 167524 931490 627271 816730 409713 750746 059835 530549 150634 946214 706650 139543 060734 418867 820292 943752 679221 635501 229241 617437 (676 digits), a[1289] = 3
                                                                                      A[1290]/B[1290] = 808 738440 598578 283445 604583 068796 327248 549197 183905 938578 359107 005461 524159 717672 340991 863029 473386 947614 072887 168215 362245 856486 070815 534582 016523 000761 882685 751092 436922 260867 820713 299849 185089 234047 539118 071632 928491 399069 028727 195999 088115 634200 317914 607785 743852 814896 882267 328331 436349 541752 068512 710953 331277 183468 277703 048622 415094 406047 310973 445776 670503 219115 573532 856671 603693 839167 053481 881244 683542 880934 062876 081447 645073 742585 546128 143443 794104 458416 396215 471633 500148 089912 092037 429051 753932 797323 609267 362320 132202 501646 424029 152180 376499 026855 782345 293530 834450 384789 495955 136459 386250 434684 844094 968399 453287 074123 957604 953377 817538 981059 697751 584272 605232 (675 digits)/78604 140209 630036 803377 380550 266498 687108 400688 950067 060588 960388 395733 079035 359488 791982 884919 877924 358661 265422 757691 076873 347057 580819 152333 841274 363824 182865 906555 741899 849620 745862 165274 449356 273016 664067 502209 028213 386571 293720 327282 505305 722398 514816 218398 400175 735900 230137 317522 482335 911448 380537 808883 679868 490595 907489 355210 199431 934183 145033 331805 283058 296248 092733 690663 766604 762512 530355 825177 652906 026833 778976 155320 971331 347203 524140 449010 067830 363946 391931 490799 752048 291642 106089 873119 715413 464639 124075 869739 101614 996061 736891 000912 419655 295089 379918 961427 139480 829934 581990 266138 346815 688100 689966 346621 963628 203864 012516 674935 842494 960960 123630 918783 018401 (677 digits), a[1290] = 30
                                                                                      A[1291]/B[1291] = 2452 934391 682167 542880 795186 790649 743988 211754 899013 035351 482776 524869 179543 873575 261004 046750 948807 821266 117766 164608 043546 885936 201823 147394 402186 981014 495480 993944 952653 707605 453645 355405 522739 208548 752200 689085 372754 671506 117689 187002 856204 360815 045923 081278 442233 555920 230335 433992 034728 650714 465505 847892 313360 471616 464121 733524 286434 930998 824940 691886 442066 342221 603448 238631 618864 795192 560017 991299 821510 340412 664626 178692 051411 819901 095946 545552 139835 750239 087486 971550 864275 659914 826608 118772 881359 600293 934504 063104 367565 124091 074225 463053 053169 143701 001721 807303 011803 714717 741576 721477 613289 111189 003858 718404 167924 250340 921872 938651 115881 297692 252846 126137 962081 (676 digits)/238409 341227 927790 373177 381663 835083 703157 232565 820368 091343 896786 658976 913221 553390 976703 889595 078640 694187 857142 327691 852036 519694 824027 161363 160201 139426 120172 218530 486814 720126 525981 862999 775658 206167 696687 221279 371227 984790 589175 682717 800538 084845 940232 687276 032145 036218 934611 440792 894738 151894 067526 915592 756618 064402 559455 710330 659683 798490 556291 762962 753872 880679 521595 331267 182487 897114 042309 593710 414560 372679 513882 641262 807387 168553 911751 067859 625650 260538 038796 520873 782652 961825 695930 831629 019191 502442 703791 511872 879997 899141 563138 565976 567720 052793 071247 511553 235172 899517 496716 858250 570996 214937 016113 746516 030427 672326 456417 845100 471237 562102 006393 985590 672640 (678 digits), a[1291] = 3
                                                                                      A[1292]/B[1292] = 5714 607223 962913 369207 194956 650095 815224 972706 981932 009281 324660 055199 883247 464822 862999 956531 371002 590146 308419 497431 449339 628358 474461 829370 820896 962790 873647 738982 342229 676078 728004 010660 230567 651145 043519 449803 674000 742081 264105 570004 800524 355830 409760 770342 628319 926737 342938 196315 505806 843180 999524 406737 957998 126701 205946 515670 987964 268044 960854 829549 554635 903558 780429 333934 841423 429552 173517 863844 326563 561759 392128 438831 747897 382387 738021 234548 073775 958894 571189 414735 228699 409741 745253 666597 516651 997911 478275 488528 867332 749828 572480 078286 482837 314257 785788 908136 858057 814224 979108 579414 612828 657062 851812 405207 789135 574805 801350 830680 049301 576444 203443 836548 529394 (676 digits)/555422 822665 485617 549732 143877 936666 093422 865820 590803 243276 753961 713686 905478 466270 745390 664110 035205 747036 979707 413074 780946 386447 228873 475060 161676 642676 423210 343616 715529 289873 797825 891274 000672 685352 057441 944767 770669 356152 472071 692718 106381 892090 395281 592950 464465 808338 099360 199108 271812 215236 515591 640069 193104 619401 026400 775871 518799 531164 257616 857730 790804 057607 135924 353198 131580 556740 614975 012598 482026 772192 806741 437846 586105 684311 347642 584729 319130 885022 469524 532547 317354 215293 497951 536377 753796 469524 531658 893484 861610 794344 863168 132865 555095 400675 522413 984533 609826 628969 575423 982639 488808 117974 722193 839654 024483 548516 925352 365136 784970 085164 136418 889964 363681 (678 digits), a[1292] = 2
                                                                                      A[1293]/B[1293] = 13882 148839 607994 281295 185100 090841 374438 157168 862877 053914 132096 635268 946038 803220 987003 959813 690813 001558 734605 159470 942226 142653 150746 806136 043980 906596 242776 471909 637113 059762 909653 376725 983874 510838 839239 588692 720756 155668 645900 327012 457253 072475 865444 621963 698873 409394 916211 826623 046342 337076 464554 661368 229356 725018 876014 764866 262363 467088 746650 350985 551338 149339 164306 906501 301711 654296 907053 718988 474637 463931 448883 056355 547206 584676 571989 014648 287387 668028 229865 801021 321674 479398 317115 451967 914663 596116 891055 040162 102230 623748 219185 619626 018843 772216 573299 623576 727919 343167 699793 880306 838946 425314 707483 528819 746195 399952 524574 600011 214484 450580 659733 799235 020869 (677 digits)/1 349254 986558 899025 472641 669419 708415 890002 964207 001974 577897 404710 086350 724178 485932 467485 217815 149052 188261 816557 153841 413929 292589 281774 111483 483554 424778 966592 905763 917873 299874 121633 645547 777003 576871 811571 110814 912566 697095 533319 068154 013301 869026 730795 873176 961076 652895 133331 839009 438362 582367 098710 195731 142827 303204 612257 262073 697282 860819 071525 478424 335480 995893 793444 037663 445649 010595 272259 618907 378613 917065 127365 516955 979598 537176 607036 237318 263912 030582 977845 585968 417361 392412 691833 904384 526784 441491 767109 298842 603219 487831 289474 831707 677910 854144 116075 480620 454826 157456 647564 823529 548612 450886 460501 425824 079394 769360 307122 575374 041177 732430 279231 765519 400002 (679 digits), a[1293] = 2
                                                                                      A[1294]/B[1294] = 19596 756063 570907 650502 380056 740937 189663 129875 844809 063195 456756 690468 829286 268043 850003 916345 061815 591705 043024 656902 391565 771011 625208 635506 864877 869387 116424 210891 979342 735841 637657 387386 214442 161983 882759 038496 394756 897749 910005 897017 257777 428306 275205 392306 327193 336132 259150 022938 552149 180257 464079 068106 187354 851720 081961 280537 250327 735133 707505 180535 105974 052897 944736 240436 143135 083849 080571 582832 801201 025690 841011 495187 295103 967064 310010 249196 361163 626922 801055 215756 550373 889140 062369 118565 431315 594028 369330 528690 969563 373576 791665 697912 501681 086474 359088 531713 585977 157392 678902 459721 451775 082377 559295 934027 535330 974758 325925 430691 263786 027024 863177 635783 550263 (677 digits)/1 904677 809224 384643 022373 813297 645081 983425 830027 592777 821174 158671 800037 629656 952203 212875 881925 184257 935298 796264 566916 194875 679036 510647 586543 645231 067455 389803 249380 633402 589747 919459 536821 777676 262223 869013 055582 683236 053248 005390 760872 119683 761117 126077 466127 425542 461233 232692 038117 710174 797603 614301 835800 335931 922605 638658 037945 216082 391983 329142 336155 126285 053500 929368 390861 577229 567335 887234 631505 860640 689257 934106 954802 565704 221487 954678 822047 583042 915605 447370 118515 734715 607706 189785 440762 280580 911016 298768 192327 464830 282176 152642 964573 233006 254819 638489 465154 064652 786426 222988 806169 037420 568861 182695 265478 103878 317877 232474 940510 826147 817594 415650 655483 763683 (679 digits), a[1294] = 1
                                                                                      A[1295]/B[1295] = 111865 929157 462532 533807 085383 795527 322753 806548 086922 369891 415880 087613 092470 143440 237023 541538 999890 960083 949728 443982 900054 997711 276789 983670 368370 253531 824897 526369 533826 738971 097940 313657 056085 320758 253034 781174 694540 644418 195929 812098 746140 214007 241471 583495 334840 090056 211961 941315 807088 238363 784950 001899 166130 983619 285821 167552 514002 142757 284176 253661 081208 413828 887988 108682 017387 073542 309911 633152 480642 592385 653940 532292 022726 419998 122040 260630 093205 802642 235141 879804 073543 925098 628961 044795 071241 566258 737707 683616 950047 491632 177514 109188 527249 204588 368742 282144 657805 130131 094306 178914 097821 837202 503963 198957 422850 273744 154201 753467 533414 585704 975621 978152 772184 (678 digits)/10 872644 032680 822240 584510 735907 933825 807132 114344 965863 683768 198069 086538 872463 246948 531864 627441 070341 864755 797879 988422 388307 687771 835012 044201 709709 762055 915609 152667 084886 248613 718931 329656 665384 887991 156636 388728 328746 963335 560272 872514 611720 674612 361183 203814 088788 959061 296792 029597 989236 570385 170219 374732 822486 916232 805547 451799 777694 820735 717237 159199 966906 263398 440285 991971 331796 847274 708432 776436 681817 363354 797900 290968 808119 644616 380430 347556 179126 608610 214696 178547 090939 430943 640761 108195 929688 996573 260950 260479 927370 898712 052689 654573 842942 128242 308522 806390 778090 089587 762508 854374 735715 295192 373977 753214 598786 358746 469497 277928 171916 820402 357485 042938 218417 (680 digits), a[1295] = 5
                                                                                      A[1296]/B[1296] = 243328 614378 495972 718116 550824 331991 835170 742972 018653 802978 288516 865695 014226 554924 324050 999423 061597 511872 942481 544868 191675 766434 178788 602847 601618 376450 766219 263631 046996 213783 833538 014700 326612 803500 388828 600845 783838 186586 301865 521214 750057 856320 758148 559296 996873 516244 683073 905570 166325 656985 033979 071904 519616 818958 653603 615642 278332 020648 275857 687857 268390 880555 720712 457800 177909 230933 700394 849137 762486 210462 148892 559771 340556 807060 554090 770456 547575 232207 271338 975364 697461 739337 320291 208155 573798 726545 844745 895924 869658 356841 146693 916289 556179 495651 096573 096002 901587 417654 867514 817549 647418 756782 567222 331942 381031 522246 634328 937626 330615 198434 814421 592089 094631 (678 digits)/23 649965 874586 029124 191395 285113 512733 597690 058717 524505 188710 554809 973115 374583 446100 276605 136807 324941 664810 392024 543760 971491 054580 180671 674947 064650 591567 221021 554714 803175 086975 357322 196135 108446 038206 182285 833039 340729 979919 125936 505901 343125 110341 848443 873755 603120 379355 826276 097313 688647 938373 954740 585265 980905 755071 249752 941544 771472 033454 763616 654555 060097 580297 809940 374804 240823 261885 304100 184379 224275 415967 529907 536740 181943 510720 715539 517159 941296 132825 876762 475609 916594 469593 471307 657154 139958 904162 820668 713287 319572 079600 258022 273720 918890 511304 255535 077935 620832 965601 748006 514918 508851 159245 930650 771907 301451 035370 171469 496367 169981 458399 130620 741360 200517 (680 digits), a[1296] = 2
                                                                                      A[1297]/B[1297] = 598523 157914 454477 970040 187032 459510 993095 292492 124229 975847 992913 819003 120923 253288 885125 540385 123085 983829 834691 533719 283406 530579 634367 189365 571607 006433 357336 053631 627819 166538 765016 343057 709310 927759 030691 982866 262217 017590 799660 854528 246255 926648 757768 702089 328587 122545 578109 752456 139739 552333 852908 145708 205364 621536 593028 398837 070666 184053 835891 629375 617990 174940 329413 024282 373205 535409 710701 331428 005615 013309 951725 651834 703840 034119 230221 801543 188356 267056 777819 830533 468467 403773 269543 461106 218839 019350 427199 475466 689364 205314 470901 941767 639608 195890 561888 474150 460979 965440 829335 814013 392659 350767 638407 862842 184913 318237 422859 628720 194644 982574 604465 162330 961446 (678 digits)/58 172575 781852 880488 967301 306134 959293 002512 231780 014874 061189 307689 032769 621630 139149 085074 901055 720225 194376 581929 075944 331289 796932 196355 394095 839010 945190 357652 262096 691236 422564 433575 721926 882276 964403 521208 054807 010206 923173 812145 884317 297970 895296 058070 951325 295029 717772 949344 224225 366532 447133 079700 545264 784298 426375 305053 334889 320638 887645 244470 468310 087101 423994 060166 741579 813443 371045 316633 145195 130368 195289 857715 364449 172006 666057 811509 381876 061718 874261 968221 129766 924128 370130 583376 422504 209606 804898 902287 687054 566515 057912 568734 202015 680723 150850 819592 962262 019756 020791 258521 884211 753417 613684 235279 297029 201688 429486 812436 270662 511879 737200 618726 525658 619451 (680 digits), a[1297] = 2
                                                                                      A[1298]/B[1298] = 841851 772292 950450 688156 737856 791502 828266 035464 142883 778826 281430 684698 135149 808213 209176 539808 184683 495702 777173 078587 475082 297013 813155 792213 173225 382884 123555 317262 674815 380322 598554 357758 035923 731259 419520 583712 046055 204177 101526 375742 996313 782969 515917 261386 325460 638790 261183 658026 306065 209318 886887 217612 724981 440495 246632 014479 348998 204702 111749 317232 886381 055496 050125 482082 551114 766343 411096 180565 768101 223772 100618 211606 044396 841179 784312 571999 735931 499264 049158 805898 165929 143110 589834 669261 792637 745896 271945 371391 559022 562155 617595 858057 195787 691541 658461 570153 362567 383095 696850 631563 040078 107550 205630 194784 565944 840484 057188 566346 525260 181009 418886 754420 056077 (678 digits)/81 822541 656438 909613 158696 591248 472026 600202 290497 539379 249899 862499 005884 996213 585249 361680 037863 045166 859186 973953 619705 302780 851512 377027 069042 903661 536757 578673 816811 494411 509539 790897 918061 990723 002609 703493 887846 350936 903092 938082 390218 641096 005637 906514 825080 898150 097128 775620 321539 055180 385507 034441 130530 765204 181446 554806 276434 092110 921100 008087 122865 147199 004291 870107 116384 054266 632930 620733 329574 354643 611257 387622 901189 353950 176778 527048 899036 003015 007087 844983 605376 840722 839724 054684 079658 349565 709061 722956 400341 886087 137512 826756 475736 599613 662155 075128 040197 640588 986393 006528 399130 262268 772930 165930 068936 503139 464856 983905 767029 681861 195599 749347 267018 819968 (680 digits), a[1298] = 1
                                                                                      A[1299]/B[1299] = 4 807782 019379 206731 410823 876316 417025 134425 469812 838648 869979 400067 242493 796672 294354 931008 239426 046503 462343 720556 926656 658818 015648 700146 150431 437733 920853 975112 639945 001896 068151 757788 131847 888929 584056 128294 901426 492493 038476 307292 733243 227824 841496 337355 009020 955890 316496 884028 042587 670065 598928 287344 233771 830271 824012 826188 471233 815657 207564 394638 215540 049895 452420 580040 434695 128779 367126 766182 234256 846121 132170 454816 709864 925824 240018 151784 661541 868013 763377 023613 860024 298113 119326 218716 807415 182027 748831 786926 332424 484477 016092 558881 232053 618546 653598 854196 324917 273816 880919 313588 971828 593049 888518 666558 836765 014637 520657 708802 460452 820945 887621 698898 934431 241831 (679 digits)/467 285284 064047 428554 760784 262377 319426 003523 684267 711770 310688 620184 062194 602698 065395 893475 090370 946059 490311 451697 174470 845194 054494 081490 739310 357318 628978 251021 346154 163293 970263 388065 312236 835891 977452 038677 494038 764891 438638 502557 835410 503450 923485 590645 076729 785780 203416 827445 831920 642434 374668 251906 197918 610319 333608 079084 717059 781193 493145 284906 082635 823096 445453 410702 323500 084776 535698 420299 793066 903586 251576 795829 870395 941757 549950 446753 877056 076793 909701 193139 156651 127742 568750 856796 820795 957435 350207 517069 688763 996950 745476 702516 580698 678791 461626 195233 163250 222700 952756 291163 879863 064761 478335 064929 641711 717385 753771 731965 105810 921185 715199 365462 860752 719291 (681 digits), a[1299] = 5
                                                                                      A[1300]/B[1300] = 5 649633 791672 157182 098980 614173 208527 962691 505276 981532 648805 681497 927191 931822 102568 140184 779234 231186 958046 497730 005244 133900 312662 513301 942644 610959 303738 098667 957207 676711 448474 356342 489605 924853 315315 547815 485138 538548 242653 408819 108986 224138 624465 853272 270407 281350 955287 145211 700613 976130 808247 174231 451384 555253 264508 072820 485713 164655 412266 506387 532772 936276 507916 630165 916777 679894 133470 177278 414822 614222 355942 555434 921470 970221 081197 936097 233541 603945 262641 072772 665922 464042 262436 808551 476676 974665 494728 058871 703816 043499 578248 176477 090110 814334 345140 512657 895070 636384 264015 010439 603391 633127 996068 872189 031549 580582 361141 765991 026799 346206 068631 117785 688851 297908 (679 digits)/549 107825 720486 338167 919480 853625 791452 603725 974765 251149 560588 482683 068079 598911 650645 255155 128233 991226 349498 425650 794176 147974 906006 458517 808353 260980 165735 829695 162965 657705 479803 178963 230298 826614 980061 742171 381885 115828 341731 440640 225629 144546 929123 497159 901810 683930 300545 603066 153459 697614 760175 286347 328449 375523 515054 633890 993493 873304 414245 292993 205500 970295 449745 280809 439884 139043 168629 041033 122641 258229 862834 183452 771585 295707 726728 973802 776092 079808 916789 038122 762027 968465 408474 911480 900454 307001 059269 240026 089105 883037 882989 529273 056435 278405 123781 270361 203447 863289 939149 297692 278993 327030 251265 230859 710648 220525 218628 715870 872840 603046 910799 114810 127771 539259 (681 digits), a[1300] = 1
                                                                                      A[1301]/B[1301] = 50 004852 352756 464188 202668 789702 085248 835957 512028 690910 060424 852050 660029 251249 114900 052486 473299 895999 126715 702396 968609 730020 516948 806561 691588 325408 350758 764456 297606 415587 655946 608528 048695 287756 106580 510818 782534 800878 979703 577845 605133 020933 837223 163533 172279 206697 958794 045721 647499 479112 064905 681195 844848 272297 940077 408752 356939 132900 505696 445738 477723 540107 515753 621367 768916 567932 434888 184409 552837 759899 979710 898296 081632 687592 889601 640562 529874 699575 864505 605795 187404 010451 218820 687128 620830 979351 706656 257899 962952 832473 642077 970697 952940 133221 414722 955459 485482 364890 993039 397105 798961 658073 857069 644071 089161 659296 409791 836730 674847 590594 436670 641184 445241 625095 (680 digits)/4860 147889 827938 133898 116631 091383 651046 833331 482389 720966 795396 481648 606831 393991 270557 934716 116242 875870 286298 856903 527880 028993 302545 749633 206136 445159 954864 888582 649879 424937 808688 819771 154627 448811 817945 976048 549119 691518 172490 027679 640443 659826 356473 567924 291215 257222 607781 651975 059598 223352 456070 542684 825513 614507 454045 150212 665010 767628 807107 628851 726643 585460 043415 657177 842573 197121 884730 748564 774196 969425 154250 263452 043078 307419 363782 237176 085792 715265 244013 498121 252874 875465 836550 148644 024430 413443 824361 437278 401611 061253 809392 936701 032180 906032 451876 358122 790833 129020 465950 672702 111809 681003 488456 911807 326897 481587 502801 458932 088535 745561 001592 283943 882925 033363 (682 digits), a[1301] = 8
                                                                                      A[1302]/B[1302] = 55 654486 144428 621370 301649 403875 293776 798649 017305 672442 709230 533548 587221 183071 217468 192671 252534 127186 084762 200126 973853 863920 829611 319863 634232 936367 654496 863124 254814 092299 104420 964870 538301 212609 421896 058634 267673 339427 222356 986664 714119 245072 461689 016805 442686 488048 914081 190933 348113 455242 873152 855427 296232 827551 204585 481572 842652 297555 917962 952126 010496 476384 023670 251533 685694 247826 568358 361687 967660 374122 335653 453731 003103 657813 970799 576659 763416 303521 127146 678567 853326 474493 481257 495680 097507 954017 201384 316771 666768 875973 220326 147175 043050 947555 759863 468117 380553 001275 257054 407545 402353 291201 853138 516260 120711 239878 770933 602721 701646 936800 505301 758970 134092 923003 (680 digits)/5409 255715 548424 472066 036111 945009 442499 437057 457154 972116 355984 964331 674910 992902 921203 189871 244476 867096 635797 282554 322056 176968 208552 208151 014489 706140 120600 718277 812845 082643 288491 998734 384926 275426 798007 718219 931004 807346 514221 468319 866072 804373 285597 065084 193025 941152 908327 255041 213057 920967 216245 829032 153962 990030 969099 784103 658504 640933 221352 921844 932144 555755 493160 937987 282457 336165 053359 789597 896838 227655 017084 446904 814663 603127 090511 210978 861884 795074 160802 536244 014902 843931 245025 060124 924884 720444 883630 677304 490716 944291 692382 465974 088616 184437 575657 628483 994280 992310 405099 970394 390803 008033 739722 142667 037545 702112 721430 174802 961376 348607 912391 398754 010696 572622 (682 digits), a[1302] = 1
                                                                                      A[1303]/B[1303] = 105 659338 497185 085558 504318 193577 379025 634606 529334 363352 769655 385599 247250 434320 332368 245157 725834 023185 211477 902523 942463 593941 346560 126425 325821 261776 005255 627580 552420 507886 760367 573398 586996 500365 528476 569453 050208 140306 202060 564510 319252 266006 298912 180338 614965 694746 872875 236654 995612 934354 938058 536623 141081 099849 144662 890325 199591 430456 423659 397864 488220 016491 539423 872901 454610 815759 003246 546097 520498 134022 315364 352027 084736 345406 860401 217222 293291 003096 991652 284363 040730 484944 700078 182808 718338 933368 908040 574671 629721 708446 862404 117872 995991 080777 174586 423576 866035 366166 250093 804651 201314 949275 710208 160331 209872 899175 180725 439452 376494 527394 941972 400154 579334 548098 (681 digits)/10269 403605 376362 605964 152743 036393 093546 270388 939544 693083 151381 445980 281742 386894 191761 124587 360719 742966 922096 139457 849936 205961 511097 957784 220626 151300 075465 606860 462724 507581 097180 818505 539553 724238 615953 694268 480124 498864 686711 495999 506516 464199 642070 633008 484241 198375 516108 907016 272656 144319 672316 371716 979476 604538 423144 934316 323515 408562 028460 550696 658788 141215 536576 595165 125030 533286 938090 538162 671035 197080 171334 710356 857741 910546 454293 448154 947677 510339 404816 034365 267777 719397 081575 208768 949315 133888 707992 114582 892328 005545 501775 402675 120797 090470 027533 986606 785114 121330 871050 643096 502612 689037 228179 054474 364443 183700 224231 633735 049912 094168 913983 682697 893621 605985 (683 digits), a[1303] = 1
                                                                                      A[1304]/B[1304] = 900 929194 121909 305838 336194 952494 325981 875501 251980 579264 866473 618342 565224 657633 876414 153933 059206 312667 776585 420318 513562 615451 602092 331266 240803 030575 696541 883768 674178 155393 187361 552059 234273 215533 649708 614258 669338 461876 838841 502747 268137 373122 852986 459514 362412 046023 897083 084173 313016 930082 377621 148412 424881 626344 361888 604174 439383 741207 307238 135041 916256 608316 339061 234745 322580 773898 594330 730468 131645 446300 858568 269947 680994 421068 854009 314438 109744 328297 060364 953472 179170 354051 081882 958149 844219 420968 465708 914144 704542 543548 119559 090159 010979 593773 156554 856732 308835 930605 257804 844755 012872 885407 534803 798909 799694 433280 216737 118340 713603 155960 041080 960206 768769 307787 (681 digits)/87564 484558 559325 319779 258056 236154 190869 600168 973512 516781 567036 532173 928850 088056 455292 186570 130234 810832 012566 398217 121545 824660 297335 870424 779498 916540 724325 573161 514641 143292 065938 546778 701356 069335 725637 272367 772000 798264 007913 436315 918204 517970 422162 129152 066955 528157 037198 511171 394307 075524 594776 802767 989775 826338 354259 258634 246627 909429 449037 327418 202449 685479 785773 699308 282701 602460 558084 094899 265119 804296 387762 129759 676598 887498 724858 796218 443304 877789 399330 811166 157124 599107 897626 730276 519405 791554 547567 593967 629340 988655 706585 687375 054992 908197 795929 521338 275193 962957 373505 115166 411704 520331 565154 578461 953091 171714 515283 244683 360673 101959 224260 860337 159669 420502 (683 digits), a[1304] = 8
                                                                                      A[1305]/B[1305] = 3709 376114 984822 308911 849098 003554 682953 136611 537256 680412 235549 858969 508149 064855 838024 860889 962659 273856 317819 583797 996714 055747 754929 451490 289033 384078 791423 162655 249133 129459 509813 781635 524089 362500 127311 026487 727561 987813 557426 575499 391801 758497 710858 018396 064613 878842 461207 573348 247680 654684 448543 130272 840607 605226 592217 307022 957126 395285 652611 938032 153246 449756 895668 811882 744933 911353 380569 467970 047079 919225 749637 431817 808714 029682 276438 474974 732268 316285 233112 098251 757411 901149 027610 015408 095216 617242 770876 231250 447891 882639 340640 478509 039909 455869 800805 850506 101379 088587 281313 183671 252806 490905 849423 355970 408650 632296 047673 912815 230907 151235 106296 240981 654411 779246 (682 digits)/360527 341839 613663 885081 184967 981009 857024 671064 833594 760209 419527 574675 997142 739120 012929 870867 881658 986294 972361 732326 336119 504602 700441 439483 338621 817462 972767 899506 521289 080749 360935 005620 344978 001581 518502 783739 568127 691920 718365 241263 179334 536081 330719 149616 752063 311003 664902 951701 849884 446418 051423 582788 938579 909891 840181 968853 310027 046279 824609 860369 468586 883134 679671 392398 255836 943129 170426 917759 731514 414265 722383 229395 564137 460541 353728 633028 720897 021497 002139 279029 896276 115828 672082 129875 026938 300106 898262 490453 409691 960168 328118 152175 340768 723261 211252 071959 885889 973160 365071 103762 149430 770363 488797 368322 176807 870558 285364 612468 492604 502005 811027 124046 532299 287993 (684 digits), a[1305] = 4
                                                                                      A[1306]/B[1306] = 52832 194803 909421 630604 223567 002259 887325 788062 773574 105036 164171 643915 679311 565615 608762 206392 536436 146656 226059 593490 467559 395920 171104 652130 287270 407678 776466 160942 162041 967826 324754 494956 571524 290535 432062 985086 855206 291266 642813 559738 753361 992090 804998 717059 267006 349818 353989 111048 780546 095664 657224 972232 193388 099516 652930 902495 839153 275206 443805 267492 061706 904912 878424 601103 751655 532845 922303 282048 790764 315461 353492 315397 002990 836620 724147 964084 361500 756290 323934 328996 782936 970137 468423 173863 177252 062367 257976 151650 975028 900498 888525 789285 569711 975950 367836 763817 728143 170827 196189 416152 552163 758089 426730 782495 520803 285424 884171 897753 946303 273251 529228 333949 930534 217231 (683 digits)/5 134947 270313 150619 710915 847607 970292 189214 995076 643839 159713 440422 577637 888848 435736 636310 378720 473460 618961 625630 650785 827218 889098 103516 023191 520204 361022 343076 166252 812688 273783 119028 625463 531048 091476 984676 244721 725788 485154 065026 814000 428888 023109 052230 223786 595841 882208 345839 834997 292689 325377 314706 961813 129894 564824 116806 822580 587006 557346 993575 372590 762666 049365 301173 192883 864418 806268 944060 943535 506321 604016 501127 341297 574523 335077 677059 658620 535863 178747 429280 717584 704990 220709 306776 548526 896541 993051 123242 460315 365028 431012 300239 817829 825755 033854 753458 528776 677653 587202 484500 567836 503735 305420 408317 734972 428401 359530 510387 819242 257136 130040 578640 596988 611859 452404 (685 digits), a[1306] = 14
                                                                                      A[1307]/B[1307] = 479199 129350 169616 984349 861201 023893 668885 229176 499423 625737 713094 654210 621953 155396 316884 718422 790584 593762 352355 925212 204748 619029 294871 320662 874467 053187 779618 611134 707510 839896 432604 236244 667807 977319 015877 892269 424418 609213 342748 613148 172059 687314 955846 471929 467671 027207 647109 572787 272595 515666 363567 880362 581100 500876 468595 429485 509505 872143 646859 345460 708608 593972 801490 221816 509833 706966 681299 006409 163958 758377 931068 270390 835631 559268 793770 151733 985775 122898 148521 059222 803844 632386 243418 580176 690485 178548 092661 596109 223151 987129 337372 582079 167317 239423 111336 724865 654667 626032 047017 929044 222280 313710 690000 398430 095880 201120 005220 992600 747636 610498 869351 246531 029219 734325 (684 digits)/46 575052 774657 969241 283323 813439 713639 559959 626754 628147 197630 383330 773416 996778 660749 739723 279352 142804 556949 603037 589398 781089 506485 632085 648207 020461 066664 060453 395781 835483 544797 432192 634792 124410 824874 380588 986235 100224 058307 303606 567267 039326 744062 800791 163696 114640 250878 777461 466677 484088 374813 883786 239107 107630 993308 891443 372078 593086 062402 766788 213686 332581 327422 390230 128353 035606 199549 666975 409579 288408 850414 232529 301073 734847 476240 447265 560613 543665 630223 865665 737292 241188 102212 433071 066617 095816 237567 007444 633291 694947 839279 030276 512643 772564 027953 992378 830949 984772 257982 725576 214290 683048 519147 163656 983074 032420 106332 878854 985648 806829 672371 018792 496944 039034 359629 (686 digits), a[1307] = 9
                                                                                      A[1308]/B[1308] = 532031 324154 079038 614954 084768 026153 556211 017239 272997 730773 877266 298126 301264 721011 925646 924815 327020 740418 578415 518702 672308 014949 465975 972793 161737 460866 556084 772076 869552 807722 757358 731201 239332 267854 447940 877356 279624 900479 985562 172886 925421 679405 760845 188988 734677 377026 001098 683836 053141 611331 020792 852594 774488 600393 121526 331981 348659 147350 090664 612952 770315 498885 679914 822920 261489 239812 603602 288457 954723 073839 284560 585787 838622 395889 517918 115818 347275 879188 472455 388219 586781 602523 711841 754039 867737 240915 350637 747760 198180 887628 225898 371364 737029 215373 479173 488683 382810 796859 243207 345196 774444 071800 116731 180925 616683 486544 889392 890354 693939 883750 398579 580480 959753 951556 (684 digits)/51 710000 044971 119860 994239 661047 683931 749174 621831 271986 357343 823753 351054 885627 096486 376033 658072 616265 175911 228668 240184 608308 395583 735601 671398 540665 427686 403529 562034 648171 818580 551221 260255 655458 916351 365265 230956 826012 543461 368633 381267 468214 767171 853021 387482 710482 133087 123301 301674 776777 700191 198493 200920 237525 558133 008250 194659 180092 619749 760363 586277 095247 376787 691403 321236 900025 005818 611036 353114 794730 454430 733656 642371 309370 811318 124325 219234 079528 808971 294946 454876 946178 322921 739847 615143 992358 230618 130687 093607 059976 270291 330516 330473 598319 061808 745837 359726 662425 845185 210076 782127 186783 824567 571974 718046 460821 465863 389242 804891 063965 802411 597433 093932 650893 812033 (686 digits), a[1308] = 1
                                                                                      A[1309]/B[1309] = 6 331543 695045 039041 748844 793649 311582 787206 418808 502398 664250 363023 933599 935865 086527 499000 891391 387812 738366 714926 630941 600136 783473 420607 021387 653579 122719 896551 103980 272591 724846 763550 279458 300462 923717 943227 543188 500292 514493 183932 514904 351698 160778 325143 550805 549122 174493 659195 094983 857153 240307 592289 258905 100475 105200 805385 081280 344756 492994 644170 087941 182079 081715 280553 273939 386215 344905 320924 179446 665912 570610 061234 714057 060477 914053 490869 425735 805809 793971 345530 329638 258442 260147 073677 874615 235594 828616 949676 821471 403141 751039 822254 667091 274638 608531 382245 100382 865586 391483 722298 726208 741165 103511 974043 388611 879398 553113 788542 786502 380975 331753 253726 631821 586513 201441 (685 digits)/615 385053 269340 287712 219960 084964 236888 800880 466898 619997 128412 444617 635020 738676 722099 876093 518150 921721 491973 118388 231429 472481 857906 723704 033590 967780 771214 499278 578162 965373 549183 495626 497604 334458 904739 398506 526760 186362 036382 358573 761209 189689 182953 184026 426005 929943 714837 133775 785100 028643 076917 067211 449229 720412 132771 982195 513329 574104 879650 130787 662734 380302 472086 995666 661958 935881 263554 388375 293842 030443 849152 302752 367158 137926 400739 814842 972188 418482 528908 110076 740938 649149 654351 571394 833201 011756 774366 445002 662969 354686 812483 665956 147853 354073 707850 196589 787943 271456 555020 036420 817689 737670 589390 455378 881585 101456 230830 160525 839450 510453 498898 590556 530203 198866 291992 (687 digits), a[1309] = 11
                                                                                      A[1310]/B[1310] = 19 526662 409289 196163 861488 465715 960901 917830 273664 780193 723524 966338 098926 108859 980594 422649 598989 490458 955518 723195 411527 472718 365369 727797 036956 122474 829026 245738 084017 687327 982263 048009 569576 140721 039008 277623 506921 780502 443959 537359 717599 980516 161740 736275 841405 382043 900506 978683 968787 624601 332253 797660 629310 075913 915995 537681 575822 382928 626334 023174 876776 316552 744031 521574 644738 420135 274528 566374 826797 952460 785669 468264 727959 020056 138049 990526 393025 764705 261102 509046 377134 362108 382964 932875 377885 574521 726766 199668 212174 407606 140747 692662 372638 560945 040967 625908 789831 979569 971310 410103 523822 997939 382336 038861 346761 254879 145886 255021 249861 836865 879010 159759 475945 719293 555879 (686 digits)/1897 865159 852991 982997 654119 915940 394598 151816 022527 131977 742581 157606 256117 101657 262786 004314 212525 381429 651830 583832 934473 025753 969303 906713 772171 444007 741329 901365 296523 544292 466131 038100 753068 658835 630569 560784 811237 385098 652608 444354 664895 037282 316031 405100 665500 500313 277598 524628 656974 862706 930942 400127 548609 398761 956448 954836 734647 902407 258700 152726 574480 236154 793048 678403 307113 707668 796481 776162 234640 886062 001887 641913 743845 723150 013537 568854 135799 334976 395695 625176 677692 893627 285976 454032 114747 027628 553717 465695 082515 124036 707742 328384 774033 660540 185359 335606 723556 476795 510245 319339 235196 399795 592738 938111 362801 765190 158353 870820 323242 595326 299107 369102 684542 247492 688009 (688 digits), a[1310] = 3
                                                                                      A[1311]/B[1311] = 787 398040 066612 885596 208383 422287 747659 500417 365399 710147 605249 016547 890644 290264 310304 404984 850971 006170 959115 642743 092040 508871 398262 532488 499632 552572 283769 726074 464687 765711 015368 683933 062503 929304 484049 048167 820059 720390 272874 678321 218903 572344 630407 776177 207020 830878 194772 806553 846488 841206 530459 498714 431308 137031 745022 312648 114175 661901 546355 571165 158993 844188 842976 143539 063476 191626 326047 975917 251364 764343 997388 791823 832417 862723 436053 111925 146766 394020 238071 707385 415012 742777 578744 388692 990038 216463 899264 936405 308447 707387 380947 528749 572633 712440 247236 418596 693662 048385 243900 126439 679128 658740 396953 528497 259062 074564 388563 989392 780975 855610 492159 644105 669650 358255 436601 (687 digits)/76529 991447 389019 607618 384756 722580 020814 873521 367983 899106 831658 748867 879704 804967 233540 048662 019166 178907 565196 471705 610350 502640 630062 992254 920448 728090 424410 553890 439104 737072 194425 019656 620350 687884 127521 829898 976255 590308 140720 132760 357010 680981 824209 388053 046025 942474 818778 118922 064094 536920 314613 072313 393605 670890 390730 175664 899245 670395 227656 239850 641943 826494 194034 131798 946507 242633 122825 434864 679477 472923 924657 979302 120987 063926 942242 569008 404161 817538 356733 117143 848654 394241 093409 732679 423082 116898 923065 072805 963574 316155 122176 801347 109199 775681 122223 620858 730202 343276 964832 809990 225545 729494 298947 979833 393655 709062 564984 993338 769154 323505 463193 354663 911893 098573 812352 (689 digits), a[1311] = 40
                                                                                      A[1312]/B[1312] = 806 924702 475902 081760 069871 888003 708561 418247 639064 490341 328773 982885 989570 399124 290898 827634 449960 496629 914634 365938 503567 981589 763632 260285 536588 675047 112795 971812 548705 453038 997631 731942 632080 070025 523057 325791 326981 500892 716834 215680 936503 552860 792148 512453 048426 212922 095279 785237 815276 465807 862713 296375 060618 212945 661017 850329 689998 044830 172689 594340 035770 160741 587007 665113 708214 611761 600576 542292 078162 716804 783058 260088 560376 882779 574103 102451 539792 158725 499174 216431 792147 104885 961709 321568 367923 790985 626031 136073 520622 114993 521695 221411 945272 273385 288204 044505 483494 027955 215210 536543 202951 656679 779289 567358 605823 329443 534450 244414 030837 692476 371169 803865 145596 077548 992480 (687 digits)/78427 856607 242011 590616 038876 638520 415413 025337 390511 031084 574239 906474 135821 906624 496326 052976 231691 560337 217027 055538 544823 528394 599366 898968 692620 172098 165740 455255 735628 281364 660556 057757 373419 346719 758091 390683 787492 975406 793328 577115 021905 718264 140240 793153 711526 442788 096376 643550 721069 399627 245555 472440 942215 069652 347179 130501 633893 572802 486356 392577 216424 062648 987082 810202 253620 950301 919307 211026 914118 358985 926545 621215 864832 787076 955780 137862 539961 152514 752428 742320 526347 287868 379386 186711 537829 144527 476782 538501 046089 440191 829919 129731 883233 436221 307582 956465 453758 820072 475078 129329 460742 129289 891686 917944 756457 474252 723338 864159 092396 918831 762300 723766 596435 346066 500361 (689 digits), a[1312] = 1
                                                                                      A[1313]/B[1313] = 2401 247445 018417 049116 348127 198295 164782 336912 643528 690830 262796 982319 869785 088512 892102 060253 750891 999430 788384 374620 099176 472050 925527 053059 572809 902666 509361 669699 562098 671789 010632 147818 326664 069355 530163 699750 474022 722175 706543 109683 091910 678066 214704 801083 303873 256722 385332 377029 477041 772822 255886 091464 552544 562923 067058 013307 494171 751561 891734 759845 230534 165672 016991 473766 479905 415149 527201 060501 407690 197953 563505 312000 953171 628282 584259 316828 226350 711471 236420 140248 999306 952549 502163 031829 725885 798435 151327 208552 349691 937374 424337 971573 463178 259210 823644 507607 660650 104295 674321 199526 085031 972099 955532 663214 470708 733451 457464 478220 842651 240563 234499 251835 960842 513353 421561 (688 digits)/233385 704661 873042 788850 462509 999620 851640 924196 149005 961275 980138 561816 151348 618216 226192 154614 482549 299581 999250 582782 699997 559429 828796 790192 305689 072286 755891 464401 910361 299801 515537 135171 367189 381323 643704 611266 551241 541121 727377 286990 400822 117510 104690 974360 469078 828051 011531 406023 506233 336174 805724 017195 278035 810195 085088 436668 167032 816000 200369 025005 074791 951792 168199 752203 453749 143236 961439 856918 507714 190895 777749 221733 850652 638080 853802 844733 484084 122567 861590 601784 901348 969977 852182 106102 498740 405953 876630 149808 055753 196538 782015 060810 875666 648123 737389 533789 637719 983421 914989 068649 147029 988074 082321 815722 906570 657568 011662 721656 953948 161168 987794 802197 104763 790706 813074 (690 digits), a[1313] = 2
                                                                                      A[1314]/B[1314] = 5609 419592 512736 179992 766126 284594 038126 092072 926121 872001 854367 947525 729140 576150 075102 948141 951744 495491 491403 115178 701920 925691 614686 366404 682208 480380 131519 311211 672902 796617 018896 027579 285408 208736 583384 725292 275026 945244 129920 435047 120324 908993 221558 114619 656172 726366 865944 539296 769360 011452 374485 479304 165707 338791 795133 876944 678341 547953 956159 114030 496838 492085 620990 612646 668025 442060 654978 663294 893543 112711 910068 884090 466720 139344 742621 736107 992493 581667 972014 496929 790761 009984 966035 385227 819695 387855 928685 553178 220005 989742 370371 164558 871628 791806 935493 059720 804794 236546 563852 935595 373015 600879 690354 893787 547240 796346 449379 200855 716140 173602 840168 307537 067281 104255 835602 (688 digits)/545199 265930 988097 168316 963896 637762 118694 873729 688522 953636 534517 030106 438519 143056 948710 362205 196790 159501 215528 221103 944818 647254 256960 479353 303998 316671 677523 384059 556350 880967 691630 328100 107798 109367 045500 613216 889976 057650 248083 151095 823549 953284 349622 741874 649684 098890 119439 455597 733536 071976 857003 506831 498286 690042 517356 003837 967959 204802 887094 442587 366007 966233 323482 314609 161119 236775 842186 924863 929546 740777 482044 064683 566138 063238 663385 827329 508129 397650 475609 945890 329045 227824 083750 398916 535309 956435 230042 838117 157595 833269 393949 251353 634566 732468 782362 024044 729198 786916 305056 266627 754802 105438 056330 549390 569598 789388 746664 307473 000293 241169 737890 328160 805962 927480 126509 (690 digits), a[1314] = 2
                                                                                      A[1315]/B[1315] = 13620 086630 043889 409101 880379 767483 241034 521058 495772 434833 971532 877371 328066 240813 042307 956537 654380 990413 771190 604977 503018 323434 154899 785868 937226 863426 772400 292122 907904 265023 048424 202976 897480 486828 696933 150335 024076 612663 966383 979777 332560 496052 657821 030322 616218 709456 117221 455623 015761 795727 004857 050072 883959 240506 657325 767196 850854 847469 804052 987906 224211 149843 258972 699059 815956 299270 837158 387091 194776 423377 383643 080181 886611 906972 069502 789044 211337 874807 180449 134108 580828 972519 434233 802285 365276 574147 008698 314908 789703 916859 165080 300691 206435 842824 694630 627049 270238 577388 802027 070716 831063 173859 336242 450789 565190 326144 356222 879932 274931 587768 914835 866910 095404 721865 092765 (689 digits)/1 323784 236523 849237 125484 390303 275145 089030 671655 526051 868549 049172 622029 028386 904330 123612 879024 876129 618584 430307 024990 589634 853938 342717 748898 913685 705630 110938 232521 023063 061736 898797 791371 582785 600057 734705 837700 331193 656422 223543 589182 047922 024078 803936 458109 768447 025831 250410 317218 973305 480128 519731 030858 274609 190280 119800 444344 102951 225605 974557 910179 806807 884258 815164 381421 775987 616788 645813 706646 366807 672450 741837 351100 982928 764558 180574 499392 500342 917868 812810 493565 559439 425626 019682 903935 569360 318824 336715 826042 370944 863077 569913 563518 144800 113061 302113 581879 096117 557254 525101 601904 656634 198950 194982 914504 045768 236345 504991 336602 954534 643508 463575 458518 716689 645667 066092 (691 digits), a[1315] = 2
                                                                                      A[1316]/B[1316] = 46469 679482 644404 407298 407265 587043 761229 655248 413439 176503 768966 579639 713339 298589 202026 817754 914887 466732 804974 930111 210975 895994 079385 724011 493889 070660 448720 187580 396615 591686 164168 636509 977849 669222 674184 176297 347256 783236 029072 374379 118006 397151 195021 205587 504828 854735 217608 906165 816645 398633 389056 629522 817585 060311 767111 178535 230906 090363 368318 077749 169471 941615 397908 709826 115894 339873 166453 824568 477872 382844 060998 124636 126555 860260 951130 103240 626507 206089 513361 899255 533247 927543 268736 792083 915525 110296 954780 497904 589117 740319 865612 066632 490936 320281 019384 940868 615509 968712 969934 147745 866205 122457 699082 246156 242811 774779 518047 840652 540934 936909 584675 908267 353495 269851 113897 (689 digits)/4 516551 975502 535808 544770 134806 463197 385786 888696 266678 559283 682034 896193 523679 856047 319548 999279 825179 015254 506449 296075 713723 209069 285113 726050 045055 433562 010338 081622 625540 066178 388023 702214 856154 909540 249618 126317 883557 026916 918713 918641 967316 025520 761432 116203 955025 176383 870670 407254 653452 512362 416196 599406 322114 260882 876757 336870 276812 881620 810768 173126 786431 619009 768975 458874 489082 087141 779628 044803 029969 758129 707556 117986 514924 356913 205109 325507 009158 151256 914041 426587 007363 504702 142799 110723 243390 912908 240190 316244 270430 422502 103689 941908 068967 071652 688702 769682 017551 458679 880361 072341 724704 702288 641279 292902 706903 498425 261638 317281 863897 171695 128616 703716 956031 864481 324785 (691 digits), a[1316] = 3
                                                                                      A[1317]/B[1317] = 60089 766112 688293 816400 287645 354527 002264 176306 909211 611337 740499 457011 041405 539402 244334 774292 569268 457146 576165 535088 713994 219428 234285 509880 431115 934087 221120 479703 304519 856709 212592 839486 875330 156051 371117 326632 371333 395899 995456 354156 450566 893203 852842 235910 121047 564191 334830 361788 832407 194360 393913 679595 701544 300818 424436 945732 081760 937833 172371 065655 393683 091458 656881 408885 931850 639144 003612 211659 672648 806221 444641 204818 013167 767233 020632 892284 837845 080896 693811 033364 114076 900062 702970 594369 280801 684443 963478 812813 378821 657179 030692 367323 697372 163105 714015 567917 885748 546101 771961 218462 697268 296317 035324 696945 808002 100923 874270 720584 815866 524678 499511 775177 448899 991716 206662 (689 digits)/5 840336 212026 385045 670254 525109 738342 474817 560351 792730 427832 731207 518222 552066 760377 443161 878304 701308 633838 936756 321066 303358 063007 627831 474948 958741 139192 121276 314143 648603 127915 286821 493586 438940 509597 984323 964018 214750 683339 142257 507824 015238 049599 565368 574313 723472 202215 121080 724473 626757 992490 935927 630264 596723 451162 996557 781214 379764 107226 785326 083306 593239 503268 584139 840296 265069 703930 425441 751449 396777 430580 449393 469087 497853 121471 385683 824899 509501 069125 726851 920152 566802 930328 162482 014658 812751 231732 576906 142286 641375 285579 673603 505426 213767 184713 990816 351561 113669 015934 405462 674246 381338 901238 836262 207406 752671 734770 766629 653884 818431 815203 592192 162235 672721 510148 390877 (691 digits), a[1317] = 1
                                                                                      A[1318]/B[1318] = 166649 211708 020992 040098 982556 296097 765758 007862 231862 399179 249965 493661 796150 377393 690696 366340 053424 381025 957306 000288 638964 334850 547956 743772 356120 938834 890961 146987 005655 305104 589354 315483 728509 981325 416418 829562 089923 575036 019985 082692 019140 183558 900705 677407 746923 983117 887269 629743 481459 787354 176883 988714 220673 661948 615985 069999 394427 966029 713060 209059 956838 124532 711671 527597 979595 618161 173678 247887 823169 995286 950280 534272 152891 394726 992395 887810 302197 367882 900983 965983 761401 727668 674677 980822 477128 479184 881738 123531 346761 054677 926996 801279 885680 646492 447416 076704 387007 060916 513856 584671 260741 715091 769731 640047 858815 976627 266589 281822 172667 986266 583699 458622 251295 253283 527221 (690 digits)/16 197224 399555 305899 885279 185025 939882 335422 009399 852139 414949 144449 932638 627813 376802 205872 755889 227796 282932 379961 938208 320439 335084 540776 675947 962537 711946 252890 709909 922746 322008 961666 689387 734035 928736 218266 054354 313058 393595 203228 934289 997792 124719 892169 264831 401969 580814 112831 856201 906968 497344 288051 859935 515561 163208 869872 899299 036341 096074 381420 339739 972910 625546 937255 139467 019221 495002 630511 547701 823524 619290 606343 056161 510630 599855 976476 975306 028160 289508 367745 266892 140969 365358 467763 140040 868893 376373 394002 600817 553180 993661 450896 952760 496501 441080 670335 472804 244889 490548 691286 420834 487382 504766 313803 707716 212246 967966 794897 625051 500760 802102 313001 028188 301474 884778 106539 (692 digits), a[1318] = 2
                                                                                      A[1319]/B[1319] = 393388 189528 730277 896598 252757 946722 533780 192031 372936 409696 240430 444334 633706 294189 625727 506972 676117 219198 490777 535665 991922 889129 330198 997425 143357 811757 003042 773677 315830 466918 391301 470454 332350 118702 203954 985756 551180 545972 035426 519540 488847 260321 654253 590725 614895 530427 109369 621275 795326 769068 747681 657024 142891 624715 656407 085730 870616 869892 598491 483775 307359 340524 080224 464081 891041 875466 350968 707435 318988 796795 345202 273362 318950 556687 005424 667905 442239 816662 495778 965331 636880 355400 052326 556014 235058 642813 726955 059876 072343 766534 884685 969883 468733 456090 608847 721326 659762 667934 799674 387805 218751 726500 574787 977041 525634 054178 407449 284229 161202 497211 666910 692421 951490 498283 261104 (690 digits)/38 234785 011136 996845 440812 895161 618107 145661 579151 497009 257731 020107 383499 807693 513981 854907 390083 156901 199703 696680 197482 944236 733176 709384 826844 883816 563084 627057 733963 494095 771933 210154 872361 907012 367070 420856 072726 840867 470529 548715 376404 010822 299039 349707 103976 527411 363843 346744 436877 440694 987179 512031 350135 627845 777580 736303 579812 452446 299375 548166 762786 539060 754362 458650 119230 303512 693935 686464 846853 043826 669161 662079 581410 519114 321183 338637 775511 565821 648142 462342 453936 848741 661045 098008 294740 550537 984479 364911 343921 747737 272902 575397 410947 206770 066875 331487 297169 603447 997031 788035 515915 356103 910771 463869 622839 177165 670704 356424 903987 819953 419408 218194 218612 275671 279704 603955 (692 digits), a[1319] = 2
                                                                                      A[1320]/B[1320] = 4 493919 296524 054048 902679 762893 710045 637340 120207 334162 905837 894700 381342 766919 613479 573698 943039 490713 792209 355858 892614 550116 115273 180145 715448 933056 868161 924431 657437 479790 441206 893670 490481 384361 287049 659923 672884 152909 580728 409676 797637 396460 047097 097495 175389 510774 817816 090335 463777 230054 247110 401382 215979 792481 533820 836463 013038 971213 534848 296466 530588 337790 870297 594140 632498 781056 248291 034334 029676 332046 760035 747505 541257 661347 518284 052067 234770 166835 351170 354552 584631 767085 637069 250270 096979 062773 550135 878243 782168 142542 486561 658542 469998 041748 663489 144741 011297 644396 408199 310274 850528 667010 706598 092399 387504 640790 572589 748531 408342 945895 455594 919717 075263 717690 734399 399365 (691 digits)/436 779859 522062 271199 734221 031803 739060 937699 380066 319241 249990 365631 151136 512442 030602 609854 046803 953709 479673 043444 110520 707043 400028 344009 771241 684519 905877 150525 783508 357799 813274 273370 285368 711171 966510 847682 854349 562600 569420 239098 074734 116837 414152 738947 408573 203494 583090 927020 661853 754613 356318 920396 711427 421864 716596 969212 277236 013250 389205 411254 730391 902578 923533 982406 451000 357861 128295 181624 863085 305617 980068 889218 451677 220888 132872 701492 505933 252198 419075 453512 260197 477127 636854 545854 382186 924811 205646 408027 383956 778290 995589 780268 473179 770972 176709 316695 741669 882817 457898 359677 095903 404525 523252 416369 558947 161069 345714 715571 568917 520248 415592 713137 432923 333858 961528 750044 (693 digits), a[1320] = 11
                                                                                      A[1321]/B[1321] = 4 887307 486052 784326 799278 015651 656768 171120 312238 707099 315534 135130 825677 400625 907669 199426 450012 166831 011407 846636 428280 542039 004402 510344 712874 076414 679918 927474 431114 795620 908125 284971 960935 716711 405751 863878 658640 704090 126700 445103 317177 885307 307418 751748 766115 125670 348243 199705 085053 025381 016179 149063 873003 935373 158536 492870 098769 841830 404740 894958 014363 645150 210821 674365 096580 672098 123757 385302 737111 651035 556831 092707 814619 980298 074971 057491 902675 609075 167832 850331 549963 403965 992469 302596 652993 297832 192949 605198 842044 214886 253096 543228 439881 510482 119579 753588 732624 304159 076134 109949 238333 885762 433098 667187 364546 166424 626768 155980 692572 107097 952806 586627 767685 669181 232682 660469 (691 digits)/475 014644 533199 268045 175033 926965 357168 083360 959217 816250 507721 385738 534636 320135 544584 464761 436887 110610 679376 740124 308003 651280 133205 053394 598086 568336 468961 777583 517471 851895 585207 483525 157730 618184 333581 268538 927076 403468 039949 787813 451138 127659 713192 088654 512549 730905 946934 273765 098731 195308 343498 432428 061563 049710 494177 705515 857048 465696 688580 959421 493178 441639 677896 441056 570230 661373 822230 868089 709938 349444 649230 551298 033087 740002 454056 040130 281444 818020 067217 915854 714134 325869 297899 643862 676927 475349 190125 772938 727878 526028 268492 355665 884126 977742 243584 648183 038839 486265 454930 147712 611818 760629 434023 880239 181786 338235 016419 071996 472905 340201 835000 931331 651535 609530 241233 353999 (693 digits), a[1321] = 1
                                                                                      A[1322]/B[1322] = 14 268534 268629 622702 501235 794197 023581 979580 744684 748361 536906 164962 032697 568171 428817 972551 843063 824375 815025 049131 749175 634194 124078 200835 141197 085886 227999 779380 519667 071032 257457 463614 412352 817784 098553 387680 990165 561089 834129 299883 431993 167074 661934 600992 707619 762115 514302 489745 633883 280816 279468 699509 961987 663227 850893 822203 210578 654874 344330 086382 559315 628091 291940 942870 825660 125252 495805 804939 503899 634117 873697 932921 170497 621943 668226 167051 040121 384985 686836 055215 684558 575017 622007 855463 402965 658437 936035 088641 466256 572314 992754 744999 349761 062712 902648 651918 476546 252714 560467 530173 327196 438535 572795 426774 116596 973639 826126 060492 793487 160091 361208 092972 610635 056053 199764 720303 (692 digits)/1386 809148 588460 807290 084288 885734 453397 104421 298501 951742 265433 137108 220409 152713 119771 539376 920578 174930 838426 523692 726528 009603 666438 450798 967414 821192 843800 705692 818452 061590 983689 240420 600829 947540 633673 384760 708502 369536 649319 814724 977010 372156 840536 916256 433672 665306 476959 474550 859316 145230 043315 785252 834553 521285 704952 380243 991332 944643 766367 330097 716748 785858 279326 864519 591461 680608 772756 917804 282962 004507 278529 991814 517852 700893 040984 781753 068822 888238 553511 285221 688466 128866 232653 833579 736041 875509 585897 953904 839713 830347 532574 491600 241433 726456 663878 613061 819348 855348 367758 655102 319540 925784 391300 176847 922519 837539 378552 859564 514728 200652 085594 575800 735994 552919 443995 458042 (694 digits), a[1322] = 2
                                                                                      A[1323]/B[1323] = 19 155841 754682 407029 300513 809848 680350 150701 056923 455460 852440 300092 858374 968797 336487 171978 293075 991206 826432 895768 177456 176233 128480 711179 854071 162300 907918 706854 950781 866653 165582 748586 373288 534495 504305 251559 648806 265179 960829 744986 749171 052381 969353 352741 473734 887785 862545 689450 718936 306197 295647 848573 834991 598601 009430 315073 309348 496704 749070 981340 573679 273241 502762 617235 922240 797350 619563 190242 241011 285153 430529 025628 985117 602241 743197 224542 942796 994060 854668 905547 234521 978983 614477 158060 055958 956270 128984 693840 308300 787201 245851 288227 789642 573195 022228 405507 209170 556873 636601 640122 565530 324298 005894 093961 481143 140064 452894 216473 486059 267189 314014 679600 378320 725234 432447 380772 (692 digits)/1861 823793 121660 075335 259322 812699 810565 187782 257719 767992 773154 522846 755045 472848 664356 004138 357465 285541 517803 263817 034531 660883 799643 504193 565501 389529 312762 483276 335923 913486 568896 723945 758560 565724 967254 653299 635578 773004 689269 602538 428148 499816 553729 004910 946222 396212 423893 748315 958047 340538 386814 217680 896116 570996 199130 085759 848381 410340 454948 289519 209927 227497 957223 305576 161692 341982 594987 785893 992900 353951 927760 543112 550940 440895 495040 821883 350267 706258 620729 201076 402600 454735 530553 477442 412969 350858 776023 726843 567592 356375 801066 847266 125560 704198 907463 261244 858188 341613 822688 802814 931359 686413 825324 057087 104306 175774 394971 931560 987633 540853 920595 507132 387530 162449 685228 812041 (694 digits), a[1323] = 1
                                                                                      A[1324]/B[1324] = 8960 046633 705313 705385 841184 993530 747102 356974 327938 448579 626526 308326 893807 996527 568327 286414 709551 717963 759187 372870 621209 935065 124570 321826 992429 880410 226035 880642 534798 798060 584601 053450 738098 427184 609105 866036 982691 400131 541620 208695 294874 629454 349950 331260 941812 358113 323139 463231 377138 274953 347013 983490 903064 209899 254850 961438 676326 615992 160478 372430 467536 231873 082083 192046 512112 487991 831815 648066 056169 800769 930752 901657 220417 868837 741330 028605 326317 611404 817214 945774 206322 760365 582840 669509 535798 236588 171887 112065 442724 195296 805306 347377 112842 744788 283314 023785 159196 312702 853433 467411 429857 885704 325337 306785 810443 383739 327725 153610 783164 937501 006063 466349 286413 740533 152691 540827 (694 digits)/870858 520536 403715 988856 188042 416545 987339 798735 653633 604367 328595 306542 826644 973039 374025 471989 856866 522819 652550 726247 852813 642338 099954 909194 056563 731381 903880 395741 694919 659818 658459 323089 848614 141100 341596 475690 523789 362726 538224 200170 922359 786487 431982 209668 319531 696508 435339 938103 267424 176656 685555 442231 320992 176510 698702 430093 185451 573636 227218 535568 752764 027404 302610 568587 101785 386480 632052 930298 967427 300057 542703 625375 807038 599089 225048 601277 643841 711014 434048 187901 702878 490359 001127 799186 592728 726557 988978 389850 905344 257846 630792 164880 878282 587346 449221 614410 593304 389003 563429 569675 264514 481040 817634 836525 633503 924181 830444 898545 739591 779433 003696 406625 712580 416922 445850 681189 (696 digits), a[1324] = 467
                                                                                      A[1325]/B[1325] = 17939 249109 165309 817800 982883 796910 174554 864649 712800 352620 105492 916746 645990 961852 473141 744807 712179 427134 344807 641509 419876 046363 377621 354833 838930 923121 359990 468140 020379 462774 334784 855487 849485 388864 722516 983633 614189 065443 044070 162377 338920 311290 669254 015263 357359 604012 508824 615913 473212 856103 989675 815555 641120 018399 519132 237950 662001 728689 070027 726201 508751 736987 666929 001328 946465 773334 283194 486374 353350 886693 292034 828943 425953 339917 225857 281753 595432 216870 489098 797095 647167 499714 780158 497079 127555 429446 472758 917971 193749 177794 856463 982982 015328 062771 588856 453077 527563 182279 343468 574945 425246 095706 656568 707533 102029 907543 108344 523695 052389 142191 326141 612298 951148 206300 737830 462426 (695 digits)/1 743578 864865 929092 053047 635407 645791 785244 785253 564986 976727 430345 135932 408335 418927 412406 948118 071198 331180 822904 716312 740158 945559 999553 322581 678628 852293 120523 274759 725763 233123 885815 370125 455788 847925 650447 604680 683157 498457 765718 002880 272868 072791 417693 424247 585285 789229 294573 624522 492895 693851 757925 102143 538100 924017 596534 945946 219284 557612 909385 360656 715455 282306 562444 442750 365263 114943 859093 646491 927754 954067 013167 793864 165017 639073 945138 024438 637951 128287 488825 576879 808357 435453 532809 075815 598426 803974 753980 506545 378280 872069 062651 177027 882125 878891 805906 490066 044797 119620 949547 942165 460388 648495 460593 730138 371314 024138 055861 728652 466817 099719 927988 320383 812690 996294 576930 174419 (697 digits), a[1325] = 2
                                                                                      A[1326]/B[1326] = 26899 295742 870623 523186 824068 790440 921657 221624 040738 801199 732019 225073 539798 958380 041469 031222 421731 145098 103995 014380 041085 981428 502191 676660 831360 803531 586026 348782 555178 260834 919385 908938 587583 816049 331622 849670 596880 465574 585690 371072 633794 940745 019204 346524 299171 962125 831964 079144 850351 131057 336689 799046 544184 228298 773983 199389 338328 344681 230506 098631 976287 968860 749012 193375 458578 261326 115010 134440 409520 687463 222787 730600 646371 208754 967187 310358 921749 828275 306313 742869 853490 260080 362999 166588 663353 666034 644646 030036 636473 373091 661770 330359 128170 807559 872170 476862 686759 494982 196902 042356 855103 981410 981906 014318 912473 291282 436069 677305 835554 079692 332205 078648 237561 946833 890522 003253 (695 digits)/2 614437 385402 332808 041903 823450 062337 772584 583989 218620 581094 758940 442475 234980 391966 786432 420107 928064 854000 475455 442560 592972 587898 099508 231775 735192 583675 024403 670501 420682 892942 544274 693215 304402 989025 992044 080371 206946 861184 303942 203051 195227 859278 849675 633915 904817 485737 729913 562625 760319 870508 443480 544374 859093 100528 295237 376039 404736 131249 136603 896225 468219 309710 865055 011337 467048 501424 491146 576790 895182 254124 555871 419239 972056 238163 170186 625716 281792 839301 922873 764781 511235 925812 533936 875002 191155 530532 742958 896396 283625 129915 693443 341908 760408 466238 255128 104476 638101 508624 512977 511840 724903 129536 278228 566664 004817 948319 886306 627198 206408 879152 931684 727009 525271 413217 022780 855608 (697 digits), a[1326] = 1
                                                                                      A[1327]/B[1327] = 44838 544852 035933 340987 806952 587351 096212 086273 753539 153819 837512 141820 185789 920232 514610 776030 133910 572232 448802 655889 460962 027791 879813 031494 670291 726652 946016 816922 575557 723609 254170 764426 437069 204914 054139 833304 211069 531017 629760 533449 972715 252035 688458 361787 656531 566138 340788 695058 323563 987161 326365 614602 185304 246698 293115 437340 000330 073370 300533 824833 485039 705848 415941 194704 405044 034660 398204 620814 762871 574156 514822 559544 072324 548672 193044 592112 517182 045145 795412 539965 500657 759795 143157 663667 790909 095481 117404 948007 830222 550886 518234 313341 143498 870331 461026 929940 214322 677261 540370 617302 280350 077117 638474 721852 014503 198825 544414 201000 887943 221883 658346 690947 188710 153134 628352 465679 (695 digits)/4 358016 250268 261900 094951 458857 708129 557829 369242 783607 557822 189285 578407 643315 810894 198839 368225 999263 185181 298360 158873 333131 533458 099061 554357 413821 435968 144926 945261 146446 126066 430090 063340 760191 836951 642491 685051 890104 359642 069660 205931 468095 932070 267369 058163 490103 274967 024487 187148 253215 564360 201405 646518 397194 024545 891772 321985 624020 688862 045989 256882 183674 592017 427499 454087 832311 616368 350240 223282 822937 208191 569039 213104 137073 877237 115324 650154 919743 967589 411699 341661 319593 361266 066745 950817 789582 334507 496939 402941 661906 001984 756094 518936 642534 345130 061034 594542 682898 628245 462525 454006 185291 778031 738822 296802 376131 972457 942168 355850 673225 978872 859673 047393 337962 409511 599711 030027 (697 digits), a[1327] = 1
                                                                                      A[1328]/B[1328] = 71737 840594 906556 864174 631021 377792 017869 307897 794277 955019 569531 366893 725588 878612 556079 807252 555641 717330 552797 670269 502048 009220 382004 708155 501652 530184 532043 165705 130735 984444 173556 673365 024653 020963 385762 682974 807949 996592 215450 904522 606510 192780 707662 708311 955703 528264 172752 774203 173915 118218 663055 413648 729488 474997 067098 636729 338658 418051 531039 923465 461327 674709 164953 388079 863622 295986 513214 755255 172392 261619 737610 290144 718695 757427 160231 902471 438931 873421 101726 282835 354148 019875 506156 830256 454262 761515 762050 978044 466695 923978 180004 643700 271669 677891 333197 406802 901082 172243 737272 659659 135454 058528 620380 736170 926976 490107 980483 878306 723497 301575 990551 769595 426272 099968 518874 468932 (695 digits)/6 972453 635670 594708 136855 282307 770467 330413 953232 002228 138916 948226 020882 878296 202860 985271 788333 927328 039181 773815 601433 926104 121356 198569 786133 149014 019643 169330 615762 567129 019008 974364 756556 064594 825977 634535 765423 097051 220826 373602 408982 663323 791349 117044 692079 394920 760704 754400 749774 013535 434868 644886 190893 256287 125074 187009 698025 028756 820111 182593 153107 651893 901728 292554 465425 299360 117792 841386 800073 718119 462316 124910 632344 109130 115400 285511 275871 201536 806891 334573 106442 830829 287078 600682 825819 980737 865040 239898 299337 945531 131900 449537 860845 402942 811368 316162 699019 321000 136869 975502 965846 910194 907568 017050 863466 380949 920777 828474 983048 879634 858025 791357 774402 863233 822728 622491 885635 (697 digits), a[1328] = 1
                                                                                      A[1329]/B[1329] = 116576 385446 942490 205162 437973 965143 114081 394171 547817 108839 407043 508713 911378 798845 070690 583282 689552 289563 001600 326158 963010 037012 261817 739650 171944 256837 478059 982627 706293 708053 427727 437791 461722 225877 439902 516279 019019 527609 845211 437972 579225 444816 396121 070099 612235 094402 513541 469261 497479 105379 989421 028250 914792 721695 360214 074069 338988 491421 831573 748298 946367 380557 580894 582784 268666 330646 911419 376069 935263 835776 252432 849688 791020 306099 353276 494583 956113 918566 897138 822800 854805 779670 649314 493924 245171 856996 879455 926052 296918 474864 698238 957041 415168 548222 794224 336743 115404 849505 277643 276961 415804 135646 258855 458022 941479 688933 524898 079307 611440 523459 648898 460542 614982 253103 147226 934611 (696 digits)/11 330469 885938 856608 231806 741165 478596 888243 322474 785835 696739 137511 599290 521612 013755 184111 156559 926591 224363 072175 760307 259235 654814 297631 340490 562835 455611 314257 561023 713575 145075 404454 819896 824786 662929 277027 450474 987155 580468 443262 614914 131419 723419 384413 750242 885024 035671 778887 936922 266750 999228 846291 837411 653481 149620 078782 020010 652777 508973 228582 409989 835568 493745 720053 919513 131671 734161 191627 023356 541056 670507 693949 845448 246203 992637 400835 926026 121280 774480 746272 448104 150422 648344 667428 776637 770320 199547 736837 702279 607437 133885 205632 379782 045477 156498 377197 293562 003898 765115 438028 419853 095486 685599 755873 160268 757081 893235 770643 338899 552860 836898 651030 821796 201196 232240 222202 915662 (698 digits), a[1329] = 1
                                                                                      A[1330]/B[1330] = 188314 226041 849047 069337 068995 342935 131950 702069 342095 063858 976574 875607 636967 677457 626770 390535 245194 006893 554397 996428 465058 046232 643822 447805 673596 787022 010103 148332 837029 692497 601284 111156 486375 246840 825665 199253 826969 524202 060662 342495 185735 637597 103783 778411 567938 622666 686294 243464 671394 223598 652476 441899 644281 196692 427312 710798 677646 909473 362613 671764 407695 055266 745847 970864 132288 626633 424634 131325 107656 097395 990043 139833 509716 063526 513508 397055 395045 791987 998865 105636 208953 799546 155471 324180 699434 618512 641506 904096 763614 398842 878243 600741 686838 226114 127421 743546 016487 021749 014915 936620 551258 194174 879236 194193 868456 179041 505381 957614 334937 825035 639450 230138 041254 353071 666101 403543 (696 digits)/18 302923 521609 451316 368662 023473 249064 218657 275706 788063 835656 085737 620173 399908 216616 169382 944893 853919 263544 845991 361741 185339 776170 496201 126623 711849 475254 483588 176786 280704 164084 378819 576452 889381 488906 911563 215898 084206 801294 816865 023896 794743 514768 501458 442322 279944 796376 533288 686696 280286 434097 491178 028304 909768 274694 265791 718035 681534 329084 411175 563097 487462 395474 012608 384938 431031 851954 033013 823430 259176 132823 818860 477792 355334 108037 686347 201897 322817 581372 080845 554546 981251 935423 268111 602457 751058 064587 976736 001617 552968 265785 655170 240627 448419 967866 693359 992581 324898 901985 413531 385700 005681 593167 772924 023735 138031 814013 599118 321948 432495 694924 442388 596199 064430 054968 844694 801297 (698 digits), a[1330] = 1
                                                                                      A[1331]/B[1331] = 1 434775 967739 885819 690521 920941 365689 037736 308656 942482 555852 243067 637967 370152 541048 458083 317029 405910 337817 882386 301158 218416 360640 768574 874289 887121 765991 548782 020957 565501 555536 636716 215886 866348 953763 219558 911055 807806 197024 269847 835438 879374 907996 122607 518980 587805 453069 317601 173514 197238 670570 556756 121548 424761 098542 351403 049660 082516 857735 369869 450649 800232 767424 801830 378833 194686 717080 883858 295345 688856 517548 182734 828523 359032 750784 947835 273971 721434 462482 889194 562254 317482 376493 737613 763189 141214 186585 370004 254729 642219 266764 845944 162233 223036 131021 686176 541565 230814 001748 382054 833305 274611 494870 413508 817380 020672 942224 062571 782607 956005 298709 125050 071508 903762 724604 809936 759412 (697 digits)/139 450934 537205 015822 812440 905478 222046 418844 252422 302282 546331 737674 940504 320969 530068 369791 770816 904026 069176 994115 292495 556614 088007 771039 226856 545781 782392 699374 798527 678504 293666 056191 855067 050457 085277 657969 961761 576603 189532 161317 782191 694624 326798 894622 846498 844637 610307 511908 743796 228756 037911 284538 035546 021859 072479 939324 046260 423517 812564 106811 351672 247805 262063 808312 614082 148894 697839 422723 787368 355289 600274 425973 189994 733542 748901 205266 339307 381003 844085 312191 329933 019186 196307 544209 993842 027726 651663 573989 713602 478214 994384 791824 064174 184416 931565 230717 241631 278191 079013 332748 119753 135257 837774 166341 326414 723304 591330 964471 592538 580330 701369 747750 995189 652206 617022 135066 524741 (699 digits), a[1331] = 7
                                                                                      A[1332]/B[1332] = 1 623090 193781 734866 759858 989936 708624 169687 010726 284577 619711 219642 513575 007120 218506 084853 707564 651104 344711 436784 297586 683474 406873 412397 322095 560718 553013 558885 169290 402531 248034 238000 327043 352724 200604 045224 110309 634775 721226 330510 177934 065110 545593 226391 297392 155744 075736 003895 416978 868632 894169 209232 563448 069042 295234 778715 760458 760163 767208 732483 122414 207927 822691 547678 349697 326975 343714 308492 426670 796512 614944 172777 968356 868748 814311 461343 671027 116480 254470 888059 667890 526436 176039 893085 087369 840648 805098 011511 158826 405833 665607 724187 762974 909874 357135 813598 285111 247301 023497 396970 769925 825869 689045 292745 011573 889129 121265 567953 740222 290943 123744 764500 301646 945017 077676 476038 162955 (697 digits)/157 753858 058814 467139 181102 928951 471110 637501 528129 090346 381987 823412 560677 720877 746684 539174 715710 757945 332721 840106 654236 741953 864178 267240 353480 257631 257647 182962 975313 959208 457750 435011 431519 939838 574184 569533 177659 660809 990826 978182 806088 489367 841567 396081 288821 124582 406684 045197 430492 509042 472008 775716 063850 931627 347174 205115 764296 105052 141648 517986 914769 735267 657537 820920 999020 579926 549793 455737 610798 614465 733098 244833 667787 088876 856938 891613 541204 703821 425457 393036 884480 000438 131730 812321 596299 778784 716251 550725 715220 031183 260170 446994 304801 632836 899431 924077 234212 603089 980998 746279 505453 140939 430941 939265 350149 861336 405344 563589 914487 012826 396294 190139 591388 716636 671990 979761 326038 (699 digits), a[1332] = 1
                                                                                      A[1333]/B[1333] = 3 057866 161521 620686 450380 910878 074313 207423 319383 227060 175563 462710 151542 377272 759554 542937 024594 057014 682529 319170 598744 901890 767514 180972 196385 447840 319005 107667 190247 968032 803570 874716 542930 219073 154367 264783 021365 442581 918250 600358 013372 944485 453589 348998 816372 743549 528805 321496 590493 065871 564739 765988 684996 493803 393777 130118 810118 842680 624944 102352 573064 008160 590116 349508 728530 521662 060795 192350 722016 485369 132492 355512 796880 227781 565096 409178 944998 837914 716953 777254 230144 843918 552533 630698 850558 981862 991683 381515 413556 048052 932372 570131 925208 132910 488157 499774 826676 478115 025245 779025 603231 100481 183915 706253 828953 909802 063489 630525 522830 246948 422453 889550 373155 848779 802281 285974 922367 (697 digits)/297 204792 596019 482961 993543 834429 693157 056345 780551 392628 928319 561087 501182 041847 276752 908966 486527 661971 401898 834221 946732 298567 952186 038279 580336 803413 040039 882337 773841 637712 751416 491203 286586 990295 659462 227503 139421 237413 180359 139500 588280 183992 168366 290704 135319 969220 016991 557106 174288 737798 509920 060254 099396 953486 419654 144439 810556 528569 954212 624798 266441 983072 919601 629233 613102 728821 247632 878461 398166 969755 333372 670806 857781 822419 605840 096879 880512 084825 269542 705228 214413 019624 328038 356531 590141 806511 367915 124715 428822 509398 254555 238818 368975 817253 830997 154794 475843 881281 060012 079027 625206 276197 268716 105606 676564 584640 996675 528061 507025 593157 097663 937890 586578 368843 289013 114827 850779 (699 digits), a[1333] = 1
                                                                                      A[1334]/B[1334] = 10 796688 678346 596926 111001 722570 931563 791956 968875 965758 146401 607772 968202 138938 497169 713664 781346 822148 392299 394296 093821 389146 709415 955313 911251 904239 510028 881886 740034 306629 658746 862149 955834 009943 663705 839573 174405 962521 475978 131584 218052 898566 906361 273387 746510 386392 662151 968385 188458 066247 588388 507198 618437 550452 476566 169072 190815 288205 642041 039540 841606 232409 593040 596204 535288 891961 526099 885544 592720 252620 012421 239316 358997 552093 509600 688880 506023 630224 405332 219822 358325 058191 833640 785181 639046 786237 780148 156057 399494 549992 462725 434583 538599 308605 821608 312922 765140 681646 099234 734047 579619 127313 240792 411506 498435 618535 311734 459530 308713 031788 391106 433151 421114 491356 484520 333962 930056 (698 digits)/1049 368235 846872 916025 161734 432240 550581 806538 869783 268233 166946 506675 064223 846419 576943 266074 175293 743859 538418 342772 494433 637657 720736 382079 094490 667870 377766 829976 296838 872346 711999 908621 291280 910725 552571 252042 595923 373049 531904 396684 570929 041344 346666 268193 694781 032242 457658 716515 953358 722438 001768 956478 362041 792086 606136 638435 195965 690762 004286 392381 714095 684486 416342 708621 838328 766390 292692 091121 805299 523731 733216 257254 241132 556135 674459 182253 182740 958297 234085 508721 527719 059311 115845 881916 366725 198318 819996 924872 001687 559378 023836 163449 411729 084598 392423 388460 661744 246933 161034 983362 381071 969531 237090 256085 379843 615259 395371 147774 435563 792297 689286 003811 351123 823166 539030 324244 878375 (700 digits), a[1334] = 3
                                                                                      A[1335]/B[1335] = 13 854554 839868 217612 561382 633449 005876 999380 288259 192818 321965 070483 119744 516211 256724 256601 805940 879163 074828 713466 692566 291037 476930 136286 107637 352079 829033 989553 930282 274662 462317 736866 498764 229016 818073 104356 195771 405103 394228 731942 231425 843052 359950 622386 562883 129942 190957 289881 778951 132119 153128 273187 303434 044255 870343 299191 000934 130886 266985 141893 414670 240570 183156 945713 263819 413623 586895 077895 314736 737989 144913 594829 155877 779875 074697 098059 451022 468139 122285 997076 588469 902110 386174 415880 489605 768100 771831 537572 813050 598045 395098 004715 463807 441516 309765 812697 591817 159761 124480 513073 182850 227794 424708 117760 327389 528337 375224 090055 831543 278736 813560 322701 794270 340136 286801 619937 852423 (698 digits)/1346 573028 442892 398987 155278 266670 243738 862884 650334 660862 095266 067762 565405 888266 853696 175040 661821 405830 940317 176994 441165 936225 672922 420358 674827 471283 417806 712314 070680 510059 463416 399824 577867 901021 212033 479545 735344 610462 712263 536185 159209 225336 515032 558897 830101 001462 474650 273622 127647 460236 511689 016732 461438 745573 025790 782875 006522 219331 958499 017179 980537 667559 335944 337855 451431 495211 540324 969583 203466 493487 066588 928061 098914 378555 280299 279133 063253 043122 503628 213949 742132 078935 443884 238447 956867 004830 187912 049587 430510 068776 278391 402267 780704 901852 223420 543255 137588 128214 221047 062390 006278 245728 505806 361692 056408 199900 392046 675835 942589 385454 786949 941701 937702 192009 828043 439072 729154 (700 digits), a[1335] = 1
                                                                                      A[1336]/B[1336] = 24 651243 518214 814538 672384 356019 937440 791337 257135 158576 468366 678256 087946 655149 753893 970266 587287 701311 467128 107762 786387 680184 186346 091600 018889 256319 339062 871440 670316 581292 121064 599016 454598 238960 481778 943929 370177 367624 870206 863526 449478 741619 266311 895774 309393 516334 853109 258266 967409 198366 741516 780385 921871 594708 346909 468263 191749 419091 909026 181434 256276 472979 776197 541917 799108 305585 112994 963439 907456 990609 157334 834145 514875 331968 584297 786939 957046 098363 527618 216898 946794 960302 219815 201062 128652 554338 551979 693630 212545 148037 857823 439299 002406 750122 131374 125620 356957 841407 223715 247120 762469 355107 665500 529266 825825 146872 686958 549586 140256 310525 204666 755853 215384 831492 771321 953900 782479 (698 digits)/2395 941264 289765 315012 317012 698910 794320 669423 520117 929095 262212 574437 629629 734686 430639 441114 837115 149690 478735 519766 935599 573883 393658 802437 769318 139153 795573 542290 367519 382406 175416 308445 869148 811746 764604 731588 331267 983512 244167 932869 730138 266680 861698 827091 524882 033704 932308 990138 081006 182674 513457 973210 823480 537659 631927 421310 202487 910093 962785 409561 694633 352045 752287 046477 289760 261601 833017 060705 008766 017218 799805 185315 340046 934690 954758 461386 245994 001419 737713 722671 269851 138246 559730 120364 323592 203149 007908 974459 432197 628154 302227 565717 192433 986450 615843 931715 799332 375147 382082 045752 387350 215259 742896 617777 436251 815159 787417 823610 378153 177752 476235 945513 288826 015176 367073 763317 607529 (700 digits), a[1336] = 1
                                                                                      A[1337]/B[1337] = 63 157041 876297 846689 906151 345488 880758 582054 802529 509971 258698 426995 295637 826510 764512 197134 980516 281786 009084 928992 265341 651405 849622 319486 145415 864718 507159 732435 270915 437246 704446 934899 407960 706937 781630 992214 936126 140353 134642 458995 130383 326290 892574 413935 181670 162611 897175 806415 713769 528852 636161 833959 147177 233672 564162 235717 384432 969070 085037 504761 927223 186529 735552 029548 862036 024793 812885 004775 129650 719207 459583 263120 185628 443812 243292 671939 365114 664866 177522 430874 482059 822714 825804 818004 746910 876777 875790 924833 238140 894121 110744 883313 468620 941760 572514 063938 305732 842575 571911 007314 707788 938009 755709 176293 979039 822082 749141 189228 112055 899787 222893 834408 225040 003121 829445 527739 417381 (698 digits)/6138 455557 022423 029011 789303 664491 832380 201731 690570 519052 619691 216637 824665 357639 714975 057270 336051 705211 897788 216528 312365 083992 460240 025234 213463 749591 008953 796894 805719 274871 814249 016716 316165 524514 741242 942722 397880 577487 200599 401924 619485 758698 238430 213080 879865 068872 339268 253898 289659 825585 538604 963154 108399 820892 289645 625495 411498 039519 884069 836303 369804 371650 840518 430810 030952 018415 206359 090993 220998 527924 666199 298691 779008 247937 189816 201905 555241 045961 979055 659292 281834 355428 563344 479176 604051 411128 203729 998506 294905 325084 882846 533702 165572 874753 455108 406686 736252 878508 985211 153894 780978 676247 991599 597246 928911 830219 966882 323056 698895 740959 739421 832728 515354 222362 562190 965707 944212 (700 digits), a[1337] = 2
                                                                                      A[1338]/B[1338] = 340 436452 899704 047988 203141 083464 341233 701611 269782 708432 761858 813232 566135 787703 576454 955941 489869 110241 512552 752724 113095 937213 434457 689030 745968 579911 874861 533617 024893 767525 643299 273513 494401 773649 389933 905004 050808 069390 543419 158502 101395 373073 729183 965450 217744 329394 338988 290345 536256 842629 922325 950181 657757 763071 167720 646850 113914 264442 334213 705243 892392 405628 453957 689662 109288 429554 177419 987315 555710 586646 455251 149746 443017 551029 800761 146636 782619 422694 415230 371271 357094 073876 348839 291085 863206 938227 930934 317796 403249 618643 411547 855866 345511 458924 993944 445311 885622 054285 083270 283694 301414 045156 444046 410736 721024 257286 432664 495726 700535 809461 319135 927894 340584 847101 918549 592597 869384 (699 digits)/33088 219049 401880 460071 263531 021369 956221 678081 972970 524358 360668 657626 752956 522885 005514 727466 517373 675749 967676 602408 497424 993845 694858 928608 836636 887108 840342 526764 396115 756765 246661 392027 449976 434320 470819 445200 320670 870948 247164 942492 827567 060172 053849 892495 924207 378066 628650 259629 529305 310602 206482 788981 365479 642121 080155 548787 259978 107693 383134 591078 543655 210299 954879 200527 444520 353677 864812 515671 113758 656842 130801 678774 235088 174376 903839 470914 022199 231229 632992 019132 679022 915389 376452 516247 343849 258790 026558 966990 906724 253578 716460 234228 020298 360217 891385 965149 480596 767692 308137 815226 292243 596499 700894 604012 080810 966259 621829 438893 872631 882551 173345 109155 865597 126989 178028 591857 328589 (701 digits), a[1338] = 5
                                                                                      A[1339]/B[1339] = 403 593494 776001 894678 109292 428953 221992 283666 072312 218404 020557 240227 861773 614214 340967 153076 470385 392027 521637 681716 378437 588619 284080 008516 891384 444630 382021 266052 295809 204772 347746 208412 902362 480587 171564 897218 986934 209743 678061 617497 231778 699364 621758 379385 399414 492006 236164 096761 250026 371482 558487 784140 804934 996743 731882 882567 498347 233512 419251 210005 819615 592158 189509 719210 971324 454347 990304 992090 685361 305853 914834 412866 628645 994842 044053 818576 147734 087560 592752 802145 839153 896591 174644 109090 610117 815005 806725 242629 641390 512764 522292 739179 814132 400685 566458 509250 191354 896860 655181 291009 009202 983166 199755 587030 700064 079369 181805 684954 812591 709248 542029 762302 565624 850223 747995 120337 286765 (699 digits)/39226 674606 424303 489083 052834 685861 788601 879813 663541 043410 980359 874264 577621 880524 720489 784736 853425 380961 865464 818936 809790 077838 155098 953843 050100 636699 849296 323659 201835 031637 060910 408743 766141 958835 212062 387922 718551 448435 447764 344417 447052 818870 292280 105576 804072 446938 967918 513527 818965 136187 745087 752135 473879 463013 369801 174282 671476 147213 267204 427381 913459 581950 795397 631337 475472 372093 071171 606664 334757 184766 797000 977466 014096 422314 093655 672819 577440 277191 612047 678424 960857 270817 939796 995423 947900 669918 230288 965497 201629 578663 599306 767930 185871 234971 346494 371836 216849 646201 293348 969121 073222 272747 692494 201259 009722 796479 588711 761950 571527 623510 912766 941884 380951 349351 740219 557565 272801 (701 digits), a[1339] = 1
                                                                                      A[1340]/B[1340] = 4376 371400 659722 994769 296065 372996 561156 538271 992904 892472 967431 215511 183871 929846 986126 486706 193723 030516 728929 569887 897471 823406 275257 774199 659813 026215 695074 194139 982985 815249 120761 357642 518026 579521 105582 877193 920150 166827 324035 333474 419182 366719 946767 759304 211889 249456 700629 257958 036520 557455 507203 791589 707107 730508 486549 472525 097386 599566 526725 805302 088548 327210 349054 881771 822532 973034 080469 908222 409323 645185 603595 278412 729477 499450 241299 332398 259960 298300 342758 392729 748633 039788 095280 381991 964385 088285 998186 744092 817154 746288 634475 247664 486835 465780 658529 537813 799171 022891 635083 193784 393443 876818 441602 281043 721665 050978 250721 345274 826452 901946 739433 550919 996833 349339 398500 795970 737034 (700 digits)/425354 965113 644915 350901 791877 879987 842240 476218 608380 958468 164267 400272 529175 328132 210412 574835 051627 485368 622324 791776 595325 772227 245848 467039 337643 254107 333305 763356 414466 073135 855765 479465 111396 022672 591443 324427 506185 355302 724808 386667 298095 248874 976650 948263 964931 847456 307835 394907 718956 672479 657360 310336 104274 272254 778167 291613 974739 579826 055178 864897 678251 029807 908855 513902 199244 074608 576528 582314 461330 504510 100811 453434 376052 397517 840396 199109 796602 003145 753468 803382 287595 623568 774422 470486 822855 957972 329448 621962 923020 040214 709527 913529 879010 709931 356329 683511 649093 229705 241627 506437 024466 323976 625836 616602 178038 931055 508947 058399 587908 117660 301014 527999 675110 620506 580224 167510 056599 (702 digits), a[1340] = 10
                                                                                      A[1341]/B[1341] = 4779 964895 435724 889447 405357 801949 783148 821938 065217 110876 987988 455739 045645 544061 327093 639782 664108 422544 250567 251604 275909 412025 559337 782716 551197 470846 077095 460192 278795 020021 468507 566055 420389 060108 277147 774412 907084 376571 002096 950971 650961 066084 568526 138689 611303 741462 936793 354719 286546 928938 065691 575730 512042 727252 218432 355092 595733 833078 945977 015307 908163 919368 538564 600982 793857 427382 070774 900313 094684 951039 518429 691279 358123 494292 285353 150974 407694 385860 935511 194875 587786 936379 269924 491082 574502 903291 804911 986722 458545 259053 156767 986844 300967 866466 224988 047063 990525 919752 290264 484793 402646 859984 641357 868074 421729 130347 432527 030229 639044 611195 281463 313222 562458 199563 146495 916308 023799 (700 digits)/464581 639720 069218 839984 844712 565849 630842 356032 271922 001879 144627 274537 106797 208656 930902 359571 905052 866330 487789 610713 405115 850065 400947 420882 387743 890807 182602 087015 616301 104772 916675 888208 877537 981507 803505 712350 224736 803738 172572 731084 745148 067745 268931 053840 769004 294395 275753 908435 537921 808667 402448 062471 578153 735268 147968 465896 646215 727039 322383 292279 591710 611758 704253 145239 674716 446701 647700 188978 796087 689276 897812 430900 390148 819831 934051 871929 374042 280337 365516 481807 248452 894386 714219 465910 770756 627890 559737 587460 124649 618878 308834 681460 064881 944902 702824 055347 865942 875906 534976 475558 097688 596724 318330 817861 187761 727535 097658 820350 159435 741171 213781 469884 056061 969858 320443 725075 329400 (702 digits), a[1341] = 1
                                                                                      A[1342]/B[1342] = 99975 669309 374220 783717 403221 411992 224132 977033 297247 110012 727200 330292 096782 811073 527999 282359 475891 481401 740274 601973 415660 063917 462013 428530 683762 443137 236983 397985 558886 215678 490912 678750 925807 781686 648538 365452 061837 698247 365974 352907 438403 688411 317290 533096 437964 078715 436496 352343 767459 136216 821035 306199 947962 275552 855196 574377 012063 261145 446266 111460 251826 714581 120346 901427 699681 520675 495967 914484 303022 665975 972189 103999 891947 385295 948362 351886 413848 015519 052982 290241 504371 767373 493770 203643 454443 154122 096426 478541 988059 927351 769834 984550 506192 795105 158290 479093 609689 417937 440372 889652 446381 076511 268759 642532 156247 657926 901261 949867 607345 125852 368699 815371 245997 340602 328419 122131 213014 (701 digits)/9 716987 759515 029292 150598 686129 196980 459087 596864 046820 996051 056812 891014 665119 501270 828459 766273 152684 811978 378117 006044 697642 773535 264796 884687 092521 070250 985347 503668 740488 168594 189283 243642 662155 652828 661557 571432 000921 430066 176263 008362 201056 603780 355272 025079 345017 735361 822913 563618 477392 845827 706321 559767 667348 977617 737536 609546 899054 120612 502844 710489 512463 264981 993918 418695 693573 008641 530532 361890 383084 290048 057060 071442 179028 794156 521433 637697 277447 609893 063798 439527 256653 511303 058811 788702 237988 515783 524200 371165 416012 417780 886221 542731 176649 607985 412810 790468 967950 747835 941157 017598 978238 258462 992452 973825 933273 481757 462123 465402 776622 941084 576643 925680 796350 017672 989098 669016 644599 (703 digits), a[1342] = 20
                                                                                      A[1343]/B[1343] = 204731 303514 184166 456882 211800 625934 231414 776004 659711 330902 442389 116323 239211 166208 383092 204501 615891 385347 731116 455551 107229 539860 483364 639777 918722 357120 551062 256163 396567 451378 450332 923557 272004 623481 574224 505317 030759 773065 734045 656786 527768 442907 203107 204882 487231 898893 809786 059406 821465 201371 707762 188130 407967 278357 928825 503846 619860 355369 838509 238228 411817 348530 779258 403838 193220 468733 062710 729281 700730 282991 462807 899279 142018 264884 182077 854747 235390 416899 041475 775358 596530 471126 257464 898369 483389 211535 997764 943806 434665 113756 696437 955945 313353 456676 541569 005251 209904 755627 171010 264098 295409 013007 178877 153138 734224 446201 235050 929964 853734 862900 018862 943965 054452 880767 803334 160570 449827 (702 digits)/19 898557 158750 127803 141182 216970 959810 549017 549760 365563 993981 258253 056566 437036 211198 587821 892118 210422 490287 244023 622802 800401 397135 930541 190256 572786 031309 153297 094353 097277 441961 295242 375494 201849 287165 126620 855214 226579 663870 525098 747809 147261 275305 979475 103999 459039 765118 921581 035672 492707 500322 815091 182006 912851 690503 623041 684990 444323 968264 328072 713258 616637 141722 692089 982631 061862 463984 708764 912759 562256 269373 011932 573784 748206 408144 976919 147323 928937 500123 493113 360861 761759 916992 831843 043315 246733 659457 608138 329790 956674 454440 081277 766922 418181 160873 528445 636285 801844 371578 417290 510756 054165 113650 303236 765513 054308 691050 021905 751155 712681 623340 367069 321245 648762 005204 298641 063108 618598 (704 digits), a[1343] = 2
                                                                                      A[1344]/B[1344] = 11 564928 666103 687542 369121 264056 464309 183360 433294 241081 640549 500990 844393 492608 118742 981162 734449 965809 060874 682796 112835 420514 296104 530433 256094 132214 441888 096469 743135 766663 492871 709556 397958 158066 696654 805110 663205 784384 989928 472531 132952 993436 491214 691294 006515 722950 416768 784515 679125 769510 413032 455717 841502 794129 863596 869424 789787 724243 161856 402783 452251 313598 232304 758817 516366 520027 769727 007768 754259 543918 513497 889431 463631 844970 218810 144722 217731 595711 361865 375625 710322 910078 150443 911804 512334 524239 000137 971263 331702 329306 297726 770360 517488 053986 368991 486154 773161 364355 733059 016947 679156 989285 804913 285880 218301 272816 645196 064114 027899 416497 448253 425024 677414 295358 663599 315132 114076 403326 (704 digits)/1124 036188 649522 186268 056802 836502 946371 204070 383444 518404 659001 518984 058735 139147 328391 746485 724892 936344 268064 043439 883001 520121 013147 375103 539055 168538 823563 569984 787442 188024 918426 722856 271317 965715 734075 752325 463428 689382 606815 581792 885674 447688 020915 205877 849049 051244 582021 431451 561278 069012 863905 351427 752154 787043 645820 627870 969011 781196 343414 874916 652972 044143 201452 750957 446035 157870 991785 221367 476425 869435 374936 725284 203388 078587 650275 228905 887837 297947 616808 678146 647785 915208 862901 642022 214356 055073 445409 579946 839458 989781 866425 437776 490386 594794 616903 005766 422473 871235 556227 309425 619938 011484 622879 973711 842556 974560 180558 688845 530122 686793 848145 132525 915437 127022 309113 712998 203099 286087 (706 digits), a[1344] = 56
                                                                                      A[1345]/B[1345] = 23 334588 635721 559251 195124 739913 554552 598135 642593 141874 612001 444370 805110 224427 403694 345417 673401 547509 507097 096708 681221 948258 132069 544231 151966 183151 240896 744001 742434 929894 437121 869445 719473 588138 016791 184445 831728 599529 752922 679107 922692 514641 425336 585695 217913 933132 732431 378817 417658 360486 027436 619197 871135 996227 005551 667675 083422 068346 679082 644076 142731 039013 813140 296893 436571 233276 008187 078248 237800 788567 309987 241670 826542 831958 702504 471522 290210 426813 140629 792727 196004 416686 772014 081073 923038 531867 211811 940291 607211 093277 709210 237158 990921 421326 194659 513878 551573 938616 221745 204905 622412 273980 622833 750637 589741 279857 736593 363278 985763 686729 759406 868912 298793 645170 207966 433598 388723 256479 (704 digits)/2267 970934 457794 500339 254787 889976 852552 957158 316649 402373 311984 296221 174036 715330 867982 080793 341904 083111 026415 330903 388805 840643 423430 680748 268366 909863 678436 293266 669237 473327 278814 740954 918130 133280 755316 631271 782071 605344 877501 688684 519158 042637 317136 391230 802097 561528 929161 784484 158228 630733 228133 517946 686316 486938 982144 878783 623014 006716 655094 077906 019202 704923 544628 194004 874701 377604 447555 151499 865611 301127 019246 462500 980560 905381 708695 434730 922998 524832 733740 849406 656433 592177 642796 115887 472027 356880 550276 768032 008708 936238 187290 956830 747695 607770 394679 539978 481233 544315 484033 036141 750632 077134 359410 250660 450627 003429 052167 399596 811401 086269 319630 632121 152119 902806 623431 724637 469307 190772 (706 digits), a[1345] = 2
                                                                                      A[1346]/B[1346] = 58 234105 937546 806044 759370 743883 573414 379631 718480 524830 864552 389732 454613 941462 926131 671998 081253 060828 075068 876213 475279 317030 560243 618895 560026 498516 923681 584473 228005 626452 367115 448447 836905 334342 730237 174002 326662 983444 495773 830746 978338 022719 341887 862684 442343 589215 881631 542150 514442 490482 467905 694113 583774 786583 874700 204774 956631 860936 520021 690935 737713 391625 858585 352604 389508 986579 786101 164265 229861 121053 133472 372773 116717 508887 623819 087766 798152 449337 643124 961080 102331 743451 694472 073952 358411 587973 423761 851846 546124 515861 716147 244678 499330 896638 758310 513911 876309 241588 176549 426758 923981 537247 050580 787155 397783 832532 118382 790671 999426 789956 967067 162849 275001 585699 079532 182328 891522 916284 (704 digits)/5659 978057 565111 186946 566378 616456 651477 118387 016743 323151 282970 111426 406808 569809 064355 908072 408701 102566 320894 705246 660613 201407 860008 736600 075788 988266 180436 156518 125917 134679 476056 204766 107578 232277 244709 014869 027571 900072 361818 959161 923990 532962 655187 988339 453244 174302 440345 000419 877735 330479 320172 387321 124787 760921 610110 385438 215039 794629 653603 030728 691377 453990 290709 138967 195437 913079 886895 524367 207648 471689 413429 650286 164509 889351 067666 098367 733834 347613 084290 376959 960653 099564 148493 873797 158410 768834 545963 116010 856876 862258 241007 351437 985777 810335 406262 085723 384940 959866 524293 381709 121202 165753 341700 475032 743810 981418 284893 488039 152924 859332 487406 396768 219676 932635 555977 162273 141713 667631 (706 digits), a[1346] = 2
                                                                                      A[1347]/B[1347] = 198 036906 448361 977385 473236 971564 274795 737030 798034 716367 205658 613568 168952 048816 182089 361411 917160 729993 732303 725349 107059 899349 812800 400917 832045 678702 011941 497421 426451 809251 538468 214789 230189 591166 207502 706452 811717 549863 240244 171348 857706 582799 451000 173748 544944 700780 377326 005268 960985 831933 431153 701538 622460 355978 629652 281999 953317 651156 239147 716883 355871 213891 388896 354706 605098 193015 366490 571043 927384 151726 710404 359990 176695 358621 573961 734822 684667 774826 070004 675967 502999 647041 855430 302930 998273 295787 483097 495831 245584 640862 857651 971194 488914 111242 469591 055614 180501 663380 751393 485182 394356 885721 774576 112103 783092 777454 091741 735294 984044 056600 660608 357460 123798 402267 446562 980585 063292 005331 (705 digits)/19247 905107 153128 061178 953923 739346 806984 312319 366879 371827 160894 630500 394462 424758 061049 805010 568007 390809 989099 446643 370645 444867 003456 890548 495733 874662 219744 762821 046988 877365 706983 355253 240864 830112 489443 675878 864787 305561 962958 566170 291129 641525 282700 356249 161830 084436 250196 785743 791434 622171 188650 679910 060679 769703 812476 035098 268133 390605 615903 170092 093335 066894 416755 610906 461015 116844 108241 724601 488556 716195 259535 413359 474090 573434 911693 729834 124501 567671 986611 980286 538392 890870 088277 737278 947259 663384 188166 116064 579339 523012 910313 011144 705029 038776 613465 797148 636056 423915 056913 181269 114238 574394 384511 675758 682059 947683 906847 863714 270175 664266 781849 822425 811150 700713 291363 211456 894448 193665 (707 digits), a[1347] = 3
                                                                                      A[1348]/B[1348] = 850 381731 730994 715586 652318 630140 672597 327754 910619 390299 687186 844005 130422 136727 654489 117645 749895 980803 004283 777609 903518 914429 811445 222566 888209 213324 971447 574158 933812 863458 520988 307604 757663 699007 560247 999813 573533 182897 456750 516142 409164 353917 145888 557678 622122 392337 390935 563226 358385 818216 192520 500268 073616 210498 393309 332774 769902 465561 476612 558469 161198 247191 414170 771430 809901 758641 252063 448440 939397 727959 975089 812733 823498 943373 919666 027057 536823 548641 923143 664950 114330 331619 116193 285676 351504 771123 356151 835171 528463 079313 146755 129456 454987 341608 636674 736368 598315 895111 182123 367488 501409 080134 148885 235570 530154 942348 485349 731851 935603 016359 609500 592689 770195 194768 865784 104669 144690 937608 (705 digits)/82651 598486 177623 431662 382073 573843 879414 367664 484260 810459 926548 633427 984658 268841 308555 128114 680730 665806 277292 491820 143194 980875 873836 298794 058724 486915 059415 207802 313872 644142 303989 625779 071037 552727 202483 718384 486721 122320 213653 223843 088509 099063 785989 413336 100564 512047 441132 143395 043473 819164 074775 106961 367506 839736 860014 525831 287573 357052 117215 711097 064717 721567 957731 582593 039498 380456 319862 422773 161875 336470 451571 303724 060872 183090 714441 017704 231840 618301 030738 298106 114224 663044 501604 822912 947449 422371 298627 580269 174234 954309 882259 396016 805893 965441 860125 274317 929166 655526 751946 106785 578156 463330 879747 178067 472050 772153 912284 942896 233627 516399 614805 686471 464279 735488 721430 008100 719506 442291 (707 digits), a[1348] = 4
                                                                                      A[1349]/B[1349] = 7851 472492 027314 417665 344104 642830 328171 686824 993609 229064 390340 209614 342751 279365 072491 420223 666224 557220 770857 723838 238730 129218 115807 404019 825928 598626 754969 664851 830767 580378 227362 983232 049162 882234 249734 704774 973516 195940 350998 816630 540185 768053 763997 192856 144046 231816 895746 074306 186458 195879 163838 203951 285006 250464 169436 276972 882439 841209 528660 743105 806655 438614 116433 297583 894214 020786 635061 607012 381963 703366 486212 674594 588185 848986 850955 978340 516079 712603 378297 660518 531972 631613 901169 874018 161816 235897 688464 012375 001752 354681 178448 136302 583800 185720 199663 682931 565344 719381 390503 792578 907038 606929 114543 232238 554487 258590 459889 321962 404471 203837 146113 691668 055555 155187 238619 922607 365510 443803 (706 digits)/763112 291482 751738 946140 392585 903941 721713 621299 725226 665966 499832 331352 256386 844329 838045 958042 694583 383066 484731 873024 659400 272749 867983 579695 024254 256897 754481 633041 871842 674646 442889 987264 880202 804657 311797 141339 245277 406443 885837 580758 087711 533099 356605 076274 066910 692863 220386 076299 182698 994647 861626 642562 368241 327335 552606 767579 856293 604074 670844 569965 675794 561006 036339 854243 816500 540950 987003 529559 945434 744429 323677 146876 021940 221251 341662 889172 211067 132381 263256 663241 566414 858270 602721 143495 474304 464725 875814 338487 147454 111801 850647 575295 958074 727753 354593 266009 998556 323655 824428 142339 317646 744372 302236 278365 930516 897069 117412 349780 372823 311863 315101 000668 989668 320111 784233 284363 370006 174284 (708 digits), a[1349] = 9
                                                                                      A[1350]/B[1350] = 8701 854223 758309 133251 996423 272971 000769 014579 904228 619364 077527 053619 473173 416092 726980 537869 416120 538023 775141 501448 142249 043647 927252 626586 714137 811951 726417 239010 764580 443836 748351 290836 806826 581241 809982 704588 547049 378837 807749 332772 949350 121970 909885 750534 766168 624154 286681 637532 544844 014095 356358 704219 358622 460962 562745 609747 652342 306771 005273 301574 967853 685805 530604 069014 704115 779427 887125 055453 321361 431326 461302 487328 411684 792360 770622 005398 052903 261245 301441 325468 646302 963233 017363 159694 513321 007021 044615 847546 530215 433994 325203 265759 038787 527328 836338 419300 163660 614492 572627 160067 408447 687063 263428 467809 084642 200938 945239 053814 340074 220196 755614 284357 825750 349956 104404 027276 510201 381411 (706 digits)/845763 889968 929362 377802 774659 477785 601127 988964 209487 476426 426380 964780 241045 113171 146601 086157 375314 048872 762024 364844 802595 253625 741819 878489 082978 743812 813896 840844 185715 318788 746879 613043 951240 357384 514280 859723 731998 528764 099490 804601 176220 632163 142594 489610 167475 204910 661518 219694 226172 813811 936401 749523 735748 167072 412621 293411 143866 961126 788060 281062 740512 282573 994071 436836 855998 921407 306865 952333 107310 080899 775248 450600 082812 404342 056103 906876 442907 750682 293994 961347 680639 521315 104325 966408 421753 887097 174441 918756 321689 066111 732906 971312 763968 693195 214718 540327 927722 979182 576374 249124 895803 207703 181983 456433 402567 669223 029697 292676 606450 828262 929906 687140 453948 055600 505663 292464 089512 616575 (708 digits), a[1350] = 1
                                                                                      A[1351]/B[1351] = 16553 326715 785623 550917 340527 915801 328940 701404 897837 848428 467867 263233 815924 695457 799471 958093 082345 095244 545999 225286 380979 172866 043060 030606 540066 410578 481386 903862 595348 024214 975714 274068 855989 463476 059717 409363 520565 574778 158748 149403 489535 890024 673882 943390 910214 855971 182427 711838 731302 209974 520196 908170 643628 711426 732181 886720 534782 147980 533934 044680 774509 124419 647037 366598 598329 800214 522186 662465 703325 134692 947515 161922 999870 641347 621577 983738 568982 973848 679738 985987 178275 594846 918533 033712 675137 242918 733079 859921 531967 788675 503651 402061 622587 713049 036002 102231 729005 333873 963130 952646 315486 293992 377971 700047 639129 459529 405128 375776 744545 424033 901727 976025 881305 505143 343023 949883 875711 825214 (707 digits)/1 608876 181451 681101 323943 167245 381727 322841 610263 934714 142392 926213 296132 497431 957500 984647 044200 069897 431939 246756 237869 461995 526375 609803 458184 107233 000710 568378 473886 057557 993435 189769 600308 831443 162041 826078 001062 977275 935207 985328 385359 263932 165262 499199 565884 234385 897773 881904 295993 408871 808459 798028 392086 103989 494407 965228 060991 000160 565201 458904 851028 416306 843580 030411 291080 672499 462358 293869 481893 052744 825329 098925 597476 104752 625593 397766 796048 653974 883063 557251 624589 247054 379585 707047 109903 896058 351823 050256 257243 469143 177913 583554 546608 722043 420948 569311 806337 926279 302838 400802 391464 213449 952075 484219 734799 333084 566292 147109 642456 979274 140126 245007 687809 443616 375712 289896 576827 459518 790859 (709 digits), a[1351] = 1
                                                                                      A[1352]/B[1352] = 3 153833 930223 026783 807546 696727 275223 499502 281510 493419 820772 972307 068044 498865 553074 626652 575555 061688 634487 514994 305860 528291 888196 108658 441829 326755 821863 189928 972903 880705 044682 134063 363919 444824 641693 156290 483657 454508 586687 969897 719435 961169 226658 947644 994807 706991 258678 947946 886891 492263 909254 193771 256641 648077 632041 677304 086649 260950 423072 452741 790922 124587 325538 467703 722748 386777 820187 102590 923936 953137 022986 489183 252698 387106 648408 870438 915726 159668 292494 451848 663032 518665 984147 538639 565102 789397 161580 329789 232637 604095 282340 018969 657467 330453 006645 676737 843328 674674 050545 567508 162867 350843 545615 078051 476860 519239 511525 919630 451395 803704 786638 083929 729275 273796 327191 278954 505212 895448 172071 (709 digits)/306 532238 365788 338613 927004 551282 005976 941033 939111 805174 531082 406907 229954 753117 038358 229539 484170 655826 117329 645709 560042 581745 264991 604476 933469 457248 878820 805806 879195 121734 071474 803103 671721 925441 145331 469101 061689 414426 218281 311884 022861 323332 032037 990512 007614 700795 781948 223334 458441 911816 421173 561796 245883 493752 104585 805952 881701 174374 349403 979981 976461 838812 562779 772216 742164 630896 769483 142067 512013 128826 893428 571111 971059 985811 267087 631795 156120 698135 532758 171803 633304 620971 642599 443276 848148 672840 733476 723130 795015 458892 869692 608270 826969 952218 673423 383961 744533 920790 518478 728828 627325 451294 102045 183733 068306 688635 264730 980529 359502 668537 452249 481367 370934 741059 440935 586012 889681 398082 879785 (711 digits), a[1352] = 190
                                                                                      A[1353]/B[1353] = 15 785722 977830 919542 588650 824164 291918 826452 108957 364936 952293 329402 603456 310252 460830 932734 835868 390788 267682 120970 754589 022438 613846 586352 239753 173845 519894 431031 768381 998873 247625 646031 093666 080112 671941 841169 827650 793108 508218 008236 746583 295382 023319 412107 917429 445171 149365 922162 146296 192621 756245 489053 191378 884016 871635 118702 319966 839534 263342 797642 999291 397445 752111 985555 980340 532218 901150 035141 282150 469010 249625 393431 425414 935403 883391 973772 562369 367324 436320 938982 301149 771605 515584 611730 859226 622123 050820 382026 023109 552444 200375 598499 689398 274852 746277 419691 318875 102375 586601 800671 766983 069704 022067 768229 084350 235327 017159 003280 632755 763069 357224 321376 622402 250287 141099 737796 475948 352952 685569 (710 digits)/1534 270068 010393 374170 958965 923655 411612 028011 305822 960586 797804 960749 445906 263017 149292 132344 465053 349028 018587 475304 038082 370721 851333 632188 125531 393477 394814 597412 869861 666228 350809 205287 958918 458648 888699 171583 309510 049407 026614 544748 499665 880592 325452 451759 603957 738364 807514 998576 588202 967953 914327 607009 621503 572750 017336 994992 469496 872032 312221 358814 733337 610369 657478 891495 001903 826983 309774 004207 041958 696879 292471 954485 452776 033808 961031 556742 576652 144652 546854 416269 791112 351912 592582 923431 350647 260262 019206 665910 232320 763607 526376 624908 681458 483136 788065 489120 529007 530231 895232 044945 528091 469920 462301 402885 076332 776260 889947 049756 439970 321961 401373 651844 542483 148913 580390 219961 025234 449933 189784 (712 digits), a[1353] = 5
                                                                                      A[1354]/B[1354] = 82 082448 819377 624496 750800 817548 734817 631762 826297 318104 582239 619320 085326 050127 857229 290326 754897 015629 972898 119848 078805 640484 957429 040419 640595 195983 421335 345087 814813 875071 282810 364218 832249 845388 001402 362139 621911 420051 127778 011081 452352 438079 343256 008184 581954 932847 005508 558757 618372 455372 690481 639037 213536 068161 990217 270815 686483 458621 739786 440956 787379 111816 086098 395483 624451 047872 325937 278297 334689 298188 271113 456340 379773 064126 065368 739301 727572 996290 474099 146760 168781 376693 562070 597293 861235 900012 415682 239919 348185 366316 284218 011468 104458 704716 738032 775194 437704 186551 983554 570866 997782 699363 655953 919196 898611 695874 597320 936033 615174 619051 572759 690812 841286 525232 032689 967936 884954 660211 599916 (710 digits)/7977 882578 417755 209468 721834 169559 064037 081090 468226 608108 520107 210654 459486 068202 784818 891261 809437 400966 210267 022229 750454 435354 521659 765417 561126 424635 852893 792871 228503 452875 825520 829543 466314 218685 588827 327017 609239 661461 351354 035626 521190 726293 659300 249310 027403 392619 819523 216217 399456 751585 992811 596844 353401 357502 191270 780915 229185 534535 910510 774055 643149 890660 850174 229691 751683 765813 318353 163102 721806 613223 355788 343539 234940 154856 072245 415508 039381 421398 267030 253152 588866 380534 605514 060433 601384 974150 829510 052681 956619 276930 501575 732814 234262 367902 613750 829564 389571 571949 994638 953556 267782 800896 413552 198158 449970 569939 714466 229311 559354 278344 459117 740590 083350 485627 342886 685818 015853 647748 828705 (712 digits), a[1354] = 5
                                                                                      A[1355]/B[1355] = 2642 424085 197914 903438 614276 985723 806083 042862 550471 544283 583961 147645 333889 914343 892168 223190 992572 890947 400421 956109 276369 517957 251575 879780 738799 445315 002625 473841 842426 001154 297557 301033 725661 132528 716817 429637 728816 234744 597114 362843 221861 313921 007511 674014 539987 296275 325639 802405 934214 764547 851657 938244 024533 065200 558587 784804 287437 515429 936508 908260 195422 975560 507260 641031 962774 064133 331142 940655 992208 011034 925255 996323 578152 987437 975191 631427 844705 248619 607493 635307 702153 825799 501843 725134 418775 422520 352652 059445 165041 274565 295351 965479 032076 825788 363326 225913 325409 072039 060348 068415 696029 449341 012593 182529 839924 503314 131428 956356 318343 572719 685534 427387 543571 057712 187178 711776 794497 479723 882881 (712 digits)/256826 512577 378560 077170 057659 349545 460798 622906 289074 420059 441235 701692 149460 445506 263496 652722 367050 179946 747132 186656 052624 302066 544446 125550 081576 981824 687415 969292 181972 158254 767475 750678 880973 456587 731173 636146 805179 216170 269943 684797 177769 121989 423060 429680 480866 302199 032257 917533 370819 018705 684298 706028 930347 012820 138001 984279 803433 977181 448566 128595 314134 111516 863054 241631 055784 333009 497075 223494 139770 320026 677698 947740 970860 989203 272884 852999 836857 629397 091822 517152 634836 529019 969032 857306 594966 433088 563528 351732 844137 625383 576800 074964 177854 256020 428092 035180 995297 832631 723678 558746 097141 098605 695971 743955 475391 014331 752866 387726 339307 228984 093141 350727 209698 688988 552764 166137 532551 177895 708344 (714 digits), a[1355] = 32
                                                                                      A[1356]/B[1356] = 2724 506534 017292 527935 365077 803272 540900 674625 376768 862388 166200 766965 419215 964471 749397 513517 747469 906577 373320 075957 355175 158442 209004 920200 379394 641298 423960 818929 657239 876225 580367 665252 557910 977916 718219 791777 350727 654795 724892 373924 674213 752000 350767 682199 121942 229122 331148 361163 552587 219920 542139 577281 238069 133362 548805 055619 973920 974051 676295 349216 982802 087376 593359 036515 587225 112005 657080 218953 326897 309223 196369 452663 957926 051564 040560 370729 572278 244910 081592 782067 870935 202493 063914 322428 280011 322532 768334 299364 513226 640881 579569 976947 136535 530505 101359 001107 763113 258591 043902 639282 693812 148704 668547 101726 738536 199188 728749 892389 933518 191771 258294 118200 384857 582944 219868 679713 679452 139935 482797 (712 digits)/264804 395155 796315 286638 779493 519104 524835 703996 757301 028167 961342 912346 608946 513709 048315 543984 176487 580912 957399 208885 803078 737421 066105 890967 642703 406460 540309 762163 410475 611130 592996 580222 347287 675273 320000 963164 414418 877631 621297 720423 698959 848283 082360 678990 508269 694818 851781 133750 770275 770291 677110 302873 283748 370322 329272 765195 032619 511717 359076 902650 957284 002177 713228 471322 807468 098822 815428 386596 861576 933250 033487 291280 205801 144059 345130 268507 876239 050795 358852 770305 223702 909554 574546 917740 196351 407239 393038 404414 800756 902314 078375 807778 412116 623923 041842 864745 384869 404581 718317 512302 364923 899502 109523 942113 925361 584271 467332 617037 898661 507328 552259 091317 293049 174615 895650 851955 548404 825644 537049 (714 digits), a[1356] = 1
                                                                                      A[1357]/B[1357] = 5366 930619 215207 431373 979354 788996 346983 717487 927240 406671 750161 914610 753105 878815 641565 736708 740042 797524 773742 032066 631544 676399 460580 799981 118194 086613 426586 292771 499665 877379 877924 966286 283572 110445 435037 221415 079543 889540 322006 736767 896075 065921 358279 356213 661929 525397 656788 163569 486801 984468 393797 515525 262602 198563 107392 840424 261358 489481 612804 257477 178225 062937 100619 677547 549999 176138 988223 159609 319105 320258 121625 448987 536079 039002 015752 002157 416983 493529 689086 417375 573089 028292 565758 047562 698786 745053 120986 358809 678267 915446 874921 942426 168612 356293 464685 227021 088522 330630 104250 707698 389841 598045 681140 284256 578460 702502 860178 848746 251861 764490 943828 545587 928428 640656 407047 391490 473949 619659 365678 (712 digits)/521630 907733 174875 363808 837152 868649 985634 326903 046375 448227 402578 614038 758406 959215 311812 196706 543537 760859 704531 395541 855703 039487 610552 016517 724280 388285 227725 731455 592447 769385 360472 330901 228261 131861 051174 599311 219598 093801 891241 405220 876728 970272 505421 108670 989135 997017 884039 051284 141094 788997 361409 008902 214095 383142 467274 749474 836053 488898 807643 031246 271418 113694 576282 712953 863252 431832 312503 610091 001347 253276 711186 239021 176662 133262 618015 121507 713096 680192 450675 287457 858539 438574 543579 775046 791317 840327 956566 756147 644894 527697 655175 882742 589970 879943 469934 899926 380167 237213 441996 071048 462064 998107 805495 686069 400752 598603 220199 004764 237968 736312 645400 442044 502747 863604 448415 018093 080956 003540 245393 (714 digits), a[1357] = 1
                                                                                      A[1358]/B[1358] = 8091 437153 232499 959309 344432 592268 887884 392113 304009 269059 916362 681576 172321 843287 390963 250226 487512 704102 147062 108023 986719 834841 669585 720181 497588 727911 850547 111701 156905 753605 458292 631538 841483 088362 153257 013192 430271 544336 046899 110692 570288 817921 709047 038412 783871 754519 987936 524733 039389 204388 935937 092806 500671 331925 656197 896044 235279 463533 289099 606694 161027 150313 693978 714063 137224 288144 645303 378562 646002 629481 317994 901651 494005 090566 056312 372886 989261 738439 770679 199443 444024 230785 629672 369990 978798 067585 889320 658174 191494 556328 454491 919373 305147 886798 566044 228128 851635 589221 148153 346981 083653 746750 349687 385983 316996 901691 588928 741136 185379 956262 202122 663788 313286 223600 626916 071204 153401 759594 848475 (712 digits)/786435 302888 971190 650447 616646 387754 510470 030899 803676 476395 363921 526385 367353 472924 360127 740690 720025 341772 661930 604427 658781 776908 676657 907485 366983 794745 768035 493619 002923 380515 953468 911123 575548 807134 371175 562475 634016 971433 512539 125644 575688 818555 587781 787661 497405 691836 735820 185034 911370 559289 038519 311775 497843 753464 796547 514669 868673 000616 166719 933897 228702 115872 289511 184276 670720 530655 127931 996687 862924 186526 744673 530301 382463 277321 963145 390015 589335 730987 809528 057763 082242 348129 118126 692786 987669 247567 349605 160562 445651 430011 733551 690521 002087 503866 511777 764671 765036 641795 160313 583350 826988 897609 915019 628183 326114 182874 687531 621802 136630 243641 197659 533361 795797 038220 344065 870048 629360 829184 782442 (714 digits), a[1358] = 1
                                                                                      A[1359]/B[1359] = 13458 367772 447707 390683 323787 381265 234868 109601 231249 675731 666524 596186 925427 722103 032528 986935 227555 501626 920804 140090 618264 511241 130166 520162 615782 814525 277133 404472 656571 630985 336217 597825 125055 198807 588294 234607 509815 433876 368905 847460 466363 883843 067326 394626 445801 279917 644724 688302 526191 188857 329734 608331 763273 530488 763590 736468 496637 953014 901903 864171 339252 213250 794598 391610 687223 464283 633526 538171 965107 949739 439620 350639 030084 129568 072064 375044 406245 231969 459765 616819 017113 259078 195430 417553 677584 812639 010307 016983 869762 471775 329413 861799 473760 243092 030729 455149 940157 919851 252404 054679 473495 344796 030827 670239 895457 604194 449107 589882 437241 720753 145951 209376 241714 864257 033963 462694 627351 379254 214153 (713 digits)/1 308066 210622 146066 014256 453799 256404 496104 357802 850051 924622 766500 140424 125760 432139 671939 937397 263563 102632 366461 999969 514484 816396 287209 924003 091264 183030 995761 225074 595371 149901 313941 242024 803809 938995 422350 161786 853615 065235 403780 530865 452417 788828 093202 896332 486541 688854 619859 236319 052465 348286 399928 320677 711939 136607 263822 264144 704726 489514 974362 965143 500120 229566 865793 897230 533972 962487 440435 606778 864271 439803 455859 769322 559125 410584 581160 511523 302432 411180 260203 345220 940781 786703 661706 467833 778987 087895 306171 916710 090545 957709 388727 573263 592058 383809 981712 664598 145203 879008 602309 654399 289053 895717 720515 314252 726866 781477 907730 626566 374598 979953 843059 975406 298544 901824 792480 888141 710316 832725 027835 (715 digits), a[1359] = 1
                                                                                      A[1360]/B[1360] = 75383 276015 471036 912725 963369 498595 062224 940119 460257 647718 248985 662510 799460 453802 553608 184902 625290 212236 751082 808477 078042 391047 320418 320994 576502 800538 236214 134064 439763 908532 139380 620664 466759 082400 094728 186229 979348 713717 891428 347994 902108 237137 045679 011545 012878 154108 211559 966245 670345 148675 584610 134465 317038 984369 474151 578386 718469 228607 798618 927550 857288 216567 666970 672116 573341 609562 812936 069422 471542 378178 516096 654846 644425 738406 416634 248109 020487 898287 069507 283538 529590 526176 606824 457759 366722 130780 940855 743093 540306 915205 101561 228370 673949 102258 719691 503878 552425 188477 410173 620378 451130 470730 503825 737182 794284 922663 834466 690548 371588 560027 931878 710669 521860 544885 796733 384677 290158 655865 919240 (713 digits)/7 326766 355999 701520 721729 885642 669776 990991 819914 053936 099509 196422 228505 996155 633622 719827 427677 037840 854934 494240 604275 231205 858890 112707 527500 823304 709900 746841 618991 979779 130022 523175 121247 594598 502111 482926 371409 902092 297610 531441 779971 837777 762696 053796 269323 930114 136109 835116 366630 173697 300721 038160 915164 057539 436501 115658 835393 392305 448191 038534 759614 729303 263706 618480 670429 340585 343092 330110 030582 184281 385544 023972 376914 178090 330244 868947 947632 101497 786889 110544 783867 786151 281647 426659 031955 882604 687043 880464 744112 898381 218558 677189 556838 962379 422916 420341 087662 491056 036838 171861 855347 272258 376198 517596 199446 960448 090264 226184 754634 009625 143410 412959 410393 288521 547344 306470 310757 180944 992809 921617 (715 digits), a[1360] = 5
                                                                                      A[1361]/B[1361] = 88841 643787 918744 303409 287156 879860 297093 049720 691507 323449 915510 258697 724888 175905 586137 171837 852845 713863 671886 948567 696306 902288 450584 841157 192285 615063 513347 538537 096335 539517 475598 218489 591814 281207 683022 420837 489164 147594 260334 195455 368472 120980 113005 406171 458679 434025 856284 654548 196536 337532 914344 742797 080312 514858 237742 314855 215107 181622 700522 791722 196540 429818 461569 063727 260565 073846 446462 607594 436650 327917 955717 005485 674509 867974 488698 623153 426733 130256 529272 900357 546703 785254 802254 875313 044306 943419 951162 760077 410069 386980 430975 090170 147709 345350 750420 959028 492583 108328 662577 675057 924625 815526 534653 407422 689742 526858 283574 280430 808830 280781 077829 920045 763575 409142 830696 847371 917510 035120 133393 (713 digits)/8 634832 566621 847586 735986 339441 926181 487096 177716 903988 024131 962922 368930 121916 065762 391767 365074 301403 957566 860702 604244 745690 675286 399917 451503 914568 892931 742602 844066 575150 279923 837116 363272 398408 441106 905276 533196 755707 362845 935222 310837 290195 551524 146999 165656 416655 824964 454975 602949 226162 649007 438089 235841 769478 573108 379481 099538 097031 937706 012897 724758 229423 493273 484274 567659 874558 305579 770545 637361 048552 825347 479832 146236 737215 740829 450108 459155 403930 198069 370748 129088 726933 068351 088365 499789 661591 774939 186636 660822 988927 176268 065917 130102 554437 806726 402053 752260 636259 915846 774171 509746 561312 271916 238111 513699 687314 871742 133915 381200 384224 123364 256019 385799 587066 449169 098951 198898 891261 825534 949452 (715 digits), a[1361] = 1
                                                                                      A[1362]/B[1362] = 253066 563591 308525 519544 537683 258315 656411 039560 843272 294618 080006 179906 249236 805613 725882 528578 330981 639964 094856 705612 470656 195624 221588 003308 961074 030665 262909 211138 632434 987567 090577 057643 650387 644815 460773 027904 957677 008906 412096 738905 639052 479097 271689 823887 930237 022159 924129 275342 063417 823741 413299 620059 477664 014085 949636 208097 148683 591853 199664 510995 250369 076204 590108 799571 094471 757255 705861 284611 344843 034014 427530 665817 993445 474355 394031 494415 873954 158800 128053 084253 622998 096686 211334 208385 455336 017620 843181 263248 360445 689165 963511 408710 969367 792960 220533 421935 537591 405134 735328 970494 300382 101783 573132 552028 173769 976380 401615 251409 989249 121590 087538 550761 049011 363171 458127 079421 125178 726106 186026 (714 digits)/24 596431 489243 396694 193702 564526 522139 965184 175347 861912 147773 122266 966366 239987 765147 503362 157825 640648 770068 215645 812764 722587 209462 912542 430508 652442 495764 232047 307125 130079 689870 197407 847792 391415 384325 293479 437803 413507 023302 401886 401646 418168 865744 347794 600636 763425 786038 745067 572528 626022 598735 914339 386847 596496 582717 874621 034469 586369 323603 064330 209131 188150 250253 587029 805749 089701 954251 871201 305304 281387 036238 983636 669387 652521 811903 769164 865942 909358 183027 852041 042045 240017 418349 603390 031535 205788 236922 253738 065758 876235 571094 809023 817044 071255 036369 224448 592183 763575 868531 720204 874840 394882 920030 993819 226846 335077 833748 494015 517034 778073 390138 924998 181992 462654 445682 504372 708554 963468 643879 820521 (716 digits), a[1362] = 2
                                                                                      A[1363]/B[1363] = 341908 207379 227269 822953 824840 138175 953504 089281 534779 618067 995516 438603 974124 981519 312019 700416 183827 353827 766743 654180 166963 097912 672172 844466 153359 645728 776256 749675 728770 527084 566175 276133 242201 926023 143795 448742 446841 156500 672430 934361 007524 600077 384695 230059 388916 456185 780413 929890 259954 161274 327644 362856 557976 528944 187378 522952 363790 773475 900187 302717 446909 506023 051677 863298 355036 831102 152323 892205 781493 361932 383247 671303 667955 342329 882730 117569 300687 289056 657325 984611 169701 881941 013589 083698 499642 961040 794344 023325 770515 076146 394486 498881 117077 138310 970954 380964 030174 513463 397906 645552 225007 917310 107785 959450 863512 503238 685189 531840 798079 402371 165368 470806 812586 772314 288823 926793 042688 761226 319419 (714 digits)/33 231264 055865 244280 929688 903968 448321 452280 353064 765900 171905 085189 335296 361903 830909 895129 522899 942052 727635 076348 417009 468277 884749 312459 882012 567011 388695 974650 151191 705229 969794 034524 211064 789823 825432 198755 971000 169214 386148 337108 712483 708364 417268 494793 766293 180081 611003 200043 175477 852185 247743 352428 622689 365975 155826 254102 134007 683401 261309 077227 933889 417573 743527 071304 373408 964260 259831 641746 942665 329939 861586 463468 815624 389737 552733 219273 325098 313288 381097 222789 171133 966950 486700 691755 531324 867380 011861 440374 726581 865162 747362 874940 947146 625692 843095 626502 344444 399835 784378 494376 384586 956195 191947 231930 740546 022392 705490 627930 898235 162297 513503 181017 567792 049720 894851 603323 907453 854730 469414 769973 (716 digits), a[1363] = 1
                                                                                      A[1364]/B[1364] = 594974 770970 535795 342498 362523 396491 609915 128842 378051 912686 075522 618510 223361 787133 037902 228994 514808 993791 861600 359792 637619 293536 893760 847775 114433 676394 039165 960814 361205 514651 656752 333776 892589 570838 604568 476647 404518 165407 084527 673266 646577 079174 656385 053947 319153 478345 704543 205232 323371 985015 740943 982916 035640 543030 137014 731049 512474 365329 099851 813712 697278 582227 641786 662869 449508 588357 858185 176817 126336 395946 810778 337121 661400 816685 276761 611985 174641 447856 785379 068864 792699 978627 224923 292083 954978 978661 637525 286574 130960 765312 357997 907592 086444 931271 191487 802899 567765 918598 133235 616046 525390 019093 680918 511479 037282 479619 086804 783250 787328 523961 252907 021567 861598 135485 746951 006214 167867 487332 505445 (714 digits)/57 827695 545108 640975 123391 468494 970461 417464 528412 627812 319678 207456 301662 601891 596057 398491 680725 582701 497703 291994 229774 190865 094212 225002 312521 219453 884460 206697 458316 835309 659664 231932 058857 181239 209757 492235 408803 582721 409450 738995 114130 126533 283012 842588 366929 943507 397041 945110 748006 478207 846479 266768 009536 962471 738544 128723 168477 269770 584912 141558 143020 605723 993780 658334 179158 053962 214083 512948 247969 611326 897825 447105 485012 042259 364636 988438 191041 222646 564125 074830 213179 206967 905050 295145 562860 073168 248783 694112 792340 741398 318457 683964 764190 696947 879464 850950 936628 163411 652910 214581 259427 351078 111978 225749 967392 357470 539239 121946 415269 940370 903642 106015 749784 512375 340534 107696 616008 818199 113294 590494 (716 digits), a[1364] = 1
                                                                                      A[1365]/B[1365] = 1 531857 749320 298860 507950 549886 931159 173334 346966 290883 443440 146561 675624 420848 555785 387824 158405 213445 341411 489944 373765 442201 684986 459694 540016 382226 998516 854588 671304 451181 556387 879679 943687 027381 067700 352932 402037 255877 487314 841486 280894 300678 758426 697465 337954 027223 412877 189500 340354 906698 131305 809532 328688 629257 615004 461407 985051 388739 504134 099890 930142 841466 670478 335251 189037 254054 007817 868694 245840 034166 153826 004804 345546 990756 975700 436253 341539 649970 184770 228084 122340 755101 839195 463435 667866 409600 918364 069394 596474 032436 606771 110482 314065 289967 000853 353929 986763 165706 350659 664377 877645 275787 955497 469622 982408 938077 462476 858799 098342 372736 450293 671182 513942 535783 043285 782725 939221 378423 735891 330309 (715 digits)/148 886655 146082 526231 176471 840958 389244 287209 409890 021524 811261 500101 938621 565687 023024 692112 884351 107455 723041 660336 876557 850008 073173 762464 507055 005919 157616 388045 067825 375849 289122 498388 328779 152302 244947 183226 788607 334657 205049 815098 940743 961430 983294 179970 500153 067096 405087 090264 671490 808600 940701 885964 641763 290918 632914 511548 470962 222942 431133 360344 219930 629021 731088 387972 731725 072184 687998 667643 438604 552593 657237 357679 785648 474256 282007 196149 707180 758581 509347 372449 597492 380886 296801 282046 657045 013716 509428 828600 311263 347959 384278 242870 475528 019588 602025 328404 217700 726659 090198 923538 903441 658351 415903 683430 675330 737333 783968 871823 728775 043039 320787 393049 067361 074471 575919 818717 139471 491128 696003 950961 (717 digits), a[1365] = 2
                                                                                      A[1366]/B[1366] = 2 126832 520290 834655 850448 912410 327650 783249 475808 668935 356126 222084 294134 644210 342918 425726 387399 728254 335203 351544 733558 079820 978523 353455 387791 496660 674910 893754 632118 812387 071039 536432 277463 919970 638538 957500 878684 660395 652721 926013 954160 947255 837601 353850 391901 346376 891222 894043 545587 230070 116321 550476 311604 664898 158034 598422 716100 901213 869463 199742 743855 538745 252705 977037 851906 703562 596175 726879 422657 160502 549772 815582 682668 652157 792385 713014 953524 824611 632627 013463 191205 547801 817822 688358 959950 364579 897025 706919 883048 163397 372083 468480 221657 376411 932124 545417 789662 733472 269257 797613 493691 801177 974591 150541 493887 975359 942095 945603 881593 160064 974254 924089 535510 397381 178771 529676 945435 546291 223223 835754 (715 digits)/206 714350 691191 167206 299863 309453 359705 704673 938302 649337 130939 707558 240284 167578 619082 090604 565076 690157 220744 952331 106332 040873 167385 987466 819576 225373 042076 594742 526142 211158 948786 730320 387636 333541 454704 675462 197410 917378 614500 554094 054874 087964 266307 022558 867083 010603 802129 035375 419497 286808 787181 152732 651300 253390 371458 640271 639439 492713 016045 501902 362951 234745 724869 046306 910883 126146 902082 180591 686574 163920 555062 804785 270660 516515 646644 184587 898221 981228 073472 447279 810671 587854 201851 577192 219905 086884 758212 522713 103604 089357 702735 926835 239718 716536 481490 179355 154328 890070 743109 138120 162869 009429 527881 909180 642723 094804 323207 993770 144044 983410 224429 499064 817145 586846 916453 926413 755480 309327 809298 541455 (717 digits), a[1366] = 1
                                                                                      A[1367]/B[1367] = 3 658690 269611 133516 358399 462297 258809 956583 822774 959818 799566 368645 969759 065058 898703 813550 545804 941699 676614 841489 107323 522022 663509 813149 927807 878887 673427 748343 303423 263568 627427 416112 221150 947351 706239 310433 280721 916273 140036 767500 235055 247934 596028 051315 729855 373600 304100 083543 885942 136768 247627 360008 640293 294155 773039 059830 701152 289953 373597 299633 673998 380211 923184 312289 040943 957616 603993 595573 668497 194668 703598 820387 028215 642914 768086 149268 295064 474581 817397 241547 313546 302903 657018 151794 627816 774180 815389 776314 479522 195833 978854 578962 535722 666378 932977 899347 776425 899178 619917 461991 371337 076965 930088 620164 476296 913437 404572 804402 979935 532801 424548 595272 049452 933164 222057 312402 884656 924714 959115 166063 (715 digits)/355 601005 837273 693437 476335 150411 748949 991883 348192 670861 942201 207660 178905 733265 642106 782717 449427 797612 943786 612667 982889 890881 240559 749931 326631 231292 199692 982787 593967 587008 237909 228708 716415 485843 699651 858688 986018 252035 819550 369192 995618 049395 249601 202529 367236 077700 207216 125640 090988 095409 727883 038697 293063 544309 004373 151820 110401 715655 447178 862246 582881 863767 455957 434279 642608 198331 590080 848235 125178 716514 212300 162465 056308 990771 928651 380737 605402 739809 582819 819729 408163 968740 498652 859238 876950 100601 267641 351313 414867 437317 087014 169705 715246 736125 083515 507759 372029 616729 833308 061659 066310 667780 943785 592611 318053 832138 107176 865593 872820 026449 545216 892113 884506 661318 492373 745130 894951 800456 505302 492416 (717 digits), a[1367] = 1
                                                                                      A[1368]/B[1368] = 386 289310 829459 853873 482392 453622 502696 224550 867179 449909 310594 929911 118836 475394 706818 848533 696918 606720 379761 707901 002527 892200 647053 734197 807618 779866 384824 469801 491561 487092 950918 228215 498313 391899 793666 552995 354485 869075 356582 513538 634961 980388 420546 742002 026715 574408 821731 666151 569511 590736 117194 351383 542400 551254 327135 880646 337091 346318 097179 661278 513685 460997 187058 767387 151022 253306 015503 262114 614862 600716 427648 956220 645311 158208 441431 386185 935294 655702 459337 375931 113567 352685 804728 626794 880711 653565 512952 219940 232878 725965 151814 259546 472537 346199 894803 976934 314382 147227 360591 306707 484084 882600 633896 267811 505063 886287 422240 407916 774824 104214 551857 427654 728068 379624 494789 331979 834412 641361 930316 272369 (717 digits)/37544 819963 604928 978141 315054 102686 999454 852425 498533 089841 062066 511877 025386 160471 040294 275936 754995 439516 318339 282469 309770 583403 426159 730256 115855 511054 009839 787439 892738 847023 929255 744735 611262 347129 918149 837805 729327 381139 667289 319358 594769 274465 474433 288142 426871 169125 559822 227584 973247 304830 214900 215948 422972 405835 830639 581383 231619 636534 969826 037793 565546 930328 600399 645669 384743 950963 860571 245279 830339 397912 846579 863616 183104 547568 155039 162036 465509 661234 269553 518867 667888 305606 560401 797274 299665 650017 860554 410621 664685 007651 839223 745935 340626 009670 250618 494089 217438 646703 240455 612322 125489 126428 625369 133369 038375 469305 576778 881126 790147 760612 472203 171022 690345 025288 615697 165157 725419 357260 866060 245135 (719 digits), a[1368] = 105
                                                                                      A[1369]/B[1369] = 389 948001 099070 987389 840791 915919 761506 181134 689954 409728 110161 298557 088595 540453 605522 662084 242723 548420 056376 549390 109851 414223 310563 547347 735426 658754 058252 218144 794984 750661 578345 644327 719464 339251 499905 863428 635207 785348 496619 281038 870017 228323 016574 793317 756570 948009 125831 749695 455453 727504 364821 711392 182693 845410 100174 940477 038243 636271 470776 960912 187683 841209 110243 079676 191966 210922 619496 857688 283359 795385 131247 776607 673526 801123 209517 535454 230359 130284 276734 617478 427113 655589 461746 778589 508528 427746 328341 996254 712400 921799 130668 838509 008260 012578 827781 876282 090808 046405 980508 768698 855421 959566 563984 887975 981360 799724 826813 212319 754759 637015 976406 022926 777521 312788 716846 644382 719069 566076 889431 438432 (717 digits)/37900 420969 442202 671578 791389 253098 748404 844308 846725 760703 004267 719537 204291 893736 682401 058654 204423 237129 262125 895137 292660 474284 666719 480187 442486 742346 209532 770227 486706 434032 167164 973444 327677 832973 617801 696494 715345 633175 486839 688551 590387 323860 724034 490671 794107 246825 767038 353225 064235 400239 942783 254645 716035 950144 835012 733203 342021 352190 417004 900040 148428 794096 056357 079949 027352 149295 450652 093514 955518 114427 058880 026081 239413 538340 083690 542774 070912 401043 852373 338597 076052 274347 059054 656513 176615 750619 128195 761935 079552 444968 926237 915641 055872 745795 334134 001848 589468 263433 073763 673981 191799 794209 569154 725980 356429 301443 683955 746720 662967 787062 017420 063136 574851 686607 108070 910288 620371 157717 371362 737551 (719 digits), a[1369] = 1
                                                                                      A[1370]/B[1370] = 776 237311 928530 841263 323184 369542 264202 405685 557133 859637 420756 228468 207432 015848 312341 510617 939642 155140 436138 257291 112379 306423 957617 281545 543045 438620 443076 687946 286546 237754 529263 872543 217777 731151 293572 416423 989693 654423 853201 794577 504979 208711 437121 535319 783286 522417 947563 415847 024965 318240 482016 062775 725094 396664 427310 821123 375334 982589 567956 622190 701369 302206 297301 847063 342988 464228 635000 119802 898222 396101 558896 732828 318837 959331 650948 921640 165653 785986 736071 993409 540681 008275 266475 405384 389240 081311 841294 216194 945279 647764 282483 098055 480797 358778 722585 853216 405190 193633 341100 075406 339506 842167 197881 155787 486424 686012 249053 620236 529583 741230 528263 450581 505589 692413 211635 976362 553482 207438 819747 710801 (717 digits)/75445 240933 047131 649720 106443 355785 747859 696734 345258 850544 066334 231414 229678 054207 722695 334590 959418 676645 580465 177606 602431 057688 092879 210443 558342 253400 219372 557667 379445 281056 096420 718179 938940 180103 535951 534300 444673 014315 154129 007910 185156 598326 198467 778814 220978 415951 326860 580810 037482 705070 157683 470594 139008 355980 665652 314586 573640 988725 386830 937833 713975 724424 656756 725618 412096 100259 311223 338794 785857 512339 905459 889697 422518 085908 238729 704810 536422 062278 121926 857464 743940 579953 619456 453787 476281 400636 988750 172556 744237 452620 765461 661576 396498 755465 584752 495937 806906 910136 314219 286303 317288 920638 194523 859349 394804 770749 260734 627847 453115 547674 489623 234159 265196 711895 723768 075446 345790 514978 237422 982686 (719 digits), a[1370] = 1
                                                                                      A[1371]/B[1371] = 1942 422624 956132 669916 487160 655004 289910 992505 804222 129002 951673 755493 503459 572150 230205 683320 122007 858700 928653 063972 334610 027071 225798 110438 821517 535994 944405 594037 368077 226170 636873 389414 155019 801554 087050 696276 614595 094196 203022 870193 879975 645745 890817 863957 323143 992845 020958 581389 505384 363985 328853 836943 632882 638738 954796 582723 788913 601450 606690 205293 590422 445621 704846 773802 877943 139379 889497 097294 079804 587588 249041 242264 311202 719786 511415 378734 561666 702257 748878 604297 508475 672139 994697 589358 287008 590370 010930 428644 602960 217327 695635 034619 969854 730136 272953 582714 901188 433672 662708 919511 534435 643900 959747 199550 954210 171749 324920 452792 813927 119477 032932 924089 788700 697615 140118 597107 826033 980954 528926 860034 (718 digits)/188790 902835 536465 971019 004275 964670 244124 237777 537243 461791 136936 182365 663648 002152 127791 727836 123260 590420 423056 250350 497522 589660 852477 901074 559171 249146 648277 885562 245596 996144 360006 409804 205558 193180 689704 765095 604691 661805 795097 704371 960700 520513 120970 048300 236064 078728 420759 514845 139200 810380 258150 195833 994052 662106 166317 362376 489303 329641 190666 775707 576380 242945 369870 531185 851544 349814 073098 771104 527233 139106 869799 805476 084449 710156 561149 952395 143756 525600 096227 053526 563933 434254 297967 564088 129178 551893 105696 107048 568027 350210 457161 238793 848870 256726 503638 993724 203282 083705 702202 246587 826377 635485 958202 444679 146038 842942 205425 002415 569198 882410 996666 531455 105245 110398 555607 061181 311952 187673 846208 702923 (720 digits), a[1371] = 2
                                                                                      A[1372]/B[1372] = 8545 927811 753061 520929 271826 989559 423846 375708 774022 375649 227451 250442 221270 304449 233164 243898 427673 589944 150750 513180 450819 414708 860809 723300 829115 582600 220699 064095 758855 142437 076757 430199 837856 937367 641775 201530 448074 031208 665293 275353 024881 791695 000392 991149 075862 493798 031397 741405 046502 774181 797431 410550 256624 951620 246497 152018 530989 388391 994717 443365 063059 084693 116688 942274 854761 021748 192988 508979 217440 746454 555061 701885 563648 838477 696610 436578 412320 595017 731586 410599 574583 696835 245265 762817 537274 442791 885015 930773 357120 517075 065023 236535 360216 279323 814400 184076 009943 928323 991935 753452 477249 417771 036869 953991 303265 373009 548735 431407 785292 219138 659995 146940 660392 482873 772110 364793 857618 131256 935455 150937 (718 digits)/830608 852275 192995 533796 123547 214466 724356 647844 494232 697708 614078 960876 884270 062816 233862 245935 452461 038327 272690 179008 592521 416331 502790 814741 795027 249986 812484 099916 361833 265633 536446 357396 761172 952826 294770 594682 863439 661538 334519 825398 027958 680378 682347 972015 165234 730865 009898 640190 594285 946591 190284 253930 115219 004405 330921 764092 530854 307290 149498 040664 019496 696206 136238 850361 818273 499515 603618 423212 894790 068767 384659 111601 760316 926534 483329 514391 111448 164678 506835 071570 999674 316970 811326 710139 992995 608209 411534 600751 016346 853462 594106 616751 791979 782371 599308 470834 620035 244959 123028 272654 622799 462582 027333 638065 978960 142518 082434 637509 729911 077318 476289 359979 686177 153489 946196 320171 593599 265673 622257 794378 (720 digits), a[1372] = 4
                                                                                      A[1373]/B[1373] = 19034 278248 462255 711775 030814 634123 137603 743923 352266 880301 406576 256377 946000 181048 696534 171116 977355 038589 230154 090333 236248 856488 947417 557040 479748 701195 385803 722228 885787 511044 790388 249813 830733 676289 370601 099337 510743 156613 533609 420899 929739 229135 891603 846255 474868 980441 083754 064199 598389 912348 923716 658044 146132 541979 447790 886760 850892 378234 596125 092023 716540 615007 938224 658352 587465 182876 275474 115252 514686 080497 359164 646035 438500 396741 904636 251891 386307 892293 212051 425496 657643 065810 485229 114993 361557 475953 780962 290191 317201 251477 825681 507690 690287 288783 901753 950866 921076 290320 646580 426416 488934 479443 033487 107533 560740 917768 422391 315608 384511 557754 352923 217971 109485 663362 684339 326695 541270 243468 399837 161908 (719 digits)/1 850008 607385 922457 038611 251370 393603 692837 533466 525708 857208 365094 104119 432188 127784 595516 219707 028182 667074 968436 608367 682565 422323 858059 530558 149225 749120 273246 085394 969263 527411 432899 124597 727904 098833 279245 954461 331570 984882 464137 355168 016617 881270 485665 992330 566533 540458 440556 795226 327772 703562 638718 703694 224490 670916 828160 890561 551011 944221 489662 857035 615373 635357 642348 231909 488091 348845 280335 617530 316813 276641 639118 028679 605083 563225 527808 981177 366652 854957 109897 196668 563282 068195 920620 984368 115169 768311 928765 308550 600721 057135 645374 472297 432829 821469 702255 935393 443352 573623 948258 791897 071976 560650 012869 720811 103959 127978 370294 277435 029021 037047 949245 251414 477599 417378 447999 701524 499150 719021 090724 291679 (721 digits), a[1373] = 2
                                                                                      A[1374]/B[1374] = 27580 206060 215317 232704 302641 623682 561450 119632 126289 255950 634027 506820 167270 485497 929698 415015 405028 628533 380904 603513 687068 271197 808227 280341 308864 283795 606502 786324 644642 653481 867145 680013 668590 613657 012376 300867 958817 187822 198902 696252 954621 020830 891996 837404 550731 474239 115151 805604 644892 686530 721148 068594 402757 493599 694288 038779 381881 766626 590842 535388 779599 699701 054913 600627 442226 204624 468462 624231 732126 826951 914226 347921 002149 235219 601246 688469 798628 487310 943637 836096 232226 762645 730494 877810 898831 918745 665978 220964 674321 768552 890704 744226 050503 568107 716154 134942 931020 218644 638516 179868 966183 897214 070357 061524 864006 290777 971126 747016 169803 776893 012918 364911 769878 146236 456449 691489 398888 374725 335292 312845 (719 digits)/2 680617 459661 115452 572407 374917 608070 417194 181311 019941 554916 979173 064996 316458 190600 829378 465642 480643 705402 241126 787376 275086 838655 360850 345299 944252 999107 085730 185311 331096 793044 969345 481994 489077 051659 574016 549144 195010 646420 798657 180566 044576 561649 168013 964345 731768 271323 450455 435416 922058 650153 829002 957624 339709 675322 159082 654654 081866 251511 639160 897699 634870 331563 778587 082271 306364 848360 883954 040743 211603 345409 023777 140281 365400 489760 011138 495568 478101 019635 616732 268239 562956 385166 731947 694508 108165 376521 340299 909301 617067 910598 239481 089049 224809 603841 301564 406228 063387 818583 071287 064551 694776 023232 040203 358877 082919 270496 452728 914944 758932 114366 425534 611394 163776 570868 394196 021696 092749 984694 712982 086057 (721 digits), a[1374] = 1
                                                                                      A[1375]/B[1375] = 74194 690368 892890 177183 636097 881488 260503 983187 604845 392202 674631 270018 280541 152044 555931 001147 787412 295655 991963 297360 610385 398884 563872 117723 097477 268786 598809 294878 175072 818008 524679 609841 167914 903603 395353 701073 428377 532257 931414 813405 838981 270797 675597 521064 576331 928919 314057 675408 888175 285410 366012 795232 951647 529178 836366 964319 614655 911487 777810 162801 275740 014410 048051 859607 471917 592125 212399 363715 978939 734401 187617 341877 442798 867181 107129 628830 983564 866915 099327 097689 122096 591101 946218 870615 159221 313445 112918 732120 665844 788583 607090 996142 791294 424999 334062 220752 783116 727609 923612 786154 421302 273871 174201 230583 288753 499324 364644 809640 724119 111540 378759 947794 649241 955835 597238 709674 339046 992919 070421 787598 (719 digits)/7 211243 526708 153362 183426 001205 609744 527225 896088 565591 967042 323440 234112 065104 508986 254273 150991 989470 077879 450690 183120 232739 099634 579760 221158 037731 747334 444706 456017 631457 113501 371590 088586 706058 202152 427279 052749 721592 277724 061451 716300 105771 004568 821693 921022 030070 083105 341467 666060 171890 003870 296724 618942 903910 021561 146326 199869 714744 447244 767984 652434 885114 298485 199522 396452 100821 045567 048243 699016 740019 967459 686672 309242 335884 542745 550085 972314 322854 894228 343361 733147 689194 838529 384516 373384 331500 521354 609365 127153 834856 878332 124336 650395 882449 029152 305384 747849 570128 210790 090832 921000 461528 607114 093276 438565 269797 668971 275752 107324 546885 265780 800314 474202 805152 559115 236391 744916 684650 688410 516688 463793 (721 digits), a[1375] = 2
                                                                                      A[1376]/B[1376] = 472748 348273 572658 295806 119228 912612 124474 018757 755361 609166 681815 126929 850517 397765 265284 421902 129502 402469 332684 387677 349380 664505 191459 986679 893727 896515 199358 555593 695079 561533 015223 339060 676080 035277 384498 507308 529082 381369 787391 576687 988508 645616 945581 963792 008723 047754 999497 858057 973944 398992 917224 839992 112642 668672 712489 824697 069817 235553 257703 512196 434039 786161 343224 758272 273731 757375 742858 806527 605765 233359 039930 399185 658942 438306 244024 461455 700017 688801 539600 422230 964806 309257 407808 101501 854159 799416 343490 613688 669390 500054 533250 721082 798270 118103 720527 459459 629720 584304 180192 896795 493997 540441 115564 445024 596527 286724 158995 604860 514518 446135 285478 051679 665329 881250 039881 949535 433170 332239 757823 038433 (720 digits)/45 948078 619910 035625 672963 382151 266537 580549 557842 413493 357170 919814 469668 707085 244518 355017 371594 417464 172678 945267 886097 671521 436462 839411 672248 170643 483113 753968 921417 119839 474053 198886 013514 725426 264574 137690 865642 524564 312765 167367 478366 679202 589062 098177 490477 912188 769955 499261 431777 953398 673375 609350 671281 763169 804689 037039 853872 370332 934980 247068 812308 945556 122474 975721 460983 911291 121763 173416 234843 651723 150167 143810 995735 380707 746233 311654 329454 415230 385005 676902 667125 698125 416343 039045 934814 097168 504648 996490 672224 626209 180590 985500 991424 519503 778755 133872 893325 484157 083323 616284 590554 463947 665916 599861 990268 701705 284324 107241 558892 040243 709051 227421 456610 994691 925559 812546 491196 200654 115157 813112 868815 (722 digits), a[1376] = 6
                                                                                      A[1377]/B[1377] = 546943 038642 465548 472989 755326 794100 384978 001945 360207 001369 356446 396948 131058 549809 821215 423049 916914 698125 324647 685037 959766 063389 755332 104402 991205 165301 798167 850471 870152 379541 539902 948901 843994 938880 779852 208381 957459 913627 718806 390093 827489 916414 621179 484856 585054 976674 313555 533466 862119 684403 283237 635225 064290 197851 548856 789016 684473 147041 035513 674997 709779 800571 391276 617879 745649 349500 955258 170243 584704 967760 227547 741063 101741 305487 351154 090286 683582 555716 638927 519920 086902 900359 354026 972117 013381 112861 456409 345809 335235 288638 140341 717225 589564 543103 054589 680212 412837 311914 103805 682949 915299 814312 289765 675607 885280 786048 523640 414501 238637 557675 664237 999474 314571 837085 637120 659209 772217 325158 828244 826031 (720 digits)/53 159322 146618 188987 856389 383356 876282 107775 453930 979085 324213 243254 703780 772189 753504 609290 522586 406934 250558 395958 069217 904260 536097 419171 893406 208375 230448 198675 377434 751296 587554 570476 102101 431484 466726 564969 918392 246156 590489 228819 194666 784973 593630 919871 411499 942258 853060 840729 097838 125288 677245 906075 290224 667079 826250 183366 053742 085077 382225 015053 464743 830670 420960 175243 857436 012112 167330 221659 933860 391743 117626 830483 304977 716592 288978 861740 301768 738085 279234 020264 400273 387320 254872 423562 308198 428669 026003 605855 799378 461066 058923 109837 641820 401952 807907 439257 641175 054285 294113 707117 511554 925476 273030 693138 428833 971502 953295 382993 666216 587128 974832 027735 930813 799844 484675 048938 236112 885304 803568 329801 332608 (722 digits), a[1377] = 1
                                                                                      A[1378]/B[1378] = 1 019691 386916 038206 768795 874555 706712 509452 020703 115568 610536 038261 523877 981575 947575 086499 844952 046417 100594 657332 072715 309146 727894 946792 091082 884933 061816 997526 406065 565231 941074 555126 287962 520074 974158 164350 715690 486542 294997 506197 966781 815998 562031 566761 448648 593778 024429 313053 391524 836064 083396 200462 475217 176932 866524 261346 613713 754290 382594 293217 187194 143819 586732 734501 376152 019381 106876 698116 976771 190470 201119 267478 140248 760683 743793 595178 551742 383600 244518 178527 942151 051709 209616 761835 073618 867540 912277 799899 959498 004625 788692 673592 438308 387834 661206 775117 139672 042557 896218 283998 579745 409297 354753 405330 120632 481808 072772 682636 019361 753156 003810 949716 051153 979901 718335 677002 608745 205387 657398 586067 864464 (721 digits)/99 107400 766528 224613 529352 765508 142819 688325 011773 392578 681384 163069 173449 479274 998022 964307 894180 824398 423237 341225 955315 575781 972560 258583 565654 379018 713561 952644 298851 871136 061607 769362 115616 156910 731300 702660 784034 770720 903254 396186 673033 464176 182693 018048 901977 854447 623016 339990 529616 078687 350621 515425 961506 430249 630939 220405 907614 455410 317205 262122 277052 776226 543435 150965 318419 923403 289093 395076 168704 043466 267793 974294 300713 097300 035212 173394 631223 153315 664239 697167 067399 085445 671215 462608 243012 525837 530652 602346 471603 087275 239514 095338 633244 921456 586662 573130 534500 538442 377437 323402 102109 389423 938947 293000 419102 673208 237619 490235 225108 627372 683883 255157 387424 794536 410234 861484 727309 085958 918726 142914 201423 (722 digits), a[1378] = 1
                                                                                      A[1379]/B[1379] = 3 606017 199390 580168 779377 378993 914237 913334 064054 706912 832977 471230 968582 075786 392535 080714 957906 056165 999909 296643 903183 887206 247074 595708 377651 646004 350752 790747 068668 565848 202765 205281 812789 404219 861355 272904 355453 417086 798620 237400 290439 275485 602509 321463 830802 366389 049962 252715 708041 370311 934591 884625 060876 595088 797424 332896 630157 947344 294823 915165 236580 141238 560769 594780 746335 803792 670131 049609 100557 156115 571118 029982 161809 383792 536868 136689 745513 834383 289271 174511 346373 242030 529209 639532 192973 616003 849694 856109 224303 349112 654716 161119 032150 753068 526723 379941 099228 540511 000568 955801 422186 143191 878572 505756 037505 330705 004366 571548 472586 498105 569108 513386 152936 254276 992092 668128 485445 388380 297354 586448 419423 (721 digits)/350 481524 446202 862828 444447 679881 304741 172750 489251 156821 368365 732462 224129 210014 747573 502214 205128 880129 520270 419635 935164 631606 453778 194922 590369 345431 371134 056608 273990 364704 772377 878562 448949 902216 660628 672952 270496 558319 300252 417379 213767 177502 141709 974018 117433 505601 722109 860700 686686 361350 729110 452353 174743 957828 719067 844583 776585 451308 333840 801420 295902 159350 051265 628139 812695 782322 034610 406888 439972 522141 921008 753366 207117 008492 394615 381924 195438 198032 271953 111765 602470 643657 268518 811387 037236 006181 617961 412895 214187 722891 777465 395853 541555 166322 567895 158649 244676 669612 426425 677323 817883 093748 089872 572139 686141 991127 666153 853699 341542 469247 026481 793208 093088 183453 715379 633392 418040 143181 559746 758543 936877 (723 digits), a[1379] = 3
                                                                                      A[1380]/B[1380] = 4 625708 586306 618375 548173 253549 620950 422786 084757 822481 443513 509492 492460 057362 340110 167214 802858 102583 100503 953975 975899 196352 974969 542500 468734 530937 412569 788273 474734 131080 143839 760408 100751 924294 835513 437255 071143 903629 093617 743598 257221 091484 164540 888225 279450 960167 074391 565769 099566 206376 017988 085087 536093 772021 663948 594243 243871 701634 677418 208382 423774 285058 147502 329282 122487 823173 777007 747726 077328 346585 772237 297460 302058 144476 280661 731868 297256 217983 533789 353039 288524 293739 738826 401367 266592 483544 761972 656009 183801 353738 443408 834711 470459 140903 187930 155058 238900 583068 896787 239800 001931 552489 233325 911086 158137 812513 077139 254184 491948 251261 572919 463102 204090 234178 710428 345131 094190 593767 954753 172516 283887 (721 digits)/449 588925 212731 087441 973800 445389 447560 861075 501024 549400 049749 895531 397578 689289 745596 466522 099309 704527 943507 760861 890480 207388 426338 453506 156023 724450 084696 009252 572842 235840 833985 647924 564566 059127 391929 375613 054531 329040 203506 813565 886800 641678 324402 992067 019411 360049 345126 200691 216302 440038 079731 967779 136250 388078 350007 064989 684199 906718 651046 063542 572954 935576 594700 779105 131115 705725 323703 801964 608676 565608 188802 727660 507830 105792 429827 555318 826661 351347 936192 808932 669869 729102 939734 273995 280248 532019 148614 015241 685790 810167 016979 491192 174800 087779 154557 731779 779177 208054 803863 000725 919992 483172 028819 865140 105244 664335 903773 343934 566651 096619 710365 048365 480512 977990 125614 494877 145349 229140 478472 901458 138300 (723 digits), a[1380] = 1
                                                                                      A[1381]/B[1381] = 17 483142 958310 435295 423897 139642 777089 181692 318328 174357 163517 999708 445962 247873 412865 582359 366480 363915 301421 158571 830881 476265 171983 223209 783855 238816 588462 155567 492870 959088 634284 486506 115045 177104 367895 584669 568885 127974 079473 468195 062102 549938 096131 986139 669155 246890 273136 950023 006739 989439 988556 139887 669157 911153 789270 115626 361773 052248 327078 540312 507902 996413 003276 582627 113799 273314 001154 292787 332542 195872 887829 922363 067983 817221 378853 332294 637282 488333 890639 233629 211946 123249 745688 843633 992751 066638 135612 824136 775707 410327 984942 665253 443528 175778 090513 845115 815930 289717 690930 675201 427980 800659 578550 239014 511918 768244 235784 334101 948431 251890 287866 902692 765206 956813 123377 703521 768017 169684 161614 103997 271084 (722 digits)/1699 248300 084396 125154 365849 016049 647423 755976 992324 805021 517615 419056 416865 277883 984362 901780 503057 993713 350793 702221 606605 253771 732793 555441 058440 518781 625222 084365 992517 072227 274334 822336 142648 079598 836416 799791 434090 545439 910772 858076 874169 102537 114918 950219 175667 585749 757488 462774 335593 681464 968306 355690 583495 122063 769089 039552 829185 171464 286978 992048 014766 966079 835367 965455 206042 899498 005721 812782 266002 218966 487416 936347 730607 325869 684098 047880 675422 252076 080531 538563 612079 830966 087721 633372 877981 602239 063803 458620 271560 153392 828403 869430 065955 429660 031568 353988 582208 293776 838014 679501 577860 543264 176332 167560 001875 984135 377473 885503 041495 759106 157576 938304 534627 117424 092223 118023 854087 830602 995165 462918 351777 (724 digits), a[1381] = 3
                                                                                      A[1382]/B[1382] = 896 265999 460138 818442 166927 375331 252498 689094 319494 714696 782931 494623 236534 698906 396254 867542 493356 662263 472983 041139 350854 485876 746113 926199 445351 710583 424139 722215 611153 044600 492348 572219 968055 956617 598188 255403 084285 430307 146764 621546 424451 138327 067272 181348 406368 551571 004376 016942 443305 667815 434351 219358 663147 240864 916724 491187 694297 366299 358423 764320 326827 102121 314608 043264 926250 762187 835876 679880 036980 336103 051563 337976 769232 822766 602181 678894 798663 123011 956390 268129 097776 579476 768957 426700 896896 882089 678226 686984 744879 280465 675484 762637 090396 105585 804136 255964 851345 358671 134251 675072 828952 386127 739388 100826 265994 992969 102140 293383 861942 097666 254131 500433 229645 031648 002691 224741 263066 247660 197072 476377 109171 (723 digits)/87111 252229 516933 470314 632100 263921 466172 415902 109589 605497 448136 267408 657707 861372 948104 457327 755267 383908 833986 574163 827348 149746 798809 781000 136490 182312 971022 311918 191212 919431 825061 587067 839618 118668 049186 164976 193149 146475 652922 575486 469424 871071 185269 453244 978458 233286 977037 802182 331580 194751 463356 107998 894501 613330 573548 082183 972643 651397 286974 657991 326070 205648 198467 017320 639303 580123 615516 253860 174789 732899 047066 481394 768803 725146 318827 997233 273196 207228 043301 275676 885941 108373 413537 576012 057310 246211 402590 404875 535358 633201 265576 832125 538527 000440 764543 785197 471800 190673 542611 655306 390880 189645 021760 410700 200919 855240 154941 504589 682934 811033 746788 901896 746495 966618 828993 514093 703828 589893 231911 510294 078927 (725 digits), a[1382] = 51
                                                                                      A[1383]/B[1383] = 913 749142 418449 253737 590824 514974 029587 870786 637822 889053 946449 494331 682496 946779 809120 449901 859837 026178 774404 199711 181735 962141 918097 149409 229206 949400 012601 877783 104024 003689 126633 058726 083101 133721 966083 840072 653170 558281 226238 089741 486553 688265 163404 167488 075523 798461 277512 966965 450045 657255 422907 359246 332305 152018 705994 606814 056070 418547 685502 304632 834730 098534 317884 625892 040050 035501 837030 972667 369522 531975 939393 260339 837216 639987 981035 011189 435945 611345 847029 501758 309722 702726 514646 270334 889647 948727 813839 511121 520586 690793 660427 427890 533924 281363 894650 101080 667275 648388 825182 350274 256933 186787 317938 339840 777913 761213 337924 627485 810373 349556 541998 403125 994851 988461 126068 928263 031083 417344 358686 580374 380255 (723 digits)/88810 500529 601329 595468 997949 279971 113596 171879 101914 410518 965751 686465 074573 139256 932467 359108 258325 377622 184780 276385 433953 403518 531603 336441 194930 701094 596244 396284 183729 991659 099396 409403 982266 198266 885602 964767 627239 691915 563695 433563 343593 973608 300188 403464 154125 819036 734526 264956 667173 876216 431662 463689 477996 735394 342637 121736 801828 822861 573953 650039 340837 171728 033834 982775 845346 479621 621238 066642 440791 951865 534483 417742 499411 051016 002926 045113 948618 459304 123832 814240 498020 939339 501259 209384 935291 848450 466393 863495 806918 786594 093980 701555 604482 430100 796112 139186 054008 484450 380626 334807 968740 732909 198092 578260 202795 839375 532415 390092 724430 570139 904365 840201 281123 084042 921216 632117 557916 420496 227076 973212 430704 (725 digits), a[1383] = 1
                                                                                      A[1384]/B[1384] = 2723 764284 297037 325917 348576 405279 311674 430667 595140 492804 675830 483286 601528 592466 014495 767346 213030 714621 021791 440561 714326 410160 582308 225017 903765 609383 449343 477781 819201 051978 745614 689672 134258 224061 530355 935548 390626 546869 599240 801029 397558 514857 394080 516324 557416 148493 559401 950873 343396 982326 280165 937851 327757 544902 328713 704815 806438 203394 729428 373585 996287 299189 950377 295049 006350 833191 509938 625214 776025 400054 930349 858656 443666 102742 564251 701273 670554 345703 650449 271645 717221 984929 798249 967370 676192 779545 305905 709227 786052 662052 996339 618418 158244 668313 593436 458126 185896 655448 784616 375621 342818 759702 375264 780507 821822 515395 777989 548355 482688 796779 338128 306685 219349 008570 254829 081267 325233 082348 914445 637125 869681 (724 digits)/264732 253288 719592 661252 627998 823863 693364 759660 313418 426535 379639 640338 806854 139886 813039 175544 271918 139153 203547 126934 695254 956783 862016 453882 526351 584502 163511 104486 558672 902750 023854 405875 804150 515201 820392 094511 447628 530306 780313 442613 156612 818287 785646 260173 286709 871360 446090 332095 665927 947184 326681 035377 850495 084119 258822 325657 576301 297120 434881 958070 007744 549104 266136 982872 329996 539366 857992 387145 056373 636630 116033 316879 767625 827178 324680 087461 170433 125836 290966 904157 881982 987052 416055 994781 927893 943112 335378 131867 149196 206389 453538 235236 747491 860642 356768 063569 579817 159574 303864 324922 328361 655463 417945 567220 606511 533991 219772 284775 131795 951313 555520 582299 308742 134704 671426 778328 819661 430885 686065 456718 940335 (726 digits), a[1384] = 2
                                                                                      A[1385]/B[1385] = 3637 513426 715486 579654 939400 920253 341262 301454 232963 381858 622279 977618 284025 539245 823616 217248 072867 740799 796195 640272 896062 372302 500405 374427 132972 558783 461945 355564 923225 055667 872247 748398 217359 357783 496439 775621 043797 105150 825478 890770 884112 203122 557484 683812 632939 946954 836914 917838 793442 639581 703073 297097 660062 696921 034708 311629 862508 621942 414930 678218 831017 397724 268261 920941 046400 868693 346969 597882 145547 932030 869743 118996 280882 742730 545286 712463 106499 957049 497478 773404 026944 687656 312896 237705 565840 728273 119745 220349 306639 352846 656767 046308 692168 949677 488086 559206 853172 303837 609798 725895 599751 946489 693203 120348 599736 276609 115914 175841 293062 146335 880126 709811 214200 997031 380898 009530 356316 499693 273132 217500 249936 (724 digits)/353542 753818 320922 256721 625948 103834 806960 931539 415332 837054 345391 326803 881427 279143 745506 534652 530243 516775 388327 403320 129208 360302 393619 790323 721282 285596 759755 500770 742402 894409 123250 815279 786416 713468 705995 059279 074868 222222 344008 876176 500206 791896 085834 663637 440835 690397 180616 597052 333101 823400 758343 499067 328491 819513 601459 447394 378130 119982 008835 608109 348581 720832 299971 965648 175343 018988 479230 453787 497165 588495 650516 734622 267036 878194 327606 132575 119051 585140 414799 718398 380003 926391 917315 204166 863185 791562 801771 995362 956114 992983 547518 936792 351974 290743 152880 202755 633825 644024 684490 659730 297102 388372 616038 145480 809307 373366 752187 674867 856226 521453 459886 422500 589865 218747 592643 410446 377577 851381 913142 429931 371039 (726 digits), a[1385] = 1
                                                                                      A[1386]/B[1386] = 395575 214369 569587 928650 803875 792640 168002 987724 755185 733535 882068 066061 276286 831014 965047 230138 082746 720999 010920 590034 489062 618830 626088 663148 264801 957997 339441 878793 527507 064108 948371 516679 609068 864679 145851 702621 120713 903158 750961 004284 881676 452093 602426 368088 914930 419615 946213 077463 035202 057150 212082 024398 614528 812374 077211 360840 957369 373175 541941 621219 746166 253410 922664 756682 017644 652072 982655 196486 495202 059388 862606 710254 779002 317641 455216 647289 172549 707049 378156 799280 627248 251811 591043 639571 786991 433042 238389 506952 903102 769491 927180 619756 912491 233482 306784 852466 328505 469910 642878 772346 116028 980589 241201 778156 593340 389180 296720 539215 133400 601054 391812 966296 353056 687959 391814 110545 807415 049222 412725 127152 862769 (726 digits)/38 447349 665667 379196 387188 230394 038022 845145 365917 169364 828404 681902 935158 001000 287411 327744 918017 538217 950895 142906 685508 649757 869442 372953 808844 424838 428952 217105 187726 738185 498935 334942 456092 737155 569822 067858 496651 533396 530319 933272 069675 178946 343065 055789 933016 896964 434255 952682 813747 640924 874466 227778 934649 327611 591588 216442 644250 414354 255177 389127 633879 654570 398992 663109 272875 267042 590122 614881 396194 750257 194160 371840 656084 607608 672165 706142 405574 028004 321001 089336 491182 922407 037379 486098 044803 151959 431894 926753 631066 409615 448612 585583 408810 760715 260902 867829 961178 032986 714240 228855 575794 415419 599705 950065 279148 011707 857600 456041 170503 604260 268287 223254 212363 014185 759444 676915 106537 598069 380132 305447 889307 012547 (728 digits), a[1386] = 108
                                                                                      A[1387]/B[1387] = 399212 727796 285074 508305 743276 712893 509265 289178 988149 115394 504348 043679 560312 370260 788663 447386 155614 461798 807116 230307 385124 991133 126494 037575 397774 516780 801387 234358 450732 119776 820619 265077 826428 222462 642291 478242 164511 008309 576439 895055 765788 655216 159911 051901 547870 366570 783127 995301 828644 696731 915155 321496 274591 509295 111919 672470 819877 995117 956872 299438 577183 651135 190926 677623 064045 520766 329624 794368 640749 991419 732349 829251 059885 060372 000503 359752 279049 664098 875635 572684 654192 939467 903939 877277 352832 161315 358134 727302 209742 122338 583947 666065 604660 183159 794871 411673 181677 773748 252677 498241 715780 927078 934404 898505 193076 665789 412634 715056 426462 747390 271939 676107 567257 684990 772712 120076 163731 548915 685857 344653 112705 (726 digits)/38 800892 419485 700118 643909 856342 141857 652106 297456 584697 665459 027294 261961 882427 566555 073251 452670 068461 467670 531234 088828 778966 229744 766573 599168 146120 714548 976860 688497 480588 393344 458193 271372 523572 283290 773853 555930 608264 752542 277280 945851 679153 134961 141624 596654 337800 124653 133299 410799 974026 697866 986122 433716 656103 411101 817902 091644 792484 375159 397963 241989 003152 119824 963081 238523 442385 609111 094111 849982 247422 782656 022357 390706 874645 550360 033748 538149 147055 906141 504136 209581 302410 963771 403413 248970 015145 223457 728525 626429 365730 441596 133102 345603 112689 551646 020710 163933 666812 358264 913346 235524 712521 988078 566103 424628 821015 230967 208228 845371 460486 789740 683140 634863 604050 978192 269558 516983 975647 231514 218590 319238 383586 (728 digits), a[1387] = 1
                                                                                      A[1388]/B[1388] = 1 992426 125554 709885 961873 776982 644214 205064 144440 707782 195113 899460 240779 517536 312058 119701 019682 705204 568194 239385 511264 029562 583363 132064 813449 855900 025120 544990 816227 330435 543216 230848 576990 914781 754529 715017 615589 778757 936397 056720 584507 944831 072958 242070 575695 106411 885899 078725 058670 349780 844077 872703 310383 712894 849554 524890 050724 236881 353647 369430 818974 054900 857951 686371 467174 273826 735138 301154 373961 058202 025067 792006 027259 018542 559129 457230 086298 288748 363444 880699 090019 244020 009683 206803 148681 198320 078303 670928 416161 742071 258846 262971 284019 331131 966121 486270 499159 055216 564903 653588 765312 979152 688904 978821 372177 365647 052337 947259 399440 839251 590615 479571 670726 622087 427922 482662 590850 462341 244885 156154 505765 313589 (727 digits)/193 650919 343610 179670 962827 655762 605453 453570 555743 508155 490240 791079 983005 530710 553631 620750 728697 812063 821577 267843 040823 765622 788421 439248 205517 009321 287148 124547 941716 660539 072313 167715 541582 831444 702985 163272 720373 966455 540489 042395 853081 895558 882909 622288 319634 248164 932868 485880 456947 537031 665934 172268 669515 952025 235995 488051 010829 584291 755814 980980 601835 667178 878292 515434 226969 036585 026566 991328 796123 739948 324784 461270 218912 106190 873605 841136 558170 616227 945567 105881 329508 132050 892465 099751 040683 212540 325725 840856 136783 872537 214997 117992 791223 211473 467486 950670 616912 700236 147299 882240 517893 265507 552020 214478 977663 295768 781469 288956 551989 446207 427249 955816 751817 430389 672213 755149 174473 500658 306189 179809 166260 546891 (729 digits), a[1388] = 4
                                                                                      A[1389]/B[1389] = 4 384064 978905 704846 432053 297242 001321 919393 578060 403713 505622 303268 525238 595384 994377 028065 486751 566023 598187 285887 252835 444250 157859 390623 664475 109574 567021 891368 866813 111603 206209 282316 419059 655991 731522 072326 709421 722026 881103 689881 064071 655450 801132 644052 203291 760694 138368 940578 112642 528206 384887 660561 942263 700381 208404 161699 773919 293640 702412 695733 937386 686985 367038 563669 611971 611698 991042 931933 542290 757154 041555 316361 883769 096970 178630 914963 532348 856546 390988 637033 752723 142232 958834 317546 174639 749472 317922 699991 559625 693884 640031 109890 234104 266924 115402 767412 409991 292110 903555 559855 028867 674086 304888 892047 642859 924370 770465 307153 513938 104965 928621 231083 017560 811432 540835 738037 301777 088414 038685 998166 356183 739883 (727 digits)/426 102731 106706 059460 569565 167867 352764 559247 408943 601008 645940 609454 227972 943848 673818 314752 910065 692589 110825 066920 170476 310211 806587 645070 010202 164763 288845 225956 571930 801666 537970 793624 354538 186461 689261 100398 996678 541175 833520 362072 652015 470270 900780 386201 235922 834129 990390 105060 324695 048090 029735 330659 772748 560153 883092 794004 113303 961067 886789 359924 445660 337509 876409 993949 692461 515555 662245 076769 442229 727319 432224 944897 828531 087027 297571 716021 654490 379511 797275 715898 868597 566512 748701 602915 330336 440225 874909 410237 899997 110804 871590 369087 928049 535636 486619 922051 397759 067284 652864 677827 271311 243537 092118 995061 379955 412552 793905 786141 949350 352901 644240 594774 138498 464830 322619 779856 865930 976963 843892 578208 651759 477368 (729 digits), a[1389] = 2
                                                                                      A[1390]/B[1390] = 6 376491 104460 414732 393927 074224 645536 124457 722501 111495 700736 202728 766018 112921 306435 147766 506434 271228 166381 525272 764099 473812 741222 522688 477924 965474 592142 436359 683040 442038 749425 513164 996050 570773 486051 787344 325011 500784 817500 746601 648579 600281 874090 886122 778986 867106 024268 019303 171312 877987 228965 533265 252647 413276 057958 686589 824643 530522 056060 065164 756360 741886 224990 250041 079145 885525 726181 233087 916251 815356 066623 108367 911028 115512 737760 372193 618647 145294 754433 517732 842742 386252 968517 524349 323320 947792 396226 370919 975787 435955 898877 372861 518123 598056 081524 253682 909150 347327 468459 213443 794180 653238 993793 870869 015037 290017 822803 254412 913378 944217 519236 710654 688287 433519 968758 220699 892627 550755 283571 154320 861949 053472 (727 digits)/619 753650 450316 239131 532392 823629 958218 012817 964687 109164 136181 400534 210978 474559 227449 935503 638763 504652 932402 334763 211300 075834 595009 084318 215719 174084 575993 350504 513647 462205 610283 961339 896121 017906 392246 263671 717052 507631 374009 404468 505097 365829 783690 008489 555557 082294 923258 590940 781642 585121 695669 502928 442264 512179 119088 282055 124133 545359 642604 340905 047496 004688 754702 509383 919430 552140 688812 068098 238353 467267 757009 406168 047443 193218 171177 557158 212660 995739 742842 821780 198105 698563 641166 702666 371019 652766 200635 251094 036780 983342 086587 487080 719272 747109 954106 872722 014671 767520 800164 560067 789204 509044 644139 209540 357618 708321 575375 075098 501339 799109 071490 550590 890315 895219 994833 535006 040404 477622 150081 758017 818020 024259 (729 digits), a[1390] = 1
                                                                                      A[1391]/B[1391] = 189 302307 008257 732085 855938 449756 721869 528667 530592 637088 826972 182402 739763 870102 880996 313294 173345 431640 423251 518797 411720 184819 653312 548589 524299 108337 739152 545799 674985 930726 939549 164101 304526 208422 827023 905312 134755 244786 588625 341328 872880 063625 149768 341612 793910 906768 842141 500370 080715 989836 024888 125254 269038 685386 889206 072804 688581 678780 328154 585511 871848 201685 891755 814860 907202 291945 050298 691483 113593 402479 973625 459031 303584 446839 573681 708578 473116 070094 269560 651286 192252 343569 045842 523676 550947 235451 808487 456670 857461 336605 707474 922874 259688 610550 479606 124216 775351 364607 488872 749725 060106 618017 124911 147249 078941 334887 631759 685128 001927 487273 986485 840068 977896 383511 634824 138334 187976 060317 262249 473471 352706 290571 (729 digits)/18398 958594 165876 994275 008957 053136 141086 930968 384869 766768 595201 224946 346348 706066 269866 444358 434207 327524 150492 775053 298178 509415 061851 090298 266058 213215 992652 390587 467707 205629 236205 672481 342047 705747 064402 746878 791201 262485 679793 091659 299839 079334 627790 632398 347078 220682 764889 242342 992330 016619 204150 915584 598419 413348 336652 973602 713176 776497 522315 246170 823044 473483 762782 766083 355947 527635 637795 051618 354480 278084 385497 723771 204383 690354 261720 873609 821659 255964 339717 547524 613662 824858 342535 980240 089906 370445 693331 691964 966645 627725 382627 494428 786959 201825 155719 230989 823240 325387 857636 919793 158242 005831 772156 071731 750897 953878 479782 963998 488204 527064 717466 561909 957659 426210 172792 295032 037660 828006 196263 560725 374340 180879 (731 digits), a[1391] = 29
                                                                                      A[1392]/B[1392] = 195 678798 112718 146818 249865 523981 367405 653125 253093 748584 527708 385131 505781 983024 187431 461060 679779 702868 589633 044070 175819 658632 394535 071278 002224 073812 331294 982159 358026 372765 688974 677266 300576 779196 313075 692656 459766 745571 406126 087930 521459 663907 023859 227735 572897 773874 866409 519673 252028 867823 253853 658519 521686 098662 947164 759394 513225 209302 384214 650676 628208 943572 116746 064901 986348 177470 776479 924571 029845 217836 040248 567399 214612 562352 311442 080772 091763 215389 023994 169019 034994 729822 014360 048025 874268 183244 204713 827590 833248 772561 606352 295735 777812 208606 561130 377899 684501 711934 957331 963168 854287 271256 118705 018118 093978 624905 454562 939540 915306 431491 505722 550723 666183 817031 603582 359034 080603 611072 545820 627792 214655 344043 (729 digits)/19018 712244 616193 233406 541349 876766 099304 943786 349556 875932 731382 625480 557327 180625 497316 379862 072970 832177 082895 109816 509478 585249 656860 174616 481777 387300 568645 741091 981354 667834 846489 633821 238168 723653 456649 010550 508253 770117 053802 496127 804936 445164 411480 640887 902635 302977 688147 833283 773972 601740 899820 418513 040683 925527 455741 255657 837310 321857 164919 587075 870540 478172 517485 275467 275378 079776 326607 119716 592833 745352 142507 129939 251826 883572 432898 430768 034320 251704 082560 369304 811768 523421 983702 682906 460926 023211 893966 943059 003426 611067 469214 981509 506231 948935 109826 103711 837912 092908 657801 479860 947446 514876 416295 281272 108516 662200 055158 039096 989544 326173 788957 112500 847975 321430 167625 830038 078065 305628 346345 318743 192360 205138 (731 digits), a[1392] = 1
                                                                                      A[1393]/B[1393] = 776 338701 346412 172540 605535 021700 824086 488043 289873 882842 410097 337797 257109 819175 443290 696476 212684 540246 192150 651007 939179 160716 836917 762423 530971 329774 733037 492277 749065 049024 006473 195900 206256 546011 766250 983281 514055 481500 807003 605120 437259 055346 221346 024819 512604 228393 441370 059389 836802 593305 786449 100812 834096 981375 730700 350988 228257 306687 480798 537541 756475 032402 241994 009566 866246 824357 379738 465196 203129 055988 094371 161228 947422 133896 508007 950894 748405 716261 341543 158343 297236 533035 088922 667754 173751 785184 422628 939443 357207 654290 526531 810081 593125 236370 162997 257915 828856 500412 360868 639231 622968 431785 481026 201603 360877 209603 995448 503750 747846 781748 503653 492239 976447 834606 445571 215436 429786 893534 899711 356847 996672 322700 (729 digits)/75455 095328 014456 694494 633006 683434 439001 762327 433540 394566 789349 101388 018330 247942 761815 583944 653119 824055 399178 104502 826614 265164 032431 614147 711390 375117 698589 613863 411771 209133 775674 573945 056553 876707 434349 778530 315962 572836 841200 580042 714648 414827 862232 555062 054984 129615 829332 742194 314247 821841 903612 171123 720471 189930 703876 740576 225107 742069 017074 007398 434665 908001 315238 592485 182081 766964 617616 410768 132981 514140 813019 113588 959864 341071 560416 165913 924620 011076 587398 655439 048968 395124 293644 028959 472684 440081 375232 521141 976925 460927 790272 438957 305655 048630 485197 542125 336976 604113 831041 359376 000581 550461 021041 915548 076447 940478 645257 081289 456837 505586 084337 899412 501585 390500 675669 785146 271856 744891 235299 516954 951420 796293 (731 digits), a[1393] = 3
                                                                                      A[1394]/B[1394] = 972 017499 459130 319358 855400 545682 191492 141168 542967 631426 937805 722928 762891 802199 630722 157536 892464 243114 781783 695078 114998 819349 231452 833701 533195 403587 064332 474437 107091 421789 695447 873166 506833 325208 079326 675937 973822 227072 213129 693050 958718 719253 245205 252555 085502 002268 307779 579063 088831 461129 040302 759332 355783 080038 677865 110382 741482 515989 865013 188218 384683 975974 358740 074468 852595 001828 156218 389767 232974 273824 134619 728628 162034 696248 819450 031666 840168 931650 365537 327362 332231 262857 103282 715780 048019 968428 627342 767034 190456 426852 132884 105817 370937 444976 724127 635815 513358 212347 318200 602400 477255 703041 599731 219721 454855 834509 450011 443291 663153 213240 009376 042963 642631 651638 049153 574470 510390 504607 445531 984640 211327 666743 (729 digits)/94473 807572 630649 927901 174356 560200 538306 706113 783097 270499 520731 726868 575657 428568 259131 963806 726090 656232 482073 214319 336092 850413 689291 788764 193167 762418 267235 354955 393125 876968 622164 207766 294722 600360 890998 789080 824216 342953 895003 076170 519584 859992 273713 195949 957619 432593 517480 575478 088220 423582 803432 589636 761155 115458 159617 996234 062418 063926 181993 594474 305206 386173 832723 867952 457459 846740 944223 530484 725815 259492 955526 243528 211691 224643 993314 596681 958940 262780 669959 024743 860736 918546 277346 711865 933610 463293 269199 464200 980352 071995 259487 420466 811886 997565 595023 645837 174888 697022 488842 839236 948028 065337 437337 196820 184964 602678 700415 120386 446381 831759 873295 011913 349560 711930 843295 615184 349922 050519 581644 835698 143781 001431 (731 digits), a[1394] = 1
                                                                                      A[1395]/B[1395] = 1748 356200 805542 491899 460935 567383 015578 629211 832841 514269 347903 060726 020001 621375 074012 854013 105148 783360 973934 346086 054177 980066 068370 596125 064166 733361 797369 966714 856156 470813 701921 069066 713089 871219 845577 659219 487877 708573 020133 298171 395977 774599 466551 277374 598106 230661 749149 638452 925634 054434 826751 860145 189880 061414 408565 461370 969739 822677 345811 725760 141159 008376 600734 084035 718841 826185 535956 854963 436103 329812 228990 889857 109456 830145 327457 982561 588574 647911 707080 485705 629467 795892 192205 383534 221771 753613 049971 706477 547664 081142 659415 915898 964062 681346 887124 893731 342214 712759 679069 241632 100224 134827 080757 421324 815733 044113 445459 947042 410999 994988 513029 535203 619079 486244 494724 789906 940177 398142 345243 341488 207999 989443 (730 digits)/169928 902900 645106 622395 807363 243634 977308 468441 216637 665066 310080 828256 593987 676511 020947 547751 379210 480287 881251 318822 162707 115577 721723 402911 904558 137535 965824 968818 804897 086102 397838 781711 351276 477068 325348 567611 140178 915790 736203 656213 234233 274820 135945 751012 012603 562209 346813 317672 402468 245424 707044 760760 481626 305388 863494 736810 287525 805995 199067 601872 739872 294175 147962 460437 639541 613705 561839 941252 858796 773633 768545 357117 171555 565715 553730 762595 883560 273857 257357 680182 909705 313670 570990 740825 406294 903374 644431 985342 957277 532923 049759 859424 117542 046196 080221 187962 511865 301136 319884 198612 948609 615798 458379 112368 261412 543157 345672 201675 903219 337345 957632 911325 851146 102431 518965 400330 621778 795410 816944 352653 095201 797724 (732 digits), a[1395] = 1
                                                                                      A[1396]/B[1396] = 4468 729901 070215 303157 777271 680448 222649 399592 208650 659965 633611 844380 802895 044949 778747 865563 102761 809836 729652 387250 223354 779481 368194 025951 661528 870310 659072 407866 819404 363417 099290 011299 933013 067647 770481 994376 949577 644218 253396 289393 750674 268452 178307 807304 281714 463591 806078 855968 940099 569998 693806 479622 735543 202867 494996 033124 680962 161344 556636 639738 667001 992727 560208 242540 290278 654199 228132 099694 105180 933448 592601 508342 380948 356539 474365 996790 017318 227473 779698 298773 591166 854641 487693 482848 491563 475654 727286 179989 285784 589137 451715 937615 299062 807670 498377 423278 197787 637866 676339 085664 677703 972695 761246 062371 086321 922736 340931 337376 485153 203217 035435 113370 880790 624127 038603 154284 390745 300892 136018 667616 627327 645629 (730 digits)/434331 613373 920863 172692 789083 047470 492923 642996 216372 600632 140893 383381 763632 781590 301027 059309 484511 616808 244575 851963 661507 081569 132738 594588 002284 037490 198885 292593 002920 049173 417841 771188 997275 554497 541695 924303 104574 174535 367410 388596 988051 409632 545604 697973 982826 557012 211107 210822 893156 914432 217522 111157 724407 726235 886607 469854 637469 675916 580128 798219 784950 974524 128648 788827 736543 074152 067903 412990 443408 806760 492616 957762 554802 356075 100776 121873 726060 810495 184674 385109 680147 545887 419328 193516 746200 270042 558063 434886 894907 137841 359007 139315 046971 089957 755466 021762 198619 299295 128611 236462 845247 296934 354095 421556 707789 688993 391759 523738 252820 506451 788560 834565 051852 916793 881226 415845 593479 641341 215533 541004 334184 596879 (732 digits), a[1396] = 2
                                                                                      A[1397]/B[1397] = 19623 275805 086403 704530 570022 289175 906176 227580 667444 154131 882350 438249 231581 801174 189004 316265 516196 022707 892543 895086 947597 097991 541146 699931 710282 214604 433659 598182 133773 924482 099081 114266 445142 141810 927505 636727 286188 285446 033718 455746 398674 848408 179782 506591 724964 085028 973465 062328 686032 334429 601977 778636 132052 872884 388549 593869 693588 468055 572358 284714 809166 979286 841567 054196 879956 442982 448485 253739 856827 063606 599396 923226 633250 256303 224921 969721 657847 557806 825873 680799 994135 214458 142979 314928 188025 656231 959116 426434 690802 437692 466279 666360 160313 912028 880634 586844 133365 264226 384425 584290 811040 025610 125741 670809 161020 735058 809185 296548 351612 807856 654769 988687 142241 982752 649137 407044 503158 601710 889318 011954 717310 571959 (731 digits)/1 907255 356396 328559 313166 963695 433516 949003 040426 082128 067594 873654 361783 648518 802872 225055 784989 317256 947520 859554 726676 808735 441854 252677 781263 913694 287496 761366 139190 816577 282796 069205 866467 340378 695058 492132 264823 558475 613932 205845 210601 186438 913350 318364 542907 943909 790258 191242 160963 975095 903153 577133 205391 379257 210332 409924 616228 837404 509661 519582 794751 879676 192271 662557 615748 585713 910313 833453 593214 632432 000675 739013 188167 390764 990015 956835 250090 787803 515837 996055 220621 630295 497220 248303 514892 391095 983544 876685 724890 536906 084288 485788 416684 305426 406027 102085 275011 306342 498316 834329 144464 329598 803535 874760 798595 092571 299130 912710 296628 914501 363153 111876 249586 058557 769607 043871 063712 995697 360775 679078 516670 431940 185240 (733 digits), a[1397] = 4
                                                                                      A[1398]/B[1398] = 43715 281511 243022 712218 917316 258800 035001 854753 543538 968229 398312 720879 266058 647298 156756 498094 135153 855252 514740 177424 118548 975464 450487 425815 082093 299519 526391 604231 086952 212381 297452 239832 823297 351269 625493 267831 521954 215110 320833 200886 548023 965268 537872 820487 731642 633649 753008 980626 312164 238857 897762 036894 999648 948636 272095 220864 068139 097455 701353 209168 285335 951301 243342 350934 050191 540164 125102 607173 818835 060661 791395 354795 647448 869145 924209 936233 333013 343087 431445 660373 579437 283557 773652 112704 867614 788118 645519 032858 667389 464522 384275 270335 619690 631728 259646 596966 464518 166319 445190 254246 299784 023916 012729 403989 408363 392853 959301 930473 188378 818930 344975 090745 165274 589632 336877 968373 397062 504313 914654 691526 061948 789547 (731 digits)/4 248842 326166 577981 799026 716473 914504 390929 723848 380628 735821 888202 106949 060670 387334 751138 629288 119025 511849 963685 305317 278977 965277 638094 157115 829672 612483 721617 570974 636074 614765 556253 504123 678032 944614 525960 453950 221525 402399 779100 809799 360929 236333 182333 783789 870646 137528 593591 532750 843348 720739 371788 521940 482922 146900 706456 702312 312278 695239 619294 387723 544303 359067 453764 020324 907970 894779 734810 599419 708272 808111 970643 334097 336332 336107 014446 622055 301667 842171 176784 826352 940738 540327 915935 223301 528392 237132 311434 884667 968719 306418 330583 972683 657823 902011 959636 571784 811304 295928 797269 525391 504444 904006 103617 018746 892932 287255 217180 116996 081823 232758 012313 333737 168968 456007 968968 543271 584874 362892 573690 574345 198064 967359 (733 digits), a[1398] = 2
                                                                                      A[1399]/B[1399] = 63338 557316 329426 416749 487338 547975 941178 082334 210983 122361 280663 159128 497640 448472 345760 814359 651349 877960 407284 072511 066146 073455 991634 125746 792375 514123 960051 202413 220726 136863 396533 354099 268439 493080 552998 904558 808142 500556 354551 656632 946698 813676 717655 327079 456606 718678 726474 042954 998196 573287 499739 815531 131701 821520 660644 814733 761727 565511 273711 493883 094502 930588 084909 405130 930147 983146 573587 860913 675662 124268 390792 278022 280699 125449 149131 905954 990860 900894 257319 341173 573572 498015 916631 427633 055640 444350 604635 459293 358191 902214 850554 936695 780004 543757 140281 183810 597883 430545 829615 838537 110824 049526 138471 074798 569384 127912 768487 227021 539991 626786 999745 079432 307516 572384 986015 375417 900221 106024 803972 703480 779259 361506 (731 digits)/6 156097 682562 906541 112193 680169 348021 339932 764274 462756 803416 761856 468732 709189 190206 976194 414277 436282 459370 823240 031994 087713 407131 890771 938379 743366 899980 482983 710165 452651 897561 625459 370591 018411 639673 018092 718773 780001 016331 984946 020400 547368 149683 500698 326697 814555 927786 784833 693714 818444 623892 948921 727331 862179 357233 116381 318541 149683 204901 138877 182475 423979 551339 116321 636073 493684 805093 568264 192634 340704 808787 709656 522264 727097 326122 971281 872146 089471 358009 172840 046974 571034 037548 164238 738193 919488 220677 188120 609558 505625 390706 816372 389367 963250 308039 061721 846796 117646 794245 631598 669855 834043 707541 978377 817341 985503 586386 129890 413624 996324 595911 124189 583323 227526 225615 012839 606984 580571 723668 252769 091015 630005 152599 (733 digits), a[1399] = 1
                                                                                      A[1400]/B[1400] = 360408 068092 890154 795966 354008 998679 740892 266424 598454 580035 801628 516521 754260 889659 885560 569892 391903 245054 551160 539979 449279 342744 408658 054549 043970 870139 326647 616297 190582 896698 280119 010329 165494 816672 390487 790625 562666 717892 093591 484051 281518 033652 126149 455885 014676 227043 385379 195401 303147 105295 396461 114550 658158 056239 575319 294532 876776 925012 069910 678583 757850 604241 667889 376588 700931 455896 993041 911742 197145 682003 745356 744907 050944 496391 669869 466008 287317 847558 718042 366241 447299 773637 356809 250870 145817 009871 668696 329325 458348 975596 637049 953814 519713 350513 961052 516019 453935 319048 593269 446931 853904 271546 705084 777982 255284 032417 801738 065580 888336 952865 343700 487906 702857 451557 266954 845462 898168 034437 934518 208929 958245 597077 (732 digits)/35 029330 738981 110687 359995 117320 654611 090593 545220 694412 752905 697484 450612 606616 338369 632110 700675 300437 808704 079885 465287 717545 000937 091953 849014 546507 112386 136536 121801 899334 102573 683550 357078 770091 142979 616424 047819 121530 484059 703830 911802 097769 984750 685825 417278 943425 776462 517760 001324 935571 840204 116397 158599 793818 933066 288363 295018 060694 719745 313680 300100 664201 115763 035372 200692 376394 920247 576131 562591 411796 852050 518925 945420 971818 966721 870855 982785 749024 632217 040985 061225 795908 728068 737128 914271 125833 340518 252037 932460 496846 259952 412445 919523 474075 442207 268245 805765 399538 267156 955262 874670 674663 441715 995506 105456 820450 219185 866632 185121 063446 212313 633261 250353 306599 584083 033166 578194 487732 981233 837536 029423 348090 730354 (734 digits), a[1400] = 5
                                                                                      A[1401]/B[1401] = 2 946603 102059 450664 784480 319410 537413 868316 213730 998619 762647 693691 291302 531727 565751 430245 373498 786575 838396 816568 392346 660380 815411 260898 562139 144142 475238 573232 132790 745389 310449 637485 436732 592398 026459 676901 229563 309476 243693 103283 529043 198843 082893 726850 974159 574016 535025 809507 606165 423373 415650 671428 731936 396966 271437 263199 170996 775942 965607 832996 922553 157307 764521 428024 417840 537599 630322 517923 154851 252827 580298 353646 237278 688255 096582 508087 634021 289403 681364 001658 271105 151970 687114 771105 434594 222176 523323 954206 093897 024983 706987 946954 567211 937711 347868 828701 311966 229365 982934 575771 413991 942058 221899 779149 298656 611656 387255 182391 751668 646687 249709 749348 982685 930376 184843 121654 139121 085565 381528 280118 374920 445224 138122 (733 digits)/286 390743 594411 792039 992154 618734 584910 064681 126040 018058 826662 341732 073633 562119 897164 033080 019679 839784 929003 462323 754295 828073 414628 626402 730496 115423 799069 575272 684580 647324 718151 093862 227221 179140 783509 949485 101326 752244 888809 615593 314817 329528 027688 987301 664929 361962 139486 926913 704314 303019 345525 880098 996130 212730 821763 423287 678685 635240 962863 648319 583280 737588 477443 399299 241612 504844 167074 177316 693365 635079 625191 861064 085632 501649 059897 938129 734432 081668 415745 500720 536780 938303 862098 061270 052362 926154 944823 204424 069242 480395 470326 115939 745555 755853 845697 207688 292919 313952 931501 273701 667221 231351 241269 942426 660996 549105 339873 062947 894593 503894 294420 190279 586149 680322 898279 278172 232540 482435 573538 953057 326402 414730 995431 (735 digits), a[1401] = 8
                                                                                      A[1402]/B[1402] = 3 307011 170152 340819 580446 673419 536093 609208 480155 597074 342683 495319 807824 285988 455411 315805 943391 178479 083451 367728 932326 109660 158155 669556 616688 188113 345377 899879 749087 935972 207147 917604 447061 757892 843132 067389 020188 872142 961585 196875 013094 480361 116545 853000 430044 588692 762069 194886 801566 726520 520946 067889 846487 055124 327676 838518 465529 652719 890619 902907 601136 915158 368763 095913 794429 238531 086219 510965 066593 449973 262302 099002 982185 739199 592974 177957 100029 576721 528922 719700 637346 599270 460752 127914 685464 367993 533195 622902 423222 483332 682584 584004 521026 457424 698382 789753 827985 683301 301983 169040 860923 795962 493446 484234 076638 866940 419672 984129 817249 535024 202575 093049 470592 633233 636400 388608 984583 983733 415966 214636 583850 403469 735199 (733 digits)/321 420074 333392 902727 352149 736055 239521 155274 671260 712471 579568 039216 524246 168736 235533 665190 720355 140222 737707 542209 219583 545618 415565 718356 579510 661930 911455 711808 806382 546658 820724 777412 584299 949231 926489 565909 149145 873775 372869 319424 226619 427298 012439 673127 082208 305387 915949 444673 705639 238591 185729 996496 154730 006549 754829 711650 973703 695935 682608 961999 883381 401789 593206 434671 442304 881239 087321 753448 255957 046876 477242 379990 031053 473468 026619 808985 717217 830693 047962 541705 598006 734212 590166 798398 966634 051988 285341 456462 001702 977241 730278 528385 665079 229929 287904 475934 098684 713491 198658 228964 541891 906014 682985 937932 766453 369555 559058 929580 079714 567340 506733 823540 836502 986922 482362 311338 810734 970168 554772 790593 355825 762821 725785 (735 digits), a[1402] = 1
                                                                                      A[1403]/B[1403] = 9 560625 442364 132303 945373 666249 609601 086733 174042 192768 448014 684330 906951 103704 476574 061857 260281 143534 005299 552026 256998 879701 131722 600011 795515 520369 165994 372991 630966 617333 724745 472694 330856 108183 712723 811679 269941 053762 166863 497033 555232 159565 315985 432851 834248 751402 059164 199281 209298 876414 457542 807208 424910 507214 926790 940236 102056 081382 746847 638812 124826 987624 502047 619852 006699 014661 802761 539853 288038 152774 104902 551652 201650 166654 282530 864001 834080 442846 739209 441059 545798 350511 608619 026934 805522 958163 589715 200010 940341 991649 072157 114963 609264 852560 744634 408208 967937 595968 586900 913853 135839 533983 208792 747617 451934 345537 226601 150651 386167 716735 654859 935447 923871 196843 457643 898872 108289 053032 213460 709391 542621 252163 608520 (733 digits)/929 230892 261197 597494 696454 090845 063952 375230 468561 443001 985798 420165 122125 899592 368231 363461 460390 120230 404418 546742 193462 919310 245760 063115 889517 439285 621980 998890 297345 740642 359600 648687 395821 077604 636489 081303 399618 499795 634548 254441 768056 184124 052568 333555 829345 972737 971385 816261 115592 780201 716985 873091 305590 225830 331422 846589 626093 027112 328081 572319 350043 541167 663856 268642 126222 267322 341717 684213 205279 728832 579676 621044 147739 448585 113137 556101 168867 743054 511670 584131 732794 406729 042431 658067 985631 030131 515506 117348 072648 434878 930883 172711 075714 215712 421506 159556 490288 740935 328817 731630 751005 043380 607241 818292 193903 288216 457990 922108 054022 638575 307887 837361 259155 654167 863003 900849 854010 422772 683084 534244 038053 940374 447001 (735 digits), a[1403] = 2
                                                                                      A[1404]/B[1404] = 79 792014 709065 399251 143436 003416 412902 303073 872493 139221 926800 969967 063433 115624 268003 810664 025640 326751 125847 783938 988317 147269 211936 469650 980812 351066 673332 883812 796820 874642 005111 699159 093910 623362 544922 560823 179717 302240 296493 173143 454951 756883 644429 315815 104034 599909 235382 789136 475957 737836 181288 525557 245771 112843 742004 360407 281978 303781 865401 013404 599752 816154 385144 054729 848021 355825 508311 829791 370898 672166 101522 512220 595387 072433 853221 089971 772673 119495 442598 248177 003733 403363 329704 343393 129648 033302 250917 222989 945958 416525 259841 503713 395145 277910 655458 055425 571486 451049 997190 479865 947640 067828 163788 465173 692113 631238 232482 189340 906591 268909 441454 576632 861562 207981 297551 579585 850896 407991 123651 889768 924820 420778 603359 (734 digits)/7755 267212 422973 682684 923782 462815 751140 157118 419752 256487 465955 400537 501253 365475 181384 572882 403476 102065 973055 916146 767286 900100 381646 223283 695650 176215 887303 702931 185148 471797 697529 966911 750868 570069 018402 216336 346093 872140 449255 354958 371068 900290 432986 341573 716976 087291 687035 974762 630381 480204 921616 981226 599451 813192 406212 484367 982447 912834 307261 540554 683729 731130 904056 583808 452083 019817 821063 227153 898194 877537 114655 348343 212969 062148 931720 257795 068159 775129 141327 214759 460361 988044 929620 062942 851682 293040 409390 395246 582890 456273 177343 910074 270792 955628 659953 752386 020994 640973 829200 082010 549932 253059 540920 484270 317679 675287 222986 306444 511895 675942 969836 522430 909748 220265 386393 518137 642818 352350 019449 064545 660257 285817 301793 (736 digits), a[1404] = 8
                                                                                      A[1405]/B[1405] = 248 936669 569560 330057 375681 676498 848307 995954 791521 610434 228417 594232 097250 450577 280585 493849 337202 123787 382842 903843 221950 321508 767532 008964 737952 573569 185993 024430 021429 241259 740080 570171 612587 978271 347491 494148 809092 960483 056343 016463 920087 430216 249273 380297 146352 551129 765312 566690 637172 089923 001408 383880 162223 845746 152804 021457 947990 992728 343050 679025 924085 436087 657479 784041 550763 082138 327697 029227 400734 169272 409470 088313 987811 383955 842194 133917 152099 801333 067004 185590 556998 560601 597732 057114 194467 058070 342466 868980 778217 241224 851681 626103 794700 686292 711008 574485 682396 949118 578472 353450 978759 737467 700158 143138 528275 239251 924047 718674 105941 523463 979223 665346 508557 820787 350298 637629 660978 277005 584416 378698 317082 514499 418597 (735 digits)/24195 032529 530118 645549 467801 479292 317372 846585 727818 212464 383664 621777 625885 996017 912385 082108 670818 426428 323586 295182 495323 619611 390698 732966 976467 967933 283892 107683 852791 156035 452190 549422 648426 787811 691695 730312 437900 116216 982314 319316 881262 884995 351527 358276 980274 234613 032493 740549 006737 220816 481836 816771 103945 665407 550060 299693 573436 765615 249866 193983 401232 734560 376026 020067 482471 326775 804907 365674 899864 361443 923642 666073 786646 635031 908298 329486 373347 068441 935652 228410 113880 370863 831291 846896 540677 909252 743677 303087 821319 803698 462914 902933 888093 082598 401367 416714 553272 663856 816417 977662 400801 802559 230003 271103 146942 314078 126949 841441 589709 666404 217397 404653 988400 314964 022184 455262 782465 479822 741431 727881 018825 797826 352380 (737 digits), a[1405] = 3
                                                                                      A[1406]/B[1406] = 328 728684 278625 729308 519117 679915 261210 299028 664014 749656 155218 564199 160683 566201 548589 304513 362842 450538 508690 687782 210267 468777 979468 478615 718764 924635 859325 908242 818250 115901 745192 269330 706498 601633 892414 054971 988810 262723 352836 189607 375039 187099 893702 696112 250387 151039 000695 355827 113129 827759 182696 909437 407994 958589 894808 381865 229969 296510 208451 692430 523838 252242 042623 838771 398784 437963 836008 859018 771632 841438 510992 600534 583198 456389 695415 223888 924772 920828 509602 433767 560731 963964 927436 400507 324115 091372 593384 091970 724175 657750 111523 129817 189845 964203 366466 629911 253883 400168 575662 833316 926399 805295 863946 608312 220388 870490 156529 908015 012532 792373 420678 241979 370120 028768 647850 217215 511874 684996 708068 268467 241902 935278 021956 (735 digits)/31950 299741 953092 328234 391583 942108 068513 003704 147570 468951 849620 022315 127139 361493 093769 654991 074294 528494 296642 211329 262610 519711 772344 956250 672118 144149 171195 810615 037939 627833 149720 516334 399295 357880 710097 946648 783993 988357 431569 674275 252331 785285 784513 699850 697250 321904 719529 715311 637118 701021 403453 797997 703397 478599 956272 784061 555884 678449 557127 734538 084962 465691 280082 603875 934554 346593 625970 592828 798059 238981 038298 014416 999615 697180 840018 587281 441506 843571 076979 443169 574242 358908 760911 909839 392360 202293 153067 698334 404210 259971 640258 813008 158886 038227 061321 169100 574267 304830 645618 059672 950734 055618 770923 755373 464621 989365 349936 147886 101605 342347 187233 927084 898148 535229 408577 973400 425283 832172 760880 792426 679083 083643 654173 (737 digits), a[1406] = 1
                                                                                      A[1407]/B[1407] = 27533 417464 695495 862664 462449 109465 528762 815333 904745 831895 111558 422762 433986 445305 813497 768458 453125 518483 604169 989766 674150 230081 063415 734069 395441 318345 510043 408583 936188 861104 591038 924620 251971 913884 417858 056823 880344 766521 341746 753876 048339 959507 426597 157613 928486 087366 823027 100341 026947 793935 165251 867185 025805 408707 421899 716272 035442 603075 644541 150759 402660 372177 195258 402067 649871 433136 716432 327785 446260 008668 821855 932684 393283 264300 561657 716697 908252 230099 364006 188298 097751 569690 574953 299222 096019 641995 593346 502550 884796 834484 108101 400930 551915 715172 127738 857119 754719 163110 358487 518755 869943 577024 407726 633052 820551 489934 916030 083920 146163 290457 895517 749634 228520 208585 121866 666517 146577 131732 354082 661479 395026 142575 240945 (737 digits)/2 676069 911111 636781 889003 969268 674262 003952 154029 976167 135467 902126 473933 178452 999944 695266 446367 837264 291454 944889 835511 291996 755688 495330 101772 762273 932314 493144 388732 001780 266186 878993 405177 789941 491910 629825 302161 509401 149883 802597 284162 824801 063715 466164 445884 852050 952704 753460 111414 887589 405592 968502 050580 485936 389203 920701 376802 711865 076928 491468 160644 453117 386936 622882 141770 050482 094046 760466 570465 138781 196870 102377 862684 754749 501041 629841 073846 018415 084841 324946 011484 775996 160290 986980 363566 106574 699584 448296 264843 370771 381344 604396 382611 075634 255444 491024 452062 217458 964800 402716 930517 311728 418917 216674 967100 710567 431402 171650 115988 022953 081220 757813 352700 534728 739004 934156 247498 081023 550161 894537 499295 382721 740249 648739 (739 digits), a[1407] = 83
                                                                                      A[1408]/B[1408] = 27862 146148 974121 591972 981566 789380 789973 114362 568760 581551 266776 986961 594670 011507 362087 072971 815967 969022 112860 677548 884417 698859 042884 212685 114206 242981 369369 316826 754438 977006 336231 193950 958470 515518 310272 111795 869155 029244 694582 943483 423379 146607 320299 853726 178873 238405 823722 456168 140077 621694 347948 776622 433800 367297 316708 098137 265411 899585 852992 843189 926498 624419 237882 240839 048655 871100 552441 186804 217892 850107 332848 533218 976481 720690 257072 940586 833025 150927 873608 622065 658483 533655 502389 699729 420134 733368 186730 594521 608972 492234 219624 530747 741761 679375 494205 487031 008602 563278 934150 352072 796343 382320 271673 241365 040940 360425 072559 991935 158696 082831 316195 991613 598640 237353 769716 883732 658451 816729 062150 929946 636929 077853 262901 (737 digits)/2 708020 210853 589874 217238 360852 616370 072465 157734 123737 604419 751746 496248 305592 361437 789036 101358 911558 819949 241532 046840 554607 275400 267675 058023 434392 076463 664340 199347 039719 894020 028713 921512 189236 849791 339923 248810 293395 138241 234166 958438 077132 849001 250678 145735 549301 274609 472989 826726 524708 106614 371955 848578 189333 867803 876974 160864 267749 755378 048595 895182 538079 852627 902964 745645 985036 440640 386437 163293 936840 435851 140675 877101 754365 198222 469859 661127 459921 928412 401925 454654 350238 519199 747892 273405 498934 901877 601363 963177 774981 641316 244655 195619 234520 293671 552345 621162 791726 269631 048334 990190 262462 474535 987598 722474 175189 420767 521586 263874 124558 423567 945047 279785 432877 274234 342734 220898 506307 382334 655418 291722 061804 823893 302912 (739 digits), a[1408] = 1
                                                                                      A[1409]/B[1409] = 55395 563613 669617 454637 444015 898846 318735 929696 473506 413446 378335 409724 028656 456813 175584 841430 269093 487505 717030 667315 558567 928940 106299 946754 509647 561326 879412 725410 690627 838110 927270 118571 210442 429402 728130 168619 749499 795766 036329 697359 471719 106114 746897 011340 107359 325772 646749 556509 167025 415629 513200 643807 459605 776004 738607 814409 300854 502661 497533 993949 329158 996596 433140 642906 698527 304237 268873 514589 664152 858776 154704 465903 369764 984990 818730 657284 741277 381027 237614 810363 756235 103346 077342 998951 516154 375363 780077 097072 493769 326718 327725 931678 293677 394547 621944 344150 763321 726389 292637 870828 666286 959344 679399 874417 861491 850359 988590 075855 304859 373289 211713 741247 827160 445938 891583 550249 805028 948461 416233 591426 031955 220428 503846 (737 digits)/5 384090 121965 226656 106242 330121 290632 076417 311764 099904 739887 653872 970181 484045 361382 484302 547726 748823 111404 186421 882351 846604 031088 763005 159796 196666 008778 157484 588079 041500 160206 907707 326689 979178 341701 969748 550971 802796 288125 036764 242600 901933 912716 716842 591620 401352 227314 226449 938141 412297 512207 340457 899158 675270 257007 797675 537666 979614 832306 540064 055826 991197 239564 525846 887416 035518 534687 146903 733759 075621 632721 243053 739786 509114 699264 099700 734973 478337 013253 726871 466139 126234 679490 734872 636971 605509 601462 049660 228021 145753 022660 849051 578230 310154 549116 043370 073225 009185 234431 451051 920707 574190 893453 204273 689574 885756 852169 693236 379862 147511 504788 702860 632485 967606 013239 276890 468396 587330 932496 549955 791017 444526 564142 951651 (739 digits), a[1409] = 1
                                                                                      A[1410]/B[1410] = 83257 709762 643739 046610 425582 688227 108709 044059 042266 994997 645112 396685 623326 468320 537671 914402 085061 456527 829891 344864 442985 627799 149184 159439 623853 804308 248782 042237 445066 815117 263501 312522 168912 944921 038402 280415 618654 825010 730912 640842 895098 252722 067196 865066 286232 564178 470472 012677 307103 037323 861149 420429 893406 143302 055315 912546 566266 402247 350526 837139 255657 621015 671022 883745 747183 175337 821314 701393 882045 708883 487552 999122 346246 705681 075803 597871 574302 531955 111223 432429 414718 637001 579732 698680 936289 108731 966807 691594 102741 818952 547350 462426 035439 073923 116149 831181 771924 289668 226788 222901 462630 341664 951073 115782 902432 210785 061150 067790 463555 456120 527909 732861 425800 683292 661300 433982 463480 765190 478384 521372 668884 298281 766747 (737 digits)/8 092110 332818 816530 323480 690973 907002 148882 469498 223642 344307 405619 466429 789637 722820 273338 649085 660381 931353 427953 929192 401211 306489 030680 217819 631058 085241 821824 787426 081220 054226 936421 248202 168415 191493 309671 799782 096191 426366 270931 201038 979066 761717 967520 737355 950653 501923 699439 764867 937005 618821 712413 747736 864604 124811 674649 698531 247364 587684 588659 951009 529277 092192 428811 633062 020554 975327 533340 897053 012462 068572 383729 616888 263479 897486 569560 396100 938258 941666 128796 920793 476473 198690 482764 910377 104444 503339 651024 191198 920734 663977 093706 773849 544674 842787 595715 694387 800911 504062 499386 910897 836653 367989 191872 412049 060946 272937 214822 643736 272069 928356 647907 912271 400483 287473 619624 689295 093638 314831 205374 082739 506331 388036 254563 (739 digits), a[1410] = 1
                                                                                      A[1411]/B[1411] = 1 137745 790528 038225 060572 976590 845798 731953 502464 022977 348415 764796 566637 131900 544980 165319 728657 374892 422367 505618 150553 317381 090329 045694 019469 619747 017334 113579 274497 476496 434635 352787 181359 406310 713376 227359 814022 792012 520905 538194 028317 107996 391501 620456 257201 828382 660092 762885 721314 159364 900839 708143 109396 073885 638931 457714 677514 662317 731877 054382 876759 652708 069800 156438 131601 411908 583628 945964 632710 130747 074261 492893 454493 870972 158844 804177 429615 207210 296443 683519 431946 147577 384366 613868 081803 687912 788879 348577 087795 829412 973101 443281 943216 754385 355548 131892 149513 798337 492076 240884 768547 680481 400989 043350 379595 593110 590565 783540 957131 331080 302856 074540 268446 362569 328743 488489 192021 830278 895937 635232 369270 727451 098091 471557 (739 digits)/110 581524 448609 841550 311491 312782 081660 011889 415241 007255 215883 926926 033768 749335 758046 037704 985840 333788 218998 749822 961853 062351 015446 161847 991451 400421 116921 841206 824618 097360 865157 081183 553318 168575 831114 995481 948139 053284 830886 558869 856107 629801 815050 294612 177247 759847 752322 319166 881424 593370 556889 601836 619737 915123 879559 568121 618573 195354 472206 192643 418950 871799 438066 100398 117222 302733 213945 080335 395448 237628 524162 231538 759333 934353 366589 503985 884285 675703 254913 401231 436454 320386 262467 010816 471873 963288 144877 512974 713607 115303 654363 067239 638274 390927 505354 787674 100266 421034 787243 943081 762379 450684 677312 698615 046212 678058 400353 485930 748433 684420 573425 125663 492014 173888 750396 332011 429232 804629 025302 219818 866631 026834 608614 260970 (741 digits), a[1411] = 13
                                                                                      A[1412]/B[1412] = 1 221003 500290 681964 107183 402173 534025 840662 546523 065244 343413 409908 963322 755227 013300 702991 643059 459953 878895 335509 495417 760366 718128 194878 178909 243600 821642 362361 316734 921563 249752 616288 493881 575223 658297 265762 094438 410667 345916 269106 669160 003094 644223 687653 122268 114615 224271 233357 733991 466467 938163 569292 529825 967291 782233 513030 590061 228584 134124 404909 713898 908365 690815 827461 015347 159091 758966 767279 334104 012792 783144 980446 453616 217218 864525 879981 027486 781512 828398 794742 864375 562296 021368 193600 780484 624201 897611 315384 779389 932154 792053 990632 405642 789824 429471 248041 980695 570261 781744 467672 991449 143111 742653 994423 495378 495542 801350 844691 024921 794635 758976 602450 001307 788370 012036 149789 626004 293759 661128 113616 890643 396335 396373 238304 (739 digits)/118 673634 781428 658080 634972 003755 988662 160771 884739 230897 560191 332545 500198 538973 480866 311043 634925 994170 150352 177776 891045 463562 321935 192528 209271 031479 202163 663031 612044 178580 919384 017604 801520 336991 022608 305153 747921 149476 257252 829801 057146 608868 576768 262132 914603 710501 254246 018606 646292 530376 175711 314250 367474 779728 004371 242771 317104 442719 059890 781303 369960 401076 530258 529209 750284 323288 189272 613676 292501 250090 592734 615268 376222 197833 264076 073546 280386 613962 196579 530028 357247 796859 461157 493581 382251 067732 648217 163998 904806 036038 318340 160946 412123 935602 348142 383389 794654 221946 291306 442468 673277 287338 045301 890487 458261 739004 673290 700753 392169 956490 501781 773571 404285 574372 037869 951636 118527 898267 340133 425192 949370 533165 996650 515533 (741 digits), a[1412] = 1
                                                                                      A[1413]/B[1413] = 2 358749 290818 720189 167756 378764 379824 572616 048987 088221 691829 174705 529959 887127 558280 868311 371716 834846 301262 841127 645971 077747 808457 240572 198378 863347 838976 475940 591232 398059 684387 969075 675240 981534 371673 493121 908461 202679 866821 807300 697477 111091 035725 308109 379469 942997 884363 996243 455305 625832 839003 277435 639222 041177 421164 970745 267575 890901 866001 459292 590658 561073 760615 983899 146948 571000 342595 713243 966814 143539 857406 473339 908110 088191 023370 684158 457101 988723 124842 478262 296321 709873 405734 807468 862288 312114 686490 663961 867185 761567 765155 433914 348859 544209 785019 379934 130209 368599 273820 708557 759996 823593 143643 037773 874974 088653 391916 628231 982053 125716 061832 676990 269754 150939 340779 638278 818026 124038 557065 748849 259914 123786 494464 709861 (739 digits)/229 255159 230038 499630 946463 316538 070322 172661 299980 238152 776075 259471 533967 288309 238912 348748 620766 327958 369350 927599 852898 525913 337381 354376 200722 431900 319085 504238 436662 275941 784541 098788 354838 505566 853723 300635 696060 202761 088139 388670 913254 238670 391818 556745 091851 470349 006568 337773 527717 123746 732600 916086 987212 694851 883930 810892 935677 638073 532096 973946 788911 272875 968324 629607 867506 626021 403217 694011 687949 487719 116896 846807 135556 132186 630665 577532 164672 289665 451492 931259 793702 117245 723624 504397 854125 031020 793094 676973 618413 151341 972703 228186 050398 326529 853497 171063 894920 642981 078550 385550 435656 738022 722614 589102 504474 417063 073644 186684 140603 640911 075206 899234 896299 748260 788266 283647 547760 702896 365435 645011 816001 560000 605264 776503 (741 digits), a[1413] = 1
                                                                                      A[1414]/B[1414] = 3 579752 791109 402153 274939 780937 913850 413278 595510 153466 035242 584614 493282 642354 571581 571303 014776 294800 180158 176637 141388 838114 526585 435450 377288 106948 660618 838301 907967 319622 934140 585364 169122 556758 029970 758884 002899 613347 212738 076407 366637 114185 679948 995762 501738 057613 108635 229601 189297 092300 777166 846728 169048 008469 203398 483775 857637 119486 000125 864202 304557 469439 451431 811360 162295 730092 101562 480523 300918 156332 640551 453786 361726 305409 887896 564139 484588 770235 953241 273005 160697 272169 427103 001069 642772 936316 584101 979346 646575 693722 557209 424546 754502 334034 214490 627976 110904 938861 055565 176230 751445 966704 886297 032197 370352 584196 193267 472923 006974 920351 820809 279440 271061 939309 352815 788068 444030 417798 218193 862466 150557 520121 890837 948165 (739 digits)/347 928794 011467 157711 581435 320294 058984 333433 184719 469050 336266 592017 034165 827282 719778 659792 255692 322128 519703 105376 743943 989475 659316 546904 409993 463379 521249 167270 048706 454522 703925 116393 156358 842557 876331 605789 443981 352237 345392 218471 970400 847538 968586 818878 006455 180850 260814 356380 174009 654122 908312 230337 354687 474579 888302 053664 252782 080792 591987 755250 158871 673952 498583 158817 617790 949309 592490 307687 980450 737809 709631 462075 511778 330019 894741 651078 445058 903627 648072 461288 150949 914105 184781 997979 236376 098753 441311 840972 523219 187380 291043 389132 462522 262132 201639 554453 689574 864927 369856 828019 108934 025360 767916 479589 962736 156067 746934 887437 532773 597401 576988 672806 300585 322632 826136 235283 666288 601163 705569 070204 765372 093166 601915 292036 (741 digits), a[1414] = 1
                                                                                      A[1415]/B[1415] = 45 315782 784131 546028 467033 750019 346029 531959 195108 929814 114740 190079 449351 595382 417259 723947 549032 372448 463160 960773 342637 135122 127482 465976 725836 146731 766402 535563 486840 233534 894074 993445 704711 662630 731322 599729 943256 562846 419678 724189 097122 481319 195113 257259 400326 634355 187986 751457 726870 733442 165005 438173 667798 142807 861946 776055 559221 324733 867511 829720 245348 194347 177797 720221 094497 332105 561345 479523 577832 019531 544023 918776 248825 753109 678129 453832 272167 231554 563737 754324 224688 975906 530970 820304 575563 547913 695714 416121 626094 086238 451668 528475 402887 552620 358906 915647 461068 634931 940602 823326 777348 424051 779207 424142 319205 099007 711126 303308 065752 169937 911544 030273 522497 422651 574569 095100 146391 137617 175392 098443 066604 365249 184520 087841 (740 digits)/4404 400687 367644 392169 923687 160066 778134 173859 516613 866756 811274 363675 943957 215701 876256 266255 689074 193500 605788 192120 780226 399621 249179 917229 120643 992454 574075 511479 021139 730214 231642 495506 231144 616261 369702 570109 023836 429609 232846 010334 558064 409138 014860 383281 169313 640552 136340 614335 615832 973221 632347 680135 243462 389810 543555 454863 969062 607584 635950 036948 695371 360305 951322 535419 280998 017736 513101 386267 453358 341435 632474 391713 276896 092425 367565 390473 505379 133197 228362 466717 605101 086507 941008 480148 690638 216062 088836 768643 897043 399905 465223 897775 600665 472116 273171 824508 169819 022109 516832 321779 742865 042351 937612 344182 057308 289876 036862 835934 533886 809729 999070 972910 503323 619854 701901 107051 543223 916860 832264 487469 000466 677999 828248 280935 (742 digits), a[1415] = 12
                                                                                      A[1416]/B[1416] = 48 895535 575240 948181 741973 530957 259879 945237 790619 083280 149982 774693 942634 237736 988841 295250 563808 667248 643319 137410 484025 973236 654067 901427 103124 253680 427021 373865 394807 553157 828215 578809 873834 219388 761293 358613 946156 176193 632416 800596 463759 595504 875062 253021 902064 691968 296621 981058 916167 825742 942172 284901 836846 151277 065345 259831 416858 444219 867637 693922 549905 663786 629229 531581 256793 062197 662907 960046 878750 175864 184575 372562 610552 058519 566026 017971 756756 001790 516979 027329 385386 248075 958073 821374 218336 484230 279816 395468 272669 779961 008877 953022 157389 886654 573397 543623 571973 573792 996167 999557 528794 390756 665504 456339 689557 683203 904393 776231 072727 090289 732353 309713 793559 361960 927384 883168 590421 555415 393585 960909 217161 885371 075358 036006 (740 digits)/4752 329481 379111 549881 505122 480360 837118 507292 701333 335807 147540 955692 978123 042984 596034 926047 944766 515629 125491 297497 524170 389096 908496 464133 530637 455834 095324 678749 069846 184736 935567 611899 387503 458819 246034 175898 467817 781846 578238 228806 528465 256676 983447 202159 175768 821402 397154 970715 789842 627344 540659 910472 598149 864390 431857 508528 221844 688377 227937 792198 854243 034258 449905 694236 898788 967046 105591 693955 433809 079245 342105 853788 788674 422445 262307 041551 950438 036824 876434 928005 756051 000613 125790 478127 927014 314815 530148 609616 420262 587285 756267 286908 063187 734248 474811 378961 859393 887036 886689 149798 851799 067712 705528 823772 020044 445943 783797 723372 066660 407131 576059 645716 803908 942487 528037 342335 209512 518024 537833 557673 765838 771166 430163 572971 (742 digits), a[1416] = 1
                                                                                      A[1417]/B[1417] = 192 002389 509854 390573 692954 342891 125669 367672 566966 179654 564688 514161 277254 308593 383783 609699 240458 374194 393118 373004 794715 054832 089686 170258 035208 907773 047466 657159 671262 893008 378721 729875 326214 320797 015202 675571 781725 091427 316929 125978 488401 267833 820300 016325 106520 710260 077852 694634 475374 210670 991522 292879 178336 596639 057982 555549 809796 657393 470424 911487 895065 185707 065486 314964 864876 518698 550069 359664 214082 547124 097750 036464 080481 928668 376207 507747 542435 236926 114674 836312 380847 720134 405192 284427 230573 000604 535163 602526 444103 426121 478302 387541 875057 212584 079099 546518 176989 356310 929106 821999 363731 596321 775720 793161 387878 148619 424307 632001 283933 440807 108603 959414 903175 508534 356723 744605 917655 803863 356149 981170 718090 021362 410594 195859 (741 digits)/18661 389131 504979 041814 439054 601149 289489 695737 620613 874178 253897 230754 878326 344655 664361 044399 523373 740387 982262 084613 352737 566911 974669 309629 712556 359956 860049 547726 230678 284425 038345 331204 393654 992719 107805 097804 427289 775148 967560 696754 143460 179168 965201 989758 696620 104759 327805 526482 985360 855255 254327 411553 037911 982981 839127 980448 634596 672716 319763 413545 258100 463081 301039 618129 977364 918874 829876 468133 754785 579171 658791 953079 642919 359761 154486 515129 356693 243671 857667 250734 873254 088347 318379 914532 471681 160508 679282 597493 157831 161762 734025 758499 790228 674861 697605 961393 748000 683220 176899 771176 298262 245490 054198 815498 117441 627707 388256 006050 733868 031124 727249 910060 915050 447317 286013 134057 171761 470934 445765 160490 297982 991499 118738 999848 (743 digits), a[1417] = 3
                                                                                      A[1418]/B[1418] = 624 902704 104804 119902 820836 559630 636888 048255 491517 622243 844048 317177 774397 163517 140192 124348 285183 789831 822674 256424 868171 137732 923126 412201 208750 976999 569421 345344 408596 232182 964380 768435 852477 181779 806901 385329 291331 450475 583204 178531 928963 399006 335962 301997 221626 822748 530180 064962 342290 457755 916739 163539 371855 941194 239292 926480 846248 416400 278912 428386 235101 220907 825688 476475 851422 618293 313116 039039 520997 817236 477825 481954 851997 844524 694648 541214 384061 712568 861003 536266 527929 408479 173650 674655 910055 486043 885307 203047 604980 058325 443785 115647 782561 524406 810696 183178 102941 642725 783488 465555 619989 179721 992666 835823 853192 129062 177316 672234 924527 412711 058165 187958 503085 887563 997556 116986 343388 967005 462035 904421 371431 949458 307140 623583 (741 digits)/60736 496875 894048 675324 822286 283808 705587 594505 563174 958341 909232 647957 613102 076951 589118 059246 514887 736793 072277 551337 582383 089832 832504 393022 668306 535704 675473 321927 761881 038012 050603 605512 568468 436976 569449 469311 749687 107293 480920 319068 958845 794183 879053 171435 265629 135680 380571 550164 745925 193110 303642 145131 711885 813335 949241 449874 125634 706526 187228 032834 628544 423502 353024 548626 830883 723670 595221 098356 698165 816760 318481 713027 717432 501728 725766 586940 020517 767840 449436 680210 375813 265655 080930 221725 342057 796341 567996 402095 893756 072573 958344 562407 433873 758833 567629 263143 103395 936697 417388 463327 746585 804182 868125 270266 372369 329065 948565 741524 268264 500505 757809 375899 549060 284439 386076 744506 724796 930827 875129 039144 659787 745663 786380 572515 (743 digits), a[1418] = 3
                                                                                      A[1419]/B[1419] = 4566 321318 243483 229893 438810 260305 583885 705461 007589 535361 473026 734405 698034 453213 365128 480137 236744 903017 151838 167978 871913 018962 551571 055666 496465 746770 033416 074570 531436 518289 129387 108926 293554 593255 663512 372876 821045 244756 399358 375701 991145 060878 172036 130305 657908 469499 789113 149370 871407 414962 408696 437654 781328 184998 733033 040915 733535 572195 422811 910191 540773 732061 845305 650295 824834 846751 741881 632940 861067 267779 442528 410148 044466 840341 238747 296248 230867 224908 141699 590178 076353 579488 620747 007018 600961 402911 732314 023859 678963 834399 584798 197076 352987 883431 753972 828764 897580 855391 413526 080888 703655 854375 724388 643928 360223 052054 665524 337645 755625 329784 515760 275124 424776 721482 339616 563510 321378 572901 590401 312120 318113 667570 560578 560940 (742 digits)/443816 867262 763319 769088 195058 587810 228602 857276 562838 582571 618525 766458 170040 883316 788187 459125 127587 897939 488204 943976 429419 195741 802200 060788 390702 109889 588362 801220 563845 550509 392570 569792 372934 051555 093951 382986 675099 526203 334002 930236 855380 738456 118574 189805 556024 054521 991806 377636 206837 207027 379822 427475 021112 676333 483818 129567 514039 618399 630359 643387 657911 427597 772211 458517 793550 984568 996424 156630 641946 296493 888163 944273 664946 871862 234852 623709 500317 618555 003724 012207 503946 947932 884891 466609 866085 734899 655257 412164 414123 669780 442437 695351 827344 986696 671010 803395 471772 240102 098619 014470 524362 874770 131075 707362 724026 931169 028216 196720 611719 534665 031915 541357 758472 438392 988550 345604 245339 986729 571668 434502 916497 211145 623403 007453 (744 digits), a[1419] = 7
                                                                                      A[1420]/B[1420] = 46288 115886 539636 418837 208939 162686 475745 102865 567412 975858 574315 661234 754741 695650 791476 925720 652632 820003 341055 936213 587301 327358 438836 968866 173408 444699 903582 091049 722961 415074 258251 857698 788023 114336 442025 114097 501783 898039 576787 935551 840414 007788 056323 605053 800711 517746 421311 558671 056364 607380 003703 540087 185137 791181 569623 335638 181604 138354 507031 530301 642838 541526 278744 979434 099771 085810 731932 368448 131670 495030 903109 583435 296666 247937 082121 503696 692733 961650 277999 438047 291465 203365 381120 744841 919669 515161 208447 441644 394618 402321 291767 086411 312440 358724 350424 470827 078750 196639 918749 274442 656547 723479 236553 275107 455422 649608 832560 048692 480780 710556 215767 939202 750853 102387 393721 752089 557174 696021 366049 025624 552568 625163 912926 232983 (743 digits)/4 498905 169503 527246 366206 772872 161910 991616 167271 191560 784058 094490 312539 313510 910119 470992 650497 790766 716187 954326 991101 876575 047250 854505 000906 575327 634600 559101 334133 400336 543105 976309 303436 297808 952527 508963 299178 500682 369326 820949 621437 512653 178745 064795 069490 825869 680900 298635 326526 814297 263384 101866 419881 923012 576670 787422 745549 266030 890522 490824 466711 207658 699480 075139 133804 766393 569360 559462 664663 117628 781699 200121 155764 366901 220351 074292 824035 023693 953390 486676 802285 415282 744983 929844 887824 002915 145338 120570 523740 034992 770378 382721 515925 707323 625800 277737 297097 821118 337718 403578 608032 990214 551884 178882 343893 612638 640756 230727 708730 385459 847156 076964 789477 133784 668369 271580 200549 178196 798123 591813 384173 824759 857120 020410 647045 (745 digits), a[1420] = 10
                                                                                      A[1421]/B[1421] = 97142 553091 322756 067567 856688 585678 535375 911192 142415 487078 621658 056875 207517 844514 948082 331578 542010 543023 833950 040406 046515 673679 429244 993398 843282 636169 840580 256669 977359 348437 645890 824323 869600 821928 547562 601071 824613 040835 552934 246805 671973 076454 284683 340413 259331 504992 631736 266712 984136 629722 416103 517829 151603 767361 872279 712192 096743 848904 436874 970794 826450 815114 402795 609164 024377 018373 205746 369837 124408 257841 248747 577018 637799 336215 402990 303641 616335 148208 697698 466272 659283 986219 382988 496702 440300 433234 149208 907148 468200 639042 168332 369898 977868 600880 454821 770419 055081 248671 251024 629774 016751 301334 197495 194143 271068 351272 330644 435030 717186 750896 947296 153529 926482 926257 127060 067689 435727 964944 322499 363369 423250 917898 386431 026906 (743 digits)/9 441627 206269 817812 501501 740802 911632 211835 191818 945960 150687 807506 391536 797062 703555 730172 760120 709121 330315 396858 926180 182569 290243 511210 062601 541357 379090 706565 469487 364518 636721 345189 176664 968551 956610 111877 981343 676464 264856 975902 173111 880687 095946 248164 328787 207763 416322 589077 030689 835431 733795 583555 267238 867137 829675 058663 620666 046101 399444 612008 576810 073228 826557 922489 726127 326338 123290 115349 485956 877203 859892 288406 255802 398749 312564 383438 271779 547705 525335 977077 616778 334512 437900 744581 242257 871916 025575 896398 459644 484109 210537 207880 727203 241992 238297 226485 397591 114008 915538 905776 230536 504791 978538 488840 395149 949304 212681 489671 614181 382639 228977 185845 120312 026041 775131 531710 746702 601733 582976 755295 202850 566016 925385 664224 301543 (745 digits), a[1421] = 2
                                                                                      A[1422]/B[1422] = 143430 668977 862392 486405 065627 748365 011121 014057 709828 462937 195973 718109 962259 540165 739559 257299 194643 363027 175005 976619 633817 001037 868081 962265 016691 080869 744162 347719 700320 763511 904142 682022 657623 936264 989587 715169 326396 938875 129722 182357 512387 084242 341006 945467 060043 022739 053047 825384 040501 237102 419807 057916 336741 558543 441903 047830 278347 987258 943906 501096 469289 356640 681540 588598 124148 104183 937678 738285 256078 752872 151857 160453 934465 584152 485111 807338 309069 109858 975697 904319 950749 189584 764109 241544 359969 948395 357656 348792 862819 041363 460099 456310 290308 959604 805246 241246 133831 445311 169773 904216 673299 024813 434048 469250 726491 000881 163204 483723 197967 461453 163064 092732 677336 028644 520781 819778 992902 660965 688548 388993 975819 543062 299357 259889 (744 digits)/13 940532 375773 345058 867708 513675 073543 203451 359090 137520 934745 901996 704076 110573 613675 201165 410618 499888 046503 351185 917282 059144 337494 365715 063508 116685 013691 265666 803620 764855 179827 321498 480101 266360 909137 620841 280522 177146 634183 796851 794549 393340 274691 312959 398278 033633 097222 887712 357216 649728 997179 685421 687120 790150 406345 846086 366215 312132 289967 102833 043521 280887 526037 997628 859932 092731 692650 674812 150619 994832 641591 488527 411566 765650 532915 457731 095814 571399 478726 463754 419063 749795 182884 674426 130081 874831 170914 016968 983384 519101 980915 590602 243128 949315 864097 504222 694688 935127 253257 309354 838569 495006 530422 667722 739043 561942 853437 720399 322911 768099 076133 262809 909789 159826 443500 803290 947251 779930 381100 347108 587024 390776 782505 684634 948588 (746 digits), a[1422] = 1
                                                                                      A[1423]/B[1423] = 814295 897980 634718 499593 184827 327503 590980 981480 691557 801764 601526 647425 018815 545343 645878 618074 515227 358159 708979 923504 215600 678868 769654 804723 926738 040518 561391 995268 478963 165997 166604 234437 157720 503253 495501 176918 456597 735211 201545 158593 233908 497665 989718 067748 559546 618687 896975 393633 186642 815234 515138 807410 835311 560079 081794 951343 488483 785199 156407 476277 172897 598317 810498 552154 645117 539292 894140 061263 404802 022202 008033 379288 310127 256977 828549 340333 161680 697503 576187 987872 413029 934143 203534 704424 240150 175210 937490 651112 782295 845859 468829 651450 429413 398904 481052 976649 724238 475227 099894 150857 383246 425401 367737 540396 903523 355678 146666 853646 707024 058162 762616 617193 313163 069479 730969 166584 400241 269772 765241 308339 302348 633209 883217 326351 (744 digits)/79 144289 085136 543106 840044 309178 279348 229091 987269 633564 824417 317489 911917 349930 771931 735999 813213 208561 562832 152788 512590 478290 977715 339785 380142 124782 447547 034899 487591 188794 535857 952681 577171 300356 502298 216084 383954 562197 435775 960161 145858 847388 469402 812961 320177 375928 902437 027638 816773 084076 719694 010663 702842 817889 861404 289095 451742 606762 849280 126173 794416 477666 456747 910634 025787 789996 586543 489410 239056 851367 067849 731043 313636 227001 977141 672093 750852 404702 918968 295849 712097 083488 352324 116711 892667 246071 880145 981243 376567 079619 115115 160891 942847 988571 558784 747598 871035 789645 181825 452550 423383 979824 630651 827454 090367 759018 479870 091668 228740 223134 609643 499894 669257 825173 992635 548165 482961 501385 488478 490838 137972 519900 837914 087399 044483 (746 digits), a[1423] = 5
                                                                                      A[1424]/B[1424] = 957726 566958 497110 985998 250455 075868 602101 995538 401386 264701 797500 365534 981075 085509 385437 875373 709870 721186 883985 900123 849417 679906 637736 766988 943429 121388 305554 342988 179283 929509 070746 916459 815344 439518 485088 892087 782994 674086 331267 340950 746295 581908 330725 013215 619589 641426 950023 219017 227144 052336 934945 865327 172053 118622 523697 999173 766831 772458 100313 977373 642186 954958 492039 140752 769265 643476 831818 799548 660880 775074 159890 539742 244592 841130 313661 147671 470749 807362 551885 892192 363779 123727 967643 945968 600120 123606 295146 999905 645114 887222 928929 107760 719722 358509 286299 217895 858069 920538 269668 055074 056545 450214 801786 009647 630014 356559 309871 337369 904991 519615 925680 709925 990499 098124 251750 986363 393143 930738 453789 697333 278168 176272 182574 586240 (744 digits)/93 084821 460909 888165 707752 822853 352891 432543 346359 771085 759163 219486 615993 460504 385606 937165 223831 708449 609335 503974 429872 537435 315209 705500 443650 241467 461238 300566 291211 953649 715685 274180 057272 566717 411435 836925 664476 739344 069959 757012 940408 240728 744094 125920 718455 409561 999659 915351 173989 733805 716873 696085 389963 608040 267750 135181 817957 918895 139247 229006 837937 758553 982785 908262 885719 882728 279194 164222 389676 846199 709441 219570 725202 992652 510057 129824 846666 976102 397694 759604 131160 833283 535208 791138 022749 120903 051059 998212 359951 598721 096030 751494 185976 937887 422882 251821 565724 724772 435082 761905 261953 474831 161074 495176 829411 320961 333307 812067 551651 991233 685776 762704 579046 985000 436136 351456 430213 281315 869578 837946 724996 910677 620419 772033 993071 (746 digits), a[1424] = 1
                                                                                      A[1425]/B[1425] = 2 729749 031897 628940 471589 685737 479240 795184 972557 494330 331168 196527 378494 980965 716362 416754 368821 934968 800533 476951 723751 914436 038682 045128 338701 813596 283295 172500 681244 837531 025015 308098 067356 788409 382290 465678 961094 022587 083383 864079 840494 726499 661482 651168 094179 798725 901541 797021 831667 640930 919908 385030 538065 179417 797324 129190 949691 022147 330115 357035 431024 457271 508234 794576 833660 183648 826246 557777 660360 726563 572350 327814 458772 799312 939238 455871 635676 103180 312228 679959 772257 140588 181599 138822 596361 440390 422423 527784 650924 072525 620305 326687 866971 868858 115923 053651 412441 440378 316303 639230 261005 496337 325830 971309 559692 163552 068796 766409 528386 517007 097394 613978 037045 294161 265728 234471 139311 186529 131249 672820 703005 858684 985754 248366 498831 (745 digits)/265 313932 006956 319438 255549 954884 985131 094178 679989 175736 342743 756463 143904 270939 543145 610330 260876 625460 781503 160737 372335 553161 608134 750786 267442 607717 370023 636032 070015 096093 967228 501041 691716 433791 325169 889935 712908 040885 575695 474187 026675 328845 957591 064802 757088 195052 901756 858341 164752 551688 153441 402834 482770 033970 396904 559459 087658 444553 127774 584187 470291 994774 422319 727159 797227 555453 144931 817855 018410 543766 486732 170184 764042 212306 997255 931743 444186 356907 714357 815057 974418 750055 422741 698987 938165 487877 982265 977668 096470 277061 307176 663880 314801 864346 404549 251242 002485 239190 051990 976360 947290 929486 952800 817807 749190 400941 146485 715803 332044 205601 981197 025303 827351 795174 864908 251078 343388 064017 227636 166731 587966 341256 078753 631467 030625 (747 digits), a[1425] = 2
                                                                                      A[1426]/B[1426] = 3 687475 598856 126051 457587 936192 555109 397286 968095 895716 595869 994027 744029 962040 801871 802192 244195 644839 521720 360937 623875 763853 718588 682865 105690 757025 404683 478055 024233 016814 954524 378844 983816 603753 821808 950767 853181 805581 757470 195347 181445 472795 243390 981893 107395 418315 542968 747045 050684 868074 972245 319976 403392 351470 915946 652888 948864 788979 102573 457349 408398 099458 463193 286615 974412 952914 469723 389596 459909 387444 347424 487704 998515 043905 780368 769532 783347 573930 119591 231845 664449 504367 305327 106466 542330 040510 546029 822931 650829 717640 507528 255616 974732 588580 474432 339950 630337 298448 236841 908898 316079 552882 776045 773095 569339 793566 425356 076280 865756 421998 617010 539658 746971 284660 363852 486222 125674 579673 061988 126610 400339 136853 162026 430941 085071 (745 digits)/358 398753 467866 207603 963302 777738 338022 526722 026348 946822 101906 975949 759897 731443 928752 547495 484708 333910 390838 664711 802208 090596 923344 456286 711092 849184 831261 936598 361227 049743 682913 775221 748989 000508 736605 726861 377384 780229 645655 231199 967083 569574 701685 190723 475543 604614 901416 773692 338742 285493 870315 098919 872733 642010 664654 694640 905616 363448 267021 813194 308229 753328 405105 635422 682947 438181 424125 982077 408087 389966 196173 389755 489245 204959 507313 061568 290853 333010 112052 574662 105579 583338 957950 490125 960914 608781 033325 975880 456421 875782 403207 415374 500778 802233 827431 503063 568209 963962 487073 738266 209244 404318 113875 312984 578601 721902 479793 527870 883696 196835 666973 788008 406398 780175 301044 602534 773601 345333 097215 004678 312963 251933 699173 403501 023696 (747 digits), a[1426] = 1
                                                                                      A[1427]/B[1427] = 10 104700 229609 881043 386765 558122 589459 589758 908749 285763 522908 184582 866554 905047 320106 021138 857213 224647 843974 198826 971503 442143 475859 410858 550083 327647 092662 128610 729710 871160 934064 065788 034989 995917 025908 367214 667457 633750 598324 254774 203385 672090 148264 614954 308970 635356 987479 291111 933037 377080 864399 024983 344849 882359 629217 434968 847420 600105 535262 271734 247820 656188 434621 367808 782486 089477 765693 336970 580179 501452 267199 303224 455802 887124 499975 994937 202371 251040 551411 143651 101156 149322 792253 351755 681021 521411 514483 173647 952583 507806 635361 837921 816437 046019 064787 733552 673116 037274 789987 457026 893164 602102 877922 517500 698371 750684 919508 918971 259899 361004 331415 693295 530987 863481 993433 206915 390660 345875 255225 926041 503684 132391 309807 110248 668973 (746 digits)/982 111438 942688 734646 182155 510361 661176 147622 732687 069380 546557 708362 663699 733827 400650 705321 230293 293281 563180 490160 976751 734355 454823 663359 689628 306087 032547 509228 792469 195581 333056 051485 189694 434808 798381 343658 467677 601344 867005 936586 960842 467995 360961 446249 708175 404282 704590 405725 842237 122675 894071 600674 228237 317991 726213 948740 898891 171449 661818 210576 086751 501431 232530 998005 163122 431815 993183 782009 834585 323698 879078 949695 742532 622226 011882 054880 025893 022927 938462 964382 185577 916733 338642 679239 859994 705440 048917 929429 009314 028626 113591 494629 316359 468814 059412 257369 138905 167115 026138 452893 365779 738123 180551 443776 906393 844746 106072 771545 099436 599273 315144 601320 640149 355525 466997 456147 890590 754683 422066 176088 213892 845123 477100 438469 078017 (747 digits), a[1427] = 2
                                                                                      A[1428]/B[1428] = 13 792175 828466 007094 844353 494315 144568 987045 876845 181480 118778 178610 610584 867088 121977 823331 101408 869487 365694 559764 595379 205997 194448 093723 655774 084672 497345 606665 753943 887975 888588 444633 018806 599670 847717 317982 520639 439332 355794 450121 384831 144885 391655 596847 416366 053672 530448 038156 983722 245155 836644 344959 748242 233830 545164 087857 796285 389084 637835 729083 656218 755646 897814 654424 756899 042392 235416 726567 040088 888896 614623 790929 454317 931030 280344 764469 985718 824970 671002 375496 765605 653690 097580 458222 223351 561922 060512 996579 603413 225447 142890 093538 791169 634599 539220 073503 303453 335723 026829 365925 209244 154985 653968 290596 267711 544251 344864 995252 125655 783002 948426 232954 277959 148142 357285 693137 516334 925548 317214 052651 904023 269244 471833 541189 754044 (746 digits)/1340 510192 410554 942250 145458 288099 999198 674344 759036 016202 648464 684312 423597 465271 329403 252816 715001 627191 954019 154872 778959 824952 378168 119646 400721 155271 863809 445827 153696 245325 015969 826706 938683 435317 534987 070519 845062 381574 512661 167786 927926 037570 062646 636973 183719 008897 606007 179418 180979 408169 764386 699594 100970 960002 390868 643381 804507 534897 928840 023770 394981 254759 637636 633427 846069 869997 417309 764087 242672 713665 075252 339451 231777 827185 519195 116448 316746 355938 050515 539044 291157 500072 296593 169365 820909 314221 082243 905309 465735 904408 516798 910003 817138 271047 886843 760432 707115 131077 513212 191159 575024 142441 294426 756761 484995 566648 585866 299415 983132 796108 982118 389329 046548 135700 768042 058682 664192 100016 519281 180766 526856 097057 176273 841970 101713 (748 digits), a[1428] = 1
                                                                                      A[1429]/B[1429] = 23 896876 058075 888138 231119 052437 734028 576804 785594 467243 641686 363193 477139 772135 442083 844469 958622 094135 209668 758591 566882 648140 670307 504582 205857 412319 590007 735276 483654 759136 822652 510421 053796 595587 873625 685197 188097 073082 954118 704895 588216 816975 539920 211801 725336 689029 517927 329268 916759 622236 701043 369943 093092 116190 174381 522826 643705 989190 173098 000817 904039 411835 332436 022233 539385 131870 001110 063537 620268 390348 881823 094153 910120 818154 780320 759407 188090 076011 222413 519147 866761 803012 889833 809977 904373 083333 574996 170227 555996 733253 778251 931460 607606 680618 604007 807055 976569 372997 816816 822952 102408 757088 531890 808096 966083 294936 264373 914223 385555 144007 279841 926249 808947 011624 350718 900052 906995 271423 572439 978693 407707 401635 781640 651438 423017 (746 digits)/2322 621631 353243 676896 327613 798461 660374 821967 491723 085583 195022 392675 087297 199098 730053 958137 945294 920473 517199 645033 755711 559307 832991 783006 090349 461358 896356 955055 946165 440906 349025 878192 128377 870126 333368 414178 312739 982919 379667 104373 888768 505565 423608 083222 891894 413180 310597 585144 023216 530845 658458 300268 329208 277994 117082 592122 703398 706347 590658 234346 481732 756190 870167 631433 009192 301813 410493 546097 077258 037363 954331 289146 974310 449411 531077 171328 342639 378865 988978 503426 476735 416805 635235 848605 680904 019661 131161 834738 475049 933034 630390 404633 133497 739861 946256 017801 846020 298192 539350 644052 940803 880564 474978 200538 391389 411394 691939 070961 082569 395382 297262 990649 686697 491226 235039 514830 554782 854699 941347 356854 740748 942180 653374 280439 179730 (748 digits), a[1429] = 1
                                                                                      A[1430]/B[1430] = 37 689051 886541 895233 075472 546752 878597 563850 662439 648723 760464 541804 087724 639223 564061 667801 060030 963622 575363 318356 162261 854137 864755 598305 861631 496992 087353 341942 237598 647112 711240 955054 072603 195258 721343 003179 708736 512415 309913 155016 973047 961860 931575 808649 141702 742702 048375 367425 900481 867392 537687 714902 841334 350020 719545 610684 439991 378274 810933 729901 560258 167482 230250 676658 296284 174262 236526 790104 660357 279245 496446 885083 364438 749185 060665 523877 173808 900981 893415 894644 632367 456702 987414 268200 127724 645255 635509 166807 159409 958700 921142 024999 398776 315218 143227 880559 280022 708720 843646 188877 311652 912074 185859 098693 233794 839187 609238 909475 511210 927010 228268 159204 086906 159766 708004 593190 423330 196971 889654 031345 311730 670880 253474 192628 177061 (746 digits)/3663 131823 763798 619146 473072 086561 659573 496312 250759 101785 843487 076987 510894 664370 059457 210954 660296 547665 471218 799906 534671 384260 211159 902652 491070 616630 760166 400883 099861 686231 364995 704899 067061 305443 868355 484698 157802 364493 892328 272160 816694 543135 486254 720196 075613 422077 916604 764562 204195 939015 422844 999862 430179 237996 507951 235504 507906 241245 519498 258116 876714 010950 507804 264860 855262 171810 827803 310184 319930 751029 029583 628598 206088 276597 050272 287776 659385 734804 039494 042470 767892 916877 931829 017971 501813 333882 213405 740047 940785 837443 147189 314636 950636 010909 833099 778234 553135 429270 052562 835212 515828 023005 769404 957299 876384 978043 277805 370377 065702 191491 279381 379978 733245 626927 003081 573513 218974 954716 460628 537621 267605 039237 829648 122409 281443 (748 digits), a[1430] = 1
                                                                                      A[1431]/B[1431] = 61 585927 944617 783371 306591 599190 612626 140655 448034 115967 402150 904997 564864 411359 006145 512271 018653 057757 785032 076947 729144 502278 535063 102888 067488 909311 677361 077218 721253 406249 533893 465475 126399 790846 594968 688376 896833 585498 264031 859912 561264 778836 471496 020450 867039 431731 566302 696694 817241 489629 238731 084845 934426 466210 893927 133511 083697 367464 984031 730719 464297 579317 562686 698891 835669 306132 237636 853642 280625 669594 378269 979237 274559 567339 840986 283284 361898 976993 115829 413792 499129 259715 877248 078178 032097 728589 210505 337034 715406 691954 699393 956460 006382 995836 747235 687615 256592 081718 660463 011829 414061 669162 717749 906790 199878 134123 873612 823698 896766 071017 508110 085453 895853 171391 058723 493243 330325 468395 462094 010038 719438 072516 035114 844066 600078 (746 digits)/5985 753455 117042 296042 800685 885023 319948 318279 742482 187369 038509 469662 598191 863468 789511 169092 605591 468138 988418 444940 290382 943568 044151 685658 581420 077989 656523 355939 046027 127137 714021 583091 195439 175570 201723 898876 470542 347413 271995 376534 705463 048700 909862 803418 967507 835258 227202 349706 227412 469861 081303 300130 759387 515990 625033 827627 211304 947593 110156 492463 358446 767141 377971 896293 864454 473624 238296 856281 397188 788392 983914 917745 180398 726008 581349 459105 002025 113670 028472 545897 244628 333683 567064 866577 182717 353543 344567 574786 415835 770477 777579 719270 084133 750771 779355 796036 399155 727462 591913 479265 456631 903570 244383 157838 267774 389437 969744 441338 148271 586873 576644 370628 419943 118153 238121 088343 773757 809416 401975 894476 008353 981418 483022 402848 461173 (748 digits), a[1431] = 1
                                                                                      A[1432]/B[1432] = 160 860907 775777 461975 688655 745134 103849 845161 558507 880658 564766 351799 217453 461941 576352 692343 097337 079138 145427 472251 620550 858694 934881 804081 996609 315615 442075 496379 680105 459611 779027 886004 325402 776951 911280 379933 502403 683411 837976 874842 095577 519533 874567 849550 875781 606165 180980 760815 534964 846651 015149 884594 710187 282442 507399 877706 607386 113204 778997 191340 488853 326117 355624 074441 967622 786526 711800 497389 221608 618434 252986 843557 913557 883864 742638 090445 897606 854968 125074 722229 630625 976134 741910 424556 191920 102434 056519 840876 590223 342610 319929 937919 411542 306891 637699 255789 793206 872158 164572 212536 139776 250399 621358 912273 633551 107435 356464 556873 304743 069045 244488 330111 878612 502548 825451 579677 083981 133762 813842 051422 750606 815912 323703 880761 377217 (747 digits)/15634 638733 997883 211232 074443 856608 299470 132871 735723 476523 920506 016312 707278 391307 638479 549139 871479 483943 448055 689787 115437 271396 299463 273969 653910 772610 073213 112761 191915 940506 793038 871081 457939 656584 271803 282451 098887 059320 436319 025230 227620 640537 305980 327034 010629 092594 371009 463974 659020 878737 585451 600123 948954 269977 758018 890758 930516 136431 739811 243043 593607 545233 263748 057448 584171 119059 304397 022747 114308 327814 997413 464088 566885 728614 212971 205986 663435 962144 096439 134265 257149 584245 065958 751125 867248 040968 902540 889620 772457 378398 702348 753177 118903 512453 391811 370307 351446 884195 236389 793743 429091 830146 258171 272976 411933 756919 217294 253053 362245 365238 432670 121235 573131 863233 479323 750200 766490 573549 264580 326573 284313 002074 795692 928106 203789 (749 digits), a[1432] = 2
                                                                                      A[1433]/B[1433] = 383 307743 496172 707322 683903 089458 820325 830978 565049 877284 531683 608595 999771 335242 158850 896957 213327 216034 075887 021450 970246 219668 404826 711052 060707 540542 561512 069978 081464 325473 091949 237483 777205 344750 417529 448243 901640 952321 939985 609596 752419 817904 220631 719552 618602 644061 928264 218325 887171 182931 269030 854035 354801 031095 908726 888924 298469 593874 542026 113400 442004 231552 273934 847775 770914 879185 661237 848420 723842 906462 884243 666353 101675 335069 326262 464176 157112 686929 365978 858251 760381 211985 361068 927290 415937 933457 323545 018787 895853 377175 339253 832298 829467 609620 022634 199194 843005 826034 989607 436901 693614 169961 960467 731337 466980 348994 586541 937445 506252 209107 997086 745677 653078 176488 709626 652597 498287 735921 089778 112884 220651 704340 682522 605589 354512 (747 digits)/37255 030923 112808 718506 949573 598239 918888 584023 213929 140416 879521 502288 012748 646084 066470 267372 348550 436025 884529 824514 521257 486360 643078 233597 889241 623209 802949 581461 429859 008151 300099 325254 111318 488738 745330 463778 668316 466054 144633 426995 160704 329775 521823 457486 988766 020446 969221 277655 545454 227336 252206 500378 657296 055946 141071 609145 072337 220456 589778 978550 545661 857607 905468 011191 032796 711742 847090 901775 625805 444022 978741 845922 314170 183237 007291 871078 328897 037958 221350 814427 758927 502173 698982 368828 917213 435481 149649 354027 960750 527275 182277 225624 321940 775678 562978 536651 102049 495853 064693 066752 314815 563862 760725 703791 091641 903276 404332 947444 872762 317350 441984 613099 566206 844620 196768 588745 306738 956514 931136 547622 576979 985568 074408 259060 868751 (749 digits), a[1433] = 2
                                                                                      A[1434]/B[1434] = 927 476394 768122 876621 056461 924051 744501 507118 688607 635227 628133 568991 216996 132425 894054 486257 523991 511206 297201 515153 561043 298031 744535 226186 118024 396700 565099 636335 843034 110557 962926 360971 879813 466452 746339 276421 305685 588055 717948 094035 600417 155342 315831 288656 112986 894289 037509 197467 309307 212513 553211 592665 419789 344634 324853 655555 204325 300953 863049 418141 372861 789221 903493 769993 509452 544898 034276 194230 669294 431360 021474 176264 116908 554003 395163 018798 211832 228826 857032 438733 151388 400105 464048 279137 023795 969348 703609 878452 381930 096960 998437 602517 070477 526131 682967 654179 479218 524228 143787 086339 527004 590323 542294 374948 567511 805424 529548 431764 317247 487261 238661 821467 184768 855526 244704 884872 080556 605604 993398 277191 191910 224593 688749 091940 086241 (747 digits)/90144 700580 223500 648245 973591 053088 137247 300918 163581 757357 679549 020888 732775 683475 771420 083884 568580 355995 217115 338816 157952 244117 585619 741165 432394 019029 679112 275684 051633 956809 393237 521589 680576 634061 762464 210008 435519 991428 725585 879220 549029 300088 349627 242007 988161 133488 309452 019285 749929 333410 089864 600881 263546 381870 040162 109049 075190 577344 919369 200144 684931 260449 074684 079830 649764 542544 998578 826298 365919 215860 954897 155933 195226 095088 227554 948143 321230 038060 539140 763120 775004 588592 463923 488783 701674 911931 201839 597676 693958 432949 066903 204425 762785 063810 517768 443609 555545 875901 365775 927248 058722 957871 779622 680558 595217 563472 025960 147943 107769 999939 316639 347434 705545 552473 872860 927691 379968 486579 126853 421818 438272 973210 944509 446227 941291 (749 digits), a[1434] = 2
                                                                                      A[1435]/B[1435] = 3165 736927 800541 337185 853288 861614 053830 352334 630872 782967 416084 315569 650759 732519 841014 355729 785301 749652 967491 566911 653376 113763 638432 389610 414780 730644 256810 978985 610566 657146 980728 320399 416645 744108 656547 277507 818697 716489 093829 891703 553671 283931 168125 585520 957563 326929 040791 810727 815092 820471 928665 632031 614169 064998 883287 855589 911445 496736 131174 367824 560589 599217 984416 157756 299272 513879 764066 431112 731726 200542 948666 195145 452400 997079 511751 520570 792609 373409 937076 174451 214546 412301 753213 764701 487325 841503 434374 654145 041643 668058 334566 639850 040900 188015 071537 161733 280661 398719 420968 695920 274627 940932 587350 856183 169515 765268 175187 232738 457994 670891 713072 210079 207384 743067 443741 307213 739957 552736 069972 944457 796382 378121 748769 881409 613235 (748 digits)/307689 132663 783310 663244 870346 757504 330630 486777 704674 412489 918168 564954 211075 696511 380730 519026 054291 504011 535875 840962 995114 218713 399937 457094 186423 680298 840286 408513 584760 878579 479811 890023 153048 390924 032723 093803 974876 440340 321391 064656 807792 230040 570705 183510 953249 420911 897577 335512 795242 227566 521800 303022 447935 201556 261557 936292 297908 952491 347886 578984 600455 638955 129520 250682 982090 339377 842827 380670 723563 091605 843433 313721 899848 468501 689956 715508 292587 152139 838773 103790 083941 267951 090752 835180 022238 171274 755168 147058 042625 826122 382986 838901 610295 967110 116283 867479 768687 123557 162020 848496 490984 437478 099593 745466 877294 593692 482213 391274 196072 317168 391902 655403 682843 502041 815351 371819 446644 416252 311696 813077 891798 905200 907936 597744 692624 (750 digits), a[1435] = 3
                                                                                      A[1436]/B[1436] = 444130 646286 843910 082640 516902 550019 280750 833967 010797 250665 879937 748742 323358 685203 636064 288427 466236 462621 746020 882785 033699 224941 125069 771644 187326 686896 518636 694321 322366 111135 264891 216890 210217 641664 662958 127515 923365 896528 854132 932533 114396 905705 853413 261590 171852 664354 748362 699361 422302 078583 566400 077091 403458 444477 985153 438142 806694 844012 227460 913579 855405 679739 721755 855875 407604 488065 003576 550013 110962 507372 834741 496627 453048 145135 040375 898709 177144 506218 047696 861903 187886 122350 913975 337345 249413 779829 516061 458758 212043 625127 837767 181522 796503 848241 698170 296838 771814 344947 079404 515177 974916 320885 771414 240592 299718 942969 055761 015148 436501 412101 068771 232556 218632 884968 368487 894795 674613 988654 789610 501282 685443 161638 516532 489285 939141 (750 digits)/43 166623 273509 886993 502527 822137 103694 425515 449796 817999 505946 223148 114478 283373 195069 073692 747532 169390 917610 239733 073635 473942 863993 576863 734351 531709 260867 319209 467585 918156 957936 566902 124831 107351 363426 343697 342564 918221 639073 720334 931173 639941 505768 248352 933541 443080 061153 970278 991077 083841 192723 141907 024023 974474 599746 658273 189970 782443 926133 623490 257988 748720 714167 207519 175448 142412 055442 994412 120199 664752 040679 035561 076999 174011 685324 821495 119304 283431 337637 967375 293732 526782 101745 169320 413986 815018 890396 925380 185802 661574 090082 685060 650651 204220 459226 797509 890777 171743 173904 048694 716756 796544 204805 722747 045921 416460 680419 535834 926330 557894 403514 183011 103950 303635 838328 022052 982413 910186 761902 764407 252723 290119 701338 055633 130484 908651 (752 digits), a[1436] = 140
                                                                                      A[1437]/B[1437] = 447296 383214 644451 419826 370191 411633 334581 186301 641670 033633 296022 064311 974118 417723 477078 644157 251538 212274 713512 449696 687075 338704 763502 161254 602107 417540 775447 673306 932932 768282 245619 537289 626863 385773 319505 405023 742063 613017 947962 824236 668068 189637 021538 847111 129415 991283 789154 510089 237394 899055 495065 709123 017627 509476 868441 293732 718140 340748 358635 281404 415995 278957 706172 013631 706877 001944 767642 981125 842688 707915 783407 691772 905449 142214 552127 419279 969753 879627 984773 036354 402432 534652 667189 102046 736739 621332 950436 112903 253687 293186 172333 821372 837404 036256 769707 458572 052475 743666 500373 211098 249544 261818 358765 096775 469234 708237 230948 247886 894496 082992 781843 442635 426017 628035 812229 202009 414571 541390 859583 445740 481825 539760 265302 370695 552376 (750 digits)/43 474312 406173 670304 165772 692483 861198 756145 936574 522673 918436 141316 679432 494448 891580 454423 266558 223682 421621 775608 914598 469057 082706 976801 191445 718132 941166 159495 876099 502917 836516 046714 014854 260399 754350 376420 436368 893098 079414 041725 995830 447733 735808 819058 117052 396329 482065 867856 326589 879083 420289 663707 327046 422409 801302 919831 126263 080352 878624 971376 836973 349176 353122 337039 426131 124502 394820 837239 500870 388315 132284 878994 390721 073860 153826 511451 834812 576018 489777 806148 397522 610723 369696 260073 249166 837257 061671 680548 332860 704199 916205 068047 489552 814516 426336 913793 758256 940430 297461 210715 565253 287528 642283 822340 791388 293755 274112 018048 317604 753966 720682 574913 759353 986479 340369 837404 354233 356831 178155 076104 065801 181918 606538 963569 728229 601275 (752 digits), a[1437] = 1
                                                                                      A[1438]/B[1438] = 1 786019 795930 777264 342119 627476 784919 284494 392871 935807 351565 768003 941678 245713 938374 067300 220899 220851 099445 886558 231875 094925 241055 415576 255407 993648 939518 844979 714242 121164 415982 001749 828759 090807 798984 621474 342587 149556 735582 698021 405243 118601 474616 918029 802923 560100 638206 115826 229629 134486 775750 051597 204460 456340 972908 590477 319340 961115 866257 303366 757793 103391 516612 840271 896770 528235 493899 306505 493390 639028 631120 184964 571946 169395 571778 696758 156549 086406 145102 002015 970966 395183 726308 915542 643485 459632 643828 367369 797467 973105 504686 354768 645641 308715 957012 007292 672554 929241 575946 580524 148472 723549 106340 847709 530918 707423 067680 748605 758809 119989 661079 414301 560462 496685 769075 805175 500823 918328 612827 368360 838504 130919 780919 312439 601372 596269 (751 digits)/173 589560 492030 897905 999845 899588 687290 693953 259520 386021 261254 647098 152775 766719 869810 436962 547206 840438 182475 566559 817430 881114 112114 507267 308688 686108 084365 797697 095884 426910 467484 707044 169393 888550 626477 472958 651671 597515 877315 845512 918664 983142 713194 705527 284698 632068 507351 573847 970846 721091 453592 133029 005163 241704 003655 417766 568760 023502 562008 537620 768908 796249 773534 218637 453841 515919 239905 506130 622810 829697 437533 672544 249162 395592 146804 355850 623742 011486 806971 385820 486300 358952 210833 949540 161487 326790 075411 967025 184384 774173 838697 889203 119309 647769 738237 538891 165547 993034 066287 680841 412516 659130 131657 189769 420086 297726 502755 589979 879144 819794 565561 907752 382012 263073 859437 534266 045113 980680 296367 992719 450126 835875 520954 946342 315173 712476 (753 digits), a[1438] = 3
                                                                                      A[1439]/B[1439] = 2 233316 179145 421715 761945 997668 196552 619075 579173 577477 385199 064026 005990 219832 356097 544378 865056 472389 311720 600070 681571 782000 579760 179078 416662 595756 357059 620427 387549 054097 184264 247369 366048 717671 184757 940979 747610 891620 348600 645984 229479 786669 664253 939568 650034 689516 629489 904980 739718 371881 674805 546662 913583 473968 482385 458918 613073 679256 207005 662002 039197 519386 795570 546443 910402 235112 495844 074148 474516 481717 339035 968372 263719 074844 713993 248885 575829 056160 024729 986789 007320 797616 260961 582731 745532 196372 265161 317805 910371 226792 797872 527102 467014 146119 993268 777000 131126 981717 319613 080897 359570 973093 368159 206474 627694 176657 775917 979554 006696 014485 744072 196145 003097 922703 397111 617404 702833 332900 154218 227944 284244 612745 320679 577741 972068 148645 (751 digits)/217 063872 898204 568210 165618 592072 548489 450099 196094 908695 179690 788414 832208 261168 761390 891385 813765 064120 604097 342168 732029 350171 194821 484068 500134 404241 025531 957192 971983 929828 304000 753758 184248 148950 380827 849379 088040 490613 956729 887238 914495 430876 449003 524585 401751 028397 989417 441704 297436 600174 873881 796736 332209 664113 804958 337597 695023 103855 440633 508997 605882 145426 126656 555676 879972 640421 634726 343370 123681 218012 569818 551538 639883 469452 300630 867302 458554 587505 296749 191968 883822 969675 580530 209613 410654 164047 137083 647573 517245 478373 754902 957250 608862 462286 164574 452684 923804 933464 363748 891556 977769 946658 773941 012110 211474 591481 776867 608028 196749 573761 286244 482666 141366 249553 199807 371670 399347 337511 474523 068823 515928 017794 127493 909912 043403 313751 (753 digits), a[1439] = 1
                                                                                      A[1440]/B[1440] = 6 252652 154221 620695 866011 622813 178024 522645 551219 090762 121963 896055 953658 685378 650569 156057 951012 165629 722887 086699 595018 658926 400575 773733 088733 185161 653638 085834 489340 229358 784510 496488 560856 526150 168500 503433 837808 932797 432783 989989 864202 691940 803124 797167 102992 939133 897185 925787 709065 878250 125361 144923 031627 404277 937679 508314 545488 319628 280268 627370 836188 142165 107753 933159 717574 998460 485587 454802 442423 602463 309192 121709 099384 319084 999765 194529 308207 198726 194561 975593 985607 990416 248232 081006 134549 852377 174151 002981 618210 426691 100431 408973 579669 600955 943549 561292 934808 892676 215172 742318 867614 669735 842659 260658 786307 060738 619516 707713 772201 148961 149223 806591 566658 342092 563299 039984 906490 584128 921263 824249 406993 356410 422278 467923 545508 893559 (751 digits)/607 717306 288440 034326 331083 083733 784269 594151 651710 203411 620636 223927 817192 289057 392592 219734 174736 968679 390670 250897 281489 581456 501757 475404 308957 494590 135429 712083 039852 286567 075486 214560 537890 186451 388133 171716 827752 578743 790775 619990 747655 844895 611201 754698 088200 688864 486186 457256 565719 921441 201355 726501 669582 569931 613572 092961 958806 231213 443275 555615 980673 087102 026847 329991 213786 796762 509358 192870 870173 265722 577170 775621 528929 334496 748066 090455 540851 186497 400469 769758 253946 298303 371894 368766 982795 654884 349579 262172 218875 730921 348503 803704 337034 572342 067386 444261 013157 859962 793785 463955 368056 552447 679539 213989 843035 480690 056490 806036 272643 967317 138050 873084 664744 762180 259052 277606 843808 655703 245414 130366 481982 871463 775942 766166 401980 339978 (753 digits), a[1440] = 2
                                                                                      A[1441]/B[1441] = 77 265142 029804 870066 154085 471426 332846 890822 193802 666622 848765 816697 449894 444376 162927 417074 277202 459945 986365 640465 821795 689117 386669 463875 481460 817696 200716 650441 259631 806402 598390 205232 096327 031473 206763 982185 801318 085189 542008 525862 599912 089959 301751 505573 885949 959123 395721 014433 248508 910883 179139 285739 293112 325303 734539 558693 158933 514795 570229 190452 073455 225368 088617 744360 521302 216638 322893 531777 783599 711277 049341 428881 456330 903864 711175 583237 274315 440874 359473 693916 834616 682611 239746 554805 360130 424898 354973 353585 328896 347086 003049 434785 423049 357591 315863 512515 348833 693831 901685 988723 770947 009923 480070 334380 063378 905521 210118 472119 273109 802019 534757 875243 802998 027814 156700 097223 580720 342447 209384 118937 168164 889670 388021 192824 518174 871353 (752 digits)/7509 671548 359484 980126 138615 596877 959724 579919 016617 349634 627325 475548 638515 729857 472497 528195 910608 688273 292140 352936 109904 327649 215911 188920 207624 339322 650688 502189 450211 368633 209835 328484 638930 386367 038425 909981 021071 435539 446037 327127 886365 569623 783424 580962 460159 294771 823654 928783 086075 657469 290150 514756 367200 503293 167823 453141 200697 878416 759940 176389 373959 190650 448824 515571 445414 201571 747024 657820 565760 406683 495867 858996 987035 483413 277423 952768 948768 825474 102386 429067 931178 549316 043262 634817 204202 022659 332034 793640 143754 249429 936948 601702 653277 330390 973211 783817 081699 253017 889174 459021 394448 576030 928411 579988 327900 359762 454757 280463 468477 181566 942854 959682 118303 395716 308434 702952 525051 205950 419492 633221 299722 475359 438807 103908 867167 393487 (754 digits), a[1441] = 12
                                                                                      A[1442]/B[1442] = 778 904072 452270 321357 406866 337076 506493 430867 489245 756990 609622 063030 452603 129140 279843 326800 723036 765089 586543 491357 812975 550100 267270 412487 903341 362123 660804 590247 085658 293384 768412 548809 524126 840882 236140 325291 850989 784692 852869 248615 863323 591533 820639 852905 962492 530367 854396 070120 194154 987081 916754 002315 962750 657315 283075 095246 134823 467583 982560 531891 570740 395845 993931 376764 930597 164843 714522 772580 278420 715233 802606 410523 662693 357732 111521 026902 051361 607469 789298 914762 331774 816528 645697 629059 735854 101360 723884 538834 907173 897551 130925 756827 810163 176869 102184 686446 423145 830995 232032 629556 577084 768970 643362 604459 420096 115950 720701 428906 503299 169156 496802 559029 596638 620234 130300 012220 713694 008601 015105 013621 088642 253114 302490 396168 727257 607089 (753 digits)/75704 432789 883289 835587 717239 052513 381515 393341 817883 699757 893890 979414 202349 587632 117567 501693 280823 851412 312073 780258 380532 857948 660869 364606 385200 887816 642314 733977 541965 972899 173839 499406 927194 050121 772392 271527 038466 934138 251148 891269 611311 541133 445447 564322 689793 636582 722735 745087 426476 496134 102860 874065 341587 602863 291806 624373 965785 015381 042677 319509 720264 993606 515092 485705 667928 812479 979604 771076 527777 332557 535849 365591 399284 168629 522305 618145 028539 441238 424334 060437 565731 791463 804520 716939 024815 881477 669927 198573 656418 225220 717989 820730 869807 876251 799504 282431 830150 390141 685530 054169 312542 312756 963655 013873 122039 078314 604063 610670 957415 782986 566600 469905 847778 719343 343399 307132 094320 715207 440340 462579 479207 625058 164013 805255 073654 274848 (755 digits), a[1442] = 10
                                                                                      A[1443]/B[1443] = 1635 073286 934345 512780 967818 145579 345833 752557 172294 180604 068009 942758 355100 702656 722614 070675 723275 990125 159452 623181 447746 789317 921210 288851 288143 541943 522325 830935 430948 393172 135215 302851 144580 713237 679044 632769 503297 654575 247747 023094 326559 273026 943031 211385 810935 019859 104513 154673 636818 885047 012647 290371 218613 639934 300689 749185 428580 449963 535350 254235 214936 017060 076480 497890 382496 546325 751939 076938 340441 141744 654554 249928 781717 619328 934217 637041 377038 655813 938071 523441 498166 315668 531141 812924 831838 627619 802742 431255 143244 142188 264900 948441 043375 711329 520232 885408 195125 355822 365751 247836 925116 547864 766795 543298 903571 137422 651521 329932 279708 140332 528362 993302 996275 268282 417300 121665 008108 359649 239594 146179 345449 395898 993001 985161 972690 085531 (754 digits)/158918 537128 126064 651301 573093 701904 722755 366602 652384 749150 415107 434377 043214 905121 707632 531582 472256 391097 916287 913452 870970 043546 537649 918132 978026 114955 935317 970144 534143 314431 557514 327298 493318 486610 583210 453035 098005 303815 948335 109667 108988 651890 674319 709607 839746 567937 269126 418957 939028 649737 495872 262887 050375 709019 751436 701889 132267 909178 845294 815408 814489 177863 479009 486982 781271 826531 706234 199973 621315 071798 567566 590179 785603 820672 322035 189059 005847 707950 951054 549943 062642 132243 652304 068695 253833 785614 671889 190787 456590 699871 372928 243164 392893 082894 572220 348680 742000 033301 260234 567360 019533 201544 855721 607734 571978 516391 662884 501805 383308 747540 076055 899493 813860 834402 995233 317216 713692 636365 300173 558380 258137 725475 766834 714419 014475 943183 (756 digits), a[1443] = 2
                                                                                      A[1444]/B[1444] = 4049 050646 320961 346919 342502 628235 198160 935981 833834 118198 745641 948547 162804 534453 725071 468152 169588 745339 905448 737720 708469 128736 109690 990190 479628 446010 705456 252117 947555 079729 038843 154511 813288 267357 594229 590830 857585 093843 348363 294804 516442 137587 706702 275677 584362 570086 063422 379467 467792 757175 942048 583058 399977 937183 884454 593616 991984 367511 053261 040362 000612 429966 146892 372545 695590 257495 218400 926456 959302 998723 111714 910381 226128 596389 979956 300984 805438 919097 665441 961645 328107 447865 707981 254909 399531 356600 329369 401345 193662 181927 660727 653709 896914 599528 142650 457262 813396 542639 963535 125230 427317 864700 176953 691057 227238 390796 023744 088771 062715 449821 553528 545635 589189 156798 964900 255550 729910 727899 494293 305979 779541 044912 288494 366492 672637 778151 (754 digits)/393541 507046 135419 138190 863426 456322 827026 126547 122653 198058 724105 848168 288779 397875 532832 564858 225336 633608 144649 607164 122472 945041 736169 200872 341253 117728 512950 674266 610252 601762 288868 154003 913831 023342 938813 177597 234477 541770 147819 110603 829288 844914 794086 983538 369286 772457 260988 583003 304533 795609 094605 399839 442339 020902 794680 028152 230320 833738 733266 950327 349243 349333 473111 459671 230472 465543 392073 171023 770407 476154 670982 545950 970491 809974 166375 996263 040234 857140 326443 160323 691016 055951 109128 854329 532483 452707 013705 580148 569599 624963 463846 307059 655594 042040 943944 979793 314150 456744 205999 188889 351608 715846 675098 229342 265996 111097 929832 614281 724033 278066 718712 268893 475500 388149 333865 941565 521705 987938 040687 579339 995483 076009 697683 234093 102606 161214 (756 digits), a[1444] = 2
                                                                                      A[1445]/B[1445] = 5684 123933 255306 859700 310320 773814 543994 688539 006128 298802 813651 891305 517905 237110 447685 538827 892864 735465 064901 360902 156215 918054 030901 279041 767771 987954 227782 083053 378503 472901 174058 457362 957868 980595 273274 223600 360882 748418 596110 317898 843001 410614 649733 487063 395297 589945 167935 534141 104611 642222 954695 873429 618591 577118 185144 342802 420564 817474 588611 294597 215548 447026 223372 870436 078086 803820 970340 003395 299744 140467 766269 160310 007846 215718 914173 938026 182477 574911 603513 485086 826273 763534 239123 067834 231369 984220 132111 832600 336906 324115 925628 602150 940290 310857 662883 342671 008521 898462 329286 373067 352434 412564 943749 234356 130809 528218 675265 418703 342423 590154 081891 538938 585464 425081 382200 377215 738019 087548 733887 452159 124990 440811 281496 351654 645327 863682 (754 digits)/552460 044174 261483 789492 436520 158227 549781 493149 775037 947209 139213 282545 331994 302997 240465 096440 697593 024706 060937 520616 993442 988588 273819 119005 319279 232684 448268 644411 144395 916193 846382 481302 407149 509953 522023 630632 332482 845586 096154 220270 938277 496805 468406 693146 209033 340394 530115 001961 243562 445346 590477 662726 492714 729922 546116 730041 362588 742917 578561 765736 163732 527196 952120 946654 011744 292075 098307 370997 391722 547953 238549 136130 756095 630646 488411 185322 046082 565091 277497 710266 753658 188194 761432 923024 786317 238321 685594 770936 026190 324834 836774 550224 048487 124935 516165 328474 056150 490045 466233 756249 371141 917391 530819 837076 837974 627489 592717 116087 107342 025606 794768 168387 289361 222552 329099 258782 235398 624303 340861 137720 253620 801485 464517 948512 117082 104397 (756 digits), a[1445] = 1
                                                                                      A[1446]/B[1446] = 9733 174579 576268 206619 652823 402049 742155 624520 839962 417001 559293 839852 680709 771564 172757 006980 062453 480804 970350 098622 864685 046790 140592 269232 247400 433964 933238 335171 326058 552630 212901 611874 771157 247952 867503 814431 218467 842261 944473 612703 359443 548202 356435 762740 979660 160031 231357 913608 572404 399398 896744 456488 018569 514302 069598 936419 412549 184985 641872 334959 216160 876992 370265 242981 773677 061316 188740 929852 259047 139190 877984 070691 233974 812108 894130 239010 987916 494009 268955 446732 154381 211399 947104 322743 630901 340820 461481 233945 530568 506043 586356 255860 837204 910385 805533 799933 821918 441102 292821 498297 779752 277265 120702 925413 358047 919014 699009 507474 405139 039975 635420 084574 174653 581880 347100 632766 467929 815448 228180 758138 904531 485723 569990 718147 317965 641833 (754 digits)/946001 551220 396902 927683 299946 614550 376807 619696 897691 145267 863319 130713 620773 700872 773297 661298 922929 658314 205587 127781 115915 933630 009988 319877 660532 350412 961219 318677 754648 517956 135250 635306 320980 533296 460836 808229 566960 387356 243973 330874 767566 341720 262493 676684 578320 112851 791103 584964 548096 240955 685083 062565 935053 750825 340796 758193 592909 576656 311828 716063 512975 876530 425232 406325 242216 757618 490380 542021 162130 024107 909531 682081 726587 440620 654787 181585 086317 422231 603940 870590 444674 244145 870561 777354 318800 691028 699300 351084 595789 949798 300620 857283 704081 166976 460110 308267 370300 946789 672232 945138 722750 633238 205918 066419 103970 738587 522549 730368 831375 303673 513480 437280 764861 610701 662965 200347 757104 612241 381548 717060 249103 877495 162201 182605 219688 265611 (756 digits), a[1446] = 1
                                                                                      A[1447]/B[1447] = 103015 869729 017988 925896 838554 794311 965550 933747 405752 468818 406590 289832 325002 952752 175255 608628 517399 543514 768402 347130 803066 385955 436823 971364 241776 327603 560165 434766 639088 999203 303074 576110 669441 460123 948312 367912 545561 171038 040846 444932 437436 892638 214091 114473 191899 190257 481514 670226 828655 636211 922140 438309 804286 720138 881133 706996 546056 667331 007334 644189 377157 216949 926025 300253 814857 416982 857749 301917 890215 532376 546109 867222 347594 336807 855476 328136 061642 515004 293067 952408 370085 877533 710166 295270 540383 392424 746924 172055 642591 384551 789191 160759 312339 414715 718221 342009 227706 309485 257501 356045 149957 185216 150778 488489 711288 718365 665360 493447 393813 989910 436092 384680 332000 243884 853206 704880 417317 242031 015695 033548 170305 298046 981403 533127 824984 282012 (756 digits)/10 012475 556378 230513 066325 435986 303731 317857 690118 751949 399887 772404 589681 539731 311724 973441 709429 926889 607848 116808 798428 152602 324888 373702 317781 924602 736814 060461 831188 690881 095755 198888 834365 616954 842918 130391 712928 002086 719148 535887 529018 613940 914008 093343 459991 992234 468912 441150 851606 724524 854903 441308 288385 843252 238175 954084 311977 291684 509480 696848 926371 293491 292501 204445 009906 433911 868260 002112 791209 013022 789032 333865 956948 021970 036853 036283 001172 909256 787407 316906 416171 200400 629653 467050 696567 974324 148608 678598 281781 984089 822817 842983 123061 089298 794700 117268 411147 759159 957942 188563 207636 598648 249773 590000 501267 877682 013364 818214 419775 421095 062341 929572 541194 937977 329568 958751 262259 806444 746717 156348 308322 744659 576437 086529 774564 313964 760507 (758 digits), a[1447] = 10
                                                                                      A[1448]/B[1448] = 936876 002140 738168 539691 199816 550857 432114 028247 491734 636367 218606 448343 605736 346333 750057 484636 719049 372437 885971 222800 092282 520389 072008 011510 423387 382396 974727 248071 077859 545459 940572 796870 796130 389068 402315 125644 128518 381604 312091 617095 296375 581946 283255 792999 706752 872348 564989 945650 030305 125306 196008 401276 257149 995551 999802 299388 327059 190964 707884 132663 610575 829541 704492 945266 107393 814161 908484 647113 270986 930579 792972 875692 362323 843379 593417 192235 542699 129047 906567 018407 485154 109203 338600 980178 494351 872643 183798 782446 313890 967009 689076 702694 648259 642827 269525 878016 871275 226469 610333 702704 129366 944210 477709 321820 759646 384305 687253 948500 949464 949169 560251 546697 162655 776844 025960 976690 223784 993727 369436 060072 437279 168146 402622 516297 742824 179941 (756 digits)/91 058281 558624 471520 524612 223823 348132 237526 830765 665235 744257 814960 437847 478355 506397 534273 046168 264936 128947 256866 313634 489336 857625 373309 179914 981956 981739 505375 799375 972578 379752 925250 144596 873574 119559 634362 224581 585740 859693 066961 092042 293034 567793 102584 816612 508430 333063 761461 249425 068819 935086 656857 658038 524323 894408 927555 565989 218070 161982 583469 053405 154397 509041 265237 495483 147423 571958 509395 662902 279335 125398 914325 294613 924317 772297 981334 192141 269628 508897 456098 616131 248279 911027 074018 046466 087718 028506 806684 887122 452598 355158 887468 964833 507770 319277 515526 008597 202740 568269 369301 813868 110584 881200 515922 577830 003108 858870 886479 508347 621230 864750 879633 308035 206657 576822 291726 560686 015107 332695 788683 491964 951040 065428 940969 153684 045371 110174 (758 digits), a[1448] = 9
                                                                                      A[1449]/B[1449] = 17 903659 910403 043191 180029 635069 260603 175717 470449 748710 559795 560112 808360 833993 533093 426347 816726 179337 619834 601855 580332 556434 273347 804976 190062 286136 593146 079983 148117 118420 362942 173957 716655 795918 852423 592299 755150 987410 421519 970587 169743 068572 949617 595951 181467 620203 764880 216323 637577 404453 017029 646300 062558 690136 635626 877377 395374 760181 295660 457133 164797 978097 978242 311391 260309 855339 886059 118957 597070 038967 213392 612594 505377 231747 361020 130402 980611 372925 966914 517841 302150 588013 952397 143584 918661 933068 972645 239101 038535 606519 757735 881648 511957 629272 628433 839213 024329 781935 612407 853841 707423 607929 125215 227255 603084 144570 020173 723185 514965 433648 024132 080871 771926 422460 003921 346465 261994 669232 122851 034980 174924 478609 492828 631231 342784 938643 700891 (758 digits)/1740 119825 170243 189403 033957 688629 918243 830867 474666 391428 540786 256652 908783 628485 933278 124629 586626 960676 057845 997268 757483 450002 619770 466576 736166 581785 389864 662602 019332 169870 311060 778641 581706 214863 114551 183273 979978 131163 053316 808148 277822 181597 702077 042454 975629 652410 797123 908914 590683 032103 621549 921603 791117 805406 231945 577640 065772 435017 587149 782760 941069 227043 964285 243957 424086 234959 735471 680630 386352 320390 171611 706046 554612 584007 710514 681632 651857 032198 456458 982780 122664 917718 939167 873393 579423 640966 690238 005611 137108 583458 570836 704893 454897 736934 860972 912262 574494 611230 755060 205297 671130 699760 992583 392529 480037 936750 331911 661325 078380 224481 492608 642605 393863 864471 289192 501555 915294 093484 067937 141334 655656 814420 819586 964943 694561 176015 853813 (760 digits), a[1449] = 19
                                                                                      A[1450]/B[1450] = 54 647855 733349 867742 079780 105024 332666 959266 439596 737866 315753 898944 873426 107716 945614 029100 934815 257062 231941 691537 963797 761585 340432 486936 581697 281797 161835 214676 692422 433120 634286 462445 946838 183886 946339 179214 391097 090749 646164 223853 126324 502094 430799 071109 337402 567364 166989 213960 858382 243664 176395 134908 588952 327559 902432 631934 485512 607603 077946 079283 627057 544869 764268 638666 726195 673413 472339 265357 438323 387888 570757 630756 391824 057565 926439 984626 134069 661477 029791 460090 924859 249195 966394 769355 736164 293558 790578 901101 898053 133450 240217 334022 238567 536077 528128 787164 951006 217082 063693 171858 824974 953154 319856 159476 131073 193356 444826 856810 493397 250409 021565 802866 862476 430035 788608 065356 762674 231481 362280 474376 584845 873107 646632 296316 544652 558755 282614 (758 digits)/5311 417757 069354 039729 626485 289713 102863 730129 254764 839521 366616 584919 164198 363813 306231 908161 806049 146964 302485 248672 586084 839344 716936 773039 388414 727313 151333 493181 857372 482189 312935 261174 889715 518163 463213 184184 164515 979230 019643 491405 925508 837827 674024 229949 743501 465662 724435 488205 021474 165130 799736 421669 031391 940542 590245 660475 763306 523122 923431 931751 876612 835529 401896 997109 767741 852302 778373 551286 821959 240505 640234 032464 958451 676340 903842 026232 147712 366223 878274 404438 984126 001436 728530 694198 784737 010618 099220 823518 298448 202974 067669 002149 329526 718574 902196 252313 732081 036432 833449 985194 827260 209867 858950 693511 017943 813359 854605 870454 743488 294675 342576 807449 489626 800071 444399 796394 306568 295559 536507 212687 458935 394302 524189 835800 237367 573418 671613 (760 digits), a[1450] = 3
                                                                                      A[1451]/B[1451] = 72 551515 643752 910933 259809 740093 593270 134983 910046 486576 875549 459057 681786 941710 478707 455448 751541 436399 851776 293393 544130 318019 613780 291912 771759 567933 754981 294659 840539 551540 997228 636403 663493 979805 798762 771514 146248 078160 067684 194440 296067 570667 380416 667060 518870 187567 931869 430284 495959 648117 193424 781208 651511 017696 538059 509311 880887 367784 373606 536416 791855 522967 742510 950057 986505 528753 358398 384315 035393 426855 784150 243350 897201 289313 287460 115029 114681 034402 996705 977932 227009 837209 918791 912940 654826 226627 763224 140202 936588 739969 997953 215670 750525 165350 156562 626377 975335 999017 676101 025700 532398 561083 445071 386731 734157 337926 465000 579996 008362 684057 045697 883738 634402 852495 792529 411822 024668 900713 485131 509356 759770 351717 139460 927547 887437 497398 983505 (758 digits)/7051 537582 239597 229132 660442 978343 021107 560996 729431 230949 907402 841572 072981 992299 239510 032791 392676 107640 360331 245941 343568 289347 336707 239616 124581 309098 541198 155783 876704 652059 623996 039816 471421 733026 577764 367458 144494 110393 072960 299554 203331 019425 376101 272404 719131 118073 521559 397119 612157 197234 421286 343272 822509 745948 822191 238115 829078 958140 510581 714512 817682 062573 366182 241067 191828 087262 513845 231917 208311 560895 811845 738511 513064 260348 614356 707864 799569 398422 334733 387219 106790 919155 667698 567592 364160 651584 789458 829129 435556 786432 638505 707042 784424 455509 763169 164576 306575 647663 588510 190492 498390 909628 851534 086040 497981 750110 186517 531779 821868 519156 835185 450054 883490 664542 733592 297950 221862 389043 604444 354022 114592 208723 343776 800743 931928 749434 525426 (760 digits), a[1451] = 1
                                                                                      A[1452]/B[1452] = 127 199371 377102 778675 339589 845117 925937 094250 349643 224443 191303 358002 555213 049427 424321 484549 686356 693462 083717 984931 507928 079604 954212 778849 353456 849730 916816 509336 532961 984661 631515 098849 610332 163692 745101 950728 537345 168909 713848 418293 422392 072761 811215 738169 856272 754932 098858 644245 354341 891781 369819 916117 240463 345256 440492 141246 366399 975387 451552 615700 418913 067837 506779 588724 712701 202166 830737 649672 473716 814744 354907 874107 289025 346879 213900 099655 248750 695880 026497 438023 151869 086405 885186 682296 390990 520186 553803 041304 834641 873420 238170 549692 989092 701427 684691 413542 926342 216099 739794 197559 357373 514237 764927 546207 865230 531282 909827 436806 501759 934466 067263 686605 496879 282531 581137 477178 787343 132194 847411 983733 344616 224824 786093 223864 432090 056154 266119 (759 digits)/12362 955339 308951 268862 286928 268056 123971 291125 984196 070471 274019 426491 237180 356112 545741 940953 198725 254604 662816 494613 929653 128692 053644 012655 512996 036411 692531 648965 734077 134248 936931 300991 361137 251190 040977 551642 309010 089623 092603 790960 128839 857253 050125 502354 462632 583736 245994 885324 633631 362365 221022 764941 853901 686491 412436 898591 592385 481263 434013 646264 694294 898102 768079 238176 959569 939565 292218 783204 030270 801401 452079 770976 471515 936689 518198 734096 947281 764646 213007 791658 090916 920592 396229 261791 148897 662202 888679 652647 734004 989406 706174 709192 113951 174084 665365 416890 038656 684096 421960 175687 325651 119496 710484 779551 515925 563470 041123 402234 565356 813832 177762 257504 373117 464614 177992 094344 528430 684603 140951 566709 573527 603025 867966 636544 169296 322853 197039 (761 digits), a[1452] = 1
                                                                                      A[1453]/B[1453] = 4142 931399 711041 828544 126684 783867 223257 150995 098629 668758 997256 915139 448604 523388 056994 961038 714955 627186 530751 811201 797828 865378 148589 215092 082378 759323 093109 593428 895323 060713 205711 799591 194123 217973 642025 194827 341293 483270 910833 579829 812613 899045 339320 288495 919598 345395 095346 046135 834900 185121 027662 096960 346338 065902 633808 029195 605686 580182 823290 238830 197073 693767 959457 789248 792943 998091 942003 173834 194331 498675 141202 214784 146012 389448 132263 303997 074703 302563 844623 994673 086820 602198 244765 746425 166522 872597 484921 461957 645128 689417 619410 805846 401491 611036 066687 859751 618286 914209 349515 347599 968351 016691 922752 865383 421534 338979 579478 557804 064680 586971 198135 855114 534539 893506 388928 681543 219649 130948 602314 988823 787489 546110 294444 091209 714319 294335 499313 (760 digits)/402666 108440 126037 832725 842147 556138 988188 877028 223705 486030 676024 489291 662753 387900 703252 143293 751884 254989 570459 073587 092468 407493 053315 644592 540454 474272 702210 922687 367172 948025 605797 671540 027813 771107 889046 020012 032816 978332 036281 610278 326206 451522 980117 347747 523373 797633 393395 727507 888360 792921 494014 821412 147363 713674 020171 993046 785414 358570 399018 394983 035118 801861 944717 862729 898066 153351 864846 294446 176977 205742 278398 409758 601574 234413 196716 198967 112585 867101 150982 720278 016132 378112 347034 944909 128885 842077 227207 713856 923716 447447 236096 401190 430862 026219 054862 505057 543589 538749 091235 812486 919226 733523 587047 031689 007599 781151 502466 403285 913286 561786 523577 690194 823249 532196 429339 316975 131644 296344 114894 488728 467475 505551 118709 170157 349411 080736 830674 (762 digits), a[1453] = 32
                                                                                      A[1454]/B[1454] = 4270 130771 088144 607219 466274 628985 149194 245245 448272 893202 188560 273142 003817 572815 481316 445588 401312 320648 614469 796133 305756 944983 102801 993941 435835 609054 009926 102765 428285 045374 837226 898440 804455 381666 387127 145555 878638 652180 624681 998123 235005 971807 150536 026665 775871 100327 194204 690381 189242 076902 397482 013077 586801 411159 074300 170441 972086 555570 274842 854530 615986 761605 466237 377973 505645 200258 772740 823506 668048 313419 496110 088891 435037 736327 346163 403652 323453 998443 871121 432696 238689 688604 129952 428721 557513 392784 038724 503262 479770 562837 857581 355539 390584 312463 751379 273294 544629 130309 089309 545159 325724 530929 687680 411591 286764 870262 489305 994610 566440 521437 265399 541720 031419 176037 970066 158722 006992 263143 449726 972557 132105 770935 080537 315074 146409 350489 765432 (760 digits)/415029 063779 434989 101588 129075 824195 112160 168154 207901 556501 950043 915782 899933 744013 248994 084246 950609 509594 233275 568201 022121 536185 106959 657248 053450 510684 394742 571653 101250 082274 542728 972531 388951 022297 930023 571654 341827 067955 128885 401238 455046 308776 030242 850101 986006 381369 639390 612832 521992 155286 715037 586354 001265 400165 432608 891638 377799 839833 833032 041247 729413 699964 712797 100906 857636 092917 157065 077650 207248 007143 730478 180735 073090 171102 714914 933064 059867 631747 363990 511936 107049 298704 743264 206700 277783 504280 115887 366504 657721 436853 942271 110382 544813 200303 720227 921947 582246 222845 513195 988174 244877 853020 297531 811240 523525 344621 543589 805520 478643 375618 701339 947699 196366 996810 607331 411319 660074 980947 255846 055438 041003 108576 986675 806701 518707 403590 027713 (762 digits), a[1454] = 1
                                                                                      A[1455]/B[1455] = 8413 062170 799186 435763 592959 412852 372451 396240 546902 561961 185817 188281 452422 096203 538311 406627 116267 947835 145221 607335 103585 810361 251391 209033 518214 368377 103035 696194 323608 106088 042938 698031 998578 599640 029152 340383 219932 135451 535515 577953 047619 870852 489856 315161 695469 445722 289550 736517 024142 262023 425144 110037 933139 477061 708108 199637 577773 135753 098133 093360 813060 455373 425695 167222 298589 198350 714743 997340 862379 812094 637312 303675 581050 125775 478426 707649 398157 301007 715745 427369 325510 290802 374718 175146 724036 265381 523645 965220 124899 252255 476992 161385 792075 923499 818067 133046 162916 044518 438824 892759 294075 547621 610433 276974 708299 209242 068784 552414 631121 108408 463535 396834 565959 069544 358994 840265 226641 394092 052041 961380 919595 317045 374981 406283 860728 644825 264745 (760 digits)/817695 172219 561026 934313 971223 380334 100349 045182 431607 042532 626068 405074 562687 131913 952246 227540 702493 764583 803734 641788 114589 943678 160275 301840 593904 984957 096953 494340 468423 030300 148526 644071 416764 793405 819069 591666 374644 046287 165167 011516 781252 760299 010360 197849 509380 179003 032786 340340 410352 948208 209052 407766 148629 113839 452780 884685 163214 198404 232050 436230 764532 501826 657514 963636 755702 246269 021911 372096 384225 212886 008876 590493 674664 405515 911631 132031 172453 498848 514973 232214 123181 676817 090299 151609 406669 346357 343095 080361 581437 884301 178367 511572 975675 226522 775090 427005 125835 761594 604431 800661 164104 586543 884578 842929 531125 125773 046056 208806 391929 937405 224917 637894 019616 529007 036670 728294 791719 277291 370740 544166 508478 614128 105384 976858 868118 484326 858387 (762 digits), a[1455] = 1
                                                                                      A[1456]/B[1456] = 46335 441625 084076 786037 431071 693247 011451 226448 182785 703008 117646 214549 265928 053833 172873 478723 982652 059824 340577 832808 823685 996789 359758 039109 026907 450939 525104 583737 046325 575815 051920 388600 797348 379866 532888 847471 978299 329438 302259 887888 473105 326069 599817 602474 253218 328938 641958 372966 309953 387019 523202 563267 252498 796467 614841 168629 860952 234335 765508 321334 681289 038472 594713 214084 998591 192012 346460 810210 979947 373892 682671 607269 340288 365204 738296 941899 314240 503482 449848 569542 866241 142616 003543 304455 177694 719691 656954 329363 104266 824115 242542 162468 350963 929962 841714 938525 359209 352901 283434 008955 796102 269037 739846 796464 828260 916472 833228 756683 722046 063479 583076 525892 861214 523759 765040 360048 140199 233603 709936 779461 730082 356161 955444 346493 450052 574616 089157 (761 digits)/4 503504 924877 240123 773157 985192 725865 613905 394066 365936 769165 080385 941155 713369 403583 010225 221950 463078 332513 251948 777141 595071 254575 908336 166451 022975 435469 879510 043355 443365 233775 285362 192888 472774 989327 025371 529986 215047 299390 954720 458822 361310 110271 082043 839349 532907 276384 803322 314534 573756 896327 760299 625184 744410 969362 696513 315064 193870 831854 993284 222401 552076 209098 000371 919090 636147 324262 266621 938132 128374 071573 774861 133203 446412 198682 273070 593219 922135 125989 938856 673006 722957 682790 194759 964747 311130 236066 831362 768312 564910 858359 834108 668247 423189 332917 595680 056973 211425 030818 535354 991480 065400 785739 720426 025888 179150 973486 773870 849552 438293 062644 825928 137169 294449 641845 790685 052793 618671 367404 109548 776270 583396 179217 513600 690995 859299 825224 319648 (763 digits), a[1456] = 5
                                                                                      A[1457]/B[1457] = 471767 478421 639954 296137 903676 345322 486963 660722 374759 592042 362279 333774 111702 634535 267046 193866 942788 546078 550999 935423 340445 778254 848971 600123 787288 877772 354081 533564 786863 864238 562142 584039 972062 398305 358040 815103 002925 429834 558114 456837 778673 131548 488032 339904 227652 735108 709134 466180 123676 132218 657169 742710 458127 441737 856519 885936 187295 479110 753216 306707 625950 840099 372827 308072 284501 118474 179352 099450 661853 551021 464028 376368 983933 777822 861396 126642 540562 335832 214231 122797 987921 716962 410151 219698 500983 462298 093189 258851 167567 493407 902413 786069 301715 223128 235216 518299 755009 573531 273164 982317 255098 237999 008901 241622 990908 373970 401072 119251 851581 743204 294300 655763 178104 307142 009398 440746 628633 730129 151409 755998 220418 878664 929424 871218 361254 390986 156315 (762 digits)/45 852744 420991 962264 665893 823150 638990 239402 985846 090974 734183 429927 816631 696381 167744 054498 447045 333277 089716 323222 413204 065302 489437 243636 966350 823659 339655 892053 927894 902075 368053 002148 572956 144514 686676 072784 891528 525117 040196 712371 599740 394353 863009 830798 591344 838452 942851 066009 485686 147921 911485 812048 659613 592738 807466 417914 035327 101922 516954 164892 660246 285294 592806 661234 154543 117175 488891 688130 753417 667965 928623 757487 922528 138786 392338 642337 064230 393804 758747 903539 962281 352758 504719 037898 799082 517971 707025 656722 763487 230546 467899 519454 194047 207568 555698 731890 996737 240086 069779 957981 715461 818112 443941 088839 101811 322634 860640 784764 704330 774860 563853 484199 009586 964112 947464 943521 256230 978432 951332 466228 306872 342440 406303 241391 886817 461116 736570 054867 (764 digits), a[1457] = 10
                                                                                      A[1458]/B[1458] = 3 348707 790576 563756 859002 756806 110504 420196 851504 806102 847304 653601 550968 047846 495580 042196 835792 582171 882374 197577 380772 206806 444573 302559 239975 537929 595346 003675 318690 554372 625484 986918 476880 601785 168004 039174 553192 998777 338280 209061 085752 923817 246909 016043 981803 846787 474699 605899 636227 175686 312550 123390 762240 459390 888632 610480 370183 172020 588111 038022 468288 062944 919168 204504 370590 990099 021331 601925 506365 612922 231042 930870 241852 227824 809964 768069 828397 098176 854307 949466 429128 781693 161352 874601 842344 684578 955778 309279 141321 277239 277970 559438 664953 462970 491860 488230 566623 644276 367620 195588 885176 581789 935030 802155 487825 764619 534265 640733 591446 683118 265909 643181 116235 107944 673753 830829 445274 540635 344507 769805 071449 273014 506816 461418 445021 978833 311519 183362 (763 digits)/325 472715 871820 975976 434414 747247 198797 289726 294989 002759 908449 089880 657577 588037 577791 391714 351267 796017 960527 514505 669570 052188 680636 613794 930906 788590 813061 123887 538619 757892 810146 300402 203581 484377 796059 534865 770685 890866 580767 941321 657005 121787 151339 897633 978763 402077 876342 265388 714337 609210 276728 444640 242479 893582 621627 621911 562353 907328 450534 147532 844125 549138 358744 629011 000892 456375 746504 083537 212055 804135 571940 077276 590900 417916 945052 769430 042832 678768 437225 263636 408976 192267 215823 460051 558324 936932 185246 428422 112723 178736 133656 470288 026577 876169 222808 718917 034133 892027 519278 241226 999712 792187 893327 342299 738567 437594 997972 267223 779867 862317 009619 215321 204278 043240 274100 395333 846410 467702 026731 373146 924376 980479 023340 203343 898718 087116 981214 703717 (765 digits), a[1458] = 7
                                                                                      A[1459]/B[1459] = 3 820475 268998 203711 155140 660482 455826 907160 512227 180862 439347 015880 884742 159549 130115 309243 029659 524960 428452 748577 316195 547252 222828 151530 840099 325218 473118 357756 852255 341236 489723 549061 060920 573847 566309 397215 368296 001702 768114 767175 542590 702490 378457 504076 321708 074440 209808 315034 102407 299362 444768 780560 504950 917518 330370 467000 256119 359316 067221 791238 774995 688895 759267 577331 678663 274600 139805 781277 605816 274775 782064 394898 618221 211758 587787 629465 955039 638739 190140 163697 551926 769614 878315 284753 062043 185562 418076 402468 400172 444806 771378 461852 451022 764685 714988 723447 084923 399285 941151 468753 867493 836888 173029 811056 729448 755527 908236 041805 710698 534700 009113 937481 771998 286048 980895 840227 886021 169269 074636 921214 827447 493433 385481 390843 316240 340087 702505 339677 (763 digits)/371 325460 292812 938241 100308 570397 837787 529129 280835 093734 642632 519808 474209 284418 745535 446212 798313 129295 050243 837728 082774 117491 170073 857431 897257 612250 152717 015941 466514 659968 178199 302550 776537 628892 482735 607650 662214 415983 620964 653693 256745 516141 014349 728432 570108 240530 819193 331398 200023 757132 188214 256688 902093 486321 429094 039825 597681 009250 967488 312425 504371 834432 951551 290245 155435 573551 235395 771667 965473 472101 500563 834764 513428 556703 337391 411767 107063 072573 195973 167176 371257 545025 720542 497950 357407 454903 892272 085144 876210 409282 601555 989742 220625 083737 778507 450808 030871 132113 589058 199208 715174 610300 337268 431138 840378 760229 858613 051988 484198 637177 573472 699520 213865 007353 221565 338855 102641 446134 978063 839375 231249 322919 429643 444735 785535 548233 717784 758584 (765 digits), a[1459] = 1
                                                                                      A[1460]/B[1460] = 22 451084 135567 582312 634706 059218 389638 955999 412640 710415 044039 733005 974678 845592 146156 588411 984090 206974 024637 940463 961749 943067 558714 060213 440472 164021 960937 792459 579967 260555 074102 732223 781483 471022 999551 025251 394673 007291 178854 044938 798706 436269 139196 536425 590344 218988 523741 181070 148263 672498 536394 026193 286995 046982 540484 945481 650779 968600 924219 994216 343266 507423 715506 091162 763907 363099 720360 508313 535446 986801 141364 905363 332958 286617 748902 915399 603595 291872 805008 767954 188762 629767 552929 298367 152560 612391 046160 321621 142183 501273 134862 868700 920067 286399 066804 105465 991240 640706 073377 539358 222645 766230 800179 857439 135069 542259 075445 849762 144939 356618 311479 330589 976226 538189 578233 031968 875380 386980 717692 375879 208686 740181 434223 415635 026223 679271 824045 881747 (764 digits)/2182 100017 335885 667181 935957 599236 387734 935372 699164 471433 121611 688923 028624 010131 305468 622778 342833 442493 211746 703146 083440 639644 531005 900954 417194 849841 576646 203594 871193 057733 701142 813156 086269 628840 209737 573119 081757 970784 685591 209787 940732 702492 223088 539796 829304 604731 972308 922379 714456 394871 217799 728084 752947 325189 767097 821039 550758 953583 287975 709660 365984 721303 116501 080236 778070 324131 923482 941877 039423 164643 074759 251099 158043 201433 632009 828265 578148 041634 417091 099518 265263 917395 818535 949803 345362 211451 646606 854146 493775 225149 141436 418999 129703 294858 115345 972957 188489 552595 464569 237270 575585 843689 579669 497993 940461 238744 291037 527166 200861 048204 876982 712922 273603 080006 381927 089609 359617 698376 917050 570023 080623 595076 171557 427022 826395 828285 570138 496637 (766 digits), a[1460] = 5
                                                                                      A[1461]/B[1461] = 48 722643 540133 368336 424552 778919 235104 819159 337508 601692 527426 481892 834099 850733 422428 486066 997839 938908 477728 629505 239695 433387 340256 271957 721043 653262 394993 942676 012189 862346 637929 013508 623887 515893 565411 447718 157642 016285 125822 857053 140003 575028 656850 576927 502396 512417 257290 677174 398934 644359 517556 832947 078941 011483 411340 357963 557679 296517 915661 779671 461528 703743 190279 759657 206478 000799 580526 797904 676710 248378 064794 205625 284137 784994 085593 460265 162230 222484 800157 699605 929452 029149 984173 881487 367164 410344 510397 045710 684539 447353 041104 199254 291157 337483 848596 934379 067404 680698 087906 547470 312785 369349 773389 525934 999587 840046 059127 741330 000577 247936 632072 598661 724451 362428 137361 904165 636781 943230 510021 672973 244820 973796 253928 222113 368687 698631 350597 103171 (764 digits)/4735 525494 964584 272604 972223 768870 613257 399874 679164 036600 885855 897654 531457 304681 356472 691769 483980 014281 473737 244020 249655 396780 232085 659340 731647 311933 306009 423131 208900 775435 580484 928862 949076 886572 902210 753888 825730 357552 992147 073269 138210 921125 460526 808026 228717 449994 763811 176157 628936 546874 623813 712858 407988 136700 963289 681904 699198 916417 543439 731746 236341 277039 184553 450718 711576 221815 082361 655422 044319 801387 650082 336962 829514 959570 601411 068298 263359 155842 030155 366212 901785 379817 357614 397557 048131 877807 185485 793437 863760 859580 884428 827740 480031 673454 009199 396722 407850 237304 518196 673749 866346 297679 496607 427126 721301 237718 440688 106320 885920 733587 327438 125364 761071 167365 985419 518073 821876 842888 812164 979421 392496 513071 772758 298781 438327 204804 858061 751858 (766 digits), a[1461] = 2
                                                                                      A[1462]/B[1462] = 71 173727 675700 950649 059258 838137 624743 775158 750149 312107 571466 214898 808778 696325 568585 074478 981930 145882 502366 569969 201445 376454 898970 332171 161515 817284 355931 735135 592157 122901 712031 745732 405370 986916 564962 472969 552315 023576 304676 901991 938710 011297 796047 113353 092740 731405 781031 858244 547198 316858 053950 859140 365936 058465 951825 303445 208459 265118 839881 773887 804795 211166 905785 850819 970385 363899 300887 306218 212157 235179 206159 110988 617096 071611 834496 375664 765825 514357 605166 467560 118214 658917 537103 179854 519725 022735 556557 367331 826722 948626 175967 067955 211224 623882 915401 039845 058645 321404 161284 086828 535431 135580 573569 383374 134657 382305 134573 591092 145516 604554 943551 929251 700677 900617 715594 936134 512162 330211 227714 048852 453507 713977 688151 637748 394911 377903 174642 984918 (764 digits)/6917 625512 300469 939786 908181 368107 000992 335247 378328 508034 007467 586577 560081 314812 661941 314547 826813 456774 685483 947166 333096 036424 763091 560295 148842 161774 882655 626726 080093 833169 281627 742019 035346 515413 111948 327007 907488 328337 677738 283057 078943 623617 683615 347823 058022 054726 736120 098537 343392 941745 841613 440943 160935 461890 730387 502944 249957 870000 831415 441406 602325 998342 301054 530955 489646 545947 005844 597299 083742 966030 724841 588061 987558 161004 233420 896563 841507 197476 447246 465731 167049 297213 176150 347360 393494 089258 832092 647584 357536 084730 025865 246739 609734 968312 124545 369679 596339 789899 982765 911020 441932 141369 076276 925120 661762 476462 731725 633487 086781 781792 204420 838287 034674 247372 367346 607683 181494 541265 729215 549444 473120 108147 944315 725804 264723 033090 428200 248495 (766 digits), a[1462] = 1
                                                                                      A[1463]/B[1463] = 1401 023469 378451 430668 550470 703534 105236 547175 590345 531736 385284 564970 200895 080919 225544 901167 654512 710676 022693 458920 067157 586030 420692 583209 789844 181665 157696 910252 263175 197479 166532 182424 325936 267308 299698 434139 651627 464234 914683 994899 975493 789686 781745 730636 264470 409127 096895 983820 795702 664662 542623 156614 031726 122336 496021 123422 518405 333775 873415 483539 752637 715914 400210 925236 643799 914886 297385 616050 707697 716782 981817 314409 008963 145618 941024 597895 712914 995279 298320 583248 175530 548583 189134 298723 241939 842320 084987 025015 392275 471250 384478 490403 304425 191259 241216 691435 181665 787377 152304 197212 485976 945380 671207 810043 558078 103843 616025 972080 765392 734480 559559 254444 037331 474164 733665 690721 367866 217243 836588 601169 861467 539372 328809 339332 872003 878791 668813 816613 (766 digits)/136170 410228 673513 128556 227669 762903 632111 769574 867405 689247 027740 042628 173002 286121 933357 668178 193435 693000 497932 240180 578480 088850 730825 304948 559648 385656 076466 330926 730683 605651 931412 027224 620660 679422 029228 967039 068008 595968 869174 451353 638139 769861 449218 416664 331136 489802 750093 048367 153402 440045 614469 090778 465761 912624 840652 237845 448398 446433 340333 118471 680535 245542 904589 538873 014860 594808 193409 004104 635436 155971 422072 510140 593120 018651 036408 103011 251995 907894 527838 215105 075722 026867 704470 997404 524519 573724 995246 097540 656946 469451 375868 515793 064996 071384 375561 420634 738306 245404 190748 983138 263056 983691 945869 004419 294788 290510 343475 142575 534774 587639 211434 052818 419881 867440 965005 064054 270273 126937 667260 418866 381778 567882 714757 089062 468064 833522 993866 473263 (768 digits), a[1463] = 19
                                                                                      A[1464]/B[1464] = 1472 197197 054152 381317 609729 541671 729980 322334 340494 843843 956750 779869 009673 777244 794129 975646 636442 856558 525060 028889 268602 962485 319662 915380 951359 998949 513628 645387 855332 320380 878563 928156 731307 254224 864660 907109 203942 487811 219360 896891 914203 800984 577792 843989 357211 140532 877927 842065 342900 981520 596574 015754 397662 180802 447846 426867 726864 598894 713297 257427 557432 927081 305996 776056 614185 278785 598272 922268 919854 951962 187976 425397 626059 217230 775520 973560 478740 509636 903487 050808 293745 207500 726237 478577 761664 865055 641544 392347 218998 419876 560445 558358 515649 815142 156617 731280 240311 108781 313588 284041 021408 080961 244777 193417 692735 486148 750599 563172 910909 339035 503111 183695 738009 374782 449260 626855 880028 547455 064302 650022 314975 253350 016960 977081 266915 256694 843456 801531 (766 digits)/143088 035740 973983 068343 135851 131010 633104 104822 245734 197281 035207 629205 733083 600934 595298 982726 020249 149775 183416 187346 911576 125275 493916 865243 708490 547430 959121 957652 810777 438821 213039 769243 656007 194835 141177 294046 975496 924306 546912 734410 717083 393479 132833 764487 389158 544529 486213 146904 496795 381791 456082 531721 626697 374515 571039 740789 698356 316434 171748 559878 282861 243885 205644 069828 504507 140755 199253 601403 719179 122002 146914 098202 580678 179655 269828 999575 093503 105370 975084 680836 242771 324080 880621 344764 918013 662983 827338 745125 014482 554181 401733 762532 674731 039696 500106 790314 334646 035304 173514 894158 704989 125061 022145 929539 956550 766973 075200 776062 621556 369431 415854 891105 454556 114813 332351 671737 451767 668203 396475 968310 854898 676030 659072 814866 732787 866613 422066 721758 (768 digits), a[1464] = 1
                                                                                      A[1465]/B[1465] = 4345 417863 486756 193303 769929 786877 565197 191844 271335 219424 298786 124708 220242 635408 813804 852460 927398 423793 072813 516698 604363 511001 060018 413971 692564 179564 184954 201027 973839 838240 923660 038737 788550 775758 029020 248358 059512 439857 353405 788683 803901 391655 937331 418614 978892 690192 852751 667951 481504 627703 735771 188122 827050 483941 391713 977157 972134 531565 300009 998394 867503 570077 012204 477349 872170 472457 493931 460588 547407 620707 357770 165204 261081 580080 492066 545016 670396 014553 105294 684864 763020 963584 641609 255878 765269 572431 368075 809709 830272 311003 505369 607120 335724 821543 554452 153995 662288 004939 779480 765294 528793 107303 160762 196878 943549 076141 117225 098426 587211 412551 565781 621835 513350 223729 632186 944433 127923 312153 965193 901214 491418 046072 362731 293495 405834 392181 355727 419675 (766 digits)/422346 481710 621479 265242 499372 024924 898319 979219 358874 083809 098155 301039 639169 487991 123955 633630 233933 992550 864764 614874 401632 339401 718659 035435 976629 480517 994710 246232 352238 483294 357491 565711 932675 069092 311583 555133 019002 444581 962999 920175 072306 556819 714885 945639 109453 578861 722519 342176 146993 203628 526634 154221 719156 661655 982731 719424 845111 079301 683830 238228 246257 733313 315877 678530 023874 876318 591916 206912 073794 399975 715900 706545 754476 377961 576066 102161 439002 118636 478007 576777 561264 675029 465713 686934 360546 899692 649923 587790 685911 577814 179336 040858 414458 150777 375775 001263 407598 316012 537778 771455 673035 233813 990160 863499 207889 824456 493876 694700 777887 326502 043143 835029 328994 097067 629708 407529 173808 463344 460212 355488 091575 919944 032902 718795 933640 566749 837999 916779 (768 digits), a[1465] = 2
                                                                                      A[1466]/B[1466] = 231779 343961 852230 626417 416008 246182 685431 490080 721261 473331 792415 389404 682533 453911 925787 156075 788559 317591 384176 413915 299869 045541 500638 855880 657261 515851 316201 299870 468843 747149 832545 981259 524498 369400 402734 070086 358101 800250 949867 697133 520977 558749 256358 030583 238523 720754 073766 243493 862646 249818 592446 986264 231337 829696 208687 216240 249994 771855 613827 172355 535122 141162 952834 075599 839220 319032 776640 333461 932458 849452 149795 181223 463382 961496 855047 859444 009729 280951 484105 348640 733856 277486 731528 040152 320952 203918 149562 306968 223430 903062 345034 735736 309065 356950 542581 893050 341575 370589 626068 844651 047442 768028 765173 628001 700836 521627 963529 779782 033114 204268 489537 140977 945571 232452 955168 681811 659964 091615 219579 414390 360131 695185 241719 532337 776138 042306 697010 044306 (768 digits)/22 527451 566403 912384 126195 602568 452030 244063 003448 266060 639163 237438 584306 609066 464464 164947 565128 418750 754971 015940 775690 198090 113566 582845 743350 469853 014884 678765 007967 479417 053422 160092 751976 087785 856727 655105 716096 982626 487150 585908 503689 549330 904924 021788 883360 190198 224200 779738 282240 287435 174103 367692 705472 742000 442282 655820 870306 489243 519423 414751 185975 334521 109490 947161 031919 769875 585640 570812 567743 630282 320715 089651 545127 567926 211618 801332 414131 360615 393104 309486 250046 989799 100642 563446 752286 026999 346694 273288 898031 367796 178332 906543 928028 641013 030897 416181 857274 937356 783968 675789 781309 375856 517202 500671 694997 974711 463167 250665 595203 849584 674039 702478 147659 891243 259397 706897 270783 663616 225459 787730 809179 708422 433064 402916 911051 215737 904354 836062 311045 (770 digits), a[1466] = 53
                                                                                      A[1467]/B[1467] = 9 970857 208223 132673 129252 658284 372733 038751 265315 285578 572691 372647 869109 569181 153621 622652 563719 835449 080222 592399 315056 498732 469285 587489 216839 954809 361170 781610 095458 134120 965683 723137 232897 341980 659975 346585 262071 457889 850648 197716 765425 205936 417873 960726 733694 235412 682618 024700 138187 575293 369903 210991 597484 774577 160878 365264 275488 721909 721356 694578 409682 877755 640083 984069 728142 958644 190866 889465 799451 643138 147149 798962 957813 186548 924445 259124 501109 088755 095466 921824 676416 318840 895514 097314 982428 566214 340911 799255 009343 437801 142684 341863 243781 625535 170416 885473 555160 350028 940293 700441 085289 568832 132540 063228 200952 079519 506143 549005 629054 011122 196096 615878 683887 172913 219206 704440 262334 506379 251608 407108 719999 977080 939037 756671 184019 779770 211369 327159 324833 (769 digits)/969 102763 837078 853996 691653 409815 462225 393029 127494 799481 567828 308014 426223 829027 459950 216700 934152 240216 456304 550217 969552 919507 222764 781025 999506 180309 120559 181605 588833 967171 780447 241479 900683 707466 908381 481129 347303 271941 392057 157065 578825 693535 468552 651807 930127 287977 219495 251265 478508 506705 690073 337420 489549 625175 679810 183029 142603 882582 414508 518131 235167 630665 441424 043802 051080 128525 058863 136856 619888 175934 190724 570917 147031 175303 477570 033359 909809 945464 022121 785916 328798 122626 002659 693924 035233 521518 807546 401346 203139 501147 246129 160724 946089 978018 479366 271594 864085 713940 026665 596739 367758 834865 473521 519043 748412 120482 740648 272497 288466 310028 310209 249704 184404 652454 251169 026291 051226 709306 158115 332637 150215 553740 541713 358329 893998 210370 454007 788679 291714 (771 digits), a[1467] = 43
                                                                                      A[1468]/B[1468] = 10 202636 552184 984903 755670 074292 618915 724182 755396 006840 046023 165063 258514 251714 607533 548439 719795 624008 397813 976575 728971 798601 514827 088128 072720 612070 877022 097811 395328 602964 712833 555683 214156 866479 029375 749319 332157 815991 650899 147584 462558 726913 976623 217084 764277 473936 403372 098466 381681 437939 619721 803438 583749 005914 990574 573951 491728 971904 493212 308405 582038 412877 781246 936903 803742 797864 509899 666106 132913 575596 996601 948758 139036 649931 885942 114172 360553 098484 376418 405930 025057 052697 173000 828843 022580 887166 544829 948817 316311 661232 045746 686897 979517 934600 527367 428055 448210 691604 310883 326509 929940 616274 900568 828401 828953 780356 027771 512535 408836 044236 400365 105415 824865 118484 451659 659608 944146 166343 343223 626688 134390 337212 634222 998390 716357 555908 253676 024169 369139 (770 digits)/991 630215 403482 766380 817849 012383 914255 637092 130943 065542 206991 545453 010530 438093 924414 381648 499280 658967 211275 566158 745243 117597 336331 363871 742856 650162 135443 860370 596801 446588 833869 401572 652659 795252 765109 136235 063400 254567 879207 742974 082515 242866 373476 673596 813487 478175 443696 031003 760748 794140 864176 705113 195022 367176 122092 838850 012910 371825 933931 932882 421142 965186 550914 990963 082999 898400 644503 707669 187631 806216 511439 660568 692158 743229 689188 834692 323941 306079 415226 095402 578845 112425 103302 257370 787519 548518 154240 674635 101170 868943 424462 067268 874118 619031 510263 687776 721360 651296 810634 272529 149068 210721 990724 019715 443410 095194 203815 523162 883670 159612 984248 952182 332064 543697 510566 733188 322010 372922 383575 120367 959395 262162 974777 761246 805049 426108 358362 624741 602759 (771 digits), a[1468] = 1
                                                                                      A[1469]/B[1469] = 1479 150520 722860 958813 945743 356421 496597 321068 042340 270545 200027 141757 095161 816084 638452 597972 214289 692658 365435 219304 286995 497350 604386 277931 688608 093015 652352 866451 022776 961039 613715 741520 071486 114960 890083 248569 092796 960687 580125 449879 373881 881549 051617 220932 789650 482254 768200 203859 100314 638598 609842 906147 657341 626335 803617 014279 084460 676156 743929 104982 223214 332156 139642 898217 467105 851133 616418 808748 939006 529105 657830 420134 979090 776740 500109 699944 420755 270505 299717 375748 284631 907233 807633 450710 234076 318196 796424 428948 558222 655215 730207 255172 294364 208011 111326 525458 097499 941049 707492 717870 996738 312417 814451 353091 570296 450787 505241 354104 501444 381163 848671 795757 464464 234674 258197 688128 219382 459820 675810 650200 072208 535700 267149 524934 339507 830558 740716 807548 480849 (772 digits)/143763 853781 938597 212834 461911 193099 115037 134295 983296 237559 374610 853247 942606 914552 575621 174084 830567 131494 879986 077077 284561 853523 654481 178556 970863 803656 624475 074971 528242 275963 857641 067941 883694 223865 084097 098978 476939 929715 997972 145333 461020 666293 249193 649749 072324 145241 111723 715807 026334 862990 131518 873720 572770 498537 261178 977431 001697 425516 900706 853199 879754 617528 773182 742486 003065 498217 867397 041219 638868 271111 838035 692808 817890 200378 720762 229054 557358 020899 814679 523887 682494 311840 878184 755317 438048 508133 018203 548800 771744 629000 368666 847442 819171 118555 957337 311442 740019 500680 758000 840936 833581 178832 137780 358067 599465 828448 090083 607952 536969 294298 042058 363960 001698 944895 772778 605409 420720 410129 392932 665623 303133 305208 909710 977869 821115 569974 058225 751470 089010 (774 digits), a[1469] = 144
                                                                                      A[1470]/B[1470] = 19239 159405 949377 449485 050333 707772 074680 898067 305819 523927 646376 007905 495617 860814 907417 322078 505561 628567 148471 827531 459913 264159 371848 701240 024625 821274 357609 361674 691429 096479 691138 195444 143476 360970 600457 980717 538518 304930 192529 996016 323023 187051 647647 089211 029733 743248 389974 748634 685771 739721 547679 583358 129190 148280 437595 759579 589717 761942 164290 673174 483824 730907 596604 613730 876118 862601 523344 179842 339998 453970 548397 410512 867216 747558 387368 213449 830371 615053 272744 290657 725271 846736 672235 688076 065573 023724 898347 525148 573206 179036 538441 004137 806252 638744 974612 259010 715709 925250 508288 658832 887538 677706 488436 418592 242807 640593 595909 115893 927612 999366 433098 450262 862900 169249 808229 605275 796118 144012 128762 079289 073101 301316 107166 822537 129959 353171 882994 522299 620176 (773 digits)/1 869921 729380 605246 533228 822694 522672 409738 382939 913794 153814 076932 637676 264420 327277 407489 644751 296653 368400 651094 568163 444547 213404 844586 685112 364086 097698 253619 835000 463951 034118 983203 284817 140684 705498 858371 422955 263619 340875 852845 632309 075783 904678 612994 120334 753701 366309 896104 336495 103102 013012 573922 063480 641038 848160 517419 545453 034976 903545 643121 024480 857952 993060 602290 643281 122851 375232 920665 243524 492919 330670 405903 667083 324731 348153 059097 812401 569595 577777 006059 905942 451271 166356 519704 076497 482150 154247 390886 809045 133851 045948 217131 084025 523343 160258 955648 736532 341614 160146 664645 204707 985623 535539 781868 674594 236465 865019 374902 426545 864270 985487 531007 683662 354150 827342 556688 603510 791375 704604 491699 773470 900128 229878 801020 473554 479551 835771 115297 393852 759889 (775 digits), a[1470] = 13
                                                                                      A[1471]/B[1471] = 97674 947550 469748 206239 197411 895281 870001 811404 571437 890183 431907 181284 573251 120159 175539 208364 742097 835494 107794 356961 586561 818147 463629 784131 811737 199387 440399 674824 479922 443438 069406 718740 788867 919813 892373 152156 785388 485338 542775 429960 988997 816807 289852 666987 938319 198496 718073 947032 529173 337206 348240 822938 303292 367737 991595 812177 033049 485867 565382 470854 642337 986694 122665 966871 847700 164141 233139 707960 638998 798958 399817 472699 315174 514532 436950 767193 572613 345771 663438 829036 910991 140917 168811 891090 561941 436821 288162 054691 424253 550398 422412 275861 325627 401735 984387 820511 676049 567302 248936 012035 434431 700950 256633 446052 784334 653755 484786 933574 139509 377996 014164 047071 778965 080923 299345 714507 199973 179881 319621 046645 437715 042280 802983 637619 989304 596418 155689 419046 581729 (773 digits)/9 493372 500684 964829 878978 575383 806461 163729 048995 552267 006629 759274 041629 264708 550939 613069 397841 313833 973498 135458 917894 507297 920547 877414 604118 791294 292147 892574 249973 847997 446558 773657 492027 587117 751359 375954 213754 795036 634095 262200 306878 839940 189686 314164 251422 840830 976790 592245 398282 541844 928053 001129 191123 777964 739339 848276 704696 176581 943245 116311 975604 169519 582831 784635 958891 617322 374382 470723 258842 103464 924463 867554 028225 441546 941144 016251 291062 405335 909784 844979 053599 938850 143623 476705 137804 848799 279369 972637 594026 440999 858741 454322 267570 435886 919850 735580 994104 448090 301414 081226 864476 761698 856531 047123 731038 781795 153544 964595 740681 858324 221735 697096 782271 772453 081608 556221 622963 377598 933151 851431 532977 803774 454602 914813 345642 218874 748829 634712 720733 888455 (775 digits), a[1471] = 5
                                                                                      A[1472]/B[1472] = 116914 106956 419125 655724 247745 603053 944682 709471 877257 414111 078283 189190 068868 980974 082956 530443 247659 464061 256266 184493 046475 082306 835478 485371 836363 020661 798009 036499 171351 539917 760544 914184 932344 280784 492831 132874 323906 790268 735305 425977 312021 003858 937499 756198 968052 941745 108048 695667 214945 076927 895920 406296 432482 516018 429191 571756 622767 247809 729673 144029 126162 717601 719270 580602 723819 026742 756483 887802 978997 252928 948214 883212 182391 262090 824318 980643 402984 960824 936183 119694 636262 987653 841047 579166 627514 460546 186509 579839 997459 729434 960853 279999 131880 040480 959000 079522 391759 492552 757224 670868 321970 378656 745069 864645 027142 294349 080696 049468 067122 377362 447262 497334 641865 250173 107575 319782 996091 323893 448383 125934 510816 343596 910150 460157 119263 949590 038683 941346 201905 (774 digits)/11 363294 230065 570076 412207 398078 329133 573467 431935 466061 160443 836206 679305 529128 878217 020559 042592 610487 341898 786553 486057 951845 133952 722001 289231 155380 389846 146194 084974 311948 480677 756860 776844 727802 456858 234325 636710 058655 974971 115045 939187 915724 094364 927158 371757 594532 343100 488349 734777 644946 941065 575051 254604 419003 587500 365696 250149 211558 846790 759433 000085 027472 575892 386926 602172 740173 749615 391388 502366 596384 255134 273457 695308 766278 289297 075349 103463 974931 487561 851038 959542 390121 309979 996409 214302 330949 433617 363524 403071 574850 904689 671453 351595 959230 080109 691229 730636 789704 461560 745872 069184 747322 392070 828992 405633 018261 018564 339498 167227 722595 207223 228104 465934 126603 908951 112910 226474 168974 637756 343131 306448 703902 684481 715833 819196 698426 584600 750010 114586 648344 (776 digits), a[1472] = 1
                                                                                      A[1473]/B[1473] = 214589 054506 888873 861963 445157 498335 814684 520876 448695 304294 510190 370474 642120 101133 258495 738807 989757 299555 364060 541454 633036 900454 299108 269503 648100 220049 238408 711323 651273 983355 829951 632925 721212 200598 385204 285031 109295 275607 278080 855938 301018 820666 227352 423186 906372 140241 826122 642699 744118 414134 244161 229234 735774 883756 420787 383933 655816 733677 295055 614883 768500 704295 841936 547474 571519 190883 989623 595763 617996 051887 348032 355911 497565 776623 261269 747836 975598 306596 599621 948731 547254 128571 009859 470257 189455 897367 474671 634531 421713 279833 383265 555860 457507 442216 943387 900034 067809 059855 006160 682903 756402 079607 001703 310697 811476 948104 565482 983042 206631 755358 461426 544406 420830 331096 406921 034290 196064 503774 768004 172579 948531 385877 713134 097777 108568 546008 194373 360392 783634 (774 digits)/20 856666 730750 534906 291185 973462 135594 737196 480931 018328 167073 595480 720934 793837 429156 633628 440433 924321 315396 922012 403952 459143 054500 599415 893349 946674 681994 038768 334948 159945 927236 530518 268872 314920 208217 610279 850464 853692 609066 377246 246066 755664 284051 241322 623180 435363 319891 080595 133060 186791 869118 576180 445728 196968 326840 213972 954845 388140 790035 875744 975689 196992 158724 171562 561064 357496 123997 862111 761208 699849 179598 141011 723534 207825 230441 091600 394526 380267 397346 696018 013142 328971 453603 473114 352107 179748 712987 336161 997098 015850 763431 125775 619166 395116 999960 426810 724741 237794 762974 827098 933661 509021 248601 876116 136671 800056 172109 304093 907909 580919 428958 925201 248205 899056 990559 669131 849437 546573 570908 194562 839426 507677 139084 630647 164838 917301 333430 384722 835320 536799 (776 digits), a[1473] = 1
                                                                                      A[1474]/B[1474] = 760681 270477 085747 241614 583218 098061 388736 272101 223343 326994 608854 300613 995229 284373 858443 746867 216931 362727 348447 808856 945585 783669 732803 293882 780663 680809 513235 170470 125173 489985 250399 812962 095980 882579 648443 987967 651792 617090 569547 993792 215077 465857 619557 025759 687169 362470 586416 623766 447300 319330 628404 094000 639807 167287 691553 723557 590217 448841 614839 988680 431664 830489 245080 223026 438376 599394 725354 675093 832985 408590 992311 950946 675088 591960 608128 224154 329779 880614 735048 965889 278025 373366 870625 989938 195882 152648 610524 483434 262599 568935 110649 947580 504402 367131 789163 779624 595186 672117 775706 719579 591176 617477 750179 796738 461573 138662 777144 998594 687017 643437 831542 130553 904356 243462 328338 422653 584284 835217 752395 643674 356410 501230 049552 753488 444969 587614 621804 022524 552807 (774 digits)/73 933294 422317 174795 285765 318464 735917 785056 874728 521045 661664 622648 842109 910641 165686 921444 363894 383451 288089 552590 697915 329274 297454 520248 969280 995404 435828 262499 089818 791786 262387 348415 583461 672563 081511 065165 188104 619733 802170 246784 677388 182716 946518 651126 241298 900622 302773 730135 133958 205322 548421 303592 591789 009908 568021 007615 114685 375981 216898 386667 927152 618449 052064 901614 285365 812662 121608 977723 785992 695931 793928 696492 865911 389753 980620 350150 287043 115733 679601 939092 998969 377035 670790 415752 270623 870195 572579 372010 394365 622403 194983 048780 209095 144581 079990 971661 904860 503088 750485 227168 870169 274386 137876 457340 815648 418429 534892 251779 890956 465353 494100 003708 210551 823774 880630 120305 774786 808695 350480 926819 824728 226934 101735 607775 313713 450330 584891 904178 620548 258741 (776 digits), a[1474] = 3
                                                                                      A[1475]/B[1475] = 1 735951 595461 060368 345192 611593 694458 592157 065078 895381 958283 727898 971702 632578 669880 975383 232542 423620 025010 060956 159168 524208 467793 764714 857269 209427 581668 264879 052263 901620 963326 330751 258849 913173 965757 682092 260966 412880 509788 417176 843522 731173 752381 466466 474706 280710 865182 998955 890232 638719 052795 500969 417236 015389 218331 803894 831048 836251 631360 524735 592244 631830 365274 332096 993527 448272 389673 440332 945951 283966 869069 332656 257804 847742 960544 477526 196145 635158 067826 069719 880510 103304 875304 751111 450133 581220 202664 695720 601399 946912 417703 604565 451021 466312 176480 521715 459283 258182 404090 557574 122062 938755 314562 502062 904174 734623 225430 119772 980231 580667 042234 124510 805514 229542 818021 063597 879597 364634 174210 272795 459928 661352 388337 812239 604753 998507 721237 437981 405441 889248 (775 digits)/168 723255 575384 884496 862716 610391 607430 307310 230388 060419 490402 840778 405154 615119 760530 476517 168222 691223 891576 027193 799783 117691 649409 639913 831911 937483 553650 563766 514585 743518 452011 227349 435795 660046 371239 740610 226674 093160 213406 870815 600843 121098 177088 543575 105778 236607 925438 540865 400976 597436 965961 183365 629306 216785 462882 229203 184216 140103 223832 649080 829994 433890 262853 974791 131795 982820 367215 817559 333194 091712 767455 533997 455356 987333 191681 791900 968612 611734 756550 574204 011081 083042 795184 304618 893354 920139 858146 080182 785829 260657 153397 223336 037356 684279 159942 370134 534462 243972 263945 281436 674000 057793 524354 790797 767968 636915 241893 807653 689822 511626 417158 932617 669309 546606 751819 909743 399011 163964 271870 048202 488882 961545 342555 846197 792265 817962 503214 193080 076417 054281 (777 digits), a[1475] = 2
                                                                                      A[1476]/B[1476] = 9 440439 247782 387588 967577 641186 570354 349521 597495 700253 118413 248349 159127 158122 633778 735359 909579 335031 487777 653228 604699 566628 122638 556377 580228 827801 589150 837630 431789 633278 306616 904156 107211 661850 711368 058905 292799 716195 166032 655432 211405 870946 227764 951889 399291 090723 688385 581196 074929 640895 583308 133251 180180 716753 258946 711027 878801 771475 605644 238517 949903 590816 656860 905565 190663 679738 547761 927019 404850 252819 753937 655593 239970 913803 394682 995759 204882 505570 219745 083648 368439 794549 749890 626183 240606 101983 165972 089127 490433 997161 657453 133477 202687 835963 249534 397741 076040 886098 692570 563577 329894 284953 190290 260494 317612 134689 265813 376009 899752 590352 854608 454096 158125 052070 333567 646327 820640 407455 706269 116372 943317 663172 442919 110750 777258 437508 193801 811711 049733 999047 (775 digits)/917 549572 299241 597279 599348 370422 773069 321608 026668 823143 113678 826540 867882 986239 968339 304030 205007 839570 745969 688559 696830 917732 544502 719818 128840 682822 204081 081331 662747 509378 522443 485162 762439 972794 937709 768216 321475 085534 869204 600862 681603 788207 831961 369001 770190 083661 929966 434462 138841 192507 378227 220420 738320 093835 882432 153631 035766 076497 336061 632072 077124 787900 366334 775569 944345 726763 957688 065520 451963 154495 631206 366480 142696 326419 939029 309655 130106 174407 462354 810113 054374 792249 646711 938846 737398 470894 863309 772924 323511 925688 961969 165460 395878 565976 879702 822334 577171 722950 070211 634352 240169 563353 759650 411329 655491 603005 744361 290048 340069 023485 579894 666796 557099 556808 639729 669022 769842 628516 709831 167832 269143 034660 814514 838764 275042 540143 100962 869579 002633 530146 (777 digits), a[1476] = 5
                                                                                      A[1477]/B[1477] = 39 497708 586590 610724 215503 176339 975875 990243 455061 696394 431936 721295 608211 265069 204995 916822 870859 763745 976120 673870 577966 790720 958347 990225 178184 520633 938271 615400 779422 434734 189793 947375 687696 560576 811229 917713 432165 277661 173919 038905 689146 214958 663441 274024 071870 643605 618725 323740 189951 202301 386028 033974 137958 882402 254118 648006 346255 922154 053937 478807 391858 995096 992717 954357 756182 167226 580721 148410 565352 295245 884819 955029 217688 502956 539276 460563 015675 657438 946806 404313 354269 281503 874867 255844 412557 989152 866553 052230 563135 935559 047516 138474 261772 810165 174618 112679 763446 802577 174372 811883 441640 078568 075723 544040 174623 273380 288683 623812 579241 942078 460667 940895 438014 437824 152291 648909 162158 994456 999286 738287 233199 314042 160014 255242 713787 748540 496444 684825 604377 885436 (776 digits)/3838 921544 772351 273615 260110 092082 699707 593742 337063 352991 945118 146941 876686 560079 633887 692637 988254 049506 875454 781432 587106 788621 827420 519186 347274 668772 369974 889093 165575 781032 541785 168000 485555 551226 122078 813475 512574 435299 690225 274266 327258 273929 504934 019582 186538 571255 645304 278713 956341 367466 478870 065048 582586 592128 992610 843727 327280 446092 568079 177369 138493 585491 728193 077070 909178 889876 197968 079641 141046 709695 292280 999918 026142 293012 947799 030521 489037 309364 605969 814656 228580 252041 382032 060005 842948 803719 311385 171880 079876 963413 001273 885177 620870 948186 678753 659472 843149 135772 544791 818845 634678 311208 562956 436116 389935 048938 219338 967847 050098 605568 736737 599803 897707 773841 310738 585834 478381 678031 111194 719531 565455 100188 600615 201254 892435 978534 907065 671396 086951 174865 (778 digits), a[1477] = 4
                                                                                      A[1478]/B[1478] = 48 938147 834372 998313 183080 817526 546230 339765 052557 396647 550349 969644 767338 423191 838774 652182 780439 098777 463898 327099 182666 357349 080986 546602 758413 348435 527422 453031 211212 068012 496410 851531 794908 222427 522597 976618 724964 993856 339951 694337 900552 085904 891206 225913 471161 734329 307110 904936 264880 843196 969336 167225 318139 599155 513065 359034 225057 693629 659581 717325 341762 585913 649578 859922 946845 846965 128483 075429 970202 548065 638757 610622 457659 416759 933959 456322 220558 163009 166551 487961 722709 076053 624757 882027 653164 091136 032525 141358 053569 932720 704969 271951 464460 646128 424152 510420 839487 688675 866943 375460 771534 363521 266013 804534 492235 408069 554496 999822 478994 532431 315276 394991 596139 489894 485859 295236 982799 401912 705555 854660 176516 977214 602933 365993 491046 186048 690246 496536 654111 884483 (776 digits)/4756 471117 071592 870894 859458 462505 472776 915350 363732 176135 058796 973482 744569 546319 602226 996668 193261 889077 621424 469992 283937 706354 371923 239004 476115 351594 574055 970424 828323 290411 064228 653163 247995 524021 059788 581691 834049 520834 559429 875129 008862 062137 336895 388583 956728 654917 575270 713176 095182 559973 857097 285469 320906 685964 875042 997358 363046 522589 904140 809441 215618 373392 094527 852640 853524 616640 155656 145161 593009 864190 923487 366398 168838 619432 886828 340176 619143 483772 068324 624769 282955 044291 028743 998852 580347 274614 174694 944804 403388 889101 963243 050638 016749 514163 558456 481807 420320 858722 615003 453197 874847 874562 322606 847446 045426 651943 963700 257895 390167 629054 316632 266600 454807 330649 950468 254857 248224 306547 821025 887363 834598 134849 415130 040019 167478 518678 008028 540975 089584 705011 (778 digits), a[1478] = 1
                                                                                      A[1479]/B[1479] = 137 374004 255336 607350 581664 811393 068336 669773 560176 489689 532636 660585 142888 111452 882545 221188 431737 961300 903917 328068 943299 505419 120321 083430 695011 217504 993116 521463 201846 570759 182615 650439 277513 005431 856425 870950 882095 265373 853822 427581 490250 386768 445853 725851 014194 112264 232947 133612 719712 888695 324700 368424 774238 080713 280249 366074 796371 309413 373100 913458 075384 166924 291875 674203 649873 861156 837687 299270 505757 391377 162335 176274 133007 336476 407195 373207 456791 983457 279909 380236 799687 433611 124383 019899 718886 171424 931603 334946 670275 801000 457454 682377 190694 102422 022923 133521 442422 179928 908259 562804 984708 805610 607751 153109 159094 089519 397677 623457 537231 006941 091220 730878 630293 417613 124010 239383 127757 798282 410398 447607 586233 268471 365880 987229 695880 120637 876937 677898 912601 654402 (777 digits)/13351 863778 915537 015404 979027 017093 645261 424443 064527 705262 062712 093907 365825 652718 838341 685974 374777 827662 118303 721417 154982 201330 571266 997195 299505 371961 518086 829942 822222 361854 670242 474326 981546 599268 241655 976859 180673 476968 809085 024524 344982 398204 178724 796750 099995 881090 795845 705066 146706 487414 193064 635987 224399 964058 742696 838444 053373 491272 376360 796251 569730 332275 917248 782352 616228 123156 509280 369964 327066 438077 139255 732714 363819 531878 721455 710874 727324 276908 742619 064194 794490 340623 439520 057711 003643 352947 660775 061488 886654 741616 927759 986453 654369 976513 795666 623087 683790 853217 774798 725241 384374 060333 208170 131008 480788 352826 146739 483637 830433 863677 370002 133004 807322 435141 211675 095548 974830 291126 753246 494259 234651 369887 430875 281293 227393 015890 923122 753346 266120 584887 (779 digits), a[1479] = 2
                                                                                      A[1480]/B[1480] = 30683 341096 774436 437492 894333 758180 785307 699268 971914 597413 328325 280131 631387 277184 646358 977203 058004 468879 037462 486473 538456 065812 912588 151647 745914 852048 992406 739325 222997 347310 219700 899490 680308 433731 505567 198665 432209 172225 742353 045010 226388 335268 316587 090689 636448 769253 254321 700572 760855 022254 377518 325949 973231 598217 008673 993713 815859 692811 861085 418476 152431 810030 737854 207336 868716 884939 932750 812752 754100 825172 839501 919754 118295 450998 738527 681585 085170 473982 586343 280768 053006 771334 362171 319664 964780 318895 780068 834465 525073 555822 717363 442064 989245 486239 536011 285702 499633 812822 408825 880972 361598 014686 794520 947876 970217 370895 236607 030853 281509 080294 657499 380926 151571 617621 140142 677674 472788 418890 224409 671151 906535 846329 194393 518215 672313 088295 247348 667994 164280 816129 (779 digits)/2 982222 093815 236347 306205 182483 274388 366074 566153 753410 449575 043593 914825 323690 102620 552422 968953 768717 457730 003154 346017 844968 603071 764463 613556 265813 299013 107419 047674 183909 984002 528300 428080 132887 160838 949071 421289 124234 884878 985390 344057 939936 861669 192525 063856 255810 138165 048862 942926 810729 253338 910511 110620 362098 671064 496437 970382 265335 076329 832598 373541 265482 470921 641006 317274 272396 080541 725178 647206 528825 555392 977515 761701 300594 228387 771451 865240 812457 234421 672375 940208 454301 003318 041716 868406 392814 981942 527533 656826 127396 269676 853720 029802 941254 276739 992113 430360 905681 126286 395119 182026 590263 328867 744546 062337 261229 332174 686605 109131 576919 229107 827107 926672 487710 367140 154014 562278 635379 227813 794994 107173 161853 619746 500317 768408 876121 062353 864402 537192 434475 134812 (781 digits), a[1480] = 223
                                                                                      A[1481]/B[1481] = 30820 715101 029773 044843 475998 569573 853644 369042 532091 087102 860961 940716 774275 388637 528904 198391 489742 430179 941379 814542 481755 571232 032909 235078 440926 069553 985523 260788 424843 918069 402316 549929 957821 439163 361993 069616 314304 437599 596175 472591 716638 722036 762440 816540 650642 881517 487268 834185 480567 910949 702218 694374 747469 678930 288923 359788 612231 002225 234186 331934 227815 976955 029729 881540 518590 746096 770438 112023 259858 216550 001837 096028 251302 787475 145723 054792 541962 457439 866252 661004 852694 204945 486554 339564 683666 490320 711672 169412 195349 356823 174818 124442 179939 588661 558934 419223 942055 992751 317085 443777 346306 820297 402272 100986 129311 460414 634284 654310 818740 087235 748720 111804 781865 035234 264152 917057 600546 217172 634808 118759 492769 114800 560274 505445 368193 208933 124286 345893 076882 470531 (779 digits)/2 995573 957594 151884 321610 161510 291482 011335 990596 817938 154837 106306 008732 689515 755339 390764 654928 143495 285392 121458 067434 999950 804402 335730 610751 565318 670974 625505 877617 006132 345857 198542 902407 114433 760107 190727 398148 304908 361847 794475 368582 284919 259873 371249 860606 355806 019255 844708 647992 957435 740753 103575 746607 586498 635123 239134 808826 318708 567602 208959 169792 835212 803197 558255 099626 888624 203698 234459 017170 855891 993470 116771 494415 664413 760266 492907 576115 539781 511330 414995 004403 248791 343941 481236 926117 396458 334890 188308 718315 014051 011293 781480 016256 595624 253253 787780 053448 589471 979504 169917 907267 974637 389200 952716 193345 742017 685000 833344 592769 407353 092785 197110 059677 295032 802281 365689 657827 610209 518940 548240 601432 396504 989633 931193 049702 103514 078244 787525 290538 700595 719699 (781 digits), a[1481] = 1
                                                                                      A[1482]/B[1482] = 61504 056197 804209 482336 370332 327754 638952 068311 504005 684516 189287 220848 405662 665822 175263 175594 547746 899058 978842 301016 020211 637044 945497 386726 186840 921602 977930 000113 647841 265379 622017 449420 638129 872894 867560 268281 746513 609825 338528 517601 943027 057305 079027 907230 287091 650770 741590 534758 241422 933204 079737 020324 720701 277147 297597 353502 428090 695037 095271 750410 380247 786985 767584 088877 387307 631036 703188 924776 013959 041722 841339 015782 369598 238473 884250 736377 627132 931422 452595 941772 905700 976279 848725 659229 648446 809216 491741 003877 720422 912645 892181 566507 169185 074901 094945 704926 441689 805573 725911 324749 707904 834984 196793 048863 099528 831309 870891 685164 100249 167530 406219 492730 933436 652855 404295 594732 073334 636062 859217 789911 399304 961129 754668 023661 040506 297228 371635 013887 241163 286660 (779 digits)/5 977796 051409 388231 627815 343993 565870 377410 556750 571348 604412 149899 923558 013205 857959 943187 623881 912212 743122 124612 413452 844919 407474 100194 224307 831131 969987 732924 925291 190042 329859 726843 330487 247320 920946 139798 819437 429143 246726 779865 712640 224856 121542 563774 924462 611616 157420 893571 590919 768164 994092 014086 857227 948597 306187 735572 779208 584043 643932 041557 543334 100695 274119 199261 416901 161020 284239 959637 664377 384717 548863 094287 256116 965007 988654 264359 441356 352238 745752 087370 944611 703092 347259 522953 794523 789273 316832 715842 375141 141447 280970 635200 046059 536878 529993 779893 483809 495153 105790 565037 089294 564900 718068 697262 255683 003247 017175 519949 701900 984272 321893 024217 986349 782743 169421 519704 220106 245588 746754 343234 708605 558358 609380 431510 818110 979635 140598 651927 827731 135070 854511 (781 digits), a[1482] = 1
                                                                                      A[1483]/B[1483] = 461349 108485 659239 421198 068324 863856 326308 847223 060130 878716 185972 486655 613914 049392 755746 427553 323970 723592 793275 921654 623237 030546 651390 942161 748812 520774 831033 261583 959732 775726 756438 695874 424730 549427 434914 947588 539899 706376 965875 095805 317828 123172 315636 167152 660284 436912 678402 577493 170528 443378 260377 836647 792378 618961 372104 834305 608865 867484 901088 584806 889550 485855 402818 503682 229744 163353 692760 585455 357571 508609 891210 206504 838490 456792 335478 209435 931892 977397 034424 253415 192601 038904 427633 954172 222794 154836 153859 196556 238309 745344 420089 089992 364235 112969 223554 353709 033884 631767 398464 717025 301640 665186 779823 443027 826013 279583 730526 450459 520484 259948 592256 560921 315921 605222 094222 080182 113888 669612 649332 648139 287903 842708 842950 671072 651737 289531 725731 443103 765025 477151 (780 digits)/44 840146 317459 869505 716317 569465 252574 653209 887850 817378 385722 155605 473638 781956 761058 993078 022101 528984 487246 993744 961604 914386 656721 037090 180906 383242 460888 755980 354655 336428 654875 286446 215817 845680 206730 169319 134210 308911 088935 253535 357063 858912 110671 317674 331844 637119 121202 099709 784431 334590 699397 202183 747203 226679 778437 388144 263286 407014 075126 499861 973131 540079 722031 953085 017935 015766 193377 951922 667812 548914 835511 776782 287234 419469 680846 343423 665610 005452 731595 026591 616685 170437 774758 141913 487783 921371 552719 199205 344303 004181 978088 227880 338673 353773 963210 247034 440115 055543 720038 125177 532329 928942 415681 833551 983126 764746 805229 472992 506076 297259 346036 366635 964125 774234 988232 003619 198571 329330 746220 950883 561671 305015 255296 951768 776478 960960 062435 351020 084656 646091 701276 (782 digits), a[1483] = 7
                                                                                      A[1484]/B[1484] = 522853 164683 463448 903534 438657 191610 965260 915534 564136 563232 375259 707504 019576 715214 931009 603147 871717 622651 772118 222670 643448 667591 596888 328887 935653 442377 808963 261697 607574 041106 378456 145295 062860 422322 302475 215870 286413 316202 304403 613407 260855 180477 394664 074382 947376 087683 419993 112251 411951 376582 340114 856972 513079 896108 669702 187808 036956 562521 996360 335217 269798 272841 170402 592559 617051 794390 395949 510231 371530 550332 732549 222287 208088 695266 219728 945813 559025 908819 487020 195188 098302 015184 276359 613401 871240 964052 645600 200433 958732 657990 312270 656499 533420 187870 318500 058635 475574 437341 124376 041775 009545 500170 976616 491890 925542 110893 601418 135623 620733 427478 998476 053652 249358 258077 498517 674914 187223 305675 508550 438050 687208 803838 597618 694733 692243 586760 097366 456991 006188 763811 (780 digits)/50 817942 368869 257737 344132 913458 818445 030620 444601 388726 990134 305505 397196 795162 619018 936265 645983 441197 230369 118357 375057 759306 064195 137284 405214 214374 430876 488905 279946 526470 984735 013289 546305 093001 127676 309117 953647 738054 335662 033401 069704 083768 232213 881449 256307 248735 278622 993281 375351 102755 693489 216270 604431 175277 084625 123717 042494 991057 719058 541419 516465 640774 996151 152346 434836 176786 477617 911560 332189 933632 384374 871069 543351 384477 669500 607783 106966 357691 477347 113962 561296 873530 122017 664867 282307 710644 869551 915047 719444 145629 259058 863080 384732 890652 493204 026927 923924 550696 825828 690214 621624 493843 133750 530814 238809 767993 822404 992942 207977 281531 667929 390853 950475 556978 157653 523323 418677 574919 492975 294118 270276 863373 864677 383279 594589 940595 203034 002947 912387 781162 555787 (782 digits), a[1484] = 1
                                                                                      A[1485]/B[1485] = 2 029908 602536 049586 131801 384296 438689 222091 593826 752540 568413 311751 609167 672644 195037 548775 236996 939123 591548 109630 589666 553583 033321 442055 928825 555772 847908 257923 046676 782454 899045 891807 131759 613311 816394 342340 595199 399139 654983 879085 936027 100393 664604 499628 390301 502412 699962 938381 914247 406382 573125 280722 407565 331618 307287 381211 397729 719735 555050 890169 590458 698945 304378 914026 281361 080899 546524 880609 116149 472163 159608 088857 873366 462756 542590 994665 046876 608970 703855 495484 838979 487507 084457 256712 794377 836517 046994 090659 797858 114507 719315 356901 059490 964495 676580 179054 529615 460607 943790 771592 842350 330277 165699 709672 918700 602639 612264 534780 857330 382684 542385 587684 721878 063996 379454 589775 104924 675558 586639 174983 962291 349530 254224 635806 755273 728468 049812 017830 814076 783591 768584 (781 digits)/197 293973 424067 642717 748716 309841 707909 745071 221654 983559 356125 072121 665229 167444 618115 801874 960051 852576 178354 348817 086778 192304 849306 448943 396549 026365 753518 222696 194494 915841 609080 326314 854733 124683 589759 096672 995153 523074 095921 353738 566176 110216 807312 962022 100766 383324 957071 079553 910484 642857 779864 850995 560496 752511 032312 759295 390771 380187 232302 124120 522528 462404 710485 410124 322443 546125 626231 686603 664382 349811 988636 389990 917288 572902 689348 166772 986509 078527 163636 368479 300575 791028 140811 136515 334707 053306 161374 944348 502635 441069 755264 817121 492872 025731 442822 327818 211888 707634 197524 195821 397203 410471 816933 425994 699556 068728 272444 451819 130008 141854 349824 539197 815552 445169 461192 573589 454604 054089 225146 833238 372501 895136 849329 101607 560248 782745 671537 359863 821819 989579 368637 (783 digits), a[1485] = 3
                                                                                      A[1486]/B[1486] = 2 552761 767219 513035 035335 822953 630300 187352 509361 316677 131645 687011 316671 692220 910252 479784 840144 810841 214199 881748 812337 197031 700913 038944 257713 491426 290286 066886 308374 390028 940152 270263 277054 676172 238716 644815 811069 685552 971186 183489 549434 361248 845081 894292 464684 449788 787646 358375 026498 818333 949707 620837 264537 844698 203396 050913 585537 756692 117572 886529 925675 968743 577220 084428 873920 697951 340915 276558 626380 843693 709940 821407 095653 670845 237857 214393 992690 167996 612674 982505 034167 585809 099641 533072 407779 707758 011046 736259 998292 073240 377305 669171 715990 497915 864450 497554 588250 936182 381131 895968 884125 339822 665870 686289 410591 528181 723158 136198 992954 003417 969864 586160 775530 313354 637532 088292 779838 862781 892314 683534 400342 036739 058063 233425 450007 420711 636572 115197 271067 789780 532395 (781 digits)/248 111915 792936 900455 092849 223300 526354 775691 666256 372286 346259 377627 062425 962607 237134 738140 606035 293773 408723 467174 461835 951610 913501 586227 801763 240740 184394 711601 474441 442312 593815 339604 401038 217684 717435 405790 948801 261128 431583 387139 635880 193985 039526 843471 357073 632060 235694 072835 285835 745613 473354 067266 164927 927788 116937 883012 433266 371244 951360 665540 038994 103179 706636 562470 757279 722912 103849 598163 996572 283444 373011 261060 460639 957380 358848 774556 093475 436218 640983 482441 861872 664558 262828 801382 617014 763951 030926 859396 222079 586699 014323 680201 877604 916383 936026 354746 135813 258331 023352 886036 018827 904314 950683 956808 938365 836722 094849 444761 337985 423386 017753 930051 766028 002147 618846 096912 873281 629008 718122 127356 642778 758510 714006 484887 154838 723340 874571 362811 734207 770741 924424 (783 digits), a[1486] = 1
                                                                                      A[1487]/B[1487] = 9 688193 904194 588691 237808 853157 329589 784149 121910 702571 963350 372785 559182 749306 925794 988129 757431 371647 234147 754877 026678 144678 136060 558888 701966 030051 718766 458581 971799 952541 719502 702596 962923 641828 532544 276788 028408 455798 568542 429554 584330 184140 199850 182505 784354 851779 062902 013506 993743 861384 422248 143234 201178 865712 917475 533952 154342 989811 907769 549759 367486 605176 036039 167312 903123 174753 569270 710284 995292 003244 289430 553079 160327 475292 256162 637847 024947 112960 541880 442999 941482 244934 383381 855930 017716 959791 080134 299439 792734 334228 851232 364416 207462 458243 269931 671718 294368 269155 087186 459499 494726 349745 163311 768541 150475 187184 781738 943377 836192 392938 451979 346167 048469 004060 292050 854653 444441 263904 263583 225587 163317 459747 428414 336083 105295 990602 959528 363422 627280 152933 365769 (781 digits)/941 629720 802878 344083 027263 979743 286974 072146 220424 100418 394903 205002 852507 055266 329520 016296 778157 733896 404524 750340 472286 047137 589811 207626 801838 748586 306702 357500 617819 242779 390526 345128 057847 777737 742065 314045 841557 306459 390671 515157 473816 692171 925893 492436 171987 279505 664153 298059 767991 879698 199927 052794 055280 535875 383126 408332 690570 493922 086384 120740 639510 771943 830395 097536 594282 714861 937780 481095 654099 200145 107670 173172 299208 445043 765894 490441 266935 387183 086586 815804 886193 784702 929297 540663 185751 345159 254155 522537 168874 201166 798235 857727 125686 774883 250901 392056 619328 482627 267582 853929 453687 123416 668985 296421 514653 578894 556992 786103 143964 412012 403086 329353 113636 451612 317730 864328 074448 941115 379513 215308 300838 170668 991348 556269 024764 952768 295251 448299 024443 301805 141909 (783 digits), a[1487] = 3
                                                                                      A[1488]/B[1488] = 12 240955 671414 101726 273144 676110 959889 971501 631272 019249 094996 059796 875854 441527 836047 467914 597576 182488 448347 636625 839015 341709 836973 597832 959679 521478 009052 525468 280174 342570 659654 972860 239978 318000 771260 921603 839478 141351 539728 613044 133764 545389 044932 076798 249039 301567 850548 371882 020242 679718 371955 764071 465716 710411 120871 584865 739880 746504 025342 436289 293162 573919 613259 251741 777043 872704 910185 986843 621672 846937 999371 374486 255981 146137 494019 852241 017637 280957 154555 425504 975649 830743 483023 389002 425496 667549 091181 035699 791026 407469 228538 033587 923452 956159 134382 169272 882619 205337 468318 355468 378851 689567 829182 454830 561066 715366 504897 079576 829146 396356 421843 932327 823999 317414 929582 942946 224280 126686 155897 909121 563659 496486 486477 569508 555303 411314 596100 478619 898347 942713 898164 (782 digits)/1189 741636 595815 244538 120113 203043 813328 847837 886680 472704 741162 582629 914933 017873 566654 754437 384193 027669 813248 217514 934121 998748 503312 793854 603601 989326 491097 069102 092260 685091 984341 684732 458885 995422 459500 719836 790358 567587 822254 902297 109696 886156 965420 335907 529060 911565 899847 370895 053827 625311 673281 120060 220208 463663 500064 291345 123836 865167 037744 786280 678504 875123 537031 660007 351562 437774 041630 079259 650671 483589 480681 434232 759848 402424 124743 264997 360410 823401 727570 298246 748066 449261 192126 342045 802766 109110 285082 381933 390953 787865 812559 537929 003291 691267 186927 746802 755141 740958 290935 739965 472515 027731 619669 253230 453019 415616 651842 230864 481949 835398 420840 259404 879664 453759 936576 961240 947730 570124 097635 342664 943616 929179 705355 041156 179603 676109 169822 811110 758651 072547 066333 (784 digits), a[1488] = 1
                                                                                      A[1489]/B[1489] = 21 929149 575608 690417 510953 529268 289479 755650 753182 721821 058346 432582 435037 190834 761842 456044 355007 554135 682495 391502 865693 486387 973034 156721 661645 551529 727818 984050 251974 295112 379157 675457 202901 959829 303805 198391 867886 597150 108271 042598 718094 729529 244782 259304 033394 153346 913450 385389 013986 541102 794203 907305 666895 576124 038347 118817 894223 736315 933111 986048 660649 179095 649298 419054 680167 047458 479456 697128 616964 850182 288801 927565 416308 621429 750182 490088 042584 393917 696435 868504 917132 075677 866405 244932 443213 627340 171315 335139 583760 741698 079770 398004 130915 414402 404313 840991 176987 474492 555504 814967 873578 039312 992494 223371 711541 902551 286636 022954 665338 789294 873823 278494 872468 321475 221633 797599 668721 390590 419481 134708 726976 956233 914891 905591 660599 401917 555628 842042 525628 095647 263933 (782 digits)/2131 371357 398693 588621 147377 182787 100302 919984 107104 573123 136065 787632 767440 073139 896174 770734 162350 761566 217772 967855 406408 045886 093124 001481 405440 737912 797799 426602 710079 927871 374868 029860 516733 773160 201566 033882 631915 874047 212926 417454 583513 578328 891313 828343 701048 191071 564000 668954 821819 505009 873208 172854 275488 999538 883190 699677 814407 359089 124128 907021 318015 647067 367426 757543 945845 152635 979410 560355 304770 683734 588351 607405 059056 847467 890637 755438 627346 210584 814157 114051 634260 233964 121423 882708 988517 454269 539237 904470 559827 989032 610795 395656 128978 466150 437829 138859 374470 223585 558518 593894 926202 151148 288654 549651 967672 994511 208835 016967 625914 247410 823926 588757 993300 905372 254307 825569 022179 511239 477148 557973 244455 099848 696703 597425 204368 628877 465074 259409 783094 374352 208242 (784 digits), a[1489] = 1
                                                                                      A[1490]/B[1490] = 34 170105 247022 792143 784098 205379 249369 727152 384454 741070 153342 492379 310891 632362 597889 923958 952583 736624 130843 028128 704708 828097 810007 754554 621325 073007 736871 509518 532148 637683 038812 648317 442880 277830 075066 119995 707364 738501 647999 655642 851859 274918 289714 336102 282433 454914 763998 757271 034229 220821 166159 671377 132612 286535 159218 703683 634104 482819 958454 422337 953811 753015 262557 670796 457210 920163 389642 683972 238637 697120 288173 302051 672289 767567 244202 342329 060221 674874 850991 294009 892781 906421 349428 633934 868710 294889 262496 370839 374787 149167 308308 431592 054368 370561 538696 010264 059606 679830 023823 170436 252429 728880 821676 678202 272608 617917 791533 102531 494485 185651 295667 210822 696467 638890 151216 740545 893001 517276 575379 043830 290636 452720 401369 475100 215902 813232 151729 320662 423976 038361 162097 (782 digits)/3321 112993 994508 833159 267490 385830 913631 767821 993785 045827 877228 370262 682373 091013 462829 525171 546543 789236 031021 185370 340530 044634 596436 795336 009042 727239 288896 495704 802340 612963 359209 714592 975619 768582 661066 753719 422274 441635 035181 319751 693210 464485 856734 164251 230109 102637 463848 039849 875647 130321 546489 292914 495697 463202 383254 991022 938244 224256 161873 693301 996520 522190 904458 417551 297407 590410 021040 639614 955442 167324 069033 041637 818905 249892 015381 020435 987757 033986 541727 412298 382326 683225 313550 224754 791283 563379 824320 286403 950781 776898 423354 933585 132270 157417 624756 885662 129611 964543 849454 333860 398717 178879 908323 802882 420692 410127 860677 247832 107864 082809 244766 848162 872965 359132 190884 786809 969910 081363 574783 900638 188072 029028 402058 638581 383972 304986 634897 070520 541745 446899 274575 (784 digits), a[1490] = 1
                                                                                      A[1491]/B[1491] = 90 269360 069654 274705 079149 940026 788219 209955 522092 203961 365031 417341 056820 455559 957622 303962 260175 027383 944181 447760 275111 142583 593049 665830 904295 697545 201562 003087 316271 570478 456782 972092 088662 515489 453937 438383 282616 074153 404270 353884 421813 279365 824210 931508 598261 063176 441447 899931 082444 982745 126523 250059 932120 149194 356784 526185 162432 701955 850020 830724 568272 685126 174413 760647 594588 887785 258742 065073 094240 244422 865148 531668 760888 156564 238587 174746 163027 743667 398418 456524 702695 888520 565262 512802 180634 217118 696308 076818 333335 040032 696387 261188 239652 155525 481705 861519 296200 834152 603151 155840 378437 497074 635847 579776 256759 138386 869702 228017 654309 160597 465157 700140 265403 599255 524067 278691 454724 425143 570239 222369 308249 861674 717630 855792 092405 028381 859087 483367 373580 172369 588127 (782 digits)/8773 597345 387711 254939 682357 954448 927566 455628 094674 664778 890522 528158 132186 255166 821833 821077 255438 340038 279815 338596 087468 135155 285997 592153 423526 192391 375592 418012 314761 153798 093287 459046 467973 310325 523699 541321 476464 757317 283289 056957 969934 507300 604782 156846 161266 396346 491696 748654 573113 765652 966186 758683 266883 925943 649700 681723 690895 807601 447876 293625 311056 691449 176343 592646 540660 333456 021491 839585 215655 018382 726417 690680 696867 347251 921399 796310 602860 278557 897611 938648 398913 600414 748524 332218 571084 581029 187878 477278 461391 542829 457505 262826 393518 780985 687342 910183 633694 152673 257427 261615 723636 508908 105302 155416 809057 814766 930189 512631 841642 413029 313460 285083 739231 623636 636077 399188 961999 673966 626716 359249 620599 157905 500820 874587 972313 238850 734868 400450 866585 268150 757392 (784 digits), a[1491] = 2
                                                                                      A[1492]/B[1492] = 214 708825 386331 341553 942398 085432 825808 147063 428639 148992 883405 327061 424532 543482 513134 531883 472933 791392 019205 923649 254931 113264 996107 086216 429916 468098 139995 515693 164691 778639 952378 592501 620205 308808 982940 996762 272596 886808 456540 363411 695485 833649 938136 199119 478955 581267 646894 557133 199119 186311 419206 171496 996852 584923 872787 756053 958969 886731 658496 083787 090357 123267 611385 192091 646388 695733 907126 814118 427118 185966 018470 365389 194066 080695 721376 691821 386277 162209 647828 207059 298173 683462 479953 659539 229978 729126 655112 524476 041457 229232 701082 953968 533672 681612 502107 733302 652008 348135 230125 482117 009304 723030 093371 837754 786126 894691 530937 558566 803103 506846 225982 611103 227274 837401 199351 297928 802450 367563 715857 488568 907136 176069 836631 186684 400712 869995 869904 287397 171136 383100 338351 (783 digits)/20868 307684 769931 343038 632206 294728 768764 679078 183134 375385 658273 426578 946745 601347 106497 167326 057420 469312 590651 862562 515466 314945 168431 979642 856095 112022 040081 331729 431862 920559 545784 632685 911566 389233 708465 836362 375203 956269 601759 433667 633079 479087 066298 477943 552641 895330 447241 537159 021874 661627 478862 810281 029465 315089 682656 354470 320035 839459 057626 280552 618633 905089 257145 602844 378728 257322 064024 318785 386752 204089 521868 422999 212639 944395 858180 613057 193477 591102 336951 289595 180153 884054 810598 889191 933452 725438 200077 240960 873564 862557 338365 459237 919307 719388 999442 706029 397000 269890 364308 857091 845990 196696 118928 113716 038808 039661 721056 273095 791148 908867 871687 418330 351428 606405 463039 585187 893909 429296 828216 619137 429270 344839 403700 387757 328598 782688 104633 871422 274915 983200 789359 (785 digits), a[1492] = 2
                                                                                      A[1493]/B[1493] = 519 687010 842316 957812 963946 110892 439835 504082 379370 501947 131842 071463 905885 542524 983891 367729 206042 610167 982593 295058 784973 369113 585263 838263 764128 633741 481553 034473 645655 127758 361540 157095 329073 133107 419819 431907 827809 847770 317351 080707 812784 946665 700483 329747 556172 225711 735237 014197 480683 355367 964935 593053 925825 319042 102360 038293 080372 475419 167012 998298 748986 931661 397184 144830 887366 279253 072995 693309 948476 616354 902089 262447 149020 317955 681340 558388 935582 068086 694074 870643 299043 255445 525169 831880 640591 675372 006533 125770 416249 498498 098553 169125 306997 518750 485921 328124 600217 530423 063402 120074 397046 943134 822591 255285 829012 927769 931577 345151 260516 174289 917122 922346 719953 274057 922769 874549 059625 160271 001954 199507 122522 213814 390893 229160 893830 768373 598896 058161 715852 938570 264829 (783 digits)/50510 212714 927573 941016 946770 543906 465095 813784 460943 415550 207069 381316 025677 457861 034828 155729 370279 278663 461119 063721 118400 765045 622861 551439 135716 416435 455755 081471 178486 994917 184856 724418 291106 088792 940631 214046 226872 669856 486807 924293 236093 465474 737379 112733 266550 187007 386179 822972 616863 088907 923912 379245 325814 556123 015013 390664 330967 486519 563128 854730 548324 501627 690634 798335 298116 848100 149540 477155 989159 426561 770154 536679 122147 236043 637761 022424 989815 460762 571514 517838 759221 368524 369722 110602 437990 031905 588032 959200 208521 267944 134236 181302 232134 219763 686228 322242 427694 692453 986044 975799 415616 902300 343158 382848 886673 894090 372302 058823 423940 230765 056835 121744 442088 836447 562156 569564 749818 532560 283149 597524 479139 847584 308221 650102 629510 804226 944136 143295 416417 234552 336110 (785 digits), a[1493] = 2
                                                                                      A[1494]/B[1494] = 1254 082847 070965 257179 870290 307217 705479 155228 187380 152887 147089 469989 236303 628532 480917 267341 885019 011727 984392 513766 824877 851492 166634 762743 958173 735581 103101 584640 456002 034156 675458 906692 278351 575023 822579 860577 928216 582349 091242 524827 321055 726981 339102 858614 591300 032691 117368 585528 160485 897047 349077 357604 848503 223008 077507 832640 119714 837569 992522 080384 588330 986590 405753 481753 421121 254240 053118 200738 324071 418675 822648 890283 492106 716607 084057 808599 257441 298383 035977 948345 896260 194353 530293 323300 511162 079870 668178 776016 873956 226228 898189 292219 147667 719113 473950 389551 852443 408981 356929 722265 803398 609299 738554 348326 444152 750231 394092 248869 324135 855426 060228 455796 667181 385517 044891 047026 921700 688105 719765 887583 152180 603698 618417 645006 188374 406743 067696 403720 602842 260240 868009 (784 digits)/121888 733114 625079 225072 525747 382541 698956 306647 105021 206486 072412 189210 998100 517069 176153 478784 797979 026639 512889 990004 752267 845036 414155 082521 127527 944892 951591 494671 788836 910393 915498 081522 493778 566819 589728 264454 828949 295982 575375 282254 105266 410036 541056 703410 085742 269345 219601 183104 255600 839443 326687 568771 681094 427335 712683 135798 981970 812498 183883 990013 715282 908344 638415 199514 974961 953522 363105 273097 365071 057213 062177 496357 456934 416483 133702 657907 173108 512627 479980 325272 698596 621103 550043 110396 809432 789249 376143 159361 290607 398445 606837 821842 383576 158916 371899 350514 252389 654798 336398 808690 677224 001296 805244 879413 812155 827842 465660 390742 639029 370397 985357 661819 235606 279300 587352 724317 393546 494417 394515 814186 387550 040008 020143 687962 587620 391141 992906 158013 107750 452305 461579 (786 digits), a[1494] = 2
                                                                                      A[1495]/B[1495] = 1773 769857 913282 214992 834236 418110 145314 659310 566750 654834 278931 541453 142189 171057 464808 635071 091061 621895 966985 808825 609851 220605 751898 601007 722302 369322 584654 619114 101657 161915 036999 063787 607424 708131 242399 292485 756026 430119 408593 605535 133840 673647 039586 188362 147472 258402 852605 599725 641169 252415 314012 950658 774328 542050 179867 870933 200087 312989 159535 078683 337317 918251 802937 626584 308487 533493 126113 894048 272548 035030 724738 152730 641127 034562 765398 366988 193023 366469 730052 818989 195303 449799 055463 155181 151753 755242 674711 901787 290205 724726 996742 461344 454665 237863 959871 717676 452660 939404 420331 842340 200445 552434 561145 603612 273165 678001 325669 594020 584652 029715 977351 378143 387134 659574 967660 921575 981325 848376 721720 087090 274702 817513 009310 874167 082205 175116 666592 461882 318695 198811 132838 (784 digits)/172398 945829 552653 166089 472517 926448 164052 120431 565964 622036 279481 570527 023777 974930 210981 634514 168258 305302 974009 053725 870668 610082 037016 633960 263244 361328 407346 576142 967323 905311 100354 805940 784884 655612 530359 478501 055821 965839 062183 206547 341359 875511 278435 816143 352292 456352 605781 006076 872463 928351 250599 948017 006908 983458 727696 526463 312938 299017 747012 844744 263607 409972 329049 997850 273078 801622 512645 750253 354230 483774 832332 033036 579081 652526 771463 680332 162923 973390 051494 843111 457817 989627 919765 220999 247422 821154 964176 118561 499128 666389 741074 003144 615710 378680 058127 672756 680084 347252 322443 784490 092840 903597 148403 262262 698829 721932 837962 449566 062969 601163 042192 783563 677695 115748 149509 293882 143365 026977 677665 411710 866689 887592 328365 338065 217131 195368 937042 301308 524167 686857 797689 (786 digits), a[1495] = 1
                                                                                      A[1496]/B[1496] = 3027 852704 984247 472172 704526 725327 850793 814538 754130 807721 426021 011442 378492 799589 945725 902412 976080 633623 951378 322592 434729 072097 918533 363751 680476 104903 687756 203754 557659 196071 712457 970479 885776 283155 064979 153063 684243 012468 499836 130362 454896 400628 378689 046976 738772 291093 969974 185253 801655 149462 663090 308263 622831 765058 257375 703573 319802 150559 152057 159067 925648 904842 208691 108337 729608 787733 179232 094786 596619 453706 547387 043014 133233 751169 849456 175587 450464 664852 766030 767335 091563 644152 585756 478481 662915 835113 342890 677804 164161 950955 894931 753563 602332 956977 433822 107228 305104 348385 777261 564606 003844 161734 299699 951938 717318 428232 719761 842889 908787 885142 037579 833940 054316 045092 012551 968602 903026 536482 441485 974673 426883 421211 627728 519173 270579 581859 734288 865602 921537 459052 000847 (784 digits)/294287 678944 177732 391161 998265 308989 863008 427078 670985 828522 351893 759738 021878 491999 387135 113298 966237 331942 486899 043730 622936 455118 451171 716481 390772 306221 358938 070814 756160 815705 015852 887463 278663 222432 120087 742955 884771 261821 637558 488801 446626 285547 819492 519553 438034 725697 825382 189181 128064 767794 577287 516788 688003 410794 440379 662262 294909 111515 930896 834757 978890 318316 967465 197365 248040 755144 875751 023350 719301 540987 894509 529394 036016 069009 905166 338239 336032 486017 531475 168384 156414 610731 469808 331396 056855 610404 340319 277922 789736 064835 347911 824986 999286 537596 430027 023270 932474 002050 658842 593180 770064 904893 953648 141676 510985 549775 303622 840308 701998 971561 027550 445382 913301 395048 736862 018199 536911 521395 072181 225897 254239 927600 348509 026027 804751 586510 929948 459321 631918 139163 259268 (786 digits), a[1496] = 1
                                                                                      A[1497]/B[1497] = 7829 475267 881777 159338 243289 868765 846902 288388 075012 270277 130973 564337 899174 770237 356260 439897 043222 889143 869742 454010 479309 364801 588965 328511 083254 579129 960167 026623 216975 554058 461915 004747 378977 274441 372357 598613 124512 455056 408265 866260 043633 474903 796964 282315 625016 840590 792553 970233 244479 551340 640193 567186 019992 072166 694619 278079 839691 614107 463649 396819 188615 727936 220319 843259 767705 108959 484578 083621 465786 942443 819512 238758 907594 536902 464310 718163 093952 696175 262114 353659 378430 738104 226976 112144 477585 425469 360493 257395 618529 626638 786605 968471 659331 151818 827515 932133 062869 636175 974854 971552 208133 875903 160545 507489 707802 534466 765193 279800 402227 800000 052511 046023 495766 749758 992764 858781 787378 921341 604692 036437 128469 659936 264767 912513 623364 338836 135170 193088 161770 116915 134532 (784 digits)/760974 303717 908117 948413 469048 544427 890068 974588 907936 279080 983269 090003 067534 958928 985251 861112 100732 969187 947807 141187 116541 520318 939360 066923 044788 973771 125222 717772 479645 536721 132060 580867 342211 100476 770534 964412 825364 489482 337300 184150 234612 446606 917420 855250 228361 907748 256545 384439 128593 463940 405174 981594 382915 805047 608455 850987 902756 522049 608806 514260 221388 046606 263980 392580 769160 311912 264147 796954 792833 565750 621351 091824 651113 790546 581796 356810 834988 945425 114445 179879 770647 211090 859381 883791 361134 041963 644814 674407 078600 796060 436897 653118 614283 453872 918181 719298 545032 351353 640128 970851 632970 713385 055699 545615 720800 821483 445208 130183 466967 544285 097293 674329 504297 905845 623233 330281 217188 069767 822027 863505 375169 742793 025383 390120 826634 368390 796939 219951 788003 965184 316225 (786 digits), a[1497] = 2
                                                                                      A[1498]/B[1498] = 112640 506455 329127 702908 110584 888049 707425 851971 804302 591601 259650 912172 966939 582912 933372 060971 581201 081638 127772 678739 145060 179320 164047 962906 846040 212723 130094 576479 595316 952890 179268 036943 191458 125334 277985 533647 427417 383258 215558 258003 065765 049281 536188 999395 489008 059365 065729 768519 224368 868231 625800 248867 902720 775391 982045 596691 075484 748063 643148 714536 566269 095949 293168 913974 477480 313165 963325 265487 117636 647920 020558 385638 839557 267804 349806 229870 765802 411306 435631 718566 389593 977611 763422 048504 349111 791684 389796 281342 823576 723898 907415 312166 832969 082441 019045 157091 185279 254849 425231 166336 917718 424378 547337 056794 626553 910767 432467 760095 539977 085142 772734 478268 995050 541717 911259 991547 926331 435264 907174 484793 225458 660319 334479 294363 997680 325565 626671 568837 186319 095863 884295 (786 digits)/10 947927 930994 891383 668950 564944 930980 323974 071323 382093 735656 117661 019780 967367 917005 180661 168868 376498 900573 756199 020350 254517 739583 602212 653404 017817 939017 112056 119629 471198 329800 864701 019606 069618 629106 907577 244735 439874 114574 359761 066904 731200 538044 663384 493056 635101 434173 417017 571328 928373 262960 249737 259110 048824 681460 958761 576092 933500 420210 454188 034401 078322 970804 663190 693496 016285 121916 573820 180717 818971 461496 593424 814939 151609 136662 050315 333591 025877 721969 133707 686700 945475 566003 501154 704475 112732 197895 367724 719621 890147 209681 464478 968647 599254 891817 284571 093450 562926 921001 620648 185103 631654 892284 733441 780296 602197 050543 536536 662877 239544 591552 389661 885995 973472 076887 462128 642136 577544 498144 580571 314972 506616 326702 703876 487719 377632 743982 087097 538646 663973 651743 686418 (788 digits), a[1498] = 14
                                                                                      A[1499]/B[1499] = 233110 488178 540032 565154 464459 644865 261753 992331 683617 453479 650275 388683 833053 936063 223004 561840 205625 052420 125287 811488 769429 723441 917061 254324 775335 004576 220356 179582 407609 459838 820451 078633 761893 525109 928328 665907 979347 221572 839382 382266 175163 573466 869342 281106 603032 959320 924013 507271 693217 287803 891794 064921 825433 622950 658710 471461 990661 110234 749946 825892 321153 919834 806657 671208 722665 735291 411228 614595 701060 238283 860629 010036 586709 072511 163923 177904 625557 518788 133377 790792 157618 693327 753820 209153 175809 008838 140085 820081 265683 074436 601436 592805 325269 316700 865606 246315 433428 145874 825317 304226 043570 724660 255219 621078 960910 356001 630128 799991 482181 970285 597980 002561 485867 833194 815284 841877 640041 791871 419041 006023 579386 980574 933726 501241 618724 989967 388513 330762 534408 308642 903122 (786 digits)/22 656830 165707 690885 286314 598938 406388 538017 117235 672123 750393 218591 129565 002270 792939 346574 198848 853730 770335 460205 181887 625576 999486 143785 373731 080424 851805 349334 957031 422042 196322 861462 620079 481448 358690 585689 453883 705112 718631 056822 317959 697013 522696 244189 841363 498564 776095 090580 527096 985339 989860 904649 499814 480565 167969 525979 003173 769757 362470 517182 583062 378033 988215 590361 779572 801730 555745 411788 158390 430776 488743 808200 721702 954332 063870 682427 023992 886744 389363 381860 553281 661598 343097 861691 292741 586598 437754 380264 113650 858895 215423 365855 590413 812793 237507 487323 906199 670886 193356 881425 341058 896280 497954 522583 106208 925194 922570 518281 455937 946056 727389 876617 446321 451242 059620 547490 614554 372277 066056 983170 493450 388402 396198 433136 365559 581899 856354 971134 297245 115951 268671 689061 (788 digits), a[1499] = 2
                                                                                      A[1500]/B[1500] = 1 045082 459169 489257 963525 968423 467510 754441 821298 538772 405519 860752 466908 299155 327165 825390 308332 403701 291318 628923 924694 222779 073087 832292 980205 947380 231028 011519 294809 225754 792245 461072 351478 239032 225773 991300 197279 344806 269549 573087 787067 766419 343149 013558 123821 901139 896648 761783 797605 997238 019447 192976 508555 204455 267194 616887 482539 038129 189002 642936 018105 850884 775288 519799 598809 368143 254331 608239 723869 921877 601055 463074 425785 186393 557849 005498 941489 268032 486458 969142 881735 020068 750922 778702 885117 052347 827036 950139 561667 886309 021645 313161 683388 134046 349244 481470 142352 918991 838348 726500 383241 092001 323019 568215 541110 470195 334773 952982 960061 468704 966285 164654 488514 938521 874497 172399 359058 486498 602750 583338 508887 543006 582619 069385 299330 472580 285435 180724 891887 323952 330435 496783 (787 digits)/101 575248 593825 654924 814208 960698 556534 476042 540266 070588 737228 992025 538040 976451 088762 566957 964263 791421 981915 597019 747900 756825 737528 177354 148328 339517 346238 509395 947755 159367 115092 310551 499923 995412 063869 250335 060270 260324 989098 587050 338743 519254 628829 640143 858510 629360 538553 779339 679716 869733 222403 868335 258367 971085 353339 062677 588788 012529 870092 522918 366650 590458 923667 024637 811787 223207 344898 220972 814279 542077 416471 826227 701750 968937 392144 780023 429562 572855 279422 661149 899827 591868 938394 947919 875441 459125 948912 888781 174225 325728 071374 927901 330302 850427 841847 233866 718249 246471 694429 146349 549339 216776 884102 823774 205132 302976 740825 609662 486629 023771 501111 896131 671281 778440 315369 652091 100354 066652 762372 513253 288774 060225 911496 436421 949957 705232 169401 971634 727627 127778 726430 442662 (789 digits), a[1500] = 4
                                                                                      A[1501]/B[1501] = 1 278192 947348 029290 528680 432883 112376 016195 813630 222389 858999 511027 855592 132209 263229 048394 870172 609326 343738 754211 736182 992208 796529 749354 234530 722715 235604 231875 474391 633364 252084 281523 430112 000925 750883 919628 863187 324153 491122 412470 169333 941582 916615 882900 404928 504172 855969 685797 304877 690455 307251 084770 573477 029888 890145 275597 954001 028790 299237 392882 843998 172038 695123 326457 270018 090808 989623 019468 338465 622937 839339 323703 435821 773102 630360 169422 119393 893590 005247 102520 672527 177687 444250 532523 094270 228156 835875 090225 381749 151992 096081 914598 276193 459315 665945 347076 388668 352419 984223 551817 687467 135572 047679 823435 162189 431105 690775 583111 760052 950886 936570 762634 491076 424389 707691 987684 200936 126540 394622 002379 514911 122393 563194 003111 800572 091305 275402 569238 222649 858360 639078 399905 (787 digits)/124 232078 759533 345810 100523 559636 962923 014059 657501 742712 487622 210616 667605 978721 881701 913532 163112 645152 752251 057224 929788 382402 737014 321139 522059 419942 198043 858730 904786 581409 311415 172014 120003 476860 422559 836024 514153 965437 707729 643872 656703 216268 151525 884333 699874 127925 314648 869920 206813 855073 212264 772984 758182 451650 521308 588656 591961 782287 232563 040100 949712 968492 911882 614999 591360 024937 900643 632760 972669 972853 905215 634428 423453 923269 456015 462450 453555 459599 668786 043010 453109 253467 281492 809611 168183 045724 386667 269045 287876 184623 286798 293756 920716 663221 079354 721190 624448 917357 887786 027774 890398 113057 382057 346357 311341 228171 663396 127943 942566 969828 228501 772749 117603 229682 374990 199581 714908 438929 828429 496423 782224 448628 307694 869558 315517 287132 025756 942769 024872 243729 995102 131723 (789 digits), a[1501] = 1
                                                                                      A[1502]/B[1502] = 6 157854 248561 606420 078247 699955 917014 819225 075819 428331 841517 904863 889276 827992 380082 018969 789022 841006 666273 645770 869426 191614 259206 829709 918328 838241 173444 939021 192375 759211 800582 587166 071926 242735 229309 669815 650028 641420 234039 222968 464403 532751 009612 545159 743535 917831 320527 504973 017116 759059 248451 532058 802463 324010 827775 719279 298543 153290 385952 214467 394098 539039 555781 825628 678881 731379 212823 686113 077732 413628 958412 757888 169072 278804 079289 683187 419064 842392 507447 379225 571843 730818 527924 908795 262197 964975 170537 311041 088664 494277 405972 971554 788161 971309 013025 869775 697026 328671 775242 933771 133109 634289 513738 861956 189868 194618 097876 285430 000273 272252 712568 215192 452820 636080 705265 123136 162802 992660 181238 592856 568532 032580 835395 081832 501618 837801 387045 457677 782486 757394 886749 096403 (787 digits)/598 503563 631959 038165 216303 199246 408226 532281 170273 041438 687717 834492 208464 891338 615570 221086 616714 372032 990919 825919 467054 286436 685585 461912 236566 019286 138413 944319 566901 485004 360752 998607 979937 902853 754108 594433 116886 122075 820017 162540 965556 384327 234933 177478 658007 141061 797149 259020 506972 290026 071462 960274 291097 777687 438573 417303 956635 141678 800344 683322 165502 464430 571197 484636 177227 322958 947472 752016 704959 433493 037334 363941 395566 662015 216206 629825 243784 411253 954566 833191 712264 605738 064366 186364 548173 642023 495581 964962 325730 064221 218568 102929 013169 503312 159266 118629 216044 915903 245573 257449 110931 669006 412332 209203 450497 215663 394410 121438 256896 903084 415118 987128 141694 697169 815330 450417 959987 822372 076090 498948 417671 854739 142275 914655 212026 853760 272429 742710 827116 102698 706838 969554 (789 digits), a[1502] = 4
                                                                                      A[1503]/B[1503] = 7 436047 195909 635710 606928 132839 029390 835420 889449 650721 700517 415891 744868 960201 643311 067364 659195 450333 010012 399982 605609 183823 055736 579064 152859 560956 409049 170896 666767 392576 052666 868689 502038 243660 980193 589444 513215 965573 725161 635438 633737 474333 926228 428060 148464 422004 176497 190770 321994 449514 555702 616829 375940 353899 717920 994877 252544 182080 685189 607350 238096 711078 250905 152085 948899 822188 202446 705581 416198 036566 797752 081591 604894 051906 709649 852609 538458 735982 512694 481746 244370 908505 972175 441318 356468 193132 006412 401266 470413 646269 502054 886153 064355 430624 678971 216852 085694 681091 759466 485588 820576 769861 561418 685391 352057 625723 788651 868541 760326 223139 649138 977826 943897 060470 412957 110820 363739 119200 575860 595236 083443 154974 398589 084944 302190 929106 662448 026916 005136 615755 525827 496308 (787 digits)/722 735642 391492 383975 316826 758883 371149 546340 827774 784151 175340 045108 876070 870060 497272 134618 779827 017185 743170 883144 396842 668839 422599 783051 758625 439228 336457 803050 471688 066413 672168 170622 099941 379714 176668 430457 631040 087513 527746 806413 622259 600595 386459 061812 357881 268987 111798 128940 713786 145099 283727 733259 049280 229337 959882 005960 548596 923966 032907 723423 115215 432923 483080 099635 768587 347896 848116 384777 677629 406346 942549 998369 819020 585284 672222 092275 697339 870853 623352 876202 165373 859205 345858 995975 716356 687747 882249 234007 613606 248844 505366 396685 933886 166533 238620 839819 840493 833261 133359 285224 001329 782063 794389 555560 761838 443835 057806 249382 199463 872912 643620 759877 259297 926852 190320 649999 674896 261301 904519 995372 199896 303367 449970 784213 527544 140892 298186 685479 851988 346428 701941 101277 (789 digits), a[1503] = 1
                                                                                      A[1504]/B[1504] = 13 593901 444471 242130 685175 832794 946405 654645 965269 079053 542035 320755 634145 788194 023393 086334 448218 291339 676286 045753 475035 375437 314943 408774 071188 399197 582494 109917 859143 151787 853249 455855 573964 486396 209503 259260 163244 606993 959200 858407 098141 007084 935840 973219 892000 339835 497024 695743 339111 208573 804154 148888 178403 677910 545696 714156 551087 335371 071141 821817 632195 250117 806686 977714 627781 553567 415270 391694 493930 450195 756164 839479 773966 330710 788939 535796 957523 578375 020141 860971 816214 639324 500100 350113 618666 158107 176949 712307 559078 140546 908027 857707 852517 401933 691997 086627 782721 009763 534709 419359 953686 404151 075157 547347 541925 820341 886528 153971 760599 495392 361707 193019 396717 696551 118222 233956 526542 111860 757099 188092 651975 187555 233984 166776 803809 766908 049493 484593 787623 373150 412576 592711 (788 digits)/1321 239206 023451 422140 533129 958129 779376 078621 998047 825589 863057 879601 084535 761399 112842 355705 396541 389218 734090 709063 863896 955276 108185 244963 995191 458514 474871 747370 038589 551418 032921 169230 079879 282567 930777 024890 747926 209589 347763 968954 587815 984922 621392 239291 015888 410048 908947 387961 220758 435125 355190 693533 340378 007025 398455 423264 505232 065644 833252 406745 280717 897354 054277 584271 945814 670855 795589 136794 382588 839839 979884 362311 214587 247299 888428 722100 941124 282107 577919 709393 877638 464943 410225 182340 264530 329771 377831 198969 939336 313065 723934 499614 947055 669845 397886 958449 056538 749164 378932 542673 112261 451070 206721 764764 212335 659498 452216 370820 456360 775997 058739 747005 400992 624022 005651 100417 634884 083673 980610 494320 617568 158106 592246 698868 739570 994652 570616 428190 679104 449127 408780 070831 (790 digits), a[1504] = 1
                                                                                      A[1505]/B[1505] = 61 811652 973794 604233 347631 464018 815013 454004 750525 966935 868658 698914 281452 112977 736883 412702 452068 615691 715156 582996 505750 685572 315510 214160 437613 157746 739025 610568 103339 999727 465664 692111 797896 189245 818206 626485 166194 393549 561965 069067 026301 502673 669592 320939 716465 781346 164595 973743 678439 283809 772319 212382 089555 065541 900707 851503 456893 523564 969756 894620 766877 711549 477653 062944 460026 036457 863528 272359 391919 837349 822411 439510 700759 374749 865407 995797 368553 049482 593261 925633 509229 465803 972576 841772 831132 825560 714211 250496 706726 208457 134166 316984 474425 038359 446959 563363 216578 720145 898304 163028 635322 386465 862048 874781 519760 907091 334764 484428 802724 204709 095967 749904 530767 846674 885846 046646 469907 566643 604257 347606 691343 905195 334525 752051 517429 996738 860421 965291 155630 108357 176133 867152 (788 digits)/6007 692466 485298 072537 449346 591402 488653 860828 819966 086510 627571 563513 214213 915656 948641 557440 365992 574060 679533 719399 852430 489943 855340 762907 739391 273286 235944 792530 626046 272085 803852 847542 419458 509985 899776 530020 622744 925870 918802 682231 973523 540285 872028 018976 421434 909182 747587 680785 596819 885600 704490 507392 410792 257439 553703 699018 569525 186545 365917 350404 238087 022339 700190 436723 551846 031320 030472 931955 207984 765706 862087 447614 677369 574484 225936 980679 461836 999283 935031 713777 675927 718978 986759 725336 774478 006833 393574 029887 370951 501107 401104 395145 722108 845914 830168 673616 066648 829918 649089 455916 450375 586344 621276 614617 611181 081828 866671 732664 024906 976900 878579 747898 863268 422940 212925 051670 214432 595997 826961 972654 670168 935793 818957 579688 485828 119502 580652 398242 568406 142938 337061 384601 (790 digits), a[1505] = 4
                                                                                      A[1506]/B[1506] = 878 957043 077595 701397 552016 329058 356594 010712 472632 616155 703257 105555 574475 369882 339760 864168 777178 911023 688478 207704 555544 973449 732086 407020 197772 607651 928852 657871 305903 147972 372555 145420 744511 135837 664396 030052 489966 116687 826711 825345 466362 044516 310133 466375 922521 278681 801368 328154 837261 181910 616623 122237 432174 595497 155606 635204 947596 665280 647738 346508 368483 211810 493829 858937 068146 063977 504666 204725 980808 173093 269924 992629 584597 577208 904651 476960 117266 271131 325808 819840 945427 160580 116176 134933 254525 715957 175907 219261 453245 058946 786356 295490 494467 938965 949430 973712 814823 091806 110967 701760 848199 814673 143841 794288 818578 519620 573230 935974 998738 361319 705255 691682 827467 549999 520066 887007 105248 044871 216702 054586 330789 860289 917344 695498 047829 721252 095400 998669 966444 890150 878450 732839 (789 digits)/85428 933736 817624 437664 823982 237764 620530 130225 477573 036738 649059 768786 083530 580596 393824 159870 520437 426068 247562 780661 797923 814490 082955 925672 346669 284521 778098 842798 803237 360619 286861 034823 952298 422370 527648 445179 466355 171782 211001 520202 217145 548924 829784 504960 915977 138607 375174 918959 576236 833535 218057 797027 091469 611179 150307 209524 478584 677279 956095 312404 613936 210109 856943 698401 671659 109336 222210 184167 294375 559736 049108 628916 697761 290079 051546 451613 406842 272082 668363 702281 340626 530649 224861 337055 107222 425438 887867 617393 132657 328569 339396 031655 056579 512653 020248 389073 989622 368025 466184 925503 417519 659894 904594 369410 768870 805102 585620 628116 805058 452609 358856 217589 486750 545184 986601 823800 636940 427643 558078 111485 999933 259220 057652 814507 541164 667688 699750 003586 636790 450264 127639 455245 (791 digits), a[1506] = 14
                                                                                      A[1507]/B[1507] = 1819 725739 128986 007028 451664 122135 528201 475429 695791 199247 275172 910025 430402 852742 416405 141040 006426 437739 092112 998405 616840 632471 779683 028200 833158 373050 596730 926310 715146 295672 210774 982953 286918 460921 146998 686590 146126 626925 215388 719757 959025 591706 289859 253691 561508 338709 767332 630053 352961 647631 005565 456856 953904 256536 211921 121913 352086 854126 265233 587637 503844 135170 465312 780818 596318 164412 872860 681811 353536 183536 362261 424769 869954 529167 674710 949717 603085 591745 244879 565315 400083 786964 204929 111639 340184 257475 066025 689019 613216 326350 706878 907965 463360 916291 345821 510788 846224 903758 120239 566550 331722 015812 149732 463359 156917 946332 481226 356378 800200 927348 506479 133270 185702 946673 925979 820660 680403 656386 037661 456779 352923 625775 169215 143047 613089 439243 051223 962631 088519 888658 933035 332830 (790 digits)/176865 559940 120546 947867 097311 066931 729714 121279 775112 159987 925691 101085 381275 076849 736289 877181 406867 426197 174659 280723 448278 118924 021252 614252 432729 842329 792142 478128 232520 993324 377574 917190 324055 354726 955073 420379 555455 269435 340805 722636 407814 638135 531597 028898 253389 186397 497937 518704 749293 552671 140606 101446 593731 479797 854318 118067 526694 541105 278107 975213 465959 442559 414077 833526 895164 249992 474893 300289 796735 885178 960304 705448 072892 154642 329029 883906 275521 543449 271759 118340 357180 780277 436482 399446 988922 857711 169309 264673 636266 158246 079896 458455 835267 871220 870665 451764 045893 565969 581459 306923 285414 906134 430465 353439 148922 692034 037912 988897 635023 882119 596292 183077 836769 513310 186128 699271 488313 451284 943118 195626 670035 454233 934263 208703 568157 454879 980152 405415 841987 043466 592340 295091 (792 digits), a[1507] = 2
                                                                                      A[1508]/B[1508] = 8157 859999 593539 729511 358672 817600 469399 912431 255797 413144 803948 745657 296086 780852 005381 428328 802884 661980 056930 201327 022907 503336 850818 519823 530406 099854 315776 363114 166488 330661 215655 077233 892184 979522 252390 776413 074472 624388 688266 704377 302464 411341 469570 481142 168554 633520 870698 848368 249107 772434 638884 949665 247791 621642 003291 122858 355944 081785 708672 697058 383859 752492 355080 982211 453418 721628 996108 931971 394952 907238 718970 691709 064415 693879 603495 275830 529608 638112 305327 081102 545762 308436 935892 581490 615262 745857 440009 975339 906110 364349 613871 927352 347911 604131 332717 016868 199722 706838 591925 967962 175087 877921 742771 647725 446250 304950 498136 361490 199542 070713 731172 224763 570279 336695 223986 169649 826862 670415 367347 881703 742484 363390 594205 267688 500187 478224 300296 849194 320524 444786 610592 064159 (790 digits)/792891 173497 299812 229133 213226 505491 539386 615344 578021 676690 351824 173127 608630 887995 338983 668596 147907 130856 946199 903555 591036 290186 167966 382682 077588 653840 946668 755311 733321 333916 797160 703585 248519 841278 347942 126697 688176 249523 574224 410747 848404 101466 956172 620553 929533 884197 366924 993778 573411 044219 780482 202813 466395 530370 567579 681794 585362 841701 068527 213258 477773 980347 513255 032509 252316 109306 121783 385326 481319 100451 890327 450708 989329 908648 367665 987238 508928 445879 755400 175642 769349 651758 970790 934843 062913 856283 565104 676087 677721 961553 658981 865478 397650 997536 502910 196130 173196 631903 792022 153196 559179 284432 626455 783167 364561 573238 737272 583707 345153 981087 744024 949900 833828 598425 731116 620886 590194 232783 330550 893992 680075 076155 794705 649321 813794 487208 620359 625250 004738 624130 497000 635609 (792 digits), a[1508] = 4
                                                                                      A[1509]/B[1509] = 9977 585738 722525 736539 810336 939735 997601 387860 951588 612392 079121 655682 726489 633594 421786 569368 809311 099719 149043 199732 639748 135808 630501 548024 363564 472904 912507 289424 881634 626333 426430 060187 179103 440443 399389 463003 220599 251313 903655 424135 261490 003047 759429 734833 730062 972230 638031 478421 602069 420065 644450 406522 201695 878178 215212 244771 708030 935911 973906 284695 887703 887662 820393 763030 049736 886041 868969 613782 748489 090775 081232 116478 934370 223047 278206 225548 132694 229857 550206 646417 945846 095401 140821 693129 955447 003332 506035 664359 519326 690700 320750 835317 811272 520422 678538 527657 045947 610596 712165 534512 506809 893733 892504 111084 603168 251282 979362 717868 999742 998062 237651 358033 755982 283369 149965 990310 507266 326801 405009 338483 095407 989165 763420 410736 113276 917467 351520 811825 409044 333445 543627 396989 (790 digits)/969756 733437 420359 177000 310537 572423 269100 736624 353133 836678 277515 274212 989905 964845 075273 545777 554774 557054 120859 184279 039314 409110 189218 996934 510318 496170 738811 233439 965842 327241 174735 620775 572575 196005 303015 547077 243631 518958 915030 133384 256218 739602 487769 649452 182923 070594 864862 512483 322704 596890 921088 304260 060127 010168 421897 799862 112057 382806 346635 188471 943733 422906 927332 866036 147480 359298 596676 685616 278054 985630 850632 156157 062222 063290 696695 871144 784449 989329 027159 293983 126530 432036 407273 334290 051836 713994 734413 940761 313988 119799 738878 323934 232918 868757 373575 647894 219090 197873 373481 460119 844594 190567 056921 136606 513484 265272 775185 572604 980177 863207 340317 132978 670598 111735 917245 320158 078507 684068 273669 089619 350110 530389 728968 858025 381951 942088 600512 030665 846725 667597 089340 930700 (792 digits), a[1509] = 1
                                                                                      A[1510]/B[1510] = 18135 445738 316065 466051 169009 757336 467001 300292 207386 025536 883070 401340 022576 414446 427167 997697 612195 761699 205973 401059 662655 639145 481320 067847 893970 572759 228283 652539 048122 956994 642085 137421 071288 419965 651780 239416 295071 875702 591922 128512 563954 414389 229000 215975 898617 605751 508730 326789 851177 192500 283335 356187 449487 499820 218503 367630 063975 017697 682578 981754 271563 640155 175474 745241 503155 607670 865078 545754 143441 998013 800202 808187 998785 916926 881701 501378 662302 867969 855533 727520 491608 403838 076714 274620 570709 749189 946045 639699 425437 055049 934622 762670 159184 124554 011255 544525 245670 317435 304091 502474 681897 771655 635275 758810 049418 556233 477499 079359 199285 068775 968823 582797 326261 620064 373952 159960 334128 997216 772357 220186 837892 352556 357625 678424 613464 395691 651817 661019 729568 778232 154219 461148 (791 digits)/1 762647 906934 720171 406133 523764 077914 808487 351968 931155 513368 629339 447340 598536 852840 414257 214373 702681 687911 067059 087834 630350 699296 357185 379616 587907 150011 685479 988751 699163 661157 971896 324360 821095 037283 650957 673774 931807 768482 489254 544132 104622 841069 443942 270006 112456 954792 231787 506261 896115 641110 701570 507073 526522 540538 989477 481656 697420 224507 415162 401730 421507 403254 440587 898545 399796 468604 718460 070942 759374 086082 740959 606866 051551 971939 064361 858383 293378 435208 782559 469625 895880 083795 378064 269133 114750 570278 299518 616848 991710 081353 397860 189412 630569 866293 876485 844024 392286 829777 165503 613316 403773 474999 683376 919773 878045 838511 512458 156312 325331 844295 084342 082879 504426 710161 648361 941044 668701 916851 604219 983612 030185 606545 523674 507347 195746 429297 220871 655915 851464 291727 586341 566309 (793 digits), a[1510] = 1
                                                                                      A[1511]/B[1511] = 64383 922953 670722 134693 317366 211745 398605 288737 573746 689002 728332 859702 794218 876933 703290 562461 645898 384816 766963 402911 627715 053245 074461 751568 045476 191182 597358 247042 026003 497317 352685 472450 392968 700340 354730 181252 105814 878421 679421 809672 953353 246215 446430 382761 425915 789485 164222 458791 155600 997566 494456 475084 550158 377638 870722 347661 899955 989005 021643 229958 702394 808128 346817 998754 559203 709054 464205 251045 178815 084816 481840 541042 930727 973827 923310 729684 119602 833767 116807 828979 420671 306915 370964 516991 667576 250902 344172 583457 795637 855850 124619 123328 288824 894084 712305 161232 782958 562902 624440 041936 552503 208700 798331 387514 751423 919983 411859 955946 597598 204390 144122 106425 734767 143562 271822 470191 509653 318451 722080 999043 609085 046834 836297 446009 953670 104542 306973 794884 597750 668142 006285 780433 (791 digits)/6 257700 454241 580873 395400 881829 806167 694562 792531 146600 376784 165533 616234 785516 523366 318045 188898 662819 620787 322036 447782 930366 506999 260775 135784 274039 946205 795251 199695 063333 310715 090424 593858 035860 307856 255888 568402 039054 824406 382793 765780 570087 262810 819596 459470 520293 934971 560225 031269 011051 520223 025799 825480 639694 631785 390330 244832 204318 056328 592122 393663 208255 632670 249096 561672 346869 765112 752056 898444 556177 243879 073510 976755 216877 979107 889781 446294 664585 294955 374837 702860 814170 683422 541466 141689 396088 424829 632969 791308 289118 363859 932458 892172 124628 467639 003033 179967 395950 687204 869992 300069 055914 615566 107051 895928 147621 780807 312560 041541 956173 396092 593343 381617 183878 242220 862331 143292 084613 434623 086329 040455 440667 350026 299992 380066 969191 229980 263126 998413 401118 542779 848365 629627 (793 digits), a[1511] = 3
                                                                                      A[1512]/B[1512] = 1 177046 058904 389063 890530 881601 568753 641896 497568 534826 427585 993061 875990 318516 199253 086398 122007 238366 688401 011314 653468 961526 597556 821631 596072 712542 014045 980732 099295 516185 908706 990423 641528 144725 026092 036923 501954 199739 687292 821514 702625 724312 846267 264747 105681 565101 816484 464734 585030 651995 148697 183551 907709 352338 297319 891505 625544 263182 819788 072157 121010 914670 186465 418198 722823 568822 370651 220773 064567 362113 524710 473332 546960 751889 445829 501294 635692 815153 875777 958074 649150 063691 928314 754075 580470 587082 265432 141152 141939 746918 460352 177766 982579 358032 218078 832748 446715 338924 449682 544012 257332 626955 528270 005240 734075 575049 115934 890978 286397 956052 747798 563021 498460 552070 204185 266756 623407 507888 729347 769815 202971 801423 195583 410979 706603 779526 277453 177345 968942 489080 804788 267363 508942 (793 digits)/114 401256 083283 175892 523349 396700 588933 310617 617529 569962 295483 608944 539566 737834 273434 139070 614549 633434 862082 863715 147927 376947 825283 051137 823733 520626 181716 000001 583262 839163 254029 599539 013805 466580 578696 256951 905011 634794 607797 379542 328182 366193 571664 196678 540475 477747 784280 315838 069104 095043 005125 165967 365725 041025 912676 015421 888636 375145 238422 073365 487668 170108 791318 924326 008647 643452 240634 255484 242944 770564 475906 064157 188459 955355 595881 080427 891687 255913 744405 529638 121120 550952 385401 124454 819542 244342 217211 692974 860398 195840 630832 182120 248510 873882 283795 931083 083437 519399 199464 825365 014559 410236 555189 610311 046480 535237 893043 138538 904067 536452 973961 764522 951988 814235 070137 170322 520302 191743 740067 158142 711809 962197 907018 923537 348552 641188 568941 957157 627357 071598 061764 856922 899595 (795 digits), a[1512] = 18
                                                                                      A[1513]/B[1513] = 1 241429 981858 059786 025224 198967 780499 040501 786306 108573 116588 721394 735693 112735 076186 789688 684468 884265 073217 778278 056380 589241 650801 896093 347640 758018 205228 578090 346337 542189 406024 343109 113978 537693 726432 391653 683206 305554 565714 500936 512298 677666 092482 711177 488442 991017 605969 628957 043821 807596 146263 678008 382793 902496 674958 762227 973206 163138 808793 093800 350969 617064 994593 765016 721578 128026 079705 684978 315612 540928 609526 955173 088003 682617 419657 424605 365376 934756 709545 074882 478129 484363 235230 125040 097462 254658 516334 485324 725397 542556 316202 302386 105907 646857 112163 545053 607948 121883 012585 168452 299269 179458 736970 803572 121590 326473 035918 302838 242344 553650 952188 707143 604886 286837 347747 538579 093599 017542 047799 491896 202015 410508 242418 247277 152613 733196 381995 484319 763827 086831 472930 273649 289375 (793 digits)/120 658956 537524 756765 918750 278530 395101 005180 410060 716562 672267 774478 155801 523350 796800 457115 803448 296254 482870 185751 595710 307314 332282 311912 959517 794666 127921 795252 782957 902496 564744 689963 607663 502440 886552 512840 473413 673849 432203 762336 093962 936280 834475 016274 999945 998041 719251 876063 100373 106094 525348 191767 191205 680720 544461 405752 133468 579463 294750 665487 881331 378364 423989 173422 570319 990322 005747 007541 141389 326741 719785 137668 165215 172233 574988 970209 337981 920499 039360 904475 823981 365123 068823 665920 961231 640430 642041 325944 651706 484958 994692 114579 140682 998510 751434 934116 263404 915349 886669 695357 314628 466151 170755 717362 942408 682859 673850 451098 945609 492626 370054 357866 333605 998113 312358 032653 663594 276357 174690 244471 752265 402865 257045 223529 728619 610379 798922 220284 625770 472716 604544 705288 529222 (795 digits), a[1513] = 1
                                                                                      A[1514]/B[1514] = 4 901336 004478 568421 966203 478504 910250 763401 856486 860545 777352 157246 083069 656721 427813 455464 175413 891161 908054 346148 822610 729251 549962 509911 638994 986596 629731 715003 138308 142754 126780 019750 983463 757806 205389 211884 551573 116403 384436 324324 239521 757311 123715 398279 571010 538154 634393 351605 716496 074783 587488 217577 056091 059828 322196 178189 545162 752599 246167 353558 173919 765865 170246 713248 887557 952900 609768 275708 011404 984899 353291 338851 810971 799741 704801 775110 731823 619424 004413 182722 083538 516781 634005 129195 872857 351057 814435 597126 318132 374587 408959 084925 300302 298603 554569 467909 270559 704573 487438 049369 155140 165331 739182 415957 098846 554468 223689 799493 013431 617005 604364 684452 313119 412582 247427 882493 904204 560514 872746 245503 809018 032947 922838 152811 164444 979115 423439 630305 260423 749575 223579 088311 377067 (793 digits)/476 378125 695857 446190 279600 232291 774236 326158 847711 719650 312286 932379 006971 307886 663835 510418 024894 522198 310693 420969 935058 298890 822129 986876 702286 904624 565481 385759 932136 546652 948263 669429 836795 973903 238353 795473 325252 656342 904408 666550 610071 175036 075089 245503 540313 471872 942035 944027 370223 413326 581169 741268 939342 083187 546060 232678 289042 113535 122674 069829 131662 305202 063286 444593 719607 614418 257875 278107 667112 750789 635261 477161 684105 472056 320847 991055 905633 017410 862488 243065 593064 646321 591872 122217 703237 165634 143335 670808 815517 650717 614908 525857 670559 869414 538100 733431 873652 265448 859473 911436 958444 808690 067456 762399 873706 583816 914594 491835 740896 014332 084124 838121 952806 808575 007211 268283 511085 020815 264137 891557 968606 170793 678154 594126 534411 472327 965708 618011 504668 489747 875398 972788 487261 (795 digits), a[1514] = 3
                                                                                      A[1515]/B[1515] = 60 057462 035600 880849 619665 941026 703508 201324 064148 435122 444814 608347 732528 993392 209948 255258 789435 578207 969869 932063 927709 340260 250352 015033 015580 597177 762009 158128 006035 255238 927384 580120 915543 631368 191102 934268 302083 702395 178950 392827 386559 765399 577067 490532 340569 448873 218689 848225 641774 704999 196122 288933 055886 620436 541312 900502 515159 194329 762801 336498 438006 807447 037554 324003 372273 562833 396924 993474 452472 359720 849023 021394 819665 279517 877278 725934 147260 367844 762503 267547 480591 685742 843291 675390 571750 467352 289561 650840 542986 037605 223711 321489 709535 230099 766997 159964 854664 576764 861841 760882 160951 163439 607159 795057 307748 980091 720195 896754 403523 957718 204564 920571 362319 237824 316882 128505 944053 743720 520754 437941 910231 805883 316476 081011 125953 482581 463271 047982 888912 081734 155879 333385 814179 (794 digits)/5837 196464 887814 111049 273953 066031 685936 919086 582601 352366 419710 963026 239457 217990 762826 582132 102182 562634 211191 237390 816409 894004 197842 154433 386960 650160 913698 424371 968596 462331 943908 723121 649215 189279 746798 058520 376445 549964 285107 760943 414817 036713 735545 962317 483707 660517 023683 204391 543054 066013 499385 086994 463310 678971 097184 197891 601973 941884 766839 503437 461279 040789 183426 508547 205611 363341 100250 344833 146742 336217 342922 863608 374480 836909 425164 862880 205578 129429 389219 821262 940757 120982 171289 132533 400077 628040 362069 375650 437918 293570 373594 424871 187401 431485 208643 735298 747232 100736 200356 632600 815966 170431 980236 866161 426887 688662 648984 353127 836361 664611 379552 415329 767287 701013 398893 252055 796614 526140 344344 943167 375539 452389 394900 353048 141557 278315 387425 636422 681792 349691 109332 378750 376354 (796 digits), a[1515] = 12
                                                                                      A[1516]/B[1516] = 64 958798 040079 449271 585869 419531 613758 964725 920635 295668 222166 765593 815598 650113 637761 710722 964849 469369 877924 278212 750320 069511 800314 524944 654575 583774 391740 873131 144343 397993 054164 599871 899007 389174 396492 146152 853656 818798 563386 717151 626081 522710 700782 888811 911579 987027 853083 199831 358270 779782 783610 506510 111977 680264 863509 078692 060321 946929 008968 690056 611926 573312 207801 037252 259831 515734 006693 269182 463877 344620 202314 360246 630637 079259 582080 501044 879083 987268 766916 450269 564130 202524 477296 804586 444607 818410 103997 247966 861118 412192 632670 406415 009837 528703 321566 627874 125224 281338 349279 810251 316091 328771 346342 211014 406595 534559 943885 696247 416955 574723 808929 605023 675438 650406 564310 010999 848258 304235 393500 683445 719249 838831 239314 233822 290398 461696 886710 678288 149335 831309 379458 421697 191246 (794 digits)/6313 574590 583671 557239 553553 298323 460173 245245 430313 072016 731997 895405 246428 525877 426662 092550 127077 084832 521884 658360 751468 192895 019972 141310 089247 554785 479179 810131 900733 008984 892172 392551 486011 163182 985151 853993 701698 206307 189516 427494 024888 211749 810635 207821 024021 132389 965719 148418 913277 479340 080554 828263 402652 762158 643244 430569 891016 055419 889513 573266 592941 345991 246712 953140 925218 977759 358125 622940 813855 087006 978184 340770 058586 308965 746012 853936 111211 146840 251708 064328 533821 767303 763161 254751 103314 793674 505405 046459 253435 944287 988502 950728 857961 300899 746744 468730 620884 366185 059830 544037 774410 979122 047693 628561 300594 272479 563578 844963 577257 678943 463677 253451 720094 509588 406104 520339 307699 546955 608482 834725 344145 623183 073054 947174 675968 750643 353134 254434 186460 839438 984731 351538 863615 (796 digits), a[1516] = 1
                                                                                      A[1517]/B[1517] = 125 016260 075680 330121 205535 360558 317267 166049 984783 730790 666981 373941 548127 643505 847709 965981 754285 047577 847794 210276 678029 409772 050666 539977 670156 180952 153750 031259 150378 653231 981549 179992 814551 020542 587595 080421 155740 521193 742337 109979 012641 288110 277850 379344 252149 435901 071773 048057 000045 484781 979732 795443 167864 300701 404821 979194 575481 141258 771770 026555 049933 380759 245355 361255 632105 078567 403618 262656 916349 704341 051337 381641 450302 358777 459359 226979 026344 355113 529419 717817 044721 888267 320588 479977 016358 285762 393558 898807 404104 449797 856381 727904 719372 758803 088563 787838 979888 858103 211121 571133 477042 492210 953502 006071 714344 514651 664081 593001 820479 532442 013494 525595 037757 888230 881192 139505 792312 047955 914255 121387 629481 644714 555790 314833 416351 944278 349981 726271 038247 913043 535337 755083 005425 (795 digits)/12150 771055 471485 668288 827506 364355 146110 164332 012914 424383 151708 858431 485885 743868 189488 674682 229259 647466 733075 895751 567878 086899 217814 295743 476208 204946 392878 234503 869329 471316 836081 115673 135226 352462 731949 912514 078143 756271 474624 188437 439705 248463 546181 170138 507728 792906 989402 352810 456331 545353 579939 915257 865963 441129 740428 628461 492989 997304 656353 076704 054220 386780 430139 461688 130830 341100 458375 967773 960597 423224 321107 204378 433067 145875 171177 716816 316789 276269 640927 885591 474578 888285 934450 387284 503392 421714 867474 422109 691354 237858 362097 375600 045362 732384 955388 204029 368116 466921 260187 176638 590377 149554 027930 494722 727481 961142 212563 198091 413619 343554 843229 668781 487382 210601 804997 772395 104314 073095 952827 777892 719685 075572 467955 300222 817526 028958 740559 890856 868253 189130 094063 730289 239969 (797 digits), a[1517] = 1
                                                                                      A[1518]/B[1518] = 314 991318 191440 109513 996940 140648 248293 296825 890202 757249 556129 513476 911853 937125 333181 642686 473419 564525 573512 698766 106378 889055 901647 604899 994887 945678 699240 935649 445100 704457 017262 959857 528109 430259 571682 306995 165137 861186 048060 937109 651364 098931 256483 647500 415878 858829 996629 295945 358361 749346 743076 097396 447706 281667 673153 037081 211284 229446 552508 743166 711793 334830 698511 759763 524041 672868 813929 794496 296576 753302 304989 123529 531241 796814 500798 955002 931772 697495 825755 885903 653573 979059 118473 764540 477324 389934 891115 045581 669327 311788 345433 862224 448583 046309 498694 203552 085001 997544 771522 952518 270176 313193 253346 223157 835284 563863 272048 882251 057914 639607 835918 656213 750954 426868 326694 290011 432882 400147 222010 926220 978213 128260 350894 863489 123102 350253 586674 130830 225831 657396 450133 931863 202096 (795 digits)/30615 116701 526642 893817 208566 027033 752393 573909 456141 920783 035415 612268 218200 013613 805639 441914 585596 379765 988036 449863 887224 366693 455600 732797 041663 964678 264936 279139 639391 951618 564334 623897 756463 868108 449051 679021 857985 718850 138764 804368 904298 708676 902997 548098 039478 718203 944523 854039 825940 570047 240434 658779 134579 644418 124101 687492 876996 050029 202219 726674 701382 119552 106991 876517 186879 659960 274877 558488 735049 933455 620398 749526 924720 600716 088368 287568 744789 699379 533563 835511 482979 543875 632062 029320 110099 637104 240353 890678 636144 420004 712697 701928 948686 765669 657520 876789 357117 300027 580204 897314 955165 278230 103554 618006 755558 194763 988705 241146 404496 366053 150136 591014 694858 930792 016100 065129 516327 693147 514138 390510 783515 774328 008965 547620 311020 808560 834254 036147 922967 217699 172858 812117 343553 (797 digits), a[1518] = 2
                                                                                      A[1519]/B[1519] = 440 007578 267120 439635 202475 501206 565560 462875 874986 488040 223110 887418 459981 580631 180891 608668 227704 612103 421306 909042 784408 298827 952314 144877 665044 126630 852990 966908 595479 357688 998812 139850 342660 450802 159277 387416 320878 382379 790398 047088 664005 387041 534334 026844 668028 294731 068402 344002 358407 234128 722808 892839 615570 582369 077975 016275 786765 370705 324278 769721 761726 715589 943867 121019 156146 751436 217548 057153 212926 457643 356326 505170 981544 155591 960158 181981 958117 052609 355175 603720 698295 867326 439062 244517 493682 675697 284673 944389 073431 761586 201815 590129 167955 805112 587257 991391 064890 855647 982644 523651 747218 805404 206848 229229 549629 078514 936130 475252 878394 172049 849413 181808 788712 315099 207886 429517 225194 448103 136266 047608 607694 772974 906685 178322 539454 294531 936655 857101 264079 570439 985471 686946 207521 (795 digits)/42765 887756 998128 562106 036072 391388 898503 738241 469056 345166 187124 470699 704085 757481 995128 116596 814856 027232 721112 345615 455102 453592 673415 028540 517872 169624 657814 513643 508721 422935 400415 739570 891690 220571 181001 591535 936129 475121 613388 992806 344003 957140 449178 718236 547207 511110 933926 206850 282272 115400 820374 574037 000543 085547 864530 315954 369986 047333 858572 803378 755602 506332 537131 338205 317710 001060 733253 526262 695647 356679 941505 953905 357787 746591 259546 004385 061578 975649 174491 721102 957558 432161 566512 416604 613492 058819 107828 312788 327498 657863 074795 077528 994049 498054 612909 080818 725233 766948 840392 073953 545542 427784 131485 112729 483040 155906 201268 439237 818115 709607 993366 259796 182241 141393 821097 837524 620641 766243 466966 168403 503200 849900 476920 847843 128546 837519 574813 927004 791220 406829 266922 542406 583522 (797 digits), a[1519] = 1
                                                                                      A[1520]/B[1520] = 13515 218666 205053 298570 071205 176845 215107 183102 139797 398456 249456 136030 711301 356060 759929 902733 304557 927628 212719 970049 638627 853894 471071 951229 946211 744604 288969 942907 309481 435126 981627 155367 807922 954324 350003 929484 791489 332579 760002 349769 571525 710177 286504 452840 456727 700762 048699 616016 110578 773208 427342 882584 914823 752740 012403 525354 814245 350606 280871 834819 563594 802529 014525 390338 208444 215955 340371 509092 684370 482602 994784 278658 977566 464573 305544 414461 675284 275776 481023 997524 602449 998852 290341 100065 287804 660853 431333 377253 872280 159374 399901 566099 487257 199687 116433 945284 031727 666984 250858 662070 686740 475319 458793 100044 324156 919311 355963 139837 409739 801103 318314 110477 412323 879844 563287 175528 188715 843241 309992 354479 209056 317507 551450 213165 306731 186211 686349 843868 148218 770596 014284 540249 427726 (797 digits)/1 313591 749411 470499 756998 290737 768700 707505 721153 527832 275768 649149 733259 340772 738073 659482 939819 031277 196747 621406 818327 540297 974473 658051 589012 577829 053417 999371 688444 901034 639680 576806 811024 507170 485243 879099 425099 941869 972498 540434 588559 224417 422890 378359 095194 455704 051531 962310 059548 294104 032071 851671 879889 150872 210854 060011 166123 976577 470044 959403 828037 369457 309528 220932 022676 718179 691782 272483 346369 604470 633853 865577 366687 658352 998453 874748 419120 592158 968854 768315 468600 209732 508722 627434 527458 514861 401677 475203 274328 461104 155896 956550 027798 770171 707308 044793 301351 114130 308492 791967 115921 321438 111754 048107 999891 246762 871950 026758 418280 947967 654292 951124 384900 162093 172606 649035 190868 135580 680451 523123 442615 879541 271342 316590 982914 167425 934148 078671 846291 659579 422577 180535 084314 849213 (799 digits), a[1520] = 30
                                                                                      A[1521]/B[1521] = 54500 882243 087333 633915 487296 208587 425989 195284 434176 081865 220935 431541 305187 004874 220611 219601 445936 322616 272186 789241 338919 714405 836601 949797 449891 105048 008870 738537 833405 098196 925320 761321 574352 268099 559293 105355 486835 712698 830407 446166 950108 227750 680351 838206 494939 097779 263200 808066 800722 326962 432180 423179 274865 593329 127589 117695 043746 773130 447766 109000 016105 925706 001968 682371 989923 615257 579034 093523 950408 388055 335463 619806 891810 013885 182335 839828 659254 155715 279271 593819 108095 862735 600426 644778 644901 319111 010007 453404 562552 399083 801421 854527 116984 603861 052993 772527 191801 523584 986079 171934 494180 706682 042020 629406 846256 755760 359983 034602 517353 376463 122669 623718 438007 834477 461035 131629 980057 821068 376235 465525 443920 043005 112486 030983 766379 039378 682055 232573 856954 652824 042609 847943 918425 (797 digits)/5 297132 885402 880127 590099 199023 466191 728526 622855 580385 448240 783723 403737 067176 709776 633059 875872 939964 814223 206739 618925 616294 351487 305621 384590 829188 383296 655301 267423 112859 981657 707642 983668 920372 161546 697399 291935 703609 365115 775127 347043 241673 648701 962615 099014 370023 717238 783166 445043 458688 243688 227062 093593 604031 928964 104574 980450 276295 927513 696188 115528 233431 744445 420859 428912 190428 768189 823186 911741 113529 892095 403815 420655 991199 740406 758539 680867 430214 851068 247753 595503 796488 467052 076250 526438 672937 665529 008641 410102 171915 281450 900995 188724 074736 327286 792082 286223 181755 000920 008260 537638 831294 874800 323917 112294 470091 643706 308302 112361 609986 326779 797863 799396 830613 831820 417238 600997 162964 488049 559459 938867 021365 935269 743284 779499 798250 574111 889501 312171 429538 097137 989062 879665 980374 (799 digits), a[1521] = 4
                                                                                      A[1522]/B[1522] = 68016 100909 292386 932485 558501 385432 641096 378386 573973 480321 470391 567572 016488 360934 980541 122334 750494 250244 484906 759290 977547 568300 307673 901027 396102 849652 297840 681445 142886 533323 906947 916689 382275 222423 909297 034840 278325 045278 590409 795936 521633 937927 966856 291046 951666 798541 311900 424082 911301 100170 859523 305764 189689 346069 139992 643049 857992 123736 728637 943819 579700 728235 016494 072710 198367 831212 919405 602616 634778 870658 330247 898465 869376 478458 487880 254290 334538 431491 760295 591343 710545 861587 890767 744843 932705 979964 441340 830658 434832 558458 201323 420626 604241 803548 169427 717811 223529 190569 236937 834005 180921 182001 500813 729451 170413 675071 715946 174439 927093 177566 440983 734195 850331 714322 024322 307158 168773 664309 686227 820004 652976 360512 663936 244149 073110 225590 368405 076442 005173 423420 056894 388193 346151 (797 digits)/6 610724 634814 350627 347097 489761 234892 436032 344009 108217 724009 432873 136996 407949 447850 292542 815691 971242 010970 828146 437253 156592 325960 963672 973603 407017 436714 654672 955868 013894 621338 284449 794693 427542 646790 576498 717035 645479 337614 315561 935602 466091 071592 340974 194208 825727 768770 745476 504591 752792 275760 078733 973482 754904 139818 164586 146574 252873 397558 655591 943565 602889 053973 641791 451588 908608 459972 095670 258110 718000 525949 269392 787343 649552 738860 633288 099988 022373 819923 016069 064104 006220 975774 703685 053897 187799 067206 483844 684430 633019 437347 857545 216522 844908 034594 836875 587574 295885 309412 800227 653560 152732 986554 372025 112185 716854 515656 335060 530642 557953 981072 748988 184296 992707 004427 066273 791865 298545 168501 082583 381482 900907 206612 059875 762413 965676 508259 968173 158463 089117 519715 169597 963980 829587 (799 digits), a[1522] = 1
                                                                                      A[1523]/B[1523] = 190533 084061 672107 498886 604298 979452 708181 952057 582123 042508 161718 566685 338163 726744 181693 464270 946924 823105 242000 307823 294014 851006 451949 751852 242096 804352 604552 101428 119178 164844 739216 594700 338902 712947 377887 175036 043485 803256 011227 038039 993376 103606 614064 420300 398272 694861 887001 656232 623324 527304 151227 034707 654244 285467 407574 403794 759731 020603 905041 996639 175507 382176 034956 827792 386659 277683 417845 298757 219966 129371 995959 416738 630562 970802 158096 348409 328331 018698 799862 776506 529187 585911 381962 134466 510313 279039 892689 114721 432217 516000 204068 695780 325468 210957 391849 208149 638859 904723 459954 839944 856023 070685 043648 088309 187084 105903 791875 383482 371539 731596 004637 092110 138671 263121 509679 745946 317605 149687 748691 105534 749872 764030 440358 519281 912599 490559 418865 385457 867301 499664 156398 624330 610727 (798 digits)/18 518582 155031 581382 284294 178545 935976 600591 310873 796820 896259 649469 677729 883075 605477 218145 507256 882448 836164 863032 493431 929479 003409 232967 331797 643223 256725 964647 179159 140649 224334 276542 573055 775457 455127 850396 726006 994568 040344 406251 218248 173855 791886 644563 487432 021479 254780 274119 454226 964272 795208 384530 040559 113840 208600 433747 273598 782042 722631 007372 002659 439209 852392 704442 332090 007645 688134 014527 427962 549530 943993 942600 995343 290305 218128 025115 880843 474962 490914 279891 723711 808930 418601 483620 634233 048535 799941 976330 778963 437954 156146 616085 621769 764552 396476 465833 461371 773525 619745 608715 844759 136760 847909 067967 336665 903800 675018 978423 173646 725894 288925 295840 167990 816027 840674 549786 184727 760054 825051 724626 701832 823180 348493 863036 304327 729603 590631 825847 629097 607773 136568 328258 807627 639548 (800 digits), a[1523] = 2
                                                                                      A[1524]/B[1524] = 258549 184970 964494 431372 162800 364885 349278 330444 156096 522829 632110 134257 354652 087679 162234 586605 697419 073349 726907 067114 271562 419306 759623 652879 638199 654004 902392 782873 262064 698168 646164 511389 721177 935371 287184 209876 321810 848534 601636 833976 515010 041534 580920 711347 349939 493403 198902 080315 534625 627475 010750 340471 843933 631536 547567 046844 617723 144340 633679 940458 755208 110411 051450 900502 585027 108896 337250 901373 854745 000030 326207 315204 499939 449260 645976 602699 662869 450190 560158 367850 239733 447499 272729 879310 443019 259004 334029 945379 867050 074458 405392 116406 929710 014505 561276 925960 862389 095292 696892 673950 036944 252686 544461 817760 357497 780975 507821 557922 298632 909162 445620 826305 989002 977443 534002 053104 486378 813997 434918 925539 402849 124543 104294 763430 985709 716149 787270 461899 872474 923084 213293 012523 956878 (798 digits)/25 129306 789845 932009 631391 668307 170869 036623 654882 905038 620269 082342 814726 291025 053327 510688 322948 853690 847135 691178 930685 086071 329370 196640 305401 050240 693440 619320 135027 154543 845672 560992 367749 203000 101918 426895 443042 640047 377958 721813 153850 639946 863478 985537 681640 847207 023551 019595 958818 717065 070968 463264 014041 868744 348418 598333 420173 034916 120189 662963 946225 042098 906366 346233 783678 916254 148106 110197 686073 267531 469943 211993 782686 939857 956988 658403 980831 497336 310837 295960 787815 815151 394376 187305 688130 236334 867148 460175 463394 070973 593494 473630 838292 609460 431071 302709 048946 069410 929158 408943 498319 289493 834463 439992 448851 620655 190675 313483 704289 283848 269998 044828 352287 808734 845101 616059 976593 058599 993552 807210 083315 724087 555105 922912 066741 695280 098891 794020 787560 696890 656283 497856 771608 469135 (800 digits), a[1524] = 1
                                                                                      A[1525]/B[1525] = 707631 454003 601096 361630 929899 709223 406738 612945 894316 088167 425938 835200 047467 902102 506162 637482 341762 969804 695814 442051 837139 689619 971197 057611 518496 112362 409337 667174 643307 561182 031545 617479 781258 583689 952255 594788 687107 500325 214500 705993 023396 186675 775905 842995 098151 681668 284805 816863 692575 782254 172727 715651 342111 548540 502708 497483 995177 309285 172401 877556 685923 602998 137858 628797 556713 495476 092347 101504 929456 129432 648374 047147 630441 869323 450049 553808 654069 919079 920179 512207 008654 480909 927421 893087 396351 797048 560749 005481 166317 664917 014852 928594 184888 239968 514403 060071 363638 095308 853740 187844 929911 576058 132571 723829 902079 667854 807518 499326 968805 549920 895878 744722 116677 218008 577683 852155 290362 777682 618528 956613 555571 013116 648948 046143 884018 922858 993406 309257 612251 345832 582984 649378 524483 (798 digits)/68 777195 734723 445401 547077 515160 277714 673838 620639 606898 136797 814155 307182 465125 712132 239522 153154 589830 530436 245390 354802 101621 662149 626247 942599 743704 643607 203287 449213 449736 915679 398527 308554 181457 658964 704187 612092 274662 796261 849877 525949 453749 518844 615638 850713 715893 301882 313311 371864 398402 937145 311058 068642 851328 905437 630414 113944 851874 963010 333299 895109 523407 665125 396909 899447 840153 984346 234922 800109 084593 883880 366588 560717 170021 132105 341923 842506 469635 112588 871813 299343 439233 207353 858232 010493 521205 534238 896681 705751 579901 343135 563347 298354 983473 258619 071251 559263 912347 478062 426602 841397 715748 516835 947952 234369 145111 056369 605390 582225 293590 828921 385496 872566 433497 530877 781906 137913 877254 812157 339046 868464 271355 458705 708860 437811 120163 788415 413889 204219 001554 449135 323972 350844 577818 (800 digits), a[1525] = 2
                                                                                      A[1526]/B[1526] = 966180 638974 565590 793003 092700 074108 756016 943390 050412 610997 058048 969457 402119 989781 668397 224088 039182 043154 422721 509166 108702 108926 730820 710491 156695 766367 311730 450047 905372 259350 677710 128869 502436 519061 239439 804665 008918 348859 816137 539969 538406 228210 356826 554342 448091 175071 483707 897179 227201 409729 183478 056123 186045 180077 050275 544328 612900 453625 806081 818015 441131 713409 189309 529300 141740 604372 429598 002878 784201 129462 974581 362352 130381 318584 096026 156508 316939 369270 480337 880057 248387 928409 200151 772397 839371 056052 894778 950861 033367 739375 420245 045001 114598 254474 075679 986032 226027 190601 550632 861794 966855 828744 677033 541590 259577 448830 315340 057249 267438 459083 341499 571028 105680 195452 111685 905259 776741 591680 053447 882152 958420 137659 753242 809574 869728 639008 780676 771157 484726 268916 796277 661902 481361 (798 digits)/93 906502 524569 377411 178469 183467 448583 710462 275522 511936 757066 896498 121908 756150 765459 750210 476103 443521 377571 936569 285487 187692 991519 822888 248000 793945 337047 822607 584240 604280 761351 959519 676303 384457 760883 131083 055134 914710 174220 571690 679800 093696 382323 601176 532354 563100 325433 332907 330683 115468 008113 774322 082684 720073 253856 228747 534117 886791 083199 996263 841334 565506 571491 743143 683126 756408 132452 345120 486182 352125 353823 578582 343404 109879 089094 000327 823337 966971 423426 167774 087159 254384 601730 045537 698623 757540 401387 356857 169145 650874 936630 036978 136647 592933 689690 373960 608209 981758 407220 835546 339717 005242 351299 387944 683220 765766 247044 918874 286514 577439 098919 430325 224854 242232 375979 397966 114506 935854 805710 146256 951779 995443 013811 631772 504552 815443 887307 207909 991779 698445 105418 821829 122453 046953 (800 digits), a[1526] = 1
                                                                                      A[1527]/B[1527] = 1 673812 092978 166687 154634 022599 783332 162755 556335 944728 699164 483987 804657 449587 891884 174559 861570 380945 012959 118535 951217 945841 798546 702017 768102 675191 878729 721068 117222 548679 820532 709255 746349 283695 102751 191695 399453 696025 849185 030638 245962 561802 414886 132732 397337 546242 856739 768513 714042 919777 191983 356205 771774 528156 728617 552984 041812 608077 762910 978483 695572 127055 316407 327168 158097 698454 099848 521945 104383 713657 258895 622955 409499 760823 187907 546075 710316 971009 288350 400517 392264 257042 409319 127573 665485 235722 853101 455527 956342 199685 404292 435097 973595 299486 494442 590083 046103 589665 285910 404373 049639 896767 404802 809605 265420 161657 116685 122858 556576 236244 009004 237378 315750 222357 413460 689369 757415 067104 369362 671976 838766 513991 150776 402190 855718 753747 561867 774083 080415 096977 614749 379262 311281 005844 (799 digits)/162 683698 259292 822812 725546 698627 726298 384300 896162 118834 893864 710653 429091 221276 477591 989732 629258 033351 908008 181959 640289 289314 653669 449136 190600 537649 980655 025895 033454 054017 677031 358046 984857 565915 419847 835270 667227 189372 970482 421568 205749 547445 901168 216815 383068 278993 627315 646218 702547 513870 945259 085380 151327 571402 159293 859161 648062 738666 046210 329563 736444 088914 236617 140053 582574 596562 116798 580043 286291 436719 237703 945170 904121 279900 221199 342251 665844 436606 536015 039587 386502 693617 809083 903769 709117 278745 935626 253538 874897 230776 279765 600325 435002 576406 948309 445212 167473 894105 885283 262149 181114 720990 868135 335896 917589 910877 303414 524264 868739 871029 927840 815822 097420 675729 906857 179872 252420 813109 617867 485303 820244 266798 472517 340632 942363 935607 675722 621799 195998 699999 554554 145801 473297 624771 (801 digits), a[1527] = 1
                                                                                      A[1528]/B[1528] = 11 009053 196843 565713 720807 228298 774101 732550 281405 718784 805983 961975 797402 099647 341086 715756 393510 324852 120909 133937 216473 783752 900206 942927 319107 207847 038745 638139 153383 197451 182546 933244 606965 204607 135568 389612 201387 185073 443969 999967 015744 909220 717527 153220 938367 725548 315510 094790 181436 745864 561629 320712 686770 354985 551782 368179 795204 261367 031091 676983 991448 203463 611853 152318 477886 332465 203463 561268 629181 066144 682836 712313 819350 695320 446029 372480 418410 142995 099372 883442 233642 790642 384323 965593 765309 253708 174661 627946 688914 231480 165130 030832 886572 911517 221129 616178 262653 764018 906063 976871 159634 347460 257561 534665 134111 229520 148941 052491 396706 684902 513108 765769 465529 439824 676216 247904 449750 179367 807856 085308 914752 042367 042318 166387 943887 392214 010215 425175 253648 066591 957413 071851 529588 516425 (800 digits)/1070 008692 080326 314287 531749 375233 806374 016267 652495 224946 120255 160418 696456 083809 631011 688606 251651 643632 825621 028327 127222 923580 913536 517705 391604 019845 220977 977977 784964 928386 823540 107801 585448 779950 279970 142707 058498 050947 997115 101099 914297 378371 789332 902068 830764 237062 089327 210219 545968 198693 679668 286602 990650 148486 209619 383717 422494 318787 360461 973646 259999 098991 991194 583465 178574 335780 833243 825380 203930 972440 780047 249607 768131 789280 416290 053837 818404 586610 639516 405298 406175 416091 456233 468155 953327 430016 015144 878090 418529 035532 615223 638930 746663 051375 379547 045233 613053 346393 718920 408441 426405 331187 560111 403326 188760 231030 067532 064463 498953 803618 665964 325257 809378 296611 817122 477199 629031 814512 512915 058079 873245 596233 848915 675570 158736 429089 941642 938705 167771 898442 432743 696637 962238 795579 (802 digits), a[1528] = 6
                                                                                      A[1529]/B[1529] = 34 700971 683508 863828 317055 707496 105637 360406 400553 101083 117116 369915 196863 748529 915144 321829 042101 355501 375686 520347 600639 297100 499167 530799 725424 298732 994966 635485 577372 141033 368173 508989 567244 897516 509456 360532 003615 251246 181095 030539 293197 289464 567467 592395 212440 722887 803270 052884 258353 157370 876871 318343 832085 593113 383964 657523 427425 392178 856186 009435 669916 737446 151966 784123 591756 695849 710239 205750 991926 912091 307405 759896 867551 846784 525995 663516 965547 399994 586469 050844 093192 628969 562291 024354 961412 996847 377086 339368 023084 894125 899682 527596 633314 034038 157831 438617 834064 881722 004102 334986 528542 939148 177487 413600 667753 850217 563508 280332 746696 290951 548330 534686 712338 541831 442109 433083 106665 605207 792930 927903 583022 641092 277730 901354 687380 930389 592514 049608 841359 296753 486988 594816 900046 555119 (800 digits)/3372 709774 500271 765675 320794 824329 145420 433103 853647 793673 254630 191909 518459 472705 370627 055551 384212 964250 384871 266941 021958 060057 394279 002252 365412 597185 643588 959828 388348 839178 147651 681451 741203 905766 259758 263391 842721 342216 961827 724867 948641 682561 269166 923021 875360 990179 895297 276877 340452 109951 984263 945189 123278 016860 788152 010313 915545 695028 127596 250502 516441 385890 210200 890449 118297 603904 616530 056183 898084 354041 577845 693994 208516 647741 470069 503765 121058 196438 454564 255482 605028 941892 177784 308237 569099 568793 981060 887810 130484 337374 125436 517117 674991 730533 086950 580913 006633 933287 042044 487473 460330 714553 548469 545875 483870 603967 506010 717655 365601 281885 925733 791595 525555 565565 358224 611471 139516 256647 156612 659543 439981 055500 019264 367343 418573 222877 500651 437914 699314 395326 852785 235715 360014 011508 (802 digits), a[1529] = 3
                                                                                      A[1530]/B[1530] = 219 214883 297896 748683 623141 473275 407925 894988 684724 325283 508682 181466 978584 590826 831952 646730 646118 457860 375028 256022 820309 566355 895212 127725 671653 000245 008545 451052 617616 043651 391587 987182 010434 589706 192306 552804 223078 692550 530540 183202 774928 646008 122332 707592 213012 062875 135130 412095 731555 690089 822857 230775 679283 913665 855570 313320 359756 614440 168207 733598 010948 628140 523653 857060 028426 507563 464898 795774 580742 538692 527271 271695 024661 776027 602003 353582 211694 542962 618187 188506 792798 564459 758070 111723 533787 234792 437179 664154 827423 596235 563225 196412 686457 115746 168118 247885 267043 054350 930677 986790 330891 982349 322486 016269 140634 330825 529990 734487 876884 430611 803091 973889 739560 690813 328872 846403 089743 810614 565441 652730 412887 888920 708703 574516 068172 974551 565299 722828 301803 847112 879344 640752 929867 847139 (801 digits)/21306 267339 081956 908339 456518 321208 678896 614890 774381 986985 648036 311875 807212 920041 854774 021914 556929 429135 134848 629973 258971 283925 279210 531219 584079 602959 082511 736948 115057 963455 709450 196512 032672 214547 838519 723058 114826 104249 768081 450307 606147 473739 404334 440200 082930 178141 461110 871483 588680 858405 585251 957737 730318 249650 938531 445600 915768 488956 126039 476661 358647 414333 252399 926159 888359 959208 532424 162483 592437 096690 247121 413573 019231 675729 236707 076428 544753 765241 366901 938194 036349 067444 522939 317581 367924 842779 901510 204951 201435 059777 367842 741636 796613 434573 901250 530711 652856 946115 971187 333282 188389 618508 850928 678579 091983 854835 103596 370395 692561 494934 220367 074830 962711 690003 966470 146026 466129 354395 452591 015340 513131 929233 964501 879630 670175 766354 945551 566193 363658 270403 549455 110930 122322 864627 (803 digits), a[1530] = 6
                                                                                      A[1531]/B[1531] = 1349 990271 470889 355930 055904 547148 553192 730338 508899 052784 169209 458717 068371 293490 906860 202212 918812 102663 625856 056484 522496 695235 870440 297153 755342 300203 046239 341801 283068 402941 717701 432081 629852 435753 663295 677357 342087 406549 364336 129755 942769 165513 301463 837948 490513 100138 614052 525458 647687 297909 814014 702997 907789 075108 517386 537445 585965 078819 865432 411023 735608 506289 293889 926483 762315 741230 499631 980398 476382 144246 471033 390067 015522 502950 138015 785010 235714 657770 295592 181884 849984 015728 110711 694696 164136 405602 000164 324296 987626 471539 279033 706072 752056 728515 166540 925929 436323 207827 588170 255728 513894 833244 112403 511215 511559 835170 743452 687260 008002 874622 366882 378025 149702 686711 415346 511501 645128 468895 185580 844286 060349 974616 529952 348451 096418 777698 984312 386578 652182 379430 763056 439334 479253 637953 (802 digits)/131210 313808 992013 215712 059904 751581 218800 122448 499939 715587 142848 063164 361736 992956 499271 187038 725789 539061 193963 046780 575785 763609 069542 189569 869890 214940 138659 381517 078696 619912 404352 860523 937237 193053 290876 601740 531677 967715 570316 426713 585526 524997 695173 564222 372942 059028 661962 505778 872537 260385 495775 691615 505187 514766 419340 683919 410156 628764 883833 110470 668325 871889 724600 447408 448457 359155 811075 031085 452706 934183 060574 175432 323906 702116 890311 962336 389580 787886 655975 884646 823123 346559 315420 213725 776648 625473 390122 117517 339094 696038 332492 966938 454672 337976 494453 765182 923775 609982 869168 487166 590668 425606 654041 617350 035773 732978 127588 940029 520970 251491 247936 240581 301825 705589 157045 487629 936292 383019 872158 751586 518772 630903 806275 645127 439627 821007 173960 835074 881264 017748 149515 901296 093951 199270 (804 digits), a[1531] = 6
                                                                                      A[1532]/B[1532] = 1569 205154 768786 104613 679046 020423 961118 625327 193623 378067 677891 640184 046955 884317 738812 848943 564930 560524 000884 312507 342806 261591 765652 424879 426995 300448 054784 792853 900684 446593 109289 419263 640287 025459 855602 230161 565166 099099 894876 312958 717697 811521 423796 545540 703525 163013 749182 937554 379242 987999 636871 933773 587072 988774 372956 850765 945721 693260 033640 144621 746557 134429 817543 783543 790742 248793 964530 776173 057124 682938 998304 661762 040184 278977 740019 138592 447409 200732 913779 370391 642782 580187 868781 806419 697923 640394 437343 988451 815050 067774 842258 902485 438513 844261 334659 173814 703366 262178 518848 242518 844786 815593 434889 527484 652194 165996 273443 421747 884887 305234 169974 351914 889263 377524 744219 357904 734872 279509 751022 497016 473237 863537 238655 922967 164591 752250 549612 109406 953986 226543 642401 080087 409121 485092 (802 digits)/152516 581148 073970 124051 516423 072789 897696 737339 274321 702572 790884 375040 168949 912998 354045 208953 282718 968196 328811 676753 834757 047534 348752 720789 453969 817899 221171 118465 193754 583368 113803 057035 969909 407601 129396 324798 646504 071965 338397 877021 191673 998737 099508 004422 455872 237170 123073 377262 461218 118791 081027 649353 235505 764417 357872 129520 325925 117721 009872 587132 026973 286222 977000 373568 336817 318364 343499 193569 045144 030873 307695 589005 343138 377846 127019 038764 934334 553128 022877 822840 859472 414003 838359 531307 144573 468253 291632 322468 540529 755815 700335 708575 251285 772550 395704 295894 576632 556098 840355 820448 779058 044115 504970 295929 127757 587813 231185 310425 213531 746425 468303 315412 264537 395593 123515 633656 402421 737415 324749 766927 031904 560137 770777 524758 109803 587362 119512 401268 244922 288151 698971 012226 216274 063897 (804 digits), a[1532] = 1
                                                                                      A[1533]/B[1533] = 6057 605735 777247 669771 093042 608420 436548 606320 089769 186987 202884 379269 209238 946444 123298 749043 613603 784235 628508 994006 550915 480011 167397 571792 036328 201547 210593 720362 985121 742721 045569 689872 550713 512133 230102 367842 037585 703849 048965 068632 095862 600077 572853 474570 601088 589179 861601 338121 785416 261908 724630 504318 669008 041431 636257 089743 423130 158599 966352 844888 975279 909578 746521 277115 134542 487612 393224 308917 647756 193063 465947 375353 136075 339883 358073 200787 577942 259969 036930 293059 778331 756291 717057 113955 257907 326785 312196 289652 432776 674863 805810 413529 067598 261299 170518 447373 546421 994363 144714 983285 048255 280024 417072 093669 468142 333159 563782 952503 662664 790324 876805 433769 817492 819285 648004 585215 849745 307424 438648 335335 480063 565228 245920 117352 590194 034450 633148 714799 514141 059061 690259 679596 706618 093229 (802 digits)/588760 057253 213923 587866 609173 969950 911890 334466 322904 823305 515501 188284 868586 731951 561406 813898 573946 443650 180398 077042 080056 906212 115800 351938 231799 668637 802172 736912 659960 370016 745762 031631 846965 415856 679065 576136 471190 183611 585510 057777 160548 521208 993697 577489 740558 770539 031182 637566 256191 616758 738858 639675 211704 808018 492957 072480 387931 981927 913450 871866 749245 730558 655601 568113 458909 314248 841572 611792 588139 026802 983660 942448 353321 835655 271369 078631 192584 447270 724609 353169 401540 588570 830498 807647 210369 030233 265019 084922 960683 963485 433500 092664 208529 655627 681566 652866 653673 278279 390235 948512 927842 557953 168952 505137 419046 496417 821144 871305 161565 490767 652846 186818 095437 892368 527592 388599 143557 595265 846408 052367 614486 311317 118608 219401 769038 583093 532498 038879 616030 882203 246428 937974 742773 390961 (804 digits), a[1533] = 3
                                                                                      A[1534]/B[1534] = 19742 022362 100529 113926 958173 845685 270764 444287 462930 939029 286544 777991 674672 723650 108709 096074 405741 913230 886411 294526 995552 701625 267845 140255 535979 905089 686565 953942 856049 674756 245998 488881 292427 561859 545909 333687 677923 210647 041771 518855 005285 611754 142356 969252 506790 930553 333986 951919 735491 773725 810763 446729 594097 113069 281728 119996 215112 169059 932698 679288 672396 863166 057107 614889 194369 711631 144203 702926 000393 262129 396146 787821 448410 298627 814238 740955 181235 980640 024570 249570 977777 849063 019953 148285 471645 620750 373932 857409 113380 092366 259690 143072 641308 628158 846214 515935 342632 245267 952993 192373 989552 655666 686105 808493 056621 165474 964792 279258 872881 676208 800390 653224 341741 835381 688233 113552 284108 201783 066967 503022 913428 559221 976416 275024 935173 855602 449058 253805 496409 403728 713180 118877 528975 764779 (803 digits)/1 918796 752907 715740 887651 343944 982642 633367 740738 243036 172489 337387 939894 774710 108853 038265 650649 004558 299146 870005 907880 074927 766170 696153 776604 149368 823812 627689 329203 173635 693418 351089 151931 510805 655171 166593 053208 060074 622800 094928 050352 673319 562364 080600 736891 677548 548787 216621 289961 229792 969067 297603 568378 870620 188472 836743 346961 489721 063504 750225 202732 274710 477898 943805 077908 713545 261110 868217 028946 809561 111282 258678 416350 403103 884811 941126 274658 512087 894940 196705 882349 064094 179716 329855 954248 775680 558953 086689 577237 422581 646272 000835 986567 876874 739433 440404 254494 537652 390937 011063 665987 562585 717975 011827 811341 384897 077066 694619 924340 698228 218728 426841 875866 550851 072698 706292 799453 833094 523212 863973 924029 875363 494089 126602 182963 416919 336642 717006 517907 093014 934761 438257 826150 444594 236780 (805 digits), a[1534] = 3
                                                                                      A[1535]/B[1535] = 65283 672822 078835 011551 967564 145476 248841 939182 478562 004075 062518 713244 233257 117394 449426 037266 830829 523928 287742 877587 537573 584886 970932 992558 644267 916816 270291 582191 553270 766989 783565 156516 427996 197711 867830 368905 071355 335790 174279 625197 111719 435339 999924 382328 121461 380839 863562 193880 991891 583086 156920 844507 451299 380639 481441 449732 068466 665779 764448 882754 992470 499076 917844 121782 717651 622505 825835 417695 648935 979451 654387 738817 481306 235766 800789 423653 121650 201889 110641 041772 711665 303480 776916 558811 672844 189036 433994 861879 772916 951962 584880 842746 991524 145775 709161 995179 574318 730167 003694 560407 016913 247024 475389 519148 638005 829584 458159 790280 281309 818951 277977 393442 842718 325430 712703 925872 702069 912773 639550 844404 220349 242894 175168 942427 395715 601257 980323 476216 003369 270247 829800 036229 293545 387566 (803 digits)/6 345150 315976 361146 250820 641008 917878 811993 556681 052013 340773 527665 007969 192717 058510 676203 765845 587621 341090 790415 800682 304840 204724 204261 681750 679906 140075 685240 724522 180867 450271 799029 487426 379382 381370 178844 735760 651414 052011 870294 208835 180507 208301 235499 788164 773204 416900 681046 507449 945570 523960 631669 344811 823565 373437 003187 113364 857095 172442 164126 480063 573377 164255 487016 801839 599545 097581 446223 698633 016822 360649 759696 191499 562633 490091 094747 902606 728848 132091 314727 000216 593823 127719 820066 670393 537410 707092 525087 816635 228428 902301 436008 052367 839153 873928 002779 416350 266630 451090 423426 946475 615599 711878 204435 939161 573737 727617 905004 644327 256250 146952 933371 814417 747991 110464 646470 786960 642841 164904 438329 824457 240576 793584 498414 768292 019796 593021 683517 592600 895075 686487 561202 416426 076556 101301 (805 digits), a[1535] = 3
                                                                                      A[1536]/B[1536] = 215593 040828 337034 148582 860866 282114 017290 261834 898616 951254 474100 917724 374444 075833 456987 207874 898230 485015 749639 927289 608273 456286 180644 117931 468783 655538 497440 700517 515861 975725 596693 958430 576416 154995 149400 440402 891989 218017 564610 394446 340443 917774 142130 116236 871175 073072 924673 533562 711166 522984 281525 980251 947995 254987 726052 469192 420512 166399 226045 327553 649808 360396 810639 980237 347324 579148 621709 956012 947201 200484 359310 004273 892329 005928 216607 011914 546186 586307 356493 374889 112773 759505 350702 824720 490178 187859 675917 443048 432130 948254 014332 671313 615881 065485 973700 501474 065588 435768 964076 873595 040292 396740 112274 365938 970638 654228 339271 650099 716811 133062 634322 833552 869896 811673 826344 891170 390317 940103 985620 036235 574476 287904 501923 102307 122320 659376 390028 682453 506517 214472 202580 227565 409611 927477 (804 digits)/20 954247 700836 799179 640113 266971 736279 069348 410781 399076 194809 920382 963802 352861 284385 066876 948185 767422 322419 241253 309926 989448 380343 308938 821856 189087 244039 683411 502769 716238 044233 748177 614210 648952 799281 703127 260490 014316 778835 705810 676858 214841 187267 787100 101385 997161 799489 259760 812311 066504 540949 192611 602814 341316 308783 846304 687056 061006 580831 242604 642922 994841 970665 404855 483427 512180 553855 206888 124845 860028 193231 537766 990849 091004 355085 225369 982478 698632 291214 140886 882998 845563 562875 790055 965429 387912 680230 661953 027143 107868 353176 308860 143671 394336 361217 448742 503545 337543 744208 281344 505414 409384 853609 625135 628826 106110 259920 409633 857322 466978 659587 226957 319119 794824 404092 645705 160335 761618 017926 178963 397401 597093 874842 621846 487839 476309 115707 767559 295709 778241 994224 121865 075428 674262 540683 (806 digits), a[1536] = 3
                                                                                      A[1537]/B[1537] = 280876 713650 415869 160134 828430 427590 266132 201017 377178 955329 536619 630968 607701 193227 906413 245141 729060 008944 037382 804877 145847 041173 151577 110490 113051 572354 767732 282709 069132 742715 380259 114947 004412 352707 017230 809307 963344 553807 738890 019643 452163 353114 142054 498564 992636 453912 788235 727443 703058 106070 438446 824759 399294 635627 207493 918924 488978 832178 990494 210308 642278 859473 728484 102020 064976 201654 447545 373708 596137 179936 013697 743091 373635 241695 017396 435567 667836 788196 467134 416661 824439 062986 127619 383532 163022 376896 109912 304928 205047 900216 599213 514060 607405 211261 682862 496653 639907 165935 967771 434002 057205 643764 587663 885087 608644 483812 797431 440379 998120 952013 912300 226995 712615 137104 539048 817043 092387 852877 625170 880639 794825 530798 677092 044734 518036 260634 370352 158669 509886 484720 032380 263794 703157 315043 (804 digits)/27 299398 016813 160325 890933 907980 654157 881341 967462 451089 535583 448047 971771 545578 342895 743080 714031 355043 663510 031669 110609 294288 585067 513200 503606 868993 384115 368652 227291 897105 494505 547207 101637 028335 180651 881971 996250 665730 830847 576104 885693 395348 395569 022599 889550 770366 216389 940807 319761 012075 064909 824280 947626 164881 682220 849491 800420 918101 753273 406731 122986 568219 134920 891872 285267 111725 651436 653111 823478 876850 553881 297463 182348 653637 845176 320117 885085 427480 423305 455613 883215 439386 690595 610122 635822 925323 387323 187040 843778 336297 255477 744868 196039 233490 235145 451521 919895 604174 195298 704771 451890 024984 565487 829571 567987 679847 987538 314638 501649 723228 806540 160329 133537 542815 514557 292175 947296 404459 182830 617293 221858 837670 668427 120261 256131 496105 708729 451076 888310 673317 680711 683067 491854 750818 641984 (806 digits), a[1537] = 1
                                                                                      A[1538]/B[1538] = 777346 468129 168772 468852 517727 137294 549554 663869 652974 861913 547340 179661 589846 462289 269813 698158 356350 502903 824405 537043 899967 538632 483798 338911 694886 800248 032905 265935 654127 461156 357212 188324 585240 860409 183862 059018 818678 325633 042390 433733 244770 624002 426239 113366 856447 980898 501144 988450 117282 735125 158419 629770 746584 526242 141040 307041 398469 830757 207033 748170 934366 079344 267608 184277 477276 982457 516800 703430 139475 560356 386705 490456 639599 489318 251399 883049 881860 162700 290762 208212 761651 885477 605941 591784 816222 941651 895742 052904 842226 748687 212759 699434 830691 488009 339425 494781 345402 767640 899619 741599 154703 684269 287602 136114 187927 621853 934134 530859 713053 037090 458923 287544 295127 085882 904442 525256 575093 645859 235961 797515 164127 349501 856107 191776 158393 180645 130732 999792 526290 183912 267340 755154 815926 557563 (804 digits)/75 553043 734463 119831 421981 082933 044594 832032 345706 301255 265976 816478 907345 444017 970176 553038 376248 477509 649439 304591 531145 578025 550478 335339 829069 927074 012270 420715 957353 510449 033244 842591 817484 705623 160585 467071 252991 345778 440530 858020 448245 005537 978405 832299 880487 537894 232269 141375 451833 090654 670768 841173 498066 671079 673225 545288 287897 897210 087378 056066 888896 131280 240507 188600 053961 735631 856728 513111 771803 613729 300994 132693 355546 398280 045437 865605 752649 553593 137825 052114 649429 724336 944067 010301 237075 238559 454877 036034 714699 780462 864131 798596 535749 861316 831508 351786 343336 545892 134805 690887 409194 459353 984585 284278 764801 465806 234997 038910 860621 913436 272667 547615 586194 880455 433207 230057 054928 570536 383587 413549 841119 272435 211696 862369 000102 468520 533166 669713 072331 124877 355647 488000 059138 175899 824651 (806 digits), a[1538] = 2
                                                                                      A[1539]/B[1539] = 2 612916 118037 922186 566692 381611 839473 914796 192626 336103 541070 178640 169953 377240 580095 715854 339616 798111 517655 510599 416008 845749 657070 602972 127225 197711 973098 866448 080516 031515 126184 451895 679920 760134 933934 568816 986364 419379 530706 866061 320843 186475 225121 420771 838665 561980 396608 291670 692794 054906 311445 913705 714071 639048 214353 630614 840048 684388 324450 611595 454821 445377 097506 531308 654852 496807 149026 997947 483999 014563 861005 173814 214461 292433 709649 771596 084717 313417 276297 339421 041300 109394 719418 945444 158886 611691 201851 797138 463642 731728 146278 237492 612365 099479 675289 701138 980997 676115 468858 666630 658799 521316 696572 450470 293430 172427 349374 599835 032959 137280 063285 289070 089628 597996 394753 252376 392812 817668 790455 333056 273185 287207 579304 245413 620062 993215 802569 762551 158047 088757 036456 834402 529259 150936 987732 (805 digits)/253 958529 220202 519820 156877 156779 787942 377439 004581 354855 333513 897484 693807 877632 253425 402195 842776 787572 611827 945443 704046 028365 236502 519219 990816 650215 420926 630800 099352 428452 594240 074982 554091 145204 662408 283185 755224 703066 152440 150166 230428 411962 330786 519499 531013 384048 913197 364933 675260 284039 077216 347801 441826 178120 701897 485356 664114 609732 015407 574931 789674 962059 856442 457672 447152 318621 221622 192447 138889 718038 456863 695543 248987 848477 981489 916935 143034 088259 836780 611957 831504 612397 522796 641026 347048 641001 751954 295144 987877 677685 847873 140657 803288 817440 729670 506880 949905 241850 599715 777433 679473 403046 519243 682407 862392 077266 692529 431371 083515 463537 624542 803175 892122 184181 814178 982347 112082 116068 333592 857942 745216 654976 303517 707368 256438 901667 308229 460216 105304 047949 747654 147067 669269 278518 115937 (807 digits), a[1539] = 3
                                                                                      A[1540]/B[1540] = 19 067759 294394 624078 435699 189010 013611 953128 012254 005699 649404 797821 369335 230530 522959 280794 075475 943131 126492 398601 449105 820215 138126 704603 229488 078870 611940 098041 829547 874733 344447 520481 947769 906185 397951 165580 963569 754335 040581 104819 679635 550097 199852 371641 984025 790310 757156 542839 838008 501626 915246 554359 628272 219922 026717 555344 187382 189188 101911 488201 931921 052005 761889 986768 768244 954927 025646 502433 091423 241422 587392 603404 991685 686635 456866 652572 476071 075781 096781 666709 497313 527414 921410 224050 703991 098061 354614 475711 298403 964323 772634 875207 985990 527049 215037 247398 361765 078211 049651 566034 353195 803920 560276 440894 190125 394919 067476 132979 761573 674013 480087 482413 914944 481101 849155 671077 274946 298775 179046 567355 709812 174580 404631 574002 532217 110903 798633 468591 106122 147589 439110 108158 459968 872485 471687 (806 digits)/1853 262748 275880 758572 520121 180391 560191 474105 377775 785242 600574 098871 764000 587443 744154 368409 275685 990517 932234 922697 459467 776582 205995 969879 764786 478581 958756 836316 652820 509617 192925 367469 696122 722055 797443 449371 539564 267241 507611 909184 061243 889274 293911 468796 597581 226236 624650 695911 178655 078928 211283 275783 590849 917924 586507 942784 936700 165334 195231 080589 416620 865699 235604 392307 184027 965980 408083 860241 744031 639998 499040 001496 098461 337625 915867 284151 753888 171411 995289 335819 469962 011119 603643 497485 666415 725571 718557 102049 629843 524263 799243 783201 158771 583401 939201 899952 992673 238846 332816 132923 165508 280679 619291 061133 801546 006673 082703 058508 445230 158199 644467 169846 831050 169728 132460 106486 839503 383014 718737 419149 057635 857269 336320 813946 795174 780191 690772 891225 809459 460525 589226 517473 744023 125526 636210 (808 digits), a[1540] = 7
                                                                                      A[1541]/B[1541] = 78 883953 295616 418500 309489 137651 893921 727308 241642 358902 138689 369925 647294 299362 671932 839030 641520 570636 023625 105005 212432 126610 209577 421385 045177 513194 420859 258615 398707 530448 503974 533823 471000 384876 525739 231140 840643 436719 693031 285340 039385 386864 024530 907339 774768 723223 425234 463030 044828 061413 972432 131144 227160 518736 321223 851991 589577 441140 732096 564403 182505 653400 145066 478383 727832 316515 251613 007679 849691 980254 210575 587434 181204 038975 537116 381885 989001 616541 663424 006259 030554 219054 405059 841646 974851 003936 620309 699983 657258 589023 236817 738324 556327 207676 535438 690732 428057 988959 667464 930768 071582 736998 937678 214047 053931 752103 619279 131754 079253 833333 983635 218725 749406 522403 791375 936685 492598 012769 506641 602479 112433 985529 197830 541423 748931 436830 997103 636915 582535 679114 792897 267036 369134 640878 874480 (806 digits)/7667 009522 323725 554110 237361 878346 028708 273860 515684 495825 735810 292971 749810 227407 230042 875832 945520 749644 340767 636233 541917 134694 060486 398739 049962 564543 255953 976066 710634 466921 365941 544861 338582 033427 852182 080671 913481 772032 182887 786902 475403 969059 506432 394685 921338 288995 411800 148578 389880 599751 922349 450935 805225 849819 047929 256496 410915 271068 796331 897289 456158 424856 798860 026901 183264 182542 853957 633414 115016 278032 453023 701527 642833 198981 644959 053542 158586 773907 817937 955235 711352 656875 937370 630969 012711 543288 626182 703343 507251 774741 044848 273462 438375 151048 486478 106692 920598 197235 930980 309126 341506 525764 996407 926943 068576 103959 023341 665404 864436 096336 202411 482563 216322 863094 344019 408294 470095 648127 208542 534538 975760 084053 648800 963155 437138 022434 071321 025119 343141 890052 104560 216962 645361 780624 660777 (808 digits), a[1541] = 4
                                                                                      A[1542]/B[1542] = 571 255432 363709 553580 602123 152573 271064 044285 703750 518014 620230 387300 900395 326069 226489 154008 566119 937583 291868 133637 936130 706486 605168 654298 545730 671231 557954 908349 620500 587872 872269 257246 244772 600321 078125 783566 848073 811372 891800 102199 955333 258145 371568 723020 407406 852874 733797 784050 151804 931524 722271 472369 218395 851076 275284 519285 314424 277173 226587 439024 209460 625806 777355 335454 863071 170533 786937 556192 039267 103202 061421 715444 260113 959464 216681 325774 399082 391572 740749 710522 711193 060795 756829 115579 527948 125617 696782 375596 899214 087486 430359 043479 880280 980784 963108 082525 358171 000928 721906 081410 854274 962913 124023 939223 567647 659644 402430 055258 316350 507351 365534 013494 160790 137928 388787 227875 723132 388161 725537 784709 496850 073284 789445 363968 774737 168720 778358 927000 183871 901392 989390 977413 043911 358637 593047 (807 digits)/55522 329404 541959 637344 181654 328813 761149 391128 987567 256022 751246 149674 012672 179294 354454 499239 894331 238028 317608 376332 252887 719440 629400 761053 114524 430384 750434 668783 627261 778066 754516 181499 066196 956050 762718 014074 933936 671466 787826 417501 389071 672690 838938 231598 046949 249204 507251 735959 907819 277191 667729 432334 227430 866657 922012 738259 813107 062815 769554 361615 609729 839696 827624 580615 466877 243780 385787 294140 549145 586225 670205 912189 598293 730497 430580 658946 863995 588766 720855 022469 449430 609251 165237 914268 755396 528592 101836 025454 180605 947451 113181 697438 227397 640741 344548 646803 436860 619497 849678 296807 556053 961034 594146 549735 281578 734386 246094 716342 496282 832553 061347 547789 345310 211388 540595 964548 130172 919905 178535 160921 887956 445644 877927 556034 855140 937230 190020 067061 211452 690890 321148 036212 261555 589899 261649 (809 digits), a[1542] = 7
                                                                                      A[1543]/B[1543] = 1221 394818 023035 525661 513735 442798 436049 815879 649143 394931 379150 144527 448084 951501 124911 147047 773760 445802 607361 372281 084693 539583 419914 729982 136638 855657 536769 075314 639708 706194 248513 048315 960545 585518 681990 798274 536791 059465 476631 489739 950051 903154 767668 353380 589582 428972 892830 031130 348437 924463 416975 075882 663952 220888 871792 890562 218425 995487 185271 442451 601426 905013 699777 149293 453974 657582 825488 120063 928226 186658 333419 018322 701431 957903 970479 033434 787166 399687 144923 427304 452940 340645 918718 072806 030747 255172 013874 451177 455686 763996 097535 825284 316889 169246 461654 855783 144399 990817 111277 093589 780132 662825 185726 092494 189227 071392 424139 242270 711954 848036 714703 245714 070986 798260 568950 392436 938862 789092 957717 171898 106134 132098 776721 269361 298405 774272 553821 490915 950279 481900 771679 221862 456957 358154 060574 (808 digits)/118711 668331 407644 828798 600670 535973 551007 056118 490819 007871 238302 592319 775154 585995 938951 874312 734183 225700 975984 388898 047692 573575 319287 920845 279011 425312 756823 313633 965158 023054 874973 907859 470975 945529 377618 108821 781355 114965 758540 621905 253547 314441 184308 857882 015236 787404 426303 620498 205519 154135 257808 315604 260087 583134 891954 733016 037129 396700 335440 620520 675618 104250 454109 188132 117018 670103 625532 221695 213307 450483 793435 525906 839420 659976 506120 371435 886577 951441 259648 000174 610213 875378 267846 459506 523504 600472 829854 754251 868463 669643 271211 668338 893170 432531 175575 400299 794319 436231 630336 902741 453614 447834 184701 026413 631733 572731 515531 098089 857001 761442 325106 578141 906943 285871 425211 337390 730441 487937 565612 856382 751672 975343 404656 075225 147419 896894 451361 159241 766047 271832 746856 289387 168472 960423 184075 (810 digits), a[1543] = 2
                                                                                      A[1544]/B[1544] = 4235 439886 432816 130565 143329 480968 579213 491924 651180 702808 757680 820883 244650 180572 601222 595151 887401 274991 113952 250481 190211 325236 864912 844244 955647 238204 168262 134293 539626 706455 617808 402194 126409 356877 124098 178390 458446 989769 321694 571419 805488 967609 674573 783162 176154 139793 412287 877441 197118 704914 973196 700017 210252 513742 890663 190971 969702 263634 782401 766379 013741 340847 876686 783335 224995 143282 263401 916383 823945 663177 061678 770412 364409 833176 128118 426078 760581 590634 175519 992436 070014 082733 512983 333997 620189 891133 738405 729129 266274 379474 722966 519332 830948 488524 348072 649874 791370 973380 055737 362180 194672 951388 681202 216706 135328 873821 674847 782070 452215 051461 509643 750636 373750 532710 095638 405186 539720 755440 598689 300403 815252 469581 119609 172052 669954 491538 439823 399748 034710 347095 304428 643000 414783 433099 774769 (808 digits)/411657 334398 764894 123739 983665 936734 414170 559484 460024 279636 466153 926633 338135 937282 171310 122178 096880 915131 245561 543026 395965 440166 587264 523588 951558 706323 020904 609685 522735 847231 379437 905077 479124 792638 895572 340540 278002 016364 063448 283217 149713 616014 391864 805244 092659 611417 786162 597454 524376 739597 441154 379147 007693 616062 597876 937307 924495 252916 775876 223177 636584 152448 189952 145011 817933 254091 262383 959226 189067 937677 050512 489910 116555 710426 948941 773254 523729 443090 499799 022993 280072 235385 968777 292788 325910 330010 591400 288209 785996 956380 926816 702454 906908 938334 871274 847702 819818 928192 740689 005031 916897 304537 148249 628976 176779 452580 792688 010612 067288 116880 036667 282215 066140 069002 816229 976720 321497 383717 875373 730070 142975 371675 091895 781710 297400 627913 544103 544786 509594 506388 561716 904373 766974 471168 813874 (810 digits), a[1544] = 3
                                                                                      A[1545]/B[1545] = 18163 154363 754300 047922 087053 366672 752903 783578 253866 206166 409873 428060 426685 673791 529801 527655 323365 545767 063170 374205 845538 840530 879566 106961 959227 808474 209817 612488 798215 532016 719746 657092 466183 013027 178383 511836 370579 018542 763409 775419 172007 773593 465963 486029 294198 988146 541981 540895 136912 744123 309761 875951 504962 275860 434445 654450 097235 050026 314878 507967 656392 268405 206524 282634 353955 230711 879095 785599 224008 839366 580134 099972 159071 290608 482952 737749 829492 762223 847003 397048 732996 671579 970651 408796 511506 819706 967497 367694 520784 281894 989401 902615 640683 123343 853945 455282 309883 884337 334226 542310 558824 468379 910534 959318 730542 566679 123530 370552 520815 053882 753278 248259 565988 929100 951504 013183 097745 810855 352474 373513 367144 010423 255157 957571 978223 740426 313115 089908 089120 870281 989393 793864 116091 090553 159650 (809 digits)/1 765341 005926 467221 323758 535334 282911 207689 294056 330916 126417 102918 298853 127698 335124 624192 363025 121706 886225 958230 561003 631554 334241 668346 015201 085246 250604 840441 752376 056101 411980 392725 528169 387475 116084 959907 470982 893363 180422 012333 754773 852401 778498 751768 078858 385875 233075 570954 010316 303026 112525 022425 832192 290862 047385 283462 482247 735110 408367 438945 513231 221954 714043 213917 768179 388751 686468 675068 058599 969579 201191 995485 485547 305643 501684 301887 464453 981495 723803 258844 092147 730502 816922 142955 630659 827145 920515 195455 907091 012451 495166 978478 478158 520806 185870 660674 791111 073595 149002 593092 922869 121203 665982 777699 542318 338851 383054 686283 140538 126154 228962 471775 707002 171503 561882 690131 244272 016431 022809 067107 776663 323574 462043 772239 202066 337022 408548 627775 338387 804425 297386 993723 906882 236370 845098 439571 (811 digits), a[1545] = 4
                                                                                      A[1546]/B[1546] = 22398 594250 187116 178487 230382 847641 332117 275502 905046 908975 167554 248943 671335 854364 131024 122807 210766 820758 177122 624687 035750 165767 744478 951206 914875 046678 378079 746782 337842 238472 337555 059286 592592 369904 302481 690226 829026 008312 085104 346838 977496 741203 140537 269191 470353 127939 954269 418336 334031 449038 282958 575968 715214 789603 325108 845422 066937 313661 097280 274346 670133 609253 083211 065969 578950 373994 142497 701983 047954 502543 641812 870384 523481 123784 611071 163828 590074 352858 022523 389484 803010 754313 483634 742794 131696 710840 705903 096823 787058 661369 712368 421948 471631 611868 202018 105157 101254 857717 389963 904490 753497 419768 591737 176024 865871 440500 798378 152622 973030 105344 262921 998895 939739 461811 047142 418369 637466 566295 951163 673917 182396 480004 374767 129624 648178 231964 752938 489656 123831 217377 293822 436864 530874 523652 934419 (809 digits)/2 176998 340325 232115 447498 519000 219645 621859 853540 790940 406053 569072 225486 465834 272406 795502 485203 218587 801357 203792 104030 027519 774408 255610 538790 036804 956927 861346 362061 578837 259211 772163 433246 866599 908723 855479 811523 171365 196786 075782 037991 002115 394513 143632 884102 478534 844493 357116 607770 827402 852122 463580 211339 298555 663447 881339 419555 659605 661284 214821 736408 858538 866491 403869 913191 206684 940559 937452 017826 158647 138869 045997 975457 422199 212111 250829 237708 505225 166893 758643 115141 010575 052308 111732 923448 153056 250525 786856 195300 798448 451547 905295 180613 427715 124205 531949 638813 893414 077195 333781 927901 038100 970519 925949 171294 515630 835635 478971 151150 193442 345842 508442 989217 237643 630885 506361 220992 337928 406526 942481 506733 466549 833718 864134 983776 634423 036462 171878 883174 314019 803775 555440 811256 003345 316267 253445 (811 digits), a[1546] = 1
                                                                                      A[1547]/B[1547] = 331743 473866 373926 546743 312413 233651 402545 640618 924522 931818 755632 913271 825387 634889 364139 246956 274101 036381 542887 119824 346041 161279 302271 423858 767478 461971 502934 067441 528006 870629 445517 487104 762476 191687 413127 175011 976943 134911 954870 631164 856962 150437 433485 254709 879142 779305 901753 397603 813353 030659 271181 939513 517969 330306 985969 490359 034357 441281 676802 348821 038262 797948 371479 206208 459260 466629 874063 613361 895371 874977 565514 285355 487807 023593 037949 031350 090533 702236 162330 849835 975147 231968 741537 807914 355260 771476 850140 723227 539605 541070 962559 809894 243525 689498 682198 927481 727451 892380 793721 205181 107788 345140 194855 423666 852742 733690 300824 507274 143236 528702 434186 232802 722341 394455 611497 870358 022277 738998 668765 808353 920694 730484 501897 772317 052718 987932 854253 945093 822757 913564 102907 909967 548334 421694 241516 (810 digits)/32 243317 770479 716837 588737 801337 357949 913727 243627 404081 811167 069929 455663 649378 148819 761227 155870 181936 105226 811320 017424 016831 175957 246893 558261 600515 647594 899290 821238 159823 040945 203013 593625 519873 838218 936624 832307 292475 935427 073282 286647 882017 301682 762628 456293 085363 055982 570586 519107 886666 042239 512548 790942 470641 335655 622214 356026 969589 666346 446449 822955 241498 844922 868096 552856 282340 854307 799396 308166 190639 145358 639457 141951 216432 471241 813496 792373 054648 060315 879847 704121 878553 549235 707216 558933 969933 427876 211442 641302 190729 816837 652611 006746 508817 924748 107969 734505 581392 229737 266039 913483 654617 253261 740987 940441 557683 081951 391879 256640 834347 070757 589977 556043 498514 394279 779188 338164 747428 714186 261848 870931 855272 134107 870128 974939 218944 919019 034079 702828 200702 550244 769895 264466 283205 272839 987801 (812 digits), a[1547] = 14
                                                                                      A[1548]/B[1548] = 354142 068116 561042 725230 542796 081292 734662 916121 829569 840793 923187 162215 496723 489253 495163 369763 484867 857139 720009 744511 381791 327047 046750 375065 682353 508649 881013 814223 865849 109101 783072 546391 355068 561591 715608 865238 805969 143224 039974 978003 834458 891640 574022 523901 349495 907245 856022 815940 147384 479697 554140 515482 233184 119910 311078 335781 101294 754942 774082 623167 708396 407201 454690 272178 038210 840624 016561 315344 943326 377521 207327 155740 011288 147377 649020 195178 680608 055094 184854 239320 778157 986282 225172 550708 486957 482317 556043 820051 326664 202440 674928 231842 715157 301366 884217 032638 828706 750098 183685 109671 861285 764908 786592 599691 718614 174191 099202 659897 116266 634046 697108 231698 662080 856266 658640 288727 659744 305294 619929 482271 103091 210488 876664 901941 700897 219897 607192 434749 946589 130941 396730 346832 079208 945347 175935 (810 digits)/34 420316 110804 948953 036236 320337 577595 535587 097168 195022 217220 639001 681150 115212 421226 556729 641073 400523 906584 015112 121454 044350 950365 502504 097051 637320 604522 760637 183299 738660 300156 975177 026872 386473 746942 792104 643830 463841 132213 149064 324638 884132 696195 906261 340395 563897 900475 927703 126878 714068 894361 976129 002281 769196 999103 503553 775582 629195 327630 661271 559364 100037 711414 271966 466047 489025 794867 736848 325992 349286 284227 685455 117408 638631 683353 064326 030081 559873 227209 638490 819262 889128 601543 818949 482382 122989 678401 998298 836602 989178 268385 557906 187359 936533 048953 639919 373319 474806 306932 599821 841384 692718 223781 666937 111736 073313 917586 870850 407791 027789 416600 098420 545260 736158 025165 285549 559157 085357 120713 204330 377665 321821 967826 734263 958715 853367 955481 205958 586002 514722 354020 325336 075722 286550 589107 241246 (812 digits), a[1548] = 1
                                                                                      A[1549]/B[1549] = 1 748311 746332 618097 447665 483597 558822 341197 305106 242802 294994 448381 562133 812281 591903 344792 726010 213572 464940 422926 097869 873206 469467 489272 924121 496892 496571 026989 324336 991403 307036 577807 672670 182750 438054 275562 635967 200819 707808 114770 543180 194797 716999 729575 350315 277126 408289 325844 661364 402890 949449 487744 001442 450705 809948 230282 833483 439536 461052 773132 841491 871848 426754 190240 294920 612103 829125 940308 874741 668677 385062 394822 908315 532959 613103 634029 812064 812965 922612 901747 807119 087779 177097 642228 010748 303090 700747 074316 003432 846262 350833 662272 737265 104154 894966 219067 058037 042278 892773 528461 643868 552931 404775 341225 822433 727199 430454 697635 146862 608303 064889 222619 159597 370664 819522 246059 025268 661254 960177 148483 737438 333059 572440 008557 380083 856307 867523 283023 684093 609114 437329 689829 297295 865170 203082 945256 (811 digits)/169 924582 213699 512649 733683 082687 668332 056075 632300 184170 680049 625936 180264 110227 833725 988145 720163 784031 731562 871768 503240 194234 977419 256909 946468 149798 065685 941839 554437 114464 241573 103721 701115 065768 825990 105043 407629 147840 464279 669539 585203 418548 086466 387673 817875 340954 657886 281399 026622 742941 619687 417064 800069 547429 332069 636429 458357 486370 976869 091536 060411 641649 690579 955962 417046 238444 033778 746789 612135 587784 282269 381277 611585 770959 204654 070800 912699 294140 969154 433810 981173 435067 955410 983014 488462 461892 141484 204637 987714 147442 890379 884235 756186 254950 120562 667647 227783 480617 457467 665327 279022 425490 148388 408736 387385 850938 752298 875280 887804 945504 737157 983659 737086 443146 494940 921386 574793 088857 197039 079170 381593 142560 005414 807184 809802 632416 740943 857914 046838 259591 966326 071239 567355 429407 629268 952785 (813 digits), a[1549] = 4
                                                                                      A[1550]/B[1550] = 3 850765 560781 797237 620561 509991 198937 417057 526334 315174 430782 819950 286483 121286 673060 184748 821783 912012 787020 565861 940251 128204 265982 025296 223308 676138 501791 934992 462897 848655 723174 938687 891731 720569 437700 266734 137173 207608 558840 269516 064364 224054 325640 033173 224531 903748 723824 507712 138668 953166 378596 529628 518367 134595 739806 771644 002747 980367 677048 320348 306151 452093 260709 835170 862019 262418 498875 897179 064828 280681 147645 996972 972371 077207 373584 917079 819308 306539 900319 988349 853558 953716 340477 509628 572205 093138 883811 704675 826917 019188 904107 999473 706372 923467 091299 322351 148712 913264 535645 240608 397408 967148 574459 469044 244559 173013 035100 494472 953622 332872 763825 142346 550893 403410 495311 150758 339264 982254 225648 916896 957147 769210 355368 893779 662109 413512 954944 173239 802937 164818 005600 776388 941423 809549 351513 066447 (811 digits)/374 269480 538203 974252 503602 485712 914259 647738 361768 563363 577319 890874 041678 335668 088678 533021 081400 968587 369709 758649 127934 432820 905204 016323 989987 936916 735894 644316 292173 967588 783303 182620 429102 518011 398923 002191 459088 759522 060772 488143 495045 721228 869128 681608 976146 245807 216248 490501 180124 199952 133736 810258 602420 864055 663242 776412 692297 601937 281368 844343 680187 383337 092574 183891 300139 965913 862425 230427 550263 524854 848766 448010 340580 180550 092661 205927 855480 148155 165518 506112 781609 759264 512365 784978 459307 046773 961370 407574 812031 284064 049145 326377 699732 446433 290078 975213 828886 436041 221867 930476 399429 543698 520558 484409 886507 775191 422184 621412 183400 918798 890916 065740 019433 622451 015047 128322 708743 263071 514791 362671 140851 606941 978656 348633 578321 118201 437368 921786 679679 033906 286672 467815 210433 145365 847645 146816 (813 digits), a[1550] = 2
                                                                                      A[1551]/B[1551] = 24 852905 111023 401523 171034 543544 752446 843542 463112 133848 879691 368083 281032 540001 630264 453285 656713 685649 187063 818097 739376 642432 065359 641050 263973 553723 507322 636944 101724 083337 646086 209935 023060 506167 064255 875967 459006 446471 060849 731866 929365 539123 670839 928614 697506 699618 751236 372117 493378 121889 221028 665515 111645 258280 248788 860146 849971 321742 523342 695222 678400 584407 991013 201265 467036 186614 822381 323383 263711 352764 270938 376660 742541 996203 854613 136508 727914 652205 324532 831846 928472 810077 219962 699999 443978 861924 003617 302370 964934 961395 775481 659114 975502 644957 442762 153173 950314 521866 106644 972112 028322 355822 851532 155491 289788 765277 641057 664472 868596 605539 647840 076698 464957 791127 791389 150609 060858 554780 314070 649865 480324 948321 704653 371235 352740 337385 597188 322462 501716 598022 470934 348162 945838 722466 312161 343938 (812 digits)/2415 541465 442923 358164 755297 996965 153889 942505 802911 564352 143968 971180 430334 124236 365797 186272 208569 595555 949821 423663 270846 791160 408643 354853 886395 771298 481053 807737 307480 919996 941392 199444 275730 173837 219528 118192 162161 704972 828914 598400 555477 745921 301238 477327 674752 815797 955377 224406 107367 942654 422108 278616 414594 731763 311526 294905 612143 097994 665082 157598 141535 941672 246025 059310 217886 033927 208330 129354 913716 736913 374868 069339 655066 854259 760621 306368 045580 183071 962265 470487 670831 990655 029605 692885 244304 742535 909706 650086 859901 851827 185251 842501 954580 933549 861036 518930 201102 096864 788675 248185 675599 687681 271739 315195 706432 502087 285406 603753 988210 458298 082654 378099 853688 177852 585223 691322 827252 667286 285787 255197 226702 784211 877352 898986 279729 341625 365157 388634 124912 463029 686360 878130 829954 301602 715139 833681 (814 digits), a[1551] = 6
                                                                                      A[1552]/B[1552] = 53 556575 782828 600283 962630 597080 703831 104142 452558 582872 190165 556116 848548 201289 933589 091320 135211 283311 161148 202057 419004 413068 396701 307396 751255 783585 516437 208880 666346 015331 015347 358557 937852 732903 566212 018669 055186 100550 680539 733249 923095 302301 667319 890402 619545 302986 226297 251947 125425 196944 820653 860658 741657 651156 237384 491937 702690 623852 723733 710793 662952 620909 242736 237701 796091 635648 143638 543945 592250 986209 689522 750294 457455 069615 082811 190097 275137 610950 549385 652043 710504 573870 780402 909627 460162 816986 891046 309417 756786 941980 455071 317703 657378 213381 976823 628699 049341 956996 748935 184832 454053 678794 277523 780026 824136 703568 317215 823418 690815 543952 059505 295743 480808 985666 078089 451976 460982 091814 853790 216627 917797 665853 764675 636250 367590 088284 149320 818164 806370 360862 947469 472714 833101 254481 975835 754323 (812 digits)/5205 352411 424050 690582 014198 479643 222039 532749 967591 692067 865257 833234 902346 584140 820272 905565 498540 159699 269352 605975 669628 015141 722490 726031 762779 479513 698002 259790 907135 807582 666087 581508 980562 865685 837979 238575 783412 169467 718601 684944 606001 213071 471605 636264 325651 877403 127002 939313 394860 085260 977953 367491 431610 327582 286295 366223 916583 797926 611533 159539 963259 266681 584624 302511 735912 033768 279085 489137 377696 998681 598502 586689 650713 889069 613903 818663 946640 514299 090049 447088 123273 740574 571577 170748 947916 531845 780783 707748 531834 987718 419649 011381 608894 313533 012152 013074 231090 629770 799218 426847 750628 919061 064037 114801 299372 779365 992997 828920 159821 835395 056224 821939 726809 978156 185494 510968 363248 597644 086365 873065 594257 175365 733362 146606 137779 801452 167683 699054 929503 959965 659394 224076 870341 748571 277924 814178 (814 digits), a[1552] = 2
                                                                                      A[1553]/B[1553] = 78 409480 893852 001807 133665 140625 456277 947684 915670 716721 069856 924200 129580 741291 563853 544605 791924 968960 348212 020155 158381 055500 462060 948447 015229 337309 023759 845824 768070 098668 661433 568492 960913 239070 630467 894636 514192 547021 741389 465116 852460 841425 338159 819017 317052 002604 977533 624064 618803 318834 041682 526173 853302 909436 486173 352084 552661 945595 247076 406016 341353 205317 233749 438967 263127 822262 966019 867328 855962 338973 960461 126955 199997 065818 937424 326606 003052 263155 873918 483890 638977 383948 000365 609626 904141 678910 894663 611788 721721 903376 230552 976818 632880 858339 419585 781872 999656 478862 855580 156944 482376 034617 129055 935518 113925 468845 958273 487891 559412 149491 707345 372441 945766 776793 869478 602585 521840 646595 167860 866493 398122 614175 469329 007485 720330 425669 746509 140627 308086 958885 418403 820877 778939 976948 287997 098261 (812 digits)/7620 893876 866974 048746 769496 476608 375929 475255 770503 256420 009226 804415 332680 708377 186070 091837 707109 755255 219174 029638 940474 806302 131134 080885 649175 250812 179056 067528 214616 727579 607479 780953 256293 039523 057507 356767 945573 874440 547516 283345 161478 958992 772844 113592 000404 693201 082380 163719 502228 027915 400061 646107 846205 059345 597821 661129 528726 895921 276615 317138 104795 208353 830649 361821 953798 067695 487415 618492 291413 735594 973370 656029 305780 743329 374525 125031 992220 697371 052314 917575 794105 731229 601182 863634 192221 274381 690490 357835 391736 839545 604900 853883 563475 247082 873188 532004 432192 726635 587893 675033 426228 606742 335776 429997 005805 281453 278404 432674 148032 293693 138879 200039 580498 156008 770718 202291 190501 264930 372153 128262 820959 959577 610715 045592 417509 143077 532841 087689 054416 422995 345755 102207 700296 050173 993064 647859 (814 digits), a[1553] = 1
                                                                                      A[1554]/B[1554] = 131 966056 676680 602091 096295 737706 160109 051827 368229 299593 260022 480316 978128 942581 497442 635925 927136 252271 509360 222212 577385 468568 858762 255843 766485 120894 540197 054705 434416 113999 676780 927050 898765 971974 196679 913305 569378 647572 421929 198366 775556 143727 005479 709419 936597 305591 203830 876011 744228 515778 862336 386832 594960 560592 723557 844022 255352 569447 970810 116810 004305 826226 476485 676669 059219 457911 109658 411274 448213 325183 649983 877249 657452 135434 020235 516703 278189 874106 423304 135934 349481 957818 780768 519254 364304 495897 785709 921206 478508 845356 685624 294522 290259 071721 396409 410572 048998 435859 604515 341776 936429 713411 406579 715544 938062 172414 275489 311310 250227 693443 766850 668185 426575 762459 947568 054561 982822 738410 021651 083121 315920 280029 234004 643736 087920 513953 895829 958792 114457 319748 365873 293592 612041 231430 263832 852584 (813 digits)/12826 246288 291024 739328 783694 956251 597969 008005 738094 948487 874484 637650 235027 292518 006342 997403 205649 914954 488526 635614 610102 821443 853624 806917 411954 730325 877058 327319 121752 535162 273567 362462 236855 905208 895486 595343 728986 043908 266117 968289 767480 172064 244449 749856 326056 570604 209383 103032 897088 113176 378015 013599 277815 386927 884117 027353 445310 693847 888148 476678 068054 475035 415273 664333 689710 101463 766501 107629 669110 734276 571873 242718 956494 632398 988428 943695 938861 211670 142364 364663 917379 471804 172760 034383 140137 806227 471274 065583 923571 827264 024549 865265 172369 560615 885340 545078 663283 356406 387112 101881 176857 525803 399813 544798 305178 060819 271402 261594 307854 129088 195104 021979 307308 134164 956212 713259 553749 862574 458519 001328 415217 134943 344077 192198 555288 944529 700524 786743 983920 382961 005149 326284 570637 798745 270989 462037 (815 digits), a[1554] = 1
                                                                                      A[1555]/B[1555] = 2717 730614 427464 043629 059579 894748 658458 984232 280256 708586 270306 530539 692159 592921 512706 263124 334650 014390 535416 464406 706090 426877 637306 065322 344931 755199 827700 939933 456392 378662 197052 109510 936232 678554 564066 160747 901765 498470 179973 432452 363583 715965 447754 007416 048998 114429 054151 144299 503373 634411 288410 262825 752514 121290 957330 232529 659713 334554 663278 742216 427469 729846 763462 972348 447516 980485 159188 092817 820228 842646 960138 671948 349039 774499 342134 660671 566849 745284 340001 202577 628616 540323 615735 994714 190231 596866 608862 035918 291898 810509 943038 867264 438062 292767 347773 993313 979625 196054 945886 992483 210970 302845 260650 246416 875168 917131 468059 714096 563966 018367 044358 736150 477282 025992 820839 693825 178295 414795 600882 528919 716528 214760 149421 882207 478740 704747 663108 316469 597233 353852 735869 692730 019764 605553 564654 149941 (814 digits)/264145 819642 687468 835322 443395 601640 335309 635370 532402 226177 498919 557420 033226 558737 312930 039901 820108 054344 989706 741931 142531 235179 203630 219233 888269 857329 720222 613910 649667 430825 078827 030197 993411 143700 967239 263642 525294 752605 869875 649140 511082 400277 661839 110718 521536 105285 270042 224377 443990 291442 960361 918093 402512 797903 280162 208198 434940 772879 039584 850699 465884 709062 136122 648495 748000 096970 817437 771085 673628 421126 410835 510408 435673 391309 143103 998950 769444 930773 899602 210854 141695 167313 056383 551296 994977 398931 115971 669513 863173 384826 095898 159187 010866 459400 579999 433577 697859 854763 330135 712656 963379 122810 332047 325963 109366 497838 706449 664560 305114 875457 040959 639625 726660 839307 894972 467482 265498 516419 542533 154831 125302 658444 492258 889563 523288 033671 543336 822568 732824 082215 448741 627899 113052 025079 412853 888599 (816 digits), a[1555] = 20
                                                                                      A[1556]/B[1556] = 2849 696671 104144 645720 155875 632454 818568 036059 648486 008179 530329 010856 670288 535503 010148 899050 261786 266662 044776 686619 283475 895446 496068 321166 111416 876094 367897 994638 890808 492661 873833 036561 834998 650528 760746 074053 471144 146042 601902 630819 139139 859692 453233 716835 985595 420020 257982 020311 247602 150190 150746 649658 347474 681883 680888 076551 915065 904002 634088 859026 431775 556073 239948 649017 506736 438396 268846 504092 268442 167830 610122 549198 006491 909933 362370 177374 845039 619390 763305 338511 978098 498142 396504 513968 554536 092764 394571 957124 770407 655866 628663 161786 728321 364488 744183 403886 028623 631914 550402 334260 147400 016256 667229 961961 813231 089545 743549 025406 814193 711810 811209 404335 903857 788452 768407 748387 161118 153205 622533 612041 032448 494789 383426 525943 566661 218701 558938 275261 711690 673601 101742 986322 631805 836983 828487 002525 (814 digits)/276972 065930 978493 574651 227090 557891 933278 643376 270497 174665 373404 195070 268253 851255 319273 037305 025757 969299 478233 377545 752634 056623 057255 026151 300224 587655 597280 941229 771419 965987 352394 392660 230267 048909 862725 858986 254280 796514 135993 617430 278562 572341 906288 860574 847592 675889 479425 327410 341078 404619 338376 931692 680328 184831 164279 235551 880251 466726 927733 327377 533939 184097 551396 312829 437710 198434 583938 878715 342739 155402 982708 753127 392168 023708 131532 942646 708306 142444 041966 575518 059074 639117 229143 585680 135115 205158 587245 735097 786745 212090 120448 024452 183236 020016 465339 978656 361143 211169 717247 814538 140236 648613 731860 870761 414544 558657 977851 926154 612969 004545 236063 661605 033968 973472 851185 180741 819248 378994 001052 156159 540519 793387 836336 081762 078576 978201 243861 609312 716744 465176 453890 954183 683689 823824 683843 350636 (816 digits), a[1556] = 1
                                                                                      A[1557]/B[1557] = 11266 820627 739897 980789 527206 792113 114163 092411 225714 733124 861293 563109 703025 199430 543152 960275 120008 814376 669746 524264 556518 113217 125511 028820 679182 383482 931394 923850 128817 856647 818551 219196 441228 630140 846304 382908 315197 936597 985681 324909 781003 295042 807455 157924 005784 374489 828097 205233 246180 084981 740650 211800 794938 166941 999994 462185 404911 046562 565545 319295 722796 398066 483308 919400 967726 295673 965727 605094 625555 346138 790506 319542 368515 504299 429245 192796 101968 603456 629917 218113 562912 034750 805249 536619 853839 875159 792577 907292 603121 778109 829028 352624 623026 386233 580324 204972 065496 091798 597093 995263 653170 351615 262340 132302 314862 185768 698706 790317 006547 153799 477986 949158 188855 391351 126062 938986 661649 874412 468483 365042 813873 699128 299701 460038 178724 360852 339923 142254 732305 374656 041098 651697 915182 116505 050115 157516 (815 digits)/1 095062 017435 622949 559276 124667 275316 135145 565499 343893 750173 619132 142630 837988 112503 270749 151816 897381 962243 424406 874568 400433 405048 375395 297687 788943 620296 512065 437599 963927 328787 136010 208178 684212 290430 555416 840601 288137 142148 277856 501431 346770 117303 380705 692443 064314 132953 708318 206608 467225 505300 975492 713171 443497 352396 772999 914854 075695 173059 822784 832832 067702 261354 790311 586984 061130 692274 569254 407231 701845 887335 358961 769790 612177 462433 537702 826890 894363 358106 025501 937408 318919 084664 743814 308337 400323 014406 877708 874807 223409 021096 457242 232543 560574 519449 976019 369546 781289 488272 481879 156271 384089 068651 527629 938247 353000 173812 640005 443024 144021 889092 749150 624440 828567 759726 448528 009707 723243 653401 545689 623309 746862 038608 001267 134849 759018 968275 274921 650506 883057 477744 810414 490450 164121 496553 464383 940507 (817 digits), a[1557] = 3
                                                                                      A[1558]/B[1558] = 25383 337926 583940 607299 210289 216681 046894 220882 099915 474429 252916 137076 076338 934364 096454 819600 501803 895415 384269 735148 396512 121880 747090 378807 469781 643060 230687 842339 148444 205957 510935 474954 717455 910810 453354 839870 101540 019238 573265 280638 701146 449778 068144 032683 997164 168999 914176 430777 739962 320153 632047 073259 937351 015767 680877 000922 724887 997127 765179 497617 877368 352206 206566 487819 442189 029744 200301 714281 519552 860108 191135 188282 743522 918532 220860 562967 048976 826304 023139 774739 103922 567644 007003 587208 262215 843083 979727 771709 976651 212086 286719 867035 974374 136955 904831 813830 159615 815511 744590 324787 453740 719487 191910 226566 442955 461083 140962 606040 827288 019409 767183 302652 281568 571155 020533 626360 484417 902030 559500 342126 660195 893045 982829 446019 924109 940406 238784 559771 176301 422913 183940 289718 462170 069993 928717 317557 (815 digits)/2 467096 100802 224392 693203 476425 108524 203569 774374 958284 675012 611668 480331 944230 076261 860771 340938 820521 893786 327047 126682 553500 866719 808045 621526 878111 828248 621411 816429 699274 623561 624414 809017 598691 629770 973559 540188 830555 080810 691706 620292 972102 806948 667700 245460 976220 941796 896061 740627 275529 415221 289362 358035 567322 889624 710279 065260 031641 812846 573302 993041 669343 706807 132019 486797 559971 582983 722447 693178 746430 930073 700632 292708 616522 948575 206938 596428 497032 858656 092970 450334 696912 808446 716772 202354 935761 233972 342663 484712 233563 254283 034932 489539 304385 058916 417378 717749 923722 187714 681006 127080 908414 785916 787120 747256 120544 906283 257862 812202 901012 782730 734364 910486 691104 492925 748241 200157 265735 685797 092431 402779 034243 870603 838870 351461 596614 914751 793704 910326 482859 420666 074719 935084 011932 816931 612611 231650 (817 digits), a[1558] = 2
                                                                                      A[1559]/B[1559] = 36650 158554 323838 588088 737496 008794 161057 313293 325630 207554 114209 700185 779364 133794 639607 779875 621812 709792 054016 259412 953030 235097 872601 407628 148964 026543 162082 766189 277262 062605 329486 694151 158684 540951 299659 222778 416737 955836 558946 605548 482149 744820 875599 190608 002948 543489 742273 636010 986142 405135 372697 285060 732289 182709 680871 463108 129799 043690 330724 816913 600164 750272 689875 407220 409915 325418 166029 319376 145108 206246 981641 507825 112038 422831 650105 755763 150945 429760 653056 992852 666834 602394 812253 123828 116055 718243 772305 679002 579772 990196 115748 219660 597400 523189 485156 018802 225111 907310 341684 320051 106911 071102 454250 358868 757817 646851 839669 396357 833835 173209 245170 251810 470423 962506 146596 565347 146067 776443 027983 707169 474069 592174 282530 906058 102834 301258 578707 702025 908606 797569 225038 941416 377352 186498 978832 475073 (815 digits)/3 562158 118237 847342 252479 601092 383840 338715 339874 302178 425186 230800 622962 782218 188765 131520 492755 717903 856029 751454 001250 953934 271768 183440 919214 667055 448545 133477 254029 663201 952348 760425 017196 282903 920201 528976 380790 118692 222958 969563 121724 318872 924252 048405 937904 040535 074750 604379 947235 742754 920522 264855 071207 010820 242021 483278 980114 107336 985906 396087 825873 737045 968161 922331 073781 621102 275258 291702 100410 448276 817409 059594 062499 228700 411008 744641 423319 391396 216762 118472 387743 015831 893111 460586 510692 336084 248379 220372 359519 456972 275379 492174 722082 864959 578366 393398 087296 705011 675987 162885 283352 292503 854568 314750 685503 473545 080095 897868 255227 045034 671823 483515 534927 519672 252652 196769 209864 988979 339198 638121 026088 781105 909211 840137 486311 355633 883027 068626 560833 365916 898410 885134 425534 176054 313485 076995 172157 (817 digits), a[1559] = 1
                                                                                      A[1560]/B[1560] = 62033 496480 907779 195387 947785 225475 207951 534175 425545 681983 367125 837261 855703 068158 736062 599476 123616 605207 438285 994561 349542 356978 619691 786435 618745 669603 392770 608528 425706 268562 840422 169105 876140 451761 753014 062648 518277 975075 132211 886187 183296 194598 943743 223292 000112 712489 656450 066788 726104 725289 004744 358320 669640 198477 361748 464030 854687 040818 095904 314531 477533 102478 896441 895039 852104 355162 366331 033657 664661 066355 172776 696107 855561 341363 870966 318730 199922 256064 676196 767591 770757 170038 819256 711036 378271 561327 752033 450712 556424 202282 402468 086696 571774 660145 389987 832632 384727 722822 086274 644838 560651 790589 646160 585435 200773 107934 980632 002398 661123 192619 012353 554462 751992 533661 167130 191707 630485 678473 587484 049296 134265 485220 265360 352078 026944 241664 817492 261797 084908 220482 408979 231134 839522 256492 907549 792630 (815 digits)/6 029254 219040 071734 945683 077517 492364 542285 114249 260463 100198 842469 103294 726448 265026 992291 833694 538425 749816 078501 127933 507435 138487 991486 540741 545167 276793 754889 070459 362476 575910 384839 826213 881595 549972 502535 920978 949247 303769 661269 742017 290975 731200 716106 183365 016756 016547 500441 687863 018284 335743 554217 429242 578143 131646 193558 045374 138978 798752 969390 818915 406389 674969 054350 560579 181073 858242 014149 793589 194707 747482 760226 355207 845223 359583 951580 019747 888429 075418 211442 838077 712744 701558 177358 713047 271845 482351 563035 844231 690535 529662 527107 211622 169344 637282 810776 805046 628733 863701 843891 410433 200918 640485 101871 432759 594089 986379 155731 067429 946047 454554 217880 445414 210776 745577 945010 410022 254715 024995 730552 428867 815349 779815 679007 837772 952248 797778 862331 471159 848776 319076 959854 360618 187987 130416 689606 403807 (817 digits), a[1560] = 1
                                                                                      A[1561]/B[1561] = 905119 109287 032747 323520 006489 165447 072378 791749 283269 755321 253971 421851 759207 088016 944484 172541 352445 182696 190020 183271 846623 232798 548286 417726 811403 400990 660871 285587 237149 822485 095397 061633 424650 865615 841856 099857 672629 606888 409913 012169 048296 469206 088004 316696 004526 518344 932574 571053 151608 559181 439118 301550 107251 961392 745349 959540 095417 615143 673385 220354 285628 184977 240061 937778 339376 297691 294663 790583 450363 135219 400515 253335 089897 201925 843634 217985 949857 014666 119811 739137 457434 982938 281847 078337 411857 576832 300773 988978 369711 822149 750301 433412 602245 765224 944985 675655 611300 026819 549529 347790 956036 139357 500498 554961 568641 157941 568517 429939 089559 869875 418120 014288 998319 433762 486419 249253 972867 275073 252760 397315 353786 385257 997575 835150 480053 684566 023599 367185 097321 884322 950748 177304 130663 777399 684529 571893 (816 digits)/87 971717 184798 851631 492042 686337 276943 930706 939363 948661 827970 025368 069088 952493 899143 023606 164479 255864 353454 850469 792320 058026 210600 064252 489596 299397 323657 701924 240460 737874 015094 148182 584190 625241 619816 564479 274495 408154 475734 227339 509966 392533 161062 073892 505014 275119 306415 610563 577317 998735 620932 023899 080603 104824 085068 193091 615352 053040 168447 967559 290689 426501 417728 683238 921890 156136 290646 489799 210659 174185 282167 702763 035409 061827 445184 066761 699789 829403 272617 078672 120830 994257 714925 943608 493354 141921 001301 102874 178763 124469 690654 871675 684793 235784 500325 744273 357949 507285 767812 977365 029417 105364 821359 740950 744137 790804 889404 078103 199246 289699 035582 533841 770726 470546 690743 426914 950176 554989 689138 865855 030238 196002 826631 346247 215132 687117 051931 141267 157071 248785 365488 323095 474188 807874 139318 731484 825455 (818 digits), a[1561] = 14
                                                                                      A[1562]/B[1562] = 5 492748 152203 104263 136507 986720 218157 642224 284671 125164 213910 890954 368372 410945 596260 402967 634724 238287 701384 578407 094192 429281 753769 909410 292796 487166 075547 357998 322051 848605 203473 412804 538906 424045 645456 804150 661794 554055 616405 591689 959201 473075 009835 471769 123468 027271 822559 251897 493107 635756 080377 639454 167621 313151 966833 833848 221271 427192 731680 136215 636657 191302 212342 336813 521709 888362 141310 134313 777158 366839 877671 575868 216118 394944 552918 932771 626645 899064 344061 395067 202416 515367 067668 510339 181060 849417 022321 556677 384582 774695 135180 904276 687172 185249 251495 059901 886566 052527 883739 383450 731584 296868 626734 649151 915204 612620 055584 391736 582033 198482 411871 521073 640196 741909 136236 085645 687231 467689 328913 104046 433188 256983 796768 250815 362980 907266 349060 959088 464907 668839 526420 113468 294959 623504 920891 014727 223988 (817 digits)/533 859557 327833 181523 897939 195541 154028 126526 750432 952434 068018 994677 517828 441411 659885 133928 820570 073611 870545 181319 881853 855592 402088 377001 478319 341551 218739 966434 513223 789720 666475 273935 331357 633045 268871 889411 567951 398174 158175 025306 801815 646174 697573 159461 213450 667471 855041 163823 151771 010698 061335 697611 912861 207087 642055 352107 737486 457219 809440 774746 563051 965398 181341 153784 091920 117891 602120 952945 057544 239819 440488 976804 567662 216188 030688 352150 218486 864848 711120 683475 563063 678290 991113 839009 673172 123371 490158 180280 916810 437353 673591 757161 320381 584051 639237 276416 952743 672448 470579 708081 586935 833107 568643 547575 897586 338919 322803 624350 262907 684241 668049 420931 069773 034056 890038 506500 111081 584653 159828 925682 610296 991366 739603 756491 128569 074951 109365 709934 413587 341488 512006 898427 205751 035231 966329 078515 356537 (819 digits), a[1562] = 6
                                                                                      A[1563]/B[1563] = 50 339852 479114 971115 552091 886971 128865 852397 353789 409747 680519 272560 737203 457717 454360 571192 885059 497034 495157 395684 031003 710159 016727 732979 052895 195898 080916 882856 184053 874596 653745 810637 911791 241061 674727 079212 056008 659130 154538 735122 644982 305971 557725 333926 427908 249972 921378 199652 009021 873413 282580 194205 810141 925619 662897 249983 950982 940152 200264 899325 950269 007348 096058 271383 633167 334635 569482 503487 785008 751922 034263 583329 198400 644398 178196 238578 857799 041436 111218 675416 560886 095738 591954 874899 707885 056610 777726 310870 450223 341968 038777 888791 617962 269489 028680 484102 654750 084050 980474 000585 932049 627853 779969 342865 791803 082221 658201 094146 668237 875901 576719 107782 776059 675501 659887 257230 434337 182071 235291 189178 296009 666640 556172 254914 101978 645450 826114 655395 551354 116877 622103 971962 831940 742208 065418 817074 587785 (818 digits)/4892 707733 135297 485346 573495 446207 663197 069447 693260 520568 440140 977465 729544 925198 838109 228965 549609 918371 188361 482348 729004 758357 829395 457265 794470 373358 292317 399834 859474 845360 013371 613600 566409 322649 039663 569183 386057 991721 899309 455100 726307 208105 439220 509043 426070 282366 001786 084971 943257 095018 172953 302406 296353 968612 863566 362061 252730 168018 453414 940278 358157 115085 049799 067295 749171 217160 709735 066304 728557 332560 246568 494004 144369 007519 721379 236113 666171 613041 672703 229952 188404 098876 634950 494695 551903 252264 412724 725402 430057 060652 752980 686127 568227 492249 253461 232025 932642 559322 003030 350099 311839 603332 939151 669133 822414 841078 794636 697255 565415 447874 048027 322221 398683 777058 701089 985415 949910 816868 127599 196998 522911 118303 483065 154667 372254 361677 036222 530676 879357 322181 973550 408940 325948 124961 836280 438123 034288 (820 digits), a[1563] = 9
                                                                                      A[1564]/B[1564] = 55 832600 631318 075378 688599 873691 347023 494621 638460 534911 894430 163515 105575 868663 050620 974160 519783 735322 196541 974091 125196 139440 770497 642389 345691 683064 156464 240854 506105 723201 857219 223442 450697 665107 320183 883362 717803 213185 770944 326812 604183 779046 567560 805695 551376 277244 743937 451549 502129 509169 362957 833659 977763 238771 629731 083832 172254 367344 931945 035541 586926 198650 308400 608197 154877 222997 710792 637801 562167 118761 911935 159197 414519 039342 731115 171350 484444 940500 455280 070483 763302 611105 659623 385238 888945 906027 800047 867547 834806 116663 173958 793068 305134 454738 280175 544004 541316 136578 864213 384036 663633 924722 406703 992017 707007 694841 713785 485883 250271 074383 988590 628856 416256 417410 796123 342876 121568 649760 564204 293224 729197 923624 352940 505729 464959 552717 175175 614484 016261 785717 148524 085431 126900 365712 986309 831801 811773 (818 digits)/5426 567290 463130 666870 471434 641748 817225 195974 443693 473002 508159 972143 247373 366610 497994 362894 370179 991983 058906 663668 610858 613950 231483 834267 272789 714909 511057 366269 372698 635080 679846 887535 897766 955694 308535 458594 954009 389896 057484 480407 528122 854280 136793 668504 639520 949837 856827 248795 095028 105716 234289 000018 209215 175700 505621 714168 990216 625238 262855 715024 921209 080483 231140 221079 841091 335052 311856 019249 786101 572379 687057 470808 712031 223707 752067 588263 884658 477890 383823 913427 751467 777167 626064 333705 225075 375635 902882 905683 346867 498006 426572 443288 888609 076300 892698 508442 885386 231770 473610 058180 898775 436440 507795 216709 720001 179998 117440 321605 828323 132115 716076 743152 468456 811115 591128 491916 060992 401521 287428 122681 133208 109670 222668 911158 500823 436628 145588 240611 292944 663670 485557 307367 531699 160193 802609 516638 390825 (820 digits), a[1564] = 1
                                                                                      A[1565]/B[1565] = 217 837654 373069 197251 617891 508045 169936 336262 269171 014483 363809 763106 053931 063706 606223 493674 444410 703001 084783 317957 406592 128481 328220 660147 089970 245090 550309 605419 702371 044202 225403 480965 263884 236383 635278 729300 209418 298687 467371 715560 457533 643111 260407 751013 082037 081707 153190 554300 515410 400921 371453 695185 743431 641934 552090 501480 467746 042186 996100 005950 711047 603299 021260 095975 097799 003628 701860 416892 471510 108207 770069 060921 441957 762426 371541 752630 311133 862937 477058 886867 850793 929055 570825 030616 374722 774694 177869 913513 954641 691957 560654 267996 533365 633703 869207 116116 278698 493787 573114 152695 922951 402021 000081 318918 912826 166746 799557 551796 419051 099053 542490 994352 024828 927734 048257 285858 799043 131352 927904 068852 483603 437513 614993 772102 496857 303602 351641 498847 600139 474029 067676 228256 212641 839347 024348 312480 023104 (819 digits)/21172 409604 524689 485957 987799 371454 114872 657371 024340 939575 964620 893895 471665 025030 332092 317648 660149 894320 365081 473354 561580 600208 523846 960067 612839 518086 825489 498642 977570 750602 052912 276208 259710 189731 965269 944968 248086 161410 071762 896323 310675 770945 849601 514557 344633 131879 572267 831357 228341 412166 875820 302460 923999 495714 380431 504568 223380 043733 241982 085353 121784 356534 743219 730535 272445 222317 645303 124054 086862 049699 307740 906430 280462 678642 977582 000905 320147 046712 824174 970235 442807 430379 513143 495811 227129 379172 121373 442452 470659 554672 032698 015994 234054 721151 931556 757354 588801 254633 423860 524642 008165 912654 462537 319262 982418 381073 146957 662073 050384 844221 196257 551678 804054 210405 474475 461164 132888 021431 989883 565041 922535 447314 151071 888142 874724 671561 472987 252510 758191 313193 430222 331042 921045 605543 244108 988038 206763 (821 digits), a[1565] = 3
                                                                                      A[1566]/B[1566] = 273 670255 004387 272630 306491 381736 516959 830883 907631 549395 258239 926621 159506 932369 656844 467834 964194 438323 281325 292048 531788 267922 098718 302536 435661 928154 706773 846274 208476 767404 082622 704407 714581 901490 955462 612662 927221 511873 238316 042373 061717 422157 827968 556708 633413 358951 897128 005850 017539 910090 734411 528845 721194 880706 181821 585312 640000 409531 928045 041492 297973 801949 329660 704172 252676 226626 412653 054694 033677 226969 682004 220118 856476 801769 102656 923980 795578 803437 932338 957351 614096 540161 230448 415855 263668 680721 977917 781061 789447 808620 734613 061064 838500 088442 149382 660120 820014 630366 437327 536732 586585 326743 406785 310936 619833 861588 513343 037679 669322 173437 531081 623208 441085 345144 844380 628734 920611 781113 492108 362077 212801 361137 967934 277831 961816 856319 526817 113331 616401 259746 216200 313687 339542 205060 010658 144281 834877 (819 digits)/26598 976894 987820 152828 459234 013202 932097 853345 468034 412578 472780 866038 719038 391640 830086 680543 030329 886303 423988 137023 172439 214158 755330 794334 885629 232996 336546 864912 350269 385682 732759 163744 157477 145426 273805 403563 202095 551306 129247 376730 838798 625225 986395 183061 984154 081717 429095 080152 323369 517883 110109 302479 133214 671414 886053 218737 213596 668971 504837 800378 042993 437017 974359 951615 113536 557369 957159 143303 872963 622078 994798 377238 992493 902350 729649 589169 204805 524603 207998 883663 194275 207547 139207 829516 452204 754808 024256 348135 817527 052678 459270 459283 122663 797452 824255 265797 474187 486403 897470 582822 906941 349094 970332 535972 702419 561071 264397 983678 878707 976336 912334 294831 272511 021521 065603 953080 193880 422953 277311 687723 055743 556984 373740 799301 375548 108189 618575 493122 051135 976863 915779 638410 452744 765737 046718 504676 597588 (821 digits), a[1566] = 1
                                                                                      A[1567]/B[1567] = 2133 529439 403780 105663 763331 180200 788655 152449 622591 860250 171489 249454 170479 590294 204134 768519 193771 771264 054060 362297 129110 003936 019248 777902 139603 742173 497726 529339 161708 416030 803762 411819 265957 546820 323517 017940 699968 881800 135584 012171 889555 598216 056187 647973 515930 594370 433086 595250 638189 771556 512334 397105 791795 806877 824841 598668 947748 908910 492415 296396 796864 216944 328885 025180 866532 590013 590431 799750 707250 696995 544098 601753 437295 374810 090140 220495 880185 487003 003431 588329 149469 710184 183963 941603 220403 539748 023294 380946 480776 352302 702945 695450 402866 252798 914885 736962 018800 906352 634406 909824 029048 689224 847578 495475 251663 197866 392958 815554 104306 313116 260062 356811 112426 343747 958921 687003 243325 599147 372662 603392 973212 965479 390533 716926 229575 297839 039361 292168 914948 292252 581078 424067 589437 274767 098955 322452 867243 (820 digits)/207365 247869 439430 555757 202437 463874 639557 630789 300581 827625 274086 956166 504933 766516 142699 081449 872459 098444 332998 432516 768655 099319 811162 520411 812244 149061 181317 553029 429456 450381 182226 422417 362050 207715 881907 769910 662755 020552 976494 533439 182266 147527 754367 795991 233711 703901 575933 392423 491928 037348 646585 419814 856502 195618 582804 035728 718556 726533 775846 687999 422738 415660 563739 391841 067201 123907 345417 127181 197607 404252 271329 547103 227919 995098 085129 125089 753785 718935 280167 155877 802733 883209 487598 302426 392562 662828 291167 879403 193348 923421 247591 230976 092701 303321 701343 617936 908113 659460 706154 604402 356755 356319 254865 071071 899355 308571 997743 547825 201340 678579 582597 615497 711631 361052 933703 132725 490050 982104 931065 379103 312740 346204 767257 483252 503561 428888 803015 704365 116143 151240 840679 799916 090258 965702 571138 520774 389879 (822 digits), a[1567] = 7
                                                                                      A[1568]/B[1568] = 2407 199694 408167 378294 069822 561937 305614 983333 530223 409645 429729 176075 329986 522663 860979 236354 157966 209587 335385 654345 660898 271858 117967 080438 575265 670328 204500 375613 370185 183434 886385 116226 980539 448311 278979 630603 627190 393673 373900 054544 951273 020373 884156 204682 149343 953322 330214 601100 655729 681647 246745 925951 512990 687584 006663 183981 587749 318442 420460 337889 094838 018893 658545 729353 119208 816640 003084 854444 740927 923965 226102 821872 293772 176579 192797 144476 675764 290440 935770 545680 763566 250345 414412 357458 484072 220470 001212 162008 270224 160923 437558 756515 241366 341241 064268 397082 838815 536719 071734 446556 615634 015968 254363 806411 871497 059454 906301 853233 773628 486553 791143 980019 553511 688892 803302 315738 163937 380260 864770 965470 186014 326617 358467 994758 191392 154158 566178 405500 531349 551998 797278 737754 928979 479827 109613 466734 702120 (820 digits)/233964 224764 427250 708585 661671 477077 571655 484134 768616 240203 746867 822205 223972 158156 972785 761992 902788 984747 756986 569539 941094 313478 566493 314746 697873 382057 517864 417941 779725 836063 914985 586161 519527 353142 155713 173473 864850 571859 105741 910170 021064 772753 740762 979053 217865 785619 005028 472575 815297 555231 756694 722293 989716 867033 468857 254465 932153 395505 280684 488377 465731 852678 538099 343456 180737 681277 302576 270485 070571 026331 266127 924342 220413 897448 814778 714258 958591 243538 488166 039540 997009 090756 626806 131942 844767 417636 315424 227539 010875 976099 706861 690259 215365 100774 525598 883734 382301 145864 603625 187225 263696 705414 225197 607044 601774 869643 262141 531504 080048 654916 494931 910328 984142 382573 999307 085805 683931 405058 208377 066826 368483 903189 140998 282553 879109 537078 421591 197487 167279 128104 756459 438326 543003 731439 617857 025450 987467 (822 digits), a[1568] = 1
                                                                                      A[1569]/B[1569] = 9355 128522 628282 240545 972798 866012 705500 102450 213262 089186 460676 777680 160439 158285 787072 477581 667670 400026 060217 325334 111804 819510 373150 019217 865400 753158 111227 656179 272263 966335 462917 760500 207575 891754 160455 909751 581540 062820 257284 175806 743374 659337 708656 262019 963962 454337 423730 398552 605378 816498 252572 174960 330767 869629 844831 150613 710996 864237 753796 310064 081378 273625 304522 213240 224159 039933 599686 363084 930034 468891 222407 067370 318611 904547 668531 653925 907478 358325 810743 225371 440168 461220 427201 013978 672620 201158 026930 866971 291448 835073 015621 964996 126965 276522 107690 928210 535247 516509 849610 249493 875950 737129 610669 914710 866154 376231 111864 375255 425191 772777 633494 296869 772961 410426 368828 634217 735137 739929 966975 499803 531255 945331 465937 701200 803751 760314 737896 508670 508996 948248 972914 637332 376375 714248 427795 722656 973603 (820 digits)/909257 922162 721182 681514 187451 895107 354524 083193 606430 548236 514690 422782 176850 240987 061056 367428 580826 052687 603958 141136 591938 039755 510642 464651 905864 295233 734910 806854 768633 958572 927183 180901 920632 267142 349047 290332 257306 736130 293720 263949 245460 465788 976656 733150 887309 060758 591018 810150 937820 703043 916669 586696 825652 796718 989375 799126 515016 913049 617900 153131 819933 973696 178037 422209 609414 167739 253145 938636 409320 483246 069713 320129 889161 687444 529465 267866 629559 449550 744665 274500 793761 155479 368016 698254 926864 915737 237440 562020 225976 851720 368176 301753 738796 605645 278140 269140 055017 097054 517030 166078 147845 472561 930457 892205 704679 917501 784168 142337 441486 643329 067393 346484 664058 508774 931624 390142 541845 197279 556196 579582 418192 055772 190252 330914 140890 040124 067789 296826 617980 535555 110058 114895 719270 160021 424709 597127 352280 (822 digits), a[1569] = 3
                                                                                      A[1570]/B[1570] = 11762 328217 036449 618840 042621 427950 011115 085783 743485 498831 890405 953755 490425 680949 648051 713935 825636 609613 395602 979679 772703 091368 491117 099656 440666 423486 315728 031792 642449 149770 349302 876727 188115 340065 439435 540355 208730 456493 631184 230351 694647 679711 592812 466702 113306 407659 753944 999653 261108 498145 499318 100911 843758 557213 851494 334595 298746 182680 174256 647953 176216 292518 963067 942593 343367 856573 602771 217529 670962 392856 448509 889242 612384 081126 861328 798402 583242 648766 746513 771052 203734 711565 841613 371437 156692 421628 028143 028979 561672 995996 453180 721511 368331 617763 171959 325293 374063 053228 921344 696050 491584 753097 865033 721122 737651 435686 018166 228489 198820 259331 424638 276889 326473 099319 172130 949955 899075 120190 831746 465273 717270 271948 824405 695958 995143 914473 304074 914171 040346 500247 770193 375087 305355 194075 537409 189391 675723 (821 digits)/1 143222 146927 148433 390099 849123 372184 926179 567328 375046 788440 261558 244987 400822 399144 033842 129421 483615 037435 360944 710676 533032 353234 077135 779398 603737 677291 252775 224796 548359 794636 842168 767063 440159 620284 504760 463806 122157 307989 399462 174119 266525 238542 717419 712204 105174 846377 596047 282726 753118 258275 673364 308990 815369 663752 458233 053592 447170 308554 898584 641509 285665 826374 716136 765665 790151 849016 555722 209121 479891 509577 335841 244472 109575 584893 344243 982125 588150 693089 232831 314041 790770 246235 994822 830197 771632 333373 552864 789559 236852 827820 075037 992012 954161 706419 803739 152874 437318 242919 120655 353303 411542 177976 155655 499250 306454 787145 046309 673841 521535 298245 562325 256813 648200 891348 930931 475948 225776 602337 764573 646408 786675 958961 331250 613468 019999 577202 489380 494313 785259 663659 866517 553222 262273 891461 042566 622578 339747 (823 digits), a[1570] = 1
                                                                                      A[1571]/B[1571] = 68166 769607 810530 334746 185906 005762 761075 531368 930689 583345 912706 546457 612567 563034 027331 047260 795853 448093 038232 223732 975320 276352 828735 517500 068732 870589 689867 815142 484509 715187 209432 144136 148152 592081 357633 611527 625192 345288 413205 327565 216613 057895 672718 595530 530494 492636 193455 396818 910921 307225 749162 679519 549560 655699 102302 823590 204727 777638 625079 549829 962459 736220 119861 926206 940998 322801 613542 450733 284846 433173 464956 513583 380532 310181 975175 645938 823691 602159 543312 080632 458842 019049 635267 871164 456082 309298 167646 011869 099813 815055 281525 572552 968623 365337 967487 554677 405562 782654 456333 729746 333874 502618 935838 520324 554411 554661 202695 517701 419293 069434 756685 681316 405326 907022 229483 383997 230513 340884 125707 826172 117607 305075 587966 180995 779471 332681 258271 079525 710729 449487 823881 512768 903151 684626 114841 669615 352218 (821 digits)/6 625368 656798 463349 632013 433068 756031 985421 919835 481664 490437 822481 647719 180962 236707 230267 014535 998901 239864 408681 694519 257099 805925 896321 361644 924552 681689 998786 930837 510432 931757 138027 016219 121430 368564 872849 609362 868093 276077 291031 134545 578086 658502 563755 294171 413183 292646 571255 223784 703411 994422 283491 131650 902501 115481 280541 067088 750868 455824 110823 360678 248263 105569 758721 250538 560173 412822 031756 984243 808778 031132 748919 542490 437039 611911 250685 178494 570312 914996 908821 844709 747612 386659 342130 849243 785026 582605 001764 509816 410240 990820 743366 261818 509605 137744 296836 033512 241608 311650 120306 932595 205556 362442 708735 388457 236953 853227 015716 511545 049163 134556 879019 630552 905062 965519 586281 769883 670728 208968 379064 811626 351571 850578 846505 398254 240887 926136 514691 768395 544278 853854 442645 881007 030639 617326 637542 710019 051015 (823 digits), a[1571] = 5
                                                                                      A[1572]/B[1572] = 148095 867432 657510 288332 414433 439475 533266 148521 604864 665523 715819 046670 715560 807017 702713 808457 417343 505799 472067 427145 723343 644074 148588 134656 578132 164665 695463 662077 611468 580144 768167 164999 484420 524228 154702 763410 459115 147070 457594 885482 127873 795502 938249 657763 174295 392932 140855 793291 082951 112596 997643 459950 942879 868612 056099 981775 708201 737957 424415 747613 101135 764959 202791 795007 225364 502176 829856 118996 240655 259203 378422 916409 373448 701490 811680 090280 230625 853085 833137 932317 121418 749665 112149 113766 068857 040224 363435 052717 761300 626107 016231 866617 305578 348439 106934 434648 185188 618537 834012 155543 159333 758335 736710 761771 846474 545008 423557 263892 037406 398200 938009 639522 137126 913363 631097 717950 360101 801959 083162 117617 952484 882100 000338 057950 554086 579835 820617 073222 461805 399223 417956 400625 111658 563327 767092 528622 380159 (822 digits)/14 393959 460524 075132 654126 715260 884248 897023 406999 338375 769315 906521 540425 762746 872558 494376 158493 481417 517164 178308 099715 047231 965085 869778 502688 452843 040671 250349 086471 569225 658151 118222 799501 683020 357414 250459 682531 858343 860143 981524 443210 422698 555547 844930 300546 931541 431670 738557 730296 159942 247120 240346 572292 620371 894715 019315 187769 948907 220203 120231 362865 782192 037514 233579 266742 910498 674660 619236 177609 097447 571842 833680 329452 983654 808715 845614 339114 728776 523083 050475 003461 285995 019554 679084 528685 341685 498583 556393 809192 057334 809461 561770 515649 973371 981908 397411 219898 920534 866219 361269 218493 822654 902861 573126 276164 780362 493599 077742 696931 619861 567359 320364 517919 458326 822388 103495 015715 567233 020274 522703 269661 489819 660119 024261 409976 501775 429475 518764 031104 873817 371368 751809 315236 323553 126114 317652 042616 441777 (824 digits), a[1572] = 2
                                                                                      A[1573]/B[1573] = 216262 637040 468040 623078 600339 445238 294341 679890 535554 248869 628525 593128 328128 370051 730044 855718 213196 953892 510299 650878 698663 920426 977323 652156 646865 035255 385331 477220 095978 295331 977599 309135 632573 116309 512336 374938 084307 492358 870800 213047 344486 853398 610968 253293 704789 885568 334311 190109 993872 419822 746806 139470 492440 524311 158402 805365 912929 515596 049495 297443 063595 501179 322653 721214 166362 824978 443398 569729 525501 692376 843379 429992 753981 011672 786855 736219 054317 455245 376450 012949 580260 768714 747416 984930 524939 349522 531081 064586 861114 441162 297757 439170 274201 713777 074421 989325 590751 401192 290345 885289 493208 260954 672549 282096 400886 099669 626252 781593 456699 467635 694695 320838 542453 820385 860581 101947 590615 142843 208869 943790 070092 187175 588304 238946 333557 912517 078888 152748 172534 848711 241837 913394 014810 247953 881934 198237 732377 (822 digits)/21 019328 117322 538482 286140 148329 640280 882445 326834 820040 259753 729003 188144 943709 109265 724643 173029 480318 757028 586989 794234 304331 771011 766099 864333 377395 722361 249136 017309 079658 589908 256249 815720 804450 725979 123309 291894 726437 136221 272555 577756 000785 214050 408685 594718 344724 724317 309812 954080 863354 241542 523837 703943 522873 010196 299856 254858 699775 676027 231054 723544 030455 143083 992300 517281 470672 087482 650993 161852 906225 602975 582599 871943 420694 420627 096299 517609 299089 438079 959296 848171 033607 406214 021215 377929 126712 081188 558158 319008 467575 800282 305136 777468 482977 119652 694247 253411 162143 177869 481576 151089 028211 265304 281861 664622 017316 346826 093459 208476 669024 701916 199384 148472 363389 787907 689776 785599 237961 229242 901768 081287 841391 510697 870766 808230 742663 355612 033455 799500 418096 225223 194455 196243 354192 743440 955194 752635 492792 (824 digits), a[1573] = 1
                                                                                      A[1574]/B[1574] = 4 473348 608242 018322 749904 421222 344241 420099 746332 315949 642916 286330 909237 278128 208052 303610 922821 681282 583649 678060 444719 696622 052613 695061 177789 515432 869773 402093 206479 531034 486784 320153 347712 135882 850418 401430 262172 145264 994247 873599 146429 017610 863475 157614 723637 270093 104298 827079 595490 960399 509051 933766 249360 791690 354835 224156 089093 966792 049878 414321 696474 373045 788545 655866 219290 552621 001745 697827 513586 750689 106740 246011 516264 453068 934946 548794 814661 316974 957993 362138 191308 726634 123960 060488 812376 567644 030674 985056 344454 983589 449352 971380 650022 789612 623980 595374 221160 000216 642383 640929 861333 023498 977429 187696 403699 864196 538400 948612 895761 171395 750914 831916 056292 986203 321080 842719 756902 172404 658823 260560 993419 354328 625611 766422 836877 225244 830177 398380 128185 912502 373448 254714 668505 407863 522405 405776 493377 027699 (823 digits)/434 780521 806974 844778 376929 681853 689866 545929 943695 739180 964390 486585 303324 636929 057872 987239 619083 087792 657735 918103 984401 133867 385321 191775 789356 000757 487896 233069 432653 162397 456316 243219 113917 772034 876996 716645 520426 387086 584569 432635 998330 438402 836556 018642 194913 826035 918016 934816 811913 427027 077970 717100 651163 077832 098641 016440 284943 944420 740747 741325 833746 391294 899194 079589 612372 323940 424313 639099 414667 221959 631354 485677 768321 397543 221257 771604 691300 710565 284682 236411 966881 958143 143835 103392 087267 875927 122354 719560 189361 408850 815107 664506 065019 632914 374962 282356 288122 163398 423608 992792 240274 386880 208947 210359 568605 126689 430120 946926 866465 000355 605683 308047 487366 726122 580541 899030 727700 326457 605132 558064 895418 317649 874076 439597 574591 355042 541716 187880 021113 235741 875832 640913 240103 407407 994933 421547 095326 297617 (825 digits), a[1574] = 20
                                                                                      A[1575]/B[1575] = 4 689611 245282 486363 372983 021561 789479 714441 426222 851503 891785 914856 502365 606256 578104 033655 778539 894479 537542 188360 095598 395285 973040 672384 829946 162297 905028 787424 683699 627012 782116 297752 656847 768455 966727 913766 637110 229572 486606 744399 359476 362097 716873 768582 976930 974882 989867 161390 785600 954271 928874 680572 388831 284130 879146 382558 894459 879721 565474 463816 993917 436641 289724 978519 940504 718983 826724 141226 083316 276190 799117 089390 946257 207049 946619 335650 550880 371292 413238 738588 204258 306894 892674 807905 797307 092583 380197 516137 409041 844703 890515 269138 089193 063814 337757 669796 210485 590968 043575 931275 746622 516707 238383 860245 685796 265082 638070 574865 677354 628095 218550 526611 377131 528657 141466 703300 858849 763019 801666 469430 937209 424420 812787 354727 075823 558802 742694 477268 280934 085037 222159 496552 581899 422673 770359 287710 691614 760076 (823 digits)/455 799849 924297 383260 663069 830183 330147 428375 270530 559221 224144 215588 491469 580638 167138 711882 792112 568111 414764 505093 778635 438199 156332 957875 653689 378153 210257 482205 449962 242056 046224 499468 929638 576485 602975 839954 812321 113523 720790 705191 576086 439188 050606 427327 789632 170760 642334 244629 765994 290381 319513 240938 355106 600705 108837 316296 539802 644196 416774 972380 557290 421750 042278 071890 129653 794612 511796 290092 576520 128185 234330 068277 640264 818237 641884 867904 208910 009654 722762 195708 815052 991750 550049 124607 465197 002639 203543 277718 508369 876426 615389 969642 842488 115891 494614 976603 541533 325541 601478 474368 391363 415091 474251 492221 233227 144005 776947 040386 074941 669380 307599 507431 635839 089512 368449 588807 513299 564418 834375 459832 976706 159041 384774 310364 382822 097705 897328 221335 820613 653838 101055 835368 436346 761600 738374 376741 847961 790409 (825 digits), a[1575] = 1
                                                                                      A[1576]/B[1576] = 13 852571 098806 991049 495870 464345 923200 848982 598778 018957 426488 116043 913968 490641 364260 370922 479901 470241 658734 054780 635916 487193 998695 039830 837681 840028 679830 976942 573878 785060 051016 915658 661407 672794 783874 228963 536392 604409 967461 362397 865381 741806 297222 694780 677499 219859 084033 149861 166692 868943 366801 294911 027023 359952 113127 989273 878013 726235 180827 341955 684309 246328 367995 612906 100299 990588 655193 980279 680219 303070 704974 424793 408778 867168 828185 220095 916422 059559 784470 839314 599825 340423 909309 676300 406990 752810 791070 017331 162538 672997 230383 509656 828408 917241 299495 934966 642131 182152 729535 503481 354578 056913 454196 908187 775292 394361 814542 098344 250470 427586 188015 885138 810556 043517 604014 249321 474601 698444 262156 199422 867838 203170 251186 475876 988524 342850 315566 352916 690054 082576 817767 247819 832304 253211 063123 981197 876606 547851 (824 digits)/1346 380221 655569 611299 703069 342220 350161 402680 484756 857623 412678 917762 286263 798205 392150 411005 203308 224015 487264 928291 541672 010265 697987 107527 096734 757063 908411 197480 332577 646509 548765 242156 973194 925006 082948 396555 145068 614134 026150 843019 150503 316778 937768 873297 774178 167557 202685 424076 343902 007789 716997 198977 361376 279242 316315 649033 364549 232813 574297 686086 948327 234794 983750 223369 871679 913165 447906 219284 567707 478330 100014 622233 048851 034018 505027 507413 109120 729874 730206 627829 596987 941644 243933 352607 017661 881205 529441 274997 206101 161704 045887 603791 749995 864697 364192 235563 371188 814481 626565 941529 023001 217063 157450 194802 035059 414700 984015 027699 016348 339116 220882 322910 759044 905147 317441 076645 754299 455295 273883 477730 848830 635732 643625 060326 340235 550454 336372 630551 662340 543418 077944 311650 112796 930609 471682 175030 791249 878435 (826 digits), a[1576] = 2
                                                                                      A[1577]/B[1577] = 18 542182 344089 477412 868853 485907 712680 563424 025000 870461 318274 030900 416334 096897 942364 404578 258441 364721 196276 243140 731514 882479 971735 712215 667628 002326 584859 764367 257578 412072 833133 213411 318255 441250 750602 142730 173502 833982 454068 106797 224858 103904 014096 463363 654430 194742 073900 311251 952293 823215 295675 975483 415854 644082 992274 371832 772473 605956 746301 805772 678226 682969 657720 591426 040804 709572 481918 121505 763535 579261 504091 514184 355036 074218 774804 555746 467302 430852 197709 577902 804083 647318 801984 484206 204297 845394 171267 533468 571580 517701 120898 778794 917601 981055 637253 604762 852616 773120 773111 434757 101200 573620 692580 768433 461088 659444 452612 673209 927825 055681 406566 411750 187687 572174 745480 952622 333451 461464 063822 668853 805047 627591 063973 830604 064347 901653 058260 830184 970988 167614 039926 744372 414203 675884 833483 268908 568221 307927 (824 digits)/1802 180071 579866 994560 366139 172403 680308 831055 755287 416844 636823 133350 777733 378843 559289 122887 995420 792126 902029 433385 320307 448464 854320 065402 750424 135217 118668 679685 782539 888565 594989 741625 902833 501491 685924 236509 957389 727657 746941 548210 726589 755966 988375 300625 563810 338317 845019 668706 109896 298171 036510 439915 716482 879947 425152 965329 904351 877009 991072 658467 505617 656545 026028 295260 001333 707777 959702 509377 144227 606515 334344 690510 689115 852256 146912 375317 318030 739529 452968 823538 412040 933394 793982 477214 482858 883844 732984 552715 714471 038130 661277 573434 592483 980588 858807 212166 912722 140023 228044 415897 414364 632154 631701 687023 268286 558706 760962 068085 091290 008496 528481 830342 394883 994659 685890 665453 267599 019714 108258 937563 825536 794774 028399 370690 723057 648160 233700 851887 482954 197256 179000 147018 549143 692210 210056 551772 639211 668844 (826 digits), a[1577] = 1
                                                                                      A[1578]/B[1578] = 32 394753 442896 468462 364723 950253 635881 412406 623778 889418 744762 146944 330302 587539 306624 775500 738342 834962 855010 297921 367431 369673 970430 752046 505309 842355 264690 741309 831457 197132 884150 129069 979663 114045 534476 371693 709895 438392 421529 469195 090239 845710 311319 158144 331929 414601 157933 461113 118986 692158 662477 270394 442878 004035 105402 361106 650487 332191 927129 147728 362535 929298 025716 204332 141104 700161 137112 101785 443754 882332 209065 938977 763814 941387 602989 775842 383724 490411 982180 417217 403908 987742 711294 160506 611288 598204 962337 550799 734119 190698 351282 288451 746010 898296 936749 539729 494747 955273 502646 938238 455778 630534 146777 676621 236381 053806 267154 771554 178295 483267 594582 296888 998243 615692 349495 201943 808053 159908 325978 868276 672885 830761 315160 306481 052872 244503 373827 183101 661042 250190 857693 992192 246507 929095 896607 250106 444827 855778 (824 digits)/3148 560293 235436 605860 069208 514624 030470 233736 240044 274468 049502 051113 063997 177048 951439 533893 198729 016142 389294 361676 861979 458730 552307 172929 847158 892281 027079 877166 115117 535075 143754 983782 876028 426497 768872 633065 102458 341791 773092 391229 877093 072745 926144 173923 337988 505875 047705 092782 453798 305960 753507 638893 077859 159189 741468 614363 268901 109823 565370 344554 453944 891340 009778 518629 873013 620943 407608 728661 711935 084845 434359 312743 737966 886274 651939 882730 427151 469404 183175 451368 009028 875039 037915 829821 500520 765050 262425 827712 920572 199834 707165 177226 342479 845286 222999 447730 283910 954504 854610 357426 437365 849217 789151 881825 303345 973407 744977 095784 107638 347612 749364 153253 153928 899807 003331 742099 021898 475009 382142 415294 674367 430506 672024 431017 063293 198614 570073 482439 145294 740674 256944 458668 661940 622819 681738 726803 430461 547279 (826 digits), a[1578] = 1
                                                                                      A[1579]/B[1579] = 50 936935 786985 945875 233577 436161 348561 975830 648779 759880 063036 177844 746636 684437 248989 180078 996784 199684 051286 541062 098946 252153 942166 464262 172937 844681 849550 505677 089035 609205 717283 342481 297918 555296 285078 514423 883398 272374 875597 575992 315097 949614 325415 621507 986359 609343 231833 772365 071280 515373 958153 245877 858732 648118 097676 732939 422960 938148 673430 953501 040762 612267 683436 795758 181909 409733 619030 223291 207290 461593 713157 453162 118851 015606 377794 331588 851026 921264 179889 995120 207992 635061 513278 644712 815586 443599 133605 084268 305699 708399 472181 067246 663612 879352 574003 144492 347364 728394 275758 372995 556979 204154 839358 445054 697469 713250 719767 444764 106120 538949 001148 708639 185931 187867 094976 154566 141504 621372 389801 537130 477933 458352 379134 137085 117220 146156 432088 013286 632030 417804 897620 736564 660711 604980 730090 519015 013049 163705 (824 digits)/4950 740364 815303 600420 435347 687027 710779 064791 995331 691312 686325 184463 841730 555892 510728 656781 194149 808269 291323 795062 182286 907195 406627 238332 597583 027498 145748 556851 897657 423640 738744 725408 778861 927989 454796 869575 059848 069449 520033 939440 603682 828712 914519 474548 901798 844192 892724 761488 563694 604131 790018 078808 794342 039137 166621 579693 173252 986833 556443 003021 959562 547885 035806 813889 874347 328721 367311 238038 856162 691360 768704 003254 427082 738530 798852 258047 745182 208933 636144 274906 421069 808433 831898 307035 983379 648894 995410 380428 635043 237965 368442 750660 934963 825875 081806 659897 196633 094528 082654 773323 851730 481372 420853 568848 571632 532114 505939 163869 198928 356109 277845 983595 548812 894466 689222 407552 289497 494723 490401 352858 499904 225280 700423 801707 786350 846774 803774 334326 628248 937930 435944 605687 211084 315029 891795 278576 069673 216123 (826 digits), a[1579] = 1
                                                                                      A[1580]/B[1580] = 439 890239 738784 035464 233343 439544 424377 219051 814016 968459 249051 569702 303396 063037 298538 216132 712616 432435 265302 626418 159001 386905 507762 466143 888812 599810 061094 786726 543742 070778 622416 868920 363011 556415 815104 487084 777081 617391 426310 077133 611023 442624 914644 130208 222806 289347 012603 640033 689230 815150 327703 237417 312739 188979 886816 224622 034174 837381 314576 775736 688636 827439 493210 570397 596379 978030 089353 888115 102078 575081 914325 564274 714623 066238 625344 428553 191939 860525 421300 378179 067850 068234 817523 318209 135980 146998 031178 224946 179716 857894 128730 826425 054913 933117 528774 695668 273665 782427 708713 922202 911612 263772 861645 237058 816138 759812 025294 329667 027259 794859 603771 966002 485693 118629 109304 438472 940090 130887 444391 165320 496353 497580 348233 403161 990633 413754 830531 289394 717285 592630 038659 884709 532200 768941 737331 402226 549221 165418 (825 digits)/42754 483211 757865 409223 551990 010845 716702 752072 202697 804969 540103 526823 797841 624189 037268 788142 751927 482296 719884 722174 320274 716293 805325 079590 627823 112266 193068 331981 296376 924201 053712 787053 106923 850413 407247 589665 581242 897387 933363 906754 706555 702449 242299 970314 552379 259418 189503 184690 963355 139015 073652 269363 432595 472287 074441 251908 654925 004492 016914 368730 130445 274420 296233 029748 867792 250714 346098 632972 561236 615731 583991 338779 154628 794521 042757 947112 388609 140873 272329 650619 377587 342509 693102 286109 367557 956210 225708 871142 000918 103557 654707 182513 822190 452286 877452 726907 856975 710729 515848 544017 251209 700197 155980 432613 876406 230323 792490 406737 699065 196486 972132 022017 544432 055540 517111 002517 337878 432797 305353 238162 673601 232752 275414 844679 354099 972813 000268 157052 171286 244117 744501 304166 350615 143058 816100 955411 987847 276263 (827 digits), a[1580] = 8
                                                                                      A[1581]/B[1581] = 490 827175 525769 981339 466920 875705 772939 194882 462796 728339 312087 747547 050032 747474 547527 396211 709400 632119 316589 167480 257947 639059 449928 930406 061750 444491 910645 292403 632777 679984 339700 211401 660930 111712 100183 001508 660479 889766 301907 653125 926121 392239 240059 751716 209165 898690 244437 412398 760511 330524 285856 483295 171471 837097 984492 957561 457135 775529 988007 729237 729399 439707 176647 366155 778289 387763 708384 111406 309369 036675 627483 017436 833474 081845 003138 760142 042966 781789 601190 373299 275842 703296 330801 962921 951566 590597 164783 309214 485416 566293 600911 893671 718526 812470 102777 840160 621030 510821 984472 295198 468591 467927 701003 682113 513608 473062 745061 774431 133380 333808 604920 674641 671624 306496 204280 593039 081594 752259 834192 702450 974286 955932 727367 540247 107853 559911 262619 302681 349316 010434 936280 621274 192912 373922 467421 921241 562270 329123 (825 digits)/47705 223576 573169 009643 987337 697873 427481 816864 198029 496282 226428 711287 639572 180081 547997 444923 946077 290566 011208 517236 502561 623489 211952 317923 225406 139764 338816 888833 194034 347841 792457 512461 885785 778402 862044 459240 641090 966837 453397 846195 310238 531162 156819 444863 454178 103611 082227 946179 527049 743146 863670 348172 226937 511424 241062 831601 828177 991325 573357 371752 090007 822305 332039 843638 742139 579435 713409 871011 417399 307092 352695 342033 581711 533051 841610 205160 133791 349806 908473 925525 798657 150943 525000 593145 350937 605105 221119 251570 635961 341523 023149 933174 757154 278161 959259 386805 053608 805257 598503 317341 102940 181569 576834 001462 448038 762438 298429 570606 897993 552596 249978 005613 093244 950007 206333 410069 627375 927520 795754 591021 173505 458032 975838 646387 140450 819587 804042 491378 799535 182048 180445 909853 561699 458088 707896 233988 057520 492386 (827 digits), a[1581] = 1
                                                                                      A[1582]/B[1582] = 930 717415 264554 016803 700264 315250 197316 413934 276813 696798 561139 317249 353428 810511 846065 612344 422017 064554 581891 793898 416949 025964 957691 396549 950563 044301 971740 079130 176519 750762 962117 080322 023941 668127 915287 488593 437561 507157 728217 730259 537144 834864 154703 881924 431972 188037 257041 052432 449742 145674 613559 720712 484211 026077 871309 182183 491310 612911 302584 504974 418036 267146 669857 936553 374669 365793 797737 999521 411447 611757 541808 581711 548097 148083 628483 188695 234906 642315 022490 751478 343692 771531 148325 281131 087546 737595 195961 534160 665133 424187 729642 720096 773440 745587 631552 535828 894696 293249 693186 217401 380203 731700 562648 919172 329747 232874 770356 104098 160640 128668 208692 640644 157317 425125 313585 031512 021684 883147 278583 867771 470640 453513 075600 943409 098486 973666 093150 592076 066601 603064 974940 505983 725113 142864 204753 323468 111491 494541 (825 digits)/90459 706788 331034 418867 539327 708719 144184 568936 400727 301251 766532 238111 437413 804270 585266 233066 698004 772862 731093 239410 822836 339783 017277 397513 853229 252030 531885 220814 490411 272042 846170 299514 992709 628816 269292 048906 222333 864225 386761 752950 016794 233611 399119 415178 006557 363029 271731 130870 490404 882161 937322 617535 659532 983711 315504 083510 483102 995817 590271 740482 220453 096725 628272 873387 609931 830150 059508 503983 978635 922823 936686 680812 736340 327572 884368 152272 522400 490680 180803 576145 176244 493453 218102 879254 718495 561315 446828 122712 636879 445080 677857 115688 579344 730448 836712 113712 910584 515987 114351 861358 354149 881766 732814 434076 324444 992762 090919 977344 597058 749083 222110 027630 637677 005547 723444 412586 965254 360318 101107 829183 847106 690785 251253 491066 494550 792400 804310 648430 970821 426165 924947 214019 912314 601147 523997 189400 045367 768649 (827 digits), a[1582] = 1
                                                                                      A[1583]/B[1583] = 2352 262006 054878 014946 867449 506206 167572 022751 016424 121936 434366 382045 756890 368498 239658 620900 553434 761228 480372 755277 091845 690989 365311 723505 962876 533095 854125 450663 985817 181510 263934 372045 708813 447967 930757 978695 535602 904081 758343 113645 000411 061967 549467 515565 073110 274764 758519 517263 659995 621873 512975 924720 139893 889253 727111 321928 439757 001352 593176 739186 565471 974000 516363 239262 527628 119351 303860 110449 132264 260190 711100 180859 929668 378012 260105 137532 512780 066419 646171 876255 963228 246358 627452 525184 126660 065787 556706 377535 815683 414669 060197 333865 265408 303645 365882 911818 410423 097321 370844 730001 228998 931328 826301 520458 173102 938812 285773 982627 454660 591145 022305 955929 986259 156746 831450 656063 124964 518554 391360 437993 915567 862958 878569 427065 304827 507243 448920 486833 482519 216564 886161 633241 643138 659650 876928 568177 785253 318205 (826 digits)/228624 637153 235237 847379 065993 115311 715850 954736 999484 098785 759493 187510 514399 788622 718529 911057 342086 836291 473394 996058 148234 303055 246507 112950 931864 643825 402587 330462 174856 891927 484798 111491 871205 036035 400628 557053 085758 695288 226921 352095 343826 998384 955058 275219 467292 829669 625690 207920 507859 507470 738315 583243 546003 478846 872070 998622 794383 982960 753900 852716 530914 015756 588585 590413 962003 239735 832426 878979 374671 152740 226068 703659 054392 188197 610346 509705 178592 331167 270081 077816 151146 137849 961206 351654 787928 727736 114775 496995 909720 231684 378864 164551 915843 739059 632683 614230 874777 837231 827207 040057 811239 945103 042462 869615 096928 747962 480269 525296 092111 050762 694198 060874 368598 961102 653222 235243 557884 648156 997970 249388 867718 839603 478345 628520 129552 404389 412663 788240 741178 034380 030340 337893 386328 660383 755890 612788 148256 029684 (828 digits), a[1583] = 2
                                                                                      A[1584]/B[1584] = 5635 241427 374310 046697 435163 327662 532460 459436 309661 940671 429872 081340 867209 547508 325382 854145 528886 587011 542637 304452 600640 407943 688314 843561 876316 110493 679990 980458 148154 113783 489985 824413 441568 564063 776803 445984 508767 315321 244903 957549 537966 958799 253638 913054 578192 737566 774080 086959 769733 389421 639511 570152 763998 804585 325531 826040 370824 615616 488937 983347 548980 215147 702584 415078 429925 604496 405458 220419 675976 132138 964008 943431 407433 904108 148693 463760 260466 775154 314834 503990 270149 264248 403230 331499 340866 869170 309374 289232 296500 253525 850037 387827 304257 352878 363318 359465 715542 487892 434875 677403 838201 594358 215251 960088 675953 110499 341904 069353 069961 310958 253304 552504 129835 738618 976486 343638 271613 920256 061304 743759 301776 179430 832739 797539 708141 988152 990991 565743 031640 036194 747263 772467 011390 462165 958610 459823 681998 130951 (826 digits)/547708 981094 801510 113625 671313 939342 575886 478410 399695 498823 285518 613132 466213 381516 022326 055181 382178 445445 677883 231527 119304 945893 510291 623415 716958 539681 337059 881738 840125 055897 815766 522498 735119 700887 070549 163012 393851 254801 840604 457140 704448 230381 309235 965616 941143 022368 523111 546711 506123 897103 413953 784022 751539 941405 059646 080756 071870 961739 098073 445915 282281 128238 805444 054215 533938 309621 724362 261942 727978 228304 388824 088130 845124 703968 105061 171682 879585 153014 720965 731777 478536 769153 140515 582564 294353 016787 676379 116704 456319 908449 435585 444792 411032 208568 102079 342174 660140 190450 768765 941473 976629 771972 817740 173306 518302 488687 051459 027936 781280 850608 610506 149379 374874 927753 029888 883074 081023 656632 097048 327961 582544 369992 207944 748106 753655 601179 629638 224912 453177 494925 985627 889806 684971 921915 035778 414976 341879 828017 (828 digits), a[1584] = 2
                                                                                      A[1585]/B[1585] = 53069 434852 423668 435223 783919 455168 959716 157677 803381 587979 303215 114113 561776 296073 168104 308210 313414 044332 364108 495350 497609 362482 560145 315562 849721 527538 974044 274787 319204 205561 673806 791766 682930 524541 921988 992556 114508 741972 962478 731590 842113 691160 832217 733056 276844 912865 725240 299901 587596 126668 268580 056095 015883 130521 656897 756291 777178 541900 993618 589314 506293 910329 839622 974968 396958 559818 952984 094226 216049 449441 387180 671742 596573 514985 598346 311374 856981 042808 479682 412168 394571 624594 256525 508678 194461 888320 341074 980626 484185 696401 710533 824311 003724 479550 635748 147009 850305 488353 284725 826635 772813 280552 763569 161256 256680 933306 362910 606805 084312 389769 302046 928467 154780 804317 619827 748807 569489 800858 943103 131827 631553 477836 373227 604922 678105 400620 367844 578520 767279 542317 611535 585444 745652 819144 504422 706590 923236 496764 (827 digits)/5 158005 467006 448828 870010 107818 569394 898829 260430 596743 588195 329160 705702 710320 222266 919464 407689 781692 845302 574344 079802 221978 816096 839131 723692 384491 500957 436126 266111 735982 395007 826696 813980 487282 344019 035571 024164 630419 988504 792361 466361 683861 071816 738181 965771 937580 030986 333694 128324 062974 581401 463899 639448 309862 951492 408885 725427 441222 638612 636561 865954 071444 169905 837582 078353 767448 026331 351687 236463 926475 207479 725485 496836 660514 523910 555897 054851 094858 708299 758772 663813 457977 060228 225846 594733 437105 878825 202187 547336 016599 407729 299133 167683 615133 616172 551397 693802 816039 551288 746100 513323 600907 892858 402124 429373 761651 146145 943400 776727 123638 706240 188753 405288 742473 310879 922222 182910 287097 557845 871405 201043 110618 169533 349848 361480 912452 815006 079407 812452 819775 488713 900991 346153 551075 957619 077896 347575 225174 481837 (829 digits), a[1585] = 9
                                                                                      A[1586]/B[1586] = 217912 980837 068983 787592 570841 148338 371325 090147 523188 292588 642732 537795 114314 731800 997800 086986 782542 764340 999071 285854 591077 857873 928896 105813 275202 220649 576168 079607 424970 936030 185212 991480 173290 662231 464759 416208 966802 283213 094818 883912 906421 723442 582509 845279 685572 389029 675041 286566 120117 896094 713831 794532 827531 326671 953122 851207 479538 783220 463412 340605 574155 856467 061076 314952 017759 843772 217394 597324 540173 929904 512731 630401 793727 964050 542078 709259 688390 946388 233564 152663 848435 762625 429332 366212 118714 422451 673674 211738 233243 039132 692172 685071 319155 271080 906310 947505 116764 441305 573778 983946 929454 716569 269528 605113 702676 843724 793546 496573 407210 870035 461492 266372 748958 955889 455797 338868 549573 123691 833717 271069 827990 090776 325650 217230 420563 590634 462369 879826 100758 205465 193406 114245 994001 738743 976301 286187 374944 118007 (828 digits)/21 179730 849120 596825 593666 102588 216922 171203 520132 786669 851604 602161 435943 307494 270583 700183 685940 508949 826655 975259 550736 007220 210280 866818 518185 254924 543511 081564 946185 784054 635929 122553 778420 684249 076963 212833 259670 915531 208821 010050 322587 439892 517648 261963 828704 691463 146313 857888 060007 758022 222709 269552 341815 990991 747374 695188 982465 836761 516189 644320 909731 568057 807862 155772 367630 603730 414947 131111 207798 433879 058223 290766 075477 487182 799610 328649 391087 259019 986213 756056 387031 310445 010066 043901 961498 042776 532088 485129 306048 522717 539366 632118 115526 871566 673258 307670 117385 924298 395605 753167 994768 380261 343406 426237 890801 564907 073270 825062 134845 275835 675569 365519 770534 344768 171272 718777 614715 229413 888015 582669 132134 025017 048125 607338 194030 403466 861203 947269 474723 732279 449781 589593 274420 889275 752391 347363 805277 242577 755365 (830 digits), a[1586] = 4
                                                                                      A[1587]/B[1587] = 706808 377363 630619 798001 496442 900184 073691 428120 372946 465745 231412 727498 904720 491476 161504 569170 661042 337355 361322 352914 270842 936104 346833 633002 675328 189487 702548 513609 594117 013652 229445 766207 202802 511236 316267 241183 014915 591612 246935 383329 561378 861488 579747 268895 333562 079954 750364 159599 947949 814952 410075 439693 498477 110537 516266 309914 215794 891562 383855 611131 228761 479731 022851 919824 450238 091135 605167 886199 836571 239154 925375 562947 977757 407137 224582 439153 922153 881973 180374 870159 939878 912470 544522 607314 550605 155675 362097 615841 183914 813799 787051 879524 961190 292793 354680 989525 200598 812270 006062 778476 561177 430260 572154 976597 364711 464480 743550 096525 305944 999875 686523 727585 401657 671985 987219 765413 218209 171934 444254 945037 115523 750165 350178 256613 939796 172523 754954 217999 069554 158713 191753 928182 727658 035376 433326 565153 048068 850785 (828 digits)/68 697198 014368 239305 651008 415583 220161 412439 820828 956753 143009 135645 013532 632803 034018 020015 465511 308542 325270 500122 732010 243639 446939 439587 278248 149265 131490 680821 104669 088146 302795 194358 149242 540029 574908 674070 803177 377013 614967 822512 434124 003538 624761 524073 451886 011969 469927 907358 308347 337041 249529 272556 664896 282838 193616 494452 672824 951507 187181 569524 595148 775617 593492 304899 181245 578639 271172 745020 859859 228112 382149 597783 723269 122062 922741 541845 228112 871918 666941 026941 824907 389312 090426 357552 479227 565435 475090 657575 465481 584752 025829 195487 514264 229833 635947 474408 045960 588934 738106 005604 497628 741691 923077 680838 101778 456372 365958 418587 181262 951145 732948 285312 716891 776777 824698 078555 027055 975339 221892 619412 597445 185669 313910 171862 943572 122853 398617 921216 236624 016613 838058 669771 169416 218903 214793 119987 763406 952907 747932 (830 digits), a[1587] = 3
                                                                                      A[1588]/B[1588] = 924721 358200 699603 585594 067284 048522 445016 518267 896134 758333 874145 265294 019035 223277 159304 656157 443585 101696 360393 638768 861920 793978 275729 738815 950530 410137 278716 593217 019087 949682 414658 757687 376093 173467 781026 657391 981717 874825 341754 267242 467800 584931 162257 114175 019134 468984 425405 446166 068067 711047 123907 234226 326008 437209 469389 161121 695333 674782 847267 951736 802917 336198 083928 234776 467997 934907 822562 483524 376745 169059 438107 193349 771485 371187 766661 148413 610544 828361 413939 022823 788314 675095 973854 973526 669319 578127 035771 827579 417157 852932 479224 564596 280345 563874 260991 937030 317363 253575 579841 762423 490632 146829 841683 581711 067388 308205 537096 593098 713155 869911 148015 993958 150616 627875 443017 104281 767782 295626 277972 216106 943513 840941 675828 473844 360359 763158 217324 097825 170312 364178 385160 042428 721659 774120 409627 851340 423012 968792 (828 digits)/89 876928 863488 836131 244674 518171 437083 583643 340961 743422 994613 737806 449475 940297 304601 720199 151451 817492 151926 475382 282746 250859 657220 306405 796433 404189 675001 762386 050854 872200 938724 316911 927663 224278 651871 886904 062848 292544 823788 832562 756711 443431 142409 786037 280590 703432 616241 765246 368355 095063 472238 542109 006712 273829 940991 189641 655290 788268 703371 213845 504880 343675 401354 460671 548876 182369 686119 876132 067657 661991 440372 888549 798746 609245 722351 870494 619200 130938 653154 782998 211938 699757 100492 401454 440725 608212 007179 142704 771530 107469 565195 827605 629791 101400 309205 782078 163346 513233 133711 758772 492397 121953 266484 107075 992580 021279 439229 243649 316108 226981 408517 650832 487426 121545 995970 797332 641771 204753 109908 202081 729579 210686 362035 779201 137602 526320 259821 868485 711347 748893 287840 259364 443837 108178 967184 467351 568684 195485 503297 (830 digits), a[1588] = 1
                                                                                      A[1589]/B[1589] = 4 405693 810166 429034 140377 765579 094273 853757 501191 957485 499080 727993 788674 980861 384584 798723 193800 435382 744140 802896 907989 718526 112017 449752 588266 477449 830036 817414 886477 670468 812381 888080 796956 707175 205107 440373 870750 941787 090913 613952 452299 432581 201213 228775 725595 410099 955892 451985 944264 220220 659140 905704 376598 802510 859375 393822 954400 997129 590693 772927 418078 440430 824523 358564 858930 322229 830766 895417 820297 343551 915392 677804 336347 063698 891888 291227 032808 364333 195418 836130 961455 093137 612854 439942 501421 227883 468183 505184 926158 852546 225529 703950 137910 082572 548290 398648 737646 470051 826572 325429 828170 523706 017579 938889 303441 634264 697302 891936 468920 158568 479520 278587 703418 004124 183487 759288 182540 289338 354439 556143 809464 889579 113932 053492 151991 381235 225156 624250 609299 750803 615426 732394 097897 614297 131858 071837 970514 740120 725953 (829 digits)/428 204913 468323 583830 629706 488268 968495 747013 184675 930445 121464 086870 811436 393992 252424 900812 071318 578510 932976 401651 862995 247078 075820 665210 463981 766023 831497 730365 308088 576950 057692 462005 859895 437144 182396 221687 054570 547192 910123 152763 460969 777263 194400 668222 574248 825699 934894 968343 781767 717295 138483 440992 691745 378157 957581 253019 293988 104582 000666 424906 614670 150319 198910 147585 376750 308118 015652 249549 130489 876078 143641 151982 918255 559045 812149 023823 704913 395673 279560 158934 672662 188340 492395 963370 242129 998283 503807 228394 551602 014630 286612 505910 033428 635434 872770 602720 699346 641867 272953 040694 467217 229504 989014 109142 072098 541490 122875 393184 445695 859071 367018 888642 666596 262961 808581 267885 594140 794351 661525 427739 515762 028414 762053 288667 493982 228134 437905 395159 082015 012186 989419 707228 944764 651619 083530 989394 038143 734849 761120 (831 digits), a[1589] = 4
                                                                                      A[1590]/B[1590] = 5 330415 168367 128637 725971 832863 142796 298774 019459 853620 257414 602139 053968 999896 607861 958027 849957 878967 845837 163290 546758 580446 905995 725482 327082 427980 240174 096131 479694 689556 762064 302739 554644 083268 378575 221400 528142 923504 965738 955706 719541 900381 786144 391032 839770 429234 424876 877391 390430 288288 370188 029611 610825 128519 296584 863212 115522 692463 265476 620195 369815 243348 160721 442493 093706 790227 765674 717980 303821 720297 084452 115911 529696 835184 263076 057888 181221 974878 023780 250069 984278 881452 287950 413797 474947 897203 046310 540956 753738 269704 078462 183174 702506 362918 112164 659640 674676 787415 080147 905271 590594 014338 164409 780572 885152 701653 005508 429033 062018 871724 349431 426603 697376 154740 811363 202305 286822 057120 650065 834116 025571 833092 954873 729320 625835 741594 988314 841574 707124 921115 979605 117554 140326 335956 905978 481465 821855 163133 694745 (829 digits)/518 081842 331812 419961 874381 006440 405579 330656 525637 673868 116077 824677 260912 334289 557026 621011 222770 396003 084902 877034 145741 497937 733040 971616 260415 170213 506499 492751 358943 449150 996416 778917 787558 661422 834268 108591 117418 839737 733911 985326 217681 220694 336810 454259 854839 529132 551136 733590 150122 812358 610721 983101 698457 651987 898572 442660 949278 892850 704037 638752 119550 493994 600264 608256 925626 490487 701772 125681 198147 538069 584014 040532 717002 168291 534500 894318 324113 526611 932714 941932 884600 888097 592888 364824 682855 606495 510986 371099 323132 122099 851808 333515 663219 736835 181976 384798 862693 155100 406664 799466 959614 351458 255498 216218 064678 562769 562104 636833 761804 086052 775536 539475 154022 384507 804552 065218 235911 999104 771433 629821 245341 239101 124089 067868 631584 754454 697727 263644 793362 761080 277259 966593 388601 759798 050715 456745 606827 930335 264417 (831 digits), a[1590] = 1
                                                                                      A[1591]/B[1591] = 15 066524 146900 686309 592321 431305 379866 451305 540111 664726 013909 932271 896612 980654 600308 714778 893716 193318 435815 129478 001506 879419 924008 900717 242431 333410 310385 009677 845867 049582 336510 493559 906244 873711 962257 883174 927036 788797 022391 525365 891383 233344 773502 010841 405136 268568 805646 206768 725124 796797 399516 964927 598249 059549 452545 120247 185446 382056 121647 013318 157708 927127 145966 243551 046343 902685 362116 331378 427940 784146 084296 909627 395740 734067 418040 407003 395252 314089 242979 336270 930012 856042 188755 267537 451317 022289 560804 587098 433635 391954 382454 070299 542922 808408 772619 717930 087000 044881 986868 135973 009358 552382 346399 500035 073747 037570 708319 750002 592957 902017 178383 131795 098170 313605 806214 163898 756184 403579 654571 224375 860608 555765 023679 512133 403662 864425 201786 307400 023549 593035 574636 967502 378550 286210 943815 034769 614225 066388 115443 (830 digits)/1464 368598 131948 423754 378468 501149 779654 408326 235951 278181 353619 736225 333261 062571 366478 142834 516859 370517 102782 155720 154478 242953 541902 608442 984812 106450 844496 715868 025975 475252 050526 019841 435012 759989 850932 438869 289408 226668 377947 123415 896332 218651 868021 576742 283927 883965 037168 435524 082013 342012 359927 407196 088660 682133 754726 138341 192545 890283 408741 702410 853771 138308 399439 364099 228003 289093 419196 500911 526784 952217 311669 233048 352259 895628 881150 812460 353140 448897 144990 042800 441863 964535 678172 693019 607841 211274 525779 970593 197866 258829 990229 172941 359868 109105 236723 372318 424732 952068 086282 639628 386445 932421 500010 541578 201455 667029 247084 666851 969304 031176 918091 967592 974641 031977 417685 398322 065964 792561 204392 687382 006444 506617 010231 424404 757151 737043 833359 922448 668740 534347 543939 640415 721968 171215 184961 902885 251799 595520 289954 (832 digits), a[1591] = 2
                                                                                      A[1592]/B[1592] = 20 396939 315267 814947 318293 264168 522662 750079 559571 518346 271324 534410 950581 980551 208170 672806 743674 072286 281652 292768 548265 459866 830004 626199 569513 761390 550559 105809 325561 739139 098574 796299 460888 956980 340833 104575 455179 712301 988130 481072 610925 133726 559646 401874 244906 697803 230523 084160 115555 085085 769704 994539 209074 188068 749129 983459 300969 074519 387123 633513 527524 170475 306687 686044 140050 692913 127791 049358 731762 504443 168749 025538 925437 569251 681116 464891 576474 288967 266759 586340 914291 737494 476705 681334 926264 919492 607115 128055 187373 661658 460916 253474 245429 171326 884784 377570 761676 832297 067016 041244 599952 566720 510809 280607 958899 739223 713828 179035 654976 773741 527814 558398 795546 468346 617577 366204 043006 460700 304637 058491 886180 388857 978553 241454 029498 606020 190101 148974 730674 514151 554242 085056 518876 622167 849793 516235 436080 229521 810188 (830 digits)/1982 450440 463760 843716 252849 507590 185233 738982 761588 952049 469697 560902 594173 396860 923504 763845 739629 766520 187685 032754 300219 740891 274943 580059 245227 276664 350996 208619 384918 924403 046942 798759 222571 421412 685200 547460 406827 066406 111859 108742 114013 439346 204832 031002 138767 413097 588305 169114 232136 154370 970649 390297 787118 334121 653298 581002 141824 783134 112779 341162 973321 632302 999703 972356 153629 779581 120968 626592 724932 490286 895683 273581 069262 063920 415651 706778 677253 975509 077704 984733 326464 852633 271061 057844 290696 817770 036766 341692 520998 380929 842037 506457 023087 845940 418699 757117 287426 107168 492947 439095 346060 283879 755508 757796 266134 229798 809189 303685 731108 117229 693628 507068 128663 416485 222237 463540 301876 791665 975826 317203 251785 745718 134320 492273 388736 491498 531087 186093 462103 295427 821199 607009 110569 931013 235677 359630 858627 525855 554371 (832 digits), a[1592] = 1
                                                                                      A[1593]/B[1593] = 55 860402 777436 316204 228907 959642 425191 951464 659254 701418 556559 001093 797776 941757 016650 060392 381064 337890 999119 715015 098037 799153 584018 153116 381458 856191 411503 221296 496990 527860 533660 086158 828022 787672 643924 092325 837396 213400 998652 487511 113233 500797 892794 814589 894949 664175 266692 375088 956234 966968 938926 954006 016397 435686 950805 087165 787384 531094 895894 280345 212757 268077 759341 615639 326445 288511 617698 430095 891465 793032 421794 960705 246615 872570 780273 336786 548200 892023 776498 508952 758596 331031 142166 630207 303846 861274 775034 843208 808382 715271 304286 577248 033781 151062 542188 473071 610353 709476 120900 218462 209263 685823 368018 061250 991546 516018 135976 108073 902911 449500 234012 248592 689263 250299 041368 896306 842197 324980 263845 341359 632969 333480 980785 995041 462660 076465 581988 605349 484898 621338 683121 137615 416303 530546 643402 067240 486385 525431 735819 (830 digits)/5429 269479 059470 111186 884167 516330 150121 886291 759129 182280 293014 858030 521607 856293 213487 670525 996118 903557 478152 221228 754917 724736 091789 768561 475266 659779 546489 133106 795813 324058 144411 617359 880155 602815 221333 533790 103062 359480 601665 340900 124359 097344 277685 638746 561462 710160 213778 773752 546285 650754 301226 187791 662897 350377 061323 300345 476195 456551 634300 384736 800414 402914 398847 308811 535262 848255 661133 754096 976649 932791 103035 780210 490784 023469 712454 226017 707648 399915 300400 012267 094793 669802 220294 808708 189234 846814 599312 653978 239863 020689 674304 185855 406043 800986 074122 886552 999585 166405 072177 517819 078566 500181 011028 057170 733724 126626 865463 274223 431520 265636 305348 981729 231967 864947 862160 325402 669718 375893 156045 321788 510015 998053 278872 408951 534624 720040 895534 294635 592947 125203 186338 854433 943108 033241 656316 622146 969054 647231 398696 (832 digits), a[1593] = 2
                                                                                      A[1594]/B[1594] = 76 257342 092704 131151 547201 223810 947854 701544 218826 219764 827883 535504 748358 922308 224820 733199 124738 410177 280772 007783 646303 259020 414022 779315 950972 617581 962062 327105 822552 266999 632234 882458 288911 744652 984757 196901 292575 925702 986782 968583 724158 634524 452441 216464 139856 361978 497215 459249 071790 052054 708631 948545 225471 623755 699935 070625 088353 605614 283017 913858 740281 438553 066029 301683 466495 981424 745489 479454 623228 297475 590543 986244 172053 441822 461389 801678 124675 180991 043258 095293 672888 068525 618872 311542 230111 780767 382149 971263 995756 376929 765202 830722 279210 322389 426972 850642 372030 541773 187916 259706 809216 252543 878827 341858 950446 255241 849804 287109 557888 223241 761826 806991 484809 718645 658946 262510 885203 785680 568482 399851 519149 722338 959339 236495 492158 682485 772089 754324 215573 135490 237363 222671 935180 152714 493195 583475 922465 754953 546007 (830 digits)/7411 719919 523230 954903 137017 023920 335355 625274 520718 134329 762712 418933 115781 253154 136992 434371 735748 670077 665837 253983 055137 465627 366733 348620 720493 936443 897485 341726 180732 248461 191354 416119 102727 024227 906534 081250 509889 425886 713524 449642 238372 536690 482517 669748 700230 123257 802083 942866 778421 805125 271875 578089 450015 684498 714621 881347 618020 239685 747079 725899 773736 035217 398551 281167 688892 627836 782102 380689 701582 423077 998719 053791 560046 087390 128105 932796 384902 375424 378104 997000 421258 522435 491355 866552 479931 664584 636078 995670 760861 401619 516341 692312 429131 646926 492822 643670 287011 273573 565124 956914 424626 784060 766536 814966 999858 356425 674652 577909 162628 382865 998977 488797 360631 281433 084397 788942 971595 167559 131871 638991 761801 743771 413192 901224 923361 211539 426621 480729 055050 420631 007538 461443 053677 964254 891993 981777 827682 173086 953067 (832 digits), a[1594] = 1
                                                                                      A[1595]/B[1595] = 132 117744 870140 447355 776109 183453 373046 653008 878080 921183 384442 536598 546135 864065 241470 793591 505802 748068 279891 722798 744341 058173 998040 932432 332431 473773 373565 548402 319542 794860 165894 968617 116934 532325 628681 289227 129972 139103 985435 456094 837392 135322 345236 031054 034806 026153 763907 834338 028025 019023 647558 902551 241869 059442 650740 157790 875738 136709 178912 194203 953038 706630 825370 917322 792941 269936 363187 909550 514694 090508 012338 946949 418669 314393 241663 138464 672876 073014 819756 604246 431484 399556 761038 941749 533958 642042 157184 814472 804139 092201 069489 407970 312991 473451 969161 323713 982384 251249 308816 478169 018479 938367 246845 403109 941992 771259 985780 395183 460799 672741 995839 055584 174072 968944 700315 158817 727401 110660 832327 741211 152119 055819 940125 231536 954818 758951 354078 359673 700471 756828 920484 360287 351483 683261 136597 650716 408851 280385 281826 (831 digits)/12840 989398 582701 066090 021184 540250 485477 511566 279847 316610 055727 276963 637389 109447 350480 104897 731867 573635 143989 475211 810055 190363 458523 117182 195760 596223 443974 474832 976545 572519 335766 033478 982882 627043 127867 615040 612951 785367 315189 790542 362731 634034 760203 308495 261692 833418 015862 716619 324707 455879 573101 765881 112913 034875 775945 181693 094215 696237 381380 110636 574150 438131 797398 589979 224155 476092 443236 134786 678232 355869 101754 834002 050830 110859 840560 158814 092550 775339 678505 009267 516052 192237 711650 675260 669166 511399 235391 649649 000724 422309 190645 878167 835175 447912 566945 530223 286596 439978 637302 474733 503193 284241 777564 872137 733582 483052 540115 852132 594148 648502 304326 470526 592599 146380 946558 114345 641313 543452 287916 960780 271817 741824 692065 310176 457985 931580 322155 775364 647997 545834 193877 315876 996785 997496 548310 603924 796736 820318 351763 (833 digits), a[1595] = 1
                                                                                      A[1596]/B[1596] = 340 492831 832985 025863 099419 590717 693948 007561 974988 062131 596768 608701 840630 650438 707762 320382 136343 906313 840555 453381 134985 375368 410104 644180 615835 565128 709193 423910 461637 856719 964024 819692 522780 809304 242119 775355 552520 203910 957653 880773 398942 905169 142913 278572 209468 414286 025031 127925 127840 090102 003749 753647 709209 742641 001415 386206 839829 879032 640842 302266 646358 851814 716771 136329 052378 521297 471865 298555 652616 478491 615221 880143 009392 070608 944716 078607 470427 327020 682771 303786 535856 867639 140950 195041 298029 064851 696519 600209 604034 561331 904181 646662 905193 269293 365295 498070 336799 044271 805549 216044 846176 129278 372518 148078 834431 797761 821365 077476 479487 568725 753504 918159 832955 656535 059576 580146 340006 007002 233137 882273 823387 833978 839589 699569 401796 200388 480246 473671 616516 649148 078331 943246 638147 519236 766390 884908 740168 315724 109659 (831 digits)/33093 698716 688633 087083 179386 104421 306310 648407 080412 767549 874166 972860 390559 472048 837952 644167 199483 817347 953816 204406 675247 846354 283779 582985 112015 128890 785434 291392 133823 393499 862886 483077 068492 278314 162269 311331 735792 996621 343904 030726 963835 804760 002924 286739 223615 790093 833809 376105 427836 716884 418079 109851 675841 754250 266512 244733 806451 632160 509839 947172 922036 911480 993348 461126 137203 580021 668574 650263 058047 134816 202228 721795 661706 309109 809226 250424 570003 926103 735115 015535 453362 906910 914657 217073 818264 687383 106862 294968 762310 246237 897633 448648 099482 542751 626713 704116 860204 153530 839729 906381 431013 352544 321666 559242 467023 322530 754884 282174 350925 679870 607630 429850 545829 574194 977514 017634 254222 254463 707705 560552 305437 227420 797323 521577 839333 074700 070933 031458 351045 512299 395293 093197 047249 959247 988615 189627 421155 813723 656593 (833 digits), a[1596] = 2
                                                                                      A[1597]/B[1597] = 813 103408 536110 499081 974948 364888 760942 668132 828057 045446 577979 754002 227397 164942 656995 434355 778490 560695 961002 629561 014311 808910 818250 220793 564102 604030 791952 396223 242818 508300 093944 608002 162496 150934 112920 839938 235012 546925 900743 217641 635277 945660 631062 588198 453742 854725 813970 090188 283705 199227 655058 409846 660288 544724 653570 930204 555397 894774 460596 798737 245756 410260 258913 189980 897698 312531 306918 506661 819927 047491 242782 707235 437453 455611 131095 295679 613730 727056 185299 211819 503198 134835 042939 331832 130016 771745 550224 014892 012208 214864 877852 701296 123378 012038 699752 319854 655982 339792 919914 910258 710832 196923 991881 699267 610856 366783 628510 550136 419774 810193 502848 891903 839984 282014 819468 319110 407413 124665 298603 505758 798894 723777 619304 630675 758411 159728 314571 307016 933505 055125 077148 246780 627778 721734 669379 420533 889187 911833 501144 (831 digits)/79028 386831 959967 240256 379956 749093 098098 808380 440672 851709 804061 222684 418508 053545 026385 393232 130835 208331 051621 884025 160550 883072 026082 283152 419790 854005 014843 057617 244192 359519 061538 999633 119867 183671 452406 237704 084537 778610 002997 851996 290403 243554 766051 881973 708924 413605 683481 468830 180380 889648 409259 985584 464596 543376 308969 671160 707118 960558 401060 004982 418224 261093 784095 512231 498562 636135 780385 435312 794326 625501 506212 277593 374242 729079 459012 659663 232558 627547 148735 040338 422778 006059 540965 109408 305695 886165 449116 239586 525344 914784 985912 775464 034140 533415 820372 938457 007004 747040 316762 287496 365219 989330 420897 990622 667629 128114 049884 416481 296000 008243 519587 330227 684258 294770 901586 149614 149758 052379 703328 081884 882692 196666 286712 353332 136652 080980 464021 838281 350088 570432 984463 502271 091285 915992 525540 983179 639048 447765 664949 (833 digits), a[1597] = 2
                                                                                      A[1598]/B[1598] = 1966 699648 905206 024027 049316 320495 215833 343827 631102 153024 752728 116706 295424 980324 021753 189093 693325 027705 762560 712503 163608 993190 046605 085767 744040 773190 293098 216356 947274 873320 151914 035696 847773 111172 467961 455232 022545 297762 759140 316056 669498 796490 405038 454969 116954 123737 652971 308301 695250 488557 313866 573341 029786 832090 308557 246615 950625 668581 562035 899741 137871 672335 234597 516290 847775 146360 085702 311879 292470 573474 100787 294613 884298 981831 206906 669966 697888 781133 053369 727425 542253 137309 226828 858705 558062 608342 796967 629993 628450 991061 659887 049255 151949 293370 764800 137779 648763 723857 645379 036562 267840 523126 356281 546614 056144 531329 078386 177749 319037 189112 759202 701967 512924 220564 698513 218367 154832 256332 830344 893791 421177 281534 078198 960920 918618 519845 109389 087705 483526 759398 232628 436807 893704 962706 105149 725976 518544 139391 111947 (832 digits)/191150 472380 608567 567595 939299 602607 502508 265167 961758 470969 482289 418229 227575 579138 890723 430631 461154 234010 057059 972456 996349 612498 335944 149289 951596 836900 815120 406626 622208 112537 985964 482343 308226 645657 067081 786739 904868 553841 349899 734719 544642 291869 535028 050686 641464 617305 200772 313765 788598 496181 236599 081020 605034 841002 884451 587055 220689 553277 311959 957137 758485 433668 561539 485589 134328 852293 229345 520888 646700 385819 214653 276982 410191 767268 727251 569751 035121 181198 032585 096212 298918 919029 996587 435890 429656 459714 005094 774141 813000 075807 869458 999576 167763 609583 267459 581030 874213 647611 473254 481374 161453 331205 163462 540487 802281 578758 854653 115136 942925 696357 646805 090305 914346 163736 780686 316862 553738 359223 114361 724322 070821 620753 370748 228242 112637 236660 998976 708021 051222 653165 364220 097739 229821 791233 039697 155986 699252 709254 986491 (834 digits), a[1598] = 2
                                                                                      A[1599]/B[1599] = 2779 803057 441316 523109 024264 685383 976776 011960 459159 198471 330707 870708 522822 145266 678748 623449 471815 588401 723563 342064 177920 802100 864855 306561 308143 377221 085050 612580 190093 381620 245858 643699 010269 262106 580882 295170 257557 844688 659883 533698 304776 742151 036101 043167 570696 978463 466941 398489 978955 687784 968924 983187 690075 376814 962128 176820 506023 563356 022632 698478 383628 082595 493510 706271 745473 458891 392620 818541 112397 620965 343570 001849 321752 437442 338001 965646 311619 508189 238668 939245 045451 272144 269768 190537 688079 380088 347191 644885 640659 205926 537739 750551 275327 305409 464552 457634 304746 063650 565293 946820 978672 720050 348163 245881 667000 898112 706896 727885 738811 999306 262051 593871 352908 502579 517981 537477 562245 380998 128948 399550 220072 005311 697503 591596 677029 679573 423960 394722 417031 814523 309776 683588 521483 684440 774529 146510 407732 051224 613091 (832 digits)/270178 859212 568534 807852 319256 351700 600607 073548 402431 322679 286350 640913 646083 632683 917108 823863 591989 442341 108681 856482 156900 495570 362026 432442 371387 690905 829963 464243 866400 472057 047503 481976 428093 829328 519488 024443 989406 332451 352897 586715 835045 535424 301079 932660 350389 030910 884253 782595 968979 385829 645859 066605 069631 384379 193421 258215 927808 513835 713019 962120 176709 694762 345634 997820 632891 488429 009730 956201 441027 011320 720865 554575 784434 496348 186264 229414 267679 808745 181320 136550 721696 925089 537552 545298 735352 345879 454211 013728 338344 990592 855371 775040 201904 142999 087832 519487 881218 394651 790016 768870 526673 320535 584360 531110 469910 706872 904537 531618 238925 704601 166392 420533 598604 458507 682272 466476 703496 411602 817689 806206 953513 817419 657460 581574 249289 317641 462998 546302 401311 223598 348683 600010 321107 707225 565238 139166 338301 157020 651440 (834 digits), a[1599] = 1
                                                                                      A[1600]/B[1600] = 4746 502706 346522 547136 073581 005879 192609 355788 090261 351496 083435 987414 818247 125590 700501 812543 165140 616107 486124 054567 341529 795290 911460 392329 052184 150411 378148 828937 137368 254940 397772 679395 858042 373279 048843 750402 280103 142451 419023 849754 974275 538641 441139 498136 687651 102201 119912 706791 674206 176342 282791 556528 719862 208905 270685 423436 456649 231937 584668 598219 521499 754930 728108 222562 593248 605251 478323 130420 404868 194439 444357 296463 206051 419273 544908 635613 009508 289322 292038 666670 587704 409453 496597 049243 246141 988431 144159 274879 269110 196988 197626 799806 427276 598780 229352 595413 953509 787508 210672 983383 246513 243176 704444 792495 723145 429441 785282 905635 057849 188419 021254 295838 865832 723144 216494 755844 717077 637330 959293 293341 641249 286845 775702 552517 595648 199418 533349 482427 900558 573921 542405 120396 415188 647146 879678 872486 926276 190615 725038 (832 digits)/461329 331593 177102 375448 258555 954308 103115 338716 364189 793648 768640 059142 873659 211822 807832 254495 053143 676351 165741 828939 153250 108068 697970 581732 322984 527806 645083 870870 488608 584595 033467 964319 736320 474985 586569 811183 894274 886292 702797 321435 379687 827293 836107 983346 991853 648216 085026 096361 757577 882010 882458 147625 674666 225382 077872 845271 148498 067113 024979 919257 935195 128430 907174 483409 767220 340722 239076 477090 087727 397139 935518 831558 194626 263616 913515 799165 302800 989943 213905 232763 020615 844119 534139 981189 165008 805593 459305 787870 151345 066400 724830 774616 369667 752582 355292 100518 755432 042263 263271 250244 688126 651740 747823 071598 272192 285631 759190 646755 181851 400958 813197 510839 512950 622244 462958 783339 257234 770825 932051 530529 024335 438173 028208 809816 361926 554302 461975 254323 452533 876763 712903 697749 550929 498458 604935 295153 037553 866275 637931 (834 digits), a[1600] = 1
                                                                                      A[1601]/B[1601] = 17019 311176 480884 164517 245007 703021 554604 079324 729943 252959 581015 832952 977563 522038 780254 061078 967237 436724 181935 505766 202510 187973 599236 483548 464695 828455 219497 099391 602198 146441 439176 681886 584396 381943 727413 546377 097867 272042 916955 082963 227603 358075 359519 537577 633650 285066 826679 518865 001574 216811 817299 652773 849662 003530 774184 447129 875971 259168 776638 493136 948127 347387 677835 373959 525219 274645 827590 209802 327002 204283 676641 891238 939906 695262 972727 872485 340144 376156 114784 939256 808564 500504 759559 338267 426505 345381 779669 469523 447989 796891 130620 149970 557157 101750 152610 243876 165275 426175 197312 896970 718212 449580 461497 623368 836437 186438 062745 444790 912359 564563 325814 481387 950406 672012 167465 805011 713478 292991 006828 279575 143819 865849 024611 249149 463974 277829 024008 842006 118707 536287 936992 044777 767049 625881 413565 763971 186560 623071 788205 (833 digits)/1 654166 853992 099841 934197 094924 214624 909953 089697 495000 703625 592270 818342 267061 268152 340605 587348 751420 471394 605907 343299 616650 819776 455938 177639 340341 274325 765215 076855 332226 225842 147907 374935 637055 254285 279197 457995 672230 991329 461289 551021 974109 017305 809403 882701 325949 975559 139332 071681 241713 031862 293233 509482 093630 060525 427039 794029 373302 715174 787959 719893 982295 080055 067158 448049 934552 510595 726960 387471 704209 202740 527422 049250 368313 287198 926811 626910 176082 778574 823035 834839 783544 457448 139972 488866 230378 762659 832128 377338 792380 189795 029864 098889 310907 400746 153708 821044 147514 521441 579830 519604 591053 275757 827829 745905 286487 563768 182109 471883 784479 907477 605984 953052 137456 325241 071148 816494 475200 724080 613844 397794 026520 131938 742087 011023 335068 980548 848924 309272 758912 853889 487394 693258 973896 202601 380044 024625 450962 755847 565233 (835 digits), a[1601] = 3
                                                                                      A[1602]/B[1602] = 38785 125059 308290 876170 563596 411922 301817 514437 550147 857415 245467 653320 773374 169668 261009 934701 099615 489555 849995 066099 746550 171238 109933 359425 981575 807321 817143 027720 341764 547823 276126 043169 026835 137166 503670 843156 475837 686537 252934 015681 429482 254792 160178 573291 954951 672334 773271 744521 677354 609965 917390 862076 419186 215966 819054 317696 208591 750275 137945 584493 417754 449706 083778 970481 643687 154543 133503 550025 058872 603006 797641 078941 085864 809799 490364 380583 689797 041634 521608 545184 204833 410463 015715 725778 099152 679194 703498 213926 165089 790770 458867 099747 541590 802280 534573 083166 284060 639858 605298 777324 682938 142337 627440 039233 396019 802317 910773 795216 882568 317545 672883 258614 766646 067168 551426 365868 144034 223312 972949 852491 928889 018543 824925 050816 523596 755076 581367 166440 137973 646497 416389 209951 949287 898909 706810 400429 299397 436759 301448 (833 digits)/3 769663 039577 376786 243842 448404 383557 923021 518111 354191 200899 953181 695827 407781 748127 489043 429192 555984 619140 377556 515538 386551 747621 609846 937011 003667 076458 175514 024581 153061 036279 329282 714191 010430 983556 144964 727175 238736 868951 625376 423479 327905 861905 454915 748749 643753 599334 363690 239724 241003 945735 468925 166589 861926 346432 931952 433329 895103 497462 600899 359045 899785 288541 041491 379509 636325 361913 692997 252033 496145 802620 990362 930058 931252 838014 767139 052985 654966 547092 859976 902442 587704 759015 814084 958921 625766 330913 123562 542547 736105 445990 784558 972394 991482 554074 662709 742607 050461 085146 422932 289453 870233 203256 403482 563408 845167 413168 123409 590522 750811 215914 025167 416943 787863 272726 605256 416328 207636 218987 159740 326117 077375 702050 512382 831863 032064 515400 159823 872868 970359 584542 687693 084267 498721 903661 365023 344403 939479 377970 768397 (835 digits), a[1602] = 2
                                                                                      A[1603]/B[1603] = 327300 311650 947211 173881 753778 998399 969144 194825 131126 112281 544757 059519 164556 879384 868333 538687 764161 353170 981896 034564 174911 557878 478703 358956 317302 287029 756641 321154 336314 529027 648185 027238 799077 479275 756780 291628 904568 764340 940427 208414 663461 396412 640948 123913 273263 663745 012853 475038 420411 096539 156426 549385 203151 731265 326618 988699 544705 261369 880203 169084 290162 945036 348067 137812 674716 510990 895618 610002 797983 028338 057770 522767 626825 173658 895642 917154 858520 709232 287653 300730 447231 784208 885285 144492 219726 778939 407655 180932 768708 123054 801556 947950 889883 519994 429194 909206 437760 545044 039703 115568 181717 588281 481017 937236 004595 604981 348935 806525 972906 104928 708880 550306 083575 209360 578876 731956 865752 079494 790427 099510 574932 014199 624011 655681 652748 318441 674946 173527 222496 708267 268105 724393 361352 817159 068048 967405 581740 117146 199789 (834 digits)/31 811471 170611 114131 884936 682159 283088 294125 234588 328530 310825 217724 384961 529315 253172 252953 020889 199297 424517 626359 467606 709064 800749 334713 673727 369677 885991 169327 273504 556714 516076 782169 088463 720503 122734 438915 275397 582125 942942 464300 938856 597355 912549 448729 872698 475978 770234 048853 989475 169744 597746 044634 842200 989040 831988 882659 260668 534130 694875 595154 592261 180577 388383 399089 484127 025155 405905 270938 403739 673375 623708 450325 489721 818335 991317 063924 050795 415815 155317 702851 054380 485182 529574 652652 160239 236509 409964 820628 717720 681223 757721 306335 878049 242767 833343 455386 761900 551203 202612 963288 835235 552918 901809 055690 253176 047826 869113 169386 196065 790969 634789 807324 288602 440362 507053 913200 147120 136290 475977 891767 006730 645525 748342 841149 665927 591585 103750 127515 292224 521789 530230 988939 367398 963671 431892 300230 779856 966797 779613 712409 (836 digits), a[1603] = 8
                                                                                      A[1604]/B[1604] = 693385 748361 202713 223934 071154 408722 240105 904087 812400 081978 334981 772359 102487 928437 997677 012076 627938 195897 813787 135228 096373 286995 067340 077338 616180 381381 330425 670029 014393 605878 572496 097646 624990 095718 017231 426414 284975 215219 133788 432510 756405 047617 442074 821118 501478 999824 798978 694598 518176 803044 230243 960846 825489 678497 472292 295095 298002 273014 898351 922661 998080 339778 779913 246106 993120 176524 924740 770030 654838 659682 913182 124476 339515 157117 281650 214893 406838 460099 096915 146645 099296 978880 786286 014762 538606 237073 518808 575791 702506 036880 061980 995649 321357 842269 392962 901579 159581 729946 684705 008461 046373 318900 589475 913705 405211 012280 608645 408268 828380 527403 090644 359226 933796 485889 709179 829781 875538 382302 553804 051513 078753 046943 072948 362179 829093 391959 931259 513494 582967 063031 952600 658738 671993 533227 842908 335240 462877 671051 701026 (834 digits)/67 392605 380799 605050 013715 812722 949734 511271 987288 011251 822550 388630 465750 466412 254471 994949 470970 954579 468175 630275 450751 804681 349120 279274 284465 743022 848440 514168 571590 266490 068432 893620 891118 451437 229025 022795 277970 402988 754836 553978 301192 522617 687004 352375 494146 595711 139802 461398 218674 580493 141227 558194 850991 840008 010410 697270 954666 963364 887213 791208 543568 260940 065307 839670 347763 686636 173724 234874 059512 842897 050037 891013 909502 567924 820648 894987 154576 486596 857728 265679 011203 558069 818165 119389 279400 098785 150842 764819 977989 098552 961433 397230 728493 477018 220761 573483 266408 152867 490372 349509 959924 976071 006874 514863 069760 940821 151394 462181 982654 332750 485493 639815 994148 668588 286834 431656 710568 480217 170942 943274 339578 368427 198736 194682 163718 215234 722900 414854 457318 013938 645004 665571 819065 426064 767445 965484 904117 873074 937198 193215 (836 digits), a[1604] = 2
                                                                                      A[1605]/B[1605] = 11 421472 285430 190622 756826 892249 537955 810838 660230 129527 423934 904465 417264 804363 734392 831165 731913 811172 487536 002490 198213 716884 149799 556144 596374 176188 389131 043452 041618 566612 223084 808122 589584 798919 010764 032483 114257 464172 207847 081042 128586 765942 158291 714145 261809 296927 660941 796512 588614 711239 945246 840329 922934 410986 587224 883295 710224 312741 629608 253833 931676 259448 381496 826679 075524 564639 335389 691470 930493 275401 583264 668684 514389 059067 687535 402046 355449 367936 070817 838295 647052 035983 446301 465861 380692 837426 572115 708592 393600 008804 713135 793252 878340 031608 996304 716601 334472 991068 224190 994983 250944 923690 690690 912632 556522 487971 801471 087262 338827 226994 543378 159190 297937 024318 983595 925754 008466 874366 196335 651291 923719 834980 765288 791185 450558 918242 589800 575098 389440 549969 716778 509716 264212 113249 348804 554582 331252 987782 853973 416205 (836 digits)/1110 093157 263404 794932 104389 685726 478840 474477 031196 508559 471631 435811 836968 991911 324724 172144 556424 472568 915327 710766 679635 583966 386673 803102 225179 258043 461039 396024 418948 820555 611003 080103 346358 943498 787134 803639 722924 029946 020327 327953 757936 959238 904619 086737 779044 007357 007073 431225 488268 457634 857386 975752 458070 429168 998560 038994 535339 947968 890296 254491 289353 355618 433308 833815 048346 011334 185493 028923 355945 159728 424314 706548 041762 905133 121699 383718 524019 201364 878969 953715 233637 414299 620216 562880 630640 817071 823449 057748 365546 258071 140655 662027 533944 875059 365528 631119 024430 997083 048570 555448 194035 170055 011801 293499 369351 100965 291424 564297 918535 114977 402688 044380 194981 137775 096404 819707 516215 819765 211064 984156 439984 540360 928121 956064 285419 035340 670156 765186 609312 744807 850305 638088 472445 780707 711027 747989 245742 935996 774784 803849 (838 digits), a[1605] = 16
                                                                                      A[1606]/B[1606] = 12 114858 033791 393335 980760 963403 946678 050944 564317 941927 505913 239447 189623 906851 662830 828842 743990 439110 683433 816277 333441 813257 436794 623484 673712 792368 770512 373877 711647 581005 828963 380618 687231 423909 106482 049714 540671 749147 423066 214830 561097 522347 205909 156220 082927 798406 660766 595491 283213 229416 748291 070573 883781 236476 265722 355588 005319 610743 902623 152185 854338 257528 721275 606592 321631 557759 511914 616211 700523 930240 242947 581866 638865 398582 844652 683696 570342 774774 530916 935210 793697 135280 425182 252147 395455 376032 809189 227400 969391 711310 750015 855233 873989 352966 838574 109564 236052 150649 954137 679688 259405 970064 009591 502108 470227 893182 813751 695907 747096 055375 070781 249834 657163 958115 469485 634933 838248 749904 578638 205095 975232 913733 812231 864133 812738 747335 981760 506357 902935 132936 779810 462316 922950 785242 882032 397490 666493 450660 525025 117231 (836 digits)/1177 485762 644204 399982 118105 498449 428574 985749 018484 519811 294181 824442 302719 458323 579196 167094 027395 427148 383503 341042 130387 388647 735794 082376 509645 001066 309479 910192 990539 087045 679435 973724 237477 394936 016159 826435 000894 432934 775163 881932 059129 481856 591623 439113 273190 603068 146875 892623 706943 038127 998614 533947 309062 269177 008970 736265 490006 911333 777510 045699 832921 616558 498616 673485 396109 697970 359217 263797 415458 002625 474352 597561 951265 473057 942348 278705 678595 687961 736698 219394 244840 972369 438381 682269 910040 915856 974291 822568 343535 356624 102089 059258 262438 352077 586290 204602 290839 149950 538942 904958 153960 146126 018675 808362 439112 041786 442819 026479 901189 447727 888181 684196 189129 806363 383239 251364 226784 299982 382007 927430 779562 908788 126858 150746 449137 250575 393057 180041 066630 758746 495310 303660 291511 206772 478473 713474 149860 809071 711982 997064 (838 digits), a[1606] = 1
                                                                                      A[1607]/B[1607] = 84 110620 488178 550638 641392 672673 218024 116506 046137 781092 459414 341148 555008 245473 711377 804222 195856 445836 588138 900154 198864 596428 770567 297052 638650 930401 012205 286718 311504 052647 196865 091834 712973 342373 649656 330770 358287 959056 746244 370025 495171 900025 393746 651465 759376 087367 625541 369460 287894 087740 434993 263773 225621 829844 181559 016823 742141 977205 045347 166949 057705 804620 709150 466233 005313 911196 406877 388741 133636 856843 040950 159884 347581 450564 755451 504225 777506 016583 256319 449560 409234 847665 997394 978745 753425 093623 427251 072998 209950 276669 213230 924656 122276 149410 027749 373986 750785 894967 949017 073112 807380 744074 748239 925283 377889 847068 683981 262708 821403 559244 968065 658198 240920 773011 800509 735357 037959 373793 668164 881867 775117 317383 638679 975988 326991 402258 480363 613245 807051 347590 395641 283617 801916 824706 640998 939526 330213 691746 004124 119591 (836 digits)/8175 007733 128631 194824 813022 676423 050290 388971 142103 627427 236722 382465 653285 741852 799901 174708 720797 035459 216347 757019 461959 915852 801438 297361 283049 264441 317918 857182 362183 342829 687618 922448 771223 313114 884093 762249 728290 627554 671310 619546 112713 850378 454359 721417 418187 625765 888328 786967 729926 686402 849074 179436 312444 044231 052384 456587 475381 415971 555356 528690 286883 054969 425008 874727 425004 199156 340796 611707 848693 175481 270430 291919 749355 743480 775789 055952 595593 329135 299159 270080 702683 248516 250506 656500 090886 312213 669199 993158 426758 397815 753190 017577 108574 987524 883269 858732 769465 896786 282227 985197 117796 046811 123856 143674 004023 351683 948338 723177 325671 801344 731778 149557 329759 975955 395840 327892 876921 619659 503112 548741 117361 993089 689270 860542 980242 538793 028499 845433 009097 297286 822167 460050 221513 021342 581870 028834 144907 790427 046682 786233 (838 digits), a[1607] = 6
                                                                                      A[1608]/B[1608] = 180 336099 010148 494613 263546 308750 382726 283956 656593 504112 424741 921744 299640 397799 085586 437287 135703 330783 859711 616585 731171 006114 977929 217589 951014 653170 794922 947314 334655 686300 222693 564288 113178 108656 405794 711255 257247 667260 915554 954881 551441 322397 993402 459151 601679 973141 911849 334411 859001 404897 618277 598120 335024 896164 628840 389235 489603 565153 993317 486083 969749 866770 139576 539058 332259 380152 325669 393693 967797 643926 324847 901635 334028 299712 355555 692148 125354 807941 043555 834331 612166 830612 419972 209638 902305 563279 663691 373397 389292 264649 176477 704546 118541 651786 894072 857537 737623 940585 852171 825913 874167 458213 506071 352675 226007 587320 181714 221325 389903 173865 006912 566231 139005 504139 070505 105647 914167 497491 914967 968831 525467 548501 089591 816110 466721 551852 942487 732849 517037 828117 571093 029552 526784 434656 164030 276543 326920 834152 533273 356413 (837 digits)/17527 501228 901466 789631 744150 851295 529155 763691 302691 774665 767626 589373 609290 942029 178998 516511 468989 498066 816198 855081 054307 220353 338670 677099 075743 529948 945317 624557 714905 772705 054673 818621 779924 021165 784347 350934 457475 688044 117785 121024 284557 182613 500342 881948 109565 854599 923533 466559 166796 410933 696762 892819 933950 357639 113739 649440 440769 743276 888223 103080 406687 726497 348634 422940 246118 096283 040810 487213 112844 353588 015213 181401 449976 960019 493926 390610 869782 346232 335016 759555 650207 469401 939394 995270 091813 540284 312691 808885 197052 152255 608469 094412 479588 327127 352829 922067 829770 943523 103398 875352 389552 239748 266388 095710 447158 745154 339496 472834 552533 050417 351737 983310 848649 758274 174919 907149 980627 539301 388233 024913 014286 894967 505399 871832 409622 328161 450056 870907 084825 353320 139645 223760 734537 249457 642213 771142 439676 389925 805348 569530 (839 digits), a[1608] = 2
                                                                                      A[1609]/B[1609] = 985 791115 538921 023704 959124 216425 131655 536289 329105 301654 583123 949870 053210 234469 139309 990657 874373 099755 886696 983082 854719 627003 660213 385002 393724 196254 986820 023289 984782 484148 310332 913275 278863 885655 678629 887046 644526 295361 324019 144433 252378 512015 360758 947223 767775 953077 184788 041519 582901 112228 526381 254374 900746 310667 325760 963001 190159 802975 011934 597368 906455 138471 407033 161524 666610 811958 035224 357210 972625 076474 665189 668061 017722 949126 533229 964966 404280 056288 474098 621218 470069 000728 097256 026940 264952 910021 745707 939985 156411 599915 095619 447386 714984 408344 498113 661675 438905 597897 209876 202682 178218 035142 278596 688659 507927 783669 592552 369335 770919 428570 002628 489353 935948 293707 153035 263596 608796 861253 243004 726025 402455 059889 086639 056540 660599 161523 192802 277493 392240 488178 251106 431380 435838 997987 461150 322242 964817 862508 670490 901656 (837 digits)/95812 513877 635965 142983 533776 932900 696069 207427 655562 500756 074855 329333 699740 451998 694893 757266 065744 525793 297342 032424 733496 017619 494791 682856 661766 914186 044506 979970 936712 206354 960988 015557 670843 418943 805830 516922 015669 067775 260236 224667 535499 763445 956074 131157 966016 898765 505996 119763 563908 741071 332888 643535 982195 832426 621082 703789 679230 132355 996472 044092 320321 687456 168180 989428 655594 680571 544849 047773 412914 943421 346496 198926 999240 543578 245421 009006 944505 060296 974243 067858 953720 595525 947481 632850 549954 013635 232659 037584 412019 159093 795535 489639 506516 623161 647419 469071 918320 614401 799222 361959 065557 245552 455796 622226 239817 077455 645821 087350 088337 053431 490468 066111 573008 767326 270439 863642 780059 316166 444277 673306 188796 467927 216270 219705 028354 179600 278784 199968 433224 063887 520393 578853 894199 268630 792938 884546 343289 740056 073425 633883 (839 digits), a[1609] = 5
                                                                                      A[1610]/B[1610] = 1166 127214 549069 518318 222670 525175 514381 820245 985698 805767 007865 871614 352850 632268 224896 427945 010076 430539 746408 599668 585890 633118 638142 602592 344738 849425 781742 970604 319438 170448 533026 477563 392041 994312 084424 598301 901773 962622 239574 099314 803819 834413 354161 406375 369455 926219 096637 375931 441902 517126 144658 852495 235771 206831 954601 352236 679763 368129 005252 083452 876205 005241 546609 700582 998870 192110 360893 750904 940422 720400 990037 569696 351751 248838 888785 657114 529634 864229 517654 455550 082235 831340 517228 236579 167258 473301 409399 313382 545703 864564 272097 151932 833526 060131 392186 519213 176529 538483 062048 028596 052385 493355 784668 041334 733935 370989 774266 590661 160822 602435 009541 055585 074953 797846 223540 369244 522964 358745 157972 694856 927922 608390 176230 872651 127320 713376 135290 010342 909278 316295 822199 460932 962623 432643 625180 598786 291738 696661 203764 258069 (838 digits)/113340 015106 537431 932615 277927 784196 225224 971118 958254 275421 842481 918707 309031 394027 873892 273777 534734 023860 113540 887505 787803 237972 833462 359955 737510 444134 989824 604528 651617 979060 015661 834179 450767 440109 590177 867856 473144 755819 378021 345691 820056 946059 456417 013106 075582 753365 429529 586322 730705 152005 029651 536355 916146 190065 734822 353230 119999 875632 884695 147172 727009 413953 516815 412368 901712 776854 585659 534986 525759 297009 361709 380328 449217 503597 739347 399617 814287 406529 309259 827414 603928 064927 886876 628120 641767 553919 545350 846469 609071 311349 404004 584051 986104 950289 000249 391139 748091 557924 902621 237311 455109 485300 722184 717936 686975 822609 985317 560184 640870 103848 842206 049422 421658 525600 445359 770792 760686 855467 832510 698219 203083 362894 721670 091537 437976 507761 728841 070875 518049 417207 660038 802614 628736 518088 435152 655688 782966 129981 878774 203413 (840 digits), a[1610] = 1
                                                                                      A[1611]/B[1611] = 14979 317690 127755 243523 631170 518531 304237 379241 157490 970858 677514 409242 287417 821687 838067 125997 995290 266232 843600 179105 885407 224427 317924 616110 530590 389364 367735 670541 818040 529530 706650 644035 983367 817400 691725 066669 465813 846828 198908 336210 898216 524975 610695 823728 201247 067706 344436 552696 885731 317742 262287 484317 730000 792650 780977 189841 347320 220523 074959 598803 420915 201369 966349 568520 653053 117282 365949 368070 257697 721286 545640 504417 238737 935193 198657 850340 759898 427042 685952 087819 456898 976814 303994 865890 272054 589638 658499 700575 704857 974686 360785 270580 717297 129921 204351 892233 557260 059693 954452 545834 806843 955411 694613 184676 315152 235546 883751 457269 700790 657790 117121 156374 835393 867861 835519 694530 884369 166195 138677 064308 537526 360571 201409 528354 188447 722036 816282 401608 303580 283728 117499 962575 987320 189710 963317 507678 465682 222443 115661 998484 (839 digits)/1 455892 695156 085148 334366 868910 343255 398768 860855 154613 805818 184638 353821 408117 180333 181601 042596 482552 812114 659832 682494 187134 873293 496340 002325 511892 243805 922402 234314 756127 955075 148930 025711 080052 700258 887964 931199 693406 137607 796492 372969 376183 116159 433078 288430 873009 939150 660351 155636 332370 565131 688707 079806 975950 113215 438950 942551 119228 639950 612813 810165 044434 654898 369965 937855 476148 002826 572763 467611 722026 507533 687008 762868 389850 586751 117589 804420 715953 938648 685360 996834 200857 374660 590001 170298 251164 660669 776869 195219 720874 895286 643590 498263 339776 026629 650412 162748 895419 309500 630677 209696 526871 069161 122013 237466 483526 948775 469631 809565 778778 299617 596940 659180 632911 074531 614757 113155 908301 581780 434406 051936 625796 822663 876311 318154 284072 272741 024877 050474 649817 070379 440859 210229 439037 485692 014770 752811 738883 299838 618716 074839 (841 digits), a[1611] = 12
                                                                                      A[1612]/B[1612] = 16145 444904 676824 761841 853841 043706 818619 199487 143189 776625 685380 280856 640268 453956 062963 553943 005366 696772 590008 778774 471297 857545 956067 218702 875329 238790 149478 641146 137478 699979 239677 121599 375409 811712 776149 664971 367587 809450 438482 435525 702036 359388 964857 230103 570702 993925 441073 928628 327633 834868 406946 336812 965771 999482 735578 542078 027083 588652 080211 682256 297120 206611 512959 269103 651923 309392 726843 118975 198120 441687 535678 074113 590489 184032 087443 507455 289533 291272 203606 543369 539134 808154 821223 102469 439313 062940 067899 013958 250561 839250 632882 422513 550823 190052 596538 411446 733789 598177 016500 574430 859229 448767 479281 226011 049087 606536 658018 047930 861613 260225 126662 211959 910347 665708 059060 063775 407333 524940 296649 759165 465448 968961 377640 401005 315768 435412 951572 411951 212858 600023 939699 423508 949943 622354 588498 106464 757420 919104 319426 256553 (839 digits)/1 569232 710262 622580 266982 146838 127451 623993 831974 112868 081240 027120 272528 717148 574361 055493 316374 017286 835974 773373 569999 974938 111266 329802 362281 249402 687940 912226 838843 407745 934135 164591 859890 530820 140368 478142 799056 166550 893427 174513 718661 196240 062218 889495 301536 948592 692516 089880 741959 063075 717136 718358 616162 892096 303281 173773 295781 239228 515583 497508 957337 771444 068851 886781 350224 377860 779681 158423 002598 247785 804543 048718 143196 839068 090348 856937 204038 530241 345177 994620 824248 804785 439588 476877 798418 892932 214589 322220 041689 329946 206636 047595 082315 325880 976918 650661 553888 643510 867425 533298 447007 981980 554461 844197 955403 170502 771385 454949 369750 419648 403466 439146 708603 054569 600132 060116 883948 668988 437248 266916 750155 828880 185558 597981 409691 722048 780502 753718 121350 167866 487587 100898 012844 067774 003780 449923 408500 521849 429820 497490 278252 (841 digits), a[1612] = 1
                                                                                      A[1613]/B[1613] = 31124 762594 804580 005365 485011 562238 122856 578728 300680 747484 362894 690098 927686 275643 901030 679941 000656 963005 433608 957880 356705 081973 273991 834813 405919 628154 517214 311687 955519 229509 946327 765635 358777 629113 467874 731640 833401 656278 637390 771736 600252 884364 575553 053831 771950 061631 785510 481325 213365 152610 669233 821130 695772 792133 516555 731919 374403 809175 155171 281059 718035 407981 479308 837624 304976 426675 092792 487045 455818 162974 081318 578530 829227 119225 286101 357796 049431 718314 889558 631188 996033 784969 125217 968359 711367 652578 726398 714533 955419 813936 993667 693094 268120 319973 800890 303680 291049 657870 970953 120265 666073 404179 173894 410687 364239 842083 541769 505200 562403 918015 243783 368334 745741 533569 894579 758306 291702 691135 435326 823474 002975 329532 579049 929359 504216 157449 767854 813559 516438 883752 057199 386084 937263 812065 551815 614143 223103 141547 435088 255037 (839 digits)/3 025125 405418 707728 601349 015748 470707 022762 692829 267481 887058 211758 626350 125265 754694 237094 358970 499839 648089 433206 252494 162072 984559 826142 364606 761294 931746 834629 073158 163873 889210 313521 885601 610872 840627 366107 730255 859957 031034 971006 091630 572423 178378 322573 589967 821602 631666 750231 897595 395446 282268 407065 695969 868046 416496 612724 238332 358457 155534 110322 767502 815878 723750 256747 288079 854008 782507 731186 470209 969812 312076 735726 906065 228918 677099 974527 008459 246195 283826 679981 821083 005642 814249 066878 968717 144096 875259 099089 236909 050821 101922 691185 580578 665657 003548 301073 716637 538930 176926 163975 656704 508851 623622 966211 192869 654029 720160 924581 179316 198426 703084 036087 367783 687480 674663 674873 997104 577290 019028 701322 802092 454677 008222 474292 727846 006121 053243 778595 171824 817683 557966 541757 223073 506811 489472 464694 161312 260732 729659 116206 353091 (841 digits), a[1613] = 1
                                                                                      A[1614]/B[1614] = 78394 970094 285984 772572 823864 168183 064332 356943 744551 271594 411169 661054 495641 005243 865024 913825 006680 622783 457226 694535 184708 021492 504050 888329 687168 495099 183907 264522 048517 158999 132332 652870 092965 069939 711899 128253 034391 122007 713263 978998 902542 128118 115963 337767 114603 117189 012094 891278 754364 140089 745413 979074 357317 583749 768690 005916 775891 207002 390554 244375 733191 022574 471576 944352 261876 162742 912428 093066 109756 767635 698315 231175 248943 422482 659646 223047 388396 727901 982723 805747 531202 378093 071659 039188 862048 368097 520696 443026 161401 467124 620217 808702 087063 830000 198319 018807 315888 913918 958406 814962 191376 257125 827070 047385 777567 290703 741557 058331 986421 096255 614228 948629 401830 732847 848219 580387 990738 907211 167303 406113 471399 628026 535740 259724 324200 750312 487282 039070 245736 367528 054098 195678 824471 246485 692129 334751 203627 202199 189602 766627 (839 digits)/7 619483 521100 038037 469680 178335 068865 669519 217632 647831 855356 450637 525228 967680 083749 529682 034315 016966 132153 639786 074988 299084 080385 982087 091494 771992 551434 581484 985159 735493 712555 791635 631093 752565 821623 210358 259567 886464 955497 116525 901922 341086 418975 534642 481472 591797 955849 590344 537149 853968 281673 532490 008102 628189 136274 399221 772445 956142 826651 718154 492343 403201 516352 400275 926384 085878 344696 620795 943018 187410 428696 520171 955327 296905 444548 805991 220957 022631 912831 354584 466414 816071 068086 610635 735853 181125 965107 520398 515507 431588 410481 429966 243472 657194 984015 252808 987163 721371 221277 861249 760416 999683 801707 776620 341142 478562 211707 304111 728382 816501 809634 511321 444170 429530 949459 409864 878157 823568 475305 669562 354340 738234 202003 546566 865383 734290 886990 310908 464999 803233 603520 184412 458991 081396 982725 379311 731125 043314 889138 729902 984434 (841 digits), a[1614] = 2
                                                                                      A[1615]/B[1615] = 109519 732689 090564 777938 308875 730421 187188 935672 045232 019078 774064 351153 423327 280887 766055 593766 007337 585788 890835 652415 541413 103465 778042 723143 093088 123253 701121 576210 004036 388509 078660 418505 451742 699053 179773 859893 867792 778286 350654 750735 502795 012482 691516 391598 886553 178820 797605 372603 967729 292700 414647 800205 053090 375883 285245 737836 150295 016177 545725 525435 451226 430555 950885 781976 566852 589418 005220 580111 565574 930609 779633 809706 078170 541707 945747 580843 437828 446216 872282 436936 527236 163062 196877 007548 573416 020676 247095 157560 116821 281061 613885 501796 355184 149973 999209 322487 606938 571789 929359 935227 857449 661305 000964 458073 141807 132787 283326 563532 548825 014270 858012 316964 147572 266417 742799 338694 282441 598346 602630 229587 474374 957559 114790 189083 828416 907762 255136 852629 762175 251280 111297 581763 761735 058551 243944 948894 426730 343746 624691 021664 (840 digits)/10 644608 926518 745766 071029 194083 539572 692281 910461 915313 742414 662396 151579 092945 838443 766776 393285 516805 780243 072992 327482 461157 064945 808229 456101 533287 483181 416114 058317 899367 601766 105157 516695 363438 662250 576465 989823 746421 986532 087531 993552 913509 597353 857216 071440 413400 587516 340576 434745 249414 563941 939555 704072 496235 552771 011946 010778 314599 982185 828477 259846 219080 240102 657023 214463 939887 127204 351982 413228 157222 740773 255898 861392 525824 121648 780518 229416 268827 196658 034566 287497 821713 882335 677514 704570 325222 840366 619487 752416 482409 512404 121151 824051 322851 987563 553882 703801 260301 398204 025225 417121 508535 425330 742831 534012 132591 931868 228692 907699 014928 512718 547408 811954 117011 624123 084738 875262 400858 494334 370885 156433 192911 210226 020859 593229 740411 940234 089503 636824 620917 161486 726169 682064 588208 472197 844005 892437 304047 618797 846109 337525 (842 digits), a[1615] = 1
                                                                                      A[1616]/B[1616] = 187914 702783 376549 550511 132739 898604 251521 292615 789783 290673 185234 012207 918968 286131 631080 507591 014018 208572 348062 346950 726121 124958 282093 611472 780256 618352 885028 840732 052553 547508 210993 071375 544707 768992 891672 988146 902183 900294 063918 729734 405337 140600 807479 729366 001156 296009 809700 263882 722093 432790 160061 779279 410407 959633 053935 743752 926186 223179 936279 769811 184417 453130 422462 726328 828728 752160 917648 673177 675331 698245 477949 040881 327113 964190 605393 803890 826225 174118 855006 242684 058438 541155 268536 046737 435464 388773 767791 600586 278222 748186 234103 310498 442247 979974 197528 341294 922827 485708 887766 750190 048825 918430 828034 505458 919374 423491 024883 621864 535246 110526 472241 265593 549402 999265 591018 919082 273180 505557 769933 635700 945774 585585 650530 448808 152617 658074 742418 891700 007911 618808 165395 777442 586206 305036 936074 283645 630357 545945 814293 788291 (840 digits)/18 264092 447618 783803 540709 372418 608438 361801 128094 563145 597771 113033 676808 060625 922193 296458 427600 533771 912396 712778 402470 760241 145331 790316 547596 305280 034615 997599 043477 634861 314321 896793 147789 116004 483873 786824 249391 632886 942029 204057 895475 254596 016329 391858 552913 005198 543365 930920 971895 103382 845615 472045 712175 124424 689045 411167 783224 270742 808837 546631 752189 622281 756455 057299 140848 025765 471900 972778 356246 344633 169469 776070 816719 822729 566197 586509 450373 291459 109489 389150 753912 637784 950422 288150 440423 506348 805474 139886 267923 913997 922885 551118 067523 980046 971578 806691 690964 981672 619481 886475 177538 508219 227038 519451 875154 611154 143575 532804 636081 831430 322353 058730 256124 546542 573582 494603 753420 224426 969640 040447 510773 931145 412229 567426 458613 474702 827224 400412 101824 424150 765006 910582 141055 669605 454923 223317 623562 347362 507936 576012 321959 (842 digits), a[1616] = 1
                                                                                      A[1617]/B[1617] = 861178 543822 596762 979982 839835 324838 193274 106135 204365 181771 515000 399985 099200 425414 290377 624130 063410 420078 283085 040218 445897 603298 906417 169034 214114 596665 241236 939138 214250 578541 922632 704007 630573 775024 746465 812481 476528 379462 606329 669673 124143 574885 921435 309062 891178 362860 036406 428134 856103 023861 054894 917322 694722 214415 500988 712847 855039 908897 290844 604680 188896 243077 640736 687291 881767 598061 675815 272822 266901 723591 691429 973231 386626 398470 367322 796406 742729 142692 292307 407672 760990 327683 271021 194498 315273 575771 318261 559905 229712 273806 550298 743790 124176 069870 789322 687667 298248 514625 480426 935988 052753 335028 313102 479908 819304 826751 382861 050990 689809 456376 746977 379338 345184 263480 106875 015023 375163 620577 682364 772391 257473 299901 716911 984316 438887 540061 224812 419429 793821 726512 772880 691534 106560 278698 988242 083476 948160 527529 881866 174828 (840 digits)/83 700978 716993 880980 233866 683757 973326 139486 422840 167896 133499 114530 858811 335449 527216 952610 103687 651893 429829 924105 937365 502121 646272 969495 646486 754407 621645 406510 232228 438812 859053 692330 107851 827456 597745 723762 987390 277969 754648 903763 575453 931893 662671 424650 283092 434194 760980 064260 322325 662945 946403 827738 552772 993934 308952 656617 143675 397571 217536 015004 268604 708207 265922 886219 777856 042949 014808 243095 838213 535755 418652 360182 128271 816742 386439 126556 030909 434663 634615 591169 303148 372853 684024 830116 466264 350618 062263 179032 824112 138401 203946 325624 094147 243039 873878 780649 467661 186991 876131 571126 127275 541412 333484 820639 034630 577208 506170 359911 452026 340649 802130 782329 836452 303181 918453 063153 888943 298566 372894 532675 199528 917492 859144 290565 427683 639223 249131 691152 044122 317520 221514 368498 246287 266630 291890 737276 386686 693497 650544 150158 625361 (842 digits), a[1617] = 4
                                                                                      A[1618]/B[1618] = 1 049093 246605 973312 530493 972575 223442 444795 398750 994148 472444 700234 412193 018168 711545 921458 131721 077428 628650 631147 387169 172018 728257 188510 780506 994371 215018 126265 779870 266804 126050 133625 775383 175281 544017 638138 800628 378712 279756 670248 399407 529480 715486 728915 038428 892334 658869 846106 692017 578196 456651 214956 696602 105130 174048 554924 456600 781226 132077 227124 374491 373313 696208 063199 413620 710496 350222 593463 945999 942233 421837 169379 014112 713740 362660 972716 600297 568954 316811 147313 650356 819428 868838 539557 241235 750737 964545 086053 160491 507935 021992 784402 054288 566424 049844 986851 028962 221076 000334 368193 686178 101579 253459 141136 985367 738679 250242 407744 672855 225055 566903 219218 644931 894587 262745 697893 934105 648344 126135 452298 408092 203247 885487 367442 433124 591505 198135 967231 311129 801733 345320 938276 468976 692766 583735 924316 367122 578518 073475 696159 963119 (841 digits)/101 965071 164612 664783 774576 056176 581764 501287 550934 731041 731270 227564 535619 396075 449410 249068 531288 185665 342226 636884 339836 262362 791604 759812 194083 059687 656261 404109 275706 073674 173375 589123 255640 943461 081619 510587 236781 910856 696678 107821 470929 186489 679000 816508 836005 439393 304345 995181 294220 766328 792019 299784 264948 118358 997998 067784 926899 668314 026373 561636 020794 330489 022377 943518 918704 068714 486709 215874 194459 880388 588122 136252 944991 639471 952636 713065 481282 726122 744104 980320 057061 010638 634447 118266 906687 856966 867737 318919 092036 052399 126831 876742 161671 223086 845457 587341 158626 168664 495613 457601 304814 049631 560523 340090 909785 188362 649745 892716 088108 172080 124483 841060 092576 849724 492035 557757 642363 522993 342534 573122 710302 848638 271373 857991 886297 113926 076356 091564 145946 741670 986521 279080 387342 936235 746813 960594 010249 040860 158480 726170 947320 (843 digits), a[1618] = 1
                                                                                      A[1619]/B[1619] = 1 910271 790428 570075 510476 812410 548280 638069 504886 198513 654216 215234 812178 117369 136960 211835 755851 140839 048728 914232 427387 617916 331556 094927 949541 208485 811683 367502 719008 481054 704592 056258 479390 805855 319042 384604 613109 855240 659219 276578 069080 653624 290372 650350 347491 783513 021729 882513 120152 434299 480512 269851 613924 799852 388464 055913 169448 636266 040974 517968 979171 562209 939285 703936 100912 592263 948284 269279 218822 209135 145428 860808 987344 100366 761131 340039 396704 311683 459503 439621 058029 580419 196521 810578 435734 066011 540316 404314 720396 737647 295799 334700 798078 690600 119715 776173 716629 519324 514959 848620 622166 154332 588487 454239 465276 557984 076993 790605 723845 914865 023279 966196 024270 239771 526225 804768 949129 023507 746713 134663 180483 460721 185389 084354 417441 030392 738197 192043 730559 595555 071833 711157 160510 799326 862434 912558 450599 526678 601005 578026 137947 (841 digits)/185 666049 881606 545764 008442 739934 555090 640773 973774 898937 864769 342095 394430 731524 976627 201678 634975 837558 772056 560990 277201 764484 437877 729307 840569 814095 277906 810619 507934 512487 032429 281453 363492 770917 679365 234350 224172 188826 451327 011585 046383 118383 341672 241159 119097 873588 065326 059441 616546 429274 738423 127522 817721 112293 306950 724402 070575 065885 243909 576640 289399 038696 288300 829738 696560 111663 501517 458970 032673 416144 006774 496435 073263 456214 339075 839621 512192 160786 378720 571489 360209 383492 318471 948383 372952 207584 930000 497951 916148 190800 330778 202366 255818 466126 719336 367990 626287 355656 371745 028727 432089 591043 894008 160729 944415 765571 155916 252627 540134 512729 926614 623389 929029 152906 410488 620911 531306 821559 715429 105797 909831 766131 130518 148557 313980 753149 325487 782716 190069 059191 208035 647578 633630 202866 038704 697870 396935 734357 809024 876329 572681 (843 digits), a[1619] = 1
                                                                                      A[1620]/B[1620] = 4 869636 827463 113463 551447 597396 320003 720934 408523 391175 780877 130704 036549 252906 985466 345129 643423 359106 726108 459612 241944 407851 391369 378366 679589 411342 838384 861271 217887 228913 535234 246142 734164 786992 182102 407348 026848 089193 598195 223404 537568 836729 296232 029615 733412 459360 702329 611132 932322 446795 417675 754659 924451 704834 950976 666750 795498 053758 214026 263062 332834 497733 574779 471071 615445 895024 246791 132022 383644 360503 712694 890996 988800 914473 884923 652795 393706 192321 235818 026555 766415 980267 261882 160714 112703 882761 045177 894682 601284 983229 613591 453803 650445 947624 289276 539198 462221 259725 030254 065434 930510 410244 430434 049615 915920 854647 404229 988956 120547 054785 613463 151610 693472 374130 315197 307431 832363 695359 619561 721624 769059 124690 256265 536151 268006 652290 674530 351318 772248 992843 488988 360590 789998 291420 308605 749433 268321 631875 275486 852212 239013 (841 digits)/473 297170 927825 756311 791461 536045 691945 782835 498484 528917 460808 911755 324480 859125 402664 652425 801239 860782 886339 758864 894239 791331 667360 218427 875222 687878 212075 025348 291575 098648 238234 152029 982626 485296 440349 979287 685126 288509 599332 130991 563695 423256 362345 298827 074201 186569 434998 114064 527313 624878 268865 554829 900390 342945 611899 516589 068049 800084 514192 714916 599592 407881 598979 602996 311824 292041 489744 133814 259806 712676 601671 129123 091518 551900 630788 392308 505667 047695 501546 123298 777479 777623 271391 015033 652592 272136 727738 314822 924332 433999 788388 281474 673308 155340 284130 323322 411200 879977 239103 515056 168993 231719 348539 661550 798616 719504 961578 397971 168377 197539 977713 087839 950635 155537 313012 799580 704977 166112 773392 784718 529966 380900 532410 155106 514258 620224 727331 656996 526084 860053 402592 574237 654603 341967 824223 356334 804120 509575 776530 478830 092682 (843 digits), a[1620] = 2
                                                                                      A[1621]/B[1621] = 16 519182 272817 910466 164819 604599 508291 800872 730456 372040 996847 607346 921825 876090 093359 247224 686121 218159 227054 293069 153220 841470 505664 230027 988309 442514 326837 951316 372670 167795 310294 794686 681885 166831 865349 606648 693654 122821 453804 946791 681787 163812 179068 739197 547729 161595 128718 715911 917119 774685 733539 533831 387279 914357 241394 056165 555942 797540 683053 307155 977675 055410 663624 117150 947250 277336 688657 665346 369755 290646 283513 533799 953746 843788 415902 298425 577822 888647 166957 519288 357277 521220 982168 292720 773845 714294 675850 088362 524251 687336 136573 696111 749416 533472 987545 393769 103293 298499 605722 044925 413697 385065 879789 603087 213039 121926 289683 757474 085487 079221 863669 421028 104687 362162 471817 727064 446220 109586 605398 299537 487660 834791 954185 692808 221460 987264 761788 246000 047306 574085 538798 792929 530505 673587 788252 160858 255564 422304 427466 134662 854986 (842 digits)/1605 557562 665083 814699 382827 348071 630927 989280 469228 485690 247196 077361 367873 308901 184621 158956 038695 419907 431075 837584 959921 138479 439958 384591 466237 877729 914131 886664 382659 808431 747131 737543 311372 226807 000415 172213 279551 054355 249323 404559 737469 388152 428708 137640 341701 433296 370320 401635 198487 303909 545019 792012 518892 141130 142649 274169 274724 466138 786487 721390 088176 262341 085239 638727 632032 987787 970749 860412 812093 554173 811787 883804 347819 111916 231441 016547 029193 303872 883358 941385 692648 716362 132644 993484 330729 023995 113215 442420 689145 492799 695943 046790 275742 932147 571727 337957 859889 995588 089055 573895 939069 286201 939627 145382 340265 924086 040651 446541 045266 105349 859753 886909 780934 619518 349527 019653 646238 319898 035607 459953 499730 908832 727748 613876 856756 613823 507482 753705 768323 639351 415813 370291 597440 228769 511374 766874 809297 263085 138616 312819 850727 (844 digits), a[1621] = 3
                                                                                      A[1622]/B[1622] = 21 388819 100281 023929 716267 201995 828295 521807 138979 763216 777724 738050 958375 128997 078825 592354 329544 577265 953162 752681 395165 249321 897033 608394 667898 853857 165222 812587 590557 396708 845529 040829 416049 953824 047452 013996 720502 212015 052000 170196 219356 000541 475300 768813 281141 620955 831048 327044 849442 221481 151215 288491 311731 619192 192370 722916 351440 851298 897079 570218 310509 553144 238403 588222 562696 172360 935448 797368 753399 651149 996208 424796 942547 758262 300825 951220 971529 080968 402775 545844 123693 501488 244050 453434 886549 597055 721027 983045 125536 670565 750165 149915 399862 481097 276821 932967 565514 558224 635976 110360 344207 795310 310223 652703 128959 976573 693913 746430 206034 134007 477132 572638 798159 736292 787015 034496 278583 804946 224960 021162 256719 959482 210451 228959 489467 639555 436318 597318 819555 566929 027787 153520 320503 965008 096857 910291 523886 054179 702952 986875 093999 (842 digits)/2078 854733 592909 571011 174288 884117 322873 772115 967713 014607 708004 989116 692354 168026 587285 811381 839935 280690 317415 596449 854160 929811 107318 603019 341460 565608 126206 912012 674234 907079 985365 889573 293998 712103 440765 151500 964677 342864 848655 535551 301164 811408 791053 436467 415902 619865 805318 515699 725800 928787 813885 346842 419282 484075 754548 790758 342774 266223 300680 436306 687768 670222 684219 241723 943857 279829 460493 994227 071900 266850 413459 012927 439337 663816 862229 408855 534860 351568 384905 064684 470128 493985 404036 008517 983321 296131 840953 757243 613477 926799 484331 328264 949051 087487 855857 661280 271090 875565 328159 088952 108062 517921 288166 806933 138882 643591 002229 844512 213643 302889 837466 974749 731569 775055 662539 819234 351215 486010 809000 244672 029697 289733 260158 768983 371015 234048 234814 410702 294408 499404 818405 944529 252043 570737 335598 123209 613417 772660 915146 791649 943409 (844 digits), a[1622] = 1
                                                                                      A[1623]/B[1623] = 37 908001 373098 934395 881086 806595 336587 322679 869436 135257 774572 345397 880201 005087 172184 839579 015665 795425 180217 045750 548386 090792 402697 838422 656208 296371 492060 763903 963227 564504 155823 835516 097935 120655 912801 620645 414156 334836 505805 116987 901143 164353 654369 508010 828870 782550 959767 042956 766561 996166 884754 822322 699011 533549 433764 779081 907383 648839 580132 877374 288184 608554 902027 705373 509946 449697 624106 462715 123154 941796 279721 958596 896294 602050 716728 249646 549351 969615 569733 065132 480971 022709 226218 746155 660395 311350 396878 071407 649788 357901 886738 846027 149279 014570 264367 326736 668807 856724 241698 155285 757905 180376 190013 255790 341999 098499 983597 503904 291521 213229 340801 993666 902847 098455 258832 761560 724803 914532 830358 320699 744380 794274 164636 921767 710928 626820 198106 843318 866862 141014 566585 946449 851009 638595 885110 071149 779450 476484 130419 121537 948985 (842 digits)/3684 412296 257993 385710 557116 232188 953801 761396 436941 500297 955201 066478 060227 476927 771906 970337 878630 700597 748491 434034 814082 068290 547276 987610 807698 443338 040338 798677 056894 715511 732497 627116 605370 938910 441180 323714 244228 397220 097978 940111 038634 199561 219761 574107 757604 053162 175638 917334 924288 232697 358905 138854 938174 625205 897198 064927 617498 732362 087168 157696 775944 932563 769458 880451 575890 267617 431243 854639 883993 821024 225246 896731 787156 775733 093670 425402 564053 655441 268264 006070 162777 210347 536681 002002 314050 320126 954169 199664 302623 419599 180274 375055 224794 019635 427584 999238 130980 871153 417214 662848 047131 804123 227793 952315 479148 567677 042881 291053 258909 408239 697220 861659 512504 394574 012066 838887 997453 805908 844607 704625 529428 198565 987907 382860 227771 847871 742297 164408 062732 138756 234219 314820 849483 799506 846972 890084 422715 035746 053763 104469 794136 (844 digits), a[1623] = 1
                                                                                      A[1624]/B[1624] = 210 928825 965775 695909 121701 234972 511232 135206 486160 439505 650586 465040 359380 154432 939749 790249 407873 554391 854247 981434 137095 703283 910522 800507 948940 335714 625526 632107 406695 219229 624648 218409 905725 557103 611460 117223 791283 886197 581025 755135 725071 822309 747148 308867 425495 533710 629883 541828 682252 202315 574989 400104 806789 286939 361194 618325 888359 095496 797743 957089 751432 595918 748542 115090 112428 420849 055981 110944 369174 360131 394818 217781 424020 768515 884467 199453 718288 929046 251440 871506 528548 615034 375144 184213 188526 153807 705418 340083 374478 460075 183859 380051 146257 553948 598658 566650 909553 841845 844466 886789 133733 697191 260289 931654 838955 469073 611901 265951 663640 200154 181142 540973 312395 228569 081178 842299 902603 377610 376751 624660 978623 930853 033635 837798 044110 773656 426852 813913 153866 272001 860716 885769 575552 157987 522408 266040 421138 436600 355048 594564 838924 (843 digits)/20500 916214 882876 499563 959870 045062 091882 579098 152420 516097 484010 321506 993491 552665 446820 663071 233088 783679 059872 766623 924571 271263 843703 541073 379952 782298 327900 905397 958708 484638 647854 025156 320853 406655 646666 770072 185819 328965 338550 236106 494335 809214 889861 307006 203922 885676 683513 102374 347242 092274 608411 041117 110155 610105 240539 115396 430267 928033 736521 224790 567493 333041 531513 643981 823308 617916 616713 267426 491869 371971 539693 496586 375121 542482 330581 535868 355128 628774 726225 095035 284014 545723 087441 018529 553572 896766 611799 755565 126595 024795 385703 203541 073021 185664 993782 657470 925995 231332 414232 403192 343721 538537 427136 568510 534625 481976 216636 299778 508190 344088 323571 283047 294091 747925 722874 013674 338484 515555 032038 767799 676838 282563 199695 683284 509874 473406 946300 232742 608069 193185 989502 518633 499462 568271 570462 573631 726992 951391 183962 313998 914089 (845 digits), a[1624] = 5
                                                                                      A[1625]/B[1625] = 248 836827 338874 630305 002788 041567 847819 457886 355596 574763 425158 810438 239581 159520 111934 629828 423539 349817 034465 027184 685481 794076 313220 638930 605148 632086 117587 396011 369922 783733 780472 053926 003660 677759 524261 737869 205440 221034 086830 872123 626214 986663 401517 816878 254366 316261 589650 584785 448814 198482 459744 222427 505800 820488 794959 397407 795742 744336 377876 834464 039617 204473 650569 820463 622374 870546 680087 573659 492329 301927 674540 176378 320315 370566 601195 449100 267640 898661 821173 936639 009519 637743 601362 930368 848921 465158 102296 411491 024266 817977 070598 226078 295536 568518 863025 893387 578361 698570 086165 042074 891638 877567 450303 187445 180954 567573 595498 769855 955161 413383 521944 534640 215242 327024 340011 603860 627407 292143 207109 945360 723004 725127 198272 759565 755039 400476 624959 657232 020728 413016 427302 832219 426561 796583 407518 337190 200588 913084 485467 716102 787909 (843 digits)/24185 328511 140869 885274 516986 277251 045684 340494 589362 016395 439211 387985 053719 029593 218727 633409 111719 484276 808364 200658 738653 339554 390980 528684 187651 225636 368239 704075 015603 200150 380351 652272 926224 345566 087847 093786 430047 726185 436529 176217 532970 008776 109622 881113 961526 938838 859152 019709 271530 324971 967316 179972 048330 235311 137737 180324 047766 660395 823689 382487 343438 265605 300972 524433 399198 885534 047957 122066 375863 192995 764940 393318 162278 318215 424251 961270 919182 284215 994489 101105 446791 756070 624122 020531 867623 216893 565968 955229 429218 444394 565977 578596 297815 205300 421367 656709 056976 102485 831447 066040 390853 342660 654930 520826 013774 049653 259517 590831 767099 752328 020792 144706 806596 142499 734940 852562 335938 321463 876646 472425 206266 481129 187603 066144 737646 321278 688597 397150 670801 331942 223721 833454 348946 367778 417435 463716 149707 987137 237725 418468 708225 (845 digits), a[1625] = 1
                                                                                      A[1626]/B[1626] = 708 602480 643524 956519 127277 318108 206871 050979 197353 589032 500904 085916 838542 473473 163619 049906 254952 254025 923178 035803 508059 291436 536964 078369 159237 599886 860701 424130 146540 786697 185592 326261 913046 912622 659983 592962 202164 328265 754687 499382 977501 795636 550183 942623 934228 166233 809184 711399 579880 599280 494477 844959 818390 927916 951113 413141 479844 584169 553497 626017 830667 004866 049681 756017 357178 161942 416156 258263 353832 963986 743898 570538 064651 509649 086858 097654 253570 726369 893788 744784 547587 890521 577870 044950 886369 084123 910011 163065 423012 096029 325055 832207 737330 690986 324710 353426 066277 238986 016796 970938 917011 452326 160896 306545 200864 604220 802898 805663 573963 026921 225031 610253 742879 882617 761202 050021 157417 961896 790971 515382 424633 381107 430181 356929 554189 574609 676772 128377 195323 098034 715322 550208 428675 751154 337444 940420 822316 262769 325984 026770 414742 (843 digits)/68871 573237 164616 270112 993842 599564 183251 260087 331144 548888 362433 097477 100929 611851 884275 929889 456527 752232 676601 167941 401877 950372 625664 598441 755255 233571 064380 313547 989914 884939 408557 329702 173302 097787 822360 957645 045914 781336 211608 588541 560275 826767 109107 069234 126976 763354 401817 141792 890302 742218 543043 401061 206816 080727 516013 476044 525801 248825 383899 989765 254369 864252 133458 692848 621706 388984 712627 511559 243595 757963 069574 283222 699678 178913 179085 458410 193493 197206 715203 297246 177598 057864 335685 059593 288819 330553 743737 666023 985031 913584 517658 360733 668651 596265 836517 970889 039947 436304 077126 535273 125428 223858 736997 610162 562173 581282 735671 481442 042389 848744 365155 572460 907284 032925 192755 718799 010361 158482 785331 712650 089371 244821 574901 815573 985167 115964 323495 027043 949671 857070 436946 185542 197355 303828 405333 501064 026408 925665 659413 150936 330539 (845 digits), a[1626] = 2
                                                                                      A[1627]/B[1627] = 957 439307 982399 586824 130065 359676 054690 508865 552950 163795 926062 896355 078123 632993 275553 679734 678491 603842 957643 062988 193541 085512 850184 717299 764386 231972 978288 820141 516463 570430 966064 380187 916707 590382 184245 330831 407604 549299 841518 371506 603716 782299 951701 759502 188594 482495 398835 296185 028694 797762 954222 067387 324191 748405 746072 810549 275587 328505 931374 460481 870284 209339 700251 576480 979553 032489 096243 831922 846162 265914 418438 746916 384966 880215 688053 546754 521211 625031 714962 681423 557107 528265 179232 975319 735290 549282 012307 574556 447278 914006 395654 058286 032867 259505 187736 246813 644638 937556 102962 013013 808650 329893 611199 493990 381819 171794 398397 575519 529124 440304 746976 144893 958122 209642 101213 653881 784825 254039 998081 460743 147638 106234 628454 116495 309228 975086 301731 785609 216051 511051 142625 382427 855237 547737 744963 277611 022905 175853 811451 742873 202651 (843 digits)/93056 901748 305486 155387 510828 876815 228935 600581 920506 565283 801644 485462 154648 641445 103003 563298 568247 236509 484965 368600 140531 289927 016645 127125 942906 459207 432620 017623 005518 085089 788908 981975 099526 443353 910208 051431 475962 507521 648137 764759 093245 835543 218729 950348 088503 702193 260969 161502 161833 067190 510359 581033 255146 316038 653750 656368 573567 909221 207589 372252 597808 129857 434431 217282 020905 274518 760584 633625 619458 950958 834514 676540 861956 497128 603337 419681 112675 481422 709692 398351 624389 813934 959807 080125 156442 547447 309706 621253 414250 357979 083635 939329 966466 801566 257885 627598 096923 538789 908573 601313 516281 566519 391928 130988 575947 630935 995189 072273 809489 601072 385947 717167 713880 175424 927696 571361 346299 479946 661978 185075 295637 725950 762504 881718 722813 437243 012092 424194 620473 189012 660668 018996 546301 671606 822768 964780 176116 912802 897138 569405 038764 (845 digits), a[1627] = 1
                                                                                      A[1628]/B[1628] = 7410 677636 520322 064288 037734 835840 589704 613038 068004 735603 983344 360402 385407 904426 092494 808049 004393 480926 626679 476720 862846 890026 488257 099467 509941 223697 708723 165120 761785 779713 948042 987577 330000 045297 949700 908782 055396 173364 645316 099929 203519 271736 212096 259139 254389 543701 601031 784694 780744 183621 174032 316671 087733 166757 173623 086986 408955 883711 073118 849390 922656 470243 951442 791384 214049 389366 089863 081723 276968 825387 672969 798952 759419 671158 903232 924935 902052 101591 898527 514749 447340 588377 832500 872189 033402 929097 996164 184960 553964 494074 094634 240209 967401 507522 638864 081121 578749 801878 737531 062035 577563 761581 439292 764477 873598 806781 591681 834300 277834 109054 453864 624511 449735 350112 469697 627193 651194 740176 777541 740584 458100 124749 829360 172396 718792 400213 788894 627641 707683 675392 713700 227203 415338 585318 552187 883697 982652 493746 006146 226882 833299 (844 digits)/720269 885475 303019 357825 569644 737270 785800 464160 774690 505874 973944 495712 183470 101967 605300 872979 434258 407799 071358 748142 385596 979861 742180 488323 355600 448023 092720 436909 028541 480567 930920 203527 869987 201265 193817 317665 377652 333987 748572 941855 212996 675569 640216 721670 746502 678707 228601 272308 023134 212552 115560 468293 992840 292998 092268 070624 540776 613373 837025 595533 439026 773254 174477 213822 768043 310616 036719 946938 579808 414674 911177 019008 733373 658813 402447 396177 982221 567165 683050 085707 548326 755409 054334 620469 383917 162684 911684 014797 884784 419438 103109 936043 433919 207229 641717 364075 718412 207833 437141 744467 739399 189494 480494 527082 593806 997834 701994 987358 708817 056251 066789 592634 904445 260899 686631 718328 434457 518109 419179 008177 158835 326476 912435 987605 044861 176665 408141 996406 292984 180159 061622 318518 021467 005076 164716 254525 259227 315285 939383 136771 601887 (846 digits), a[1628] = 7
                                                                                      A[1629]/B[1629] = 8368 116944 502721 651112 167800 195516 644395 121903 620954 899399 909407 256757 463531 537419 368048 487783 682885 084769 584322 539709 056387 975539 338441 816767 274327 455670 687011 985262 278249 350144 914107 367765 246707 635680 133946 239613 463000 722664 486834 471435 807236 054036 163798 018641 442984 026196 999867 080879 809438 981384 128254 384058 411924 915162 919695 897535 684543 212217 004493 309872 792940 679583 651694 367865 193602 421855 186106 913646 123131 091302 091408 545869 144386 551374 591286 471690 423263 726623 613490 196173 004448 116643 011733 847508 768693 478380 008471 759517 001243 408080 490288 298496 000268 767027 826600 327935 223388 739434 840493 075049 386214 091475 050492 258468 255417 978575 990079 409819 806958 549359 200840 769405 407857 559754 570911 281075 436019 994216 775623 201327 605738 230984 457814 288892 028021 375300 090626 413250 923735 186443 856325 609631 270576 133056 297151 161309 005557 669599 817597 969756 035950 (844 digits)/813326 787223 608505 513213 080473 614086 014736 064742 695197 071158 775588 981174 338118 743412 708304 436278 002505 644308 556324 116742 526128 269788 758825 615449 298506 907230 525340 454532 034059 565657 719829 185502 969513 644619 104025 369096 853614 841509 396710 706614 306242 511112 858946 672018 835006 380900 489570 433810 184967 279742 625920 049327 247986 609036 746018 726993 114344 522595 044614 967786 036834 903111 608908 431104 788948 585134 797304 580564 199267 365633 745691 695549 595330 155942 005784 815859 094897 048588 392742 484059 172716 569344 014141 700594 540359 710132 221390 636051 299034 777417 186745 875373 400386 008795 899602 991673 815335 746623 345715 345781 255680 756013 872422 658071 169754 628770 697184 059632 518306 657323 452737 309802 618325 436324 614328 289689 780756 998056 081157 193252 454473 052427 674940 869323 767674 613908 420234 420600 913457 369171 722290 337514 567768 676682 987485 219305 435344 228088 836521 706176 640651 (846 digits), a[1629] = 1
                                                                                      A[1630]/B[1630] = 15778 794581 023043 715400 205535 031357 234099 734941 688959 635003 892751 617159 848939 441845 460543 295832 687278 565696 211002 016429 919234 865565 826698 916234 784268 679368 395735 150383 040035 129858 862150 355342 576707 680978 083647 148395 518396 896029 132150 571365 010755 325772 375894 277780 697373 569898 600898 865574 590183 165005 302286 700729 499658 081920 093318 984522 093499 095928 077612 159263 715597 149827 603137 159249 407651 811221 275969 995369 400099 916689 764378 344821 903806 222533 494519 396626 325315 828215 512017 710922 451788 705020 844234 719697 802096 407478 004635 944477 555207 902154 584922 538705 967670 274550 465464 409056 802138 541313 578024 137084 963777 853056 489785 022946 129016 785357 581761 244120 084792 658413 654705 393916 857592 909867 040608 908269 087214 734393 553164 941912 063838 355734 287174 461288 746813 775513 879521 040892 631418 861836 570025 836834 685914 718374 849339 045006 988210 163345 823744 196638 869249 (845 digits)/1 533596 672698 911524 871038 650118 351356 800536 528903 469887 577033 749533 476886 521588 845380 313605 309257 436764 052107 627682 864884 911725 249650 501006 103772 654107 355253 618060 891441 062601 046225 650749 389030 839500 845884 297842 686762 231267 175497 145283 648469 519239 186682 499163 393689 581509 059607 718171 706118 208101 492294 741480 517621 240826 902034 838286 797617 655121 135968 881640 563319 475861 676365 783385 644927 556991 895750 834024 527502 779075 780308 656868 714558 328703 814755 408232 212037 077118 615754 075792 569766 721043 324753 068476 321063 924276 872817 133074 650849 183819 196855 289855 811416 834305 216025 541320 355749 533747 954456 782857 090248 995079 945508 352917 185153 763561 626605 399179 046991 227123 713574 519526 902437 522770 697224 300960 008018 215214 516165 500336 201429 613308 378904 587376 856928 812535 790573 828376 417007 206441 549330 783912 656032 589235 681759 152201 473830 694571 543374 775904 842948 242538 (847 digits), a[1630] = 1
                                                                                      A[1631]/B[1631] = 702635 078509 516645 128721 211341 575234 944783 459337 935178 839571 190478 411790 816866 978619 631953 504421 923141 975402 868411 262625 502722 060435 713194 131097 782149 347880 099358 602116 039795 063934 848723 002838 621845 598715 814420 769016 272464 147946 301459 611496 280470 388020 703146 240992 127421 101735 439417 166161 777498 241617 428869 216156 396880 519647 025731 216507 798503 433052 419428 317476 279215 271998 189729 374839 130282 115591 328786 709899 727527 425651 724055 718032 911860 342848 350139 923248 737160 168106 142269 476760 883151 137560 158061 514212 060935 407412 212453 316529 430391 102882 226880 001558 577760 847248 307034 326434 517484 557232 273555 106787 792439 625960 601033 268097 932156 534309 587574 151103 537835 519560 007878 101747 141945 593904 357703 244915 273468 307533 114880 645458 414625 883293 093490 585596 887827 497910 789552 212526 706165 107252 937462 430357 450823 741549 668069 141616 486804 856816 062342 621866 282906 (846 digits)/68 291580 385975 715599 838913 685681 073785 238343 336495 370250 460643 755061 964181 288027 940146 506938 043605 220123 937044 174370 171678 642039 254410 803094 181446 079230 538389 720019 677938 788505 599586 352802 302859 907550 863528 209103 586635 029370 563383 789191 239273 152766 725142 822135 994360 421405 003640 089125 503011 341432 940711 251062 824661 844370 298569 630637 822169 939674 505225 836799 753842 974748 663206 077876 807917 296591 998171 494383 790686 478601 699214 647915 136116 058298 005179 968002 145490 488116 141767 727615 553794 898622 858479 027099 827407 208542 114086 076675 273415 387079 439049 940401 577714 109815 513919 717698 644653 300245 742721 791427 316737 039198 358381 400778 804836 766466 199408 261062 127246 511750 054602 311921 017053 620236 114193 856568 642491 250195 709338 095950 056155 440041 724229 519522 574191 519249 399156 868796 768917 996885 539726 214447 202948 494138 674085 684350 067855 996492 136578 976334 795899 312323 (848 digits), a[1631] = 44
                                                                                      A[1632]/B[1632] = 718413 873090 539688 844121 416876 606592 178883 194279 624138 474575 083230 028950 665806 420465 092496 800254 610420 541099 079413 279055 421956 926001 539893 047332 566418 027248 495093 752499 079830 193793 710873 358181 198553 279693 898067 917411 790861 043975 433610 182861 291225 713793 079040 518772 824794 671634 040316 031736 367681 406622 731155 916885 896538 601567 119050 201029 892002 528980 497040 476739 994812 421825 792866 534088 537933 926812 604756 705269 127627 342341 488434 062854 815666 565381 844659 319875 062475 996321 654287 187683 334939 842581 002296 233909 863031 814890 217089 261006 985599 005036 811802 540264 545431 121798 772498 735491 319623 098545 851579 243872 756217 479017 090818 291044 061173 319667 169335 395223 622628 177973 662583 495663 999538 503771 398312 153184 360683 041926 668045 587370 478464 239027 380665 046885 634641 273424 669073 253419 337583 969089 507488 267192 136738 459924 517408 186623 475015 020161 886086 818505 152155 (846 digits)/69 825177 058674 627124 709952 335799 425142 038879 865398 840138 037677 504595 441067 809616 785526 820543 352862 656887 989151 802053 036563 553764 504061 304100 285218 733337 893643 338080 569379 851106 645812 003551 691890 747051 709412 506946 273397 260637 738880 934474 887742 672005 911825 321299 388050 002914 063247 807297 209129 549534 433005 992543 342283 085197 200604 468924 619787 594795 641194 718440 317162 450610 339571 861262 452844 853583 893922 328408 318189 257677 479523 304783 850674 387001 819935 376234 357527 565234 757521 803408 123561 619666 183232 095576 148471 132818 986903 209749 924264 570898 635905 230257 389130 944120 729945 259019 000402 833993 697178 574284 406986 034278 303889 753695 989990 530027 826013 660241 174237 738873 768176 831447 919491 143006 811418 157528 650509 465410 225503 596286 257585 053350 103134 106899 431120 331785 189730 697173 185925 203327 089056 998359 858981 083374 355844 836551 541686 691063 679953 752239 638847 554861 (848 digits), a[1632] = 1
                                                                                      A[1633]/B[1633] = 4 294704 443962 215089 349328 295724 608195 839199 430736 055871 212446 606628 556544 145899 080945 094437 505694 975244 680898 265477 657902 612506 690443 412659 367760 614239 484122 574827 364611 438946 032903 403089 793744 614611 997185 304760 356075 226769 367823 469510 525802 736598 956986 098348 834856 251394 459905 640997 324843 615905 274731 084648 800585 879573 527482 620982 221657 258516 077954 904630 701176 253277 381127 154062 045281 819951 749654 352570 236245 365664 137359 166226 032306 990193 169757 573436 522624 049540 149714 413705 415177 557850 350465 169542 683761 376094 481863 297899 621564 358386 128066 285892 702881 304916 456242 169528 003891 115600 049961 531451 326151 573527 021046 055124 723318 238023 132645 434251 127221 650976 409428 320795 580067 139638 112761 349264 010837 076883 517166 455108 582310 806947 078429 996815 820025 061033 865034 134918 479623 394084 952700 474903 766318 134516 041172 255110 074733 861879 957625 492776 714392 043681 (847 digits)/417 417465 679348 851223 388675 364678 199495 432742 663489 570940 649031 278039 169520 336111 867780 609654 807918 504563 882803 184635 354496 410861 774717 323595 607539 745920 006606 410422 524838 044038 828646 370560 762313 642809 410590 743834 953621 332559 257788 461565 677986 512796 284269 428632 934610 435975 319879 125611 548659 089105 105741 213779 536077 270356 301591 975260 921107 913652 711199 429001 339655 227800 361065 384189 072141 564511 467783 136425 381632 766989 096831 171834 389487 993307 104856 849173 933128 314289 929376 744656 171602 996953 774639 504980 569762 872637 048602 125424 894738 241572 618576 091688 523368 830419 163646 012793 646667 470214 228614 662849 351667 210589 877830 169258 754789 416605 329476 562267 998435 206118 895486 469160 614509 335270 171284 644211 895038 577246 836856 077381 344080 706792 239900 054019 729793 178175 347810 354662 698544 013520 985011 206246 497853 911010 453309 867107 776289 451810 536347 737532 990137 086628 (849 digits), a[1633] = 5
                                                                                      A[1634]/B[1634] = 22 191936 092901 615135 590762 895499 647571 374880 347959 903494 536808 116372 811671 395301 825190 564684 328729 486643 945590 406801 568568 484490 378218 603189 886135 637615 447861 369230 575556 274560 358310 726322 326904 271613 265620 421869 697787 924707 883092 781162 811874 974220 498723 570784 693054 081766 971162 245302 655954 447207 780278 154399 919815 294406 238980 223961 309316 184582 918755 020193 982621 261199 327461 563176 760497 637692 675084 367607 886495 955948 029137 319564 224389 766632 414169 711841 932995 310176 744893 722814 263571 124191 594906 850009 652716 743504 224206 706587 368828 777529 645368 241266 054671 070013 403009 620138 754946 897623 348353 508835 874630 623852 584247 366441 907635 251288 982894 340591 031331 877510 225115 266561 395999 697729 067578 144632 207369 745100 627758 943588 498924 513199 631177 364744 147010 939810 598595 343665 651536 308008 732591 882007 098782 809318 665785 792958 560292 784414 808289 349970 390465 370560 (848 digits)/2156 912505 455418 883241 653329 159190 422619 202593 182846 694841 282833 894791 288669 490176 124429 868817 392455 179707 403167 725229 809045 608073 377647 922078 322917 462937 926675 390193 193570 071300 789043 856355 503458 961098 762366 226121 041503 923434 027823 242303 277675 235987 333172 464464 061102 182790 662643 435354 952424 995059 961712 061441 022669 436978 708564 345229 225327 163059 197191 863447 015438 589612 144898 782207 813552 676141 232838 010535 226353 092622 963679 163955 798114 353537 344219 622104 023169 136684 404405 526688 981576 604435 056429 620478 997285 496004 229913 836874 397955 778761 728785 688700 005975 096216 548175 322987 233740 185064 840251 888531 165322 087227 693040 599989 763937 613054 473396 471581 166413 769468 245609 177250 992037 819357 667841 378588 125702 351644 409783 983192 977988 587311 302634 376998 080086 222661 928782 470486 678645 270932 014113 029592 348250 638426 622394 172090 423133 950116 361692 439904 589532 988001 (850 digits), a[1634] = 5
                                                                                      A[1635]/B[1635] = 114270 573646 794378 548246 187477 223409 953205 098111 076279 149241 237437 810235 852558 554996 987162 654046 133821 704920 525902 886754 217029 253464 138031 237383 080158 696180 522312 743060 903869 150230 974833 236751 023839 151316 676737 511834 266099 547659 412553 676828 870044 997946 884652 068733 370323 269528 974306 704372 834292 288765 926948 089835 929536 777298 036655 797763 890691 675964 747553 883447 218050 168614 480715 951201 847618 299535 759063 165577 803922 542066 165417 602417 415215 380493 729603 847549 515476 149599 607493 184348 542896 020372 525835 869244 522273 679344 922195 516261 720939 858530 129140 564808 204220 803928 552776 263977 225466 978220 722178 527369 799233 790483 310735 864507 137227 124996 055605 137471 455058 951125 527935 845423 582510 746607 072628 060499 757654 600015 847966 992289 544629 271848 010681 064428 779354 145806 032458 669358 240073 331049 068300 929455 399003 316326 172220 198737 022280 813727 839488 490317 220585 057121 (852 digits)/11 106359 908055 631178 662496 380516 036164 265769 585041 141121 308705 960755 558384 528725 252976 557175 150408 559638 817982 793420 392922 130332 380683 283868 104880 309556 413304 458190 515176 217135 171801 615462 745048 072504 340336 834289 041077 657323 094368 519663 081142 427776 611574 789288 954083 549749 625097 270927 768261 584958 652847 961145 573605 261008 273726 699405 560542 130670 505459 052104 317683 832953 140734 444894 972221 054871 015719 350699 382305 873706 682629 080846 380238 880294 357092 491691 062789 231013 102288 213433 666222 309539 233059 330755 351337 592781 798416 874948 191699 969043 085714 136087 208019 289139 249425 718384 074060 174880 369076 685588 709819 595094 345981 343879 516553 269559 034088 847908 733693 862934 198115 537140 134518 617241 207901 886542 994471 136447 194312 814585 538025 007316 772689 504307 217134 093753 664446 648750 890571 043044 042461 653000 577247 640391 169689 160901 960696 492998 600956 890720 806264 495492 303777 (854 digits), a[1635] = 5149

                                                                                      (the period has 1634 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x = the fraction whose numerator is 1 + 3 and the denominator is -1

                                                                                      A[0]/B[0] = -3/1, a[0] = -3
                                                                                      A[1]/B[1] = -8/3, a[1] = 3
                                                                                      start periodic partA[2]/B[2] = -11/4, a[2] = 1
                                                                                      A[3]/B[3] = -30/11, a[3] = 2

                                                                                      (the period has 2 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2

                                                                                      x = the fraction whose numerator is 5 + 27 and the denominator is 991

                                                                                      A[0]/B[0] = 0/1, a[0] = 0
                                                                                      A[1]/B[1] = 1/97, a[1] = 97
                                                                                      start periodic partA[2]/B[2] = 5/486, a[2] = 5
                                                                                      A[3]/B[3] = 26/2527, a[3] = 5
                                                                                      A[4]/B[4] = 31/3013, a[4] = 1
                                                                                      A[5]/B[5] = 1390/135099, a[5] = 44
                                                                                      A[6]/B[6] = 1421/138112, a[6] = 1
                                                                                      A[7]/B[7] = 2811/273211, a[7] = 1
                                                                                      A[8]/B[8] = 21098/2 050589, a[8] = 7
                                                                                      A[9]/B[9] = 23909/2 323800, a[9] = 1
                                                                                      A[10]/B[10] = 68916/6 698189, a[10] = 2
                                                                                      A[11]/B[11] = 92825/9 021989, a[11] = 1
                                                                                      A[12]/B[12] = 533041/51 808134, a[12] = 5
                                                                                      A[13]/B[13] = 625866/60 830123, a[13] = 1
                                                                                      A[14]/B[14] = 1 158907/112 638257, a[14] = 1
                                                                                      A[15]/B[15] = 4 102587/398 744894, a[15] = 3
                                                                                      A[16]/B[16] = 9 364081/910 128045, a[16] = 2
                                                                                      A[17]/B[17] = 13 466668/1308 872939, a[17] = 1
                                                                                      A[18]/B[18] = 22 830749/2219 000984, a[18] = 1
                                                                                      A[19]/B[19] = 104 789664/10184 876875, a[19] = 4
                                                                                      A[20]/B[20] = 127 620413/12403 877859, a[20] = 1
                                                                                      A[21]/B[21] = 232 410077/22588 754734, a[21] = 1
                                                                                      A[22]/B[22] = 592 440567/57581 387327, a[22] = 2
                                                                                      A[23]/B[23] = 824 850644/80170 142061, a[23] = 1
                                                                                      A[24]/B[24] = 1417 291211/137751 529388, a[24] = 1
                                                                                      A[25]/B[25] = 17832 345176/1 733188 494717, a[25] = 12
                                                                                      A[26]/B[26] = 19249 636387/1 870940 024105, a[26] = 1
                                                                                      A[27]/B[27] = 114080 527111/11 087888 615242, a[27] = 5
                                                                                      A[28]/B[28] = 247410 690609/24 046717 254589, a[28] = 2
                                                                                      A[29]/B[29] = 1 598544 670765/155 368192 142776, a[29] = 6
                                                                                      A[30]/B[30] = 1 845955 361374/179 414909 397365, a[30] = 1
                                                                                      A[31]/B[31] = 31 133830 452749/3026 006742 500616, a[31] = 16
                                                                                      A[32]/B[32] = 64 113616 266872/6231 428394 398597, a[32] = 2
                                                                                      A[33]/B[33] = 544 042760 587725/52877 433897 689392, a[33] = 8
                                                                                      A[34]/B[34] = 1152 199137 442322/111986 296189 777381, a[34] = 2
                                                                                      A[35]/B[35] = 4000 640172 914691/388836 322467 021535, a[35] = 3
                                                                                      A[36]/B[36] = 5152 839310 357013/500822 618656 798916, a[36] = 1
                                                                                      A[37]/B[37] = 9153 479483 271704/889658 941123 820451, a[37] = 1
                                                                                      A[38]/B[38] = 23459 798276 900421/2 280140 500904 439818, a[38] = 2
                                                                                      A[39]/B[39] = 56073 076037 072546/5 449939 942932 700087, a[39] = 2
                                                                                      A[40]/B[40] = 135605 950351 045513/13 180020 386769 839992, a[40] = 2
                                                                                      A[41]/B[41] = 191679 026388 118059/18 629960 329702 540079, a[41] = 1
                                                                                      A[42]/B[42] = 327284 976739 163572/31 809980 716472 380071, a[42] = 1
                                                                                      A[43]/B[43] = 846248 979866 445203/82 249921 762647 300221, a[43] = 2
                                                                                      A[44]/B[44] = 1 173533 956605 608775/114 059902 479119 680292, a[44] = 1
                                                                                      A[45]/B[45] = 3 193316 893077 662753/310 369726 720886 660805, a[45] = 2
                                                                                      A[46]/B[46] = 4 366850 849683 271528/424 429629 200006 341097, a[46] = 1
                                                                                      A[47]/B[47] = 20 660720 291810 748865/2008 088243 520912 025193, a[47] = 4
                                                                                      A[48]/B[48] = 25 027571 141494 020393/2432 517872 720918 366290, a[48] = 1
                                                                                      A[49]/B[49] = 95 743433 716292 810044/9305 641861 683667 124063, a[49] = 3
                                                                                      A[50]/B[50] = 408 001306 006665 260569/39655 085319 455586 862542, a[50] = 4
                                                                                      A[51]/B[51] = 3767 755187 776280 155165/366201 409736 783948 886941, a[51] = 9
                                                                                      A[52]/B[52] = 7943 511681 559225 570899/772057 904793 023484 636424, a[52] = 2
                                                                                      A[53]/B[53] = 19654 778550 894731 296963/1 910317 219322 830918 159789, a[53] = 2
                                                                                      A[54]/B[54] = 27598 290232 453956 867862/2 682375 124115 854402 796213, a[54] = 1
                                                                                      A[55]/B[55] = 47253 068783 348688 164825/4 592692 343438 685320 956002, a[55] = 1
                                                                                      A[56]/B[56] = 405622 840499 243462 186462/39 423913 871625 336970 444229, a[56] = 8
                                                                                      A[57]/B[57] = 452875 909282 592150 351287/44 016606 215064 022291 400231, a[57] = 1
                                                                                      A[58]/B[58] = 858498 749781 835612 537749/83 440520 086689 359261 844460, a[58] = 1
                                                                                      A[59]/B[59] = 1 311374 659064 427762 889036/127 457126 301753 381553 244691, a[59] = 1
                                                                                      A[60]/B[60] = 3 481248 067910 691138 315821/338 354772 690196 122368 333842, a[60] = 2
                                                                                      A[61]/B[61] = 4 792622 726975 118901 204857/465 811898 991949 503921 578533, a[61] = 1
                                                                                      A[62]/B[62] = 99 333702 607413 069162 412961/9654 592752 529186 200799 904502, a[62] = 20
                                                                                      A[63]/B[63] = 104 126325 334388 188063 617818/10120 404651 521135 704721 483035, a[63] = 1
                                                                                      A[64]/B[64] = 307 586353 276189 445289 648597/29895 402055 571457 610242 870572, a[64] = 2
                                                                                      A[65]/B[65] = 1642 058091 715335 414511 860803/159597 414929 378423 755935 835895, a[65] = 5
                                                                                      A[66]/B[66] = 1949 644444 991524 859801 509400/189492 816984 949881 366178 706467, a[66] = 1
                                                                                      A[67]/B[67] = 7490 991426 689909 993916 389003/728075 865884 228067 854471 955296, a[67] = 3
                                                                                      A[68]/B[68] = 9440 635871 681434 853717 898403/917568 682869 177949 220650 661763, a[68] = 1
                                                                                      A[69]/B[69] = 73575 442528 459953 969941 677824/7 151056 645968 473712 399026 587637 (31 digits), a[69] = 7
                                                                                      A[70]/B[70] = 83016 078400 141388 823659 576227/8 068625 328837 651661 619677 249400 (31 digits), a[70] = 1
                                                                                      A[71]/B[71] = 322623 677728 884120 440920 406505/31 356932 632481 428697 258058 335837 (32 digits), a[71] = 3
                                                                                      A[72]/B[72] = 405639 756129 025509 264579 982732/39 425557 961319 080358 877735 585237 (32 digits), a[72] = 1
                                                                                      A[73]/B[73] = 3 973381 482890 113703 822140 251093 (31 digits)/386 186954 284353 151927 157678 602970 (33 digits), a[73] = 9
                                                                                      A[74]/B[74] = 24 245928 653469 707732 197421 489290 (32 digits)/2356 547283 667437 991921 823807 203057 (34 digits), a[74] = 6
                                                                                      A[75]/B[75] = 343 416382 631466 021954 586041 101153 (33 digits)/33377 848925 628485 038832 690979 445768 (35 digits), a[75] = 14
                                                                                      A[76]/B[76] = 367 662311 284935 729686 783462 590443 (33 digits)/35734 396209 295923 030754 514786 648825 (35 digits), a[76] = 1
                                                                                      A[77]/B[77] = 711 078693 916401 751641 369503 691596 (33 digits)/69112 245134 924408 069587 205766 094593 (35 digits), a[77] = 1
                                                                                      A[78]/B[78] = 1789 819699 117739 232969 522469 973635 (34 digits)/173958 886479 144739 169928 926318 838011 (36 digits), a[78] = 2
                                                                                      A[79]/B[79] = 6080 537791 269619 450549 936913 612501 (34 digits)/590988 904572 358625 579373 984722 608626 (36 digits), a[79] = 3
                                                                                      A[80]/B[80] = 7870 357490 387358 683519 459383 586136 (34 digits)/764947 791051 503364 749302 911041 446637 (36 digits), a[80] = 1
                                                                                      A[81]/B[81] = 163487 687599 016793 120939 124585 335221 (36 digits)/15 889944 725602 425920 565432 205551 541366 (38 digits), a[81] = 20
                                                                                      A[82]/B[82] = 171358 045089 404151 804458 583968 921357 (36 digits)/16 654892 516653 929285 314735 116592 988003 (38 digits), a[82] = 1
                                                                                      A[83]/B[83] = 334845 732688 420944 925397 708554 256578 (36 digits)/32 544837 242256 355205 880167 322144 529369 (38 digits), a[83] = 1
                                                                                      A[84]/B[84] = 841049 510466 246041 655254 001077 434513 (36 digits)/81 744567 001166 639697 075069 760882 046741 (38 digits), a[84] = 2
                                                                                      A[85]/B[85] = 5 381142 795485 897194 856921 715018 863656 (37 digits)/523 012239 249256 193388 330585 887436 809815 (39 digits), a[85] = 6
                                                                                      A[86]/B[86] = 11 603335 101438 040431 369097 431115 161825 (38 digits)/1127 769045 499679 026473 736241 535755 666371 (40 digits), a[86] = 2
                                                                                      A[87]/B[87] = 51 794483 201238 058920 333311 439479 510956 (38 digits)/5034 088421 247972 299283 275552 030459 475299 (40 digits), a[87] = 4
                                                                                      A[88]/B[88] = 63 397818 302676 099351 702408 870594 672781 (38 digits)/6161 857466 747651 325757 011793 566215 141670 (40 digits), a[88] = 1
                                                                                      A[89]/B[89] = 939 363939 438703 449844 167035 627804 929890 (39 digits)/91300 092955 715090 859881 440661 957471 458679 (41 digits), a[89] = 14
                                                                                      A[90]/B[90] = 1002 761757 741379 549195 869444 498399 602671 (40 digits)/97461 950422 462742 185638 452455 523686 600349 (41 digits), a[90] = 1
                                                                                      A[91]/B[91] = 4950 410970 404221 646627 644813 621403 340574 (40 digits)/481147 894645 566059 602435 250484 052217 860075 (42 digits), a[91] = 4
                                                                                      A[92]/B[92] = 15853 994668 954044 489078 803885 362609 624393 (41 digits)/1 540905 634359 160920 992944 203907 680340 180574 (43 digits), a[92] = 3
                                                                                      A[93]/B[93] = 36658 400308 312310 624785 252584 346622 589360 (41 digits)/3 562959 163363 887901 588323 658299 412898 221223 (43 digits), a[93] = 2
                                                                                      A[94]/B[94] = 272462 796827 140218 862575 571975 788967 749913 (42 digits)/26 481619 777906 376232 111209 812003 570627 729135 (44 digits), a[94] = 7
                                                                                      A[95]/B[95] = 1 126509 587616 873186 075087 540487 502493 589012 (43 digits)/109 489438 274989 392830 033162 906313 695409 137763 (45 digits), a[95] = 4
                                                                                      A[96]/B[96] = 8 158029 910145 252521 388188 355388 306422 872997 (43 digits)/792 907687 702832 126042 343350 156199 438491 693476 (45 digits), a[96] = 7
                                                                                      A[97]/B[97] = 25 600599 318052 630750 239652 606652 421762 208003 (44 digits)/2488 212501 383485 770957 063213 374912 010884 218191 (46 digits), a[97] = 3
                                                                                      A[98]/B[98] = 59 359228 546250 514021 867493 568693 149947 289003 (44 digits)/5769 332690 469803 667956 469776 906023 460260 129858 (46 digits), a[98] = 2
                                                                                      A[99]/B[99] = 84 959827 864303 144772 107146 175345 571709 497006 (44 digits)/8257 545191 853289 438913 532990 280935 471144 348049 (46 digits), a[99] = 1
                                                                                      A[100]/B[100] = 314 238712 139159 948338 188932 094729 865075 780021 (45 digits)/30541 968266 029671 984697 068747 748829 873693 174005 (47 digits), a[100] = 3
                                                                                      A[101]/B[101] = 1027 675964 281782 989786 673942 459535 166936 837069 (46 digits)/99883 449989 942305 393004 739233 527425 092223 870064 (47 digits), a[101] = 3
                                                                                      A[102]/B[102] = 3397 266604 984508 917698 210759 473335 365886 291228 (46 digits)/330192 318235 856588 163711 286448 331105 150364 784197 (48 digits), a[102] = 3
                                                                                      A[103]/B[103] = 11219 475779 235309 742881 306220 879541 264595 710753 (47 digits)/1 090460 404697 512069 884138 598578 520740 543318 222655 (49 digits), a[103] = 3
                                                                                      A[104]/B[104] = 14616 742384 219818 660579 516980 352876 630482 001981 (47 digits)/1 420652 722933 368658 047849 885026 851845 693683 006852 (49 digits), a[104] = 1
                                                                                      A[105]/B[105] = 98919 930084 554221 706358 408102 996801 047487 722639 (47 digits)/9 614376 742297 724018 171237 908739 631814 705416 263767 (49 digits), a[105] = 6
                                                                                      A[106]/B[106] = 608136 322891 545148 898729 965598 333682 915408 337815 (48 digits)/59 106913 176719 712767 075277 337464 642733 926180 589454 (50 digits), a[106] = 6
                                                                                      A[107]/B[107] = 1 923328 898759 189668 402548 304897 997849 793712 736084 (49 digits)/186 935116 272456 862319 397069 921133 560016 483958 032129 (51 digits), a[107] = 3
                                                                                      A[108]/B[108] = 12 148109 715446 683159 314019 794986 320781 677684 754319 (50 digits)/1180 717610 811460 886683 457696 864266 002832 829928 782228 (52 digits), a[108] = 6
                                                                                      A[109]/B[109] = 14 071438 614205 872827 716568 099884 318631 471397 490403 (50 digits)/1367 652727 083917 749002 854766 785399 562849 313886 814357 (52 digits), a[109] = 1
                                                                                      A[110]/B[110] = 26 219548 329652 555987 030587 894870 639413 149082 244722 (50 digits)/2548 370337 895378 635686 312463 649665 565682 143815 596585 (52 digits), a[110] = 1
                                                                                      A[111]/B[111] = 66 510535 273510 984801 777743 889625 597457 769561 979847 (50 digits)/6464 393402 874675 020375 479694 084730 694213 601518 007527 (52 digits), a[111] = 2
                                                                                      A[112]/B[112] = 92 730083 603163 540788 808331 784496 236870 918644 224569 (50 digits)/9012 763740 770053 656061 792157 734396 259895 745333 604112 (52 digits), a[112] = 1
                                                                                      A[113]/B[113] = 251 970702 479838 066379 394407 458618 071199 606850 428985 (51 digits)/24489 920884 414782 332499 064009 553523 214005 092185 215751 (53 digits), a[113] = 2
                                                                                      A[114]/B[114] = 344 700786 083001 607168 202739 243114 308070 525494 653554 (51 digits)/33502 684625 184835 988560 856167 287919 473900 837518 819863 (53 digits), a[114] = 1
                                                                                      A[115]/B[115] = 1630 773846 811844 495052 205364 431075 303481 708829 043201 (52 digits)/158500 659385 154126 286742 488678 705201 109608 442260 495203 (54 digits), a[115] = 4
                                                                                      A[116]/B[116] = 49267 916190 438336 458734 363672 175373 412521 790365 949584 (53 digits)/4 788522 466179 808624 590835 516528 443952 762154 105333 675953 (55 digits), a[116] = 30
                                                                                      A[117]/B[117] = 50898 690037 250180 953786 569036 606448 716003 499194 992785 (53 digits)/4 947023 125564 962750 877578 005207 149153 871762 547594 171156 (55 digits), a[117] = 1
                                                                                      A[118]/B[118] = 151065 296264 938698 366307 501745 388270 844528 788755 935154 (54 digits)/14 682568 717309 734126 345991 526942 742260 505679 200522 018265 (56 digits), a[118] = 2
                                                                                      A[119]/B[119] = 201963 986302 188879 320094 070781 994719 560532 287950 927939 (54 digits)/19 629591 842874 696877 223569 532149 891414 377441 748116 189421 (56 digits), a[119] = 1
                                                                                      A[120]/B[120] = 353029 282567 127577 686401 572527 382990 405061 076706 863093 (54 digits)/34 312160 560184 431003 569561 059092 633674 883120 948638 207686 (56 digits), a[120] = 1
                                                                                      A[121]/B[121] = 4 438315 377107 719811 556912 941110 590604 421265 208433 285055 (55 digits)/431 375518 565087 868920 058302 241261 495512 974893 131774 681653 (57 digits), a[121] = 12
                                                                                      A[122]/B[122] = 13 667975 413890 287012 357140 395859 154803 668856 702006 718258 (56 digits)/1328 438716 255448 037763 744467 782877 120213 807800 343962 252645 (58 digits), a[122] = 3
                                                                                      A[123]/B[123] = 18 106290 790998 006823 914053 336969 745408 090121 910440 003313 (56 digits)/1759 814234 820535 906683 802770 024138 615726 782693 475736 934298 (58 digits), a[123] = 1
                                                                                      A[124]/B[124] = 339 581209 651854 409842 810100 461314 572149 291051 089926 777892 (57 digits)/33005 094943 025094 358072 194328 217372 203295 896282 907227 070009 (59 digits), a[124] = 18
                                                                                      A[125]/B[125] = 1036 849919 746561 236352 344354 720913 461855 963275 180220 336989 (58 digits)/100775 099063 895818 980900 385754 676255 225614 471542 197418 144325 (60 digits), a[125] = 3
                                                                                      A[126]/B[126] = 1376 431129 398415 646195 154455 182228 034005 254326 270147 114881 (58 digits)/133780 194006 920913 338972 580082 893627 428910 367825 104645 214334 (60 digits), a[126] = 1
                                                                                      A[127]/B[127] = 2413 281049 144976 882547 498809 903141 495861 217601 450367 451870 (58 digits)/234555 293070 816732 319872 965837 569882 654524 839367 302063 358659 (60 digits), a[127] = 1
                                                                                      A[128]/B[128] = 11029 555325 978323 176385 149694 794794 017450 124732 071616 922361 (59 digits)/1 072001 366290 187842 618464 443433 173158 047009 725294 312898 648970 (61 digits), a[128] = 4
                                                                                      A[129]/B[129] = 24472 391701 101623 235317 798199 492729 530761 467065 593601 296592 (59 digits)/2 378558 025651 192417 556801 852703 916198 748544 289955 927860 656599 (61 digits), a[129] = 2
                                                                                      A[130]/B[130] = 353643 039141 401048 470834 324487 693007 448110 663650 382035 074649 (60 digits)/34 371813 725406 881688 413690 381287 999940 526629 784677 302947 841356 (62 digits), a[130] = 14
                                                                                      A[131]/B[131] = 1 439044 548266 705817 118655 096150 264759 323204 121667 121741 595188 (61 digits)/139 865812 927278 719171 211563 377855 915960 855063 428665 139652 022023 (63 digits), a[131] = 4
                                                                                      A[132]/B[132] = 1 792687 587408 106865 589489 420637 957766 771314 785317 503776 669837 (61 digits)/174 237626 652685 600859 625253 759143 915901 381693 213342 442599 863379 (63 digits), a[132] = 1
                                                                                      A[133]/B[133] = 3 231732 135674 812682 708144 516788 222526 094518 906984 625518 265025 (61 digits)/314 103439 579964 320030 836817 136999 831862 236756 642007 582251 885402 (63 digits), a[133] = 1
                                                                                      A[134]/B[134] = 14 719616 130107 357596 422067 487790 847871 149390 413256 005849 729937 (62 digits)/1430 651384 972542 880982 972522 307143 243350 328719 781372 771607 404987 (64 digits), a[134] = 4
                                                                                      A[135]/B[135] = 17 951348 265782 170279 130212 004579 070397 243909 320240 631367 994962 (62 digits)/1744 754824 552507 201013 809339 444143 075212 565476 423380 353859 290389 (64 digits), a[135] = 1
                                                                                      A[136]/B[136] = 86 525009 193236 038712 942915 506107 129460 125027 694218 531321 709785 (62 digits)/8409 670683 182571 685038 209880 083715 544200 590625 474894 187044 566543 (64 digits), a[136] = 4
                                                                                      A[137]/B[137] = 191 001366 652254 247705 016043 016793 329317 493964 708677 694011 414532 (63 digits)/18564 096190 917650 571090 229099 611574 163613 746727 373168 727948 423475 (65 digits), a[137] = 2
                                                                                      A[138]/B[138] = 2760 544142 324795 506583 167517 741213 739905 040533 615706 247481 513233 (64 digits)/268307 017356 029679 680301 417274 645753 834793 044808 699256 378322 495193 (66 digits), a[138] = 14
                                                                                      A[139]/B[139] = 5712 089651 301845 260871 351078 499220 809127 575031 940090 188974 440998 (64 digits)/555178 130902 977009 931693 063648 903081 833199 836344 771681 484593 413861 (66 digits), a[139] = 2
                                                                                      A[140]/B[140] = 8472 633793 626640 767454 518596 240434 549032 615565 555796 436455 954231 (64 digits)/823485 148259 006689 611994 480923 548835 667992 881153 470937 862915 909054 (66 digits), a[140] = 1
                                                                                      A[141]/B[141] = 14184 723444 928486 028325 869674 739655 358160 190597 495886 625430 395229 (65 digits)/1 378663 279161 983699 543687 544572 451917 501192 717498 242619 347509 322915 (67 digits), a[141] = 1
                                                                                      A[142]/B[142] = 36842 080683 483612 824106 257945 719745 265352 996760 547569 687316 744689 (65 digits)/3 580811 706582 974088 699369 570068 452670 670378 316149 956176 557934 554884 (67 digits), a[142] = 2
                                                                                      A[143]/B[143] = 87868 884811 895711 676538 385566 179145 888866 184118 591026 000063 884607 (65 digits)/8 540286 692327 931876 942426 684709 357258 841949 349798 154972 463378 432683 (67 digits), a[143] = 2
                                                                                      A[144]/B[144] = 212579 850307 275036 177183 029078 078037 043085 364997 729621 687444 513903 (66 digits)/20 661385 091238 837842 584222 939487 167188 354277 015746 266121 484691 420250 (68 digits), a[144] = 2
                                                                                      A[145]/B[145] = 513028 585426 445784 030904 443722 335219 975036 914114 050269 374952 912413 (66 digits)/49 863056 874805 607562 110872 563683 691635 550503 381290 687215 432761 273183 (68 digits), a[145] = 2
                                                                                      A[146]/B[146] = 725608 435733 720820 208087 472800 413257 018122 279111 779891 062397 426316 (66 digits)/70 524441 966044 445404 695095 503170 858823 904780 397036 953336 917452 693433 (68 digits), a[146] = 1
                                                                                      A[147]/B[147] = 1 238637 021160 166604 238991 916522 748476 993159 193225 830160 437350 338729 (67 digits)/120 387498 840850 052966 805968 066854 550459 455283 778327 640552 350213 966616 (69 digits), a[147] = 1
                                                                                      A[148]/B[148] = 1 964245 456893 887424 447079 389323 161734 011281 472337 610051 499747 765045 (67 digits)/190 911940 806894 498371 501063 570025 409283 360064 175364 593889 267666 660049 (69 digits), a[148] = 1
                                                                                      A[149]/B[149] = 7 131373 391841 828877 580230 084492 233679 027003 610238 660314 936593 633864 (67 digits)/693 123321 261533 548081 309158 776930 778309 535476 304421 422220 153213 946763 (69 digits), a[149] = 3
                                                                                      A[150]/B[150] = 9 095618 848735 716302 027309 473815 395413 038285 082576 270366 436341 398909 (67 digits)/884 035262 068428 046452 810222 346956 187592 895540 479786 016109 420880 606812 (69 digits), a[150] = 1
                                                                                      A[151]/B[151] = 34 418229 938048 977783 662158 505938 419918 141858 857967 471414 245617 830591 (68 digits)/3345 229107 466817 687439 739825 817799 341088 222097 743779 470548 415855 767199 (70 digits), a[151] = 3
                                                                                      A[152]/B[152] = 43 513848 786784 694085 689467 979753 815331 180143 940543 741780 681959 229500 (68 digits)/4229 264369 535245 733892 550048 164755 528681 117638 223565 486657 836736 374011 (70 digits), a[152] = 1
                                                                                      A[153]/B[153] = 339 015171 445541 836383 488434 364215 127236 402866 441773 663879 019332 437091 (69 digits)/32950 079694 213537 824687 590162 971088 041856 045565 308737 877153 273010 385276 (71 digits), a[153] = 7
                                                                                      A[154]/B[154] = 382 529020 232326 530469 177902 343968 942567 583010 382317 405659 701291 666591 (69 digits)/37179 344063 748783 558580 140211 135843 570537 163203 532303 363811 109746 759287 (71 digits), a[154] = 1
                                                                                      A[155]/B[155] = 721 544191 677868 366852 666336 708184 069803 985876 824091 069538 720624 103682 (69 digits)/70129 423757 962321 383267 730374 106931 612393 208768 841041 240964 382757 144563 (71 digits), a[155] = 1
                                                                                      A[156]/B[156] = 161286 883764 396972 338613 770988 269016 508856 433542 154625 912794 400466 787677 (72 digits)/15 676040 842089 346452 027284 013636 981593 134222 718655 084500 098868 464589 996836 (74 digits), a[156] = 223
                                                                                      A[157]/B[157] = 323295 311720 471813 044080 208313 246217 087516 852961 133342 895127 521557 679036 (72 digits)/31 422211 107936 655225 437835 757648 070117 880838 646079 010041 438701 311937 138235 (74 digits), a[157] = 2
                                                                                      A[158]/B[158] = 484582 195484 868785 382693 979301 515233 596373 286503 287968 807921 922024 466713 (72 digits)/47 098251 950026 001677 465119 771285 051711 015061 364734 094541 537569 776527 135071 (74 digits), a[158] = 1
                                                                                      A[159]/B[159] = 2 261624 093659 946954 574856 125519 307151 473009 998974 285218 126815 209655 545888 (73 digits)/219 815218 908040 661935 298314 842788 276961 941084 105015 388207 588980 418045 678519 (75 digits), a[159] = 4
                                                                                      A[160]/B[160] = 11 792702 663784 603558 256974 606898 050990 961423 281374 714059 441997 970302 196153 (74 digits)/1146 174346 490229 311353 956693 985226 436520 720481 889811 035579 482471 866755 527666 (76 digits), a[160] = 5
                                                                                      A[161]/B[161] = 25 847029 421229 154071 088805 339315 409133 395856 561723 713337 010811 150259 938194 (74 digits)/2512 163911 888499 284643 211702 813241 150003 382047 884637 459366 553924 151556 733851 (76 digits), a[161] = 2
                                                                                      A[162]/B[162] = 89 333790 927472 065771 523390 624844 278391 148992 966545 854070 474431 421082 010735 (74 digits)/8682 666082 155727 165283 591802 424949 886530 866625 543723 413679 144244 321425 729219 (76 digits), a[162] = 3
                                                                                      A[163]/B[163] = 115 180820 348701 219842 612195 964159 687524 544849 528269 567407 485242 571341 948929 (75 digits)/11194 829994 044226 449926 803505 238191 036534 248673 428360 873045 698168 472982 463070 (77 digits), a[163] = 1
                                                                                      A[164]/B[164] = 204 514611 276173 285614 135586 589003 965915 693842 494815 421477 959673 992423 959664 (75 digits)/19877 496076 199953 615210 395307 663140 923065 115298 972084 286724 842412 794408 192289 (77 digits), a[164] = 1
                                                                                      A[165]/B[165] = 1137 753876 729567 647913 290128 909179 517103 014062 002346 674797 283612 533461 747249 (76 digits)/110582 310375 043994 525978 780043 553895 651859 825168 288782 306669 910232 445023 424515 (78 digits), a[165] = 5
                                                                                      A[166]/B[166] = 14995 315008 760552 708486 907262 408337 688254 876648 525322 193842 646636 927426 673901 (77 digits)/1 457447 530951 771882 452934 535873 863784 397242 842486 726254 273433 675434 579712 710984 (79 digits), a[166] = 13
                                                                                      A[167]/B[167] = 2 160463 115138 249157 670027 935915 709806 625805 251449 648742 588138 399330 082902 788993 (79 digits)/209 983026 767430 195067 748551 945879 938848 854829 143256 869397 681119 172811 923653 806211 (81 digits), a[167] = 144
                                                                                      A[168]/B[168] = 2 175458 430147 009710 378514 843178 118144 314060 128098 174064 781981 045967 010329 462894 (79 digits)/211 440474 298381 966950 201486 481753 802633 252071 985743 595651 954552 848246 503366 517195 (81 digits), a[168] = 1
                                                                                      A[169]/B[169] = 95 705175 611459 666703 946166 192574 790012 130390 759671 133528 213323 375911 527069 693435 (80 digits)/9301 923421 597854 773926 412470 661293 452078 693924 530231 482431 726891 647411 568414 045596 (82 digits), a[169] = 43
                                                                                      A[170]/B[170] = 5074 549765 837509 345019 525323 049641 988787 224770 390668 251060 088119 969277 945023 214949 (82 digits)/493213 381818 984684 985050 062431 530306 762804 030072 088012 164533 479810 161059 629310 933783 (84 digits), a[170] = 53
                                                                                      A[171]/B[171] = 10244 804707 286478 356742 996812 291858 767586 579931 541007 635648 389563 314467 417116 123333 (83 digits)/995728 687059 567224 744026 537333 721906 977686 754068 706255 811498 686511 969530 827035 913162 (84 digits), a[171] = 2
                                                                                      A[172]/B[172] = 15319 354473 123987 701762 522135 341500 756373 804701 931675 886708 477683 283745 362139 338282 (83 digits)/1 488942 068878 551909 729076 599765 252213 740490 784140 794267 976032 166322 130590 456346 846945 (85 digits), a[172] = 1
                                                                                      A[173]/B[173] = 301312 539696 642244 690230 917383 780373 138688 869268 242849 483109 465545 705629 297763 550691 (84 digits)/29 285627 995752 053509 596481 932873 513968 047011 652743 797347 356109 846632 450749 497626 005117 (86 digits), a[173] = 19
                                                                                      A[174]/B[174] = 316631 894169 766232 391993 439519 121873 895062 673970 174525 369817 943228 989374 659902 888973 (84 digits)/30 774570 064630 605419 325558 532638 766181 787502 436884 591615 332142 012954 581339 953972 852062 (86 digits), a[174] = 1
                                                                                      A[175]/B[175] = 934576 328036 174709 474217 796422 024120 928814 217208 591900 222745 352003 684378 617569 328637 (84 digits)/90 834768 125013 264348 247598 998151 046331 622016 526512 980578 020393 872541 613429 405571 709241 (86 digits), a[175] = 2
                                                                                      A[176]/B[176] = 4 989513 534350 639779 763082 421629 242478 539133 760013 134026 483544 703247 411267 747749 532158 (85 digits)/484 948410 689696 927160 563553 523393 997839 897585 069449 494505 434111 375662 648486 981831 398267 (87 digits), a[176] = 5
                                                                                      A[177]/B[177] = 5 924089 862386 814489 237300 218051 266599 467947 977221 725926 706290 055251 095646 365318 860795 (85 digits)/575 783178 814710 191508 811152 521545 044171 519601 595962 475083 454505 248204 261916 387403 107508 (87 digits), a[177] = 1
                                                                                      A[178]/B[178] = 46 458142 571058 341204 424183 947988 108674 814769 600565 215513 427575 090005 080792 304981 557723 (86 digits)/4515 430662 392668 267722 241621 174209 307040 534796 241186 820089 615648 113092 481901 693653 150823 (88 digits), a[178] = 7
                                                                                      A[179]/B[179] = 470 505515 572970 226533 479139 697932 353347 615643 982873 881060 982040 955301 903569 415134 438025 (87 digits)/45730 089802 741392 868731 227364 263638 114576 867564 007830 675979 610986 379129 080933 323934 615738 (89 digits), a[179] = 10
                                                                                      A[180]/B[180] = 2398 985720 435909 473871 819882 437649 875412 892989 514934 620818 337779 866514 598639 380653 747848 (88 digits)/233165 879676 099632 611378 378442 492399 879924 872616 280340 199987 670580 008737 886568 313326 229513 (90 digits), a[180] = 5
                                                                                      A[181]/B[181] = 2869 491236 008879 700405 299022 135582 228760 508633 497808 501879 319820 821816 502208 795788 185873 (88 digits)/278895 969478 841025 480109 605806 756037 994501 740180 288170 875967 281566 387866 967501 637260 845251 (90 digits), a[181] = 1
                                                                                      A[182]/B[182] = 5268 476956 444789 174277 118904 573232 104173 401623 012743 122697 657600 688331 100848 176441 933721 (88 digits)/512061 849154 940658 091487 984249 248437 874426 612796 568511 075954 952146 396604 854069 950587 074764 (90 digits), a[182] = 1
                                                                                      A[183]/B[183] = 171460 753842 242133 277273 103968 479009 562309 360569 905588 428204 363042 848411 729350 441930 064945 (90 digits)/16 664875 142436 942084 407725 101782 706049 976153 349670 480525 306525 750251 079222 297740 056047 237699 (92 digits), a[183] = 32
                                                                                      A[184]/B[184] = 176729 230798 686922 451550 222873 052241 666482 762192 918331 550902 020643 536742 830198 618371 998666 (90 digits)/17 176936 991591 882742 499213 086031 954487 850579 962467 049036 382480 702397 475827 151810 006634 312463 (92 digits), a[184] = 1
                                                                                      A[185]/B[185] = 348189 984640 929055 728823 326841 531251 228792 122762 823919 979106 383686 385154 559549 060302 063611 (90 digits)/33 841812 134028 824826 906938 187814 660537 826733 312137 529561 689006 452648 555049 449550 062681 550162 (92 digits), a[185] = 1
                                                                                      A[186]/B[186] = 1 221299 184721 474089 638020 203397 645995 352859 130481 390091 488221 171702 692206 508845 799278 189499 (91 digits)/118 702373 393678 357223 220027 649475 936101 330779 898879 637721 449500 060343 140975 500460 194678 962949 (93 digits), a[186] = 3
                                                                                      A[187]/B[187] = 23 552874 494348 936758 851207 191396 805162 933115 601909 235658 255308 646037 537078 227619 246587 664092 (92 digits)/2289 186906 613917 612068 087463 527857 446463 111551 390850 646269 229507 599168 233583 958293 761581 846193 (94 digits), a[187] = 19
                                                                                      A[188]/B[188] = 213 197169 633861 904919 298884 925968 892461 750899 547664 511015 785998 986040 525910 557419 018567 166327 (93 digits)/20721 384532 918936 865836 007199 400192 954269 334742 416535 454144 515068 452857 243231 125104 048915 578686 (95 digits), a[188] = 9
                                                                                      A[189]/B[189] = 2155 524570 832967 985951 840056 451085 729780 442111 078554 345816 115298 506442 796183 801809 432259 327362 (94 digits)/209503 032235 803286 270428 159457 529786 989156 458975 556205 187714 380192 127740 665895 209334 250737 633053 (96 digits), a[189] = 10
                                                                                      A[190]/B[190] = 2368 721740 466829 890871 138941 377054 622242 193010 626218 856831 901297 492483 322094 359228 450826 493689 (94 digits)/230224 416768 722223 136264 166656 929979 943425 793717 972740 641858 895260 580597 909126 334438 299653 211739 (96 digits), a[190] = 1
                                                                                      A[191]/B[191] = 4524 246311 299797 876822 978997 828140 352022 635121 704773 202648 016595 998926 118278 161037 883085 821051 (94 digits)/439727 449004 525509 406692 326114 459766 932582 252693 528945 829573 275452 708338 575021 543772 550390 844792 (96 digits), a[191] = 1
                                                                                      A[192]/B[192] = 11417 214363 066425 644517 096937 033335 326287 463254 035765 262127 934489 490335 558650 681304 216998 135791 (95 digits)/1 109679 314777 773241 949648 818885 849513 808590 299105 030632 301005 446165 997275 059169 421983 400434 901323 (97 digits), a[192] = 2
                                                                                      A[193]/B[193] = 27358 675037 432649 165857 172871 894811 004597 561629 776303 726903 885574 979597 235579 523646 317082 092633 (95 digits)/2 659086 078560 071993 305989 963886 158794 549762 850903 590210 431584 167784 702888 693360 387739 351260 647438 (97 digits), a[193] = 2
                                                                                      A[194]/B[194] = 285003 964737 392917 303088 825655 981445 372263 079551 798802 531166 790239 286307 914445 917767 387819 062121 (96 digits)/27 700540 100378 493175 009548 457747 437459 306218 808140 932736 616847 124013 026161 992773 299376 913041 375703 (98 digits), a[194] = 10
                                                                                      A[195]/B[195] = 3 447406 251886 147656 802923 080743 672155 471754 516251 361934 100905 368446 415292 208930 536854 970910 838085 (97 digits)/335 065567 283101 990093 420571 456855 408306 224388 548594 783049 833749 655941 016832 606639 980262 307757 155874 (99 digits), a[195] = 12
                                                                                      A[196]/B[196] = 7 179816 468509 688230 908934 987143 325756 315772 112054 522670 732977 527132 116892 332306 991477 329640 738291 (97 digits)/697 831674 666582 473361 850691 371458 254071 754995 905330 498836 284346 435895 059827 206053 259901 528555 687451 (99 digits), a[196] = 2
                                                                                      A[197]/B[197] = 10 627222 720395 835887 711858 067886 997911 787526 628305 884604 833882 895578 532184 541237 528332 300551 576376 (98 digits)/1032 897241 949684 463455 271262 828313 662377 979384 453925 281886 118096 091836 076659 812693 240163 836312 843325 (100 digits), a[197] = 1
                                                                                      A[198]/B[198] = 39 061484 629697 195894 044509 190804 319491 678351 996972 176485 234626 213867 713445 956019 576474 231295 467419 (98 digits)/3796 523400 515635 863727 664479 856399 241205 693149 267106 344494 638634 711403 289806 644132 980393 037494 217426 (100 digits), a[198] = 3
                                                                                      A[199]/B[199] = 49 688707 350093 031781 756367 258691 317403 465878 625278 061090 068509 109446 245630 497257 104806 531847 043795 (98 digits)/4829 420642 465320 327182 935742 684712 903583 672533 721031 626380 756730 803239 366466 456826 220556 873807 060751 (100 digits), a[199] = 1
                                                                                      A[200]/B[200] = 6995 480513 642721 645339 935925 407588 755976 901359 535900 729094 825901 536342 101715 572014 249388 689881 598719 (100 digits)/679915 413345 660481 669338 668455 716205 742919 847870 211534 037800 580947 164914 595110 599803 858355 370482 722566 (102 digits), a[200] = 140
                                                                                      A[201]/B[201] = 21036 130248 278257 967801 564143 481457 585334 169957 232980 248374 546213 718472 550777 213299 852972 601491 839952 (101 digits)/2 044575 660679 446765 335198 941109 833330 132343 216144 355633 739782 499572 297983 151798 256237 795622 985255 228449 (103 digits), a[201] = 3
                                                                                      A[202]/B[202] = 49067 741010 199237 580943 064212 370503 926645 241274 001861 225843 918328 973287 203269 998613 955333 892865 278623 (101 digits)/4 769066 734704 554012 339736 550675 382866 007606 280158 922801 517365 580091 760880 898707 112279 449601 340993 179464 (103 digits), a[202] = 2
                                                                                      A[203]/B[203] = 119171 612268 676733 129687 692568 222465 438624 652505 236702 700062 382871 665046 957317 210527 763640 387222 397198 (102 digits)/11 582709 130088 554790 014672 042460 599062 147555 776462 201236 774513 659755 819744 949212 480796 694825 667241 587377 (104 digits), a[203] = 2
                                                                                      A[204]/B[204] = 287410 965547 552703 840318 449348 815434 803894 546284 475266 625968 684072 303381 117904 419669 482614 667310 073019 (102 digits)/27 934484 994881 663592 369080 635596 580990 302717 833083 325275 066392 899603 400370 797132 073872 839252 675476 354218 (104 digits), a[204] = 2
                                                                                      A[205]/B[205] = 406582 577816 229436 970006 141917 037900 242519 198789 711969 326031 066943 968428 075221 630197 246255 054532 470217 (102 digits)/39 517194 124970 218382 383752 678057 180052 450273 609545 526511 840906 559359 220115 746344 554669 534078 342717 941595 (104 digits), a[205] = 1
                                                                                      A[206]/B[206] = 693993 543363 782140 810324 591265 853335 046413 745074 187235 951999 751016 271809 193126 049866 728869 721842 543236 (102 digits)/67 451679 119851 881974 752833 313653 761042 752991 442628 851786 907299 458962 620486 543476 628542 373331 018194 295813 (104 digits), a[206] = 1
                                                                                      A[207]/B[207] = 1 100576 121180 011577 780330 733182 891235 288932 943863 899205 278030 817960 240237 268347 680063 975124 776375 013453 (103 digits)/106 968873 244822 100357 136585 991710 941095 203265 052174 378298 748206 018321 840602 289821 183211 907409 360912 237408 (105 digits), a[207] = 1
                                                                                      A[208]/B[208] = 1 794569 664543 793718 590655 324448 744570 335346 688938 086441 230030 568976 512046 461473 729930 703994 498217 556689 (103 digits)/174 420552 364673 982331 889419 305364 702137 956256 494803 230085 655505 477284 461088 833297 811754 280740 379106 533221 (105 digits), a[208] = 1
                                                                                      A[209]/B[209] = 4 689715 450267 599014 961641 382080 380375 959626 321740 072087 738091 955913 264330 191295 139925 383113 772810 126831 (103 digits)/455 809977 974170 065020 915424 602440 345371 115778 041780 838470 059216 972890 762779 956416 806720 468890 119125 303850 (105 digits), a[209] = 2
                                                                                      A[210]/B[210] = 6 484285 114811 392733 552296 706529 124946 294973 010678 158528 968122 524889 776376 652768 869856 087108 271027 683520 (103 digits)/630 230530 338844 047352 804843 907805 047509 072034 536584 068555 714722 450175 223868 789714 618474 749630 498231 837071 (105 digits), a[210] = 1
                                                                                      A[211]/B[211] = 17 658285 679890 384482 066234 795138 630268 549572 343096 389145 674337 005692 817083 496832 879637 557330 314865 493871 (104 digits)/1716 271038 651858 159726 525112 418050 440389 259847 114948 975581 488661 873241 210517 535846 043669 968151 115588 977992 (106 digits), a[211] = 2
                                                                                      A[212]/B[212] = 24 142570 794701 777215 618531 501667 755214 844545 353774 547674 642459 530582 593460 149601 749493 644438 585893 177391 (104 digits)/2346 501568 990702 207079 329956 325855 487898 331881 651533 044137 203384 323416 434386 325560 662144 717781 613820 815063 (106 digits), a[212] = 1
                                                                                      A[213]/B[213] = 138 371139 653399 270560 158892 303477 406342 772299 111969 127518 886634 658605 784384 244841 627105 779523 244331 380826 (105 digits)/13448 778883 605369 195123 174894 047327 879880 919255 372614 196267 505583 490323 382449 163649 354393 557059 184693 053307 (107 digits), a[213] = 5
                                                                                      A[214]/B[214] = 162 513710 448101 047775 777423 805145 161557 616844 465743 675193 529094 189188 377844 394443 376599 423961 830224 558217 (105 digits)/15795 280452 596071 402202 504850 373183 367779 251137 024147 240404 708967 813739 816835 489210 016538 274840 798513 868370 (107 digits), a[214] = 1
                                                                                      A[215]/B[215] = 463 398560 549601 366111 713739 913767 729458 005988 043456 477905 944823 036982 540073 033728 380304 627446 904780 497260 (105 digits)/45039 339788 797511 999528 184594 793694 615439 421529 420908 677076 923519 117803 016120 142069 387470 106740 781720 790047 (107 digits), a[215] = 2
                                                                                      A[216]/B[216] = 4796 499315 944114 708892 914822 942822 456137 676724 900308 454252 977324 559013 778574 731727 179645 698430 878029 530817 (106 digits)/466188 678340 571191 397484 350798 310129 522173 466431 233234 011173 944158 991769 978036 909903 891239 342248 615721 768840 (108 digits), a[216] = 10
                                                                                      A[217]/B[217] = 34038 893772 158404 328362 117500 513524 922421 743062 345615 657676 786094 950078 990096 155818 637824 516463 050987 212979 (107 digits)/3 308360 088172 795851 781918 640182 964601 270653 686548 053546 755294 532632 060192 862378 511396 626145 502481 091773 171927 (109 digits), a[217] = 7
                                                                                      A[218]/B[218] = 106913 180632 419327 693979 267324 483397 223402 905911 937155 427283 335609 409250 748863 199183 093119 247820 030991 169754 (108 digits)/10 391268 942858 958746 743240 271347 203933 334134 526075 393874 277057 542055 172348 565172 444093 769675 849691 891041 284621 (110 digits), a[218] = 3
                                                                                      A[219]/B[219] = 354778 435669 416387 410299 919473 963716 592630 460798 157081 939526 792923 177831 236685 753367 917182 259923 143960 722241 (108 digits)/34 482166 916749 672092 011639 454224 576401 273057 264774 235169 586467 158797 577238 557895 843677 935173 051556 764897 025790 (110 digits), a[219] = 3
                                                                                      A[220]/B[220] = 461691 616301 835715 104279 186798 447113 816033 366710 094237 366810 128532 587081 985548 952551 010301 507743 174951 891995 (108 digits)/44 873435 859608 630838 754879 725571 780334 607191 790849 629043 863524 700852 749587 123068 287771 704848 901248 655938 310411 (110 digits), a[220] = 1
                                                                                      A[221]/B[221] = 5 895077 831291 444968 661650 161055 329082 385030 861319 287930 341248 335314 222815 063273 183980 040800 352841 243383 426181 (109 digits)/572 963397 232053 242157 070196 161085 940416 559358 754969 783695 948763 569030 572284 034715 296938 393359 866540 636156 750722 (111 digits), a[221] = 12
                                                                                      A[222]/B[222] = 6 356769 447593 280683 765929 347853 776196 201064 228029 382167 708058 463846 809897 048822 136531 051101 860584 418335 318176 (109 digits)/617 836833 091661 872995 825075 886657 720751 166550 545819 412739 812288 269883 321871 157783 584710 098208 767789 292095 061133 (111 digits), a[222] = 1
                                                                                      A[223]/B[223] = 12 251847 278884 725652 427579 508909 105278 586095 089348 670098 049306 799161 032712 112095 320511 091902 213425 661718 744357 (110 digits)/1190 800230 323715 115152 895272 047743 661167 725909 300789 196435 761051 838913 894155 192498 881648 491568 634329 928251 811855 (112 digits), a[223] = 1
                                                                                      A[224]/B[224] = 18 608616 726478 006336 193508 856762 881474 787159 317378 052265 757365 263007 842609 160917 457042 143004 074010 080054 062533 (110 digits)/1808 637063 415376 988148 720347 934401 381918 892459 846608 609175 573340 108797 216026 350282 466358 589777 402119 220346 872988 (112 digits), a[224] = 1
                                                                                      A[225]/B[225] = 254 163864 723098 808022 943194 646826 564450 819166 215263 349552 895055 218262 986631 204022 262058 950955 175556 702421 557286 (111 digits)/24703 082054 723615 961086 259795 194961 626113 327887 306701 115718 214473 253277 702497 746170 944310 158674 861879 792761 160699 (113 digits), a[225] = 13
                                                                                      A[226]/B[226] = 272 772481 449576 814359 136703 503589 445925 606325 532641 401818 652420 481270 829240 364939 719101 093959 249566 782475 619819 (111 digits)/26511 719118 138992 949234 980143 129363 008032 220347 153309 724893 787813 362074 918524 096453 410668 748452 263999 013108 033687 (113 digits), a[226] = 1
                                                                                      A[227]/B[227] = 526 936346 172675 622382 079898 150416 010376 425491 747904 751371 547475 699533 815871 568961 981160 044914 425123 484897 177105 (111 digits)/51214 801172 862608 910321 239938 324324 634145 548234 460010 840612 002286 615352 621021 842624 354978 907127 125878 805869 194386 (113 digits), a[227] = 1
                                                                                      A[228]/B[228] = 799 708827 622252 436741 216601 654005 456302 031817 280546 153190 199896 180804 645111 933901 700261 138873 674690 267372 796924 (111 digits)/77726 520291 001601 859556 220081 453687 642177 768581 613320 565505 790099 977427 539545 939077 765647 655579 389877 818977 228073 (113 digits), a[228] = 1
                                                                                      A[229]/B[229] = 66902 769038 819627 871903 057835 432868 883445 066326 033235 466158 138858 706319 360162 082803 102834 571429 424415 676839 321797 (113 digits)/6 502515 985325 995563 253487 506698 980398 934900 340508 365617 777592 580584 741838 403334 786078 903734 320216 485737 780979 124445 (115 digits), a[229] = 83
                                                                                      A[230]/B[230] = 67702 477866 441880 308644 274437 086874 339747 098143 313781 619348 338754 887124 005274 016704 803095 710303 099105 944212 118721 (113 digits)/6 580242 505616 997165 113043 726780 434086 577078 109089 978938 343098 370684 719265 942880 725156 669381 975795 875615 599956 352518 (115 digits), a[230] = 1
                                                                                      A[231]/B[231] = 270010 202638 145268 797835 881146 693491 902686 360755 974580 324203 155123 367691 375984 132917 512121 702338 721733 509475 677960 (114 digits)/26 243243 502176 987058 592618 687040 282658 666134 667778 302432 806887 692638 899636 231976 961548 911880 247604 112584 580848 181999 (116 digits), a[231] = 3
                                                                                      A[232]/B[232] = 2 227784 098971 604030 691331 323610 634809 561237 984191 110424 212973 579741 828655 013147 080044 900069 329012 872974 020017 542401 (115 digits)/216 526190 523032 893633 853993 223102 695355 906155 451316 398400 798199 911795 916355 798696 417547 964423 956628 776292 246741 808510 (117 digits), a[232] = 8
                                                                                      A[233]/B[233] = 4 725578 400581 353330 180498 528367 963111 025162 329138 195428 750150 314607 025001 402278 293007 312260 360364 467681 549510 762762 (115 digits)/459 295624 548242 774326 300605 133245 673370 478445 570411 099234 403287 516230 732347 829369 796644 840728 160861 665169 074331 799019 (117 digits), a[233] = 2
                                                                                      A[234]/B[234] = 6 953362 499552 957360 871829 851978 597920 586400 313329 305852 963123 894348 853656 415425 373052 212329 689377 340655 569528 305163 (115 digits)/675 821815 071275 667960 154598 356348 368726 384601 021727 497635 201487 428026 648703 628066 214192 805152 117490 441461 321073 607529 (117 digits), a[234] = 1
                                                                                      A[235]/B[235] = 60 352478 397005 012217 155137 344196 746475 716364 835772 642252 455141 469397 854252 725681 277425 010897 875383 192926 105737 204066 (116 digits)/5865 870145 118448 118007 537391 984032 623181 555253 744231 080316 015186 940443 921976 853899 510187 281945 100785 196859 642920 659251 (118 digits), a[235] = 8
                                                                                      A[236]/B[236] = 308 715754 484578 018446 647516 572962 330299 168224 492192 517115 238831 241338 124920 043831 760177 266819 066293 305286 098214 325493 (117 digits)/30005 172540 663516 257997 841558 276511 484634 160869 742882 899215 277422 130246 258587 897563 765129 214877 621416 425759 535676 903784 (119 digits), a[236] = 5
                                                                                      A[237]/B[237] = 369 068232 881583 030663 802653 917159 076774 884589 327965 159367 693972 710735 979172 769513 037602 277716 941676 498212 203951 529559 (117 digits)/35871 042685 781964 376005 378950 260544 107815 716123 487113 979531 292609 070690 180564 751463 275316 496822 722201 622619 178597 563035 (119 digits), a[237] = 1
                                                                                      A[238]/B[238] = 1046 852220 247744 079774 252824 407280 483848 937403 148122 835850 626776 662810 083265 582857 835381 822252 949646 301710 506117 384611 (118 digits)/101747 257912 227445 010008 599458 797599 700265 593116 717110 858277 862640 271626 619717 400490 315762 208523 065819 670997 892872 029854 (120 digits), a[238] = 2
                                                                                      A[239]/B[239] = 4556 477113 872559 349760 813951 546281 012170 634201 920456 502770 201079 361976 312235 100944 379129 566728 740261 705054 228421 068003 (118 digits)/442860 074334 691744 416039 776785 450942 908878 088590 355557 412642 743170 157196 659434 353424 538365 330914 985480 306610 750085 682451 (120 digits), a[239] = 4
                                                                                      A[240]/B[240] = 10159 806447 992862 779295 880727 499842 508190 205806 989035 841391 028935 386762 707735 784746 593640 955710 430169 711818 962959 520617 (119 digits)/987467 406581 610933 842088 153029 699485 518021 770297 428225 683563 348980 586019 938586 107339 392492 870353 036780 284219 393043 394756 (120 digits), a[240] = 2
                                                                                      A[241]/B[241] = 14716 283561 865422 129056 694679 046123 520360 840008 909492 344161 230014 748739 019970 885690 972770 522439 170431 416873 191380 588620 (119 digits)/1 430327 480916 302678 258127 929815 150428 426899 858887 783783 096206 092150 743216 598020 460763 930858 201268 022260 590830 143129 077207 (121 digits), a[241] = 1
                                                                                      A[242]/B[242] = 24876 090009 858284 908352 575406 545966 028551 045815 898528 185552 258950 135501 727706 670437 566411 478149 600601 128692 154340 109237 (119 digits)/2 417794 887497 913612 100216 082844 849913 944921 629185 212008 779769 441131 329236 536606 568103 323351 071621 059040 875049 536172 471963 (121 digits), a[242] = 1
                                                                                      A[243]/B[243] = 89344 553591 440276 854114 420898 684021 606013 977456 605076 900818 006865 155244 203090 897003 672004 956887 972234 802949 654400 916331 (119 digits)/8 683712 143410 043514 558776 178349 700170 261664 746443 419809 435514 415544 730926 207840 165073 900911 416131 199383 215978 751646 493096 (121 digits), a[243] = 3
                                                                                      A[244]/B[244] = 114220 643601 298561 762466 996305 229987 634565 023272 503605 086370 265815 290745 930797 567441 238416 435037 572835 931641 808741 025568 (120 digits)/11 101507 030907 957126 658992 261194 550084 206586 375628 631818 215283 856676 060162 744446 733177 224262 487752 258424 091028 287818 965059 (122 digits), a[244] = 1
                                                                                      A[245]/B[245] = 3 401743 218029 098567 965657 313750 353663 008399 652359 209624 405555 715508 586876 196220 352799 586081 572977 584476 820562 107890 657803 (121 digits)/330 627416 039740 800187 669551 752991 652612 252669 639673 742537 678746 259150 475645 796795 427213 404523 560946 693681 855799 098396 479807 (123 digits), a[245] = 29
                                                                                      A[246]/B[246] = 3 515963 861630 397129 728124 310055 583650 642964 675631 713229 491925 981323 877622 127017 920240 824498 008015 157312 752203 916631 683371 (121 digits)/341 728923 070648 757314 328544 014186 202696 459256 015302 374355 894030 115826 535808 541242 160390 628786 048698 952105 946827 386215 444866 (123 digits), a[246] = 1
                                                                                      A[247]/B[247] = 10 433670 941289 892827 421905 933861 520964 294329 003622 636083 389407 678156 342120 450256 193281 235077 589007 899102 324969 941154 024545 (122 digits)/1014 085262 181038 314816 326639 781364 058005 171181 670278 491249 466806 490803 547262 879279 747994 662095 658344 597893 749453 870827 369539 (124 digits), a[247] = 2
                                                                                      A[248]/B[248] = 45 250647 626789 968439 415748 045501 667507 820280 690122 257563 049556 693949 246103 928042 693365 764808 364046 753722 052083 681247 781551 (122 digits)/4398 069971 794802 016579 635103 139642 434717 143982 696416 339353 761256 079040 724860 058361 152369 277168 682077 343680 944642 869524 923022 (124 digits), a[248] = 4
                                                                                      A[249]/B[249] = 55 684318 568079 861266 837653 979363 188472 114609 693744 893646 438964 372105 588224 378298 886646 999885 953054 652824 377053 622401 806096 (122 digits)/5412 155233 975840 331395 961742 921006 492722 315164 366694 830603 228062 569844 272122 937640 900363 939264 340421 941574 694096 740352 292561 (124 digits), a[249] = 1
                                                                                      A[250]/B[250] = 6059 157052 979414 985257 882377 816726 022496 198127 614570 771378 457708 881352 774336 784322 451241 752491 293949 258754 773874 900642 839919 (124 digits)/588910 835241 185557 807343 503338 608343 648727 181734 299458 044502 392013 622222 114137 323578 391674 717717 447647 033747 907090 827572 519610 (126 digits), a[250] = 108
                                                                                      A[251]/B[251] = 6114 841371 547494 846524 720031 796089 210968 312737 308315 665024 896673 253458 362561 162621 337888 752377 247003 911579 150928 523044 646015 (124 digits)/594322 990475 161398 138739 465081 529350 141449 496898 666152 875105 620076 192066 386260 261219 292038 656981 788068 975322 601187 567924 812171 (126 digits), a[251] = 1
                                                                                      A[252]/B[252] = 18288 839796 074404 678307 322441 408904 444432 823602 231202 101428 251055 388269 499459 109565 127019 257245 787957 081913 075731 946732 131949 (125 digits)/1 777556 816191 508354 084822 433501 667043 931626 175531 631763 794713 632166 006354 886657 846016 975752 031681 023784 984393 109465 963422 143952 (127 digits), a[252] = 2
                                                                                      A[253]/B[253] = 24403 681167 621899 524832 042473 204993 655401 136339 539517 766453 147728 641727 862020 272186 464908 009623 034960 993492 226660 469776 777964 (125 digits)/2 371879 806666 669752 223561 898583 196394 073075 672430 297916 669819 252242 198421 272918 107236 267790 688662 811853 959715 710653 531346 956123 (127 digits), a[253] = 1
                                                                                      A[254]/B[254] = 1 262876 579344 791280 444741 488574 863580 869890 776918 746608 190538 785216 116390 462492 991074 837327 748020 570967 750016 635415 905347 808113 (127 digits)/122 743426 956191 665717 486479 261244 683141 658485 469476 825513 955495 496518 125839 805481 315066 633077 153484 428336 929894 352796 062116 906225 (129 digits), a[254] = 51
                                                                                      A[255]/B[255] = 3 813033 419201 995740 859056 508197 795736 265073 467095 779342 338069 503376 990899 249499 245410 976891 253684 747864 243542 132908 185820 202303 (127 digits)/370 602160 675241 666904 682999 682317 245819 048532 080860 774458 536305 741796 575940 689362 052436 167022 149116 096864 749398 769041 717697 674798 (129 digits), a[255] = 3
                                                                                      A[256]/B[256] = 5 075909 998546 787021 303797 996772 659317 134964 244014 525950 528608 288593 107289 711992 236485 814219 001705 318831 993558 768324 091168 010416 (127 digits)/493 345587 631433 332622 169478 943561 928960 707017 550337 599972 491801 238314 701780 494843 367502 800099 302600 525201 679293 121837 779814 581023 (129 digits), a[256] = 1
                                                                                      A[257]/B[257] = 19 040763 414842 356804 770450 498515 773687 669966 199139 357193 923894 369156 312768 385475 954868 419548 258800 704360 224218 437880 459324 233551 (128 digits)/1850 638923 569541 664771 191436 513003 032701 169584 731873 574376 011709 456740 681282 173892 154944 567320 056917 672469 787278 134555 057141 417867 (130 digits), a[257] = 3
                                                                                      A[258]/B[258] = 24 116673 413389 143826 074248 495288 433004 804930 443153 883144 452502 657749 420058 097468 191354 233767 260506 023192 217777 206204 550492 243967 (128 digits)/2343 984511 200974 997393 360915 456564 961661 876602 282211 174348 503510 695055 383062 668735 522447 367419 359518 197671 466571 256392 836955 998890 (130 digits), a[258] = 1
                                                                                      A[259]/B[259] = 43 157436 828231 500630 844698 993804 206692 474896 642293 240338 376397 026905 732826 482944 146222 653315 519306 727552 441995 644085 009816 477518 (128 digits)/4194 623434 770516 662164 552351 969567 994363 046187 014084 748724 515220 151796 064344 842627 677391 934739 416435 870141 253849 390947 894097 416757 (130 digits), a[259] = 1
                                                                                      A[260]/B[260] = 283 061294 382778 147611 142442 458113 673159 654310 296913 325174 710884 819183 817016 995133 068690 153660 376346 388506 869751 070714 609391 109075 (129 digits)/27511 725119 824074 970380 675027 273972 927840 153724 366719 666695 594831 605831 769131 724501 586798 975855 858133 418518 989667 602080 201540 499432 (131 digits), a[260] = 6
                                                                                      A[261]/B[261] = 609 280025 593787 795853 129583 910031 553011 783517 236119 890687 798166 665273 366860 473210 283602 960636 271999 504566 181497 785514 228598 695668 (129 digits)/59218 073674 418666 602925 902406 517513 850043 353635 747524 082115 704883 363459 602608 291630 850989 886451 132702 707179 233184 595108 297178 415621 (131 digits), a[261] = 2
                                                                                      A[262]/B[262] = 892 341319 976565 943464 272026 368145 226171 437827 533033 215862 509051 484457 183877 468343 352293 114296 648345 893073 051248 856228 837989 804743 (129 digits)/86729 798794 242741 573306 577433 791486 777883 507360 114243 748811 299714 969291 371740 016132 437788 862306 990836 125698 222852 197188 498718 915053 (131 digits), a[262] = 1
                                                                                      A[263]/B[263] = 2393 962665 546919 682781 673636 646322 005354 659172 302186 322412 816269 634187 734615 409896 988189 189229 568691 290712 283995 497971 904578 305154 (130 digits)/232677 671262 904149 749539 057274 100487 405810 368355 976011 579738 304313 302042 346088 323895 726567 611065 114374 958575 678888 989485 294616 245727 (132 digits), a[263] = 2
                                                                                      A[264]/B[264] = 10468 191982 164244 674590 966572 953433 247590 074516 741778 505513 774130 021208 122339 107931 305049 871214 923111 055922 187230 848116 456303 025359 (131 digits)/1 017440 483845 859340 571462 806530 193436 401124 980784 018290 067764 516968 177460 756093 311715 344059 306567 448335 960000 938408 155129 677183 897961 (133 digits), a[264] = 4
                                                                                      A[265]/B[265] = 23330 346629 875409 031963 606782 553188 500534 808205 785743 333440 364529 676603 979293 625759 598288 931659 414913 402556 658457 194204 817184 355872 (131 digits)/2 267558 638954 622830 892464 670334 487360 208060 329924 012591 715267 338249 656963 858274 947326 414686 224200 011046 878577 555705 299744 648984 041649 (133 digits), a[265] = 2
                                                                                      A[266]/B[266] = 33798 538612 039653 706554 573355 506621 748124 882722 527521 838954 138659 697812 101632 733690 903338 802874 338024 458478 845688 042321 273487 381231 (131 digits)/3 284999 122800 482171 463927 476864 680796 609185 310708 030881 783031 855217 834424 614368 259041 758745 530767 459382 838578 494113 454874 326167 939610 (133 digits), a[266] = 1
                                                                                      A[267]/B[267] = 57128 885241 915062 738518 180138 059810 248659 690928 313265 172394 503189 374416 080926 359450 501627 734533 752937 861035 504145 236526 090671 737103 (131 digits)/5 552557 761755 105002 356392 147199 168156 817245 640632 043473 498299 193467 491388 472643 206368 173431 754967 470429 717156 049818 754618 975151 981259 (133 digits), a[267] = 1
                                                                                      A[268]/B[268] = 6 032331 489013 121241 250963 487851 786697 857392 430195 420364 940376 973544 011500 598900 475993 574250 928918 396499 867206 780937 877560 794019 777046 (133 digits)/586 303564 107086 507418 885102 932777 337262 419977 577072 595599 104447 169304 430214 241904 927699 969079 802351 854503 139963 725082 689866 717125 971805 (135 digits), a[268] = 105
                                                                                      A[269]/B[269] = 6 089460 374255 036303 989481 667989 846508 106052 121123 733630 112771 476733 385916 679826 835444 075878 663452 149437 728242 285083 114086 884691 514149 (133 digits)/591 856121 868841 612421 241495 079976 505419 237223 217704 639072 602746 362771 921602 714548 134068 142511 557319 324932 857119 774901 444485 692277 953064 (135 digits), a[269] = 1
                                                                                      A[270]/B[270] = 12 121791 863268 157545 240445 155841 633205 963444 551319 153995 053148 450277 397417 278727 311437 650129 592370 545937 595449 066020 991647 678711 291195 (134 digits)/1178 159685 975928 119840 126598 012753 842681 657200 794777 234671 707193 532076 351816 956453 061768 111591 359671 179435 997083 499984 134352 409403 924869 (136 digits), a[270] = 1
                                                                                      A[271]/B[271] = 30 333044 100791 351394 470371 979673 112920 032941 223762 041620 219068 377288 180751 237281 458319 376137 848193 241312 919140 417125 097382 242114 096539 (134 digits)/2948 175493 820697 852101 494691 105484 190782 551624 807259 108416 017133 426924 625236 627454 257604 365694 276661 683804 851286 774869 713190 511085 802802 (136 digits), a[271] = 2
                                                                                      A[272]/B[272] = 42 454835 964059 508939 710817 135514 746125 996385 775081 195615 272216 827565 578168 516008 769757 026267 440563 787250 514589 483146 089029 920825 387734 (134 digits)/4126 335179 796625 971941 621289 118238 033464 208825 602036 343087 724326 959000 977053 583907 319372 477285 636332 863240 848370 274853 847542 920489 727671 (136 digits), a[272] = 1
                                                                                      A[273]/B[273] = 72 787880 064850 860334 181189 115187 859046 029326 998843 237235 491285 204853 758919 753290 228076 402405 288757 028563 433729 900271 186412 162939 484273 (134 digits)/7074 510673 617323 824043 115980 223722 224246 760450 409295 451503 741460 385925 602290 211361 576976 842979 912994 547045 699657 049723 560733 431575 530473 (136 digits), a[273] = 1
                                                                                      A[274]/B[274] = 188 030596 093761 229608 073195 365890 464218 055039 772767 670086 254787 237273 096008 022589 225909 831078 018077 844377 382049 283688 461854 246704 356280 (135 digits)/18275 356527 031273 620027 853249 565682 481957 729726 420627 246095 207247 730852 181634 006630 473326 163245 462321 957332 247684 374300 969009 783640 788617 (137 digits), a[274] = 2
                                                                                      A[275]/B[275] = 260 818476 158612 089942 254384 481078 323264 084366 771610 907321 746072 442126 854927 775879 453986 233483 306834 872940 815779 183959 648266 409643 840553 (135 digits)/25349 867200 648597 444070 969229 789404 706204 490176 829922 697598 948708 116777 783924 217992 050303 006225 375316 504377 947341 424024 529743 215216 319090 (137 digits), a[275] = 1
                                                                                      A[276]/B[276] = 1492 122976 886821 679319 345117 771282 080538 476873 630822 206694 985149 447907 370646 901986 495840 998494 552252 209081 460945 203486 703186 294923 559045 (136 digits)/145024 692530 274260 840382 699398 512706 012980 180610 570240 734089 950788 314741 101255 096590 724841 194372 338904 479221 984391 494423 617725 859722 384067 (138 digits), a[276] = 5
                                                                                      A[277]/B[277] = 1752 941453 045433 769261 599502 252360 403802 561240 402433 114016 731221 890034 225574 677865 949827 231977 859087 082022 276724 387446 351452 704567 399598 (136 digits)/170374 559730 922858 284453 668628 302110 719184 670787 400163 431688 899496 431518 885179 314582 775144 200597 714220 983599 931732 918448 147469 074938 703157 (138 digits), a[277] = 1
                                                                                      A[278]/B[278] = 3245 064429 932255 448580 944620 023642 484341 038114 033255 320711 716371 337941 596221 579852 445668 230472 411339 291103 737669 590933 054638 999490 958643 (136 digits)/315399 252261 197119 124836 368026 814816 732164 851397 970404 165778 850284 746259 986434 411173 499985 394970 053125 462821 916124 412871 765194 934661 087224 (138 digits), a[278] = 1
                                                                                      A[279]/B[279] = 4998 005882 977689 217842 544122 276002 888143 599354 435688 434728 447593 227975 821796 257718 395495 462450 270426 373126 014393 978379 406091 704058 358241 (136 digits)/485773 811992 119977 409290 036655 116927 451349 522185 370567 597467 749781 177778 871613 725756 275129 595567 767346 446421 847857 331319 912664 009599 790381 (138 digits), a[279] = 1
                                                                                      A[280]/B[280] = 8243 070312 909944 666423 488742 299645 372484 637468 468943 755440 163964 565917 418017 837570 841163 692922 681765 664229 752063 569312 460730 703549 316884 (136 digits)/801173 064253 317096 534126 404681 931744 183514 373583 340971 763246 600065 924038 858048 136929 775114 990537 820471 909243 763981 744191 677858 944260 877605 (138 digits), a[280] = 1
                                                                                      A[281]/B[281] = 268776 255896 095918 543394 183875 864654 807651 998345 441888 608813 694459 337333 198367 059985 312733 635976 086927 628478 080428 196378 149474 217636 498529 (138 digits)/26 123311 868098 267066 501334 986476 932741 323809 476852 281664 021358 951890 747022 329154 107509 078809 292778 022447 542222 295273 145453 604150 225947 873741 (140 digits), a[281] = 32
                                                                                      A[282]/B[282] = 1 352124 349793 389537 383394 408121 622919 410744 629195 678386 799508 636261 252583 409853 137497 404831 872803 116403 806620 154204 551203 208101 791731 809529 (139 digits)/131 417732 404744 652429 040801 337066 595450 802561 757844 749291 870041 359519 659150 503818 674475 169161 454427 932709 620355 240347 471459 698610 074000 246310 (141 digits), a[282] = 5
                                                                                      A[283]/B[283] = 7 029398 004863 043605 460366 224483 979251 861375 144323 833822 606356 875765 600250 247632 747472 336892 999991 668946 661578 851450 952394 189983 176295 546174 (139 digits)/683 211973 891821 529211 705341 671809 909995 336618 266076 028123 371565 749489 042774 848247 479884 924616 564917 685995 643998 497010 502752 097200 595949 105291 (141 digits), a[283] = 5
                                                                                      A[284]/B[284] = 1336 937745 273771 674574 852977 060077 680773 072022 050724 104682 007315 031725 300130 460075 157241 414501 871220 216269 506601 929885 506099 304905 287885 582589 (142 digits)/129941 692771 850835 202653 055718 980949 494564 760032 312290 092732 467533 762437 786371 670839 852610 846308 788788 271881 980069 672342 994358 166723 304330 251600 (144 digits), a[284] = 190
                                                                                      A[285]/B[285] = 1343 967143 278634 718180 313343 284561 660024 933397 195047 938504 613671 907490 900380 707707 904713 751394 871211 885216 168180 781336 458493 494888 464181 128763 (142 digits)/130624 904745 742656 731864 761060 652759 404560 096650 578366 120855 839099 511926 829146 519087 332495 770925 353705 957877 624068 169353 497110 263923 900279 356891 (144 digits), a[285] = 1
                                                                                      A[286]/B[286] = 2680 904888 552406 392755 166320 344639 340798 005419 245772 043186 620986 939216 200511 167783 061955 165896 742432 101485 674782 711221 964592 799793 752066 711352 (142 digits)/260566 597517 593491 934517 816779 633708 899124 856682 890656 213588 306633 274364 615518 189927 185106 617234 142494 229759 604137 841696 491468 430647 204609 608491 (144 digits), a[286] = 1
                                                                                      A[287]/B[287] = 25472 111140 250292 252976 810226 386315 727206 982170 406996 327184 202554 360436 704981 217755 462310 244465 553100 798587 241225 182334 139828 693032 232781 530931 (143 digits)/2 475724 282404 084084 142525 112077 356139 496683 806796 594272 043150 598798 981208 368810 228431 998455 326032 636154 025714 061308 744621 920326 139748 741765 833310 (145 digits), a[287] = 9
                                                                                      A[288]/B[288] = 104569 349449 553575 404662 407225 889902 249625 934100 873757 351923 431204 380963 020436 038804 911196 143758 954835 295834 639683 440558 523907 571922 683192 835076 (144 digits)/10 163463 727133 929828 504618 265089 058266 885860 083869 267744 386190 701829 199198 090759 103655 178927 921364 687110 332615 849372 820184 172772 989642 171672 941731 (146 digits), a[288] = 4
                                                                                      A[289]/B[289] = 339180 159488 911018 466964 031904 056022 476084 784473 028268 382954 496167 503325 766289 334170 195898 675742 417606 686091 160275 504009 711551 408800 282360 036159 (144 digits)/32 966115 463805 873569 656379 907344 530940 154264 058404 397505 201722 704286 578802 641087 539397 535239 090126 697485 023561 609427 205174 438645 108675 256784 658503 (146 digits), a[289] = 3
                                                                                      A[290]/B[290] = 782929 668427 375612 338590 471034 001947 201795 503046 930294 117832 423539 387614 553014 707145 302993 495243 790048 668016 960234 448577 947010 389523 247912 907394 (144 digits)/76 095694 654745 676967 817378 079778 120147 194388 200678 062754 789636 110402 356803 372934 182450 249406 101618 082080 379739 068227 230533 050063 206992 685242 258737 (146 digits), a[290] = 2
                                                                                      A[291]/B[291] = 1 905039 496343 662243 144144 973972 059916 879675 790566 888856 618619 343246 278554 872318 748460 801885 666229 997704 022125 080744 401165 605572 187846 778185 850947 (145 digits)/185 157504 773297 227505 291136 066900 771234 543040 459760 523014 780994 925091 292409 386955 904298 034051 293362 861645 783039 745881 666240 538771 522660 627269 175977 (147 digits), a[291] = 2
                                                                                      A[292]/B[292] = 107 465141 463672 461228 410709 013469 357292 463639 774792 706264 760515 645330 986687 402864 620950 208590 804123 661473 907021 481920 913851 859052 908942 826320 560426 (147 digits)/10444 915961 959390 417264 120997 826221 309281 604653 947267 351582 525351 915514 731729 042464 823140 156278 529938 334244 229964 837600 540003 221268 475987 812316 113449 (149 digits), a[292] = 56
                                                                                      A[293]/B[293] = 216 835322 423688 584699 965563 000910 774501 806955 340152 301386 139650 633908 251929 678047 990361 219067 274477 320651 836168 044586 228869 323678 005732 430826 971799 (147 digits)/21074 989428 692078 062033 533131 719343 389797 752348 354295 226179 831698 756120 755867 471885 550578 346608 353239 530134 242969 421082 746246 981308 474636 251901 402875 (149 digits), a[293] = 2
                                                                                      A[294]/B[294] = 4444 171589 937444 155227 721969 031684 847328 602746 577838 733987 553528 323496 025280 963824 428174 589936 293670 074510 630382 373645 491238 332613 023591 442859 996406 (148 digits)/431944 704535 800951 657934 783632 213089 105236 651621 033171 875179 159327 037929 849078 480175 834707 088445 594728 936929 089353 259255 464942 847437 968712 850344 170949 (150 digits), a[294] = 20
                                                                                      A[295]/B[295] = 4661 006912 361132 739927 687532 032595 621830 409701 917991 035373 693178 957404 277210 641872 418535 809003 568147 395162 466550 418231 720107 656291 029323 873686 968205 (148 digits)/453019 693964 493029 719968 316763 932432 495034 403969 387467 101358 991025 794050 604945 952061 385285 435053 947968 467063 332322 680338 211189 828746 443349 102245 573824 (150 digits), a[295] = 1
                                                                                      A[296]/B[296] = 51054 240713 548771 554504 597289 357641 065632 699765 757749 087724 485317 897538 797387 382548 613532 679971 975144 026135 295886 555962 692314 895523 316830 179729 678456 (149 digits)/4 962141 644180 731248 857617 951271 537414 055580 691314 907842 888769 069584 978435 898538 000789 687561 438985 074413 607562 412580 062637 576841 134902 402203 872799 909189 (151 digits), a[296] = 10
                                                                                      A[297]/B[297] = 55715 247625 909904 294432 284821 390236 687463 109467 675740 123098 178496 854943 074598 024421 032068 488975 543291 421297 762436 974194 412422 551814 346154 053416 646661 (149 digits)/5 415161 338145 224278 577586 268035 469846 550615 095284 295309 990128 060610 772486 503483 952851 072846 874039 022382 074625 744902 742975 788030 963648 845552 975045 483013 (151 digits), a[297] = 1
                                                                                      A[298]/B[298] = 329630 478843 098293 026666 021396 308824 502948 247104 136449 703215 377802 172254 170377 504653 773875 124849 691601 132624 108071 426934 754427 654595 047600 446812 911761 (150 digits)/32 037948 334906 852641 745549 291448 886646 808656 167736 384392 839409 372638 840868 415957 765045 051795 809180 186323 980691 137093 777516 516995 953146 629968 748027 324254 (152 digits), a[298] = 5
                                                                                      A[299]/B[299] = 714976 205312 106490 347764 327614 007885 693359 603675 948639 529528 934101 199451 415353 033728 579818 738674 926493 686545 978579 828063 921277 861004 441354 947042 470183 (150 digits)/69 491058 007958 929562 068684 850933 243140 167927 430757 064095 668946 805888 454223 335399 482941 176438 492399 395030 036008 019090 298008 822022 869942 105490 471100 131521 (152 digits), a[299] = 2
                                                                                      A[300]/B[300] = 1 044606 684155 204783 374430 349010 316710 196307 850780 085089 232744 311903 371705 585730 538382 353693 863524 618094 819170 086651 254998 675705 515599 488955 393855 381944 (151 digits)/101 529006 342865 782203 814234 142382 129786 976583 598493 448488 508356 178527 295091 751357 247986 228234 301579 581354 016699 156184 075525 339018 823088 735459 219127 455775 (153 digits), a[300] = 1
                                                                                      A[301]/B[301] = 1 759582 889467 311273 722194 676624 324595 889667 454456 033728 762273 246004 571157 001083 572110 933512 602199 544588 505716 065231 083062 596983 376603 930310 340897 852127 (151 digits)/171 020064 350824 711765 882918 993315 372927 144511 029250 512584 177302 984415 749315 086756 730927 404672 793978 976384 052707 175274 373534 161041 693030 840949 690227 587296 (153 digits), a[301] = 1
                                                                                      A[302]/B[302] = 6 323355 352557 138604 541014 378883 290497 865310 214148 186275 519564 049917 085176 588981 254715 154231 670123 251860 336318 282344 504186 466655 645411 279886 416548 938325 (151 digits)/614 589199 395339 917501 462991 122328 248568 410116 686244 986241 040265 131774 543037 011627 440768 442252 683516 510506 174820 682007 196127 822143 902181 258308 289810 217663 (153 digits), a[302] = 3
                                                                                      A[303]/B[303] = 8 082938 242024 449878 263209 055507 615093 754977 668604 220004 281837 295921 656333 590064 826826 087744 272322 796448 842034 347575 587249 063639 022015 210196 757446 790452 (151 digits)/785 609263 746164 629267 345910 115643 621495 554627 715495 498825 217568 116190 292352 098384 171695 846925 477495 486890 227527 857281 569661 983185 595212 099257 980037 804959 (153 digits), a[303] = 1
                                                                                      A[304]/B[304] = 14 406293 594581 588482 804223 434390 905591 620287 882752 406279 801401 345838 741510 179046 081541 241975 942446 048309 178352 629920 091435 530294 667426 490083 173995 728777 (152 digits)/1400 198463 141504 546768 808901 237971 870063 964744 401740 485066 257833 247964 835389 110011 612464 289178 161011 997396 402348 539288 765789 805329 497393 357566 269848 022622 (154 digits), a[304] = 1
                                                                                      A[305]/B[305] = 108 926993 404095 569257 892773 096243 954235 096992 847871 063962 891646 716792 846904 843387 397614 781575 869445 134613 090502 757016 227297 775701 694000 640778 975416 891891 (153 digits)/10586 998505 736696 456649 008218 781446 711943 307838 527678 894289 022400 851944 140075 868465 458945 871172 604579 468665 043967 632302 930190 620492 076965 602221 868973 963313 (155 digits), a[305] = 7
                                                                                      A[306]/B[306] = 123 333286 998677 157740 696996 530634 859826 717280 730623 470242 693048 062631 588415 022433 479156 023551 811891 182922 268855 386936 318733 305996 361427 130862 149412 620668 (153 digits)/11987 196968 878201 003417 817120 019418 582007 272582 929419 379355 280234 099908 975464 978477 071410 160350 765591 466061 446316 171591 695980 425821 574358 959788 138821 985935 (155 digits), a[306] = 1
                                                                                      A[307]/B[307] = 232 260280 402772 726998 589769 626878 814061 814273 578494 534205 584694 779424 435319 865820 876770 805127 681336 317535 359358 143952 546031 081698 055427 771641 124829 512559 (153 digits)/22574 195474 614897 460066 825338 800865 293950 580421 457098 273644 302634 951853 115540 846942 530356 031523 370170 934726 490283 803894 626171 046313 651324 562010 007795 949248 (155 digits), a[307] = 1
                                                                                      A[308]/B[308] = 355 593567 401449 884739 286766 157513 673888 531554 309118 004448 277742 842056 023734 888254 355926 828679 493227 500457 628213 530888 864764 387694 416854 902503 274242 133227 (153 digits)/34561 392443 493098 463484 642458 820283 875957 853004 386517 652999 582869 051762 091005 825419 601766 191874 135762 400787 936599 975486 322151 472135 225683 521798 146617 935183 (155 digits), a[308] = 1
                                                                                      A[309]/B[309] = 587 853847 804222 611737 876535 784392 487950 345827 887612 538653 862437 621480 459054 754075 232697 633807 174563 817992 987571 674841 410795 469392 472282 674144 399071 645786 (153 digits)/57135 587918 107995 923551 467797 621149 169908 433425 843615 926643 885504 003615 206546 672362 132122 223397 505933 335514 426883 779380 948322 518448 877008 083808 154413 884431 (155 digits), a[309] = 1
                                                                                      A[310]/B[310] = 943 447415 205672 496477 163301 941906 161838 877382 196730 543102 140180 463536 482789 642329 588624 462486 667791 318450 615785 205730 275559 857086 889137 576647 673313 779013 (153 digits)/91696 980361 601094 387036 110256 441433 045866 286430 230133 579643 468373 055377 297552 497781 733888 415271 641695 736302 363483 754867 270473 990584 102691 605606 301031 819614 (155 digits), a[310] = 1
                                                                                      A[311]/B[311] = 2474 748678 215567 604692 203139 668204 811628 100592 281073 624858 142798 548553 424634 038734 409946 558780 510146 454894 219142 086301 961915 183566 250557 827439 745699 203812 (154 digits)/240529 548641 310184 697623 688310 504015 261641 006286 303883 085930 822250 114369 801651 667925 599899 053940 789324 808119 153851 289115 489270 499617 082391 295020 756477 523659 (156 digits), a[311] = 2
                                                                                      A[312]/B[312] = 1 156651 080141 875743 887736 029526 993553 192161 853977 458113 351854 827102 637985 786885 731299 033667 412984 906185 754050 955139 508746 489950 582525 899642 991008 914841 959217 (157 digits)/112 418996 195853 457348 177298 551261 816560 232216 222134 143534 709337 459176 466074 668881 419036 886746 605620 256381 127947 212035 771800 759797 311761 579426 380299 576035 368367 (159 digits), a[312] = 467
                                                                                      A[313]/B[313] = 1 159125 828820 091311 492428 232666 661758 003789 954569 739186 976712 969901 186539 211519 770033 443613 971765 416332 208945 174281 595048 451865 766092 150200 818448 660541 163029 (157 digits)/112 659525 744494 767532 874922 239572 320575 493857 228420 447417 795268 281426 580444 470533 086962 486645 659561 045705 936066 365887 060916 249067 811378 661817 675320 332512 892026 (159 digits), a[313] = 1
                                                                                      A[314]/B[314] = 3 474902 737782 058366 872592 494860 317069 199741 763116 936487 305280 766905 011064 209925 271365 920895 356515 738850 171941 303702 698843 393682 114710 200044 627906 235924 285275 (157 digits)/337 738047 684842 992413 927143 030406 457711 219930 678975 038370 299874 022029 626963 609947 592961 860037 924742 347793 000079 943809 893633 257932 934518 903061 730940 241061 152419 (159 digits), a[314] = 2
                                                                                      A[315]/B[315] = 4 634028 566602 149678 365020 727526 978827 203531 717686 675674 281993 736806 197603 421445 041399 364509 328281 155182 380886 477984 293891 845547 880802 350245 446354 896465 448304 (157 digits)/450 397573 429337 759946 802065 269978 778286 713787 907395 485788 095142 303456 207408 080480 679924 346683 584303 393498 936146 309696 954549 507000 745897 564879 406260 573574 044445 (159 digits), a[315] = 1
                                                                                      A[316]/B[316] = 54 449216 970405 704828 887820 497657 084168 438590 657670 368904 407211 871773 184701 845820 726758 930497 967608 445856 361692 561529 931653 694708 803536 052744 537810 097044 216619 (158 digits)/5292 111355 407558 351828 749861 000173 018865 071597 660325 382039 346439 360047 908452 495235 072129 673557 352079 676281 297689 350476 393677 834941 139392 116735 199806 550375 641314 (160 digits), a[316] = 11
                                                                                      A[317]/B[317] = 113 532462 507413 559336 140661 722841 147164 080713 033027 413483 096417 480352 567007 113086 494917 225505 263498 046895 104271 601044 157199 234965 487874 455734 521975 090553 881542 (159 digits)/11034 620284 244454 463604 301787 270324 816016 856983 228046 249866 788021 023552 024313 070950 824183 693798 288462 746061 531525 010649 741905 176883 024681 798349 805873 674325 327073 (161 digits), a[317] = 2
                                                                                      A[318]/B[318] = 281 514141 985232 823501 169143 943339 378496 600016 723725 195870 600046 832478 318716 071993 716593 381508 494604 539646 570235 763618 246052 164639 779284 964213 581760 278151 979703 (159 digits)/27361 351923 896467 279037 353435 540822 650898 785564 116417 881772 922481 407151 957078 637136 720497 061153 929005 168404 360739 371775 877488 188707 188755 713434 811553 899026 295460 (161 digits), a[318] = 2
                                                                                      A[319]/B[319] = 395 046604 492646 382837 309805 666180 525660 680729 756752 609353 696464 312830 885723 185080 211510 607013 758102 586541 674507 364662 403251 399605 267159 419948 103735 368705 861245 (159 digits)/38395 972208 140921 742641 655222 811147 466915 642547 344464 131639 710502 430703 981391 708087 544680 754952 217467 914465 892264 382425 619393 365590 213437 511784 617427 573351 622533 (161 digits), a[319] = 1
                                                                                      A[320]/B[320] = 1466 653955 463171 972013 098560 941880 955478 642205 993983 023931 689439 770970 975885 627234 351125 202549 768912 299271 593757 857605 455806 363455 580763 224057 892966 384269 563438 (160 digits)/142549 268548 319232 506962 319103 974265 051645 713206 149810 276692 053988 699263 901253 761399 354539 326010 581408 911802 037532 519052 735668 285477 829068 248788 663836 619081 163059 (162 digits), a[320] = 3
                                                                                      A[321]/B[321] = 3328 354515 418990 326863 506927 549942 436617 965141 744718 657217 075343 854772 837494 439548 913761 012113 295927 185084 862023 079873 314864 126516 428685 868063 889668 137244 988121 (160 digits)/323494 509304 779386 756566 293430 759677 570207 068959 644084 685023 818479 829231 783899 230886 253759 406973 380285 738069 967329 420531 090729 936545 871574 009361 945100 811513 948651 (162 digits), a[321] = 2
                                                                                      A[322]/B[322] = 8123 362986 301152 625740 112416 041765 828714 572489 483420 338365 840127 480516 650874 506332 178647 226776 360766 669441 317804 017352 085534 616488 438134 960185 672302 658759 539680 (160 digits)/789538 287157 878006 020094 905965 493620 192059 851125 437979 646739 690948 357727 469052 223171 862058 139957 341980 387941 972191 360114 917128 158569 572216 267512 554038 242109 060361 (162 digits), a[322] = 2
                                                                                      A[323]/B[323] = 19575 080488 021295 578343 731759 633474 094047 110120 711559 333948 755598 815806 139243 452213 271055 465666 017460 523967 497631 114577 485933 359493 304955 788435 234273 454764 067481 (161 digits)/1 902571 083620 535398 796756 105361 746917 954326 771210 520043 978503 200376 544686 722003 677229 977875 686888 064246 513953 911712 140760 924986 253685 016006 544387 053177 295732 069373 (163 digits), a[323] = 2
                                                                                      A[324]/B[324] = 27698 443474 322448 204083 844175 675239 922761 682610 194979 672314 595726 296322 790117 958545 449702 692442 378227 193408 815435 131929 571467 975981 743090 748620 906576 113523 607161 (161 digits)/2 692109 370778 413404 816851 011327 240538 146386 622335 958023 625242 891324 902414 191055 900401 839933 826845 406226 901895 883903 500875 842114 412254 588222 811899 607215 537841 129734 (163 digits), a[324] = 1
                                                                                      A[325]/B[325] = 1 127512 819460 919223 741697 498786 643071 004514 414528 510746 226532 584650 668717 743961 794031 259163 163361 146548 260320 115036 391760 344652 398763 028585 733271 497317 995708 353921 (163 digits)/109 586945 914757 071591 470796 558451 368443 809791 664648 840988 988218 853372 641254 364239 693303 575228 760704 313322 589789 267852 175794 609562 743868 544919 020371 341798 809377 258733 (165 digits), a[325] = 40
                                                                                      A[326]/B[326] = 3 410236 901857 080119 429176 340535 604452 936304 926195 727218 351912 349678 302476 022003 340639 227192 182525 817871 974369 160544 307210 605425 172270 828847 948435 398530 100648 668924 (163 digits)/331 452947 115049 628179 229240 686681 345869 575761 616282 480990 589899 451442 826177 283774 980312 565620 108958 346194 671263 687460 028259 670802 643860 222979 873013 632611 965972 905933 (165 digits), a[326] = 3
                                                                                      A[327]/B[327] = 38 640118 739888 800537 462637 244678 292053 303868 602681 510148 097568 431111 995953 985998 541062 758277 171145 143139 978380 881023 771077 004329 293742 145913 166060 881149 102843 712085 (164 digits)/3755 569364 180302 981562 992444 111946 173009 143169 443756 131885 477112 819243 729204 485764 476741 797049 959246 121463 973689 829912 486650 988391 826330 997697 623521 300530 435079 223996 (166 digits), a[327] = 11
                                                                                      A[328]/B[328] = 42 050355 641745 880656 891813 585213 896506 240173 528877 237366 449480 780790 298430 008001 881701 985469 353670 961011 952750 041568 078287 609754 466012 974761 114496 279679 203492 381009 (164 digits)/4087 022311 295352 609742 221684 798627 518878 718931 060038 612876 067012 270686 555381 769539 457054 362670 068204 467658 644953 517372 514910 659194 470191 220677 496534 933142 401052 129929 (166 digits), a[328] = 1
                                                                                      A[329]/B[329] = 417 093319 515601 726449 488959 511603 360609 465430 362576 646446 142895 458224 681824 058015 476380 627501 354183 792247 553131 255136 475665 492119 487858 918763 196527 398261 934275 141166 (165 digits)/40538 770165 838476 469242 987607 299593 842917 613548 984103 647770 080223 255422 727640 411619 590231 061080 573086 330391 778271 486265 120846 921142 058051 983795 092335 698812 044548 393357 (167 digits), a[329] = 9
                                                                                      A[330]/B[330] = 5881 356828 860170 050949 737246 747660 945038 756198 604950 287612 450017 195935 843966 820218 551030 770488 312244 052477 696587 613478 737604 499427 296037 837445 865879 855346 283344 357333 (166 digits)/571629 804633 034023 179144 048186 992941 319725 308616 837489 681657 190137 846604 742347 532213 720289 217798 091413 093143 540754 325084 206767 555183 282918 993808 789234 716511 024729 636927 (168 digits), a[330] = 14
                                                                                      A[331]/B[331] = 23942 520634 956281 930248 437946 502247 140764 490224 782377 796895 942964 241968 057691 338889 680503 709454 603160 002158 339481 709051 426083 489828 672010 268546 660046 819647 067652 570498 (167 digits)/2 327057 988697 974569 185819 180355 271359 121818 848016 334062 374398 840774 641841 697030 540474 471387 932272 938738 702965 941288 786601 947917 141875 189727 959030 249274 564856 143466 941065 (169 digits), a[331] = 4
                                                                                      A[332]/B[332] = 197421 521908 510425 492937 240818 765638 071154 677996 863972 662779 993731 131680 305497 531335 995060 446125 137524 069744 412441 285890 146272 418056 672119 985819 146254 412522 824564 921317 (168 digits)/19 188093 714216 830576 665697 491029 163814 294276 092747 509988 676847 916334 981338 318591 856009 491392 675981 601322 716871 071064 617899 790104 690184 800742 666050 783431 235360 172465 165447 (170 digits), a[332] = 8
                                                                                      A[333]/B[333] = 221364 042543 466707 423185 678765 267885 211919 168221 646350 459675 936695 373648 363188 870225 675564 155579 740684 071902 751922 994941 572355 907885 344130 254365 806301 232169 892217 491815 (168 digits)/21 515151 702914 805145 851516 671384 435173 416094 940763 844051 051246 757109 623180 015622 396483 962780 608254 540061 419837 012353 404501 738021 832059 990470 625081 032705 800216 315932 106512 (170 digits), a[333] = 1
                                                                                      A[334]/B[334] = 418785 564451 977132 916122 919584 033523 283073 846218 510323 122455 930426 505328 668686 401561 670624 601704 878208 141647 164364 280831 718628 325942 016250 240184 952555 644692 716782 413132 (168 digits)/40 703245 417131 635722 517214 162413 598987 710371 033511 354039 728094 673444 604518 334214 252493 454173 284236 141384 136708 083418 022401 528126 522244 791213 291131 816137 035576 488397 271959 (170 digits), a[334] = 1
                                                                                      A[335]/B[335] = 3 571648 558159 283770 752169 035437 536071 476509 937969 728935 439323 380107 416277 712680 082719 040560 969218 766349 205080 066837 241595 321382 515421 474132 175845 426746 389711 626476 796871 (169 digits)/347 141115 039967 890925 989229 970693 227075 099063 208854 676368 876004 144666 459326 689336 416431 596166 882143 671134 513501 679697 583713 963034 010018 320176 954135 561802 084828 223110 282184 (171 digits), a[335] = 8
                                                                                      A[336]/B[336] = 3 990434 122611 260903 668291 955021 569594 759583 784188 239258 561779 310533 921606 381366 484280 711185 570923 644557 346727 231201 522427 040010 841363 490382 416030 379302 034404 343259 210003 (169 digits)/387 844360 457099 526648 506444 133106 826062 809434 242366 030408 604098 818111 063845 023550 668925 050340 166379 812518 650209 763115 606115 491160 532263 111390 245267 377939 120404 711507 554143 (171 digits), a[336] = 1
                                                                                      A[337]/B[337] = 23 523819 171215 588289 093628 810545 384045 274428 858910 925228 248219 932777 024309 619512 504122 596488 823836 989135 938716 222844 853730 521436 722238 926044 255997 323256 561733 342772 846886 (170 digits)/2286 362917 325465 524168 521450 636227 357389 146234 420684 828411 896498 235221 778551 807089 761056 847867 714042 733727 764550 495275 614291 418836 671333 877128 180472 451497 686851 780648 052899 (172 digits), a[337] = 5
                                                                                      A[338]/B[338] = 27 514253 293826 849192 761920 765566 953640 034012 643099 164486 809999 243310 945916 000878 988403 307674 394760 633693 285443 454046 376157 561447 563602 416426 672027 702558 596137 686032 056889 (170 digits)/2674 207277 782565 050817 027894 769334 183451 955668 663050 858820 500597 053332 842396 830640 429981 898207 880422 546246 414760 258391 220406 909997 203596 988518 425739 829436 807256 492155 607042 (172 digits), a[338] = 1
                                                                                      A[339]/B[339] = 78 552325 758869 286674 617470 341679 291325 342454 145109 254201 868218 419398 916141 621270 480929 211837 613358 256522 509603 130937 606045 644331 849443 758897 600052 728373 754008 714836 960664 (170 digits)/7634 777472 890595 625802 577240 174895 724293 057571 746786 546052 897692 341887 463345 468370 621020 644283 474887 826220 594071 012058 055105 238831 078527 854165 031952 110371 301364 764959 266983 (172 digits), a[339] = 2
                                                                                      A[340]/B[340] = 184 618904 811565 422541 996861 448925 536290 718920 933317 672890 546436 082108 778199 243419 950261 731349 621477 146738 304649 715921 588248 850111 262489 934221 872133 159306 104155 115705 978217 (171 digits)/17943 762223 563756 302422 182375 119125 632038 070812 156623 950926 295981 737107 769087 767381 672023 186774 830198 198687 602902 282507 330617 387659 360652 696848 489644 050179 409986 022074 141008 (173 digits), a[340] = 2
                                                                                      A[341]/B[341] = 1001 646849 816696 399384 601777 586306 972778 937058 811697 618654 600398 829942 807137 838370 232237 868585 720743 990214 032851 710545 547289 894888 161893 430006 960718 524904 274784 293366 851749 (172 digits)/97353 588590 709377 137913 489115 770523 884483 411632 529906 300684 377601 027426 308784 305278 981136 578157 625878 819658 608582 424594 708192 177127 881791 338407 480172 361268 351294 875329 972023 (173 digits), a[341] = 5
                                                                                      A[342]/B[342] = 1186 265754 628261 821926 598639 035232 509069 655979 745015 291545 146834 912051 585337 081790 182499 599935 342221 136952 337501 426467 135538 744999 424383 364228 832851 684210 378939 409072 829966 (172 digits)/115297 350814 273133 440335 671490 889649 516521 482444 686530 251610 673582 764534 077872 072660 653159 764932 456077 018346 211484 707102 038809 564787 242444 035255 969816 411447 761280 897404 113031 (174 digits), a[342] = 1
                                                                                      A[343]/B[343] = 3374 178359 073220 043237 799055 656771 990918 249018 301728 201744 894068 654045 977812 001950 597237 068456 405186 264118 707854 563479 818367 384887 010660 158464 626421 893325 032663 111512 511681 (172 digits)/327948 290219 255644 018584 832097 549822 917526 376521 902966 803905 724766 556494 464528 450600 287456 108022 538032 856351 031551 838798 785811 306702 366679 408919 419805 184163 873856 670138 198085 (174 digits), a[343] = 2
                                                                                      A[344]/B[344] = 7934 622472 774701 908402 196750 348776 490906 154016 348471 695034 934972 220143 540961 085691 376973 736848 152593 665189 753210 553426 772273 514773 445703 681158 085695 470860 444265 632097 853328 (172 digits)/771193 931252 784421 477505 335685 989295 351574 235488 492463 859422 123115 877523 006928 973861 228071 980977 532142 731048 274588 384699 610432 178191 975802 853094 809426 779775 508994 237680 509201 (174 digits), a[344] = 2
                                                                                      A[345]/B[345] = 27178 045777 397325 768444 389306 703101 463636 711067 347143 286849 698985 314476 600695 259024 728158 279000 862967 259687 967486 223760 135187 929207 347771 201938 883508 305906 365460 007806 071665 (173 digits)/2 641530 083977 608908 451100 839155 517708 972249 082987 380358 382172 094114 189063 485315 372183 971672 050955 134461 049495 855316 992897 617107 841278 294087 968203 848085 523490 400839 383179 725688 (175 digits), a[345] = 3
                                                                                      A[346]/B[346] = 823275 995794 694474 961733 875951 441820 400007 486036 762770 300525 904531 654441 561818 856433 221722 106874 041611 455828 777797 266230 827911 390993 878839 739324 590944 648051 408065 866280 003278 (174 digits)/80 017096 450581 051675 010530 510351 520564 519046 725109 903215 324584 946541 549427 566390 139380 378233 509631 565974 215923 934098 171628 123667 416540 798441 899210 251992 484487 534175 733072 279841 (176 digits), a[346] = 30
                                                                                      A[347]/B[347] = 2 497006 033161 480750 653646 017161 028562 663659 169177 635454 188427 412580 277801 286151 828324 393324 599622 987801 627174 300878 022452 618922 102188 984290 419912 656342 250060 589657 606646 081499 (175 digits)/242 692819 435720 763933 482692 370210 079402 529389 258317 090004 355926 933738 837346 184485 790325 106372 579849 832383 697267 657611 507781 988110 090900 689413 665834 604062 976953 003366 582396 565211 (177 digits), a[347] = 3
                                                                                      A[348]/B[348] = 3 320282 028956 175225 615379 893112 470383 063666 655214 398224 488953 317111 932242 847970 684757 615046 706497 029413 083003 078675 288683 446833 493182 863130 159237 247286 898111 997723 472926 084777 (175 digits)/322 709915 886301 815608 493222 880561 599967 048435 983426 993219 680511 880280 386773 750875 929705 484606 089481 398357 913191 591709 679410 111777 507441 487855 565044 856055 461440 537542 315468 845052 (177 digits), a[348] = 1
                                                                                      A[349]/B[349] = 9 137570 091073 831201 884405 803385 969328 790992 479606 431903 166334 046804 142286 982093 197839 623418 012617 046627 793180 458228 599819 512589 088554 710550 738387 150916 046284 585104 552498 251053 (175 digits)/888 112651 208324 395150 469138 131333 279336 626261 225171 076443 716950 694299 610893 686237 649736 075584 758812 629099 523650 841030 866602 211665 105783 665124 795924 316173 899834 078451 213334 255315 (177 digits), a[349] = 2
                                                                                      A[350]/B[350] = 12 457852 120030 006427 499785 696498 439711 854659 134820 830127 655287 363916 074529 830063 882597 238464 719114 076040 876183 536903 888502 959422 581737 573680 897624 398202 944396 582828 025424 335830 (176 digits)/1210 822567 094626 210758 962361 011894 879303 674697 208598 069663 397462 574579 997667 437113 579441 560190 848294 027457 436842 432740 546012 323442 613225 152980 360969 172229 361274 615993 528803 100367 (178 digits), a[350] = 1
                                                                                      A[351]/B[351] = 34 053274 331133 844056 883977 196382 848752 500310 749248 092158 476908 774636 291346 642220 963034 100347 450845 198709 545547 532036 376825 431434 252029 857912 533635 947321 935077 750760 603346 922713 (176 digits)/3309 757785 397576 816668 393860 155123 037943 975655 642367 215770 511875 843459 606228 560464 808619 195966 455400 684014 397335 706511 958626 858550 332233 971085 517862 660632 622383 310438 270940 456049 (178 digits), a[351] = 2
                                                                                      A[352]/B[352] = 216 777498 106833 070768 803648 874795 532226 856523 630309 383078 516740 011733 822609 683389 660801 840549 424185 268298 149468 729122 149455 548028 093916 721156 099440 082134 554863 087391 645505 872108 (177 digits)/21069 369279 480087 110769 325521 942633 106967 528631 062801 364286 468717 635337 635038 799902 431156 735989 580698 131543 820856 671812 297773 474744 606628 979493 468145 136025 095574 478623 154445 836661 (179 digits), a[352] = 6
                                                                                      A[353]/B[353] = 250 830772 437966 914825 687626 071178 380979 356834 379557 475236 993648 786370 113956 325610 623835 940896 875030 467007 695016 261158 526280 979462 345946 579068 633076 029456 489940 838152 248852 794821 (177 digits)/24379 127064 877663 927437 719382 097756 144911 504286 705168 580056 980593 478797 241267 360367 239775 931956 036098 815558 218192 378324 256400 333294 938862 950578 986007 796657 717957 789061 425386 292710 (179 digits), a[353] = 1
                                                                                      A[354]/B[354] = 2474 254450 048535 304199 992283 515400 961041 068033 046326 660211 459579 089064 848216 613885 275325 308621 299459 471367 404615 079548 885984 363189 207435 932773 797124 347242 964330 630761 885181 025497 (178 digits)/240481 512863 379062 457708 799960 822438 411171 067211 409318 584799 294058 944512 806445 043207 589140 123593 905587 471567 784588 076730 605376 474399 056395 534704 342215 305944 557194 580175 982922 471051 (180 digits), a[354] = 9
                                                                                      A[355]/B[355] = 10147 848572 632108 131625 656760 132782 225143 628966 564864 116082 831965 142629 506822 781151 725137 175382 072868 352477 313476 579354 070218 432219 175690 310163 821573 418428 347263 361199 789576 896809 (179 digits)/986305 178518 393913 758272 919225 387509 789595 773132 342442 919254 156829 256848 467047 533197 596336 426331 658448 701829 356544 685246 677906 230891 164445 089396 354869 020435 946736 109765 357076 176914 (180 digits), a[355] = 4
                                                                                      A[356]/B[356] = 22769 951595 312751 567451 305803 780965 411328 325966 176054 892377 123509 374323 861862 176188 725599 659385 445196 176322 031568 238257 026421 227627 558816 553101 440271 184099 658857 353161 464334 819115 (179 digits)/2 213091 869900 166889 974254 638411 597457 990362 613476 094204 423307 607717 458209 740540 109602 781812 976257 222484 875226 497677 447223 961188 936181 385285 713497 051953 346816 450666 799706 697074 824879 (181 digits), a[356] = 2
                                                                                      A[357]/B[357] = 556626 686860 138145 750456 996050 875952 097023 452154 790181 533133 796190 126402 191515 009681 139529 000632 757576 584206 071114 297522 704327 895280 587287 584598 388081 836820 159839 837074 933612 555569 (180 digits)/54 100510 056122 399273 140384 241103 726501 558298 496558 603349 078636 742048 253882 240010 163664 359847 856504 998085 707265 300803 418621 746440 699244 411302 213325 601749 344030 762739 302726 086871 974010 (182 digits), a[357] = 24
                                                                                      A[358]/B[358] = 579396 638455 450897 317908 301854 656917 508351 778120 966236 425510 919699 500726 053377 185869 865128 660018 202772 760528 102682 535779 730749 122908 146104 137699 828353 020919 818697 190236 397947 374684 (180 digits)/56 313601 926022 566163 114638 879515 323959 548661 110034 697553 501944 349765 712091 980550 273267 141660 832762 220570 582491 798480 865845 707629 635425 796587 926822 653702 690847 213406 102432 783946 798889 (182 digits), a[358] = 1
                                                                                      A[359]/B[359] = 4 033006 517592 843529 657906 807178 817457 147134 120880 587600 086199 314387 130758 511778 124900 330300 960741 974213 147374 687209 512201 088822 632729 463912 410797 358199 962339 072022 978493 321296 803673 (181 digits)/391 982121 612257 796251 828217 518195 670258 850265 156766 788670 090302 840642 526434 123311 803267 209812 853078 321509 202216 091688 613695 992218 511799 190829 774261 523965 489114 043175 917322 790552 767344 (183 digits), a[359] = 6
                                                                                      A[360]/B[360] = 61 074494 402348 103842 186510 409536 918774 715363 591329 780237 718500 635506 462103 730049 059374 819643 071147 815969 971148 410825 218796 063088 613850 104790 299660 201352 456005 899041 867636 217399 429779 (182 digits)/5936 045426 109889 509940 537901 652450 377842 302638 461536 527604 856486 959403 608603 830227 322275 288853 628937 043208 615733 173810 071285 590907 312413 659034 540745 513185 027557 861044 862274 642238 309049 (184 digits), a[360] = 15
                                                                                      A[361]/B[361] = 65 107500 919940 947371 844417 216715 736231 862497 712210 367837 804699 949893 592862 241827 184275 149944 031889 790183 118523 098034 730997 151911 246579 568702 710457 559552 418344 971064 846129 538696 233452 (182 digits)/6328 027547 722147 306192 366119 170646 048101 152903 618303 316274 946789 800046 135037 953539 125542 498666 482015 364717 817949 265498 684981 583125 824212 849864 315007 037150 516671 904220 779597 432791 076393 (184 digits), a[361] = 1
                                                                                      A[362]/B[362] = 126 181995 322289 051214 030927 626252 655006 577861 303540 148075 523200 585400 054965 971876 243649 969587 103037 606153 089671 508859 949793 214999 860429 673493 010117 760904 874350 870106 713765 756095 663231 (183 digits)/12264 072973 832036 816132 904020 823096 425943 455542 079839 843879 803276 759449 743641 783766 447817 787520 110952 407926 433682 439308 756267 174033 136626 508898 855752 550335 544229 765265 641872 075029 385442 (185 digits), a[362] = 1
                                                                                      A[363]/B[363] = 948 381468 175964 305870 060910 600484 321277 907526 836991 404366 467104 047693 977624 044960 889824 937053 753153 033254 746223 660054 379549 656910 269587 283153 781281 885886 538801 061811 842489 831365 876069 (183 digits)/92176 538364 546405 019122 694264 932321 029705 341698 177182 223433 569727 116194 340530 439904 260267 011307 258682 220202 853726 340659 978851 801357 780598 412156 305274 889499 326280 261080 272701 957996 774487 (185 digits), a[363] = 7
                                                                                      A[364]/B[364] = 2022 944931 674217 662954 152748 827221 297562 392914 977522 956808 457408 680788 010214 061798 023299 843694 609343 672662 582118 828968 708892 528820 399604 239800 572681 532677 951952 993730 398745 418827 415369 (184 digits)/196617 149702 924846 854378 292550 687738 485354 138938 434204 290746 942730 991838 424702 663574 968351 810134 628316 848332 141135 120628 713970 776748 697823 333211 466302 329334 196790 287426 187275 991022 934416 (186 digits), a[364] = 2
                                                                                      A[365]/B[365] = 2971 326399 850181 968824 213659 427705 618840 300441 814514 361174 924512 728481 987838 106758 913124 780748 362496 705917 328342 489023 088442 185730 669191 522954 353963 418564 490754 055542 241235 250193 291438 (184 digits)/288793 688067 471251 873500 986815 620059 515059 480636 611386 514180 512458 108032 765233 103479 228618 821441 886999 068534 994861 461288 692822 578106 478421 745367 771577 218833 523070 548506 459977 949019 708903 (186 digits), a[365] = 1
                                                                                      A[366]/B[366] = 7965 597731 374581 600602 580067 682632 535242 993798 606551 679158 306434 137751 985890 275315 849549 405191 334337 084497 238803 807014 885776 900281 737987 285709 280608 369806 933461 104814 881215 919213 998245 (184 digits)/774204 525837 867350 601380 266181 927857 515473 100211 656977 319107 967647 207903 955168 870533 425589 453018 402314 985402 130858 043206 099615 932961 654666 823947 009456 767001 242931 384439 107231 889062 352222 (186 digits), a[366] = 2
                                                                                      A[367]/B[367] = 10936 924131 224763 569426 793727 110338 154083 294240 421066 040333 230946 866233 973728 382074 762674 185939 696833 790414 567146 296037 974219 086012 407178 808663 634571 788371 424215 160357 122451 169407 289683 (185 digits)/1 062998 213905 338602 474881 252997 547917 030532 580848 268363 833288 480105 315936 720401 974012 654208 274460 289314 053937 125719 504494 792438 511068 133088 569314 781033 985834 766001 932945 567209 838082 061125 (187 digits), a[367] = 1
                                                                                      A[368]/B[368] = 1 025099 541935 277593 557294 396688 944080 864989 358157 765693 430148 784492 697511 542629 808268 778248 697583 139879 593051 983409 338546 488151 899435 605616 491427 295784 688349 385471 018027 269174 674091 938764 (187 digits)/99 633038 419034 357380 765336 794953 884141 355003 119100 614813 814936 617441 590018 952552 453710 266958 977825 308522 001554 822771 961221 796397 462298 031903 770221 645617 449634 481111 148376 857746 830694 036847 (188 digits), a[368] = 93
                                                                                      A[369]/B[369] = 1 036036 466066 502357 126721 190416 054419 019072 652398 186759 470482 015439 563745 516358 190343 540922 883522 836713 383466 550555 634584 462370 985448 012795 300090 930356 476720 809686 178384 391625 843499 228447 (187 digits)/100 696036 632939 695983 240218 047951 432058 385535 699948 883177 648225 097546 905955 672954 427722 921167 252285 597836 055491 948491 465716 588835 973366 164992 339536 426651 435469 247113 081322 424956 668776 097972 (189 digits), a[369] = 1
                                                                                      A[370]/B[370] = 4 133208 940134 784664 937457 967937 107337 922207 315352 325971 841594 830811 388748 091704 379299 401017 348151 650019 743451 635076 242299 875264 855779 644002 391700 086854 118511 814529 553180 444052 204589 624105 (187 digits)/401 721148 317853 445330 485990 938808 180316 511610 218947 264346 759611 910082 307885 971415 736879 030460 734682 102030 168030 668246 358371 562905 382396 526880 788830 925571 756042 222450 392344 132616 837022 330763 (189 digits), a[370] = 3
                                                                                      A[371]/B[371] = 42 368125 867414 349006 501300 869787 127798 241145 805921 446477 886430 323553 451226 433401 983337 551096 365039 336910 817982 901318 057583 215019 543244 452819 217091 798897 661838 954981 710188 832147 889395 469497 (188 digits)/4117 907519 811474 149288 100127 436033 235223 501637 889421 526645 244344 198369 984815 387111 796513 225774 599106 618137 735798 630955 049432 217889 797331 433800 227845 682368 995891 471617 004763 751125 038999 405602 (190 digits), a[371] = 10
                                                                                      A[372]/B[372] = 88 869460 674963 482677 940059 707511 362934 404498 927195 218927 614455 477918 291200 958508 345974 503210 078230 323841 379417 437712 357466 305303 942268 549640 825883 684649 442189 724492 973558 108347 983380 563099 (188 digits)/8637 536187 940801 743906 686245 810874 650763 514885 997790 317637 248300 306822 277516 745639 329905 482009 932895 338305 639627 930156 457235 998684 977059 394481 244522 290309 747825 165684 401871 634866 915021 141967 (190 digits), a[372] = 2
                                                                                      A[373]/B[373] = 308 976507 892304 797040 321479 992321 216601 454642 587507 103260 729796 757308 324829 308927 021261 060726 599730 308434 956235 214455 129982 130931 370050 101741 694742 852845 988408 128460 630863 157191 839537 158794 (189 digits)/30030 516083 633879 381008 158864 868657 187514 046295 882792 479556 989245 118836 817365 624029 786229 671804 397792 633054 654682 421424 421140 213944 728509 617243 961412 553298 239366 968670 210378 655725 784062 831503 (191 digits), a[373] = 3
                                                                                      A[374]/B[374] = 397 845968 567268 279718 261539 699832 579535 859141 514702 322188 344252 235226 616030 267435 367235 563936 677960 632276 335652 652167 487448 436235 312318 651382 520626 537495 430597 852953 604421 265539 822917 721893 (189 digits)/38668 052271 574681 124914 845110 679531 838277 561181 880582 797194 237545 425659 094882 369669 116135 153814 330687 971360 294310 351580 878376 212629 705569 011725 205934 843607 987192 134354 612250 290592 699083 973470 (191 digits), a[374] = 1
                                                                                      A[375]/B[375] = 7470 203942 103133 831969 029194 589307 648246 919189 852148 902650 926336 991387 413374 122763 631501 211586 803021 689408 997982 953469 904053 983166 991785 826627 066020 527763 739169 481625 510445 936908 652056 152868 (190 digits)/726055 456971 978139 629475 370857 100230 276510 147569 733282 829053 265062 780700 525248 278073 876662 440462 350176 117539 952268 749880 231912 041279 428751 828297 668239 738242 008825 387053 230883 886394 367574 353963 (192 digits), a[375] = 18
                                                                                      A[376]/B[376] = 7868 049910 670402 111687 290734 289140 227782 778331 366851 224839 270589 226614 029404 390198 998736 775523 480982 321685 333635 605637 391502 419402 304104 478009 586647 065259 169767 334579 114867 202448 474973 874761 (190 digits)/764723 509243 552820 754390 215967 779762 114787 708751 613865 626247 502608 206359 620130 647742 992797 594276 680864 088900 246579 101461 110288 253909 134320 840022 874174 581849 996017 521407 843134 176987 066658 327433 (192 digits), a[376] = 1
                                                                                      A[377]/B[377] = 15338 253852 773535 943656 319928 878447 876029 697521 219000 127490 196926 218001 442778 512962 630237 987110 284004 011094 331618 559107 295556 402569 295890 304636 652667 593022 908936 816204 625313 139357 127030 027629 (191 digits)/1 490778 966215 530960 383865 586824 879992 391297 856321 347148 455300 767670 987060 145378 925816 869460 034739 031040 206440 198847 851341 342200 295188 563072 668320 542414 320092 004842 908461 074018 063381 434232 681396 (193 digits), a[377] = 1
                                                                                      A[378]/B[378] = 23206 303763 443938 055343 610663 167588 103812 475852 585851 352329 467515 444615 472182 903161 628974 762633 764986 332779 665254 164744 687058 821971 599994 782646 239314 658282 078704 150783 740180 341805 602003 902390 (191 digits)/2 255502 475459 083781 138255 802792 659754 506085 565072 961014 081548 270279 193419 765509 573559 862257 629015 711904 295340 445426 952802 452488 549097 697393 508343 416588 901942 000860 429868 917152 240368 500891 008829 (193 digits), a[378] = 1
                                                                                      A[379]/B[379] = 38544 557616 217473 998999 930592 046035 979842 173373 804851 479819 664441 662616 914961 416124 259212 749744 048990 343873 996872 723851 982615 224540 895885 087282 891982 251304 987640 966988 365493 481162 729033 930019 (191 digits)/3 746281 441674 614741 522121 389617 539746 897383 421394 308162 536849 037950 180479 910888 499376 731717 663754 742944 501780 644274 804143 794688 844286 260466 176663 959003 222034 005703 338329 991170 303749 935123 690225 (193 digits), a[379] = 1
                                                                                      A[380]/B[380] = 61750 861379 661412 054343 541255 213624 083654 649226 390702 832149 131957 107232 387144 319285 888187 512377 813976 676653 662126 888596 669674 046512 495879 869929 131296 909587 066345 117772 105673 822968 331037 832409 (191 digits)/6 001783 917133 698522 660377 192410 199501 403468 986467 269176 618397 308229 373899 676398 072936 593975 292770 454848 797121 089701 756946 247177 393383 957859 685007 375592 123976 006563 768198 908322 544118 436014 699054 (193 digits), a[380] = 1
                                                                                      A[381]/B[381] = 100295 418995 878886 053343 471847 259660 063496 822600 195554 311968 796398 769849 302105 735410 147400 262121 862967 020527 658999 612448 652289 271053 391764 957212 023279 160892 053986 084760 471167 304131 060071 762428 (192 digits)/9 748065 358808 313264 182498 582027 739248 300852 407861 577339 155246 346179 554379 587286 572313 325692 956525 197793 298901 733976 561090 041866 237670 218325 861671 334595 346010 012267 106528 899492 847868 371138 389279 (193 digits), a[381] = 1
                                                                                      A[382]/B[382] = 162046 280375 540298 107687 013102 473284 147151 471826 586257 144117 928355 877081 689250 054696 035587 774499 676943 697181 321126 501045 321963 317565 887644 827141 154576 070479 120331 202532 576841 127099 391109 594837 (192 digits)/15 749849 275942 011786 842875 774437 938749 704321 394328 846515 773643 654408 928279 263684 645249 919668 249295 652642 096022 823678 318036 289043 631054 176185 546678 710187 469986 018830 874727 807815 391986 807153 088333 (194 digits), a[382] = 1
                                                                                      A[383]/B[383] = 586434 260122 499780 376404 511154 679512 504951 238079 954325 744322 581466 401094 369855 899498 254163 585620 893798 112071 622379 115584 618179 223751 054699 438635 487007 372329 414979 692358 201690 685429 233400 546939 (192 digits)/56 997613 186634 348624 711125 905341 555497 413816 590848 116886 476177 309406 339217 378340 508063 084697 704412 155719 586970 205011 515198 908997 130832 746882 501707 465157 755968 068759 730712 322939 023828 792597 654278 (194 digits), a[383] = 3
                                                                                      A[384]/B[384] = 9 544994 442335 536784 130159 191577 345484 226371 281105 855469 053279 231818 294591 606944 446668 102205 144433 977713 490327 279192 350399 212830 897582 762835 845308 946694 027749 760006 280263 803892 093967 125518 345861 (193 digits)/927 711660 262091 589782 220890 259902 826708 325386 847898 716699 392480 604910 355757 317132 774259 274831 519890 144155 487546 103862 561218 832997 724378 126305 573998 152711 565475 118986 566124 974839 773247 488715 556781 (195 digits), a[384] = 16
                                                                                      A[385]/B[385] = 10 131428 702458 036564 506563 702732 024996 731322 519185 809794 797601 813284 695685 976800 346166 356368 730054 871511 602398 901571 465983 831010 121333 817535 283944 433701 400079 174985 972622 005582 779396 358918 892800 (194 digits)/984 709273 448725 938406 932016 165244 382205 739203 438746 833585 868657 914316 694974 695473 282322 359529 224302 299875 074516 308874 076417 741994 855210 873188 075705 617869 321443 187746 296837 297778 797076 281313 211059 (195 digits), a[385] = 1
                                                                                      A[386]/B[386] = 19 676423 144793 573348 636722 894309 370480 957693 800291 665263 850881 045102 990277 583744 792834 458573 874488 849225 092726 180763 816383 043841 018916 580371 129253 380395 427828 934992 252885 809474 873363 484437 238661 (194 digits)/1912 420933 710817 528189 152906 425147 208914 064590 286645 550285 261138 519227 050732 012606 056581 634360 744192 444030 562062 412736 637636 574992 579588 999493 649703 770580 886918 306732 862962 272618 570323 770028 767840 (196 digits), a[386] = 1
                                                                                      A[387]/B[387] = 187 219237 005600 196702 237069 751516 359325 350566 721810 797169 455531 219211 608184 230503 481676 483533 600454 514537 436934 528445 813431 225579 291583 040875 447224 857260 250539 589916 248594 290856 639667 718854 040749 (195 digits)/18196 497676 846083 692109 308173 991569 262432 320516 018556 786153 218904 587360 151562 808927 791557 068775 922034 296150 133078 023503 815146 916928 071511 868630 923039 553097 303707 948342 063497 751345 929990 211572 121619 (197 digits), a[387] = 9
                                                                                      A[388]/B[388] = 206 895660 150393 770050 873792 645825 729806 308260 522102 462433 306412 264314 598461 814248 274510 942107 474943 363762 529660 709209 629814 269420 310499 621246 576478 237655 678368 524908 501480 100331 513031 203291 279410 (195 digits)/20108 918610 556901 220298 461080 416716 471346 385106 305202 336438 480043 106587 202294 821533 848138 703136 666226 740180 695140 436240 452783 491920 651100 868124 572743 323678 190626 255074 926460 023964 500313 981600 889459 (197 digits), a[388] = 1
                                                                                      A[389]/B[389] = 807 906217 456781 506854 858447 688993 548744 275348 288118 184469 374768 012155 403569 673248 305209 309856 025284 605825 025916 656074 702874 033840 223081 904615 176659 570227 285645 164641 753034 591851 178761 328727 878979 (195 digits)/78523 253508 516787 353004 691415 241718 676471 475834 934163 795468 659033 907121 758447 273529 335973 178185 920714 516692 218499 332225 173497 392690 024814 473004 641269 524131 875586 713566 842877 823239 430932 156374 789996 (197 digits), a[389] = 3
                                                                                      A[390]/B[390] = 1014 801877 607175 276905 732240 334819 278550 583608 810220 646902 681180 276470 002031 487496 579720 251963 500227 969587 555577 365284 332688 303260 533581 525861 753137 807882 964013 689550 254514 692182 691792 532019 158389 (196 digits)/98632 172119 073688 573303 152495 658435 147817 860941 239366 131907 139077 013708 960742 095063 184111 881322 586941 256872 913639 768465 626280 884610 675915 341129 214012 847810 066212 968641 769337 847203 931246 137975 679455 (197 digits), a[390] = 1
                                                                                      A[391]/B[391] = 6896 717483 099833 168289 251889 697909 220047 777001 149442 065885 461849 670975 415758 598227 783530 821637 026652 423350 359380 847780 699003 853403 424571 059785 695486 417525 069727 301943 280122 744947 329516 520842 829313 (196 digits)/670316 286222 958918 792823 606389 192329 563378 641482 370360 586911 493495 989375 522899 843908 440644 466121 442362 057929 700337 943018 931182 700354 080306 519779 925346 610992 272864 525417 458904 906463 018408 984228 866726 (198 digits), a[391] = 6
                                                                                      A[392]/B[392] = 90672 129157 905006 464666 006806 407639 139171 684623 752967 503413 685225 999150 406893 264457 765620 933244 846709 473142 227528 386433 419738 397505 053005 303075 794461 235708 870468 614812 896110 376497 975507 302975 939458 (197 digits)/8 812743 893017 539632 880010 035555 158719 471740 200212 054053 761756 554524 875590 758440 065872 912489 940901 337648 009959 018033 027711 731655 989213 719900 098268 243518 790709 613451 799068 735101 631223 170562 932950 946893 (199 digits), a[392] = 13
                                                                                      A[393]/B[393] = 188240 975798 909846 097621 265502 513187 498391 146248 655377 072712 832301 669276 229545 127143 314772 688126 720071 369634 814437 620647 538480 648413 530581 665937 284408 888942 810664 531569 072343 497943 280531 126794 708229 (198 digits)/18 295804 072258 038184 552843 677499 509768 506859 041906 478468 110424 602545 740557 039779 975654 265624 347924 117658 077847 736403 998442 394494 678781 520106 716316 412384 192411 499768 123554 929108 168909 359534 850130 760512 (200 digits), a[393] = 2
                                                                                      A[394]/B[394] = 1 031877 008152 454236 952772 334318 973576 631127 415867 029852 866977 846734 345531 554618 900174 339484 373878 447066 321316 299716 489671 112141 639572 705913 632762 216505 680422 923791 272658 257827 866214 378162 936949 480603 (199 digits)/100 291764 254307 730555 644228 423052 707562 006035 409744 446394 313879 567253 578375 957339 944144 240611 680521 925938 399197 700053 019923 704129 383121 320433 679850 305439 752767 112292 416843 380642 475769 968237 183604 749453 (201 digits), a[394] = 5
                                                                                      A[395]/B[395] = 2 251994 992103 818320 003165 934140 460340 760645 977982 715082 806668 525770 360339 338782 927491 993741 435883 614204 012267 413870 599989 762763 927558 942408 931461 717420 249788 658247 076885 587999 230372 036857 000693 669435 (199 digits)/218 879332 580873 499295 841300 523604 924892 518929 861395 371256 738183 737052 897308 954459 863942 746847 708967 969534 876243 136510 038289 802753 445024 160974 076017 023263 697945 724352 957241 690393 120449 296009 217340 259418 (201 digits), a[395] = 2
                                                                                      A[396]/B[396] = 3 283872 000256 272556 955938 268459 433917 391773 393849 744935 673646 372504 705870 893401 827666 333225 809762 061270 333583 713587 089660 874905 567131 648322 564223 933925 930211 582038 349543 845827 096586 415019 937643 150038 (199 digits)/319 171096 835181 229851 485528 946657 632454 524965 271139 817651 052063 304306 475684 911799 808086 987459 389489 895473 275440 836563 058213 506882 828145 481407 755867 328703 450712 836645 374085 071035 596219 264246 400945 008871 (201 digits), a[396] = 1
                                                                                      A[397]/B[397] = 5 535866 992360 090876 959104 202599 894258 152419 371832 460018 480314 898275 066210 232184 755158 326967 245645 675474 345851 127457 689650 637669 494690 590731 495685 651346 180000 240285 426429 433826 326958 451876 938336 819473 (199 digits)/538 050429 416054 729147 326829 470262 557347 043895 132535 188907 790247 041359 372993 866259 672029 734307 098457 865008 151683 973073 096503 309636 273169 642381 831884 351967 148658 560998 331326 761428 716668 560255 618285 268289 (201 digits), a[397] = 1
                                                                                      A[398]/B[398] = 30 963206 962056 726941 751459 281458 905208 153870 253012 045028 075220 863880 036922 054325 603457 968062 037990 438642 062839 350875 537914 063253 040584 601980 042652 190656 830212 783465 481691 014958 731378 674404 629327 247403 (200 digits)/3009 423243 915454 875588 119676 297970 419189 744440 933815 762190 003298 511103 340654 243098 168235 658994 881779 220514 033860 701928 540730 055064 193993 693316 915289 088539 194005 641637 030718 878179 179562 065524 492371 350316 (202 digits), a[398] = 5
                                                                                      A[399]/B[399] = 67 462280 916473 544760 462022 765517 704674 460159 877856 550074 630756 626035 140054 340835 962074 263091 321626 552758 471529 829208 765478 764175 575859 794691 580990 032659 840425 807216 389811 463743 789715 800686 196991 314279 (200 digits)/6556 896917 246964 480323 566182 066203 395726 532777 000166 713287 796844 063566 054302 352456 008501 052296 862016 306036 219405 376930 177963 419764 661157 029015 662462 529045 536669 844272 392764 517787 075792 691304 603027 968921 (202 digits), a[399] = 2
                                                                                      A[400]/B[400] = 98 425487 878530 271702 213482 046976 609882 614030 130868 595102 705977 489915 176976 395161 565532 231153 359616 991400 534369 180084 303392 827428 616444 396671 623642 223316 670638 590681 871502 478702 521094 475090 826318 561682 (200 digits)/9566 320161 162419 355911 685858 364173 814916 277217 933982 475477 800142 574669 394956 595554 176736 711291 743795 526550 253266 078858 718693 474828 855150 722332 577751 617584 730675 485909 423483 395966 255354 756829 095399 319237 (202 digits), a[400] = 1
                                                                                      A[401]/B[401] = 4299 758259 693275 227955 641750 785511 929626 863455 505206 139490 987788 692387 750039 332783 279960 202685 785157 182981 449404 572833 811370 343606 082968 851571 397605 635276 677885 206536 864418 047952 196778 229591 728689 466605 (202 digits)/417908 663847 230996 784526 058091 725677 437126 453148 161413 158833 202974 774350 037435 961285 608179 637841 845223 947697 109846 767855 081782 837405 432638 089316 505782 085188 955715 738377 602550 544336 056047 234955 705198 696112 (204 digits), a[401] = 43
                                                                                      A[402]/B[402] = 12997 700266 958355 955569 138734 403512 398763 204396 646487 013575 669343 567078 427094 393511 405412 839210 715088 540344 882582 898585 737503 858246 865350 951385 816459 129146 704294 210292 464756 622559 111429 163866 012386 961497 (203 digits)/1 263292 311702 855409 709489 860133 541206 126295 636662 418221 951977 409066 897719 507264 479411 001275 624817 279467 369641 582806 382423 964041 987045 153064 990282 095097 873151 597822 701042 231135 028974 423496 461696 210995 407573 (205 digits), a[402] = 3
                                                                                      A[403]/B[403] = 199265 262264 068614 561492 722766 838197 911074 929405 202511 343126 027942 198564 156455 235454 361152 790846 511485 288154 688148 051619 873928 217309 063233 122358 644492 572477 242298 360923 835767 386338 868215 687581 914493 889060 (204 digits)/19 367293 339390 062142 426873 960094 843769 331561 003084 434742 438494 338978 240142 646403 152450 627314 010101 037234 492320 851942 504214 542412 643082 728612 943547 932250 182462 923056 254011 069575 978952 408494 160398 870129 809707 (206 digits), a[403] = 15
                                                                                      A[404]/B[404] = 212262 962531 026970 517061 861501 241710 309838 133801 848998 356701 697285 765642 583549 628965 766565 630057 226573 828499 570730 950205 611432 075555 928584 073744 460951 701623 946592 571216 300524 008897 979644 851447 926880 850557 (204 digits)/20 630585 651092 917552 136363 820228 384975 457856 639746 852964 390471 748045 137862 153667 631861 628589 634918 316701 861962 434748 886638 506454 630127 881677 933830 027348 055614 520878 955053 300711 007926 831990 622095 081125 217280 (206 digits), a[404] = 1
                                                                                      A[405]/B[405] = 836054 149857 149526 112678 307270 563328 840589 330810 749506 413231 119799 495491 907104 122351 660849 681018 191206 773653 400340 902236 708224 443976 848985 343592 027347 677349 082076 074572 737339 413032 807150 241925 695136 440731 (204 digits)/81 259050 292668 814798 835965 420779 998695 705130 922324 993635 609909 583113 653729 107406 048035 513082 914855 987340 078208 156189 164130 061776 533466 373646 745038 014294 349306 485693 119170 971709 002732 904466 026684 113505 461547 (206 digits), a[405] = 3
                                                                                      A[406]/B[406] = 1 048317 112388 176496 629740 168771 805039 150427 464612 598504 769932 817085 261134 490653 751317 427415 311075 417780 602152 971071 852442 319656 519532 777569 417336 488299 378973 028668 645789 037863 421930 786795 093373 622017 291288 (205 digits)/101 889635 943761 732350 972329 241008 383671 162987 562071 846600 000381 331158 791591 261073 679897 141672 549774 304041 940170 590938 050768 568231 163594 255324 678868 041642 404921 006572 074224 272420 010659 736456 648779 194630 678827 (207 digits), a[406] = 1
                                                                                      A[407]/B[407] = 2 932688 374633 502519 372158 644814 173407 141444 260035 946515 953096 753970 017760 888411 624986 515680 303169 026767 977959 342484 607121 347537 483042 404124 178265 003946 435295 139413 366150 813066 256894 380740 428672 939171 023307 (205 digits)/285 038322 180192 279500 780623 902796 766038 031106 046468 686835 610672 245431 236911 629553 407829 796428 014404 595423 958549 338065 265667 198238 860654 884296 102774 097579 159148 498837 267619 516549 024052 377379 324242 502766 819201 (207 digits), a[407] = 2
                                                                                      A[408]/B[408] = 27 442512 484089 699170 979167 972099 365703 423425 804936 117148 347803 602815 420982 486358 376196 068538 039596 658692 403787 053433 316534 447493 866914 414687 021721 523817 296629 283388 941146 355459 733980 213458 951430 074556 501051 (206 digits)/2667 234535 565492 247857 997944 366179 278013 442941 980290 028120 496431 540039 923795 927054 350365 309524 679415 662857 567114 633525 441773 352380 909488 213989 603834 919854 837257 496107 482799 921361 227131 132870 566961 719532 051636 (208 digits), a[408] = 9
                                                                                      A[409]/B[409] = 30 375200 858723 201690 351326 616913 539110 564870 064972 063664 300900 356785 438743 374770 001182 584218 342765 685460 381746 395917 923655 795031 349956 818811 199986 527763 731924 422802 307297 168525 990874 594199 380103 013727 524358 (206 digits)/2952 272857 745684 527358 778568 268976 044051 474048 026758 714956 107103 785471 160707 556607 758195 105952 693820 258281 525663 971590 707440 550619 770143 098285 706609 017433 996405 994944 750419 437910 251183 510249 891204 222298 870837 (208 digits), a[409] = 1
                                                                                      A[410]/B[410] = 1090 574542 539401 758333 275599 564073 234573 193878 078958 345398 879316 090305 777000 603308 417586 516180 036395 649805 764910 910560 644487 273591 115403 073079 021249 995547 913984 081469 696547 253869 414591 010437 255035 555019 853581 (208 digits)/105996 784556 664450 705415 247833 780340 819815 034622 916845 051584 245064 031530 548560 408325 887194 017868 963124 702710 965353 639200 202192 624072 864496 653989 335150 530044 711467 319173 747480 248220 018553 991616 759109 499992 530931 (210 digits), a[410] = 35
                                                                                      A[411]/B[411] = 9845 546083 713339 026689 831722 693572 650269 309772 775597 172254 214745 169537 431748 804545 759461 229838 670326 533712 265944 590963 724041 257351 388584 476522 391236 487694 957781 156029 576222 453350 722193 688134 675423 008906 206587 (208 digits)/956923 333867 725740 876096 009072 292043 422386 785654 278364 179214 312680 069246 097751 231540 742941 266773 361942 582680 213846 724392 527174 167275 550612 984189 722963 787836 399611 867508 477741 671890 418169 434800 723189 722231 649216 (210 digits), a[411] = 9
                                                                                      A[412]/B[412] = 20781 666709 966079 811712 939044 951218 535111 813423 630152 689907 308806 429380 640498 212399 936508 975857 377048 717230 296800 092488 092569 788293 892572 026123 803722 970937 829546 393528 848992 160570 858978 386706 605881 572832 266755 (209 digits)/2 019843 452292 115932 457607 265978 364427 664588 605931 473573 410012 870424 170022 744062 871407 373076 551415 687009 868071 393047 087985 256540 958623 965722 622368 781078 105717 510691 054190 702963 592000 854892 861218 205488 944455 829363 (211 digits), a[412] = 2
                                                                                      A[413]/B[413] = 51408 879503 645498 650115 709812 596009 720492 936620 035902 552068 832358 028298 712745 229345 632479 181553 424423 968172 859544 775939 909180 833939 173728 528769 998682 429570 616873 943087 274206 774492 440150 461547 887186 154570 740097 (209 digits)/4 996610 238451 957605 791310 541029 020898 751563 997517 225510 999240 053528 409291 585876 974355 489094 369604 735962 318822 999940 900363 040256 084523 482058 228927 285119 999271 420993 975889 883668 855892 127955 157237 134167 611143 307942 (211 digits), a[413] = 2
                                                                                      A[414]/B[414] = 123599 425717 257077 111944 358670 143237 976097 686663 701957 794044 973522 485978 065988 671091 201467 338964 225896 653576 015889 644367 910931 456172 240029 083663 801087 830079 063294 279703 397405 709555 739279 309802 380253 881973 746949 (210 digits)/12 013063 929196 031144 040228 348036 406225 167716 600965 924595 408492 977480 988605 915816 820118 351265 290625 158934 505717 392928 888711 337053 127670 929839 080223 351318 104260 352679 005970 470301 303785 110803 175692 473824 166742 445247 (212 digits), a[414] = 2
                                                                                      A[415]/B[415] = 175008 305220 902575 762060 068482 739247 696590 623283 737860 346113 805880 514276 778733 900436 833946 520517 650320 621748 875434 420307 820112 290111 413757 612433 799770 259649 680168 222790 671612 484048 179429 771350 267440 036544 487046 (210 digits)/17 009674 167647 988749 831538 889065 427123 919280 598483 150106 407733 031009 397897 501693 794473 840359 660229 894896 824540 392869 789074 377309 212194 411897 309150 636438 103531 773672 981860 353970 159677 238758 332929 607991 777885 753189 (212 digits), a[415] = 1
                                                                                      A[416]/B[416] = 4 323798 751018 918895 401386 002255 885182 694272 645473 410606 100776 314654 828620 755602 281575 216183 831387 833591 575549 026315 731755 593626 418846 170211 782074 995574 061671 387331 626679 516105 326712 045593 822208 798814 759041 436053 (211 digits)/420 245243 952747 761139 997161 685606 657199 230450 964561 527149 194085 721706 538145 956467 887490 519897 136142 636458 294686 821803 826496 392474 220336 815374 499838 625832 589022 920830 570618 965585 136038 841003 166003 065626 836000 521783 (213 digits), a[416] = 24
                                                                                      A[417]/B[417] = 21 794002 060315 497052 768990 079762 165161 167953 850650 790890 849995 379154 657380 556745 308312 914865 677456 818278 499494 007013 079085 788244 384342 264816 522808 777640 568006 616826 356188 252139 117608 407398 882394 261513 831751 667311 (212 digits)/2118 235893 931386 794449 817347 317098 713120 071535 421290 785852 378161 639542 088627 284033 231926 439845 340943 077188 297974 501888 921556 339680 313878 488769 808343 765601 048646 377825 834955 181895 839871 443774 162944 936125 957888 362104 (214 digits), a[417] = 5
                                                                                      A[418]/B[418] = 26 117800 811334 415948 170376 082018 050343 862226 496124 201496 950771 693809 486001 312347 589888 131049 508844 651870 075043 033328 810841 381870 803188 435028 304883 773214 629678 004157 982867 768244 444320 452992 704603 060328 590793 103364 (212 digits)/2538 481137 884134 555589 814509 002705 370319 301986 385852 313001 572247 361248 626773 240501 119416 959742 477085 713646 592661 323692 748052 732154 534215 304144 308182 391433 637669 298656 405574 147480 975910 284777 328948 001752 793888 883887 (214 digits), a[418] = 1
                                                                                      A[419]/B[419] = 204 618607 739656 408689 961622 653888 517568 203539 323520 201369 505397 235821 059389 743178 437529 832212 239369 381369 024795 240314 754975 461340 006661 310014 656995 190142 975752 645932 236262 629850 227851 578347 814615 683813 967303 390859 (213 digits)/19887 603859 120328 683578 518910 336036 305355 185440 122256 976863 383893 168282 476039 967541 067845 158042 680543 072714 446603 767738 157925 464762 053385 617779 965620 505636 512331 468420 673974 214262 671243 437215 465580 948395 515110 549313 (215 digits), a[419] = 7
                                                                                      A[420]/B[420] = 435 355016 290647 233328 093621 389795 085480 269305 143164 604235 961566 165451 604780 798704 464947 795473 987583 414608 124633 513958 320792 304550 816511 055057 618874 153500 581183 296022 455393 027944 900023 609688 333834 427956 525399 885082 (213 digits)/42313 688856 124791 922746 852329 674777 981029 672866 630366 266728 340033 697813 578853 175583 255107 275827 838171 859075 485868 859169 063903 661678 640986 539704 239423 402706 662332 235497 753522 576006 318397 159208 260109 898543 824109 982513 (215 digits), a[420] = 2
                                                                                      A[421]/B[421] = 2381 393689 192892 575330 429729 602863 944969 550065 039343 222549 313228 063079 083293 736700 762268 809582 177286 454409 647962 810106 358936 984094 089216 585302 751365 957645 881669 126044 513227 769574 727969 626789 483787 823596 594302 816269 (214 digits)/231456 048139 744288 297312 780558 709926 210503 549773 274088 310505 084061 657350 370305 845457 343381 537181 871402 368091 875948 063583 477443 773155 258318 316301 162737 519169 823992 645909 441587 094294 263229 233256 766130 441114 635660 461878 (216 digits), a[421] = 5
                                                                                      A[422]/B[422] = 5198 142394 676432 383988 953080 595522 975419 369435 221851 049334 588022 291609 771368 272105 989485 414638 342156 323427 420559 134171 038666 272738 994944 225663 121606 068792 344521 548111 481848 567094 355962 863267 301410 075149 714005 517620 (214 digits)/505225 785135 613368 517372 413447 094630 402036 772413 178542 887738 508157 012514 319464 866497 941870 350191 580976 595259 237764 986336 018791 207989 157623 172306 564898 441046 310317 527316 636696 764594 844855 625721 792370 780773 095430 906269 (216 digits), a[422] = 2
                                                                                      A[423]/B[423] = 12777 678478 545757 343308 335890 793909 895808 288935 483045 321218 489272 646298 626030 280912 741239 638858 861599 101264 489081 078448 436269 529572 079105 036628 994578 095230 570712 222267 476924 903763 439895 353324 086607 973896 022313 851509 (215 digits)/1 241907 618410 971025 332057 607452 899187 014577 094599 631174 085982 100375 682379 009235 578453 227122 237565 033355 558610 351478 036255 515026 189133 573564 660914 292534 401262 444627 700542 714980 623483 952940 484700 350872 002660 826522 274416 (217 digits), a[423] = 2
                                                                                      A[424]/B[424] = 311862 425879 774608 623389 014459 649360 474818 303886 814938 758578 330565 802776 796095 014011 779236 747251 020534 753775 158505 016933 509134 982468 893465 104758 991480 354326 041614 882530 928046 257416 913451 343045 380001 448654 249537 953836 (216 digits)/30 311008 626998 917976 486754 992316 675118 751887 042804 326720 951308 917173 389610 541118 749375 392804 051752 381510 001907 673237 856468 379419 747194 923175 034249 585724 071344 981382 340341 796231 728209 715427 258530 213298 844632 931965 492253 (218 digits), a[424] = 24
                                                                                      A[425]/B[425] = 324640 104358 320365 966697 350350 443270 370626 592822 297984 079796 819838 449075 422125 294924 520476 386109 882133 855039 647586 095381 945404 512040 972570 141387 986058 449556 612327 104798 404971 161180 353346 696369 466609 422550 271851 805345 (216 digits)/31 552916 245409 889001 818812 599769 574305 766464 137403 957895 037291 017549 071989 550354 327828 619926 289317 414865 560518 024715 892723 894445 936328 496739 695163 878258 472607 426010 040884 511212 351693 668367 743230 564170 847293 758487 766669 (218 digits), a[425] = 1
                                                                                      A[426]/B[426] = 1 285782 738954 735706 523481 065510 979171 586698 082353 708890 997968 790081 150003 062470 898785 340665 905580 666936 318894 101263 303079 345348 518591 811175 528922 949655 702995 878596 196926 142959 740957 973491 432153 779829 716305 065093 369871 (217 digits)/124 969757 363228 584981 943192 791625 398036 051279 455016 200406 063181 969820 605579 192181 732861 252582 919704 626106 683461 747385 534640 062757 556180 413394 119741 220499 489167 259412 462995 329868 783290 720530 488221 905811 386514 207428 792260 (219 digits), a[426] = 3
                                                                                      A[427]/B[427] = 2 896205 582267 791779 013659 481372 401613 544022 757529 715766 075734 400000 749081 547067 092495 201808 197271 216006 492827 850112 701540 636101 549224 594921 199233 885369 855548 369519 498650 690890 643096 300329 560677 026268 855160 402038 545087 (217 digits)/281 492430 971867 058965 705198 183020 370377 869023 047436 358707 163654 957190 283147 934717 793551 125092 128726 667078 927441 519486 962004 019961 048689 323527 934646 319257 450941 944834 966875 170949 918275 109428 719674 375793 620322 173345 351189 (219 digits), a[427] = 2
                                                                                      A[428]/B[428] = 7 078193 903490 319264 550800 028255 782398 674743 597413 140423 149437 590082 648166 156605 083775 744282 300123 098949 304549 801488 706160 617551 617041 001017 927390 720395 414092 617635 194227 524741 027150 574150 553507 832367 426625 869170 460045 (217 digits)/687 954619 306962 702913 353589 157666 138791 789325 549888 917820 390491 884201 171875 061617 319963 502767 177157 960264 538344 786359 458648 102679 653559 060449 989033 859014 391051 149082 396745 671768 619840 939387 927570 657398 627158 554119 494638 (219 digits), a[428] = 2
                                                                                      A[429]/B[429] = 17 052593 389248 430308 115259 537883 966410 893509 952355 996612 374609 580166 045413 860277 260046 690372 797517 413905 101927 453090 113861 871204 783306 596957 054015 326160 683733 604789 887105 740372 697397 448630 667692 691003 708412 140379 465177 (218 digits)/1657 401669 585792 464792 412376 498352 647961 447674 147214 194347 944638 725592 626898 057952 433478 130626 483042 587608 004131 092205 879300 225320 355807 444427 912714 037286 233044 242999 760366 514487 157956 988204 574815 690590 874639 281584 340465 (220 digits), a[429] = 2
                                                                                      A[430]/B[430] = 262 867094 742216 773886 279693 096515 278562 077392 882753 089608 768581 292573 329374 060763 984476 099874 262884 307525 833461 597840 414088 685623 366639 955373 737620 612805 670096 689483 500813 630331 488112 303610 568898 197423 052807 974862 437700 (219 digits)/25548 979663 093849 674799 539236 632955 858213 504437 758101 833039 560072 768090 575345 930903 822135 462164 422796 774384 600311 169447 648151 482484 990670 726868 679744 418307 886714 794078 802243 389075 989195 762456 549806 016261 746747 777884 601613 (221 digits), a[430] = 15
                                                                                      A[431]/B[431] = 542 786782 873681 978080 674645 730914 523535 048295 717862 175829 911772 165312 704161 981805 228998 890121 323286 028956 768850 648770 942039 242451 516586 507704 529256 551772 023926 983756 888733 001035 673622 055851 805489 085849 814028 090104 340577 (219 digits)/52755 360995 773491 814391 490849 764264 364388 456549 663417 860427 064784 261773 777589 919760 077749 054955 328636 136377 204753 431101 175603 190290 337148 898165 272202 873902 006473 831157 364853 292639 136348 513117 674427 723114 368134 837353 543691 (221 digits), a[431] = 2
                                                                                      A[432]/B[432] = 2434 014226 236944 686208 978276 020173 372702 270575 754201 792928 415669 953824 146021 987984 900471 660359 556028 423352 908864 192924 182245 655429 432985 986191 854646 819893 765804 624511 055745 634474 182600 527017 790854 540822 308920 335279 800008 (220 digits)/236570 423646 187816 932365 502635 690013 315767 330636 411773 274747 819209 815185 685705 609944 133131 681985 737341 319893 419324 893852 350564 243646 339266 319529 768555 913915 912610 118708 261656 559632 534589 814927 247516 908719 219287 127298 776377 (222 digits), a[432] = 4
                                                                                      A[433]/B[433] = 2976 801009 110626 664289 652921 751087 896237 318871 472063 968758 327442 119136 850183 969790 129470 550480 879314 452309 677714 841695 124284 897880 949572 493896 383903 371665 789731 608267 944478 635509 856222 582869 596343 626672 122948 425384 140585 (220 digits)/289325 784641 961308 746756 993485 454277 680155 787186 075191 135174 883994 076959 463295 529704 210880 736941 065977 456270 624078 324953 526167 433936 676415 217695 040758 787817 919083 949865 626509 852271 670938 328044 921944 631833 587421 964652 320068 (222 digits), a[433] = 1
                                                                                      A[434]/B[434] = 23271 621290 011331 336236 548728 277788 646363 502676 058649 574236 707764 787782 097309 776515 806765 513725 711229 589520 652868 084790 052239 940596 079993 443466 541970 421554 293925 882386 667096 083043 176158 607104 965259 927527 169559 312968 784103 (221 digits)/2 261850 916139 916978 159664 457033 869957 076857 840938 938111 220972 007168 353901 928774 317873 609296 840573 199183 513787 787873 168527 033736 281203 074172 843395 053867 428641 346197 767767 647225 525534 231158 111241 701129 331554 331240 879865 016853 (223 digits), a[434] = 7
                                                                                      A[435]/B[435] = 26248 422299 121958 000526 201650 028876 542600 821547 530713 542995 035206 906918 947493 746305 936236 064206 590544 041830 330582 926485 176524 838477 029565 937362 925873 793220 083657 490654 611574 718553 032381 189974 561603 554199 292507 738352 924688 (221 digits)/2 551176 700781 878286 906421 450519 324234 757013 628125 013302 356146 891162 430861 392069 847577 820177 577514 265160 970058 411951 493480 559903 715139 750588 061090 094626 216459 265281 717633 273735 377805 902096 439286 623073 963387 918662 844517 336921 (223 digits), a[435] = 1
                                                                                      A[436]/B[436] = 364501 111178 596785 343077 170178 653183 700174 182793 957925 633172 165454 577728 414728 478492 977834 348411 388302 133314 950446 129097 347062 840797 464350 629184 578329 733415 381473 260896 617567 424232 597114 076774 266106 132117 972159 911556 805047 (222 digits)/35 427148 026304 334707 943143 313785 085008 918035 006564 111041 850881 592279 955100 025682 336385 271605 348258 646276 124547 143242 583774 312484 578019 831817 637566 284008 242611 794860 097000 205785 437010 958411 821967 801090 855597 273857 858590 396826 (224 digits), a[436] = 13
                                                                                      A[437]/B[437] = 390749 533477 718743 343603 371828 682060 242775 004341 488639 176167 200661 484647 362222 224798 914070 412617 978846 175145 281029 055582 523587 679274 493916 566547 504203 526635 465130 751551 229142 142785 629495 266748 827709 686317 264667 649909 729735 (222 digits)/37 978324 727086 212994 849564 764304 409243 675048 634689 124344 207028 483442 385961 417752 183963 091782 925772 911437 094605 555194 077254 872388 293159 582405 698656 378634 459071 060141 814633 479520 814816 860508 261254 424164 818985 192520 703107 733747 (224 digits), a[437] = 1
                                                                                      A[438]/B[438] = 1 536749 711611 753015 373887 285664 699364 428499 195818 423843 161673 767439 031670 501395 152889 720045 586265 324840 658750 793533 295844 917825 878620 946100 328827 090940 313321 776865 515550 304993 852589 485599 877020 749235 191069 766162 861285 994252 (223 digits)/149 362122 207562 973692 491837 606698 312739 943180 910631 484074 471967 042607 112984 278938 888274 546954 125577 380587 408363 808824 815538 929649 457498 579034 733535 419911 619824 975285 540900 644347 881461 539936 605731 073585 312552 851419 967913 598067 (225 digits), a[438] = 3
                                                                                      A[439]/B[439] = 1 927499 245089 471758 717490 657493 381424 671274 200159 912482 337840 968100 516317 863617 377688 634115 998883 303686 833896 074562 351427 441413 557895 440016 895374 595143 839957 241996 267101 534135 995375 115095 143769 576944 877387 030830 511195 723987 (223 digits)/187 340446 934649 186687 341402 371002 721983 618229 545320 608418 678995 526049 498945 696691 072237 638737 051350 292024 502969 364018 892793 802037 750658 161440 432191 798546 078896 035427 355534 123868 696278 400444 866985 497750 131538 043940 671021 331814 (225 digits), a[439] = 1
                                                                                      A[440]/B[440] = 3 464248 956701 224774 091377 943158 080789 099773 395978 336325 499514 735539 547988 365012 530578 354161 585148 628527 492646 868095 647272 359239 436516 386117 224201 686084 153279 018861 782651 839129 847964 600695 020790 326180 068456 796993 372481 718239 (223 digits)/336 702569 142212 160379 833239 977701 034723 561410 455952 092493 150962 568656 611929 975629 960512 185691 176927 672611 911333 172843 708332 731687 208156 740475 165727 218457 698721 010712 896434 768216 577739 940381 472716 571335 444090 895360 638934 929881 (225 digits), a[440] = 1
                                                                                      A[441]/B[441] = 5 391748 201790 696532 808868 600651 462213 771047 596138 248807 837355 703640 064306 228629 908266 988277 584031 932214 326542 942657 998699 800652 994411 826134 119576 281227 993236 260858 049753 373265 843339 715790 164559 903124 945843 827823 883677 442226 (223 digits)/524 043016 076861 347067 174642 348703 756707 179640 001272 700911 829958 094706 110875 672321 032749 824428 228277 964636 414302 536862 601126 533724 958814 901915 597919 017003 777617 046140 251968 892085 274018 340826 339702 069085 575628 939301 309956 261695 (225 digits), a[441] = 1
                                                                                      A[442]/B[442] = 14 247745 360282 617839 709115 144461 005216 641868 588254 833941 174226 142819 676600 822272 347112 330716 753212 492956 145732 753411 644671 960545 425340 038385 463354 248540 139751 540577 882158 585661 534644 032275 349910 132429 960144 452641 139836 602691 (224 digits)/1384 788601 295934 854514 182524 675108 548137 920690 458497 494316 810878 758068 833681 320272 026011 834547 633483 601884 739938 246568 910585 799137 125786 544306 361565 252465 253955 102993 400372 552387 125776 622034 152120 709506 595348 773963 258847 453271 (226 digits), a[442] = 2
                                                                                      A[443]/B[443] = 33 887238 922355 932212 227098 889573 472647 054784 772647 916690 185807 989279 417507 873174 602491 649711 090456 918126 618008 449481 288043 721743 845091 902905 046284 778308 272739 342013 814070 544588 912627 780340 864380 167984 866132 733106 163350 647608 (224 digits)/3293 620218 668731 056095 539691 698920 852983 021020 918267 689545 451715 610843 778238 312865 084773 493523 495245 168405 894179 030000 422298 131999 210387 990528 321049 521934 285527 252127 052713 996859 525571 584894 643943 488098 766326 487227 827651 168237 (226 digits), a[443] = 2
                                                                                      A[444]/B[444] = 48 134984 282638 550051 936214 034034 477863 696653 360902 750631 360034 132099 094108 695446 949603 980427 843669 411082 763741 202892 932715 682289 270431 941290 509639 026848 412490 882591 696229 130250 447271 812616 214290 300414 826277 185747 303187 250299 (224 digits)/4678 408819 964665 910609 722216 374029 401120 941711 376765 183862 262594 368912 611919 633137 110785 328071 128728 770290 634117 276569 332883 931136 336174 534834 682614 774399 539482 355120 453086 549246 651348 206928 796064 197605 361675 261191 086498 621508 (226 digits), a[444] = 1
                                                                                      A[445]/B[445] = 82 022223 204994 482264 163312 923607 950510 751438 133550 667321 545842 121378 511616 568621 552095 630138 934126 329209 381749 652374 220759 404033 115523 844195 555923 805156 685230 224605 510299 674839 359899 592957 078670 468399 692409 918853 466537 897907 (224 digits)/7972 029038 633396 966705 261908 072950 254103 962732 295032 873407 714309 979756 390157 946002 195558 821594 623973 938696 528296 306569 755182 063135 546562 525363 003664 296333 825009 607247 505800 546106 176919 791823 440007 685704 128001 748418 914149 789745 (226 digits), a[445] = 1
                                                                                      A[446]/B[446] = 130 157207 487633 032316 099526 957642 428374 448091 494453 417952 905876 253477 605725 264068 501699 610566 777795 740292 145490 855267 153475 086322 385955 785486 065562 832005 097721 107197 206528 805089 807171 405573 292960 768814 518687 104600 769725 148206 (225 digits)/12650 437858 598062 877314 984124 446979 655224 904443 671798 057269 976904 348669 002077 579139 306344 149665 752702 708987 162413 583139 088065 994271 882737 060197 686279 070733 364491 962367 958887 095352 828267 998752 236071 883309 489677 009610 000648 411253 (227 digits), a[446] = 1
                                                                                      A[447]/B[447] = 212 179430 692627 514580 262839 881250 378885 199529 628004 085274 451718 374856 117341 832690 053795 240705 711922 069501 527240 507641 374234 490355 501479 629681 621486 637161 782951 331802 716828 479929 167070 998530 371631 237214 211097 023454 236263 046113 (225 digits)/20622 466897 231459 844020 246032 519929 909328 867175 966830 930677 691214 328425 392235 525141 501902 971260 376676 647683 690709 889708 843248 057407 429299 585560 689943 367067 189501 569615 464687 641459 005187 790575 676079 569013 617678 758028 914798 200998 (227 digits), a[447] = 1
                                                                                      A[448]/B[448] = 342 336638 180260 546896 362366 838892 807259 647621 122457 503227 357594 628333 723067 096758 555494 851272 489717 809793 672731 362908 527709 576677 887435 415167 687049 469166 880672 438999 923357 285018 974242 404103 664592 006028 729784 128055 005988 194319 (225 digits)/33272 904755 829522 721335 230156 966909 564553 771619 638628 987947 668118 677094 394313 104280 808247 120926 129379 356670 853123 472847 931314 051679 312036 645758 376222 437800 553993 531983 423574 736811 833455 789327 912151 452323 107355 767638 915446 612251 (227 digits), a[448] = 1
                                                                                      A[449]/B[449] = 2950 872536 134711 889751 161774 592392 836962 380498 607664 111093 312475 401525 901878 606758 497754 050885 629664 547850 909091 410909 595911 103778 600962 951023 117882 390496 828330 843802 103686 760080 961010 231359 688367 285444 049370 047894 284168 600665 (226 digits)/286805 704943 867641 614702 087288 255206 425759 040133 075862 834259 036163 745180 546740 359387 967879 938669 411711 501050 515697 672492 293760 470841 925592 751627 699722 869471 621449 825482 853285 535953 672834 105198 973291 187598 476524 899140 238371 099006 (228 digits), a[449] = 8
                                                                                      A[450]/B[450] = 9194 954246 584396 216149 847690 616071 318146 789116 945449 836507 295020 832911 428702 917034 048757 003929 378711 453346 400005 595637 315442 888013 690324 268237 040696 640657 365664 970406 234417 565261 857273 098182 729693 862360 877894 271737 858493 996314 (226 digits)/893690 019587 432447 565441 492021 732528 841830 892018 866217 490724 776609 912636 034534 182444 711886 936934 364513 859822 400216 490324 812595 464205 088814 900641 475391 046215 418343 008431 983431 344672 851958 104924 832025 015118 536930 465059 630559 909269 (228 digits), a[450] = 3
                                                                                      A[451]/B[451] = 186849 957467 822636 212748 115586 913819 199898 162837 516660 841239 212892 059754 475936 947439 472894 129473 203893 614778 909203 323655 904768 864052 407448 315763 931815 203644 141630 251926 792038 065318 106472 195014 282244 532661 607255 482651 454048 526945 (228 digits)/18 160606 096692 516592 923531 927722 905783 262376 880510 400212 648754 568361 997901 237424 008282 205618 677356 701988 697498 520027 478988 545669 754943 701890 764457 207543 793779 988309 994122 521912 429410 711996 203695 613791 489969 215134 200332 849569 284386 (230 digits), a[451] = 20
                                                                                      A[452]/B[452] = 5 614693 678281 263482 598593 315298 030647 315091 674242 445275 073683 681782 625545 706811 340218 235580 888125 495519 896713 676105 305314 458508 809585 913773 741154 995152 749981 614572 528209 995559 524805 051438 948611 197029 842209 095558 751281 479949 804664 (229 digits)/545 711872 920362 930235 271399 323708 906026 713137 307330 872596 953361 827469 849673 157254 430910 880447 257635 424174 784778 001040 859981 182688 112516 145537 834357 701704 859615 067642 832107 640804 226994 211844 215793 245769 714194 990956 475045 117638 440849 (231 digits), a[452] = 30
                                                                                      A[453]/B[453] = 5 801543 635749 086118 811341 430884 944466 514989 837079 961935 914922 894674 685300 182748 287657 708475 017598 699413 511492 585308 628970 363277 673638 321222 056918 926967 953625 756202 780136 787597 590123 157911 143625 479274 374870 702814 233932 933998 331609 (229 digits)/563 872479 017055 446828 194931 251431 811809 975514 187841 272809 602116 395831 847574 394678 439193 086065 934992 126163 482276 521068 338969 728357 867459 847428 598814 909248 653395 055952 826230 162716 656404 923840 419488 859561 204164 206090 675377 967207 725235 (231 digits), a[453] = 1
                                                                                      A[454]/B[454] = 46 225499 128524 866314 277983 331492 641912 920020 533802 178826 478143 944505 422646 986049 353822 194906 011316 391414 477161 773265 708107 001452 525054 162328 139587 483928 425361 907991 989167 508742 655667 156816 953989 551950 466304 015258 388812 017938 125927 (230 digits)/4492 819226 039751 058032 635918 083731 588696 541736 622219 782264 168176 598292 782693 920003 505262 482908 802580 307319 160713 648519 232769 281193 184735 077538 026062 066445 433380 459312 615718 779820 821828 678727 152215 262698 143344 433591 202690 888092 517494 (232 digits), a[454] = 7
                                                                                      A[455]/B[455] = 236 929039 278373 417690 201258 088348 154031 115092 506090 856068 305642 617201 798535 112995 056768 683005 074180 656485 897301 451637 169505 370540 298909 132862 754856 346610 080435 296162 725974 331310 868458 941995 913573 239026 706390 779106 177993 023688 961244 (231 digits)/23027 968609 215810 736991 374521 670089 755292 684197 298940 184130 442999 387295 761043 994695 965505 500609 947893 662759 285844 763664 502816 134323 791135 235118 729125 241475 820297 352515 904824 061820 765548 317476 180565 173051 920886 374046 688832 407670 312705 (233 digits), a[455] = 5
                                                                                      A[456]/B[456] = 14498 896895 109303 345416 554726 720730 037810 940663 405344 398993 122343 593815 133288 878747 816711 858215 536336 437054 212550 323133 047934 604410 758511 266956 185824 627143 331914 973918 273601 718705 631662 618567 681957 132579 556141 540735 246386 462964 761811 (233 digits)/1 409198 904388 204206 014506 481739 959206 661550 277771 857571 014221 191139 223334 206377 596457 401098 020115 624093 735635 597244 232053 904553 474944 443984 419780 502701 796470 471518 962782 809986 550887 520276 044774 166690 818865 317413 250439 221467 755981 592499 (235 digits), a[456] = 61
                                                                                      A[457]/B[457] = 14735 825934 387676 763106 755984 809078 191842 055755 911435 255061 427986 211016 931823 991742 873480 541220 610517 093540 109851 774770 217439 974951 057420 399818 940680 973753 412350 270080 999576 050016 500121 560563 595530 371606 262532 319841 424379 486653 723055 (233 digits)/1 432226 872997 420016 751497 856261 629296 416842 961969 156511 198351 634138 610629 967421 591153 366603 520725 571987 398394 883088 995718 407369 609268 235119 654899 231827 037946 291816 315298 714810 612708 285824 362250 347255 991917 238299 624485 910300 163651 905204 (235 digits), a[457] = 1
                                                                                      A[458]/B[458] = 88178 026567 047687 160950 334650 766120 997021 219442 962520 674300 262274 648899 792408 837462 184114 564318 588921 904754 761809 196984 135134 479166 045613 266050 889229 495910 393666 324323 271481 968788 132270 421385 659608 990610 868803 139942 368283 896233 377086 (233 digits)/8 570333 269375 304289 771995 763048 105688 745765 087617 640127 005979 361832 276484 043485 552224 234115 623743 484030 727610 012689 210645 941401 521285 619582 694276 661836 986201 930600 539276 384039 614428 949397 856025 902970 778451 508911 372868 772968 574241 118519 (235 digits), a[458] = 5
                                                                                      A[459]/B[459] = 191091 879068 483051 085007 425286 341320 185884 494641 836476 603661 952535 508816 516641 666667 241709 669857 788360 903049 633470 168738 487708 933283 148646 931920 719139 965574 199682 918727 542539 987592 764662 403334 914748 352828 000138 599726 160947 279120 477227 (234 digits)/18 572893 411748 028596 295489 382357 840673 908373 137204 436765 210310 357803 163598 054392 695601 834834 768212 540048 853614 908467 417010 290172 651839 474285 043452 555501 010350 153017 393851 482889 841566 184620 074302 153197 548820 256122 370223 456237 312134 142242 (236 digits), a[459] = 2
                                                                                      A[460]/B[460] = 2 381280 575388 844300 181039 438086 861963 227635 155145 000239 918243 692700 754697 992108 837469 084630 602612 049252 741350 363451 221845 987641 678563 829376 449099 518909 082800 789861 349053 781961 819901 308219 261404 636589 224546 870466 336656 299651 245679 103810 (235 digits)/231 445054 210351 647445 317868 351342 193775 646242 734070 881309 529703 655470 239660 696197 899446 252132 842293 964616 970988 914298 214769 423473 343359 311003 215707 327849 110403 766809 265494 178717 713223 164838 747651 741341 364294 582379 815550 247816 319850 825423 (237 digits), a[460] = 12
                                                                                      A[461]/B[461] = 2 572372 454457 327351 266046 863373 203283 413519 649786 836716 521905 645236 263514 508750 504136 326340 272469 837613 644399 996921 390584 475350 611846 978023 381020 238049 048374 989544 267781 324501 807494 072881 664739 551337 577374 870604 936382 460598 524799 581037 (235 digits)/250 017947 622099 676041 613357 733700 034449 554615 871275 318074 740014 013273 403258 750590 595048 086967 610506 504665 824603 822765 631779 713645 995198 785288 259159 883350 120753 919826 659345 661607 554789 349458 821953 894538 913114 838502 185773 704053 631984 967665 (237 digits), a[461] = 1
                                                                                      A[462]/B[462] = 7 526025 484303 499002 713133 164833 268530 054674 454718 673672 962054 983173 281727 009609 845741 737311 147551 724480 030150 357294 003014 938342 902257 785423 211139 995007 179550 768949 884616 430965 434889 453982 590883 739264 379296 611676 209421 220848 295278 265884 (235 digits)/731 480949 454550 999528 544583 818742 262674 755474 476621 517459 009731 682017 046178 197379 089542 426068 063306 973948 620196 559829 478328 850765 333756 881579 734027 094549 351911 606462 584185 501932 822801 863756 391559 530419 190524 259384 187097 655923 583820 760753 (237 digits), a[462] = 2
                                                                                      A[463]/B[463] = 10 098397 938760 826353 979180 028206 471813 468194 104505 510389 483960 628409 545241 518360 349878 063651 420021 562093 674550 354215 393599 413693 514104 763446 592160 233056 227925 758494 152397 755467 242383 526864 255623 290601 956671 482281 145803 681446 820077 846921 (236 digits)/981 498897 076650 675570 157941 552442 297124 310090 347896 835533 749745 695290 449436 947969 684590 513035 673813 478614 444800 382595 110108 564411 328955 666867 993186 977899 472665 526289 243531 163540 377591 213215 213513 424958 103639 097886 372871 359977 215805 728418 (237 digits), a[463] = 1
                                                                                      A[464]/B[464] = 17 624423 423064 325356 692313 193039 740343 522868 559224 184062 446015 611582 826968 527970 195619 800962 567573 286573 704700 711509 396614 352036 416362 548869 803300 228063 407476 527444 037014 186432 677272 980846 846507 029866 335968 093957 355224 902295 115356 112805 (236 digits)/1712 979846 531201 675098 702525 371184 559799 065564 824518 352992 759477 377307 495615 145348 774132 939103 737120 452563 064996 942424 588437 415176 662712 548447 727214 072448 824577 132751 827716 665473 200393 076971 605072 955377 294163 357270 559969 015900 799626 489171 (238 digits), a[464] = 1
                                                                                      A[465]/B[465] = 27 722821 361825 151710 671493 221246 212156 991062 663729 694451 929976 239992 372210 046330 545497 864613 987594 848667 379251 065724 790213 765729 930467 312316 395460 461119 635402 285938 189411 941899 919656 507711 102130 320468 292639 576238 501028 583741 935433 959726 (236 digits)/2694 478743 607852 350668 860466 923626 856923 375655 172415 188526 509223 072597 945052 093318 458723 452139 410933 931177 509797 325019 698545 979587 991668 215315 720401 050348 297242 659041 071247 829013 577984 290186 818586 380335 397802 455156 932840 375878 015432 217589 (238 digits), a[465] = 1
                                                                                      A[466]/B[466] = 100 792887 508539 780488 706792 856778 376814 496056 550413 267418 235944 331559 943598 666961 832113 394804 530357 832575 842453 908683 767255 649226 207764 485818 989681 611422 313683 385258 605250 012132 436242 503980 152897 991271 213886 822672 858310 653520 921657 991983 (237 digits)/9796 416077 354758 727105 283926 142065 130569 192530 341763 918572 287146 595101 330771 425304 150303 295521 969922 246095 594388 917483 684075 353940 637717 194394 888417 223493 716305 109875 041460 152513 934345 947532 060832 096383 487570 722741 358490 143534 845923 141938 (238 digits), a[466] = 3
                                                                                      A[467]/B[467] = 229 308596 378904 712688 085078 934802 965785 983175 764556 229288 401864 903112 259407 380254 209724 654223 048310 513819 064158 883092 324725 064182 345996 283954 374823 683964 262769 056455 399911 966164 792141 515671 407926 303010 720413 221584 217649 890783 778749 943692 (237 digits)/22287 310898 317369 804879 428319 207757 118061 760715 855943 025671 083516 262800 606594 943926 759330 043183 350778 423368 698575 159987 066696 687469 267102 604105 497235 497335 729852 878791 154168 134041 446676 185250 940250 573102 372943 900639 649820 662947 707278 501465 (239 digits), a[467] = 2
                                                                                      A[468]/B[468] = 330 101483 887444 493176 791871 791581 342600 479232 314969 496706 637809 234672 203006 047216 041838 049027 578668 346394 906612 791776 091980 713408 553760 769773 364505 295386 576452 441714 005161 978297 228384 019651 560824 294281 934300 044257 075960 544304 700407 935675 (237 digits)/32083 726975 672128 531984 712245 349822 248630 953246 197706 944243 370662 857901 937366 369230 909633 338705 320700 669464 292964 077470 750772 041409 904819 798500 385652 720829 446157 988666 195628 286555 381022 132783 001082 669485 860514 623381 008310 806482 553201 643403 (239 digits), a[468] = 1
                                                                                      A[469]/B[469] = 889 511564 153793 699041 668822 517965 650986 941640 394495 222701 677483 372456 665419 474686 293400 752278 205647 206608 877384 466644 508686 490999 453517 823501 103834 274737 415673 939883 410235 922759 248909 554974 529574 891574 589013 310098 369570 979393 179565 815042 (237 digits)/86454 764849 661626 868848 852809 907401 615323 667208 251356 914157 824841 978604 481327 682388 578596 720593 992179 762297 284503 314928 568240 770289 076742 201106 268540 938994 622168 856123 545424 707152 208720 450816 942415 912074 093973 147401 666442 275912 813681 788271 (239 digits), a[469] = 2
                                                                                      A[470]/B[470] = 1219 613048 041238 192218 460694 309546 993587 420872 709464 719408 315292 607128 868425 521902 335238 801305 784315 553003 783997 258420 600667 204408 007278 593274 468339 570123 992126 381597 415397 901056 477293 574626 090399 185856 523313 354355 445531 523697 879973 750717 (238 digits)/118538 491825 333755 400833 565055 257223 863954 620454 449063 858401 195504 836506 418694 051619 488230 059299 312880 431761 577467 392399 319012 811698 981561 999606 654193 659824 068326 844789 741052 993707 589742 583599 943498 581559 954487 770782 674753 082395 366883 431674 (240 digits), a[470] = 1
                                                                                      A[471]/B[471] = 5767 963756 318746 467915 511599 756153 625336 625131 232354 100334 938653 800972 139121 562295 634355 957501 342909 418624 013373 500326 911355 308631 482632 196598 977192 555233 384179 466273 071827 526985 158083 853478 891171 635000 682266 727520 151697 074184 699460 817910 (238 digits)/560608 732150 996648 472183 113030 936297 071142 149026 047612 347762 606861 324630 156103 888866 531516 957791 243701 489343 594372 884525 844292 017085 002990 199532 885315 578290 895476 235282 509636 681982 567690 785216 716410 238313 911924 230532 365454 605494 281215 514967 (240 digits), a[471] = 4
                                                                                      A[472]/B[472] = 47363 323098 591209 935542 553492 358775 996280 421922 568297 522087 824523 014905 981398 020267 410086 461316 527590 901995 890985 261035 891509 673459 868336 166066 285880 011991 065562 111781 990018 116937 741964 402457 219772 265861 981447 174516 659108 117175 475660 293997 (239 digits)/4 603408 349033 306943 178298 469302 747600 433091 812662 829962 640502 050395 433547 667525 162551 740365 721629 262492 346510 332450 468606 073348 948379 005483 595869 736718 286151 232136 727049 818146 449568 131268 865333 674780 488071 249881 615041 598389 926349 616607 551410 (241 digits), a[472] = 8
                                                                                      A[473]/B[473] = 195221 256150 683586 210085 725569 191257 610458 312821 505544 188686 236745 860596 064713 643365 274701 802767 453273 026607 577314 544470 477394 002470 955976 860864 120712 603197 646427 913401 031899 994736 125941 463307 770260 698448 608055 425586 788129 542886 602101 993898 (240 digits)/18 974242 128284 224421 185376 990241 926698 803509 399677 367462 909770 808443 058820 826204 539073 492979 844308 293670 875384 924174 758950 137687 810601 024924 583011 832188 722895 824023 143481 782222 480255 092766 246551 415532 190598 911450 690698 759014 310892 747645 720607 (242 digits), a[473] = 4
                                                                                      A[474]/B[474] = 242584 579249 274796 145628 279061 550033 606738 734744 073841 710774 061268 875502 046111 663632 684788 264083 980863 928603 468299 805506 368903 675930 824313 026930 406592 615188 711990 025183 021918 111673 867905 865764 990032 964310 589502 600103 447237 660062 077762 287895 (240 digits)/23 577650 477317 531364 363675 459544 674299 236601 212340 197425 550272 858838 492368 493729 701625 233345 565937 556163 221895 256625 227556 211036 758980 030408 178881 568907 009047 056159 870531 600368 929823 224035 111885 090312 678670 161332 305740 357404 237242 364253 272017 (242 digits), a[474] = 1
                                                                                      A[475]/B[475] = 437805 835399 958382 355714 004630 741291 217197 047565 579385 899460 298014 736098 110825 306997 959490 066851 434136 955211 045614 349976 846297 678401 780289 887794 527305 218386 358417 938584 053818 106409 993847 329072 760293 662759 197558 025690 235367 202948 679864 281793 (240 digits)/42 551892 605601 755785 549052 449786 600998 040110 612017 564888 460043 667281 551189 319934 240698 726325 410245 849834 097280 180799 986506 348724 569581 055332 761893 401095 731942 880183 014013 382591 410078 316801 358436 505844 869269 072782 996439 116418 548135 111898 992624 (242 digits), a[475] = 1
                                                                                      A[476]/B[476] = 680390 414649 233178 501342 283692 291324 823935 782309 653227 610234 359283 611600 156936 970630 644278 330935 415000 883814 513914 155483 215201 354332 604602 914724 933897 833575 070407 963767 075736 218083 861753 194837 750326 627069 787060 625793 682604 863010 757626 569688 (240 digits)/66 129543 082919 287149 912727 909331 275297 276711 824357 762314 010316 526120 043557 813663 942323 959670 976183 405997 319175 437425 214062 559761 328561 085740 940774 970002 740989 936342 884544 982960 339901 540836 470321 596157 547939 234115 302179 473822 785377 476152 264641 (242 digits), a[476] = 1
                                                                                      A[477]/B[477] = 1 118196 250049 191560 857056 288323 032616 041132 829875 232613 509694 657298 347698 267762 277628 603768 397786 849137 839025 559528 505460 061499 032734 384892 802519 461203 051961 428825 902351 129554 324493 855600 523910 510620 289828 984618 651483 917972 065959 437490 851481 (241 digits)/108 681435 688521 042935 461780 359117 876295 316822 436375 327202 470360 193401 594747 133598 183022 685996 386429 255831 416455 618225 200568 908485 898142 141073 702668 371098 472932 816525 898558 365551 749979 857637 828758 102002 417208 306898 298618 590241 333512 588051 257265 (243 digits), a[477] = 1
                                                                                      A[478]/B[478] = 1 798586 664698 424739 358398 572015 323940 865068 612184 885841 119929 016581 959298 424699 248259 248046 728722 264138 722840 073442 660943 276700 387066 989495 717244 395100 885536 499233 866118 205290 542577 717353 718748 260946 916898 771679 277277 600576 928970 195117 421169 (241 digits)/174 810978 771440 330085 374508 268449 151592 593534 260733 089516 480676 719521 638304 947262 125346 645667 362612 661828 735631 055650 414631 468247 226703 226814 643443 341101 213922 752868 783103 348512 089881 398474 299079 698159 965147 541013 600798 064064 118890 064203 521906 (243 digits), a[478] = 1
                                                                                      A[479]/B[479] = 8 312542 908842 890518 290650 576384 328379 501407 278614 775977 989410 723626 184891 966559 270665 595955 312675 905692 730385 853299 149233 168300 581002 342875 671497 041606 594107 425761 366823 950716 494804 725015 398903 554407 957424 071335 760594 320279 781840 217960 536157 (241 digits)/807 925350 774282 363276 959813 432914 482665 690959 479307 685268 393067 071488 147966 922646 684409 268665 836879 903146 358979 840826 859094 781474 804955 048332 276441 735503 328623 828001 030971 759600 109505 451535 025076 894642 277798 470952 701810 846497 809072 844865 344889 (243 digits), a[479] = 4
                                                                                      A[480]/B[480] = 10 111129 573541 315257 649049 148399 652320 366475 890799 661819 109339 740208 144190 391258 518924 844002 041398 169831 453225 926741 810176 445000 968069 332371 388741 436707 479643 924995 232942 156007 037382 442369 117651 815354 874322 843015 037871 920856 710810 413077 957326 (242 digits)/982 736329 545722 693362 334321 701363 634258 284493 740040 774784 873743 791009 786271 869908 809755 914333 199492 564975 094610 896477 273726 249722 031658 275146 919885 076604 542546 580869 814075 108112 199386 850009 324156 592802 242946 011966 302608 910561 927962 909068 866795 (243 digits), a[480] = 1
                                                                                      A[481]/B[481] = 18 423672 482384 205775 939699 724783 980699 867883 169414 437797 098750 463834 329082 357817 789590 439957 354074 075524 183611 780040 959409 613301 549071 675247 060238 478314 073751 350756 599766 106723 532187 167384 516555 369762 831746 914350 798466 241136 492650 631038 493483 (242 digits)/1790 661680 320005 056639 294135 134278 116923 975453 219348 460053 266810 862497 934238 792555 494165 182999 036372 468121 453590 737304 132821 031196 836613 323479 196326 812107 871170 408870 845046 867712 308892 301544 349233 487444 520744 482919 004419 757059 737035 753934 211684 (244 digits), a[481] = 1
                                                                                      A[482]/B[482] = 28 534802 055925 521033 588748 873183 633020 234359 060214 099616 208090 204042 473272 749076 308515 283959 395472 245355 636837 706782 769586 058302 517141 007618 448979 915021 553395 275751 832708 262730 569569 609753 634207 185117 706069 757365 836338 161993 203461 044116 450809 (242 digits)/2773 398009 865727 750001 628456 835641 751182 259946 959389 234838 140554 653507 720510 662464 303921 097332 235865 033096 548201 633781 406547 280918 868271 598626 116211 888712 413716 989740 659121 975824 508279 151553 673390 080246 763690 494885 307028 667621 664998 663003 078479 (244 digits), a[482] = 1
                                                                                      A[483]/B[483] = 46 958474 538309 726809 528448 597967 613720 102242 229628 537413 306840 667876 802355 106894 098105 723916 749546 320879 820449 486823 728995 671604 066212 682865 509218 393335 627146 626508 432474 369454 101756 777138 150762 554880 537816 671716 634804 403129 696111 675154 944292 (242 digits)/4564 059690 185732 806640 922591 969919 868106 235400 178737 694891 407365 516005 654749 455019 798086 280331 272237 501218 001792 371085 539368 312115 704884 922105 312538 700820 284887 398611 504168 843536 817171 453098 022623 567691 284434 977804 311448 424681 402034 416937 290163 (244 digits), a[483] = 1
                                                                                      A[484]/B[484] = 545 078021 977332 515938 401683 450827 383941 359023 586128 011162 583337 550687 299178 924911 387678 247043 640481 775033 661782 061843 788538 445947 245480 519139 050382 241713 452008 167344 589926 326725 688894 158273 292595 288803 622053 146248 819186 596419 860689 470820 838021 (243 digits)/52978 054601 908788 623051 776968 504760 300350 849348 925503 878643 621575 329569 922754 667682 082870 180976 230477 546494 567917 715722 339598 714191 622005 741784 554137 597735 547478 374467 204979 254729 497165 135631 922249 324850 892475 250732 732961 339117 087377 249313 270272 (245 digits), a[484] = 11
                                                                                      A[485]/B[485] = 33296 717815 155593 199052 031139 098438 034143 002680 983437 218330 890431 259802 052269 526488 746478 793578 818934 597933 189155 259294 829840 874386 040524 350347 582535 137856 199644 834528 417980 299721 124300 431808 999075 171901 483058 592894 605186 784741 198169 395226 063573 (245 digits)/3 236225 390406 621838 812799 317670 760298 189508 045684 634474 292152 323460 619770 942784 183626 853167 319881 331367 837386 644773 030148 254889 877804 647235 170963 114932 162688 681068 241111 007903 382036 144244 726645 279832 383595 725425 272501 022090 110823 732046 625046 776755 (247 digits), a[485] = 61
                                                                                      A[486]/B[486] = 33841 795837 132925 714990 432822 549265 418084 361704 569565 229493 473768 810489 351448 451400 134157 040622 459416 372966 850937 321138 618379 320333 286004 869486 632917 379569 651653 001873 007906 626446 813194 590082 291670 460705 105111 739143 424373 381161 058858 866046 901594 (245 digits)/3 289203 445008 530627 435851 094639 265058 489858 895033 559978 170795 945035 949340 865538 851308 936037 500857 561845 383881 212690 745870 594488 591996 269240 912747 669069 760424 228546 615578 212882 636765 641409 862277 202081 708446 617900 523233 755051 449940 819423 874360 047027 (247 digits), a[486] = 1
                                                                                      A[487]/B[487] = 67138 513652 288518 914042 463961 647703 452227 364385 553002 447824 364200 070291 403717 977888 880635 834201 278350 970900 040092 580433 448220 194719 326529 219834 215452 517425 851297 836401 425886 926167 937495 021891 290745 632606 588170 332038 029560 165902 257028 261272 965167 (245 digits)/6 525428 835415 152466 248650 412310 025356 679366 940718 194452 462948 268496 569111 808323 034935 789204 820738 893213 221267 857463 776018 849378 469800 916476 083710 784001 923112 909614 856689 220786 018801 785654 588922 481914 092042 343325 795734 777141 560764 551470 499406 823782 (247 digits), a[487] = 1
                                                                                      A[488]/B[488] = 168118 823141 709963 543075 360745 844672 322539 090475 675570 125142 202168 951072 158884 407177 895428 709025 016118 314766 931122 482005 514819 709771 939063 309155 063822 414421 354248 674675 859680 478782 688184 633864 873161 725918 281452 403219 483493 712965 572915 388592 831928 (246 digits)/16 340061 115838 835559 933151 919259 315771 848592 776469 948883 096692 482029 087564 482184 921180 514447 142335 348271 826416 927618 297908 293245 531598 102193 080169 237073 606650 047776 328956 654454 674369 212719 040122 165909 892531 304552 114703 309334 571469 922364 873173 694591 (248 digits), a[488] = 2
                                                                                      A[489]/B[489] = 235257 336793 998482 457117 824707 492375 774766 454861 228572 572966 566369 021363 562602 385066 776064 543226 294469 285666 971215 062438 963039 904491 265592 528989 279274 931847 205546 511077 285567 404950 625679 655756 163907 358524 869622 735257 513053 878867 829943 649865 797095 (246 digits)/22 865489 951253 988026 181802 331569 341128 527959 717188 143335 559640 750525 656676 290507 956116 303651 963074 241485 047684 785082 073927 142624 001399 018669 163880 021075 529762 957391 185645 875240 693170 998373 629044 647823 984573 647877 910438 086476 132234 473835 372580 518373 (248 digits), a[489] = 1
                                                                                      A[490]/B[490] = 403376 159935 708446 000193 185453 337048 097305 545336 904142 698108 768537 972435 721486 792244 671493 252251 310587 600433 902337 544444 477859 614263 204655 838144 343097 346268 559795 185753 145247 883733 313864 289621 037069 084443 151075 138476 996547 591833 402859 038458 629023 (246 digits)/39 205551 067092 823586 114954 250828 656900 376552 493658 092218 656333 232554 744240 772692 877296 818099 105409 589756 874101 712700 371835 435869 532997 120862 244049 258149 136413 005167 514602 529695 367540 211092 669166 813733 877104 952430 025141 395810 703704 396200 245754 212964 (248 digits), a[490] = 1
                                                                                      A[491]/B[491] = 15 563551 414350 919430 464458 871934 300203 472377 177663 585995 101099 770811 973920 979100 490364 292808 128776 096798 102155 260041 751329 121705 246493 042514 378474 316974 090052 477763 569696 804986 986816 552522 661355 572532 567364 610477 997383 381862 368537 138587 111293 699969 (248 digits)/1512 676430 500781 284298 550063 863058 303342 836954 476195 647644 500303 587605 937825 652837 293395 391417 968638 652246 263549 867696 203673 705666 255289 611434 437751 830742 713457 153756 740542 003664 659699 019895 057383 569711 314561 840218 865811 127282 873001 529444 711240 611005 (250 digits), a[491] = 38
                                                                                      A[492]/B[492] = 15 966927 574286 627876 464652 057387 637251 569682 723000 490137 799208 539349 946356 700587 282608 964301 381027 407385 702589 162379 295773 599564 860756 247170 216618 660071 436321 037558 755449 950234 870549 866386 950976 609601 651807 761553 135860 378409 960370 541446 149752 328992 (248 digits)/1551 881981 567874 107884 665018 113886 960243 213506 969853 739863 156636 820160 682066 425530 170692 209517 074048 242003 137651 580396 575509 141535 788286 732296 681801 088891 849870 158924 255144 533360 027239 230987 726550 383445 191666 792648 890952 523093 576705 925644 956994 823969 (250 digits), a[492] = 1
                                                                                      A[493]/B[493] = 31 530478 988637 547306 929110 929321 937455 042059 900664 076132 900308 310161 920277 679687 772973 257109 509803 504183 804744 422421 047102 721270 107249 289684 595092 977045 526373 515322 325146 755221 857366 418909 612332 182134 219172 372031 133243 760272 328907 680033 261046 028961 (248 digits)/3064 558412 068655 392183 215081 976945 263586 050461 446049 387507 656940 407766 619892 078367 464087 600935 042686 894249 401201 448092 779182 847202 043576 343731 119552 919634 563327 312680 995686 537024 686938 250882 783933 953156 506228 632867 756763 650376 449707 455089 668235 434974 (250 digits), a[493] = 1
                                                                                      A[494]/B[494] = 79 027885 551561 722490 322873 916031 512161 653802 524328 642403 599825 159673 786912 059962 828555 478520 400634 415753 312078 007221 389979 042105 075254 826539 406804 614162 489068 068203 405743 460678 585282 704206 175640 973870 090152 505615 402347 898954 618185 901512 671844 386914 (248 digits)/7680 998805 705184 892251 095182 067777 487415 314429 861952 514878 470517 635693 921850 582265 098867 411387 159422 030501 940054 476582 133874 835939 875439 419758 920906 928160 976524 784286 246517 607409 401115 732753 294418 289758 204124 058384 404479 823846 476120 835824 293465 693917 (250 digits), a[494] = 2
                                                                                      A[495]/B[495] = 110 558364 540199 269797 251984 845353 449616 695862 424992 718536 500133 469835 707189 739650 601528 735629 910437 919937 116822 429642 437081 763375 182504 116224 001897 591208 015441 583525 730890 215900 442649 123115 787973 156004 309324 877646 535591 659226 947093 581545 932890 415875 (249 digits)/10745 557217 773840 284434 310264 044722 751001 364891 308001 902386 127458 043460 541742 660632 562955 012322 202108 924751 341255 924674 913057 683141 919015 763490 040459 847795 539852 096967 242204 144434 088053 983636 078352 242914 710352 691252 161243 474222 925828 290913 961701 128891 (251 digits), a[495] = 1
                                                                                      A[496]/B[496] = 521 261343 712358 801679 330813 297445 310628 437252 224299 516549 600359 039016 615671 018565 234670 421040 042386 095501 779367 725791 138306 095605 805271 291435 414394 978994 550834 402306 329304 324280 355879 196669 327533 597887 327452 016201 544714 535862 406560 227696 403406 050414 (249 digits)/50663 227676 800546 029988 336238 246668 491420 773995 093960 124422 980349 809536 088821 224795 350687 460675 967857 729507 305078 175281 786105 568507 551502 473719 082746 319343 135933 172155 215334 185145 753331 667297 607827 261417 045534 823393 049453 720738 179433 999480 140270 209481 (251 digits), a[496] = 4
                                                                                      A[497]/B[497] = 3238 126426 814352 079873 236864 630025 313387 319375 770789 817834 102287 703935 401215 851042 009551 261870 164754 492947 793028 784389 266918 337010 014131 864836 488267 465175 320447 997363 706716 161582 577924 303131 753174 743328 274036 974855 803878 874401 386454 947724 353326 718359 (250 digits)/314724 923278 577116 464364 327693 524733 699526 008861 871762 648924 009556 900677 074670 009404 667079 776378 009255 301795 171724 976365 629691 094187 228030 605804 536937 763854 355451 129898 534209 255308 608043 987421 725315 811416 983561 631610 457965 798652 002432 287794 803322 385777 (252 digits), a[497] = 6
                                                                                      A[498]/B[498] = 10235 640624 155415 041299 041407 187521 250790 395379 536668 970051 907222 150822 819318 571691 263324 206650 536649 574345 158454 078958 939061 106635 847666 885944 879197 374520 512178 394397 449452 809028 089652 106064 587057 827872 149562 940768 956351 159066 565925 070869 463386 205491 (251 digits)/994837 997512 531895 423081 319318 820869 589998 800580 709248 071195 009020 511567 312831 253009 351926 789809 995623 634892 820253 104378 675178 851069 235594 291132 693559 610906 202286 561850 817961 951071 577463 629562 783774 695667 996219 718224 423351 116694 186730 862864 550237 366812 (252 digits), a[498] = 3
                                                                                      A[499]/B[499] = 13473 767050 969767 121172 278271 817546 564177 714755 307458 787886 009509 854758 220534 422733 272875 468520 701404 067292 951482 863348 205979 443645 861798 750781 367464 839695 832626 391761 156168 970610 667576 409196 340232 571200 423599 915624 760230 033467 952380 018593 816712 923850 (251 digits)/1 309562 920791 109011 887445 647012 345603 289524 809442 581010 720119 018577 412244 387501 262414 019006 566188 004878 936687 991978 080744 304869 945256 463624 896937 230497 374760 557737 691749 352171 206380 185507 616984 509090 507084 979781 349834 881316 915346 189163 150659 353559 752589 (253 digits), a[499] = 1
                                                                                      A[500]/B[500] = 23709 407675 125182 162471 319679 005067 814968 110134 844127 757937 916732 005581 039852 994424 536199 675171 238053 641638 109936 942307 145040 550281 709465 636726 246662 214216 344804 786158 605621 779638 757228 515260 927290 399072 573162 856393 716581 192534 518305 089463 280099 129341 (251 digits)/2 304400 918303 640907 310526 966331 166472 879523 610023 290258 791314 027597 923811 700332 515423 370933 355998 000502 571580 812231 185122 980048 796325 699219 188069 924056 985666 760024 253600 170133 157451 762971 246547 292865 202752 976001 068059 304668 032040 375894 013523 903797 119401 (253 digits), a[500] = 1
                                                                                      A[501]/B[501] = 108311 397751 470495 771057 556987 837817 824050 155294 683969 819637 676437 877082 379946 400431 417674 169205 653618 633845 391230 632576 786141 644772 699661 297686 354113 696561 211845 536395 578656 089165 696490 470240 049394 167490 716251 341199 626554 803606 025600 376446 937109 441214 (252 digits)/10 527166 594005 672641 129553 512337 011494 807619 249535 742045 885375 128969 107491 188831 324107 502739 990180 006889 223011 240902 821236 225065 130559 260501 649216 926725 317427 597834 706150 032703 836187 237392 603173 680551 318096 883785 622072 099989 043507 692739 204754 968748 230193 (254 digits), a[501] = 4
                                                                                      A[502]/B[502] = 456954 998681 007165 246701 547630 356339 111168 731313 580007 036488 622483 513910 559638 596150 206896 351993 852528 177019 674859 472614 289607 129372 508110 827471 663117 000461 192186 931740 920246 136301 543190 396221 124867 069035 438168 221192 222800 406958 620706 595251 028536 894197 (252 digits)/44 413067 294326 331471 828741 015679 212452 110000 608166 258442 332814 543474 353776 455657 811853 381893 316718 028059 463625 775842 470067 880309 318562 741225 784937 630958 255377 151363 078200 300948 502200 712541 659242 015070 475140 511143 556347 704624 206071 146850 832543 778790 040173 (254 digits), a[502] = 4
                                                                                      A[503]/B[503] = 565266 396432 477661 017759 104618 194156 935218 886608 263976 856126 298921 390992 939584 996581 624570 521199 506146 810865 066090 105191 075748 774145 207772 125158 017230 697022 404032 468136 498902 225467 239680 866461 174261 236526 154419 562391 849355 210564 646306 971697 965646 335411 (252 digits)/54 940233 888332 004112 958294 528016 223946 917619 857702 000488 218189 672443 461267 644489 135960 884633 306898 034948 686637 016745 291304 105374 449122 001727 434154 557683 572804 749197 784350 333652 338387 949934 262415 695621 793237 394929 178419 804613 249578 839590 037298 747538 270366 (254 digits), a[503] = 1
                                                                                      A[504]/B[504] = 1 022221 395113 484826 264460 652248 550496 046387 617921 843983 892614 921404 904903 499223 592731 831466 873193 358674 987884 740949 577805 365355 903517 715882 952629 680347 697483 596219 399877 419148 361768 782871 262682 299128 305561 592587 783584 072155 617523 267013 566948 994183 229608 (253 digits)/99 353301 182658 335584 787035 543695 436399 027620 465868 258930 551004 215917 815044 100146 947814 266526 623616 063008 150262 792587 761371 985683 767684 742953 219092 188641 828181 900560 862550 634600 840588 662475 921657 710692 268377 906072 734767 509237 455649 986440 869842 526328 310539 (254 digits), a[504] = 1
                                                                                      A[505]/B[505] = 4 654151 976886 416966 075601 713612 396141 120769 358295 639912 426585 984541 010606 936479 367508 950438 013972 940846 762404 029888 416412 537172 388216 071303 935676 738621 486956 788910 067646 175495 672542 371165 917190 370774 458772 524770 696728 137977 680657 714361 239493 942379 253843 (253 digits)/452 353438 618965 346452 106436 702797 969543 028101 721175 036210 422206 536114 721444 045076 927217 950739 801362 286981 287688 187096 336792 048109 519860 973540 310523 312250 885532 351441 234552 872055 700742 599837 949046 538390 866749 019220 117489 841563 072178 785353 516668 852851 512522 (255 digits), a[505] = 4
                                                                                      A[506]/B[506] = 24 292981 279545 569656 642469 220310 531201 650234 409400 043546 025544 844109 957938 181620 430276 583656 943058 062908 799904 890391 659868 051217 844598 072402 631013 373455 132267 540769 738108 296626 724480 638700 848634 153000 599424 216441 267224 762044 020811 838819 764418 706079 498823 (254 digits)/2361 120494 277485 067845 319219 057685 284114 168129 071743 439982 662036 896491 422264 325531 583904 020225 630427 497914 588703 728069 445332 226231 366989 610654 771708 749896 255843 657767 035314 994879 344301 661665 666890 402646 602123 002173 322216 717052 816543 913208 453186 790585 873149 (256 digits), a[506] = 5
                                                                                      A[507]/B[507] = 28 947133 256431 986622 718070 933922 927342 771003 767695 683458 452130 828650 968545 118099 797785 534094 957031 003755 562308 920280 076280 588390 232814 143706 566690 112076 619224 329679 805754 472122 397023 009866 765824 523775 058196 741211 963952 900021 701469 553181 003912 648458 752666 (254 digits)/2813 473932 896450 414297 425655 760483 253657 196230 792918 476193 084243 432606 143708 370608 511121 970965 431789 784895 876391 915165 782124 274340 886850 584195 082232 062147 141376 009208 269867 866935 045044 261503 615936 941037 468872 021393 439706 558615 888722 698561 969855 643437 385671 (256 digits), a[507] = 1
                                                                                      A[508]/B[508] = 82 187247 792409 542902 078611 088156 385887 192241 944791 410462 929806 501411 895028 417820 025847 651846 857120 070419 924522 730951 812429 227998 310226 359815 764393 597608 370716 200129 349617 240871 518526 658434 380283 200550 715817 698865 195130 562087 423750 945181 772244 002997 004155 (254 digits)/7988 068360 070385 896440 170530 578651 791428 560590 657580 392368 830523 761703 709681 066748 606147 962156 494007 067706 341487 558401 009580 774913 140690 779044 936172 874190 538595 676183 575050 728749 434390 184672 898764 284721 539867 044960 201629 834284 593989 310332 392898 077460 644491 (256 digits), a[508] = 2
                                                                                      A[509]/B[509] = 275 508876 633660 615328 953904 198392 085004 347729 602069 914847 241550 332886 653630 371559 875328 489635 528391 215015 335877 113135 513568 272385 163493 223153 859870 904901 731372 930067 854606 194736 952602 985169 906674 125427 205649 837807 549344 586283 972722 388726 320644 657449 765131 (255 digits)/26777 679013 107608 103617 937247 496438 627942 878002 765659 653299 575814 717717 272751 570854 329565 857434 913810 988014 900854 590368 810866 599080 308922 921329 890750 684718 757163 037758 995020 053183 348214 815522 312229 795202 088473 156274 044596 061469 670690 629559 148549 875819 319144 (257 digits), a[509] = 3
                                                                                      A[510]/B[510] = 633 205001 059730 773559 986419 484940 555895 887701 148931 240157 412907 167185 202289 160939 776504 631117 913902 500450 596276 957222 839565 772768 637212 806123 484135 407411 833462 060265 058829 630345 423732 628774 193631 451405 127117 374480 293819 734655 369195 722634 413533 317896 534417 (255 digits)/61543 426386 285602 103676 045025 571529 047314 316596 188899 698967 982153 197138 255184 208457 265279 677026 321629 043736 143196 739138 631313 973073 758536 621704 717674 243628 052921 751701 565090 835116 130819 815717 523223 875125 716813 357508 290821 957223 935370 569450 689997 829099 282779 (257 digits), a[510] = 2
                                                                                      A[511]/B[511] = 7873 968889 350429 898048 790938 017678 755755 000143 389244 796736 196436 339109 081100 302837 193384 063050 495221 220422 491200 599809 588357 545608 810046 896635 669495 793843 732917 653248 560561 758882 037394 530460 230251 542288 731058 331571 075181 402148 403071 060339 283044 472208 178135 (256 digits)/765298 795648 534833 347730 477554 354787 195714 677157 032456 040915 361653 083376 334962 072341 512921 981750 773359 512848 619215 460032 386634 275965 411362 381786 502841 608255 392224 058177 776110 074576 918052 604132 590916 296710 690233 446373 534459 548156 895137 462967 428523 825010 712492 (258 digits), a[511] = 12
                                                                                      A[512]/B[512] = 16381 142779 760590 569657 568295 520298 067405 887987 927420 833629 805779 845403 364489 766614 163272 757218 904344 941295 578678 156842 016280 863986 257306 599394 823126 995099 299297 366762 179953 148109 498521 689694 654134 535982 589234 037622 444182 538952 175337 843312 979622 262312 890687 (257 digits)/1 592141 017683 355268 799137 000134 281103 438743 670910 253811 780798 705459 363890 925108 353140 291123 640527 868348 069433 381627 659203 404582 525004 581261 385277 723357 460138 837369 868057 117310 984269 966925 023982 705056 468547 097280 250255 359741 053537 725645 495385 547045 479120 707763 (259 digits), a[512] = 2
                                                                                      A[513]/B[513] = 24255 111669 111020 467706 359233 537976 823160 888131 316665 630366 002216 184512 445590 069451 356656 820269 399566 161718 069878 756651 604638 409595 067353 496030 492622 788943 032215 020010 740514 906991 535916 220154 884386 078271 320292 369193 519363 941100 578408 903652 262666 734521 068822 (257 digits)/2 357439 813331 890102 146867 477688 635890 634458 348067 286267 821714 067112 447267 260070 425481 804045 622278 641707 582282 000843 119235 791216 800969 992623 767064 226199 068394 229593 926234 893421 058846 884977 628115 295972 765257 787513 696628 894200 601694 620782 958352 975569 304131 420255 (259 digits), a[513] = 1
                                                                                      A[514]/B[514] = 40636 254448 871611 037363 927529 058274 890566 776119 244086 463995 807996 029915 810079 836065 519929 577488 303911 103013 648556 913493 620919 273581 324660 095425 315749 784042 331512 386772 920468 055101 034437 909849 538520 614253 909526 406815 963546 480052 753746 746965 242288 996833 959509 (257 digits)/3 949580 831015 245370 946004 477822 916994 073202 018977 540079 602512 772571 811158 185178 778622 095169 262806 510055 651715 382470 778439 195799 325974 573885 152341 949556 528533 066963 794292 010732 043116 851902 652098 001029 233804 884793 946884 253941 655232 346428 453738 522614 783252 128018 (259 digits), a[514] = 1
                                                                                      A[515]/B[515] = 146163 875015 725853 579798 141820 712801 494861 216489 048925 022353 426204 274259 875829 577647 916445 552734 311299 470759 015549 497132 467396 230339 041333 782306 439872 141070 026752 180329 501919 072294 639229 949703 499947 921033 048871 589641 410003 381258 839649 144547 989533 725022 947349 (258 digits)/14 206182 306377 626214 984880 911157 386872 854064 404999 906506 629252 384827 880741 815606 761348 089553 410698 171874 537428 148255 454553 378614 778893 714279 224090 074868 653993 430485 309110 925617 188197 440685 584409 299060 466672 441895 537281 656025 567391 660068 319568 543413 653887 804309 (260 digits), a[515] = 3
                                                                                      A[516]/B[516] = 186800 129464 597464 617162 069349 771076 385427 992608 293011 486349 234200 304175 685909 413713 436375 130222 615210 573772 664106 410626 088315 503920 365993 877731 755621 925112 358264 567102 422387 127395 673667 859553 038468 535286 958397 996457 373549 861311 593395 891513 231822 721856 906858 (258 digits)/18 155763 137392 871585 930885 388980 303866 927266 423977 446586 231765 157399 691900 000785 539970 184722 673504 681930 189143 530726 232992 574414 104868 288164 376432 024425 182526 497449 103402 936349 231314 292588 236507 300089 700477 326689 484165 909967 222624 006496 773307 066028 437139 932327 (260 digits), a[516] = 1
                                                                                      A[517]/B[517] = 332964 004480 323318 196960 211170 483877 880289 209097 341936 508702 660404 578435 561738 991361 352820 682956 926510 044531 679655 907758 555711 734259 407327 660038 195494 066182 385016 747431 924306 199690 312897 809256 538416 456320 007269 586098 783553 242570 433045 036061 221356 446879 854207 (258 digits)/32 361945 443770 497800 915766 300137 690739 781330 828977 353092 861017 542227 572641 816392 301318 274276 084202 853804 726571 678981 687545 953028 883762 002443 600522 099293 836519 927934 412513 861966 419511 733273 820916 599150 167149 768585 021447 565992 790015 666565 092875 609442 091027 736636 (260 digits), a[517] = 1
                                                                                      A[518]/B[518] = 7 179044 223551 387146 753326 503929 932511 871501 383652 473678 169105 102696 451322 482428 232301 845609 472318 071921 508937 936880 473555 758261 923367 919874 738533 860997 314942 443616 263172 832817 320892 244521 853940 345214 118007 111059 304531 828167 955290 687341 648798 880308 106333 845205 (259 digits)/697 756617 456573 325405 161977 691871 809402 335213 832501 861536 313133 544178 717378 145023 867653 944520 441764 611829 447148 789341 671457 588020 663870 339479 987396 109595 749444 984071 766194 037644 041060 691338 475755 882243 210622 466974 934564 795815 812953 004363 723694 864312 348722 401683 (261 digits), a[518] = 21
                                                                                      A[519]/B[519] = 7 512008 228031 710464 950286 715100 416389 751790 592749 815614 677807 763101 029758 044167 223663 198430 155274 998431 553469 616536 381314 313973 657627 327202 398572 056491 381124 828633 010604 757123 520582 557419 663196 883630 574327 118328 890630 611721 197861 120386 684860 101664 553213 699412 (259 digits)/730 118562 900343 823206 077743 992009 500142 116544 661479 214629 174151 086406 290019 961416 168972 218796 525967 465634 173720 468323 359003 541049 547632 341923 587918 208889 585964 912006 178707 899610 460572 424612 296672 481393 377772 235559 956012 361808 602968 670928 816570 473754 439750 138319 (261 digits), a[519] = 1
                                                                                      A[520]/B[520] = 292 635356 888756 384814 864221 677745 755322 439543 908145 467035 925800 100535 582128 160782 731503 385955 372768 012320 540783 365262 963499 689260 913206 353565 884272 007669 797685 931670 666153 603511 103029 426469 055421 923175 942437 607557 148495 073573 474013 262035 673482 743561 128454 422861 (261 digits)/28442 262007 669638 607236 116249 388232 814802 763910 968712 017444 930874 827617 738136 678838 288598 258788 428528 305928 048526 585629 313592 147903 473899 332576 328288 047400 016111 640306 557094 222841 542812 826605 749310 175191 565967 418253 263034 544542 725762 499658 753372 866981 059227 657805 (263 digits), a[520] = 38
                                                                                      A[521]/B[521] = 592 782722 005544 480094 678730 070591 927034 630878 409040 749686 529407 964172 194014 365732 686669 970340 900811 023072 635036 347062 308313 692495 484040 034334 167116 071830 976496 691974 342911 964145 726641 410357 774040 729982 459202 333443 187620 758868 145887 644458 031825 588786 810122 545134 (261 digits)/57614 642578 239621 037678 310242 768475 129747 644366 598903 249519 035900 741641 766293 319092 746168 736373 383024 077490 270773 639581 986187 836856 495431 007076 244494 303689 618188 192619 292896 345293 546198 077823 795292 831776 509707 072066 482081 450894 054493 670246 323316 207716 558205 453929 (263 digits), a[521] = 2
                                                                                      A[522]/B[522] = 885 418078 894300 864909 542951 748337 682357 070422 317186 216722 455208 064707 776142 526515 418173 356296 273579 035393 175819 712325 271813 381756 397246 387900 051388 079500 774182 623645 009065 567656 829670 836826 829462 653158 401639 941000 336115 832441 619900 906493 705308 332347 938576 967995 (261 digits)/86056 904585 909259 644914 426492 156707 944550 408277 567615 266963 966775 569259 504429 997931 034766 995161 811552 383418 319300 225211 299779 984759 969330 339652 572782 351089 634299 832925 849990 568135 089010 904429 544603 006968 075674 490319 745115 995436 780256 169905 076689 074697 617433 111734 (263 digits), a[522] = 1
                                                                                      A[523]/B[523] = 5019 873116 477048 804642 393488 812280 338819 982989 994971 833298 805448 287711 074726 998309 777536 751822 268706 200038 514134 908688 667380 601277 470271 973834 424056 469334 847409 810199 388239 802429 874995 594491 921353 995774 467402 038444 868199 921076 245392 176926 558367 250526 503007 385109 (262 digits)/487899 165507 785919 262250 442703 552014 852499 685754 436979 584338 869778 587939 288443 308747 920003 712182 440785 994581 867274 765638 485087 760656 342082 705339 108406 059137 789687 357248 542849 185968 991252 599971 518307 866616 888079 523665 207661 428077 955774 519771 706761 581204 645371 012599 (264 digits), a[523] = 5
                                                                                      A[524]/B[524] = 51084 149243 664788 911333 477839 871141 070556 900322 266904 549710 509690 941818 523412 509613 193540 874518 960641 035778 317168 799211 945619 394531 099966 126244 291952 772849 248280 725638 891463 591955 579626 781746 043002 610903 075660 325449 018115 043204 073822 675759 288980 837612 968650 819085 (263 digits)/4 965048 559663 768452 267418 853527 676856 469547 265821 937411 110352 664561 448652 388863 085410 234804 116986 219412 329236 992047 881596 150657 591323 390157 393043 656842 942467 531173 405411 278482 427825 001536 904144 727681 673136 956469 726971 821730 276216 338001 367622 144304 886744 071143 237724 (265 digits), a[524] = 10
                                                                                      A[525]/B[525] = 56104 022360 141837 715975 871328 683421 409376 883312 261876 383009 315139 229529 598139 507922 971077 626341 229347 235816 831303 707900 612999 995808 570238 100078 716009 242184 095690 535838 279703 394385 454622 376237 964356 606677 543062 363893 886314 964280 319214 852685 847348 088139 471658 204194 (263 digits)/5 452947 725171 554371 529669 296231 228871 322046 951576 374390 694691 534340 036591 677306 394158 154807 829168 660198 323818 859322 647234 635745 351979 732240 098382 765249 001605 320860 762659 821331 613793 992789 504116 245989 539753 844549 250637 029391 704294 293775 887393 851066 467948 716514 250323 (265 digits), a[525] = 1
                                                                                      A[526]/B[526] = 163292 193963 948464 343285 220497 237983 889310 666946 790657 315729 139969 400877 719691 525459 135696 127201 419335 507411 979776 215013 171619 386148 240442 326401 723971 257217 439661 797315 450870 380726 488871 534221 971715 824258 161785 053236 790744 971764 712252 381130 983677 013891 911967 227473 (264 digits)/15 870944 010006 877195 326757 445990 134599 113641 168974 686192 499735 733241 521835 743475 873726 544419 775323 539808 976874 710693 176065 422148 295282 854637 589809 187340 945678 172894 930730 921145 655412 987115 912377 219660 752644 645568 228245 880513 684804 925553 142409 846437 822641 504171 738370 (266 digits), a[526] = 2
                                                                                      A[527]/B[527] = 1 852318 155963 574945 492113 296798 301244 191794 219726 959106 856029 854802 639184 514746 287973 463735 025556 842037 817348 608842 073045 500813 243439 215103 690497 679693 071575 931970 306308 239277 582376 832209 252679 653230 673517 322697 949498 584509 653692 153991 045126 667795 240950 503297 706397 (265 digits)/180 033331 835247 203520 124001 202122 709461 572099 810297 922508 191784 599996 776784 855541 005150 143425 357727 598097 069440 676947 583954 279376 600091 133253 586283 825999 404065 222705 000699 953933 823336 851064 540265 662257 818844 945799 761341 715042 237148 474860 453902 161882 517005 262403 372393 (267 digits), a[527] = 11
                                                                                      A[528]/B[528] = 2 015610 349927 523409 835398 517295 539228 081104 886673 749764 171758 994772 040062 234437 813432 599431 152758 261373 324760 588618 288058 672432 629587 455546 016899 403664 328793 371632 103623 690147 963103 321080 786901 624946 497775 484483 002735 375254 625456 866243 426257 651472 254842 415264 933870 (265 digits)/195 904275 845254 080715 450758 648112 844060 685740 979272 608700 691520 333238 298620 599016 878876 687845 133051 137906 046315 387640 760019 701524 895373 987891 176093 013340 349743 395599 931430 875079 478749 838180 452642 881918 571489 591367 989587 595555 921953 400413 596312 008320 339646 766575 110763 (267 digits), a[528] = 1
                                                                                      A[529]/B[529] = 7 899149 205746 145174 998308 848684 918928 435108 879748 208399 371306 839118 759371 218059 728271 262028 483831 626157 791630 374696 937221 518111 132201 581741 741195 890686 057956 046866 617179 309721 471686 795451 613384 528070 166843 776146 957704 710273 530062 752721 323899 622212 005477 749092 508007 (265 digits)/767 746159 371009 445666 476277 146461 241643 629322 748115 748610 266345 599711 672646 652591 641780 206960 756881 011815 208386 839869 864013 383951 286213 096927 114562 866020 453295 409504 794992 579172 259586 365605 898194 308013 533313 719903 730104 501710 003008 676101 242838 186843 535945 562128 704682 (267 digits), a[529] = 3
                                                                                      A[530]/B[530] = 57 309654 790150 539634 823560 458089 971727 126867 044911 208559 770906 868603 355660 760855 911331 433630 539579 644477 866173 211496 848609 299210 554998 527738 205270 638466 734485 699698 423878 858198 264910 889242 080593 321437 665681 917511 706668 347169 335896 135292 693555 006956 293186 658912 489919 (266 digits)/5570 127391 442320 200380 784698 673341 535566 091000 216082 848972 555939 531220 007147 167158 371338 136570 431218 220612 505023 266729 808113 389183 898865 666380 978033 075483 522811 262133 496378 929285 295854 397421 740003 038013 304685 630694 100319 107525 943014 133122 296179 316225 091265 701476 043537 (268 digits), a[530] = 7
                                                                                      A[531]/B[531] = 237 137768 366348 303714 292550 681044 805836 942577 059393 042638 454934 313532 182014 261483 373596 996550 642150 204069 256323 220684 331658 714953 352195 692694 562278 444552 995898 845660 312694 742514 531330 352419 935757 813820 829571 446193 784378 098950 873647 293892 098119 650037 178224 384742 467683 (267 digits)/23048 255725 140290 247189 615071 839827 383907 993323 612447 144500 490103 724591 701235 321225 127132 753242 481753 894265 228479 906789 096466 940686 881675 762451 026695 167954 544540 458038 780508 296313 443003 955292 858206 460066 752056 242680 131380 931813 775065 208590 427555 451743 901008 368032 878830 (269 digits), a[531] = 4
                                                                                      A[532]/B[532] = 294 447423 156498 843349 116111 139134 777564 069444 104304 251198 225841 182135 537675 022339 284928 430181 181729 848547 122496 432181 180268 014163 907194 220432 767549 083019 730384 545358 736573 600712 796241 241662 016351 135258 495253 363705 491046 446120 209543 429184 791674 656993 471411 043654 957602 (267 digits)/28618 383116 582610 447570 399770 513168 919474 084323 828529 993473 046043 255811 708382 488383 498470 889812 912972 114877 733503 173518 904580 329870 780541 428832 004728 243438 067351 720172 276887 225598 738858 352714 598209 498080 056741 873374 231700 039339 718079 341712 723734 767968 992274 069508 922367 (269 digits), a[532] = 1
                                                                                      A[533]/B[533] = 4948 296538 870329 797300 150328 907201 246862 053682 728261 061810 068393 227700 784814 618911 932451 879449 549827 780823 216266 135583 215946 941575 867303 219618 843063 772868 682051 571400 097872 353919 271190 219012 197375 977956 753625 265481 641121 236874 226342 160848 764914 161932 720801 083221 789315 (268 digits)/480942 385590 462057 408316 011400 050530 095493 342504 868927 040069 226795 817579 035355 135361 102666 990249 089307 732308 964530 683091 569752 218619 370338 623763 102347 062963 622167 980795 210703 905893 264737 598726 429558 429347 659926 216667 838581 561249 264334 675994 007311 739247 777393 480175 636702 (270 digits), a[533] = 16
                                                                                      A[534]/B[534] = 5242 743962 026828 640649 266440 046336 024426 123126 832565 313008 294234 409836 322489 641251 217380 309630 731557 629370 338762 567764 396214 955739 774497 440051 610612 855888 412436 116758 834445 954632 067431 460674 213727 113215 248878 629187 132167 682994 435885 590033 556588 818926 192212 126876 746917 (268 digits)/509560 768707 044667 855886 411170 563699 014967 426828 697457 033542 272839 073390 743737 623744 601137 880062 002279 847186 698033 856610 474332 548490 150880 052595 107075 306401 689519 700967 487591 131492 003595 951441 027767 927427 716668 090042 070281 600588 982414 017706 731046 507216 769667 549684 559069 (270 digits), a[534] = 1
                                                                                      A[535]/B[535] = 10191 040500 897158 437949 416768 953537 271288 176809 560826 374818 362627 637537 107304 260163 149832 189080 281385 410193 555028 703347 612161 897315 641800 659670 453676 628757 094487 688158 932318 308551 338621 679686 411103 091172 002503 894668 773288 919868 662227 750882 321502 980858 913013 210098 536232 (269 digits)/990503 154297 506725 264202 422570 614229 110460 769333 566384 073611 499634 890969 779092 759105 703804 870311 091587 579495 662564 539702 044084 767109 521218 676358 209422 369365 311687 681762 698295 037385 268333 550167 457326 356775 376594 306709 908863 161838 246748 693700 738358 246464 547061 029860 195771 (270 digits), a[535] = 1
                                                                                      A[536]/B[536] = 76580 027468 306937 706295 183822 721096 923443 360793 758349 936736 832627 872596 073619 462393 266205 633192 701255 500725 223963 491197 681348 236949 267102 057744 786349 257188 073849 933871 360674 114491 437783 218479 091448 751419 266405 891868 545190 122075 071479 846209 807109 684938 583304 597566 500541 (269 digits)/7 443082 848789 591744 705303 369164 863302 788192 812163 662145 548822 770283 310179 197386 937484 527771 972239 643392 903656 335985 634524 782925 918256 799410 787102 573031 891958 871333 473306 375656 393188 881930 802613 229052 424855 352828 237011 432323 733456 709654 873611 899554 232468 599094 758705 929466 (271 digits), a[536] = 7
                                                                                      A[537]/B[537] = 469671 205310 738784 675720 519705 280118 811948 341572 110925 995239 358394 873113 549021 034522 747065 988236 488918 414544 898809 650533 700251 319011 244413 006139 171772 171885 537587 291387 096362 995499 965320 990560 959795 599687 600939 245880 044429 652319 091106 828141 164161 090490 412840 795497 539478 (270 digits)/45 649000 247035 057193 496022 637559 794045 839617 642315 539257 366548 121334 752044 963414 384012 870436 703748 951945 001433 678478 346850 741640 276650 317683 398973 647613 721118 539688 521600 952233 396518 559918 365846 831640 905907 493563 728778 502805 562578 504677 935372 135683 641276 141629 582095 772567 (272 digits), a[537] = 6
                                                                                      A[538]/B[538] = 1 485593 643400 523291 733456 742938 561453 359288 385510 091127 922454 907812 491936 720682 565961 507403 597902 168010 744359 920392 442798 782102 193983 000341 076162 301665 772844 686611 808032 649763 100991 333746 190161 970835 550482 069223 629508 678479 079032 344800 330633 299592 956409 821826 984059 118975 (271 digits)/144 390083 589894 763325 193371 281844 245440 307045 739110 279917 648467 134287 566314 087630 089523 139082 083486 499227 907957 371420 675077 007846 748207 752460 984023 515873 055314 490399 038109 232356 582744 561685 900153 723975 142577 833519 423346 940740 421192 223688 679728 306605 156297 023983 504993 247167 (273 digits), a[538] = 3
                                                                                      A[539]/B[539] = 1 955264 848711 262076 409177 262643 841572 171236 727082 202053 917694 266207 365050 269703 600484 254469 586138 656929 158904 819202 093332 482353 512994 244754 082301 473437 944730 224199 099419 746126 096491 299067 180722 930631 150169 670162 875388 722908 731351 435907 158774 463754 046900 234667 779556 658453 (271 digits)/190 039083 836929 820518 689393 919404 039486 146663 381425 819175 015015 255622 318359 051044 473536 009518 787235 451172 909391 049899 021927 749487 024858 070144 382997 163486 776433 030087 559710 184589 979263 121604 266000 555616 048485 327083 152125 443545 983770 728366 615100 442288 797573 165613 087089 019734 (273 digits), a[539] = 1
                                                                                      A[540]/B[540] = 11 261917 886956 833673 779343 056157 769314 215472 020921 101397 510926 238849 317188 069200 568382 779751 528595 452656 538884 016402 909461 193869 758954 224111 487669 668855 496495 807607 305131 380393 583447 829082 093776 623991 301330 420038 006452 293022 735789 524336 124505 618363 190910 995165 881842 411240 (272 digits)/1094 585502 774543 865918 640340 878864 442871 040362 646239 375792 723543 412399 158109 342852 457203 186676 019663 755092 454912 620915 784715 755281 872498 103182 899009 333306 937479 640836 836660 155306 479060 169707 230156 502055 385004 468935 183974 158470 340045 865521 755230 518049 144162 852048 940438 345837 (274 digits), a[540] = 5
                                                                                      A[541]/B[541] = 13 217182 735668 095750 188520 318801 610886 386708 748003 303451 428620 505056 682238 338904 168867 034221 114734 109585 697788 835605 002793 676223 271948 468865 569971 142293 441226 031806 404551 126519 679939 128149 274499 554622 451500 090200 881841 015931 467140 960243 283280 082117 237811 229833 661399 069693 (272 digits)/1284 624586 611473 686437 329734 798268 482357 187026 027665 194967 738558 668021 476468 393896 930739 196194 806899 206265 364303 670814 806643 504768 897356 173327 282006 496793 713912 670924 396370 339896 458323 291311 496157 057671 433489 796018 336099 602016 323816 593888 370330 960337 941736 017662 027527 365571 (274 digits), a[541] = 1
                                                                                      A[542]/B[542] = 37 696283 358293 025174 156383 693760 991086 988889 516927 708300 368167 248962 681664 747008 906116 848193 758063 671827 934461 687612 915048 546316 302851 161842 627611 953442 378947 871220 114233 633432 943326 085380 642775 733236 204330 600439 770134 324885 670071 444822 691065 782597 666533 454833 204640 550626 (272 digits)/3663 834675 997491 238793 299810 475401 407585 414414 701569 765728 200660 748442 111046 130646 318681 579065 633462 167623 183519 962545 398002 764819 667210 449837 463022 326894 365304 982685 629400 835099 395706 752330 222470 617398 251984 060971 856173 362502 987679 053298 495892 438725 027634 887372 995493 076979 (274 digits), a[542] = 2
                                                                                      A[543]/B[543] = 164 002316 168840 196446 814055 093845 575234 342266 815714 136652 901289 500907 408897 326939 793334 426996 146988 796897 435635 586056 662987 861488 483353 116236 080418 956062 957017 516686 861485 660251 453243 469671 845602 487567 268822 491959 962378 315474 147426 739534 047543 212507 903945 049166 479961 272197 (273 digits)/15939 963290 601438 641610 528976 699874 112698 844684 833944 257880 541201 661789 920652 916482 205465 512457 340747 876758 098383 520996 398654 564047 566197 972677 134095 804371 175132 601666 913973 680294 041150 300632 386039 527264 441426 039905 760793 052028 274532 807082 353900 715238 052275 567154 009499 673487 (275 digits), a[543] = 4
                                                                                      A[544]/B[544] = 201 698599 527133 221620 970438 787606 566321 331156 332641 844953 269456 749870 090562 073948 699451 275189 905052 468725 370097 273669 578036 407804 786204 278078 708030 909505 335965 387906 975719 293684 396569 555052 488378 220803 473153 092399 732512 640359 817498 184356 738608 995105 570478 503999 684601 822823 (273 digits)/19603 797966 598929 880403 828787 175275 520284 259099 535514 023608 741862 410232 031699 047128 524147 091522 974210 044381 281903 483541 796657 328867 233408 422514 597118 131265 540437 584352 543374 515393 436857 052962 608510 144662 693410 100877 616966 414531 262211 860380 849793 153963 079910 454527 004992 750466 (275 digits), a[544] = 1
                                                                                      A[545]/B[545] = 365 700915 695973 418067 784493 881452 141555 673423 148355 981606 170746 250777 499459 400888 492785 702186 052041 265622 805732 859726 241024 269293 269557 394314 788449 865568 292982 904593 837204 953935 849813 024724 333980 708370 741975 584359 694890 955833 964924 923890 786152 207613 474423 553166 164563 095020 (273 digits)/35543 761257 200368 522014 357763 875149 632983 103784 369458 281489 283064 072021 952351 963610 729612 603980 314957 921139 380287 004538 195311 892914 799606 395191 731213 935636 715570 186019 457348 195687 478007 353594 994549 671927 134836 140783 377759 466559 536744 667463 203693 869201 132186 021681 014492 423953 (275 digits), a[545] = 1
                                                                                      A[546]/B[546] = 567 399515 223106 639688 754932 669058 707877 004579 480997 826559 440203 000647 590021 474837 192236 977375 957093 734348 175830 133395 819060 677098 055761 672393 496480 775073 628948 292500 812924 247620 246382 579776 822358 929174 215128 676759 427403 596193 782423 108247 524761 202719 044902 057165 849164 917843 (273 digits)/55147 559223 799298 402418 186551 050425 153267 362883 904972 305098 024926 482253 984051 010739 253759 695503 289167 965520 662190 488079 991969 221782 033014 817706 328332 066902 256007 770372 000722 711080 914864 406557 603059 816589 828246 241660 994725 881090 798956 527844 053487 023164 212096 476208 019485 174419 (275 digits), a[546] = 1
                                                                                      A[547]/B[547] = 1500 499946 142186 697445 294359 219569 557309 682582 110351 634725 051152 252072 679502 350562 877259 656937 966228 734319 157393 126517 879145 623489 381080 739101 781411 415715 550879 489595 463053 449176 342578 184277 978698 566719 172232 937878 549698 148221 529771 140385 835674 613051 564227 667497 862892 930706 (274 digits)/145838 879704 798965 326850 730865 975999 939517 829552 179402 891685 332917 036529 920453 985089 237131 994986 893293 852180 704667 980698 179250 336478 865636 030604 387878 069441 227585 726763 458793 617849 307736 166710 200669 305106 791328 624105 367211 228741 134657 723151 310667 915529 556378 974097 053462 772791 (276 digits), a[547] = 2
                                                                                      A[548]/B[548] = 2067 899461 365293 337134 049291 888628 265186 687161 591349 461284 491355 252720 269523 825400 069496 634313 923322 468667 333223 259913 698206 300587 436842 411495 277892 190789 179827 782096 275977 696796 588960 764054 801057 495893 387361 614637 977101 744415 312194 248633 360435 815770 609129 724663 712057 848549 (274 digits)/200986 438928 598263 729268 917417 026425 092785 192436 084375 196783 357843 518783 904504 995828 490891 690490 182461 817701 366858 468778 171219 558260 898650 848310 716210 136343 483593 497135 459516 328930 222600 573267 803729 121696 619574 865766 361937 109831 933614 250995 364154 938693 768475 450305 072947 947210 (276 digits), a[548] = 1
                                                                                      A[549]/B[549] = 7704 198330 238066 708847 442234 885454 352869 744066 884400 018578 525218 010233 488073 826763 085749 559879 736196 140321 157062 906258 973764 525251 691607 973587 615087 988083 090362 835884 290986 539566 109460 476442 381871 054399 334317 781792 481003 381467 466353 886285 916982 060363 391616 841488 999066 476353 (274 digits)/748798 196490 593756 514657 483117 055275 217873 406860 432528 482035 406447 592881 633968 972574 709807 066457 440679 305284 805243 387032 692909 011261 561588 575536 536508 478471 678366 218169 837342 604639 975537 886513 611856 670196 650053 221404 453022 558236 935500 476137 403132 731610 861805 325012 272306 614421 (276 digits), a[549] = 3
                                                                                      A[550]/B[550] = 32884 692782 317560 172523 818231 430445 676665 663429 128949 535598 592227 293654 221819 132452 412494 873832 868107 029951 961474 884949 593264 401594 203274 305845 738244 143121 541279 125633 439923 855061 026802 669824 328541 713490 724632 741807 901115 270285 177609 793777 028364 057224 175597 090619 708323 753961 (275 digits)/3 196179 224890 973289 787898 849885 247525 964278 819877 814489 124924 983633 890310 440380 886127 330119 956319 945179 038840 587832 016908 942855 603307 145005 150456 862244 050230 197058 369814 808886 747490 124752 119322 251155 802483 219787 751384 174027 342779 675616 155544 976685 865137 215696 750354 162174 404894 (277 digits), a[550] = 4
                                                                                      A[551]/B[551] = 40588 891112 555626 881371 260466 315900 029535 407496 013349 554177 117445 303887 709892 959215 498244 433712 604303 170273 118537 791208 567028 926845 894882 279433 353332 131204 631641 961517 730910 394627 136263 146266 710412 767890 058950 523600 382118 651752 643963 680062 945346 117587 567213 932108 707390 230314 (275 digits)/3 944977 421381 567046 302556 333002 302801 182152 226738 247017 606960 390081 483192 074349 858702 039927 022777 385858 344125 393075 403941 635764 614568 706593 725993 398752 528701 875424 587984 646229 352130 100290 005835 863012 472679 869840 972788 627049 901016 611116 631682 379818 596748 077502 075366 434481 019315 (277 digits), a[551] = 1
                                                                                      A[552]/B[552] = 235829 148345 095694 579380 120563 009945 824342 700909 195697 306484 179453 813092 771283 928529 903717 042395 889622 881317 554163 840992 428409 035823 677685 703012 504904 799144 699488 933222 094475 828196 708118 401157 880605 552941 019385 359809 811708 529048 397428 194091 755094 645162 011666 751163 245274 905531 (276 digits)/22 921066 331798 808521 300680 514896 761531 875039 953569 049577 159726 934041 306270 812130 179637 529755 070206 874470 759467 553209 036617 121678 676150 677973 780423 856006 693739 574181 309738 040033 508140 626202 148501 566218 165882 568992 615327 309276 847862 731199 313956 875778 848877 603207 127186 334579 501469 (278 digits), a[552] = 5
                                                                                      A[553]/B[553] = 1 455563 781183 129794 357651 983844 375574 975591 612951 187533 393082 194168 182444 337596 530394 920546 688087 942040 458178 443520 837163 137483 141787 960996 497508 382760 926072 828575 560850 297765 363807 384973 553213 994046 085536 175262 682459 252369 826043 028532 844613 475913 988559 637214 439088 179039 663500 (277 digits)/141 471375 412174 418174 106639 422382 871992 432391 948152 544480 565321 994329 320816 947130 936527 218457 444018 632682 900930 712329 623644 365836 671472 774436 408536 534792 691139 320512 446412 886430 400973 857502 896845 260321 467975 283796 664752 482710 988192 998312 515423 634491 690013 696744 838484 441958 028129 (279 digits), a[553] = 6
                                                                                      A[554]/B[554] = 3 146956 710711 355283 294684 088251 761095 775525 926811 570764 092648 567790 177981 446476 989319 744810 418571 773703 797674 441205 515318 703375 319399 599678 698029 270426 651290 356640 054922 690006 555811 478065 507585 868697 724013 369910 724728 316448 181134 454493 883318 706922 622281 286095 629339 603354 232531 (277 digits)/305 863817 156147 644869 513959 359662 505516 739823 849874 138538 290370 922699 947904 706392 052691 966669 958244 139836 561328 977868 283905 853352 019096 226846 597496 925592 076018 215206 202563 812894 310088 341207 942192 086861 101833 136585 944832 274698 824248 727824 344804 144762 228904 996696 804155 218495 557727 (279 digits), a[554] = 2
                                                                                      A[555]/B[555] = 4 602520 491894 485077 652336 072096 136670 751117 539762 758297 485730 761958 360425 784073 519714 665357 106659 715744 255852 884726 352481 840858 461187 560675 195537 653187 577363 185215 615772 987771 919618 863039 060799 862743 809549 545173 407187 568818 007177 483026 727932 182836 610840 923310 068427 782393 896031 (277 digits)/447 335192 568322 063043 620598 782045 377509 172215 798026 683018 855692 917029 268721 653522 989219 185127 402262 772519 462259 690197 907550 219188 690569 001283 006033 460384 767157 535718 648976 699324 711062 198710 839037 347182 569808 420382 609584 757409 812441 726136 860227 779253 918918 693441 642639 660453 585856 (279 digits), a[555] = 1
                                                                                      A[556]/B[556] = 7 749477 202605 840360 947020 160347 897766 526643 466574 329061 578379 329748 538407 230550 509034 410167 525231 489448 053527 325931 867800 544233 780587 160353 893566 923614 228653 541855 670695 677778 475430 341104 568385 731441 533562 915084 131915 885266 188311 937520 611250 889759 233122 209405 697767 385748 128562 (277 digits)/753 199009 724469 707913 134558 141707 883025 912039 647900 821557 146063 839729 216626 359915 041911 151797 360506 912356 023588 668066 191456 072540 709665 228129 603530 385976 843175 750924 851540 512219 021150 539918 781229 434043 671641 556968 554417 032108 636690 453961 205031 924016 147823 690138 446794 878949 143583 (279 digits), a[556] = 1
                                                                                      A[557]/B[557] = 12 351997 694500 325438 599356 232444 034437 277761 006337 087359 064110 091706 898833 014624 028749 075524 631891 205192 309380 210658 220282 385092 241774 721029 089104 576801 806016 727071 286468 665550 395049 204143 629185 594185 343112 460257 539103 454084 195489 420547 339183 072595 843963 132715 766195 168142 024593 (278 digits)/1200 534202 292791 770956 755156 923753 260535 084255 445927 504576 001756 756758 485348 013438 031130 336924 762769 684875 485848 358264 099006 291729 400234 229412 609563 846361 610333 286643 500517 211543 732212 738629 620266 781226 241449 977351 164001 789518 449132 180098 065259 703270 066742 383580 089434 539402 729439 (280 digits), a[557] = 1
                                                                                      A[558]/B[558] = 20 101474 897106 165799 546376 392791 932203 804404 472911 416420 642489 421455 437240 245174 537783 485692 157122 694640 362907 536590 088082 929326 022361 881382 982671 500416 034670 268926 957164 343328 870479 545248 197571 325626 876675 375341 671019 339350 383801 358067 950433 962355 077085 342121 463962 553890 153155 (278 digits)/1953 733212 017261 478869 889715 065461 143560 996295 093828 326133 147820 596487 701974 373353 073041 488722 123276 597231 509437 026330 290462 364270 109899 457542 213094 232338 453509 037568 352057 723762 753363 278548 401496 215269 913091 534319 718418 821627 085822 634059 270291 627286 214566 073718 536229 418351 873022 (280 digits), a[558] = 1
                                                                                      A[559]/B[559] = 92 757897 282924 988636 784861 803611 763252 495378 897982 753041 634067 777528 647793 995322 179883 018293 260381 983753 761010 357018 572614 102396 331222 246561 019790 578465 944697 802779 115126 038865 876967 385136 419470 896692 849813 961624 223180 811485 730694 852819 140918 922016 152304 501201 622045 383702 637213 (278 digits)/9015 467050 361837 686436 314017 185597 834779 069435 821240 809108 593039 142709 293245 506850 323296 291813 255876 073801 523596 463585 260855 748809 839832 059581 461940 775715 424369 436916 908748 106594 745665 852823 226251 642305 893816 114630 037677 076026 792422 716335 146426 212414 925006 678454 234352 212810 221527 (280 digits), a[559] = 4
                                                                                      A[560]/B[560] = 205 617269 462956 143073 116100 000015 458708 795162 268876 922503 910624 976512 732828 235818 897549 522278 677886 662147 884928 250627 233311 134118 684806 374505 022252 657347 924065 874485 187416 421060 624414 315521 036513 119012 576303 298590 117380 962321 845191 063706 232271 806387 381694 344524 708053 321295 427581 (279 digits)/19984 667312 740936 851742 517749 436656 813119 135166 736309 944350 333898 881906 288465 387053 719634 072348 635028 744834 556629 953500 812173 861889 789563 576705 136975 783769 302247 911402 169553 936952 244694 984194 853999 499881 700723 763579 793772 973680 670668 066729 563144 052116 064579 430627 004933 843972 316076 (281 digits), a[560] = 2
                                                                                      A[561]/B[561] = 503 992436 208837 274783 017061 803642 680670 085703 435736 598049 455317 730554 113450 466959 974982 062850 616155 308049 530866 858273 039236 370633 700834 995571 064295 893161 792829 551749 489958 880987 125796 016178 492497 134718 002420 558804 457942 736129 421076 980231 605462 534790 915693 190251 038152 026293 492375 (279 digits)/48984 801675 843711 389921 349516 058911 461017 339769 293860 697809 260836 906521 870176 280957 762564 436510 525933 563470 636856 370586 885203 472589 418959 212991 735892 343254 028865 259721 247855 980499 235055 821212 934250 642069 295263 641789 625223 023388 133758 849794 272714 316647 054165 539708 244219 900754 853679 (281 digits), a[561] = 2
                                                                                      A[562]/B[562] = 709 609705 671793 417856 133161 803658 139378 880865 704613 520553 365942 707066 846278 702778 872531 585129 294041 970197 415795 108900 272547 504752 385641 370076 086548 550509 716895 426234 677375 302047 750210 331699 529010 253730 578723 857394 575323 698451 266268 043937 837734 341178 297387 534775 746205 347588 919956 (279 digits)/68969 468988 584648 241663 867265 495568 274136 474936 030170 642159 594735 788428 158641 668011 482198 508859 160962 308305 193486 324087 697377 334479 208522 789696 872868 127023 331113 171123 417409 917451 479750 805407 788250 141950 995987 405369 418995 997068 804426 916523 835858 368763 118744 970335 249153 744727 169755 (281 digits), a[562] = 1
                                                                                      A[563]/B[563] = 6890 479787 254978 035488 215518 036565 935080 013494 777258 283029 748802 094155 729958 791969 827766 329014 262533 039826 273022 838375 492163 913405 171607 326255 843232 847749 244888 387861 586336 599416 877689 001474 253589 418293 210935 275355 635856 022190 817489 375672 145071 605395 592181 003232 754000 154593 771979 (280 digits)/669710 022573 105545 564896 154905 519025 928245 614193 565396 477245 613459 002375 297951 293061 102351 016242 974594 338217 378233 287376 161599 482902 295664 320263 591705 486464 008883 799832 004545 237562 552813 069883 028501 919628 259150 290114 396186 997007 373601 098508 795439 635515 122870 272725 486603 603299 381474 (282 digits), a[563] = 9
                                                                                      A[564]/B[564] = 28271 528854 691705 559808 995233 949921 879698 934844 813646 652672 361151 083689 766113 870658 183596 901186 344174 129502 507886 462402 241203 158373 072070 675099 459479 941506 696448 977681 022721 699715 260966 337596 543367 926903 422464 958817 118747 787214 536225 546626 418020 762760 666111 547706 762205 965964 007872 (281 digits)/2 747809 559281 006830 501248 486887 571671 987118 931710 291756 551142 048571 797929 350446 840255 891602 573831 059339 661174 706419 473592 343775 266088 391180 070751 239690 072879 366648 370451 435590 867701 691003 084939 902257 820464 032588 565827 003743 985098 298831 310559 017616 910823 610226 061237 195568 157924 695651 (283 digits), a[564] = 4
                                                                                      A[565]/B[565] = 16 149933 455816 218852 686424 494103 441959 243171 809883 369496 958947 966070 881012 180978 937792 661596 906416 785960 985758 276192 870055 219167 344429 323962 808047 206279 448072 917254 643725 560427 136830 889467 769100 516675 680147 438426 759930 440842 521691 002276 499356 834927 141735 941874 743793 973606 720042 266891 (284 digits)/1569 668968 372028 005761 777782 167708 943730 573155 620770 158387 179355 347955 620034 403097 079175 207420 673777 857540 868974 743752 708604 457276 419373 659484 719221 454737 100582 365103 327601 726930 695228 115574 570567 217717 404590 867221 377333 534002 488136 006279 427707 854695 715796 561951 239164 156021 778300 598195 (286 digits), a[565] = 571
                                                                                      A[566]/B[566] = 16 178204 984670 910558 246233 489337 391881 122870 744728 183143 611620 327221 964701 947092 808450 845193 807603 130135 115260 784079 332457 460370 502802 396033 483146 665759 389579 613703 621406 583148 836546 150434 106697 060043 607050 860891 718747 559590 308905 538502 045983 252947 904496 607986 291500 735812 686006 274763 (284 digits)/1572 416777 931309 012592 279030 654596 515402 560274 552480 450143 730497 396527 417963 753543 919431 099023 247608 916880 530149 450172 182196 801051 685462 050664 789972 694427 173461 731751 698053 162521 562929 806577 655507 119975 225054 899809 943160 537746 473234 305110 738266 872312 626620 172177 300401 351589 936225 293846 (286 digits), a[566] = 1
                                                                                      A[567]/B[567] = 177 931983 302525 324435 148759 387477 360770 471879 257165 200933 075151 238290 528031 651907 022301 113534 982448 087312 138366 116986 194629 822872 372453 284297 639513 863873 343869 054290 857791 391915 502292 393808 836071 117111 750656 047343 947406 036745 610746 387296 959189 364406 186702 021737 658801 331733 580105 014521 (285 digits)/17293 836747 685118 131684 568088 713674 097756 175901 145574 659824 484329 313229 799671 938536 273486 197653 149867 026346 170469 245474 530572 467793 273994 166132 618948 399008 835199 682620 308133 352146 324526 181351 125638 417469 655139 865320 808938 911467 220479 057386 810376 577821 981998 283724 243177 671921 140553 536655 (287 digits), a[567] = 10
                                                                                      A[568]/B[568] = 1083 770104 799822 857169 138789 814201 556503 954146 287719 388742 062527 756965 132891 858534 942257 526403 702291 654007 945457 485996 500236 397604 737522 101819 320229 848999 452793 939448 768154 934641 850300 513287 123123 762714 110987 144955 403183 780063 973383 862283 801119 439385 024708 738412 244308 726214 166636 361889 (286 digits)/105335 437264 042017 802699 687562 936641 101939 615681 425928 409090 636473 275906 215995 384761 560348 284942 146811 074957 552964 923019 365631 607811 329427 047460 503663 088480 184659 827473 546853 275399 510086 894684 409337 624793 155894 091734 796794 006549 796108 649431 600526 339244 518609 874522 759467 383116 779546 513776 (288 digits), a[568] = 6
                                                                                      A[569]/B[569] = 3429 242297 701993 895942 565128 830082 030282 334318 120323 367159 262734 509185 926707 227511 849073 692746 089323 049335 974738 574975 695339 015686 585019 589755 600203 410871 702250 872637 162256 195841 053193 933670 205442 405254 083617 482210 156957 376937 530897 974148 362547 682561 260828 236974 391727 510376 080014 100188 (286 digits)/333300 148539 811171 539783 630777 523597 403575 022945 423359 887096 393749 140948 447658 092820 954531 052479 590300 251218 829364 014532 627467 291227 262275 308514 129937 664449 389179 165040 948693 178344 854786 865404 353651 291849 122822 140525 199320 931116 608805 005681 611955 595555 537827 907292 521579 821271 479193 077983 (288 digits), a[569] = 3
                                                                                      A[570]/B[570] = 4513 012402 501816 753111 703918 644283 586786 288464 408042 755901 325262 266151 059599 086046 791331 219149 791614 703343 920196 060972 195575 413291 322541 691574 920433 259871 155044 812085 930411 130482 903494 446957 328566 167968 194604 627165 560141 157001 504281 836432 163667 121946 285536 975386 636036 236590 246650 462077 (286 digits)/438635 585803 853189 342483 318340 460238 505514 638626 849288 296187 030222 416854 663653 477582 514879 337421 737111 326176 382328 937551 993098 899038 591702 355974 633600 752929 573838 992514 495546 453744 364873 760088 762988 916642 278716 232259 996114 937666 404913 655113 212481 934800 056437 781815 281047 204388 258739 591759 (288 digits), a[570] = 1
                                                                                      A[571]/B[571] = 21481 291907 709260 908389 380803 407216 377427 488175 752494 390764 563783 573790 165103 571699 014398 569345 255781 862711 655522 818864 477640 668851 875186 356055 281936 450356 322430 120980 883900 717772 667171 721499 519707 077126 862035 990872 397522 004943 548025 319877 017216 170346 402976 138520 935872 456737 066615 948496 (287 digits)/2 087842 491755 223928 909716 904139 364551 425633 577452 820513 071844 514638 808367 102272 003151 014048 402166 538745 555924 358679 764740 599862 887381 629084 732412 664340 676167 684535 135098 930878 993322 314281 905759 405606 958418 237687 069565 183780 681782 228459 626134 461883 334755 763579 034553 645768 638824 514151 445019 (289 digits), a[571] = 4
                                                                                      A[572]/B[572] = 68956 888125 629599 478279 846328 865932 719068 752991 665525 928195 016612 987521 554909 801143 834526 927185 558960 291478 886764 517565 628497 419846 948100 759740 766242 610940 122335 175028 582113 283800 905009 611455 887687 399348 780712 599782 752707 171832 148357 796063 215315 632985 494465 390949 443653 606801 446498 307565 (287 digits)/6 702163 061069 524976 071634 030758 553892 782415 370985 310827 511720 574138 841955 970469 487035 557024 543921 353347 993949 458368 231773 792687 561183 478956 553212 626622 781432 627444 397811 288183 433711 307719 477366 979809 791896 991777 440955 547456 983013 090292 533516 598131 939067 347174 885476 218353 120861 801193 926816 (289 digits), a[572] = 3
                                                                                      A[573]/B[573] = 90438 180033 338860 386669 227132 273149 096496 241167 418020 318959 580396 561311 720013 372842 848925 496530 814742 154190 542287 336430 106138 088698 823287 115796 048179 061296 444765 296009 466014 001573 572181 332955 407394 476475 642748 590655 150229 176775 696383 115940 232531 803331 897441 529470 379526 063538 513114 256061 (287 digits)/8 790005 552824 748904 981350 934897 918444 208048 948438 131340 583565 088777 650323 072741 490186 571072 946087 892093 549873 817047 996514 392550 448565 108041 285625 290963 457600 311979 532910 219062 427033 622001 383126 385416 750315 229464 510520 731237 664795 318752 159651 060015 273823 110753 920029 864121 759686 315345 371835 (289 digits), a[573] = 1
                                                                                      A[574]/B[574] = 159395 068158 968459 864949 073461 139081 815564 994159 083546 247154 597009 548833 274923 173986 683452 423716 373702 445669 429051 853995 734635 508545 771387 875536 814421 672236 567100 471038 048127 285374 477190 944411 295081 875824 423461 190437 902936 348607 844740 912003 447847 436317 391906 920419 823179 670339 959612 563626 (288 digits)/15 492168 613894 273881 052984 965656 472336 990464 319423 442168 095285 662916 492279 043210 977222 128097 490009 245441 543823 275416 228288 185238 009748 586997 838837 917586 239032 939423 930721 507245 860744 929720 860493 365226 542212 221241 951476 278694 647808 409044 693167 658147 212890 457928 805506 082474 880548 116539 298651 (290 digits), a[574] = 1
                                                                                      A[575]/B[575] = 568623 384510 244239 981516 447515 690394 543191 223644 668659 060423 371425 207811 544782 894802 899282 767679 935849 491198 829442 898417 310044 614336 137450 742406 491444 078006 146066 709123 610395 857697 003754 166189 292640 103948 913132 161968 859038 222599 230605 851950 576074 112284 073162 290729 849065 074558 391951 946939 (288 digits)/55 266511 394507 570548 140305 831867 335455 179441 906708 457844 869422 077527 127160 202374 421852 955365 416115 628418 181343 643296 681378 948264 477810 869034 802139 043722 174699 130251 325074 740800 009268 411163 964606 481096 376951 893190 364949 567321 608220 545886 239154 034456 912494 484540 336548 111546 401330 664963 267788 (290 digits), a[575] = 3
                                                                                      A[576]/B[576] = 728018 452669 212699 846465 520976 829476 358756 217803 752205 307577 968434 756644 819706 068789 582735 191396 309551 936868 258494 752413 044680 122881 908838 617943 305865 750242 713167 180161 658523 143071 480945 110600 587721 979773 336593 352406 761974 571207 075346 763954 023921 548601 465069 211149 672244 744898 351564 510565 (288 digits)/70 758680 008401 844429 193290 797523 807792 169906 226131 900012 964707 740443 619439 245585 399075 083462 906124 873859 725166 918712 909667 133502 487559 456032 640976 961308 413732 069675 255796 248045 870013 340884 825099 846322 919164 114432 316425 846016 256028 954930 932321 692604 125384 942469 142054 194021 281878 781502 566439 (290 digits), a[576] = 1
                                                                                      A[577]/B[577] = 6 392771 005863 945838 753240 615330 326205 413240 966074 686301 521047 118903 260970 102431 445119 561164 298850 412264 986144 897400 917721 667485 597391 408159 685952 938370 079947 851404 150416 878581 002268 851315 050993 994415 942135 605878 981222 954834 792255 833379 963582 767446 501095 793715 979927 227023 033745 204468 031459 (289 digits)/621 335951 461722 325981 686632 212057 797792 538691 715763 657948 587084 001076 082674 167057 614453 623068 665114 619295 982678 992999 958716 016284 378286 517295 929954 734189 484555 687653 371444 725166 969375 138242 565405 251679 730264 808648 896356 335451 656452 185333 697727 575289 915574 024293 472981 663716 656360 916983 799300 (291 digits), a[577] = 8
                                                                                      A[578]/B[578] = 7 120789 458533 158538 599706 136307 155681 771997 183878 438506 828625 087338 017614 922137 513909 143899 490246 721816 923013 155895 670134 712165 720273 316998 303896 244235 830190 564571 330578 537104 145340 332260 161594 582137 921908 942472 333629 716809 363462 908726 727536 791368 049697 258785 191076 899267 778643 556032 542024 (289 digits)/692 094631 470124 170410 879923 009581 605584 708597 941895 557961 551791 741519 702113 412643 013528 706531 571239 493155 707845 911712 868383 149786 865845 973328 570931 695497 898287 757328 627240 973212 839388 479127 390505 098002 649428 923081 212782 181467 912481 140264 630049 267894 040958 966762 615035 857737 938239 698486 365739 (291 digits), a[578] = 1
                                                                                      A[579]/B[579] = 49 117507 757062 897070 351477 433173 260296 045224 069345 317342 492797 642931 366659 635256 528574 424561 240330 743166 524223 832774 938529 940479 919031 310149 509330 403785 061091 238832 133888 101205 874310 844876 020561 487243 473589 260712 983001 255690 973033 285740 328803 515654 799279 346427 126388 622629 705606 540663 283603 (290 digits)/4773 903740 282467 348446 966170 269547 431300 790279 367137 005717 897834 450194 295354 642915 695625 862258 092551 578230 229754 463277 169014 915005 573362 357267 355544 907176 874282 231625 134890 564444 005706 013006 908435 839695 626838 347136 173049 424259 131339 026921 478023 182654 161327 824869 163196 810144 285799 107901 993734 (292 digits), a[579] = 6
                                                                                      A[580]/B[580] = 56 238297 215596 055608 951183 569480 415977 817221 253223 755849 321422 730269 384274 557394 042483 568460 730577 464983 447236 988670 608664 652645 639304 627147 813226 648020 891281 803403 464466 638310 019651 177136 182156 069381 395498 203185 316630 972500 336496 194467 056340 307022 848976 605212 317465 521897 484250 096695 825627 (290 digits)/5465 998371 752591 518857 846093 279129 036885 498877 309032 563679 449626 191713 997468 055558 709154 568789 663791 071385 937600 374990 037398 064792 439208 330595 926476 602674 772569 988953 762131 537656 845094 492134 298940 937698 276267 270217 385831 605727 043820 167186 108072 450548 202286 791631 778232 667882 224038 806388 359473 (292 digits), a[580] = 1
                                                                                      A[581]/B[581] = 217 832399 403851 063897 205028 141614 508229 496887 829016 584890 457065 833739 519483 307438 656025 129943 432063 138116 865934 798786 764523 898416 836945 191592 949010 347847 734936 649042 527288 016135 933264 376284 567029 695387 660083 870268 932894 173191 982521 869141 497824 436723 346209 162064 078785 188322 158356 830750 760484 (291 digits)/21171 898855 540241 905020 504450 106934 541957 286911 294234 696756 246713 025336 287758 809591 823089 568627 083924 792388 042555 588247 281209 109382 890987 349055 134974 715201 191992 198486 421285 177414 540989 489409 805258 652790 455640 157788 330544 241440 262799 528479 802240 534298 768188 199764 497894 813790 957915 527067 072153 (293 digits), a[581] = 3
                                                                                      A[582]/B[582] = 3541 556687 677213 077964 231633 835312 547649 767426 517489 114096 634476 070101 696007 476412 538885 647555 643587 674853 302193 769258 841047 027315 030427 692634 997392 213584 650268 188083 901074 896484 951881 197689 254631 195583 956840 127488 242937 743572 056846 100731 021531 294596 388323 198237 578028 535052 017959 388707 993371 (292 digits)/344216 380060 396461 999185 917294 990081 708202 089458 016787 711779 397034 597094 601609 009027 878587 666823 006587 749594 618489 786946 536743 814918 695005 915478 086072 045893 844445 164736 502694 376289 500926 322691 183079 382345 566509 794830 674539 468771 248612 622862 943920 999328 493297 987863 744549 688537 550687 239461 513921 (294 digits), a[582] = 16
                                                                                      A[583]/B[583] = 3759 389087 081064 141861 436661 976927 055879 264314 346505 698987 091541 903841 215490 783851 194910 777499 075650 812970 168128 568045 605570 925731 867372 884227 946402 561432 385204 837126 428362 912620 885145 573973 821660 890971 616923 997757 175831 916764 039367 969872 519355 731319 734532 360301 656813 723374 176316 219458 753855 (292 digits)/365388 278915 936703 904206 421745 097016 250159 376369 311022 408535 643747 622430 889367 818619 701677 235450 090512 541982 661045 375193 817952 924301 585993 264533 221046 761095 036437 363222 923979 553704 041915 812100 988338 035136 022149 952619 005083 710211 511412 151342 746161 533627 261486 187628 242444 502328 508602 766528 586074 (294 digits), a[583] = 1
                                                                                      A[584]/B[584] = 101285 672951 784880 766361 584845 235416 000510 639599 526637 287761 014565 569973 298767 856543 606565 862531 610508 812077 673536 538444 585891 096343 582122 682561 603858 810826 665593 953371 038510 624627 965666 121008 617814 360845 996864 069174 814567 579437 080413 317416 524780 308909 486164 566080 655185 342780 602181 094635 593601 (294 digits)/9 844311 631874 750763 508552 882667 512504 212345 875060 103370 333706 134472 780297 725172 293140 122195 788525 359913 841143 805669 541985 803519 846759 930830 793341 833287 834364 791816 608532 526162 772594 590737 437316 879868 295882 142408 562924 806715 934270 545328 557774 344120 873637 291938 866198 048106 749078 774359 169204 751845 (295 digits), a[584] = 26
                                                                                      A[585]/B[585] = 105045 062038 865944 908223 021507 212343 056389 903913 873142 986748 106107 473814 514258 640394 801476 640030 686159 625047 841665 106490 191462 022075 449495 566789 550261 372259 050798 790497 466873 537248 850811 694982 439475 251817 613788 066931 990399 496201 119781 287289 044136 040229 220696 926382 311999 066154 778497 314094 347456 (294 digits)/10 209699 910790 687467 412759 304412 609520 462505 251429 414392 742241 778220 402728 614540 111759 823873 023975 450426 383126 466714 917179 621472 771061 516824 057875 054334 595459 828253 971755 450142 326298 632653 249417 868206 331018 164558 515543 811799 644482 056740 709117 090282 407264 553425 053826 290551 251407 282961 935733 337919 (296 digits), a[585] = 1
                                                                                      A[586]/B[586] = 311375 797029 516770 582807 627859 660102 113290 447427 272923 261257 226780 517602 327285 137333 209519 142592 982828 062173 356866 751424 968815 140494 481113 816140 704381 555344 767191 534365 972257 699125 667289 510973 496764 864481 224440 203038 795366 571839 319975 891994 613052 389367 927558 418845 279183 475090 159175 722824 288513 (294 digits)/30 263711 453456 125698 334071 491492 731545 137356 377918 932155 818189 690913 585754 954252 516659 769941 836476 260766 607396 739099 376345 046465 388882 964478 909091 941957 025284 448324 552043 426447 425191 856043 936152 616280 957918 471525 594012 430315 223234 658809 976008 524685 688166 398788 973850 629209 251893 340283 040671 427683 (296 digits), a[586] = 2
                                                                                      A[587]/B[587] = 17 853465 492721 321868 128257 809507 838163 513945 407268 429768 878410 032596 977147 169511 468387 744067 767830 707359 168929 183069 937713 413925 030260 872983 086809 700010 026910 780716 249357 885562 387411 886313 820471 755072 527247 406879 640143 326294 091042 358407 130981 988122 234201 091526 800563 225457 146293 851513 515078 792697 (296 digits)/1735 241252 757789 852272 454834 319498 307593 291818 792808 547274 379054 160294 790761 006933 561366 710557 703122 314123 004740 595379 368847 269999 937390 492121 876115 745885 036673 382753 438230 757645 562234 427157 610116 996220 932371 041517 374252 339767 368857 608909 341602 997366 632749 284396 563312 155478 609327 679095 254004 715850 (298 digits), a[587] = 57
                                                                                      A[588]/B[588] = 89 578703 260636 126111 224096 675398 850919 683017 483769 421767 653307 389765 403338 174842 479271 929857 981746 519623 906819 272216 439992 038440 291798 846029 250189 204431 689898 670772 781155 400069 636185 098858 613332 272127 500718 258838 403755 426837 027051 112011 546904 553663 560373 385192 421661 406469 206559 416743 298218 251998 (296 digits)/8706 469975 242405 387060 608243 088984 269511 596450 341961 668527 713460 492387 539559 988920 323493 322730 352087 831381 631099 715996 220581 396465 075835 425088 289670 671382 208651 362091 743197 214675 236363 991831 986737 597385 619773 679112 465274 129152 067522 703356 684023 511518 851912 820771 790411 406602 298531 735759 310695 006933 (298 digits), a[588] = 5
                                                                                      A[589]/B[589] = 1540 691420 923535 465758 937901 291288 303798 125242 631348 599818 984635 658608 833896 141833 616010 551653 457521 540965 584856 810749 417578 067409 990841 255480 340026 175348 755188 183853 528999 686746 202558 566910 247120 381240 039457 807132 503985 582523 550911 262603 428359 400402 760548 639797 968807 135433 657803 936149 584789 076663 (298 digits)/149745 230831 878681 432302 794966 832230 889290 431474 606156 912245 507882 530882 963280 818579 060753 196973 688615 447610 733435 767315 118731 009906 226592 718622 800517 159382 583746 538313 072583 407124 580422 288301 384656 151776 468523 586429 283912 535352 516743 565972 970002 693187 115267 237517 000306 067717 684367 187003 535819 833711 (300 digits), a[589] = 17
                                                                                      A[590]/B[590] = 10874 418649 725384 386423 789405 714416 977506 559715 903209 620500 545757 000027 240611 167677 791345 791432 184397 306383 000816 947462 363038 510310 227687 634391 630372 431872 976215 957747 484153 207293 054095 067230 343174 940807 776922 908765 931654 504501 883429 950235 545420 356482 884213 863778 203311 354504 811186 969790 391741 788639 (299 digits)/1 056923 085798 393175 413180 173010 914600 494544 616772 585060 054246 268638 208568 282525 718973 748765 701546 172395 964656 765150 087202 051698 465808 661984 455447 893290 787060 294877 130283 251281 064547 299320 009941 679330 659820 899438 784117 452661 876619 684727 665167 474042 363828 658783 483390 792553 880626 089102 044784 061433 842910 (301 digits), a[590] = 7
                                                                                      A[591]/B[591] = 45038 366019 825073 011454 095524 148956 213824 364106 244187 081821 167663 658717 796340 812544 781393 717382 195110 766497 588124 600598 869732 108650 901591 793046 861515 902840 660052 014843 465612 515918 418938 835831 619820 144471 147149 442196 230603 600531 084631 063545 610040 826334 297404 094910 782052 553452 902551 815311 151756 231219 (299 digits)/4 377437 574025 451383 085023 487010 490632 867468 898564 946397 129230 582435 365156 093383 694474 055816 003158 378199 306237 794036 116123 325524 873140 874530 540414 373680 307623 763255 059446 077707 665313 777702 328068 101978 791060 066278 722899 094560 041831 255654 226642 866172 148501 750401 171080 170521 590222 040775 366139 781555 205351 (301 digits), a[591] = 4
                                                                                      A[592]/B[592] = 55912 784669 550457 397877 884929 863373 191330 923822 147396 702321 713420 658745 036951 980222 572739 508814 379508 072880 588941 548061 232770 618961 129279 427438 491888 334713 636267 972590 949765 723211 473033 903061 962995 085278 924072 350962 162258 105032 968061 013781 155461 182817 181617 958688 985363 907957 713738 785101 543498 019858 (299 digits)/5 434360 659823 844558 498203 660021 405233 362013 515337 531457 183476 851073 573724 375909 413447 804581 704704 550595 270894 559186 203325 377223 338949 536514 995862 266971 094684 058132 189729 328988 729861 077022 338009 781309 450880 965717 507016 547221 918450 940381 891810 340214 512330 409184 654470 963075 470848 129877 410923 842989 048261 (301 digits), a[592] = 1
                                                                                      A[593]/B[593] = 212776 720028 476445 205087 750313 739075 787817 135572 686377 188786 307925 634952 907196 753212 499612 243825 333634 985139 354949 244782 568043 965534 289430 075362 337180 906981 568855 932616 314909 685552 838040 545017 508805 400307 919366 495082 717377 915629 988814 104889 076424 374785 842257 970977 738144 277326 043768 170615 782250 290793 (300 digits)/20 680519 553496 985058 579634 467074 706332 953509 444577 540768 679661 135656 086329 221111 934817 469561 117272 029985 118921 471594 726099 457194 889989 484075 528001 174593 591675 937651 628634 064673 854897 008769 342097 445907 143702 963431 243948 736225 797184 076799 902073 886815 685492 977955 134493 059748 002766 430407 598911 310522 350134 (302 digits), a[593] = 3
                                                                                      A[594]/B[594] = 694242 944754 979793 013141 135871 080600 554782 330540 206528 268680 637197 563603 758542 239860 071576 240290 380413 028298 653789 282408 936902 515563 997569 653525 503431 055658 342835 770439 894494 779869 987155 538114 489411 286202 682171 836210 314391 851922 934503 328448 384734 307174 708391 871622 199796 739935 845043 296948 890248 892237 (300 digits)/67 475919 320314 799734 237107 061245 524232 222541 849070 153763 222460 258041 832712 039245 217900 213265 056520 640550 627658 973970 381623 748808 008917 988741 579865 790751 869711 871087 075631 523010 294552 103330 364302 119030 881989 856011 238862 755899 310003 170781 598032 000661 568809 343050 057950 142319 479147 421100 207657 774556 098663 (302 digits), a[594] = 3
                                                                                      A[595]/B[595] = 907019 664783 456238 218228 886184 819676 342599 466112 892905 457466 945123 198556 665738 993072 571188 484115 714048 013438 008738 527191 504946 481098 286999 728887 840611 962639 911691 703056 209404 465422 825196 083131 998216 686510 601538 331293 031769 767552 923317 433337 461158 681960 550649 842599 937941 017261 888811 467564 672499 183030 (300 digits)/88 156438 873811 784792 816741 528320 230565 176051 293647 694531 902121 393697 919041 260357 152717 682826 173792 670535 746580 445565 107723 206002 898907 472817 107866 965345 461387 808738 704265 587684 149449 112099 706399 564938 025692 819442 482811 492125 107187 247581 500105 887477 254302 321005 192443 202067 481913 851507 806569 085078 448797 (302 digits), a[595] = 1
                                                                                      A[596]/B[596] = 24 276754 229124 841986 687092 176676 392185 462368 449475 422070 162821 210400 726077 067756 059746 922476 827298 945661 377686 880990 989388 065511 024119 459562 604609 359342 084296 046820 049901 339010 880863 442253 699546 443045 135478 322168 449829 140405 808298 940756 595222 374860 038149 025287 779220 586263 188744 954141 453630 375227 651017 (302 digits)/2359 543330 039421 204347 472386 797571 518926 799875 483910 211592 677616 494187 727784 808531 188559 966745 575130 074480 038750 558663 182427 104883 380512 281986 384406 889733 865794 898293 386536 802798 180229 017922 730690 807419 550003 161515 791961 551152 096871 607900 600785 075070 180669 689185 061473 396074 008907 560303 178453 986595 767385 (304 digits), a[596] = 26
                                                                                      A[597]/B[597] = 122 290790 810407 666171 653689 769566 780603 654441 713490 003256 271572 997126 828942 004519 291807 183572 620610 442354 901872 413693 474131 832501 601695 584812 751934 637322 384120 145791 952562 904458 869740 036464 580864 213442 363902 212380 580438 733798 809047 627100 409449 335458 872705 677088 738702 869256 960986 659518 735716 548637 438115 (303 digits)/11885 873089 070917 806530 178675 516177 825199 175428 713198 752495 290203 864636 557965 303013 095517 516554 049443 042935 940333 238881 019858 730419 801468 882749 029901 414014 790362 300205 636949 601675 050594 201713 359853 602035 775708 627021 442619 247885 591545 287084 504031 262828 157650 766930 499810 182437 526451 653023 698839 018057 285722 (305 digits), a[597] = 5
                                                                                      A[598]/B[598] = 880 312289 901978 505188 262920 563643 856411 043460 443905 444864 063832 190288 528671 099391 102397 207485 171572 042145 690793 776845 308310 893022 235988 553251 868151 820598 773137 067363 717841 670222 969043 697505 765595 937141 682793 808832 512900 276997 471632 330459 461367 723072 147088 764908 950140 671061 915651 570772 603646 215689 717822 (303 digits)/85560 654953 535845 850058 723115 410816 295321 027876 476301 479059 709043 546643 633541 929622 857182 582623 921231 375031 621083 230830 321438 217821 990794 461229 593716 787837 398330 999732 845184 014523 534388 429916 249666 021669 979963 550665 890296 286351 237688 617492 129003 914867 284225 057698 560144 673136 694069 131469 070327 112996 767439 (305 digits), a[598] = 7
                                                                                      A[599]/B[599] = 1882 915370 614364 676548 179530 896854 493425 741362 601300 892984 399237 377703 886284 203301 496601 598542 963754 526646 283459 967384 090753 618546 073672 691316 488238 278519 930394 280519 388246 244904 807827 431476 112056 087725 729489 830045 606239 287793 752312 288019 332184 781603 166883 206906 638984 211380 792289 801063 943008 980016 873759 (304 digits)/183007 182996 142609 506647 624906 337810 415841 231181 665801 710614 708290 957923 825049 162258 809882 681801 891905 792999 182499 700541 662735 166063 783057 805208 217334 989689 587024 299671 327317 630722 119371 061545 859185 645375 735635 728353 223211 820588 066922 522068 762039 092562 726100 882327 620099 528710 914589 915961 839493 244050 820600 (306 digits), a[599] = 2
                                                                                      A[600]/B[600] = 2763 227660 516343 181736 442451 460498 349836 784823 045206 337848 463069 567992 414955 302692 598998 806028 135326 568791 974253 744229 399064 511568 309661 244568 356390 099118 703531 347883 106087 915127 776871 128981 877652 024867 412283 638878 119139 564791 223944 618478 793552 504675 313971 971815 589124 882442 707941 371836 546655 195706 591581 (304 digits)/268567 837949 678455 356706 348021 748626 711162 259058 142103 189674 417334 504567 458591 091881 667065 264425 813137 168030 803582 931371 984173 383885 773852 266437 811051 777526 985355 299404 172501 645245 653759 491462 108851 667045 715599 279019 113508 106939 304611 139560 891043 007430 010325 940026 180244 201847 608659 047430 909820 357047 588039 (306 digits), a[600] = 1
                                                                                      A[601]/B[601] = 4646 143031 130707 858284 621982 357352 843262 526185 646507 230832 862306 945696 301239 505994 095600 404571 099081 095438 257713 711613 489818 130114 383333 935884 844628 377638 633925 628402 494334 160032 584698 560457 989708 112593 141773 468923 725378 852584 976256 906498 125737 286278 480855 178722 228109 093823 500231 172900 489664 175723 465340 (304 digits)/451575 020945 821064 863353 972928 086437 127003 490239 807904 900289 125625 462491 283640 254140 476947 946227 705042 961029 986082 631913 646908 549949 556910 071646 028386 767216 572379 599075 499819 275967 773130 553007 968037 312421 451235 007372 336719 927527 371533 661629 653082 099992 736426 822353 800343 730558 523248 963392 749313 601098 408639 (306 digits), a[601] = 1
                                                                                      A[602]/B[602] = 16701 656753 908466 756590 308398 532556 879624 363379 984728 030347 049990 405081 318673 820674 885800 019741 432569 855106 747394 879069 868518 901911 459663 052222 890275 232034 605308 233090 589090 395225 530966 810355 846776 362646 837604 045649 295276 122546 152715 337973 170764 363510 756537 507982 273452 163913 208634 890538 015647 722876 987601 (305 digits)/1 623292 900787 141649 946768 266806 007938 092172 729777 565817 890541 794210 892041 309511 854303 097909 103108 928266 051120 761830 827112 924899 033734 444582 481375 896212 079176 702494 096630 671959 473148 973151 150486 012963 604310 069304 301136 123667 889521 419212 124449 850289 307408 219606 407087 581275 393523 178405 937609 157761 160342 813956 (307 digits), a[602] = 3
                                                                                      A[603]/B[603] = 21347 799785 039174 614874 930380 889909 722886 889565 631235 261179 912297 350777 619913 326668 981400 424312 531650 950545 005108 590683 358337 032025 842996 988107 734903 609673 239233 861493 083424 555258 115665 370813 836484 475239 979377 514573 020654 975131 128972 244471 296501 649789 237392 686704 501561 257736 708866 063438 505311 898600 452941 (305 digits)/2 074867 921732 962714 810122 239734 094375 219176 220017 373722 790830 919836 354532 593152 108443 574857 049336 633309 012150 747913 459026 571807 583684 001492 553021 924598 846393 274873 695706 171778 749116 746281 703493 981000 916731 520539 308508 460387 817048 790745 786079 503371 407400 956033 229441 381619 124081 701654 901001 907074 761441 222595 (307 digits), a[603] = 1
                                                                                      A[604]/B[604] = 80745 056109 025990 601215 099541 202286 048285 032076 878433 813886 786882 457414 178413 800681 830001 292679 027522 706741 762720 651119 943529 997988 988654 016546 094986 061054 323009 817569 839364 060999 877962 922797 356229 788366 775736 589368 357241 047939 539632 071387 060269 312878 468715 568095 778135 937123 335233 080853 531583 418678 346424 (305 digits)/7 847896 665986 029794 377134 986008 291063 749701 389829 686986 263034 553719 955639 088968 179633 822480 251118 828193 087573 005571 204192 640321 784786 449060 140441 670008 618356 527115 183749 187295 720499 211996 260967 955966 354504 630922 226661 504831 340667 791449 482688 360403 529611 087706 095411 726132 765768 283370 640614 878985 444666 481741 (307 digits), a[604] = 3
                                                                                      A[605]/B[605] = 182837 912003 091155 817305 129463 294481 819456 953719 388102 888953 486062 265605 976740 928032 641403 009670 586696 364028 530549 892923 245397 028003 820305 021199 924875 731781 885253 496632 762152 677257 871591 216408 548944 051973 530850 693309 735137 071010 208236 387245 417040 275546 174823 822896 057833 131983 379332 225145 568478 735957 145789 (306 digits)/17 770661 253705 022303 564392 211750 676502 718578 999676 747695 316900 027276 265810 771088 467711 219817 551574 289695 187296 759055 867411 852451 153256 899612 833905 264616 083106 329104 063204 546370 190115 170274 225429 892933 625740 782383 761831 470050 498384 373644 751456 224178 466623 131445 420264 833884 655618 268396 182231 665045 650774 186077 (308 digits), a[605] = 2
                                                                                      A[606]/B[606] = 446420 880115 208302 235825 358467 791249 687198 939515 654639 591793 759006 988626 131895 656747 112807 312020 200915 434798 823820 436966 434324 053996 629264 058945 944737 524618 093516 810835 363669 415515 621145 355614 454117 892313 837437 975987 827515 189959 956104 845877 894349 863970 818363 213887 893802 201090 093897 531144 668540 890592 638002 (306 digits)/43 389219 173396 074401 505919 409509 644069 186859 389183 182376 896834 608272 487260 631145 115056 262115 354267 407583 462166 523682 939016 345224 091300 248285 808252 199240 784569 185323 310158 280036 100729 552544 711827 741833 605986 195689 750324 444932 337436 538738 985600 808760 462857 350596 935941 393902 077004 820163 005078 209076 746214 853895 (308 digits), a[606] = 2
                                                                                      A[607]/B[607] = 7 325571 993846 423991 590510 864947 954476 814639 985969 862336 357653 630174 083624 087071 435986 446320 001993 801343 320809 711676 884386 194581 891949 888529 964335 040676 125671 381522 469998 580863 325507 809916 906239 814830 328994 929858 309114 975380 110369 505913 921291 726638 099079 268635 245102 358668 349424 881692 723460 265132 985439 353821 (307 digits)/711 998168 028042 212727 659102 763904 981609 708329 226607 665725 666253 759636 061980 869410 308611 413663 219852 811030 581961 137982 891673 376036 614060 872185 765940 452468 636213 294277 025737 026947 801788 010989 614673 762271 321519 913419 767022 588967 897368 993468 521069 164345 872340 740996 395327 136317 887695 391004 263483 010273 590211 848397 (309 digits), a[607] = 16
                                                                                      A[608]/B[608] = 168 934576 738582 960108 817575 252270 744216 423918 616822 488375 817827 253010 911980 134538 684435 378167 357877 631811 813422 192388 777848 909707 568844 065453 238651 880288 415059 868533 620802 723525 902195 249234 199130 195215 459197 224179 085632 261257 728458 592125 035587 607026 142793 996973 851242 143174 237862 372830 170730 766599 555697 775885 (309 digits)/16419 347083 818366 967137 665282 979324 221092 478431 601159 494067 220671 079901 912820 627582 213118 776369 410882 061286 847272 697289 447503 994066 214700 308558 424882 606019 417474 953694 902109 899835 541853 805305 849324 274074 000944 204344 391843 991193 976923 388514 970191 588715 526694 393514 028465 529213 493998 813261 065187 445369 321087 367026 (311 digits), a[608] = 23
                                                                                      A[609]/B[609] = 176 260148 732429 384100 408086 117218 698693 238558 602792 350712 175480 883184 995604 221610 120421 824487 359871 433155 134231 904065 662235 104289 460793 953983 202986 920964 540731 250056 090801 304389 227703 059151 105370 010045 788192 154037 394747 236637 838828 098038 956879 333664 241873 265609 096344 501842 587287 254522 894191 031732 541137 129706 (309 digits)/17131 345251 846409 179865 324385 743229 202702 186760 827767 159792 886924 839537 974801 496992 521730 190032 630734 872317 429233 835272 339177 370102 828761 180744 190823 058488 053688 247971 927846 926783 343641 816295 463998 036345 322464 117764 158866 580161 874292 381983 491260 753061 399035 134510 423792 665531 381694 204265 328670 455642 911299 215423 (311 digits), a[609] = 1
                                                                                      A[610]/B[610] = 521 454874 203441 728309 633747 486708 141602 901035 822407 189800 168789 019380 903188 577758 925279 027142 077620 498122 081886 000520 102319 118286 490431 973419 644625 722217 496522 368645 802405 332304 357601 367536 409870 215307 035581 532253 875126 734533 406114 788202 949346 274354 626540 528192 043931 146859 412436 881875 959112 830064 637972 035297 (309 digits)/50682 037587 511185 326868 314054 465782 626496 851953 256693 813652 994520 758977 862423 621567 256579 156434 672351 805921 705740 367834 125858 734271 872222 670046 806528 722995 524851 449638 757803 753402 229137 437896 777320 346764 645872 439872 709577 151517 725508 152481 952713 094838 324764 662534 876050 860276 257387 221791 722528 356655 143685 797872 (311 digits), a[610] = 2
                                                                                      A[611]/B[611] = 697 715022 935871 112410 041833 603926 840296 139594 425199 540512 344269 902565 898792 799369 045700 851629 437491 931277 216117 904585 764554 222575 951225 927402 847612 643182 037253 618701 893206 636693 585304 426687 515240 225352 823773 686291 269873 971171 244942 886241 906225 608018 868413 793801 140275 648701 999724 136398 853303 861797 179109 165003 (309 digits)/67813 382839 357594 506733 638440 209011 829199 038714 084460 973445 881445 598515 837225 118559 778309 346467 303086 678239 134974 203106 465036 104374 700983 850790 997351 781483 578539 697610 685650 680185 572779 254192 241318 383109 968336 557636 868443 731679 599800 534465 443973 847899 723799 797045 299843 525807 639081 426057 051198 812298 054985 013295 (311 digits), a[611] = 1
                                                                                      A[612]/B[612] = 1219 169897 139312 840719 675581 090634 981899 040630 247606 730312 513058 921946 801981 377127 970979 878771 515112 429399 298003 905105 866873 340862 441657 900822 492238 365399 533775 987347 695611 968997 942905 794223 925110 440659 859355 218545 145000 705704 651057 674444 855571 882373 494954 321993 184206 795561 412161 018274 812416 691861 817081 200300 (310 digits)/118495 420426 868779 833601 952494 674794 455695 890667 341154 787098 875966 357493 699648 740127 034888 502901 975438 484160 840714 570940 590894 838646 573206 520837 803880 504479 103391 147249 443454 433587 801916 692089 018638 729874 614208 997509 578020 883197 325308 686947 396686 942738 048564 459580 175894 386083 896468 647848 773727 168953 198670 811167 (312 digits), a[612] = 1
                                                                                      A[613]/B[613] = 1916 884920 075183 953129 717414 694561 822195 180224 672806 270824 857328 824512 700774 176497 016680 730400 952604 360676 514121 809691 631427 563438 392883 828225 339851 008581 571029 606049 588818 605691 528210 220911 440350 666012 683128 904836 414874 676875 896000 560686 761797 490392 363368 115794 324482 444263 411885 154673 665720 553658 996190 365303 (310 digits)/186308 803266 226374 340335 590934 883806 284894 929381 425615 760544 757411 956009 536873 858686 813197 849369 278525 162399 975688 774047 055930 943021 274190 371628 801232 285962 681930 844860 129105 113773 374695 946281 259957 112984 582545 555146 446464 614876 925109 221412 840660 790637 772364 256625 475737 911891 535550 073905 824925 981251 253655 824462 (312 digits), a[613] = 1
                                                                                      A[614]/B[614] = 3136 054817 214496 793849 392995 785196 804094 220854 920413 001137 370387 746459 502755 553624 987660 609172 467716 790075 812125 714797 498300 904300 834541 729047 832089 373981 104805 593397 284430 574689 471116 015135 365461 106672 542484 123381 559875 382580 547058 235131 617369 372765 858322 437787 508689 239824 824046 172948 478137 245520 813271 565603 (310 digits)/304804 223693 095154 173937 543429 558600 740590 820048 766770 547643 633378 313503 236522 598813 848086 352271 253963 646560 816403 344987 646825 781667 847396 892466 605112 790441 785321 992109 572559 547361 176612 638370 278595 842859 196754 552656 024485 498074 250417 908360 237347 733375 820928 716205 651632 297975 432018 721754 598653 150204 452326 635629 (312 digits), a[614] = 1
                                                                                      A[615]/B[615] = 5052 939737 289680 746979 110410 479758 626289 401079 593219 271962 227716 570972 203529 730122 004341 339573 420321 150752 326247 524489 129728 467739 227425 557273 171940 382562 675835 199446 873249 180380 999326 236046 805811 772685 225613 028217 974750 059456 443058 795818 379166 863158 221690 553581 833171 684088 235931 327622 143857 799179 809461 930906 (310 digits)/491113 026959 321528 514273 134364 442407 025485 749430 192386 308188 390790 269512 773396 457500 661284 201640 532488 808960 792092 119034 702756 724689 121587 264095 406345 076404 467252 836969 701664 661134 551308 584651 538552 955843 779300 107802 470950 112951 175527 129773 078008 524013 593292 972831 127370 209866 967568 795660 423579 131455 705982 460091 (312 digits), a[615] = 1
                                                                                      A[616]/B[616] = 13241 934291 793858 287807 613816 744714 056673 023014 106851 545061 825820 888403 909815 013868 996343 288319 308359 091580 464620 763775 757757 839779 289392 843594 175970 139106 456475 992291 030928 935451 469768 487228 977084 652042 993710 179817 509375 501493 433175 826768 375703 099082 301703 544951 175032 608001 295908 828192 765852 843880 432195 427415 (311 digits)/1 287030 277611 738211 202483 812158 443414 791562 318909 151543 164020 414958 852528 783315 513815 170654 755552 318941 264482 400587 583057 052339 231046 090571 420657 417802 943250 719827 666048 975888 869630 279229 807673 355701 754546 755354 768260 966385 723976 601472 167906 393364 781403 007514 661867 906372 717709 367156 313075 445811 413115 864291 555811 (313 digits), a[616] = 2
                                                                                      A[617]/B[617] = 18294 874029 083539 034786 724227 224472 682962 424093 700070 817024 053537 459376 113344 743991 000684 627892 728680 242332 790868 288264 887486 307518 516818 400867 347910 521669 132311 191737 904178 115832 469094 723275 782896 424728 219323 208035 484125 560949 876234 622586 754869 962240 523394 098533 008204 292089 531840 155814 909710 643060 241657 358321 (311 digits)/1 778143 304571 059739 716756 946522 885821 817048 068339 343929 472208 805749 122041 556711 971315 831938 957192 851430 073443 192679 702091 755095 955735 212158 684752 824148 019655 187080 503018 677553 530764 830538 392324 894254 710390 534654 876063 437335 836927 776999 297679 471373 305416 600807 634699 033742 927576 334725 108735 869390 544571 570274 015902 (313 digits), a[617] = 1
                                                                                      A[618]/B[618] = 31536 808320 877397 322594 338043 969186 739635 447107 806922 362085 879358 347780 023159 757859 997027 916212 037039 333913 255489 052040 645244 147297 806211 244461 523880 660775 588787 184028 935107 051283 938863 210504 759981 076771 213033 387852 993501 062443 309410 449355 130573 061322 825097 643484 183236 900090 827748 984007 675563 486940 673852 785736 (311 digits)/3 065173 582182 797950 919240 758681 329236 608610 387248 495472 636229 220707 974570 340027 485131 002593 712745 170371 337925 593267 285148 807435 186781 302730 105410 241950 962905 906908 169067 653442 400395 109768 199998 249956 464937 290009 644324 403721 560904 378471 465585 864738 086819 608322 296566 940115 645285 701881 421811 315201 957687 434565 571713 (313 digits), a[618] = 1
                                                                                      A[619]/B[619] = 1 311304 015185 056829 261154 584029 961129 008015 755513 783887 662545 107229 718357 062894 816250 878829 192586 247292 932776 265919 421931 342496 346728 571479 423789 827017 613468 272585 736924 243567 218473 962486 353970 942120 572347 953692 110008 217669 121125 562063 046147 108365 476476 352397 481384 520917 195813 469548 500129 607813 607627 869621 573497 (313 digits)/127 450260 174065 775727 405628 052457 384522 770073 945527 658307 557606 854776 079425 497838 861686 938281 179744 836654 928392 516638 393192 859938 613768 624093 006572 744137 498797 370315 434792 468691 946964 331034 592253 142469 772819 425050 293363 989919 834007 294329 386699 925634 865020 542021 793943 578484 384290 111863 402999 792670 809756 387462 456135 (315 digits), a[619] = 41
                                                                                      A[620]/B[620] = 1 342840 823505 934226 583748 922073 930315 747651 202621 590810 024630 986588 066137 086054 574110 875857 108798 284332 266689 521408 473971 987740 494026 377690 668251 350898 274243 861372 920953 178674 269757 901349 564475 702101 649119 166725 497861 211170 183568 871473 495502 238938 537799 177495 124868 704154 095904 297297 484137 283377 094568 543474 359233 (313 digits)/130 515433 756248 573678 324868 811138 713759 378684 332776 153780 193836 075484 053995 837866 346817 940874 892490 007026 266318 109905 678341 667373 800549 926823 111982 986088 461703 277223 603860 122134 347359 440802 792251 392426 237756 715059 937688 393641 394911 672800 852285 790372 951840 150344 090510 518600 029575 813744 824811 107872 767443 822028 027848 (315 digits), a[620] = 1
                                                                                      A[621]/B[621] = 57 710618 602434 294345 778609 311135 034390 409366 265620 597908 697046 543928 496114 677186 928907 664827 762114 189248 133736 165075 328754 827597 095836 434487 490346 564745 131710 450248 416957 747886 548305 819168 061950 430389 835352 956163 020179 086816 831018 163949 857241 143784 064041 807192 725870 095389 223793 956042 833895 509651 579506 695544 661283 (314 digits)/5609 098477 936505 870217 050118 120283 362416 674815 922126 117075 698722 025106 347250 688225 428040 455026 664325 131758 113753 132676 883542 889638 236865 550663 709858 159852 890335 013706 796917 598334 536060 844751 866811 624371 758601 457567 676276 522858 420297 551965 182703 121298 842306 856473 595385 359685 626474 289146 045066 323327 042396 912639 625751 (316 digits), a[621] = 42
                                                                                      A[622]/B[622] = 463 027789 642980 288992 812623 411154 205439 022581 327586 374079 601003 338016 035054 503550 005372 194479 205711 798317 336578 842011 104010 608517 260717 853590 591023 868859 327927 463360 256615 161766 656204 454694 060079 145220 331942 816029 659293 905704 831714 183072 353431 389211 050133 635036 931829 467267 886255 945640 155301 360589 730622 107831 649497 (315 digits)/45003 303257 248295 535414 725813 773405 613092 777211 709785 090385 783612 276334 832001 343669 771141 581088 207091 061091 176343 171320 746684 784479 695474 332132 790848 264911 584383 386877 979200 908810 635846 198817 726744 387400 306568 375601 347900 576508 757292 088522 313910 760763 690295 002132 853593 396085 041370 126913 185341 694489 106619 123145 033856 (317 digits), a[622] = 8
                                                                                      A[623]/B[623] = 520 738408 245414 583338 591232 722289 239829 431947 593206 971988 298049 881944 531169 180736 934279 859306 967825 987565 470315 007086 432765 436114 356554 288078 081370 433604 459637 913608 673572 909653 204510 273862 122029 575610 167295 772192 679472 992521 662732 347022 210672 532995 114175 442229 657699 562657 110049 901682 989196 870241 310128 803376 310780 (315 digits)/50612 401735 184801 405631 775931 893688 975509 452027 631911 207461 482334 301441 179252 031895 199182 036114 871416 192849 290096 303997 630227 674117 932339 882796 500706 424764 474718 400584 776118 507145 171907 043569 593556 011772 065169 833169 024177 099367 177589 640487 496613 882062 532601 858606 448978 755770 667844 416059 230408 017816 149016 035784 659607 (317 digits), a[623] = 1
                                                                                      A[624]/B[624] = 1504 504606 133809 455669 995088 855732 685097 886476 514000 318056 197103 101905 097392 865023 873931 913093 141363 773448 277208 856183 969541 480745 973826 429746 753764 736068 247203 290577 603760 981073 065225 002418 304138 296440 666534 360415 018239 890748 157178 877116 774776 455201 278484 519496 247228 592582 106355 749006 133695 101072 350879 714584 271057 (316 digits)/146228 106727 617898 346678 277677 560783 564111 681266 973607 505308 748280 879217 190505 407460 169505 653317 949923 446789 756535 779316 007140 132715 560154 097725 792261 114440 533820 188047 531437 923100 979660 285956 913856 410944 436908 041939 396254 775243 112471 369497 307138 524888 755498 719345 751550 907626 377058 959031 646157 730121 404651 194714 353070 (318 digits), a[624] = 2
                                                                                      A[625]/B[625] = 2025 243014 379224 039008 586321 578021 924927 318424 107207 290044 495152 983849 628562 045760 808211 772400 109189 761013 747523 863270 402306 916860 330380 717824 835135 169672 706841 204186 277333 890726 269735 276280 426167 872050 833830 132607 697712 883269 819911 224138 985448 988196 392659 961725 904928 155239 216405 650689 122891 971313 661008 517960 581837 (316 digits)/196840 508462 802699 752310 053609 454472 539621 133294 605518 712770 230615 180658 369757 439355 368687 689432 821339 639639 046632 083313 637367 806833 492493 980522 292967 539205 008538 588632 307556 430246 151567 329526 507412 422716 502077 875108 420431 874610 290061 009984 803752 406951 288100 577952 200529 663397 044903 375090 876565 747937 553667 230499 012677 (318 digits), a[625] = 1
                                                                                      A[626]/B[626] = 3529 747620 513033 494678 581410 433754 610025 204900 621207 608100 692256 085754 725954 910784 682143 685493 250553 534462 024732 719454 371848 397606 304207 147571 588899 905740 954044 494763 881094 871799 334960 278698 730306 168491 500364 493022 715952 774017 977090 101255 760225 443397 671144 481222 152156 747821 322761 399695 256587 072386 011888 232544 852894 (316 digits)/343068 615190 420598 098988 331287 015256 103732 814561 579126 218078 978896 059875 560262 846815 538193 342750 771263 086428 803167 862629 644507 939549 052648 078248 085228 653645 542358 776679 838994 353347 131227 615483 421268 833660 938985 917047 816686 649853 402532 379482 110890 931840 043599 297297 952080 571023 421962 334122 522723 478058 958318 425213 365747 (318 digits), a[626] = 1
                                                                                      A[627]/B[627] = 5554 990634 892257 533687 167732 011776 534952 523324 728414 898145 187409 069604 354516 956545 490355 457893 359743 295475 772256 582724 774155 314466 634587 865396 424035 075413 660885 698950 158428 762525 604695 554979 156474 040542 334194 625630 413665 657287 797001 325394 745674 431594 063804 442948 057084 903060 539167 050384 379479 043699 672896 750505 434731 (316 digits)/539909 123653 223297 851298 384896 469728 643353 947856 184644 930849 209511 240533 930020 286170 906881 032183 592602 726067 849799 945943 281875 746382 545142 058770 378196 192850 550897 365312 146550 783593 282794 945009 928681 256377 441063 792156 237118 524463 692593 389466 914643 338791 331699 875250 152610 234420 466865 709213 399289 225996 511985 655712 378424 (318 digits), a[627] = 1
                                                                                      A[628]/B[628] = 86854 607143 896896 499986 097390 610402 634313 054771 547431 080278 503392 129820 043709 258967 037475 553893 646702 966598 608581 460325 984178 114605 823025 128517 949426 036945 867329 979016 257526 309683 405393 603386 077416 776626 513283 877478 920937 633334 932109 982176 945341 917308 628211 125443 008430 293729 410267 155460 948772 727881 105339 490126 373859 (317 digits)/8 441705 469988 770065 868464 104734 061185 754042 032404 348800 180817 121564 667884 510567 139379 141408 825504 660303 977446 550167 051778 872644 135287 229778 959803 758171 546403 805819 256362 037256 107246 373151 790632 351487 679322 554942 799391 373464 516808 791433 221485 830541 013710 019097 426050 241234 087330 424947 972323 512061 868006 638103 260899 042107 (319 digits), a[628] = 15
                                                                                      A[629]/B[629] = 352973 419210 479843 533631 557294 453387 072204 742410 918139 219259 200977 588884 529353 992413 640257 673467 946555 161870 206582 424028 710867 772889 926688 379468 221739 223197 130205 615015 188534 001259 226269 968523 466141 147048 387330 135546 097416 190627 525441 254102 527042 100828 576648 944720 090806 077978 180235 672228 174569 955224 094254 711010 930167 (318 digits)/34 306731 003608 303561 325154 803832 714471 659522 077473 579845 654117 695769 912071 972288 843687 472516 334202 233818 635854 050468 153058 772452 287531 464257 897985 410882 378465 774174 390760 295575 212578 775402 107539 334631 973667 660834 989721 730976 591698 858326 275410 236807 393631 408089 579451 117546 583742 166657 598507 447536 698023 064398 699308 546852 (320 digits), a[629] = 4
                                                                                      A[630]/B[630] = 1 145774 864775 336427 100880 769273 970563 850927 282004 301848 738056 106324 896473 631771 236207 958248 574297 486368 452209 228328 732412 116781 433275 603090 266922 614643 706537 257946 824061 823128 313461 084203 508956 475840 217771 675274 284117 213186 205217 508433 744484 526468 219794 358157 959603 280848 527663 950974 172145 472482 593553 388103 623159 164360 (319 digits)/111 361898 480813 680749 843928 516232 204600 732608 264825 088337 143170 208874 404100 427433 670441 558957 828111 361759 885008 701571 510955 190000 997881 622552 653759 990818 681801 128342 428642 923981 744982 699358 113250 355383 600325 537447 768556 566394 291905 366412 047716 540963 194604 243366 164403 593873 838556 924920 767845 854671 962075 831299 358824 682663 (321 digits), a[630] = 3
                                                                                      A[631]/B[631] = 2 644523 148761 152697 735393 095842 394514 774059 306419 521836 695371 413627 381831 792896 464829 556754 822062 919292 066288 663239 888852 944430 639441 132868 913313 451026 636271 646099 263138 834790 628181 394676 986436 417821 582591 737878 703780 523788 601062 542308 743071 579978 540417 292964 863926 652503 133306 082184 016519 119535 142330 870461 957329 258887 (319 digits)/257 030527 965235 665061 013011 836297 123673 124738 607123 756519 940458 113518 720272 827156 184570 590431 990424 957338 405871 453611 174969 152454 283294 709363 205505 392519 742068 030859 248046 143538 702544 174118 334040 045399 174318 735730 526834 863765 175509 591150 370843 318733 782839 894821 908258 305294 260856 016499 134199 156880 622174 726997 416957 912178 (321 digits), a[631] = 2
                                                                                      A[632]/B[632] = 40 813622 096192 626893 131777 206909 888285 461816 878297 129399 168627 310735 623950 525218 208651 309570 905241 275749 446539 176927 065206 283241 024892 596123 966624 380043 250611 949435 771144 344987 736182 004358 305502 743163 956647 743454 840825 070015 221155 643064 890558 226146 326053 752630 918503 068395 527255 183734 419932 265509 728516 445032 983098 047665 (320 digits)/3966 819817 959348 656665 039106 060689 059697 603687 371681 436136 250041 911655 208192 834776 439000 415437 684485 721835 973080 505739 135492 476815 247302 263000 736340 878614 812821 591231 149335 077062 283145 311133 123851 036371 215106 573405 671079 522871 924549 233667 610366 321969 937202 665694 788278 173287 751397 172407 780833 207881 294696 736260 613193 365333 (322 digits), a[632] = 15
                                                                                      A[633]/B[633] = 247 526255 725916 914056 526056 337301 724227 544960 576202 298231 707135 278041 125534 944205 716737 414180 253510 573788 745523 724802 280090 643876 788796 709612 713059 731286 139943 342713 890004 904717 045273 420826 819452 876805 322478 198607 748730 943879 927996 400698 086420 936856 496739 808750 374945 062876 296837 184590 536112 712593 513429 540659 855917 544877 (321 digits)/24057 949435 721327 605051 247648 200431 481858 746862 837212 373337 440709 583449 969429 835814 818573 083058 097339 288354 244354 488045 987924 013345 767108 287367 623550 664208 618997 578246 144056 605912 401416 040917 077146 263626 464958 176164 553312 000996 722804 993156 033041 250553 406055 888990 637927 345020 769239 050945 819198 404168 390355 144561 096118 104176 (323 digits), a[633] = 6
                                                                                      A[634]/B[634] = 288 339877 822109 540949 657833 544211 612513 006777 454499 427630 875762 588776 749485 469423 925388 723751 158751 849538 192062 901729 345296 927117 813689 305736 679684 111329 390555 292149 661149 249704 781455 425185 124955 619969 279125 942062 589556 013895 149152 043762 976979 163002 822793 561381 293448 131271 824092 368324 956044 978103 241945 985692 839015 592542 (321 digits)/28024 769253 680676 261716 286754 261120 541556 350550 208893 809473 690751 495105 177622 670591 257573 498495 781825 010190 217434 993785 123416 490161 014410 550368 359891 542823 431819 169477 293391 682974 684561 352050 200997 299997 680064 749570 224391 523868 647354 226823 643407 572523 343258 554685 426205 518308 520636 223353 600031 612049 685051 880821 709311 469509 (323 digits), a[634] = 1
                                                                                      A[635]/B[635] = 1112 545889 192245 536905 499556 969936 561766 565292 939700 581124 334423 044371 373991 352477 492903 585433 729766 122403 321712 429990 315981 425230 229864 626822 752112 065274 311609 219162 873452 653831 389639 696382 194319 736713 159856 024795 517398 985565 375452 531987 017358 425864 965120 492894 255289 456691 769114 289565 404247 646903 239267 497738 372964 322503 (322 digits)/108132 257196 763356 390200 107910 983793 106527 798513 463893 801758 512964 068765 502297 847588 591293 578545 442814 318924 896659 469401 358173 483828 810339 938472 703225 292678 914455 086678 024231 654836 455100 097067 680138 163619 505152 424875 226486 572602 664867 673626 963263 968123 435831 553046 916543 899946 331147 721006 619293 240317 445510 787026 224052 512703 (324 digits), a[635] = 3
                                                                                      A[636]/B[636] = 1400 885767 014355 077855 157390 514148 174279 572070 394200 008755 210185 633148 123476 821901 418292 309184 888517 971941 513775 331719 661278 352348 043553 932559 431796 176603 702164 511312 534601 903536 171095 121567 319275 356682 438981 966858 106954 999460 524604 575749 994337 588867 787914 054275 548737 587963 593206 657890 360292 625006 481213 483431 211979 915045 (322 digits)/136157 026450 444032 651916 394665 244913 648084 149063 672787 611232 203715 563870 679920 518179 848867 077041 224639 329115 114094 463186 481589 973989 824750 488841 063116 835502 346274 256155 317623 337811 139661 449117 881135 463617 185217 174445 450878 096471 312221 900450 606671 540646 779090 107732 342749 418254 851783 944360 219324 852367 130562 667847 933363 982212 (324 digits), a[636] = 1
                                                                                      A[637]/B[637] = 3914 317423 220955 692615 814337 998232 910325 709433 728100 598634 754794 310667 620944 996280 329488 203803 506802 066286 349263 093429 638538 129926 316972 491941 615704 418481 715938 241787 942656 460903 731829 939516 832870 450078 037819 958511 731308 984486 424661 683487 006033 603600 540948 601445 352764 632618 955527 605346 124832 896916 201694 464600 796924 152593 (322 digits)/380446 310097 651421 694032 897241 473620 402696 096640 809469 024222 920395 196506 862138 883948 289027 732627 892092 977155 124848 395774 321353 431808 459840 916154 829458 963683 607003 598988 659478 330458 734422 995303 442409 090853 875586 773766 128242 765545 289311 474528 176607 049416 994011 768511 602042 736456 034715 609727 057942 945051 706636 122722 090780 477127 (324 digits), a[637] = 2
                                                                                      A[638]/B[638] = 9229 520613 456266 463086 786066 510613 994930 990937 850401 206024 719774 254483 365366 814462 077268 716791 902122 104514 212301 518578 938354 612200 677498 916442 663205 013567 134040 994888 419914 825343 634755 000600 985016 256838 514621 883881 569572 968433 373927 942724 006404 796068 869811 257166 254266 853201 504261 868582 609958 418838 884602 412632 805828 220231 (322 digits)/897049 646645 746876 039982 189148 192154 453476 342345 291725 659678 044505 956884 404198 286076 426922 542297 008825 283425 363791 254735 124296 837606 744432 321150 722034 762869 560281 454132 636579 998728 608507 439724 765953 645324 936390 721977 707363 627561 890844 849506 959885 639480 767113 644755 546834 891166 921215 163814 335210 742470 543834 913292 114924 936466 (324 digits), a[638] = 2
                                                                                      A[639]/B[639] = 13143 838036 677222 155702 600404 508846 905256 700371 578501 804659 474568 565150 986311 810742 406756 920595 408924 170800 561564 612008 576892 742126 994471 408384 278909 432048 849979 236676 362571 286247 366584 940117 817886 706916 552441 842393 300881 952919 798589 626211 012438 399669 410759 858611 607031 485820 459789 473928 734791 315755 086296 877233 602752 372824 (323 digits)/1 277495 956743 398297 734015 086389 665774 856172 438986 101194 683900 964901 153391 266337 170024 715950 274924 900918 260580 488639 650509 445650 269415 204273 237305 551493 726553 167285 053121 296058 329187 342930 435028 208362 736178 811977 495743 835606 393107 180156 324035 136492 688897 761125 413267 148877 627622 955930 773541 393153 687522 250471 036014 205705 413593 (325 digits), a[639] = 1
                                                                                      A[640]/B[640] = 48661 034723 487932 930194 587280 037154 710701 092052 585906 620003 143479 949936 324302 246689 297539 478578 128894 616915 896995 354604 669032 838581 660913 141595 499933 309713 683978 704917 507628 684085 734509 820954 438676 377588 171947 411061 472218 827192 769696 821357 043719 995077 102090 833001 075361 310662 883630 290368 814332 366104 143493 044333 614085 338703 (323 digits)/4 729537 516875 941769 242027 448317 189479 021993 659303 595309 711380 939209 417058 203209 796150 574773 367071 711580 065166 829710 206263 461247 645852 357252 033067 376515 942529 062136 613496 524754 986290 637298 744809 391041 853861 372323 209209 214182 806883 431313 821612 369363 706174 050489 884556 993467 774035 789007 484438 514671 805037 295248 021334 732041 177245 (325 digits), a[640] = 3
                                                                                      A[641]/B[641] = 207787 976930 628953 876480 949524 657465 748061 068581 922128 284672 048488 364896 283520 797499 596914 834907 924502 638464 149546 030427 253024 096453 638123 974766 278642 670903 585894 056346 393086 022590 304624 223935 572592 217269 240231 486639 189757 261690 877376 911639 187318 379977 819123 190615 908476 728471 994310 635403 992120 780171 660269 054568 059093 727636 (324 digits)/20 195646 024247 165374 702124 879658 423690 944147 076200 482433 529424 721738 821624 079176 354627 015043 743211 747238 521247 807480 475563 290640 852824 633281 369575 057557 496669 415831 507107 395078 274349 892125 414265 772530 151624 301270 332580 692337 620640 905411 610484 613947 513593 963084 951495 122748 723766 111960 711295 451840 907671 431463 121353 133870 122573 (326 digits), a[641] = 4
                                                                                      A[642]/B[642] = 256449 011654 116886 806675 536804 694620 458762 160634 508034 904675 191968 314832 607823 044188 894454 313486 053397 255380 046541 385031 922056 935035 299037 116361 778575 980617 269872 761263 900714 706676 039134 044890 011268 594857 412178 897700 661976 088883 647073 732996 231038 375054 921214 023616 983838 039134 877940 925772 806453 146275 803762 098901 673179 066339 (324 digits)/24 925183 541123 107143 944152 327975 613169 966140 735504 077743 240805 660948 238682 282386 150777 589817 110283 458818 586414 637190 681826 751888 498676 990533 402642 434073 439198 477968 120603 919833 260640 529424 159075 163572 005485 673593 541789 906520 427524 336725 432096 983311 219768 013574 836052 116216 497801 900968 195733 966512 712708 726711 142687 865911 299818 (326 digits), a[642] = 1
                                                                                      A[643]/B[643] = 5 593217 221667 083576 816667 222423 244495 382066 441906 590861 282851 079822 976381 047804 725466 380455 418115 045845 001445 126915 116097 616219 732194 917903 418363 628738 263866 253222 042888 308094 862787 126439 166625 809232 709274 895988 338353 091255 128247 465925 304560 039124 256131 164617 686572 569075 550304 431070 076632 927636 851963 539273 131503 195854 120755 (325 digits)/543 624500 387832 415397 529323 767146 300260 233102 521786 115041 586343 601651 833952 009285 520956 401203 059164 382428 835955 188484 793925 080299 325041 434482 825066 173099 719837 453162 039789 711576 747801 010032 754844 207542 266823 446734 710168 729266 598651 976645 684521 263483 128722 248156 508589 563295 177606 032292 821708 748607 874554 692397 117798 318007 418751 (327 digits), a[643] = 21
                                                                                      A[644]/B[644] = 22 629317 898322 451194 073344 426497 672601 987027 928260 871480 036079 511260 220356 799041 946054 416275 985946 236777 261160 554201 849422 386935 863814 970650 789816 293529 036082 282760 932817 133094 157824 544890 711393 248199 431956 996132 251113 026996 601873 510774 951236 387535 399579 579684 769907 260140 240352 602221 232304 517000 554129 960854 624914 456595 549359 (326 digits)/2199 423185 092452 768734 061447 396560 814210 898550 822648 537909 586180 067555 574490 319528 234603 194629 346940 988533 930235 391129 857527 073085 798842 728464 702907 126472 318548 290616 279762 766140 251844 569555 178451 993741 072779 460532 382464 823586 822132 243308 170182 037243 734657 006200 870410 369397 208226 030139 482568 960944 210927 496299 613881 137940 974822 (328 digits), a[644] = 4
                                                                                      A[645]/B[645] = 186 627760 408246 693129 403422 634404 625311 278289 867993 562701 571487 169904 739235 440140 293901 710663 305684 940063 090729 560529 911476 711706 642714 683109 736893 976970 552524 515309 505425 372848 125383 485564 857771 794828 164930 865046 347257 307227 943235 552124 914451 139407 452767 802095 845830 650197 473125 248839 935069 063641 285003 226110 130818 848618 515627 (327 digits)/18139 009981 127454 565270 020902 939632 813947 421509 102974 418318 275784 142096 429874 565511 397781 958237 834692 290700 277838 317523 654141 664985 715783 262200 448323 184878 268223 778092 277891 840698 762557 566474 182460 157470 849059 130993 769887 317961 175709 923111 045977 561433 005978 297763 471872 518472 843414 273408 682260 436161 561974 662794 028847 421535 217327 (329 digits), a[645] = 8
                                                                                      A[646]/B[646] = 395 884838 714815 837452 880189 695306 923224 543607 664247 996883 179053 851069 698827 679322 533857 837602 597316 116903 442619 675261 672375 810349 149244 336870 263604 247470 141131 313379 943667 878790 408591 516020 426936 837855 761818 726224 945627 641452 488344 615024 780138 666350 305115 183876 461568 560535 186603 099901 102442 644283 124136 413074 886552 153832 580613 (327 digits)/38477 443147 347361 899274 103253 275826 442105 741569 028597 374546 137748 351748 434239 450551 030167 111105 016325 569934 485912 026177 165810 403057 230409 252865 599553 496228 854995 846800 835546 447537 776959 702503 543372 308682 770897 722519 922239 459509 173552 089530 262137 160109 746613 601727 814155 406342 895054 576956 847089 833267 334876 821887 671575 981011 409476 (329 digits), a[646] = 2
                                                                                      A[647]/B[647] = 1374 282276 552694 205488 043991 720325 394984 909112 860737 553351 108648 723113 835718 478107 895475 223471 097633 290773 418588 586314 928604 142754 090447 693720 527706 719380 975918 455449 336429 009219 351158 033626 138582 308395 450387 043721 184140 231585 408269 397199 254867 138458 368113 353725 230536 331803 032934 548543 242396 996490 657412 465334 790475 310116 257466 (328 digits)/133571 339423 169540 263092 330662 767112 140264 646216 188766 541956 689029 197341 732592 917164 488283 291552 883669 000503 735574 396055 151572 874157 407011 020797 246983 673564 833211 318494 784531 183312 093436 673984 812577 083519 161752 298553 536605 696488 696366 191701 832389 041762 245819 102946 914338 737501 528578 004279 223529 935963 566605 128457 043575 364569 445755 (330 digits), a[647] = 3
                                                                                      A[648]/B[648] = 48495 764518 059113 029534 419899 906695 747696 362557 790062 364171 981759 160053 948974 413098 875490 659091 014481 293973 093220 196284 173520 806742 314913 617088 733339 425804 298277 254106 718683 201467 699122 692935 277317 631696 525365 256466 390535 746941 777773 516998 700488 512393 189082 564259 530340 173641 339312 298914 586337 521456 133572 699792 553188 007901 591923 (329 digits)/4 713474 322958 281271 107505 676450 124751 351368 359135 635426 343030 253770 258709 074991 551308 120082 315455 944740 587565 231015 888107 470860 998566 475794 980769 243982 070998 017391 994118 294137 863461 047243 291971 983570 231853 432228 171893 703438 836613 546368 799094 395753 621788 350282 204869 816011 218896 395284 726729 670637 591992 166056 317884 196713 740942 010901 (331 digits), a[648] = 35
                                                                                      A[649]/B[649] = 49870 046794 611807 235022 463891 627021 142681 271670 650799 917523 090407 883167 784692 891206 770965 882562 112114 584746 511808 782599 102124 949496 405361 310809 261046 145185 274195 709556 055112 210687 050280 726561 415899 940091 975752 300187 574675 978527 186042 914197 955355 650851 557195 917984 760876 505444 372246 847457 828734 517946 790985 165127 343663 318017 849389 (329 digits)/4 847045 662381 450811 370598 007112 891863 491633 005351 824192 884986 942799 456050 807584 468472 608365 607008 828409 588068 966590 284162 622433 872723 882806 001566 490965 744562 850603 312613 078669 046773 140679 965956 796147 315372 593980 470447 240044 533102 242734 990796 228142 663550 596101 307816 730349 956397 923862 731008 894167 527955 732661 446341 240289 105511 456656 (331 digits), a[649] = 1
                                                                                      A[650]/B[650] = 148235 858107 282727 499579 347683 160738 033058 905899 091662 199218 162574 926389 518360 195512 417422 424215 238710 463466 116837 761482 377770 705735 125636 238707 255431 716174 846668 673218 828907 622841 799684 146058 109117 511880 476869 856841 539887 703996 149859 345394 611199 814096 303474 400229 052093 184530 083805 993830 243806 557349 715543 030047 240514 643937 290701 (330 digits)/14 407565 647721 182893 848701 690675 908478 334634 369839 283812 113004 139369 170810 690160 488253 336813 529473 601559 763703 164196 456432 715728 744014 241406 983902 225913 560123 718598 619344 451475 957007 328603 223885 575864 862598 620189 112788 183527 902818 031838 780686 852038 948889 542484 820503 276711 131692 243010 188747 458972 647903 631379 210566 677291 951964 924213 (332 digits), a[650] = 2
                                                                                      A[651]/B[651] = 198105 904901 894534 734601 811574 787759 175740 177569 742462 116741 252982 809557 303053 086719 188388 306777 350825 048212 628646 544081 479895 655231 530997 549516 516477 861360 120864 382774 884019 833528 849964 872619 525017 451972 452622 157029 114563 682523 335902 259592 566555 464947 860670 318213 812969 689974 456052 841288 072541 075296 506528 195174 584177 961955 140090 (330 digits)/19 254611 310102 633705 219299 697788 800341 826267 375191 108004 997991 082168 626861 497744 956725 945179 136482 429969 351772 130786 740595 338162 616738 124212 985468 716879 304686 569201 931957 530145 003780 469283 189842 372012 177971 214169 583235 423572 435920 274573 771483 080181 612440 138586 128320 007061 088090 166872 919756 353140 175859 364040 656907 917581 057476 380869 (332 digits), a[651] = 1
                                                                                      A[652]/B[652] = 346341 763009 177262 234181 159257 948497 208799 083468 834124 315959 415557 735946 821413 282231 605810 730992 589535 511678 745484 305563 857666 360966 656633 788223 771909 577534 967533 055993 712927 456370 649649 018677 634134 963852 929492 013870 654451 386519 485761 604987 177755 279044 164144 718442 865062 874504 539858 835118 316347 632646 222071 225221 824692 605892 430791 (330 digits)/33 662176 957823 816599 068001 388464 708820 160901 745030 391817 110995 221537 797672 187905 444979 281992 665956 031529 115475 294983 197028 053891 360752 365619 969370 942792 864810 287800 551301 981620 960787 797886 413727 947877 040569 834358 696023 607100 338738 306412 552169 932220 561329 681070 948823 283772 219782 409883 108503 812112 823762 995419 867474 594873 009441 305082 (332 digits), a[652] = 1
                                                                                      A[653]/B[653] = 890789 430920 249059 202964 130090 684753 593338 344507 410710 748660 084098 281450 945879 651182 400009 768762 529896 071570 119615 155209 195228 377164 844265 125964 060297 016430 055930 494762 309874 746270 149262 909974 793287 379678 311606 184770 423466 455562 307425 469566 922066 023036 188959 755099 543095 438983 535770 511524 705236 340588 950670 645618 233563 173740 001672 (330 digits)/86 578965 225750 266903 355302 474718 217982 148070 865251 891639 219981 525244 222205 873555 846684 509164 468394 493027 582722 720753 134651 445945 338242 855452 924210 602465 034307 144803 034561 493386 925356 065056 017298 267766 259110 882886 975282 637773 113396 887398 875822 944622 735099 500728 025966 574605 527654 986639 136763 977365 823385 354880 391857 107327 076358 991033 (332 digits), a[653] = 2
                                                                                      A[654]/B[654] = 3 909499 486690 173499 046037 679620 687511 582152 461498 476967 310599 751950 861750 604931 886961 205849 806042 709119 797959 223944 926400 638579 869626 033694 292080 013097 643255 191255 035042 952426 441451 246700 658576 807284 482566 175916 752952 348317 208768 715463 483254 866019 371188 919983 738841 037444 630438 682940 881217 137292 995002 024753 807694 758945 300852 437479 (331 digits)/379 978037 860824 884212 489211 287337 580748 753185 206037 958373 990921 322514 686495 682128 831717 318650 539534 003639 446366 177995 735633 837672 713723 787431 666213 352653 002038 867012 689547 955168 662212 058110 482921 018942 077013 365906 597154 158192 792325 856008 055461 710711 501727 683983 052689 582194 330402 356439 655559 721576 117304 414941 434903 024181 314877 269214 (333 digits), a[654] = 4
                                                                                      A[655]/B[655] = 4 800288 917610 422558 249001 809711 372265 175490 806005 887678 059259 836049 143201 550811 538143 605859 574805 239015 869529 343560 081609 833808 246790 877959 418044 073394 659685 247185 529805 262301 187721 395963 568551 600571 862244 487522 937722 771783 664331 022888 952821 788085 394225 108943 493940 580540 069422 218711 392741 842529 335590 975424 453312 992508 474592 439151 (331 digits)/466 557003 086575 151115 844513 762055 798730 901256 071289 850013 210902 847758 908701 555684 678401 827815 007928 496667 029088 898748 870285 283618 051966 642884 590423 955118 036346 011815 724109 448555 587568 123166 500219 286708 336124 248793 572436 795965 905722 743406 931284 655334 236827 184711 078656 156799 858057 343078 792323 698941 940689 769821 826760 131508 391236 260247 (333 digits), a[655] = 1
                                                                                      A[656]/B[656] = 27 910944 074742 286290 291046 728177 548837 459606 491527 915357 606898 932196 577758 358989 577679 235147 680068 904199 145605 941745 334449 807621 103580 423491 382300 380070 941681 427182 684069 263932 380058 226518 501334 810143 793788 613531 441566 207235 530423 829908 247363 806446 342314 464701 208543 940144 977549 776497 844926 349939 672956 901876 074259 721487 673814 633234 (332 digits)/2712 763053 293700 639791 711780 097616 574403 259465 562487 208440 045435 561309 230003 460552 223726 457725 579176 486974 591810 671740 087060 255762 973557 001854 618333 128243 183768 926091 310095 197946 600052 673942 984017 452483 757634 609874 459338 138022 320939 573042 711884 987382 685863 607538 445970 366193 620689 071833 617178 216285 820753 264050 568703 681723 271058 570449 (334 digits), a[656] = 5
                                                                                      A[657]/B[657] = 32 711232 992352 708848 540048 537888 921102 635097 297533 803035 666158 768245 720959 909801 115822 841007 254874 143215 015135 285305 416059 641429 350371 301450 800344 453465 601366 674368 213874 526233 567779 622482 069886 410715 656033 101054 379288 979019 194754 852797 200185 594531 736539 573644 702484 520685 046971 995209 237668 192469 008547 877300 527572 713996 148407 072385 (332 digits)/3179 320056 380275 790907 556293 859672 373134 160721 633777 058453 256338 409068 138705 016236 902128 285540 587104 983641 620899 570488 957345 539381 025523 644739 208757 083361 220114 937907 034204 646502 187620 797109 484236 739192 093758 858668 031774 933988 226662 316449 643169 642716 922690 792249 524626 522993 478746 414912 409501 915227 761443 033872 395463 813231 662294 830696 (334 digits), a[657] = 1
                                                                                      A[658]/B[658] = 60 622177 067094 995138 831095 266066 469940 094703 789061 718393 273057 700442 298718 268790 693502 076154 934943 047414 160741 227050 750509 449050 453951 724942 182644 833536 543048 101550 897943 790165 947837 849000 571221 220859 449821 714585 820855 186254 725178 682705 447549 400978 078854 038345 911028 460830 024521 771707 082594 542408 681504 779176 601832 435483 822221 705619 (332 digits)/5892 083109 673976 430699 268073 957288 947537 420187 196264 266893 301773 970377 368708 476789 125854 743266 166281 470616 212710 242229 044405 795143 999080 646593 827090 211604 403883 863998 344299 844448 787673 471052 468254 191675 851393 468542 491113 072010 547601 889492 355054 630099 608554 399787 970596 889187 099435 486746 026680 131513 582196 297922 964167 494954 933353 401145 (334 digits), a[658] = 1
                                                                                      A[659]/B[659] = 93 333410 059447 703987 371143 803955 391042 729801 086595 521428 939216 468688 019678 178591 809324 917162 189817 190629 175876 512356 166569 090479 804323 026392 982989 287002 144414 775919 111818 316399 515617 471482 641107 631575 105854 815640 200144 165273 919933 535502 647734 995509 815393 611990 613512 981515 071493 766916 320262 734877 690052 656477 129405 149479 970628 778004 (332 digits)/9071 403166 054252 221606 824367 816961 320671 580908 830041 325346 558112 379445 507413 493026 027983 028806 753386 454257 833609 812718 001751 334525 024604 291333 035847 294965 623998 801905 378504 490950 975294 268161 952490 930867 945152 327210 522888 005998 774264 205941 998224 272816 531245 192037 495223 412180 578181 901658 436182 046741 343639 331795 359631 308186 595648 231841 (334 digits), a[659] = 1
                                                                                      A[660]/B[660] = 620 622637 423781 219063 057958 089798 816196 473510 308634 846966 908356 512570 416787 340341 549451 579128 073846 191189 216000 301187 749923 991929 279889 883300 080580 555549 409536 757065 568853 688563 041542 677896 417867 010310 084950 608427 021720 177898 244779 895721 333959 374036 971215 710289 592106 349920 453484 373205 004170 951674 821820 718039 378263 332363 645994 373643 (333 digits)/60320 502105 999489 760340 214280 859056 871566 905640 176512 218972 650448 247050 413189 434945 293752 916106 686600 196163 214369 118537 054913 802294 146706 394592 042173 981398 147876 675430 615326 790154 639439 080024 183199 776883 522307 431805 628441 108003 193187 125144 344400 266998 796025 552012 941937 362270 568526 896696 643772 411961 644032 288695 121955 344074 507242 792191 (335 digits), a[660] = 6
                                                                                      A[661]/B[661] = 2575 823959 754572 580239 602976 163150 655828 623842 321134 909296 572642 518969 686827 539958 007131 233674 485201 955386 039877 717107 166265 058196 923882 559593 305311 509199 782561 804181 387233 070651 681788 183068 312575 672815 445657 249348 287024 876866 899053 118387 983572 491657 700256 453148 981938 381196 885431 259736 336946 541576 977335 528634 642458 478934 554606 272576 (334 digits)/250353 411590 052211 262967 681491 253188 806939 203469 536090 201237 159905 367647 160171 232807 202994 693233 499787 238910 691086 286866 221406 543701 611429 869701 204543 220558 215505 503627 839811 651569 533050 588258 685290 038402 034382 054433 036652 438011 547012 706519 375825 340811 715347 400089 262972 861262 852289 488445 011271 694587 919768 486575 847452 684484 624619 400605 (336 digits), a[661] = 4
                                                                                      A[662]/B[662] = 23803 038275 214934 441219 484743 558154 718654 088091 198849 030636 062139 183297 598235 199963 613632 682198 440663 789663 574899 755152 246309 515701 594832 919639 828384 138347 452592 994698 053951 324428 177636 325511 231048 065649 095865 852561 604944 069700 336257 961213 186111 798956 273523 788630 429551 780692 422365 710832 036689 825867 617840 475751 160389 642774 637450 826827 (335 digits)/2 313501 206416 469391 127049 347702 137756 134019 736866 001324 030107 089596 555874 854730 530210 120705 155208 184685 346359 434145 700333 047572 695608 649575 221902 883062 966422 087426 208081 173631 654280 436894 374352 350810 122501 831745 921702 958313 050107 116301 483818 726828 334304 234152 152816 308693 113636 239132 292701 745217 663252 921948 667877 749029 504436 128817 397636 (337 digits), a[662] = 9
                                                                                      A[663]/B[663] = 26378 862234 969507 021459 087719 721305 374482 711933 519983 939932 634781 702267 285062 739921 620763 915872 925865 745049 614777 472259 412574 573898 518715 479233 133695 647547 235154 798879 441184 395079 859424 508579 543623 738464 541523 101909 891968 946567 235311 079601 169684 290613 973780 241779 411490 161889 307796 970568 373636 367444 595176 004385 802848 121709 192057 099403 (335 digits)/2 563854 618006 521602 390017 029193 390944 940958 940335 537414 231344 249501 923522 014901 763017 323699 848441 684472 585270 125231 987199 268979 239310 261005 091604 087606 186980 302931 711709 013443 305849 969944 962611 036100 160903 866127 976135 994965 488118 663314 190338 102653 675115 949499 552905 571665 974899 091421 781146 756489 357840 841717 154453 596482 188920 753436 798241 (337 digits), a[663] = 1
                                                                                      A[664]/B[664] = 7 330747 877361 768379 385386 783106 359743 450365 293676 234400 391975 896670 711335 560614 158252 565237 378998 905475 168406 868259 571009 529466 485591 279020 667217 862078 508931 590472 284303 262028 761549 238225 202044 814823 620327 097765 081601 680342 268824 517427 010737 188660 299027 010650 761527 412326 624030 682126 558271 533963 608020 481593 690618 549319 356220 837267 361458 (337 digits)/712 501230 394222 953253 161766 434271 429504 779646 209809 865066 112464 201629 371472 982518 886008 785563 173554 783591 466184 123406 154530 554821 984550 947985 596235 149976 759965 999510 351477 897427 374722 111649 017609 350554 692872 749195 311373 563753 258976 854332 207473 161896 341422 245528 307659 660168 160684 562965 670353 292769 785166 077600 451523 974595 835484 830810 510393 (339 digits), a[664] = 277
                                                                                      A[665]/B[665] = 14 687874 616958 506265 792232 653932 440792 275213 299285 988784 723884 428123 124938 406291 056426 751238 673870 736816 081863 351296 614278 471507 545081 076756 813668 857852 665410 416099 367485 965241 918178 335874 912669 173270 979118 737053 265113 252653 484216 270165 101075 547004 888667 995081 764834 236143 409950 672050 087111 441563 583485 558363 385622 901486 834150 866591 822319 (338 digits)/1427 566315 406452 428108 713549 897736 249954 500251 359955 267546 456272 652760 666467 979939 535034 894826 195551 251655 517638 372044 296260 378623 208412 156976 284074 387559 706912 301952 414664 808298 055294 193242 997829 737209 546649 364518 598883 122472 006072 371978 605284 426446 357960 440556 168224 892002 296268 217353 121853 342028 928172 996918 057501 545673 859890 415057 819027 (340 digits), a[665] = 2
                                                                                      A[666]/B[666] = 51 394371 728237 287176 762084 744903 682120 276005 191534 200754 563629 181040 086150 779487 327532 818953 400611 115923 413996 922149 413844 943989 120834 509291 108224 435636 505162 838770 386761 157754 516084 245849 940052 334636 557683 308924 876941 438302 721473 327922 313963 829674 965030 995896 056030 120756 853882 698276 819605 858654 358477 156683 847487 253779 858673 437042 828415 (338 digits)/4995 200176 613580 237579 302416 127480 179368 280400 289675 667705 481282 159911 370876 922337 491113 470041 760208 538558 019099 239539 043311 690691 609787 418914 448458 312655 880702 905367 595472 322321 540604 691378 011098 562183 332820 842751 108022 931169 277193 970268 023326 441235 415303 567196 812334 336175 049489 215025 035913 318856 569685 068354 624028 611617 415156 075983 967474 (340 digits), a[666] = 3
                                                                                      A[667]/B[667] = 66 082246 345195 793442 554317 398836 122912 551218 490820 189539 287513 609163 211089 185778 383959 570192 074481 852739 495860 273446 028123 415496 665915 586047 921893 293489 170573 254869 754247 122996 434262 581724 852721 507907 536802 045978 142054 690956 205689 598087 415039 376679 853698 990977 820864 356900 263833 370326 906717 300217 941962 715047 233110 155266 692824 303634 650734 (338 digits)/6422 766492 020032 665688 015966 025216 429322 780651 649630 935251 937554 812672 037344 902277 026148 364867 955759 790213 536737 611583 339572 069314 818199 575890 732532 700215 587615 207320 010137 130619 595898 884621 008928 299392 879470 207269 706906 053641 283266 342246 628610 867681 773264 007752 980559 228177 345757 432378 157766 660885 497858 065272 681530 157291 275046 491041 786501 (340 digits), a[667] = 1
                                                                                      A[668]/B[668] = 513 970096 144607 841274 642306 536756 542508 134534 627275 527529 576224 445182 563775 079936 015249 810297 921984 085099 885018 836271 610708 852465 782243 611626 561477 490060 699175 622858 666491 018729 555922 317923 909102 889989 315297 630771 871324 274996 161300 514534 219239 466433 940923 932740 802080 619058 700716 290565 166626 960179 952216 162014 479258 340646 708443 562485 383553 (339 digits)/49954 565620 753808 897395 414178 303995 184627 744961 837092 214469 044165 848615 632291 238276 674152 024117 450527 070052 776262 520622 420316 175895 337184 450149 576187 214164 994009 356607 666432 236658 711896 883725 073596 657933 489112 293639 056365 306658 260058 365994 423602 515007 828151 621467 676248 933416 469791 241672 140279 945055 054691 525263 394739 712656 340481 513276 472981 (341 digits), a[668] = 7
                                                                                      A[669]/B[669] = 2635 932727 068234 999815 765850 082618 835453 223891 627197 827187 168635 835076 029964 585458 460208 621681 684402 278238 920954 454804 081667 677825 577133 644180 729280 743792 666451 369163 086702 216644 213874 171344 398235 957854 113290 199837 498676 065937 012192 170758 511236 708849 558318 654681 831267 452193 767414 823152 739852 101117 703043 525119 629401 858500 235042 116061 568499 (340 digits)/256195 594595 789077 152665 086857 545192 352461 505460 835092 007597 158384 055750 198801 093660 396908 485455 208395 140477 418050 214695 441152 948791 504121 826638 613468 771040 557661 990358 342298 313913 155383 303246 376911 589060 325031 675464 988732 586932 583558 172218 746623 442720 914022 115091 361803 895259 694713 640738 859166 386160 771315 691589 655228 720572 977454 057424 151406 (342 digits), a[669] = 5
                                                                                      A[670]/B[670] = 3149 902823 212842 841090 408156 619375 377961 358426 254473 354716 744860 280258 593739 665394 475458 431979 606386 363338 805973 291075 692376 530291 359377 255807 290758 233853 365626 992021 753193 235373 769796 489268 307338 847843 428587 830609 370000 340933 173492 685292 730476 175283 499242 587422 633348 071252 468131 113717 906479 061297 655259 687134 108660 199146 943485 678546 952052 (340 digits)/306150 160216 542886 050060 501035 849187 537089 250422 672184 222066 202549 904365 831092 331937 071060 509572 658922 210530 194312 735317 861469 124686 841306 276788 189655 985205 551671 346966 008730 550571 867280 186971 450508 246993 814143 969104 045097 893590 843616 538213 170225 957728 742173 736559 038052 828676 164504 882410 999446 331215 826007 216853 049968 433229 317935 570700 624387 (342 digits), a[670] = 1
                                                                                      A[671]/B[671] = 5785 835550 281077 840906 174006 701994 213414 582317 881671 181903 913496 115334 623704 250852 935667 053661 290788 641577 726927 745879 774044 208116 936510 899988 020038 977646 032078 361184 839895 452017 983670 660612 705574 805697 541878 030446 868676 406870 185684 856051 241712 884133 057561 242104 464615 523446 235545 936870 646331 162415 358303 212253 738062 057647 178527 794608 520551 (340 digits)/562345 754812 331963 202725 587893 394379 889550 755883 507276 229663 360933 960116 029893 425597 467968 995027 867317 351007 612362 950013 302622 073478 345428 103426 803124 756246 109333 337324 351028 864485 022663 490217 827419 836054 139175 644569 033830 480523 427174 710431 916849 400449 656195 851650 399856 723935 859218 523149 858612 717376 597322 908442 705197 153802 295389 628124 775793 (342 digits), a[671] = 1
                                                                                      A[672]/B[672] = 66794 093876 304699 091058 322230 341311 725521 763922 952856 355659 793317 548939 454486 424776 767796 022253 805061 420693 802178 495753 206862 819577 660997 155675 511186 987959 718488 965054 992043 207571 590173 756008 068661 710516 389246 165524 925440 816505 216026 101856 389317 900747 132416 250571 744118 829161 059136 419295 016121 847866 596595 021925 227342 833265 907291 419240 678113 (341 digits)/6 491953 463152 194481 280041 967863 187366 322147 565141 252222 748363 172823 465642 159920 013509 218719 454879 199413 071613 930305 185464 190311 932948 641015 414483 024028 303912 754338 057533 870048 059907 116578 579367 552126 443589 345076 059363 417233 179348 542538 352964 255569 362674 960328 104713 436476 791970 615908 637059 444186 222358 396559 209722 807137 125054 567221 480073 158110 (343 digits), a[672] = 11
                                                                                      A[673]/B[673] = 72579 929426 585776 931964 496237 043305 938936 346240 834527 537563 706813 664274 078190 675629 703463 075915 095850 062271 529106 241632 980907 027694 597508 055663 531225 965605 750567 326239 831938 659589 573844 416620 774236 516213 931124 195971 794117 223375 401710 957907 631030 784880 189977 492676 208734 352607 294682 356165 662453 010281 954898 234178 965404 890913 085819 213849 198664 (341 digits)/7 054299 217964 526444 482767 555756 581746 211698 321024 759498 978026 533757 425758 189813 439106 686688 449907 066730 422621 542668 135477 492934 006426 986443 517909 827153 060158 863671 394858 221076 924392 139242 069585 379546 279643 484251 703932 451063 659871 969713 063396 172418 763124 616523 956363 836333 515906 475127 160209 302798 939734 993882 118165 512334 278856 862611 108197 933903 (343 digits), a[673] = 1
                                                                                      A[674]/B[674] = 139374 023302 890476 023022 818467 384617 664458 110163 787383 893223 500131 213213 532677 100406 471259 098168 900911 482965 331284 737386 187769 847272 258505 211339 042412 953565 469056 291294 823981 867161 164018 172628 842898 226730 320370 361496 719558 039880 617737 059764 020348 685627 322393 743247 952853 181768 353818 775460 678574 858148 551493 256104 192747 724178 993110 633089 876777 (342 digits)/13 546252 681116 720925 762809 523619 769112 533845 886166 011721 726389 706580 891400 349733 452615 905407 904786 266143 494235 472973 320941 683245 939375 627458 932392 851181 364071 618009 452392 091124 984299 255820 648952 931672 723232 829327 763295 868296 839220 512251 416360 427988 125799 576852 061077 272810 307877 091035 797268 746985 162093 390441 327888 319471 403911 429832 588271 092013 (344 digits), a[674] = 1
                                                                                      A[675]/B[675] = 1 187572 115849 709585 116147 043976 120247 254601 227551 133598 683351 707863 369982 339607 478881 473535 861266 303141 925994 179384 140722 483065 805872 665549 746375 870529 594129 503017 656598 423793 596878 885989 797651 517422 330056 494087 087945 550581 542420 343607 436019 793820 269898 769127 438659 831559 806754 125232 559851 091051 875470 366844 283012 507386 684345 030704 278568 212880 (343 digits)/115 424320 666898 293850 585243 744714 734646 482465 410352 853272 789144 186404 556960 987681 060033 929951 688197 195878 376505 326454 703010 958901 521432 006114 977052 636603 972731 807747 013994 950076 798786 185807 261208 832928 065506 118873 810299 397438 373636 067724 394279 596323 769521 231340 444982 018815 978923 203413 538359 278680 236482 117412 741272 068105 510148 301271 814366 670007 (345 digits), a[675] = 8
                                                                                      A[676]/B[676] = 16 765383 645198 824667 649081 434133 068079 228875 295879 657765 460147 410218 392966 287181 804747 100761 155897 144898 446883 842662 707500 950691 129489 576201 660601 229827 271378 511303 483672 757092 223465 567875 339750 086810 847521 237589 592734 427699 633765 428241 164041 133832 464210 090177 884485 594690 476326 107074 613375 953301 114733 687313 218279 296161 305009 422970 533044 857097 (344 digits)/1629 486742 017692 834833 956221 949626 054163 288361 631105 957540 774408 316244 688854 177268 293090 924731 539547 008440 765310 043339 163095 107867 239423 713068 611129 763636 982316 926467 648321 392200 167305 857122 305876 592665 640318 493561 107487 432434 070125 460392 936274 776520 899096 815618 290825 536234 012801 938825 334298 648508 472843 034219 705697 272948 545987 647637 989404 472111 (346 digits), a[676] = 14
                                                                                      A[677]/B[677] = 17 952955 761048 534252 765228 478109 188326 483476 523430 791364 143499 118081 762948 626789 283628 574297 017163 448040 372878 022046 848223 433756 935362 241751 406977 100356 865508 014321 140271 180885 820344 453865 137401 604233 177577 731676 680679 978281 176185 771848 600060 927652 734108 859305 323145 426250 283080 232307 173227 044352 990204 054157 501291 803547 989354 453674 811613 069977 (344 digits)/1744 911062 684591 128684 541465 694340 788809 770827 041458 810813 563552 502649 245815 164949 353124 854683 227744 204319 141815 369793 866106 066768 760855 719183 588182 400240 955048 734214 662316 342276 966092 042929 567085 425593 705824 612434 917786 829872 443761 528117 330554 372844 668618 046958 735807 555049 991725 142238 872657 927188 709325 151632 446969 341054 056135 948909 803771 142118 (346 digits), a[677] = 1
                                                                                      A[678]/B[678] = 34 718339 406247 358920 414309 912242 256405 712351 819310 449129 603646 528300 155914 913971 088375 675058 173060 592938 819761 864709 555724 384448 064851 817953 067578 330184 136886 525624 623943 937978 043810 021740 477151 691044 025098 969266 273414 405980 809951 200089 764102 061485 198318 949483 207631 020940 759406 339381 786602 997654 104937 741470 719571 099709 294363 876645 344657 927074 (344 digits)/3374 397804 702283 963518 497687 643966 842973 059188 672564 768354 337960 818893 934669 342217 646215 779414 767291 212759 907125 413133 029201 174636 000279 432252 199312 163877 937365 660682 310637 734477 133397 900051 872962 018259 346143 105996 025274 262306 513886 988510 266829 149365 567714 862577 026633 091284 004527 081064 206956 575697 182168 185852 152666 614002 602123 596547 793175 614229 (346 digits), a[678] = 1
                                                                                      A[679]/B[679] = 156 826313 386037 969934 422468 127078 213949 332883 800672 587882 558085 231282 386608 282673 637131 274529 709405 819795 651925 480885 071120 971549 194769 513563 677290 421093 413054 116819 636046 932797 995584 540827 046008 368409 277973 608741 774337 602204 415990 572207 656469 173593 527384 657238 153669 510013 320705 589834 319639 034969 409955 020040 379576 202385 166809 960256 190244 778273 (345 digits)/15242 502281 493726 982758 532216 270208 160702 007581 731717 884230 915395 778224 984492 533819 937987 972342 296909 055358 770317 022325 982910 765312 761973 448192 385431 055752 704511 376943 904867 280185 499683 643137 058933 498631 090397 036419 018883 879098 499309 482158 397870 970306 939477 497266 842339 920186 009833 466495 700484 229977 437997 895041 057635 797064 464630 335100 976473 599034 (347 digits), a[679] = 4
                                                                                      A[680]/B[680] = 818 849906 336437 208592 526650 547633 326152 376770 822673 388542 394072 684712 088956 327339 274032 047706 720089 691917 079389 269134 911329 242194 038699 385771 454030 435651 202157 109722 804178 601968 021732 725875 707193 533090 414967 012975 145102 417002 889904 061128 046447 929452 835242 235673 975978 571007 362934 288553 384798 172501 154712 841672 617452 111635 128413 677926 295881 818439 (345 digits)/79586 909212 170918 877311 158768 995007 646483 097097 331154 189508 914939 710018 857132 011317 336155 641126 251836 489553 758710 524762 943755 001199 810146 673214 126467 442641 459922 545401 834974 135404 631816 115737 167629 511414 798128 288091 119693 657799 010434 399302 256184 000900 265102 348911 238332 692214 053694 413542 709377 725584 372157 661057 440845 599324 925275 272052 675543 609399 (347 digits), a[680] = 5
                                                                                      A[681]/B[681] = 5069 925751 404661 221489 582371 412878 170863 593508 736712 919136 922521 339554 920346 246709 281323 560770 029943 971298 128261 095694 539096 424713 426965 828192 401473 035000 625996 775156 461118 544606 125980 896081 289169 566951 767775 686592 644952 104221 755414 938975 935156 750310 538838 071282 009540 936057 498311 321154 628428 069976 338232 070076 084288 872195 937292 027813 965535 688907 (346 digits)/492763 957554 519240 246625 484830 240254 039600 590165 718643 021284 405034 038338 127284 601723 954921 819099 807927 992681 322580 170903 645440 772511 622853 487477 144235 711601 464046 649354 914712 092613 290580 337560 064710 567119 879166 764965 737045 825892 561915 877971 934974 975708 530091 590734 272336 073470 331999 947751 956750 583483 670943 861385 702709 393014 016281 967417 029735 255428 (348 digits), a[681] = 6
                                                                                      A[682]/B[682] = 5888 775657 741098 430082 109021 960511 497015 970279 559386 307679 316594 024267 009302 574048 555355 608476 750033 663215 207650 364829 450425 666907 465665 213963 855503 470651 828153 884879 265297 146574 147713 621956 996363 100042 182742 699567 790054 521224 645319 000103 981604 679763 374080 306955 985519 507064 861245 609708 013226 242477 492944 911748 701740 983831 065705 705740 261417 507346 (346 digits)/572350 866766 690159 123936 643599 235261 686083 687263 049797 210793 319973 748356 984416 613041 291077 460226 059764 482235 081290 695666 589195 773711 433000 160691 270703 154242 923969 194756 749686 228017 922396 453297 232340 078534 677295 053056 856739 483691 572350 277274 191158 976608 795193 939645 510668 765684 385694 361294 666128 309068 043101 522443 143554 992338 941557 239469 705278 864827 (348 digits), a[682] = 1
                                                                                      A[683]/B[683] = 10958 701409 145759 651571 691393 373389 667879 563788 296099 226816 239115 363821 929648 820757 836679 169246 779977 634513 335911 460523 989522 091620 892631 042156 256976 505652 454150 660035 726415 691180 273694 518038 285532 666993 950518 386160 435006 625446 400733 939079 916761 430073 912918 378237 995060 443122 359556 930862 641654 312453 831176 981824 786029 856027 002997 733554 226953 196253 (347 digits)/1 065114 824321 209399 370562 128429 475515 725684 277428 768440 232077 725007 786695 111701 214765 245999 279325 867692 474916 403870 866570 234636 546223 055853 648168 414938 865844 388015 844111 664398 320631 212976 790857 297050 645654 556461 818022 593785 309584 134266 155246 126133 952317 325285 530379 783004 839154 717694 309046 622878 892551 714045 383828 846264 385352 957839 206886 735014 120255 (349 digits), a[683] = 1
                                                                                      A[684]/B[684] = 16847 477066 886858 081653 800415 333901 164895 534067 855485 534495 555709 388088 938951 394806 392034 777723 530011 297728 543561 825353 439947 758528 358296 256120 112479 976304 282304 544914 991712 837754 421408 139995 281895 767036 133261 085728 225061 146671 046052 939183 898366 109837 286998 685193 980579 950187 220802 540570 654880 554931 324121 893573 487770 839858 068703 439294 488370 703599 (347 digits)/1 637465 691087 899558 494498 772028 710777 411767 964691 818237 442871 044981 535052 096117 827806 537076 739551 927456 957151 485161 562236 823832 319934 488853 808859 685642 020087 311985 038868 414084 548649 135373 244154 529390 724189 233756 871079 450524 793275 706616 432520 317292 928926 120479 470025 293673 604839 103388 670341 289007 201619 757146 906271 989819 377691 899396 446356 440292 985082 (349 digits), a[684] = 1
                                                                                      A[685]/B[685] = 27806 178476 032617 733225 491808 707290 832775 097856 151584 761311 794824 751910 868600 215564 228713 946970 309988 932241 879473 285877 429469 850149 250927 298276 369456 481956 736455 204950 718128 528934 695102 658033 567428 434030 083779 471888 660067 772117 446786 878263 815127 539911 199917 063431 975640 393309 580359 471433 296534 867385 155298 875398 273800 695885 071701 172848 715323 899852 (347 digits)/2 702580 515409 108957 865060 900458 186293 137452 242120 586677 674948 769989 321747 207819 042571 783076 018877 795149 432067 889032 428807 058468 866157 544707 457028 100580 885931 700000 882980 078482 869280 348350 035011 826441 369843 790218 689102 044310 102859 840882 587766 443426 881243 445765 000405 076678 443993 821082 979387 911886 094171 471192 290100 836083 763044 857235 653243 175307 105337 (349 digits), a[685] = 1
                                                                                      A[686]/B[686] = 44653 655542 919475 814879 292224 041191 997670 631924 007070 295807 350534 139999 807551 610370 620748 724693 840000 229970 423035 111230 869417 608677 609223 554396 481936 458261 018759 749865 709841 366689 116510 798028 849324 201066 217040 557616 885128 918788 492839 817447 713493 649748 486915 748625 956220 343496 801162 012003 951415 422316 479420 768971 761571 535743 140404 612143 203694 603451 (347 digits)/4 340046 206497 008516 359559 672486 897070 549220 206812 404915 117819 814970 856799 303936 870378 320152 758429 722606 389219 374193 991043 882301 186092 033561 265887 786222 906019 011985 921848 492567 417929 483723 279166 355832 094033 023975 560181 494834 896135 547499 020286 760719 810169 566244 470430 370352 048832 924471 649729 200893 295791 228339 196372 825903 140736 756632 099599 615600 090419 (349 digits), a[686] = 1
                                                                                      A[687]/B[687] = 1 054840 255963 180561 475449 212961 654706 779199 632108 314201 564880 857109 971906 442287 254088 505934 614928 629994 221561 609280 844187 426074 849734 263069 049395 453995 021960 167929 451862 044479 962784 374851 012697 101885 058553 075712 297077 018032 904252 782102 679561 225481 484126 398979 281828 968708 293736 007085 747524 179089 580664 181976 561748 789946 017977 301007 252142 400299 779225 (349 digits)/102 523643 264840 304834 134933 367656 818915 769516 998805 899725 384804 514319 028131 198367 061273 146589 462761 415096 384113 495494 222816 351396 146274 316616 572447 183707 724368 975677 085495 407533 481658 473985 455838 010579 532603 341656 573276 425512 713977 433360 054361 939982 515143 469387 820303 594775 567151 083930 923159 532431 897369 722993 806675 831855 999990 259773 944034 334109 184974 (351 digits), a[687] = 23
                                                                                      A[688]/B[688] = 3 209174 423432 461160 241226 931109 005312 335269 528248 949674 990449 921864 055719 134413 372636 138552 569479 729982 894655 250877 643793 147642 157880 398430 702582 843921 524141 522548 105451 843281 255042 241063 836120 154979 376725 444177 448847 939227 631546 839147 856131 389938 102127 683853 594112 862345 224704 822419 254576 488684 164309 025350 454218 131409 589675 043426 368570 404593 941126 (349 digits)/311 910976 001017 923018 764359 775457 353817 857771 203230 104091 272233 357927 941192 899038 054197 759921 146713 967895 541559 860676 659492 936489 624914 983410 983229 337346 079125 939017 178334 715167 862904 905679 646680 387570 691843 048945 280010 771373 038067 847579 183372 580667 355599 974407 931341 154678 750286 176264 419207 798188 987900 397320 616400 321471 140707 535953 931702 617927 645341 (351 digits), a[688] = 3
                                                                                      A[689]/B[689] = 4 264014 679395 641721 716676 144070 660019 114469 160357 263876 555330 778974 027625 576700 626724 644487 184408 359977 116216 860158 487980 573717 007614 661499 751978 297916 546101 690477 557313 887761 217826 615914 848817 256864 435278 519889 745924 957260 535799 621250 535692 615419 586254 082832 875941 831053 518440 829505 002100 667773 744973 207327 015966 921355 607652 344433 620712 804893 720351 (349 digits)/414 434619 265858 227852 899293 143114 172733 627288 202036 003816 657037 872246 969324 097405 115470 906510 609475 382991 925673 356170 882309 287885 771189 300027 555676 521053 803494 914694 263830 122701 344563 379665 102518 398150 224446 390601 853287 196885 752045 280939 237734 520649 870743 443795 751644 749454 317437 260195 342367 330620 885270 120314 423076 153327 140697 795727 875736 952036 830315 (351 digits), a[689] = 1
                                                                                      A[690]/B[690] = 11 737203 782223 744603 674579 219250 325350 564207 848963 477428 101111 479812 110970 287814 626085 427526 938296 449937 127088 971194 619754 295076 173109 721430 206539 439754 616344 903503 220079 618803 690695 472893 533754 668708 247282 483956 940697 853748 703146 081648 927516 620777 274635 849519 345996 524452 261586 481429 258777 824231 654255 440004 486151 974120 804979 732293 609996 014381 381828 (350 digits)/1140 780214 532734 378724 562946 061685 699285 112347 607302 111724 586309 102421 879841 093848 285139 572942 365664 733879 392906 573018 424111 512261 167293 583466 094582 379453 686115 768405 705994 960570 552031 665009 851717 183871 140735 830148 986585 165144 542158 409457 658841 621967 097086 861999 434630 653587 385160 696655 103942 459430 758440 637949 462552 628125 422103 127409 683176 522001 305971 (352 digits), a[690] = 2
                                                                                      A[691]/B[691] = 262 482497 888318 023002 557418 967577 817731 527041 837553 767294 779783 334840 468971 908622 400604 050079 826930 258593 912174 226440 122575 065392 816028 532964 295845 972518 105689 567548 399065 501442 413127 019572 591419 968445 875493 166942 441277 739732 005013 417526 941058 272519 628242 772258 487865 369003 273343 420948 695212 800870 138592 887425 711310 352013 317206 454893 040625 121284 120567 (351 digits)/25511 599338 986014 559793 284106 500199 557006 098935 562682 461757 555838 125528 325828 162067 388541 511242 654099 528338 569617 962576 212762 557631 451648 136281 636488 869034 898041 819619 795719 255253 489260 009881 840296 443315 320634 653879 558160 830065 679530 289007 732250 203926 006654 407783 313519 128376 790972 586607 629101 438097 570964 155202 599233 972086 426966 598740 905620 436065 561677 (353 digits), a[691] = 22
                                                                                      A[692]/B[692] = 2111 597186 888767 928624 133930 959872 867202 780542 549393 615786 339378 158535 862745 556793 830917 828165 553738 518688 424482 782715 600354 818218 701337 985144 573307 219899 461861 443890 412603 630342 995711 629474 265114 416275 251227 819496 470919 771604 743253 421864 455982 800934 300578 027587 248919 476478 448333 849018 820480 231192 762998 539410 176634 790227 342631 371437 934996 984654 346364 (352 digits)/205233 574926 420850 857070 835798 063282 155333 903832 108761 805785 033014 106648 486466 390387 393471 662883 598460 960587 949850 273628 126211 973312 780478 673719 186493 331732 870450 325364 071749 002598 466111 744064 574088 730393 705813 061185 451871 805669 978400 721519 516843 253375 150322 124265 942783 680601 712941 389516 136753 964211 326153 879570 256424 404816 837835 917336 928140 010525 799387 (354 digits), a[692] = 8
                                                                                      A[693]/B[693] = 17155 259992 998461 451995 628866 646560 755353 771382 232702 693585 494808 603127 370936 362973 047946 675404 256838 408101 308036 488164 925413 611142 426732 414120 882303 731713 800581 118671 699894 544186 378820 055366 712335 298647 885315 722914 208635 912569 951040 792442 588920 679994 032866 992956 479221 180830 860014 213099 259054 650412 242581 202707 124388 673832 058257 426396 520600 998518 891479 (353 digits)/1 667380 198750 352821 416359 970491 006456 799677 329592 432776 908037 819950 978716 217559 285166 536314 814311 441787 213042 168420 151601 222458 344133 695477 526035 128435 522897 861644 422532 369711 276041 218153 962398 433006 286464 967139 143363 173135 275425 506736 061163 866996 230927 209231 401910 855788 573190 494503 702736 723133 151788 180195 191764 650629 210621 129653 937436 330740 520271 956773 (355 digits), a[693] = 8
                                                                                      A[694]/B[694] = 87887 897151 881075 188602 278264 192676 643971 637453 712907 083713 813421 174172 717427 371659 070651 205186 837930 559194 964665 223540 227422 873930 835000 055748 984825 878468 464767 037248 912076 351274 889811 906307 826790 909514 677806 434067 514099 334454 498457 384077 400586 200904 464912 992369 645025 380632 748404 914515 115753 483253 975904 552945 798578 159387 633918 503420 538001 977248 803759 (353 digits)/8 542134 568678 184957 938870 688253 095566 153720 551794 272646 345974 132769 000229 574262 816220 075045 734440 807397 025798 791951 031634 238503 693981 257866 303894 828670 946222 178672 438025 920305 382804 556881 556056 739120 162718 541508 778001 317548 182797 512081 027338 851824 408011 196479 133820 221726 546554 185459 903199 752419 723152 227129 838393 509570 457922 486105 604518 581842 611885 583252 (355 digits), a[694] = 5
                                                                                      A[695]/B[695] = 105043 157144 879536 640597 907130 839237 399325 408835 945609 777299 308229 777300 088363 734632 118597 880591 094768 967296 272701 711705 152836 485073 261732 469869 867129 610182 265348 155920 611970 895461 268631 961674 539126 208162 563122 156981 722735 247024 449498 176519 989506 880898 497779 985326 124246 561463 608419 127614 374808 133666 218485 755652 922966 833219 692175 929817 058602 975767 695238 (354 digits)/10 209514 767428 537779 355230 658744 102022 953397 881386 705423 254011 952719 978945 791822 101386 611360 548752 249184 238840 960371 183235 460962 038114 953343 829929 957106 469120 040316 860558 290016 658845 775035 518455 172126 449183 508647 921364 490683 458223 018817 088502 718820 638938 405710 535731 077515 119744 679963 605936 475552 874940 407325 030158 160199 668543 615759 541954 912583 132157 540025 (356 digits), a[695] = 1
                                                                                      A[696]/B[696] = 2 608923 668628 989954 562952 049404 334374 227781 449516 407541 738897 210935 829374 838157 002829 917000 339373 112385 774305 509506 304463 895498 515689 116579 332625 795936 522842 833122 779343 599377 842345 336978 986496 765819 905416 192738 201628 859745 263041 286413 620557 148751 342468 411632 640196 626942 855759 350463 977260 111148 691243 219562 688615 949782 156660 246140 819029 944473 395673 489471 (355 digits)/253 570488 986963 091662 464406 498111 544117 035269 705075 202804 442260 998048 494928 577993 249498 747698 904494 787818 757981 840859 429285 301592 608740 138118 222213 799226 205103 146277 091424 880705 195103 157733 998980 870154 943122 749058 890749 093951 180149 963691 151404 103519 742532 933531 991366 082089 420426 504586 445675 165688 721722 002930 562189 354362 502969 264334 611436 483837 783666 543852 (357 digits), a[696] = 24
                                                                                      A[697]/B[697] = 65 328134 872869 628400 714399 142239 198593 093861 646746 134153 249729 581625 511671 042288 805380 043606 364918 904413 324934 010359 323302 540299 377301 176215 785514 765542 681253 093417 639510 596416 954094 693106 624093 684623 843567 381577 197703 216366 823056 609838 690448 708290 442608 788595 990241 797817 955447 370018 559117 153525 414746 707552 971051 667520 749725 845696 405565 670437 867604 932013 (356 digits)/6349 471739 441505 829340 965393 111532 704948 835140 508266 775534 310536 903932 352160 241653 338855 303833 161121 944653 188386 981856 915368 000777 256618 406299 385274 937761 596698 697244 146180 307646 536424 718385 492976 926000 027252 235120 190091 839462 961972 111095 873605 306814 202261 744010 319883 129750 630407 294624 747815 617770 917990 480589 084892 019262 242775 224124 827867 008527 723821 136325 (358 digits), a[697] = 25
                                                                                      A[698]/B[698] = 198 593328 287237 875156 706149 476121 930153 509366 389754 810001 488085 955812 364387 965023 418970 047819 434129 825625 749107 540584 274371 516396 647592 645226 689170 092564 566602 113375 697875 388628 704629 416298 858777 819691 436118 337469 794738 508845 732211 115929 691903 273622 670294 777420 610922 020396 722101 460519 654611 571724 935483 342221 601770 952344 405837 783230 035726 955786 998488 285510 (357 digits)/19301 985707 311480 579685 360585 832709 658963 540691 229875 529407 373871 709845 551409 302953 266064 659198 387860 621778 323142 786430 175389 303924 378595 357016 378038 612510 995199 238009 529965 803644 804377 312890 477911 648155 024879 454419 461024 612340 066066 296978 772220 023962 349318 165562 951015 471341 311648 388460 689122 019001 475693 444697 816865 412149 231294 936709 095037 509420 955129 952827 (359 digits), a[698] = 3
                                                                                      A[699]/B[699] = 263 921463 160107 503557 420548 618361 128746 603228 036500 944154 737815 537437 876059 007312 224350 091425 799048 730039 074041 550943 597674 056696 024893 821442 474684 858107 247855 206793 337385 985045 658724 109405 482871 504315 279685 719046 992441 725212 555267 725768 382351 981913 112903 566016 601163 818214 677548 830538 213728 725250 350230 049774 572822 619865 155563 628926 441292 626224 866093 217523 (357 digits)/25651 457446 752986 409026 325978 944242 363912 375831 738142 304941 684408 613777 903569 544606 604919 963031 548982 566431 511529 768287 090757 304701 635213 763315 763313 550272 591897 935253 676146 111291 340802 031275 970888 574155 052131 689539 651116 451803 028038 408074 645825 330776 551579 909573 270898 601091 942055 683085 436937 636772 393683 925286 901757 431411 474070 160833 922904 517948 678951 089152 (359 digits), a[699] = 1
                                                                                      A[700]/B[700] = 990 357717 767560 385828 967795 331205 316393 319050 499257 642465 701532 568125 992564 986960 092020 322096 831276 015742 971232 193415 067393 686484 722274 109554 113224 666886 310167 733755 710033 343765 680801 744515 307392 332637 275175 494610 772063 684483 398014 293234 838959 219362 009005 475470 414413 475040 754747 952134 295797 747475 986173 491545 320238 811939 872528 670009 359604 834461 596767 938079 (357 digits)/96256 358047 570439 806764 338522 665436 750700 668186 444302 444232 427097 551179 262117 936773 080824 548293 034808 321072 857732 091291 447661 218029 284236 646963 667979 263328 770893 043770 558404 137518 826783 406718 390577 370620 181274 523038 414373 967749 150181 521202 709696 016292 004057 894282 763711 274617 137815 437716 999934 929318 656745 220558 522137 706383 653505 419210 863751 063266 991983 220283 (359 digits), a[700] = 3
                                                                                      A[701]/B[701] = 1254 279180 927667 889386 388343 949566 445139 922278 535758 586620 439348 105563 868623 994272 316370 413522 630324 745782 045273 744358 665067 743180 747167 930996 587909 524993 558022 940549 047419 328811 339525 853920 790263 836952 554861 213657 764505 409695 953282 019003 221311 201275 121909 041487 015577 293255 432296 782672 509526 472726 336403 541319 893061 431805 028092 298935 800897 460686 462861 155602 (358 digits)/121907 815494 323426 215790 664501 609679 114613 044018 182444 749174 111506 164957 165687 481379 685744 511324 583790 887504 369261 859578 538418 522730 919450 410279 431292 813601 362790 979024 234550 248810 167585 437994 361465 944775 233406 212578 065490 419552 178219 929277 355521 347068 555637 803856 034609 875709 079871 120802 436872 566091 050429 145845 423895 137795 127575 580044 786655 581215 670934 309435 (360 digits), a[701] = 1
                                                                                      A[702]/B[702] = 4753 195260 550564 053988 132827 179904 651813 085886 106533 402327 019576 884817 598436 969777 041131 562664 722250 253089 107053 426491 062596 916026 963777 902543 876953 241866 984236 555402 852291 330199 699379 306277 678183 843494 939759 135584 065579 913571 257860 350244 502892 823187 374732 599931 461145 354807 051638 300151 824377 165654 995384 115504 999423 107354 956805 566816 762297 216520 985351 404885 (358 digits)/461979 804530 540718 454136 332027 494474 094539 800240 991636 691754 761616 046050 759180 380912 138058 082266 786180 983585 965517 670027 062916 786222 042587 877801 961857 704132 859265 980843 262054 883949 329539 720701 474975 204945 881493 160772 610845 226405 684841 309034 776260 057497 670971 305850 867540 901744 377428 800124 310552 627591 808032 658094 793823 119769 036232 159345 223717 806914 004786 148588 (360 digits), a[702] = 3
                                                                                      A[703]/B[703] = 20267 060223 129924 105338 919652 669185 052392 265822 961892 195928 517655 644834 262371 873380 480896 664181 519325 758138 473487 450322 915455 407288 602279 541172 095722 492461 494969 162160 456584 649610 137043 079031 502999 210932 313897 755994 026825 063980 984723 419981 232882 494024 620839 441212 860158 712483 638849 983279 807035 135346 317940 003339 890753 861224 855314 566202 850086 326770 404266 775142 (359 digits)/1 969827 033616 486300 032335 992611 587575 492772 244982 148991 516193 157970 349160 202409 005028 237976 840391 728514 821848 231332 539686 790085 667619 089801 921487 278723 630132 799854 902397 282769 784607 485744 320800 261366 764558 759378 855668 508871 325174 917585 165416 460561 577059 239523 027259 504773 482686 589586 321299 679083 076458 282559 778224 599187 616871 272504 217425 681526 808871 690078 903787 (361 digits), a[703] = 4
                                                                                      A[704]/B[704] = 25020 255483 680488 159327 052479 849089 704205 351709 068425 598255 537232 529651 860808 843157 522028 226846 241576 011227 580540 876813 978052 323315 566057 443715 972675 734328 479205 717563 308875 979809 836422 385309 181183 054427 253656 891578 092404 977552 242583 770225 735775 317211 995572 041144 321304 067290 690488 283431 631412 301001 313324 118844 890176 968579 812120 133019 612383 543291 389618 180027 (359 digits)/2 431806 838147 027018 486472 324639 082049 587312 045223 140628 207947 919586 395210 961589 385940 376034 922658 514695 805434 196850 209713 853002 453841 132389 799289 240581 334265 659120 883240 544824 668556 815284 041501 736341 969504 640872 016441 119716 551580 602426 474451 236821 634556 910494 333110 372314 384430 967015 121423 989635 704050 090592 436319 393010 736640 308736 376770 905244 615785 694865 052375 (361 digits), a[704] = 1
                                                                                      A[705]/B[705] = 70307 571190 490900 423993 024612 367364 460802 969241 098743 392439 592120 704137 983989 559695 524953 117874 002477 780593 634569 203950 871560 053919 734394 428604 041073 961118 453380 597287 074336 609229 809887 849649 865365 319786 821211 539150 211635 019085 469890 960432 704433 128448 611983 523501 502766 847065 019826 550143 069859 737348 944588 241029 671107 798384 479554 832242 074853 413353 183503 135196 (359 digits)/6 833440 709910 540337 005280 641889 751674 667396 335428 430247 932088 997143 139582 125587 776908 990046 685708 757906 432716 625032 959114 496090 575301 354581 520065 759886 298664 118096 668878 372419 121721 116312 403803 734050 703568 041122 888550 748304 428336 122438 114318 934204 846173 060511 693480 249402 251548 523616 564147 658354 484558 463744 650863 385209 090151 889976 970967 492016 040443 079809 008537 (361 digits), a[705] = 2
                                                                                      A[706]/B[706] = 95327 826674 171388 583320 077092 216454 165008 320950 167168 990695 129353 233789 844798 402853 046981 344720 244053 791821 215110 080764 849612 377235 300451 872320 013749 695446 932586 314850 383212 589039 646310 234959 046548 374214 074868 430728 304039 996637 712474 730658 440208 445660 607555 564645 824070 914355 710314 833574 701272 038350 257912 359874 561284 766964 291674 965261 687236 956644 573121 315223 (359 digits)/9 265247 548057 567355 491752 966528 833724 254708 380651 570876 140036 916729 534793 087177 162849 366081 608367 272602 238150 821883 168828 349093 029142 486971 319355 000467 632929 777217 552118 917243 790277 931596 445305 470392 673072 681994 904991 868020 979916 724864 588770 171026 480729 971006 026590 621716 635979 490631 685571 647990 188608 554337 087182 778219 826792 198713 347738 397260 656228 774674 060912 (361 digits), a[706] = 1
                                                                                      A[707]/B[707] = 260963 224538 833677 590633 178796 800272 790819 611141 433081 373829 850827 171717 673586 365401 618915 807314 490585 364236 064789 365480 570784 808390 335298 173244 068573 352012 318553 226987 840761 787309 102508 319567 958462 068214 970948 400606 819715 012360 894840 421749 584850 019769 827094 652793 150908 675776 440456 217292 472403 814049 460412 960778 793677 332313 062904 762765 449327 326642 329745 765642 (360 digits)/25 363935 806025 675047 988786 574947 419123 176813 096731 572000 212162 830602 209168 299942 102607 722209 902443 303110 909018 268799 296771 194276 633586 328524 158775 760821 564523 672531 773116 206906 702276 979505 294414 674836 049713 405112 698534 484346 388169 572167 291859 276257 807633 002523 746661 492835 523507 504879 935290 954334 861775 572418 825228 941648 743736 287403 666444 286537 352900 629157 130361 (362 digits), a[707] = 2
                                                                                      A[708]/B[708] = 2 183033 622984 840809 308385 507466 618636 491565 210081 631819 981333 935970 607531 233489 326065 998307 803236 168736 705709 733425 004609 415890 844357 982837 258272 562336 511545 481012 130753 109306 887512 466376 791502 714244 919933 842455 635582 861760 095524 871198 104655 119008 603819 224312 786991 031340 320567 233964 571914 480502 550745 941216 046104 910703 425468 794913 067385 281855 569783 211087 440359 (361 digits)/212 176733 996262 967739 402045 566108 186709 669213 154504 146877 837339 561547 208139 486713 983711 143760 827913 697489 510296 972277 542997 903306 097833 115164 589561 087040 149119 157471 737048 572497 408493 767638 800622 869081 070779 922896 493267 742792 085273 302202 923644 381088 941793 991195 999882 564400 824039 529671 167899 282669 082813 133687 689014 311409 776682 497942 679292 689559 479433 807931 103800 (363 digits), a[708] = 8
                                                                                      A[709]/B[709] = 33 006467 569311 445817 216415 790796 079820 164297 762365 910381 093838 890386 284686 175926 256391 593532 855857 021635 949882 066164 434621 809147 473760 077857 047332 503621 025194 533735 188284 480365 099996 098160 192108 672135 867222 607782 934349 746116 445233 962811 991576 369979 077058 191786 457658 621013 484284 949924 796009 679942 075238 578653 652352 454228 714344 986600 773544 677160 873390 496057 371027 (362 digits)/3208 014945 749970 191139 019470 066570 219768 215010 414293 775167 772256 253810 331260 600651 858274 878622 321148 765453 563472 852962 441739 743868 101083 055993 002192 066423 801311 034607 828844 794367 829683 494087 303757 711052 111412 248560 097550 626227 667269 105211 146524 992591 934542 870463 744899 958847 884100 449947 453780 194371 103972 577734 160443 612795 393973 756543 855834 629929 544407 748123 687361 (364 digits), a[709] = 15
                                                                                      A[710]/B[710] = 35 189501 192296 286626 524801 298262 698456 655862 972447 542201 075172 826356 892217 409415 582457 591840 659093 190372 655591 799589 439231 225038 318118 060694 305605 065957 536740 014747 319037 589671 987508 564536 983611 386380 787156 450238 569932 607876 540758 834010 096231 488987 680877 416099 244649 652353 804852 183889 367924 160444 625984 519869 698457 364932 139813 781513 840929 959016 443173 707144 811386 (362 digits)/3420 191679 746233 158878 421515 632678 406477 884223 568797 922045 609595 815357 539400 087365 841986 022383 149062 462943 073769 825239 984737 647174 198916 171157 591753 153463 950430 192079 565893 366865 238177 261726 104380 580133 182192 171456 590818 369019 752542 407414 070169 373680 876336 861659 744782 523248 708139 979618 621679 477040 186785 711421 849457 924205 170656 254486 535127 319489 023841 556054 791161 (364 digits), a[710] = 1
                                                                                      A[711]/B[711] = 13932 859438 526344 663294 512928 604561 970199 230171 879145 079805 787105 301358 710562 895081 327140 370593 197667 218834 908642 903992 930955 699283 130394 052107 761333 556848 037500 358926 208132 400800 165879 090268 718606 292546 794020 452018 057729 857350 044973 396800 003014 520113 023637 550988 094271 300766 400897 586225 126053 055569 339123 927184 543011 602423 940788 684567 940878 488655 927004 818257 868497 (365 digits)/1 354183 728445 512067 948115 518144 974540 778532 483320 089472 983183 562603 320038 394295 110159 442753 719966 200821 627967 702553 822756 413110 377676 672970 663241 744687 684684 221236 906036 356724 706136 909701 875898 534086 863659 077319 973913 470806 389029 921520 033768 863427 596538 087603 226062 933996 642087 599392 399303 017173 625244 884328 589364 696323 673837 803194 278725 231125 828093 961822 389766 195956 (367 digits), a[711] = 395
                                                                                      A[712]/B[712] = 69699 486693 824019 603099 089444 321072 549452 806722 368172 941230 010699 333150 445031 884822 218159 444806 647429 284547 198806 319554 094009 721453 970088 321233 112272 850197 724241 809378 359699 593672 816904 015880 576642 849114 757258 710328 858581 894626 765625 818010 111304 089552 799065 171039 716006 156185 809340 115014 998189 438291 321604 155792 413515 377051 843757 204353 545322 402296 078197 798434 153871 (365 digits)/6 774338 833907 306572 899456 012240 505382 299140 300824 016162 837963 422612 415549 510875 638163 055754 622214 153170 602781 586538 939022 050289 535557 563769 487366 315191 576885 056614 722261 349516 897549 786686 641218 774814 898428 568792 041023 944850 314169 360142 576258 387307 356371 314352 991974 414765 733686 705101 976133 707547 603264 608428 658245 331076 293394 186627 648112 690756 459958 832953 504885 770941 (367 digits), a[712] = 5
                                                                                      A[713]/B[713] = 83632 346132 350364 266393 602372 925634 519652 036894 247318 021035 797804 634509 155594 779903 545299 815399 845096 503382 107449 223547 024965 420737 100482 373340 873606 407045 761742 168304 567831 994472 982783 106149 295249 141661 551279 162346 916311 751976 810599 214810 114318 609665 822702 722027 810277 456952 210237 701240 124242 493860 660728 082976 956526 979475 784545 888921 486200 890952 005202 616692 022368 (365 digits)/8 128522 562352 818640 847571 530385 479923 077672 784144 105635 821146 985215 735587 905170 748322 498508 342180 353992 230749 289092 761778 463399 913234 236740 150608 059879 261569 277851 628297 706241 603686 696388 517117 308901 762087 646112 014937 415656 703199 281662 610027 250734 952909 401956 218037 348762 375774 304494 375436 724721 228509 492757 247610 027399 967231 989821 926837 921882 288052 794775 894651 966897 (367 digits), a[713] = 1
                                                                                      A[714]/B[714] = 1 073287 640282 028390 799822 317919 428686 785277 249453 335989 193659 584354 947260 312169 243664 761757 229604 788587 325132 488197 002118 393594 770299 175876 801323 595549 734746 865147 829033 173683 527348 610301 289672 119632 549053 372608 658491 854322 918348 492816 395731 483127 405542 671497 835373 439335 639612 332192 529896 489099 364619 250341 151515 891839 130761 258307 871411 379733 093720 140629 198738 422287 (367 digits)/104 316609 582141 130263 070314 376866 264459 231213 710553 283792 691727 245201 242604 372924 618033 037854 728378 401077 371773 055652 080363 611088 494368 404651 294663 033742 715716 390834 261833 824416 141790 143348 846626 481636 043480 322136 220272 932730 752560 740093 896585 396126 791284 137827 608422 599914 242978 359034 481374 404202 345378 521515 629565 659875 900178 064490 770167 753343 916592 370264 240709 373705 (369 digits), a[714] = 12
                                                                                      A[715]/B[715] = 1 156919 986414 378755 066215 920292 354321 304929 286347 583307 214695 382159 581769 467764 023568 307057 045004 633683 828514 595646 225665 418560 191036 276359 174664 469156 141792 626889 997337 741515 521821 593084 395821 414881 690714 923887 820838 770634 670325 303415 610541 597446 015208 494200 557401 249613 096564 542430 231136 613341 858479 911069 234492 848366 110237 042853 760332 865933 984672 145831 815430 444655 (367 digits)/112 445132 144493 948903 917885 907251 744382 308886 494697 389428 512874 230416 978192 278095 366355 536363 070558 755069 602522 344744 842142 074488 407602 641391 445271 093621 977285 668685 890131 530657 745476 839737 363743 790537 805567 968248 235210 348387 455760 021756 506612 646861 744193 539783 826459 948676 618752 663528 856811 128923 573888 014272 877175 687275 867410 054312 697005 675226 204645 165040 135361 340602 (369 digits), a[715] = 1
                                                                                      A[716]/B[716] = 2 230207 626696 407145 866038 238211 783008 090206 535800 919296 408354 966514 529029 779933 267233 068814 274609 422271 153647 083843 227783 812154 961335 452235 975988 064705 876539 492037 826370 915199 049170 203385 685493 534514 239768 296496 479330 624957 588673 796232 006273 080573 420751 165698 392774 688948 736176 874622 761033 102441 223099 161410 386008 740205 240998 301161 631744 245667 078392 286461 014168 866942 (367 digits)/216 761741 726635 079166 988200 284118 008841 540100 205250 673221 204601 475618 220796 651019 984388 574217 798937 156146 974295 400396 922505 685576 901971 046042 739934 127364 693002 059520 151965 355073 887266 983086 210370 272173 849048 290384 455483 281118 208320 761850 403198 042988 535477 677611 434882 548590 861731 022563 338185 533125 919266 535788 506741 347151 767588 118803 467173 428570 121237 535304 376070 714307 (369 digits), a[716] = 1
                                                                                      A[717]/B[717] = 3 387127 613110 785900 932254 158504 137329 395135 822148 502603 623050 348674 110799 247697 290801 375871 319614 055954 982161 679489 453449 230715 152371 728595 150652 533862 018332 118927 823708 656714 570991 796470 081314 949395 930483 220384 300169 395592 258999 099647 616814 678019 435959 659898 950175 938561 832741 417052 992169 715783 081579 072479 620501 588571 351235 344015 392077 111601 063064 432292 829599 311597 (367 digits)/329 206873 871129 028070 906086 191369 753223 848986 699948 062649 717475 706035 198988 929115 350744 110580 869495 911216 576817 745141 764647 760065 309573 687434 185205 220986 670287 728206 042096 885731 632743 822823 574114 062711 654616 258632 690693 629505 664080 783606 909810 689850 279671 217395 261342 497267 480483 686092 194996 662049 493154 550061 383917 034427 634998 173116 164179 103796 325882 700344 511432 054909 (369 digits), a[717] = 1
                                                                                      A[718]/B[718] = 5 617335 239807 193046 798292 396715 920337 485342 357949 421900 031405 315188 639829 027630 558034 444685 594223 478226 135808 763332 681233 042870 113707 180831 126640 598567 894871 610965 650079 571913 620161 999855 766808 483910 170251 516880 779500 020549 847672 895879 623087 758592 856710 825597 342950 627510 568918 291675 753202 818224 304678 233890 006510 328776 592233 645177 023821 357268 141456 718753 843768 178539 (367 digits)/545 968615 597764 107237 894286 475487 762065 389086 905198 735870 922077 181653 419785 580135 335132 684798 668433 067363 551113 145538 687153 445642 211544 733476 925139 348351 363289 787726 194062 240805 520010 805909 784484 334885 503664 549017 146176 910623 872401 545457 313008 732838 815148 895006 696225 045858 342214 708655 533182 195175 412421 085849 890658 381579 402586 291919 631352 532366 447120 235648 887502 769216 (369 digits), a[718] = 1
                                                                                      A[719]/B[719] = 14 621798 092725 171994 528838 951935 978004 365820 538047 346403 685860 979051 390457 302958 406870 265242 508061 012407 253779 206154 815915 316455 379786 090257 403933 730997 808075 340859 123867 800541 811315 796181 614931 917216 270986 254145 859169 436691 954344 891406 862990 195205 149381 311093 636077 193582 970578 000404 498575 352231 690935 540259 633522 246124 535702 634369 439719 826137 345977 869800 517135 668675 (368 digits)/1421 144105 066657 242546 694659 142345 277354 627160 510345 534391 561630 069342 038560 089386 021009 480178 206362 045943 679044 036219 138954 651349 732663 154388 035483 917689 396867 303658 430221 367342 672765 434643 143082 732482 661945 356666 983047 450753 408883 874521 535828 155527 909969 007408 653792 588984 164913 103403 261361 052400 317996 721761 165233 797586 440170 756955 426884 168529 220123 171642 286437 593341 (370 digits), a[719] = 2
                                                                                      A[720]/B[720] = 20 239133 332532 365041 327131 348651 898341 851162 895996 768303 717266 294240 030286 330588 964904 709928 102284 490633 389587 969487 497148 359325 493493 271088 530574 329565 702946 951824 773947 372455 431477 796037 381740 401126 441237 771026 638669 457241 802017 787286 486077 953798 006092 136690 979027 821093 539496 292080 251778 170455 995613 774149 640032 574901 127936 279546 463541 183405 487434 588554 360903 847214 (368 digits)/1967 112720 664421 349784 588945 617833 039420 016247 415544 270262 483707 250995 458345 669521 356142 164976 874795 113307 230157 181757 826108 096991 944207 887864 960623 266040 760157 091384 624283 608148 192776 240552 927567 067368 165609 905684 129224 361377 281285 419978 848836 888366 725117 902415 350017 634842 507127 812058 794543 247575 730417 807611 055892 179165 842757 048875 058236 700895 667243 407291 173940 362557 (370 digits), a[720] = 1
                                                                                      A[721]/B[721] = 156 295731 420451 727283 818758 392499 266397 323960 810024 724529 706725 038731 602461 617081 161203 234739 224052 446840 980894 992567 295953 831733 834238 987877 117954 037957 728704 003632 541499 407729 831660 368443 287114 725101 359650 651332 329855 637384 568469 402412 265535 871791 192026 267930 489271 941237 747052 044966 261022 545423 660231 959307 113750 270432 431256 591194 684508 109975 758019 989681 043462 599173 (369 digits)/15190 933149 717606 691038 817278 467176 553294 740892 419155 426228 947580 826310 246979 776035 514004 635016 329927 839094 290144 308523 921711 330293 342118 369442 759846 779974 717966 943350 800206 624380 022199 118513 636052 204059 821214 696455 887617 980394 377881 814373 477686 374094 985794 324316 103916 032881 714807 787814 823163 785430 430921 375038 556479 051747 339470 099080 834541 074798 890827 022680 504020 131240 (371 digits), a[721] = 7
                                                                                      A[722]/B[722] = 176 534864 752984 092325 145889 741151 164739 175123 706021 492833 423991 332971 632747 947670 126107 944667 326336 937474 370482 962054 793102 191059 327732 258965 648528 367523 431650 955457 315446 780185 263138 164480 668855 126227 800888 422358 968525 094626 370487 189698 751613 825589 198118 404621 468299 762331 286548 337046 512800 715879 655845 733456 753782 845333 559192 870741 148049 293381 245454 578235 404366 446387 (369 digits)/17158 045870 382028 040823 406224 085009 592714 757139 834699 696491 431288 077305 705325 445556 870146 799993 204722 952401 520301 490281 747819 427285 286326 257307 720470 046015 478124 034735 424490 232528 214975 359066 563619 271427 986824 602140 016842 341771 659167 234352 326523 262461 710912 226731 453933 667724 221935 599873 617707 033006 161339 182649 612371 230913 182227 147955 892777 775694 558070 429971 677960 493797 (371 digits), a[722] = 1
                                                                                      A[723]/B[723] = 1038 970055 185372 188909 548207 098255 090093 199579 340132 188696 826681 703589 766201 355431 791742 958075 855737 134212 833309 802841 261464 787030 472900 282705 360595 875574 886958 780919 118733 308656 147351 190846 631390 356240 364092 763127 172481 110516 420905 350906 023604 999737 182618 291037 830770 752894 179793 730198 825026 124821 939460 626590 882664 497100 227220 944900 424754 576881 985292 880858 065294 831108 (370 digits)/100981 162501 627746 895155 848398 892224 516868 526591 592653 908686 104021 212838 773607 003819 864738 634982 353542 601101 891651 759932 660808 466719 773749 655981 362197 010052 108587 117027 922657 787021 097075 913846 454148 561199 755337 707155 971829 689252 673717 986135 110302 686403 540355 457973 373584 371502 824485 787182 911698 950461 237617 288286 618335 206313 250605 838860 298429 953271 681179 172538 893822 600225 (372 digits), a[723] = 5
                                                                                      A[724]/B[724] = 2254 474975 123728 470144 242303 937661 344925 574282 386285 870227 077354 740151 165150 658533 709593 860819 037811 205900 037102 567737 316031 765120 273532 824376 369720 118673 205568 517295 552913 397497 557840 546173 931635 838708 529073 948613 313487 315659 212297 891510 798823 825063 563354 986697 129841 268119 646135 797444 162852 965523 534766 986638 519111 839534 013634 760541 997558 447145 216040 339951 534956 108603 (370 digits)/219120 370873 637521 831135 103021 869458 626451 810323 020007 513863 639330 502983 252539 453196 599624 069957 911808 154605 303605 010147 069436 360724 833825 569270 444864 066119 695298 268791 269805 806570 409127 186759 471916 393827 497500 016451 960501 720277 006603 206622 547128 635268 791623 142678 201102 410729 870907 174239 441104 933928 636573 759222 849041 643539 683438 825676 489637 682237 920428 775049 465605 694247 (372 digits), a[724] = 2
                                                                                      A[725]/B[725] = 21329 244831 298928 420207 728942 537207 194423 368120 816705 020740 522874 364950 252557 282235 178087 705447 196037 987313 167232 912477 105750 673112 934695 702092 688076 943633 737075 436579 094953 886134 167916 106412 016112 904617 125758 300646 993866 951449 331586 374503 213019 425309 252813 171311 999342 165970 995015 907196 290702 814533 752363 506337 554671 052906 349933 789778 402780 601188 929655 940421 879899 808535 (371 digits)/2 073064 500364 365443 375371 775595 717352 154934 819498 772721 533458 857995 739688 046462 082589 261355 264603 559815 992549 624096 851256 285735 713243 278179 779415 365973 605129 366271 536149 350910 046154 779220 594681 701396 105647 232837 855223 616345 171745 733146 845738 034460 403822 664963 742077 183506 068071 662650 355337 881643 355818 966781 121292 259709 998170 401555 269948 705169 093412 965038 147984 084273 848448 (373 digits), a[725] = 9
                                                                                      A[726]/B[726] = 23583 719806 422656 890351 971246 474868 539348 942403 202990 890967 600229 105101 417707 940768 887681 566266 233849 193213 204335 480214 421782 438233 208228 526469 057797 062306 942643 953874 647867 283631 725756 652585 947748 743325 654832 249260 307354 267108 543884 266014 011843 250372 816168 158009 129183 434090 641151 704640 453555 780057 287130 492976 073782 892440 363568 550320 400339 048334 145696 280373 414855 917138 (371 digits)/2 292184 871238 002965 206506 878617 586810 781386 629821 792729 047322 497326 242671 299001 535785 860979 334561 471624 147154 927701 861403 355172 073968 112005 348685 810837 671249 061569 804940 620715 852725 188347 781441 173312 499474 730337 871675 576846 892022 739750 052360 581589 039091 456586 884755 384608 478801 533557 529577 322748 289747 603354 880515 108751 641710 084994 095625 194806 775650 885466 923033 549879 542695 (373 digits), a[726] = 1
                                                                                      A[727]/B[727] = 139247 843863 412212 871967 585174 911549 891168 080136 831659 475578 524019 890457 341096 986079 616495 536778 365283 953379 188910 313549 214662 864278 975838 334437 977062 255168 450295 205952 334290 304292 796699 369341 754856 621245 399919 546948 530638 286992 051007 704573 272235 677173 333653 961357 645259 336424 200774 430398 558481 714820 188015 971217 923585 515108 167776 541380 404475 842859 658137 342288 954179 394225 (372 digits)/13 533988 856554 380269 407906 168683 651406 061867 968607 736366 770071 344626 953044 541469 761518 566251 937410 917936 728324 262606 158273 061596 083083 838206 522844 420161 961374 674120 560852 454489 309780 720959 501887 567958 603020 884527 213601 500579 631859 431897 107540 942405 599279 947898 165854 106548 462079 330438 003224 495384 804556 983555 523867 803468 206720 826525 748074 679202 971667 392372 763151 833671 561923 (374 digits), a[727] = 5
                                                                                      A[728]/B[728] = 162831 563669 834869 762319 556421 386418 430517 022540 034650 366546 124248 995558 758804 926848 504177 103044 599133 146592 393245 793763 636445 302512 184066 860907 034859 317475 392939 159826 982157 587924 522456 021927 702605 364571 054751 796208 837992 554100 594891 970587 284078 927546 149822 119366 774442 770514 841926 135039 012037 494877 475146 464193 997368 407548 531345 091700 804814 891193 803833 622662 369035 311363 (372 digits)/15 826173 727792 383234 614413 047301 238216 843254 598429 529095 817393 841953 195715 840471 297304 427231 271972 389560 875479 190308 019676 416768 157051 950211 871530 230999 632623 735690 365793 075205 162505 909307 283328 741271 102495 614865 085277 077426 523882 171647 159901 523994 638371 404485 050609 491156 940880 863995 532801 818133 094304 586910 404382 912219 848430 911519 843699 874009 747318 277839 686185 383551 104618 (374 digits), a[728] = 1
                                                                                      A[729]/B[729] = 302079 407533 247082 634287 141596 297968 321685 102676 866309 842124 648268 886016 099901 912928 120672 639822 964417 099971 582156 107312 851108 166791 159905 195345 011921 572643 843234 365779 316447 892217 319155 391269 457461 985816 454671 343157 368630 841092 645899 675160 556314 604719 483476 080724 419702 106939 042700 565437 570519 209697 663162 435411 920953 922656 699121 633081 209290 734053 461970 964951 323214 705588 (372 digits)/29 360162 584346 763504 022319 215984 889622 905122 567037 265462 587465 186580 148760 381941 058822 993483 209383 307497 603803 452914 177949 478364 240135 788418 394374 651161 593998 409810 926645 529694 472286 630266 785216 309229 705516 499392 298878 578006 155741 603544 267442 466400 237651 352383 216463 597705 402960 194433 536026 313517 898861 570465 928250 715688 055151 738045 591774 553212 718985 670212 449337 217222 666541 (374 digits), a[729] = 1
                                                                                      A[730]/B[730] = 766990 378736 329035 030893 839613 982355 073887 227893 767270 050795 420786 767590 958608 752704 745522 382690 527967 346535 557558 008389 338661 636094 503877 251597 058702 462763 079407 891385 615053 372359 160766 804466 617529 336203 964094 482523 575254 236285 886691 320908 396708 136985 116774 280815 613846 984392 927327 265914 153075 914272 801471 335017 839276 252861 929588 357863 223396 359300 727775 552565 015464 722539 (372 digits)/74 546498 896485 910242 659051 479271 017462 653499 732504 060020 992324 215113 493236 604353 414950 414197 690739 004556 083086 096136 375575 373496 637323 527048 660279 533322 820620 555312 219084 134594 107079 169840 853761 359730 513528 613649 683034 233438 835365 378735 694786 456795 113674 109251 483536 686567 746801 252862 604854 445168 892027 727842 260884 343595 958734 387611 027248 980435 185289 618264 584859 817996 437700 (374 digits), a[730] = 2
                                                                                      A[731]/B[731] = 2 603050 543742 234187 726968 660438 245033 543346 786358 168119 994510 910629 188788 975728 171042 357239 787894 548319 139578 254830 132480 867093 075074 671536 950136 188028 960933 081458 039936 161608 009294 801455 804669 310049 994428 346954 790728 094393 549950 305973 637885 746439 015674 833798 923171 261243 060117 824682 363180 029746 952516 067576 440465 438782 681242 487886 706670 879479 811955 645297 622646 369608 873205 (373 digits)/252 999659 273804 494231 999473 653797 942010 865621 764549 445525 564437 831920 628470 195001 303674 236076 281600 321165 853061 741323 304675 598854 152106 369564 375213 251130 055860 075747 583897 933476 793524 139789 346500 388421 246102 340341 347981 278322 661837 739751 351801 836785 578673 680137 667073 657408 643363 953021 350589 649024 574944 753992 710903 746475 931354 900878 673521 494518 274854 525006 203916 671211 979641 (375 digits), a[731] = 3
                                                                                      A[732]/B[732] = 8 576142 009963 031598 211799 820928 717455 703927 586968 271630 034328 152674 333957 885793 265831 817241 746374 172924 765270 322048 405831 939940 861318 518488 102005 622789 345562 323782 011194 099877 400243 565134 218474 547679 319489 004958 854707 858434 886136 804612 234565 636025 184009 618171 050329 397576 164746 401374 355454 242316 771821 004200 656414 155624 296589 393248 477875 861835 795167 663668 420504 124291 342154 (373 digits)/833 545476 717899 392938 657472 440664 843495 250365 026152 396597 685637 710875 378647 189357 325973 122426 535539 968053 642271 320106 289602 170059 093642 635741 785919 286712 988200 782554 970777 935024 487651 589208 893262 524994 251835 634673 726978 068406 820878 597989 750191 967151 849695 149664 484757 658793 676893 111926 656623 392242 616861 989820 393595 583023 752799 090247 047813 463990 009853 193283 196609 831632 376623 (375 digits), a[732] = 3
                                                                                      A[733]/B[733] = 11 179192 553705 265785 938768 481366 962489 247274 373326 439750 028839 063303 522746 861521 436874 174481 534268 721243 904848 576878 538312 807033 936393 190025 052141 810818 306495 405240 051130 261485 409538 366590 023143 857729 313917 351913 645435 952828 436087 110585 872451 382464 199684 451969 973500 658819 224864 226056 718634 272063 724337 071777 096879 594406 977831 881135 184546 741315 607123 308966 043150 493900 215359 (374 digits)/1086 545135 991703 887170 656946 094462 785506 115986 790701 842123 250075 542796 007117 384358 629647 358502 817140 289219 495333 061429 594277 768913 245749 005306 161132 537843 044060 858302 554675 868501 281175 728998 239762 913415 497937 975015 074959 346729 482716 337741 101993 803937 428368 829802 151831 316202 320257 064948 007213 041267 191806 743813 104499 329499 684153 991125 721334 958508 284707 718289 400526 502844 356264 (376 digits), a[733] = 1
                                                                                      A[734]/B[734] = 19 755334 563668 297384 150568 302295 679944 951201 960294 711380 063167 215977 856704 747314 702705 991723 280642 894168 670118 898926 944144 746974 797711 708513 154147 433607 652057 729022 062324 361362 809781 931724 241618 405408 633406 356872 500143 811263 322223 915198 107017 018489 383694 070141 023830 056395 389610 627431 074088 514380 496158 075977 753293 750031 274421 274383 662422 603151 402290 972634 463654 618191 557513 (374 digits)/1920 090612 709603 280109 314418 535127 629001 366351 816854 238720 935713 253671 385764 573715 955620 480929 352680 257273 137604 381535 883879 938972 339391 641047 947051 824556 032261 640857 525453 803525 768827 318207 133025 438409 749773 609688 801937 415136 303594 935730 852185 771089 278063 979466 636588 974995 997150 176874 663836 433509 808668 733633 498094 912523 436953 081372 769148 422498 294560 911572 597136 334476 732887 (376 digits), a[734] = 1
                                                                                      A[735]/B[735] = 3428 852072 068320 713243 987084 778519 592965 805213 504311 508500 956767 427472 732668 146965 005010 742609 085489 412423 835418 091239 875354 033673 940518 762800 719647 824942 112482 526056 833244 777251 501812 554883 823127 993422 893217 090856 170315 301383 180824 439858 386395 581127 578758 586367 096100 415221 627502 771632 535947 259889 559684 215928 416698 349817 452712 349508 783657 086508 203461 574728 255399 441039 665108 (376 digits)/333262 221134 753071 346082 051352 671542 602742 494851 106485 140845 128468 427945 744388 637218 951990 559280 830824 797472 300891 067137 505507 211127 960502 906601 001098 186036 625324 726654 458183 878459 288301 778832 253163 758302 208772 451177 810132 165310 004640 219178 530132 202382 533437 277530 281723 990509 827237 664264 850916 038464 091497 662408 274919 196054 277037 068614 784012 050713 243745 420348 705112 367319 145715 (378 digits), a[735] = 173
                                                                                      A[736]/B[736] = 3448 607406 631989 010628 137653 080815 272910 756415 464606 219881 019934 643450 589372 894279 707716 734332 366132 306592 505536 990166 819498 780648 738230 471313 873795 258549 764540 255078 895569 138614 311594 486608 064746 398831 526623 447728 670459 112646 503048 355056 493412 599616 962452 656508 119930 471617 017113 399063 610035 774270 055842 291906 169992 099848 727133 623892 446079 689659 605752 547362 719054 059231 222621 (376 digits)/335182 311747 462674 626191 365771 206670 231743 861202 923339 379566 064181 681617 130153 210934 907611 040210 183505 054745 438495 448673 389387 150100 299894 547648 948150 010592 657586 367511 983637 681985 057129 097039 386189 196711 958546 060866 612069 580446 308235 154909 382317 973471 811501 256996 918312 965505 824387 841139 514752 471973 900166 396041 773014 108577 713990 149987 553160 473211 538306 331921 302248 701795 878602 (378 digits), a[736] = 1
                                                                                      A[737]/B[737] = 331046 555702 107276 722917 064127 455970 519487 664682 641902 397197 850558 555278 723093 103537 238100 504183 868058 538711 861432 157087 727738 195304 072413 537618 730197 387169 743806 758551 912312 945611 103288 782649 974035 882417 922444 625079 863931 002800 970418 170225 260592 544739 011760 954638 489495 218838 253275 682675 489345 815544 864701 947014 565947 835446 530406 619291 161227 604170 749953 574186 565535 068005 814103 (378 digits)/32 175581 837143 707160 834261 799617 305214 618409 309128 823726 199621 225728 181573 108943 676035 175039 379248 263804 998288 957958 691109 497286 470656 450484 933251 075349 192339 096029 640292 903763 667039 715565 997573 941137 445938 270648 233505 956742 307709 286979 935569 850339 682204 626056 692237 521455 713563 144082 572518 752400 875984 607305 286376 711259 510937 106101 317432 334257 005809 382846 952872 418739 037927 612905 (380 digits), a[737] = 95
                                                                                      A[738]/B[738] = 996588 274512 953819 179379 330035 448726 831373 750463 390313 411474 571610 309286 758652 204891 422018 246883 970307 922728 089833 461430 002713 366560 955471 084170 064387 420058 995960 530734 632507 975447 621460 834557 986854 046085 293957 322968 262252 121049 414302 865732 275190 233833 997735 520423 588416 128131 776940 447090 078073 220904 649948 132949 867835 606188 318353 481765 929762 502171 855613 269922 415659 263248 664930 (378 digits)/96 861927 823178 584157 128976 764623 122314 086971 788589 394517 978429 741366 226336 456984 239040 432729 177954 974920 049612 312371 522001 881246 562069 651349 347402 174197 587609 945675 288390 694928 683104 203827 089761 209601 534526 770490 761384 482296 503574 169174 961618 933337 020085 689671 333709 482680 106195 256635 558695 771955 099927 722082 255171 906792 641389 032294 102284 555931 490639 686847 190538 558465 815578 717317 (380 digits), a[738] = 3
                                                                                      A[739]/B[739] = 1 327634 830215 061095 902296 394162 904697 350861 415146 032215 808672 422168 864565 481745 308428 660118 751067 838366 461439 951265 618517 730451 561865 027884 621788 794584 807228 739767 289286 544820 921058 724749 617207 960889 928503 216401 948048 126183 123850 384721 035957 535782 778573 009496 475062 077911 346970 030216 129765 567419 036449 514650 079964 433783 441634 848760 101057 090990 106342 605566 844108 981194 331254 479033 (379 digits)/129 037509 660322 291317 963238 564240 427528 705381 097718 218244 178050 967094 407909 565927 915075 607768 557203 238725 047901 270330 213111 378533 032726 101834 280653 249546 779949 041704 928683 598692 350143 919393 087335 150738 980465 041138 994890 439038 811283 456154 897188 783676 702290 315728 025947 004135 819758 400718 131214 524355 975912 329387 541548 618052 152326 138395 419716 890188 496449 069694 143410 977204 853506 330222 (381 digits), a[739] = 1
                                                                                      A[740]/B[740] = 12 945301 746448 503682 300046 877501 591002 989126 486777 680255 689526 371130 090376 094359 980749 363087 006494 515606 075687 651224 028089 576777 423346 206432 680269 215650 685117 653866 134313 535896 264976 144207 389429 634863 402614 241574 855401 397900 235702 876792 189350 097235 240991 083203 795982 289618 250862 048885 614980 184844 548950 281798 852629 771886 580901 957194 391279 748673 459255 305714 866903 246408 244538 976227 (380 digits)/1258 199514 766079 206018 798123 842786 970072 435401 668053 358715 580888 445215 897522 550335 474720 902646 192784 123445 480723 745343 440004 288043 856604 567857 873281 420118 607151 321019 646543 083159 834399 478364 875777 566252 358712 140741 715398 433645 805125 274569 036317 986427 340698 531223 567232 519902 484020 863098 739626 491158 883138 686570 129109 469262 012324 277852 879736 567627 958681 314094 481237 353309 497135 689315 (382 digits), a[740] = 9
                                                                                      A[741]/B[741] = 14 272936 576663 564778 202343 271664 495700 339987 901923 712471 498198 793298 954941 576105 289178 023205 757562 353972 537127 602489 646607 307228 985211 234317 302058 010235 492346 393633 423600 080717 186034 868957 006637 595753 331117 457976 803449 524083 359553 261513 225307 633018 019564 092700 271044 367529 597832 079101 744745 752263 585399 796448 932594 205670 022536 805954 492336 839663 565597 911281 711012 227602 575793 455260 (380 digits)/1387 237024 426401 497336 761362 407027 397601 140782 765771 576959 758939 412310 305432 116263 389796 510414 749987 362170 528625 015673 653115 666576 889330 669692 153934 669665 387100 362724 575226 681852 184543 397757 963112 716991 339177 181880 710288 872684 616408 730723 933506 770104 042988 846951 593179 524038 303779 263816 870841 015514 859051 015957 670658 087314 164650 416248 299453 457816 455130 383788 624648 330514 350642 019537 (382 digits), a[741] = 1
                                                                                      A[742]/B[742] = 41 491174 899775 633238 704733 420830 582403 669102 290625 105198 685923 957728 000259 246570 559105 409498 521619 223551 149942 856203 321304 191235 393768 675067 284385 236121 669810 441132 981513 697330 637045 882121 402704 826370 064849 157528 462300 446066 954809 399818 639965 363271 280119 268604 338071 024677 446526 207089 104471 689371 719749 874696 717818 183226 625975 569103 375953 428000 590451 128278 288927 701613 396125 886747 (380 digits)/4032 673563 618882 200692 320848 656841 765274 716967 199596 512635 098767 269836 508386 782862 254313 923475 692758 847786 537973 776690 746235 621197 635265 907242 181150 759449 381352 046468 796996 446864 203486 273880 802003 000235 037066 504503 135976 179015 037942 736016 903331 526635 426676 225126 753591 567979 091579 390732 481308 522188 601240 718485 470425 643890 341625 110349 478643 483260 868942 081671 730534 014338 198419 728389 (382 digits), a[742] = 2
                                                                                      A[743]/B[743] = 55 764111 476439 198016 907076 692495 078104 009090 192548 817670 184122 751026 955200 822675 848283 432704 279181 577523 687070 458692 967911 498464 378979 909384 586443 246357 162156 834766 405113 778047 823080 751078 409342 422123 395966 615505 265749 970150 314362 661331 865272 996289 299683 361304 609115 392207 044358 286190 849217 441635 305149 671145 650412 388896 648512 375057 868290 267664 156049 039559 999939 929215 971919 342007 (380 digits)/5419 910588 045283 698029 082211 063869 162875 857749 965368 089594 857706 682146 813818 899125 644110 433890 442746 209957 066598 792364 399351 287774 524596 576934 335085 429114 768452 409193 372223 128716 388029 671638 765115 717226 376243 686383 846265 051699 654351 466740 836838 296739 469665 072078 346771 092017 395358 654549 352149 537703 460291 734443 141083 731204 506275 526597 778096 941077 324072 465460 355182 344852 549061 747926 (382 digits), a[743] = 1
                                                                                      A[744]/B[744] = 1435 593961 810755 583661 381650 733207 535003 896357 104345 546953 288992 733401 880279 813466 766191 227105 501158 661643 326704 323527 519091 652844 868266 409681 945466 395050 723731 310293 109358 148526 214064 659081 636265 379454 964014 545160 106049 699824 813875 933115 271790 270503 772203 301219 565955 829853 555483 361860 334907 730254 348491 653337 978127 905642 838784 945550 083210 119604 491677 117278 287425 932012 694109 436922 (382 digits)/139530 438264 750974 651419 376125 253570 837171 160716 333798 752506 541434 323506 853859 261003 357074 770736 761414 096713 202943 585800 730017 815560 750180 330600 558286 487318 592662 276303 102574 664773 904228 064849 929895 930894 443158 664099 292602 471506 396729 404537 824288 945122 168303 027085 422868 868413 975545 754466 285046 964775 108534 079563 997518 924002 998513 275293 931067 010193 970753 718180 610092 635651 924963 426539 (384 digits), a[744] = 25
                                                                                      A[745]/B[745] = 7233 733920 530217 116323 815330 358532 753123 490875 714276 552436 629086 418036 356599 890009 679239 568231 784974 885740 320592 076330 563369 762688 720311 957794 313775 221610 780813 386231 951904 520678 893404 046486 590669 319398 216039 341305 795998 469274 383742 326908 224224 348808 160699 867402 438894 541474 821775 095492 523756 092907 047607 937835 541051 917110 842437 102808 284340 865686 614434 625951 437069 589279 442466 526617 (382 digits)/703072 101911 800156 955125 962837 331723 348731 661331 634361 852127 564878 299681 083115 204142 429484 287574 249816 693523 081316 721368 049440 365578 275498 229937 126517 865707 731763 790708 885096 452585 909169 995888 414595 371698 592037 006880 309277 409231 637998 489429 958283 022350 311180 207505 461115 434087 273087 426880 777384 361579 002962 132263 128678 351219 498841 903067 433431 992047 177841 056363 405645 523112 173878 880621 (384 digits), a[745] = 5
                                                                                      A[746]/B[746] = 109941 602769 764012 328518 611606 111198 831856 259492 818493 833502 725289 003947 229278 163611 954784 750582 275781 947748 135585 468485 969638 093175 672945 776596 652094 719212 435932 103772 387925 958709 615125 356380 496305 170428 204604 664747 046026 738940 570010 836738 635155 502626 182701 312256 149373 951975 882109 794248 191249 123860 062610 720871 093906 662305 475341 487674 348323 104903 708196 506549 843469 771204 331107 336177 (384 digits)/10 685611 966941 753328 978308 818685 229421 068146 080690 849226 534420 014608 818723 100587 323139 799339 084350 508664 499559 422694 406321 471623 299234 882653 779657 456054 472934 569119 136936 379021 453562 541778 003176 148826 506373 323713 767303 931763 609980 966706 745987 198534 280376 836006 139667 339600 379723 071857 157677 945812 388460 152966 063510 927694 192295 481141 821305 432546 890901 638369 563631 694775 482334 533146 635854 (386 digits), a[746] = 15
                                                                                      A[747]/B[747] = 227116 939460 058241 773361 038542 580930 416836 009861 351264 219442 079664 425930 815156 217233 588809 069396 336538 781236 591763 013302 502645 949040 066203 510987 617964 660035 652677 593776 727756 438098 123654 759247 583279 660254 625248 670799 888051 947155 523764 000385 494535 354060 526102 491914 737642 445426 585994 683988 906254 340627 172829 379577 728865 241721 793120 078156 980987 075494 030827 639051 124009 131688 104681 198971 (384 digits)/22 074296 035795 306814 911743 600207 790565 485023 822713 332814 920967 594095 937127 284289 850422 028162 456275 267145 692641 926705 534010 992686 964048 040805 789252 038626 811576 870002 064581 643139 359710 992726 002240 712248 384445 239464 541488 172804 629193 571411 981404 355351 583103 983192 486840 140316 193533 416801 742236 669009 138499 308894 259284 984066 735810 461125 545678 298525 773850 454580 183626 795196 487781 240172 152329 (386 digits), a[747] = 2
                                                                                      A[748]/B[748] = 2 381110 997370 346430 062128 997031 920503 000216 358106 331136 027923 521933 263255 380840 335947 842875 444545 641169 760114 053215 601510 996097 583576 334980 886472 831741 319568 962708 041539 665490 339690 851672 948856 329101 772974 457091 372745 926546 210495 807650 840593 580509 043231 443726 231403 525798 406241 742056 634137 253792 530131 790904 516648 382559 079523 406542 269244 158193 859844 016472 897061 083561 088085 377919 325887 (385 digits)/231 428572 324894 821478 095744 820763 135075 918384 307824 177375 744095 955568 189995 943485 827360 080963 647103 180121 425978 689749 746431 398492 939715 290711 672177 842322 588703 269139 782752 810415 050672 469038 025583 271310 350825 718359 182185 659809 901916 680826 560030 752050 111416 667931 008068 742762 315057 239874 580044 635903 773453 241908 656360 768361 550400 092397 278088 417804 629406 184171 399899 646740 360146 934868 159144 (387 digits), a[748] = 10
                                                                                      A[749]/B[749] = 4 989338 934200 751101 897619 032606 421936 417268 726074 013536 275289 123530 952441 576836 889129 274559 958487 618878 301464 698194 216324 494841 116192 736165 283933 281447 299173 578093 676856 058737 117479 827000 656960 241483 206203 539431 416291 741144 368147 139065 681572 655553 440523 413554 954721 789239 257910 070107 952263 413839 400890 754638 412874 493983 400768 606204 616645 297374 795182 063773 433173 291131 307858 860519 850745 (385 digits)/484 931440 685584 949771 103233 241734 060717 321792 438361 687566 409159 505232 317119 171261 505142 190089 750481 627388 544599 306205 026873 789672 843478 622229 133607 723271 988983 408281 630087 263969 461055 930802 053407 254869 086096 676182 905859 492424 433026 933065 101465 859451 805937 319054 502977 625840 823647 896550 902325 940816 685405 792711 572006 520789 836610 645920 101855 134135 032662 822922 983426 088677 208075 109908 470617 (387 digits), a[749] = 2
                                                                                      A[750]/B[750] = 7 370449 931571 097531 959748 029638 342439 417485 084180 344672 303212 645464 215696 957677 225077 117435 403033 260048 061578 751409 817835 490938 699769 071146 170406 113188 618742 540801 718395 724227 457170 678673 605816 570584 979177 996522 789037 667690 578642 946716 522166 236062 483754 857281 186125 315037 664151 812164 586400 667631 931022 545542 929522 876542 480292 012746 885889 455568 655026 080246 330234 374692 395944 238439 176632 (385 digits)/716 360013 010479 771249 198978 062497 195793 240176 746185 864942 153255 460800 507115 114747 332502 271053 397584 807509 970577 995954 773305 188165 783193 912940 805785 565594 577686 677421 412840 074384 511728 399840 078990 526179 436922 394542 088045 152234 334943 613891 661496 611501 917353 986985 511046 368603 138705 136425 482370 576720 458859 034620 228367 289151 387010 738317 379943 551939 662069 007094 383325 735417 568222 044776 629761 (387 digits), a[750] = 1
                                                                                      A[751]/B[751] = 19 730238 797342 946165 817115 091883 106815 252238 894434 702880 881714 414459 383835 492191 339283 509430 764554 138974 424622 201013 851995 476718 515730 878457 624745 507824 536658 659697 113647 507192 031821 184347 868593 382653 164559 532476 994367 076525 525433 032498 725905 127678 408033 128117 326972 419314 586213 694437 125064 749103 262935 845724 271920 247068 361352 631698 388424 208512 105234 224266 093642 040516 099747 337398 204009 (386 digits)/1917 651466 706544 492269 501189 366728 452303 802145 930733 417450 715670 426833 331349 400756 170146 732196 545651 242408 485755 298114 573484 166004 409866 448110 745178 854461 144356 763124 455767 412738 484512 730482 211388 307227 959941 465267 081949 796893 102914 160848 424459 082455 640645 293025 525070 363047 101058 169401 867067 094257 603123 861952 028741 099092 610632 122554 861742 238014 356800 837111 750077 559512 344519 199461 730139 (388 digits), a[751] = 2
                                                                                      A[752]/B[752] = 27 100688 728914 043697 776863 121521 449254 669723 978615 047553 184927 059923 599532 449868 564360 626866 167587 399022 486200 952423 669830 967657 215499 949603 795151 621013 155401 200498 832043 231419 488991 863021 474409 953238 143737 528999 783404 744216 104075 979215 248071 363740 891787 985398 513097 734352 250365 506601 711465 416735 193958 391267 201443 123610 841644 644445 274313 664080 760260 304512 423876 415208 495691 575837 380641 (386 digits)/2634 011479 717024 263518 700167 429225 648097 042322 676919 282392 868925 887633 838464 515503 502649 003249 943236 049918 456333 294069 346789 354170 193060 361051 550964 420055 722043 440545 868607 487122 996241 130322 290378 833407 396863 859809 169994 949127 437857 774740 085955 693957 557999 280011 036116 731650 239763 305827 349437 670978 061982 896572 257108 388243 997642 860872 241685 789954 018869 844206 133403 294929 912741 244238 359900 (388 digits), a[752] = 1
                                                                                      A[753]/B[753] = 46 830927 526256 989863 593978 213404 556069 921962 873049 750434 066641 474382 983367 942059 903644 136296 932141 537996 910823 153437 521826 444375 731230 828061 419897 128837 692059 860195 945690 738611 520813 047369 343003 335891 308297 061476 777771 820741 629509 011713 973976 491419 299821 113515 840070 153666 836579 201038 836530 165838 456894 236991 473363 370679 202997 276143 662737 872592 865494 528778 517518 455724 595438 913235 584650 (386 digits)/4551 662946 423568 755788 201356 795954 100400 844468 607652 699843 584596 314467 169813 916259 672795 735446 488887 292326 942088 592183 920273 520174 602926 809162 296143 274516 866400 203670 324374 899861 480753 860804 501767 140635 356805 325076 251944 746020 540771 935588 510414 776413 198644 573036 561187 094697 340821 475229 216504 765235 665106 758524 285849 487336 608274 983427 103428 027968 375670 681317 883480 854442 257260 443700 090039 (388 digits), a[753] = 1
                                                                                      A[754]/B[754] = 495 409963 991483 942333 716645 255567 009953 889352 709112 551893 851341 803753 433211 870467 600801 989835 489002 778991 594432 486798 888095 411414 527808 230217 994122 909390 075999 802458 288950 617534 697122 336714 904443 312151 226708 143767 561122 951632 399166 096354 987836 277933 889999 120556 913799 271020 616157 516990 076767 075119 762900 761181 935076 830402 871617 405881 901692 390009 415205 592297 599060 972454 450080 708193 227141 (387 digits)/48150 640943 952711 821400 713735 388766 652105 487008 753446 280828 714889 032305 536603 678100 230606 357714 832108 973187 877219 215908 549524 555916 222328 452674 512397 165224 386045 477249 112356 485737 803779 738367 308050 239760 964917 110571 689442 409332 845577 130625 190103 458089 544445 010376 647987 678623 647978 058119 514485 323334 713050 481815 115603 261610 080392 695143 275966 069637 775576 657384 968211 839352 485345 681239 260290 (389 digits), a[754] = 10
                                                                                      A[755]/B[755] = 2523 880747 483676 701532 177204 491239 605839 368726 418612 509903 323350 493150 149427 294397 907654 085474 377155 432954 882985 587431 962303 501448 370271 979151 390511 675788 072058 872487 390443 826285 006424 730943 865219 896647 441837 780314 583386 578903 625339 493488 913157 881088 749816 716300 409066 508769 917366 785989 220365 541437 271398 042901 148747 522693 561084 305553 171199 822639 941522 490266 512823 317996 845842 454201 720355 (388 digits)/245304 867666 187127 862791 770033 739787 360928 279512 374884 103987 159041 475994 852832 306760 825827 524020 649432 158266 328184 671726 667896 299755 714569 072534 858129 100638 796627 589915 886157 328550 499652 552641 042018 339440 181390 877934 699156 792684 768657 588714 460932 066860 920869 624919 801125 487815 580711 765826 788931 381909 230359 167599 863865 795387 010238 459143 483258 376157 253553 968242 724540 051204 683988 849896 391489 (390 digits), a[755] = 5
                                                                                      A[756]/B[756] = 3019 290711 475160 643865 893849 746806 615793 258079 127725 061797 174692 296903 582639 164865 508456 075309 866158 211946 477418 074230 850398 912862 898080 209369 384634 585178 148058 674945 679394 443819 703547 067658 769663 208798 668545 924082 144509 530536 024505 589843 900994 159022 639815 836857 322865 779790 533524 302979 297132 616557 034298 804083 083824 353096 432701 711435 072892 212649 356728 082564 111884 290451 295923 162394 947496 (388 digits)/293455 508610 139839 684192 483769 128554 013033 766521 128330 384815 873930 508300 389435 984861 056433 881735 481541 131454 205403 887635 217420 855671 936897 525209 370526 265863 182673 067164 998513 814288 303432 291008 350068 579201 146307 988506 388599 202017 614234 719339 651035 524950 465314 635296 449113 166439 228689 823946 303416 705243 943409 649414 979469 056997 090631 154286 759224 445795 029130 625627 692751 890557 169334 531135 651779 (390 digits), a[756] = 1
                                                                                      A[757]/B[757] = 14601 043593 384319 276995 752603 478466 069012 401042 929512 757092 022119 680764 479983 953859 941478 386713 841788 280740 792657 884355 363899 152899 962592 816628 929050 016500 664293 572270 108021 601563 820613 001578 943872 731842 116021 476643 161424 701047 723361 852864 517134 517179 309080 063729 700529 627932 051463 997906 408896 007665 408593 259233 484044 935079 291891 151293 462768 673237 368434 820522 960360 479802 029535 103781 510339 (389 digits)/1 419126 902106 746486 599561 705110 254003 413063 345596 888205 643250 654763 509196 410576 246205 051563 050962 575596 684083 149800 222267 537579 722443 462159 173372 340234 164091 527319 858575 880212 585703 713381 716674 442292 656244 766622 831960 253553 600755 225596 466073 065074 166662 782128 166105 597578 153572 495471 061612 002598 202885 003997 765259 781742 023375 372763 076290 520156 159337 370076 470753 495547 613433 361326 974438 998605 (391 digits), a[757] = 4
                                                                                      A[758]/B[758] = 17620 334304 859479 920861 646453 225272 684805 659122 057237 818889 196811 977668 062623 118725 449934 462023 707946 492687 270075 958586 214298 065762 860673 025998 313684 601678 812352 247215 787416 045383 524160 069237 713535 940640 784567 400725 305934 231583 747867 442708 418128 676201 948895 900587 023395 407722 584988 300885 706028 624222 442892 063316 567869 288175 724592 862728 535660 885886 725162 903087 072244 770253 325458 266176 457835 (389 digits)/1 712582 410716 886326 283754 188879 382557 426097 112118 016536 028066 528694 017496 800012 231066 107996 932698 057137 815537 355204 109902 755000 578115 399056 698581 710760 429954 709992 925740 878726 399992 016814 007682 792361 235445 912930 820466 642152 802772 839831 185412 716109 691613 247442 801402 046691 320011 724160 885558 306014 908128 947407 414674 761211 080372 463394 230577 279380 605132 399207 096381 188299 503990 530661 505574 650384 (391 digits), a[758] = 1
                                                                                      A[759]/B[759] = 85082 380812 822238 960442 338416 379556 808235 037531 158464 032648 809367 591436 730476 428761 741216 234808 673574 251489 872961 718700 221091 415951 405284 920622 183788 423215 913702 561133 257685 783097 917253 278529 798016 494405 254291 079544 385161 627382 714831 623698 189649 221987 104663 666077 794111 258822 391417 201449 233010 504555 180161 512499 755522 087782 190262 602207 605412 216784 269086 432871 249339 560815 331368 168487 341679 (389 digits)/8 269456 544974 291791 734578 460627 784233 117451 794068 954349 755516 769539 579183 610625 170469 483550 781754 804147 946232 570616 661878 557582 034905 058385 967699 183275 883910 367291 561539 395118 185671 780637 747405 611737 598028 418346 113826 822164 811846 584921 207723 929512 933115 771899 371713 784343 433619 392114 603845 226657 835400 793627 423958 826586 344865 226339 998599 637678 579866 966904 856278 248745 629395 483972 996737 600141 (391 digits), a[759] = 4
                                                                                      A[760]/B[760] = 783361 761620 259630 564842 692200 641283 958920 996902 483414 112728 481120 300598 636910 977581 120880 575301 770114 756096 126731 426888 204120 809325 508237 311597 967780 410622 035675 297415 106588 093264 779439 576005 895684 390288 073187 116624 772388 878028 181352 055992 124971 674085 890868 895287 170396 737124 107743 113928 803123 165219 064345 675814 367568 078215 436956 282596 984370 836945 146940 798928 316300 817591 307771 782562 532946 (390 digits)/76 137691 315485 512451 894960 334529 440655 483163 258738 605683 827717 454550 230149 295638 765291 459953 968491 294469 331630 490754 066809 773238 892260 924530 407874 360243 385148 015616 979595 434790 071038 042553 734333 297999 617701 678045 844908 041636 109392 104122 054928 081726 089655 194537 146826 105782 222586 253192 320165 345935 426736 090054 230304 200488 184159 500454 217974 018487 823935 101350 802885 427010 168549 886418 476213 051653 (392 digits), a[760] = 9
                                                                                      A[761]/B[761] = 1 651805 904053 341500 090127 722817 662124 726077 031336 125292 258105 771608 192634 004298 383923 982977 385412 213803 763682 126424 572476 629333 034602 421759 543818 119349 244459 985053 155963 470861 969627 476132 430541 589385 274981 400665 312793 929939 383439 077535 735682 439592 570158 886401 456652 134904 733070 606903 429306 839256 834993 308852 864128 490658 244213 064175 167401 574153 890674 562968 030727 881941 195997 946911 733612 407571 (391 digits)/160 544839 175945 316695 524499 129686 665544 083778 311546 165717 410951 678640 039482 201902 701052 403458 718737 393086 609493 552124 795498 104059 819426 907446 783447 903762 654206 398525 520730 264698 327747 865745 216072 207736 833431 774437 803642 905437 030630 793165 317580 092965 112426 160973 665365 995907 878791 898499 244175 918528 688872 973735 884567 227562 713184 227248 434547 674654 227737 169606 462049 102765 966495 256809 949163 703447 (393 digits), a[761] = 2
                                                                                      A[762]/B[762] = 4 086973 569726 942630 745098 137835 965533 411075 059574 733998 628940 024336 685866 645507 745429 086835 346126 197722 283460 379580 571841 462786 878530 351756 399234 206478 899542 005781 609342 048312 032519 731704 437089 074454 940250 874517 742212 632267 644906 336423 527357 004156 814403 663671 808591 440206 203265 321549 972542 481636 835205 682051 404071 348884 566641 565306 617400 132678 618294 272876 860384 080183 209587 201595 249787 348088 (391 digits)/397 227369 667376 145842 943958 593902 771743 650719 881830 937118 649620 811830 309113 699444 167396 266871 405966 080642 550617 595003 657805 981358 531114 739423 974770 167768 693560 812668 021055 964186 726533 774044 166477 713473 284565 226921 452193 852510 170653 690452 690088 267656 314507 516484 477558 097597 980170 050190 808517 182992 804482 037525 999438 655613 610527 954951 087069 367796 279409 440563 726983 632542 101540 400038 374540 458547 (393 digits), a[762] = 2
                                                                                      A[763]/B[763] = 5 738779 473780 284130 835225 860653 627658 137152 090910 859290 887045 795944 878500 649806 129353 069812 731538 411526 047142 506005 144318 092119 913132 773515 943052 325828 144001 990834 765305 519174 002147 207836 867630 663840 215232 275183 055006 562207 028345 413959 263039 443749 384562 550073 265243 575110 936335 928453 401849 320893 670198 990904 268199 839542 810854 629481 784801 706832 508968 835844 891111 962124 405585 148506 983399 755659 (391 digits)/557 772208 843321 462538 468457 723589 437287 734498 193377 102836 060572 490470 348595 901346 868448 670330 124703 473729 160111 147128 453304 085418 350541 646870 758218 071531 347767 211193 541786 228885 054281 639789 382549 921210 117997 001359 255836 757947 201284 483618 007668 360621 426933 677458 142924 093505 858961 948690 052693 101521 493355 011261 884005 883176 323712 182199 521617 042450 507146 610170 189032 735308 068035 656848 323704 161994 (393 digits), a[763] = 1
                                                                                      A[764]/B[764] = 67 213547 781310 068069 932582 605025 869772 919748 059594 186198 386443 779730 349373 793375 168312 854775 393048 724508 802027 945637 159340 476105 922990 860431 772809 790588 483563 904964 027702 759226 056139 017909 981026 376697 307805 901531 347284 816544 956705 889975 420790 885400 044591 714477 726270 766426 502960 534537 392885 011467 207394 581998 354269 583855 486042 489606 250218 907836 216951 467170 662615 663551 671023 835172 067184 660337 (392 digits)/6532 721666 943912 233766 096993 553386 581908 730200 008979 068315 315918 207004 143668 614259 720331 640502 777704 291663 311840 213416 644150 920960 387072 855002 315168 954613 519000 135796 980704 481922 323631 811727 374526 846784 582532 241873 266398 189929 384783 010250 774440 234492 010777 968524 049723 126162 428751 485781 388141 299729 231387 161406 723503 370553 171361 959145 824856 834751 858022 152435 806343 720930 849932 625369 935286 240481 (394 digits), a[764] = 11
                                                                                      A[765]/B[765] = 72 952327 255090 352200 767808 465679 497431 056900 150505 045489 273489 575675 227874 443181 297665 924588 124587 136034 849170 451642 303658 568225 836123 633947 715862 116416 627565 895798 793008 278400 058286 225746 848657 040537 523038 176714 402291 378751 985051 303934 683830 329149 429154 264550 991514 341537 439296 462990 794734 332360 877593 572902 622469 423398 296897 119088 035020 614668 725920 303015 553727 625676 076608 983679 050584 415996 (392 digits)/7090 493875 787233 696304 565451 276976 019196 464698 202356 171151 376490 697474 492264 515606 588780 310832 902407 765392 471951 360545 097455 006378 737614 501873 073387 026144 866767 346990 522490 710807 377913 451516 757076 767994 700529 243232 522234 947876 586067 493868 782108 595113 437711 645982 192647 219668 287713 434471 440834 401250 724742 172668 607509 253729 495074 141345 346473 877202 365168 762605 995376 456238 917968 282218 258990 402475 (394 digits), a[765] = 1
                                                                                      A[766]/B[766] = 213 118202 291490 772471 468199 536384 864635 033548 360604 277176 933422 931080 805122 679737 763644 703951 642222 996578 500368 848921 766657 612557 595238 128327 204534 023421 738695 696561 613719 316026 172711 469403 678340 457772 353882 254960 151867 574048 926808 497844 788451 543698 902900 243579 709299 449501 381553 460518 982353 676188 962581 727803 599208 430652 079836 727782 320260 137173 668792 073201 770070 914903 824241 802530 168353 492329 (393 digits)/20713 709418 518379 626375 227896 107338 620301 659596 413691 410618 068899 601953 128197 645472 897892 262168 582519 822448 255742 934506 839060 933717 862301 858748 461943 006903 252534 829778 025685 903537 079458 714760 888680 382773 983590 728338 310868 085682 556917 997988 338657 424718 886201 260488 435017 565499 004178 354724 269810 102230 680871 506743 938521 878012 161510 241836 517804 589156 588359 677647 797096 633408 685869 189806 453267 045431 (395 digits), a[766] = 2
                                                                                      A[767]/B[767] = 499 188731 838071 897143 704207 538449 226701 123996 871713 599843 140335 437836 838119 802656 824955 332491 409033 129191 849908 149485 836973 793341 026599 890602 124930 163260 104957 288922 020446 910452 403709 164554 205337 956082 230802 686634 706026 526849 838668 299624 260733 416547 234954 751710 410113 240540 202403 384028 759441 684738 802757 028509 820886 284702 456570 574652 675540 889016 063504 449419 093869 455483 725092 588739 387291 400654 (393 digits)/48517 912712 823992 949055 021243 491653 259799 783891 029738 992387 514289 901380 748659 806552 384564 835170 067447 410288 983437 229558 775576 873814 462218 219369 997273 039951 371837 006546 573862 517881 536830 881038 534437 533542 667710 699909 143971 119241 699903 489845 459423 444551 210114 166959 062682 350666 296070 143919 980454 605712 086485 186156 484553 009753 818094 625018 382083 055515 541888 117901 589569 723056 289706 661831 165524 493337 (395 digits), a[767] = 2
                                                                                      A[768]/B[768] = 2709 061861 481850 258189 989237 228630 998140 653532 719172 276392 635100 120264 995721 693021 888421 366408 687388 642537 749909 596350 951526 579262 728237 581337 829184 839722 263482 141171 715953 868288 191257 292174 705030 238183 507895 688133 682000 208298 120149 995966 092118 626435 077674 002131 759865 652202 393570 380662 779562 099882 976366 870352 703639 854164 362689 601045 697964 582253 986314 320297 239418 192322 449704 746227 104810 495599 (394 digits)/263303 272982 638344 371650 334113 565604 919300 579051 562386 372555 640349 108856 871496 678234 820716 438018 919756 873893 172929 082300 716945 302790 173392 955598 448308 206660 111719 862510 894998 492944 763613 119953 560868 050487 322144 227884 030723 681891 056435 447215 635774 647474 936772 095283 748429 318830 484529 074324 172083 130791 113297 437526 361286 926781 251983 366928 428219 866734 297800 267155 744945 248690 134402 498962 280889 512116 (396 digits), a[768] = 5
                                                                                      A[769]/B[769] = 3208 250593 319922 155333 693444 767080 224841 777529 590885 876235 775435 558101 833841 495678 713376 698900 096421 771729 599817 745836 788500 372603 754837 471939 954115 002982 368439 430093 736400 778740 594966 456728 910368 194265 738698 374768 388026 735147 958818 295590 352852 042982 312628 753842 169978 892742 595973 764691 539003 784621 779123 898862 524526 138866 819260 175698 373505 471270 049818 769716 333287 647806 174797 334966 492101 896253 (394 digits)/311821 185695 462337 320705 355357 057258 179100 362942 592125 364943 154639 010237 620156 484787 205281 273188 987204 284182 156366 311859 492522 176604 635611 174968 445581 246611 483556 869057 468861 010826 300444 000992 095305 584029 989854 927793 174694 801132 756338 937061 095198 092026 146886 262242 811111 669496 780599 218244 152537 736503 199782 623682 845839 936535 070077 991946 810302 922249 839688 385057 334514 971746 424109 160793 446414 005453 (396 digits), a[769] = 1
                                                                                      A[770]/B[770] = 9125 563048 121694 568857 376126 762791 447824 208591 900944 028864 185971 236468 663404 684379 315174 764208 880232 185996 949545 088024 528527 324470 237912 525217 737414 845687 000361 001359 188755 425769 381190 205632 525766 626714 985292 437670 458053 678594 037786 587146 797822 712399 702931 509816 099823 437687 585517 910045 857569 669126 534614 668077 752692 131898 001209 952442 444975 524794 085951 859729 905993 487934 799299 416160 089014 288105 (394 digits)/886945 644373 563019 013061 044827 680121 277501 304936 746637 102441 949627 129332 111809 647809 231278 984396 894165 442257 485661 706019 701989 655999 444615 305535 339470 699883 078833 600625 832720 514597 364501 121937 751479 218547 301854 083470 380113 284156 569113 321337 826170 831527 230544 619769 370652 657824 045727 510812 477158 603797 512862 684892 052966 799851 392139 350822 048825 711233 977177 037270 413975 192182 982620 820549 173717 523022 (396 digits), a[770] = 2
                                                                                      A[771]/B[771] = 21459 376689 563311 293048 445698 292663 120490 194713 392773 933964 147378 031039 160650 864437 343726 227317 856886 143723 498907 921885 845555 021544 230662 522375 428944 694356 369161 432812 113911 630279 357346 867993 961901 447695 709283 250109 304134 092336 034391 469883 948497 467781 718491 773474 369625 768117 767009 584783 254143 122874 848353 235018 029910 402662 821680 080583 263456 520858 221722 489176 145274 623675 773396 167286 670130 472463 (395 digits)/2 085712 474442 588375 346827 445012 417500 734102 972816 085399 569827 053893 268901 843775 780405 667839 241982 775535 168697 127689 723898 896501 488603 524841 786039 124522 646377 641224 070309 134302 040021 029446 244867 598264 021124 593563 094733 934921 369445 894565 579736 747539 755080 607975 501781 552416 985144 872054 239869 106854 944098 225507 993466 951773 536237 854356 693590 907954 344717 794042 459598 162465 356112 389350 801891 793849 051497 (397 digits), a[771] = 2
                                                                                      A[772]/B[772] = 116422 446495 938251 034099 604618 226107 050275 182158 864813 698684 922861 391664 466659 006566 033805 900798 164662 904614 444084 697453 756302 432191 391225 137094 882138 317468 846168 165419 758313 577166 167924 545602 335273 865193 531708 688216 978724 140274 209743 936566 540310 051308 295390 377187 947952 278276 420565 833962 128285 283500 776380 843167 902244 145212 109610 355358 762258 129085 194564 305610 632366 606313 666280 252593 439666 650420 (396 digits)/11 315508 016586 504895 747198 269889 767624 948016 169017 173634 951577 219093 473841 330688 549837 570475 194310 771841 285743 124110 325514 184497 099017 068824 235730 962083 931771 284953 952171 504230 714702 511732 346275 742799 324170 269669 557140 054720 131386 041941 220021 563869 606930 270422 128677 132737 583548 405998 710158 011433 324288 640402 652226 811834 481040 663922 818776 588597 434822 947389 335261 226301 972744 929374 830008 142962 780507 (398 digits), a[772] = 5
                                                                                      A[773]/B[773] = 1 069261 395153 007570 599944 887262 327626 572966 834143 176097 222128 453130 556019 360581 923531 647979 334501 338852 285253 495670 198969 652276 911266 751688 756229 368189 551575 984674 921589 938733 824774 868667 778414 979366 234437 494661 444062 112651 354803 922086 898982 811287 929556 377005 168165 901196 272605 552102 090442 408710 674381 835780 823529 150107 709571 808173 278812 123779 682624 972801 239671 836574 080498 769918 440627 627130 326243 (397 digits)/103 925284 623721 132437 071611 874020 326125 266248 493970 648114 134022 025734 533473 819972 728943 802115 990779 722106 740385 244682 653526 556975 379757 144259 907617 783278 032319 205809 639852 672378 472343 635037 361349 283457 938657 020589 108994 427402 551920 272036 559930 822366 217453 041774 659875 747055 237080 526042 631291 209754 862695 989131 863508 258283 865603 829662 062580 205331 258124 320546 476949 199183 110816 753724 271965 080514 076060 (399 digits), a[773] = 9
                                                                                      A[774]/B[774] = 5 462729 422260 976104 033824 040929 864239 915109 352874 745299 809327 188514 171761 269568 624224 273702 573304 858924 330881 922435 692302 017686 988525 149668 918241 723086 075348 769542 773369 451982 701040 511263 437677 232105 037381 005015 908527 541980 914293 820178 431480 596749 699090 180416 218017 453933 641304 181076 286174 171838 655409 955284 960813 652782 693071 150476 749419 381156 542210 058570 503969 815237 008807 515872 455731 575318 281635 (397 digits)/530 941931 135192 167081 105257 639991 398251 279258 638870 414205 621687 347766 141210 430552 194556 581055 148209 382374 987669 347523 593146 969373 997802 790123 773819 878474 093367 314002 151434 866123 076420 686919 153022 160089 017455 372615 102112 191732 890987 402124 019675 675700 694195 479295 428055 868013 768951 036211 866614 060207 637768 586061 969768 103253 809059 812233 131677 615253 725444 550121 720007 222217 526828 697996 189833 545533 160807 (399 digits), a[774] = 5
                                                                                      A[775]/B[775] = 44 771096 773240 816402 870537 214701 241545 893841 657141 138495 696745 961243 930109 517130 917325 837599 920940 210246 932308 875155 737385 793772 819467 949040 102163 152878 154366 141017 108545 554595 433098 958775 279832 836206 533485 534788 712282 448498 669154 483514 350827 585285 522277 820334 912305 532665 403039 000712 379835 783419 917661 478060 510038 372369 254141 011987 274167 173032 020305 441365 271430 358470 150958 896898 086480 229676 579323 (398 digits)/4351 460733 705258 469085 913672 993951 512135 500317 604933 961759 107520 807863 663157 264390 285396 450557 176454 781106 641740 024871 398702 311967 362179 465250 098176 811070 779257 717826 851331 601363 083709 130390 585526 564170 078300 001509 925891 961265 679819 489028 717336 227971 771016 876138 084322 691165 388688 815737 564203 691415 964844 677627 621653 084314 338082 327527 116001 127361 061680 721520 237006 976923 325446 337693 790633 444779 362516 (400 digits), a[775] = 8
                                                                                      A[776]/B[776] = 184 547116 515224 241715 515972 899734 830423 490475 981439 299282 596311 033489 892199 338092 293527 624102 257065 699912 060117 423058 641845 192778 266396 945829 326894 334598 692813 333611 207551 670364 433436 346364 557008 576931 171323 144170 757657 335975 590911 754235 834790 937891 788201 461755 867239 584595 253460 183925 805517 305518 326055 867527 000967 142259 709635 198425 846088 073284 623431 824031 589691 249117 612643 103464 801652 494024 598927 (399 digits)/17936 784865 956226 043424 759949 615797 446793 280529 058606 261242 051770 579220 793839 488113 336142 383283 854028 506801 554629 447009 187956 217243 446520 651124 166527 122757 210398 185309 556761 271575 411257 208481 495128 416769 330655 378654 805680 036795 610265 358238 889020 587587 778262 983847 765346 632675 323706 299162 123428 825871 497147 296572 456380 440511 161389 122341 595682 124697 972167 436202 668035 129910 828614 048771 352367 324650 610871 (401 digits), a[776] = 4
                                                                                      A[777]/B[777] = 413 865329 803689 299833 902483 014170 902392 874793 620019 737060 889368 028223 714508 193315 504381 085804 435071 610071 052543 721273 021076 179329 352261 840698 755951 822075 539992 808239 523648 895324 299971 651504 393849 990068 876131 823130 227597 120449 850977 991986 020409 461069 098680 743846 646784 701855 909959 368563 990870 394456 569773 213114 511972 656888 673411 408838 966343 319601 267169 089428 450812 856705 376245 103827 689785 217725 777177 (399 digits)/40225 030465 617710 555935 433572 225546 405722 061375 722146 484243 211061 966305 250836 240616 957681 217124 884511 794709 750998 918889 774614 746454 255220 767498 431231 056585 200054 088445 964854 144513 906223 547353 575783 397708 739610 758819 537252 034856 900350 205506 495377 403147 327542 843833 615015 956516 036101 414061 811061 343158 959139 270772 534413 965336 660860 572210 307365 376757 006015 593925 573077 236744 982674 435236 495368 094080 584258 (401 digits), a[777] = 2
                                                                                      A[778]/B[778] = 1426 143105 926292 141217 223421 942247 537602 114856 841498 510465 264415 118161 035723 918038 806670 881515 562280 530125 217748 586877 705073 730766 323182 467925 594749 800825 312791 758329 778498 356337 333351 300877 738558 547137 799718 613561 440448 697325 143845 730193 896019 321099 084243 693295 807593 690162 983338 289617 778128 488888 035375 506870 536885 112925 729869 424942 745118 032088 424939 092316 942129 819233 741378 414947 871008 147201 930458 (400 digits)/138611 876262 809357 711231 060666 292436 663959 464656 225045 713971 684956 478136 546348 209964 209186 034658 507563 890930 807626 203678 511800 456606 212182 953619 460220 292512 810560 450647 451323 705117 129927 850542 222478 609895 549487 655113 417436 141366 311315 974758 375152 797029 760891 515348 610394 502223 432010 541347 556612 855348 374565 108890 059622 336521 143970 838972 517778 254968 990214 217979 387266 840145 776637 354480 838471 606892 363645 (402 digits), a[778] = 3
                                                                                      A[779]/B[779] = 1840 008435 729981 441051 125904 956418 439994 989650 461518 247526 153783 146384 750232 111354 311051 967319 997352 140196 270292 308150 726149 910095 675444 308624 350701 622900 852784 566569 302147 251661 633322 952382 132408 537206 675850 436691 668045 817774 994823 722179 916428 782168 182924 437142 454378 392018 893297 658181 768998 883344 605148 719985 048857 769814 403280 833781 711461 351689 692108 181745 392942 675939 117623 518775 560793 364927 707635 (400 digits)/178836 906728 427068 267166 494238 517983 069681 526031 947192 198214 896018 444441 797184 450581 166867 251783 392075 685640 558625 122568 286415 203060 467403 721117 891451 349098 010614 539093 416177 849631 036151 397895 798262 007604 289098 413932 954688 176223 211666 180264 870530 200177 088434 359182 225410 458739 468111 955409 367674 198507 333704 379662 594036 301857 804831 411182 825143 631725 996229 811904 960344 076890 759311 789717 333839 700972 947903 (402 digits), a[779] = 1
                                                                                      A[780]/B[780] = 5106 159977 386255 023319 475231 855084 417592 094157 764535 005517 571981 410930 536188 140747 428774 816155 556984 810517 758333 203179 157373 550957 674071 085174 296153 046627 018360 891468 382792 859660 599997 205642 003375 621551 151419 486944 776540 332875 133493 174553 728876 885435 450092 567580 716350 474200 769933 605981 316126 255577 245672 946840 634600 652554 536431 092506 168040 735467 809155 455807 728015 171111 976625 452498 992594 877057 345728 (400 digits)/496285 689719 663494 245564 049143 328402 803322 516720 119430 110401 476993 367020 140717 111126 542920 538225 291715 262211 924876 448815 084630 862727 146990 395855 243122 990708 831789 528834 283679 404379 202230 646333 819002 625104 127684 482979 326812 493812 734648 335288 116213 197383 937760 233713 061215 419702 368234 452166 291961 252363 041973 868215 247694 940236 753633 661338 168065 518420 982673 841789 307954 993927 295260 933915 506151 008838 259451 (402 digits), a[780] = 2
                                                                                      A[781]/B[781] = 6946 168413 116236 464370 601136 811502 857587 083808 226053 253043 725764 557315 286420 252101 739826 783475 554336 950714 028625 511329 883523 461053 349515 393798 646854 669527 871145 458037 684940 111322 233320 158024 135784 158757 827269 923636 444586 150650 128316 896733 645305 667603 633017 004723 170728 866219 663231 264163 085125 138921 850821 666825 683458 422368 939711 926287 879502 087157 501263 637553 120957 847051 094248 971274 553388 241985 053363 (400 digits)/675122 596448 090562 512730 543381 846385 873004 042752 066622 308616 373011 811461 937901 561707 709787 790008 683790 947852 483501 571383 371046 065787 614394 116973 134574 339806 842404 067927 699857 254010 238382 044229 617264 632708 416782 896912 281500 670035 946314 515552 986743 397561 026194 592895 286625 878441 836346 407575 659635 450870 375678 247877 841731 242094 558465 072520 993209 150146 978903 653694 268299 070818 054572 723632 839990 709811 207354 (402 digits), a[781] = 1
                                                                                      A[782]/B[782] = 32890 833629 851200 880801 879779 101095 847940 429390 668748 017692 475039 640191 681869 149154 388081 950057 774332 613373 872835 248498 691467 395171 072132 660368 883571 724738 502942 723619 122553 304949 533277 837738 546512 256582 460499 181490 554884 935475 646760 761488 310099 555849 982160 586473 399265 939079 422858 662633 656626 811264 648959 614143 368434 342030 295278 797657 686049 084097 814210 006020 211846 559316 353621 337597 206147 844997 559180 (401 digits)/3 196776 075512 025744 296486 222670 713946 295338 687728 385919 344866 969040 612867 892323 357957 382071 698260 026879 053621 858882 734348 568815 125877 604566 863747 781420 349936 201405 800545 083108 420420 155758 823252 288061 155937 794816 070628 452815 173956 519906 397500 063186 787628 042538 605294 207718 933469 713620 082468 930503 055844 544686 859726 614619 908614 987493 951422 140902 119008 898288 456566 381151 277199 513551 828446 866113 848083 088867 (403 digits), a[782] = 4
                                                                                      A[783]/B[783] = 39837 002042 967437 345172 480915 912598 705527 513198 894801 270736 200804 197506 968289 401256 127908 733533 328669 564087 901460 759828 574990 856224 421648 054167 530426 394266 374088 181656 807493 416271 766597 995762 682296 415340 287769 105126 999471 086125 775077 658221 955405 223453 615177 591196 569994 805299 086089 926796 741751 950186 499781 280969 051892 764399 234990 723945 565551 171255 315473 643573 332804 406367 447870 308871 759536 086982 612543 (401 digits)/3 871898 671960 116306 809216 766052 560332 168342 730480 452541 653483 342052 424329 830224 919665 091859 488268 710670 001474 342384 305731 939861 191665 218960 980720 915994 689743 043809 868472 782965 674430 394140 867481 905325 788646 211598 967540 734315 843992 466220 913053 049930 185189 068733 198189 494344 811911 549966 490044 590138 506714 920365 107604 456351 150709 545959 023943 134111 269155 877192 110260 649450 348017 568124 552079 706104 557894 296221 (403 digits), a[783] = 1
                                                                                      A[784]/B[784] = 271912 845887 655824 951836 765274 576688 081105 508584 037555 642109 679864 825233 491605 556691 155534 351257 746349 997901 281599 807470 141412 532517 602020 985374 066130 090336 747471 813559 967513 802580 132865 812314 640290 748624 187113 812252 551711 452230 297226 710820 042530 896571 673226 133652 819234 770873 939398 223414 107138 512383 647647 299957 679790 928425 705223 141331 079356 111629 707051 867460 208672 997521 040843 190827 763364 366893 234438 (402 digits)/26 428168 107272 723585 151786 818986 075939 305395 070611 101169 265767 021355 158846 873672 875947 933228 627872 290899 062467 913188 568740 207982 275868 918332 748073 277388 488394 464265 011381 780902 467002 520604 028143 720015 887815 064409 875872 858710 237911 317231 875818 362767 898762 454937 794431 173787 804939 013419 022736 471334 096134 066877 505353 352726 812872 263248 095080 945569 733944 161441 118130 277853 365304 922299 140925 102741 195448 866193 (404 digits), a[784] = 6
                                                                                      A[785]/B[785] = 311749 847930 623262 297009 246190 489286 786633 021782 932356 912845 880669 022740 459894 957947 283443 084791 075019 561989 183060 567298 716403 388742 023669 039541 596556 484603 121559 995216 775007 218851 899463 808077 322587 163964 474882 917379 551182 538356 072304 369041 997936 120025 288403 724849 389229 576173 025488 150210 848890 462570 147428 580926 731683 692824 940213 865276 644907 282885 022525 511033 541477 403888 488713 499699 522900 453875 846981 (402 digits)/30 300066 779232 839891 961003 585038 636271 473737 801091 553710 919250 363407 583176 703897 795613 025088 116141 001569 063942 255572 874472 147843 467534 137293 728794 193383 178137 508074 879854 563868 141432 914744 895625 625341 676461 276008 843413 593026 081903 783452 788871 412698 083951 523670 992620 668132 616850 563385 512781 061472 602848 987242 612957 809077 963581 809207 119024 079681 003100 038633 228390 927303 713322 490423 693004 808845 753343 162414 (404 digits), a[785] = 1
                                                                                      A[786]/B[786] = 1 207162 389679 525611 842864 503846 044548 441004 573932 834626 380647 321871 893454 871290 430533 005863 605630 971408 683868 830781 509366 290622 698743 673028 103998 855799 544146 112151 799210 292535 459135 831257 236546 608052 240517 611762 564391 205259 067298 514139 817946 036339 256647 538437 308200 986923 499393 015862 674046 653809 900094 089933 042737 874842 006900 525864 737161 014077 960284 774628 400560 833105 209186 506983 689926 332065 728520 775381 (403 digits)/117 328368 444971 243261 034797 574101 984753 726608 473885 762302 023518 111577 908376 985366 262787 008492 976295 295606 254294 679907 192156 651512 678471 330213 934455 857538 022806 988489 650945 472506 891301 264838 715020 596040 917198 892436 406113 637788 483622 667590 242432 600862 150617 025950 772293 178185 655490 703575 561079 655751 904681 028605 344226 779960 703617 690869 452153 184612 743244 277340 803303 059764 505272 393570 219939 529278 455478 353435 (405 digits), a[786] = 3
                                                                                      A[787]/B[787] = 5 140399 406648 725709 668467 261574 667480 550651 317514 270862 435435 168156 596559 945056 680079 306897 507314 960654 297464 506186 604763 878894 183716 715781 455537 019754 661187 570167 192057 945149 055395 224492 754263 754796 126034 921933 174944 372218 807550 128863 640826 143293 146615 442152 957653 336923 573745 088938 846397 464130 062946 507160 751878 231051 720427 043672 813920 701219 124024 121039 113276 873898 240634 516648 259404 851163 367958 948505 (403 digits)/499 613540 559117 812936 100193 881446 575286 380171 696634 602919 013322 809719 216684 645362 846761 059060 021322 183994 081120 975201 643098 753894 181419 458149 466617 623535 269365 462033 483636 453895 706637 974099 755708 009505 345256 845754 467868 144180 016394 453813 758601 816146 686419 627474 081793 380875 238813 377687 757099 684480 221573 101663 989864 928920 778052 572684 927636 818131 976077 147996 441603 166361 734412 064704 572762 925959 575256 576154 (405 digits), a[787] = 4
                                                                                      A[788]/B[788] = 16 628360 609625 702740 848266 288570 046990 092958 526475 647213 686952 826341 683134 706460 470770 926556 127575 853371 576262 349341 323657 927305 249893 820372 470609 915063 527708 822653 375384 127982 625321 504735 499337 872440 618622 377562 089224 321915 489948 900730 740424 466218 696493 864896 181160 997694 220628 282679 213239 046200 088933 611415 298372 567997 168181 656883 178923 117735 332357 137745 740391 454799 931090 056928 468140 885555 832397 620896 (404 digits)/1616 168990 122324 682069 335379 218441 710612 867123 563789 571059 063486 540735 558430 921454 803070 185673 040261 847588 497657 605512 121452 913195 222729 704662 334308 728143 830903 374590 101854 834194 011215 187137 982144 624556 952969 429699 809718 070328 532806 029031 518238 049302 209875 908373 017673 320811 371930 836638 832378 709192 569400 333597 313821 566723 037775 408924 235063 639008 671475 721330 128112 558849 708508 587683 938228 307157 181248 081897 (406 digits), a[788] = 3
                                                                                      A[789]/B[789] = 55 025481 235525 833932 213266 127284 808450 829526 896941 212503 496293 647181 645964 064438 092392 086565 890042 520769 026251 554210 575737 660809 933398 176898 867366 764945 244314 038127 318210 329096 931359 738699 252277 372117 981902 054619 442617 337965 277396 831055 862099 541949 236097 036841 501136 330006 235629 936976 486114 602730 329747 341406 646995 935043 224972 014322 350690 054425 121095 534276 334451 238298 033904 687433 663827 507830 865151 811193 (404 digits)/5348 120510 926091 859144 106331 536771 707124 981542 388003 316096 203782 431925 891977 409727 255971 616079 142107 726759 574093 791738 007457 493479 849608 572136 469543 807966 762075 585803 789200 956477 740283 535513 702141 883176 204165 134853 897022 355165 614812 540908 313315 964053 316047 352593 134813 343309 354605 887604 254235 812057 929774 102455 931329 629089 891378 799457 632827 735157 990504 311986 825940 842910 859937 827756 387447 847431 119000 821845 (406 digits), a[789] = 3
                                                                                      A[790]/B[790] = 731 959616 671461 543859 620725 943272 556850 876808 186711 409759 138770 239703 080667 544155 671868 051912 698128 623368 917532 554078 808247 517834 384070 120057 746377 859351 703791 318308 512118 406242 732998 107825 778943 709974 383349 087614 843249 715464 096107 704456 947718 511558 765755 343835 695933 287775 283817 463373 532728 881694 375649 049701 709319 723559 092817 843073 737893 825261 906599 083338 088257 552674 371850 993566 097898 487357 079371 166405 (405 digits)/71141 735632 161518 850942 717689 196473 903237 627174 607832 680309 712658 155772 154137 247909 130701 194701 887662 295462 960876 898106 218400 328433 267641 142436 438378 231711 737885 990039 361467 268404 634901 148816 109989 105847 607116 182800 471008 687481 525369 060839 591345 581995 318491 492083 770246 783832 981807 375494 137444 265945 656463 665524 421106 744891 625699 801873 461824 196062 548031 777158 865343 516690 887700 348516 975050 323761 728258 765882 (407 digits), a[790] = 13
                                                                                      A[791]/B[791] = 8106 581264 621602 816388 041251 503282 933810 474416 950766 719854 022766 283915 533307 050150 482940 657605 569457 377827 119109 649077 466460 356988 158169 497534 077523 217813 986018 539520 951512 797766 994338 924782 820658 181836 198742 018382 718364 208070 334581 580082 287003 169095 659405 819034 156402 495534 357622 034085 346132 301368 461886 888125 449512 894193 245968 288133 467522 132306 093685 450995 305284 317716 124265 616660 740710 868758 738234 641648 (406 digits)/787907 212464 702799 219514 000912 697984 642738 880463 074162 799503 043022 145419 587487 136727 693684 757799 906392 976852 143739 670906 409861 106245 793661 138937 291704 356795 878821 476236 765340 908928 724196 172490 912022 047499 882443 145659 078117 917462 393872 210143 818117 366001 819453 765514 607527 965472 154487 018039 766122 737460 150874 423224 563503 822897 774076 620065 712893 891846 018853 860734 344719 526510 624641 661443 113001 408810 129847 246547 (408 digits), a[791] = 11
                                                                                      A[792]/B[792] = 98010 934792 130695 340516 115743 982667 762576 569811 595912 048007 411965 646689 480352 145961 467155 943179 531617 157294 346848 343008 405771 801692 282104 090466 676656 473119 536013 792559 930271 979446 665065 205219 626841 892008 768253 308207 463620 212308 111086 665444 391756 540706 678625 172245 572763 234187 575281 872397 686316 498115 918291 707207 103474 453878 044437 300675 348159 412935 030824 495281 751669 365267 863038 393494 986428 912461 938186 866181 (407 digits)/9 526028 285208 595109 485110 728641 572289 616104 192731 497786 274346 228923 900807 203982 888641 454918 288300 764378 017688 685752 948983 136733 603382 791574 809683 938830 513262 283743 704880 545558 175549 325255 218707 054253 675846 196433 930709 408423 697030 251835 582565 408753 974017 151936 678259 060582 369498 835651 591971 330917 115467 466956 744219 183152 619664 914619 242662 016550 898214 774278 105971 001977 834818 383400 285834 331067 229483 286425 724446 (409 digits), a[792] = 12
                                                                                      A[793]/B[793] = 1 184237 798770 189946 902581 430179 295296 084729 312156 101711 295942 966354 044189 297532 801688 088811 975759 948863 265359 281289 765178 335721 977295 543418 583134 197400 895248 418184 050240 114776 551126 975121 387418 342760 885941 417781 716872 281806 755767 667621 565414 988081 657575 802907 885981 029561 305785 261004 502857 581930 278759 481387 374610 691206 340729 779215 896237 645435 087526 463579 394376 325316 700930 480726 338600 577857 818301 996477 035820 (409 digits)/115 100246 634967 844113 040842 744611 565460 035989 193241 047598 091657 790108 955106 035281 800425 152704 217409 078929 189116 372775 058704 050664 346839 292558 855144 557670 515943 283745 934803 312039 015520 627258 796975 563066 157654 239650 314171 979202 281825 415899 200928 723165 054207 642693 904623 334516 399458 182306 121695 737128 123069 754355 353854 761335 258876 749507 532009 911504 670423 310191 132386 368453 544331 225445 091455 085808 162609 566955 939899 (411 digits), a[793] = 12
                                                                                      A[794]/B[794] = 60 494138 672071 817987 372169 054888 042768 083771 489772 783188 141098 696021 900343 654525 032053 996566 706936 923643 690617 692626 367103 527592 643764 996451 830310 744102 130788 863400 354805 783876 086922 396255 963555 107647 075021 075120 868693 835764 756459 159786 501608 783921 077072 626927 357278 080389 829235 886511 518134 364760 714849 469047 812352 354997 831096 784448 008795 265348 876784 673373 608474 342821 112722 380081 662124 457177 645863 758515 693001 (410 digits)/5879 638606 668568 644874 568090 703831 410751 451553 048024 925288 948893 524480 611215 003354 710324 242833 376163 789766 662623 697280 942889 720615 292186 712076 422056 380026 826369 754786 379849 459547 967101 315453 864460 770627 716212 418599 953480 347740 070126 462694 829930 290171 738606 929325 814049 120918 741866 133263 798453 924451 392024 939079 790812 011250 822379 139503 375167 503289 089803 594025 857675 793108 595710 881099 950043 707283 522571 201178 659295 (412 digits), a[794] = 51
                                                                                      A[795]/B[795] = 61 678376 470842 007934 274750 485067 338064 168500 801928 884899 437041 662375 944532 952057 833742 085378 682696 872506 955976 973916 132281 863314 621060 539870 413444 941503 026037 281584 405045 898652 638049 371377 350973 450407 960962 492902 585566 117571 512226 827408 067023 772002 734648 429835 243259 109951 135021 147516 020991 946690 993608 950435 186963 046204 171826 563663 905032 910783 964311 136953 002850 668137 813652 860808 000725 035035 464165 754992 728821 (410 digits)/5994 738853 303536 488987 608933 448442 976211 487542 241265 972887 040551 314589 566321 038636 510749 395537 593572 868695 851740 070056 001593 771279 639026 004635 277200 937697 342313 038532 314652 771586 982621 942712 661436 333693 873866 658250 267652 326942 351951 878594 030859 013336 792814 572019 718672 455435 141324 315569 920149 661579 515094 693435 144666 772586 081255 889010 907177 414793 760226 904216 990062 161562 140042 106545 041498 793091 685180 768134 599194 (412 digits), a[795] = 1
                                                                                      A[796]/B[796] = 862 313032 793017 921132 943925 360763 437602 274281 914848 286880 822640 306909 179272 031276 870701 106489 581996 266234 118318 353536 086767 750682 717552 014767 205094 983641 469273 523997 620402 466360 381564 224161 526209 962950 567533 482854 481053 364194 415407 916091 372917 819956 627502 214785 519646 509754 584510 804219 791029 671743 631765 824705 242871 955652 064842 112078 774223 105540 412829 453762 645533 028612 690209 570585 671549 912638 680018 573421 167674 (411 digits)/83811 243699 614543 001713 484225 533590 101500 789602 184482 572820 476060 614144 973388 505629 350066 384822 092611 082812 735244 608008 963608 747250 599524 772335 025668 570092 276439 255706 470335 490178 741186 570718 463133 108648 076478 975853 432960 597990 645500 884417 231097 463550 045196 365582 156791 041575 579082 235672 760399 524985 088255 953736 671480 054869 878705 696645 168473 895607 972753 348846 728483 893416 416258 266185 489528 017475 429921 186928 448817 (413 digits), a[796] = 13
                                                                                      A[797]/B[797] = 923 991409 263859 929067 218675 845830 775666 442782 716777 171780 259681 969285 123804 983334 704443 191868 264693 138741 074295 327452 219049 613997 338612 554637 618539 925144 495310 805582 025448 365013 019613 595538 877183 413358 528495 975757 066619 481765 927634 743499 439941 591959 362150 644620 762905 619705 719531 951735 812021 618434 625374 775140 429835 001856 236668 675742 679256 016324 377140 590715 648383 696750 503862 431393 672274 947674 144184 328413 896495 (411 digits)/89805 982552 918079 490701 093158 982033 077712 277144 425748 545707 516611 928734 539709 544265 860815 780359 686183 951508 586984 678064 965202 518530 238550 776970 302869 507789 618752 294238 784988 261765 723808 513431 124569 442341 950345 634103 700612 924932 997452 763011 261956 476886 838010 937601 875463 497010 720406 551242 680549 186564 603350 647171 816146 827455 959961 585656 075651 310401 732980 253063 718546 054978 556300 372730 531026 810567 115101 955063 048011 (413 digits), a[797] = 1
                                                                                      A[798]/B[798] = 1786 304442 056877 850200 162601 206594 213268 717064 631625 458661 082322 276194 303077 014611 575144 298357 846689 404975 192613 680988 305817 364680 056164 569404 823634 908785 964584 329579 645850 831373 401177 819700 403393 376309 096029 458611 547672 845960 343042 659590 812859 411915 989652 859406 282552 129460 304042 755955 603051 290178 257140 599845 672706 957508 301510 787821 453479 121864 789970 044478 293916 725363 194072 001979 343824 860312 824202 901835 064169 (412 digits)/173617 226252 532622 492414 577384 515623 179213 066746 610231 118527 992672 542879 513098 049895 210882 165181 778795 034321 322229 286073 928811 265780 838075 549305 328538 077881 895191 549945 255323 751944 464995 084149 587702 550990 026824 609957 133573 522923 642953 647428 493053 940436 883207 303184 032254 538586 299488 786915 440948 711549 691606 600908 487626 882325 838667 282301 244125 206009 705733 601910 447029 948394 972558 638916 020554 828042 545023 141991 496828 (414 digits), a[798] = 1
                                                                                      A[799]/B[799] = 9855 513619 548249 180068 031681 878801 842010 028105 874904 465085 671293 350256 639190 056392 580164 683657 498140 163617 037363 732393 748136 437397 619435 401661 736714 469074 318232 453480 254702 521880 025502 694040 894150 294904 008643 268814 804983 711567 642848 041453 504238 651539 310414 941652 175666 267007 239745 731513 827278 069325 911077 774368 793369 789397 744222 614849 946651 625648 326990 813107 117967 323566 474222 441290 391399 249238 265198 837589 217340 (412 digits)/957892 113815 581191 952773 980081 560148 973777 610877 476904 138347 479974 643132 105199 793741 915226 606268 580159 123115 198131 108434 609258 847434 428928 523496 945559 897199 094710 043965 061607 021488 048783 934179 063082 197292 084468 683889 368480 539551 212221 000153 727226 179071 254047 453522 036736 189942 217850 485819 885292 744313 061383 651714 254281 239085 153297 997162 296277 340450 261648 262615 953695 796953 419093 567310 633800 950779 840217 665020 532151 (414 digits), a[799] = 5
                                                                                      A[800]/B[800] = 169330 035974 377113 911356 701193 146225 527439 194864 505001 365117 494309 230557 169307 973285 437943 920535 315072 186464 827797 131682 024136 800439 586566 397654 347780 883049 374536 038743 975793 703333 834723 618395 603948 389677 242965 028463 232395 942610 271459 364300 384916 488084 266706 867493 268878 668583 379720 191690 666778 468718 745462 764115 159993 377269 953295 240270 546556 757886 348813 867299 299361 225993 255853 503915 997612 097363 332583 140851 758949 (414 digits)/16 457783 161117 412885 689572 238771 038155 733432 451663 717601 470435 152241 476125 301494 543507 769734 471747 641500 127279 690458 129462 286211 672166 129860 448753 403056 330266 505262 297351 302643 117241 294321 965193 660099 904955 462792 236076 397742 695294 250710 650041 855898 984648 202014 013058 656769 767604 002947 045853 490925 364871 735128 680050 810407 946773 444733 234060 280839 993664 153754 066381 659858 496603 097149 283196 795170 991299 828723 447340 543395 (416 digits), a[800] = 17
                                                                                      A[801]/B[801] = 4 073776 377004 598983 052628 860317 388214 500550 704853 994937 227905 534714 883628 702581 415243 090818 776505 059872 638772 904494 892762 327419 647947 697028 945366 083455 662259 307097 383335 673751 401892 058869 535535 388911 647157 839803 951932 382486 334214 157872 784662 742234 365561 711379 761490 628754 313008 353030 332089 829961 318575 802184 113132 633210 843876 623308 381343 064013 814920 698523 628290 302636 747404 614706 535274 334089 585958 247194 218031 432116 (415 digits)/395 944687 980633 490448 502507 710586 475886 576156 450806 699339 428791 133770 070139 341068 837928 388853 928211 976162 177827 769126 215529 478338 979421 545579 293578 618911 823595 221005 180396 325041 835279 112511 098826 905479 916223 191482 349722 914305 226613 229276 601158 268801 810628 102383 766929 799210 612438 288579 586303 667501 501234 704471 972933 704071 961647 826895 614609 036437 188389 951745 855775 790299 715427 750676 364033 717904 741975 729580 401193 573631 (417 digits), a[801] = 24
                                                                                      A[802]/B[802] = 4 243106 412978 976096 963985 561510 534440 027989 899718 499938 593023 029024 114185 871889 388528 528762 697040 374944 825237 732292 024444 351556 448387 283595 343020 431236 545308 681633 422079 649545 105225 893593 153930 992860 036835 082768 980395 614882 276824 429332 148963 127150 853645 978086 628983 897632 981591 732750 523780 496739 787294 547646 877247 793204 221146 576603 621613 610570 572807 047337 495589 601997 973397 870560 039190 331701 683321 579777 358883 191065 (415 digits)/412 402471 141750 903334 192079 949357 514042 309588 902470 416940 899226 286011 546264 642563 381436 158588 399959 617662 305107 459584 344991 764550 651587 675439 742332 021968 153861 726267 477747 627684 952520 406833 064020 565579 821178 654274 585799 312047 921907 479987 251200 124700 795276 304397 779988 455980 380042 291526 632157 158426 866106 439600 652984 514479 908421 271628 848669 317277 182054 105499 922157 450158 212030 847825 647230 513075 733275 558303 848534 117026 (417 digits), a[802] = 1
                                                                                      A[803]/B[803] = 8 316882 789983 575080 016614 421827 922654 528540 604572 494875 820928 563738 997814 574470 803771 619581 473545 434817 464010 636786 917206 678976 096334 980624 288386 514692 207567 988730 805415 323296 507117 952462 689466 381771 683992 922572 932327 997368 611038 587204 933625 869385 219207 689466 390474 526387 294600 085780 855870 326701 105870 349830 990380 426415 065023 199912 002956 674584 387727 745861 123879 904634 720802 485266 574464 665791 269279 826971 576914 623181 (415 digits)/808 347159 122384 393782 694587 659943 989928 885745 353277 116280 328017 419781 616403 983632 219364 547442 328171 593824 482935 228710 560521 242889 631009 221019 035910 640879 977456 947272 658143 952726 787799 519344 162847 471059 737401 845756 935522 226353 148520 709263 852358 393502 605904 406781 546918 255190 992480 580106 218460 825928 367341 144072 625918 218551 870069 098524 463278 353714 370444 057245 777933 240457 927458 598502 011264 230980 475251 287884 249727 690657 (417 digits), a[803] = 1
                                                                                      A[804]/B[804] = 95 728817 102798 301977 146744 201617 683639 841936 550015 943572 623237 230153 090146 191068 230016 344158 906040 157936 929354 736948 113717 820293 508072 070462 515272 092850 828556 557672 281648 205806 683523 370682 738061 192348 560757 231071 236003 585936 998248 888586 418847 690388 264930 562216 924203 687893 222192 676339 938354 090451 951868 395787 771432 483769 936401 775635 654137 030998 837812 251809 858268 552979 902225 208492 358301 655405 645399 676464 704944 046056 (416 digits)/9304 221221 487979 234943 832544 208741 403260 052787 788518 696024 507417 903609 326708 462517 794446 180454 009847 149731 617394 975400 510725 436336 592689 106649 137349 071647 905888 146266 717331 107679 618315 119618 855342 747236 932598 957600 876543 801932 555635 281889 627142 453229 460224 778994 796089 263081 297328 672695 035226 243638 906859 024399 538084 918550 479181 355397 944731 208135 256938 735203 479423 095195 414075 431347 771137 053860 961039 725030 595538 714253 (418 digits), a[804] = 11
                                                                                      A[805]/B[805] = 295 503334 098378 481011 456847 026680 973574 054350 254620 325593 690640 254198 268253 147675 493820 652058 191665 908628 252074 847631 258360 139856 620551 192011 834202 793244 693237 661747 650359 940716 557688 064510 903649 958817 366264 615786 640338 755179 605785 252964 190168 940550 013999 376117 163085 590066 961178 114800 670932 598056 961475 537194 304677 877724 874228 526818 965367 767580 901164 501290 698685 563574 427478 110743 649369 632008 205478 856365 691746 761349 (417 digits)/28721 010823 586322 098614 192220 286168 199709 044108 718833 204353 850271 130609 596529 371185 602703 088804 357713 043019 335120 154912 092697 551899 409076 540966 447957 855823 695121 386072 810137 275765 642744 878200 728875 712770 535198 718559 565153 632150 815426 554932 733785 753190 986578 743765 935186 044434 884466 598191 324139 556845 087918 217271 240172 974203 307613 164718 297471 978120 141260 262856 216202 526044 169684 892545 324675 392563 358370 462976 036343 833416 (419 digits), a[805] = 3
                                                                                      A[806]/B[806] = 686 735485 299555 264000 060438 254979 630787 950637 059256 594760 004517 738549 626652 486419 217657 648275 289371 975193 433504 432210 630438 100006 749174 454486 183677 679340 215031 881167 582368 087239 798899 499704 545361 109983 293286 462644 516681 096296 209819 394514 799185 571488 292929 314451 250374 868027 144548 905941 280219 286565 874819 470176 380788 239219 684858 829273 584872 566160 640141 254391 255639 680128 757181 429979 657040 919422 056357 389196 088437 568754 (417 digits)/66746 242868 660623 432172 216984 781077 802678 141005 226185 104732 207960 164828 519767 204888 999852 358062 725273 235770 287635 285224 696120 540135 410842 188582 033264 783295 296130 918412 337605 659210 903804 876020 313094 172778 002996 394720 006851 066234 186488 391755 094713 959611 433382 266526 666461 351951 066261 869077 683505 357329 082695 458942 018430 866957 094407 684834 539675 164375 539459 260915 911828 147283 753445 216438 420487 838987 677780 650982 668226 381085 (419 digits), a[806] = 2
                                                                                      A[807]/B[807] = 12656 742069 490373 233012 544735 616314 327757 165817 321239 031273 771959 548091 547997 903221 411658 321013 400361 462110 055154 627422 606245 939978 105691 372763 140401 021368 563811 522764 132985 511032 937879 059192 720149 938516 645420 943387 940598 488511 382534 354230 575509 227339 286727 036239 669833 214555 563058 421743 714879 756242 708226 000369 158866 183679 201687 453743 493073 958472 423707 080333 300199 805892 056743 850377 476106 181605 219911 861895 283622 998921 (419 digits)/1 230153 382459 477543 877714 097946 345568 647915 582202 790165 089533 593554 097522 952339 059187 600045 533933 412631 286884 512555 288956 622867 274336 804235 935443 046723 955139 025477 917494 887039 141561 911232 646566 364570 822774 589133 823519 688472 824366 172217 606524 438637 026196 787459 541245 931490 379554 077180 241589 627235 988768 576436 478227 571928 579431 006951 491740 011624 936879 851526 959342 629109 177151 731698 788436 893456 494341 558422 180664 064418 692946 (421 digits), a[807] = 18
                                                                                      A[808]/B[808] = 76627 187902 241794 662075 328851 952865 597330 945540 986690 782402 636275 027098 914639 905747 687607 574355 691540 747853 764432 196746 267913 739875 383322 691065 026083 807551 597901 017752 380281 153437 426173 854860 866260 741083 165812 122972 160272 027364 505025 519898 252240 935524 013291 531889 269374 155360 522899 436403 569497 824022 124175 472391 333985 341294 894983 551734 543316 316995 182383 736391 056838 515481 097644 532244 513678 009053 375828 560567 790175 562280 (419 digits)/7 447666 537625 525886 698456 804662 854489 690171 634221 967175 641933 769284 749966 233801 560014 600125 561663 201060 957077 362967 018964 433324 186156 236257 801240 313608 514129 448998 423381 659840 508582 371200 755418 500519 109425 537799 335838 137688 012431 219794 030901 726536 116792 158139 514002 255403 629275 529343 318615 446921 289940 541314 328307 450002 343543 136116 635274 609424 785654 648621 016971 686483 210194 143637 947059 781226 805037 028313 734967 054738 538761 (421 digits), a[808] = 6
                                                                                      A[809]/B[809] = 242538 305776 215757 219238 531291 474911 119750 002440 281311 378481 680784 629388 291917 620464 474481 044080 474983 705671 348451 217661 409987 159604 255659 445958 218652 444023 357514 576021 273828 971345 216400 623775 318932 161766 142857 312304 421414 570604 897610 913925 332232 033911 326601 631907 477955 680637 131756 730954 423373 228309 080752 417543 160822 207563 886638 108947 123022 909457 970858 289506 470715 352335 349677 447111 017140 208765 347397 543598 654149 685761 (420 digits)/23 573152 995336 055203 973084 511934 909037 718430 484868 691692 015334 901408 347421 653743 739231 400422 218923 015814 158116 601456 345849 922839 832805 513009 339163 987549 497527 372473 187639 866560 667309 024834 912821 866128 151051 202531 831034 101536 861659 831599 699229 618245 376573 261878 083252 697701 267380 665210 197435 967999 858590 200379 463149 921935 610060 415301 397563 839899 293843 797390 010257 688558 807734 162612 629616 237136 909452 643363 385565 228634 309229 (422 digits), a[809] = 3
                                                                                      A[810]/B[810] = 319165 493678 457551 881313 860143 427776 717080 947981 268002 160884 317059 656487 206557 526212 162088 618436 166524 453525 112883 414407 677900 899479 638982 137023 244736 251574 955415 593773 654110 124782 642574 478636 185192 902849 308669 435276 581686 597969 402636 433823 584472 969435 339893 163796 747329 835997 654656 167357 992871 052331 204927 889934 494807 548858 781621 660681 666339 226453 153242 025897 527553 867816 447321 979355 530818 217818 723226 104166 444325 248041 (420 digits)/31 020819 532961 581090 671541 316597 763527 408602 119090 658867 657268 670693 097387 887545 299246 000547 780586 216875 115193 964423 364814 356164 018961 749267 140404 301158 011656 821471 611021 526401 175891 396035 668240 366647 260476 740331 166872 239224 874091 051393 730131 344781 493365 420017 597254 953104 896656 194553 516051 414921 148530 741693 791457 371937 953603 551418 032838 449324 079498 446011 027229 375042 017928 306250 576676 018363 714489 671677 120532 283372 847990 (422 digits), a[810] = 1
                                                                                      A[811]/B[811] = 880869 293133 130860 981866 251578 330464 553911 898402 817315 700250 314903 942362 705032 672888 798658 280952 808032 612721 574218 046476 765788 958563 533623 720004 708124 947173 268345 763568 582049 220910 501549 581047 689317 967464 760196 182857 584787 766543 702883 781572 501177 972782 006387 959500 972615 352632 441069 065670 409115 332971 490608 197412 150437 305281 449881 430310 455701 362364 277342 341301 525823 087968 244321 405822 078776 644402 793849 751931 542800 181843 (420 digits)/85 614792 061259 217385 316167 145130 436092 535634 723050 009427 329872 242794 542197 428834 337723 401517 780095 449564 388504 530303 075478 635167 870729 011543 619972 589865 520841 015416 409682 919363 019091 816906 249302 599422 672004 683194 164778 579986 609841 934387 159492 307808 363304 101913 277762 603911 060693 054317 229538 797842 155651 683767 046064 665811 517267 518137 463240 738547 452840 689412 064716 438642 843590 775113 782968 273864 338431 986717 626629 795380 005209 (422 digits), a[811] = 2
                                                                                      A[812]/B[812] = 1 200034 786811 588412 863180 111721 758241 270992 846384 085317 861134 631963 598849 911590 199100 960746 899388 974557 066246 687101 460884 443689 858043 172605 857027 952861 198748 223761 357342 236159 345693 144124 059683 874510 870314 068865 618134 166474 364513 105520 215396 085650 942217 346281 123297 719945 188630 095725 233028 401986 385302 695536 087346 645244 854140 231503 090992 122040 588817 430584 367199 053376 955784 691643 385177 609594 862221 517075 856097 987125 429884 (421 digits)/116 635611 594220 798475 987708 461728 199619 944236 842140 668294 987140 913487 639585 316379 636969 402065 560681 666439 503698 494726 440292 991331 889690 760810 760376 891023 532497 836888 020704 445764 194983 212941 917542 966069 932481 423525 331650 819211 483932 985780 889623 652589 856669 521930 875017 557015 957349 248870 745590 212763 304182 425460 837522 037749 470871 069555 496079 187871 532339 135423 091945 813684 861519 081364 359644 292228 052921 658394 747162 078752 853199 (423 digits), a[812] = 1
                                                                                      A[813]/B[813] = 3 280938 866756 307686 708226 475021 846947 095897 591170 987951 422519 578831 140062 528213 071090 720152 079730 757146 745214 948420 968245 653168 674649 878835 434060 613847 344669 715868 478253 054367 912296 789797 700415 438339 708092 897927 419125 917736 495569 913924 212364 672479 857216 698950 206096 412505 729892 632519 531727 213088 103576 881680 372105 440927 013561 912887 612294 699782 539999 138511 075699 632576 999537 627608 176177 297966 368845 828001 464127 517051 041611 (421 digits)/318 886015 249700 814337 291584 068586 835332 424108 407331 346017 304154 069769 821368 061593 611662 205648 901458 782443 395901 519755 956064 617831 650110 533165 140726 371912 585836 689192 451091 810891 409058 242790 084388 531562 536967 530244 828080 218409 577707 905948 938739 612988 076643 145775 027797 717942 975391 552058 720719 223368 764016 534688 721108 741310 459009 657248 455399 114290 517518 960258 248608 066012 566628 937842 502256 858320 444275 303507 120953 952885 711607 (423 digits), a[813] = 2
                                                                                      A[814]/B[814] = 4 480973 653567 896099 571406 586743 605188 366890 437555 073269 283654 210794 738912 439803 270191 680898 979119 731703 811461 635522 429130 096858 532693 051441 291088 566708 543417 939629 835595 290527 257989 933921 760099 312850 578406 966793 037260 084210 860083 019444 427760 758130 799434 045231 329394 132450 918522 728244 764755 615074 488879 577216 459452 086171 867702 144390 703286 821823 128816 569095 442898 685953 955322 319251 561354 907561 231067 345077 320225 504176 471495 (421 digits)/435 521626 843921 612813 279292 530315 034952 368345 249472 014312 291294 983257 460953 377973 248631 607714 462140 448882 899600 014482 396357 609163 539801 293975 901103 262936 118334 526080 471796 256655 604041 455732 001931 497632 469448 953770 159731 037621 061640 891729 828363 265577 933312 667705 902815 274958 932740 800929 466309 436132 068198 960149 558630 779059 929880 726803 951478 302162 049858 095681 340553 879697 428148 019206 861901 150548 497196 961901 868116 031638 564806 (423 digits), a[814] = 1
                                                                                      A[815]/B[815] = 48 090675 402435 268682 422292 342457 898830 764801 966721 720644 259061 686778 529186 926245 773007 529141 870928 074184 859831 303645 259546 621754 001580 393248 344946 280932 778849 112166 834205 959640 492196 129015 301408 566845 492162 565857 791726 759845 096400 108368 489972 253787 851557 151263 500037 737014 915119 914967 179283 363832 992372 653844 966626 302645 690583 356794 645162 918013 828164 829465 504686 492116 552760 820123 789726 373578 679519 278774 666382 558815 756561 (422 digits)/4674 102283 688916 942470 084509 371737 184856 107560 902051 489140 217103 902344 430901 841326 097978 282793 522863 271272 391901 664579 919640 709467 048123 472924 151759 001273 769181 949997 169054 377447 449472 800110 103703 507887 231457 067946 425390 594620 194116 823247 222372 268767 409769 822834 055950 467532 302799 561353 383813 584689 446006 136184 307416 531909 757816 925287 970182 135911 016099 917071 654146 862986 848109 129911 121268 363805 416244 922525 802114 269271 359667 (424 digits), a[815] = 10
                                                                                      A[816]/B[816] = 293 025026 068179 508194 105160 641490 998172 955702 237885 397134 838024 331465 914033 997277 908236 855750 204688 176812 970449 457393 986409 827382 542175 410931 360766 252305 216512 612630 840831 048370 211166 708013 568550 713923 531382 361939 787620 643281 438483 669655 367594 280857 908776 952812 329620 554540 409242 218047 840455 798072 443115 500286 259209 902046 011202 285158 574264 329906 097805 545888 471017 638653 271887 239994 299713 149033 308183 017725 318520 857071 010861 (423 digits)/28480 135328 977423 267633 786348 760738 144089 013710 661780 949153 593918 397324 046364 425929 836501 304475 599320 076517 251010 001961 914201 865965 828542 131520 811657 270578 733426 226063 486122 521340 300878 256392 624152 544955 858191 361448 712074 605342 226341 831213 162596 878182 391931 604710 238518 080152 749538 169049 769190 944268 744235 777255 403129 970518 476782 278531 772571 117628 146457 598111 265435 057618 516802 798673 589511 333380 994666 497056 680801 647266 722808 (425 digits), a[816] = 6
                                                                                      A[817]/B[817] = 341 115701 470614 776876 527452 983948 897003 720504 204607 117779 097086 018244 443220 923523 681244 384892 075616 250997 830280 761039 245956 449136 543755 804179 705712 533237 995361 724797 675037 008010 703362 837028 869959 280769 023544 927797 579347 403126 534883 778023 857566 534645 760334 104075 829658 291555 324362 133015 019739 161905 435488 154131 225836 204691 701785 641953 219427 247919 925970 375353 975704 130769 824648 060118 089439 522611 987702 296499 984903 415886 767422 (423 digits)/33154 237612 666340 210103 870858 132475 328945 121271 563832 438293 811022 299668 477266 267255 934479 587269 122183 347789 642911 666541 833842 575432 876665 604444 963416 271852 502608 176060 655176 898787 750351 056502 727856 052843 089648 429395 137465 199962 420458 654460 384969 146949 801701 427544 294468 547685 052337 730403 153004 528958 190241 913439 710546 502428 234599 203819 742753 253539 162557 515182 919581 920605 364911 928584 710779 697186 410911 419582 482915 916538 082475 (425 digits), a[817] = 1
                                                                                      A[818]/B[818] = 64763 892604 014372 337857 793774 607832 531876 130996 908630 657384 187281 779665 682788 543253 663425 600352 496159 615402 893513 293811 472178 714189 312022 400895 740435 034286 339878 599391 422825 562393 146742 906469 990854 779268 981373 715682 284279 834196 531517 716164 447669 328906 611922 623144 135037 658496 713685 357886 571157 398199 750376 631087 942252 588777 648688 614317 046014 186772 106206 487789 879098 354150 130370 602313 203782 922698 983917 056222 465266 459670 053619 (425 digits)/6 294631 044122 915722 977265 378535 798575 314716 934036 226111 786683 877133 034666 249688 937301 453143 298339 691972 808759 761314 978368 510448 622779 518341 371618 897332 650701 726371 501527 314556 392225 117227 935408 188946 532299 801744 517129 692997 398239 693027 524225 921765 651694 913501 410581 893073 592627 641369 215245 687046 917366 699957 417360 696418 929454 816031 800463 152936 036529 869827 967683 066418 052032 485157 301183 926874 101612 656924 798145 951909 872964 310583 (427 digits), a[818] = 189
                                                                                      A[819]/B[819] = 65105 008305 484987 114734 321227 591781 428879 851501 113237 775163 284367 797910 126009 466777 344669 985244 571775 866400 723794 054850 718135 163325 855778 205075 446147 567524 335240 324189 097862 570403 850105 743498 860814 060038 004918 643479 863627 237323 066401 494188 305235 863552 372256 727219 964695 950052 038047 490901 590896 560105 185864 785219 168088 793469 350474 256270 265441 434692 032176 863143 854802 484919 955018 662431 293222 445310 971619 352722 450169 875556 821041 (425 digits)/6 327785 281735 582063 187369 249393 931050 643662 055307 789944 224977 688155 334334 726955 204557 387622 885608 814156 156549 404226 644910 344291 198212 395006 976063 860748 922554 228979 677587 969733 291012 867578 991910 916802 585142 891392 946524 830462 598202 113486 178686 306734 798644 715202 838126 187542 140312 693706 945648 840051 446324 890199 330800 406965 431883 050631 004282 895689 290069 032385 482865 985999 972637 850069 229768 637653 798799 067836 217728 434825 789502 393058 (427 digits), a[819] = 1
                                                                                      A[820]/B[820] = 455393 942436 924295 026263 721140 158521 105155 240003 588057 308363 893488 567126 438845 343917 731445 511819 926814 813807 236277 622915 780989 694144 446691 631348 417320 439432 351320 544526 010000 984816 247377 367463 155739 139497 010885 576561 466043 258134 929926 681294 279084 510220 845462 986463 923213 358808 941970 303296 116536 758830 865565 342402 950785 349593 751534 151938 638662 794924 299267 666653 007913 263669 860482 576900 963117 594564 813633 172557 166285 713010 979865 (426 digits)/44 261342 734536 408102 101480 874899 384879 176689 265882 965777 136550 006065 040674 611420 164645 778880 611992 576909 748056 186674 847830 576195 812053 888383 228002 061826 186027 100249 567055 132956 138302 322701 886873 689762 043157 150102 196278 675772 987452 373944 596343 762174 443563 204718 439339 018326 434503 803610 889138 727355 595316 041153 402163 138211 520753 119817 826160 527071 776944 064140 864878 982417 887859 585572 679795 752796 894407 063942 104516 560864 609978 668931 (428 digits), a[820] = 6
                                                                                      A[821]/B[821] = 4 619044 432674 727937 377371 532629 176992 480432 251536 993810 858802 219253 469174 514462 905954 659125 103443 839924 004473 086570 284008 528032 104770 322694 518559 619351 961847 848445 769449 197872 418566 323879 418130 418205 455008 113774 409094 524059 818672 365668 307131 096080 965760 826886 591859 196829 538141 457750 523862 756264 148413 841518 209248 675942 289406 865815 775656 652069 383935 024853 529673 933935 121618 559844 431440 924398 390959 107951 078294 113027 005666 619691 (427 digits)/448 941212 627099 663084 202177 998387 779842 410554 714137 447715 590477 748805 741080 841156 851015 176429 005534 583253 637111 270975 123216 106249 318751 278839 256084 479010 782825 231475 348139 299294 674036 094597 860647 814423 016714 392414 909311 588192 472725 852932 142123 928479 234276 762387 231516 370806 485350 729815 837036 113607 399485 301733 352431 789080 639414 248809 265888 166407 059509 673794 131655 810178 851233 705796 027726 165622 742869 707257 262894 043471 889289 082368 (429 digits), a[821] = 10
                                                                                      A[822]/B[822] = 5 074438 375111 652232 403635 253769 335513 585587 491540 581868 167166 112742 036300 953308 249872 390570 615263 766738 818280 322847 906924 309021 798914 769386 149908 036672 401280 199766 313975 207873 403382 571256 785593 573944 594505 124659 985655 990103 076807 295594 988425 375165 475981 672349 578323 120042 896950 399720 827158 872800 907244 707083 551651 626727 639000 617349 927595 290732 178859 324121 196326 941848 385288 420327 008341 887515 985523 921584 250851 279312 718677 599556 (427 digits)/493 202555 361636 071186 303658 873287 164721 587243 980020 413492 727027 754870 781755 452577 015660 955309 617527 160163 385167 457649 971046 682445 130805 167222 484086 540836 968852 331724 915194 432250 812338 417299 747521 504185 059871 542517 105590 263965 460178 226876 738467 690653 677839 967105 670855 389132 919854 533426 726174 840962 994801 342886 754594 927292 160167 368627 092048 693478 836453 737934 996534 792596 739093 291368 707521 918419 637276 771199 367410 604336 499267 751299 (429 digits), a[822] = 1
                                                                                      A[823]/B[823] = 14 767921 182898 032402 184642 040167 848019 651607 234618 157547 193134 444737 541776 421079 405699 440266 333971 373401 641033 732266 097857 146075 702599 861466 818375 692696 764408 247978 397399 613619 225331 466392 989317 566094 644018 363094 380406 504265 972286 956858 283981 846411 917724 171585 748505 436915 332042 257192 178180 501865 962903 255685 312551 929397 567408 100515 630847 233533 741653 673095 922327 817631 892195 400498 448124 699430 362006 951119 579996 671652 443021 818803 (428 digits)/1435 346323 350371 805456 809495 744962 109285 585042 674178 274701 044533 258547 304591 746310 882337 087048 240588 903580 407446 186275 065309 471139 580361 613284 224257 560684 720529 894925 178528 163796 298712 929197 355690 822793 136457 477449 120492 116123 393082 306685 619059 309786 589956 696598 573227 149072 325059 796669 289385 795533 389087 987506 861621 643664 959748 986063 449985 553364 732417 149664 124725 395372 329420 288533 442770 002462 017423 249655 997715 252144 887824 584966 (430 digits), a[823] = 2
                                                                                      A[824]/B[824] = 19 842359 558009 684634 588277 293937 183533 237194 726158 739415 360300 557479 578077 374387 655571 830836 949235 140140 459314 055114 004781 455097 501514 630852 968283 729369 165688 447744 711374 821492 628714 037649 774911 140039 238523 487754 366062 494369 049094 252453 272407 221577 393705 843935 326828 556958 228992 656913 005339 374666 870147 962768 864203 556125 206408 717865 558442 524265 920512 997217 118654 759480 277483 820825 456466 586946 347530 872703 830847 950965 161699 418359 (428 digits)/1928 548878 712007 876643 113154 618249 274007 172286 654198 688193 771561 013418 086347 198887 897998 042357 858116 063743 792613 643925 036356 153584 711166 780506 708344 101521 689382 226650 093722 596047 111051 346497 103212 326978 196329 019966 226082 380088 853260 533562 357527 000440 267796 663704 244082 538205 244914 330096 015560 636496 383889 330393 616216 570957 119916 354690 542034 246843 568870 887599 121260 187969 068513 579902 150291 920881 654700 020855 365125 856481 387092 336265 (430 digits), a[824] = 1
                                                                                      A[825]/B[825] = 54 452640 298917 401671 361196 628042 215086 125996 686935 636377 913735 559696 697931 169854 716843 101940 232441 653682 559661 842494 107420 056270 705629 123172 754943 151435 095785 143467 820149 256604 482759 541692 539139 846173 121065 338603 112531 493004 070475 461764 828796 289566 705135 859456 402162 550831 790027 571018 188859 251199 703199 181223 040959 041647 980225 536246 747732 282065 582679 667530 159637 336592 447163 042149 361057 873323 057068 696527 241692 573582 766420 655521 (428 digits)/5292 444080 774387 558743 035804 981460 657299 929615 982575 651088 587655 285383 477286 144086 678333 171763 956821 031067 992673 474125 138021 778309 002695 174297 640945 763728 099294 348225 365973 355890 520815 622191 562115 476749 529115 517381 572656 876301 099603 373810 334113 310667 125550 024007 061392 225482 814888 456861 320507 068526 156866 648294 094054 785579 199581 695444 534054 047051 870158 924862 367245 771310 466447 448337 743353 844225 326823 291366 727966 965107 662009 257496 (430 digits), a[825] = 2
                                                                                      A[826]/B[826] = 74 294999 856927 086305 949473 921979 398619 363191 413094 375793 274036 117176 276008 544242 372414 932777 181676 793823 018975 897608 112201 511368 207143 754025 723226 880804 261473 591212 531524 078097 111473 579342 314050 986212 359588 826357 478593 987373 119569 714218 101203 511144 098841 703391 728991 107790 019020 227931 194198 625866 573347 143991 905162 597773 186634 254112 306174 806331 503192 664747 278292 096072 724646 862974 817524 460269 404599 569231 072540 524547 928120 073880 (428 digits)/7220 992959 486395 435386 148959 599709 931307 101902 636774 339282 359216 298801 563633 342974 576331 214121 814937 094811 785287 118050 174377 931893 713861 954804 349289 865249 788676 574875 459695 951937 631866 968688 665327 803727 725444 537347 798739 256389 952863 907372 691640 311107 393346 687711 305474 763688 059802 786957 336067 705022 540755 978687 710271 356536 319498 050135 076088 293895 439029 812461 488505 959279 534961 028239 893645 765106 981523 312222 093092 821589 049101 593761 (430 digits), a[826] = 1
                                                                                      A[827]/B[827] = 277 337639 869698 660589 209618 393980 410944 215570 926218 763757 735843 911225 525956 802581 834087 900271 777472 035151 616589 535318 444024 590375 327060 385249 924623 793847 880205 917105 414721 490895 817180 279719 481292 804810 199831 817675 548313 455123 429184 604419 132406 822999 001660 969631 589135 874201 847088 254811 771455 128799 423240 613198 756446 834967 540128 298583 666256 701060 092257 661771 994513 624810 621103 631073 813631 254131 270867 404220 459314 147226 550780 877161 (429 digits)/26955 422959 233573 864901 482683 780590 451221 235323 892898 668935 665304 181788 168186 173010 407326 814129 401632 315503 348534 828275 661155 573990 144281 038710 688815 359477 465324 072851 745061 211703 416416 528257 558098 887932 705449 129424 968874 645470 958195 095928 409034 243989 305590 087140 977816 516546 994296 817733 328710 183593 779134 584357 224868 855188 158075 845849 762318 928738 187248 362246 832763 649149 071330 533057 424291 139546 271393 228033 007245 429874 809314 038779 (431 digits), a[827] = 3
                                                                                      A[828]/B[828] = 1738 320839 075119 049841 207184 285861 864284 656616 970406 958339 689099 584529 431749 359733 376942 334407 846509 004732 718513 109518 776349 053620 169506 065525 270969 643891 542709 093845 019853 023472 014555 257659 201807 815073 558579 732410 768474 718113 694677 340732 895644 449138 108807 521181 263806 353001 101549 756801 822929 398663 112790 823184 443843 607578 427404 045614 303715 012692 056738 635379 245373 844936 451268 649417 699311 985057 029803 994553 828425 407907 232805 336846 (430 digits)/168953 530714 887838 624795 045062 283252 638634 513845 994166 352896 351041 389530 572750 381037 020292 098898 224730 987831 876496 087704 141311 375834 579548 187068 482182 022114 580621 011985 930063 222158 130366 138234 013921 131323 958139 313897 611987 129215 702034 482943 145845 775043 226887 210557 172373 862970 025583 693357 308328 806585 215563 484831 059484 487665 267953 125233 650001 866324 562519 985942 485087 854173 962944 226584 439392 602384 609882 680420 136565 400837 904985 826435 (432 digits), a[828] = 6
                                                                                      A[829]/B[829] = 31567 112743 221841 557730 938935 539493 968068 034676 393544 013872 139636 432755 297445 277782 619049 919613 014634 120340 549825 506656 418307 555538 378169 564704 802077 383895 648969 606315 772075 913392 079174 917585 113833 476134 254267 001069 380858 381169 933376 737611 254006 907484 960196 350894 337650 228221 674983 877244 584184 304735 453475 430518 745631 771379 233401 119641 133126 929517 113553 098598 411242 833666 743939 320592 401246 985157 807339 306189 370971 489556 741276 940389 (431 digits)/3 068118 975827 214669 111212 293804 879137 946642 484551 787893 021069 984049 193338 477693 031676 772584 594297 446790 096477 125464 406950 204760 339012 576148 405943 368091 757539 916502 288598 486199 210549 763007 016469 808679 251763 951956 779581 984642 971353 594815 788905 034258 194767 389559 877170 080546 050007 454803 298164 878628 702127 659277 311316 295589 633162 981232 100055 462352 522580 312608 109211 564345 024280 404326 611577 333357 982469 249281 475595 465422 644957 099058 914609 (433 digits), a[829] = 18
                                                                                      A[830]/B[830] = 64872 546325 518802 165303 085055 364849 800420 725969 757494 986083 968372 450040 026639 915298 615042 173633 875777 245413 818164 122831 612964 164696 925845 194934 875124 411682 840648 306476 564004 850256 172905 092829 429474 767342 067113 734549 530191 480453 561430 815955 403658 264108 029200 222969 939106 809444 451517 511290 991298 008134 019741 684221 935107 150336 894206 284896 569968 871726 283844 832576 067859 512269 939147 290602 501805 955372 644482 606932 570368 387020 715359 217624 (431 digits)/6 305191 482369 317176 847219 632672 041528 531919 482949 569952 395036 319139 776207 528136 444390 565461 287493 118311 180786 127424 901604 550832 053859 731844 998955 218365 537194 413625 589182 902461 643257 656380 171173 631279 634851 862052 873061 581273 071922 891666 060753 214362 164578 006006 964897 333465 962984 935190 289687 065586 210840 534118 107463 650663 753991 230417 325344 574706 911485 187736 204365 613777 902734 771597 449739 106108 567323 108445 631611 067410 690752 103103 655653 (433 digits), a[830] = 2
                                                                                      A[831]/B[831] = 226184 751719 778248 053640 194101 634043 369330 212585 666028 972124 044753 782875 377365 023678 464176 440514 641965 856582 004317 875151 257200 049629 155705 149509 427450 618944 170914 525745 464090 464160 597890 196073 402257 778160 455608 204717 971432 822530 617669 185477 464981 699809 047797 019804 154970 656555 029536 411117 558078 329137 512700 483184 550953 222389 916019 974330 843033 544695 965087 596326 614821 370476 561381 192399 906664 851275 740787 126987 082076 650618 887354 593261 (432 digits)/21 983693 422935 166199 652871 191821 003723 542400 933400 497750 206178 941468 521961 062102 364848 468968 456776 801723 638835 507739 111763 857256 500591 771683 402809 023188 369123 157379 056147 193584 140322 732147 529990 702518 156319 538115 398766 728462 187122 269813 971164 677344 688501 407580 771862 080943 938962 260374 167226 075387 334649 261631 633707 247580 895136 672484 076089 186473 257035 875816 722308 405678 732484 719118 960794 651683 684438 574618 370428 667654 717213 408369 881568 (434 digits), a[831] = 3
                                                                                      A[832]/B[832] = 2 552904 815243 079530 755345 220173 339326 863053 064412 083813 679448 460664 061669 177655 175761 720983 019294 937401 667815 865660 749495 442164 710617 638601 839538 577081 220068 720708 089676 668999 956022 749697 249636 854310 327107 078803 986447 215952 528290 355791 856207 518456 962007 554967 440815 643784 031549 776418 033584 130159 628646 659446 999251 995592 596625 970426 002535 843337 863381 899808 392168 830894 587512 114340 407001 475119 319405 793141 003790 473211 543828 476259 743495 (433 digits)/248 125819 134656 145373 028802 742703 082487 498329 750355 045204 663004 675293 517779 211262 457723 724114 312037 937271 207976 712555 131006 980653 560369 220362 429854 473437 597549 144795 206802 031887 186807 710003 001071 358979 354366 781322 259495 594357 130267 859619 743564 665153 738093 489395 455380 223849 291569 799306 129173 894846 891982 412066 078243 374053 600494 627742 162325 625912 738879 821720 149758 076243 960066 681906 018480 274629 096147 429247 706326 411612 580099 595172 352901 (435 digits), a[832] = 11
                                                                                      A[833]/B[833] = 2 779089 566962 857778 808985 414274 973370 232383 276997 749842 651572 505417 844544 555020 199440 185159 459809 579367 524397 869978 624646 699364 760246 794306 989048 004531 839012 891622 615422 133090 420183 347587 445710 256568 105267 534412 191165 187385 350820 973461 041684 983438 661816 602764 460619 798754 688104 805954 444701 688237 957784 172147 482436 546545 819015 886445 976866 686371 408077 864895 988495 445715 957988 675721 599401 381784 170681 533928 130777 555288 194447 363614 336756 (433 digits)/270 109512 557591 311572 681673 934524 086211 040730 683755 542954 869183 616762 039740 273364 822572 193082 768814 738994 846812 220294 242770 837910 060960 992045 832663 496625 966672 302174 262949 225471 327130 442150 531062 061497 510686 319437 658262 322819 317390 129433 714729 342498 426594 896976 227242 304793 230532 059680 296399 970234 226631 673697 711950 621634 495631 300226 238414 812385 995915 697536 872066 481922 692551 401024 979274 926312 780586 003866 076755 079267 297313 003542 234469 (435 digits), a[833] = 1
                                                                                      A[834]/B[834] = 5 331994 382205 937309 564330 634448 312697 095436 341409 833656 331020 966081 906213 732675 375201 906142 479104 516769 192213 735639 374142 141529 470864 432908 828586 581613 059081 612330 705098 802090 376206 097284 695347 110878 432374 613216 177612 403337 879111 329252 897892 501895 623824 157731 901435 442538 719654 582372 478285 818397 586430 831594 481688 542138 415641 856871 979402 529709 271459 764704 380664 276610 545500 790062 006402 856903 490087 327069 134568 028499 738275 839874 080251 (433 digits)/518 235331 692247 456945 710476 677227 168698 539060 434110 588159 532188 292055 557519 484627 280295 917197 080852 676266 054788 932849 373777 818563 621330 212408 262517 970063 564221 446969 469751 257358 513938 152153 532133 420476 865053 100759 917757 917176 447657 989053 458294 007652 164688 386371 682622 528642 522101 858986 425573 865081 118614 085763 790193 995688 096125 927968 400740 438298 734795 519257 021824 558166 652618 082930 997755 200941 876733 433113 783081 490879 877412 598714 587370 (435 digits), a[834] = 1
                                                                                      A[835]/B[835] = 130 746954 739905 353208 352920 641034 478100 522855 470833 757594 596075 691383 593674 139229 204285 932578 958317 981828 137527 525323 604058 096072 060993 184118 875125 963245 256971 587559 537793 383259 449129 682420 134040 917650 482258 251600 453862 867494 449492 875530 591105 028933 633596 388330 095070 419683 959814 782893 923561 329780 032124 130415 042961 557867 794420 451373 482527 399393 923112 217801 124438 084369 050007 637209 753069 947467 932777 383587 360410 239281 913067 520592 262780 (435 digits)/12707 757473 171530 278269 733114 187976 134975 978181 102409 658783 641702 626095 420207 904419 549674 205812 709278 969380 161746 608679 213438 483436 972886 089844 133094 778151 507987 029441 536979 402075 661646 093835 302264 152942 271960 737675 684452 335054 061181 866716 713785 526150 379116 169896 610182 992213 760976 675354 510172 732181 073369 732028 676606 518148 802653 571467 856185 331555 631008 159705 395855 877922 355385 391368 925399 748917 822188 398596 870710 860384 355215 372692 331349 (437 digits), a[835] = 24
                                                                                      A[836]/B[836] = 2228 030224 960596 941851 563981 532034 440405 983979 345583 712764 464307 719602 998674 099571 848062 759984 770510 207847 530181 666140 643129 774754 507748 562929 705727 956782 427598 600842 847586 317501 011410 698426 974042 710936 630764 890423 893281 150743 520490 213272 946677 993767 394962 759343 517632 577166 036505 891569 178828 424658 132541 048650 212035 025890 920789 530221 182368 319405 964367 467323 496111 710884 395630 622627 808591 963858 347302 848054 261542 096292 260423 689942 547511 (436 digits)/216550 112375 608262 187531 173417 872821 463290 168139 175074 787481 441132 935677 701053 859759 624757 416013 138595 155728 804481 280396 002232 036992 160393 739758 525129 198639 200000 947475 598401 092644 761921 747353 670624 020495 488385 641246 553447 613095 487749 723237 592647 952208 609663 274614 055733 396276 458705 340013 098510 312159 365899 530251 292504 804217 741236 642921 955891 074744 461934 234248 751374 482846 694169 736202 729550 932544 853936 209260 585166 117413 916073 934484 220303 (438 digits), a[836] = 17
                                                                                      A[837]/B[837] = 11270 898079 542890 062466 172828 301206 680130 442752 198752 321416 917614 289398 587044 637088 444599 732502 810869 021065 788435 856026 819706 969844 599735 998767 403765 747157 394964 591773 775724 970764 506183 174555 004254 472333 636082 703719 920268 621212 051943 941895 324494 997770 608410 185047 683233 305514 142344 240739 817703 453070 694829 373666 103136 687322 398368 102479 394368 996423 744949 554418 604996 638791 028160 750348 796029 766759 669291 623858 668120 720743 215185 970305 000335 (437 digits)/1 095458 319351 212841 215925 600203 552083 451426 818876 977783 596190 847367 304483 925477 203217 673461 285878 402254 748024 184153 010659 224598 668397 774854 788636 758740 771347 507991 766819 528984 865299 471254 830603 655384 255419 713888 943908 451690 400531 499930 482904 677025 287193 427432 542966 888849 973596 054503 375420 002724 292977 902867 383285 139130 539237 508836 786077 635640 705277 940679 330949 152728 292155 826234 072382 573154 411642 091869 444899 796541 447453 935585 045113 432864 (439 digits), a[837] = 5
                                                                                      A[838]/B[838] = 13498 928304 503487 004317 736809 833241 120536 426731 544336 034181 381922 009001 585718 736660 292662 492487 581379 228913 318617 522167 462836 744599 107484 561697 109493 703939 822563 192616 623311 288265 517593 872981 978297 183270 266847 594143 813549 771955 572434 155168 271172 991538 003372 944391 200865 882680 178850 132308 996531 877728 827370 422316 315171 713213 319157 632700 576737 315829 709317 021742 101108 349675 423791 372976 604621 730618 016594 471912 929662 817035 475609 660247 547846 (437 digits)/1 312008 431726 821103 403456 773621 424904 914716 987016 152858 383672 288500 240161 626531 062977 298218 701891 540849 903752 988634 291055 226830 705389 935248 528395 283869 969986 707992 714295 127385 957944 233176 577957 326008 275915 202274 585155 005138 013626 987680 206142 269673 239402 037095 817580 944583 369872 513208 715433 101234 605137 268766 913536 431635 343455 250073 428999 591531 780022 402613 565197 904102 775002 520403 808585 302705 344186 945805 654160 381707 564867 851658 979597 653167 (439 digits), a[838] = 1
                                                                                      A[839]/B[839] = 24769 826384 046377 066783 909638 134447 800666 869483 743088 355598 299536 298400 172763 373748 737262 224990 392248 249979 107053 378194 282543 714443 707220 560464 513259 451097 217527 784390 399036 259030 023777 047536 982551 655603 902930 297863 733818 393167 624378 097063 595667 989308 611783 129438 884099 188194 321194 373048 814235 330799 522199 795982 418308 400535 717525 735179 971106 312253 454266 576160 706104 988466 451952 123325 400651 497377 685886 095771 597783 537778 690795 630552 548181 (437 digits)/2 407466 751078 033944 619382 373824 976988 366143 805893 130641 979863 135867 544645 552008 266194 971679 987769 943104 651777 172787 301714 451429 373787 710103 317032 042610 741334 215984 481114 656370 823243 704431 408560 981392 531334 916163 529063 456828 414158 487610 689046 946698 526595 464528 360547 833433 343468 567712 090853 103958 898115 171634 296821 570765 882692 758910 215077 227172 485300 343292 896147 056831 067158 346637 880967 875859 755829 037675 099060 178249 012321 787244 024711 086031 (439 digits), a[839] = 1
                                                                                      A[840]/B[840] = 335506 671297 106388 872508 562105 581062 529205 730020 204484 656959 275893 888203 831642 595393 877071 417362 680606 478641 710311 438693 135905 032367 301351 847735 781866 568203 650424 389691 810782 655655 826695 490962 751468 706121 004941 466372 353188 883134 689349 416995 014856 852549 956553 627096 694155 329206 354376 981943 581591 178122 615967 770087 753180 920177 646992 190040 201119 375124 614782 511831 280473 199739 299168 976206 813091 196527 933113 716943 700848 808158 455952 857430 674199 (438 digits)/32 609076 195741 262383 455427 633346 125753 674586 463626 851204 121893 054778 320553 802638 523511 930058 542900 801210 376856 234869 213343 095412 564630 166591 649811 837809 607331 515790 968785 660206 660112 390784 889250 084111 183269 112400 462979 943907 397687 326619 163752 576754 085143 075964 504702 779216 834963 893465 896523 452700 280634 500012 772216 851591 818461 115906 225003 544774 088926 865421 215109 642906 648061 026696 261167 688882 169964 435581 941942 698944 725051 085831 300841 771570 (440 digits), a[840] = 13
                                                                                      A[841]/B[841] = 360276 497681 152765 939292 471743 715510 329872 599503 947573 012557 575430 186604 004405 969142 614333 642353 072854 728620 817364 816887 418448 746811 008572 408200 295126 019300 867952 174082 209818 914685 850472 538499 734020 361724 907871 764236 087007 276302 313727 514058 610524 841858 568336 756535 578254 517400 675571 354992 395826 508922 138167 566070 171489 320713 364517 925220 172225 687378 069049 087991 986578 188205 751121 099532 213742 693905 618999 812715 298632 345937 146748 487983 222380 (438 digits)/35 016542 946819 296328 074810 007171 102742 040730 269519 981846 101756 190645 865199 354646 789706 901738 530670 744315 028633 407656 515057 546841 938417 876694 966843 880420 348665 731775 449900 316577 483356 095216 297811 065503 714604 028563 992043 400735 811845 814229 852799 523452 611738 540492 865250 612650 178432 461177 987376 556659 178749 671647 069038 422357 701153 874816 440080 771946 574227 208714 111256 699737 715219 373334 142135 564741 925793 473257 041002 877193 737372 873075 325552 857601 (440 digits), a[841] = 1
                                                                                      A[842]/B[842] = 18 709608 053035 897451 776424 621035 072089 352708 304721 530708 297395 622833 405008 056347 021667 208087 177369 396197 638303 395917 099951 476791 119728 738544 665950 833293 552547 915985 267884 511547 304634 200794 954449 186507 154091 306401 442412 790559 974552 689452 633984 151623 787336 941728 210411 185135 716640 808516 086555 768743 133151 662513 639666 499136 276559 237406 376268 984629 431406 136285 999422 595960 798232 606345 052349 713968 585714 502104 165423 931098 450952 940125 744575 015579 (440 digits)/1818 452766 483525 375115 270737 999072 365597 751830 209145 925355 311458 777717 445720 889624 798563 918723 607108 761276 837160 025351 481277 984351 423941 878034 958849 739247 389283 836338 913701 805658 311273 246816 077614 424800 628074 569164 057193 381433 801823 852341 656528 272837 283808 641100 632484 024375 935019 413543 252727 842318 396867 754013 293176 391834 577308 731544 669122 914049 374514 509840 889201 329530 124249 066737 510081 490720 385431 571691 033089 435825 331067 612672 904037 509221 (442 digits), a[842] = 51
                                                                                      A[843]/B[843] = 224 875573 134111 922187 256387 924164 580582 562372 256162 316072 581305 049431 046700 680570 229149 111379 770785 827226 388261 568370 016305 139942 183555 871108 399610 294648 649875 859775 388696 348386 570296 260011 991889 972106 210820 584689 073189 573726 970934 587159 121868 430010 289901 869075 281469 799883 117090 377764 393661 620744 106742 088331 242068 161124 639424 213394 440447 987778 864251 704481 081063 138107 766997 027261 727728 781365 722479 644249 797802 471813 757372 428257 422883 409328 (441 digits)/21856 449740 749123 797711 323665 996039 489915 062692 779271 086109 839261 523255 213850 030144 372473 926421 815975 879637 074553 711874 290393 359059 025720 413114 473040 751389 020071 767842 414321 984477 218635 057009 229184 163111 251498 858532 678363 977941 433732 042329 731138 797500 017442 233700 455058 905161 398665 423697 020110 664479 941162 719806 587155 124372 628858 653352 469555 740539 068401 326804 781672 654099 206208 174184 263113 453386 550972 333549 438076 107097 710184 225150 174002 968253 (443 digits), a[843] = 12
                                                                                      A[844]/B[844] = 2717 216485 662378 963698 853079 711010 039080 101175 378669 323579 273056 216005 965416 223189 771456 544644 426799 322914 297442 216357 295613 156097 322399 191845 461274 369077 351058 233289 932240 692186 148189 320938 857128 851781 683938 322670 320687 675283 625767 735362 096405 311747 266159 370631 588048 783733 121725 341688 810495 217672 414056 722488 544484 432631 949649 798139 661644 837975 802426 590058 972180 253254 002196 933485 785095 090357 255470 233101 739053 592863 539422 079214 819175 927515 (442 digits)/264095 849655 473010 947651 154729 951546 244578 504143 560398 958673 382597 056780 011921 251357 268251 035785 398819 316921 731804 567842 965998 293059 732586 835408 635338 755915 630145 050447 885565 619384 934893 930926 827824 382135 646060 871556 197561 116731 006608 360298 430193 842837 493115 445506 093190 886312 719004 497907 494055 816077 690820 391692 339037 884306 123612 571774 303791 800518 195330 431498 269273 178720 598747 156948 667442 931358 997099 574284 290002 720997 853278 314474 992073 128257 (444 digits), a[844] = 12
                                                                                      A[845]/B[845] = 30114 256915 420280 522874 640264 745275 010463 675301 421524 875444 584923 425496 666279 135657 715171 102468 465578 379283 660125 948300 268049 857012 729946 981408 473628 354499 511516 425964 643343 962434 200378 790339 420307 341704 734142 134062 600754 001846 854379 676142 182326 859230 217654 946022 750006 420947 456069 136341 309109 015140 661366 035705 231396 920076 085571 992930 718541 205512 690944 195129 775045 923901 791163 295605 363774 775295 532652 208368 927391 993312 691015 299620 433818 611993 (443 digits)/2 926910 795950 952244 221874 025695 463048 180278 608271 943659 631517 047829 147835 344983 795074 323235 320061 202988 365776 124403 958146 916374 582716 084175 602609 461767 066460 951667 322769 155543 797711 502468 297204 335252 366603 358168 445650 851536 261982 506424 005612 463271 068712 441712 134267 480158 654601 307714 900679 454724 641334 540187 028422 316571 851739 988596 942869 811265 546239 217036 073285 743677 620025 792426 900619 604985 698335 519067 650676 628106 038074 096245 684375 086807 379080 (445 digits), a[845] = 11
                                                                                      A[846]/B[846] = 394202 556386 126025 761069 176521 399585 175107 880093 858492 704358 877060 747462 627044 986740 068680 876734 479318 253601 879079 544260 780261 297262 811709 950155 618442 977571 000771 770830 295712 203830 753113 595351 321124 293943 227786 065484 130489 699292 732703 525210 466654 481740 095673 668927 338132 256050 050624 114125 828912 414501 011815 186656 552644 393621 062085 706239 002680 509640 784701 126746 047777 263977 287319 776355 514167 169199 179948 941897 795149 505928 522620 974280 458817 883424 (444 digits)/38 313936 197017 852185 832013 488770 971172 588200 411678 827974 168395 004375 978639 496710 587323 470310 196581 037668 072011 349056 023752 878867 868368 826869 669331 638310 619908 001820 246446 907634 989634 466981 794583 186105 147979 302250 665017 267532 522503 590120 433260 452717 736099 235373 190983 335253 396129 719298 206740 405476 153426 713251 761182 454471 956925 975372 829081 850243 901628 016799 384212 937082 239055 900296 865003 532257 009720 744979 033080 455381 215961 104472 211351 120569 056297 (446 digits), a[846] = 13
                                                                                      A[847]/B[847] = 1 212721 926073 798357 806082 169828 944030 535787 315582 997002 988521 216105 667884 547414 095877 921213 732671 903533 140089 297364 581082 608833 748801 165076 831875 328957 287212 513831 738455 530480 573926 459719 576393 383680 223534 417500 330514 992223 099725 052490 251773 582290 304450 504675 952804 764403 189097 607941 478718 795846 258643 696811 595674 889330 100939 271829 111647 726582 734435 045047 575367 918377 715833 653122 624671 906276 282893 072499 034062 312840 511098 258878 222461 810272 262265 (445 digits)/117 868719 387004 508801 717914 492008 376565 944879 843308 427582 136702 060957 083753 835115 557044 734165 909804 315992 581810 171572 029405 552978 187822 564784 610604 376698 926184 957128 062109 878448 766614 903413 680953 893567 810541 264920 440702 654133 829493 276785 305393 821424 277010 147831 707217 485918 842990 465609 520900 671153 101614 679942 311969 679987 722517 914715 430115 361997 251123 267434 225924 554924 337193 493317 495630 201756 727497 754004 749917 994249 685957 409662 318428 448514 547971 (447 digits), a[847] = 3
                                                                                      A[848]/B[848] = 4 032368 334607 521099 179315 686008 231676 782469 826842 849501 669922 525377 751116 269287 274373 832322 074750 189917 673869 771173 287508 606762 543666 306940 445781 605314 839208 542266 986196 887153 925610 132272 324531 472164 964546 480287 057029 107158 998467 890174 280531 213525 395091 609701 527341 631341 823342 874448 550282 216451 190432 102249 973681 220634 696438 877573 041182 182428 712945 919843 852849 802910 411478 246687 650371 232996 017878 397446 044084 733671 039223 299255 641665 889634 670219 (445 digits)/391 920094 358031 378590 985756 964796 100870 422839 941604 110720 578501 187247 229901 002057 258457 672807 925993 985645 817441 863772 111969 537802 431836 521223 501144 768407 398462 873204 432776 542981 289479 177222 837444 866808 579603 097011 987125 229934 010983 420476 349441 916990 567129 678868 312635 793009 925101 116126 769442 418935 458270 753078 697091 494435 124479 719519 119427 936235 654997 819102 061986 601855 250636 380249 351894 137527 192214 006993 282834 438130 273833 333459 166636 466112 700210 (447 digits), a[848] = 3
                                                                                      A[849]/B[849] = 17 342195 264503 882754 523344 913861 870737 665666 622954 395009 668211 317616 672349 624563 193373 250502 031672 663203 835568 382057 731117 035883 923466 392838 615001 750216 644046 682899 683243 079096 276366 988808 874519 272340 081720 338648 558631 420859 093596 613187 373898 436391 884816 943482 062171 289770 482469 105735 679847 661651 020372 105811 490399 771868 886694 782121 276376 456297 586218 724422 986767 130019 361746 639873 226156 838260 354406 662283 210401 247524 667991 455900 789125 368810 943141 (446 digits)/1685 549096 819130 023165 660942 351192 780047 636239 609724 870464 450706 809946 003357 843344 590875 425397 613780 258575 851577 626660 477283 704187 915168 649678 615183 450328 520036 449945 793216 050373 924531 612305 030733 360802 128953 652968 389203 573869 873426 958690 703161 489386 545528 863304 957760 657958 543394 930116 598670 346894 934697 692257 100335 657728 220436 792791 907827 106939 871114 543842 473870 962345 339739 014314 903206 751865 496353 781977 881255 746770 781290 743498 984974 312965 348811 (448 digits), a[849] = 4
                                                                                      A[850]/B[850] = 56 058954 128119 169362 749350 427593 843889 779469 695706 034530 674556 478227 768165 142976 854493 583828 169768 179529 180574 917346 480859 714414 314065 485456 290786 855964 771348 590966 035926 124442 754711 098698 948089 289185 209707 496232 732923 369736 279257 729736 402226 522701 049542 440147 713855 500653 270750 191655 589825 201404 251548 419684 444880 536241 356523 223936 870311 551321 471602 093112 813151 192968 496718 166307 328841 747777 081098 384295 675288 476245 043197 666958 009041 996067 499642 (446 digits)/5448 567384 815421 448087 968584 018374 441013 331558 770778 722113 930621 617085 239974 532091 031083 949000 767334 761373 372174 743753 543820 650366 177342 470259 346695 119392 958572 223041 812424 694103 063074 014137 929644 949214 966464 055917 154735 951543 631264 296548 458926 385150 203716 268783 185917 766885 555285 906476 565453 459620 262363 829849 998098 467619 785790 097894 842909 257055 268341 450629 483599 488891 269853 423194 061514 393123 681275 352926 926601 678442 617705 563956 121559 405008 746643 (448 digits), a[850] = 3
                                                                                      A[851]/B[851] = 73 401149 392623 052117 272695 341455 714627 445136 318660 429540 342767 795844 440514 767540 047866 834330 201440 842733 016143 299404 211976 750298 237531 878294 905788 606181 415395 273865 719169 203539 031078 087507 822608 561525 291427 834881 291554 790595 372854 342923 776124 959092 934359 383629 776026 790423 753219 297391 269672 863055 271920 525495 935280 308110 243218 006058 146688 007619 057820 817535 799918 322987 858464 806180 554998 586037 435505 046578 885689 723769 711189 122858 798167 364878 442783 (446 digits)/7134 116481 634551 471253 629526 369567 221060 967798 380503 592578 381328 427031 243332 375435 621959 374398 381115 019949 223752 370414 021104 354554 092511 119937 961878 569721 478608 672987 605640 744476 987605 626442 960378 310017 095417 708885 543939 525413 504691 255239 162087 874536 749245 132088 143678 424844 098680 836593 164123 806515 197061 522107 098434 125348 006226 890686 750736 363995 139455 994471 957470 451236 609592 437508 964721 144989 177629 134904 807857 425213 398996 307455 106533 717974 095454 (448 digits), a[851] = 1
                                                                                      A[852]/B[852] = 496 465850 483857 482066 385522 476328 131654 450287 607668 611772 731163 253294 411253 748217 141694 589809 378413 235927 277434 713771 752720 216203 739256 755225 725518 493053 263720 234160 350941 345676 941179 623745 883740 658336 958274 505520 482252 113308 516383 787279 058976 277258 655698 741926 370016 243195 790065 976003 207862 379735 883071 572660 056562 384902 815831 260285 750439 597035 818526 998327 612661 130895 647507 003390 658833 264001 694128 663768 989426 818863 310332 404110 798046 185338 156340 (447 digits)/48253 266274 622730 275609 745742 235777 767379 138349 053800 277584 218592 179272 699968 784704 762840 195391 054024 881068 714688 966237 670446 777690 732409 189887 117966 537721 830224 260967 446269 160964 988707 772795 691914 809317 538970 309230 418373 104024 659411 827983 431453 632370 699187 061312 047988 315950 147370 926035 550196 298711 444732 962492 588703 219707 823151 442015 347327 441026 105077 417461 228422 196310 927408 048247 849841 263058 747050 162355 773746 229723 011683 408686 760761 712853 319367 (449 digits), a[852] = 6
                                                                                      A[853]/B[853] = 569 866999 876480 534183 658217 817783 846281 895423 926329 041313 073931 049138 851768 515757 189561 424139 579854 078660 293578 013175 964696 966501 976788 633520 631307 099234 679115 508026 070110 549215 972257 711253 706349 219862 249702 340401 773806 903903 889238 130202 835101 236351 590058 125556 146043 033619 543285 273394 477535 242791 154992 098155 991842 693013 059049 266343 897127 604654 876347 815863 412579 453883 505971 809571 213831 850039 129633 710347 875116 542633 021521 526969 596213 550216 599123 (447 digits)/55387 382756 257281 746863 375268 605344 988440 106147 434303 870162 599920 606303 943301 160140 384799 569789 435139 901017 938441 336651 691551 132244 824920 309825 079845 107443 308832 933955 051909 905441 976313 399238 652293 119334 634388 018115 962312 629438 164103 083222 593541 506907 448432 193400 191666 740794 246051 762628 714320 105226 641794 484599 687137 345055 829378 332702 098063 805021 244533 411933 185892 647547 537000 485756 814562 408047 924679 297260 581603 654936 410679 716141 867295 430827 414821 (449 digits), a[853] = 1
                                                                                      A[854]/B[854] = 2775 933849 989779 618801 018393 747463 516782 031983 312984 777025 026887 449849 818327 811245 899940 286367 697829 550568 451746 766475 611508 082211 646411 289308 250746 889991 980182 266264 631383 542540 830210 468760 709137 537785 957083 867127 577479 728924 073336 308090 399381 222665 015931 244150 954188 377673 963207 069581 118003 350900 503039 965284 023933 156955 052028 325661 338950 015655 323918 261781 262978 946429 671394 241675 514160 664158 212663 505160 489892 989395 396418 511989 182900 386204 552832 (448 digits)/269802 797299 651857 263063 246816 657157 721139 562938 791015 758234 618274 604488 473173 425266 302038 474548 794584 485140 468454 312844 436651 306670 032090 429187 437346 967495 065555 996787 653908 782732 893961 369750 301087 286656 076522 381694 267623 621777 315824 160873 805619 660000 492915 834912 814655 279127 131577 976550 407476 719618 011910 900891 337252 599931 140664 772823 739582 661111 083211 065193 971992 786501 075409 991275 108090 895250 445767 351398 100160 849468 654402 273254 229943 436162 978651 (450 digits), a[854] = 4
                                                                                      A[855]/B[855] = 3345 800849 866260 152984 676611 565247 363063 927407 239313 818338 100818 498988 670096 327003 089501 710507 277683 629228 745324 779651 576205 048713 623199 922828 882053 989226 659297 774290 701494 091756 802468 180014 415486 757648 206786 207529 351286 632827 962574 438293 234482 459016 605989 369707 100231 411293 506492 342975 595538 593691 658032 063440 015775 849968 111077 592005 236077 620310 200266 077644 675558 400313 177366 051246 727992 514197 342297 215508 365009 532028 417940 038958 779113 936421 151955 (448 digits)/325190 180055 909139 009926 622085 262502 709579 669086 225319 628397 218195 210792 416474 585406 686838 044338 229724 386158 406895 649496 128202 438914 857010 739012 517192 074938 374388 930742 705818 688174 870274 768988 953380 405990 710910 399810 229936 251215 479927 244096 399161 166907 941348 028313 006322 019921 377629 739179 121796 824844 653705 385491 024389 944986 970043 105525 837646 466132 327744 477127 157885 434048 612410 477031 922653 303298 370446 648658 681764 504405 065081 989396 097238 866990 393472 (450 digits), a[855] = 1
                                                                                      A[856]/B[856] = 9467 535549 722299 924770 371616 877958 242909 886797 791612 413701 228524 447827 158520 465252 078943 707382 253196 809025 942396 325778 763918 179638 892811 134966 014854 868445 298777 814846 034371 726054 435146 828789 540111 053082 370656 282186 280052 994579 998485 184676 868346 140698 227909 983565 154651 200260 976191 755532 309080 538283 819104 092164 055484 856891 274183 509671 811105 256275 724450 417070 614095 747056 026126 344168 970145 692552 897257 936177 219912 053452 232298 589906 741128 259046 856742 (448 digits)/920183 157411 470135 282916 490987 182163 140298 901111 241655 015029 054665 026073 306122 596079 675714 563225 254033 257457 282245 611836 693056 184499 746111 907212 471731 117371 814333 858273 065546 159082 634510 907728 207848 098637 498343 181314 727496 124208 275678 649066 603941 993816 375611 891538 827299 318969 886837 454908 651070 369307 319321 671873 386032 489905 080750 983875 414875 593375 738700 019448 287763 654598 300230 945338 953397 501847 186660 648715 463689 858278 784566 252046 424421 170143 765595 (450 digits), a[856] = 2
                                                                                      A[857]/B[857] = 12813 336399 588560 077755 048228 443205 605973 814205 030926 232039 329342 946815 828616 792255 168445 417889 530880 438254 687721 105430 340123 228352 516011 057794 896908 857671 958075 589136 735865 817811 237615 008803 955597 810730 577442 489715 631339 627407 961059 622970 102828 599714 833899 353272 254882 611554 482684 098507 904619 131975 477136 155604 071260 706859 385261 101677 047182 876585 924716 494715 289654 147369 203492 395415 698138 206750 239555 151685 584921 585480 650238 628865 520242 195468 008697 (449 digits)/1 245373 337467 379274 292843 113072 444665 849878 570197 466974 643426 272860 236865 722597 181486 362552 607563 483757 643615 689141 261332 821258 623414 603122 646224 988923 192310 188722 789015 771364 847257 504785 676717 161228 504628 209253 581124 957432 375423 755605 893163 003103 160724 316959 919851 833621 338891 264467 194087 772867 194151 973027 057364 410422 434892 050794 089401 252522 059508 066444 496575 445649 088646 912641 422370 876050 805145 557107 297374 145454 362683 849648 241442 521660 037134 159067 (451 digits), a[857] = 1
                                                                                      A[858]/B[858] = 47907 544748 487980 158035 516302 207575 060831 329412 884391 109819 216553 288274 644370 842017 584279 961050 845838 123790 005559 642069 784287 864696 440844 308350 705581 441461 173004 582256 241969 179488 147991 855201 406904 485274 102983 751333 174071 876803 881664 053587 176831 939842 729608 043381 919299 034924 424244 051056 022937 934210 250512 558976 269266 977469 429966 814702 952653 886033 498599 901216 483058 189163 636603 530416 064560 312803 615923 391233 974676 809894 183014 476503 301854 845450 882833 (449 digits)/4 656303 169813 607958 161445 830204 516160 689934 611703 642578 945307 873245 736670 473914 140538 763372 385915 705306 188304 349669 395835 156832 054743 555479 845887 438500 694302 380502 225320 379640 700855 148867 937879 691533 612522 126103 924689 599793 250479 542496 328555 613251 475989 326491 651094 328163 335643 680239 037171 969671 951763 238402 843966 617299 794581 233133 252079 172441 771899 938033 509174 624710 920539 038155 212451 581549 917283 857982 540837 900052 946330 333510 976373 989401 281546 242796 (451 digits), a[858] = 3
                                                                                      A[859]/B[859] = 108628 425896 564520 393826 080832 858355 727636 473030 799708 451677 762449 523365 117358 476290 337005 339991 222556 685834 698840 389569 908698 957745 397699 674496 308071 740594 304084 753649 219804 176787 533598 719206 769406 781278 783409 992381 979483 381015 724387 730144 456492 479400 293115 440036 093480 681403 331172 200619 950495 000395 978161 273556 609794 661798 245194 731082 952490 648652 921916 297148 255770 525696 476699 456247 827258 832357 471401 934153 534275 205269 016267 581872 123951 886369 774363 (450 digits)/10 557979 677094 595190 615734 773481 476987 229747 793604 752132 534042 019351 710206 670425 462563 889297 379394 894370 020224 388480 053003 134922 732901 714082 337999 865924 580914 949727 239656 530646 248967 802521 552476 544295 729672 461461 430504 157018 876382 840598 550274 229606 112702 969943 222040 489948 010178 624945 268431 712211 097678 449832 745297 645022 024054 517060 593559 597405 603307 942511 514924 695070 929724 988951 847274 039150 639713 273072 379049 945560 255344 516670 194190 500462 600226 644659 (452 digits), a[859] = 2
                                                                                      A[860]/B[860] = 482421 248334 746061 733339 839633 640997 971377 221536 083224 916530 266351 381735 113804 747178 932301 321015 736064 867128 800921 200349 419083 695678 031643 006335 937868 403838 389343 596853 121185 886638 282386 732028 484531 610389 236623 720861 092005 400866 779214 974165 002801 857443 902069 803526 293221 760537 748932 853535 824917 935794 163157 653202 708445 624662 410745 739034 762616 480645 186265 089809 506140 291949 543401 355407 373595 642233 501531 127848 111777 630970 248084 803991 797662 390929 980285 (450 digits)/46 888221 878191 988720 624384 924130 424109 608925 786122 651109 081475 950652 577497 155615 990794 320561 903495 282786 269201 903589 607847 696522 986350 411809 197886 902199 017962 179411 183946 502225 696726 358954 147785 868716 531211 971949 646706 227868 756010 904890 529652 531675 926801 206264 539256 287955 376358 180020 110898 818516 342477 037733 825157 197387 890799 301375 626317 562064 185131 708079 568873 404994 639438 993962 601547 738152 476136 950272 057037 682293 967708 400191 753135 991251 682452 821432 (452 digits), a[860] = 4
                                                                                      A[861]/B[861] = 3 967998 412574 533014 260544 797901 986339 498654 245319 465507 783919 893260 577246 027796 453721 795415 908117 111075 622865 106209 992365 261368 523169 650843 725183 811018 971301 418833 528474 189291 269893 792692 575434 645659 664392 676399 759270 715526 587949 958107 523464 478907 338951 509673 868246 439254 765705 322635 028906 549838 486749 283422 499178 277359 659097 531160 643361 053422 493814 412037 015624 304892 861292 823910 299506 816023 970225 483650 956938 428496 253031 000946 013806 505251 013809 616643 (451 digits)/385 663754 702630 504955 610814 166524 869864 101154 082585 961005 185849 624572 330183 915353 388918 453792 607357 156660 173839 617196 915784 707106 623705 008555 921095 083516 724612 385016 711228 548451 822778 674154 734763 494027 979368 237058 604153 979968 924470 079722 787494 483013 527112 620059 536090 793591 021044 065106 155622 260341 837494 751703 346555 224125 150448 928065 604100 093919 084361 607148 065911 935028 045236 940652 659655 944370 448808 875248 835351 403911 997011 718204 219278 430476 059849 216115 (453 digits), a[861] = 8
                                                                                      A[862]/B[862] = 20 322413 311207 411133 036063 829143 572695 464648 448133 410763 836129 732654 267965 252787 015787 909380 861601 291442 981454 331971 162175 725926 311526 285861 632254 992963 260345 483511 239224 067642 236107 245849 609201 712829 932352 618622 517214 669638 340616 569752 591487 397338 552201 450439 144758 489495 589064 362107 998068 574110 369540 580270 149094 095243 920150 066548 955840 029728 949717 246450 167931 030604 598413 662952 852941 453715 493360 919785 912540 254258 896125 252814 873024 323917 459978 063500 (452 digits)/1975 206995 391344 513498 678455 756754 773430 114696 199052 456135 010724 073514 228416 732382 935386 589524 940281 066087 138399 989574 186771 232056 104875 454588 803362 319782 641024 104494 740089 244484 810619 729727 821603 338856 428053 157242 667476 127713 378361 303504 467124 946743 562364 306562 219710 255910 481578 505550 889010 120225 529950 796250 557933 318013 643043 941703 646818 031659 606939 743819 898433 080134 865623 697225 899827 460004 720181 326516 233794 701853 952766 991212 849528 143631 981698 902007 (454 digits), a[862] = 5
                                                                                      A[863]/B[863] = 186 869718 213441 233211 585119 260194 140598 680490 278520 162382 309087 487148 988933 302879 595812 979843 662528 734062 455954 093950 451946 794705 326906 223598 415478 747688 314410 770434 681490 798071 394859 005339 058250 061129 055566 244002 414202 742271 653499 085880 846851 054954 308764 563626 171072 844715 067284 581607 011523 716831 812614 505853 841025 134554 940448 130101 245921 320983 041269 630088 527003 580334 247015 790485 975979 899463 410473 761724 169800 716826 318158 276279 871025 420508 153612 188143 (453 digits)/18162 526713 224731 126443 716915 977317 830735 133419 874058 066220 282366 286200 385934 506799 807397 759517 069886 751444 419439 523364 596725 795611 567584 099855 151355 961560 493829 325469 372031 748815 118356 241705 129193 543735 831846 652242 611439 129389 329721 811262 991619 003705 588391 379119 513483 096785 355250 615064 156713 342371 607051 917958 367955 086247 937844 403398 425462 378855 546819 301527 151809 656241 835850 215685 758103 084412 930440 813894 939503 720597 571914 639119 865031 723163 895139 334178 (455 digits), a[863] = 9
                                                                                      A[864]/B[864] = 954 671004 378413 577190 961660 130114 275688 867099 840734 222675 381567 168399 212631 767184 994852 808599 174244 961755 261224 801723 421909 699452 946057 403853 709648 731404 832399 335684 646678 057999 210402 272544 900452 018475 210183 838634 588228 380996 608111 999156 825742 672110 096024 268570 000122 713070 925487 270143 055687 158269 432613 109539 354219 768018 622390 717055 185446 634644 156065 396892 802948 932275 833492 615382 732840 951032 545729 728406 761543 838390 486916 634214 228151 426458 228039 004215 (453 digits)/92787 840561 515000 145717 263035 643343 927105 781795 569342 787236 422555 504516 158089 266381 972375 387110 289714 823309 235597 606397 170400 210113 942795 953864 560142 127585 110170 731841 600247 988560 402400 938253 467571 057535 587286 418455 724671 774660 026970 359819 425219 965271 504321 202159 787125 739837 257831 580871 672576 832083 565210 386042 397708 749253 332265 958695 774129 925937 341036 251455 657481 361344 044874 775654 690342 882069 372385 395990 931313 304841 812340 186812 174686 759451 457395 572897 (455 digits), a[864] = 5
                                                                                      A[865]/B[865] = 2096 211726 970268 387593 508439 520422 691976 414689 959988 607733 072221 823947 414196 837249 585518 597042 011018 657572 978403 697397 295766 193611 219021 031305 834776 210497 979209 441803 974846 914069 815663 550428 859154 098079 475933 921271 590659 504264 869723 084194 498336 399174 500813 100766 171318 270856 918259 121893 122898 033370 677840 724932 549464 670592 185229 564211 616814 590271 353400 423874 132901 444885 914001 021251 441661 801528 501933 218537 692888 393607 291991 544708 327328 273424 609690 196573 (454 digits)/203738 207836 254731 417878 242987 264005 684946 697011 012743 640693 127477 295232 702113 039563 752148 533737 649316 398062 890634 736158 937526 215839 453176 007584 271640 216730 714170 789152 572527 725935 923158 118212 064335 658807 006419 489154 060782 678709 383662 530901 842058 934248 597033 783439 087734 576459 870913 776807 501867 006538 737472 690043 163372 584754 602376 320789 973722 230730 228891 804438 466772 378929 925599 766995 138788 848551 675211 605876 802130 330281 196595 012744 214405 242066 809930 479972 (456 digits), a[865] = 2
                                                                                      A[866]/B[866] = 5147 094458 318950 352377 978539 170959 659641 696479 760711 438141 526010 816294 041025 441684 165890 002683 196282 276901 218032 196518 013442 086675 384099 466465 379201 152400 790818 219292 596371 886138 841729 373402 618760 214634 162051 681177 769547 389526 347558 167545 822415 470459 097650 470102 342759 254784 762005 513929 301483 225010 788294 559404 453149 109202 992849 845478 419075 815186 862866 244641 068751 822047 661494 657885 616164 554089 549596 165482 147320 625605 070899 723630 882807 973307 447419 397361 (454 digits)/500264 256234 024462 981473 749010 171355 296999 175817 594830 068622 677510 094981 562315 345509 476672 454585 588347 619435 016867 078715 045452 641792 849147 969033 103422 561046 538512 310146 745303 440432 248717 174677 596242 375149 600125 396763 846237 132078 794295 421623 109337 833768 698388 769037 962594 892756 999659 134486 676310 845161 040155 766128 724453 918762 537018 600275 721574 387397 798819 860332 591026 119203 896074 309644 967920 579172 722808 607744 535573 965404 205530 212300 603497 243585 077256 532841 (456 digits), a[866] = 2
                                                                                      A[867]/B[867] = 7243 306185 289218 739971 486978 691382 351618 111169 720700 045874 598232 640241 455222 278933 751408 599725 207300 934474 196435 893915 309208 280286 603120 497771 213977 362898 770027 661096 571218 800208 657392 923831 477914 312713 637985 602449 360206 893791 217281 251740 320751 869633 598463 570868 514077 525641 680264 635822 424381 258381 466135 284337 002613 779795 178079 409690 035890 405458 216266 668515 201653 266933 575495 679137 057826 355618 051529 384019 840209 019212 362891 268339 210136 246732 057109 593934 (454 digits)/704002 464070 279194 399351 991997 435360 981945 872828 607573 709315 804987 390214 264428 385073 228820 988323 237664 017497 907501 814873 982978 857632 302323 976617 375062 777777 252683 099299 317831 166368 171875 292889 660578 033956 606544 885917 907019 810788 177957 952524 951396 768017 295422 552477 050329 469216 870572 911294 178177 851699 777628 456171 887826 503517 139394 921065 695296 618128 027711 664771 057798 498133 821674 076640 106709 427724 398020 213621 337704 295685 402125 225044 817902 485651 887187 012813 (456 digits), a[867] = 1
                                                                                      A[868]/B[868] = 41363 625384 765044 052235 413432 627871 417732 252328 364211 667514 517174 017501 317136 836352 922933 001309 232786 949272 200211 666094 559483 488108 399701 955321 449087 966894 640956 524775 452465 887182 128693 992560 008331 778202 351979 693424 570581 858482 433964 426247 426174 818627 089968 324444 913146 882993 163328 693041 423389 516918 118970 981089 466218 008178 883246 893928 598527 842477 944199 587217 077018 156715 538973 053570 905296 332179 807243 085581 348365 721666 885356 065326 933489 206967 732967 367031 (455 digits)/4 020276 576585 420434 978233 708997 348160 206728 539960 632698 615201 702447 046052 884457 270875 620777 396201 776667 706924 554376 153084 960346 929954 360767 852119 978736 449932 801927 806643 334459 272273 108093 639125 899132 544932 632849 826353 381336 186019 684085 184247 866321 673855 175501 531423 214242 238841 352523 690957 567200 103659 928298 046988 163586 436348 233993 205604 198057 478037 937378 184187 880018 609873 004444 692845 501467 717794 712909 675851 224095 443831 216156 337524 693009 671844 513191 596906 (457 digits), a[868] = 5
                                                                                      A[869]/B[869] = 89970 556954 819306 844442 313843 947125 187082 615826 449123 380903 632580 675244 089495 951639 597274 602343 672874 833018 596859 226104 428175 256503 402524 408414 112153 296688 051940 710647 476150 574572 914780 908951 494577 869118 341944 989298 501370 610756 085210 104235 173101 506887 778400 219758 340371 291628 006922 021905 271160 292217 704077 246515 935049 796152 944573 197547 232946 090414 104665 842949 355689 580364 653441 786278 868419 019977 666015 555182 536940 462546 133603 398993 077114 660667 523044 327996 (455 digits)/8 744555 617241 120064 355819 409992 131681 395402 952749 872970 939719 209881 482320 033342 926824 470375 780726 790999 431347 016254 121043 903672 717541 023859 680857 332535 677642 856538 712585 986749 710914 388062 571141 458843 123821 872244 538624 669692 182827 546128 321020 684040 115727 646425 615323 478813 946899 575620 293209 312578 059019 634224 550148 214999 376213 607381 332274 091411 574203 902468 033146 817835 717879 830563 462331 109644 863313 823839 565323 785895 183347 834437 900094 203921 829340 913570 206625 (457 digits), a[869] = 2
                                                                                      A[870]/B[870] = 221304 739294 403657 741120 041120 522121 791897 483981 262458 429321 782335 367989 496128 739632 117482 205996 578536 615309 393930 118303 415834 001115 204750 772149 673394 560270 744837 946070 404767 036327 958255 810462 997487 516439 035869 672021 573323 079994 604384 634717 772377 832402 646768 763961 593889 466249 177172 736851 965710 101353 527125 474121 336317 600484 772393 289023 064420 023306 153531 273115 788397 317444 845856 626128 642134 372135 139274 195946 422246 646759 152562 863313 087718 528302 779056 023023 (456 digits)/21 509387 811067 660563 689872 528981 611522 997534 445460 378640 494640 122210 010692 951143 124524 561528 957655 358666 569618 586884 395172 767692 365036 408487 213834 643807 805218 515005 231815 307958 694101 884218 781408 816818 792576 377338 903602 720720 551674 776341 826289 234401 905310 468352 762070 171870 132640 503764 277376 192356 221699 196747 147284 593585 188775 448755 870152 380880 626445 742314 250481 515690 045632 665571 617507 720757 444422 360588 806498 795885 810526 885032 137713 100853 330526 340332 010156 (458 digits), a[870] = 2
                                                                                      A[871]/B[871] = 311275 296249 222964 585562 354964 469246 978980 099807 711581 810225 414916 043233 585624 691271 714756 808340 251411 448327 990789 344407 844009 257618 607275 180563 785547 856958 796778 656717 880917 610900 873036 719414 492065 385557 377814 661320 074693 690750 689594 738952 945479 339290 425168 983719 934260 757877 184094 758757 236870 393571 231202 720637 271367 396637 716966 486570 297366 113720 258197 116065 144086 897809 499298 412407 510553 392112 805289 751128 959187 109305 286166 262306 164833 188970 302100 351019 (456 digits)/30 253943 428308 780628 045691 938973 743204 392937 398210 251611 434359 332091 493012 984486 051349 031904 738382 149666 000965 603138 516216 671365 082577 432346 894691 976343 482861 371543 944401 294708 405016 272281 352550 275661 916398 249583 442227 390412 734502 322470 147309 918442 021038 114778 377393 650684 079540 079384 570585 504934 280718 830971 697432 808584 564989 056137 202426 472292 200649 644782 283628 333525 763512 496135 079838 830402 307736 184428 371822 581780 993874 719470 037807 304775 159867 253902 216781 (458 digits), a[871] = 1
                                                                                      A[872]/B[872] = 3 645332 998035 856268 182305 945729 683838 560678 581866 089858 341801 346411 843558 938000 343620 979807 097739 344062 546917 292612 906789 699935 834919 884777 758351 314420 986817 509403 169967 094860 756237 561659 724022 410206 757570 191830 946542 394953 678252 189926 763200 172650 564597 323627 584880 870757 802898 202215 083181 571284 430637 070355 401131 321358 963499 659024 641296 335447 274228 993699 549832 373353 193349 338139 162611 258221 685375 997461 458364 973304 849117 300391 748680 900883 606976 102159 884232 (457 digits)/354 302765 522464 247472 192483 857692 786771 319845 825773 146366 272592 775216 433835 780489 689363 912481 079859 004992 580240 221408 073556 152708 273388 164303 055446 383586 116693 601988 620229 549751 149280 879313 659461 849099 872957 122756 768104 015260 631200 323513 446698 337264 136729 730914 913400 329395 007581 376994 553816 746633 309606 337435 819045 488015 403655 066265 096843 576094 833591 834919 370393 184473 444270 123057 495734 855182 829520 389300 896547 195476 743148 799202 553593 453380 089066 133256 394747 (459 digits), a[872] = 11
                                                                                      A[873]/B[873] = 3 956608 294285 079232 767868 300694 153085 539658 681673 801440 152026 761327 886792 523625 034892 694563 906079 595473 995245 283402 251197 543945 092538 492052 938915 099968 843776 306181 826684 975778 367138 434696 443436 902272 143127 569645 607862 469647 369002 879521 502153 118129 903887 748796 568600 805018 560775 386309 841938 808154 824208 301558 121768 592726 360137 375991 127866 632813 387949 251896 665897 517440 091158 837437 575018 768775 077488 802751 209493 932491 958422 586558 010987 065716 795946 404260 235251 (457 digits)/384 556708 950773 028100 238175 796666 529975 712783 223983 397977 706952 107307 926848 764975 740712 944385 818241 154658 581205 824546 589772 824073 355965 596649 950138 359929 599554 973532 564630 844459 554297 151595 012012 124761 789355 372340 210331 405673 365702 645983 594008 255706 157767 845693 290793 980079 087121 456379 124402 251567 590325 168407 516478 296599 968644 122402 299270 048387 034241 479701 654021 517999 207782 619192 575573 685585 137256 573729 268369 777257 737023 518672 591400 758155 248933 387158 611528 (459 digits), a[873] = 1
                                                                                      A[874]/B[874] = 11 558549 586606 014733 718042 547117 990009 639995 945213 692738 645854 869067 617143 985250 413406 368934 909898 535010 537407 859417 409184 787826 019996 868883 636181 514358 674370 121766 823337 046417 490514 431052 610896 214751 043825 331122 162267 334248 416257 948969 767506 408910 372372 821220 722082 480794 924448 974834 767059 187594 079053 673471 644668 506811 683774 411006 897029 601074 050127 497492 881627 408233 375667 013014 312648 795771 840353 602963 877352 838288 765962 473507 770655 032317 198868 910680 354734 (458 digits)/1123 416183 424010 303672 668835 451025 846722 745412 273739 942321 686496 989832 287533 310441 170789 801252 716341 314309 742651 870501 253101 800854 985319 357602 955723 103445 315803 549053 749491 238670 257875 182503 683486 098623 451667 867437 188766 826607 362605 615480 634714 848676 452265 422301 494988 289553 181824 289752 802621 249768 490256 674250 852002 081215 340943 311069 695383 672868 902074 794322 678436 220471 859835 361442 646882 226353 104033 536759 433286 749992 217195 836547 736394 969690 586932 907573 617803 (460 digits), a[874] = 2
                                                                                      A[875]/B[875] = 27 073707 467497 108700 203953 394930 133104 819650 572101 186917 443736 499463 121080 494125 861705 432433 725876 665495 070061 002237 069567 119597 132532 229820 211278 128686 192516 549715 473359 068613 348167 296801 665229 331774 230778 231889 932397 138144 201518 777461 037165 935950 648633 391238 012765 766608 409673 335979 376057 183342 982315 648501 411105 606349 727686 198004 921925 834961 488204 246882 429152 333906 842492 863466 200316 360318 758196 008678 964199 609069 490347 533573 552297 130351 193684 225620 944719 (458 digits)/2631 389075 798793 635445 575846 698718 223421 203607 771463 282621 079946 086972 501915 385858 082292 546891 250923 783278 066509 565549 095976 425783 326604 311855 861584 566820 231162 071640 063613 321800 070047 516602 378984 322008 692691 107214 587865 058888 090913 876944 863437 953059 062298 690296 280770 559185 450770 035884 729644 751104 570838 516909 220482 459030 650530 744541 690037 394124 838391 068347 010893 958942 927453 342077 869338 138291 345323 647248 134943 277242 171415 191768 064190 697536 422799 202305 847134 (460 digits), a[875] = 2
                                                                                      A[876]/B[876] = 255 221916 794079 993035 553623 101489 187953 016851 094124 374995 639483 364235 706868 432383 168755 260838 442788 524466 167956 879551 035288 864200 212786 937265 537684 672534 407019 069206 083568 663937 624020 102267 597960 200719 120829 418131 553841 577546 229926 946119 101999 832466 210073 342362 836974 380270 611508 998649 151573 837680 919894 509984 344618 963959 232950 193051 194362 115727 443965 719434 743998 413394 958102 784210 115496 038640 664117 681074 555149 319914 179090 275669 741329 205477 942026 941268 857205 (459 digits)/24805 917865 613153 022682 851455 739489 857513 577882 216909 485911 406011 772584 804771 783163 911422 723273 974655 363812 341237 960443 116889 632904 924758 164305 709984 204827 396262 193814 322011 134870 888302 831925 094344 996701 685887 832368 479552 356600 180830 507984 405656 426208 012953 634968 021923 322222 238754 612715 369424 009709 627803 326433 836344 212491 195720 011944 905720 219992 447594 409445 776481 850958 206915 440143 470925 470975 211946 361992 647776 245171 759932 562460 314111 247518 392125 728326 242009 (461 digits), a[876] = 9
                                                                                      A[877]/B[877] = 1047 961374 643817 080842 418445 800886 884916 887054 948598 686900 001669 956405 948554 223658 536726 475787 497030 763359 741888 520441 210722 576397 983679 978882 362016 818823 820592 826539 807633 724363 844247 705872 057070 134650 714095 904416 147763 448329 121226 561937 445165 265815 488926 760689 360663 287690 855709 330575 982352 534066 661893 688438 789581 462186 659486 970209 699374 297871 264067 124621 405145 987486 674904 000306 662300 514881 414666 732977 184796 888726 206708 636252 517613 952262 961791 990696 373539 (460 digits)/101855 060538 251405 726176 981669 656677 653475 515136 639101 226266 703993 177311 721002 518513 727983 439987 149545 238527 431461 407321 563534 957403 025636 969078 701521 386129 816210 846897 351657 861283 623258 844302 756364 308815 436242 436688 506074 485288 814235 908882 486063 657891 114113 230168 368463 848074 405788 486746 207340 789943 082051 822644 565859 308995 433410 792321 312918 274094 628768 706130 116821 362775 755115 102651 753040 022192 193109 095218 726048 257929 211145 441609 320635 687609 991302 115610 815170 (462 digits), a[877] = 4
                                                                                      A[878]/B[878] = 1303 183291 437897 073877 972068 902376 072869 903906 042723 061895 641153 320641 655422 656041 705481 736625 939819 287825 909845 399992 246011 440598 196466 916147 899701 491358 227611 895745 891202 388301 468267 808139 655030 335369 834925 322547 701605 025875 351153 508056 547165 098281 699000 103052 197637 667961 467218 329225 133926 371747 581788 198423 134200 426145 892437 163260 893736 413598 708032 844056 149144 400881 633006 784516 777796 553522 078784 414051 739946 208640 385798 911922 258943 157740 903818 931965 230744 (460 digits)/126660 978403 864558 748859 833125 396167 510989 093018 856010 712178 110004 949896 525774 301677 639406 163261 124200 602339 772699 367764 680424 590307 950395 133384 411505 590957 212473 040711 673668 996154 511561 676227 850709 305517 122130 269056 985626 841888 995066 416866 891720 084099 127066 865136 390387 170296 644543 099461 576764 799652 709855 149078 402203 521486 629130 804266 218638 494087 076363 115575 893303 213733 962030 542795 223965 493167 405055 457211 373824 503100 971078 004069 634746 935128 383427 843937 057179 (462 digits), a[878] = 1
                                                                                      A[879]/B[879] = 6260 694540 395405 376354 306721 410391 176396 502679 119490 934482 566283 238972 570244 847825 358653 422291 256307 914663 381270 120410 194768 338790 769547 643473 960822 784256 731040 409523 372443 277569 717318 938430 677191 476130 053797 194606 954183 551830 525840 594163 633825 658942 284927 172898 151213 959536 724582 647476 518058 021056 989046 482131 326383 166770 229235 623253 274319 952266 096198 500846 001723 591013 206931 138373 773486 728969 729804 389184 144581 723287 749904 283941 553386 583226 577067 718557 296515 (460 digits)/608498 974153 709640 721616 314171 241347 697431 887212 063144 074979 144012 976897 824099 725224 285608 093031 646347 647886 522258 878380 285233 318634 827217 502616 347543 749958 666103 009744 046333 845901 669505 549214 159201 530883 924763 512916 448581 852844 794501 576350 052943 994287 622380 690713 930012 529260 983960 884592 514399 988553 921472 418958 174673 394941 949934 009386 187472 250442 934221 168433 690034 217711 603237 273832 648901 994861 813330 924064 221346 270333 095457 457887 859623 428123 525013 491359 043886 (462 digits), a[879] = 4
                                                                                      A[880]/B[880] = 7563 877831 833302 450232 278790 312767 249266 406585 162213 996378 207436 559614 225667 503867 064135 158917 196127 202489 291115 520402 440779 779388 966014 559621 860524 275614 958652 305269 263645 665871 185586 746570 332221 811499 888722 517154 655788 577705 876994 102220 180990 757223 983927 275950 348851 627498 191800 976701 651984 392804 570834 680554 460583 592916 121672 786514 168056 365864 804231 344902 150867 991894 839937 922890 551283 282491 808588 803235 884527 931928 135703 195863 812329 740967 480886 650522 527259 (460 digits)/735159 952557 574199 470476 147296 637515 208420 980230 919154 787157 254017 926794 349874 026901 925014 256292 770548 250226 294958 246144 965657 908942 777612 636000 759049 340915 878576 050455 720002 842056 181067 225442 009910 836401 046893 781973 434208 694733 789567 993216 944664 078386 749447 555850 320399 699557 628503 984054 091164 788206 631327 568036 576876 916428 579064 813652 406110 744530 010584 284009 583337 431445 565267 816627 872867 488029 218386 381275 595170 773434 066535 461957 494370 363251 908441 335296 101065 (462 digits), a[880] = 1
                                                                                      A[881]/B[881] = 44080 083699 561917 627515 700672 974227 422728 535604 930560 916373 603466 037043 698582 367160 679329 216877 236943 927109 836847 722422 398667 235735 599620 441583 263444 162331 524301 935869 690671 606925 645252 671282 338300 533629 497409 780380 233126 440359 910811 105264 538779 445062 204563 552649 895472 097027 683587 530984 777979 985079 843219 884903 629301 131350 837599 555824 114601 781590 117355 225356 756063 550487 406620 752826 529903 141428 772748 405363 567221 382928 428420 263260 615035 288063 981500 971169 932810 (461 digits)/4 284298 736941 580638 073997 050654 428923 739536 788366 658918 010765 414102 610869 573469 859733 910679 374495 499088 899017 997050 109105 113522 863348 715280 682620 142790 454538 058983 262022 646348 056182 574841 676424 208755 712889 159232 422783 619625 326513 742341 542434 776264 386221 369618 469965 532011 027049 126480 804862 970223 929587 078110 259141 059057 977084 845258 077648 218025 973092 987142 588481 606721 374939 429576 356972 013239 435007 905262 830442 197200 137503 428134 767675 331475 244383 067220 167839 549211 (463 digits), a[881] = 5
                                                                                      A[882]/B[882] = 448364 714827 452478 725389 285520 055041 476551 762634 467823 160114 242096 930051 211491 175473 857427 327689 565566 473587 659592 744626 427452 136744 962218 975454 494965 898930 201671 663966 170361 735127 638113 459393 715227 147794 862820 320956 987052 981304 985105 154865 568785 207846 029562 802449 303572 597775 027676 286549 431784 243603 003033 529590 753594 906424 497668 344755 314074 181765 977783 598469 711503 496768 906145 451155 850314 696779 536072 856871 556741 761212 419905 828469 962682 621607 295896 362221 855359 (462 digits)/43 578147 321973 380580 210446 653840 926752 603788 863897 508334 894811 395044 035490 084572 624241 031808 001247 761437 240406 265459 337196 100886 542429 930419 462202 186953 886296 468408 670682 183483 403881 929483 989684 097467 965292 639218 009809 630461 959871 212983 417564 707307 940600 445632 255505 640509 970048 893312 032683 793404 084077 412430 159447 167456 687277 031645 590134 586370 475459 882010 168825 650551 180839 861031 386348 005261 838108 271014 685697 567172 148468 347883 138710 809122 807082 580643 013691 593175 (464 digits), a[882] = 10
                                                                                      A[883]/B[883] = 492444 798527 014396 352904 986193 029268 899280 298239 398384 076487 845562 967094 910073 542634 536756 544566 802510 400697 496440 467048 826119 372480 561839 417037 758410 061261 725973 599835 861033 342053 283366 130676 053527 681424 360230 101337 220179 421664 895916 260130 107564 652908 234126 355099 199044 694802 711263 817534 209764 228682 846253 414494 382896 037775 335267 900579 428675 963356 095138 823826 467567 047256 312766 203982 380217 838208 308821 262235 123963 144140 848326 091730 577717 909671 277397 333391 788169 (462 digits)/47 862446 058914 961218 284443 704495 355676 343325 652264 167252 905576 809146 646359 658042 483974 942487 375743 260526 139424 262509 446301 214409 405778 645700 144822 329744 340834 527391 932704 829831 460064 504325 666108 306223 678181 798450 432593 250087 286384 955324 959999 483572 326821 815250 725471 172520 997098 019792 837546 763628 013664 490540 418588 226514 664361 876903 667782 804396 448552 869152 757307 257272 555779 290607 743320 018501 273116 176277 516139 764372 285971 776017 906386 140598 051465 647863 181531 142386 (464 digits), a[883] = 1
                                                                                      A[884]/B[884] = 940809 513354 466875 078294 271713 084310 375832 060873 866207 236602 087659 897146 121564 718108 394183 872256 368076 874285 156033 211675 253571 509225 524058 392492 253375 960191 927645 263802 031395 077180 921479 590069 768754 829219 223050 422294 207232 402969 881021 414995 676349 860754 263689 157548 502617 292577 738940 104083 641548 472285 849286 944085 136490 944199 832936 245334 742750 145122 072922 422296 179070 544025 218911 655138 230532 534987 844894 119106 680704 905353 268231 920200 540400 531278 573293 695613 643528 (462 digits)/91 440593 380888 341798 494890 358336 282428 947114 516161 675587 800388 204190 681849 742615 108215 974295 376991 021963 379830 527968 783497 315295 948208 576119 607024 516698 227130 995800 603387 013314 863946 433809 655792 403691 643474 437668 442402 880549 246256 168308 377564 190880 267422 260882 980976 813030 967146 913104 870230 557032 097741 902970 578035 393971 351638 908549 257917 390766 924012 751162 926132 907823 736619 151639 129668 023763 111224 447292 201837 331544 434440 123901 045096 949720 858548 228506 195222 735561 (464 digits), a[884] = 1
                                                                                      A[885]/B[885] = 2 374063 825235 948146 509493 529619 197889 650944 419987 130798 549692 020882 761387 153202 978851 325124 289079 538664 149267 808506 890399 333262 390931 609956 202022 265161 981645 581264 127439 923823 496415 126325 310815 591037 339862 806330 945925 634644 227604 657959 090121 460264 374416 761504 670196 204279 279958 189144 025701 492861 173254 544827 302664 655877 926175 001140 391248 914176 253600 240983 668418 825708 135306 750589 514258 841282 908183 998609 500448 485372 954847 384789 932131 658518 972228 423984 724619 075225 (463 digits)/230 743632 820691 644815 274224 421167 920534 237554 684587 518428 506353 217528 010059 143272 700406 891078 129725 304452 899085 318447 013295 845001 302195 797939 358871 363140 795096 518993 139478 856461 187957 371944 977693 113606 965130 673787 317399 011185 778897 291941 715127 865332 861666 337016 687424 798582 931391 846002 578007 877692 209148 296481 574659 014457 367639 694002 183617 585930 296578 371478 609573 072920 029017 593886 002656 066027 495565 070861 919814 427461 154852 023819 996580 040039 768562 104875 571976 613508 (465 digits), a[885] = 2
                                                                                      A[886]/B[886] = 3 314873 338590 415021 587787 801332 282200 026776 480860 997005 786294 108542 658533 274767 696959 719308 161335 906741 023552 964540 102074 586833 900157 134014 594514 518537 941837 508909 391241 955218 573596 047804 900885 359792 169082 029381 368219 841876 630574 538980 505117 136614 235171 025193 827744 706896 572535 928084 129785 134409 645540 394114 246749 792368 870374 834076 636583 656926 398722 313906 090715 004778 679331 969501 169397 071815 443171 843503 619555 166077 860200 653021 852332 198919 503506 997278 420232 718753 (463 digits)/322 184226 201579 986613 769114 779504 202963 184669 200749 194016 306741 421718 691908 885887 808622 865373 506716 326416 278915 846415 796793 160297 250404 374058 965895 879839 022227 514793 742865 869776 051903 805754 633485 517298 608605 111455 759801 891735 025153 460250 092692 056213 129088 597899 668401 611613 898538 759107 448238 434724 306890 199452 152694 408428 719278 602551 441534 976697 220591 122641 535705 980743 765636 745525 132324 089790 606789 518154 121651 759005 589292 147721 041676 989760 627110 333381 767199 349069 (465 digits), a[886] = 1
                                                                                      A[887]/B[887] = 9 003810 502416 778189 685069 132283 762289 704497 381709 124810 122280 237968 078453 702738 372770 763740 611751 352146 196373 737587 094548 506930 191245 877985 391051 302237 865320 599082 909923 834260 643607 221935 112586 310621 678026 865093 682365 318397 488753 735920 100355 733492 844758 811892 325685 618072 425030 045312 285271 761680 464335 333055 796164 240615 666924 669293 664416 228029 051044 868795 849848 835265 493970 689591 853052 984913 794527 685616 739558 817528 675248 690833 636796 056357 979242 418541 565084 512731 (463 digits)/875 112085 223851 618042 812453 980176 326460 606893 086085 906461 119836 060965 393876 915048 317652 621825 143157 957285 456917 011278 606882 165595 803004 546057 290663 122818 839551 548580 625210 596013 291764 983454 244664 148204 182340 896698 837002 794655 829204 212441 900511 977759 119843 532816 024228 021810 728469 364217 474484 747140 822928 695385 880047 831314 806196 899105 066687 539324 737760 616761 680985 034407 560291 084936 267304 245608 709144 107170 163117 945472 333436 319262 079934 019561 022782 771639 106375 311646 (465 digits), a[887] = 2
                                                                                      A[888]/B[888] = 93 352978 362758 196918 438479 124169 905097 071750 297952 245107 009096 488223 443070 302151 424667 356714 278849 428202 987290 340411 047559 656135 812615 913868 505027 540916 595043 499738 490480 297825 009668 267156 026748 466008 949350 680318 191873 025851 518111 898181 508674 471542 682759 144117 084600 887620 822836 381206 982502 751214 288893 724672 208392 198525 539621 527013 280745 937216 909171 001864 589203 357433 619038 865419 699926 920953 388448 699671 015143 341364 612687 561358 220292 762499 295931 182694 071077 846063 (464 digits)/9073 305078 440096 167041 893654 581267 467569 253600 061608 258627 505102 031372 630678 036370 985149 083624 938295 899270 848085 959201 865614 816255 280449 834631 872527 108027 417743 000599 994971 829908 969553 640297 080126 999340 432014 078444 129829 838293 317195 584669 097811 833804 327523 926059 910681 829721 183232 401282 193085 906132 536177 153310 953172 721576 781247 593602 108410 369944 598197 290258 345556 324819 368547 594887 805366 545877 698230 589855 752831 213728 923655 340341 841017 185370 854938 049772 830952 465529 (466 digits), a[888] = 10
                                                                                      A[889]/B[889] = 195 709767 227933 172026 562027 380623 572483 847997 977613 615024 140473 214414 964594 307041 222105 477169 169450 208552 170954 418409 189667 819201 816477 705722 401106 384071 055407 598559 890884 429910 662943 756247 166083 242639 576728 225730 066111 370100 524977 532283 117704 676578 210277 100126 494887 393314 070702 807726 250277 264109 042122 782400 212948 637666 746167 723320 225908 102462 869386 872525 028255 550132 732048 420431 252906 826820 571425 084958 769845 500257 900623 813550 077381 581356 571104 783929 707240 204857 (465 digits)/19021 722242 104043 952126 599763 142711 261599 114093 209302 423716 130040 123710 655232 987790 287950 789075 019749 755827 153088 929682 338111 798106 363904 215321 035717 338873 675037 549780 615154 255831 230872 264048 404918 146885 046369 053587 096662 471242 463595 381780 096135 645367 774891 384935 845591 681253 094934 166781 860656 559405 895283 002007 786393 274468 368692 086309 283508 279213 934155 197278 372097 684046 297386 274711 878037 337364 105605 286881 668780 372930 180746 999945 761968 390302 732658 871184 768280 242704 (467 digits), a[889] = 2
                                                                                      A[890]/B[890] = 3028 999486 781755 777316 868889 833523 492354 791719 962156 470469 116194 704447 911984 907769 756249 514251 820602 556485 551606 616548 892576 944163 059781 499704 521623 301982 426157 478136 853746 746484 953824 610863 517997 105602 600274 066269 183543 577359 392774 882428 274244 620215 836915 646014 507911 787331 883378 497100 736661 712849 920735 460675 402621 763526 732137 376816 669367 474159 949974 089740 013036 609424 599765 171888 493529 323261 959824 974052 562825 845233 122044 764609 381016 482847 862502 941639 679680 918918 (466 digits)/294399 138710 000755 448940 890101 721936 391555 964998 201144 614369 455703 887032 459172 853225 304410 919750 234542 236678 144419 904436 937291 787850 739013 064447 408287 191132 543306 247309 222285 667377 432637 601023 153899 202616 127549 882250 579766 906930 271126 311370 539846 514320 950894 700097 594557 048517 607244 903010 102934 297220 965422 183427 749071 838602 311628 888241 361034 558153 610525 249433 927021 585513 829341 715565 975926 606339 282309 893080 784536 807681 634860 339528 270543 039911 844821 117544 355156 106089 (468 digits), a[890] = 15
                                                                                      A[891]/B[891] = 15340 707201 136712 058610 906476 548241 034257 806597 788395 967369 721446 736654 524518 845890 003353 048428 272462 990979 928987 501153 652552 540017 115385 204245 009222 893983 186194 989244 159618 162335 432066 810564 756068 770652 578098 557075 983829 256897 488851 944424 488927 777657 394855 330199 034446 329973 487595 293229 933585 828358 645800 085777 226057 455300 406854 607403 572745 473262 619257 321225 093438 597255 730874 279873 720553 443130 370549 955221 583974 726423 510847 636596 982463 995595 883619 492128 105644 799447 (467 digits)/1 491017 415792 107821 196831 050271 752393 219378 939084 215025 495563 408559 558872 951097 253916 810005 387826 192460 939217 875188 451867 024570 737360 058969 537558 077153 294536 391568 786326 726582 592718 394060 269164 174414 159965 684118 464839 995497 005893 819226 938632 795368 216972 529364 885423 818376 923841 131158 681832 375328 045510 722393 919146 531752 467479 926836 527516 088681 069981 986781 444448 007205 611615 444094 852541 757670 369060 517154 752285 591464 411338 355048 697587 114683 589861 956764 458906 544060 773149 (469 digits), a[891] = 5
                                                                                      A[892]/B[892] = 386546 679515 199557 242589 530803 539549 348799 956664 672055 654712 152363 120811 024956 055019 840075 724958 632177 330983 776294 145390 206390 444590 944411 605829 752195 651562 081032 209240 844200 804870 755494 874982 419716 371917 052737 993168 779274 999796 614073 493040 497439 061650 708298 900990 369070 036669 073260 827849 076307 421816 065737 605106 054058 146036 903502 561905 988004 305725 431407 120367 349001 540817 871622 168731 507365 401521 223573 854592 162194 005820 893235 679533 942616 372744 952990 244842 320800 905093 (468 digits)/37 569834 533512 696285 369717 146895 531766 876029 442103 576782 003454 669692 858856 236604 201145 554545 615405 046065 717125 024131 201112 551560 221852 213251 503399 337119 554542 332525 905477 386850 485337 284144 330127 514253 201758 230511 503250 467192 054275 751799 777190 424051 938634 185016 835693 053980 144545 886211 948819 486135 434989 025270 162091 042883 525600 482542 076143 578061 307703 280061 360634 107161 875899 931713 029109 917685 832852 211178 700220 571147 091140 511077 779206 137632 786460 763932 590207 956675 434814 (470 digits), a[892] = 25
                                                                                      A[893]/B[893] = 401887 386716 336269 301200 437280 087790 383057 763262 460451 622081 873809 857465 549474 900909 843428 773386 904640 321963 705281 646543 858942 984608 059796 810074 761418 545545 267227 198485 003818 967206 187561 685547 175785 142569 630836 550244 763104 256694 102925 437464 986366 839308 103154 231189 403516 366642 560856 121079 009893 250174 711537 690883 280115 601337 310357 169309 560749 778988 050664 441592 442440 138073 602496 448605 227918 844651 594123 809813 746168 732244 404083 316130 925080 368340 836609 736970 426445 704540 (468 digits)/39 060851 949304 804106 566548 197167 284160 095408 381187 791807 499018 078252 417729 187701 455062 364551 003231 238526 656342 899319 652979 576130 959212 272221 040957 414272 849078 724094 691804 113433 078055 678204 599291 688667 361723 914629 968090 462689 060169 571026 715823 219420 155606 714381 721116 872357 068387 017370 630651 861463 480499 747664 081237 574635 993080 409378 603659 666742 377685 266842 805082 114367 487515 375807 881651 675356 201912 728333 452506 162611 502478 866126 476793 252316 376322 720697 049114 500736 207963 (470 digits), a[893] = 1
                                                                                      A[894]/B[894] = 1 190321 452947 872095 844990 405363 715130 114915 483189 592958 898875 899982 835742 123905 856839 526933 271732 441457 974911 186857 438477 924276 413807 064005 225979 275032 742652 615486 606210 851838 739283 130618 246076 771286 657056 314411 093658 305483 513184 819924 367970 470172 740266 914607 363369 176102 769954 194973 070007 096093 922165 488812 986872 614289 348711 524216 900525 109503 863701 532736 003552 233881 816965 076615 065941 963203 090824 411821 474219 654531 470309 701402 311795 792777 109426 626209 718783 173692 314173 (469 digits)/115 691538 432122 304498 502813 541230 100087 066846 204479 160397 001490 826197 694314 612007 111270 283647 621867 523119 029810 822770 507071 703822 140276 757693 585314 165665 252699 780715 289085 613716 641448 640553 528710 891587 925206 059771 439431 392570 174614 893853 208836 862892 249847 613780 277926 798694 281319 920953 210123 209062 395988 520598 324566 192155 511761 301299 283462 911546 063073 813746 970798 335896 850930 683328 792413 268398 236677 667845 605232 896370 096098 243330 732792 642265 539106 205326 688436 958147 850740 (471 digits), a[894] = 2
                                                                                      A[895]/B[895] = 1 592208 839664 208365 146190 842643 802920 497973 246452 053410 520957 773792 693207 673380 757749 370362 045119 346098 296874 892139 085021 783219 398415 123802 036054 036451 288197 882713 804695 855657 706489 318179 931623 947071 799625 945247 643903 068587 769878 922849 805435 456539 579575 017761 594558 579619 136596 755829 191086 105987 172340 200350 677755 894404 950048 834574 069834 670253 642689 583400 445144 676321 955038 679111 514547 191121 935476 005945 284033 400700 202554 105485 627926 717857 477767 462819 455753 600138 018713 (469 digits)/154 752390 381427 108605 069361 738397 384247 162254 585666 952204 500508 904450 112043 799708 566332 648198 625098 761645 686153 722090 160051 279953 099489 029914 626271 579938 101778 504809 980889 727149 719504 318758 128002 580255 286929 974401 407521 855259 234784 464879 924660 082312 405454 328161 999043 671051 349706 938323 840775 070525 876488 268262 405803 766791 504841 710677 887122 578288 440759 080589 775880 450264 338446 059136 674064 943754 438590 396179 057739 058981 598577 109457 209585 894581 915428 926023 737551 458884 058703 (471 digits), a[895] = 1
                                                                                      A[896]/B[896] = 15 520201 009925 747382 160707 989157 941414 596674 701258 073653 587495 864117 074611 184332 676583 860191 677806 556342 646785 216109 203673 973250 999543 178223 550465 603094 336433 559910 848473 552758 097686 994237 630692 294932 853689 821639 888785 922773 442095 125572 616889 579028 956442 074461 714396 392674 999324 997435 789782 049978 473227 291969 086675 663933 899151 035383 529037 141786 647907 783340 009854 320779 412313 188618 696866 683300 510108 465329 030520 260833 293296 650772 963136 253494 409333 791584 820565 574934 482590 (470 digits)/1508 463051 864966 281944 127069 186806 558311 527137 475481 730237 506070 966248 702708 809384 208264 117435 247756 377930 205194 321581 947533 223400 035678 026925 221758 385108 168706 324005 117093 158064 116987 509376 680734 113885 507575 829384 107128 089903 287675 077772 530777 603703 898936 567238 269319 838156 428682 365867 777098 843795 284382 934959 976800 093279 055336 697400 267566 116142 029905 539054 953722 388275 896945 215558 858997 762188 183991 233457 124884 427204 483292 228445 619065 693502 777966 539540 326400 088104 379067 (472 digits), a[896] = 9
                                                                                      A[897]/B[897] = 17 112409 849589 955747 306898 831801 744335 094647 947710 127064 108453 637909 767818 857713 434333 230553 722925 902440 943660 108248 288695 756470 397958 302025 586519 639545 624631 442624 653169 408415 804176 312417 562316 242004 653315 766887 532688 991361 211974 048422 422325 035568 536017 092223 308954 972294 135921 753264 980868 155965 645567 492319 764431 558338 849199 869957 598871 812040 290597 366740 454998 997101 367351 867730 211413 874422 445584 471274 314553 661533 495850 756258 591062 971351 887101 254404 276319 175072 501303 (470 digits)/1663 215442 246393 390549 196430 925203 942558 689392 061148 682442 006579 870698 814752 609092 774596 765633 872855 139575 891348 043672 107584 503353 135167 056839 848029 965046 270484 828815 097982 885213 836491 828134 808736 694140 794505 803785 514649 945162 522459 542652 455437 686016 304390 895400 268363 509207 778389 304191 617873 914321 160871 203222 382603 860070 560178 408078 154688 694430 470664 619644 729602 838540 235391 274695 533062 705942 622581 629636 182623 486186 081869 337902 828651 588084 693395 465564 063951 546988 437770 (472 digits), a[897] = 1
                                                                                      A[898]/B[898] = 66 857430 558695 614624 081404 484563 174419 880618 544388 454845 912856 777846 378067 757472 979583 551852 846584 263665 477765 540854 069761 242662 193418 084300 310024 521731 210327 887784 807981 778005 510215 931490 317641 020946 813637 122302 486852 896857 078017 270839 883864 685734 564493 351131 641261 309557 407090 257230 732386 517875 409929 768928 379970 338950 446750 645256 325652 577907 519699 883561 374851 312083 514368 791809 331108 306567 846861 879151 974181 245433 780848 919548 736325 167550 070637 554797 649523 100151 986499 (470 digits)/6498 109378 604146 453591 716361 962418 385987 595313 658927 777563 525810 578345 146966 636662 532054 414336 866321 796657 879238 452598 270286 733459 441179 197444 765848 280246 980160 810450 411041 813705 626462 993781 106944 196307 891093 240740 651077 925390 855053 705729 897090 661752 812109 253439 074410 365779 763850 278442 630720 586758 766996 544627 124611 673490 735871 921634 731632 199433 441899 397989 142530 903896 603119 039645 458185 880016 051736 122365 672754 885762 728900 242154 105020 457756 858152 936232 518254 729069 692377 (472 digits), a[898] = 3
                                                                                      A[899]/B[899] = 6368 568312 925673 345035 040324 865303 314223 753409 664613 337425 829847 533315 684255 817646 494770 656574 148430 950661 331386 489384 916013 809378 772676 310555 038849 204010 605780 782181 411438 318939 274689 803997 738213 231951 948842 385623 783714 192783 623614 778211 389470 180352 162885 449729 228779 380247 809496 190184 557587 354129 588895 540515 861613 758631 290511 169308 535866 713254 662086 305071 065873 645035 232387 089616 666702 998367 897462 990711 861771 977742 676498 113388 541953 888608 597668 960180 981013 689511 218708 (472 digits)/618983 606409 640306 481762 250817 354950 611380 244189 659287 550976 958584 813487 776583 092033 319766 127636 173425 822074 419001 040507 784824 182000 047190 814092 603616 588509 385761 821604 146955 187248 350476 237339 968435 343390 448363 674147 367052 857293 752561 586992 679050 552533 454769 972112 337348 258285 344165 756241 536329 656404 025542 942799 220712 841690 468010 963377 659747 640607 451107 428613 270038 708717 531700 041014 060721 307467 537513 254375 094337 633645 327392 342542 805595 074986 217924 407653 298150 808609 213585 (474 digits), a[899] = 95
                                                                                      A[900]/B[900] = 6435 425743 484368 959659 121729 349866 488643 634028 209001 792271 742704 311162 062323 575119 474354 208426 995015 214326 809152 030238 985775 052040 966094 394855 348873 725741 816108 669966 219420 096944 784905 735488 055854 252898 762479 507926 270567 089640 701632 049051 273334 866086 727378 800860 870040 689805 216586 447415 289973 872004 998825 309444 241584 097581 737261 814564 861519 291162 181786 188632 440724 957118 746755 881425 997811 304935 744324 869863 835953 223176 457347 032937 278279 056158 668306 514978 630536 789663 205207 (472 digits)/625481 715788 244452 935353 967179 317368 997367 839503 318215 328540 484395 391832 923549 728695 851820 541973 039747 618732 298239 493106 055110 915459 488370 011537 369464 868756 365922 632054 557997 000953 976939 231121 075379 539698 339456 914888 018130 782684 607615 292722 576141 214286 266879 225551 411758 624065 108016 034684 167050 243162 792539 487426 345324 515181 203882 885012 391379 840040 893006 826602 412569 612614 134819 080659 518907 187483 589249 376740 767092 519408 056292 584696 910615 532743 076077 343885 816405 537678 905962 (474 digits), a[900] = 1
                                                                                      A[901]/B[901] = 1 119697 221935 721503 366063 099502 392205 849572 440289 821923 400437 317693 364352 466234 313315 558048 714444 286063 029199 314687 720729 455097 812465 907006 620530 394003 757344 792580 686337 371115 090387 063382 043431 400998 983437 857797 256868 591820 700625 005959 264081 676402 013355 999417 998659 745818 716550 278951 593029 723067 210994 385674 074369 655662 640271 836805 089029 578704 084312 111096 938483 311291 226578 421154 576314 288058 752251 665665 477155 481679 587269 797534 811537 684230 604058 214696 051484 063878 301245 719519 (475 digits)/108 827320 437775 930664 297998 572839 259787 156016 478263 710539 388480 758987 600583 550686 156415 684719 888972 049763 862762 014433 347855 319012 556491 535202 810057 521038 883360 690377 167042 680436 352286 360963 221286 009095 711203 174409 949774 503678 261730 870007 227998 351480 624057 624875 992506 571590 221549 030939 756602 436021 723567 134874 267556 961853 968038 739750 070521 368459 967681 941288 430830 644581 690962 855400 995110 831664 742128 477655 430527 801343 491239 066009 495108 342082 239538 379304 899899 536308 827059 945011 (477 digits), a[901] = 173
                                                                                      A[902]/B[902] = 1 126132 647679 205872 325722 221231 742072 338216 074318 030925 192709 060397 675514 528557 888435 032402 922871 281078 243526 123839 750968 440872 864506 873101 015385 742877 483086 608689 356303 590535 187331 848287 778919 456853 236336 620276 764794 862387 790265 707591 313132 949736 879442 726796 799520 615859 406355 495538 040445 013041 082999 384499 383813 897246 737853 574066 903594 440223 375474 292883 127115 752016 183697 167910 457740 285870 057187 409990 347019 317632 810446 254881 844474 962509 660216 883002 566462 694415 090908 924726 (475 digits)/109 452802 153564 175117 233352 540018 577156 153384 317767 028754 717021 243382 992416 474235 885111 536540 430945 089511 481494 312672 840961 374123 471951 023572 821594 890503 752117 056299 799097 238433 353240 337902 452407 084475 250901 513866 864662 521809 044415 477622 520720 927621 838343 891755 218057 983348 845614 138955 791286 603071 966729 927413 754983 307178 483219 943632 955533 759839 807722 834295 257433 057151 303576 990220 075770 350571 929612 066904 807268 568436 010647 122302 079805 252697 772281 455382 243785 352714 364738 850973 (477 digits), a[902] = 1
                                                                                      A[903]/B[903] = 2 245829 869614 927375 691785 320734 134278 187788 514607 852848 593146 378091 039866 994792 201750 590451 637315 567141 272725 438527 471697 895970 676972 780107 635916 136881 240431 401270 042640 961650 277718 911669 822350 857852 219774 478074 021663 454208 490890 713550 577214 626138 892798 726214 798180 361678 122905 774489 633474 736108 293993 770173 458183 552909 378125 410871 992624 018927 459786 403980 065599 063307 410275 589065 034054 573928 809439 075655 824174 799312 397716 052416 656012 646740 264275 097698 617946 758293 392154 644245 (475 digits)/218 280122 591340 105781 531351 112857 836943 309400 796030 739294 105502 002370 593000 024922 041527 221260 319917 139275 344256 327106 188816 693136 028442 558775 631652 411542 635477 746676 966139 918869 705526 698865 673693 093570 962104 688276 814437 025487 306146 347629 748719 279102 462401 516631 210564 554939 067163 169895 547889 039093 690297 062288 022540 269032 451258 683383 026055 128299 775404 775583 688263 701732 994539 845621 070881 182236 671740 544560 237796 369779 501886 188311 574913 594780 011819 834687 143684 889023 191798 795984 (477 digits), a[903] = 1
                                                                                      A[904]/B[904] = 7 863622 256523 987999 401078 183434 144906 901581 618141 589470 972148 194670 795115 512934 493686 803757 834817 982502 061702 439422 166062 128784 895425 213423 923134 153521 204380 812499 484226 475486 020488 583297 245972 030409 895660 054498 829785 225013 262937 848243 044776 828153 557838 905441 194061 700893 775072 819006 940869 221365 964980 695019 758364 555974 872229 806682 881466 497005 754833 504823 323912 941938 414523 935105 559904 007656 485504 636957 819543 715570 003594 412131 812512 902730 453042 176098 420302 969295 267372 857461 (475 digits)/764 293169 927584 492461 827405 878592 087986 081586 705859 246637 033527 250494 771416 549002 009693 200321 390696 507337 514263 293991 407411 453531 557278 699899 716552 125131 658550 296330 697516 995042 469820 434499 473486 365188 137215 578697 307973 598270 962854 520511 766878 764929 225548 441648 849751 648166 047103 648642 434953 720353 037621 114277 822604 114275 836995 993782 033699 144739 133937 161046 322224 162350 287196 527083 288413 897281 944833 700585 520657 677774 516305 687236 804546 037037 807740 959443 674840 019783 940135 238925 (477 digits), a[904] = 3
                                                                                      A[905]/B[905] = 25 836696 639186 891373 895019 871036 568998 892533 369032 621261 509590 962103 425213 533595 682811 001725 141769 514647 457832 756793 969884 282325 363248 420379 405318 597444 853573 838768 495320 388108 339184 661561 560266 949081 906754 641570 511019 129248 279704 258279 711545 110599 566315 442538 380365 464359 448124 231510 456082 400206 188935 855232 733277 220833 994814 830920 637023 509944 724286 918450 037337 889122 653847 394381 713766 596898 265952 986529 282805 946022 408499 288812 093551 354931 623401 625993 878855 666179 194273 216628 (476 digits)/2511 159632 374093 583167 013568 748634 100901 554160 913608 479205 206083 753854 907249 671928 070606 822224 492006 661287 887046 209080 411051 053730 700278 658474 781308 786937 611128 635669 058690 903997 114988 002364 094152 189135 373751 424368 738357 820300 194709 909165 049355 573890 139046 841577 759819 499437 208474 115822 852750 200152 803160 405121 490352 611859 962246 664729 127152 562517 177216 258722 654936 188783 856129 426870 936122 874082 506241 646316 799769 403103 050803 250021 988551 705893 435042 713018 168204 948375 012204 512759 (478 digits), a[905] = 3
                                                                                      A[906]/B[906] = 59 537015 534897 770747 191117 925507 282904 686648 356206 831993 991330 118877 645542 580125 859308 807208 118357 011796 977367 953010 105830 693435 621922 054182 733771 348410 911528 490036 474867 251702 698857 906420 366505 928573 709169 337639 851823 483509 822346 364802 467867 049352 690469 790517 954792 629612 671321 282027 853034 021778 342852 405485 224918 997642 861859 468524 155513 516895 203407 341723 398588 720183 722218 723868 987437 201453 017410 610016 385155 607614 820592 989755 999615 612593 699845 428086 178014 301653 655919 290717 (476 digits)/5786 612434 675771 658795 854543 375860 289789 189908 533076 205047 445694 758204 585915 892858 150906 844770 374709 829913 288355 712152 229513 560992 957836 016849 279169 699006 880807 567668 814898 803036 699796 439227 661790 743458 884718 427434 784689 238871 352274 338841 865589 912709 503642 124804 369390 647040 464051 880288 140454 120658 643941 924520 803309 337995 761489 323240 288004 269773 488369 678491 632096 539917 999455 380825 160659 645446 957316 993219 120196 483980 617912 187280 781649 448824 677826 385480 011249 916533 964544 264443 (478 digits), a[906] = 2
                                                                                      A[907]/B[907] = 85 373712 174084 662121 086137 796543 851903 579181 725239 453255 500921 080981 070756 113721 542119 808933 260126 526444 435200 709804 075714 975760 985170 474562 139089 945855 765102 328804 970187 639811 038042 567981 926772 877655 615923 979210 362842 612758 102050 623082 179412 159952 256785 233056 335158 093972 119445 513538 309116 421984 531788 260717 958196 218476 856674 299444 792537 026839 927694 260173 435926 609306 376066 118250 701203 798351 283363 596545 667961 553637 229092 278568 093166 967525 323247 054080 056869 967832 850192 507345 (476 digits)/8297 772067 049865 241962 868112 124494 390690 744069 446684 684252 651778 512059 493165 564786 221513 666994 866716 491201 175401 921232 640564 614723 658114 675324 060478 485944 491936 203337 873589 707033 814784 441591 755942 932594 258469 851803 523047 059171 546984 248006 914945 486599 642688 966382 129210 146477 672525 996110 993204 320811 447102 329642 293661 949855 723735 987969 415156 832290 665585 937214 287032 728701 855584 807696 096782 519529 463558 639535 919965 887083 668715 437302 770201 154718 112869 098498 179454 864908 976748 777202 (478 digits), a[907] = 1
                                                                                      A[908]/B[908] = 144 910727 708982 432868 277255 722051 134808 265830 081446 285249 492251 199858 716298 693847 401428 616141 378483 538241 412568 662814 181545 669196 607092 528744 872861 294266 676630 818841 445054 891513 736900 474402 293278 806229 325093 316850 214666 096267 924396 987884 647279 209304 947255 023574 289950 723584 790766 795566 162150 443762 874640 666203 183115 216119 718533 767968 948050 543735 131101 601896 834515 329490 098284 842119 688640 999804 300774 206562 053117 161252 049685 268324 092782 580119 023092 482166 234884 269486 506111 798062 (477 digits)/14084 384501 725636 900758 722655 500354 680479 933977 979760 889300 097473 270264 079081 457644 372420 511765 241426 321114 463757 633384 870078 175716 615950 692173 339648 184951 372743 771006 688488 510070 514580 880819 417733 676053 143188 279238 307736 298042 899258 586848 780535 399309 146331 091186 498600 793518 136577 876399 133658 441470 091044 254163 096971 287851 485225 311209 703161 102064 153955 615705 919129 268619 855040 188521 257442 164976 420875 632755 040162 371064 286627 624583 551850 603542 790695 483978 190704 781442 941293 041645 (479 digits), a[908] = 1
                                                                                      A[909]/B[909] = 809 927350 718996 826462 472416 406799 525944 908332 132470 879502 962177 080274 652249 582958 549262 889640 152544 217651 498044 023874 983443 321744 020633 118286 503396 417189 148256 423012 195462 097379 722544 939993 393166 908802 241390 563461 436173 094097 724035 562505 415808 206476 993060 350927 784911 711896 073279 491369 119868 640798 904991 591733 873772 299075 449343 139289 532789 745515 583202 269657 608503 256756 867490 328849 144408 797372 787234 629355 933547 359897 477518 620188 557079 868120 438709 464911 231291 315265 380751 497655 (477 digits)/78719 694575 678049 745756 481389 626267 793090 413959 345489 130753 139144 863379 888572 853008 083616 225821 073848 096773 494190 088156 990955 493306 737868 136190 758719 410701 355655 058371 316032 257386 387688 845688 844611 312859 974411 247995 061728 549386 043277 182250 817622 483145 374344 422314 622214 114068 355415 378106 661496 528161 902323 600457 778518 389113 149862 544017 930962 342611 435364 015743 882679 071801 130785 750302 383993 344411 567936 803311 120777 742405 101853 560220 529454 172432 066346 518389 132978 772123 683213 985427 (479 digits), a[909] = 5
                                                                                      A[910]/B[910] = 954 838078 427979 259330 749672 128850 660753 174162 213917 164752 454428 280133 368548 276805 950691 505781 531027 755892 910612 686689 164988 990940 627725 647031 376257 711455 824887 241853 640516 988893 459445 414395 686445 715031 566483 880311 650839 190365 648432 550390 063087 415781 940315 374502 074862 435480 864046 286935 282019 084561 779632 257937 056887 515195 167876 907258 480840 289250 714303 871554 443018 586246 965775 170968 833049 797177 088008 835917 986664 521149 527203 888512 649862 448239 461801 947077 466175 584751 886863 295717 (477 digits)/92804 079077 403686 646515 204045 126622 473570 347937 325250 020053 236618 133643 967654 310652 456036 737586 315274 417887 957947 721541 861033 669023 353818 828364 098367 595652 728398 829378 004520 767456 902269 726508 262344 988913 117599 527233 369464 847428 942535 769099 598157 882454 520675 513501 120814 907586 491993 254505 795154 969631 993367 854620 875489 676964 635087 855227 634123 444675 589319 631449 801808 340420 985825 938823 641435 509387 988812 436066 160940 113469 388481 184804 081304 775974 857042 002367 323683 553566 624507 027072 (479 digits), a[910] = 1
                                                                                      A[911]/B[911] = 9403 470056 570810 160439 219465 566455 472723 475792 057725 362275 052031 601474 969184 074212 105486 441673 931794 020687 693558 204077 468344 240209 670163 941568 889715 820291 572241 599694 960114 997420 857553 669554 571178 344086 339745 486266 293725 807388 559928 516015 983594 948514 455898 721446 458673 631223 849696 073786 658040 401854 921681 913167 385759 935831 960235 304615 860352 348772 011937 113647 595670 532979 559466 867568 641856 971966 579314 152617 813528 050243 222353 616802 405841 902275 594926 988608 426871 578032 362521 159108 (478 digits)/913956 406272 311229 564393 317795 765870 055223 545395 272739 311232 268708 066175 597461 648880 187946 864097 911317 857765 115719 582033 740258 514516 922237 591467 644027 771575 911244 522773 356719 164498 508116 384263 205716 213078 032806 993095 386912 176246 526099 104147 201043 425236 060424 043824 709548 282346 783354 668658 817891 254849 842634 292045 657925 481794 865653 241066 638073 344691 739240 698792 098954 135590 003219 199715 156912 928903 467248 727906 569238 763629 598184 223457 261197 156205 779724 539695 046130 754223 303777 229075 (480 digits), a[911] = 9
                                                                                      A[912]/B[912] = 19761 778191 569599 580209 188603 261761 606200 125746 329367 889302 558491 483083 306916 425230 161664 389129 394615 797268 297729 094844 101677 471359 968053 530169 155689 352038 969370 441243 560746 983735 174552 753504 828802 403204 245974 852844 238290 805142 768289 582422 030277 312810 852112 817394 992209 697928 563438 434508 598099 888271 622996 084271 828407 386859 088347 516490 201544 986794 738178 098849 634359 652206 084708 906106 116763 741110 246637 141153 613720 621635 971911 122117 461546 252790 651655 924294 319918 740816 611905 613933 (479 digits)/1 920716 891622 026145 775301 839636 658362 584017 438727 870728 642517 774034 265995 162577 608412 831930 465782 137910 133418 189386 885609 341550 698057 198294 011299 386423 138804 550887 874924 717959 096453 918502 495034 673777 415069 183213 513424 143289 199921 994733 977394 000244 732926 641523 601150 539911 472280 058702 591823 430937 479331 678636 438712 191340 640554 366394 337360 910270 134059 067801 029033 999716 611600 992264 338253 955261 367194 923309 891879 299417 640728 584849 631718 603699 088386 416491 081757 415945 062013 232061 485222 (481 digits), a[912] = 2
                                                                                      A[913]/B[913] = 108212 361014 418808 061485 162481 875263 503724 104523 704564 808787 844489 016891 503766 200362 913808 387320 904873 007029 182203 678297 976731 597009 510431 592414 668162 580486 419093 805912 763849 916096 730317 437078 715190 360107 569619 750487 485179 833102 401376 428126 134981 512568 716462 808421 419722 120866 666888 246329 648539 843213 036662 334526 527796 870127 401972 887066 868077 282745 702827 607895 767468 794009 983011 398099 225675 677517 812499 858385 882131 158423 081909 227389 713573 166228 853206 610080 026465 282115 422049 228773 (480 digits)/10 517540 864382 441958 440902 515979 057682 975310 739034 626382 523821 138879 396151 410349 690944 347599 193008 600868 524856 062654 010080 448012 004802 913707 647964 576143 465598 665683 897396 946514 646768 100628 859436 574603 288423 948874 560216 103358 175856 499768 991117 202267 089869 268042 049577 409105 643747 076867 627775 972578 651508 235816 485606 614628 684566 697624 927871 189424 014987 078245 843962 097537 193594 964540 890984 933219 764878 083798 187303 066326 967272 522432 382050 279692 598137 862179 948482 125856 064289 464084 655185 (482 digits), a[913] = 5
                                                                                      A[914]/B[914] = 127974 139205 988407 641694 351085 137025 109924 230270 033932 698090 402980 499974 810682 625593 075472 776450 299488 804297 479932 773142 078409 068369 478485 122583 823851 932525 388464 247156 324596 899831 904870 190583 543992 763311 815594 603331 723470 638245 169666 010548 165258 825379 568575 625816 411931 818795 230326 680838 246639 731484 659658 418798 356204 256986 490320 403557 069622 269540 441005 706745 401828 446216 067720 304205 342439 418628 059136 999539 495851 780059 053820 349507 175119 419019 504862 534374 346384 022932 033954 842706 (480 digits)/12 438257 756004 468104 216204 355615 716045 559328 177762 497111 166338 912913 662146 572927 299357 179529 658790 738778 658274 252040 895689 789562 702860 112001 659263 962566 604403 216571 772321 664473 743222 019131 354471 248380 703493 132088 073640 246647 375778 494502 968511 202511 822795 909565 650727 949017 116027 135570 219599 403516 130839 914452 924318 805969 325121 064019 265232 099694 149046 146046 872996 097253 805195 956805 229238 888481 132073 007108 079182 365744 608001 107282 013768 883391 686524 278671 030239 541801 126302 696146 140407 (482 digits), a[914] = 1
                                                                                      A[915]/B[915] = 1 004031 335456 337661 553345 620077 834439 273193 716413 942093 695420 665352 516715 178544 579514 442117 822473 001294 637111 541733 090292 525595 075595 859827 450501 435126 108164 138343 536007 036028 214920 064408 771163 523139 703290 278781 973809 549474 300818 589038 501963 291793 290225 696492 189136 303244 852433 279175 012197 375017 963605 654271 266115 021226 669032 834215 711966 355433 169528 789867 555113 580267 917522 457053 527536 622751 607914 226458 855162 353093 618836 458651 673939 939409 099365 387244 350700 451153 442639 659733 127715 (481 digits)/97 585345 156413 718687 954333 005289 070001 890607 983372 106160 688193 529275 031177 420840 786444 604306 804543 772319 132775 826940 279908 974950 924823 697719 262812 314109 696421 181686 303648 597830 849322 234548 340735 313268 212875 873491 075697 829889 806305 961289 770695 619849 849440 635001 604673 052225 455937 025859 164971 797191 567387 636986 955838 256413 960414 145759 784495 887283 058310 100573 954934 778313 829966 662177 495657 152587 689389 133554 741579 626539 223280 273406 478432 463434 403807 812877 160158 918463 948408 337107 638034 (482 digits), a[915] = 7
                                                                                      A[916]/B[916] = 1 132005 474662 326069 195039 971162 971464 383117 946683 976026 393511 068333 016689 989227 205107 517590 598923 300783 441409 021665 863434 604004 143965 338312 573085 258978 040689 526807 783163 360625 114751 969278 961747 067132 466602 094376 577141 272944 939063 758704 512511 457052 115605 265067 814952 715176 671228 509501 693035 621657 695090 313929 684913 377430 926019 324536 115523 425055 439069 230873 261858 982096 363738 524773 831741 965191 026542 285595 854701 848945 398895 512472 023447 114528 518384 892106 885074 797537 465571 693687 970421 (481 digits)/110 023602 912418 186792 170537 360904 786047 449936 161134 603271 854532 442188 693323 993768 085801 783836 463334 511097 791050 078981 175598 764513 627683 809720 922076 276676 300824 398258 075970 262304 592544 253679 695206 561648 916369 005579 149338 076537 182084 455792 739206 822361 672236 544567 255401 001242 571964 161429 384571 200707 698227 551439 880157 062383 285535 209779 049727 986977 207356 246620 827930 875567 635162 618982 724896 041068 821462 140662 820761 992283 831281 380688 492201 346826 090332 091548 190398 460265 074711 033253 778441 (483 digits), a[916] = 1
                                                                                      A[917]/B[917] = 3 268042 284780 989799 943425 562403 777368 039429 609781 894146 482442 802018 550095 156998 989729 477299 020319 602861 519929 585064 817161 733603 363526 536452 596671 953082 189543 191959 102333 757278 444424 002966 694657 657404 636494 467535 128092 095364 178946 106447 526986 205897 521436 226627 819041 733598 194890 298178 398268 618333 353786 282130 635941 776088 521071 483287 943013 205544 047667 251614 078831 544460 644999 506601 191020 553133 660998 797650 564566 050984 416627 483595 720834 168466 136135 171458 120850 046228 373783 047109 068557 (481 digits)/317 632550 981250 092272 295407 727098 642096 790480 305641 312704 397258 413652 417825 408376 958048 171979 731212 794514 714875 984902 631106 503978 180191 317161 106964 867462 298069 978202 455589 122440 034410 741907 731148 436566 045613 884649 374373 982964 170474 872875 249109 264573 193913 724136 115475 054710 599865 348717 934114 198606 963842 739866 716152 381180 531484 565317 883951 861237 473022 593815 610796 529449 100291 900142 945449 234725 332313 414880 383103 611106 885843 034783 462835 157086 584471 995973 540955 838994 097830 403615 194916 (483 digits), a[917] = 2
                                                                                      A[918]/B[918] = 4 400047 759443 315869 138465 533566 748832 422547 556465 870172 875953 870351 566785 146226 194836 994889 619242 903644 961338 606730 680596 337607 507491 874765 169757 212060 230232 718766 885497 117903 559175 972245 656404 724537 103096 561911 705233 368309 118009 865152 039497 662949 637041 491695 633994 448774 866118 807680 091304 239991 048876 596060 320855 153519 447090 807824 058536 630599 486736 482487 340690 526557 008738 031375 022762 518324 687541 083246 419267 899929 815522 996067 744281 282994 654520 063565 005924 843765 839354 740797 038978 (481 digits)/427 656153 893668 279064 465945 088003 428144 240416 466775 915976 251790 855841 111149 402145 043849 955816 194547 305612 505926 063883 806705 268491 807875 126882 029041 144138 598894 376460 531559 384744 626954 995587 426354 998214 961982 890228 523712 059501 352559 328667 988316 086934 866150 268703 370876 055953 171829 510147 318685 399314 662070 291306 596309 443563 817019 775096 933679 848214 680378 840436 438727 405016 735454 519125 670345 275794 153775 555543 203865 603390 717124 415471 955036 503912 674804 087521 731354 299259 172541 436868 973357 (483 digits), a[918] = 1
                                                                                      A[919]/B[919] = 7 668090 044224 305669 081891 095970 526200 461977 166247 764319 358396 672370 116880 303225 184566 472188 639562 506506 481268 191795 497758 071210 871018 411217 766429 165142 419775 910725 987830 875182 003599 975212 351062 381941 739591 029446 833325 463673 296955 971599 566483 868847 158477 718323 453036 182373 061009 105858 489572 858324 402662 878190 956796 929607 968162 291112 001549 836143 534403 734101 419522 071017 653737 537976 213783 071458 348539 880896 983833 950914 232150 479663 465115 451460 790655 235023 126774 889994 213137 787906 107535 (481 digits)/745 288704 874918 371336 761352 815102 070241 030896 772417 228680 649049 269493 528974 810522 001898 127795 925760 100127 220802 048786 437811 772469 988066 444043 136006 011600 896964 354662 987148 507184 661365 737495 157503 434781 007596 774877 898086 042465 523034 201543 237425 351508 060063 992839 486351 110663 771694 858865 252799 597921 625913 031173 312461 824744 348504 340414 817631 709452 153401 434252 049523 934465 835746 419268 615794 510519 486088 970423 586969 214497 602967 450255 417871 660999 259276 083495 272310 138253 270371 840484 168273 (483 digits), a[919] = 1
                                                                                      A[920]/B[920] = 12 068137 803667 621538 220356 629537 275032 884524 722713 634492 234350 542721 683665 449451 379403 467078 258805 410151 442606 798526 178354 408818 378510 285982 936186 377202 650008 629492 873327 993085 562775 947458 007467 106478 842687 591358 538558 831982 414965 836751 605981 531796 795519 210019 087030 631147 927127 913538 580877 098315 451539 474251 277652 083127 415253 098936 060086 466743 021140 216588 760212 597574 662475 569351 236545 589783 036080 964143 403101 850844 047673 475731 209396 734455 445175 298588 132699 733760 052492 528703 146513 (482 digits)/1172 944858 768586 650401 227297 903105 498385 271313 239193 144656 900840 125334 640124 212667 045748 083612 120307 405739 726728 112670 244517 040961 795941 570925 165047 155739 495858 731123 518707 891929 288320 733082 583858 432995 969579 665106 421798 101966 875593 530211 225741 438442 926214 261542 857227 166616 943524 369012 571484 997236 287983 322479 908771 268308 165524 115511 751311 557666 833780 274688 488251 339482 571200 938394 286139 786313 639864 525966 790834 817888 320091 865727 372908 164911 934080 171017 003664 437512 442913 277353 141630 (484 digits), a[920] = 1
                                                                                      A[921]/B[921] = 19 736227 847891 927207 302247 725507 801233 346501 888961 398811 592747 215091 800545 752676 563969 939266 898367 916657 923874 990321 676112 480029 249528 697200 702615 542345 069784 540218 861158 868267 566375 922670 358529 488420 582278 620805 371884 295655 711921 808351 172465 400643 953996 928342 540066 813520 988137 019397 070449 956639 854202 352442 234449 012735 383415 390048 061636 302886 555543 950690 179734 668592 316213 107327 450328 661241 384620 845040 386935 801758 279823 955394 674512 185916 235830 533611 259474 623754 265630 316609 254048 (482 digits)/1918 233563 643505 021737 988650 718207 568626 302210 011610 373337 549889 394828 169099 023189 047646 211408 046067 505866 947530 161456 682328 813431 784008 014968 301053 167340 392823 085786 505856 399113 949686 470577 741361 867776 977176 439984 319884 144432 398627 731754 463166 789950 986278 254382 343578 277280 715219 227877 824284 595157 913896 353653 221233 093052 514028 455926 568943 267118 987181 708940 537775 273948 406947 357662 901934 296833 125953 496390 377804 032385 923059 315982 790779 825911 193356 254512 275974 575765 713285 117837 309903 (484 digits), a[921] = 1
                                                                                      A[922]/B[922] = 248 902871 978370 748025 847329 335630 889833 042547 390250 420231 347317 123823 290214 481570 147042 738281 039220 410046 529106 682386 291704 169169 372854 652391 367572 885343 487423 112119 207234 412296 359287 019502 309820 967525 830031 041023 001170 379850 958027 536965 675566 339524 243482 350129 567832 393399 784772 146303 426276 577993 701967 703558 091040 235952 016237 779512 799722 101381 687667 624870 917028 620682 457032 857280 640489 524679 651531 104628 046331 471943 405560 940467 303542 965450 275141 701923 246395 218811 240056 328014 195089 (483 digits)/24191 747622 490646 911257 091106 521596 321900 897833 378517 624707 499512 863272 669312 490935 617502 620508 673117 476143 097090 050150 432462 802143 204037 750544 777685 163824 209735 760561 588984 681296 684558 380015 480200 846319 695696 944918 260407 835155 659126 311264 783742 917854 761553 314130 980166 493985 526155 103546 462900 139131 254739 566318 563568 384938 333865 586630 578630 763094 679960 781974 941554 626863 454569 230349 109351 348311 151306 482651 324483 206519 396803 657520 862266 075846 254355 225164 315359 346701 002334 691400 860466 (485 digits), a[922] = 12
                                                                                      A[923]/B[923] = 268 639099 826262 675233 149577 061138 691066 389049 279211 819042 940064 338915 090760 234246 711012 677547 937588 326704 452981 672707 967816 649198 622383 349592 070188 427688 557207 652338 068393 280563 925662 942172 668350 455946 412309 661828 373054 675506 669949 345316 848031 740168 197479 278472 107899 206920 772909 165700 496726 534633 556170 056000 325489 248687 399653 169560 861358 404268 243211 575561 096763 289274 773245 964608 090818 185921 036151 949668 433267 273701 685384 895861 978055 151366 510972 235534 505869 842565 505686 644623 449137 (483 digits)/26109 981186 134151 932995 079757 239803 890527 200043 390127 998045 049402 258100 838411 514124 665148 831916 719184 982010 044620 211607 114791 615574 988045 765513 078738 331164 602558 846348 094841 080410 634244 850593 221562 714096 672873 384902 580291 979588 057754 043019 246909 707805 747831 568513 323744 771266 241374 331424 287184 734289 168635 919971 784801 477990 847894 042557 147574 030213 667142 490915 479329 900811 861516 588012 011285 645144 277259 979041 702287 238905 319862 973503 653045 901757 447711 479676 591333 922466 715619 809238 170369 (485 digits), a[923] = 1
                                                                                      A[924]/B[924] = 1592 098371 109684 124191 595214 641324 345164 987793 786309 515446 047638 818398 744015 652803 702106 126020 727162 043568 794015 045926 130787 415162 484771 400351 718515 023786 273461 373809 549200 815115 987601 730365 651573 247257 891579 350164 866443 757384 307774 263549 915725 040365 230878 742490 107328 428003 649317 974805 909909 251161 482817 983559 718486 479389 014503 627317 106514 122722 903725 502676 400845 067056 323262 680321 094580 454284 832290 852970 212667 840451 832485 419777 193818 722282 830002 879595 775744 431638 768489 551131 440774 (484 digits)/154741 653553 161406 576232 489892 720615 774536 898050 329157 614932 746524 153776 861370 061558 943246 780092 269042 386193 320191 108186 006420 880018 144266 578110 171376 819647 222529 992302 063190 083349 855782 632981 588014 416803 060063 869431 161867 733095 947896 526361 018291 456883 500711 156697 598890 350316 733026 760667 898823 810577 097919 166177 487575 774892 573335 799416 316500 914163 015673 236552 338204 130922 762152 170409 165779 574032 537606 377859 835919 401045 996118 525039 127495 584633 492912 623547 272028 959034 580433 737591 712311 (486 digits), a[924] = 5
                                                                                      A[925]/B[925] = 629147 495688 151491 730913 259360 384255 031236 567594 871470 420231 757397 606418 976943 091709 042932 455735 166595 536378 088924 813529 628845 638380 107086 488520 883622 823266 574450 307110 002715 251379 028346 436605 039783 122813 586152 976950 618338 842308 240783 447533 559422 684434 394582 562064 502628 268362 253509 214034 910880 743419 269273 562089 127648 607348 128585 959817 934436 879815 214785 132739 430564 776522 462004 691440 450097 628429 791038 872902 437064 252175 517125 707853 536450 453084 362109 675865 924920 339879 059059 341542 554867 (486 digits)/61 149063 134684 889749 544828 587381 883034 832601 929923 407385 896479 926442 999961 079585 829907 247626 968362 990927 528371 520107 945079 651039 222741 973344 119030 772582 091817 501905 805663 054924 003603 668384 878320 487257 351305 398101 810211 518046 552487 476881 955621 472035 176788 528738 464064 885433 146375 786944 795244 322589 912242 846706 560079 377232 560557 315534 812002 165435 124604 858070 929089 069961 615302 911623 899632 494217 387996 631779 233676 890450 652073 786680 363959 013801 831987 148197 780849 042772 741125 986946 157964 533214 (488 digits), a[925] = 395
                                                                                      A[926]/B[926] = 630739 594059 261175 855104 854575 025579 376401 555388 657779 935677 805036 424817 720958 744512 745038 581755 893757 579946 882939 859455 759633 053542 591857 888872 602137 847052 847911 680919 551916 066495 015948 166970 691356 370071 477732 327115 484782 599692 548557 711083 475147 724799 625461 304554 609956 696365 902827 188840 820789 994580 752091 545648 846135 086737 143089 587135 040951 002538 118510 635415 831409 843578 785267 371761 544678 082714 623329 725872 649732 092627 349611 127630 730269 175367 192112 555461 700664 771517 827548 892673 995641 (486 digits)/61 303804 788238 051156 121061 077274 603650 607138 827973 736543 511412 672967 153737 940955 891466 190873 748455 259969 914564 840299 053265 657460 102760 117610 697140 943958 911464 724435 797965 118114 086953 524167 511302 075271 768108 458165 679642 679914 285583 424778 481982 490326 633672 029449 620762 484323 496692 519971 555912 221413 722819 944625 726256 864808 335449 888870 611418 481936 038767 873744 165641 408165 746225 673776 070041 659996 962029 169385 611536 726370 053119 782798 888998 141297 416620 641110 404396 314801 700160 567379 895556 245525 (488 digits), a[926] = 1
                                                                                      A[927]/B[927] = 10 090241 406577 069129 557486 077985 767945 677259 898424 738169 455398 832943 978684 791324 259400 218511 182073 572959 235581 333022 705366 023341 441518 984954 821609 915690 529059 293125 520903 281456 248804 267568 941165 410128 673885 752137 883682 890077 837696 469149 113785 686638 556428 776502 130383 651978 713850 795917 046647 222730 662130 550646 746821 819674 908405 274929 766843 548701 917886 992444 663976 901712 430204 241015 267863 620268 869149 140984 760992 183045 641585 761292 622314 490488 083592 243798 007791 434891 912646 472292 731652 489482 (488 digits)/980 706134 958255 657091 360744 746500 937793 939684 349529 455538 567670 020950 306030 193924 201900 110733 195191 890476 246844 124593 744064 512940 764143 737504 576144 931965 763788 368442 775139 826635 307906 530897 547851 616333 872932 270587 004851 716760 836238 848559 185358 826934 681868 970482 775502 150285 596763 586518 133927 643795 754542 016092 453932 349357 592305 648593 983279 394475 706122 964233 413710 192447 808688 018264 950257 394171 818434 172563 406727 786001 448870 528663 698931 133263 081296 764853 846793 764798 243534 497644 591308 216089 (489 digits), a[927] = 15
                                                                                      A[928]/B[928] = 81 352670 846675 814212 314993 478461 169144 794480 742786 563135 578868 468588 254296 051552 819714 493128 038344 477431 464597 547121 502383 946364 585694 471496 461751 927662 079527 192915 848145 803566 056929 156499 696293 972385 761157 494835 396578 605405 301264 301750 621368 968256 176229 837478 347623 825786 407172 270163 562018 602635 291625 157265 520223 403534 353979 342527 721883 430566 345634 058067 947231 045109 285212 713389 514670 506829 035907 751207 813810 114097 225313 439952 106146 654173 844105 142496 617793 179800 072689 605890 745893 911497 (488 digits)/7906 952884 454283 307887 007019 049282 106002 124613 624209 380852 052772 840569 601979 492349 506667 076739 309990 383779 889317 837049 005781 760986 215910 017647 306300 399685 021771 671977 999083 731196 550205 771347 894115 005942 751566 622861 718456 414000 975494 213251 964853 105804 088623 793311 824779 686608 270801 212116 627333 371779 759156 073365 357715 659669 073895 077622 477653 637741 687751 587611 475322 947748 215729 819895 672100 813371 509502 549892 865359 014381 644084 012108 480447 207402 066994 759941 178746 433187 648436 548536 626021 974237 (490 digits), a[928] = 8
                                                                                      A[929]/B[929] = 172 795583 099928 697554 187473 034908 106235 266221 383997 864440 613135 770120 487276 894429 898829 204767 258762 527822 164776 427265 710133 916070 612907 927947 745113 771014 688113 678957 217194 888588 362662 580568 333753 354900 196200 741808 676840 100888 440225 072650 356523 623150 908888 451458 825631 303551 528195 336244 170684 428001 245380 865177 787268 626743 616363 959985 210610 409834 609155 108580 558438 991931 000629 667794 297204 633926 940964 643400 388612 411240 092212 641196 834607 798835 771802 528791 243377 794492 058025 684074 223440 312476 (489 digits)/16794 611903 866822 272865 374782 845065 149798 188911 597948 217242 673215 702089 509989 178623 215234 264211 815172 658036 025479 798691 755628 034913 195963 772799 188745 731335 807331 712398 773307 289028 408318 073593 336081 628219 376065 516310 441764 544762 787227 275063 115065 038542 859116 557106 425061 523502 138366 010751 388594 387355 272854 162823 169363 668695 740095 803838 938586 669959 081626 139456 364356 087944 240147 658056 294459 020914 837439 272349 137445 814764 737038 552880 659825 548067 215286 284736 204286 631173 540407 594717 843352 164563 (491 digits), a[929] = 2
                                                                                      A[930]/B[930] = 254 148253 946604 511766 502466 513369 275380 060702 126784 427576 192004 238708 741572 945982 718543 697895 297107 005253 629373 974387 212517 862435 198602 399444 206865 698676 767640 871873 065340 692154 419591 737068 030047 327285 957358 236644 073418 706293 741489 374400 977892 591407 085118 288937 173255 129337 935367 606407 732703 030636 537006 022443 307492 030277 970343 302512 932493 840400 954789 166648 505670 037040 285842 381183 811875 140755 976872 394608 202422 525337 317526 081148 940754 453009 615907 671287 861170 974292 130715 289964 969334 223973 (489 digits)/24701 564788 321105 580752 381801 894347 255800 313525 222157 598094 725988 542659 111968 670972 721901 340951 125163 041815 914797 635740 761409 795899 411873 790446 495046 131020 829103 384376 772391 020224 958523 844941 230196 634162 127632 139172 160220 958763 762721 488315 079918 144346 947740 350418 249841 210110 409167 222868 015927 759135 032010 236188 527079 328364 813990 881461 416240 307700 769377 727067 839679 035692 455877 477951 966559 834286 346941 822242 002804 829146 381122 564989 140272 755469 282281 044677 383033 064361 188844 143254 469374 138800 (491 digits), a[930] = 1
                                                                                      A[931]/B[931] = 681 092090 993137 721087 192406 061646 656995 387625 637566 719592 997144 247537 970422 786395 335916 600557 852976 538329 423524 376040 135169 640941 010112 726836 158845 168368 223395 422703 347876 272897 201846 054704 393848 009472 110917 215096 823677 513475 923203 821452 312308 805965 079125 029333 172141 562227 398930 549059 636090 489274 319392 910064 402252 687299 557050 565011 075598 090636 518733 441877 569779 066011 572314 430161 920954 915438 894709 432616 793457 461914 727264 803494 716116 704855 003617 871366 965719 743076 319456 264004 162108 760422 (489 digits)/66197 741480 509033 434370 138386 633759 661398 815962 042263 413432 125192 787407 733926 520568 659036 946114 065498 741667 855075 070173 278447 626712 019711 353692 178837 993377 465538 481152 318089 329478 325365 763475 796474 896543 631329 794654 762206 462290 312670 251693 274901 327236 754597 257942 924743 943722 956700 456487 420449 905625 336874 635200 223522 325425 368077 566761 771067 285360 620381 593592 043714 159329 151902 613960 227578 689487 531322 916833 143055 473057 499283 682858 940371 059005 779848 374090 970352 759895 918095 881226 782100 442163 (491 digits), a[931] = 2
                                                                                      A[932]/B[932] = 935 240344 939742 232853 694872 575015 932375 448327 764351 147169 189148 486246 711995 732378 054460 298453 150083 543583 052898 350427 347687 503376 208715 126280 365710 867044 991036 294576 413216 965051 621437 791772 423895 336758 068275 451740 897096 219769 664693 195853 290201 397372 164243 318270 345396 691565 334298 155467 368793 519910 856398 932507 709744 717577 527393 867524 008091 931037 473522 608526 075449 103051 858156 811345 732830 056194 871581 827224 995879 987252 044790 884643 656871 157864 619525 542654 826890 717368 450171 553969 131442 984395 (489 digits)/90899 306268 830139 015122 520188 528106 917199 129487 264421 011526 851181 330066 845895 191541 380938 287065 190661 783483 769872 705914 039857 422611 431585 144138 673884 124398 294641 865529 090480 349703 283889 608417 026671 530705 758961 933826 922427 421054 075391 740008 354819 471583 702337 608361 174585 153833 365867 679355 436377 664760 368884 871388 750601 653790 182068 448223 187307 593061 389759 320659 883393 195021 607780 091912 194138 523773 878264 739075 145860 302203 880406 247848 080643 814475 062129 418768 353385 824257 106940 024481 251474 580963 (491 digits), a[932] = 1
                                                                                      A[933]/B[933] = 4422 053470 752106 652501 971896 361710 386497 180936 694971 308269 753738 192524 818405 715907 553757 794370 453310 712661 635117 777749 525919 654445 844973 231957 621688 636548 187540 601009 000744 133103 687597 221794 089429 356504 384019 022060 412062 392554 581976 604865 473114 395453 736098 302414 553728 328488 736123 170929 111264 568917 744988 640095 241231 557609 666626 035107 107965 814786 412823 875981 871575 478219 004941 675544 852275 140218 381036 741516 776977 410922 906428 342069 343601 336313 481720 041986 273282 612550 120142 479880 687880 698002 (490 digits)/429794 966555 829589 494860 219140 746187 330195 333911 099947 459539 529918 107675 117507 286734 182790 094374 828145 875602 934565 893829 437877 317157 746051 930246 874374 490970 644105 943268 680010 728291 460924 197143 903161 019366 667177 529962 451916 146506 614237 211726 694179 213571 563947 691387 623084 559056 420171 173909 165960 564666 812414 120755 225928 940586 096351 359654 520297 657606 179418 876231 577286 939415 583022 981609 004132 784583 044381 873133 726496 681873 020908 674251 262946 316906 028366 049164 383896 056924 345855 979151 787998 766015 (492 digits), a[933] = 4
                                                                                      A[934]/B[934] = 14201 400757 196062 190359 610561 660147 091866 991137 849265 071978 450363 063821 167212 880100 715733 681564 510015 681567 958251 683675 925446 466713 743634 822153 230776 776689 553658 097603 415449 364362 684229 457154 692183 406271 220332 517922 133283 397433 410623 010449 709544 583733 372538 225514 006581 677031 542667 668254 702587 226664 091364 852793 433439 390406 527271 972845 331989 375396 711994 236471 690175 537708 872981 837980 289655 476850 014692 051775 326812 220020 764075 910851 687675 166805 064685 668613 646738 555018 810598 993611 195085 078401 (491 digits)/1 380284 205936 318907 499703 177610 766668 907785 131220 564263 390145 440935 653092 198417 051743 929308 570189 675099 410292 573570 387402 353489 374084 669740 934879 297007 597310 226959 695335 130512 534577 666662 199848 736154 588805 760494 523714 278175 860573 918103 375188 437357 112298 394180 682524 043838 831002 626381 201082 934259 358760 806127 233654 428388 475548 471122 527186 748200 565879 928015 949354 615254 013268 356849 036739 206536 877523 011410 358476 325350 347822 943132 270601 869482 765193 147227 566261 505073 995030 144507 961936 615470 879008 (493 digits), a[934] = 3
                                                                                      A[935]/B[935] = 18623 454227 948168 842861 582458 021857 478364 172074 544236 380248 204101 256345 985618 596008 269491 475934 963326 394229 593369 461425 451366 121159 588608 054110 852465 413237 741198 698612 416193 497466 371826 678948 781612 762775 604351 539982 545345 789987 992599 615315 182658 979187 108636 527928 560310 005520 278790 839183 813851 795581 836353 492888 674670 948016 193898 007952 439955 190183 124818 112453 561751 015927 877923 513525 141930 617068 395728 793292 103789 630943 670504 252921 031276 503118 546405 710599 920021 167568 930741 473491 882965 776403 (491 digits)/1 810079 172492 148496 994563 396751 512856 237980 465131 664210 849684 970853 760767 315924 338478 112098 664564 503245 285895 508136 281231 791366 691242 415792 865126 171382 088280 871065 638603 810523 262869 127586 396992 639315 608172 427672 053676 730092 007080 532340 586915 131536 325869 958128 373911 666923 390059 046552 374992 100219 923427 618541 354409 654317 416134 567473 886841 268498 223486 107434 825586 192540 952683 939872 018348 210669 662106 055792 231610 051847 029695 964040 944853 132429 082099 175593 615425 888970 051954 490363 941088 403469 645023 (493 digits), a[935] = 1
                                                                                      A[936]/B[936] = 70071 763441 040568 718944 357935 725719 526959 507361 481974 212723 062666 832859 124068 668125 524208 109369 399994 864256 738360 067952 279544 830192 509458 984485 788173 016402 777254 193440 664029 856761 799709 494001 037021 694598 033387 137869 769320 767397 388421 856395 257521 521294 698447 809299 687511 693592 379040 185806 144142 613409 600425 331459 457452 234455 108965 996702 651854 945946 086448 573832 375428 585492 506752 378555 715447 328055 201878 431651 638181 112851 775588 669614 781504 676160 703902 800413 406802 057725 602823 414086 843982 407610 (491 digits)/6 810521 723412 764398 483393 367865 305237 621726 526615 556895 939200 353496 935394 146190 067178 265604 563883 184835 267979 097979 231097 727589 447811 917119 530257 811153 862152 840156 611146 562082 323185 049421 390826 654101 413323 043510 684744 468451 881815 515125 135933 831966 089908 268565 804259 044609 001179 766038 326059 234919 129043 661751 296883 391340 723952 173544 187710 553695 236338 250320 426113 192876 871320 176465 091783 838545 863841 178787 053306 480891 436910 835255 105161 266770 011490 674008 412539 171984 150893 615599 785201 825879 814077 (493 digits), a[936] = 3
                                                                                      A[937]/B[937] = 88695 217668 988737 561805 940393 747577 005323 679436 026210 592971 266768 089205 109687 264133 793699 585304 363321 258486 331729 529377 730910 951352 098067 038596 640638 429640 518452 892053 080223 354228 171536 172949 818634 457373 637738 677852 314666 557385 381021 471710 440180 500481 807084 337228 247821 699112 657831 024989 957994 408991 436778 824348 132123 182471 302864 004655 091810 136129 211266 686285 937179 601420 384675 892080 857377 945123 597607 224943 741970 743795 446092 922535 812781 179279 250308 511013 326823 225294 533564 887578 726948 184013 (491 digits)/8 620600 895904 912895 477956 764616 818093 859706 991747 221106 788885 324350 696161 462114 405656 377703 228447 688080 553874 606115 512329 518956 139054 332912 395383 982535 950433 711222 249750 372605 586054 177007 787819 293417 021495 471182 738421 198543 888896 047465 722848 963502 415778 226694 178170 711532 391238 812590 701051 335139 052471 280292 651293 045658 140086 741018 074551 822193 459824 357755 251699 385417 824004 116337 110132 049215 525947 234579 284916 532738 466606 799296 050014 399199 093589 849602 027965 060954 202848 105963 726290 229349 459100 (493 digits), a[937] = 1
                                                                                      A[938]/B[938] = 336157 416448 006781 404362 179116 968450 542930 545669 560605 991636 862971 100474 453130 460526 905306 865282 489958 639715 733548 656085 472277 684248 803660 100275 710088 305324 332612 869599 904699 919446 314318 012850 492925 066718 946603 171426 713320 439553 531486 271526 578063 022740 119700 820984 430976 790930 352533 260776 018125 840383 910761 804503 853821 781869 017558 010667 927285 354333 720248 632690 186967 389753 660780 054798 287581 163425 994700 106482 864093 344238 113867 437222 219848 213998 454828 333453 387271 733609 203518 076823 024826 959649 (492 digits)/32 672324 411127 503084 917263 661715 759519 200847 501857 220216 305856 326549 023878 532533 284147 398714 249226 249076 929602 916325 768086 284457 864974 915856 716409 758761 713453 973823 360397 679899 081347 580444 754284 534352 477809 457058 900008 064083 548503 657522 304480 722473 337242 948648 338771 179206 174896 203810 429213 240336 286457 502629 250762 528315 144212 396598 411366 020275 615811 323586 181211 349130 343332 525476 422179 986192 441682 882524 908056 079106 836731 233143 255204 464367 292260 222814 496434 354846 759437 933490 964072 513928 191377 (494 digits), a[938] = 3
                                                                                      A[939]/B[939] = 8 492630 628869 158272 670860 418317 958840 578587 321175 041360 383892 841045 601066 437948 777306 426371 217366 612287 251379 670445 931514 537853 057572 189569 545489 392846 062748 833774 632050 697721 340386 029486 494212 141761 125347 302817 963520 147677 546223 668178 259874 891756 068984 799604 861839 022241 472371 471162 544390 411140 418589 205823 936944 477667 729196 741814 271353 273943 994472 217482 503540 611364 345261 904177 262038 046907 030773 465109 887015 344304 349748 292778 853091 308986 529240 621016 847348 008616 565524 621516 808154 347622 175238 (493 digits)/825 428711 174092 490018 409548 307510 806073 880894 538177 726514 435293 488076 293124 775446 509341 345559 459103 915003 793947 514259 714486 630402 763427 229330 305627 951578 786783 056806 259692 370082 619743 688126 644932 652228 966731 897655 238622 800632 601487 485523 334867 025335 846851 942902 647450 191686 763643 907851 431382 343546 213908 846023 920356 253536 745396 655978 358702 329083 855107 447409 781983 113676 407317 253247 664631 704026 568019 297701 986318 510409 384887 627877 430126 008381 400095 419964 438823 932123 188796 443237 828103 077554 243525 (495 digits), a[939] = 25
                                                                                      A[940]/B[940] = 204 159292 509307 805325 505012 218747 980624 429026 253870 553255 205065 048065 526068 963901 115881 138216 082081 184852 672827 824251 012434 380751 065981 353329 192021 138393 811296 343204 038816 650012 088711 021993 873941 895192 075054 214234 295910 257581 548921 567764 508523 980208 678375 310217 505120 964772 127845 660434 326145 885495 886524 850536 291171 317847 282590 821100 523146 501941 221666 939828 717664 859711 676039 361034 343711 413349 901989 157337 394851 127397 738197 140559 911413 635524 915773 359232 669805 594069 306200 119921 472527 367759 165361 (495 digits)/19842 961392 589347 263526 746423 041975 105292 342316 418122 656562 752900 040380 058873 143249 508339 692141 267720 209167 984343 258558 915765 414124 187228 419784 051480 596652 596247 337173 593014 561881 955196 095484 232668 187847 679375 000784 626955 279265 984203 310082 341289 330533 661689 578311 877575 779688 502349 992244 782389 485445 420269 807203 339312 613197 033732 140079 020221 918288 138390 061420 948806 077364 118946 603420 373340 882830 074146 027372 579700 328932 074034 302201 578228 665520 894550 301961 028208 725803 290552 571198 838546 375230 035977 (497 digits), a[940] = 24
                                                                                      A[941]/B[941] = 212 651923 138176 963598 175872 637065 939465 007613 575045 594615 588957 889111 127135 401849 893187 564587 299447 797139 924207 494696 943948 918604 123553 542898 737510 531239 874045 176978 670867 347733 429097 051480 368154 036953 200401 517052 259430 405259 095145 235942 768398 871964 747360 109822 366959 987013 600217 131596 870536 296636 305114 056360 228115 795515 011787 562914 794499 775885 216139 157311 221205 471076 021301 265211 605749 460256 932762 622447 281866 471702 087945 433338 764504 944511 445013 980249 517153 602685 871724 741438 280681 715381 340599 (495 digits)/20668 390103 763439 753545 155971 349485 911366 223210 956300 383077 188193 528456 351997 918696 017681 037700 726824 124171 778290 772818 630252 044526 950655 649114 357108 548231 383030 393979 852706 931964 574939 783610 877600 840076 646106 898439 865578 079898 585690 795605 676156 355869 508541 521214 525025 971375 265993 900096 213771 828991 634178 653227 259668 866733 779128 796057 378924 247371 993497 508830 730789 191040 526263 856668 037972 586856 642165 325074 566018 839341 458921 930079 008354 673902 294645 721925 467032 657926 479349 014436 666649 452784 279502 (497 digits), a[941] = 1
                                                                                      A[942]/B[942] = 1267 418908 200192 623316 384375 404077 677949 467094 129098 526333 149854 493621 161745 973150 581818 961152 579320 170552 293865 297735 732178 973771 683749 067822 879573 794593 181522 228097 393153 388679 234196 279395 714712 079958 077061 799495 593062 283877 024647 747478 350518 340032 415175 859329 339920 899840 128931 318418 678827 368677 412095 132337 431750 295422 341528 635674 495645 381367 302362 726384 823692 215091 782545 687092 372458 714634 565802 269573 804183 485908 177924 307253 733938 358082 140843 260480 255573 607498 664823 827112 875935 944665 868356 (496 digits)/123184 911911 406546 031252 526279 789404 662123 458371 199624 571948 693867 682661 818862 736729 596744 880644 901840 830026 875797 122652 067025 636758 940506 665355 837023 337809 511399 307072 856549 221704 829895 013538 620672 388230 909909 492983 954845 678758 912657 288110 722071 109881 204397 184384 502705 636564 832319 492725 851248 630403 591163 073339 637656 946865 929376 120365 914843 155148 105877 605574 602752 032566 750265 886760 563203 817113 284972 652745 409794 525639 368643 952596 620002 035032 367778 911588 363372 015435 687297 643382 171793 639151 433487 (498 digits), a[942] = 5
                                                                                      A[943]/B[943] = 10352 003188 739717 950129 250875 869687 363060 744366 607833 805280 787793 838080 421103 187054 547739 253807 934009 161558 275129 876582 801380 708777 593546 085481 774100 887985 326223 001757 816094 457167 302667 286646 085850 676617 816895 913017 003928 676275 292327 215769 572545 592224 068766 984457 086327 185734 631667 678946 301155 246055 601875 115059 682118 158893 744016 648310 759662 826823 635040 968389 810743 191810 281666 761950 585419 177333 459180 779037 715334 358967 511339 891368 636011 809168 571760 064091 561742 462675 190315 358341 288169 272708 287447 (497 digits)/1 006147 685395 015808 003565 366209 664723 208353 890180 553296 958666 739134 989750 902899 812532 791640 082859 941550 764386 784667 754035 166457 138598 474708 971961 053295 250707 474224 850562 705100 705603 214099 891919 842979 945923 925382 842311 504343 509969 886949 100491 452725 234919 143718 996290 546671 063893 924549 841903 023760 872220 363483 239944 360924 441661 214137 758984 697669 488556 840518 353427 552805 451574 528390 950752 543603 123762 921946 547037 844375 044456 408073 550851 968370 954161 236877 014632 374008 781411 977730 161494 040998 565995 747398 (499 digits), a[943] = 8
                                                                                      A[944]/B[944] = 84083 444418 117936 224350 391382 361576 582435 422026 991768 968579 452205 198264 530571 469586 963732 991616 051393 463018 494904 310398 143224 643992 432117 751677 072380 898475 791306 242159 921909 046017 655534 572564 401517 492900 612229 103631 624491 694079 363265 473634 930883 077824 965311 734986 030538 385717 182272 749989 088069 337122 227096 052814 888695 566572 293661 822160 572947 995956 382690 473503 309637 749574 035879 782697 055812 133302 239248 501875 526858 357648 268643 438202 822032 831430 714923 773212 749513 308900 187346 693843 181290 126332 167932 (497 digits)/8 172366 395071 533010 059775 455957 107190 328954 579815 626000 241282 606947 600669 042061 236991 929865 543524 434246 945121 153139 154933 398682 745546 738178 441044 263385 343469 305198 111574 497354 866530 542694 148897 364511 955622 312972 231475 989593 758518 008250 092042 343872 989234 354149 154708 876074 147716 228718 227950 041335 608166 499028 992894 525052 480155 642478 192243 496199 063602 830024 432995 025195 645162 977393 492780 912028 807216 660545 029048 164794 881290 633232 359412 366969 668322 262795 028647 355442 266731 509138 935334 499782 167117 412671 (499 digits), a[944] = 8
                                                                                      A[945]/B[945] = 1 860187 780387 334314 885837 861287 824372 176640 028960 426751 114028 736308 199900 093675 517967 749865 069361 064665 347965 163024 705341 952322 876611 100136 622377 366480 654452 734960 329276 098093 469555 724427 883062 919235 520431 285936 192912 742745 946021 284167 635738 051973 304373 305625 154149 758171 671512 641668 178706 238680 662744 597988 276987 233420 623484 204576 735843 364518 737864 054231 385462 622773 682439 071021 981285 813286 109982 722647 820299 306218 227229 421495 531830 720734 100644 300083 074772 051035 258479 311942 622891 276552 052015 981951 (499 digits)/180 798208 376968 742029 318625 397266 022910 445354 646124 325302 266884 091982 204469 828247 026355 248682 040397 494983 557052 153729 162569 937477 540626 714634 674934 847772 807032 188583 305201 646907 769275 153371 167661 862242 969614 810771 934783 275406 197366 068451 125423 017930 998074 935000 399885 820302 313650 956350 856803 933144 251883 342121 083623 912079 005085 348657 988341 614048 887819 101055 879318 107109 645160 031047 791932 608236 882529 453937 186097 469862 432850 339185 457924 041703 657251 018367 644874 193738 649505 178786 738853 036206 242578 826160 (501 digits), a[945] = 22
                                                                                      A[946]/B[946] = 3 804459 005192 786565 996026 113958 010320 935715 479947 845271 196636 924821 598064 717922 505522 463463 130338 180724 158948 820953 721082 047870 397214 632390 996431 805342 207381 261226 900712 118095 985129 104390 338690 239988 533763 184101 489457 109983 586121 931600 745111 034829 686571 576562 043285 546881 728742 465609 107401 565430 662611 423072 606789 355536 813540 702815 293847 301985 471684 491153 244428 555185 114452 177923 745268 682384 353267 684544 142474 139294 812107 111634 501864 263501 032719 315089 922756 851583 825858 811231 939625 734394 230364 131834 (499 digits)/369 768783 149009 017068 697026 250489 153011 219663 872064 276604 775050 790912 009608 698555 289702 427229 624319 424214 059225 460597 480073 273637 826800 167447 790913 958930 957533 682364 721977 791170 405080 849436 484221 088997 894851 934516 101042 540406 153250 145152 342888 379734 985384 224149 954480 516678 775018 141419 941557 907624 111933 183271 160142 349210 490326 339794 168926 724296 839241 032136 191631 239414 935483 039489 076646 128502 572275 568419 401243 104519 746991 311603 275260 450376 982824 299530 318395 742919 565741 866712 413040 572194 652275 064991 (501 digits), a[946] = 2
                                                                                      A[947]/B[947] = 5 664646 785580 120880 881863 975245 834693 112355 508908 272022 310665 661129 797964 811598 023490 213328 199699 245389 506913 983978 426424 000193 273825 732527 618809 171822 861833 996187 229988 216189 454684 828818 221753 159224 054194 470037 682369 852729 532143 215768 380849 086802 990944 882187 197435 305053 400255 107277 286107 804111 325356 021060 883776 588957 437024 907392 029690 666504 209548 545384 629891 177958 796891 248945 726554 495670 463250 407191 962773 445513 039336 533130 033694 984235 133363 615172 997528 902619 084338 123174 562517 010946 282380 113785 (499 digits)/550 566991 525977 759098 015651 647755 175921 665018 518188 601907 041934 882894 214078 526802 316057 675911 664716 919197 616277 614326 642643 211115 367426 882082 465848 806703 764565 870948 027179 438078 174356 002807 651882 951240 864466 745288 035825 815812 350616 213603 468311 397665 983459 159150 354366 336981 088669 097770 798361 840768 363816 525392 243766 261289 495411 688452 157268 338345 727060 133192 070949 346524 580643 070536 868578 736739 454805 022356 587340 574382 179841 650788 733184 492080 640075 317897 963269 936658 215247 045499 151893 608400 894853 891151 (501 digits), a[947] = 1
                                                                                      A[948]/B[948] = 20 798399 361933 149208 641618 039695 514400 272782 006672 661338 128633 908210 991959 152716 575993 103447 729435 916892 679690 772889 000354 048450 218691 829973 852859 320810 792883 249788 590676 766664 349183 590845 003949 717660 696346 594214 536566 668172 182551 578905 887658 295238 659406 223123 635591 462041 929507 787440 965724 977764 638679 486255 258119 122409 124615 424991 382919 301498 100330 127307 134102 089061 505125 924760 924932 169395 743018 906120 030794 475833 930116 711024 602949 216206 432810 160608 915343 559441 078873 180755 627176 767233 077504 473189 (500 digits)/2021 469757 726942 294362 743981 193754 680776 214719 426630 082325 900855 439594 651844 278962 237875 454964 618470 181806 908058 303577 408002 906983 929080 813695 188460 379042 251231 295208 803516 105404 928148 857859 439869 942720 488252 170380 208519 987843 205098 785962 747822 572732 935761 701601 017579 527622 041025 434732 336643 429929 203382 759447 891441 133078 976561 405150 640731 739334 020421 431712 404479 278988 677412 251099 682382 338720 936690 635489 163264 827666 286516 263969 474813 926618 903050 253224 208205 552894 211483 003209 868721 397397 336836 738444 (502 digits), a[948] = 3
                                                                                      A[949]/B[949] = 484 027832 110042 552679 639078 888242 665899 386341 662379 482799 269245 549982 613025 324079 271331 592625 976725 333921 139801 760425 434567 114548 303737 821926 234573 550471 098148 741324 815553 849469 485907 418253 312596 665420 070166 136972 023403 220689 730829 530603 796989 877292 157288 014030 816038 932017 778934 218419 497782 292698 014984 204931 820516 404367 303179 682193 836834 600960 517141 473448 714239 226373 414787 518446 999994 391772 552685 247952 671046 389693 432020 886695 901526 956983 087997 309178 050430 769763 898421 280553 987582 657307 064982 997132 (501 digits)/47044 371419 245650 529441 127219 104112 833774 603565 330680 495402 761609 993571 206496 942933 787193 140097 889531 100756 501618 596607 026710 071745 736285 597071 800437 524675 542885 660750 508049 862391 521779 733574 768891 633812 094266 664032 831785 536206 067888 290746 668230 570523 505978 295973 758695 472288 032254 096614 541160 729140 041619 992693 746912 322105 956324 006916 894098 343028 196753 062577 373972 763264 161124 845829 563372 527320 998689 638607 342431 610706 769715 722086 653904 804315 410231 142054 751997 653225 079356 119326 132485 748539 642098 875363 (503 digits), a[949] = 23
                                                                                      A[950]/B[950] = 504 826231 471975 701888 280696 927938 180299 659123 669052 144137 397879 458193 604984 476795 847324 696073 706161 250813 819492 533314 434921 162998 522429 651900 087432 871281 891031 991113 406230 616133 835091 009098 316546 383080 766512 731186 559969 888861 913381 109509 684648 172530 816694 237154 451630 394059 708442 005860 463507 270462 653663 691187 078635 526776 427795 107185 219753 902458 617471 600755 848341 315434 919913 443207 924926 561168 295704 154072 701840 865527 362137 597720 504476 173189 520807 469786 965774 329204 977294 461309 614759 424540 142487 470321 (501 digits)/49065 841176 972592 823803 871200 297867 514550 818284 757310 577728 662465 433165 858341 221896 025068 595062 508001 282563 409676 900184 434712 978729 665366 410766 988897 903717 794116 955959 311565 967796 449928 591434 208761 576532 582518 834413 040305 524049 272987 076709 416053 143256 441739 997574 776274 999910 073279 531346 877804 159069 245002 752141 638353 455184 932885 412067 534830 082362 217174 494289 778452 042252 838537 096929 245754 866041 935380 274096 505696 438373 056231 986056 128718 730934 313281 395278 960203 206119 290839 122536 001207 145936 978935 613807 (503 digits), a[950] = 1
                                                                                      A[951]/B[951] = 988 854063 582018 254567 919775 816180 846199 045465 331431 626936 667125 008176 218009 800875 118656 288699 682886 584734 959294 293739 869488 277546 826167 473826 322006 421752 989180 732438 221784 465603 320998 427351 629143 048500 836678 868158 583373 109551 644210 640113 481638 049822 973982 251185 267669 326077 487376 224279 961289 563160 668647 896118 899151 931143 730974 789379 056588 503419 134613 074204 562580 541808 334700 961654 924920 952940 848389 402025 372887 255220 794158 484416 406003 130172 608804 778965 016205 098968 875715 741863 602342 081847 207470 467453 (501 digits)/96110 212596 218243 353244 998419 401980 348325 421850 087991 073131 424075 426737 064838 164829 812261 735160 397532 383319 911295 496791 461423 050475 401652 007838 789335 428393 337002 616709 819615 830187 971708 325008 977653 210344 676785 498445 872091 060255 340875 367456 084283 713779 947718 293548 534970 472198 105533 627961 418964 888209 286622 744835 385265 777290 889209 418984 428928 425390 413927 556867 152424 805516 999661 942758 809127 393362 934069 912703 848128 049079 825947 708142 782623 535249 723512 537333 712200 859344 370195 241862 133692 894476 621034 489170 (503 digits), a[951] = 1
                                                                                      A[952]/B[952] = 1493 680295 053993 956456 200472 744119 026498 704589 000483 771074 065004 466369 822994 277670 965980 984773 389047 835548 778786 827054 304409 440545 348597 125726 409439 293034 880212 723551 628015 081737 156089 436449 945689 431581 603191 599345 143342 998413 557591 749623 166286 222353 790676 488339 719299 720137 195818 230140 424796 833623 322311 587305 977787 457920 158769 896564 276342 405877 752084 674960 410921 857243 254614 404862 849847 514109 144093 556098 074728 120748 156296 082136 910479 303362 129612 248751 981979 428173 853010 203173 217101 506387 349957 937774 (502 digits)/145176 053773 190836 177048 869619 699847 862876 240134 845301 650860 086540 859902 923179 386725 837330 330222 905533 665883 320972 396975 896136 029205 067018 418605 778233 332111 131119 572669 131181 797984 421636 916443 186414 786877 259304 332858 912396 584304 613862 444165 500336 857036 389458 291123 311245 472108 178813 159308 296769 047278 531625 496977 023619 232475 822094 831051 963758 507752 631102 051156 930876 847769 838199 039688 054882 259404 869450 186800 353824 487452 882179 694198 911342 266184 036793 932612 672404 065463 661034 364398 134900 040413 599970 102977 (504 digits), a[952] = 1
                                                                                      A[953]/B[953] = 2482 534358 636012 211024 120248 560299 872697 750054 331915 398010 732129 474546 041004 078546 084637 273473 071934 420283 738081 120794 173897 718092 174764 599552 731445 714787 869393 455989 849799 547340 477087 863801 574832 480082 439870 467503 726716 107965 201802 389736 647924 272176 764658 739524 986969 046214 683194 454420 386086 396783 990959 483424 876939 389063 889744 685943 332930 909296 886697 749164 973502 399051 589315 366517 774768 467049 992482 958123 447615 375968 950454 566553 316482 433534 738417 027716 998184 527142 728725 945036 819443 588234 557428 405227 (502 digits)/241286 266369 409079 530293 868039 101828 211201 661984 933292 723991 510616 286639 988017 551555 649592 065383 303066 049203 232267 893767 357559 079680 468670 426444 567568 760504 468122 189378 950797 628172 393345 241452 164067 997221 936089 831304 784487 644559 954737 811621 584620 570816 337176 584671 846215 944306 284346 787269 715733 935487 818248 241812 408885 009766 711304 250036 392686 933143 045029 608024 083301 653286 837860 982446 864009 652767 803520 099504 201952 536532 708127 402341 693965 801433 760306 469946 384604 924808 031229 606260 268592 934890 221004 592147 (504 digits), a[953] = 1
                                                                                      A[954]/B[954] = 3976 214653 690006 167480 320721 304418 899196 454643 332399 169084 797133 940915 863998 356217 050618 258246 460982 255832 516867 947848 478307 158637 523361 725279 140885 007822 749606 179541 477814 629077 633177 300251 520521 911664 043062 066848 870059 106378 759394 139359 814210 494530 555335 227864 706268 766351 879012 684560 810883 230407 313271 070730 854726 846984 048514 582507 609273 315174 638782 424125 384424 256294 843929 771380 624615 981159 136576 514221 522343 496717 106750 648690 226961 736896 868029 276468 980163 955316 581736 148210 036545 094621 907386 343001 (502 digits)/386462 320142 599915 707342 737658 801676 074077 902119 778594 374851 597157 146542 911196 938281 486922 395606 208599 715086 553240 290743 253695 108885 535688 845050 345802 092615 599241 762048 081979 426156 814982 157895 350482 784099 195394 164163 696884 228864 568600 255787 084957 427852 726634 875795 157461 416414 463159 946578 012502 982766 349873 738789 432504 242242 533399 081088 356445 440895 676131 659181 014178 501056 676060 022134 918891 912172 672970 286304 555777 023985 590307 096540 605308 067617 797100 402559 057008 990271 692263 970658 403492 975303 820974 695124 (504 digits), a[954] = 1
                                                                                      A[955]/B[955] = 26339 822280 776049 215906 044576 386813 267876 477914 326310 412519 514933 120041 224994 215848 388346 822951 837827 955278 839288 807885 043740 669917 314934 951227 576755 761724 367030 533238 716687 321806 276151 665310 697963 950066 698242 868596 947070 746237 758167 225895 533187 239360 096670 106713 224581 644325 957270 561785 251385 779227 870585 907810 005300 470968 180832 180988 988570 800344 719392 293917 280047 936820 652893 994801 522464 354004 811942 043452 581676 356271 590958 458694 678252 854915 946592 686530 879168 259042 219142 834297 038714 155966 001746 463233 (503 digits)/2 560060 187225 008573 774350 293991 911884 655669 074703 604858 973101 093559 165897 455199 181244 571126 439020 554664 339722 551709 638226 879729 732993 682803 496746 642381 316198 063572 761667 442674 185113 283238 188824 266964 701817 108454 816286 965793 017747 366339 346344 094365 137932 696985 839442 790984 442793 063306 466737 790751 832085 917490 674549 003910 463221 911698 736566 531359 578517 101819 563110 168372 659626 894221 115256 377361 125803 841341 817331 536614 680446 249969 981585 325814 207140 542908 885300 726658 866438 184813 430210 689550 786713 146852 762891 (505 digits), a[955] = 6
                                                                                      A[956]/B[956] = 135675 326057 570252 247010 543603 238485 238578 844214 963951 231682 371799 541121 988969 435458 992352 373005 650122 032226 713311 987273 697010 508224 098036 481417 024663 816444 584758 845735 061251 238109 013935 626805 010341 661997 534276 409833 605412 837567 550230 268837 480146 691331 038685 761430 829176 987981 665365 493487 067812 126546 666200 609780 881229 201824 952675 487452 552127 316898 235743 893711 784663 940398 108399 745388 236937 751183 196286 731484 430725 278075 061542 942163 618226 011476 600992 709123 376005 250527 677450 319695 230115 874451 916118 659166 (504 digits)/13 186763 256267 642784 579094 207618 361099 352423 275637 802889 240357 064952 976030 187192 844504 342554 590708 981921 413699 311788 481877 652343 773853 949706 328783 557708 673605 917105 570385 295350 351723 231173 102016 685306 293184 737668 245598 525849 317601 400296 987507 556783 117516 211564 073009 112383 630379 779692 280266 966262 143195 937327 111534 452056 558352 091892 763921 013243 333481 185229 474731 856041 799191 147165 598416 805697 541191 879679 372962 238850 426216 840157 004467 234379 103320 511644 829062 690303 322462 616331 121711 851246 908869 555238 509579 (506 digits), a[956] = 5
                                                                                      A[957]/B[957] = 569041 126511 057058 203948 218989 340754 222191 854774 182115 339249 002131 284529 180871 957684 357756 314974 438316 084185 692536 756979 831782 702813 707080 876895 675411 027502 706065 916178 961692 274242 331894 172530 739330 598056 835348 507931 368722 096507 959088 301245 453774 004684 251413 152436 541289 596252 618732 535733 522634 285414 535388 346933 530217 278267 991534 130799 197080 067937 662367 868764 418703 698413 086492 976354 470215 358737 597088 969390 304577 468571 837130 227349 151156 900822 350563 523024 383189 261152 928944 113077 959177 653773 666221 099897 (504 digits)/55 307113 212295 579712 090727 124465 356282 065362 177254 816415 934529 353371 070018 203970 559261 941344 801856 482349 994519 798863 565737 489104 828409 481628 811880 873216 010621 731995 043208 624075 592006 207930 596891 008189 874556 059127 798681 069190 288152 967527 296374 321497 607997 543242 131479 240518 964312 182075 587805 655800 404869 666799 120686 812136 696630 279269 792250 584332 912441 842737 462037 592539 856391 482883 508923 600151 290571 360059 309180 492016 385313 610597 999454 263330 620422 589488 201551 487872 156288 650137 917058 094538 422191 367806 801207 (506 digits), a[957] = 4
                                                                                      A[958]/B[958] = 704716 452568 627310 450958 762592 579239 460770 698989 146066 570931 373930 825651 169841 393143 350108 687980 088438 116412 405848 744253 528793 211037 805117 358312 700074 843947 290824 761914 022943 512351 345829 799335 749672 260054 369624 917764 974134 934075 509318 570082 933920 696015 290098 913867 370466 584234 284098 029220 590446 411961 201588 956714 411446 480092 944209 618251 749207 384835 898111 762476 203367 638811 194892 721742 707153 109920 793375 700874 735302 746646 898673 169512 769382 912298 951556 232147 759194 511680 606394 432773 189293 528225 582339 759063 (504 digits)/68 493876 468563 222496 669821 332083 717381 417785 452892 619305 174886 418324 046048 391163 403766 283899 392565 464271 408219 110652 047615 141448 602263 431335 140664 430924 684227 649100 613593 919425 943729 439103 698907 693496 167740 796796 044279 595039 605754 367824 283881 878280 725513 754806 204488 352902 594691 961767 868072 622062 548065 604126 232221 264193 254982 371162 556171 597576 245923 027966 936769 448581 655582 630049 107340 405848 831763 239738 682142 730866 811530 450755 003921 497709 723743 101133 030614 178175 478751 266469 038769 945785 331060 923045 310786 (506 digits), a[958] = 1
                                                                                      A[959]/B[959] = 1 273757 579079 684368 654906 981581 919993 682962 553763 328181 910180 376062 110180 350713 350827 707865 002954 526754 200598 098385 501233 360575 913851 512198 235208 375485 871449 996890 678092 984635 786593 677723 971866 489002 858111 204973 425696 342857 030583 468406 871328 387694 700699 541512 066303 911756 180486 902830 564954 113080 697375 736977 303647 941663 758360 935743 749050 946287 452773 560479 631240 622071 337224 281385 698097 177368 468658 390464 670265 039880 215218 735803 396861 920539 813121 302119 755172 142383 772833 535338 545851 148471 181999 248560 858960 (505 digits)/123 800989 680858 802208 760548 456549 073663 483147 630147 435721 109415 771695 116066 595133 963028 225244 194421 946621 402738 909515 613352 630553 430672 912963 952545 304140 694849 381095 656802 543501 535735 647034 295798 701686 042296 855923 842960 664229 893907 335351 580256 199778 333511 298048 335967 593421 559004 143843 455878 277862 952935 270925 352908 076329 951612 650432 348422 181909 158364 870704 398807 041121 511974 112932 616264 006000 122334 599797 991323 222883 196844 061353 003375 761040 344165 690621 232165 666047 635039 916606 955828 040323 753252 290852 111993 (507 digits), a[959] = 1
                                                                                      A[960]/B[960] = 18 537322 559684 208471 619656 504739 459151 022246 451675 740613 313456 638800 368176 079828 304731 260218 729343 462996 924785 783245 761520 576856 004958 975892 651229 956877 044247 247294 255215 807844 524662 833965 405466 595712 273611 239252 877513 774133 362244 067014 768680 361646 505808 871267 842122 135053 111050 923725 938578 173576 175221 519271 207785 594739 097146 044622 104964 997231 723665 744826 599844 912366 359951 134292 495103 190311 671138 259881 084585 293625 759709 199920 725579 656940 295997 181232 804557 752567 331350 101134 074689 267890 076215 062191 784503 (506 digits)/1801 707732 000586 453419 317499 723770 748670 181852 274956 719400 706707 222055 670980 723038 886161 437318 114472 716971 046563 843870 634551 969196 631684 212830 476298 688894 412118 984439 808829 528447 444028 497583 840089 517100 759896 779729 845728 894258 120457 062746 407468 675177 394671 927482 908034 660804 420749 975576 250368 512143 889159 397081 172934 332812 577559 477215 434082 144304 463031 217828 520068 024282 823220 211105 735036 489850 544447 636910 560667 851231 567347 309697 051182 152274 542062 769830 280933 502842 369310 098966 420362 510317 876592 994974 878688 (508 digits), a[960] = 14
                                                                                      A[961]/B[961] = 149 572338 056553 352141 612159 019497 593201 860934 167169 253088 417833 486465 055588 989339 788677 789614 837702 230729 598884 364351 593397 975423 953523 319339 445048 030502 225427 975244 719819 447391 983896 349447 215599 254701 047001 118996 445806 535923 928536 004525 020771 280866 747170 511654 803280 992181 068894 292638 073579 501690 099147 891146 965932 699576 535529 292720 588770 924141 242099 519092 429999 921002 216833 355725 658922 699861 837764 469513 346947 388886 292892 335169 201499 176062 181098 751982 191634 162922 423634 344411 143365 291591 791719 746095 134984 (507 digits)/14537 462845 685550 429563 300546 246715 063024 937965 829801 190926 763073 548140 483912 379445 052319 723789 110203 682389 775249 660480 689768 384126 484146 615607 762934 815295 991801 256614 127438 771081 087963 627705 016514 838492 121471 093762 608791 818294 857563 837322 840005 601197 490886 717911 600244 879856 925003 948453 458826 375014 066210 447574 736382 738830 572088 468155 821079 336344 862614 613332 559351 235384 097735 801778 496555 924804 477915 695082 476666 032735 735622 538929 412832 979236 680667 849263 479633 688786 589520 708338 318728 122866 765996 250651 141497 (509 digits), a[961] = 8
                                                                                      A[962]/B[962] = 168 109660 616237 560613 231815 524237 052352 883180 618844 993701 731290 125265 423765 069168 093409 049833 567045 693726 523670 147597 354918 552279 958482 295232 096277 987379 269675 222538 975035 255236 508559 183412 621065 850413 320612 358249 323320 310057 290780 071539 789451 642513 252979 382922 645403 127234 179945 216364 012157 675266 274369 410418 173718 294315 632675 337342 693735 921372 965765 263919 029844 833368 576784 490018 154025 890173 508902 729394 431532 682512 052601 535089 927078 833002 477095 933214 996191 915489 754984 445545 218054 559481 867934 808286 919487 (507 digits)/16339 170577 686136 882982 618045 970485 811695 119818 104757 910327 469780 770196 154893 102483 938481 161107 224676 399360 821813 504351 324320 353323 115830 828438 239233 504190 403920 241053 936268 299528 531992 125288 856604 355592 881367 873492 454520 712552 978020 900069 247474 276374 885558 645394 508279 540661 345753 924029 709194 887157 955369 844655 909317 071643 149647 945371 255161 480649 325645 831161 079419 259666 920956 012884 231592 414655 022363 331993 037333 883967 302969 848626 464015 131511 222730 619093 760567 191628 958830 807304 739090 633184 642589 245626 020185 (509 digits), a[962] = 1
                                                                                      A[963]/B[963] = 317 681998 672790 912754 843974 543734 645554 744114 786014 246790 149123 611730 479354 058507 882086 839448 404747 924456 122554 511948 948316 527703 912005 614571 541326 017881 495103 197783 694854 702628 492455 532859 836665 105114 367613 477245 769126 845981 219316 076064 810222 923380 000149 894577 448684 119415 248839 509002 085737 176956 373517 301565 139650 993892 168204 630063 282506 845514 207864 783011 459844 754370 793617 845743 812948 590035 346667 198907 778480 071398 345493 870259 128578 009064 658194 685197 187826 078412 178618 789956 361419 851073 659654 554382 054471 (507 digits)/30876 633423 371687 312545 918592 217200 874720 057783 934559 101254 232854 318336 638805 481928 990800 884896 334880 081750 597063 164832 014088 737449 599977 444046 002168 319486 395721 497668 063707 070609 619955 752993 873119 194085 002838 967255 063312 530847 835584 737392 087479 877572 376445 363306 108524 420518 270757 872483 168021 262172 021580 292230 645699 810473 721736 413527 076240 816994 188260 444493 638770 495051 018691 814662 728148 339459 500279 027075 513999 916703 038592 387555 876848 110747 903398 468357 240200 880415 548351 515643 057818 756051 408585 496277 161682 (509 digits), a[963] = 1
                                                                                      A[964]/B[964] = 3662 611646 016937 600916 515535 505318 153455 068443 265001 708393 371649 854300 696659 712754 796364 283766 019272 862743 871769 779035 786400 357022 990544 055519 050864 184075 715810 398159 618436 984149 925570 044870 824382 006671 364360 607952 783715 615850 703256 908252 701903 799693 254628 223274 580928 440801 917179 815386 955266 621786 383059 727634 709879 227129 482926 268038 801311 222029 252277 877045 088137 131447 306580 793200 096460 380562 322241 917379 994813 467893 853034 107940 341436 932713 717237 470384 062278 778023 719791 135065 193672 921292 124134 906489 518668 (508 digits)/355982 138234 774697 320987 722560 359695 433615 755441 384908 024124 031178 271899 181753 403702 837290 894966 908357 298617 389508 317503 479296 465268 715582 712944 263085 018540 756856 715402 637046 076234 351505 408221 460915 490527 912596 513298 150958 551879 169453 011382 209752 929671 026457 641761 702048 166362 324090 521344 557428 771050 192753 059193 012014 986854 088748 494169 093810 467585 396510 720591 105894 705228 126565 974174 241224 148709 525432 629823 691332 967700 727486 111741 109344 349738 160113 771023 402776 876199 990697 479378 375096 949750 137029 704674 798687 (510 digits), a[964] = 11
                                                                                      A[965]/B[965] = 3980 293644 689728 513671 359510 049052 799009 812558 051015 955183 520773 466031 176013 771262 678451 123214 424020 787199 994324 290984 734716 884726 902549 670090 592190 201957 210913 595943 313291 686778 418025 577730 661047 111785 731974 085198 552842 461831 922572 984317 512126 723073 254778 117852 029612 560217 166019 324389 041003 798742 756577 029199 849530 221021 651130 898102 083818 067543 460142 660056 547981 885818 100198 638943 909408 970597 668909 116287 773293 539292 198527 978199 470014 941778 375432 155581 250104 856435 898409 925021 555092 772365 783789 460871 573139 (508 digits)/386858 771658 146384 633533 641152 576896 308335 813225 319467 125378 264032 590235 820558 885631 828091 779863 243237 380367 986571 482335 493385 202718 315560 156990 265253 338027 152578 213070 700753 146843 971461 161215 334034 684612 915435 480553 214271 082727 005037 748774 297232 807243 402903 005067 810572 586880 594848 393827 725450 033222 214333 351423 657714 797327 810484 907696 170051 284579 584771 165084 744665 200279 145257 788836 969372 488169 025711 656899 205332 884403 766078 499296 986192 460486 063512 239380 642977 756615 539048 995021 432915 705801 545615 200951 960369 (510 digits), a[965] = 1
                                                                                      A[966]/B[966] = 7642 905290 706666 114587 875045 554370 952464 881001 316017 663576 892423 320331 872673 484017 474815 406980 443293 649943 866094 070020 521117 241749 893093 725609 643054 386032 926723 994102 931728 670928 343595 622601 485429 118457 096334 693151 336558 077682 625829 892570 214030 522766 509406 341126 610541 001019 083199 139775 996270 420529 139636 756834 559409 448151 134057 166140 885129 289572 712420 537101 636119 017265 406779 432144 005869 351159 991151 033667 768107 007186 051562 086139 811451 874492 092669 625965 312383 634459 618201 060086 748765 693657 907924 367361 091807 (508 digits)/742840 909892 921081 954521 363712 936591 741951 568666 704375 149502 295210 862135 002312 289334 665382 674830 151594 678985 376079 799838 972681 667987 031142 869934 528338 356567 909434 928473 337799 223078 322966 569436 794950 175140 828031 993851 365229 634606 174490 760156 506985 736914 429360 646829 512620 753242 918938 915172 282878 804272 407086 410616 669729 784181 899233 401865 263861 752164 981281 885675 850559 905507 271823 763011 210596 636878 551144 286722 896665 852104 493564 611038 095536 810224 223626 010404 045754 632815 529746 474399 808012 655551 682644 905626 759056 (510 digits), a[966] = 1
                                                                                      A[967]/B[967] = 42194 820098 223059 086610 734737 820907 561334 217564 631104 273067 982890 067690 539381 191350 052528 158116 640489 036919 324794 641087 340303 093476 368018 298138 807462 132121 844533 566457 971935 041420 136003 690738 088192 704071 213647 550955 235632 850245 051722 447168 582279 336905 801809 823485 082317 565312 582015 023269 022355 901388 454760 813372 646577 461777 321416 728806 509464 515407 022245 345564 728576 972145 134095 799663 938755 726397 624664 284626 613828 575222 456338 408898 527274 314238 838780 285407 812023 028733 989415 225455 298921 240655 323411 297677 032174 (509 digits)/4 101063 321122 751794 406140 459717 259855 018093 656558 841342 872889 740086 900910 832120 332305 155005 154014 001210 775294 866970 481530 356793 542653 471274 506662 906945 120866 699752 855437 389749 262235 586294 008399 308785 560317 055595 449810 040419 255757 877491 549556 832161 491815 549706 239215 373676 353095 189542 969689 139844 054584 249765 404507 006363 718237 306651 917022 489360 045404 491180 593463 997464 727815 504376 603893 022355 672561 781433 090513 688662 144926 233901 554487 463876 511607 181642 291400 871750 920693 187781 367020 472978 983559 958839 729085 755649 (511 digits), a[967] = 5
                                                                                      A[968]/B[968] = 303006 645978 268079 720863 018210 300723 881804 403953 733747 575052 772653 794165 648341 823467 842512 513796 926716 908379 139656 557631 903238 896084 469221 812581 295289 310885 838458 959308 735273 960869 295621 457768 102778 046955 591867 549837 985988 029397 987887 022750 289985 881107 122075 105522 186763 958207 157304 302659 152761 730248 322962 450443 085451 680592 383974 267786 451380 897421 868137 956054 736157 822281 345450 029791 577159 435943 363801 026054 064907 033743 245930 948429 502372 074163 964131 623819 996544 835597 544107 638273 841214 378245 171803 451100 317025 (510 digits)/29 450284 157752 183642 797504 581733 755576 868607 164578 593775 259730 475819 168510 827154 615470 750418 752928 160070 106049 444873 170551 470236 466561 330064 416574 876954 202634 807704 916535 066044 058727 427024 628231 956449 097360 217200 142521 648164 424911 316931 607054 332116 179623 277304 321337 128355 224909 245739 702996 261787 186362 155444 242165 714275 811843 045796 821022 689382 069996 419546 039923 832813 000215 802459 990262 367086 344811 021175 920318 717300 866588 130875 492450 342672 391474 495122 050210 148011 077667 844216 043543 118865 540471 394523 009227 048599 (512 digits), a[968] = 7
                                                                                      A[969]/B[969] = 345201 466076 491138 807473 752948 121631 443138 621518 364851 848120 755543 861856 187723 014817 895040 671913 567205 945298 464451 198719 243541 989560 837240 110720 102751 443007 682992 525766 707209 002289 431625 148506 190970 751026 805515 100793 221620 879643 039609 469918 872265 218012 923884 929007 269081 523519 739319 325928 175117 631636 777723 263815 732029 142369 705390 996592 960845 412828 890383 301619 464734 794426 479545 829455 515915 162340 988465 310680 678735 608965 702269 357328 029646 388402 802911 909227 808567 864331 533522 863729 140135 618900 495214 748777 349199 (510 digits)/33 551347 478874 935437 203645 041451 015431 886700 821137 435118 132620 215906 069421 659274 947775 905423 906942 161280 881344 311843 652081 827030 009214 801338 923237 783899 323501 507457 771972 455793 320963 013318 636631 265234 657677 272795 592331 688583 680669 194423 156611 164277 671438 827010 560552 502031 578004 435282 672685 401631 240946 405209 646672 720639 530080 352448 738045 178742 115400 910726 633387 830277 728031 306836 594155 389442 017372 802609 010832 405963 011514 364777 046937 806548 903081 676764 341611 019761 998361 031997 410563 591844 524031 353362 738312 804248 (512 digits), a[969] = 1
                                                                                      A[970]/B[970] = 1 338611 044207 741496 143284 277054 665618 211220 268508 828303 119415 039285 379734 211510 867921 527634 529537 628334 744274 533010 153789 633864 864766 980942 144741 603543 639908 887436 536608 856900 967737 590496 903286 675690 300036 008412 852217 650850 668327 106715 432506 906781 535145 893729 892543 994008 528766 375262 280443 678114 625158 656132 241890 281539 107701 500147 257565 333917 135908 539287 860913 130362 205560 784087 518158 124904 922966 329196 958096 101113 860640 352739 020413 591311 239372 372867 351503 422248 428592 144676 229461 261621 234946 657447 697432 364622 (511 digits)/130 104326 594376 989954 408439 706086 801872 528709 627990 899129 657591 123537 376775 804979 458798 466690 473754 643912 750082 380404 126796 951326 494205 734081 186288 228652 173139 330078 232452 433424 021616 466980 538125 752153 070392 035586 919516 713915 466918 900201 076887 824949 193939 758336 002994 634449 958922 551587 721052 466680 909201 371073 182183 876194 402084 103143 035158 225608 416199 151725 940087 323646 184309 722969 772728 535412 396929 429002 952815 935189 901131 225206 633263 762319 100719 525415 075043 207297 072750 940208 275233 894399 112565 454611 224165 461343 (513 digits), a[970] = 3
                                                                                      A[971]/B[971] = 3 022423 554491 974131 094042 307057 452867 865579 158536 021458 086950 834114 621324 610744 750660 950309 730988 823875 433847 530471 506298 511271 719094 799124 400203 309838 722825 457865 598984 421010 937764 612618 955079 542351 351098 822340 805228 523322 216297 253040 334932 685828 288304 711344 714095 257098 581052 489843 886815 531346 881954 089987 747596 295107 357772 705685 511723 628679 684645 968959 023445 725459 205548 047720 865771 765725 008273 646859 226872 880963 330246 407747 398155 212268 867147 548646 612234 653064 721515 822875 322651 663378 088793 810110 143642 078443 (511 digits)/293 760000 667628 915346 020524 453624 619176 944120 077119 233377 447802 462980 822973 269233 865372 838804 854451 449106 381509 072651 905675 729682 997626 269501 295814 241203 669780 167614 236877 322641 364195 947279 712882 769540 798461 343969 431365 116414 614506 994825 310386 814176 059318 343682 566541 770931 495849 538458 114790 334993 059349 147356 011040 473028 334248 558734 808361 629958 947799 214178 513562 477570 096650 752776 139612 460266 811231 660614 916464 276342 813776 815190 313465 331187 104520 727594 491697 434356 143862 912413 961031 380642 749162 262585 186643 726934 (513 digits), a[971] = 2
                                                                                      A[972]/B[972] = 838 549935 638484 575809 193003 331969 110016 976647 182986 772193 204796 089035 486651 387806 801004 763430 013441 841829 920040 473617 398477 256131 054026 338401 001058 428869 862560 716207 455293 476930 728535 285947 460319 907014 554409 796815 900518 611104 582666 198888 208860 881217 395550 936215 696930 210315 480306 062018 928345 861200 926441 582738 326064 026277 210740 975034 005010 478189 782841 940937 355379 082562 142370 002767 336937 230732 214766 509202 801884 127956 338895 298768 309407 389787 439243 347978 940502 321176 288475 081140 603972 017351 830832 057957 486288 093333 (513 digits)/81501 624511 527586 540802 093713 360106 313886 049970 990018 544682 698873 369225 340371 382760 167074 815635 156806 046380 428095 504981 998974 073516 836682 385940 126833 042068 702245 759221 847470 805081 903893 863461 006652 914954 244184 315119 407653 960763 685356 466812 054035 351717 625120 958406 935065 182474 309244 704485 517975 259758 348915 188688 240394 905042 988934 872684 951329 724236 956581 479174 196893 610562 956568 241960 445380 029319 108099 419334 813420 482149 317309 032923 463160 501147 052961 069089 275232 523948 922777 678875 480926 332440 630512 190707 924477 822061 (515 digits), a[972] = 277
                                                                                      A[973]/B[973] = 841 572359 192976 549940 287045 639026 562884 842226 341522 793651 291746 923150 107975 998551 551665 713739 744430 665705 353888 004088 904775 767402 773121 137525 401261 738708 585386 174073 054277 897941 666299 898566 415399 449365 905508 619156 705747 134426 798963 451928 543793 567045 683855 647560 411025 467414 061358 551862 815161 392547 808395 672726 073660 321384 568513 680719 516734 106869 467487 909896 378824 808021 347918 050488 202708 996457 223040 156062 028757 008919 669141 706515 707562 602056 306390 896625 552736 974241 009990 904015 926623 680729 919625 868067 629930 171776 (513 digits)/81795 384512 195215 456148 114237 813730 933062 994091 067137 778060 146675 832206 163344 651994 032447 654440 011257 495486 809604 577633 904649 803199 834308 655441 422647 283272 372025 926836 084348 127723 268089 810740 719535 684495 042645 659088 839019 077178 299863 461637 364422 165893 684439 302089 501606 953405 805094 242943 632765 594751 408264 336044 251435 378071 323183 431419 759691 354195 904380 693352 710456 088133 053218 994736 584992 489585 919331 079949 729884 758492 131085 848113 776625 832334 157481 796683 766929 958305 066640 591289 441957 713083 379674 453293 111121 548995 (515 digits), a[973] = 1
                                                                                      A[974]/B[974] = 8412 701168 375273 525271 776414 083208 175980 556684 256691 915054 830518 397386 458435 374770 765996 187087 713317 833178 105032 510417 541459 162756 012116 576129 612414 077247 131036 282864 943794 558405 725234 373045 198914 951307 703987 369226 252242 820945 773337 266245 103002 984628 550251 764259 396159 417042 032533 028784 264798 394131 202002 637272 989006 918738 327364 101509 655617 440014 990233 130004 764802 354754 273632 457161 161318 198847 222127 913761 060697 208233 361170 657409 677470 808294 196761 417608 915135 089345 378393 217283 943585 143921 107464 870566 155659 639317 (514 digits)/817660 085121 284525 646135 121853 683684 711452 996790 594258 547224 018955 859080 810473 250706 459103 705595 258123 505761 714536 703687 140822 302315 345460 284912 930658 591520 050479 100746 606603 954591 316702 160127 482474 075409 627995 246918 958825 655368 384127 621548 333834 844760 785074 677212 449527 763126 555092 890978 212865 612521 023294 213086 503313 307684 897585 755462 788551 912000 096007 719348 590998 403760 435539 194589 710312 435592 382079 138882 382383 308578 497081 665947 452792 992154 470297 239243 177602 148694 522543 000480 458545 750191 047582 270345 924571 763016 (516 digits), a[974] = 9
                                                                                      A[975]/B[975] = 34492 377032 694070 651027 392701 971859 266807 068963 368290 453870 613820 512695 941717 497634 615650 462090 597701 998417 774018 045759 070612 418426 821587 442043 850918 047697 109531 305532 829456 131564 567237 390747 211059 254596 721458 096061 714718 418209 892312 516908 955805 505559 884862 704597 995663 135582 191490 666999 874354 969072 616406 221818 029687 996337 877970 086758 139203 866929 428420 429915 438034 227038 442447 879132 847981 791846 111551 811106 271545 841853 113824 336154 417445 835233 093436 567061 213277 331622 523563 773151 700964 256414 349485 350332 252568 729044 (515 digits)/3 352435 724997 333318 040688 601652 548469 778874 981253 444171 966956 222499 268529 405237 654819 868862 476821 043751 518533 667751 392382 467939 012461 216149 795093 145281 649352 573942 329822 510763 946088 534898 451250 649431 986133 554626 646764 674321 698651 836373 947830 699761 544936 824738 010939 299718 005912 025465 806856 484228 044835 501441 188390 264688 608810 913526 453270 913899 002196 288411 570747 074449 703174 795375 773095 426242 231955 447647 635479 259417 992806 119412 511903 587797 800952 038670 753656 477338 553083 156812 593211 276140 713847 570003 534676 809408 601059 (517 digits), a[975] = 4
                                                                                      A[976]/B[976] = 215366 963364 539697 431436 132625 914363 776822 970464 466434 638278 513441 473562 108740 360578 459898 959631 299529 823684 749140 784971 965133 673316 941641 228392 717922 363429 788224 116061 920531 347793 128658 717528 465270 478888 032735 945596 540553 330205 127212 367698 837836 017987 859427 991847 370138 230535 181477 030783 510928 208566 900439 968181 167134 896765 595184 622058 490840 641591 560755 709497 393007 716984 928319 731958 249208 949923 891438 780398 689972 259352 044116 674336 182145 819692 757380 819976 194799 079080 519775 856194 149370 682407 204376 972559 671072 013581 (516 digits)/20 932274 435105 284433 890266 731768 974503 384702 884311 259290 348961 353951 470257 241899 179625 672278 566521 520632 616963 721045 057981 948456 377082 642359 055471 802348 487635 494133 079681 671187 631122 526092 867631 379065 992210 955755 127507 004755 847279 402371 308532 532404 114381 733502 742848 247835 798598 707887 732117 118233 881534 031941 343428 091444 960550 378744 475088 271945 925177 826477 143831 037696 622809 207793 833162 267765 827325 067964 951757 938891 265415 213556 737368 979579 797866 702321 761182 041633 467193 463418 559748 115390 033276 467603 478406 781023 369370 (518 digits), a[976] = 6
                                                                                      A[977]/B[977] = 249859 340397 233768 082463 525327 886223 043630 039427 834725 092149 127261 986258 050457 858213 075549 421721 897231 822102 523158 830731 035746 091743 763228 670436 568840 411126 897755 421594 749987 479357 695896 108275 676329 733484 754194 041658 255271 748415 019524 884607 793641 523547 744290 696445 365801 366117 372967 697783 385283 177639 516846 189999 196822 893103 473154 708816 630044 508520 989176 139412 831041 944023 370767 611091 097190 741770 002990 591504 961518 101205 157941 010490 599591 654925 850817 387037 408076 410703 043339 629345 850334 938821 553862 322891 923640 742625 (516 digits)/24 284710 160102 617751 930955 333421 522973 163577 865564 703462 315917 576450 738786 647136 834445 541141 043342 564384 135497 388796 450364 416395 389543 858508 850564 947630 136988 068075 409504 181951 577211 060991 318882 028497 978344 510381 774271 679077 545931 238745 256363 232165 659318 558240 753787 547553 804510 733353 538973 602461 926369 533382 531818 356133 569361 292270 928359 185844 927374 114888 714578 112146 325984 003169 606257 694008 059280 515612 587237 198309 258221 332969 249272 567377 598818 740992 514838 518972 020276 620231 152959 391530 747124 037607 013083 590431 970429 (518 digits), a[977] = 1
                                                                                      A[978]/B[978] = 465226 303761 773465 513899 657953 800586 820453 009892 301159 730427 640703 459820 159198 218791 535448 381353 196761 645787 272299 615703 000879 765060 704869 898829 286762 774556 685979 537656 670518 827150 824554 825804 141600 212372 786929 987254 795825 078620 146737 252306 631477 541535 603718 688292 735939 596652 554444 728566 896211 386206 417286 158180 363957 789869 068339 330875 120885 150112 549931 848910 224049 661008 299087 343049 346399 691693 894429 371903 651490 360557 202057 684826 781737 474618 608198 207013 602875 489783 563115 485539 999705 621228 758239 295451 594712 756206 (516 digits)/45 216984 595207 902185 821222 065190 497476 548280 749875 962752 664878 930402 209043 889036 014071 213419 609864 085016 752461 109841 508346 364851 766626 500867 906036 749978 624623 562208 489185 853139 208333 587084 186513 407563 970555 466136 901778 683833 393210 641116 564895 764569 773700 291743 496635 795389 603109 441241 271090 720695 807903 565323 875246 447578 529911 671015 403447 457790 852551 941365 858409 149842 948793 210963 439419 961773 886605 583577 538995 137200 523636 546525 986641 546957 396685 443314 276020 560605 487470 083649 712707 506920 780400 505210 491490 371455 339799 (518 digits), a[978] = 1
                                                                                      A[979]/B[979] = 715085 644159 007233 596363 183281 686809 864083 049320 135884 822576 767965 446078 209656 077004 610997 803075 093993 467889 795458 446434 036625 856804 468098 569265 855603 185683 583734 959251 420506 306508 520450 934079 817929 945857 541124 028913 051096 827035 166262 136914 425119 065083 348009 384738 101740 962769 927412 426350 281494 563845 934132 348179 560780 682972 541494 039691 750929 658633 539107 988323 055091 605031 669854 954140 443590 433463 897419 963408 613008 461762 359998 695317 381329 129544 459015 594051 010951 900486 606455 114885 850040 560050 312101 618343 518353 498831 (516 digits)/69 501694 755310 519937 752177 398612 020449 711858 615440 666214 980796 506852 947830 536172 848516 754560 653206 649400 887958 498637 958710 781247 156170 359376 756601 697608 761611 630283 898690 035090 785544 648075 505395 436061 948899 976518 676050 362910 939141 879861 821258 996735 433018 849984 250423 342943 407620 174594 810064 323157 734273 098706 407064 803712 099272 963286 331806 643635 779926 056254 572987 261989 274777 214133 045677 655781 945886 099190 126232 335509 781857 879495 235914 114334 995504 184306 790859 079577 507746 703880 865666 898451 527524 542817 504573 961887 310228 (518 digits), a[979] = 1
                                                                                      A[980]/B[980] = 4 040654 524556 809633 495715 574362 234636 140868 256492 980583 843311 480530 690211 207478 603814 590437 396728 666728 985236 249591 847873 184009 049083 045362 745158 564778 702974 604654 333913 773050 359693 426809 496203 231249 941660 492550 131820 051309 213795 978047 936878 757072 866952 343765 611983 244644 410502 191506 860318 303684 205436 087947 899078 167861 204731 775809 529333 875533 443280 245471 790525 499507 686166 648362 113751 564351 859013 381529 188946 716532 669369 002051 161413 688383 122340 903276 177268 657634 992216 595391 059969 249908 421480 318747 387169 186480 250361 (517 digits)/392 725458 371760 501874 582109 058250 599725 107573 827079 293827 568861 464666 948196 569900 256654 986222 875897 332021 192253 603031 301900 271087 547478 297751 689045 238022 432681 713627 982636 028593 136056 827461 713490 587873 715055 348730 282030 498388 088920 040425 671190 748246 938794 541664 748752 510106 641210 314215 321412 336484 479269 058855 910570 466139 026276 487447 062480 675969 752182 222638 723345 459789 322679 281628 667808 240683 616036 079528 170156 814749 432925 944002 166212 118632 374206 364848 230315 958493 026203 603054 041041 999178 418023 219298 014360 180891 890939 (519 digits), a[980] = 5
                                                                                      A[981]/B[981] = 4 755740 168715 816867 092078 757643 921446 004951 305813 116468 665888 248496 136289 417134 680819 201435 199803 760722 453126 045050 294307 220634 905887 513461 314424 420381 888658 188389 293165 193556 666201 947260 430283 049179 887518 033674 160733 102406 040831 144310 073793 182191 932035 691774 996721 346385 373272 118919 286668 585178 769282 022080 247257 728641 887704 317303 569025 626463 101913 784579 778848 554599 291198 318217 067892 007942 292477 278949 152355 329541 131131 362049 856731 069712 251885 362291 771319 668586 892703 201846 174855 099948 981530 630849 005512 704833 749192 (517 digits)/462 227153 127071 021812 334286 456862 620174 819432 442519 960042 549657 971519 896027 106073 105171 740783 529103 981422 080212 101669 260611 052334 703648 657128 445646 935631 194293 343911 881326 063683 921601 475537 218886 023935 663955 325248 958080 861299 028061 920287 492449 744982 371813 391648 999175 853050 048830 488810 131476 659642 213542 157562 317635 269851 125549 450733 394287 319605 532108 278893 296332 721778 597456 495761 713485 896465 561922 178718 296389 150259 214783 823497 402126 232967 369710 549155 021175 038070 533950 306934 906708 897629 945547 762115 518934 142779 201167 (519 digits), a[981] = 1
                                                                                      A[982]/B[982] = 23 063615 199420 077101 864030 604937 920420 160673 479745 446458 506864 474515 235368 876017 327091 396178 195943 709618 797740 429793 025102 066548 672633 099208 002856 246306 257607 358211 506574 547277 024501 215851 217335 427969 491732 627246 774752 460933 377120 555288 232051 485840 595095 110865 598868 630185 903590 667184 006992 644399 282564 176268 888109 082428 755549 045023 805436 381385 850935 383790 905919 717904 850959 921230 385319 596121 028922 497325 798368 034697 193894 450250 588337 967232 129882 352443 262547 331982 563029 402775 759389 649704 347602 842143 409220 005815 247129 (518 digits)/2241 634070 880044 589123 919254 885701 080424 385303 597159 133997 767493 350746 532304 994192 677341 949356 992313 257709 513102 009708 344344 480426 362072 926265 471632 980547 209855 089275 507940 283328 822462 729610 589034 683616 370876 649726 114353 943584 201167 721575 640989 728176 426048 108260 745455 922306 836532 269455 847318 975053 333437 689105 181111 545543 528474 290380 639629 954391 880615 338211 908676 346903 712505 264675 521751 826545 863724 794401 355713 415786 292061 237991 774717 050501 853048 561468 315016 110775 162004 830793 667877 589698 200214 267760 090096 752008 695607 (520 digits), a[982] = 4
                                                                                      A[983]/B[983] = 50 882970 567555 971070 820139 967519 762286 326298 265304 009385 679617 197526 607027 169169 335001 993791 591691 179960 048606 904636 344511 353732 251153 711877 320136 912994 403872 904812 306314 288110 715204 378962 864953 905118 870983 288167 710238 024272 795072 254886 537896 153873 122225 913506 194458 606757 180453 453287 300653 873977 334410 374618 023475 893499 398802 407351 179898 389234 803784 552161 590687 990408 993118 160677 838531 200184 350322 273600 749091 398935 518920 262551 033407 004176 511650 067178 296414 332552 018762 007397 693634 399357 676736 315135 823952 716464 243450 (518 digits)/4945 495294 887160 200060 172796 228264 781023 590039 636838 228038 084644 673012 960637 094458 459855 639497 513730 496841 106416 121085 949300 013187 427794 509659 388912 896725 614003 522462 897206 630341 566526 934758 396955 391168 405708 624701 186788 748467 430397 363438 774429 201335 223909 608170 490087 697663 721895 027721 826114 609748 880417 535772 679858 360938 182498 031494 673547 228389 293338 955317 113685 415586 022467 025112 756989 549557 289371 767521 007815 981831 798906 299480 951560 333971 075807 672091 651207 259620 857959 968522 242464 077026 345976 297635 699127 646796 592381 (520 digits), a[983] = 2
                                                                                      A[984]/B[984] = 73 946585 766976 048172 684170 572457 682706 486971 745049 455844 186481 672041 842396 045186 662093 389969 787634 889578 846347 334429 369613 420280 923786 811085 322993 159300 661480 263023 812888 835387 739705 594814 082289 333088 362715 915414 484990 485206 172192 810174 769947 639713 717321 024371 793327 236943 084044 120471 307646 518376 616974 550886 911584 975928 154351 452374 985334 770620 654719 935952 496607 708313 844078 081908 223850 796305 379244 770926 547459 433632 712814 712801 621744 971408 641532 419621 558961 664534 581791 410173 453024 049062 024339 157279 233172 722279 490579 (518 digits)/7187 129365 767204 789184 092051 113965 861447 975343 233997 362035 852138 023759 492942 088651 137197 588854 506043 754550 619518 130794 293644 493613 789867 435924 860545 877272 823858 611738 405146 913670 388989 664368 985990 074784 776585 274427 301142 692051 631565 085014 415418 929511 649957 716431 235543 619970 558427 297177 673433 584802 213855 224877 860969 906481 710972 321875 313177 182781 173954 293529 022361 762489 734972 289788 278741 376103 153096 561922 363529 397618 090967 537472 726277 384472 928856 233559 966223 370396 019964 799315 910341 666724 546190 565395 789224 398805 287988 (520 digits), a[984] = 1
                                                                                      A[985]/B[985] = 124 829556 334532 019243 504310 539977 444992 813270 010353 465229 866098 869568 449423 214355 997095 383761 379326 069538 894954 239065 714124 774013 174940 522962 643130 072295 065353 167836 119203 123498 454909 973776 947243 238207 233699 203582 195228 509478 967265 065061 307843 793586 839546 937877 987785 843700 264497 573758 608300 392353 951384 925504 935060 869427 553153 859726 165233 159855 458504 488114 087295 698722 837196 242586 062381 996489 729567 044527 296550 832568 231734 975352 655151 975585 153182 486799 855375 997086 600553 417571 146658 448419 701075 472415 057125 438743 734029 (519 digits)/12132 624660 654364 989244 264847 342230 642471 565382 870835 590073 936782 696772 453579 183109 597053 228352 019774 251391 725934 251880 242944 506801 217661 945584 249458 773998 437862 134201 302353 544011 955516 599127 382945 465953 182293 899128 487931 440519 061962 448453 189848 130846 873867 324601 725631 317634 280322 324899 499548 194551 094272 760650 540828 267419 893470 353369 986724 411170 467293 248846 136047 178075 757439 314901 035730 925660 442468 329443 371345 379449 889873 836953 677837 718444 004663 905651 617430 630016 877924 767838 152805 743750 892166 863031 488352 045601 880369 (521 digits), a[985] = 1
                                                                                      A[986]/B[986] = 323 605698 436040 086659 692791 652412 572692 113511 765756 386303 918679 411178 741242 473898 656284 157492 546287 028656 636255 812560 797862 968307 273667 857010 609253 303890 792186 598696 051295 082384 649525 542367 976775 809502 830114 322578 875447 504164 106722 940297 385635 226887 396414 900127 768898 924343 613039 267988 524247 303084 519744 401896 781706 714783 260659 171827 315801 090331 571728 912180 671199 105759 518470 567080 348614 789284 838378 859981 140561 098769 176284 663506 932048 922578 947897 393221 269713 658707 782898 245315 746340 945901 426490 102109 347423 599766 958637 (519 digits)/31452 378687 075934 767672 621745 798427 146391 106108 975668 542183 725703 417304 400100 454870 331304 045558 545592 257334 071386 634554 779533 507216 225191 327093 359463 425269 699582 880141 009854 001694 300022 862623 751881 006691 141173 072684 277005 573089 755489 981920 795115 191205 397692 365634 686806 255239 119071 946976 672529 973904 402400 746178 942626 441321 497913 028615 286626 005122 108540 791221 294456 118641 249850 919590 350203 227424 038033 220809 106220 156517 870715 211380 081952 821360 938184 044863 201084 630429 775814 334992 215953 154226 330524 291458 765928 490009 048726 (521 digits), a[986] = 2
                                                                                      A[987]/B[987] = 448 435254 770572 105903 197102 192390 017684 926781 776109 851533 784778 280747 190665 688254 653379 541253 925613 098195 531210 051626 511987 742320 448608 379973 252383 376185 857539 766532 170498 205883 104435 516144 924019 047710 063813 526161 070676 013643 073988 005358 693479 020474 235961 838005 756684 768043 877536 841747 132547 695438 471129 327401 716767 584210 813813 031553 481034 250187 030233 400294 758494 804482 355666 809666 410996 785774 567945 904508 437111 931337 408019 638859 587200 898164 101079 880021 125089 655794 383451 662886 892999 394321 127565 574524 404549 038510 692666 (519 digits)/43585 003347 730299 756916 886593 140657 788862 671491 846504 132257 662486 114076 853679 637979 928357 273910 565366 508725 797320 886435 022478 014017 442853 272677 608922 199268 137445 014342 312207 545706 255539 461751 134826 472644 323466 971812 764937 013608 817452 430373 984963 322052 271559 690236 412437 572873 399394 271876 172078 168455 496673 506829 483454 708741 391383 381985 273350 416292 575834 040067 430503 296717 007290 234491 385934 153084 480501 550252 477565 535967 760589 048333 759790 539804 942847 950514 818515 260446 653739 102830 368758 897977 222691 154490 254280 535610 929095 (521 digits), a[987] = 1
                                                                                      A[988]/B[988] = 16018 839615 406063 793271 591368 386063 191664 550873 929601 189986 385919 237330 414541 562811 524568 101379 942745 465500 228607 619488 717433 949522 974961 156074 442671 470395 806078 427322 018732 288293 304768 607440 317442 479355 063587 738216 349107 981671 696303 127851 657400 943485 655079 230329 252865 805879 326828 729138 163416 643431 009270 860956 868572 162161 744115 276199 151999 846877 629897 922497 218517 262641 966808 905404 733502 291394 716485 517776 439478 695578 456972 023592 484080 358322 485693 193960 647851 611511 203706 446357 001319 747140 891285 210463 506639 947641 201947 (521 digits)/1 556927 495857 636426 259763 652505 721449 756584 608323 603313 171201 912717 409994 278887 784167 823808 632428 333420 062736 977617 659780 566263 997826 725055 870809 671740 399654 510158 382121 937118 101413 243904 023913 470807 549242 462517 086131 049801 049398 366325 045010 268831 463034 902281 523909 122121 305808 097871 462642 695265 869846 785973 485210 863541 247270 196331 398099 853890 575362 262732 193581 362071 503736 505009 126788 857898 585380 855587 479645 821013 915389 491331 903061 674621 714533 937862 312881 849118 746062 656682 934055 122514 583429 124714 698617 665747 236391 567051 (523 digits), a[988] = 35
                                                                                      A[989]/B[989] = 48504 954100 988763 485717 971207 350579 592678 579403 564913 421492 942535 992738 434290 376689 227083 845393 753849 494696 217032 910092 664289 590889 373491 848196 580397 787373 275775 048498 226695 070763 018741 338465 876346 485775 254576 740810 117999 958658 162897 388913 665681 850931 201199 528993 515282 185681 858023 029161 622797 625731 498941 910272 322484 070696 046158 860150 937033 790819 919927 167786 414046 592408 256093 525880 611503 659958 717402 457837 755548 018072 778935 709637 039441 973131 558159 461903 068644 490327 994571 001957 896958 635743 801421 205914 924468 881434 298507 (521 digits)/4 714367 490920 639578 536207 844110 305007 058616 496462 656443 645863 400638 344059 690342 990483 399783 171195 565626 696936 730173 865776 721270 007497 618020 885106 624143 398231 667920 160708 123561 849945 987251 533491 547249 120371 711018 230205 914340 161803 916427 565404 791457 711156 978404 261963 778801 490297 693008 659804 257875 777995 854593 962462 074078 450551 980377 576284 835022 142379 364030 620811 516717 807926 522317 614857 959629 909227 047263 989189 940607 282136 234584 757518 783655 683406 756434 889160 365871 498634 623787 904995 736302 648264 596835 250343 251522 244785 630248 (523 digits), a[989] = 3
                                                                                      A[990]/B[990] = 113028 747817 383590 764707 533783 087222 377021 709681 059428 032972 270991 222807 283122 316189 978735 792167 450444 454892 662673 439674 046013 131301 721944 852467 603467 045142 357628 524318 472122 429819 342251 284372 070135 450905 572741 219836 585107 898988 022097 905678 988764 645348 057478 288316 283430 177243 042874 787461 409011 894894 007154 681501 513540 303553 836432 996501 026067 428517 469752 258070 046610 447458 478995 957165 956509 611312 151290 433451 950574 731724 014843 442866 562964 304585 602012 117766 785140 592167 192848 450272 795237 018628 494127 622293 355577 710509 798961 (522 digits)/10 985662 477698 915583 332179 340726 331463 873817 601248 916200 462928 713994 098113 659573 765134 623374 974819 464673 456610 437965 391334 008804 012821 961097 641022 920027 196117 845998 703538 184241 801305 218407 090896 565305 789985 884553 546542 878481 373006 199180 175819 851746 885348 859090 047836 679724 286403 483888 782251 211017 425838 495161 410135 011698 148374 157086 550669 523934 860120 990793 435204 395507 119589 549644 356504 777158 403834 950115 458025 702228 479661 960501 418099 241933 081347 450732 091202 580861 743331 904258 744046 595119 879958 318385 199304 168791 725962 827547 (524 digits), a[990] = 2
                                                                                      A[991]/B[991] = 952734 936640 057489 603378 241472 048358 608852 256852 040337 685271 110465 775196 699268 906209 056970 182733 357405 133837 518420 427485 032394 641303 149050 667937 408134 148512 136803 243046 003674 509317 756751 613442 437430 093019 836506 499502 798863 150562 339680 634345 575799 013715 661025 835523 782723 603626 201021 328852 894892 784883 556179 362284 430806 499126 737622 832159 145573 218959 677945 232346 786930 172076 088061 183208 263580 550455 927725 925453 360145 871864 897683 252569 543156 409816 374256 404037 349769 227665 537358 604140 258854 784771 754442 184261 769090 565512 690195 (522 digits)/92 599667 312511 964245 193642 569920 956718 049157 306453 986047 349293 112591 128968 966933 111560 386782 969751 283014 349820 233896 996448 791702 110073 306802 013289 984360 967174 435909 789013 597496 260387 734508 260664 069695 440258 787446 602548 942191 145853 509868 971963 605432 793947 851124 644657 216595 781525 564118 917813 946015 184703 815885 243542 167663 637545 237069 981641 026501 023347 290378 102446 680774 764642 919472 466896 176897 139906 648187 653395 558435 119431 918596 102312 719120 334186 362291 618781 012765 445289 857857 857368 497261 687931 143916 844776 601856 052488 250624 (524 digits), a[991] = 8
                                                                                      A[992]/B[992] = 3 923968 494377 613549 178220 499671 280656 812430 737089 220778 774056 712854 323594 080197 941026 206616 523100 880064 990242 736355 149614 175591 696514 318147 524217 236003 639190 904841 496502 486820 467090 369257 738141 819855 822984 918767 217847 780560 501237 380820 443061 291960 700210 701581 630411 414324 591747 846960 102872 988583 034428 231872 130639 236766 300060 786924 325137 608360 304356 181533 187457 194331 135762 831240 689999 010831 813135 862194 135265 391158 219183 605576 453144 735589 943851 099037 733916 184217 502829 342282 866833 830656 157715 511896 359340 431939 972560 559741 (523 digits)/381 384331 727746 772564 106749 620410 158336 070446 827064 860389 860101 164358 613989 527306 211376 170506 853824 596730 855891 373553 377129 175612 453115 188305 694182 857471 064815 589637 859592 574226 842856 156440 133552 844087 551021 034339 956738 647245 956420 238656 063674 273478 061140 263588 626465 546107 412505 740364 453506 995078 164653 758702 384303 682352 698555 105366 477233 629938 953510 152305 844991 118606 178161 227534 224089 484746 963461 542866 071607 935968 957389 634885 827350 118414 418092 899898 566326 631923 524491 335690 173520 584166 631682 894052 578410 576215 935915 830043 (525 digits), a[992] = 4
                                                                                      A[993]/B[993] = 83 356073 318569 942022 346008 734568 942151 669897 735725 676691 940462 080406 570672 383425 667759 395917 167851 838769 928934 981878 569382 719820 268103 830148 676499 364210 571521 138474 669598 226904 318215 511164 114420 654402 375703 130618 074306 190633 676547 336909 938632 706973 718140 394240 074163 483540 030330 987183 489185 655136 507876 425494 105708 402898 800403 263033 660048 921139 610439 490142 168947 867884 023095 544115 673187 491048 626309 033802 766026 574468 474720 614788 768608 990545 230689 454048 816277 218336 787081 725298 807650 702634 096797 504265 730410 839829 989284 444756 (524 digits)/8101 670633 595194 188091 435384 598534 281775 528540 674816 054234 411417 564122 022749 040363 550459 967426 900067 814362 323539 078517 916161 479563 625492 261221 591129 991253 328301 818304 840457 656259 960367 019751 065273 795534 011700 508585 694060 534356 230678 521646 309123 348472 077893 386485 800433 684851 444146 111772 441460 842656 642432 748635 313919 497070 307202 449766 003547 255219 047060 488800 847260 171504 506028 697691 172775 356583 372599 048375 157162 213783 224614 251198 476665 205823 114137 260161 511640 283159 459607 907351 501300 764760 953271 919020 991398 702390 706720 681527 (526 digits), a[993] = 21
                                                                                      A[994]/B[994] = 87 280041 812947 555571 524229 234240 222808 482328 472814 897470 714518 793260 894266 463623 608785 602533 690952 718834 919177 718233 718996 895411 964618 148296 200716 600214 210712 043316 166100 713724 785305 880421 852562 474258 198688 049385 292153 971194 177784 717730 381693 998934 418351 095821 704574 897864 622078 834143 592058 643719 542304 657366 236347 639665 100464 049957 985186 529499 914795 671675 356405 062215 158858 375356 363186 501880 439444 895996 901291 965626 693904 220365 221753 726135 174540 553086 550193 402554 289911 067581 674484 533290 254513 016162 089751 271769 961845 004497 (524 digits)/8483 054965 322940 960655 542134 218944 440111 598987 501880 914624 271518 728480 636738 567669 761836 137933 753892 411093 179430 452071 293290 655176 078607 449527 285312 848724 393117 407942 700050 230486 803223 176191 198826 639621 562721 542925 650799 181602 187098 760302 372797 621950 139033 650074 426899 230958 856651 852136 894967 837734 807086 507337 698223 179423 005757 555132 480780 885158 000570 641106 692251 290110 684189 925225 396864 841330 336060 591241 228770 149752 182003 886084 304015 324237 532230 160060 077966 915082 984099 243041 674821 348927 584954 813073 569809 278606 642636 511570 (526 digits), a[994] = 1
                                                                                      A[995]/B[995] = 432 476240 570360 164308 442925 671529 833385 599211 626985 266574 798537 253450 147738 237920 102901 806051 931662 714109 605645 854813 445370 301468 126576 423333 479365 765067 414369 311739 334001 081803 459439 032851 524670 551435 170455 328159 242922 075410 387686 207831 465408 702711 391544 777526 892463 074998 518646 323757 857420 230014 677095 054959 051098 961559 202259 462865 600795 039139 269622 176843 594568 116744 658529 045541 125933 498570 384088 617790 371194 436975 250337 496249 655623 895085 928851 666395 017050 828553 946725 995625 505588 835795 114849 568914 089415 926909 836664 462744 (525 digits)/42033 890494 886958 030713 603921 474312 042221 924490 682339 712731 497492 478044 569703 311042 597804 519161 915637 458735 041260 886803 089324 100267 939922 059330 732381 386150 900771 450075 640658 578207 173259 724515 860580 354020 262586 680288 297257 260764 979073 562855 800313 836272 634027 986783 508030 608686 870753 520320 021332 193595 870778 777986 106812 214762 330232 670295 926670 795851 049343 053227 616265 331947 242788 398592 760234 721904 716841 413340 072242 812791 952629 795535 692726 502773 243057 900401 823507 943491 396004 879518 200586 160471 293091 171315 270635 816817 277266 727807 (527 digits), a[995] = 4
                                                                                      A[996]/B[996] = 1384 708763 524028 048496 853006 248829 722965 279963 353770 697195 110130 553611 337481 177383 917491 020689 485940 861163 736115 282674 055107 799816 344347 418296 638813 895416 453819 978534 168103 959135 163622 978976 426574 128563 710054 033863 020920 197425 340843 341224 777920 107068 592985 428402 381964 122860 178017 805417 164319 333763 573589 822243 389644 524342 707242 438554 787571 646917 723662 202206 140109 412449 134445 511979 740986 997591 591710 749368 014875 276552 444916 709114 188625 411392 961095 552271 601345 888216 130089 054458 191251 040675 599061 722904 357999 052499 471838 392729 (526 digits)/134584 726449 983815 052796 353898 641880 566777 372459 548900 052818 763996 162614 345848 500797 555249 695419 500804 787298 303213 112480 561262 955979 898373 627519 482457 007177 095431 758169 622025 965108 323002 349738 780567 701682 350481 583790 542570 963897 124319 448869 773739 130768 041117 610424 950991 057019 468912 413096 958964 418522 419422 841296 018659 823709 996455 566020 260793 272711 148599 800789 541047 285952 412555 121003 677569 007044 486584 831261 445498 588128 039893 272691 382194 832557 261403 861265 548490 745557 172113 881596 276579 830341 464228 327019 381716 729058 474436 694991 (528 digits), a[996] = 3
                                                                                      A[997]/B[997] = 1817 185004 094388 212805 295931 920359 556350 879174 980755 963769 908667 807061 485219 415304 020392 826741 417603 575273 341761 137487 500478 101284 470923 841630 118179 660483 868189 290273 502105 040938 623062 011827 951244 679998 880509 362022 263842 272835 728529 549056 243328 809779 984530 205929 274427 197858 696664 129175 021739 563778 250684 877202 440743 485901 909501 901420 388366 686056 993284 379049 734677 529193 792974 557520 866920 496161 975799 367158 386069 713527 695254 205363 844249 306478 889947 218666 618396 716770 076815 050083 696839 876470 713911 291818 447414 979409 308502 855473 (526 digits)/176618 616944 870773 083509 957820 116192 608999 296950 231239 765550 261488 640658 915551 811840 153054 214581 416442 246033 344473 999283 650587 056247 838295 686850 214838 393327 996203 208245 262684 543315 496262 074254 641148 055702 613068 264078 839828 224662 103393 011725 574052 967040 675145 597208 459021 665706 339665 933416 980296 612118 290201 619282 125472 038472 326688 236316 187464 068562 197942 854017 157312 617899 655343 519596 437803 728949 203426 244601 517741 400919 992523 068227 074921 335330 504461 761667 371998 689048 568118 761114 477165 990812 757319 498334 652352 545875 751703 422798 (528 digits), a[997] = 1
                                                                                      A[998]/B[998] = 5019 078771 712804 474107 444870 089548 835667 038313 315282 624734 927466 167734 307920 007991 958276 674172 321148 011710 419637 557649 056064 002385 286195 101556 875173 216384 190198 559081 172314 041012 409747 002632 329063 488561 471072 757907 548604 743096 797902 439337 264577 726628 562045 840260 930818 518577 571346 063767 207798 461320 074959 576648 271131 496146 526246 241395 564305 019031 710230 960305 609464 470836 720394 627021 474827 989915 543309 483684 787014 703607 835425 119841 877124 024350 740989 989604 838139 321756 283719 154625 584930 793617 026884 306541 252829 011318 088844 103675 (526 digits)/487821 960339 725361 219816 269538 874265 784775 966360 011379 583919 286973 443932 176952 124477 861358 124582 333689 279364 992161 111047 862437 068475 574965 001219 912133 793833 087838 174660 147395 051739 315526 498248 062863 813087 576618 111948 222227 413221 331105 472320 921845 064849 391408 804841 869034 388432 148244 279930 919557 642758 999826 079860 269603 900654 649832 038652 635721 409835 544485 508823 855672 521751 723242 160196 553176 464942 893437 320464 480981 389968 024939 409145 532037 503218 270327 384600 292488 123654 308351 403825 230911 811966 978867 323688 686421 820809 977843 540587 (528 digits), a[998] = 2
                                                                                      A[999]/B[999] = 11855 342547 519997 161020 185672 099457 227684 955801 611321 213239 763600 142530 101059 431287 936946 175086 059899 598694 181036 252785 612606 106055 043314 044743 868526 093252 248586 408435 846733 122963 442556 017092 609371 657121 822654 877837 361051 759029 324334 427730 772484 263037 108621 886451 136064 235013 839356 256709 437336 486418 400604 030498 983006 478194 961994 384211 516976 724120 413746 299660 953606 470867 233763 811563 816576 475993 062418 334527 960099 120743 366104 445047 598497 355180 371927 197876 294675 360282 644253 359334 866701 463704 767679 904900 953073 002045 486191 062823 (527 digits)/1 152262 537624 321495 523142 496897 864724 178551 229670 253998 933388 835435 528523 269456 060795 875770 463746 083820 804763 328796 221379 375461 193198 988225 689290 039105 980994 171879 557565 557474 646794 127315 070750 766875 681877 766304 487975 284283 051104 765603 956367 417743 096739 457963 206892 197090 442570 636154 493278 819411 897636 289853 779002 664679 839781 626352 313621 458906 888233 286913 871664 868657 661403 101827 839989 544156 658834 990300 885530 479704 180856 042401 886518 138996 341767 045116 530867 956974 936357 184821 568764 938989 614746 715054 145712 025196 187495 707390 503972 (529 digits), a[999] = 2
                                                                                      A[1000]/B[1000] = 16874 421319 232801 635127 630542 189006 063351 994114 926603 837974 691066 310264 408979 439279 895222 849258 381047 610404 600673 810434 668670 108440 329509 146300 743699 309636 438784 967517 019047 163975 852303 019724 938435 145683 293727 635744 909656 502126 122236 867068 037061 989665 670667 726712 066882 753591 410702 320476 645134 947738 475563 607147 254137 974341 488240 625607 081281 743152 123977 259966 563070 941703 954158 438585 291404 465908 605727 818212 747113 824351 201529 564889 475621 379531 112917 187481 132814 682038 927972 513960 451632 257321 794564 211442 205902 013363 575035 166498 (527 digits)/1 640084 497964 046856 742958 766436 738989 963327 196030 265378 517308 122408 972455 446408 185273 737128 588328 417510 084128 320957 332427 237898 261674 563190 690509 951239 774827 259717 732225 704869 698533 442841 568998 829739 494965 342922 599923 506510 464326 096709 428688 339588 161588 849372 011734 066124 831002 784398 773209 738969 540395 289679 858862 934283 740436 276184 352274 094628 298068 831399 380488 724330 183154 825070 000186 097333 123777 883738 205994 960685 570824 067341 295663 671033 844985 315443 915468 249463 060011 493172 972590 169901 426713 693921 469400 711618 008305 685234 044559 (529 digits), a[1000] = 1
                                                                                      A[1001]/B[1001] = 62478 606505 218402 066403 077298 666475 417740 938146 391132 727163 836799 073323 327997 749127 622614 722861 203042 429907 983057 684089 618616 431376 031841 483646 099624 022161 564941 310986 903874 614890 999465 076267 424677 094171 703837 785072 090021 265407 691045 028934 883670 232034 120625 066587 336712 495788 071463 218139 372741 329633 827294 851940 745420 401219 426716 261032 760821 953576 785678 079560 642819 295979 096239 127319 690789 873718 879601 789166 201440 593796 970693 139716 025361 493773 710678 760319 693119 406399 428170 901216 221598 235670 151372 539227 570779 042136 211296 562317 (527 digits)/6 072516 031516 462065 752018 796208 081694 068532 817761 050134 485313 202662 445889 608680 616617 087156 228731 336351 057148 291668 218661 089155 978222 677797 760819 892825 305475 951032 754242 672083 742394 455839 777747 256094 166773 795072 287745 803814 444083 055732 242432 436507 581506 006079 242094 395464 935578 989350 812908 036320 518822 158893 355591 467531 061090 454905 370443 742791 782439 781112 013131 041648 210867 577037 840547 836156 030168 641515 503515 361760 893328 244425 773509 152097 876722 991448 277272 705364 116391 664340 486535 448693 894887 796818 553914 160050 212412 763092 637649 (529 digits), a[1001] = 3
                                                                                      A[1002]/B[1002] = 79353 027824 451203 701530 707840 855481 481092 932261 317736 565138 527865 383587 736977 188407 517837 572119 584090 040312 583731 494524 287286 539816 361350 629946 843323 331798 003726 278503 922921 778866 851768 095992 363112 239854 997565 420816 999677 767533 813281 896002 920732 221699 791292 793299 403595 249379 482165 538616 017876 277372 302858 459087 999558 375560 914956 886639 842103 696728 909655 339527 205890 237683 050397 565904 982194 339627 485329 607378 948554 418148 172222 704605 500982 873304 823595 947800 825934 088438 356143 415176 673230 492991 945936 750669 776681 055499 786331 728815 (527 digits)/7 712600 529480 508922 494977 562644 820684 031860 013791 315513 002621 325071 418345 055088 801890 824284 817059 753861 141276 612625 551088 327054 239897 240988 451329 844065 080303 210750 486468 376953 440927 898681 346746 085833 661739 137994 887669 310324 908409 152441 671120 776095 743094 855451 253828 461589 766581 773749 586117 775290 059217 448573 214454 401814 801526 731089 722717 837420 080508 612511 393619 765978 394022 402107 840733 933489 153946 525253 709510 322446 464152 311767 069172 823131 721708 306892 192740 954827 176403 157513 459125 618595 321601 490740 023314 871668 220718 448326 682208 (529 digits), a[1002] = 1
                                                                                      A[1003]/B[1003] = 538596 773451 925624 275587 324343 799364 304298 531714 297552 117995 003991 374849 749860 879572 729640 155578 707582 671783 485446 651235 342335 670274 199945 263327 159564 012949 587298 982010 441405 288092 110073 652221 603350 533301 689230 309974 088087 870610 570736 404952 408063 562232 868381 826383 758283 992064 964456 449835 479998 993867 644445 606468 742770 654584 916457 580871 813444 133950 243610 116723 878160 722077 398624 522749 583955 911483 791579 433439 892767 102686 004029 367349 031258 733602 652254 447124 648723 937029 565031 392276 260981 193621 826993 043246 230865 375134 929286 935207 (528 digits)/52 348119 208399 515600 721884 172077 005798 259692 900508 943212 501041 153090 955959 939213 427962 032865 131089 859517 904807 967421 525191 051481 417606 123728 468798 957215 787295 215535 673052 933804 387961 847927 858223 771096 137208 623041 613761 665763 894537 970382 269157 093082 040075 138786 765065 165003 535069 631848 329614 688060 874126 850332 642317 878419 870250 841443 706750 767312 265491 456180 374849 637518 575001 989684 884951 437090 953847 793037 760577 296439 678242 115028 188546 090888 206972 832801 433718 434327 174810 609421 241289 160265 824496 741258 693803 390059 536723 453052 730897 (530 digits), a[1003] = 6
                                                                                      A[1004]/B[1004] = 8 158304 629603 335567 835340 572997 845946 045570 907975 781018 335063 587736 006333 984890 381998 462439 905800 197830 117064 865431 263054 422321 593929 360529 579854 236783 526041 813211 008660 544001 100248 502872 879316 413370 239380 336020 070428 320995 826692 374327 970289 041685 655192 817020 189055 777855 130353 949012 286148 217861 185386 969542 556119 141118 194334 661820 599717 043765 705982 563807 090385 378301 068844 029765 407148 741533 011884 359021 108977 340060 958438 232663 214840 969863 877344 607412 654670 556793 143881 831614 299320 587948 397319 350832 399363 239661 682523 725635 756920 (529 digits)/792 934388 655473 242933 323240 143799 907657 927253 521425 463700 518238 621435 757744 143290 221321 317261 783407 646629 713396 123948 428954 099275 503989 096915 483314 202301 889731 443785 582262 384019 260355 617599 220102 652275 719868 483619 094094 296783 326478 708175 708477 172326 344221 937252 729805 936642 792626 251474 530338 096203 171120 203562 849222 578112 855289 352745 323979 347104 062880 455217 016364 328757 019052 247381 115005 489853 461663 420820 118169 769041 637784 037189 897364 186454 826300 798913 698517 469734 798562 298832 078463 022582 689052 609620 430365 722561 271570 244117 645663 (531 digits), a[1004] = 15
                                                                                      A[1005]/B[1005] = 16 855206 032658 596759 946268 470339 491256 395440 347665 859588 788122 179463 387517 719641 643569 654519 967179 103242 905913 216309 177344 186978 858132 921004 423035 633131 065033 213720 999331 529407 488589 115819 410854 430091 012062 361270 450830 730079 523995 319392 345530 491434 872618 502422 204495 313994 252772 862481 022131 915721 364641 583530 718707 025007 043254 240098 780305 900975 545915 371224 297494 634762 859765 458155 337047 067021 935252 509621 651394 572889 019562 469355 797030 970986 488291 867079 756465 762310 224793 228259 990917 436877 988260 528657 841972 710188 740182 380558 449047 (530 digits)/1638 216896 519346 001467 368364 459676 821114 114199 943359 870613 537518 395962 471448 225793 870604 667388 697905 152777 331600 215318 383099 250032 425584 317559 435427 361819 566758 103106 837577 701842 908673 083126 298429 075647 576945 590279 801950 259330 547495 386733 686111 437734 728519 013292 224677 038289 120322 134797 390290 880467 216367 257458 340763 034645 580829 546934 354709 461520 391252 366614 407578 295032 613106 484447 114962 416797 877174 634677 996916 834522 953810 189407 983274 463797 859574 430628 830753 373796 771935 207085 398215 205431 202601 960499 554534 835182 079863 941288 022223 (532 digits), a[1005] = 2
                                                                                      A[1006]/B[1006] = 58 723922 727579 125847 674145 984016 319715 231891 950973 359784 699430 126126 168887 143815 312707 425999 807337 507558 834804 514358 795086 983258 168328 123542 848961 136176 721141 454374 006655 132223 566015 850331 111879 703643 275567 419831 422920 511234 398678 332505 006880 515990 273048 324286 802541 719837 888672 536455 352543 965025 279311 720134 712240 216139 324097 382116 940634 746692 343728 677479 982869 282589 648140 404231 418289 942598 817641 887886 063161 058728 017125 640730 605933 882823 342220 208651 924067 843723 818261 516394 272072 898582 362100 936805 925281 370227 903070 867311 104061 (530 digits)/5707 585078 213511 247335 428333 522830 371000 269853 351505 075541 130793 809323 172088 820671 833135 319427 877123 104961 708196 769903 578251 849372 780742 049593 789596 287760 590005 753106 094995 489547 986374 866978 115389 879218 450705 254458 499945 074774 968964 868376 766811 485530 529778 977129 403837 051510 153592 655866 701210 737604 820221 975937 871511 682049 597777 993548 388107 731665 236637 555060 239099 213854 858371 700722 459892 740247 093187 324854 108920 272610 499214 605413 847187 577848 405024 090800 190777 591125 114367 920088 273108 638876 296858 491119 093970 228107 511162 067981 712332 (532 digits), a[1006] = 3
                                                                                      A[1007]/B[1007] = 251 750896 942975 100150 642852 406404 770117 323008 151559 298727 585842 683968 063066 294902 894399 358519 196529 133478 245131 273744 357692 120011 531445 415175 818880 177837 949599 031217 025952 058301 752652 517143 858373 244664 114332 040596 142512 775017 118708 649412 373052 555395 964811 799569 414662 193345 807463 008302 432307 775822 481888 464069 567667 889564 339643 768566 542844 887744 920830 081144 228971 765121 452327 075081 010206 837417 205820 061165 904038 807801 088065 032278 220766 502279 857172 701687 452737 137205 497839 293837 079209 031207 436664 275881 543098 191100 352465 849802 865291 (531 digits)/24468 557209 373390 990809 081698 550998 305115 193613 349380 172778 060693 633255 159803 508481 203145 945100 206397 572624 164387 294932 696106 647523 548552 515934 593812 512861 926781 115531 217559 660034 854172 551038 759988 592521 379766 608113 801730 558430 423354 860240 753357 379856 847634 921809 840025 244329 734692 758264 195133 830886 497255 161209 826809 762843 971941 521127 907140 388181 337802 586855 363975 150452 046593 287336 954533 377786 249923 934094 432597 924964 950668 611063 372024 775191 479670 793829 593863 738297 229406 887438 490649 760936 390035 924975 930415 747612 124512 213214 871551 (533 digits), a[1007] = 4
                                                                                      A[1008]/B[1008] = 3834 987376 872205 628107 316932 080087 871475 077014 224362 840698 487070 385647 114881 567358 728697 803787 755274 509732 511773 620524 160468 783431 140009 351180 132163 803745 965126 922629 395936 006749 855803 607488 987478 373604 990548 028773 560612 136491 179308 073690 602668 846929 745225 317828 022474 620025 000617 660991 837160 602362 507638 681178 227258 559604 418753 910615 083308 062866 156179 894643 417445 759411 433046 530446 571392 503856 904942 805374 623743 175744 338101 124903 917431 417021 199810 733963 715124 901806 285850 923950 460208 366693 912065 075029 071754 236733 190058 614354 083426 (532 digits)/372735 943218 814376 109471 653811 787804 947728 174053 592207 667212 041198 308150 569141 447889 880324 495930 973086 694324 174006 193894 019851 562226 009029 788612 696783 980689 491722 486074 358390 390070 798963 132559 515218 767039 147204 376165 525903 451231 319287 771988 067172 183383 244302 804277 004215 716456 173984 029829 628218 200902 279049 394085 273658 124709 176900 810466 995213 554385 303676 357890 698726 470635 557271 010776 777893 407040 842046 336270 597889 147084 759243 771364 427559 205720 600085 998244 098733 665583 555471 231665 632855 052922 147397 365758 050206 442289 378845 266204 785597 (534 digits), a[1008] = 15
                                                                                      A[1009]/B[1009] = 4086 738273 815180 728257 959784 486492 641592 400022 375922 139426 072913 069615 177947 862261 623097 162306 951803 643210 756904 894268 518160 903442 671454 766355 951043 981583 914725 953846 421888 065051 608456 124632 845851 618269 104880 069369 703124 911508 298016 723102 975721 402325 710037 117397 437136 813370 808080 669294 269468 378184 989527 145247 794926 449168 758397 679181 626152 950611 077009 975787 646417 524532 885373 605527 581599 341274 110762 866540 527781 983545 426166 157182 138197 919301 056983 435651 167862 039011 783690 217787 539417 397901 348729 350910 614852 427833 542524 464156 948717 (532 digits)/397204 500428 187767 100280 735510 338803 252843 367666 941587 839990 101891 941405 728944 956371 083470 441031 179484 266948 338393 488826 715958 209749 557582 304547 290596 493551 418503 601605 575950 050105 653135 683598 275207 359560 526970 984279 327634 009661 742642 632228 820529 563240 091937 726086 844240 960785 908676 788093 823352 031788 776304 555295 100467 887553 148842 331594 902353 942566 641478 944746 062701 621087 603864 298113 732426 784827 091970 270365 030487 072049 709912 382427 799583 980912 079756 792073 692597 403880 784878 119104 123504 813858 537433 290733 980622 189901 503357 479419 657148 (534 digits), a[1009] = 1
                                                                                      A[1010]/B[1010] = 7921 725650 687386 356365 276716 566580 513067 477036 600284 980124 559983 455262 292829 429620 351794 966094 707078 152943 268678 514792 678629 686873 811464 117536 083207 785329 879852 876475 817824 071801 464259 732121 833329 991874 095428 098143 263737 047999 477324 796793 578390 249255 455262 435225 459611 433395 808698 330286 106628 980547 497165 826426 022185 008773 177151 589796 709461 013477 233189 870431 063863 283944 318420 135974 152991 845131 015705 671915 151525 159289 764267 282086 055629 336322 256794 169614 882986 940818 069541 141737 999625 764595 260794 425939 686606 664566 732583 078511 032143 (532 digits)/769940 443647 002143 209752 389322 126608 200571 541720 533795 507202 143090 249556 298086 404260 963794 936962 152570 961272 512399 682720 735809 771975 566612 093159 987380 474240 910226 087679 934340 440176 452098 816157 790426 126599 674175 360444 853537 460893 061930 404216 887701 746623 336240 530363 848456 677242 082660 817923 451570 232691 055353 949380 374126 012262 325743 142061 897567 496951 945155 302636 761428 091723 161135 308890 510320 191867 934016 606635 628376 219134 469156 153792 227143 186632 679842 790317 791331 069464 340349 350769 756359 866780 684830 656492 030828 632190 882202 745624 442745 (534 digits), a[1010] = 1
                                                                                      A[1011]/B[1011] = 12008 463924 502567 084623 236501 053073 154659 877058 976207 119550 632896 524877 470777 291881 974892 128401 658881 796154 025583 409061 196790 590316 482918 883892 034251 766913 794578 830322 239712 136853 072715 856754 679181 610143 200308 167512 966861 959507 775341 519896 554111 651581 165299 552622 896748 246766 616778 999580 376097 358732 486692 971673 817111 457941 935549 268978 335613 964088 310199 846218 710280 808477 203793 741501 734591 186405 126468 538455 679307 142835 190433 439268 193827 255623 313777 605266 050848 979829 853231 359525 539043 162496 609523 776850 301459 092400 275107 542667 980860 (533 digits)/1 167144 944075 189910 310033 124832 465411 453414 909387 475383 347192 244982 190962 027031 360632 047265 377993 332055 228220 850793 171547 451767 981725 124194 397707 277976 967792 328729 689285 510290 490282 105234 499756 065633 486160 201146 344724 181171 470554 804573 036445 708231 309863 428178 256450 692697 638027 991337 606017 274922 264479 831658 504675 474593 899815 474585 473656 799921 439518 586634 247382 824129 712810 764999 607004 242746 976695 025986 877000 658863 291184 179068 536220 026727 167544 759599 582391 483928 473345 125227 469873 879864 680639 222263 947226 011450 822092 385560 225044 099893 (535 digits), a[1011] = 1
                                                                                      A[1012]/B[1012] = 31938 653499 692520 525611 749718 672726 822387 231154 552699 219225 825776 505017 234384 013384 301579 222898 024841 745251 319845 332915 072210 867506 777301 885320 151711 319157 469010 537120 297248 345507 609691 445631 191693 212160 496044 433169 197460 967015 028007 836586 686613 552417 785861 540471 253107 926929 042256 329446 858823 698012 470551 769773 656407 924657 048250 127753 380688 941653 853589 562868 484424 900898 726007 618977 622174 217941 268642 748826 510139 444960 145134 160622 443283 847568 884349 380146 984684 900477 776003 860789 077712 089588 479841 979640 289524 849367 282798 163846 993863 (533 digits)/3 104230 331797 381963 829818 638987 057431 107401 360495 484562 201586 633054 631480 352149 125525 058325 692948 816681 417714 213986 025815 639345 735425 815000 888574 543334 409825 567685 466250 954921 420740 662567 815669 921693 098920 076468 049893 215880 402002 671076 477108 304164 366350 192597 043265 233851 953298 065336 029958 001414 761650 718670 958731 323313 811893 274914 089375 497410 375989 118423 797402 409687 517344 691134 522898 995814 145257 985990 360636 946102 801502 827293 226232 280597 521722 199041 955100 759188 016154 590804 290517 516089 228059 129358 550944 053730 276375 653323 195712 642531 (535 digits), a[1012] = 2
                                                                                      A[1013]/B[1013] = 43947 117424 195087 610234 986219 725799 977047 108213 528906 338776 458673 029894 705161 305266 276471 351299 683723 541405 345428 741976 269001 457823 260220 769212 185963 086071 263589 367442 536960 482360 682407 302385 870874 822303 696352 600682 164322 926522 803349 356483 240725 203998 951161 093094 149856 173695 659035 329027 234921 056744 957244 741447 473519 382598 983799 396731 716302 905742 163789 409087 194705 709375 929801 360479 356765 404346 395111 287282 189446 587795 335567 599890 637111 103192 198126 985413 035533 880307 629235 220314 616755 252085 089365 756490 590983 941767 557905 706514 974723 (533 digits)/4 271375 275872 571874 139851 763819 522842 560816 269882 959945 548778 878036 822442 379180 486157 105591 070942 148736 645935 064779 197363 091113 717150 939195 286281 821311 377617 896415 155536 465211 911022 767802 315425 987326 585080 277614 394617 397051 872557 475649 513554 012395 676213 620775 299715 926549 591326 056673 635975 276337 026130 550329 463406 797907 711708 749499 563032 297331 815507 705058 044785 233817 230155 456134 129903 238561 121953 011977 237637 604966 092687 006361 762452 307324 689266 958641 537492 243116 489499 716031 760391 395953 908698 351622 498170 065181 098468 038883 420756 742424 (535 digits), a[1013] = 1
                                                                                      A[1014]/B[1014] = 383515 592893 253221 407491 639476 479126 638764 096862 783949 929437 495160 744174 875674 455514 513350 033295 494630 076494 083275 268725 224222 530092 859068 039017 639416 007727 577725 476660 592932 204393 068949 864718 158691 790590 066865 238626 512044 379197 454802 688452 612415 184409 395150 285224 451957 316494 314538 961664 738192 151972 128509 701353 444562 985448 918645 301607 111112 187591 163904 835566 042070 575906 164418 502812 476297 452712 429533 047084 025712 147322 829674 959747 540172 673106 469365 263451 268955 942938 809885 623306 011754 106269 194768 031565 017396 383507 746043 815966 791647 (534 digits)/37 275232 538777 956956 948632 749543 240171 593931 519559 164126 591817 657349 211019 385593 014781 903054 260486 006574 585194 732219 604720 368255 472633 328563 178829 113825 430768 739006 710542 676616 708922 804986 339077 820305 779562 297383 206832 392295 382462 476272 585540 403329 776059 158799 440992 646248 683906 518725 117760 212110 970695 121306 665985 706575 505563 270910 593633 876064 900050 758888 155684 280225 358588 340207 562124 904303 120882 081808 261737 785831 542998 878187 325850 739195 035857 868174 255038 704119 932152 319058 373648 683720 497645 942338 536304 575179 064119 964390 561766 581923 (536 digits), a[1014] = 8
                                                                                      A[1015]/B[1015] = 16 151602 018940 830386 724883 844231 849118 805139 176450 454803 375151 255424 285239 483488 436875 837172 749710 458186 754156 842990 028435 686347 721723 341078 407953 041435 410629 528059 387187 440113 066869 578301 620548 535930 027086 504692 622995 670186 852815 905062 271492 962162 949193 547473 072521 132063 466456 869671 718946 238991 439574 354652 198292 145164 771453 566902 064230 383014 784571 047792 502860 961669 897434 835378 478603 361258 418268 435499 264811 269356 775354 181915 909287 324363 373663 911468 050366 331683 483737 644431 399167 110427 715391 269623 082221 321632 049092 891745 977120 223897 (536 digits)/1569 831141 904546 764065 982427 244635 610049 505940 091367 853262 405120 486703 685256 574087 106997 033870 011354 424869 224113 818002 595618 557843 567750 738848 797104 601979 469904 934696 998328 883113 685780 577228 556694 440169 326696 767709 081577 873457 935981 479098 106250 952246 270698 290351 821407 068994 315399 843128 581904 184997 795325 645209 434806 474078 945366 127744 495655 092057 617639 578360 583525 003282 290865 744851 739149 219292 199000 447924 230624 609890 898639 890229 448183 353516 195297 421960 249117 816153 639897 116483 453636 112214 809827 929841 022962 222701 791506 543287 014953 183190 (538 digits), a[1015] = 42
                                                                                      A[1016]/B[1016] = 16 535117 611834 083608 132375 483708 328245 443903 273313 238753 304588 750585 029414 359162 892390 350522 783005 952816 830650 926265 297160 910570 251816 200146 446970 680851 418357 105784 863848 033045 271262 647251 485266 694621 817676 571557 861622 182231 232013 359864 959945 574578 133602 942623 357745 584020 782951 184210 680610 977183 591546 483161 899645 589727 756902 485547 365837 494126 972162 211697 338427 003740 473340 999796 981415 837555 870980 865032 311895 295068 922677 011590 869034 864536 046770 380833 313817 600639 426676 454317 022473 122181 821660 464391 113786 339028 432600 637789 793087 015544 (536 digits)/1607 106374 443324 721022 931059 994178 850221 099871 610927 017388 996938 144052 896275 959680 121778 936924 271840 431443 809308 550222 200338 926099 040384 067411 975933 715804 900673 673703 708871 559730 394703 382214 895772 260475 106259 065092 288410 265753 318443 955370 691791 355576 046757 449151 262399 715242 999306 361853 699664 397108 766020 766516 100792 180654 450929 398655 089288 968122 517690 337248 739209 283507 649454 085059 301274 123595 319882 529732 492362 395722 441638 768416 774034 092711 231155 290134 504156 520273 572049 435541 827284 795935 307473 872179 559266 797880 855626 507677 576719 765113 (538 digits), a[1016] = 1
                                                                                      A[1017]/B[1017] = 694 091424 104138 258320 152278 676273 307182 005173 382293 243688 863290 029410 491228 209167 024880 208606 852954 523676 810844 819867 212033 019728 046187 547082 733750 956343 563270 865238 804956 794969 188638 115612 516483 015424 551825 938564 949505 141667 365363 659525 629261 519866 426914 195030 740090 076915 567455 422309 623996 303518 692980 164290 083761 324002 804455 474344 063567 642220 643221 727383 378368 115029 304415 827054 716652 701049 128483 901824 052518 367182 605111 657141 539716 770341 291249 525633 916887 957899 977472 271429 320565 119882 403470 309658 747461 221797 785719 041127 493687 861201 (537 digits)/67461 192494 080860 326006 155887 005968 469114 600676 139375 566211 279584 392872 432570 920972 099933 447765 156812 114065 405764 377112 809514 527904 223497 502739 810386 949980 397525 556549 062062 832059 868619 248039 283357 119648 683318 436492 906398 769343 992183 649296 469696 530864 187753 705553 579795 393957 286960 679130 268144 466457 202177 072369 567285 880911 433471 472603 156502 785080 842943 405558 891105 627095 918483 232283 091388 286700 314184 166956 417482 834511 005829 395317 183581 154676 672664 317474 919535 147370 093923 973698 372312 745562 416256 689202 952900 935816 872193 358067 660463 552823 (539 digits), a[1017] = 41
                                                                                      A[1018]/B[1018] = 710 626541 715972 341928 284654 159981 635427 449076 655606 482442 167878 779995 520642 568329 917270 559129 635960 476493 641495 746132 509193 930298 298003 747229 180721 637194 981627 971023 668804 828014 459900 762864 001749 710046 369502 510122 811127 323898 597377 019390 589207 094444 560517 137654 097835 660936 350406 606520 304607 280702 284526 647451 983406 913730 561357 959891 429405 136347 615383 939080 716795 118769 777756 826851 698068 538604 999464 766856 364413 662251 527788 668732 408751 634877 338019 906467 230705 558539 404148 725746 343038 242064 225130 774049 861247 560826 218319 678917 286774 876745 (537 digits)/69068 298868 524185 047029 086947 000147 319335 700547 750302 583600 276522 536925 328846 880652 221712 384689 428652 545509 215072 927335 009853 454003 263881 570151 786320 665785 298199 230252 770934 391790 263322 630254 179129 380123 789577 501585 194809 035097 310627 604667 161487 886440 234511 154704 842195 109200 286267 040983 967808 863565 968197 838885 668078 061565 884400 871258 245791 753203 360633 742807 630314 910603 567937 317342 392662 410295 634066 696688 909845 230233 447468 163733 957615 247387 903819 607609 423691 667643 665973 409240 199597 541497 723730 561382 512167 733697 727819 865745 237183 317936 (539 digits), a[1018] = 1
                                                                                      A[1019]/B[1019] = 1404 717965 820110 600248 436932 836254 942609 454250 037899 726131 031168 809406 011870 777496 942150 767736 488915 000170 452340 565999 721226 950026 344191 294311 914472 593538 544898 836262 473761 622983 648538 878476 518232 725470 921328 448687 760632 465565 962740 678916 218468 614310 987431 332684 837925 737851 917862 028829 928603 584220 977506 811742 067168 237733 365813 434235 492972 778568 258605 666464 095163 233799 082172 653906 414721 239654 127948 668680 416932 029434 132900 325873 948468 405218 629269 432101 147593 516439 381620 997175 663603 361946 628601 083708 608708 782624 004038 720044 780462 737946 (538 digits)/136529 491362 605045 373035 242834 006115 788450 301223 889678 149811 556106 929797 761417 801624 321645 832454 585464 659574 620837 304447 819367 981907 487379 072891 596707 615765 695724 786801 832997 223850 131941 878293 462486 499772 472895 938078 101207 804441 302811 253963 631184 417304 422264 860258 421990 503157 573227 720114 235953 330023 170374 911255 235363 942477 317872 343861 402294 538284 203577 148366 521420 537699 486420 549625 484050 696995 948250 863645 327328 064744 453297 559051 141196 402064 576483 925084 343226 815013 759897 382938 571910 287060 139987 250585 465068 669514 600013 223812 897646 870759 (540 digits), a[1019] = 1
                                                                                      A[1020]/B[1020] = 3520 062473 356193 542425 158519 832491 520646 357576 731405 934704 230216 398807 544384 123323 801572 094602 613790 476834 546176 878131 951647 830350 986386 335853 009666 824272 071425 643548 616328 073981 756978 519817 038215 160988 212159 407498 332392 255030 522858 377223 026144 323066 535379 803023 773687 136640 186130 664180 161814 449144 239540 270936 117743 389197 292984 828362 415350 693484 132595 272008 907121 586367 942102 134664 527511 017913 255362 104217 198277 721119 793589 320480 305688 445314 596558 770669 525892 591418 167390 720097 670244 965957 482332 941467 078665 126074 226397 119006 847700 352637 (538 digits)/342127 281593 734275 793099 572615 012378 896236 302995 529658 883223 388736 396520 851682 483900 865004 049598 599581 864658 456747 536230 648589 417818 238639 715934 979735 897316 689648 803856 436928 839490 527206 386841 104102 379668 735369 377741 397224 643979 916250 112594 423856 721049 079040 875221 686176 115515 432722 481212 439715 523612 308947 661396 138805 946520 520145 558981 050380 829771 767788 039540 673155 986002 540778 416593 360763 804287 530568 423979 564501 359722 354063 281836 240008 051517 056787 457778 110145 297671 185768 175117 343418 115618 003705 062553 442305 072726 927846 313371 032477 059454 (540 digits), a[1020] = 2
                                                                                      A[1021]/B[1021] = 4924 780439 176304 142673 595452 668746 463255 811826 769305 660835 261385 208213 556254 900820 743722 862339 102705 477004 998517 444131 672874 780377 330577 630164 924139 417810 616324 479811 090089 696965 405517 398293 556447 886459 133487 856186 093024 720596 485599 056139 244612 937377 522811 135708 611612 874492 103992 693010 090418 033365 217047 082678 184911 626930 658798 262597 908323 472052 391200 938473 002284 820167 024274 788570 942232 257567 383310 772897 615209 750553 926489 646354 254156 850533 225828 202770 673486 107857 549011 717273 333848 327904 110934 025175 687373 908698 230435 839051 628163 090583 (538 digits)/478656 772956 339321 166134 815449 018494 684686 604219 419337 033034 944843 326318 613100 285525 186649 882053 185046 524233 077584 840678 467957 399725 726018 788826 576443 513082 385373 590658 269926 063340 659148 265134 566588 879441 208265 315819 498432 448421 219061 366558 055041 138353 501305 735480 108166 618673 005950 201326 675668 853635 479322 572651 374169 888997 838017 902842 452675 368055 971365 187907 194576 523702 027198 966218 844814 501283 478819 287624 891829 424466 807360 840887 381204 453581 633271 382862 453372 112684 945665 558055 915328 402678 143692 313138 907373 742241 527859 537183 930123 930213 (540 digits), a[1021] = 1
                                                                                      A[1022]/B[1022] = 8444 842912 532497 685098 753972 501237 983902 169403 500711 595539 491601 607021 100639 024144 545294 956941 716495 953839 544694 322263 624522 610728 316963 966017 933806 242082 687750 123359 706417 770947 162495 918110 594663 047447 345647 263684 425416 975627 008457 433362 270757 260444 058190 938732 385300 011132 290123 357190 252232 482509 456587 353614 302655 016127 951783 090960 323674 165536 523796 210481 909406 406534 966376 923235 469743 275480 638672 877114 813487 471673 720078 966834 559845 295847 822386 973440 199378 699275 716402 437371 004093 293861 593266 966642 766039 034772 456832 958058 475863 443220 (538 digits)/820784 054550 073596 959234 388064 030873 580922 907214 948995 916258 333579 722839 464782 769426 051653 931651 784628 388891 534332 376909 116546 817543 964658 504761 556179 410399 075022 394514 706854 902831 186354 651975 670691 259109 943634 693560 895657 092401 135311 479152 478897 859402 580346 610701 794342 734188 438672 682539 115384 377247 788270 234047 512975 835518 358163 461823 503056 197827 739153 227447 867732 509704 567977 382812 205578 305571 009387 711604 456330 784189 161424 122723 621212 505098 690058 840640 563517 410356 131433 733173 258746 518296 147397 375692 349678 814968 455705 850554 962600 989667 (540 digits), a[1022] = 1
                                                                                      A[1023]/B[1023] = 13369 623351 708801 827772 349425 169984 447157 981230 270017 256374 752986 815234 656893 924965 289017 819280 819201 430844 543211 766395 297397 391105 647541 596182 857945 659893 304074 603170 796507 467912 568013 316404 151110 933906 479135 119870 518441 696223 494056 489501 515370 197821 581002 074440 996912 885624 394116 050200 342650 515874 673634 436292 487566 643058 610581 353558 231997 637588 914997 148954 911691 226701 990651 711806 411975 533048 021983 650012 428697 222227 646568 613188 814002 146381 048215 176210 872864 807133 265414 154644 337941 621765 704200 991818 453412 943470 687268 797110 104026 533803 (539 digits)/1 299440 827506 412918 125369 203513 049368 265609 511434 368332 949293 278423 049158 077883 054951 238303 813704 969674 913124 611917 217587 584504 217269 690677 293588 132622 923481 460395 985172 976780 966171 845502 917110 237280 138551 151900 009380 394089 540822 354372 845710 533938 997756 081652 346181 902509 352861 444622 883865 791053 230883 267592 806698 887145 724516 196181 364665 955731 565883 710518 415355 062309 033406 595176 349031 050392 806854 488206 999229 348160 208655 968784 963611 002416 958680 323330 223503 016889 523041 077099 291229 174074 920974 291089 688831 257052 557209 983565 387738 892724 919880 (541 digits), a[1023] = 1
                                                                                      A[1024]/B[1024] = 21814 466264 241299 512871 103397 671222 431060 150633 770728 851914 244588 422255 757532 949109 834312 776222 535697 384684 087906 088658 921920 001833 964505 562200 791751 901975 991824 726530 502925 238859 730509 234514 745773 981353 824782 383554 943858 671850 502513 922863 786127 458265 639193 013173 382212 896756 684239 407390 594882 998384 130221 789906 790221 659186 562364 444518 555671 803125 438793 359436 821097 633236 957028 635041 881718 808528 660656 527127 242184 693901 366647 580023 373847 442228 870602 149651 072243 506408 981816 592015 342034 915627 297467 958461 219451 978243 144101 755168 579889 977023 (539 digits)/2 120224 882056 486515 084603 591577 080241 846532 418649 317328 865551 612002 771997 542665 824377 289957 745356 754303 302016 146249 594496 701051 034813 655335 798349 688802 333880 535418 379687 683635 869003 031857 569085 907971 397661 095534 702941 289746 633223 489684 324863 012836 857158 661998 956883 696852 087049 883295 566404 906437 608131 055863 040746 400121 560034 554344 826489 458787 763711 449671 642802 930041 543111 163153 731843 255971 112425 497594 710833 804490 992845 130209 086334 623629 463779 013389 064143 580406 933397 208533 024402 432821 439270 438487 064523 606731 372178 439271 238293 855325 909547 (541 digits), a[1024] = 1
                                                                                      A[1025]/B[1025] = 35184 089615 950101 340643 452822 841206 878218 131864 040746 108288 997575 237490 414426 874075 123330 595503 354898 815528 631117 855054 219317 392939 612047 158383 649697 561869 295899 329701 299432 706772 298522 550918 896884 915260 303917 503425 462300 368073 996570 412365 301497 656087 220195 087614 379125 782381 078355 457590 937533 514258 803856 226199 277788 302245 172945 798076 787669 440714 353790 508391 732788 859938 947680 346848 293694 341576 682640 177139 670881 916129 013216 193212 187849 588609 918817 325861 945108 313542 247230 746659 679976 537393 001668 950279 672864 921713 831370 552278 683916 510826 (539 digits)/3 419665 709562 899433 209972 795090 129610 112141 930083 685661 814844 890425 821155 620548 879328 528261 559061 723978 215140 758166 812084 285555 252083 346013 091937 821425 257361 995814 364860 660416 835174 877360 486196 145251 536212 247434 712321 683836 174045 844057 170573 546775 854914 743651 303065 599361 439911 327918 450270 697490 839014 323455 847445 287267 284550 750526 191155 414519 329595 160190 058157 992350 576517 758330 080874 306363 919279 985801 710063 152651 201501 098994 049945 626046 422459 336719 287646 597296 456438 285632 315631 606896 360244 729576 753354 863783 929388 422836 626032 748050 829427 (541 digits), a[1025] = 1
                                                                                      A[1026]/B[1026] = 92182 645496 141502 194158 009043 353636 187496 414361 852221 068492 239738 897236 586386 697260 080973 967229 245495 015741 350141 798767 360554 787713 188599 878968 091147 025714 583623 385933 101790 652404 327554 336352 539543 811874 432617 390405 868459 407998 495654 747594 389122 770440 079583 188402 140464 461518 840950 322572 469950 026901 737934 242305 345798 263676 908256 040672 131010 684554 146374 376220 286675 353114 852389 328738 469107 491682 025936 881406 583948 526159 393079 966447 749546 619448 708236 801374 962460 133493 476278 085334 701987 990413 300805 859020 565181 821670 806842 859725 947722 998675 (539 digits)/8 959556 301182 285381 504549 181757 339462 070816 278816 688652 495241 392854 414308 783763 583034 346480 863480 202259 732297 662583 218665 272161 538980 347361 982225 331652 848604 527047 109409 004469 539352 786578 541478 198474 470085 590404 127584 657418 981315 177798 666010 106388 566988 149301 563014 895574 966872 539132 466946 301419 286159 702774 735636 974656 129136 055397 208800 287826 422901 770051 759118 914742 696146 679813 893591 868698 950985 469198 130960 109793 395847 328197 186225 875722 308697 686827 639436 774999 846273 779797 655665 646614 159759 897640 571233 334299 230955 284944 490359 351427 568401 (541 digits), a[1026] = 2
                                                                                      A[1027]/B[1027] = 127366 735112 091603 534801 461866 194843 065714 546225 892967 176781 237314 134727 000813 571335 204304 562732 600393 831269 981259 653821 579872 180652 800647 037351 740844 587583 879522 715634 401223 359176 626076 887271 436428 727134 736534 893831 330759 776072 492225 159959 690620 426527 299778 276016 519590 243899 919305 780163 407483 541160 541790 468504 623586 565922 081201 838748 918680 125268 500164 884612 019464 213053 800069 675586 762801 833258 708577 058546 254830 442288 406296 159659 937396 208058 627054 127236 907568 447035 723508 831994 381964 527806 302474 809300 238046 743384 638213 412004 631639 509501 (540 digits)/12 379222 010745 184814 714521 976847 469072 182958 208900 374314 310086 283280 235464 404312 462362 874742 422541 926237 947438 420750 030749 557716 791063 693375 074163 153078 105966 522861 474269 664886 374527 663939 027674 343726 006297 837838 839906 341255 155361 021855 836583 653164 421902 892952 866080 494936 406783 867050 917216 998910 125174 026230 583082 261923 413686 805923 399955 702345 752496 930241 817276 907093 272664 438143 974466 175062 870265 454999 841023 262444 597348 427191 236171 501768 731157 023546 927083 372296 302712 065429 971297 253510 520004 627217 324588 198083 160343 707781 116392 099478 397828 (542 digits), a[1027] = 1
                                                                                      A[1028]/B[1028] = 3 021617 553074 248383 494591 631965 835026 698930 977557 390466 134460 697963 995957 605098 837969 779978 910079 054553 134950 919113 836663 697614 942727 603481 738058 130572 540143 812645 845524 329927 913466 727322 743595 577404 535973 372919 948526 475934 257665 816833 426667 273392 580567 974483 536782 091040 071216 984983 266330 842071 473594 199115 017911 688289 279884 775898 331897 260653 565729 650166 722296 734352 253352 253991 867234 013549 656632 323209 227970 445048 698792 737891 638626 309659 404797 130481 727823 836534 415315 116981 221205 487172 129958 257726 472926 040256 919517 485751 335832 475431 717198 (541 digits)/293 681662 548321 536119 938554 649249 128122 278855 083525 297881 627225 908299 829990 082950 217380 465556 581944 505732 523381 339833 925905 099647 733445 294988 687977 852449 285834 552861 017611 296856 153489 057176 177988 104172 614935 860697 445430 506287 554618 680482 907434 129170 270754 687217 482866 279112 322901 481303 562937 276352 165162 306078 146528 998894 643932 591635 407781 441778 730331 165613 556487 777887 967428 757125 306313 895144 967090 934194 474495 146019 134861 153595 618170 416403 125309 228406 962354 337814 808651 284686 995502 477356 119866 323639 036761 890211 918860 563910 167377 639430 718445 (543 digits), a[1028] = 23
                                                                                      A[1029]/B[1029] = 48 473247 584300 065739 448267 573319 555270 248610 187144 140425 328152 404738 070048 682394 978851 683967 123997 473243 990484 687081 040440 741711 264294 456354 846281 830005 229884 881856 244023 680069 974644 263240 784800 674901 302708 703254 070254 945707 898725 561559 986636 064901 715614 891514 864529 976231 383371 679038 041456 880627 118667 727630 755091 636215 044078 495575 149105 089137 176942 902832 441359 769100 266689 863939 551330 979596 339375 879924 706073 375609 622972 212562 377680 891946 684812 714761 772418 292119 092077 595208 371282 176718 607138 426098 376116 882157 455664 410234 785324 238546 984669 (542 digits)/4711 285822 783889 762733 731396 364833 519028 644639 545305 140420 345700 816077 515305 731515 940450 323647 733654 017958 321539 858092 845231 152080 526188 413194 081808 792266 679319 368637 756050 414584 830352 578757 875484 010487 845271 608997 966794 441856 029259 909582 355529 719888 753977 888432 591940 960733 573207 567907 924213 420544 767770 923480 927546 244237 716608 272089 924458 770805 437795 580058 721081 353300 751524 552148 875488 497382 343720 402111 432945 598750 755126 884721 126898 164218 736104 678058 324752 777333 241132 620421 899336 891208 437865 805441 912778 441473 862112 730343 794434 330369 892948 (544 digits), a[1029] = 16
                                                                                      A[1030]/B[1030] = 99 968112 721674 379862 391126 778604 945567 196151 351845 671316 790765 507440 136054 969888 795673 147913 158074 001041 115920 293275 917545 181037 471316 516191 430621 790582 999913 576358 333571 690067 862755 253804 313196 927207 141390 779428 089036 367350 055116 939953 399939 403196 011797 757513 265842 043502 837960 343059 349244 603325 710929 654376 528094 960719 368041 767048 630107 438927 919615 455831 605016 272552 786731 981870 969895 972742 335384 083058 640117 196267 944737 163016 393988 093552 774422 560005 272660 420772 599470 307397 963769 840609 344235 109923 225159 804571 830846 306220 906480 952525 686536 (542 digits)/9716 253308 116101 061587 401347 378916 166179 568134 174135 578722 318627 540454 860601 545982 098281 112852 049252 541649 166461 056019 616367 403808 785822 121376 851595 436982 644473 290136 529712 126025 814194 214691 928956 125148 305479 078693 379019 389999 613138 499647 618493 568947 778710 464082 666748 200579 469316 617119 411364 117441 700704 153040 001621 487370 077149 135815 256698 983389 605922 325730 998650 484489 470477 861423 057290 889909 654531 738417 340386 343520 645114 923037 871966 744840 597518 584523 611859 892481 290916 525530 794176 259772 995597 934522 862318 773159 643086 024597 756246 300170 504341 (544 digits), a[1030] = 2
                                                                                      A[1031]/B[1031] = 248 409473 027648 825464 230521 130529 446404 640912 890835 483058 909683 419618 342158 622172 570197 979793 440145 475326 222325 273632 875531 103786 206927 488737 707525 411171 229712 034572 911167 060205 700154 770849 411194 529315 585490 262110 248327 680408 008959 441466 786514 871293 739210 406541 396214 063237 059292 365156 739946 087278 540527 036383 811281 557653 780162 029672 409319 966993 016173 814495 651392 314205 840153 827681 491122 925081 010144 046041 986307 768145 512446 538595 165657 079052 233657 834772 317739 133664 291018 210004 298821 857937 295608 645944 826436 491301 117357 022676 598286 143598 357741 (543 digits)/24143 792439 016091 885908 534091 122665 851387 780907 893576 297864 982955 896987 236508 823480 137012 549351 832159 101256 654461 970132 077965 959698 097832 655947 784999 666231 968265 948910 815474 666636 458741 008141 733396 260784 456229 766384 724833 221855 255536 908877 592516 857784 311398 816597 925437 361892 511840 802146 746941 655428 169179 229560 930789 218977 870906 543720 437856 737584 649640 231520 718382 322279 692480 274994 990070 277201 652783 878946 113718 285792 045356 730796 870831 653899 931141 847105 548472 562295 822965 671483 487689 410754 429061 674487 637415 987793 148284 779539 306926 930710 901630 (545 digits), a[1031] = 2
                                                                                      A[1032]/B[1032] = 845 196531 804620 856255 082690 170193 284781 118890 024352 120493 519815 766295 162530 836406 506267 087293 478510 427019 782896 114174 544138 492396 092098 982404 553198 024096 689049 680077 067072 870684 963219 566352 546780 515153 897861 565758 834019 408574 081995 264353 759484 017077 229428 977137 454484 233214 015837 438529 569082 865161 332510 763527 961939 633680 708527 856065 858067 339906 968136 899318 559193 215170 307193 464915 443264 747985 365816 221184 599040 500704 482076 778801 890959 330709 475396 064322 225877 821765 472524 937410 860235 414421 231061 047757 704469 278475 182917 374250 701339 383320 759759 (543 digits)/82147 630625 164376 719313 003620 746913 720342 910857 854864 472317 267495 231416 570128 016422 509318 760907 545729 845419 129846 966415 850265 282903 079320 089220 206594 435678 549271 136868 976136 125935 190417 239117 129144 907501 674168 377847 553519 055565 379749 226280 396044 142300 712906 913876 443060 286257 004839 023559 652189 083726 208241 841722 793989 144303 689868 766976 570269 196143 554843 020293 153797 451328 547918 686408 027501 721514 612883 375255 681541 200896 781185 115428 484461 706540 390944 125840 257277 579368 759813 539981 257244 492036 282782 957985 774566 736539 087940 363215 677027 092303 209231 (545 digits), a[1032] = 3
                                                                                      A[1033]/B[1033] = 1093 606004 832269 681719 313211 300722 731185 759802 915187 603552 429499 185913 504689 458579 076465 067086 918655 902346 005221 387807 419669 596182 299026 471142 260723 435267 918761 714649 978239 930890 663374 337201 957975 044469 483351 827869 082347 088982 090954 705820 545998 888370 968639 383678 850698 296451 075129 803686 309028 952439 873037 799911 773221 191334 488689 885738 267387 306899 984310 713814 210585 529376 147347 292596 934387 673066 375960 267226 585348 268849 994523 317397 056616 409761 709053 899094 543616 955429 763543 147415 159057 272358 526669 693702 530905 769776 300274 396927 299625 526919 117500 (544 digits)/106291 423064 180468 605221 537711 869579 571730 691765 748440 770182 250451 128403 806636 839902 646331 310259 377888 946675 784308 936547 928231 242601 177152 745167 991594 101910 517537 085779 791610 792571 649158 247258 862541 168286 130398 144232 278352 277420 635286 135157 988561 000085 024305 730474 368497 648149 516679 825706 399130 739154 377421 071283 724778 363281 560775 310697 008125 933728 204483 251813 872179 773608 240398 961403 017571 998716 265667 254201 795259 486688 826541 846225 355293 360440 322085 972945 805750 141664 582779 211464 744933 902790 711844 632473 411982 724332 236225 142754 983954 023014 110861 (546 digits), a[1033] = 1
                                                                                      A[1034]/B[1034] = 4126 014546 301429 901413 022324 072361 478338 398298 769914 931150 808313 324035 676599 212143 735662 288554 234478 134057 798560 277596 803147 280942 989178 395831 335368 329900 445334 824027 001792 663356 953342 577958 420705 648562 347917 049366 081060 675520 354859 381815 397480 682190 135347 128174 006579 122567 241226 849588 496169 722480 951624 163263 281603 207684 174597 513280 660229 260606 921069 040761 190949 803298 749235 342706 246427 767184 493697 022864 355085 307254 465646 730993 060808 559994 602557 761605 856728 688054 763154 379656 337407 231496 811070 128865 297186 587804 083740 565032 600215 964078 112259 (544 digits)/401021 899817 705782 534977 616756 355652 435534 986155 100186 782864 018848 616627 990038 536130 448312 691685 679396 685446 482773 776059 634959 010706 610778 324724 181376 741410 101882 394208 350968 503650 137891 980893 716768 412360 065362 810544 388575 887827 285607 631754 361727 142555 785824 105299 548553 230705 554878 500678 849581 301189 340505 055573 968324 234148 372194 699067 594646 997328 168292 775734 770336 772153 269115 570617 080217 717663 409885 137861 067319 660963 260810 654104 550341 787861 357202 044677 674528 004362 508151 174375 492046 200408 418316 855406 010514 909535 796615 791480 628889 161345 541814 (546 digits), a[1034] = 3
                                                                                      A[1035]/B[1035] = 5219 620551 133699 583132 335535 373084 209524 158101 685102 534703 237812 509949 181288 670722 812127 355641 153134 036403 803781 665404 222816 877125 288204 866973 596091 765168 364096 538676 980032 594247 616716 915160 378680 693031 831268 877235 163407 764502 445814 087635 943479 570561 103986 511852 857277 419018 316356 653274 805198 674920 824661 963175 054824 399018 663287 399018 927616 567506 905379 754575 401535 332674 896582 635303 180815 440250 869657 290090 940433 576104 460170 048390 117424 969756 311611 660700 400345 643484 526697 527071 496464 503855 337739 822567 828092 357580 384014 961959 899841 490997 229759 (544 digits)/507313 322881 886251 140199 154468 225232 007265 677920 848627 553046 269299 745031 796675 376033 094644 001945 057285 632122 267082 712607 563190 253307 787931 069892 172970 843320 619419 479988 142579 296221 787050 228152 579309 580646 195760 954776 666928 165247 920893 766912 350288 142640 810129 835773 917050 878855 071558 326385 248712 040343 717926 126857 693102 597429 932970 009764 602772 931056 372776 027548 642516 545761 509514 532020 097789 716379 675552 392062 862579 147652 087352 500329 905635 148301 679288 017623 480278 146027 090930 385840 236980 103199 130161 487879 422497 633868 032840 934235 612843 184359 652675 (546 digits), a[1035] = 1
                                                                                      A[1036]/B[1036] = 9345 635097 435129 484545 357859 445445 687862 556400 455017 465854 046125 833984 857887 882866 547789 644195 387612 170461 602341 943001 025964 158068 277383 262804 931460 095068 809431 362703 981825 257604 570059 493118 799386 341594 179185 926601 244468 440022 800673 469451 340960 252751 239333 640026 863856 541585 557583 502863 301368 397401 776286 126438 336427 606702 837884 912299 587845 828113 826448 795336 592485 135973 645817 978009 427243 207435 363354 312955 295518 883358 925816 779383 178233 529750 914169 422306 257074 331539 289851 906727 833871 735352 148809 951433 125278 945384 467755 526992 500057 455075 342018 (544 digits)/908335 222699 592033 675176 771224 580884 442800 664075 948814 335910 288148 361659 786713 912163 542956 693630 736682 317568 749856 488667 198149 264014 398709 394616 354347 584730 721301 874196 493547 799871 924942 209046 296077 993006 261123 765321 055504 053075 206501 398666 712015 285196 595953 941073 465604 109560 626436 827064 098293 341533 058431 182431 661426 831578 305164 708832 197419 928384 541068 803283 412853 317914 778630 102637 178007 434043 085437 529923 929898 808615 348163 154434 455976 936163 036490 062301 154806 150389 599081 560215 729026 303607 548478 343285 433012 543403 829456 725716 241732 345705 194489 (546 digits), a[1036] = 1
                                                                                      A[1037]/B[1037] = 23910 890746 003958 552223 051254 263975 585249 270902 595137 466411 330064 177918 897064 436455 907706 644031 928358 377327 008465 551406 274745 193261 842971 392583 459011 955305 982959 264084 943683 109456 756835 901397 977453 376220 189640 730437 652344 644548 047161 026538 625400 076063 582653 791906 584990 502189 431523 659001 407935 469724 377234 216051 727679 612424 339057 223618 103308 223734 558277 345248 586505 604622 188218 591322 035301 855121 596365 916001 531471 342822 311803 607156 473892 029258 139950 505312 914494 306563 106401 340527 164207 974559 635359 725434 078650 248349 319526 015944 899956 401147 913795 (545 digits)/2 323983 768281 070318 490552 696917 387000 892867 006072 746256 224866 845596 468351 370103 200360 180557 389206 530650 267259 766795 689941 959488 781336 585349 859124 881666 012782 062023 228381 129674 895965 636934 646245 171465 566658 718008 485418 777936 271398 333896 564245 774318 713034 002037 717920 848259 097976 324431 980513 445298 723409 834788 491721 015956 260586 543299 427428 997612 787825 454913 634115 468223 181591 066774 737294 453804 584465 846427 451910 722376 764882 783678 809198 817589 020627 752268 142225 789890 446806 289093 506271 695032 710414 227118 174450 288522 720675 691754 385668 096307 875770 041653 (547 digits), a[1037] = 2
                                                                                      A[1038]/B[1038] = 176721 870319 462839 350106 716639 293274 784607 452718 620979 730733 356575 079417 137338 938057 901736 152418 886120 811750 661600 802844 949180 510901 178183 010889 144543 782210 690146 211298 587607 023801 867910 802904 641559 975135 506671 039664 810880 951859 130800 655221 718760 785196 317910 183372 958790 056911 578249 115873 156916 685472 416925 638800 430184 893673 211285 477626 311003 394255 734390 212076 698024 368328 963348 117263 674356 193286 537915 724966 015818 283115 108442 029478 495477 734557 893822 959496 658534 477481 034661 290417 983327 557269 596328 029471 675830 683829 704437 638606 799752 263110 738583 (546 digits)/17 176221 600667 084263 109045 649646 289890 692869 706585 172607 909978 207323 640119 377436 314684 806858 418076 451234 188387 117426 318260 914570 733370 496158 408490 526009 674205 155464 472864 401272 071631 383484 732762 496336 959617 287183 163252 501057 952863 543777 348387 132246 276434 610217 966519 403417 795394 897460 690658 215384 405401 901950 624478 773120 655684 108260 700835 180709 443162 725464 242091 690415 589052 246053 263698 354639 525304 010429 693298 986536 162794 833914 818826 179100 080557 302367 057881 684039 278033 622736 104117 594255 276507 138305 564437 452671 588133 671737 425392 915887 476095 486060 (548 digits), a[1038] = 7
                                                                                      A[1039]/B[1039] = 907520 242343 318155 302756 634450 730349 508286 534495 700036 120078 112939 575004 583759 126745 416387 406126 358962 436080 316469 565631 020647 747767 733886 447029 181730 866359 433690 320577 881718 228466 096389 915921 185253 251897 722995 928761 706749 403843 701164 302647 219204 002045 172204 708771 378940 786747 322769 238367 192518 897086 461862 410053 878604 080790 395484 611749 658325 195013 230228 405632 076627 446267 004959 177640 407082 821554 285944 540831 610562 758397 854013 754548 951280 702047 609065 302796 207166 693968 279707 792617 080845 760907 616999 872792 457803 667497 841714 208978 898717 716701 606710 (546 digits)/88 205091 771616 491634 035780 945148 836454 357215 538998 609295 774757 882214 668948 257284 773784 214849 479588 786821 209195 353927 281246 532342 448189 066141 901577 511714 383807 839345 592703 136035 254122 554358 310057 653150 364745 153924 301681 283226 035716 052783 306181 435550 095207 053127 550517 865348 074950 811735 433804 522220 750419 344541 614114 881559 539007 084602 931604 901160 003639 082234 844573 920301 126852 297041 055786 227002 210985 898575 918405 655057 578856 953252 903329 713089 423414 264103 431634 210086 836974 402774 026859 666309 092949 918645 996637 551880 661344 050441 512632 675745 256247 471953 (548 digits), a[1039] = 5
                                                                                      A[1040]/B[1040] = 23 772248 171245 734877 221779 212358 282362 000057 349606 821918 852764 293004 029536 315076 233438 727808 711704 219144 149838 889809 509251 486021 952862 259230 633647 869546 307555 966094 546323 512280 963920 374048 616855 458144 524476 304565 187469 186365 451795 361072 524049 418064 838370 795232 611428 811250 512341 970249 313420 162408 009720 425348 300201 273890 994223 493885 383117 427458 464599 720328 758510 690337 971271 092286 735914 258509 553697 972473 786587 890450 001459 312799 647751 228775 987795 729520 832198 044868 520656 307063 898462 085317 340867 638324 722075 578726 038773 589007 072058 166412 897352 513043 (548 digits)/2310 508607 662695 866748 039350 223516 037703 980473 720549 014298 053683 144905 032774 066840 433074 392944 887384 908585 627466 319535 630670 755474 386286 215847 849505 830583 653208 978449 883145 938188 678817 796800 794261 478246 442991 289215 006965 864934 881480 916143 309104 456548 751817 991534 279983 902467 744116 002581 969575 793123 916304 860032 591465 693668 669868 307936 922562 610869 537778 863570 201013 618244 887211 969120 714140 256697 010937 373403 571846 018033 213075 618490 305398 719425 089328 169056 280371 146297 039368 094860 802468 918291 693205 023101 477013 801568 783078 983216 753842 485264 138529 756838 (550 digits), a[1040] = 26
                                                                                      A[1041]/B[1041] = 24 679768 413589 053032 524535 846809 012711 508343 884102 521954 972842 405943 604540 898835 360184 144196 117830 578106 585919 206279 074882 506669 700629 993117 080677 051277 173915 399784 866901 393999 192386 470438 532776 643397 776374 027561 116230 893114 855639 062236 826696 637268 840415 967437 320200 190191 299089 293018 551787 354926 906806 887210 710255 152495 075013 889369 994867 085783 659612 950557 164142 766965 417538 097245 913554 665592 375252 258418 327419 501012 759857 166813 402300 180056 689843 338586 134994 252035 214624 586771 691079 166163 101775 255324 594868 036529 706271 430721 281037 065130 614054 119753 (548 digits)/2398 713699 434312 358382 075131 168664 874158 337689 259547 623593 828441 027119 701722 324125 206858 607794 366973 695406 836661 673462 911917 287816 834475 281989 751083 342298 037016 817795 475849 074223 932940 351159 104319 131396 807736 443139 308647 148160 917196 968926 615285 892098 847025 044661 830501 767815 819066 814317 403380 315344 666724 204574 205580 575228 208875 392539 854167 512029 541417 945805 045587 538546 014064 266161 769926 483699 221923 271979 490251 673090 791932 571743 208728 432514 512742 433159 712005 356383 876342 497634 829328 584600 786154 941747 473651 353449 444423 033658 266475 161009 394777 228791 (550 digits), a[1041] = 1
                                                                                      A[1042]/B[1042] = 97 811553 412012 893974 795386 752785 320496 525089 001914 387783 771291 510834 843159 011582 313991 160397 065195 953463 907596 508646 733899 006031 054752 238581 875679 023377 829302 165449 147027 694278 541079 785364 215185 388337 853598 387248 536161 865710 018712 547783 004139 329871 359618 697544 572029 381824 409609 849304 968782 227188 730141 086980 430966 731376 219265 161995 367718 684809 443438 572000 250938 991234 223885 384024 476578 255286 679454 747728 768846 393488 281030 813239 854651 768946 057325 745279 237180 800974 164530 067378 971699 583806 646193 404298 506679 688315 157587 881170 915169 361804 739514 872302 (548 digits)/9506 649705 965632 941894 264743 729510 660178 993541 499191 885079 539006 226264 137941 039216 053650 216327 988305 994806 137451 339924 366422 618924 889712 061817 102755 857477 764259 431836 310693 160860 477638 850278 107218 872436 866200 618632 932907 309417 633071 822923 154962 132845 292893 125519 771489 205915 201316 445534 179716 739157 916477 473755 208207 419353 296494 485556 485065 146958 162032 700985 337776 233882 929404 767606 023919 707794 676707 189342 042601 037305 588873 333719 931584 016968 627555 468535 416387 215448 668395 587765 290454 672094 051669 848343 897967 861917 116348 084191 553267 968292 322861 443211 (550 digits), a[1042] = 3
                                                                                      A[1043]/B[1043] = 318 114428 649627 734956 910696 105164 974201 083610 889845 685306 286716 938448 134017 933582 302157 625387 313418 438498 308708 732219 276579 524762 864886 708862 707714 121410 661821 896132 307984 476834 815625 826531 178332 808411 337169 189306 724716 490244 911776 705585 839114 626882 919272 060071 036288 335664 527918 840933 458134 036493 097230 148152 003155 346623 732809 375356 098023 140211 989928 666557 916959 740668 089194 249319 343289 431452 413616 501604 633958 681477 602949 606532 966255 486894 861820 574423 846536 654957 708214 788908 606177 917583 040355 468220 114907 101475 179035 074234 026545 150544 832598 736659 (549 digits)/30918 662817 331211 184064 869362 357196 854695 318313 757123 278832 445459 705912 115545 441773 367809 256778 331891 679825 249015 693236 011185 144591 503611 467441 059350 914731 329795 113304 407928 556805 365856 901993 425975 748707 406338 299038 107369 076413 816412 437696 080172 290634 725704 421221 144969 385561 423016 150919 942530 532818 416156 625839 830202 833288 098358 849209 309362 952904 027516 048761 058916 240194 802278 568979 841685 607083 252044 840005 618054 785007 558552 572903 003480 483420 395408 838765 961167 002729 881529 260930 700692 600882 941164 486779 167554 939200 793467 286232 926279 065886 363361 558424 (551 digits), a[1043] = 3
                                                                                      A[1044]/B[1044] = 415 925982 061640 628931 706082 857950 294697 608699 891760 073090 058008 449282 977176 945164 616148 785784 378614 391962 216305 240866 010478 530793 919638 947444 583393 144788 491124 061581 455012 171113 356705 611895 393518 196749 190767 576555 260878 355954 930489 253368 843253 956754 278890 757615 608317 717488 937528 690238 426916 263681 827371 235132 434122 077999 952074 537351 465741 825021 433367 238558 167898 731902 313079 633343 819867 686739 093071 249333 402805 074965 883980 419772 820907 255840 919146 319703 083717 455931 872744 856287 577877 501389 686548 872518 621586 789790 336622 955404 941714 512349 572113 608961 (549 digits)/40425 312523 296844 125959 134106 086707 514874 311855 256315 163911 984465 932176 253486 480989 421459 473106 320197 674631 386467 033160 377607 763516 393323 529258 162106 772209 094054 545140 718621 717665 843495 752271 533194 621144 272538 917671 040276 385831 449484 260619 235134 423480 018597 546740 916458 591476 624332 596454 122247 271976 332634 099595 038410 252641 394853 334765 794428 099862 189548 749746 396692 474077 731683 336585 865605 314877 928752 029347 660655 822313 147425 906622 935064 500389 022964 307301 377554 218178 549924 848695 991147 272976 992834 335123 065522 801117 909815 370424 479547 034178 686223 001635 (551 digits), a[1044] = 1
                                                                                      A[1045]/B[1045] = 1981 818356 896190 250683 735027 536966 152991 518410 456885 977666 518750 735580 042725 714240 766752 768524 827876 006347 173929 695683 318493 647938 543442 498641 041286 700564 626318 142458 128033 161288 242448 274112 752405 595408 100239 495527 768229 914064 633733 719061 212130 453900 034835 090533 469559 205620 278033 601887 165799 091220 406715 088681 739643 658623 541107 524761 960990 440297 723397 620790 588554 668277 341512 782694 622760 178408 785901 498938 245178 981341 138871 285624 249884 510258 538405 853236 181406 478685 199194 214058 917687 923141 786550 958294 601254 260636 525526 895853 793403 199943 121053 172503 (550 digits)/192619 912910 518587 687901 405786 704026 914192 565734 782383 934480 383323 434617 129491 365731 053647 149203 612682 378350 794883 825877 521616 198657 076905 584473 707778 003567 706013 293867 282415 427468 739839 911079 558754 233284 496493 969722 268474 619739 614349 480173 020709 984554 800094 608184 810803 751467 920346 536736 431519 620723 746693 024219 983843 843853 677772 188272 487075 352352 785711 047746 645686 136505 729011 915323 304106 866594 967052 957396 260678 074260 148256 199394 743738 484976 487266 067971 471383 875444 081228 655714 665281 692790 912501 827271 429646 143672 432728 767930 844467 202601 108253 564964 (552 digits), a[1045] = 4
                                                                                      A[1046]/B[1046] = 14288 654480 334972 383717 851275 616713 365638 237573 089961 916755 689263 598343 276256 944849 983418 165458 173746 436392 433813 110649 239934 066363 723736 437931 872400 048740 875351 058788 351244 300131 053843 530684 660357 364605 892444 045249 638487 754407 366625 286797 328167 134054 522736 391349 895232 156830 883763 903448 587509 902224 674376 855904 611627 688364 739827 210685 192674 907105 497150 584092 287781 409843 703669 112206 179188 935600 594381 741901 119057 944353 856079 419142 570098 827650 687987 292356 353562 806728 267104 354700 001692 963382 192405 580580 830366 614246 015311 226381 495536 911951 419485 816482 (551 digits)/1 388764 702896 926957 941268 974613 014895 914222 271998 733002 705274 667729 974496 159926 041106 796989 517531 608974 323086 950653 814303 028921 154115 931662 620574 116552 797183 036147 602211 695529 709947 022375 129828 444474 254135 747996 705726 919598 724008 749930 621830 380104 315363 619259 804034 592084 851752 066758 353609 142884 617042 559485 269134 925317 159617 139258 652673 203955 566331 689526 083972 916495 429617 834766 743848 994353 381042 698122 731121 485402 342134 185219 302386 141233 895224 433826 783101 677241 346287 118525 438698 648119 122513 380347 126023 073045 806824 938916 745940 390817 452386 443997 956383 (553 digits), a[1046] = 7
                                                                                      A[1047]/B[1047] = 244888 944522 590720 773887 206713 021093 368841 557152 986238 562513 236231 907415 739093 776690 484861 581313 781565 425018 548752 576720 397372 776121 846961 943482 872087 529159 507286 141860 099186 263516 157788 295751 978480 793708 271788 264771 622521 738989 866363 594615 790971 732826 921353 743481 688505 871745 302019 960513 153467 429039 871121 639060 137314 360824 118170 106410 236463 861091 174957 550359 480838 635620 303887 690199 668972 083618 890391 111257 269164 035356 692221 411047 941564 580320 234189 823294 191974 193065 739968 243958 946468 300639 057445 828168 717486 702818 785817 744339 217530 703117 252312 052697 (552 digits)/23 801619 862158 276872 689473 974207 957257 455971 189713 243429 924149 734733 001051 848234 064546 602468 947240 965245 870828 955998 669029 013275 818627 915170 134233 689175 555679 320522 531466 106420 496568 120217 118163 114816 553592 212437 967079 901652 927888 363170 051289 482483 345736 327511 276772 876246 231253 055238 548091 860558 110447 257942 599513 714235 557345 045169 283716 954319 979991 507654 475286 226108 440008 920046 560756 208114 344320 835139 386461 512517 890541 296984 339959 144714 703791 862321 380699 984486 762325 096161 113591 683306 775518 378402 969663 671424 859696 394313 448917 488363 893170 656218 823475 (554 digits), a[1047] = 17
                                                                                      A[1048]/B[1048] = 1 238733 377093 288576 253153 884840 722180 209846 023338 021154 729321 870423 135421 971725 828302 407726 072027 081573 561485 177575 994251 226797 946972 958546 155346 232837 694538 411781 768088 847175 617711 842785 009444 552761 333147 251385 369107 751096 449356 698443 259876 283025 798189 129505 108758 337761 515557 393863 706014 354847 047424 029985 051205 298199 492485 330677 742736 374994 212561 371938 335889 691974 587945 223107 563204 524049 353695 046337 298187 464878 121137 317186 474382 277921 729251 858936 408827 313433 772056 966945 574494 734034 466577 479634 721424 417800 128339 944399 948077 583190 427537 681046 079967 (553 digits)/120 396864 013688 311321 388638 845652 801183 194078 220564 950152 326023 341394 979755 401096 363839 809334 253736 435203 677231 730647 159448 095300 247255 507513 291742 562430 575579 638760 259542 227632 192787 623460 720644 018557 022096 810186 541126 427863 363450 565780 878277 792521 044045 256816 187898 973316 008017 342951 094068 445675 169278 849198 266703 496494 946342 365105 071257 975555 466289 227798 460404 047037 629662 434999 547630 034925 102646 873819 663429 047991 794840 670141 002181 864807 414183 745433 686601 599675 157912 599331 006657 064653 000105 272361 974341 430170 105306 910483 990527 832636 918239 725092 073758 (555 digits), a[1048] = 5
                                                                                      A[1049]/B[1049] = 70 852691 438840 039567 203658 642634 185365 330064 887420 192058 133859 850350 626468 127465 989927 725247 686857 431258 429673 670584 249040 324855 753580 484092 798218 143836 117848 978846 922924 388196 473091 196533 834091 485876 783101 600754 303913 435019 352321 677629 407563 923442 229607 303144 942706 940912 258516 752251 203331 379749 132209 580269 557762 134685 432487 966801 442383 611133 977089 375442 696071 923390 148498 021018 792857 539785 244236 531617 107942 767216 940183 771850 450837 783103 147676 193565 126451 057699 200312 855865 990158 786432 895555 396624 949360 532094 018195 616614 784761 459385 072765 071938 610816 (554 digits)/6886 422868 642392 022191 841888 176417 624699 518429 761915 402112 507480 194246 847109 710726 803415 734521 410217 771855 473037 602886 757570 445389 912191 843427 763559 747718 363718 729857 325373 081455 485462 657478 194872 172566 813110 393070 811286 289864 644570 612680 113123 656182 856315 966033 987014 355258 688241 603450 909993 264042 759341 662243 801613 014447 498859 856158 345421 560981 558477 492166 718316 907253 330767 715020 775668 198845 195192 642860 201917 248050 196459 495021 464325 438737 312265 352041 516991 165970 763343 258028 493044 368527 781518 903035 507125 191120 862190 291900 909003 948668 232834 986467 027681 (556 digits), a[1049] = 57
                                                                                      A[1050]/B[1050] = 142 944116 254773 367710 660471 170109 092910 869975 798178 405270 997041 571124 388358 226657 808157 858221 445741 944090 420832 518744 492331 876509 454133 926731 751782 520509 930236 369475 613937 623568 563894 235852 677627 524514 899350 452893 976934 621135 154000 053702 075004 129910 257403 735794 994172 219586 032590 898366 112677 114345 311843 190524 166729 567570 357461 264280 627503 597262 166740 122823 728033 538754 884941 265145 148919 603619 842168 109571 514072 999312 001504 860887 376057 844128 024604 246066 661729 428832 172682 678677 554812 306900 257688 272884 620145 481988 164731 177629 517600 501960 573067 824923 301599 (555 digits)/13893 242601 298472 355705 072415 198488 050582 230937 744395 754377 340983 729888 673974 822549 970671 278377 074171 978914 623306 936420 674588 986080 071639 194368 818862 057867 303017 098474 910288 390543 163712 938417 110388 363690 648317 596328 163699 007592 652591 791141 104525 104886 756677 188884 161927 683833 384500 549852 914054 973760 687962 173685 869929 525389 944062 077421 762101 097518 583244 212131 897037 861544 291197 865041 098966 432615 493032 159540 067263 544092 187759 660183 930832 742282 038714 449516 720583 931616 684599 115387 992745 801708 563143 078432 988591 812411 829687 494285 808535 729973 383909 698026 129120 (557 digits), a[1050] = 2
                                                                                      A[1051]/B[1051] = 213 796807 693613 407277 864129 812743 278276 200040 685598 597329 130901 421475 014826 354123 798085 583469 132599 375348 850506 189328 741372 201365 207714 410824 550000 664346 048085 348322 536862 011765 036985 432386 511719 010391 682452 053648 280848 056154 506321 731331 482568 053352 487011 038939 936879 160498 291107 650617 316008 494094 444052 770793 724491 702255 789949 231082 069887 208396 143829 498266 424105 462145 033439 286163 941777 143405 086404 641188 622015 766528 941688 632737 826895 627231 172280 439631 788180 486531 372995 534543 544971 093333 153243 669509 569506 014082 182926 794244 302361 961345 645832 896861 912415 (555 digits)/20779 665469 940864 377896 914303 374905 675281 749367 506311 156489 848463 924135 521084 533276 774087 012898 484389 750770 096344 539307 432159 431469 983831 037796 582421 805585 666735 828332 235661 471998 649175 595895 305260 536257 461427 989398 974985 297457 297162 403821 217648 761069 612993 154918 148942 039092 072742 153303 824048 237803 447303 835929 671542 539837 442921 933580 107522 658500 141721 704298 615354 768797 621965 580061 874634 631460 688224 802400 269180 792142 384219 155205 395158 181019 350979 801558 237575 097587 447942 373416 485790 170236 344661 981468 495717 003532 691877 786186 717539 678641 616744 684493 156801 (557 digits), a[1051] = 1
                                                                                      A[1052]/B[1052] = 5701 661116 288721 956935 127846 301434 328092 071033 623741 935828 400478 529474 773843 433876 558383 028418 893325 703160 533993 441291 768009 112004 854708 608170 051799 793507 180455 425861 572349 929459 525515 477901 982321 794698 643103 847749 278984 081152 318365 068320 621773 517074 919690 748233 353030 392541 601389 814416 328897 960800 857215 231161 003513 826220 896141 272414 444571 015561 906307 077750 754775 554525 754362 705407 635125 332152 088688 780475 686482 929064 485409 312070 875344 152138 503895 676493 154422 078647 870566 576809 724060 733562 242023 680133 427301 848124 920827 827981 379011 496947 364723 143333 024389 (556 digits)/554164 544819 760946 181024 844302 946035 607907 714492 908485 823113 401045 757412 222172 687746 096933 613737 668305 498937 128264 958413 910734 204299 651246 177079 961829 003094 638148 635113 037486 662508 042278 431695 047162 306384 645445 320701 513316 741482 378814 290492 763392 892696 694499 216756 034420 700227 275796 535752 339309 156650 317861 907857 330035 561163 460032 350504 557690 218522 268008 523895 896261 850282 462302 946649 839466 850593 386877 021947 065964 139794 177457 695524 204945 448785 164189 290030 897536 468890 331100 824216 623290 227853 524354 596613 877233 904261 818509 935140 464567 374655 419271 494848 205946 (558 digits), a[1052] = 26
                                                                                      A[1053]/B[1053] = 5915 457923 982335 364212 991976 114177 606368 271074 309340 533157 531379 950949 788669 788000 356468 611888 025925 078509 384499 630620 509381 313370 062423 018994 601800 457853 228540 774184 109211 941224 562500 910288 494040 805090 325555 901397 559832 137306 824686 799652 104341 570427 406701 787173 289909 553039 892497 465033 644906 454895 301268 001954 728005 528476 686090 503496 514458 223958 050136 576017 178881 016670 787801 991571 576902 475557 175093 421664 308498 695593 427097 944808 702239 779369 676176 116124 942602 565179 243562 111353 269031 826895 395267 349642 996807 862207 103754 622225 681373 458293 010556 040194 936804 (556 digits)/574944 210289 701810 558921 758606 320941 283189 463860 414796 979603 249509 681547 743257 221022 871020 626636 152695 249707 224609 497721 342893 635769 635077 214876 544250 808680 304884 463445 273148 134506 691454 027590 352422 842642 106873 310100 488302 038939 675976 694313 981041 653766 307492 371674 183362 739319 348538 689056 163357 394453 765165 743787 001578 101000 902954 284084 665212 877022 409730 228194 511616 619080 084268 526711 714101 482054 075101 824347 335144 931936 561676 850729 600103 629804 515169 091589 135111 566477 779043 197633 109080 398089 869016 578082 372950 907794 510387 721327 182107 053297 036016 179341 362747 (558 digits), a[1053] = 1
                                                                                      A[1054]/B[1054] = 100348 987900 006087 784342 999464 128276 029984 408222 573190 466348 902557 744671 392560 041882 261880 818627 308126 959310 685987 531219 918110 125925 853476 912083 680607 119158 837107 812807 319740 989052 525530 042517 886974 676143 851998 270110 236298 278061 513353 862754 291238 643913 426919 343005 991583 241179 881349 254954 647401 239125 677503 262436 651602 281847 873589 328358 675902 598890 708492 294025 616871 821258 359194 570552 865564 941066 890183 527104 622462 058559 318976 429010 111180 622053 322713 534492 236063 121515 767560 358462 028569 963888 566301 274421 376227 643438 580901 783592 280986 829635 533619 786452 013253 (558 digits)/9 753271 909454 989915 123772 982004 081096 138939 136259 545237 496765 393200 662176 114288 224112 033263 639916 111429 494252 722016 921955 397032 376613 812481 615104 669841 941979 516300 050237 407856 814615 105542 873140 685927 788658 355418 282309 326149 364517 194441 399516 460059 352957 614377 163542 968224 529336 852415 560650 953027 467910 560513 808449 355285 177177 907300 895859 201096 250880 823692 175008 082127 755563 810599 374037 265090 563458 588506 211504 428283 050779 164287 307197 806603 525657 406894 755457 059321 532534 795791 986346 368576 597291 428619 845931 844448 428973 984713 476375 378280 227407 995530 364310 009898 (559 digits), a[1054] = 16
                                                                                      A[1055]/B[1055] = 306962 421624 000598 717241 990368 499005 696321 495742 028911 932204 239053 184963 966349 913647 142111 067769 950305 956441 442462 224280 263711 691147 622853 755245 643621 815329 739864 212606 068434 908382 139091 037842 154964 833521 881550 711728 268726 971491 364748 387914 978057 502167 687459 816191 264659 276579 536545 229897 587110 172272 333777 789264 682812 374020 306858 488572 542166 020630 175613 458094 029496 480445 865385 703230 173597 298757 845644 002978 175884 871271 384027 231839 035781 645529 644316 719601 650791 929726 546243 186739 354741 718561 094171 172907 125490 792522 846459 973002 524333 947199 611415 399550 976563 (558 digits)/29 834759 938654 671555 930240 704618 564229 700006 872639 050509 469899 429111 668076 086121 893358 970811 546384 486983 732465 390660 263587 533990 765611 072522 060190 553776 634618 853784 614157 496718 578352 008082 647012 410206 208617 173128 157028 466750 132491 259300 892863 361219 712639 150623 862303 088036 327329 905785 371009 022439 798185 446707 169135 067433 632534 624856 971662 268501 629664 880806 753218 757999 885771 516066 648823 509373 172429 840620 458860 619994 084274 054538 772323 019914 206776 735853 357960 313076 164082 166419 156672 214810 189964 154876 115877 906296 194716 464528 150453 316947 735521 022607 272271 392441 (560 digits), a[1055] = 3
                                                                                      A[1056]/B[1056] = 407311 409524 006686 501584 989832 627281 726305 903964 602102 398553 141610 929635 358909 955529 403991 886397 258432 915752 128449 755500 181821 817073 476330 667329 324228 934488 576972 025413 388175 897434 664621 080360 041939 509665 733548 981838 505025 249552 878102 250669 269296 146081 114379 159197 256242 517759 417894 484852 234511 411398 011281 051701 334414 655868 180447 816931 218068 619520 884105 752119 646368 301704 224580 273783 039162 239824 735827 530082 798346 929830 703003 660849 146962 267582 967030 254093 886855 051242 313803 545201 383311 682449 660472 447328 501718 435961 427361 756594 805320 776835 145035 186002 989816 (558 digits)/39 588031 848109 661471 054013 686622 645325 838946 008898 595746 966664 822312 330252 200410 117471 004075 186300 598413 226718 112677 185542 931023 142224 885003 675295 223618 576598 370084 664394 904575 392967 113625 520153 096133 997275 528546 439337 792899 497008 453742 292379 821279 065596 765001 025846 056260 856666 758200 931659 975467 266096 007220 977584 422718 809712 532157 867521 469597 880545 704498 928226 840127 641335 326666 022860 774463 735888 429126 670365 048277 135053 218826 079520 826517 732434 142748 113417 372397 696616 962211 143018 583386 787255 583495 961809 750744 623690 449241 626828 695227 962929 018137 636581 402339 (560 digits), a[1056] = 1
                                                                                      A[1057]/B[1057] = 2 750830 878768 040717 726751 929364 262696 054156 919529 641526 323523 088718 762776 119809 646823 566062 386153 500903 450954 213160 757281 354642 593588 480837 759221 588995 422261 201696 365086 397490 292990 126817 520002 406601 891516 282844 602759 298878 468808 633361 891930 593834 378654 373734 771374 802114 383136 043912 139010 994178 640660 401464 099472 689300 309229 389545 390159 850577 737755 480247 970811 907706 290671 212867 345928 408570 737706 260609 183474 965966 450255 602049 196933 917555 251027 446498 244164 971922 237180 429064 457947 654611 813259 057005 856878 135801 408291 410630 512571 356258 608210 481626 515568 915459 (559 digits)/267 362951 027312 640382 254322 824354 436184 733682 926030 624991 269888 362985 649589 288582 598184 995262 664188 077463 092774 066723 376845 120129 618960 382544 111961 895488 094209 074292 600526 924170 936154 689835 767930 987010 192270 344406 793055 224147 114541 981754 647142 288894 106219 740630 017379 425601 467330 454990 960968 875243 394761 490033 034641 603746 490809 817804 176791 086088 912939 107800 322579 798765 733783 476062 785988 156155 587760 415380 481050 909656 894593 367495 249447 979020 601381 592342 038464 547462 343783 939686 014783 715130 913497 655851 886736 410763 936859 159977 911425 488315 513095 131433 091759 806475 (561 digits), a[1057] = 6
                                                                                      A[1058]/B[1058] = 3 158142 288292 047404 228336 919196 889977 780462 823494 243628 722076 230329 692411 478719 602352 970054 272550 759336 366706 341610 512781 536464 410661 957168 426550 913224 356749 778668 390499 785666 190424 791438 600362 448541 401182 016393 584597 803903 718361 511464 142599 863130 524735 488113 930572 058356 900895 461806 623863 228690 052058 412745 151174 023714 965097 569993 207091 068646 357276 364353 722931 554074 592375 437447 619711 447732 977530 996436 713557 764313 380086 305052 857783 064517 518610 413528 498258 858777 288422 742868 003149 037923 495708 717478 304206 637519 844252 837992 269166 161579 385045 626661 701571 905275 (559 digits)/306 950982 875422 301853 308336 510977 081510 572628 934929 220738 236553 185297 979841 488992 715655 999337 850488 675876 319492 179400 562388 051152 761185 267547 787257 119106 670807 444377 264921 828746 329121 803461 288084 083144 189545 872953 232393 017046 611550 435496 939522 110173 171816 505631 043225 481862 323997 213191 892628 850710 660857 497254 012226 026465 300522 349962 044312 555686 793484 812299 250806 638893 375118 802728 808848 930619 323648 844507 151415 957934 029646 586321 328968 805538 333815 735090 151881 919860 040400 901897 157802 298517 700753 239347 848546 161508 560549 609219 538254 183543 476024 149570 728341 208814 (561 digits), a[1058] = 1
                                                                                      A[1059]/B[1059] = 28 015969 185104 419951 553447 282939 382518 297859 507483 590556 100132 931356 302067 949566 465647 326496 566559 575594 384604 946044 859533 646357 878884 138185 171628 894790 276259 431043 489084 682819 816388 458326 322901 994933 100972 413993 279541 730108 215700 725075 032729 498878 576538 278646 215951 268969 590299 738365 129916 823699 057127 703425 308864 879020 030009 949491 046888 399748 595966 395077 754264 340303 029674 712448 303619 990434 557954 232102 891937 080473 490946 042472 059198 433695 399910 754726 230235 842140 544562 372008 483139 957999 778928 796832 290531 235960 162314 114568 665900 648893 688575 494920 128144 157659 (560 digits)/2722 970814 030691 055208 721014 912171 088269 314714 405464 390897 162313 845369 488321 200524 323432 989965 468097 484473 648711 501927 875949 529351 708442 522926 410018 848341 460668 629310 719901 554141 569129 117526 072603 652163 708637 328032 652199 360520 006945 465730 163319 170279 480751 785678 363183 280500 059308 160526 101999 680928 681621 468065 132449 815468 894988 617500 531291 531583 260817 606194 329032 909912 734733 897893 256779 601110 176951 171437 692378 573129 131766 058065 881198 423327 271907 473063 253519 906342 666991 154863 277202 103272 519523 570634 675105 702832 421256 033734 217458 956663 321288 327998 918489 476987 (562 digits), a[1059] = 8
                                                                                      A[1060]/B[1060] = 31 174111 473396 467355 781784 202136 272496 078322 330977 834184 822209 161685 994479 428286 068000 296550 839110 334930 751311 287655 372315 182822 289546 095353 598179 808014 633009 209711 879584 468486 006813 249764 923264 443474 502154 430386 864139 534011 934062 236539 175329 362009 101273 766760 146523 327326 491195 200171 753780 052389 109186 116170 460038 902734 995107 519484 253979 468394 953242 759431 477195 894377 622050 149895 923331 438167 535485 228539 605494 844786 871032 347524 916981 498212 918521 168254 728494 700917 832985 114876 486288 995923 274637 514310 594737 873480 006566 952560 935066 810473 073621 121581 829716 062934 (560 digits)/3029 921796 906113 357062 029351 423148 169779 887343 340393 611635 398867 030667 468162 689517 039088 989303 318586 160349 968203 681328 438337 580504 469627 790474 197275 967448 131476 073687 984823 382887 898250 920987 360687 735307 898183 200985 884592 377566 618495 901227 102841 280452 652568 291309 406408 762362 383305 373717 994628 531639 342478 965319 144675 841934 195510 967462 575604 087270 054302 418493 579839 548806 109852 700622 065628 531729 500600 015944 843794 531063 161412 644387 210167 228865 605723 208153 405401 826202 707392 056760 435004 401790 220276 809982 523651 864340 981805 642953 755713 140206 797312 477569 646830 685801 (562 digits), a[1060] = 1
                                                                                      A[1061]/B[1061] = 121 538303 605293 822018 898799 889348 200006 532826 500417 093110 566760 416414 285506 234424 669648 216149 083890 580386 638538 809010 976479 194824 747522 424245 966168 318834 175287 060179 127838 088277 836828 207621 092695 325356 607435 705153 871960 332144 017887 434692 558717 584905 880359 578926 655521 250949 063885 338880 391256 980866 384686 051936 688981 587225 015332 507943 808826 804933 455694 673372 185852 023435 895825 162136 073614 304937 164409 917721 708421 614834 104043 085046 810142 928334 155474 259490 415719 944894 043517 716637 942006 945769 602841 339764 074744 856400 182014 972251 471101 080312 909438 859665 617292 346461 (561 digits)/11812 736204 749031 126394 809069 181615 597608 976744 426645 225803 358914 937371 892809 269075 440699 957875 423855 965523 553322 545913 190962 270865 117325 894349 001846 750685 855096 850374 674371 702805 263881 880488 154666 858087 403186 930990 305976 493219 862433 169411 471843 011637 438456 659606 582409 567587 209224 281680 085885 275846 709058 364022 566477 341271 481521 519888 258103 793393 423724 861675 068551 556331 064291 999759 453665 196298 678751 219272 223762 166318 616003 991227 511700 109924 089077 097523 469725 384950 789167 325144 582215 308643 180354 000582 246061 295855 366672 962595 484598 377283 713225 760707 858981 534390 (563 digits), a[1061] = 3
                                                                                      A[1062]/B[1062] = 152 712415 078690 289374 680584 091484 472502 611148 831394 927295 388969 578100 279985 662710 737648 512699 923000 915317 389850 096666 348794 377647 037068 519599 564348 126848 808296 269891 007422 556763 843641 457386 015959 768831 109590 135540 736099 866155 951949 671231 734046 946914 981633 345686 802044 578275 555080 539052 145037 033255 493872 168107 149020 489960 010440 027428 062806 273328 408937 432803 663047 917813 517875 312031 996945 743104 699895 146261 313916 459620 975075 432571 727124 426547 073995 427745 144214 645811 876502 831514 428295 941692 877478 854074 669482 729880 188581 924812 406167 890785 983059 981247 447008 409395 (561 digits)/14842 658001 655144 483456 838420 604763 767388 864087 767038 837438 757781 968039 360971 958592 479788 947178 742442 125873 521526 227241 629299 851369 586953 684823 199122 718133 986572 924062 659195 085693 162132 801475 515354 593395 301370 131976 190568 870786 480929 070638 574684 292090 091024 950915 988818 329949 592529 655398 080513 807486 051537 329341 711153 183205 677032 487350 833707 880663 478027 280168 648391 105137 174144 700381 519293 728028 179351 235217 067556 697381 777416 635614 721867 338789 694800 305676 875127 211153 496559 381905 017219 710433 400630 810564 769713 160196 348478 605549 240311 517490 510538 238277 505812 220191 (563 digits), a[1062] = 1
                                                                                      A[1063]/B[1063] = 274 250718 683984 111393 579383 980832 672509 143975 331812 020405 955729 994514 565491 897135 407296 728849 006891 495704 028388 905677 325273 572471 784590 943845 530516 445682 983583 330070 135260 645041 680469 665007 108655 094187 717025 840694 608060 198299 969837 105924 292764 531820 861992 924613 457565 829224 618965 877932 536294 014121 878558 220043 838002 077185 025772 535371 871633 078261 864632 106175 848899 941249 413700 474168 070560 048041 864305 063983 022338 074455 079118 517618 537267 354881 229469 687235 559934 590705 920020 548152 370302 887462 480320 193838 744227 586280 370596 897063 877268 971098 892498 840913 064300 755856 (561 digits)/26655 394206 404175 609851 647489 786379 364997 840832 193684 063242 116696 905411 253781 227667 920488 905054 166298 091397 074848 773154 820262 122234 704279 579172 200969 468819 841669 774437 333566 788498 426014 681963 670021 451482 704557 062966 496545 364006 343362 240050 046527 303727 529481 610522 571227 897536 801753 937078 166399 083332 760595 693364 277630 524477 158554 007239 091811 674056 901752 141843 716942 661468 238436 700140 972958 924326 858102 454489 291318 863700 393420 626842 233567 448713 783877 403200 344852 596104 285726 707049 599435 019076 580984 811147 015774 456051 715151 568144 724909 894774 223763 998985 364793 754581 (563 digits), a[1063] = 1
                                                                                      A[1064]/B[1064] = 975 464571 130642 623555 418736 033982 490030 043074 826830 988513 256159 561643 976461 354116 959538 699246 943675 402429 475016 813698 324615 095062 390841 351136 155897 463897 759046 260101 413204 491888 885050 452407 341925 051394 260667 657624 560280 461055 861460 989004 612340 542377 567612 119527 174742 065949 411978 172849 753919 075621 129546 828238 663026 721515 087757 633543 677705 508114 002833 751331 209747 741561 758976 734536 208625 887230 292810 338210 380930 682986 212430 985427 338926 491190 762404 489451 824018 417929 636564 475971 539204 604080 318439 435590 902165 488721 300372 616004 037974 804082 660556 503986 639910 676963 (561 digits)/94808 840620 867671 313011 780889 963901 862382 386584 348091 027165 107872 684273 122315 641596 241255 662341 241336 400064 746072 546706 090086 218073 699792 422339 802031 124593 511582 247374 659895 451188 440176 847366 525418 947843 415041 320875 680204 962805 511015 790788 714266 203272 679469 782483 702502 022559 997791 466632 579711 057484 333324 409434 544044 756637 152694 509068 109142 902834 183283 705699 799219 089541 889454 800804 438170 501008 753658 598684 941513 288482 957678 516141 422569 684931 046432 515277 909684 999466 353739 503053 815524 767663 143585 244005 817036 528351 493933 309983 415041 201813 181830 235233 600193 483934 (563 digits), a[1064] = 3
                                                                                      A[1065]/B[1065] = 4176 109003 206554 605615 254328 116762 632629 316274 639135 974458 980368 241090 471337 313603 245451 525836 781593 105421 928456 160470 623733 952721 347956 348390 154106 301274 019768 370475 788078 612597 220671 474636 476355 299764 759696 471192 849182 042523 415681 061942 742126 701331 132441 402722 156534 093022 266878 569331 551970 316606 396745 532998 490108 963245 376803 069546 582455 110717 875967 111500 687890 907496 449607 412312 905063 596963 035546 416824 546060 806399 928842 459327 892973 319644 279087 645042 856008 262424 466278 452038 527121 303783 754077 936202 352889 541165 572087 361080 029168 187429 534724 856859 623943 463708 (562 digits)/405890 756689 874860 861898 771049 641986 814527 387169 586048 171902 548187 642503 743043 794052 885511 554419 131643 691656 059138 959979 180606 994529 503449 268531 409093 967193 887998 763935 973148 593252 186722 071429 771697 242856 364722 346469 217365 215228 387425 403204 903592 116818 247360 740457 381235 987776 792919 803608 485243 313270 093893 331102 453809 551025 769332 043511 528383 285393 634886 964642 913819 019635 796255 903358 725640 928361 872736 849229 057372 017632 224134 691407 923846 188437 969607 464311 983592 593969 700684 719264 861534 089729 155325 787170 283920 569457 690884 808078 385074 702026 951084 939919 765567 690317 (564 digits), a[1065] = 4
                                                                                      A[1066]/B[1066] = 5151 573574 337197 229170 673064 150745 122659 359349 465966 962972 236527 802734 447798 667720 204990 225083 725268 507851 403472 974168 948349 047783 738797 699526 310003 765171 778814 630577 201283 104486 105721 927043 818280 351159 020364 128817 409462 503579 277142 050947 354467 243708 700053 522249 331276 158971 678856 742181 305889 392227 526292 361237 153135 684760 464560 703090 260160 618831 878800 862831 897638 649058 208584 146849 113689 484193 328356 755034 926991 489386 141273 444755 231899 810835 041492 134494 680026 680354 102842 928010 066325 907864 072517 371793 255055 029886 872459 977084 067142 991512 195281 360846 263854 140671 (562 digits)/500699 597310 742532 174910 551939 605888 676909 773753 934139 199067 656060 326776 865359 435649 126767 216760 372980 091720 805211 506685 270693 212603 203241 690871 211125 091787 399581 011310 633044 044440 626898 918796 297116 190699 779763 667344 897570 178033 898441 193993 617858 320090 926830 522941 083738 010336 790711 270241 064954 370754 427217 740536 997854 307662 922026 552579 637526 188227 818170 670342 713038 109177 685710 704163 163811 429370 626395 447913 998885 306115 181813 207549 346415 873369 016039 979589 893277 593436 054424 222318 677058 857392 298911 031176 100957 097809 184818 118061 800115 903840 132915 175153 365761 174251 (564 digits), a[1066] = 1
                                                                                      A[1067]/B[1067] = 19630 829726 218146 293127 273520 568998 000607 394323 037036 863375 689951 649293 814733 316763 860422 201087 957398 628976 138875 082977 468781 096072 564349 446969 084117 596789 356212 262207 391927 926055 537837 255767 931196 353241 820788 857645 077569 553261 247107 214784 805528 432457 232601 969470 150362 569937 303448 795875 469638 493288 975622 616709 949516 017526 770485 178817 362936 967213 512369 699996 380806 854671 075359 852860 246132 049543 020616 681929 327035 274558 352662 793593 588672 752149 403564 048526 896088 303486 774807 236068 726099 027375 971630 051582 118054 630826 189467 292332 230597 161966 120568 939398 415505 885721 (563 digits)/1 907989 548622 102457 386630 426868 459652 845256 708431 388465 769105 516368 622834 339122 101000 265813 204700 250583 966818 474773 480034 992686 632339 113174 341145 042469 242556 086741 797867 872280 726574 067418 827818 663045 814955 704013 348503 910075 749330 082748 985185 757167 077091 027852 309280 632450 018787 165053 614331 680106 425533 375546 552713 447372 474014 535411 701250 440961 850077 089398 975671 052933 347168 853388 015848 217075 216473 751923 192971 054027 935977 769574 314055 963093 808545 017727 403081 663425 374277 863957 386220 892710 661906 052058 880698 586791 862885 245339 162263 785422 413547 349830 465379 862851 213070 (565 digits), a[1067] = 3
                                                                                      A[1068]/B[1068] = 122936 551931 646074 987934 314187 564733 126303 725287 688188 143226 376237 698497 336198 568303 367523 431611 469660 281708 236723 472033 761035 624219 124894 381340 814709 345907 916088 203821 552850 660819 332745 461651 405458 470609 945097 274687 874879 823146 759785 339656 187637 838452 095665 339070 233451 578595 499549 517434 123720 351961 380028 061496 850231 789921 087471 775994 437782 422112 953019 062810 182479 777084 660743 264010 590481 781451 452056 846610 889203 136736 257250 206316 763936 323731 462876 425656 056556 501274 751686 344422 422920 072119 902297 681285 963382 814844 009263 731077 450725 963308 918694 997236 756889 454997 (564 digits)/11 948636 889043 357276 494693 113150 363805 748450 024342 264933 813700 754272 063782 900092 041650 721646 444961 876483 892631 653852 386895 226813 006637 882287 737741 465940 547123 920031 798517 866728 403885 031411 885708 275391 080434 003843 758368 358024 674014 394935 105108 160860 782637 093944 378624 878438 123059 781032 956231 145592 923954 680497 056817 682089 151750 134496 760082 283297 288690 354564 524369 030638 192190 806038 799252 466262 728213 137934 605740 323052 921981 799259 091885 124978 724639 122404 398079 873829 839103 238168 539644 033322 828828 611264 315367 621708 275120 656853 091644 512650 385124 231897 967432 542868 452671 (566 digits), a[1068] = 6
                                                                                      A[1069]/B[1069] = 1 248996 349042 678896 172470 415396 216329 263644 647199 918918 295639 452328 634267 176718 999797 535656 517202 654001 446058 506109 803315 079137 338263 813293 260377 231211 055868 517094 300422 920434 534248 865291 872281 985781 059341 271761 604523 826367 784728 844960 611346 681906 816978 189255 360172 484878 355892 298943 970216 706842 012902 775903 231678 451833 916737 645202 938761 740761 188343 042560 328098 205604 625517 682792 492966 150949 864057 541185 148038 219066 641920 925164 856761 228035 989464 032328 305087 461653 316234 291670 680292 955299 748574 994606 864441 751882 779266 282104 603106 737856 795055 307518 911765 984400 435691 (565 digits)/121 394358 439055 675222 333561 558372 097710 329756 951854 037803 906113 059089 260663 340042 517507 482277 654319 015422 893135 013297 348987 260816 698717 936051 718559 701874 713795 287059 783046 539564 765424 381537 684901 416956 619295 742450 932187 490322 489474 032100 036267 365774 903461 967296 095529 416831 249384 975383 176643 136035 665080 180517 120890 268263 991515 880379 302073 273934 736980 635044 219361 359315 269076 913776 008372 879702 498605 131269 250374 284557 155795 762165 232907 212881 054936 241771 383880 401723 765310 245642 782661 225938 950192 164702 034374 803874 614091 813870 078708 911926 264789 668810 139705 291535 739780 (567 digits), a[1069] = 10
                                                                                      A[1070]/B[1070] = 1 371932 900974 324971 160404 729583 781062 389948 372487 607106 438865 828566 332764 512917 568100 903179 948814 123661 727766 742833 275348 840172 962482 938187 641718 045920 401776 433182 504244 473285 195068 198037 333933 391239 529951 216858 879211 701247 607875 604745 951002 869544 655430 284920 699242 718329 934487 798493 487650 830562 364864 155931 293175 302065 706658 732674 714756 178543 610455 995579 390908 388084 402602 343535 756976 741431 645508 993241 994649 108269 778657 182415 063077 991972 313195 495204 730743 518209 817509 043357 024715 378219 820694 896904 545727 715265 594110 291368 334184 188582 758364 226213 909002 741289 890688 (565 digits)/133 342995 328099 032498 828254 671522 461516 078206 976196 302737 719813 813361 324446 240134 559158 203924 099280 891906 785766 667149 735882 487629 705355 818339 456301 167815 260919 207091 581564 406293 169309 412949 570609 692347 699729 746294 690555 848347 163488 427035 141375 526635 686099 061240 474154 295269 372444 756416 132874 281628 589034 861014 177707 950353 143266 014876 062155 557232 025670 989608 743730 389953 461267 719814 807625 345965 226818 269203 856114 607610 077777 561424 324792 337859 779575 364175 781960 275553 604413 483811 322305 259261 779020 775966 349742 425582 889212 470723 170353 424576 649913 900708 107137 834404 192451 (567 digits), a[1070] = 1
                                                                                      A[1071]/B[1071] = 784 622682 805382 237428 763571 007735 202953 924165 337623 576694 888027 563704 642804 052650 385413 251407 290067 264848 000868 663910 027502 817898 916021 518436 681381 451760 470211 864304 224017 166280 918189 944609 548248 383552 661486 098181 634405 238751 881699 154898 633985 191905 067670 878974 627764 651270 948425 238725 418840 957952 350335 812671 634775 931352 418874 002465 064539 689162 758716 518392 536787 801798 511455 841709 726685 508419 449692 682364 092679 041110 255172 084165 874294 644226 824091 794229 559636 359459 113898 048531 792773 918817 365361 127102 474967 168537 016242 653423 422278 418611 821028 475660 952331 260928 018539 (567 digits)/76260 244690 783603 232053 266978 997697 623390 985940 359942 901041 919800 488405 519466 456875 796841 922938 343708 294197 565901 955796 537887 697378 456890 207881 266526 524388 698662 536352 856322 532964 441099 175742 503035 747493 164980 876719 239576 896552 841365 869165 761693 074751 666025 935606 837632 015642 915340 888995 047857 945960 003985 819612 592129 919908 796410 374610 792896 453421 395115 701636 889414 022741 652944 928031 162445 425847 011836 846671 091815 229911 566783 335454 689332 130815 192469 186142 883197 742831 885409 501907 818964 264414 771055 241487 737299 811704 354412 596800 350514 345193 365626 973139 315408 736329 629301 (569 digits), a[1071] = 571
                                                                                      A[1072]/B[1072] = 3139 862664 122503 274686 214688 760524 592878 086609 722981 913885 990976 083384 903980 723519 109753 908809 109083 183053 731241 398473 385360 111768 626569 011934 367243 852962 282623 890399 400313 138408 867827 976475 526926 925450 175895 609585 416832 656255 134672 224340 486943 637164 926113 800819 210301 323413 728188 753395 163014 662371 766207 406617 832279 027475 382154 742534 972914 935194 645322 069149 538059 595278 448425 710374 663718 775109 444279 722698 365365 272710 799345 519078 560256 568879 609562 672122 969288 956046 273101 237484 195811 053489 282139 405314 445596 389413 659080 905062 023297 863030 042478 128857 718327 785001 964844 (568 digits)/305174 321758 462511 960711 896170 662312 955080 021968 415967 906905 399015 766983 402312 067637 746525 895677 474114 068697 049374 490335 887433 277143 532916 649864 522407 265370 055569 352503 006854 538150 933706 115919 582752 682320 359653 253171 648863 434558 528951 903698 188147 825642 350202 803667 824682 357841 033808 312396 324306 065468 604978 139464 546227 629988 328907 513319 233741 370917 606133 796156 301386 480920 073047 431939 457407 049353 274165 655888 223375 527256 344910 903243 082120 861120 549452 108747 314751 246881 146051 491442 598162 316920 863241 741917 298941 672400 306862 857924 572410 805350 112421 793265 368772 779722 709655 (570 digits), a[1072] = 4
                                                                                      A[1073]/B[1073] = 29043 386659 907911 709604 695769 852456 538856 703652 844460 801668 806812 314168 778630 564322 373198 430689 271815 912331 582041 250170 495743 823816 555142 625845 986576 128421 013826 877898 826835 411960 728641 732889 290590 712604 244546 584450 385899 145048 093749 173963 016477 926389 402695 086347 520476 561994 502124 019281 885972 919298 246202 472232 125287 178630 858266 685279 820774 105914 566615 140738 379324 159304 547287 235081 700154 484404 448210 186649 380966 495507 449281 755872 916603 764143 310155 843336 283236 963875 571809 185889 555073 400220 904615 774932 485334 673259 947970 798981 631959 185882 203331 635380 417281 325945 702135 (569 digits)/2 822829 140516 946210 878460 332514 958514 219111 183656 103654 063190 510942 391256 140275 065615 515574 984035 610734 912471 010272 368819 524787 191670 253140 056661 968191 912719 198786 708879 918013 376322 844454 219018 747809 888376 401860 155264 079347 807579 601933 002449 455023 505532 817851 168617 259773 236212 219615 700561 966612 535177 448789 074793 508178 589803 756577 994483 896568 791679 850319 867043 601892 351022 310371 815486 279108 870026 479327 749665 102194 975218 670981 464642 428419 880900 137538 164868 715958 964762 199872 924891 202425 116702 540230 918743 427774 863307 116178 318121 502211 593344 377423 112527 634363 753834 016196 (571 digits), a[1073] = 9
                                                                                      A[1074]/B[1074] = 32183 249324 030414 984290 910458 612981 131734 790262 567442 715554 797788 397553 682611 287841 482952 339498 380899 095385 313282 648643 881103 935585 181711 637780 353819 981383 296450 768298 227148 550369 596469 709364 817517 638054 420442 194035 802731 801303 228421 398303 503421 563554 328808 887166 730777 885408 230312 772677 048987 581670 012409 878849 957566 206106 240421 427814 793689 041109 211937 209887 917383 754582 995712 945456 363873 259513 892489 909347 746331 768218 248627 274951 476860 333022 919718 515459 252525 919921 844910 423373 750884 453710 186755 180246 930931 062673 607051 704043 655257 048912 245809 764238 135609 110947 666979 (569 digits)/3 128003 462275 408722 839172 228685 620827 174191 205624 519621 970095 909958 158239 542587 133253 262100 879713 084848 981168 059646 859155 412220 468813 786056 706526 490599 178089 254356 061382 924867 914473 778160 334938 330562 570696 761513 408435 728211 242138 130884 906147 643171 331175 168053 972285 084455 594053 253424 012958 290918 600646 053767 214258 054406 219792 085485 507803 130310 162597 456453 663199 903278 831942 383419 247425 736515 919379 753493 405553 325570 502475 015892 367885 510540 742020 686990 273616 030710 211643 345924 416333 800587 433623 403472 660660 726716 535707 423041 176046 074622 398694 489844 905793 003136 533556 725851 (571 digits), a[1074] = 1
                                                                                      A[1075]/B[1075] = 93409 885307 968741 678186 516687 078418 802326 284177 979346 232778 402389 109276 143853 140005 339103 109686 033614 103102 208606 547458 257951 694986 918565 901406 694216 091187 606728 414495 281132 512699 921581 151618 925625 988713 085430 972521 991362 747654 550591 970570 023321 053498 060312 860680 982032 332810 962749 564635 983948 082638 271022 229932 040419 590843 339109 540909 408152 188132 990489 560514 214091 668470 538713 125994 427901 003432 233190 005344 873630 031943 946536 305775 870324 430189 149592 874254 788288 803719 261630 032637 056842 307641 278126 135426 347196 798607 162074 207068 942473 283706 694951 163856 688499 547841 036093 (569 digits)/9 078836 065067 763656 556804 789886 200168 567493 594905 142898 003382 330858 707735 225449 332122 039776 743461 780432 874807 129566 087130 349228 129297 825253 469714 949390 268897 707498 831645 767749 205270 400774 888895 408935 029769 924886 972135 535770 291855 863702 814744 741366 167883 153959 113187 428684 424318 726463 726478 548449 736469 556323 503309 616991 029387 927549 010090 157189 116874 763227 193443 408450 014907 077210 310337 752140 708785 986314 560771 753335 980168 702766 200413 449501 364941 511518 712100 777379 388048 891721 757558 803599 983949 347176 240064 881207 934721 962260 670213 651456 390733 357112 924113 640636 820947 467898 (571 digits), a[1075] = 2
                                                                                      A[1076]/B[1076] = 219003 019939 967898 340663 943832 769818 736387 358618 526135 181111 602566 616105 970317 567852 161158 558870 448127 301589 730495 743560 397007 325559 018843 440593 742252 163758 509907 597288 789413 575769 439632 012602 668769 615480 591304 139079 785457 296612 329605 339443 550063 670550 449434 608528 694842 551030 155811 901949 016883 746946 554454 338714 038405 387792 918640 509633 609993 417375 192916 330916 345567 091524 073139 197445 219675 266378 358869 920037 493591 832106 141699 886503 217509 193401 218904 263968 829103 527360 368170 488647 864569 068992 743007 451099 625324 659887 931200 118181 540203 616325 635712 091951 512608 206629 739165 (570 digits)/21 285675 592410 936035 952781 808458 021164 309178 395434 805417 976860 571675 573709 993485 797497 341654 366636 645714 730782 318779 033416 110676 727409 436563 645956 389379 715884 669353 724674 460366 325014 579710 112729 148432 630236 611287 352706 799751 825849 858290 535637 125903 666941 475972 198659 941824 442690 706351 465915 387818 073585 166414 220877 288388 278567 940583 527983 444688 396346 982908 050086 720178 861756 537839 868101 240797 336951 726122 527096 832242 462812 421424 768712 409543 471903 710027 697817 585468 987741 129367 931451 407787 401522 097825 140790 489132 405151 347562 516473 377535 180161 204070 754020 284410 175451 661647 (572 digits), a[1076] = 2
                                                                                      A[1077]/B[1077] = 969421 965067 840335 040842 292018 157693 747875 718652 083886 957224 812655 573700 025123 411413 983737 345167 826123 309461 130589 521699 845980 997222 993939 663781 663224 746221 646358 803650 438786 815777 680109 202029 600704 450635 450647 528841 133191 934103 869013 328344 223575 735699 858051 294795 761402 536931 585997 172432 051483 070424 488839 584788 194041 142015 013671 579443 848125 857633 762154 884179 596360 034566 831269 915775 306602 068945 668669 685494 847997 360368 513335 851788 740361 203794 025209 930130 104702 913160 734311 987228 515118 583612 250155 939824 848495 438158 886874 679795 103287 749009 237799 531662 738932 374359 992753 (570 digits)/94 221538 434711 507800 367932 023718 284825 804207 176644 364569 910824 617561 002575 199392 522111 406394 210008 363291 797936 404682 220794 791935 038935 571508 053540 506909 132436 384913 730343 609214 505328 719615 339812 002665 550716 370036 382962 734777 595255 296864 957293 244980 835649 057847 907827 195982 195081 551869 590140 099722 030810 221980 386818 770544 143659 689883 122023 935942 702262 694859 393790 289165 461933 228569 782742 715330 056592 890804 669159 082305 831418 388465 275263 087675 252556 351629 503371 119255 339013 409193 483364 434749 590037 738476 803226 837737 555327 352510 736107 161597 111378 173395 940194 778277 522754 114486 (572 digits), a[1077] = 4
                                                                                      A[1078]/B[1078] = 1 188424 985007 808233 381506 235850 927512 484263 077270 610022 138336 415222 189805 995440 979266 144895 904038 274250 611050 861085 265260 242988 322782 012783 104375 405476 909980 156266 400939 228200 391547 119741 214632 269474 066116 041951 667920 918649 230716 198618 667787 773639 406250 307485 903324 456245 087961 741809 074381 068366 817371 043293 923502 232446 529807 932312 089077 458119 275008 955071 215095 941927 126090 904409 113220 526277 335324 027539 605532 341589 192474 655035 738291 957870 397195 244114 194098 933806 440521 102482 475876 379687 652604 993163 390924 473820 098046 818074 797976 643491 365334 873511 623614 251540 580989 731918 (571 digits)/115 507214 027122 443836 320713 832176 305990 113385 572079 169987 887685 189236 576285 192878 319608 748048 576645 009006 528718 723461 254210 902611 766345 008071 699496 896288 848321 054267 455018 069580 830343 299325 452541 151098 180952 981323 735669 534529 421105 155155 492930 370884 502590 533820 106487 137806 637772 258221 056055 487540 104395 388394 607696 058932 422227 630466 650007 380631 098609 677767 443877 009344 323689 766409 650843 956127 393544 616927 196255 914548 294230 809890 043975 497218 724460 061657 201188 704724 326754 538561 414815 842536 991559 836301 944017 326869 960478 700073 252580 539132 291539 377466 694215 062687 698205 776133 (573 digits), a[1078] = 1
                                                                                      A[1079]/B[1079] = 2 157846 950075 648568 422348 527869 085206 232138 795922 693909 095561 227877 763506 020564 390680 128633 249206 100373 920511 991674 786960 088969 320005 006722 768157 068701 656201 802625 204589 666987 207324 799850 416661 870178 516751 492599 196762 051841 164820 067631 996131 997215 141950 165537 198120 217647 624893 327806 246813 119849 887795 532133 508290 426487 671822 945983 668521 306245 132642 717226 099275 538287 160657 735679 028995 832879 404269 696209 291027 189586 552843 168371 590080 698231 600989 269324 124229 038509 353681 836794 463104 894806 236217 243319 330749 322315 536205 704949 477771 746779 114344 111311 155276 990472 955349 724671 (571 digits)/209 728752 461833 951636 688645 855894 590815 917592 748723 534557 798509 806797 578860 392270 841720 154442 786653 372298 326655 128143 475005 694546 805280 579579 753037 403197 980757 439181 185361 678795 335672 018940 792353 153763 731669 351360 118632 269307 016360 452020 450223 615865 338239 591668 014314 333788 832853 810090 646195 587262 135205 610374 994514 829476 565887 320349 772031 316573 800872 372626 837667 298509 785622 994979 433586 671457 450137 507731 865414 996854 125649 198355 319238 584893 977016 413286 704559 823979 665767 947754 898180 277286 581597 574778 747244 164607 515806 052583 988687 700729 402917 550862 634409 840965 220959 890619 (573 digits), a[1079] = 1
                                                                                      A[1080]/B[1080] = 3 346271 935083 456801 803854 763720 012718 716401 873193 303931 233897 643099 953312 016005 369946 273529 153244 374624 531562 852760 052220 331957 642787 019505 872532 474178 566181 958891 605528 895187 598871 919591 631294 139652 582867 534550 864682 970490 395536 266250 663919 770854 548200 473023 101444 673892 712855 069615 321194 188216 705166 575427 431792 658934 201630 878295 757598 764364 407651 672297 314371 480214 286748 640088 142216 359156 739593 723748 896559 531175 745317 823407 328372 656101 998184 513438 318327 972315 794202 939276 938981 274493 888822 236482 721673 796135 634252 523024 275748 390270 479678 984822 778891 242013 536339 456589 (571 digits)/325 235966 488956 395473 009359 688070 896806 030978 320802 704545 686194 996034 155145 585149 161328 902491 363298 381304 855373 851604 729216 597158 571625 587651 452534 299486 829078 493448 640379 748376 166015 318266 244894 304861 912622 332683 854301 803836 437465 607175 943153 986749 840830 125488 120801 471595 470626 068311 702251 074802 239600 998769 602210 888408 988114 950816 422038 697204 899482 050394 281544 307854 109312 761389 084430 627584 843682 124659 061670 911402 419880 008245 363214 082112 701476 474943 905748 528703 992522 486316 312996 119823 573157 411080 691261 491477 476284 752657 241268 239861 694456 928329 328624 903652 919165 666752 (573 digits), a[1080] = 1
                                                                                      A[1081]/B[1081] = 5 504118 885159 105370 226203 291589 097924 948540 669115 997840 329458 870977 716818 036569 760626 402162 402450 474998 452074 844434 839180 420926 962792 026228 640689 542880 222383 761516 810118 562174 806196 719442 047956 009831 099619 027150 061445 022331 560356 333882 660051 768069 690150 638560 299564 891540 337748 397421 568007 308066 592962 107560 940083 085421 873453 824279 426120 070609 540294 389523 413647 018501 447406 375767 171212 192036 143863 419958 187586 720762 298160 991778 918453 354333 599173 782762 442557 010825 147884 776071 402086 169300 125039 479802 052423 118451 170458 227973 753520 137049 594023 096133 934168 232486 491689 181260 (571 digits)/534 964718 950790 347109 698005 543965 487621 948571 069526 239103 484704 802831 734005 977420 003049 056934 149951 753603 182028 979748 204222 291705 376906 167231 205571 702684 809835 932629 825741 427171 501687 337207 037247 458625 644291 684043 972934 073143 453826 059196 393377 602615 179069 717156 135115 805384 303479 878402 348446 662064 374806 609144 596725 717885 554002 271166 194070 013778 700354 423021 119211 606363 894935 756368 518017 299042 293819 632390 927085 908256 545529 206600 682452 667006 678492 888230 610308 352683 658290 434071 211176 397110 154754 985859 438505 656084 992090 805241 229955 940591 097374 479191 963034 744618 140125 557371 (573 digits), a[1081] = 1
                                                                                      A[1082]/B[1082] = 14 354509 705401 667542 256261 346898 208568 613483 211425 299611 892815 385055 386948 089144 891199 077853 958145 324621 435712 541629 730581 173811 568371 071963 153911 559939 010949 481925 225766 019537 211265 358475 727206 159314 782105 588850 987573 015153 516248 934015 984023 306993 928501 750143 700574 456973 388351 864458 457208 804349 891090 790549 311958 829777 948538 526854 609838 905583 488240 451344 141665 517217 181561 391622 484640 743229 027320 563665 271732 972700 341639 806965 165279 364769 196532 078963 203441 993966 089972 491419 743153 613094 138901 196086 826520 033037 975168 978971 782788 664369 667725 177090 647227 706986 519717 819109 (572 digits)/1395 165404 390537 089692 405370 776001 872049 928120 459855 182752 655604 601697 623157 539989 167427 016359 663201 888511 219431 811101 137661 180569 325437 922113 863677 704856 448750 358708 291862 602719 169389 992680 319389 222113 201205 700771 800169 950123 345117 725568 729909 191980 198969 559800 391033 082364 077585 825116 399144 398930 989214 217058 795662 324180 096119 493148 810178 724762 300190 896436 519967 520581 899184 274126 120465 225669 431321 389440 915842 727915 510938 421446 728119 416126 058462 251405 126365 234071 309103 354458 735348 914043 882667 382799 568272 803647 460466 363139 701180 121043 889205 886713 254694 392889 199416 781494 (574 digits), a[1082] = 2
                                                                                      A[1083]/B[1083] = 91 631177 117569 110623 763771 372978 349336 629439 937667 795511 686351 181310 038506 571439 107820 869286 151322 422727 066350 094213 222667 463796 373018 458007 564158 902514 288080 653068 164714 679398 073788 870296 411192 965719 792252 560255 986883 113252 657849 937978 564191 610033 261161 139422 503011 633380 667859 584172 311260 134165 939506 850856 811836 064089 564684 985407 085153 504110 469737 097588 263640 121804 536774 725502 079056 651410 307786 801949 817984 556964 347999 833569 910129 542948 778366 256541 663208 974621 687719 724589 861007 847864 958446 656323 011543 316679 021472 101804 450252 123267 600374 158677 817534 474405 609996 095914 (572 digits)/8905 957145 294012 885264 130230 199976 719921 517293 828657 335619 418332 413017 472951 217355 007611 155092 129163 084670 498619 846355 030189 375121 329533 699914 387637 931823 502338 084879 576917 043486 518027 293288 953582 791304 851525 888674 773953 773883 524532 412608 772832 754496 372887 075958 481314 299568 768994 829100 743313 055650 310091 911497 370699 662966 130719 230059 055142 362352 501499 801640 239016 729855 290041 401125 240808 653058 881747 969036 422142 275749 611159 735281 051169 163763 029266 396661 368499 757111 512910 560823 623269 881373 450759 282656 848142 477969 754888 984079 437036 666854 432609 799471 491201 101953 336626 246335 (574 digits), a[1083] = 6
                                                                                      A[1084]/B[1084] = 472 510395 293247 220661 075118 211789 955251 760682 899764 277170 324571 291605 579480 946340 430303 424284 714757 438256 767463 012695 843918 492793 433463 362000 974706 072510 451352 747266 049339 416527 580209 709957 783170 987913 743368 390130 921988 581416 805498 623908 804981 357160 234307 447256 215632 623876 727649 785320 013509 475179 588625 044833 371139 150225 771963 453890 035606 426135 836925 939285 459866 126239 865435 019132 879924 000280 566254 573414 361655 757522 081638 974814 715927 079513 088363 361671 519486 867074 528571 114369 048192 852418 931134 477701 884236 616433 082529 487994 034049 280707 669595 970479 734900 079014 569698 298679 (573 digits)/45924 951130 860601 516013 056521 775885 471657 514589 603141 860849 747266 666784 987913 626764 205482 791820 309017 311863 712531 042876 288608 056175 973106 421685 801867 363973 960440 783106 176447 820151 759526 459125 087303 178637 458835 144145 669938 819540 967779 788612 594072 964462 063404 939592 797604 580207 922559 970620 115709 677182 539673 774545 649160 639010 749715 643444 085890 536524 807689 904637 715051 169858 349391 279752 324508 490963 840061 234623 026554 106663 566737 097851 983965 234941 204794 234711 968864 019628 873656 158576 851698 320911 136463 796083 808985 193496 234911 283536 886363 455316 052254 884070 710699 902655 882548 013169 (575 digits), a[1084] = 5
                                                                                      A[1085]/B[1085] = 564 141572 410816 331284 838889 584768 304588 390122 837432 072682 010922 472915 617987 517779 538124 293570 866079 860983 833813 106909 066585 956589 806481 820008 538864 975024 739433 400334 214054 095925 653998 580254 194363 953633 535620 950386 908871 694669 463348 561887 369172 967193 495468 586678 718644 257257 395509 369492 324769 609345 528131 895690 182975 214315 336648 439297 120759 930246 306663 036873 723506 248044 402209 744634 958980 651690 874041 375364 179640 314486 429638 808384 626056 622461 866729 618213 182695 841696 216290 838958 909200 700283 889581 134024 895779 933112 104001 589798 484301 403975 269970 129157 552434 553420 179694 394593 (573 digits)/54830 908276 154614 401277 186751 975862 191579 031883 431799 196469 165599 079802 460864 844119 213093 946912 438180 396534 211150 889231 318797 431297 302640 121600 189505 295797 462778 867985 753364 863638 277553 752414 040885 969942 310361 032820 443892 593424 492312 201221 366905 718958 436292 015551 278918 879776 691554 799720 859022 732832 849765 686043 019860 301976 880434 873503 141032 898877 309189 706277 954067 899713 639432 680877 565317 144022 721809 203659 448696 382413 177896 833133 035134 398704 234060 631373 337363 776740 386566 719400 474968 202284 587223 078740 657127 671465 989800 267616 323400 122170 484864 683542 201901 004609 219174 259504 (575 digits), a[1085] = 1
                                                                                      A[1086]/B[1086] = 2729 076684 936512 545800 430676 550863 173605 321174 249492 567898 368261 183268 051431 017458 582800 598568 179076 882192 102715 440332 110262 319152 659390 642035 130165 972609 409086 348602 905555 800230 196204 030974 560626 802447 885852 191678 557475 360094 658892 871458 281673 225934 216181 793971 090209 652906 309687 263289 312587 912561 701152 627594 103040 007487 118557 211078 518646 147121 063578 086780 353891 118417 474273 997672 715846 607044 062420 074871 080217 015467 800194 208353 220153 569360 555281 834524 250270 233859 393734 470204 684995 653554 489459 013801 467356 348881 498535 847187 971254 896608 749476 487109 944638 292695 288475 877051 (574 digits)/265248 584235 479059 121121 803529 679334 237973 642123 330338 646726 409662 985994 831373 003241 057858 579470 061738 898000 557134 599801 563797 781365 183666 908086 559888 547163 811556 255049 189907 274704 869741 468781 250847 058406 700279 275427 445509 193238 937028 593498 061695 840295 808573 001797 913280 099314 688779 169503 551800 608513 938736 518717 728601 846918 271455 137456 650022 132034 044448 729749 531322 768712 907122 003262 585777 067054 727298 049260 821339 636316 278324 430384 124502 829758 141036 760205 318319 126590 419923 036178 751571 130049 485356 111046 437495 879360 194112 354002 179963 943997 991713 618239 518303 921092 759245 051185 (576 digits), a[1086] = 4
                                                                                      A[1087]/B[1087] = 8751 371627 220353 968686 130919 237357 825404 353645 585909 776377 115706 022719 772280 570155 286526 089275 403310 507560 141959 427905 397372 914047 784653 746113 929362 892852 966692 446142 930721 496616 242610 673177 876244 360977 193177 525422 581297 774953 440027 176262 214192 644996 144013 968591 989273 215976 324571 159360 262533 347030 631589 778472 492095 236776 692320 072532 676698 371609 497397 297214 785179 603296 825031 737653 106520 472823 061301 599977 420291 360889 830221 433444 286517 330543 532575 121785 933506 543274 397494 249572 964187 660947 357958 175429 297848 979756 599609 131362 398066 093801 518399 590487 386349 431506 045122 025746 (574 digits)/850576 660982 591791 764642 597341 013864 905499 958253 422815 136648 394588 037786 954983 853842 386669 685322 623397 090535 882554 688636 010190 775392 853640 845859 869170 937288 897447 633133 323086 687752 886778 158757 793427 145162 411198 859102 780420 173141 303397 981715 551993 239845 862011 020945 018759 177720 757892 308231 514424 558374 665975 242196 205665 842731 694800 285873 091099 294979 442535 895526 548036 205852 360798 690665 322648 345186 903703 351441 912715 291362 012870 124285 408642 887978 657170 911989 292321 156511 646335 827936 729681 592433 043291 411879 969615 309546 572137 329622 863291 954164 460005 538260 756812 767887 496909 413059 (576 digits), a[1087] = 3
                                                                                      A[1088]/B[1088] = 11480 448312 156866 514486 561595 788220 999009 674819 835402 344275 483967 205987 823711 587613 869326 687843 582387 389752 244674 868237 507635 233200 444044 388149 059528 865462 375778 794745 836277 296846 438814 704152 436871 163425 079029 717101 138773 135048 098920 047720 495865 870930 360195 762563 079482 868882 634258 422649 575121 259592 332742 406066 595135 244263 810877 283611 195344 518730 560975 383995 139070 721714 299305 735325 822367 079867 123721 674848 500508 376357 630415 641797 506670 899904 087856 956310 183776 777133 791228 719777 649183 314501 847417 189230 765205 328638 098144 978550 369320 990410 267876 077597 330987 724201 333597 902797 (575 digits)/1 115825 245218 070850 885764 400870 693199 143473 600376 753153 783374 804251 023781 786356 857083 444528 264792 685135 988536 439689 288437 573988 556758 037307 753946 429059 484452 709003 888182 512993 962457 756519 627539 044274 203569 111478 134530 225929 366380 240426 575213 613689 080141 670584 022742 932039 277035 446671 477735 066225 166888 604711 760913 934267 689649 966255 423329 741121 427013 486984 625276 079358 974565 267920 693927 908425 412241 631001 400702 734054 927678 291194 554669 533145 717736 798207 672194 610640 283102 066258 864115 481252 722482 528647 522926 407111 188906 766249 683625 043255 898162 451719 156500 275116 688980 256154 464244 (577 digits), a[1088] = 1
                                                                                      A[1089]/B[1089] = 31712 268251 534086 997659 254110 813799 823423 703285 256714 464928 083640 434695 419703 745383 025179 464962 568085 287064 631309 164380 412643 380448 672742 522412 048420 623777 718250 035634 603276 090309 120240 081482 749986 687827 351236 959624 858844 045049 637867 271703 205924 386856 864405 493718 148238 953741 593088 004659 412775 866215 297074 590605 682365 725304 314074 639755 067387 409070 619348 065205 063321 046725 423643 208304 751254 632557 308744 949674 421308 113605 091052 717039 299859 130351 708289 034406 301060 097541 979951 689128 262554 289951 052792 553890 828259 637032 795899 088463 136708 074622 054151 745682 048324 879908 712317 831340 (575 digits)/3 082227 151418 733493 536171 399082 400263 192447 159006 929122 703398 003090 085350 527697 568009 275726 214907 993669 067608 761933 265511 158167 888908 928256 353752 727289 906194 315455 409498 349074 612668 399817 413835 881975 552300 634155 128163 232278 905901 784251 132142 779371 400129 203179 066430 882837 731791 651235 263701 646874 892151 875398 764024 074201 222031 627311 132532 573342 149006 416505 146078 706754 154982 896640 078521 139499 169670 165706 152847 380825 146718 595259 233624 474934 323452 253586 256378 513601 722715 778853 556167 692187 037398 100586 457732 783837 687360 104636 696872 949803 750489 363443 851261 307046 145848 009218 341547 (577 digits), a[1089] = 2
                                                                                      A[1090]/B[1090] = 43192 716563 690953 512145 815706 602020 822433 378105 092116 809203 567607 640683 243415 332996 894506 152806 150472 676816 875984 032617 920278 613649 116786 910561 107949 489240 094028 830380 439553 387155 559054 785635 186857 851252 430266 676725 997617 180097 736787 319423 701790 257787 224601 256281 227721 822624 227346 427308 987897 125807 629816 996672 277500 969568 124951 923366 262731 927801 180323 449200 202391 768439 722948 943630 573621 712424 432466 624522 921816 489962 721468 358836 806530 030255 796145 990716 484836 874675 771180 408905 911737 604452 900209 743121 593464 965670 894044 067013 506029 065032 322027 823279 379312 604110 045915 734137 (575 digits)/4 198052 396636 804344 421935 799953 093462 335920 759383 682276 486772 807341 109132 314054 425092 720254 479700 678805 056145 201622 553948 732156 445666 965564 107699 156349 390647 024459 297680 862068 575126 156337 041374 926249 755869 745633 262693 458208 272282 024677 707356 393060 480270 873763 089173 814877 008827 097906 741436 713100 059040 480110 524938 008468 911681 593566 555862 314463 576019 903489 771354 786113 129548 164560 772449 047924 581911 796707 553550 114880 074396 886453 788294 008080 041189 051793 928573 124242 005817 845112 420283 173439 759880 629233 980659 190948 876266 870886 380497 993059 648651 815163 007761 582162 834828 265372 805791 (577 digits), a[1090] = 1
                                                                                      A[1091]/B[1091] = 74904 984815 225040 509805 069817 415820 645857 081390 348831 274131 651248 075378 663119 078379 919685 617768 718557 963881 507293 196998 332921 994097 789529 432973 156370 113017 812278 866015 042829 477464 679294 867117 936844 539079 781503 636350 856461 225147 374654 591126 907714 644644 089006 749999 375960 776365 820434 431968 400672 992022 926891 587277 959866 694872 439026 563121 330119 336871 799671 514405 265712 815165 146592 151935 324876 344981 741211 574197 343124 603567 812521 075876 106389 160607 504435 025122 785896 972217 751132 098034 174291 894403 953002 297012 421724 602703 689943 155476 642737 139654 376179 568961 427637 484018 758233 565477 (575 digits)/7 280279 548055 537837 958107 199035 493725 528367 918390 611399 190170 810431 194482 841751 993101 995980 694608 672474 123753 963555 819459 890324 334575 893820 461451 883639 296841 339914 707179 211143 187794 556154 455210 808225 308170 379788 390856 690487 178183 808928 839499 172431 880400 076942 155604 697714 740618 749142 005138 359974 951192 355509 288962 082670 133713 220877 688394 887805 725026 319994 917433 492867 284531 061200 850970 187423 751581 962413 706397 495705 221115 481713 021918 483014 364641 305380 184951 637843 728533 623965 976450 865626 797278 729820 438391 974786 563626 975523 077370 942863 399141 178606 859022 889208 980676 274591 147338 (577 digits), a[1091] = 1
                                                                                      A[1092]/B[1092] = 118097 701378 915994 021950 885524 017841 468290 459495 440948 083335 218855 716061 906534 411376 814191 770574 869030 640698 383277 229616 253200 607746 906316 343534 264319 602257 906307 696395 482382 864620 238349 652753 123702 390332 211770 313076 854078 405245 111441 910550 609504 902431 313608 006280 603682 598990 047780 859277 388570 117830 556708 583950 237367 664440 563978 486487 592851 264672 979994 963605 468104 583604 869541 095565 898498 057406 173678 198720 264941 093530 533989 434712 912919 190863 300581 015839 270733 846893 522312 506940 086029 498856 853212 040134 015189 568374 583987 222490 148766 204686 698207 392240 806950 088128 804149 299614 (576 digits)/11 478331 944692 342182 380042 998988 587187 864288 677774 293675 676943 617772 303615 155806 418194 716235 174309 351279 179899 165178 373408 622480 780242 859384 569151 039988 687488 364374 004860 073211 762920 712491 496585 734475 064040 125421 653550 148695 450465 833606 546855 565492 360670 950705 244778 512591 749445 847048 746575 073075 010232 835619 813900 091139 045394 814444 244257 202269 301046 223484 688788 278980 414079 225761 623419 235348 333493 759121 259947 610585 295512 368166 810212 491094 405830 357174 113524 762085 734351 469078 396734 039066 557159 359054 419051 165735 439893 846409 457868 935923 047792 993769 866784 471371 815504 539963 953129 (578 digits), a[1092] = 1
                                                                                      A[1093]/B[1093] = 547295 790330 889016 597608 611913 487186 519018 919372 112623 607472 526670 939626 289256 723887 176452 700068 194680 526675 040402 115463 345724 425085 414794 807110 213648 522049 437509 651596 972360 935945 632693 478130 431654 100408 628584 888658 272774 846127 820422 233329 345734 254369 343438 775121 790691 172326 011557 869077 954953 463345 153725 923078 909337 352634 694940 509071 701524 395563 719651 368827 138131 149584 624756 534198 918868 574606 435924 369078 402888 977689 948478 814727 758065 924060 706759 088479 868832 359791 840382 125794 518409 889831 365850 457548 482482 876202 025892 045437 237801 958401 169009 137924 655437 836533 974830 763933 (576 digits)/53 193607 326824 906567 478279 194989 842476 985522 629487 786101 897945 281520 408943 464977 665880 860921 391846 077590 843350 624269 313094 380247 455547 331358 738056 043594 046794 797410 726619 503990 239477 406120 441553 746125 564330 881475 005057 285268 980047 143355 026921 434401 323083 879763 134718 748081 738402 137336 991438 652274 992123 697988 544562 447226 315292 478654 665423 696882 929211 213933 672586 608788 940847 964247 344647 128817 085556 998898 746187 938046 403164 954380 262768 447391 987962 734076 639050 686186 665939 500279 563387 021893 025916 166038 114596 637728 323202 361160 908846 686555 590313 153686 326160 774696 242694 434446 959854 (578 digits), a[1093] = 4
                                                                                      A[1094]/B[1094] = 1 212689 282040 694027 217168 109350 992214 506328 298239 666195 298280 272197 595314 485047 859151 167097 170711 258391 694048 464081 460542 944649 457917 735905 957754 691616 646356 781326 999589 427104 736511 503736 609013 987010 591149 468940 090393 399628 097500 752286 377209 300973 411170 000485 556524 185064 943642 070896 597433 298477 044520 864160 430108 056042 369709 953859 504630 995900 055800 419297 701259 744366 882774 119054 163963 736235 206619 045526 936877 070719 048910 430947 064168 429051 038984 714099 192799 008398 566477 203076 758529 122849 278519 584912 955230 980155 320778 635771 313364 624370 121489 036225 668090 117825 761196 753810 827480 (577 digits)/117 865546 598342 155317 336601 388968 272141 835333 936749 865879 472834 180813 121502 085761 749956 438077 958001 506460 866600 413716 999597 382975 691337 522102 045263 127176 781077 959195 458099 081192 241875 524732 379693 226726 192701 888371 663664 719233 410560 120316 600698 434295 006838 710231 514216 008755 226250 121722 729452 377624 994480 231596 903024 985591 675979 771753 575104 596035 159468 651352 033961 496558 295775 154256 312713 492982 504607 756918 752323 486678 101842 276927 335749 385878 381755 825327 391626 134459 066230 469637 523508 082852 608991 691130 648244 441192 086298 568731 275562 309034 228419 301142 519106 020764 300893 408857 872837 (579 digits), a[1094] = 2
                                                                                      A[1095]/B[1095] = 1 759985 072371 583043 814776 721264 479401 025347 217611 778818 905752 798868 534940 774304 583038 343549 870779 453072 220723 504483 576006 290373 883003 150700 764864 905265 168406 218836 651186 399465 672457 136430 087144 418664 691558 097524 979051 672402 943628 572708 610538 646707 665539 343924 331645 975756 115968 082454 466511 253430 507866 017886 353186 965379 722344 648800 013702 697424 451364 138949 070086 882498 032358 743810 698162 655103 781225 481451 305955 473608 026600 379425 878896 187116 963045 420858 281278 877230 926269 043458 884323 641259 168350 950763 412779 462638 196980 661663 358801 862172 079890 205234 806014 773263 597730 728641 591413 (577 digits)/171 059153 925167 061884 814880 583958 114618 820856 566237 651981 370779 462333 530445 550739 415837 298999 349847 584051 709951 037986 312691 763223 146884 853460 783319 170770 827872 756606 184718 585182 481352 930852 821246 972851 757032 769846 668722 004502 390607 263671 627619 868696 329922 589994 648934 756836 964652 259059 720891 029899 986603 929585 447587 432817 991272 250408 240528 292918 088679 865285 706548 105347 236623 118503 657360 621799 590164 755817 498511 424724 505007 231307 598517 833270 369718 559404 030676 820645 732169 969917 086895 104745 634907 857168 762841 078920 409500 929892 184408 995589 818732 454828 845266 795460 543587 843304 832691 (579 digits), a[1095] = 1
                                                                                      A[1096]/B[1096] = 10 012614 643898 609246 291051 715673 389219 633064 386298 560289 827044 266540 270018 356570 774342 884846 524608 523752 797665 986499 340574 396518 872933 489409 782079 217942 488387 875510 255521 424433 098797 185887 044736 080334 048939 956564 985651 761642 815643 615829 429902 534511 738866 720107 214754 063845 523482 483168 929989 565629 583850 953592 196042 882940 981433 197859 573144 483022 312621 114043 051694 156857 044567 838107 654777 011754 112746 452783 466654 438759 181912 328076 458649 364635 854211 818390 599193 394553 197822 420371 180147 329145 120274 338730 019128 293346 305681 944088 107373 935230 520940 062399 698163 984143 749850 397018 784545 (578 digits)/973 161316 224177 464741 411004 308758 845235 939616 767938 125786 326731 492480 773729 839458 829142 933074 707239 426719 416355 603648 563056 199091 425761 789405 961858 981030 920441 742226 381692 007104 648640 178996 485928 090984 977865 737605 007274 741745 363596 438674 738797 777776 656451 660204 758889 792940 049511 417021 333907 527124 927499 879524 140962 149681 632341 023794 777746 060625 602867 977780 566702 023294 478890 746774 599516 601980 455431 536006 244880 610300 626878 433465 328338 552230 230348 622347 545010 237687 727080 319222 957983 606580 783530 976974 462449 835794 133803 218192 197607 286983 322081 575286 745439 998067 018832 625382 036292 (579 digits), a[1096] = 5
                                                                                      A[1097]/B[1097] = 11 772599 716270 192290 105828 436937 868620 658411 603910 339108 732797 065408 804959 130875 357381 228396 395387 976825 018389 490982 916580 686892 755936 640110 546944 123207 656794 094346 906707 823898 771254 322317 131880 498998 740498 054089 964703 434045 759272 188538 040441 181219 404406 064031 546400 039601 639450 565623 396500 819060 091716 971478 549229 848320 703777 846659 586847 180446 763985 252992 121781 039355 076926 581918 352939 666857 893971 934234 772609 912367 208512 707502 337545 551752 817257 239248 880472 271784 124091 463830 064470 970404 288625 289493 431907 755984 502662 605751 466175 797402 600830 267634 504178 757407 347581 125660 375958 (578 digits)/1144 220470 149344 526626 225884 892716 959854 760473 334175 777767 697510 954814 304175 390198 244980 232074 057087 010771 126306 641634 875747 962314 572646 642866 745178 151801 748314 498832 566410 592287 129993 109849 307175 063836 734898 507451 675996 746247 754203 702346 366417 646472 986374 250199 407824 549777 014163 676081 054798 557024 914103 809109 588549 582499 623613 274203 018274 353543 691547 843066 273250 128641 715513 865278 256877 223780 045596 291823 743392 035025 131885 664772 926856 385500 600067 181751 575687 058333 459250 289140 044878 711326 418438 834143 225290 914714 543304 148084 382016 282573 140814 030115 590706 793527 562420 468686 868983 (580 digits), a[1097] = 1
                                                                                      A[1098]/B[1098] = 45 330413 792709 186116 608537 026486 995081 608299 198029 577616 025435 462766 684895 749196 846486 570035 710772 454227 852834 459448 090316 457197 140743 409741 422911 587565 458770 158550 975644 896129 412560 152838 440377 577330 270434 118834 879762 063780 093460 181443 551226 078169 952084 912201 853954 182650 441834 180039 119492 022809 859001 868027 843732 427903 092766 737838 333686 024362 604576 873019 417037 274922 275347 583862 713596 012327 794662 255487 784484 175860 807450 450583 471286 019894 305983 536137 240610 209905 570096 811861 373560 240357 986150 207210 314851 561299 813669 761342 505901 327438 323430 865303 210700 256365 792593 773999 912419 (578 digits)/4405 822726 672211 044620 088658 986909 724800 221036 770465 459089 419264 356923 686256 010053 564083 629296 878500 459032 795275 528553 190300 086035 143701 718006 197393 436436 165385 238724 080923 783966 038619 508544 407453 282495 182561 259960 035264 980488 626207 545713 838050 717195 615574 410802 982363 442271 092002 445264 498303 198199 669811 306852 906610 897180 503180 846403 832569 121256 677511 506979 386452 409219 625432 342609 370148 273320 592220 411477 475056 715376 022535 427784 108907 708732 030550 167602 272071 412688 104831 186643 092619 740560 038847 479404 138322 579937 763715 662445 343656 134702 744523 665633 517560 378649 706094 031442 643241 (580 digits), a[1098] = 3
                                                                                      A[1099]/B[1099] = 283 755082 472525 308989 757050 595859 839110 308206 792087 804804 885409 842008 914333 626056 436300 648610 660022 702192 135396 247671 458479 430075 600397 098559 084413 648600 409415 045652 760577 200675 246615 239347 774145 962980 363102 767099 243275 816726 320033 277199 347797 650239 116915 537242 670125 135504 290455 645858 113452 955919 245728 179645 611624 415739 260378 273689 588963 326622 391446 491108 624004 688888 729012 085094 634515 740824 661945 467161 479514 967532 053215 411003 165261 671118 653158 456072 324133 531217 544672 334998 305832 412552 205526 532755 321017 123783 384681 173806 501583 762032 541415 459453 768380 295602 103143 769659 850472 (579 digits)/27579 156830 182610 794346 757838 814175 308656 086693 956968 532304 213097 096356 421711 450519 629482 007855 328089 764967 897959 812954 017548 478525 434856 950903 929538 770418 740625 931177 051953 296083 361710 161115 751894 758807 830266 067211 887586 629179 511448 976629 394721 949646 679820 715017 302005 203403 566178 347668 044617 746222 932971 650227 028214 965582 642698 352626 013689 081083 756616 884942 591964 583959 468107 920934 477766 863703 598918 760688 593732 327281 267098 231477 580302 637892 783368 187365 208115 534462 088237 408998 600597 154686 651523 710568 055226 394341 125598 122756 443953 090789 607956 023916 696069 065425 798984 657342 728429 (581 digits), a[1099] = 6
                                                                                      A[1100]/B[1100] = 2031 615991 100386 349044 907891 197505 868853 765746 742644 211250 223304 356829 085231 131591 900591 110310 330931 369572 800608 193148 299672 467726 343523 099655 013807 127768 324675 478120 299685 300856 138866 828272 859399 318192 812153 488529 582692 780864 333693 121838 985809 629843 770493 672900 544830 131180 475023 701045 913662 714244 579099 125547 125103 338077 915414 653665 456429 310719 344702 310779 785070 097143 378432 179525 155206 198100 428280 525618 141088 948585 179958 327605 628117 717724 878092 728643 509544 928428 382803 156849 514387 128223 424835 936497 561971 427783 506437 977988 016987 661666 113339 081479 589362 325580 514600 161618 865723 (580 digits)/197459 920537 950486 605047 393530 686136 885392 827894 469245 185218 910944 031418 638236 163690 970457 684284 175128 813808 080994 219231 313139 435713 187700 374333 704164 829367 349766 756963 444596 856549 570590 636354 670716 594149 994423 730443 248371 384745 206350 382119 601104 364722 374319 415924 096399 866096 055250 878940 810627 421760 200612 858442 104115 656259 002069 314785 928392 688842 973829 701577 530204 496935 902187 789150 714516 319245 784651 736297 631183 006344 892223 048127 171026 173981 514127 479158 728880 153922 722493 049633 296799 823366 599513 453380 524907 340325 642902 521740 451327 770230 000215 833050 390043 836630 298986 632841 742244 (582 digits), a[1100] = 7
                                                                                      A[1101]/B[1101] = 2315 371073 572911 658034 664941 793365 707964 073953 534732 016055 108714 198837 999564 757648 336891 758920 990954 071764 936004 440819 758151 897801 943920 198214 098220 776368 734090 523773 060262 501531 385482 067620 633545 281173 175256 255628 825968 597590 653726 399038 333607 280082 887409 210143 214955 266684 765479 346904 027115 670163 824827 305192 736727 753817 175792 927355 045392 637341 736148 801888 409074 786032 107444 264619 789721 938925 090225 992779 620603 916117 233173 738608 793379 388843 531251 184715 833678 459645 927475 491847 820219 540775 630362 469252 882988 551566 891119 151794 518571 423698 654754 540933 357742 621182 617743 931278 716195 (580 digits)/225039 077368 133097 399394 151369 500312 194048 914588 426213 717523 124041 127775 059947 614210 599939 692139 503218 578775 978954 032185 330687 914238 622557 325237 633703 599786 090392 688140 496550 152632 932300 797470 422611 352957 824689 797655 135958 013924 717799 358748 995826 314369 054140 130941 398405 069499 621429 226608 855245 167983 133584 508669 132330 621841 644767 667411 942081 769926 730446 586520 122169 080895 370295 710085 192283 182949 383570 496986 224915 333626 159321 279604 751328 811874 297495 666523 936995 688384 810730 458631 897396 978053 251037 163948 580133 734666 768500 644496 895280 861019 608171 856967 086112 902056 097971 290184 470673 (582 digits), a[1101] = 1
                                                                                      A[1102]/B[1102] = 4346 987064 673298 007079 572832 990871 576817 839700 277376 227305 332018 555667 084795 889240 237482 869231 321885 441337 736612 633968 057824 365528 287443 297869 112027 904137 058766 001893 359947 802387 524348 895893 492944 599365 987409 744158 408661 378454 987419 520877 319416 909926 657902 883043 759785 397865 240503 047949 940778 384408 403926 430739 861831 091895 091207 581020 501821 948061 080851 112668 194144 883175 485876 444144 944928 137025 518506 518397 761692 864702 413132 066214 421497 106568 409343 913359 343223 388074 310278 648697 334606 668999 055198 405750 444959 979350 397557 129782 535559 085364 768093 622412 947104 946763 132344 092897 581918 (580 digits)/422498 997906 083584 004441 544900 186449 079441 742482 895458 902742 034985 159193 698183 777901 570397 376423 678347 392584 059948 251416 643827 349951 810257 699571 337868 429153 440159 445103 941147 009182 502891 433825 093327 947107 819113 528098 384329 398669 924149 740868 596930 679091 428459 546865 494804 935595 676680 105549 665872 589743 334197 367111 236446 278100 646836 982197 870474 458769 704276 288097 652373 577831 272483 499235 906799 502195 168222 233283 856098 339971 051544 327731 922354 985855 811623 145682 665875 842307 533223 508265 194196 801419 850550 617329 105041 074992 411403 166237 346608 631249 608387 690017 476156 738686 396957 923026 212917 (582 digits), a[1102] = 1
                                                                                      A[1103]/B[1103] = 71867 164108 345679 771307 830269 647310 937049 509157 972751 652940 421011 089511 356298 985492 136617 666622 141121 133168 721806 584308 683341 746254 543012 964119 890667 242561 674346 554066 819427 339731 775064 401916 520658 871028 973812 162163 364550 652870 452438 733075 444277 838909 413855 338843 371521 632528 613528 114103 079569 820698 287650 197030 526025 224138 635114 223683 074543 806319 029766 604579 515392 916839 881467 370938 908572 131333 386330 287143 807689 751355 843286 798039 537333 093938 080753 798465 325252 668834 891933 871005 173926 244760 513536 961260 002348 221173 252033 228315 087516 789534 944252 499540 511421 769392 735249 417640 026883 (581 digits)/6 985023 043865 470441 470458 869772 483497 465116 794314 753556 161395 683803 674874 230888 060635 726297 714918 356776 860120 938126 054851 631925 513467 586680 518379 039598 466241 132943 809803 554902 299552 978563 738671 915858 506682 930506 247229 285228 392643 504195 212646 546717 179831 909492 880789 315284 039030 448310 915403 509206 603876 480742 382448 915471 071451 994159 382577 869673 110241 998867 196082 560146 326195 730031 697859 701075 218072 075126 229527 922488 773162 984030 523315 509008 585567 283465 997446 591009 165305 342306 590875 004545 800770 859847 041214 260790 934545 350951 304294 441018 961013 342374 897246 704620 721038 449298 058603 877345 (583 digits), a[1103] = 16
                                                                                      A[1104]/B[1104] = 76214 151173 018977 778387 403102 638182 513867 348858 250127 880245 753029 645178 441094 874732 374100 535853 463006 574506 458419 218276 741166 111782 830456 261989 002695 146698 733112 555960 179375 142119 299413 297810 013603 470394 961221 906321 773212 031325 439858 253952 763694 748836 071758 221887 131307 030393 854031 162053 020348 205106 691576 627770 387856 316033 726321 804703 576365 754380 110617 717247 709537 800015 367343 815083 853500 268358 904836 805541 569382 616058 256418 864253 958830 200506 490097 711824 668476 056909 202212 519702 508532 913759 568735 367010 447308 200523 649590 358097 623075 874899 712346 121953 458526 716155 867593 510537 608801 (581 digits)/7 407522 041771 554025 474900 414672 669946 544558 536797 649015 064137 718788 834067 929071 838537 296695 091342 035124 252704 998074 306268 275752 863419 396938 217950 377466 895394 573103 254907 496049 308735 481455 172497 009186 453790 749619 775327 669557 791313 428344 953515 143647 858923 337952 427654 810088 974626 124991 020953 175079 193619 814939 749560 151917 349552 640996 364775 740147 569011 703143 484180 212519 904027 002515 197095 607874 720267 243348 462811 778587 113134 035574 851047 431363 571423 095089 143129 256885 007612 875530 099140 198742 602190 710397 658543 365832 009537 762354 470531 787627 592262 950762 587264 180777 459724 846255 981630 090262 (583 digits), a[1104] = 1
                                                                                      A[1105]/B[1105] = 376723 768800 421590 884857 442680 200040 992518 904590 973263 173923 433129 670225 120678 484421 633019 810035 993147 431194 555483 457415 648006 193385 864838 012075 901447 829356 606796 777907 536927 908208 972717 593156 575072 752608 818699 787450 457398 778172 211871 748886 499056 834253 700888 226391 896749 754104 029652 762315 160962 641125 053956 708112 077450 488273 540401 442497 380006 823839 472237 473570 353544 116901 350842 631274 322573 204769 005677 509310 085220 215588 868962 255055 372653 895964 041144 645763 999156 896471 700783 949815 208057 899798 788478 429301 791581 023267 850394 660705 579820 289133 793636 987354 345528 634016 205623 459790 462087 (582 digits)/36 615111 210951 686543 370060 528463 163283 643350 941505 349616 417946 558959 011145 947175 414784 913078 080286 497273 870940 930423 279924 734936 967145 174433 390180 549466 047819 425356 829433 539099 534494 904384 428659 952604 321845 928985 348539 963459 557897 217575 026707 121308 615525 261302 591408 555639 937534 948274 999216 209523 378355 740501 380689 523140 469662 558144 841680 830263 386288 811441 132803 410225 942303 740092 486242 132574 099141 048520 080775 036837 225699 126329 927505 234462 871259 663822 569963 618549 195756 844426 987435 799516 209533 701437 675387 724118 972696 400369 186421 591529 330065 145425 246303 427730 559937 834321 985124 238393 (584 digits), a[1105] = 4
                                                                                      A[1106]/B[1106] = 2 713280 532775 970113 972389 501864 038469 461499 680995 062970 097709 784937 336754 285844 265683 805239 206105 415038 592868 346803 420186 277209 465483 884322 346520 312829 952194 980690 001312 937870 499582 108436 449906 039112 738656 692120 418474 975003 478530 922960 496158 257092 588611 977975 806630 408555 309122 061600 498259 147086 692982 069273 584554 930009 733948 509131 902185 236413 521256 416280 032240 184346 618324 823242 234004 111512 701741 944579 370712 165924 125180 339154 649641 567407 472254 778110 232172 662574 332211 107700 168408 964938 212351 088084 372122 988375 363398 602352 983036 681817 898836 267805 033433 877227 154269 306957 729070 843410 (583 digits)/263 713300 518433 359829 065324 113914 812932 048015 127335 096329 989763 631501 912089 559299 742031 688241 653347 516041 349291 511037 265741 420311 633435 617971 949214 223729 230130 550601 060942 269746 050199 812146 173116 677416 706712 252517 215107 413774 696593 951370 140464 992808 167600 167070 567514 699568 537370 762916 015466 641742 842109 998449 414386 813900 637190 548010 256541 551991 273033 383231 413804 084101 500153 183162 600790 535893 414254 582989 028237 036447 693027 919884 343584 072603 670240 741847 132874 586729 377910 786519 011190 795356 068926 620461 386257 434664 818412 564938 775482 928332 902718 968739 311388 174891 379289 686509 877499 759013 (585 digits), a[1106] = 7
                                                                                      A[1107]/B[1107] = 8 516565 367128 331932 802025 948272 315449 377017 947576 162173 467052 787941 680487 978211 281473 048737 428352 238263 209799 595893 717974 479634 589837 517805 051636 839937 685941 548866 781846 350539 406955 298026 942874 692410 968578 895061 042875 382409 213764 980753 237361 270334 600089 634815 646283 122415 681470 214454 257092 602222 720071 261777 461776 867479 690119 067797 149053 089247 387608 721077 570290 906583 971875 820569 333286 657111 309994 839415 621446 582992 591129 886426 203980 074876 312728 375475 342281 986879 893105 023884 455042 102872 536852 052731 545670 756707 113463 657453 609815 625273 985642 597052 087655 977210 096824 126496 647002 992317 (583 digits)/827 755012 766251 766030 566032 870207 602079 787396 323510 638606 387237 453464 747414 625074 640879 977803 040329 045397 918815 463535 077148 995871 867452 028349 237823 220653 738211 077160 012260 348337 685094 340822 948009 984854 441982 686536 993862 204783 647679 071685 448102 099733 118325 762514 293952 654345 549647 237023 045616 134751 904685 735849 623849 964842 381234 202175 611305 486237 205388 961135 374215 662530 442763 289580 288613 740254 341904 797487 165486 146180 304782 885982 958257 452273 881981 889363 968587 378737 329489 203984 021008 185584 416313 562821 834160 028113 427934 095185 512870 376528 038222 051643 180467 952404 697806 893851 617623 515432 (585 digits), a[1107] = 3
                                                                                      A[1108]/B[1108] = 11 229845 899904 302046 774415 450136 353918 838517 628571 225143 564762 572879 017242 264055 547156 853976 634457 653301 802667 942697 138160 756844 055321 402127 398157 152767 638136 529556 783159 288409 906537 406463 392780 731523 707235 587181 461350 357412 692295 903713 733519 527427 188701 612791 452913 530970 990592 276054 755351 749309 413053 331051 046331 797489 424067 576929 051238 325660 908865 137357 602531 090930 590200 643811 567290 768624 011736 783994 992158 748916 716310 225580 853621 642283 784983 153585 574454 649454 225316 131584 623451 067810 749203 140815 917793 745082 476862 259806 592852 307091 884478 864857 121089 854437 251093 433454 376073 835727 (584 digits)/1091 468313 284685 125859 631356 984122 415011 835411 450845 734936 377001 084966 659504 184374 382911 666044 693676 561439 268106 974572 342890 416183 500887 646321 187037 444382 968341 627761 073202 618083 735294 152969 121126 662271 148694 939054 208969 618558 344273 023055 588567 092541 285925 929584 861467 353914 087017 999939 061082 776494 746795 734299 038236 778743 018424 750185 867847 038228 478422 344366 788019 746631 942916 472742 889404 276147 756159 380476 193723 182627 997810 805867 301841 524877 552222 631211 101461 965466 707399 990503 032198 980940 485240 183283 220417 462778 246346 660124 288353 304860 940941 020382 491856 127296 077096 580361 495123 274445 (586 digits), a[1108] = 1
                                                                                      A[1109]/B[1109] = 132 044870 266075 654447 320595 899772 208556 600711 861859 638752 679441 089610 870152 882822 300198 442480 407386 424583 039146 965562 237742 804919 198372 941206 431365 520381 705443 373991 396598 523048 378866 769124 263462 739171 748170 354057 117729 313948 829019 921604 306076 072033 675807 375521 628331 963096 577985 251056 565961 844626 263657 903338 971426 639863 354862 414016 712674 671517 385125 232011 198132 906820 464082 902496 573485 111975 439099 463360 535192 821076 470542 367815 593818 139997 947543 064916 661283 130876 371582 471315 313003 848790 778086 601706 641401 952614 358948 515326 131191 003284 714910 110480 419644 376019 858851 894494 783815 185314 (585 digits)/12833 906458 897788 150486 510959 695554 167209 976922 282813 722906 534249 388098 001960 653192 852908 304294 670771 221229 867992 183830 848943 573890 377216 137882 295235 108866 389968 982531 817489 147258 773330 023483 280403 269837 077627 016133 292528 008925 434682 325296 922340 117687 263510 987947 770093 547400 506845 236352 717526 676194 119438 813139 044454 531015 583906 454220 157622 906750 468034 749170 042432 875481 814844 489752 072060 777879 659657 982725 296441 155088 280701 750523 278514 225926 956430 832686 084668 998871 110889 099517 375196 975929 753955 578937 258752 118674 137747 356552 684756 729998 388573 275850 590885 352661 545869 277828 063979 534327 (587 digits), a[1109] = 11
                                                                                      A[1110]/B[1110] = 275 319586 432055 610941 415607 249680 771032 039941 352290 502648 923644 752100 757548 029700 147553 738937 449230 502467 880961 873821 613646 366682 452067 284540 260888 193531 049023 277539 576356 334506 664270 944711 919706 209867 203576 295295 696808 985310 350335 746922 345671 671494 540316 363834 709577 457164 146562 778167 887275 438561 940369 137728 989185 077216 133792 404962 476587 668695 679115 601379 998796 904571 518366 448804 714260 992574 889935 710716 062544 391069 657394 961212 041257 922279 680069 283418 897020 911206 968481 074215 249458 765392 305376 344229 200597 650311 194759 290458 855234 313661 314299 085817 960378 606476 968797 222443 943704 206355 (585 digits)/26759 281231 080261 426832 653276 375230 749431 789256 016473 180749 445499 861162 663425 490760 088728 274634 035219 003899 004091 342234 040777 563964 255319 922085 777507 662115 748279 592824 708180 912601 281954 199935 681933 201945 303948 971320 794025 636409 213637 673649 433247 327915 812947 905480 401654 448715 100708 472644 496136 128882 985673 360577 127145 840774 186237 658626 183092 851729 414491 842706 872885 497595 572605 452247 033525 831907 075475 345926 786605 492804 559214 306913 858869 976731 465084 296583 270799 963208 929178 189537 782592 932799 993151 341157 737921 700126 521841 373229 657866 764857 718087 572083 673626 832619 168835 136017 623082 343099 (587 digits), a[1110] = 2
                                                                                      A[1111]/B[1111] = 407 364456 698131 265388 736203 149452 979588 640653 214150 141401 603085 841711 627700 912522 447752 181417 856616 927050 920108 839383 851389 171601 650440 225746 692253 713912 754466 651530 972954 857555 043137 713836 183168 949038 951746 649352 814538 299259 179355 668526 651747 743528 216123 739356 337909 420260 724548 029224 453237 283188 204027 041067 960611 717079 488654 818979 189262 340213 064240 833391 196929 811391 982449 351301 287746 104550 329035 174076 597737 212146 127937 329027 635076 062277 627612 348335 558304 042083 340063 545530 562462 614183 083462 945935 841999 602925 553707 805784 986425 316946 029209 196298 380022 982496 827649 116938 727519 391669 (585 digits)/39593 187689 978049 577319 164236 070784 916641 766178 299286 903655 979749 249260 665386 143952 941636 578928 705990 225128 872083 526064 889721 137854 632536 059968 072742 770982 138248 575356 525670 059860 055284 223418 962336 471782 381575 987454 086553 645334 648319 998946 355587 445603 076458 893428 171747 996115 607553 708997 213662 805077 105112 173716 171600 371789 770144 112846 340715 758479 882526 591876 915318 373077 387449 941999 105586 609786 735133 328652 083046 647892 839916 057437 137384 202658 421515 129269 355468 962080 040067 289055 157789 908729 747106 920094 996673 818800 659588 729782 342623 494856 106660 847934 264512 185280 714704 413845 687061 877426 (587 digits), a[1111] = 1
                                                                                      A[1112]/B[1112] = 4348 964153 413368 264828 777638 744210 566918 446473 493791 916664 954503 169217 034557 154924 625075 553116 015399 772977 082050 267660 127538 082698 956469 542007 183425 332658 593689 792849 305904 910057 095648 083073 751395 700256 721042 788823 842191 977902 143892 432188 863149 106776 701553 757398 088671 659771 392043 070412 419648 270443 980639 548408 595302 248011 020340 594754 369211 070826 321523 935291 968095 018491 342859 961817 591722 038078 180287 451482 039916 512530 936768 251488 392018 545055 956192 766774 480061 332040 369116 529520 874084 907223 140005 803587 620593 679566 731837 348308 719487 483121 606391 048801 760608 431445 245288 391831 218898 123045 (586 digits)/422691 158130 860757 200024 295637 083079 915849 451039 009342 217309 242992 353769 317286 930289 505094 063921 095121 255187 724926 602882 937988 942510 580680 521766 504935 371937 130765 346389 964881 511201 834796 434125 305297 919769 119708 845861 659562 089755 696837 663112 989121 783946 577536 839762 119134 409871 176245 562616 632764 179654 036795 097738 843149 558671 887678 787089 590250 436528 239757 761476 026069 228369 447104 872238 089391 929774 426808 632447 617071 971732 958374 881285 232712 003315 680235 589276 825489 584009 329851 080089 360492 020097 464220 542107 704659 888133 117728 671053 084101 713418 784696 051426 318748 685426 315879 274474 493701 117359 (588 digits), a[1112] = 10
                                                                                      A[1113]/B[1113] = 22152 185223 764972 589532 624396 870505 814180 873020 683109 724726 375601 687796 800486 687145 573129 946997 933615 791936 330360 177684 489079 585096 432787 935782 609380 377205 722915 615777 502479 407840 521378 129204 940147 450322 556960 593472 025498 188769 898817 829470 967493 277411 723892 526346 781267 719117 684763 381286 551478 635408 107224 783110 937122 957134 590357 792751 035317 694344 671860 509851 037404 903848 696749 160389 246356 294941 230472 431486 797319 774800 811778 586469 595168 787557 408576 182207 958610 702285 185646 193134 932887 150298 783491 963873 944968 000759 212894 547328 583862 732554 061164 440307 183065 139723 054091 076094 822010 006894 (587 digits)/2 153048 978344 281835 577440 642421 486184 495889 021373 345997 990202 194711 018107 251820 795400 467106 898534 181596 501067 496716 540479 579665 850407 535938 668800 597419 630667 792075 307306 350077 615869 229266 394045 488826 070627 980120 216762 384364 094113 132508 314511 301196 365335 964143 092238 767420 045471 488781 522080 377483 703347 289087 662410 387348 165149 208538 048294 291967 941121 081315 399257 045664 514924 622974 303189 552546 258658 869176 490890 168406 506557 631790 463863 300944 219236 822693 075653 482916 882126 689322 689501 960250 009217 068209 630633 519973 259466 248232 085047 763132 061950 030141 105065 858255 612412 294100 786218 155567 464221 (589 digits), a[1113] = 5
                                                                                      A[1114]/B[1114] = 26501 149377 178340 854361 402035 614716 381099 319494 176901 641391 330104 857013 835043 842070 198205 500113 949015 564913 412410 445344 616617 667795 389257 477789 792805 709864 316605 408626 808384 317897 617026 212278 691543 150579 278003 382295 867690 166672 042710 261659 830642 384188 425446 283744 869939 378889 076806 451698 971126 905852 087864 331519 532425 205145 610698 387505 404528 765170 993384 445143 005499 922340 039609 122206 838078 333019 410759 882968 837236 287331 748546 837957 987187 332613 364768 948982 438672 034325 554762 722655 806972 057521 923497 767461 565561 680325 944731 895637 303350 215675 667555 489108 943673 571168 299379 467926 040908 129939 (587 digits)/2 575740 136475 142592 777464 938058 569264 411738 472412 355340 207511 437703 371876 569107 725689 972200 962455 276717 756255 221643 143362 517654 792918 116619 190567 102355 002604 922840 653696 314959 127071 064062 828170 794123 990397 099829 062624 043926 183868 829345 977624 290318 149282 541679 932000 886554 455342 665027 084697 010247 883001 325882 760149 230497 723821 096216 835383 882218 377649 321073 160733 071733 743294 070079 175427 641938 188433 295985 123337 785478 478290 590165 345148 533656 222552 502928 664930 308406 466136 019173 769591 320742 029314 532430 172741 224633 147599 365960 756100 847233 775368 814837 156492 177004 297838 609980 060692 649268 581580 (589 digits), a[1114] = 1
                                                                                      A[1115]/B[1115] = 75154 483978 121654 298255 428468 099938 576379 512009 036913 007509 035811 401824 470574 371285 969540 947225 831646 921763 155181 068373 722314 920687 211302 891362 194991 796934 356126 433031 119248 043635 755430 553762 323233 751481 112967 358063 760878 522113 984238 352790 628778 045788 574785 093836 521146 476895 838376 284684 493732 447112 282953 446150 001973 367425 811754 567761 844375 224686 658629 400137 048404 748528 775967 404802 922512 960980 051992 197424 471792 349464 308872 262385 569543 452784 138114 080172 835954 770936 295171 638446 546831 265342 630487 498797 076091 361411 102358 338603 190563 163905 396275 418525 070412 282059 652850 011946 903826 266772 (587 digits)/7 304529 251294 567021 132370 518538 624713 319365 966198 056678 405225 070117 761860 390036 246780 411508 823444 735032 013577 940002 827204 614975 436243 769177 049934 802129 635877 637756 614698 979995 870011 357392 050387 077074 051422 179778 342010 472216 461850 791200 269759 881832 663901 047502 956240 540528 956156 818835 691474 397979 469349 940853 182708 848343 612791 400971 719062 056404 696419 723461 720723 189132 001512 763132 654044 836422 635525 461146 737565 739363 463138 812121 154160 368256 664341 828550 405514 099729 814398 727670 228684 601734 067846 133069 976115 969239 554664 980153 597249 457599 612687 659815 418050 212264 208089 514060 907603 454104 627381 (589 digits), a[1115] = 2
                                                                                      A[1116]/B[1116] = 2 882371 540545 801204 188067 683823 412382 283520 775837 579595 926734 690938 126343 716869 950937 040761 494695 551598 591913 309291 043546 064584 653909 418767 349553 202493 993369 849409 863809 339809 976056 323387 255246 974425 706861 570762 988718 781074 007003 443767 667703 724208 124154 267279 849532 673505 500930 935105 269709 732959 896118 840095 285219 607413 167326 457371 962455 490787 303264 021301 650350 844880 366433 526370 504717 893570 850261 386463 385098 765345 566975 485692 808609 629838 538410 613103 995550 204953 329904 771284 983624 586560 140541 882022 721750 457033 413947 834348 762558 544750 444080 726021 393061 619340 289435 107679 921908 386306 267275 (589 digits)/280 147851 685668 689395 807544 642526 308370 547645 187938 509119 606064 102178 322571 390485 103345 609536 253355 207934 272216 941750 577137 886721 370181 345347 088089 583281 165955 157592 012257 554802 187502 644960 742879 722937 944439 931406 059021 988151 734198 894956 228499 799959 377522 346792 269141 426654 789301 780783 360724 133467 718299 078303 703085 467555 009894 333142 159742 025596 841598 812618 548214 258749 800779 069120 029131 425998 338400 819561 150835 881290 077565 450769 203242 527409 467541 987844 074466 098139 413287 670642 459606 186636 607467 589089 265148 055736 224868 611797 451580 236019 057499 887823 042400 243044 205240 144294 549623 905244 422058 (591 digits), a[1116] = 38
                                                                                      A[1117]/B[1117] = 2 957526 024523 922858 486323 112291 512320 859900 287846 616508 934243 726749 528168 187444 322223 010302 441921 383245 513676 464472 111919 786899 574596 630070 240915 397485 790304 205536 296840 459058 019692 078817 809009 297659 458342 683730 346782 541952 529117 428006 020494 352986 169942 842064 943369 194651 977826 773481 554394 226692 343231 123048 731369 609386 534752 269126 530217 335162 527950 679931 050487 893285 114962 302337 909520 816083 811241 438455 582523 237137 916439 794565 070995 199381 991194 751218 075723 040908 100841 066456 622071 133391 405884 512510 220547 533124 775358 936707 101161 735313 607986 122296 811586 689752 571494 760529 933855 290132 534047 (589 digits)/287 452380 936963 256416 939915 161064 933083 867011 154136 565798 011289 172296 084431 780521 350126 021045 076799 942966 285794 881753 404342 501696 806425 114524 138024 385410 801832 795348 626956 534798 057514 002352 793266 800011 995862 111184 401032 460368 196049 686156 498259 681792 041423 394295 225381 967183 745458 599619 052198 531447 187649 019156 885794 315898 622685 734113 878804 082001 538018 536080 268937 447881 802291 832252 683176 262420 973926 280707 888401 620653 540704 262890 357402 895666 131883 816394 479980 197869 227686 398312 688290 788370 675313 722159 241264 024975 779533 591951 048829 693618 670187 547638 460450 455308 413329 658355 457227 359349 049439 (591 digits), a[1117] = 1
                                                                                      A[1118]/B[1118] = 64 990418 055548 181232 400853 041945 171120 341426 820616 526283 545852 952678 217875 653200 717620 257112 775044 599754 379119 063205 393861 589475 720438 650242 408776 549695 589758 165672 097458 980028 389589 978561 244442 225274 332057 929100 271152 162077 118469 431894 098085 136917 692953 950643 660285 761197 035293 178217 911988 493499 103972 424118 643981 404530 397124 109029 097019 529200 390228 299853 710596 603867 780641 875466 604655 031330 886331 594030 618086 745241 812211 171559 299508 816860 353500 388683 585734 064023 447567 166874 047118 387779 664116 644737 353248 652653 696485 505197 886954 986336 211789 294254 436382 104144 290825 078808 532869 479089 482262 (590 digits)/6316 647851 361897 074151 545763 024889 903131 754879 424806 390877 843136 720396 095638 781433 455992 051482 866154 010226 273909 458572 068330 422354 305108 750353 986601 676908 004443 859913 178344 785561 395296 694369 401482 523189 857544 266278 480703 655883 851242 304242 691953 117592 247413 626992 002162 737513 443932 372783 456893 293858 658928 480598 304766 101426 086294 749533 614627 747629 139988 070304 195900 664267 648907 546426 375832 936838 790852 714426 807269 915014 432354 971466 708703 336398 237102 132128 154050 253393 194702 035208 913712 742420 789055 754433 331692 580227 595074 042769 477003 802011 131438 388230 711859 804520 885162 969759 151398 451574 460277 (592 digits), a[1118] = 21
                                                                                      A[1119]/B[1119] = 67 947944 080072 104090 887176 154236 683441 201327 108463 142792 480096 679427 746043 840645 039843 267415 216965 982999 892795 527677 505781 376375 295035 280312 649691 947181 380062 371208 394299 439086 409282 057379 053451 522933 790400 612830 617934 704029 647586 859900 118579 489903 862896 792708 603654 955849 013119 951699 466382 720191 447203 547167 375351 013916 931876 378155 627236 864362 918178 979784 761084 497152 895604 177804 514175 847414 697573 032486 200609 982379 728650 966124 370504 016242 344695 139901 661457 104931 548408 233330 669189 521171 070001 157247 573796 185778 471844 441904 988116 721649 819775 416551 247968 793896 862319 839338 466724 769222 016309 (590 digits)/6604 100232 298860 330568 485678 185954 836215 621890 578942 956675 854425 892692 180070 561954 806118 072527 942953 953192 559704 340325 472672 924051 111533 864878 124626 062318 806276 655261 805301 320359 452810 696722 194749 323201 853406 377462 881736 116252 047291 990399 190212 799384 288837 021287 227544 704697 189390 972402 509091 825305 846577 499755 190560 417324 708980 483647 493431 829630 678006 606384 464838 112149 451199 378679 059009 199259 764778 995134 695671 535667 973059 234357 066106 232064 368985 948522 634030 451262 422388 433521 602003 530791 464369 476592 572956 605203 374607 634720 525833 495629 801625 935869 172310 259829 298492 628114 608625 810923 509716 (592 digits), a[1119] = 1
                                                                                      A[1120]/B[1120] = 132 938362 135620 285323 288029 196181 854561 542753 929079 669076 025949 632105 963919 493845 757463 524527 992010 582754 271914 590882 899642 965851 015473 930555 058468 496876 969820 536880 491758 419114 798872 035940 297893 748208 122458 541930 889086 866106 766056 291794 216664 626821 555850 743352 263940 717046 048413 129917 378371 213690 551175 971286 019332 418447 329000 487184 724256 393563 308407 279638 471681 101020 676246 053271 118830 878745 583904 626516 818696 727621 540862 137683 670012 833102 698195 528585 247191 168954 995975 400204 716307 908950 734117 801984 927044 838432 168329 947102 875071 707986 031564 710805 684350 898041 153144 918146 999594 248311 498571 (591 digits)/12920 748083 660757 404720 031441 210844 739347 376770 003749 347553 697562 613088 275709 343388 262110 124010 809107 963418 833613 798897 541003 346405 416642 615232 111227 739226 810720 515174 983646 105920 848107 391091 596231 846391 710950 643741 362439 772135 898534 294641 882165 916976 536250 648279 229707 442210 633323 345185 965985 119164 505505 980353 495326 518750 795275 233181 108059 577259 817994 676688 660738 776417 100106 925105 434842 136098 555631 709561 502941 450682 405414 205823 774809 568462 606088 080650 788080 704655 617090 468730 515716 273212 253425 231025 904649 185430 969681 677490 002837 297640 933064 324099 884170 064350 183655 597873 760024 262497 969993 (593 digits), a[1120] = 1
                                                                                      A[1121]/B[1121] = 466 763030 486932 960060 751263 742782 247125 829588 895702 150020 557945 575745 637802 322182 312233 840999 192997 731262 708539 300326 204710 273928 341457 071977 825097 437812 289523 981849 869574 696430 805898 165199 947132 767558 157776 238623 285195 302349 945755 735282 768573 370368 530449 022765 395477 106987 158359 341451 601496 361263 100731 461025 433348 269258 918877 839709 800006 045052 843400 818700 176127 800214 924342 337617 870668 483651 449286 912036 656700 165244 351237 379175 380542 515550 439281 725657 403030 611796 536334 433944 818113 248023 272354 563202 354930 701074 976834 283213 613331 845607 914469 548968 301021 488020 321754 593779 465507 514156 512022 (591 digits)/45366 344483 281132 544728 580001 818489 054257 752200 590190 999336 947113 731957 007198 592119 592448 444560 370277 843449 060545 737018 095682 963267 361461 710574 458309 279999 238438 200786 756239 638121 997132 869996 983444 862376 986258 308686 969055 432659 742894 874324 836710 550313 897588 966124 916667 031329 089361 007960 407047 182799 363095 440815 676539 973577 094806 183190 817610 561410 131990 636450 447054 441400 751520 153995 363535 607555 431674 123819 204495 887715 189301 851828 390534 937452 187250 190474 998272 565229 273659 839713 149152 350428 224645 169670 286904 161496 283652 667190 534345 388552 600818 908168 824820 452879 849459 421735 888698 598417 419695 (593 digits), a[1121] = 3
                                                                                      A[1122]/B[1122] = 599 701392 622553 245384 039292 938964 101687 372342 824781 819096 583895 207851 601721 816028 069697 365527 185008 314016 980453 891209 104353 239779 356931 002532 883565 934689 259344 518730 361333 115545 604770 201140 245026 515766 280234 780554 174282 168456 711812 027076 985237 997190 086299 766117 659417 824033 206772 471368 979867 574953 651907 432311 452680 687706 247878 326894 524262 438616 151808 098338 647808 901235 600588 390888 989499 362397 033191 538553 475396 892865 892099 516859 050555 348653 137477 254242 650221 780751 532309 834149 534421 156974 006472 365187 281975 539507 145164 230316 488403 553593 946034 259773 985372 386061 474899 511926 465101 762468 010593 (591 digits)/58287 092566 941889 949448 611443 029333 793605 128970 593940 346890 644676 345045 282907 935507 854558 568571 179385 806867 894159 535915 636686 309672 778104 325806 569537 019226 049158 715961 739885 744042 845240 261088 579676 708768 697208 952428 331495 204795 641429 168966 718876 467290 433839 614404 146374 473539 722684 353146 373032 301963 868601 421169 171866 492327 890081 416371 925670 138669 949985 313139 107793 217817 851627 079100 798377 743653 987305 833380 707437 338397 594716 057652 165344 505914 793338 271125 786353 269884 890750 308443 664868 623640 478070 400696 191553 346927 253334 344680 537182 686193 533883 232268 708990 517230 033115 019609 648722 860915 389688 (593 digits), a[1122] = 1
                                                                                      A[1123]/B[1123] = 1066 464423 109486 205444 790556 681746 348813 201931 720483 969117 141840 783597 239524 138210 381931 206526 378006 045279 688993 191535 309063 513707 698388 074510 708663 372501 548868 500580 230907 811976 410668 366340 192159 283324 438011 019177 459477 470806 657567 762359 753811 367558 616748 788883 054894 931020 365131 812820 581363 936216 752638 893336 886028 956965 166756 166604 324268 483668 995208 917038 823936 701450 524930 728506 860167 846048 482478 450590 132097 058110 243336 896034 431097 864203 576758 979900 053252 392548 068644 268094 352534 404997 278826 928389 636906 240582 121998 513530 101735 399201 860503 808742 286393 874081 796654 105705 930609 276624 522615 (592 digits)/103653 437050 223022 494177 191444 847822 847862 881171 184131 346227 591790 077002 290106 527627 447007 013131 549663 650316 954705 272933 732369 272940 139566 036381 027846 299225 287596 916748 496125 382164 842373 131085 563121 571145 683467 261115 300550 637455 384324 043291 555587 017604 331428 580529 063041 504868 812045 361106 780079 484763 231696 861984 848406 465904 984887 599562 743280 700080 081975 949589 554847 659218 603147 233096 161913 351209 418979 957199 911933 226112 784017 909480 555879 443366 980588 461600 784625 835114 164410 148156 814020 974068 702715 570366 478457 508423 536987 011871 071528 074746 134702 140437 533810 970109 882574 441345 537421 459332 809383 (594 digits), a[1123] = 1
                                                                                      A[1124]/B[1124] = 2732 630238 841525 656273 620406 302456 799313 776206 265749 757330 867576 775046 080770 092448 833559 778579 941020 404576 358440 274279 722480 267194 753707 151554 300892 679692 357081 519890 823148 739498 426106 933820 629345 082415 156256 818909 093237 110070 026947 551796 492860 732307 319797 343883 769207 686073 937036 097010 142595 447387 157185 218985 224738 601636 581390 660103 172799 405954 142225 932416 295682 304136 650449 847902 709835 054493 998148 439733 739591 009086 378773 308927 912751 077060 290995 214042 756726 565847 669598 370338 239489 966968 564126 221966 555788 020671 389161 257376 691874 351997 667041 877258 558160 134225 068207 723338 326320 315717 055823 (592 digits)/265593 966667 387934 937802 994332 724979 489330 891312 962203 039345 828256 499049 863120 990762 748572 594834 278713 107501 803570 081783 101424 855553 057236 398568 625229 617676 624352 549458 732136 508372 529986 523259 705919 851060 064143 474658 932596 479706 410077 255549 830050 502499 096696 775462 272457 483277 346775 075359 933191 271490 331995 145138 868679 424137 859856 615497 412231 538830 113937 212318 217488 536255 057921 545293 122204 446072 825265 747780 531303 790623 162751 876613 277103 392648 754515 194327 355604 940113 219570 604757 292910 571777 883501 541429 148468 363774 327308 368422 680238 835685 803287 513143 776612 457449 798263 902300 723565 779581 008454 (594 digits), a[1124] = 2
                                                                                      A[1125]/B[1125] = 33858 027289 207794 080728 235432 311227 940578 516406 909481 057087 552762 084150 208765 247596 384648 549485 670250 900195 990276 482891 978826 720044 742873 893162 319375 528809 833846 739270 108692 685957 523951 572187 744300 272306 313092 846086 578322 791646 980938 383917 668140 155246 454316 915488 285387 163907 609564 976942 292509 304862 638861 521159 582892 176604 143444 087842 397861 355118 701920 106034 372124 351090 330328 903339 378188 499976 460259 727395 007189 167146 788616 603169 384110 788927 068701 548413 133971 182720 103824 712153 226414 008620 048341 591988 306362 488638 791933 602050 404227 623173 865006 335844 984315 484782 615146 785765 846453 065229 192491 (593 digits)/3 290781 037058 878241 747813 123437 547576 719833 576926 730567 818377 530868 065600 647558 416780 429878 151142 894220 940338 597546 254330 949467 539576 826402 819204 530601 711344 779827 510253 281763 482635 202211 410202 034159 783866 453188 957022 491708 393932 305251 109889 516193 047593 491789 886076 332531 304196 973346 265425 978374 742647 215638 603651 272559 555559 303166 985531 690059 166041 449222 497408 164710 094279 298205 776613 628366 704083 322168 930566 287578 713590 737040 428839 881120 155152 034770 793529 051885 116472 799257 405244 328947 835403 304734 067516 260077 873715 464687 432943 234394 102975 774152 298162 853160 459507 461741 268954 220210 814304 910831 (595 digits), a[1125] = 12
                                                                                      A[1126]/B[1126] = 70448 684817 257113 817730 091270 924912 680470 809020 084711 871505 973100 943346 498300 587641 602856 877551 281522 204968 338993 240063 680133 707284 239454 937878 939643 737312 024774 998431 040534 111413 474010 078196 117945 627027 782442 511082 249882 693363 988824 319631 829141 042800 228431 174860 339982 013889 156166 050894 727614 057112 434908 261304 390522 954844 868278 835787 968522 116191 546066 144485 039931 006317 311107 654581 466212 054446 918667 894523 753969 343379 956006 515266 680972 654914 428398 310869 024668 931287 877247 794644 692317 984208 660809 405943 168512 997948 973028 461477 500329 598345 397054 548948 526791 103790 298501 294870 019226 446175 440805 (593 digits)/6 847156 040785 144418 433429 241207 820132 928998 045166 423338 676100 889992 630251 158237 824323 608328 897120 067154 988178 998662 590445 000359 934706 710042 036977 686433 040366 184007 569965 295663 473642 934409 343663 774239 418792 970521 388703 916013 267571 020579 475328 862436 597686 080276 547614 937520 091671 293467 606211 889940 756784 763272 352441 413798 535256 466190 586560 792349 870913 012382 207134 546908 724813 654333 098520 378937 854239 469603 608913 106461 217804 636832 734293 039343 702952 824056 781385 459375 173058 818085 415245 950806 242584 492969 676461 668624 111205 256683 234309 149027 041637 351592 109469 482933 376464 721746 440209 163987 408190 830116 (595 digits), a[1126] = 2
                                                                                      A[1127]/B[1127] = 245204 081740 979135 533918 509245 085965 981990 943467 163616 671605 472064 914189 703667 010521 193219 182139 514817 515101 007256 203083 019227 841897 461238 706799 138306 740745 908171 734563 230295 020197 945981 806776 098137 153389 660420 379333 327970 871738 947411 342813 155563 283647 139610 440069 305333 205575 078063 129626 475351 476199 943586 305072 754461 041138 748280 595206 303427 703693 340118 539489 491917 370042 263651 867083 776824 663317 216263 410966 269097 197286 656636 148969 427028 753670 353896 481020 207977 976583 735568 096087 303367 961246 030769 809817 811901 482485 711018 986482 905216 418210 056169 982690 564688 796153 510650 670375 904132 403755 514906 (594 digits)/23 832249 159414 311497 048100 847061 007975 506827 712426 000583 846680 200845 956354 122271 889751 254864 842503 095685 904875 593534 025665 950547 343696 956528 930137 589900 832443 331850 220149 168753 903564 005439 441193 356878 040245 364753 123134 239748 196645 366989 535876 103502 840651 732619 528921 145091 579210 853749 084061 648197 013001 505455 660975 513955 161328 701738 745214 067108 778780 486369 118811 805436 268720 261205 072174 765180 266801 730979 757305 606962 367004 647538 631718 999151 264010 506941 137685 430010 635649 253513 650982 181366 563156 783643 096901 265950 207331 234737 135870 681475 227887 828928 626571 301960 588901 626980 589581 712173 038877 401179 (596 digits), a[1127] = 3
                                                                                      A[1128]/B[1128] = 560856 848299 215384 885567 109761 096844 644452 695954 411945 214716 917230 771725 905634 608683 989295 241830 311157 235170 353505 646229 718589 391079 161932 351477 216257 218803 841118 467557 501124 151809 365973 691748 314219 933807 103283 269748 905824 436841 883647 005258 140267 610094 507652 054998 950648 425039 312292 310147 678317 009512 322080 871449 899445 037122 364840 026200 575377 523578 226303 223464 023765 746401 838411 388749 019861 381081 351194 716456 292163 737953 269278 813205 535030 162255 136191 272909 440624 884455 348383 986819 299053 906700 722349 025578 792315 962920 395066 434443 310762 434765 509394 514329 656168 696097 319802 635621 827491 253686 470617 (594 digits)/54 511654 359613 767412 529630 935329 836083 942653 470018 424506 369461 291684 542959 402781 603826 118058 582126 258526 797930 185730 641776 901454 622100 623099 897252 866234 705252 847708 010263 633171 280770 945288 226050 487995 499283 700027 634972 395509 660861 754558 547081 069442 278989 545515 605457 227703 250093 000965 774335 186334 782787 774183 674392 441708 857913 869668 076988 926567 428473 985120 444758 157781 262254 176743 242869 909298 387842 931563 123524 320385 951813 931909 997731 037646 230973 837939 056756 319396 444357 325112 717210 313539 368898 060255 870264 200524 525867 726157 506050 511977 497413 009449 362612 086854 554267 975707 619372 588333 485945 632474 (596 digits), a[1128] = 2
                                                                                      A[1129]/B[1129] = 806060 930040 194520 419485 619006 182810 626443 639421 575561 886322 389295 685915 609301 619205 182514 423969 825974 750271 360761 849312 737817 232976 623171 058276 354563 959549 749290 202120 731419 172007 311955 498524 412357 087196 763703 649082 233795 308580 831058 348071 295830 893741 647262 495068 255981 630614 390355 439774 153668 485712 265667 176522 653906 078261 113120 621406 878805 227271 566421 762953 515683 116444 102063 255832 796686 044398 567458 127422 561260 935239 925914 962174 962058 915925 490087 753929 648602 861039 083952 082906 602421 867946 753118 835396 604217 445406 106085 420926 215978 852975 565564 497020 220857 492250 830453 305997 731623 657441 985523 (594 digits)/78 343903 519028 078909 577731 782390 844059 449481 182444 425090 216141 492530 499313 525053 493577 372923 424629 354212 702805 779264 667442 852001 965797 579628 827390 456135 537696 179558 230412 801925 184334 950727 667243 844873 539529 064780 758106 635257 857507 121548 082957 172945 119641 278135 134378 372794 829303 854714 858396 834531 795789 279639 335367 955664 019242 571406 822202 993676 207254 471489 563569 963217 530974 437948 315044 674478 654644 662542 880829 927348 318818 579448 629450 036797 494984 344880 194441 749407 080006 578626 368192 494905 932054 843898 967165 466474 733198 960894 641921 193452 725300 838377 989183 388815 143169 602688 208954 300506 524823 033653 (596 digits), a[1129] = 1
                                                                                      A[1130]/B[1130] = 4 591161 498500 187986 982995 204792 010897 776670 893062 289754 646328 863709 201303 952142 704709 901867 361679 441030 986527 157314 892793 407675 555962 277787 642858 989077 016552 587569 478161 158220 011845 925751 184370 376005 369790 921801 515160 074800 979746 038938 745614 619422 078802 743964 530340 230556 578111 264069 509018 446659 438073 650416 754063 168975 428427 930443 133234 969403 659936 058412 038231 602181 328622 348727 667913 003291 603074 188485 353569 098468 414152 898853 624080 345324 741882 586630 042557 683639 189650 768144 401352 311163 246434 487943 202561 813403 189950 925493 539074 390656 699643 337216 999430 760456 157351 472069 165610 485609 540896 398232 (595 digits)/446 231171 954754 161960 418289 847284 056381 190059 382240 549957 450168 754337 039527 028049 071712 982675 705273 029590 311959 082053 978991 161464 451088 521244 034205 146912 393733 745499 162327 642797 202445 698926 562269 712363 196929 023931 425505 571798 948397 362298 961866 934167 877195 936191 277349 091677 396612 274540 066319 358993 761734 172380 351232 220028 954126 726702 188003 894948 464746 342568 262607 973868 917126 366484 818093 281691 661066 244277 527673 957127 545906 829153 144981 221633 705895 562340 028965 066431 844390 218244 558172 788069 029172 279750 706091 532898 191862 530630 715656 479241 123917 201339 308529 030930 270115 989148 664144 090866 110060 800739 (597 digits), a[1130] = 5
                                                                                      A[1131]/B[1131] = 19 170706 924040 946468 351466 438174 226401 733127 211670 734580 471637 844132 491131 417872 438044 789983 870687 590098 696379 990021 420486 368519 456825 734321 629712 310872 025760 099568 114765 364299 219391 014960 236005 916378 566360 450909 709722 532999 227564 986813 330529 773519 208952 623120 616429 178207 943059 446633 475847 940306 238006 867334 192775 329807 791972 834893 154346 756419 867015 800069 915879 924408 430933 496973 927484 809852 456695 321399 541698 955134 591851 521329 458496 343357 883455 836607 924160 383159 619642 156529 688315 847074 853684 704891 645643 857830 205209 808059 577223 778605 651548 914432 494743 262682 121656 718729 968439 674061 821027 578451 (596 digits)/1863 268591 338044 726751 250891 171527 069584 209718 711406 624920 016816 509878 657421 637249 780429 303626 245721 472573 950642 107480 583407 497859 770151 664604 964211 043785 112631 161554 879723 373113 994117 746433 916322 694326 327245 160506 460128 922453 651096 570743 930424 909616 628425 022900 243774 739504 415752 952875 123674 270506 842725 969160 740296 835779 835749 478215 574218 573470 066239 841762 614001 858693 199479 903887 587417 801245 298909 639652 991525 755858 502445 896061 209374 923332 318566 594240 310302 015134 457567 451604 600883 647182 048743 962901 791531 598067 500649 083417 504547 110417 220969 643735 223299 512536 223633 559282 865530 663970 965066 236609 (598 digits), a[1131] = 4
                                                                                      A[1132]/B[1132] = 23 761868 422541 134455 334461 642966 237299 509798 104733 024335 117966 707841 692435 370015 142754 691851 232367 031129 682907 147336 313279 776195 012788 012109 272571 299949 042312 687137 592926 522519 231236 940711 420376 292383 936151 372711 224882 607800 207311 025752 076144 392941 287755 367085 146769 408764 521170 710702 984866 386965 676080 517750 946838 498783 220400 765336 287581 725823 526951 858481 954111 526589 759555 845701 595397 813144 059769 509884 895268 053603 006004 420183 082576 688682 625338 423237 966718 066798 809292 924674 089668 158238 100119 192834 848205 671233 395160 733553 116298 169262 351192 251649 494174 023138 279008 190799 134050 159671 361923 976683 (596 digits)/2309 499763 292798 888711 669181 018811 125965 399778 093647 174877 466985 264215 696948 665298 852142 286301 950994 502164 262601 189534 562398 659324 221240 185848 998416 190697 506364 907054 042051 015911 196563 445360 478592 406689 524174 184437 885634 494252 599493 933042 892291 843784 505620 959091 521123 831181 812365 227415 189993 629500 604460 141541 091529 055808 789876 204917 762222 468418 530986 184330 876609 832562 116606 270372 405511 082936 959975 883930 519199 712986 048352 725214 354356 144966 024462 156580 339267 081566 301957 669849 159056 435251 077916 242652 497623 130965 692511 614048 220203 589658 344886 845074 531828 543466 493749 548431 529674 754837 075127 037348 (598 digits), a[1132] = 1
                                                                                      A[1133]/B[1133] = 42 932575 346582 080923 685928 081140 463701 242925 316403 758915 589604 551974 183566 787887 580799 481835 103054 621228 379287 137357 733766 144714 469613 746430 902283 610821 068072 786705 707691 886818 450627 955671 656382 208762 502511 823620 934605 140799 434876 012565 406674 166460 496707 990205 763198 586972 464230 157336 460714 327271 914087 385085 139613 828591 012373 600229 441928 482243 393967 658551 869991 450998 190489 342675 522882 622996 516464 831284 436967 008737 597855 941512 541073 032040 508794 259845 890878 449958 428935 081203 777984 005312 953803 897726 493849 529063 600370 541612 693521 947868 002741 166081 988917 285820 400664 909529 102489 833733 182951 555134 (596 digits)/4172 768354 630843 615462 920072 190338 195549 609496 805053 799797 483801 774094 354370 302548 632571 589928 196715 974738 213243 297015 145806 157183 991391 850453 962627 234482 618996 068608 921774 389025 190681 191794 394915 101015 851419 344944 345763 416706 250590 503786 822716 753401 134045 981991 764898 570686 228118 180290 313667 900007 447186 110701 831825 891588 625625 683133 336441 041888 597226 026093 490611 691255 316086 174259 992928 884182 258885 523583 510725 468844 550798 621275 563731 068298 343028 750820 649569 096700 759525 121453 759940 082433 126660 205554 289154 729033 193160 697465 724750 700075 565856 488809 755128 056002 717383 107714 395205 418808 040193 273957 (598 digits), a[1133] = 1
                                                                                      A[1134]/B[1134] = 195 492169 808869 458150 078173 967528 092104 481499 370348 059997 476384 915738 426702 521565 465952 619191 644585 516043 200055 696767 248344 355052 891242 997832 881705 743233 314603 833960 423694 069793 033748 763398 045905 127433 946198 667194 963303 170997 946815 076013 702841 058783 274587 327908 199563 756654 378091 340048 827723 696053 332430 058091 505293 813147 269895 166254 055295 654797 102822 492689 434077 330582 521513 216403 686928 305130 125628 835022 643136 088553 397428 186233 246868 816844 660515 462621 530231 866632 525033 249489 201604 179489 915334 783740 823603 787487 796642 900003 890385 960734 362156 915977 449843 166419 881667 828915 544009 494604 093730 197219 (597 digits)/19000 573181 816173 350563 349469 780163 908163 837765 313862 374067 402192 360593 114429 875493 382428 646014 737858 401117 115574 377595 145623 288060 186807 587664 848925 128627 982349 181489 729148 572011 959288 212538 058252 810752 929851 564215 268688 161077 601855 948190 183158 857389 041804 887058 580718 113926 724837 948576 444665 229530 393204 584348 418832 622163 292378 937451 107986 635972 919890 288704 839056 597583 380950 967412 377226 619665 995517 978264 562101 588364 251547 210316 609280 418159 396577 159862 937543 468369 340058 155664 198816 764983 584557 064869 654242 047098 465154 403911 119206 389960 608312 800313 552340 767477 363281 979289 110496 430069 235900 133176 (599 digits), a[1134] = 4
                                                                                      A[1135]/B[1135] = 824 901254 582059 913523 998623 951252 832119 168922 797795 998905 495144 214927 890376 874149 444609 958601 681396 685401 179509 924426 727143 564926 034585 737762 429106 583754 326488 122547 402468 165990 585623 009263 840002 718498 287306 492400 787817 824791 222136 316620 218038 401593 595057 301838 561453 613589 976595 517531 771609 111485 243807 617451 160789 081180 091954 265245 663111 101431 805257 629309 606300 773328 276542 208290 270595 843517 018980 171375 009511 362951 187568 686445 528548 299419 150856 110332 011805 916488 529068 079160 584400 723272 615143 032689 788264 679014 786942 141628 255065 790805 451368 829991 788289 951499 927336 225191 278527 812149 557872 344010 (597 digits)/80175 061081 895537 017716 317951 310993 828204 960558 060503 296067 092571 216466 812089 804522 162286 173987 148149 579206 675540 807395 728299 309424 738622 201113 358327 748994 548392 794567 838368 677073 027834 041946 627926 344027 570825 601805 420516 061016 658014 296547 555352 182957 301265 530226 087771 026393 127469 974596 092328 818129 020004 448095 507156 380241 795141 432937 768387 585780 276787 180912 846838 081588 839890 043909 501835 362846 240957 436641 759131 822301 556987 462542 000852 740935 929337 390272 399742 970178 119757 744110 555207 142367 464888 465032 906122 917427 053778 313110 201576 259917 999107 690063 964491 125912 170511 024870 837191 139084 983793 806661 (599 digits), a[1135] = 4
                                                                                      A[1136]/B[1136] = 1020 393424 390929 371674 076797 918780 924223 650422 168144 058902 971529 130666 317079 395714 910562 577793 325982 201444 379565 621193 975487 919978 925828 735595 310812 326987 641091 956507 826162 235783 619371 772661 885907 845932 233505 159595 751120 995789 168951 392633 920879 460376 869644 629746 761017 370244 354686 857580 599332 807538 576237 675542 666082 894327 361849 431499 718406 756228 908080 121999 040378 103910 798055 424693 957524 148647 144609 006397 652647 451504 584996 872678 775417 116263 811371 572953 542037 783121 054101 328649 786004 902762 530477 816430 611868 466502 583585 041632 145451 751539 813525 745969 238133 117919 809004 054106 822537 306753 651602 541229 (598 digits)/99175 634263 711710 368279 667421 091157 736368 798323 374365 670134 494763 577059 926519 680015 544714 820001 886007 980323 791115 184990 873922 597484 925429 788778 207252 877622 530741 976057 567517 249084 987122 254484 686179 154780 500677 166020 689204 222094 259870 244737 738511 040346 343070 417284 668489 140319 852307 923172 536994 047659 413209 032443 925989 002405 087520 370388 876374 221753 196677 469617 685894 679172 220841 011321 879061 982512 236475 414906 321233 410665 808534 672858 610133 159095 325914 550135 337286 438547 459815 899774 754023 907351 049445 529902 560364 964525 518932 717021 320782 649878 607420 490377 516831 893389 533793 004159 947687 569154 219693 939837 (599 digits), a[1136] = 1
                                                                                      A[1137]/B[1137] = 1845 294678 972989 285198 075421 870033 756342 819344 965940 057808 466673 345594 207456 269864 355172 536395 007378 886845 559075 545620 702631 484904 960414 473357 739918 910741 967580 079055 228630 401774 204994 781925 725910 564430 520811 651996 538938 820580 391087 709254 138917 861970 464701 931585 322470 983834 331282 375112 370941 919023 820045 292993 826871 975507 453803 696745 381517 857660 713337 751308 646678 877239 074597 632984 228119 992164 163589 177772 662158 814455 772565 559124 303965 415682 962227 683285 553843 699609 583169 407810 370405 626035 145620 849120 400133 145517 370527 183260 400517 542345 264894 575961 026423 069419 736340 279298 101065 118903 209474 885239 (598 digits)/179350 695345 607247 385995 985372 402151 564573 758881 434868 966201 587334 793526 738609 484537 707000 993989 034157 559530 466655 992386 602221 906909 664051 989891 565580 626617 079134 770625 405885 926158 014956 296431 314105 498808 071502 767826 109720 283110 917884 541285 293863 223303 644335 947510 756260 166712 979777 897768 629322 865788 433213 480539 433145 382646 882661 803326 644761 807533 473464 650530 532732 760761 060731 055231 380897 345358 477432 851548 080365 232967 365522 135400 610985 900031 255251 940407 737029 408725 579573 643885 309231 049718 514333 994935 466487 881952 572711 030131 522358 909796 606528 180441 481323 019301 704304 029030 784878 708239 203487 746498 (600 digits), a[1137] = 1
                                                                                      A[1138]/B[1138] = 6556 277461 309897 227268 303063 528882 193252 108457 065964 232328 371549 167448 939448 205307 976080 186978 348118 861981 056792 258056 083382 374693 807072 155668 530569 059213 543832 193673 512053 441106 234356 118439 063639 539223 795940 115585 367937 457530 342214 520396 337633 046288 263750 424502 728430 321747 348533 982917 712158 564610 036373 554524 146698 820849 723260 521735 862960 329211 048093 375924 980414 735628 021848 323646 641884 125139 635376 539715 639123 894871 902693 550051 687313 363312 698054 622810 203568 881949 803609 552080 897221 780867 967340 363791 812267 903054 695166 591413 347004 378575 608209 473852 317402 326179 018024 892001 125732 663463 280027 196946 (598 digits)/637227 720300 533452 526267 623538 297612 430090 074967 678972 568739 256767 957640 142348 133628 665717 801968 988480 658915 191083 162150 680588 318213 917585 758452 903994 757473 768146 287933 785175 027559 031991 143778 628495 651204 715185 469499 018365 071427 013523 868593 620100 710257 276078 259816 937269 640458 791641 616478 424962 645024 712849 474062 225425 150345 735505 780368 810659 644353 617071 421209 284092 961455 403034 177016 021754 018587 668773 969550 562329 109567 905101 079060 443090 859189 091670 371358 548374 664724 198536 831430 681717 056506 592447 514708 959828 610383 237065 807415 887859 379268 427005 031701 960800 951294 646705 091252 302323 693871 830157 179331 (600 digits), a[1138] = 3
                                                                                      A[1139]/B[1139] = 41182 959446 832372 648807 893803 043326 915855 470087 361725 451778 695968 350287 844145 501712 211653 658265 096092 058731 899829 093957 202925 733067 802847 407368 923333 266023 230573 241096 300951 048411 611131 492560 107747 799773 296452 345508 746563 565762 444374 831632 164716 139700 047204 478601 693052 914318 422486 272618 643893 306684 038286 620138 707064 900605 793366 827160 559279 832927 001898 006858 529167 291007 205687 574864 079424 743001 975848 416066 496902 183687 188726 859434 427845 595559 150555 420146 775256 991308 404826 720295 753736 311242 949663 031871 273740 563845 541526 731740 482543 813798 914151 419074 930837 026493 844489 631304 855461 099682 889638 066915 (599 digits)/4 002717 017148 807962 543601 726602 187826 145114 208687 508704 378637 127942 539367 592698 286309 701307 805802 965041 513021 613154 965290 685751 816193 169566 540608 989549 171459 688012 498228 116936 091512 206903 159103 085079 406036 362615 584820 219910 711672 999027 752847 014467 484847 300805 506412 379878 009465 729627 596639 179098 735936 710310 324912 785696 284721 295696 485539 508719 673655 175893 177786 237290 529493 478936 117327 511421 456884 490076 668851 454339 890374 796128 609763 269531 055165 805274 168559 027277 397070 770794 632469 399533 388758 069019 083189 225459 544251 995105 874626 849515 185407 168558 370653 246128 727069 584534 576544 598820 871470 184430 822484 (601 digits), a[1139] = 6
                                                                                      A[1140]/B[1140] = 171288 115248 639387 822499 878275 702189 856673 988806 512866 039443 155422 568600 316030 212156 822694 820038 732487 096908 656108 633884 895085 306965 018461 785144 223902 123306 466125 158058 715857 634752 678882 088679 494630 738316 981749 497620 354191 720580 119713 846924 996497 605088 452568 338909 500641 979021 038479 073392 287731 791346 189520 035078 974958 423272 896727 830378 100079 660919 055685 403359 097083 899656 844598 623102 959583 097147 538770 203981 626732 629620 657600 987789 398695 745549 300276 303397 304596 847183 422916 433263 912167 025839 765992 491276 907230 158436 861273 518375 277179 633771 264815 150152 040750 432154 395983 417220 547577 062194 838579 464606 (600 digits)/16 648095 788895 765302 700674 529947 048917 010546 909717 713790 083287 768538 115110 513141 278867 470949 025180 848646 711001 643703 023313 423595 582986 595851 920888 862191 443312 520196 280846 252919 393607 859603 780190 968813 275350 165647 808779 898007 918119 009634 879981 677970 649646 479300 285466 456781 678321 710152 003035 141357 588771 554090 773713 368210 289230 918291 722526 845538 338974 320644 132354 233255 079429 318778 646326 067439 846125 629080 644956 379688 671067 089615 518113 521215 079852 312767 045594 657484 253007 281715 361308 279850 611538 868523 847465 861666 787391 217489 305923 285920 120897 101238 514314 945315 859572 984843 397430 697607 179752 567880 469267 (602 digits), a[1140] = 4
                                                                                      A[1141]/B[1141] = 212471 074695 471760 471307 772078 745516 772529 458893 874591 491221 851390 918888 160175 713869 034348 478303 828579 155640 555937 727842 098011 040032 821309 192513 147235 389329 696698 399155 016808 683164 290013 581239 602378 538090 278201 843129 100755 286342 564088 678557 161213 744788 499772 817511 193694 893339 460965 346010 931625 098030 227806 655217 682023 323878 690094 657538 659359 493846 057583 410217 626251 190664 050286 197967 039007 840149 514618 620048 123634 813307 846327 847223 826541 341108 450831 723544 079853 838491 827743 153559 665903 337082 715655 523148 180970 722282 402800 250115 759723 447570 178966 569226 971587 458648 240473 048525 403038 161877 728217 531521 (600 digits)/20 650812 806044 573265 244276 256549 236743 155661 118405 222494 461924 896480 654478 105839 565177 172256 830983 813688 224023 256857 988604 109347 399179 765418 461497 851740 614772 208208 779074 369855 485120 066506 939294 053892 681386 528263 393600 117918 629792 008662 632828 692438 134493 780105 791878 836659 687787 439779 599674 320456 324708 264401 098626 153906 573952 213988 208066 354258 012629 496537 310140 470545 608922 797714 763653 578861 303010 119157 313807 834028 561441 885744 127876 790746 135018 118041 214153 684761 650078 052509 993777 679384 000296 937542 930655 087126 331643 212595 180550 135435 306304 269796 884968 191444 586642 569377 973975 296428 051222 752311 291751 (602 digits), a[1141] = 1
                                                                                      A[1142]/B[1142] = 596230 264639 582908 765115 422433 193223 401732 906594 262049 021886 858204 406376 636381 639894 891391 776646 389645 408189 767984 089569 091107 387030 661080 170170 518372 901965 859521 956368 749475 001081 258909 251158 699387 814497 538153 183878 555702 293265 247891 204039 318925 094665 452113 973931 888031 765699 960409 765414 150981 987406 645133 345514 339005 071030 276917 145455 418798 648611 170852 223794 349586 280984 945171 019037 037598 777446 568007 444077 874002 256236 350256 682237 051778 427766 201939 750485 464304 524167 078402 740383 243973 700005 197303 537573 269171 603001 666874 018606 796626 528911 622748 288605 983925 349450 876929 514271 353653 385950 295014 527648 (600 digits)/57 949721 400984 911833 189227 043045 522403 321869 146528 158779 007137 561499 424066 724820 409221 815462 687148 476023 159048 157419 000521 642290 381346 126688 843884 565672 672856 936613 838994 992630 363847 992617 658779 076598 638123 222174 595980 133845 177703 026960 145639 062846 918634 039511 869224 130101 053896 589711 202383 782270 238188 082892 970965 676023 437135 346268 138659 554054 364233 313718 752635 174346 297274 914208 173633 225162 452145 867395 272572 047745 793950 861103 773867 102707 349888 548849 473902 027007 553163 386735 348863 638618 612132 743609 708776 035919 450677 642679 667023 556790 733505 640832 284251 328205 032858 123599 345381 290463 282198 072503 052769 (602 digits), a[1142] = 2
                                                                                      A[1143]/B[1143] = 808701 339335 054669 236423 194511 938740 174262 365488 136640 513108 709595 325264 796557 353763 925740 254950 218224 563830 323921 817411 189118 427063 482389 362683 665608 291295 556220 355523 766283 684245 548922 832398 301766 352587 816355 027007 656457 579607 811979 882596 480138 839453 951886 791443 081726 659039 421375 111425 082607 085436 872940 000732 021028 394908 967011 802994 078158 142457 228435 634011 975837 471648 995457 217004 076606 617596 082626 064125 997637 069544 196584 529460 878319 768874 652771 474029 544158 362658 906145 893942 909877 037087 912959 060721 450142 325284 069674 268722 556349 976481 801714 857832 955512 808099 117402 562796 756691 547828 023232 059169 (600 digits)/78 600534 207029 485098 433503 299594 759146 477530 264933 381273 469062 457980 078544 830659 974398 987719 518132 289711 383071 414276 989125 751637 780525 892107 305382 417413 287629 144822 618069 362485 848968 059124 598073 130491 319509 750437 989580 251763 807495 035622 778467 755285 053127 819617 661102 966760 741684 029490 802058 102726 562896 347294 069591 829930 011087 560256 346725 908312 376862 810256 062775 644891 906197 711922 937286 804023 755155 986552 586379 881774 355392 746847 901743 893453 484906 666890 688055 711769 203241 439245 342641 318002 612429 681152 639431 123045 782320 855274 847573 692226 039809 910629 169219 519649 619500 692977 319356 586891 333420 824814 344520 (602 digits), a[1143] = 1
                                                                                      A[1144]/B[1144] = 1 404931 603974 637578 001538 616945 131963 575995 272082 398689 534995 567799 731641 432938 993658 817132 031596 607869 972020 091905 906980 280225 814094 143469 532854 183981 193261 415742 311892 515758 685326 807832 083557 001154 167085 354508 210886 212159 872873 059871 086635 799063 934119 404000 765374 969758 424739 381784 876839 233589 072843 518073 346246 360033 465939 243928 948449 496956 791068 399287 857806 325423 752633 940628 236041 114205 395042 650633 508203 871639 325780 546841 211697 930098 196640 854711 224515 008462 886825 984548 634326 153850 737093 110262 598294 719313 928285 736548 287329 352976 505393 424463 146438 939438 157549 994332 077068 110344 933778 318246 586817 (601 digits)/136 550255 608014 396931 622730 342640 281549 799399 411461 540052 476200 019479 502611 555480 383620 803182 205280 765734 542119 571695 989647 393928 161872 018796 149266 983085 960486 081436 457064 355116 212816 051742 256852 207089 957632 972612 585560 385608 985198 062582 924106 818131 971761 859129 530327 096861 795580 619202 004441 884996 801084 430187 040557 505953 448222 906524 485385 462366 741096 123974 815410 819238 203472 626131 110920 029186 207301 853947 858951 929520 149343 607951 675610 996160 834795 215740 161957 738776 756404 825980 691504 956621 224562 424762 348207 158965 232998 497954 514597 249016 773315 551461 453470 847854 652358 816576 664737 877354 615618 897317 397289 (603 digits), a[1144] = 1
                                                                                      A[1145]/B[1145] = 54 196102 290371 282633 294890 638426 953356 062082 704619 286842 842940 285985 127639 248239 112798 976757 455621 317283 500593 816346 282661 837699 362640 934231 611142 656893 635229 354428 207439 365113 726664 246542 007564 345624 701831 287667 040683 718532 748784 087081 174756 844568 335991 303915 875691 932546 799135 929200 431315 958991 853490 559727 158093 702300 100600 236311 844074 962516 203056 401374 230652 341940 071738 739330 186566 416411 629216 806699 375873 119931 449204 976550 573982 222051 241227 131798 005599 865748 062046 318993 998336 756205 046626 102937 795920 784071 600142 058509 187237 969457 181431 931314 422512 654162 794998 902021 491384 949799 031404 116602 358215 (602 digits)/5267 510247 311576 568500 097256 319925 458038 854707 900471 903267 564663 198201 177783 938914 551989 508643 318801 387623 983615 138724 595726 720907 931662 606360 977527 774679 786100 239407 986514 856901 935978 025330 358456 999909 709562 709716 240874 904905 245021 413773 894526 844299 980078 466539 813532 647508 973747 559166 970849 732605 004104 694401 610777 056161 043558 008186 791373 478248 538515 521299 048386 775943 638157 504905 152247 913099 632626 436571 226553 203540 030449 849011 574961 747565 207124 865016 842449 785285 946624 826511 619829 669609 145801 822121 871303 163724 636263 777546 402269 154863 425800 866164 401111 738126 409135 722890 579395 926366 726938 922875 441502 (604 digits), a[1145] = 38
                                                                                      A[1146]/B[1146] = 55 601033 894345 920211 296429 255372 085319 638077 976701 685532 377935 853784 859280 681178 106457 793889 487217 925153 472613 908252 189642 117925 176735 077701 143996 840874 828490 770170 519331 880872 411991 054374 091121 346778 868916 642175 251569 930692 621657 146952 261392 643632 270110 707916 641066 902305 223875 310985 308155 192580 926334 077800 504340 062333 566539 480240 792524 459472 994124 800662 088458 667363 824372 679958 422607 530617 024259 457332 884076 991570 774985 523391 785680 152149 437867 986509 230114 874210 948872 303542 632662 910055 783719 213200 394215 503385 528427 795057 474567 322433 686825 355777 568951 593600 952548 896353 568453 060143 965182 434848 945032 (602 digits)/5404 060502 919590 965431 719986 662565 739588 654107 311933 443320 040863 217680 680395 494394 935610 311825 524082 153358 525734 710420 585374 114836 093534 625157 126794 757765 746586 320844 443579 212018 148794 077072 615309 206999 667195 682328 826435 290514 230219 476356 818633 662431 951840 325669 343859 744370 769328 178368 975291 617601 805189 124588 651334 562114 491780 914711 276758 940615 279611 645273 863797 595181 841630 131036 263167 942285 839928 290519 085505 133060 179793 456963 250572 743726 041920 080757 004407 524062 703029 652492 311334 626230 370364 246884 219510 322689 869262 275500 916866 403880 199116 417625 854582 585981 061494 539467 244133 803721 342557 820192 838791 (604 digits), a[1146] = 1
                                                                                      A[1147]/B[1147] = 109 797136 184717 202844 591319 893799 038675 700160 681320 972375 220876 139769 986919 929417 219256 770646 942839 242436 973207 724598 472303 955624 539376 011932 755139 497768 463720 124598 726771 245986 138655 300916 098685 692403 570747 929842 292253 649225 370441 234033 436149 488200 606102 011832 516758 834852 023011 240185 739471 151572 779824 637527 662433 764633 667139 716552 636599 421989 197181 202036 319111 009303 896111 419288 609173 947028 653476 264032 259950 111502 224190 499942 359662 374200 679095 118307 235714 739959 010918 622536 630999 666260 830345 316138 190136 287457 128569 853566 661805 291890 868257 287091 991464 247763 747547 798375 059838 009942 996586 551451 303247 (603 digits)/10671 570750 231167 533931 817242 982491 197627 508815 212405 346587 605526 415881 858179 433309 487599 820468 842883 540982 509349 849145 181100 835744 025197 231518 104322 532445 532686 560252 430094 068920 084772 102402 973766 206909 376758 392045 067310 195419 475240 890130 713160 506731 931918 792209 157392 391879 743075 737535 946141 350206 809293 818990 262111 618275 535338 922898 068132 418863 818127 166572 912184 371125 479787 635941 415415 855385 472554 727090 312058 336600 210243 305974 825534 491291 249044 945773 846857 309348 649654 479003 931164 295839 516166 069006 090813 486414 505526 053047 319135 558743 624917 283790 255694 324107 470630 262357 823529 730088 069496 743068 280293 (605 digits), a[1147] = 1
                                                                                      A[1148]/B[1148] = 275 195306 263780 325900 479069 042970 162671 038399 339343 630282 819688 133324 833120 540012 544971 335183 372896 410027 419029 357449 134250 029174 255487 101566 654275 836411 755931 019367 972874 372844 689301 656206 288492 731586 010412 501859 836077 229143 362539 615019 133691 620033 482314 731581 674584 572009 269897 791356 787097 495726 485983 352855 829207 591600 900818 913346 065723 303451 388487 204734 726680 685971 616595 518535 640955 424674 331211 985397 403977 214575 223366 523276 505004 900550 796058 223123 701544 354128 970709 548615 894662 242577 444409 845476 774488 078299 785567 502190 798177 906215 423339 929961 551880 089128 447644 493103 688129 080029 958355 537751 551526 (603 digits)/26747 202003 381926 033295 354472 627548 134843 671737 736744 136495 251916 049444 396754 361013 910809 952763 209849 235323 544434 408710 947575 786324 143929 088193 335439 822656 811959 441349 303767 349858 318338 281878 562841 620818 420712 466418 961055 681353 180701 256618 244954 675895 815677 910087 658644 528130 255479 653440 867574 318015 423776 762569 175557 798665 562458 760507 413023 778342 915865 978419 688166 337432 801205 402919 093999 653056 785037 744699 709621 806260 600280 068912 901641 726308 540009 972304 698122 142760 002338 610500 173663 217909 402696 384896 401137 295518 880314 381595 555137 521367 448950 985206 365971 234196 002755 064182 891193 263897 481551 306329 399377 (605 digits), a[1148] = 2
                                                                                      A[1149]/B[1149] = 384 992442 448497 528745 070388 936769 201346 738560 020664 602658 040564 273094 820040 469429 764228 105830 315735 652464 392237 082047 606553 984798 794863 113499 409415 334180 219651 143966 699645 618830 827956 957122 387178 423989 581160 431702 128330 878368 732980 849052 569841 108234 088416 743414 191343 406861 292909 031542 526568 647299 265807 990383 491641 356234 567958 629898 702322 725440 585668 406771 045791 695275 512706 937824 250129 371702 984688 249429 663927 326077 447557 023218 864667 274751 475153 341430 937259 094087 981628 171152 525661 908838 274755 161614 964624 365756 914137 355757 459983 198106 291597 217053 543344 336892 195192 291478 747967 089972 954942 089202 854773 (603 digits)/37418 772753 613093 567227 171715 610039 332471 180552 949149 483082 857442 465326 254933 794323 398409 773232 052732 776306 053784 257856 128676 622068 169126 319711 439762 355102 344646 001601 733861 418778 403110 384281 536607 827727 797470 858464 028365 876772 655942 146748 958115 182627 747596 702296 816036 920009 998555 390976 813715 668222 233070 581559 437669 416941 097797 683405 481156 197206 733993 144992 600350 708558 280993 038860 509415 508442 257592 471790 021680 142860 810523 374887 727176 217599 789054 918078 544979 452108 651993 089504 104827 513748 918862 453902 491950 781933 385840 434642 874273 080111 073868 268996 621665 558303 473385 326540 714722 993985 551048 049397 679670 (605 digits), a[1149] = 1
                                                                                      A[1150]/B[1150] = 660 187748 712277 854645 549457 979739 364017 776959 360008 232940 860252 406419 653161 009442 309199 441013 688632 062491 811266 439496 740804 013973 050350 215066 063691 170591 975582 163334 672519 991675 517258 613328 675671 155575 591572 933561 964408 107512 095520 464071 703532 728267 570731 474995 865927 978870 562806 822899 313666 143025 751791 343239 320848 947835 468777 543244 768046 028891 974155 611505 772472 381247 129302 456359 891084 796377 315900 234827 067904 540652 670923 546495 369672 175302 271211 564554 638803 448216 952337 719768 420324 151415 719165 007091 739112 444056 699704 857948 258161 104321 714937 147015 095224 426020 642836 784582 436096 170002 913297 626954 406299 (603 digits)/64165 974756 995019 600522 526188 237587 467314 852290 685893 619578 109358 514770 651688 155337 309219 725995 262582 011629 598218 666567 076252 408392 313055 407904 775202 177759 156605 442951 037628 768636 721448 666160 099449 448546 218183 324882 989421 558125 836643 403367 203069 858523 563274 612384 474681 448140 254035 044417 681289 986237 656847 344128 613227 215606 660256 443912 894179 975549 649859 123412 288517 045991 082198 441779 603415 161499 042630 216489 731301 949121 410803 443800 628817 943908 329064 890383 243101 594868 654331 700004 278490 731658 321558 838798 893088 077452 266154 816238 429410 601478 522819 254202 987636 792499 476140 390723 605916 257883 032599 355727 079047 (605 digits), a[1150] = 1
                                                                                      A[1151]/B[1151] = 40656 445113 897446 662123 587325 700870 406431 133080 981166 812050 515961 064693 662862 045410 625394 007665 322291 464464 879489 891348 795598 837154 866226 232529 294576 740290 730163 107381 723365 111037 380732 370171 603118 914100 667109 378981 957225 436606 559729 157426 485337 532555 903036 718162 012950 117965 624125 228400 660203 371870 125079 927982 063427 174198 163388 767829 553130 487851 009160 708623 166606 951350 400156 775777 606301 950719 254602 573880 806104 305890 373893 359436 414669 968190 019058 779263 904269 435322 074229 077026 165435 145197 143820 594211 050483 453215 596133 690601 207810 561730 902763 184974 352034 324151 408236 151007 349833 460150 666097 333421 639012 (605 digits)/3 951543 232930 309289 199101 269198 102874 838677 170284 788660 277347 528311 866336 007911 269899 260813 058943 070235 485711 545122 918447 780073 533999 265506 201902 727095 198410 897578 021615 029216 305618 411479 020047 603024 189047 106653 676326 383080 922448 691189 752148 345376 552565 107348 057749 771605 256565 494693 100455 372404 828719 300758 573404 844529 568947 373440 762092 026134 705735 375399 673142 199890 514014 295097 987416 317740 359883 858035 677663 631099 039266 869533 446726 085070 796007 862013 231456 374176 739096 566226 789765 092762 144906 533951 620634 970323 506521 621284 225187 068319 770300 965842 775378 867509 900771 517949 160680 675614 724850 539608 748749 501537 (607 digits), a[1151] = 61
                                                                                      A[1152]/B[1152] = 447881 084001 584191 138005 010040 689313 834760 240850 152843 165496 535824 118049 944643 508959 188533 525332 233838 171605 485655 244333 492391 222676 578838 772888 304035 313790 007376 344533 629536 213086 705314 685216 309979 210682 929776 102363 493887 910184 252541 195763 042245 586382 504135 374778 008379 276492 428184 335306 575903 233597 127670 551042 018547 864015 266053 989369 852481 395253 074923 406360 605148 846101 531026 989913 560406 254289 116528 547515 935051 905446 783750 500295 931041 825392 480858 136457 585767 236759 768857 567056 240110 748584 301191 543413 294430 429428 257175 454561 544077 283361 645332 181732 967601 991686 133434 445663 284264 231660 240368 294592 435431 (606 digits)/43 531141 536990 397200 790636 487367 369210 692763 725423 361156 670400 920789 044466 738712 124229 178163 374369 035172 354456 594570 769492 657061 282384 233623 628834 773249 360279 029963 680716 359008 130439 247717 886683 732715 528064 391373 764473 203311 705061 439730 676999 002211 936739 744103 247631 962339 270360 695659 149426 777743 102149 965191 651581 903052 474027 768104 826925 181661 738638 779255 527976 487312 700148 328276 303359 098559 120221 481022 670789 673391 381056 975671 357787 564596 699994 811210 436403 359045 724930 882826 387420 298874 325630 195026 665783 566646 649190 100281 293296 180928 074789 147089 783370 530245 700986 173581 158211 037678 231238 968295 591971 595954 (608 digits), a[1152] = 11
                                                                                      A[1153]/B[1153] = 488537 529115 481637 800128 597366 390184 241191 373931 134009 977547 051785 182743 607505 554369 813927 532997 556129 636070 365145 135682 287990 059831 445065 005417 598612 054080 737539 451915 352901 324124 086047 055387 913098 124783 596885 481345 451113 346790 812270 353189 527583 118938 407172 092940 021329 394458 052309 563707 236106 605467 252750 479024 081975 038213 429442 757199 405611 883104 084084 114983 771755 797451 931183 765691 166708 205008 371131 121396 741156 211337 157643 859732 345711 793582 499916 915721 490036 672081 843086 644082 405545 893781 445012 137624 344913 882643 853309 145162 751887 845092 548095 366707 319636 315837 541670 596670 634097 691810 906465 628014 074443 (606 digits)/47 482684 769920 706489 989737 756565 472085 531440 895708 149816 947748 449100 910802 746623 394128 438976 433312 105407 840168 139693 687940 437134 816383 499129 830737 500344 558689 927541 702331 388224 436057 659196 906731 335739 717111 498027 440799 586392 627510 130920 429147 347588 489304 851451 305381 733944 526926 190352 249882 150147 930869 265950 224986 747582 042975 141545 589017 207796 444374 154655 201118 687203 214162 623374 290775 416299 480105 339058 348453 304490 420323 845204 804513 649667 496002 673223 667859 733222 464027 449053 177185 391636 470536 728978 286418 536970 155711 721565 518483 249247 845090 112932 558749 397755 601757 691530 318891 713292 956089 507904 340721 097491 (608 digits), a[1153] = 1
                                                                                      A[1154]/B[1154] = 936418 613117 065828 938133 607407 079498 075951 614781 286853 143043 587609 300793 552149 063329 002461 058329 789967 807675 850800 380015 780381 282508 023903 778305 902647 367870 744915 796448 982437 537210 791361 740604 223077 335466 526661 583708 945001 256975 064811 548952 569828 705320 911307 467718 029708 670950 480493 899013 812009 839064 380421 030066 100522 902228 695496 746569 258093 278357 159007 521344 376904 643553 462210 755604 727114 459297 487659 668912 676208 116783 941394 360028 276753 618974 980775 052179 075803 908841 611944 211138 645656 642365 746203 681037 639344 312072 110484 599724 295965 128454 193427 548440 287238 307523 675105 042333 918361 923471 146833 922606 509874 (606 digits)/91 013826 306911 103690 780374 243932 841296 224204 621131 510973 618149 369889 955269 485335 518357 617139 807681 140580 194624 734264 457433 094196 098767 732753 459572 273593 918968 957505 383047 747232 566496 906914 793415 068455 245175 889401 205272 789704 332571 570651 106146 349800 426044 595554 553013 696283 797286 886011 399308 927891 033019 231141 876568 650634 517002 909650 415942 389458 183012 933910 729095 174515 914310 951650 594134 514858 600326 820081 019242 977881 801380 820876 162301 214264 195997 484434 104263 092268 188958 331879 564605 690510 796166 924004 952202 103616 804901 821846 811779 430175 919879 260022 342119 928001 302743 865111 477102 750971 187328 476199 932692 693445 (608 digits), a[1154] = 1
                                                                                      A[1155]/B[1155] = 1 424956 142232 547466 738262 204773 469682 317142 988712 420863 120590 639394 483537 159654 617698 816388 591327 346097 443746 215945 515698 068371 342339 468968 783723 501259 421951 482455 248364 335338 861334 877408 795992 136175 460250 123547 065054 396114 603765 877081 902142 097411 824259 318479 560658 051038 065408 532803 462721 048116 444531 633171 509090 182497 940442 124939 503768 663705 161461 243091 636328 148660 441005 393394 521295 893822 664305 858790 790309 417364 328121 099038 219760 622465 412557 480691 967900 565840 580923 455030 855221 051202 536147 191215 818661 984258 194715 963793 744887 047852 973546 741522 915147 606874 623361 216775 639004 552459 615282 053299 550620 584317 (607 digits)/138 496511 076831 810180 770112 000498 313381 755645 516839 660790 565897 818990 866072 231958 912486 056116 240993 245988 034792 873958 145373 531330 915151 231883 290309 773938 477658 885047 085379 135457 002554 566111 700146 404194 962287 387428 646072 376096 960081 701571 535293 697388 915349 447005 858395 430228 324213 076363 649191 078038 963888 497092 101555 398216 559978 051196 004959 597254 627387 088565 930213 861719 128473 575024 884909 931158 080432 159139 367696 282372 221704 666080 966814 863931 692000 157657 772122 825490 652985 780932 741791 082147 266703 652983 238620 640586 960613 543412 330262 679423 764969 372954 900869 325756 904501 556641 795994 464264 143417 984104 273413 790936 (609 digits), a[1155] = 1
                                                                                      A[1156]/B[1156] = 2 361374 755349 613295 676395 812180 549180 393094 603493 707716 263634 227003 784330 711803 681027 818849 649657 136065 251422 066745 895713 848752 624847 492872 562029 403906 789822 227371 044813 317776 398545 668770 536596 359252 795716 650208 648763 341115 860740 941893 451094 667240 529580 229787 028376 080746 736359 013297 361734 860126 283596 013592 539156 283020 842670 820436 250337 921798 439818 402099 157672 525565 084558 855605 276900 620937 123603 346450 459222 093572 444905 040432 579788 899219 031532 461467 020079 641644 489765 066975 066359 696859 178512 937419 499699 623602 506788 074278 344611 343818 102000 934950 463587 894112 930884 891880 681338 470821 538753 200133 473227 094191 (607 digits)/229 510337 383742 913871 550486 244431 154677 979850 137971 171764 184047 188880 821341 717294 430843 673256 048674 386568 229417 608222 602806 625527 013918 964636 749882 047532 396627 842552 468426 882689 569051 473026 493561 472650 207463 276829 851345 165801 292653 272222 641440 047189 341394 042560 411409 126512 121499 962375 048500 005929 996907 728233 978124 048851 076980 960846 420901 986712 810400 022476 659309 036235 042784 526675 479044 446016 680758 979220 386939 260254 023085 486957 129116 078195 887997 642091 876385 917758 841944 112812 306396 772658 062870 576988 190822 744203 765515 365259 142042 109599 684848 632977 242989 253758 207245 421753 273097 215235 330746 460304 206106 484381 (609 digits), a[1156] = 1
                                                                                      A[1157]/B[1157] = 10 870455 163631 000649 443845 453495 666403 889521 402687 251728 175127 547409 620860 006869 341810 091787 189955 890358 449434 482929 098553 463381 841729 440459 031841 116886 581240 391939 427617 606444 455517 552490 942377 573186 643116 724381 660107 760578 046729 644655 706520 766373 942580 237627 674162 374025 010844 585992 909660 488621 578915 687541 665715 314581 311125 406684 505120 350898 920734 851488 267018 250920 779240 815815 628898 377571 158719 244592 627197 791654 107741 260768 538916 219341 538687 326560 048219 132418 539983 722931 120659 838639 250198 940893 817460 478668 221868 260907 123332 423125 381550 481324 769499 183326 346900 784298 364358 435745 770294 853833 443528 961081 (608 digits)/1056 537860 611803 465666 972056 978222 932093 675046 068724 347847 302086 574514 151439 101136 635860 749140 435690 792260 952463 306848 556600 033438 970827 090430 289837 964068 064170 255256 959086 666215 278760 458217 674392 294795 792140 494748 051453 039302 130694 790462 101053 886146 280925 617247 504031 936276 810212 925863 843191 101758 951519 410028 014051 593620 867901 894581 688567 544105 868987 178472 567450 006659 299611 681726 801087 715224 803468 076020 915453 323388 314046 613909 483279 176715 243990 726025 277666 496526 020762 232181 967378 172779 518185 960936 001911 617402 022675 004448 898431 117822 504363 904863 872826 340789 733483 243654 888383 325205 466403 825321 097839 728460 (610 digits), a[1157] = 4
                                                                                      A[1158]/B[1158] = 13 231829 918980 613945 120241 265676 215584 282616 006180 959444 438761 774413 405190 718673 022837 910636 839613 026423 700856 549674 994267 312134 466576 933331 593870 520793 371062 619310 472430 924220 854063 221261 478973 932439 438833 374590 308871 101693 907470 586549 157615 433614 472160 467414 702538 454771 747203 599290 271395 348747 862511 701134 204871 597602 153796 227120 755458 272697 360553 253587 424690 776485 863799 671420 905798 998508 282322 591043 086419 885226 552646 301201 118705 118560 570219 788027 068298 774063 029748 789906 187019 535498 428711 878313 317160 102270 728656 335185 467943 766943 483551 416275 233087 077439 277785 676179 045696 906567 309048 053966 916756 055272 (608 digits)/1286 048197 995546 379538 522543 222654 086771 654896 206695 519611 486133 763394 972780 818431 066704 422396 484365 178829 181880 915071 159406 658965 984746 055067 039720 011600 460798 097809 427513 548904 847811 931244 167953 767445 999603 771577 902798 205103 423348 062684 742493 933335 622319 659807 915441 062788 931712 888238 891691 107688 948427 138261 992175 642471 944882 855428 109469 530818 679387 200949 226759 042894 342396 208402 280132 161241 484227 055241 302392 583642 337132 100866 612395 254911 131988 368117 154052 414284 862706 344994 273774 945437 581056 537924 192734 361605 788190 369708 040473 227422 189212 537841 115815 594547 940728 665408 161480 540440 797150 285625 303946 212841 (610 digits), a[1158] = 1
                                                                                      A[1159]/B[1159] = 24 102285 082611 614594 564086 719171 881988 172137 408868 211172 613889 321823 026050 725542 364648 002424 029568 916782 150291 032604 092820 775516 308306 373790 625711 637679 952303 011249 900048 530665 309580 773752 421351 505626 081950 098971 968978 862271 954200 231204 864136 199988 414740 705042 376700 828796 758048 185283 181055 837369 441427 388675 870586 912183 464921 633805 260578 623596 281288 105075 691709 027406 643040 487236 534697 376079 441041 835635 713617 676880 660387 561969 657621 337902 108907 114587 116517 906481 569732 512837 307679 374137 678910 819207 134620 580938 950524 596092 591276 190068 865101 897600 002586 260765 624686 460477 410055 342313 079342 907800 360285 016353 (608 digits)/2342 586058 607349 845205 494600 200877 018865 329942 275419 867458 788220 337909 124219 919567 702565 171536 920055 971090 134344 221919 716006 692404 955573 145497 329557 975668 524968 353066 386600 215120 126572 389461 842346 062241 791744 266325 954251 244405 554042 853146 843547 819481 903245 277055 419472 999065 741925 814102 734882 209447 899946 548290 006227 236092 812784 750009 798037 074924 548374 379421 794209 049553 642007 890129 081219 876466 287695 131262 217845 907030 651178 714776 095674 431626 375979 094142 431718 910810 883468 577176 241153 118217 099242 498860 194645 979007 810865 374156 938904 345244 693576 442704 988641 935337 674211 909063 049863 865646 263554 110946 401785 941301 (610 digits), a[1159] = 1
                                                                                      A[1160]/B[1160] = 37 334115 001592 228539 684327 984848 097572 454753 415049 170617 052651 096236 431241 444215 387485 913060 869181 943205 851147 582279 087088 087650 774883 307122 219582 158473 323365 630560 372479 454886 163643 995013 900325 438065 520783 473562 277849 963965 861670 817754 021751 633602 886901 172457 079239 283568 505251 784573 452451 186117 303939 089810 075458 509785 618717 860926 016036 896293 641841 358663 116399 803892 506840 158657 440496 374587 723364 426678 800037 562107 213033 863170 776326 456462 679126 902614 184816 680544 599481 302743 494698 909636 107622 697520 451780 683209 679180 931278 059219 957012 348653 313875 235673 338204 902472 136656 455752 248880 388390 961767 277041 071625 (608 digits)/3628 634256 602896 224744 017143 423531 105636 984838 482115 387070 274354 101304 097000 737998 769269 593933 404421 149919 316225 136990 875413 351370 940319 200564 369277 987268 985766 450875 814113 764024 974384 320706 010299 829687 791348 037903 857049 449508 977390 915831 586041 752817 525564 936863 334914 061854 673638 702341 626573 317136 848373 686551 998402 878564 757667 605437 907506 605743 227761 580371 020968 092447 984404 098531 361352 037707 771922 186503 520238 490672 988310 815642 708069 686537 507967 462259 585771 325095 746174 922170 514928 063654 680299 036784 387380 340613 599055 743864 979377 572666 882788 980546 104457 529885 614940 574471 211344 406087 060704 396571 705732 154142 (610 digits), a[1160] = 1
                                                                                      A[1161]/B[1161] = 61 436400 084203 843134 248414 704019 979560 626890 823917 381789 666540 418059 457292 169757 752133 915484 898750 859988 001438 614883 179908 863167 083189 680912 845293 796153 275668 641810 272527 985551 473224 768766 321676 943691 602733 572534 246828 826237 815871 048958 885887 833591 301641 877499 455940 112365 263299 969856 633507 023486 745366 478485 946045 421969 083639 494731 276615 519889 923129 463738 808108 831299 149880 645893 975193 750667 164406 262314 513655 238987 873421 425140 433947 794364 788034 017201 301334 587026 169213 815580 802378 283773 786533 516727 586401 264148 629705 527370 650496 147081 213755 211475 238259 598970 527158 597133 865807 591193 467733 869567 637326 087978 (608 digits)/5971 220315 210246 069949 511743 624408 124502 314780 757535 254529 062574 439213 221220 657566 471834 765470 324477 121009 450569 358910 591420 043775 895892 346061 698835 962937 510734 803942 200713 979145 100956 710167 852645 891929 583092 304229 811300 693914 531433 768978 429589 572299 428810 213918 754387 060920 415564 516444 361455 526584 748320 234842 004630 114657 570452 355447 705543 680667 776135 959792 815177 142001 626411 988660 442571 914174 059617 317765 738084 397703 639489 530418 803744 118163 883946 556402 017490 235906 629643 499346 756081 181871 779541 535644 582026 319621 409921 118021 918281 917911 576365 423251 093099 465223 289152 483534 261208 271733 324258 507518 107518 095443 (610 digits), a[1161] = 1
                                                                                      A[1162]/B[1162] = 98 770515 085796 071673 932742 688868 077133 081644 238966 552406 719191 514295 888533 613973 139619 828545 767932 803193 852586 197162 266996 950817 858072 988035 064875 954626 599034 272370 645007 440437 636868 763780 222002 381757 123517 046096 524678 790203 677541 866712 907639 467194 188543 049956 535179 395933 768551 754430 085958 209604 049305 568296 021503 931754 702357 355657 292652 416183 564970 822401 924508 635191 656720 804551 415690 125254 887770 688993 313692 801095 086455 288311 210274 250827 467160 919815 486151 267570 768695 118324 297077 193409 894156 214248 038181 947358 308886 458648 709716 104093 562408 525350 473932 937175 429630 733790 321559 840073 856124 831334 914367 159603 (608 digits)/9599 854571 813142 294693 528887 047939 230139 299619 239650 641599 336928 540517 318221 395565 241104 359403 728898 270928 766794 495901 466833 395146 836211 546626 068113 950206 496501 254818 014827 743170 075341 030873 862945 721617 374440 342133 668350 143423 508824 684810 015631 325116 954375 150782 089301 122775 089203 218785 988028 843721 596693 921394 003032 993222 328119 960885 613050 286411 003897 540163 836145 234449 610816 087191 803923 951881 831539 504269 258322 888376 627800 346061 511813 804701 391914 018661 603261 561002 375818 421517 271009 245526 459840 572428 969406 660235 008976 861886 897659 490578 459154 403797 197556 995108 904093 058005 472552 677820 384962 904089 813250 249585 (610 digits), a[1162] = 1
                                                                                      A[1163]/B[1163] = 456 518460 427388 129829 979385 459492 288092 953467 779783 591416 543306 475243 011426 625650 310613 229667 970482 072763 411783 403532 247896 666438 515481 633053 104797 614659 671805 731292 852557 747302 020699 823887 209686 470720 096801 756920 345543 987052 526038 515810 516445 702368 055814 077325 596657 696100 337506 987576 977339 861902 942588 751670 032061 148987 893068 917360 447225 184624 183012 753346 506143 372065 776763 864099 637954 251686 715489 018287 768426 443368 219242 578385 275044 797674 656677 696463 245939 657309 243994 288877 990687 057413 363158 373719 739129 053581 865251 361965 489360 563455 463389 312877 133991 347672 245681 532295 152046 951488 892233 194907 294794 726390 (609 digits)/44370 638602 462815 248723 627291 816165 045059 513257 716137 820926 410288 601282 494106 239827 436252 203085 240070 204724 517747 342516 458753 624363 240738 532565 971291 763763 496739 823214 260024 951825 402320 833663 304428 778399 080853 672764 484701 267608 566732 508218 492114 872767 246310 817047 111591 552020 772377 391588 313570 901471 135095 920418 016762 087546 882932 198990 157744 826311 791726 120448 159758 079800 069676 337427 658267 721701 385775 334842 771375 951210 150690 914664 850999 336969 451602 631048 430536 479916 132917 185415 840118 163977 618903 825360 459652 960561 445828 565569 508919 880225 412983 038439 883327 445658 905524 715556 151418 983014 864110 123877 360519 093783 (611 digits), a[1163] = 4
                                                                                      A[1164]/B[1164] = 3750 918198 504901 110313 767826 364806 381876 709386 477235 283739 065643 316239 979946 619175 624525 665889 531789 385301 146853 425420 250170 282325 981926 052459 903256 871903 973480 122713 465469 418853 802467 354877 899494 147517 897931 101459 289030 686623 885849 993197 039205 086138 635055 668561 308440 964736 468607 655045 904677 104827 590015 581656 277993 123657 846908 694540 870453 893177 029072 849173 973655 611717 870831 717348 519324 138748 611682 835295 461104 348040 840395 915393 410632 632224 720582 491521 453668 526044 720649 429348 222573 652716 799423 204005 951214 376013 230897 354372 624600 611737 269523 028367 545863 718553 395082 992151 537935 451984 993990 390593 272724 970723 (610 digits)/364564 963391 515664 284482 547221 577259 590615 405680 968753 209010 619237 350777 271071 314184 731121 984085 649459 908724 908773 236033 136862 390052 762119 807153 838448 060314 470419 840532 095027 357773 293907 700180 298375 948810 021269 724249 545960 284292 042684 750557 952550 307254 924861 687158 982033 538941 268222 351492 496596 055490 677461 284738 137129 693597 391577 552806 875008 896905 337706 503749 114209 872850 168226 786613 070065 725492 917742 183011 429330 498057 833327 663380 319808 500457 004735 067049 047553 400331 439155 904843 991954 557347 411071 175312 646630 344726 575605 386442 969018 532381 763018 711316 264176 560380 148290 782454 683904 541939 297843 895108 697402 999849 (612 digits), a[1164] = 8
                                                                                      A[1165]/B[1165] = 15460 191254 446992 571085 050690 918717 815599 791013 688724 726372 805879 740202 931213 102352 808715 893226 097639 613967 999197 105213 248577 795742 443185 842892 717825 102275 565726 222146 714435 422717 230569 243398 807663 060791 688526 162757 501666 733548 069438 488598 673266 046922 596036 751570 830421 555046 211937 607760 596048 281213 302651 078295 144033 643619 280703 695523 929040 757332 299304 150042 400765 818937 260090 733493 715250 806681 162220 359469 612843 835531 580826 239958 917575 326573 539007 662549 060613 761488 126592 006270 880981 668280 560851 189743 543986 557634 788840 779455 987763 010404 541481 426347 317446 221885 826013 500901 303788 759428 868194 757280 385694 609282 (611 digits)/1 502630 492168 525472 386653 816178 125203 407521 135981 591150 656968 887238 004391 578391 496566 360740 139427 837909 839624 152840 286649 006203 184574 289217 761181 325084 005021 378419 185342 640134 382918 577951 634384 497932 573639 165932 569762 668542 404776 737471 510450 302316 101786 945757 565683 039725 707785 845266 797558 299955 123433 844941 059370 565280 861936 449242 410217 657780 413933 142552 135444 616597 571200 742583 483879 938530 623673 056744 066888 488697 943441 484001 568186 130233 338797 470542 899244 620750 081241 889540 804791 807936 393367 263188 526611 046174 339467 748250 111341 384994 009752 465057 883704 940033 687179 498687 845374 887037 150772 055485 704312 150131 093179 (613 digits), a[1165] = 4
                                                                                      A[1166]/B[1166] = 19211 109452 951893 681398 818517 283524 197476 500400 165960 010111 871523 056442 911159 721528 433241 559115 629428 999269 146050 530633 498748 078068 425111 895352 621081 974179 539206 344860 179904 841571 033036 598276 707157 208309 586457 264216 790697 420171 955288 481795 712471 133061 231092 420132 138862 519782 680545 262806 500725 386040 892666 659951 422026 767277 127612 390064 799494 650509 328376 999216 374421 430655 130922 450842 234574 945429 773903 194765 073948 183572 421222 155352 328207 958798 259590 154070 514282 287532 847241 435619 103555 320997 360274 393749 495200 933648 019738 133828 612363 622141 811004 454714 863309 940439 221096 493052 841724 211413 862185 147873 658419 580005 (611 digits)/1 867195 455560 041136 671136 363399 702462 998136 541662 559903 865979 506475 355168 849462 810751 091862 123513 487369 748349 061613 522682 143065 574627 051337 568335 163532 065335 848839 025874 735161 740691 871859 334564 796308 522449 187202 294012 214502 689068 780156 261008 254866 409041 870619 252842 021759 246727 113489 149050 796551 178924 522402 344108 702410 555533 840819 963024 532789 310838 480258 639193 730807 444050 910810 270493 008596 349165 974486 249899 918028 441499 317329 231566 450041 839254 475277 966293 668303 481573 328696 709635 799890 950714 674259 701923 692804 684194 323855 497784 354012 542134 228076 595021 204210 247559 646978 627829 570941 692711 353329 599420 847534 093028 (613 digits), a[1166] = 1
                                                                                      A[1167]/B[1167] = 53882 410160 350779 933882 687725 485766 210552 791814 020644 746596 548925 853088 753532 545409 675199 011457 356497 612506 291298 166480 246073 951879 293409 633597 959989 050634 644138 911867 074245 105859 296642 439952 221977 477410 861440 691191 083061 573891 980015 452190 098208 313045 058221 591835 108146 594611 573028 133373 597499 053295 087984 398197 988087 178173 535928 475653 528030 058350 956058 148475 149608 680247 521935 635178 184400 697540 710026 748999 760740 202676 423270 550663 573991 244170 058187 970690 089178 336553 821074 877509 088092 310275 281399 977242 534388 424930 828317 047113 212490 254688 163490 335777 044066 102764 268206 487006 987237 182256 592565 053027 702533 769292 (611 digits)/5 237021 403288 607745 728926 542977 530129 403794 219306 710958 388927 900188 714729 277317 118068 544464 386454 812649 336322 276067 332013 292334 333828 391892 897851 652148 135693 076097 237092 110457 864302 321670 303514 090549 618537 540337 157787 097547 782914 297784 032466 812048 919870 686996 071367 083244 201240 072245 095659 893057 481282 889745 747587 970101 973004 130882 336266 723359 035610 103069 413832 078212 459302 564204 024865 955723 322005 005716 566688 324754 826440 118660 031319 030317 017306 421098 831831 957357 044388 546934 224063 407718 294796 611707 930458 431783 707856 395961 106910 093019 094020 921211 073747 348454 182298 792645 101034 028920 536194 762144 903153 845199 279235 (613 digits), a[1167] = 2
                                                                                      A[1168]/B[1168] = 73093 519613 302673 615281 506242 769290 408029 292214 186604 756708 420448 909531 664692 266938 108440 570572 985926 611775 437348 697113 744822 029947 718521 528950 581071 024814 183345 256727 254149 947430 329679 038228 929134 685720 447897 955407 873758 994063 935303 933985 810679 446106 289314 011967 247009 114394 253573 396180 098224 439335 980651 058149 410113 945450 663540 865718 327524 708860 284435 147691 524030 110902 652858 086020 418975 642970 483929 943764 834688 386248 844492 706015 902199 202968 317778 124760 603460 624086 668316 313128 191647 631272 641674 370992 029589 358578 848055 180941 824853 876829 974494 790491 907376 043203 489302 980059 828961 393670 454750 200901 360953 349297 (611 digits)/7 104216 858848 648882 400062 906377 232592 401930 760969 270862 254907 406664 069898 126779 928819 636326 509968 300019 084671 337680 854695 435399 908455 443230 466186 815680 201028 924936 262966 845619 604994 193529 638078 886858 140986 727539 451799 312050 471983 077940 293475 066915 328912 557615 324209 105003 447967 185734 244710 689608 660207 412148 091696 672512 528537 971702 299291 256148 346448 583328 053025 809019 903353 475014 295358 964319 671170 980202 816588 242783 267939 435989 262885 480358 856560 896376 798125 625660 525961 875630 933699 207609 245511 285967 632382 124588 392050 719816 604694 447031 636155 149287 668768 552664 429858 439623 728863 599862 228906 115474 502574 692733 372263 (613 digits), a[1168] = 1
                                                                                      A[1169]/B[1169] = 200069 449386 956127 164445 700211 024347 026611 376242 393854 260013 389823 672152 082917 079285 892080 152603 328350 836057 165995 560707 735718 011774 730452 691499 122131 100263 010829 425321 582545 000719 956000 516410 080246 848851 757236 602006 830579 562019 850623 320161 719567 205257 636849 615769 602164 823400 080174 925733 793947 931967 049286 514496 808315 069074 863010 207090 183079 476071 524928 443858 197668 902052 827651 807219 022351 983481 677886 636529 430116 975174 112255 962695 378389 650106 693744 220211 296099 584727 157707 503765 471387 572820 564748 719226 593567 142088 524427 408996 862198 008348 112479 916760 858818 189171 246812 447126 645159 969597 502065 454830 424440 467886 (612 digits)/19 445455 120985 905510 529052 355731 995314 207655 741245 252682 898742 713516 854525 530876 975707 817117 406391 412687 505664 951429 041404 163134 150739 278353 830225 283508 537750 925969 763025 801697 074290 708729 579671 864265 900510 995416 061385 721648 726880 453664 619416 945879 577695 802226 719785 293251 097174 443713 585081 272274 801697 714041 930981 315127 030080 074286 934849 235655 728507 269725 519883 696252 266009 514232 615583 884362 664346 966122 199864 810321 362318 990638 557089 991034 730428 213852 428083 208678 096312 298196 091461 822936 785819 183643 195222 680960 491957 835594 316298 987082 366331 219786 411284 453783 042015 671892 558761 228644 994006 993093 908303 230666 023761 (614 digits), a[1169] = 2
                                                                                      A[1170]/B[1170] = 673301 867774 171055 108618 606875 842331 487863 420941 368167 536748 589919 925987 913443 504795 784681 028382 970979 119946 935335 379236 951976 065271 909879 603447 947464 325603 215833 532692 001784 949590 197680 587459 169875 232275 719607 761428 365497 680123 487173 894470 969381 061879 199862 859276 053503 584594 494098 173381 480068 235237 128510 601639 835059 152675 252571 486988 876763 137074 859220 479266 117036 817061 135813 507677 486031 593415 517589 853353 125039 311771 181260 594102 037368 153288 399010 785394 491759 378268 141438 824424 605810 349734 335920 528671 810290 784844 421337 407932 411447 901874 311934 540774 483830 610717 229740 321439 764441 302462 960946 565392 634274 752955 (612 digits)/65 440582 221806 365413 987219 973573 218535 024897 984705 028910 951135 547214 633474 719410 855943 087678 729142 538081 601666 191967 978907 924802 360673 278291 956862 666205 814281 702845 552044 250710 827866 319718 377094 479655 842519 713787 635956 476996 652624 438934 151725 904554 061999 964295 483564 984756 739490 516874 999954 506433 065300 554273 884640 617893 618778 194563 103838 963115 531970 392504 612676 897776 701382 017712 142110 617407 664211 878569 416182 673747 354896 407904 934155 453463 047845 537934 082375 251694 814898 770219 208084 676419 602968 836897 218050 167469 867924 226599 553591 408278 735148 808646 902621 914013 555905 455301 405147 285797 210927 094756 227484 384731 443546 (614 digits), a[1170] = 3
                                                                                      A[1171]/B[1171] = 873371 317161 127182 273064 307086 866678 514474 797183 762021 796761 979743 598139 996360 584081 676761 180986 299329 956004 101330 939944 687694 077046 640332 294947 069595 425866 226662 958013 584329 950310 153681 103869 250122 081127 476844 363435 196077 242143 337797 214632 688948 267136 836712 475045 655668 407994 574273 099115 274016 167204 177797 116136 643374 221750 115581 694079 059842 613146 384148 923124 314705 719113 963465 314896 508383 576897 195476 489882 555156 286945 293516 556797 415757 803395 092755 005605 787858 962995 299146 328190 077197 922554 900669 247898 403857 926932 945764 816929 273645 910222 424414 457535 342648 799888 476552 768566 409601 272060 463012 020223 058715 220841 (612 digits)/84 886037 342792 270924 516272 329305 213849 232553 725950 281593 849878 260731 488000 250287 831650 904796 135533 950769 107331 143397 020312 087936 511412 556645 787087 949714 352032 628815 315070 052407 902157 028447 956766 343921 743030 709203 697342 198645 379504 892598 771142 850433 639695 766522 203350 278007 836664 960588 585035 778707 866998 268315 815621 933020 648858 268850 038688 198771 260477 662230 132560 594028 967391 531944 757694 501770 328558 844691 616047 484068 717215 398543 491245 444497 778273 751786 510458 460372 911211 068415 299546 499356 388788 020540 413272 848430 359882 062193 869890 395361 101480 028433 313906 367796 597921 127193 963908 514442 204934 087850 135787 615397 467307 (614 digits), a[1171] = 1
                                                                                      A[1172]/B[1172] = 1 546673 184935 298237 381682 913962 709010 002338 218125 130189 333510 569663 524127 909804 088877 461442 209369 270309 075951 036666 319181 639670 142318 550211 898395 017059 751469 442496 490705 586114 899900 351361 691328 419997 313403 196452 124863 561574 922266 824971 109103 658329 329016 036575 334321 709171 992589 068371 272496 754084 402441 306307 717776 478433 374425 368153 181067 936605 750221 243369 402390 431742 536175 099278 822573 994415 170312 713066 343235 680195 598716 474777 150899 453125 956683 491765 791000 279618 341263 440585 152614 683008 272289 236589 776570 214148 711777 367102 224861 685093 812096 736348 998309 826479 410605 706293 090006 174042 574523 423958 585615 692989 973796 (613 digits)/150 326619 564598 636338 503492 302878 432384 257451 710655 310504 801013 807946 121474 969698 687593 992474 864676 488850 708997 335364 999220 012738 872085 834937 743950 615920 166314 331660 867114 303118 730023 348166 333860 823577 585550 422991 333298 675642 032129 331532 922868 754987 701695 730817 686915 262764 576155 477463 584990 285140 932298 822589 700262 550914 267636 463413 142527 161886 792448 054734 745237 491805 668773 549656 899805 119177 992770 723261 032230 157816 072111 806448 425400 897960 826119 289720 592833 712067 726109 838634 507631 175775 991756 857437 631323 015900 227806 288793 423481 803639 836628 837080 216528 281810 153826 582495 369055 800239 415861 182606 363272 000128 910853 (615 digits), a[1172] = 1
                                                                                      A[1173]/B[1173] = 2 420044 502096 425419 654747 221049 575688 516813 015308 892211 130272 549407 122267 906164 672959 138203 390355 569639 031955 137997 259126 327364 219365 190544 193342 086655 177335 669159 448719 170444 850210 505042 795197 670119 394530 673296 488298 757652 164410 162768 323736 347277 596152 873287 809367 364840 400583 642644 371612 028100 569645 484104 833913 121807 596175 483734 875146 996448 363367 627518 325514 746448 255289 062744 137470 502798 747209 908542 833118 235351 885661 768293 707696 868883 760078 584520 796606 067477 304258 739731 480804 760206 194844 137259 024468 618006 638710 312867 041790 958739 722319 160763 455845 169128 210494 182845 858572 583643 846583 886970 605838 751705 194637 (613 digits)/235 212656 907390 907263 019764 632183 646233 490005 436605 592098 650892 068677 609475 219986 519244 897271 000210 439619 816328 478762 019532 100675 383498 391583 531038 565634 518346 960476 182184 355526 632180 376614 290627 167499 328581 132195 030640 874287 411634 224131 694011 605421 341391 497339 890265 540772 412820 438052 170026 063848 799297 090905 515884 483934 916494 732263 181215 360658 052925 716964 877798 085834 636165 081601 657499 620948 321329 567952 648277 641884 789327 204991 916646 342458 604393 041507 103292 172440 637320 907049 807177 675132 380544 877978 044595 864330 587688 350987 293372 199000 938108 865513 530434 649606 751747 709689 332964 314681 620795 270456 499059 615526 378160 (615 digits), a[1173] = 1
                                                                                      A[1174]/B[1174] = 6 386762 189128 149076 691177 356061 860387 035964 248742 914611 594055 668477 768663 722133 434795 737848 990080 409587 139861 312660 837434 294398 581048 931300 285079 190370 106140 780815 388143 927004 600321 361447 281723 760236 102464 543045 101461 076879 251087 150507 756576 352884 521321 783150 953056 438852 793756 353660 015720 810285 541732 274517 385602 722048 566776 335622 931361 929502 476956 498406 053419 924639 046753 224767 097515 000012 664732 530152 009472 150899 370040 011364 566293 190893 476840 660807 384212 414572 949780 920048 114224 203420 661977 511107 825507 450161 989197 992836 308443 602573 256735 057875 910000 164735 831594 071984 807151 341330 267691 197899 797293 196400 363070 (613 digits)/620 751933 379380 450864 543021 567245 724851 237462 583866 494702 102797 945301 340425 409671 726083 787016 865097 368090 341654 292889 038284 214089 639082 618104 806027 747189 203008 252613 231483 014171 994384 101394 915115 158576 242712 687381 394580 424216 855397 779796 310891 965830 384478 725497 467446 344309 401796 353567 925042 412838 530893 004400 732031 518784 100625 927939 504957 883202 898299 488664 500833 663474 941103 712860 214804 361074 635429 859166 328785 441585 650766 216432 258693 582878 034905 372734 799418 056949 000751 652734 121986 526040 752846 613393 720514 744561 403182 990768 010226 201641 712846 568107 277397 581023 657322 001874 034984 429602 657451 723519 361391 231181 667173 (615 digits), a[1174] = 2
                                                                                      A[1175]/B[1175] = 8 806806 691224 574496 345924 577111 436075 552777 264051 806822 724328 217884 890931 628298 107754 876052 380435 979226 171816 450658 096560 621762 800414 121844 478421 277025 283476 449974 836863 097449 450531 866490 076921 430355 496995 216341 589759 834531 415497 313276 080312 700162 117474 656438 762423 803693 194339 996304 387332 838386 111377 758622 219515 843856 162951 819357 806508 925950 840324 125924 378934 671087 302042 287511 234985 502811 411942 438694 842590 386251 255701 779658 273990 059777 236919 245328 180818 482050 254039 659779 595028 963626 856821 648366 849976 068168 627908 305703 350234 561312 979054 218639 365845 333864 042088 254830 665723 924974 114275 084870 403131 948105 557707 (613 digits)/855 964590 286771 358127 562786 199429 371084 727468 020472 086800 753690 013978 949900 629658 245328 684287 865307 807710 157982 771651 057816 314765 022581 009688 337066 312823 721355 213089 413667 369698 626564 478009 205742 326075 571293 819576 425221 298504 267032 003928 004903 571251 725870 222837 357711 885081 814616 791620 095068 476687 330190 095306 247916 002719 017120 660202 686173 243860 951225 205629 378631 749309 577268 794461 872303 982022 956759 427118 977063 083470 440093 421424 175339 925336 639298 414241 902710 229389 638072 559783 929164 201173 133391 491371 765110 608891 990871 341755 303598 400642 650955 433620 807832 230630 409069 711563 367948 744284 278246 993975 860450 846708 045333 (615 digits), a[1175] = 1
                                                                                      A[1176]/B[1176] = 112 068442 483823 043032 842272 281399 093293 669291 417364 596484 285994 283096 459843 261710 727854 250477 555312 160301 201658 720557 996161 755552 186018 393434 026134 514673 507858 180513 430501 096398 006703 759328 204780 924502 066407 139144 178579 091256 237054 909820 720328 754829 931017 660416 102142 083171 125836 309312 663714 870918 878265 377984 019792 848322 522198 167916 609469 040912 560846 009498 600635 977686 671260 674901 917341 033749 608041 794490 120556 785914 438461 367263 854173 908220 319871 604745 554034 199175 998256 837403 254571 766942 943837 291510 025220 268185 524097 661276 511258 338329 005385 681548 300144 171104 336653 129952 795838 441019 638992 216344 634876 573667 055554 (615 digits)/10892 327016 820636 748395 296455 960398 177867 967078 829531 536311 147078 113048 739232 965570 670027 998471 248791 060612 237447 552701 732079 991269 910054 734364 850823 501073 859270 809686 195491 450555 513157 837505 384023 071483 098238 522298 497236 006268 059781 826932 369734 820851 094921 399545 759988 965291 177197 853009 065864 133086 493174 148075 707023 551412 306073 850371 739036 809534 313001 956217 044414 655189 868329 246402 682452 145350 116542 984594 053542 443230 931887 273522 362772 686917 706486 343637 631940 809624 657622 370141 271956 940118 353544 509854 901842 051265 293639 091831 653407 009353 524311 771556 971384 348588 566158 540634 450369 361013 996415 651229 686801 391678 211169 (617 digits), a[1176] = 12
                                                                                      A[1177]/B[1177] = 232 943691 658870 660562 030469 139909 622662 891360 098780 999791 296316 784077 810618 151719 563463 377007 491060 299828 575133 891774 088884 132867 172450 908712 530690 306372 299192 811001 697865 290245 463939 385146 486483 279359 629809 494629 946918 017043 889607 132917 520970 209821 979509 977270 966707 970035 446012 614929 714762 580223 867908 514590 259101 540501 207348 155191 025447 007775 962016 144921 580206 626460 644563 637315 069667 570310 628026 027675 083703 958080 132624 514185 982337 876217 876662 454819 288886 880402 250553 334586 104172 497512 744496 231386 900416 604539 676103 628256 372751 237970 989825 581735 966133 676072 715394 514736 257400 807013 392259 517559 672885 095439 668815 (615 digits)/22640 618623 928044 854918 155698 120225 726820 661625 679535 159423 047846 240076 428366 560799 585384 681230 362889 928934 632877 877054 521976 297304 842690 478418 038713 314971 439896 832461 804650 270809 652880 153019 973788 469041 767770 864173 419693 311040 386595 657792 744373 212953 915713 021928 877689 815664 169012 497638 226796 742860 316538 391457 661963 105543 629268 360946 164246 862929 577229 118063 467461 059689 313927 287267 237208 272723 189845 396307 084147 969932 303867 968468 900885 299172 052271 101517 166591 848638 953317 300066 473078 081409 840480 511081 568794 711422 578149 525418 610412 419349 699578 976734 750600 927807 541386 792832 268687 466312 271078 296435 234053 630064 467671 (617 digits), a[1177] = 2
                                                                                      A[1178]/B[1178] = 1276 786900 778176 345842 994617 980947 206608 126091 911269 595440 767578 203485 512934 020308 545171 135515 010613 659444 077328 179428 440582 419888 048272 936996 679586 046535 003822 235521 919827 547625 326400 685060 637197 321300 215454 612293 913169 176475 685090 574408 325179 803939 828567 546770 935681 933348 355899 383961 237527 772038 217807 950935 315300 550828 558938 943871 736704 079792 370926 734106 501669 109989 894078 861477 265678 885302 748171 932865 539076 576315 101583 938193 765863 289309 703183 878841 998468 601187 251023 510333 775434 254506 666318 448444 527303 290883 904615 802558 375014 528183 954513 590228 130812 551467 913625 703634 082842 476086 600289 804142 999302 050865 399629 (616 digits)/124095 420136 460861 022986 074946 561526 811971 275207 227207 333426 386309 313430 881065 769568 596951 404623 063240 705285 401836 937974 341961 477794 123507 126455 044390 075931 058754 971995 218742 804603 777558 602605 252965 416691 937092 843165 595702 561469 992760 115896 091600 885620 673486 509190 148438 043612 022260 341200 199847 847388 075866 105364 016839 079130 452415 655102 560271 124182 199147 546534 381719 953636 437965 682738 868493 508966 065769 966129 474282 292892 451227 115866 867199 182777 967841 851223 464900 052819 424208 870473 637347 347167 555947 065262 745815 608378 184386 718924 705469 106102 022206 655230 724388 987626 273092 504795 793806 692575 351807 133405 857069 542000 549524 (618 digits), a[1178] = 5
                                                                                      A[1179]/B[1179] = 1509 730592 437047 006405 025087 120856 829271 017452 010050 595232 063894 987563 323552 172028 108634 512522 501673 959272 652462 071202 529466 552755 220723 845709 210276 352907 303015 046523 617692 837870 790340 070207 123680 600659 845264 106923 860087 193519 574697 707325 846150 013761 808077 524041 902389 903383 801911 998890 952290 352262 085716 465525 574402 091329 766287 099062 762151 087568 332942 879028 081875 736450 538642 498792 335346 455613 376197 960540 622780 534395 234208 452379 748201 165527 579846 333661 287355 481589 501576 844919 879606 752019 410814 679831 427719 895423 580719 430814 747765 766154 944339 171964 096946 227540 629020 218370 340243 283099 992549 321702 672187 146305 068444 (616 digits)/146736 038760 388905 877904 230644 681752 538791 936832 906742 492849 434155 553507 309432 330368 182336 085853 426130 634220 034714 815028 863937 775098 966197 604873 083103 390902 498651 804457 023393 075413 430438 755625 226753 885733 704863 707339 015395 872510 379355 773688 835974 098574 589199 531119 026127 859276 191272 838838 426644 590248 392404 496821 678802 184674 081684 016048 724517 987111 776376 664597 849181 013325 751892 970006 105701 781689 255615 362436 558430 262824 755095 084335 768084 481950 020112 952740 631491 901458 377526 170540 110425 428577 396427 576344 314610 319800 762536 244343 315881 525451 721785 631965 474989 915433 814479 297628 062494 158887 622885 429841 091123 172065 017195 (618 digits), a[1179] = 1
                                                                                      A[1180]/B[1180] = 93370 353039 438043 736549 524932 353213 792140 190664 524355 904596 665172 444848 249616 514023 171876 399387 612725 175075 877514 522782 738042 137956 512427 525258 506443 573880 487740 073462 599090 657743 537144 967695 181713 961550 776565 134649 378487 981169 741650 721284 940330 643410 121296 513326 981466 039760 272531 316309 327239 260025 446512 347995 353828 121944 302451 986700 227920 421460 680442 354819 496089 033472 751271 287809 721812 677718 696247 525843 528689 174424 388299 533358 406134 386492 073810 232180 527152 978146 847211 050446 431446 127690 726013 918161 618216 911722 328501 082257 988726 263635 559203 080038 044532 431446 283859 024224 837682 745186 145798 428006 002717 975474 574713 (617 digits)/9 074993 784520 184119 575144 144272 148431 678279 422014 538499 397241 869798 077376 756437 922027 719452 641682 057209 392707 519440 654735 042165 758831 061561 023713 113696 920983 476515 043873 645720 404823 034322 695744 084952 446447 933778 990845 534850 784603 133462 310915 086020 898670 614657 907450 742237 459459 689903 510344 225167 852540 012540 411486 423772 344249 435140 634074 755868 338000 558124 087003 181761 766507 303436 853111 316302 192010 658307 074759 538528 325202 512027 260348 720352 581729 194731 968401 985906 041780 453305 273420 373298 490388 738029 222265 937045 116224 699097 623866 974242 158657 051130 205124 698773 829088 956329 660107 605950 384720 347818 353712 415583 037966 598419 (619 digits), a[1180] = 61
                                                                                      A[1181]/B[1181] = 468361 495789 627265 689152 649748 886925 789971 970774 631830 118215 389757 211804 571634 742143 968016 509460 565299 834652 040034 685116 219677 242537 782861 472001 742494 222309 741715 413836 613146 126588 476064 908683 032250 408413 728089 780170 752527 099368 282951 313750 547803 230812 414560 090676 809720 102185 164568 580437 588486 652389 318278 205502 343542 701051 278547 032563 901753 194871 735154 653125 562320 903814 294998 937840 944409 844206 857435 589758 266226 406517 175706 119171 778873 097987 948897 494563 923120 372323 737632 097152 036837 390473 040884 270639 518804 454035 223224 842104 691397 084332 740354 572154 319608 384772 048315 339494 528657 009030 721541 461732 685777 023677 942009 (618 digits)/45 521704 961361 309503 753624 952005 423910 930189 046905 599239 479058 783145 940391 091621 940506 779599 294263 712177 597757 631918 088704 074766 569254 274002 723438 651587 995819 881227 023825 251995 099528 602052 234345 651516 117973 373758 661566 689649 795526 046667 328264 266078 591927 662489 068372 737315 156574 640790 390559 552483 852948 455106 554253 797663 905921 257387 186422 503859 677114 566997 099613 757989 845862 269077 235562 687212 741742 547150 736234 251071 888837 315231 386079 369847 390595 993772 794750 561022 110360 644052 537641 976917 880521 086573 687673 999835 900924 258024 363678 187092 318736 977436 657588 968859 060878 596127 598166 092246 082489 361977 198403 169038 361898 009290 (620 digits), a[1181] = 5
                                                                                      A[1182]/B[1182] = 3 371900 823566 828903 560618 073174 561694 321943 986086 947166 732104 393472 927480 251059 709030 947991 965611 569824 017640 157757 318596 275782 835720 992457 829270 703903 130048 679747 970318 891113 543862 869599 328476 407466 820446 873193 595844 646177 676747 722309 917538 774953 259097 023217 148064 649506 755056 424511 379372 446645 826750 674459 786511 758627 029303 252281 214647 540192 785562 826524 926698 432335 360172 816263 852696 332681 587166 698296 654151 392274 020044 618242 367560 858246 072407 716092 694127 988995 584413 010635 730510 689307 861002 012203 812638 249848 089968 891074 976990 828505 853964 741685 085118 281791 124850 622066 400686 538281 808401 196588 660134 803157 141220 168776 (619 digits)/327 726928 514049 350645 850518 808310 115808 189602 750353 733175 750653 351819 660114 397791 505575 176647 701528 042452 577010 942867 275663 565531 743610 979580 087783 674812 891722 645104 210650 409686 101523 248688 336163 645565 272261 550089 621812 362399 353285 460133 608764 948571 042164 252081 386059 903443 555482 175436 244261 092554 823179 198286 291263 007419 685698 236850 939032 282886 077802 527103 784299 487690 687543 186977 502050 126791 384208 488362 228399 296031 547063 718646 962904 309284 315901 151141 531655 913060 814304 961673 036914 211723 654036 344045 035983 935896 422694 505268 169614 283888 389815 893186 808247 480787 255239 129222 847270 251672 962145 881658 742534 598851 571252 663449 (621 digits), a[1182] = 7
                                                                                      A[1183]/B[1183] = 3 840262 319356 456169 249770 722923 448620 111915 956861 578996 850319 783230 139284 822694 451174 916008 475072 135123 852292 197792 003712 495460 078258 775319 301272 446397 352358 421463 384155 504259 670451 345664 237159 439717 228860 601283 376015 398704 776116 005261 231289 322756 489909 437777 238741 459226 857241 589079 959810 035132 479139 992737 992014 102169 730354 530828 247211 441945 980434 561679 579823 994656 263987 111262 790537 277091 431373 555732 243909 658500 426561 793948 486732 637119 170395 664990 188691 912115 956736 748267 827662 726145 251475 053088 083277 768652 544004 114299 819095 519902 938297 482039 657272 601399 509622 670381 740181 066938 817431 918130 121867 488934 164898 110785 (619 digits)/373 248633 475410 660149 604143 760315 539719 119791 797259 332415 229712 134965 600505 489413 446081 956246 995791 754630 174768 574785 364367 640298 312865 253582 811222 326400 887542 526331 234475 661681 201051 850740 570509 297081 390234 923848 283379 052049 148811 506800 937029 214649 634091 914570 454432 640758 712056 816226 634820 645038 676127 653392 845516 805083 591619 494238 125454 786745 754917 094100 883913 245680 533405 456054 737612 814004 125951 035512 964633 547103 435901 033878 348983 679131 706497 144914 326406 474082 924665 605725 574556 188641 534557 430618 723657 935732 323618 763292 533292 470980 708552 870623 465836 449646 316117 725350 445436 343919 044635 243635 940937 767889 933150 672739 (621 digits), a[1183] = 1
                                                                                      A[1184]/B[1184] = 118 579770 404260 513981 053739 760878 020297 679422 691934 317072 241697 890377 106024 931893 244278 428246 217775 623539 586406 091517 429971 139585 183484 252036 867444 095823 700801 323649 494984 018903 657403 239526 443259 598983 686264 911694 876306 607320 960227 880146 856218 457647 956380 156534 310308 426312 472304 096910 173673 500620 200950 456599 546934 823718 939939 177128 630990 798572 198599 676912 321418 272023 279786 154147 568814 645424 528373 370263 971441 147286 816898 436696 969539 971821 184277 665798 354885 352474 286515 458670 560392 473665 405253 604846 310971 309424 410092 320069 549856 425594 002889 202874 803296 323776 413530 733518 606118 546446 331358 740492 316159 471182 088163 492326 (621 digits)/11525 185932 776369 155133 974831 617776 307381 783356 668133 705632 642017 400787 675279 080194 888033 864057 575280 681357 820068 186428 206692 774481 129568 587064 424453 466839 517998 435041 244920 260122 133078 770905 451442 558006 979309 265538 123183 923873 817630 664161 719641 388060 064921 689195 019039 126204 917186 662235 288880 443715 107008 800071 656767 159927 434283 063994 702675 885258 725315 350130 301696 858106 689706 868619 630434 546915 162739 553751 167405 709134 624094 734997 432414 683235 510815 498571 323850 135548 554273 133440 273599 870969 690759 262606 745722 007866 131257 404044 168388 413309 646402 011890 783340 970176 738770 889736 210360 569244 301203 190736 970667 635549 565772 845619 (623 digits), a[1184] = 30
                                                                                      A[1185]/B[1185] = 2375 435670 404566 735790 324565 940483 854573 700369 795547 920441 684277 590772 259783 460559 336743 480932 830584 605915 580414 028140 603135 287163 747943 816056 650154 362871 368384 894453 283835 882332 818516 136193 102351 419390 954158 835180 902147 545123 980673 608198 355658 475715 617512 568463 444909 985476 303323 527283 433280 047536 498149 124728 930710 576548 529138 073400 867027 413389 952428 099926 008189 435121 859710 194214 166830 185581 998840 961011 672732 604236 764530 527887 877532 073542 855948 980957 286398 961601 687045 921679 035512 199453 356547 150014 302703 957140 745850 515690 816224 031782 996081 539535 723199 076927 780237 340753 862551 995865 444606 727976 445056 912575 928167 957305 (622 digits)/230876 967289 002793 762829 100776 115841 687354 786925 159933 445068 070060 150719 106087 093311 206759 237398 501405 381786 576132 303349 498223 129920 904236 994871 300291 663191 247511 227156 132880 864123 862627 268849 599360 457220 976420 234610 747057 529525 501424 790035 329856 975850 932525 698470 835215 164857 055790 060932 412429 519340 816303 654825 980860 003632 277280 774132 178972 491920 261224 096706 917850 407814 327542 828447 346303 752307 380742 110536 312747 729795 917795 733826 997277 343841 922807 116340 803409 185054 010128 274531 046553 608035 349742 682753 638098 093054 948766 844175 901060 737173 636593 108439 132655 853181 091535 520074 652647 728805 068699 058375 354290 478881 248607 585119 (624 digits), a[1185] = 20
                                                                                      A[1186]/B[1186] = 7244 886781 617960 721352 027437 582329 584018 780532 078578 078397 294530 662693 885375 313571 254508 871044 709529 441286 327648 175939 239377 001076 427315 700206 817907 184437 805956 007009 346491 665902 112951 648105 750313 857156 548741 417237 582749 242692 902248 704741 923193 884794 808917 861924 645038 382741 382274 678760 473513 643229 695397 830786 339066 553364 527353 397331 232073 038742 055883 976690 345986 577388 858916 736790 069305 202170 524896 253298 989638 959997 110490 020360 602136 192449 752124 608670 214082 237279 347653 223707 666929 072025 474895 054889 219083 180846 647643 867141 998528 520942 991133 821481 972893 554559 754242 755780 193774 534042 665178 924421 651330 208909 872667 364241 (622 digits)/704156 087799 784750 443621 277159 965301 369446 144132 147934 040836 852197 852944 993540 360128 508311 576253 079496 826717 548465 096476 701362 164243 842279 571678 325328 456413 260532 116509 643562 852493 720960 577454 249523 929669 908569 969370 364356 512450 321905 034267 709212 315612 862498 784607 524684 620776 084556 845032 526169 001737 555919 764549 599347 170824 266125 386391 239593 361019 508987 640251 055248 081549 672335 353961 669345 803837 304965 885360 105648 898522 377481 936478 424246 714761 279236 847593 734077 690710 584657 957033 413260 695075 739987 310867 660016 287030 977557 936571 871570 624830 556181 337208 181308 529720 013377 449960 168303 755659 507300 365863 033539 072193 311595 600976 (624 digits), a[1186] = 3
                                                                                      A[1187]/B[1187] = 60334 529923 348252 506606 544066 599120 526723 944626 424172 547620 040522 892323 342785 969129 372814 449290 506820 136206 201599 435654 518151 295775 166469 417711 193411 838373 816032 950528 055769 209549 722129 321039 104862 276643 344090 173081 564141 486667 198663 246133 741209 554074 088855 463860 605217 047407 361520 957367 221389 193374 061331 771019 643243 003464 747965 252050 723611 723326 399499 913448 776082 054232 731044 088534 721271 802946 198010 987403 589844 284213 648450 690772 694621 613140 872945 850318 999056 859836 468271 711340 370944 775657 155707 589128 055369 403913 927001 452826 804452 199326 925152 111391 506347 513405 814179 386995 412748 268206 766038 123349 655698 583854 909506 871233 (623 digits)/5 864125 669687 280797 311799 318055 838252 642923 939982 343405 771762 887642 974279 054409 974339 273251 847423 137379 995526 963853 075163 109120 443871 642473 568297 902919 314497 331768 159233 281383 684073 630311 888483 595551 894580 244979 989573 661909 629128 076665 064177 003555 500753 832515 975331 032692 131065 732244 821192 621781 533241 263661 771222 775637 370226 406283 865262 095719 380076 333125 218715 359835 060211 706225 660140 701070 183005 820469 193417 157938 917974 937651 225654 391251 061932 156701 897090 676030 710738 687391 930798 352639 168641 269641 169694 918228 389302 769230 336750 873625 735818 086043 806104 583124 090941 198555 119755 999077 774081 127101 985279 622603 056427 741372 392927 (625 digits), a[1187] = 8
                                                                                      A[1188]/B[1188] = 67579 416704 966213 227958 571504 181450 110742 725158 502750 626017 335053 555017 228161 282700 627323 320335 216349 577492 529247 611593 757528 296851 593785 117918 011319 022811 621988 957537 402260 875451 835080 969144 855176 133799 892831 590319 146890 729360 100911 950875 664403 438868 897773 325785 250255 430148 743795 636127 694902 836603 756729 601805 982309 556829 275318 649381 955684 762068 455383 890139 122068 631621 589960 825324 790577 005116 722907 240702 579483 244210 758940 711133 296757 805590 625070 458989 213139 097115 815924 935048 037873 847682 630602 644017 274452 584760 574645 319968 802980 720269 916285 932873 479241 067965 568422 142775 606522 802249 431217 047771 307028 792764 782174 235474 (623 digits)/6 568281 757487 065547 755420 595215 803554 012370 084114 491339 812599 739840 827224 047950 334467 781563 423676 216876 822244 512318 171639 810482 608115 484753 139976 228247 770910 592300 275742 924946 536567 351272 465937 845075 824250 153549 958944 026266 141578 398570 098444 712767 816366 695014 759938 557376 751841 816801 666225 147950 534978 819581 535772 374984 541050 672409 251653 335312 741095 842112 858966 415083 141761 378561 014102 370415 986843 125435 078777 263587 816497 315133 162132 815497 776693 435938 744684 410108 401449 272049 887831 765899 863717 009628 480562 578244 676333 746788 273322 745196 360648 642225 143312 764432 620661 211932 569716 167381 529740 634402 351142 656142 128621 052967 993903 (625 digits), a[1188] = 1
                                                                                      A[1189]/B[1189] = 127913 946628 314465 734565 115570 780570 637466 669784 926923 173637 375576 447340 570947 251830 000137 769625 723169 713698 730847 047248 275679 592626 760254 535629 204730 861185 438021 908065 458030 085001 557210 290183 960038 410443 236921 763400 711032 216027 299575 197009 405612 992942 986628 789645 855472 477556 105316 593494 916292 029977 818061 372825 625552 560294 023283 901432 679296 485394 854883 803587 898150 685854 321004 913859 511848 808062 920918 228106 169327 528424 407391 401905 991379 418731 498016 309308 212195 956952 284196 646388 408818 623339 786310 233145 329821 988674 501646 772795 607432 919596 841438 044264 985588 581371 382601 529771 019271 070456 197255 171120 962727 376619 691681 106707 (624 digits)/12 432407 427174 346345 067219 913271 641806 655294 024096 834745 584362 627483 801503 102360 308807 054815 271099 354256 817771 476171 246802 919603 051987 127226 708274 131167 085407 924068 434976 206330 220640 981584 354421 440627 718830 398529 948517 688175 770706 475235 162621 716323 317120 527530 735269 590068 882907 549046 487417 769732 068220 083243 306995 150621 911277 078693 116915 431032 121172 175238 077681 774918 201973 084786 674243 071486 169848 945904 272194 421526 734472 252784 387787 206748 838625 592640 641775 086139 112187 959441 818630 118539 032358 279269 650257 496473 065636 516018 610073 618822 096466 728268 949417 347556 711602 410487 689472 166459 303821 761504 336422 278745 185048 794340 386830 (626 digits), a[1189] = 1
                                                                                      A[1190]/B[1190] = 195493 363333 280678 962523 687074 962020 748209 394943 429673 799654 710630 002357 799108 534530 627461 089960 939519 291191 260094 658842 033207 889478 354039 653547 216049 883997 060010 865602 860290 960453 392291 259328 815214 544243 129753 353719 857922 945387 400487 147885 070016 431811 884402 115431 105727 907704 849112 229622 611194 866581 574790 974631 607862 117123 298602 550814 634981 247463 310267 693727 020219 317475 910965 739184 302425 813179 643825 468808 748810 772635 166332 113039 288137 224322 123086 768297 425335 054068 100121 581436 446692 471022 416912 877162 604274 573435 076292 092764 410413 639866 757723 977138 464829 649336 951023 672546 625793 872705 628472 218892 269756 169384 473855 342181 (624 digits)/19 000689 184661 411892 822640 508487 445360 667664 108211 326085 396962 367324 628727 150310 643274 836378 694775 571133 640015 988489 418442 730085 660102 611979 848250 359414 856318 516368 710719 131276 757208 332856 820359 285703 543080 552079 907461 714441 912284 873805 261066 429091 133487 222545 495208 147445 634749 365848 153642 917682 603198 902824 842767 525606 452327 751102 368568 766344 862268 017350 936648 190001 343734 463347 688345 441902 156692 071339 350971 685114 550969 567917 549920 022246 615319 028579 386459 496247 513637 231491 706461 884438 896075 288898 130820 074717 741970 262806 883396 364018 457115 370494 092730 111989 332263 622420 259188 333840 833562 395906 687564 934887 313669 847308 380733 (626 digits), a[1190] = 1
                                                                                      A[1191]/B[1191] = 323407 309961 595144 697088 802645 742591 385676 064728 356596 973292 086206 449698 370055 786360 627598 859586 662689 004889 990941 706090 308887 482105 114294 189176 420780 745182 498032 773668 318321 045454 949501 549512 775252 954686 366675 117120 568955 161414 700062 344894 475629 424754 871030 905076 961200 385260 954428 823117 527486 896559 392852 347457 233414 677417 321886 452247 314277 732858 165151 497314 918370 003330 231970 653043 814274 621242 564743 696914 918138 301059 573723 514945 279516 643053 621103 077605 637531 011020 384318 227824 855511 094362 203223 110307 934096 562109 577938 865560 017846 559463 599162 021403 450418 230708 333625 202317 645064 943161 825727 390013 232483 546004 165536 448888 (624 digits)/31 433096 611835 758237 889860 421759 087167 322958 132308 160830 981324 994808 430230 252670 952081 891193 965874 925390 457787 464660 665245 649688 712089 739206 556524 490581 941726 440437 145695 337606 977849 314441 174780 726331 261910 950609 855979 402617 682991 349040 423688 145414 450607 750076 230477 737514 517656 914894 641060 687414 671418 986068 149762 676228 363604 829795 485484 197376 983440 192589 014329 964919 545707 548134 362588 513388 326541 017243 623166 106641 285441 820701 937707 228995 453944 621220 028234 582386 625825 190933 525092 002977 928433 568167 781077 571190 807606 778825 493469 982840 553582 098763 042147 459546 043866 032907 948660 500300 137384 157411 023987 213632 498718 641648 767563 (626 digits), a[1191] = 1
                                                                                      A[1192]/B[1192] = 518900 673294 875823 659612 489720 704612 133885 459671 786270 772946 796836 452056 169164 320891 255059 949547 602208 296081 251036 364932 342095 371583 468333 842723 636830 629179 558043 639271 178612 005908 341792 808841 590467 498929 496428 470840 426878 106802 100549 492779 545645 856566 755433 020508 066928 292965 803541 052740 138681 763140 967643 322088 841276 794540 620489 003061 949258 980321 475419 191041 938589 320806 142936 392228 116700 434422 208569 165723 666949 073694 740055 627984 567653 867375 744189 845903 062866 065088 484439 809261 302203 565384 620135 987470 538371 135544 654230 958324 428260 199330 356885 998541 915247 880045 284648 874864 270858 815867 454199 608905 502239 715388 639391 791069 (624 digits)/50 433785 796497 170130 712500 930246 532527 990622 240519 486916 378287 362133 058957 402981 595356 727572 660650 496524 097803 453150 083688 379774 372192 351186 404774 849996 798044 956805 856414 468883 735057 647297 995140 012034 804991 502689 763441 117059 595276 222845 684754 574505 584094 972621 725685 884960 152406 280742 794703 605097 274617 888892 992530 201834 815932 580897 854052 963721 845708 209939 950978 154920 889442 011482 050933 955290 483233 088582 974137 791755 836411 388619 487627 251242 069263 649799 414694 078634 139462 422425 231553 887416 824508 857065 911897 645908 549577 041632 376866 346859 010697 469257 134877 571535 376129 655328 207848 834140 970946 553317 711552 148519 812388 488957 148296 (626 digits), a[1192] = 1
                                                                                      A[1193]/B[1193] = 1 361208 656551 346792 016313 782087 151815 653446 984071 929138 519185 679879 353810 708384 428143 137718 758681 867105 597052 493014 435954 993078 225272 050961 874623 694442 003541 614120 052210 675545 057271 633087 167195 956187 952545 359532 058801 422711 375018 901161 330453 566921 137888 381896 946093 095056 971192 561510 928597 804850 422841 328138 991634 915968 266498 562864 458371 212795 693501 115989 879398 795548 644942 517843 437500 047675 490086 981882 028362 252036 448449 053834 770914 414824 377805 109482 769411 763263 141197 353197 846347 459918 225131 443495 085249 010838 833198 886400 782208 874366 958124 312934 018487 280913 990798 902922 952046 186782 574896 734126 607824 236962 976781 444320 031026 (625 digits)/132 300668 204830 098499 314862 282252 152223 304202 613347 134663 737899 719074 548145 058634 142795 346339 287175 918438 653394 370960 832622 409237 456474 441579 366074 190575 537816 354048 858524 275374 447964 609037 165060 750400 871893 955989 382861 636736 873543 794731 793197 294425 618797 695319 681849 507434 822469 476380 230467 897609 220654 763854 134823 079897 995469 991591 193590 124820 674856 612468 916286 274761 324591 571098 464456 423969 293007 194409 571441 690152 958264 597940 912961 731479 592471 920818 857622 739654 904750 035783 988199 777811 577451 282299 604872 863007 906760 862090 247202 676558 574977 037277 311902 602616 796125 343564 364358 168582 079277 264046 447091 510672 123495 619563 064155 (627 digits), a[1193] = 2
                                                                                      A[1194]/B[1194] = 3 241317 986397 569407 692240 053895 008243 440779 427815 644547 811318 156595 159677 585933 177177 530497 466911 336419 490186 237065 236842 328251 822127 570257 591971 025714 636262 786283 743692 529702 120451 607967 143233 502843 404020 215492 588443 272300 856839 902872 153686 679488 132343 519226 912694 257042 235350 926562 909935 748382 608823 623921 305358 673213 327537 746217 919804 374850 367323 707398 949839 529686 610691 178623 267228 212051 414596 172333 222448 171021 970592 847725 169813 397302 622985 963155 384726 589392 347483 190835 501956 222040 015647 507126 157968 560048 801942 427032 522742 176994 115578 982754 035516 477075 861643 090494 778956 644423 965660 922452 824553 976165 668951 528031 853121 (625 digits)/315 035122 206157 367129 342225 494750 836974 599027 467213 756243 854086 800282 155247 520249 880947 420251 235002 333401 404592 195071 748933 198249 285141 234345 136923 231147 873677 664903 573463 019632 630986 865372 325261 512836 548779 414668 529164 390533 342363 812309 271149 163356 821690 363261 089384 899829 797345 233503 255639 400315 715927 416601 262176 361630 806872 564080 241233 213363 195421 434877 783550 704443 538625 153678 979846 803229 069247 477402 117021 172061 752940 584501 313550 714201 254207 491437 129939 557943 948962 493993 207953 443039 979411 421665 121643 371924 363098 765812 871271 699976 160651 543811 758682 776768 968380 342456 936565 171305 129501 081410 605735 169864 059379 728083 276606 (627 digits), a[1194] = 2
                                                                                      A[1195]/B[1195] = 4 602526 642948 916199 708553 835982 160059 094226 411887 573686 330503 836474 513488 294317 605320 668216 225593 203525 087238 730079 672797 321330 047399 621219 466594 720156 639804 400403 795903 205247 177723 241054 310429 459031 356565 575024 647244 695012 231858 804033 484140 246409 270231 901123 858787 352099 206543 488073 838533 553233 031664 952060 296993 589181 594036 309082 378175 587646 060824 823388 829238 325235 255633 696466 704728 259726 904683 154215 250810 423058 419041 901559 940727 812127 000791 072638 154138 352655 488680 544033 348303 681958 240778 950621 243217 570887 635141 313433 304951 051361 073703 295688 054003 757989 852441 993417 731002 831206 540557 656579 432378 213128 645732 972351 884147 (625 digits)/447 335790 410987 465628 657087 777002 989197 903230 080560 890907 591986 519356 703392 578884 023742 766590 522178 251840 057986 566032 581555 607486 741615 675924 502997 421723 411494 018952 431987 295007 078951 474409 490322 263237 420673 370657 912026 027270 215907 607041 064346 457782 440488 058580 771234 407264 619814 709883 486107 297924 936582 180455 396999 441528 802342 555671 434823 338183 870278 047346 699836 979204 863216 724777 444303 227198 362254 671811 688462 862214 711205 182442 226512 445680 846679 412255 987562 297598 853712 529777 196153 220851 556862 703964 726516 234932 269859 627903 118474 376534 735628 581089 070585 379385 764505 686021 300923 339887 208778 345457 052826 680536 182875 347646 340761 (627 digits), a[1195] = 1
                                                                                      A[1196]/B[1196] = 7 843844 629346 485607 400793 889877 168302 535005 839703 218234 141821 993069 673165 880250 782498 198713 692504 539944 577424 967144 909639 649581 869527 191477 058565 745871 276067 186687 539595 734949 298174 849021 453662 961874 760585 790517 235687 967313 088698 706905 637826 925897 402575 420350 771481 609141 441894 414636 748469 301615 640488 575981 602352 262394 921574 055300 297979 962496 428148 530787 779077 854921 866324 875089 971956 471778 319279 326548 473258 594080 389634 749285 110541 209429 623777 035793 538864 942047 836163 734868 850259 903998 256426 457747 401186 130936 437083 740465 827693 228355 189282 278442 089520 235065 714085 083912 509959 475630 506218 579032 256932 189294 314684 500383 737268 (625 digits)/762 370912 617144 832757 999313 271753 826172 502257 547774 647151 446073 319638 858640 099133 904690 186841 757180 585241 462578 761104 330488 805736 026756 910269 639920 652871 285171 683856 005450 314639 709938 339781 815583 776073 969452 785326 441190 417803 558271 419350 335495 621139 262178 421841 860619 307094 417159 943386 741746 698240 652509 597056 659175 803159 609215 119751 676056 551547 065699 482224 483387 683648 401841 878456 424150 030427 431502 149213 805484 034276 464145 766943 540063 159882 100886 903693 117501 855542 802675 023770 404106 663891 536274 125629 848159 606856 632958 393715 989746 076510 896280 124900 829268 156154 732886 028478 237488 511192 338279 426867 658561 850400 242255 075729 617367 (627 digits), a[1196] = 1
                                                                                      A[1197]/B[1197] = 12 446371 272295 401807 109347 725859 328361 629232 251590 791920 472325 829544 186654 174568 387818 866929 918097 743469 664663 697224 582436 970911 916926 812696 525160 466027 915871 587091 335498 940196 475898 090075 764092 420906 117151 365541 882932 662325 320557 510939 121967 172306 672807 321474 630268 961240 648437 902710 587002 854848 672153 528041 899345 851576 515610 364382 676155 550142 488973 354176 608316 180157 121958 571556 676684 731505 223962 480763 724069 017138 808676 650845 051269 021556 624568 108431 693003 294703 324844 278902 198563 585956 497205 408368 644403 701824 072225 053899 132644 279716 262985 574130 143523 993055 566527 077330 240962 306837 046776 235611 689310 402422 960417 472735 621415 (626 digits)/1209 706703 028132 298386 656401 048756 815370 405487 628335 538059 038059 838995 562032 678017 928432 953432 279358 837081 520565 327136 912044 413222 768372 586194 142918 074594 696665 702808 437437 609646 788889 814191 305906 039311 390126 155984 353216 445073 774179 026391 399842 078921 702666 480422 631853 714359 036974 653270 227853 996165 589091 777512 056175 244688 411557 675423 110879 889730 935977 529571 183224 662853 265058 603233 868453 257625 793756 821025 493946 896491 175350 949385 766575 605562 947566 315949 105064 153141 656387 553547 600259 884743 093136 829594 574675 841788 902818 021619 108220 453045 631908 705989 899853 535540 497391 714499 538411 851079 547057 772324 711388 530936 425130 423375 958128 (628 digits), a[1197] = 1
                                                                                      A[1198]/B[1198] = 45 182958 446232 691028 728837 067455 153387 422702 594475 593995 558799 481702 233128 403955 945954 799503 446797 770353 571416 058818 656950 562317 620307 629566 634047 143955 023681 947961 546092 555538 725869 119248 745940 224593 112039 887142 884485 954289 050371 239723 003728 442817 420997 384774 662288 492863 387208 122768 509477 866161 656949 160107 300389 817124 468405 148448 326446 612923 895068 593317 604026 395393 232200 589760 002010 666293 991166 768839 645465 645496 815664 701820 264348 274099 497481 361088 617874 826157 810696 571575 445950 661867 748042 682853 334397 236408 653758 902163 225626 067503 978239 000832 520092 214232 413666 315903 232846 396141 646547 285867 324863 396563 195936 918590 601513 (626 digits)/4391 491021 701541 727917 968516 418024 272283 718720 432781 261328 560252 836625 544738 133187 689989 047138 595257 096486 024274 742515 066622 045404 331874 668852 068674 876655 375168 792281 317763 143580 076607 782355 733301 894008 139831 253279 500839 753024 880808 498524 535021 857904 370177 863109 756180 450171 528083 903197 425308 686737 419784 929592 827701 537224 843888 146021 008696 220739 873632 070938 033061 672208 197017 688158 029509 803304 812772 612290 287324 723749 990198 615100 839789 976570 943585 851540 432694 314967 771837 684413 204886 318120 815684 614413 572187 132223 341412 458573 314407 435647 792006 242870 528828 762776 225061 171976 852724 064430 979452 743841 792727 443209 517646 345857 491751 (628 digits), a[1198] = 3
                                                                                      A[1199]/B[1199] = 57 629329 718528 092835 838184 793314 481749 051934 846066 385916 031125 311246 419782 578524 333773 666433 364895 513823 236079 756043 239387 533229 537234 442263 159207 609982 939553 535052 881591 495735 201767 209324 510032 645499 229191 252684 767418 616614 370928 750662 125695 615124 093804 706249 292557 454104 035646 025479 096480 721010 329102 688149 199735 668700 984015 512831 002602 163066 384041 947494 212342 575550 354159 161316 678695 397799 215129 249603 369534 662635 624341 352665 315617 295656 122049 469520 310878 120861 135540 850477 644514 247824 245248 091221 978800 938232 725983 956062 358270 347220 241224 574962 663616 207287 980193 393233 473808 702978 693323 521479 014173 798986 156354 391326 222928 (626 digits)/5601 197724 729674 026304 624917 466781 087654 124208 061116 799387 598312 675621 106770 811205 618422 000570 874615 933567 544840 069651 978666 458627 100247 255046 211592 951250 071834 495089 755200 753226 865497 596547 039207 933319 529957 409263 854056 198098 654987 524915 934863 936826 072844 343532 388034 164530 565058 556467 653162 682903 008876 707104 883876 781913 255445 821444 119576 110470 809609 600509 216286 335061 462076 291391 897963 060930 606529 433315 781271 620241 165549 564486 606365 582133 891152 167489 537758 468109 428225 237960 805146 202863 908821 444008 146862 974012 244230 480192 422627 888693 423914 948860 428682 298316 722452 886476 391135 915510 526510 516166 504115 974145 942776 769233 449879 (628 digits), a[1199] = 1
                                                                                      A[1200]/B[1200] = 794 364244 787097 897894 625239 380543 416125 097855 593338 610903 963428 527905 690301 924772 285012 463137 190439 450055 640452 887380 768988 494301 604355 378987 703746 073733 237877 903649 006782 000096 348842 840467 376364 616083 091526 172044 860927 970275 872444 998330 637771 439430 640458 566015 465535 396215 850606 453996 763727 239295 935284 106046 896953 510237 260606 815251 360274 732786 887613 910742 364479 877547 836269 686876 825050 837683 787847 013683 449416 259759 932102 286469 367373 117629 084124 464852 659290 397352 572727 627784 824635 883582 936267 868739 058809 433434 091550 330973 883140 581367 114158 475347 147102 908976 156180 427938 392359 534864 659753 065094 509122 783383 228544 005831 499577 (627 digits)/77207 061443 187304 069878 092443 486178 411787 333425 227299 653367 338317 619699 932758 678860 729475 054559 965264 232864 107195 647990 789286 007556 635088 984452 819383 242906 309017 228448 135372 935529 328076 537467 243005 027162 029277 573709 603570 328307 395646 322431 688253 036643 317154 329030 800624 589068 873845 137276 916423 564476 535182 121956 318099 702097 164683 824794 563185 656860 398556 877557 844784 028007 204009 476252 703029 595402 697655 245395 443855 786885 142342 953426 722542 544311 528564 028904 423554 400390 338765 777903 671786 955351 630363 386519 481405 794382 516408 701074 808569 988662 302900 578056 101698 640893 616948 696169 937490 966067 824089 454006 346235 107106 773744 345892 340178 (629 digits), a[1200] = 13
                                                                                      A[1201]/B[1201] = 851 993574 505625 990730 463424 173857 897874 149790 439404 996819 994553 839152 110084 503296 618786 129570 555334 963878 876532 643424 008376 027531 141589 821250 862953 683716 177431 438701 888373 495831 550610 049791 886397 261582 320717 424729 628346 586890 243373 748992 763467 054554 734263 272264 758092 850319 886252 479475 860207 960306 264386 794196 096689 178938 244622 328082 362876 895853 271655 858236 576822 453098 190428 848193 503746 235483 002976 263286 818950 922395 556443 639134 682990 413285 206173 934372 970168 518213 708268 478262 469150 131407 181515 959961 037610 371666 817534 287036 241410 928587 355383 050309 810719 116264 136373 821171 866168 237843 353076 586573 523296 582369 384898 397157 722505 (627 digits)/82808 259167 916978 096182 717360 952959 499441 457633 288416 452754 936630 295321 039529 490066 347897 055130 839880 166431 652035 717642 767952 466183 735336 239499 030976 194156 380851 723537 890573 688756 193574 134014 282212 960481 559234 982973 457626 526406 050633 847347 623116 973469 389998 672563 188658 753599 438903 693744 569586 247379 544058 829061 201976 484010 420129 646238 682761 767331 208166 478067 061070 363068 666085 767644 600992 656333 304184 678711 225127 407126 307892 517913 328908 126445 419716 196393 961312 868499 766991 015864 476933 158215 539184 830527 628268 768394 760639 181267 231197 877355 726815 526916 530380 939210 339401 582646 328626 881578 350599 970172 850351 081252 716521 115125 790057 (629 digits), a[1201] = 1
                                                                                      A[1202]/B[1202] = 6758 319266 326479 833007 869208 597548 701244 146388 669173 588643 925305 401970 460893 447848 616515 370131 077784 197207 776181 391348 827620 687019 595484 127743 744421 859746 479897 974562 225396 470917 203113 189010 581145 447159 336548 145152 259354 078507 576061 241279 982040 821313 780301 471868 772185 348455 054373 810327 785182 961439 785991 665419 573777 762804 972963 111827 900413 003759 789204 918398 402237 049235 169271 624231 351274 486064 808680 856691 182072 716528 827207 760412 148306 010625 527342 005463 450470 024848 530606 975622 108686 803433 206879 588466 322082 035101 814290 340227 573017 081478 601839 827515 822136 722825 110797 176141 455537 199768 131289 171109 172198 859968 922832 785935 557112 (628 digits)/656864 875618 606150 743157 113970 156894 907877 536858 246214 822651 894729 686947 209465 109325 164754 440475 844425 397885 671445 671490 164953 270842 782442 660946 036216 602000 974979 293213 369388 756822 683095 475567 218495 750532 943922 454523 806956 013149 750083 253865 050071 850929 047145 036973 121235 864264 946170 993488 903527 296133 343593 925384 731935 090170 105591 348465 342518 028178 855722 224027 272276 569487 866609 849764 909978 189735 826947 996374 019747 636769 297590 578820 024899 429429 466577 403662 152744 479888 707702 888955 010319 062860 404657 200212 879287 173145 840882 969945 426955 130152 390609 266471 814365 215365 992759 774694 237879 137116 278289 245216 298692 675875 789392 151772 870577 (630 digits), a[1202] = 7
                                                                                      A[1203]/B[1203] = 7610 312840 832105 823738 332632 771406 599118 296179 108578 585463 919859 241122 570977 951145 235301 499701 633119 161086 652714 034772 835996 714550 737073 948994 607375 543462 657329 413264 113769 966748 753723 238802 467542 708741 657265 569881 887700 665397 819434 990272 745507 875868 514564 744133 530278 198774 940626 289803 645390 921746 050378 459615 670466 941743 217585 439910 263289 899613 060860 776634 979059 502333 359700 472424 855020 721547 811657 119978 001023 638924 383651 399546 831296 423910 733515 939836 420638 543062 238875 453884 577836 934840 388395 548427 359692 406768 631824 627263 814428 010065 957222 877825 632855 839089 247170 997313 321705 437611 484365 757682 695495 442338 307731 183093 279617 (628 digits)/739673 134786 523128 839339 831331 109854 407318 994491 534631 275406 831359 982268 248994 599391 512651 495606 684305 564317 323481 389132 932905 737026 517778 900445 067192 796157 355831 016751 259962 445578 876669 609581 500708 711014 503157 437497 264582 539555 800717 101212 673188 824398 437143 709536 309894 617864 385074 687233 473113 543512 887652 754445 933911 574180 525720 994704 025279 795510 063888 702094 333346 932556 532695 617409 510970 846069 131132 675085 244875 043895 605483 096733 353807 555874 886293 600056 114057 348388 474693 904819 487252 221075 943842 030740 507555 941540 601522 151212 658153 007508 117424 793388 344746 154576 332161 357340 566506 018694 628889 215389 149043 757128 505913 266898 660634 (630 digits), a[1203] = 1
                                                                                      A[1204]/B[1204] = 37199 570629 654903 127961 199739 683175 097717 331105 103487 930499 604742 366460 744805 252429 557721 368937 610260 841554 387037 530440 171607 545222 543779 923722 173924 033597 109215 627618 680476 337912 218006 144220 451316 282125 965610 424679 810156 740098 853801 202370 964072 324787 838560 448402 893298 143554 816878 969542 366746 648423 987505 503882 255645 529777 843304 871468 953572 602212 032648 024938 318475 058568 608073 513930 771357 372256 055309 336603 186167 272226 361813 358599 473491 706268 461405 764809 133024 197097 486108 791160 420034 542794 760461 782175 760851 662176 341588 849282 830729 121742 430731 338818 353560 079182 099481 165394 742358 950214 068752 201839 954180 629322 153757 518308 675580 (629 digits)/3 615557 414764 698666 100516 439294 596312 537153 514824 384739 924279 220169 616020 205443 506891 215360 422902 581647 655154 965371 228021 896576 218948 853558 262726 304987 786630 398303 360218 409238 539138 189773 913893 221330 594590 956552 204512 865286 171372 952951 658715 742827 148522 795719 875118 360814 335722 486469 742422 795981 470184 894204 943168 467581 386892 208475 327281 443637 210219 111277 032404 605664 299713 997392 319402 953861 574012 351478 696714 999247 812351 719522 965753 440129 652929 011751 803886 608973 873442 606478 508232 959327 947164 180025 323174 909510 939308 246971 574796 059567 160184 860308 440025 193349 833671 321405 204056 503903 211894 793846 106772 894867 704389 813045 219367 513113 (631 digits), a[1204] = 4
                                                                                      A[1205]/B[1205] = 82009 454100 141912 079660 732112 137756 794552 958389 315554 446463 129343 974044 060588 456004 350744 237576 853640 844195 426789 095653 179211 804995 824633 796438 955223 610656 875760 668501 474722 642573 189735 527243 370175 272993 588486 419241 508014 145595 527037 395014 673652 525444 191685 640939 316874 485884 574384 228888 378884 218594 025389 467380 181758 001298 904195 182848 170435 104037 126156 826511 616009 619470 575847 500286 397735 466059 922275 793184 373358 183377 107278 116745 778279 836447 656327 469454 686686 937257 211093 036205 417906 020429 909319 112778 881395 731121 315002 325829 475886 253550 818685 555462 339975 997453 446133 328102 806423 338039 621870 161362 603856 700982 615246 219710 630777 (629 digits)/7 970787 964315 920461 040372 709920 302479 481626 024140 304111 123965 271699 214308 659881 613173 943372 341411 847600 874627 254223 845176 726058 174924 224895 425897 677168 369418 152437 737188 078439 523855 256217 437367 943369 900196 416261 846522 995154 882301 706620 418644 158843 121444 028583 459773 031523 289309 358014 172079 065076 483882 676062 640782 869074 347964 942671 649266 912554 215948 286442 766903 544675 531984 527480 256215 418693 994093 834090 068515 243370 668599 044529 028240 234066 861732 909797 207829 332005 095273 687650 921285 405908 115404 303892 677090 326577 820157 095465 300804 777287 327877 838041 673438 731445 821918 974971 765453 574312 442484 216581 428934 938779 165908 132003 705633 686860 (631 digits), a[1205] = 2
                                                                                      A[1206]/B[1206] = 1 267341 382131 783584 322872 181421 749527 016011 706944 836804 627446 544901 977121 653632 092494 818884 932590 414873 504485 788873 965237 859784 620159 913286 870306 502278 193450 245625 655140 801315 976510 064039 052871 003945 377029 792906 713302 430368 924031 759362 127591 068860 206450 713845 062492 646415 431823 432642 402868 050009 927334 368347 514584 982015 549261 406232 614191 510099 162768 925000 422612 558619 350627 245786 018226 737389 363154 889446 234368 786540 022882 970985 109786 147689 252983 306317 806629 433328 255955 652504 334241 688624 849243 400248 473858 981787 628996 066623 736724 969022 925004 711014 670753 453200 040983 791481 086936 838709 020808 396804 622279 012031 144061 382450 813968 137235 (631 digits)/123 177376 879503 505581 706107 088099 133504 761543 876928 946406 783758 295657 830650 103667 704500 365945 544080 295660 774563 778728 905672 787448 842812 226989 651191 462513 327902 684869 418039 585831 396967 033035 474412 371879 097537 200479 902357 792609 405898 552257 938378 125473 970183 224471 771713 833663 675362 856682 323608 772128 728425 035144 554911 503696 606366 348550 066285 131950 449443 407918 535957 775797 279481 909596 162634 234271 485419 862829 724443 649807 841337 387458 389356 951132 578922 658709 921326 589050 302547 921242 327514 047949 678228 738415 479529 808178 241664 678951 086867 718877 078352 430933 541606 165037 162455 945981 685860 118589 849158 042567 540796 976555 193011 793100 803872 816013 (633 digits), a[1206] = 15
                                                                                      A[1207]/B[1207] = 2 616692 218363 709080 725405 094955 636810 826576 372278 989163 701356 219147 928287 367852 640993 988514 102757 683387 853167 004537 026128 898781 045315 651207 537051 959779 997557 367011 978783 077354 595593 317813 632985 378066 027053 174299 845846 368751 993659 045761 650196 811372 938345 619375 765924 609705 349531 439669 034624 478904 073262 762084 496550 145789 099821 716660 411231 190633 429574 976157 671736 733248 320725 067419 536739 872514 192369 701168 261921 946438 229143 049248 336318 073658 342414 268963 082713 553343 449168 516101 704688 795155 718916 709816 060496 844970 989113 448249 799279 413932 103560 240714 896969 246376 079421 029095 501976 483841 379656 415479 405920 627918 989105 380147 847646 905247 (631 digits)/254 325541 723322 931624 452586 886118 569489 004713 777998 196924 691481 863014 875608 867217 022174 675263 429572 438922 423754 811681 656522 300955 860548 678874 728280 602195 025223 522176 573267 250102 317789 322288 386192 687128 095270 817221 651238 580373 694098 811136 295400 409791 061810 477527 003200 698850 640035 071378 819296 609333 940732 746351 750605 876467 560697 639771 781837 176455 114835 102279 838819 096270 090948 346672 581483 887236 964933 559749 517402 542986 351273 819445 806954 136332 019578 227217 050482 510105 700369 530135 576313 501807 471861 780723 636149 942934 303486 453367 474540 215041 484582 699908 756651 061520 146830 866935 137173 811492 140800 301716 510528 891889 551931 718205 313379 318886 (633 digits), a[1207] = 2
                                                                                      A[1208]/B[1208] = 6 500725 818859 201745 773682 371333 023148 669164 451502 815132 030158 983197 833696 389337 374482 795913 138105 781649 210819 797948 017495 657346 710791 215701 944410 421838 188564 979649 612706 956025 167696 699666 318841 760077 431136 141506 404995 167872 911349 850885 427984 691606 083141 952596 594341 865826 130886 311980 472117 007818 073859 892516 507685 273593 748904 839553 436653 891366 021918 877315 766086 025115 992077 380625 091706 482417 747894 291782 758212 679416 481169 069481 782422 295005 937811 844243 972056 540015 154292 684707 743619 278936 287076 819880 594852 671729 607222 963123 335283 796887 132125 192444 464691 945952 199825 849672 090889 806391 780121 227763 434120 267869 122272 142746 509261 947729 (631 digits)/631 828460 326149 368830 611280 860336 272482 770971 432925 340256 166722 021687 581867 838101 748849 716472 403225 173505 622073 402092 218717 389360 563909 584739 107752 666903 378349 729222 564574 086036 032545 677612 246797 746135 288078 834923 204834 953356 794096 174530 529178 945056 093804 179525 778115 231364 955432 999439 962201 990796 609890 527848 056123 256631 727761 628093 629959 484860 679113 612478 213595 968337 461378 602941 325602 008745 415286 982328 759248 735780 543885 026350 003265 223796 618079 113144 022291 609261 703286 981513 480141 051564 621952 299862 751829 694046 848637 585686 035948 148960 047517 830751 054908 288077 456117 679851 960207 741574 130758 646000 561854 760334 296875 229511 430631 453785 (633 digits), a[1208] = 2
                                                                                      A[1209]/B[1209] = 15 618143 856082 112572 272769 837621 683108 164905 275284 619427 761674 185543 595680 146527 389959 580340 378969 246686 274806 600433 061120 213474 466898 082611 425872 803456 374687 326311 204196 989404 930986 717146 270668 898220 889325 457312 655836 704497 816358 747532 506166 194585 104629 524568 954608 341357 611304 063629 978858 494540 220982 547117 511920 692976 597631 395767 284538 973365 473412 730789 203908 783480 304879 828669 720152 837349 688158 284733 778347 305271 191481 188211 901162 663670 218037 957451 026826 633373 757753 885517 191927 353028 293070 349577 250202 188430 203559 374496 469847 007706 367810 625603 826353 138280 479072 728439 683756 096624 939898 871006 274161 163657 233649 665640 866170 800705 (632 digits)/1517 982462 375621 669285 675148 606791 114454 546656 643848 877437 024925 906390 039344 543420 519874 108208 236022 785933 667901 615866 093957 079676 988367 848352 943785 936001 781922 980621 702415 422174 382880 677512 879788 179398 671428 487068 060908 487087 282291 160197 353758 299903 249418 836578 559431 161580 550901 070258 743700 590927 160513 802047 862852 389731 016220 895959 041756 146176 473062 327236 266011 032945 013705 552555 232687 904727 795507 524407 035900 014547 439043 872145 813484 583925 255736 453505 095065 728629 106943 493162 536595 604936 715766 380449 139809 331028 000761 624739 546436 512961 579618 361410 866467 637675 059066 226639 057589 294640 402317 593717 634238 412558 145682 177228 174642 226456 (634 digits), a[1209] = 2
                                                                                      A[1210]/B[1210] = 53 355157 387105 539462 591991 884198 072473 163880 277356 673415 315181 539828 620736 828919 544361 536934 275013 521708 035239 599247 200856 297770 111485 463536 222028 832207 312626 958583 225297 924239 960656 851105 130848 454740 099112 513444 372505 281366 360426 093482 946483 275361 397030 526303 458166 889898 964798 502870 408692 491438 736807 533869 043447 352523 541799 026855 290270 811462 442157 069683 377812 375556 906716 866634 252164 994466 812369 145984 093254 595230 055612 634117 485910 286016 591925 716597 052536 440136 427554 341259 319401 338021 166287 868612 345459 237020 217901 086612 744824 820006 235557 069255 943751 360793 637044 034991 142158 096266 599817 840782 256603 758840 823221 139669 107774 349844 (632 digits)/5185 775847 453014 376687 636726 680709 615846 410941 364471 972567 241499 740857 699901 468363 308472 041097 111293 531306 625778 249690 500588 628391 529013 129797 939110 474908 724118 671087 671820 352559 181187 710150 886162 284331 302364 296127 387560 414618 640969 655122 590453 844765 842060 689261 456408 716106 608136 210216 193303 763578 091431 933991 644680 425824 776424 315970 755227 923390 098300 594187 011629 067172 502495 260607 023665 722928 801809 555549 866948 779422 861016 642787 443718 975572 385288 473659 307488 795149 024117 461001 089927 866374 769251 441210 171257 687130 850922 459904 675257 687844 786372 914983 654311 201102 633316 359769 132975 625495 337711 427153 464569 998008 733921 761195 954558 133153 (634 digits), a[1210] = 3
                                                                                      A[1211]/B[1211] = 68 973301 243187 652034 864761 721819 755581 328785 552641 292843 076855 725372 216416 975446 934321 117274 653982 768394 310046 199680 261976 511244 578383 546147 647901 635663 687314 284894 429494 913644 891643 568251 401517 352960 988437 970757 028341 985864 176784 841015 452649 469946 501660 050872 412775 231256 576102 566500 387550 985978 957790 080986 555368 045500 139430 422622 574809 784827 915569 800472 581721 159037 211596 695303 972317 831816 500527 430717 871601 900501 247093 822329 387072 949686 809963 674048 079363 073510 185308 226776 511328 691049 459358 218189 595661 425450 421460 461109 214671 827712 603367 694859 770104 499074 116116 763430 825914 192891 539716 711788 530764 922498 056870 805309 973945 150549 (632 digits)/6703 758309 828636 045973 311875 287500 730300 957598 008320 850004 266425 647247 739246 011783 828346 149305 347316 317240 293679 865556 594545 708068 517380 978150 882896 410910 506041 651709 374235 774733 564068 387663 765950 463729 973792 783195 448468 901705 923260 815319 944212 144669 091479 525840 015839 877687 159037 280474 937004 354505 251945 736039 507532 815555 792645 211929 796984 069566 571362 921423 277640 100117 516200 813162 256353 627656 597317 079956 902848 793970 300060 514933 257203 559497 641024 927164 402554 523778 131060 954163 626523 471311 485017 821659 311067 018158 851684 084644 221694 200806 365991 276394 520778 838777 692382 586408 190564 920135 740029 020871 098808 410566 879603 938424 129200 359609 (634 digits), a[1211] = 1
                                                                                      A[1212]/B[1212] = 1708 714387 223609 188299 346273 207872 206425 054733 540747 701649 159718 948761 814744 239645 968068 351525 970599 963171 476348 391573 488292 567639 992690 571079 771668 088135 808169 796049 533175 851717 360102 489138 767264 925803 821623 811613 052712 942106 603262 277853 810070 554077 436871 747241 364772 440056 791260 098879 709916 154933 723769 477546 372280 444526 888129 169797 085705 647332 415832 281025 339120 192449 985037 553929 587792 958062 825027 483213 011700 207259 985864 370022 775661 078500 031053 893750 957250 204380 874951 783895 591289 923208 190885 105162 641333 447830 332952 153233 896948 685108 716381 745890 426259 338572 423846 357330 964098 725663 553018 923706 994961 898794 188120 467108 482457 963020 (634 digits)/166075 975283 340279 480047 121733 580727 143069 393293 564172 372669 635715 274803 441805 751175 188779 624425 446885 145073 674095 023048 769685 622035 946156 605419 128624 336760 869118 312112 653478 946164 718829 014081 268973 413850 673391 092818 150814 055560 799229 222801 251545 316824 037569 309421 836565 780598 425030 941614 681408 271704 138129 598939 825467 999163 799909 402285 882845 592987 811010 708345 674991 469992 891314 776501 176152 786687 137419 474515 535319 834710 062469 001185 616604 403515 769886 725604 968797 365824 169580 360928 126491 177850 409679 161033 636866 122943 291340 491365 995918 507197 570163 548452 153003 331767 250498 433565 706533 708753 098407 928059 835971 851613 844416 283375 055366 763769 (636 digits), a[1212] = 24
                                                                                      A[1213]/B[1213] = 3486 402075 690406 028633 557308 137564 168431 438252 634136 696141 396293 622895 845905 454738 870457 820326 595182 694737 262742 982827 238561 646524 563764 688307 191237 811935 303653 876993 495846 617079 611848 546528 936047 204568 631685 593983 133767 870077 383309 396723 072790 578101 375403 545355 142320 111370 158622 764259 807383 295846 405329 036079 299928 934553 915688 762216 746221 079492 747234 362523 259961 543937 181671 803163 147903 747942 150582 397143 895002 315021 218822 562374 938395 106686 872071 461549 993863 482271 935211 794567 693908 537465 841128 428514 878328 321111 087364 767577 008569 197930 036131 186640 622623 176218 963809 478092 754111 644218 645754 559202 520688 720086 433111 739526 938861 076589 (634 digits)/338855 708876 509195 006067 555342 448955 016439 744185 136665 595343 537856 196854 622857 514134 205905 398156 241086 607387 641869 911654 133916 952140 409694 188989 140145 084432 244278 275934 681193 667063 001726 415826 303897 291431 320574 968831 750097 012827 521719 260922 447302 778317 166618 144683 688971 438884 009099 163704 299820 897913 528204 933919 158468 813883 392464 016501 562675 255542 193384 338114 627623 040103 298830 366164 608659 201030 872156 028987 973488 463390 424998 517304 490412 366529 180798 378374 340149 255426 470221 676019 879505 827012 304376 143726 584799 264045 434365 067376 213531 215201 506318 373298 826785 502312 193379 453539 603632 337641 936844 876990 770752 113794 568436 505174 239933 887147 (636 digits), a[1213] = 2
                                                                                      A[1214]/B[1214] = 8681 518538 604421 245566 460889 483000 543287 931238 809021 093931 952306 194553 506555 149123 708983 992179 160965 352646 001834 357227 965415 860689 120219 947694 154143 712006 415477 550036 524869 085876 583799 582196 639359 334941 084994 999579 320248 682261 369881 071299 955651 710280 187678 837951 649412 662797 108505 627399 324682 746626 534427 549704 972138 313634 719506 694230 578147 806317 910301 006071 859043 280324 348381 160255 883600 453947 126192 277500 801704 837302 423509 494772 652451 291873 775196 816850 944977 168924 745375 373030 979106 998139 873141 962192 397990 090052 507681 688387 914087 080968 788644 119171 671505 691010 351465 313516 472322 014100 844528 042112 036339 338967 054343 946162 360180 116198 (634 digits)/843787 393036 358669 492182 232418 478637 175948 881663 837503 563356 711427 668512 687520 779443 600590 420737 929058 359848 957834 846357 037519 526316 765544 983397 408914 505625 357674 863982 015866 280290 722281 845733 876767 996713 314541 030481 651008 081215 842667 744646 146150 873458 370805 598789 214508 658366 443229 269023 281050 067531 194539 466778 142405 626930 584837 435289 008196 104072 197779 384574 930237 550199 488975 508830 393471 188748 881731 532491 482296 761490 912466 035794 597429 136574 131483 482353 649095 876677 110023 712967 885502 831875 018431 448486 806464 651034 160070 626118 422980 937600 582800 295049 806574 336391 637257 340644 913798 384036 972097 682041 377476 079202 981289 293723 535234 538063 (636 digits), a[1214] = 2
                                                                                      A[1215]/B[1215] = 46893 994768 712512 256465 861755 552566 884871 094446 679242 165801 157824 595663 378681 200357 415377 781222 400009 457967 271914 768967 065640 949970 164864 426777 961956 371967 381041 627176 120192 046462 530846 457512 132843 879274 056660 591879 735011 281384 232714 753222 851049 129502 313797 735113 389383 425355 701150 901256 430797 028979 077466 784604 160620 502727 513222 233369 636960 111082 298739 392882 555177 945558 923577 604442 565906 017677 781543 784647 903526 501533 336370 036238 200651 566055 748055 545804 718749 326895 662088 659722 589443 528165 206838 239476 868278 771373 625773 209516 579004 602773 979351 782498 980151 631270 721136 045675 115721 714722 868394 769762 702385 414921 704831 470338 739761 657579 (635 digits)/4 557792 674058 302542 466978 717434 842140 896184 152504 324183 412127 094994 539418 060461 411352 208857 501845 886378 406632 431044 143439 321514 583724 237419 105976 184717 612559 032652 595844 760525 068516 613135 644495 687737 274997 893280 121240 005137 418906 735057 984153 178057 145609 020646 138629 761514 730716 225245 508820 705071 235569 500902 267809 870496 948536 316651 192946 603655 775903 182281 260989 278810 791100 743707 910316 576015 144775 280813 691445 384972 270844 987328 696277 477558 049399 838215 790142 585628 638812 020340 240859 307019 986387 396533 386160 617122 519216 234718 197968 328435 903204 420319 848547 859657 184270 379666 156764 172624 257826 797333 287197 658132 509809 474882 973791 916106 577462 (637 digits), a[1215] = 5
                                                                                      A[1216]/B[1216] = 102469 508076 029445 758498 184400 588134 313030 120132 167505 425534 267955 385880 263917 549838 539739 554623 960984 268580 545663 895162 096697 760629 449948 801250 078056 455941 177560 804388 765253 178801 645492 497220 905047 093489 198316 183338 790271 245029 835310 577745 657749 969284 815274 308178 428179 513508 510807 429912 186276 804584 689361 118913 293379 319089 745951 160969 852068 028482 507779 791836 969399 171442 195536 369141 015412 489302 689279 846796 608757 840369 096249 567249 053754 423985 271307 908460 382475 822716 069552 692476 157994 054470 286818 441146 134547 632799 759228 107421 072096 286516 747347 684169 631808 953551 793737 404866 703765 443546 581317 581637 441110 168810 464006 886839 839703 431356 (636 digits)/9 959372 741152 963754 426139 667288 162918 968317 186672 485870 387610 901416 747348 808443 602148 018305 424429 701815 173113 819923 133235 680548 693765 240383 195349 778349 730743 422980 055671 536916 417323 948553 134725 252242 546709 101101 272961 661282 919029 312783 712952 502265 164676 412097 876048 737538 119798 893720 286664 691192 538670 196344 002397 883399 524003 218139 821182 215507 655878 562341 906553 487859 132400 976391 329463 545501 478299 443358 915382 252241 303180 887123 428349 552545 235373 807915 062638 820353 154301 150704 194686 499542 804649 811498 220808 040709 689466 629507 022055 079852 744009 423439 992145 525888 704932 396589 654173 259046 899690 566764 256436 693741 098821 931055 241307 367447 692987 (637 digits), a[1216] = 2
                                                                                      A[1217]/B[1217] = 764180 551300 918632 565953 152559 669507 076081 935371 851780 144541 033512 296825 226104 049227 193554 663590 126899 338031 091562 035101 742525 274376 314506 035528 508351 563555 623967 257897 476964 298074 049293 938058 468173 533698 444873 875251 266909 996593 079888 797442 455298 914496 020717 892362 386640 019915 276802 910641 734734 661071 902994 616997 214275 736355 734880 360158 601436 310459 853197 935741 340972 145654 292332 188429 673793 442796 606502 712224 164831 384117 010117 006981 576932 533952 647210 905027 396080 085908 148957 507055 695401 909457 214567 327499 810112 200971 940369 961464 083678 608391 210785 571686 402814 306133 277297 879742 042079 819548 937617 841224 790156 596594 952879 678217 617685 677071 (636 digits)/74 273401 862129 048823 449956 388451 982573 674404 459211 725276 125403 404911 770859 719566 626388 336995 472853 799084 618429 170506 076089 085355 440080 920101 473424 633165 727762 993512 985545 518939 989784 253007 587572 453435 101961 600989 031971 634117 852111 924543 974820 693913 298343 905331 270970 924281 569308 481287 515473 543419 006260 875310 284595 054293 616558 843629 941222 112209 367053 118674 606863 693824 717907 578447 216561 394525 492871 384326 099121 150661 393111 197192 694724 345374 697016 493621 228614 328100 718920 075269 603664 803819 618936 077020 931816 902090 345482 641267 352353 887405 111270 384399 793566 540878 118797 155793 735976 985952 555660 764683 082254 514320 201562 992269 662943 488240 428371 (638 digits), a[1217] = 7
                                                                                      A[1218]/B[1218] = 866650 059376 948078 324451 336960 257641 389112 055504 019285 570075 301467 682705 490021 599065 733294 218214 087883 606611 637225 930263 839223 035005 764454 836778 586408 019496 801528 062286 242217 476875 694786 435279 373220 627187 643190 058590 057181 241622 915199 375188 113048 883780 835992 200540 814819 533423 787610 340553 921011 465656 592355 735910 507655 055445 480831 521128 453504 338942 360977 727578 310371 317096 487868 557570 689205 932099 295782 559020 773589 224486 106366 574230 630686 957937 918518 813487 778555 908624 218510 199531 853395 963927 501385 768645 944659 833771 699598 068885 155774 894907 958133 255856 034623 259685 071035 284608 745845 263095 518935 422862 231266 765405 416886 565057 457389 108427 (636 digits)/84 232774 603282 012577 876096 055740 145492 642721 645884 211146 513014 306328 518208 528010 228536 355300 897283 500899 791542 990429 209324 765904 133846 160484 668774 411515 458506 416493 041217 055856 407108 201560 722297 705677 648670 702090 304933 295400 771141 237327 687773 196178 463020 317429 147019 661819 689107 375007 802138 234611 544931 071654 286992 937693 140562 061769 762404 327717 022931 681016 513417 181683 850308 554838 546024 940026 971170 827685 014503 402902 696292 084316 123073 897919 932390 301536 291253 148453 873221 225973 798351 303362 423585 888519 152624 942800 034949 270774 374408 967257 855279 807839 785712 066766 823729 552383 390150 244999 455351 331447 338691 208061 300384 923324 904250 855688 121358 (638 digits), a[1218] = 1
                                                                                      A[1219]/B[1219] = 5 097430 848185 659024 188209 837360 957714 021642 212891 948207 994917 540850 710352 676212 044555 860025 754660 566317 371089 277691 686420 938640 449405 136780 219421 440391 661039 631607 569328 688051 682452 523226 114455 334276 669636 660824 168201 552816 204707 655885 673383 020543 333400 200678 895066 460737 687034 214854 613411 339791 989354 864773 296549 752551 013583 139037 965800 868958 005171 658086 573632 892828 731136 731674 976283 119823 103293 085415 507328 032777 506547 541949 878134 730367 323642 239804 972466 288859 629029 241508 504714 962381 729094 721496 170729 533411 369830 438360 305889 862553 082931 001451 850966 575930 604558 632474 302785 771306 135026 532294 955535 946490 423622 037312 503504 904631 219206 (637 digits)/495 437274 878539 111712 830436 667152 710036 888012 688632 781008 690474 936554 361902 359617 769070 113499 959271 303583 576144 122652 122712 914876 109311 722524 817296 690743 020295 075978 191630 798222 025325 260811 199060 981823 345315 111440 556638 111121 707818 111182 413686 674805 613445 492477 006069 233380 014845 356326 526164 716476 730916 233581 719559 742759 319369 152478 753243 750794 481711 523757 173949 602243 969450 352639 946686 094660 348725 522751 171638 165174 874571 618773 310093 834974 358968 001302 684880 070370 085026 205138 595421 320631 736865 519616 694941 616090 520228 995139 224398 723694 387669 423598 722126 874712 237444 917710 686728 210949 832417 421919 775710 554626 703487 608894 184197 766681 035161 (639 digits), a[1219] = 5
                                                                                      A[1220]/B[1220] = 123 204990 415832 764658 841487 433623 242777 908525 164910 776277 448096 281884 731169 719110 668406 373912 330067 679500 512754 301826 404366 366593 820729 047180 102893 155807 884447 960109 726174 755457 855736 252213 182207 395860 698467 502970 095427 324770 154606 656455 536380 606088 885385 652285 682135 872524 022244 944121 062426 076019 210173 346914 853104 568879 381440 817742 700349 308496 463062 155055 494767 738260 864378 048067 988365 564960 411133 345754 734893 560249 381627 113163 649464 159502 725351 673838 152678 711187 005326 014714 312690 950557 462200 817293 866154 746532 709702 220245 410241 857048 885251 992977 679053 856957 769092 250418 551467 257192 503732 294014 355724 947036 932334 312386 649175 168538 369371 (639 digits)/11974 727371 688220 693685 806576 067405 186377 955026 173070 955355 084412 783633 203865 158836 686219 079299 919794 786905 619001 934080 154434 722930 757327 501080 283894 989347 945588 239969 640356 213185 014914 461029 499761 269437 936233 376663 664247 962321 758775 905705 616253 391513 185712 136877 292681 262940 045395 926844 430091 430053 086920 677615 556426 763916 805421 721259 840254 346784 584008 251188 688207 635539 117117 018197 266491 211875 340583 373713 133819 367099 686010 934875 565325 937304 547622 332800 728374 837335 913850 149300 088462 998524 108358 359319 831223 728972 520445 154115 759978 335923 159345 974209 116757 059860 522407 577439 871627 307795 433369 457521 955744 519102 184087 536785 324997 256032 965222 (641 digits), a[1220] = 24
                                                                                      A[1221]/B[1221] = 128 302421 264018 423683 029697 270984 200491 930167 377802 724485 443013 822735 441522 395322 712962 233938 084728 245817 883843 579518 090787 305234 270134 183960 322314 596199 545487 591717 295503 443509 538188 775439 296662 730137 368104 163794 263628 877586 359314 312341 209763 626632 218785 852964 577202 333261 709279 158975 675837 415811 199528 211688 149654 321430 395023 956780 666150 177454 468233 813142 068400 631089 595514 779742 964648 684783 514426 431170 242221 593026 888174 655113 527598 889870 048993 913643 125145 000046 634355 256222 817405 912939 191295 538790 036884 279944 079532 658605 716131 719601 968182 994429 530020 432888 373650 882892 854253 028498 638758 826309 311260 893527 355956 349699 152680 073169 588577 (639 digits)/12470 164646 566759 805398 637012 734557 896414 843038 861703 736363 774887 720187 565767 518454 455289 192799 879066 090489 195146 056732 277147 637806 866639 223605 101191 680090 965883 315947 831987 011407 040239 721840 698822 251261 281548 488104 220886 073443 466594 016888 029940 066318 799157 629354 298750 496320 060241 283170 956256 146529 817836 911197 275986 506676 124790 873738 593498 097579 065719 774945 862157 237783 086567 370837 213177 306535 689308 896464 305457 532274 560582 553648 875419 772278 906590 334103 413254 907705 998876 354438 683884 319155 845223 878936 526165 345063 040674 149254 984377 059617 547015 397807 838883 934572 759852 495150 558355 518745 265786 879441 731455 073728 887575 145679 509195 022714 000383 (641 digits), a[1221] = 1
                                                                                      A[1222]/B[1222] = 379 809832 943869 612024 900881 975591 643761 768859 920516 225248 334123 927355 614214 509756 094330 841788 499524 171136 280441 460862 585940 977062 360997 415100 747522 348206 975423 143544 317181 642476 932113 803091 775532 856135 434675 830558 622685 079942 873235 281137 955907 859353 322957 358214 836540 539047 440803 262072 414100 907641 609229 770291 152413 211740 171488 731304 032649 663405 399529 781339 631569 000440 055407 607553 917662 934527 439986 208095 219336 746303 157976 423390 704661 939242 823339 501124 402968 711280 274036 527159 947502 776435 844791 894873 939923 306420 868767 537456 842505 296252 821617 981836 739094 722734 516394 016204 259973 314189 781249 946632 978246 734091 644247 011784 954535 314877 546525 (639 digits)/36915 056664 821740 304483 080601 536520 979207 641103 896478 428082 634188 224008 335400 195745 596797 464899 677926 967884 009294 047544 708729 998544 490605 948290 486278 349529 877354 871865 304330 235999 095393 904710 897405 771960 499330 352872 106020 109208 691963 939481 676133 524150 784027 395585 890182 255580 165878 493186 342603 723112 722594 500010 108399 777269 055003 468737 027250 541942 715447 801080 412522 111105 290251 759871 692845 824946 719201 166641 744734 431648 807176 042173 316165 481862 360803 001007 554884 652747 911602 858177 456231 636835 798806 117192 883554 419098 601793 452625 728732 455158 253376 769824 794524 929006 042112 567740 988338 345285 964943 216405 418654 666559 959237 828144 343387 301460 965988 (641 digits), a[1222] = 2
                                                                                      A[1223]/B[1223] = 887 922087 151757 647732 831461 222167 488015 467887 218835 174982 111261 677446 669951 414834 901623 917515 083776 588090 444726 501243 262669 259358 992129 014161 817359 292613 496333 878805 929866 728463 402416 381622 847728 442408 237455 824911 508999 037472 105784 874617 121579 345338 864700 569394 250283 411356 590885 683120 504039 231094 417987 752270 454480 744910 738001 419388 731449 504265 267293 375821 331538 631969 706329 994850 799974 553838 394398 847360 680895 085633 204127 501894 936922 768355 695672 915891 931082 422607 182428 310542 712411 465810 880879 328537 916730 892785 817067 733519 401142 312107 611418 958103 008209 878357 406438 915301 374199 656878 201258 719575 267754 361710 644450 373269 061750 702924 681627 (639 digits)/86300 277976 210240 414364 798215 807599 854830 125246 654660 592529 043264 168204 236567 909945 648884 122599 234920 026257 213734 151821 694607 634895 847851 120186 073748 379150 720593 059678 440647 483405 231027 531262 493633 795182 280209 193848 432926 291860 850521 895851 382207 114620 367212 420526 079115 007480 391998 269543 641463 592755 263025 911217 492786 061214 234797 811212 647999 181464 496615 377106 687201 459993 667070 890580 598868 956429 127711 229747 794926 395572 174934 637995 507750 736003 628196 336118 523024 213201 822082 070793 596347 592827 442836 113322 293274 183260 244261 054506 441841 969934 053768 937457 427933 792584 844077 630632 535032 209317 195673 312252 568764 406848 806050 801968 195969 625635 932359 (641 digits), a[1223] = 2
                                                                                      A[1224]/B[1224] = 2155 654007 247384 907490 563804 419926 619792 704634 358186 575212 556647 282248 954117 339425 897578 676818 667077 347317 169894 463349 111279 495780 345255 443424 382240 933433 968090 901156 176915 099403 736946 566337 470989 740951 909587 480381 640683 154887 084805 030372 199066 550031 052358 497003 337107 361760 622574 628313 422179 369830 445205 274832 061374 701561 647491 570081 495548 671935 934116 532982 294646 264379 468067 597255 517612 042204 228783 902816 581126 917569 566231 427180 578507 475954 214685 332908 265133 556494 638893 148245 372325 708057 606550 551949 773385 091992 502903 004495 644789 920468 044455 898042 755514 479449 329271 846807 008372 627946 183767 385783 513755 457512 933147 758323 078036 720726 909779 (640 digits)/209515 612617 242221 133212 677033 151720 688867 891597 205799 613140 720716 560416 808536 015636 894565 710098 147767 020398 436762 351188 097945 268336 186308 188662 633775 107831 318540 991222 185625 202809 557448 967235 884673 362325 059748 740568 971872 692930 393007 731184 440547 753391 518452 236638 048412 270540 949875 032273 625530 908623 248646 322445 093971 899697 524599 091162 323248 904871 708678 555293 786925 031092 624393 541032 890583 737804 974623 626137 334587 222793 157045 318164 331666 953869 617195 673244 600933 079151 555766 999764 648926 822490 684478 343837 470102 785619 090315 561638 612416 395026 360914 644739 650392 514175 730267 829006 058402 763920 356289 840910 556183 480257 571339 432080 735326 552732 830706 (642 digits), a[1224] = 2
                                                                                      A[1225]/B[1225] = 20288 808152 378221 815147 905701 001507 066149 809596 442514 351895 121087 217687 257007 469667 979832 008883 087472 713944 973776 671385 264184 721382 099428 004981 257527 693519 209151 989211 522102 623097 034935 478660 086636 110975 423743 148346 275147 431455 869030 147966 913178 295618 335927 042424 284249 667202 194057 337941 303653 559568 424835 225759 006853 058965 565425 550122 191387 551688 674342 172661 983355 011384 918938 370150 458482 933676 453453 972709 911037 343759 300210 346520 143490 051943 627840 912066 317284 431058 932466 644751 063342 838329 339834 296085 877196 720718 343194 773980 204251 596320 011522 040487 807840 193401 369885 536564 449553 308393 855165 191626 891553 479327 042780 198176 764081 189466 869638 (641 digits)/1 971940 791531 390230 613278 891514 173086 054641 149621 506857 110795 529713 211955 513392 050677 699975 513482 564823 209843 144595 312514 576115 049921 524624 818149 777724 349632 587461 980678 111274 308691 248068 236385 455694 056107 817947 858969 179780 528234 387591 476511 347136 895144 033282 550268 514825 442348 940873 560006 271241 770364 500842 813223 338533 158491 956189 631673 557239 325309 874722 374750 769526 739827 286612 759876 614122 596673 899323 864983 806211 400710 588342 501474 492753 320830 182957 395319 931421 925565 823985 068675 436688 995243 603141 207859 524199 253832 057101 109253 953589 525171 302000 740114 281466 420166 416488 091687 060657 084600 402281 880447 574415 729166 948105 690694 813908 600231 408713 (643 digits), a[1225] = 9
                                                                                      A[1226]/B[1226] = 712263 939340 485148 437667 263339 472673 935036 040509 846188 891541 794699 901302 949378 777805 191698 987726 728622 335391 252077 961833 357744 744153 825235 617768 395710 206606 288410 523559 450506 907799 959688 319440 503253 625091 740597 672501 270843 255842 500860 209214 160306 896672 809804 981853 285845 713837 414581 456259 050053 954725 314438 176397 301231 765356 437385 824358 194112 981039 536092 576151 712071 662851 630910 552521 564514 720880 099672 947663 467433 949145 073593 555385 600659 293981 189117 255229 370088 643557 275225 714532 589325 049584 500750 914955 475270 317134 514720 093802 793595 791668 447727 315116 029921 248497 275265 626562 742738 421731 114549 092724 718127 233959 430454 694509 820878 352067 347109 (642 digits)/69 227443 316215 900292 597973 880029 209732 601308 128349 945798 490984 260678 978859 777257 789356 393708 681987 916579 364908 497598 289198 261972 015589 548176 823904 854127 344971 879710 314956 080226 007003 239837 240726 833965 326098 687923 804490 264191 181133 958709 409081 590339 083432 683341 496036 067302 752753 880449 632493 118992 871380 778144 785261 942632 446915 991236 199736 826625 290717 323961 671570 720360 925047 655840 136714 384874 621391 450958 900570 551986 247663 749032 869771 578033 182926 020704 509442 200700 473955 395244 403404 933041 656016 794420 618920 817076 669741 088854 385526 988049 776021 930940 548739 501717 220000 307351 038053 181400 724934 436155 656575 660734 001100 755038 606399 222127 560832 135661 (644 digits), a[1226] = 35
                                                                                      A[1227]/B[1227] = 732552 747492 863370 252815 169040 474181 001185 850106 288703 243436 915787 118990 206386 247473 171530 996609 816095 049336 225854 633218 621929 465535 924663 622749 653237 900125 497562 512770 972609 530896 994623 798100 589889 736067 164340 820847 545990 687298 369890 357181 073485 192291 145732 024277 570095 381039 608638 794200 353707 514293 739273 402156 308084 824322 002811 374480 385500 532728 210434 748813 695426 674236 549848 922672 022997 654556 553126 920373 378471 292904 373803 901905 744149 345924 816958 167295 687373 074616 207692 359283 652667 887913 840585 211041 352467 037852 857914 867782 997847 387988 459249 355603 837761 441898 645151 163127 192291 730124 969714 284351 609680 713286 473234 892686 584959 541534 216747 (642 digits)/71 199384 107747 290523 211252 771543 382818 655949 277971 452655 601779 790392 190815 290649 840034 093684 195470 481402 574751 642193 601712 838087 065511 072801 642054 631851 694604 467172 295634 191500 315694 487905 477112 289659 382206 505871 663459 443971 709368 346300 885592 937475 978576 716624 046304 582128 195102 821323 192499 390234 641745 278987 598485 281165 605407 947425 831410 383864 616027 198684 046321 489887 664874 942452 896590 998997 218065 350282 765554 358197 648374 337375 371246 070786 503756 203661 904762 132122 399521 219229 472080 369730 651260 397561 826780 341275 923573 145955 494780 941639 301193 232941 288853 783183 640166 723839 129740 242057 809534 838437 537023 235149 730267 703144 297094 036036 161063 544374 (644 digits), a[1227] = 1
                                                                                      A[1228]/B[1228] = 7 305238 666776 255480 713003 784703 740302 945708 691466 444518 082474 036783 972214 806855 005063 735477 957215 073477 779417 284769 660800 955109 933977 147208 222515 274851 307735 766473 138498 203992 685872 911302 502345 812261 249696 219665 060129 184759 441527 829873 423843 821673 627293 121393 200351 416704 143193 892330 604062 233421 583368 967898 795804 073995 184254 462688 194681 663617 775593 430005 315474 970911 730980 579550 856569 771493 611889 077815 231023 873675 585284 437828 672537 298003 407304 541740 760890 556446 315103 144456 948085 463336 040809 066017 814327 647473 657810 235953 903849 774222 283564 580971 515550 569774 225585 081626 094707 473363 992855 841977 651889 205253 653537 689568 728689 085514 225875 297832 (643 digits)/710 021900 285941 515001 499248 823919 655100 504851 630093 019698 907002 374208 696197 393106 349663 236866 441222 249202 537673 277340 704613 804755 605189 203391 602396 540792 596412 084260 975663 803728 848253 630986 534737 440899 765957 240768 775625 259936 565449 075417 379418 027622 890623 132957 912777 306456 508679 272358 364987 631104 647088 289033 171629 473122 895587 518068 682430 281406 834962 112118 088464 129349 908922 137916 206033 375849 583979 603503 790559 775765 083032 785411 210986 215111 716731 853661 652301 389802 069646 368309 652128 260617 517360 372477 059943 888559 981899 402453 838555 462803 486761 027412 148423 550369 981500 821903 205715 359921 010747 982093 489784 777081 573510 083337 280245 546453 010404 035027 (645 digits), a[1228] = 9
                                                                                      A[1229]/B[1229] = 15 343030 081045 374331 678822 738447 954786 892603 233039 177739 408384 989355 063419 820096 257600 642486 911039 963050 608170 795393 954820 532149 333490 219080 067780 202940 515597 030508 789767 380594 902642 817228 802792 214412 235459 603670 941105 915509 570354 029637 204868 716832 446877 388518 424980 403503 667427 393300 002324 820550 681031 675070 993764 456075 192830 928187 763843 712736 083915 070445 379763 637250 136197 708950 635811 565984 878334 708757 382421 125822 463473 249461 246980 340156 160533 900439 689076 800265 704822 496606 255454 579339 969531 972620 839696 647414 353473 329822 675482 546291 955117 621192 386704 977309 893068 808403 352542 139019 715836 653669 588130 020188 020361 852372 350064 755987 993284 812411 (644 digits)/1491 243184 679630 320526 209750 419382 693019 665652 538157 492053 415784 538809 583210 076862 539360 567417 077914 979807 650098 196875 010940 447598 275889 479584 846847 713436 887428 635694 246961 798958 012201 749878 546587 171458 914120 987409 214709 963844 840266 497135 644428 992721 759822 982539 871859 195041 212461 366039 922474 652443 935921 857053 941744 227411 396582 983563 196270 946678 285951 422920 223249 748587 482719 218285 308657 750696 386024 557290 346673 909727 814439 908197 793218 501009 937219 910985 209364 911726 538813 955848 776336 890965 685981 142515 946668 118395 887371 950863 171891 867246 274715 287765 585700 883923 603168 367645 541170 961899 831030 802624 516592 789312 877287 869818 857585 128942 181871 614428 (646 digits), a[1229] = 2
                                                                                      A[1230]/B[1230] = 22 648268 747821 629812 391826 523151 695089 838311 924505 622257 490859 026139 035634 626951 262664 377964 868255 036528 387588 080163 615621 487259 267467 366288 290295 477791 823332 796981 928265 584587 588515 728531 305138 026673 485155 823336 001235 100269 011881 859510 628712 538506 074170 509911 625331 820207 810621 285630 606387 053972 264400 642969 789568 530070 377085 390875 958525 376353 859508 500450 695238 608161 867178 288501 492381 337478 490223 786572 613444 999498 048757 687289 919517 638159 567838 442180 449967 356712 019925 641063 203540 042676 010341 038638 654024 294888 011283 565776 579332 320514 238682 202163 902255 547084 118653 890029 447249 612383 708692 495647 240019 225441 673899 541941 078753 841502 219160 110243 (644 digits)/2201 265084 965571 835527 708999 243302 348120 170504 168250 511752 322786 913018 279407 469968 889023 804283 519137 229010 187771 474215 715554 252353 881078 682976 449244 254229 483840 719955 222625 602686 860455 380865 081324 612358 680078 228177 990335 223781 405715 572553 023847 020344 650446 115497 784636 501497 721140 638398 287462 283548 583010 146087 113373 700534 292170 501631 878701 228085 120913 535038 311713 877937 391641 356201 514691 126545 970004 160794 137233 685492 897472 693609 004204 716121 653951 764646 861666 301528 608460 324158 428465 151583 203341 514993 006612 006955 869271 353317 010447 330049 761476 315177 734124 434293 584669 189548 746886 321820 841778 784718 006377 566394 450797 953156 137830 675395 192275 649455 (646 digits), a[1230] = 1
                                                                                      A[1231]/B[1231] = 83 287836 324510 263768 854302 307903 040056 407539 006556 044511 880962 067772 170323 700950 045593 776381 515805 072635 770935 035884 801684 993927 135892 317944 938666 636315 985595 421454 574564 134357 668190 002822 718206 294432 690927 073678 944811 216316 605999 608169 091006 332350 669388 918253 300975 864127 099291 250191 821485 982467 474233 603980 362470 046286 324087 100815 639419 841797 662440 571797 465479 461735 737732 574455 112955 578420 349006 068475 222756 124316 609746 311331 005533 254634 864049 226981 038978 870401 764599 419795 866074 707368 000555 088536 801769 532078 387324 027152 413479 507834 671164 227684 093471 618562 249030 478491 694290 976170 841914 140611 308187 696513 042060 478195 586326 280494 650765 143140 (644 digits)/8095 038439 576345 827109 336748 149289 737380 177165 042909 027310 384145 277864 421432 486769 206431 980267 635326 666838 213412 619522 157603 204659 919125 528514 194580 476125 338950 795559 914838 607018 593567 892473 790561 008534 954355 671943 185715 635189 057413 214794 715970 053755 711161 329033 225768 699534 375883 281234 784861 503089 684952 295315 281865 329014 273094 488458 832374 630933 648692 028035 158391 382399 657643 286889 852731 130334 296037 039672 758374 966206 506857 989024 805832 649374 899075 204925 794363 816312 364194 928324 061732 345715 296005 687494 966504 139263 495186 010814 203233 857395 559144 233298 788074 186804 357175 936291 781829 927362 356367 156778 535725 488496 229681 729287 271077 155127 758698 562793 (646 digits), a[1231] = 3
                                                                                      A[1232]/B[1232] = 105 936105 072331 893581 246128 831054 735146 245850 931061 666769 371821 093911 205958 327901 308258 154346 384060 109164 158523 116048 417306 481186 403359 684233 228962 114107 808928 218436 502829 718945 256705 731354 023344 321106 176082 897014 946046 316585 617881 467679 719718 870856 743559 428164 926307 684334 909912 535822 427873 036439 738634 246950 152038 576356 701172 491691 597945 218151 521949 072248 160718 069897 604910 862956 605336 915898 839229 855047 836201 123814 658503 998620 925050 892794 431887 669161 488946 227113 784525 060859 069614 750044 010896 127175 455793 826966 398607 592928 992811 828348 909846 429847 995727 165646 367684 368521 141540 588554 550606 636258 548206 921954 715960 020136 665080 121996 869925 253383 (645 digits)/10296 303524 541917 662637 045747 392592 085500 347669 211159 539062 706932 190882 700839 956738 095455 784551 154463 895848 401184 093737 873157 457013 800204 211490 643824 730354 822791 515515 137464 209705 454023 273338 871885 620893 634433 900121 176050 858970 463128 787347 739817 074100 361607 444531 010405 201032 097023 919633 072323 786638 267962 441402 395239 029548 565264 990090 711075 859018 769605 563073 470105 260337 049284 643091 367422 256880 266041 200466 895608 651699 404330 682633 810037 365496 553026 969572 656030 117840 972655 252482 490197 497298 499347 202487 973116 146219 364457 364131 213681 187445 320620 548476 522198 621097 941845 125840 528716 249183 198145 941496 542103 054890 680479 682443 408907 830522 950974 212248 (647 digits), a[1232] = 1
                                                                                      A[1233]/B[1233] = 1672 329412 409488 667487 546234 773724 067250 095302 972481 046052 458278 476440 259698 619469 669466 091577 276706 710098 148781 776611 061282 211723 186287 581443 373098 347933 119518 698002 117009 918536 518775 973133 068371 111025 332170 528903 135505 965100 874221 623364 886789 395201 822780 340727 195591 129150 747979 287528 239581 529063 553747 308232 643048 691636 841674 476189 608598 114070 491676 655519 876250 510199 811395 518804 193009 316902 937453 894192 765772 981536 487306 290644 881296 646551 342364 264403 373172 277108 532475 332681 910295 958028 163996 996168 638676 936574 366437 921087 305656 933068 318860 675404 029379 103257 764296 006308 817399 804489 101013 684489 531291 525833 781460 780245 562528 110447 699643 943885 (646 digits)/162539 591307 705110 766665 022959 038171 019885 392203 210302 113250 988128 141104 934031 837840 638268 748534 952285 104564 231174 025590 254965 059866 922188 700873 851951 431447 680823 528286 976801 752600 403916 992556 868845 321939 470864 173760 826478 519746 004345 025010 813226 165261 135272 996998 381846 715015 831242 075730 869718 302663 704388 916351 210450 772242 752069 339819 498512 516215 192775 474137 209970 287455 396912 933260 364064 983538 286655 046676 192504 741697 571818 228531 956393 131823 194479 748515 634815 583926 954023 715561 414694 805192 786213 724814 563246 332553 962046 472782 408451 669075 368452 460446 621053 503273 484852 823899 712573 665110 328556 279226 667271 311856 436876 965938 404694 612972 023311 746513 (648 digits), a[1233] = 15
                                                                                      A[1234]/B[1234] = 5122 924342 300797 896043 884833 152226 936896 531759 848504 804926 746656 523231 985054 186310 316656 429078 214180 239458 604868 445881 601153 116355 962222 428563 348257 157907 167484 312442 853859 474554 813033 650753 228457 654182 172594 483724 352564 211888 240546 337774 380087 056462 211900 450346 513081 071787 153850 398407 146617 623630 399876 171648 081184 651267 226195 920260 423739 560362 996979 038807 789469 600497 039097 419369 184364 866607 651591 537626 133520 068424 120422 870555 568940 832448 458980 462371 608463 058439 381951 058904 800502 624128 502887 115681 371824 636689 497921 356190 909782 627553 866428 456060 083864 475419 660572 387447 593740 002021 853647 689727 142081 499456 060342 360873 352664 453339 968857 085038 (646 digits)/497915 077447 657249 962632 114624 507105 145156 524278 842065 878815 671316 614197 502935 470260 010262 030156 011319 209541 094706 170508 638052 636614 566770 314112 199679 024697 865262 100376 067869 467506 665774 251009 478421 586712 047026 421403 655486 418208 476163 862380 179495 569883 767426 435526 155945 346079 590750 146825 681478 694629 381129 190456 026591 346276 821473 009549 206613 407664 347931 985485 100016 122703 240023 442872 459617 207495 126006 340495 473122 876792 119785 368229 679216 760966 136466 215119 560476 869621 834726 399166 734281 912876 857988 376931 662855 143881 250596 782478 439036 194671 425977 929816 385359 130918 396403 597539 666437 244514 183814 779176 543916 990459 991110 580258 622991 669439 020909 451787 (648 digits), a[1234] = 3
                                                                                      A[1235]/B[1235] = 221958 076131 343798 197374 594060 319482 353800 960976 458187 657902 564508 975415 617028 630813 285692 541940 486457 006818 158124 949519 910866 215029 561852 009667 348156 137941 321344 133044 832967 324393 479222 955521 892050 240858 753733 329050 295767 076295 217714 147663 230532 823076 934499 705627 258077 215998 363546 419035 544139 345170 748422 689100 133988 696127 568099 047387 829399 209679 361775 324254 823443 331572 492584 551679 120698 581031 955890 012116 507135 923773 665489 724534 345752 441835 078524 146382 537083 790001 956370 865588 331908 795553 788142 970467 627136 314222 777056 237296 426309 917884 575284 285987 635551 546303 168908 666555 348219 891428 807864 342756 640796 002444 376182 297799 727099 604066 360498 600519 (648 digits)/21 572887 921556 966859 159845 951812 843692 261615 936193 419134 902324 854742 551597 560257 059021 079536 045243 439011 114831 303539 357461 691228 434293 293312 207698 438149 493455 887093 844457 895188 855387 032209 785964 440973 550557 493000 294118 012394 502710 479391 107358 531535 670263 134609 724623 087496 596438 233498 389235 173302 171727 092944 105960 353878 662146 075408 750435 382889 045782 153850 849996 510663 563694 717920 976776 127604 905828 704927 687981 536788 443758 722589 062408 162713 853367 062526 998656 735320 977665 847258 879730 988817 058897 679713 932876 066017 519447 737708 119355 287008 039946 685503 442551 191496 132764 530207 518105 369375 179220 232591 783818 055701 901636 054631 917059 193336 398849 922418 173354 (650 digits), a[1235] = 43
                                                                                      A[1236]/B[1236] = 227081 000473 644596 093418 478893 471709 290697 492736 306692 462829 311165 498647 602082 817123 602348 971018 700637 246276 762993 395401 512019 331385 524074 438230 696413 295848 488828 445487 686826 798948 292256 606275 120507 895040 926327 812774 648331 288183 458260 485437 610619 879539 146400 155973 771158 287785 517396 817442 690756 968801 148298 860748 215173 347394 794294 967648 253138 770042 358754 363062 612912 932069 531681 971048 305063 447639 607481 549742 640655 992197 785912 595089 914693 274283 537504 608754 145546 848441 338321 924493 132411 419682 291030 086148 998960 950912 274977 593487 336092 545438 441712 742047 719416 021722 829481 054002 941959 893450 661512 032483 782877 501900 436524 658673 079764 057406 329355 685557 (648 digits)/22 070802 999004 624109 122478 066437 350797 406772 460472 261200 781140 526059 165795 063192 529281 089798 075399 450330 324372 398245 527970 329281 070907 860082 521810 637828 518153 752355 944833 963058 322893 697984 036973 919395 137269 540026 715521 667880 920918 955554 969738 711031 240146 902036 160149 243441 942517 824248 536060 854780 866356 474073 296416 380470 008422 896881 759984 589502 453446 501782 835481 610679 686397 957944 419648 587222 113323 830934 028477 009911 320550 842374 430637 841930 614333 198993 213776 295797 847287 681985 278897 723098 971774 537702 309807 728872 663328 988304 901833 726044 234618 111481 372367 576855 263682 926611 115645 035812 423734 416406 562994 599618 892096 045742 497317 816328 068288 943327 625141 (650 digits), a[1236] = 1
                                                                                      A[1237]/B[1237] = 676120 077078 632990 384211 551847 262900 935195 946449 071572 583561 186839 972710 821194 265060 490390 483977 887731 499371 684111 740322 934904 877800 610000 886128 740982 729638 299001 024020 206620 922290 063736 168072 133066 030940 606388 954599 592429 652662 134235 118538 451772 582155 227300 017574 800393 791569 398340 053920 925653 282773 045020 410596 564335 390917 156688 982684 335676 749764 079284 050380 049269 195711 555948 493775 730825 476311 170853 111601 788447 908169 237314 914714 175138 990402 153533 363890 828177 486884 633014 714574 596731 634918 370203 142765 625058 216047 327011 424271 098495 008761 458709 770083 074383 589748 827870 774561 232139 678330 130888 407724 206551 006245 249231 615145 886627 718879 019209 971633 (648 digits)/65 714493 919566 215077 404802 084687 545287 075160 857137 941536 464605 906860 883187 686642 117583 259132 196042 339671 763576 100030 413402 349790 576109 013477 251319 713806 529763 391805 734125 821305 501174 428177 859912 279763 825096 573053 725161 348156 344548 390501 046835 953598 150556 938682 044921 574380 481473 881995 461356 882863 904440 041090 698793 114818 678991 869172 270404 561893 952675 157416 520959 732022 936490 633809 816073 302049 132476 366795 744935 556611 084860 407337 923683 846575 082033 460513 426209 326916 672241 211229 437526 435015 002446 755118 552491 523762 846105 714317 923022 739096 509182 908466 187286 345206 660130 383429 749395 441000 026689 065404 909807 254939 685828 146116 911694 825992 535427 809073 423636 (650 digits), a[1237] = 2
                                                                                      A[1238]/B[1238] = 3 607681 385866 809548 014476 238129 786213 966677 224981 664555 380635 245365 362201 708054 142426 054301 390908 139294 743135 183552 097016 186543 720388 574078 868874 401326 944039 983833 565588 719931 410398 610937 446635 785838 049743 958272 585772 610479 551494 129436 078129 869482 790315 282900 243847 773127 245632 509097 087047 319023 382666 373400 913731 036850 301980 577739 881069 931522 518862 755174 614962 859258 910627 311424 439926 959190 829195 461747 107751 582895 533043 972487 168660 790388 226294 305171 428208 286434 282864 503395 497366 116069 594274 142045 799977 124252 031148 910034 714842 828567 589245 735261 592463 091333 970466 968834 926809 102658 285101 315954 071104 815632 533126 682682 734402 512902 651801 425405 543722 (649 digits)/350 643272 596835 699496 146488 489875 077232 782576 746161 968883 104170 060363 581733 496403 117197 385459 055611 148689 142252 898397 594982 078233 951452 927468 778409 206861 166970 711384 615463 069585 828765 838873 336535 318214 262752 405295 341328 408662 643660 908060 203918 479021 992931 595446 384757 115344 349887 234225 842845 269100 388556 679526 790381 954563 403382 242743 112007 398972 216822 288865 440280 270794 368851 126993 500015 097467 775705 664912 753154 792966 744852 879064 049057 074806 024500 501560 344822 930381 208493 738132 466529 898173 984008 313295 072265 347686 893857 559894 516947 421526 780532 653812 308799 302888 564334 843759 862622 240812 557179 743431 112030 874317 321236 776327 055791 946290 745427 988694 743321 (651 digits), a[1238] = 5
                                                                                      A[1239]/B[1239] = 4 283801 462945 442538 398687 789977 049114 901873 171430 736127 964196 432205 334912 529248 407486 544691 874886 027026 242506 867663 837339 121448 598189 184079 755003 142309 673678 282834 589608 926552 332688 674673 614707 918904 080684 564661 540372 202909 204156 263671 196668 321255 372470 510200 261422 573521 037201 907437 140968 244676 665439 418421 324327 601185 692897 734428 863754 267199 268626 834458 665342 908528 106338 867372 933702 690016 305506 632600 219353 371343 441213 209802 083374 965527 216696 458704 792099 114611 769749 136410 211940 712801 229192 512248 942742 749310 247196 237046 139113 927062 598007 193971 362546 165717 560215 796705 701370 334797 963431 446842 478829 022183 539371 931914 349548 399530 370680 444615 515355 (649 digits)/416 357766 516401 914573 551290 574562 622519 857737 603299 910419 568775 967224 464921 183045 234780 644591 251653 488360 905828 998428 008384 428024 527561 940946 029728 920667 696734 103190 349588 890891 329940 267051 196447 597978 087848 978349 066489 756818 988209 298561 250754 432620 143488 534128 429678 689724 831361 116221 304202 151964 292996 720617 489175 069382 082374 111915 382411 960866 169497 446281 961240 002817 305341 760803 316088 399516 908182 031708 498090 349577 829713 286401 972740 921381 106533 962073 771032 257297 880734 949361 904056 333188 986455 068413 624756 871449 739963 274212 439970 160623 289715 562278 496085 648095 224465 227189 612017 681812 583868 808836 021838 129257 007064 922443 967486 772283 280855 797768 166957 (651 digits), a[1239] = 1
                                                                                      A[1240]/B[1240] = 7 891482 848812 252086 413164 028106 835328 868550 396412 400683 344831 677570 697114 237302 549912 598993 265794 166320 985642 051215 934355 307992 318577 758158 623877 543636 617718 266668 155197 646483 743087 285611 061343 704742 130428 522934 126144 813388 755650 393107 274798 190738 162785 793100 505270 346648 282834 416534 228015 563700 048105 791822 238058 638035 994878 312168 744824 198721 787489 589633 280305 767787 016966 178797 373629 649207 134702 094347 327104 954238 974257 182289 252035 755915 442990 763876 220307 401046 052613 639805 709306 828870 823466 654294 742719 873562 278345 147080 853956 755630 187252 929232 955009 257051 530682 765540 628179 437456 248532 762796 549933 837816 072498 614597 083950 912433 022481 870021 059077 (649 digits)/767 001039 113237 614069 697779 064437 699752 640314 349461 879302 672946 027588 046654 679448 351978 030050 307264 637050 048081 896825 603366 506258 479014 868414 808138 127528 863704 814574 965051 960477 158706 105924 532982 916192 350601 383644 407818 165481 631870 206621 454672 911642 136420 129574 814435 805069 181248 350447 147047 421064 681553 400144 279557 023945 485756 354658 494419 359838 386319 735147 401520 273611 674192 887796 816103 496984 683887 696621 251245 142544 574566 165466 021797 996187 131034 463634 115855 187679 089228 687494 370586 231362 970463 381708 697022 219136 633820 834106 956917 582150 070248 216090 804884 950983 788800 070949 474639 922625 141048 552267 133869 003574 328301 698771 023278 718574 026283 786462 910278 (651 digits), a[1240] = 1
                                                                                      A[1241]/B[1241] = 20 066767 160569 946711 225015 846190 719772 638973 964255 537494 653859 787346 729141 003853 507311 742678 406474 359668 213790 970095 706049 737433 235344 700397 002758 229582 909114 816170 900004 219519 818863 245895 737395 328388 341541 610529 792661 829686 715457 049885 746264 702731 698042 096401 271963 266817 602870 740505 596999 372076 761651 002065 800444 877257 682654 358766 353402 664642 843606 013725 225954 444102 140271 224967 680961 988430 574910 821294 873563 279821 389727 574380 587446 477358 102677 986457 232713 916703 874976 416021 630554 370542 876125 820838 428182 496434 803886 531207 847027 438322 972513 052437 272564 679820 621581 327786 957729 209710 460496 972435 578696 697815 684369 161108 517450 224396 415644 184657 633509 (650 digits)/1950 359844 742877 142712 946848 703438 022025 138366 302223 669024 914668 022400 558230 541941 938736 704691 866182 762461 001992 792079 215117 440541 485591 677775 646005 175725 424143 732340 279692 811845 647352 478900 262413 430362 789051 745637 882126 087782 251949 711804 160100 255904 416328 793278 058550 299863 193857 817115 598296 994093 656103 520906 048289 117273 053886 821232 371250 680542 942136 916576 764280 550040 653727 536396 948295 393486 275957 424951 000580 634666 978845 617334 016336 913755 368602 889342 002742 632656 059192 324350 645228 795914 927381 831831 018801 309723 007604 942426 353805 324923 430211 994460 105855 550062 802065 369088 561297 527062 865965 913370 289576 136405 663668 319986 014044 209431 333423 370693 987513 (652 digits), a[1241] = 2
                                                                                      A[1242]/B[1242] = 108 225318 651661 985642 538243 259060 434192 063420 217690 088156 614130 614304 342819 256570 086471 312385 298165 964662 054596 901694 464603 995158 495301 260143 637668 691551 163292 347522 655218 744082 837403 515089 748320 346683 838136 575583 089453 961822 332935 642536 006121 704396 652996 275106 865086 680736 297188 119062 213012 424083 856360 802151 240283 024324 408150 106000 511837 521936 005519 658259 410077 988297 718322 303635 778439 591360 009256 200821 694921 353345 922895 054192 189268 142705 956380 696162 383876 984565 427495 719913 862078 681585 204095 758486 883632 355736 297777 803120 089093 947245 049818 191419 317832 656154 638589 404475 416825 486008 551017 624974 443417 326894 494344 420139 671202 034415 100702 793309 226622 (651 digits)/10518 800262 827623 327634 432022 581627 809878 332145 860580 224427 246286 139590 837807 389158 045661 553509 638178 449355 058045 857221 678953 708965 906973 257293 038164 006155 984423 476276 363516 019705 395468 500425 845050 068006 295860 111833 818448 604392 891618 765642 255174 191164 218064 095965 107187 304385 150537 436025 138532 391532 962071 004674 521002 610310 755190 460820 350672 762553 097004 318031 222923 023814 942830 569781 557580 464416 063674 821376 254148 315879 468794 252136 103482 564963 974048 910344 129568 350959 385190 309247 596730 210937 607372 540863 791028 767751 671845 546238 725944 206767 221308 188391 334162 701297 799126 916392 281127 557939 470878 119118 581749 685602 646643 298701 093499 765730 693400 639932 847843 (653 digits), a[1242] = 5
                                                                                      A[1243]/B[1243] = 236 517404 463893 917996 301502 364311 588156 765814 399635 713807 882121 015955 414779 516993 680254 367449 002806 288992 322984 773484 635257 727750 225947 220684 278095 612685 235699 511216 210441 707685 493670 276075 234036 021756 017814 761695 971569 753331 381328 334957 758508 111525 004034 646615 002136 628290 197246 978630 023024 220244 474372 606368 281010 925906 498954 570767 377077 708514 854645 330244 046110 420697 576915 832239 237841 171150 593423 222938 263405 986513 235517 682764 965982 762770 015439 378782 000467 885834 729967 855849 354711 733713 284317 337812 195447 207907 399442 137448 025215 332813 072149 435275 908229 992129 898760 136737 791380 181727 562532 222384 465531 351604 673058 001387 859854 293226 617049 771276 086753 (651 digits)/22987 960370 398123 797981 810893 866693 641781 802658 023384 117879 407240 301582 233845 320258 030059 811711 142539 661171 118084 506522 573024 858473 299538 192361 722333 188037 392990 684893 006724 851256 438289 479751 952513 566375 380771 969305 519023 296568 035187 243088 670448 638232 852456 985208 272924 908633 494932 689165 875361 777159 580245 530255 090294 337894 564267 742873 072596 205649 136145 552639 210126 597670 539388 675960 063456 322318 403307 067703 508877 266425 916434 121606 223302 043683 316700 710030 261879 334574 829572 942845 838689 217790 142126 913558 600858 845226 351296 034903 805693 738457 872828 371242 774180 952658 400319 201873 123552 642941 807722 151607 453075 507610 956954 917388 201043 740892 720224 650559 683199 (653 digits), a[1243] = 2
                                                                                      A[1244]/B[1244] = 3182 951576 682282 919594 457773 995111 080230 019007 412954 367659 081703 821724 734952 977487 929778 089222 334647 721562 253398 956994 722954 455911 432615 129039 252911 656459 227385 993333 390960 943994 255117 104067 790788 629512 069728 477630 719860 755130 290203 996986 866727 154221 705446 681101 892862 848508 861398 841252 512327 287262 023204 684938 893425 061108 894559 525976 413847 732629 115908 951432 009513 457366 218228 122745 870374 816317 723758 099019 119199 178017 984624 930136 747044 058716 157092 620328 389959 500416 917077 845955 473331 219857 900221 150045 424446 058532 490525 589944 416893 273814 987760 850006 124822 553843 322471 182066 704767 848466 863936 515972 495324 897755 244098 438181 849307 846361 122349 819898 354411 (652 digits)/309362 285078 003232 701397 973642 848645 153041 766700 164573 756859 540410 060159 877796 552512 436439 105754 491194 044579 593144 442015 128276 869118 800969 757995 428495 450642 093302 379885 450939 086039 093231 737201 227726 430886 245895 712805 565751 459777 349052 925794 971006 488191 300004 903672 655211 116620 584662 395181 518235 494607 505262 897990 694829 002940 090671 118170 294423 435991 866896 502340 954568 793531 954883 357262 382512 654555 306666 701521 869552 779416 382437 833017 006409 132847 091158 140737 533999 700432 169638 566243 499690 042209 455022 417125 602193 755694 238693 999988 199962 806719 568077 014547 398515 085857 003276 540742 887311 916182 971266 090015 471731 284545 087057 224747 707068 397336 056321 097208 729430 (654 digits), a[1244] = 13
                                                                                      A[1245]/B[1245] = 19334 226864 557591 435563 048146 334978 069536 879858 877361 919762 372343 946303 824497 381921 258922 902783 010692 618365 843378 515452 972984 463218 821637 994919 795565 551440 600015 471216 556207 371651 024372 900481 978767 798828 436185 627480 290734 284113 122552 316878 958871 036855 236714 733226 359313 719343 365640 026145 096987 943816 613600 716001 641561 292559 866311 726625 860164 104289 550099 038836 103191 164894 886284 568714 460090 069056 935971 817052 978601 054621 143267 263585 448247 115066 957995 100752 340224 888336 232434 931582 194699 052860 685644 238084 742123 559102 342595 677114 526574 975702 998714 535312 657165 315189 833587 229138 019987 272528 746151 318219 437480 738136 137648 630478 955701 371393 351148 690666 213219 (653 digits)/1 879161 670838 417520 006369 652750 958564 560032 402859 010826 659036 649700 662541 500624 635332 648694 446238 089703 928648 676951 158613 342686 073186 105356 740334 293305 891889 952804 964205 712359 367490 997679 902959 318872 151692 856146 246138 913532 055232 129504 797858 496487 567380 652486 407244 204191 608357 002907 060254 984774 744804 611822 918199 259268 355535 108294 451894 839136 821600 337524 566684 937539 358862 268688 819534 358532 249650 243307 276834 726193 942924 211061 119708 261756 840765 863649 554455 465877 537167 847404 340306 836829 471046 872261 416312 214021 379391 783460 034833 005470 578775 281290 458527 165271 467800 419978 446330 447424 140039 635318 691700 283463 214881 479298 265874 443454 124909 058151 233812 059779 (655 digits), a[1245] = 6
                                                                                      A[1246]/B[1246] = 22517 178441 239874 355157 505920 330089 149766 898866 290316 287421 454047 768028 559450 359409 188700 992005 345340 339928 096777 472447 695938 919130 254253 123959 048477 207899 827401 464549 947168 315645 279490 004549 769556 428340 505914 105111 010595 039243 412756 313865 825598 191076 942161 414328 252176 567852 227038 867397 609315 231078 636805 400940 534986 353668 760871 252602 274011 836918 666007 990268 112704 622261 104512 691460 330464 885374 659729 916072 097800 232639 127892 193722 195291 173783 115087 721080 730184 388753 149512 777537 668030 272718 585865 388130 166569 617634 833121 267058 943468 249517 986475 385318 781987 869033 156058 411204 724755 120995 610087 834191 932805 635891 381747 068660 805009 217754 473498 510564 567630 (653 digits)/2 188523 955916 420752 707767 626393 807209 713074 169559 175400 415896 190110 722701 378421 187845 085133 551992 580897 973228 270095 600628 470962 942304 906326 498329 721801 342532 046107 344091 163298 453530 090911 640160 546598 582579 102041 958944 479283 515009 478557 723653 467494 055571 952491 310916 859402 724977 587569 455436 503010 239412 117085 816189 954097 358475 198965 570065 133560 257592 204421 069025 892108 152394 223572 176796 741044 904205 549973 978356 595746 722340 593498 952725 268165 973612 954807 695192 999877 237600 017042 906550 336519 513256 327283 833437 816215 135086 022154 034821 205433 385494 849367 473074 563786 553657 423254 987073 334736 056222 606584 781715 755194 499426 566355 490622 150522 522245 114472 331020 789209 (655 digits), a[1246] = 1
                                                                                      A[1247]/B[1247] = 86885 762188 277214 501035 565907 325245 518837 576457 748310 782026 734487 250389 502848 460148 825025 878799 046713 638150 133710 932796 060801 220609 584397 366796 940997 175140 082219 864866 397712 318586 862842 914131 287437 083849 953927 942813 322519 401843 360821 258476 435665 610086 063198 976211 115843 422900 046756 628337 924933 637052 524016 918823 246520 353566 148925 484432 682199 615045 548123 009640 441305 031678 199822 643095 451484 725180 915161 565269 272001 752538 526943 844752 034120 636416 303258 263994 530778 054595 680973 264195 198789 871016 443240 402475 241832 412006 841959 478291 356979 724256 958140 691269 003128 922289 301762 462752 194252 635515 576414 820795 235897 645810 282889 836461 370729 024656 771644 222359 916109 (653 digits)/8 444733 538587 679778 129672 531932 380193 699254 911536 537027 906725 220032 830645 635888 198867 904095 102215 832397 848333 487237 960498 755574 900100 824336 235323 458709 919486 091126 996479 202254 728081 270414 823440 958667 899430 162272 122972 351382 600260 565177 968818 898969 734096 509960 339994 782399 783289 765615 426564 493805 463040 963080 366769 121560 430960 705191 162090 239817 594376 950787 773762 613863 816044 939405 349924 581666 962266 893229 211904 513434 109945 991557 977884 066254 761604 728072 640034 465509 249967 898533 059957 846388 010815 854112 916625 662666 784649 849922 139296 621770 735259 829392 877750 856631 128772 689743 407550 451632 308707 455073 036847 549046 713161 178364 737740 895021 691644 401568 226874 427406 (655 digits), a[1247] = 3
                                                                                      A[1248]/B[1248] = 109402 940629 517088 856193 071827 655334 668604 475324 038627 069448 188535 018418 062298 819558 013726 870804 392053 978078 230488 405243 756740 139739 838650 490755 989474 383039 909621 329416 344880 634232 142332 918681 056993 512190 459842 047924 333114 441086 773577 572342 261263 801163 005360 390539 368019 990752 273795 495735 534248 868131 160822 319763 781506 707234 909796 737034 956211 451964 214130 999908 554009 653939 304335 334555 781949 610555 574891 481341 369801 985177 654836 038474 229411 810199 418345 985075 260962 443348 830486 041732 866820 143735 029105 790605 408402 029641 675080 745350 300447 973774 944616 076587 785116 791322 457820 873956 919007 756511 186502 654987 168703 281701 664636 905122 175738 242411 245142 732924 483739 (654 digits)/10 633257 494504 100530 837440 158326 187403 412329 081095 712428 322621 410143 553347 014309 386712 989228 654208 413295 821561 757333 561127 226537 842405 730662 733653 180511 262018 137234 340570 365553 181611 361326 463601 505266 482009 264314 081916 830666 115270 043735 692472 366463 789668 462451 650911 641802 508267 353184 882000 996815 702453 080166 182959 075657 789435 904156 732155 373377 851969 155208 842788 505971 968439 162977 526721 322711 866472 443203 190261 109180 832286 585056 930609 334420 735217 682880 335227 465386 487567 915575 966508 182907 524072 181396 750063 478881 919735 872076 174117 827204 120754 678760 350825 420417 682430 112998 394623 786368 364930 061657 818563 304241 212587 744720 228363 045544 213889 516040 557895 216615 (656 digits), a[1248] = 1
                                                                                      A[1249]/B[1249] = 1 071512 227853 931014 206773 212356 223257 536277 854374 095954 407060 431302 416152 063537 836170 948567 716038 575199 440854 208106 579989 871462 478268 132251 783600 846266 622499 268811 829613 501638 026676 143839 182260 800378 693564 092506 374132 320549 371624 323019 409556 787039 820553 111442 491065 428023 339670 510916 089957 733173 450232 971417 796697 280080 718680 337096 117747 288102 682723 475302 008817 427391 917131 938840 654097 489031 220181 089184 897341 600219 619137 420468 191020 098826 928211 068372 129671 879440 044735 155347 639791 000171 164631 705192 517923 917450 678781 917686 186444 061011 488231 459685 380559 069180 044191 422150 328364 465322 444116 254938 715679 754227 181125 264621 982560 952373 206357 977928 818680 269760 (655 digits)/104 144050 989124 584555 666633 956868 066824 410216 641397 948882 810317 911324 810768 764672 679284 807152 990091 552060 242389 303240 010643 794415 481752 400300 838202 083311 277649 326236 061612 492233 362583 522352 995854 506066 237513 541098 860223 827377 637690 958799 201070 197143 841112 672025 198199 558622 357695 944279 364573 465146 785118 684576 013400 802480 535883 842601 751488 600218 262099 347667 358859 167611 531997 406203 090416 486073 760518 882057 924254 496061 600525 257070 353368 076041 378563 873995 657081 653987 638079 138716 758531 492555 727465 486683 667196 972604 062272 698607 706357 066607 822051 938236 035179 640390 270643 706728 959164 528947 593078 009993 403917 287217 626450 880846 793008 304919 616650 045933 247931 376941 (657 digits), a[1249] = 9
                                                                                      A[1250]/B[1250] = 1 180915 168483 448103 062966 284183 878592 204882 329698 134581 476508 619837 434570 125836 655728 962294 586842 967253 418932 438594 985233 628202 618007 970902 274356 835741 005539 178433 159029 846518 660908 286172 100941 857372 205754 552348 422056 653663 812711 096596 981899 048303 621716 116802 881604 796043 330422 784711 585693 267422 318364 132240 116461 061587 425915 246892 854782 244314 134687 689433 008725 981401 571071 243175 988653 270980 830736 664076 378682 970021 604315 075304 229494 328238 738410 486718 114747 140402 488083 985833 681523 866991 308366 734298 308529 325852 708423 592766 931794 361459 462006 404301 457146 854296 835513 879971 202321 384330 200627 441441 370666 922930 462826 929258 887683 128111 448769 223071 551604 753499 (655 digits)/114 777308 483628 685086 504074 115194 254227 822545 722493 661311 132939 321468 364115 778982 065997 796381 644299 965356 063951 060573 571771 020953 324158 130963 571855 263822 539667 463470 402182 857786 544194 883679 459456 011332 719522 805412 942140 658043 752961 002534 893542 563607 630781 134476 849111 200424 865963 297464 246574 461962 487571 764742 196359 878138 325319 746758 483643 973596 114068 502876 201647 673583 500436 569180 617137 808785 626991 325261 114515 605242 432811 842127 283977 410462 113781 556875 992309 119374 125647 054292 725039 675463 251537 668080 417260 451485 982008 570683 880474 893811 942806 616996 386005 060807 953073 819727 353788 315315 958008 071651 222480 591458 839038 625567 021371 350463 830539 561973 805826 593556 (657 digits), a[1250] = 1
                                                                                      A[1251]/B[1251] = 2 252427 396337 379117 269739 496540 101849 741160 184072 230535 883569 051139 850722 189374 491899 910862 302881 542452 859786 646701 565223 499665 096276 103154 057957 682007 628038 447244 988643 348156 687584 430011 283202 657750 899318 644854 796188 974213 184335 419616 391455 835343 442269 228245 372670 224066 670093 295627 675651 000595 768597 103657 913158 341668 144595 583988 972529 532416 817411 164735 017543 408793 488203 182016 642750 760012 050917 753261 276024 570241 223452 495772 420514 427065 666621 555090 244419 019842 532819 141181 321314 867162 472998 439490 826453 243303 387205 510453 118238 422470 950237 863986 837705 923476 879705 302121 530685 849652 644743 696380 086346 677157 643952 193880 870244 080484 655127 201000 370285 023259 (655 digits)/218 921359 472753 269642 170708 072062 321052 232762 363891 610193 943257 232793 174884 543654 745282 603534 634391 517416 306340 363813 582414 815368 805910 531264 410057 347133 817316 789706 463795 350019 906778 406032 455310 517398 957036 346511 802364 485421 390651 961334 094612 760751 471893 806502 047310 759047 223659 241743 611147 927109 272690 449318 209760 680618 861203 589360 235132 573814 376167 850543 560506 841195 032433 975383 707554 294859 387510 207319 038770 101304 033337 099197 637345 486503 492345 430871 649390 773361 763726 193009 483571 168018 979003 154764 084457 424090 044281 269291 586831 960419 764858 555232 421184 701198 223717 526456 312952 844263 551086 081644 626397 878676 465489 506413 814379 655383 447189 607907 053757 970497 (657 digits), a[1251] = 1
                                                                                      A[1252]/B[1252] = 37 219753 509881 513979 378798 228825 508188 063445 274853 823155 613613 438075 046125 155828 526127 536091 432947 646499 175518 785820 028809 622844 158425 621367 201679 747863 054154 334352 977323 417025 662259 166352 632184 381386 594852 870025 161080 241074 762077 810459 245192 413798 698023 768728 844328 381110 051915 514754 396109 276954 615917 790766 726994 528277 739444 590716 415254 762983 213266 325193 289420 522097 382322 155442 272665 431173 645420 716256 795076 093881 179555 007662 957725 161289 404355 368162 025451 457883 013190 244734 822561 741590 876341 766151 531781 218706 903711 760016 823609 120994 665812 228090 860441 629926 910798 713915 693294 978772 516526 583522 752213 757452 766062 031352 811588 415865 930804 439077 476165 125643 (656 digits)/3617 519060 047680 999361 235403 268191 391063 546743 544759 424414 225055 046159 162268 477457 990519 452935 794564 244016 965396 881590 890408 066854 218726 631194 132772 817963 616736 098773 822908 458105 052649 380198 744424 289716 032104 349601 779972 424786 003392 383880 407346 735631 181082 038509 606083 345180 444511 165362 024941 295710 850618 953833 552530 768040 104577 176522 245765 154626 132754 111573 169757 132704 019380 175319 938006 526535 827154 642365 734837 226106 966205 429289 481505 194517 991308 450822 382561 493162 345266 142444 462178 363766 915588 144305 768579 236926 690508 879349 269786 260528 180543 500715 124960 279979 532554 243028 361033 823532 775385 377965 244846 650282 286870 728188 051445 836598 985573 288486 665954 121508 (658 digits), a[1252] = 16
                                                                                      A[1253]/B[1253] = 113 911687 925981 921055 406134 183016 626413 931496 008633 700002 724409 365364 989097 656860 070282 519136 601724 481950 386343 004161 651652 368197 571552 967255 662996 925596 790501 450303 920613 599233 674361 929069 179755 801910 683877 254930 279429 697437 470568 850994 127033 076739 536340 534431 905655 367396 825839 839890 863978 831459 616350 475958 094141 926501 362929 356138 218293 821366 457210 140314 885804 975085 635169 648343 460747 053532 987179 902031 661252 851884 762117 518761 293689 910933 879687 659576 320773 393491 572389 875385 789000 091935 102023 737945 421796 899424 098340 790503 589065 785454 947674 548259 419030 813257 612101 443868 610570 785970 194323 446948 342987 949515 942138 287939 305009 328082 447540 518232 798780 400188 (657 digits)/11071 478539 615796 267725 876917 876636 494242 872992 998169 883436 618422 371270 661689 976028 716840 962342 018084 249467 202531 008586 253639 015931 462090 424846 808375 801024 667525 086027 932520 724335 064726 546628 688583 386547 053349 395317 142281 759779 400829 112975 316652 967645 015139 922030 865560 794588 557192 737829 685971 814241 824547 310818 867352 984739 174935 118926 972428 037692 774430 185263 069778 239307 090574 501343 521573 874466 868974 134416 243281 779624 931953 387066 081861 070057 466270 783338 797075 252848 799524 620342 870106 259319 725767 587681 390195 134870 115807 907339 396190 742004 306489 057377 796065 541136 821380 255541 396054 314861 877242 215540 360937 829523 326101 690977 968717 165180 403909 473367 051620 335021 (659 digits), a[1253] = 3
                                                                                      A[1254]/B[1254] = 151 131441 435863 435034 784932 411842 134601 994941 283487 523158 338022 803440 035222 812688 596410 055228 034672 128449 561861 789981 680461 991041 729978 588622 864676 673459 844655 784656 897937 016259 336621 095421 811940 183297 278730 124955 440509 938512 232646 661453 372225 490538 234364 303160 749983 748506 877755 354645 260088 108414 232268 266724 821136 454779 102373 946854 633548 584349 670476 465508 175225 497183 017491 803785 733412 484706 632600 618288 456328 945765 941672 526424 251415 072223 284043 027738 346224 851374 585580 120120 611561 833525 978365 504096 953578 118131 002052 550520 412674 906449 613486 776350 279472 443184 522900 157784 303865 764742 710850 030471 095201 706968 708200 319292 116597 743948 378344 957310 274945 525831 (657 digits)/14688 997599 663477 267087 112321 144827 885306 419736 542929 307850 843477 417429 823958 453486 707360 415277 812648 493484 167927 890177 144047 082785 680817 056040 941148 618988 284261 184801 755429 182440 117375 926827 433007 676263 085453 744918 922254 184565 404221 496855 723999 703276 196221 960540 471644 139769 001703 903191 710913 109952 675166 264652 419883 752779 279512 295449 218193 192318 907184 296836 239535 372011 109954 676663 459580 401002 696128 776781 978119 005731 898158 816355 563366 264575 457579 234161 179636 746011 144790 762787 332284 623086 641355 731987 158774 371796 806316 786688 665977 002532 487032 558092 921025 821116 353934 498569 757088 138394 652627 593505 605784 479805 612972 419166 020163 001779 389482 761853 717574 456529 (659 digits), a[1254] = 1
                                                                                      A[1255]/B[1255] = 265 043129 361845 356090 191066 594858 761015 926437 292121 223161 062432 168805 024320 469548 666692 574364 636396 610399 948204 794143 332114 359239 301531 555878 527673 599056 635157 234960 818550 615493 010983 024490 991695 985207 962607 379885 719939 635949 703215 512447 499258 567277 770704 837592 655639 115903 703595 194536 124066 939873 848618 742682 915278 381280 465303 302992 851842 405716 127686 605823 061030 472268 652661 452129 194159 538239 619780 520320 117581 797650 703790 045185 545104 983157 163730 687314 666998 244866 157969 995506 400561 925461 080389 242042 375375 017555 100393 341024 001740 691904 561161 324609 698503 256442 135001 601652 914436 550712 905173 477419 438189 656484 650338 607231 421607 072030 825885 475543 073725 926019 (657 digits)/25760 476139 279273 534812 989239 021464 379549 292729 541099 191287 461899 788700 485648 429515 424201 377619 830732 742951 370458 898763 397686 098717 142907 480887 749524 420012 951786 270829 687949 906775 182102 473456 121591 062810 138803 140236 064535 944344 805050 609831 040652 670921 211361 882571 337204 934357 558896 641021 396884 924194 499713 575471 287236 737518 454447 414376 190621 230011 681614 482099 309313 611318 200529 178006 981154 275469 565102 911198 221400 785356 830112 203421 645227 334632 923850 017499 976711 998859 944315 383130 202390 882406 367123 319668 548969 506666 922124 694028 062167 744536 793521 615470 717091 362253 175314 754111 153142 453256 529869 809045 966722 309328 939074 110143 988880 166959 793392 235220 769194 791550 (659 digits), a[1255] = 1
                                                                                      A[1256]/B[1256] = 416 174570 797708 791124 975999 006700 895617 921378 575608 746319 400454 972245 059543 282237 263102 629592 671068 738849 510066 584125 012576 350281 031510 144501 392350 272516 479813 019617 716487 631752 347604 119912 803636 168505 241337 504841 160449 574461 935862 173900 871484 057816 005069 140753 405622 864410 581350 549181 384155 048288 080887 009407 736414 836059 567677 249847 485390 990065 798163 071331 236255 969451 670153 255914 927572 022946 252381 138608 573910 743416 645462 571609 796520 055380 447773 715053 013223 096240 743550 115627 012123 758987 058754 746139 328953 135686 102445 891544 414415 598354 174648 100959 977975 699626 657901 759437 218302 315455 616023 507890 533391 363453 358538 926523 538204 815979 204230 432853 348671 451850 (657 digits)/40449 473738 942750 801900 101560 166292 264855 712466 084028 499138 305377 206130 309606 883002 131561 792897 643381 236435 538386 788940 541733 181502 823724 536928 690673 039001 236047 455631 443379 089215 299478 400283 554598 739073 224256 885154 986790 128910 209272 106686 764652 374197 407583 843111 808849 074126 560600 544213 107798 034147 174879 840123 707120 490297 733959 709825 408814 422330 588798 778935 548848 983329 310483 854670 440734 676472 261231 687980 199519 791088 728271 019777 208593 599208 381429 251661 156348 744871 089106 145917 534675 505493 008479 051655 707743 878463 728441 480716 728144 747069 280554 173563 638117 183369 529249 252680 910230 591651 182497 402551 572506 789134 552046 529310 009043 168739 182874 997074 486769 248079 (659 digits), a[1256] = 1
                                                                                      A[1257]/B[1257] = 681 217700 159554 147215 167065 601559 656633 847815 867729 969480 462887 141050 083863 751785 929795 203957 307465 349249 458271 378268 344690 709520 333041 700379 920023 871573 114970 254578 535038 247245 358587 144403 795332 153713 203944 884726 880389 210411 639077 686348 370742 625093 775773 978346 061261 980314 284945 743717 508221 988161 929505 752090 651693 217340 032980 552840 337233 395781 925849 677154 297286 441720 322814 708044 121731 561185 872161 658928 691492 541067 349252 616795 341625 038537 611504 402367 680221 341106 901520 111133 412685 684448 139143 988181 704328 153241 202839 232568 416156 290258 735809 425569 676478 956068 792903 361090 132738 866168 521196 985309 971581 019938 008877 533754 959811 888010 030115 908396 422397 377869 (657 digits)/66209 949878 222024 336713 090799 187756 644405 005195 625127 690425 767276 994830 795255 312517 555763 170517 474113 979386 908845 687703 939419 280219 966632 017816 440197 459014 187833 726461 131328 995990 481580 873739 676189 801883 363060 025391 051326 073255 014322 716517 805305 045118 618945 725683 146054 008484 119497 185234 504682 958341 674593 415594 994357 227816 188407 124201 599435 652342 270413 261034 858162 594647 511013 032677 421888 951941 826334 599178 420920 576445 558383 223198 853820 933841 305279 269161 133060 743731 033421 529047 737066 387899 375602 371324 256713 385130 650566 174744 790312 491606 074075 789034 355208 545622 704564 006792 063373 044907 712367 211597 539229 098463 491120 639453 997923 335698 976267 232295 255964 039629 (659 digits), a[1257] = 1
                                                                                      A[1258]/B[1258] = 1097 392270 957262 938340 143064 608260 552251 769194 443338 715799 863342 113295 143407 034023 192897 833549 978534 088098 968337 962393 357267 059801 364551 844881 312374 144089 594783 274196 251525 878997 706191 264316 598968 322218 445282 389568 040838 784873 574939 860249 242226 682909 780843 119099 466884 844724 866296 292898 892377 036450 010392 761498 388108 053399 600657 802687 822624 385847 724012 748485 533542 411171 992967 963959 049303 584132 124542 797537 265403 284483 994715 188405 138145 093918 059278 117420 693444 437347 645070 226760 424809 443435 197898 734321 033281 288927 305285 124112 830571 888612 910457 526529 654454 655695 450805 120527 351041 181624 137220 493200 504972 383391 367416 460278 498016 703989 234346 341249 771068 829719 (658 digits)/106659 423617 164775 138613 192359 354048 909260 717661 709156 189564 072654 200961 104862 195519 687324 963415 117495 215822 447232 476644 481152 461722 790356 554745 130870 498015 423881 182092 574708 085205 781059 274023 230788 540956 587316 910546 038116 202165 223594 823204 569957 419316 026529 568794 954903 082610 680097 729447 612480 992488 849473 255718 701477 718113 922366 834027 008250 074672 859212 039970 407011 577976 821496 887347 862623 628414 087566 287158 620440 367534 286654 242976 062414 533049 686708 520822 289409 488602 122527 674965 271741 893392 384081 422979 964457 263594 379007 655461 518457 238675 354629 962597 993325 728992 233813 259472 973603 636558 894864 614149 111735 887598 043167 168764 006966 504438 159142 229369 742733 287708 (660 digits), a[1258] = 1
                                                                                      A[1259]/B[1259] = 1778 609971 116817 085555 310130 209820 208885 617010 311068 685280 326229 254345 227270 785809 122693 037507 285999 437348 426609 340661 701957 769321 697593 545261 232398 015662 709753 528774 786564 126243 064778 408720 394300 475931 649227 274294 921227 995285 214017 546597 612969 308003 556617 097445 528146 825039 151242 036616 400599 024611 939898 513589 039801 270739 633638 355528 159857 781629 649862 425639 830828 852892 315782 672003 171035 145317 996704 456465 956895 825551 343967 805200 479770 132455 670782 519788 373665 778454 546590 337893 837495 127883 337042 722502 737609 442168 508124 356681 246728 178871 646266 952099 330933 611764 243708 481617 483780 047792 658417 478510 476553 403329 376293 994033 457828 591999 264462 249646 193466 207588 (658 digits)/172869 373495 386799 475326 283158 541805 553665 722857 334283 879989 839931 195791 900117 508037 243088 133932 591609 195209 356078 164348 420571 741942 756988 572561 571067 957029 611714 908553 706037 081196 262640 147762 906978 342839 950376 935937 089442 275420 237917 539722 375262 464434 645475 294478 100957 091094 799594 914682 117163 950830 524066 671313 695834 945930 110773 958228 607685 727015 129625 301005 265174 172624 332509 920025 284512 580355 913900 886337 041360 943979 845037 466174 916235 466890 991987 789983 422470 232333 155949 204013 008808 281291 759683 794304 221170 648725 029573 830206 308769 730281 428705 751632 348534 274614 938377 266265 036976 681466 607231 825746 650964 986061 534287 808218 004889 840137 135409 461664 998697 327337 (660 digits), a[1259] = 1
                                                                                      A[1260]/B[1260] = 2876 002242 074080 023895 453194 818080 761137 386204 754407 401080 189571 367640 370677 819832 315590 871057 264533 525447 394947 303055 059224 829123 062145 390142 544772 159752 304536 802971 038090 005240 770969 673036 993268 798150 094509 663862 962066 780158 788957 406846 855195 990913 337460 216544 995031 669764 017538 329515 292976 061061 950291 275087 427909 324139 234296 158215 982482 167477 373875 174125 364371 264064 308750 635962 220338 729450 121247 254003 222299 110035 338682 993605 617915 226373 730060 637209 067110 215802 191660 564654 262304 571318 534941 456823 770890 731095 813409 480794 077300 067484 556724 478628 985388 267459 694513 602144 834821 229416 795637 971710 981525 786720 743710 454311 955845 295988 498808 590895 964535 037307 (658 digits)/279528 797112 551574 613939 475517 895854 462926 440519 043440 069553 912585 396753 004979 703556 930413 097347 709104 411031 803310 640992 901724 203665 547345 127306 701938 455045 035596 090646 280745 166402 043699 421786 137766 883796 537693 846483 127558 477585 461512 362926 945219 883750 672004 863273 055860 173705 479692 644129 729644 943319 373539 927032 397312 664044 033140 792255 615935 801687 988837 340975 672185 750601 154006 807373 147136 208770 001467 173495 661801 311514 131691 709150 978649 999940 678696 310805 711879 720935 278476 878978 280550 174684 143765 217284 185627 912319 408581 485667 827226 968956 783335 714230 341860 003607 172190 525738 010580 318025 502096 439895 762700 873659 577454 976982 011856 344575 294551 691034 741430 615045 (660 digits), a[1260] = 1
                                                                                      A[1261]/B[1261] = 53546 650328 450257 515673 467636 935273 909358 568695 890401 904723 738513 871871 899471 542790 803328 716538 047602 895401 535660 795652 768004 693536 816210 567827 038296 891204 191415 982253 472184 220576 942232 523386 273138 842633 350401 223828 238430 038143 415250 869841 006497 144443 630900 995255 438716 880791 466931 967891 674168 123727 045141 465162 742169 105245 850969 203415 844536 796222 379615 559896 389511 606049 873294 119323 137132 275420 179155 028523 958279 806187 440261 690101 602244 207182 811873 989551 581649 662893 996480 501670 558977 411616 965988 945330 613642 601893 149495 010974 638129 393593 667307 567421 067922 426038 744953 320224 510562 177294 979900 969308 144017 564302 763082 171648 663043 919792 243016 885773 555096 879114 (659 digits)/5 204387 721521 315142 526236 842480 667185 886341 652200 116205 131960 266468 337345 989752 172061 990523 886191 355488 593781 815669 702220 651607 407922 609200 864082 205960 147840 252444 540186 759450 076433 049229 739913 386782 251177 628866 172633 385494 871958 545140 072407 389220 371946 741562 833393 106440 217793 434062 509017 250772 930579 247785 357896 847462 898722 707308 218829 694530 157398 928697 438567 364517 683445 104632 452741 932964 338215 940310 009258 953784 551234 215488 230892 531935 465823 208521 384486 236305 209168 168533 025622 058711 425606 347457 705419 562473 070474 384040 572227 198855 171503 528748 607778 502014 339544 037806 729549 227422 405925 644967 743870 379580 711933 928477 393894 218304 042492 437339 900290 344448 398147 (661 digits), a[1261] = 18
                                                                                      A[1262]/B[1262] = 56422 652570 524337 539568 920831 753354 670495 954900 644809 305803 928085 239512 270149 362623 118919 587595 312136 420848 930608 098707 827229 522659 878355 957969 583069 050956 495952 785224 510274 225817 713202 196423 266407 640783 444910 887691 200496 818302 204208 276687 861693 135356 968361 211800 433748 550555 484470 297406 967144 184788 995432 740250 170078 429385 085265 361631 827018 963699 753490 734021 753882 870114 182044 755285 357471 004870 300402 282527 180578 916222 778944 683707 220159 433556 541934 626760 648759 878696 188141 066324 821281 982935 500930 402154 384533 332988 962904 491768 715429 461078 224032 046050 053310 693498 439466 922369 345383 406711 775538 941019 125543 351023 506792 625960 618889 215780 741825 476669 519631 916421 (659 digits)/5 483916 518633 866717 140176 317998 563040 349268 092719 159645 201514 179053 734098 994731 875618 920936 983539 064593 004813 618980 343213 553331 611588 156545 991388 907898 602885 288040 630833 040195 242835 092929 161699 524549 134974 166560 019116 513053 349544 006652 435334 334440 255697 413567 696666 162300 391498 913755 153146 980417 873898 621325 284929 244775 562766 740449 011085 310465 959086 917534 779543 036703 434046 258639 260115 080100 546985 941777 182754 615585 862748 347179 940043 510585 465763 887217 695291 948184 930103 447009 904600 339261 600290 491222 922703 748100 982793 792622 057895 026082 140460 312084 322008 843874 343151 209997 255287 238002 723951 147064 183766 142281 585593 505932 370876 230160 387067 731891 591325 085879 013192 (661 digits), a[1262] = 1
                                                                                      A[1263]/B[1263] = 222814 608040 023270 134380 230132 195337 920846 433397 824829 822135 522769 590408 709919 630660 160087 479323 984012 157948 327485 091776 249693 261516 451278 441735 787504 044073 679274 337927 003006 898030 081839 112656 072361 764983 685133 886901 839920 493050 027875 699904 591576 550514 535984 630656 739962 532457 920342 860112 575600 678094 031439 685913 252404 393401 106765 288311 325593 687321 640087 761961 651160 216392 419428 385179 209545 290031 080361 876105 500016 554855 777095 741223 262722 507852 437677 869833 527929 298982 560903 700645 022823 360423 468780 151793 767242 600860 038208 486280 784417 776828 339403 705571 227854 506534 063354 087332 546712 397430 306517 792365 520647 617373 283460 049530 519711 567134 468493 315782 113992 628377 (660 digits)/21 656137 277422 915293 946765 796476 356306 934145 930357 595140 736502 803629 539642 973947 798918 753334 836808 549267 608222 672610 731861 311602 242687 078838 838248 929655 956496 116566 432685 880035 804938 328017 225011 960429 656100 128546 229982 924654 920590 565097 378410 392541 139038 982265 923391 593341 392290 175327 968458 192026 552275 111761 212684 581789 587022 928655 252085 625928 034659 681301 777196 474627 985583 880550 233087 173265 979173 765641 557522 800542 139479 257028 051023 063691 863114 870174 470362 080859 999478 509562 739423 076496 226477 821126 473530 806776 018855 761906 745912 277101 592884 465001 573805 033637 368997 667798 495410 941430 577779 086160 295168 806425 468714 446274 506522 908785 203695 633014 674265 602085 437723 (662 digits), a[1263] = 3
                                                                                      A[1264]/B[1264] = 502051 868650 570877 808329 381096 144030 512188 821696 294468 950074 973624 420329 689988 623943 439094 546243 280160 736745 585578 282260 326616 045692 780912 841441 158077 139103 854501 461078 516288 021877 876880 421735 411131 170750 815178 661494 880337 804402 259959 676497 044846 236386 040330 473113 913673 615471 325156 017632 118345 540977 058312 112076 674887 216187 298795 938254 478206 338343 033666 257945 056203 302899 020901 525643 776561 584932 461126 034738 180612 025934 333136 166153 745604 449261 417290 366427 704618 476661 309948 467614 866928 703782 438490 705741 919018 534709 039321 464330 284265 014734 902839 457192 509019 706566 566175 097034 438808 201572 388574 525750 166838 585770 073712 725021 658312 350049 678812 108233 747617 173175 (660 digits)/48 796191 073479 697305 033707 910951 275654 217559 953434 349926 674519 786312 813384 942627 473456 427606 657156 163128 221258 964201 806936 176536 096962 314223 667886 767210 515877 521173 496204 800266 852711 748963 611723 445408 447174 423652 479082 362363 190725 136847 192155 119522 533775 378099 543449 348983 176079 264411 090063 364470 978448 844847 710298 408354 736812 597759 515256 562322 028406 280138 333935 985959 405214 019739 726289 426632 505333 473060 297800 216670 141706 861236 042089 637969 191993 627566 636016 109904 929060 466135 383446 492254 053246 133475 869765 361653 020505 316435 549719 580285 326229 242087 469618 911149 081146 545594 246109 120863 879509 319384 774103 755132 523022 398481 383922 047730 794458 997920 939856 290049 888638 (662 digits), a[1264] = 2
                                                                                      A[1265]/B[1265] = 5 243333 294545 732048 217674 041093 635643 042734 650360 769519 322885 259013 793705 609805 870094 551032 941756 785619 525404 183267 914379 515853 718444 260406 856147 368275 435112 224288 948712 165887 116808 850643 330010 183673 472491 836920 501850 643298 537072 627472 464875 040038 914374 939289 361795 876698 687171 171903 036433 759056 087864 614560 806680 001276 555274 094724 670856 107657 070751 976750 341412 213193 245382 628443 641616 975161 139355 691622 223487 306136 814199 108457 402760 718767 000466 610581 534110 574114 065595 660388 376793 692110 398247 853687 209212 957427 947950 431423 129583 627067 924177 367798 277496 318051 572199 725105 057676 934794 413154 192263 049867 189033 475074 020587 299747 102835 067631 256614 398119 590164 360127 (661 digits)/509 618048 012219 888344 283844 905989 112849 109745 464701 094407 481700 666757 673492 400222 533483 029401 408370 180549 820812 314628 801223 076963 212310 221075 517116 601761 115271 328301 394733 882704 332055 817653 342246 414514 127844 365071 020806 548286 827841 933569 299961 587766 476792 763261 357885 083173 153082 819438 869091 836736 336763 560238 315668 665336 955148 906250 404651 249148 318722 482685 116556 334222 037724 077947 495981 439591 032508 496244 535524 967243 556547 869388 471919 443383 783051 145840 830523 179909 290083 170916 573887 999036 758939 155885 171184 423306 223908 926262 243108 079954 855176 885876 269994 145128 180463 123740 956502 150069 372872 280008 036206 357750 698938 431088 345743 386093 148285 612224 072828 502584 324103 (663 digits), a[1265] = 10
                                                                                      A[1266]/B[1266] = 16 232051 752287 767022 461351 504377 050959 640392 772778 603026 918730 750665 801446 519406 234227 092193 371513 637019 312958 135382 025398 874177 201025 562133 409883 262903 444440 527368 307215 013949 372304 428810 411765 962151 588226 325940 167046 810233 415620 142377 071122 164962 979510 858198 558501 543769 676984 840865 126933 395513 804570 901994 532116 678716 882009 582969 950822 801177 550598 963917 282181 695783 039046 906232 450494 702045 002999 535992 705200 099022 468531 658508 374435 901905 450661 249034 968759 426960 673448 291113 597995 943259 898525 999552 333380 791302 378560 333590 853081 165468 787267 006234 289681 463174 423165 741490 270065 243191 441034 965363 675351 733939 010992 135474 624262 966817 552943 448655 302592 518110 253556 (662 digits)/1577 650335 110139 362337 885242 628918 614201 546796 347537 633149 119621 786585 833862 143295 073905 515810 882266 704777 683695 908088 210605 407425 733892 977450 219236 572493 861691 506077 680406 448379 848879 201923 638462 688950 830707 518865 541502 007223 674250 937555 092039 882821 964153 667883 617104 598502 635327 722727 697338 874679 988739 525562 657304 404365 602259 316510 729210 309766 984573 728193 683604 988625 518386 253582 214233 745405 602858 961793 904375 118400 811350 469401 457847 968120 541147 065089 127585 649632 799309 978885 105110 489364 330063 601131 383318 631571 692232 095222 279043 820149 891759 899716 279601 346533 622535 916817 115615 571071 998126 159408 882722 828384 619837 691746 421152 206010 239315 834593 158341 797802 860947 (664 digits), a[1266] = 3
                                                                                      A[1267]/B[1267] = 21 475385 046833 499070 679025 545470 686602 683127 423139 372546 241616 009679 595152 129212 104321 643226 313270 422638 838362 318649 939778 390030 919469 822540 266030 631178 879552 751657 255927 179836 489113 279453 741776 145825 060718 162860 668897 453531 952692 769849 535997 205001 893885 797487 920297 420468 364156 012768 163367 154569 892435 516555 338796 679993 437283 677694 621678 908834 621350 940667 623593 908976 284429 534676 092111 677206 142355 227614 928687 405159 282730 766965 777196 620672 451127 859616 502870 001074 739043 951501 974789 635370 296773 853239 542593 748730 326510 765013 982664 792536 711444 374032 567177 781225 995365 466595 327742 177985 854189 157626 725218 922972 486066 156061 924010 069652 620574 705269 700712 108274 613683 (662 digits)/2087 268383 122359 250682 169087 534907 727050 656541 812238 727556 601322 453343 507354 543517 607388 545212 290636 885327 504508 222717 011828 484388 946203 198525 736353 174254 976962 834379 075140 331084 180935 019576 980709 103464 958551 883936 562308 555510 502092 871124 392001 470588 440946 431144 974989 681675 788410 542166 566430 711416 325503 085800 972973 069702 557408 222761 133861 558915 303296 210878 800161 322847 556110 331529 710215 184996 635367 458038 439900 085644 367898 338789 929767 411504 324198 210929 958108 829542 089393 149801 678998 488401 089002 757016 554503 054877 916141 021484 522151 900104 746936 785592 549595 491661 802999 040558 072117 721141 370998 439416 918929 186135 318776 122834 766895 592103 387601 446817 231170 300387 185050 (664 digits), a[1267] = 1
                                                                                      A[1268]/B[1268] = 2013 442861 107803 180595 610727 233150 905009 171243 124740 249827 389019 650868 150594 536131 936139 912240 505662 942431 280653 769826 424789 147052 711719 058378 150731 962539 242846 431493 108442 738742 859839 418008 396947 523882 235015 471982 374509 988705 016047 738383 918862 230139 110890 024575 146161 647327 543494 028304 320078 770513 801073 941641 040207 918106 549391 608569 766961 322797 336236 446006 276415 230577 490993 631109 016880 682216 242035 704181 073128 778835 762492 986325 653721 624443 405552 193369 735669 526911 404535 780797 253432 032697 498494 350829 794599 423222 744061 479891 240906 871382 951593 791263 037215 117191 992154 134855 750087 795875 880626 624649 120711 570380 215144 649233 557199 444511 266391 038737 468818 587649 326075 (664 digits)/195693 609965 489549 675779 610383 375337 229912 605184 885739 295913 042609 947532 017834 690432 561040 220553 911497 040235 602960 620770 310654 455597 730790 440343 700081 778206 719235 103331 668457 239208 675836 022582 844409 311191 976032 724965 836197 669700 368887 952123 548176 647546 972171 764366 291144 994350 957508 144218 375395 036398 260526 505053 143799 886703 441224 033296 178335 288890 191121 339922 098608 013448 236647 085845 264245 950092 692032 559368 815083 083327 025895 976864 926217 238022 691580 681575 231706 797047 112872 910441 251969 910665 607320 003670 952102 735217 893347 093282 839170 529891 356880 959823 391982 071081 301446 688717 822563 637219 500981 025182 343137 138969 266017 115379 742442 271625 286250 388595 657179 733811 070597 (666 digits), a[1268] = 93
                                                                                      A[1269]/B[1269] = 2034 918246 154636 679666 289752 778621 591611 854370 547879 622373 630635 660547 745746 665344 040461 555466 818933 365070 119016 088476 364567 537083 631188 880918 416762 593718 122399 183150 364369 918579 348952 697462 138723 669707 295733 634843 043407 442236 968740 508233 454859 435141 004775 822063 066459 067795 907650 041072 483445 925083 693509 458196 379004 598099 986675 286264 388640 231631 957587 386673 900009 139553 775423 165785 108992 359422 384390 931796 001816 183995 045223 753291 430918 245115 856680 052986 238539 527986 143579 732299 228221 668067 795268 204069 337193 171953 070572 244905 223571 663919 663038 165295 604392 898417 987519 601451 077829 973861 734815 782275 845930 493352 701210 805295 481209 514163 886965 744007 169530 695923 939758 (664 digits)/197780 878348 611908 926461 779470 910244 956963 261726 697978 023469 643932 400875 525189 233950 168428 765766 202133 925563 107468 843487 322482 939986 676993 638869 436434 952461 696197 937710 743597 570292 856771 042159 825118 414656 934584 608902 398506 225210 870980 823247 940178 118135 413118 195511 266134 676026 745918 686384 941825 747814 586029 590854 116772 956405 998632 256057 312196 847805 494417 550800 898769 336295 792757 417374 974461 135089 327400 017407 254983 168971 393794 315654 855984 649527 015778 892505 189815 626589 202266 060242 930968 399066 696322 760687 506605 790095 809488 114767 361322 429996 103817 745415 941577 562743 104445 729275 894681 358360 871979 464599 262066 325104 584793 238214 509337 863728 673851 835412 888350 034198 255647 (666 digits), a[1269] = 1
                                                                                      A[1270]/B[1270] = 6083 279353 417076 539928 190232 790394 088232 879984 220499 494574 650290 971963 642087 866820 017063 023174 143529 672571 518685 946779 153924 221219 974096 820214 984257 149975 487644 797793 837182 575901 557744 812932 674394 863296 826482 741668 461324 873178 953528 754850 828581 100421 120441 668701 279079 782919 358794 110449 286970 620681 188092 858033 798217 114306 522742 181098 544241 786061 251411 219354 076433 509685 041839 962679 234865 401061 010817 567773 076761 146825 852940 492908 515558 114675 118912 299342 212748 582883 691695 245395 709875 368833 089030 758968 468985 767128 885205 969701 688050 199222 277670 121854 246000 914027 967193 337757 905747 743599 350258 189200 812572 557085 617566 259824 519618 472839 040322 526751 807879 979497 205591 (664 digits)/591255 366662 713367 528703 169325 195827 143839 128638 281695 342852 330474 749283 068213 158332 897897 752086 315764 891361 817898 307744 955620 335571 084777 718082 572951 683130 111630 978753 155652 379794 389378 106902 494646 140505 845201 942770 633210 120122 110849 598619 428532 883817 798408 155388 823414 346404 449345 516988 259046 532027 432585 686761 377345 799515 438488 545410 802728 984501 179956 441523 896146 686039 822161 920595 213168 220271 346832 594183 325049 421269 813484 608174 638186 537076 723138 466585 611338 050225 517405 030927 113906 708798 999965 525045 965314 315409 512323 322817 561815 389883 564516 450655 275137 196567 510338 147269 611926 353941 244939 954380 867269 789178 435603 591808 761117 999082 633954 059421 433879 802207 581891 (666 digits), a[1270] = 2
                                                                                      A[1271]/B[1271] = 8118 197599 571713 219594 479985 569015 679844 734354 768379 116948 280926 632511 387834 532164 057524 578640 962463 037641 637702 035255 518491 758303 605285 701133 401019 743693 610043 980944 201552 494480 906697 510394 813118 533004 122216 376511 504732 315415 922269 263084 283440 535562 125217 490764 345538 850715 266444 151521 770416 545764 881602 316230 177221 712406 509417 467362 932882 017693 208998 606027 976442 649238 817263 128464 343857 760483 395208 499569 078577 330820 898164 246199 946476 359790 975592 352328 451288 110869 835274 977694 938097 036900 884298 963037 806178 939081 955778 214606 911621 863141 940708 287149 850393 812445 954712 939208 983577 717461 085073 971476 658503 050438 318777 065120 000827 987002 927288 270758 977410 675421 145349 (664 digits)/789036 245011 325276 455164 948796 106072 100802 390364 979673 366321 974407 150158 593402 392283 066326 517852 517898 816924 925367 151232 278103 275557 761771 356952 009386 635591 807828 916463 899249 950087 246149 149062 319764 555162 779786 551673 031716 345332 981830 421867 368711 001953 211526 350900 089549 022431 195264 203373 200872 279842 018615 277615 494118 755921 437120 801468 114925 832306 674373 992324 794916 022335 614919 337970 187629 355360 674232 611590 580032 590241 207278 923829 494171 186603 738917 359090 801153 676814 719671 091170 044875 107865 696288 285733 471920 105505 321811 437584 923137 819879 668334 196071 216714 759310 614783 876545 506607 712302 116919 418980 129336 114283 020396 830023 270455 862811 307805 894834 322229 836405 837538 (666 digits), a[1271] = 1
                                                                                      A[1272]/B[1272] = 22319 674552 560502 979117 150203 928425 447922 348693 757257 728471 212144 236986 417756 931148 132112 180456 068455 747854 794090 017290 190907 737827 184668 222481 786296 637362 707732 759682 240287 564863 371139 833722 300631 929305 070915 494691 470789 504010 798067 281019 395462 171545 370876 650229 970157 484349 891682 413492 827803 712210 951297 490494 152660 539119 541577 115824 410005 821447 669408 431410 029318 808162 676366 219607 922580 922027 801234 566911 233915 808467 649268 985308 408510 834257 070097 003999 115324 804623 362245 200785 586069 442634 857628 685044 081343 645292 796762 398915 511293 925506 159086 696153 946788 538919 876619 216175 872903 178521 520406 132154 129578 657962 255120 390064 521274 446844 894899 068269 762701 330339 496289 (665 digits)/2 169327 856685 363920 439033 066917 407971 345443 909368 241042 075496 279289 049600 255017 942899 030550 787791 351562 525211 668632 610209 511826 886686 608320 431986 591724 954313 727288 811680 954152 279968 881676 405027 134175 250831 404775 046116 696642 810788 074510 442354 165954 887724 221460 857189 002512 391266 839873 923734 660791 091711 469816 241992 365583 311358 312730 148347 032580 649114 528704 426173 485978 730711 052000 596535 588426 930992 695297 817364 485114 601752 228042 455833 626528 910284 200973 184767 213645 403854 956747 213267 203656 924530 392542 096512 909154 526420 155946 197987 408091 029642 901184 842797 708566 715188 739905 900360 625141 778545 478778 792341 125942 017744 476397 251855 302029 724705 249565 849090 078339 475019 256967 (667 digits), a[1272] = 2
                                                                                      A[1273]/B[1273] = 164355 919467 495234 073414 531413 067993 815301 175211 069183 216246 765936 291416 312133 050200 982309 841833 441653 272625 196332 156286 854845 923093 897963 258505 905096 205232 564173 298719 883565 448524 504676 346450 917542 038139 618624 839351 800258 843491 508740 230220 051675 736379 721354 042374 136641 241164 508221 045971 565042 531241 540684 749689 245845 486243 300457 278133 802922 767826 894857 625898 181674 306377 551826 665719 801924 214678 003850 467947 715987 990094 443047 143358 806052 199590 466271 380322 258561 743233 370991 383194 040583 135344 887699 758346 375584 456131 533115 007015 490679 341685 054315 160227 477913 584885 091047 452440 093899 967111 727916 896555 565553 656174 104619 795571 649749 114917 191581 748647 316319 987797 619372 (666 digits)/15 974331 241808 872719 528396 417217 961871 518909 755942 666967 894795 929430 497360 378527 992576 280182 032391 978836 493406 605795 422698 860891 482364 020014 380858 151461 315787 898850 598230 578315 909869 417883 984252 258991 310982 613211 874489 908216 020849 503403 518346 530395 216022 761752 351223 107135 761299 074381 669515 826409 921822 307328 971562 053201 935429 626231 839897 342990 376108 375304 975539 196767 137312 978923 513719 306617 872309 541317 333141 975834 802506 803576 114664 879873 558593 145729 652461 296671 503799 416901 584040 470473 579578 444082 961323 836001 790446 413434 823496 779775 027379 976628 095655 176681 765631 794125 179069 882600 162120 468370 965368 010930 238494 355177 593010 384663 935748 054766 838464 870606 161540 636307 (668 digits), a[1273] = 7
                                                                                      A[1274]/B[1274] = 186675 594020 055737 052531 681616 996419 263223 523904 826440 944717 978080 528402 729889 981349 114422 022289 510109 020479 990422 173577 045753 660921 082631 480987 691392 842595 271906 058402 123853 013387 875816 180173 218173 967444 689540 334043 271048 347502 306807 511239 447137 907925 092230 692604 106798 725514 399903 459464 392846 243452 491982 240183 398506 025362 842034 393958 212928 589274 564266 057308 210993 114540 228192 885327 724505 136705 805085 034858 949903 798562 092316 128667 214563 033847 536368 384321 373886 547856 733236 583979 626652 577979 745328 443390 456928 101424 329877 405931 001973 267191 213401 856381 424702 123804 967666 668615 966803 145633 248323 028709 695132 314136 359740 185636 171023 561762 086480 816917 079021 318137 115661 (666 digits)/18 143659 098494 236639 967429 484135 369842 864353 665310 908009 970292 208719 546960 633545 935475 310732 820183 330399 018618 274428 032908 372718 369050 628334 812844 743186 270101 626139 409911 532468 189838 299560 389279 393166 561814 017986 920606 604858 831637 577913 960700 696350 103746 983213 208412 109648 152565 914255 593250 487201 013533 777145 213554 418785 246787 938961 988244 375571 025222 904009 401712 682745 868024 030924 110254 895044 803302 236615 150506 460949 404259 031618 570498 506402 468877 346702 837228 510316 907654 373648 797307 674130 504108 836625 057836 745156 316866 569381 021484 187866 057022 877812 938452 885248 480820 534031 079430 507741 940665 947149 757709 136872 256238 831574 844865 686693 660453 304332 687554 948945 636559 893274 (668 digits), a[1274] = 1
                                                                                      A[1275]/B[1275] = 351031 513487 550971 125946 213030 064413 078524 699115 895624 160964 744016 819819 042023 031550 096731 864122 951762 293105 186754 329863 900599 584014 980594 739493 596489 047827 836079 357122 007418 461912 380492 526624 135716 005584 308165 173395 071307 190993 815547 741459 498813 644304 813584 734978 243439 966678 908124 505435 957888 774694 032666 989872 644351 511606 142491 672092 015851 357101 459123 683206 392667 420917 780019 551047 526429 351383 808935 502806 665891 788656 535363 272026 020615 233438 002639 764643 632448 291090 104227 967173 667235 713324 633028 201736 832512 557555 862992 412946 492652 608876 267717 016608 902615 708690 058714 121056 060703 112744 976239 925265 260685 970310 464359 981207 820772 676679 278062 565564 395341 305934 735033 (666 digits)/34 117990 340303 109359 495825 901353 331714 383263 421253 574977 865088 138150 044321 012073 928051 590914 852575 309235 512024 880223 455607 233609 851414 648349 193702 894647 585889 524990 008142 110784 099707 717444 373531 652157 872796 631198 795096 513074 852487 081317 479047 226745 319769 744965 559635 216783 913864 988637 262766 313610 935356 084474 185116 471987 182217 565193 828141 718561 401331 279314 377251 879513 005337 009847 623974 201662 675611 777932 483648 436784 206765 835194 685163 386276 027470 492432 489689 806988 411453 790550 381348 144604 083687 280708 019160 581158 107312 982815 844980 967641 084402 854441 034108 061930 246452 328156 258500 390342 102786 415520 723077 147802 494733 186752 437876 071357 596201 359099 526019 819551 798100 529581 (668 digits), a[1275] = 1
                                                                                      A[1276]/B[1276] = 5 452148 296333 320303 941724 877067 962615 441094 010643 260803 359189 138332 825688 360235 454600 565399 984133 786543 417057 791737 121535 554747 421145 791552 573391 638728 560012 813096 415232 235129 942073 583204 079535 253914 051209 312017 934969 340656 212409 540023 633131 929342 572497 296001 717277 758398 225698 021771 041003 761177 863862 981987 088273 063778 699454 979409 475338 450698 945796 451121 305404 101004 428306 928486 151040 620945 407462 939117 576958 938280 628410 122765 209057 523791 535417 575964 853975 860610 914208 296656 091584 635188 277849 240751 469442 944616 464762 274763 600128 391762 400335 229157 105514 963937 754155 848378 484456 877349 836807 891921 907688 605421 868793 325139 903753 482613 711951 257419 300383 009140 907158 141156 (667 digits)/529 913514 203040 877032 404818 004435 345558 613304 984114 532677 946614 280970 211775 814654 856249 174455 608812 968931 698991 477779 867016 876866 140270 353572 718388 162900 058444 500989 532043 194229 685454 061225 992254 175534 653763 485968 847054 300981 618943 797676 146409 097529 900293 157696 602940 361406 860540 743814 534745 191365 043875 044257 990301 498592 980051 416869 410370 153992 045192 093725 060490 875440 948079 178638 469867 919984 937478 905602 405233 012712 505746 559538 847949 300542 880934 733190 182575 615143 079461 231904 517529 843191 759418 047245 345245 462527 926561 311618 696198 702482 323065 694428 450073 814202 177605 456374 956936 362873 482462 179960 603866 353909 677236 632861 413006 757057 603473 690825 577852 242222 608067 836989 (669 digits), a[1276] = 15
                                                                                      A[1277]/B[1277] = 33 063921 291487 472794 776295 475437 840105 725088 762975 460444 316099 574013 773949 203435 759153 489131 768925 671022 795451 937177 059077 229084 110889 729910 179843 428860 407904 714657 848515 418198 114353 879717 003835 659200 312840 180272 783211 115244 465451 055689 540251 074869 079288 589595 038644 793829 320867 038750 751458 524955 957871 924589 519511 027023 708336 018948 524122 720045 031880 165851 515630 998693 990759 350936 457291 252101 796161 443640 964560 295575 559117 271954 526371 163364 445943 458428 888498 796113 776339 884164 516681 478365 380420 077537 018394 500211 346129 511574 013716 843227 010887 642659 649698 686242 233625 148985 027797 324802 133592 327771 371396 893217 183070 415199 403728 716454 948386 822578 367862 450186 748883 581969 (668 digits)/3213 599075 558548 371553 924733 927965 405066 063093 325940 771045 544773 823971 314975 900003 065546 637648 505453 122825 705973 746902 657708 494806 693036 769785 504031 872047 936556 530927 200401 276162 212432 084800 327056 705365 795377 547011 877422 318964 566149 867374 357501 811924 721528 691145 177277 385225 077109 451524 471237 461801 198606 350022 126925 463545 062526 066410 290362 642513 672483 841664 740197 132158 693812 081678 443181 721572 300485 211546 915046 513059 241245 192427 772859 189533 313078 891573 585143 497846 888221 181977 486527 203754 640195 564180 090633 356325 666680 852528 022173 182535 022797 021011 734550 947143 312085 066406 000118 567582 997559 495284 346275 271260 558152 983920 915916 613703 217043 504052 993133 272887 446507 551515 (670 digits), a[1277] = 6
                                                                                      A[1278]/B[1278] = 38 516069 587820 793098 718020 352505 802721 166182 773618 721247 675288 712346 599637 563671 213754 054531 753059 457566 212509 728914 180612 783831 532035 521462 753235 067588 967917 527754 263747 653328 056427 462921 083370 913114 364049 492290 718180 455900 677860 595713 173383 004211 651785 885596 755922 552227 546565 060521 792462 286133 821734 906576 607784 090802 407790 998357 999461 170743 977676 616972 821035 099698 419066 279422 608331 873047 203624 382758 541519 233856 187527 394719 735428 687155 981361 034393 742474 656724 690548 180820 608266 113553 658269 318288 487837 444827 810891 786337 613845 234989 411222 871816 755213 650179 987780 997363 512254 202151 970400 219693 279085 498639 051863 740339 307482 199068 660338 079997 668245 459327 656041 723125 (668 digits)/3743 512589 761589 248586 329551 932400 750624 676398 310055 303723 491388 104941 526751 714657 921795 812104 114266 091757 404965 224682 524725 371672 833307 123358 222420 034947 995001 031916 732444 470391 897886 146026 319310 880900 449141 032980 724476 619946 185093 665050 503910 909454 621821 848841 780217 746631 937650 195339 005982 653166 242481 394280 117226 962138 042577 483279 700732 796505 717675 935389 800688 007599 641891 260316 913049 641557 237964 117149 320279 525771 746991 751966 620808 490076 194013 624763 767719 112989 967682 413882 004057 046946 399613 611425 435878 818853 593242 164146 718371 885017 345862 715440 184624 761345 489690 522780 957054 930456 480021 675244 950141 625170 235389 616782 328923 370760 820517 194878 570985 515110 054575 388504 (670 digits), a[1278] = 1
                                                                                      A[1279]/B[1279] = 957 449591 399186 507164 008783 935577 105413 713475 329824 770388 523028 670332 165250 731544 889250 797893 842352 652611 895685 431117 393784 041040 879742 245016 257485 050995 637925 380760 178459 098071 468612 989823 004737 573945 050027 995250 019542 056860 734105 352805 701443 175948 722149 843917 180786 047290 438428 491273 770553 392167 679509 682428 106329 206281 495319 979540 511190 817900 496118 973199 220473 391456 048350 057079 057256 205234 683146 629845 961021 908124 059774 745228 176659 655107 998608 283878 707890 557506 349496 223859 115068 203653 178883 716460 726493 176078 807532 383676 746002 482972 880236 566261 774826 290561 940369 085709 321898 176449 423197 600410 069448 860554 427800 183342 783301 494102 796500 742522 405753 474050 493884 936969 (669 digits)/93057 901229 836690 337625 833980 305583 420058 296652 767268 060409 338088 342567 957017 051793 188646 128147 247839 325003 425139 139283 251117 414954 692407 730382 842112 710799 816581 296928 779068 565567 761699 589431 990517 846976 574762 338549 264861 197673 008397 828586 451363 638835 645253 063347 902503 304391 580714 139660 614821 137791 018159 812744 940372 554858 084385 665123 107949 758650 896706 291019 956709 314550 099202 329284 356373 118946 011624 023130 601755 131581 169047 239626 672262 951361 969405 885904 010402 209606 112599 115145 583896 330468 230922 238390 551725 008811 904492 792049 263098 422951 323502 191576 165545 219435 064657 613148 969436 898538 518079 701163 149674 275346 207503 786696 810077 511962 909456 181138 696785 635528 756316 875611 (671 digits), a[1279] = 24
                                                                                      A[1280]/B[1280] = 1953 415252 386193 807426 735588 223660 013548 593133 433268 262024 721346 053010 930139 026760 992255 650319 437764 762790 003880 591148 968180 865913 291520 011495 268205 169580 243768 289274 620665 849470 993653 442567 092846 061004 464105 482790 757264 569622 146071 301324 576269 356109 096085 573431 117494 646808 423422 043069 333569 070469 180754 271432 820442 503365 398430 957439 021842 806544 969914 563371 261981 882610 515766 393580 722844 283516 569917 642450 463563 050104 307076 885176 088747 997371 978577 602151 158255 771737 389540 628538 838402 520860 016036 751209 940823 796985 425956 553691 105850 200935 171696 004340 304866 231303 868519 168782 156050 555050 816795 420513 417983 219747 907464 107024 874085 187274 253339 565042 479752 407428 643811 597063 (670 digits)/189859 315049 434969 923837 997512 543567 590741 269703 844591 424542 167564 790077 440785 818244 299088 068398 609944 741764 255243 503249 026960 201582 218122 584123 906645 456547 628163 625774 290581 601527 421285 324890 300346 574853 598665 710079 254199 015292 201889 322223 406638 187125 912327 975537 585224 355415 099078 474660 235624 928748 278801 019769 997972 071854 211348 813525 916632 313807 511088 517429 714106 636699 840295 918885 625795 879449 261212 163410 523789 788934 085086 231219 965334 392800 132825 396571 788523 532202 192880 644173 171849 707882 861458 088206 539328 836477 402227 748245 244568 730919 992867 098592 515715 200215 619005 749078 895928 727533 516181 077571 249490 175862 650397 190175 949078 394686 639429 557155 964556 786167 567209 139726 (672 digits), a[1280] = 2
                                                                                      A[1281]/B[1281] = 8771 110600 943961 736870 951136 830217 159608 086009 062897 818487 408412 882375 885806 838588 858273 399171 593411 703771 911207 795713 266507 504694 045822 290997 330305 729316 612998 537858 661122 495955 443226 760091 376121 817962 906449 926413 048600 335349 318390 558104 006520 600385 106492 137641 650764 634524 132116 663551 104829 674044 402526 768159 388099 219743 089043 809296 598562 044080 375777 226684 268400 921898 111415 631401 948633 339300 962817 199647 815274 108541 288082 285932 531651 644595 912918 692483 340913 644455 907658 738014 468678 287093 243030 721300 489788 364020 511358 598441 169403 286713 567020 583622 994291 215777 414445 760837 946100 396652 690379 282463 741381 739546 057656 611442 279642 243199 809859 002692 324763 103765 069131 325221 (670 digits)/852495 161427 576570 032977 824030 479853 783023 375468 145633 758578 008347 502877 720160 324770 384998 401741 687618 292060 446113 152279 358958 221283 564898 066878 468694 536990 329235 800025 941394 971677 446840 888993 191904 146390 969425 178866 281657 258841 815955 117480 077916 387339 294564 965498 243400 726051 977028 038301 557320 852784 133363 891824 932260 842274 929780 919226 774479 013880 941060 360738 813135 861349 460386 004826 859556 636743 056472 676772 696914 287317 509392 164506 533600 522562 500707 472191 164496 338414 884121 691838 271295 161999 676754 591216 709040 354721 513403 785030 241373 346631 294970 585946 228406 020297 540680 609464 553151 808672 582804 011448 147634 978796 809092 547400 606391 090709 467174 409762 555012 780199 025153 434515 (672 digits), a[1281] = 4
                                                                                      A[1282]/B[1282] = 80893 410660 881849 439265 295819 695614 450021 367214 999348 628411 397061 994393 902400 574060 716716 242863 778470 096737 204750 752568 366748 408159 703920 630471 240956 733429 760755 130002 570768 313069 982694 283389 477942 422670 622154 820508 194667 587766 011586 324260 634954 759575 054514 812205 974376 357525 612472 015029 277036 136868 803495 184867 313335 481053 199825 241108 408901 203268 351909 603529 677590 179693 518507 076198 260544 337225 235272 439280 801030 026975 899817 458568 873612 798735 194845 834501 226478 571840 558469 270669 056507 104699 203313 242914 348919 073170 028183 939661 630479 781357 274881 256947 253487 173300 598531 016323 670954 124925 030208 962687 090418 875662 426373 610005 390865 376072 542070 589273 402620 341314 265993 524052 (671 digits)/7 862315 767897 624100 220638 413786 862251 637951 648917 155295 251744 242692 315976 922228 741177 764073 684073 798509 370308 270261 873763 257584 193134 302205 186030 124896 289460 591285 826007 763136 346624 442853 325829 027483 892372 323492 319875 789114 344868 545485 379544 107885 673179 563412 665021 775830 889882 892330 819374 251512 603805 479076 046194 388319 652328 579377 086566 886943 438735 980631 764079 032329 388844 983769 962327 361805 610136 769466 254364 796018 374791 669615 711778 767739 095862 639192 646292 268990 577936 149975 870717 613506 165879 952249 409156 920692 028971 022861 813517 416928 850601 647602 372108 571369 382893 485131 234259 874295 005586 761417 180604 578204 985033 932230 116781 406598 211071 843999 245018 959671 807958 793590 050361 (673 digits), a[1282] = 9
                                                                                      A[1283]/B[1283] = 89664 521261 825811 176136 246956 525831 609629 453224 062246 446898 805474 876769 788207 412649 574989 642035 371881 800509 115958 548281 633255 912853 749742 921468 571262 462746 373753 667861 231890 809025 425921 043480 854064 240633 528604 746921 243267 923115 329976 882364 641475 359960 161006 949847 625140 992049 744588 678580 381865 810913 206021 953026 701434 700796 288869 050405 007463 247348 727686 830213 945991 101591 629922 707600 209177 676526 198089 638928 616304 135517 187899 744501 405264 443331 107764 526984 567392 216296 466128 008683 525185 391792 446343 964214 838707 437190 539542 538102 799883 068070 841901 840570 247778 389078 012976 777161 617054 521577 720588 245150 831800 615208 484030 221447 670507 619272 351929 591965 727383 445079 335124 849273 (671 digits)/8 714810 929325 200670 253616 237817 342105 420975 024385 300929 010322 251039 818854 642389 065948 149072 085815 486127 662368 716375 026042 616542 414417 867103 252908 593590 826450 920521 626033 704531 318301 889694 214822 219388 038763 292917 498742 070771 603710 361440 497024 185802 060518 857977 630520 019231 615934 869358 857675 808833 456589 612439 938019 320580 494603 509158 005793 661422 452616 921692 124817 845465 250194 444155 967154 221362 246879 825938 931137 492932 662109 179007 876285 301339 618425 139900 118483 433486 916351 034097 562555 884801 327879 629004 000373 629732 383692 536265 598547 658302 197232 942572 958054 799775 403191 025811 843724 427446 814259 344221 192052 725839 963830 741322 664182 012989 301781 311173 654781 514684 588157 818743 484876 (673 digits), a[1283] = 1
                                                                                      A[1284]/B[1284] = 618880 538231 836716 496082 777558 850604 107798 086559 372827 309804 229911 255012 631645 049958 166654 095076 009760 899791 900502 042258 166283 885282 202378 159282 668531 509908 003277 137169 962113 167222 538220 544274 602327 866471 793783 302035 654275 126457 991447 618448 483806 919336 020556 511291 725222 309824 080004 086511 568231 002348 039626 903027 521943 685830 933039 543538 453680 687360 718030 584813 353536 789243 298043 321799 515610 396382 423810 272852 498854 840079 027215 925577 305199 458721 841432 996408 630831 869619 355237 322770 207619 455453 881377 028203 381163 696313 265439 168278 429778 189782 326292 300368 740157 507768 676391 679293 373281 254391 353738 433592 081222 566913 330554 938691 413911 091706 653648 141067 766921 011790 276742 619690 (672 digits)/60 151181 343848 828121 742335 840690 914884 163801 795228 960869 313677 748931 229104 776563 136866 658506 198966 715275 344520 568512 030018 956838 679641 504824 703481 686441 248166 114415 582209 990324 256435 781018 614762 343812 124952 080997 312328 213743 967130 714128 361689 222698 036292 711278 448141 891220 585492 108483 965429 104513 343343 153715 674310 311802 619949 634325 121328 855478 154437 510784 512986 105120 890011 648705 765252 689979 091415 725099 841189 753614 347446 743662 969490 575776 806413 478593 357192 869912 076042 354561 246052 922314 133157 726273 411398 699086 331126 240455 404803 366742 033999 303040 120437 370021 802039 640002 296606 438975 891142 826744 332920 933244 768018 380166 101873 484534 021759 711041 173708 047779 336905 706050 959617 (674 digits), a[1284] = 6
                                                                                      A[1285]/B[1285] = 1 327425 597725 499244 168301 802074 227039 825225 626342 807901 066507 265297 386795 051497 512565 908297 832187 391403 600092 916962 632797 965823 683418 154499 240033 908325 482562 380307 942201 156117 143470 502362 132030 058719 973577 116171 350992 551818 176031 312872 119261 609089 198632 202119 972431 075585 611697 904596 851603 518327 815609 285275 759081 745322 072458 154948 137481 914824 622070 163747 999840 653064 680078 226009 351199 240398 469291 045710 184633 614013 815675 242331 595656 015663 360774 790630 519801 829055 955535 176602 654223 940424 302700 209098 020621 601034 829817 070420 874659 659439 447635 494486 441307 728093 404615 365760 135748 363617 030360 428065 112334 994245 749035 145140 098830 498329 802685 659225 874101 261225 468659 888610 088653 (673 digits)/129 017173 617022 856913 738287 919199 171873 748578 614843 222667 637677 748902 277064 195515 339681 466084 483748 916678 351409 853399 086080 530219 773700 876752 659871 966473 322783 149352 790453 685179 831173 451731 444346 907012 288667 454912 123398 498259 537971 789697 220402 631198 133104 280534 526803 801672 786919 086326 788534 017860 143275 919871 286639 944185 734502 777808 248451 372378 761491 943261 150790 055707 030217 741567 497659 601320 429711 276138 613517 000161 357002 666333 815266 452893 231252 097086 832869 173311 068435 743220 054661 729429 594195 081550 823171 027905 045945 017176 408154 391786 265231 548653 198929 539819 007270 305816 436937 305398 596544 997709 857894 592329 499867 501654 867928 982057 345300 733256 002197 610243 261969 230845 404110 (675 digits), a[1285] = 2
                                                                                      A[1286]/B[1286] = 1 946306 135957 335960 664384 579633 077643 933023 712902 180728 376311 495208 641807 683142 562524 074951 927263 401164 499884 817464 675056 132107 568700 356877 399316 576856 992470 383585 079371 118230 310693 040582 676304 661047 840048 909954 653028 206093 302489 304319 737710 092896 117968 222676 483722 800807 921521 984600 938115 086558 817957 324902 662109 267265 758289 087987 681020 368505 309430 881778 584654 006601 469321 524052 672998 756008 865673 469520 457486 112868 655754 269547 521233 320862 819496 632063 516210 459887 825154 531839 976994 148043 758154 090475 048824 982198 526130 335860 042938 089217 637417 820778 741676 468250 912384 042151 815041 736898 284751 781803 545927 075468 315948 475695 037521 912240 894392 312874 015169 028146 480450 165352 708343 (673 digits)/189 168354 960871 685035 480623 759890 086757 912380 410072 183536 951355 497833 506168 972078 476548 124590 682715 631953 695930 421911 116099 487058 453342 381577 363353 652914 570949 263768 372663 675504 087609 232750 059109 250824 413619 535909 435726 712003 505102 503825 582091 853896 169396 991812 974945 692893 372411 194810 753963 122373 486619 073586 960950 255988 354452 412133 369780 227856 915929 454045 663776 160827 920229 390273 262912 291299 521127 001238 454706 753775 704449 409996 784757 028670 037665 575680 190062 043223 144478 097781 300714 651743 727352 807824 234569 726991 377071 257631 812957 758528 299230 851693 319366 909840 809309 945818 733543 744374 487687 824454 190815 525574 267885 881820 969802 466591 367060 444297 175905 658022 598874 936896 363727 (675 digits), a[1286] = 1
                                                                                      A[1287]/B[1287] = 5 220037 869640 171165 497070 961340 382327 691273 052147 169357 819130 255714 670410 417782 637614 058201 686714 193732 599862 551891 982910 230038 820818 868254 038667 062039 467503 147478 100943 392577 764856 583527 484639 380815 653674 936080 657048 964004 781009 921511 594681 794881 434568 647472 939876 677201 454741 873798 727833 691445 451523 935081 083300 279853 589036 330923 499522 651835 240931 927305 169148 666267 618721 274114 697196 752416 200637 984751 099605 839751 127183 781426 638122 657388 999768 054757 552222 748831 605844 240282 608212 236511 819008 390048 118271 565431 882077 742140 960535 837874 722471 136043 924660 664595 229383 450063 765831 837413 599863 991672 204189 145182 380932 096530 173874 322811 591470 284973 904439 317518 429560 219315 505339 (673 digits)/507 353883 538766 226984 699535 438979 345389 573339 434987 589741 540388 744569 289402 139672 292777 715265 849180 180585 743270 697221 318279 504336 680385 639907 386579 272302 464681 676889 535781 036188 006391 917231 562565 408661 115906 526730 994851 922266 548176 797348 384586 338990 471898 264160 476695 187459 531741 475948 296460 262607 116514 067045 208540 456162 443407 602074 988011 828092 593350 851352 478342 377362 870676 522114 023484 183919 471965 278615 522930 507712 765901 486327 384780 510233 306583 248447 212993 259757 357391 938782 656091 032917 048900 697199 292310 481887 800087 532440 034069 908842 863693 252039 837663 359500 625890 197453 904024 794147 571920 646618 239525 643478 035639 265296 807533 915240 079421 621850 354008 926288 459719 104638 131564 (675 digits), a[1287] = 2
                                                                                      A[1288]/B[1288] = 7 166344 005597 507126 161455 540973 459971 624296 765049 350086 195441 750923 312218 100925 200138 133153 613977 594897 099747 369356 657966 362146 389519 225131 437983 638896 459973 531063 180314 510808 075549 624110 160944 041863 493723 846035 310077 170098 083499 225831 332391 887777 552536 870149 423599 478009 376263 858399 665948 778004 269481 259983 745409 547119 347325 418911 180543 020340 550362 809083 753802 672869 088042 798167 370195 508425 066311 454271 557091 952619 782938 050974 159355 978251 819264 686821 068433 208719 430998 772122 585206 384555 577162 480523 167096 547630 408208 078001 003473 927092 359888 956822 666337 132846 141767 492215 580873 574311 884615 773475 750116 220650 696880 572225 211396 235052 485862 597847 919608 345664 910010 384668 213682 (673 digits)/696 522238 499637 912020 180159 198869 432147 485719 845059 773278 491744 242402 795571 111750 769325 839856 531895 812539 439201 119132 434378 991395 133728 021484 749932 925217 035630 940657 908444 711692 094001 149981 621674 659485 529526 062640 430578 634270 053279 301173 966678 192886 641295 255973 451640 880352 904152 670759 050423 384980 603133 140632 169490 712150 797860 014208 357792 055949 509280 305398 142118 538190 790905 912387 286396 475218 993092 279853 977637 261488 470350 896324 169537 538903 344248 824127 403055 302980 501870 036563 956805 684660 776253 505023 526880 208879 177158 790071 847027 667371 162924 103733 157030 269341 435200 143272 637568 538522 059608 471072 430341 169052 303525 147117 777336 381831 446482 066147 529914 584311 058594 041534 495291 (675 digits), a[1288] = 1
                                                                                      A[1289]/B[1289] = 26 719069 886432 692543 981437 584260 762242 564163 347295 219616 405455 508484 607064 720558 238028 457662 528646 978423 899104 659961 956809 316477 989376 543648 352617 978728 847423 740667 641886 925001 991505 455857 967471 506406 134846 474186 587280 474299 031507 599005 591857 458214 092179 257921 210675 111229 583533 448997 725680 025458 259967 715032 319528 921211 631012 587657 041151 712856 892020 354556 430556 684874 882849 668616 807783 277691 399572 347565 770881 697610 475997 934349 116190 592144 457562 115220 757522 374989 898840 556650 363831 390178 550495 831617 619561 208323 106701 976143 970957 619151 802138 006511 923672 063133 654685 926710 508452 560349 253711 312099 454537 807134 471573 813205 808063 027969 049058 078517 663264 354513 159591 373320 146385 (674 digits)/2596 920599 037679 963045 240013 035587 641832 030498 970166 909577 015621 471777 676115 474924 600755 234835 444867 618204 060874 054618 621416 478522 081569 704361 636378 047953 571574 498863 261115 171264 288395 367176 427589 387117 704484 714652 286587 825076 708014 700870 284620 917650 395784 032080 831617 828518 244199 488225 447730 417548 925913 488941 717012 592614 836987 644700 061387 995941 121191 767546 904697 991935 243394 259275 882673 609576 451242 118177 455842 292178 176954 175299 893393 126943 339329 720829 422159 168698 863002 048474 526508 086899 377661 212269 872951 108525 331563 902655 575152 910956 352465 563239 308754 167524 931490 627271 816730 409713 750746 059835 530549 150634 946214 706650 139543 060734 418867 820292 943752 679221 635501 229241 617437 (676 digits), a[1289] = 3
                                                                                      A[1290]/B[1290] = 808 738440 598578 283445 604583 068796 327248 549197 183905 938578 359107 005461 524159 717672 340991 863029 473386 947614 072887 168215 362245 856486 070815 534582 016523 000761 882685 751092 436922 260867 820713 299849 185089 234047 539118 071632 928491 399069 028727 195999 088115 634200 317914 607785 743852 814896 882267 328331 436349 541752 068512 710953 331277 183468 277703 048622 415094 406047 310973 445776 670503 219115 573532 856671 603693 839167 053481 881244 683542 880934 062876 081447 645073 742585 546128 143443 794104 458416 396215 471633 500148 089912 092037 429051 753932 797323 609267 362320 132202 501646 424029 152180 376499 026855 782345 293530 834450 384789 495955 136459 386250 434684 844094 968399 453287 074123 957604 953377 817538 981059 697751 584272 605232 (675 digits)/78604 140209 630036 803377 380550 266498 687108 400688 950067 060588 960388 395733 079035 359488 791982 884919 877924 358661 265422 757691 076873 347057 580819 152333 841274 363824 182865 906555 741899 849620 745862 165274 449356 273016 664067 502209 028213 386571 293720 327282 505305 722398 514816 218398 400175 735900 230137 317522 482335 911448 380537 808883 679868 490595 907489 355210 199431 934183 145033 331805 283058 296248 092733 690663 766604 762512 530355 825177 652906 026833 778976 155320 971331 347203 524140 449010 067830 363946 391931 490799 752048 291642 106089 873119 715413 464639 124075 869739 101614 996061 736891 000912 419655 295089 379918 961427 139480 829934 581990 266138 346815 688100 689966 346621 963628 203864 012516 674935 842494 960960 123630 918783 018401 (677 digits), a[1290] = 30
                                                                                      A[1291]/B[1291] = 2452 934391 682167 542880 795186 790649 743988 211754 899013 035351 482776 524869 179543 873575 261004 046750 948807 821266 117766 164608 043546 885936 201823 147394 402186 981014 495480 993944 952653 707605 453645 355405 522739 208548 752200 689085 372754 671506 117689 187002 856204 360815 045923 081278 442233 555920 230335 433992 034728 650714 465505 847892 313360 471616 464121 733524 286434 930998 824940 691886 442066 342221 603448 238631 618864 795192 560017 991299 821510 340412 664626 178692 051411 819901 095946 545552 139835 750239 087486 971550 864275 659914 826608 118772 881359 600293 934504 063104 367565 124091 074225 463053 053169 143701 001721 807303 011803 714717 741576 721477 613289 111189 003858 718404 167924 250340 921872 938651 115881 297692 252846 126137 962081 (676 digits)/238409 341227 927790 373177 381663 835083 703157 232565 820368 091343 896786 658976 913221 553390 976703 889595 078640 694187 857142 327691 852036 519694 824027 161363 160201 139426 120172 218530 486814 720126 525981 862999 775658 206167 696687 221279 371227 984790 589175 682717 800538 084845 940232 687276 032145 036218 934611 440792 894738 151894 067526 915592 756618 064402 559455 710330 659683 798490 556291 762962 753872 880679 521595 331267 182487 897114 042309 593710 414560 372679 513882 641262 807387 168553 911751 067859 625650 260538 038796 520873 782652 961825 695930 831629 019191 502442 703791 511872 879997 899141 563138 565976 567720 052793 071247 511553 235172 899517 496716 858250 570996 214937 016113 746516 030427 672326 456417 845100 471237 562102 006393 985590 672640 (678 digits), a[1291] = 3
                                                                                      A[1292]/B[1292] = 5714 607223 962913 369207 194956 650095 815224 972706 981932 009281 324660 055199 883247 464822 862999 956531 371002 590146 308419 497431 449339 628358 474461 829370 820896 962790 873647 738982 342229 676078 728004 010660 230567 651145 043519 449803 674000 742081 264105 570004 800524 355830 409760 770342 628319 926737 342938 196315 505806 843180 999524 406737 957998 126701 205946 515670 987964 268044 960854 829549 554635 903558 780429 333934 841423 429552 173517 863844 326563 561759 392128 438831 747897 382387 738021 234548 073775 958894 571189 414735 228699 409741 745253 666597 516651 997911 478275 488528 867332 749828 572480 078286 482837 314257 785788 908136 858057 814224 979108 579414 612828 657062 851812 405207 789135 574805 801350 830680 049301 576444 203443 836548 529394 (676 digits)/555422 822665 485617 549732 143877 936666 093422 865820 590803 243276 753961 713686 905478 466270 745390 664110 035205 747036 979707 413074 780946 386447 228873 475060 161676 642676 423210 343616 715529 289873 797825 891274 000672 685352 057441 944767 770669 356152 472071 692718 106381 892090 395281 592950 464465 808338 099360 199108 271812 215236 515591 640069 193104 619401 026400 775871 518799 531164 257616 857730 790804 057607 135924 353198 131580 556740 614975 012598 482026 772192 806741 437846 586105 684311 347642 584729 319130 885022 469524 532547 317354 215293 497951 536377 753796 469524 531658 893484 861610 794344 863168 132865 555095 400675 522413 984533 609826 628969 575423 982639 488808 117974 722193 839654 024483 548516 925352 365136 784970 085164 136418 889964 363681 (678 digits), a[1292] = 2
                                                                                      A[1293]/B[1293] = 13882 148839 607994 281295 185100 090841 374438 157168 862877 053914 132096 635268 946038 803220 987003 959813 690813 001558 734605 159470 942226 142653 150746 806136 043980 906596 242776 471909 637113 059762 909653 376725 983874 510838 839239 588692 720756 155668 645900 327012 457253 072475 865444 621963 698873 409394 916211 826623 046342 337076 464554 661368 229356 725018 876014 764866 262363 467088 746650 350985 551338 149339 164306 906501 301711 654296 907053 718988 474637 463931 448883 056355 547206 584676 571989 014648 287387 668028 229865 801021 321674 479398 317115 451967 914663 596116 891055 040162 102230 623748 219185 619626 018843 772216 573299 623576 727919 343167 699793 880306 838946 425314 707483 528819 746195 399952 524574 600011 214484 450580 659733 799235 020869 (677 digits)/1 349254 986558 899025 472641 669419 708415 890002 964207 001974 577897 404710 086350 724178 485932 467485 217815 149052 188261 816557 153841 413929 292589 281774 111483 483554 424778 966592 905763 917873 299874 121633 645547 777003 576871 811571 110814 912566 697095 533319 068154 013301 869026 730795 873176 961076 652895 133331 839009 438362 582367 098710 195731 142827 303204 612257 262073 697282 860819 071525 478424 335480 995893 793444 037663 445649 010595 272259 618907 378613 917065 127365 516955 979598 537176 607036 237318 263912 030582 977845 585968 417361 392412 691833 904384 526784 441491 767109 298842 603219 487831 289474 831707 677910 854144 116075 480620 454826 157456 647564 823529 548612 450886 460501 425824 079394 769360 307122 575374 041177 732430 279231 765519 400002 (679 digits), a[1293] = 2
                                                                                      A[1294]/B[1294] = 19596 756063 570907 650502 380056 740937 189663 129875 844809 063195 456756 690468 829286 268043 850003 916345 061815 591705 043024 656902 391565 771011 625208 635506 864877 869387 116424 210891 979342 735841 637657 387386 214442 161983 882759 038496 394756 897749 910005 897017 257777 428306 275205 392306 327193 336132 259150 022938 552149 180257 464079 068106 187354 851720 081961 280537 250327 735133 707505 180535 105974 052897 944736 240436 143135 083849 080571 582832 801201 025690 841011 495187 295103 967064 310010 249196 361163 626922 801055 215756 550373 889140 062369 118565 431315 594028 369330 528690 969563 373576 791665 697912 501681 086474 359088 531713 585977 157392 678902 459721 451775 082377 559295 934027 535330 974758 325925 430691 263786 027024 863177 635783 550263 (677 digits)/1 904677 809224 384643 022373 813297 645081 983425 830027 592777 821174 158671 800037 629656 952203 212875 881925 184257 935298 796264 566916 194875 679036 510647 586543 645231 067455 389803 249380 633402 589747 919459 536821 777676 262223 869013 055582 683236 053248 005390 760872 119683 761117 126077 466127 425542 461233 232692 038117 710174 797603 614301 835800 335931 922605 638658 037945 216082 391983 329142 336155 126285 053500 929368 390861 577229 567335 887234 631505 860640 689257 934106 954802 565704 221487 954678 822047 583042 915605 447370 118515 734715 607706 189785 440762 280580 911016 298768 192327 464830 282176 152642 964573 233006 254819 638489 465154 064652 786426 222988 806169 037420 568861 182695 265478 103878 317877 232474 940510 826147 817594 415650 655483 763683 (679 digits), a[1294] = 1
                                                                                      A[1295]/B[1295] = 111865 929157 462532 533807 085383 795527 322753 806548 086922 369891 415880 087613 092470 143440 237023 541538 999890 960083 949728 443982 900054 997711 276789 983670 368370 253531 824897 526369 533826 738971 097940 313657 056085 320758 253034 781174 694540 644418 195929 812098 746140 214007 241471 583495 334840 090056 211961 941315 807088 238363 784950 001899 166130 983619 285821 167552 514002 142757 284176 253661 081208 413828 887988 108682 017387 073542 309911 633152 480642 592385 653940 532292 022726 419998 122040 260630 093205 802642 235141 879804 073543 925098 628961 044795 071241 566258 737707 683616 950047 491632 177514 109188 527249 204588 368742 282144 657805 130131 094306 178914 097821 837202 503963 198957 422850 273744 154201 753467 533414 585704 975621 978152 772184 (678 digits)/10 872644 032680 822240 584510 735907 933825 807132 114344 965863 683768 198069 086538 872463 246948 531864 627441 070341 864755 797879 988422 388307 687771 835012 044201 709709 762055 915609 152667 084886 248613 718931 329656 665384 887991 156636 388728 328746 963335 560272 872514 611720 674612 361183 203814 088788 959061 296792 029597 989236 570385 170219 374732 822486 916232 805547 451799 777694 820735 717237 159199 966906 263398 440285 991971 331796 847274 708432 776436 681817 363354 797900 290968 808119 644616 380430 347556 179126 608610 214696 178547 090939 430943 640761 108195 929688 996573 260950 260479 927370 898712 052689 654573 842942 128242 308522 806390 778090 089587 762508 854374 735715 295192 373977 753214 598786 358746 469497 277928 171916 820402 357485 042938 218417 (680 digits), a[1295] = 5
                                                                                      A[1296]/B[1296] = 243328 614378 495972 718116 550824 331991 835170 742972 018653 802978 288516 865695 014226 554924 324050 999423 061597 511872 942481 544868 191675 766434 178788 602847 601618 376450 766219 263631 046996 213783 833538 014700 326612 803500 388828 600845 783838 186586 301865 521214 750057 856320 758148 559296 996873 516244 683073 905570 166325 656985 033979 071904 519616 818958 653603 615642 278332 020648 275857 687857 268390 880555 720712 457800 177909 230933 700394 849137 762486 210462 148892 559771 340556 807060 554090 770456 547575 232207 271338 975364 697461 739337 320291 208155 573798 726545 844745 895924 869658 356841 146693 916289 556179 495651 096573 096002 901587 417654 867514 817549 647418 756782 567222 331942 381031 522246 634328 937626 330615 198434 814421 592089 094631 (678 digits)/23 649965 874586 029124 191395 285113 512733 597690 058717 524505 188710 554809 973115 374583 446100 276605 136807 324941 664810 392024 543760 971491 054580 180671 674947 064650 591567 221021 554714 803175 086975 357322 196135 108446 038206 182285 833039 340729 979919 125936 505901 343125 110341 848443 873755 603120 379355 826276 097313 688647 938373 954740 585265 980905 755071 249752 941544 771472 033454 763616 654555 060097 580297 809940 374804 240823 261885 304100 184379 224275 415967 529907 536740 181943 510720 715539 517159 941296 132825 876762 475609 916594 469593 471307 657154 139958 904162 820668 713287 319572 079600 258022 273720 918890 511304 255535 077935 620832 965601 748006 514918 508851 159245 930650 771907 301451 035370 171469 496367 169981 458399 130620 741360 200517 (680 digits), a[1296] = 2
                                                                                      A[1297]/B[1297] = 598523 157914 454477 970040 187032 459510 993095 292492 124229 975847 992913 819003 120923 253288 885125 540385 123085 983829 834691 533719 283406 530579 634367 189365 571607 006433 357336 053631 627819 166538 765016 343057 709310 927759 030691 982866 262217 017590 799660 854528 246255 926648 757768 702089 328587 122545 578109 752456 139739 552333 852908 145708 205364 621536 593028 398837 070666 184053 835891 629375 617990 174940 329413 024282 373205 535409 710701 331428 005615 013309 951725 651834 703840 034119 230221 801543 188356 267056 777819 830533 468467 403773 269543 461106 218839 019350 427199 475466 689364 205314 470901 941767 639608 195890 561888 474150 460979 965440 829335 814013 392659 350767 638407 862842 184913 318237 422859 628720 194644 982574 604465 162330 961446 (678 digits)/58 172575 781852 880488 967301 306134 959293 002512 231780 014874 061189 307689 032769 621630 139149 085074 901055 720225 194376 581929 075944 331289 796932 196355 394095 839010 945190 357652 262096 691236 422564 433575 721926 882276 964403 521208 054807 010206 923173 812145 884317 297970 895296 058070 951325 295029 717772 949344 224225 366532 447133 079700 545264 784298 426375 305053 334889 320638 887645 244470 468310 087101 423994 060166 741579 813443 371045 316633 145195 130368 195289 857715 364449 172006 666057 811509 381876 061718 874261 968221 129766 924128 370130 583376 422504 209606 804898 902287 687054 566515 057912 568734 202015 680723 150850 819592 962262 019756 020791 258521 884211 753417 613684 235279 297029 201688 429486 812436 270662 511879 737200 618726 525658 619451 (680 digits), a[1297] = 2
                                                                                      A[1298]/B[1298] = 841851 772292 950450 688156 737856 791502 828266 035464 142883 778826 281430 684698 135149 808213 209176 539808 184683 495702 777173 078587 475082 297013 813155 792213 173225 382884 123555 317262 674815 380322 598554 357758 035923 731259 419520 583712 046055 204177 101526 375742 996313 782969 515917 261386 325460 638790 261183 658026 306065 209318 886887 217612 724981 440495 246632 014479 348998 204702 111749 317232 886381 055496 050125 482082 551114 766343 411096 180565 768101 223772 100618 211606 044396 841179 784312 571999 735931 499264 049158 805898 165929 143110 589834 669261 792637 745896 271945 371391 559022 562155 617595 858057 195787 691541 658461 570153 362567 383095 696850 631563 040078 107550 205630 194784 565944 840484 057188 566346 525260 181009 418886 754420 056077 (678 digits)/81 822541 656438 909613 158696 591248 472026 600202 290497 539379 249899 862499 005884 996213 585249 361680 037863 045166 859186 973953 619705 302780 851512 377027 069042 903661 536757 578673 816811 494411 509539 790897 918061 990723 002609 703493 887846 350936 903092 938082 390218 641096 005637 906514 825080 898150 097128 775620 321539 055180 385507 034441 130530 765204 181446 554806 276434 092110 921100 008087 122865 147199 004291 870107 116384 054266 632930 620733 329574 354643 611257 387622 901189 353950 176778 527048 899036 003015 007087 844983 605376 840722 839724 054684 079658 349565 709061 722956 400341 886087 137512 826756 475736 599613 662155 075128 040197 640588 986393 006528 399130 262268 772930 165930 068936 503139 464856 983905 767029 681861 195599 749347 267018 819968 (680 digits), a[1298] = 1
                                                                                      A[1299]/B[1299] = 4 807782 019379 206731 410823 876316 417025 134425 469812 838648 869979 400067 242493 796672 294354 931008 239426 046503 462343 720556 926656 658818 015648 700146 150431 437733 920853 975112 639945 001896 068151 757788 131847 888929 584056 128294 901426 492493 038476 307292 733243 227824 841496 337355 009020 955890 316496 884028 042587 670065 598928 287344 233771 830271 824012 826188 471233 815657 207564 394638 215540 049895 452420 580040 434695 128779 367126 766182 234256 846121 132170 454816 709864 925824 240018 151784 661541 868013 763377 023613 860024 298113 119326 218716 807415 182027 748831 786926 332424 484477 016092 558881 232053 618546 653598 854196 324917 273816 880919 313588 971828 593049 888518 666558 836765 014637 520657 708802 460452 820945 887621 698898 934431 241831 (679 digits)/467 285284 064047 428554 760784 262377 319426 003523 684267 711770 310688 620184 062194 602698 065395 893475 090370 946059 490311 451697 174470 845194 054494 081490 739310 357318 628978 251021 346154 163293 970263 388065 312236 835891 977452 038677 494038 764891 438638 502557 835410 503450 923485 590645 076729 785780 203416 827445 831920 642434 374668 251906 197918 610319 333608 079084 717059 781193 493145 284906 082635 823096 445453 410702 323500 084776 535698 420299 793066 903586 251576 795829 870395 941757 549950 446753 877056 076793 909701 193139 156651 127742 568750 856796 820795 957435 350207 517069 688763 996950 745476 702516 580698 678791 461626 195233 163250 222700 952756 291163 879863 064761 478335 064929 641711 717385 753771 731965 105810 921185 715199 365462 860752 719291 (681 digits), a[1299] = 5
                                                                                      A[1300]/B[1300] = 5 649633 791672 157182 098980 614173 208527 962691 505276 981532 648805 681497 927191 931822 102568 140184 779234 231186 958046 497730 005244 133900 312662 513301 942644 610959 303738 098667 957207 676711 448474 356342 489605 924853 315315 547815 485138 538548 242653 408819 108986 224138 624465 853272 270407 281350 955287 145211 700613 976130 808247 174231 451384 555253 264508 072820 485713 164655 412266 506387 532772 936276 507916 630165 916777 679894 133470 177278 414822 614222 355942 555434 921470 970221 081197 936097 233541 603945 262641 072772 665922 464042 262436 808551 476676 974665 494728 058871 703816 043499 578248 176477 090110 814334 345140 512657 895070 636384 264015 010439 603391 633127 996068 872189 031549 580582 361141 765991 026799 346206 068631 117785 688851 297908 (679 digits)/549 107825 720486 338167 919480 853625 791452 603725 974765 251149 560588 482683 068079 598911 650645 255155 128233 991226 349498 425650 794176 147974 906006 458517 808353 260980 165735 829695 162965 657705 479803 178963 230298 826614 980061 742171 381885 115828 341731 440640 225629 144546 929123 497159 901810 683930 300545 603066 153459 697614 760175 286347 328449 375523 515054 633890 993493 873304 414245 292993 205500 970295 449745 280809 439884 139043 168629 041033 122641 258229 862834 183452 771585 295707 726728 973802 776092 079808 916789 038122 762027 968465 408474 911480 900454 307001 059269 240026 089105 883037 882989 529273 056435 278405 123781 270361 203447 863289 939149 297692 278993 327030 251265 230859 710648 220525 218628 715870 872840 603046 910799 114810 127771 539259 (681 digits), a[1300] = 1
                                                                                      A[1301]/B[1301] = 50 004852 352756 464188 202668 789702 085248 835957 512028 690910 060424 852050 660029 251249 114900 052486 473299 895999 126715 702396 968609 730020 516948 806561 691588 325408 350758 764456 297606 415587 655946 608528 048695 287756 106580 510818 782534 800878 979703 577845 605133 020933 837223 163533 172279 206697 958794 045721 647499 479112 064905 681195 844848 272297 940077 408752 356939 132900 505696 445738 477723 540107 515753 621367 768916 567932 434888 184409 552837 759899 979710 898296 081632 687592 889601 640562 529874 699575 864505 605795 187404 010451 218820 687128 620830 979351 706656 257899 962952 832473 642077 970697 952940 133221 414722 955459 485482 364890 993039 397105 798961 658073 857069 644071 089161 659296 409791 836730 674847 590594 436670 641184 445241 625095 (680 digits)/4860 147889 827938 133898 116631 091383 651046 833331 482389 720966 795396 481648 606831 393991 270557 934716 116242 875870 286298 856903 527880 028993 302545 749633 206136 445159 954864 888582 649879 424937 808688 819771 154627 448811 817945 976048 549119 691518 172490 027679 640443 659826 356473 567924 291215 257222 607781 651975 059598 223352 456070 542684 825513 614507 454045 150212 665010 767628 807107 628851 726643 585460 043415 657177 842573 197121 884730 748564 774196 969425 154250 263452 043078 307419 363782 237176 085792 715265 244013 498121 252874 875465 836550 148644 024430 413443 824361 437278 401611 061253 809392 936701 032180 906032 451876 358122 790833 129020 465950 672702 111809 681003 488456 911807 326897 481587 502801 458932 088535 745561 001592 283943 882925 033363 (682 digits), a[1301] = 8
                                                                                      A[1302]/B[1302] = 55 654486 144428 621370 301649 403875 293776 798649 017305 672442 709230 533548 587221 183071 217468 192671 252534 127186 084762 200126 973853 863920 829611 319863 634232 936367 654496 863124 254814 092299 104420 964870 538301 212609 421896 058634 267673 339427 222356 986664 714119 245072 461689 016805 442686 488048 914081 190933 348113 455242 873152 855427 296232 827551 204585 481572 842652 297555 917962 952126 010496 476384 023670 251533 685694 247826 568358 361687 967660 374122 335653 453731 003103 657813 970799 576659 763416 303521 127146 678567 853326 474493 481257 495680 097507 954017 201384 316771 666768 875973 220326 147175 043050 947555 759863 468117 380553 001275 257054 407545 402353 291201 853138 516260 120711 239878 770933 602721 701646 936800 505301 758970 134092 923003 (680 digits)/5409 255715 548424 472066 036111 945009 442499 437057 457154 972116 355984 964331 674910 992902 921203 189871 244476 867096 635797 282554 322056 176968 208552 208151 014489 706140 120600 718277 812845 082643 288491 998734 384926 275426 798007 718219 931004 807346 514221 468319 866072 804373 285597 065084 193025 941152 908327 255041 213057 920967 216245 829032 153962 990030 969099 784103 658504 640933 221352 921844 932144 555755 493160 937987 282457 336165 053359 789597 896838 227655 017084 446904 814663 603127 090511 210978 861884 795074 160802 536244 014902 843931 245025 060124 924884 720444 883630 677304 490716 944291 692382 465974 088616 184437 575657 628483 994280 992310 405099 970394 390803 008033 739722 142667 037545 702112 721430 174802 961376 348607 912391 398754 010696 572622 (682 digits), a[1302] = 1
                                                                                      A[1303]/B[1303] = 105 659338 497185 085558 504318 193577 379025 634606 529334 363352 769655 385599 247250 434320 332368 245157 725834 023185 211477 902523 942463 593941 346560 126425 325821 261776 005255 627580 552420 507886 760367 573398 586996 500365 528476 569453 050208 140306 202060 564510 319252 266006 298912 180338 614965 694746 872875 236654 995612 934354 938058 536623 141081 099849 144662 890325 199591 430456 423659 397864 488220 016491 539423 872901 454610 815759 003246 546097 520498 134022 315364 352027 084736 345406 860401 217222 293291 003096 991652 284363 040730 484944 700078 182808 718338 933368 908040 574671 629721 708446 862404 117872 995991 080777 174586 423576 866035 366166 250093 804651 201314 949275 710208 160331 209872 899175 180725 439452 376494 527394 941972 400154 579334 548098 (681 digits)/10269 403605 376362 605964 152743 036393 093546 270388 939544 693083 151381 445980 281742 386894 191761 124587 360719 742966 922096 139457 849936 205961 511097 957784 220626 151300 075465 606860 462724 507581 097180 818505 539553 724238 615953 694268 480124 498864 686711 495999 506516 464199 642070 633008 484241 198375 516108 907016 272656 144319 672316 371716 979476 604538 423144 934316 323515 408562 028460 550696 658788 141215 536576 595165 125030 533286 938090 538162 671035 197080 171334 710356 857741 910546 454293 448154 947677 510339 404816 034365 267777 719397 081575 208768 949315 133888 707992 114582 892328 005545 501775 402675 120797 090470 027533 986606 785114 121330 871050 643096 502612 689037 228179 054474 364443 183700 224231 633735 049912 094168 913983 682697 893621 605985 (683 digits), a[1303] = 1
                                                                                      A[1304]/B[1304] = 900 929194 121909 305838 336194 952494 325981 875501 251980 579264 866473 618342 565224 657633 876414 153933 059206 312667 776585 420318 513562 615451 602092 331266 240803 030575 696541 883768 674178 155393 187361 552059 234273 215533 649708 614258 669338 461876 838841 502747 268137 373122 852986 459514 362412 046023 897083 084173 313016 930082 377621 148412 424881 626344 361888 604174 439383 741207 307238 135041 916256 608316 339061 234745 322580 773898 594330 730468 131645 446300 858568 269947 680994 421068 854009 314438 109744 328297 060364 953472 179170 354051 081882 958149 844219 420968 465708 914144 704542 543548 119559 090159 010979 593773 156554 856732 308835 930605 257804 844755 012872 885407 534803 798909 799694 433280 216737 118340 713603 155960 041080 960206 768769 307787 (681 digits)/87564 484558 559325 319779 258056 236154 190869 600168 973512 516781 567036 532173 928850 088056 455292 186570 130234 810832 012566 398217 121545 824660 297335 870424 779498 916540 724325 573161 514641 143292 065938 546778 701356 069335 725637 272367 772000 798264 007913 436315 918204 517970 422162 129152 066955 528157 037198 511171 394307 075524 594776 802767 989775 826338 354259 258634 246627 909429 449037 327418 202449 685479 785773 699308 282701 602460 558084 094899 265119 804296 387762 129759 676598 887498 724858 796218 443304 877789 399330 811166 157124 599107 897626 730276 519405 791554 547567 593967 629340 988655 706585 687375 054992 908197 795929 521338 275193 962957 373505 115166 411704 520331 565154 578461 953091 171714 515283 244683 360673 101959 224260 860337 159669 420502 (683 digits), a[1304] = 8
                                                                                      A[1305]/B[1305] = 3709 376114 984822 308911 849098 003554 682953 136611 537256 680412 235549 858969 508149 064855 838024 860889 962659 273856 317819 583797 996714 055747 754929 451490 289033 384078 791423 162655 249133 129459 509813 781635 524089 362500 127311 026487 727561 987813 557426 575499 391801 758497 710858 018396 064613 878842 461207 573348 247680 654684 448543 130272 840607 605226 592217 307022 957126 395285 652611 938032 153246 449756 895668 811882 744933 911353 380569 467970 047079 919225 749637 431817 808714 029682 276438 474974 732268 316285 233112 098251 757411 901149 027610 015408 095216 617242 770876 231250 447891 882639 340640 478509 039909 455869 800805 850506 101379 088587 281313 183671 252806 490905 849423 355970 408650 632296 047673 912815 230907 151235 106296 240981 654411 779246 (682 digits)/360527 341839 613663 885081 184967 981009 857024 671064 833594 760209 419527 574675 997142 739120 012929 870867 881658 986294 972361 732326 336119 504602 700441 439483 338621 817462 972767 899506 521289 080749 360935 005620 344978 001581 518502 783739 568127 691920 718365 241263 179334 536081 330719 149616 752063 311003 664902 951701 849884 446418 051423 582788 938579 909891 840181 968853 310027 046279 824609 860369 468586 883134 679671 392398 255836 943129 170426 917759 731514 414265 722383 229395 564137 460541 353728 633028 720897 021497 002139 279029 896276 115828 672082 129875 026938 300106 898262 490453 409691 960168 328118 152175 340768 723261 211252 071959 885889 973160 365071 103762 149430 770363 488797 368322 176807 870558 285364 612468 492604 502005 811027 124046 532299 287993 (684 digits), a[1305] = 4
                                                                                      A[1306]/B[1306] = 52832 194803 909421 630604 223567 002259 887325 788062 773574 105036 164171 643915 679311 565615 608762 206392 536436 146656 226059 593490 467559 395920 171104 652130 287270 407678 776466 160942 162041 967826 324754 494956 571524 290535 432062 985086 855206 291266 642813 559738 753361 992090 804998 717059 267006 349818 353989 111048 780546 095664 657224 972232 193388 099516 652930 902495 839153 275206 443805 267492 061706 904912 878424 601103 751655 532845 922303 282048 790764 315461 353492 315397 002990 836620 724147 964084 361500 756290 323934 328996 782936 970137 468423 173863 177252 062367 257976 151650 975028 900498 888525 789285 569711 975950 367836 763817 728143 170827 196189 416152 552163 758089 426730 782495 520803 285424 884171 897753 946303 273251 529228 333949 930534 217231 (683 digits)/5 134947 270313 150619 710915 847607 970292 189214 995076 643839 159713 440422 577637 888848 435736 636310 378720 473460 618961 625630 650785 827218 889098 103516 023191 520204 361022 343076 166252 812688 273783 119028 625463 531048 091476 984676 244721 725788 485154 065026 814000 428888 023109 052230 223786 595841 882208 345839 834997 292689 325377 314706 961813 129894 564824 116806 822580 587006 557346 993575 372590 762666 049365 301173 192883 864418 806268 944060 943535 506321 604016 501127 341297 574523 335077 677059 658620 535863 178747 429280 717584 704990 220709 306776 548526 896541 993051 123242 460315 365028 431012 300239 817829 825755 033854 753458 528776 677653 587202 484500 567836 503735 305420 408317 734972 428401 359530 510387 819242 257136 130040 578640 596988 611859 452404 (685 digits), a[1306] = 14
                                                                                      A[1307]/B[1307] = 479199 129350 169616 984349 861201 023893 668885 229176 499423 625737 713094 654210 621953 155396 316884 718422 790584 593762 352355 925212 204748 619029 294871 320662 874467 053187 779618 611134 707510 839896 432604 236244 667807 977319 015877 892269 424418 609213 342748 613148 172059 687314 955846 471929 467671 027207 647109 572787 272595 515666 363567 880362 581100 500876 468595 429485 509505 872143 646859 345460 708608 593972 801490 221816 509833 706966 681299 006409 163958 758377 931068 270390 835631 559268 793770 151733 985775 122898 148521 059222 803844 632386 243418 580176 690485 178548 092661 596109 223151 987129 337372 582079 167317 239423 111336 724865 654667 626032 047017 929044 222280 313710 690000 398430 095880 201120 005220 992600 747636 610498 869351 246531 029219 734325 (684 digits)/46 575052 774657 969241 283323 813439 713639 559959 626754 628147 197630 383330 773416 996778 660749 739723 279352 142804 556949 603037 589398 781089 506485 632085 648207 020461 066664 060453 395781 835483 544797 432192 634792 124410 824874 380588 986235 100224 058307 303606 567267 039326 744062 800791 163696 114640 250878 777461 466677 484088 374813 883786 239107 107630 993308 891443 372078 593086 062402 766788 213686 332581 327422 390230 128353 035606 199549 666975 409579 288408 850414 232529 301073 734847 476240 447265 560613 543665 630223 865665 737292 241188 102212 433071 066617 095816 237567 007444 633291 694947 839279 030276 512643 772564 027953 992378 830949 984772 257982 725576 214290 683048 519147 163656 983074 032420 106332 878854 985648 806829 672371 018792 496944 039034 359629 (686 digits), a[1307] = 9
                                                                                      A[1308]/B[1308] = 532031 324154 079038 614954 084768 026153 556211 017239 272997 730773 877266 298126 301264 721011 925646 924815 327020 740418 578415 518702 672308 014949 465975 972793 161737 460866 556084 772076 869552 807722 757358 731201 239332 267854 447940 877356 279624 900479 985562 172886 925421 679405 760845 188988 734677 377026 001098 683836 053141 611331 020792 852594 774488 600393 121526 331981 348659 147350 090664 612952 770315 498885 679914 822920 261489 239812 603602 288457 954723 073839 284560 585787 838622 395889 517918 115818 347275 879188 472455 388219 586781 602523 711841 754039 867737 240915 350637 747760 198180 887628 225898 371364 737029 215373 479173 488683 382810 796859 243207 345196 774444 071800 116731 180925 616683 486544 889392 890354 693939 883750 398579 580480 959753 951556 (684 digits)/51 710000 044971 119860 994239 661047 683931 749174 621831 271986 357343 823753 351054 885627 096486 376033 658072 616265 175911 228668 240184 608308 395583 735601 671398 540665 427686 403529 562034 648171 818580 551221 260255 655458 916351 365265 230956 826012 543461 368633 381267 468214 767171 853021 387482 710482 133087 123301 301674 776777 700191 198493 200920 237525 558133 008250 194659 180092 619749 760363 586277 095247 376787 691403 321236 900025 005818 611036 353114 794730 454430 733656 642371 309370 811318 124325 219234 079528 808971 294946 454876 946178 322921 739847 615143 992358 230618 130687 093607 059976 270291 330516 330473 598319 061808 745837 359726 662425 845185 210076 782127 186783 824567 571974 718046 460821 465863 389242 804891 063965 802411 597433 093932 650893 812033 (686 digits), a[1308] = 1
                                                                                      A[1309]/B[1309] = 6 331543 695045 039041 748844 793649 311582 787206 418808 502398 664250 363023 933599 935865 086527 499000 891391 387812 738366 714926 630941 600136 783473 420607 021387 653579 122719 896551 103980 272591 724846 763550 279458 300462 923717 943227 543188 500292 514493 183932 514904 351698 160778 325143 550805 549122 174493 659195 094983 857153 240307 592289 258905 100475 105200 805385 081280 344756 492994 644170 087941 182079 081715 280553 273939 386215 344905 320924 179446 665912 570610 061234 714057 060477 914053 490869 425735 805809 793971 345530 329638 258442 260147 073677 874615 235594 828616 949676 821471 403141 751039 822254 667091 274638 608531 382245 100382 865586 391483 722298 726208 741165 103511 974043 388611 879398 553113 788542 786502 380975 331753 253726 631821 586513 201441 (685 digits)/615 385053 269340 287712 219960 084964 236888 800880 466898 619997 128412 444617 635020 738676 722099 876093 518150 921721 491973 118388 231429 472481 857906 723704 033590 967780 771214 499278 578162 965373 549183 495626 497604 334458 904739 398506 526760 186362 036382 358573 761209 189689 182953 184026 426005 929943 714837 133775 785100 028643 076917 067211 449229 720412 132771 982195 513329 574104 879650 130787 662734 380302 472086 995666 661958 935881 263554 388375 293842 030443 849152 302752 367158 137926 400739 814842 972188 418482 528908 110076 740938 649149 654351 571394 833201 011756 774366 445002 662969 354686 812483 665956 147853 354073 707850 196589 787943 271456 555020 036420 817689 737670 589390 455378 881585 101456 230830 160525 839450 510453 498898 590556 530203 198866 291992 (687 digits), a[1309] = 11
                                                                                      A[1310]/B[1310] = 19 526662 409289 196163 861488 465715 960901 917830 273664 780193 723524 966338 098926 108859 980594 422649 598989 490458 955518 723195 411527 472718 365369 727797 036956 122474 829026 245738 084017 687327 982263 048009 569576 140721 039008 277623 506921 780502 443959 537359 717599 980516 161740 736275 841405 382043 900506 978683 968787 624601 332253 797660 629310 075913 915995 537681 575822 382928 626334 023174 876776 316552 744031 521574 644738 420135 274528 566374 826797 952460 785669 468264 727959 020056 138049 990526 393025 764705 261102 509046 377134 362108 382964 932875 377885 574521 726766 199668 212174 407606 140747 692662 372638 560945 040967 625908 789831 979569 971310 410103 523822 997939 382336 038861 346761 254879 145886 255021 249861 836865 879010 159759 475945 719293 555879 (686 digits)/1897 865159 852991 982997 654119 915940 394598 151816 022527 131977 742581 157606 256117 101657 262786 004314 212525 381429 651830 583832 934473 025753 969303 906713 772171 444007 741329 901365 296523 544292 466131 038100 753068 658835 630569 560784 811237 385098 652608 444354 664895 037282 316031 405100 665500 500313 277598 524628 656974 862706 930942 400127 548609 398761 956448 954836 734647 902407 258700 152726 574480 236154 793048 678403 307113 707668 796481 776162 234640 886062 001887 641913 743845 723150 013537 568854 135799 334976 395695 625176 677692 893627 285976 454032 114747 027628 553717 465695 082515 124036 707742 328384 774033 660540 185359 335606 723556 476795 510245 319339 235196 399795 592738 938111 362801 765190 158353 870820 323242 595326 299107 369102 684542 247492 688009 (688 digits), a[1310] = 3
                                                                                      A[1311]/B[1311] = 787 398040 066612 885596 208383 422287 747659 500417 365399 710147 605249 016547 890644 290264 310304 404984 850971 006170 959115 642743 092040 508871 398262 532488 499632 552572 283769 726074 464687 765711 015368 683933 062503 929304 484049 048167 820059 720390 272874 678321 218903 572344 630407 776177 207020 830878 194772 806553 846488 841206 530459 498714 431308 137031 745022 312648 114175 661901 546355 571165 158993 844188 842976 143539 063476 191626 326047 975917 251364 764343 997388 791823 832417 862723 436053 111925 146766 394020 238071 707385 415012 742777 578744 388692 990038 216463 899264 936405 308447 707387 380947 528749 572633 712440 247236 418596 693662 048385 243900 126439 679128 658740 396953 528497 259062 074564 388563 989392 780975 855610 492159 644105 669650 358255 436601 (687 digits)/76529 991447 389019 607618 384756 722580 020814 873521 367983 899106 831658 748867 879704 804967 233540 048662 019166 178907 565196 471705 610350 502640 630062 992254 920448 728090 424410 553890 439104 737072 194425 019656 620350 687884 127521 829898 976255 590308 140720 132760 357010 680981 824209 388053 046025 942474 818778 118922 064094 536920 314613 072313 393605 670890 390730 175664 899245 670395 227656 239850 641943 826494 194034 131798 946507 242633 122825 434864 679477 472923 924657 979302 120987 063926 942242 569008 404161 817538 356733 117143 848654 394241 093409 732679 423082 116898 923065 072805 963574 316155 122176 801347 109199 775681 122223 620858 730202 343276 964832 809990 225545 729494 298947 979833 393655 709062 564984 993338 769154 323505 463193 354663 911893 098573 812352 (689 digits), a[1311] = 40
                                                                                      A[1312]/B[1312] = 806 924702 475902 081760 069871 888003 708561 418247 639064 490341 328773 982885 989570 399124 290898 827634 449960 496629 914634 365938 503567 981589 763632 260285 536588 675047 112795 971812 548705 453038 997631 731942 632080 070025 523057 325791 326981 500892 716834 215680 936503 552860 792148 512453 048426 212922 095279 785237 815276 465807 862713 296375 060618 212945 661017 850329 689998 044830 172689 594340 035770 160741 587007 665113 708214 611761 600576 542292 078162 716804 783058 260088 560376 882779 574103 102451 539792 158725 499174 216431 792147 104885 961709 321568 367923 790985 626031 136073 520622 114993 521695 221411 945272 273385 288204 044505 483494 027955 215210 536543 202951 656679 779289 567358 605823 329443 534450 244414 030837 692476 371169 803865 145596 077548 992480 (687 digits)/78427 856607 242011 590616 038876 638520 415413 025337 390511 031084 574239 906474 135821 906624 496326 052976 231691 560337 217027 055538 544823 528394 599366 898968 692620 172098 165740 455255 735628 281364 660556 057757 373419 346719 758091 390683 787492 975406 793328 577115 021905 718264 140240 793153 711526 442788 096376 643550 721069 399627 245555 472440 942215 069652 347179 130501 633893 572802 486356 392577 216424 062648 987082 810202 253620 950301 919307 211026 914118 358985 926545 621215 864832 787076 955780 137862 539961 152514 752428 742320 526347 287868 379386 186711 537829 144527 476782 538501 046089 440191 829919 129731 883233 436221 307582 956465 453758 820072 475078 129329 460742 129289 891686 917944 756457 474252 723338 864159 092396 918831 762300 723766 596435 346066 500361 (689 digits), a[1312] = 1
                                                                                      A[1313]/B[1313] = 2401 247445 018417 049116 348127 198295 164782 336912 643528 690830 262796 982319 869785 088512 892102 060253 750891 999430 788384 374620 099176 472050 925527 053059 572809 902666 509361 669699 562098 671789 010632 147818 326664 069355 530163 699750 474022 722175 706543 109683 091910 678066 214704 801083 303873 256722 385332 377029 477041 772822 255886 091464 552544 562923 067058 013307 494171 751561 891734 759845 230534 165672 016991 473766 479905 415149 527201 060501 407690 197953 563505 312000 953171 628282 584259 316828 226350 711471 236420 140248 999306 952549 502163 031829 725885 798435 151327 208552 349691 937374 424337 971573 463178 259210 823644 507607 660650 104295 674321 199526 085031 972099 955532 663214 470708 733451 457464 478220 842651 240563 234499 251835 960842 513353 421561 (688 digits)/233385 704661 873042 788850 462509 999620 851640 924196 149005 961275 980138 561816 151348 618216 226192 154614 482549 299581 999250 582782 699997 559429 828796 790192 305689 072286 755891 464401 910361 299801 515537 135171 367189 381323 643704 611266 551241 541121 727377 286990 400822 117510 104690 974360 469078 828051 011531 406023 506233 336174 805724 017195 278035 810195 085088 436668 167032 816000 200369 025005 074791 951792 168199 752203 453749 143236 961439 856918 507714 190895 777749 221733 850652 638080 853802 844733 484084 122567 861590 601784 901348 969977 852182 106102 498740 405953 876630 149808 055753 196538 782015 060810 875666 648123 737389 533789 637719 983421 914989 068649 147029 988074 082321 815722 906570 657568 011662 721656 953948 161168 987794 802197 104763 790706 813074 (690 digits), a[1313] = 2
                                                                                      A[1314]/B[1314] = 5609 419592 512736 179992 766126 284594 038126 092072 926121 872001 854367 947525 729140 576150 075102 948141 951744 495491 491403 115178 701920 925691 614686 366404 682208 480380 131519 311211 672902 796617 018896 027579 285408 208736 583384 725292 275026 945244 129920 435047 120324 908993 221558 114619 656172 726366 865944 539296 769360 011452 374485 479304 165707 338791 795133 876944 678341 547953 956159 114030 496838 492085 620990 612646 668025 442060 654978 663294 893543 112711 910068 884090 466720 139344 742621 736107 992493 581667 972014 496929 790761 009984 966035 385227 819695 387855 928685 553178 220005 989742 370371 164558 871628 791806 935493 059720 804794 236546 563852 935595 373015 600879 690354 893787 547240 796346 449379 200855 716140 173602 840168 307537 067281 104255 835602 (688 digits)/545199 265930 988097 168316 963896 637762 118694 873729 688522 953636 534517 030106 438519 143056 948710 362205 196790 159501 215528 221103 944818 647254 256960 479353 303998 316671 677523 384059 556350 880967 691630 328100 107798 109367 045500 613216 889976 057650 248083 151095 823549 953284 349622 741874 649684 098890 119439 455597 733536 071976 857003 506831 498286 690042 517356 003837 967959 204802 887094 442587 366007 966233 323482 314609 161119 236775 842186 924863 929546 740777 482044 064683 566138 063238 663385 827329 508129 397650 475609 945890 329045 227824 083750 398916 535309 956435 230042 838117 157595 833269 393949 251353 634566 732468 782362 024044 729198 786916 305056 266627 754802 105438 056330 549390 569598 789388 746664 307473 000293 241169 737890 328160 805962 927480 126509 (690 digits), a[1314] = 2
                                                                                      A[1315]/B[1315] = 13620 086630 043889 409101 880379 767483 241034 521058 495772 434833 971532 877371 328066 240813 042307 956537 654380 990413 771190 604977 503018 323434 154899 785868 937226 863426 772400 292122 907904 265023 048424 202976 897480 486828 696933 150335 024076 612663 966383 979777 332560 496052 657821 030322 616218 709456 117221 455623 015761 795727 004857 050072 883959 240506 657325 767196 850854 847469 804052 987906 224211 149843 258972 699059 815956 299270 837158 387091 194776 423377 383643 080181 886611 906972 069502 789044 211337 874807 180449 134108 580828 972519 434233 802285 365276 574147 008698 314908 789703 916859 165080 300691 206435 842824 694630 627049 270238 577388 802027 070716 831063 173859 336242 450789 565190 326144 356222 879932 274931 587768 914835 866910 095404 721865 092765 (689 digits)/1 323784 236523 849237 125484 390303 275145 089030 671655 526051 868549 049172 622029 028386 904330 123612 879024 876129 618584 430307 024990 589634 853938 342717 748898 913685 705630 110938 232521 023063 061736 898797 791371 582785 600057 734705 837700 331193 656422 223543 589182 047922 024078 803936 458109 768447 025831 250410 317218 973305 480128 519731 030858 274609 190280 119800 444344 102951 225605 974557 910179 806807 884258 815164 381421 775987 616788 645813 706646 366807 672450 741837 351100 982928 764558 180574 499392 500342 917868 812810 493565 559439 425626 019682 903935 569360 318824 336715 826042 370944 863077 569913 563518 144800 113061 302113 581879 096117 557254 525101 601904 656634 198950 194982 914504 045768 236345 504991 336602 954534 643508 463575 458518 716689 645667 066092 (691 digits), a[1315] = 2
                                                                                      A[1316]/B[1316] = 46469 679482 644404 407298 407265 587043 761229 655248 413439 176503 768966 579639 713339 298589 202026 817754 914887 466732 804974 930111 210975 895994 079385 724011 493889 070660 448720 187580 396615 591686 164168 636509 977849 669222 674184 176297 347256 783236 029072 374379 118006 397151 195021 205587 504828 854735 217608 906165 816645 398633 389056 629522 817585 060311 767111 178535 230906 090363 368318 077749 169471 941615 397908 709826 115894 339873 166453 824568 477872 382844 060998 124636 126555 860260 951130 103240 626507 206089 513361 899255 533247 927543 268736 792083 915525 110296 954780 497904 589117 740319 865612 066632 490936 320281 019384 940868 615509 968712 969934 147745 866205 122457 699082 246156 242811 774779 518047 840652 540934 936909 584675 908267 353495 269851 113897 (689 digits)/4 516551 975502 535808 544770 134806 463197 385786 888696 266678 559283 682034 896193 523679 856047 319548 999279 825179 015254 506449 296075 713723 209069 285113 726050 045055 433562 010338 081622 625540 066178 388023 702214 856154 909540 249618 126317 883557 026916 918713 918641 967316 025520 761432 116203 955025 176383 870670 407254 653452 512362 416196 599406 322114 260882 876757 336870 276812 881620 810768 173126 786431 619009 768975 458874 489082 087141 779628 044803 029969 758129 707556 117986 514924 356913 205109 325507 009158 151256 914041 426587 007363 504702 142799 110723 243390 912908 240190 316244 270430 422502 103689 941908 068967 071652 688702 769682 017551 458679 880361 072341 724704 702288 641279 292902 706903 498425 261638 317281 863897 171695 128616 703716 956031 864481 324785 (691 digits), a[1316] = 3
                                                                                      A[1317]/B[1317] = 60089 766112 688293 816400 287645 354527 002264 176306 909211 611337 740499 457011 041405 539402 244334 774292 569268 457146 576165 535088 713994 219428 234285 509880 431115 934087 221120 479703 304519 856709 212592 839486 875330 156051 371117 326632 371333 395899 995456 354156 450566 893203 852842 235910 121047 564191 334830 361788 832407 194360 393913 679595 701544 300818 424436 945732 081760 937833 172371 065655 393683 091458 656881 408885 931850 639144 003612 211659 672648 806221 444641 204818 013167 767233 020632 892284 837845 080896 693811 033364 114076 900062 702970 594369 280801 684443 963478 812813 378821 657179 030692 367323 697372 163105 714015 567917 885748 546101 771961 218462 697268 296317 035324 696945 808002 100923 874270 720584 815866 524678 499511 775177 448899 991716 206662 (689 digits)/5 840336 212026 385045 670254 525109 738342 474817 560351 792730 427832 731207 518222 552066 760377 443161 878304 701308 633838 936756 321066 303358 063007 627831 474948 958741 139192 121276 314143 648603 127915 286821 493586 438940 509597 984323 964018 214750 683339 142257 507824 015238 049599 565368 574313 723472 202215 121080 724473 626757 992490 935927 630264 596723 451162 996557 781214 379764 107226 785326 083306 593239 503268 584139 840296 265069 703930 425441 751449 396777 430580 449393 469087 497853 121471 385683 824899 509501 069125 726851 920152 566802 930328 162482 014658 812751 231732 576906 142286 641375 285579 673603 505426 213767 184713 990816 351561 113669 015934 405462 674246 381338 901238 836262 207406 752671 734770 766629 653884 818431 815203 592192 162235 672721 510148 390877 (691 digits), a[1317] = 1
                                                                                      A[1318]/B[1318] = 166649 211708 020992 040098 982556 296097 765758 007862 231862 399179 249965 493661 796150 377393 690696 366340 053424 381025 957306 000288 638964 334850 547956 743772 356120 938834 890961 146987 005655 305104 589354 315483 728509 981325 416418 829562 089923 575036 019985 082692 019140 183558 900705 677407 746923 983117 887269 629743 481459 787354 176883 988714 220673 661948 615985 069999 394427 966029 713060 209059 956838 124532 711671 527597 979595 618161 173678 247887 823169 995286 950280 534272 152891 394726 992395 887810 302197 367882 900983 965983 761401 727668 674677 980822 477128 479184 881738 123531 346761 054677 926996 801279 885680 646492 447416 076704 387007 060916 513856 584671 260741 715091 769731 640047 858815 976627 266589 281822 172667 986266 583699 458622 251295 253283 527221 (690 digits)/16 197224 399555 305899 885279 185025 939882 335422 009399 852139 414949 144449 932638 627813 376802 205872 755889 227796 282932 379961 938208 320439 335084 540776 675947 962537 711946 252890 709909 922746 322008 961666 689387 734035 928736 218266 054354 313058 393595 203228 934289 997792 124719 892169 264831 401969 580814 112831 856201 906968 497344 288051 859935 515561 163208 869872 899299 036341 096074 381420 339739 972910 625546 937255 139467 019221 495002 630511 547701 823524 619290 606343 056161 510630 599855 976476 975306 028160 289508 367745 266892 140969 365358 467763 140040 868893 376373 394002 600817 553180 993661 450896 952760 496501 441080 670335 472804 244889 490548 691286 420834 487382 504766 313803 707716 212246 967966 794897 625051 500760 802102 313001 028188 301474 884778 106539 (692 digits), a[1318] = 2
                                                                                      A[1319]/B[1319] = 393388 189528 730277 896598 252757 946722 533780 192031 372936 409696 240430 444334 633706 294189 625727 506972 676117 219198 490777 535665 991922 889129 330198 997425 143357 811757 003042 773677 315830 466918 391301 470454 332350 118702 203954 985756 551180 545972 035426 519540 488847 260321 654253 590725 614895 530427 109369 621275 795326 769068 747681 657024 142891 624715 656407 085730 870616 869892 598491 483775 307359 340524 080224 464081 891041 875466 350968 707435 318988 796795 345202 273362 318950 556687 005424 667905 442239 816662 495778 965331 636880 355400 052326 556014 235058 642813 726955 059876 072343 766534 884685 969883 468733 456090 608847 721326 659762 667934 799674 387805 218751 726500 574787 977041 525634 054178 407449 284229 161202 497211 666910 692421 951490 498283 261104 (690 digits)/38 234785 011136 996845 440812 895161 618107 145661 579151 497009 257731 020107 383499 807693 513981 854907 390083 156901 199703 696680 197482 944236 733176 709384 826844 883816 563084 627057 733963 494095 771933 210154 872361 907012 367070 420856 072726 840867 470529 548715 376404 010822 299039 349707 103976 527411 363843 346744 436877 440694 987179 512031 350135 627845 777580 736303 579812 452446 299375 548166 762786 539060 754362 458650 119230 303512 693935 686464 846853 043826 669161 662079 581410 519114 321183 338637 775511 565821 648142 462342 453936 848741 661045 098008 294740 550537 984479 364911 343921 747737 272902 575397 410947 206770 066875 331487 297169 603447 997031 788035 515915 356103 910771 463869 622839 177165 670704 356424 903987 819953 419408 218194 218612 275671 279704 603955 (692 digits), a[1319] = 2
                                                                                      A[1320]/B[1320] = 4 493919 296524 054048 902679 762893 710045 637340 120207 334162 905837 894700 381342 766919 613479 573698 943039 490713 792209 355858 892614 550116 115273 180145 715448 933056 868161 924431 657437 479790 441206 893670 490481 384361 287049 659923 672884 152909 580728 409676 797637 396460 047097 097495 175389 510774 817816 090335 463777 230054 247110 401382 215979 792481 533820 836463 013038 971213 534848 296466 530588 337790 870297 594140 632498 781056 248291 034334 029676 332046 760035 747505 541257 661347 518284 052067 234770 166835 351170 354552 584631 767085 637069 250270 096979 062773 550135 878243 782168 142542 486561 658542 469998 041748 663489 144741 011297 644396 408199 310274 850528 667010 706598 092399 387504 640790 572589 748531 408342 945895 455594 919717 075263 717690 734399 399365 (691 digits)/436 779859 522062 271199 734221 031803 739060 937699 380066 319241 249990 365631 151136 512442 030602 609854 046803 953709 479673 043444 110520 707043 400028 344009 771241 684519 905877 150525 783508 357799 813274 273370 285368 711171 966510 847682 854349 562600 569420 239098 074734 116837 414152 738947 408573 203494 583090 927020 661853 754613 356318 920396 711427 421864 716596 969212 277236 013250 389205 411254 730391 902578 923533 982406 451000 357861 128295 181624 863085 305617 980068 889218 451677 220888 132872 701492 505933 252198 419075 453512 260197 477127 636854 545854 382186 924811 205646 408027 383956 778290 995589 780268 473179 770972 176709 316695 741669 882817 457898 359677 095903 404525 523252 416369 558947 161069 345714 715571 568917 520248 415592 713137 432923 333858 961528 750044 (693 digits), a[1320] = 11
                                                                                      A[1321]/B[1321] = 4 887307 486052 784326 799278 015651 656768 171120 312238 707099 315534 135130 825677 400625 907669 199426 450012 166831 011407 846636 428280 542039 004402 510344 712874 076414 679918 927474 431114 795620 908125 284971 960935 716711 405751 863878 658640 704090 126700 445103 317177 885307 307418 751748 766115 125670 348243 199705 085053 025381 016179 149063 873003 935373 158536 492870 098769 841830 404740 894958 014363 645150 210821 674365 096580 672098 123757 385302 737111 651035 556831 092707 814619 980298 074971 057491 902675 609075 167832 850331 549963 403965 992469 302596 652993 297832 192949 605198 842044 214886 253096 543228 439881 510482 119579 753588 732624 304159 076134 109949 238333 885762 433098 667187 364546 166424 626768 155980 692572 107097 952806 586627 767685 669181 232682 660469 (691 digits)/475 014644 533199 268045 175033 926965 357168 083360 959217 816250 507721 385738 534636 320135 544584 464761 436887 110610 679376 740124 308003 651280 133205 053394 598086 568336 468961 777583 517471 851895 585207 483525 157730 618184 333581 268538 927076 403468 039949 787813 451138 127659 713192 088654 512549 730905 946934 273765 098731 195308 343498 432428 061563 049710 494177 705515 857048 465696 688580 959421 493178 441639 677896 441056 570230 661373 822230 868089 709938 349444 649230 551298 033087 740002 454056 040130 281444 818020 067217 915854 714134 325869 297899 643862 676927 475349 190125 772938 727878 526028 268492 355665 884126 977742 243584 648183 038839 486265 454930 147712 611818 760629 434023 880239 181786 338235 016419 071996 472905 340201 835000 931331 651535 609530 241233 353999 (693 digits), a[1321] = 1
                                                                                      A[1322]/B[1322] = 14 268534 268629 622702 501235 794197 023581 979580 744684 748361 536906 164962 032697 568171 428817 972551 843063 824375 815025 049131 749175 634194 124078 200835 141197 085886 227999 779380 519667 071032 257457 463614 412352 817784 098553 387680 990165 561089 834129 299883 431993 167074 661934 600992 707619 762115 514302 489745 633883 280816 279468 699509 961987 663227 850893 822203 210578 654874 344330 086382 559315 628091 291940 942870 825660 125252 495805 804939 503899 634117 873697 932921 170497 621943 668226 167051 040121 384985 686836 055215 684558 575017 622007 855463 402965 658437 936035 088641 466256 572314 992754 744999 349761 062712 902648 651918 476546 252714 560467 530173 327196 438535 572795 426774 116596 973639 826126 060492 793487 160091 361208 092972 610635 056053 199764 720303 (692 digits)/1386 809148 588460 807290 084288 885734 453397 104421 298501 951742 265433 137108 220409 152713 119771 539376 920578 174930 838426 523692 726528 009603 666438 450798 967414 821192 843800 705692 818452 061590 983689 240420 600829 947540 633673 384760 708502 369536 649319 814724 977010 372156 840536 916256 433672 665306 476959 474550 859316 145230 043315 785252 834553 521285 704952 380243 991332 944643 766367 330097 716748 785858 279326 864519 591461 680608 772756 917804 282962 004507 278529 991814 517852 700893 040984 781753 068822 888238 553511 285221 688466 128866 232653 833579 736041 875509 585897 953904 839713 830347 532574 491600 241433 726456 663878 613061 819348 855348 367758 655102 319540 925784 391300 176847 922519 837539 378552 859564 514728 200652 085594 575800 735994 552919 443995 458042 (694 digits), a[1322] = 2
                                                                                      A[1323]/B[1323] = 19 155841 754682 407029 300513 809848 680350 150701 056923 455460 852440 300092 858374 968797 336487 171978 293075 991206 826432 895768 177456 176233 128480 711179 854071 162300 907918 706854 950781 866653 165582 748586 373288 534495 504305 251559 648806 265179 960829 744986 749171 052381 969353 352741 473734 887785 862545 689450 718936 306197 295647 848573 834991 598601 009430 315073 309348 496704 749070 981340 573679 273241 502762 617235 922240 797350 619563 190242 241011 285153 430529 025628 985117 602241 743197 224542 942796 994060 854668 905547 234521 978983 614477 158060 055958 956270 128984 693840 308300 787201 245851 288227 789642 573195 022228 405507 209170 556873 636601 640122 565530 324298 005894 093961 481143 140064 452894 216473 486059 267189 314014 679600 378320 725234 432447 380772 (692 digits)/1861 823793 121660 075335 259322 812699 810565 187782 257719 767992 773154 522846 755045 472848 664356 004138 357465 285541 517803 263817 034531 660883 799643 504193 565501 389529 312762 483276 335923 913486 568896 723945 758560 565724 967254 653299 635578 773004 689269 602538 428148 499816 553729 004910 946222 396212 423893 748315 958047 340538 386814 217680 896116 570996 199130 085759 848381 410340 454948 289519 209927 227497 957223 305576 161692 341982 594987 785893 992900 353951 927760 543112 550940 440895 495040 821883 350267 706258 620729 201076 402600 454735 530553 477442 412969 350858 776023 726843 567592 356375 801066 847266 125560 704198 907463 261244 858188 341613 822688 802814 931359 686413 825324 057087 104306 175774 394971 931560 987633 540853 920595 507132 387530 162449 685228 812041 (694 digits), a[1323] = 1
                                                                                      A[1324]/B[1324] = 8960 046633 705313 705385 841184 993530 747102 356974 327938 448579 626526 308326 893807 996527 568327 286414 709551 717963 759187 372870 621209 935065 124570 321826 992429 880410 226035 880642 534798 798060 584601 053450 738098 427184 609105 866036 982691 400131 541620 208695 294874 629454 349950 331260 941812 358113 323139 463231 377138 274953 347013 983490 903064 209899 254850 961438 676326 615992 160478 372430 467536 231873 082083 192046 512112 487991 831815 648066 056169 800769 930752 901657 220417 868837 741330 028605 326317 611404 817214 945774 206322 760365 582840 669509 535798 236588 171887 112065 442724 195296 805306 347377 112842 744788 283314 023785 159196 312702 853433 467411 429857 885704 325337 306785 810443 383739 327725 153610 783164 937501 006063 466349 286413 740533 152691 540827 (694 digits)/870858 520536 403715 988856 188042 416545 987339 798735 653633 604367 328595 306542 826644 973039 374025 471989 856866 522819 652550 726247 852813 642338 099954 909194 056563 731381 903880 395741 694919 659818 658459 323089 848614 141100 341596 475690 523789 362726 538224 200170 922359 786487 431982 209668 319531 696508 435339 938103 267424 176656 685555 442231 320992 176510 698702 430093 185451 573636 227218 535568 752764 027404 302610 568587 101785 386480 632052 930298 967427 300057 542703 625375 807038 599089 225048 601277 643841 711014 434048 187901 702878 490359 001127 799186 592728 726557 988978 389850 905344 257846 630792 164880 878282 587346 449221 614410 593304 389003 563429 569675 264514 481040 817634 836525 633503 924181 830444 898545 739591 779433 003696 406625 712580 416922 445850 681189 (696 digits), a[1324] = 467
                                                                                      A[1325]/B[1325] = 17939 249109 165309 817800 982883 796910 174554 864649 712800 352620 105492 916746 645990 961852 473141 744807 712179 427134 344807 641509 419876 046363 377621 354833 838930 923121 359990 468140 020379 462774 334784 855487 849485 388864 722516 983633 614189 065443 044070 162377 338920 311290 669254 015263 357359 604012 508824 615913 473212 856103 989675 815555 641120 018399 519132 237950 662001 728689 070027 726201 508751 736987 666929 001328 946465 773334 283194 486374 353350 886693 292034 828943 425953 339917 225857 281753 595432 216870 489098 797095 647167 499714 780158 497079 127555 429446 472758 917971 193749 177794 856463 982982 015328 062771 588856 453077 527563 182279 343468 574945 425246 095706 656568 707533 102029 907543 108344 523695 052389 142191 326141 612298 951148 206300 737830 462426 (695 digits)/1 743578 864865 929092 053047 635407 645791 785244 785253 564986 976727 430345 135932 408335 418927 412406 948118 071198 331180 822904 716312 740158 945559 999553 322581 678628 852293 120523 274759 725763 233123 885815 370125 455788 847925 650447 604680 683157 498457 765718 002880 272868 072791 417693 424247 585285 789229 294573 624522 492895 693851 757925 102143 538100 924017 596534 945946 219284 557612 909385 360656 715455 282306 562444 442750 365263 114943 859093 646491 927754 954067 013167 793864 165017 639073 945138 024438 637951 128287 488825 576879 808357 435453 532809 075815 598426 803974 753980 506545 378280 872069 062651 177027 882125 878891 805906 490066 044797 119620 949547 942165 460388 648495 460593 730138 371314 024138 055861 728652 466817 099719 927988 320383 812690 996294 576930 174419 (697 digits), a[1325] = 2
                                                                                      A[1326]/B[1326] = 26899 295742 870623 523186 824068 790440 921657 221624 040738 801199 732019 225073 539798 958380 041469 031222 421731 145098 103995 014380 041085 981428 502191 676660 831360 803531 586026 348782 555178 260834 919385 908938 587583 816049 331622 849670 596880 465574 585690 371072 633794 940745 019204 346524 299171 962125 831964 079144 850351 131057 336689 799046 544184 228298 773983 199389 338328 344681 230506 098631 976287 968860 749012 193375 458578 261326 115010 134440 409520 687463 222787 730600 646371 208754 967187 310358 921749 828275 306313 742869 853490 260080 362999 166588 663353 666034 644646 030036 636473 373091 661770 330359 128170 807559 872170 476862 686759 494982 196902 042356 855103 981410 981906 014318 912473 291282 436069 677305 835554 079692 332205 078648 237561 946833 890522 003253 (695 digits)/2 614437 385402 332808 041903 823450 062337 772584 583989 218620 581094 758940 442475 234980 391966 786432 420107 928064 854000 475455 442560 592972 587898 099508 231775 735192 583675 024403 670501 420682 892942 544274 693215 304402 989025 992044 080371 206946 861184 303942 203051 195227 859278 849675 633915 904817 485737 729913 562625 760319 870508 443480 544374 859093 100528 295237 376039 404736 131249 136603 896225 468219 309710 865055 011337 467048 501424 491146 576790 895182 254124 555871 419239 972056 238163 170186 625716 281792 839301 922873 764781 511235 925812 533936 875002 191155 530532 742958 896396 283625 129915 693443 341908 760408 466238 255128 104476 638101 508624 512977 511840 724903 129536 278228 566664 004817 948319 886306 627198 206408 879152 931684 727009 525271 413217 022780 855608 (697 digits), a[1326] = 1
                                                                                      A[1327]/B[1327] = 44838 544852 035933 340987 806952 587351 096212 086273 753539 153819 837512 141820 185789 920232 514610 776030 133910 572232 448802 655889 460962 027791 879813 031494 670291 726652 946016 816922 575557 723609 254170 764426 437069 204914 054139 833304 211069 531017 629760 533449 972715 252035 688458 361787 656531 566138 340788 695058 323563 987161 326365 614602 185304 246698 293115 437340 000330 073370 300533 824833 485039 705848 415941 194704 405044 034660 398204 620814 762871 574156 514822 559544 072324 548672 193044 592112 517182 045145 795412 539965 500657 759795 143157 663667 790909 095481 117404 948007 830222 550886 518234 313341 143498 870331 461026 929940 214322 677261 540370 617302 280350 077117 638474 721852 014503 198825 544414 201000 887943 221883 658346 690947 188710 153134 628352 465679 (695 digits)/4 358016 250268 261900 094951 458857 708129 557829 369242 783607 557822 189285 578407 643315 810894 198839 368225 999263 185181 298360 158873 333131 533458 099061 554357 413821 435968 144926 945261 146446 126066 430090 063340 760191 836951 642491 685051 890104 359642 069660 205931 468095 932070 267369 058163 490103 274967 024487 187148 253215 564360 201405 646518 397194 024545 891772 321985 624020 688862 045989 256882 183674 592017 427499 454087 832311 616368 350240 223282 822937 208191 569039 213104 137073 877237 115324 650154 919743 967589 411699 341661 319593 361266 066745 950817 789582 334507 496939 402941 661906 001984 756094 518936 642534 345130 061034 594542 682898 628245 462525 454006 185291 778031 738822 296802 376131 972457 942168 355850 673225 978872 859673 047393 337962 409511 599711 030027 (697 digits), a[1327] = 1
                                                                                      A[1328]/B[1328] = 71737 840594 906556 864174 631021 377792 017869 307897 794277 955019 569531 366893 725588 878612 556079 807252 555641 717330 552797 670269 502048 009220 382004 708155 501652 530184 532043 165705 130735 984444 173556 673365 024653 020963 385762 682974 807949 996592 215450 904522 606510 192780 707662 708311 955703 528264 172752 774203 173915 118218 663055 413648 729488 474997 067098 636729 338658 418051 531039 923465 461327 674709 164953 388079 863622 295986 513214 755255 172392 261619 737610 290144 718695 757427 160231 902471 438931 873421 101726 282835 354148 019875 506156 830256 454262 761515 762050 978044 466695 923978 180004 643700 271669 677891 333197 406802 901082 172243 737272 659659 135454 058528 620380 736170 926976 490107 980483 878306 723497 301575 990551 769595 426272 099968 518874 468932 (695 digits)/6 972453 635670 594708 136855 282307 770467 330413 953232 002228 138916 948226 020882 878296 202860 985271 788333 927328 039181 773815 601433 926104 121356 198569 786133 149014 019643 169330 615762 567129 019008 974364 756556 064594 825977 634535 765423 097051 220826 373602 408982 663323 791349 117044 692079 394920 760704 754400 749774 013535 434868 644886 190893 256287 125074 187009 698025 028756 820111 182593 153107 651893 901728 292554 465425 299360 117792 841386 800073 718119 462316 124910 632344 109130 115400 285511 275871 201536 806891 334573 106442 830829 287078 600682 825819 980737 865040 239898 299337 945531 131900 449537 860845 402942 811368 316162 699019 321000 136869 975502 965846 910194 907568 017050 863466 380949 920777 828474 983048 879634 858025 791357 774402 863233 822728 622491 885635 (697 digits), a[1328] = 1
                                                                                      A[1329]/B[1329] = 116576 385446 942490 205162 437973 965143 114081 394171 547817 108839 407043 508713 911378 798845 070690 583282 689552 289563 001600 326158 963010 037012 261817 739650 171944 256837 478059 982627 706293 708053 427727 437791 461722 225877 439902 516279 019019 527609 845211 437972 579225 444816 396121 070099 612235 094402 513541 469261 497479 105379 989421 028250 914792 721695 360214 074069 338988 491421 831573 748298 946367 380557 580894 582784 268666 330646 911419 376069 935263 835776 252432 849688 791020 306099 353276 494583 956113 918566 897138 822800 854805 779670 649314 493924 245171 856996 879455 926052 296918 474864 698238 957041 415168 548222 794224 336743 115404 849505 277643 276961 415804 135646 258855 458022 941479 688933 524898 079307 611440 523459 648898 460542 614982 253103 147226 934611 (696 digits)/11 330469 885938 856608 231806 741165 478596 888243 322474 785835 696739 137511 599290 521612 013755 184111 156559 926591 224363 072175 760307 259235 654814 297631 340490 562835 455611 314257 561023 713575 145075 404454 819896 824786 662929 277027 450474 987155 580468 443262 614914 131419 723419 384413 750242 885024 035671 778887 936922 266750 999228 846291 837411 653481 149620 078782 020010 652777 508973 228582 409989 835568 493745 720053 919513 131671 734161 191627 023356 541056 670507 693949 845448 246203 992637 400835 926026 121280 774480 746272 448104 150422 648344 667428 776637 770320 199547 736837 702279 607437 133885 205632 379782 045477 156498 377197 293562 003898 765115 438028 419853 095486 685599 755873 160268 757081 893235 770643 338899 552860 836898 651030 821796 201196 232240 222202 915662 (698 digits), a[1329] = 1
                                                                                      A[1330]/B[1330] = 188314 226041 849047 069337 068995 342935 131950 702069 342095 063858 976574 875607 636967 677457 626770 390535 245194 006893 554397 996428 465058 046232 643822 447805 673596 787022 010103 148332 837029 692497 601284 111156 486375 246840 825665 199253 826969 524202 060662 342495 185735 637597 103783 778411 567938 622666 686294 243464 671394 223598 652476 441899 644281 196692 427312 710798 677646 909473 362613 671764 407695 055266 745847 970864 132288 626633 424634 131325 107656 097395 990043 139833 509716 063526 513508 397055 395045 791987 998865 105636 208953 799546 155471 324180 699434 618512 641506 904096 763614 398842 878243 600741 686838 226114 127421 743546 016487 021749 014915 936620 551258 194174 879236 194193 868456 179041 505381 957614 334937 825035 639450 230138 041254 353071 666101 403543 (696 digits)/18 302923 521609 451316 368662 023473 249064 218657 275706 788063 835656 085737 620173 399908 216616 169382 944893 853919 263544 845991 361741 185339 776170 496201 126623 711849 475254 483588 176786 280704 164084 378819 576452 889381 488906 911563 215898 084206 801294 816865 023896 794743 514768 501458 442322 279944 796376 533288 686696 280286 434097 491178 028304 909768 274694 265791 718035 681534 329084 411175 563097 487462 395474 012608 384938 431031 851954 033013 823430 259176 132823 818860 477792 355334 108037 686347 201897 322817 581372 080845 554546 981251 935423 268111 602457 751058 064587 976736 001617 552968 265785 655170 240627 448419 967866 693359 992581 324898 901985 413531 385700 005681 593167 772924 023735 138031 814013 599118 321948 432495 694924 442388 596199 064430 054968 844694 801297 (698 digits), a[1330] = 1
                                                                                      A[1331]/B[1331] = 1 434775 967739 885819 690521 920941 365689 037736 308656 942482 555852 243067 637967 370152 541048 458083 317029 405910 337817 882386 301158 218416 360640 768574 874289 887121 765991 548782 020957 565501 555536 636716 215886 866348 953763 219558 911055 807806 197024 269847 835438 879374 907996 122607 518980 587805 453069 317601 173514 197238 670570 556756 121548 424761 098542 351403 049660 082516 857735 369869 450649 800232 767424 801830 378833 194686 717080 883858 295345 688856 517548 182734 828523 359032 750784 947835 273971 721434 462482 889194 562254 317482 376493 737613 763189 141214 186585 370004 254729 642219 266764 845944 162233 223036 131021 686176 541565 230814 001748 382054 833305 274611 494870 413508 817380 020672 942224 062571 782607 956005 298709 125050 071508 903762 724604 809936 759412 (697 digits)/139 450934 537205 015822 812440 905478 222046 418844 252422 302282 546331 737674 940504 320969 530068 369791 770816 904026 069176 994115 292495 556614 088007 771039 226856 545781 782392 699374 798527 678504 293666 056191 855067 050457 085277 657969 961761 576603 189532 161317 782191 694624 326798 894622 846498 844637 610307 511908 743796 228756 037911 284538 035546 021859 072479 939324 046260 423517 812564 106811 351672 247805 262063 808312 614082 148894 697839 422723 787368 355289 600274 425973 189994 733542 748901 205266 339307 381003 844085 312191 329933 019186 196307 544209 993842 027726 651663 573989 713602 478214 994384 791824 064174 184416 931565 230717 241631 278191 079013 332748 119753 135257 837774 166341 326414 723304 591330 964471 592538 580330 701369 747750 995189 652206 617022 135066 524741 (699 digits), a[1331] = 7
                                                                                      A[1332]/B[1332] = 1 623090 193781 734866 759858 989936 708624 169687 010726 284577 619711 219642 513575 007120 218506 084853 707564 651104 344711 436784 297586 683474 406873 412397 322095 560718 553013 558885 169290 402531 248034 238000 327043 352724 200604 045224 110309 634775 721226 330510 177934 065110 545593 226391 297392 155744 075736 003895 416978 868632 894169 209232 563448 069042 295234 778715 760458 760163 767208 732483 122414 207927 822691 547678 349697 326975 343714 308492 426670 796512 614944 172777 968356 868748 814311 461343 671027 116480 254470 888059 667890 526436 176039 893085 087369 840648 805098 011511 158826 405833 665607 724187 762974 909874 357135 813598 285111 247301 023497 396970 769925 825869 689045 292745 011573 889129 121265 567953 740222 290943 123744 764500 301646 945017 077676 476038 162955 (697 digits)/157 753858 058814 467139 181102 928951 471110 637501 528129 090346 381987 823412 560677 720877 746684 539174 715710 757945 332721 840106 654236 741953 864178 267240 353480 257631 257647 182962 975313 959208 457750 435011 431519 939838 574184 569533 177659 660809 990826 978182 806088 489367 841567 396081 288821 124582 406684 045197 430492 509042 472008 775716 063850 931627 347174 205115 764296 105052 141648 517986 914769 735267 657537 820920 999020 579926 549793 455737 610798 614465 733098 244833 667787 088876 856938 891613 541204 703821 425457 393036 884480 000438 131730 812321 596299 778784 716251 550725 715220 031183 260170 446994 304801 632836 899431 924077 234212 603089 980998 746279 505453 140939 430941 939265 350149 861336 405344 563589 914487 012826 396294 190139 591388 716636 671990 979761 326038 (699 digits), a[1332] = 1
                                                                                      A[1333]/B[1333] = 3 057866 161521 620686 450380 910878 074313 207423 319383 227060 175563 462710 151542 377272 759554 542937 024594 057014 682529 319170 598744 901890 767514 180972 196385 447840 319005 107667 190247 968032 803570 874716 542930 219073 154367 264783 021365 442581 918250 600358 013372 944485 453589 348998 816372 743549 528805 321496 590493 065871 564739 765988 684996 493803 393777 130118 810118 842680 624944 102352 573064 008160 590116 349508 728530 521662 060795 192350 722016 485369 132492 355512 796880 227781 565096 409178 944998 837914 716953 777254 230144 843918 552533 630698 850558 981862 991683 381515 413556 048052 932372 570131 925208 132910 488157 499774 826676 478115 025245 779025 603231 100481 183915 706253 828953 909802 063489 630525 522830 246948 422453 889550 373155 848779 802281 285974 922367 (697 digits)/297 204792 596019 482961 993543 834429 693157 056345 780551 392628 928319 561087 501182 041847 276752 908966 486527 661971 401898 834221 946732 298567 952186 038279 580336 803413 040039 882337 773841 637712 751416 491203 286586 990295 659462 227503 139421 237413 180359 139500 588280 183992 168366 290704 135319 969220 016991 557106 174288 737798 509920 060254 099396 953486 419654 144439 810556 528569 954212 624798 266441 983072 919601 629233 613102 728821 247632 878461 398166 969755 333372 670806 857781 822419 605840 096879 880512 084825 269542 705228 214413 019624 328038 356531 590141 806511 367915 124715 428822 509398 254555 238818 368975 817253 830997 154794 475843 881281 060012 079027 625206 276197 268716 105606 676564 584640 996675 528061 507025 593157 097663 937890 586578 368843 289013 114827 850779 (699 digits), a[1333] = 1
                                                                                      A[1334]/B[1334] = 10 796688 678346 596926 111001 722570 931563 791956 968875 965758 146401 607772 968202 138938 497169 713664 781346 822148 392299 394296 093821 389146 709415 955313 911251 904239 510028 881886 740034 306629 658746 862149 955834 009943 663705 839573 174405 962521 475978 131584 218052 898566 906361 273387 746510 386392 662151 968385 188458 066247 588388 507198 618437 550452 476566 169072 190815 288205 642041 039540 841606 232409 593040 596204 535288 891961 526099 885544 592720 252620 012421 239316 358997 552093 509600 688880 506023 630224 405332 219822 358325 058191 833640 785181 639046 786237 780148 156057 399494 549992 462725 434583 538599 308605 821608 312922 765140 681646 099234 734047 579619 127313 240792 411506 498435 618535 311734 459530 308713 031788 391106 433151 421114 491356 484520 333962 930056 (698 digits)/1049 368235 846872 916025 161734 432240 550581 806538 869783 268233 166946 506675 064223 846419 576943 266074 175293 743859 538418 342772 494433 637657 720736 382079 094490 667870 377766 829976 296838 872346 711999 908621 291280 910725 552571 252042 595923 373049 531904 396684 570929 041344 346666 268193 694781 032242 457658 716515 953358 722438 001768 956478 362041 792086 606136 638435 195965 690762 004286 392381 714095 684486 416342 708621 838328 766390 292692 091121 805299 523731 733216 257254 241132 556135 674459 182253 182740 958297 234085 508721 527719 059311 115845 881916 366725 198318 819996 924872 001687 559378 023836 163449 411729 084598 392423 388460 661744 246933 161034 983362 381071 969531 237090 256085 379843 615259 395371 147774 435563 792297 689286 003811 351123 823166 539030 324244 878375 (700 digits), a[1334] = 3
                                                                                      A[1335]/B[1335] = 13 854554 839868 217612 561382 633449 005876 999380 288259 192818 321965 070483 119744 516211 256724 256601 805940 879163 074828 713466 692566 291037 476930 136286 107637 352079 829033 989553 930282 274662 462317 736866 498764 229016 818073 104356 195771 405103 394228 731942 231425 843052 359950 622386 562883 129942 190957 289881 778951 132119 153128 273187 303434 044255 870343 299191 000934 130886 266985 141893 414670 240570 183156 945713 263819 413623 586895 077895 314736 737989 144913 594829 155877 779875 074697 098059 451022 468139 122285 997076 588469 902110 386174 415880 489605 768100 771831 537572 813050 598045 395098 004715 463807 441516 309765 812697 591817 159761 124480 513073 182850 227794 424708 117760 327389 528337 375224 090055 831543 278736 813560 322701 794270 340136 286801 619937 852423 (698 digits)/1346 573028 442892 398987 155278 266670 243738 862884 650334 660862 095266 067762 565405 888266 853696 175040 661821 405830 940317 176994 441165 936225 672922 420358 674827 471283 417806 712314 070680 510059 463416 399824 577867 901021 212033 479545 735344 610462 712263 536185 159209 225336 515032 558897 830101 001462 474650 273622 127647 460236 511689 016732 461438 745573 025790 782875 006522 219331 958499 017179 980537 667559 335944 337855 451431 495211 540324 969583 203466 493487 066588 928061 098914 378555 280299 279133 063253 043122 503628 213949 742132 078935 443884 238447 956867 004830 187912 049587 430510 068776 278391 402267 780704 901852 223420 543255 137588 128214 221047 062390 006278 245728 505806 361692 056408 199900 392046 675835 942589 385454 786949 941701 937702 192009 828043 439072 729154 (700 digits), a[1335] = 1
                                                                                      A[1336]/B[1336] = 24 651243 518214 814538 672384 356019 937440 791337 257135 158576 468366 678256 087946 655149 753893 970266 587287 701311 467128 107762 786387 680184 186346 091600 018889 256319 339062 871440 670316 581292 121064 599016 454598 238960 481778 943929 370177 367624 870206 863526 449478 741619 266311 895774 309393 516334 853109 258266 967409 198366 741516 780385 921871 594708 346909 468263 191749 419091 909026 181434 256276 472979 776197 541917 799108 305585 112994 963439 907456 990609 157334 834145 514875 331968 584297 786939 957046 098363 527618 216898 946794 960302 219815 201062 128652 554338 551979 693630 212545 148037 857823 439299 002406 750122 131374 125620 356957 841407 223715 247120 762469 355107 665500 529266 825825 146872 686958 549586 140256 310525 204666 755853 215384 831492 771321 953900 782479 (698 digits)/2395 941264 289765 315012 317012 698910 794320 669423 520117 929095 262212 574437 629629 734686 430639 441114 837115 149690 478735 519766 935599 573883 393658 802437 769318 139153 795573 542290 367519 382406 175416 308445 869148 811746 764604 731588 331267 983512 244167 932869 730138 266680 861698 827091 524882 033704 932308 990138 081006 182674 513457 973210 823480 537659 631927 421310 202487 910093 962785 409561 694633 352045 752287 046477 289760 261601 833017 060705 008766 017218 799805 185315 340046 934690 954758 461386 245994 001419 737713 722671 269851 138246 559730 120364 323592 203149 007908 974459 432197 628154 302227 565717 192433 986450 615843 931715 799332 375147 382082 045752 387350 215259 742896 617777 436251 815159 787417 823610 378153 177752 476235 945513 288826 015176 367073 763317 607529 (700 digits), a[1336] = 1
                                                                                      A[1337]/B[1337] = 63 157041 876297 846689 906151 345488 880758 582054 802529 509971 258698 426995 295637 826510 764512 197134 980516 281786 009084 928992 265341 651405 849622 319486 145415 864718 507159 732435 270915 437246 704446 934899 407960 706937 781630 992214 936126 140353 134642 458995 130383 326290 892574 413935 181670 162611 897175 806415 713769 528852 636161 833959 147177 233672 564162 235717 384432 969070 085037 504761 927223 186529 735552 029548 862036 024793 812885 004775 129650 719207 459583 263120 185628 443812 243292 671939 365114 664866 177522 430874 482059 822714 825804 818004 746910 876777 875790 924833 238140 894121 110744 883313 468620 941760 572514 063938 305732 842575 571911 007314 707788 938009 755709 176293 979039 822082 749141 189228 112055 899787 222893 834408 225040 003121 829445 527739 417381 (698 digits)/6138 455557 022423 029011 789303 664491 832380 201731 690570 519052 619691 216637 824665 357639 714975 057270 336051 705211 897788 216528 312365 083992 460240 025234 213463 749591 008953 796894 805719 274871 814249 016716 316165 524514 741242 942722 397880 577487 200599 401924 619485 758698 238430 213080 879865 068872 339268 253898 289659 825585 538604 963154 108399 820892 289645 625495 411498 039519 884069 836303 369804 371650 840518 430810 030952 018415 206359 090993 220998 527924 666199 298691 779008 247937 189816 201905 555241 045961 979055 659292 281834 355428 563344 479176 604051 411128 203729 998506 294905 325084 882846 533702 165572 874753 455108 406686 736252 878508 985211 153894 780978 676247 991599 597246 928911 830219 966882 323056 698895 740959 739421 832728 515354 222362 562190 965707 944212 (700 digits), a[1337] = 2
                                                                                      A[1338]/B[1338] = 340 436452 899704 047988 203141 083464 341233 701611 269782 708432 761858 813232 566135 787703 576454 955941 489869 110241 512552 752724 113095 937213 434457 689030 745968 579911 874861 533617 024893 767525 643299 273513 494401 773649 389933 905004 050808 069390 543419 158502 101395 373073 729183 965450 217744 329394 338988 290345 536256 842629 922325 950181 657757 763071 167720 646850 113914 264442 334213 705243 892392 405628 453957 689662 109288 429554 177419 987315 555710 586646 455251 149746 443017 551029 800761 146636 782619 422694 415230 371271 357094 073876 348839 291085 863206 938227 930934 317796 403249 618643 411547 855866 345511 458924 993944 445311 885622 054285 083270 283694 301414 045156 444046 410736 721024 257286 432664 495726 700535 809461 319135 927894 340584 847101 918549 592597 869384 (699 digits)/33088 219049 401880 460071 263531 021369 956221 678081 972970 524358 360668 657626 752956 522885 005514 727466 517373 675749 967676 602408 497424 993845 694858 928608 836636 887108 840342 526764 396115 756765 246661 392027 449976 434320 470819 445200 320670 870948 247164 942492 827567 060172 053849 892495 924207 378066 628650 259629 529305 310602 206482 788981 365479 642121 080155 548787 259978 107693 383134 591078 543655 210299 954879 200527 444520 353677 864812 515671 113758 656842 130801 678774 235088 174376 903839 470914 022199 231229 632992 019132 679022 915389 376452 516247 343849 258790 026558 966990 906724 253578 716460 234228 020298 360217 891385 965149 480596 767692 308137 815226 292243 596499 700894 604012 080810 966259 621829 438893 872631 882551 173345 109155 865597 126989 178028 591857 328589 (701 digits), a[1338] = 5
                                                                                      A[1339]/B[1339] = 403 593494 776001 894678 109292 428953 221992 283666 072312 218404 020557 240227 861773 614214 340967 153076 470385 392027 521637 681716 378437 588619 284080 008516 891384 444630 382021 266052 295809 204772 347746 208412 902362 480587 171564 897218 986934 209743 678061 617497 231778 699364 621758 379385 399414 492006 236164 096761 250026 371482 558487 784140 804934 996743 731882 882567 498347 233512 419251 210005 819615 592158 189509 719210 971324 454347 990304 992090 685361 305853 914834 412866 628645 994842 044053 818576 147734 087560 592752 802145 839153 896591 174644 109090 610117 815005 806725 242629 641390 512764 522292 739179 814132 400685 566458 509250 191354 896860 655181 291009 009202 983166 199755 587030 700064 079369 181805 684954 812591 709248 542029 762302 565624 850223 747995 120337 286765 (699 digits)/39226 674606 424303 489083 052834 685861 788601 879813 663541 043410 980359 874264 577621 880524 720489 784736 853425 380961 865464 818936 809790 077838 155098 953843 050100 636699 849296 323659 201835 031637 060910 408743 766141 958835 212062 387922 718551 448435 447764 344417 447052 818870 292280 105576 804072 446938 967918 513527 818965 136187 745087 752135 473879 463013 369801 174282 671476 147213 267204 427381 913459 581950 795397 631337 475472 372093 071171 606664 334757 184766 797000 977466 014096 422314 093655 672819 577440 277191 612047 678424 960857 270817 939796 995423 947900 669918 230288 965497 201629 578663 599306 767930 185871 234971 346494 371836 216849 646201 293348 969121 073222 272747 692494 201259 009722 796479 588711 761950 571527 623510 912766 941884 380951 349351 740219 557565 272801 (701 digits), a[1339] = 1
                                                                                      A[1340]/B[1340] = 4376 371400 659722 994769 296065 372996 561156 538271 992904 892472 967431 215511 183871 929846 986126 486706 193723 030516 728929 569887 897471 823406 275257 774199 659813 026215 695074 194139 982985 815249 120761 357642 518026 579521 105582 877193 920150 166827 324035 333474 419182 366719 946767 759304 211889 249456 700629 257958 036520 557455 507203 791589 707107 730508 486549 472525 097386 599566 526725 805302 088548 327210 349054 881771 822532 973034 080469 908222 409323 645185 603595 278412 729477 499450 241299 332398 259960 298300 342758 392729 748633 039788 095280 381991 964385 088285 998186 744092 817154 746288 634475 247664 486835 465780 658529 537813 799171 022891 635083 193784 393443 876818 441602 281043 721665 050978 250721 345274 826452 901946 739433 550919 996833 349339 398500 795970 737034 (700 digits)/425354 965113 644915 350901 791877 879987 842240 476218 608380 958468 164267 400272 529175 328132 210412 574835 051627 485368 622324 791776 595325 772227 245848 467039 337643 254107 333305 763356 414466 073135 855765 479465 111396 022672 591443 324427 506185 355302 724808 386667 298095 248874 976650 948263 964931 847456 307835 394907 718956 672479 657360 310336 104274 272254 778167 291613 974739 579826 055178 864897 678251 029807 908855 513902 199244 074608 576528 582314 461330 504510 100811 453434 376052 397517 840396 199109 796602 003145 753468 803382 287595 623568 774422 470486 822855 957972 329448 621962 923020 040214 709527 913529 879010 709931 356329 683511 649093 229705 241627 506437 024466 323976 625836 616602 178038 931055 508947 058399 587908 117660 301014 527999 675110 620506 580224 167510 056599 (702 digits), a[1340] = 10
                                                                                      A[1341]/B[1341] = 4779 964895 435724 889447 405357 801949 783148 821938 065217 110876 987988 455739 045645 544061 327093 639782 664108 422544 250567 251604 275909 412025 559337 782716 551197 470846 077095 460192 278795 020021 468507 566055 420389 060108 277147 774412 907084 376571 002096 950971 650961 066084 568526 138689 611303 741462 936793 354719 286546 928938 065691 575730 512042 727252 218432 355092 595733 833078 945977 015307 908163 919368 538564 600982 793857 427382 070774 900313 094684 951039 518429 691279 358123 494292 285353 150974 407694 385860 935511 194875 587786 936379 269924 491082 574502 903291 804911 986722 458545 259053 156767 986844 300967 866466 224988 047063 990525 919752 290264 484793 402646 859984 641357 868074 421729 130347 432527 030229 639044 611195 281463 313222 562458 199563 146495 916308 023799 (700 digits)/464581 639720 069218 839984 844712 565849 630842 356032 271922 001879 144627 274537 106797 208656 930902 359571 905052 866330 487789 610713 405115 850065 400947 420882 387743 890807 182602 087015 616301 104772 916675 888208 877537 981507 803505 712350 224736 803738 172572 731084 745148 067745 268931 053840 769004 294395 275753 908435 537921 808667 402448 062471 578153 735268 147968 465896 646215 727039 322383 292279 591710 611758 704253 145239 674716 446701 647700 188978 796087 689276 897812 430900 390148 819831 934051 871929 374042 280337 365516 481807 248452 894386 714219 465910 770756 627890 559737 587460 124649 618878 308834 681460 064881 944902 702824 055347 865942 875906 534976 475558 097688 596724 318330 817861 187761 727535 097658 820350 159435 741171 213781 469884 056061 969858 320443 725075 329400 (702 digits), a[1341] = 1
                                                                                      A[1342]/B[1342] = 99975 669309 374220 783717 403221 411992 224132 977033 297247 110012 727200 330292 096782 811073 527999 282359 475891 481401 740274 601973 415660 063917 462013 428530 683762 443137 236983 397985 558886 215678 490912 678750 925807 781686 648538 365452 061837 698247 365974 352907 438403 688411 317290 533096 437964 078715 436496 352343 767459 136216 821035 306199 947962 275552 855196 574377 012063 261145 446266 111460 251826 714581 120346 901427 699681 520675 495967 914484 303022 665975 972189 103999 891947 385295 948362 351886 413848 015519 052982 290241 504371 767373 493770 203643 454443 154122 096426 478541 988059 927351 769834 984550 506192 795105 158290 479093 609689 417937 440372 889652 446381 076511 268759 642532 156247 657926 901261 949867 607345 125852 368699 815371 245997 340602 328419 122131 213014 (701 digits)/9 716987 759515 029292 150598 686129 196980 459087 596864 046820 996051 056812 891014 665119 501270 828459 766273 152684 811978 378117 006044 697642 773535 264796 884687 092521 070250 985347 503668 740488 168594 189283 243642 662155 652828 661557 571432 000921 430066 176263 008362 201056 603780 355272 025079 345017 735361 822913 563618 477392 845827 706321 559767 667348 977617 737536 609546 899054 120612 502844 710489 512463 264981 993918 418695 693573 008641 530532 361890 383084 290048 057060 071442 179028 794156 521433 637697 277447 609893 063798 439527 256653 511303 058811 788702 237988 515783 524200 371165 416012 417780 886221 542731 176649 607985 412810 790468 967950 747835 941157 017598 978238 258462 992452 973825 933273 481757 462123 465402 776622 941084 576643 925680 796350 017672 989098 669016 644599 (703 digits), a[1342] = 20
                                                                                      A[1343]/B[1343] = 204731 303514 184166 456882 211800 625934 231414 776004 659711 330902 442389 116323 239211 166208 383092 204501 615891 385347 731116 455551 107229 539860 483364 639777 918722 357120 551062 256163 396567 451378 450332 923557 272004 623481 574224 505317 030759 773065 734045 656786 527768 442907 203107 204882 487231 898893 809786 059406 821465 201371 707762 188130 407967 278357 928825 503846 619860 355369 838509 238228 411817 348530 779258 403838 193220 468733 062710 729281 700730 282991 462807 899279 142018 264884 182077 854747 235390 416899 041475 775358 596530 471126 257464 898369 483389 211535 997764 943806 434665 113756 696437 955945 313353 456676 541569 005251 209904 755627 171010 264098 295409 013007 178877 153138 734224 446201 235050 929964 853734 862900 018862 943965 054452 880767 803334 160570 449827 (702 digits)/19 898557 158750 127803 141182 216970 959810 549017 549760 365563 993981 258253 056566 437036 211198 587821 892118 210422 490287 244023 622802 800401 397135 930541 190256 572786 031309 153297 094353 097277 441961 295242 375494 201849 287165 126620 855214 226579 663870 525098 747809 147261 275305 979475 103999 459039 765118 921581 035672 492707 500322 815091 182006 912851 690503 623041 684990 444323 968264 328072 713258 616637 141722 692089 982631 061862 463984 708764 912759 562256 269373 011932 573784 748206 408144 976919 147323 928937 500123 493113 360861 761759 916992 831843 043315 246733 659457 608138 329790 956674 454440 081277 766922 418181 160873 528445 636285 801844 371578 417290 510756 054165 113650 303236 765513 054308 691050 021905 751155 712681 623340 367069 321245 648762 005204 298641 063108 618598 (704 digits), a[1343] = 2
                                                                                      A[1344]/B[1344] = 11 564928 666103 687542 369121 264056 464309 183360 433294 241081 640549 500990 844393 492608 118742 981162 734449 965809 060874 682796 112835 420514 296104 530433 256094 132214 441888 096469 743135 766663 492871 709556 397958 158066 696654 805110 663205 784384 989928 472531 132952 993436 491214 691294 006515 722950 416768 784515 679125 769510 413032 455717 841502 794129 863596 869424 789787 724243 161856 402783 452251 313598 232304 758817 516366 520027 769727 007768 754259 543918 513497 889431 463631 844970 218810 144722 217731 595711 361865 375625 710322 910078 150443 911804 512334 524239 000137 971263 331702 329306 297726 770360 517488 053986 368991 486154 773161 364355 733059 016947 679156 989285 804913 285880 218301 272816 645196 064114 027899 416497 448253 425024 677414 295358 663599 315132 114076 403326 (704 digits)/1124 036188 649522 186268 056802 836502 946371 204070 383444 518404 659001 518984 058735 139147 328391 746485 724892 936344 268064 043439 883001 520121 013147 375103 539055 168538 823563 569984 787442 188024 918426 722856 271317 965715 734075 752325 463428 689382 606815 581792 885674 447688 020915 205877 849049 051244 582021 431451 561278 069012 863905 351427 752154 787043 645820 627870 969011 781196 343414 874916 652972 044143 201452 750957 446035 157870 991785 221367 476425 869435 374936 725284 203388 078587 650275 228905 887837 297947 616808 678146 647785 915208 862901 642022 214356 055073 445409 579946 839458 989781 866425 437776 490386 594794 616903 005766 422473 871235 556227 309425 619938 011484 622879 973711 842556 974560 180558 688845 530122 686793 848145 132525 915437 127022 309113 712998 203099 286087 (706 digits), a[1344] = 56
                                                                                      A[1345]/B[1345] = 23 334588 635721 559251 195124 739913 554552 598135 642593 141874 612001 444370 805110 224427 403694 345417 673401 547509 507097 096708 681221 948258 132069 544231 151966 183151 240896 744001 742434 929894 437121 869445 719473 588138 016791 184445 831728 599529 752922 679107 922692 514641 425336 585695 217913 933132 732431 378817 417658 360486 027436 619197 871135 996227 005551 667675 083422 068346 679082 644076 142731 039013 813140 296893 436571 233276 008187 078248 237800 788567 309987 241670 826542 831958 702504 471522 290210 426813 140629 792727 196004 416686 772014 081073 923038 531867 211811 940291 607211 093277 709210 237158 990921 421326 194659 513878 551573 938616 221745 204905 622412 273980 622833 750637 589741 279857 736593 363278 985763 686729 759406 868912 298793 645170 207966 433598 388723 256479 (704 digits)/2267 970934 457794 500339 254787 889976 852552 957158 316649 402373 311984 296221 174036 715330 867982 080793 341904 083111 026415 330903 388805 840643 423430 680748 268366 909863 678436 293266 669237 473327 278814 740954 918130 133280 755316 631271 782071 605344 877501 688684 519158 042637 317136 391230 802097 561528 929161 784484 158228 630733 228133 517946 686316 486938 982144 878783 623014 006716 655094 077906 019202 704923 544628 194004 874701 377604 447555 151499 865611 301127 019246 462500 980560 905381 708695 434730 922998 524832 733740 849406 656433 592177 642796 115887 472027 356880 550276 768032 008708 936238 187290 956830 747695 607770 394679 539978 481233 544315 484033 036141 750632 077134 359410 250660 450627 003429 052167 399596 811401 086269 319630 632121 152119 902806 623431 724637 469307 190772 (706 digits), a[1345] = 2
                                                                                      A[1346]/B[1346] = 58 234105 937546 806044 759370 743883 573414 379631 718480 524830 864552 389732 454613 941462 926131 671998 081253 060828 075068 876213 475279 317030 560243 618895 560026 498516 923681 584473 228005 626452 367115 448447 836905 334342 730237 174002 326662 983444 495773 830746 978338 022719 341887 862684 442343 589215 881631 542150 514442 490482 467905 694113 583774 786583 874700 204774 956631 860936 520021 690935 737713 391625 858585 352604 389508 986579 786101 164265 229861 121053 133472 372773 116717 508887 623819 087766 798152 449337 643124 961080 102331 743451 694472 073952 358411 587973 423761 851846 546124 515861 716147 244678 499330 896638 758310 513911 876309 241588 176549 426758 923981 537247 050580 787155 397783 832532 118382 790671 999426 789956 967067 162849 275001 585699 079532 182328 891522 916284 (704 digits)/5659 978057 565111 186946 566378 616456 651477 118387 016743 323151 282970 111426 406808 569809 064355 908072 408701 102566 320894 705246 660613 201407 860008 736600 075788 988266 180436 156518 125917 134679 476056 204766 107578 232277 244709 014869 027571 900072 361818 959161 923990 532962 655187 988339 453244 174302 440345 000419 877735 330479 320172 387321 124787 760921 610110 385438 215039 794629 653603 030728 691377 453990 290709 138967 195437 913079 886895 524367 207648 471689 413429 650286 164509 889351 067666 098367 733834 347613 084290 376959 960653 099564 148493 873797 158410 768834 545963 116010 856876 862258 241007 351437 985777 810335 406262 085723 384940 959866 524293 381709 121202 165753 341700 475032 743810 981418 284893 488039 152924 859332 487406 396768 219676 932635 555977 162273 141713 667631 (706 digits), a[1346] = 2
                                                                                      A[1347]/B[1347] = 198 036906 448361 977385 473236 971564 274795 737030 798034 716367 205658 613568 168952 048816 182089 361411 917160 729993 732303 725349 107059 899349 812800 400917 832045 678702 011941 497421 426451 809251 538468 214789 230189 591166 207502 706452 811717 549863 240244 171348 857706 582799 451000 173748 544944 700780 377326 005268 960985 831933 431153 701538 622460 355978 629652 281999 953317 651156 239147 716883 355871 213891 388896 354706 605098 193015 366490 571043 927384 151726 710404 359990 176695 358621 573961 734822 684667 774826 070004 675967 502999 647041 855430 302930 998273 295787 483097 495831 245584 640862 857651 971194 488914 111242 469591 055614 180501 663380 751393 485182 394356 885721 774576 112103 783092 777454 091741 735294 984044 056600 660608 357460 123798 402267 446562 980585 063292 005331 (705 digits)/19247 905107 153128 061178 953923 739346 806984 312319 366879 371827 160894 630500 394462 424758 061049 805010 568007 390809 989099 446643 370645 444867 003456 890548 495733 874662 219744 762821 046988 877365 706983 355253 240864 830112 489443 675878 864787 305561 962958 566170 291129 641525 282700 356249 161830 084436 250196 785743 791434 622171 188650 679910 060679 769703 812476 035098 268133 390605 615903 170092 093335 066894 416755 610906 461015 116844 108241 724601 488556 716195 259535 413359 474090 573434 911693 729834 124501 567671 986611 980286 538392 890870 088277 737278 947259 663384 188166 116064 579339 523012 910313 011144 705029 038776 613465 797148 636056 423915 056913 181269 114238 574394 384511 675758 682059 947683 906847 863714 270175 664266 781849 822425 811150 700713 291363 211456 894448 193665 (707 digits), a[1347] = 3
                                                                                      A[1348]/B[1348] = 850 381731 730994 715586 652318 630140 672597 327754 910619 390299 687186 844005 130422 136727 654489 117645 749895 980803 004283 777609 903518 914429 811445 222566 888209 213324 971447 574158 933812 863458 520988 307604 757663 699007 560247 999813 573533 182897 456750 516142 409164 353917 145888 557678 622122 392337 390935 563226 358385 818216 192520 500268 073616 210498 393309 332774 769902 465561 476612 558469 161198 247191 414170 771430 809901 758641 252063 448440 939397 727959 975089 812733 823498 943373 919666 027057 536823 548641 923143 664950 114330 331619 116193 285676 351504 771123 356151 835171 528463 079313 146755 129456 454987 341608 636674 736368 598315 895111 182123 367488 501409 080134 148885 235570 530154 942348 485349 731851 935603 016359 609500 592689 770195 194768 865784 104669 144690 937608 (705 digits)/82651 598486 177623 431662 382073 573843 879414 367664 484260 810459 926548 633427 984658 268841 308555 128114 680730 665806 277292 491820 143194 980875 873836 298794 058724 486915 059415 207802 313872 644142 303989 625779 071037 552727 202483 718384 486721 122320 213653 223843 088509 099063 785989 413336 100564 512047 441132 143395 043473 819164 074775 106961 367506 839736 860014 525831 287573 357052 117215 711097 064717 721567 957731 582593 039498 380456 319862 422773 161875 336470 451571 303724 060872 183090 714441 017704 231840 618301 030738 298106 114224 663044 501604 822912 947449 422371 298627 580269 174234 954309 882259 396016 805893 965441 860125 274317 929166 655526 751946 106785 578156 463330 879747 178067 472050 772153 912284 942896 233627 516399 614805 686471 464279 735488 721430 008100 719506 442291 (707 digits), a[1348] = 4
                                                                                      A[1349]/B[1349] = 7851 472492 027314 417665 344104 642830 328171 686824 993609 229064 390340 209614 342751 279365 072491 420223 666224 557220 770857 723838 238730 129218 115807 404019 825928 598626 754969 664851 830767 580378 227362 983232 049162 882234 249734 704774 973516 195940 350998 816630 540185 768053 763997 192856 144046 231816 895746 074306 186458 195879 163838 203951 285006 250464 169436 276972 882439 841209 528660 743105 806655 438614 116433 297583 894214 020786 635061 607012 381963 703366 486212 674594 588185 848986 850955 978340 516079 712603 378297 660518 531972 631613 901169 874018 161816 235897 688464 012375 001752 354681 178448 136302 583800 185720 199663 682931 565344 719381 390503 792578 907038 606929 114543 232238 554487 258590 459889 321962 404471 203837 146113 691668 055555 155187 238619 922607 365510 443803 (706 digits)/763112 291482 751738 946140 392585 903941 721713 621299 725226 665966 499832 331352 256386 844329 838045 958042 694583 383066 484731 873024 659400 272749 867983 579695 024254 256897 754481 633041 871842 674646 442889 987264 880202 804657 311797 141339 245277 406443 885837 580758 087711 533099 356605 076274 066910 692863 220386 076299 182698 994647 861626 642562 368241 327335 552606 767579 856293 604074 670844 569965 675794 561006 036339 854243 816500 540950 987003 529559 945434 744429 323677 146876 021940 221251 341662 889172 211067 132381 263256 663241 566414 858270 602721 143495 474304 464725 875814 338487 147454 111801 850647 575295 958074 727753 354593 266009 998556 323655 824428 142339 317646 744372 302236 278365 930516 897069 117412 349780 372823 311863 315101 000668 989668 320111 784233 284363 370006 174284 (708 digits), a[1349] = 9
                                                                                      A[1350]/B[1350] = 8701 854223 758309 133251 996423 272971 000769 014579 904228 619364 077527 053619 473173 416092 726980 537869 416120 538023 775141 501448 142249 043647 927252 626586 714137 811951 726417 239010 764580 443836 748351 290836 806826 581241 809982 704588 547049 378837 807749 332772 949350 121970 909885 750534 766168 624154 286681 637532 544844 014095 356358 704219 358622 460962 562745 609747 652342 306771 005273 301574 967853 685805 530604 069014 704115 779427 887125 055453 321361 431326 461302 487328 411684 792360 770622 005398 052903 261245 301441 325468 646302 963233 017363 159694 513321 007021 044615 847546 530215 433994 325203 265759 038787 527328 836338 419300 163660 614492 572627 160067 408447 687063 263428 467809 084642 200938 945239 053814 340074 220196 755614 284357 825750 349956 104404 027276 510201 381411 (706 digits)/845763 889968 929362 377802 774659 477785 601127 988964 209487 476426 426380 964780 241045 113171 146601 086157 375314 048872 762024 364844 802595 253625 741819 878489 082978 743812 813896 840844 185715 318788 746879 613043 951240 357384 514280 859723 731998 528764 099490 804601 176220 632163 142594 489610 167475 204910 661518 219694 226172 813811 936401 749523 735748 167072 412621 293411 143866 961126 788060 281062 740512 282573 994071 436836 855998 921407 306865 952333 107310 080899 775248 450600 082812 404342 056103 906876 442907 750682 293994 961347 680639 521315 104325 966408 421753 887097 174441 918756 321689 066111 732906 971312 763968 693195 214718 540327 927722 979182 576374 249124 895803 207703 181983 456433 402567 669223 029697 292676 606450 828262 929906 687140 453948 055600 505663 292464 089512 616575 (708 digits), a[1350] = 1
                                                                                      A[1351]/B[1351] = 16553 326715 785623 550917 340527 915801 328940 701404 897837 848428 467867 263233 815924 695457 799471 958093 082345 095244 545999 225286 380979 172866 043060 030606 540066 410578 481386 903862 595348 024214 975714 274068 855989 463476 059717 409363 520565 574778 158748 149403 489535 890024 673882 943390 910214 855971 182427 711838 731302 209974 520196 908170 643628 711426 732181 886720 534782 147980 533934 044680 774509 124419 647037 366598 598329 800214 522186 662465 703325 134692 947515 161922 999870 641347 621577 983738 568982 973848 679738 985987 178275 594846 918533 033712 675137 242918 733079 859921 531967 788675 503651 402061 622587 713049 036002 102231 729005 333873 963130 952646 315486 293992 377971 700047 639129 459529 405128 375776 744545 424033 901727 976025 881305 505143 343023 949883 875711 825214 (707 digits)/1 608876 181451 681101 323943 167245 381727 322841 610263 934714 142392 926213 296132 497431 957500 984647 044200 069897 431939 246756 237869 461995 526375 609803 458184 107233 000710 568378 473886 057557 993435 189769 600308 831443 162041 826078 001062 977275 935207 985328 385359 263932 165262 499199 565884 234385 897773 881904 295993 408871 808459 798028 392086 103989 494407 965228 060991 000160 565201 458904 851028 416306 843580 030411 291080 672499 462358 293869 481893 052744 825329 098925 597476 104752 625593 397766 796048 653974 883063 557251 624589 247054 379585 707047 109903 896058 351823 050256 257243 469143 177913 583554 546608 722043 420948 569311 806337 926279 302838 400802 391464 213449 952075 484219 734799 333084 566292 147109 642456 979274 140126 245007 687809 443616 375712 289896 576827 459518 790859 (709 digits), a[1351] = 1
                                                                                      A[1352]/B[1352] = 3 153833 930223 026783 807546 696727 275223 499502 281510 493419 820772 972307 068044 498865 553074 626652 575555 061688 634487 514994 305860 528291 888196 108658 441829 326755 821863 189928 972903 880705 044682 134063 363919 444824 641693 156290 483657 454508 586687 969897 719435 961169 226658 947644 994807 706991 258678 947946 886891 492263 909254 193771 256641 648077 632041 677304 086649 260950 423072 452741 790922 124587 325538 467703 722748 386777 820187 102590 923936 953137 022986 489183 252698 387106 648408 870438 915726 159668 292494 451848 663032 518665 984147 538639 565102 789397 161580 329789 232637 604095 282340 018969 657467 330453 006645 676737 843328 674674 050545 567508 162867 350843 545615 078051 476860 519239 511525 919630 451395 803704 786638 083929 729275 273796 327191 278954 505212 895448 172071 (709 digits)/306 532238 365788 338613 927004 551282 005976 941033 939111 805174 531082 406907 229954 753117 038358 229539 484170 655826 117329 645709 560042 581745 264991 604476 933469 457248 878820 805806 879195 121734 071474 803103 671721 925441 145331 469101 061689 414426 218281 311884 022861 323332 032037 990512 007614 700795 781948 223334 458441 911816 421173 561796 245883 493752 104585 805952 881701 174374 349403 979981 976461 838812 562779 772216 742164 630896 769483 142067 512013 128826 893428 571111 971059 985811 267087 631795 156120 698135 532758 171803 633304 620971 642599 443276 848148 672840 733476 723130 795015 458892 869692 608270 826969 952218 673423 383961 744533 920790 518478 728828 627325 451294 102045 183733 068306 688635 264730 980529 359502 668537 452249 481367 370934 741059 440935 586012 889681 398082 879785 (711 digits), a[1352] = 190
                                                                                      A[1353]/B[1353] = 15 785722 977830 919542 588650 824164 291918 826452 108957 364936 952293 329402 603456 310252 460830 932734 835868 390788 267682 120970 754589 022438 613846 586352 239753 173845 519894 431031 768381 998873 247625 646031 093666 080112 671941 841169 827650 793108 508218 008236 746583 295382 023319 412107 917429 445171 149365 922162 146296 192621 756245 489053 191378 884016 871635 118702 319966 839534 263342 797642 999291 397445 752111 985555 980340 532218 901150 035141 282150 469010 249625 393431 425414 935403 883391 973772 562369 367324 436320 938982 301149 771605 515584 611730 859226 622123 050820 382026 023109 552444 200375 598499 689398 274852 746277 419691 318875 102375 586601 800671 766983 069704 022067 768229 084350 235327 017159 003280 632755 763069 357224 321376 622402 250287 141099 737796 475948 352952 685569 (710 digits)/1534 270068 010393 374170 958965 923655 411612 028011 305822 960586 797804 960749 445906 263017 149292 132344 465053 349028 018587 475304 038082 370721 851333 632188 125531 393477 394814 597412 869861 666228 350809 205287 958918 458648 888699 171583 309510 049407 026614 544748 499665 880592 325452 451759 603957 738364 807514 998576 588202 967953 914327 607009 621503 572750 017336 994992 469496 872032 312221 358814 733337 610369 657478 891495 001903 826983 309774 004207 041958 696879 292471 954485 452776 033808 961031 556742 576652 144652 546854 416269 791112 351912 592582 923431 350647 260262 019206 665910 232320 763607 526376 624908 681458 483136 788065 489120 529007 530231 895232 044945 528091 469920 462301 402885 076332 776260 889947 049756 439970 321961 401373 651844 542483 148913 580390 219961 025234 449933 189784 (712 digits), a[1353] = 5
                                                                                      A[1354]/B[1354] = 82 082448 819377 624496 750800 817548 734817 631762 826297 318104 582239 619320 085326 050127 857229 290326 754897 015629 972898 119848 078805 640484 957429 040419 640595 195983 421335 345087 814813 875071 282810 364218 832249 845388 001402 362139 621911 420051 127778 011081 452352 438079 343256 008184 581954 932847 005508 558757 618372 455372 690481 639037 213536 068161 990217 270815 686483 458621 739786 440956 787379 111816 086098 395483 624451 047872 325937 278297 334689 298188 271113 456340 379773 064126 065368 739301 727572 996290 474099 146760 168781 376693 562070 597293 861235 900012 415682 239919 348185 366316 284218 011468 104458 704716 738032 775194 437704 186551 983554 570866 997782 699363 655953 919196 898611 695874 597320 936033 615174 619051 572759 690812 841286 525232 032689 967936 884954 660211 599916 (710 digits)/7977 882578 417755 209468 721834 169559 064037 081090 468226 608108 520107 210654 459486 068202 784818 891261 809437 400966 210267 022229 750454 435354 521659 765417 561126 424635 852893 792871 228503 452875 825520 829543 466314 218685 588827 327017 609239 661461 351354 035626 521190 726293 659300 249310 027403 392619 819523 216217 399456 751585 992811 596844 353401 357502 191270 780915 229185 534535 910510 774055 643149 890660 850174 229691 751683 765813 318353 163102 721806 613223 355788 343539 234940 154856 072245 415508 039381 421398 267030 253152 588866 380534 605514 060433 601384 974150 829510 052681 956619 276930 501575 732814 234262 367902 613750 829564 389571 571949 994638 953556 267782 800896 413552 198158 449970 569939 714466 229311 559354 278344 459117 740590 083350 485627 342886 685818 015853 647748 828705 (712 digits), a[1354] = 5
                                                                                      A[1355]/B[1355] = 2642 424085 197914 903438 614276 985723 806083 042862 550471 544283 583961 147645 333889 914343 892168 223190 992572 890947 400421 956109 276369 517957 251575 879780 738799 445315 002625 473841 842426 001154 297557 301033 725661 132528 716817 429637 728816 234744 597114 362843 221861 313921 007511 674014 539987 296275 325639 802405 934214 764547 851657 938244 024533 065200 558587 784804 287437 515429 936508 908260 195422 975560 507260 641031 962774 064133 331142 940655 992208 011034 925255 996323 578152 987437 975191 631427 844705 248619 607493 635307 702153 825799 501843 725134 418775 422520 352652 059445 165041 274565 295351 965479 032076 825788 363326 225913 325409 072039 060348 068415 696029 449341 012593 182529 839924 503314 131428 956356 318343 572719 685534 427387 543571 057712 187178 711776 794497 479723 882881 (712 digits)/256826 512577 378560 077170 057659 349545 460798 622906 289074 420059 441235 701692 149460 445506 263496 652722 367050 179946 747132 186656 052624 302066 544446 125550 081576 981824 687415 969292 181972 158254 767475 750678 880973 456587 731173 636146 805179 216170 269943 684797 177769 121989 423060 429680 480866 302199 032257 917533 370819 018705 684298 706028 930347 012820 138001 984279 803433 977181 448566 128595 314134 111516 863054 241631 055784 333009 497075 223494 139770 320026 677698 947740 970860 989203 272884 852999 836857 629397 091822 517152 634836 529019 969032 857306 594966 433088 563528 351732 844137 625383 576800 074964 177854 256020 428092 035180 995297 832631 723678 558746 097141 098605 695971 743955 475391 014331 752866 387726 339307 228984 093141 350727 209698 688988 552764 166137 532551 177895 708344 (714 digits), a[1355] = 32
                                                                                      A[1356]/B[1356] = 2724 506534 017292 527935 365077 803272 540900 674625 376768 862388 166200 766965 419215 964471 749397 513517 747469 906577 373320 075957 355175 158442 209004 920200 379394 641298 423960 818929 657239 876225 580367 665252 557910 977916 718219 791777 350727 654795 724892 373924 674213 752000 350767 682199 121942 229122 331148 361163 552587 219920 542139 577281 238069 133362 548805 055619 973920 974051 676295 349216 982802 087376 593359 036515 587225 112005 657080 218953 326897 309223 196369 452663 957926 051564 040560 370729 572278 244910 081592 782067 870935 202493 063914 322428 280011 322532 768334 299364 513226 640881 579569 976947 136535 530505 101359 001107 763113 258591 043902 639282 693812 148704 668547 101726 738536 199188 728749 892389 933518 191771 258294 118200 384857 582944 219868 679713 679452 139935 482797 (712 digits)/264804 395155 796315 286638 779493 519104 524835 703996 757301 028167 961342 912346 608946 513709 048315 543984 176487 580912 957399 208885 803078 737421 066105 890967 642703 406460 540309 762163 410475 611130 592996 580222 347287 675273 320000 963164 414418 877631 621297 720423 698959 848283 082360 678990 508269 694818 851781 133750 770275 770291 677110 302873 283748 370322 329272 765195 032619 511717 359076 902650 957284 002177 713228 471322 807468 098822 815428 386596 861576 933250 033487 291280 205801 144059 345130 268507 876239 050795 358852 770305 223702 909554 574546 917740 196351 407239 393038 404414 800756 902314 078375 807778 412116 623923 041842 864745 384869 404581 718317 512302 364923 899502 109523 942113 925361 584271 467332 617037 898661 507328 552259 091317 293049 174615 895650 851955 548404 825644 537049 (714 digits), a[1356] = 1
                                                                                      A[1357]/B[1357] = 5366 930619 215207 431373 979354 788996 346983 717487 927240 406671 750161 914610 753105 878815 641565 736708 740042 797524 773742 032066 631544 676399 460580 799981 118194 086613 426586 292771 499665 877379 877924 966286 283572 110445 435037 221415 079543 889540 322006 736767 896075 065921 358279 356213 661929 525397 656788 163569 486801 984468 393797 515525 262602 198563 107392 840424 261358 489481 612804 257477 178225 062937 100619 677547 549999 176138 988223 159609 319105 320258 121625 448987 536079 039002 015752 002157 416983 493529 689086 417375 573089 028292 565758 047562 698786 745053 120986 358809 678267 915446 874921 942426 168612 356293 464685 227021 088522 330630 104250 707698 389841 598045 681140 284256 578460 702502 860178 848746 251861 764490 943828 545587 928428 640656 407047 391490 473949 619659 365678 (712 digits)/521630 907733 174875 363808 837152 868649 985634 326903 046375 448227 402578 614038 758406 959215 311812 196706 543537 760859 704531 395541 855703 039487 610552 016517 724280 388285 227725 731455 592447 769385 360472 330901 228261 131861 051174 599311 219598 093801 891241 405220 876728 970272 505421 108670 989135 997017 884039 051284 141094 788997 361409 008902 214095 383142 467274 749474 836053 488898 807643 031246 271418 113694 576282 712953 863252 431832 312503 610091 001347 253276 711186 239021 176662 133262 618015 121507 713096 680192 450675 287457 858539 438574 543579 775046 791317 840327 956566 756147 644894 527697 655175 882742 589970 879943 469934 899926 380167 237213 441996 071048 462064 998107 805495 686069 400752 598603 220199 004764 237968 736312 645400 442044 502747 863604 448415 018093 080956 003540 245393 (714 digits), a[1357] = 1
                                                                                      A[1358]/B[1358] = 8091 437153 232499 959309 344432 592268 887884 392113 304009 269059 916362 681576 172321 843287 390963 250226 487512 704102 147062 108023 986719 834841 669585 720181 497588 727911 850547 111701 156905 753605 458292 631538 841483 088362 153257 013192 430271 544336 046899 110692 570288 817921 709047 038412 783871 754519 987936 524733 039389 204388 935937 092806 500671 331925 656197 896044 235279 463533 289099 606694 161027 150313 693978 714063 137224 288144 645303 378562 646002 629481 317994 901651 494005 090566 056312 372886 989261 738439 770679 199443 444024 230785 629672 369990 978798 067585 889320 658174 191494 556328 454491 919373 305147 886798 566044 228128 851635 589221 148153 346981 083653 746750 349687 385983 316996 901691 588928 741136 185379 956262 202122 663788 313286 223600 626916 071204 153401 759594 848475 (712 digits)/786435 302888 971190 650447 616646 387754 510470 030899 803676 476395 363921 526385 367353 472924 360127 740690 720025 341772 661930 604427 658781 776908 676657 907485 366983 794745 768035 493619 002923 380515 953468 911123 575548 807134 371175 562475 634016 971433 512539 125644 575688 818555 587781 787661 497405 691836 735820 185034 911370 559289 038519 311775 497843 753464 796547 514669 868673 000616 166719 933897 228702 115872 289511 184276 670720 530655 127931 996687 862924 186526 744673 530301 382463 277321 963145 390015 589335 730987 809528 057763 082242 348129 118126 692786 987669 247567 349605 160562 445651 430011 733551 690521 002087 503866 511777 764671 765036 641795 160313 583350 826988 897609 915019 628183 326114 182874 687531 621802 136630 243641 197659 533361 795797 038220 344065 870048 629360 829184 782442 (714 digits), a[1358] = 1
                                                                                      A[1359]/B[1359] = 13458 367772 447707 390683 323787 381265 234868 109601 231249 675731 666524 596186 925427 722103 032528 986935 227555 501626 920804 140090 618264 511241 130166 520162 615782 814525 277133 404472 656571 630985 336217 597825 125055 198807 588294 234607 509815 433876 368905 847460 466363 883843 067326 394626 445801 279917 644724 688302 526191 188857 329734 608331 763273 530488 763590 736468 496637 953014 901903 864171 339252 213250 794598 391610 687223 464283 633526 538171 965107 949739 439620 350639 030084 129568 072064 375044 406245 231969 459765 616819 017113 259078 195430 417553 677584 812639 010307 016983 869762 471775 329413 861799 473760 243092 030729 455149 940157 919851 252404 054679 473495 344796 030827 670239 895457 604194 449107 589882 437241 720753 145951 209376 241714 864257 033963 462694 627351 379254 214153 (713 digits)/1 308066 210622 146066 014256 453799 256404 496104 357802 850051 924622 766500 140424 125760 432139 671939 937397 263563 102632 366461 999969 514484 816396 287209 924003 091264 183030 995761 225074 595371 149901 313941 242024 803809 938995 422350 161786 853615 065235 403780 530865 452417 788828 093202 896332 486541 688854 619859 236319 052465 348286 399928 320677 711939 136607 263822 264144 704726 489514 974362 965143 500120 229566 865793 897230 533972 962487 440435 606778 864271 439803 455859 769322 559125 410584 581160 511523 302432 411180 260203 345220 940781 786703 661706 467833 778987 087895 306171 916710 090545 957709 388727 573263 592058 383809 981712 664598 145203 879008 602309 654399 289053 895717 720515 314252 726866 781477 907730 626566 374598 979953 843059 975406 298544 901824 792480 888141 710316 832725 027835 (715 digits), a[1359] = 1
                                                                                      A[1360]/B[1360] = 75383 276015 471036 912725 963369 498595 062224 940119 460257 647718 248985 662510 799460 453802 553608 184902 625290 212236 751082 808477 078042 391047 320418 320994 576502 800538 236214 134064 439763 908532 139380 620664 466759 082400 094728 186229 979348 713717 891428 347994 902108 237137 045679 011545 012878 154108 211559 966245 670345 148675 584610 134465 317038 984369 474151 578386 718469 228607 798618 927550 857288 216567 666970 672116 573341 609562 812936 069422 471542 378178 516096 654846 644425 738406 416634 248109 020487 898287 069507 283538 529590 526176 606824 457759 366722 130780 940855 743093 540306 915205 101561 228370 673949 102258 719691 503878 552425 188477 410173 620378 451130 470730 503825 737182 794284 922663 834466 690548 371588 560027 931878 710669 521860 544885 796733 384677 290158 655865 919240 (713 digits)/7 326766 355999 701520 721729 885642 669776 990991 819914 053936 099509 196422 228505 996155 633622 719827 427677 037840 854934 494240 604275 231205 858890 112707 527500 823304 709900 746841 618991 979779 130022 523175 121247 594598 502111 482926 371409 902092 297610 531441 779971 837777 762696 053796 269323 930114 136109 835116 366630 173697 300721 038160 915164 057539 436501 115658 835393 392305 448191 038534 759614 729303 263706 618480 670429 340585 343092 330110 030582 184281 385544 023972 376914 178090 330244 868947 947632 101497 786889 110544 783867 786151 281647 426659 031955 882604 687043 880464 744112 898381 218558 677189 556838 962379 422916 420341 087662 491056 036838 171861 855347 272258 376198 517596 199446 960448 090264 226184 754634 009625 143410 412959 410393 288521 547344 306470 310757 180944 992809 921617 (715 digits), a[1360] = 5
                                                                                      A[1361]/B[1361] = 88841 643787 918744 303409 287156 879860 297093 049720 691507 323449 915510 258697 724888 175905 586137 171837 852845 713863 671886 948567 696306 902288 450584 841157 192285 615063 513347 538537 096335 539517 475598 218489 591814 281207 683022 420837 489164 147594 260334 195455 368472 120980 113005 406171 458679 434025 856284 654548 196536 337532 914344 742797 080312 514858 237742 314855 215107 181622 700522 791722 196540 429818 461569 063727 260565 073846 446462 607594 436650 327917 955717 005485 674509 867974 488698 623153 426733 130256 529272 900357 546703 785254 802254 875313 044306 943419 951162 760077 410069 386980 430975 090170 147709 345350 750420 959028 492583 108328 662577 675057 924625 815526 534653 407422 689742 526858 283574 280430 808830 280781 077829 920045 763575 409142 830696 847371 917510 035120 133393 (713 digits)/8 634832 566621 847586 735986 339441 926181 487096 177716 903988 024131 962922 368930 121916 065762 391767 365074 301403 957566 860702 604244 745690 675286 399917 451503 914568 892931 742602 844066 575150 279923 837116 363272 398408 441106 905276 533196 755707 362845 935222 310837 290195 551524 146999 165656 416655 824964 454975 602949 226162 649007 438089 235841 769478 573108 379481 099538 097031 937706 012897 724758 229423 493273 484274 567659 874558 305579 770545 637361 048552 825347 479832 146236 737215 740829 450108 459155 403930 198069 370748 129088 726933 068351 088365 499789 661591 774939 186636 660822 988927 176268 065917 130102 554437 806726 402053 752260 636259 915846 774171 509746 561312 271916 238111 513699 687314 871742 133915 381200 384224 123364 256019 385799 587066 449169 098951 198898 891261 825534 949452 (715 digits), a[1361] = 1
                                                                                      A[1362]/B[1362] = 253066 563591 308525 519544 537683 258315 656411 039560 843272 294618 080006 179906 249236 805613 725882 528578 330981 639964 094856 705612 470656 195624 221588 003308 961074 030665 262909 211138 632434 987567 090577 057643 650387 644815 460773 027904 957677 008906 412096 738905 639052 479097 271689 823887 930237 022159 924129 275342 063417 823741 413299 620059 477664 014085 949636 208097 148683 591853 199664 510995 250369 076204 590108 799571 094471 757255 705861 284611 344843 034014 427530 665817 993445 474355 394031 494415 873954 158800 128053 084253 622998 096686 211334 208385 455336 017620 843181 263248 360445 689165 963511 408710 969367 792960 220533 421935 537591 405134 735328 970494 300382 101783 573132 552028 173769 976380 401615 251409 989249 121590 087538 550761 049011 363171 458127 079421 125178 726106 186026 (714 digits)/24 596431 489243 396694 193702 564526 522139 965184 175347 861912 147773 122266 966366 239987 765147 503362 157825 640648 770068 215645 812764 722587 209462 912542 430508 652442 495764 232047 307125 130079 689870 197407 847792 391415 384325 293479 437803 413507 023302 401886 401646 418168 865744 347794 600636 763425 786038 745067 572528 626022 598735 914339 386847 596496 582717 874621 034469 586369 323603 064330 209131 188150 250253 587029 805749 089701 954251 871201 305304 281387 036238 983636 669387 652521 811903 769164 865942 909358 183027 852041 042045 240017 418349 603390 031535 205788 236922 253738 065758 876235 571094 809023 817044 071255 036369 224448 592183 763575 868531 720204 874840 394882 920030 993819 226846 335077 833748 494015 517034 778073 390138 924998 181992 462654 445682 504372 708554 963468 643879 820521 (716 digits), a[1362] = 2
                                                                                      A[1363]/B[1363] = 341908 207379 227269 822953 824840 138175 953504 089281 534779 618067 995516 438603 974124 981519 312019 700416 183827 353827 766743 654180 166963 097912 672172 844466 153359 645728 776256 749675 728770 527084 566175 276133 242201 926023 143795 448742 446841 156500 672430 934361 007524 600077 384695 230059 388916 456185 780413 929890 259954 161274 327644 362856 557976 528944 187378 522952 363790 773475 900187 302717 446909 506023 051677 863298 355036 831102 152323 892205 781493 361932 383247 671303 667955 342329 882730 117569 300687 289056 657325 984611 169701 881941 013589 083698 499642 961040 794344 023325 770515 076146 394486 498881 117077 138310 970954 380964 030174 513463 397906 645552 225007 917310 107785 959450 863512 503238 685189 531840 798079 402371 165368 470806 812586 772314 288823 926793 042688 761226 319419 (714 digits)/33 231264 055865 244280 929688 903968 448321 452280 353064 765900 171905 085189 335296 361903 830909 895129 522899 942052 727635 076348 417009 468277 884749 312459 882012 567011 388695 974650 151191 705229 969794 034524 211064 789823 825432 198755 971000 169214 386148 337108 712483 708364 417268 494793 766293 180081 611003 200043 175477 852185 247743 352428 622689 365975 155826 254102 134007 683401 261309 077227 933889 417573 743527 071304 373408 964260 259831 641746 942665 329939 861586 463468 815624 389737 552733 219273 325098 313288 381097 222789 171133 966950 486700 691755 531324 867380 011861 440374 726581 865162 747362 874940 947146 625692 843095 626502 344444 399835 784378 494376 384586 956195 191947 231930 740546 022392 705490 627930 898235 162297 513503 181017 567792 049720 894851 603323 907453 854730 469414 769973 (716 digits), a[1363] = 1
                                                                                      A[1364]/B[1364] = 594974 770970 535795 342498 362523 396491 609915 128842 378051 912686 075522 618510 223361 787133 037902 228994 514808 993791 861600 359792 637619 293536 893760 847775 114433 676394 039165 960814 361205 514651 656752 333776 892589 570838 604568 476647 404518 165407 084527 673266 646577 079174 656385 053947 319153 478345 704543 205232 323371 985015 740943 982916 035640 543030 137014 731049 512474 365329 099851 813712 697278 582227 641786 662869 449508 588357 858185 176817 126336 395946 810778 337121 661400 816685 276761 611985 174641 447856 785379 068864 792699 978627 224923 292083 954978 978661 637525 286574 130960 765312 357997 907592 086444 931271 191487 802899 567765 918598 133235 616046 525390 019093 680918 511479 037282 479619 086804 783250 787328 523961 252907 021567 861598 135485 746951 006214 167867 487332 505445 (714 digits)/57 827695 545108 640975 123391 468494 970461 417464 528412 627812 319678 207456 301662 601891 596057 398491 680725 582701 497703 291994 229774 190865 094212 225002 312521 219453 884460 206697 458316 835309 659664 231932 058857 181239 209757 492235 408803 582721 409450 738995 114130 126533 283012 842588 366929 943507 397041 945110 748006 478207 846479 266768 009536 962471 738544 128723 168477 269770 584912 141558 143020 605723 993780 658334 179158 053962 214083 512948 247969 611326 897825 447105 485012 042259 364636 988438 191041 222646 564125 074830 213179 206967 905050 295145 562860 073168 248783 694112 792340 741398 318457 683964 764190 696947 879464 850950 936628 163411 652910 214581 259427 351078 111978 225749 967392 357470 539239 121946 415269 940370 903642 106015 749784 512375 340534 107696 616008 818199 113294 590494 (716 digits), a[1364] = 1
                                                                                      A[1365]/B[1365] = 1 531857 749320 298860 507950 549886 931159 173334 346966 290883 443440 146561 675624 420848 555785 387824 158405 213445 341411 489944 373765 442201 684986 459694 540016 382226 998516 854588 671304 451181 556387 879679 943687 027381 067700 352932 402037 255877 487314 841486 280894 300678 758426 697465 337954 027223 412877 189500 340354 906698 131305 809532 328688 629257 615004 461407 985051 388739 504134 099890 930142 841466 670478 335251 189037 254054 007817 868694 245840 034166 153826 004804 345546 990756 975700 436253 341539 649970 184770 228084 122340 755101 839195 463435 667866 409600 918364 069394 596474 032436 606771 110482 314065 289967 000853 353929 986763 165706 350659 664377 877645 275787 955497 469622 982408 938077 462476 858799 098342 372736 450293 671182 513942 535783 043285 782725 939221 378423 735891 330309 (715 digits)/148 886655 146082 526231 176471 840958 389244 287209 409890 021524 811261 500101 938621 565687 023024 692112 884351 107455 723041 660336 876557 850008 073173 762464 507055 005919 157616 388045 067825 375849 289122 498388 328779 152302 244947 183226 788607 334657 205049 815098 940743 961430 983294 179970 500153 067096 405087 090264 671490 808600 940701 885964 641763 290918 632914 511548 470962 222942 431133 360344 219930 629021 731088 387972 731725 072184 687998 667643 438604 552593 657237 357679 785648 474256 282007 196149 707180 758581 509347 372449 597492 380886 296801 282046 657045 013716 509428 828600 311263 347959 384278 242870 475528 019588 602025 328404 217700 726659 090198 923538 903441 658351 415903 683430 675330 737333 783968 871823 728775 043039 320787 393049 067361 074471 575919 818717 139471 491128 696003 950961 (717 digits), a[1365] = 2
                                                                                      A[1366]/B[1366] = 2 126832 520290 834655 850448 912410 327650 783249 475808 668935 356126 222084 294134 644210 342918 425726 387399 728254 335203 351544 733558 079820 978523 353455 387791 496660 674910 893754 632118 812387 071039 536432 277463 919970 638538 957500 878684 660395 652721 926013 954160 947255 837601 353850 391901 346376 891222 894043 545587 230070 116321 550476 311604 664898 158034 598422 716100 901213 869463 199742 743855 538745 252705 977037 851906 703562 596175 726879 422657 160502 549772 815582 682668 652157 792385 713014 953524 824611 632627 013463 191205 547801 817822 688358 959950 364579 897025 706919 883048 163397 372083 468480 221657 376411 932124 545417 789662 733472 269257 797613 493691 801177 974591 150541 493887 975359 942095 945603 881593 160064 974254 924089 535510 397381 178771 529676 945435 546291 223223 835754 (715 digits)/206 714350 691191 167206 299863 309453 359705 704673 938302 649337 130939 707558 240284 167578 619082 090604 565076 690157 220744 952331 106332 040873 167385 987466 819576 225373 042076 594742 526142 211158 948786 730320 387636 333541 454704 675462 197410 917378 614500 554094 054874 087964 266307 022558 867083 010603 802129 035375 419497 286808 787181 152732 651300 253390 371458 640271 639439 492713 016045 501902 362951 234745 724869 046306 910883 126146 902082 180591 686574 163920 555062 804785 270660 516515 646644 184587 898221 981228 073472 447279 810671 587854 201851 577192 219905 086884 758212 522713 103604 089357 702735 926835 239718 716536 481490 179355 154328 890070 743109 138120 162869 009429 527881 909180 642723 094804 323207 993770 144044 983410 224429 499064 817145 586846 916453 926413 755480 309327 809298 541455 (717 digits), a[1366] = 1
                                                                                      A[1367]/B[1367] = 3 658690 269611 133516 358399 462297 258809 956583 822774 959818 799566 368645 969759 065058 898703 813550 545804 941699 676614 841489 107323 522022 663509 813149 927807 878887 673427 748343 303423 263568 627427 416112 221150 947351 706239 310433 280721 916273 140036 767500 235055 247934 596028 051315 729855 373600 304100 083543 885942 136768 247627 360008 640293 294155 773039 059830 701152 289953 373597 299633 673998 380211 923184 312289 040943 957616 603993 595573 668497 194668 703598 820387 028215 642914 768086 149268 295064 474581 817397 241547 313546 302903 657018 151794 627816 774180 815389 776314 479522 195833 978854 578962 535722 666378 932977 899347 776425 899178 619917 461991 371337 076965 930088 620164 476296 913437 404572 804402 979935 532801 424548 595272 049452 933164 222057 312402 884656 924714 959115 166063 (715 digits)/355 601005 837273 693437 476335 150411 748949 991883 348192 670861 942201 207660 178905 733265 642106 782717 449427 797612 943786 612667 982889 890881 240559 749931 326631 231292 199692 982787 593967 587008 237909 228708 716415 485843 699651 858688 986018 252035 819550 369192 995618 049395 249601 202529 367236 077700 207216 125640 090988 095409 727883 038697 293063 544309 004373 151820 110401 715655 447178 862246 582881 863767 455957 434279 642608 198331 590080 848235 125178 716514 212300 162465 056308 990771 928651 380737 605402 739809 582819 819729 408163 968740 498652 859238 876950 100601 267641 351313 414867 437317 087014 169705 715246 736125 083515 507759 372029 616729 833308 061659 066310 667780 943785 592611 318053 832138 107176 865593 872820 026449 545216 892113 884506 661318 492373 745130 894951 800456 505302 492416 (717 digits), a[1367] = 1
                                                                                      A[1368]/B[1368] = 386 289310 829459 853873 482392 453622 502696 224550 867179 449909 310594 929911 118836 475394 706818 848533 696918 606720 379761 707901 002527 892200 647053 734197 807618 779866 384824 469801 491561 487092 950918 228215 498313 391899 793666 552995 354485 869075 356582 513538 634961 980388 420546 742002 026715 574408 821731 666151 569511 590736 117194 351383 542400 551254 327135 880646 337091 346318 097179 661278 513685 460997 187058 767387 151022 253306 015503 262114 614862 600716 427648 956220 645311 158208 441431 386185 935294 655702 459337 375931 113567 352685 804728 626794 880711 653565 512952 219940 232878 725965 151814 259546 472537 346199 894803 976934 314382 147227 360591 306707 484084 882600 633896 267811 505063 886287 422240 407916 774824 104214 551857 427654 728068 379624 494789 331979 834412 641361 930316 272369 (717 digits)/37544 819963 604928 978141 315054 102686 999454 852425 498533 089841 062066 511877 025386 160471 040294 275936 754995 439516 318339 282469 309770 583403 426159 730256 115855 511054 009839 787439 892738 847023 929255 744735 611262 347129 918149 837805 729327 381139 667289 319358 594769 274465 474433 288142 426871 169125 559822 227584 973247 304830 214900 215948 422972 405835 830639 581383 231619 636534 969826 037793 565546 930328 600399 645669 384743 950963 860571 245279 830339 397912 846579 863616 183104 547568 155039 162036 465509 661234 269553 518867 667888 305606 560401 797274 299665 650017 860554 410621 664685 007651 839223 745935 340626 009670 250618 494089 217438 646703 240455 612322 125489 126428 625369 133369 038375 469305 576778 881126 790147 760612 472203 171022 690345 025288 615697 165157 725419 357260 866060 245135 (719 digits), a[1368] = 105
                                                                                      A[1369]/B[1369] = 389 948001 099070 987389 840791 915919 761506 181134 689954 409728 110161 298557 088595 540453 605522 662084 242723 548420 056376 549390 109851 414223 310563 547347 735426 658754 058252 218144 794984 750661 578345 644327 719464 339251 499905 863428 635207 785348 496619 281038 870017 228323 016574 793317 756570 948009 125831 749695 455453 727504 364821 711392 182693 845410 100174 940477 038243 636271 470776 960912 187683 841209 110243 079676 191966 210922 619496 857688 283359 795385 131247 776607 673526 801123 209517 535454 230359 130284 276734 617478 427113 655589 461746 778589 508528 427746 328341 996254 712400 921799 130668 838509 008260 012578 827781 876282 090808 046405 980508 768698 855421 959566 563984 887975 981360 799724 826813 212319 754759 637015 976406 022926 777521 312788 716846 644382 719069 566076 889431 438432 (717 digits)/37900 420969 442202 671578 791389 253098 748404 844308 846725 760703 004267 719537 204291 893736 682401 058654 204423 237129 262125 895137 292660 474284 666719 480187 442486 742346 209532 770227 486706 434032 167164 973444 327677 832973 617801 696494 715345 633175 486839 688551 590387 323860 724034 490671 794107 246825 767038 353225 064235 400239 942783 254645 716035 950144 835012 733203 342021 352190 417004 900040 148428 794096 056357 079949 027352 149295 450652 093514 955518 114427 058880 026081 239413 538340 083690 542774 070912 401043 852373 338597 076052 274347 059054 656513 176615 750619 128195 761935 079552 444968 926237 915641 055872 745795 334134 001848 589468 263433 073763 673981 191799 794209 569154 725980 356429 301443 683955 746720 662967 787062 017420 063136 574851 686607 108070 910288 620371 157717 371362 737551 (719 digits), a[1369] = 1
                                                                                      A[1370]/B[1370] = 776 237311 928530 841263 323184 369542 264202 405685 557133 859637 420756 228468 207432 015848 312341 510617 939642 155140 436138 257291 112379 306423 957617 281545 543045 438620 443076 687946 286546 237754 529263 872543 217777 731151 293572 416423 989693 654423 853201 794577 504979 208711 437121 535319 783286 522417 947563 415847 024965 318240 482016 062775 725094 396664 427310 821123 375334 982589 567956 622190 701369 302206 297301 847063 342988 464228 635000 119802 898222 396101 558896 732828 318837 959331 650948 921640 165653 785986 736071 993409 540681 008275 266475 405384 389240 081311 841294 216194 945279 647764 282483 098055 480797 358778 722585 853216 405190 193633 341100 075406 339506 842167 197881 155787 486424 686012 249053 620236 529583 741230 528263 450581 505589 692413 211635 976362 553482 207438 819747 710801 (717 digits)/75445 240933 047131 649720 106443 355785 747859 696734 345258 850544 066334 231414 229678 054207 722695 334590 959418 676645 580465 177606 602431 057688 092879 210443 558342 253400 219372 557667 379445 281056 096420 718179 938940 180103 535951 534300 444673 014315 154129 007910 185156 598326 198467 778814 220978 415951 326860 580810 037482 705070 157683 470594 139008 355980 665652 314586 573640 988725 386830 937833 713975 724424 656756 725618 412096 100259 311223 338794 785857 512339 905459 889697 422518 085908 238729 704810 536422 062278 121926 857464 743940 579953 619456 453787 476281 400636 988750 172556 744237 452620 765461 661576 396498 755465 584752 495937 806906 910136 314219 286303 317288 920638 194523 859349 394804 770749 260734 627847 453115 547674 489623 234159 265196 711895 723768 075446 345790 514978 237422 982686 (719 digits), a[1370] = 1
                                                                                      A[1371]/B[1371] = 1942 422624 956132 669916 487160 655004 289910 992505 804222 129002 951673 755493 503459 572150 230205 683320 122007 858700 928653 063972 334610 027071 225798 110438 821517 535994 944405 594037 368077 226170 636873 389414 155019 801554 087050 696276 614595 094196 203022 870193 879975 645745 890817 863957 323143 992845 020958 581389 505384 363985 328853 836943 632882 638738 954796 582723 788913 601450 606690 205293 590422 445621 704846 773802 877943 139379 889497 097294 079804 587588 249041 242264 311202 719786 511415 378734 561666 702257 748878 604297 508475 672139 994697 589358 287008 590370 010930 428644 602960 217327 695635 034619 969854 730136 272953 582714 901188 433672 662708 919511 534435 643900 959747 199550 954210 171749 324920 452792 813927 119477 032932 924089 788700 697615 140118 597107 826033 980954 528926 860034 (718 digits)/188790 902835 536465 971019 004275 964670 244124 237777 537243 461791 136936 182365 663648 002152 127791 727836 123260 590420 423056 250350 497522 589660 852477 901074 559171 249146 648277 885562 245596 996144 360006 409804 205558 193180 689704 765095 604691 661805 795097 704371 960700 520513 120970 048300 236064 078728 420759 514845 139200 810380 258150 195833 994052 662106 166317 362376 489303 329641 190666 775707 576380 242945 369870 531185 851544 349814 073098 771104 527233 139106 869799 805476 084449 710156 561149 952395 143756 525600 096227 053526 563933 434254 297967 564088 129178 551893 105696 107048 568027 350210 457161 238793 848870 256726 503638 993724 203282 083705 702202 246587 826377 635485 958202 444679 146038 842942 205425 002415 569198 882410 996666 531455 105245 110398 555607 061181 311952 187673 846208 702923 (720 digits), a[1371] = 2
                                                                                      A[1372]/B[1372] = 8545 927811 753061 520929 271826 989559 423846 375708 774022 375649 227451 250442 221270 304449 233164 243898 427673 589944 150750 513180 450819 414708 860809 723300 829115 582600 220699 064095 758855 142437 076757 430199 837856 937367 641775 201530 448074 031208 665293 275353 024881 791695 000392 991149 075862 493798 031397 741405 046502 774181 797431 410550 256624 951620 246497 152018 530989 388391 994717 443365 063059 084693 116688 942274 854761 021748 192988 508979 217440 746454 555061 701885 563648 838477 696610 436578 412320 595017 731586 410599 574583 696835 245265 762817 537274 442791 885015 930773 357120 517075 065023 236535 360216 279323 814400 184076 009943 928323 991935 753452 477249 417771 036869 953991 303265 373009 548735 431407 785292 219138 659995 146940 660392 482873 772110 364793 857618 131256 935455 150937 (718 digits)/830608 852275 192995 533796 123547 214466 724356 647844 494232 697708 614078 960876 884270 062816 233862 245935 452461 038327 272690 179008 592521 416331 502790 814741 795027 249986 812484 099916 361833 265633 536446 357396 761172 952826 294770 594682 863439 661538 334519 825398 027958 680378 682347 972015 165234 730865 009898 640190 594285 946591 190284 253930 115219 004405 330921 764092 530854 307290 149498 040664 019496 696206 136238 850361 818273 499515 603618 423212 894790 068767 384659 111601 760316 926534 483329 514391 111448 164678 506835 071570 999674 316970 811326 710139 992995 608209 411534 600751 016346 853462 594106 616751 791979 782371 599308 470834 620035 244959 123028 272654 622799 462582 027333 638065 978960 142518 082434 637509 729911 077318 476289 359979 686177 153489 946196 320171 593599 265673 622257 794378 (720 digits), a[1372] = 4
                                                                                      A[1373]/B[1373] = 19034 278248 462255 711775 030814 634123 137603 743923 352266 880301 406576 256377 946000 181048 696534 171116 977355 038589 230154 090333 236248 856488 947417 557040 479748 701195 385803 722228 885787 511044 790388 249813 830733 676289 370601 099337 510743 156613 533609 420899 929739 229135 891603 846255 474868 980441 083754 064199 598389 912348 923716 658044 146132 541979 447790 886760 850892 378234 596125 092023 716540 615007 938224 658352 587465 182876 275474 115252 514686 080497 359164 646035 438500 396741 904636 251891 386307 892293 212051 425496 657643 065810 485229 114993 361557 475953 780962 290191 317201 251477 825681 507690 690287 288783 901753 950866 921076 290320 646580 426416 488934 479443 033487 107533 560740 917768 422391 315608 384511 557754 352923 217971 109485 663362 684339 326695 541270 243468 399837 161908 (719 digits)/1 850008 607385 922457 038611 251370 393603 692837 533466 525708 857208 365094 104119 432188 127784 595516 219707 028182 667074 968436 608367 682565 422323 858059 530558 149225 749120 273246 085394 969263 527411 432899 124597 727904 098833 279245 954461 331570 984882 464137 355168 016617 881270 485665 992330 566533 540458 440556 795226 327772 703562 638718 703694 224490 670916 828160 890561 551011 944221 489662 857035 615373 635357 642348 231909 488091 348845 280335 617530 316813 276641 639118 028679 605083 563225 527808 981177 366652 854957 109897 196668 563282 068195 920620 984368 115169 768311 928765 308550 600721 057135 645374 472297 432829 821469 702255 935393 443352 573623 948258 791897 071976 560650 012869 720811 103959 127978 370294 277435 029021 037047 949245 251414 477599 417378 447999 701524 499150 719021 090724 291679 (721 digits), a[1373] = 2
                                                                                      A[1374]/B[1374] = 27580 206060 215317 232704 302641 623682 561450 119632 126289 255950 634027 506820 167270 485497 929698 415015 405028 628533 380904 603513 687068 271197 808227 280341 308864 283795 606502 786324 644642 653481 867145 680013 668590 613657 012376 300867 958817 187822 198902 696252 954621 020830 891996 837404 550731 474239 115151 805604 644892 686530 721148 068594 402757 493599 694288 038779 381881 766626 590842 535388 779599 699701 054913 600627 442226 204624 468462 624231 732126 826951 914226 347921 002149 235219 601246 688469 798628 487310 943637 836096 232226 762645 730494 877810 898831 918745 665978 220964 674321 768552 890704 744226 050503 568107 716154 134942 931020 218644 638516 179868 966183 897214 070357 061524 864006 290777 971126 747016 169803 776893 012918 364911 769878 146236 456449 691489 398888 374725 335292 312845 (719 digits)/2 680617 459661 115452 572407 374917 608070 417194 181311 019941 554916 979173 064996 316458 190600 829378 465642 480643 705402 241126 787376 275086 838655 360850 345299 944252 999107 085730 185311 331096 793044 969345 481994 489077 051659 574016 549144 195010 646420 798657 180566 044576 561649 168013 964345 731768 271323 450455 435416 922058 650153 829002 957624 339709 675322 159082 654654 081866 251511 639160 897699 634870 331563 778587 082271 306364 848360 883954 040743 211603 345409 023777 140281 365400 489760 011138 495568 478101 019635 616732 268239 562956 385166 731947 694508 108165 376521 340299 909301 617067 910598 239481 089049 224809 603841 301564 406228 063387 818583 071287 064551 694776 023232 040203 358877 082919 270496 452728 914944 758932 114366 425534 611394 163776 570868 394196 021696 092749 984694 712982 086057 (721 digits), a[1374] = 1
                                                                                      A[1375]/B[1375] = 74194 690368 892890 177183 636097 881488 260503 983187 604845 392202 674631 270018 280541 152044 555931 001147 787412 295655 991963 297360 610385 398884 563872 117723 097477 268786 598809 294878 175072 818008 524679 609841 167914 903603 395353 701073 428377 532257 931414 813405 838981 270797 675597 521064 576331 928919 314057 675408 888175 285410 366012 795232 951647 529178 836366 964319 614655 911487 777810 162801 275740 014410 048051 859607 471917 592125 212399 363715 978939 734401 187617 341877 442798 867181 107129 628830 983564 866915 099327 097689 122096 591101 946218 870615 159221 313445 112918 732120 665844 788583 607090 996142 791294 424999 334062 220752 783116 727609 923612 786154 421302 273871 174201 230583 288753 499324 364644 809640 724119 111540 378759 947794 649241 955835 597238 709674 339046 992919 070421 787598 (719 digits)/7 211243 526708 153362 183426 001205 609744 527225 896088 565591 967042 323440 234112 065104 508986 254273 150991 989470 077879 450690 183120 232739 099634 579760 221158 037731 747334 444706 456017 631457 113501 371590 088586 706058 202152 427279 052749 721592 277724 061451 716300 105771 004568 821693 921022 030070 083105 341467 666060 171890 003870 296724 618942 903910 021561 146326 199869 714744 447244 767984 652434 885114 298485 199522 396452 100821 045567 048243 699016 740019 967459 686672 309242 335884 542745 550085 972314 322854 894228 343361 733147 689194 838529 384516 373384 331500 521354 609365 127153 834856 878332 124336 650395 882449 029152 305384 747849 570128 210790 090832 921000 461528 607114 093276 438565 269797 668971 275752 107324 546885 265780 800314 474202 805152 559115 236391 744916 684650 688410 516688 463793 (721 digits), a[1375] = 2
                                                                                      A[1376]/B[1376] = 472748 348273 572658 295806 119228 912612 124474 018757 755361 609166 681815 126929 850517 397765 265284 421902 129502 402469 332684 387677 349380 664505 191459 986679 893727 896515 199358 555593 695079 561533 015223 339060 676080 035277 384498 507308 529082 381369 787391 576687 988508 645616 945581 963792 008723 047754 999497 858057 973944 398992 917224 839992 112642 668672 712489 824697 069817 235553 257703 512196 434039 786161 343224 758272 273731 757375 742858 806527 605765 233359 039930 399185 658942 438306 244024 461455 700017 688801 539600 422230 964806 309257 407808 101501 854159 799416 343490 613688 669390 500054 533250 721082 798270 118103 720527 459459 629720 584304 180192 896795 493997 540441 115564 445024 596527 286724 158995 604860 514518 446135 285478 051679 665329 881250 039881 949535 433170 332239 757823 038433 (720 digits)/45 948078 619910 035625 672963 382151 266537 580549 557842 413493 357170 919814 469668 707085 244518 355017 371594 417464 172678 945267 886097 671521 436462 839411 672248 170643 483113 753968 921417 119839 474053 198886 013514 725426 264574 137690 865642 524564 312765 167367 478366 679202 589062 098177 490477 912188 769955 499261 431777 953398 673375 609350 671281 763169 804689 037039 853872 370332 934980 247068 812308 945556 122474 975721 460983 911291 121763 173416 234843 651723 150167 143810 995735 380707 746233 311654 329454 415230 385005 676902 667125 698125 416343 039045 934814 097168 504648 996490 672224 626209 180590 985500 991424 519503 778755 133872 893325 484157 083323 616284 590554 463947 665916 599861 990268 701705 284324 107241 558892 040243 709051 227421 456610 994691 925559 812546 491196 200654 115157 813112 868815 (722 digits), a[1376] = 6
                                                                                      A[1377]/B[1377] = 546943 038642 465548 472989 755326 794100 384978 001945 360207 001369 356446 396948 131058 549809 821215 423049 916914 698125 324647 685037 959766 063389 755332 104402 991205 165301 798167 850471 870152 379541 539902 948901 843994 938880 779852 208381 957459 913627 718806 390093 827489 916414 621179 484856 585054 976674 313555 533466 862119 684403 283237 635225 064290 197851 548856 789016 684473 147041 035513 674997 709779 800571 391276 617879 745649 349500 955258 170243 584704 967760 227547 741063 101741 305487 351154 090286 683582 555716 638927 519920 086902 900359 354026 972117 013381 112861 456409 345809 335235 288638 140341 717225 589564 543103 054589 680212 412837 311914 103805 682949 915299 814312 289765 675607 885280 786048 523640 414501 238637 557675 664237 999474 314571 837085 637120 659209 772217 325158 828244 826031 (720 digits)/53 159322 146618 188987 856389 383356 876282 107775 453930 979085 324213 243254 703780 772189 753504 609290 522586 406934 250558 395958 069217 904260 536097 419171 893406 208375 230448 198675 377434 751296 587554 570476 102101 431484 466726 564969 918392 246156 590489 228819 194666 784973 593630 919871 411499 942258 853060 840729 097838 125288 677245 906075 290224 667079 826250 183366 053742 085077 382225 015053 464743 830670 420960 175243 857436 012112 167330 221659 933860 391743 117626 830483 304977 716592 288978 861740 301768 738085 279234 020264 400273 387320 254872 423562 308198 428669 026003 605855 799378 461066 058923 109837 641820 401952 807907 439257 641175 054285 294113 707117 511554 925476 273030 693138 428833 971502 953295 382993 666216 587128 974832 027735 930813 799844 484675 048938 236112 885304 803568 329801 332608 (722 digits), a[1377] = 1
                                                                                      A[1378]/B[1378] = 1 019691 386916 038206 768795 874555 706712 509452 020703 115568 610536 038261 523877 981575 947575 086499 844952 046417 100594 657332 072715 309146 727894 946792 091082 884933 061816 997526 406065 565231 941074 555126 287962 520074 974158 164350 715690 486542 294997 506197 966781 815998 562031 566761 448648 593778 024429 313053 391524 836064 083396 200462 475217 176932 866524 261346 613713 754290 382594 293217 187194 143819 586732 734501 376152 019381 106876 698116 976771 190470 201119 267478 140248 760683 743793 595178 551742 383600 244518 178527 942151 051709 209616 761835 073618 867540 912277 799899 959498 004625 788692 673592 438308 387834 661206 775117 139672 042557 896218 283998 579745 409297 354753 405330 120632 481808 072772 682636 019361 753156 003810 949716 051153 979901 718335 677002 608745 205387 657398 586067 864464 (721 digits)/99 107400 766528 224613 529352 765508 142819 688325 011773 392578 681384 163069 173449 479274 998022 964307 894180 824398 423237 341225 955315 575781 972560 258583 565654 379018 713561 952644 298851 871136 061607 769362 115616 156910 731300 702660 784034 770720 903254 396186 673033 464176 182693 018048 901977 854447 623016 339990 529616 078687 350621 515425 961506 430249 630939 220405 907614 455410 317205 262122 277052 776226 543435 150965 318419 923403 289093 395076 168704 043466 267793 974294 300713 097300 035212 173394 631223 153315 664239 697167 067399 085445 671215 462608 243012 525837 530652 602346 471603 087275 239514 095338 633244 921456 586662 573130 534500 538442 377437 323402 102109 389423 938947 293000 419102 673208 237619 490235 225108 627372 683883 255157 387424 794536 410234 861484 727309 085958 918726 142914 201423 (722 digits), a[1378] = 1
                                                                                      A[1379]/B[1379] = 3 606017 199390 580168 779377 378993 914237 913334 064054 706912 832977 471230 968582 075786 392535 080714 957906 056165 999909 296643 903183 887206 247074 595708 377651 646004 350752 790747 068668 565848 202765 205281 812789 404219 861355 272904 355453 417086 798620 237400 290439 275485 602509 321463 830802 366389 049962 252715 708041 370311 934591 884625 060876 595088 797424 332896 630157 947344 294823 915165 236580 141238 560769 594780 746335 803792 670131 049609 100557 156115 571118 029982 161809 383792 536868 136689 745513 834383 289271 174511 346373 242030 529209 639532 192973 616003 849694 856109 224303 349112 654716 161119 032150 753068 526723 379941 099228 540511 000568 955801 422186 143191 878572 505756 037505 330705 004366 571548 472586 498105 569108 513386 152936 254276 992092 668128 485445 388380 297354 586448 419423 (721 digits)/350 481524 446202 862828 444447 679881 304741 172750 489251 156821 368365 732462 224129 210014 747573 502214 205128 880129 520270 419635 935164 631606 453778 194922 590369 345431 371134 056608 273990 364704 772377 878562 448949 902216 660628 672952 270496 558319 300252 417379 213767 177502 141709 974018 117433 505601 722109 860700 686686 361350 729110 452353 174743 957828 719067 844583 776585 451308 333840 801420 295902 159350 051265 628139 812695 782322 034610 406888 439972 522141 921008 753366 207117 008492 394615 381924 195438 198032 271953 111765 602470 643657 268518 811387 037236 006181 617961 412895 214187 722891 777465 395853 541555 166322 567895 158649 244676 669612 426425 677323 817883 093748 089872 572139 686141 991127 666153 853699 341542 469247 026481 793208 093088 183453 715379 633392 418040 143181 559746 758543 936877 (723 digits), a[1379] = 3
                                                                                      A[1380]/B[1380] = 4 625708 586306 618375 548173 253549 620950 422786 084757 822481 443513 509492 492460 057362 340110 167214 802858 102583 100503 953975 975899 196352 974969 542500 468734 530937 412569 788273 474734 131080 143839 760408 100751 924294 835513 437255 071143 903629 093617 743598 257221 091484 164540 888225 279450 960167 074391 565769 099566 206376 017988 085087 536093 772021 663948 594243 243871 701634 677418 208382 423774 285058 147502 329282 122487 823173 777007 747726 077328 346585 772237 297460 302058 144476 280661 731868 297256 217983 533789 353039 288524 293739 738826 401367 266592 483544 761972 656009 183801 353738 443408 834711 470459 140903 187930 155058 238900 583068 896787 239800 001931 552489 233325 911086 158137 812513 077139 254184 491948 251261 572919 463102 204090 234178 710428 345131 094190 593767 954753 172516 283887 (721 digits)/449 588925 212731 087441 973800 445389 447560 861075 501024 549400 049749 895531 397578 689289 745596 466522 099309 704527 943507 760861 890480 207388 426338 453506 156023 724450 084696 009252 572842 235840 833985 647924 564566 059127 391929 375613 054531 329040 203506 813565 886800 641678 324402 992067 019411 360049 345126 200691 216302 440038 079731 967779 136250 388078 350007 064989 684199 906718 651046 063542 572954 935576 594700 779105 131115 705725 323703 801964 608676 565608 188802 727660 507830 105792 429827 555318 826661 351347 936192 808932 669869 729102 939734 273995 280248 532019 148614 015241 685790 810167 016979 491192 174800 087779 154557 731779 779177 208054 803863 000725 919992 483172 028819 865140 105244 664335 903773 343934 566651 096619 710365 048365 480512 977990 125614 494877 145349 229140 478472 901458 138300 (723 digits), a[1380] = 1
                                                                                      A[1381]/B[1381] = 17 483142 958310 435295 423897 139642 777089 181692 318328 174357 163517 999708 445962 247873 412865 582359 366480 363915 301421 158571 830881 476265 171983 223209 783855 238816 588462 155567 492870 959088 634284 486506 115045 177104 367895 584669 568885 127974 079473 468195 062102 549938 096131 986139 669155 246890 273136 950023 006739 989439 988556 139887 669157 911153 789270 115626 361773 052248 327078 540312 507902 996413 003276 582627 113799 273314 001154 292787 332542 195872 887829 922363 067983 817221 378853 332294 637282 488333 890639 233629 211946 123249 745688 843633 992751 066638 135612 824136 775707 410327 984942 665253 443528 175778 090513 845115 815930 289717 690930 675201 427980 800659 578550 239014 511918 768244 235784 334101 948431 251890 287866 902692 765206 956813 123377 703521 768017 169684 161614 103997 271084 (722 digits)/1699 248300 084396 125154 365849 016049 647423 755976 992324 805021 517615 419056 416865 277883 984362 901780 503057 993713 350793 702221 606605 253771 732793 555441 058440 518781 625222 084365 992517 072227 274334 822336 142648 079598 836416 799791 434090 545439 910772 858076 874169 102537 114918 950219 175667 585749 757488 462774 335593 681464 968306 355690 583495 122063 769089 039552 829185 171464 286978 992048 014766 966079 835367 965455 206042 899498 005721 812782 266002 218966 487416 936347 730607 325869 684098 047880 675422 252076 080531 538563 612079 830966 087721 633372 877981 602239 063803 458620 271560 153392 828403 869430 065955 429660 031568 353988 582208 293776 838014 679501 577860 543264 176332 167560 001875 984135 377473 885503 041495 759106 157576 938304 534627 117424 092223 118023 854087 830602 995165 462918 351777 (724 digits), a[1381] = 3
                                                                                      A[1382]/B[1382] = 896 265999 460138 818442 166927 375331 252498 689094 319494 714696 782931 494623 236534 698906 396254 867542 493356 662263 472983 041139 350854 485876 746113 926199 445351 710583 424139 722215 611153 044600 492348 572219 968055 956617 598188 255403 084285 430307 146764 621546 424451 138327 067272 181348 406368 551571 004376 016942 443305 667815 434351 219358 663147 240864 916724 491187 694297 366299 358423 764320 326827 102121 314608 043264 926250 762187 835876 679880 036980 336103 051563 337976 769232 822766 602181 678894 798663 123011 956390 268129 097776 579476 768957 426700 896896 882089 678226 686984 744879 280465 675484 762637 090396 105585 804136 255964 851345 358671 134251 675072 828952 386127 739388 100826 265994 992969 102140 293383 861942 097666 254131 500433 229645 031648 002691 224741 263066 247660 197072 476377 109171 (723 digits)/87111 252229 516933 470314 632100 263921 466172 415902 109589 605497 448136 267408 657707 861372 948104 457327 755267 383908 833986 574163 827348 149746 798809 781000 136490 182312 971022 311918 191212 919431 825061 587067 839618 118668 049186 164976 193149 146475 652922 575486 469424 871071 185269 453244 978458 233286 977037 802182 331580 194751 463356 107998 894501 613330 573548 082183 972643 651397 286974 657991 326070 205648 198467 017320 639303 580123 615516 253860 174789 732899 047066 481394 768803 725146 318827 997233 273196 207228 043301 275676 885941 108373 413537 576012 057310 246211 402590 404875 535358 633201 265576 832125 538527 000440 764543 785197 471800 190673 542611 655306 390880 189645 021760 410700 200919 855240 154941 504589 682934 811033 746788 901896 746495 966618 828993 514093 703828 589893 231911 510294 078927 (725 digits), a[1382] = 51
                                                                                      A[1383]/B[1383] = 913 749142 418449 253737 590824 514974 029587 870786 637822 889053 946449 494331 682496 946779 809120 449901 859837 026178 774404 199711 181735 962141 918097 149409 229206 949400 012601 877783 104024 003689 126633 058726 083101 133721 966083 840072 653170 558281 226238 089741 486553 688265 163404 167488 075523 798461 277512 966965 450045 657255 422907 359246 332305 152018 705994 606814 056070 418547 685502 304632 834730 098534 317884 625892 040050 035501 837030 972667 369522 531975 939393 260339 837216 639987 981035 011189 435945 611345 847029 501758 309722 702726 514646 270334 889647 948727 813839 511121 520586 690793 660427 427890 533924 281363 894650 101080 667275 648388 825182 350274 256933 186787 317938 339840 777913 761213 337924 627485 810373 349556 541998 403125 994851 988461 126068 928263 031083 417344 358686 580374 380255 (723 digits)/88810 500529 601329 595468 997949 279971 113596 171879 101914 410518 965751 686465 074573 139256 932467 359108 258325 377622 184780 276385 433953 403518 531603 336441 194930 701094 596244 396284 183729 991659 099396 409403 982266 198266 885602 964767 627239 691915 563695 433563 343593 973608 300188 403464 154125 819036 734526 264956 667173 876216 431662 463689 477996 735394 342637 121736 801828 822861 573953 650039 340837 171728 033834 982775 845346 479621 621238 066642 440791 951865 534483 417742 499411 051016 002926 045113 948618 459304 123832 814240 498020 939339 501259 209384 935291 848450 466393 863495 806918 786594 093980 701555 604482 430100 796112 139186 054008 484450 380626 334807 968740 732909 198092 578260 202795 839375 532415 390092 724430 570139 904365 840201 281123 084042 921216 632117 557916 420496 227076 973212 430704 (725 digits), a[1383] = 1
                                                                                      A[1384]/B[1384] = 2723 764284 297037 325917 348576 405279 311674 430667 595140 492804 675830 483286 601528 592466 014495 767346 213030 714621 021791 440561 714326 410160 582308 225017 903765 609383 449343 477781 819201 051978 745614 689672 134258 224061 530355 935548 390626 546869 599240 801029 397558 514857 394080 516324 557416 148493 559401 950873 343396 982326 280165 937851 327757 544902 328713 704815 806438 203394 729428 373585 996287 299189 950377 295049 006350 833191 509938 625214 776025 400054 930349 858656 443666 102742 564251 701273 670554 345703 650449 271645 717221 984929 798249 967370 676192 779545 305905 709227 786052 662052 996339 618418 158244 668313 593436 458126 185896 655448 784616 375621 342818 759702 375264 780507 821822 515395 777989 548355 482688 796779 338128 306685 219349 008570 254829 081267 325233 082348 914445 637125 869681 (724 digits)/264732 253288 719592 661252 627998 823863 693364 759660 313418 426535 379639 640338 806854 139886 813039 175544 271918 139153 203547 126934 695254 956783 862016 453882 526351 584502 163511 104486 558672 902750 023854 405875 804150 515201 820392 094511 447628 530306 780313 442613 156612 818287 785646 260173 286709 871360 446090 332095 665927 947184 326681 035377 850495 084119 258822 325657 576301 297120 434881 958070 007744 549104 266136 982872 329996 539366 857992 387145 056373 636630 116033 316879 767625 827178 324680 087461 170433 125836 290966 904157 881982 987052 416055 994781 927893 943112 335378 131867 149196 206389 453538 235236 747491 860642 356768 063569 579817 159574 303864 324922 328361 655463 417945 567220 606511 533991 219772 284775 131795 951313 555520 582299 308742 134704 671426 778328 819661 430885 686065 456718 940335 (726 digits), a[1384] = 2
                                                                                      A[1385]/B[1385] = 3637 513426 715486 579654 939400 920253 341262 301454 232963 381858 622279 977618 284025 539245 823616 217248 072867 740799 796195 640272 896062 372302 500405 374427 132972 558783 461945 355564 923225 055667 872247 748398 217359 357783 496439 775621 043797 105150 825478 890770 884112 203122 557484 683812 632939 946954 836914 917838 793442 639581 703073 297097 660062 696921 034708 311629 862508 621942 414930 678218 831017 397724 268261 920941 046400 868693 346969 597882 145547 932030 869743 118996 280882 742730 545286 712463 106499 957049 497478 773404 026944 687656 312896 237705 565840 728273 119745 220349 306639 352846 656767 046308 692168 949677 488086 559206 853172 303837 609798 725895 599751 946489 693203 120348 599736 276609 115914 175841 293062 146335 880126 709811 214200 997031 380898 009530 356316 499693 273132 217500 249936 (724 digits)/353542 753818 320922 256721 625948 103834 806960 931539 415332 837054 345391 326803 881427 279143 745506 534652 530243 516775 388327 403320 129208 360302 393619 790323 721282 285596 759755 500770 742402 894409 123250 815279 786416 713468 705995 059279 074868 222222 344008 876176 500206 791896 085834 663637 440835 690397 180616 597052 333101 823400 758343 499067 328491 819513 601459 447394 378130 119982 008835 608109 348581 720832 299971 965648 175343 018988 479230 453787 497165 588495 650516 734622 267036 878194 327606 132575 119051 585140 414799 718398 380003 926391 917315 204166 863185 791562 801771 995362 956114 992983 547518 936792 351974 290743 152880 202755 633825 644024 684490 659730 297102 388372 616038 145480 809307 373366 752187 674867 856226 521453 459886 422500 589865 218747 592643 410446 377577 851381 913142 429931 371039 (726 digits), a[1385] = 1
                                                                                      A[1386]/B[1386] = 395575 214369 569587 928650 803875 792640 168002 987724 755185 733535 882068 066061 276286 831014 965047 230138 082746 720999 010920 590034 489062 618830 626088 663148 264801 957997 339441 878793 527507 064108 948371 516679 609068 864679 145851 702621 120713 903158 750961 004284 881676 452093 602426 368088 914930 419615 946213 077463 035202 057150 212082 024398 614528 812374 077211 360840 957369 373175 541941 621219 746166 253410 922664 756682 017644 652072 982655 196486 495202 059388 862606 710254 779002 317641 455216 647289 172549 707049 378156 799280 627248 251811 591043 639571 786991 433042 238389 506952 903102 769491 927180 619756 912491 233482 306784 852466 328505 469910 642878 772346 116028 980589 241201 778156 593340 389180 296720 539215 133400 601054 391812 966296 353056 687959 391814 110545 807415 049222 412725 127152 862769 (726 digits)/38 447349 665667 379196 387188 230394 038022 845145 365917 169364 828404 681902 935158 001000 287411 327744 918017 538217 950895 142906 685508 649757 869442 372953 808844 424838 428952 217105 187726 738185 498935 334942 456092 737155 569822 067858 496651 533396 530319 933272 069675 178946 343065 055789 933016 896964 434255 952682 813747 640924 874466 227778 934649 327611 591588 216442 644250 414354 255177 389127 633879 654570 398992 663109 272875 267042 590122 614881 396194 750257 194160 371840 656084 607608 672165 706142 405574 028004 321001 089336 491182 922407 037379 486098 044803 151959 431894 926753 631066 409615 448612 585583 408810 760715 260902 867829 961178 032986 714240 228855 575794 415419 599705 950065 279148 011707 857600 456041 170503 604260 268287 223254 212363 014185 759444 676915 106537 598069 380132 305447 889307 012547 (728 digits), a[1386] = 108
                                                                                      A[1387]/B[1387] = 399212 727796 285074 508305 743276 712893 509265 289178 988149 115394 504348 043679 560312 370260 788663 447386 155614 461798 807116 230307 385124 991133 126494 037575 397774 516780 801387 234358 450732 119776 820619 265077 826428 222462 642291 478242 164511 008309 576439 895055 765788 655216 159911 051901 547870 366570 783127 995301 828644 696731 915155 321496 274591 509295 111919 672470 819877 995117 956872 299438 577183 651135 190926 677623 064045 520766 329624 794368 640749 991419 732349 829251 059885 060372 000503 359752 279049 664098 875635 572684 654192 939467 903939 877277 352832 161315 358134 727302 209742 122338 583947 666065 604660 183159 794871 411673 181677 773748 252677 498241 715780 927078 934404 898505 193076 665789 412634 715056 426462 747390 271939 676107 567257 684990 772712 120076 163731 548915 685857 344653 112705 (726 digits)/38 800892 419485 700118 643909 856342 141857 652106 297456 584697 665459 027294 261961 882427 566555 073251 452670 068461 467670 531234 088828 778966 229744 766573 599168 146120 714548 976860 688497 480588 393344 458193 271372 523572 283290 773853 555930 608264 752542 277280 945851 679153 134961 141624 596654 337800 124653 133299 410799 974026 697866 986122 433716 656103 411101 817902 091644 792484 375159 397963 241989 003152 119824 963081 238523 442385 609111 094111 849982 247422 782656 022357 390706 874645 550360 033748 538149 147055 906141 504136 209581 302410 963771 403413 248970 015145 223457 728525 626429 365730 441596 133102 345603 112689 551646 020710 163933 666812 358264 913346 235524 712521 988078 566103 424628 821015 230967 208228 845371 460486 789740 683140 634863 604050 978192 269558 516983 975647 231514 218590 319238 383586 (728 digits), a[1387] = 1
                                                                                      A[1388]/B[1388] = 1 992426 125554 709885 961873 776982 644214 205064 144440 707782 195113 899460 240779 517536 312058 119701 019682 705204 568194 239385 511264 029562 583363 132064 813449 855900 025120 544990 816227 330435 543216 230848 576990 914781 754529 715017 615589 778757 936397 056720 584507 944831 072958 242070 575695 106411 885899 078725 058670 349780 844077 872703 310383 712894 849554 524890 050724 236881 353647 369430 818974 054900 857951 686371 467174 273826 735138 301154 373961 058202 025067 792006 027259 018542 559129 457230 086298 288748 363444 880699 090019 244020 009683 206803 148681 198320 078303 670928 416161 742071 258846 262971 284019 331131 966121 486270 499159 055216 564903 653588 765312 979152 688904 978821 372177 365647 052337 947259 399440 839251 590615 479571 670726 622087 427922 482662 590850 462341 244885 156154 505765 313589 (727 digits)/193 650919 343610 179670 962827 655762 605453 453570 555743 508155 490240 791079 983005 530710 553631 620750 728697 812063 821577 267843 040823 765622 788421 439248 205517 009321 287148 124547 941716 660539 072313 167715 541582 831444 702985 163272 720373 966455 540489 042395 853081 895558 882909 622288 319634 248164 932868 485880 456947 537031 665934 172268 669515 952025 235995 488051 010829 584291 755814 980980 601835 667178 878292 515434 226969 036585 026566 991328 796123 739948 324784 461270 218912 106190 873605 841136 558170 616227 945567 105881 329508 132050 892465 099751 040683 212540 325725 840856 136783 872537 214997 117992 791223 211473 467486 950670 616912 700236 147299 882240 517893 265507 552020 214478 977663 295768 781469 288956 551989 446207 427249 955816 751817 430389 672213 755149 174473 500658 306189 179809 166260 546891 (729 digits), a[1388] = 4
                                                                                      A[1389]/B[1389] = 4 384064 978905 704846 432053 297242 001321 919393 578060 403713 505622 303268 525238 595384 994377 028065 486751 566023 598187 285887 252835 444250 157859 390623 664475 109574 567021 891368 866813 111603 206209 282316 419059 655991 731522 072326 709421 722026 881103 689881 064071 655450 801132 644052 203291 760694 138368 940578 112642 528206 384887 660561 942263 700381 208404 161699 773919 293640 702412 695733 937386 686985 367038 563669 611971 611698 991042 931933 542290 757154 041555 316361 883769 096970 178630 914963 532348 856546 390988 637033 752723 142232 958834 317546 174639 749472 317922 699991 559625 693884 640031 109890 234104 266924 115402 767412 409991 292110 903555 559855 028867 674086 304888 892047 642859 924370 770465 307153 513938 104965 928621 231083 017560 811432 540835 738037 301777 088414 038685 998166 356183 739883 (727 digits)/426 102731 106706 059460 569565 167867 352764 559247 408943 601008 645940 609454 227972 943848 673818 314752 910065 692589 110825 066920 170476 310211 806587 645070 010202 164763 288845 225956 571930 801666 537970 793624 354538 186461 689261 100398 996678 541175 833520 362072 652015 470270 900780 386201 235922 834129 990390 105060 324695 048090 029735 330659 772748 560153 883092 794004 113303 961067 886789 359924 445660 337509 876409 993949 692461 515555 662245 076769 442229 727319 432224 944897 828531 087027 297571 716021 654490 379511 797275 715898 868597 566512 748701 602915 330336 440225 874909 410237 899997 110804 871590 369087 928049 535636 486619 922051 397759 067284 652864 677827 271311 243537 092118 995061 379955 412552 793905 786141 949350 352901 644240 594774 138498 464830 322619 779856 865930 976963 843892 578208 651759 477368 (729 digits), a[1389] = 2
                                                                                      A[1390]/B[1390] = 6 376491 104460 414732 393927 074224 645536 124457 722501 111495 700736 202728 766018 112921 306435 147766 506434 271228 166381 525272 764099 473812 741222 522688 477924 965474 592142 436359 683040 442038 749425 513164 996050 570773 486051 787344 325011 500784 817500 746601 648579 600281 874090 886122 778986 867106 024268 019303 171312 877987 228965 533265 252647 413276 057958 686589 824643 530522 056060 065164 756360 741886 224990 250041 079145 885525 726181 233087 916251 815356 066623 108367 911028 115512 737760 372193 618647 145294 754433 517732 842742 386252 968517 524349 323320 947792 396226 370919 975787 435955 898877 372861 518123 598056 081524 253682 909150 347327 468459 213443 794180 653238 993793 870869 015037 290017 822803 254412 913378 944217 519236 710654 688287 433519 968758 220699 892627 550755 283571 154320 861949 053472 (727 digits)/619 753650 450316 239131 532392 823629 958218 012817 964687 109164 136181 400534 210978 474559 227449 935503 638763 504652 932402 334763 211300 075834 595009 084318 215719 174084 575993 350504 513647 462205 610283 961339 896121 017906 392246 263671 717052 507631 374009 404468 505097 365829 783690 008489 555557 082294 923258 590940 781642 585121 695669 502928 442264 512179 119088 282055 124133 545359 642604 340905 047496 004688 754702 509383 919430 552140 688812 068098 238353 467267 757009 406168 047443 193218 171177 557158 212660 995739 742842 821780 198105 698563 641166 702666 371019 652766 200635 251094 036780 983342 086587 487080 719272 747109 954106 872722 014671 767520 800164 560067 789204 509044 644139 209540 357618 708321 575375 075098 501339 799109 071490 550590 890315 895219 994833 535006 040404 477622 150081 758017 818020 024259 (729 digits), a[1390] = 1
                                                                                      A[1391]/B[1391] = 189 302307 008257 732085 855938 449756 721869 528667 530592 637088 826972 182402 739763 870102 880996 313294 173345 431640 423251 518797 411720 184819 653312 548589 524299 108337 739152 545799 674985 930726 939549 164101 304526 208422 827023 905312 134755 244786 588625 341328 872880 063625 149768 341612 793910 906768 842141 500370 080715 989836 024888 125254 269038 685386 889206 072804 688581 678780 328154 585511 871848 201685 891755 814860 907202 291945 050298 691483 113593 402479 973625 459031 303584 446839 573681 708578 473116 070094 269560 651286 192252 343569 045842 523676 550947 235451 808487 456670 857461 336605 707474 922874 259688 610550 479606 124216 775351 364607 488872 749725 060106 618017 124911 147249 078941 334887 631759 685128 001927 487273 986485 840068 977896 383511 634824 138334 187976 060317 262249 473471 352706 290571 (729 digits)/18398 958594 165876 994275 008957 053136 141086 930968 384869 766768 595201 224946 346348 706066 269866 444358 434207 327524 150492 775053 298178 509415 061851 090298 266058 213215 992652 390587 467707 205629 236205 672481 342047 705747 064402 746878 791201 262485 679793 091659 299839 079334 627790 632398 347078 220682 764889 242342 992330 016619 204150 915584 598419 413348 336652 973602 713176 776497 522315 246170 823044 473483 762782 766083 355947 527635 637795 051618 354480 278084 385497 723771 204383 690354 261720 873609 821659 255964 339717 547524 613662 824858 342535 980240 089906 370445 693331 691964 966645 627725 382627 494428 786959 201825 155719 230989 823240 325387 857636 919793 158242 005831 772156 071731 750897 953878 479782 963998 488204 527064 717466 561909 957659 426210 172792 295032 037660 828006 196263 560725 374340 180879 (731 digits), a[1391] = 29
                                                                                      A[1392]/B[1392] = 195 678798 112718 146818 249865 523981 367405 653125 253093 748584 527708 385131 505781 983024 187431 461060 679779 702868 589633 044070 175819 658632 394535 071278 002224 073812 331294 982159 358026 372765 688974 677266 300576 779196 313075 692656 459766 745571 406126 087930 521459 663907 023859 227735 572897 773874 866409 519673 252028 867823 253853 658519 521686 098662 947164 759394 513225 209302 384214 650676 628208 943572 116746 064901 986348 177470 776479 924571 029845 217836 040248 567399 214612 562352 311442 080772 091763 215389 023994 169019 034994 729822 014360 048025 874268 183244 204713 827590 833248 772561 606352 295735 777812 208606 561130 377899 684501 711934 957331 963168 854287 271256 118705 018118 093978 624905 454562 939540 915306 431491 505722 550723 666183 817031 603582 359034 080603 611072 545820 627792 214655 344043 (729 digits)/19018 712244 616193 233406 541349 876766 099304 943786 349556 875932 731382 625480 557327 180625 497316 379862 072970 832177 082895 109816 509478 585249 656860 174616 481777 387300 568645 741091 981354 667834 846489 633821 238168 723653 456649 010550 508253 770117 053802 496127 804936 445164 411480 640887 902635 302977 688147 833283 773972 601740 899820 418513 040683 925527 455741 255657 837310 321857 164919 587075 870540 478172 517485 275467 275378 079776 326607 119716 592833 745352 142507 129939 251826 883572 432898 430768 034320 251704 082560 369304 811768 523421 983702 682906 460926 023211 893966 943059 003426 611067 469214 981509 506231 948935 109826 103711 837912 092908 657801 479860 947446 514876 416295 281272 108516 662200 055158 039096 989544 326173 788957 112500 847975 321430 167625 830038 078065 305628 346345 318743 192360 205138 (731 digits), a[1392] = 1
                                                                                      A[1393]/B[1393] = 776 338701 346412 172540 605535 021700 824086 488043 289873 882842 410097 337797 257109 819175 443290 696476 212684 540246 192150 651007 939179 160716 836917 762423 530971 329774 733037 492277 749065 049024 006473 195900 206256 546011 766250 983281 514055 481500 807003 605120 437259 055346 221346 024819 512604 228393 441370 059389 836802 593305 786449 100812 834096 981375 730700 350988 228257 306687 480798 537541 756475 032402 241994 009566 866246 824357 379738 465196 203129 055988 094371 161228 947422 133896 508007 950894 748405 716261 341543 158343 297236 533035 088922 667754 173751 785184 422628 939443 357207 654290 526531 810081 593125 236370 162997 257915 828856 500412 360868 639231 622968 431785 481026 201603 360877 209603 995448 503750 747846 781748 503653 492239 976447 834606 445571 215436 429786 893534 899711 356847 996672 322700 (729 digits)/75455 095328 014456 694494 633006 683434 439001 762327 433540 394566 789349 101388 018330 247942 761815 583944 653119 824055 399178 104502 826614 265164 032431 614147 711390 375117 698589 613863 411771 209133 775674 573945 056553 876707 434349 778530 315962 572836 841200 580042 714648 414827 862232 555062 054984 129615 829332 742194 314247 821841 903612 171123 720471 189930 703876 740576 225107 742069 017074 007398 434665 908001 315238 592485 182081 766964 617616 410768 132981 514140 813019 113588 959864 341071 560416 165913 924620 011076 587398 655439 048968 395124 293644 028959 472684 440081 375232 521141 976925 460927 790272 438957 305655 048630 485197 542125 336976 604113 831041 359376 000581 550461 021041 915548 076447 940478 645257 081289 456837 505586 084337 899412 501585 390500 675669 785146 271856 744891 235299 516954 951420 796293 (731 digits), a[1393] = 3
                                                                                      A[1394]/B[1394] = 972 017499 459130 319358 855400 545682 191492 141168 542967 631426 937805 722928 762891 802199 630722 157536 892464 243114 781783 695078 114998 819349 231452 833701 533195 403587 064332 474437 107091 421789 695447 873166 506833 325208 079326 675937 973822 227072 213129 693050 958718 719253 245205 252555 085502 002268 307779 579063 088831 461129 040302 759332 355783 080038 677865 110382 741482 515989 865013 188218 384683 975974 358740 074468 852595 001828 156218 389767 232974 273824 134619 728628 162034 696248 819450 031666 840168 931650 365537 327362 332231 262857 103282 715780 048019 968428 627342 767034 190456 426852 132884 105817 370937 444976 724127 635815 513358 212347 318200 602400 477255 703041 599731 219721 454855 834509 450011 443291 663153 213240 009376 042963 642631 651638 049153 574470 510390 504607 445531 984640 211327 666743 (729 digits)/94473 807572 630649 927901 174356 560200 538306 706113 783097 270499 520731 726868 575657 428568 259131 963806 726090 656232 482073 214319 336092 850413 689291 788764 193167 762418 267235 354955 393125 876968 622164 207766 294722 600360 890998 789080 824216 342953 895003 076170 519584 859992 273713 195949 957619 432593 517480 575478 088220 423582 803432 589636 761155 115458 159617 996234 062418 063926 181993 594474 305206 386173 832723 867952 457459 846740 944223 530484 725815 259492 955526 243528 211691 224643 993314 596681 958940 262780 669959 024743 860736 918546 277346 711865 933610 463293 269199 464200 980352 071995 259487 420466 811886 997565 595023 645837 174888 697022 488842 839236 948028 065337 437337 196820 184964 602678 700415 120386 446381 831759 873295 011913 349560 711930 843295 615184 349922 050519 581644 835698 143781 001431 (731 digits), a[1394] = 1
                                                                                      A[1395]/B[1395] = 1748 356200 805542 491899 460935 567383 015578 629211 832841 514269 347903 060726 020001 621375 074012 854013 105148 783360 973934 346086 054177 980066 068370 596125 064166 733361 797369 966714 856156 470813 701921 069066 713089 871219 845577 659219 487877 708573 020133 298171 395977 774599 466551 277374 598106 230661 749149 638452 925634 054434 826751 860145 189880 061414 408565 461370 969739 822677 345811 725760 141159 008376 600734 084035 718841 826185 535956 854963 436103 329812 228990 889857 109456 830145 327457 982561 588574 647911 707080 485705 629467 795892 192205 383534 221771 753613 049971 706477 547664 081142 659415 915898 964062 681346 887124 893731 342214 712759 679069 241632 100224 134827 080757 421324 815733 044113 445459 947042 410999 994988 513029 535203 619079 486244 494724 789906 940177 398142 345243 341488 207999 989443 (730 digits)/169928 902900 645106 622395 807363 243634 977308 468441 216637 665066 310080 828256 593987 676511 020947 547751 379210 480287 881251 318822 162707 115577 721723 402911 904558 137535 965824 968818 804897 086102 397838 781711 351276 477068 325348 567611 140178 915790 736203 656213 234233 274820 135945 751012 012603 562209 346813 317672 402468 245424 707044 760760 481626 305388 863494 736810 287525 805995 199067 601872 739872 294175 147962 460437 639541 613705 561839 941252 858796 773633 768545 357117 171555 565715 553730 762595 883560 273857 257357 680182 909705 313670 570990 740825 406294 903374 644431 985342 957277 532923 049759 859424 117542 046196 080221 187962 511865 301136 319884 198612 948609 615798 458379 112368 261412 543157 345672 201675 903219 337345 957632 911325 851146 102431 518965 400330 621778 795410 816944 352653 095201 797724 (732 digits), a[1395] = 1
                                                                                      A[1396]/B[1396] = 4468 729901 070215 303157 777271 680448 222649 399592 208650 659965 633611 844380 802895 044949 778747 865563 102761 809836 729652 387250 223354 779481 368194 025951 661528 870310 659072 407866 819404 363417 099290 011299 933013 067647 770481 994376 949577 644218 253396 289393 750674 268452 178307 807304 281714 463591 806078 855968 940099 569998 693806 479622 735543 202867 494996 033124 680962 161344 556636 639738 667001 992727 560208 242540 290278 654199 228132 099694 105180 933448 592601 508342 380948 356539 474365 996790 017318 227473 779698 298773 591166 854641 487693 482848 491563 475654 727286 179989 285784 589137 451715 937615 299062 807670 498377 423278 197787 637866 676339 085664 677703 972695 761246 062371 086321 922736 340931 337376 485153 203217 035435 113370 880790 624127 038603 154284 390745 300892 136018 667616 627327 645629 (730 digits)/434331 613373 920863 172692 789083 047470 492923 642996 216372 600632 140893 383381 763632 781590 301027 059309 484511 616808 244575 851963 661507 081569 132738 594588 002284 037490 198885 292593 002920 049173 417841 771188 997275 554497 541695 924303 104574 174535 367410 388596 988051 409632 545604 697973 982826 557012 211107 210822 893156 914432 217522 111157 724407 726235 886607 469854 637469 675916 580128 798219 784950 974524 128648 788827 736543 074152 067903 412990 443408 806760 492616 957762 554802 356075 100776 121873 726060 810495 184674 385109 680147 545887 419328 193516 746200 270042 558063 434886 894907 137841 359007 139315 046971 089957 755466 021762 198619 299295 128611 236462 845247 296934 354095 421556 707789 688993 391759 523738 252820 506451 788560 834565 051852 916793 881226 415845 593479 641341 215533 541004 334184 596879 (732 digits), a[1396] = 2
                                                                                      A[1397]/B[1397] = 19623 275805 086403 704530 570022 289175 906176 227580 667444 154131 882350 438249 231581 801174 189004 316265 516196 022707 892543 895086 947597 097991 541146 699931 710282 214604 433659 598182 133773 924482 099081 114266 445142 141810 927505 636727 286188 285446 033718 455746 398674 848408 179782 506591 724964 085028 973465 062328 686032 334429 601977 778636 132052 872884 388549 593869 693588 468055 572358 284714 809166 979286 841567 054196 879956 442982 448485 253739 856827 063606 599396 923226 633250 256303 224921 969721 657847 557806 825873 680799 994135 214458 142979 314928 188025 656231 959116 426434 690802 437692 466279 666360 160313 912028 880634 586844 133365 264226 384425 584290 811040 025610 125741 670809 161020 735058 809185 296548 351612 807856 654769 988687 142241 982752 649137 407044 503158 601710 889318 011954 717310 571959 (731 digits)/1 907255 356396 328559 313166 963695 433516 949003 040426 082128 067594 873654 361783 648518 802872 225055 784989 317256 947520 859554 726676 808735 441854 252677 781263 913694 287496 761366 139190 816577 282796 069205 866467 340378 695058 492132 264823 558475 613932 205845 210601 186438 913350 318364 542907 943909 790258 191242 160963 975095 903153 577133 205391 379257 210332 409924 616228 837404 509661 519582 794751 879676 192271 662557 615748 585713 910313 833453 593214 632432 000675 739013 188167 390764 990015 956835 250090 787803 515837 996055 220621 630295 497220 248303 514892 391095 983544 876685 724890 536906 084288 485788 416684 305426 406027 102085 275011 306342 498316 834329 144464 329598 803535 874760 798595 092571 299130 912710 296628 914501 363153 111876 249586 058557 769607 043871 063712 995697 360775 679078 516670 431940 185240 (733 digits), a[1397] = 4
                                                                                      A[1398]/B[1398] = 43715 281511 243022 712218 917316 258800 035001 854753 543538 968229 398312 720879 266058 647298 156756 498094 135153 855252 514740 177424 118548 975464 450487 425815 082093 299519 526391 604231 086952 212381 297452 239832 823297 351269 625493 267831 521954 215110 320833 200886 548023 965268 537872 820487 731642 633649 753008 980626 312164 238857 897762 036894 999648 948636 272095 220864 068139 097455 701353 209168 285335 951301 243342 350934 050191 540164 125102 607173 818835 060661 791395 354795 647448 869145 924209 936233 333013 343087 431445 660373 579437 283557 773652 112704 867614 788118 645519 032858 667389 464522 384275 270335 619690 631728 259646 596966 464518 166319 445190 254246 299784 023916 012729 403989 408363 392853 959301 930473 188378 818930 344975 090745 165274 589632 336877 968373 397062 504313 914654 691526 061948 789547 (731 digits)/4 248842 326166 577981 799026 716473 914504 390929 723848 380628 735821 888202 106949 060670 387334 751138 629288 119025 511849 963685 305317 278977 965277 638094 157115 829672 612483 721617 570974 636074 614765 556253 504123 678032 944614 525960 453950 221525 402399 779100 809799 360929 236333 182333 783789 870646 137528 593591 532750 843348 720739 371788 521940 482922 146900 706456 702312 312278 695239 619294 387723 544303 359067 453764 020324 907970 894779 734810 599419 708272 808111 970643 334097 336332 336107 014446 622055 301667 842171 176784 826352 940738 540327 915935 223301 528392 237132 311434 884667 968719 306418 330583 972683 657823 902011 959636 571784 811304 295928 797269 525391 504444 904006 103617 018746 892932 287255 217180 116996 081823 232758 012313 333737 168968 456007 968968 543271 584874 362892 573690 574345 198064 967359 (733 digits), a[1398] = 2
                                                                                      A[1399]/B[1399] = 63338 557316 329426 416749 487338 547975 941178 082334 210983 122361 280663 159128 497640 448472 345760 814359 651349 877960 407284 072511 066146 073455 991634 125746 792375 514123 960051 202413 220726 136863 396533 354099 268439 493080 552998 904558 808142 500556 354551 656632 946698 813676 717655 327079 456606 718678 726474 042954 998196 573287 499739 815531 131701 821520 660644 814733 761727 565511 273711 493883 094502 930588 084909 405130 930147 983146 573587 860913 675662 124268 390792 278022 280699 125449 149131 905954 990860 900894 257319 341173 573572 498015 916631 427633 055640 444350 604635 459293 358191 902214 850554 936695 780004 543757 140281 183810 597883 430545 829615 838537 110824 049526 138471 074798 569384 127912 768487 227021 539991 626786 999745 079432 307516 572384 986015 375417 900221 106024 803972 703480 779259 361506 (731 digits)/6 156097 682562 906541 112193 680169 348021 339932 764274 462756 803416 761856 468732 709189 190206 976194 414277 436282 459370 823240 031994 087713 407131 890771 938379 743366 899980 482983 710165 452651 897561 625459 370591 018411 639673 018092 718773 780001 016331 984946 020400 547368 149683 500698 326697 814555 927786 784833 693714 818444 623892 948921 727331 862179 357233 116381 318541 149683 204901 138877 182475 423979 551339 116321 636073 493684 805093 568264 192634 340704 808787 709656 522264 727097 326122 971281 872146 089471 358009 172840 046974 571034 037548 164238 738193 919488 220677 188120 609558 505625 390706 816372 389367 963250 308039 061721 846796 117646 794245 631598 669855 834043 707541 978377 817341 985503 586386 129890 413624 996324 595911 124189 583323 227526 225615 012839 606984 580571 723668 252769 091015 630005 152599 (733 digits), a[1399] = 1
                                                                                      A[1400]/B[1400] = 360408 068092 890154 795966 354008 998679 740892 266424 598454 580035 801628 516521 754260 889659 885560 569892 391903 245054 551160 539979 449279 342744 408658 054549 043970 870139 326647 616297 190582 896698 280119 010329 165494 816672 390487 790625 562666 717892 093591 484051 281518 033652 126149 455885 014676 227043 385379 195401 303147 105295 396461 114550 658158 056239 575319 294532 876776 925012 069910 678583 757850 604241 667889 376588 700931 455896 993041 911742 197145 682003 745356 744907 050944 496391 669869 466008 287317 847558 718042 366241 447299 773637 356809 250870 145817 009871 668696 329325 458348 975596 637049 953814 519713 350513 961052 516019 453935 319048 593269 446931 853904 271546 705084 777982 255284 032417 801738 065580 888336 952865 343700 487906 702857 451557 266954 845462 898168 034437 934518 208929 958245 597077 (732 digits)/35 029330 738981 110687 359995 117320 654611 090593 545220 694412 752905 697484 450612 606616 338369 632110 700675 300437 808704 079885 465287 717545 000937 091953 849014 546507 112386 136536 121801 899334 102573 683550 357078 770091 142979 616424 047819 121530 484059 703830 911802 097769 984750 685825 417278 943425 776462 517760 001324 935571 840204 116397 158599 793818 933066 288363 295018 060694 719745 313680 300100 664201 115763 035372 200692 376394 920247 576131 562591 411796 852050 518925 945420 971818 966721 870855 982785 749024 632217 040985 061225 795908 728068 737128 914271 125833 340518 252037 932460 496846 259952 412445 919523 474075 442207 268245 805765 399538 267156 955262 874670 674663 441715 995506 105456 820450 219185 866632 185121 063446 212313 633261 250353 306599 584083 033166 578194 487732 981233 837536 029423 348090 730354 (734 digits), a[1400] = 5
                                                                                      A[1401]/B[1401] = 2 946603 102059 450664 784480 319410 537413 868316 213730 998619 762647 693691 291302 531727 565751 430245 373498 786575 838396 816568 392346 660380 815411 260898 562139 144142 475238 573232 132790 745389 310449 637485 436732 592398 026459 676901 229563 309476 243693 103283 529043 198843 082893 726850 974159 574016 535025 809507 606165 423373 415650 671428 731936 396966 271437 263199 170996 775942 965607 832996 922553 157307 764521 428024 417840 537599 630322 517923 154851 252827 580298 353646 237278 688255 096582 508087 634021 289403 681364 001658 271105 151970 687114 771105 434594 222176 523323 954206 093897 024983 706987 946954 567211 937711 347868 828701 311966 229365 982934 575771 413991 942058 221899 779149 298656 611656 387255 182391 751668 646687 249709 749348 982685 930376 184843 121654 139121 085565 381528 280118 374920 445224 138122 (733 digits)/286 390743 594411 792039 992154 618734 584910 064681 126040 018058 826662 341732 073633 562119 897164 033080 019679 839784 929003 462323 754295 828073 414628 626402 730496 115423 799069 575272 684580 647324 718151 093862 227221 179140 783509 949485 101326 752244 888809 615593 314817 329528 027688 987301 664929 361962 139486 926913 704314 303019 345525 880098 996130 212730 821763 423287 678685 635240 962863 648319 583280 737588 477443 399299 241612 504844 167074 177316 693365 635079 625191 861064 085632 501649 059897 938129 734432 081668 415745 500720 536780 938303 862098 061270 052362 926154 944823 204424 069242 480395 470326 115939 745555 755853 845697 207688 292919 313952 931501 273701 667221 231351 241269 942426 660996 549105 339873 062947 894593 503894 294420 190279 586149 680322 898279 278172 232540 482435 573538 953057 326402 414730 995431 (735 digits), a[1401] = 8
                                                                                      A[1402]/B[1402] = 3 307011 170152 340819 580446 673419 536093 609208 480155 597074 342683 495319 807824 285988 455411 315805 943391 178479 083451 367728 932326 109660 158155 669556 616688 188113 345377 899879 749087 935972 207147 917604 447061 757892 843132 067389 020188 872142 961585 196875 013094 480361 116545 853000 430044 588692 762069 194886 801566 726520 520946 067889 846487 055124 327676 838518 465529 652719 890619 902907 601136 915158 368763 095913 794429 238531 086219 510965 066593 449973 262302 099002 982185 739199 592974 177957 100029 576721 528922 719700 637346 599270 460752 127914 685464 367993 533195 622902 423222 483332 682584 584004 521026 457424 698382 789753 827985 683301 301983 169040 860923 795962 493446 484234 076638 866940 419672 984129 817249 535024 202575 093049 470592 633233 636400 388608 984583 983733 415966 214636 583850 403469 735199 (733 digits)/321 420074 333392 902727 352149 736055 239521 155274 671260 712471 579568 039216 524246 168736 235533 665190 720355 140222 737707 542209 219583 545618 415565 718356 579510 661930 911455 711808 806382 546658 820724 777412 584299 949231 926489 565909 149145 873775 372869 319424 226619 427298 012439 673127 082208 305387 915949 444673 705639 238591 185729 996496 154730 006549 754829 711650 973703 695935 682608 961999 883381 401789 593206 434671 442304 881239 087321 753448 255957 046876 477242 379990 031053 473468 026619 808985 717217 830693 047962 541705 598006 734212 590166 798398 966634 051988 285341 456462 001702 977241 730278 528385 665079 229929 287904 475934 098684 713491 198658 228964 541891 906014 682985 937932 766453 369555 559058 929580 079714 567340 506733 823540 836502 986922 482362 311338 810734 970168 554772 790593 355825 762821 725785 (735 digits), a[1402] = 1
                                                                                      A[1403]/B[1403] = 9 560625 442364 132303 945373 666249 609601 086733 174042 192768 448014 684330 906951 103704 476574 061857 260281 143534 005299 552026 256998 879701 131722 600011 795515 520369 165994 372991 630966 617333 724745 472694 330856 108183 712723 811679 269941 053762 166863 497033 555232 159565 315985 432851 834248 751402 059164 199281 209298 876414 457542 807208 424910 507214 926790 940236 102056 081382 746847 638812 124826 987624 502047 619852 006699 014661 802761 539853 288038 152774 104902 551652 201650 166654 282530 864001 834080 442846 739209 441059 545798 350511 608619 026934 805522 958163 589715 200010 940341 991649 072157 114963 609264 852560 744634 408208 967937 595968 586900 913853 135839 533983 208792 747617 451934 345537 226601 150651 386167 716735 654859 935447 923871 196843 457643 898872 108289 053032 213460 709391 542621 252163 608520 (733 digits)/929 230892 261197 597494 696454 090845 063952 375230 468561 443001 985798 420165 122125 899592 368231 363461 460390 120230 404418 546742 193462 919310 245760 063115 889517 439285 621980 998890 297345 740642 359600 648687 395821 077604 636489 081303 399618 499795 634548 254441 768056 184124 052568 333555 829345 972737 971385 816261 115592 780201 716985 873091 305590 225830 331422 846589 626093 027112 328081 572319 350043 541167 663856 268642 126222 267322 341717 684213 205279 728832 579676 621044 147739 448585 113137 556101 168867 743054 511670 584131 732794 406729 042431 658067 985631 030131 515506 117348 072648 434878 930883 172711 075714 215712 421506 159556 490288 740935 328817 731630 751005 043380 607241 818292 193903 288216 457990 922108 054022 638575 307887 837361 259155 654167 863003 900849 854010 422772 683084 534244 038053 940374 447001 (735 digits), a[1403] = 2
                                                                                      A[1404]/B[1404] = 79 792014 709065 399251 143436 003416 412902 303073 872493 139221 926800 969967 063433 115624 268003 810664 025640 326751 125847 783938 988317 147269 211936 469650 980812 351066 673332 883812 796820 874642 005111 699159 093910 623362 544922 560823 179717 302240 296493 173143 454951 756883 644429 315815 104034 599909 235382 789136 475957 737836 181288 525557 245771 112843 742004 360407 281978 303781 865401 013404 599752 816154 385144 054729 848021 355825 508311 829791 370898 672166 101522 512220 595387 072433 853221 089971 772673 119495 442598 248177 003733 403363 329704 343393 129648 033302 250917 222989 945958 416525 259841 503713 395145 277910 655458 055425 571486 451049 997190 479865 947640 067828 163788 465173 692113 631238 232482 189340 906591 268909 441454 576632 861562 207981 297551 579585 850896 407991 123651 889768 924820 420778 603359 (734 digits)/7755 267212 422973 682684 923782 462815 751140 157118 419752 256487 465955 400537 501253 365475 181384 572882 403476 102065 973055 916146 767286 900100 381646 223283 695650 176215 887303 702931 185148 471797 697529 966911 750868 570069 018402 216336 346093 872140 449255 354958 371068 900290 432986 341573 716976 087291 687035 974762 630381 480204 921616 981226 599451 813192 406212 484367 982447 912834 307261 540554 683729 731130 904056 583808 452083 019817 821063 227153 898194 877537 114655 348343 212969 062148 931720 257795 068159 775129 141327 214759 460361 988044 929620 062942 851682 293040 409390 395246 582890 456273 177343 910074 270792 955628 659953 752386 020994 640973 829200 082010 549932 253059 540920 484270 317679 675287 222986 306444 511895 675942 969836 522430 909748 220265 386393 518137 642818 352350 019449 064545 660257 285817 301793 (736 digits), a[1404] = 8
                                                                                      A[1405]/B[1405] = 248 936669 569560 330057 375681 676498 848307 995954 791521 610434 228417 594232 097250 450577 280585 493849 337202 123787 382842 903843 221950 321508 767532 008964 737952 573569 185993 024430 021429 241259 740080 570171 612587 978271 347491 494148 809092 960483 056343 016463 920087 430216 249273 380297 146352 551129 765312 566690 637172 089923 001408 383880 162223 845746 152804 021457 947990 992728 343050 679025 924085 436087 657479 784041 550763 082138 327697 029227 400734 169272 409470 088313 987811 383955 842194 133917 152099 801333 067004 185590 556998 560601 597732 057114 194467 058070 342466 868980 778217 241224 851681 626103 794700 686292 711008 574485 682396 949118 578472 353450 978759 737467 700158 143138 528275 239251 924047 718674 105941 523463 979223 665346 508557 820787 350298 637629 660978 277005 584416 378698 317082 514499 418597 (735 digits)/24195 032529 530118 645549 467801 479292 317372 846585 727818 212464 383664 621777 625885 996017 912385 082108 670818 426428 323586 295182 495323 619611 390698 732966 976467 967933 283892 107683 852791 156035 452190 549422 648426 787811 691695 730312 437900 116216 982314 319316 881262 884995 351527 358276 980274 234613 032493 740549 006737 220816 481836 816771 103945 665407 550060 299693 573436 765615 249866 193983 401232 734560 376026 020067 482471 326775 804907 365674 899864 361443 923642 666073 786646 635031 908298 329486 373347 068441 935652 228410 113880 370863 831291 846896 540677 909252 743677 303087 821319 803698 462914 902933 888093 082598 401367 416714 553272 663856 816417 977662 400801 802559 230003 271103 146942 314078 126949 841441 589709 666404 217397 404653 988400 314964 022184 455262 782465 479822 741431 727881 018825 797826 352380 (737 digits), a[1405] = 3
                                                                                      A[1406]/B[1406] = 328 728684 278625 729308 519117 679915 261210 299028 664014 749656 155218 564199 160683 566201 548589 304513 362842 450538 508690 687782 210267 468777 979468 478615 718764 924635 859325 908242 818250 115901 745192 269330 706498 601633 892414 054971 988810 262723 352836 189607 375039 187099 893702 696112 250387 151039 000695 355827 113129 827759 182696 909437 407994 958589 894808 381865 229969 296510 208451 692430 523838 252242 042623 838771 398784 437963 836008 859018 771632 841438 510992 600534 583198 456389 695415 223888 924772 920828 509602 433767 560731 963964 927436 400507 324115 091372 593384 091970 724175 657750 111523 129817 189845 964203 366466 629911 253883 400168 575662 833316 926399 805295 863946 608312 220388 870490 156529 908015 012532 792373 420678 241979 370120 028768 647850 217215 511874 684996 708068 268467 241902 935278 021956 (735 digits)/31950 299741 953092 328234 391583 942108 068513 003704 147570 468951 849620 022315 127139 361493 093769 654991 074294 528494 296642 211329 262610 519711 772344 956250 672118 144149 171195 810615 037939 627833 149720 516334 399295 357880 710097 946648 783993 988357 431569 674275 252331 785285 784513 699850 697250 321904 719529 715311 637118 701021 403453 797997 703397 478599 956272 784061 555884 678449 557127 734538 084962 465691 280082 603875 934554 346593 625970 592828 798059 238981 038298 014416 999615 697180 840018 587281 441506 843571 076979 443169 574242 358908 760911 909839 392360 202293 153067 698334 404210 259971 640258 813008 158886 038227 061321 169100 574267 304830 645618 059672 950734 055618 770923 755373 464621 989365 349936 147886 101605 342347 187233 927084 898148 535229 408577 973400 425283 832172 760880 792426 679083 083643 654173 (737 digits), a[1406] = 1
                                                                                      A[1407]/B[1407] = 27533 417464 695495 862664 462449 109465 528762 815333 904745 831895 111558 422762 433986 445305 813497 768458 453125 518483 604169 989766 674150 230081 063415 734069 395441 318345 510043 408583 936188 861104 591038 924620 251971 913884 417858 056823 880344 766521 341746 753876 048339 959507 426597 157613 928486 087366 823027 100341 026947 793935 165251 867185 025805 408707 421899 716272 035442 603075 644541 150759 402660 372177 195258 402067 649871 433136 716432 327785 446260 008668 821855 932684 393283 264300 561657 716697 908252 230099 364006 188298 097751 569690 574953 299222 096019 641995 593346 502550 884796 834484 108101 400930 551915 715172 127738 857119 754719 163110 358487 518755 869943 577024 407726 633052 820551 489934 916030 083920 146163 290457 895517 749634 228520 208585 121866 666517 146577 131732 354082 661479 395026 142575 240945 (737 digits)/2 676069 911111 636781 889003 969268 674262 003952 154029 976167 135467 902126 473933 178452 999944 695266 446367 837264 291454 944889 835511 291996 755688 495330 101772 762273 932314 493144 388732 001780 266186 878993 405177 789941 491910 629825 302161 509401 149883 802597 284162 824801 063715 466164 445884 852050 952704 753460 111414 887589 405592 968502 050580 485936 389203 920701 376802 711865 076928 491468 160644 453117 386936 622882 141770 050482 094046 760466 570465 138781 196870 102377 862684 754749 501041 629841 073846 018415 084841 324946 011484 775996 160290 986980 363566 106574 699584 448296 264843 370771 381344 604396 382611 075634 255444 491024 452062 217458 964800 402716 930517 311728 418917 216674 967100 710567 431402 171650 115988 022953 081220 757813 352700 534728 739004 934156 247498 081023 550161 894537 499295 382721 740249 648739 (739 digits), a[1407] = 83
                                                                                      A[1408]/B[1408] = 27862 146148 974121 591972 981566 789380 789973 114362 568760 581551 266776 986961 594670 011507 362087 072971 815967 969022 112860 677548 884417 698859 042884 212685 114206 242981 369369 316826 754438 977006 336231 193950 958470 515518 310272 111795 869155 029244 694582 943483 423379 146607 320299 853726 178873 238405 823722 456168 140077 621694 347948 776622 433800 367297 316708 098137 265411 899585 852992 843189 926498 624419 237882 240839 048655 871100 552441 186804 217892 850107 332848 533218 976481 720690 257072 940586 833025 150927 873608 622065 658483 533655 502389 699729 420134 733368 186730 594521 608972 492234 219624 530747 741761 679375 494205 487031 008602 563278 934150 352072 796343 382320 271673 241365 040940 360425 072559 991935 158696 082831 316195 991613 598640 237353 769716 883732 658451 816729 062150 929946 636929 077853 262901 (737 digits)/2 708020 210853 589874 217238 360852 616370 072465 157734 123737 604419 751746 496248 305592 361437 789036 101358 911558 819949 241532 046840 554607 275400 267675 058023 434392 076463 664340 199347 039719 894020 028713 921512 189236 849791 339923 248810 293395 138241 234166 958438 077132 849001 250678 145735 549301 274609 472989 826726 524708 106614 371955 848578 189333 867803 876974 160864 267749 755378 048595 895182 538079 852627 902964 745645 985036 440640 386437 163293 936840 435851 140675 877101 754365 198222 469859 661127 459921 928412 401925 454654 350238 519199 747892 273405 498934 901877 601363 963177 774981 641316 244655 195619 234520 293671 552345 621162 791726 269631 048334 990190 262462 474535 987598 722474 175189 420767 521586 263874 124558 423567 945047 279785 432877 274234 342734 220898 506307 382334 655418 291722 061804 823893 302912 (739 digits), a[1408] = 1
                                                                                      A[1409]/B[1409] = 55395 563613 669617 454637 444015 898846 318735 929696 473506 413446 378335 409724 028656 456813 175584 841430 269093 487505 717030 667315 558567 928940 106299 946754 509647 561326 879412 725410 690627 838110 927270 118571 210442 429402 728130 168619 749499 795766 036329 697359 471719 106114 746897 011340 107359 325772 646749 556509 167025 415629 513200 643807 459605 776004 738607 814409 300854 502661 497533 993949 329158 996596 433140 642906 698527 304237 268873 514589 664152 858776 154704 465903 369764 984990 818730 657284 741277 381027 237614 810363 756235 103346 077342 998951 516154 375363 780077 097072 493769 326718 327725 931678 293677 394547 621944 344150 763321 726389 292637 870828 666286 959344 679399 874417 861491 850359 988590 075855 304859 373289 211713 741247 827160 445938 891583 550249 805028 948461 416233 591426 031955 220428 503846 (737 digits)/5 384090 121965 226656 106242 330121 290632 076417 311764 099904 739887 653872 970181 484045 361382 484302 547726 748823 111404 186421 882351 846604 031088 763005 159796 196666 008778 157484 588079 041500 160206 907707 326689 979178 341701 969748 550971 802796 288125 036764 242600 901933 912716 716842 591620 401352 227314 226449 938141 412297 512207 340457 899158 675270 257007 797675 537666 979614 832306 540064 055826 991197 239564 525846 887416 035518 534687 146903 733759 075621 632721 243053 739786 509114 699264 099700 734973 478337 013253 726871 466139 126234 679490 734872 636971 605509 601462 049660 228021 145753 022660 849051 578230 310154 549116 043370 073225 009185 234431 451051 920707 574190 893453 204273 689574 885756 852169 693236 379862 147511 504788 702860 632485 967606 013239 276890 468396 587330 932496 549955 791017 444526 564142 951651 (739 digits), a[1409] = 1
                                                                                      A[1410]/B[1410] = 83257 709762 643739 046610 425582 688227 108709 044059 042266 994997 645112 396685 623326 468320 537671 914402 085061 456527 829891 344864 442985 627799 149184 159439 623853 804308 248782 042237 445066 815117 263501 312522 168912 944921 038402 280415 618654 825010 730912 640842 895098 252722 067196 865066 286232 564178 470472 012677 307103 037323 861149 420429 893406 143302 055315 912546 566266 402247 350526 837139 255657 621015 671022 883745 747183 175337 821314 701393 882045 708883 487552 999122 346246 705681 075803 597871 574302 531955 111223 432429 414718 637001 579732 698680 936289 108731 966807 691594 102741 818952 547350 462426 035439 073923 116149 831181 771924 289668 226788 222901 462630 341664 951073 115782 902432 210785 061150 067790 463555 456120 527909 732861 425800 683292 661300 433982 463480 765190 478384 521372 668884 298281 766747 (737 digits)/8 092110 332818 816530 323480 690973 907002 148882 469498 223642 344307 405619 466429 789637 722820 273338 649085 660381 931353 427953 929192 401211 306489 030680 217819 631058 085241 821824 787426 081220 054226 936421 248202 168415 191493 309671 799782 096191 426366 270931 201038 979066 761717 967520 737355 950653 501923 699439 764867 937005 618821 712413 747736 864604 124811 674649 698531 247364 587684 588659 951009 529277 092192 428811 633062 020554 975327 533340 897053 012462 068572 383729 616888 263479 897486 569560 396100 938258 941666 128796 920793 476473 198690 482764 910377 104444 503339 651024 191198 920734 663977 093706 773849 544674 842787 595715 694387 800911 504062 499386 910897 836653 367989 191872 412049 060946 272937 214822 643736 272069 928356 647907 912271 400483 287473 619624 689295 093638 314831 205374 082739 506331 388036 254563 (739 digits), a[1410] = 1
                                                                                      A[1411]/B[1411] = 1 137745 790528 038225 060572 976590 845798 731953 502464 022977 348415 764796 566637 131900 544980 165319 728657 374892 422367 505618 150553 317381 090329 045694 019469 619747 017334 113579 274497 476496 434635 352787 181359 406310 713376 227359 814022 792012 520905 538194 028317 107996 391501 620456 257201 828382 660092 762885 721314 159364 900839 708143 109396 073885 638931 457714 677514 662317 731877 054382 876759 652708 069800 156438 131601 411908 583628 945964 632710 130747 074261 492893 454493 870972 158844 804177 429615 207210 296443 683519 431946 147577 384366 613868 081803 687912 788879 348577 087795 829412 973101 443281 943216 754385 355548 131892 149513 798337 492076 240884 768547 680481 400989 043350 379595 593110 590565 783540 957131 331080 302856 074540 268446 362569 328743 488489 192021 830278 895937 635232 369270 727451 098091 471557 (739 digits)/110 581524 448609 841550 311491 312782 081660 011889 415241 007255 215883 926926 033768 749335 758046 037704 985840 333788 218998 749822 961853 062351 015446 161847 991451 400421 116921 841206 824618 097360 865157 081183 553318 168575 831114 995481 948139 053284 830886 558869 856107 629801 815050 294612 177247 759847 752322 319166 881424 593370 556889 601836 619737 915123 879559 568121 618573 195354 472206 192643 418950 871799 438066 100398 117222 302733 213945 080335 395448 237628 524162 231538 759333 934353 366589 503985 884285 675703 254913 401231 436454 320386 262467 010816 471873 963288 144877 512974 713607 115303 654363 067239 638274 390927 505354 787674 100266 421034 787243 943081 762379 450684 677312 698615 046212 678058 400353 485930 748433 684420 573425 125663 492014 173888 750396 332011 429232 804629 025302 219818 866631 026834 608614 260970 (741 digits), a[1411] = 13
                                                                                      A[1412]/B[1412] = 1 221003 500290 681964 107183 402173 534025 840662 546523 065244 343413 409908 963322 755227 013300 702991 643059 459953 878895 335509 495417 760366 718128 194878 178909 243600 821642 362361 316734 921563 249752 616288 493881 575223 658297 265762 094438 410667 345916 269106 669160 003094 644223 687653 122268 114615 224271 233357 733991 466467 938163 569292 529825 967291 782233 513030 590061 228584 134124 404909 713898 908365 690815 827461 015347 159091 758966 767279 334104 012792 783144 980446 453616 217218 864525 879981 027486 781512 828398 794742 864375 562296 021368 193600 780484 624201 897611 315384 779389 932154 792053 990632 405642 789824 429471 248041 980695 570261 781744 467672 991449 143111 742653 994423 495378 495542 801350 844691 024921 794635 758976 602450 001307 788370 012036 149789 626004 293759 661128 113616 890643 396335 396373 238304 (739 digits)/118 673634 781428 658080 634972 003755 988662 160771 884739 230897 560191 332545 500198 538973 480866 311043 634925 994170 150352 177776 891045 463562 321935 192528 209271 031479 202163 663031 612044 178580 919384 017604 801520 336991 022608 305153 747921 149476 257252 829801 057146 608868 576768 262132 914603 710501 254246 018606 646292 530376 175711 314250 367474 779728 004371 242771 317104 442719 059890 781303 369960 401076 530258 529209 750284 323288 189272 613676 292501 250090 592734 615268 376222 197833 264076 073546 280386 613962 196579 530028 357247 796859 461157 493581 382251 067732 648217 163998 904806 036038 318340 160946 412123 935602 348142 383389 794654 221946 291306 442468 673277 287338 045301 890487 458261 739004 673290 700753 392169 956490 501781 773571 404285 574372 037869 951636 118527 898267 340133 425192 949370 533165 996650 515533 (741 digits), a[1412] = 1
                                                                                      A[1413]/B[1413] = 2 358749 290818 720189 167756 378764 379824 572616 048987 088221 691829 174705 529959 887127 558280 868311 371716 834846 301262 841127 645971 077747 808457 240572 198378 863347 838976 475940 591232 398059 684387 969075 675240 981534 371673 493121 908461 202679 866821 807300 697477 111091 035725 308109 379469 942997 884363 996243 455305 625832 839003 277435 639222 041177 421164 970745 267575 890901 866001 459292 590658 561073 760615 983899 146948 571000 342595 713243 966814 143539 857406 473339 908110 088191 023370 684158 457101 988723 124842 478262 296321 709873 405734 807468 862288 312114 686490 663961 867185 761567 765155 433914 348859 544209 785019 379934 130209 368599 273820 708557 759996 823593 143643 037773 874974 088653 391916 628231 982053 125716 061832 676990 269754 150939 340779 638278 818026 124038 557065 748849 259914 123786 494464 709861 (739 digits)/229 255159 230038 499630 946463 316538 070322 172661 299980 238152 776075 259471 533967 288309 238912 348748 620766 327958 369350 927599 852898 525913 337381 354376 200722 431900 319085 504238 436662 275941 784541 098788 354838 505566 853723 300635 696060 202761 088139 388670 913254 238670 391818 556745 091851 470349 006568 337773 527717 123746 732600 916086 987212 694851 883930 810892 935677 638073 532096 973946 788911 272875 968324 629607 867506 626021 403217 694011 687949 487719 116896 846807 135556 132186 630665 577532 164672 289665 451492 931259 793702 117245 723624 504397 854125 031020 793094 676973 618413 151341 972703 228186 050398 326529 853497 171063 894920 642981 078550 385550 435656 738022 722614 589102 504474 417063 073644 186684 140603 640911 075206 899234 896299 748260 788266 283647 547760 702896 365435 645011 816001 560000 605264 776503 (741 digits), a[1413] = 1
                                                                                      A[1414]/B[1414] = 3 579752 791109 402153 274939 780937 913850 413278 595510 153466 035242 584614 493282 642354 571581 571303 014776 294800 180158 176637 141388 838114 526585 435450 377288 106948 660618 838301 907967 319622 934140 585364 169122 556758 029970 758884 002899 613347 212738 076407 366637 114185 679948 995762 501738 057613 108635 229601 189297 092300 777166 846728 169048 008469 203398 483775 857637 119486 000125 864202 304557 469439 451431 811360 162295 730092 101562 480523 300918 156332 640551 453786 361726 305409 887896 564139 484588 770235 953241 273005 160697 272169 427103 001069 642772 936316 584101 979346 646575 693722 557209 424546 754502 334034 214490 627976 110904 938861 055565 176230 751445 966704 886297 032197 370352 584196 193267 472923 006974 920351 820809 279440 271061 939309 352815 788068 444030 417798 218193 862466 150557 520121 890837 948165 (739 digits)/347 928794 011467 157711 581435 320294 058984 333433 184719 469050 336266 592017 034165 827282 719778 659792 255692 322128 519703 105376 743943 989475 659316 546904 409993 463379 521249 167270 048706 454522 703925 116393 156358 842557 876331 605789 443981 352237 345392 218471 970400 847538 968586 818878 006455 180850 260814 356380 174009 654122 908312 230337 354687 474579 888302 053664 252782 080792 591987 755250 158871 673952 498583 158817 617790 949309 592490 307687 980450 737809 709631 462075 511778 330019 894741 651078 445058 903627 648072 461288 150949 914105 184781 997979 236376 098753 441311 840972 523219 187380 291043 389132 462522 262132 201639 554453 689574 864927 369856 828019 108934 025360 767916 479589 962736 156067 746934 887437 532773 597401 576988 672806 300585 322632 826136 235283 666288 601163 705569 070204 765372 093166 601915 292036 (741 digits), a[1414] = 1
                                                                                      A[1415]/B[1415] = 45 315782 784131 546028 467033 750019 346029 531959 195108 929814 114740 190079 449351 595382 417259 723947 549032 372448 463160 960773 342637 135122 127482 465976 725836 146731 766402 535563 486840 233534 894074 993445 704711 662630 731322 599729 943256 562846 419678 724189 097122 481319 195113 257259 400326 634355 187986 751457 726870 733442 165005 438173 667798 142807 861946 776055 559221 324733 867511 829720 245348 194347 177797 720221 094497 332105 561345 479523 577832 019531 544023 918776 248825 753109 678129 453832 272167 231554 563737 754324 224688 975906 530970 820304 575563 547913 695714 416121 626094 086238 451668 528475 402887 552620 358906 915647 461068 634931 940602 823326 777348 424051 779207 424142 319205 099007 711126 303308 065752 169937 911544 030273 522497 422651 574569 095100 146391 137617 175392 098443 066604 365249 184520 087841 (740 digits)/4404 400687 367644 392169 923687 160066 778134 173859 516613 866756 811274 363675 943957 215701 876256 266255 689074 193500 605788 192120 780226 399621 249179 917229 120643 992454 574075 511479 021139 730214 231642 495506 231144 616261 369702 570109 023836 429609 232846 010334 558064 409138 014860 383281 169313 640552 136340 614335 615832 973221 632347 680135 243462 389810 543555 454863 969062 607584 635950 036948 695371 360305 951322 535419 280998 017736 513101 386267 453358 341435 632474 391713 276896 092425 367565 390473 505379 133197 228362 466717 605101 086507 941008 480148 690638 216062 088836 768643 897043 399905 465223 897775 600665 472116 273171 824508 169819 022109 516832 321779 742865 042351 937612 344182 057308 289876 036862 835934 533886 809729 999070 972910 503323 619854 701901 107051 543223 916860 832264 487469 000466 677999 828248 280935 (742 digits), a[1415] = 12
                                                                                      A[1416]/B[1416] = 48 895535 575240 948181 741973 530957 259879 945237 790619 083280 149982 774693 942634 237736 988841 295250 563808 667248 643319 137410 484025 973236 654067 901427 103124 253680 427021 373865 394807 553157 828215 578809 873834 219388 761293 358613 946156 176193 632416 800596 463759 595504 875062 253021 902064 691968 296621 981058 916167 825742 942172 284901 836846 151277 065345 259831 416858 444219 867637 693922 549905 663786 629229 531581 256793 062197 662907 960046 878750 175864 184575 372562 610552 058519 566026 017971 756756 001790 516979 027329 385386 248075 958073 821374 218336 484230 279816 395468 272669 779961 008877 953022 157389 886654 573397 543623 571973 573792 996167 999557 528794 390756 665504 456339 689557 683203 904393 776231 072727 090289 732353 309713 793559 361960 927384 883168 590421 555415 393585 960909 217161 885371 075358 036006 (740 digits)/4752 329481 379111 549881 505122 480360 837118 507292 701333 335807 147540 955692 978123 042984 596034 926047 944766 515629 125491 297497 524170 389096 908496 464133 530637 455834 095324 678749 069846 184736 935567 611899 387503 458819 246034 175898 467817 781846 578238 228806 528465 256676 983447 202159 175768 821402 397154 970715 789842 627344 540659 910472 598149 864390 431857 508528 221844 688377 227937 792198 854243 034258 449905 694236 898788 967046 105591 693955 433809 079245 342105 853788 788674 422445 262307 041551 950438 036824 876434 928005 756051 000613 125790 478127 927014 314815 530148 609616 420262 587285 756267 286908 063187 734248 474811 378961 859393 887036 886689 149798 851799 067712 705528 823772 020044 445943 783797 723372 066660 407131 576059 645716 803908 942487 528037 342335 209512 518024 537833 557673 765838 771166 430163 572971 (742 digits), a[1416] = 1
                                                                                      A[1417]/B[1417] = 192 002389 509854 390573 692954 342891 125669 367672 566966 179654 564688 514161 277254 308593 383783 609699 240458 374194 393118 373004 794715 054832 089686 170258 035208 907773 047466 657159 671262 893008 378721 729875 326214 320797 015202 675571 781725 091427 316929 125978 488401 267833 820300 016325 106520 710260 077852 694634 475374 210670 991522 292879 178336 596639 057982 555549 809796 657393 470424 911487 895065 185707 065486 314964 864876 518698 550069 359664 214082 547124 097750 036464 080481 928668 376207 507747 542435 236926 114674 836312 380847 720134 405192 284427 230573 000604 535163 602526 444103 426121 478302 387541 875057 212584 079099 546518 176989 356310 929106 821999 363731 596321 775720 793161 387878 148619 424307 632001 283933 440807 108603 959414 903175 508534 356723 744605 917655 803863 356149 981170 718090 021362 410594 195859 (741 digits)/18661 389131 504979 041814 439054 601149 289489 695737 620613 874178 253897 230754 878326 344655 664361 044399 523373 740387 982262 084613 352737 566911 974669 309629 712556 359956 860049 547726 230678 284425 038345 331204 393654 992719 107805 097804 427289 775148 967560 696754 143460 179168 965201 989758 696620 104759 327805 526482 985360 855255 254327 411553 037911 982981 839127 980448 634596 672716 319763 413545 258100 463081 301039 618129 977364 918874 829876 468133 754785 579171 658791 953079 642919 359761 154486 515129 356693 243671 857667 250734 873254 088347 318379 914532 471681 160508 679282 597493 157831 161762 734025 758499 790228 674861 697605 961393 748000 683220 176899 771176 298262 245490 054198 815498 117441 627707 388256 006050 733868 031124 727249 910060 915050 447317 286013 134057 171761 470934 445765 160490 297982 991499 118738 999848 (743 digits), a[1417] = 3
                                                                                      A[1418]/B[1418] = 624 902704 104804 119902 820836 559630 636888 048255 491517 622243 844048 317177 774397 163517 140192 124348 285183 789831 822674 256424 868171 137732 923126 412201 208750 976999 569421 345344 408596 232182 964380 768435 852477 181779 806901 385329 291331 450475 583204 178531 928963 399006 335962 301997 221626 822748 530180 064962 342290 457755 916739 163539 371855 941194 239292 926480 846248 416400 278912 428386 235101 220907 825688 476475 851422 618293 313116 039039 520997 817236 477825 481954 851997 844524 694648 541214 384061 712568 861003 536266 527929 408479 173650 674655 910055 486043 885307 203047 604980 058325 443785 115647 782561 524406 810696 183178 102941 642725 783488 465555 619989 179721 992666 835823 853192 129062 177316 672234 924527 412711 058165 187958 503085 887563 997556 116986 343388 967005 462035 904421 371431 949458 307140 623583 (741 digits)/60736 496875 894048 675324 822286 283808 705587 594505 563174 958341 909232 647957 613102 076951 589118 059246 514887 736793 072277 551337 582383 089832 832504 393022 668306 535704 675473 321927 761881 038012 050603 605512 568468 436976 569449 469311 749687 107293 480920 319068 958845 794183 879053 171435 265629 135680 380571 550164 745925 193110 303642 145131 711885 813335 949241 449874 125634 706526 187228 032834 628544 423502 353024 548626 830883 723670 595221 098356 698165 816760 318481 713027 717432 501728 725766 586940 020517 767840 449436 680210 375813 265655 080930 221725 342057 796341 567996 402095 893756 072573 958344 562407 433873 758833 567629 263143 103395 936697 417388 463327 746585 804182 868125 270266 372369 329065 948565 741524 268264 500505 757809 375899 549060 284439 386076 744506 724796 930827 875129 039144 659787 745663 786380 572515 (743 digits), a[1418] = 3
                                                                                      A[1419]/B[1419] = 4566 321318 243483 229893 438810 260305 583885 705461 007589 535361 473026 734405 698034 453213 365128 480137 236744 903017 151838 167978 871913 018962 551571 055666 496465 746770 033416 074570 531436 518289 129387 108926 293554 593255 663512 372876 821045 244756 399358 375701 991145 060878 172036 130305 657908 469499 789113 149370 871407 414962 408696 437654 781328 184998 733033 040915 733535 572195 422811 910191 540773 732061 845305 650295 824834 846751 741881 632940 861067 267779 442528 410148 044466 840341 238747 296248 230867 224908 141699 590178 076353 579488 620747 007018 600961 402911 732314 023859 678963 834399 584798 197076 352987 883431 753972 828764 897580 855391 413526 080888 703655 854375 724388 643928 360223 052054 665524 337645 755625 329784 515760 275124 424776 721482 339616 563510 321378 572901 590401 312120 318113 667570 560578 560940 (742 digits)/443816 867262 763319 769088 195058 587810 228602 857276 562838 582571 618525 766458 170040 883316 788187 459125 127587 897939 488204 943976 429419 195741 802200 060788 390702 109889 588362 801220 563845 550509 392570 569792 372934 051555 093951 382986 675099 526203 334002 930236 855380 738456 118574 189805 556024 054521 991806 377636 206837 207027 379822 427475 021112 676333 483818 129567 514039 618399 630359 643387 657911 427597 772211 458517 793550 984568 996424 156630 641946 296493 888163 944273 664946 871862 234852 623709 500317 618555 003724 012207 503946 947932 884891 466609 866085 734899 655257 412164 414123 669780 442437 695351 827344 986696 671010 803395 471772 240102 098619 014470 524362 874770 131075 707362 724026 931169 028216 196720 611719 534665 031915 541357 758472 438392 988550 345604 245339 986729 571668 434502 916497 211145 623403 007453 (744 digits), a[1419] = 7
                                                                                      A[1420]/B[1420] = 46288 115886 539636 418837 208939 162686 475745 102865 567412 975858 574315 661234 754741 695650 791476 925720 652632 820003 341055 936213 587301 327358 438836 968866 173408 444699 903582 091049 722961 415074 258251 857698 788023 114336 442025 114097 501783 898039 576787 935551 840414 007788 056323 605053 800711 517746 421311 558671 056364 607380 003703 540087 185137 791181 569623 335638 181604 138354 507031 530301 642838 541526 278744 979434 099771 085810 731932 368448 131670 495030 903109 583435 296666 247937 082121 503696 692733 961650 277999 438047 291465 203365 381120 744841 919669 515161 208447 441644 394618 402321 291767 086411 312440 358724 350424 470827 078750 196639 918749 274442 656547 723479 236553 275107 455422 649608 832560 048692 480780 710556 215767 939202 750853 102387 393721 752089 557174 696021 366049 025624 552568 625163 912926 232983 (743 digits)/4 498905 169503 527246 366206 772872 161910 991616 167271 191560 784058 094490 312539 313510 910119 470992 650497 790766 716187 954326 991101 876575 047250 854505 000906 575327 634600 559101 334133 400336 543105 976309 303436 297808 952527 508963 299178 500682 369326 820949 621437 512653 178745 064795 069490 825869 680900 298635 326526 814297 263384 101866 419881 923012 576670 787422 745549 266030 890522 490824 466711 207658 699480 075139 133804 766393 569360 559462 664663 117628 781699 200121 155764 366901 220351 074292 824035 023693 953390 486676 802285 415282 744983 929844 887824 002915 145338 120570 523740 034992 770378 382721 515925 707323 625800 277737 297097 821118 337718 403578 608032 990214 551884 178882 343893 612638 640756 230727 708730 385459 847156 076964 789477 133784 668369 271580 200549 178196 798123 591813 384173 824759 857120 020410 647045 (745 digits), a[1420] = 10
                                                                                      A[1421]/B[1421] = 97142 553091 322756 067567 856688 585678 535375 911192 142415 487078 621658 056875 207517 844514 948082 331578 542010 543023 833950 040406 046515 673679 429244 993398 843282 636169 840580 256669 977359 348437 645890 824323 869600 821928 547562 601071 824613 040835 552934 246805 671973 076454 284683 340413 259331 504992 631736 266712 984136 629722 416103 517829 151603 767361 872279 712192 096743 848904 436874 970794 826450 815114 402795 609164 024377 018373 205746 369837 124408 257841 248747 577018 637799 336215 402990 303641 616335 148208 697698 466272 659283 986219 382988 496702 440300 433234 149208 907148 468200 639042 168332 369898 977868 600880 454821 770419 055081 248671 251024 629774 016751 301334 197495 194143 271068 351272 330644 435030 717186 750896 947296 153529 926482 926257 127060 067689 435727 964944 322499 363369 423250 917898 386431 026906 (743 digits)/9 441627 206269 817812 501501 740802 911632 211835 191818 945960 150687 807506 391536 797062 703555 730172 760120 709121 330315 396858 926180 182569 290243 511210 062601 541357 379090 706565 469487 364518 636721 345189 176664 968551 956610 111877 981343 676464 264856 975902 173111 880687 095946 248164 328787 207763 416322 589077 030689 835431 733795 583555 267238 867137 829675 058663 620666 046101 399444 612008 576810 073228 826557 922489 726127 326338 123290 115349 485956 877203 859892 288406 255802 398749 312564 383438 271779 547705 525335 977077 616778 334512 437900 744581 242257 871916 025575 896398 459644 484109 210537 207880 727203 241992 238297 226485 397591 114008 915538 905776 230536 504791 978538 488840 395149 949304 212681 489671 614181 382639 228977 185845 120312 026041 775131 531710 746702 601733 582976 755295 202850 566016 925385 664224 301543 (745 digits), a[1421] = 2
                                                                                      A[1422]/B[1422] = 143430 668977 862392 486405 065627 748365 011121 014057 709828 462937 195973 718109 962259 540165 739559 257299 194643 363027 175005 976619 633817 001037 868081 962265 016691 080869 744162 347719 700320 763511 904142 682022 657623 936264 989587 715169 326396 938875 129722 182357 512387 084242 341006 945467 060043 022739 053047 825384 040501 237102 419807 057916 336741 558543 441903 047830 278347 987258 943906 501096 469289 356640 681540 588598 124148 104183 937678 738285 256078 752872 151857 160453 934465 584152 485111 807338 309069 109858 975697 904319 950749 189584 764109 241544 359969 948395 357656 348792 862819 041363 460099 456310 290308 959604 805246 241246 133831 445311 169773 904216 673299 024813 434048 469250 726491 000881 163204 483723 197967 461453 163064 092732 677336 028644 520781 819778 992902 660965 688548 388993 975819 543062 299357 259889 (744 digits)/13 940532 375773 345058 867708 513675 073543 203451 359090 137520 934745 901996 704076 110573 613675 201165 410618 499888 046503 351185 917282 059144 337494 365715 063508 116685 013691 265666 803620 764855 179827 321498 480101 266360 909137 620841 280522 177146 634183 796851 794549 393340 274691 312959 398278 033633 097222 887712 357216 649728 997179 685421 687120 790150 406345 846086 366215 312132 289967 102833 043521 280887 526037 997628 859932 092731 692650 674812 150619 994832 641591 488527 411566 765650 532915 457731 095814 571399 478726 463754 419063 749795 182884 674426 130081 874831 170914 016968 983384 519101 980915 590602 243128 949315 864097 504222 694688 935127 253257 309354 838569 495006 530422 667722 739043 561942 853437 720399 322911 768099 076133 262809 909789 159826 443500 803290 947251 779930 381100 347108 587024 390776 782505 684634 948588 (746 digits), a[1422] = 1
                                                                                      A[1423]/B[1423] = 814295 897980 634718 499593 184827 327503 590980 981480 691557 801764 601526 647425 018815 545343 645878 618074 515227 358159 708979 923504 215600 678868 769654 804723 926738 040518 561391 995268 478963 165997 166604 234437 157720 503253 495501 176918 456597 735211 201545 158593 233908 497665 989718 067748 559546 618687 896975 393633 186642 815234 515138 807410 835311 560079 081794 951343 488483 785199 156407 476277 172897 598317 810498 552154 645117 539292 894140 061263 404802 022202 008033 379288 310127 256977 828549 340333 161680 697503 576187 987872 413029 934143 203534 704424 240150 175210 937490 651112 782295 845859 468829 651450 429413 398904 481052 976649 724238 475227 099894 150857 383246 425401 367737 540396 903523 355678 146666 853646 707024 058162 762616 617193 313163 069479 730969 166584 400241 269772 765241 308339 302348 633209 883217 326351 (744 digits)/79 144289 085136 543106 840044 309178 279348 229091 987269 633564 824417 317489 911917 349930 771931 735999 813213 208561 562832 152788 512590 478290 977715 339785 380142 124782 447547 034899 487591 188794 535857 952681 577171 300356 502298 216084 383954 562197 435775 960161 145858 847388 469402 812961 320177 375928 902437 027638 816773 084076 719694 010663 702842 817889 861404 289095 451742 606762 849280 126173 794416 477666 456747 910634 025787 789996 586543 489410 239056 851367 067849 731043 313636 227001 977141 672093 750852 404702 918968 295849 712097 083488 352324 116711 892667 246071 880145 981243 376567 079619 115115 160891 942847 988571 558784 747598 871035 789645 181825 452550 423383 979824 630651 827454 090367 759018 479870 091668 228740 223134 609643 499894 669257 825173 992635 548165 482961 501385 488478 490838 137972 519900 837914 087399 044483 (746 digits), a[1423] = 5
                                                                                      A[1424]/B[1424] = 957726 566958 497110 985998 250455 075868 602101 995538 401386 264701 797500 365534 981075 085509 385437 875373 709870 721186 883985 900123 849417 679906 637736 766988 943429 121388 305554 342988 179283 929509 070746 916459 815344 439518 485088 892087 782994 674086 331267 340950 746295 581908 330725 013215 619589 641426 950023 219017 227144 052336 934945 865327 172053 118622 523697 999173 766831 772458 100313 977373 642186 954958 492039 140752 769265 643476 831818 799548 660880 775074 159890 539742 244592 841130 313661 147671 470749 807362 551885 892192 363779 123727 967643 945968 600120 123606 295146 999905 645114 887222 928929 107760 719722 358509 286299 217895 858069 920538 269668 055074 056545 450214 801786 009647 630014 356559 309871 337369 904991 519615 925680 709925 990499 098124 251750 986363 393143 930738 453789 697333 278168 176272 182574 586240 (744 digits)/93 084821 460909 888165 707752 822853 352891 432543 346359 771085 759163 219486 615993 460504 385606 937165 223831 708449 609335 503974 429872 537435 315209 705500 443650 241467 461238 300566 291211 953649 715685 274180 057272 566717 411435 836925 664476 739344 069959 757012 940408 240728 744094 125920 718455 409561 999659 915351 173989 733805 716873 696085 389963 608040 267750 135181 817957 918895 139247 229006 837937 758553 982785 908262 885719 882728 279194 164222 389676 846199 709441 219570 725202 992652 510057 129824 846666 976102 397694 759604 131160 833283 535208 791138 022749 120903 051059 998212 359951 598721 096030 751494 185976 937887 422882 251821 565724 724772 435082 761905 261953 474831 161074 495176 829411 320961 333307 812067 551651 991233 685776 762704 579046 985000 436136 351456 430213 281315 869578 837946 724996 910677 620419 772033 993071 (746 digits), a[1424] = 1
                                                                                      A[1425]/B[1425] = 2 729749 031897 628940 471589 685737 479240 795184 972557 494330 331168 196527 378494 980965 716362 416754 368821 934968 800533 476951 723751 914436 038682 045128 338701 813596 283295 172500 681244 837531 025015 308098 067356 788409 382290 465678 961094 022587 083383 864079 840494 726499 661482 651168 094179 798725 901541 797021 831667 640930 919908 385030 538065 179417 797324 129190 949691 022147 330115 357035 431024 457271 508234 794576 833660 183648 826246 557777 660360 726563 572350 327814 458772 799312 939238 455871 635676 103180 312228 679959 772257 140588 181599 138822 596361 440390 422423 527784 650924 072525 620305 326687 866971 868858 115923 053651 412441 440378 316303 639230 261005 496337 325830 971309 559692 163552 068796 766409 528386 517007 097394 613978 037045 294161 265728 234471 139311 186529 131249 672820 703005 858684 985754 248366 498831 (745 digits)/265 313932 006956 319438 255549 954884 985131 094178 679989 175736 342743 756463 143904 270939 543145 610330 260876 625460 781503 160737 372335 553161 608134 750786 267442 607717 370023 636032 070015 096093 967228 501041 691716 433791 325169 889935 712908 040885 575695 474187 026675 328845 957591 064802 757088 195052 901756 858341 164752 551688 153441 402834 482770 033970 396904 559459 087658 444553 127774 584187 470291 994774 422319 727159 797227 555453 144931 817855 018410 543766 486732 170184 764042 212306 997255 931743 444186 356907 714357 815057 974418 750055 422741 698987 938165 487877 982265 977668 096470 277061 307176 663880 314801 864346 404549 251242 002485 239190 051990 976360 947290 929486 952800 817807 749190 400941 146485 715803 332044 205601 981197 025303 827351 795174 864908 251078 343388 064017 227636 166731 587966 341256 078753 631467 030625 (747 digits), a[1425] = 2
                                                                                      A[1426]/B[1426] = 3 687475 598856 126051 457587 936192 555109 397286 968095 895716 595869 994027 744029 962040 801871 802192 244195 644839 521720 360937 623875 763853 718588 682865 105690 757025 404683 478055 024233 016814 954524 378844 983816 603753 821808 950767 853181 805581 757470 195347 181445 472795 243390 981893 107395 418315 542968 747045 050684 868074 972245 319976 403392 351470 915946 652888 948864 788979 102573 457349 408398 099458 463193 286615 974412 952914 469723 389596 459909 387444 347424 487704 998515 043905 780368 769532 783347 573930 119591 231845 664449 504367 305327 106466 542330 040510 546029 822931 650829 717640 507528 255616 974732 588580 474432 339950 630337 298448 236841 908898 316079 552882 776045 773095 569339 793566 425356 076280 865756 421998 617010 539658 746971 284660 363852 486222 125674 579673 061988 126610 400339 136853 162026 430941 085071 (745 digits)/358 398753 467866 207603 963302 777738 338022 526722 026348 946822 101906 975949 759897 731443 928752 547495 484708 333910 390838 664711 802208 090596 923344 456286 711092 849184 831261 936598 361227 049743 682913 775221 748989 000508 736605 726861 377384 780229 645655 231199 967083 569574 701685 190723 475543 604614 901416 773692 338742 285493 870315 098919 872733 642010 664654 694640 905616 363448 267021 813194 308229 753328 405105 635422 682947 438181 424125 982077 408087 389966 196173 389755 489245 204959 507313 061568 290853 333010 112052 574662 105579 583338 957950 490125 960914 608781 033325 975880 456421 875782 403207 415374 500778 802233 827431 503063 568209 963962 487073 738266 209244 404318 113875 312984 578601 721902 479793 527870 883696 196835 666973 788008 406398 780175 301044 602534 773601 345333 097215 004678 312963 251933 699173 403501 023696 (747 digits), a[1426] = 1
                                                                                      A[1427]/B[1427] = 10 104700 229609 881043 386765 558122 589459 589758 908749 285763 522908 184582 866554 905047 320106 021138 857213 224647 843974 198826 971503 442143 475859 410858 550083 327647 092662 128610 729710 871160 934064 065788 034989 995917 025908 367214 667457 633750 598324 254774 203385 672090 148264 614954 308970 635356 987479 291111 933037 377080 864399 024983 344849 882359 629217 434968 847420 600105 535262 271734 247820 656188 434621 367808 782486 089477 765693 336970 580179 501452 267199 303224 455802 887124 499975 994937 202371 251040 551411 143651 101156 149322 792253 351755 681021 521411 514483 173647 952583 507806 635361 837921 816437 046019 064787 733552 673116 037274 789987 457026 893164 602102 877922 517500 698371 750684 919508 918971 259899 361004 331415 693295 530987 863481 993433 206915 390660 345875 255225 926041 503684 132391 309807 110248 668973 (746 digits)/982 111438 942688 734646 182155 510361 661176 147622 732687 069380 546557 708362 663699 733827 400650 705321 230293 293281 563180 490160 976751 734355 454823 663359 689628 306087 032547 509228 792469 195581 333056 051485 189694 434808 798381 343658 467677 601344 867005 936586 960842 467995 360961 446249 708175 404282 704590 405725 842237 122675 894071 600674 228237 317991 726213 948740 898891 171449 661818 210576 086751 501431 232530 998005 163122 431815 993183 782009 834585 323698 879078 949695 742532 622226 011882 054880 025893 022927 938462 964382 185577 916733 338642 679239 859994 705440 048917 929429 009314 028626 113591 494629 316359 468814 059412 257369 138905 167115 026138 452893 365779 738123 180551 443776 906393 844746 106072 771545 099436 599273 315144 601320 640149 355525 466997 456147 890590 754683 422066 176088 213892 845123 477100 438469 078017 (747 digits), a[1427] = 2
                                                                                      A[1428]/B[1428] = 13 792175 828466 007094 844353 494315 144568 987045 876845 181480 118778 178610 610584 867088 121977 823331 101408 869487 365694 559764 595379 205997 194448 093723 655774 084672 497345 606665 753943 887975 888588 444633 018806 599670 847717 317982 520639 439332 355794 450121 384831 144885 391655 596847 416366 053672 530448 038156 983722 245155 836644 344959 748242 233830 545164 087857 796285 389084 637835 729083 656218 755646 897814 654424 756899 042392 235416 726567 040088 888896 614623 790929 454317 931030 280344 764469 985718 824970 671002 375496 765605 653690 097580 458222 223351 561922 060512 996579 603413 225447 142890 093538 791169 634599 539220 073503 303453 335723 026829 365925 209244 154985 653968 290596 267711 544251 344864 995252 125655 783002 948426 232954 277959 148142 357285 693137 516334 925548 317214 052651 904023 269244 471833 541189 754044 (746 digits)/1340 510192 410554 942250 145458 288099 999198 674344 759036 016202 648464 684312 423597 465271 329403 252816 715001 627191 954019 154872 778959 824952 378168 119646 400721 155271 863809 445827 153696 245325 015969 826706 938683 435317 534987 070519 845062 381574 512661 167786 927926 037570 062646 636973 183719 008897 606007 179418 180979 408169 764386 699594 100970 960002 390868 643381 804507 534897 928840 023770 394981 254759 637636 633427 846069 869997 417309 764087 242672 713665 075252 339451 231777 827185 519195 116448 316746 355938 050515 539044 291157 500072 296593 169365 820909 314221 082243 905309 465735 904408 516798 910003 817138 271047 886843 760432 707115 131077 513212 191159 575024 142441 294426 756761 484995 566648 585866 299415 983132 796108 982118 389329 046548 135700 768042 058682 664192 100016 519281 180766 526856 097057 176273 841970 101713 (748 digits), a[1428] = 1
                                                                                      A[1429]/B[1429] = 23 896876 058075 888138 231119 052437 734028 576804 785594 467243 641686 363193 477139 772135 442083 844469 958622 094135 209668 758591 566882 648140 670307 504582 205857 412319 590007 735276 483654 759136 822652 510421 053796 595587 873625 685197 188097 073082 954118 704895 588216 816975 539920 211801 725336 689029 517927 329268 916759 622236 701043 369943 093092 116190 174381 522826 643705 989190 173098 000817 904039 411835 332436 022233 539385 131870 001110 063537 620268 390348 881823 094153 910120 818154 780320 759407 188090 076011 222413 519147 866761 803012 889833 809977 904373 083333 574996 170227 555996 733253 778251 931460 607606 680618 604007 807055 976569 372997 816816 822952 102408 757088 531890 808096 966083 294936 264373 914223 385555 144007 279841 926249 808947 011624 350718 900052 906995 271423 572439 978693 407707 401635 781640 651438 423017 (746 digits)/2322 621631 353243 676896 327613 798461 660374 821967 491723 085583 195022 392675 087297 199098 730053 958137 945294 920473 517199 645033 755711 559307 832991 783006 090349 461358 896356 955055 946165 440906 349025 878192 128377 870126 333368 414178 312739 982919 379667 104373 888768 505565 423608 083222 891894 413180 310597 585144 023216 530845 658458 300268 329208 277994 117082 592122 703398 706347 590658 234346 481732 756190 870167 631433 009192 301813 410493 546097 077258 037363 954331 289146 974310 449411 531077 171328 342639 378865 988978 503426 476735 416805 635235 848605 680904 019661 131161 834738 475049 933034 630390 404633 133497 739861 946256 017801 846020 298192 539350 644052 940803 880564 474978 200538 391389 411394 691939 070961 082569 395382 297262 990649 686697 491226 235039 514830 554782 854699 941347 356854 740748 942180 653374 280439 179730 (748 digits), a[1429] = 1
                                                                                      A[1430]/B[1430] = 37 689051 886541 895233 075472 546752 878597 563850 662439 648723 760464 541804 087724 639223 564061 667801 060030 963622 575363 318356 162261 854137 864755 598305 861631 496992 087353 341942 237598 647112 711240 955054 072603 195258 721343 003179 708736 512415 309913 155016 973047 961860 931575 808649 141702 742702 048375 367425 900481 867392 537687 714902 841334 350020 719545 610684 439991 378274 810933 729901 560258 167482 230250 676658 296284 174262 236526 790104 660357 279245 496446 885083 364438 749185 060665 523877 173808 900981 893415 894644 632367 456702 987414 268200 127724 645255 635509 166807 159409 958700 921142 024999 398776 315218 143227 880559 280022 708720 843646 188877 311652 912074 185859 098693 233794 839187 609238 909475 511210 927010 228268 159204 086906 159766 708004 593190 423330 196971 889654 031345 311730 670880 253474 192628 177061 (746 digits)/3663 131823 763798 619146 473072 086561 659573 496312 250759 101785 843487 076987 510894 664370 059457 210954 660296 547665 471218 799906 534671 384260 211159 902652 491070 616630 760166 400883 099861 686231 364995 704899 067061 305443 868355 484698 157802 364493 892328 272160 816694 543135 486254 720196 075613 422077 916604 764562 204195 939015 422844 999862 430179 237996 507951 235504 507906 241245 519498 258116 876714 010950 507804 264860 855262 171810 827803 310184 319930 751029 029583 628598 206088 276597 050272 287776 659385 734804 039494 042470 767892 916877 931829 017971 501813 333882 213405 740047 940785 837443 147189 314636 950636 010909 833099 778234 553135 429270 052562 835212 515828 023005 769404 957299 876384 978043 277805 370377 065702 191491 279381 379978 733245 626927 003081 573513 218974 954716 460628 537621 267605 039237 829648 122409 281443 (748 digits), a[1430] = 1
                                                                                      A[1431]/B[1431] = 61 585927 944617 783371 306591 599190 612626 140655 448034 115967 402150 904997 564864 411359 006145 512271 018653 057757 785032 076947 729144 502278 535063 102888 067488 909311 677361 077218 721253 406249 533893 465475 126399 790846 594968 688376 896833 585498 264031 859912 561264 778836 471496 020450 867039 431731 566302 696694 817241 489629 238731 084845 934426 466210 893927 133511 083697 367464 984031 730719 464297 579317 562686 698891 835669 306132 237636 853642 280625 669594 378269 979237 274559 567339 840986 283284 361898 976993 115829 413792 499129 259715 877248 078178 032097 728589 210505 337034 715406 691954 699393 956460 006382 995836 747235 687615 256592 081718 660463 011829 414061 669162 717749 906790 199878 134123 873612 823698 896766 071017 508110 085453 895853 171391 058723 493243 330325 468395 462094 010038 719438 072516 035114 844066 600078 (746 digits)/5985 753455 117042 296042 800685 885023 319948 318279 742482 187369 038509 469662 598191 863468 789511 169092 605591 468138 988418 444940 290382 943568 044151 685658 581420 077989 656523 355939 046027 127137 714021 583091 195439 175570 201723 898876 470542 347413 271995 376534 705463 048700 909862 803418 967507 835258 227202 349706 227412 469861 081303 300130 759387 515990 625033 827627 211304 947593 110156 492463 358446 767141 377971 896293 864454 473624 238296 856281 397188 788392 983914 917745 180398 726008 581349 459105 002025 113670 028472 545897 244628 333683 567064 866577 182717 353543 344567 574786 415835 770477 777579 719270 084133 750771 779355 796036 399155 727462 591913 479265 456631 903570 244383 157838 267774 389437 969744 441338 148271 586873 576644 370628 419943 118153 238121 088343 773757 809416 401975 894476 008353 981418 483022 402848 461173 (748 digits), a[1431] = 1
                                                                                      A[1432]/B[1432] = 160 860907 775777 461975 688655 745134 103849 845161 558507 880658 564766 351799 217453 461941 576352 692343 097337 079138 145427 472251 620550 858694 934881 804081 996609 315615 442075 496379 680105 459611 779027 886004 325402 776951 911280 379933 502403 683411 837976 874842 095577 519533 874567 849550 875781 606165 180980 760815 534964 846651 015149 884594 710187 282442 507399 877706 607386 113204 778997 191340 488853 326117 355624 074441 967622 786526 711800 497389 221608 618434 252986 843557 913557 883864 742638 090445 897606 854968 125074 722229 630625 976134 741910 424556 191920 102434 056519 840876 590223 342610 319929 937919 411542 306891 637699 255789 793206 872158 164572 212536 139776 250399 621358 912273 633551 107435 356464 556873 304743 069045 244488 330111 878612 502548 825451 579677 083981 133762 813842 051422 750606 815912 323703 880761 377217 (747 digits)/15634 638733 997883 211232 074443 856608 299470 132871 735723 476523 920506 016312 707278 391307 638479 549139 871479 483943 448055 689787 115437 271396 299463 273969 653910 772610 073213 112761 191915 940506 793038 871081 457939 656584 271803 282451 098887 059320 436319 025230 227620 640537 305980 327034 010629 092594 371009 463974 659020 878737 585451 600123 948954 269977 758018 890758 930516 136431 739811 243043 593607 545233 263748 057448 584171 119059 304397 022747 114308 327814 997413 464088 566885 728614 212971 205986 663435 962144 096439 134265 257149 584245 065958 751125 867248 040968 902540 889620 772457 378398 702348 753177 118903 512453 391811 370307 351446 884195 236389 793743 429091 830146 258171 272976 411933 756919 217294 253053 362245 365238 432670 121235 573131 863233 479323 750200 766490 573549 264580 326573 284313 002074 795692 928106 203789 (749 digits), a[1432] = 2
                                                                                      A[1433]/B[1433] = 383 307743 496172 707322 683903 089458 820325 830978 565049 877284 531683 608595 999771 335242 158850 896957 213327 216034 075887 021450 970246 219668 404826 711052 060707 540542 561512 069978 081464 325473 091949 237483 777205 344750 417529 448243 901640 952321 939985 609596 752419 817904 220631 719552 618602 644061 928264 218325 887171 182931 269030 854035 354801 031095 908726 888924 298469 593874 542026 113400 442004 231552 273934 847775 770914 879185 661237 848420 723842 906462 884243 666353 101675 335069 326262 464176 157112 686929 365978 858251 760381 211985 361068 927290 415937 933457 323545 018787 895853 377175 339253 832298 829467 609620 022634 199194 843005 826034 989607 436901 693614 169961 960467 731337 466980 348994 586541 937445 506252 209107 997086 745677 653078 176488 709626 652597 498287 735921 089778 112884 220651 704340 682522 605589 354512 (747 digits)/37255 030923 112808 718506 949573 598239 918888 584023 213929 140416 879521 502288 012748 646084 066470 267372 348550 436025 884529 824514 521257 486360 643078 233597 889241 623209 802949 581461 429859 008151 300099 325254 111318 488738 745330 463778 668316 466054 144633 426995 160704 329775 521823 457486 988766 020446 969221 277655 545454 227336 252206 500378 657296 055946 141071 609145 072337 220456 589778 978550 545661 857607 905468 011191 032796 711742 847090 901775 625805 444022 978741 845922 314170 183237 007291 871078 328897 037958 221350 814427 758927 502173 698982 368828 917213 435481 149649 354027 960750 527275 182277 225624 321940 775678 562978 536651 102049 495853 064693 066752 314815 563862 760725 703791 091641 903276 404332 947444 872762 317350 441984 613099 566206 844620 196768 588745 306738 956514 931136 547622 576979 985568 074408 259060 868751 (749 digits), a[1433] = 2
                                                                                      A[1434]/B[1434] = 927 476394 768122 876621 056461 924051 744501 507118 688607 635227 628133 568991 216996 132425 894054 486257 523991 511206 297201 515153 561043 298031 744535 226186 118024 396700 565099 636335 843034 110557 962926 360971 879813 466452 746339 276421 305685 588055 717948 094035 600417 155342 315831 288656 112986 894289 037509 197467 309307 212513 553211 592665 419789 344634 324853 655555 204325 300953 863049 418141 372861 789221 903493 769993 509452 544898 034276 194230 669294 431360 021474 176264 116908 554003 395163 018798 211832 228826 857032 438733 151388 400105 464048 279137 023795 969348 703609 878452 381930 096960 998437 602517 070477 526131 682967 654179 479218 524228 143787 086339 527004 590323 542294 374948 567511 805424 529548 431764 317247 487261 238661 821467 184768 855526 244704 884872 080556 605604 993398 277191 191910 224593 688749 091940 086241 (747 digits)/90144 700580 223500 648245 973591 053088 137247 300918 163581 757357 679549 020888 732775 683475 771420 083884 568580 355995 217115 338816 157952 244117 585619 741165 432394 019029 679112 275684 051633 956809 393237 521589 680576 634061 762464 210008 435519 991428 725585 879220 549029 300088 349627 242007 988161 133488 309452 019285 749929 333410 089864 600881 263546 381870 040162 109049 075190 577344 919369 200144 684931 260449 074684 079830 649764 542544 998578 826298 365919 215860 954897 155933 195226 095088 227554 948143 321230 038060 539140 763120 775004 588592 463923 488783 701674 911931 201839 597676 693958 432949 066903 204425 762785 063810 517768 443609 555545 875901 365775 927248 058722 957871 779622 680558 595217 563472 025960 147943 107769 999939 316639 347434 705545 552473 872860 927691 379968 486579 126853 421818 438272 973210 944509 446227 941291 (749 digits), a[1434] = 2
                                                                                      A[1435]/B[1435] = 3165 736927 800541 337185 853288 861614 053830 352334 630872 782967 416084 315569 650759 732519 841014 355729 785301 749652 967491 566911 653376 113763 638432 389610 414780 730644 256810 978985 610566 657146 980728 320399 416645 744108 656547 277507 818697 716489 093829 891703 553671 283931 168125 585520 957563 326929 040791 810727 815092 820471 928665 632031 614169 064998 883287 855589 911445 496736 131174 367824 560589 599217 984416 157756 299272 513879 764066 431112 731726 200542 948666 195145 452400 997079 511751 520570 792609 373409 937076 174451 214546 412301 753213 764701 487325 841503 434374 654145 041643 668058 334566 639850 040900 188015 071537 161733 280661 398719 420968 695920 274627 940932 587350 856183 169515 765268 175187 232738 457994 670891 713072 210079 207384 743067 443741 307213 739957 552736 069972 944457 796382 378121 748769 881409 613235 (748 digits)/307689 132663 783310 663244 870346 757504 330630 486777 704674 412489 918168 564954 211075 696511 380730 519026 054291 504011 535875 840962 995114 218713 399937 457094 186423 680298 840286 408513 584760 878579 479811 890023 153048 390924 032723 093803 974876 440340 321391 064656 807792 230040 570705 183510 953249 420911 897577 335512 795242 227566 521800 303022 447935 201556 261557 936292 297908 952491 347886 578984 600455 638955 129520 250682 982090 339377 842827 380670 723563 091605 843433 313721 899848 468501 689956 715508 292587 152139 838773 103790 083941 267951 090752 835180 022238 171274 755168 147058 042625 826122 382986 838901 610295 967110 116283 867479 768687 123557 162020 848496 490984 437478 099593 745466 877294 593692 482213 391274 196072 317168 391902 655403 682843 502041 815351 371819 446644 416252 311696 813077 891798 905200 907936 597744 692624 (750 digits), a[1435] = 3
                                                                                      A[1436]/B[1436] = 444130 646286 843910 082640 516902 550019 280750 833967 010797 250665 879937 748742 323358 685203 636064 288427 466236 462621 746020 882785 033699 224941 125069 771644 187326 686896 518636 694321 322366 111135 264891 216890 210217 641664 662958 127515 923365 896528 854132 932533 114396 905705 853413 261590 171852 664354 748362 699361 422302 078583 566400 077091 403458 444477 985153 438142 806694 844012 227460 913579 855405 679739 721755 855875 407604 488065 003576 550013 110962 507372 834741 496627 453048 145135 040375 898709 177144 506218 047696 861903 187886 122350 913975 337345 249413 779829 516061 458758 212043 625127 837767 181522 796503 848241 698170 296838 771814 344947 079404 515177 974916 320885 771414 240592 299718 942969 055761 015148 436501 412101 068771 232556 218632 884968 368487 894795 674613 988654 789610 501282 685443 161638 516532 489285 939141 (750 digits)/43 166623 273509 886993 502527 822137 103694 425515 449796 817999 505946 223148 114478 283373 195069 073692 747532 169390 917610 239733 073635 473942 863993 576863 734351 531709 260867 319209 467585 918156 957936 566902 124831 107351 363426 343697 342564 918221 639073 720334 931173 639941 505768 248352 933541 443080 061153 970278 991077 083841 192723 141907 024023 974474 599746 658273 189970 782443 926133 623490 257988 748720 714167 207519 175448 142412 055442 994412 120199 664752 040679 035561 076999 174011 685324 821495 119304 283431 337637 967375 293732 526782 101745 169320 413986 815018 890396 925380 185802 661574 090082 685060 650651 204220 459226 797509 890777 171743 173904 048694 716756 796544 204805 722747 045921 416460 680419 535834 926330 557894 403514 183011 103950 303635 838328 022052 982413 910186 761902 764407 252723 290119 701338 055633 130484 908651 (752 digits), a[1436] = 140
                                                                                      A[1437]/B[1437] = 447296 383214 644451 419826 370191 411633 334581 186301 641670 033633 296022 064311 974118 417723 477078 644157 251538 212274 713512 449696 687075 338704 763502 161254 602107 417540 775447 673306 932932 768282 245619 537289 626863 385773 319505 405023 742063 613017 947962 824236 668068 189637 021538 847111 129415 991283 789154 510089 237394 899055 495065 709123 017627 509476 868441 293732 718140 340748 358635 281404 415995 278957 706172 013631 706877 001944 767642 981125 842688 707915 783407 691772 905449 142214 552127 419279 969753 879627 984773 036354 402432 534652 667189 102046 736739 621332 950436 112903 253687 293186 172333 821372 837404 036256 769707 458572 052475 743666 500373 211098 249544 261818 358765 096775 469234 708237 230948 247886 894496 082992 781843 442635 426017 628035 812229 202009 414571 541390 859583 445740 481825 539760 265302 370695 552376 (750 digits)/43 474312 406173 670304 165772 692483 861198 756145 936574 522673 918436 141316 679432 494448 891580 454423 266558 223682 421621 775608 914598 469057 082706 976801 191445 718132 941166 159495 876099 502917 836516 046714 014854 260399 754350 376420 436368 893098 079414 041725 995830 447733 735808 819058 117052 396329 482065 867856 326589 879083 420289 663707 327046 422409 801302 919831 126263 080352 878624 971376 836973 349176 353122 337039 426131 124502 394820 837239 500870 388315 132284 878994 390721 073860 153826 511451 834812 576018 489777 806148 397522 610723 369696 260073 249166 837257 061671 680548 332860 704199 916205 068047 489552 814516 426336 913793 758256 940430 297461 210715 565253 287528 642283 822340 791388 293755 274112 018048 317604 753966 720682 574913 759353 986479 340369 837404 354233 356831 178155 076104 065801 181918 606538 963569 728229 601275 (752 digits), a[1437] = 1
                                                                                      A[1438]/B[1438] = 1 786019 795930 777264 342119 627476 784919 284494 392871 935807 351565 768003 941678 245713 938374 067300 220899 220851 099445 886558 231875 094925 241055 415576 255407 993648 939518 844979 714242 121164 415982 001749 828759 090807 798984 621474 342587 149556 735582 698021 405243 118601 474616 918029 802923 560100 638206 115826 229629 134486 775750 051597 204460 456340 972908 590477 319340 961115 866257 303366 757793 103391 516612 840271 896770 528235 493899 306505 493390 639028 631120 184964 571946 169395 571778 696758 156549 086406 145102 002015 970966 395183 726308 915542 643485 459632 643828 367369 797467 973105 504686 354768 645641 308715 957012 007292 672554 929241 575946 580524 148472 723549 106340 847709 530918 707423 067680 748605 758809 119989 661079 414301 560462 496685 769075 805175 500823 918328 612827 368360 838504 130919 780919 312439 601372 596269 (751 digits)/173 589560 492030 897905 999845 899588 687290 693953 259520 386021 261254 647098 152775 766719 869810 436962 547206 840438 182475 566559 817430 881114 112114 507267 308688 686108 084365 797697 095884 426910 467484 707044 169393 888550 626477 472958 651671 597515 877315 845512 918664 983142 713194 705527 284698 632068 507351 573847 970846 721091 453592 133029 005163 241704 003655 417766 568760 023502 562008 537620 768908 796249 773534 218637 453841 515919 239905 506130 622810 829697 437533 672544 249162 395592 146804 355850 623742 011486 806971 385820 486300 358952 210833 949540 161487 326790 075411 967025 184384 774173 838697 889203 119309 647769 738237 538891 165547 993034 066287 680841 412516 659130 131657 189769 420086 297726 502755 589979 879144 819794 565561 907752 382012 263073 859437 534266 045113 980680 296367 992719 450126 835875 520954 946342 315173 712476 (753 digits), a[1438] = 3
                                                                                      A[1439]/B[1439] = 2 233316 179145 421715 761945 997668 196552 619075 579173 577477 385199 064026 005990 219832 356097 544378 865056 472389 311720 600070 681571 782000 579760 179078 416662 595756 357059 620427 387549 054097 184264 247369 366048 717671 184757 940979 747610 891620 348600 645984 229479 786669 664253 939568 650034 689516 629489 904980 739718 371881 674805 546662 913583 473968 482385 458918 613073 679256 207005 662002 039197 519386 795570 546443 910402 235112 495844 074148 474516 481717 339035 968372 263719 074844 713993 248885 575829 056160 024729 986789 007320 797616 260961 582731 745532 196372 265161 317805 910371 226792 797872 527102 467014 146119 993268 777000 131126 981717 319613 080897 359570 973093 368159 206474 627694 176657 775917 979554 006696 014485 744072 196145 003097 922703 397111 617404 702833 332900 154218 227944 284244 612745 320679 577741 972068 148645 (751 digits)/217 063872 898204 568210 165618 592072 548489 450099 196094 908695 179690 788414 832208 261168 761390 891385 813765 064120 604097 342168 732029 350171 194821 484068 500134 404241 025531 957192 971983 929828 304000 753758 184248 148950 380827 849379 088040 490613 956729 887238 914495 430876 449003 524585 401751 028397 989417 441704 297436 600174 873881 796736 332209 664113 804958 337597 695023 103855 440633 508997 605882 145426 126656 555676 879972 640421 634726 343370 123681 218012 569818 551538 639883 469452 300630 867302 458554 587505 296749 191968 883822 969675 580530 209613 410654 164047 137083 647573 517245 478373 754902 957250 608862 462286 164574 452684 923804 933464 363748 891556 977769 946658 773941 012110 211474 591481 776867 608028 196749 573761 286244 482666 141366 249553 199807 371670 399347 337511 474523 068823 515928 017794 127493 909912 043403 313751 (753 digits), a[1439] = 1
                                                                                      A[1440]/B[1440] = 6 252652 154221 620695 866011 622813 178024 522645 551219 090762 121963 896055 953658 685378 650569 156057 951012 165629 722887 086699 595018 658926 400575 773733 088733 185161 653638 085834 489340 229358 784510 496488 560856 526150 168500 503433 837808 932797 432783 989989 864202 691940 803124 797167 102992 939133 897185 925787 709065 878250 125361 144923 031627 404277 937679 508314 545488 319628 280268 627370 836188 142165 107753 933159 717574 998460 485587 454802 442423 602463 309192 121709 099384 319084 999765 194529 308207 198726 194561 975593 985607 990416 248232 081006 134549 852377 174151 002981 618210 426691 100431 408973 579669 600955 943549 561292 934808 892676 215172 742318 867614 669735 842659 260658 786307 060738 619516 707713 772201 148961 149223 806591 566658 342092 563299 039984 906490 584128 921263 824249 406993 356410 422278 467923 545508 893559 (751 digits)/607 717306 288440 034326 331083 083733 784269 594151 651710 203411 620636 223927 817192 289057 392592 219734 174736 968679 390670 250897 281489 581456 501757 475404 308957 494590 135429 712083 039852 286567 075486 214560 537890 186451 388133 171716 827752 578743 790775 619990 747655 844895 611201 754698 088200 688864 486186 457256 565719 921441 201355 726501 669582 569931 613572 092961 958806 231213 443275 555615 980673 087102 026847 329991 213786 796762 509358 192870 870173 265722 577170 775621 528929 334496 748066 090455 540851 186497 400469 769758 253946 298303 371894 368766 982795 654884 349579 262172 218875 730921 348503 803704 337034 572342 067386 444261 013157 859962 793785 463955 368056 552447 679539 213989 843035 480690 056490 806036 272643 967317 138050 873084 664744 762180 259052 277606 843808 655703 245414 130366 481982 871463 775942 766166 401980 339978 (753 digits), a[1440] = 2
                                                                                      A[1441]/B[1441] = 77 265142 029804 870066 154085 471426 332846 890822 193802 666622 848765 816697 449894 444376 162927 417074 277202 459945 986365 640465 821795 689117 386669 463875 481460 817696 200716 650441 259631 806402 598390 205232 096327 031473 206763 982185 801318 085189 542008 525862 599912 089959 301751 505573 885949 959123 395721 014433 248508 910883 179139 285739 293112 325303 734539 558693 158933 514795 570229 190452 073455 225368 088617 744360 521302 216638 322893 531777 783599 711277 049341 428881 456330 903864 711175 583237 274315 440874 359473 693916 834616 682611 239746 554805 360130 424898 354973 353585 328896 347086 003049 434785 423049 357591 315863 512515 348833 693831 901685 988723 770947 009923 480070 334380 063378 905521 210118 472119 273109 802019 534757 875243 802998 027814 156700 097223 580720 342447 209384 118937 168164 889670 388021 192824 518174 871353 (752 digits)/7509 671548 359484 980126 138615 596877 959724 579919 016617 349634 627325 475548 638515 729857 472497 528195 910608 688273 292140 352936 109904 327649 215911 188920 207624 339322 650688 502189 450211 368633 209835 328484 638930 386367 038425 909981 021071 435539 446037 327127 886365 569623 783424 580962 460159 294771 823654 928783 086075 657469 290150 514756 367200 503293 167823 453141 200697 878416 759940 176389 373959 190650 448824 515571 445414 201571 747024 657820 565760 406683 495867 858996 987035 483413 277423 952768 948768 825474 102386 429067 931178 549316 043262 634817 204202 022659 332034 793640 143754 249429 936948 601702 653277 330390 973211 783817 081699 253017 889174 459021 394448 576030 928411 579988 327900 359762 454757 280463 468477 181566 942854 959682 118303 395716 308434 702952 525051 205950 419492 633221 299722 475359 438807 103908 867167 393487 (754 digits), a[1441] = 12
                                                                                      A[1442]/B[1442] = 778 904072 452270 321357 406866 337076 506493 430867 489245 756990 609622 063030 452603 129140 279843 326800 723036 765089 586543 491357 812975 550100 267270 412487 903341 362123 660804 590247 085658 293384 768412 548809 524126 840882 236140 325291 850989 784692 852869 248615 863323 591533 820639 852905 962492 530367 854396 070120 194154 987081 916754 002315 962750 657315 283075 095246 134823 467583 982560 531891 570740 395845 993931 376764 930597 164843 714522 772580 278420 715233 802606 410523 662693 357732 111521 026902 051361 607469 789298 914762 331774 816528 645697 629059 735854 101360 723884 538834 907173 897551 130925 756827 810163 176869 102184 686446 423145 830995 232032 629556 577084 768970 643362 604459 420096 115950 720701 428906 503299 169156 496802 559029 596638 620234 130300 012220 713694 008601 015105 013621 088642 253114 302490 396168 727257 607089 (753 digits)/75704 432789 883289 835587 717239 052513 381515 393341 817883 699757 893890 979414 202349 587632 117567 501693 280823 851412 312073 780258 380532 857948 660869 364606 385200 887816 642314 733977 541965 972899 173839 499406 927194 050121 772392 271527 038466 934138 251148 891269 611311 541133 445447 564322 689793 636582 722735 745087 426476 496134 102860 874065 341587 602863 291806 624373 965785 015381 042677 319509 720264 993606 515092 485705 667928 812479 979604 771076 527777 332557 535849 365591 399284 168629 522305 618145 028539 441238 424334 060437 565731 791463 804520 716939 024815 881477 669927 198573 656418 225220 717989 820730 869807 876251 799504 282431 830150 390141 685530 054169 312542 312756 963655 013873 122039 078314 604063 610670 957415 782986 566600 469905 847778 719343 343399 307132 094320 715207 440340 462579 479207 625058 164013 805255 073654 274848 (755 digits), a[1442] = 10
                                                                                      A[1443]/B[1443] = 1635 073286 934345 512780 967818 145579 345833 752557 172294 180604 068009 942758 355100 702656 722614 070675 723275 990125 159452 623181 447746 789317 921210 288851 288143 541943 522325 830935 430948 393172 135215 302851 144580 713237 679044 632769 503297 654575 247747 023094 326559 273026 943031 211385 810935 019859 104513 154673 636818 885047 012647 290371 218613 639934 300689 749185 428580 449963 535350 254235 214936 017060 076480 497890 382496 546325 751939 076938 340441 141744 654554 249928 781717 619328 934217 637041 377038 655813 938071 523441 498166 315668 531141 812924 831838 627619 802742 431255 143244 142188 264900 948441 043375 711329 520232 885408 195125 355822 365751 247836 925116 547864 766795 543298 903571 137422 651521 329932 279708 140332 528362 993302 996275 268282 417300 121665 008108 359649 239594 146179 345449 395898 993001 985161 972690 085531 (754 digits)/158918 537128 126064 651301 573093 701904 722755 366602 652384 749150 415107 434377 043214 905121 707632 531582 472256 391097 916287 913452 870970 043546 537649 918132 978026 114955 935317 970144 534143 314431 557514 327298 493318 486610 583210 453035 098005 303815 948335 109667 108988 651890 674319 709607 839746 567937 269126 418957 939028 649737 495872 262887 050375 709019 751436 701889 132267 909178 845294 815408 814489 177863 479009 486982 781271 826531 706234 199973 621315 071798 567566 590179 785603 820672 322035 189059 005847 707950 951054 549943 062642 132243 652304 068695 253833 785614 671889 190787 456590 699871 372928 243164 392893 082894 572220 348680 742000 033301 260234 567360 019533 201544 855721 607734 571978 516391 662884 501805 383308 747540 076055 899493 813860 834402 995233 317216 713692 636365 300173 558380 258137 725475 766834 714419 014475 943183 (756 digits), a[1443] = 2
                                                                                      A[1444]/B[1444] = 4049 050646 320961 346919 342502 628235 198160 935981 833834 118198 745641 948547 162804 534453 725071 468152 169588 745339 905448 737720 708469 128736 109690 990190 479628 446010 705456 252117 947555 079729 038843 154511 813288 267357 594229 590830 857585 093843 348363 294804 516442 137587 706702 275677 584362 570086 063422 379467 467792 757175 942048 583058 399977 937183 884454 593616 991984 367511 053261 040362 000612 429966 146892 372545 695590 257495 218400 926456 959302 998723 111714 910381 226128 596389 979956 300984 805438 919097 665441 961645 328107 447865 707981 254909 399531 356600 329369 401345 193662 181927 660727 653709 896914 599528 142650 457262 813396 542639 963535 125230 427317 864700 176953 691057 227238 390796 023744 088771 062715 449821 553528 545635 589189 156798 964900 255550 729910 727899 494293 305979 779541 044912 288494 366492 672637 778151 (754 digits)/393541 507046 135419 138190 863426 456322 827026 126547 122653 198058 724105 848168 288779 397875 532832 564858 225336 633608 144649 607164 122472 945041 736169 200872 341253 117728 512950 674266 610252 601762 288868 154003 913831 023342 938813 177597 234477 541770 147819 110603 829288 844914 794086 983538 369286 772457 260988 583003 304533 795609 094605 399839 442339 020902 794680 028152 230320 833738 733266 950327 349243 349333 473111 459671 230472 465543 392073 171023 770407 476154 670982 545950 970491 809974 166375 996263 040234 857140 326443 160323 691016 055951 109128 854329 532483 452707 013705 580148 569599 624963 463846 307059 655594 042040 943944 979793 314150 456744 205999 188889 351608 715846 675098 229342 265996 111097 929832 614281 724033 278066 718712 268893 475500 388149 333865 941565 521705 987938 040687 579339 995483 076009 697683 234093 102606 161214 (756 digits), a[1444] = 2
                                                                                      A[1445]/B[1445] = 5684 123933 255306 859700 310320 773814 543994 688539 006128 298802 813651 891305 517905 237110 447685 538827 892864 735465 064901 360902 156215 918054 030901 279041 767771 987954 227782 083053 378503 472901 174058 457362 957868 980595 273274 223600 360882 748418 596110 317898 843001 410614 649733 487063 395297 589945 167935 534141 104611 642222 954695 873429 618591 577118 185144 342802 420564 817474 588611 294597 215548 447026 223372 870436 078086 803820 970340 003395 299744 140467 766269 160310 007846 215718 914173 938026 182477 574911 603513 485086 826273 763534 239123 067834 231369 984220 132111 832600 336906 324115 925628 602150 940290 310857 662883 342671 008521 898462 329286 373067 352434 412564 943749 234356 130809 528218 675265 418703 342423 590154 081891 538938 585464 425081 382200 377215 738019 087548 733887 452159 124990 440811 281496 351654 645327 863682 (754 digits)/552460 044174 261483 789492 436520 158227 549781 493149 775037 947209 139213 282545 331994 302997 240465 096440 697593 024706 060937 520616 993442 988588 273819 119005 319279 232684 448268 644411 144395 916193 846382 481302 407149 509953 522023 630632 332482 845586 096154 220270 938277 496805 468406 693146 209033 340394 530115 001961 243562 445346 590477 662726 492714 729922 546116 730041 362588 742917 578561 765736 163732 527196 952120 946654 011744 292075 098307 370997 391722 547953 238549 136130 756095 630646 488411 185322 046082 565091 277497 710266 753658 188194 761432 923024 786317 238321 685594 770936 026190 324834 836774 550224 048487 124935 516165 328474 056150 490045 466233 756249 371141 917391 530819 837076 837974 627489 592717 116087 107342 025606 794768 168387 289361 222552 329099 258782 235398 624303 340861 137720 253620 801485 464517 948512 117082 104397 (756 digits), a[1445] = 1
                                                                                      A[1446]/B[1446] = 9733 174579 576268 206619 652823 402049 742155 624520 839962 417001 559293 839852 680709 771564 172757 006980 062453 480804 970350 098622 864685 046790 140592 269232 247400 433964 933238 335171 326058 552630 212901 611874 771157 247952 867503 814431 218467 842261 944473 612703 359443 548202 356435 762740 979660 160031 231357 913608 572404 399398 896744 456488 018569 514302 069598 936419 412549 184985 641872 334959 216160 876992 370265 242981 773677 061316 188740 929852 259047 139190 877984 070691 233974 812108 894130 239010 987916 494009 268955 446732 154381 211399 947104 322743 630901 340820 461481 233945 530568 506043 586356 255860 837204 910385 805533 799933 821918 441102 292821 498297 779752 277265 120702 925413 358047 919014 699009 507474 405139 039975 635420 084574 174653 581880 347100 632766 467929 815448 228180 758138 904531 485723 569990 718147 317965 641833 (754 digits)/946001 551220 396902 927683 299946 614550 376807 619696 897691 145267 863319 130713 620773 700872 773297 661298 922929 658314 205587 127781 115915 933630 009988 319877 660532 350412 961219 318677 754648 517956 135250 635306 320980 533296 460836 808229 566960 387356 243973 330874 767566 341720 262493 676684 578320 112851 791103 584964 548096 240955 685083 062565 935053 750825 340796 758193 592909 576656 311828 716063 512975 876530 425232 406325 242216 757618 490380 542021 162130 024107 909531 682081 726587 440620 654787 181585 086317 422231 603940 870590 444674 244145 870561 777354 318800 691028 699300 351084 595789 949798 300620 857283 704081 166976 460110 308267 370300 946789 672232 945138 722750 633238 205918 066419 103970 738587 522549 730368 831375 303673 513480 437280 764861 610701 662965 200347 757104 612241 381548 717060 249103 877495 162201 182605 219688 265611 (756 digits), a[1446] = 1
                                                                                      A[1447]/B[1447] = 103015 869729 017988 925896 838554 794311 965550 933747 405752 468818 406590 289832 325002 952752 175255 608628 517399 543514 768402 347130 803066 385955 436823 971364 241776 327603 560165 434766 639088 999203 303074 576110 669441 460123 948312 367912 545561 171038 040846 444932 437436 892638 214091 114473 191899 190257 481514 670226 828655 636211 922140 438309 804286 720138 881133 706996 546056 667331 007334 644189 377157 216949 926025 300253 814857 416982 857749 301917 890215 532376 546109 867222 347594 336807 855476 328136 061642 515004 293067 952408 370085 877533 710166 295270 540383 392424 746924 172055 642591 384551 789191 160759 312339 414715 718221 342009 227706 309485 257501 356045 149957 185216 150778 488489 711288 718365 665360 493447 393813 989910 436092 384680 332000 243884 853206 704880 417317 242031 015695 033548 170305 298046 981403 533127 824984 282012 (756 digits)/10 012475 556378 230513 066325 435986 303731 317857 690118 751949 399887 772404 589681 539731 311724 973441 709429 926889 607848 116808 798428 152602 324888 373702 317781 924602 736814 060461 831188 690881 095755 198888 834365 616954 842918 130391 712928 002086 719148 535887 529018 613940 914008 093343 459991 992234 468912 441150 851606 724524 854903 441308 288385 843252 238175 954084 311977 291684 509480 696848 926371 293491 292501 204445 009906 433911 868260 002112 791209 013022 789032 333865 956948 021970 036853 036283 001172 909256 787407 316906 416171 200400 629653 467050 696567 974324 148608 678598 281781 984089 822817 842983 123061 089298 794700 117268 411147 759159 957942 188563 207636 598648 249773 590000 501267 877682 013364 818214 419775 421095 062341 929572 541194 937977 329568 958751 262259 806444 746717 156348 308322 744659 576437 086529 774564 313964 760507 (758 digits), a[1447] = 10
                                                                                      A[1448]/B[1448] = 936876 002140 738168 539691 199816 550857 432114 028247 491734 636367 218606 448343 605736 346333 750057 484636 719049 372437 885971 222800 092282 520389 072008 011510 423387 382396 974727 248071 077859 545459 940572 796870 796130 389068 402315 125644 128518 381604 312091 617095 296375 581946 283255 792999 706752 872348 564989 945650 030305 125306 196008 401276 257149 995551 999802 299388 327059 190964 707884 132663 610575 829541 704492 945266 107393 814161 908484 647113 270986 930579 792972 875692 362323 843379 593417 192235 542699 129047 906567 018407 485154 109203 338600 980178 494351 872643 183798 782446 313890 967009 689076 702694 648259 642827 269525 878016 871275 226469 610333 702704 129366 944210 477709 321820 759646 384305 687253 948500 949464 949169 560251 546697 162655 776844 025960 976690 223784 993727 369436 060072 437279 168146 402622 516297 742824 179941 (756 digits)/91 058281 558624 471520 524612 223823 348132 237526 830765 665235 744257 814960 437847 478355 506397 534273 046168 264936 128947 256866 313634 489336 857625 373309 179914 981956 981739 505375 799375 972578 379752 925250 144596 873574 119559 634362 224581 585740 859693 066961 092042 293034 567793 102584 816612 508430 333063 761461 249425 068819 935086 656857 658038 524323 894408 927555 565989 218070 161982 583469 053405 154397 509041 265237 495483 147423 571958 509395 662902 279335 125398 914325 294613 924317 772297 981334 192141 269628 508897 456098 616131 248279 911027 074018 046466 087718 028506 806684 887122 452598 355158 887468 964833 507770 319277 515526 008597 202740 568269 369301 813868 110584 881200 515922 577830 003108 858870 886479 508347 621230 864750 879633 308035 206657 576822 291726 560686 015107 332695 788683 491964 951040 065428 940969 153684 045371 110174 (758 digits), a[1448] = 9
                                                                                      A[1449]/B[1449] = 17 903659 910403 043191 180029 635069 260603 175717 470449 748710 559795 560112 808360 833993 533093 426347 816726 179337 619834 601855 580332 556434 273347 804976 190062 286136 593146 079983 148117 118420 362942 173957 716655 795918 852423 592299 755150 987410 421519 970587 169743 068572 949617 595951 181467 620203 764880 216323 637577 404453 017029 646300 062558 690136 635626 877377 395374 760181 295660 457133 164797 978097 978242 311391 260309 855339 886059 118957 597070 038967 213392 612594 505377 231747 361020 130402 980611 372925 966914 517841 302150 588013 952397 143584 918661 933068 972645 239101 038535 606519 757735 881648 511957 629272 628433 839213 024329 781935 612407 853841 707423 607929 125215 227255 603084 144570 020173 723185 514965 433648 024132 080871 771926 422460 003921 346465 261994 669232 122851 034980 174924 478609 492828 631231 342784 938643 700891 (758 digits)/1740 119825 170243 189403 033957 688629 918243 830867 474666 391428 540786 256652 908783 628485 933278 124629 586626 960676 057845 997268 757483 450002 619770 466576 736166 581785 389864 662602 019332 169870 311060 778641 581706 214863 114551 183273 979978 131163 053316 808148 277822 181597 702077 042454 975629 652410 797123 908914 590683 032103 621549 921603 791117 805406 231945 577640 065772 435017 587149 782760 941069 227043 964285 243957 424086 234959 735471 680630 386352 320390 171611 706046 554612 584007 710514 681632 651857 032198 456458 982780 122664 917718 939167 873393 579423 640966 690238 005611 137108 583458 570836 704893 454897 736934 860972 912262 574494 611230 755060 205297 671130 699760 992583 392529 480037 936750 331911 661325 078380 224481 492608 642605 393863 864471 289192 501555 915294 093484 067937 141334 655656 814420 819586 964943 694561 176015 853813 (760 digits), a[1449] = 19
                                                                                      A[1450]/B[1450] = 54 647855 733349 867742 079780 105024 332666 959266 439596 737866 315753 898944 873426 107716 945614 029100 934815 257062 231941 691537 963797 761585 340432 486936 581697 281797 161835 214676 692422 433120 634286 462445 946838 183886 946339 179214 391097 090749 646164 223853 126324 502094 430799 071109 337402 567364 166989 213960 858382 243664 176395 134908 588952 327559 902432 631934 485512 607603 077946 079283 627057 544869 764268 638666 726195 673413 472339 265357 438323 387888 570757 630756 391824 057565 926439 984626 134069 661477 029791 460090 924859 249195 966394 769355 736164 293558 790578 901101 898053 133450 240217 334022 238567 536077 528128 787164 951006 217082 063693 171858 824974 953154 319856 159476 131073 193356 444826 856810 493397 250409 021565 802866 862476 430035 788608 065356 762674 231481 362280 474376 584845 873107 646632 296316 544652 558755 282614 (758 digits)/5311 417757 069354 039729 626485 289713 102863 730129 254764 839521 366616 584919 164198 363813 306231 908161 806049 146964 302485 248672 586084 839344 716936 773039 388414 727313 151333 493181 857372 482189 312935 261174 889715 518163 463213 184184 164515 979230 019643 491405 925508 837827 674024 229949 743501 465662 724435 488205 021474 165130 799736 421669 031391 940542 590245 660475 763306 523122 923431 931751 876612 835529 401896 997109 767741 852302 778373 551286 821959 240505 640234 032464 958451 676340 903842 026232 147712 366223 878274 404438 984126 001436 728530 694198 784737 010618 099220 823518 298448 202974 067669 002149 329526 718574 902196 252313 732081 036432 833449 985194 827260 209867 858950 693511 017943 813359 854605 870454 743488 294675 342576 807449 489626 800071 444399 796394 306568 295559 536507 212687 458935 394302 524189 835800 237367 573418 671613 (760 digits), a[1450] = 3
                                                                                      A[1451]/B[1451] = 72 551515 643752 910933 259809 740093 593270 134983 910046 486576 875549 459057 681786 941710 478707 455448 751541 436399 851776 293393 544130 318019 613780 291912 771759 567933 754981 294659 840539 551540 997228 636403 663493 979805 798762 771514 146248 078160 067684 194440 296067 570667 380416 667060 518870 187567 931869 430284 495959 648117 193424 781208 651511 017696 538059 509311 880887 367784 373606 536416 791855 522967 742510 950057 986505 528753 358398 384315 035393 426855 784150 243350 897201 289313 287460 115029 114681 034402 996705 977932 227009 837209 918791 912940 654826 226627 763224 140202 936588 739969 997953 215670 750525 165350 156562 626377 975335 999017 676101 025700 532398 561083 445071 386731 734157 337926 465000 579996 008362 684057 045697 883738 634402 852495 792529 411822 024668 900713 485131 509356 759770 351717 139460 927547 887437 497398 983505 (758 digits)/7051 537582 239597 229132 660442 978343 021107 560996 729431 230949 907402 841572 072981 992299 239510 032791 392676 107640 360331 245941 343568 289347 336707 239616 124581 309098 541198 155783 876704 652059 623996 039816 471421 733026 577764 367458 144494 110393 072960 299554 203331 019425 376101 272404 719131 118073 521559 397119 612157 197234 421286 343272 822509 745948 822191 238115 829078 958140 510581 714512 817682 062573 366182 241067 191828 087262 513845 231917 208311 560895 811845 738511 513064 260348 614356 707864 799569 398422 334733 387219 106790 919155 667698 567592 364160 651584 789458 829129 435556 786432 638505 707042 784424 455509 763169 164576 306575 647663 588510 190492 498390 909628 851534 086040 497981 750110 186517 531779 821868 519156 835185 450054 883490 664542 733592 297950 221862 389043 604444 354022 114592 208723 343776 800743 931928 749434 525426 (760 digits), a[1451] = 1
                                                                                      A[1452]/B[1452] = 127 199371 377102 778675 339589 845117 925937 094250 349643 224443 191303 358002 555213 049427 424321 484549 686356 693462 083717 984931 507928 079604 954212 778849 353456 849730 916816 509336 532961 984661 631515 098849 610332 163692 745101 950728 537345 168909 713848 418293 422392 072761 811215 738169 856272 754932 098858 644245 354341 891781 369819 916117 240463 345256 440492 141246 366399 975387 451552 615700 418913 067837 506779 588724 712701 202166 830737 649672 473716 814744 354907 874107 289025 346879 213900 099655 248750 695880 026497 438023 151869 086405 885186 682296 390990 520186 553803 041304 834641 873420 238170 549692 989092 701427 684691 413542 926342 216099 739794 197559 357373 514237 764927 546207 865230 531282 909827 436806 501759 934466 067263 686605 496879 282531 581137 477178 787343 132194 847411 983733 344616 224824 786093 223864 432090 056154 266119 (759 digits)/12362 955339 308951 268862 286928 268056 123971 291125 984196 070471 274019 426491 237180 356112 545741 940953 198725 254604 662816 494613 929653 128692 053644 012655 512996 036411 692531 648965 734077 134248 936931 300991 361137 251190 040977 551642 309010 089623 092603 790960 128839 857253 050125 502354 462632 583736 245994 885324 633631 362365 221022 764941 853901 686491 412436 898591 592385 481263 434013 646264 694294 898102 768079 238176 959569 939565 292218 783204 030270 801401 452079 770976 471515 936689 518198 734096 947281 764646 213007 791658 090916 920592 396229 261791 148897 662202 888679 652647 734004 989406 706174 709192 113951 174084 665365 416890 038656 684096 421960 175687 325651 119496 710484 779551 515925 563470 041123 402234 565356 813832 177762 257504 373117 464614 177992 094344 528430 684603 140951 566709 573527 603025 867966 636544 169296 322853 197039 (761 digits), a[1452] = 1
                                                                                      A[1453]/B[1453] = 4142 931399 711041 828544 126684 783867 223257 150995 098629 668758 997256 915139 448604 523388 056994 961038 714955 627186 530751 811201 797828 865378 148589 215092 082378 759323 093109 593428 895323 060713 205711 799591 194123 217973 642025 194827 341293 483270 910833 579829 812613 899045 339320 288495 919598 345395 095346 046135 834900 185121 027662 096960 346338 065902 633808 029195 605686 580182 823290 238830 197073 693767 959457 789248 792943 998091 942003 173834 194331 498675 141202 214784 146012 389448 132263 303997 074703 302563 844623 994673 086820 602198 244765 746425 166522 872597 484921 461957 645128 689417 619410 805846 401491 611036 066687 859751 618286 914209 349515 347599 968351 016691 922752 865383 421534 338979 579478 557804 064680 586971 198135 855114 534539 893506 388928 681543 219649 130948 602314 988823 787489 546110 294444 091209 714319 294335 499313 (760 digits)/402666 108440 126037 832725 842147 556138 988188 877028 223705 486030 676024 489291 662753 387900 703252 143293 751884 254989 570459 073587 092468 407493 053315 644592 540454 474272 702210 922687 367172 948025 605797 671540 027813 771107 889046 020012 032816 978332 036281 610278 326206 451522 980117 347747 523373 797633 393395 727507 888360 792921 494014 821412 147363 713674 020171 993046 785414 358570 399018 394983 035118 801861 944717 862729 898066 153351 864846 294446 176977 205742 278398 409758 601574 234413 196716 198967 112585 867101 150982 720278 016132 378112 347034 944909 128885 842077 227207 713856 923716 447447 236096 401190 430862 026219 054862 505057 543589 538749 091235 812486 919226 733523 587047 031689 007599 781151 502466 403285 913286 561786 523577 690194 823249 532196 429339 316975 131644 296344 114894 488728 467475 505551 118709 170157 349411 080736 830674 (762 digits), a[1453] = 32
                                                                                      A[1454]/B[1454] = 4270 130771 088144 607219 466274 628985 149194 245245 448272 893202 188560 273142 003817 572815 481316 445588 401312 320648 614469 796133 305756 944983 102801 993941 435835 609054 009926 102765 428285 045374 837226 898440 804455 381666 387127 145555 878638 652180 624681 998123 235005 971807 150536 026665 775871 100327 194204 690381 189242 076902 397482 013077 586801 411159 074300 170441 972086 555570 274842 854530 615986 761605 466237 377973 505645 200258 772740 823506 668048 313419 496110 088891 435037 736327 346163 403652 323453 998443 871121 432696 238689 688604 129952 428721 557513 392784 038724 503262 479770 562837 857581 355539 390584 312463 751379 273294 544629 130309 089309 545159 325724 530929 687680 411591 286764 870262 489305 994610 566440 521437 265399 541720 031419 176037 970066 158722 006992 263143 449726 972557 132105 770935 080537 315074 146409 350489 765432 (760 digits)/415029 063779 434989 101588 129075 824195 112160 168154 207901 556501 950043 915782 899933 744013 248994 084246 950609 509594 233275 568201 022121 536185 106959 657248 053450 510684 394742 571653 101250 082274 542728 972531 388951 022297 930023 571654 341827 067955 128885 401238 455046 308776 030242 850101 986006 381369 639390 612832 521992 155286 715037 586354 001265 400165 432608 891638 377799 839833 833032 041247 729413 699964 712797 100906 857636 092917 157065 077650 207248 007143 730478 180735 073090 171102 714914 933064 059867 631747 363990 511936 107049 298704 743264 206700 277783 504280 115887 366504 657721 436853 942271 110382 544813 200303 720227 921947 582246 222845 513195 988174 244877 853020 297531 811240 523525 344621 543589 805520 478643 375618 701339 947699 196366 996810 607331 411319 660074 980947 255846 055438 041003 108576 986675 806701 518707 403590 027713 (762 digits), a[1454] = 1
                                                                                      A[1455]/B[1455] = 8413 062170 799186 435763 592959 412852 372451 396240 546902 561961 185817 188281 452422 096203 538311 406627 116267 947835 145221 607335 103585 810361 251391 209033 518214 368377 103035 696194 323608 106088 042938 698031 998578 599640 029152 340383 219932 135451 535515 577953 047619 870852 489856 315161 695469 445722 289550 736517 024142 262023 425144 110037 933139 477061 708108 199637 577773 135753 098133 093360 813060 455373 425695 167222 298589 198350 714743 997340 862379 812094 637312 303675 581050 125775 478426 707649 398157 301007 715745 427369 325510 290802 374718 175146 724036 265381 523645 965220 124899 252255 476992 161385 792075 923499 818067 133046 162916 044518 438824 892759 294075 547621 610433 276974 708299 209242 068784 552414 631121 108408 463535 396834 565959 069544 358994 840265 226641 394092 052041 961380 919595 317045 374981 406283 860728 644825 264745 (760 digits)/817695 172219 561026 934313 971223 380334 100349 045182 431607 042532 626068 405074 562687 131913 952246 227540 702493 764583 803734 641788 114589 943678 160275 301840 593904 984957 096953 494340 468423 030300 148526 644071 416764 793405 819069 591666 374644 046287 165167 011516 781252 760299 010360 197849 509380 179003 032786 340340 410352 948208 209052 407766 148629 113839 452780 884685 163214 198404 232050 436230 764532 501826 657514 963636 755702 246269 021911 372096 384225 212886 008876 590493 674664 405515 911631 132031 172453 498848 514973 232214 123181 676817 090299 151609 406669 346357 343095 080361 581437 884301 178367 511572 975675 226522 775090 427005 125835 761594 604431 800661 164104 586543 884578 842929 531125 125773 046056 208806 391929 937405 224917 637894 019616 529007 036670 728294 791719 277291 370740 544166 508478 614128 105384 976858 868118 484326 858387 (762 digits), a[1455] = 1
                                                                                      A[1456]/B[1456] = 46335 441625 084076 786037 431071 693247 011451 226448 182785 703008 117646 214549 265928 053833 172873 478723 982652 059824 340577 832808 823685 996789 359758 039109 026907 450939 525104 583737 046325 575815 051920 388600 797348 379866 532888 847471 978299 329438 302259 887888 473105 326069 599817 602474 253218 328938 641958 372966 309953 387019 523202 563267 252498 796467 614841 168629 860952 234335 765508 321334 681289 038472 594713 214084 998591 192012 346460 810210 979947 373892 682671 607269 340288 365204 738296 941899 314240 503482 449848 569542 866241 142616 003543 304455 177694 719691 656954 329363 104266 824115 242542 162468 350963 929962 841714 938525 359209 352901 283434 008955 796102 269037 739846 796464 828260 916472 833228 756683 722046 063479 583076 525892 861214 523759 765040 360048 140199 233603 709936 779461 730082 356161 955444 346493 450052 574616 089157 (761 digits)/4 503504 924877 240123 773157 985192 725865 613905 394066 365936 769165 080385 941155 713369 403583 010225 221950 463078 332513 251948 777141 595071 254575 908336 166451 022975 435469 879510 043355 443365 233775 285362 192888 472774 989327 025371 529986 215047 299390 954720 458822 361310 110271 082043 839349 532907 276384 803322 314534 573756 896327 760299 625184 744410 969362 696513 315064 193870 831854 993284 222401 552076 209098 000371 919090 636147 324262 266621 938132 128374 071573 774861 133203 446412 198682 273070 593219 922135 125989 938856 673006 722957 682790 194759 964747 311130 236066 831362 768312 564910 858359 834108 668247 423189 332917 595680 056973 211425 030818 535354 991480 065400 785739 720426 025888 179150 973486 773870 849552 438293 062644 825928 137169 294449 641845 790685 052793 618671 367404 109548 776270 583396 179217 513600 690995 859299 825224 319648 (763 digits), a[1456] = 5
                                                                                      A[1457]/B[1457] = 471767 478421 639954 296137 903676 345322 486963 660722 374759 592042 362279 333774 111702 634535 267046 193866 942788 546078 550999 935423 340445 778254 848971 600123 787288 877772 354081 533564 786863 864238 562142 584039 972062 398305 358040 815103 002925 429834 558114 456837 778673 131548 488032 339904 227652 735108 709134 466180 123676 132218 657169 742710 458127 441737 856519 885936 187295 479110 753216 306707 625950 840099 372827 308072 284501 118474 179352 099450 661853 551021 464028 376368 983933 777822 861396 126642 540562 335832 214231 122797 987921 716962 410151 219698 500983 462298 093189 258851 167567 493407 902413 786069 301715 223128 235216 518299 755009 573531 273164 982317 255098 237999 008901 241622 990908 373970 401072 119251 851581 743204 294300 655763 178104 307142 009398 440746 628633 730129 151409 755998 220418 878664 929424 871218 361254 390986 156315 (762 digits)/45 852744 420991 962264 665893 823150 638990 239402 985846 090974 734183 429927 816631 696381 167744 054498 447045 333277 089716 323222 413204 065302 489437 243636 966350 823659 339655 892053 927894 902075 368053 002148 572956 144514 686676 072784 891528 525117 040196 712371 599740 394353 863009 830798 591344 838452 942851 066009 485686 147921 911485 812048 659613 592738 807466 417914 035327 101922 516954 164892 660246 285294 592806 661234 154543 117175 488891 688130 753417 667965 928623 757487 922528 138786 392338 642337 064230 393804 758747 903539 962281 352758 504719 037898 799082 517971 707025 656722 763487 230546 467899 519454 194047 207568 555698 731890 996737 240086 069779 957981 715461 818112 443941 088839 101811 322634 860640 784764 704330 774860 563853 484199 009586 964112 947464 943521 256230 978432 951332 466228 306872 342440 406303 241391 886817 461116 736570 054867 (764 digits), a[1457] = 10
                                                                                      A[1458]/B[1458] = 3 348707 790576 563756 859002 756806 110504 420196 851504 806102 847304 653601 550968 047846 495580 042196 835792 582171 882374 197577 380772 206806 444573 302559 239975 537929 595346 003675 318690 554372 625484 986918 476880 601785 168004 039174 553192 998777 338280 209061 085752 923817 246909 016043 981803 846787 474699 605899 636227 175686 312550 123390 762240 459390 888632 610480 370183 172020 588111 038022 468288 062944 919168 204504 370590 990099 021331 601925 506365 612922 231042 930870 241852 227824 809964 768069 828397 098176 854307 949466 429128 781693 161352 874601 842344 684578 955778 309279 141321 277239 277970 559438 664953 462970 491860 488230 566623 644276 367620 195588 885176 581789 935030 802155 487825 764619 534265 640733 591446 683118 265909 643181 116235 107944 673753 830829 445274 540635 344507 769805 071449 273014 506816 461418 445021 978833 311519 183362 (763 digits)/325 472715 871820 975976 434414 747247 198797 289726 294989 002759 908449 089880 657577 588037 577791 391714 351267 796017 960527 514505 669570 052188 680636 613794 930906 788590 813061 123887 538619 757892 810146 300402 203581 484377 796059 534865 770685 890866 580767 941321 657005 121787 151339 897633 978763 402077 876342 265388 714337 609210 276728 444640 242479 893582 621627 621911 562353 907328 450534 147532 844125 549138 358744 629011 000892 456375 746504 083537 212055 804135 571940 077276 590900 417916 945052 769430 042832 678768 437225 263636 408976 192267 215823 460051 558324 936932 185246 428422 112723 178736 133656 470288 026577 876169 222808 718917 034133 892027 519278 241226 999712 792187 893327 342299 738567 437594 997972 267223 779867 862317 009619 215321 204278 043240 274100 395333 846410 467702 026731 373146 924376 980479 023340 203343 898718 087116 981214 703717 (765 digits), a[1458] = 7
                                                                                      A[1459]/B[1459] = 3 820475 268998 203711 155140 660482 455826 907160 512227 180862 439347 015880 884742 159549 130115 309243 029659 524960 428452 748577 316195 547252 222828 151530 840099 325218 473118 357756 852255 341236 489723 549061 060920 573847 566309 397215 368296 001702 768114 767175 542590 702490 378457 504076 321708 074440 209808 315034 102407 299362 444768 780560 504950 917518 330370 467000 256119 359316 067221 791238 774995 688895 759267 577331 678663 274600 139805 781277 605816 274775 782064 394898 618221 211758 587787 629465 955039 638739 190140 163697 551926 769614 878315 284753 062043 185562 418076 402468 400172 444806 771378 461852 451022 764685 714988 723447 084923 399285 941151 468753 867493 836888 173029 811056 729448 755527 908236 041805 710698 534700 009113 937481 771998 286048 980895 840227 886021 169269 074636 921214 827447 493433 385481 390843 316240 340087 702505 339677 (763 digits)/371 325460 292812 938241 100308 570397 837787 529129 280835 093734 642632 519808 474209 284418 745535 446212 798313 129295 050243 837728 082774 117491 170073 857431 897257 612250 152717 015941 466514 659968 178199 302550 776537 628892 482735 607650 662214 415983 620964 653693 256745 516141 014349 728432 570108 240530 819193 331398 200023 757132 188214 256688 902093 486321 429094 039825 597681 009250 967488 312425 504371 834432 951551 290245 155435 573551 235395 771667 965473 472101 500563 834764 513428 556703 337391 411767 107063 072573 195973 167176 371257 545025 720542 497950 357407 454903 892272 085144 876210 409282 601555 989742 220625 083737 778507 450808 030871 132113 589058 199208 715174 610300 337268 431138 840378 760229 858613 051988 484198 637177 573472 699520 213865 007353 221565 338855 102641 446134 978063 839375 231249 322919 429643 444735 785535 548233 717784 758584 (765 digits), a[1459] = 1
                                                                                      A[1460]/B[1460] = 22 451084 135567 582312 634706 059218 389638 955999 412640 710415 044039 733005 974678 845592 146156 588411 984090 206974 024637 940463 961749 943067 558714 060213 440472 164021 960937 792459 579967 260555 074102 732223 781483 471022 999551 025251 394673 007291 178854 044938 798706 436269 139196 536425 590344 218988 523741 181070 148263 672498 536394 026193 286995 046982 540484 945481 650779 968600 924219 994216 343266 507423 715506 091162 763907 363099 720360 508313 535446 986801 141364 905363 332958 286617 748902 915399 603595 291872 805008 767954 188762 629767 552929 298367 152560 612391 046160 321621 142183 501273 134862 868700 920067 286399 066804 105465 991240 640706 073377 539358 222645 766230 800179 857439 135069 542259 075445 849762 144939 356618 311479 330589 976226 538189 578233 031968 875380 386980 717692 375879 208686 740181 434223 415635 026223 679271 824045 881747 (764 digits)/2182 100017 335885 667181 935957 599236 387734 935372 699164 471433 121611 688923 028624 010131 305468 622778 342833 442493 211746 703146 083440 639644 531005 900954 417194 849841 576646 203594 871193 057733 701142 813156 086269 628840 209737 573119 081757 970784 685591 209787 940732 702492 223088 539796 829304 604731 972308 922379 714456 394871 217799 728084 752947 325189 767097 821039 550758 953583 287975 709660 365984 721303 116501 080236 778070 324131 923482 941877 039423 164643 074759 251099 158043 201433 632009 828265 578148 041634 417091 099518 265263 917395 818535 949803 345362 211451 646606 854146 493775 225149 141436 418999 129703 294858 115345 972957 188489 552595 464569 237270 575585 843689 579669 497993 940461 238744 291037 527166 200861 048204 876982 712922 273603 080006 381927 089609 359617 698376 917050 570023 080623 595076 171557 427022 826395 828285 570138 496637 (766 digits), a[1460] = 5
                                                                                      A[1461]/B[1461] = 48 722643 540133 368336 424552 778919 235104 819159 337508 601692 527426 481892 834099 850733 422428 486066 997839 938908 477728 629505 239695 433387 340256 271957 721043 653262 394993 942676 012189 862346 637929 013508 623887 515893 565411 447718 157642 016285 125822 857053 140003 575028 656850 576927 502396 512417 257290 677174 398934 644359 517556 832947 078941 011483 411340 357963 557679 296517 915661 779671 461528 703743 190279 759657 206478 000799 580526 797904 676710 248378 064794 205625 284137 784994 085593 460265 162230 222484 800157 699605 929452 029149 984173 881487 367164 410344 510397 045710 684539 447353 041104 199254 291157 337483 848596 934379 067404 680698 087906 547470 312785 369349 773389 525934 999587 840046 059127 741330 000577 247936 632072 598661 724451 362428 137361 904165 636781 943230 510021 672973 244820 973796 253928 222113 368687 698631 350597 103171 (764 digits)/4735 525494 964584 272604 972223 768870 613257 399874 679164 036600 885855 897654 531457 304681 356472 691769 483980 014281 473737 244020 249655 396780 232085 659340 731647 311933 306009 423131 208900 775435 580484 928862 949076 886572 902210 753888 825730 357552 992147 073269 138210 921125 460526 808026 228717 449994 763811 176157 628936 546874 623813 712858 407988 136700 963289 681904 699198 916417 543439 731746 236341 277039 184553 450718 711576 221815 082361 655422 044319 801387 650082 336962 829514 959570 601411 068298 263359 155842 030155 366212 901785 379817 357614 397557 048131 877807 185485 793437 863760 859580 884428 827740 480031 673454 009199 396722 407850 237304 518196 673749 866346 297679 496607 427126 721301 237718 440688 106320 885920 733587 327438 125364 761071 167365 985419 518073 821876 842888 812164 979421 392496 513071 772758 298781 438327 204804 858061 751858 (766 digits), a[1461] = 2
                                                                                      A[1462]/B[1462] = 71 173727 675700 950649 059258 838137 624743 775158 750149 312107 571466 214898 808778 696325 568585 074478 981930 145882 502366 569969 201445 376454 898970 332171 161515 817284 355931 735135 592157 122901 712031 745732 405370 986916 564962 472969 552315 023576 304676 901991 938710 011297 796047 113353 092740 731405 781031 858244 547198 316858 053950 859140 365936 058465 951825 303445 208459 265118 839881 773887 804795 211166 905785 850819 970385 363899 300887 306218 212157 235179 206159 110988 617096 071611 834496 375664 765825 514357 605166 467560 118214 658917 537103 179854 519725 022735 556557 367331 826722 948626 175967 067955 211224 623882 915401 039845 058645 321404 161284 086828 535431 135580 573569 383374 134657 382305 134573 591092 145516 604554 943551 929251 700677 900617 715594 936134 512162 330211 227714 048852 453507 713977 688151 637748 394911 377903 174642 984918 (764 digits)/6917 625512 300469 939786 908181 368107 000992 335247 378328 508034 007467 586577 560081 314812 661941 314547 826813 456774 685483 947166 333096 036424 763091 560295 148842 161774 882655 626726 080093 833169 281627 742019 035346 515413 111948 327007 907488 328337 677738 283057 078943 623617 683615 347823 058022 054726 736120 098537 343392 941745 841613 440943 160935 461890 730387 502944 249957 870000 831415 441406 602325 998342 301054 530955 489646 545947 005844 597299 083742 966030 724841 588061 987558 161004 233420 896563 841507 197476 447246 465731 167049 297213 176150 347360 393494 089258 832092 647584 357536 084730 025865 246739 609734 968312 124545 369679 596339 789899 982765 911020 441932 141369 076276 925120 661762 476462 731725 633487 086781 781792 204420 838287 034674 247372 367346 607683 181494 541265 729215 549444 473120 108147 944315 725804 264723 033090 428200 248495 (766 digits), a[1462] = 1
                                                                                      A[1463]/B[1463] = 1401 023469 378451 430668 550470 703534 105236 547175 590345 531736 385284 564970 200895 080919 225544 901167 654512 710676 022693 458920 067157 586030 420692 583209 789844 181665 157696 910252 263175 197479 166532 182424 325936 267308 299698 434139 651627 464234 914683 994899 975493 789686 781745 730636 264470 409127 096895 983820 795702 664662 542623 156614 031726 122336 496021 123422 518405 333775 873415 483539 752637 715914 400210 925236 643799 914886 297385 616050 707697 716782 981817 314409 008963 145618 941024 597895 712914 995279 298320 583248 175530 548583 189134 298723 241939 842320 084987 025015 392275 471250 384478 490403 304425 191259 241216 691435 181665 787377 152304 197212 485976 945380 671207 810043 558078 103843 616025 972080 765392 734480 559559 254444 037331 474164 733665 690721 367866 217243 836588 601169 861467 539372 328809 339332 872003 878791 668813 816613 (766 digits)/136170 410228 673513 128556 227669 762903 632111 769574 867405 689247 027740 042628 173002 286121 933357 668178 193435 693000 497932 240180 578480 088850 730825 304948 559648 385656 076466 330926 730683 605651 931412 027224 620660 679422 029228 967039 068008 595968 869174 451353 638139 769861 449218 416664 331136 489802 750093 048367 153402 440045 614469 090778 465761 912624 840652 237845 448398 446433 340333 118471 680535 245542 904589 538873 014860 594808 193409 004104 635436 155971 422072 510140 593120 018651 036408 103011 251995 907894 527838 215105 075722 026867 704470 997404 524519 573724 995246 097540 656946 469451 375868 515793 064996 071384 375561 420634 738306 245404 190748 983138 263056 983691 945869 004419 294788 290510 343475 142575 534774 587639 211434 052818 419881 867440 965005 064054 270273 126937 667260 418866 381778 567882 714757 089062 468064 833522 993866 473263 (768 digits), a[1463] = 19
                                                                                      A[1464]/B[1464] = 1472 197197 054152 381317 609729 541671 729980 322334 340494 843843 956750 779869 009673 777244 794129 975646 636442 856558 525060 028889 268602 962485 319662 915380 951359 998949 513628 645387 855332 320380 878563 928156 731307 254224 864660 907109 203942 487811 219360 896891 914203 800984 577792 843989 357211 140532 877927 842065 342900 981520 596574 015754 397662 180802 447846 426867 726864 598894 713297 257427 557432 927081 305996 776056 614185 278785 598272 922268 919854 951962 187976 425397 626059 217230 775520 973560 478740 509636 903487 050808 293745 207500 726237 478577 761664 865055 641544 392347 218998 419876 560445 558358 515649 815142 156617 731280 240311 108781 313588 284041 021408 080961 244777 193417 692735 486148 750599 563172 910909 339035 503111 183695 738009 374782 449260 626855 880028 547455 064302 650022 314975 253350 016960 977081 266915 256694 843456 801531 (766 digits)/143088 035740 973983 068343 135851 131010 633104 104822 245734 197281 035207 629205 733083 600934 595298 982726 020249 149775 183416 187346 911576 125275 493916 865243 708490 547430 959121 957652 810777 438821 213039 769243 656007 194835 141177 294046 975496 924306 546912 734410 717083 393479 132833 764487 389158 544529 486213 146904 496795 381791 456082 531721 626697 374515 571039 740789 698356 316434 171748 559878 282861 243885 205644 069828 504507 140755 199253 601403 719179 122002 146914 098202 580678 179655 269828 999575 093503 105370 975084 680836 242771 324080 880621 344764 918013 662983 827338 745125 014482 554181 401733 762532 674731 039696 500106 790314 334646 035304 173514 894158 704989 125061 022145 929539 956550 766973 075200 776062 621556 369431 415854 891105 454556 114813 332351 671737 451767 668203 396475 968310 854898 676030 659072 814866 732787 866613 422066 721758 (768 digits), a[1464] = 1
                                                                                      A[1465]/B[1465] = 4345 417863 486756 193303 769929 786877 565197 191844 271335 219424 298786 124708 220242 635408 813804 852460 927398 423793 072813 516698 604363 511001 060018 413971 692564 179564 184954 201027 973839 838240 923660 038737 788550 775758 029020 248358 059512 439857 353405 788683 803901 391655 937331 418614 978892 690192 852751 667951 481504 627703 735771 188122 827050 483941 391713 977157 972134 531565 300009 998394 867503 570077 012204 477349 872170 472457 493931 460588 547407 620707 357770 165204 261081 580080 492066 545016 670396 014553 105294 684864 763020 963584 641609 255878 765269 572431 368075 809709 830272 311003 505369 607120 335724 821543 554452 153995 662288 004939 779480 765294 528793 107303 160762 196878 943549 076141 117225 098426 587211 412551 565781 621835 513350 223729 632186 944433 127923 312153 965193 901214 491418 046072 362731 293495 405834 392181 355727 419675 (766 digits)/422346 481710 621479 265242 499372 024924 898319 979219 358874 083809 098155 301039 639169 487991 123955 633630 233933 992550 864764 614874 401632 339401 718659 035435 976629 480517 994710 246232 352238 483294 357491 565711 932675 069092 311583 555133 019002 444581 962999 920175 072306 556819 714885 945639 109453 578861 722519 342176 146993 203628 526634 154221 719156 661655 982731 719424 845111 079301 683830 238228 246257 733313 315877 678530 023874 876318 591916 206912 073794 399975 715900 706545 754476 377961 576066 102161 439002 118636 478007 576777 561264 675029 465713 686934 360546 899692 649923 587790 685911 577814 179336 040858 414458 150777 375775 001263 407598 316012 537778 771455 673035 233813 990160 863499 207889 824456 493876 694700 777887 326502 043143 835029 328994 097067 629708 407529 173808 463344 460212 355488 091575 919944 032902 718795 933640 566749 837999 916779 (768 digits), a[1465] = 2
                                                                                      A[1466]/B[1466] = 231779 343961 852230 626417 416008 246182 685431 490080 721261 473331 792415 389404 682533 453911 925787 156075 788559 317591 384176 413915 299869 045541 500638 855880 657261 515851 316201 299870 468843 747149 832545 981259 524498 369400 402734 070086 358101 800250 949867 697133 520977 558749 256358 030583 238523 720754 073766 243493 862646 249818 592446 986264 231337 829696 208687 216240 249994 771855 613827 172355 535122 141162 952834 075599 839220 319032 776640 333461 932458 849452 149795 181223 463382 961496 855047 859444 009729 280951 484105 348640 733856 277486 731528 040152 320952 203918 149562 306968 223430 903062 345034 735736 309065 356950 542581 893050 341575 370589 626068 844651 047442 768028 765173 628001 700836 521627 963529 779782 033114 204268 489537 140977 945571 232452 955168 681811 659964 091615 219579 414390 360131 695185 241719 532337 776138 042306 697010 044306 (768 digits)/22 527451 566403 912384 126195 602568 452030 244063 003448 266060 639163 237438 584306 609066 464464 164947 565128 418750 754971 015940 775690 198090 113566 582845 743350 469853 014884 678765 007967 479417 053422 160092 751976 087785 856727 655105 716096 982626 487150 585908 503689 549330 904924 021788 883360 190198 224200 779738 282240 287435 174103 367692 705472 742000 442282 655820 870306 489243 519423 414751 185975 334521 109490 947161 031919 769875 585640 570812 567743 630282 320715 089651 545127 567926 211618 801332 414131 360615 393104 309486 250046 989799 100642 563446 752286 026999 346694 273288 898031 367796 178332 906543 928028 641013 030897 416181 857274 937356 783968 675789 781309 375856 517202 500671 694997 974711 463167 250665 595203 849584 674039 702478 147659 891243 259397 706897 270783 663616 225459 787730 809179 708422 433064 402916 911051 215737 904354 836062 311045 (770 digits), a[1466] = 53
                                                                                      A[1467]/B[1467] = 9 970857 208223 132673 129252 658284 372733 038751 265315 285578 572691 372647 869109 569181 153621 622652 563719 835449 080222 592399 315056 498732 469285 587489 216839 954809 361170 781610 095458 134120 965683 723137 232897 341980 659975 346585 262071 457889 850648 197716 765425 205936 417873 960726 733694 235412 682618 024700 138187 575293 369903 210991 597484 774577 160878 365264 275488 721909 721356 694578 409682 877755 640083 984069 728142 958644 190866 889465 799451 643138 147149 798962 957813 186548 924445 259124 501109 088755 095466 921824 676416 318840 895514 097314 982428 566214 340911 799255 009343 437801 142684 341863 243781 625535 170416 885473 555160 350028 940293 700441 085289 568832 132540 063228 200952 079519 506143 549005 629054 011122 196096 615878 683887 172913 219206 704440 262334 506379 251608 407108 719999 977080 939037 756671 184019 779770 211369 327159 324833 (769 digits)/969 102763 837078 853996 691653 409815 462225 393029 127494 799481 567828 308014 426223 829027 459950 216700 934152 240216 456304 550217 969552 919507 222764 781025 999506 180309 120559 181605 588833 967171 780447 241479 900683 707466 908381 481129 347303 271941 392057 157065 578825 693535 468552 651807 930127 287977 219495 251265 478508 506705 690073 337420 489549 625175 679810 183029 142603 882582 414508 518131 235167 630665 441424 043802 051080 128525 058863 136856 619888 175934 190724 570917 147031 175303 477570 033359 909809 945464 022121 785916 328798 122626 002659 693924 035233 521518 807546 401346 203139 501147 246129 160724 946089 978018 479366 271594 864085 713940 026665 596739 367758 834865 473521 519043 748412 120482 740648 272497 288466 310028 310209 249704 184404 652454 251169 026291 051226 709306 158115 332637 150215 553740 541713 358329 893998 210370 454007 788679 291714 (771 digits), a[1467] = 43
                                                                                      A[1468]/B[1468] = 10 202636 552184 984903 755670 074292 618915 724182 755396 006840 046023 165063 258514 251714 607533 548439 719795 624008 397813 976575 728971 798601 514827 088128 072720 612070 877022 097811 395328 602964 712833 555683 214156 866479 029375 749319 332157 815991 650899 147584 462558 726913 976623 217084 764277 473936 403372 098466 381681 437939 619721 803438 583749 005914 990574 573951 491728 971904 493212 308405 582038 412877 781246 936903 803742 797864 509899 666106 132913 575596 996601 948758 139036 649931 885942 114172 360553 098484 376418 405930 025057 052697 173000 828843 022580 887166 544829 948817 316311 661232 045746 686897 979517 934600 527367 428055 448210 691604 310883 326509 929940 616274 900568 828401 828953 780356 027771 512535 408836 044236 400365 105415 824865 118484 451659 659608 944146 166343 343223 626688 134390 337212 634222 998390 716357 555908 253676 024169 369139 (770 digits)/991 630215 403482 766380 817849 012383 914255 637092 130943 065542 206991 545453 010530 438093 924414 381648 499280 658967 211275 566158 745243 117597 336331 363871 742856 650162 135443 860370 596801 446588 833869 401572 652659 795252 765109 136235 063400 254567 879207 742974 082515 242866 373476 673596 813487 478175 443696 031003 760748 794140 864176 705113 195022 367176 122092 838850 012910 371825 933931 932882 421142 965186 550914 990963 082999 898400 644503 707669 187631 806216 511439 660568 692158 743229 689188 834692 323941 306079 415226 095402 578845 112425 103302 257370 787519 548518 154240 674635 101170 868943 424462 067268 874118 619031 510263 687776 721360 651296 810634 272529 149068 210721 990724 019715 443410 095194 203815 523162 883670 159612 984248 952182 332064 543697 510566 733188 322010 372922 383575 120367 959395 262162 974777 761246 805049 426108 358362 624741 602759 (771 digits), a[1468] = 1
                                                                                      A[1469]/B[1469] = 1479 150520 722860 958813 945743 356421 496597 321068 042340 270545 200027 141757 095161 816084 638452 597972 214289 692658 365435 219304 286995 497350 604386 277931 688608 093015 652352 866451 022776 961039 613715 741520 071486 114960 890083 248569 092796 960687 580125 449879 373881 881549 051617 220932 789650 482254 768200 203859 100314 638598 609842 906147 657341 626335 803617 014279 084460 676156 743929 104982 223214 332156 139642 898217 467105 851133 616418 808748 939006 529105 657830 420134 979090 776740 500109 699944 420755 270505 299717 375748 284631 907233 807633 450710 234076 318196 796424 428948 558222 655215 730207 255172 294364 208011 111326 525458 097499 941049 707492 717870 996738 312417 814451 353091 570296 450787 505241 354104 501444 381163 848671 795757 464464 234674 258197 688128 219382 459820 675810 650200 072208 535700 267149 524934 339507 830558 740716 807548 480849 (772 digits)/143763 853781 938597 212834 461911 193099 115037 134295 983296 237559 374610 853247 942606 914552 575621 174084 830567 131494 879986 077077 284561 853523 654481 178556 970863 803656 624475 074971 528242 275963 857641 067941 883694 223865 084097 098978 476939 929715 997972 145333 461020 666293 249193 649749 072324 145241 111723 715807 026334 862990 131518 873720 572770 498537 261178 977431 001697 425516 900706 853199 879754 617528 773182 742486 003065 498217 867397 041219 638868 271111 838035 692808 817890 200378 720762 229054 557358 020899 814679 523887 682494 311840 878184 755317 438048 508133 018203 548800 771744 629000 368666 847442 819171 118555 957337 311442 740019 500680 758000 840936 833581 178832 137780 358067 599465 828448 090083 607952 536969 294298 042058 363960 001698 944895 772778 605409 420720 410129 392932 665623 303133 305208 909710 977869 821115 569974 058225 751470 089010 (774 digits), a[1469] = 144
                                                                                      A[1470]/B[1470] = 19239 159405 949377 449485 050333 707772 074680 898067 305819 523927 646376 007905 495617 860814 907417 322078 505561 628567 148471 827531 459913 264159 371848 701240 024625 821274 357609 361674 691429 096479 691138 195444 143476 360970 600457 980717 538518 304930 192529 996016 323023 187051 647647 089211 029733 743248 389974 748634 685771 739721 547679 583358 129190 148280 437595 759579 589717 761942 164290 673174 483824 730907 596604 613730 876118 862601 523344 179842 339998 453970 548397 410512 867216 747558 387368 213449 830371 615053 272744 290657 725271 846736 672235 688076 065573 023724 898347 525148 573206 179036 538441 004137 806252 638744 974612 259010 715709 925250 508288 658832 887538 677706 488436 418592 242807 640593 595909 115893 927612 999366 433098 450262 862900 169249 808229 605275 796118 144012 128762 079289 073101 301316 107166 822537 129959 353171 882994 522299 620176 (773 digits)/1 869921 729380 605246 533228 822694 522672 409738 382939 913794 153814 076932 637676 264420 327277 407489 644751 296653 368400 651094 568163 444547 213404 844586 685112 364086 097698 253619 835000 463951 034118 983203 284817 140684 705498 858371 422955 263619 340875 852845 632309 075783 904678 612994 120334 753701 366309 896104 336495 103102 013012 573922 063480 641038 848160 517419 545453 034976 903545 643121 024480 857952 993060 602290 643281 122851 375232 920665 243524 492919 330670 405903 667083 324731 348153 059097 812401 569595 577777 006059 905942 451271 166356 519704 076497 482150 154247 390886 809045 133851 045948 217131 084025 523343 160258 955648 736532 341614 160146 664645 204707 985623 535539 781868 674594 236465 865019 374902 426545 864270 985487 531007 683662 354150 827342 556688 603510 791375 704604 491699 773470 900128 229878 801020 473554 479551 835771 115297 393852 759889 (775 digits), a[1470] = 13
                                                                                      A[1471]/B[1471] = 97674 947550 469748 206239 197411 895281 870001 811404 571437 890183 431907 181284 573251 120159 175539 208364 742097 835494 107794 356961 586561 818147 463629 784131 811737 199387 440399 674824 479922 443438 069406 718740 788867 919813 892373 152156 785388 485338 542775 429960 988997 816807 289852 666987 938319 198496 718073 947032 529173 337206 348240 822938 303292 367737 991595 812177 033049 485867 565382 470854 642337 986694 122665 966871 847700 164141 233139 707960 638998 798958 399817 472699 315174 514532 436950 767193 572613 345771 663438 829036 910991 140917 168811 891090 561941 436821 288162 054691 424253 550398 422412 275861 325627 401735 984387 820511 676049 567302 248936 012035 434431 700950 256633 446052 784334 653755 484786 933574 139509 377996 014164 047071 778965 080923 299345 714507 199973 179881 319621 046645 437715 042280 802983 637619 989304 596418 155689 419046 581729 (773 digits)/9 493372 500684 964829 878978 575383 806461 163729 048995 552267 006629 759274 041629 264708 550939 613069 397841 313833 973498 135458 917894 507297 920547 877414 604118 791294 292147 892574 249973 847997 446558 773657 492027 587117 751359 375954 213754 795036 634095 262200 306878 839940 189686 314164 251422 840830 976790 592245 398282 541844 928053 001129 191123 777964 739339 848276 704696 176581 943245 116311 975604 169519 582831 784635 958891 617322 374382 470723 258842 103464 924463 867554 028225 441546 941144 016251 291062 405335 909784 844979 053599 938850 143623 476705 137804 848799 279369 972637 594026 440999 858741 454322 267570 435886 919850 735580 994104 448090 301414 081226 864476 761698 856531 047123 731038 781795 153544 964595 740681 858324 221735 697096 782271 772453 081608 556221 622963 377598 933151 851431 532977 803774 454602 914813 345642 218874 748829 634712 720733 888455 (775 digits), a[1471] = 5
                                                                                      A[1472]/B[1472] = 116914 106956 419125 655724 247745 603053 944682 709471 877257 414111 078283 189190 068868 980974 082956 530443 247659 464061 256266 184493 046475 082306 835478 485371 836363 020661 798009 036499 171351 539917 760544 914184 932344 280784 492831 132874 323906 790268 735305 425977 312021 003858 937499 756198 968052 941745 108048 695667 214945 076927 895920 406296 432482 516018 429191 571756 622767 247809 729673 144029 126162 717601 719270 580602 723819 026742 756483 887802 978997 252928 948214 883212 182391 262090 824318 980643 402984 960824 936183 119694 636262 987653 841047 579166 627514 460546 186509 579839 997459 729434 960853 279999 131880 040480 959000 079522 391759 492552 757224 670868 321970 378656 745069 864645 027142 294349 080696 049468 067122 377362 447262 497334 641865 250173 107575 319782 996091 323893 448383 125934 510816 343596 910150 460157 119263 949590 038683 941346 201905 (774 digits)/11 363294 230065 570076 412207 398078 329133 573467 431935 466061 160443 836206 679305 529128 878217 020559 042592 610487 341898 786553 486057 951845 133952 722001 289231 155380 389846 146194 084974 311948 480677 756860 776844 727802 456858 234325 636710 058655 974971 115045 939187 915724 094364 927158 371757 594532 343100 488349 734777 644946 941065 575051 254604 419003 587500 365696 250149 211558 846790 759433 000085 027472 575892 386926 602172 740173 749615 391388 502366 596384 255134 273457 695308 766278 289297 075349 103463 974931 487561 851038 959542 390121 309979 996409 214302 330949 433617 363524 403071 574850 904689 671453 351595 959230 080109 691229 730636 789704 461560 745872 069184 747322 392070 828992 405633 018261 018564 339498 167227 722595 207223 228104 465934 126603 908951 112910 226474 168974 637756 343131 306448 703902 684481 715833 819196 698426 584600 750010 114586 648344 (776 digits), a[1472] = 1
                                                                                      A[1473]/B[1473] = 214589 054506 888873 861963 445157 498335 814684 520876 448695 304294 510190 370474 642120 101133 258495 738807 989757 299555 364060 541454 633036 900454 299108 269503 648100 220049 238408 711323 651273 983355 829951 632925 721212 200598 385204 285031 109295 275607 278080 855938 301018 820666 227352 423186 906372 140241 826122 642699 744118 414134 244161 229234 735774 883756 420787 383933 655816 733677 295055 614883 768500 704295 841936 547474 571519 190883 989623 595763 617996 051887 348032 355911 497565 776623 261269 747836 975598 306596 599621 948731 547254 128571 009859 470257 189455 897367 474671 634531 421713 279833 383265 555860 457507 442216 943387 900034 067809 059855 006160 682903 756402 079607 001703 310697 811476 948104 565482 983042 206631 755358 461426 544406 420830 331096 406921 034290 196064 503774 768004 172579 948531 385877 713134 097777 108568 546008 194373 360392 783634 (774 digits)/20 856666 730750 534906 291185 973462 135594 737196 480931 018328 167073 595480 720934 793837 429156 633628 440433 924321 315396 922012 403952 459143 054500 599415 893349 946674 681994 038768 334948 159945 927236 530518 268872 314920 208217 610279 850464 853692 609066 377246 246066 755664 284051 241322 623180 435363 319891 080595 133060 186791 869118 576180 445728 196968 326840 213972 954845 388140 790035 875744 975689 196992 158724 171562 561064 357496 123997 862111 761208 699849 179598 141011 723534 207825 230441 091600 394526 380267 397346 696018 013142 328971 453603 473114 352107 179748 712987 336161 997098 015850 763431 125775 619166 395116 999960 426810 724741 237794 762974 827098 933661 509021 248601 876116 136671 800056 172109 304093 907909 580919 428958 925201 248205 899056 990559 669131 849437 546573 570908 194562 839426 507677 139084 630647 164838 917301 333430 384722 835320 536799 (776 digits), a[1473] = 1
                                                                                      A[1474]/B[1474] = 760681 270477 085747 241614 583218 098061 388736 272101 223343 326994 608854 300613 995229 284373 858443 746867 216931 362727 348447 808856 945585 783669 732803 293882 780663 680809 513235 170470 125173 489985 250399 812962 095980 882579 648443 987967 651792 617090 569547 993792 215077 465857 619557 025759 687169 362470 586416 623766 447300 319330 628404 094000 639807 167287 691553 723557 590217 448841 614839 988680 431664 830489 245080 223026 438376 599394 725354 675093 832985 408590 992311 950946 675088 591960 608128 224154 329779 880614 735048 965889 278025 373366 870625 989938 195882 152648 610524 483434 262599 568935 110649 947580 504402 367131 789163 779624 595186 672117 775706 719579 591176 617477 750179 796738 461573 138662 777144 998594 687017 643437 831542 130553 904356 243462 328338 422653 584284 835217 752395 643674 356410 501230 049552 753488 444969 587614 621804 022524 552807 (774 digits)/73 933294 422317 174795 285765 318464 735917 785056 874728 521045 661664 622648 842109 910641 165686 921444 363894 383451 288089 552590 697915 329274 297454 520248 969280 995404 435828 262499 089818 791786 262387 348415 583461 672563 081511 065165 188104 619733 802170 246784 677388 182716 946518 651126 241298 900622 302773 730135 133958 205322 548421 303592 591789 009908 568021 007615 114685 375981 216898 386667 927152 618449 052064 901614 285365 812662 121608 977723 785992 695931 793928 696492 865911 389753 980620 350150 287043 115733 679601 939092 998969 377035 670790 415752 270623 870195 572579 372010 394365 622403 194983 048780 209095 144581 079990 971661 904860 503088 750485 227168 870169 274386 137876 457340 815648 418429 534892 251779 890956 465353 494100 003708 210551 823774 880630 120305 774786 808695 350480 926819 824728 226934 101735 607775 313713 450330 584891 904178 620548 258741 (776 digits), a[1474] = 3
                                                                                      A[1475]/B[1475] = 1 735951 595461 060368 345192 611593 694458 592157 065078 895381 958283 727898 971702 632578 669880 975383 232542 423620 025010 060956 159168 524208 467793 764714 857269 209427 581668 264879 052263 901620 963326 330751 258849 913173 965757 682092 260966 412880 509788 417176 843522 731173 752381 466466 474706 280710 865182 998955 890232 638719 052795 500969 417236 015389 218331 803894 831048 836251 631360 524735 592244 631830 365274 332096 993527 448272 389673 440332 945951 283966 869069 332656 257804 847742 960544 477526 196145 635158 067826 069719 880510 103304 875304 751111 450133 581220 202664 695720 601399 946912 417703 604565 451021 466312 176480 521715 459283 258182 404090 557574 122062 938755 314562 502062 904174 734623 225430 119772 980231 580667 042234 124510 805514 229542 818021 063597 879597 364634 174210 272795 459928 661352 388337 812239 604753 998507 721237 437981 405441 889248 (775 digits)/168 723255 575384 884496 862716 610391 607430 307310 230388 060419 490402 840778 405154 615119 760530 476517 168222 691223 891576 027193 799783 117691 649409 639913 831911 937483 553650 563766 514585 743518 452011 227349 435795 660046 371239 740610 226674 093160 213406 870815 600843 121098 177088 543575 105778 236607 925438 540865 400976 597436 965961 183365 629306 216785 462882 229203 184216 140103 223832 649080 829994 433890 262853 974791 131795 982820 367215 817559 333194 091712 767455 533997 455356 987333 191681 791900 968612 611734 756550 574204 011081 083042 795184 304618 893354 920139 858146 080182 785829 260657 153397 223336 037356 684279 159942 370134 534462 243972 263945 281436 674000 057793 524354 790797 767968 636915 241893 807653 689822 511626 417158 932617 669309 546606 751819 909743 399011 163964 271870 048202 488882 961545 342555 846197 792265 817962 503214 193080 076417 054281 (777 digits), a[1475] = 2
                                                                                      A[1476]/B[1476] = 9 440439 247782 387588 967577 641186 570354 349521 597495 700253 118413 248349 159127 158122 633778 735359 909579 335031 487777 653228 604699 566628 122638 556377 580228 827801 589150 837630 431789 633278 306616 904156 107211 661850 711368 058905 292799 716195 166032 655432 211405 870946 227764 951889 399291 090723 688385 581196 074929 640895 583308 133251 180180 716753 258946 711027 878801 771475 605644 238517 949903 590816 656860 905565 190663 679738 547761 927019 404850 252819 753937 655593 239970 913803 394682 995759 204882 505570 219745 083648 368439 794549 749890 626183 240606 101983 165972 089127 490433 997161 657453 133477 202687 835963 249534 397741 076040 886098 692570 563577 329894 284953 190290 260494 317612 134689 265813 376009 899752 590352 854608 454096 158125 052070 333567 646327 820640 407455 706269 116372 943317 663172 442919 110750 777258 437508 193801 811711 049733 999047 (775 digits)/917 549572 299241 597279 599348 370422 773069 321608 026668 823143 113678 826540 867882 986239 968339 304030 205007 839570 745969 688559 696830 917732 544502 719818 128840 682822 204081 081331 662747 509378 522443 485162 762439 972794 937709 768216 321475 085534 869204 600862 681603 788207 831961 369001 770190 083661 929966 434462 138841 192507 378227 220420 738320 093835 882432 153631 035766 076497 336061 632072 077124 787900 366334 775569 944345 726763 957688 065520 451963 154495 631206 366480 142696 326419 939029 309655 130106 174407 462354 810113 054374 792249 646711 938846 737398 470894 863309 772924 323511 925688 961969 165460 395878 565976 879702 822334 577171 722950 070211 634352 240169 563353 759650 411329 655491 603005 744361 290048 340069 023485 579894 666796 557099 556808 639729 669022 769842 628516 709831 167832 269143 034660 814514 838764 275042 540143 100962 869579 002633 530146 (777 digits), a[1476] = 5
                                                                                      A[1477]/B[1477] = 39 497708 586590 610724 215503 176339 975875 990243 455061 696394 431936 721295 608211 265069 204995 916822 870859 763745 976120 673870 577966 790720 958347 990225 178184 520633 938271 615400 779422 434734 189793 947375 687696 560576 811229 917713 432165 277661 173919 038905 689146 214958 663441 274024 071870 643605 618725 323740 189951 202301 386028 033974 137958 882402 254118 648006 346255 922154 053937 478807 391858 995096 992717 954357 756182 167226 580721 148410 565352 295245 884819 955029 217688 502956 539276 460563 015675 657438 946806 404313 354269 281503 874867 255844 412557 989152 866553 052230 563135 935559 047516 138474 261772 810165 174618 112679 763446 802577 174372 811883 441640 078568 075723 544040 174623 273380 288683 623812 579241 942078 460667 940895 438014 437824 152291 648909 162158 994456 999286 738287 233199 314042 160014 255242 713787 748540 496444 684825 604377 885436 (776 digits)/3838 921544 772351 273615 260110 092082 699707 593742 337063 352991 945118 146941 876686 560079 633887 692637 988254 049506 875454 781432 587106 788621 827420 519186 347274 668772 369974 889093 165575 781032 541785 168000 485555 551226 122078 813475 512574 435299 690225 274266 327258 273929 504934 019582 186538 571255 645304 278713 956341 367466 478870 065048 582586 592128 992610 843727 327280 446092 568079 177369 138493 585491 728193 077070 909178 889876 197968 079641 141046 709695 292280 999918 026142 293012 947799 030521 489037 309364 605969 814656 228580 252041 382032 060005 842948 803719 311385 171880 079876 963413 001273 885177 620870 948186 678753 659472 843149 135772 544791 818845 634678 311208 562956 436116 389935 048938 219338 967847 050098 605568 736737 599803 897707 773841 310738 585834 478381 678031 111194 719531 565455 100188 600615 201254 892435 978534 907065 671396 086951 174865 (778 digits), a[1477] = 4
                                                                                      A[1478]/B[1478] = 48 938147 834372 998313 183080 817526 546230 339765 052557 396647 550349 969644 767338 423191 838774 652182 780439 098777 463898 327099 182666 357349 080986 546602 758413 348435 527422 453031 211212 068012 496410 851531 794908 222427 522597 976618 724964 993856 339951 694337 900552 085904 891206 225913 471161 734329 307110 904936 264880 843196 969336 167225 318139 599155 513065 359034 225057 693629 659581 717325 341762 585913 649578 859922 946845 846965 128483 075429 970202 548065 638757 610622 457659 416759 933959 456322 220558 163009 166551 487961 722709 076053 624757 882027 653164 091136 032525 141358 053569 932720 704969 271951 464460 646128 424152 510420 839487 688675 866943 375460 771534 363521 266013 804534 492235 408069 554496 999822 478994 532431 315276 394991 596139 489894 485859 295236 982799 401912 705555 854660 176516 977214 602933 365993 491046 186048 690246 496536 654111 884483 (776 digits)/4756 471117 071592 870894 859458 462505 472776 915350 363732 176135 058796 973482 744569 546319 602226 996668 193261 889077 621424 469992 283937 706354 371923 239004 476115 351594 574055 970424 828323 290411 064228 653163 247995 524021 059788 581691 834049 520834 559429 875129 008862 062137 336895 388583 956728 654917 575270 713176 095182 559973 857097 285469 320906 685964 875042 997358 363046 522589 904140 809441 215618 373392 094527 852640 853524 616640 155656 145161 593009 864190 923487 366398 168838 619432 886828 340176 619143 483772 068324 624769 282955 044291 028743 998852 580347 274614 174694 944804 403388 889101 963243 050638 016749 514163 558456 481807 420320 858722 615003 453197 874847 874562 322606 847446 045426 651943 963700 257895 390167 629054 316632 266600 454807 330649 950468 254857 248224 306547 821025 887363 834598 134849 415130 040019 167478 518678 008028 540975 089584 705011 (778 digits), a[1478] = 1
                                                                                      A[1479]/B[1479] = 137 374004 255336 607350 581664 811393 068336 669773 560176 489689 532636 660585 142888 111452 882545 221188 431737 961300 903917 328068 943299 505419 120321 083430 695011 217504 993116 521463 201846 570759 182615 650439 277513 005431 856425 870950 882095 265373 853822 427581 490250 386768 445853 725851 014194 112264 232947 133612 719712 888695 324700 368424 774238 080713 280249 366074 796371 309413 373100 913458 075384 166924 291875 674203 649873 861156 837687 299270 505757 391377 162335 176274 133007 336476 407195 373207 456791 983457 279909 380236 799687 433611 124383 019899 718886 171424 931603 334946 670275 801000 457454 682377 190694 102422 022923 133521 442422 179928 908259 562804 984708 805610 607751 153109 159094 089519 397677 623457 537231 006941 091220 730878 630293 417613 124010 239383 127757 798282 410398 447607 586233 268471 365880 987229 695880 120637 876937 677898 912601 654402 (777 digits)/13351 863778 915537 015404 979027 017093 645261 424443 064527 705262 062712 093907 365825 652718 838341 685974 374777 827662 118303 721417 154982 201330 571266 997195 299505 371961 518086 829942 822222 361854 670242 474326 981546 599268 241655 976859 180673 476968 809085 024524 344982 398204 178724 796750 099995 881090 795845 705066 146706 487414 193064 635987 224399 964058 742696 838444 053373 491272 376360 796251 569730 332275 917248 782352 616228 123156 509280 369964 327066 438077 139255 732714 363819 531878 721455 710874 727324 276908 742619 064194 794490 340623 439520 057711 003643 352947 660775 061488 886654 741616 927759 986453 654369 976513 795666 623087 683790 853217 774798 725241 384374 060333 208170 131008 480788 352826 146739 483637 830433 863677 370002 133004 807322 435141 211675 095548 974830 291126 753246 494259 234651 369887 430875 281293 227393 015890 923122 753346 266120 584887 (779 digits), a[1479] = 2
                                                                                      A[1480]/B[1480] = 30683 341096 774436 437492 894333 758180 785307 699268 971914 597413 328325 280131 631387 277184 646358 977203 058004 468879 037462 486473 538456 065812 912588 151647 745914 852048 992406 739325 222997 347310 219700 899490 680308 433731 505567 198665 432209 172225 742353 045010 226388 335268 316587 090689 636448 769253 254321 700572 760855 022254 377518 325949 973231 598217 008673 993713 815859 692811 861085 418476 152431 810030 737854 207336 868716 884939 932750 812752 754100 825172 839501 919754 118295 450998 738527 681585 085170 473982 586343 280768 053006 771334 362171 319664 964780 318895 780068 834465 525073 555822 717363 442064 989245 486239 536011 285702 499633 812822 408825 880972 361598 014686 794520 947876 970217 370895 236607 030853 281509 080294 657499 380926 151571 617621 140142 677674 472788 418890 224409 671151 906535 846329 194393 518215 672313 088295 247348 667994 164280 816129 (779 digits)/2 982222 093815 236347 306205 182483 274388 366074 566153 753410 449575 043593 914825 323690 102620 552422 968953 768717 457730 003154 346017 844968 603071 764463 613556 265813 299013 107419 047674 183909 984002 528300 428080 132887 160838 949071 421289 124234 884878 985390 344057 939936 861669 192525 063856 255810 138165 048862 942926 810729 253338 910511 110620 362098 671064 496437 970382 265335 076329 832598 373541 265482 470921 641006 317274 272396 080541 725178 647206 528825 555392 977515 761701 300594 228387 771451 865240 812457 234421 672375 940208 454301 003318 041716 868406 392814 981942 527533 656826 127396 269676 853720 029802 941254 276739 992113 430360 905681 126286 395119 182026 590263 328867 744546 062337 261229 332174 686605 109131 576919 229107 827107 926672 487710 367140 154014 562278 635379 227813 794994 107173 161853 619746 500317 768408 876121 062353 864402 537192 434475 134812 (781 digits), a[1480] = 223
                                                                                      A[1481]/B[1481] = 30820 715101 029773 044843 475998 569573 853644 369042 532091 087102 860961 940716 774275 388637 528904 198391 489742 430179 941379 814542 481755 571232 032909 235078 440926 069553 985523 260788 424843 918069 402316 549929 957821 439163 361993 069616 314304 437599 596175 472591 716638 722036 762440 816540 650642 881517 487268 834185 480567 910949 702218 694374 747469 678930 288923 359788 612231 002225 234186 331934 227815 976955 029729 881540 518590 746096 770438 112023 259858 216550 001837 096028 251302 787475 145723 054792 541962 457439 866252 661004 852694 204945 486554 339564 683666 490320 711672 169412 195349 356823 174818 124442 179939 588661 558934 419223 942055 992751 317085 443777 346306 820297 402272 100986 129311 460414 634284 654310 818740 087235 748720 111804 781865 035234 264152 917057 600546 217172 634808 118759 492769 114800 560274 505445 368193 208933 124286 345893 076882 470531 (779 digits)/2 995573 957594 151884 321610 161510 291482 011335 990596 817938 154837 106306 008732 689515 755339 390764 654928 143495 285392 121458 067434 999950 804402 335730 610751 565318 670974 625505 877617 006132 345857 198542 902407 114433 760107 190727 398148 304908 361847 794475 368582 284919 259873 371249 860606 355806 019255 844708 647992 957435 740753 103575 746607 586498 635123 239134 808826 318708 567602 208959 169792 835212 803197 558255 099626 888624 203698 234459 017170 855891 993470 116771 494415 664413 760266 492907 576115 539781 511330 414995 004403 248791 343941 481236 926117 396458 334890 188308 718315 014051 011293 781480 016256 595624 253253 787780 053448 589471 979504 169917 907267 974637 389200 952716 193345 742017 685000 833344 592769 407353 092785 197110 059677 295032 802281 365689 657827 610209 518940 548240 601432 396504 989633 931193 049702 103514 078244 787525 290538 700595 719699 (781 digits), a[1481] = 1
                                                                                      A[1482]/B[1482] = 61504 056197 804209 482336 370332 327754 638952 068311 504005 684516 189287 220848 405662 665822 175263 175594 547746 899058 978842 301016 020211 637044 945497 386726 186840 921602 977930 000113 647841 265379 622017 449420 638129 872894 867560 268281 746513 609825 338528 517601 943027 057305 079027 907230 287091 650770 741590 534758 241422 933204 079737 020324 720701 277147 297597 353502 428090 695037 095271 750410 380247 786985 767584 088877 387307 631036 703188 924776 013959 041722 841339 015782 369598 238473 884250 736377 627132 931422 452595 941772 905700 976279 848725 659229 648446 809216 491741 003877 720422 912645 892181 566507 169185 074901 094945 704926 441689 805573 725911 324749 707904 834984 196793 048863 099528 831309 870891 685164 100249 167530 406219 492730 933436 652855 404295 594732 073334 636062 859217 789911 399304 961129 754668 023661 040506 297228 371635 013887 241163 286660 (779 digits)/5 977796 051409 388231 627815 343993 565870 377410 556750 571348 604412 149899 923558 013205 857959 943187 623881 912212 743122 124612 413452 844919 407474 100194 224307 831131 969987 732924 925291 190042 329859 726843 330487 247320 920946 139798 819437 429143 246726 779865 712640 224856 121542 563774 924462 611616 157420 893571 590919 768164 994092 014086 857227 948597 306187 735572 779208 584043 643932 041557 543334 100695 274119 199261 416901 161020 284239 959637 664377 384717 548863 094287 256116 965007 988654 264359 441356 352238 745752 087370 944611 703092 347259 522953 794523 789273 316832 715842 375141 141447 280970 635200 046059 536878 529993 779893 483809 495153 105790 565037 089294 564900 718068 697262 255683 003247 017175 519949 701900 984272 321893 024217 986349 782743 169421 519704 220106 245588 746754 343234 708605 558358 609380 431510 818110 979635 140598 651927 827731 135070 854511 (781 digits), a[1482] = 1
                                                                                      A[1483]/B[1483] = 461349 108485 659239 421198 068324 863856 326308 847223 060130 878716 185972 486655 613914 049392 755746 427553 323970 723592 793275 921654 623237 030546 651390 942161 748812 520774 831033 261583 959732 775726 756438 695874 424730 549427 434914 947588 539899 706376 965875 095805 317828 123172 315636 167152 660284 436912 678402 577493 170528 443378 260377 836647 792378 618961 372104 834305 608865 867484 901088 584806 889550 485855 402818 503682 229744 163353 692760 585455 357571 508609 891210 206504 838490 456792 335478 209435 931892 977397 034424 253415 192601 038904 427633 954172 222794 154836 153859 196556 238309 745344 420089 089992 364235 112969 223554 353709 033884 631767 398464 717025 301640 665186 779823 443027 826013 279583 730526 450459 520484 259948 592256 560921 315921 605222 094222 080182 113888 669612 649332 648139 287903 842708 842950 671072 651737 289531 725731 443103 765025 477151 (780 digits)/44 840146 317459 869505 716317 569465 252574 653209 887850 817378 385722 155605 473638 781956 761058 993078 022101 528984 487246 993744 961604 914386 656721 037090 180906 383242 460888 755980 354655 336428 654875 286446 215817 845680 206730 169319 134210 308911 088935 253535 357063 858912 110671 317674 331844 637119 121202 099709 784431 334590 699397 202183 747203 226679 778437 388144 263286 407014 075126 499861 973131 540079 722031 953085 017935 015766 193377 951922 667812 548914 835511 776782 287234 419469 680846 343423 665610 005452 731595 026591 616685 170437 774758 141913 487783 921371 552719 199205 344303 004181 978088 227880 338673 353773 963210 247034 440115 055543 720038 125177 532329 928942 415681 833551 983126 764746 805229 472992 506076 297259 346036 366635 964125 774234 988232 003619 198571 329330 746220 950883 561671 305015 255296 951768 776478 960960 062435 351020 084656 646091 701276 (782 digits), a[1483] = 7
                                                                                      A[1484]/B[1484] = 522853 164683 463448 903534 438657 191610 965260 915534 564136 563232 375259 707504 019576 715214 931009 603147 871717 622651 772118 222670 643448 667591 596888 328887 935653 442377 808963 261697 607574 041106 378456 145295 062860 422322 302475 215870 286413 316202 304403 613407 260855 180477 394664 074382 947376 087683 419993 112251 411951 376582 340114 856972 513079 896108 669702 187808 036956 562521 996360 335217 269798 272841 170402 592559 617051 794390 395949 510231 371530 550332 732549 222287 208088 695266 219728 945813 559025 908819 487020 195188 098302 015184 276359 613401 871240 964052 645600 200433 958732 657990 312270 656499 533420 187870 318500 058635 475574 437341 124376 041775 009545 500170 976616 491890 925542 110893 601418 135623 620733 427478 998476 053652 249358 258077 498517 674914 187223 305675 508550 438050 687208 803838 597618 694733 692243 586760 097366 456991 006188 763811 (780 digits)/50 817942 368869 257737 344132 913458 818445 030620 444601 388726 990134 305505 397196 795162 619018 936265 645983 441197 230369 118357 375057 759306 064195 137284 405214 214374 430876 488905 279946 526470 984735 013289 546305 093001 127676 309117 953647 738054 335662 033401 069704 083768 232213 881449 256307 248735 278622 993281 375351 102755 693489 216270 604431 175277 084625 123717 042494 991057 719058 541419 516465 640774 996151 152346 434836 176786 477617 911560 332189 933632 384374 871069 543351 384477 669500 607783 106966 357691 477347 113962 561296 873530 122017 664867 282307 710644 869551 915047 719444 145629 259058 863080 384732 890652 493204 026927 923924 550696 825828 690214 621624 493843 133750 530814 238809 767993 822404 992942 207977 281531 667929 390853 950475 556978 157653 523323 418677 574919 492975 294118 270276 863373 864677 383279 594589 940595 203034 002947 912387 781162 555787 (782 digits), a[1484] = 1
                                                                                      A[1485]/B[1485] = 2 029908 602536 049586 131801 384296 438689 222091 593826 752540 568413 311751 609167 672644 195037 548775 236996 939123 591548 109630 589666 553583 033321 442055 928825 555772 847908 257923 046676 782454 899045 891807 131759 613311 816394 342340 595199 399139 654983 879085 936027 100393 664604 499628 390301 502412 699962 938381 914247 406382 573125 280722 407565 331618 307287 381211 397729 719735 555050 890169 590458 698945 304378 914026 281361 080899 546524 880609 116149 472163 159608 088857 873366 462756 542590 994665 046876 608970 703855 495484 838979 487507 084457 256712 794377 836517 046994 090659 797858 114507 719315 356901 059490 964495 676580 179054 529615 460607 943790 771592 842350 330277 165699 709672 918700 602639 612264 534780 857330 382684 542385 587684 721878 063996 379454 589775 104924 675558 586639 174983 962291 349530 254224 635806 755273 728468 049812 017830 814076 783591 768584 (781 digits)/197 293973 424067 642717 748716 309841 707909 745071 221654 983559 356125 072121 665229 167444 618115 801874 960051 852576 178354 348817 086778 192304 849306 448943 396549 026365 753518 222696 194494 915841 609080 326314 854733 124683 589759 096672 995153 523074 095921 353738 566176 110216 807312 962022 100766 383324 957071 079553 910484 642857 779864 850995 560496 752511 032312 759295 390771 380187 232302 124120 522528 462404 710485 410124 322443 546125 626231 686603 664382 349811 988636 389990 917288 572902 689348 166772 986509 078527 163636 368479 300575 791028 140811 136515 334707 053306 161374 944348 502635 441069 755264 817121 492872 025731 442822 327818 211888 707634 197524 195821 397203 410471 816933 425994 699556 068728 272444 451819 130008 141854 349824 539197 815552 445169 461192 573589 454604 054089 225146 833238 372501 895136 849329 101607 560248 782745 671537 359863 821819 989579 368637 (783 digits), a[1485] = 3
                                                                                      A[1486]/B[1486] = 2 552761 767219 513035 035335 822953 630300 187352 509361 316677 131645 687011 316671 692220 910252 479784 840144 810841 214199 881748 812337 197031 700913 038944 257713 491426 290286 066886 308374 390028 940152 270263 277054 676172 238716 644815 811069 685552 971186 183489 549434 361248 845081 894292 464684 449788 787646 358375 026498 818333 949707 620837 264537 844698 203396 050913 585537 756692 117572 886529 925675 968743 577220 084428 873920 697951 340915 276558 626380 843693 709940 821407 095653 670845 237857 214393 992690 167996 612674 982505 034167 585809 099641 533072 407779 707758 011046 736259 998292 073240 377305 669171 715990 497915 864450 497554 588250 936182 381131 895968 884125 339822 665870 686289 410591 528181 723158 136198 992954 003417 969864 586160 775530 313354 637532 088292 779838 862781 892314 683534 400342 036739 058063 233425 450007 420711 636572 115197 271067 789780 532395 (781 digits)/248 111915 792936 900455 092849 223300 526354 775691 666256 372286 346259 377627 062425 962607 237134 738140 606035 293773 408723 467174 461835 951610 913501 586227 801763 240740 184394 711601 474441 442312 593815 339604 401038 217684 717435 405790 948801 261128 431583 387139 635880 193985 039526 843471 357073 632060 235694 072835 285835 745613 473354 067266 164927 927788 116937 883012 433266 371244 951360 665540 038994 103179 706636 562470 757279 722912 103849 598163 996572 283444 373011 261060 460639 957380 358848 774556 093475 436218 640983 482441 861872 664558 262828 801382 617014 763951 030926 859396 222079 586699 014323 680201 877604 916383 936026 354746 135813 258331 023352 886036 018827 904314 950683 956808 938365 836722 094849 444761 337985 423386 017753 930051 766028 002147 618846 096912 873281 629008 718122 127356 642778 758510 714006 484887 154838 723340 874571 362811 734207 770741 924424 (783 digits), a[1486] = 1
                                                                                      A[1487]/B[1487] = 9 688193 904194 588691 237808 853157 329589 784149 121910 702571 963350 372785 559182 749306 925794 988129 757431 371647 234147 754877 026678 144678 136060 558888 701966 030051 718766 458581 971799 952541 719502 702596 962923 641828 532544 276788 028408 455798 568542 429554 584330 184140 199850 182505 784354 851779 062902 013506 993743 861384 422248 143234 201178 865712 917475 533952 154342 989811 907769 549759 367486 605176 036039 167312 903123 174753 569270 710284 995292 003244 289430 553079 160327 475292 256162 637847 024947 112960 541880 442999 941482 244934 383381 855930 017716 959791 080134 299439 792734 334228 851232 364416 207462 458243 269931 671718 294368 269155 087186 459499 494726 349745 163311 768541 150475 187184 781738 943377 836192 392938 451979 346167 048469 004060 292050 854653 444441 263904 263583 225587 163317 459747 428414 336083 105295 990602 959528 363422 627280 152933 365769 (781 digits)/941 629720 802878 344083 027263 979743 286974 072146 220424 100418 394903 205002 852507 055266 329520 016296 778157 733896 404524 750340 472286 047137 589811 207626 801838 748586 306702 357500 617819 242779 390526 345128 057847 777737 742065 314045 841557 306459 390671 515157 473816 692171 925893 492436 171987 279505 664153 298059 767991 879698 199927 052794 055280 535875 383126 408332 690570 493922 086384 120740 639510 771943 830395 097536 594282 714861 937780 481095 654099 200145 107670 173172 299208 445043 765894 490441 266935 387183 086586 815804 886193 784702 929297 540663 185751 345159 254155 522537 168874 201166 798235 857727 125686 774883 250901 392056 619328 482627 267582 853929 453687 123416 668985 296421 514653 578894 556992 786103 143964 412012 403086 329353 113636 451612 317730 864328 074448 941115 379513 215308 300838 170668 991348 556269 024764 952768 295251 448299 024443 301805 141909 (783 digits), a[1487] = 3
                                                                                      A[1488]/B[1488] = 12 240955 671414 101726 273144 676110 959889 971501 631272 019249 094996 059796 875854 441527 836047 467914 597576 182488 448347 636625 839015 341709 836973 597832 959679 521478 009052 525468 280174 342570 659654 972860 239978 318000 771260 921603 839478 141351 539728 613044 133764 545389 044932 076798 249039 301567 850548 371882 020242 679718 371955 764071 465716 710411 120871 584865 739880 746504 025342 436289 293162 573919 613259 251741 777043 872704 910185 986843 621672 846937 999371 374486 255981 146137 494019 852241 017637 280957 154555 425504 975649 830743 483023 389002 425496 667549 091181 035699 791026 407469 228538 033587 923452 956159 134382 169272 882619 205337 468318 355468 378851 689567 829182 454830 561066 715366 504897 079576 829146 396356 421843 932327 823999 317414 929582 942946 224280 126686 155897 909121 563659 496486 486477 569508 555303 411314 596100 478619 898347 942713 898164 (782 digits)/1189 741636 595815 244538 120113 203043 813328 847837 886680 472704 741162 582629 914933 017873 566654 754437 384193 027669 813248 217514 934121 998748 503312 793854 603601 989326 491097 069102 092260 685091 984341 684732 458885 995422 459500 719836 790358 567587 822254 902297 109696 886156 965420 335907 529060 911565 899847 370895 053827 625311 673281 120060 220208 463663 500064 291345 123836 865167 037744 786280 678504 875123 537031 660007 351562 437774 041630 079259 650671 483589 480681 434232 759848 402424 124743 264997 360410 823401 727570 298246 748066 449261 192126 342045 802766 109110 285082 381933 390953 787865 812559 537929 003291 691267 186927 746802 755141 740958 290935 739965 472515 027731 619669 253230 453019 415616 651842 230864 481949 835398 420840 259404 879664 453759 936576 961240 947730 570124 097635 342664 943616 929179 705355 041156 179603 676109 169822 811110 758651 072547 066333 (784 digits), a[1488] = 1
                                                                                      A[1489]/B[1489] = 21 929149 575608 690417 510953 529268 289479 755650 753182 721821 058346 432582 435037 190834 761842 456044 355007 554135 682495 391502 865693 486387 973034 156721 661645 551529 727818 984050 251974 295112 379157 675457 202901 959829 303805 198391 867886 597150 108271 042598 718094 729529 244782 259304 033394 153346 913450 385389 013986 541102 794203 907305 666895 576124 038347 118817 894223 736315 933111 986048 660649 179095 649298 419054 680167 047458 479456 697128 616964 850182 288801 927565 416308 621429 750182 490088 042584 393917 696435 868504 917132 075677 866405 244932 443213 627340 171315 335139 583760 741698 079770 398004 130915 414402 404313 840991 176987 474492 555504 814967 873578 039312 992494 223371 711541 902551 286636 022954 665338 789294 873823 278494 872468 321475 221633 797599 668721 390590 419481 134708 726976 956233 914891 905591 660599 401917 555628 842042 525628 095647 263933 (782 digits)/2131 371357 398693 588621 147377 182787 100302 919984 107104 573123 136065 787632 767440 073139 896174 770734 162350 761566 217772 967855 406408 045886 093124 001481 405440 737912 797799 426602 710079 927871 374868 029860 516733 773160 201566 033882 631915 874047 212926 417454 583513 578328 891313 828343 701048 191071 564000 668954 821819 505009 873208 172854 275488 999538 883190 699677 814407 359089 124128 907021 318015 647067 367426 757543 945845 152635 979410 560355 304770 683734 588351 607405 059056 847467 890637 755438 627346 210584 814157 114051 634260 233964 121423 882708 988517 454269 539237 904470 559827 989032 610795 395656 128978 466150 437829 138859 374470 223585 558518 593894 926202 151148 288654 549651 967672 994511 208835 016967 625914 247410 823926 588757 993300 905372 254307 825569 022179 511239 477148 557973 244455 099848 696703 597425 204368 628877 465074 259409 783094 374352 208242 (784 digits), a[1489] = 1
                                                                                      A[1490]/B[1490] = 34 170105 247022 792143 784098 205379 249369 727152 384454 741070 153342 492379 310891 632362 597889 923958 952583 736624 130843 028128 704708 828097 810007 754554 621325 073007 736871 509518 532148 637683 038812 648317 442880 277830 075066 119995 707364 738501 647999 655642 851859 274918 289714 336102 282433 454914 763998 757271 034229 220821 166159 671377 132612 286535 159218 703683 634104 482819 958454 422337 953811 753015 262557 670796 457210 920163 389642 683972 238637 697120 288173 302051 672289 767567 244202 342329 060221 674874 850991 294009 892781 906421 349428 633934 868710 294889 262496 370839 374787 149167 308308 431592 054368 370561 538696 010264 059606 679830 023823 170436 252429 728880 821676 678202 272608 617917 791533 102531 494485 185651 295667 210822 696467 638890 151216 740545 893001 517276 575379 043830 290636 452720 401369 475100 215902 813232 151729 320662 423976 038361 162097 (782 digits)/3321 112993 994508 833159 267490 385830 913631 767821 993785 045827 877228 370262 682373 091013 462829 525171 546543 789236 031021 185370 340530 044634 596436 795336 009042 727239 288896 495704 802340 612963 359209 714592 975619 768582 661066 753719 422274 441635 035181 319751 693210 464485 856734 164251 230109 102637 463848 039849 875647 130321 546489 292914 495697 463202 383254 991022 938244 224256 161873 693301 996520 522190 904458 417551 297407 590410 021040 639614 955442 167324 069033 041637 818905 249892 015381 020435 987757 033986 541727 412298 382326 683225 313550 224754 791283 563379 824320 286403 950781 776898 423354 933585 132270 157417 624756 885662 129611 964543 849454 333860 398717 178879 908323 802882 420692 410127 860677 247832 107864 082809 244766 848162 872965 359132 190884 786809 969910 081363 574783 900638 188072 029028 402058 638581 383972 304986 634897 070520 541745 446899 274575 (784 digits), a[1490] = 1
                                                                                      A[1491]/B[1491] = 90 269360 069654 274705 079149 940026 788219 209955 522092 203961 365031 417341 056820 455559 957622 303962 260175 027383 944181 447760 275111 142583 593049 665830 904295 697545 201562 003087 316271 570478 456782 972092 088662 515489 453937 438383 282616 074153 404270 353884 421813 279365 824210 931508 598261 063176 441447 899931 082444 982745 126523 250059 932120 149194 356784 526185 162432 701955 850020 830724 568272 685126 174413 760647 594588 887785 258742 065073 094240 244422 865148 531668 760888 156564 238587 174746 163027 743667 398418 456524 702695 888520 565262 512802 180634 217118 696308 076818 333335 040032 696387 261188 239652 155525 481705 861519 296200 834152 603151 155840 378437 497074 635847 579776 256759 138386 869702 228017 654309 160597 465157 700140 265403 599255 524067 278691 454724 425143 570239 222369 308249 861674 717630 855792 092405 028381 859087 483367 373580 172369 588127 (782 digits)/8773 597345 387711 254939 682357 954448 927566 455628 094674 664778 890522 528158 132186 255166 821833 821077 255438 340038 279815 338596 087468 135155 285997 592153 423526 192391 375592 418012 314761 153798 093287 459046 467973 310325 523699 541321 476464 757317 283289 056957 969934 507300 604782 156846 161266 396346 491696 748654 573113 765652 966186 758683 266883 925943 649700 681723 690895 807601 447876 293625 311056 691449 176343 592646 540660 333456 021491 839585 215655 018382 726417 690680 696867 347251 921399 796310 602860 278557 897611 938648 398913 600414 748524 332218 571084 581029 187878 477278 461391 542829 457505 262826 393518 780985 687342 910183 633694 152673 257427 261615 723636 508908 105302 155416 809057 814766 930189 512631 841642 413029 313460 285083 739231 623636 636077 399188 961999 673966 626716 359249 620599 157905 500820 874587 972313 238850 734868 400450 866585 268150 757392 (784 digits), a[1491] = 2
                                                                                      A[1492]/B[1492] = 214 708825 386331 341553 942398 085432 825808 147063 428639 148992 883405 327061 424532 543482 513134 531883 472933 791392 019205 923649 254931 113264 996107 086216 429916 468098 139995 515693 164691 778639 952378 592501 620205 308808 982940 996762 272596 886808 456540 363411 695485 833649 938136 199119 478955 581267 646894 557133 199119 186311 419206 171496 996852 584923 872787 756053 958969 886731 658496 083787 090357 123267 611385 192091 646388 695733 907126 814118 427118 185966 018470 365389 194066 080695 721376 691821 386277 162209 647828 207059 298173 683462 479953 659539 229978 729126 655112 524476 041457 229232 701082 953968 533672 681612 502107 733302 652008 348135 230125 482117 009304 723030 093371 837754 786126 894691 530937 558566 803103 506846 225982 611103 227274 837401 199351 297928 802450 367563 715857 488568 907136 176069 836631 186684 400712 869995 869904 287397 171136 383100 338351 (783 digits)/20868 307684 769931 343038 632206 294728 768764 679078 183134 375385 658273 426578 946745 601347 106497 167326 057420 469312 590651 862562 515466 314945 168431 979642 856095 112022 040081 331729 431862 920559 545784 632685 911566 389233 708465 836362 375203 956269 601759 433667 633079 479087 066298 477943 552641 895330 447241 537159 021874 661627 478862 810281 029465 315089 682656 354470 320035 839459 057626 280552 618633 905089 257145 602844 378728 257322 064024 318785 386752 204089 521868 422999 212639 944395 858180 613057 193477 591102 336951 289595 180153 884054 810598 889191 933452 725438 200077 240960 873564 862557 338365 459237 919307 719388 999442 706029 397000 269890 364308 857091 845990 196696 118928 113716 038808 039661 721056 273095 791148 908867 871687 418330 351428 606405 463039 585187 893909 429296 828216 619137 429270 344839 403700 387757 328598 782688 104633 871422 274915 983200 789359 (785 digits), a[1492] = 2
                                                                                      A[1493]/B[1493] = 519 687010 842316 957812 963946 110892 439835 504082 379370 501947 131842 071463 905885 542524 983891 367729 206042 610167 982593 295058 784973 369113 585263 838263 764128 633741 481553 034473 645655 127758 361540 157095 329073 133107 419819 431907 827809 847770 317351 080707 812784 946665 700483 329747 556172 225711 735237 014197 480683 355367 964935 593053 925825 319042 102360 038293 080372 475419 167012 998298 748986 931661 397184 144830 887366 279253 072995 693309 948476 616354 902089 262447 149020 317955 681340 558388 935582 068086 694074 870643 299043 255445 525169 831880 640591 675372 006533 125770 416249 498498 098553 169125 306997 518750 485921 328124 600217 530423 063402 120074 397046 943134 822591 255285 829012 927769 931577 345151 260516 174289 917122 922346 719953 274057 922769 874549 059625 160271 001954 199507 122522 213814 390893 229160 893830 768373 598896 058161 715852 938570 264829 (783 digits)/50510 212714 927573 941016 946770 543906 465095 813784 460943 415550 207069 381316 025677 457861 034828 155729 370279 278663 461119 063721 118400 765045 622861 551439 135716 416435 455755 081471 178486 994917 184856 724418 291106 088792 940631 214046 226872 669856 486807 924293 236093 465474 737379 112733 266550 187007 386179 822972 616863 088907 923912 379245 325814 556123 015013 390664 330967 486519 563128 854730 548324 501627 690634 798335 298116 848100 149540 477155 989159 426561 770154 536679 122147 236043 637761 022424 989815 460762 571514 517838 759221 368524 369722 110602 437990 031905 588032 959200 208521 267944 134236 181302 232134 219763 686228 322242 427694 692453 986044 975799 415616 902300 343158 382848 886673 894090 372302 058823 423940 230765 056835 121744 442088 836447 562156 569564 749818 532560 283149 597524 479139 847584 308221 650102 629510 804226 944136 143295 416417 234552 336110 (785 digits), a[1493] = 2
                                                                                      A[1494]/B[1494] = 1254 082847 070965 257179 870290 307217 705479 155228 187380 152887 147089 469989 236303 628532 480917 267341 885019 011727 984392 513766 824877 851492 166634 762743 958173 735581 103101 584640 456002 034156 675458 906692 278351 575023 822579 860577 928216 582349 091242 524827 321055 726981 339102 858614 591300 032691 117368 585528 160485 897047 349077 357604 848503 223008 077507 832640 119714 837569 992522 080384 588330 986590 405753 481753 421121 254240 053118 200738 324071 418675 822648 890283 492106 716607 084057 808599 257441 298383 035977 948345 896260 194353 530293 323300 511162 079870 668178 776016 873956 226228 898189 292219 147667 719113 473950 389551 852443 408981 356929 722265 803398 609299 738554 348326 444152 750231 394092 248869 324135 855426 060228 455796 667181 385517 044891 047026 921700 688105 719765 887583 152180 603698 618417 645006 188374 406743 067696 403720 602842 260240 868009 (784 digits)/121888 733114 625079 225072 525747 382541 698956 306647 105021 206486 072412 189210 998100 517069 176153 478784 797979 026639 512889 990004 752267 845036 414155 082521 127527 944892 951591 494671 788836 910393 915498 081522 493778 566819 589728 264454 828949 295982 575375 282254 105266 410036 541056 703410 085742 269345 219601 183104 255600 839443 326687 568771 681094 427335 712683 135798 981970 812498 183883 990013 715282 908344 638415 199514 974961 953522 363105 273097 365071 057213 062177 496357 456934 416483 133702 657907 173108 512627 479980 325272 698596 621103 550043 110396 809432 789249 376143 159361 290607 398445 606837 821842 383576 158916 371899 350514 252389 654798 336398 808690 677224 001296 805244 879413 812155 827842 465660 390742 639029 370397 985357 661819 235606 279300 587352 724317 393546 494417 394515 814186 387550 040008 020143 687962 587620 391141 992906 158013 107750 452305 461579 (786 digits), a[1494] = 2
                                                                                      A[1495]/B[1495] = 1773 769857 913282 214992 834236 418110 145314 659310 566750 654834 278931 541453 142189 171057 464808 635071 091061 621895 966985 808825 609851 220605 751898 601007 722302 369322 584654 619114 101657 161915 036999 063787 607424 708131 242399 292485 756026 430119 408593 605535 133840 673647 039586 188362 147472 258402 852605 599725 641169 252415 314012 950658 774328 542050 179867 870933 200087 312989 159535 078683 337317 918251 802937 626584 308487 533493 126113 894048 272548 035030 724738 152730 641127 034562 765398 366988 193023 366469 730052 818989 195303 449799 055463 155181 151753 755242 674711 901787 290205 724726 996742 461344 454665 237863 959871 717676 452660 939404 420331 842340 200445 552434 561145 603612 273165 678001 325669 594020 584652 029715 977351 378143 387134 659574 967660 921575 981325 848376 721720 087090 274702 817513 009310 874167 082205 175116 666592 461882 318695 198811 132838 (784 digits)/172398 945829 552653 166089 472517 926448 164052 120431 565964 622036 279481 570527 023777 974930 210981 634514 168258 305302 974009 053725 870668 610082 037016 633960 263244 361328 407346 576142 967323 905311 100354 805940 784884 655612 530359 478501 055821 965839 062183 206547 341359 875511 278435 816143 352292 456352 605781 006076 872463 928351 250599 948017 006908 983458 727696 526463 312938 299017 747012 844744 263607 409972 329049 997850 273078 801622 512645 750253 354230 483774 832332 033036 579081 652526 771463 680332 162923 973390 051494 843111 457817 989627 919765 220999 247422 821154 964176 118561 499128 666389 741074 003144 615710 378680 058127 672756 680084 347252 322443 784490 092840 903597 148403 262262 698829 721932 837962 449566 062969 601163 042192 783563 677695 115748 149509 293882 143365 026977 677665 411710 866689 887592 328365 338065 217131 195368 937042 301308 524167 686857 797689 (786 digits), a[1495] = 1
                                                                                      A[1496]/B[1496] = 3027 852704 984247 472172 704526 725327 850793 814538 754130 807721 426021 011442 378492 799589 945725 902412 976080 633623 951378 322592 434729 072097 918533 363751 680476 104903 687756 203754 557659 196071 712457 970479 885776 283155 064979 153063 684243 012468 499836 130362 454896 400628 378689 046976 738772 291093 969974 185253 801655 149462 663090 308263 622831 765058 257375 703573 319802 150559 152057 159067 925648 904842 208691 108337 729608 787733 179232 094786 596619 453706 547387 043014 133233 751169 849456 175587 450464 664852 766030 767335 091563 644152 585756 478481 662915 835113 342890 677804 164161 950955 894931 753563 602332 956977 433822 107228 305104 348385 777261 564606 003844 161734 299699 951938 717318 428232 719761 842889 908787 885142 037579 833940 054316 045092 012551 968602 903026 536482 441485 974673 426883 421211 627728 519173 270579 581859 734288 865602 921537 459052 000847 (784 digits)/294287 678944 177732 391161 998265 308989 863008 427078 670985 828522 351893 759738 021878 491999 387135 113298 966237 331942 486899 043730 622936 455118 451171 716481 390772 306221 358938 070814 756160 815705 015852 887463 278663 222432 120087 742955 884771 261821 637558 488801 446626 285547 819492 519553 438034 725697 825382 189181 128064 767794 577287 516788 688003 410794 440379 662262 294909 111515 930896 834757 978890 318316 967465 197365 248040 755144 875751 023350 719301 540987 894509 529394 036016 069009 905166 338239 336032 486017 531475 168384 156414 610731 469808 331396 056855 610404 340319 277922 789736 064835 347911 824986 999286 537596 430027 023270 932474 002050 658842 593180 770064 904893 953648 141676 510985 549775 303622 840308 701998 971561 027550 445382 913301 395048 736862 018199 536911 521395 072181 225897 254239 927600 348509 026027 804751 586510 929948 459321 631918 139163 259268 (786 digits), a[1496] = 1
                                                                                      A[1497]/B[1497] = 7829 475267 881777 159338 243289 868765 846902 288388 075012 270277 130973 564337 899174 770237 356260 439897 043222 889143 869742 454010 479309 364801 588965 328511 083254 579129 960167 026623 216975 554058 461915 004747 378977 274441 372357 598613 124512 455056 408265 866260 043633 474903 796964 282315 625016 840590 792553 970233 244479 551340 640193 567186 019992 072166 694619 278079 839691 614107 463649 396819 188615 727936 220319 843259 767705 108959 484578 083621 465786 942443 819512 238758 907594 536902 464310 718163 093952 696175 262114 353659 378430 738104 226976 112144 477585 425469 360493 257395 618529 626638 786605 968471 659331 151818 827515 932133 062869 636175 974854 971552 208133 875903 160545 507489 707802 534466 765193 279800 402227 800000 052511 046023 495766 749758 992764 858781 787378 921341 604692 036437 128469 659936 264767 912513 623364 338836 135170 193088 161770 116915 134532 (784 digits)/760974 303717 908117 948413 469048 544427 890068 974588 907936 279080 983269 090003 067534 958928 985251 861112 100732 969187 947807 141187 116541 520318 939360 066923 044788 973771 125222 717772 479645 536721 132060 580867 342211 100476 770534 964412 825364 489482 337300 184150 234612 446606 917420 855250 228361 907748 256545 384439 128593 463940 405174 981594 382915 805047 608455 850987 902756 522049 608806 514260 221388 046606 263980 392580 769160 311912 264147 796954 792833 565750 621351 091824 651113 790546 581796 356810 834988 945425 114445 179879 770647 211090 859381 883791 361134 041963 644814 674407 078600 796060 436897 653118 614283 453872 918181 719298 545032 351353 640128 970851 632970 713385 055699 545615 720800 821483 445208 130183 466967 544285 097293 674329 504297 905845 623233 330281 217188 069767 822027 863505 375169 742793 025383 390120 826634 368390 796939 219951 788003 965184 316225 (786 digits), a[1497] = 2
                                                                                      A[1498]/B[1498] = 112640 506455 329127 702908 110584 888049 707425 851971 804302 591601 259650 912172 966939 582912 933372 060971 581201 081638 127772 678739 145060 179320 164047 962906 846040 212723 130094 576479 595316 952890 179268 036943 191458 125334 277985 533647 427417 383258 215558 258003 065765 049281 536188 999395 489008 059365 065729 768519 224368 868231 625800 248867 902720 775391 982045 596691 075484 748063 643148 714536 566269 095949 293168 913974 477480 313165 963325 265487 117636 647920 020558 385638 839557 267804 349806 229870 765802 411306 435631 718566 389593 977611 763422 048504 349111 791684 389796 281342 823576 723898 907415 312166 832969 082441 019045 157091 185279 254849 425231 166336 917718 424378 547337 056794 626553 910767 432467 760095 539977 085142 772734 478268 995050 541717 911259 991547 926331 435264 907174 484793 225458 660319 334479 294363 997680 325565 626671 568837 186319 095863 884295 (786 digits)/10 947927 930994 891383 668950 564944 930980 323974 071323 382093 735656 117661 019780 967367 917005 180661 168868 376498 900573 756199 020350 254517 739583 602212 653404 017817 939017 112056 119629 471198 329800 864701 019606 069618 629106 907577 244735 439874 114574 359761 066904 731200 538044 663384 493056 635101 434173 417017 571328 928373 262960 249737 259110 048824 681460 958761 576092 933500 420210 454188 034401 078322 970804 663190 693496 016285 121916 573820 180717 818971 461496 593424 814939 151609 136662 050315 333591 025877 721969 133707 686700 945475 566003 501154 704475 112732 197895 367724 719621 890147 209681 464478 968647 599254 891817 284571 093450 562926 921001 620648 185103 631654 892284 733441 780296 602197 050543 536536 662877 239544 591552 389661 885995 973472 076887 462128 642136 577544 498144 580571 314972 506616 326702 703876 487719 377632 743982 087097 538646 663973 651743 686418 (788 digits), a[1498] = 14
                                                                                      A[1499]/B[1499] = 233110 488178 540032 565154 464459 644865 261753 992331 683617 453479 650275 388683 833053 936063 223004 561840 205625 052420 125287 811488 769429 723441 917061 254324 775335 004576 220356 179582 407609 459838 820451 078633 761893 525109 928328 665907 979347 221572 839382 382266 175163 573466 869342 281106 603032 959320 924013 507271 693217 287803 891794 064921 825433 622950 658710 471461 990661 110234 749946 825892 321153 919834 806657 671208 722665 735291 411228 614595 701060 238283 860629 010036 586709 072511 163923 177904 625557 518788 133377 790792 157618 693327 753820 209153 175809 008838 140085 820081 265683 074436 601436 592805 325269 316700 865606 246315 433428 145874 825317 304226 043570 724660 255219 621078 960910 356001 630128 799991 482181 970285 597980 002561 485867 833194 815284 841877 640041 791871 419041 006023 579386 980574 933726 501241 618724 989967 388513 330762 534408 308642 903122 (786 digits)/22 656830 165707 690885 286314 598938 406388 538017 117235 672123 750393 218591 129565 002270 792939 346574 198848 853730 770335 460205 181887 625576 999486 143785 373731 080424 851805 349334 957031 422042 196322 861462 620079 481448 358690 585689 453883 705112 718631 056822 317959 697013 522696 244189 841363 498564 776095 090580 527096 985339 989860 904649 499814 480565 167969 525979 003173 769757 362470 517182 583062 378033 988215 590361 779572 801730 555745 411788 158390 430776 488743 808200 721702 954332 063870 682427 023992 886744 389363 381860 553281 661598 343097 861691 292741 586598 437754 380264 113650 858895 215423 365855 590413 812793 237507 487323 906199 670886 193356 881425 341058 896280 497954 522583 106208 925194 922570 518281 455937 946056 727389 876617 446321 451242 059620 547490 614554 372277 066056 983170 493450 388402 396198 433136 365559 581899 856354 971134 297245 115951 268671 689061 (788 digits), a[1499] = 2
                                                                                      A[1500]/B[1500] = 1 045082 459169 489257 963525 968423 467510 754441 821298 538772 405519 860752 466908 299155 327165 825390 308332 403701 291318 628923 924694 222779 073087 832292 980205 947380 231028 011519 294809 225754 792245 461072 351478 239032 225773 991300 197279 344806 269549 573087 787067 766419 343149 013558 123821 901139 896648 761783 797605 997238 019447 192976 508555 204455 267194 616887 482539 038129 189002 642936 018105 850884 775288 519799 598809 368143 254331 608239 723869 921877 601055 463074 425785 186393 557849 005498 941489 268032 486458 969142 881735 020068 750922 778702 885117 052347 827036 950139 561667 886309 021645 313161 683388 134046 349244 481470 142352 918991 838348 726500 383241 092001 323019 568215 541110 470195 334773 952982 960061 468704 966285 164654 488514 938521 874497 172399 359058 486498 602750 583338 508887 543006 582619 069385 299330 472580 285435 180724 891887 323952 330435 496783 (787 digits)/101 575248 593825 654924 814208 960698 556534 476042 540266 070588 737228 992025 538040 976451 088762 566957 964263 791421 981915 597019 747900 756825 737528 177354 148328 339517 346238 509395 947755 159367 115092 310551 499923 995412 063869 250335 060270 260324 989098 587050 338743 519254 628829 640143 858510 629360 538553 779339 679716 869733 222403 868335 258367 971085 353339 062677 588788 012529 870092 522918 366650 590458 923667 024637 811787 223207 344898 220972 814279 542077 416471 826227 701750 968937 392144 780023 429562 572855 279422 661149 899827 591868 938394 947919 875441 459125 948912 888781 174225 325728 071374 927901 330302 850427 841847 233866 718249 246471 694429 146349 549339 216776 884102 823774 205132 302976 740825 609662 486629 023771 501111 896131 671281 778440 315369 652091 100354 066652 762372 513253 288774 060225 911496 436421 949957 705232 169401 971634 727627 127778 726430 442662 (789 digits), a[1500] = 4
                                                                                      A[1501]/B[1501] = 1 278192 947348 029290 528680 432883 112376 016195 813630 222389 858999 511027 855592 132209 263229 048394 870172 609326 343738 754211 736182 992208 796529 749354 234530 722715 235604 231875 474391 633364 252084 281523 430112 000925 750883 919628 863187 324153 491122 412470 169333 941582 916615 882900 404928 504172 855969 685797 304877 690455 307251 084770 573477 029888 890145 275597 954001 028790 299237 392882 843998 172038 695123 326457 270018 090808 989623 019468 338465 622937 839339 323703 435821 773102 630360 169422 119393 893590 005247 102520 672527 177687 444250 532523 094270 228156 835875 090225 381749 151992 096081 914598 276193 459315 665945 347076 388668 352419 984223 551817 687467 135572 047679 823435 162189 431105 690775 583111 760052 950886 936570 762634 491076 424389 707691 987684 200936 126540 394622 002379 514911 122393 563194 003111 800572 091305 275402 569238 222649 858360 639078 399905 (787 digits)/124 232078 759533 345810 100523 559636 962923 014059 657501 742712 487622 210616 667605 978721 881701 913532 163112 645152 752251 057224 929788 382402 737014 321139 522059 419942 198043 858730 904786 581409 311415 172014 120003 476860 422559 836024 514153 965437 707729 643872 656703 216268 151525 884333 699874 127925 314648 869920 206813 855073 212264 772984 758182 451650 521308 588656 591961 782287 232563 040100 949712 968492 911882 614999 591360 024937 900643 632760 972669 972853 905215 634428 423453 923269 456015 462450 453555 459599 668786 043010 453109 253467 281492 809611 168183 045724 386667 269045 287876 184623 286798 293756 920716 663221 079354 721190 624448 917357 887786 027774 890398 113057 382057 346357 311341 228171 663396 127943 942566 969828 228501 772749 117603 229682 374990 199581 714908 438929 828429 496423 782224 448628 307694 869558 315517 287132 025756 942769 024872 243729 995102 131723 (789 digits), a[1501] = 1
                                                                                      A[1502]/B[1502] = 6 157854 248561 606420 078247 699955 917014 819225 075819 428331 841517 904863 889276 827992 380082 018969 789022 841006 666273 645770 869426 191614 259206 829709 918328 838241 173444 939021 192375 759211 800582 587166 071926 242735 229309 669815 650028 641420 234039 222968 464403 532751 009612 545159 743535 917831 320527 504973 017116 759059 248451 532058 802463 324010 827775 719279 298543 153290 385952 214467 394098 539039 555781 825628 678881 731379 212823 686113 077732 413628 958412 757888 169072 278804 079289 683187 419064 842392 507447 379225 571843 730818 527924 908795 262197 964975 170537 311041 088664 494277 405972 971554 788161 971309 013025 869775 697026 328671 775242 933771 133109 634289 513738 861956 189868 194618 097876 285430 000273 272252 712568 215192 452820 636080 705265 123136 162802 992660 181238 592856 568532 032580 835395 081832 501618 837801 387045 457677 782486 757394 886749 096403 (787 digits)/598 503563 631959 038165 216303 199246 408226 532281 170273 041438 687717 834492 208464 891338 615570 221086 616714 372032 990919 825919 467054 286436 685585 461912 236566 019286 138413 944319 566901 485004 360752 998607 979937 902853 754108 594433 116886 122075 820017 162540 965556 384327 234933 177478 658007 141061 797149 259020 506972 290026 071462 960274 291097 777687 438573 417303 956635 141678 800344 683322 165502 464430 571197 484636 177227 322958 947472 752016 704959 433493 037334 363941 395566 662015 216206 629825 243784 411253 954566 833191 712264 605738 064366 186364 548173 642023 495581 964962 325730 064221 218568 102929 013169 503312 159266 118629 216044 915903 245573 257449 110931 669006 412332 209203 450497 215663 394410 121438 256896 903084 415118 987128 141694 697169 815330 450417 959987 822372 076090 498948 417671 854739 142275 914655 212026 853760 272429 742710 827116 102698 706838 969554 (789 digits), a[1502] = 4
                                                                                      A[1503]/B[1503] = 7 436047 195909 635710 606928 132839 029390 835420 889449 650721 700517 415891 744868 960201 643311 067364 659195 450333 010012 399982 605609 183823 055736 579064 152859 560956 409049 170896 666767 392576 052666 868689 502038 243660 980193 589444 513215 965573 725161 635438 633737 474333 926228 428060 148464 422004 176497 190770 321994 449514 555702 616829 375940 353899 717920 994877 252544 182080 685189 607350 238096 711078 250905 152085 948899 822188 202446 705581 416198 036566 797752 081591 604894 051906 709649 852609 538458 735982 512694 481746 244370 908505 972175 441318 356468 193132 006412 401266 470413 646269 502054 886153 064355 430624 678971 216852 085694 681091 759466 485588 820576 769861 561418 685391 352057 625723 788651 868541 760326 223139 649138 977826 943897 060470 412957 110820 363739 119200 575860 595236 083443 154974 398589 084944 302190 929106 662448 026916 005136 615755 525827 496308 (787 digits)/722 735642 391492 383975 316826 758883 371149 546340 827774 784151 175340 045108 876070 870060 497272 134618 779827 017185 743170 883144 396842 668839 422599 783051 758625 439228 336457 803050 471688 066413 672168 170622 099941 379714 176668 430457 631040 087513 527746 806413 622259 600595 386459 061812 357881 268987 111798 128940 713786 145099 283727 733259 049280 229337 959882 005960 548596 923966 032907 723423 115215 432923 483080 099635 768587 347896 848116 384777 677629 406346 942549 998369 819020 585284 672222 092275 697339 870853 623352 876202 165373 859205 345858 995975 716356 687747 882249 234007 613606 248844 505366 396685 933886 166533 238620 839819 840493 833261 133359 285224 001329 782063 794389 555560 761838 443835 057806 249382 199463 872912 643620 759877 259297 926852 190320 649999 674896 261301 904519 995372 199896 303367 449970 784213 527544 140892 298186 685479 851988 346428 701941 101277 (789 digits), a[1503] = 1
                                                                                      A[1504]/B[1504] = 13 593901 444471 242130 685175 832794 946405 654645 965269 079053 542035 320755 634145 788194 023393 086334 448218 291339 676286 045753 475035 375437 314943 408774 071188 399197 582494 109917 859143 151787 853249 455855 573964 486396 209503 259260 163244 606993 959200 858407 098141 007084 935840 973219 892000 339835 497024 695743 339111 208573 804154 148888 178403 677910 545696 714156 551087 335371 071141 821817 632195 250117 806686 977714 627781 553567 415270 391694 493930 450195 756164 839479 773966 330710 788939 535796 957523 578375 020141 860971 816214 639324 500100 350113 618666 158107 176949 712307 559078 140546 908027 857707 852517 401933 691997 086627 782721 009763 534709 419359 953686 404151 075157 547347 541925 820341 886528 153971 760599 495392 361707 193019 396717 696551 118222 233956 526542 111860 757099 188092 651975 187555 233984 166776 803809 766908 049493 484593 787623 373150 412576 592711 (788 digits)/1321 239206 023451 422140 533129 958129 779376 078621 998047 825589 863057 879601 084535 761399 112842 355705 396541 389218 734090 709063 863896 955276 108185 244963 995191 458514 474871 747370 038589 551418 032921 169230 079879 282567 930777 024890 747926 209589 347763 968954 587815 984922 621392 239291 015888 410048 908947 387961 220758 435125 355190 693533 340378 007025 398455 423264 505232 065644 833252 406745 280717 897354 054277 584271 945814 670855 795589 136794 382588 839839 979884 362311 214587 247299 888428 722100 941124 282107 577919 709393 877638 464943 410225 182340 264530 329771 377831 198969 939336 313065 723934 499614 947055 669845 397886 958449 056538 749164 378932 542673 112261 451070 206721 764764 212335 659498 452216 370820 456360 775997 058739 747005 400992 624022 005651 100417 634884 083673 980610 494320 617568 158106 592246 698868 739570 994652 570616 428190 679104 449127 408780 070831 (790 digits), a[1504] = 1
                                                                                      A[1505]/B[1505] = 61 811652 973794 604233 347631 464018 815013 454004 750525 966935 868658 698914 281452 112977 736883 412702 452068 615691 715156 582996 505750 685572 315510 214160 437613 157746 739025 610568 103339 999727 465664 692111 797896 189245 818206 626485 166194 393549 561965 069067 026301 502673 669592 320939 716465 781346 164595 973743 678439 283809 772319 212382 089555 065541 900707 851503 456893 523564 969756 894620 766877 711549 477653 062944 460026 036457 863528 272359 391919 837349 822411 439510 700759 374749 865407 995797 368553 049482 593261 925633 509229 465803 972576 841772 831132 825560 714211 250496 706726 208457 134166 316984 474425 038359 446959 563363 216578 720145 898304 163028 635322 386465 862048 874781 519760 907091 334764 484428 802724 204709 095967 749904 530767 846674 885846 046646 469907 566643 604257 347606 691343 905195 334525 752051 517429 996738 860421 965291 155630 108357 176133 867152 (788 digits)/6007 692466 485298 072537 449346 591402 488653 860828 819966 086510 627571 563513 214213 915656 948641 557440 365992 574060 679533 719399 852430 489943 855340 762907 739391 273286 235944 792530 626046 272085 803852 847542 419458 509985 899776 530020 622744 925870 918802 682231 973523 540285 872028 018976 421434 909182 747587 680785 596819 885600 704490 507392 410792 257439 553703 699018 569525 186545 365917 350404 238087 022339 700190 436723 551846 031320 030472 931955 207984 765706 862087 447614 677369 574484 225936 980679 461836 999283 935031 713777 675927 718978 986759 725336 774478 006833 393574 029887 370951 501107 401104 395145 722108 845914 830168 673616 066648 829918 649089 455916 450375 586344 621276 614617 611181 081828 866671 732664 024906 976900 878579 747898 863268 422940 212925 051670 214432 595997 826961 972654 670168 935793 818957 579688 485828 119502 580652 398242 568406 142938 337061 384601 (790 digits), a[1505] = 4
                                                                                      A[1506]/B[1506] = 878 957043 077595 701397 552016 329058 356594 010712 472632 616155 703257 105555 574475 369882 339760 864168 777178 911023 688478 207704 555544 973449 732086 407020 197772 607651 928852 657871 305903 147972 372555 145420 744511 135837 664396 030052 489966 116687 826711 825345 466362 044516 310133 466375 922521 278681 801368 328154 837261 181910 616623 122237 432174 595497 155606 635204 947596 665280 647738 346508 368483 211810 493829 858937 068146 063977 504666 204725 980808 173093 269924 992629 584597 577208 904651 476960 117266 271131 325808 819840 945427 160580 116176 134933 254525 715957 175907 219261 453245 058946 786356 295490 494467 938965 949430 973712 814823 091806 110967 701760 848199 814673 143841 794288 818578 519620 573230 935974 998738 361319 705255 691682 827467 549999 520066 887007 105248 044871 216702 054586 330789 860289 917344 695498 047829 721252 095400 998669 966444 890150 878450 732839 (789 digits)/85428 933736 817624 437664 823982 237764 620530 130225 477573 036738 649059 768786 083530 580596 393824 159870 520437 426068 247562 780661 797923 814490 082955 925672 346669 284521 778098 842798 803237 360619 286861 034823 952298 422370 527648 445179 466355 171782 211001 520202 217145 548924 829784 504960 915977 138607 375174 918959 576236 833535 218057 797027 091469 611179 150307 209524 478584 677279 956095 312404 613936 210109 856943 698401 671659 109336 222210 184167 294375 559736 049108 628916 697761 290079 051546 451613 406842 272082 668363 702281 340626 530649 224861 337055 107222 425438 887867 617393 132657 328569 339396 031655 056579 512653 020248 389073 989622 368025 466184 925503 417519 659894 904594 369410 768870 805102 585620 628116 805058 452609 358856 217589 486750 545184 986601 823800 636940 427643 558078 111485 999933 259220 057652 814507 541164 667688 699750 003586 636790 450264 127639 455245 (791 digits), a[1506] = 14
                                                                                      A[1507]/B[1507] = 1819 725739 128986 007028 451664 122135 528201 475429 695791 199247 275172 910025 430402 852742 416405 141040 006426 437739 092112 998405 616840 632471 779683 028200 833158 373050 596730 926310 715146 295672 210774 982953 286918 460921 146998 686590 146126 626925 215388 719757 959025 591706 289859 253691 561508 338709 767332 630053 352961 647631 005565 456856 953904 256536 211921 121913 352086 854126 265233 587637 503844 135170 465312 780818 596318 164412 872860 681811 353536 183536 362261 424769 869954 529167 674710 949717 603085 591745 244879 565315 400083 786964 204929 111639 340184 257475 066025 689019 613216 326350 706878 907965 463360 916291 345821 510788 846224 903758 120239 566550 331722 015812 149732 463359 156917 946332 481226 356378 800200 927348 506479 133270 185702 946673 925979 820660 680403 656386 037661 456779 352923 625775 169215 143047 613089 439243 051223 962631 088519 888658 933035 332830 (790 digits)/176865 559940 120546 947867 097311 066931 729714 121279 775112 159987 925691 101085 381275 076849 736289 877181 406867 426197 174659 280723 448278 118924 021252 614252 432729 842329 792142 478128 232520 993324 377574 917190 324055 354726 955073 420379 555455 269435 340805 722636 407814 638135 531597 028898 253389 186397 497937 518704 749293 552671 140606 101446 593731 479797 854318 118067 526694 541105 278107 975213 465959 442559 414077 833526 895164 249992 474893 300289 796735 885178 960304 705448 072892 154642 329029 883906 275521 543449 271759 118340 357180 780277 436482 399446 988922 857711 169309 264673 636266 158246 079896 458455 835267 871220 870665 451764 045893 565969 581459 306923 285414 906134 430465 353439 148922 692034 037912 988897 635023 882119 596292 183077 836769 513310 186128 699271 488313 451284 943118 195626 670035 454233 934263 208703 568157 454879 980152 405415 841987 043466 592340 295091 (792 digits), a[1507] = 2
                                                                                      A[1508]/B[1508] = 8157 859999 593539 729511 358672 817600 469399 912431 255797 413144 803948 745657 296086 780852 005381 428328 802884 661980 056930 201327 022907 503336 850818 519823 530406 099854 315776 363114 166488 330661 215655 077233 892184 979522 252390 776413 074472 624388 688266 704377 302464 411341 469570 481142 168554 633520 870698 848368 249107 772434 638884 949665 247791 621642 003291 122858 355944 081785 708672 697058 383859 752492 355080 982211 453418 721628 996108 931971 394952 907238 718970 691709 064415 693879 603495 275830 529608 638112 305327 081102 545762 308436 935892 581490 615262 745857 440009 975339 906110 364349 613871 927352 347911 604131 332717 016868 199722 706838 591925 967962 175087 877921 742771 647725 446250 304950 498136 361490 199542 070713 731172 224763 570279 336695 223986 169649 826862 670415 367347 881703 742484 363390 594205 267688 500187 478224 300296 849194 320524 444786 610592 064159 (790 digits)/792891 173497 299812 229133 213226 505491 539386 615344 578021 676690 351824 173127 608630 887995 338983 668596 147907 130856 946199 903555 591036 290186 167966 382682 077588 653840 946668 755311 733321 333916 797160 703585 248519 841278 347942 126697 688176 249523 574224 410747 848404 101466 956172 620553 929533 884197 366924 993778 573411 044219 780482 202813 466395 530370 567579 681794 585362 841701 068527 213258 477773 980347 513255 032509 252316 109306 121783 385326 481319 100451 890327 450708 989329 908648 367665 987238 508928 445879 755400 175642 769349 651758 970790 934843 062913 856283 565104 676087 677721 961553 658981 865478 397650 997536 502910 196130 173196 631903 792022 153196 559179 284432 626455 783167 364561 573238 737272 583707 345153 981087 744024 949900 833828 598425 731116 620886 590194 232783 330550 893992 680075 076155 794705 649321 813794 487208 620359 625250 004738 624130 497000 635609 (792 digits), a[1508] = 4
                                                                                      A[1509]/B[1509] = 9977 585738 722525 736539 810336 939735 997601 387860 951588 612392 079121 655682 726489 633594 421786 569368 809311 099719 149043 199732 639748 135808 630501 548024 363564 472904 912507 289424 881634 626333 426430 060187 179103 440443 399389 463003 220599 251313 903655 424135 261490 003047 759429 734833 730062 972230 638031 478421 602069 420065 644450 406522 201695 878178 215212 244771 708030 935911 973906 284695 887703 887662 820393 763030 049736 886041 868969 613782 748489 090775 081232 116478 934370 223047 278206 225548 132694 229857 550206 646417 945846 095401 140821 693129 955447 003332 506035 664359 519326 690700 320750 835317 811272 520422 678538 527657 045947 610596 712165 534512 506809 893733 892504 111084 603168 251282 979362 717868 999742 998062 237651 358033 755982 283369 149965 990310 507266 326801 405009 338483 095407 989165 763420 410736 113276 917467 351520 811825 409044 333445 543627 396989 (790 digits)/969756 733437 420359 177000 310537 572423 269100 736624 353133 836678 277515 274212 989905 964845 075273 545777 554774 557054 120859 184279 039314 409110 189218 996934 510318 496170 738811 233439 965842 327241 174735 620775 572575 196005 303015 547077 243631 518958 915030 133384 256218 739602 487769 649452 182923 070594 864862 512483 322704 596890 921088 304260 060127 010168 421897 799862 112057 382806 346635 188471 943733 422906 927332 866036 147480 359298 596676 685616 278054 985630 850632 156157 062222 063290 696695 871144 784449 989329 027159 293983 126530 432036 407273 334290 051836 713994 734413 940761 313988 119799 738878 323934 232918 868757 373575 647894 219090 197873 373481 460119 844594 190567 056921 136606 513484 265272 775185 572604 980177 863207 340317 132978 670598 111735 917245 320158 078507 684068 273669 089619 350110 530389 728968 858025 381951 942088 600512 030665 846725 667597 089340 930700 (792 digits), a[1509] = 1
                                                                                      A[1510]/B[1510] = 18135 445738 316065 466051 169009 757336 467001 300292 207386 025536 883070 401340 022576 414446 427167 997697 612195 761699 205973 401059 662655 639145 481320 067847 893970 572759 228283 652539 048122 956994 642085 137421 071288 419965 651780 239416 295071 875702 591922 128512 563954 414389 229000 215975 898617 605751 508730 326789 851177 192500 283335 356187 449487 499820 218503 367630 063975 017697 682578 981754 271563 640155 175474 745241 503155 607670 865078 545754 143441 998013 800202 808187 998785 916926 881701 501378 662302 867969 855533 727520 491608 403838 076714 274620 570709 749189 946045 639699 425437 055049 934622 762670 159184 124554 011255 544525 245670 317435 304091 502474 681897 771655 635275 758810 049418 556233 477499 079359 199285 068775 968823 582797 326261 620064 373952 159960 334128 997216 772357 220186 837892 352556 357625 678424 613464 395691 651817 661019 729568 778232 154219 461148 (791 digits)/1 762647 906934 720171 406133 523764 077914 808487 351968 931155 513368 629339 447340 598536 852840 414257 214373 702681 687911 067059 087834 630350 699296 357185 379616 587907 150011 685479 988751 699163 661157 971896 324360 821095 037283 650957 673774 931807 768482 489254 544132 104622 841069 443942 270006 112456 954792 231787 506261 896115 641110 701570 507073 526522 540538 989477 481656 697420 224507 415162 401730 421507 403254 440587 898545 399796 468604 718460 070942 759374 086082 740959 606866 051551 971939 064361 858383 293378 435208 782559 469625 895880 083795 378064 269133 114750 570278 299518 616848 991710 081353 397860 189412 630569 866293 876485 844024 392286 829777 165503 613316 403773 474999 683376 919773 878045 838511 512458 156312 325331 844295 084342 082879 504426 710161 648361 941044 668701 916851 604219 983612 030185 606545 523674 507347 195746 429297 220871 655915 851464 291727 586341 566309 (793 digits), a[1510] = 1
                                                                                      A[1511]/B[1511] = 64383 922953 670722 134693 317366 211745 398605 288737 573746 689002 728332 859702 794218 876933 703290 562461 645898 384816 766963 402911 627715 053245 074461 751568 045476 191182 597358 247042 026003 497317 352685 472450 392968 700340 354730 181252 105814 878421 679421 809672 953353 246215 446430 382761 425915 789485 164222 458791 155600 997566 494456 475084 550158 377638 870722 347661 899955 989005 021643 229958 702394 808128 346817 998754 559203 709054 464205 251045 178815 084816 481840 541042 930727 973827 923310 729684 119602 833767 116807 828979 420671 306915 370964 516991 667576 250902 344172 583457 795637 855850 124619 123328 288824 894084 712305 161232 782958 562902 624440 041936 552503 208700 798331 387514 751423 919983 411859 955946 597598 204390 144122 106425 734767 143562 271822 470191 509653 318451 722080 999043 609085 046834 836297 446009 953670 104542 306973 794884 597750 668142 006285 780433 (791 digits)/6 257700 454241 580873 395400 881829 806167 694562 792531 146600 376784 165533 616234 785516 523366 318045 188898 662819 620787 322036 447782 930366 506999 260775 135784 274039 946205 795251 199695 063333 310715 090424 593858 035860 307856 255888 568402 039054 824406 382793 765780 570087 262810 819596 459470 520293 934971 560225 031269 011051 520223 025799 825480 639694 631785 390330 244832 204318 056328 592122 393663 208255 632670 249096 561672 346869 765112 752056 898444 556177 243879 073510 976755 216877 979107 889781 446294 664585 294955 374837 702860 814170 683422 541466 141689 396088 424829 632969 791308 289118 363859 932458 892172 124628 467639 003033 179967 395950 687204 869992 300069 055914 615566 107051 895928 147621 780807 312560 041541 956173 396092 593343 381617 183878 242220 862331 143292 084613 434623 086329 040455 440667 350026 299992 380066 969191 229980 263126 998413 401118 542779 848365 629627 (793 digits), a[1511] = 3
                                                                                      A[1512]/B[1512] = 1 177046 058904 389063 890530 881601 568753 641896 497568 534826 427585 993061 875990 318516 199253 086398 122007 238366 688401 011314 653468 961526 597556 821631 596072 712542 014045 980732 099295 516185 908706 990423 641528 144725 026092 036923 501954 199739 687292 821514 702625 724312 846267 264747 105681 565101 816484 464734 585030 651995 148697 183551 907709 352338 297319 891505 625544 263182 819788 072157 121010 914670 186465 418198 722823 568822 370651 220773 064567 362113 524710 473332 546960 751889 445829 501294 635692 815153 875777 958074 649150 063691 928314 754075 580470 587082 265432 141152 141939 746918 460352 177766 982579 358032 218078 832748 446715 338924 449682 544012 257332 626955 528270 005240 734075 575049 115934 890978 286397 956052 747798 563021 498460 552070 204185 266756 623407 507888 729347 769815 202971 801423 195583 410979 706603 779526 277453 177345 968942 489080 804788 267363 508942 (793 digits)/114 401256 083283 175892 523349 396700 588933 310617 617529 569962 295483 608944 539566 737834 273434 139070 614549 633434 862082 863715 147927 376947 825283 051137 823733 520626 181716 000001 583262 839163 254029 599539 013805 466580 578696 256951 905011 634794 607797 379542 328182 366193 571664 196678 540475 477747 784280 315838 069104 095043 005125 165967 365725 041025 912676 015421 888636 375145 238422 073365 487668 170108 791318 924326 008647 643452 240634 255484 242944 770564 475906 064157 188459 955355 595881 080427 891687 255913 744405 529638 121120 550952 385401 124454 819542 244342 217211 692974 860398 195840 630832 182120 248510 873882 283795 931083 083437 519399 199464 825365 014559 410236 555189 610311 046480 535237 893043 138538 904067 536452 973961 764522 951988 814235 070137 170322 520302 191743 740067 158142 711809 962197 907018 923537 348552 641188 568941 957157 627357 071598 061764 856922 899595 (795 digits), a[1512] = 18
                                                                                      A[1513]/B[1513] = 1 241429 981858 059786 025224 198967 780499 040501 786306 108573 116588 721394 735693 112735 076186 789688 684468 884265 073217 778278 056380 589241 650801 896093 347640 758018 205228 578090 346337 542189 406024 343109 113978 537693 726432 391653 683206 305554 565714 500936 512298 677666 092482 711177 488442 991017 605969 628957 043821 807596 146263 678008 382793 902496 674958 762227 973206 163138 808793 093800 350969 617064 994593 765016 721578 128026 079705 684978 315612 540928 609526 955173 088003 682617 419657 424605 365376 934756 709545 074882 478129 484363 235230 125040 097462 254658 516334 485324 725397 542556 316202 302386 105907 646857 112163 545053 607948 121883 012585 168452 299269 179458 736970 803572 121590 326473 035918 302838 242344 553650 952188 707143 604886 286837 347747 538579 093599 017542 047799 491896 202015 410508 242418 247277 152613 733196 381995 484319 763827 086831 472930 273649 289375 (793 digits)/120 658956 537524 756765 918750 278530 395101 005180 410060 716562 672267 774478 155801 523350 796800 457115 803448 296254 482870 185751 595710 307314 332282 311912 959517 794666 127921 795252 782957 902496 564744 689963 607663 502440 886552 512840 473413 673849 432203 762336 093962 936280 834475 016274 999945 998041 719251 876063 100373 106094 525348 191767 191205 680720 544461 405752 133468 579463 294750 665487 881331 378364 423989 173422 570319 990322 005747 007541 141389 326741 719785 137668 165215 172233 574988 970209 337981 920499 039360 904475 823981 365123 068823 665920 961231 640430 642041 325944 651706 484958 994692 114579 140682 998510 751434 934116 263404 915349 886669 695357 314628 466151 170755 717362 942408 682859 673850 451098 945609 492626 370054 357866 333605 998113 312358 032653 663594 276357 174690 244471 752265 402865 257045 223529 728619 610379 798922 220284 625770 472716 604544 705288 529222 (795 digits), a[1513] = 1
                                                                                      A[1514]/B[1514] = 4 901336 004478 568421 966203 478504 910250 763401 856486 860545 777352 157246 083069 656721 427813 455464 175413 891161 908054 346148 822610 729251 549962 509911 638994 986596 629731 715003 138308 142754 126780 019750 983463 757806 205389 211884 551573 116403 384436 324324 239521 757311 123715 398279 571010 538154 634393 351605 716496 074783 587488 217577 056091 059828 322196 178189 545162 752599 246167 353558 173919 765865 170246 713248 887557 952900 609768 275708 011404 984899 353291 338851 810971 799741 704801 775110 731823 619424 004413 182722 083538 516781 634005 129195 872857 351057 814435 597126 318132 374587 408959 084925 300302 298603 554569 467909 270559 704573 487438 049369 155140 165331 739182 415957 098846 554468 223689 799493 013431 617005 604364 684452 313119 412582 247427 882493 904204 560514 872746 245503 809018 032947 922838 152811 164444 979115 423439 630305 260423 749575 223579 088311 377067 (793 digits)/476 378125 695857 446190 279600 232291 774236 326158 847711 719650 312286 932379 006971 307886 663835 510418 024894 522198 310693 420969 935058 298890 822129 986876 702286 904624 565481 385759 932136 546652 948263 669429 836795 973903 238353 795473 325252 656342 904408 666550 610071 175036 075089 245503 540313 471872 942035 944027 370223 413326 581169 741268 939342 083187 546060 232678 289042 113535 122674 069829 131662 305202 063286 444593 719607 614418 257875 278107 667112 750789 635261 477161 684105 472056 320847 991055 905633 017410 862488 243065 593064 646321 591872 122217 703237 165634 143335 670808 815517 650717 614908 525857 670559 869414 538100 733431 873652 265448 859473 911436 958444 808690 067456 762399 873706 583816 914594 491835 740896 014332 084124 838121 952806 808575 007211 268283 511085 020815 264137 891557 968606 170793 678154 594126 534411 472327 965708 618011 504668 489747 875398 972788 487261 (795 digits), a[1514] = 3
                                                                                      A[1515]/B[1515] = 60 057462 035600 880849 619665 941026 703508 201324 064148 435122 444814 608347 732528 993392 209948 255258 789435 578207 969869 932063 927709 340260 250352 015033 015580 597177 762009 158128 006035 255238 927384 580120 915543 631368 191102 934268 302083 702395 178950 392827 386559 765399 577067 490532 340569 448873 218689 848225 641774 704999 196122 288933 055886 620436 541312 900502 515159 194329 762801 336498 438006 807447 037554 324003 372273 562833 396924 993474 452472 359720 849023 021394 819665 279517 877278 725934 147260 367844 762503 267547 480591 685742 843291 675390 571750 467352 289561 650840 542986 037605 223711 321489 709535 230099 766997 159964 854664 576764 861841 760882 160951 163439 607159 795057 307748 980091 720195 896754 403523 957718 204564 920571 362319 237824 316882 128505 944053 743720 520754 437941 910231 805883 316476 081011 125953 482581 463271 047982 888912 081734 155879 333385 814179 (794 digits)/5837 196464 887814 111049 273953 066031 685936 919086 582601 352366 419710 963026 239457 217990 762826 582132 102182 562634 211191 237390 816409 894004 197842 154433 386960 650160 913698 424371 968596 462331 943908 723121 649215 189279 746798 058520 376445 549964 285107 760943 414817 036713 735545 962317 483707 660517 023683 204391 543054 066013 499385 086994 463310 678971 097184 197891 601973 941884 766839 503437 461279 040789 183426 508547 205611 363341 100250 344833 146742 336217 342922 863608 374480 836909 425164 862880 205578 129429 389219 821262 940757 120982 171289 132533 400077 628040 362069 375650 437918 293570 373594 424871 187401 431485 208643 735298 747232 100736 200356 632600 815966 170431 980236 866161 426887 688662 648984 353127 836361 664611 379552 415329 767287 701013 398893 252055 796614 526140 344344 943167 375539 452389 394900 353048 141557 278315 387425 636422 681792 349691 109332 378750 376354 (796 digits), a[1515] = 12
                                                                                      A[1516]/B[1516] = 64 958798 040079 449271 585869 419531 613758 964725 920635 295668 222166 765593 815598 650113 637761 710722 964849 469369 877924 278212 750320 069511 800314 524944 654575 583774 391740 873131 144343 397993 054164 599871 899007 389174 396492 146152 853656 818798 563386 717151 626081 522710 700782 888811 911579 987027 853083 199831 358270 779782 783610 506510 111977 680264 863509 078692 060321 946929 008968 690056 611926 573312 207801 037252 259831 515734 006693 269182 463877 344620 202314 360246 630637 079259 582080 501044 879083 987268 766916 450269 564130 202524 477296 804586 444607 818410 103997 247966 861118 412192 632670 406415 009837 528703 321566 627874 125224 281338 349279 810251 316091 328771 346342 211014 406595 534559 943885 696247 416955 574723 808929 605023 675438 650406 564310 010999 848258 304235 393500 683445 719249 838831 239314 233822 290398 461696 886710 678288 149335 831309 379458 421697 191246 (794 digits)/6313 574590 583671 557239 553553 298323 460173 245245 430313 072016 731997 895405 246428 525877 426662 092550 127077 084832 521884 658360 751468 192895 019972 141310 089247 554785 479179 810131 900733 008984 892172 392551 486011 163182 985151 853993 701698 206307 189516 427494 024888 211749 810635 207821 024021 132389 965719 148418 913277 479340 080554 828263 402652 762158 643244 430569 891016 055419 889513 573266 592941 345991 246712 953140 925218 977759 358125 622940 813855 087006 978184 340770 058586 308965 746012 853936 111211 146840 251708 064328 533821 767303 763161 254751 103314 793674 505405 046459 253435 944287 988502 950728 857961 300899 746744 468730 620884 366185 059830 544037 774410 979122 047693 628561 300594 272479 563578 844963 577257 678943 463677 253451 720094 509588 406104 520339 307699 546955 608482 834725 344145 623183 073054 947174 675968 750643 353134 254434 186460 839438 984731 351538 863615 (796 digits), a[1516] = 1
                                                                                      A[1517]/B[1517] = 125 016260 075680 330121 205535 360558 317267 166049 984783 730790 666981 373941 548127 643505 847709 965981 754285 047577 847794 210276 678029 409772 050666 539977 670156 180952 153750 031259 150378 653231 981549 179992 814551 020542 587595 080421 155740 521193 742337 109979 012641 288110 277850 379344 252149 435901 071773 048057 000045 484781 979732 795443 167864 300701 404821 979194 575481 141258 771770 026555 049933 380759 245355 361255 632105 078567 403618 262656 916349 704341 051337 381641 450302 358777 459359 226979 026344 355113 529419 717817 044721 888267 320588 479977 016358 285762 393558 898807 404104 449797 856381 727904 719372 758803 088563 787838 979888 858103 211121 571133 477042 492210 953502 006071 714344 514651 664081 593001 820479 532442 013494 525595 037757 888230 881192 139505 792312 047955 914255 121387 629481 644714 555790 314833 416351 944278 349981 726271 038247 913043 535337 755083 005425 (795 digits)/12150 771055 471485 668288 827506 364355 146110 164332 012914 424383 151708 858431 485885 743868 189488 674682 229259 647466 733075 895751 567878 086899 217814 295743 476208 204946 392878 234503 869329 471316 836081 115673 135226 352462 731949 912514 078143 756271 474624 188437 439705 248463 546181 170138 507728 792906 989402 352810 456331 545353 579939 915257 865963 441129 740428 628461 492989 997304 656353 076704 054220 386780 430139 461688 130830 341100 458375 967773 960597 423224 321107 204378 433067 145875 171177 716816 316789 276269 640927 885591 474578 888285 934450 387284 503392 421714 867474 422109 691354 237858 362097 375600 045362 732384 955388 204029 368116 466921 260187 176638 590377 149554 027930 494722 727481 961142 212563 198091 413619 343554 843229 668781 487382 210601 804997 772395 104314 073095 952827 777892 719685 075572 467955 300222 817526 028958 740559 890856 868253 189130 094063 730289 239969 (797 digits), a[1517] = 1
                                                                                      A[1518]/B[1518] = 314 991318 191440 109513 996940 140648 248293 296825 890202 757249 556129 513476 911853 937125 333181 642686 473419 564525 573512 698766 106378 889055 901647 604899 994887 945678 699240 935649 445100 704457 017262 959857 528109 430259 571682 306995 165137 861186 048060 937109 651364 098931 256483 647500 415878 858829 996629 295945 358361 749346 743076 097396 447706 281667 673153 037081 211284 229446 552508 743166 711793 334830 698511 759763 524041 672868 813929 794496 296576 753302 304989 123529 531241 796814 500798 955002 931772 697495 825755 885903 653573 979059 118473 764540 477324 389934 891115 045581 669327 311788 345433 862224 448583 046309 498694 203552 085001 997544 771522 952518 270176 313193 253346 223157 835284 563863 272048 882251 057914 639607 835918 656213 750954 426868 326694 290011 432882 400147 222010 926220 978213 128260 350894 863489 123102 350253 586674 130830 225831 657396 450133 931863 202096 (795 digits)/30615 116701 526642 893817 208566 027033 752393 573909 456141 920783 035415 612268 218200 013613 805639 441914 585596 379765 988036 449863 887224 366693 455600 732797 041663 964678 264936 279139 639391 951618 564334 623897 756463 868108 449051 679021 857985 718850 138764 804368 904298 708676 902997 548098 039478 718203 944523 854039 825940 570047 240434 658779 134579 644418 124101 687492 876996 050029 202219 726674 701382 119552 106991 876517 186879 659960 274877 558488 735049 933455 620398 749526 924720 600716 088368 287568 744789 699379 533563 835511 482979 543875 632062 029320 110099 637104 240353 890678 636144 420004 712697 701928 948686 765669 657520 876789 357117 300027 580204 897314 955165 278230 103554 618006 755558 194763 988705 241146 404496 366053 150136 591014 694858 930792 016100 065129 516327 693147 514138 390510 783515 774328 008965 547620 311020 808560 834254 036147 922967 217699 172858 812117 343553 (797 digits), a[1518] = 2
                                                                                      A[1519]/B[1519] = 440 007578 267120 439635 202475 501206 565560 462875 874986 488040 223110 887418 459981 580631 180891 608668 227704 612103 421306 909042 784408 298827 952314 144877 665044 126630 852990 966908 595479 357688 998812 139850 342660 450802 159277 387416 320878 382379 790398 047088 664005 387041 534334 026844 668028 294731 068402 344002 358407 234128 722808 892839 615570 582369 077975 016275 786765 370705 324278 769721 761726 715589 943867 121019 156146 751436 217548 057153 212926 457643 356326 505170 981544 155591 960158 181981 958117 052609 355175 603720 698295 867326 439062 244517 493682 675697 284673 944389 073431 761586 201815 590129 167955 805112 587257 991391 064890 855647 982644 523651 747218 805404 206848 229229 549629 078514 936130 475252 878394 172049 849413 181808 788712 315099 207886 429517 225194 448103 136266 047608 607694 772974 906685 178322 539454 294531 936655 857101 264079 570439 985471 686946 207521 (795 digits)/42765 887756 998128 562106 036072 391388 898503 738241 469056 345166 187124 470699 704085 757481 995128 116596 814856 027232 721112 345615 455102 453592 673415 028540 517872 169624 657814 513643 508721 422935 400415 739570 891690 220571 181001 591535 936129 475121 613388 992806 344003 957140 449178 718236 547207 511110 933926 206850 282272 115400 820374 574037 000543 085547 864530 315954 369986 047333 858572 803378 755602 506332 537131 338205 317710 001060 733253 526262 695647 356679 941505 953905 357787 746591 259546 004385 061578 975649 174491 721102 957558 432161 566512 416604 613492 058819 107828 312788 327498 657863 074795 077528 994049 498054 612909 080818 725233 766948 840392 073953 545542 427784 131485 112729 483040 155906 201268 439237 818115 709607 993366 259796 182241 141393 821097 837524 620641 766243 466966 168403 503200 849900 476920 847843 128546 837519 574813 927004 791220 406829 266922 542406 583522 (797 digits), a[1519] = 1
                                                                                      A[1520]/B[1520] = 13515 218666 205053 298570 071205 176845 215107 183102 139797 398456 249456 136030 711301 356060 759929 902733 304557 927628 212719 970049 638627 853894 471071 951229 946211 744604 288969 942907 309481 435126 981627 155367 807922 954324 350003 929484 791489 332579 760002 349769 571525 710177 286504 452840 456727 700762 048699 616016 110578 773208 427342 882584 914823 752740 012403 525354 814245 350606 280871 834819 563594 802529 014525 390338 208444 215955 340371 509092 684370 482602 994784 278658 977566 464573 305544 414461 675284 275776 481023 997524 602449 998852 290341 100065 287804 660853 431333 377253 872280 159374 399901 566099 487257 199687 116433 945284 031727 666984 250858 662070 686740 475319 458793 100044 324156 919311 355963 139837 409739 801103 318314 110477 412323 879844 563287 175528 188715 843241 309992 354479 209056 317507 551450 213165 306731 186211 686349 843868 148218 770596 014284 540249 427726 (797 digits)/1 313591 749411 470499 756998 290737 768700 707505 721153 527832 275768 649149 733259 340772 738073 659482 939819 031277 196747 621406 818327 540297 974473 658051 589012 577829 053417 999371 688444 901034 639680 576806 811024 507170 485243 879099 425099 941869 972498 540434 588559 224417 422890 378359 095194 455704 051531 962310 059548 294104 032071 851671 879889 150872 210854 060011 166123 976577 470044 959403 828037 369457 309528 220932 022676 718179 691782 272483 346369 604470 633853 865577 366687 658352 998453 874748 419120 592158 968854 768315 468600 209732 508722 627434 527458 514861 401677 475203 274328 461104 155896 956550 027798 770171 707308 044793 301351 114130 308492 791967 115921 321438 111754 048107 999891 246762 871950 026758 418280 947967 654292 951124 384900 162093 172606 649035 190868 135580 680451 523123 442615 879541 271342 316590 982914 167425 934148 078671 846291 659579 422577 180535 084314 849213 (799 digits), a[1520] = 30
                                                                                      A[1521]/B[1521] = 54500 882243 087333 633915 487296 208587 425989 195284 434176 081865 220935 431541 305187 004874 220611 219601 445936 322616 272186 789241 338919 714405 836601 949797 449891 105048 008870 738537 833405 098196 925320 761321 574352 268099 559293 105355 486835 712698 830407 446166 950108 227750 680351 838206 494939 097779 263200 808066 800722 326962 432180 423179 274865 593329 127589 117695 043746 773130 447766 109000 016105 925706 001968 682371 989923 615257 579034 093523 950408 388055 335463 619806 891810 013885 182335 839828 659254 155715 279271 593819 108095 862735 600426 644778 644901 319111 010007 453404 562552 399083 801421 854527 116984 603861 052993 772527 191801 523584 986079 171934 494180 706682 042020 629406 846256 755760 359983 034602 517353 376463 122669 623718 438007 834477 461035 131629 980057 821068 376235 465525 443920 043005 112486 030983 766379 039378 682055 232573 856954 652824 042609 847943 918425 (797 digits)/5 297132 885402 880127 590099 199023 466191 728526 622855 580385 448240 783723 403737 067176 709776 633059 875872 939964 814223 206739 618925 616294 351487 305621 384590 829188 383296 655301 267423 112859 981657 707642 983668 920372 161546 697399 291935 703609 365115 775127 347043 241673 648701 962615 099014 370023 717238 783166 445043 458688 243688 227062 093593 604031 928964 104574 980450 276295 927513 696188 115528 233431 744445 420859 428912 190428 768189 823186 911741 113529 892095 403815 420655 991199 740406 758539 680867 430214 851068 247753 595503 796488 467052 076250 526438 672937 665529 008641 410102 171915 281450 900995 188724 074736 327286 792082 286223 181755 000920 008260 537638 831294 874800 323917 112294 470091 643706 308302 112361 609986 326779 797863 799396 830613 831820 417238 600997 162964 488049 559459 938867 021365 935269 743284 779499 798250 574111 889501 312171 429538 097137 989062 879665 980374 (799 digits), a[1521] = 4
                                                                                      A[1522]/B[1522] = 68016 100909 292386 932485 558501 385432 641096 378386 573973 480321 470391 567572 016488 360934 980541 122334 750494 250244 484906 759290 977547 568300 307673 901027 396102 849652 297840 681445 142886 533323 906947 916689 382275 222423 909297 034840 278325 045278 590409 795936 521633 937927 966856 291046 951666 798541 311900 424082 911301 100170 859523 305764 189689 346069 139992 643049 857992 123736 728637 943819 579700 728235 016494 072710 198367 831212 919405 602616 634778 870658 330247 898465 869376 478458 487880 254290 334538 431491 760295 591343 710545 861587 890767 744843 932705 979964 441340 830658 434832 558458 201323 420626 604241 803548 169427 717811 223529 190569 236937 834005 180921 182001 500813 729451 170413 675071 715946 174439 927093 177566 440983 734195 850331 714322 024322 307158 168773 664309 686227 820004 652976 360512 663936 244149 073110 225590 368405 076442 005173 423420 056894 388193 346151 (797 digits)/6 610724 634814 350627 347097 489761 234892 436032 344009 108217 724009 432873 136996 407949 447850 292542 815691 971242 010970 828146 437253 156592 325960 963672 973603 407017 436714 654672 955868 013894 621338 284449 794693 427542 646790 576498 717035 645479 337614 315561 935602 466091 071592 340974 194208 825727 768770 745476 504591 752792 275760 078733 973482 754904 139818 164586 146574 252873 397558 655591 943565 602889 053973 641791 451588 908608 459972 095670 258110 718000 525949 269392 787343 649552 738860 633288 099988 022373 819923 016069 064104 006220 975774 703685 053897 187799 067206 483844 684430 633019 437347 857545 216522 844908 034594 836875 587574 295885 309412 800227 653560 152732 986554 372025 112185 716854 515656 335060 530642 557953 981072 748988 184296 992707 004427 066273 791865 298545 168501 082583 381482 900907 206612 059875 762413 965676 508259 968173 158463 089117 519715 169597 963980 829587 (799 digits), a[1522] = 1
                                                                                      A[1523]/B[1523] = 190533 084061 672107 498886 604298 979452 708181 952057 582123 042508 161718 566685 338163 726744 181693 464270 946924 823105 242000 307823 294014 851006 451949 751852 242096 804352 604552 101428 119178 164844 739216 594700 338902 712947 377887 175036 043485 803256 011227 038039 993376 103606 614064 420300 398272 694861 887001 656232 623324 527304 151227 034707 654244 285467 407574 403794 759731 020603 905041 996639 175507 382176 034956 827792 386659 277683 417845 298757 219966 129371 995959 416738 630562 970802 158096 348409 328331 018698 799862 776506 529187 585911 381962 134466 510313 279039 892689 114721 432217 516000 204068 695780 325468 210957 391849 208149 638859 904723 459954 839944 856023 070685 043648 088309 187084 105903 791875 383482 371539 731596 004637 092110 138671 263121 509679 745946 317605 149687 748691 105534 749872 764030 440358 519281 912599 490559 418865 385457 867301 499664 156398 624330 610727 (798 digits)/18 518582 155031 581382 284294 178545 935976 600591 310873 796820 896259 649469 677729 883075 605477 218145 507256 882448 836164 863032 493431 929479 003409 232967 331797 643223 256725 964647 179159 140649 224334 276542 573055 775457 455127 850396 726006 994568 040344 406251 218248 173855 791886 644563 487432 021479 254780 274119 454226 964272 795208 384530 040559 113840 208600 433747 273598 782042 722631 007372 002659 439209 852392 704442 332090 007645 688134 014527 427962 549530 943993 942600 995343 290305 218128 025115 880843 474962 490914 279891 723711 808930 418601 483620 634233 048535 799941 976330 778963 437954 156146 616085 621769 764552 396476 465833 461371 773525 619745 608715 844759 136760 847909 067967 336665 903800 675018 978423 173646 725894 288925 295840 167990 816027 840674 549786 184727 760054 825051 724626 701832 823180 348493 863036 304327 729603 590631 825847 629097 607773 136568 328258 807627 639548 (800 digits), a[1523] = 2
                                                                                      A[1524]/B[1524] = 258549 184970 964494 431372 162800 364885 349278 330444 156096 522829 632110 134257 354652 087679 162234 586605 697419 073349 726907 067114 271562 419306 759623 652879 638199 654004 902392 782873 262064 698168 646164 511389 721177 935371 287184 209876 321810 848534 601636 833976 515010 041534 580920 711347 349939 493403 198902 080315 534625 627475 010750 340471 843933 631536 547567 046844 617723 144340 633679 940458 755208 110411 051450 900502 585027 108896 337250 901373 854745 000030 326207 315204 499939 449260 645976 602699 662869 450190 560158 367850 239733 447499 272729 879310 443019 259004 334029 945379 867050 074458 405392 116406 929710 014505 561276 925960 862389 095292 696892 673950 036944 252686 544461 817760 357497 780975 507821 557922 298632 909162 445620 826305 989002 977443 534002 053104 486378 813997 434918 925539 402849 124543 104294 763430 985709 716149 787270 461899 872474 923084 213293 012523 956878 (798 digits)/25 129306 789845 932009 631391 668307 170869 036623 654882 905038 620269 082342 814726 291025 053327 510688 322948 853690 847135 691178 930685 086071 329370 196640 305401 050240 693440 619320 135027 154543 845672 560992 367749 203000 101918 426895 443042 640047 377958 721813 153850 639946 863478 985537 681640 847207 023551 019595 958818 717065 070968 463264 014041 868744 348418 598333 420173 034916 120189 662963 946225 042098 906366 346233 783678 916254 148106 110197 686073 267531 469943 211993 782686 939857 956988 658403 980831 497336 310837 295960 787815 815151 394376 187305 688130 236334 867148 460175 463394 070973 593494 473630 838292 609460 431071 302709 048946 069410 929158 408943 498319 289493 834463 439992 448851 620655 190675 313483 704289 283848 269998 044828 352287 808734 845101 616059 976593 058599 993552 807210 083315 724087 555105 922912 066741 695280 098891 794020 787560 696890 656283 497856 771608 469135 (800 digits), a[1524] = 1
                                                                                      A[1525]/B[1525] = 707631 454003 601096 361630 929899 709223 406738 612945 894316 088167 425938 835200 047467 902102 506162 637482 341762 969804 695814 442051 837139 689619 971197 057611 518496 112362 409337 667174 643307 561182 031545 617479 781258 583689 952255 594788 687107 500325 214500 705993 023396 186675 775905 842995 098151 681668 284805 816863 692575 782254 172727 715651 342111 548540 502708 497483 995177 309285 172401 877556 685923 602998 137858 628797 556713 495476 092347 101504 929456 129432 648374 047147 630441 869323 450049 553808 654069 919079 920179 512207 008654 480909 927421 893087 396351 797048 560749 005481 166317 664917 014852 928594 184888 239968 514403 060071 363638 095308 853740 187844 929911 576058 132571 723829 902079 667854 807518 499326 968805 549920 895878 744722 116677 218008 577683 852155 290362 777682 618528 956613 555571 013116 648948 046143 884018 922858 993406 309257 612251 345832 582984 649378 524483 (798 digits)/68 777195 734723 445401 547077 515160 277714 673838 620639 606898 136797 814155 307182 465125 712132 239522 153154 589830 530436 245390 354802 101621 662149 626247 942599 743704 643607 203287 449213 449736 915679 398527 308554 181457 658964 704187 612092 274662 796261 849877 525949 453749 518844 615638 850713 715893 301882 313311 371864 398402 937145 311058 068642 851328 905437 630414 113944 851874 963010 333299 895109 523407 665125 396909 899447 840153 984346 234922 800109 084593 883880 366588 560717 170021 132105 341923 842506 469635 112588 871813 299343 439233 207353 858232 010493 521205 534238 896681 705751 579901 343135 563347 298354 983473 258619 071251 559263 912347 478062 426602 841397 715748 516835 947952 234369 145111 056369 605390 582225 293590 828921 385496 872566 433497 530877 781906 137913 877254 812157 339046 868464 271355 458705 708860 437811 120163 788415 413889 204219 001554 449135 323972 350844 577818 (800 digits), a[1525] = 2
                                                                                      A[1526]/B[1526] = 966180 638974 565590 793003 092700 074108 756016 943390 050412 610997 058048 969457 402119 989781 668397 224088 039182 043154 422721 509166 108702 108926 730820 710491 156695 766367 311730 450047 905372 259350 677710 128869 502436 519061 239439 804665 008918 348859 816137 539969 538406 228210 356826 554342 448091 175071 483707 897179 227201 409729 183478 056123 186045 180077 050275 544328 612900 453625 806081 818015 441131 713409 189309 529300 141740 604372 429598 002878 784201 129462 974581 362352 130381 318584 096026 156508 316939 369270 480337 880057 248387 928409 200151 772397 839371 056052 894778 950861 033367 739375 420245 045001 114598 254474 075679 986032 226027 190601 550632 861794 966855 828744 677033 541590 259577 448830 315340 057249 267438 459083 341499 571028 105680 195452 111685 905259 776741 591680 053447 882152 958420 137659 753242 809574 869728 639008 780676 771157 484726 268916 796277 661902 481361 (798 digits)/93 906502 524569 377411 178469 183467 448583 710462 275522 511936 757066 896498 121908 756150 765459 750210 476103 443521 377571 936569 285487 187692 991519 822888 248000 793945 337047 822607 584240 604280 761351 959519 676303 384457 760883 131083 055134 914710 174220 571690 679800 093696 382323 601176 532354 563100 325433 332907 330683 115468 008113 774322 082684 720073 253856 228747 534117 886791 083199 996263 841334 565506 571491 743143 683126 756408 132452 345120 486182 352125 353823 578582 343404 109879 089094 000327 823337 966971 423426 167774 087159 254384 601730 045537 698623 757540 401387 356857 169145 650874 936630 036978 136647 592933 689690 373960 608209 981758 407220 835546 339717 005242 351299 387944 683220 765766 247044 918874 286514 577439 098919 430325 224854 242232 375979 397966 114506 935854 805710 146256 951779 995443 013811 631772 504552 815443 887307 207909 991779 698445 105418 821829 122453 046953 (800 digits), a[1526] = 1
                                                                                      A[1527]/B[1527] = 1 673812 092978 166687 154634 022599 783332 162755 556335 944728 699164 483987 804657 449587 891884 174559 861570 380945 012959 118535 951217 945841 798546 702017 768102 675191 878729 721068 117222 548679 820532 709255 746349 283695 102751 191695 399453 696025 849185 030638 245962 561802 414886 132732 397337 546242 856739 768513 714042 919777 191983 356205 771774 528156 728617 552984 041812 608077 762910 978483 695572 127055 316407 327168 158097 698454 099848 521945 104383 713657 258895 622955 409499 760823 187907 546075 710316 971009 288350 400517 392264 257042 409319 127573 665485 235722 853101 455527 956342 199685 404292 435097 973595 299486 494442 590083 046103 589665 285910 404373 049639 896767 404802 809605 265420 161657 116685 122858 556576 236244 009004 237378 315750 222357 413460 689369 757415 067104 369362 671976 838766 513991 150776 402190 855718 753747 561867 774083 080415 096977 614749 379262 311281 005844 (799 digits)/162 683698 259292 822812 725546 698627 726298 384300 896162 118834 893864 710653 429091 221276 477591 989732 629258 033351 908008 181959 640289 289314 653669 449136 190600 537649 980655 025895 033454 054017 677031 358046 984857 565915 419847 835270 667227 189372 970482 421568 205749 547445 901168 216815 383068 278993 627315 646218 702547 513870 945259 085380 151327 571402 159293 859161 648062 738666 046210 329563 736444 088914 236617 140053 582574 596562 116798 580043 286291 436719 237703 945170 904121 279900 221199 342251 665844 436606 536015 039587 386502 693617 809083 903769 709117 278745 935626 253538 874897 230776 279765 600325 435002 576406 948309 445212 167473 894105 885283 262149 181114 720990 868135 335896 917589 910877 303414 524264 868739 871029 927840 815822 097420 675729 906857 179872 252420 813109 617867 485303 820244 266798 472517 340632 942363 935607 675722 621799 195998 699999 554554 145801 473297 624771 (801 digits), a[1527] = 1
                                                                                      A[1528]/B[1528] = 11 009053 196843 565713 720807 228298 774101 732550 281405 718784 805983 961975 797402 099647 341086 715756 393510 324852 120909 133937 216473 783752 900206 942927 319107 207847 038745 638139 153383 197451 182546 933244 606965 204607 135568 389612 201387 185073 443969 999967 015744 909220 717527 153220 938367 725548 315510 094790 181436 745864 561629 320712 686770 354985 551782 368179 795204 261367 031091 676983 991448 203463 611853 152318 477886 332465 203463 561268 629181 066144 682836 712313 819350 695320 446029 372480 418410 142995 099372 883442 233642 790642 384323 965593 765309 253708 174661 627946 688914 231480 165130 030832 886572 911517 221129 616178 262653 764018 906063 976871 159634 347460 257561 534665 134111 229520 148941 052491 396706 684902 513108 765769 465529 439824 676216 247904 449750 179367 807856 085308 914752 042367 042318 166387 943887 392214 010215 425175 253648 066591 957413 071851 529588 516425 (800 digits)/1070 008692 080326 314287 531749 375233 806374 016267 652495 224946 120255 160418 696456 083809 631011 688606 251651 643632 825621 028327 127222 923580 913536 517705 391604 019845 220977 977977 784964 928386 823540 107801 585448 779950 279970 142707 058498 050947 997115 101099 914297 378371 789332 902068 830764 237062 089327 210219 545968 198693 679668 286602 990650 148486 209619 383717 422494 318787 360461 973646 259999 098991 991194 583465 178574 335780 833243 825380 203930 972440 780047 249607 768131 789280 416290 053837 818404 586610 639516 405298 406175 416091 456233 468155 953327 430016 015144 878090 418529 035532 615223 638930 746663 051375 379547 045233 613053 346393 718920 408441 426405 331187 560111 403326 188760 231030 067532 064463 498953 803618 665964 325257 809378 296611 817122 477199 629031 814512 512915 058079 873245 596233 848915 675570 158736 429089 941642 938705 167771 898442 432743 696637 962238 795579 (802 digits), a[1528] = 6
                                                                                      A[1529]/B[1529] = 34 700971 683508 863828 317055 707496 105637 360406 400553 101083 117116 369915 196863 748529 915144 321829 042101 355501 375686 520347 600639 297100 499167 530799 725424 298732 994966 635485 577372 141033 368173 508989 567244 897516 509456 360532 003615 251246 181095 030539 293197 289464 567467 592395 212440 722887 803270 052884 258353 157370 876871 318343 832085 593113 383964 657523 427425 392178 856186 009435 669916 737446 151966 784123 591756 695849 710239 205750 991926 912091 307405 759896 867551 846784 525995 663516 965547 399994 586469 050844 093192 628969 562291 024354 961412 996847 377086 339368 023084 894125 899682 527596 633314 034038 157831 438617 834064 881722 004102 334986 528542 939148 177487 413600 667753 850217 563508 280332 746696 290951 548330 534686 712338 541831 442109 433083 106665 605207 792930 927903 583022 641092 277730 901354 687380 930389 592514 049608 841359 296753 486988 594816 900046 555119 (800 digits)/3372 709774 500271 765675 320794 824329 145420 433103 853647 793673 254630 191909 518459 472705 370627 055551 384212 964250 384871 266941 021958 060057 394279 002252 365412 597185 643588 959828 388348 839178 147651 681451 741203 905766 259758 263391 842721 342216 961827 724867 948641 682561 269166 923021 875360 990179 895297 276877 340452 109951 984263 945189 123278 016860 788152 010313 915545 695028 127596 250502 516441 385890 210200 890449 118297 603904 616530 056183 898084 354041 577845 693994 208516 647741 470069 503765 121058 196438 454564 255482 605028 941892 177784 308237 569099 568793 981060 887810 130484 337374 125436 517117 674991 730533 086950 580913 006633 933287 042044 487473 460330 714553 548469 545875 483870 603967 506010 717655 365601 281885 925733 791595 525555 565565 358224 611471 139516 256647 156612 659543 439981 055500 019264 367343 418573 222877 500651 437914 699314 395326 852785 235715 360014 011508 (802 digits), a[1529] = 3
                                                                                      A[1530]/B[1530] = 219 214883 297896 748683 623141 473275 407925 894988 684724 325283 508682 181466 978584 590826 831952 646730 646118 457860 375028 256022 820309 566355 895212 127725 671653 000245 008545 451052 617616 043651 391587 987182 010434 589706 192306 552804 223078 692550 530540 183202 774928 646008 122332 707592 213012 062875 135130 412095 731555 690089 822857 230775 679283 913665 855570 313320 359756 614440 168207 733598 010948 628140 523653 857060 028426 507563 464898 795774 580742 538692 527271 271695 024661 776027 602003 353582 211694 542962 618187 188506 792798 564459 758070 111723 533787 234792 437179 664154 827423 596235 563225 196412 686457 115746 168118 247885 267043 054350 930677 986790 330891 982349 322486 016269 140634 330825 529990 734487 876884 430611 803091 973889 739560 690813 328872 846403 089743 810614 565441 652730 412887 888920 708703 574516 068172 974551 565299 722828 301803 847112 879344 640752 929867 847139 (801 digits)/21306 267339 081956 908339 456518 321208 678896 614890 774381 986985 648036 311875 807212 920041 854774 021914 556929 429135 134848 629973 258971 283925 279210 531219 584079 602959 082511 736948 115057 963455 709450 196512 032672 214547 838519 723058 114826 104249 768081 450307 606147 473739 404334 440200 082930 178141 461110 871483 588680 858405 585251 957737 730318 249650 938531 445600 915768 488956 126039 476661 358647 414333 252399 926159 888359 959208 532424 162483 592437 096690 247121 413573 019231 675729 236707 076428 544753 765241 366901 938194 036349 067444 522939 317581 367924 842779 901510 204951 201435 059777 367842 741636 796613 434573 901250 530711 652856 946115 971187 333282 188389 618508 850928 678579 091983 854835 103596 370395 692561 494934 220367 074830 962711 690003 966470 146026 466129 354395 452591 015340 513131 929233 964501 879630 670175 766354 945551 566193 363658 270403 549455 110930 122322 864627 (803 digits), a[1530] = 6
                                                                                      A[1531]/B[1531] = 1349 990271 470889 355930 055904 547148 553192 730338 508899 052784 169209 458717 068371 293490 906860 202212 918812 102663 625856 056484 522496 695235 870440 297153 755342 300203 046239 341801 283068 402941 717701 432081 629852 435753 663295 677357 342087 406549 364336 129755 942769 165513 301463 837948 490513 100138 614052 525458 647687 297909 814014 702997 907789 075108 517386 537445 585965 078819 865432 411023 735608 506289 293889 926483 762315 741230 499631 980398 476382 144246 471033 390067 015522 502950 138015 785010 235714 657770 295592 181884 849984 015728 110711 694696 164136 405602 000164 324296 987626 471539 279033 706072 752056 728515 166540 925929 436323 207827 588170 255728 513894 833244 112403 511215 511559 835170 743452 687260 008002 874622 366882 378025 149702 686711 415346 511501 645128 468895 185580 844286 060349 974616 529952 348451 096418 777698 984312 386578 652182 379430 763056 439334 479253 637953 (802 digits)/131210 313808 992013 215712 059904 751581 218800 122448 499939 715587 142848 063164 361736 992956 499271 187038 725789 539061 193963 046780 575785 763609 069542 189569 869890 214940 138659 381517 078696 619912 404352 860523 937237 193053 290876 601740 531677 967715 570316 426713 585526 524997 695173 564222 372942 059028 661962 505778 872537 260385 495775 691615 505187 514766 419340 683919 410156 628764 883833 110470 668325 871889 724600 447408 448457 359155 811075 031085 452706 934183 060574 175432 323906 702116 890311 962336 389580 787886 655975 884646 823123 346559 315420 213725 776648 625473 390122 117517 339094 696038 332492 966938 454672 337976 494453 765182 923775 609982 869168 487166 590668 425606 654041 617350 035773 732978 127588 940029 520970 251491 247936 240581 301825 705589 157045 487629 936292 383019 872158 751586 518772 630903 806275 645127 439627 821007 173960 835074 881264 017748 149515 901296 093951 199270 (804 digits), a[1531] = 6
                                                                                      A[1532]/B[1532] = 1569 205154 768786 104613 679046 020423 961118 625327 193623 378067 677891 640184 046955 884317 738812 848943 564930 560524 000884 312507 342806 261591 765652 424879 426995 300448 054784 792853 900684 446593 109289 419263 640287 025459 855602 230161 565166 099099 894876 312958 717697 811521 423796 545540 703525 163013 749182 937554 379242 987999 636871 933773 587072 988774 372956 850765 945721 693260 033640 144621 746557 134429 817543 783543 790742 248793 964530 776173 057124 682938 998304 661762 040184 278977 740019 138592 447409 200732 913779 370391 642782 580187 868781 806419 697923 640394 437343 988451 815050 067774 842258 902485 438513 844261 334659 173814 703366 262178 518848 242518 844786 815593 434889 527484 652194 165996 273443 421747 884887 305234 169974 351914 889263 377524 744219 357904 734872 279509 751022 497016 473237 863537 238655 922967 164591 752250 549612 109406 953986 226543 642401 080087 409121 485092 (802 digits)/152516 581148 073970 124051 516423 072789 897696 737339 274321 702572 790884 375040 168949 912998 354045 208953 282718 968196 328811 676753 834757 047534 348752 720789 453969 817899 221171 118465 193754 583368 113803 057035 969909 407601 129396 324798 646504 071965 338397 877021 191673 998737 099508 004422 455872 237170 123073 377262 461218 118791 081027 649353 235505 764417 357872 129520 325925 117721 009872 587132 026973 286222 977000 373568 336817 318364 343499 193569 045144 030873 307695 589005 343138 377846 127019 038764 934334 553128 022877 822840 859472 414003 838359 531307 144573 468253 291632 322468 540529 755815 700335 708575 251285 772550 395704 295894 576632 556098 840355 820448 779058 044115 504970 295929 127757 587813 231185 310425 213531 746425 468303 315412 264537 395593 123515 633656 402421 737415 324749 766927 031904 560137 770777 524758 109803 587362 119512 401268 244922 288151 698971 012226 216274 063897 (804 digits), a[1532] = 1
                                                                                      A[1533]/B[1533] = 6057 605735 777247 669771 093042 608420 436548 606320 089769 186987 202884 379269 209238 946444 123298 749043 613603 784235 628508 994006 550915 480011 167397 571792 036328 201547 210593 720362 985121 742721 045569 689872 550713 512133 230102 367842 037585 703849 048965 068632 095862 600077 572853 474570 601088 589179 861601 338121 785416 261908 724630 504318 669008 041431 636257 089743 423130 158599 966352 844888 975279 909578 746521 277115 134542 487612 393224 308917 647756 193063 465947 375353 136075 339883 358073 200787 577942 259969 036930 293059 778331 756291 717057 113955 257907 326785 312196 289652 432776 674863 805810 413529 067598 261299 170518 447373 546421 994363 144714 983285 048255 280024 417072 093669 468142 333159 563782 952503 662664 790324 876805 433769 817492 819285 648004 585215 849745 307424 438648 335335 480063 565228 245920 117352 590194 034450 633148 714799 514141 059061 690259 679596 706618 093229 (802 digits)/588760 057253 213923 587866 609173 969950 911890 334466 322904 823305 515501 188284 868586 731951 561406 813898 573946 443650 180398 077042 080056 906212 115800 351938 231799 668637 802172 736912 659960 370016 745762 031631 846965 415856 679065 576136 471190 183611 585510 057777 160548 521208 993697 577489 740558 770539 031182 637566 256191 616758 738858 639675 211704 808018 492957 072480 387931 981927 913450 871866 749245 730558 655601 568113 458909 314248 841572 611792 588139 026802 983660 942448 353321 835655 271369 078631 192584 447270 724609 353169 401540 588570 830498 807647 210369 030233 265019 084922 960683 963485 433500 092664 208529 655627 681566 652866 653673 278279 390235 948512 927842 557953 168952 505137 419046 496417 821144 871305 161565 490767 652846 186818 095437 892368 527592 388599 143557 595265 846408 052367 614486 311317 118608 219401 769038 583093 532498 038879 616030 882203 246428 937974 742773 390961 (804 digits), a[1533] = 3
                                                                                      A[1534]/B[1534] = 19742 022362 100529 113926 958173 845685 270764 444287 462930 939029 286544 777991 674672 723650 108709 096074 405741 913230 886411 294526 995552 701625 267845 140255 535979 905089 686565 953942 856049 674756 245998 488881 292427 561859 545909 333687 677923 210647 041771 518855 005285 611754 142356 969252 506790 930553 333986 951919 735491 773725 810763 446729 594097 113069 281728 119996 215112 169059 932698 679288 672396 863166 057107 614889 194369 711631 144203 702926 000393 262129 396146 787821 448410 298627 814238 740955 181235 980640 024570 249570 977777 849063 019953 148285 471645 620750 373932 857409 113380 092366 259690 143072 641308 628158 846214 515935 342632 245267 952993 192373 989552 655666 686105 808493 056621 165474 964792 279258 872881 676208 800390 653224 341741 835381 688233 113552 284108 201783 066967 503022 913428 559221 976416 275024 935173 855602 449058 253805 496409 403728 713180 118877 528975 764779 (803 digits)/1 918796 752907 715740 887651 343944 982642 633367 740738 243036 172489 337387 939894 774710 108853 038265 650649 004558 299146 870005 907880 074927 766170 696153 776604 149368 823812 627689 329203 173635 693418 351089 151931 510805 655171 166593 053208 060074 622800 094928 050352 673319 562364 080600 736891 677548 548787 216621 289961 229792 969067 297603 568378 870620 188472 836743 346961 489721 063504 750225 202732 274710 477898 943805 077908 713545 261110 868217 028946 809561 111282 258678 416350 403103 884811 941126 274658 512087 894940 196705 882349 064094 179716 329855 954248 775680 558953 086689 577237 422581 646272 000835 986567 876874 739433 440404 254494 537652 390937 011063 665987 562585 717975 011827 811341 384897 077066 694619 924340 698228 218728 426841 875866 550851 072698 706292 799453 833094 523212 863973 924029 875363 494089 126602 182963 416919 336642 717006 517907 093014 934761 438257 826150 444594 236780 (805 digits), a[1534] = 3
                                                                                      A[1535]/B[1535] = 65283 672822 078835 011551 967564 145476 248841 939182 478562 004075 062518 713244 233257 117394 449426 037266 830829 523928 287742 877587 537573 584886 970932 992558 644267 916816 270291 582191 553270 766989 783565 156516 427996 197711 867830 368905 071355 335790 174279 625197 111719 435339 999924 382328 121461 380839 863562 193880 991891 583086 156920 844507 451299 380639 481441 449732 068466 665779 764448 882754 992470 499076 917844 121782 717651 622505 825835 417695 648935 979451 654387 738817 481306 235766 800789 423653 121650 201889 110641 041772 711665 303480 776916 558811 672844 189036 433994 861879 772916 951962 584880 842746 991524 145775 709161 995179 574318 730167 003694 560407 016913 247024 475389 519148 638005 829584 458159 790280 281309 818951 277977 393442 842718 325430 712703 925872 702069 912773 639550 844404 220349 242894 175168 942427 395715 601257 980323 476216 003369 270247 829800 036229 293545 387566 (803 digits)/6 345150 315976 361146 250820 641008 917878 811993 556681 052013 340773 527665 007969 192717 058510 676203 765845 587621 341090 790415 800682 304840 204724 204261 681750 679906 140075 685240 724522 180867 450271 799029 487426 379382 381370 178844 735760 651414 052011 870294 208835 180507 208301 235499 788164 773204 416900 681046 507449 945570 523960 631669 344811 823565 373437 003187 113364 857095 172442 164126 480063 573377 164255 487016 801839 599545 097581 446223 698633 016822 360649 759696 191499 562633 490091 094747 902606 728848 132091 314727 000216 593823 127719 820066 670393 537410 707092 525087 816635 228428 902301 436008 052367 839153 873928 002779 416350 266630 451090 423426 946475 615599 711878 204435 939161 573737 727617 905004 644327 256250 146952 933371 814417 747991 110464 646470 786960 642841 164904 438329 824457 240576 793584 498414 768292 019796 593021 683517 592600 895075 686487 561202 416426 076556 101301 (805 digits), a[1535] = 3
                                                                                      A[1536]/B[1536] = 215593 040828 337034 148582 860866 282114 017290 261834 898616 951254 474100 917724 374444 075833 456987 207874 898230 485015 749639 927289 608273 456286 180644 117931 468783 655538 497440 700517 515861 975725 596693 958430 576416 154995 149400 440402 891989 218017 564610 394446 340443 917774 142130 116236 871175 073072 924673 533562 711166 522984 281525 980251 947995 254987 726052 469192 420512 166399 226045 327553 649808 360396 810639 980237 347324 579148 621709 956012 947201 200484 359310 004273 892329 005928 216607 011914 546186 586307 356493 374889 112773 759505 350702 824720 490178 187859 675917 443048 432130 948254 014332 671313 615881 065485 973700 501474 065588 435768 964076 873595 040292 396740 112274 365938 970638 654228 339271 650099 716811 133062 634322 833552 869896 811673 826344 891170 390317 940103 985620 036235 574476 287904 501923 102307 122320 659376 390028 682453 506517 214472 202580 227565 409611 927477 (804 digits)/20 954247 700836 799179 640113 266971 736279 069348 410781 399076 194809 920382 963802 352861 284385 066876 948185 767422 322419 241253 309926 989448 380343 308938 821856 189087 244039 683411 502769 716238 044233 748177 614210 648952 799281 703127 260490 014316 778835 705810 676858 214841 187267 787100 101385 997161 799489 259760 812311 066504 540949 192611 602814 341316 308783 846304 687056 061006 580831 242604 642922 994841 970665 404855 483427 512180 553855 206888 124845 860028 193231 537766 990849 091004 355085 225369 982478 698632 291214 140886 882998 845563 562875 790055 965429 387912 680230 661953 027143 107868 353176 308860 143671 394336 361217 448742 503545 337543 744208 281344 505414 409384 853609 625135 628826 106110 259920 409633 857322 466978 659587 226957 319119 794824 404092 645705 160335 761618 017926 178963 397401 597093 874842 621846 487839 476309 115707 767559 295709 778241 994224 121865 075428 674262 540683 (806 digits), a[1536] = 3
                                                                                      A[1537]/B[1537] = 280876 713650 415869 160134 828430 427590 266132 201017 377178 955329 536619 630968 607701 193227 906413 245141 729060 008944 037382 804877 145847 041173 151577 110490 113051 572354 767732 282709 069132 742715 380259 114947 004412 352707 017230 809307 963344 553807 738890 019643 452163 353114 142054 498564 992636 453912 788235 727443 703058 106070 438446 824759 399294 635627 207493 918924 488978 832178 990494 210308 642278 859473 728484 102020 064976 201654 447545 373708 596137 179936 013697 743091 373635 241695 017396 435567 667836 788196 467134 416661 824439 062986 127619 383532 163022 376896 109912 304928 205047 900216 599213 514060 607405 211261 682862 496653 639907 165935 967771 434002 057205 643764 587663 885087 608644 483812 797431 440379 998120 952013 912300 226995 712615 137104 539048 817043 092387 852877 625170 880639 794825 530798 677092 044734 518036 260634 370352 158669 509886 484720 032380 263794 703157 315043 (804 digits)/27 299398 016813 160325 890933 907980 654157 881341 967462 451089 535583 448047 971771 545578 342895 743080 714031 355043 663510 031669 110609 294288 585067 513200 503606 868993 384115 368652 227291 897105 494505 547207 101637 028335 180651 881971 996250 665730 830847 576104 885693 395348 395569 022599 889550 770366 216389 940807 319761 012075 064909 824280 947626 164881 682220 849491 800420 918101 753273 406731 122986 568219 134920 891872 285267 111725 651436 653111 823478 876850 553881 297463 182348 653637 845176 320117 885085 427480 423305 455613 883215 439386 690595 610122 635822 925323 387323 187040 843778 336297 255477 744868 196039 233490 235145 451521 919895 604174 195298 704771 451890 024984 565487 829571 567987 679847 987538 314638 501649 723228 806540 160329 133537 542815 514557 292175 947296 404459 182830 617293 221858 837670 668427 120261 256131 496105 708729 451076 888310 673317 680711 683067 491854 750818 641984 (806 digits), a[1537] = 1
                                                                                      A[1538]/B[1538] = 777346 468129 168772 468852 517727 137294 549554 663869 652974 861913 547340 179661 589846 462289 269813 698158 356350 502903 824405 537043 899967 538632 483798 338911 694886 800248 032905 265935 654127 461156 357212 188324 585240 860409 183862 059018 818678 325633 042390 433733 244770 624002 426239 113366 856447 980898 501144 988450 117282 735125 158419 629770 746584 526242 141040 307041 398469 830757 207033 748170 934366 079344 267608 184277 477276 982457 516800 703430 139475 560356 386705 490456 639599 489318 251399 883049 881860 162700 290762 208212 761651 885477 605941 591784 816222 941651 895742 052904 842226 748687 212759 699434 830691 488009 339425 494781 345402 767640 899619 741599 154703 684269 287602 136114 187927 621853 934134 530859 713053 037090 458923 287544 295127 085882 904442 525256 575093 645859 235961 797515 164127 349501 856107 191776 158393 180645 130732 999792 526290 183912 267340 755154 815926 557563 (804 digits)/75 553043 734463 119831 421981 082933 044594 832032 345706 301255 265976 816478 907345 444017 970176 553038 376248 477509 649439 304591 531145 578025 550478 335339 829069 927074 012270 420715 957353 510449 033244 842591 817484 705623 160585 467071 252991 345778 440530 858020 448245 005537 978405 832299 880487 537894 232269 141375 451833 090654 670768 841173 498066 671079 673225 545288 287897 897210 087378 056066 888896 131280 240507 188600 053961 735631 856728 513111 771803 613729 300994 132693 355546 398280 045437 865605 752649 553593 137825 052114 649429 724336 944067 010301 237075 238559 454877 036034 714699 780462 864131 798596 535749 861316 831508 351786 343336 545892 134805 690887 409194 459353 984585 284278 764801 465806 234997 038910 860621 913436 272667 547615 586194 880455 433207 230057 054928 570536 383587 413549 841119 272435 211696 862369 000102 468520 533166 669713 072331 124877 355647 488000 059138 175899 824651 (806 digits), a[1538] = 2
                                                                                      A[1539]/B[1539] = 2 612916 118037 922186 566692 381611 839473 914796 192626 336103 541070 178640 169953 377240 580095 715854 339616 798111 517655 510599 416008 845749 657070 602972 127225 197711 973098 866448 080516 031515 126184 451895 679920 760134 933934 568816 986364 419379 530706 866061 320843 186475 225121 420771 838665 561980 396608 291670 692794 054906 311445 913705 714071 639048 214353 630614 840048 684388 324450 611595 454821 445377 097506 531308 654852 496807 149026 997947 483999 014563 861005 173814 214461 292433 709649 771596 084717 313417 276297 339421 041300 109394 719418 945444 158886 611691 201851 797138 463642 731728 146278 237492 612365 099479 675289 701138 980997 676115 468858 666630 658799 521316 696572 450470 293430 172427 349374 599835 032959 137280 063285 289070 089628 597996 394753 252376 392812 817668 790455 333056 273185 287207 579304 245413 620062 993215 802569 762551 158047 088757 036456 834402 529259 150936 987732 (805 digits)/253 958529 220202 519820 156877 156779 787942 377439 004581 354855 333513 897484 693807 877632 253425 402195 842776 787572 611827 945443 704046 028365 236502 519219 990816 650215 420926 630800 099352 428452 594240 074982 554091 145204 662408 283185 755224 703066 152440 150166 230428 411962 330786 519499 531013 384048 913197 364933 675260 284039 077216 347801 441826 178120 701897 485356 664114 609732 015407 574931 789674 962059 856442 457672 447152 318621 221622 192447 138889 718038 456863 695543 248987 848477 981489 916935 143034 088259 836780 611957 831504 612397 522796 641026 347048 641001 751954 295144 987877 677685 847873 140657 803288 817440 729670 506880 949905 241850 599715 777433 679473 403046 519243 682407 862392 077266 692529 431371 083515 463537 624542 803175 892122 184181 814178 982347 112082 116068 333592 857942 745216 654976 303517 707368 256438 901667 308229 460216 105304 047949 747654 147067 669269 278518 115937 (807 digits), a[1539] = 3
                                                                                      A[1540]/B[1540] = 19 067759 294394 624078 435699 189010 013611 953128 012254 005699 649404 797821 369335 230530 522959 280794 075475 943131 126492 398601 449105 820215 138126 704603 229488 078870 611940 098041 829547 874733 344447 520481 947769 906185 397951 165580 963569 754335 040581 104819 679635 550097 199852 371641 984025 790310 757156 542839 838008 501626 915246 554359 628272 219922 026717 555344 187382 189188 101911 488201 931921 052005 761889 986768 768244 954927 025646 502433 091423 241422 587392 603404 991685 686635 456866 652572 476071 075781 096781 666709 497313 527414 921410 224050 703991 098061 354614 475711 298403 964323 772634 875207 985990 527049 215037 247398 361765 078211 049651 566034 353195 803920 560276 440894 190125 394919 067476 132979 761573 674013 480087 482413 914944 481101 849155 671077 274946 298775 179046 567355 709812 174580 404631 574002 532217 110903 798633 468591 106122 147589 439110 108158 459968 872485 471687 (806 digits)/1853 262748 275880 758572 520121 180391 560191 474105 377775 785242 600574 098871 764000 587443 744154 368409 275685 990517 932234 922697 459467 776582 205995 969879 764786 478581 958756 836316 652820 509617 192925 367469 696122 722055 797443 449371 539564 267241 507611 909184 061243 889274 293911 468796 597581 226236 624650 695911 178655 078928 211283 275783 590849 917924 586507 942784 936700 165334 195231 080589 416620 865699 235604 392307 184027 965980 408083 860241 744031 639998 499040 001496 098461 337625 915867 284151 753888 171411 995289 335819 469962 011119 603643 497485 666415 725571 718557 102049 629843 524263 799243 783201 158771 583401 939201 899952 992673 238846 332816 132923 165508 280679 619291 061133 801546 006673 082703 058508 445230 158199 644467 169846 831050 169728 132460 106486 839503 383014 718737 419149 057635 857269 336320 813946 795174 780191 690772 891225 809459 460525 589226 517473 744023 125526 636210 (808 digits), a[1540] = 7
                                                                                      A[1541]/B[1541] = 78 883953 295616 418500 309489 137651 893921 727308 241642 358902 138689 369925 647294 299362 671932 839030 641520 570636 023625 105005 212432 126610 209577 421385 045177 513194 420859 258615 398707 530448 503974 533823 471000 384876 525739 231140 840643 436719 693031 285340 039385 386864 024530 907339 774768 723223 425234 463030 044828 061413 972432 131144 227160 518736 321223 851991 589577 441140 732096 564403 182505 653400 145066 478383 727832 316515 251613 007679 849691 980254 210575 587434 181204 038975 537116 381885 989001 616541 663424 006259 030554 219054 405059 841646 974851 003936 620309 699983 657258 589023 236817 738324 556327 207676 535438 690732 428057 988959 667464 930768 071582 736998 937678 214047 053931 752103 619279 131754 079253 833333 983635 218725 749406 522403 791375 936685 492598 012769 506641 602479 112433 985529 197830 541423 748931 436830 997103 636915 582535 679114 792897 267036 369134 640878 874480 (806 digits)/7667 009522 323725 554110 237361 878346 028708 273860 515684 495825 735810 292971 749810 227407 230042 875832 945520 749644 340767 636233 541917 134694 060486 398739 049962 564543 255953 976066 710634 466921 365941 544861 338582 033427 852182 080671 913481 772032 182887 786902 475403 969059 506432 394685 921338 288995 411800 148578 389880 599751 922349 450935 805225 849819 047929 256496 410915 271068 796331 897289 456158 424856 798860 026901 183264 182542 853957 633414 115016 278032 453023 701527 642833 198981 644959 053542 158586 773907 817937 955235 711352 656875 937370 630969 012711 543288 626182 703343 507251 774741 044848 273462 438375 151048 486478 106692 920598 197235 930980 309126 341506 525764 996407 926943 068576 103959 023341 665404 864436 096336 202411 482563 216322 863094 344019 408294 470095 648127 208542 534538 975760 084053 648800 963155 437138 022434 071321 025119 343141 890052 104560 216962 645361 780624 660777 (808 digits), a[1541] = 4
                                                                                      A[1542]/B[1542] = 571 255432 363709 553580 602123 152573 271064 044285 703750 518014 620230 387300 900395 326069 226489 154008 566119 937583 291868 133637 936130 706486 605168 654298 545730 671231 557954 908349 620500 587872 872269 257246 244772 600321 078125 783566 848073 811372 891800 102199 955333 258145 371568 723020 407406 852874 733797 784050 151804 931524 722271 472369 218395 851076 275284 519285 314424 277173 226587 439024 209460 625806 777355 335454 863071 170533 786937 556192 039267 103202 061421 715444 260113 959464 216681 325774 399082 391572 740749 710522 711193 060795 756829 115579 527948 125617 696782 375596 899214 087486 430359 043479 880280 980784 963108 082525 358171 000928 721906 081410 854274 962913 124023 939223 567647 659644 402430 055258 316350 507351 365534 013494 160790 137928 388787 227875 723132 388161 725537 784709 496850 073284 789445 363968 774737 168720 778358 927000 183871 901392 989390 977413 043911 358637 593047 (807 digits)/55522 329404 541959 637344 181654 328813 761149 391128 987567 256022 751246 149674 012672 179294 354454 499239 894331 238028 317608 376332 252887 719440 629400 761053 114524 430384 750434 668783 627261 778066 754516 181499 066196 956050 762718 014074 933936 671466 787826 417501 389071 672690 838938 231598 046949 249204 507251 735959 907819 277191 667729 432334 227430 866657 922012 738259 813107 062815 769554 361615 609729 839696 827624 580615 466877 243780 385787 294140 549145 586225 670205 912189 598293 730497 430580 658946 863995 588766 720855 022469 449430 609251 165237 914268 755396 528592 101836 025454 180605 947451 113181 697438 227397 640741 344548 646803 436860 619497 849678 296807 556053 961034 594146 549735 281578 734386 246094 716342 496282 832553 061347 547789 345310 211388 540595 964548 130172 919905 178535 160921 887956 445644 877927 556034 855140 937230 190020 067061 211452 690890 321148 036212 261555 589899 261649 (809 digits), a[1542] = 7
                                                                                      A[1543]/B[1543] = 1221 394818 023035 525661 513735 442798 436049 815879 649143 394931 379150 144527 448084 951501 124911 147047 773760 445802 607361 372281 084693 539583 419914 729982 136638 855657 536769 075314 639708 706194 248513 048315 960545 585518 681990 798274 536791 059465 476631 489739 950051 903154 767668 353380 589582 428972 892830 031130 348437 924463 416975 075882 663952 220888 871792 890562 218425 995487 185271 442451 601426 905013 699777 149293 453974 657582 825488 120063 928226 186658 333419 018322 701431 957903 970479 033434 787166 399687 144923 427304 452940 340645 918718 072806 030747 255172 013874 451177 455686 763996 097535 825284 316889 169246 461654 855783 144399 990817 111277 093589 780132 662825 185726 092494 189227 071392 424139 242270 711954 848036 714703 245714 070986 798260 568950 392436 938862 789092 957717 171898 106134 132098 776721 269361 298405 774272 553821 490915 950279 481900 771679 221862 456957 358154 060574 (808 digits)/118711 668331 407644 828798 600670 535973 551007 056118 490819 007871 238302 592319 775154 585995 938951 874312 734183 225700 975984 388898 047692 573575 319287 920845 279011 425312 756823 313633 965158 023054 874973 907859 470975 945529 377618 108821 781355 114965 758540 621905 253547 314441 184308 857882 015236 787404 426303 620498 205519 154135 257808 315604 260087 583134 891954 733016 037129 396700 335440 620520 675618 104250 454109 188132 117018 670103 625532 221695 213307 450483 793435 525906 839420 659976 506120 371435 886577 951441 259648 000174 610213 875378 267846 459506 523504 600472 829854 754251 868463 669643 271211 668338 893170 432531 175575 400299 794319 436231 630336 902741 453614 447834 184701 026413 631733 572731 515531 098089 857001 761442 325106 578141 906943 285871 425211 337390 730441 487937 565612 856382 751672 975343 404656 075225 147419 896894 451361 159241 766047 271832 746856 289387 168472 960423 184075 (810 digits), a[1543] = 2
                                                                                      A[1544]/B[1544] = 4235 439886 432816 130565 143329 480968 579213 491924 651180 702808 757680 820883 244650 180572 601222 595151 887401 274991 113952 250481 190211 325236 864912 844244 955647 238204 168262 134293 539626 706455 617808 402194 126409 356877 124098 178390 458446 989769 321694 571419 805488 967609 674573 783162 176154 139793 412287 877441 197118 704914 973196 700017 210252 513742 890663 190971 969702 263634 782401 766379 013741 340847 876686 783335 224995 143282 263401 916383 823945 663177 061678 770412 364409 833176 128118 426078 760581 590634 175519 992436 070014 082733 512983 333997 620189 891133 738405 729129 266274 379474 722966 519332 830948 488524 348072 649874 791370 973380 055737 362180 194672 951388 681202 216706 135328 873821 674847 782070 452215 051461 509643 750636 373750 532710 095638 405186 539720 755440 598689 300403 815252 469581 119609 172052 669954 491538 439823 399748 034710 347095 304428 643000 414783 433099 774769 (808 digits)/411657 334398 764894 123739 983665 936734 414170 559484 460024 279636 466153 926633 338135 937282 171310 122178 096880 915131 245561 543026 395965 440166 587264 523588 951558 706323 020904 609685 522735 847231 379437 905077 479124 792638 895572 340540 278002 016364 063448 283217 149713 616014 391864 805244 092659 611417 786162 597454 524376 739597 441154 379147 007693 616062 597876 937307 924495 252916 775876 223177 636584 152448 189952 145011 817933 254091 262383 959226 189067 937677 050512 489910 116555 710426 948941 773254 523729 443090 499799 022993 280072 235385 968777 292788 325910 330010 591400 288209 785996 956380 926816 702454 906908 938334 871274 847702 819818 928192 740689 005031 916897 304537 148249 628976 176779 452580 792688 010612 067288 116880 036667 282215 066140 069002 816229 976720 321497 383717 875373 730070 142975 371675 091895 781710 297400 627913 544103 544786 509594 506388 561716 904373 766974 471168 813874 (810 digits), a[1544] = 3
                                                                                      A[1545]/B[1545] = 18163 154363 754300 047922 087053 366672 752903 783578 253866 206166 409873 428060 426685 673791 529801 527655 323365 545767 063170 374205 845538 840530 879566 106961 959227 808474 209817 612488 798215 532016 719746 657092 466183 013027 178383 511836 370579 018542 763409 775419 172007 773593 465963 486029 294198 988146 541981 540895 136912 744123 309761 875951 504962 275860 434445 654450 097235 050026 314878 507967 656392 268405 206524 282634 353955 230711 879095 785599 224008 839366 580134 099972 159071 290608 482952 737749 829492 762223 847003 397048 732996 671579 970651 408796 511506 819706 967497 367694 520784 281894 989401 902615 640683 123343 853945 455282 309883 884337 334226 542310 558824 468379 910534 959318 730542 566679 123530 370552 520815 053882 753278 248259 565988 929100 951504 013183 097745 810855 352474 373513 367144 010423 255157 957571 978223 740426 313115 089908 089120 870281 989393 793864 116091 090553 159650 (809 digits)/1 765341 005926 467221 323758 535334 282911 207689 294056 330916 126417 102918 298853 127698 335124 624192 363025 121706 886225 958230 561003 631554 334241 668346 015201 085246 250604 840441 752376 056101 411980 392725 528169 387475 116084 959907 470982 893363 180422 012333 754773 852401 778498 751768 078858 385875 233075 570954 010316 303026 112525 022425 832192 290862 047385 283462 482247 735110 408367 438945 513231 221954 714043 213917 768179 388751 686468 675068 058599 969579 201191 995485 485547 305643 501684 301887 464453 981495 723803 258844 092147 730502 816922 142955 630659 827145 920515 195455 907091 012451 495166 978478 478158 520806 185870 660674 791111 073595 149002 593092 922869 121203 665982 777699 542318 338851 383054 686283 140538 126154 228962 471775 707002 171503 561882 690131 244272 016431 022809 067107 776663 323574 462043 772239 202066 337022 408548 627775 338387 804425 297386 993723 906882 236370 845098 439571 (811 digits), a[1545] = 4
                                                                                      A[1546]/B[1546] = 22398 594250 187116 178487 230382 847641 332117 275502 905046 908975 167554 248943 671335 854364 131024 122807 210766 820758 177122 624687 035750 165767 744478 951206 914875 046678 378079 746782 337842 238472 337555 059286 592592 369904 302481 690226 829026 008312 085104 346838 977496 741203 140537 269191 470353 127939 954269 418336 334031 449038 282958 575968 715214 789603 325108 845422 066937 313661 097280 274346 670133 609253 083211 065969 578950 373994 142497 701983 047954 502543 641812 870384 523481 123784 611071 163828 590074 352858 022523 389484 803010 754313 483634 742794 131696 710840 705903 096823 787058 661369 712368 421948 471631 611868 202018 105157 101254 857717 389963 904490 753497 419768 591737 176024 865871 440500 798378 152622 973030 105344 262921 998895 939739 461811 047142 418369 637466 566295 951163 673917 182396 480004 374767 129624 648178 231964 752938 489656 123831 217377 293822 436864 530874 523652 934419 (809 digits)/2 176998 340325 232115 447498 519000 219645 621859 853540 790940 406053 569072 225486 465834 272406 795502 485203 218587 801357 203792 104030 027519 774408 255610 538790 036804 956927 861346 362061 578837 259211 772163 433246 866599 908723 855479 811523 171365 196786 075782 037991 002115 394513 143632 884102 478534 844493 357116 607770 827402 852122 463580 211339 298555 663447 881339 419555 659605 661284 214821 736408 858538 866491 403869 913191 206684 940559 937452 017826 158647 138869 045997 975457 422199 212111 250829 237708 505225 166893 758643 115141 010575 052308 111732 923448 153056 250525 786856 195300 798448 451547 905295 180613 427715 124205 531949 638813 893414 077195 333781 927901 038100 970519 925949 171294 515630 835635 478971 151150 193442 345842 508442 989217 237643 630885 506361 220992 337928 406526 942481 506733 466549 833718 864134 983776 634423 036462 171878 883174 314019 803775 555440 811256 003345 316267 253445 (811 digits), a[1546] = 1
                                                                                      A[1547]/B[1547] = 331743 473866 373926 546743 312413 233651 402545 640618 924522 931818 755632 913271 825387 634889 364139 246956 274101 036381 542887 119824 346041 161279 302271 423858 767478 461971 502934 067441 528006 870629 445517 487104 762476 191687 413127 175011 976943 134911 954870 631164 856962 150437 433485 254709 879142 779305 901753 397603 813353 030659 271181 939513 517969 330306 985969 490359 034357 441281 676802 348821 038262 797948 371479 206208 459260 466629 874063 613361 895371 874977 565514 285355 487807 023593 037949 031350 090533 702236 162330 849835 975147 231968 741537 807914 355260 771476 850140 723227 539605 541070 962559 809894 243525 689498 682198 927481 727451 892380 793721 205181 107788 345140 194855 423666 852742 733690 300824 507274 143236 528702 434186 232802 722341 394455 611497 870358 022277 738998 668765 808353 920694 730484 501897 772317 052718 987932 854253 945093 822757 913564 102907 909967 548334 421694 241516 (810 digits)/32 243317 770479 716837 588737 801337 357949 913727 243627 404081 811167 069929 455663 649378 148819 761227 155870 181936 105226 811320 017424 016831 175957 246893 558261 600515 647594 899290 821238 159823 040945 203013 593625 519873 838218 936624 832307 292475 935427 073282 286647 882017 301682 762628 456293 085363 055982 570586 519107 886666 042239 512548 790942 470641 335655 622214 356026 969589 666346 446449 822955 241498 844922 868096 552856 282340 854307 799396 308166 190639 145358 639457 141951 216432 471241 813496 792373 054648 060315 879847 704121 878553 549235 707216 558933 969933 427876 211442 641302 190729 816837 652611 006746 508817 924748 107969 734505 581392 229737 266039 913483 654617 253261 740987 940441 557683 081951 391879 256640 834347 070757 589977 556043 498514 394279 779188 338164 747428 714186 261848 870931 855272 134107 870128 974939 218944 919019 034079 702828 200702 550244 769895 264466 283205 272839 987801 (812 digits), a[1547] = 14
                                                                                      A[1548]/B[1548] = 354142 068116 561042 725230 542796 081292 734662 916121 829569 840793 923187 162215 496723 489253 495163 369763 484867 857139 720009 744511 381791 327047 046750 375065 682353 508649 881013 814223 865849 109101 783072 546391 355068 561591 715608 865238 805969 143224 039974 978003 834458 891640 574022 523901 349495 907245 856022 815940 147384 479697 554140 515482 233184 119910 311078 335781 101294 754942 774082 623167 708396 407201 454690 272178 038210 840624 016561 315344 943326 377521 207327 155740 011288 147377 649020 195178 680608 055094 184854 239320 778157 986282 225172 550708 486957 482317 556043 820051 326664 202440 674928 231842 715157 301366 884217 032638 828706 750098 183685 109671 861285 764908 786592 599691 718614 174191 099202 659897 116266 634046 697108 231698 662080 856266 658640 288727 659744 305294 619929 482271 103091 210488 876664 901941 700897 219897 607192 434749 946589 130941 396730 346832 079208 945347 175935 (810 digits)/34 420316 110804 948953 036236 320337 577595 535587 097168 195022 217220 639001 681150 115212 421226 556729 641073 400523 906584 015112 121454 044350 950365 502504 097051 637320 604522 760637 183299 738660 300156 975177 026872 386473 746942 792104 643830 463841 132213 149064 324638 884132 696195 906261 340395 563897 900475 927703 126878 714068 894361 976129 002281 769196 999103 503553 775582 629195 327630 661271 559364 100037 711414 271966 466047 489025 794867 736848 325992 349286 284227 685455 117408 638631 683353 064326 030081 559873 227209 638490 819262 889128 601543 818949 482382 122989 678401 998298 836602 989178 268385 557906 187359 936533 048953 639919 373319 474806 306932 599821 841384 692718 223781 666937 111736 073313 917586 870850 407791 027789 416600 098420 545260 736158 025165 285549 559157 085357 120713 204330 377665 321821 967826 734263 958715 853367 955481 205958 586002 514722 354020 325336 075722 286550 589107 241246 (812 digits), a[1548] = 1
                                                                                      A[1549]/B[1549] = 1 748311 746332 618097 447665 483597 558822 341197 305106 242802 294994 448381 562133 812281 591903 344792 726010 213572 464940 422926 097869 873206 469467 489272 924121 496892 496571 026989 324336 991403 307036 577807 672670 182750 438054 275562 635967 200819 707808 114770 543180 194797 716999 729575 350315 277126 408289 325844 661364 402890 949449 487744 001442 450705 809948 230282 833483 439536 461052 773132 841491 871848 426754 190240 294920 612103 829125 940308 874741 668677 385062 394822 908315 532959 613103 634029 812064 812965 922612 901747 807119 087779 177097 642228 010748 303090 700747 074316 003432 846262 350833 662272 737265 104154 894966 219067 058037 042278 892773 528461 643868 552931 404775 341225 822433 727199 430454 697635 146862 608303 064889 222619 159597 370664 819522 246059 025268 661254 960177 148483 737438 333059 572440 008557 380083 856307 867523 283023 684093 609114 437329 689829 297295 865170 203082 945256 (811 digits)/169 924582 213699 512649 733683 082687 668332 056075 632300 184170 680049 625936 180264 110227 833725 988145 720163 784031 731562 871768 503240 194234 977419 256909 946468 149798 065685 941839 554437 114464 241573 103721 701115 065768 825990 105043 407629 147840 464279 669539 585203 418548 086466 387673 817875 340954 657886 281399 026622 742941 619687 417064 800069 547429 332069 636429 458357 486370 976869 091536 060411 641649 690579 955962 417046 238444 033778 746789 612135 587784 282269 381277 611585 770959 204654 070800 912699 294140 969154 433810 981173 435067 955410 983014 488462 461892 141484 204637 987714 147442 890379 884235 756186 254950 120562 667647 227783 480617 457467 665327 279022 425490 148388 408736 387385 850938 752298 875280 887804 945504 737157 983659 737086 443146 494940 921386 574793 088857 197039 079170 381593 142560 005414 807184 809802 632416 740943 857914 046838 259591 966326 071239 567355 429407 629268 952785 (813 digits), a[1549] = 4
                                                                                      A[1550]/B[1550] = 3 850765 560781 797237 620561 509991 198937 417057 526334 315174 430782 819950 286483 121286 673060 184748 821783 912012 787020 565861 940251 128204 265982 025296 223308 676138 501791 934992 462897 848655 723174 938687 891731 720569 437700 266734 137173 207608 558840 269516 064364 224054 325640 033173 224531 903748 723824 507712 138668 953166 378596 529628 518367 134595 739806 771644 002747 980367 677048 320348 306151 452093 260709 835170 862019 262418 498875 897179 064828 280681 147645 996972 972371 077207 373584 917079 819308 306539 900319 988349 853558 953716 340477 509628 572205 093138 883811 704675 826917 019188 904107 999473 706372 923467 091299 322351 148712 913264 535645 240608 397408 967148 574459 469044 244559 173013 035100 494472 953622 332872 763825 142346 550893 403410 495311 150758 339264 982254 225648 916896 957147 769210 355368 893779 662109 413512 954944 173239 802937 164818 005600 776388 941423 809549 351513 066447 (811 digits)/374 269480 538203 974252 503602 485712 914259 647738 361768 563363 577319 890874 041678 335668 088678 533021 081400 968587 369709 758649 127934 432820 905204 016323 989987 936916 735894 644316 292173 967588 783303 182620 429102 518011 398923 002191 459088 759522 060772 488143 495045 721228 869128 681608 976146 245807 216248 490501 180124 199952 133736 810258 602420 864055 663242 776412 692297 601937 281368 844343 680187 383337 092574 183891 300139 965913 862425 230427 550263 524854 848766 448010 340580 180550 092661 205927 855480 148155 165518 506112 781609 759264 512365 784978 459307 046773 961370 407574 812031 284064 049145 326377 699732 446433 290078 975213 828886 436041 221867 930476 399429 543698 520558 484409 886507 775191 422184 621412 183400 918798 890916 065740 019433 622451 015047 128322 708743 263071 514791 362671 140851 606941 978656 348633 578321 118201 437368 921786 679679 033906 286672 467815 210433 145365 847645 146816 (813 digits), a[1550] = 2
                                                                                      A[1551]/B[1551] = 24 852905 111023 401523 171034 543544 752446 843542 463112 133848 879691 368083 281032 540001 630264 453285 656713 685649 187063 818097 739376 642432 065359 641050 263973 553723 507322 636944 101724 083337 646086 209935 023060 506167 064255 875967 459006 446471 060849 731866 929365 539123 670839 928614 697506 699618 751236 372117 493378 121889 221028 665515 111645 258280 248788 860146 849971 321742 523342 695222 678400 584407 991013 201265 467036 186614 822381 323383 263711 352764 270938 376660 742541 996203 854613 136508 727914 652205 324532 831846 928472 810077 219962 699999 443978 861924 003617 302370 964934 961395 775481 659114 975502 644957 442762 153173 950314 521866 106644 972112 028322 355822 851532 155491 289788 765277 641057 664472 868596 605539 647840 076698 464957 791127 791389 150609 060858 554780 314070 649865 480324 948321 704653 371235 352740 337385 597188 322462 501716 598022 470934 348162 945838 722466 312161 343938 (812 digits)/2415 541465 442923 358164 755297 996965 153889 942505 802911 564352 143968 971180 430334 124236 365797 186272 208569 595555 949821 423663 270846 791160 408643 354853 886395 771298 481053 807737 307480 919996 941392 199444 275730 173837 219528 118192 162161 704972 828914 598400 555477 745921 301238 477327 674752 815797 955377 224406 107367 942654 422108 278616 414594 731763 311526 294905 612143 097994 665082 157598 141535 941672 246025 059310 217886 033927 208330 129354 913716 736913 374868 069339 655066 854259 760621 306368 045580 183071 962265 470487 670831 990655 029605 692885 244304 742535 909706 650086 859901 851827 185251 842501 954580 933549 861036 518930 201102 096864 788675 248185 675599 687681 271739 315195 706432 502087 285406 603753 988210 458298 082654 378099 853688 177852 585223 691322 827252 667286 285787 255197 226702 784211 877352 898986 279729 341625 365157 388634 124912 463029 686360 878130 829954 301602 715139 833681 (814 digits), a[1551] = 6
                                                                                      A[1552]/B[1552] = 53 556575 782828 600283 962630 597080 703831 104142 452558 582872 190165 556116 848548 201289 933589 091320 135211 283311 161148 202057 419004 413068 396701 307396 751255 783585 516437 208880 666346 015331 015347 358557 937852 732903 566212 018669 055186 100550 680539 733249 923095 302301 667319 890402 619545 302986 226297 251947 125425 196944 820653 860658 741657 651156 237384 491937 702690 623852 723733 710793 662952 620909 242736 237701 796091 635648 143638 543945 592250 986209 689522 750294 457455 069615 082811 190097 275137 610950 549385 652043 710504 573870 780402 909627 460162 816986 891046 309417 756786 941980 455071 317703 657378 213381 976823 628699 049341 956996 748935 184832 454053 678794 277523 780026 824136 703568 317215 823418 690815 543952 059505 295743 480808 985666 078089 451976 460982 091814 853790 216627 917797 665853 764675 636250 367590 088284 149320 818164 806370 360862 947469 472714 833101 254481 975835 754323 (812 digits)/5205 352411 424050 690582 014198 479643 222039 532749 967591 692067 865257 833234 902346 584140 820272 905565 498540 159699 269352 605975 669628 015141 722490 726031 762779 479513 698002 259790 907135 807582 666087 581508 980562 865685 837979 238575 783412 169467 718601 684944 606001 213071 471605 636264 325651 877403 127002 939313 394860 085260 977953 367491 431610 327582 286295 366223 916583 797926 611533 159539 963259 266681 584624 302511 735912 033768 279085 489137 377696 998681 598502 586689 650713 889069 613903 818663 946640 514299 090049 447088 123273 740574 571577 170748 947916 531845 780783 707748 531834 987718 419649 011381 608894 313533 012152 013074 231090 629770 799218 426847 750628 919061 064037 114801 299372 779365 992997 828920 159821 835395 056224 821939 726809 978156 185494 510968 363248 597644 086365 873065 594257 175365 733362 146606 137779 801452 167683 699054 929503 959965 659394 224076 870341 748571 277924 814178 (814 digits), a[1552] = 2
                                                                                      A[1553]/B[1553] = 78 409480 893852 001807 133665 140625 456277 947684 915670 716721 069856 924200 129580 741291 563853 544605 791924 968960 348212 020155 158381 055500 462060 948447 015229 337309 023759 845824 768070 098668 661433 568492 960913 239070 630467 894636 514192 547021 741389 465116 852460 841425 338159 819017 317052 002604 977533 624064 618803 318834 041682 526173 853302 909436 486173 352084 552661 945595 247076 406016 341353 205317 233749 438967 263127 822262 966019 867328 855962 338973 960461 126955 199997 065818 937424 326606 003052 263155 873918 483890 638977 383948 000365 609626 904141 678910 894663 611788 721721 903376 230552 976818 632880 858339 419585 781872 999656 478862 855580 156944 482376 034617 129055 935518 113925 468845 958273 487891 559412 149491 707345 372441 945766 776793 869478 602585 521840 646595 167860 866493 398122 614175 469329 007485 720330 425669 746509 140627 308086 958885 418403 820877 778939 976948 287997 098261 (812 digits)/7620 893876 866974 048746 769496 476608 375929 475255 770503 256420 009226 804415 332680 708377 186070 091837 707109 755255 219174 029638 940474 806302 131134 080885 649175 250812 179056 067528 214616 727579 607479 780953 256293 039523 057507 356767 945573 874440 547516 283345 161478 958992 772844 113592 000404 693201 082380 163719 502228 027915 400061 646107 846205 059345 597821 661129 528726 895921 276615 317138 104795 208353 830649 361821 953798 067695 487415 618492 291413 735594 973370 656029 305780 743329 374525 125031 992220 697371 052314 917575 794105 731229 601182 863634 192221 274381 690490 357835 391736 839545 604900 853883 563475 247082 873188 532004 432192 726635 587893 675033 426228 606742 335776 429997 005805 281453 278404 432674 148032 293693 138879 200039 580498 156008 770718 202291 190501 264930 372153 128262 820959 959577 610715 045592 417509 143077 532841 087689 054416 422995 345755 102207 700296 050173 993064 647859 (814 digits), a[1553] = 1
                                                                                      A[1554]/B[1554] = 131 966056 676680 602091 096295 737706 160109 051827 368229 299593 260022 480316 978128 942581 497442 635925 927136 252271 509360 222212 577385 468568 858762 255843 766485 120894 540197 054705 434416 113999 676780 927050 898765 971974 196679 913305 569378 647572 421929 198366 775556 143727 005479 709419 936597 305591 203830 876011 744228 515778 862336 386832 594960 560592 723557 844022 255352 569447 970810 116810 004305 826226 476485 676669 059219 457911 109658 411274 448213 325183 649983 877249 657452 135434 020235 516703 278189 874106 423304 135934 349481 957818 780768 519254 364304 495897 785709 921206 478508 845356 685624 294522 290259 071721 396409 410572 048998 435859 604515 341776 936429 713411 406579 715544 938062 172414 275489 311310 250227 693443 766850 668185 426575 762459 947568 054561 982822 738410 021651 083121 315920 280029 234004 643736 087920 513953 895829 958792 114457 319748 365873 293592 612041 231430 263832 852584 (813 digits)/12826 246288 291024 739328 783694 956251 597969 008005 738094 948487 874484 637650 235027 292518 006342 997403 205649 914954 488526 635614 610102 821443 853624 806917 411954 730325 877058 327319 121752 535162 273567 362462 236855 905208 895486 595343 728986 043908 266117 968289 767480 172064 244449 749856 326056 570604 209383 103032 897088 113176 378015 013599 277815 386927 884117 027353 445310 693847 888148 476678 068054 475035 415273 664333 689710 101463 766501 107629 669110 734276 571873 242718 956494 632398 988428 943695 938861 211670 142364 364663 917379 471804 172760 034383 140137 806227 471274 065583 923571 827264 024549 865265 172369 560615 885340 545078 663283 356406 387112 101881 176857 525803 399813 544798 305178 060819 271402 261594 307854 129088 195104 021979 307308 134164 956212 713259 553749 862574 458519 001328 415217 134943 344077 192198 555288 944529 700524 786743 983920 382961 005149 326284 570637 798745 270989 462037 (815 digits), a[1554] = 1
                                                                                      A[1555]/B[1555] = 2717 730614 427464 043629 059579 894748 658458 984232 280256 708586 270306 530539 692159 592921 512706 263124 334650 014390 535416 464406 706090 426877 637306 065322 344931 755199 827700 939933 456392 378662 197052 109510 936232 678554 564066 160747 901765 498470 179973 432452 363583 715965 447754 007416 048998 114429 054151 144299 503373 634411 288410 262825 752514 121290 957330 232529 659713 334554 663278 742216 427469 729846 763462 972348 447516 980485 159188 092817 820228 842646 960138 671948 349039 774499 342134 660671 566849 745284 340001 202577 628616 540323 615735 994714 190231 596866 608862 035918 291898 810509 943038 867264 438062 292767 347773 993313 979625 196054 945886 992483 210970 302845 260650 246416 875168 917131 468059 714096 563966 018367 044358 736150 477282 025992 820839 693825 178295 414795 600882 528919 716528 214760 149421 882207 478740 704747 663108 316469 597233 353852 735869 692730 019764 605553 564654 149941 (814 digits)/264145 819642 687468 835322 443395 601640 335309 635370 532402 226177 498919 557420 033226 558737 312930 039901 820108 054344 989706 741931 142531 235179 203630 219233 888269 857329 720222 613910 649667 430825 078827 030197 993411 143700 967239 263642 525294 752605 869875 649140 511082 400277 661839 110718 521536 105285 270042 224377 443990 291442 960361 918093 402512 797903 280162 208198 434940 772879 039584 850699 465884 709062 136122 648495 748000 096970 817437 771085 673628 421126 410835 510408 435673 391309 143103 998950 769444 930773 899602 210854 141695 167313 056383 551296 994977 398931 115971 669513 863173 384826 095898 159187 010866 459400 579999 433577 697859 854763 330135 712656 963379 122810 332047 325963 109366 497838 706449 664560 305114 875457 040959 639625 726660 839307 894972 467482 265498 516419 542533 154831 125302 658444 492258 889563 523288 033671 543336 822568 732824 082215 448741 627899 113052 025079 412853 888599 (816 digits), a[1555] = 20
                                                                                      A[1556]/B[1556] = 2849 696671 104144 645720 155875 632454 818568 036059 648486 008179 530329 010856 670288 535503 010148 899050 261786 266662 044776 686619 283475 895446 496068 321166 111416 876094 367897 994638 890808 492661 873833 036561 834998 650528 760746 074053 471144 146042 601902 630819 139139 859692 453233 716835 985595 420020 257982 020311 247602 150190 150746 649658 347474 681883 680888 076551 915065 904002 634088 859026 431775 556073 239948 649017 506736 438396 268846 504092 268442 167830 610122 549198 006491 909933 362370 177374 845039 619390 763305 338511 978098 498142 396504 513968 554536 092764 394571 957124 770407 655866 628663 161786 728321 364488 744183 403886 028623 631914 550402 334260 147400 016256 667229 961961 813231 089545 743549 025406 814193 711810 811209 404335 903857 788452 768407 748387 161118 153205 622533 612041 032448 494789 383426 525943 566661 218701 558938 275261 711690 673601 101742 986322 631805 836983 828487 002525 (814 digits)/276972 065930 978493 574651 227090 557891 933278 643376 270497 174665 373404 195070 268253 851255 319273 037305 025757 969299 478233 377545 752634 056623 057255 026151 300224 587655 597280 941229 771419 965987 352394 392660 230267 048909 862725 858986 254280 796514 135993 617430 278562 572341 906288 860574 847592 675889 479425 327410 341078 404619 338376 931692 680328 184831 164279 235551 880251 466726 927733 327377 533939 184097 551396 312829 437710 198434 583938 878715 342739 155402 982708 753127 392168 023708 131532 942646 708306 142444 041966 575518 059074 639117 229143 585680 135115 205158 587245 735097 786745 212090 120448 024452 183236 020016 465339 978656 361143 211169 717247 814538 140236 648613 731860 870761 414544 558657 977851 926154 612969 004545 236063 661605 033968 973472 851185 180741 819248 378994 001052 156159 540519 793387 836336 081762 078576 978201 243861 609312 716744 465176 453890 954183 683689 823824 683843 350636 (816 digits), a[1556] = 1
                                                                                      A[1557]/B[1557] = 11266 820627 739897 980789 527206 792113 114163 092411 225714 733124 861293 563109 703025 199430 543152 960275 120008 814376 669746 524264 556518 113217 125511 028820 679182 383482 931394 923850 128817 856647 818551 219196 441228 630140 846304 382908 315197 936597 985681 324909 781003 295042 807455 157924 005784 374489 828097 205233 246180 084981 740650 211800 794938 166941 999994 462185 404911 046562 565545 319295 722796 398066 483308 919400 967726 295673 965727 605094 625555 346138 790506 319542 368515 504299 429245 192796 101968 603456 629917 218113 562912 034750 805249 536619 853839 875159 792577 907292 603121 778109 829028 352624 623026 386233 580324 204972 065496 091798 597093 995263 653170 351615 262340 132302 314862 185768 698706 790317 006547 153799 477986 949158 188855 391351 126062 938986 661649 874412 468483 365042 813873 699128 299701 460038 178724 360852 339923 142254 732305 374656 041098 651697 915182 116505 050115 157516 (815 digits)/1 095062 017435 622949 559276 124667 275316 135145 565499 343893 750173 619132 142630 837988 112503 270749 151816 897381 962243 424406 874568 400433 405048 375395 297687 788943 620296 512065 437599 963927 328787 136010 208178 684212 290430 555416 840601 288137 142148 277856 501431 346770 117303 380705 692443 064314 132953 708318 206608 467225 505300 975492 713171 443497 352396 772999 914854 075695 173059 822784 832832 067702 261354 790311 586984 061130 692274 569254 407231 701845 887335 358961 769790 612177 462433 537702 826890 894363 358106 025501 937408 318919 084664 743814 308337 400323 014406 877708 874807 223409 021096 457242 232543 560574 519449 976019 369546 781289 488272 481879 156271 384089 068651 527629 938247 353000 173812 640005 443024 144021 889092 749150 624440 828567 759726 448528 009707 723243 653401 545689 623309 746862 038608 001267 134849 759018 968275 274921 650506 883057 477744 810414 490450 164121 496553 464383 940507 (817 digits), a[1557] = 3
                                                                                      A[1558]/B[1558] = 25383 337926 583940 607299 210289 216681 046894 220882 099915 474429 252916 137076 076338 934364 096454 819600 501803 895415 384269 735148 396512 121880 747090 378807 469781 643060 230687 842339 148444 205957 510935 474954 717455 910810 453354 839870 101540 019238 573265 280638 701146 449778 068144 032683 997164 168999 914176 430777 739962 320153 632047 073259 937351 015767 680877 000922 724887 997127 765179 497617 877368 352206 206566 487819 442189 029744 200301 714281 519552 860108 191135 188282 743522 918532 220860 562967 048976 826304 023139 774739 103922 567644 007003 587208 262215 843083 979727 771709 976651 212086 286719 867035 974374 136955 904831 813830 159615 815511 744590 324787 453740 719487 191910 226566 442955 461083 140962 606040 827288 019409 767183 302652 281568 571155 020533 626360 484417 902030 559500 342126 660195 893045 982829 446019 924109 940406 238784 559771 176301 422913 183940 289718 462170 069993 928717 317557 (815 digits)/2 467096 100802 224392 693203 476425 108524 203569 774374 958284 675012 611668 480331 944230 076261 860771 340938 820521 893786 327047 126682 553500 866719 808045 621526 878111 828248 621411 816429 699274 623561 624414 809017 598691 629770 973559 540188 830555 080810 691706 620292 972102 806948 667700 245460 976220 941796 896061 740627 275529 415221 289362 358035 567322 889624 710279 065260 031641 812846 573302 993041 669343 706807 132019 486797 559971 582983 722447 693178 746430 930073 700632 292708 616522 948575 206938 596428 497032 858656 092970 450334 696912 808446 716772 202354 935761 233972 342663 484712 233563 254283 034932 489539 304385 058916 417378 717749 923722 187714 681006 127080 908414 785916 787120 747256 120544 906283 257862 812202 901012 782730 734364 910486 691104 492925 748241 200157 265735 685797 092431 402779 034243 870603 838870 351461 596614 914751 793704 910326 482859 420666 074719 935084 011932 816931 612611 231650 (817 digits), a[1558] = 2
                                                                                      A[1559]/B[1559] = 36650 158554 323838 588088 737496 008794 161057 313293 325630 207554 114209 700185 779364 133794 639607 779875 621812 709792 054016 259412 953030 235097 872601 407628 148964 026543 162082 766189 277262 062605 329486 694151 158684 540951 299659 222778 416737 955836 558946 605548 482149 744820 875599 190608 002948 543489 742273 636010 986142 405135 372697 285060 732289 182709 680871 463108 129799 043690 330724 816913 600164 750272 689875 407220 409915 325418 166029 319376 145108 206246 981641 507825 112038 422831 650105 755763 150945 429760 653056 992852 666834 602394 812253 123828 116055 718243 772305 679002 579772 990196 115748 219660 597400 523189 485156 018802 225111 907310 341684 320051 106911 071102 454250 358868 757817 646851 839669 396357 833835 173209 245170 251810 470423 962506 146596 565347 146067 776443 027983 707169 474069 592174 282530 906058 102834 301258 578707 702025 908606 797569 225038 941416 377352 186498 978832 475073 (815 digits)/3 562158 118237 847342 252479 601092 383840 338715 339874 302178 425186 230800 622962 782218 188765 131520 492755 717903 856029 751454 001250 953934 271768 183440 919214 667055 448545 133477 254029 663201 952348 760425 017196 282903 920201 528976 380790 118692 222958 969563 121724 318872 924252 048405 937904 040535 074750 604379 947235 742754 920522 264855 071207 010820 242021 483278 980114 107336 985906 396087 825873 737045 968161 922331 073781 621102 275258 291702 100410 448276 817409 059594 062499 228700 411008 744641 423319 391396 216762 118472 387743 015831 893111 460586 510692 336084 248379 220372 359519 456972 275379 492174 722082 864959 578366 393398 087296 705011 675987 162885 283352 292503 854568 314750 685503 473545 080095 897868 255227 045034 671823 483515 534927 519672 252652 196769 209864 988979 339198 638121 026088 781105 909211 840137 486311 355633 883027 068626 560833 365916 898410 885134 425534 176054 313485 076995 172157 (817 digits), a[1559] = 1
                                                                                      A[1560]/B[1560] = 62033 496480 907779 195387 947785 225475 207951 534175 425545 681983 367125 837261 855703 068158 736062 599476 123616 605207 438285 994561 349542 356978 619691 786435 618745 669603 392770 608528 425706 268562 840422 169105 876140 451761 753014 062648 518277 975075 132211 886187 183296 194598 943743 223292 000112 712489 656450 066788 726104 725289 004744 358320 669640 198477 361748 464030 854687 040818 095904 314531 477533 102478 896441 895039 852104 355162 366331 033657 664661 066355 172776 696107 855561 341363 870966 318730 199922 256064 676196 767591 770757 170038 819256 711036 378271 561327 752033 450712 556424 202282 402468 086696 571774 660145 389987 832632 384727 722822 086274 644838 560651 790589 646160 585435 200773 107934 980632 002398 661123 192619 012353 554462 751992 533661 167130 191707 630485 678473 587484 049296 134265 485220 265360 352078 026944 241664 817492 261797 084908 220482 408979 231134 839522 256492 907549 792630 (815 digits)/6 029254 219040 071734 945683 077517 492364 542285 114249 260463 100198 842469 103294 726448 265026 992291 833694 538425 749816 078501 127933 507435 138487 991486 540741 545167 276793 754889 070459 362476 575910 384839 826213 881595 549972 502535 920978 949247 303769 661269 742017 290975 731200 716106 183365 016756 016547 500441 687863 018284 335743 554217 429242 578143 131646 193558 045374 138978 798752 969390 818915 406389 674969 054350 560579 181073 858242 014149 793589 194707 747482 760226 355207 845223 359583 951580 019747 888429 075418 211442 838077 712744 701558 177358 713047 271845 482351 563035 844231 690535 529662 527107 211622 169344 637282 810776 805046 628733 863701 843891 410433 200918 640485 101871 432759 594089 986379 155731 067429 946047 454554 217880 445414 210776 745577 945010 410022 254715 024995 730552 428867 815349 779815 679007 837772 952248 797778 862331 471159 848776 319076 959854 360618 187987 130416 689606 403807 (817 digits), a[1560] = 1
                                                                                      A[1561]/B[1561] = 905119 109287 032747 323520 006489 165447 072378 791749 283269 755321 253971 421851 759207 088016 944484 172541 352445 182696 190020 183271 846623 232798 548286 417726 811403 400990 660871 285587 237149 822485 095397 061633 424650 865615 841856 099857 672629 606888 409913 012169 048296 469206 088004 316696 004526 518344 932574 571053 151608 559181 439118 301550 107251 961392 745349 959540 095417 615143 673385 220354 285628 184977 240061 937778 339376 297691 294663 790583 450363 135219 400515 253335 089897 201925 843634 217985 949857 014666 119811 739137 457434 982938 281847 078337 411857 576832 300773 988978 369711 822149 750301 433412 602245 765224 944985 675655 611300 026819 549529 347790 956036 139357 500498 554961 568641 157941 568517 429939 089559 869875 418120 014288 998319 433762 486419 249253 972867 275073 252760 397315 353786 385257 997575 835150 480053 684566 023599 367185 097321 884322 950748 177304 130663 777399 684529 571893 (816 digits)/87 971717 184798 851631 492042 686337 276943 930706 939363 948661 827970 025368 069088 952493 899143 023606 164479 255864 353454 850469 792320 058026 210600 064252 489596 299397 323657 701924 240460 737874 015094 148182 584190 625241 619816 564479 274495 408154 475734 227339 509966 392533 161062 073892 505014 275119 306415 610563 577317 998735 620932 023899 080603 104824 085068 193091 615352 053040 168447 967559 290689 426501 417728 683238 921890 156136 290646 489799 210659 174185 282167 702763 035409 061827 445184 066761 699789 829403 272617 078672 120830 994257 714925 943608 493354 141921 001301 102874 178763 124469 690654 871675 684793 235784 500325 744273 357949 507285 767812 977365 029417 105364 821359 740950 744137 790804 889404 078103 199246 289699 035582 533841 770726 470546 690743 426914 950176 554989 689138 865855 030238 196002 826631 346247 215132 687117 051931 141267 157071 248785 365488 323095 474188 807874 139318 731484 825455 (818 digits), a[1561] = 14
                                                                                      A[1562]/B[1562] = 5 492748 152203 104263 136507 986720 218157 642224 284671 125164 213910 890954 368372 410945 596260 402967 634724 238287 701384 578407 094192 429281 753769 909410 292796 487166 075547 357998 322051 848605 203473 412804 538906 424045 645456 804150 661794 554055 616405 591689 959201 473075 009835 471769 123468 027271 822559 251897 493107 635756 080377 639454 167621 313151 966833 833848 221271 427192 731680 136215 636657 191302 212342 336813 521709 888362 141310 134313 777158 366839 877671 575868 216118 394944 552918 932771 626645 899064 344061 395067 202416 515367 067668 510339 181060 849417 022321 556677 384582 774695 135180 904276 687172 185249 251495 059901 886566 052527 883739 383450 731584 296868 626734 649151 915204 612620 055584 391736 582033 198482 411871 521073 640196 741909 136236 085645 687231 467689 328913 104046 433188 256983 796768 250815 362980 907266 349060 959088 464907 668839 526420 113468 294959 623504 920891 014727 223988 (817 digits)/533 859557 327833 181523 897939 195541 154028 126526 750432 952434 068018 994677 517828 441411 659885 133928 820570 073611 870545 181319 881853 855592 402088 377001 478319 341551 218739 966434 513223 789720 666475 273935 331357 633045 268871 889411 567951 398174 158175 025306 801815 646174 697573 159461 213450 667471 855041 163823 151771 010698 061335 697611 912861 207087 642055 352107 737486 457219 809440 774746 563051 965398 181341 153784 091920 117891 602120 952945 057544 239819 440488 976804 567662 216188 030688 352150 218486 864848 711120 683475 563063 678290 991113 839009 673172 123371 490158 180280 916810 437353 673591 757161 320381 584051 639237 276416 952743 672448 470579 708081 586935 833107 568643 547575 897586 338919 322803 624350 262907 684241 668049 420931 069773 034056 890038 506500 111081 584653 159828 925682 610296 991366 739603 756491 128569 074951 109365 709934 413587 341488 512006 898427 205751 035231 966329 078515 356537 (819 digits), a[1562] = 6
                                                                                      A[1563]/B[1563] = 50 339852 479114 971115 552091 886971 128865 852397 353789 409747 680519 272560 737203 457717 454360 571192 885059 497034 495157 395684 031003 710159 016727 732979 052895 195898 080916 882856 184053 874596 653745 810637 911791 241061 674727 079212 056008 659130 154538 735122 644982 305971 557725 333926 427908 249972 921378 199652 009021 873413 282580 194205 810141 925619 662897 249983 950982 940152 200264 899325 950269 007348 096058 271383 633167 334635 569482 503487 785008 751922 034263 583329 198400 644398 178196 238578 857799 041436 111218 675416 560886 095738 591954 874899 707885 056610 777726 310870 450223 341968 038777 888791 617962 269489 028680 484102 654750 084050 980474 000585 932049 627853 779969 342865 791803 082221 658201 094146 668237 875901 576719 107782 776059 675501 659887 257230 434337 182071 235291 189178 296009 666640 556172 254914 101978 645450 826114 655395 551354 116877 622103 971962 831940 742208 065418 817074 587785 (818 digits)/4892 707733 135297 485346 573495 446207 663197 069447 693260 520568 440140 977465 729544 925198 838109 228965 549609 918371 188361 482348 729004 758357 829395 457265 794470 373358 292317 399834 859474 845360 013371 613600 566409 322649 039663 569183 386057 991721 899309 455100 726307 208105 439220 509043 426070 282366 001786 084971 943257 095018 172953 302406 296353 968612 863566 362061 252730 168018 453414 940278 358157 115085 049799 067295 749171 217160 709735 066304 728557 332560 246568 494004 144369 007519 721379 236113 666171 613041 672703 229952 188404 098876 634950 494695 551903 252264 412724 725402 430057 060652 752980 686127 568227 492249 253461 232025 932642 559322 003030 350099 311839 603332 939151 669133 822414 841078 794636 697255 565415 447874 048027 322221 398683 777058 701089 985415 949910 816868 127599 196998 522911 118303 483065 154667 372254 361677 036222 530676 879357 322181 973550 408940 325948 124961 836280 438123 034288 (820 digits), a[1563] = 9
                                                                                      A[1564]/B[1564] = 55 832600 631318 075378 688599 873691 347023 494621 638460 534911 894430 163515 105575 868663 050620 974160 519783 735322 196541 974091 125196 139440 770497 642389 345691 683064 156464 240854 506105 723201 857219 223442 450697 665107 320183 883362 717803 213185 770944 326812 604183 779046 567560 805695 551376 277244 743937 451549 502129 509169 362957 833659 977763 238771 629731 083832 172254 367344 931945 035541 586926 198650 308400 608197 154877 222997 710792 637801 562167 118761 911935 159197 414519 039342 731115 171350 484444 940500 455280 070483 763302 611105 659623 385238 888945 906027 800047 867547 834806 116663 173958 793068 305134 454738 280175 544004 541316 136578 864213 384036 663633 924722 406703 992017 707007 694841 713785 485883 250271 074383 988590 628856 416256 417410 796123 342876 121568 649760 564204 293224 729197 923624 352940 505729 464959 552717 175175 614484 016261 785717 148524 085431 126900 365712 986309 831801 811773 (818 digits)/5426 567290 463130 666870 471434 641748 817225 195974 443693 473002 508159 972143 247373 366610 497994 362894 370179 991983 058906 663668 610858 613950 231483 834267 272789 714909 511057 366269 372698 635080 679846 887535 897766 955694 308535 458594 954009 389896 057484 480407 528122 854280 136793 668504 639520 949837 856827 248795 095028 105716 234289 000018 209215 175700 505621 714168 990216 625238 262855 715024 921209 080483 231140 221079 841091 335052 311856 019249 786101 572379 687057 470808 712031 223707 752067 588263 884658 477890 383823 913427 751467 777167 626064 333705 225075 375635 902882 905683 346867 498006 426572 443288 888609 076300 892698 508442 885386 231770 473610 058180 898775 436440 507795 216709 720001 179998 117440 321605 828323 132115 716076 743152 468456 811115 591128 491916 060992 401521 287428 122681 133208 109670 222668 911158 500823 436628 145588 240611 292944 663670 485557 307367 531699 160193 802609 516638 390825 (820 digits), a[1564] = 1
                                                                                      A[1565]/B[1565] = 217 837654 373069 197251 617891 508045 169936 336262 269171 014483 363809 763106 053931 063706 606223 493674 444410 703001 084783 317957 406592 128481 328220 660147 089970 245090 550309 605419 702371 044202 225403 480965 263884 236383 635278 729300 209418 298687 467371 715560 457533 643111 260407 751013 082037 081707 153190 554300 515410 400921 371453 695185 743431 641934 552090 501480 467746 042186 996100 005950 711047 603299 021260 095975 097799 003628 701860 416892 471510 108207 770069 060921 441957 762426 371541 752630 311133 862937 477058 886867 850793 929055 570825 030616 374722 774694 177869 913513 954641 691957 560654 267996 533365 633703 869207 116116 278698 493787 573114 152695 922951 402021 000081 318918 912826 166746 799557 551796 419051 099053 542490 994352 024828 927734 048257 285858 799043 131352 927904 068852 483603 437513 614993 772102 496857 303602 351641 498847 600139 474029 067676 228256 212641 839347 024348 312480 023104 (819 digits)/21172 409604 524689 485957 987799 371454 114872 657371 024340 939575 964620 893895 471665 025030 332092 317648 660149 894320 365081 473354 561580 600208 523846 960067 612839 518086 825489 498642 977570 750602 052912 276208 259710 189731 965269 944968 248086 161410 071762 896323 310675 770945 849601 514557 344633 131879 572267 831357 228341 412166 875820 302460 923999 495714 380431 504568 223380 043733 241982 085353 121784 356534 743219 730535 272445 222317 645303 124054 086862 049699 307740 906430 280462 678642 977582 000905 320147 046712 824174 970235 442807 430379 513143 495811 227129 379172 121373 442452 470659 554672 032698 015994 234054 721151 931556 757354 588801 254633 423860 524642 008165 912654 462537 319262 982418 381073 146957 662073 050384 844221 196257 551678 804054 210405 474475 461164 132888 021431 989883 565041 922535 447314 151071 888142 874724 671561 472987 252510 758191 313193 430222 331042 921045 605543 244108 988038 206763 (821 digits), a[1565] = 3
                                                                                      A[1566]/B[1566] = 273 670255 004387 272630 306491 381736 516959 830883 907631 549395 258239 926621 159506 932369 656844 467834 964194 438323 281325 292048 531788 267922 098718 302536 435661 928154 706773 846274 208476 767404 082622 704407 714581 901490 955462 612662 927221 511873 238316 042373 061717 422157 827968 556708 633413 358951 897128 005850 017539 910090 734411 528845 721194 880706 181821 585312 640000 409531 928045 041492 297973 801949 329660 704172 252676 226626 412653 054694 033677 226969 682004 220118 856476 801769 102656 923980 795578 803437 932338 957351 614096 540161 230448 415855 263668 680721 977917 781061 789447 808620 734613 061064 838500 088442 149382 660120 820014 630366 437327 536732 586585 326743 406785 310936 619833 861588 513343 037679 669322 173437 531081 623208 441085 345144 844380 628734 920611 781113 492108 362077 212801 361137 967934 277831 961816 856319 526817 113331 616401 259746 216200 313687 339542 205060 010658 144281 834877 (819 digits)/26598 976894 987820 152828 459234 013202 932097 853345 468034 412578 472780 866038 719038 391640 830086 680543 030329 886303 423988 137023 172439 214158 755330 794334 885629 232996 336546 864912 350269 385682 732759 163744 157477 145426 273805 403563 202095 551306 129247 376730 838798 625225 986395 183061 984154 081717 429095 080152 323369 517883 110109 302479 133214 671414 886053 218737 213596 668971 504837 800378 042993 437017 974359 951615 113536 557369 957159 143303 872963 622078 994798 377238 992493 902350 729649 589169 204805 524603 207998 883663 194275 207547 139207 829516 452204 754808 024256 348135 817527 052678 459270 459283 122663 797452 824255 265797 474187 486403 897470 582822 906941 349094 970332 535972 702419 561071 264397 983678 878707 976336 912334 294831 272511 021521 065603 953080 193880 422953 277311 687723 055743 556984 373740 799301 375548 108189 618575 493122 051135 976863 915779 638410 452744 765737 046718 504676 597588 (821 digits), a[1566] = 1
                                                                                      A[1567]/B[1567] = 2133 529439 403780 105663 763331 180200 788655 152449 622591 860250 171489 249454 170479 590294 204134 768519 193771 771264 054060 362297 129110 003936 019248 777902 139603 742173 497726 529339 161708 416030 803762 411819 265957 546820 323517 017940 699968 881800 135584 012171 889555 598216 056187 647973 515930 594370 433086 595250 638189 771556 512334 397105 791795 806877 824841 598668 947748 908910 492415 296396 796864 216944 328885 025180 866532 590013 590431 799750 707250 696995 544098 601753 437295 374810 090140 220495 880185 487003 003431 588329 149469 710184 183963 941603 220403 539748 023294 380946 480776 352302 702945 695450 402866 252798 914885 736962 018800 906352 634406 909824 029048 689224 847578 495475 251663 197866 392958 815554 104306 313116 260062 356811 112426 343747 958921 687003 243325 599147 372662 603392 973212 965479 390533 716926 229575 297839 039361 292168 914948 292252 581078 424067 589437 274767 098955 322452 867243 (820 digits)/207365 247869 439430 555757 202437 463874 639557 630789 300581 827625 274086 956166 504933 766516 142699 081449 872459 098444 332998 432516 768655 099319 811162 520411 812244 149061 181317 553029 429456 450381 182226 422417 362050 207715 881907 769910 662755 020552 976494 533439 182266 147527 754367 795991 233711 703901 575933 392423 491928 037348 646585 419814 856502 195618 582804 035728 718556 726533 775846 687999 422738 415660 563739 391841 067201 123907 345417 127181 197607 404252 271329 547103 227919 995098 085129 125089 753785 718935 280167 155877 802733 883209 487598 302426 392562 662828 291167 879403 193348 923421 247591 230976 092701 303321 701343 617936 908113 659460 706154 604402 356755 356319 254865 071071 899355 308571 997743 547825 201340 678579 582597 615497 711631 361052 933703 132725 490050 982104 931065 379103 312740 346204 767257 483252 503561 428888 803015 704365 116143 151240 840679 799916 090258 965702 571138 520774 389879 (822 digits), a[1567] = 7
                                                                                      A[1568]/B[1568] = 2407 199694 408167 378294 069822 561937 305614 983333 530223 409645 429729 176075 329986 522663 860979 236354 157966 209587 335385 654345 660898 271858 117967 080438 575265 670328 204500 375613 370185 183434 886385 116226 980539 448311 278979 630603 627190 393673 373900 054544 951273 020373 884156 204682 149343 953322 330214 601100 655729 681647 246745 925951 512990 687584 006663 183981 587749 318442 420460 337889 094838 018893 658545 729353 119208 816640 003084 854444 740927 923965 226102 821872 293772 176579 192797 144476 675764 290440 935770 545680 763566 250345 414412 357458 484072 220470 001212 162008 270224 160923 437558 756515 241366 341241 064268 397082 838815 536719 071734 446556 615634 015968 254363 806411 871497 059454 906301 853233 773628 486553 791143 980019 553511 688892 803302 315738 163937 380260 864770 965470 186014 326617 358467 994758 191392 154158 566178 405500 531349 551998 797278 737754 928979 479827 109613 466734 702120 (820 digits)/233964 224764 427250 708585 661671 477077 571655 484134 768616 240203 746867 822205 223972 158156 972785 761992 902788 984747 756986 569539 941094 313478 566493 314746 697873 382057 517864 417941 779725 836063 914985 586161 519527 353142 155713 173473 864850 571859 105741 910170 021064 772753 740762 979053 217865 785619 005028 472575 815297 555231 756694 722293 989716 867033 468857 254465 932153 395505 280684 488377 465731 852678 538099 343456 180737 681277 302576 270485 070571 026331 266127 924342 220413 897448 814778 714258 958591 243538 488166 039540 997009 090756 626806 131942 844767 417636 315424 227539 010875 976099 706861 690259 215365 100774 525598 883734 382301 145864 603625 187225 263696 705414 225197 607044 601774 869643 262141 531504 080048 654916 494931 910328 984142 382573 999307 085805 683931 405058 208377 066826 368483 903189 140998 282553 879109 537078 421591 197487 167279 128104 756459 438326 543003 731439 617857 025450 987467 (822 digits), a[1568] = 1
                                                                                      A[1569]/B[1569] = 9355 128522 628282 240545 972798 866012 705500 102450 213262 089186 460676 777680 160439 158285 787072 477581 667670 400026 060217 325334 111804 819510 373150 019217 865400 753158 111227 656179 272263 966335 462917 760500 207575 891754 160455 909751 581540 062820 257284 175806 743374 659337 708656 262019 963962 454337 423730 398552 605378 816498 252572 174960 330767 869629 844831 150613 710996 864237 753796 310064 081378 273625 304522 213240 224159 039933 599686 363084 930034 468891 222407 067370 318611 904547 668531 653925 907478 358325 810743 225371 440168 461220 427201 013978 672620 201158 026930 866971 291448 835073 015621 964996 126965 276522 107690 928210 535247 516509 849610 249493 875950 737129 610669 914710 866154 376231 111864 375255 425191 772777 633494 296869 772961 410426 368828 634217 735137 739929 966975 499803 531255 945331 465937 701200 803751 760314 737896 508670 508996 948248 972914 637332 376375 714248 427795 722656 973603 (820 digits)/909257 922162 721182 681514 187451 895107 354524 083193 606430 548236 514690 422782 176850 240987 061056 367428 580826 052687 603958 141136 591938 039755 510642 464651 905864 295233 734910 806854 768633 958572 927183 180901 920632 267142 349047 290332 257306 736130 293720 263949 245460 465788 976656 733150 887309 060758 591018 810150 937820 703043 916669 586696 825652 796718 989375 799126 515016 913049 617900 153131 819933 973696 178037 422209 609414 167739 253145 938636 409320 483246 069713 320129 889161 687444 529465 267866 629559 449550 744665 274500 793761 155479 368016 698254 926864 915737 237440 562020 225976 851720 368176 301753 738796 605645 278140 269140 055017 097054 517030 166078 147845 472561 930457 892205 704679 917501 784168 142337 441486 643329 067393 346484 664058 508774 931624 390142 541845 197279 556196 579582 418192 055772 190252 330914 140890 040124 067789 296826 617980 535555 110058 114895 719270 160021 424709 597127 352280 (822 digits), a[1569] = 3
                                                                                      A[1570]/B[1570] = 11762 328217 036449 618840 042621 427950 011115 085783 743485 498831 890405 953755 490425 680949 648051 713935 825636 609613 395602 979679 772703 091368 491117 099656 440666 423486 315728 031792 642449 149770 349302 876727 188115 340065 439435 540355 208730 456493 631184 230351 694647 679711 592812 466702 113306 407659 753944 999653 261108 498145 499318 100911 843758 557213 851494 334595 298746 182680 174256 647953 176216 292518 963067 942593 343367 856573 602771 217529 670962 392856 448509 889242 612384 081126 861328 798402 583242 648766 746513 771052 203734 711565 841613 371437 156692 421628 028143 028979 561672 995996 453180 721511 368331 617763 171959 325293 374063 053228 921344 696050 491584 753097 865033 721122 737651 435686 018166 228489 198820 259331 424638 276889 326473 099319 172130 949955 899075 120190 831746 465273 717270 271948 824405 695958 995143 914473 304074 914171 040346 500247 770193 375087 305355 194075 537409 189391 675723 (821 digits)/1 143222 146927 148433 390099 849123 372184 926179 567328 375046 788440 261558 244987 400822 399144 033842 129421 483615 037435 360944 710676 533032 353234 077135 779398 603737 677291 252775 224796 548359 794636 842168 767063 440159 620284 504760 463806 122157 307989 399462 174119 266525 238542 717419 712204 105174 846377 596047 282726 753118 258275 673364 308990 815369 663752 458233 053592 447170 308554 898584 641509 285665 826374 716136 765665 790151 849016 555722 209121 479891 509577 335841 244472 109575 584893 344243 982125 588150 693089 232831 314041 790770 246235 994822 830197 771632 333373 552864 789559 236852 827820 075037 992012 954161 706419 803739 152874 437318 242919 120655 353303 411542 177976 155655 499250 306454 787145 046309 673841 521535 298245 562325 256813 648200 891348 930931 475948 225776 602337 764573 646408 786675 958961 331250 613468 019999 577202 489380 494313 785259 663659 866517 553222 262273 891461 042566 622578 339747 (823 digits), a[1570] = 1
                                                                                      A[1571]/B[1571] = 68166 769607 810530 334746 185906 005762 761075 531368 930689 583345 912706 546457 612567 563034 027331 047260 795853 448093 038232 223732 975320 276352 828735 517500 068732 870589 689867 815142 484509 715187 209432 144136 148152 592081 357633 611527 625192 345288 413205 327565 216613 057895 672718 595530 530494 492636 193455 396818 910921 307225 749162 679519 549560 655699 102302 823590 204727 777638 625079 549829 962459 736220 119861 926206 940998 322801 613542 450733 284846 433173 464956 513583 380532 310181 975175 645938 823691 602159 543312 080632 458842 019049 635267 871164 456082 309298 167646 011869 099813 815055 281525 572552 968623 365337 967487 554677 405562 782654 456333 729746 333874 502618 935838 520324 554411 554661 202695 517701 419293 069434 756685 681316 405326 907022 229483 383997 230513 340884 125707 826172 117607 305075 587966 180995 779471 332681 258271 079525 710729 449487 823881 512768 903151 684626 114841 669615 352218 (821 digits)/6 625368 656798 463349 632013 433068 756031 985421 919835 481664 490437 822481 647719 180962 236707 230267 014535 998901 239864 408681 694519 257099 805925 896321 361644 924552 681689 998786 930837 510432 931757 138027 016219 121430 368564 872849 609362 868093 276077 291031 134545 578086 658502 563755 294171 413183 292646 571255 223784 703411 994422 283491 131650 902501 115481 280541 067088 750868 455824 110823 360678 248263 105569 758721 250538 560173 412822 031756 984243 808778 031132 748919 542490 437039 611911 250685 178494 570312 914996 908821 844709 747612 386659 342130 849243 785026 582605 001764 509816 410240 990820 743366 261818 509605 137744 296836 033512 241608 311650 120306 932595 205556 362442 708735 388457 236953 853227 015716 511545 049163 134556 879019 630552 905062 965519 586281 769883 670728 208968 379064 811626 351571 850578 846505 398254 240887 926136 514691 768395 544278 853854 442645 881007 030639 617326 637542 710019 051015 (823 digits), a[1571] = 5
                                                                                      A[1572]/B[1572] = 148095 867432 657510 288332 414433 439475 533266 148521 604864 665523 715819 046670 715560 807017 702713 808457 417343 505799 472067 427145 723343 644074 148588 134656 578132 164665 695463 662077 611468 580144 768167 164999 484420 524228 154702 763410 459115 147070 457594 885482 127873 795502 938249 657763 174295 392932 140855 793291 082951 112596 997643 459950 942879 868612 056099 981775 708201 737957 424415 747613 101135 764959 202791 795007 225364 502176 829856 118996 240655 259203 378422 916409 373448 701490 811680 090280 230625 853085 833137 932317 121418 749665 112149 113766 068857 040224 363435 052717 761300 626107 016231 866617 305578 348439 106934 434648 185188 618537 834012 155543 159333 758335 736710 761771 846474 545008 423557 263892 037406 398200 938009 639522 137126 913363 631097 717950 360101 801959 083162 117617 952484 882100 000338 057950 554086 579835 820617 073222 461805 399223 417956 400625 111658 563327 767092 528622 380159 (822 digits)/14 393959 460524 075132 654126 715260 884248 897023 406999 338375 769315 906521 540425 762746 872558 494376 158493 481417 517164 178308 099715 047231 965085 869778 502688 452843 040671 250349 086471 569225 658151 118222 799501 683020 357414 250459 682531 858343 860143 981524 443210 422698 555547 844930 300546 931541 431670 738557 730296 159942 247120 240346 572292 620371 894715 019315 187769 948907 220203 120231 362865 782192 037514 233579 266742 910498 674660 619236 177609 097447 571842 833680 329452 983654 808715 845614 339114 728776 523083 050475 003461 285995 019554 679084 528685 341685 498583 556393 809192 057334 809461 561770 515649 973371 981908 397411 219898 920534 866219 361269 218493 822654 902861 573126 276164 780362 493599 077742 696931 619861 567359 320364 517919 458326 822388 103495 015715 567233 020274 522703 269661 489819 660119 024261 409976 501775 429475 518764 031104 873817 371368 751809 315236 323553 126114 317652 042616 441777 (824 digits), a[1572] = 2
                                                                                      A[1573]/B[1573] = 216262 637040 468040 623078 600339 445238 294341 679890 535554 248869 628525 593128 328128 370051 730044 855718 213196 953892 510299 650878 698663 920426 977323 652156 646865 035255 385331 477220 095978 295331 977599 309135 632573 116309 512336 374938 084307 492358 870800 213047 344486 853398 610968 253293 704789 885568 334311 190109 993872 419822 746806 139470 492440 524311 158402 805365 912929 515596 049495 297443 063595 501179 322653 721214 166362 824978 443398 569729 525501 692376 843379 429992 753981 011672 786855 736219 054317 455245 376450 012949 580260 768714 747416 984930 524939 349522 531081 064586 861114 441162 297757 439170 274201 713777 074421 989325 590751 401192 290345 885289 493208 260954 672549 282096 400886 099669 626252 781593 456699 467635 694695 320838 542453 820385 860581 101947 590615 142843 208869 943790 070092 187175 588304 238946 333557 912517 078888 152748 172534 848711 241837 913394 014810 247953 881934 198237 732377 (822 digits)/21 019328 117322 538482 286140 148329 640280 882445 326834 820040 259753 729003 188144 943709 109265 724643 173029 480318 757028 586989 794234 304331 771011 766099 864333 377395 722361 249136 017309 079658 589908 256249 815720 804450 725979 123309 291894 726437 136221 272555 577756 000785 214050 408685 594718 344724 724317 309812 954080 863354 241542 523837 703943 522873 010196 299856 254858 699775 676027 231054 723544 030455 143083 992300 517281 470672 087482 650993 161852 906225 602975 582599 871943 420694 420627 096299 517609 299089 438079 959296 848171 033607 406214 021215 377929 126712 081188 558158 319008 467575 800282 305136 777468 482977 119652 694247 253411 162143 177869 481576 151089 028211 265304 281861 664622 017316 346826 093459 208476 669024 701916 199384 148472 363389 787907 689776 785599 237961 229242 901768 081287 841391 510697 870766 808230 742663 355612 033455 799500 418096 225223 194455 196243 354192 743440 955194 752635 492792 (824 digits), a[1573] = 1
                                                                                      A[1574]/B[1574] = 4 473348 608242 018322 749904 421222 344241 420099 746332 315949 642916 286330 909237 278128 208052 303610 922821 681282 583649 678060 444719 696622 052613 695061 177789 515432 869773 402093 206479 531034 486784 320153 347712 135882 850418 401430 262172 145264 994247 873599 146429 017610 863475 157614 723637 270093 104298 827079 595490 960399 509051 933766 249360 791690 354835 224156 089093 966792 049878 414321 696474 373045 788545 655866 219290 552621 001745 697827 513586 750689 106740 246011 516264 453068 934946 548794 814661 316974 957993 362138 191308 726634 123960 060488 812376 567644 030674 985056 344454 983589 449352 971380 650022 789612 623980 595374 221160 000216 642383 640929 861333 023498 977429 187696 403699 864196 538400 948612 895761 171395 750914 831916 056292 986203 321080 842719 756902 172404 658823 260560 993419 354328 625611 766422 836877 225244 830177 398380 128185 912502 373448 254714 668505 407863 522405 405776 493377 027699 (823 digits)/434 780521 806974 844778 376929 681853 689866 545929 943695 739180 964390 486585 303324 636929 057872 987239 619083 087792 657735 918103 984401 133867 385321 191775 789356 000757 487896 233069 432653 162397 456316 243219 113917 772034 876996 716645 520426 387086 584569 432635 998330 438402 836556 018642 194913 826035 918016 934816 811913 427027 077970 717100 651163 077832 098641 016440 284943 944420 740747 741325 833746 391294 899194 079589 612372 323940 424313 639099 414667 221959 631354 485677 768321 397543 221257 771604 691300 710565 284682 236411 966881 958143 143835 103392 087267 875927 122354 719560 189361 408850 815107 664506 065019 632914 374962 282356 288122 163398 423608 992792 240274 386880 208947 210359 568605 126689 430120 946926 866465 000355 605683 308047 487366 726122 580541 899030 727700 326457 605132 558064 895418 317649 874076 439597 574591 355042 541716 187880 021113 235741 875832 640913 240103 407407 994933 421547 095326 297617 (825 digits), a[1574] = 20
                                                                                      A[1575]/B[1575] = 4 689611 245282 486363 372983 021561 789479 714441 426222 851503 891785 914856 502365 606256 578104 033655 778539 894479 537542 188360 095598 395285 973040 672384 829946 162297 905028 787424 683699 627012 782116 297752 656847 768455 966727 913766 637110 229572 486606 744399 359476 362097 716873 768582 976930 974882 989867 161390 785600 954271 928874 680572 388831 284130 879146 382558 894459 879721 565474 463816 993917 436641 289724 978519 940504 718983 826724 141226 083316 276190 799117 089390 946257 207049 946619 335650 550880 371292 413238 738588 204258 306894 892674 807905 797307 092583 380197 516137 409041 844703 890515 269138 089193 063814 337757 669796 210485 590968 043575 931275 746622 516707 238383 860245 685796 265082 638070 574865 677354 628095 218550 526611 377131 528657 141466 703300 858849 763019 801666 469430 937209 424420 812787 354727 075823 558802 742694 477268 280934 085037 222159 496552 581899 422673 770359 287710 691614 760076 (823 digits)/455 799849 924297 383260 663069 830183 330147 428375 270530 559221 224144 215588 491469 580638 167138 711882 792112 568111 414764 505093 778635 438199 156332 957875 653689 378153 210257 482205 449962 242056 046224 499468 929638 576485 602975 839954 812321 113523 720790 705191 576086 439188 050606 427327 789632 170760 642334 244629 765994 290381 319513 240938 355106 600705 108837 316296 539802 644196 416774 972380 557290 421750 042278 071890 129653 794612 511796 290092 576520 128185 234330 068277 640264 818237 641884 867904 208910 009654 722762 195708 815052 991750 550049 124607 465197 002639 203543 277718 508369 876426 615389 969642 842488 115891 494614 976603 541533 325541 601478 474368 391363 415091 474251 492221 233227 144005 776947 040386 074941 669380 307599 507431 635839 089512 368449 588807 513299 564418 834375 459832 976706 159041 384774 310364 382822 097705 897328 221335 820613 653838 101055 835368 436346 761600 738374 376741 847961 790409 (825 digits), a[1575] = 1
                                                                                      A[1576]/B[1576] = 13 852571 098806 991049 495870 464345 923200 848982 598778 018957 426488 116043 913968 490641 364260 370922 479901 470241 658734 054780 635916 487193 998695 039830 837681 840028 679830 976942 573878 785060 051016 915658 661407 672794 783874 228963 536392 604409 967461 362397 865381 741806 297222 694780 677499 219859 084033 149861 166692 868943 366801 294911 027023 359952 113127 989273 878013 726235 180827 341955 684309 246328 367995 612906 100299 990588 655193 980279 680219 303070 704974 424793 408778 867168 828185 220095 916422 059559 784470 839314 599825 340423 909309 676300 406990 752810 791070 017331 162538 672997 230383 509656 828408 917241 299495 934966 642131 182152 729535 503481 354578 056913 454196 908187 775292 394361 814542 098344 250470 427586 188015 885138 810556 043517 604014 249321 474601 698444 262156 199422 867838 203170 251186 475876 988524 342850 315566 352916 690054 082576 817767 247819 832304 253211 063123 981197 876606 547851 (824 digits)/1346 380221 655569 611299 703069 342220 350161 402680 484756 857623 412678 917762 286263 798205 392150 411005 203308 224015 487264 928291 541672 010265 697987 107527 096734 757063 908411 197480 332577 646509 548765 242156 973194 925006 082948 396555 145068 614134 026150 843019 150503 316778 937768 873297 774178 167557 202685 424076 343902 007789 716997 198977 361376 279242 316315 649033 364549 232813 574297 686086 948327 234794 983750 223369 871679 913165 447906 219284 567707 478330 100014 622233 048851 034018 505027 507413 109120 729874 730206 627829 596987 941644 243933 352607 017661 881205 529441 274997 206101 161704 045887 603791 749995 864697 364192 235563 371188 814481 626565 941529 023001 217063 157450 194802 035059 414700 984015 027699 016348 339116 220882 322910 759044 905147 317441 076645 754299 455295 273883 477730 848830 635732 643625 060326 340235 550454 336372 630551 662340 543418 077944 311650 112796 930609 471682 175030 791249 878435 (826 digits), a[1576] = 2
                                                                                      A[1577]/B[1577] = 18 542182 344089 477412 868853 485907 712680 563424 025000 870461 318274 030900 416334 096897 942364 404578 258441 364721 196276 243140 731514 882479 971735 712215 667628 002326 584859 764367 257578 412072 833133 213411 318255 441250 750602 142730 173502 833982 454068 106797 224858 103904 014096 463363 654430 194742 073900 311251 952293 823215 295675 975483 415854 644082 992274 371832 772473 605956 746301 805772 678226 682969 657720 591426 040804 709572 481918 121505 763535 579261 504091 514184 355036 074218 774804 555746 467302 430852 197709 577902 804083 647318 801984 484206 204297 845394 171267 533468 571580 517701 120898 778794 917601 981055 637253 604762 852616 773120 773111 434757 101200 573620 692580 768433 461088 659444 452612 673209 927825 055681 406566 411750 187687 572174 745480 952622 333451 461464 063822 668853 805047 627591 063973 830604 064347 901653 058260 830184 970988 167614 039926 744372 414203 675884 833483 268908 568221 307927 (824 digits)/1802 180071 579866 994560 366139 172403 680308 831055 755287 416844 636823 133350 777733 378843 559289 122887 995420 792126 902029 433385 320307 448464 854320 065402 750424 135217 118668 679685 782539 888565 594989 741625 902833 501491 685924 236509 957389 727657 746941 548210 726589 755966 988375 300625 563810 338317 845019 668706 109896 298171 036510 439915 716482 879947 425152 965329 904351 877009 991072 658467 505617 656545 026028 295260 001333 707777 959702 509377 144227 606515 334344 690510 689115 852256 146912 375317 318030 739529 452968 823538 412040 933394 793982 477214 482858 883844 732984 552715 714471 038130 661277 573434 592483 980588 858807 212166 912722 140023 228044 415897 414364 632154 631701 687023 268286 558706 760962 068085 091290 008496 528481 830342 394883 994659 685890 665453 267599 019714 108258 937563 825536 794774 028399 370690 723057 648160 233700 851887 482954 197256 179000 147018 549143 692210 210056 551772 639211 668844 (826 digits), a[1577] = 1
                                                                                      A[1578]/B[1578] = 32 394753 442896 468462 364723 950253 635881 412406 623778 889418 744762 146944 330302 587539 306624 775500 738342 834962 855010 297921 367431 369673 970430 752046 505309 842355 264690 741309 831457 197132 884150 129069 979663 114045 534476 371693 709895 438392 421529 469195 090239 845710 311319 158144 331929 414601 157933 461113 118986 692158 662477 270394 442878 004035 105402 361106 650487 332191 927129 147728 362535 929298 025716 204332 141104 700161 137112 101785 443754 882332 209065 938977 763814 941387 602989 775842 383724 490411 982180 417217 403908 987742 711294 160506 611288 598204 962337 550799 734119 190698 351282 288451 746010 898296 936749 539729 494747 955273 502646 938238 455778 630534 146777 676621 236381 053806 267154 771554 178295 483267 594582 296888 998243 615692 349495 201943 808053 159908 325978 868276 672885 830761 315160 306481 052872 244503 373827 183101 661042 250190 857693 992192 246507 929095 896607 250106 444827 855778 (824 digits)/3148 560293 235436 605860 069208 514624 030470 233736 240044 274468 049502 051113 063997 177048 951439 533893 198729 016142 389294 361676 861979 458730 552307 172929 847158 892281 027079 877166 115117 535075 143754 983782 876028 426497 768872 633065 102458 341791 773092 391229 877093 072745 926144 173923 337988 505875 047705 092782 453798 305960 753507 638893 077859 159189 741468 614363 268901 109823 565370 344554 453944 891340 009778 518629 873013 620943 407608 728661 711935 084845 434359 312743 737966 886274 651939 882730 427151 469404 183175 451368 009028 875039 037915 829821 500520 765050 262425 827712 920572 199834 707165 177226 342479 845286 222999 447730 283910 954504 854610 357426 437365 849217 789151 881825 303345 973407 744977 095784 107638 347612 749364 153253 153928 899807 003331 742099 021898 475009 382142 415294 674367 430506 672024 431017 063293 198614 570073 482439 145294 740674 256944 458668 661940 622819 681738 726803 430461 547279 (826 digits), a[1578] = 1
                                                                                      A[1579]/B[1579] = 50 936935 786985 945875 233577 436161 348561 975830 648779 759880 063036 177844 746636 684437 248989 180078 996784 199684 051286 541062 098946 252153 942166 464262 172937 844681 849550 505677 089035 609205 717283 342481 297918 555296 285078 514423 883398 272374 875597 575992 315097 949614 325415 621507 986359 609343 231833 772365 071280 515373 958153 245877 858732 648118 097676 732939 422960 938148 673430 953501 040762 612267 683436 795758 181909 409733 619030 223291 207290 461593 713157 453162 118851 015606 377794 331588 851026 921264 179889 995120 207992 635061 513278 644712 815586 443599 133605 084268 305699 708399 472181 067246 663612 879352 574003 144492 347364 728394 275758 372995 556979 204154 839358 445054 697469 713250 719767 444764 106120 538949 001148 708639 185931 187867 094976 154566 141504 621372 389801 537130 477933 458352 379134 137085 117220 146156 432088 013286 632030 417804 897620 736564 660711 604980 730090 519015 013049 163705 (824 digits)/4950 740364 815303 600420 435347 687027 710779 064791 995331 691312 686325 184463 841730 555892 510728 656781 194149 808269 291323 795062 182286 907195 406627 238332 597583 027498 145748 556851 897657 423640 738744 725408 778861 927989 454796 869575 059848 069449 520033 939440 603682 828712 914519 474548 901798 844192 892724 761488 563694 604131 790018 078808 794342 039137 166621 579693 173252 986833 556443 003021 959562 547885 035806 813889 874347 328721 367311 238038 856162 691360 768704 003254 427082 738530 798852 258047 745182 208933 636144 274906 421069 808433 831898 307035 983379 648894 995410 380428 635043 237965 368442 750660 934963 825875 081806 659897 196633 094528 082654 773323 851730 481372 420853 568848 571632 532114 505939 163869 198928 356109 277845 983595 548812 894466 689222 407552 289497 494723 490401 352858 499904 225280 700423 801707 786350 846774 803774 334326 628248 937930 435944 605687 211084 315029 891795 278576 069673 216123 (826 digits), a[1579] = 1
                                                                                      A[1580]/B[1580] = 439 890239 738784 035464 233343 439544 424377 219051 814016 968459 249051 569702 303396 063037 298538 216132 712616 432435 265302 626418 159001 386905 507762 466143 888812 599810 061094 786726 543742 070778 622416 868920 363011 556415 815104 487084 777081 617391 426310 077133 611023 442624 914644 130208 222806 289347 012603 640033 689230 815150 327703 237417 312739 188979 886816 224622 034174 837381 314576 775736 688636 827439 493210 570397 596379 978030 089353 888115 102078 575081 914325 564274 714623 066238 625344 428553 191939 860525 421300 378179 067850 068234 817523 318209 135980 146998 031178 224946 179716 857894 128730 826425 054913 933117 528774 695668 273665 782427 708713 922202 911612 263772 861645 237058 816138 759812 025294 329667 027259 794859 603771 966002 485693 118629 109304 438472 940090 130887 444391 165320 496353 497580 348233 403161 990633 413754 830531 289394 717285 592630 038659 884709 532200 768941 737331 402226 549221 165418 (825 digits)/42754 483211 757865 409223 551990 010845 716702 752072 202697 804969 540103 526823 797841 624189 037268 788142 751927 482296 719884 722174 320274 716293 805325 079590 627823 112266 193068 331981 296376 924201 053712 787053 106923 850413 407247 589665 581242 897387 933363 906754 706555 702449 242299 970314 552379 259418 189503 184690 963355 139015 073652 269363 432595 472287 074441 251908 654925 004492 016914 368730 130445 274420 296233 029748 867792 250714 346098 632972 561236 615731 583991 338779 154628 794521 042757 947112 388609 140873 272329 650619 377587 342509 693102 286109 367557 956210 225708 871142 000918 103557 654707 182513 822190 452286 877452 726907 856975 710729 515848 544017 251209 700197 155980 432613 876406 230323 792490 406737 699065 196486 972132 022017 544432 055540 517111 002517 337878 432797 305353 238162 673601 232752 275414 844679 354099 972813 000268 157052 171286 244117 744501 304166 350615 143058 816100 955411 987847 276263 (827 digits), a[1580] = 8
                                                                                      A[1581]/B[1581] = 490 827175 525769 981339 466920 875705 772939 194882 462796 728339 312087 747547 050032 747474 547527 396211 709400 632119 316589 167480 257947 639059 449928 930406 061750 444491 910645 292403 632777 679984 339700 211401 660930 111712 100183 001508 660479 889766 301907 653125 926121 392239 240059 751716 209165 898690 244437 412398 760511 330524 285856 483295 171471 837097 984492 957561 457135 775529 988007 729237 729399 439707 176647 366155 778289 387763 708384 111406 309369 036675 627483 017436 833474 081845 003138 760142 042966 781789 601190 373299 275842 703296 330801 962921 951566 590597 164783 309214 485416 566293 600911 893671 718526 812470 102777 840160 621030 510821 984472 295198 468591 467927 701003 682113 513608 473062 745061 774431 133380 333808 604920 674641 671624 306496 204280 593039 081594 752259 834192 702450 974286 955932 727367 540247 107853 559911 262619 302681 349316 010434 936280 621274 192912 373922 467421 921241 562270 329123 (825 digits)/47705 223576 573169 009643 987337 697873 427481 816864 198029 496282 226428 711287 639572 180081 547997 444923 946077 290566 011208 517236 502561 623489 211952 317923 225406 139764 338816 888833 194034 347841 792457 512461 885785 778402 862044 459240 641090 966837 453397 846195 310238 531162 156819 444863 454178 103611 082227 946179 527049 743146 863670 348172 226937 511424 241062 831601 828177 991325 573357 371752 090007 822305 332039 843638 742139 579435 713409 871011 417399 307092 352695 342033 581711 533051 841610 205160 133791 349806 908473 925525 798657 150943 525000 593145 350937 605105 221119 251570 635961 341523 023149 933174 757154 278161 959259 386805 053608 805257 598503 317341 102940 181569 576834 001462 448038 762438 298429 570606 897993 552596 249978 005613 093244 950007 206333 410069 627375 927520 795754 591021 173505 458032 975838 646387 140450 819587 804042 491378 799535 182048 180445 909853 561699 458088 707896 233988 057520 492386 (827 digits), a[1581] = 1
                                                                                      A[1582]/B[1582] = 930 717415 264554 016803 700264 315250 197316 413934 276813 696798 561139 317249 353428 810511 846065 612344 422017 064554 581891 793898 416949 025964 957691 396549 950563 044301 971740 079130 176519 750762 962117 080322 023941 668127 915287 488593 437561 507157 728217 730259 537144 834864 154703 881924 431972 188037 257041 052432 449742 145674 613559 720712 484211 026077 871309 182183 491310 612911 302584 504974 418036 267146 669857 936553 374669 365793 797737 999521 411447 611757 541808 581711 548097 148083 628483 188695 234906 642315 022490 751478 343692 771531 148325 281131 087546 737595 195961 534160 665133 424187 729642 720096 773440 745587 631552 535828 894696 293249 693186 217401 380203 731700 562648 919172 329747 232874 770356 104098 160640 128668 208692 640644 157317 425125 313585 031512 021684 883147 278583 867771 470640 453513 075600 943409 098486 973666 093150 592076 066601 603064 974940 505983 725113 142864 204753 323468 111491 494541 (825 digits)/90459 706788 331034 418867 539327 708719 144184 568936 400727 301251 766532 238111 437413 804270 585266 233066 698004 772862 731093 239410 822836 339783 017277 397513 853229 252030 531885 220814 490411 272042 846170 299514 992709 628816 269292 048906 222333 864225 386761 752950 016794 233611 399119 415178 006557 363029 271731 130870 490404 882161 937322 617535 659532 983711 315504 083510 483102 995817 590271 740482 220453 096725 628272 873387 609931 830150 059508 503983 978635 922823 936686 680812 736340 327572 884368 152272 522400 490680 180803 576145 176244 493453 218102 879254 718495 561315 446828 122712 636879 445080 677857 115688 579344 730448 836712 113712 910584 515987 114351 861358 354149 881766 732814 434076 324444 992762 090919 977344 597058 749083 222110 027630 637677 005547 723444 412586 965254 360318 101107 829183 847106 690785 251253 491066 494550 792400 804310 648430 970821 426165 924947 214019 912314 601147 523997 189400 045367 768649 (827 digits), a[1582] = 1
                                                                                      A[1583]/B[1583] = 2352 262006 054878 014946 867449 506206 167572 022751 016424 121936 434366 382045 756890 368498 239658 620900 553434 761228 480372 755277 091845 690989 365311 723505 962876 533095 854125 450663 985817 181510 263934 372045 708813 447967 930757 978695 535602 904081 758343 113645 000411 061967 549467 515565 073110 274764 758519 517263 659995 621873 512975 924720 139893 889253 727111 321928 439757 001352 593176 739186 565471 974000 516363 239262 527628 119351 303860 110449 132264 260190 711100 180859 929668 378012 260105 137532 512780 066419 646171 876255 963228 246358 627452 525184 126660 065787 556706 377535 815683 414669 060197 333865 265408 303645 365882 911818 410423 097321 370844 730001 228998 931328 826301 520458 173102 938812 285773 982627 454660 591145 022305 955929 986259 156746 831450 656063 124964 518554 391360 437993 915567 862958 878569 427065 304827 507243 448920 486833 482519 216564 886161 633241 643138 659650 876928 568177 785253 318205 (826 digits)/228624 637153 235237 847379 065993 115311 715850 954736 999484 098785 759493 187510 514399 788622 718529 911057 342086 836291 473394 996058 148234 303055 246507 112950 931864 643825 402587 330462 174856 891927 484798 111491 871205 036035 400628 557053 085758 695288 226921 352095 343826 998384 955058 275219 467292 829669 625690 207920 507859 507470 738315 583243 546003 478846 872070 998622 794383 982960 753900 852716 530914 015756 588585 590413 962003 239735 832426 878979 374671 152740 226068 703659 054392 188197 610346 509705 178592 331167 270081 077816 151146 137849 961206 351654 787928 727736 114775 496995 909720 231684 378864 164551 915843 739059 632683 614230 874777 837231 827207 040057 811239 945103 042462 869615 096928 747962 480269 525296 092111 050762 694198 060874 368598 961102 653222 235243 557884 648156 997970 249388 867718 839603 478345 628520 129552 404389 412663 788240 741178 034380 030340 337893 386328 660383 755890 612788 148256 029684 (828 digits), a[1583] = 2
                                                                                      A[1584]/B[1584] = 5635 241427 374310 046697 435163 327662 532460 459436 309661 940671 429872 081340 867209 547508 325382 854145 528886 587011 542637 304452 600640 407943 688314 843561 876316 110493 679990 980458 148154 113783 489985 824413 441568 564063 776803 445984 508767 315321 244903 957549 537966 958799 253638 913054 578192 737566 774080 086959 769733 389421 639511 570152 763998 804585 325531 826040 370824 615616 488937 983347 548980 215147 702584 415078 429925 604496 405458 220419 675976 132138 964008 943431 407433 904108 148693 463760 260466 775154 314834 503990 270149 264248 403230 331499 340866 869170 309374 289232 296500 253525 850037 387827 304257 352878 363318 359465 715542 487892 434875 677403 838201 594358 215251 960088 675953 110499 341904 069353 069961 310958 253304 552504 129835 738618 976486 343638 271613 920256 061304 743759 301776 179430 832739 797539 708141 988152 990991 565743 031640 036194 747263 772467 011390 462165 958610 459823 681998 130951 (826 digits)/547708 981094 801510 113625 671313 939342 575886 478410 399695 498823 285518 613132 466213 381516 022326 055181 382178 445445 677883 231527 119304 945893 510291 623415 716958 539681 337059 881738 840125 055897 815766 522498 735119 700887 070549 163012 393851 254801 840604 457140 704448 230381 309235 965616 941143 022368 523111 546711 506123 897103 413953 784022 751539 941405 059646 080756 071870 961739 098073 445915 282281 128238 805444 054215 533938 309621 724362 261942 727978 228304 388824 088130 845124 703968 105061 171682 879585 153014 720965 731777 478536 769153 140515 582564 294353 016787 676379 116704 456319 908449 435585 444792 411032 208568 102079 342174 660140 190450 768765 941473 976629 771972 817740 173306 518302 488687 051459 027936 781280 850608 610506 149379 374874 927753 029888 883074 081023 656632 097048 327961 582544 369992 207944 748106 753655 601179 629638 224912 453177 494925 985627 889806 684971 921915 035778 414976 341879 828017 (828 digits), a[1584] = 2
                                                                                      A[1585]/B[1585] = 53069 434852 423668 435223 783919 455168 959716 157677 803381 587979 303215 114113 561776 296073 168104 308210 313414 044332 364108 495350 497609 362482 560145 315562 849721 527538 974044 274787 319204 205561 673806 791766 682930 524541 921988 992556 114508 741972 962478 731590 842113 691160 832217 733056 276844 912865 725240 299901 587596 126668 268580 056095 015883 130521 656897 756291 777178 541900 993618 589314 506293 910329 839622 974968 396958 559818 952984 094226 216049 449441 387180 671742 596573 514985 598346 311374 856981 042808 479682 412168 394571 624594 256525 508678 194461 888320 341074 980626 484185 696401 710533 824311 003724 479550 635748 147009 850305 488353 284725 826635 772813 280552 763569 161256 256680 933306 362910 606805 084312 389769 302046 928467 154780 804317 619827 748807 569489 800858 943103 131827 631553 477836 373227 604922 678105 400620 367844 578520 767279 542317 611535 585444 745652 819144 504422 706590 923236 496764 (827 digits)/5 158005 467006 448828 870010 107818 569394 898829 260430 596743 588195 329160 705702 710320 222266 919464 407689 781692 845302 574344 079802 221978 816096 839131 723692 384491 500957 436126 266111 735982 395007 826696 813980 487282 344019 035571 024164 630419 988504 792361 466361 683861 071816 738181 965771 937580 030986 333694 128324 062974 581401 463899 639448 309862 951492 408885 725427 441222 638612 636561 865954 071444 169905 837582 078353 767448 026331 351687 236463 926475 207479 725485 496836 660514 523910 555897 054851 094858 708299 758772 663813 457977 060228 225846 594733 437105 878825 202187 547336 016599 407729 299133 167683 615133 616172 551397 693802 816039 551288 746100 513323 600907 892858 402124 429373 761651 146145 943400 776727 123638 706240 188753 405288 742473 310879 922222 182910 287097 557845 871405 201043 110618 169533 349848 361480 912452 815006 079407 812452 819775 488713 900991 346153 551075 957619 077896 347575 225174 481837 (829 digits), a[1585] = 9
                                                                                      A[1586]/B[1586] = 217912 980837 068983 787592 570841 148338 371325 090147 523188 292588 642732 537795 114314 731800 997800 086986 782542 764340 999071 285854 591077 857873 928896 105813 275202 220649 576168 079607 424970 936030 185212 991480 173290 662231 464759 416208 966802 283213 094818 883912 906421 723442 582509 845279 685572 389029 675041 286566 120117 896094 713831 794532 827531 326671 953122 851207 479538 783220 463412 340605 574155 856467 061076 314952 017759 843772 217394 597324 540173 929904 512731 630401 793727 964050 542078 709259 688390 946388 233564 152663 848435 762625 429332 366212 118714 422451 673674 211738 233243 039132 692172 685071 319155 271080 906310 947505 116764 441305 573778 983946 929454 716569 269528 605113 702676 843724 793546 496573 407210 870035 461492 266372 748958 955889 455797 338868 549573 123691 833717 271069 827990 090776 325650 217230 420563 590634 462369 879826 100758 205465 193406 114245 994001 738743 976301 286187 374944 118007 (828 digits)/21 179730 849120 596825 593666 102588 216922 171203 520132 786669 851604 602161 435943 307494 270583 700183 685940 508949 826655 975259 550736 007220 210280 866818 518185 254924 543511 081564 946185 784054 635929 122553 778420 684249 076963 212833 259670 915531 208821 010050 322587 439892 517648 261963 828704 691463 146313 857888 060007 758022 222709 269552 341815 990991 747374 695188 982465 836761 516189 644320 909731 568057 807862 155772 367630 603730 414947 131111 207798 433879 058223 290766 075477 487182 799610 328649 391087 259019 986213 756056 387031 310445 010066 043901 961498 042776 532088 485129 306048 522717 539366 632118 115526 871566 673258 307670 117385 924298 395605 753167 994768 380261 343406 426237 890801 564907 073270 825062 134845 275835 675569 365519 770534 344768 171272 718777 614715 229413 888015 582669 132134 025017 048125 607338 194030 403466 861203 947269 474723 732279 449781 589593 274420 889275 752391 347363 805277 242577 755365 (830 digits), a[1586] = 4
                                                                                      A[1587]/B[1587] = 706808 377363 630619 798001 496442 900184 073691 428120 372946 465745 231412 727498 904720 491476 161504 569170 661042 337355 361322 352914 270842 936104 346833 633002 675328 189487 702548 513609 594117 013652 229445 766207 202802 511236 316267 241183 014915 591612 246935 383329 561378 861488 579747 268895 333562 079954 750364 159599 947949 814952 410075 439693 498477 110537 516266 309914 215794 891562 383855 611131 228761 479731 022851 919824 450238 091135 605167 886199 836571 239154 925375 562947 977757 407137 224582 439153 922153 881973 180374 870159 939878 912470 544522 607314 550605 155675 362097 615841 183914 813799 787051 879524 961190 292793 354680 989525 200598 812270 006062 778476 561177 430260 572154 976597 364711 464480 743550 096525 305944 999875 686523 727585 401657 671985 987219 765413 218209 171934 444254 945037 115523 750165 350178 256613 939796 172523 754954 217999 069554 158713 191753 928182 727658 035376 433326 565153 048068 850785 (828 digits)/68 697198 014368 239305 651008 415583 220161 412439 820828 956753 143009 135645 013532 632803 034018 020015 465511 308542 325270 500122 732010 243639 446939 439587 278248 149265 131490 680821 104669 088146 302795 194358 149242 540029 574908 674070 803177 377013 614967 822512 434124 003538 624761 524073 451886 011969 469927 907358 308347 337041 249529 272556 664896 282838 193616 494452 672824 951507 187181 569524 595148 775617 593492 304899 181245 578639 271172 745020 859859 228112 382149 597783 723269 122062 922741 541845 228112 871918 666941 026941 824907 389312 090426 357552 479227 565435 475090 657575 465481 584752 025829 195487 514264 229833 635947 474408 045960 588934 738106 005604 497628 741691 923077 680838 101778 456372 365958 418587 181262 951145 732948 285312 716891 776777 824698 078555 027055 975339 221892 619412 597445 185669 313910 171862 943572 122853 398617 921216 236624 016613 838058 669771 169416 218903 214793 119987 763406 952907 747932 (830 digits), a[1587] = 3
                                                                                      A[1588]/B[1588] = 924721 358200 699603 585594 067284 048522 445016 518267 896134 758333 874145 265294 019035 223277 159304 656157 443585 101696 360393 638768 861920 793978 275729 738815 950530 410137 278716 593217 019087 949682 414658 757687 376093 173467 781026 657391 981717 874825 341754 267242 467800 584931 162257 114175 019134 468984 425405 446166 068067 711047 123907 234226 326008 437209 469389 161121 695333 674782 847267 951736 802917 336198 083928 234776 467997 934907 822562 483524 376745 169059 438107 193349 771485 371187 766661 148413 610544 828361 413939 022823 788314 675095 973854 973526 669319 578127 035771 827579 417157 852932 479224 564596 280345 563874 260991 937030 317363 253575 579841 762423 490632 146829 841683 581711 067388 308205 537096 593098 713155 869911 148015 993958 150616 627875 443017 104281 767782 295626 277972 216106 943513 840941 675828 473844 360359 763158 217324 097825 170312 364178 385160 042428 721659 774120 409627 851340 423012 968792 (828 digits)/89 876928 863488 836131 244674 518171 437083 583643 340961 743422 994613 737806 449475 940297 304601 720199 151451 817492 151926 475382 282746 250859 657220 306405 796433 404189 675001 762386 050854 872200 938724 316911 927663 224278 651871 886904 062848 292544 823788 832562 756711 443431 142409 786037 280590 703432 616241 765246 368355 095063 472238 542109 006712 273829 940991 189641 655290 788268 703371 213845 504880 343675 401354 460671 548876 182369 686119 876132 067657 661991 440372 888549 798746 609245 722351 870494 619200 130938 653154 782998 211938 699757 100492 401454 440725 608212 007179 142704 771530 107469 565195 827605 629791 101400 309205 782078 163346 513233 133711 758772 492397 121953 266484 107075 992580 021279 439229 243649 316108 226981 408517 650832 487426 121545 995970 797332 641771 204753 109908 202081 729579 210686 362035 779201 137602 526320 259821 868485 711347 748893 287840 259364 443837 108178 967184 467351 568684 195485 503297 (830 digits), a[1588] = 1
                                                                                      A[1589]/B[1589] = 4 405693 810166 429034 140377 765579 094273 853757 501191 957485 499080 727993 788674 980861 384584 798723 193800 435382 744140 802896 907989 718526 112017 449752 588266 477449 830036 817414 886477 670468 812381 888080 796956 707175 205107 440373 870750 941787 090913 613952 452299 432581 201213 228775 725595 410099 955892 451985 944264 220220 659140 905704 376598 802510 859375 393822 954400 997129 590693 772927 418078 440430 824523 358564 858930 322229 830766 895417 820297 343551 915392 677804 336347 063698 891888 291227 032808 364333 195418 836130 961455 093137 612854 439942 501421 227883 468183 505184 926158 852546 225529 703950 137910 082572 548290 398648 737646 470051 826572 325429 828170 523706 017579 938889 303441 634264 697302 891936 468920 158568 479520 278587 703418 004124 183487 759288 182540 289338 354439 556143 809464 889579 113932 053492 151991 381235 225156 624250 609299 750803 615426 732394 097897 614297 131858 071837 970514 740120 725953 (829 digits)/428 204913 468323 583830 629706 488268 968495 747013 184675 930445 121464 086870 811436 393992 252424 900812 071318 578510 932976 401651 862995 247078 075820 665210 463981 766023 831497 730365 308088 576950 057692 462005 859895 437144 182396 221687 054570 547192 910123 152763 460969 777263 194400 668222 574248 825699 934894 968343 781767 717295 138483 440992 691745 378157 957581 253019 293988 104582 000666 424906 614670 150319 198910 147585 376750 308118 015652 249549 130489 876078 143641 151982 918255 559045 812149 023823 704913 395673 279560 158934 672662 188340 492395 963370 242129 998283 503807 228394 551602 014630 286612 505910 033428 635434 872770 602720 699346 641867 272953 040694 467217 229504 989014 109142 072098 541490 122875 393184 445695 859071 367018 888642 666596 262961 808581 267885 594140 794351 661525 427739 515762 028414 762053 288667 493982 228134 437905 395159 082015 012186 989419 707228 944764 651619 083530 989394 038143 734849 761120 (831 digits), a[1589] = 4
                                                                                      A[1590]/B[1590] = 5 330415 168367 128637 725971 832863 142796 298774 019459 853620 257414 602139 053968 999896 607861 958027 849957 878967 845837 163290 546758 580446 905995 725482 327082 427980 240174 096131 479694 689556 762064 302739 554644 083268 378575 221400 528142 923504 965738 955706 719541 900381 786144 391032 839770 429234 424876 877391 390430 288288 370188 029611 610825 128519 296584 863212 115522 692463 265476 620195 369815 243348 160721 442493 093706 790227 765674 717980 303821 720297 084452 115911 529696 835184 263076 057888 181221 974878 023780 250069 984278 881452 287950 413797 474947 897203 046310 540956 753738 269704 078462 183174 702506 362918 112164 659640 674676 787415 080147 905271 590594 014338 164409 780572 885152 701653 005508 429033 062018 871724 349431 426603 697376 154740 811363 202305 286822 057120 650065 834116 025571 833092 954873 729320 625835 741594 988314 841574 707124 921115 979605 117554 140326 335956 905978 481465 821855 163133 694745 (829 digits)/518 081842 331812 419961 874381 006440 405579 330656 525637 673868 116077 824677 260912 334289 557026 621011 222770 396003 084902 877034 145741 497937 733040 971616 260415 170213 506499 492751 358943 449150 996416 778917 787558 661422 834268 108591 117418 839737 733911 985326 217681 220694 336810 454259 854839 529132 551136 733590 150122 812358 610721 983101 698457 651987 898572 442660 949278 892850 704037 638752 119550 493994 600264 608256 925626 490487 701772 125681 198147 538069 584014 040532 717002 168291 534500 894318 324113 526611 932714 941932 884600 888097 592888 364824 682855 606495 510986 371099 323132 122099 851808 333515 663219 736835 181976 384798 862693 155100 406664 799466 959614 351458 255498 216218 064678 562769 562104 636833 761804 086052 775536 539475 154022 384507 804552 065218 235911 999104 771433 629821 245341 239101 124089 067868 631584 754454 697727 263644 793362 761080 277259 966593 388601 759798 050715 456745 606827 930335 264417 (831 digits), a[1590] = 1
                                                                                      A[1591]/B[1591] = 15 066524 146900 686309 592321 431305 379866 451305 540111 664726 013909 932271 896612 980654 600308 714778 893716 193318 435815 129478 001506 879419 924008 900717 242431 333410 310385 009677 845867 049582 336510 493559 906244 873711 962257 883174 927036 788797 022391 525365 891383 233344 773502 010841 405136 268568 805646 206768 725124 796797 399516 964927 598249 059549 452545 120247 185446 382056 121647 013318 157708 927127 145966 243551 046343 902685 362116 331378 427940 784146 084296 909627 395740 734067 418040 407003 395252 314089 242979 336270 930012 856042 188755 267537 451317 022289 560804 587098 433635 391954 382454 070299 542922 808408 772619 717930 087000 044881 986868 135973 009358 552382 346399 500035 073747 037570 708319 750002 592957 902017 178383 131795 098170 313605 806214 163898 756184 403579 654571 224375 860608 555765 023679 512133 403662 864425 201786 307400 023549 593035 574636 967502 378550 286210 943815 034769 614225 066388 115443 (830 digits)/1464 368598 131948 423754 378468 501149 779654 408326 235951 278181 353619 736225 333261 062571 366478 142834 516859 370517 102782 155720 154478 242953 541902 608442 984812 106450 844496 715868 025975 475252 050526 019841 435012 759989 850932 438869 289408 226668 377947 123415 896332 218651 868021 576742 283927 883965 037168 435524 082013 342012 359927 407196 088660 682133 754726 138341 192545 890283 408741 702410 853771 138308 399439 364099 228003 289093 419196 500911 526784 952217 311669 233048 352259 895628 881150 812460 353140 448897 144990 042800 441863 964535 678172 693019 607841 211274 525779 970593 197866 258829 990229 172941 359868 109105 236723 372318 424732 952068 086282 639628 386445 932421 500010 541578 201455 667029 247084 666851 969304 031176 918091 967592 974641 031977 417685 398322 065964 792561 204392 687382 006444 506617 010231 424404 757151 737043 833359 922448 668740 534347 543939 640415 721968 171215 184961 902885 251799 595520 289954 (832 digits), a[1591] = 2
                                                                                      A[1592]/B[1592] = 20 396939 315267 814947 318293 264168 522662 750079 559571 518346 271324 534410 950581 980551 208170 672806 743674 072286 281652 292768 548265 459866 830004 626199 569513 761390 550559 105809 325561 739139 098574 796299 460888 956980 340833 104575 455179 712301 988130 481072 610925 133726 559646 401874 244906 697803 230523 084160 115555 085085 769704 994539 209074 188068 749129 983459 300969 074519 387123 633513 527524 170475 306687 686044 140050 692913 127791 049358 731762 504443 168749 025538 925437 569251 681116 464891 576474 288967 266759 586340 914291 737494 476705 681334 926264 919492 607115 128055 187373 661658 460916 253474 245429 171326 884784 377570 761676 832297 067016 041244 599952 566720 510809 280607 958899 739223 713828 179035 654976 773741 527814 558398 795546 468346 617577 366204 043006 460700 304637 058491 886180 388857 978553 241454 029498 606020 190101 148974 730674 514151 554242 085056 518876 622167 849793 516235 436080 229521 810188 (830 digits)/1982 450440 463760 843716 252849 507590 185233 738982 761588 952049 469697 560902 594173 396860 923504 763845 739629 766520 187685 032754 300219 740891 274943 580059 245227 276664 350996 208619 384918 924403 046942 798759 222571 421412 685200 547460 406827 066406 111859 108742 114013 439346 204832 031002 138767 413097 588305 169114 232136 154370 970649 390297 787118 334121 653298 581002 141824 783134 112779 341162 973321 632302 999703 972356 153629 779581 120968 626592 724932 490286 895683 273581 069262 063920 415651 706778 677253 975509 077704 984733 326464 852633 271061 057844 290696 817770 036766 341692 520998 380929 842037 506457 023087 845940 418699 757117 287426 107168 492947 439095 346060 283879 755508 757796 266134 229798 809189 303685 731108 117229 693628 507068 128663 416485 222237 463540 301876 791665 975826 317203 251785 745718 134320 492273 388736 491498 531087 186093 462103 295427 821199 607009 110569 931013 235677 359630 858627 525855 554371 (832 digits), a[1592] = 1
                                                                                      A[1593]/B[1593] = 55 860402 777436 316204 228907 959642 425191 951464 659254 701418 556559 001093 797776 941757 016650 060392 381064 337890 999119 715015 098037 799153 584018 153116 381458 856191 411503 221296 496990 527860 533660 086158 828022 787672 643924 092325 837396 213400 998652 487511 113233 500797 892794 814589 894949 664175 266692 375088 956234 966968 938926 954006 016397 435686 950805 087165 787384 531094 895894 280345 212757 268077 759341 615639 326445 288511 617698 430095 891465 793032 421794 960705 246615 872570 780273 336786 548200 892023 776498 508952 758596 331031 142166 630207 303846 861274 775034 843208 808382 715271 304286 577248 033781 151062 542188 473071 610353 709476 120900 218462 209263 685823 368018 061250 991546 516018 135976 108073 902911 449500 234012 248592 689263 250299 041368 896306 842197 324980 263845 341359 632969 333480 980785 995041 462660 076465 581988 605349 484898 621338 683121 137615 416303 530546 643402 067240 486385 525431 735819 (830 digits)/5429 269479 059470 111186 884167 516330 150121 886291 759129 182280 293014 858030 521607 856293 213487 670525 996118 903557 478152 221228 754917 724736 091789 768561 475266 659779 546489 133106 795813 324058 144411 617359 880155 602815 221333 533790 103062 359480 601665 340900 124359 097344 277685 638746 561462 710160 213778 773752 546285 650754 301226 187791 662897 350377 061323 300345 476195 456551 634300 384736 800414 402914 398847 308811 535262 848255 661133 754096 976649 932791 103035 780210 490784 023469 712454 226017 707648 399915 300400 012267 094793 669802 220294 808708 189234 846814 599312 653978 239863 020689 674304 185855 406043 800986 074122 886552 999585 166405 072177 517819 078566 500181 011028 057170 733724 126626 865463 274223 431520 265636 305348 981729 231967 864947 862160 325402 669718 375893 156045 321788 510015 998053 278872 408951 534624 720040 895534 294635 592947 125203 186338 854433 943108 033241 656316 622146 969054 647231 398696 (832 digits), a[1593] = 2
                                                                                      A[1594]/B[1594] = 76 257342 092704 131151 547201 223810 947854 701544 218826 219764 827883 535504 748358 922308 224820 733199 124738 410177 280772 007783 646303 259020 414022 779315 950972 617581 962062 327105 822552 266999 632234 882458 288911 744652 984757 196901 292575 925702 986782 968583 724158 634524 452441 216464 139856 361978 497215 459249 071790 052054 708631 948545 225471 623755 699935 070625 088353 605614 283017 913858 740281 438553 066029 301683 466495 981424 745489 479454 623228 297475 590543 986244 172053 441822 461389 801678 124675 180991 043258 095293 672888 068525 618872 311542 230111 780767 382149 971263 995756 376929 765202 830722 279210 322389 426972 850642 372030 541773 187916 259706 809216 252543 878827 341858 950446 255241 849804 287109 557888 223241 761826 806991 484809 718645 658946 262510 885203 785680 568482 399851 519149 722338 959339 236495 492158 682485 772089 754324 215573 135490 237363 222671 935180 152714 493195 583475 922465 754953 546007 (830 digits)/7411 719919 523230 954903 137017 023920 335355 625274 520718 134329 762712 418933 115781 253154 136992 434371 735748 670077 665837 253983 055137 465627 366733 348620 720493 936443 897485 341726 180732 248461 191354 416119 102727 024227 906534 081250 509889 425886 713524 449642 238372 536690 482517 669748 700230 123257 802083 942866 778421 805125 271875 578089 450015 684498 714621 881347 618020 239685 747079 725899 773736 035217 398551 281167 688892 627836 782102 380689 701582 423077 998719 053791 560046 087390 128105 932796 384902 375424 378104 997000 421258 522435 491355 866552 479931 664584 636078 995670 760861 401619 516341 692312 429131 646926 492822 643670 287011 273573 565124 956914 424626 784060 766536 814966 999858 356425 674652 577909 162628 382865 998977 488797 360631 281433 084397 788942 971595 167559 131871 638991 761801 743771 413192 901224 923361 211539 426621 480729 055050 420631 007538 461443 053677 964254 891993 981777 827682 173086 953067 (832 digits), a[1594] = 1
                                                                                      A[1595]/B[1595] = 132 117744 870140 447355 776109 183453 373046 653008 878080 921183 384442 536598 546135 864065 241470 793591 505802 748068 279891 722798 744341 058173 998040 932432 332431 473773 373565 548402 319542 794860 165894 968617 116934 532325 628681 289227 129972 139103 985435 456094 837392 135322 345236 031054 034806 026153 763907 834338 028025 019023 647558 902551 241869 059442 650740 157790 875738 136709 178912 194203 953038 706630 825370 917322 792941 269936 363187 909550 514694 090508 012338 946949 418669 314393 241663 138464 672876 073014 819756 604246 431484 399556 761038 941749 533958 642042 157184 814472 804139 092201 069489 407970 312991 473451 969161 323713 982384 251249 308816 478169 018479 938367 246845 403109 941992 771259 985780 395183 460799 672741 995839 055584 174072 968944 700315 158817 727401 110660 832327 741211 152119 055819 940125 231536 954818 758951 354078 359673 700471 756828 920484 360287 351483 683261 136597 650716 408851 280385 281826 (831 digits)/12840 989398 582701 066090 021184 540250 485477 511566 279847 316610 055727 276963 637389 109447 350480 104897 731867 573635 143989 475211 810055 190363 458523 117182 195760 596223 443974 474832 976545 572519 335766 033478 982882 627043 127867 615040 612951 785367 315189 790542 362731 634034 760203 308495 261692 833418 015862 716619 324707 455879 573101 765881 112913 034875 775945 181693 094215 696237 381380 110636 574150 438131 797398 589979 224155 476092 443236 134786 678232 355869 101754 834002 050830 110859 840560 158814 092550 775339 678505 009267 516052 192237 711650 675260 669166 511399 235391 649649 000724 422309 190645 878167 835175 447912 566945 530223 286596 439978 637302 474733 503193 284241 777564 872137 733582 483052 540115 852132 594148 648502 304326 470526 592599 146380 946558 114345 641313 543452 287916 960780 271817 741824 692065 310176 457985 931580 322155 775364 647997 545834 193877 315876 996785 997496 548310 603924 796736 820318 351763 (833 digits), a[1595] = 1
                                                                                      A[1596]/B[1596] = 340 492831 832985 025863 099419 590717 693948 007561 974988 062131 596768 608701 840630 650438 707762 320382 136343 906313 840555 453381 134985 375368 410104 644180 615835 565128 709193 423910 461637 856719 964024 819692 522780 809304 242119 775355 552520 203910 957653 880773 398942 905169 142913 278572 209468 414286 025031 127925 127840 090102 003749 753647 709209 742641 001415 386206 839829 879032 640842 302266 646358 851814 716771 136329 052378 521297 471865 298555 652616 478491 615221 880143 009392 070608 944716 078607 470427 327020 682771 303786 535856 867639 140950 195041 298029 064851 696519 600209 604034 561331 904181 646662 905193 269293 365295 498070 336799 044271 805549 216044 846176 129278 372518 148078 834431 797761 821365 077476 479487 568725 753504 918159 832955 656535 059576 580146 340006 007002 233137 882273 823387 833978 839589 699569 401796 200388 480246 473671 616516 649148 078331 943246 638147 519236 766390 884908 740168 315724 109659 (831 digits)/33093 698716 688633 087083 179386 104421 306310 648407 080412 767549 874166 972860 390559 472048 837952 644167 199483 817347 953816 204406 675247 846354 283779 582985 112015 128890 785434 291392 133823 393499 862886 483077 068492 278314 162269 311331 735792 996621 343904 030726 963835 804760 002924 286739 223615 790093 833809 376105 427836 716884 418079 109851 675841 754250 266512 244733 806451 632160 509839 947172 922036 911480 993348 461126 137203 580021 668574 650263 058047 134816 202228 721795 661706 309109 809226 250424 570003 926103 735115 015535 453362 906910 914657 217073 818264 687383 106862 294968 762310 246237 897633 448648 099482 542751 626713 704116 860204 153530 839729 906381 431013 352544 321666 559242 467023 322530 754884 282174 350925 679870 607630 429850 545829 574194 977514 017634 254222 254463 707705 560552 305437 227420 797323 521577 839333 074700 070933 031458 351045 512299 395293 093197 047249 959247 988615 189627 421155 813723 656593 (833 digits), a[1596] = 2
                                                                                      A[1597]/B[1597] = 813 103408 536110 499081 974948 364888 760942 668132 828057 045446 577979 754002 227397 164942 656995 434355 778490 560695 961002 629561 014311 808910 818250 220793 564102 604030 791952 396223 242818 508300 093944 608002 162496 150934 112920 839938 235012 546925 900743 217641 635277 945660 631062 588198 453742 854725 813970 090188 283705 199227 655058 409846 660288 544724 653570 930204 555397 894774 460596 798737 245756 410260 258913 189980 897698 312531 306918 506661 819927 047491 242782 707235 437453 455611 131095 295679 613730 727056 185299 211819 503198 134835 042939 331832 130016 771745 550224 014892 012208 214864 877852 701296 123378 012038 699752 319854 655982 339792 919914 910258 710832 196923 991881 699267 610856 366783 628510 550136 419774 810193 502848 891903 839984 282014 819468 319110 407413 124665 298603 505758 798894 723777 619304 630675 758411 159728 314571 307016 933505 055125 077148 246780 627778 721734 669379 420533 889187 911833 501144 (831 digits)/79028 386831 959967 240256 379956 749093 098098 808380 440672 851709 804061 222684 418508 053545 026385 393232 130835 208331 051621 884025 160550 883072 026082 283152 419790 854005 014843 057617 244192 359519 061538 999633 119867 183671 452406 237704 084537 778610 002997 851996 290403 243554 766051 881973 708924 413605 683481 468830 180380 889648 409259 985584 464596 543376 308969 671160 707118 960558 401060 004982 418224 261093 784095 512231 498562 636135 780385 435312 794326 625501 506212 277593 374242 729079 459012 659663 232558 627547 148735 040338 422778 006059 540965 109408 305695 886165 449116 239586 525344 914784 985912 775464 034140 533415 820372 938457 007004 747040 316762 287496 365219 989330 420897 990622 667629 128114 049884 416481 296000 008243 519587 330227 684258 294770 901586 149614 149758 052379 703328 081884 882692 196666 286712 353332 136652 080980 464021 838281 350088 570432 984463 502271 091285 915992 525540 983179 639048 447765 664949 (833 digits), a[1597] = 2
                                                                                      A[1598]/B[1598] = 1966 699648 905206 024027 049316 320495 215833 343827 631102 153024 752728 116706 295424 980324 021753 189093 693325 027705 762560 712503 163608 993190 046605 085767 744040 773190 293098 216356 947274 873320 151914 035696 847773 111172 467961 455232 022545 297762 759140 316056 669498 796490 405038 454969 116954 123737 652971 308301 695250 488557 313866 573341 029786 832090 308557 246615 950625 668581 562035 899741 137871 672335 234597 516290 847775 146360 085702 311879 292470 573474 100787 294613 884298 981831 206906 669966 697888 781133 053369 727425 542253 137309 226828 858705 558062 608342 796967 629993 628450 991061 659887 049255 151949 293370 764800 137779 648763 723857 645379 036562 267840 523126 356281 546614 056144 531329 078386 177749 319037 189112 759202 701967 512924 220564 698513 218367 154832 256332 830344 893791 421177 281534 078198 960920 918618 519845 109389 087705 483526 759398 232628 436807 893704 962706 105149 725976 518544 139391 111947 (832 digits)/191150 472380 608567 567595 939299 602607 502508 265167 961758 470969 482289 418229 227575 579138 890723 430631 461154 234010 057059 972456 996349 612498 335944 149289 951596 836900 815120 406626 622208 112537 985964 482343 308226 645657 067081 786739 904868 553841 349899 734719 544642 291869 535028 050686 641464 617305 200772 313765 788598 496181 236599 081020 605034 841002 884451 587055 220689 553277 311959 957137 758485 433668 561539 485589 134328 852293 229345 520888 646700 385819 214653 276982 410191 767268 727251 569751 035121 181198 032585 096212 298918 919029 996587 435890 429656 459714 005094 774141 813000 075807 869458 999576 167763 609583 267459 581030 874213 647611 473254 481374 161453 331205 163462 540487 802281 578758 854653 115136 942925 696357 646805 090305 914346 163736 780686 316862 553738 359223 114361 724322 070821 620753 370748 228242 112637 236660 998976 708021 051222 653165 364220 097739 229821 791233 039697 155986 699252 709254 986491 (834 digits), a[1598] = 2
                                                                                      A[1599]/B[1599] = 2779 803057 441316 523109 024264 685383 976776 011960 459159 198471 330707 870708 522822 145266 678748 623449 471815 588401 723563 342064 177920 802100 864855 306561 308143 377221 085050 612580 190093 381620 245858 643699 010269 262106 580882 295170 257557 844688 659883 533698 304776 742151 036101 043167 570696 978463 466941 398489 978955 687784 968924 983187 690075 376814 962128 176820 506023 563356 022632 698478 383628 082595 493510 706271 745473 458891 392620 818541 112397 620965 343570 001849 321752 437442 338001 965646 311619 508189 238668 939245 045451 272144 269768 190537 688079 380088 347191 644885 640659 205926 537739 750551 275327 305409 464552 457634 304746 063650 565293 946820 978672 720050 348163 245881 667000 898112 706896 727885 738811 999306 262051 593871 352908 502579 517981 537477 562245 380998 128948 399550 220072 005311 697503 591596 677029 679573 423960 394722 417031 814523 309776 683588 521483 684440 774529 146510 407732 051224 613091 (832 digits)/270178 859212 568534 807852 319256 351700 600607 073548 402431 322679 286350 640913 646083 632683 917108 823863 591989 442341 108681 856482 156900 495570 362026 432442 371387 690905 829963 464243 866400 472057 047503 481976 428093 829328 519488 024443 989406 332451 352897 586715 835045 535424 301079 932660 350389 030910 884253 782595 968979 385829 645859 066605 069631 384379 193421 258215 927808 513835 713019 962120 176709 694762 345634 997820 632891 488429 009730 956201 441027 011320 720865 554575 784434 496348 186264 229414 267679 808745 181320 136550 721696 925089 537552 545298 735352 345879 454211 013728 338344 990592 855371 775040 201904 142999 087832 519487 881218 394651 790016 768870 526673 320535 584360 531110 469910 706872 904537 531618 238925 704601 166392 420533 598604 458507 682272 466476 703496 411602 817689 806206 953513 817419 657460 581574 249289 317641 462998 546302 401311 223598 348683 600010 321107 707225 565238 139166 338301 157020 651440 (834 digits), a[1599] = 1
                                                                                      A[1600]/B[1600] = 4746 502706 346522 547136 073581 005879 192609 355788 090261 351496 083435 987414 818247 125590 700501 812543 165140 616107 486124 054567 341529 795290 911460 392329 052184 150411 378148 828937 137368 254940 397772 679395 858042 373279 048843 750402 280103 142451 419023 849754 974275 538641 441139 498136 687651 102201 119912 706791 674206 176342 282791 556528 719862 208905 270685 423436 456649 231937 584668 598219 521499 754930 728108 222562 593248 605251 478323 130420 404868 194439 444357 296463 206051 419273 544908 635613 009508 289322 292038 666670 587704 409453 496597 049243 246141 988431 144159 274879 269110 196988 197626 799806 427276 598780 229352 595413 953509 787508 210672 983383 246513 243176 704444 792495 723145 429441 785282 905635 057849 188419 021254 295838 865832 723144 216494 755844 717077 637330 959293 293341 641249 286845 775702 552517 595648 199418 533349 482427 900558 573921 542405 120396 415188 647146 879678 872486 926276 190615 725038 (832 digits)/461329 331593 177102 375448 258555 954308 103115 338716 364189 793648 768640 059142 873659 211822 807832 254495 053143 676351 165741 828939 153250 108068 697970 581732 322984 527806 645083 870870 488608 584595 033467 964319 736320 474985 586569 811183 894274 886292 702797 321435 379687 827293 836107 983346 991853 648216 085026 096361 757577 882010 882458 147625 674666 225382 077872 845271 148498 067113 024979 919257 935195 128430 907174 483409 767220 340722 239076 477090 087727 397139 935518 831558 194626 263616 913515 799165 302800 989943 213905 232763 020615 844119 534139 981189 165008 805593 459305 787870 151345 066400 724830 774616 369667 752582 355292 100518 755432 042263 263271 250244 688126 651740 747823 071598 272192 285631 759190 646755 181851 400958 813197 510839 512950 622244 462958 783339 257234 770825 932051 530529 024335 438173 028208 809816 361926 554302 461975 254323 452533 876763 712903 697749 550929 498458 604935 295153 037553 866275 637931 (834 digits), a[1600] = 1
                                                                                      A[1601]/B[1601] = 17019 311176 480884 164517 245007 703021 554604 079324 729943 252959 581015 832952 977563 522038 780254 061078 967237 436724 181935 505766 202510 187973 599236 483548 464695 828455 219497 099391 602198 146441 439176 681886 584396 381943 727413 546377 097867 272042 916955 082963 227603 358075 359519 537577 633650 285066 826679 518865 001574 216811 817299 652773 849662 003530 774184 447129 875971 259168 776638 493136 948127 347387 677835 373959 525219 274645 827590 209802 327002 204283 676641 891238 939906 695262 972727 872485 340144 376156 114784 939256 808564 500504 759559 338267 426505 345381 779669 469523 447989 796891 130620 149970 557157 101750 152610 243876 165275 426175 197312 896970 718212 449580 461497 623368 836437 186438 062745 444790 912359 564563 325814 481387 950406 672012 167465 805011 713478 292991 006828 279575 143819 865849 024611 249149 463974 277829 024008 842006 118707 536287 936992 044777 767049 625881 413565 763971 186560 623071 788205 (833 digits)/1 654166 853992 099841 934197 094924 214624 909953 089697 495000 703625 592270 818342 267061 268152 340605 587348 751420 471394 605907 343299 616650 819776 455938 177639 340341 274325 765215 076855 332226 225842 147907 374935 637055 254285 279197 457995 672230 991329 461289 551021 974109 017305 809403 882701 325949 975559 139332 071681 241713 031862 293233 509482 093630 060525 427039 794029 373302 715174 787959 719893 982295 080055 067158 448049 934552 510595 726960 387471 704209 202740 527422 049250 368313 287198 926811 626910 176082 778574 823035 834839 783544 457448 139972 488866 230378 762659 832128 377338 792380 189795 029864 098889 310907 400746 153708 821044 147514 521441 579830 519604 591053 275757 827829 745905 286487 563768 182109 471883 784479 907477 605984 953052 137456 325241 071148 816494 475200 724080 613844 397794 026520 131938 742087 011023 335068 980548 848924 309272 758912 853889 487394 693258 973896 202601 380044 024625 450962 755847 565233 (835 digits), a[1601] = 3
                                                                                      A[1602]/B[1602] = 38785 125059 308290 876170 563596 411922 301817 514437 550147 857415 245467 653320 773374 169668 261009 934701 099615 489555 849995 066099 746550 171238 109933 359425 981575 807321 817143 027720 341764 547823 276126 043169 026835 137166 503670 843156 475837 686537 252934 015681 429482 254792 160178 573291 954951 672334 773271 744521 677354 609965 917390 862076 419186 215966 819054 317696 208591 750275 137945 584493 417754 449706 083778 970481 643687 154543 133503 550025 058872 603006 797641 078941 085864 809799 490364 380583 689797 041634 521608 545184 204833 410463 015715 725778 099152 679194 703498 213926 165089 790770 458867 099747 541590 802280 534573 083166 284060 639858 605298 777324 682938 142337 627440 039233 396019 802317 910773 795216 882568 317545 672883 258614 766646 067168 551426 365868 144034 223312 972949 852491 928889 018543 824925 050816 523596 755076 581367 166440 137973 646497 416389 209951 949287 898909 706810 400429 299397 436759 301448 (833 digits)/3 769663 039577 376786 243842 448404 383557 923021 518111 354191 200899 953181 695827 407781 748127 489043 429192 555984 619140 377556 515538 386551 747621 609846 937011 003667 076458 175514 024581 153061 036279 329282 714191 010430 983556 144964 727175 238736 868951 625376 423479 327905 861905 454915 748749 643753 599334 363690 239724 241003 945735 468925 166589 861926 346432 931952 433329 895103 497462 600899 359045 899785 288541 041491 379509 636325 361913 692997 252033 496145 802620 990362 930058 931252 838014 767139 052985 654966 547092 859976 902442 587704 759015 814084 958921 625766 330913 123562 542547 736105 445990 784558 972394 991482 554074 662709 742607 050461 085146 422932 289453 870233 203256 403482 563408 845167 413168 123409 590522 750811 215914 025167 416943 787863 272726 605256 416328 207636 218987 159740 326117 077375 702050 512382 831863 032064 515400 159823 872868 970359 584542 687693 084267 498721 903661 365023 344403 939479 377970 768397 (835 digits), a[1602] = 2
                                                                                      A[1603]/B[1603] = 327300 311650 947211 173881 753778 998399 969144 194825 131126 112281 544757 059519 164556 879384 868333 538687 764161 353170 981896 034564 174911 557878 478703 358956 317302 287029 756641 321154 336314 529027 648185 027238 799077 479275 756780 291628 904568 764340 940427 208414 663461 396412 640948 123913 273263 663745 012853 475038 420411 096539 156426 549385 203151 731265 326618 988699 544705 261369 880203 169084 290162 945036 348067 137812 674716 510990 895618 610002 797983 028338 057770 522767 626825 173658 895642 917154 858520 709232 287653 300730 447231 784208 885285 144492 219726 778939 407655 180932 768708 123054 801556 947950 889883 519994 429194 909206 437760 545044 039703 115568 181717 588281 481017 937236 004595 604981 348935 806525 972906 104928 708880 550306 083575 209360 578876 731956 865752 079494 790427 099510 574932 014199 624011 655681 652748 318441 674946 173527 222496 708267 268105 724393 361352 817159 068048 967405 581740 117146 199789 (834 digits)/31 811471 170611 114131 884936 682159 283088 294125 234588 328530 310825 217724 384961 529315 253172 252953 020889 199297 424517 626359 467606 709064 800749 334713 673727 369677 885991 169327 273504 556714 516076 782169 088463 720503 122734 438915 275397 582125 942942 464300 938856 597355 912549 448729 872698 475978 770234 048853 989475 169744 597746 044634 842200 989040 831988 882659 260668 534130 694875 595154 592261 180577 388383 399089 484127 025155 405905 270938 403739 673375 623708 450325 489721 818335 991317 063924 050795 415815 155317 702851 054380 485182 529574 652652 160239 236509 409964 820628 717720 681223 757721 306335 878049 242767 833343 455386 761900 551203 202612 963288 835235 552918 901809 055690 253176 047826 869113 169386 196065 790969 634789 807324 288602 440362 507053 913200 147120 136290 475977 891767 006730 645525 748342 841149 665927 591585 103750 127515 292224 521789 530230 988939 367398 963671 431892 300230 779856 966797 779613 712409 (836 digits), a[1603] = 8
                                                                                      A[1604]/B[1604] = 693385 748361 202713 223934 071154 408722 240105 904087 812400 081978 334981 772359 102487 928437 997677 012076 627938 195897 813787 135228 096373 286995 067340 077338 616180 381381 330425 670029 014393 605878 572496 097646 624990 095718 017231 426414 284975 215219 133788 432510 756405 047617 442074 821118 501478 999824 798978 694598 518176 803044 230243 960846 825489 678497 472292 295095 298002 273014 898351 922661 998080 339778 779913 246106 993120 176524 924740 770030 654838 659682 913182 124476 339515 157117 281650 214893 406838 460099 096915 146645 099296 978880 786286 014762 538606 237073 518808 575791 702506 036880 061980 995649 321357 842269 392962 901579 159581 729946 684705 008461 046373 318900 589475 913705 405211 012280 608645 408268 828380 527403 090644 359226 933796 485889 709179 829781 875538 382302 553804 051513 078753 046943 072948 362179 829093 391959 931259 513494 582967 063031 952600 658738 671993 533227 842908 335240 462877 671051 701026 (834 digits)/67 392605 380799 605050 013715 812722 949734 511271 987288 011251 822550 388630 465750 466412 254471 994949 470970 954579 468175 630275 450751 804681 349120 279274 284465 743022 848440 514168 571590 266490 068432 893620 891118 451437 229025 022795 277970 402988 754836 553978 301192 522617 687004 352375 494146 595711 139802 461398 218674 580493 141227 558194 850991 840008 010410 697270 954666 963364 887213 791208 543568 260940 065307 839670 347763 686636 173724 234874 059512 842897 050037 891013 909502 567924 820648 894987 154576 486596 857728 265679 011203 558069 818165 119389 279400 098785 150842 764819 977989 098552 961433 397230 728493 477018 220761 573483 266408 152867 490372 349509 959924 976071 006874 514863 069760 940821 151394 462181 982654 332750 485493 639815 994148 668588 286834 431656 710568 480217 170942 943274 339578 368427 198736 194682 163718 215234 722900 414854 457318 013938 645004 665571 819065 426064 767445 965484 904117 873074 937198 193215 (836 digits), a[1604] = 2
                                                                                      A[1605]/B[1605] = 11 421472 285430 190622 756826 892249 537955 810838 660230 129527 423934 904465 417264 804363 734392 831165 731913 811172 487536 002490 198213 716884 149799 556144 596374 176188 389131 043452 041618 566612 223084 808122 589584 798919 010764 032483 114257 464172 207847 081042 128586 765942 158291 714145 261809 296927 660941 796512 588614 711239 945246 840329 922934 410986 587224 883295 710224 312741 629608 253833 931676 259448 381496 826679 075524 564639 335389 691470 930493 275401 583264 668684 514389 059067 687535 402046 355449 367936 070817 838295 647052 035983 446301 465861 380692 837426 572115 708592 393600 008804 713135 793252 878340 031608 996304 716601 334472 991068 224190 994983 250944 923690 690690 912632 556522 487971 801471 087262 338827 226994 543378 159190 297937 024318 983595 925754 008466 874366 196335 651291 923719 834980 765288 791185 450558 918242 589800 575098 389440 549969 716778 509716 264212 113249 348804 554582 331252 987782 853973 416205 (836 digits)/1110 093157 263404 794932 104389 685726 478840 474477 031196 508559 471631 435811 836968 991911 324724 172144 556424 472568 915327 710766 679635 583966 386673 803102 225179 258043 461039 396024 418948 820555 611003 080103 346358 943498 787134 803639 722924 029946 020327 327953 757936 959238 904619 086737 779044 007357 007073 431225 488268 457634 857386 975752 458070 429168 998560 038994 535339 947968 890296 254491 289353 355618 433308 833815 048346 011334 185493 028923 355945 159728 424314 706548 041762 905133 121699 383718 524019 201364 878969 953715 233637 414299 620216 562880 630640 817071 823449 057748 365546 258071 140655 662027 533944 875059 365528 631119 024430 997083 048570 555448 194035 170055 011801 293499 369351 100965 291424 564297 918535 114977 402688 044380 194981 137775 096404 819707 516215 819765 211064 984156 439984 540360 928121 956064 285419 035340 670156 765186 609312 744807 850305 638088 472445 780707 711027 747989 245742 935996 774784 803849 (838 digits), a[1605] = 16
                                                                                      A[1606]/B[1606] = 12 114858 033791 393335 980760 963403 946678 050944 564317 941927 505913 239447 189623 906851 662830 828842 743990 439110 683433 816277 333441 813257 436794 623484 673712 792368 770512 373877 711647 581005 828963 380618 687231 423909 106482 049714 540671 749147 423066 214830 561097 522347 205909 156220 082927 798406 660766 595491 283213 229416 748291 070573 883781 236476 265722 355588 005319 610743 902623 152185 854338 257528 721275 606592 321631 557759 511914 616211 700523 930240 242947 581866 638865 398582 844652 683696 570342 774774 530916 935210 793697 135280 425182 252147 395455 376032 809189 227400 969391 711310 750015 855233 873989 352966 838574 109564 236052 150649 954137 679688 259405 970064 009591 502108 470227 893182 813751 695907 747096 055375 070781 249834 657163 958115 469485 634933 838248 749904 578638 205095 975232 913733 812231 864133 812738 747335 981760 506357 902935 132936 779810 462316 922950 785242 882032 397490 666493 450660 525025 117231 (836 digits)/1177 485762 644204 399982 118105 498449 428574 985749 018484 519811 294181 824442 302719 458323 579196 167094 027395 427148 383503 341042 130387 388647 735794 082376 509645 001066 309479 910192 990539 087045 679435 973724 237477 394936 016159 826435 000894 432934 775163 881932 059129 481856 591623 439113 273190 603068 146875 892623 706943 038127 998614 533947 309062 269177 008970 736265 490006 911333 777510 045699 832921 616558 498616 673485 396109 697970 359217 263797 415458 002625 474352 597561 951265 473057 942348 278705 678595 687961 736698 219394 244840 972369 438381 682269 910040 915856 974291 822568 343535 356624 102089 059258 262438 352077 586290 204602 290839 149950 538942 904958 153960 146126 018675 808362 439112 041786 442819 026479 901189 447727 888181 684196 189129 806363 383239 251364 226784 299982 382007 927430 779562 908788 126858 150746 449137 250575 393057 180041 066630 758746 495310 303660 291511 206772 478473 713474 149860 809071 711982 997064 (838 digits), a[1606] = 1
                                                                                      A[1607]/B[1607] = 84 110620 488178 550638 641392 672673 218024 116506 046137 781092 459414 341148 555008 245473 711377 804222 195856 445836 588138 900154 198864 596428 770567 297052 638650 930401 012205 286718 311504 052647 196865 091834 712973 342373 649656 330770 358287 959056 746244 370025 495171 900025 393746 651465 759376 087367 625541 369460 287894 087740 434993 263773 225621 829844 181559 016823 742141 977205 045347 166949 057705 804620 709150 466233 005313 911196 406877 388741 133636 856843 040950 159884 347581 450564 755451 504225 777506 016583 256319 449560 409234 847665 997394 978745 753425 093623 427251 072998 209950 276669 213230 924656 122276 149410 027749 373986 750785 894967 949017 073112 807380 744074 748239 925283 377889 847068 683981 262708 821403 559244 968065 658198 240920 773011 800509 735357 037959 373793 668164 881867 775117 317383 638679 975988 326991 402258 480363 613245 807051 347590 395641 283617 801916 824706 640998 939526 330213 691746 004124 119591 (836 digits)/8175 007733 128631 194824 813022 676423 050290 388971 142103 627427 236722 382465 653285 741852 799901 174708 720797 035459 216347 757019 461959 915852 801438 297361 283049 264441 317918 857182 362183 342829 687618 922448 771223 313114 884093 762249 728290 627554 671310 619546 112713 850378 454359 721417 418187 625765 888328 786967 729926 686402 849074 179436 312444 044231 052384 456587 475381 415971 555356 528690 286883 054969 425008 874727 425004 199156 340796 611707 848693 175481 270430 291919 749355 743480 775789 055952 595593 329135 299159 270080 702683 248516 250506 656500 090886 312213 669199 993158 426758 397815 753190 017577 108574 987524 883269 858732 769465 896786 282227 985197 117796 046811 123856 143674 004023 351683 948338 723177 325671 801344 731778 149557 329759 975955 395840 327892 876921 619659 503112 548741 117361 993089 689270 860542 980242 538793 028499 845433 009097 297286 822167 460050 221513 021342 581870 028834 144907 790427 046682 786233 (838 digits), a[1607] = 6
                                                                                      A[1608]/B[1608] = 180 336099 010148 494613 263546 308750 382726 283956 656593 504112 424741 921744 299640 397799 085586 437287 135703 330783 859711 616585 731171 006114 977929 217589 951014 653170 794922 947314 334655 686300 222693 564288 113178 108656 405794 711255 257247 667260 915554 954881 551441 322397 993402 459151 601679 973141 911849 334411 859001 404897 618277 598120 335024 896164 628840 389235 489603 565153 993317 486083 969749 866770 139576 539058 332259 380152 325669 393693 967797 643926 324847 901635 334028 299712 355555 692148 125354 807941 043555 834331 612166 830612 419972 209638 902305 563279 663691 373397 389292 264649 176477 704546 118541 651786 894072 857537 737623 940585 852171 825913 874167 458213 506071 352675 226007 587320 181714 221325 389903 173865 006912 566231 139005 504139 070505 105647 914167 497491 914967 968831 525467 548501 089591 816110 466721 551852 942487 732849 517037 828117 571093 029552 526784 434656 164030 276543 326920 834152 533273 356413 (837 digits)/17527 501228 901466 789631 744150 851295 529155 763691 302691 774665 767626 589373 609290 942029 178998 516511 468989 498066 816198 855081 054307 220353 338670 677099 075743 529948 945317 624557 714905 772705 054673 818621 779924 021165 784347 350934 457475 688044 117785 121024 284557 182613 500342 881948 109565 854599 923533 466559 166796 410933 696762 892819 933950 357639 113739 649440 440769 743276 888223 103080 406687 726497 348634 422940 246118 096283 040810 487213 112844 353588 015213 181401 449976 960019 493926 390610 869782 346232 335016 759555 650207 469401 939394 995270 091813 540284 312691 808885 197052 152255 608469 094412 479588 327127 352829 922067 829770 943523 103398 875352 389552 239748 266388 095710 447158 745154 339496 472834 552533 050417 351737 983310 848649 758274 174919 907149 980627 539301 388233 024913 014286 894967 505399 871832 409622 328161 450056 870907 084825 353320 139645 223760 734537 249457 642213 771142 439676 389925 805348 569530 (839 digits), a[1608] = 2
                                                                                      A[1609]/B[1609] = 985 791115 538921 023704 959124 216425 131655 536289 329105 301654 583123 949870 053210 234469 139309 990657 874373 099755 886696 983082 854719 627003 660213 385002 393724 196254 986820 023289 984782 484148 310332 913275 278863 885655 678629 887046 644526 295361 324019 144433 252378 512015 360758 947223 767775 953077 184788 041519 582901 112228 526381 254374 900746 310667 325760 963001 190159 802975 011934 597368 906455 138471 407033 161524 666610 811958 035224 357210 972625 076474 665189 668061 017722 949126 533229 964966 404280 056288 474098 621218 470069 000728 097256 026940 264952 910021 745707 939985 156411 599915 095619 447386 714984 408344 498113 661675 438905 597897 209876 202682 178218 035142 278596 688659 507927 783669 592552 369335 770919 428570 002628 489353 935948 293707 153035 263596 608796 861253 243004 726025 402455 059889 086639 056540 660599 161523 192802 277493 392240 488178 251106 431380 435838 997987 461150 322242 964817 862508 670490 901656 (837 digits)/95812 513877 635965 142983 533776 932900 696069 207427 655562 500756 074855 329333 699740 451998 694893 757266 065744 525793 297342 032424 733496 017619 494791 682856 661766 914186 044506 979970 936712 206354 960988 015557 670843 418943 805830 516922 015669 067775 260236 224667 535499 763445 956074 131157 966016 898765 505996 119763 563908 741071 332888 643535 982195 832426 621082 703789 679230 132355 996472 044092 320321 687456 168180 989428 655594 680571 544849 047773 412914 943421 346496 198926 999240 543578 245421 009006 944505 060296 974243 067858 953720 595525 947481 632850 549954 013635 232659 037584 412019 159093 795535 489639 506516 623161 647419 469071 918320 614401 799222 361959 065557 245552 455796 622226 239817 077455 645821 087350 088337 053431 490468 066111 573008 767326 270439 863642 780059 316166 444277 673306 188796 467927 216270 219705 028354 179600 278784 199968 433224 063887 520393 578853 894199 268630 792938 884546 343289 740056 073425 633883 (839 digits), a[1609] = 5
                                                                                      A[1610]/B[1610] = 1166 127214 549069 518318 222670 525175 514381 820245 985698 805767 007865 871614 352850 632268 224896 427945 010076 430539 746408 599668 585890 633118 638142 602592 344738 849425 781742 970604 319438 170448 533026 477563 392041 994312 084424 598301 901773 962622 239574 099314 803819 834413 354161 406375 369455 926219 096637 375931 441902 517126 144658 852495 235771 206831 954601 352236 679763 368129 005252 083452 876205 005241 546609 700582 998870 192110 360893 750904 940422 720400 990037 569696 351751 248838 888785 657114 529634 864229 517654 455550 082235 831340 517228 236579 167258 473301 409399 313382 545703 864564 272097 151932 833526 060131 392186 519213 176529 538483 062048 028596 052385 493355 784668 041334 733935 370989 774266 590661 160822 602435 009541 055585 074953 797846 223540 369244 522964 358745 157972 694856 927922 608390 176230 872651 127320 713376 135290 010342 909278 316295 822199 460932 962623 432643 625180 598786 291738 696661 203764 258069 (838 digits)/113340 015106 537431 932615 277927 784196 225224 971118 958254 275421 842481 918707 309031 394027 873892 273777 534734 023860 113540 887505 787803 237972 833462 359955 737510 444134 989824 604528 651617 979060 015661 834179 450767 440109 590177 867856 473144 755819 378021 345691 820056 946059 456417 013106 075582 753365 429529 586322 730705 152005 029651 536355 916146 190065 734822 353230 119999 875632 884695 147172 727009 413953 516815 412368 901712 776854 585659 534986 525759 297009 361709 380328 449217 503597 739347 399617 814287 406529 309259 827414 603928 064927 886876 628120 641767 553919 545350 846469 609071 311349 404004 584051 986104 950289 000249 391139 748091 557924 902621 237311 455109 485300 722184 717936 686975 822609 985317 560184 640870 103848 842206 049422 421658 525600 445359 770792 760686 855467 832510 698219 203083 362894 721670 091537 437976 507761 728841 070875 518049 417207 660038 802614 628736 518088 435152 655688 782966 129981 878774 203413 (840 digits), a[1610] = 1
                                                                                      A[1611]/B[1611] = 14979 317690 127755 243523 631170 518531 304237 379241 157490 970858 677514 409242 287417 821687 838067 125997 995290 266232 843600 179105 885407 224427 317924 616110 530590 389364 367735 670541 818040 529530 706650 644035 983367 817400 691725 066669 465813 846828 198908 336210 898216 524975 610695 823728 201247 067706 344436 552696 885731 317742 262287 484317 730000 792650 780977 189841 347320 220523 074959 598803 420915 201369 966349 568520 653053 117282 365949 368070 257697 721286 545640 504417 238737 935193 198657 850340 759898 427042 685952 087819 456898 976814 303994 865890 272054 589638 658499 700575 704857 974686 360785 270580 717297 129921 204351 892233 557260 059693 954452 545834 806843 955411 694613 184676 315152 235546 883751 457269 700790 657790 117121 156374 835393 867861 835519 694530 884369 166195 138677 064308 537526 360571 201409 528354 188447 722036 816282 401608 303580 283728 117499 962575 987320 189710 963317 507678 465682 222443 115661 998484 (839 digits)/1 455892 695156 085148 334366 868910 343255 398768 860855 154613 805818 184638 353821 408117 180333 181601 042596 482552 812114 659832 682494 187134 873293 496340 002325 511892 243805 922402 234314 756127 955075 148930 025711 080052 700258 887964 931199 693406 137607 796492 372969 376183 116159 433078 288430 873009 939150 660351 155636 332370 565131 688707 079806 975950 113215 438950 942551 119228 639950 612813 810165 044434 654898 369965 937855 476148 002826 572763 467611 722026 507533 687008 762868 389850 586751 117589 804420 715953 938648 685360 996834 200857 374660 590001 170298 251164 660669 776869 195219 720874 895286 643590 498263 339776 026629 650412 162748 895419 309500 630677 209696 526871 069161 122013 237466 483526 948775 469631 809565 778778 299617 596940 659180 632911 074531 614757 113155 908301 581780 434406 051936 625796 822663 876311 318154 284072 272741 024877 050474 649817 070379 440859 210229 439037 485692 014770 752811 738883 299838 618716 074839 (841 digits), a[1611] = 12
                                                                                      A[1612]/B[1612] = 16145 444904 676824 761841 853841 043706 818619 199487 143189 776625 685380 280856 640268 453956 062963 553943 005366 696772 590008 778774 471297 857545 956067 218702 875329 238790 149478 641146 137478 699979 239677 121599 375409 811712 776149 664971 367587 809450 438482 435525 702036 359388 964857 230103 570702 993925 441073 928628 327633 834868 406946 336812 965771 999482 735578 542078 027083 588652 080211 682256 297120 206611 512959 269103 651923 309392 726843 118975 198120 441687 535678 074113 590489 184032 087443 507455 289533 291272 203606 543369 539134 808154 821223 102469 439313 062940 067899 013958 250561 839250 632882 422513 550823 190052 596538 411446 733789 598177 016500 574430 859229 448767 479281 226011 049087 606536 658018 047930 861613 260225 126662 211959 910347 665708 059060 063775 407333 524940 296649 759165 465448 968961 377640 401005 315768 435412 951572 411951 212858 600023 939699 423508 949943 622354 588498 106464 757420 919104 319426 256553 (839 digits)/1 569232 710262 622580 266982 146838 127451 623993 831974 112868 081240 027120 272528 717148 574361 055493 316374 017286 835974 773373 569999 974938 111266 329802 362281 249402 687940 912226 838843 407745 934135 164591 859890 530820 140368 478142 799056 166550 893427 174513 718661 196240 062218 889495 301536 948592 692516 089880 741959 063075 717136 718358 616162 892096 303281 173773 295781 239228 515583 497508 957337 771444 068851 886781 350224 377860 779681 158423 002598 247785 804543 048718 143196 839068 090348 856937 204038 530241 345177 994620 824248 804785 439588 476877 798418 892932 214589 322220 041689 329946 206636 047595 082315 325880 976918 650661 553888 643510 867425 533298 447007 981980 554461 844197 955403 170502 771385 454949 369750 419648 403466 439146 708603 054569 600132 060116 883948 668988 437248 266916 750155 828880 185558 597981 409691 722048 780502 753718 121350 167866 487587 100898 012844 067774 003780 449923 408500 521849 429820 497490 278252 (841 digits), a[1612] = 1
                                                                                      A[1613]/B[1613] = 31124 762594 804580 005365 485011 562238 122856 578728 300680 747484 362894 690098 927686 275643 901030 679941 000656 963005 433608 957880 356705 081973 273991 834813 405919 628154 517214 311687 955519 229509 946327 765635 358777 629113 467874 731640 833401 656278 637390 771736 600252 884364 575553 053831 771950 061631 785510 481325 213365 152610 669233 821130 695772 792133 516555 731919 374403 809175 155171 281059 718035 407981 479308 837624 304976 426675 092792 487045 455818 162974 081318 578530 829227 119225 286101 357796 049431 718314 889558 631188 996033 784969 125217 968359 711367 652578 726398 714533 955419 813936 993667 693094 268120 319973 800890 303680 291049 657870 970953 120265 666073 404179 173894 410687 364239 842083 541769 505200 562403 918015 243783 368334 745741 533569 894579 758306 291702 691135 435326 823474 002975 329532 579049 929359 504216 157449 767854 813559 516438 883752 057199 386084 937263 812065 551815 614143 223103 141547 435088 255037 (839 digits)/3 025125 405418 707728 601349 015748 470707 022762 692829 267481 887058 211758 626350 125265 754694 237094 358970 499839 648089 433206 252494 162072 984559 826142 364606 761294 931746 834629 073158 163873 889210 313521 885601 610872 840627 366107 730255 859957 031034 971006 091630 572423 178378 322573 589967 821602 631666 750231 897595 395446 282268 407065 695969 868046 416496 612724 238332 358457 155534 110322 767502 815878 723750 256747 288079 854008 782507 731186 470209 969812 312076 735726 906065 228918 677099 974527 008459 246195 283826 679981 821083 005642 814249 066878 968717 144096 875259 099089 236909 050821 101922 691185 580578 665657 003548 301073 716637 538930 176926 163975 656704 508851 623622 966211 192869 654029 720160 924581 179316 198426 703084 036087 367783 687480 674663 674873 997104 577290 019028 701322 802092 454677 008222 474292 727846 006121 053243 778595 171824 817683 557966 541757 223073 506811 489472 464694 161312 260732 729659 116206 353091 (841 digits), a[1613] = 1
                                                                                      A[1614]/B[1614] = 78394 970094 285984 772572 823864 168183 064332 356943 744551 271594 411169 661054 495641 005243 865024 913825 006680 622783 457226 694535 184708 021492 504050 888329 687168 495099 183907 264522 048517 158999 132332 652870 092965 069939 711899 128253 034391 122007 713263 978998 902542 128118 115963 337767 114603 117189 012094 891278 754364 140089 745413 979074 357317 583749 768690 005916 775891 207002 390554 244375 733191 022574 471576 944352 261876 162742 912428 093066 109756 767635 698315 231175 248943 422482 659646 223047 388396 727901 982723 805747 531202 378093 071659 039188 862048 368097 520696 443026 161401 467124 620217 808702 087063 830000 198319 018807 315888 913918 958406 814962 191376 257125 827070 047385 777567 290703 741557 058331 986421 096255 614228 948629 401830 732847 848219 580387 990738 907211 167303 406113 471399 628026 535740 259724 324200 750312 487282 039070 245736 367528 054098 195678 824471 246485 692129 334751 203627 202199 189602 766627 (839 digits)/7 619483 521100 038037 469680 178335 068865 669519 217632 647831 855356 450637 525228 967680 083749 529682 034315 016966 132153 639786 074988 299084 080385 982087 091494 771992 551434 581484 985159 735493 712555 791635 631093 752565 821623 210358 259567 886464 955497 116525 901922 341086 418975 534642 481472 591797 955849 590344 537149 853968 281673 532490 008102 628189 136274 399221 772445 956142 826651 718154 492343 403201 516352 400275 926384 085878 344696 620795 943018 187410 428696 520171 955327 296905 444548 805991 220957 022631 912831 354584 466414 816071 068086 610635 735853 181125 965107 520398 515507 431588 410481 429966 243472 657194 984015 252808 987163 721371 221277 861249 760416 999683 801707 776620 341142 478562 211707 304111 728382 816501 809634 511321 444170 429530 949459 409864 878157 823568 475305 669562 354340 738234 202003 546566 865383 734290 886990 310908 464999 803233 603520 184412 458991 081396 982725 379311 731125 043314 889138 729902 984434 (841 digits), a[1614] = 2
                                                                                      A[1615]/B[1615] = 109519 732689 090564 777938 308875 730421 187188 935672 045232 019078 774064 351153 423327 280887 766055 593766 007337 585788 890835 652415 541413 103465 778042 723143 093088 123253 701121 576210 004036 388509 078660 418505 451742 699053 179773 859893 867792 778286 350654 750735 502795 012482 691516 391598 886553 178820 797605 372603 967729 292700 414647 800205 053090 375883 285245 737836 150295 016177 545725 525435 451226 430555 950885 781976 566852 589418 005220 580111 565574 930609 779633 809706 078170 541707 945747 580843 437828 446216 872282 436936 527236 163062 196877 007548 573416 020676 247095 157560 116821 281061 613885 501796 355184 149973 999209 322487 606938 571789 929359 935227 857449 661305 000964 458073 141807 132787 283326 563532 548825 014270 858012 316964 147572 266417 742799 338694 282441 598346 602630 229587 474374 957559 114790 189083 828416 907762 255136 852629 762175 251280 111297 581763 761735 058551 243944 948894 426730 343746 624691 021664 (840 digits)/10 644608 926518 745766 071029 194083 539572 692281 910461 915313 742414 662396 151579 092945 838443 766776 393285 516805 780243 072992 327482 461157 064945 808229 456101 533287 483181 416114 058317 899367 601766 105157 516695 363438 662250 576465 989823 746421 986532 087531 993552 913509 597353 857216 071440 413400 587516 340576 434745 249414 563941 939555 704072 496235 552771 011946 010778 314599 982185 828477 259846 219080 240102 657023 214463 939887 127204 351982 413228 157222 740773 255898 861392 525824 121648 780518 229416 268827 196658 034566 287497 821713 882335 677514 704570 325222 840366 619487 752416 482409 512404 121151 824051 322851 987563 553882 703801 260301 398204 025225 417121 508535 425330 742831 534012 132591 931868 228692 907699 014928 512718 547408 811954 117011 624123 084738 875262 400858 494334 370885 156433 192911 210226 020859 593229 740411 940234 089503 636824 620917 161486 726169 682064 588208 472197 844005 892437 304047 618797 846109 337525 (842 digits), a[1615] = 1
                                                                                      A[1616]/B[1616] = 187914 702783 376549 550511 132739 898604 251521 292615 789783 290673 185234 012207 918968 286131 631080 507591 014018 208572 348062 346950 726121 124958 282093 611472 780256 618352 885028 840732 052553 547508 210993 071375 544707 768992 891672 988146 902183 900294 063918 729734 405337 140600 807479 729366 001156 296009 809700 263882 722093 432790 160061 779279 410407 959633 053935 743752 926186 223179 936279 769811 184417 453130 422462 726328 828728 752160 917648 673177 675331 698245 477949 040881 327113 964190 605393 803890 826225 174118 855006 242684 058438 541155 268536 046737 435464 388773 767791 600586 278222 748186 234103 310498 442247 979974 197528 341294 922827 485708 887766 750190 048825 918430 828034 505458 919374 423491 024883 621864 535246 110526 472241 265593 549402 999265 591018 919082 273180 505557 769933 635700 945774 585585 650530 448808 152617 658074 742418 891700 007911 618808 165395 777442 586206 305036 936074 283645 630357 545945 814293 788291 (840 digits)/18 264092 447618 783803 540709 372418 608438 361801 128094 563145 597771 113033 676808 060625 922193 296458 427600 533771 912396 712778 402470 760241 145331 790316 547596 305280 034615 997599 043477 634861 314321 896793 147789 116004 483873 786824 249391 632886 942029 204057 895475 254596 016329 391858 552913 005198 543365 930920 971895 103382 845615 472045 712175 124424 689045 411167 783224 270742 808837 546631 752189 622281 756455 057299 140848 025765 471900 972778 356246 344633 169469 776070 816719 822729 566197 586509 450373 291459 109489 389150 753912 637784 950422 288150 440423 506348 805474 139886 267923 913997 922885 551118 067523 980046 971578 806691 690964 981672 619481 886475 177538 508219 227038 519451 875154 611154 143575 532804 636081 831430 322353 058730 256124 546542 573582 494603 753420 224426 969640 040447 510773 931145 412229 567426 458613 474702 827224 400412 101824 424150 765006 910582 141055 669605 454923 223317 623562 347362 507936 576012 321959 (842 digits), a[1616] = 1
                                                                                      A[1617]/B[1617] = 861178 543822 596762 979982 839835 324838 193274 106135 204365 181771 515000 399985 099200 425414 290377 624130 063410 420078 283085 040218 445897 603298 906417 169034 214114 596665 241236 939138 214250 578541 922632 704007 630573 775024 746465 812481 476528 379462 606329 669673 124143 574885 921435 309062 891178 362860 036406 428134 856103 023861 054894 917322 694722 214415 500988 712847 855039 908897 290844 604680 188896 243077 640736 687291 881767 598061 675815 272822 266901 723591 691429 973231 386626 398470 367322 796406 742729 142692 292307 407672 760990 327683 271021 194498 315273 575771 318261 559905 229712 273806 550298 743790 124176 069870 789322 687667 298248 514625 480426 935988 052753 335028 313102 479908 819304 826751 382861 050990 689809 456376 746977 379338 345184 263480 106875 015023 375163 620577 682364 772391 257473 299901 716911 984316 438887 540061 224812 419429 793821 726512 772880 691534 106560 278698 988242 083476 948160 527529 881866 174828 (840 digits)/83 700978 716993 880980 233866 683757 973326 139486 422840 167896 133499 114530 858811 335449 527216 952610 103687 651893 429829 924105 937365 502121 646272 969495 646486 754407 621645 406510 232228 438812 859053 692330 107851 827456 597745 723762 987390 277969 754648 903763 575453 931893 662671 424650 283092 434194 760980 064260 322325 662945 946403 827738 552772 993934 308952 656617 143675 397571 217536 015004 268604 708207 265922 886219 777856 042949 014808 243095 838213 535755 418652 360182 128271 816742 386439 126556 030909 434663 634615 591169 303148 372853 684024 830116 466264 350618 062263 179032 824112 138401 203946 325624 094147 243039 873878 780649 467661 186991 876131 571126 127275 541412 333484 820639 034630 577208 506170 359911 452026 340649 802130 782329 836452 303181 918453 063153 888943 298566 372894 532675 199528 917492 859144 290565 427683 639223 249131 691152 044122 317520 221514 368498 246287 266630 291890 737276 386686 693497 650544 150158 625361 (842 digits), a[1617] = 4
                                                                                      A[1618]/B[1618] = 1 049093 246605 973312 530493 972575 223442 444795 398750 994148 472444 700234 412193 018168 711545 921458 131721 077428 628650 631147 387169 172018 728257 188510 780506 994371 215018 126265 779870 266804 126050 133625 775383 175281 544017 638138 800628 378712 279756 670248 399407 529480 715486 728915 038428 892334 658869 846106 692017 578196 456651 214956 696602 105130 174048 554924 456600 781226 132077 227124 374491 373313 696208 063199 413620 710496 350222 593463 945999 942233 421837 169379 014112 713740 362660 972716 600297 568954 316811 147313 650356 819428 868838 539557 241235 750737 964545 086053 160491 507935 021992 784402 054288 566424 049844 986851 028962 221076 000334 368193 686178 101579 253459 141136 985367 738679 250242 407744 672855 225055 566903 219218 644931 894587 262745 697893 934105 648344 126135 452298 408092 203247 885487 367442 433124 591505 198135 967231 311129 801733 345320 938276 468976 692766 583735 924316 367122 578518 073475 696159 963119 (841 digits)/101 965071 164612 664783 774576 056176 581764 501287 550934 731041 731270 227564 535619 396075 449410 249068 531288 185665 342226 636884 339836 262362 791604 759812 194083 059687 656261 404109 275706 073674 173375 589123 255640 943461 081619 510587 236781 910856 696678 107821 470929 186489 679000 816508 836005 439393 304345 995181 294220 766328 792019 299784 264948 118358 997998 067784 926899 668314 026373 561636 020794 330489 022377 943518 918704 068714 486709 215874 194459 880388 588122 136252 944991 639471 952636 713065 481282 726122 744104 980320 057061 010638 634447 118266 906687 856966 867737 318919 092036 052399 126831 876742 161671 223086 845457 587341 158626 168664 495613 457601 304814 049631 560523 340090 909785 188362 649745 892716 088108 172080 124483 841060 092576 849724 492035 557757 642363 522993 342534 573122 710302 848638 271373 857991 886297 113926 076356 091564 145946 741670 986521 279080 387342 936235 746813 960594 010249 040860 158480 726170 947320 (843 digits), a[1618] = 1
                                                                                      A[1619]/B[1619] = 1 910271 790428 570075 510476 812410 548280 638069 504886 198513 654216 215234 812178 117369 136960 211835 755851 140839 048728 914232 427387 617916 331556 094927 949541 208485 811683 367502 719008 481054 704592 056258 479390 805855 319042 384604 613109 855240 659219 276578 069080 653624 290372 650350 347491 783513 021729 882513 120152 434299 480512 269851 613924 799852 388464 055913 169448 636266 040974 517968 979171 562209 939285 703936 100912 592263 948284 269279 218822 209135 145428 860808 987344 100366 761131 340039 396704 311683 459503 439621 058029 580419 196521 810578 435734 066011 540316 404314 720396 737647 295799 334700 798078 690600 119715 776173 716629 519324 514959 848620 622166 154332 588487 454239 465276 557984 076993 790605 723845 914865 023279 966196 024270 239771 526225 804768 949129 023507 746713 134663 180483 460721 185389 084354 417441 030392 738197 192043 730559 595555 071833 711157 160510 799326 862434 912558 450599 526678 601005 578026 137947 (841 digits)/185 666049 881606 545764 008442 739934 555090 640773 973774 898937 864769 342095 394430 731524 976627 201678 634975 837558 772056 560990 277201 764484 437877 729307 840569 814095 277906 810619 507934 512487 032429 281453 363492 770917 679365 234350 224172 188826 451327 011585 046383 118383 341672 241159 119097 873588 065326 059441 616546 429274 738423 127522 817721 112293 306950 724402 070575 065885 243909 576640 289399 038696 288300 829738 696560 111663 501517 458970 032673 416144 006774 496435 073263 456214 339075 839621 512192 160786 378720 571489 360209 383492 318471 948383 372952 207584 930000 497951 916148 190800 330778 202366 255818 466126 719336 367990 626287 355656 371745 028727 432089 591043 894008 160729 944415 765571 155916 252627 540134 512729 926614 623389 929029 152906 410488 620911 531306 821559 715429 105797 909831 766131 130518 148557 313980 753149 325487 782716 190069 059191 208035 647578 633630 202866 038704 697870 396935 734357 809024 876329 572681 (843 digits), a[1619] = 1
                                                                                      A[1620]/B[1620] = 4 869636 827463 113463 551447 597396 320003 720934 408523 391175 780877 130704 036549 252906 985466 345129 643423 359106 726108 459612 241944 407851 391369 378366 679589 411342 838384 861271 217887 228913 535234 246142 734164 786992 182102 407348 026848 089193 598195 223404 537568 836729 296232 029615 733412 459360 702329 611132 932322 446795 417675 754659 924451 704834 950976 666750 795498 053758 214026 263062 332834 497733 574779 471071 615445 895024 246791 132022 383644 360503 712694 890996 988800 914473 884923 652795 393706 192321 235818 026555 766415 980267 261882 160714 112703 882761 045177 894682 601284 983229 613591 453803 650445 947624 289276 539198 462221 259725 030254 065434 930510 410244 430434 049615 915920 854647 404229 988956 120547 054785 613463 151610 693472 374130 315197 307431 832363 695359 619561 721624 769059 124690 256265 536151 268006 652290 674530 351318 772248 992843 488988 360590 789998 291420 308605 749433 268321 631875 275486 852212 239013 (841 digits)/473 297170 927825 756311 791461 536045 691945 782835 498484 528917 460808 911755 324480 859125 402664 652425 801239 860782 886339 758864 894239 791331 667360 218427 875222 687878 212075 025348 291575 098648 238234 152029 982626 485296 440349 979287 685126 288509 599332 130991 563695 423256 362345 298827 074201 186569 434998 114064 527313 624878 268865 554829 900390 342945 611899 516589 068049 800084 514192 714916 599592 407881 598979 602996 311824 292041 489744 133814 259806 712676 601671 129123 091518 551900 630788 392308 505667 047695 501546 123298 777479 777623 271391 015033 652592 272136 727738 314822 924332 433999 788388 281474 673308 155340 284130 323322 411200 879977 239103 515056 168993 231719 348539 661550 798616 719504 961578 397971 168377 197539 977713 087839 950635 155537 313012 799580 704977 166112 773392 784718 529966 380900 532410 155106 514258 620224 727331 656996 526084 860053 402592 574237 654603 341967 824223 356334 804120 509575 776530 478830 092682 (843 digits), a[1620] = 2
                                                                                      A[1621]/B[1621] = 16 519182 272817 910466 164819 604599 508291 800872 730456 372040 996847 607346 921825 876090 093359 247224 686121 218159 227054 293069 153220 841470 505664 230027 988309 442514 326837 951316 372670 167795 310294 794686 681885 166831 865349 606648 693654 122821 453804 946791 681787 163812 179068 739197 547729 161595 128718 715911 917119 774685 733539 533831 387279 914357 241394 056165 555942 797540 683053 307155 977675 055410 663624 117150 947250 277336 688657 665346 369755 290646 283513 533799 953746 843788 415902 298425 577822 888647 166957 519288 357277 521220 982168 292720 773845 714294 675850 088362 524251 687336 136573 696111 749416 533472 987545 393769 103293 298499 605722 044925 413697 385065 879789 603087 213039 121926 289683 757474 085487 079221 863669 421028 104687 362162 471817 727064 446220 109586 605398 299537 487660 834791 954185 692808 221460 987264 761788 246000 047306 574085 538798 792929 530505 673587 788252 160858 255564 422304 427466 134662 854986 (842 digits)/1605 557562 665083 814699 382827 348071 630927 989280 469228 485690 247196 077361 367873 308901 184621 158956 038695 419907 431075 837584 959921 138479 439958 384591 466237 877729 914131 886664 382659 808431 747131 737543 311372 226807 000415 172213 279551 054355 249323 404559 737469 388152 428708 137640 341701 433296 370320 401635 198487 303909 545019 792012 518892 141130 142649 274169 274724 466138 786487 721390 088176 262341 085239 638727 632032 987787 970749 860412 812093 554173 811787 883804 347819 111916 231441 016547 029193 303872 883358 941385 692648 716362 132644 993484 330729 023995 113215 442420 689145 492799 695943 046790 275742 932147 571727 337957 859889 995588 089055 573895 939069 286201 939627 145382 340265 924086 040651 446541 045266 105349 859753 886909 780934 619518 349527 019653 646238 319898 035607 459953 499730 908832 727748 613876 856756 613823 507482 753705 768323 639351 415813 370291 597440 228769 511374 766874 809297 263085 138616 312819 850727 (844 digits), a[1621] = 3
                                                                                      A[1622]/B[1622] = 21 388819 100281 023929 716267 201995 828295 521807 138979 763216 777724 738050 958375 128997 078825 592354 329544 577265 953162 752681 395165 249321 897033 608394 667898 853857 165222 812587 590557 396708 845529 040829 416049 953824 047452 013996 720502 212015 052000 170196 219356 000541 475300 768813 281141 620955 831048 327044 849442 221481 151215 288491 311731 619192 192370 722916 351440 851298 897079 570218 310509 553144 238403 588222 562696 172360 935448 797368 753399 651149 996208 424796 942547 758262 300825 951220 971529 080968 402775 545844 123693 501488 244050 453434 886549 597055 721027 983045 125536 670565 750165 149915 399862 481097 276821 932967 565514 558224 635976 110360 344207 795310 310223 652703 128959 976573 693913 746430 206034 134007 477132 572638 798159 736292 787015 034496 278583 804946 224960 021162 256719 959482 210451 228959 489467 639555 436318 597318 819555 566929 027787 153520 320503 965008 096857 910291 523886 054179 702952 986875 093999 (842 digits)/2078 854733 592909 571011 174288 884117 322873 772115 967713 014607 708004 989116 692354 168026 587285 811381 839935 280690 317415 596449 854160 929811 107318 603019 341460 565608 126206 912012 674234 907079 985365 889573 293998 712103 440765 151500 964677 342864 848655 535551 301164 811408 791053 436467 415902 619865 805318 515699 725800 928787 813885 346842 419282 484075 754548 790758 342774 266223 300680 436306 687768 670222 684219 241723 943857 279829 460493 994227 071900 266850 413459 012927 439337 663816 862229 408855 534860 351568 384905 064684 470128 493985 404036 008517 983321 296131 840953 757243 613477 926799 484331 328264 949051 087487 855857 661280 271090 875565 328159 088952 108062 517921 288166 806933 138882 643591 002229 844512 213643 302889 837466 974749 731569 775055 662539 819234 351215 486010 809000 244672 029697 289733 260158 768983 371015 234048 234814 410702 294408 499404 818405 944529 252043 570737 335598 123209 613417 772660 915146 791649 943409 (844 digits), a[1622] = 1
                                                                                      A[1623]/B[1623] = 37 908001 373098 934395 881086 806595 336587 322679 869436 135257 774572 345397 880201 005087 172184 839579 015665 795425 180217 045750 548386 090792 402697 838422 656208 296371 492060 763903 963227 564504 155823 835516 097935 120655 912801 620645 414156 334836 505805 116987 901143 164353 654369 508010 828870 782550 959767 042956 766561 996166 884754 822322 699011 533549 433764 779081 907383 648839 580132 877374 288184 608554 902027 705373 509946 449697 624106 462715 123154 941796 279721 958596 896294 602050 716728 249646 549351 969615 569733 065132 480971 022709 226218 746155 660395 311350 396878 071407 649788 357901 886738 846027 149279 014570 264367 326736 668807 856724 241698 155285 757905 180376 190013 255790 341999 098499 983597 503904 291521 213229 340801 993666 902847 098455 258832 761560 724803 914532 830358 320699 744380 794274 164636 921767 710928 626820 198106 843318 866862 141014 566585 946449 851009 638595 885110 071149 779450 476484 130419 121537 948985 (842 digits)/3684 412296 257993 385710 557116 232188 953801 761396 436941 500297 955201 066478 060227 476927 771906 970337 878630 700597 748491 434034 814082 068290 547276 987610 807698 443338 040338 798677 056894 715511 732497 627116 605370 938910 441180 323714 244228 397220 097978 940111 038634 199561 219761 574107 757604 053162 175638 917334 924288 232697 358905 138854 938174 625205 897198 064927 617498 732362 087168 157696 775944 932563 769458 880451 575890 267617 431243 854639 883993 821024 225246 896731 787156 775733 093670 425402 564053 655441 268264 006070 162777 210347 536681 002002 314050 320126 954169 199664 302623 419599 180274 375055 224794 019635 427584 999238 130980 871153 417214 662848 047131 804123 227793 952315 479148 567677 042881 291053 258909 408239 697220 861659 512504 394574 012066 838887 997453 805908 844607 704625 529428 198565 987907 382860 227771 847871 742297 164408 062732 138756 234219 314820 849483 799506 846972 890084 422715 035746 053763 104469 794136 (844 digits), a[1623] = 1
                                                                                      A[1624]/B[1624] = 210 928825 965775 695909 121701 234972 511232 135206 486160 439505 650586 465040 359380 154432 939749 790249 407873 554391 854247 981434 137095 703283 910522 800507 948940 335714 625526 632107 406695 219229 624648 218409 905725 557103 611460 117223 791283 886197 581025 755135 725071 822309 747148 308867 425495 533710 629883 541828 682252 202315 574989 400104 806789 286939 361194 618325 888359 095496 797743 957089 751432 595918 748542 115090 112428 420849 055981 110944 369174 360131 394818 217781 424020 768515 884467 199453 718288 929046 251440 871506 528548 615034 375144 184213 188526 153807 705418 340083 374478 460075 183859 380051 146257 553948 598658 566650 909553 841845 844466 886789 133733 697191 260289 931654 838955 469073 611901 265951 663640 200154 181142 540973 312395 228569 081178 842299 902603 377610 376751 624660 978623 930853 033635 837798 044110 773656 426852 813913 153866 272001 860716 885769 575552 157987 522408 266040 421138 436600 355048 594564 838924 (843 digits)/20500 916214 882876 499563 959870 045062 091882 579098 152420 516097 484010 321506 993491 552665 446820 663071 233088 783679 059872 766623 924571 271263 843703 541073 379952 782298 327900 905397 958708 484638 647854 025156 320853 406655 646666 770072 185819 328965 338550 236106 494335 809214 889861 307006 203922 885676 683513 102374 347242 092274 608411 041117 110155 610105 240539 115396 430267 928033 736521 224790 567493 333041 531513 643981 823308 617916 616713 267426 491869 371971 539693 496586 375121 542482 330581 535868 355128 628774 726225 095035 284014 545723 087441 018529 553572 896766 611799 755565 126595 024795 385703 203541 073021 185664 993782 657470 925995 231332 414232 403192 343721 538537 427136 568510 534625 481976 216636 299778 508190 344088 323571 283047 294091 747925 722874 013674 338484 515555 032038 767799 676838 282563 199695 683284 509874 473406 946300 232742 608069 193185 989502 518633 499462 568271 570462 573631 726992 951391 183962 313998 914089 (845 digits), a[1624] = 5
                                                                                      A[1625]/B[1625] = 248 836827 338874 630305 002788 041567 847819 457886 355596 574763 425158 810438 239581 159520 111934 629828 423539 349817 034465 027184 685481 794076 313220 638930 605148 632086 117587 396011 369922 783733 780472 053926 003660 677759 524261 737869 205440 221034 086830 872123 626214 986663 401517 816878 254366 316261 589650 584785 448814 198482 459744 222427 505800 820488 794959 397407 795742 744336 377876 834464 039617 204473 650569 820463 622374 870546 680087 573659 492329 301927 674540 176378 320315 370566 601195 449100 267640 898661 821173 936639 009519 637743 601362 930368 848921 465158 102296 411491 024266 817977 070598 226078 295536 568518 863025 893387 578361 698570 086165 042074 891638 877567 450303 187445 180954 567573 595498 769855 955161 413383 521944 534640 215242 327024 340011 603860 627407 292143 207109 945360 723004 725127 198272 759565 755039 400476 624959 657232 020728 413016 427302 832219 426561 796583 407518 337190 200588 913084 485467 716102 787909 (843 digits)/24185 328511 140869 885274 516986 277251 045684 340494 589362 016395 439211 387985 053719 029593 218727 633409 111719 484276 808364 200658 738653 339554 390980 528684 187651 225636 368239 704075 015603 200150 380351 652272 926224 345566 087847 093786 430047 726185 436529 176217 532970 008776 109622 881113 961526 938838 859152 019709 271530 324971 967316 179972 048330 235311 137737 180324 047766 660395 823689 382487 343438 265605 300972 524433 399198 885534 047957 122066 375863 192995 764940 393318 162278 318215 424251 961270 919182 284215 994489 101105 446791 756070 624122 020531 867623 216893 565968 955229 429218 444394 565977 578596 297815 205300 421367 656709 056976 102485 831447 066040 390853 342660 654930 520826 013774 049653 259517 590831 767099 752328 020792 144706 806596 142499 734940 852562 335938 321463 876646 472425 206266 481129 187603 066144 737646 321278 688597 397150 670801 331942 223721 833454 348946 367778 417435 463716 149707 987137 237725 418468 708225 (845 digits), a[1625] = 1
                                                                                      A[1626]/B[1626] = 708 602480 643524 956519 127277 318108 206871 050979 197353 589032 500904 085916 838542 473473 163619 049906 254952 254025 923178 035803 508059 291436 536964 078369 159237 599886 860701 424130 146540 786697 185592 326261 913046 912622 659983 592962 202164 328265 754687 499382 977501 795636 550183 942623 934228 166233 809184 711399 579880 599280 494477 844959 818390 927916 951113 413141 479844 584169 553497 626017 830667 004866 049681 756017 357178 161942 416156 258263 353832 963986 743898 570538 064651 509649 086858 097654 253570 726369 893788 744784 547587 890521 577870 044950 886369 084123 910011 163065 423012 096029 325055 832207 737330 690986 324710 353426 066277 238986 016796 970938 917011 452326 160896 306545 200864 604220 802898 805663 573963 026921 225031 610253 742879 882617 761202 050021 157417 961896 790971 515382 424633 381107 430181 356929 554189 574609 676772 128377 195323 098034 715322 550208 428675 751154 337444 940420 822316 262769 325984 026770 414742 (843 digits)/68871 573237 164616 270112 993842 599564 183251 260087 331144 548888 362433 097477 100929 611851 884275 929889 456527 752232 676601 167941 401877 950372 625664 598441 755255 233571 064380 313547 989914 884939 408557 329702 173302 097787 822360 957645 045914 781336 211608 588541 560275 826767 109107 069234 126976 763354 401817 141792 890302 742218 543043 401061 206816 080727 516013 476044 525801 248825 383899 989765 254369 864252 133458 692848 621706 388984 712627 511559 243595 757963 069574 283222 699678 178913 179085 458410 193493 197206 715203 297246 177598 057864 335685 059593 288819 330553 743737 666023 985031 913584 517658 360733 668651 596265 836517 970889 039947 436304 077126 535273 125428 223858 736997 610162 562173 581282 735671 481442 042389 848744 365155 572460 907284 032925 192755 718799 010361 158482 785331 712650 089371 244821 574901 815573 985167 115964 323495 027043 949671 857070 436946 185542 197355 303828 405333 501064 026408 925665 659413 150936 330539 (845 digits), a[1626] = 2
                                                                                      A[1627]/B[1627] = 957 439307 982399 586824 130065 359676 054690 508865 552950 163795 926062 896355 078123 632993 275553 679734 678491 603842 957643 062988 193541 085512 850184 717299 764386 231972 978288 820141 516463 570430 966064 380187 916707 590382 184245 330831 407604 549299 841518 371506 603716 782299 951701 759502 188594 482495 398835 296185 028694 797762 954222 067387 324191 748405 746072 810549 275587 328505 931374 460481 870284 209339 700251 576480 979553 032489 096243 831922 846162 265914 418438 746916 384966 880215 688053 546754 521211 625031 714962 681423 557107 528265 179232 975319 735290 549282 012307 574556 447278 914006 395654 058286 032867 259505 187736 246813 644638 937556 102962 013013 808650 329893 611199 493990 381819 171794 398397 575519 529124 440304 746976 144893 958122 209642 101213 653881 784825 254039 998081 460743 147638 106234 628454 116495 309228 975086 301731 785609 216051 511051 142625 382427 855237 547737 744963 277611 022905 175853 811451 742873 202651 (843 digits)/93056 901748 305486 155387 510828 876815 228935 600581 920506 565283 801644 485462 154648 641445 103003 563298 568247 236509 484965 368600 140531 289927 016645 127125 942906 459207 432620 017623 005518 085089 788908 981975 099526 443353 910208 051431 475962 507521 648137 764759 093245 835543 218729 950348 088503 702193 260969 161502 161833 067190 510359 581033 255146 316038 653750 656368 573567 909221 207589 372252 597808 129857 434431 217282 020905 274518 760584 633625 619458 950958 834514 676540 861956 497128 603337 419681 112675 481422 709692 398351 624389 813934 959807 080125 156442 547447 309706 621253 414250 357979 083635 939329 966466 801566 257885 627598 096923 538789 908573 601313 516281 566519 391928 130988 575947 630935 995189 072273 809489 601072 385947 717167 713880 175424 927696 571361 346299 479946 661978 185075 295637 725950 762504 881718 722813 437243 012092 424194 620473 189012 660668 018996 546301 671606 822768 964780 176116 912802 897138 569405 038764 (845 digits), a[1627] = 1
                                                                                      A[1628]/B[1628] = 7410 677636 520322 064288 037734 835840 589704 613038 068004 735603 983344 360402 385407 904426 092494 808049 004393 480926 626679 476720 862846 890026 488257 099467 509941 223697 708723 165120 761785 779713 948042 987577 330000 045297 949700 908782 055396 173364 645316 099929 203519 271736 212096 259139 254389 543701 601031 784694 780744 183621 174032 316671 087733 166757 173623 086986 408955 883711 073118 849390 922656 470243 951442 791384 214049 389366 089863 081723 276968 825387 672969 798952 759419 671158 903232 924935 902052 101591 898527 514749 447340 588377 832500 872189 033402 929097 996164 184960 553964 494074 094634 240209 967401 507522 638864 081121 578749 801878 737531 062035 577563 761581 439292 764477 873598 806781 591681 834300 277834 109054 453864 624511 449735 350112 469697 627193 651194 740176 777541 740584 458100 124749 829360 172396 718792 400213 788894 627641 707683 675392 713700 227203 415338 585318 552187 883697 982652 493746 006146 226882 833299 (844 digits)/720269 885475 303019 357825 569644 737270 785800 464160 774690 505874 973944 495712 183470 101967 605300 872979 434258 407799 071358 748142 385596 979861 742180 488323 355600 448023 092720 436909 028541 480567 930920 203527 869987 201265 193817 317665 377652 333987 748572 941855 212996 675569 640216 721670 746502 678707 228601 272308 023134 212552 115560 468293 992840 292998 092268 070624 540776 613373 837025 595533 439026 773254 174477 213822 768043 310616 036719 946938 579808 414674 911177 019008 733373 658813 402447 396177 982221 567165 683050 085707 548326 755409 054334 620469 383917 162684 911684 014797 884784 419438 103109 936043 433919 207229 641717 364075 718412 207833 437141 744467 739399 189494 480494 527082 593806 997834 701994 987358 708817 056251 066789 592634 904445 260899 686631 718328 434457 518109 419179 008177 158835 326476 912435 987605 044861 176665 408141 996406 292984 180159 061622 318518 021467 005076 164716 254525 259227 315285 939383 136771 601887 (846 digits), a[1628] = 7
                                                                                      A[1629]/B[1629] = 8368 116944 502721 651112 167800 195516 644395 121903 620954 899399 909407 256757 463531 537419 368048 487783 682885 084769 584322 539709 056387 975539 338441 816767 274327 455670 687011 985262 278249 350144 914107 367765 246707 635680 133946 239613 463000 722664 486834 471435 807236 054036 163798 018641 442984 026196 999867 080879 809438 981384 128254 384058 411924 915162 919695 897535 684543 212217 004493 309872 792940 679583 651694 367865 193602 421855 186106 913646 123131 091302 091408 545869 144386 551374 591286 471690 423263 726623 613490 196173 004448 116643 011733 847508 768693 478380 008471 759517 001243 408080 490288 298496 000268 767027 826600 327935 223388 739434 840493 075049 386214 091475 050492 258468 255417 978575 990079 409819 806958 549359 200840 769405 407857 559754 570911 281075 436019 994216 775623 201327 605738 230984 457814 288892 028021 375300 090626 413250 923735 186443 856325 609631 270576 133056 297151 161309 005557 669599 817597 969756 035950 (844 digits)/813326 787223 608505 513213 080473 614086 014736 064742 695197 071158 775588 981174 338118 743412 708304 436278 002505 644308 556324 116742 526128 269788 758825 615449 298506 907230 525340 454532 034059 565657 719829 185502 969513 644619 104025 369096 853614 841509 396710 706614 306242 511112 858946 672018 835006 380900 489570 433810 184967 279742 625920 049327 247986 609036 746018 726993 114344 522595 044614 967786 036834 903111 608908 431104 788948 585134 797304 580564 199267 365633 745691 695549 595330 155942 005784 815859 094897 048588 392742 484059 172716 569344 014141 700594 540359 710132 221390 636051 299034 777417 186745 875373 400386 008795 899602 991673 815335 746623 345715 345781 255680 756013 872422 658071 169754 628770 697184 059632 518306 657323 452737 309802 618325 436324 614328 289689 780756 998056 081157 193252 454473 052427 674940 869323 767674 613908 420234 420600 913457 369171 722290 337514 567768 676682 987485 219305 435344 228088 836521 706176 640651 (846 digits), a[1629] = 1
                                                                                      A[1630]/B[1630] = 15778 794581 023043 715400 205535 031357 234099 734941 688959 635003 892751 617159 848939 441845 460543 295832 687278 565696 211002 016429 919234 865565 826698 916234 784268 679368 395735 150383 040035 129858 862150 355342 576707 680978 083647 148395 518396 896029 132150 571365 010755 325772 375894 277780 697373 569898 600898 865574 590183 165005 302286 700729 499658 081920 093318 984522 093499 095928 077612 159263 715597 149827 603137 159249 407651 811221 275969 995369 400099 916689 764378 344821 903806 222533 494519 396626 325315 828215 512017 710922 451788 705020 844234 719697 802096 407478 004635 944477 555207 902154 584922 538705 967670 274550 465464 409056 802138 541313 578024 137084 963777 853056 489785 022946 129016 785357 581761 244120 084792 658413 654705 393916 857592 909867 040608 908269 087214 734393 553164 941912 063838 355734 287174 461288 746813 775513 879521 040892 631418 861836 570025 836834 685914 718374 849339 045006 988210 163345 823744 196638 869249 (845 digits)/1 533596 672698 911524 871038 650118 351356 800536 528903 469887 577033 749533 476886 521588 845380 313605 309257 436764 052107 627682 864884 911725 249650 501006 103772 654107 355253 618060 891441 062601 046225 650749 389030 839500 845884 297842 686762 231267 175497 145283 648469 519239 186682 499163 393689 581509 059607 718171 706118 208101 492294 741480 517621 240826 902034 838286 797617 655121 135968 881640 563319 475861 676365 783385 644927 556991 895750 834024 527502 779075 780308 656868 714558 328703 814755 408232 212037 077118 615754 075792 569766 721043 324753 068476 321063 924276 872817 133074 650849 183819 196855 289855 811416 834305 216025 541320 355749 533747 954456 782857 090248 995079 945508 352917 185153 763561 626605 399179 046991 227123 713574 519526 902437 522770 697224 300960 008018 215214 516165 500336 201429 613308 378904 587376 856928 812535 790573 828376 417007 206441 549330 783912 656032 589235 681759 152201 473830 694571 543374 775904 842948 242538 (847 digits), a[1630] = 1
                                                                                      A[1631]/B[1631] = 702635 078509 516645 128721 211341 575234 944783 459337 935178 839571 190478 411790 816866 978619 631953 504421 923141 975402 868411 262625 502722 060435 713194 131097 782149 347880 099358 602116 039795 063934 848723 002838 621845 598715 814420 769016 272464 147946 301459 611496 280470 388020 703146 240992 127421 101735 439417 166161 777498 241617 428869 216156 396880 519647 025731 216507 798503 433052 419428 317476 279215 271998 189729 374839 130282 115591 328786 709899 727527 425651 724055 718032 911860 342848 350139 923248 737160 168106 142269 476760 883151 137560 158061 514212 060935 407412 212453 316529 430391 102882 226880 001558 577760 847248 307034 326434 517484 557232 273555 106787 792439 625960 601033 268097 932156 534309 587574 151103 537835 519560 007878 101747 141945 593904 357703 244915 273468 307533 114880 645458 414625 883293 093490 585596 887827 497910 789552 212526 706165 107252 937462 430357 450823 741549 668069 141616 486804 856816 062342 621866 282906 (846 digits)/68 291580 385975 715599 838913 685681 073785 238343 336495 370250 460643 755061 964181 288027 940146 506938 043605 220123 937044 174370 171678 642039 254410 803094 181446 079230 538389 720019 677938 788505 599586 352802 302859 907550 863528 209103 586635 029370 563383 789191 239273 152766 725142 822135 994360 421405 003640 089125 503011 341432 940711 251062 824661 844370 298569 630637 822169 939674 505225 836799 753842 974748 663206 077876 807917 296591 998171 494383 790686 478601 699214 647915 136116 058298 005179 968002 145490 488116 141767 727615 553794 898622 858479 027099 827407 208542 114086 076675 273415 387079 439049 940401 577714 109815 513919 717698 644653 300245 742721 791427 316737 039198 358381 400778 804836 766466 199408 261062 127246 511750 054602 311921 017053 620236 114193 856568 642491 250195 709338 095950 056155 440041 724229 519522 574191 519249 399156 868796 768917 996885 539726 214447 202948 494138 674085 684350 067855 996492 136578 976334 795899 312323 (848 digits), a[1631] = 44
                                                                                      A[1632]/B[1632] = 718413 873090 539688 844121 416876 606592 178883 194279 624138 474575 083230 028950 665806 420465 092496 800254 610420 541099 079413 279055 421956 926001 539893 047332 566418 027248 495093 752499 079830 193793 710873 358181 198553 279693 898067 917411 790861 043975 433610 182861 291225 713793 079040 518772 824794 671634 040316 031736 367681 406622 731155 916885 896538 601567 119050 201029 892002 528980 497040 476739 994812 421825 792866 534088 537933 926812 604756 705269 127627 342341 488434 062854 815666 565381 844659 319875 062475 996321 654287 187683 334939 842581 002296 233909 863031 814890 217089 261006 985599 005036 811802 540264 545431 121798 772498 735491 319623 098545 851579 243872 756217 479017 090818 291044 061173 319667 169335 395223 622628 177973 662583 495663 999538 503771 398312 153184 360683 041926 668045 587370 478464 239027 380665 046885 634641 273424 669073 253419 337583 969089 507488 267192 136738 459924 517408 186623 475015 020161 886086 818505 152155 (846 digits)/69 825177 058674 627124 709952 335799 425142 038879 865398 840138 037677 504595 441067 809616 785526 820543 352862 656887 989151 802053 036563 553764 504061 304100 285218 733337 893643 338080 569379 851106 645812 003551 691890 747051 709412 506946 273397 260637 738880 934474 887742 672005 911825 321299 388050 002914 063247 807297 209129 549534 433005 992543 342283 085197 200604 468924 619787 594795 641194 718440 317162 450610 339571 861262 452844 853583 893922 328408 318189 257677 479523 304783 850674 387001 819935 376234 357527 565234 757521 803408 123561 619666 183232 095576 148471 132818 986903 209749 924264 570898 635905 230257 389130 944120 729945 259019 000402 833993 697178 574284 406986 034278 303889 753695 989990 530027 826013 660241 174237 738873 768176 831447 919491 143006 811418 157528 650509 465410 225503 596286 257585 053350 103134 106899 431120 331785 189730 697173 185925 203327 089056 998359 858981 083374 355844 836551 541686 691063 679953 752239 638847 554861 (848 digits), a[1632] = 1
                                                                                      A[1633]/B[1633] = 4 294704 443962 215089 349328 295724 608195 839199 430736 055871 212446 606628 556544 145899 080945 094437 505694 975244 680898 265477 657902 612506 690443 412659 367760 614239 484122 574827 364611 438946 032903 403089 793744 614611 997185 304760 356075 226769 367823 469510 525802 736598 956986 098348 834856 251394 459905 640997 324843 615905 274731 084648 800585 879573 527482 620982 221657 258516 077954 904630 701176 253277 381127 154062 045281 819951 749654 352570 236245 365664 137359 166226 032306 990193 169757 573436 522624 049540 149714 413705 415177 557850 350465 169542 683761 376094 481863 297899 621564 358386 128066 285892 702881 304916 456242 169528 003891 115600 049961 531451 326151 573527 021046 055124 723318 238023 132645 434251 127221 650976 409428 320795 580067 139638 112761 349264 010837 076883 517166 455108 582310 806947 078429 996815 820025 061033 865034 134918 479623 394084 952700 474903 766318 134516 041172 255110 074733 861879 957625 492776 714392 043681 (847 digits)/417 417465 679348 851223 388675 364678 199495 432742 663489 570940 649031 278039 169520 336111 867780 609654 807918 504563 882803 184635 354496 410861 774717 323595 607539 745920 006606 410422 524838 044038 828646 370560 762313 642809 410590 743834 953621 332559 257788 461565 677986 512796 284269 428632 934610 435975 319879 125611 548659 089105 105741 213779 536077 270356 301591 975260 921107 913652 711199 429001 339655 227800 361065 384189 072141 564511 467783 136425 381632 766989 096831 171834 389487 993307 104856 849173 933128 314289 929376 744656 171602 996953 774639 504980 569762 872637 048602 125424 894738 241572 618576 091688 523368 830419 163646 012793 646667 470214 228614 662849 351667 210589 877830 169258 754789 416605 329476 562267 998435 206118 895486 469160 614509 335270 171284 644211 895038 577246 836856 077381 344080 706792 239900 054019 729793 178175 347810 354662 698544 013520 985011 206246 497853 911010 453309 867107 776289 451810 536347 737532 990137 086628 (849 digits), a[1633] = 5
                                                                                      A[1634]/B[1634] = 22 191936 092901 615135 590762 895499 647571 374880 347959 903494 536808 116372 811671 395301 825190 564684 328729 486643 945590 406801 568568 484490 378218 603189 886135 637615 447861 369230 575556 274560 358310 726322 326904 271613 265620 421869 697787 924707 883092 781162 811874 974220 498723 570784 693054 081766 971162 245302 655954 447207 780278 154399 919815 294406 238980 223961 309316 184582 918755 020193 982621 261199 327461 563176 760497 637692 675084 367607 886495 955948 029137 319564 224389 766632 414169 711841 932995 310176 744893 722814 263571 124191 594906 850009 652716 743504 224206 706587 368828 777529 645368 241266 054671 070013 403009 620138 754946 897623 348353 508835 874630 623852 584247 366441 907635 251288 982894 340591 031331 877510 225115 266561 395999 697729 067578 144632 207369 745100 627758 943588 498924 513199 631177 364744 147010 939810 598595 343665 651536 308008 732591 882007 098782 809318 665785 792958 560292 784414 808289 349970 390465 370560 (848 digits)/2156 912505 455418 883241 653329 159190 422619 202593 182846 694841 282833 894791 288669 490176 124429 868817 392455 179707 403167 725229 809045 608073 377647 922078 322917 462937 926675 390193 193570 071300 789043 856355 503458 961098 762366 226121 041503 923434 027823 242303 277675 235987 333172 464464 061102 182790 662643 435354 952424 995059 961712 061441 022669 436978 708564 345229 225327 163059 197191 863447 015438 589612 144898 782207 813552 676141 232838 010535 226353 092622 963679 163955 798114 353537 344219 622104 023169 136684 404405 526688 981576 604435 056429 620478 997285 496004 229913 836874 397955 778761 728785 688700 005975 096216 548175 322987 233740 185064 840251 888531 165322 087227 693040 599989 763937 613054 473396 471581 166413 769468 245609 177250 992037 819357 667841 378588 125702 351644 409783 983192 977988 587311 302634 376998 080086 222661 928782 470486 678645 270932 014113 029592 348250 638426 622394 172090 423133 950116 361692 439904 589532 988001 (850 digits), a[1634] = 5
                                                                                      A[1635]/B[1635] = 114270 573646 794378 548246 187477 223409 953205 098111 076279 149241 237437 810235 852558 554996 987162 654046 133821 704920 525902 886754 217029 253464 138031 237383 080158 696180 522312 743060 903869 150230 974833 236751 023839 151316 676737 511834 266099 547659 412553 676828 870044 997946 884652 068733 370323 269528 974306 704372 834292 288765 926948 089835 929536 777298 036655 797763 890691 675964 747553 883447 218050 168614 480715 951201 847618 299535 759063 165577 803922 542066 165417 602417 415215 380493 729603 847549 515476 149599 607493 184348 542896 020372 525835 869244 522273 679344 922195 516261 720939 858530 129140 564808 204220 803928 552776 263977 225466 978220 722178 527369 799233 790483 310735 864507 137227 124996 055605 137471 455058 951125 527935 845423 582510 746607 072628 060499 757654 600015 847966 992289 544629 271848 010681 064428 779354 145806 032458 669358 240073 331049 068300 929455 399003 316326 172220 198737 022280 813727 839488 490317 220585 057121 (852 digits)/11 106359 908055 631178 662496 380516 036164 265769 585041 141121 308705 960755 558384 528725 252976 557175 150408 559638 817982 793420 392922 130332 380683 283868 104880 309556 413304 458190 515176 217135 171801 615462 745048 072504 340336 834289 041077 657323 094368 519663 081142 427776 611574 789288 954083 549749 625097 270927 768261 584958 652847 961145 573605 261008 273726 699405 560542 130670 505459 052104 317683 832953 140734 444894 972221 054871 015719 350699 382305 873706 682629 080846 380238 880294 357092 491691 062789 231013 102288 213433 666222 309539 233059 330755 351337 592781 798416 874948 191699 969043 085714 136087 208019 289139 249425 718384 074060 174880 369076 685588 709819 595094 345981 343879 516553 269559 034088 847908 733693 862934 198115 537140 134518 617241 207901 886542 994471 136447 194312 814585 538025 007316 772689 504307 217134 093753 664446 648750 890571 043044 042461 653000 577247 640391 169689 160901 960696 492998 600956 890720 806264 495492 303777 (854 digits), a[1635] = 5149

                                                                                      (the period has 1634 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x = the fraction whose numerator is 1 + 3 and the denominator is -1

                                                                                      A[0]/B[0] = -3/1, a[0] = -3
                                                                                      A[1]/B[1] = -8/3, a[1] = 3
                                                                                      start periodic partA[2]/B[2] = -11/4, a[2] = 1
                                                                                      A[3]/B[3] = -30/11, a[3] = 2

                                                                                      (the period has 2 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      2

                                                                                      x = the fraction whose numerator is 1 + 2 and the denominator is 0

                                                                                      Error: The denominator is zero.

                                                                                      2

                                                                                      x = the fraction whose numerator is 1 + -5 and the denominator is 3

                                                                                      The number is not real, so it does not have continued fraction expansion.

                                                                                      -2

                                                                                      x = the fraction whose numerator is 1 + 9 and the denominator is 3

                                                                                      A[0]/B[0] = 1/1, a[0] = 1
                                                                                      A[1]/B[1] = 4/3, a[1] = 3

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2

                                                                                      x = the fraction whose numerator is 1 + 9 and the denominator is 3

                                                                                      A[0]/B[0] = 1/1, a[0] = 1
                                                                                      A[1]/B[1] = 4/3, a[1] = 3

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      2

                                                                                      Numerator: The expression must not include variables

                                                                                      2

                                                                                      Square root argument: The expression must not include variables

                                                                                      2

                                                                                      Denominator: The expression must not include variables

                                                                                      2

                                                                                      Numerator: Too many arguments

                                                                                      Denominator: The expression must not include variables

                                                                                      2

                                                                                      Numerator: Syntax error

                                                                                      Denominator: The expression must not include variables

                                                                                      2

                                                                                      Numerator: Too few arguments

                                                                                      Denominator: The expression must not include variables

                                                                                      -2

                                                                                      x = the fraction whose numerator is 1 + 2 and the denominator is 3

                                                                                      The expansion in continued fraction of x = 0 + //1, start periodic part4, 8//
                                                                                      (the period has 2 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2

                                                                                      x = the fraction whose numerator is 1 + 2 and the denominator is 3

                                                                                      The expansion in continued fraction of x = 0 + //1, start periodic part4, 8//
                                                                                      (the period has 2 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      **** CONTFRAC **** -2

                                                                                      x = the fraction whose numerator is 1 + 2 and the denominator is 3

                                                                                      The expansion in continued fraction of x = 0 + //1, start periodic part4, 8//
                                                                                      (the period has 2 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2

                                                                                      x = the fraction whose numerator is 1 + 2 and the denominator is 3

                                                                                      The expansion in continued fraction of x = 0 + //1, start periodic part4, 8//
                                                                                      (the period has 2 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      2

                                                                                      x = the fraction whose numerator is 1 + 0 and the denominator is 991

                                                                                      The expansion in continued fraction of x = 0 + //991// -2

                                                                                      x = the fraction whose numerator is 5 + 27 and the denominator is 991

                                                                                      The expansion in continued fraction of x = 0 + //97, start periodic part5, 5, 1, 44, 1, 1, 7, 1, 2, 1, 5, 1, 1, 3, 2, 1, 1, 4, 1, 1, 2, 1, 1, 12, 1, 5, 2, 6, 1, 16, 2, 8, 2, 3, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 4, 1, 3, 4, 9, 2, 2, 1, 1, 8, 1, 1, 1, 2, 1, 20, 1, 2, 5, 1, 3, 1, 7, 1, 3, 1, 9, 6, 14, 1, 1, 2, 3, 1, 20, 1, 1, 2, 6, 2, 4, 1, 14, 1, 4, 3, 2, 7, 4, 7, 3, 2, 1, 3, 3, 3, 3, 1, 6, 6, 3, 6, 1, 1, 2, 1, 2, 1, 4, 30, 1, 2, 1, 1, 12, 3, 1, 18, 3, 1, 1, 4, 2, 14, 4, 1, 1, 4, 1, 4, 2, 14, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 3, 1, 3, 1, 7, 1, 1, 223, 2, 1, 4, 5, 2, 3, 1, 1, 5, 13, 144, 1, 43, 53, 2, 1, 19, 1, 2, 5, 1, 7, 10, 5, 1, 1, 32, 1, 1, 3, 19, 9, 10, 1, 1, 2, 2, 10, 12, 2, 1, 3, 1, 140, 3, 2, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 5, 1, 2, 10, 7, 3, 3, 1, 12, 1, 1, 1, 13, 1, 1, 1, 83, 1, 3, 8, 2, 1, 8, 5, 1, 2, 4, 2, 1, 1, 3, 1, 29, 1, 2, 4, 1, 108, 1, 2, 1, 51, 3, 1, 3, 1, 1, 6, 2, 1, 2, 4, 2, 1, 1, 105, 1, 1, 2, 1, 1, 2, 1, 5, 1, 1, 1, 1, 32, 5, 5, 190, 1, 1, 9, 4, 3, 2, 2, 56, 2, 20, 1, 10, 1, 5, 2, 1, 1, 3, 1, 1, 7, 1, 1, 1, 1, 1, 2, 467, 1, 2, 1, 11, 2, 2, 1, 3, 2, 2, 2, 1, 40, 3, 11, 1, 9, 14, 4, 8, 1, 1, 8, 1, 5, 1, 2, 2, 5, 1, 2, 2, 3, 30, 3, 1, 2, 1, 2, 6, 1, 9, 4, 2, 24, 1, 6, 15, 1, 1, 7, 2, 1, 2, 1, 93, 1, 3, 10, 2, 3, 1, 18, 1, 1, 1, 1, 1, 1, 1, 3, 16, 1, 1, 9, 1, 3, 1, 6, 13, 2, 5, 2, 1, 1, 5, 2, 1, 43, 3, 15, 1, 3, 1, 2, 9, 1, 35, 9, 2, 2, 2, 1, 24, 5, 1, 7, 2, 5, 2, 2, 24, 1, 3, 2, 2, 2, 15, 2, 4, 1, 7, 1, 13, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 8, 3, 20, 30, 1, 7, 5, 61, 1, 5, 2, 12, 1, 2, 1, 1, 1, 3, 2, 1, 2, 1, 4, 8, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 11, 61, 1, 1, 2, 1, 1, 38, 1, 1, 2, 1, 4, 6, 3, 1, 1, 4, 4, 1, 1, 4, 5, 1, 2, 3, 2, 12, 2, 1, 1, 3, 1, 1, 21, 1, 38, 2, 1, 5, 10, 1, 2, 11, 1, 3, 7, 4, 1, 16, 1, 1, 7, 6, 3, 1, 5, 1, 2, 4, 1, 1, 1, 2, 1, 3, 4, 1, 5, 6, 2, 1, 1, 1, 1, 4, 2, 2, 1, 9, 4, 571, 1, 10, 6, 3, 1, 4, 3, 1, 1, 3, 1, 8, 1, 6, 1, 3, 16, 1, 26, 1, 2, 57, 5, 17, 7, 4, 1, 3, 3, 1, 26, 5, 7, 2, 1, 1, 3, 1, 3, 2, 2, 16, 23, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 41, 1, 42, 8, 1, 2, 1, 1, 1, 15, 4, 3, 2, 15, 6, 1, 3, 1, 2, 2, 1, 3, 4, 1, 21, 4, 8, 2, 3, 35, 1, 2, 1, 1, 2, 4, 1, 5, 1, 1, 1, 6, 4, 9, 1, 277, 2, 3, 1, 7, 5, 1, 1, 11, 1, 1, 8, 14, 1, 1, 4, 5, 6, 1, 1, 1, 1, 1, 23, 3, 1, 2, 22, 8, 8, 5, 1, 24, 25, 3, 1, 3, 1, 3, 4, 1, 2, 1, 2, 8, 15, 1, 395, 5, 1, 12, 1, 1, 1, 1, 2, 1, 7, 1, 5, 2, 9, 1, 5, 1, 1, 2, 3, 3, 1, 1, 173, 1, 95, 3, 1, 9, 1, 2, 1, 25, 5, 15, 2, 10, 2, 1, 2, 1, 1, 10, 5, 1, 4, 1, 4, 9, 2, 2, 1, 11, 1, 2, 2, 5, 1, 2, 2, 5, 9, 5, 8, 4, 2, 3, 1, 2, 1, 4, 1, 6, 1, 3, 4, 3, 3, 13, 11, 12, 12, 51, 1, 13, 1, 1, 5, 17, 24, 1, 1, 11, 3, 2, 18, 6, 3, 1, 2, 1, 2, 1, 10, 6, 1, 189, 1, 6, 10, 1, 2, 1, 2, 1, 3, 6, 18, 2, 3, 11, 1, 1, 24, 17, 5, 1, 1, 13, 1, 51, 12, 12, 11, 13, 3, 3, 4, 3, 1, 6, 1, 4, 1, 2, 1, 3, 2, 4, 8, 5, 9, 5, 2, 2, 1, 5, 2, 2, 1, 11, 1, 2, 2, 9, 4, 1, 4, 1, 5, 10, 1, 1, 2, 1, 2, 10, 2, 15, 5, 25, 1, 2, 1, 9, 1, 3, 95, 1, 173, 1, 1, 3, 3, 2, 1, 1, 5, 1, 9, 2, 5, 1, 7, 1, 2, 1, 1, 1, 1, 12, 1, 5, 395, 1, 15, 8, 2, 1, 2, 1, 4, 3, 1, 3, 1, 3, 25, 24, 1, 5, 8, 8, 22, 2, 1, 3, 23, 1, 1, 1, 1, 1, 6, 5, 4, 1, 1, 14, 8, 1, 1, 11, 1, 1, 5, 7, 1, 3, 2, 277, 1, 9, 4, 6, 1, 1, 1, 5, 1, 4, 2, 1, 1, 2, 1, 35, 3, 2, 8, 4, 21, 1, 4, 3, 1, 2, 2, 1, 3, 1, 6, 15, 2, 3, 4, 15, 1, 1, 1, 2, 1, 8, 42, 1, 41, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 23, 16, 2, 2, 3, 1, 3, 1, 1, 2, 7, 5, 26, 1, 3, 3, 1, 4, 7, 17, 5, 57, 2, 1, 26, 1, 16, 3, 1, 6, 1, 8, 1, 3, 1, 1, 3, 4, 1, 3, 6, 10, 1, 571, 4, 9, 1, 2, 2, 4, 1, 1, 1, 1, 2, 6, 5, 1, 4, 3, 1, 2, 1, 1, 1, 4, 2, 1, 5, 1, 3, 6, 7, 1, 1, 16, 1, 4, 7, 3, 1, 11, 2, 1, 10, 5, 1, 2, 38, 1, 21, 1, 1, 3, 1, 1, 2, 12, 2, 3, 2, 1, 5, 4, 1, 1, 4, 4, 1, 1, 3, 6, 4, 1, 2, 1, 1, 38, 1, 1, 2, 1, 1, 61, 11, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 4, 8, 4, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 12, 2, 5, 1, 61, 5, 7, 1, 30, 20, 3, 8, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 13, 1, 7, 1, 4, 2, 15, 2, 2, 2, 3, 1, 24, 2, 2, 5, 2, 7, 1, 5, 24, 1, 2, 2, 2, 9, 35, 1, 9, 2, 1, 3, 1, 15, 3, 43, 1, 2, 5, 1, 1, 2, 5, 2, 13, 6, 1, 3, 1, 9, 1, 1, 16, 3, 1, 1, 1, 1, 1, 1, 1, 18, 1, 3, 2, 10, 3, 1, 93, 1, 2, 1, 2, 7, 1, 1, 15, 6, 1, 24, 2, 4, 9, 1, 6, 2, 1, 2, 1, 3, 30, 3, 2, 2, 1, 5, 2, 2, 1, 5, 1, 8, 1, 1, 8, 4, 14, 9, 1, 11, 3, 40, 1, 2, 2, 2, 3, 1, 2, 2, 11, 1, 2, 1, 467, 2, 1, 1, 1, 1, 1, 7, 1, 1, 3, 1, 1, 2, 5, 1, 10, 1, 20, 2, 56, 2, 2, 3, 4, 9, 1, 1, 190, 5, 5, 32, 1, 1, 1, 1, 5, 1, 2, 1, 1, 2, 1, 1, 105, 1, 1, 2, 4, 2, 1, 2, 6, 1, 1, 3, 1, 3, 51, 1, 2, 1, 108, 1, 4, 2, 1, 29, 1, 3, 1, 1, 2, 4, 2, 1, 5, 8, 1, 2, 8, 3, 1, 83, 1, 1, 1, 13, 1, 1, 1, 12, 1, 3, 3, 7, 10, 2, 1, 5, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 3, 140, 1, 3, 1, 2, 12, 10, 2, 2, 1, 1, 10, 9, 19, 3, 1, 1, 32, 1, 1, 5, 10, 7, 1, 5, 2, 1, 19, 1, 2, 53, 43, 1, 144, 13, 5, 1, 1, 3, 2, 5, 4, 1, 2, 223, 1, 1, 7, 1, 3, 1, 3, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 14, 2, 4, 1, 4, 1, 1, 4, 14, 2, 4, 1, 1, 3, 18, 1, 3, 12, 1, 1, 2, 1, 30, 4, 1, 2, 1, 2, 1, 1, 6, 3, 6, 6, 1, 3, 3, 3, 3, 1, 2, 3, 7, 4, 7, 2, 3, 4, 1, 14, 1, 4, 2, 6, 2, 1, 1, 20, 1, 3, 2, 1, 1, 14, 6, 9, 1, 3, 1, 7, 1, 3, 1, 5, 2, 1, 20, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 9, 4, 3, 1, 4, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 2, 8, 2, 16, 1, 6, 2, 5, 1, 12, 1, 1, 2, 1, 1, 4, 1, 1, 2, 3, 1, 1, 5, 1, 2, 1, 7, 1, 1, 44, 1, 5, 5, 5149//
                                                                                      (the period has 1634 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x = the fraction whose numerator is 1 + 2 and the denominator is 3

                                                                                      A[0]/B[0] = 0/1, a[0] = 0
                                                                                      A[1]/B[1] = 1/1, a[1] = 1
                                                                                      start periodic partA[2]/B[2] = 4/5, a[2] = 4
                                                                                      A[3]/B[3] = 33/41, a[3] = 8

                                                                                      (the period has 2 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2

                                                                                      x = the fraction whose numerator is 5 + 27 and the denominator is 991

                                                                                      The expansion in continued fraction of x = 0 + //97, start periodic part5, 5, 1, 44, 1, 1, 7, 1, 2, 1, 5, 1, 1, 3, 2, 1, 1, 4, 1, 1, 2, 1, 1, 12, 1, 5, 2, 6, 1, 16, 2, 8, 2, 3, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 4, 1, 3, 4, 9, 2, 2, 1, 1, 8, 1, 1, 1, 2, 1, 20, 1, 2, 5, 1, 3, 1, 7, 1, 3, 1, 9, 6, 14, 1, 1, 2, 3, 1, 20, 1, 1, 2, 6, 2, 4, 1, 14, 1, 4, 3, 2, 7, 4, 7, 3, 2, 1, 3, 3, 3, 3, 1, 6, 6, 3, 6, 1, 1, 2, 1, 2, 1, 4, 30, 1, 2, 1, 1, 12, 3, 1, 18, 3, 1, 1, 4, 2, 14, 4, 1, 1, 4, 1, 4, 2, 14, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 3, 1, 3, 1, 7, 1, 1, 223, 2, 1, 4, 5, 2, 3, 1, 1, 5, 13, 144, 1, 43, 53, 2, 1, 19, 1, 2, 5, 1, 7, 10, 5, 1, 1, 32, 1, 1, 3, 19, 9, 10, 1, 1, 2, 2, 10, 12, 2, 1, 3, 1, 140, 3, 2, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 5, 1, 2, 10, 7, 3, 3, 1, 12, 1, 1, 1, 13, 1, 1, 1, 83, 1, 3, 8, 2, 1, 8, 5, 1, 2, 4, 2, 1, 1, 3, 1, 29, 1, 2, 4, 1, 108, 1, 2, 1, 51, 3, 1, 3, 1, 1, 6, 2, 1, 2, 4, 2, 1, 1, 105, 1, 1, 2, 1, 1, 2, 1, 5, 1, 1, 1, 1, 32, 5, 5, 190, 1, 1, 9, 4, 3, 2, 2, 56, 2, 20, 1, 10, 1, 5, 2, 1, 1, 3, 1, 1, 7, 1, 1, 1, 1, 1, 2, 467, 1, 2, 1, 11, 2, 2, 1, 3, 2, 2, 2, 1, 40, 3, 11, 1, 9, 14, 4, 8, 1, 1, 8, 1, 5, 1, 2, 2, 5, 1, 2, 2, 3, 30, 3, 1, 2, 1, 2, 6, 1, 9, 4, 2, 24, 1, 6, 15, 1, 1, 7, 2, 1, 2, 1, 93, 1, 3, 10, 2, 3, 1, 18, 1, 1, 1, 1, 1, 1, 1, 3, 16, 1, 1, 9, 1, 3, 1, 6, 13, 2, 5, 2, 1, 1, 5, 2, 1, 43, 3, 15, 1, 3, 1, 2, 9, 1, 35, 9, 2, 2, 2, 1, 24, 5, 1, 7, 2, 5, 2, 2, 24, 1, 3, 2, 2, 2, 15, 2, 4, 1, 7, 1, 13, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 8, 3, 20, 30, 1, 7, 5, 61, 1, 5, 2, 12, 1, 2, 1, 1, 1, 3, 2, 1, 2, 1, 4, 8, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 11, 61, 1, 1, 2, 1, 1, 38, 1, 1, 2, 1, 4, 6, 3, 1, 1, 4, 4, 1, 1, 4, 5, 1, 2, 3, 2, 12, 2, 1, 1, 3, 1, 1, 21, 1, 38, 2, 1, 5, 10, 1, 2, 11, 1, 3, 7, 4, 1, 16, 1, 1, 7, 6, 3, 1, 5, 1, 2, 4, 1, 1, 1, 2, 1, 3, 4, 1, 5, 6, 2, 1, 1, 1, 1, 4, 2, 2, 1, 9, 4, 571, 1, 10, 6, 3, 1, 4, 3, 1, 1, 3, 1, 8, 1, 6, 1, 3, 16, 1, 26, 1, 2, 57, 5, 17, 7, 4, 1, 3, 3, 1, 26, 5, 7, 2, 1, 1, 3, 1, 3, 2, 2, 16, 23, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 41, 1, 42, 8, 1, 2, 1, 1, 1, 15, 4, 3, 2, 15, 6, 1, 3, 1, 2, 2, 1, 3, 4, 1, 21, 4, 8, 2, 3, 35, 1, 2, 1, 1, 2, 4, 1, 5, 1, 1, 1, 6, 4, 9, 1, 277, 2, 3, 1, 7, 5, 1, 1, 11, 1, 1, 8, 14, 1, 1, 4, 5, 6, 1, 1, 1, 1, 1, 23, 3, 1, 2, 22, 8, 8, 5, 1, 24, 25, 3, 1, 3, 1, 3, 4, 1, 2, 1, 2, 8, 15, 1, 395, 5, 1, 12, 1, 1, 1, 1, 2, 1, 7, 1, 5, 2, 9, 1, 5, 1, 1, 2, 3, 3, 1, 1, 173, 1, 95, 3, 1, 9, 1, 2, 1, 25, 5, 15, 2, 10, 2, 1, 2, 1, 1, 10, 5, 1, 4, 1, 4, 9, 2, 2, 1, 11, 1, 2, 2, 5, 1, 2, 2, 5, 9, 5, 8, 4, 2, 3, 1, 2, 1, 4, 1, 6, 1, 3, 4, 3, 3, 13, 11, 12, 12, 51, 1, 13, 1, 1, 5, 17, 24, 1, 1, 11, 3, 2, 18, 6, 3, 1, 2, 1, 2, 1, 10, 6, 1, 189, 1, 6, 10, 1, 2, 1, 2, 1, 3, 6, 18, 2, 3, 11, 1, 1, 24, 17, 5, 1, 1, 13, 1, 51, 12, 12, 11, 13, 3, 3, 4, 3, 1, 6, 1, 4, 1, 2, 1, 3, 2, 4, 8, 5, 9, 5, 2, 2, 1, 5, 2, 2, 1, 11, 1, 2, 2, 9, 4, 1, 4, 1, 5, 10, 1, 1, 2, 1, 2, 10, 2, 15, 5, 25, 1, 2, 1, 9, 1, 3, 95, 1, 173, 1, 1, 3, 3, 2, 1, 1, 5, 1, 9, 2, 5, 1, 7, 1, 2, 1, 1, 1, 1, 12, 1, 5, 395, 1, 15, 8, 2, 1, 2, 1, 4, 3, 1, 3, 1, 3, 25, 24, 1, 5, 8, 8, 22, 2, 1, 3, 23, 1, 1, 1, 1, 1, 6, 5, 4, 1, 1, 14, 8, 1, 1, 11, 1, 1, 5, 7, 1, 3, 2, 277, 1, 9, 4, 6, 1, 1, 1, 5, 1, 4, 2, 1, 1, 2, 1, 35, 3, 2, 8, 4, 21, 1, 4, 3, 1, 2, 2, 1, 3, 1, 6, 15, 2, 3, 4, 15, 1, 1, 1, 2, 1, 8, 42, 1, 41, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 23, 16, 2, 2, 3, 1, 3, 1, 1, 2, 7, 5, 26, 1, 3, 3, 1, 4, 7, 17, 5, 57, 2, 1, 26, 1, 16, 3, 1, 6, 1, 8, 1, 3, 1, 1, 3, 4, 1, 3, 6, 10, 1, 571, 4, 9, 1, 2, 2, 4, 1, 1, 1, 1, 2, 6, 5, 1, 4, 3, 1, 2, 1, 1, 1, 4, 2, 1, 5, 1, 3, 6, 7, 1, 1, 16, 1, 4, 7, 3, 1, 11, 2, 1, 10, 5, 1, 2, 38, 1, 21, 1, 1, 3, 1, 1, 2, 12, 2, 3, 2, 1, 5, 4, 1, 1, 4, 4, 1, 1, 3, 6, 4, 1, 2, 1, 1, 38, 1, 1, 2, 1, 1, 61, 11, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 4, 8, 4, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 12, 2, 5, 1, 61, 5, 7, 1, 30, 20, 3, 8, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 13, 1, 7, 1, 4, 2, 15, 2, 2, 2, 3, 1, 24, 2, 2, 5, 2, 7, 1, 5, 24, 1, 2, 2, 2, 9, 35, 1, 9, 2, 1, 3, 1, 15, 3, 43, 1, 2, 5, 1, 1, 2, 5, 2, 13, 6, 1, 3, 1, 9, 1, 1, 16, 3, 1, 1, 1, 1, 1, 1, 1, 18, 1, 3, 2, 10, 3, 1, 93, 1, 2, 1, 2, 7, 1, 1, 15, 6, 1, 24, 2, 4, 9, 1, 6, 2, 1, 2, 1, 3, 30, 3, 2, 2, 1, 5, 2, 2, 1, 5, 1, 8, 1, 1, 8, 4, 14, 9, 1, 11, 3, 40, 1, 2, 2, 2, 3, 1, 2, 2, 11, 1, 2, 1, 467, 2, 1, 1, 1, 1, 1, 7, 1, 1, 3, 1, 1, 2, 5, 1, 10, 1, 20, 2, 56, 2, 2, 3, 4, 9, 1, 1, 190, 5, 5, 32, 1, 1, 1, 1, 5, 1, 2, 1, 1, 2, 1, 1, 105, 1, 1, 2, 4, 2, 1, 2, 6, 1, 1, 3, 1, 3, 51, 1, 2, 1, 108, 1, 4, 2, 1, 29, 1, 3, 1, 1, 2, 4, 2, 1, 5, 8, 1, 2, 8, 3, 1, 83, 1, 1, 1, 13, 1, 1, 1, 12, 1, 3, 3, 7, 10, 2, 1, 5, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 3, 140, 1, 3, 1, 2, 12, 10, 2, 2, 1, 1, 10, 9, 19, 3, 1, 1, 32, 1, 1, 5, 10, 7, 1, 5, 2, 1, 19, 1, 2, 53, 43, 1, 144, 13, 5, 1, 1, 3, 2, 5, 4, 1, 2, 223, 1, 1, 7, 1, 3, 1, 3, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 14, 2, 4, 1, 4, 1, 1, 4, 14, 2, 4, 1, 1, 3, 18, 1, 3, 12, 1, 1, 2, 1, 30, 4, 1, 2, 1, 2, 1, 1, 6, 3, 6, 6, 1, 3, 3, 3, 3, 1, 2, 3, 7, 4, 7, 2, 3, 4, 1, 14, 1, 4, 2, 6, 2, 1, 1, 20, 1, 3, 2, 1, 1, 14, 6, 9, 1, 3, 1, 7, 1, 3, 1, 5, 2, 1, 20, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 9, 4, 3, 1, 4, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 2, 8, 2, 16, 1, 6, 2, 5, 1, 12, 1, 1, 2, 1, 1, 4, 1, 1, 2, 3, 1, 1, 5, 1, 2, 1, 7, 1, 1, 44, 1, 5, 5, 5149//
                                                                                      (the period has 1634 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x = the fraction whose numerator is 1 + 2 and the denominator is 3

                                                                                      A[0]/B[0] = 0/1, a[0] = 0
                                                                                      A[1]/B[1] = 1/1, a[1] = 1
                                                                                      start periodic partA[2]/B[2] = 4/5, a[2] = 4
                                                                                      A[3]/B[3] = 33/41, a[3] = 8

                                                                                      (the period has 2 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      2

                                                                                      x = the fraction whose numerator is 1 + 0 and the denominator is 991

                                                                                      A[0]/B[0] = 0/1, a[0] = 0
                                                                                      A[1]/B[1] = 1/991, a[1] = 991
                                                                                      -2

                                                                                      x = the fraction whose numerator is 5 + 27 and the denominator is 991

                                                                                      A[0]/B[0] = 0/1, a[0] = 0
                                                                                      A[1]/B[1] = 1/97, a[1] = 97
                                                                                      start periodic partA[2]/B[2] = 5/486, a[2] = 5
                                                                                      A[3]/B[3] = 26/2527, a[3] = 5
                                                                                      A[4]/B[4] = 31/3013, a[4] = 1
                                                                                      A[5]/B[5] = 1390/135099, a[5] = 44
                                                                                      A[6]/B[6] = 1421/138112, a[6] = 1
                                                                                      A[7]/B[7] = 2811/273211, a[7] = 1
                                                                                      A[8]/B[8] = 21098/2 050589, a[8] = 7
                                                                                      A[9]/B[9] = 23909/2 323800, a[9] = 1
                                                                                      A[10]/B[10] = 68916/6 698189, a[10] = 2
                                                                                      A[11]/B[11] = 92825/9 021989, a[11] = 1
                                                                                      A[12]/B[12] = 533041/51 808134, a[12] = 5
                                                                                      A[13]/B[13] = 625866/60 830123, a[13] = 1
                                                                                      A[14]/B[14] = 1 158907/112 638257, a[14] = 1
                                                                                      A[15]/B[15] = 4 102587/398 744894, a[15] = 3
                                                                                      A[16]/B[16] = 9 364081/910 128045, a[16] = 2
                                                                                      A[17]/B[17] = 13 466668/1308 872939, a[17] = 1
                                                                                      A[18]/B[18] = 22 830749/2219 000984, a[18] = 1
                                                                                      A[19]/B[19] = 104 789664/10184 876875, a[19] = 4
                                                                                      A[20]/B[20] = 127 620413/12403 877859, a[20] = 1
                                                                                      A[21]/B[21] = 232 410077/22588 754734, a[21] = 1
                                                                                      A[22]/B[22] = 592 440567/57581 387327, a[22] = 2
                                                                                      A[23]/B[23] = 824 850644/80170 142061, a[23] = 1
                                                                                      A[24]/B[24] = 1417 291211/137751 529388, a[24] = 1
                                                                                      A[25]/B[25] = 17832 345176/1 733188 494717, a[25] = 12
                                                                                      A[26]/B[26] = 19249 636387/1 870940 024105, a[26] = 1
                                                                                      A[27]/B[27] = 114080 527111/11 087888 615242, a[27] = 5
                                                                                      A[28]/B[28] = 247410 690609/24 046717 254589, a[28] = 2
                                                                                      A[29]/B[29] = 1 598544 670765/155 368192 142776, a[29] = 6
                                                                                      A[30]/B[30] = 1 845955 361374/179 414909 397365, a[30] = 1
                                                                                      A[31]/B[31] = 31 133830 452749/3026 006742 500616, a[31] = 16
                                                                                      A[32]/B[32] = 64 113616 266872/6231 428394 398597, a[32] = 2
                                                                                      A[33]/B[33] = 544 042760 587725/52877 433897 689392, a[33] = 8
                                                                                      A[34]/B[34] = 1152 199137 442322/111986 296189 777381, a[34] = 2
                                                                                      A[35]/B[35] = 4000 640172 914691/388836 322467 021535, a[35] = 3
                                                                                      A[36]/B[36] = 5152 839310 357013/500822 618656 798916, a[36] = 1
                                                                                      A[37]/B[37] = 9153 479483 271704/889658 941123 820451, a[37] = 1
                                                                                      A[38]/B[38] = 23459 798276 900421/2 280140 500904 439818, a[38] = 2
                                                                                      A[39]/B[39] = 56073 076037 072546/5 449939 942932 700087, a[39] = 2
                                                                                      A[40]/B[40] = 135605 950351 045513/13 180020 386769 839992, a[40] = 2
                                                                                      A[41]/B[41] = 191679 026388 118059/18 629960 329702 540079, a[41] = 1
                                                                                      A[42]/B[42] = 327284 976739 163572/31 809980 716472 380071, a[42] = 1
                                                                                      A[43]/B[43] = 846248 979866 445203/82 249921 762647 300221, a[43] = 2
                                                                                      A[44]/B[44] = 1 173533 956605 608775/114 059902 479119 680292, a[44] = 1
                                                                                      A[45]/B[45] = 3 193316 893077 662753/310 369726 720886 660805, a[45] = 2
                                                                                      A[46]/B[46] = 4 366850 849683 271528/424 429629 200006 341097, a[46] = 1
                                                                                      A[47]/B[47] = 20 660720 291810 748865/2008 088243 520912 025193, a[47] = 4
                                                                                      A[48]/B[48] = 25 027571 141494 020393/2432 517872 720918 366290, a[48] = 1
                                                                                      A[49]/B[49] = 95 743433 716292 810044/9305 641861 683667 124063, a[49] = 3
                                                                                      A[50]/B[50] = 408 001306 006665 260569/39655 085319 455586 862542, a[50] = 4
                                                                                      A[51]/B[51] = 3767 755187 776280 155165/366201 409736 783948 886941, a[51] = 9
                                                                                      A[52]/B[52] = 7943 511681 559225 570899/772057 904793 023484 636424, a[52] = 2
                                                                                      A[53]/B[53] = 19654 778550 894731 296963/1 910317 219322 830918 159789, a[53] = 2
                                                                                      A[54]/B[54] = 27598 290232 453956 867862/2 682375 124115 854402 796213, a[54] = 1
                                                                                      A[55]/B[55] = 47253 068783 348688 164825/4 592692 343438 685320 956002, a[55] = 1
                                                                                      A[56]/B[56] = 405622 840499 243462 186462/39 423913 871625 336970 444229, a[56] = 8
                                                                                      A[57]/B[57] = 452875 909282 592150 351287/44 016606 215064 022291 400231, a[57] = 1
                                                                                      A[58]/B[58] = 858498 749781 835612 537749/83 440520 086689 359261 844460, a[58] = 1
                                                                                      A[59]/B[59] = 1 311374 659064 427762 889036/127 457126 301753 381553 244691, a[59] = 1
                                                                                      A[60]/B[60] = 3 481248 067910 691138 315821/338 354772 690196 122368 333842, a[60] = 2
                                                                                      A[61]/B[61] = 4 792622 726975 118901 204857/465 811898 991949 503921 578533, a[61] = 1
                                                                                      A[62]/B[62] = 99 333702 607413 069162 412961/9654 592752 529186 200799 904502, a[62] = 20
                                                                                      A[63]/B[63] = 104 126325 334388 188063 617818/10120 404651 521135 704721 483035, a[63] = 1
                                                                                      A[64]/B[64] = 307 586353 276189 445289 648597/29895 402055 571457 610242 870572, a[64] = 2
                                                                                      A[65]/B[65] = 1642 058091 715335 414511 860803/159597 414929 378423 755935 835895, a[65] = 5
                                                                                      A[66]/B[66] = 1949 644444 991524 859801 509400/189492 816984 949881 366178 706467, a[66] = 1
                                                                                      A[67]/B[67] = 7490 991426 689909 993916 389003/728075 865884 228067 854471 955296, a[67] = 3
                                                                                      A[68]/B[68] = 9440 635871 681434 853717 898403/917568 682869 177949 220650 661763, a[68] = 1
                                                                                      A[69]/B[69] = 73575 442528 459953 969941 677824/7 151056 645968 473712 399026 587637 (31 digits), a[69] = 7
                                                                                      A[70]/B[70] = 83016 078400 141388 823659 576227/8 068625 328837 651661 619677 249400 (31 digits), a[70] = 1
                                                                                      A[71]/B[71] = 322623 677728 884120 440920 406505/31 356932 632481 428697 258058 335837 (32 digits), a[71] = 3
                                                                                      A[72]/B[72] = 405639 756129 025509 264579 982732/39 425557 961319 080358 877735 585237 (32 digits), a[72] = 1
                                                                                      A[73]/B[73] = 3 973381 482890 113703 822140 251093 (31 digits)/386 186954 284353 151927 157678 602970 (33 digits), a[73] = 9
                                                                                      A[74]/B[74] = 24 245928 653469 707732 197421 489290 (32 digits)/2356 547283 667437 991921 823807 203057 (34 digits), a[74] = 6
                                                                                      A[75]/B[75] = 343 416382 631466 021954 586041 101153 (33 digits)/33377 848925 628485 038832 690979 445768 (35 digits), a[75] = 14
                                                                                      A[76]/B[76] = 367 662311 284935 729686 783462 590443 (33 digits)/35734 396209 295923 030754 514786 648825 (35 digits), a[76] = 1
                                                                                      A[77]/B[77] = 711 078693 916401 751641 369503 691596 (33 digits)/69112 245134 924408 069587 205766 094593 (35 digits), a[77] = 1
                                                                                      A[78]/B[78] = 1789 819699 117739 232969 522469 973635 (34 digits)/173958 886479 144739 169928 926318 838011 (36 digits), a[78] = 2
                                                                                      A[79]/B[79] = 6080 537791 269619 450549 936913 612501 (34 digits)/590988 904572 358625 579373 984722 608626 (36 digits), a[79] = 3
                                                                                      A[80]/B[80] = 7870 357490 387358 683519 459383 586136 (34 digits)/764947 791051 503364 749302 911041 446637 (36 digits), a[80] = 1
                                                                                      A[81]/B[81] = 163487 687599 016793 120939 124585 335221 (36 digits)/15 889944 725602 425920 565432 205551 541366 (38 digits), a[81] = 20
                                                                                      A[82]/B[82] = 171358 045089 404151 804458 583968 921357 (36 digits)/16 654892 516653 929285 314735 116592 988003 (38 digits), a[82] = 1
                                                                                      A[83]/B[83] = 334845 732688 420944 925397 708554 256578 (36 digits)/32 544837 242256 355205 880167 322144 529369 (38 digits), a[83] = 1
                                                                                      A[84]/B[84] = 841049 510466 246041 655254 001077 434513 (36 digits)/81 744567 001166 639697 075069 760882 046741 (38 digits), a[84] = 2
                                                                                      A[85]/B[85] = 5 381142 795485 897194 856921 715018 863656 (37 digits)/523 012239 249256 193388 330585 887436 809815 (39 digits), a[85] = 6
                                                                                      A[86]/B[86] = 11 603335 101438 040431 369097 431115 161825 (38 digits)/1127 769045 499679 026473 736241 535755 666371 (40 digits), a[86] = 2
                                                                                      A[87]/B[87] = 51 794483 201238 058920 333311 439479 510956 (38 digits)/5034 088421 247972 299283 275552 030459 475299 (40 digits), a[87] = 4
                                                                                      A[88]/B[88] = 63 397818 302676 099351 702408 870594 672781 (38 digits)/6161 857466 747651 325757 011793 566215 141670 (40 digits), a[88] = 1
                                                                                      A[89]/B[89] = 939 363939 438703 449844 167035 627804 929890 (39 digits)/91300 092955 715090 859881 440661 957471 458679 (41 digits), a[89] = 14
                                                                                      A[90]/B[90] = 1002 761757 741379 549195 869444 498399 602671 (40 digits)/97461 950422 462742 185638 452455 523686 600349 (41 digits), a[90] = 1
                                                                                      A[91]/B[91] = 4950 410970 404221 646627 644813 621403 340574 (40 digits)/481147 894645 566059 602435 250484 052217 860075 (42 digits), a[91] = 4
                                                                                      A[92]/B[92] = 15853 994668 954044 489078 803885 362609 624393 (41 digits)/1 540905 634359 160920 992944 203907 680340 180574 (43 digits), a[92] = 3
                                                                                      A[93]/B[93] = 36658 400308 312310 624785 252584 346622 589360 (41 digits)/3 562959 163363 887901 588323 658299 412898 221223 (43 digits), a[93] = 2
                                                                                      A[94]/B[94] = 272462 796827 140218 862575 571975 788967 749913 (42 digits)/26 481619 777906 376232 111209 812003 570627 729135 (44 digits), a[94] = 7
                                                                                      A[95]/B[95] = 1 126509 587616 873186 075087 540487 502493 589012 (43 digits)/109 489438 274989 392830 033162 906313 695409 137763 (45 digits), a[95] = 4
                                                                                      A[96]/B[96] = 8 158029 910145 252521 388188 355388 306422 872997 (43 digits)/792 907687 702832 126042 343350 156199 438491 693476 (45 digits), a[96] = 7
                                                                                      A[97]/B[97] = 25 600599 318052 630750 239652 606652 421762 208003 (44 digits)/2488 212501 383485 770957 063213 374912 010884 218191 (46 digits), a[97] = 3
                                                                                      A[98]/B[98] = 59 359228 546250 514021 867493 568693 149947 289003 (44 digits)/5769 332690 469803 667956 469776 906023 460260 129858 (46 digits), a[98] = 2
                                                                                      A[99]/B[99] = 84 959827 864303 144772 107146 175345 571709 497006 (44 digits)/8257 545191 853289 438913 532990 280935 471144 348049 (46 digits), a[99] = 1
                                                                                      A[100]/B[100] = 314 238712 139159 948338 188932 094729 865075 780021 (45 digits)/30541 968266 029671 984697 068747 748829 873693 174005 (47 digits), a[100] = 3
                                                                                      A[101]/B[101] = 1027 675964 281782 989786 673942 459535 166936 837069 (46 digits)/99883 449989 942305 393004 739233 527425 092223 870064 (47 digits), a[101] = 3
                                                                                      A[102]/B[102] = 3397 266604 984508 917698 210759 473335 365886 291228 (46 digits)/330192 318235 856588 163711 286448 331105 150364 784197 (48 digits), a[102] = 3
                                                                                      A[103]/B[103] = 11219 475779 235309 742881 306220 879541 264595 710753 (47 digits)/1 090460 404697 512069 884138 598578 520740 543318 222655 (49 digits), a[103] = 3
                                                                                      A[104]/B[104] = 14616 742384 219818 660579 516980 352876 630482 001981 (47 digits)/1 420652 722933 368658 047849 885026 851845 693683 006852 (49 digits), a[104] = 1
                                                                                      A[105]/B[105] = 98919 930084 554221 706358 408102 996801 047487 722639 (47 digits)/9 614376 742297 724018 171237 908739 631814 705416 263767 (49 digits), a[105] = 6
                                                                                      A[106]/B[106] = 608136 322891 545148 898729 965598 333682 915408 337815 (48 digits)/59 106913 176719 712767 075277 337464 642733 926180 589454 (50 digits), a[106] = 6
                                                                                      A[107]/B[107] = 1 923328 898759 189668 402548 304897 997849 793712 736084 (49 digits)/186 935116 272456 862319 397069 921133 560016 483958 032129 (51 digits), a[107] = 3
                                                                                      A[108]/B[108] = 12 148109 715446 683159 314019 794986 320781 677684 754319 (50 digits)/1180 717610 811460 886683 457696 864266 002832 829928 782228 (52 digits), a[108] = 6
                                                                                      A[109]/B[109] = 14 071438 614205 872827 716568 099884 318631 471397 490403 (50 digits)/1367 652727 083917 749002 854766 785399 562849 313886 814357 (52 digits), a[109] = 1
                                                                                      A[110]/B[110] = 26 219548 329652 555987 030587 894870 639413 149082 244722 (50 digits)/2548 370337 895378 635686 312463 649665 565682 143815 596585 (52 digits), a[110] = 1
                                                                                      A[111]/B[111] = 66 510535 273510 984801 777743 889625 597457 769561 979847 (50 digits)/6464 393402 874675 020375 479694 084730 694213 601518 007527 (52 digits), a[111] = 2
                                                                                      A[112]/B[112] = 92 730083 603163 540788 808331 784496 236870 918644 224569 (50 digits)/9012 763740 770053 656061 792157 734396 259895 745333 604112 (52 digits), a[112] = 1
                                                                                      A[113]/B[113] = 251 970702 479838 066379 394407 458618 071199 606850 428985 (51 digits)/24489 920884 414782 332499 064009 553523 214005 092185 215751 (53 digits), a[113] = 2
                                                                                      A[114]/B[114] = 344 700786 083001 607168 202739 243114 308070 525494 653554 (51 digits)/33502 684625 184835 988560 856167 287919 473900 837518 819863 (53 digits), a[114] = 1
                                                                                      A[115]/B[115] = 1630 773846 811844 495052 205364 431075 303481 708829 043201 (52 digits)/158500 659385 154126 286742 488678 705201 109608 442260 495203 (54 digits), a[115] = 4
                                                                                      A[116]/B[116] = 49267 916190 438336 458734 363672 175373 412521 790365 949584 (53 digits)/4 788522 466179 808624 590835 516528 443952 762154 105333 675953 (55 digits), a[116] = 30
                                                                                      A[117]/B[117] = 50898 690037 250180 953786 569036 606448 716003 499194 992785 (53 digits)/4 947023 125564 962750 877578 005207 149153 871762 547594 171156 (55 digits), a[117] = 1
                                                                                      A[118]/B[118] = 151065 296264 938698 366307 501745 388270 844528 788755 935154 (54 digits)/14 682568 717309 734126 345991 526942 742260 505679 200522 018265 (56 digits), a[118] = 2
                                                                                      A[119]/B[119] = 201963 986302 188879 320094 070781 994719 560532 287950 927939 (54 digits)/19 629591 842874 696877 223569 532149 891414 377441 748116 189421 (56 digits), a[119] = 1
                                                                                      A[120]/B[120] = 353029 282567 127577 686401 572527 382990 405061 076706 863093 (54 digits)/34 312160 560184 431003 569561 059092 633674 883120 948638 207686 (56 digits), a[120] = 1
                                                                                      A[121]/B[121] = 4 438315 377107 719811 556912 941110 590604 421265 208433 285055 (55 digits)/431 375518 565087 868920 058302 241261 495512 974893 131774 681653 (57 digits), a[121] = 12
                                                                                      A[122]/B[122] = 13 667975 413890 287012 357140 395859 154803 668856 702006 718258 (56 digits)/1328 438716 255448 037763 744467 782877 120213 807800 343962 252645 (58 digits), a[122] = 3
                                                                                      A[123]/B[123] = 18 106290 790998 006823 914053 336969 745408 090121 910440 003313 (56 digits)/1759 814234 820535 906683 802770 024138 615726 782693 475736 934298 (58 digits), a[123] = 1
                                                                                      A[124]/B[124] = 339 581209 651854 409842 810100 461314 572149 291051 089926 777892 (57 digits)/33005 094943 025094 358072 194328 217372 203295 896282 907227 070009 (59 digits), a[124] = 18
                                                                                      A[125]/B[125] = 1036 849919 746561 236352 344354 720913 461855 963275 180220 336989 (58 digits)/100775 099063 895818 980900 385754 676255 225614 471542 197418 144325 (60 digits), a[125] = 3
                                                                                      A[126]/B[126] = 1376 431129 398415 646195 154455 182228 034005 254326 270147 114881 (58 digits)/133780 194006 920913 338972 580082 893627 428910 367825 104645 214334 (60 digits), a[126] = 1
                                                                                      A[127]/B[127] = 2413 281049 144976 882547 498809 903141 495861 217601 450367 451870 (58 digits)/234555 293070 816732 319872 965837 569882 654524 839367 302063 358659 (60 digits), a[127] = 1
                                                                                      A[128]/B[128] = 11029 555325 978323 176385 149694 794794 017450 124732 071616 922361 (59 digits)/1 072001 366290 187842 618464 443433 173158 047009 725294 312898 648970 (61 digits), a[128] = 4
                                                                                      A[129]/B[129] = 24472 391701 101623 235317 798199 492729 530761 467065 593601 296592 (59 digits)/2 378558 025651 192417 556801 852703 916198 748544 289955 927860 656599 (61 digits), a[129] = 2
                                                                                      A[130]/B[130] = 353643 039141 401048 470834 324487 693007 448110 663650 382035 074649 (60 digits)/34 371813 725406 881688 413690 381287 999940 526629 784677 302947 841356 (62 digits), a[130] = 14
                                                                                      A[131]/B[131] = 1 439044 548266 705817 118655 096150 264759 323204 121667 121741 595188 (61 digits)/139 865812 927278 719171 211563 377855 915960 855063 428665 139652 022023 (63 digits), a[131] = 4
                                                                                      A[132]/B[132] = 1 792687 587408 106865 589489 420637 957766 771314 785317 503776 669837 (61 digits)/174 237626 652685 600859 625253 759143 915901 381693 213342 442599 863379 (63 digits), a[132] = 1
                                                                                      A[133]/B[133] = 3 231732 135674 812682 708144 516788 222526 094518 906984 625518 265025 (61 digits)/314 103439 579964 320030 836817 136999 831862 236756 642007 582251 885402 (63 digits), a[133] = 1
                                                                                      A[134]/B[134] = 14 719616 130107 357596 422067 487790 847871 149390 413256 005849 729937 (62 digits)/1430 651384 972542 880982 972522 307143 243350 328719 781372 771607 404987 (64 digits), a[134] = 4
                                                                                      A[135]/B[135] = 17 951348 265782 170279 130212 004579 070397 243909 320240 631367 994962 (62 digits)/1744 754824 552507 201013 809339 444143 075212 565476 423380 353859 290389 (64 digits), a[135] = 1
                                                                                      A[136]/B[136] = 86 525009 193236 038712 942915 506107 129460 125027 694218 531321 709785 (62 digits)/8409 670683 182571 685038 209880 083715 544200 590625 474894 187044 566543 (64 digits), a[136] = 4
                                                                                      A[137]/B[137] = 191 001366 652254 247705 016043 016793 329317 493964 708677 694011 414532 (63 digits)/18564 096190 917650 571090 229099 611574 163613 746727 373168 727948 423475 (65 digits), a[137] = 2
                                                                                      A[138]/B[138] = 2760 544142 324795 506583 167517 741213 739905 040533 615706 247481 513233 (64 digits)/268307 017356 029679 680301 417274 645753 834793 044808 699256 378322 495193 (66 digits), a[138] = 14
                                                                                      A[139]/B[139] = 5712 089651 301845 260871 351078 499220 809127 575031 940090 188974 440998 (64 digits)/555178 130902 977009 931693 063648 903081 833199 836344 771681 484593 413861 (66 digits), a[139] = 2
                                                                                      A[140]/B[140] = 8472 633793 626640 767454 518596 240434 549032 615565 555796 436455 954231 (64 digits)/823485 148259 006689 611994 480923 548835 667992 881153 470937 862915 909054 (66 digits), a[140] = 1
                                                                                      A[141]/B[141] = 14184 723444 928486 028325 869674 739655 358160 190597 495886 625430 395229 (65 digits)/1 378663 279161 983699 543687 544572 451917 501192 717498 242619 347509 322915 (67 digits), a[141] = 1
                                                                                      A[142]/B[142] = 36842 080683 483612 824106 257945 719745 265352 996760 547569 687316 744689 (65 digits)/3 580811 706582 974088 699369 570068 452670 670378 316149 956176 557934 554884 (67 digits), a[142] = 2
                                                                                      A[143]/B[143] = 87868 884811 895711 676538 385566 179145 888866 184118 591026 000063 884607 (65 digits)/8 540286 692327 931876 942426 684709 357258 841949 349798 154972 463378 432683 (67 digits), a[143] = 2
                                                                                      A[144]/B[144] = 212579 850307 275036 177183 029078 078037 043085 364997 729621 687444 513903 (66 digits)/20 661385 091238 837842 584222 939487 167188 354277 015746 266121 484691 420250 (68 digits), a[144] = 2
                                                                                      A[145]/B[145] = 513028 585426 445784 030904 443722 335219 975036 914114 050269 374952 912413 (66 digits)/49 863056 874805 607562 110872 563683 691635 550503 381290 687215 432761 273183 (68 digits), a[145] = 2
                                                                                      A[146]/B[146] = 725608 435733 720820 208087 472800 413257 018122 279111 779891 062397 426316 (66 digits)/70 524441 966044 445404 695095 503170 858823 904780 397036 953336 917452 693433 (68 digits), a[146] = 1
                                                                                      A[147]/B[147] = 1 238637 021160 166604 238991 916522 748476 993159 193225 830160 437350 338729 (67 digits)/120 387498 840850 052966 805968 066854 550459 455283 778327 640552 350213 966616 (69 digits), a[147] = 1
                                                                                      A[148]/B[148] = 1 964245 456893 887424 447079 389323 161734 011281 472337 610051 499747 765045 (67 digits)/190 911940 806894 498371 501063 570025 409283 360064 175364 593889 267666 660049 (69 digits), a[148] = 1
                                                                                      A[149]/B[149] = 7 131373 391841 828877 580230 084492 233679 027003 610238 660314 936593 633864 (67 digits)/693 123321 261533 548081 309158 776930 778309 535476 304421 422220 153213 946763 (69 digits), a[149] = 3
                                                                                      A[150]/B[150] = 9 095618 848735 716302 027309 473815 395413 038285 082576 270366 436341 398909 (67 digits)/884 035262 068428 046452 810222 346956 187592 895540 479786 016109 420880 606812 (69 digits), a[150] = 1
                                                                                      A[151]/B[151] = 34 418229 938048 977783 662158 505938 419918 141858 857967 471414 245617 830591 (68 digits)/3345 229107 466817 687439 739825 817799 341088 222097 743779 470548 415855 767199 (70 digits), a[151] = 3
                                                                                      A[152]/B[152] = 43 513848 786784 694085 689467 979753 815331 180143 940543 741780 681959 229500 (68 digits)/4229 264369 535245 733892 550048 164755 528681 117638 223565 486657 836736 374011 (70 digits), a[152] = 1
                                                                                      A[153]/B[153] = 339 015171 445541 836383 488434 364215 127236 402866 441773 663879 019332 437091 (69 digits)/32950 079694 213537 824687 590162 971088 041856 045565 308737 877153 273010 385276 (71 digits), a[153] = 7
                                                                                      A[154]/B[154] = 382 529020 232326 530469 177902 343968 942567 583010 382317 405659 701291 666591 (69 digits)/37179 344063 748783 558580 140211 135843 570537 163203 532303 363811 109746 759287 (71 digits), a[154] = 1
                                                                                      A[155]/B[155] = 721 544191 677868 366852 666336 708184 069803 985876 824091 069538 720624 103682 (69 digits)/70129 423757 962321 383267 730374 106931 612393 208768 841041 240964 382757 144563 (71 digits), a[155] = 1
                                                                                      A[156]/B[156] = 161286 883764 396972 338613 770988 269016 508856 433542 154625 912794 400466 787677 (72 digits)/15 676040 842089 346452 027284 013636 981593 134222 718655 084500 098868 464589 996836 (74 digits), a[156] = 223
                                                                                      A[157]/B[157] = 323295 311720 471813 044080 208313 246217 087516 852961 133342 895127 521557 679036 (72 digits)/31 422211 107936 655225 437835 757648 070117 880838 646079 010041 438701 311937 138235 (74 digits), a[157] = 2
                                                                                      A[158]/B[158] = 484582 195484 868785 382693 979301 515233 596373 286503 287968 807921 922024 466713 (72 digits)/47 098251 950026 001677 465119 771285 051711 015061 364734 094541 537569 776527 135071 (74 digits), a[158] = 1
                                                                                      A[159]/B[159] = 2 261624 093659 946954 574856 125519 307151 473009 998974 285218 126815 209655 545888 (73 digits)/219 815218 908040 661935 298314 842788 276961 941084 105015 388207 588980 418045 678519 (75 digits), a[159] = 4
                                                                                      A[160]/B[160] = 11 792702 663784 603558 256974 606898 050990 961423 281374 714059 441997 970302 196153 (74 digits)/1146 174346 490229 311353 956693 985226 436520 720481 889811 035579 482471 866755 527666 (76 digits), a[160] = 5
                                                                                      A[161]/B[161] = 25 847029 421229 154071 088805 339315 409133 395856 561723 713337 010811 150259 938194 (74 digits)/2512 163911 888499 284643 211702 813241 150003 382047 884637 459366 553924 151556 733851 (76 digits), a[161] = 2
                                                                                      A[162]/B[162] = 89 333790 927472 065771 523390 624844 278391 148992 966545 854070 474431 421082 010735 (74 digits)/8682 666082 155727 165283 591802 424949 886530 866625 543723 413679 144244 321425 729219 (76 digits), a[162] = 3
                                                                                      A[163]/B[163] = 115 180820 348701 219842 612195 964159 687524 544849 528269 567407 485242 571341 948929 (75 digits)/11194 829994 044226 449926 803505 238191 036534 248673 428360 873045 698168 472982 463070 (77 digits), a[163] = 1
                                                                                      A[164]/B[164] = 204 514611 276173 285614 135586 589003 965915 693842 494815 421477 959673 992423 959664 (75 digits)/19877 496076 199953 615210 395307 663140 923065 115298 972084 286724 842412 794408 192289 (77 digits), a[164] = 1
                                                                                      A[165]/B[165] = 1137 753876 729567 647913 290128 909179 517103 014062 002346 674797 283612 533461 747249 (76 digits)/110582 310375 043994 525978 780043 553895 651859 825168 288782 306669 910232 445023 424515 (78 digits), a[165] = 5
                                                                                      A[166]/B[166] = 14995 315008 760552 708486 907262 408337 688254 876648 525322 193842 646636 927426 673901 (77 digits)/1 457447 530951 771882 452934 535873 863784 397242 842486 726254 273433 675434 579712 710984 (79 digits), a[166] = 13
                                                                                      A[167]/B[167] = 2 160463 115138 249157 670027 935915 709806 625805 251449 648742 588138 399330 082902 788993 (79 digits)/209 983026 767430 195067 748551 945879 938848 854829 143256 869397 681119 172811 923653 806211 (81 digits), a[167] = 144
                                                                                      A[168]/B[168] = 2 175458 430147 009710 378514 843178 118144 314060 128098 174064 781981 045967 010329 462894 (79 digits)/211 440474 298381 966950 201486 481753 802633 252071 985743 595651 954552 848246 503366 517195 (81 digits), a[168] = 1
                                                                                      A[169]/B[169] = 95 705175 611459 666703 946166 192574 790012 130390 759671 133528 213323 375911 527069 693435 (80 digits)/9301 923421 597854 773926 412470 661293 452078 693924 530231 482431 726891 647411 568414 045596 (82 digits), a[169] = 43
                                                                                      A[170]/B[170] = 5074 549765 837509 345019 525323 049641 988787 224770 390668 251060 088119 969277 945023 214949 (82 digits)/493213 381818 984684 985050 062431 530306 762804 030072 088012 164533 479810 161059 629310 933783 (84 digits), a[170] = 53
                                                                                      A[171]/B[171] = 10244 804707 286478 356742 996812 291858 767586 579931 541007 635648 389563 314467 417116 123333 (83 digits)/995728 687059 567224 744026 537333 721906 977686 754068 706255 811498 686511 969530 827035 913162 (84 digits), a[171] = 2
                                                                                      A[172]/B[172] = 15319 354473 123987 701762 522135 341500 756373 804701 931675 886708 477683 283745 362139 338282 (83 digits)/1 488942 068878 551909 729076 599765 252213 740490 784140 794267 976032 166322 130590 456346 846945 (85 digits), a[172] = 1
                                                                                      A[173]/B[173] = 301312 539696 642244 690230 917383 780373 138688 869268 242849 483109 465545 705629 297763 550691 (84 digits)/29 285627 995752 053509 596481 932873 513968 047011 652743 797347 356109 846632 450749 497626 005117 (86 digits), a[173] = 19
                                                                                      A[174]/B[174] = 316631 894169 766232 391993 439519 121873 895062 673970 174525 369817 943228 989374 659902 888973 (84 digits)/30 774570 064630 605419 325558 532638 766181 787502 436884 591615 332142 012954 581339 953972 852062 (86 digits), a[174] = 1
                                                                                      A[175]/B[175] = 934576 328036 174709 474217 796422 024120 928814 217208 591900 222745 352003 684378 617569 328637 (84 digits)/90 834768 125013 264348 247598 998151 046331 622016 526512 980578 020393 872541 613429 405571 709241 (86 digits), a[175] = 2
                                                                                      A[176]/B[176] = 4 989513 534350 639779 763082 421629 242478 539133 760013 134026 483544 703247 411267 747749 532158 (85 digits)/484 948410 689696 927160 563553 523393 997839 897585 069449 494505 434111 375662 648486 981831 398267 (87 digits), a[176] = 5
                                                                                      A[177]/B[177] = 5 924089 862386 814489 237300 218051 266599 467947 977221 725926 706290 055251 095646 365318 860795 (85 digits)/575 783178 814710 191508 811152 521545 044171 519601 595962 475083 454505 248204 261916 387403 107508 (87 digits), a[177] = 1
                                                                                      A[178]/B[178] = 46 458142 571058 341204 424183 947988 108674 814769 600565 215513 427575 090005 080792 304981 557723 (86 digits)/4515 430662 392668 267722 241621 174209 307040 534796 241186 820089 615648 113092 481901 693653 150823 (88 digits), a[178] = 7
                                                                                      A[179]/B[179] = 470 505515 572970 226533 479139 697932 353347 615643 982873 881060 982040 955301 903569 415134 438025 (87 digits)/45730 089802 741392 868731 227364 263638 114576 867564 007830 675979 610986 379129 080933 323934 615738 (89 digits), a[179] = 10
                                                                                      A[180]/B[180] = 2398 985720 435909 473871 819882 437649 875412 892989 514934 620818 337779 866514 598639 380653 747848 (88 digits)/233165 879676 099632 611378 378442 492399 879924 872616 280340 199987 670580 008737 886568 313326 229513 (90 digits), a[180] = 5
                                                                                      A[181]/B[181] = 2869 491236 008879 700405 299022 135582 228760 508633 497808 501879 319820 821816 502208 795788 185873 (88 digits)/278895 969478 841025 480109 605806 756037 994501 740180 288170 875967 281566 387866 967501 637260 845251 (90 digits), a[181] = 1
                                                                                      A[182]/B[182] = 5268 476956 444789 174277 118904 573232 104173 401623 012743 122697 657600 688331 100848 176441 933721 (88 digits)/512061 849154 940658 091487 984249 248437 874426 612796 568511 075954 952146 396604 854069 950587 074764 (90 digits), a[182] = 1
                                                                                      A[183]/B[183] = 171460 753842 242133 277273 103968 479009 562309 360569 905588 428204 363042 848411 729350 441930 064945 (90 digits)/16 664875 142436 942084 407725 101782 706049 976153 349670 480525 306525 750251 079222 297740 056047 237699 (92 digits), a[183] = 32
                                                                                      A[184]/B[184] = 176729 230798 686922 451550 222873 052241 666482 762192 918331 550902 020643 536742 830198 618371 998666 (90 digits)/17 176936 991591 882742 499213 086031 954487 850579 962467 049036 382480 702397 475827 151810 006634 312463 (92 digits), a[184] = 1
                                                                                      A[185]/B[185] = 348189 984640 929055 728823 326841 531251 228792 122762 823919 979106 383686 385154 559549 060302 063611 (90 digits)/33 841812 134028 824826 906938 187814 660537 826733 312137 529561 689006 452648 555049 449550 062681 550162 (92 digits), a[185] = 1
                                                                                      A[186]/B[186] = 1 221299 184721 474089 638020 203397 645995 352859 130481 390091 488221 171702 692206 508845 799278 189499 (91 digits)/118 702373 393678 357223 220027 649475 936101 330779 898879 637721 449500 060343 140975 500460 194678 962949 (93 digits), a[186] = 3
                                                                                      A[187]/B[187] = 23 552874 494348 936758 851207 191396 805162 933115 601909 235658 255308 646037 537078 227619 246587 664092 (92 digits)/2289 186906 613917 612068 087463 527857 446463 111551 390850 646269 229507 599168 233583 958293 761581 846193 (94 digits), a[187] = 19
                                                                                      A[188]/B[188] = 213 197169 633861 904919 298884 925968 892461 750899 547664 511015 785998 986040 525910 557419 018567 166327 (93 digits)/20721 384532 918936 865836 007199 400192 954269 334742 416535 454144 515068 452857 243231 125104 048915 578686 (95 digits), a[188] = 9
                                                                                      A[189]/B[189] = 2155 524570 832967 985951 840056 451085 729780 442111 078554 345816 115298 506442 796183 801809 432259 327362 (94 digits)/209503 032235 803286 270428 159457 529786 989156 458975 556205 187714 380192 127740 665895 209334 250737 633053 (96 digits), a[189] = 10
                                                                                      A[190]/B[190] = 2368 721740 466829 890871 138941 377054 622242 193010 626218 856831 901297 492483 322094 359228 450826 493689 (94 digits)/230224 416768 722223 136264 166656 929979 943425 793717 972740 641858 895260 580597 909126 334438 299653 211739 (96 digits), a[190] = 1
                                                                                      A[191]/B[191] = 4524 246311 299797 876822 978997 828140 352022 635121 704773 202648 016595 998926 118278 161037 883085 821051 (94 digits)/439727 449004 525509 406692 326114 459766 932582 252693 528945 829573 275452 708338 575021 543772 550390 844792 (96 digits), a[191] = 1
                                                                                      A[192]/B[192] = 11417 214363 066425 644517 096937 033335 326287 463254 035765 262127 934489 490335 558650 681304 216998 135791 (95 digits)/1 109679 314777 773241 949648 818885 849513 808590 299105 030632 301005 446165 997275 059169 421983 400434 901323 (97 digits), a[192] = 2
                                                                                      A[193]/B[193] = 27358 675037 432649 165857 172871 894811 004597 561629 776303 726903 885574 979597 235579 523646 317082 092633 (95 digits)/2 659086 078560 071993 305989 963886 158794 549762 850903 590210 431584 167784 702888 693360 387739 351260 647438 (97 digits), a[193] = 2
                                                                                      A[194]/B[194] = 285003 964737 392917 303088 825655 981445 372263 079551 798802 531166 790239 286307 914445 917767 387819 062121 (96 digits)/27 700540 100378 493175 009548 457747 437459 306218 808140 932736 616847 124013 026161 992773 299376 913041 375703 (98 digits), a[194] = 10
                                                                                      A[195]/B[195] = 3 447406 251886 147656 802923 080743 672155 471754 516251 361934 100905 368446 415292 208930 536854 970910 838085 (97 digits)/335 065567 283101 990093 420571 456855 408306 224388 548594 783049 833749 655941 016832 606639 980262 307757 155874 (99 digits), a[195] = 12
                                                                                      A[196]/B[196] = 7 179816 468509 688230 908934 987143 325756 315772 112054 522670 732977 527132 116892 332306 991477 329640 738291 (97 digits)/697 831674 666582 473361 850691 371458 254071 754995 905330 498836 284346 435895 059827 206053 259901 528555 687451 (99 digits), a[196] = 2
                                                                                      A[197]/B[197] = 10 627222 720395 835887 711858 067886 997911 787526 628305 884604 833882 895578 532184 541237 528332 300551 576376 (98 digits)/1032 897241 949684 463455 271262 828313 662377 979384 453925 281886 118096 091836 076659 812693 240163 836312 843325 (100 digits), a[197] = 1
                                                                                      A[198]/B[198] = 39 061484 629697 195894 044509 190804 319491 678351 996972 176485 234626 213867 713445 956019 576474 231295 467419 (98 digits)/3796 523400 515635 863727 664479 856399 241205 693149 267106 344494 638634 711403 289806 644132 980393 037494 217426 (100 digits), a[198] = 3
                                                                                      A[199]/B[199] = 49 688707 350093 031781 756367 258691 317403 465878 625278 061090 068509 109446 245630 497257 104806 531847 043795 (98 digits)/4829 420642 465320 327182 935742 684712 903583 672533 721031 626380 756730 803239 366466 456826 220556 873807 060751 (100 digits), a[199] = 1
                                                                                      A[200]/B[200] = 6995 480513 642721 645339 935925 407588 755976 901359 535900 729094 825901 536342 101715 572014 249388 689881 598719 (100 digits)/679915 413345 660481 669338 668455 716205 742919 847870 211534 037800 580947 164914 595110 599803 858355 370482 722566 (102 digits), a[200] = 140
                                                                                      A[201]/B[201] = 21036 130248 278257 967801 564143 481457 585334 169957 232980 248374 546213 718472 550777 213299 852972 601491 839952 (101 digits)/2 044575 660679 446765 335198 941109 833330 132343 216144 355633 739782 499572 297983 151798 256237 795622 985255 228449 (103 digits), a[201] = 3
                                                                                      A[202]/B[202] = 49067 741010 199237 580943 064212 370503 926645 241274 001861 225843 918328 973287 203269 998613 955333 892865 278623 (101 digits)/4 769066 734704 554012 339736 550675 382866 007606 280158 922801 517365 580091 760880 898707 112279 449601 340993 179464 (103 digits), a[202] = 2
                                                                                      A[203]/B[203] = 119171 612268 676733 129687 692568 222465 438624 652505 236702 700062 382871 665046 957317 210527 763640 387222 397198 (102 digits)/11 582709 130088 554790 014672 042460 599062 147555 776462 201236 774513 659755 819744 949212 480796 694825 667241 587377 (104 digits), a[203] = 2
                                                                                      A[204]/B[204] = 287410 965547 552703 840318 449348 815434 803894 546284 475266 625968 684072 303381 117904 419669 482614 667310 073019 (102 digits)/27 934484 994881 663592 369080 635596 580990 302717 833083 325275 066392 899603 400370 797132 073872 839252 675476 354218 (104 digits), a[204] = 2
                                                                                      A[205]/B[205] = 406582 577816 229436 970006 141917 037900 242519 198789 711969 326031 066943 968428 075221 630197 246255 054532 470217 (102 digits)/39 517194 124970 218382 383752 678057 180052 450273 609545 526511 840906 559359 220115 746344 554669 534078 342717 941595 (104 digits), a[205] = 1
                                                                                      A[206]/B[206] = 693993 543363 782140 810324 591265 853335 046413 745074 187235 951999 751016 271809 193126 049866 728869 721842 543236 (102 digits)/67 451679 119851 881974 752833 313653 761042 752991 442628 851786 907299 458962 620486 543476 628542 373331 018194 295813 (104 digits), a[206] = 1
                                                                                      A[207]/B[207] = 1 100576 121180 011577 780330 733182 891235 288932 943863 899205 278030 817960 240237 268347 680063 975124 776375 013453 (103 digits)/106 968873 244822 100357 136585 991710 941095 203265 052174 378298 748206 018321 840602 289821 183211 907409 360912 237408 (105 digits), a[207] = 1
                                                                                      A[208]/B[208] = 1 794569 664543 793718 590655 324448 744570 335346 688938 086441 230030 568976 512046 461473 729930 703994 498217 556689 (103 digits)/174 420552 364673 982331 889419 305364 702137 956256 494803 230085 655505 477284 461088 833297 811754 280740 379106 533221 (105 digits), a[208] = 1
                                                                                      A[209]/B[209] = 4 689715 450267 599014 961641 382080 380375 959626 321740 072087 738091 955913 264330 191295 139925 383113 772810 126831 (103 digits)/455 809977 974170 065020 915424 602440 345371 115778 041780 838470 059216 972890 762779 956416 806720 468890 119125 303850 (105 digits), a[209] = 2
                                                                                      A[210]/B[210] = 6 484285 114811 392733 552296 706529 124946 294973 010678 158528 968122 524889 776376 652768 869856 087108 271027 683520 (103 digits)/630 230530 338844 047352 804843 907805 047509 072034 536584 068555 714722 450175 223868 789714 618474 749630 498231 837071 (105 digits), a[210] = 1
                                                                                      A[211]/B[211] = 17 658285 679890 384482 066234 795138 630268 549572 343096 389145 674337 005692 817083 496832 879637 557330 314865 493871 (104 digits)/1716 271038 651858 159726 525112 418050 440389 259847 114948 975581 488661 873241 210517 535846 043669 968151 115588 977992 (106 digits), a[211] = 2
                                                                                      A[212]/B[212] = 24 142570 794701 777215 618531 501667 755214 844545 353774 547674 642459 530582 593460 149601 749493 644438 585893 177391 (104 digits)/2346 501568 990702 207079 329956 325855 487898 331881 651533 044137 203384 323416 434386 325560 662144 717781 613820 815063 (106 digits), a[212] = 1
                                                                                      A[213]/B[213] = 138 371139 653399 270560 158892 303477 406342 772299 111969 127518 886634 658605 784384 244841 627105 779523 244331 380826 (105 digits)/13448 778883 605369 195123 174894 047327 879880 919255 372614 196267 505583 490323 382449 163649 354393 557059 184693 053307 (107 digits), a[213] = 5
                                                                                      A[214]/B[214] = 162 513710 448101 047775 777423 805145 161557 616844 465743 675193 529094 189188 377844 394443 376599 423961 830224 558217 (105 digits)/15795 280452 596071 402202 504850 373183 367779 251137 024147 240404 708967 813739 816835 489210 016538 274840 798513 868370 (107 digits), a[214] = 1
                                                                                      A[215]/B[215] = 463 398560 549601 366111 713739 913767 729458 005988 043456 477905 944823 036982 540073 033728 380304 627446 904780 497260 (105 digits)/45039 339788 797511 999528 184594 793694 615439 421529 420908 677076 923519 117803 016120 142069 387470 106740 781720 790047 (107 digits), a[215] = 2
                                                                                      A[216]/B[216] = 4796 499315 944114 708892 914822 942822 456137 676724 900308 454252 977324 559013 778574 731727 179645 698430 878029 530817 (106 digits)/466188 678340 571191 397484 350798 310129 522173 466431 233234 011173 944158 991769 978036 909903 891239 342248 615721 768840 (108 digits), a[216] = 10
                                                                                      A[217]/B[217] = 34038 893772 158404 328362 117500 513524 922421 743062 345615 657676 786094 950078 990096 155818 637824 516463 050987 212979 (107 digits)/3 308360 088172 795851 781918 640182 964601 270653 686548 053546 755294 532632 060192 862378 511396 626145 502481 091773 171927 (109 digits), a[217] = 7
                                                                                      A[218]/B[218] = 106913 180632 419327 693979 267324 483397 223402 905911 937155 427283 335609 409250 748863 199183 093119 247820 030991 169754 (108 digits)/10 391268 942858 958746 743240 271347 203933 334134 526075 393874 277057 542055 172348 565172 444093 769675 849691 891041 284621 (110 digits), a[218] = 3
                                                                                      A[219]/B[219] = 354778 435669 416387 410299 919473 963716 592630 460798 157081 939526 792923 177831 236685 753367 917182 259923 143960 722241 (108 digits)/34 482166 916749 672092 011639 454224 576401 273057 264774 235169 586467 158797 577238 557895 843677 935173 051556 764897 025790 (110 digits), a[219] = 3
                                                                                      A[220]/B[220] = 461691 616301 835715 104279 186798 447113 816033 366710 094237 366810 128532 587081 985548 952551 010301 507743 174951 891995 (108 digits)/44 873435 859608 630838 754879 725571 780334 607191 790849 629043 863524 700852 749587 123068 287771 704848 901248 655938 310411 (110 digits), a[220] = 1
                                                                                      A[221]/B[221] = 5 895077 831291 444968 661650 161055 329082 385030 861319 287930 341248 335314 222815 063273 183980 040800 352841 243383 426181 (109 digits)/572 963397 232053 242157 070196 161085 940416 559358 754969 783695 948763 569030 572284 034715 296938 393359 866540 636156 750722 (111 digits), a[221] = 12
                                                                                      A[222]/B[222] = 6 356769 447593 280683 765929 347853 776196 201064 228029 382167 708058 463846 809897 048822 136531 051101 860584 418335 318176 (109 digits)/617 836833 091661 872995 825075 886657 720751 166550 545819 412739 812288 269883 321871 157783 584710 098208 767789 292095 061133 (111 digits), a[222] = 1
                                                                                      A[223]/B[223] = 12 251847 278884 725652 427579 508909 105278 586095 089348 670098 049306 799161 032712 112095 320511 091902 213425 661718 744357 (110 digits)/1190 800230 323715 115152 895272 047743 661167 725909 300789 196435 761051 838913 894155 192498 881648 491568 634329 928251 811855 (112 digits), a[223] = 1
                                                                                      A[224]/B[224] = 18 608616 726478 006336 193508 856762 881474 787159 317378 052265 757365 263007 842609 160917 457042 143004 074010 080054 062533 (110 digits)/1808 637063 415376 988148 720347 934401 381918 892459 846608 609175 573340 108797 216026 350282 466358 589777 402119 220346 872988 (112 digits), a[224] = 1
                                                                                      A[225]/B[225] = 254 163864 723098 808022 943194 646826 564450 819166 215263 349552 895055 218262 986631 204022 262058 950955 175556 702421 557286 (111 digits)/24703 082054 723615 961086 259795 194961 626113 327887 306701 115718 214473 253277 702497 746170 944310 158674 861879 792761 160699 (113 digits), a[225] = 13
                                                                                      A[226]/B[226] = 272 772481 449576 814359 136703 503589 445925 606325 532641 401818 652420 481270 829240 364939 719101 093959 249566 782475 619819 (111 digits)/26511 719118 138992 949234 980143 129363 008032 220347 153309 724893 787813 362074 918524 096453 410668 748452 263999 013108 033687 (113 digits), a[226] = 1
                                                                                      A[227]/B[227] = 526 936346 172675 622382 079898 150416 010376 425491 747904 751371 547475 699533 815871 568961 981160 044914 425123 484897 177105 (111 digits)/51214 801172 862608 910321 239938 324324 634145 548234 460010 840612 002286 615352 621021 842624 354978 907127 125878 805869 194386 (113 digits), a[227] = 1
                                                                                      A[228]/B[228] = 799 708827 622252 436741 216601 654005 456302 031817 280546 153190 199896 180804 645111 933901 700261 138873 674690 267372 796924 (111 digits)/77726 520291 001601 859556 220081 453687 642177 768581 613320 565505 790099 977427 539545 939077 765647 655579 389877 818977 228073 (113 digits), a[228] = 1
                                                                                      A[229]/B[229] = 66902 769038 819627 871903 057835 432868 883445 066326 033235 466158 138858 706319 360162 082803 102834 571429 424415 676839 321797 (113 digits)/6 502515 985325 995563 253487 506698 980398 934900 340508 365617 777592 580584 741838 403334 786078 903734 320216 485737 780979 124445 (115 digits), a[229] = 83
                                                                                      A[230]/B[230] = 67702 477866 441880 308644 274437 086874 339747 098143 313781 619348 338754 887124 005274 016704 803095 710303 099105 944212 118721 (113 digits)/6 580242 505616 997165 113043 726780 434086 577078 109089 978938 343098 370684 719265 942880 725156 669381 975795 875615 599956 352518 (115 digits), a[230] = 1
                                                                                      A[231]/B[231] = 270010 202638 145268 797835 881146 693491 902686 360755 974580 324203 155123 367691 375984 132917 512121 702338 721733 509475 677960 (114 digits)/26 243243 502176 987058 592618 687040 282658 666134 667778 302432 806887 692638 899636 231976 961548 911880 247604 112584 580848 181999 (116 digits), a[231] = 3
                                                                                      A[232]/B[232] = 2 227784 098971 604030 691331 323610 634809 561237 984191 110424 212973 579741 828655 013147 080044 900069 329012 872974 020017 542401 (115 digits)/216 526190 523032 893633 853993 223102 695355 906155 451316 398400 798199 911795 916355 798696 417547 964423 956628 776292 246741 808510 (117 digits), a[232] = 8
                                                                                      A[233]/B[233] = 4 725578 400581 353330 180498 528367 963111 025162 329138 195428 750150 314607 025001 402278 293007 312260 360364 467681 549510 762762 (115 digits)/459 295624 548242 774326 300605 133245 673370 478445 570411 099234 403287 516230 732347 829369 796644 840728 160861 665169 074331 799019 (117 digits), a[233] = 2
                                                                                      A[234]/B[234] = 6 953362 499552 957360 871829 851978 597920 586400 313329 305852 963123 894348 853656 415425 373052 212329 689377 340655 569528 305163 (115 digits)/675 821815 071275 667960 154598 356348 368726 384601 021727 497635 201487 428026 648703 628066 214192 805152 117490 441461 321073 607529 (117 digits), a[234] = 1
                                                                                      A[235]/B[235] = 60 352478 397005 012217 155137 344196 746475 716364 835772 642252 455141 469397 854252 725681 277425 010897 875383 192926 105737 204066 (116 digits)/5865 870145 118448 118007 537391 984032 623181 555253 744231 080316 015186 940443 921976 853899 510187 281945 100785 196859 642920 659251 (118 digits), a[235] = 8
                                                                                      A[236]/B[236] = 308 715754 484578 018446 647516 572962 330299 168224 492192 517115 238831 241338 124920 043831 760177 266819 066293 305286 098214 325493 (117 digits)/30005 172540 663516 257997 841558 276511 484634 160869 742882 899215 277422 130246 258587 897563 765129 214877 621416 425759 535676 903784 (119 digits), a[236] = 5
                                                                                      A[237]/B[237] = 369 068232 881583 030663 802653 917159 076774 884589 327965 159367 693972 710735 979172 769513 037602 277716 941676 498212 203951 529559 (117 digits)/35871 042685 781964 376005 378950 260544 107815 716123 487113 979531 292609 070690 180564 751463 275316 496822 722201 622619 178597 563035 (119 digits), a[237] = 1
                                                                                      A[238]/B[238] = 1046 852220 247744 079774 252824 407280 483848 937403 148122 835850 626776 662810 083265 582857 835381 822252 949646 301710 506117 384611 (118 digits)/101747 257912 227445 010008 599458 797599 700265 593116 717110 858277 862640 271626 619717 400490 315762 208523 065819 670997 892872 029854 (120 digits), a[238] = 2
                                                                                      A[239]/B[239] = 4556 477113 872559 349760 813951 546281 012170 634201 920456 502770 201079 361976 312235 100944 379129 566728 740261 705054 228421 068003 (118 digits)/442860 074334 691744 416039 776785 450942 908878 088590 355557 412642 743170 157196 659434 353424 538365 330914 985480 306610 750085 682451 (120 digits), a[239] = 4
                                                                                      A[240]/B[240] = 10159 806447 992862 779295 880727 499842 508190 205806 989035 841391 028935 386762 707735 784746 593640 955710 430169 711818 962959 520617 (119 digits)/987467 406581 610933 842088 153029 699485 518021 770297 428225 683563 348980 586019 938586 107339 392492 870353 036780 284219 393043 394756 (120 digits), a[240] = 2
                                                                                      A[241]/B[241] = 14716 283561 865422 129056 694679 046123 520360 840008 909492 344161 230014 748739 019970 885690 972770 522439 170431 416873 191380 588620 (119 digits)/1 430327 480916 302678 258127 929815 150428 426899 858887 783783 096206 092150 743216 598020 460763 930858 201268 022260 590830 143129 077207 (121 digits), a[241] = 1
                                                                                      A[242]/B[242] = 24876 090009 858284 908352 575406 545966 028551 045815 898528 185552 258950 135501 727706 670437 566411 478149 600601 128692 154340 109237 (119 digits)/2 417794 887497 913612 100216 082844 849913 944921 629185 212008 779769 441131 329236 536606 568103 323351 071621 059040 875049 536172 471963 (121 digits), a[242] = 1
                                                                                      A[243]/B[243] = 89344 553591 440276 854114 420898 684021 606013 977456 605076 900818 006865 155244 203090 897003 672004 956887 972234 802949 654400 916331 (119 digits)/8 683712 143410 043514 558776 178349 700170 261664 746443 419809 435514 415544 730926 207840 165073 900911 416131 199383 215978 751646 493096 (121 digits), a[243] = 3
                                                                                      A[244]/B[244] = 114220 643601 298561 762466 996305 229987 634565 023272 503605 086370 265815 290745 930797 567441 238416 435037 572835 931641 808741 025568 (120 digits)/11 101507 030907 957126 658992 261194 550084 206586 375628 631818 215283 856676 060162 744446 733177 224262 487752 258424 091028 287818 965059 (122 digits), a[244] = 1
                                                                                      A[245]/B[245] = 3 401743 218029 098567 965657 313750 353663 008399 652359 209624 405555 715508 586876 196220 352799 586081 572977 584476 820562 107890 657803 (121 digits)/330 627416 039740 800187 669551 752991 652612 252669 639673 742537 678746 259150 475645 796795 427213 404523 560946 693681 855799 098396 479807 (123 digits), a[245] = 29
                                                                                      A[246]/B[246] = 3 515963 861630 397129 728124 310055 583650 642964 675631 713229 491925 981323 877622 127017 920240 824498 008015 157312 752203 916631 683371 (121 digits)/341 728923 070648 757314 328544 014186 202696 459256 015302 374355 894030 115826 535808 541242 160390 628786 048698 952105 946827 386215 444866 (123 digits), a[246] = 1
                                                                                      A[247]/B[247] = 10 433670 941289 892827 421905 933861 520964 294329 003622 636083 389407 678156 342120 450256 193281 235077 589007 899102 324969 941154 024545 (122 digits)/1014 085262 181038 314816 326639 781364 058005 171181 670278 491249 466806 490803 547262 879279 747994 662095 658344 597893 749453 870827 369539 (124 digits), a[247] = 2
                                                                                      A[248]/B[248] = 45 250647 626789 968439 415748 045501 667507 820280 690122 257563 049556 693949 246103 928042 693365 764808 364046 753722 052083 681247 781551 (122 digits)/4398 069971 794802 016579 635103 139642 434717 143982 696416 339353 761256 079040 724860 058361 152369 277168 682077 343680 944642 869524 923022 (124 digits), a[248] = 4
                                                                                      A[249]/B[249] = 55 684318 568079 861266 837653 979363 188472 114609 693744 893646 438964 372105 588224 378298 886646 999885 953054 652824 377053 622401 806096 (122 digits)/5412 155233 975840 331395 961742 921006 492722 315164 366694 830603 228062 569844 272122 937640 900363 939264 340421 941574 694096 740352 292561 (124 digits), a[249] = 1
                                                                                      A[250]/B[250] = 6059 157052 979414 985257 882377 816726 022496 198127 614570 771378 457708 881352 774336 784322 451241 752491 293949 258754 773874 900642 839919 (124 digits)/588910 835241 185557 807343 503338 608343 648727 181734 299458 044502 392013 622222 114137 323578 391674 717717 447647 033747 907090 827572 519610 (126 digits), a[250] = 108
                                                                                      A[251]/B[251] = 6114 841371 547494 846524 720031 796089 210968 312737 308315 665024 896673 253458 362561 162621 337888 752377 247003 911579 150928 523044 646015 (124 digits)/594322 990475 161398 138739 465081 529350 141449 496898 666152 875105 620076 192066 386260 261219 292038 656981 788068 975322 601187 567924 812171 (126 digits), a[251] = 1
                                                                                      A[252]/B[252] = 18288 839796 074404 678307 322441 408904 444432 823602 231202 101428 251055 388269 499459 109565 127019 257245 787957 081913 075731 946732 131949 (125 digits)/1 777556 816191 508354 084822 433501 667043 931626 175531 631763 794713 632166 006354 886657 846016 975752 031681 023784 984393 109465 963422 143952 (127 digits), a[252] = 2
                                                                                      A[253]/B[253] = 24403 681167 621899 524832 042473 204993 655401 136339 539517 766453 147728 641727 862020 272186 464908 009623 034960 993492 226660 469776 777964 (125 digits)/2 371879 806666 669752 223561 898583 196394 073075 672430 297916 669819 252242 198421 272918 107236 267790 688662 811853 959715 710653 531346 956123 (127 digits), a[253] = 1
                                                                                      A[254]/B[254] = 1 262876 579344 791280 444741 488574 863580 869890 776918 746608 190538 785216 116390 462492 991074 837327 748020 570967 750016 635415 905347 808113 (127 digits)/122 743426 956191 665717 486479 261244 683141 658485 469476 825513 955495 496518 125839 805481 315066 633077 153484 428336 929894 352796 062116 906225 (129 digits), a[254] = 51
                                                                                      A[255]/B[255] = 3 813033 419201 995740 859056 508197 795736 265073 467095 779342 338069 503376 990899 249499 245410 976891 253684 747864 243542 132908 185820 202303 (127 digits)/370 602160 675241 666904 682999 682317 245819 048532 080860 774458 536305 741796 575940 689362 052436 167022 149116 096864 749398 769041 717697 674798 (129 digits), a[255] = 3
                                                                                      A[256]/B[256] = 5 075909 998546 787021 303797 996772 659317 134964 244014 525950 528608 288593 107289 711992 236485 814219 001705 318831 993558 768324 091168 010416 (127 digits)/493 345587 631433 332622 169478 943561 928960 707017 550337 599972 491801 238314 701780 494843 367502 800099 302600 525201 679293 121837 779814 581023 (129 digits), a[256] = 1
                                                                                      A[257]/B[257] = 19 040763 414842 356804 770450 498515 773687 669966 199139 357193 923894 369156 312768 385475 954868 419548 258800 704360 224218 437880 459324 233551 (128 digits)/1850 638923 569541 664771 191436 513003 032701 169584 731873 574376 011709 456740 681282 173892 154944 567320 056917 672469 787278 134555 057141 417867 (130 digits), a[257] = 3
                                                                                      A[258]/B[258] = 24 116673 413389 143826 074248 495288 433004 804930 443153 883144 452502 657749 420058 097468 191354 233767 260506 023192 217777 206204 550492 243967 (128 digits)/2343 984511 200974 997393 360915 456564 961661 876602 282211 174348 503510 695055 383062 668735 522447 367419 359518 197671 466571 256392 836955 998890 (130 digits), a[258] = 1
                                                                                      A[259]/B[259] = 43 157436 828231 500630 844698 993804 206692 474896 642293 240338 376397 026905 732826 482944 146222 653315 519306 727552 441995 644085 009816 477518 (128 digits)/4194 623434 770516 662164 552351 969567 994363 046187 014084 748724 515220 151796 064344 842627 677391 934739 416435 870141 253849 390947 894097 416757 (130 digits), a[259] = 1
                                                                                      A[260]/B[260] = 283 061294 382778 147611 142442 458113 673159 654310 296913 325174 710884 819183 817016 995133 068690 153660 376346 388506 869751 070714 609391 109075 (129 digits)/27511 725119 824074 970380 675027 273972 927840 153724 366719 666695 594831 605831 769131 724501 586798 975855 858133 418518 989667 602080 201540 499432 (131 digits), a[260] = 6
                                                                                      A[261]/B[261] = 609 280025 593787 795853 129583 910031 553011 783517 236119 890687 798166 665273 366860 473210 283602 960636 271999 504566 181497 785514 228598 695668 (129 digits)/59218 073674 418666 602925 902406 517513 850043 353635 747524 082115 704883 363459 602608 291630 850989 886451 132702 707179 233184 595108 297178 415621 (131 digits), a[261] = 2
                                                                                      A[262]/B[262] = 892 341319 976565 943464 272026 368145 226171 437827 533033 215862 509051 484457 183877 468343 352293 114296 648345 893073 051248 856228 837989 804743 (129 digits)/86729 798794 242741 573306 577433 791486 777883 507360 114243 748811 299714 969291 371740 016132 437788 862306 990836 125698 222852 197188 498718 915053 (131 digits), a[262] = 1
                                                                                      A[263]/B[263] = 2393 962665 546919 682781 673636 646322 005354 659172 302186 322412 816269 634187 734615 409896 988189 189229 568691 290712 283995 497971 904578 305154 (130 digits)/232677 671262 904149 749539 057274 100487 405810 368355 976011 579738 304313 302042 346088 323895 726567 611065 114374 958575 678888 989485 294616 245727 (132 digits), a[263] = 2
                                                                                      A[264]/B[264] = 10468 191982 164244 674590 966572 953433 247590 074516 741778 505513 774130 021208 122339 107931 305049 871214 923111 055922 187230 848116 456303 025359 (131 digits)/1 017440 483845 859340 571462 806530 193436 401124 980784 018290 067764 516968 177460 756093 311715 344059 306567 448335 960000 938408 155129 677183 897961 (133 digits), a[264] = 4
                                                                                      A[265]/B[265] = 23330 346629 875409 031963 606782 553188 500534 808205 785743 333440 364529 676603 979293 625759 598288 931659 414913 402556 658457 194204 817184 355872 (131 digits)/2 267558 638954 622830 892464 670334 487360 208060 329924 012591 715267 338249 656963 858274 947326 414686 224200 011046 878577 555705 299744 648984 041649 (133 digits), a[265] = 2
                                                                                      A[266]/B[266] = 33798 538612 039653 706554 573355 506621 748124 882722 527521 838954 138659 697812 101632 733690 903338 802874 338024 458478 845688 042321 273487 381231 (131 digits)/3 284999 122800 482171 463927 476864 680796 609185 310708 030881 783031 855217 834424 614368 259041 758745 530767 459382 838578 494113 454874 326167 939610 (133 digits), a[266] = 1
                                                                                      A[267]/B[267] = 57128 885241 915062 738518 180138 059810 248659 690928 313265 172394 503189 374416 080926 359450 501627 734533 752937 861035 504145 236526 090671 737103 (131 digits)/5 552557 761755 105002 356392 147199 168156 817245 640632 043473 498299 193467 491388 472643 206368 173431 754967 470429 717156 049818 754618 975151 981259 (133 digits), a[267] = 1
                                                                                      A[268]/B[268] = 6 032331 489013 121241 250963 487851 786697 857392 430195 420364 940376 973544 011500 598900 475993 574250 928918 396499 867206 780937 877560 794019 777046 (133 digits)/586 303564 107086 507418 885102 932777 337262 419977 577072 595599 104447 169304 430214 241904 927699 969079 802351 854503 139963 725082 689866 717125 971805 (135 digits), a[268] = 105
                                                                                      A[269]/B[269] = 6 089460 374255 036303 989481 667989 846508 106052 121123 733630 112771 476733 385916 679826 835444 075878 663452 149437 728242 285083 114086 884691 514149 (133 digits)/591 856121 868841 612421 241495 079976 505419 237223 217704 639072 602746 362771 921602 714548 134068 142511 557319 324932 857119 774901 444485 692277 953064 (135 digits), a[269] = 1
                                                                                      A[270]/B[270] = 12 121791 863268 157545 240445 155841 633205 963444 551319 153995 053148 450277 397417 278727 311437 650129 592370 545937 595449 066020 991647 678711 291195 (134 digits)/1178 159685 975928 119840 126598 012753 842681 657200 794777 234671 707193 532076 351816 956453 061768 111591 359671 179435 997083 499984 134352 409403 924869 (136 digits), a[270] = 1
                                                                                      A[271]/B[271] = 30 333044 100791 351394 470371 979673 112920 032941 223762 041620 219068 377288 180751 237281 458319 376137 848193 241312 919140 417125 097382 242114 096539 (134 digits)/2948 175493 820697 852101 494691 105484 190782 551624 807259 108416 017133 426924 625236 627454 257604 365694 276661 683804 851286 774869 713190 511085 802802 (136 digits), a[271] = 2
                                                                                      A[272]/B[272] = 42 454835 964059 508939 710817 135514 746125 996385 775081 195615 272216 827565 578168 516008 769757 026267 440563 787250 514589 483146 089029 920825 387734 (134 digits)/4126 335179 796625 971941 621289 118238 033464 208825 602036 343087 724326 959000 977053 583907 319372 477285 636332 863240 848370 274853 847542 920489 727671 (136 digits), a[272] = 1
                                                                                      A[273]/B[273] = 72 787880 064850 860334 181189 115187 859046 029326 998843 237235 491285 204853 758919 753290 228076 402405 288757 028563 433729 900271 186412 162939 484273 (134 digits)/7074 510673 617323 824043 115980 223722 224246 760450 409295 451503 741460 385925 602290 211361 576976 842979 912994 547045 699657 049723 560733 431575 530473 (136 digits), a[273] = 1
                                                                                      A[274]/B[274] = 188 030596 093761 229608 073195 365890 464218 055039 772767 670086 254787 237273 096008 022589 225909 831078 018077 844377 382049 283688 461854 246704 356280 (135 digits)/18275 356527 031273 620027 853249 565682 481957 729726 420627 246095 207247 730852 181634 006630 473326 163245 462321 957332 247684 374300 969009 783640 788617 (137 digits), a[274] = 2
                                                                                      A[275]/B[275] = 260 818476 158612 089942 254384 481078 323264 084366 771610 907321 746072 442126 854927 775879 453986 233483 306834 872940 815779 183959 648266 409643 840553 (135 digits)/25349 867200 648597 444070 969229 789404 706204 490176 829922 697598 948708 116777 783924 217992 050303 006225 375316 504377 947341 424024 529743 215216 319090 (137 digits), a[275] = 1
                                                                                      A[276]/B[276] = 1492 122976 886821 679319 345117 771282 080538 476873 630822 206694 985149 447907 370646 901986 495840 998494 552252 209081 460945 203486 703186 294923 559045 (136 digits)/145024 692530 274260 840382 699398 512706 012980 180610 570240 734089 950788 314741 101255 096590 724841 194372 338904 479221 984391 494423 617725 859722 384067 (138 digits), a[276] = 5
                                                                                      A[277]/B[277] = 1752 941453 045433 769261 599502 252360 403802 561240 402433 114016 731221 890034 225574 677865 949827 231977 859087 082022 276724 387446 351452 704567 399598 (136 digits)/170374 559730 922858 284453 668628 302110 719184 670787 400163 431688 899496 431518 885179 314582 775144 200597 714220 983599 931732 918448 147469 074938 703157 (138 digits), a[277] = 1
                                                                                      A[278]/B[278] = 3245 064429 932255 448580 944620 023642 484341 038114 033255 320711 716371 337941 596221 579852 445668 230472 411339 291103 737669 590933 054638 999490 958643 (136 digits)/315399 252261 197119 124836 368026 814816 732164 851397 970404 165778 850284 746259 986434 411173 499985 394970 053125 462821 916124 412871 765194 934661 087224 (138 digits), a[278] = 1
                                                                                      A[279]/B[279] = 4998 005882 977689 217842 544122 276002 888143 599354 435688 434728 447593 227975 821796 257718 395495 462450 270426 373126 014393 978379 406091 704058 358241 (136 digits)/485773 811992 119977 409290 036655 116927 451349 522185 370567 597467 749781 177778 871613 725756 275129 595567 767346 446421 847857 331319 912664 009599 790381 (138 digits), a[279] = 1
                                                                                      A[280]/B[280] = 8243 070312 909944 666423 488742 299645 372484 637468 468943 755440 163964 565917 418017 837570 841163 692922 681765 664229 752063 569312 460730 703549 316884 (136 digits)/801173 064253 317096 534126 404681 931744 183514 373583 340971 763246 600065 924038 858048 136929 775114 990537 820471 909243 763981 744191 677858 944260 877605 (138 digits), a[280] = 1
                                                                                      A[281]/B[281] = 268776 255896 095918 543394 183875 864654 807651 998345 441888 608813 694459 337333 198367 059985 312733 635976 086927 628478 080428 196378 149474 217636 498529 (138 digits)/26 123311 868098 267066 501334 986476 932741 323809 476852 281664 021358 951890 747022 329154 107509 078809 292778 022447 542222 295273 145453 604150 225947 873741 (140 digits), a[281] = 32
                                                                                      A[282]/B[282] = 1 352124 349793 389537 383394 408121 622919 410744 629195 678386 799508 636261 252583 409853 137497 404831 872803 116403 806620 154204 551203 208101 791731 809529 (139 digits)/131 417732 404744 652429 040801 337066 595450 802561 757844 749291 870041 359519 659150 503818 674475 169161 454427 932709 620355 240347 471459 698610 074000 246310 (141 digits), a[282] = 5
                                                                                      A[283]/B[283] = 7 029398 004863 043605 460366 224483 979251 861375 144323 833822 606356 875765 600250 247632 747472 336892 999991 668946 661578 851450 952394 189983 176295 546174 (139 digits)/683 211973 891821 529211 705341 671809 909995 336618 266076 028123 371565 749489 042774 848247 479884 924616 564917 685995 643998 497010 502752 097200 595949 105291 (141 digits), a[283] = 5
                                                                                      A[284]/B[284] = 1336 937745 273771 674574 852977 060077 680773 072022 050724 104682 007315 031725 300130 460075 157241 414501 871220 216269 506601 929885 506099 304905 287885 582589 (142 digits)/129941 692771 850835 202653 055718 980949 494564 760032 312290 092732 467533 762437 786371 670839 852610 846308 788788 271881 980069 672342 994358 166723 304330 251600 (144 digits), a[284] = 190
                                                                                      A[285]/B[285] = 1343 967143 278634 718180 313343 284561 660024 933397 195047 938504 613671 907490 900380 707707 904713 751394 871211 885216 168180 781336 458493 494888 464181 128763 (142 digits)/130624 904745 742656 731864 761060 652759 404560 096650 578366 120855 839099 511926 829146 519087 332495 770925 353705 957877 624068 169353 497110 263923 900279 356891 (144 digits), a[285] = 1
                                                                                      A[286]/B[286] = 2680 904888 552406 392755 166320 344639 340798 005419 245772 043186 620986 939216 200511 167783 061955 165896 742432 101485 674782 711221 964592 799793 752066 711352 (142 digits)/260566 597517 593491 934517 816779 633708 899124 856682 890656 213588 306633 274364 615518 189927 185106 617234 142494 229759 604137 841696 491468 430647 204609 608491 (144 digits), a[286] = 1
                                                                                      A[287]/B[287] = 25472 111140 250292 252976 810226 386315 727206 982170 406996 327184 202554 360436 704981 217755 462310 244465 553100 798587 241225 182334 139828 693032 232781 530931 (143 digits)/2 475724 282404 084084 142525 112077 356139 496683 806796 594272 043150 598798 981208 368810 228431 998455 326032 636154 025714 061308 744621 920326 139748 741765 833310 (145 digits), a[287] = 9
                                                                                      A[288]/B[288] = 104569 349449 553575 404662 407225 889902 249625 934100 873757 351923 431204 380963 020436 038804 911196 143758 954835 295834 639683 440558 523907 571922 683192 835076 (144 digits)/10 163463 727133 929828 504618 265089 058266 885860 083869 267744 386190 701829 199198 090759 103655 178927 921364 687110 332615 849372 820184 172772 989642 171672 941731 (146 digits), a[288] = 4
                                                                                      A[289]/B[289] = 339180 159488 911018 466964 031904 056022 476084 784473 028268 382954 496167 503325 766289 334170 195898 675742 417606 686091 160275 504009 711551 408800 282360 036159 (144 digits)/32 966115 463805 873569 656379 907344 530940 154264 058404 397505 201722 704286 578802 641087 539397 535239 090126 697485 023561 609427 205174 438645 108675 256784 658503 (146 digits), a[289] = 3
                                                                                      A[290]/B[290] = 782929 668427 375612 338590 471034 001947 201795 503046 930294 117832 423539 387614 553014 707145 302993 495243 790048 668016 960234 448577 947010 389523 247912 907394 (144 digits)/76 095694 654745 676967 817378 079778 120147 194388 200678 062754 789636 110402 356803 372934 182450 249406 101618 082080 379739 068227 230533 050063 206992 685242 258737 (146 digits), a[290] = 2
                                                                                      A[291]/B[291] = 1 905039 496343 662243 144144 973972 059916 879675 790566 888856 618619 343246 278554 872318 748460 801885 666229 997704 022125 080744 401165 605572 187846 778185 850947 (145 digits)/185 157504 773297 227505 291136 066900 771234 543040 459760 523014 780994 925091 292409 386955 904298 034051 293362 861645 783039 745881 666240 538771 522660 627269 175977 (147 digits), a[291] = 2
                                                                                      A[292]/B[292] = 107 465141 463672 461228 410709 013469 357292 463639 774792 706264 760515 645330 986687 402864 620950 208590 804123 661473 907021 481920 913851 859052 908942 826320 560426 (147 digits)/10444 915961 959390 417264 120997 826221 309281 604653 947267 351582 525351 915514 731729 042464 823140 156278 529938 334244 229964 837600 540003 221268 475987 812316 113449 (149 digits), a[292] = 56
                                                                                      A[293]/B[293] = 216 835322 423688 584699 965563 000910 774501 806955 340152 301386 139650 633908 251929 678047 990361 219067 274477 320651 836168 044586 228869 323678 005732 430826 971799 (147 digits)/21074 989428 692078 062033 533131 719343 389797 752348 354295 226179 831698 756120 755867 471885 550578 346608 353239 530134 242969 421082 746246 981308 474636 251901 402875 (149 digits), a[293] = 2
                                                                                      A[294]/B[294] = 4444 171589 937444 155227 721969 031684 847328 602746 577838 733987 553528 323496 025280 963824 428174 589936 293670 074510 630382 373645 491238 332613 023591 442859 996406 (148 digits)/431944 704535 800951 657934 783632 213089 105236 651621 033171 875179 159327 037929 849078 480175 834707 088445 594728 936929 089353 259255 464942 847437 968712 850344 170949 (150 digits), a[294] = 20
                                                                                      A[295]/B[295] = 4661 006912 361132 739927 687532 032595 621830 409701 917991 035373 693178 957404 277210 641872 418535 809003 568147 395162 466550 418231 720107 656291 029323 873686 968205 (148 digits)/453019 693964 493029 719968 316763 932432 495034 403969 387467 101358 991025 794050 604945 952061 385285 435053 947968 467063 332322 680338 211189 828746 443349 102245 573824 (150 digits), a[295] = 1
                                                                                      A[296]/B[296] = 51054 240713 548771 554504 597289 357641 065632 699765 757749 087724 485317 897538 797387 382548 613532 679971 975144 026135 295886 555962 692314 895523 316830 179729 678456 (149 digits)/4 962141 644180 731248 857617 951271 537414 055580 691314 907842 888769 069584 978435 898538 000789 687561 438985 074413 607562 412580 062637 576841 134902 402203 872799 909189 (151 digits), a[296] = 10
                                                                                      A[297]/B[297] = 55715 247625 909904 294432 284821 390236 687463 109467 675740 123098 178496 854943 074598 024421 032068 488975 543291 421297 762436 974194 412422 551814 346154 053416 646661 (149 digits)/5 415161 338145 224278 577586 268035 469846 550615 095284 295309 990128 060610 772486 503483 952851 072846 874039 022382 074625 744902 742975 788030 963648 845552 975045 483013 (151 digits), a[297] = 1
                                                                                      A[298]/B[298] = 329630 478843 098293 026666 021396 308824 502948 247104 136449 703215 377802 172254 170377 504653 773875 124849 691601 132624 108071 426934 754427 654595 047600 446812 911761 (150 digits)/32 037948 334906 852641 745549 291448 886646 808656 167736 384392 839409 372638 840868 415957 765045 051795 809180 186323 980691 137093 777516 516995 953146 629968 748027 324254 (152 digits), a[298] = 5
                                                                                      A[299]/B[299] = 714976 205312 106490 347764 327614 007885 693359 603675 948639 529528 934101 199451 415353 033728 579818 738674 926493 686545 978579 828063 921277 861004 441354 947042 470183 (150 digits)/69 491058 007958 929562 068684 850933 243140 167927 430757 064095 668946 805888 454223 335399 482941 176438 492399 395030 036008 019090 298008 822022 869942 105490 471100 131521 (152 digits), a[299] = 2
                                                                                      A[300]/B[300] = 1 044606 684155 204783 374430 349010 316710 196307 850780 085089 232744 311903 371705 585730 538382 353693 863524 618094 819170 086651 254998 675705 515599 488955 393855 381944 (151 digits)/101 529006 342865 782203 814234 142382 129786 976583 598493 448488 508356 178527 295091 751357 247986 228234 301579 581354 016699 156184 075525 339018 823088 735459 219127 455775 (153 digits), a[300] = 1
                                                                                      A[301]/B[301] = 1 759582 889467 311273 722194 676624 324595 889667 454456 033728 762273 246004 571157 001083 572110 933512 602199 544588 505716 065231 083062 596983 376603 930310 340897 852127 (151 digits)/171 020064 350824 711765 882918 993315 372927 144511 029250 512584 177302 984415 749315 086756 730927 404672 793978 976384 052707 175274 373534 161041 693030 840949 690227 587296 (153 digits), a[301] = 1
                                                                                      A[302]/B[302] = 6 323355 352557 138604 541014 378883 290497 865310 214148 186275 519564 049917 085176 588981 254715 154231 670123 251860 336318 282344 504186 466655 645411 279886 416548 938325 (151 digits)/614 589199 395339 917501 462991 122328 248568 410116 686244 986241 040265 131774 543037 011627 440768 442252 683516 510506 174820 682007 196127 822143 902181 258308 289810 217663 (153 digits), a[302] = 3
                                                                                      A[303]/B[303] = 8 082938 242024 449878 263209 055507 615093 754977 668604 220004 281837 295921 656333 590064 826826 087744 272322 796448 842034 347575 587249 063639 022015 210196 757446 790452 (151 digits)/785 609263 746164 629267 345910 115643 621495 554627 715495 498825 217568 116190 292352 098384 171695 846925 477495 486890 227527 857281 569661 983185 595212 099257 980037 804959 (153 digits), a[303] = 1
                                                                                      A[304]/B[304] = 14 406293 594581 588482 804223 434390 905591 620287 882752 406279 801401 345838 741510 179046 081541 241975 942446 048309 178352 629920 091435 530294 667426 490083 173995 728777 (152 digits)/1400 198463 141504 546768 808901 237971 870063 964744 401740 485066 257833 247964 835389 110011 612464 289178 161011 997396 402348 539288 765789 805329 497393 357566 269848 022622 (154 digits), a[304] = 1
                                                                                      A[305]/B[305] = 108 926993 404095 569257 892773 096243 954235 096992 847871 063962 891646 716792 846904 843387 397614 781575 869445 134613 090502 757016 227297 775701 694000 640778 975416 891891 (153 digits)/10586 998505 736696 456649 008218 781446 711943 307838 527678 894289 022400 851944 140075 868465 458945 871172 604579 468665 043967 632302 930190 620492 076965 602221 868973 963313 (155 digits), a[305] = 7
                                                                                      A[306]/B[306] = 123 333286 998677 157740 696996 530634 859826 717280 730623 470242 693048 062631 588415 022433 479156 023551 811891 182922 268855 386936 318733 305996 361427 130862 149412 620668 (153 digits)/11987 196968 878201 003417 817120 019418 582007 272582 929419 379355 280234 099908 975464 978477 071410 160350 765591 466061 446316 171591 695980 425821 574358 959788 138821 985935 (155 digits), a[306] = 1
                                                                                      A[307]/B[307] = 232 260280 402772 726998 589769 626878 814061 814273 578494 534205 584694 779424 435319 865820 876770 805127 681336 317535 359358 143952 546031 081698 055427 771641 124829 512559 (153 digits)/22574 195474 614897 460066 825338 800865 293950 580421 457098 273644 302634 951853 115540 846942 530356 031523 370170 934726 490283 803894 626171 046313 651324 562010 007795 949248 (155 digits), a[307] = 1
                                                                                      A[308]/B[308] = 355 593567 401449 884739 286766 157513 673888 531554 309118 004448 277742 842056 023734 888254 355926 828679 493227 500457 628213 530888 864764 387694 416854 902503 274242 133227 (153 digits)/34561 392443 493098 463484 642458 820283 875957 853004 386517 652999 582869 051762 091005 825419 601766 191874 135762 400787 936599 975486 322151 472135 225683 521798 146617 935183 (155 digits), a[308] = 1
                                                                                      A[309]/B[309] = 587 853847 804222 611737 876535 784392 487950 345827 887612 538653 862437 621480 459054 754075 232697 633807 174563 817992 987571 674841 410795 469392 472282 674144 399071 645786 (153 digits)/57135 587918 107995 923551 467797 621149 169908 433425 843615 926643 885504 003615 206546 672362 132122 223397 505933 335514 426883 779380 948322 518448 877008 083808 154413 884431 (155 digits), a[309] = 1
                                                                                      A[310]/B[310] = 943 447415 205672 496477 163301 941906 161838 877382 196730 543102 140180 463536 482789 642329 588624 462486 667791 318450 615785 205730 275559 857086 889137 576647 673313 779013 (153 digits)/91696 980361 601094 387036 110256 441433 045866 286430 230133 579643 468373 055377 297552 497781 733888 415271 641695 736302 363483 754867 270473 990584 102691 605606 301031 819614 (155 digits), a[310] = 1
                                                                                      A[311]/B[311] = 2474 748678 215567 604692 203139 668204 811628 100592 281073 624858 142798 548553 424634 038734 409946 558780 510146 454894 219142 086301 961915 183566 250557 827439 745699 203812 (154 digits)/240529 548641 310184 697623 688310 504015 261641 006286 303883 085930 822250 114369 801651 667925 599899 053940 789324 808119 153851 289115 489270 499617 082391 295020 756477 523659 (156 digits), a[311] = 2
                                                                                      A[312]/B[312] = 1 156651 080141 875743 887736 029526 993553 192161 853977 458113 351854 827102 637985 786885 731299 033667 412984 906185 754050 955139 508746 489950 582525 899642 991008 914841 959217 (157 digits)/112 418996 195853 457348 177298 551261 816560 232216 222134 143534 709337 459176 466074 668881 419036 886746 605620 256381 127947 212035 771800 759797 311761 579426 380299 576035 368367 (159 digits), a[312] = 467
                                                                                      A[313]/B[313] = 1 159125 828820 091311 492428 232666 661758 003789 954569 739186 976712 969901 186539 211519 770033 443613 971765 416332 208945 174281 595048 451865 766092 150200 818448 660541 163029 (157 digits)/112 659525 744494 767532 874922 239572 320575 493857 228420 447417 795268 281426 580444 470533 086962 486645 659561 045705 936066 365887 060916 249067 811378 661817 675320 332512 892026 (159 digits), a[313] = 1
                                                                                      A[314]/B[314] = 3 474902 737782 058366 872592 494860 317069 199741 763116 936487 305280 766905 011064 209925 271365 920895 356515 738850 171941 303702 698843 393682 114710 200044 627906 235924 285275 (157 digits)/337 738047 684842 992413 927143 030406 457711 219930 678975 038370 299874 022029 626963 609947 592961 860037 924742 347793 000079 943809 893633 257932 934518 903061 730940 241061 152419 (159 digits), a[314] = 2
                                                                                      A[315]/B[315] = 4 634028 566602 149678 365020 727526 978827 203531 717686 675674 281993 736806 197603 421445 041399 364509 328281 155182 380886 477984 293891 845547 880802 350245 446354 896465 448304 (157 digits)/450 397573 429337 759946 802065 269978 778286 713787 907395 485788 095142 303456 207408 080480 679924 346683 584303 393498 936146 309696 954549 507000 745897 564879 406260 573574 044445 (159 digits), a[315] = 1
                                                                                      A[316]/B[316] = 54 449216 970405 704828 887820 497657 084168 438590 657670 368904 407211 871773 184701 845820 726758 930497 967608 445856 361692 561529 931653 694708 803536 052744 537810 097044 216619 (158 digits)/5292 111355 407558 351828 749861 000173 018865 071597 660325 382039 346439 360047 908452 495235 072129 673557 352079 676281 297689 350476 393677 834941 139392 116735 199806 550375 641314 (160 digits), a[316] = 11
                                                                                      A[317]/B[317] = 113 532462 507413 559336 140661 722841 147164 080713 033027 413483 096417 480352 567007 113086 494917 225505 263498 046895 104271 601044 157199 234965 487874 455734 521975 090553 881542 (159 digits)/11034 620284 244454 463604 301787 270324 816016 856983 228046 249866 788021 023552 024313 070950 824183 693798 288462 746061 531525 010649 741905 176883 024681 798349 805873 674325 327073 (161 digits), a[317] = 2
                                                                                      A[318]/B[318] = 281 514141 985232 823501 169143 943339 378496 600016 723725 195870 600046 832478 318716 071993 716593 381508 494604 539646 570235 763618 246052 164639 779284 964213 581760 278151 979703 (159 digits)/27361 351923 896467 279037 353435 540822 650898 785564 116417 881772 922481 407151 957078 637136 720497 061153 929005 168404 360739 371775 877488 188707 188755 713434 811553 899026 295460 (161 digits), a[318] = 2
                                                                                      A[319]/B[319] = 395 046604 492646 382837 309805 666180 525660 680729 756752 609353 696464 312830 885723 185080 211510 607013 758102 586541 674507 364662 403251 399605 267159 419948 103735 368705 861245 (159 digits)/38395 972208 140921 742641 655222 811147 466915 642547 344464 131639 710502 430703 981391 708087 544680 754952 217467 914465 892264 382425 619393 365590 213437 511784 617427 573351 622533 (161 digits), a[319] = 1
                                                                                      A[320]/B[320] = 1466 653955 463171 972013 098560 941880 955478 642205 993983 023931 689439 770970 975885 627234 351125 202549 768912 299271 593757 857605 455806 363455 580763 224057 892966 384269 563438 (160 digits)/142549 268548 319232 506962 319103 974265 051645 713206 149810 276692 053988 699263 901253 761399 354539 326010 581408 911802 037532 519052 735668 285477 829068 248788 663836 619081 163059 (162 digits), a[320] = 3
                                                                                      A[321]/B[321] = 3328 354515 418990 326863 506927 549942 436617 965141 744718 657217 075343 854772 837494 439548 913761 012113 295927 185084 862023 079873 314864 126516 428685 868063 889668 137244 988121 (160 digits)/323494 509304 779386 756566 293430 759677 570207 068959 644084 685023 818479 829231 783899 230886 253759 406973 380285 738069 967329 420531 090729 936545 871574 009361 945100 811513 948651 (162 digits), a[321] = 2
                                                                                      A[322]/B[322] = 8123 362986 301152 625740 112416 041765 828714 572489 483420 338365 840127 480516 650874 506332 178647 226776 360766 669441 317804 017352 085534 616488 438134 960185 672302 658759 539680 (160 digits)/789538 287157 878006 020094 905965 493620 192059 851125 437979 646739 690948 357727 469052 223171 862058 139957 341980 387941 972191 360114 917128 158569 572216 267512 554038 242109 060361 (162 digits), a[322] = 2
                                                                                      A[323]/B[323] = 19575 080488 021295 578343 731759 633474 094047 110120 711559 333948 755598 815806 139243 452213 271055 465666 017460 523967 497631 114577 485933 359493 304955 788435 234273 454764 067481 (161 digits)/1 902571 083620 535398 796756 105361 746917 954326 771210 520043 978503 200376 544686 722003 677229 977875 686888 064246 513953 911712 140760 924986 253685 016006 544387 053177 295732 069373 (163 digits), a[323] = 2
                                                                                      A[324]/B[324] = 27698 443474 322448 204083 844175 675239 922761 682610 194979 672314 595726 296322 790117 958545 449702 692442 378227 193408 815435 131929 571467 975981 743090 748620 906576 113523 607161 (161 digits)/2 692109 370778 413404 816851 011327 240538 146386 622335 958023 625242 891324 902414 191055 900401 839933 826845 406226 901895 883903 500875 842114 412254 588222 811899 607215 537841 129734 (163 digits), a[324] = 1
                                                                                      A[325]/B[325] = 1 127512 819460 919223 741697 498786 643071 004514 414528 510746 226532 584650 668717 743961 794031 259163 163361 146548 260320 115036 391760 344652 398763 028585 733271 497317 995708 353921 (163 digits)/109 586945 914757 071591 470796 558451 368443 809791 664648 840988 988218 853372 641254 364239 693303 575228 760704 313322 589789 267852 175794 609562 743868 544919 020371 341798 809377 258733 (165 digits), a[325] = 40
                                                                                      A[326]/B[326] = 3 410236 901857 080119 429176 340535 604452 936304 926195 727218 351912 349678 302476 022003 340639 227192 182525 817871 974369 160544 307210 605425 172270 828847 948435 398530 100648 668924 (163 digits)/331 452947 115049 628179 229240 686681 345869 575761 616282 480990 589899 451442 826177 283774 980312 565620 108958 346194 671263 687460 028259 670802 643860 222979 873013 632611 965972 905933 (165 digits), a[326] = 3
                                                                                      A[327]/B[327] = 38 640118 739888 800537 462637 244678 292053 303868 602681 510148 097568 431111 995953 985998 541062 758277 171145 143139 978380 881023 771077 004329 293742 145913 166060 881149 102843 712085 (164 digits)/3755 569364 180302 981562 992444 111946 173009 143169 443756 131885 477112 819243 729204 485764 476741 797049 959246 121463 973689 829912 486650 988391 826330 997697 623521 300530 435079 223996 (166 digits), a[327] = 11
                                                                                      A[328]/B[328] = 42 050355 641745 880656 891813 585213 896506 240173 528877 237366 449480 780790 298430 008001 881701 985469 353670 961011 952750 041568 078287 609754 466012 974761 114496 279679 203492 381009 (164 digits)/4087 022311 295352 609742 221684 798627 518878 718931 060038 612876 067012 270686 555381 769539 457054 362670 068204 467658 644953 517372 514910 659194 470191 220677 496534 933142 401052 129929 (166 digits), a[328] = 1
                                                                                      A[329]/B[329] = 417 093319 515601 726449 488959 511603 360609 465430 362576 646446 142895 458224 681824 058015 476380 627501 354183 792247 553131 255136 475665 492119 487858 918763 196527 398261 934275 141166 (165 digits)/40538 770165 838476 469242 987607 299593 842917 613548 984103 647770 080223 255422 727640 411619 590231 061080 573086 330391 778271 486265 120846 921142 058051 983795 092335 698812 044548 393357 (167 digits), a[329] = 9
                                                                                      A[330]/B[330] = 5881 356828 860170 050949 737246 747660 945038 756198 604950 287612 450017 195935 843966 820218 551030 770488 312244 052477 696587 613478 737604 499427 296037 837445 865879 855346 283344 357333 (166 digits)/571629 804633 034023 179144 048186 992941 319725 308616 837489 681657 190137 846604 742347 532213 720289 217798 091413 093143 540754 325084 206767 555183 282918 993808 789234 716511 024729 636927 (168 digits), a[330] = 14
                                                                                      A[331]/B[331] = 23942 520634 956281 930248 437946 502247 140764 490224 782377 796895 942964 241968 057691 338889 680503 709454 603160 002158 339481 709051 426083 489828 672010 268546 660046 819647 067652 570498 (167 digits)/2 327057 988697 974569 185819 180355 271359 121818 848016 334062 374398 840774 641841 697030 540474 471387 932272 938738 702965 941288 786601 947917 141875 189727 959030 249274 564856 143466 941065 (169 digits), a[331] = 4
                                                                                      A[332]/B[332] = 197421 521908 510425 492937 240818 765638 071154 677996 863972 662779 993731 131680 305497 531335 995060 446125 137524 069744 412441 285890 146272 418056 672119 985819 146254 412522 824564 921317 (168 digits)/19 188093 714216 830576 665697 491029 163814 294276 092747 509988 676847 916334 981338 318591 856009 491392 675981 601322 716871 071064 617899 790104 690184 800742 666050 783431 235360 172465 165447 (170 digits), a[332] = 8
                                                                                      A[333]/B[333] = 221364 042543 466707 423185 678765 267885 211919 168221 646350 459675 936695 373648 363188 870225 675564 155579 740684 071902 751922 994941 572355 907885 344130 254365 806301 232169 892217 491815 (168 digits)/21 515151 702914 805145 851516 671384 435173 416094 940763 844051 051246 757109 623180 015622 396483 962780 608254 540061 419837 012353 404501 738021 832059 990470 625081 032705 800216 315932 106512 (170 digits), a[333] = 1
                                                                                      A[334]/B[334] = 418785 564451 977132 916122 919584 033523 283073 846218 510323 122455 930426 505328 668686 401561 670624 601704 878208 141647 164364 280831 718628 325942 016250 240184 952555 644692 716782 413132 (168 digits)/40 703245 417131 635722 517214 162413 598987 710371 033511 354039 728094 673444 604518 334214 252493 454173 284236 141384 136708 083418 022401 528126 522244 791213 291131 816137 035576 488397 271959 (170 digits), a[334] = 1
                                                                                      A[335]/B[335] = 3 571648 558159 283770 752169 035437 536071 476509 937969 728935 439323 380107 416277 712680 082719 040560 969218 766349 205080 066837 241595 321382 515421 474132 175845 426746 389711 626476 796871 (169 digits)/347 141115 039967 890925 989229 970693 227075 099063 208854 676368 876004 144666 459326 689336 416431 596166 882143 671134 513501 679697 583713 963034 010018 320176 954135 561802 084828 223110 282184 (171 digits), a[335] = 8
                                                                                      A[336]/B[336] = 3 990434 122611 260903 668291 955021 569594 759583 784188 239258 561779 310533 921606 381366 484280 711185 570923 644557 346727 231201 522427 040010 841363 490382 416030 379302 034404 343259 210003 (169 digits)/387 844360 457099 526648 506444 133106 826062 809434 242366 030408 604098 818111 063845 023550 668925 050340 166379 812518 650209 763115 606115 491160 532263 111390 245267 377939 120404 711507 554143 (171 digits), a[336] = 1
                                                                                      A[337]/B[337] = 23 523819 171215 588289 093628 810545 384045 274428 858910 925228 248219 932777 024309 619512 504122 596488 823836 989135 938716 222844 853730 521436 722238 926044 255997 323256 561733 342772 846886 (170 digits)/2286 362917 325465 524168 521450 636227 357389 146234 420684 828411 896498 235221 778551 807089 761056 847867 714042 733727 764550 495275 614291 418836 671333 877128 180472 451497 686851 780648 052899 (172 digits), a[337] = 5
                                                                                      A[338]/B[338] = 27 514253 293826 849192 761920 765566 953640 034012 643099 164486 809999 243310 945916 000878 988403 307674 394760 633693 285443 454046 376157 561447 563602 416426 672027 702558 596137 686032 056889 (170 digits)/2674 207277 782565 050817 027894 769334 183451 955668 663050 858820 500597 053332 842396 830640 429981 898207 880422 546246 414760 258391 220406 909997 203596 988518 425739 829436 807256 492155 607042 (172 digits), a[338] = 1
                                                                                      A[339]/B[339] = 78 552325 758869 286674 617470 341679 291325 342454 145109 254201 868218 419398 916141 621270 480929 211837 613358 256522 509603 130937 606045 644331 849443 758897 600052 728373 754008 714836 960664 (170 digits)/7634 777472 890595 625802 577240 174895 724293 057571 746786 546052 897692 341887 463345 468370 621020 644283 474887 826220 594071 012058 055105 238831 078527 854165 031952 110371 301364 764959 266983 (172 digits), a[339] = 2
                                                                                      A[340]/B[340] = 184 618904 811565 422541 996861 448925 536290 718920 933317 672890 546436 082108 778199 243419 950261 731349 621477 146738 304649 715921 588248 850111 262489 934221 872133 159306 104155 115705 978217 (171 digits)/17943 762223 563756 302422 182375 119125 632038 070812 156623 950926 295981 737107 769087 767381 672023 186774 830198 198687 602902 282507 330617 387659 360652 696848 489644 050179 409986 022074 141008 (173 digits), a[340] = 2
                                                                                      A[341]/B[341] = 1001 646849 816696 399384 601777 586306 972778 937058 811697 618654 600398 829942 807137 838370 232237 868585 720743 990214 032851 710545 547289 894888 161893 430006 960718 524904 274784 293366 851749 (172 digits)/97353 588590 709377 137913 489115 770523 884483 411632 529906 300684 377601 027426 308784 305278 981136 578157 625878 819658 608582 424594 708192 177127 881791 338407 480172 361268 351294 875329 972023 (173 digits), a[341] = 5
                                                                                      A[342]/B[342] = 1186 265754 628261 821926 598639 035232 509069 655979 745015 291545 146834 912051 585337 081790 182499 599935 342221 136952 337501 426467 135538 744999 424383 364228 832851 684210 378939 409072 829966 (172 digits)/115297 350814 273133 440335 671490 889649 516521 482444 686530 251610 673582 764534 077872 072660 653159 764932 456077 018346 211484 707102 038809 564787 242444 035255 969816 411447 761280 897404 113031 (174 digits), a[342] = 1
                                                                                      A[343]/B[343] = 3374 178359 073220 043237 799055 656771 990918 249018 301728 201744 894068 654045 977812 001950 597237 068456 405186 264118 707854 563479 818367 384887 010660 158464 626421 893325 032663 111512 511681 (172 digits)/327948 290219 255644 018584 832097 549822 917526 376521 902966 803905 724766 556494 464528 450600 287456 108022 538032 856351 031551 838798 785811 306702 366679 408919 419805 184163 873856 670138 198085 (174 digits), a[343] = 2
                                                                                      A[344]/B[344] = 7934 622472 774701 908402 196750 348776 490906 154016 348471 695034 934972 220143 540961 085691 376973 736848 152593 665189 753210 553426 772273 514773 445703 681158 085695 470860 444265 632097 853328 (172 digits)/771193 931252 784421 477505 335685 989295 351574 235488 492463 859422 123115 877523 006928 973861 228071 980977 532142 731048 274588 384699 610432 178191 975802 853094 809426 779775 508994 237680 509201 (174 digits), a[344] = 2
                                                                                      A[345]/B[345] = 27178 045777 397325 768444 389306 703101 463636 711067 347143 286849 698985 314476 600695 259024 728158 279000 862967 259687 967486 223760 135187 929207 347771 201938 883508 305906 365460 007806 071665 (173 digits)/2 641530 083977 608908 451100 839155 517708 972249 082987 380358 382172 094114 189063 485315 372183 971672 050955 134461 049495 855316 992897 617107 841278 294087 968203 848085 523490 400839 383179 725688 (175 digits), a[345] = 3
                                                                                      A[346]/B[346] = 823275 995794 694474 961733 875951 441820 400007 486036 762770 300525 904531 654441 561818 856433 221722 106874 041611 455828 777797 266230 827911 390993 878839 739324 590944 648051 408065 866280 003278 (174 digits)/80 017096 450581 051675 010530 510351 520564 519046 725109 903215 324584 946541 549427 566390 139380 378233 509631 565974 215923 934098 171628 123667 416540 798441 899210 251992 484487 534175 733072 279841 (176 digits), a[346] = 30
                                                                                      A[347]/B[347] = 2 497006 033161 480750 653646 017161 028562 663659 169177 635454 188427 412580 277801 286151 828324 393324 599622 987801 627174 300878 022452 618922 102188 984290 419912 656342 250060 589657 606646 081499 (175 digits)/242 692819 435720 763933 482692 370210 079402 529389 258317 090004 355926 933738 837346 184485 790325 106372 579849 832383 697267 657611 507781 988110 090900 689413 665834 604062 976953 003366 582396 565211 (177 digits), a[347] = 3
                                                                                      A[348]/B[348] = 3 320282 028956 175225 615379 893112 470383 063666 655214 398224 488953 317111 932242 847970 684757 615046 706497 029413 083003 078675 288683 446833 493182 863130 159237 247286 898111 997723 472926 084777 (175 digits)/322 709915 886301 815608 493222 880561 599967 048435 983426 993219 680511 880280 386773 750875 929705 484606 089481 398357 913191 591709 679410 111777 507441 487855 565044 856055 461440 537542 315468 845052 (177 digits), a[348] = 1
                                                                                      A[349]/B[349] = 9 137570 091073 831201 884405 803385 969328 790992 479606 431903 166334 046804 142286 982093 197839 623418 012617 046627 793180 458228 599819 512589 088554 710550 738387 150916 046284 585104 552498 251053 (175 digits)/888 112651 208324 395150 469138 131333 279336 626261 225171 076443 716950 694299 610893 686237 649736 075584 758812 629099 523650 841030 866602 211665 105783 665124 795924 316173 899834 078451 213334 255315 (177 digits), a[349] = 2
                                                                                      A[350]/B[350] = 12 457852 120030 006427 499785 696498 439711 854659 134820 830127 655287 363916 074529 830063 882597 238464 719114 076040 876183 536903 888502 959422 581737 573680 897624 398202 944396 582828 025424 335830 (176 digits)/1210 822567 094626 210758 962361 011894 879303 674697 208598 069663 397462 574579 997667 437113 579441 560190 848294 027457 436842 432740 546012 323442 613225 152980 360969 172229 361274 615993 528803 100367 (178 digits), a[350] = 1
                                                                                      A[351]/B[351] = 34 053274 331133 844056 883977 196382 848752 500310 749248 092158 476908 774636 291346 642220 963034 100347 450845 198709 545547 532036 376825 431434 252029 857912 533635 947321 935077 750760 603346 922713 (176 digits)/3309 757785 397576 816668 393860 155123 037943 975655 642367 215770 511875 843459 606228 560464 808619 195966 455400 684014 397335 706511 958626 858550 332233 971085 517862 660632 622383 310438 270940 456049 (178 digits), a[351] = 2
                                                                                      A[352]/B[352] = 216 777498 106833 070768 803648 874795 532226 856523 630309 383078 516740 011733 822609 683389 660801 840549 424185 268298 149468 729122 149455 548028 093916 721156 099440 082134 554863 087391 645505 872108 (177 digits)/21069 369279 480087 110769 325521 942633 106967 528631 062801 364286 468717 635337 635038 799902 431156 735989 580698 131543 820856 671812 297773 474744 606628 979493 468145 136025 095574 478623 154445 836661 (179 digits), a[352] = 6
                                                                                      A[353]/B[353] = 250 830772 437966 914825 687626 071178 380979 356834 379557 475236 993648 786370 113956 325610 623835 940896 875030 467007 695016 261158 526280 979462 345946 579068 633076 029456 489940 838152 248852 794821 (177 digits)/24379 127064 877663 927437 719382 097756 144911 504286 705168 580056 980593 478797 241267 360367 239775 931956 036098 815558 218192 378324 256400 333294 938862 950578 986007 796657 717957 789061 425386 292710 (179 digits), a[353] = 1
                                                                                      A[354]/B[354] = 2474 254450 048535 304199 992283 515400 961041 068033 046326 660211 459579 089064 848216 613885 275325 308621 299459 471367 404615 079548 885984 363189 207435 932773 797124 347242 964330 630761 885181 025497 (178 digits)/240481 512863 379062 457708 799960 822438 411171 067211 409318 584799 294058 944512 806445 043207 589140 123593 905587 471567 784588 076730 605376 474399 056395 534704 342215 305944 557194 580175 982922 471051 (180 digits), a[354] = 9
                                                                                      A[355]/B[355] = 10147 848572 632108 131625 656760 132782 225143 628966 564864 116082 831965 142629 506822 781151 725137 175382 072868 352477 313476 579354 070218 432219 175690 310163 821573 418428 347263 361199 789576 896809 (179 digits)/986305 178518 393913 758272 919225 387509 789595 773132 342442 919254 156829 256848 467047 533197 596336 426331 658448 701829 356544 685246 677906 230891 164445 089396 354869 020435 946736 109765 357076 176914 (180 digits), a[355] = 4
                                                                                      A[356]/B[356] = 22769 951595 312751 567451 305803 780965 411328 325966 176054 892377 123509 374323 861862 176188 725599 659385 445196 176322 031568 238257 026421 227627 558816 553101 440271 184099 658857 353161 464334 819115 (179 digits)/2 213091 869900 166889 974254 638411 597457 990362 613476 094204 423307 607717 458209 740540 109602 781812 976257 222484 875226 497677 447223 961188 936181 385285 713497 051953 346816 450666 799706 697074 824879 (181 digits), a[356] = 2
                                                                                      A[357]/B[357] = 556626 686860 138145 750456 996050 875952 097023 452154 790181 533133 796190 126402 191515 009681 139529 000632 757576 584206 071114 297522 704327 895280 587287 584598 388081 836820 159839 837074 933612 555569 (180 digits)/54 100510 056122 399273 140384 241103 726501 558298 496558 603349 078636 742048 253882 240010 163664 359847 856504 998085 707265 300803 418621 746440 699244 411302 213325 601749 344030 762739 302726 086871 974010 (182 digits), a[357] = 24
                                                                                      A[358]/B[358] = 579396 638455 450897 317908 301854 656917 508351 778120 966236 425510 919699 500726 053377 185869 865128 660018 202772 760528 102682 535779 730749 122908 146104 137699 828353 020919 818697 190236 397947 374684 (180 digits)/56 313601 926022 566163 114638 879515 323959 548661 110034 697553 501944 349765 712091 980550 273267 141660 832762 220570 582491 798480 865845 707629 635425 796587 926822 653702 690847 213406 102432 783946 798889 (182 digits), a[358] = 1
                                                                                      A[359]/B[359] = 4 033006 517592 843529 657906 807178 817457 147134 120880 587600 086199 314387 130758 511778 124900 330300 960741 974213 147374 687209 512201 088822 632729 463912 410797 358199 962339 072022 978493 321296 803673 (181 digits)/391 982121 612257 796251 828217 518195 670258 850265 156766 788670 090302 840642 526434 123311 803267 209812 853078 321509 202216 091688 613695 992218 511799 190829 774261 523965 489114 043175 917322 790552 767344 (183 digits), a[359] = 6
                                                                                      A[360]/B[360] = 61 074494 402348 103842 186510 409536 918774 715363 591329 780237 718500 635506 462103 730049 059374 819643 071147 815969 971148 410825 218796 063088 613850 104790 299660 201352 456005 899041 867636 217399 429779 (182 digits)/5936 045426 109889 509940 537901 652450 377842 302638 461536 527604 856486 959403 608603 830227 322275 288853 628937 043208 615733 173810 071285 590907 312413 659034 540745 513185 027557 861044 862274 642238 309049 (184 digits), a[360] = 15
                                                                                      A[361]/B[361] = 65 107500 919940 947371 844417 216715 736231 862497 712210 367837 804699 949893 592862 241827 184275 149944 031889 790183 118523 098034 730997 151911 246579 568702 710457 559552 418344 971064 846129 538696 233452 (182 digits)/6328 027547 722147 306192 366119 170646 048101 152903 618303 316274 946789 800046 135037 953539 125542 498666 482015 364717 817949 265498 684981 583125 824212 849864 315007 037150 516671 904220 779597 432791 076393 (184 digits), a[361] = 1
                                                                                      A[362]/B[362] = 126 181995 322289 051214 030927 626252 655006 577861 303540 148075 523200 585400 054965 971876 243649 969587 103037 606153 089671 508859 949793 214999 860429 673493 010117 760904 874350 870106 713765 756095 663231 (183 digits)/12264 072973 832036 816132 904020 823096 425943 455542 079839 843879 803276 759449 743641 783766 447817 787520 110952 407926 433682 439308 756267 174033 136626 508898 855752 550335 544229 765265 641872 075029 385442 (185 digits), a[362] = 1
                                                                                      A[363]/B[363] = 948 381468 175964 305870 060910 600484 321277 907526 836991 404366 467104 047693 977624 044960 889824 937053 753153 033254 746223 660054 379549 656910 269587 283153 781281 885886 538801 061811 842489 831365 876069 (183 digits)/92176 538364 546405 019122 694264 932321 029705 341698 177182 223433 569727 116194 340530 439904 260267 011307 258682 220202 853726 340659 978851 801357 780598 412156 305274 889499 326280 261080 272701 957996 774487 (185 digits), a[363] = 7
                                                                                      A[364]/B[364] = 2022 944931 674217 662954 152748 827221 297562 392914 977522 956808 457408 680788 010214 061798 023299 843694 609343 672662 582118 828968 708892 528820 399604 239800 572681 532677 951952 993730 398745 418827 415369 (184 digits)/196617 149702 924846 854378 292550 687738 485354 138938 434204 290746 942730 991838 424702 663574 968351 810134 628316 848332 141135 120628 713970 776748 697823 333211 466302 329334 196790 287426 187275 991022 934416 (186 digits), a[364] = 2
                                                                                      A[365]/B[365] = 2971 326399 850181 968824 213659 427705 618840 300441 814514 361174 924512 728481 987838 106758 913124 780748 362496 705917 328342 489023 088442 185730 669191 522954 353963 418564 490754 055542 241235 250193 291438 (184 digits)/288793 688067 471251 873500 986815 620059 515059 480636 611386 514180 512458 108032 765233 103479 228618 821441 886999 068534 994861 461288 692822 578106 478421 745367 771577 218833 523070 548506 459977 949019 708903 (186 digits), a[365] = 1
                                                                                      A[366]/B[366] = 7965 597731 374581 600602 580067 682632 535242 993798 606551 679158 306434 137751 985890 275315 849549 405191 334337 084497 238803 807014 885776 900281 737987 285709 280608 369806 933461 104814 881215 919213 998245 (184 digits)/774204 525837 867350 601380 266181 927857 515473 100211 656977 319107 967647 207903 955168 870533 425589 453018 402314 985402 130858 043206 099615 932961 654666 823947 009456 767001 242931 384439 107231 889062 352222 (186 digits), a[366] = 2
                                                                                      A[367]/B[367] = 10936 924131 224763 569426 793727 110338 154083 294240 421066 040333 230946 866233 973728 382074 762674 185939 696833 790414 567146 296037 974219 086012 407178 808663 634571 788371 424215 160357 122451 169407 289683 (185 digits)/1 062998 213905 338602 474881 252997 547917 030532 580848 268363 833288 480105 315936 720401 974012 654208 274460 289314 053937 125719 504494 792438 511068 133088 569314 781033 985834 766001 932945 567209 838082 061125 (187 digits), a[367] = 1
                                                                                      A[368]/B[368] = 1 025099 541935 277593 557294 396688 944080 864989 358157 765693 430148 784492 697511 542629 808268 778248 697583 139879 593051 983409 338546 488151 899435 605616 491427 295784 688349 385471 018027 269174 674091 938764 (187 digits)/99 633038 419034 357380 765336 794953 884141 355003 119100 614813 814936 617441 590018 952552 453710 266958 977825 308522 001554 822771 961221 796397 462298 031903 770221 645617 449634 481111 148376 857746 830694 036847 (188 digits), a[368] = 93
                                                                                      A[369]/B[369] = 1 036036 466066 502357 126721 190416 054419 019072 652398 186759 470482 015439 563745 516358 190343 540922 883522 836713 383466 550555 634584 462370 985448 012795 300090 930356 476720 809686 178384 391625 843499 228447 (187 digits)/100 696036 632939 695983 240218 047951 432058 385535 699948 883177 648225 097546 905955 672954 427722 921167 252285 597836 055491 948491 465716 588835 973366 164992 339536 426651 435469 247113 081322 424956 668776 097972 (189 digits), a[369] = 1
                                                                                      A[370]/B[370] = 4 133208 940134 784664 937457 967937 107337 922207 315352 325971 841594 830811 388748 091704 379299 401017 348151 650019 743451 635076 242299 875264 855779 644002 391700 086854 118511 814529 553180 444052 204589 624105 (187 digits)/401 721148 317853 445330 485990 938808 180316 511610 218947 264346 759611 910082 307885 971415 736879 030460 734682 102030 168030 668246 358371 562905 382396 526880 788830 925571 756042 222450 392344 132616 837022 330763 (189 digits), a[370] = 3
                                                                                      A[371]/B[371] = 42 368125 867414 349006 501300 869787 127798 241145 805921 446477 886430 323553 451226 433401 983337 551096 365039 336910 817982 901318 057583 215019 543244 452819 217091 798897 661838 954981 710188 832147 889395 469497 (188 digits)/4117 907519 811474 149288 100127 436033 235223 501637 889421 526645 244344 198369 984815 387111 796513 225774 599106 618137 735798 630955 049432 217889 797331 433800 227845 682368 995891 471617 004763 751125 038999 405602 (190 digits), a[371] = 10
                                                                                      A[372]/B[372] = 88 869460 674963 482677 940059 707511 362934 404498 927195 218927 614455 477918 291200 958508 345974 503210 078230 323841 379417 437712 357466 305303 942268 549640 825883 684649 442189 724492 973558 108347 983380 563099 (188 digits)/8637 536187 940801 743906 686245 810874 650763 514885 997790 317637 248300 306822 277516 745639 329905 482009 932895 338305 639627 930156 457235 998684 977059 394481 244522 290309 747825 165684 401871 634866 915021 141967 (190 digits), a[372] = 2
                                                                                      A[373]/B[373] = 308 976507 892304 797040 321479 992321 216601 454642 587507 103260 729796 757308 324829 308927 021261 060726 599730 308434 956235 214455 129982 130931 370050 101741 694742 852845 988408 128460 630863 157191 839537 158794 (189 digits)/30030 516083 633879 381008 158864 868657 187514 046295 882792 479556 989245 118836 817365 624029 786229 671804 397792 633054 654682 421424 421140 213944 728509 617243 961412 553298 239366 968670 210378 655725 784062 831503 (191 digits), a[373] = 3
                                                                                      A[374]/B[374] = 397 845968 567268 279718 261539 699832 579535 859141 514702 322188 344252 235226 616030 267435 367235 563936 677960 632276 335652 652167 487448 436235 312318 651382 520626 537495 430597 852953 604421 265539 822917 721893 (189 digits)/38668 052271 574681 124914 845110 679531 838277 561181 880582 797194 237545 425659 094882 369669 116135 153814 330687 971360 294310 351580 878376 212629 705569 011725 205934 843607 987192 134354 612250 290592 699083 973470 (191 digits), a[374] = 1
                                                                                      A[375]/B[375] = 7470 203942 103133 831969 029194 589307 648246 919189 852148 902650 926336 991387 413374 122763 631501 211586 803021 689408 997982 953469 904053 983166 991785 826627 066020 527763 739169 481625 510445 936908 652056 152868 (190 digits)/726055 456971 978139 629475 370857 100230 276510 147569 733282 829053 265062 780700 525248 278073 876662 440462 350176 117539 952268 749880 231912 041279 428751 828297 668239 738242 008825 387053 230883 886394 367574 353963 (192 digits), a[375] = 18
                                                                                      A[376]/B[376] = 7868 049910 670402 111687 290734 289140 227782 778331 366851 224839 270589 226614 029404 390198 998736 775523 480982 321685 333635 605637 391502 419402 304104 478009 586647 065259 169767 334579 114867 202448 474973 874761 (190 digits)/764723 509243 552820 754390 215967 779762 114787 708751 613865 626247 502608 206359 620130 647742 992797 594276 680864 088900 246579 101461 110288 253909 134320 840022 874174 581849 996017 521407 843134 176987 066658 327433 (192 digits), a[376] = 1
                                                                                      A[377]/B[377] = 15338 253852 773535 943656 319928 878447 876029 697521 219000 127490 196926 218001 442778 512962 630237 987110 284004 011094 331618 559107 295556 402569 295890 304636 652667 593022 908936 816204 625313 139357 127030 027629 (191 digits)/1 490778 966215 530960 383865 586824 879992 391297 856321 347148 455300 767670 987060 145378 925816 869460 034739 031040 206440 198847 851341 342200 295188 563072 668320 542414 320092 004842 908461 074018 063381 434232 681396 (193 digits), a[377] = 1
                                                                                      A[378]/B[378] = 23206 303763 443938 055343 610663 167588 103812 475852 585851 352329 467515 444615 472182 903161 628974 762633 764986 332779 665254 164744 687058 821971 599994 782646 239314 658282 078704 150783 740180 341805 602003 902390 (191 digits)/2 255502 475459 083781 138255 802792 659754 506085 565072 961014 081548 270279 193419 765509 573559 862257 629015 711904 295340 445426 952802 452488 549097 697393 508343 416588 901942 000860 429868 917152 240368 500891 008829 (193 digits), a[378] = 1
                                                                                      A[379]/B[379] = 38544 557616 217473 998999 930592 046035 979842 173373 804851 479819 664441 662616 914961 416124 259212 749744 048990 343873 996872 723851 982615 224540 895885 087282 891982 251304 987640 966988 365493 481162 729033 930019 (191 digits)/3 746281 441674 614741 522121 389617 539746 897383 421394 308162 536849 037950 180479 910888 499376 731717 663754 742944 501780 644274 804143 794688 844286 260466 176663 959003 222034 005703 338329 991170 303749 935123 690225 (193 digits), a[379] = 1
                                                                                      A[380]/B[380] = 61750 861379 661412 054343 541255 213624 083654 649226 390702 832149 131957 107232 387144 319285 888187 512377 813976 676653 662126 888596 669674 046512 495879 869929 131296 909587 066345 117772 105673 822968 331037 832409 (191 digits)/6 001783 917133 698522 660377 192410 199501 403468 986467 269176 618397 308229 373899 676398 072936 593975 292770 454848 797121 089701 756946 247177 393383 957859 685007 375592 123976 006563 768198 908322 544118 436014 699054 (193 digits), a[380] = 1
                                                                                      A[381]/B[381] = 100295 418995 878886 053343 471847 259660 063496 822600 195554 311968 796398 769849 302105 735410 147400 262121 862967 020527 658999 612448 652289 271053 391764 957212 023279 160892 053986 084760 471167 304131 060071 762428 (192 digits)/9 748065 358808 313264 182498 582027 739248 300852 407861 577339 155246 346179 554379 587286 572313 325692 956525 197793 298901 733976 561090 041866 237670 218325 861671 334595 346010 012267 106528 899492 847868 371138 389279 (193 digits), a[381] = 1
                                                                                      A[382]/B[382] = 162046 280375 540298 107687 013102 473284 147151 471826 586257 144117 928355 877081 689250 054696 035587 774499 676943 697181 321126 501045 321963 317565 887644 827141 154576 070479 120331 202532 576841 127099 391109 594837 (192 digits)/15 749849 275942 011786 842875 774437 938749 704321 394328 846515 773643 654408 928279 263684 645249 919668 249295 652642 096022 823678 318036 289043 631054 176185 546678 710187 469986 018830 874727 807815 391986 807153 088333 (194 digits), a[382] = 1
                                                                                      A[383]/B[383] = 586434 260122 499780 376404 511154 679512 504951 238079 954325 744322 581466 401094 369855 899498 254163 585620 893798 112071 622379 115584 618179 223751 054699 438635 487007 372329 414979 692358 201690 685429 233400 546939 (192 digits)/56 997613 186634 348624 711125 905341 555497 413816 590848 116886 476177 309406 339217 378340 508063 084697 704412 155719 586970 205011 515198 908997 130832 746882 501707 465157 755968 068759 730712 322939 023828 792597 654278 (194 digits), a[383] = 3
                                                                                      A[384]/B[384] = 9 544994 442335 536784 130159 191577 345484 226371 281105 855469 053279 231818 294591 606944 446668 102205 144433 977713 490327 279192 350399 212830 897582 762835 845308 946694 027749 760006 280263 803892 093967 125518 345861 (193 digits)/927 711660 262091 589782 220890 259902 826708 325386 847898 716699 392480 604910 355757 317132 774259 274831 519890 144155 487546 103862 561218 832997 724378 126305 573998 152711 565475 118986 566124 974839 773247 488715 556781 (195 digits), a[384] = 16
                                                                                      A[385]/B[385] = 10 131428 702458 036564 506563 702732 024996 731322 519185 809794 797601 813284 695685 976800 346166 356368 730054 871511 602398 901571 465983 831010 121333 817535 283944 433701 400079 174985 972622 005582 779396 358918 892800 (194 digits)/984 709273 448725 938406 932016 165244 382205 739203 438746 833585 868657 914316 694974 695473 282322 359529 224302 299875 074516 308874 076417 741994 855210 873188 075705 617869 321443 187746 296837 297778 797076 281313 211059 (195 digits), a[385] = 1
                                                                                      A[386]/B[386] = 19 676423 144793 573348 636722 894309 370480 957693 800291 665263 850881 045102 990277 583744 792834 458573 874488 849225 092726 180763 816383 043841 018916 580371 129253 380395 427828 934992 252885 809474 873363 484437 238661 (194 digits)/1912 420933 710817 528189 152906 425147 208914 064590 286645 550285 261138 519227 050732 012606 056581 634360 744192 444030 562062 412736 637636 574992 579588 999493 649703 770580 886918 306732 862962 272618 570323 770028 767840 (196 digits), a[386] = 1
                                                                                      A[387]/B[387] = 187 219237 005600 196702 237069 751516 359325 350566 721810 797169 455531 219211 608184 230503 481676 483533 600454 514537 436934 528445 813431 225579 291583 040875 447224 857260 250539 589916 248594 290856 639667 718854 040749 (195 digits)/18196 497676 846083 692109 308173 991569 262432 320516 018556 786153 218904 587360 151562 808927 791557 068775 922034 296150 133078 023503 815146 916928 071511 868630 923039 553097 303707 948342 063497 751345 929990 211572 121619 (197 digits), a[387] = 9
                                                                                      A[388]/B[388] = 206 895660 150393 770050 873792 645825 729806 308260 522102 462433 306412 264314 598461 814248 274510 942107 474943 363762 529660 709209 629814 269420 310499 621246 576478 237655 678368 524908 501480 100331 513031 203291 279410 (195 digits)/20108 918610 556901 220298 461080 416716 471346 385106 305202 336438 480043 106587 202294 821533 848138 703136 666226 740180 695140 436240 452783 491920 651100 868124 572743 323678 190626 255074 926460 023964 500313 981600 889459 (197 digits), a[388] = 1
                                                                                      A[389]/B[389] = 807 906217 456781 506854 858447 688993 548744 275348 288118 184469 374768 012155 403569 673248 305209 309856 025284 605825 025916 656074 702874 033840 223081 904615 176659 570227 285645 164641 753034 591851 178761 328727 878979 (195 digits)/78523 253508 516787 353004 691415 241718 676471 475834 934163 795468 659033 907121 758447 273529 335973 178185 920714 516692 218499 332225 173497 392690 024814 473004 641269 524131 875586 713566 842877 823239 430932 156374 789996 (197 digits), a[389] = 3
                                                                                      A[390]/B[390] = 1014 801877 607175 276905 732240 334819 278550 583608 810220 646902 681180 276470 002031 487496 579720 251963 500227 969587 555577 365284 332688 303260 533581 525861 753137 807882 964013 689550 254514 692182 691792 532019 158389 (196 digits)/98632 172119 073688 573303 152495 658435 147817 860941 239366 131907 139077 013708 960742 095063 184111 881322 586941 256872 913639 768465 626280 884610 675915 341129 214012 847810 066212 968641 769337 847203 931246 137975 679455 (197 digits), a[390] = 1
                                                                                      A[391]/B[391] = 6896 717483 099833 168289 251889 697909 220047 777001 149442 065885 461849 670975 415758 598227 783530 821637 026652 423350 359380 847780 699003 853403 424571 059785 695486 417525 069727 301943 280122 744947 329516 520842 829313 (196 digits)/670316 286222 958918 792823 606389 192329 563378 641482 370360 586911 493495 989375 522899 843908 440644 466121 442362 057929 700337 943018 931182 700354 080306 519779 925346 610992 272864 525417 458904 906463 018408 984228 866726 (198 digits), a[391] = 6
                                                                                      A[392]/B[392] = 90672 129157 905006 464666 006806 407639 139171 684623 752967 503413 685225 999150 406893 264457 765620 933244 846709 473142 227528 386433 419738 397505 053005 303075 794461 235708 870468 614812 896110 376497 975507 302975 939458 (197 digits)/8 812743 893017 539632 880010 035555 158719 471740 200212 054053 761756 554524 875590 758440 065872 912489 940901 337648 009959 018033 027711 731655 989213 719900 098268 243518 790709 613451 799068 735101 631223 170562 932950 946893 (199 digits), a[392] = 13
                                                                                      A[393]/B[393] = 188240 975798 909846 097621 265502 513187 498391 146248 655377 072712 832301 669276 229545 127143 314772 688126 720071 369634 814437 620647 538480 648413 530581 665937 284408 888942 810664 531569 072343 497943 280531 126794 708229 (198 digits)/18 295804 072258 038184 552843 677499 509768 506859 041906 478468 110424 602545 740557 039779 975654 265624 347924 117658 077847 736403 998442 394494 678781 520106 716316 412384 192411 499768 123554 929108 168909 359534 850130 760512 (200 digits), a[393] = 2
                                                                                      A[394]/B[394] = 1 031877 008152 454236 952772 334318 973576 631127 415867 029852 866977 846734 345531 554618 900174 339484 373878 447066 321316 299716 489671 112141 639572 705913 632762 216505 680422 923791 272658 257827 866214 378162 936949 480603 (199 digits)/100 291764 254307 730555 644228 423052 707562 006035 409744 446394 313879 567253 578375 957339 944144 240611 680521 925938 399197 700053 019923 704129 383121 320433 679850 305439 752767 112292 416843 380642 475769 968237 183604 749453 (201 digits), a[394] = 5
                                                                                      A[395]/B[395] = 2 251994 992103 818320 003165 934140 460340 760645 977982 715082 806668 525770 360339 338782 927491 993741 435883 614204 012267 413870 599989 762763 927558 942408 931461 717420 249788 658247 076885 587999 230372 036857 000693 669435 (199 digits)/218 879332 580873 499295 841300 523604 924892 518929 861395 371256 738183 737052 897308 954459 863942 746847 708967 969534 876243 136510 038289 802753 445024 160974 076017 023263 697945 724352 957241 690393 120449 296009 217340 259418 (201 digits), a[395] = 2
                                                                                      A[396]/B[396] = 3 283872 000256 272556 955938 268459 433917 391773 393849 744935 673646 372504 705870 893401 827666 333225 809762 061270 333583 713587 089660 874905 567131 648322 564223 933925 930211 582038 349543 845827 096586 415019 937643 150038 (199 digits)/319 171096 835181 229851 485528 946657 632454 524965 271139 817651 052063 304306 475684 911799 808086 987459 389489 895473 275440 836563 058213 506882 828145 481407 755867 328703 450712 836645 374085 071035 596219 264246 400945 008871 (201 digits), a[396] = 1
                                                                                      A[397]/B[397] = 5 535866 992360 090876 959104 202599 894258 152419 371832 460018 480314 898275 066210 232184 755158 326967 245645 675474 345851 127457 689650 637669 494690 590731 495685 651346 180000 240285 426429 433826 326958 451876 938336 819473 (199 digits)/538 050429 416054 729147 326829 470262 557347 043895 132535 188907 790247 041359 372993 866259 672029 734307 098457 865008 151683 973073 096503 309636 273169 642381 831884 351967 148658 560998 331326 761428 716668 560255 618285 268289 (201 digits), a[397] = 1
                                                                                      A[398]/B[398] = 30 963206 962056 726941 751459 281458 905208 153870 253012 045028 075220 863880 036922 054325 603457 968062 037990 438642 062839 350875 537914 063253 040584 601980 042652 190656 830212 783465 481691 014958 731378 674404 629327 247403 (200 digits)/3009 423243 915454 875588 119676 297970 419189 744440 933815 762190 003298 511103 340654 243098 168235 658994 881779 220514 033860 701928 540730 055064 193993 693316 915289 088539 194005 641637 030718 878179 179562 065524 492371 350316 (202 digits), a[398] = 5
                                                                                      A[399]/B[399] = 67 462280 916473 544760 462022 765517 704674 460159 877856 550074 630756 626035 140054 340835 962074 263091 321626 552758 471529 829208 765478 764175 575859 794691 580990 032659 840425 807216 389811 463743 789715 800686 196991 314279 (200 digits)/6556 896917 246964 480323 566182 066203 395726 532777 000166 713287 796844 063566 054302 352456 008501 052296 862016 306036 219405 376930 177963 419764 661157 029015 662462 529045 536669 844272 392764 517787 075792 691304 603027 968921 (202 digits), a[399] = 2
                                                                                      A[400]/B[400] = 98 425487 878530 271702 213482 046976 609882 614030 130868 595102 705977 489915 176976 395161 565532 231153 359616 991400 534369 180084 303392 827428 616444 396671 623642 223316 670638 590681 871502 478702 521094 475090 826318 561682 (200 digits)/9566 320161 162419 355911 685858 364173 814916 277217 933982 475477 800142 574669 394956 595554 176736 711291 743795 526550 253266 078858 718693 474828 855150 722332 577751 617584 730675 485909 423483 395966 255354 756829 095399 319237 (202 digits), a[400] = 1
                                                                                      A[401]/B[401] = 4299 758259 693275 227955 641750 785511 929626 863455 505206 139490 987788 692387 750039 332783 279960 202685 785157 182981 449404 572833 811370 343606 082968 851571 397605 635276 677885 206536 864418 047952 196778 229591 728689 466605 (202 digits)/417908 663847 230996 784526 058091 725677 437126 453148 161413 158833 202974 774350 037435 961285 608179 637841 845223 947697 109846 767855 081782 837405 432638 089316 505782 085188 955715 738377 602550 544336 056047 234955 705198 696112 (204 digits), a[401] = 43
                                                                                      A[402]/B[402] = 12997 700266 958355 955569 138734 403512 398763 204396 646487 013575 669343 567078 427094 393511 405412 839210 715088 540344 882582 898585 737503 858246 865350 951385 816459 129146 704294 210292 464756 622559 111429 163866 012386 961497 (203 digits)/1 263292 311702 855409 709489 860133 541206 126295 636662 418221 951977 409066 897719 507264 479411 001275 624817 279467 369641 582806 382423 964041 987045 153064 990282 095097 873151 597822 701042 231135 028974 423496 461696 210995 407573 (205 digits), a[402] = 3
                                                                                      A[403]/B[403] = 199265 262264 068614 561492 722766 838197 911074 929405 202511 343126 027942 198564 156455 235454 361152 790846 511485 288154 688148 051619 873928 217309 063233 122358 644492 572477 242298 360923 835767 386338 868215 687581 914493 889060 (204 digits)/19 367293 339390 062142 426873 960094 843769 331561 003084 434742 438494 338978 240142 646403 152450 627314 010101 037234 492320 851942 504214 542412 643082 728612 943547 932250 182462 923056 254011 069575 978952 408494 160398 870129 809707 (206 digits), a[403] = 15
                                                                                      A[404]/B[404] = 212262 962531 026970 517061 861501 241710 309838 133801 848998 356701 697285 765642 583549 628965 766565 630057 226573 828499 570730 950205 611432 075555 928584 073744 460951 701623 946592 571216 300524 008897 979644 851447 926880 850557 (204 digits)/20 630585 651092 917552 136363 820228 384975 457856 639746 852964 390471 748045 137862 153667 631861 628589 634918 316701 861962 434748 886638 506454 630127 881677 933830 027348 055614 520878 955053 300711 007926 831990 622095 081125 217280 (206 digits), a[404] = 1
                                                                                      A[405]/B[405] = 836054 149857 149526 112678 307270 563328 840589 330810 749506 413231 119799 495491 907104 122351 660849 681018 191206 773653 400340 902236 708224 443976 848985 343592 027347 677349 082076 074572 737339 413032 807150 241925 695136 440731 (204 digits)/81 259050 292668 814798 835965 420779 998695 705130 922324 993635 609909 583113 653729 107406 048035 513082 914855 987340 078208 156189 164130 061776 533466 373646 745038 014294 349306 485693 119170 971709 002732 904466 026684 113505 461547 (206 digits), a[405] = 3
                                                                                      A[406]/B[406] = 1 048317 112388 176496 629740 168771 805039 150427 464612 598504 769932 817085 261134 490653 751317 427415 311075 417780 602152 971071 852442 319656 519532 777569 417336 488299 378973 028668 645789 037863 421930 786795 093373 622017 291288 (205 digits)/101 889635 943761 732350 972329 241008 383671 162987 562071 846600 000381 331158 791591 261073 679897 141672 549774 304041 940170 590938 050768 568231 163594 255324 678868 041642 404921 006572 074224 272420 010659 736456 648779 194630 678827 (207 digits), a[406] = 1
                                                                                      A[407]/B[407] = 2 932688 374633 502519 372158 644814 173407 141444 260035 946515 953096 753970 017760 888411 624986 515680 303169 026767 977959 342484 607121 347537 483042 404124 178265 003946 435295 139413 366150 813066 256894 380740 428672 939171 023307 (205 digits)/285 038322 180192 279500 780623 902796 766038 031106 046468 686835 610672 245431 236911 629553 407829 796428 014404 595423 958549 338065 265667 198238 860654 884296 102774 097579 159148 498837 267619 516549 024052 377379 324242 502766 819201 (207 digits), a[407] = 2
                                                                                      A[408]/B[408] = 27 442512 484089 699170 979167 972099 365703 423425 804936 117148 347803 602815 420982 486358 376196 068538 039596 658692 403787 053433 316534 447493 866914 414687 021721 523817 296629 283388 941146 355459 733980 213458 951430 074556 501051 (206 digits)/2667 234535 565492 247857 997944 366179 278013 442941 980290 028120 496431 540039 923795 927054 350365 309524 679415 662857 567114 633525 441773 352380 909488 213989 603834 919854 837257 496107 482799 921361 227131 132870 566961 719532 051636 (208 digits), a[408] = 9
                                                                                      A[409]/B[409] = 30 375200 858723 201690 351326 616913 539110 564870 064972 063664 300900 356785 438743 374770 001182 584218 342765 685460 381746 395917 923655 795031 349956 818811 199986 527763 731924 422802 307297 168525 990874 594199 380103 013727 524358 (206 digits)/2952 272857 745684 527358 778568 268976 044051 474048 026758 714956 107103 785471 160707 556607 758195 105952 693820 258281 525663 971590 707440 550619 770143 098285 706609 017433 996405 994944 750419 437910 251183 510249 891204 222298 870837 (208 digits), a[409] = 1
                                                                                      A[410]/B[410] = 1090 574542 539401 758333 275599 564073 234573 193878 078958 345398 879316 090305 777000 603308 417586 516180 036395 649805 764910 910560 644487 273591 115403 073079 021249 995547 913984 081469 696547 253869 414591 010437 255035 555019 853581 (208 digits)/105996 784556 664450 705415 247833 780340 819815 034622 916845 051584 245064 031530 548560 408325 887194 017868 963124 702710 965353 639200 202192 624072 864496 653989 335150 530044 711467 319173 747480 248220 018553 991616 759109 499992 530931 (210 digits), a[410] = 35
                                                                                      A[411]/B[411] = 9845 546083 713339 026689 831722 693572 650269 309772 775597 172254 214745 169537 431748 804545 759461 229838 670326 533712 265944 590963 724041 257351 388584 476522 391236 487694 957781 156029 576222 453350 722193 688134 675423 008906 206587 (208 digits)/956923 333867 725740 876096 009072 292043 422386 785654 278364 179214 312680 069246 097751 231540 742941 266773 361942 582680 213846 724392 527174 167275 550612 984189 722963 787836 399611 867508 477741 671890 418169 434800 723189 722231 649216 (210 digits), a[411] = 9
                                                                                      A[412]/B[412] = 20781 666709 966079 811712 939044 951218 535111 813423 630152 689907 308806 429380 640498 212399 936508 975857 377048 717230 296800 092488 092569 788293 892572 026123 803722 970937 829546 393528 848992 160570 858978 386706 605881 572832 266755 (209 digits)/2 019843 452292 115932 457607 265978 364427 664588 605931 473573 410012 870424 170022 744062 871407 373076 551415 687009 868071 393047 087985 256540 958623 965722 622368 781078 105717 510691 054190 702963 592000 854892 861218 205488 944455 829363 (211 digits), a[412] = 2
                                                                                      A[413]/B[413] = 51408 879503 645498 650115 709812 596009 720492 936620 035902 552068 832358 028298 712745 229345 632479 181553 424423 968172 859544 775939 909180 833939 173728 528769 998682 429570 616873 943087 274206 774492 440150 461547 887186 154570 740097 (209 digits)/4 996610 238451 957605 791310 541029 020898 751563 997517 225510 999240 053528 409291 585876 974355 489094 369604 735962 318822 999940 900363 040256 084523 482058 228927 285119 999271 420993 975889 883668 855892 127955 157237 134167 611143 307942 (211 digits), a[413] = 2
                                                                                      A[414]/B[414] = 123599 425717 257077 111944 358670 143237 976097 686663 701957 794044 973522 485978 065988 671091 201467 338964 225896 653576 015889 644367 910931 456172 240029 083663 801087 830079 063294 279703 397405 709555 739279 309802 380253 881973 746949 (210 digits)/12 013063 929196 031144 040228 348036 406225 167716 600965 924595 408492 977480 988605 915816 820118 351265 290625 158934 505717 392928 888711 337053 127670 929839 080223 351318 104260 352679 005970 470301 303785 110803 175692 473824 166742 445247 (212 digits), a[414] = 2
                                                                                      A[415]/B[415] = 175008 305220 902575 762060 068482 739247 696590 623283 737860 346113 805880 514276 778733 900436 833946 520517 650320 621748 875434 420307 820112 290111 413757 612433 799770 259649 680168 222790 671612 484048 179429 771350 267440 036544 487046 (210 digits)/17 009674 167647 988749 831538 889065 427123 919280 598483 150106 407733 031009 397897 501693 794473 840359 660229 894896 824540 392869 789074 377309 212194 411897 309150 636438 103531 773672 981860 353970 159677 238758 332929 607991 777885 753189 (212 digits), a[415] = 1
                                                                                      A[416]/B[416] = 4 323798 751018 918895 401386 002255 885182 694272 645473 410606 100776 314654 828620 755602 281575 216183 831387 833591 575549 026315 731755 593626 418846 170211 782074 995574 061671 387331 626679 516105 326712 045593 822208 798814 759041 436053 (211 digits)/420 245243 952747 761139 997161 685606 657199 230450 964561 527149 194085 721706 538145 956467 887490 519897 136142 636458 294686 821803 826496 392474 220336 815374 499838 625832 589022 920830 570618 965585 136038 841003 166003 065626 836000 521783 (213 digits), a[416] = 24
                                                                                      A[417]/B[417] = 21 794002 060315 497052 768990 079762 165161 167953 850650 790890 849995 379154 657380 556745 308312 914865 677456 818278 499494 007013 079085 788244 384342 264816 522808 777640 568006 616826 356188 252139 117608 407398 882394 261513 831751 667311 (212 digits)/2118 235893 931386 794449 817347 317098 713120 071535 421290 785852 378161 639542 088627 284033 231926 439845 340943 077188 297974 501888 921556 339680 313878 488769 808343 765601 048646 377825 834955 181895 839871 443774 162944 936125 957888 362104 (214 digits), a[417] = 5
                                                                                      A[418]/B[418] = 26 117800 811334 415948 170376 082018 050343 862226 496124 201496 950771 693809 486001 312347 589888 131049 508844 651870 075043 033328 810841 381870 803188 435028 304883 773214 629678 004157 982867 768244 444320 452992 704603 060328 590793 103364 (212 digits)/2538 481137 884134 555589 814509 002705 370319 301986 385852 313001 572247 361248 626773 240501 119416 959742 477085 713646 592661 323692 748052 732154 534215 304144 308182 391433 637669 298656 405574 147480 975910 284777 328948 001752 793888 883887 (214 digits), a[418] = 1
                                                                                      A[419]/B[419] = 204 618607 739656 408689 961622 653888 517568 203539 323520 201369 505397 235821 059389 743178 437529 832212 239369 381369 024795 240314 754975 461340 006661 310014 656995 190142 975752 645932 236262 629850 227851 578347 814615 683813 967303 390859 (213 digits)/19887 603859 120328 683578 518910 336036 305355 185440 122256 976863 383893 168282 476039 967541 067845 158042 680543 072714 446603 767738 157925 464762 053385 617779 965620 505636 512331 468420 673974 214262 671243 437215 465580 948395 515110 549313 (215 digits), a[419] = 7
                                                                                      A[420]/B[420] = 435 355016 290647 233328 093621 389795 085480 269305 143164 604235 961566 165451 604780 798704 464947 795473 987583 414608 124633 513958 320792 304550 816511 055057 618874 153500 581183 296022 455393 027944 900023 609688 333834 427956 525399 885082 (213 digits)/42313 688856 124791 922746 852329 674777 981029 672866 630366 266728 340033 697813 578853 175583 255107 275827 838171 859075 485868 859169 063903 661678 640986 539704 239423 402706 662332 235497 753522 576006 318397 159208 260109 898543 824109 982513 (215 digits), a[420] = 2
                                                                                      A[421]/B[421] = 2381 393689 192892 575330 429729 602863 944969 550065 039343 222549 313228 063079 083293 736700 762268 809582 177286 454409 647962 810106 358936 984094 089216 585302 751365 957645 881669 126044 513227 769574 727969 626789 483787 823596 594302 816269 (214 digits)/231456 048139 744288 297312 780558 709926 210503 549773 274088 310505 084061 657350 370305 845457 343381 537181 871402 368091 875948 063583 477443 773155 258318 316301 162737 519169 823992 645909 441587 094294 263229 233256 766130 441114 635660 461878 (216 digits), a[421] = 5
                                                                                      A[422]/B[422] = 5198 142394 676432 383988 953080 595522 975419 369435 221851 049334 588022 291609 771368 272105 989485 414638 342156 323427 420559 134171 038666 272738 994944 225663 121606 068792 344521 548111 481848 567094 355962 863267 301410 075149 714005 517620 (214 digits)/505225 785135 613368 517372 413447 094630 402036 772413 178542 887738 508157 012514 319464 866497 941870 350191 580976 595259 237764 986336 018791 207989 157623 172306 564898 441046 310317 527316 636696 764594 844855 625721 792370 780773 095430 906269 (216 digits), a[422] = 2
                                                                                      A[423]/B[423] = 12777 678478 545757 343308 335890 793909 895808 288935 483045 321218 489272 646298 626030 280912 741239 638858 861599 101264 489081 078448 436269 529572 079105 036628 994578 095230 570712 222267 476924 903763 439895 353324 086607 973896 022313 851509 (215 digits)/1 241907 618410 971025 332057 607452 899187 014577 094599 631174 085982 100375 682379 009235 578453 227122 237565 033355 558610 351478 036255 515026 189133 573564 660914 292534 401262 444627 700542 714980 623483 952940 484700 350872 002660 826522 274416 (217 digits), a[423] = 2
                                                                                      A[424]/B[424] = 311862 425879 774608 623389 014459 649360 474818 303886 814938 758578 330565 802776 796095 014011 779236 747251 020534 753775 158505 016933 509134 982468 893465 104758 991480 354326 041614 882530 928046 257416 913451 343045 380001 448654 249537 953836 (216 digits)/30 311008 626998 917976 486754 992316 675118 751887 042804 326720 951308 917173 389610 541118 749375 392804 051752 381510 001907 673237 856468 379419 747194 923175 034249 585724 071344 981382 340341 796231 728209 715427 258530 213298 844632 931965 492253 (218 digits), a[424] = 24
                                                                                      A[425]/B[425] = 324640 104358 320365 966697 350350 443270 370626 592822 297984 079796 819838 449075 422125 294924 520476 386109 882133 855039 647586 095381 945404 512040 972570 141387 986058 449556 612327 104798 404971 161180 353346 696369 466609 422550 271851 805345 (216 digits)/31 552916 245409 889001 818812 599769 574305 766464 137403 957895 037291 017549 071989 550354 327828 619926 289317 414865 560518 024715 892723 894445 936328 496739 695163 878258 472607 426010 040884 511212 351693 668367 743230 564170 847293 758487 766669 (218 digits), a[425] = 1
                                                                                      A[426]/B[426] = 1 285782 738954 735706 523481 065510 979171 586698 082353 708890 997968 790081 150003 062470 898785 340665 905580 666936 318894 101263 303079 345348 518591 811175 528922 949655 702995 878596 196926 142959 740957 973491 432153 779829 716305 065093 369871 (217 digits)/124 969757 363228 584981 943192 791625 398036 051279 455016 200406 063181 969820 605579 192181 732861 252582 919704 626106 683461 747385 534640 062757 556180 413394 119741 220499 489167 259412 462995 329868 783290 720530 488221 905811 386514 207428 792260 (219 digits), a[426] = 3
                                                                                      A[427]/B[427] = 2 896205 582267 791779 013659 481372 401613 544022 757529 715766 075734 400000 749081 547067 092495 201808 197271 216006 492827 850112 701540 636101 549224 594921 199233 885369 855548 369519 498650 690890 643096 300329 560677 026268 855160 402038 545087 (217 digits)/281 492430 971867 058965 705198 183020 370377 869023 047436 358707 163654 957190 283147 934717 793551 125092 128726 667078 927441 519486 962004 019961 048689 323527 934646 319257 450941 944834 966875 170949 918275 109428 719674 375793 620322 173345 351189 (219 digits), a[427] = 2
                                                                                      A[428]/B[428] = 7 078193 903490 319264 550800 028255 782398 674743 597413 140423 149437 590082 648166 156605 083775 744282 300123 098949 304549 801488 706160 617551 617041 001017 927390 720395 414092 617635 194227 524741 027150 574150 553507 832367 426625 869170 460045 (217 digits)/687 954619 306962 702913 353589 157666 138791 789325 549888 917820 390491 884201 171875 061617 319963 502767 177157 960264 538344 786359 458648 102679 653559 060449 989033 859014 391051 149082 396745 671768 619840 939387 927570 657398 627158 554119 494638 (219 digits), a[428] = 2
                                                                                      A[429]/B[429] = 17 052593 389248 430308 115259 537883 966410 893509 952355 996612 374609 580166 045413 860277 260046 690372 797517 413905 101927 453090 113861 871204 783306 596957 054015 326160 683733 604789 887105 740372 697397 448630 667692 691003 708412 140379 465177 (218 digits)/1657 401669 585792 464792 412376 498352 647961 447674 147214 194347 944638 725592 626898 057952 433478 130626 483042 587608 004131 092205 879300 225320 355807 444427 912714 037286 233044 242999 760366 514487 157956 988204 574815 690590 874639 281584 340465 (220 digits), a[429] = 2
                                                                                      A[430]/B[430] = 262 867094 742216 773886 279693 096515 278562 077392 882753 089608 768581 292573 329374 060763 984476 099874 262884 307525 833461 597840 414088 685623 366639 955373 737620 612805 670096 689483 500813 630331 488112 303610 568898 197423 052807 974862 437700 (219 digits)/25548 979663 093849 674799 539236 632955 858213 504437 758101 833039 560072 768090 575345 930903 822135 462164 422796 774384 600311 169447 648151 482484 990670 726868 679744 418307 886714 794078 802243 389075 989195 762456 549806 016261 746747 777884 601613 (221 digits), a[430] = 15
                                                                                      A[431]/B[431] = 542 786782 873681 978080 674645 730914 523535 048295 717862 175829 911772 165312 704161 981805 228998 890121 323286 028956 768850 648770 942039 242451 516586 507704 529256 551772 023926 983756 888733 001035 673622 055851 805489 085849 814028 090104 340577 (219 digits)/52755 360995 773491 814391 490849 764264 364388 456549 663417 860427 064784 261773 777589 919760 077749 054955 328636 136377 204753 431101 175603 190290 337148 898165 272202 873902 006473 831157 364853 292639 136348 513117 674427 723114 368134 837353 543691 (221 digits), a[431] = 2
                                                                                      A[432]/B[432] = 2434 014226 236944 686208 978276 020173 372702 270575 754201 792928 415669 953824 146021 987984 900471 660359 556028 423352 908864 192924 182245 655429 432985 986191 854646 819893 765804 624511 055745 634474 182600 527017 790854 540822 308920 335279 800008 (220 digits)/236570 423646 187816 932365 502635 690013 315767 330636 411773 274747 819209 815185 685705 609944 133131 681985 737341 319893 419324 893852 350564 243646 339266 319529 768555 913915 912610 118708 261656 559632 534589 814927 247516 908719 219287 127298 776377 (222 digits), a[432] = 4
                                                                                      A[433]/B[433] = 2976 801009 110626 664289 652921 751087 896237 318871 472063 968758 327442 119136 850183 969790 129470 550480 879314 452309 677714 841695 124284 897880 949572 493896 383903 371665 789731 608267 944478 635509 856222 582869 596343 626672 122948 425384 140585 (220 digits)/289325 784641 961308 746756 993485 454277 680155 787186 075191 135174 883994 076959 463295 529704 210880 736941 065977 456270 624078 324953 526167 433936 676415 217695 040758 787817 919083 949865 626509 852271 670938 328044 921944 631833 587421 964652 320068 (222 digits), a[433] = 1
                                                                                      A[434]/B[434] = 23271 621290 011331 336236 548728 277788 646363 502676 058649 574236 707764 787782 097309 776515 806765 513725 711229 589520 652868 084790 052239 940596 079993 443466 541970 421554 293925 882386 667096 083043 176158 607104 965259 927527 169559 312968 784103 (221 digits)/2 261850 916139 916978 159664 457033 869957 076857 840938 938111 220972 007168 353901 928774 317873 609296 840573 199183 513787 787873 168527 033736 281203 074172 843395 053867 428641 346197 767767 647225 525534 231158 111241 701129 331554 331240 879865 016853 (223 digits), a[434] = 7
                                                                                      A[435]/B[435] = 26248 422299 121958 000526 201650 028876 542600 821547 530713 542995 035206 906918 947493 746305 936236 064206 590544 041830 330582 926485 176524 838477 029565 937362 925873 793220 083657 490654 611574 718553 032381 189974 561603 554199 292507 738352 924688 (221 digits)/2 551176 700781 878286 906421 450519 324234 757013 628125 013302 356146 891162 430861 392069 847577 820177 577514 265160 970058 411951 493480 559903 715139 750588 061090 094626 216459 265281 717633 273735 377805 902096 439286 623073 963387 918662 844517 336921 (223 digits), a[435] = 1
                                                                                      A[436]/B[436] = 364501 111178 596785 343077 170178 653183 700174 182793 957925 633172 165454 577728 414728 478492 977834 348411 388302 133314 950446 129097 347062 840797 464350 629184 578329 733415 381473 260896 617567 424232 597114 076774 266106 132117 972159 911556 805047 (222 digits)/35 427148 026304 334707 943143 313785 085008 918035 006564 111041 850881 592279 955100 025682 336385 271605 348258 646276 124547 143242 583774 312484 578019 831817 637566 284008 242611 794860 097000 205785 437010 958411 821967 801090 855597 273857 858590 396826 (224 digits), a[436] = 13
                                                                                      A[437]/B[437] = 390749 533477 718743 343603 371828 682060 242775 004341 488639 176167 200661 484647 362222 224798 914070 412617 978846 175145 281029 055582 523587 679274 493916 566547 504203 526635 465130 751551 229142 142785 629495 266748 827709 686317 264667 649909 729735 (222 digits)/37 978324 727086 212994 849564 764304 409243 675048 634689 124344 207028 483442 385961 417752 183963 091782 925772 911437 094605 555194 077254 872388 293159 582405 698656 378634 459071 060141 814633 479520 814816 860508 261254 424164 818985 192520 703107 733747 (224 digits), a[437] = 1
                                                                                      A[438]/B[438] = 1 536749 711611 753015 373887 285664 699364 428499 195818 423843 161673 767439 031670 501395 152889 720045 586265 324840 658750 793533 295844 917825 878620 946100 328827 090940 313321 776865 515550 304993 852589 485599 877020 749235 191069 766162 861285 994252 (223 digits)/149 362122 207562 973692 491837 606698 312739 943180 910631 484074 471967 042607 112984 278938 888274 546954 125577 380587 408363 808824 815538 929649 457498 579034 733535 419911 619824 975285 540900 644347 881461 539936 605731 073585 312552 851419 967913 598067 (225 digits), a[438] = 3
                                                                                      A[439]/B[439] = 1 927499 245089 471758 717490 657493 381424 671274 200159 912482 337840 968100 516317 863617 377688 634115 998883 303686 833896 074562 351427 441413 557895 440016 895374 595143 839957 241996 267101 534135 995375 115095 143769 576944 877387 030830 511195 723987 (223 digits)/187 340446 934649 186687 341402 371002 721983 618229 545320 608418 678995 526049 498945 696691 072237 638737 051350 292024 502969 364018 892793 802037 750658 161440 432191 798546 078896 035427 355534 123868 696278 400444 866985 497750 131538 043940 671021 331814 (225 digits), a[439] = 1
                                                                                      A[440]/B[440] = 3 464248 956701 224774 091377 943158 080789 099773 395978 336325 499514 735539 547988 365012 530578 354161 585148 628527 492646 868095 647272 359239 436516 386117 224201 686084 153279 018861 782651 839129 847964 600695 020790 326180 068456 796993 372481 718239 (223 digits)/336 702569 142212 160379 833239 977701 034723 561410 455952 092493 150962 568656 611929 975629 960512 185691 176927 672611 911333 172843 708332 731687 208156 740475 165727 218457 698721 010712 896434 768216 577739 940381 472716 571335 444090 895360 638934 929881 (225 digits), a[440] = 1
                                                                                      A[441]/B[441] = 5 391748 201790 696532 808868 600651 462213 771047 596138 248807 837355 703640 064306 228629 908266 988277 584031 932214 326542 942657 998699 800652 994411 826134 119576 281227 993236 260858 049753 373265 843339 715790 164559 903124 945843 827823 883677 442226 (223 digits)/524 043016 076861 347067 174642 348703 756707 179640 001272 700911 829958 094706 110875 672321 032749 824428 228277 964636 414302 536862 601126 533724 958814 901915 597919 017003 777617 046140 251968 892085 274018 340826 339702 069085 575628 939301 309956 261695 (225 digits), a[441] = 1
                                                                                      A[442]/B[442] = 14 247745 360282 617839 709115 144461 005216 641868 588254 833941 174226 142819 676600 822272 347112 330716 753212 492956 145732 753411 644671 960545 425340 038385 463354 248540 139751 540577 882158 585661 534644 032275 349910 132429 960144 452641 139836 602691 (224 digits)/1384 788601 295934 854514 182524 675108 548137 920690 458497 494316 810878 758068 833681 320272 026011 834547 633483 601884 739938 246568 910585 799137 125786 544306 361565 252465 253955 102993 400372 552387 125776 622034 152120 709506 595348 773963 258847 453271 (226 digits), a[442] = 2
                                                                                      A[443]/B[443] = 33 887238 922355 932212 227098 889573 472647 054784 772647 916690 185807 989279 417507 873174 602491 649711 090456 918126 618008 449481 288043 721743 845091 902905 046284 778308 272739 342013 814070 544588 912627 780340 864380 167984 866132 733106 163350 647608 (224 digits)/3293 620218 668731 056095 539691 698920 852983 021020 918267 689545 451715 610843 778238 312865 084773 493523 495245 168405 894179 030000 422298 131999 210387 990528 321049 521934 285527 252127 052713 996859 525571 584894 643943 488098 766326 487227 827651 168237 (226 digits), a[443] = 2
                                                                                      A[444]/B[444] = 48 134984 282638 550051 936214 034034 477863 696653 360902 750631 360034 132099 094108 695446 949603 980427 843669 411082 763741 202892 932715 682289 270431 941290 509639 026848 412490 882591 696229 130250 447271 812616 214290 300414 826277 185747 303187 250299 (224 digits)/4678 408819 964665 910609 722216 374029 401120 941711 376765 183862 262594 368912 611919 633137 110785 328071 128728 770290 634117 276569 332883 931136 336174 534834 682614 774399 539482 355120 453086 549246 651348 206928 796064 197605 361675 261191 086498 621508 (226 digits), a[444] = 1
                                                                                      A[445]/B[445] = 82 022223 204994 482264 163312 923607 950510 751438 133550 667321 545842 121378 511616 568621 552095 630138 934126 329209 381749 652374 220759 404033 115523 844195 555923 805156 685230 224605 510299 674839 359899 592957 078670 468399 692409 918853 466537 897907 (224 digits)/7972 029038 633396 966705 261908 072950 254103 962732 295032 873407 714309 979756 390157 946002 195558 821594 623973 938696 528296 306569 755182 063135 546562 525363 003664 296333 825009 607247 505800 546106 176919 791823 440007 685704 128001 748418 914149 789745 (226 digits), a[445] = 1
                                                                                      A[446]/B[446] = 130 157207 487633 032316 099526 957642 428374 448091 494453 417952 905876 253477 605725 264068 501699 610566 777795 740292 145490 855267 153475 086322 385955 785486 065562 832005 097721 107197 206528 805089 807171 405573 292960 768814 518687 104600 769725 148206 (225 digits)/12650 437858 598062 877314 984124 446979 655224 904443 671798 057269 976904 348669 002077 579139 306344 149665 752702 708987 162413 583139 088065 994271 882737 060197 686279 070733 364491 962367 958887 095352 828267 998752 236071 883309 489677 009610 000648 411253 (227 digits), a[446] = 1
                                                                                      A[447]/B[447] = 212 179430 692627 514580 262839 881250 378885 199529 628004 085274 451718 374856 117341 832690 053795 240705 711922 069501 527240 507641 374234 490355 501479 629681 621486 637161 782951 331802 716828 479929 167070 998530 371631 237214 211097 023454 236263 046113 (225 digits)/20622 466897 231459 844020 246032 519929 909328 867175 966830 930677 691214 328425 392235 525141 501902 971260 376676 647683 690709 889708 843248 057407 429299 585560 689943 367067 189501 569615 464687 641459 005187 790575 676079 569013 617678 758028 914798 200998 (227 digits), a[447] = 1
                                                                                      A[448]/B[448] = 342 336638 180260 546896 362366 838892 807259 647621 122457 503227 357594 628333 723067 096758 555494 851272 489717 809793 672731 362908 527709 576677 887435 415167 687049 469166 880672 438999 923357 285018 974242 404103 664592 006028 729784 128055 005988 194319 (225 digits)/33272 904755 829522 721335 230156 966909 564553 771619 638628 987947 668118 677094 394313 104280 808247 120926 129379 356670 853123 472847 931314 051679 312036 645758 376222 437800 553993 531983 423574 736811 833455 789327 912151 452323 107355 767638 915446 612251 (227 digits), a[448] = 1
                                                                                      A[449]/B[449] = 2950 872536 134711 889751 161774 592392 836962 380498 607664 111093 312475 401525 901878 606758 497754 050885 629664 547850 909091 410909 595911 103778 600962 951023 117882 390496 828330 843802 103686 760080 961010 231359 688367 285444 049370 047894 284168 600665 (226 digits)/286805 704943 867641 614702 087288 255206 425759 040133 075862 834259 036163 745180 546740 359387 967879 938669 411711 501050 515697 672492 293760 470841 925592 751627 699722 869471 621449 825482 853285 535953 672834 105198 973291 187598 476524 899140 238371 099006 (228 digits), a[449] = 8
                                                                                      A[450]/B[450] = 9194 954246 584396 216149 847690 616071 318146 789116 945449 836507 295020 832911 428702 917034 048757 003929 378711 453346 400005 595637 315442 888013 690324 268237 040696 640657 365664 970406 234417 565261 857273 098182 729693 862360 877894 271737 858493 996314 (226 digits)/893690 019587 432447 565441 492021 732528 841830 892018 866217 490724 776609 912636 034534 182444 711886 936934 364513 859822 400216 490324 812595 464205 088814 900641 475391 046215 418343 008431 983431 344672 851958 104924 832025 015118 536930 465059 630559 909269 (228 digits), a[450] = 3
                                                                                      A[451]/B[451] = 186849 957467 822636 212748 115586 913819 199898 162837 516660 841239 212892 059754 475936 947439 472894 129473 203893 614778 909203 323655 904768 864052 407448 315763 931815 203644 141630 251926 792038 065318 106472 195014 282244 532661 607255 482651 454048 526945 (228 digits)/18 160606 096692 516592 923531 927722 905783 262376 880510 400212 648754 568361 997901 237424 008282 205618 677356 701988 697498 520027 478988 545669 754943 701890 764457 207543 793779 988309 994122 521912 429410 711996 203695 613791 489969 215134 200332 849569 284386 (230 digits), a[451] = 20
                                                                                      A[452]/B[452] = 5 614693 678281 263482 598593 315298 030647 315091 674242 445275 073683 681782 625545 706811 340218 235580 888125 495519 896713 676105 305314 458508 809585 913773 741154 995152 749981 614572 528209 995559 524805 051438 948611 197029 842209 095558 751281 479949 804664 (229 digits)/545 711872 920362 930235 271399 323708 906026 713137 307330 872596 953361 827469 849673 157254 430910 880447 257635 424174 784778 001040 859981 182688 112516 145537 834357 701704 859615 067642 832107 640804 226994 211844 215793 245769 714194 990956 475045 117638 440849 (231 digits), a[452] = 30
                                                                                      A[453]/B[453] = 5 801543 635749 086118 811341 430884 944466 514989 837079 961935 914922 894674 685300 182748 287657 708475 017598 699413 511492 585308 628970 363277 673638 321222 056918 926967 953625 756202 780136 787597 590123 157911 143625 479274 374870 702814 233932 933998 331609 (229 digits)/563 872479 017055 446828 194931 251431 811809 975514 187841 272809 602116 395831 847574 394678 439193 086065 934992 126163 482276 521068 338969 728357 867459 847428 598814 909248 653395 055952 826230 162716 656404 923840 419488 859561 204164 206090 675377 967207 725235 (231 digits), a[453] = 1
                                                                                      A[454]/B[454] = 46 225499 128524 866314 277983 331492 641912 920020 533802 178826 478143 944505 422646 986049 353822 194906 011316 391414 477161 773265 708107 001452 525054 162328 139587 483928 425361 907991 989167 508742 655667 156816 953989 551950 466304 015258 388812 017938 125927 (230 digits)/4492 819226 039751 058032 635918 083731 588696 541736 622219 782264 168176 598292 782693 920003 505262 482908 802580 307319 160713 648519 232769 281193 184735 077538 026062 066445 433380 459312 615718 779820 821828 678727 152215 262698 143344 433591 202690 888092 517494 (232 digits), a[454] = 7
                                                                                      A[455]/B[455] = 236 929039 278373 417690 201258 088348 154031 115092 506090 856068 305642 617201 798535 112995 056768 683005 074180 656485 897301 451637 169505 370540 298909 132862 754856 346610 080435 296162 725974 331310 868458 941995 913573 239026 706390 779106 177993 023688 961244 (231 digits)/23027 968609 215810 736991 374521 670089 755292 684197 298940 184130 442999 387295 761043 994695 965505 500609 947893 662759 285844 763664 502816 134323 791135 235118 729125 241475 820297 352515 904824 061820 765548 317476 180565 173051 920886 374046 688832 407670 312705 (233 digits), a[455] = 5
                                                                                      A[456]/B[456] = 14498 896895 109303 345416 554726 720730 037810 940663 405344 398993 122343 593815 133288 878747 816711 858215 536336 437054 212550 323133 047934 604410 758511 266956 185824 627143 331914 973918 273601 718705 631662 618567 681957 132579 556141 540735 246386 462964 761811 (233 digits)/1 409198 904388 204206 014506 481739 959206 661550 277771 857571 014221 191139 223334 206377 596457 401098 020115 624093 735635 597244 232053 904553 474944 443984 419780 502701 796470 471518 962782 809986 550887 520276 044774 166690 818865 317413 250439 221467 755981 592499 (235 digits), a[456] = 61
                                                                                      A[457]/B[457] = 14735 825934 387676 763106 755984 809078 191842 055755 911435 255061 427986 211016 931823 991742 873480 541220 610517 093540 109851 774770 217439 974951 057420 399818 940680 973753 412350 270080 999576 050016 500121 560563 595530 371606 262532 319841 424379 486653 723055 (233 digits)/1 432226 872997 420016 751497 856261 629296 416842 961969 156511 198351 634138 610629 967421 591153 366603 520725 571987 398394 883088 995718 407369 609268 235119 654899 231827 037946 291816 315298 714810 612708 285824 362250 347255 991917 238299 624485 910300 163651 905204 (235 digits), a[457] = 1
                                                                                      A[458]/B[458] = 88178 026567 047687 160950 334650 766120 997021 219442 962520 674300 262274 648899 792408 837462 184114 564318 588921 904754 761809 196984 135134 479166 045613 266050 889229 495910 393666 324323 271481 968788 132270 421385 659608 990610 868803 139942 368283 896233 377086 (233 digits)/8 570333 269375 304289 771995 763048 105688 745765 087617 640127 005979 361832 276484 043485 552224 234115 623743 484030 727610 012689 210645 941401 521285 619582 694276 661836 986201 930600 539276 384039 614428 949397 856025 902970 778451 508911 372868 772968 574241 118519 (235 digits), a[458] = 5
                                                                                      A[459]/B[459] = 191091 879068 483051 085007 425286 341320 185884 494641 836476 603661 952535 508816 516641 666667 241709 669857 788360 903049 633470 168738 487708 933283 148646 931920 719139 965574 199682 918727 542539 987592 764662 403334 914748 352828 000138 599726 160947 279120 477227 (234 digits)/18 572893 411748 028596 295489 382357 840673 908373 137204 436765 210310 357803 163598 054392 695601 834834 768212 540048 853614 908467 417010 290172 651839 474285 043452 555501 010350 153017 393851 482889 841566 184620 074302 153197 548820 256122 370223 456237 312134 142242 (236 digits), a[459] = 2
                                                                                      A[460]/B[460] = 2 381280 575388 844300 181039 438086 861963 227635 155145 000239 918243 692700 754697 992108 837469 084630 602612 049252 741350 363451 221845 987641 678563 829376 449099 518909 082800 789861 349053 781961 819901 308219 261404 636589 224546 870466 336656 299651 245679 103810 (235 digits)/231 445054 210351 647445 317868 351342 193775 646242 734070 881309 529703 655470 239660 696197 899446 252132 842293 964616 970988 914298 214769 423473 343359 311003 215707 327849 110403 766809 265494 178717 713223 164838 747651 741341 364294 582379 815550 247816 319850 825423 (237 digits), a[460] = 12
                                                                                      A[461]/B[461] = 2 572372 454457 327351 266046 863373 203283 413519 649786 836716 521905 645236 263514 508750 504136 326340 272469 837613 644399 996921 390584 475350 611846 978023 381020 238049 048374 989544 267781 324501 807494 072881 664739 551337 577374 870604 936382 460598 524799 581037 (235 digits)/250 017947 622099 676041 613357 733700 034449 554615 871275 318074 740014 013273 403258 750590 595048 086967 610506 504665 824603 822765 631779 713645 995198 785288 259159 883350 120753 919826 659345 661607 554789 349458 821953 894538 913114 838502 185773 704053 631984 967665 (237 digits), a[461] = 1
                                                                                      A[462]/B[462] = 7 526025 484303 499002 713133 164833 268530 054674 454718 673672 962054 983173 281727 009609 845741 737311 147551 724480 030150 357294 003014 938342 902257 785423 211139 995007 179550 768949 884616 430965 434889 453982 590883 739264 379296 611676 209421 220848 295278 265884 (235 digits)/731 480949 454550 999528 544583 818742 262674 755474 476621 517459 009731 682017 046178 197379 089542 426068 063306 973948 620196 559829 478328 850765 333756 881579 734027 094549 351911 606462 584185 501932 822801 863756 391559 530419 190524 259384 187097 655923 583820 760753 (237 digits), a[462] = 2
                                                                                      A[463]/B[463] = 10 098397 938760 826353 979180 028206 471813 468194 104505 510389 483960 628409 545241 518360 349878 063651 420021 562093 674550 354215 393599 413693 514104 763446 592160 233056 227925 758494 152397 755467 242383 526864 255623 290601 956671 482281 145803 681446 820077 846921 (236 digits)/981 498897 076650 675570 157941 552442 297124 310090 347896 835533 749745 695290 449436 947969 684590 513035 673813 478614 444800 382595 110108 564411 328955 666867 993186 977899 472665 526289 243531 163540 377591 213215 213513 424958 103639 097886 372871 359977 215805 728418 (237 digits), a[463] = 1
                                                                                      A[464]/B[464] = 17 624423 423064 325356 692313 193039 740343 522868 559224 184062 446015 611582 826968 527970 195619 800962 567573 286573 704700 711509 396614 352036 416362 548869 803300 228063 407476 527444 037014 186432 677272 980846 846507 029866 335968 093957 355224 902295 115356 112805 (236 digits)/1712 979846 531201 675098 702525 371184 559799 065564 824518 352992 759477 377307 495615 145348 774132 939103 737120 452563 064996 942424 588437 415176 662712 548447 727214 072448 824577 132751 827716 665473 200393 076971 605072 955377 294163 357270 559969 015900 799626 489171 (238 digits), a[464] = 1
                                                                                      A[465]/B[465] = 27 722821 361825 151710 671493 221246 212156 991062 663729 694451 929976 239992 372210 046330 545497 864613 987594 848667 379251 065724 790213 765729 930467 312316 395460 461119 635402 285938 189411 941899 919656 507711 102130 320468 292639 576238 501028 583741 935433 959726 (236 digits)/2694 478743 607852 350668 860466 923626 856923 375655 172415 188526 509223 072597 945052 093318 458723 452139 410933 931177 509797 325019 698545 979587 991668 215315 720401 050348 297242 659041 071247 829013 577984 290186 818586 380335 397802 455156 932840 375878 015432 217589 (238 digits), a[465] = 1
                                                                                      A[466]/B[466] = 100 792887 508539 780488 706792 856778 376814 496056 550413 267418 235944 331559 943598 666961 832113 394804 530357 832575 842453 908683 767255 649226 207764 485818 989681 611422 313683 385258 605250 012132 436242 503980 152897 991271 213886 822672 858310 653520 921657 991983 (237 digits)/9796 416077 354758 727105 283926 142065 130569 192530 341763 918572 287146 595101 330771 425304 150303 295521 969922 246095 594388 917483 684075 353940 637717 194394 888417 223493 716305 109875 041460 152513 934345 947532 060832 096383 487570 722741 358490 143534 845923 141938 (238 digits), a[466] = 3
                                                                                      A[467]/B[467] = 229 308596 378904 712688 085078 934802 965785 983175 764556 229288 401864 903112 259407 380254 209724 654223 048310 513819 064158 883092 324725 064182 345996 283954 374823 683964 262769 056455 399911 966164 792141 515671 407926 303010 720413 221584 217649 890783 778749 943692 (237 digits)/22287 310898 317369 804879 428319 207757 118061 760715 855943 025671 083516 262800 606594 943926 759330 043183 350778 423368 698575 159987 066696 687469 267102 604105 497235 497335 729852 878791 154168 134041 446676 185250 940250 573102 372943 900639 649820 662947 707278 501465 (239 digits), a[467] = 2
                                                                                      A[468]/B[468] = 330 101483 887444 493176 791871 791581 342600 479232 314969 496706 637809 234672 203006 047216 041838 049027 578668 346394 906612 791776 091980 713408 553760 769773 364505 295386 576452 441714 005161 978297 228384 019651 560824 294281 934300 044257 075960 544304 700407 935675 (237 digits)/32083 726975 672128 531984 712245 349822 248630 953246 197706 944243 370662 857901 937366 369230 909633 338705 320700 669464 292964 077470 750772 041409 904819 798500 385652 720829 446157 988666 195628 286555 381022 132783 001082 669485 860514 623381 008310 806482 553201 643403 (239 digits), a[468] = 1
                                                                                      A[469]/B[469] = 889 511564 153793 699041 668822 517965 650986 941640 394495 222701 677483 372456 665419 474686 293400 752278 205647 206608 877384 466644 508686 490999 453517 823501 103834 274737 415673 939883 410235 922759 248909 554974 529574 891574 589013 310098 369570 979393 179565 815042 (237 digits)/86454 764849 661626 868848 852809 907401 615323 667208 251356 914157 824841 978604 481327 682388 578596 720593 992179 762297 284503 314928 568240 770289 076742 201106 268540 938994 622168 856123 545424 707152 208720 450816 942415 912074 093973 147401 666442 275912 813681 788271 (239 digits), a[469] = 2
                                                                                      A[470]/B[470] = 1219 613048 041238 192218 460694 309546 993587 420872 709464 719408 315292 607128 868425 521902 335238 801305 784315 553003 783997 258420 600667 204408 007278 593274 468339 570123 992126 381597 415397 901056 477293 574626 090399 185856 523313 354355 445531 523697 879973 750717 (238 digits)/118538 491825 333755 400833 565055 257223 863954 620454 449063 858401 195504 836506 418694 051619 488230 059299 312880 431761 577467 392399 319012 811698 981561 999606 654193 659824 068326 844789 741052 993707 589742 583599 943498 581559 954487 770782 674753 082395 366883 431674 (240 digits), a[470] = 1
                                                                                      A[471]/B[471] = 5767 963756 318746 467915 511599 756153 625336 625131 232354 100334 938653 800972 139121 562295 634355 957501 342909 418624 013373 500326 911355 308631 482632 196598 977192 555233 384179 466273 071827 526985 158083 853478 891171 635000 682266 727520 151697 074184 699460 817910 (238 digits)/560608 732150 996648 472183 113030 936297 071142 149026 047612 347762 606861 324630 156103 888866 531516 957791 243701 489343 594372 884525 844292 017085 002990 199532 885315 578290 895476 235282 509636 681982 567690 785216 716410 238313 911924 230532 365454 605494 281215 514967 (240 digits), a[471] = 4
                                                                                      A[472]/B[472] = 47363 323098 591209 935542 553492 358775 996280 421922 568297 522087 824523 014905 981398 020267 410086 461316 527590 901995 890985 261035 891509 673459 868336 166066 285880 011991 065562 111781 990018 116937 741964 402457 219772 265861 981447 174516 659108 117175 475660 293997 (239 digits)/4 603408 349033 306943 178298 469302 747600 433091 812662 829962 640502 050395 433547 667525 162551 740365 721629 262492 346510 332450 468606 073348 948379 005483 595869 736718 286151 232136 727049 818146 449568 131268 865333 674780 488071 249881 615041 598389 926349 616607 551410 (241 digits), a[472] = 8
                                                                                      A[473]/B[473] = 195221 256150 683586 210085 725569 191257 610458 312821 505544 188686 236745 860596 064713 643365 274701 802767 453273 026607 577314 544470 477394 002470 955976 860864 120712 603197 646427 913401 031899 994736 125941 463307 770260 698448 608055 425586 788129 542886 602101 993898 (240 digits)/18 974242 128284 224421 185376 990241 926698 803509 399677 367462 909770 808443 058820 826204 539073 492979 844308 293670 875384 924174 758950 137687 810601 024924 583011 832188 722895 824023 143481 782222 480255 092766 246551 415532 190598 911450 690698 759014 310892 747645 720607 (242 digits), a[473] = 4
                                                                                      A[474]/B[474] = 242584 579249 274796 145628 279061 550033 606738 734744 073841 710774 061268 875502 046111 663632 684788 264083 980863 928603 468299 805506 368903 675930 824313 026930 406592 615188 711990 025183 021918 111673 867905 865764 990032 964310 589502 600103 447237 660062 077762 287895 (240 digits)/23 577650 477317 531364 363675 459544 674299 236601 212340 197425 550272 858838 492368 493729 701625 233345 565937 556163 221895 256625 227556 211036 758980 030408 178881 568907 009047 056159 870531 600368 929823 224035 111885 090312 678670 161332 305740 357404 237242 364253 272017 (242 digits), a[474] = 1
                                                                                      A[475]/B[475] = 437805 835399 958382 355714 004630 741291 217197 047565 579385 899460 298014 736098 110825 306997 959490 066851 434136 955211 045614 349976 846297 678401 780289 887794 527305 218386 358417 938584 053818 106409 993847 329072 760293 662759 197558 025690 235367 202948 679864 281793 (240 digits)/42 551892 605601 755785 549052 449786 600998 040110 612017 564888 460043 667281 551189 319934 240698 726325 410245 849834 097280 180799 986506 348724 569581 055332 761893 401095 731942 880183 014013 382591 410078 316801 358436 505844 869269 072782 996439 116418 548135 111898 992624 (242 digits), a[475] = 1
                                                                                      A[476]/B[476] = 680390 414649 233178 501342 283692 291324 823935 782309 653227 610234 359283 611600 156936 970630 644278 330935 415000 883814 513914 155483 215201 354332 604602 914724 933897 833575 070407 963767 075736 218083 861753 194837 750326 627069 787060 625793 682604 863010 757626 569688 (240 digits)/66 129543 082919 287149 912727 909331 275297 276711 824357 762314 010316 526120 043557 813663 942323 959670 976183 405997 319175 437425 214062 559761 328561 085740 940774 970002 740989 936342 884544 982960 339901 540836 470321 596157 547939 234115 302179 473822 785377 476152 264641 (242 digits), a[476] = 1
                                                                                      A[477]/B[477] = 1 118196 250049 191560 857056 288323 032616 041132 829875 232613 509694 657298 347698 267762 277628 603768 397786 849137 839025 559528 505460 061499 032734 384892 802519 461203 051961 428825 902351 129554 324493 855600 523910 510620 289828 984618 651483 917972 065959 437490 851481 (241 digits)/108 681435 688521 042935 461780 359117 876295 316822 436375 327202 470360 193401 594747 133598 183022 685996 386429 255831 416455 618225 200568 908485 898142 141073 702668 371098 472932 816525 898558 365551 749979 857637 828758 102002 417208 306898 298618 590241 333512 588051 257265 (243 digits), a[477] = 1
                                                                                      A[478]/B[478] = 1 798586 664698 424739 358398 572015 323940 865068 612184 885841 119929 016581 959298 424699 248259 248046 728722 264138 722840 073442 660943 276700 387066 989495 717244 395100 885536 499233 866118 205290 542577 717353 718748 260946 916898 771679 277277 600576 928970 195117 421169 (241 digits)/174 810978 771440 330085 374508 268449 151592 593534 260733 089516 480676 719521 638304 947262 125346 645667 362612 661828 735631 055650 414631 468247 226703 226814 643443 341101 213922 752868 783103 348512 089881 398474 299079 698159 965147 541013 600798 064064 118890 064203 521906 (243 digits), a[478] = 1
                                                                                      A[479]/B[479] = 8 312542 908842 890518 290650 576384 328379 501407 278614 775977 989410 723626 184891 966559 270665 595955 312675 905692 730385 853299 149233 168300 581002 342875 671497 041606 594107 425761 366823 950716 494804 725015 398903 554407 957424 071335 760594 320279 781840 217960 536157 (241 digits)/807 925350 774282 363276 959813 432914 482665 690959 479307 685268 393067 071488 147966 922646 684409 268665 836879 903146 358979 840826 859094 781474 804955 048332 276441 735503 328623 828001 030971 759600 109505 451535 025076 894642 277798 470952 701810 846497 809072 844865 344889 (243 digits), a[479] = 4
                                                                                      A[480]/B[480] = 10 111129 573541 315257 649049 148399 652320 366475 890799 661819 109339 740208 144190 391258 518924 844002 041398 169831 453225 926741 810176 445000 968069 332371 388741 436707 479643 924995 232942 156007 037382 442369 117651 815354 874322 843015 037871 920856 710810 413077 957326 (242 digits)/982 736329 545722 693362 334321 701363 634258 284493 740040 774784 873743 791009 786271 869908 809755 914333 199492 564975 094610 896477 273726 249722 031658 275146 919885 076604 542546 580869 814075 108112 199386 850009 324156 592802 242946 011966 302608 910561 927962 909068 866795 (243 digits), a[480] = 1
                                                                                      A[481]/B[481] = 18 423672 482384 205775 939699 724783 980699 867883 169414 437797 098750 463834 329082 357817 789590 439957 354074 075524 183611 780040 959409 613301 549071 675247 060238 478314 073751 350756 599766 106723 532187 167384 516555 369762 831746 914350 798466 241136 492650 631038 493483 (242 digits)/1790 661680 320005 056639 294135 134278 116923 975453 219348 460053 266810 862497 934238 792555 494165 182999 036372 468121 453590 737304 132821 031196 836613 323479 196326 812107 871170 408870 845046 867712 308892 301544 349233 487444 520744 482919 004419 757059 737035 753934 211684 (244 digits), a[481] = 1
                                                                                      A[482]/B[482] = 28 534802 055925 521033 588748 873183 633020 234359 060214 099616 208090 204042 473272 749076 308515 283959 395472 245355 636837 706782 769586 058302 517141 007618 448979 915021 553395 275751 832708 262730 569569 609753 634207 185117 706069 757365 836338 161993 203461 044116 450809 (242 digits)/2773 398009 865727 750001 628456 835641 751182 259946 959389 234838 140554 653507 720510 662464 303921 097332 235865 033096 548201 633781 406547 280918 868271 598626 116211 888712 413716 989740 659121 975824 508279 151553 673390 080246 763690 494885 307028 667621 664998 663003 078479 (244 digits), a[482] = 1
                                                                                      A[483]/B[483] = 46 958474 538309 726809 528448 597967 613720 102242 229628 537413 306840 667876 802355 106894 098105 723916 749546 320879 820449 486823 728995 671604 066212 682865 509218 393335 627146 626508 432474 369454 101756 777138 150762 554880 537816 671716 634804 403129 696111 675154 944292 (242 digits)/4564 059690 185732 806640 922591 969919 868106 235400 178737 694891 407365 516005 654749 455019 798086 280331 272237 501218 001792 371085 539368 312115 704884 922105 312538 700820 284887 398611 504168 843536 817171 453098 022623 567691 284434 977804 311448 424681 402034 416937 290163 (244 digits), a[483] = 1
                                                                                      A[484]/B[484] = 545 078021 977332 515938 401683 450827 383941 359023 586128 011162 583337 550687 299178 924911 387678 247043 640481 775033 661782 061843 788538 445947 245480 519139 050382 241713 452008 167344 589926 326725 688894 158273 292595 288803 622053 146248 819186 596419 860689 470820 838021 (243 digits)/52978 054601 908788 623051 776968 504760 300350 849348 925503 878643 621575 329569 922754 667682 082870 180976 230477 546494 567917 715722 339598 714191 622005 741784 554137 597735 547478 374467 204979 254729 497165 135631 922249 324850 892475 250732 732961 339117 087377 249313 270272 (245 digits), a[484] = 11
                                                                                      A[485]/B[485] = 33296 717815 155593 199052 031139 098438 034143 002680 983437 218330 890431 259802 052269 526488 746478 793578 818934 597933 189155 259294 829840 874386 040524 350347 582535 137856 199644 834528 417980 299721 124300 431808 999075 171901 483058 592894 605186 784741 198169 395226 063573 (245 digits)/3 236225 390406 621838 812799 317670 760298 189508 045684 634474 292152 323460 619770 942784 183626 853167 319881 331367 837386 644773 030148 254889 877804 647235 170963 114932 162688 681068 241111 007903 382036 144244 726645 279832 383595 725425 272501 022090 110823 732046 625046 776755 (247 digits), a[485] = 61
                                                                                      A[486]/B[486] = 33841 795837 132925 714990 432822 549265 418084 361704 569565 229493 473768 810489 351448 451400 134157 040622 459416 372966 850937 321138 618379 320333 286004 869486 632917 379569 651653 001873 007906 626446 813194 590082 291670 460705 105111 739143 424373 381161 058858 866046 901594 (245 digits)/3 289203 445008 530627 435851 094639 265058 489858 895033 559978 170795 945035 949340 865538 851308 936037 500857 561845 383881 212690 745870 594488 591996 269240 912747 669069 760424 228546 615578 212882 636765 641409 862277 202081 708446 617900 523233 755051 449940 819423 874360 047027 (247 digits), a[486] = 1
                                                                                      A[487]/B[487] = 67138 513652 288518 914042 463961 647703 452227 364385 553002 447824 364200 070291 403717 977888 880635 834201 278350 970900 040092 580433 448220 194719 326529 219834 215452 517425 851297 836401 425886 926167 937495 021891 290745 632606 588170 332038 029560 165902 257028 261272 965167 (245 digits)/6 525428 835415 152466 248650 412310 025356 679366 940718 194452 462948 268496 569111 808323 034935 789204 820738 893213 221267 857463 776018 849378 469800 916476 083710 784001 923112 909614 856689 220786 018801 785654 588922 481914 092042 343325 795734 777141 560764 551470 499406 823782 (247 digits), a[487] = 1
                                                                                      A[488]/B[488] = 168118 823141 709963 543075 360745 844672 322539 090475 675570 125142 202168 951072 158884 407177 895428 709025 016118 314766 931122 482005 514819 709771 939063 309155 063822 414421 354248 674675 859680 478782 688184 633864 873161 725918 281452 403219 483493 712965 572915 388592 831928 (246 digits)/16 340061 115838 835559 933151 919259 315771 848592 776469 948883 096692 482029 087564 482184 921180 514447 142335 348271 826416 927618 297908 293245 531598 102193 080169 237073 606650 047776 328956 654454 674369 212719 040122 165909 892531 304552 114703 309334 571469 922364 873173 694591 (248 digits), a[488] = 2
                                                                                      A[489]/B[489] = 235257 336793 998482 457117 824707 492375 774766 454861 228572 572966 566369 021363 562602 385066 776064 543226 294469 285666 971215 062438 963039 904491 265592 528989 279274 931847 205546 511077 285567 404950 625679 655756 163907 358524 869622 735257 513053 878867 829943 649865 797095 (246 digits)/22 865489 951253 988026 181802 331569 341128 527959 717188 143335 559640 750525 656676 290507 956116 303651 963074 241485 047684 785082 073927 142624 001399 018669 163880 021075 529762 957391 185645 875240 693170 998373 629044 647823 984573 647877 910438 086476 132234 473835 372580 518373 (248 digits), a[489] = 1
                                                                                      A[490]/B[490] = 403376 159935 708446 000193 185453 337048 097305 545336 904142 698108 768537 972435 721486 792244 671493 252251 310587 600433 902337 544444 477859 614263 204655 838144 343097 346268 559795 185753 145247 883733 313864 289621 037069 084443 151075 138476 996547 591833 402859 038458 629023 (246 digits)/39 205551 067092 823586 114954 250828 656900 376552 493658 092218 656333 232554 744240 772692 877296 818099 105409 589756 874101 712700 371835 435869 532997 120862 244049 258149 136413 005167 514602 529695 367540 211092 669166 813733 877104 952430 025141 395810 703704 396200 245754 212964 (248 digits), a[490] = 1
                                                                                      A[491]/B[491] = 15 563551 414350 919430 464458 871934 300203 472377 177663 585995 101099 770811 973920 979100 490364 292808 128776 096798 102155 260041 751329 121705 246493 042514 378474 316974 090052 477763 569696 804986 986816 552522 661355 572532 567364 610477 997383 381862 368537 138587 111293 699969 (248 digits)/1512 676430 500781 284298 550063 863058 303342 836954 476195 647644 500303 587605 937825 652837 293395 391417 968638 652246 263549 867696 203673 705666 255289 611434 437751 830742 713457 153756 740542 003664 659699 019895 057383 569711 314561 840218 865811 127282 873001 529444 711240 611005 (250 digits), a[491] = 38
                                                                                      A[492]/B[492] = 15 966927 574286 627876 464652 057387 637251 569682 723000 490137 799208 539349 946356 700587 282608 964301 381027 407385 702589 162379 295773 599564 860756 247170 216618 660071 436321 037558 755449 950234 870549 866386 950976 609601 651807 761553 135860 378409 960370 541446 149752 328992 (248 digits)/1551 881981 567874 107884 665018 113886 960243 213506 969853 739863 156636 820160 682066 425530 170692 209517 074048 242003 137651 580396 575509 141535 788286 732296 681801 088891 849870 158924 255144 533360 027239 230987 726550 383445 191666 792648 890952 523093 576705 925644 956994 823969 (250 digits), a[492] = 1
                                                                                      A[493]/B[493] = 31 530478 988637 547306 929110 929321 937455 042059 900664 076132 900308 310161 920277 679687 772973 257109 509803 504183 804744 422421 047102 721270 107249 289684 595092 977045 526373 515322 325146 755221 857366 418909 612332 182134 219172 372031 133243 760272 328907 680033 261046 028961 (248 digits)/3064 558412 068655 392183 215081 976945 263586 050461 446049 387507 656940 407766 619892 078367 464087 600935 042686 894249 401201 448092 779182 847202 043576 343731 119552 919634 563327 312680 995686 537024 686938 250882 783933 953156 506228 632867 756763 650376 449707 455089 668235 434974 (250 digits), a[493] = 1
                                                                                      A[494]/B[494] = 79 027885 551561 722490 322873 916031 512161 653802 524328 642403 599825 159673 786912 059962 828555 478520 400634 415753 312078 007221 389979 042105 075254 826539 406804 614162 489068 068203 405743 460678 585282 704206 175640 973870 090152 505615 402347 898954 618185 901512 671844 386914 (248 digits)/7680 998805 705184 892251 095182 067777 487415 314429 861952 514878 470517 635693 921850 582265 098867 411387 159422 030501 940054 476582 133874 835939 875439 419758 920906 928160 976524 784286 246517 607409 401115 732753 294418 289758 204124 058384 404479 823846 476120 835824 293465 693917 (250 digits), a[494] = 2
                                                                                      A[495]/B[495] = 110 558364 540199 269797 251984 845353 449616 695862 424992 718536 500133 469835 707189 739650 601528 735629 910437 919937 116822 429642 437081 763375 182504 116224 001897 591208 015441 583525 730890 215900 442649 123115 787973 156004 309324 877646 535591 659226 947093 581545 932890 415875 (249 digits)/10745 557217 773840 284434 310264 044722 751001 364891 308001 902386 127458 043460 541742 660632 562955 012322 202108 924751 341255 924674 913057 683141 919015 763490 040459 847795 539852 096967 242204 144434 088053 983636 078352 242914 710352 691252 161243 474222 925828 290913 961701 128891 (251 digits), a[495] = 1
                                                                                      A[496]/B[496] = 521 261343 712358 801679 330813 297445 310628 437252 224299 516549 600359 039016 615671 018565 234670 421040 042386 095501 779367 725791 138306 095605 805271 291435 414394 978994 550834 402306 329304 324280 355879 196669 327533 597887 327452 016201 544714 535862 406560 227696 403406 050414 (249 digits)/50663 227676 800546 029988 336238 246668 491420 773995 093960 124422 980349 809536 088821 224795 350687 460675 967857 729507 305078 175281 786105 568507 551502 473719 082746 319343 135933 172155 215334 185145 753331 667297 607827 261417 045534 823393 049453 720738 179433 999480 140270 209481 (251 digits), a[496] = 4
                                                                                      A[497]/B[497] = 3238 126426 814352 079873 236864 630025 313387 319375 770789 817834 102287 703935 401215 851042 009551 261870 164754 492947 793028 784389 266918 337010 014131 864836 488267 465175 320447 997363 706716 161582 577924 303131 753174 743328 274036 974855 803878 874401 386454 947724 353326 718359 (250 digits)/314724 923278 577116 464364 327693 524733 699526 008861 871762 648924 009556 900677 074670 009404 667079 776378 009255 301795 171724 976365 629691 094187 228030 605804 536937 763854 355451 129898 534209 255308 608043 987421 725315 811416 983561 631610 457965 798652 002432 287794 803322 385777 (252 digits), a[497] = 6
                                                                                      A[498]/B[498] = 10235 640624 155415 041299 041407 187521 250790 395379 536668 970051 907222 150822 819318 571691 263324 206650 536649 574345 158454 078958 939061 106635 847666 885944 879197 374520 512178 394397 449452 809028 089652 106064 587057 827872 149562 940768 956351 159066 565925 070869 463386 205491 (251 digits)/994837 997512 531895 423081 319318 820869 589998 800580 709248 071195 009020 511567 312831 253009 351926 789809 995623 634892 820253 104378 675178 851069 235594 291132 693559 610906 202286 561850 817961 951071 577463 629562 783774 695667 996219 718224 423351 116694 186730 862864 550237 366812 (252 digits), a[498] = 3
                                                                                      A[499]/B[499] = 13473 767050 969767 121172 278271 817546 564177 714755 307458 787886 009509 854758 220534 422733 272875 468520 701404 067292 951482 863348 205979 443645 861798 750781 367464 839695 832626 391761 156168 970610 667576 409196 340232 571200 423599 915624 760230 033467 952380 018593 816712 923850 (251 digits)/1 309562 920791 109011 887445 647012 345603 289524 809442 581010 720119 018577 412244 387501 262414 019006 566188 004878 936687 991978 080744 304869 945256 463624 896937 230497 374760 557737 691749 352171 206380 185507 616984 509090 507084 979781 349834 881316 915346 189163 150659 353559 752589 (253 digits), a[499] = 1
                                                                                      A[500]/B[500] = 23709 407675 125182 162471 319679 005067 814968 110134 844127 757937 916732 005581 039852 994424 536199 675171 238053 641638 109936 942307 145040 550281 709465 636726 246662 214216 344804 786158 605621 779638 757228 515260 927290 399072 573162 856393 716581 192534 518305 089463 280099 129341 (251 digits)/2 304400 918303 640907 310526 966331 166472 879523 610023 290258 791314 027597 923811 700332 515423 370933 355998 000502 571580 812231 185122 980048 796325 699219 188069 924056 985666 760024 253600 170133 157451 762971 246547 292865 202752 976001 068059 304668 032040 375894 013523 903797 119401 (253 digits), a[500] = 1
                                                                                      A[501]/B[501] = 108311 397751 470495 771057 556987 837817 824050 155294 683969 819637 676437 877082 379946 400431 417674 169205 653618 633845 391230 632576 786141 644772 699661 297686 354113 696561 211845 536395 578656 089165 696490 470240 049394 167490 716251 341199 626554 803606 025600 376446 937109 441214 (252 digits)/10 527166 594005 672641 129553 512337 011494 807619 249535 742045 885375 128969 107491 188831 324107 502739 990180 006889 223011 240902 821236 225065 130559 260501 649216 926725 317427 597834 706150 032703 836187 237392 603173 680551 318096 883785 622072 099989 043507 692739 204754 968748 230193 (254 digits), a[501] = 4
                                                                                      A[502]/B[502] = 456954 998681 007165 246701 547630 356339 111168 731313 580007 036488 622483 513910 559638 596150 206896 351993 852528 177019 674859 472614 289607 129372 508110 827471 663117 000461 192186 931740 920246 136301 543190 396221 124867 069035 438168 221192 222800 406958 620706 595251 028536 894197 (252 digits)/44 413067 294326 331471 828741 015679 212452 110000 608166 258442 332814 543474 353776 455657 811853 381893 316718 028059 463625 775842 470067 880309 318562 741225 784937 630958 255377 151363 078200 300948 502200 712541 659242 015070 475140 511143 556347 704624 206071 146850 832543 778790 040173 (254 digits), a[502] = 4
                                                                                      A[503]/B[503] = 565266 396432 477661 017759 104618 194156 935218 886608 263976 856126 298921 390992 939584 996581 624570 521199 506146 810865 066090 105191 075748 774145 207772 125158 017230 697022 404032 468136 498902 225467 239680 866461 174261 236526 154419 562391 849355 210564 646306 971697 965646 335411 (252 digits)/54 940233 888332 004112 958294 528016 223946 917619 857702 000488 218189 672443 461267 644489 135960 884633 306898 034948 686637 016745 291304 105374 449122 001727 434154 557683 572804 749197 784350 333652 338387 949934 262415 695621 793237 394929 178419 804613 249578 839590 037298 747538 270366 (254 digits), a[503] = 1
                                                                                      A[504]/B[504] = 1 022221 395113 484826 264460 652248 550496 046387 617921 843983 892614 921404 904903 499223 592731 831466 873193 358674 987884 740949 577805 365355 903517 715882 952629 680347 697483 596219 399877 419148 361768 782871 262682 299128 305561 592587 783584 072155 617523 267013 566948 994183 229608 (253 digits)/99 353301 182658 335584 787035 543695 436399 027620 465868 258930 551004 215917 815044 100146 947814 266526 623616 063008 150262 792587 761371 985683 767684 742953 219092 188641 828181 900560 862550 634600 840588 662475 921657 710692 268377 906072 734767 509237 455649 986440 869842 526328 310539 (254 digits), a[504] = 1
                                                                                      A[505]/B[505] = 4 654151 976886 416966 075601 713612 396141 120769 358295 639912 426585 984541 010606 936479 367508 950438 013972 940846 762404 029888 416412 537172 388216 071303 935676 738621 486956 788910 067646 175495 672542 371165 917190 370774 458772 524770 696728 137977 680657 714361 239493 942379 253843 (253 digits)/452 353438 618965 346452 106436 702797 969543 028101 721175 036210 422206 536114 721444 045076 927217 950739 801362 286981 287688 187096 336792 048109 519860 973540 310523 312250 885532 351441 234552 872055 700742 599837 949046 538390 866749 019220 117489 841563 072178 785353 516668 852851 512522 (255 digits), a[505] = 4
                                                                                      A[506]/B[506] = 24 292981 279545 569656 642469 220310 531201 650234 409400 043546 025544 844109 957938 181620 430276 583656 943058 062908 799904 890391 659868 051217 844598 072402 631013 373455 132267 540769 738108 296626 724480 638700 848634 153000 599424 216441 267224 762044 020811 838819 764418 706079 498823 (254 digits)/2361 120494 277485 067845 319219 057685 284114 168129 071743 439982 662036 896491 422264 325531 583904 020225 630427 497914 588703 728069 445332 226231 366989 610654 771708 749896 255843 657767 035314 994879 344301 661665 666890 402646 602123 002173 322216 717052 816543 913208 453186 790585 873149 (256 digits), a[506] = 5
                                                                                      A[507]/B[507] = 28 947133 256431 986622 718070 933922 927342 771003 767695 683458 452130 828650 968545 118099 797785 534094 957031 003755 562308 920280 076280 588390 232814 143706 566690 112076 619224 329679 805754 472122 397023 009866 765824 523775 058196 741211 963952 900021 701469 553181 003912 648458 752666 (254 digits)/2813 473932 896450 414297 425655 760483 253657 196230 792918 476193 084243 432606 143708 370608 511121 970965 431789 784895 876391 915165 782124 274340 886850 584195 082232 062147 141376 009208 269867 866935 045044 261503 615936 941037 468872 021393 439706 558615 888722 698561 969855 643437 385671 (256 digits), a[507] = 1
                                                                                      A[508]/B[508] = 82 187247 792409 542902 078611 088156 385887 192241 944791 410462 929806 501411 895028 417820 025847 651846 857120 070419 924522 730951 812429 227998 310226 359815 764393 597608 370716 200129 349617 240871 518526 658434 380283 200550 715817 698865 195130 562087 423750 945181 772244 002997 004155 (254 digits)/7988 068360 070385 896440 170530 578651 791428 560590 657580 392368 830523 761703 709681 066748 606147 962156 494007 067706 341487 558401 009580 774913 140690 779044 936172 874190 538595 676183 575050 728749 434390 184672 898764 284721 539867 044960 201629 834284 593989 310332 392898 077460 644491 (256 digits), a[508] = 2
                                                                                      A[509]/B[509] = 275 508876 633660 615328 953904 198392 085004 347729 602069 914847 241550 332886 653630 371559 875328 489635 528391 215015 335877 113135 513568 272385 163493 223153 859870 904901 731372 930067 854606 194736 952602 985169 906674 125427 205649 837807 549344 586283 972722 388726 320644 657449 765131 (255 digits)/26777 679013 107608 103617 937247 496438 627942 878002 765659 653299 575814 717717 272751 570854 329565 857434 913810 988014 900854 590368 810866 599080 308922 921329 890750 684718 757163 037758 995020 053183 348214 815522 312229 795202 088473 156274 044596 061469 670690 629559 148549 875819 319144 (257 digits), a[509] = 3
                                                                                      A[510]/B[510] = 633 205001 059730 773559 986419 484940 555895 887701 148931 240157 412907 167185 202289 160939 776504 631117 913902 500450 596276 957222 839565 772768 637212 806123 484135 407411 833462 060265 058829 630345 423732 628774 193631 451405 127117 374480 293819 734655 369195 722634 413533 317896 534417 (255 digits)/61543 426386 285602 103676 045025 571529 047314 316596 188899 698967 982153 197138 255184 208457 265279 677026 321629 043736 143196 739138 631313 973073 758536 621704 717674 243628 052921 751701 565090 835116 130819 815717 523223 875125 716813 357508 290821 957223 935370 569450 689997 829099 282779 (257 digits), a[510] = 2
                                                                                      A[511]/B[511] = 7873 968889 350429 898048 790938 017678 755755 000143 389244 796736 196436 339109 081100 302837 193384 063050 495221 220422 491200 599809 588357 545608 810046 896635 669495 793843 732917 653248 560561 758882 037394 530460 230251 542288 731058 331571 075181 402148 403071 060339 283044 472208 178135 (256 digits)/765298 795648 534833 347730 477554 354787 195714 677157 032456 040915 361653 083376 334962 072341 512921 981750 773359 512848 619215 460032 386634 275965 411362 381786 502841 608255 392224 058177 776110 074576 918052 604132 590916 296710 690233 446373 534459 548156 895137 462967 428523 825010 712492 (258 digits), a[511] = 12
                                                                                      A[512]/B[512] = 16381 142779 760590 569657 568295 520298 067405 887987 927420 833629 805779 845403 364489 766614 163272 757218 904344 941295 578678 156842 016280 863986 257306 599394 823126 995099 299297 366762 179953 148109 498521 689694 654134 535982 589234 037622 444182 538952 175337 843312 979622 262312 890687 (257 digits)/1 592141 017683 355268 799137 000134 281103 438743 670910 253811 780798 705459 363890 925108 353140 291123 640527 868348 069433 381627 659203 404582 525004 581261 385277 723357 460138 837369 868057 117310 984269 966925 023982 705056 468547 097280 250255 359741 053537 725645 495385 547045 479120 707763 (259 digits), a[512] = 2
                                                                                      A[513]/B[513] = 24255 111669 111020 467706 359233 537976 823160 888131 316665 630366 002216 184512 445590 069451 356656 820269 399566 161718 069878 756651 604638 409595 067353 496030 492622 788943 032215 020010 740514 906991 535916 220154 884386 078271 320292 369193 519363 941100 578408 903652 262666 734521 068822 (257 digits)/2 357439 813331 890102 146867 477688 635890 634458 348067 286267 821714 067112 447267 260070 425481 804045 622278 641707 582282 000843 119235 791216 800969 992623 767064 226199 068394 229593 926234 893421 058846 884977 628115 295972 765257 787513 696628 894200 601694 620782 958352 975569 304131 420255 (259 digits), a[513] = 1
                                                                                      A[514]/B[514] = 40636 254448 871611 037363 927529 058274 890566 776119 244086 463995 807996 029915 810079 836065 519929 577488 303911 103013 648556 913493 620919 273581 324660 095425 315749 784042 331512 386772 920468 055101 034437 909849 538520 614253 909526 406815 963546 480052 753746 746965 242288 996833 959509 (257 digits)/3 949580 831015 245370 946004 477822 916994 073202 018977 540079 602512 772571 811158 185178 778622 095169 262806 510055 651715 382470 778439 195799 325974 573885 152341 949556 528533 066963 794292 010732 043116 851902 652098 001029 233804 884793 946884 253941 655232 346428 453738 522614 783252 128018 (259 digits), a[514] = 1
                                                                                      A[515]/B[515] = 146163 875015 725853 579798 141820 712801 494861 216489 048925 022353 426204 274259 875829 577647 916445 552734 311299 470759 015549 497132 467396 230339 041333 782306 439872 141070 026752 180329 501919 072294 639229 949703 499947 921033 048871 589641 410003 381258 839649 144547 989533 725022 947349 (258 digits)/14 206182 306377 626214 984880 911157 386872 854064 404999 906506 629252 384827 880741 815606 761348 089553 410698 171874 537428 148255 454553 378614 778893 714279 224090 074868 653993 430485 309110 925617 188197 440685 584409 299060 466672 441895 537281 656025 567391 660068 319568 543413 653887 804309 (260 digits), a[515] = 3
                                                                                      A[516]/B[516] = 186800 129464 597464 617162 069349 771076 385427 992608 293011 486349 234200 304175 685909 413713 436375 130222 615210 573772 664106 410626 088315 503920 365993 877731 755621 925112 358264 567102 422387 127395 673667 859553 038468 535286 958397 996457 373549 861311 593395 891513 231822 721856 906858 (258 digits)/18 155763 137392 871585 930885 388980 303866 927266 423977 446586 231765 157399 691900 000785 539970 184722 673504 681930 189143 530726 232992 574414 104868 288164 376432 024425 182526 497449 103402 936349 231314 292588 236507 300089 700477 326689 484165 909967 222624 006496 773307 066028 437139 932327 (260 digits), a[516] = 1
                                                                                      A[517]/B[517] = 332964 004480 323318 196960 211170 483877 880289 209097 341936 508702 660404 578435 561738 991361 352820 682956 926510 044531 679655 907758 555711 734259 407327 660038 195494 066182 385016 747431 924306 199690 312897 809256 538416 456320 007269 586098 783553 242570 433045 036061 221356 446879 854207 (258 digits)/32 361945 443770 497800 915766 300137 690739 781330 828977 353092 861017 542227 572641 816392 301318 274276 084202 853804 726571 678981 687545 953028 883762 002443 600522 099293 836519 927934 412513 861966 419511 733273 820916 599150 167149 768585 021447 565992 790015 666565 092875 609442 091027 736636 (260 digits), a[517] = 1
                                                                                      A[518]/B[518] = 7 179044 223551 387146 753326 503929 932511 871501 383652 473678 169105 102696 451322 482428 232301 845609 472318 071921 508937 936880 473555 758261 923367 919874 738533 860997 314942 443616 263172 832817 320892 244521 853940 345214 118007 111059 304531 828167 955290 687341 648798 880308 106333 845205 (259 digits)/697 756617 456573 325405 161977 691871 809402 335213 832501 861536 313133 544178 717378 145023 867653 944520 441764 611829 447148 789341 671457 588020 663870 339479 987396 109595 749444 984071 766194 037644 041060 691338 475755 882243 210622 466974 934564 795815 812953 004363 723694 864312 348722 401683 (261 digits), a[518] = 21
                                                                                      A[519]/B[519] = 7 512008 228031 710464 950286 715100 416389 751790 592749 815614 677807 763101 029758 044167 223663 198430 155274 998431 553469 616536 381314 313973 657627 327202 398572 056491 381124 828633 010604 757123 520582 557419 663196 883630 574327 118328 890630 611721 197861 120386 684860 101664 553213 699412 (259 digits)/730 118562 900343 823206 077743 992009 500142 116544 661479 214629 174151 086406 290019 961416 168972 218796 525967 465634 173720 468323 359003 541049 547632 341923 587918 208889 585964 912006 178707 899610 460572 424612 296672 481393 377772 235559 956012 361808 602968 670928 816570 473754 439750 138319 (261 digits), a[519] = 1
                                                                                      A[520]/B[520] = 292 635356 888756 384814 864221 677745 755322 439543 908145 467035 925800 100535 582128 160782 731503 385955 372768 012320 540783 365262 963499 689260 913206 353565 884272 007669 797685 931670 666153 603511 103029 426469 055421 923175 942437 607557 148495 073573 474013 262035 673482 743561 128454 422861 (261 digits)/28442 262007 669638 607236 116249 388232 814802 763910 968712 017444 930874 827617 738136 678838 288598 258788 428528 305928 048526 585629 313592 147903 473899 332576 328288 047400 016111 640306 557094 222841 542812 826605 749310 175191 565967 418253 263034 544542 725762 499658 753372 866981 059227 657805 (263 digits), a[520] = 38
                                                                                      A[521]/B[521] = 592 782722 005544 480094 678730 070591 927034 630878 409040 749686 529407 964172 194014 365732 686669 970340 900811 023072 635036 347062 308313 692495 484040 034334 167116 071830 976496 691974 342911 964145 726641 410357 774040 729982 459202 333443 187620 758868 145887 644458 031825 588786 810122 545134 (261 digits)/57614 642578 239621 037678 310242 768475 129747 644366 598903 249519 035900 741641 766293 319092 746168 736373 383024 077490 270773 639581 986187 836856 495431 007076 244494 303689 618188 192619 292896 345293 546198 077823 795292 831776 509707 072066 482081 450894 054493 670246 323316 207716 558205 453929 (263 digits), a[521] = 2
                                                                                      A[522]/B[522] = 885 418078 894300 864909 542951 748337 682357 070422 317186 216722 455208 064707 776142 526515 418173 356296 273579 035393 175819 712325 271813 381756 397246 387900 051388 079500 774182 623645 009065 567656 829670 836826 829462 653158 401639 941000 336115 832441 619900 906493 705308 332347 938576 967995 (261 digits)/86056 904585 909259 644914 426492 156707 944550 408277 567615 266963 966775 569259 504429 997931 034766 995161 811552 383418 319300 225211 299779 984759 969330 339652 572782 351089 634299 832925 849990 568135 089010 904429 544603 006968 075674 490319 745115 995436 780256 169905 076689 074697 617433 111734 (263 digits), a[522] = 1
                                                                                      A[523]/B[523] = 5019 873116 477048 804642 393488 812280 338819 982989 994971 833298 805448 287711 074726 998309 777536 751822 268706 200038 514134 908688 667380 601277 470271 973834 424056 469334 847409 810199 388239 802429 874995 594491 921353 995774 467402 038444 868199 921076 245392 176926 558367 250526 503007 385109 (262 digits)/487899 165507 785919 262250 442703 552014 852499 685754 436979 584338 869778 587939 288443 308747 920003 712182 440785 994581 867274 765638 485087 760656 342082 705339 108406 059137 789687 357248 542849 185968 991252 599971 518307 866616 888079 523665 207661 428077 955774 519771 706761 581204 645371 012599 (264 digits), a[523] = 5
                                                                                      A[524]/B[524] = 51084 149243 664788 911333 477839 871141 070556 900322 266904 549710 509690 941818 523412 509613 193540 874518 960641 035778 317168 799211 945619 394531 099966 126244 291952 772849 248280 725638 891463 591955 579626 781746 043002 610903 075660 325449 018115 043204 073822 675759 288980 837612 968650 819085 (263 digits)/4 965048 559663 768452 267418 853527 676856 469547 265821 937411 110352 664561 448652 388863 085410 234804 116986 219412 329236 992047 881596 150657 591323 390157 393043 656842 942467 531173 405411 278482 427825 001536 904144 727681 673136 956469 726971 821730 276216 338001 367622 144304 886744 071143 237724 (265 digits), a[524] = 10
                                                                                      A[525]/B[525] = 56104 022360 141837 715975 871328 683421 409376 883312 261876 383009 315139 229529 598139 507922 971077 626341 229347 235816 831303 707900 612999 995808 570238 100078 716009 242184 095690 535838 279703 394385 454622 376237 964356 606677 543062 363893 886314 964280 319214 852685 847348 088139 471658 204194 (263 digits)/5 452947 725171 554371 529669 296231 228871 322046 951576 374390 694691 534340 036591 677306 394158 154807 829168 660198 323818 859322 647234 635745 351979 732240 098382 765249 001605 320860 762659 821331 613793 992789 504116 245989 539753 844549 250637 029391 704294 293775 887393 851066 467948 716514 250323 (265 digits), a[525] = 1
                                                                                      A[526]/B[526] = 163292 193963 948464 343285 220497 237983 889310 666946 790657 315729 139969 400877 719691 525459 135696 127201 419335 507411 979776 215013 171619 386148 240442 326401 723971 257217 439661 797315 450870 380726 488871 534221 971715 824258 161785 053236 790744 971764 712252 381130 983677 013891 911967 227473 (264 digits)/15 870944 010006 877195 326757 445990 134599 113641 168974 686192 499735 733241 521835 743475 873726 544419 775323 539808 976874 710693 176065 422148 295282 854637 589809 187340 945678 172894 930730 921145 655412 987115 912377 219660 752644 645568 228245 880513 684804 925553 142409 846437 822641 504171 738370 (266 digits), a[526] = 2
                                                                                      A[527]/B[527] = 1 852318 155963 574945 492113 296798 301244 191794 219726 959106 856029 854802 639184 514746 287973 463735 025556 842037 817348 608842 073045 500813 243439 215103 690497 679693 071575 931970 306308 239277 582376 832209 252679 653230 673517 322697 949498 584509 653692 153991 045126 667795 240950 503297 706397 (265 digits)/180 033331 835247 203520 124001 202122 709461 572099 810297 922508 191784 599996 776784 855541 005150 143425 357727 598097 069440 676947 583954 279376 600091 133253 586283 825999 404065 222705 000699 953933 823336 851064 540265 662257 818844 945799 761341 715042 237148 474860 453902 161882 517005 262403 372393 (267 digits), a[527] = 11
                                                                                      A[528]/B[528] = 2 015610 349927 523409 835398 517295 539228 081104 886673 749764 171758 994772 040062 234437 813432 599431 152758 261373 324760 588618 288058 672432 629587 455546 016899 403664 328793 371632 103623 690147 963103 321080 786901 624946 497775 484483 002735 375254 625456 866243 426257 651472 254842 415264 933870 (265 digits)/195 904275 845254 080715 450758 648112 844060 685740 979272 608700 691520 333238 298620 599016 878876 687845 133051 137906 046315 387640 760019 701524 895373 987891 176093 013340 349743 395599 931430 875079 478749 838180 452642 881918 571489 591367 989587 595555 921953 400413 596312 008320 339646 766575 110763 (267 digits), a[528] = 1
                                                                                      A[529]/B[529] = 7 899149 205746 145174 998308 848684 918928 435108 879748 208399 371306 839118 759371 218059 728271 262028 483831 626157 791630 374696 937221 518111 132201 581741 741195 890686 057956 046866 617179 309721 471686 795451 613384 528070 166843 776146 957704 710273 530062 752721 323899 622212 005477 749092 508007 (265 digits)/767 746159 371009 445666 476277 146461 241643 629322 748115 748610 266345 599711 672646 652591 641780 206960 756881 011815 208386 839869 864013 383951 286213 096927 114562 866020 453295 409504 794992 579172 259586 365605 898194 308013 533313 719903 730104 501710 003008 676101 242838 186843 535945 562128 704682 (267 digits), a[529] = 3
                                                                                      A[530]/B[530] = 57 309654 790150 539634 823560 458089 971727 126867 044911 208559 770906 868603 355660 760855 911331 433630 539579 644477 866173 211496 848609 299210 554998 527738 205270 638466 734485 699698 423878 858198 264910 889242 080593 321437 665681 917511 706668 347169 335896 135292 693555 006956 293186 658912 489919 (266 digits)/5570 127391 442320 200380 784698 673341 535566 091000 216082 848972 555939 531220 007147 167158 371338 136570 431218 220612 505023 266729 808113 389183 898865 666380 978033 075483 522811 262133 496378 929285 295854 397421 740003 038013 304685 630694 100319 107525 943014 133122 296179 316225 091265 701476 043537 (268 digits), a[530] = 7
                                                                                      A[531]/B[531] = 237 137768 366348 303714 292550 681044 805836 942577 059393 042638 454934 313532 182014 261483 373596 996550 642150 204069 256323 220684 331658 714953 352195 692694 562278 444552 995898 845660 312694 742514 531330 352419 935757 813820 829571 446193 784378 098950 873647 293892 098119 650037 178224 384742 467683 (267 digits)/23048 255725 140290 247189 615071 839827 383907 993323 612447 144500 490103 724591 701235 321225 127132 753242 481753 894265 228479 906789 096466 940686 881675 762451 026695 167954 544540 458038 780508 296313 443003 955292 858206 460066 752056 242680 131380 931813 775065 208590 427555 451743 901008 368032 878830 (269 digits), a[531] = 4
                                                                                      A[532]/B[532] = 294 447423 156498 843349 116111 139134 777564 069444 104304 251198 225841 182135 537675 022339 284928 430181 181729 848547 122496 432181 180268 014163 907194 220432 767549 083019 730384 545358 736573 600712 796241 241662 016351 135258 495253 363705 491046 446120 209543 429184 791674 656993 471411 043654 957602 (267 digits)/28618 383116 582610 447570 399770 513168 919474 084323 828529 993473 046043 255811 708382 488383 498470 889812 912972 114877 733503 173518 904580 329870 780541 428832 004728 243438 067351 720172 276887 225598 738858 352714 598209 498080 056741 873374 231700 039339 718079 341712 723734 767968 992274 069508 922367 (269 digits), a[532] = 1
                                                                                      A[533]/B[533] = 4948 296538 870329 797300 150328 907201 246862 053682 728261 061810 068393 227700 784814 618911 932451 879449 549827 780823 216266 135583 215946 941575 867303 219618 843063 772868 682051 571400 097872 353919 271190 219012 197375 977956 753625 265481 641121 236874 226342 160848 764914 161932 720801 083221 789315 (268 digits)/480942 385590 462057 408316 011400 050530 095493 342504 868927 040069 226795 817579 035355 135361 102666 990249 089307 732308 964530 683091 569752 218619 370338 623763 102347 062963 622167 980795 210703 905893 264737 598726 429558 429347 659926 216667 838581 561249 264334 675994 007311 739247 777393 480175 636702 (270 digits), a[533] = 16
                                                                                      A[534]/B[534] = 5242 743962 026828 640649 266440 046336 024426 123126 832565 313008 294234 409836 322489 641251 217380 309630 731557 629370 338762 567764 396214 955739 774497 440051 610612 855888 412436 116758 834445 954632 067431 460674 213727 113215 248878 629187 132167 682994 435885 590033 556588 818926 192212 126876 746917 (268 digits)/509560 768707 044667 855886 411170 563699 014967 426828 697457 033542 272839 073390 743737 623744 601137 880062 002279 847186 698033 856610 474332 548490 150880 052595 107075 306401 689519 700967 487591 131492 003595 951441 027767 927427 716668 090042 070281 600588 982414 017706 731046 507216 769667 549684 559069 (270 digits), a[534] = 1
                                                                                      A[535]/B[535] = 10191 040500 897158 437949 416768 953537 271288 176809 560826 374818 362627 637537 107304 260163 149832 189080 281385 410193 555028 703347 612161 897315 641800 659670 453676 628757 094487 688158 932318 308551 338621 679686 411103 091172 002503 894668 773288 919868 662227 750882 321502 980858 913013 210098 536232 (269 digits)/990503 154297 506725 264202 422570 614229 110460 769333 566384 073611 499634 890969 779092 759105 703804 870311 091587 579495 662564 539702 044084 767109 521218 676358 209422 369365 311687 681762 698295 037385 268333 550167 457326 356775 376594 306709 908863 161838 246748 693700 738358 246464 547061 029860 195771 (270 digits), a[535] = 1
                                                                                      A[536]/B[536] = 76580 027468 306937 706295 183822 721096 923443 360793 758349 936736 832627 872596 073619 462393 266205 633192 701255 500725 223963 491197 681348 236949 267102 057744 786349 257188 073849 933871 360674 114491 437783 218479 091448 751419 266405 891868 545190 122075 071479 846209 807109 684938 583304 597566 500541 (269 digits)/7 443082 848789 591744 705303 369164 863302 788192 812163 662145 548822 770283 310179 197386 937484 527771 972239 643392 903656 335985 634524 782925 918256 799410 787102 573031 891958 871333 473306 375656 393188 881930 802613 229052 424855 352828 237011 432323 733456 709654 873611 899554 232468 599094 758705 929466 (271 digits), a[536] = 7
                                                                                      A[537]/B[537] = 469671 205310 738784 675720 519705 280118 811948 341572 110925 995239 358394 873113 549021 034522 747065 988236 488918 414544 898809 650533 700251 319011 244413 006139 171772 171885 537587 291387 096362 995499 965320 990560 959795 599687 600939 245880 044429 652319 091106 828141 164161 090490 412840 795497 539478 (270 digits)/45 649000 247035 057193 496022 637559 794045 839617 642315 539257 366548 121334 752044 963414 384012 870436 703748 951945 001433 678478 346850 741640 276650 317683 398973 647613 721118 539688 521600 952233 396518 559918 365846 831640 905907 493563 728778 502805 562578 504677 935372 135683 641276 141629 582095 772567 (272 digits), a[537] = 6
                                                                                      A[538]/B[538] = 1 485593 643400 523291 733456 742938 561453 359288 385510 091127 922454 907812 491936 720682 565961 507403 597902 168010 744359 920392 442798 782102 193983 000341 076162 301665 772844 686611 808032 649763 100991 333746 190161 970835 550482 069223 629508 678479 079032 344800 330633 299592 956409 821826 984059 118975 (271 digits)/144 390083 589894 763325 193371 281844 245440 307045 739110 279917 648467 134287 566314 087630 089523 139082 083486 499227 907957 371420 675077 007846 748207 752460 984023 515873 055314 490399 038109 232356 582744 561685 900153 723975 142577 833519 423346 940740 421192 223688 679728 306605 156297 023983 504993 247167 (273 digits), a[538] = 3
                                                                                      A[539]/B[539] = 1 955264 848711 262076 409177 262643 841572 171236 727082 202053 917694 266207 365050 269703 600484 254469 586138 656929 158904 819202 093332 482353 512994 244754 082301 473437 944730 224199 099419 746126 096491 299067 180722 930631 150169 670162 875388 722908 731351 435907 158774 463754 046900 234667 779556 658453 (271 digits)/190 039083 836929 820518 689393 919404 039486 146663 381425 819175 015015 255622 318359 051044 473536 009518 787235 451172 909391 049899 021927 749487 024858 070144 382997 163486 776433 030087 559710 184589 979263 121604 266000 555616 048485 327083 152125 443545 983770 728366 615100 442288 797573 165613 087089 019734 (273 digits), a[539] = 1
                                                                                      A[540]/B[540] = 11 261917 886956 833673 779343 056157 769314 215472 020921 101397 510926 238849 317188 069200 568382 779751 528595 452656 538884 016402 909461 193869 758954 224111 487669 668855 496495 807607 305131 380393 583447 829082 093776 623991 301330 420038 006452 293022 735789 524336 124505 618363 190910 995165 881842 411240 (272 digits)/1094 585502 774543 865918 640340 878864 442871 040362 646239 375792 723543 412399 158109 342852 457203 186676 019663 755092 454912 620915 784715 755281 872498 103182 899009 333306 937479 640836 836660 155306 479060 169707 230156 502055 385004 468935 183974 158470 340045 865521 755230 518049 144162 852048 940438 345837 (274 digits), a[540] = 5
                                                                                      A[541]/B[541] = 13 217182 735668 095750 188520 318801 610886 386708 748003 303451 428620 505056 682238 338904 168867 034221 114734 109585 697788 835605 002793 676223 271948 468865 569971 142293 441226 031806 404551 126519 679939 128149 274499 554622 451500 090200 881841 015931 467140 960243 283280 082117 237811 229833 661399 069693 (272 digits)/1284 624586 611473 686437 329734 798268 482357 187026 027665 194967 738558 668021 476468 393896 930739 196194 806899 206265 364303 670814 806643 504768 897356 173327 282006 496793 713912 670924 396370 339896 458323 291311 496157 057671 433489 796018 336099 602016 323816 593888 370330 960337 941736 017662 027527 365571 (274 digits), a[541] = 1
                                                                                      A[542]/B[542] = 37 696283 358293 025174 156383 693760 991086 988889 516927 708300 368167 248962 681664 747008 906116 848193 758063 671827 934461 687612 915048 546316 302851 161842 627611 953442 378947 871220 114233 633432 943326 085380 642775 733236 204330 600439 770134 324885 670071 444822 691065 782597 666533 454833 204640 550626 (272 digits)/3663 834675 997491 238793 299810 475401 407585 414414 701569 765728 200660 748442 111046 130646 318681 579065 633462 167623 183519 962545 398002 764819 667210 449837 463022 326894 365304 982685 629400 835099 395706 752330 222470 617398 251984 060971 856173 362502 987679 053298 495892 438725 027634 887372 995493 076979 (274 digits), a[542] = 2
                                                                                      A[543]/B[543] = 164 002316 168840 196446 814055 093845 575234 342266 815714 136652 901289 500907 408897 326939 793334 426996 146988 796897 435635 586056 662987 861488 483353 116236 080418 956062 957017 516686 861485 660251 453243 469671 845602 487567 268822 491959 962378 315474 147426 739534 047543 212507 903945 049166 479961 272197 (273 digits)/15939 963290 601438 641610 528976 699874 112698 844684 833944 257880 541201 661789 920652 916482 205465 512457 340747 876758 098383 520996 398654 564047 566197 972677 134095 804371 175132 601666 913973 680294 041150 300632 386039 527264 441426 039905 760793 052028 274532 807082 353900 715238 052275 567154 009499 673487 (275 digits), a[543] = 4
                                                                                      A[544]/B[544] = 201 698599 527133 221620 970438 787606 566321 331156 332641 844953 269456 749870 090562 073948 699451 275189 905052 468725 370097 273669 578036 407804 786204 278078 708030 909505 335965 387906 975719 293684 396569 555052 488378 220803 473153 092399 732512 640359 817498 184356 738608 995105 570478 503999 684601 822823 (273 digits)/19603 797966 598929 880403 828787 175275 520284 259099 535514 023608 741862 410232 031699 047128 524147 091522 974210 044381 281903 483541 796657 328867 233408 422514 597118 131265 540437 584352 543374 515393 436857 052962 608510 144662 693410 100877 616966 414531 262211 860380 849793 153963 079910 454527 004992 750466 (275 digits), a[544] = 1
                                                                                      A[545]/B[545] = 365 700915 695973 418067 784493 881452 141555 673423 148355 981606 170746 250777 499459 400888 492785 702186 052041 265622 805732 859726 241024 269293 269557 394314 788449 865568 292982 904593 837204 953935 849813 024724 333980 708370 741975 584359 694890 955833 964924 923890 786152 207613 474423 553166 164563 095020 (273 digits)/35543 761257 200368 522014 357763 875149 632983 103784 369458 281489 283064 072021 952351 963610 729612 603980 314957 921139 380287 004538 195311 892914 799606 395191 731213 935636 715570 186019 457348 195687 478007 353594 994549 671927 134836 140783 377759 466559 536744 667463 203693 869201 132186 021681 014492 423953 (275 digits), a[545] = 1
                                                                                      A[546]/B[546] = 567 399515 223106 639688 754932 669058 707877 004579 480997 826559 440203 000647 590021 474837 192236 977375 957093 734348 175830 133395 819060 677098 055761 672393 496480 775073 628948 292500 812924 247620 246382 579776 822358 929174 215128 676759 427403 596193 782423 108247 524761 202719 044902 057165 849164 917843 (273 digits)/55147 559223 799298 402418 186551 050425 153267 362883 904972 305098 024926 482253 984051 010739 253759 695503 289167 965520 662190 488079 991969 221782 033014 817706 328332 066902 256007 770372 000722 711080 914864 406557 603059 816589 828246 241660 994725 881090 798956 527844 053487 023164 212096 476208 019485 174419 (275 digits), a[546] = 1
                                                                                      A[547]/B[547] = 1500 499946 142186 697445 294359 219569 557309 682582 110351 634725 051152 252072 679502 350562 877259 656937 966228 734319 157393 126517 879145 623489 381080 739101 781411 415715 550879 489595 463053 449176 342578 184277 978698 566719 172232 937878 549698 148221 529771 140385 835674 613051 564227 667497 862892 930706 (274 digits)/145838 879704 798965 326850 730865 975999 939517 829552 179402 891685 332917 036529 920453 985089 237131 994986 893293 852180 704667 980698 179250 336478 865636 030604 387878 069441 227585 726763 458793 617849 307736 166710 200669 305106 791328 624105 367211 228741 134657 723151 310667 915529 556378 974097 053462 772791 (276 digits), a[547] = 2
                                                                                      A[548]/B[548] = 2067 899461 365293 337134 049291 888628 265186 687161 591349 461284 491355 252720 269523 825400 069496 634313 923322 468667 333223 259913 698206 300587 436842 411495 277892 190789 179827 782096 275977 696796 588960 764054 801057 495893 387361 614637 977101 744415 312194 248633 360435 815770 609129 724663 712057 848549 (274 digits)/200986 438928 598263 729268 917417 026425 092785 192436 084375 196783 357843 518783 904504 995828 490891 690490 182461 817701 366858 468778 171219 558260 898650 848310 716210 136343 483593 497135 459516 328930 222600 573267 803729 121696 619574 865766 361937 109831 933614 250995 364154 938693 768475 450305 072947 947210 (276 digits), a[548] = 1
                                                                                      A[549]/B[549] = 7704 198330 238066 708847 442234 885454 352869 744066 884400 018578 525218 010233 488073 826763 085749 559879 736196 140321 157062 906258 973764 525251 691607 973587 615087 988083 090362 835884 290986 539566 109460 476442 381871 054399 334317 781792 481003 381467 466353 886285 916982 060363 391616 841488 999066 476353 (274 digits)/748798 196490 593756 514657 483117 055275 217873 406860 432528 482035 406447 592881 633968 972574 709807 066457 440679 305284 805243 387032 692909 011261 561588 575536 536508 478471 678366 218169 837342 604639 975537 886513 611856 670196 650053 221404 453022 558236 935500 476137 403132 731610 861805 325012 272306 614421 (276 digits), a[549] = 3
                                                                                      A[550]/B[550] = 32884 692782 317560 172523 818231 430445 676665 663429 128949 535598 592227 293654 221819 132452 412494 873832 868107 029951 961474 884949 593264 401594 203274 305845 738244 143121 541279 125633 439923 855061 026802 669824 328541 713490 724632 741807 901115 270285 177609 793777 028364 057224 175597 090619 708323 753961 (275 digits)/3 196179 224890 973289 787898 849885 247525 964278 819877 814489 124924 983633 890310 440380 886127 330119 956319 945179 038840 587832 016908 942855 603307 145005 150456 862244 050230 197058 369814 808886 747490 124752 119322 251155 802483 219787 751384 174027 342779 675616 155544 976685 865137 215696 750354 162174 404894 (277 digits), a[550] = 4
                                                                                      A[551]/B[551] = 40588 891112 555626 881371 260466 315900 029535 407496 013349 554177 117445 303887 709892 959215 498244 433712 604303 170273 118537 791208 567028 926845 894882 279433 353332 131204 631641 961517 730910 394627 136263 146266 710412 767890 058950 523600 382118 651752 643963 680062 945346 117587 567213 932108 707390 230314 (275 digits)/3 944977 421381 567046 302556 333002 302801 182152 226738 247017 606960 390081 483192 074349 858702 039927 022777 385858 344125 393075 403941 635764 614568 706593 725993 398752 528701 875424 587984 646229 352130 100290 005835 863012 472679 869840 972788 627049 901016 611116 631682 379818 596748 077502 075366 434481 019315 (277 digits), a[551] = 1
                                                                                      A[552]/B[552] = 235829 148345 095694 579380 120563 009945 824342 700909 195697 306484 179453 813092 771283 928529 903717 042395 889622 881317 554163 840992 428409 035823 677685 703012 504904 799144 699488 933222 094475 828196 708118 401157 880605 552941 019385 359809 811708 529048 397428 194091 755094 645162 011666 751163 245274 905531 (276 digits)/22 921066 331798 808521 300680 514896 761531 875039 953569 049577 159726 934041 306270 812130 179637 529755 070206 874470 759467 553209 036617 121678 676150 677973 780423 856006 693739 574181 309738 040033 508140 626202 148501 566218 165882 568992 615327 309276 847862 731199 313956 875778 848877 603207 127186 334579 501469 (278 digits), a[552] = 5
                                                                                      A[553]/B[553] = 1 455563 781183 129794 357651 983844 375574 975591 612951 187533 393082 194168 182444 337596 530394 920546 688087 942040 458178 443520 837163 137483 141787 960996 497508 382760 926072 828575 560850 297765 363807 384973 553213 994046 085536 175262 682459 252369 826043 028532 844613 475913 988559 637214 439088 179039 663500 (277 digits)/141 471375 412174 418174 106639 422382 871992 432391 948152 544480 565321 994329 320816 947130 936527 218457 444018 632682 900930 712329 623644 365836 671472 774436 408536 534792 691139 320512 446412 886430 400973 857502 896845 260321 467975 283796 664752 482710 988192 998312 515423 634491 690013 696744 838484 441958 028129 (279 digits), a[553] = 6
                                                                                      A[554]/B[554] = 3 146956 710711 355283 294684 088251 761095 775525 926811 570764 092648 567790 177981 446476 989319 744810 418571 773703 797674 441205 515318 703375 319399 599678 698029 270426 651290 356640 054922 690006 555811 478065 507585 868697 724013 369910 724728 316448 181134 454493 883318 706922 622281 286095 629339 603354 232531 (277 digits)/305 863817 156147 644869 513959 359662 505516 739823 849874 138538 290370 922699 947904 706392 052691 966669 958244 139836 561328 977868 283905 853352 019096 226846 597496 925592 076018 215206 202563 812894 310088 341207 942192 086861 101833 136585 944832 274698 824248 727824 344804 144762 228904 996696 804155 218495 557727 (279 digits), a[554] = 2
                                                                                      A[555]/B[555] = 4 602520 491894 485077 652336 072096 136670 751117 539762 758297 485730 761958 360425 784073 519714 665357 106659 715744 255852 884726 352481 840858 461187 560675 195537 653187 577363 185215 615772 987771 919618 863039 060799 862743 809549 545173 407187 568818 007177 483026 727932 182836 610840 923310 068427 782393 896031 (277 digits)/447 335192 568322 063043 620598 782045 377509 172215 798026 683018 855692 917029 268721 653522 989219 185127 402262 772519 462259 690197 907550 219188 690569 001283 006033 460384 767157 535718 648976 699324 711062 198710 839037 347182 569808 420382 609584 757409 812441 726136 860227 779253 918918 693441 642639 660453 585856 (279 digits), a[555] = 1
                                                                                      A[556]/B[556] = 7 749477 202605 840360 947020 160347 897766 526643 466574 329061 578379 329748 538407 230550 509034 410167 525231 489448 053527 325931 867800 544233 780587 160353 893566 923614 228653 541855 670695 677778 475430 341104 568385 731441 533562 915084 131915 885266 188311 937520 611250 889759 233122 209405 697767 385748 128562 (277 digits)/753 199009 724469 707913 134558 141707 883025 912039 647900 821557 146063 839729 216626 359915 041911 151797 360506 912356 023588 668066 191456 072540 709665 228129 603530 385976 843175 750924 851540 512219 021150 539918 781229 434043 671641 556968 554417 032108 636690 453961 205031 924016 147823 690138 446794 878949 143583 (279 digits), a[556] = 1
                                                                                      A[557]/B[557] = 12 351997 694500 325438 599356 232444 034437 277761 006337 087359 064110 091706 898833 014624 028749 075524 631891 205192 309380 210658 220282 385092 241774 721029 089104 576801 806016 727071 286468 665550 395049 204143 629185 594185 343112 460257 539103 454084 195489 420547 339183 072595 843963 132715 766195 168142 024593 (278 digits)/1200 534202 292791 770956 755156 923753 260535 084255 445927 504576 001756 756758 485348 013438 031130 336924 762769 684875 485848 358264 099006 291729 400234 229412 609563 846361 610333 286643 500517 211543 732212 738629 620266 781226 241449 977351 164001 789518 449132 180098 065259 703270 066742 383580 089434 539402 729439 (280 digits), a[557] = 1
                                                                                      A[558]/B[558] = 20 101474 897106 165799 546376 392791 932203 804404 472911 416420 642489 421455 437240 245174 537783 485692 157122 694640 362907 536590 088082 929326 022361 881382 982671 500416 034670 268926 957164 343328 870479 545248 197571 325626 876675 375341 671019 339350 383801 358067 950433 962355 077085 342121 463962 553890 153155 (278 digits)/1953 733212 017261 478869 889715 065461 143560 996295 093828 326133 147820 596487 701974 373353 073041 488722 123276 597231 509437 026330 290462 364270 109899 457542 213094 232338 453509 037568 352057 723762 753363 278548 401496 215269 913091 534319 718418 821627 085822 634059 270291 627286 214566 073718 536229 418351 873022 (280 digits), a[558] = 1
                                                                                      A[559]/B[559] = 92 757897 282924 988636 784861 803611 763252 495378 897982 753041 634067 777528 647793 995322 179883 018293 260381 983753 761010 357018 572614 102396 331222 246561 019790 578465 944697 802779 115126 038865 876967 385136 419470 896692 849813 961624 223180 811485 730694 852819 140918 922016 152304 501201 622045 383702 637213 (278 digits)/9015 467050 361837 686436 314017 185597 834779 069435 821240 809108 593039 142709 293245 506850 323296 291813 255876 073801 523596 463585 260855 748809 839832 059581 461940 775715 424369 436916 908748 106594 745665 852823 226251 642305 893816 114630 037677 076026 792422 716335 146426 212414 925006 678454 234352 212810 221527 (280 digits), a[559] = 4
                                                                                      A[560]/B[560] = 205 617269 462956 143073 116100 000015 458708 795162 268876 922503 910624 976512 732828 235818 897549 522278 677886 662147 884928 250627 233311 134118 684806 374505 022252 657347 924065 874485 187416 421060 624414 315521 036513 119012 576303 298590 117380 962321 845191 063706 232271 806387 381694 344524 708053 321295 427581 (279 digits)/19984 667312 740936 851742 517749 436656 813119 135166 736309 944350 333898 881906 288465 387053 719634 072348 635028 744834 556629 953500 812173 861889 789563 576705 136975 783769 302247 911402 169553 936952 244694 984194 853999 499881 700723 763579 793772 973680 670668 066729 563144 052116 064579 430627 004933 843972 316076 (281 digits), a[560] = 2
                                                                                      A[561]/B[561] = 503 992436 208837 274783 017061 803642 680670 085703 435736 598049 455317 730554 113450 466959 974982 062850 616155 308049 530866 858273 039236 370633 700834 995571 064295 893161 792829 551749 489958 880987 125796 016178 492497 134718 002420 558804 457942 736129 421076 980231 605462 534790 915693 190251 038152 026293 492375 (279 digits)/48984 801675 843711 389921 349516 058911 461017 339769 293860 697809 260836 906521 870176 280957 762564 436510 525933 563470 636856 370586 885203 472589 418959 212991 735892 343254 028865 259721 247855 980499 235055 821212 934250 642069 295263 641789 625223 023388 133758 849794 272714 316647 054165 539708 244219 900754 853679 (281 digits), a[561] = 2
                                                                                      A[562]/B[562] = 709 609705 671793 417856 133161 803658 139378 880865 704613 520553 365942 707066 846278 702778 872531 585129 294041 970197 415795 108900 272547 504752 385641 370076 086548 550509 716895 426234 677375 302047 750210 331699 529010 253730 578723 857394 575323 698451 266268 043937 837734 341178 297387 534775 746205 347588 919956 (279 digits)/68969 468988 584648 241663 867265 495568 274136 474936 030170 642159 594735 788428 158641 668011 482198 508859 160962 308305 193486 324087 697377 334479 208522 789696 872868 127023 331113 171123 417409 917451 479750 805407 788250 141950 995987 405369 418995 997068 804426 916523 835858 368763 118744 970335 249153 744727 169755 (281 digits), a[562] = 1
                                                                                      A[563]/B[563] = 6890 479787 254978 035488 215518 036565 935080 013494 777258 283029 748802 094155 729958 791969 827766 329014 262533 039826 273022 838375 492163 913405 171607 326255 843232 847749 244888 387861 586336 599416 877689 001474 253589 418293 210935 275355 635856 022190 817489 375672 145071 605395 592181 003232 754000 154593 771979 (280 digits)/669710 022573 105545 564896 154905 519025 928245 614193 565396 477245 613459 002375 297951 293061 102351 016242 974594 338217 378233 287376 161599 482902 295664 320263 591705 486464 008883 799832 004545 237562 552813 069883 028501 919628 259150 290114 396186 997007 373601 098508 795439 635515 122870 272725 486603 603299 381474 (282 digits), a[563] = 9
                                                                                      A[564]/B[564] = 28271 528854 691705 559808 995233 949921 879698 934844 813646 652672 361151 083689 766113 870658 183596 901186 344174 129502 507886 462402 241203 158373 072070 675099 459479 941506 696448 977681 022721 699715 260966 337596 543367 926903 422464 958817 118747 787214 536225 546626 418020 762760 666111 547706 762205 965964 007872 (281 digits)/2 747809 559281 006830 501248 486887 571671 987118 931710 291756 551142 048571 797929 350446 840255 891602 573831 059339 661174 706419 473592 343775 266088 391180 070751 239690 072879 366648 370451 435590 867701 691003 084939 902257 820464 032588 565827 003743 985098 298831 310559 017616 910823 610226 061237 195568 157924 695651 (283 digits), a[564] = 4
                                                                                      A[565]/B[565] = 16 149933 455816 218852 686424 494103 441959 243171 809883 369496 958947 966070 881012 180978 937792 661596 906416 785960 985758 276192 870055 219167 344429 323962 808047 206279 448072 917254 643725 560427 136830 889467 769100 516675 680147 438426 759930 440842 521691 002276 499356 834927 141735 941874 743793 973606 720042 266891 (284 digits)/1569 668968 372028 005761 777782 167708 943730 573155 620770 158387 179355 347955 620034 403097 079175 207420 673777 857540 868974 743752 708604 457276 419373 659484 719221 454737 100582 365103 327601 726930 695228 115574 570567 217717 404590 867221 377333 534002 488136 006279 427707 854695 715796 561951 239164 156021 778300 598195 (286 digits), a[565] = 571
                                                                                      A[566]/B[566] = 16 178204 984670 910558 246233 489337 391881 122870 744728 183143 611620 327221 964701 947092 808450 845193 807603 130135 115260 784079 332457 460370 502802 396033 483146 665759 389579 613703 621406 583148 836546 150434 106697 060043 607050 860891 718747 559590 308905 538502 045983 252947 904496 607986 291500 735812 686006 274763 (284 digits)/1572 416777 931309 012592 279030 654596 515402 560274 552480 450143 730497 396527 417963 753543 919431 099023 247608 916880 530149 450172 182196 801051 685462 050664 789972 694427 173461 731751 698053 162521 562929 806577 655507 119975 225054 899809 943160 537746 473234 305110 738266 872312 626620 172177 300401 351589 936225 293846 (286 digits), a[566] = 1
                                                                                      A[567]/B[567] = 177 931983 302525 324435 148759 387477 360770 471879 257165 200933 075151 238290 528031 651907 022301 113534 982448 087312 138366 116986 194629 822872 372453 284297 639513 863873 343869 054290 857791 391915 502292 393808 836071 117111 750656 047343 947406 036745 610746 387296 959189 364406 186702 021737 658801 331733 580105 014521 (285 digits)/17293 836747 685118 131684 568088 713674 097756 175901 145574 659824 484329 313229 799671 938536 273486 197653 149867 026346 170469 245474 530572 467793 273994 166132 618948 399008 835199 682620 308133 352146 324526 181351 125638 417469 655139 865320 808938 911467 220479 057386 810376 577821 981998 283724 243177 671921 140553 536655 (287 digits), a[567] = 10
                                                                                      A[568]/B[568] = 1083 770104 799822 857169 138789 814201 556503 954146 287719 388742 062527 756965 132891 858534 942257 526403 702291 654007 945457 485996 500236 397604 737522 101819 320229 848999 452793 939448 768154 934641 850300 513287 123123 762714 110987 144955 403183 780063 973383 862283 801119 439385 024708 738412 244308 726214 166636 361889 (286 digits)/105335 437264 042017 802699 687562 936641 101939 615681 425928 409090 636473 275906 215995 384761 560348 284942 146811 074957 552964 923019 365631 607811 329427 047460 503663 088480 184659 827473 546853 275399 510086 894684 409337 624793 155894 091734 796794 006549 796108 649431 600526 339244 518609 874522 759467 383116 779546 513776 (288 digits), a[568] = 6
                                                                                      A[569]/B[569] = 3429 242297 701993 895942 565128 830082 030282 334318 120323 367159 262734 509185 926707 227511 849073 692746 089323 049335 974738 574975 695339 015686 585019 589755 600203 410871 702250 872637 162256 195841 053193 933670 205442 405254 083617 482210 156957 376937 530897 974148 362547 682561 260828 236974 391727 510376 080014 100188 (286 digits)/333300 148539 811171 539783 630777 523597 403575 022945 423359 887096 393749 140948 447658 092820 954531 052479 590300 251218 829364 014532 627467 291227 262275 308514 129937 664449 389179 165040 948693 178344 854786 865404 353651 291849 122822 140525 199320 931116 608805 005681 611955 595555 537827 907292 521579 821271 479193 077983 (288 digits), a[569] = 3
                                                                                      A[570]/B[570] = 4513 012402 501816 753111 703918 644283 586786 288464 408042 755901 325262 266151 059599 086046 791331 219149 791614 703343 920196 060972 195575 413291 322541 691574 920433 259871 155044 812085 930411 130482 903494 446957 328566 167968 194604 627165 560141 157001 504281 836432 163667 121946 285536 975386 636036 236590 246650 462077 (286 digits)/438635 585803 853189 342483 318340 460238 505514 638626 849288 296187 030222 416854 663653 477582 514879 337421 737111 326176 382328 937551 993098 899038 591702 355974 633600 752929 573838 992514 495546 453744 364873 760088 762988 916642 278716 232259 996114 937666 404913 655113 212481 934800 056437 781815 281047 204388 258739 591759 (288 digits), a[570] = 1
                                                                                      A[571]/B[571] = 21481 291907 709260 908389 380803 407216 377427 488175 752494 390764 563783 573790 165103 571699 014398 569345 255781 862711 655522 818864 477640 668851 875186 356055 281936 450356 322430 120980 883900 717772 667171 721499 519707 077126 862035 990872 397522 004943 548025 319877 017216 170346 402976 138520 935872 456737 066615 948496 (287 digits)/2 087842 491755 223928 909716 904139 364551 425633 577452 820513 071844 514638 808367 102272 003151 014048 402166 538745 555924 358679 764740 599862 887381 629084 732412 664340 676167 684535 135098 930878 993322 314281 905759 405606 958418 237687 069565 183780 681782 228459 626134 461883 334755 763579 034553 645768 638824 514151 445019 (289 digits), a[571] = 4
                                                                                      A[572]/B[572] = 68956 888125 629599 478279 846328 865932 719068 752991 665525 928195 016612 987521 554909 801143 834526 927185 558960 291478 886764 517565 628497 419846 948100 759740 766242 610940 122335 175028 582113 283800 905009 611455 887687 399348 780712 599782 752707 171832 148357 796063 215315 632985 494465 390949 443653 606801 446498 307565 (287 digits)/6 702163 061069 524976 071634 030758 553892 782415 370985 310827 511720 574138 841955 970469 487035 557024 543921 353347 993949 458368 231773 792687 561183 478956 553212 626622 781432 627444 397811 288183 433711 307719 477366 979809 791896 991777 440955 547456 983013 090292 533516 598131 939067 347174 885476 218353 120861 801193 926816 (289 digits), a[572] = 3
                                                                                      A[573]/B[573] = 90438 180033 338860 386669 227132 273149 096496 241167 418020 318959 580396 561311 720013 372842 848925 496530 814742 154190 542287 336430 106138 088698 823287 115796 048179 061296 444765 296009 466014 001573 572181 332955 407394 476475 642748 590655 150229 176775 696383 115940 232531 803331 897441 529470 379526 063538 513114 256061 (287 digits)/8 790005 552824 748904 981350 934897 918444 208048 948438 131340 583565 088777 650323 072741 490186 571072 946087 892093 549873 817047 996514 392550 448565 108041 285625 290963 457600 311979 532910 219062 427033 622001 383126 385416 750315 229464 510520 731237 664795 318752 159651 060015 273823 110753 920029 864121 759686 315345 371835 (289 digits), a[573] = 1
                                                                                      A[574]/B[574] = 159395 068158 968459 864949 073461 139081 815564 994159 083546 247154 597009 548833 274923 173986 683452 423716 373702 445669 429051 853995 734635 508545 771387 875536 814421 672236 567100 471038 048127 285374 477190 944411 295081 875824 423461 190437 902936 348607 844740 912003 447847 436317 391906 920419 823179 670339 959612 563626 (288 digits)/15 492168 613894 273881 052984 965656 472336 990464 319423 442168 095285 662916 492279 043210 977222 128097 490009 245441 543823 275416 228288 185238 009748 586997 838837 917586 239032 939423 930721 507245 860744 929720 860493 365226 542212 221241 951476 278694 647808 409044 693167 658147 212890 457928 805506 082474 880548 116539 298651 (290 digits), a[574] = 1
                                                                                      A[575]/B[575] = 568623 384510 244239 981516 447515 690394 543191 223644 668659 060423 371425 207811 544782 894802 899282 767679 935849 491198 829442 898417 310044 614336 137450 742406 491444 078006 146066 709123 610395 857697 003754 166189 292640 103948 913132 161968 859038 222599 230605 851950 576074 112284 073162 290729 849065 074558 391951 946939 (288 digits)/55 266511 394507 570548 140305 831867 335455 179441 906708 457844 869422 077527 127160 202374 421852 955365 416115 628418 181343 643296 681378 948264 477810 869034 802139 043722 174699 130251 325074 740800 009268 411163 964606 481096 376951 893190 364949 567321 608220 545886 239154 034456 912494 484540 336548 111546 401330 664963 267788 (290 digits), a[575] = 3
                                                                                      A[576]/B[576] = 728018 452669 212699 846465 520976 829476 358756 217803 752205 307577 968434 756644 819706 068789 582735 191396 309551 936868 258494 752413 044680 122881 908838 617943 305865 750242 713167 180161 658523 143071 480945 110600 587721 979773 336593 352406 761974 571207 075346 763954 023921 548601 465069 211149 672244 744898 351564 510565 (288 digits)/70 758680 008401 844429 193290 797523 807792 169906 226131 900012 964707 740443 619439 245585 399075 083462 906124 873859 725166 918712 909667 133502 487559 456032 640976 961308 413732 069675 255796 248045 870013 340884 825099 846322 919164 114432 316425 846016 256028 954930 932321 692604 125384 942469 142054 194021 281878 781502 566439 (290 digits), a[576] = 1
                                                                                      A[577]/B[577] = 6 392771 005863 945838 753240 615330 326205 413240 966074 686301 521047 118903 260970 102431 445119 561164 298850 412264 986144 897400 917721 667485 597391 408159 685952 938370 079947 851404 150416 878581 002268 851315 050993 994415 942135 605878 981222 954834 792255 833379 963582 767446 501095 793715 979927 227023 033745 204468 031459 (289 digits)/621 335951 461722 325981 686632 212057 797792 538691 715763 657948 587084 001076 082674 167057 614453 623068 665114 619295 982678 992999 958716 016284 378286 517295 929954 734189 484555 687653 371444 725166 969375 138242 565405 251679 730264 808648 896356 335451 656452 185333 697727 575289 915574 024293 472981 663716 656360 916983 799300 (291 digits), a[577] = 8
                                                                                      A[578]/B[578] = 7 120789 458533 158538 599706 136307 155681 771997 183878 438506 828625 087338 017614 922137 513909 143899 490246 721816 923013 155895 670134 712165 720273 316998 303896 244235 830190 564571 330578 537104 145340 332260 161594 582137 921908 942472 333629 716809 363462 908726 727536 791368 049697 258785 191076 899267 778643 556032 542024 (289 digits)/692 094631 470124 170410 879923 009581 605584 708597 941895 557961 551791 741519 702113 412643 013528 706531 571239 493155 707845 911712 868383 149786 865845 973328 570931 695497 898287 757328 627240 973212 839388 479127 390505 098002 649428 923081 212782 181467 912481 140264 630049 267894 040958 966762 615035 857737 938239 698486 365739 (291 digits), a[578] = 1
                                                                                      A[579]/B[579] = 49 117507 757062 897070 351477 433173 260296 045224 069345 317342 492797 642931 366659 635256 528574 424561 240330 743166 524223 832774 938529 940479 919031 310149 509330 403785 061091 238832 133888 101205 874310 844876 020561 487243 473589 260712 983001 255690 973033 285740 328803 515654 799279 346427 126388 622629 705606 540663 283603 (290 digits)/4773 903740 282467 348446 966170 269547 431300 790279 367137 005717 897834 450194 295354 642915 695625 862258 092551 578230 229754 463277 169014 915005 573362 357267 355544 907176 874282 231625 134890 564444 005706 013006 908435 839695 626838 347136 173049 424259 131339 026921 478023 182654 161327 824869 163196 810144 285799 107901 993734 (292 digits), a[579] = 6
                                                                                      A[580]/B[580] = 56 238297 215596 055608 951183 569480 415977 817221 253223 755849 321422 730269 384274 557394 042483 568460 730577 464983 447236 988670 608664 652645 639304 627147 813226 648020 891281 803403 464466 638310 019651 177136 182156 069381 395498 203185 316630 972500 336496 194467 056340 307022 848976 605212 317465 521897 484250 096695 825627 (290 digits)/5465 998371 752591 518857 846093 279129 036885 498877 309032 563679 449626 191713 997468 055558 709154 568789 663791 071385 937600 374990 037398 064792 439208 330595 926476 602674 772569 988953 762131 537656 845094 492134 298940 937698 276267 270217 385831 605727 043820 167186 108072 450548 202286 791631 778232 667882 224038 806388 359473 (292 digits), a[580] = 1
                                                                                      A[581]/B[581] = 217 832399 403851 063897 205028 141614 508229 496887 829016 584890 457065 833739 519483 307438 656025 129943 432063 138116 865934 798786 764523 898416 836945 191592 949010 347847 734936 649042 527288 016135 933264 376284 567029 695387 660083 870268 932894 173191 982521 869141 497824 436723 346209 162064 078785 188322 158356 830750 760484 (291 digits)/21171 898855 540241 905020 504450 106934 541957 286911 294234 696756 246713 025336 287758 809591 823089 568627 083924 792388 042555 588247 281209 109382 890987 349055 134974 715201 191992 198486 421285 177414 540989 489409 805258 652790 455640 157788 330544 241440 262799 528479 802240 534298 768188 199764 497894 813790 957915 527067 072153 (293 digits), a[581] = 3
                                                                                      A[582]/B[582] = 3541 556687 677213 077964 231633 835312 547649 767426 517489 114096 634476 070101 696007 476412 538885 647555 643587 674853 302193 769258 841047 027315 030427 692634 997392 213584 650268 188083 901074 896484 951881 197689 254631 195583 956840 127488 242937 743572 056846 100731 021531 294596 388323 198237 578028 535052 017959 388707 993371 (292 digits)/344216 380060 396461 999185 917294 990081 708202 089458 016787 711779 397034 597094 601609 009027 878587 666823 006587 749594 618489 786946 536743 814918 695005 915478 086072 045893 844445 164736 502694 376289 500926 322691 183079 382345 566509 794830 674539 468771 248612 622862 943920 999328 493297 987863 744549 688537 550687 239461 513921 (294 digits), a[582] = 16
                                                                                      A[583]/B[583] = 3759 389087 081064 141861 436661 976927 055879 264314 346505 698987 091541 903841 215490 783851 194910 777499 075650 812970 168128 568045 605570 925731 867372 884227 946402 561432 385204 837126 428362 912620 885145 573973 821660 890971 616923 997757 175831 916764 039367 969872 519355 731319 734532 360301 656813 723374 176316 219458 753855 (292 digits)/365388 278915 936703 904206 421745 097016 250159 376369 311022 408535 643747 622430 889367 818619 701677 235450 090512 541982 661045 375193 817952 924301 585993 264533 221046 761095 036437 363222 923979 553704 041915 812100 988338 035136 022149 952619 005083 710211 511412 151342 746161 533627 261486 187628 242444 502328 508602 766528 586074 (294 digits), a[583] = 1
                                                                                      A[584]/B[584] = 101285 672951 784880 766361 584845 235416 000510 639599 526637 287761 014565 569973 298767 856543 606565 862531 610508 812077 673536 538444 585891 096343 582122 682561 603858 810826 665593 953371 038510 624627 965666 121008 617814 360845 996864 069174 814567 579437 080413 317416 524780 308909 486164 566080 655185 342780 602181 094635 593601 (294 digits)/9 844311 631874 750763 508552 882667 512504 212345 875060 103370 333706 134472 780297 725172 293140 122195 788525 359913 841143 805669 541985 803519 846759 930830 793341 833287 834364 791816 608532 526162 772594 590737 437316 879868 295882 142408 562924 806715 934270 545328 557774 344120 873637 291938 866198 048106 749078 774359 169204 751845 (295 digits), a[584] = 26
                                                                                      A[585]/B[585] = 105045 062038 865944 908223 021507 212343 056389 903913 873142 986748 106107 473814 514258 640394 801476 640030 686159 625047 841665 106490 191462 022075 449495 566789 550261 372259 050798 790497 466873 537248 850811 694982 439475 251817 613788 066931 990399 496201 119781 287289 044136 040229 220696 926382 311999 066154 778497 314094 347456 (294 digits)/10 209699 910790 687467 412759 304412 609520 462505 251429 414392 742241 778220 402728 614540 111759 823873 023975 450426 383126 466714 917179 621472 771061 516824 057875 054334 595459 828253 971755 450142 326298 632653 249417 868206 331018 164558 515543 811799 644482 056740 709117 090282 407264 553425 053826 290551 251407 282961 935733 337919 (296 digits), a[585] = 1
                                                                                      A[586]/B[586] = 311375 797029 516770 582807 627859 660102 113290 447427 272923 261257 226780 517602 327285 137333 209519 142592 982828 062173 356866 751424 968815 140494 481113 816140 704381 555344 767191 534365 972257 699125 667289 510973 496764 864481 224440 203038 795366 571839 319975 891994 613052 389367 927558 418845 279183 475090 159175 722824 288513 (294 digits)/30 263711 453456 125698 334071 491492 731545 137356 377918 932155 818189 690913 585754 954252 516659 769941 836476 260766 607396 739099 376345 046465 388882 964478 909091 941957 025284 448324 552043 426447 425191 856043 936152 616280 957918 471525 594012 430315 223234 658809 976008 524685 688166 398788 973850 629209 251893 340283 040671 427683 (296 digits), a[586] = 2
                                                                                      A[587]/B[587] = 17 853465 492721 321868 128257 809507 838163 513945 407268 429768 878410 032596 977147 169511 468387 744067 767830 707359 168929 183069 937713 413925 030260 872983 086809 700010 026910 780716 249357 885562 387411 886313 820471 755072 527247 406879 640143 326294 091042 358407 130981 988122 234201 091526 800563 225457 146293 851513 515078 792697 (296 digits)/1735 241252 757789 852272 454834 319498 307593 291818 792808 547274 379054 160294 790761 006933 561366 710557 703122 314123 004740 595379 368847 269999 937390 492121 876115 745885 036673 382753 438230 757645 562234 427157 610116 996220 932371 041517 374252 339767 368857 608909 341602 997366 632749 284396 563312 155478 609327 679095 254004 715850 (298 digits), a[587] = 57
                                                                                      A[588]/B[588] = 89 578703 260636 126111 224096 675398 850919 683017 483769 421767 653307 389765 403338 174842 479271 929857 981746 519623 906819 272216 439992 038440 291798 846029 250189 204431 689898 670772 781155 400069 636185 098858 613332 272127 500718 258838 403755 426837 027051 112011 546904 553663 560373 385192 421661 406469 206559 416743 298218 251998 (296 digits)/8706 469975 242405 387060 608243 088984 269511 596450 341961 668527 713460 492387 539559 988920 323493 322730 352087 831381 631099 715996 220581 396465 075835 425088 289670 671382 208651 362091 743197 214675 236363 991831 986737 597385 619773 679112 465274 129152 067522 703356 684023 511518 851912 820771 790411 406602 298531 735759 310695 006933 (298 digits), a[588] = 5
                                                                                      A[589]/B[589] = 1540 691420 923535 465758 937901 291288 303798 125242 631348 599818 984635 658608 833896 141833 616010 551653 457521 540965 584856 810749 417578 067409 990841 255480 340026 175348 755188 183853 528999 686746 202558 566910 247120 381240 039457 807132 503985 582523 550911 262603 428359 400402 760548 639797 968807 135433 657803 936149 584789 076663 (298 digits)/149745 230831 878681 432302 794966 832230 889290 431474 606156 912245 507882 530882 963280 818579 060753 196973 688615 447610 733435 767315 118731 009906 226592 718622 800517 159382 583746 538313 072583 407124 580422 288301 384656 151776 468523 586429 283912 535352 516743 565972 970002 693187 115267 237517 000306 067717 684367 187003 535819 833711 (300 digits), a[589] = 17
                                                                                      A[590]/B[590] = 10874 418649 725384 386423 789405 714416 977506 559715 903209 620500 545757 000027 240611 167677 791345 791432 184397 306383 000816 947462 363038 510310 227687 634391 630372 431872 976215 957747 484153 207293 054095 067230 343174 940807 776922 908765 931654 504501 883429 950235 545420 356482 884213 863778 203311 354504 811186 969790 391741 788639 (299 digits)/1 056923 085798 393175 413180 173010 914600 494544 616772 585060 054246 268638 208568 282525 718973 748765 701546 172395 964656 765150 087202 051698 465808 661984 455447 893290 787060 294877 130283 251281 064547 299320 009941 679330 659820 899438 784117 452661 876619 684727 665167 474042 363828 658783 483390 792553 880626 089102 044784 061433 842910 (301 digits), a[590] = 7
                                                                                      A[591]/B[591] = 45038 366019 825073 011454 095524 148956 213824 364106 244187 081821 167663 658717 796340 812544 781393 717382 195110 766497 588124 600598 869732 108650 901591 793046 861515 902840 660052 014843 465612 515918 418938 835831 619820 144471 147149 442196 230603 600531 084631 063545 610040 826334 297404 094910 782052 553452 902551 815311 151756 231219 (299 digits)/4 377437 574025 451383 085023 487010 490632 867468 898564 946397 129230 582435 365156 093383 694474 055816 003158 378199 306237 794036 116123 325524 873140 874530 540414 373680 307623 763255 059446 077707 665313 777702 328068 101978 791060 066278 722899 094560 041831 255654 226642 866172 148501 750401 171080 170521 590222 040775 366139 781555 205351 (301 digits), a[591] = 4
                                                                                      A[592]/B[592] = 55912 784669 550457 397877 884929 863373 191330 923822 147396 702321 713420 658745 036951 980222 572739 508814 379508 072880 588941 548061 232770 618961 129279 427438 491888 334713 636267 972590 949765 723211 473033 903061 962995 085278 924072 350962 162258 105032 968061 013781 155461 182817 181617 958688 985363 907957 713738 785101 543498 019858 (299 digits)/5 434360 659823 844558 498203 660021 405233 362013 515337 531457 183476 851073 573724 375909 413447 804581 704704 550595 270894 559186 203325 377223 338949 536514 995862 266971 094684 058132 189729 328988 729861 077022 338009 781309 450880 965717 507016 547221 918450 940381 891810 340214 512330 409184 654470 963075 470848 129877 410923 842989 048261 (301 digits), a[592] = 1
                                                                                      A[593]/B[593] = 212776 720028 476445 205087 750313 739075 787817 135572 686377 188786 307925 634952 907196 753212 499612 243825 333634 985139 354949 244782 568043 965534 289430 075362 337180 906981 568855 932616 314909 685552 838040 545017 508805 400307 919366 495082 717377 915629 988814 104889 076424 374785 842257 970977 738144 277326 043768 170615 782250 290793 (300 digits)/20 680519 553496 985058 579634 467074 706332 953509 444577 540768 679661 135656 086329 221111 934817 469561 117272 029985 118921 471594 726099 457194 889989 484075 528001 174593 591675 937651 628634 064673 854897 008769 342097 445907 143702 963431 243948 736225 797184 076799 902073 886815 685492 977955 134493 059748 002766 430407 598911 310522 350134 (302 digits), a[593] = 3
                                                                                      A[594]/B[594] = 694242 944754 979793 013141 135871 080600 554782 330540 206528 268680 637197 563603 758542 239860 071576 240290 380413 028298 653789 282408 936902 515563 997569 653525 503431 055658 342835 770439 894494 779869 987155 538114 489411 286202 682171 836210 314391 851922 934503 328448 384734 307174 708391 871622 199796 739935 845043 296948 890248 892237 (300 digits)/67 475919 320314 799734 237107 061245 524232 222541 849070 153763 222460 258041 832712 039245 217900 213265 056520 640550 627658 973970 381623 748808 008917 988741 579865 790751 869711 871087 075631 523010 294552 103330 364302 119030 881989 856011 238862 755899 310003 170781 598032 000661 568809 343050 057950 142319 479147 421100 207657 774556 098663 (302 digits), a[594] = 3
                                                                                      A[595]/B[595] = 907019 664783 456238 218228 886184 819676 342599 466112 892905 457466 945123 198556 665738 993072 571188 484115 714048 013438 008738 527191 504946 481098 286999 728887 840611 962639 911691 703056 209404 465422 825196 083131 998216 686510 601538 331293 031769 767552 923317 433337 461158 681960 550649 842599 937941 017261 888811 467564 672499 183030 (300 digits)/88 156438 873811 784792 816741 528320 230565 176051 293647 694531 902121 393697 919041 260357 152717 682826 173792 670535 746580 445565 107723 206002 898907 472817 107866 965345 461387 808738 704265 587684 149449 112099 706399 564938 025692 819442 482811 492125 107187 247581 500105 887477 254302 321005 192443 202067 481913 851507 806569 085078 448797 (302 digits), a[595] = 1
                                                                                      A[596]/B[596] = 24 276754 229124 841986 687092 176676 392185 462368 449475 422070 162821 210400 726077 067756 059746 922476 827298 945661 377686 880990 989388 065511 024119 459562 604609 359342 084296 046820 049901 339010 880863 442253 699546 443045 135478 322168 449829 140405 808298 940756 595222 374860 038149 025287 779220 586263 188744 954141 453630 375227 651017 (302 digits)/2359 543330 039421 204347 472386 797571 518926 799875 483910 211592 677616 494187 727784 808531 188559 966745 575130 074480 038750 558663 182427 104883 380512 281986 384406 889733 865794 898293 386536 802798 180229 017922 730690 807419 550003 161515 791961 551152 096871 607900 600785 075070 180669 689185 061473 396074 008907 560303 178453 986595 767385 (304 digits), a[596] = 26
                                                                                      A[597]/B[597] = 122 290790 810407 666171 653689 769566 780603 654441 713490 003256 271572 997126 828942 004519 291807 183572 620610 442354 901872 413693 474131 832501 601695 584812 751934 637322 384120 145791 952562 904458 869740 036464 580864 213442 363902 212380 580438 733798 809047 627100 409449 335458 872705 677088 738702 869256 960986 659518 735716 548637 438115 (303 digits)/11885 873089 070917 806530 178675 516177 825199 175428 713198 752495 290203 864636 557965 303013 095517 516554 049443 042935 940333 238881 019858 730419 801468 882749 029901 414014 790362 300205 636949 601675 050594 201713 359853 602035 775708 627021 442619 247885 591545 287084 504031 262828 157650 766930 499810 182437 526451 653023 698839 018057 285722 (305 digits), a[597] = 5
                                                                                      A[598]/B[598] = 880 312289 901978 505188 262920 563643 856411 043460 443905 444864 063832 190288 528671 099391 102397 207485 171572 042145 690793 776845 308310 893022 235988 553251 868151 820598 773137 067363 717841 670222 969043 697505 765595 937141 682793 808832 512900 276997 471632 330459 461367 723072 147088 764908 950140 671061 915651 570772 603646 215689 717822 (303 digits)/85560 654953 535845 850058 723115 410816 295321 027876 476301 479059 709043 546643 633541 929622 857182 582623 921231 375031 621083 230830 321438 217821 990794 461229 593716 787837 398330 999732 845184 014523 534388 429916 249666 021669 979963 550665 890296 286351 237688 617492 129003 914867 284225 057698 560144 673136 694069 131469 070327 112996 767439 (305 digits), a[598] = 7
                                                                                      A[599]/B[599] = 1882 915370 614364 676548 179530 896854 493425 741362 601300 892984 399237 377703 886284 203301 496601 598542 963754 526646 283459 967384 090753 618546 073672 691316 488238 278519 930394 280519 388246 244904 807827 431476 112056 087725 729489 830045 606239 287793 752312 288019 332184 781603 166883 206906 638984 211380 792289 801063 943008 980016 873759 (304 digits)/183007 182996 142609 506647 624906 337810 415841 231181 665801 710614 708290 957923 825049 162258 809882 681801 891905 792999 182499 700541 662735 166063 783057 805208 217334 989689 587024 299671 327317 630722 119371 061545 859185 645375 735635 728353 223211 820588 066922 522068 762039 092562 726100 882327 620099 528710 914589 915961 839493 244050 820600 (306 digits), a[599] = 2
                                                                                      A[600]/B[600] = 2763 227660 516343 181736 442451 460498 349836 784823 045206 337848 463069 567992 414955 302692 598998 806028 135326 568791 974253 744229 399064 511568 309661 244568 356390 099118 703531 347883 106087 915127 776871 128981 877652 024867 412283 638878 119139 564791 223944 618478 793552 504675 313971 971815 589124 882442 707941 371836 546655 195706 591581 (304 digits)/268567 837949 678455 356706 348021 748626 711162 259058 142103 189674 417334 504567 458591 091881 667065 264425 813137 168030 803582 931371 984173 383885 773852 266437 811051 777526 985355 299404 172501 645245 653759 491462 108851 667045 715599 279019 113508 106939 304611 139560 891043 007430 010325 940026 180244 201847 608659 047430 909820 357047 588039 (306 digits), a[600] = 1
                                                                                      A[601]/B[601] = 4646 143031 130707 858284 621982 357352 843262 526185 646507 230832 862306 945696 301239 505994 095600 404571 099081 095438 257713 711613 489818 130114 383333 935884 844628 377638 633925 628402 494334 160032 584698 560457 989708 112593 141773 468923 725378 852584 976256 906498 125737 286278 480855 178722 228109 093823 500231 172900 489664 175723 465340 (304 digits)/451575 020945 821064 863353 972928 086437 127003 490239 807904 900289 125625 462491 283640 254140 476947 946227 705042 961029 986082 631913 646908 549949 556910 071646 028386 767216 572379 599075 499819 275967 773130 553007 968037 312421 451235 007372 336719 927527 371533 661629 653082 099992 736426 822353 800343 730558 523248 963392 749313 601098 408639 (306 digits), a[601] = 1
                                                                                      A[602]/B[602] = 16701 656753 908466 756590 308398 532556 879624 363379 984728 030347 049990 405081 318673 820674 885800 019741 432569 855106 747394 879069 868518 901911 459663 052222 890275 232034 605308 233090 589090 395225 530966 810355 846776 362646 837604 045649 295276 122546 152715 337973 170764 363510 756537 507982 273452 163913 208634 890538 015647 722876 987601 (305 digits)/1 623292 900787 141649 946768 266806 007938 092172 729777 565817 890541 794210 892041 309511 854303 097909 103108 928266 051120 761830 827112 924899 033734 444582 481375 896212 079176 702494 096630 671959 473148 973151 150486 012963 604310 069304 301136 123667 889521 419212 124449 850289 307408 219606 407087 581275 393523 178405 937609 157761 160342 813956 (307 digits), a[602] = 3
                                                                                      A[603]/B[603] = 21347 799785 039174 614874 930380 889909 722886 889565 631235 261179 912297 350777 619913 326668 981400 424312 531650 950545 005108 590683 358337 032025 842996 988107 734903 609673 239233 861493 083424 555258 115665 370813 836484 475239 979377 514573 020654 975131 128972 244471 296501 649789 237392 686704 501561 257736 708866 063438 505311 898600 452941 (305 digits)/2 074867 921732 962714 810122 239734 094375 219176 220017 373722 790830 919836 354532 593152 108443 574857 049336 633309 012150 747913 459026 571807 583684 001492 553021 924598 846393 274873 695706 171778 749116 746281 703493 981000 916731 520539 308508 460387 817048 790745 786079 503371 407400 956033 229441 381619 124081 701654 901001 907074 761441 222595 (307 digits), a[603] = 1
                                                                                      A[604]/B[604] = 80745 056109 025990 601215 099541 202286 048285 032076 878433 813886 786882 457414 178413 800681 830001 292679 027522 706741 762720 651119 943529 997988 988654 016546 094986 061054 323009 817569 839364 060999 877962 922797 356229 788366 775736 589368 357241 047939 539632 071387 060269 312878 468715 568095 778135 937123 335233 080853 531583 418678 346424 (305 digits)/7 847896 665986 029794 377134 986008 291063 749701 389829 686986 263034 553719 955639 088968 179633 822480 251118 828193 087573 005571 204192 640321 784786 449060 140441 670008 618356 527115 183749 187295 720499 211996 260967 955966 354504 630922 226661 504831 340667 791449 482688 360403 529611 087706 095411 726132 765768 283370 640614 878985 444666 481741 (307 digits), a[604] = 3
                                                                                      A[605]/B[605] = 182837 912003 091155 817305 129463 294481 819456 953719 388102 888953 486062 265605 976740 928032 641403 009670 586696 364028 530549 892923 245397 028003 820305 021199 924875 731781 885253 496632 762152 677257 871591 216408 548944 051973 530850 693309 735137 071010 208236 387245 417040 275546 174823 822896 057833 131983 379332 225145 568478 735957 145789 (306 digits)/17 770661 253705 022303 564392 211750 676502 718578 999676 747695 316900 027276 265810 771088 467711 219817 551574 289695 187296 759055 867411 852451 153256 899612 833905 264616 083106 329104 063204 546370 190115 170274 225429 892933 625740 782383 761831 470050 498384 373644 751456 224178 466623 131445 420264 833884 655618 268396 182231 665045 650774 186077 (308 digits), a[605] = 2
                                                                                      A[606]/B[606] = 446420 880115 208302 235825 358467 791249 687198 939515 654639 591793 759006 988626 131895 656747 112807 312020 200915 434798 823820 436966 434324 053996 629264 058945 944737 524618 093516 810835 363669 415515 621145 355614 454117 892313 837437 975987 827515 189959 956104 845877 894349 863970 818363 213887 893802 201090 093897 531144 668540 890592 638002 (306 digits)/43 389219 173396 074401 505919 409509 644069 186859 389183 182376 896834 608272 487260 631145 115056 262115 354267 407583 462166 523682 939016 345224 091300 248285 808252 199240 784569 185323 310158 280036 100729 552544 711827 741833 605986 195689 750324 444932 337436 538738 985600 808760 462857 350596 935941 393902 077004 820163 005078 209076 746214 853895 (308 digits), a[606] = 2
                                                                                      A[607]/B[607] = 7 325571 993846 423991 590510 864947 954476 814639 985969 862336 357653 630174 083624 087071 435986 446320 001993 801343 320809 711676 884386 194581 891949 888529 964335 040676 125671 381522 469998 580863 325507 809916 906239 814830 328994 929858 309114 975380 110369 505913 921291 726638 099079 268635 245102 358668 349424 881692 723460 265132 985439 353821 (307 digits)/711 998168 028042 212727 659102 763904 981609 708329 226607 665725 666253 759636 061980 869410 308611 413663 219852 811030 581961 137982 891673 376036 614060 872185 765940 452468 636213 294277 025737 026947 801788 010989 614673 762271 321519 913419 767022 588967 897368 993468 521069 164345 872340 740996 395327 136317 887695 391004 263483 010273 590211 848397 (309 digits), a[607] = 16
                                                                                      A[608]/B[608] = 168 934576 738582 960108 817575 252270 744216 423918 616822 488375 817827 253010 911980 134538 684435 378167 357877 631811 813422 192388 777848 909707 568844 065453 238651 880288 415059 868533 620802 723525 902195 249234 199130 195215 459197 224179 085632 261257 728458 592125 035587 607026 142793 996973 851242 143174 237862 372830 170730 766599 555697 775885 (309 digits)/16419 347083 818366 967137 665282 979324 221092 478431 601159 494067 220671 079901 912820 627582 213118 776369 410882 061286 847272 697289 447503 994066 214700 308558 424882 606019 417474 953694 902109 899835 541853 805305 849324 274074 000944 204344 391843 991193 976923 388514 970191 588715 526694 393514 028465 529213 493998 813261 065187 445369 321087 367026 (311 digits), a[608] = 23
                                                                                      A[609]/B[609] = 176 260148 732429 384100 408086 117218 698693 238558 602792 350712 175480 883184 995604 221610 120421 824487 359871 433155 134231 904065 662235 104289 460793 953983 202986 920964 540731 250056 090801 304389 227703 059151 105370 010045 788192 154037 394747 236637 838828 098038 956879 333664 241873 265609 096344 501842 587287 254522 894191 031732 541137 129706 (309 digits)/17131 345251 846409 179865 324385 743229 202702 186760 827767 159792 886924 839537 974801 496992 521730 190032 630734 872317 429233 835272 339177 370102 828761 180744 190823 058488 053688 247971 927846 926783 343641 816295 463998 036345 322464 117764 158866 580161 874292 381983 491260 753061 399035 134510 423792 665531 381694 204265 328670 455642 911299 215423 (311 digits), a[609] = 1
                                                                                      A[610]/B[610] = 521 454874 203441 728309 633747 486708 141602 901035 822407 189800 168789 019380 903188 577758 925279 027142 077620 498122 081886 000520 102319 118286 490431 973419 644625 722217 496522 368645 802405 332304 357601 367536 409870 215307 035581 532253 875126 734533 406114 788202 949346 274354 626540 528192 043931 146859 412436 881875 959112 830064 637972 035297 (309 digits)/50682 037587 511185 326868 314054 465782 626496 851953 256693 813652 994520 758977 862423 621567 256579 156434 672351 805921 705740 367834 125858 734271 872222 670046 806528 722995 524851 449638 757803 753402 229137 437896 777320 346764 645872 439872 709577 151517 725508 152481 952713 094838 324764 662534 876050 860276 257387 221791 722528 356655 143685 797872 (311 digits), a[610] = 2
                                                                                      A[611]/B[611] = 697 715022 935871 112410 041833 603926 840296 139594 425199 540512 344269 902565 898792 799369 045700 851629 437491 931277 216117 904585 764554 222575 951225 927402 847612 643182 037253 618701 893206 636693 585304 426687 515240 225352 823773 686291 269873 971171 244942 886241 906225 608018 868413 793801 140275 648701 999724 136398 853303 861797 179109 165003 (309 digits)/67813 382839 357594 506733 638440 209011 829199 038714 084460 973445 881445 598515 837225 118559 778309 346467 303086 678239 134974 203106 465036 104374 700983 850790 997351 781483 578539 697610 685650 680185 572779 254192 241318 383109 968336 557636 868443 731679 599800 534465 443973 847899 723799 797045 299843 525807 639081 426057 051198 812298 054985 013295 (311 digits), a[611] = 1
                                                                                      A[612]/B[612] = 1219 169897 139312 840719 675581 090634 981899 040630 247606 730312 513058 921946 801981 377127 970979 878771 515112 429399 298003 905105 866873 340862 441657 900822 492238 365399 533775 987347 695611 968997 942905 794223 925110 440659 859355 218545 145000 705704 651057 674444 855571 882373 494954 321993 184206 795561 412161 018274 812416 691861 817081 200300 (310 digits)/118495 420426 868779 833601 952494 674794 455695 890667 341154 787098 875966 357493 699648 740127 034888 502901 975438 484160 840714 570940 590894 838646 573206 520837 803880 504479 103391 147249 443454 433587 801916 692089 018638 729874 614208 997509 578020 883197 325308 686947 396686 942738 048564 459580 175894 386083 896468 647848 773727 168953 198670 811167 (312 digits), a[612] = 1
                                                                                      A[613]/B[613] = 1916 884920 075183 953129 717414 694561 822195 180224 672806 270824 857328 824512 700774 176497 016680 730400 952604 360676 514121 809691 631427 563438 392883 828225 339851 008581 571029 606049 588818 605691 528210 220911 440350 666012 683128 904836 414874 676875 896000 560686 761797 490392 363368 115794 324482 444263 411885 154673 665720 553658 996190 365303 (310 digits)/186308 803266 226374 340335 590934 883806 284894 929381 425615 760544 757411 956009 536873 858686 813197 849369 278525 162399 975688 774047 055930 943021 274190 371628 801232 285962 681930 844860 129105 113773 374695 946281 259957 112984 582545 555146 446464 614876 925109 221412 840660 790637 772364 256625 475737 911891 535550 073905 824925 981251 253655 824462 (312 digits), a[613] = 1
                                                                                      A[614]/B[614] = 3136 054817 214496 793849 392995 785196 804094 220854 920413 001137 370387 746459 502755 553624 987660 609172 467716 790075 812125 714797 498300 904300 834541 729047 832089 373981 104805 593397 284430 574689 471116 015135 365461 106672 542484 123381 559875 382580 547058 235131 617369 372765 858322 437787 508689 239824 824046 172948 478137 245520 813271 565603 (310 digits)/304804 223693 095154 173937 543429 558600 740590 820048 766770 547643 633378 313503 236522 598813 848086 352271 253963 646560 816403 344987 646825 781667 847396 892466 605112 790441 785321 992109 572559 547361 176612 638370 278595 842859 196754 552656 024485 498074 250417 908360 237347 733375 820928 716205 651632 297975 432018 721754 598653 150204 452326 635629 (312 digits), a[614] = 1
                                                                                      A[615]/B[615] = 5052 939737 289680 746979 110410 479758 626289 401079 593219 271962 227716 570972 203529 730122 004341 339573 420321 150752 326247 524489 129728 467739 227425 557273 171940 382562 675835 199446 873249 180380 999326 236046 805811 772685 225613 028217 974750 059456 443058 795818 379166 863158 221690 553581 833171 684088 235931 327622 143857 799179 809461 930906 (310 digits)/491113 026959 321528 514273 134364 442407 025485 749430 192386 308188 390790 269512 773396 457500 661284 201640 532488 808960 792092 119034 702756 724689 121587 264095 406345 076404 467252 836969 701664 661134 551308 584651 538552 955843 779300 107802 470950 112951 175527 129773 078008 524013 593292 972831 127370 209866 967568 795660 423579 131455 705982 460091 (312 digits), a[615] = 1
                                                                                      A[616]/B[616] = 13241 934291 793858 287807 613816 744714 056673 023014 106851 545061 825820 888403 909815 013868 996343 288319 308359 091580 464620 763775 757757 839779 289392 843594 175970 139106 456475 992291 030928 935451 469768 487228 977084 652042 993710 179817 509375 501493 433175 826768 375703 099082 301703 544951 175032 608001 295908 828192 765852 843880 432195 427415 (311 digits)/1 287030 277611 738211 202483 812158 443414 791562 318909 151543 164020 414958 852528 783315 513815 170654 755552 318941 264482 400587 583057 052339 231046 090571 420657 417802 943250 719827 666048 975888 869630 279229 807673 355701 754546 755354 768260 966385 723976 601472 167906 393364 781403 007514 661867 906372 717709 367156 313075 445811 413115 864291 555811 (313 digits), a[616] = 2
                                                                                      A[617]/B[617] = 18294 874029 083539 034786 724227 224472 682962 424093 700070 817024 053537 459376 113344 743991 000684 627892 728680 242332 790868 288264 887486 307518 516818 400867 347910 521669 132311 191737 904178 115832 469094 723275 782896 424728 219323 208035 484125 560949 876234 622586 754869 962240 523394 098533 008204 292089 531840 155814 909710 643060 241657 358321 (311 digits)/1 778143 304571 059739 716756 946522 885821 817048 068339 343929 472208 805749 122041 556711 971315 831938 957192 851430 073443 192679 702091 755095 955735 212158 684752 824148 019655 187080 503018 677553 530764 830538 392324 894254 710390 534654 876063 437335 836927 776999 297679 471373 305416 600807 634699 033742 927576 334725 108735 869390 544571 570274 015902 (313 digits), a[617] = 1
                                                                                      A[618]/B[618] = 31536 808320 877397 322594 338043 969186 739635 447107 806922 362085 879358 347780 023159 757859 997027 916212 037039 333913 255489 052040 645244 147297 806211 244461 523880 660775 588787 184028 935107 051283 938863 210504 759981 076771 213033 387852 993501 062443 309410 449355 130573 061322 825097 643484 183236 900090 827748 984007 675563 486940 673852 785736 (311 digits)/3 065173 582182 797950 919240 758681 329236 608610 387248 495472 636229 220707 974570 340027 485131 002593 712745 170371 337925 593267 285148 807435 186781 302730 105410 241950 962905 906908 169067 653442 400395 109768 199998 249956 464937 290009 644324 403721 560904 378471 465585 864738 086819 608322 296566 940115 645285 701881 421811 315201 957687 434565 571713 (313 digits), a[618] = 1
                                                                                      A[619]/B[619] = 1 311304 015185 056829 261154 584029 961129 008015 755513 783887 662545 107229 718357 062894 816250 878829 192586 247292 932776 265919 421931 342496 346728 571479 423789 827017 613468 272585 736924 243567 218473 962486 353970 942120 572347 953692 110008 217669 121125 562063 046147 108365 476476 352397 481384 520917 195813 469548 500129 607813 607627 869621 573497 (313 digits)/127 450260 174065 775727 405628 052457 384522 770073 945527 658307 557606 854776 079425 497838 861686 938281 179744 836654 928392 516638 393192 859938 613768 624093 006572 744137 498797 370315 434792 468691 946964 331034 592253 142469 772819 425050 293363 989919 834007 294329 386699 925634 865020 542021 793943 578484 384290 111863 402999 792670 809756 387462 456135 (315 digits), a[619] = 41
                                                                                      A[620]/B[620] = 1 342840 823505 934226 583748 922073 930315 747651 202621 590810 024630 986588 066137 086054 574110 875857 108798 284332 266689 521408 473971 987740 494026 377690 668251 350898 274243 861372 920953 178674 269757 901349 564475 702101 649119 166725 497861 211170 183568 871473 495502 238938 537799 177495 124868 704154 095904 297297 484137 283377 094568 543474 359233 (313 digits)/130 515433 756248 573678 324868 811138 713759 378684 332776 153780 193836 075484 053995 837866 346817 940874 892490 007026 266318 109905 678341 667373 800549 926823 111982 986088 461703 277223 603860 122134 347359 440802 792251 392426 237756 715059 937688 393641 394911 672800 852285 790372 951840 150344 090510 518600 029575 813744 824811 107872 767443 822028 027848 (315 digits), a[620] = 1
                                                                                      A[621]/B[621] = 57 710618 602434 294345 778609 311135 034390 409366 265620 597908 697046 543928 496114 677186 928907 664827 762114 189248 133736 165075 328754 827597 095836 434487 490346 564745 131710 450248 416957 747886 548305 819168 061950 430389 835352 956163 020179 086816 831018 163949 857241 143784 064041 807192 725870 095389 223793 956042 833895 509651 579506 695544 661283 (314 digits)/5609 098477 936505 870217 050118 120283 362416 674815 922126 117075 698722 025106 347250 688225 428040 455026 664325 131758 113753 132676 883542 889638 236865 550663 709858 159852 890335 013706 796917 598334 536060 844751 866811 624371 758601 457567 676276 522858 420297 551965 182703 121298 842306 856473 595385 359685 626474 289146 045066 323327 042396 912639 625751 (316 digits), a[621] = 42
                                                                                      A[622]/B[622] = 463 027789 642980 288992 812623 411154 205439 022581 327586 374079 601003 338016 035054 503550 005372 194479 205711 798317 336578 842011 104010 608517 260717 853590 591023 868859 327927 463360 256615 161766 656204 454694 060079 145220 331942 816029 659293 905704 831714 183072 353431 389211 050133 635036 931829 467267 886255 945640 155301 360589 730622 107831 649497 (315 digits)/45003 303257 248295 535414 725813 773405 613092 777211 709785 090385 783612 276334 832001 343669 771141 581088 207091 061091 176343 171320 746684 784479 695474 332132 790848 264911 584383 386877 979200 908810 635846 198817 726744 387400 306568 375601 347900 576508 757292 088522 313910 760763 690295 002132 853593 396085 041370 126913 185341 694489 106619 123145 033856 (317 digits), a[622] = 8
                                                                                      A[623]/B[623] = 520 738408 245414 583338 591232 722289 239829 431947 593206 971988 298049 881944 531169 180736 934279 859306 967825 987565 470315 007086 432765 436114 356554 288078 081370 433604 459637 913608 673572 909653 204510 273862 122029 575610 167295 772192 679472 992521 662732 347022 210672 532995 114175 442229 657699 562657 110049 901682 989196 870241 310128 803376 310780 (315 digits)/50612 401735 184801 405631 775931 893688 975509 452027 631911 207461 482334 301441 179252 031895 199182 036114 871416 192849 290096 303997 630227 674117 932339 882796 500706 424764 474718 400584 776118 507145 171907 043569 593556 011772 065169 833169 024177 099367 177589 640487 496613 882062 532601 858606 448978 755770 667844 416059 230408 017816 149016 035784 659607 (317 digits), a[623] = 1
                                                                                      A[624]/B[624] = 1504 504606 133809 455669 995088 855732 685097 886476 514000 318056 197103 101905 097392 865023 873931 913093 141363 773448 277208 856183 969541 480745 973826 429746 753764 736068 247203 290577 603760 981073 065225 002418 304138 296440 666534 360415 018239 890748 157178 877116 774776 455201 278484 519496 247228 592582 106355 749006 133695 101072 350879 714584 271057 (316 digits)/146228 106727 617898 346678 277677 560783 564111 681266 973607 505308 748280 879217 190505 407460 169505 653317 949923 446789 756535 779316 007140 132715 560154 097725 792261 114440 533820 188047 531437 923100 979660 285956 913856 410944 436908 041939 396254 775243 112471 369497 307138 524888 755498 719345 751550 907626 377058 959031 646157 730121 404651 194714 353070 (318 digits), a[624] = 2
                                                                                      A[625]/B[625] = 2025 243014 379224 039008 586321 578021 924927 318424 107207 290044 495152 983849 628562 045760 808211 772400 109189 761013 747523 863270 402306 916860 330380 717824 835135 169672 706841 204186 277333 890726 269735 276280 426167 872050 833830 132607 697712 883269 819911 224138 985448 988196 392659 961725 904928 155239 216405 650689 122891 971313 661008 517960 581837 (316 digits)/196840 508462 802699 752310 053609 454472 539621 133294 605518 712770 230615 180658 369757 439355 368687 689432 821339 639639 046632 083313 637367 806833 492493 980522 292967 539205 008538 588632 307556 430246 151567 329526 507412 422716 502077 875108 420431 874610 290061 009984 803752 406951 288100 577952 200529 663397 044903 375090 876565 747937 553667 230499 012677 (318 digits), a[625] = 1
                                                                                      A[626]/B[626] = 3529 747620 513033 494678 581410 433754 610025 204900 621207 608100 692256 085754 725954 910784 682143 685493 250553 534462 024732 719454 371848 397606 304207 147571 588899 905740 954044 494763 881094 871799 334960 278698 730306 168491 500364 493022 715952 774017 977090 101255 760225 443397 671144 481222 152156 747821 322761 399695 256587 072386 011888 232544 852894 (316 digits)/343068 615190 420598 098988 331287 015256 103732 814561 579126 218078 978896 059875 560262 846815 538193 342750 771263 086428 803167 862629 644507 939549 052648 078248 085228 653645 542358 776679 838994 353347 131227 615483 421268 833660 938985 917047 816686 649853 402532 379482 110890 931840 043599 297297 952080 571023 421962 334122 522723 478058 958318 425213 365747 (318 digits), a[626] = 1
                                                                                      A[627]/B[627] = 5554 990634 892257 533687 167732 011776 534952 523324 728414 898145 187409 069604 354516 956545 490355 457893 359743 295475 772256 582724 774155 314466 634587 865396 424035 075413 660885 698950 158428 762525 604695 554979 156474 040542 334194 625630 413665 657287 797001 325394 745674 431594 063804 442948 057084 903060 539167 050384 379479 043699 672896 750505 434731 (316 digits)/539909 123653 223297 851298 384896 469728 643353 947856 184644 930849 209511 240533 930020 286170 906881 032183 592602 726067 849799 945943 281875 746382 545142 058770 378196 192850 550897 365312 146550 783593 282794 945009 928681 256377 441063 792156 237118 524463 692593 389466 914643 338791 331699 875250 152610 234420 466865 709213 399289 225996 511985 655712 378424 (318 digits), a[627] = 1
                                                                                      A[628]/B[628] = 86854 607143 896896 499986 097390 610402 634313 054771 547431 080278 503392 129820 043709 258967 037475 553893 646702 966598 608581 460325 984178 114605 823025 128517 949426 036945 867329 979016 257526 309683 405393 603386 077416 776626 513283 877478 920937 633334 932109 982176 945341 917308 628211 125443 008430 293729 410267 155460 948772 727881 105339 490126 373859 (317 digits)/8 441705 469988 770065 868464 104734 061185 754042 032404 348800 180817 121564 667884 510567 139379 141408 825504 660303 977446 550167 051778 872644 135287 229778 959803 758171 546403 805819 256362 037256 107246 373151 790632 351487 679322 554942 799391 373464 516808 791433 221485 830541 013710 019097 426050 241234 087330 424947 972323 512061 868006 638103 260899 042107 (319 digits), a[628] = 15
                                                                                      A[629]/B[629] = 352973 419210 479843 533631 557294 453387 072204 742410 918139 219259 200977 588884 529353 992413 640257 673467 946555 161870 206582 424028 710867 772889 926688 379468 221739 223197 130205 615015 188534 001259 226269 968523 466141 147048 387330 135546 097416 190627 525441 254102 527042 100828 576648 944720 090806 077978 180235 672228 174569 955224 094254 711010 930167 (318 digits)/34 306731 003608 303561 325154 803832 714471 659522 077473 579845 654117 695769 912071 972288 843687 472516 334202 233818 635854 050468 153058 772452 287531 464257 897985 410882 378465 774174 390760 295575 212578 775402 107539 334631 973667 660834 989721 730976 591698 858326 275410 236807 393631 408089 579451 117546 583742 166657 598507 447536 698023 064398 699308 546852 (320 digits), a[629] = 4
                                                                                      A[630]/B[630] = 1 145774 864775 336427 100880 769273 970563 850927 282004 301848 738056 106324 896473 631771 236207 958248 574297 486368 452209 228328 732412 116781 433275 603090 266922 614643 706537 257946 824061 823128 313461 084203 508956 475840 217771 675274 284117 213186 205217 508433 744484 526468 219794 358157 959603 280848 527663 950974 172145 472482 593553 388103 623159 164360 (319 digits)/111 361898 480813 680749 843928 516232 204600 732608 264825 088337 143170 208874 404100 427433 670441 558957 828111 361759 885008 701571 510955 190000 997881 622552 653759 990818 681801 128342 428642 923981 744982 699358 113250 355383 600325 537447 768556 566394 291905 366412 047716 540963 194604 243366 164403 593873 838556 924920 767845 854671 962075 831299 358824 682663 (321 digits), a[630] = 3
                                                                                      A[631]/B[631] = 2 644523 148761 152697 735393 095842 394514 774059 306419 521836 695371 413627 381831 792896 464829 556754 822062 919292 066288 663239 888852 944430 639441 132868 913313 451026 636271 646099 263138 834790 628181 394676 986436 417821 582591 737878 703780 523788 601062 542308 743071 579978 540417 292964 863926 652503 133306 082184 016519 119535 142330 870461 957329 258887 (319 digits)/257 030527 965235 665061 013011 836297 123673 124738 607123 756519 940458 113518 720272 827156 184570 590431 990424 957338 405871 453611 174969 152454 283294 709363 205505 392519 742068 030859 248046 143538 702544 174118 334040 045399 174318 735730 526834 863765 175509 591150 370843 318733 782839 894821 908258 305294 260856 016499 134199 156880 622174 726997 416957 912178 (321 digits), a[631] = 2
                                                                                      A[632]/B[632] = 40 813622 096192 626893 131777 206909 888285 461816 878297 129399 168627 310735 623950 525218 208651 309570 905241 275749 446539 176927 065206 283241 024892 596123 966624 380043 250611 949435 771144 344987 736182 004358 305502 743163 956647 743454 840825 070015 221155 643064 890558 226146 326053 752630 918503 068395 527255 183734 419932 265509 728516 445032 983098 047665 (320 digits)/3966 819817 959348 656665 039106 060689 059697 603687 371681 436136 250041 911655 208192 834776 439000 415437 684485 721835 973080 505739 135492 476815 247302 263000 736340 878614 812821 591231 149335 077062 283145 311133 123851 036371 215106 573405 671079 522871 924549 233667 610366 321969 937202 665694 788278 173287 751397 172407 780833 207881 294696 736260 613193 365333 (322 digits), a[632] = 15
                                                                                      A[633]/B[633] = 247 526255 725916 914056 526056 337301 724227 544960 576202 298231 707135 278041 125534 944205 716737 414180 253510 573788 745523 724802 280090 643876 788796 709612 713059 731286 139943 342713 890004 904717 045273 420826 819452 876805 322478 198607 748730 943879 927996 400698 086420 936856 496739 808750 374945 062876 296837 184590 536112 712593 513429 540659 855917 544877 (321 digits)/24057 949435 721327 605051 247648 200431 481858 746862 837212 373337 440709 583449 969429 835814 818573 083058 097339 288354 244354 488045 987924 013345 767108 287367 623550 664208 618997 578246 144056 605912 401416 040917 077146 263626 464958 176164 553312 000996 722804 993156 033041 250553 406055 888990 637927 345020 769239 050945 819198 404168 390355 144561 096118 104176 (323 digits), a[633] = 6
                                                                                      A[634]/B[634] = 288 339877 822109 540949 657833 544211 612513 006777 454499 427630 875762 588776 749485 469423 925388 723751 158751 849538 192062 901729 345296 927117 813689 305736 679684 111329 390555 292149 661149 249704 781455 425185 124955 619969 279125 942062 589556 013895 149152 043762 976979 163002 822793 561381 293448 131271 824092 368324 956044 978103 241945 985692 839015 592542 (321 digits)/28024 769253 680676 261716 286754 261120 541556 350550 208893 809473 690751 495105 177622 670591 257573 498495 781825 010190 217434 993785 123416 490161 014410 550368 359891 542823 431819 169477 293391 682974 684561 352050 200997 299997 680064 749570 224391 523868 647354 226823 643407 572523 343258 554685 426205 518308 520636 223353 600031 612049 685051 880821 709311 469509 (323 digits), a[634] = 1
                                                                                      A[635]/B[635] = 1112 545889 192245 536905 499556 969936 561766 565292 939700 581124 334423 044371 373991 352477 492903 585433 729766 122403 321712 429990 315981 425230 229864 626822 752112 065274 311609 219162 873452 653831 389639 696382 194319 736713 159856 024795 517398 985565 375452 531987 017358 425864 965120 492894 255289 456691 769114 289565 404247 646903 239267 497738 372964 322503 (322 digits)/108132 257196 763356 390200 107910 983793 106527 798513 463893 801758 512964 068765 502297 847588 591293 578545 442814 318924 896659 469401 358173 483828 810339 938472 703225 292678 914455 086678 024231 654836 455100 097067 680138 163619 505152 424875 226486 572602 664867 673626 963263 968123 435831 553046 916543 899946 331147 721006 619293 240317 445510 787026 224052 512703 (324 digits), a[635] = 3
                                                                                      A[636]/B[636] = 1400 885767 014355 077855 157390 514148 174279 572070 394200 008755 210185 633148 123476 821901 418292 309184 888517 971941 513775 331719 661278 352348 043553 932559 431796 176603 702164 511312 534601 903536 171095 121567 319275 356682 438981 966858 106954 999460 524604 575749 994337 588867 787914 054275 548737 587963 593206 657890 360292 625006 481213 483431 211979 915045 (322 digits)/136157 026450 444032 651916 394665 244913 648084 149063 672787 611232 203715 563870 679920 518179 848867 077041 224639 329115 114094 463186 481589 973989 824750 488841 063116 835502 346274 256155 317623 337811 139661 449117 881135 463617 185217 174445 450878 096471 312221 900450 606671 540646 779090 107732 342749 418254 851783 944360 219324 852367 130562 667847 933363 982212 (324 digits), a[636] = 1
                                                                                      A[637]/B[637] = 3914 317423 220955 692615 814337 998232 910325 709433 728100 598634 754794 310667 620944 996280 329488 203803 506802 066286 349263 093429 638538 129926 316972 491941 615704 418481 715938 241787 942656 460903 731829 939516 832870 450078 037819 958511 731308 984486 424661 683487 006033 603600 540948 601445 352764 632618 955527 605346 124832 896916 201694 464600 796924 152593 (322 digits)/380446 310097 651421 694032 897241 473620 402696 096640 809469 024222 920395 196506 862138 883948 289027 732627 892092 977155 124848 395774 321353 431808 459840 916154 829458 963683 607003 598988 659478 330458 734422 995303 442409 090853 875586 773766 128242 765545 289311 474528 176607 049416 994011 768511 602042 736456 034715 609727 057942 945051 706636 122722 090780 477127 (324 digits), a[637] = 2
                                                                                      A[638]/B[638] = 9229 520613 456266 463086 786066 510613 994930 990937 850401 206024 719774 254483 365366 814462 077268 716791 902122 104514 212301 518578 938354 612200 677498 916442 663205 013567 134040 994888 419914 825343 634755 000600 985016 256838 514621 883881 569572 968433 373927 942724 006404 796068 869811 257166 254266 853201 504261 868582 609958 418838 884602 412632 805828 220231 (322 digits)/897049 646645 746876 039982 189148 192154 453476 342345 291725 659678 044505 956884 404198 286076 426922 542297 008825 283425 363791 254735 124296 837606 744432 321150 722034 762869 560281 454132 636579 998728 608507 439724 765953 645324 936390 721977 707363 627561 890844 849506 959885 639480 767113 644755 546834 891166 921215 163814 335210 742470 543834 913292 114924 936466 (324 digits), a[638] = 2
                                                                                      A[639]/B[639] = 13143 838036 677222 155702 600404 508846 905256 700371 578501 804659 474568 565150 986311 810742 406756 920595 408924 170800 561564 612008 576892 742126 994471 408384 278909 432048 849979 236676 362571 286247 366584 940117 817886 706916 552441 842393 300881 952919 798589 626211 012438 399669 410759 858611 607031 485820 459789 473928 734791 315755 086296 877233 602752 372824 (323 digits)/1 277495 956743 398297 734015 086389 665774 856172 438986 101194 683900 964901 153391 266337 170024 715950 274924 900918 260580 488639 650509 445650 269415 204273 237305 551493 726553 167285 053121 296058 329187 342930 435028 208362 736178 811977 495743 835606 393107 180156 324035 136492 688897 761125 413267 148877 627622 955930 773541 393153 687522 250471 036014 205705 413593 (325 digits), a[639] = 1
                                                                                      A[640]/B[640] = 48661 034723 487932 930194 587280 037154 710701 092052 585906 620003 143479 949936 324302 246689 297539 478578 128894 616915 896995 354604 669032 838581 660913 141595 499933 309713 683978 704917 507628 684085 734509 820954 438676 377588 171947 411061 472218 827192 769696 821357 043719 995077 102090 833001 075361 310662 883630 290368 814332 366104 143493 044333 614085 338703 (323 digits)/4 729537 516875 941769 242027 448317 189479 021993 659303 595309 711380 939209 417058 203209 796150 574773 367071 711580 065166 829710 206263 461247 645852 357252 033067 376515 942529 062136 613496 524754 986290 637298 744809 391041 853861 372323 209209 214182 806883 431313 821612 369363 706174 050489 884556 993467 774035 789007 484438 514671 805037 295248 021334 732041 177245 (325 digits), a[640] = 3
                                                                                      A[641]/B[641] = 207787 976930 628953 876480 949524 657465 748061 068581 922128 284672 048488 364896 283520 797499 596914 834907 924502 638464 149546 030427 253024 096453 638123 974766 278642 670903 585894 056346 393086 022590 304624 223935 572592 217269 240231 486639 189757 261690 877376 911639 187318 379977 819123 190615 908476 728471 994310 635403 992120 780171 660269 054568 059093 727636 (324 digits)/20 195646 024247 165374 702124 879658 423690 944147 076200 482433 529424 721738 821624 079176 354627 015043 743211 747238 521247 807480 475563 290640 852824 633281 369575 057557 496669 415831 507107 395078 274349 892125 414265 772530 151624 301270 332580 692337 620640 905411 610484 613947 513593 963084 951495 122748 723766 111960 711295 451840 907671 431463 121353 133870 122573 (326 digits), a[641] = 4
                                                                                      A[642]/B[642] = 256449 011654 116886 806675 536804 694620 458762 160634 508034 904675 191968 314832 607823 044188 894454 313486 053397 255380 046541 385031 922056 935035 299037 116361 778575 980617 269872 761263 900714 706676 039134 044890 011268 594857 412178 897700 661976 088883 647073 732996 231038 375054 921214 023616 983838 039134 877940 925772 806453 146275 803762 098901 673179 066339 (324 digits)/24 925183 541123 107143 944152 327975 613169 966140 735504 077743 240805 660948 238682 282386 150777 589817 110283 458818 586414 637190 681826 751888 498676 990533 402642 434073 439198 477968 120603 919833 260640 529424 159075 163572 005485 673593 541789 906520 427524 336725 432096 983311 219768 013574 836052 116216 497801 900968 195733 966512 712708 726711 142687 865911 299818 (326 digits), a[642] = 1
                                                                                      A[643]/B[643] = 5 593217 221667 083576 816667 222423 244495 382066 441906 590861 282851 079822 976381 047804 725466 380455 418115 045845 001445 126915 116097 616219 732194 917903 418363 628738 263866 253222 042888 308094 862787 126439 166625 809232 709274 895988 338353 091255 128247 465925 304560 039124 256131 164617 686572 569075 550304 431070 076632 927636 851963 539273 131503 195854 120755 (325 digits)/543 624500 387832 415397 529323 767146 300260 233102 521786 115041 586343 601651 833952 009285 520956 401203 059164 382428 835955 188484 793925 080299 325041 434482 825066 173099 719837 453162 039789 711576 747801 010032 754844 207542 266823 446734 710168 729266 598651 976645 684521 263483 128722 248156 508589 563295 177606 032292 821708 748607 874554 692397 117798 318007 418751 (327 digits), a[643] = 21
                                                                                      A[644]/B[644] = 22 629317 898322 451194 073344 426497 672601 987027 928260 871480 036079 511260 220356 799041 946054 416275 985946 236777 261160 554201 849422 386935 863814 970650 789816 293529 036082 282760 932817 133094 157824 544890 711393 248199 431956 996132 251113 026996 601873 510774 951236 387535 399579 579684 769907 260140 240352 602221 232304 517000 554129 960854 624914 456595 549359 (326 digits)/2199 423185 092452 768734 061447 396560 814210 898550 822648 537909 586180 067555 574490 319528 234603 194629 346940 988533 930235 391129 857527 073085 798842 728464 702907 126472 318548 290616 279762 766140 251844 569555 178451 993741 072779 460532 382464 823586 822132 243308 170182 037243 734657 006200 870410 369397 208226 030139 482568 960944 210927 496299 613881 137940 974822 (328 digits), a[644] = 4
                                                                                      A[645]/B[645] = 186 627760 408246 693129 403422 634404 625311 278289 867993 562701 571487 169904 739235 440140 293901 710663 305684 940063 090729 560529 911476 711706 642714 683109 736893 976970 552524 515309 505425 372848 125383 485564 857771 794828 164930 865046 347257 307227 943235 552124 914451 139407 452767 802095 845830 650197 473125 248839 935069 063641 285003 226110 130818 848618 515627 (327 digits)/18139 009981 127454 565270 020902 939632 813947 421509 102974 418318 275784 142096 429874 565511 397781 958237 834692 290700 277838 317523 654141 664985 715783 262200 448323 184878 268223 778092 277891 840698 762557 566474 182460 157470 849059 130993 769887 317961 175709 923111 045977 561433 005978 297763 471872 518472 843414 273408 682260 436161 561974 662794 028847 421535 217327 (329 digits), a[645] = 8
                                                                                      A[646]/B[646] = 395 884838 714815 837452 880189 695306 923224 543607 664247 996883 179053 851069 698827 679322 533857 837602 597316 116903 442619 675261 672375 810349 149244 336870 263604 247470 141131 313379 943667 878790 408591 516020 426936 837855 761818 726224 945627 641452 488344 615024 780138 666350 305115 183876 461568 560535 186603 099901 102442 644283 124136 413074 886552 153832 580613 (327 digits)/38477 443147 347361 899274 103253 275826 442105 741569 028597 374546 137748 351748 434239 450551 030167 111105 016325 569934 485912 026177 165810 403057 230409 252865 599553 496228 854995 846800 835546 447537 776959 702503 543372 308682 770897 722519 922239 459509 173552 089530 262137 160109 746613 601727 814155 406342 895054 576956 847089 833267 334876 821887 671575 981011 409476 (329 digits), a[646] = 2
                                                                                      A[647]/B[647] = 1374 282276 552694 205488 043991 720325 394984 909112 860737 553351 108648 723113 835718 478107 895475 223471 097633 290773 418588 586314 928604 142754 090447 693720 527706 719380 975918 455449 336429 009219 351158 033626 138582 308395 450387 043721 184140 231585 408269 397199 254867 138458 368113 353725 230536 331803 032934 548543 242396 996490 657412 465334 790475 310116 257466 (328 digits)/133571 339423 169540 263092 330662 767112 140264 646216 188766 541956 689029 197341 732592 917164 488283 291552 883669 000503 735574 396055 151572 874157 407011 020797 246983 673564 833211 318494 784531 183312 093436 673984 812577 083519 161752 298553 536605 696488 696366 191701 832389 041762 245819 102946 914338 737501 528578 004279 223529 935963 566605 128457 043575 364569 445755 (330 digits), a[647] = 3
                                                                                      A[648]/B[648] = 48495 764518 059113 029534 419899 906695 747696 362557 790062 364171 981759 160053 948974 413098 875490 659091 014481 293973 093220 196284 173520 806742 314913 617088 733339 425804 298277 254106 718683 201467 699122 692935 277317 631696 525365 256466 390535 746941 777773 516998 700488 512393 189082 564259 530340 173641 339312 298914 586337 521456 133572 699792 553188 007901 591923 (329 digits)/4 713474 322958 281271 107505 676450 124751 351368 359135 635426 343030 253770 258709 074991 551308 120082 315455 944740 587565 231015 888107 470860 998566 475794 980769 243982 070998 017391 994118 294137 863461 047243 291971 983570 231853 432228 171893 703438 836613 546368 799094 395753 621788 350282 204869 816011 218896 395284 726729 670637 591992 166056 317884 196713 740942 010901 (331 digits), a[648] = 35
                                                                                      A[649]/B[649] = 49870 046794 611807 235022 463891 627021 142681 271670 650799 917523 090407 883167 784692 891206 770965 882562 112114 584746 511808 782599 102124 949496 405361 310809 261046 145185 274195 709556 055112 210687 050280 726561 415899 940091 975752 300187 574675 978527 186042 914197 955355 650851 557195 917984 760876 505444 372246 847457 828734 517946 790985 165127 343663 318017 849389 (329 digits)/4 847045 662381 450811 370598 007112 891863 491633 005351 824192 884986 942799 456050 807584 468472 608365 607008 828409 588068 966590 284162 622433 872723 882806 001566 490965 744562 850603 312613 078669 046773 140679 965956 796147 315372 593980 470447 240044 533102 242734 990796 228142 663550 596101 307816 730349 956397 923862 731008 894167 527955 732661 446341 240289 105511 456656 (331 digits), a[649] = 1
                                                                                      A[650]/B[650] = 148235 858107 282727 499579 347683 160738 033058 905899 091662 199218 162574 926389 518360 195512 417422 424215 238710 463466 116837 761482 377770 705735 125636 238707 255431 716174 846668 673218 828907 622841 799684 146058 109117 511880 476869 856841 539887 703996 149859 345394 611199 814096 303474 400229 052093 184530 083805 993830 243806 557349 715543 030047 240514 643937 290701 (330 digits)/14 407565 647721 182893 848701 690675 908478 334634 369839 283812 113004 139369 170810 690160 488253 336813 529473 601559 763703 164196 456432 715728 744014 241406 983902 225913 560123 718598 619344 451475 957007 328603 223885 575864 862598 620189 112788 183527 902818 031838 780686 852038 948889 542484 820503 276711 131692 243010 188747 458972 647903 631379 210566 677291 951964 924213 (332 digits), a[650] = 2
                                                                                      A[651]/B[651] = 198105 904901 894534 734601 811574 787759 175740 177569 742462 116741 252982 809557 303053 086719 188388 306777 350825 048212 628646 544081 479895 655231 530997 549516 516477 861360 120864 382774 884019 833528 849964 872619 525017 451972 452622 157029 114563 682523 335902 259592 566555 464947 860670 318213 812969 689974 456052 841288 072541 075296 506528 195174 584177 961955 140090 (330 digits)/19 254611 310102 633705 219299 697788 800341 826267 375191 108004 997991 082168 626861 497744 956725 945179 136482 429969 351772 130786 740595 338162 616738 124212 985468 716879 304686 569201 931957 530145 003780 469283 189842 372012 177971 214169 583235 423572 435920 274573 771483 080181 612440 138586 128320 007061 088090 166872 919756 353140 175859 364040 656907 917581 057476 380869 (332 digits), a[651] = 1
                                                                                      A[652]/B[652] = 346341 763009 177262 234181 159257 948497 208799 083468 834124 315959 415557 735946 821413 282231 605810 730992 589535 511678 745484 305563 857666 360966 656633 788223 771909 577534 967533 055993 712927 456370 649649 018677 634134 963852 929492 013870 654451 386519 485761 604987 177755 279044 164144 718442 865062 874504 539858 835118 316347 632646 222071 225221 824692 605892 430791 (330 digits)/33 662176 957823 816599 068001 388464 708820 160901 745030 391817 110995 221537 797672 187905 444979 281992 665956 031529 115475 294983 197028 053891 360752 365619 969370 942792 864810 287800 551301 981620 960787 797886 413727 947877 040569 834358 696023 607100 338738 306412 552169 932220 561329 681070 948823 283772 219782 409883 108503 812112 823762 995419 867474 594873 009441 305082 (332 digits), a[652] = 1
                                                                                      A[653]/B[653] = 890789 430920 249059 202964 130090 684753 593338 344507 410710 748660 084098 281450 945879 651182 400009 768762 529896 071570 119615 155209 195228 377164 844265 125964 060297 016430 055930 494762 309874 746270 149262 909974 793287 379678 311606 184770 423466 455562 307425 469566 922066 023036 188959 755099 543095 438983 535770 511524 705236 340588 950670 645618 233563 173740 001672 (330 digits)/86 578965 225750 266903 355302 474718 217982 148070 865251 891639 219981 525244 222205 873555 846684 509164 468394 493027 582722 720753 134651 445945 338242 855452 924210 602465 034307 144803 034561 493386 925356 065056 017298 267766 259110 882886 975282 637773 113396 887398 875822 944622 735099 500728 025966 574605 527654 986639 136763 977365 823385 354880 391857 107327 076358 991033 (332 digits), a[653] = 2
                                                                                      A[654]/B[654] = 3 909499 486690 173499 046037 679620 687511 582152 461498 476967 310599 751950 861750 604931 886961 205849 806042 709119 797959 223944 926400 638579 869626 033694 292080 013097 643255 191255 035042 952426 441451 246700 658576 807284 482566 175916 752952 348317 208768 715463 483254 866019 371188 919983 738841 037444 630438 682940 881217 137292 995002 024753 807694 758945 300852 437479 (331 digits)/379 978037 860824 884212 489211 287337 580748 753185 206037 958373 990921 322514 686495 682128 831717 318650 539534 003639 446366 177995 735633 837672 713723 787431 666213 352653 002038 867012 689547 955168 662212 058110 482921 018942 077013 365906 597154 158192 792325 856008 055461 710711 501727 683983 052689 582194 330402 356439 655559 721576 117304 414941 434903 024181 314877 269214 (333 digits), a[654] = 4
                                                                                      A[655]/B[655] = 4 800288 917610 422558 249001 809711 372265 175490 806005 887678 059259 836049 143201 550811 538143 605859 574805 239015 869529 343560 081609 833808 246790 877959 418044 073394 659685 247185 529805 262301 187721 395963 568551 600571 862244 487522 937722 771783 664331 022888 952821 788085 394225 108943 493940 580540 069422 218711 392741 842529 335590 975424 453312 992508 474592 439151 (331 digits)/466 557003 086575 151115 844513 762055 798730 901256 071289 850013 210902 847758 908701 555684 678401 827815 007928 496667 029088 898748 870285 283618 051966 642884 590423 955118 036346 011815 724109 448555 587568 123166 500219 286708 336124 248793 572436 795965 905722 743406 931284 655334 236827 184711 078656 156799 858057 343078 792323 698941 940689 769821 826760 131508 391236 260247 (333 digits), a[655] = 1
                                                                                      A[656]/B[656] = 27 910944 074742 286290 291046 728177 548837 459606 491527 915357 606898 932196 577758 358989 577679 235147 680068 904199 145605 941745 334449 807621 103580 423491 382300 380070 941681 427182 684069 263932 380058 226518 501334 810143 793788 613531 441566 207235 530423 829908 247363 806446 342314 464701 208543 940144 977549 776497 844926 349939 672956 901876 074259 721487 673814 633234 (332 digits)/2712 763053 293700 639791 711780 097616 574403 259465 562487 208440 045435 561309 230003 460552 223726 457725 579176 486974 591810 671740 087060 255762 973557 001854 618333 128243 183768 926091 310095 197946 600052 673942 984017 452483 757634 609874 459338 138022 320939 573042 711884 987382 685863 607538 445970 366193 620689 071833 617178 216285 820753 264050 568703 681723 271058 570449 (334 digits), a[656] = 5
                                                                                      A[657]/B[657] = 32 711232 992352 708848 540048 537888 921102 635097 297533 803035 666158 768245 720959 909801 115822 841007 254874 143215 015135 285305 416059 641429 350371 301450 800344 453465 601366 674368 213874 526233 567779 622482 069886 410715 656033 101054 379288 979019 194754 852797 200185 594531 736539 573644 702484 520685 046971 995209 237668 192469 008547 877300 527572 713996 148407 072385 (332 digits)/3179 320056 380275 790907 556293 859672 373134 160721 633777 058453 256338 409068 138705 016236 902128 285540 587104 983641 620899 570488 957345 539381 025523 644739 208757 083361 220114 937907 034204 646502 187620 797109 484236 739192 093758 858668 031774 933988 226662 316449 643169 642716 922690 792249 524626 522993 478746 414912 409501 915227 761443 033872 395463 813231 662294 830696 (334 digits), a[657] = 1
                                                                                      A[658]/B[658] = 60 622177 067094 995138 831095 266066 469940 094703 789061 718393 273057 700442 298718 268790 693502 076154 934943 047414 160741 227050 750509 449050 453951 724942 182644 833536 543048 101550 897943 790165 947837 849000 571221 220859 449821 714585 820855 186254 725178 682705 447549 400978 078854 038345 911028 460830 024521 771707 082594 542408 681504 779176 601832 435483 822221 705619 (332 digits)/5892 083109 673976 430699 268073 957288 947537 420187 196264 266893 301773 970377 368708 476789 125854 743266 166281 470616 212710 242229 044405 795143 999080 646593 827090 211604 403883 863998 344299 844448 787673 471052 468254 191675 851393 468542 491113 072010 547601 889492 355054 630099 608554 399787 970596 889187 099435 486746 026680 131513 582196 297922 964167 494954 933353 401145 (334 digits), a[658] = 1
                                                                                      A[659]/B[659] = 93 333410 059447 703987 371143 803955 391042 729801 086595 521428 939216 468688 019678 178591 809324 917162 189817 190629 175876 512356 166569 090479 804323 026392 982989 287002 144414 775919 111818 316399 515617 471482 641107 631575 105854 815640 200144 165273 919933 535502 647734 995509 815393 611990 613512 981515 071493 766916 320262 734877 690052 656477 129405 149479 970628 778004 (332 digits)/9071 403166 054252 221606 824367 816961 320671 580908 830041 325346 558112 379445 507413 493026 027983 028806 753386 454257 833609 812718 001751 334525 024604 291333 035847 294965 623998 801905 378504 490950 975294 268161 952490 930867 945152 327210 522888 005998 774264 205941 998224 272816 531245 192037 495223 412180 578181 901658 436182 046741 343639 331795 359631 308186 595648 231841 (334 digits), a[659] = 1
                                                                                      A[660]/B[660] = 620 622637 423781 219063 057958 089798 816196 473510 308634 846966 908356 512570 416787 340341 549451 579128 073846 191189 216000 301187 749923 991929 279889 883300 080580 555549 409536 757065 568853 688563 041542 677896 417867 010310 084950 608427 021720 177898 244779 895721 333959 374036 971215 710289 592106 349920 453484 373205 004170 951674 821820 718039 378263 332363 645994 373643 (333 digits)/60320 502105 999489 760340 214280 859056 871566 905640 176512 218972 650448 247050 413189 434945 293752 916106 686600 196163 214369 118537 054913 802294 146706 394592 042173 981398 147876 675430 615326 790154 639439 080024 183199 776883 522307 431805 628441 108003 193187 125144 344400 266998 796025 552012 941937 362270 568526 896696 643772 411961 644032 288695 121955 344074 507242 792191 (335 digits), a[660] = 6
                                                                                      A[661]/B[661] = 2575 823959 754572 580239 602976 163150 655828 623842 321134 909296 572642 518969 686827 539958 007131 233674 485201 955386 039877 717107 166265 058196 923882 559593 305311 509199 782561 804181 387233 070651 681788 183068 312575 672815 445657 249348 287024 876866 899053 118387 983572 491657 700256 453148 981938 381196 885431 259736 336946 541576 977335 528634 642458 478934 554606 272576 (334 digits)/250353 411590 052211 262967 681491 253188 806939 203469 536090 201237 159905 367647 160171 232807 202994 693233 499787 238910 691086 286866 221406 543701 611429 869701 204543 220558 215505 503627 839811 651569 533050 588258 685290 038402 034382 054433 036652 438011 547012 706519 375825 340811 715347 400089 262972 861262 852289 488445 011271 694587 919768 486575 847452 684484 624619 400605 (336 digits), a[661] = 4
                                                                                      A[662]/B[662] = 23803 038275 214934 441219 484743 558154 718654 088091 198849 030636 062139 183297 598235 199963 613632 682198 440663 789663 574899 755152 246309 515701 594832 919639 828384 138347 452592 994698 053951 324428 177636 325511 231048 065649 095865 852561 604944 069700 336257 961213 186111 798956 273523 788630 429551 780692 422365 710832 036689 825867 617840 475751 160389 642774 637450 826827 (335 digits)/2 313501 206416 469391 127049 347702 137756 134019 736866 001324 030107 089596 555874 854730 530210 120705 155208 184685 346359 434145 700333 047572 695608 649575 221902 883062 966422 087426 208081 173631 654280 436894 374352 350810 122501 831745 921702 958313 050107 116301 483818 726828 334304 234152 152816 308693 113636 239132 292701 745217 663252 921948 667877 749029 504436 128817 397636 (337 digits), a[662] = 9
                                                                                      A[663]/B[663] = 26378 862234 969507 021459 087719 721305 374482 711933 519983 939932 634781 702267 285062 739921 620763 915872 925865 745049 614777 472259 412574 573898 518715 479233 133695 647547 235154 798879 441184 395079 859424 508579 543623 738464 541523 101909 891968 946567 235311 079601 169684 290613 973780 241779 411490 161889 307796 970568 373636 367444 595176 004385 802848 121709 192057 099403 (335 digits)/2 563854 618006 521602 390017 029193 390944 940958 940335 537414 231344 249501 923522 014901 763017 323699 848441 684472 585270 125231 987199 268979 239310 261005 091604 087606 186980 302931 711709 013443 305849 969944 962611 036100 160903 866127 976135 994965 488118 663314 190338 102653 675115 949499 552905 571665 974899 091421 781146 756489 357840 841717 154453 596482 188920 753436 798241 (337 digits), a[663] = 1
                                                                                      A[664]/B[664] = 7 330747 877361 768379 385386 783106 359743 450365 293676 234400 391975 896670 711335 560614 158252 565237 378998 905475 168406 868259 571009 529466 485591 279020 667217 862078 508931 590472 284303 262028 761549 238225 202044 814823 620327 097765 081601 680342 268824 517427 010737 188660 299027 010650 761527 412326 624030 682126 558271 533963 608020 481593 690618 549319 356220 837267 361458 (337 digits)/712 501230 394222 953253 161766 434271 429504 779646 209809 865066 112464 201629 371472 982518 886008 785563 173554 783591 466184 123406 154530 554821 984550 947985 596235 149976 759965 999510 351477 897427 374722 111649 017609 350554 692872 749195 311373 563753 258976 854332 207473 161896 341422 245528 307659 660168 160684 562965 670353 292769 785166 077600 451523 974595 835484 830810 510393 (339 digits), a[664] = 277
                                                                                      A[665]/B[665] = 14 687874 616958 506265 792232 653932 440792 275213 299285 988784 723884 428123 124938 406291 056426 751238 673870 736816 081863 351296 614278 471507 545081 076756 813668 857852 665410 416099 367485 965241 918178 335874 912669 173270 979118 737053 265113 252653 484216 270165 101075 547004 888667 995081 764834 236143 409950 672050 087111 441563 583485 558363 385622 901486 834150 866591 822319 (338 digits)/1427 566315 406452 428108 713549 897736 249954 500251 359955 267546 456272 652760 666467 979939 535034 894826 195551 251655 517638 372044 296260 378623 208412 156976 284074 387559 706912 301952 414664 808298 055294 193242 997829 737209 546649 364518 598883 122472 006072 371978 605284 426446 357960 440556 168224 892002 296268 217353 121853 342028 928172 996918 057501 545673 859890 415057 819027 (340 digits), a[665] = 2
                                                                                      A[666]/B[666] = 51 394371 728237 287176 762084 744903 682120 276005 191534 200754 563629 181040 086150 779487 327532 818953 400611 115923 413996 922149 413844 943989 120834 509291 108224 435636 505162 838770 386761 157754 516084 245849 940052 334636 557683 308924 876941 438302 721473 327922 313963 829674 965030 995896 056030 120756 853882 698276 819605 858654 358477 156683 847487 253779 858673 437042 828415 (338 digits)/4995 200176 613580 237579 302416 127480 179368 280400 289675 667705 481282 159911 370876 922337 491113 470041 760208 538558 019099 239539 043311 690691 609787 418914 448458 312655 880702 905367 595472 322321 540604 691378 011098 562183 332820 842751 108022 931169 277193 970268 023326 441235 415303 567196 812334 336175 049489 215025 035913 318856 569685 068354 624028 611617 415156 075983 967474 (340 digits), a[666] = 3
                                                                                      A[667]/B[667] = 66 082246 345195 793442 554317 398836 122912 551218 490820 189539 287513 609163 211089 185778 383959 570192 074481 852739 495860 273446 028123 415496 665915 586047 921893 293489 170573 254869 754247 122996 434262 581724 852721 507907 536802 045978 142054 690956 205689 598087 415039 376679 853698 990977 820864 356900 263833 370326 906717 300217 941962 715047 233110 155266 692824 303634 650734 (338 digits)/6422 766492 020032 665688 015966 025216 429322 780651 649630 935251 937554 812672 037344 902277 026148 364867 955759 790213 536737 611583 339572 069314 818199 575890 732532 700215 587615 207320 010137 130619 595898 884621 008928 299392 879470 207269 706906 053641 283266 342246 628610 867681 773264 007752 980559 228177 345757 432378 157766 660885 497858 065272 681530 157291 275046 491041 786501 (340 digits), a[667] = 1
                                                                                      A[668]/B[668] = 513 970096 144607 841274 642306 536756 542508 134534 627275 527529 576224 445182 563775 079936 015249 810297 921984 085099 885018 836271 610708 852465 782243 611626 561477 490060 699175 622858 666491 018729 555922 317923 909102 889989 315297 630771 871324 274996 161300 514534 219239 466433 940923 932740 802080 619058 700716 290565 166626 960179 952216 162014 479258 340646 708443 562485 383553 (339 digits)/49954 565620 753808 897395 414178 303995 184627 744961 837092 214469 044165 848615 632291 238276 674152 024117 450527 070052 776262 520622 420316 175895 337184 450149 576187 214164 994009 356607 666432 236658 711896 883725 073596 657933 489112 293639 056365 306658 260058 365994 423602 515007 828151 621467 676248 933416 469791 241672 140279 945055 054691 525263 394739 712656 340481 513276 472981 (341 digits), a[668] = 7
                                                                                      A[669]/B[669] = 2635 932727 068234 999815 765850 082618 835453 223891 627197 827187 168635 835076 029964 585458 460208 621681 684402 278238 920954 454804 081667 677825 577133 644180 729280 743792 666451 369163 086702 216644 213874 171344 398235 957854 113290 199837 498676 065937 012192 170758 511236 708849 558318 654681 831267 452193 767414 823152 739852 101117 703043 525119 629401 858500 235042 116061 568499 (340 digits)/256195 594595 789077 152665 086857 545192 352461 505460 835092 007597 158384 055750 198801 093660 396908 485455 208395 140477 418050 214695 441152 948791 504121 826638 613468 771040 557661 990358 342298 313913 155383 303246 376911 589060 325031 675464 988732 586932 583558 172218 746623 442720 914022 115091 361803 895259 694713 640738 859166 386160 771315 691589 655228 720572 977454 057424 151406 (342 digits), a[669] = 5
                                                                                      A[670]/B[670] = 3149 902823 212842 841090 408156 619375 377961 358426 254473 354716 744860 280258 593739 665394 475458 431979 606386 363338 805973 291075 692376 530291 359377 255807 290758 233853 365626 992021 753193 235373 769796 489268 307338 847843 428587 830609 370000 340933 173492 685292 730476 175283 499242 587422 633348 071252 468131 113717 906479 061297 655259 687134 108660 199146 943485 678546 952052 (340 digits)/306150 160216 542886 050060 501035 849187 537089 250422 672184 222066 202549 904365 831092 331937 071060 509572 658922 210530 194312 735317 861469 124686 841306 276788 189655 985205 551671 346966 008730 550571 867280 186971 450508 246993 814143 969104 045097 893590 843616 538213 170225 957728 742173 736559 038052 828676 164504 882410 999446 331215 826007 216853 049968 433229 317935 570700 624387 (342 digits), a[670] = 1
                                                                                      A[671]/B[671] = 5785 835550 281077 840906 174006 701994 213414 582317 881671 181903 913496 115334 623704 250852 935667 053661 290788 641577 726927 745879 774044 208116 936510 899988 020038 977646 032078 361184 839895 452017 983670 660612 705574 805697 541878 030446 868676 406870 185684 856051 241712 884133 057561 242104 464615 523446 235545 936870 646331 162415 358303 212253 738062 057647 178527 794608 520551 (340 digits)/562345 754812 331963 202725 587893 394379 889550 755883 507276 229663 360933 960116 029893 425597 467968 995027 867317 351007 612362 950013 302622 073478 345428 103426 803124 756246 109333 337324 351028 864485 022663 490217 827419 836054 139175 644569 033830 480523 427174 710431 916849 400449 656195 851650 399856 723935 859218 523149 858612 717376 597322 908442 705197 153802 295389 628124 775793 (342 digits), a[671] = 1
                                                                                      A[672]/B[672] = 66794 093876 304699 091058 322230 341311 725521 763922 952856 355659 793317 548939 454486 424776 767796 022253 805061 420693 802178 495753 206862 819577 660997 155675 511186 987959 718488 965054 992043 207571 590173 756008 068661 710516 389246 165524 925440 816505 216026 101856 389317 900747 132416 250571 744118 829161 059136 419295 016121 847866 596595 021925 227342 833265 907291 419240 678113 (341 digits)/6 491953 463152 194481 280041 967863 187366 322147 565141 252222 748363 172823 465642 159920 013509 218719 454879 199413 071613 930305 185464 190311 932948 641015 414483 024028 303912 754338 057533 870048 059907 116578 579367 552126 443589 345076 059363 417233 179348 542538 352964 255569 362674 960328 104713 436476 791970 615908 637059 444186 222358 396559 209722 807137 125054 567221 480073 158110 (343 digits), a[672] = 11
                                                                                      A[673]/B[673] = 72579 929426 585776 931964 496237 043305 938936 346240 834527 537563 706813 664274 078190 675629 703463 075915 095850 062271 529106 241632 980907 027694 597508 055663 531225 965605 750567 326239 831938 659589 573844 416620 774236 516213 931124 195971 794117 223375 401710 957907 631030 784880 189977 492676 208734 352607 294682 356165 662453 010281 954898 234178 965404 890913 085819 213849 198664 (341 digits)/7 054299 217964 526444 482767 555756 581746 211698 321024 759498 978026 533757 425758 189813 439106 686688 449907 066730 422621 542668 135477 492934 006426 986443 517909 827153 060158 863671 394858 221076 924392 139242 069585 379546 279643 484251 703932 451063 659871 969713 063396 172418 763124 616523 956363 836333 515906 475127 160209 302798 939734 993882 118165 512334 278856 862611 108197 933903 (343 digits), a[673] = 1
                                                                                      A[674]/B[674] = 139374 023302 890476 023022 818467 384617 664458 110163 787383 893223 500131 213213 532677 100406 471259 098168 900911 482965 331284 737386 187769 847272 258505 211339 042412 953565 469056 291294 823981 867161 164018 172628 842898 226730 320370 361496 719558 039880 617737 059764 020348 685627 322393 743247 952853 181768 353818 775460 678574 858148 551493 256104 192747 724178 993110 633089 876777 (342 digits)/13 546252 681116 720925 762809 523619 769112 533845 886166 011721 726389 706580 891400 349733 452615 905407 904786 266143 494235 472973 320941 683245 939375 627458 932392 851181 364071 618009 452392 091124 984299 255820 648952 931672 723232 829327 763295 868296 839220 512251 416360 427988 125799 576852 061077 272810 307877 091035 797268 746985 162093 390441 327888 319471 403911 429832 588271 092013 (344 digits), a[674] = 1
                                                                                      A[675]/B[675] = 1 187572 115849 709585 116147 043976 120247 254601 227551 133598 683351 707863 369982 339607 478881 473535 861266 303141 925994 179384 140722 483065 805872 665549 746375 870529 594129 503017 656598 423793 596878 885989 797651 517422 330056 494087 087945 550581 542420 343607 436019 793820 269898 769127 438659 831559 806754 125232 559851 091051 875470 366844 283012 507386 684345 030704 278568 212880 (343 digits)/115 424320 666898 293850 585243 744714 734646 482465 410352 853272 789144 186404 556960 987681 060033 929951 688197 195878 376505 326454 703010 958901 521432 006114 977052 636603 972731 807747 013994 950076 798786 185807 261208 832928 065506 118873 810299 397438 373636 067724 394279 596323 769521 231340 444982 018815 978923 203413 538359 278680 236482 117412 741272 068105 510148 301271 814366 670007 (345 digits), a[675] = 8
                                                                                      A[676]/B[676] = 16 765383 645198 824667 649081 434133 068079 228875 295879 657765 460147 410218 392966 287181 804747 100761 155897 144898 446883 842662 707500 950691 129489 576201 660601 229827 271378 511303 483672 757092 223465 567875 339750 086810 847521 237589 592734 427699 633765 428241 164041 133832 464210 090177 884485 594690 476326 107074 613375 953301 114733 687313 218279 296161 305009 422970 533044 857097 (344 digits)/1629 486742 017692 834833 956221 949626 054163 288361 631105 957540 774408 316244 688854 177268 293090 924731 539547 008440 765310 043339 163095 107867 239423 713068 611129 763636 982316 926467 648321 392200 167305 857122 305876 592665 640318 493561 107487 432434 070125 460392 936274 776520 899096 815618 290825 536234 012801 938825 334298 648508 472843 034219 705697 272948 545987 647637 989404 472111 (346 digits), a[676] = 14
                                                                                      A[677]/B[677] = 17 952955 761048 534252 765228 478109 188326 483476 523430 791364 143499 118081 762948 626789 283628 574297 017163 448040 372878 022046 848223 433756 935362 241751 406977 100356 865508 014321 140271 180885 820344 453865 137401 604233 177577 731676 680679 978281 176185 771848 600060 927652 734108 859305 323145 426250 283080 232307 173227 044352 990204 054157 501291 803547 989354 453674 811613 069977 (344 digits)/1744 911062 684591 128684 541465 694340 788809 770827 041458 810813 563552 502649 245815 164949 353124 854683 227744 204319 141815 369793 866106 066768 760855 719183 588182 400240 955048 734214 662316 342276 966092 042929 567085 425593 705824 612434 917786 829872 443761 528117 330554 372844 668618 046958 735807 555049 991725 142238 872657 927188 709325 151632 446969 341054 056135 948909 803771 142118 (346 digits), a[677] = 1
                                                                                      A[678]/B[678] = 34 718339 406247 358920 414309 912242 256405 712351 819310 449129 603646 528300 155914 913971 088375 675058 173060 592938 819761 864709 555724 384448 064851 817953 067578 330184 136886 525624 623943 937978 043810 021740 477151 691044 025098 969266 273414 405980 809951 200089 764102 061485 198318 949483 207631 020940 759406 339381 786602 997654 104937 741470 719571 099709 294363 876645 344657 927074 (344 digits)/3374 397804 702283 963518 497687 643966 842973 059188 672564 768354 337960 818893 934669 342217 646215 779414 767291 212759 907125 413133 029201 174636 000279 432252 199312 163877 937365 660682 310637 734477 133397 900051 872962 018259 346143 105996 025274 262306 513886 988510 266829 149365 567714 862577 026633 091284 004527 081064 206956 575697 182168 185852 152666 614002 602123 596547 793175 614229 (346 digits), a[678] = 1
                                                                                      A[679]/B[679] = 156 826313 386037 969934 422468 127078 213949 332883 800672 587882 558085 231282 386608 282673 637131 274529 709405 819795 651925 480885 071120 971549 194769 513563 677290 421093 413054 116819 636046 932797 995584 540827 046008 368409 277973 608741 774337 602204 415990 572207 656469 173593 527384 657238 153669 510013 320705 589834 319639 034969 409955 020040 379576 202385 166809 960256 190244 778273 (345 digits)/15242 502281 493726 982758 532216 270208 160702 007581 731717 884230 915395 778224 984492 533819 937987 972342 296909 055358 770317 022325 982910 765312 761973 448192 385431 055752 704511 376943 904867 280185 499683 643137 058933 498631 090397 036419 018883 879098 499309 482158 397870 970306 939477 497266 842339 920186 009833 466495 700484 229977 437997 895041 057635 797064 464630 335100 976473 599034 (347 digits), a[679] = 4
                                                                                      A[680]/B[680] = 818 849906 336437 208592 526650 547633 326152 376770 822673 388542 394072 684712 088956 327339 274032 047706 720089 691917 079389 269134 911329 242194 038699 385771 454030 435651 202157 109722 804178 601968 021732 725875 707193 533090 414967 012975 145102 417002 889904 061128 046447 929452 835242 235673 975978 571007 362934 288553 384798 172501 154712 841672 617452 111635 128413 677926 295881 818439 (345 digits)/79586 909212 170918 877311 158768 995007 646483 097097 331154 189508 914939 710018 857132 011317 336155 641126 251836 489553 758710 524762 943755 001199 810146 673214 126467 442641 459922 545401 834974 135404 631816 115737 167629 511414 798128 288091 119693 657799 010434 399302 256184 000900 265102 348911 238332 692214 053694 413542 709377 725584 372157 661057 440845 599324 925275 272052 675543 609399 (347 digits), a[680] = 5
                                                                                      A[681]/B[681] = 5069 925751 404661 221489 582371 412878 170863 593508 736712 919136 922521 339554 920346 246709 281323 560770 029943 971298 128261 095694 539096 424713 426965 828192 401473 035000 625996 775156 461118 544606 125980 896081 289169 566951 767775 686592 644952 104221 755414 938975 935156 750310 538838 071282 009540 936057 498311 321154 628428 069976 338232 070076 084288 872195 937292 027813 965535 688907 (346 digits)/492763 957554 519240 246625 484830 240254 039600 590165 718643 021284 405034 038338 127284 601723 954921 819099 807927 992681 322580 170903 645440 772511 622853 487477 144235 711601 464046 649354 914712 092613 290580 337560 064710 567119 879166 764965 737045 825892 561915 877971 934974 975708 530091 590734 272336 073470 331999 947751 956750 583483 670943 861385 702709 393014 016281 967417 029735 255428 (348 digits), a[681] = 6
                                                                                      A[682]/B[682] = 5888 775657 741098 430082 109021 960511 497015 970279 559386 307679 316594 024267 009302 574048 555355 608476 750033 663215 207650 364829 450425 666907 465665 213963 855503 470651 828153 884879 265297 146574 147713 621956 996363 100042 182742 699567 790054 521224 645319 000103 981604 679763 374080 306955 985519 507064 861245 609708 013226 242477 492944 911748 701740 983831 065705 705740 261417 507346 (346 digits)/572350 866766 690159 123936 643599 235261 686083 687263 049797 210793 319973 748356 984416 613041 291077 460226 059764 482235 081290 695666 589195 773711 433000 160691 270703 154242 923969 194756 749686 228017 922396 453297 232340 078534 677295 053056 856739 483691 572350 277274 191158 976608 795193 939645 510668 765684 385694 361294 666128 309068 043101 522443 143554 992338 941557 239469 705278 864827 (348 digits), a[682] = 1
                                                                                      A[683]/B[683] = 10958 701409 145759 651571 691393 373389 667879 563788 296099 226816 239115 363821 929648 820757 836679 169246 779977 634513 335911 460523 989522 091620 892631 042156 256976 505652 454150 660035 726415 691180 273694 518038 285532 666993 950518 386160 435006 625446 400733 939079 916761 430073 912918 378237 995060 443122 359556 930862 641654 312453 831176 981824 786029 856027 002997 733554 226953 196253 (347 digits)/1 065114 824321 209399 370562 128429 475515 725684 277428 768440 232077 725007 786695 111701 214765 245999 279325 867692 474916 403870 866570 234636 546223 055853 648168 414938 865844 388015 844111 664398 320631 212976 790857 297050 645654 556461 818022 593785 309584 134266 155246 126133 952317 325285 530379 783004 839154 717694 309046 622878 892551 714045 383828 846264 385352 957839 206886 735014 120255 (349 digits), a[683] = 1
                                                                                      A[684]/B[684] = 16847 477066 886858 081653 800415 333901 164895 534067 855485 534495 555709 388088 938951 394806 392034 777723 530011 297728 543561 825353 439947 758528 358296 256120 112479 976304 282304 544914 991712 837754 421408 139995 281895 767036 133261 085728 225061 146671 046052 939183 898366 109837 286998 685193 980579 950187 220802 540570 654880 554931 324121 893573 487770 839858 068703 439294 488370 703599 (347 digits)/1 637465 691087 899558 494498 772028 710777 411767 964691 818237 442871 044981 535052 096117 827806 537076 739551 927456 957151 485161 562236 823832 319934 488853 808859 685642 020087 311985 038868 414084 548649 135373 244154 529390 724189 233756 871079 450524 793275 706616 432520 317292 928926 120479 470025 293673 604839 103388 670341 289007 201619 757146 906271 989819 377691 899396 446356 440292 985082 (349 digits), a[684] = 1
                                                                                      A[685]/B[685] = 27806 178476 032617 733225 491808 707290 832775 097856 151584 761311 794824 751910 868600 215564 228713 946970 309988 932241 879473 285877 429469 850149 250927 298276 369456 481956 736455 204950 718128 528934 695102 658033 567428 434030 083779 471888 660067 772117 446786 878263 815127 539911 199917 063431 975640 393309 580359 471433 296534 867385 155298 875398 273800 695885 071701 172848 715323 899852 (347 digits)/2 702580 515409 108957 865060 900458 186293 137452 242120 586677 674948 769989 321747 207819 042571 783076 018877 795149 432067 889032 428807 058468 866157 544707 457028 100580 885931 700000 882980 078482 869280 348350 035011 826441 369843 790218 689102 044310 102859 840882 587766 443426 881243 445765 000405 076678 443993 821082 979387 911886 094171 471192 290100 836083 763044 857235 653243 175307 105337 (349 digits), a[685] = 1
                                                                                      A[686]/B[686] = 44653 655542 919475 814879 292224 041191 997670 631924 007070 295807 350534 139999 807551 610370 620748 724693 840000 229970 423035 111230 869417 608677 609223 554396 481936 458261 018759 749865 709841 366689 116510 798028 849324 201066 217040 557616 885128 918788 492839 817447 713493 649748 486915 748625 956220 343496 801162 012003 951415 422316 479420 768971 761571 535743 140404 612143 203694 603451 (347 digits)/4 340046 206497 008516 359559 672486 897070 549220 206812 404915 117819 814970 856799 303936 870378 320152 758429 722606 389219 374193 991043 882301 186092 033561 265887 786222 906019 011985 921848 492567 417929 483723 279166 355832 094033 023975 560181 494834 896135 547499 020286 760719 810169 566244 470430 370352 048832 924471 649729 200893 295791 228339 196372 825903 140736 756632 099599 615600 090419 (349 digits), a[686] = 1
                                                                                      A[687]/B[687] = 1 054840 255963 180561 475449 212961 654706 779199 632108 314201 564880 857109 971906 442287 254088 505934 614928 629994 221561 609280 844187 426074 849734 263069 049395 453995 021960 167929 451862 044479 962784 374851 012697 101885 058553 075712 297077 018032 904252 782102 679561 225481 484126 398979 281828 968708 293736 007085 747524 179089 580664 181976 561748 789946 017977 301007 252142 400299 779225 (349 digits)/102 523643 264840 304834 134933 367656 818915 769516 998805 899725 384804 514319 028131 198367 061273 146589 462761 415096 384113 495494 222816 351396 146274 316616 572447 183707 724368 975677 085495 407533 481658 473985 455838 010579 532603 341656 573276 425512 713977 433360 054361 939982 515143 469387 820303 594775 567151 083930 923159 532431 897369 722993 806675 831855 999990 259773 944034 334109 184974 (351 digits), a[687] = 23
                                                                                      A[688]/B[688] = 3 209174 423432 461160 241226 931109 005312 335269 528248 949674 990449 921864 055719 134413 372636 138552 569479 729982 894655 250877 643793 147642 157880 398430 702582 843921 524141 522548 105451 843281 255042 241063 836120 154979 376725 444177 448847 939227 631546 839147 856131 389938 102127 683853 594112 862345 224704 822419 254576 488684 164309 025350 454218 131409 589675 043426 368570 404593 941126 (349 digits)/311 910976 001017 923018 764359 775457 353817 857771 203230 104091 272233 357927 941192 899038 054197 759921 146713 967895 541559 860676 659492 936489 624914 983410 983229 337346 079125 939017 178334 715167 862904 905679 646680 387570 691843 048945 280010 771373 038067 847579 183372 580667 355599 974407 931341 154678 750286 176264 419207 798188 987900 397320 616400 321471 140707 535953 931702 617927 645341 (351 digits), a[688] = 3
                                                                                      A[689]/B[689] = 4 264014 679395 641721 716676 144070 660019 114469 160357 263876 555330 778974 027625 576700 626724 644487 184408 359977 116216 860158 487980 573717 007614 661499 751978 297916 546101 690477 557313 887761 217826 615914 848817 256864 435278 519889 745924 957260 535799 621250 535692 615419 586254 082832 875941 831053 518440 829505 002100 667773 744973 207327 015966 921355 607652 344433 620712 804893 720351 (349 digits)/414 434619 265858 227852 899293 143114 172733 627288 202036 003816 657037 872246 969324 097405 115470 906510 609475 382991 925673 356170 882309 287885 771189 300027 555676 521053 803494 914694 263830 122701 344563 379665 102518 398150 224446 390601 853287 196885 752045 280939 237734 520649 870743 443795 751644 749454 317437 260195 342367 330620 885270 120314 423076 153327 140697 795727 875736 952036 830315 (351 digits), a[689] = 1
                                                                                      A[690]/B[690] = 11 737203 782223 744603 674579 219250 325350 564207 848963 477428 101111 479812 110970 287814 626085 427526 938296 449937 127088 971194 619754 295076 173109 721430 206539 439754 616344 903503 220079 618803 690695 472893 533754 668708 247282 483956 940697 853748 703146 081648 927516 620777 274635 849519 345996 524452 261586 481429 258777 824231 654255 440004 486151 974120 804979 732293 609996 014381 381828 (350 digits)/1140 780214 532734 378724 562946 061685 699285 112347 607302 111724 586309 102421 879841 093848 285139 572942 365664 733879 392906 573018 424111 512261 167293 583466 094582 379453 686115 768405 705994 960570 552031 665009 851717 183871 140735 830148 986585 165144 542158 409457 658841 621967 097086 861999 434630 653587 385160 696655 103942 459430 758440 637949 462552 628125 422103 127409 683176 522001 305971 (352 digits), a[690] = 2
                                                                                      A[691]/B[691] = 262 482497 888318 023002 557418 967577 817731 527041 837553 767294 779783 334840 468971 908622 400604 050079 826930 258593 912174 226440 122575 065392 816028 532964 295845 972518 105689 567548 399065 501442 413127 019572 591419 968445 875493 166942 441277 739732 005013 417526 941058 272519 628242 772258 487865 369003 273343 420948 695212 800870 138592 887425 711310 352013 317206 454893 040625 121284 120567 (351 digits)/25511 599338 986014 559793 284106 500199 557006 098935 562682 461757 555838 125528 325828 162067 388541 511242 654099 528338 569617 962576 212762 557631 451648 136281 636488 869034 898041 819619 795719 255253 489260 009881 840296 443315 320634 653879 558160 830065 679530 289007 732250 203926 006654 407783 313519 128376 790972 586607 629101 438097 570964 155202 599233 972086 426966 598740 905620 436065 561677 (353 digits), a[691] = 22
                                                                                      A[692]/B[692] = 2111 597186 888767 928624 133930 959872 867202 780542 549393 615786 339378 158535 862745 556793 830917 828165 553738 518688 424482 782715 600354 818218 701337 985144 573307 219899 461861 443890 412603 630342 995711 629474 265114 416275 251227 819496 470919 771604 743253 421864 455982 800934 300578 027587 248919 476478 448333 849018 820480 231192 762998 539410 176634 790227 342631 371437 934996 984654 346364 (352 digits)/205233 574926 420850 857070 835798 063282 155333 903832 108761 805785 033014 106648 486466 390387 393471 662883 598460 960587 949850 273628 126211 973312 780478 673719 186493 331732 870450 325364 071749 002598 466111 744064 574088 730393 705813 061185 451871 805669 978400 721519 516843 253375 150322 124265 942783 680601 712941 389516 136753 964211 326153 879570 256424 404816 837835 917336 928140 010525 799387 (354 digits), a[692] = 8
                                                                                      A[693]/B[693] = 17155 259992 998461 451995 628866 646560 755353 771382 232702 693585 494808 603127 370936 362973 047946 675404 256838 408101 308036 488164 925413 611142 426732 414120 882303 731713 800581 118671 699894 544186 378820 055366 712335 298647 885315 722914 208635 912569 951040 792442 588920 679994 032866 992956 479221 180830 860014 213099 259054 650412 242581 202707 124388 673832 058257 426396 520600 998518 891479 (353 digits)/1 667380 198750 352821 416359 970491 006456 799677 329592 432776 908037 819950 978716 217559 285166 536314 814311 441787 213042 168420 151601 222458 344133 695477 526035 128435 522897 861644 422532 369711 276041 218153 962398 433006 286464 967139 143363 173135 275425 506736 061163 866996 230927 209231 401910 855788 573190 494503 702736 723133 151788 180195 191764 650629 210621 129653 937436 330740 520271 956773 (355 digits), a[693] = 8
                                                                                      A[694]/B[694] = 87887 897151 881075 188602 278264 192676 643971 637453 712907 083713 813421 174172 717427 371659 070651 205186 837930 559194 964665 223540 227422 873930 835000 055748 984825 878468 464767 037248 912076 351274 889811 906307 826790 909514 677806 434067 514099 334454 498457 384077 400586 200904 464912 992369 645025 380632 748404 914515 115753 483253 975904 552945 798578 159387 633918 503420 538001 977248 803759 (353 digits)/8 542134 568678 184957 938870 688253 095566 153720 551794 272646 345974 132769 000229 574262 816220 075045 734440 807397 025798 791951 031634 238503 693981 257866 303894 828670 946222 178672 438025 920305 382804 556881 556056 739120 162718 541508 778001 317548 182797 512081 027338 851824 408011 196479 133820 221726 546554 185459 903199 752419 723152 227129 838393 509570 457922 486105 604518 581842 611885 583252 (355 digits), a[694] = 5
                                                                                      A[695]/B[695] = 105043 157144 879536 640597 907130 839237 399325 408835 945609 777299 308229 777300 088363 734632 118597 880591 094768 967296 272701 711705 152836 485073 261732 469869 867129 610182 265348 155920 611970 895461 268631 961674 539126 208162 563122 156981 722735 247024 449498 176519 989506 880898 497779 985326 124246 561463 608419 127614 374808 133666 218485 755652 922966 833219 692175 929817 058602 975767 695238 (354 digits)/10 209514 767428 537779 355230 658744 102022 953397 881386 705423 254011 952719 978945 791822 101386 611360 548752 249184 238840 960371 183235 460962 038114 953343 829929 957106 469120 040316 860558 290016 658845 775035 518455 172126 449183 508647 921364 490683 458223 018817 088502 718820 638938 405710 535731 077515 119744 679963 605936 475552 874940 407325 030158 160199 668543 615759 541954 912583 132157 540025 (356 digits), a[695] = 1
                                                                                      A[696]/B[696] = 2 608923 668628 989954 562952 049404 334374 227781 449516 407541 738897 210935 829374 838157 002829 917000 339373 112385 774305 509506 304463 895498 515689 116579 332625 795936 522842 833122 779343 599377 842345 336978 986496 765819 905416 192738 201628 859745 263041 286413 620557 148751 342468 411632 640196 626942 855759 350463 977260 111148 691243 219562 688615 949782 156660 246140 819029 944473 395673 489471 (355 digits)/253 570488 986963 091662 464406 498111 544117 035269 705075 202804 442260 998048 494928 577993 249498 747698 904494 787818 757981 840859 429285 301592 608740 138118 222213 799226 205103 146277 091424 880705 195103 157733 998980 870154 943122 749058 890749 093951 180149 963691 151404 103519 742532 933531 991366 082089 420426 504586 445675 165688 721722 002930 562189 354362 502969 264334 611436 483837 783666 543852 (357 digits), a[696] = 24
                                                                                      A[697]/B[697] = 65 328134 872869 628400 714399 142239 198593 093861 646746 134153 249729 581625 511671 042288 805380 043606 364918 904413 324934 010359 323302 540299 377301 176215 785514 765542 681253 093417 639510 596416 954094 693106 624093 684623 843567 381577 197703 216366 823056 609838 690448 708290 442608 788595 990241 797817 955447 370018 559117 153525 414746 707552 971051 667520 749725 845696 405565 670437 867604 932013 (356 digits)/6349 471739 441505 829340 965393 111532 704948 835140 508266 775534 310536 903932 352160 241653 338855 303833 161121 944653 188386 981856 915368 000777 256618 406299 385274 937761 596698 697244 146180 307646 536424 718385 492976 926000 027252 235120 190091 839462 961972 111095 873605 306814 202261 744010 319883 129750 630407 294624 747815 617770 917990 480589 084892 019262 242775 224124 827867 008527 723821 136325 (358 digits), a[697] = 25
                                                                                      A[698]/B[698] = 198 593328 287237 875156 706149 476121 930153 509366 389754 810001 488085 955812 364387 965023 418970 047819 434129 825625 749107 540584 274371 516396 647592 645226 689170 092564 566602 113375 697875 388628 704629 416298 858777 819691 436118 337469 794738 508845 732211 115929 691903 273622 670294 777420 610922 020396 722101 460519 654611 571724 935483 342221 601770 952344 405837 783230 035726 955786 998488 285510 (357 digits)/19301 985707 311480 579685 360585 832709 658963 540691 229875 529407 373871 709845 551409 302953 266064 659198 387860 621778 323142 786430 175389 303924 378595 357016 378038 612510 995199 238009 529965 803644 804377 312890 477911 648155 024879 454419 461024 612340 066066 296978 772220 023962 349318 165562 951015 471341 311648 388460 689122 019001 475693 444697 816865 412149 231294 936709 095037 509420 955129 952827 (359 digits), a[698] = 3
                                                                                      A[699]/B[699] = 263 921463 160107 503557 420548 618361 128746 603228 036500 944154 737815 537437 876059 007312 224350 091425 799048 730039 074041 550943 597674 056696 024893 821442 474684 858107 247855 206793 337385 985045 658724 109405 482871 504315 279685 719046 992441 725212 555267 725768 382351 981913 112903 566016 601163 818214 677548 830538 213728 725250 350230 049774 572822 619865 155563 628926 441292 626224 866093 217523 (357 digits)/25651 457446 752986 409026 325978 944242 363912 375831 738142 304941 684408 613777 903569 544606 604919 963031 548982 566431 511529 768287 090757 304701 635213 763315 763313 550272 591897 935253 676146 111291 340802 031275 970888 574155 052131 689539 651116 451803 028038 408074 645825 330776 551579 909573 270898 601091 942055 683085 436937 636772 393683 925286 901757 431411 474070 160833 922904 517948 678951 089152 (359 digits), a[699] = 1
                                                                                      A[700]/B[700] = 990 357717 767560 385828 967795 331205 316393 319050 499257 642465 701532 568125 992564 986960 092020 322096 831276 015742 971232 193415 067393 686484 722274 109554 113224 666886 310167 733755 710033 343765 680801 744515 307392 332637 275175 494610 772063 684483 398014 293234 838959 219362 009005 475470 414413 475040 754747 952134 295797 747475 986173 491545 320238 811939 872528 670009 359604 834461 596767 938079 (357 digits)/96256 358047 570439 806764 338522 665436 750700 668186 444302 444232 427097 551179 262117 936773 080824 548293 034808 321072 857732 091291 447661 218029 284236 646963 667979 263328 770893 043770 558404 137518 826783 406718 390577 370620 181274 523038 414373 967749 150181 521202 709696 016292 004057 894282 763711 274617 137815 437716 999934 929318 656745 220558 522137 706383 653505 419210 863751 063266 991983 220283 (359 digits), a[700] = 3
                                                                                      A[701]/B[701] = 1254 279180 927667 889386 388343 949566 445139 922278 535758 586620 439348 105563 868623 994272 316370 413522 630324 745782 045273 744358 665067 743180 747167 930996 587909 524993 558022 940549 047419 328811 339525 853920 790263 836952 554861 213657 764505 409695 953282 019003 221311 201275 121909 041487 015577 293255 432296 782672 509526 472726 336403 541319 893061 431805 028092 298935 800897 460686 462861 155602 (358 digits)/121907 815494 323426 215790 664501 609679 114613 044018 182444 749174 111506 164957 165687 481379 685744 511324 583790 887504 369261 859578 538418 522730 919450 410279 431292 813601 362790 979024 234550 248810 167585 437994 361465 944775 233406 212578 065490 419552 178219 929277 355521 347068 555637 803856 034609 875709 079871 120802 436872 566091 050429 145845 423895 137795 127575 580044 786655 581215 670934 309435 (360 digits), a[701] = 1
                                                                                      A[702]/B[702] = 4753 195260 550564 053988 132827 179904 651813 085886 106533 402327 019576 884817 598436 969777 041131 562664 722250 253089 107053 426491 062596 916026 963777 902543 876953 241866 984236 555402 852291 330199 699379 306277 678183 843494 939759 135584 065579 913571 257860 350244 502892 823187 374732 599931 461145 354807 051638 300151 824377 165654 995384 115504 999423 107354 956805 566816 762297 216520 985351 404885 (358 digits)/461979 804530 540718 454136 332027 494474 094539 800240 991636 691754 761616 046050 759180 380912 138058 082266 786180 983585 965517 670027 062916 786222 042587 877801 961857 704132 859265 980843 262054 883949 329539 720701 474975 204945 881493 160772 610845 226405 684841 309034 776260 057497 670971 305850 867540 901744 377428 800124 310552 627591 808032 658094 793823 119769 036232 159345 223717 806914 004786 148588 (360 digits), a[702] = 3
                                                                                      A[703]/B[703] = 20267 060223 129924 105338 919652 669185 052392 265822 961892 195928 517655 644834 262371 873380 480896 664181 519325 758138 473487 450322 915455 407288 602279 541172 095722 492461 494969 162160 456584 649610 137043 079031 502999 210932 313897 755994 026825 063980 984723 419981 232882 494024 620839 441212 860158 712483 638849 983279 807035 135346 317940 003339 890753 861224 855314 566202 850086 326770 404266 775142 (359 digits)/1 969827 033616 486300 032335 992611 587575 492772 244982 148991 516193 157970 349160 202409 005028 237976 840391 728514 821848 231332 539686 790085 667619 089801 921487 278723 630132 799854 902397 282769 784607 485744 320800 261366 764558 759378 855668 508871 325174 917585 165416 460561 577059 239523 027259 504773 482686 589586 321299 679083 076458 282559 778224 599187 616871 272504 217425 681526 808871 690078 903787 (361 digits), a[703] = 4
                                                                                      A[704]/B[704] = 25020 255483 680488 159327 052479 849089 704205 351709 068425 598255 537232 529651 860808 843157 522028 226846 241576 011227 580540 876813 978052 323315 566057 443715 972675 734328 479205 717563 308875 979809 836422 385309 181183 054427 253656 891578 092404 977552 242583 770225 735775 317211 995572 041144 321304 067290 690488 283431 631412 301001 313324 118844 890176 968579 812120 133019 612383 543291 389618 180027 (359 digits)/2 431806 838147 027018 486472 324639 082049 587312 045223 140628 207947 919586 395210 961589 385940 376034 922658 514695 805434 196850 209713 853002 453841 132389 799289 240581 334265 659120 883240 544824 668556 815284 041501 736341 969504 640872 016441 119716 551580 602426 474451 236821 634556 910494 333110 372314 384430 967015 121423 989635 704050 090592 436319 393010 736640 308736 376770 905244 615785 694865 052375 (361 digits), a[704] = 1
                                                                                      A[705]/B[705] = 70307 571190 490900 423993 024612 367364 460802 969241 098743 392439 592120 704137 983989 559695 524953 117874 002477 780593 634569 203950 871560 053919 734394 428604 041073 961118 453380 597287 074336 609229 809887 849649 865365 319786 821211 539150 211635 019085 469890 960432 704433 128448 611983 523501 502766 847065 019826 550143 069859 737348 944588 241029 671107 798384 479554 832242 074853 413353 183503 135196 (359 digits)/6 833440 709910 540337 005280 641889 751674 667396 335428 430247 932088 997143 139582 125587 776908 990046 685708 757906 432716 625032 959114 496090 575301 354581 520065 759886 298664 118096 668878 372419 121721 116312 403803 734050 703568 041122 888550 748304 428336 122438 114318 934204 846173 060511 693480 249402 251548 523616 564147 658354 484558 463744 650863 385209 090151 889976 970967 492016 040443 079809 008537 (361 digits), a[705] = 2
                                                                                      A[706]/B[706] = 95327 826674 171388 583320 077092 216454 165008 320950 167168 990695 129353 233789 844798 402853 046981 344720 244053 791821 215110 080764 849612 377235 300451 872320 013749 695446 932586 314850 383212 589039 646310 234959 046548 374214 074868 430728 304039 996637 712474 730658 440208 445660 607555 564645 824070 914355 710314 833574 701272 038350 257912 359874 561284 766964 291674 965261 687236 956644 573121 315223 (359 digits)/9 265247 548057 567355 491752 966528 833724 254708 380651 570876 140036 916729 534793 087177 162849 366081 608367 272602 238150 821883 168828 349093 029142 486971 319355 000467 632929 777217 552118 917243 790277 931596 445305 470392 673072 681994 904991 868020 979916 724864 588770 171026 480729 971006 026590 621716 635979 490631 685571 647990 188608 554337 087182 778219 826792 198713 347738 397260 656228 774674 060912 (361 digits), a[706] = 1
                                                                                      A[707]/B[707] = 260963 224538 833677 590633 178796 800272 790819 611141 433081 373829 850827 171717 673586 365401 618915 807314 490585 364236 064789 365480 570784 808390 335298 173244 068573 352012 318553 226987 840761 787309 102508 319567 958462 068214 970948 400606 819715 012360 894840 421749 584850 019769 827094 652793 150908 675776 440456 217292 472403 814049 460412 960778 793677 332313 062904 762765 449327 326642 329745 765642 (360 digits)/25 363935 806025 675047 988786 574947 419123 176813 096731 572000 212162 830602 209168 299942 102607 722209 902443 303110 909018 268799 296771 194276 633586 328524 158775 760821 564523 672531 773116 206906 702276 979505 294414 674836 049713 405112 698534 484346 388169 572167 291859 276257 807633 002523 746661 492835 523507 504879 935290 954334 861775 572418 825228 941648 743736 287403 666444 286537 352900 629157 130361 (362 digits), a[707] = 2
                                                                                      A[708]/B[708] = 2 183033 622984 840809 308385 507466 618636 491565 210081 631819 981333 935970 607531 233489 326065 998307 803236 168736 705709 733425 004609 415890 844357 982837 258272 562336 511545 481012 130753 109306 887512 466376 791502 714244 919933 842455 635582 861760 095524 871198 104655 119008 603819 224312 786991 031340 320567 233964 571914 480502 550745 941216 046104 910703 425468 794913 067385 281855 569783 211087 440359 (361 digits)/212 176733 996262 967739 402045 566108 186709 669213 154504 146877 837339 561547 208139 486713 983711 143760 827913 697489 510296 972277 542997 903306 097833 115164 589561 087040 149119 157471 737048 572497 408493 767638 800622 869081 070779 922896 493267 742792 085273 302202 923644 381088 941793 991195 999882 564400 824039 529671 167899 282669 082813 133687 689014 311409 776682 497942 679292 689559 479433 807931 103800 (363 digits), a[708] = 8
                                                                                      A[709]/B[709] = 33 006467 569311 445817 216415 790796 079820 164297 762365 910381 093838 890386 284686 175926 256391 593532 855857 021635 949882 066164 434621 809147 473760 077857 047332 503621 025194 533735 188284 480365 099996 098160 192108 672135 867222 607782 934349 746116 445233 962811 991576 369979 077058 191786 457658 621013 484284 949924 796009 679942 075238 578653 652352 454228 714344 986600 773544 677160 873390 496057 371027 (362 digits)/3208 014945 749970 191139 019470 066570 219768 215010 414293 775167 772256 253810 331260 600651 858274 878622 321148 765453 563472 852962 441739 743868 101083 055993 002192 066423 801311 034607 828844 794367 829683 494087 303757 711052 111412 248560 097550 626227 667269 105211 146524 992591 934542 870463 744899 958847 884100 449947 453780 194371 103972 577734 160443 612795 393973 756543 855834 629929 544407 748123 687361 (364 digits), a[709] = 15
                                                                                      A[710]/B[710] = 35 189501 192296 286626 524801 298262 698456 655862 972447 542201 075172 826356 892217 409415 582457 591840 659093 190372 655591 799589 439231 225038 318118 060694 305605 065957 536740 014747 319037 589671 987508 564536 983611 386380 787156 450238 569932 607876 540758 834010 096231 488987 680877 416099 244649 652353 804852 183889 367924 160444 625984 519869 698457 364932 139813 781513 840929 959016 443173 707144 811386 (362 digits)/3420 191679 746233 158878 421515 632678 406477 884223 568797 922045 609595 815357 539400 087365 841986 022383 149062 462943 073769 825239 984737 647174 198916 171157 591753 153463 950430 192079 565893 366865 238177 261726 104380 580133 182192 171456 590818 369019 752542 407414 070169 373680 876336 861659 744782 523248 708139 979618 621679 477040 186785 711421 849457 924205 170656 254486 535127 319489 023841 556054 791161 (364 digits), a[710] = 1
                                                                                      A[711]/B[711] = 13932 859438 526344 663294 512928 604561 970199 230171 879145 079805 787105 301358 710562 895081 327140 370593 197667 218834 908642 903992 930955 699283 130394 052107 761333 556848 037500 358926 208132 400800 165879 090268 718606 292546 794020 452018 057729 857350 044973 396800 003014 520113 023637 550988 094271 300766 400897 586225 126053 055569 339123 927184 543011 602423 940788 684567 940878 488655 927004 818257 868497 (365 digits)/1 354183 728445 512067 948115 518144 974540 778532 483320 089472 983183 562603 320038 394295 110159 442753 719966 200821 627967 702553 822756 413110 377676 672970 663241 744687 684684 221236 906036 356724 706136 909701 875898 534086 863659 077319 973913 470806 389029 921520 033768 863427 596538 087603 226062 933996 642087 599392 399303 017173 625244 884328 589364 696323 673837 803194 278725 231125 828093 961822 389766 195956 (367 digits), a[711] = 395
                                                                                      A[712]/B[712] = 69699 486693 824019 603099 089444 321072 549452 806722 368172 941230 010699 333150 445031 884822 218159 444806 647429 284547 198806 319554 094009 721453 970088 321233 112272 850197 724241 809378 359699 593672 816904 015880 576642 849114 757258 710328 858581 894626 765625 818010 111304 089552 799065 171039 716006 156185 809340 115014 998189 438291 321604 155792 413515 377051 843757 204353 545322 402296 078197 798434 153871 (365 digits)/6 774338 833907 306572 899456 012240 505382 299140 300824 016162 837963 422612 415549 510875 638163 055754 622214 153170 602781 586538 939022 050289 535557 563769 487366 315191 576885 056614 722261 349516 897549 786686 641218 774814 898428 568792 041023 944850 314169 360142 576258 387307 356371 314352 991974 414765 733686 705101 976133 707547 603264 608428 658245 331076 293394 186627 648112 690756 459958 832953 504885 770941 (367 digits), a[712] = 5
                                                                                      A[713]/B[713] = 83632 346132 350364 266393 602372 925634 519652 036894 247318 021035 797804 634509 155594 779903 545299 815399 845096 503382 107449 223547 024965 420737 100482 373340 873606 407045 761742 168304 567831 994472 982783 106149 295249 141661 551279 162346 916311 751976 810599 214810 114318 609665 822702 722027 810277 456952 210237 701240 124242 493860 660728 082976 956526 979475 784545 888921 486200 890952 005202 616692 022368 (365 digits)/8 128522 562352 818640 847571 530385 479923 077672 784144 105635 821146 985215 735587 905170 748322 498508 342180 353992 230749 289092 761778 463399 913234 236740 150608 059879 261569 277851 628297 706241 603686 696388 517117 308901 762087 646112 014937 415656 703199 281662 610027 250734 952909 401956 218037 348762 375774 304494 375436 724721 228509 492757 247610 027399 967231 989821 926837 921882 288052 794775 894651 966897 (367 digits), a[713] = 1
                                                                                      A[714]/B[714] = 1 073287 640282 028390 799822 317919 428686 785277 249453 335989 193659 584354 947260 312169 243664 761757 229604 788587 325132 488197 002118 393594 770299 175876 801323 595549 734746 865147 829033 173683 527348 610301 289672 119632 549053 372608 658491 854322 918348 492816 395731 483127 405542 671497 835373 439335 639612 332192 529896 489099 364619 250341 151515 891839 130761 258307 871411 379733 093720 140629 198738 422287 (367 digits)/104 316609 582141 130263 070314 376866 264459 231213 710553 283792 691727 245201 242604 372924 618033 037854 728378 401077 371773 055652 080363 611088 494368 404651 294663 033742 715716 390834 261833 824416 141790 143348 846626 481636 043480 322136 220272 932730 752560 740093 896585 396126 791284 137827 608422 599914 242978 359034 481374 404202 345378 521515 629565 659875 900178 064490 770167 753343 916592 370264 240709 373705 (369 digits), a[714] = 12
                                                                                      A[715]/B[715] = 1 156919 986414 378755 066215 920292 354321 304929 286347 583307 214695 382159 581769 467764 023568 307057 045004 633683 828514 595646 225665 418560 191036 276359 174664 469156 141792 626889 997337 741515 521821 593084 395821 414881 690714 923887 820838 770634 670325 303415 610541 597446 015208 494200 557401 249613 096564 542430 231136 613341 858479 911069 234492 848366 110237 042853 760332 865933 984672 145831 815430 444655 (367 digits)/112 445132 144493 948903 917885 907251 744382 308886 494697 389428 512874 230416 978192 278095 366355 536363 070558 755069 602522 344744 842142 074488 407602 641391 445271 093621 977285 668685 890131 530657 745476 839737 363743 790537 805567 968248 235210 348387 455760 021756 506612 646861 744193 539783 826459 948676 618752 663528 856811 128923 573888 014272 877175 687275 867410 054312 697005 675226 204645 165040 135361 340602 (369 digits), a[715] = 1
                                                                                      A[716]/B[716] = 2 230207 626696 407145 866038 238211 783008 090206 535800 919296 408354 966514 529029 779933 267233 068814 274609 422271 153647 083843 227783 812154 961335 452235 975988 064705 876539 492037 826370 915199 049170 203385 685493 534514 239768 296496 479330 624957 588673 796232 006273 080573 420751 165698 392774 688948 736176 874622 761033 102441 223099 161410 386008 740205 240998 301161 631744 245667 078392 286461 014168 866942 (367 digits)/216 761741 726635 079166 988200 284118 008841 540100 205250 673221 204601 475618 220796 651019 984388 574217 798937 156146 974295 400396 922505 685576 901971 046042 739934 127364 693002 059520 151965 355073 887266 983086 210370 272173 849048 290384 455483 281118 208320 761850 403198 042988 535477 677611 434882 548590 861731 022563 338185 533125 919266 535788 506741 347151 767588 118803 467173 428570 121237 535304 376070 714307 (369 digits), a[716] = 1
                                                                                      A[717]/B[717] = 3 387127 613110 785900 932254 158504 137329 395135 822148 502603 623050 348674 110799 247697 290801 375871 319614 055954 982161 679489 453449 230715 152371 728595 150652 533862 018332 118927 823708 656714 570991 796470 081314 949395 930483 220384 300169 395592 258999 099647 616814 678019 435959 659898 950175 938561 832741 417052 992169 715783 081579 072479 620501 588571 351235 344015 392077 111601 063064 432292 829599 311597 (367 digits)/329 206873 871129 028070 906086 191369 753223 848986 699948 062649 717475 706035 198988 929115 350744 110580 869495 911216 576817 745141 764647 760065 309573 687434 185205 220986 670287 728206 042096 885731 632743 822823 574114 062711 654616 258632 690693 629505 664080 783606 909810 689850 279671 217395 261342 497267 480483 686092 194996 662049 493154 550061 383917 034427 634998 173116 164179 103796 325882 700344 511432 054909 (369 digits), a[717] = 1
                                                                                      A[718]/B[718] = 5 617335 239807 193046 798292 396715 920337 485342 357949 421900 031405 315188 639829 027630 558034 444685 594223 478226 135808 763332 681233 042870 113707 180831 126640 598567 894871 610965 650079 571913 620161 999855 766808 483910 170251 516880 779500 020549 847672 895879 623087 758592 856710 825597 342950 627510 568918 291675 753202 818224 304678 233890 006510 328776 592233 645177 023821 357268 141456 718753 843768 178539 (367 digits)/545 968615 597764 107237 894286 475487 762065 389086 905198 735870 922077 181653 419785 580135 335132 684798 668433 067363 551113 145538 687153 445642 211544 733476 925139 348351 363289 787726 194062 240805 520010 805909 784484 334885 503664 549017 146176 910623 872401 545457 313008 732838 815148 895006 696225 045858 342214 708655 533182 195175 412421 085849 890658 381579 402586 291919 631352 532366 447120 235648 887502 769216 (369 digits), a[718] = 1
                                                                                      A[719]/B[719] = 14 621798 092725 171994 528838 951935 978004 365820 538047 346403 685860 979051 390457 302958 406870 265242 508061 012407 253779 206154 815915 316455 379786 090257 403933 730997 808075 340859 123867 800541 811315 796181 614931 917216 270986 254145 859169 436691 954344 891406 862990 195205 149381 311093 636077 193582 970578 000404 498575 352231 690935 540259 633522 246124 535702 634369 439719 826137 345977 869800 517135 668675 (368 digits)/1421 144105 066657 242546 694659 142345 277354 627160 510345 534391 561630 069342 038560 089386 021009 480178 206362 045943 679044 036219 138954 651349 732663 154388 035483 917689 396867 303658 430221 367342 672765 434643 143082 732482 661945 356666 983047 450753 408883 874521 535828 155527 909969 007408 653792 588984 164913 103403 261361 052400 317996 721761 165233 797586 440170 756955 426884 168529 220123 171642 286437 593341 (370 digits), a[719] = 2
                                                                                      A[720]/B[720] = 20 239133 332532 365041 327131 348651 898341 851162 895996 768303 717266 294240 030286 330588 964904 709928 102284 490633 389587 969487 497148 359325 493493 271088 530574 329565 702946 951824 773947 372455 431477 796037 381740 401126 441237 771026 638669 457241 802017 787286 486077 953798 006092 136690 979027 821093 539496 292080 251778 170455 995613 774149 640032 574901 127936 279546 463541 183405 487434 588554 360903 847214 (368 digits)/1967 112720 664421 349784 588945 617833 039420 016247 415544 270262 483707 250995 458345 669521 356142 164976 874795 113307 230157 181757 826108 096991 944207 887864 960623 266040 760157 091384 624283 608148 192776 240552 927567 067368 165609 905684 129224 361377 281285 419978 848836 888366 725117 902415 350017 634842 507127 812058 794543 247575 730417 807611 055892 179165 842757 048875 058236 700895 667243 407291 173940 362557 (370 digits), a[720] = 1
                                                                                      A[721]/B[721] = 156 295731 420451 727283 818758 392499 266397 323960 810024 724529 706725 038731 602461 617081 161203 234739 224052 446840 980894 992567 295953 831733 834238 987877 117954 037957 728704 003632 541499 407729 831660 368443 287114 725101 359650 651332 329855 637384 568469 402412 265535 871791 192026 267930 489271 941237 747052 044966 261022 545423 660231 959307 113750 270432 431256 591194 684508 109975 758019 989681 043462 599173 (369 digits)/15190 933149 717606 691038 817278 467176 553294 740892 419155 426228 947580 826310 246979 776035 514004 635016 329927 839094 290144 308523 921711 330293 342118 369442 759846 779974 717966 943350 800206 624380 022199 118513 636052 204059 821214 696455 887617 980394 377881 814373 477686 374094 985794 324316 103916 032881 714807 787814 823163 785430 430921 375038 556479 051747 339470 099080 834541 074798 890827 022680 504020 131240 (371 digits), a[721] = 7
                                                                                      A[722]/B[722] = 176 534864 752984 092325 145889 741151 164739 175123 706021 492833 423991 332971 632747 947670 126107 944667 326336 937474 370482 962054 793102 191059 327732 258965 648528 367523 431650 955457 315446 780185 263138 164480 668855 126227 800888 422358 968525 094626 370487 189698 751613 825589 198118 404621 468299 762331 286548 337046 512800 715879 655845 733456 753782 845333 559192 870741 148049 293381 245454 578235 404366 446387 (369 digits)/17158 045870 382028 040823 406224 085009 592714 757139 834699 696491 431288 077305 705325 445556 870146 799993 204722 952401 520301 490281 747819 427285 286326 257307 720470 046015 478124 034735 424490 232528 214975 359066 563619 271427 986824 602140 016842 341771 659167 234352 326523 262461 710912 226731 453933 667724 221935 599873 617707 033006 161339 182649 612371 230913 182227 147955 892777 775694 558070 429971 677960 493797 (371 digits), a[722] = 1
                                                                                      A[723]/B[723] = 1038 970055 185372 188909 548207 098255 090093 199579 340132 188696 826681 703589 766201 355431 791742 958075 855737 134212 833309 802841 261464 787030 472900 282705 360595 875574 886958 780919 118733 308656 147351 190846 631390 356240 364092 763127 172481 110516 420905 350906 023604 999737 182618 291037 830770 752894 179793 730198 825026 124821 939460 626590 882664 497100 227220 944900 424754 576881 985292 880858 065294 831108 (370 digits)/100981 162501 627746 895155 848398 892224 516868 526591 592653 908686 104021 212838 773607 003819 864738 634982 353542 601101 891651 759932 660808 466719 773749 655981 362197 010052 108587 117027 922657 787021 097075 913846 454148 561199 755337 707155 971829 689252 673717 986135 110302 686403 540355 457973 373584 371502 824485 787182 911698 950461 237617 288286 618335 206313 250605 838860 298429 953271 681179 172538 893822 600225 (372 digits), a[723] = 5
                                                                                      A[724]/B[724] = 2254 474975 123728 470144 242303 937661 344925 574282 386285 870227 077354 740151 165150 658533 709593 860819 037811 205900 037102 567737 316031 765120 273532 824376 369720 118673 205568 517295 552913 397497 557840 546173 931635 838708 529073 948613 313487 315659 212297 891510 798823 825063 563354 986697 129841 268119 646135 797444 162852 965523 534766 986638 519111 839534 013634 760541 997558 447145 216040 339951 534956 108603 (370 digits)/219120 370873 637521 831135 103021 869458 626451 810323 020007 513863 639330 502983 252539 453196 599624 069957 911808 154605 303605 010147 069436 360724 833825 569270 444864 066119 695298 268791 269805 806570 409127 186759 471916 393827 497500 016451 960501 720277 006603 206622 547128 635268 791623 142678 201102 410729 870907 174239 441104 933928 636573 759222 849041 643539 683438 825676 489637 682237 920428 775049 465605 694247 (372 digits), a[724] = 2
                                                                                      A[725]/B[725] = 21329 244831 298928 420207 728942 537207 194423 368120 816705 020740 522874 364950 252557 282235 178087 705447 196037 987313 167232 912477 105750 673112 934695 702092 688076 943633 737075 436579 094953 886134 167916 106412 016112 904617 125758 300646 993866 951449 331586 374503 213019 425309 252813 171311 999342 165970 995015 907196 290702 814533 752363 506337 554671 052906 349933 789778 402780 601188 929655 940421 879899 808535 (371 digits)/2 073064 500364 365443 375371 775595 717352 154934 819498 772721 533458 857995 739688 046462 082589 261355 264603 559815 992549 624096 851256 285735 713243 278179 779415 365973 605129 366271 536149 350910 046154 779220 594681 701396 105647 232837 855223 616345 171745 733146 845738 034460 403822 664963 742077 183506 068071 662650 355337 881643 355818 966781 121292 259709 998170 401555 269948 705169 093412 965038 147984 084273 848448 (373 digits), a[725] = 9
                                                                                      A[726]/B[726] = 23583 719806 422656 890351 971246 474868 539348 942403 202990 890967 600229 105101 417707 940768 887681 566266 233849 193213 204335 480214 421782 438233 208228 526469 057797 062306 942643 953874 647867 283631 725756 652585 947748 743325 654832 249260 307354 267108 543884 266014 011843 250372 816168 158009 129183 434090 641151 704640 453555 780057 287130 492976 073782 892440 363568 550320 400339 048334 145696 280373 414855 917138 (371 digits)/2 292184 871238 002965 206506 878617 586810 781386 629821 792729 047322 497326 242671 299001 535785 860979 334561 471624 147154 927701 861403 355172 073968 112005 348685 810837 671249 061569 804940 620715 852725 188347 781441 173312 499474 730337 871675 576846 892022 739750 052360 581589 039091 456586 884755 384608 478801 533557 529577 322748 289747 603354 880515 108751 641710 084994 095625 194806 775650 885466 923033 549879 542695 (373 digits), a[726] = 1
                                                                                      A[727]/B[727] = 139247 843863 412212 871967 585174 911549 891168 080136 831659 475578 524019 890457 341096 986079 616495 536778 365283 953379 188910 313549 214662 864278 975838 334437 977062 255168 450295 205952 334290 304292 796699 369341 754856 621245 399919 546948 530638 286992 051007 704573 272235 677173 333653 961357 645259 336424 200774 430398 558481 714820 188015 971217 923585 515108 167776 541380 404475 842859 658137 342288 954179 394225 (372 digits)/13 533988 856554 380269 407906 168683 651406 061867 968607 736366 770071 344626 953044 541469 761518 566251 937410 917936 728324 262606 158273 061596 083083 838206 522844 420161 961374 674120 560852 454489 309780 720959 501887 567958 603020 884527 213601 500579 631859 431897 107540 942405 599279 947898 165854 106548 462079 330438 003224 495384 804556 983555 523867 803468 206720 826525 748074 679202 971667 392372 763151 833671 561923 (374 digits), a[727] = 5
                                                                                      A[728]/B[728] = 162831 563669 834869 762319 556421 386418 430517 022540 034650 366546 124248 995558 758804 926848 504177 103044 599133 146592 393245 793763 636445 302512 184066 860907 034859 317475 392939 159826 982157 587924 522456 021927 702605 364571 054751 796208 837992 554100 594891 970587 284078 927546 149822 119366 774442 770514 841926 135039 012037 494877 475146 464193 997368 407548 531345 091700 804814 891193 803833 622662 369035 311363 (372 digits)/15 826173 727792 383234 614413 047301 238216 843254 598429 529095 817393 841953 195715 840471 297304 427231 271972 389560 875479 190308 019676 416768 157051 950211 871530 230999 632623 735690 365793 075205 162505 909307 283328 741271 102495 614865 085277 077426 523882 171647 159901 523994 638371 404485 050609 491156 940880 863995 532801 818133 094304 586910 404382 912219 848430 911519 843699 874009 747318 277839 686185 383551 104618 (374 digits), a[728] = 1
                                                                                      A[729]/B[729] = 302079 407533 247082 634287 141596 297968 321685 102676 866309 842124 648268 886016 099901 912928 120672 639822 964417 099971 582156 107312 851108 166791 159905 195345 011921 572643 843234 365779 316447 892217 319155 391269 457461 985816 454671 343157 368630 841092 645899 675160 556314 604719 483476 080724 419702 106939 042700 565437 570519 209697 663162 435411 920953 922656 699121 633081 209290 734053 461970 964951 323214 705588 (372 digits)/29 360162 584346 763504 022319 215984 889622 905122 567037 265462 587465 186580 148760 381941 058822 993483 209383 307497 603803 452914 177949 478364 240135 788418 394374 651161 593998 409810 926645 529694 472286 630266 785216 309229 705516 499392 298878 578006 155741 603544 267442 466400 237651 352383 216463 597705 402960 194433 536026 313517 898861 570465 928250 715688 055151 738045 591774 553212 718985 670212 449337 217222 666541 (374 digits), a[729] = 1
                                                                                      A[730]/B[730] = 766990 378736 329035 030893 839613 982355 073887 227893 767270 050795 420786 767590 958608 752704 745522 382690 527967 346535 557558 008389 338661 636094 503877 251597 058702 462763 079407 891385 615053 372359 160766 804466 617529 336203 964094 482523 575254 236285 886691 320908 396708 136985 116774 280815 613846 984392 927327 265914 153075 914272 801471 335017 839276 252861 929588 357863 223396 359300 727775 552565 015464 722539 (372 digits)/74 546498 896485 910242 659051 479271 017462 653499 732504 060020 992324 215113 493236 604353 414950 414197 690739 004556 083086 096136 375575 373496 637323 527048 660279 533322 820620 555312 219084 134594 107079 169840 853761 359730 513528 613649 683034 233438 835365 378735 694786 456795 113674 109251 483536 686567 746801 252862 604854 445168 892027 727842 260884 343595 958734 387611 027248 980435 185289 618264 584859 817996 437700 (374 digits), a[730] = 2
                                                                                      A[731]/B[731] = 2 603050 543742 234187 726968 660438 245033 543346 786358 168119 994510 910629 188788 975728 171042 357239 787894 548319 139578 254830 132480 867093 075074 671536 950136 188028 960933 081458 039936 161608 009294 801455 804669 310049 994428 346954 790728 094393 549950 305973 637885 746439 015674 833798 923171 261243 060117 824682 363180 029746 952516 067576 440465 438782 681242 487886 706670 879479 811955 645297 622646 369608 873205 (373 digits)/252 999659 273804 494231 999473 653797 942010 865621 764549 445525 564437 831920 628470 195001 303674 236076 281600 321165 853061 741323 304675 598854 152106 369564 375213 251130 055860 075747 583897 933476 793524 139789 346500 388421 246102 340341 347981 278322 661837 739751 351801 836785 578673 680137 667073 657408 643363 953021 350589 649024 574944 753992 710903 746475 931354 900878 673521 494518 274854 525006 203916 671211 979641 (375 digits), a[731] = 3
                                                                                      A[732]/B[732] = 8 576142 009963 031598 211799 820928 717455 703927 586968 271630 034328 152674 333957 885793 265831 817241 746374 172924 765270 322048 405831 939940 861318 518488 102005 622789 345562 323782 011194 099877 400243 565134 218474 547679 319489 004958 854707 858434 886136 804612 234565 636025 184009 618171 050329 397576 164746 401374 355454 242316 771821 004200 656414 155624 296589 393248 477875 861835 795167 663668 420504 124291 342154 (373 digits)/833 545476 717899 392938 657472 440664 843495 250365 026152 396597 685637 710875 378647 189357 325973 122426 535539 968053 642271 320106 289602 170059 093642 635741 785919 286712 988200 782554 970777 935024 487651 589208 893262 524994 251835 634673 726978 068406 820878 597989 750191 967151 849695 149664 484757 658793 676893 111926 656623 392242 616861 989820 393595 583023 752799 090247 047813 463990 009853 193283 196609 831632 376623 (375 digits), a[732] = 3
                                                                                      A[733]/B[733] = 11 179192 553705 265785 938768 481366 962489 247274 373326 439750 028839 063303 522746 861521 436874 174481 534268 721243 904848 576878 538312 807033 936393 190025 052141 810818 306495 405240 051130 261485 409538 366590 023143 857729 313917 351913 645435 952828 436087 110585 872451 382464 199684 451969 973500 658819 224864 226056 718634 272063 724337 071777 096879 594406 977831 881135 184546 741315 607123 308966 043150 493900 215359 (374 digits)/1086 545135 991703 887170 656946 094462 785506 115986 790701 842123 250075 542796 007117 384358 629647 358502 817140 289219 495333 061429 594277 768913 245749 005306 161132 537843 044060 858302 554675 868501 281175 728998 239762 913415 497937 975015 074959 346729 482716 337741 101993 803937 428368 829802 151831 316202 320257 064948 007213 041267 191806 743813 104499 329499 684153 991125 721334 958508 284707 718289 400526 502844 356264 (376 digits), a[733] = 1
                                                                                      A[734]/B[734] = 19 755334 563668 297384 150568 302295 679944 951201 960294 711380 063167 215977 856704 747314 702705 991723 280642 894168 670118 898926 944144 746974 797711 708513 154147 433607 652057 729022 062324 361362 809781 931724 241618 405408 633406 356872 500143 811263 322223 915198 107017 018489 383694 070141 023830 056395 389610 627431 074088 514380 496158 075977 753293 750031 274421 274383 662422 603151 402290 972634 463654 618191 557513 (374 digits)/1920 090612 709603 280109 314418 535127 629001 366351 816854 238720 935713 253671 385764 573715 955620 480929 352680 257273 137604 381535 883879 938972 339391 641047 947051 824556 032261 640857 525453 803525 768827 318207 133025 438409 749773 609688 801937 415136 303594 935730 852185 771089 278063 979466 636588 974995 997150 176874 663836 433509 808668 733633 498094 912523 436953 081372 769148 422498 294560 911572 597136 334476 732887 (376 digits), a[734] = 1
                                                                                      A[735]/B[735] = 3428 852072 068320 713243 987084 778519 592965 805213 504311 508500 956767 427472 732668 146965 005010 742609 085489 412423 835418 091239 875354 033673 940518 762800 719647 824942 112482 526056 833244 777251 501812 554883 823127 993422 893217 090856 170315 301383 180824 439858 386395 581127 578758 586367 096100 415221 627502 771632 535947 259889 559684 215928 416698 349817 452712 349508 783657 086508 203461 574728 255399 441039 665108 (376 digits)/333262 221134 753071 346082 051352 671542 602742 494851 106485 140845 128468 427945 744388 637218 951990 559280 830824 797472 300891 067137 505507 211127 960502 906601 001098 186036 625324 726654 458183 878459 288301 778832 253163 758302 208772 451177 810132 165310 004640 219178 530132 202382 533437 277530 281723 990509 827237 664264 850916 038464 091497 662408 274919 196054 277037 068614 784012 050713 243745 420348 705112 367319 145715 (378 digits), a[735] = 173
                                                                                      A[736]/B[736] = 3448 607406 631989 010628 137653 080815 272910 756415 464606 219881 019934 643450 589372 894279 707716 734332 366132 306592 505536 990166 819498 780648 738230 471313 873795 258549 764540 255078 895569 138614 311594 486608 064746 398831 526623 447728 670459 112646 503048 355056 493412 599616 962452 656508 119930 471617 017113 399063 610035 774270 055842 291906 169992 099848 727133 623892 446079 689659 605752 547362 719054 059231 222621 (376 digits)/335182 311747 462674 626191 365771 206670 231743 861202 923339 379566 064181 681617 130153 210934 907611 040210 183505 054745 438495 448673 389387 150100 299894 547648 948150 010592 657586 367511 983637 681985 057129 097039 386189 196711 958546 060866 612069 580446 308235 154909 382317 973471 811501 256996 918312 965505 824387 841139 514752 471973 900166 396041 773014 108577 713990 149987 553160 473211 538306 331921 302248 701795 878602 (378 digits), a[736] = 1
                                                                                      A[737]/B[737] = 331046 555702 107276 722917 064127 455970 519487 664682 641902 397197 850558 555278 723093 103537 238100 504183 868058 538711 861432 157087 727738 195304 072413 537618 730197 387169 743806 758551 912312 945611 103288 782649 974035 882417 922444 625079 863931 002800 970418 170225 260592 544739 011760 954638 489495 218838 253275 682675 489345 815544 864701 947014 565947 835446 530406 619291 161227 604170 749953 574186 565535 068005 814103 (378 digits)/32 175581 837143 707160 834261 799617 305214 618409 309128 823726 199621 225728 181573 108943 676035 175039 379248 263804 998288 957958 691109 497286 470656 450484 933251 075349 192339 096029 640292 903763 667039 715565 997573 941137 445938 270648 233505 956742 307709 286979 935569 850339 682204 626056 692237 521455 713563 144082 572518 752400 875984 607305 286376 711259 510937 106101 317432 334257 005809 382846 952872 418739 037927 612905 (380 digits), a[737] = 95
                                                                                      A[738]/B[738] = 996588 274512 953819 179379 330035 448726 831373 750463 390313 411474 571610 309286 758652 204891 422018 246883 970307 922728 089833 461430 002713 366560 955471 084170 064387 420058 995960 530734 632507 975447 621460 834557 986854 046085 293957 322968 262252 121049 414302 865732 275190 233833 997735 520423 588416 128131 776940 447090 078073 220904 649948 132949 867835 606188 318353 481765 929762 502171 855613 269922 415659 263248 664930 (378 digits)/96 861927 823178 584157 128976 764623 122314 086971 788589 394517 978429 741366 226336 456984 239040 432729 177954 974920 049612 312371 522001 881246 562069 651349 347402 174197 587609 945675 288390 694928 683104 203827 089761 209601 534526 770490 761384 482296 503574 169174 961618 933337 020085 689671 333709 482680 106195 256635 558695 771955 099927 722082 255171 906792 641389 032294 102284 555931 490639 686847 190538 558465 815578 717317 (380 digits), a[738] = 3
                                                                                      A[739]/B[739] = 1 327634 830215 061095 902296 394162 904697 350861 415146 032215 808672 422168 864565 481745 308428 660118 751067 838366 461439 951265 618517 730451 561865 027884 621788 794584 807228 739767 289286 544820 921058 724749 617207 960889 928503 216401 948048 126183 123850 384721 035957 535782 778573 009496 475062 077911 346970 030216 129765 567419 036449 514650 079964 433783 441634 848760 101057 090990 106342 605566 844108 981194 331254 479033 (379 digits)/129 037509 660322 291317 963238 564240 427528 705381 097718 218244 178050 967094 407909 565927 915075 607768 557203 238725 047901 270330 213111 378533 032726 101834 280653 249546 779949 041704 928683 598692 350143 919393 087335 150738 980465 041138 994890 439038 811283 456154 897188 783676 702290 315728 025947 004135 819758 400718 131214 524355 975912 329387 541548 618052 152326 138395 419716 890188 496449 069694 143410 977204 853506 330222 (381 digits), a[739] = 1
                                                                                      A[740]/B[740] = 12 945301 746448 503682 300046 877501 591002 989126 486777 680255 689526 371130 090376 094359 980749 363087 006494 515606 075687 651224 028089 576777 423346 206432 680269 215650 685117 653866 134313 535896 264976 144207 389429 634863 402614 241574 855401 397900 235702 876792 189350 097235 240991 083203 795982 289618 250862 048885 614980 184844 548950 281798 852629 771886 580901 957194 391279 748673 459255 305714 866903 246408 244538 976227 (380 digits)/1258 199514 766079 206018 798123 842786 970072 435401 668053 358715 580888 445215 897522 550335 474720 902646 192784 123445 480723 745343 440004 288043 856604 567857 873281 420118 607151 321019 646543 083159 834399 478364 875777 566252 358712 140741 715398 433645 805125 274569 036317 986427 340698 531223 567232 519902 484020 863098 739626 491158 883138 686570 129109 469262 012324 277852 879736 567627 958681 314094 481237 353309 497135 689315 (382 digits), a[740] = 9
                                                                                      A[741]/B[741] = 14 272936 576663 564778 202343 271664 495700 339987 901923 712471 498198 793298 954941 576105 289178 023205 757562 353972 537127 602489 646607 307228 985211 234317 302058 010235 492346 393633 423600 080717 186034 868957 006637 595753 331117 457976 803449 524083 359553 261513 225307 633018 019564 092700 271044 367529 597832 079101 744745 752263 585399 796448 932594 205670 022536 805954 492336 839663 565597 911281 711012 227602 575793 455260 (380 digits)/1387 237024 426401 497336 761362 407027 397601 140782 765771 576959 758939 412310 305432 116263 389796 510414 749987 362170 528625 015673 653115 666576 889330 669692 153934 669665 387100 362724 575226 681852 184543 397757 963112 716991 339177 181880 710288 872684 616408 730723 933506 770104 042988 846951 593179 524038 303779 263816 870841 015514 859051 015957 670658 087314 164650 416248 299453 457816 455130 383788 624648 330514 350642 019537 (382 digits), a[741] = 1
                                                                                      A[742]/B[742] = 41 491174 899775 633238 704733 420830 582403 669102 290625 105198 685923 957728 000259 246570 559105 409498 521619 223551 149942 856203 321304 191235 393768 675067 284385 236121 669810 441132 981513 697330 637045 882121 402704 826370 064849 157528 462300 446066 954809 399818 639965 363271 280119 268604 338071 024677 446526 207089 104471 689371 719749 874696 717818 183226 625975 569103 375953 428000 590451 128278 288927 701613 396125 886747 (380 digits)/4032 673563 618882 200692 320848 656841 765274 716967 199596 512635 098767 269836 508386 782862 254313 923475 692758 847786 537973 776690 746235 621197 635265 907242 181150 759449 381352 046468 796996 446864 203486 273880 802003 000235 037066 504503 135976 179015 037942 736016 903331 526635 426676 225126 753591 567979 091579 390732 481308 522188 601240 718485 470425 643890 341625 110349 478643 483260 868942 081671 730534 014338 198419 728389 (382 digits), a[742] = 2
                                                                                      A[743]/B[743] = 55 764111 476439 198016 907076 692495 078104 009090 192548 817670 184122 751026 955200 822675 848283 432704 279181 577523 687070 458692 967911 498464 378979 909384 586443 246357 162156 834766 405113 778047 823080 751078 409342 422123 395966 615505 265749 970150 314362 661331 865272 996289 299683 361304 609115 392207 044358 286190 849217 441635 305149 671145 650412 388896 648512 375057 868290 267664 156049 039559 999939 929215 971919 342007 (380 digits)/5419 910588 045283 698029 082211 063869 162875 857749 965368 089594 857706 682146 813818 899125 644110 433890 442746 209957 066598 792364 399351 287774 524596 576934 335085 429114 768452 409193 372223 128716 388029 671638 765115 717226 376243 686383 846265 051699 654351 466740 836838 296739 469665 072078 346771 092017 395358 654549 352149 537703 460291 734443 141083 731204 506275 526597 778096 941077 324072 465460 355182 344852 549061 747926 (382 digits), a[743] = 1
                                                                                      A[744]/B[744] = 1435 593961 810755 583661 381650 733207 535003 896357 104345 546953 288992 733401 880279 813466 766191 227105 501158 661643 326704 323527 519091 652844 868266 409681 945466 395050 723731 310293 109358 148526 214064 659081 636265 379454 964014 545160 106049 699824 813875 933115 271790 270503 772203 301219 565955 829853 555483 361860 334907 730254 348491 653337 978127 905642 838784 945550 083210 119604 491677 117278 287425 932012 694109 436922 (382 digits)/139530 438264 750974 651419 376125 253570 837171 160716 333798 752506 541434 323506 853859 261003 357074 770736 761414 096713 202943 585800 730017 815560 750180 330600 558286 487318 592662 276303 102574 664773 904228 064849 929895 930894 443158 664099 292602 471506 396729 404537 824288 945122 168303 027085 422868 868413 975545 754466 285046 964775 108534 079563 997518 924002 998513 275293 931067 010193 970753 718180 610092 635651 924963 426539 (384 digits), a[744] = 25
                                                                                      A[745]/B[745] = 7233 733920 530217 116323 815330 358532 753123 490875 714276 552436 629086 418036 356599 890009 679239 568231 784974 885740 320592 076330 563369 762688 720311 957794 313775 221610 780813 386231 951904 520678 893404 046486 590669 319398 216039 341305 795998 469274 383742 326908 224224 348808 160699 867402 438894 541474 821775 095492 523756 092907 047607 937835 541051 917110 842437 102808 284340 865686 614434 625951 437069 589279 442466 526617 (382 digits)/703072 101911 800156 955125 962837 331723 348731 661331 634361 852127 564878 299681 083115 204142 429484 287574 249816 693523 081316 721368 049440 365578 275498 229937 126517 865707 731763 790708 885096 452585 909169 995888 414595 371698 592037 006880 309277 409231 637998 489429 958283 022350 311180 207505 461115 434087 273087 426880 777384 361579 002962 132263 128678 351219 498841 903067 433431 992047 177841 056363 405645 523112 173878 880621 (384 digits), a[745] = 5
                                                                                      A[746]/B[746] = 109941 602769 764012 328518 611606 111198 831856 259492 818493 833502 725289 003947 229278 163611 954784 750582 275781 947748 135585 468485 969638 093175 672945 776596 652094 719212 435932 103772 387925 958709 615125 356380 496305 170428 204604 664747 046026 738940 570010 836738 635155 502626 182701 312256 149373 951975 882109 794248 191249 123860 062610 720871 093906 662305 475341 487674 348323 104903 708196 506549 843469 771204 331107 336177 (384 digits)/10 685611 966941 753328 978308 818685 229421 068146 080690 849226 534420 014608 818723 100587 323139 799339 084350 508664 499559 422694 406321 471623 299234 882653 779657 456054 472934 569119 136936 379021 453562 541778 003176 148826 506373 323713 767303 931763 609980 966706 745987 198534 280376 836006 139667 339600 379723 071857 157677 945812 388460 152966 063510 927694 192295 481141 821305 432546 890901 638369 563631 694775 482334 533146 635854 (386 digits), a[746] = 15
                                                                                      A[747]/B[747] = 227116 939460 058241 773361 038542 580930 416836 009861 351264 219442 079664 425930 815156 217233 588809 069396 336538 781236 591763 013302 502645 949040 066203 510987 617964 660035 652677 593776 727756 438098 123654 759247 583279 660254 625248 670799 888051 947155 523764 000385 494535 354060 526102 491914 737642 445426 585994 683988 906254 340627 172829 379577 728865 241721 793120 078156 980987 075494 030827 639051 124009 131688 104681 198971 (384 digits)/22 074296 035795 306814 911743 600207 790565 485023 822713 332814 920967 594095 937127 284289 850422 028162 456275 267145 692641 926705 534010 992686 964048 040805 789252 038626 811576 870002 064581 643139 359710 992726 002240 712248 384445 239464 541488 172804 629193 571411 981404 355351 583103 983192 486840 140316 193533 416801 742236 669009 138499 308894 259284 984066 735810 461125 545678 298525 773850 454580 183626 795196 487781 240172 152329 (386 digits), a[747] = 2
                                                                                      A[748]/B[748] = 2 381110 997370 346430 062128 997031 920503 000216 358106 331136 027923 521933 263255 380840 335947 842875 444545 641169 760114 053215 601510 996097 583576 334980 886472 831741 319568 962708 041539 665490 339690 851672 948856 329101 772974 457091 372745 926546 210495 807650 840593 580509 043231 443726 231403 525798 406241 742056 634137 253792 530131 790904 516648 382559 079523 406542 269244 158193 859844 016472 897061 083561 088085 377919 325887 (385 digits)/231 428572 324894 821478 095744 820763 135075 918384 307824 177375 744095 955568 189995 943485 827360 080963 647103 180121 425978 689749 746431 398492 939715 290711 672177 842322 588703 269139 782752 810415 050672 469038 025583 271310 350825 718359 182185 659809 901916 680826 560030 752050 111416 667931 008068 742762 315057 239874 580044 635903 773453 241908 656360 768361 550400 092397 278088 417804 629406 184171 399899 646740 360146 934868 159144 (387 digits), a[748] = 10
                                                                                      A[749]/B[749] = 4 989338 934200 751101 897619 032606 421936 417268 726074 013536 275289 123530 952441 576836 889129 274559 958487 618878 301464 698194 216324 494841 116192 736165 283933 281447 299173 578093 676856 058737 117479 827000 656960 241483 206203 539431 416291 741144 368147 139065 681572 655553 440523 413554 954721 789239 257910 070107 952263 413839 400890 754638 412874 493983 400768 606204 616645 297374 795182 063773 433173 291131 307858 860519 850745 (385 digits)/484 931440 685584 949771 103233 241734 060717 321792 438361 687566 409159 505232 317119 171261 505142 190089 750481 627388 544599 306205 026873 789672 843478 622229 133607 723271 988983 408281 630087 263969 461055 930802 053407 254869 086096 676182 905859 492424 433026 933065 101465 859451 805937 319054 502977 625840 823647 896550 902325 940816 685405 792711 572006 520789 836610 645920 101855 134135 032662 822922 983426 088677 208075 109908 470617 (387 digits), a[749] = 2
                                                                                      A[750]/B[750] = 7 370449 931571 097531 959748 029638 342439 417485 084180 344672 303212 645464 215696 957677 225077 117435 403033 260048 061578 751409 817835 490938 699769 071146 170406 113188 618742 540801 718395 724227 457170 678673 605816 570584 979177 996522 789037 667690 578642 946716 522166 236062 483754 857281 186125 315037 664151 812164 586400 667631 931022 545542 929522 876542 480292 012746 885889 455568 655026 080246 330234 374692 395944 238439 176632 (385 digits)/716 360013 010479 771249 198978 062497 195793 240176 746185 864942 153255 460800 507115 114747 332502 271053 397584 807509 970577 995954 773305 188165 783193 912940 805785 565594 577686 677421 412840 074384 511728 399840 078990 526179 436922 394542 088045 152234 334943 613891 661496 611501 917353 986985 511046 368603 138705 136425 482370 576720 458859 034620 228367 289151 387010 738317 379943 551939 662069 007094 383325 735417 568222 044776 629761 (387 digits), a[750] = 1
                                                                                      A[751]/B[751] = 19 730238 797342 946165 817115 091883 106815 252238 894434 702880 881714 414459 383835 492191 339283 509430 764554 138974 424622 201013 851995 476718 515730 878457 624745 507824 536658 659697 113647 507192 031821 184347 868593 382653 164559 532476 994367 076525 525433 032498 725905 127678 408033 128117 326972 419314 586213 694437 125064 749103 262935 845724 271920 247068 361352 631698 388424 208512 105234 224266 093642 040516 099747 337398 204009 (386 digits)/1917 651466 706544 492269 501189 366728 452303 802145 930733 417450 715670 426833 331349 400756 170146 732196 545651 242408 485755 298114 573484 166004 409866 448110 745178 854461 144356 763124 455767 412738 484512 730482 211388 307227 959941 465267 081949 796893 102914 160848 424459 082455 640645 293025 525070 363047 101058 169401 867067 094257 603123 861952 028741 099092 610632 122554 861742 238014 356800 837111 750077 559512 344519 199461 730139 (388 digits), a[751] = 2
                                                                                      A[752]/B[752] = 27 100688 728914 043697 776863 121521 449254 669723 978615 047553 184927 059923 599532 449868 564360 626866 167587 399022 486200 952423 669830 967657 215499 949603 795151 621013 155401 200498 832043 231419 488991 863021 474409 953238 143737 528999 783404 744216 104075 979215 248071 363740 891787 985398 513097 734352 250365 506601 711465 416735 193958 391267 201443 123610 841644 644445 274313 664080 760260 304512 423876 415208 495691 575837 380641 (386 digits)/2634 011479 717024 263518 700167 429225 648097 042322 676919 282392 868925 887633 838464 515503 502649 003249 943236 049918 456333 294069 346789 354170 193060 361051 550964 420055 722043 440545 868607 487122 996241 130322 290378 833407 396863 859809 169994 949127 437857 774740 085955 693957 557999 280011 036116 731650 239763 305827 349437 670978 061982 896572 257108 388243 997642 860872 241685 789954 018869 844206 133403 294929 912741 244238 359900 (388 digits), a[752] = 1
                                                                                      A[753]/B[753] = 46 830927 526256 989863 593978 213404 556069 921962 873049 750434 066641 474382 983367 942059 903644 136296 932141 537996 910823 153437 521826 444375 731230 828061 419897 128837 692059 860195 945690 738611 520813 047369 343003 335891 308297 061476 777771 820741 629509 011713 973976 491419 299821 113515 840070 153666 836579 201038 836530 165838 456894 236991 473363 370679 202997 276143 662737 872592 865494 528778 517518 455724 595438 913235 584650 (386 digits)/4551 662946 423568 755788 201356 795954 100400 844468 607652 699843 584596 314467 169813 916259 672795 735446 488887 292326 942088 592183 920273 520174 602926 809162 296143 274516 866400 203670 324374 899861 480753 860804 501767 140635 356805 325076 251944 746020 540771 935588 510414 776413 198644 573036 561187 094697 340821 475229 216504 765235 665106 758524 285849 487336 608274 983427 103428 027968 375670 681317 883480 854442 257260 443700 090039 (388 digits), a[753] = 1
                                                                                      A[754]/B[754] = 495 409963 991483 942333 716645 255567 009953 889352 709112 551893 851341 803753 433211 870467 600801 989835 489002 778991 594432 486798 888095 411414 527808 230217 994122 909390 075999 802458 288950 617534 697122 336714 904443 312151 226708 143767 561122 951632 399166 096354 987836 277933 889999 120556 913799 271020 616157 516990 076767 075119 762900 761181 935076 830402 871617 405881 901692 390009 415205 592297 599060 972454 450080 708193 227141 (387 digits)/48150 640943 952711 821400 713735 388766 652105 487008 753446 280828 714889 032305 536603 678100 230606 357714 832108 973187 877219 215908 549524 555916 222328 452674 512397 165224 386045 477249 112356 485737 803779 738367 308050 239760 964917 110571 689442 409332 845577 130625 190103 458089 544445 010376 647987 678623 647978 058119 514485 323334 713050 481815 115603 261610 080392 695143 275966 069637 775576 657384 968211 839352 485345 681239 260290 (389 digits), a[754] = 10
                                                                                      A[755]/B[755] = 2523 880747 483676 701532 177204 491239 605839 368726 418612 509903 323350 493150 149427 294397 907654 085474 377155 432954 882985 587431 962303 501448 370271 979151 390511 675788 072058 872487 390443 826285 006424 730943 865219 896647 441837 780314 583386 578903 625339 493488 913157 881088 749816 716300 409066 508769 917366 785989 220365 541437 271398 042901 148747 522693 561084 305553 171199 822639 941522 490266 512823 317996 845842 454201 720355 (388 digits)/245304 867666 187127 862791 770033 739787 360928 279512 374884 103987 159041 475994 852832 306760 825827 524020 649432 158266 328184 671726 667896 299755 714569 072534 858129 100638 796627 589915 886157 328550 499652 552641 042018 339440 181390 877934 699156 792684 768657 588714 460932 066860 920869 624919 801125 487815 580711 765826 788931 381909 230359 167599 863865 795387 010238 459143 483258 376157 253553 968242 724540 051204 683988 849896 391489 (390 digits), a[755] = 5
                                                                                      A[756]/B[756] = 3019 290711 475160 643865 893849 746806 615793 258079 127725 061797 174692 296903 582639 164865 508456 075309 866158 211946 477418 074230 850398 912862 898080 209369 384634 585178 148058 674945 679394 443819 703547 067658 769663 208798 668545 924082 144509 530536 024505 589843 900994 159022 639815 836857 322865 779790 533524 302979 297132 616557 034298 804083 083824 353096 432701 711435 072892 212649 356728 082564 111884 290451 295923 162394 947496 (388 digits)/293455 508610 139839 684192 483769 128554 013033 766521 128330 384815 873930 508300 389435 984861 056433 881735 481541 131454 205403 887635 217420 855671 936897 525209 370526 265863 182673 067164 998513 814288 303432 291008 350068 579201 146307 988506 388599 202017 614234 719339 651035 524950 465314 635296 449113 166439 228689 823946 303416 705243 943409 649414 979469 056997 090631 154286 759224 445795 029130 625627 692751 890557 169334 531135 651779 (390 digits), a[756] = 1
                                                                                      A[757]/B[757] = 14601 043593 384319 276995 752603 478466 069012 401042 929512 757092 022119 680764 479983 953859 941478 386713 841788 280740 792657 884355 363899 152899 962592 816628 929050 016500 664293 572270 108021 601563 820613 001578 943872 731842 116021 476643 161424 701047 723361 852864 517134 517179 309080 063729 700529 627932 051463 997906 408896 007665 408593 259233 484044 935079 291891 151293 462768 673237 368434 820522 960360 479802 029535 103781 510339 (389 digits)/1 419126 902106 746486 599561 705110 254003 413063 345596 888205 643250 654763 509196 410576 246205 051563 050962 575596 684083 149800 222267 537579 722443 462159 173372 340234 164091 527319 858575 880212 585703 713381 716674 442292 656244 766622 831960 253553 600755 225596 466073 065074 166662 782128 166105 597578 153572 495471 061612 002598 202885 003997 765259 781742 023375 372763 076290 520156 159337 370076 470753 495547 613433 361326 974438 998605 (391 digits), a[757] = 4
                                                                                      A[758]/B[758] = 17620 334304 859479 920861 646453 225272 684805 659122 057237 818889 196811 977668 062623 118725 449934 462023 707946 492687 270075 958586 214298 065762 860673 025998 313684 601678 812352 247215 787416 045383 524160 069237 713535 940640 784567 400725 305934 231583 747867 442708 418128 676201 948895 900587 023395 407722 584988 300885 706028 624222 442892 063316 567869 288175 724592 862728 535660 885886 725162 903087 072244 770253 325458 266176 457835 (389 digits)/1 712582 410716 886326 283754 188879 382557 426097 112118 016536 028066 528694 017496 800012 231066 107996 932698 057137 815537 355204 109902 755000 578115 399056 698581 710760 429954 709992 925740 878726 399992 016814 007682 792361 235445 912930 820466 642152 802772 839831 185412 716109 691613 247442 801402 046691 320011 724160 885558 306014 908128 947407 414674 761211 080372 463394 230577 279380 605132 399207 096381 188299 503990 530661 505574 650384 (391 digits), a[758] = 1
                                                                                      A[759]/B[759] = 85082 380812 822238 960442 338416 379556 808235 037531 158464 032648 809367 591436 730476 428761 741216 234808 673574 251489 872961 718700 221091 415951 405284 920622 183788 423215 913702 561133 257685 783097 917253 278529 798016 494405 254291 079544 385161 627382 714831 623698 189649 221987 104663 666077 794111 258822 391417 201449 233010 504555 180161 512499 755522 087782 190262 602207 605412 216784 269086 432871 249339 560815 331368 168487 341679 (389 digits)/8 269456 544974 291791 734578 460627 784233 117451 794068 954349 755516 769539 579183 610625 170469 483550 781754 804147 946232 570616 661878 557582 034905 058385 967699 183275 883910 367291 561539 395118 185671 780637 747405 611737 598028 418346 113826 822164 811846 584921 207723 929512 933115 771899 371713 784343 433619 392114 603845 226657 835400 793627 423958 826586 344865 226339 998599 637678 579866 966904 856278 248745 629395 483972 996737 600141 (391 digits), a[759] = 4
                                                                                      A[760]/B[760] = 783361 761620 259630 564842 692200 641283 958920 996902 483414 112728 481120 300598 636910 977581 120880 575301 770114 756096 126731 426888 204120 809325 508237 311597 967780 410622 035675 297415 106588 093264 779439 576005 895684 390288 073187 116624 772388 878028 181352 055992 124971 674085 890868 895287 170396 737124 107743 113928 803123 165219 064345 675814 367568 078215 436956 282596 984370 836945 146940 798928 316300 817591 307771 782562 532946 (390 digits)/76 137691 315485 512451 894960 334529 440655 483163 258738 605683 827717 454550 230149 295638 765291 459953 968491 294469 331630 490754 066809 773238 892260 924530 407874 360243 385148 015616 979595 434790 071038 042553 734333 297999 617701 678045 844908 041636 109392 104122 054928 081726 089655 194537 146826 105782 222586 253192 320165 345935 426736 090054 230304 200488 184159 500454 217974 018487 823935 101350 802885 427010 168549 886418 476213 051653 (392 digits), a[760] = 9
                                                                                      A[761]/B[761] = 1 651805 904053 341500 090127 722817 662124 726077 031336 125292 258105 771608 192634 004298 383923 982977 385412 213803 763682 126424 572476 629333 034602 421759 543818 119349 244459 985053 155963 470861 969627 476132 430541 589385 274981 400665 312793 929939 383439 077535 735682 439592 570158 886401 456652 134904 733070 606903 429306 839256 834993 308852 864128 490658 244213 064175 167401 574153 890674 562968 030727 881941 195997 946911 733612 407571 (391 digits)/160 544839 175945 316695 524499 129686 665544 083778 311546 165717 410951 678640 039482 201902 701052 403458 718737 393086 609493 552124 795498 104059 819426 907446 783447 903762 654206 398525 520730 264698 327747 865745 216072 207736 833431 774437 803642 905437 030630 793165 317580 092965 112426 160973 665365 995907 878791 898499 244175 918528 688872 973735 884567 227562 713184 227248 434547 674654 227737 169606 462049 102765 966495 256809 949163 703447 (393 digits), a[761] = 2
                                                                                      A[762]/B[762] = 4 086973 569726 942630 745098 137835 965533 411075 059574 733998 628940 024336 685866 645507 745429 086835 346126 197722 283460 379580 571841 462786 878530 351756 399234 206478 899542 005781 609342 048312 032519 731704 437089 074454 940250 874517 742212 632267 644906 336423 527357 004156 814403 663671 808591 440206 203265 321549 972542 481636 835205 682051 404071 348884 566641 565306 617400 132678 618294 272876 860384 080183 209587 201595 249787 348088 (391 digits)/397 227369 667376 145842 943958 593902 771743 650719 881830 937118 649620 811830 309113 699444 167396 266871 405966 080642 550617 595003 657805 981358 531114 739423 974770 167768 693560 812668 021055 964186 726533 774044 166477 713473 284565 226921 452193 852510 170653 690452 690088 267656 314507 516484 477558 097597 980170 050190 808517 182992 804482 037525 999438 655613 610527 954951 087069 367796 279409 440563 726983 632542 101540 400038 374540 458547 (393 digits), a[762] = 2
                                                                                      A[763]/B[763] = 5 738779 473780 284130 835225 860653 627658 137152 090910 859290 887045 795944 878500 649806 129353 069812 731538 411526 047142 506005 144318 092119 913132 773515 943052 325828 144001 990834 765305 519174 002147 207836 867630 663840 215232 275183 055006 562207 028345 413959 263039 443749 384562 550073 265243 575110 936335 928453 401849 320893 670198 990904 268199 839542 810854 629481 784801 706832 508968 835844 891111 962124 405585 148506 983399 755659 (391 digits)/557 772208 843321 462538 468457 723589 437287 734498 193377 102836 060572 490470 348595 901346 868448 670330 124703 473729 160111 147128 453304 085418 350541 646870 758218 071531 347767 211193 541786 228885 054281 639789 382549 921210 117997 001359 255836 757947 201284 483618 007668 360621 426933 677458 142924 093505 858961 948690 052693 101521 493355 011261 884005 883176 323712 182199 521617 042450 507146 610170 189032 735308 068035 656848 323704 161994 (393 digits), a[763] = 1
                                                                                      A[764]/B[764] = 67 213547 781310 068069 932582 605025 869772 919748 059594 186198 386443 779730 349373 793375 168312 854775 393048 724508 802027 945637 159340 476105 922990 860431 772809 790588 483563 904964 027702 759226 056139 017909 981026 376697 307805 901531 347284 816544 956705 889975 420790 885400 044591 714477 726270 766426 502960 534537 392885 011467 207394 581998 354269 583855 486042 489606 250218 907836 216951 467170 662615 663551 671023 835172 067184 660337 (392 digits)/6532 721666 943912 233766 096993 553386 581908 730200 008979 068315 315918 207004 143668 614259 720331 640502 777704 291663 311840 213416 644150 920960 387072 855002 315168 954613 519000 135796 980704 481922 323631 811727 374526 846784 582532 241873 266398 189929 384783 010250 774440 234492 010777 968524 049723 126162 428751 485781 388141 299729 231387 161406 723503 370553 171361 959145 824856 834751 858022 152435 806343 720930 849932 625369 935286 240481 (394 digits), a[764] = 11
                                                                                      A[765]/B[765] = 72 952327 255090 352200 767808 465679 497431 056900 150505 045489 273489 575675 227874 443181 297665 924588 124587 136034 849170 451642 303658 568225 836123 633947 715862 116416 627565 895798 793008 278400 058286 225746 848657 040537 523038 176714 402291 378751 985051 303934 683830 329149 429154 264550 991514 341537 439296 462990 794734 332360 877593 572902 622469 423398 296897 119088 035020 614668 725920 303015 553727 625676 076608 983679 050584 415996 (392 digits)/7090 493875 787233 696304 565451 276976 019196 464698 202356 171151 376490 697474 492264 515606 588780 310832 902407 765392 471951 360545 097455 006378 737614 501873 073387 026144 866767 346990 522490 710807 377913 451516 757076 767994 700529 243232 522234 947876 586067 493868 782108 595113 437711 645982 192647 219668 287713 434471 440834 401250 724742 172668 607509 253729 495074 141345 346473 877202 365168 762605 995376 456238 917968 282218 258990 402475 (394 digits), a[765] = 1
                                                                                      A[766]/B[766] = 213 118202 291490 772471 468199 536384 864635 033548 360604 277176 933422 931080 805122 679737 763644 703951 642222 996578 500368 848921 766657 612557 595238 128327 204534 023421 738695 696561 613719 316026 172711 469403 678340 457772 353882 254960 151867 574048 926808 497844 788451 543698 902900 243579 709299 449501 381553 460518 982353 676188 962581 727803 599208 430652 079836 727782 320260 137173 668792 073201 770070 914903 824241 802530 168353 492329 (393 digits)/20713 709418 518379 626375 227896 107338 620301 659596 413691 410618 068899 601953 128197 645472 897892 262168 582519 822448 255742 934506 839060 933717 862301 858748 461943 006903 252534 829778 025685 903537 079458 714760 888680 382773 983590 728338 310868 085682 556917 997988 338657 424718 886201 260488 435017 565499 004178 354724 269810 102230 680871 506743 938521 878012 161510 241836 517804 589156 588359 677647 797096 633408 685869 189806 453267 045431 (395 digits), a[766] = 2
                                                                                      A[767]/B[767] = 499 188731 838071 897143 704207 538449 226701 123996 871713 599843 140335 437836 838119 802656 824955 332491 409033 129191 849908 149485 836973 793341 026599 890602 124930 163260 104957 288922 020446 910452 403709 164554 205337 956082 230802 686634 706026 526849 838668 299624 260733 416547 234954 751710 410113 240540 202403 384028 759441 684738 802757 028509 820886 284702 456570 574652 675540 889016 063504 449419 093869 455483 725092 588739 387291 400654 (393 digits)/48517 912712 823992 949055 021243 491653 259799 783891 029738 992387 514289 901380 748659 806552 384564 835170 067447 410288 983437 229558 775576 873814 462218 219369 997273 039951 371837 006546 573862 517881 536830 881038 534437 533542 667710 699909 143971 119241 699903 489845 459423 444551 210114 166959 062682 350666 296070 143919 980454 605712 086485 186156 484553 009753 818094 625018 382083 055515 541888 117901 589569 723056 289706 661831 165524 493337 (395 digits), a[767] = 2
                                                                                      A[768]/B[768] = 2709 061861 481850 258189 989237 228630 998140 653532 719172 276392 635100 120264 995721 693021 888421 366408 687388 642537 749909 596350 951526 579262 728237 581337 829184 839722 263482 141171 715953 868288 191257 292174 705030 238183 507895 688133 682000 208298 120149 995966 092118 626435 077674 002131 759865 652202 393570 380662 779562 099882 976366 870352 703639 854164 362689 601045 697964 582253 986314 320297 239418 192322 449704 746227 104810 495599 (394 digits)/263303 272982 638344 371650 334113 565604 919300 579051 562386 372555 640349 108856 871496 678234 820716 438018 919756 873893 172929 082300 716945 302790 173392 955598 448308 206660 111719 862510 894998 492944 763613 119953 560868 050487 322144 227884 030723 681891 056435 447215 635774 647474 936772 095283 748429 318830 484529 074324 172083 130791 113297 437526 361286 926781 251983 366928 428219 866734 297800 267155 744945 248690 134402 498962 280889 512116 (396 digits), a[768] = 5
                                                                                      A[769]/B[769] = 3208 250593 319922 155333 693444 767080 224841 777529 590885 876235 775435 558101 833841 495678 713376 698900 096421 771729 599817 745836 788500 372603 754837 471939 954115 002982 368439 430093 736400 778740 594966 456728 910368 194265 738698 374768 388026 735147 958818 295590 352852 042982 312628 753842 169978 892742 595973 764691 539003 784621 779123 898862 524526 138866 819260 175698 373505 471270 049818 769716 333287 647806 174797 334966 492101 896253 (394 digits)/311821 185695 462337 320705 355357 057258 179100 362942 592125 364943 154639 010237 620156 484787 205281 273188 987204 284182 156366 311859 492522 176604 635611 174968 445581 246611 483556 869057 468861 010826 300444 000992 095305 584029 989854 927793 174694 801132 756338 937061 095198 092026 146886 262242 811111 669496 780599 218244 152537 736503 199782 623682 845839 936535 070077 991946 810302 922249 839688 385057 334514 971746 424109 160793 446414 005453 (396 digits), a[769] = 1
                                                                                      A[770]/B[770] = 9125 563048 121694 568857 376126 762791 447824 208591 900944 028864 185971 236468 663404 684379 315174 764208 880232 185996 949545 088024 528527 324470 237912 525217 737414 845687 000361 001359 188755 425769 381190 205632 525766 626714 985292 437670 458053 678594 037786 587146 797822 712399 702931 509816 099823 437687 585517 910045 857569 669126 534614 668077 752692 131898 001209 952442 444975 524794 085951 859729 905993 487934 799299 416160 089014 288105 (394 digits)/886945 644373 563019 013061 044827 680121 277501 304936 746637 102441 949627 129332 111809 647809 231278 984396 894165 442257 485661 706019 701989 655999 444615 305535 339470 699883 078833 600625 832720 514597 364501 121937 751479 218547 301854 083470 380113 284156 569113 321337 826170 831527 230544 619769 370652 657824 045727 510812 477158 603797 512862 684892 052966 799851 392139 350822 048825 711233 977177 037270 413975 192182 982620 820549 173717 523022 (396 digits), a[770] = 2
                                                                                      A[771]/B[771] = 21459 376689 563311 293048 445698 292663 120490 194713 392773 933964 147378 031039 160650 864437 343726 227317 856886 143723 498907 921885 845555 021544 230662 522375 428944 694356 369161 432812 113911 630279 357346 867993 961901 447695 709283 250109 304134 092336 034391 469883 948497 467781 718491 773474 369625 768117 767009 584783 254143 122874 848353 235018 029910 402662 821680 080583 263456 520858 221722 489176 145274 623675 773396 167286 670130 472463 (395 digits)/2 085712 474442 588375 346827 445012 417500 734102 972816 085399 569827 053893 268901 843775 780405 667839 241982 775535 168697 127689 723898 896501 488603 524841 786039 124522 646377 641224 070309 134302 040021 029446 244867 598264 021124 593563 094733 934921 369445 894565 579736 747539 755080 607975 501781 552416 985144 872054 239869 106854 944098 225507 993466 951773 536237 854356 693590 907954 344717 794042 459598 162465 356112 389350 801891 793849 051497 (397 digits), a[771] = 2
                                                                                      A[772]/B[772] = 116422 446495 938251 034099 604618 226107 050275 182158 864813 698684 922861 391664 466659 006566 033805 900798 164662 904614 444084 697453 756302 432191 391225 137094 882138 317468 846168 165419 758313 577166 167924 545602 335273 865193 531708 688216 978724 140274 209743 936566 540310 051308 295390 377187 947952 278276 420565 833962 128285 283500 776380 843167 902244 145212 109610 355358 762258 129085 194564 305610 632366 606313 666280 252593 439666 650420 (396 digits)/11 315508 016586 504895 747198 269889 767624 948016 169017 173634 951577 219093 473841 330688 549837 570475 194310 771841 285743 124110 325514 184497 099017 068824 235730 962083 931771 284953 952171 504230 714702 511732 346275 742799 324170 269669 557140 054720 131386 041941 220021 563869 606930 270422 128677 132737 583548 405998 710158 011433 324288 640402 652226 811834 481040 663922 818776 588597 434822 947389 335261 226301 972744 929374 830008 142962 780507 (398 digits), a[772] = 5
                                                                                      A[773]/B[773] = 1 069261 395153 007570 599944 887262 327626 572966 834143 176097 222128 453130 556019 360581 923531 647979 334501 338852 285253 495670 198969 652276 911266 751688 756229 368189 551575 984674 921589 938733 824774 868667 778414 979366 234437 494661 444062 112651 354803 922086 898982 811287 929556 377005 168165 901196 272605 552102 090442 408710 674381 835780 823529 150107 709571 808173 278812 123779 682624 972801 239671 836574 080498 769918 440627 627130 326243 (397 digits)/103 925284 623721 132437 071611 874020 326125 266248 493970 648114 134022 025734 533473 819972 728943 802115 990779 722106 740385 244682 653526 556975 379757 144259 907617 783278 032319 205809 639852 672378 472343 635037 361349 283457 938657 020589 108994 427402 551920 272036 559930 822366 217453 041774 659875 747055 237080 526042 631291 209754 862695 989131 863508 258283 865603 829662 062580 205331 258124 320546 476949 199183 110816 753724 271965 080514 076060 (399 digits), a[773] = 9
                                                                                      A[774]/B[774] = 5 462729 422260 976104 033824 040929 864239 915109 352874 745299 809327 188514 171761 269568 624224 273702 573304 858924 330881 922435 692302 017686 988525 149668 918241 723086 075348 769542 773369 451982 701040 511263 437677 232105 037381 005015 908527 541980 914293 820178 431480 596749 699090 180416 218017 453933 641304 181076 286174 171838 655409 955284 960813 652782 693071 150476 749419 381156 542210 058570 503969 815237 008807 515872 455731 575318 281635 (397 digits)/530 941931 135192 167081 105257 639991 398251 279258 638870 414205 621687 347766 141210 430552 194556 581055 148209 382374 987669 347523 593146 969373 997802 790123 773819 878474 093367 314002 151434 866123 076420 686919 153022 160089 017455 372615 102112 191732 890987 402124 019675 675700 694195 479295 428055 868013 768951 036211 866614 060207 637768 586061 969768 103253 809059 812233 131677 615253 725444 550121 720007 222217 526828 697996 189833 545533 160807 (399 digits), a[774] = 5
                                                                                      A[775]/B[775] = 44 771096 773240 816402 870537 214701 241545 893841 657141 138495 696745 961243 930109 517130 917325 837599 920940 210246 932308 875155 737385 793772 819467 949040 102163 152878 154366 141017 108545 554595 433098 958775 279832 836206 533485 534788 712282 448498 669154 483514 350827 585285 522277 820334 912305 532665 403039 000712 379835 783419 917661 478060 510038 372369 254141 011987 274167 173032 020305 441365 271430 358470 150958 896898 086480 229676 579323 (398 digits)/4351 460733 705258 469085 913672 993951 512135 500317 604933 961759 107520 807863 663157 264390 285396 450557 176454 781106 641740 024871 398702 311967 362179 465250 098176 811070 779257 717826 851331 601363 083709 130390 585526 564170 078300 001509 925891 961265 679819 489028 717336 227971 771016 876138 084322 691165 388688 815737 564203 691415 964844 677627 621653 084314 338082 327527 116001 127361 061680 721520 237006 976923 325446 337693 790633 444779 362516 (400 digits), a[775] = 8
                                                                                      A[776]/B[776] = 184 547116 515224 241715 515972 899734 830423 490475 981439 299282 596311 033489 892199 338092 293527 624102 257065 699912 060117 423058 641845 192778 266396 945829 326894 334598 692813 333611 207551 670364 433436 346364 557008 576931 171323 144170 757657 335975 590911 754235 834790 937891 788201 461755 867239 584595 253460 183925 805517 305518 326055 867527 000967 142259 709635 198425 846088 073284 623431 824031 589691 249117 612643 103464 801652 494024 598927 (399 digits)/17936 784865 956226 043424 759949 615797 446793 280529 058606 261242 051770 579220 793839 488113 336142 383283 854028 506801 554629 447009 187956 217243 446520 651124 166527 122757 210398 185309 556761 271575 411257 208481 495128 416769 330655 378654 805680 036795 610265 358238 889020 587587 778262 983847 765346 632675 323706 299162 123428 825871 497147 296572 456380 440511 161389 122341 595682 124697 972167 436202 668035 129910 828614 048771 352367 324650 610871 (401 digits), a[776] = 4
                                                                                      A[777]/B[777] = 413 865329 803689 299833 902483 014170 902392 874793 620019 737060 889368 028223 714508 193315 504381 085804 435071 610071 052543 721273 021076 179329 352261 840698 755951 822075 539992 808239 523648 895324 299971 651504 393849 990068 876131 823130 227597 120449 850977 991986 020409 461069 098680 743846 646784 701855 909959 368563 990870 394456 569773 213114 511972 656888 673411 408838 966343 319601 267169 089428 450812 856705 376245 103827 689785 217725 777177 (399 digits)/40225 030465 617710 555935 433572 225546 405722 061375 722146 484243 211061 966305 250836 240616 957681 217124 884511 794709 750998 918889 774614 746454 255220 767498 431231 056585 200054 088445 964854 144513 906223 547353 575783 397708 739610 758819 537252 034856 900350 205506 495377 403147 327542 843833 615015 956516 036101 414061 811061 343158 959139 270772 534413 965336 660860 572210 307365 376757 006015 593925 573077 236744 982674 435236 495368 094080 584258 (401 digits), a[777] = 2
                                                                                      A[778]/B[778] = 1426 143105 926292 141217 223421 942247 537602 114856 841498 510465 264415 118161 035723 918038 806670 881515 562280 530125 217748 586877 705073 730766 323182 467925 594749 800825 312791 758329 778498 356337 333351 300877 738558 547137 799718 613561 440448 697325 143845 730193 896019 321099 084243 693295 807593 690162 983338 289617 778128 488888 035375 506870 536885 112925 729869 424942 745118 032088 424939 092316 942129 819233 741378 414947 871008 147201 930458 (400 digits)/138611 876262 809357 711231 060666 292436 663959 464656 225045 713971 684956 478136 546348 209964 209186 034658 507563 890930 807626 203678 511800 456606 212182 953619 460220 292512 810560 450647 451323 705117 129927 850542 222478 609895 549487 655113 417436 141366 311315 974758 375152 797029 760891 515348 610394 502223 432010 541347 556612 855348 374565 108890 059622 336521 143970 838972 517778 254968 990214 217979 387266 840145 776637 354480 838471 606892 363645 (402 digits), a[778] = 3
                                                                                      A[779]/B[779] = 1840 008435 729981 441051 125904 956418 439994 989650 461518 247526 153783 146384 750232 111354 311051 967319 997352 140196 270292 308150 726149 910095 675444 308624 350701 622900 852784 566569 302147 251661 633322 952382 132408 537206 675850 436691 668045 817774 994823 722179 916428 782168 182924 437142 454378 392018 893297 658181 768998 883344 605148 719985 048857 769814 403280 833781 711461 351689 692108 181745 392942 675939 117623 518775 560793 364927 707635 (400 digits)/178836 906728 427068 267166 494238 517983 069681 526031 947192 198214 896018 444441 797184 450581 166867 251783 392075 685640 558625 122568 286415 203060 467403 721117 891451 349098 010614 539093 416177 849631 036151 397895 798262 007604 289098 413932 954688 176223 211666 180264 870530 200177 088434 359182 225410 458739 468111 955409 367674 198507 333704 379662 594036 301857 804831 411182 825143 631725 996229 811904 960344 076890 759311 789717 333839 700972 947903 (402 digits), a[779] = 1
                                                                                      A[780]/B[780] = 5106 159977 386255 023319 475231 855084 417592 094157 764535 005517 571981 410930 536188 140747 428774 816155 556984 810517 758333 203179 157373 550957 674071 085174 296153 046627 018360 891468 382792 859660 599997 205642 003375 621551 151419 486944 776540 332875 133493 174553 728876 885435 450092 567580 716350 474200 769933 605981 316126 255577 245672 946840 634600 652554 536431 092506 168040 735467 809155 455807 728015 171111 976625 452498 992594 877057 345728 (400 digits)/496285 689719 663494 245564 049143 328402 803322 516720 119430 110401 476993 367020 140717 111126 542920 538225 291715 262211 924876 448815 084630 862727 146990 395855 243122 990708 831789 528834 283679 404379 202230 646333 819002 625104 127684 482979 326812 493812 734648 335288 116213 197383 937760 233713 061215 419702 368234 452166 291961 252363 041973 868215 247694 940236 753633 661338 168065 518420 982673 841789 307954 993927 295260 933915 506151 008838 259451 (402 digits), a[780] = 2
                                                                                      A[781]/B[781] = 6946 168413 116236 464370 601136 811502 857587 083808 226053 253043 725764 557315 286420 252101 739826 783475 554336 950714 028625 511329 883523 461053 349515 393798 646854 669527 871145 458037 684940 111322 233320 158024 135784 158757 827269 923636 444586 150650 128316 896733 645305 667603 633017 004723 170728 866219 663231 264163 085125 138921 850821 666825 683458 422368 939711 926287 879502 087157 501263 637553 120957 847051 094248 971274 553388 241985 053363 (400 digits)/675122 596448 090562 512730 543381 846385 873004 042752 066622 308616 373011 811461 937901 561707 709787 790008 683790 947852 483501 571383 371046 065787 614394 116973 134574 339806 842404 067927 699857 254010 238382 044229 617264 632708 416782 896912 281500 670035 946314 515552 986743 397561 026194 592895 286625 878441 836346 407575 659635 450870 375678 247877 841731 242094 558465 072520 993209 150146 978903 653694 268299 070818 054572 723632 839990 709811 207354 (402 digits), a[781] = 1
                                                                                      A[782]/B[782] = 32890 833629 851200 880801 879779 101095 847940 429390 668748 017692 475039 640191 681869 149154 388081 950057 774332 613373 872835 248498 691467 395171 072132 660368 883571 724738 502942 723619 122553 304949 533277 837738 546512 256582 460499 181490 554884 935475 646760 761488 310099 555849 982160 586473 399265 939079 422858 662633 656626 811264 648959 614143 368434 342030 295278 797657 686049 084097 814210 006020 211846 559316 353621 337597 206147 844997 559180 (401 digits)/3 196776 075512 025744 296486 222670 713946 295338 687728 385919 344866 969040 612867 892323 357957 382071 698260 026879 053621 858882 734348 568815 125877 604566 863747 781420 349936 201405 800545 083108 420420 155758 823252 288061 155937 794816 070628 452815 173956 519906 397500 063186 787628 042538 605294 207718 933469 713620 082468 930503 055844 544686 859726 614619 908614 987493 951422 140902 119008 898288 456566 381151 277199 513551 828446 866113 848083 088867 (403 digits), a[782] = 4
                                                                                      A[783]/B[783] = 39837 002042 967437 345172 480915 912598 705527 513198 894801 270736 200804 197506 968289 401256 127908 733533 328669 564087 901460 759828 574990 856224 421648 054167 530426 394266 374088 181656 807493 416271 766597 995762 682296 415340 287769 105126 999471 086125 775077 658221 955405 223453 615177 591196 569994 805299 086089 926796 741751 950186 499781 280969 051892 764399 234990 723945 565551 171255 315473 643573 332804 406367 447870 308871 759536 086982 612543 (401 digits)/3 871898 671960 116306 809216 766052 560332 168342 730480 452541 653483 342052 424329 830224 919665 091859 488268 710670 001474 342384 305731 939861 191665 218960 980720 915994 689743 043809 868472 782965 674430 394140 867481 905325 788646 211598 967540 734315 843992 466220 913053 049930 185189 068733 198189 494344 811911 549966 490044 590138 506714 920365 107604 456351 150709 545959 023943 134111 269155 877192 110260 649450 348017 568124 552079 706104 557894 296221 (403 digits), a[783] = 1
                                                                                      A[784]/B[784] = 271912 845887 655824 951836 765274 576688 081105 508584 037555 642109 679864 825233 491605 556691 155534 351257 746349 997901 281599 807470 141412 532517 602020 985374 066130 090336 747471 813559 967513 802580 132865 812314 640290 748624 187113 812252 551711 452230 297226 710820 042530 896571 673226 133652 819234 770873 939398 223414 107138 512383 647647 299957 679790 928425 705223 141331 079356 111629 707051 867460 208672 997521 040843 190827 763364 366893 234438 (402 digits)/26 428168 107272 723585 151786 818986 075939 305395 070611 101169 265767 021355 158846 873672 875947 933228 627872 290899 062467 913188 568740 207982 275868 918332 748073 277388 488394 464265 011381 780902 467002 520604 028143 720015 887815 064409 875872 858710 237911 317231 875818 362767 898762 454937 794431 173787 804939 013419 022736 471334 096134 066877 505353 352726 812872 263248 095080 945569 733944 161441 118130 277853 365304 922299 140925 102741 195448 866193 (404 digits), a[784] = 6
                                                                                      A[785]/B[785] = 311749 847930 623262 297009 246190 489286 786633 021782 932356 912845 880669 022740 459894 957947 283443 084791 075019 561989 183060 567298 716403 388742 023669 039541 596556 484603 121559 995216 775007 218851 899463 808077 322587 163964 474882 917379 551182 538356 072304 369041 997936 120025 288403 724849 389229 576173 025488 150210 848890 462570 147428 580926 731683 692824 940213 865276 644907 282885 022525 511033 541477 403888 488713 499699 522900 453875 846981 (402 digits)/30 300066 779232 839891 961003 585038 636271 473737 801091 553710 919250 363407 583176 703897 795613 025088 116141 001569 063942 255572 874472 147843 467534 137293 728794 193383 178137 508074 879854 563868 141432 914744 895625 625341 676461 276008 843413 593026 081903 783452 788871 412698 083951 523670 992620 668132 616850 563385 512781 061472 602848 987242 612957 809077 963581 809207 119024 079681 003100 038633 228390 927303 713322 490423 693004 808845 753343 162414 (404 digits), a[785] = 1
                                                                                      A[786]/B[786] = 1 207162 389679 525611 842864 503846 044548 441004 573932 834626 380647 321871 893454 871290 430533 005863 605630 971408 683868 830781 509366 290622 698743 673028 103998 855799 544146 112151 799210 292535 459135 831257 236546 608052 240517 611762 564391 205259 067298 514139 817946 036339 256647 538437 308200 986923 499393 015862 674046 653809 900094 089933 042737 874842 006900 525864 737161 014077 960284 774628 400560 833105 209186 506983 689926 332065 728520 775381 (403 digits)/117 328368 444971 243261 034797 574101 984753 726608 473885 762302 023518 111577 908376 985366 262787 008492 976295 295606 254294 679907 192156 651512 678471 330213 934455 857538 022806 988489 650945 472506 891301 264838 715020 596040 917198 892436 406113 637788 483622 667590 242432 600862 150617 025950 772293 178185 655490 703575 561079 655751 904681 028605 344226 779960 703617 690869 452153 184612 743244 277340 803303 059764 505272 393570 219939 529278 455478 353435 (405 digits), a[786] = 3
                                                                                      A[787]/B[787] = 5 140399 406648 725709 668467 261574 667480 550651 317514 270862 435435 168156 596559 945056 680079 306897 507314 960654 297464 506186 604763 878894 183716 715781 455537 019754 661187 570167 192057 945149 055395 224492 754263 754796 126034 921933 174944 372218 807550 128863 640826 143293 146615 442152 957653 336923 573745 088938 846397 464130 062946 507160 751878 231051 720427 043672 813920 701219 124024 121039 113276 873898 240634 516648 259404 851163 367958 948505 (403 digits)/499 613540 559117 812936 100193 881446 575286 380171 696634 602919 013322 809719 216684 645362 846761 059060 021322 183994 081120 975201 643098 753894 181419 458149 466617 623535 269365 462033 483636 453895 706637 974099 755708 009505 345256 845754 467868 144180 016394 453813 758601 816146 686419 627474 081793 380875 238813 377687 757099 684480 221573 101663 989864 928920 778052 572684 927636 818131 976077 147996 441603 166361 734412 064704 572762 925959 575256 576154 (405 digits), a[787] = 4
                                                                                      A[788]/B[788] = 16 628360 609625 702740 848266 288570 046990 092958 526475 647213 686952 826341 683134 706460 470770 926556 127575 853371 576262 349341 323657 927305 249893 820372 470609 915063 527708 822653 375384 127982 625321 504735 499337 872440 618622 377562 089224 321915 489948 900730 740424 466218 696493 864896 181160 997694 220628 282679 213239 046200 088933 611415 298372 567997 168181 656883 178923 117735 332357 137745 740391 454799 931090 056928 468140 885555 832397 620896 (404 digits)/1616 168990 122324 682069 335379 218441 710612 867123 563789 571059 063486 540735 558430 921454 803070 185673 040261 847588 497657 605512 121452 913195 222729 704662 334308 728143 830903 374590 101854 834194 011215 187137 982144 624556 952969 429699 809718 070328 532806 029031 518238 049302 209875 908373 017673 320811 371930 836638 832378 709192 569400 333597 313821 566723 037775 408924 235063 639008 671475 721330 128112 558849 708508 587683 938228 307157 181248 081897 (406 digits), a[788] = 3
                                                                                      A[789]/B[789] = 55 025481 235525 833932 213266 127284 808450 829526 896941 212503 496293 647181 645964 064438 092392 086565 890042 520769 026251 554210 575737 660809 933398 176898 867366 764945 244314 038127 318210 329096 931359 738699 252277 372117 981902 054619 442617 337965 277396 831055 862099 541949 236097 036841 501136 330006 235629 936976 486114 602730 329747 341406 646995 935043 224972 014322 350690 054425 121095 534276 334451 238298 033904 687433 663827 507830 865151 811193 (404 digits)/5348 120510 926091 859144 106331 536771 707124 981542 388003 316096 203782 431925 891977 409727 255971 616079 142107 726759 574093 791738 007457 493479 849608 572136 469543 807966 762075 585803 789200 956477 740283 535513 702141 883176 204165 134853 897022 355165 614812 540908 313315 964053 316047 352593 134813 343309 354605 887604 254235 812057 929774 102455 931329 629089 891378 799457 632827 735157 990504 311986 825940 842910 859937 827756 387447 847431 119000 821845 (406 digits), a[789] = 3
                                                                                      A[790]/B[790] = 731 959616 671461 543859 620725 943272 556850 876808 186711 409759 138770 239703 080667 544155 671868 051912 698128 623368 917532 554078 808247 517834 384070 120057 746377 859351 703791 318308 512118 406242 732998 107825 778943 709974 383349 087614 843249 715464 096107 704456 947718 511558 765755 343835 695933 287775 283817 463373 532728 881694 375649 049701 709319 723559 092817 843073 737893 825261 906599 083338 088257 552674 371850 993566 097898 487357 079371 166405 (405 digits)/71141 735632 161518 850942 717689 196473 903237 627174 607832 680309 712658 155772 154137 247909 130701 194701 887662 295462 960876 898106 218400 328433 267641 142436 438378 231711 737885 990039 361467 268404 634901 148816 109989 105847 607116 182800 471008 687481 525369 060839 591345 581995 318491 492083 770246 783832 981807 375494 137444 265945 656463 665524 421106 744891 625699 801873 461824 196062 548031 777158 865343 516690 887700 348516 975050 323761 728258 765882 (407 digits), a[790] = 13
                                                                                      A[791]/B[791] = 8106 581264 621602 816388 041251 503282 933810 474416 950766 719854 022766 283915 533307 050150 482940 657605 569457 377827 119109 649077 466460 356988 158169 497534 077523 217813 986018 539520 951512 797766 994338 924782 820658 181836 198742 018382 718364 208070 334581 580082 287003 169095 659405 819034 156402 495534 357622 034085 346132 301368 461886 888125 449512 894193 245968 288133 467522 132306 093685 450995 305284 317716 124265 616660 740710 868758 738234 641648 (406 digits)/787907 212464 702799 219514 000912 697984 642738 880463 074162 799503 043022 145419 587487 136727 693684 757799 906392 976852 143739 670906 409861 106245 793661 138937 291704 356795 878821 476236 765340 908928 724196 172490 912022 047499 882443 145659 078117 917462 393872 210143 818117 366001 819453 765514 607527 965472 154487 018039 766122 737460 150874 423224 563503 822897 774076 620065 712893 891846 018853 860734 344719 526510 624641 661443 113001 408810 129847 246547 (408 digits), a[791] = 11
                                                                                      A[792]/B[792] = 98010 934792 130695 340516 115743 982667 762576 569811 595912 048007 411965 646689 480352 145961 467155 943179 531617 157294 346848 343008 405771 801692 282104 090466 676656 473119 536013 792559 930271 979446 665065 205219 626841 892008 768253 308207 463620 212308 111086 665444 391756 540706 678625 172245 572763 234187 575281 872397 686316 498115 918291 707207 103474 453878 044437 300675 348159 412935 030824 495281 751669 365267 863038 393494 986428 912461 938186 866181 (407 digits)/9 526028 285208 595109 485110 728641 572289 616104 192731 497786 274346 228923 900807 203982 888641 454918 288300 764378 017688 685752 948983 136733 603382 791574 809683 938830 513262 283743 704880 545558 175549 325255 218707 054253 675846 196433 930709 408423 697030 251835 582565 408753 974017 151936 678259 060582 369498 835651 591971 330917 115467 466956 744219 183152 619664 914619 242662 016550 898214 774278 105971 001977 834818 383400 285834 331067 229483 286425 724446 (409 digits), a[792] = 12
                                                                                      A[793]/B[793] = 1 184237 798770 189946 902581 430179 295296 084729 312156 101711 295942 966354 044189 297532 801688 088811 975759 948863 265359 281289 765178 335721 977295 543418 583134 197400 895248 418184 050240 114776 551126 975121 387418 342760 885941 417781 716872 281806 755767 667621 565414 988081 657575 802907 885981 029561 305785 261004 502857 581930 278759 481387 374610 691206 340729 779215 896237 645435 087526 463579 394376 325316 700930 480726 338600 577857 818301 996477 035820 (409 digits)/115 100246 634967 844113 040842 744611 565460 035989 193241 047598 091657 790108 955106 035281 800425 152704 217409 078929 189116 372775 058704 050664 346839 292558 855144 557670 515943 283745 934803 312039 015520 627258 796975 563066 157654 239650 314171 979202 281825 415899 200928 723165 054207 642693 904623 334516 399458 182306 121695 737128 123069 754355 353854 761335 258876 749507 532009 911504 670423 310191 132386 368453 544331 225445 091455 085808 162609 566955 939899 (411 digits), a[793] = 12
                                                                                      A[794]/B[794] = 60 494138 672071 817987 372169 054888 042768 083771 489772 783188 141098 696021 900343 654525 032053 996566 706936 923643 690617 692626 367103 527592 643764 996451 830310 744102 130788 863400 354805 783876 086922 396255 963555 107647 075021 075120 868693 835764 756459 159786 501608 783921 077072 626927 357278 080389 829235 886511 518134 364760 714849 469047 812352 354997 831096 784448 008795 265348 876784 673373 608474 342821 112722 380081 662124 457177 645863 758515 693001 (410 digits)/5879 638606 668568 644874 568090 703831 410751 451553 048024 925288 948893 524480 611215 003354 710324 242833 376163 789766 662623 697280 942889 720615 292186 712076 422056 380026 826369 754786 379849 459547 967101 315453 864460 770627 716212 418599 953480 347740 070126 462694 829930 290171 738606 929325 814049 120918 741866 133263 798453 924451 392024 939079 790812 011250 822379 139503 375167 503289 089803 594025 857675 793108 595710 881099 950043 707283 522571 201178 659295 (412 digits), a[794] = 51
                                                                                      A[795]/B[795] = 61 678376 470842 007934 274750 485067 338064 168500 801928 884899 437041 662375 944532 952057 833742 085378 682696 872506 955976 973916 132281 863314 621060 539870 413444 941503 026037 281584 405045 898652 638049 371377 350973 450407 960962 492902 585566 117571 512226 827408 067023 772002 734648 429835 243259 109951 135021 147516 020991 946690 993608 950435 186963 046204 171826 563663 905032 910783 964311 136953 002850 668137 813652 860808 000725 035035 464165 754992 728821 (410 digits)/5994 738853 303536 488987 608933 448442 976211 487542 241265 972887 040551 314589 566321 038636 510749 395537 593572 868695 851740 070056 001593 771279 639026 004635 277200 937697 342313 038532 314652 771586 982621 942712 661436 333693 873866 658250 267652 326942 351951 878594 030859 013336 792814 572019 718672 455435 141324 315569 920149 661579 515094 693435 144666 772586 081255 889010 907177 414793 760226 904216 990062 161562 140042 106545 041498 793091 685180 768134 599194 (412 digits), a[795] = 1
                                                                                      A[796]/B[796] = 862 313032 793017 921132 943925 360763 437602 274281 914848 286880 822640 306909 179272 031276 870701 106489 581996 266234 118318 353536 086767 750682 717552 014767 205094 983641 469273 523997 620402 466360 381564 224161 526209 962950 567533 482854 481053 364194 415407 916091 372917 819956 627502 214785 519646 509754 584510 804219 791029 671743 631765 824705 242871 955652 064842 112078 774223 105540 412829 453762 645533 028612 690209 570585 671549 912638 680018 573421 167674 (411 digits)/83811 243699 614543 001713 484225 533590 101500 789602 184482 572820 476060 614144 973388 505629 350066 384822 092611 082812 735244 608008 963608 747250 599524 772335 025668 570092 276439 255706 470335 490178 741186 570718 463133 108648 076478 975853 432960 597990 645500 884417 231097 463550 045196 365582 156791 041575 579082 235672 760399 524985 088255 953736 671480 054869 878705 696645 168473 895607 972753 348846 728483 893416 416258 266185 489528 017475 429921 186928 448817 (413 digits), a[796] = 13
                                                                                      A[797]/B[797] = 923 991409 263859 929067 218675 845830 775666 442782 716777 171780 259681 969285 123804 983334 704443 191868 264693 138741 074295 327452 219049 613997 338612 554637 618539 925144 495310 805582 025448 365013 019613 595538 877183 413358 528495 975757 066619 481765 927634 743499 439941 591959 362150 644620 762905 619705 719531 951735 812021 618434 625374 775140 429835 001856 236668 675742 679256 016324 377140 590715 648383 696750 503862 431393 672274 947674 144184 328413 896495 (411 digits)/89805 982552 918079 490701 093158 982033 077712 277144 425748 545707 516611 928734 539709 544265 860815 780359 686183 951508 586984 678064 965202 518530 238550 776970 302869 507789 618752 294238 784988 261765 723808 513431 124569 442341 950345 634103 700612 924932 997452 763011 261956 476886 838010 937601 875463 497010 720406 551242 680549 186564 603350 647171 816146 827455 959961 585656 075651 310401 732980 253063 718546 054978 556300 372730 531026 810567 115101 955063 048011 (413 digits), a[797] = 1
                                                                                      A[798]/B[798] = 1786 304442 056877 850200 162601 206594 213268 717064 631625 458661 082322 276194 303077 014611 575144 298357 846689 404975 192613 680988 305817 364680 056164 569404 823634 908785 964584 329579 645850 831373 401177 819700 403393 376309 096029 458611 547672 845960 343042 659590 812859 411915 989652 859406 282552 129460 304042 755955 603051 290178 257140 599845 672706 957508 301510 787821 453479 121864 789970 044478 293916 725363 194072 001979 343824 860312 824202 901835 064169 (412 digits)/173617 226252 532622 492414 577384 515623 179213 066746 610231 118527 992672 542879 513098 049895 210882 165181 778795 034321 322229 286073 928811 265780 838075 549305 328538 077881 895191 549945 255323 751944 464995 084149 587702 550990 026824 609957 133573 522923 642953 647428 493053 940436 883207 303184 032254 538586 299488 786915 440948 711549 691606 600908 487626 882325 838667 282301 244125 206009 705733 601910 447029 948394 972558 638916 020554 828042 545023 141991 496828 (414 digits), a[798] = 1
                                                                                      A[799]/B[799] = 9855 513619 548249 180068 031681 878801 842010 028105 874904 465085 671293 350256 639190 056392 580164 683657 498140 163617 037363 732393 748136 437397 619435 401661 736714 469074 318232 453480 254702 521880 025502 694040 894150 294904 008643 268814 804983 711567 642848 041453 504238 651539 310414 941652 175666 267007 239745 731513 827278 069325 911077 774368 793369 789397 744222 614849 946651 625648 326990 813107 117967 323566 474222 441290 391399 249238 265198 837589 217340 (412 digits)/957892 113815 581191 952773 980081 560148 973777 610877 476904 138347 479974 643132 105199 793741 915226 606268 580159 123115 198131 108434 609258 847434 428928 523496 945559 897199 094710 043965 061607 021488 048783 934179 063082 197292 084468 683889 368480 539551 212221 000153 727226 179071 254047 453522 036736 189942 217850 485819 885292 744313 061383 651714 254281 239085 153297 997162 296277 340450 261648 262615 953695 796953 419093 567310 633800 950779 840217 665020 532151 (414 digits), a[799] = 5
                                                                                      A[800]/B[800] = 169330 035974 377113 911356 701193 146225 527439 194864 505001 365117 494309 230557 169307 973285 437943 920535 315072 186464 827797 131682 024136 800439 586566 397654 347780 883049 374536 038743 975793 703333 834723 618395 603948 389677 242965 028463 232395 942610 271459 364300 384916 488084 266706 867493 268878 668583 379720 191690 666778 468718 745462 764115 159993 377269 953295 240270 546556 757886 348813 867299 299361 225993 255853 503915 997612 097363 332583 140851 758949 (414 digits)/16 457783 161117 412885 689572 238771 038155 733432 451663 717601 470435 152241 476125 301494 543507 769734 471747 641500 127279 690458 129462 286211 672166 129860 448753 403056 330266 505262 297351 302643 117241 294321 965193 660099 904955 462792 236076 397742 695294 250710 650041 855898 984648 202014 013058 656769 767604 002947 045853 490925 364871 735128 680050 810407 946773 444733 234060 280839 993664 153754 066381 659858 496603 097149 283196 795170 991299 828723 447340 543395 (416 digits), a[800] = 17
                                                                                      A[801]/B[801] = 4 073776 377004 598983 052628 860317 388214 500550 704853 994937 227905 534714 883628 702581 415243 090818 776505 059872 638772 904494 892762 327419 647947 697028 945366 083455 662259 307097 383335 673751 401892 058869 535535 388911 647157 839803 951932 382486 334214 157872 784662 742234 365561 711379 761490 628754 313008 353030 332089 829961 318575 802184 113132 633210 843876 623308 381343 064013 814920 698523 628290 302636 747404 614706 535274 334089 585958 247194 218031 432116 (415 digits)/395 944687 980633 490448 502507 710586 475886 576156 450806 699339 428791 133770 070139 341068 837928 388853 928211 976162 177827 769126 215529 478338 979421 545579 293578 618911 823595 221005 180396 325041 835279 112511 098826 905479 916223 191482 349722 914305 226613 229276 601158 268801 810628 102383 766929 799210 612438 288579 586303 667501 501234 704471 972933 704071 961647 826895 614609 036437 188389 951745 855775 790299 715427 750676 364033 717904 741975 729580 401193 573631 (417 digits), a[801] = 24
                                                                                      A[802]/B[802] = 4 243106 412978 976096 963985 561510 534440 027989 899718 499938 593023 029024 114185 871889 388528 528762 697040 374944 825237 732292 024444 351556 448387 283595 343020 431236 545308 681633 422079 649545 105225 893593 153930 992860 036835 082768 980395 614882 276824 429332 148963 127150 853645 978086 628983 897632 981591 732750 523780 496739 787294 547646 877247 793204 221146 576603 621613 610570 572807 047337 495589 601997 973397 870560 039190 331701 683321 579777 358883 191065 (415 digits)/412 402471 141750 903334 192079 949357 514042 309588 902470 416940 899226 286011 546264 642563 381436 158588 399959 617662 305107 459584 344991 764550 651587 675439 742332 021968 153861 726267 477747 627684 952520 406833 064020 565579 821178 654274 585799 312047 921907 479987 251200 124700 795276 304397 779988 455980 380042 291526 632157 158426 866106 439600 652984 514479 908421 271628 848669 317277 182054 105499 922157 450158 212030 847825 647230 513075 733275 558303 848534 117026 (417 digits), a[802] = 1
                                                                                      A[803]/B[803] = 8 316882 789983 575080 016614 421827 922654 528540 604572 494875 820928 563738 997814 574470 803771 619581 473545 434817 464010 636786 917206 678976 096334 980624 288386 514692 207567 988730 805415 323296 507117 952462 689466 381771 683992 922572 932327 997368 611038 587204 933625 869385 219207 689466 390474 526387 294600 085780 855870 326701 105870 349830 990380 426415 065023 199912 002956 674584 387727 745861 123879 904634 720802 485266 574464 665791 269279 826971 576914 623181 (415 digits)/808 347159 122384 393782 694587 659943 989928 885745 353277 116280 328017 419781 616403 983632 219364 547442 328171 593824 482935 228710 560521 242889 631009 221019 035910 640879 977456 947272 658143 952726 787799 519344 162847 471059 737401 845756 935522 226353 148520 709263 852358 393502 605904 406781 546918 255190 992480 580106 218460 825928 367341 144072 625918 218551 870069 098524 463278 353714 370444 057245 777933 240457 927458 598502 011264 230980 475251 287884 249727 690657 (417 digits), a[803] = 1
                                                                                      A[804]/B[804] = 95 728817 102798 301977 146744 201617 683639 841936 550015 943572 623237 230153 090146 191068 230016 344158 906040 157936 929354 736948 113717 820293 508072 070462 515272 092850 828556 557672 281648 205806 683523 370682 738061 192348 560757 231071 236003 585936 998248 888586 418847 690388 264930 562216 924203 687893 222192 676339 938354 090451 951868 395787 771432 483769 936401 775635 654137 030998 837812 251809 858268 552979 902225 208492 358301 655405 645399 676464 704944 046056 (416 digits)/9304 221221 487979 234943 832544 208741 403260 052787 788518 696024 507417 903609 326708 462517 794446 180454 009847 149731 617394 975400 510725 436336 592689 106649 137349 071647 905888 146266 717331 107679 618315 119618 855342 747236 932598 957600 876543 801932 555635 281889 627142 453229 460224 778994 796089 263081 297328 672695 035226 243638 906859 024399 538084 918550 479181 355397 944731 208135 256938 735203 479423 095195 414075 431347 771137 053860 961039 725030 595538 714253 (418 digits), a[804] = 11
                                                                                      A[805]/B[805] = 295 503334 098378 481011 456847 026680 973574 054350 254620 325593 690640 254198 268253 147675 493820 652058 191665 908628 252074 847631 258360 139856 620551 192011 834202 793244 693237 661747 650359 940716 557688 064510 903649 958817 366264 615786 640338 755179 605785 252964 190168 940550 013999 376117 163085 590066 961178 114800 670932 598056 961475 537194 304677 877724 874228 526818 965367 767580 901164 501290 698685 563574 427478 110743 649369 632008 205478 856365 691746 761349 (417 digits)/28721 010823 586322 098614 192220 286168 199709 044108 718833 204353 850271 130609 596529 371185 602703 088804 357713 043019 335120 154912 092697 551899 409076 540966 447957 855823 695121 386072 810137 275765 642744 878200 728875 712770 535198 718559 565153 632150 815426 554932 733785 753190 986578 743765 935186 044434 884466 598191 324139 556845 087918 217271 240172 974203 307613 164718 297471 978120 141260 262856 216202 526044 169684 892545 324675 392563 358370 462976 036343 833416 (419 digits), a[805] = 3
                                                                                      A[806]/B[806] = 686 735485 299555 264000 060438 254979 630787 950637 059256 594760 004517 738549 626652 486419 217657 648275 289371 975193 433504 432210 630438 100006 749174 454486 183677 679340 215031 881167 582368 087239 798899 499704 545361 109983 293286 462644 516681 096296 209819 394514 799185 571488 292929 314451 250374 868027 144548 905941 280219 286565 874819 470176 380788 239219 684858 829273 584872 566160 640141 254391 255639 680128 757181 429979 657040 919422 056357 389196 088437 568754 (417 digits)/66746 242868 660623 432172 216984 781077 802678 141005 226185 104732 207960 164828 519767 204888 999852 358062 725273 235770 287635 285224 696120 540135 410842 188582 033264 783295 296130 918412 337605 659210 903804 876020 313094 172778 002996 394720 006851 066234 186488 391755 094713 959611 433382 266526 666461 351951 066261 869077 683505 357329 082695 458942 018430 866957 094407 684834 539675 164375 539459 260915 911828 147283 753445 216438 420487 838987 677780 650982 668226 381085 (419 digits), a[806] = 2
                                                                                      A[807]/B[807] = 12656 742069 490373 233012 544735 616314 327757 165817 321239 031273 771959 548091 547997 903221 411658 321013 400361 462110 055154 627422 606245 939978 105691 372763 140401 021368 563811 522764 132985 511032 937879 059192 720149 938516 645420 943387 940598 488511 382534 354230 575509 227339 286727 036239 669833 214555 563058 421743 714879 756242 708226 000369 158866 183679 201687 453743 493073 958472 423707 080333 300199 805892 056743 850377 476106 181605 219911 861895 283622 998921 (419 digits)/1 230153 382459 477543 877714 097946 345568 647915 582202 790165 089533 593554 097522 952339 059187 600045 533933 412631 286884 512555 288956 622867 274336 804235 935443 046723 955139 025477 917494 887039 141561 911232 646566 364570 822774 589133 823519 688472 824366 172217 606524 438637 026196 787459 541245 931490 379554 077180 241589 627235 988768 576436 478227 571928 579431 006951 491740 011624 936879 851526 959342 629109 177151 731698 788436 893456 494341 558422 180664 064418 692946 (421 digits), a[807] = 18
                                                                                      A[808]/B[808] = 76627 187902 241794 662075 328851 952865 597330 945540 986690 782402 636275 027098 914639 905747 687607 574355 691540 747853 764432 196746 267913 739875 383322 691065 026083 807551 597901 017752 380281 153437 426173 854860 866260 741083 165812 122972 160272 027364 505025 519898 252240 935524 013291 531889 269374 155360 522899 436403 569497 824022 124175 472391 333985 341294 894983 551734 543316 316995 182383 736391 056838 515481 097644 532244 513678 009053 375828 560567 790175 562280 (419 digits)/7 447666 537625 525886 698456 804662 854489 690171 634221 967175 641933 769284 749966 233801 560014 600125 561663 201060 957077 362967 018964 433324 186156 236257 801240 313608 514129 448998 423381 659840 508582 371200 755418 500519 109425 537799 335838 137688 012431 219794 030901 726536 116792 158139 514002 255403 629275 529343 318615 446921 289940 541314 328307 450002 343543 136116 635274 609424 785654 648621 016971 686483 210194 143637 947059 781226 805037 028313 734967 054738 538761 (421 digits), a[808] = 6
                                                                                      A[809]/B[809] = 242538 305776 215757 219238 531291 474911 119750 002440 281311 378481 680784 629388 291917 620464 474481 044080 474983 705671 348451 217661 409987 159604 255659 445958 218652 444023 357514 576021 273828 971345 216400 623775 318932 161766 142857 312304 421414 570604 897610 913925 332232 033911 326601 631907 477955 680637 131756 730954 423373 228309 080752 417543 160822 207563 886638 108947 123022 909457 970858 289506 470715 352335 349677 447111 017140 208765 347397 543598 654149 685761 (420 digits)/23 573152 995336 055203 973084 511934 909037 718430 484868 691692 015334 901408 347421 653743 739231 400422 218923 015814 158116 601456 345849 922839 832805 513009 339163 987549 497527 372473 187639 866560 667309 024834 912821 866128 151051 202531 831034 101536 861659 831599 699229 618245 376573 261878 083252 697701 267380 665210 197435 967999 858590 200379 463149 921935 610060 415301 397563 839899 293843 797390 010257 688558 807734 162612 629616 237136 909452 643363 385565 228634 309229 (422 digits), a[809] = 3
                                                                                      A[810]/B[810] = 319165 493678 457551 881313 860143 427776 717080 947981 268002 160884 317059 656487 206557 526212 162088 618436 166524 453525 112883 414407 677900 899479 638982 137023 244736 251574 955415 593773 654110 124782 642574 478636 185192 902849 308669 435276 581686 597969 402636 433823 584472 969435 339893 163796 747329 835997 654656 167357 992871 052331 204927 889934 494807 548858 781621 660681 666339 226453 153242 025897 527553 867816 447321 979355 530818 217818 723226 104166 444325 248041 (420 digits)/31 020819 532961 581090 671541 316597 763527 408602 119090 658867 657268 670693 097387 887545 299246 000547 780586 216875 115193 964423 364814 356164 018961 749267 140404 301158 011656 821471 611021 526401 175891 396035 668240 366647 260476 740331 166872 239224 874091 051393 730131 344781 493365 420017 597254 953104 896656 194553 516051 414921 148530 741693 791457 371937 953603 551418 032838 449324 079498 446011 027229 375042 017928 306250 576676 018363 714489 671677 120532 283372 847990 (422 digits), a[810] = 1
                                                                                      A[811]/B[811] = 880869 293133 130860 981866 251578 330464 553911 898402 817315 700250 314903 942362 705032 672888 798658 280952 808032 612721 574218 046476 765788 958563 533623 720004 708124 947173 268345 763568 582049 220910 501549 581047 689317 967464 760196 182857 584787 766543 702883 781572 501177 972782 006387 959500 972615 352632 441069 065670 409115 332971 490608 197412 150437 305281 449881 430310 455701 362364 277342 341301 525823 087968 244321 405822 078776 644402 793849 751931 542800 181843 (420 digits)/85 614792 061259 217385 316167 145130 436092 535634 723050 009427 329872 242794 542197 428834 337723 401517 780095 449564 388504 530303 075478 635167 870729 011543 619972 589865 520841 015416 409682 919363 019091 816906 249302 599422 672004 683194 164778 579986 609841 934387 159492 307808 363304 101913 277762 603911 060693 054317 229538 797842 155651 683767 046064 665811 517267 518137 463240 738547 452840 689412 064716 438642 843590 775113 782968 273864 338431 986717 626629 795380 005209 (422 digits), a[811] = 2
                                                                                      A[812]/B[812] = 1 200034 786811 588412 863180 111721 758241 270992 846384 085317 861134 631963 598849 911590 199100 960746 899388 974557 066246 687101 460884 443689 858043 172605 857027 952861 198748 223761 357342 236159 345693 144124 059683 874510 870314 068865 618134 166474 364513 105520 215396 085650 942217 346281 123297 719945 188630 095725 233028 401986 385302 695536 087346 645244 854140 231503 090992 122040 588817 430584 367199 053376 955784 691643 385177 609594 862221 517075 856097 987125 429884 (421 digits)/116 635611 594220 798475 987708 461728 199619 944236 842140 668294 987140 913487 639585 316379 636969 402065 560681 666439 503698 494726 440292 991331 889690 760810 760376 891023 532497 836888 020704 445764 194983 212941 917542 966069 932481 423525 331650 819211 483932 985780 889623 652589 856669 521930 875017 557015 957349 248870 745590 212763 304182 425460 837522 037749 470871 069555 496079 187871 532339 135423 091945 813684 861519 081364 359644 292228 052921 658394 747162 078752 853199 (423 digits), a[812] = 1
                                                                                      A[813]/B[813] = 3 280938 866756 307686 708226 475021 846947 095897 591170 987951 422519 578831 140062 528213 071090 720152 079730 757146 745214 948420 968245 653168 674649 878835 434060 613847 344669 715868 478253 054367 912296 789797 700415 438339 708092 897927 419125 917736 495569 913924 212364 672479 857216 698950 206096 412505 729892 632519 531727 213088 103576 881680 372105 440927 013561 912887 612294 699782 539999 138511 075699 632576 999537 627608 176177 297966 368845 828001 464127 517051 041611 (421 digits)/318 886015 249700 814337 291584 068586 835332 424108 407331 346017 304154 069769 821368 061593 611662 205648 901458 782443 395901 519755 956064 617831 650110 533165 140726 371912 585836 689192 451091 810891 409058 242790 084388 531562 536967 530244 828080 218409 577707 905948 938739 612988 076643 145775 027797 717942 975391 552058 720719 223368 764016 534688 721108 741310 459009 657248 455399 114290 517518 960258 248608 066012 566628 937842 502256 858320 444275 303507 120953 952885 711607 (423 digits), a[813] = 2
                                                                                      A[814]/B[814] = 4 480973 653567 896099 571406 586743 605188 366890 437555 073269 283654 210794 738912 439803 270191 680898 979119 731703 811461 635522 429130 096858 532693 051441 291088 566708 543417 939629 835595 290527 257989 933921 760099 312850 578406 966793 037260 084210 860083 019444 427760 758130 799434 045231 329394 132450 918522 728244 764755 615074 488879 577216 459452 086171 867702 144390 703286 821823 128816 569095 442898 685953 955322 319251 561354 907561 231067 345077 320225 504176 471495 (421 digits)/435 521626 843921 612813 279292 530315 034952 368345 249472 014312 291294 983257 460953 377973 248631 607714 462140 448882 899600 014482 396357 609163 539801 293975 901103 262936 118334 526080 471796 256655 604041 455732 001931 497632 469448 953770 159731 037621 061640 891729 828363 265577 933312 667705 902815 274958 932740 800929 466309 436132 068198 960149 558630 779059 929880 726803 951478 302162 049858 095681 340553 879697 428148 019206 861901 150548 497196 961901 868116 031638 564806 (423 digits), a[814] = 1
                                                                                      A[815]/B[815] = 48 090675 402435 268682 422292 342457 898830 764801 966721 720644 259061 686778 529186 926245 773007 529141 870928 074184 859831 303645 259546 621754 001580 393248 344946 280932 778849 112166 834205 959640 492196 129015 301408 566845 492162 565857 791726 759845 096400 108368 489972 253787 851557 151263 500037 737014 915119 914967 179283 363832 992372 653844 966626 302645 690583 356794 645162 918013 828164 829465 504686 492116 552760 820123 789726 373578 679519 278774 666382 558815 756561 (422 digits)/4674 102283 688916 942470 084509 371737 184856 107560 902051 489140 217103 902344 430901 841326 097978 282793 522863 271272 391901 664579 919640 709467 048123 472924 151759 001273 769181 949997 169054 377447 449472 800110 103703 507887 231457 067946 425390 594620 194116 823247 222372 268767 409769 822834 055950 467532 302799 561353 383813 584689 446006 136184 307416 531909 757816 925287 970182 135911 016099 917071 654146 862986 848109 129911 121268 363805 416244 922525 802114 269271 359667 (424 digits), a[815] = 10
                                                                                      A[816]/B[816] = 293 025026 068179 508194 105160 641490 998172 955702 237885 397134 838024 331465 914033 997277 908236 855750 204688 176812 970449 457393 986409 827382 542175 410931 360766 252305 216512 612630 840831 048370 211166 708013 568550 713923 531382 361939 787620 643281 438483 669655 367594 280857 908776 952812 329620 554540 409242 218047 840455 798072 443115 500286 259209 902046 011202 285158 574264 329906 097805 545888 471017 638653 271887 239994 299713 149033 308183 017725 318520 857071 010861 (423 digits)/28480 135328 977423 267633 786348 760738 144089 013710 661780 949153 593918 397324 046364 425929 836501 304475 599320 076517 251010 001961 914201 865965 828542 131520 811657 270578 733426 226063 486122 521340 300878 256392 624152 544955 858191 361448 712074 605342 226341 831213 162596 878182 391931 604710 238518 080152 749538 169049 769190 944268 744235 777255 403129 970518 476782 278531 772571 117628 146457 598111 265435 057618 516802 798673 589511 333380 994666 497056 680801 647266 722808 (425 digits), a[816] = 6
                                                                                      A[817]/B[817] = 341 115701 470614 776876 527452 983948 897003 720504 204607 117779 097086 018244 443220 923523 681244 384892 075616 250997 830280 761039 245956 449136 543755 804179 705712 533237 995361 724797 675037 008010 703362 837028 869959 280769 023544 927797 579347 403126 534883 778023 857566 534645 760334 104075 829658 291555 324362 133015 019739 161905 435488 154131 225836 204691 701785 641953 219427 247919 925970 375353 975704 130769 824648 060118 089439 522611 987702 296499 984903 415886 767422 (423 digits)/33154 237612 666340 210103 870858 132475 328945 121271 563832 438293 811022 299668 477266 267255 934479 587269 122183 347789 642911 666541 833842 575432 876665 604444 963416 271852 502608 176060 655176 898787 750351 056502 727856 052843 089648 429395 137465 199962 420458 654460 384969 146949 801701 427544 294468 547685 052337 730403 153004 528958 190241 913439 710546 502428 234599 203819 742753 253539 162557 515182 919581 920605 364911 928584 710779 697186 410911 419582 482915 916538 082475 (425 digits), a[817] = 1
                                                                                      A[818]/B[818] = 64763 892604 014372 337857 793774 607832 531876 130996 908630 657384 187281 779665 682788 543253 663425 600352 496159 615402 893513 293811 472178 714189 312022 400895 740435 034286 339878 599391 422825 562393 146742 906469 990854 779268 981373 715682 284279 834196 531517 716164 447669 328906 611922 623144 135037 658496 713685 357886 571157 398199 750376 631087 942252 588777 648688 614317 046014 186772 106206 487789 879098 354150 130370 602313 203782 922698 983917 056222 465266 459670 053619 (425 digits)/6 294631 044122 915722 977265 378535 798575 314716 934036 226111 786683 877133 034666 249688 937301 453143 298339 691972 808759 761314 978368 510448 622779 518341 371618 897332 650701 726371 501527 314556 392225 117227 935408 188946 532299 801744 517129 692997 398239 693027 524225 921765 651694 913501 410581 893073 592627 641369 215245 687046 917366 699957 417360 696418 929454 816031 800463 152936 036529 869827 967683 066418 052032 485157 301183 926874 101612 656924 798145 951909 872964 310583 (427 digits), a[818] = 189
                                                                                      A[819]/B[819] = 65105 008305 484987 114734 321227 591781 428879 851501 113237 775163 284367 797910 126009 466777 344669 985244 571775 866400 723794 054850 718135 163325 855778 205075 446147 567524 335240 324189 097862 570403 850105 743498 860814 060038 004918 643479 863627 237323 066401 494188 305235 863552 372256 727219 964695 950052 038047 490901 590896 560105 185864 785219 168088 793469 350474 256270 265441 434692 032176 863143 854802 484919 955018 662431 293222 445310 971619 352722 450169 875556 821041 (425 digits)/6 327785 281735 582063 187369 249393 931050 643662 055307 789944 224977 688155 334334 726955 204557 387622 885608 814156 156549 404226 644910 344291 198212 395006 976063 860748 922554 228979 677587 969733 291012 867578 991910 916802 585142 891392 946524 830462 598202 113486 178686 306734 798644 715202 838126 187542 140312 693706 945648 840051 446324 890199 330800 406965 431883 050631 004282 895689 290069 032385 482865 985999 972637 850069 229768 637653 798799 067836 217728 434825 789502 393058 (427 digits), a[819] = 1
                                                                                      A[820]/B[820] = 455393 942436 924295 026263 721140 158521 105155 240003 588057 308363 893488 567126 438845 343917 731445 511819 926814 813807 236277 622915 780989 694144 446691 631348 417320 439432 351320 544526 010000 984816 247377 367463 155739 139497 010885 576561 466043 258134 929926 681294 279084 510220 845462 986463 923213 358808 941970 303296 116536 758830 865565 342402 950785 349593 751534 151938 638662 794924 299267 666653 007913 263669 860482 576900 963117 594564 813633 172557 166285 713010 979865 (426 digits)/44 261342 734536 408102 101480 874899 384879 176689 265882 965777 136550 006065 040674 611420 164645 778880 611992 576909 748056 186674 847830 576195 812053 888383 228002 061826 186027 100249 567055 132956 138302 322701 886873 689762 043157 150102 196278 675772 987452 373944 596343 762174 443563 204718 439339 018326 434503 803610 889138 727355 595316 041153 402163 138211 520753 119817 826160 527071 776944 064140 864878 982417 887859 585572 679795 752796 894407 063942 104516 560864 609978 668931 (428 digits), a[820] = 6
                                                                                      A[821]/B[821] = 4 619044 432674 727937 377371 532629 176992 480432 251536 993810 858802 219253 469174 514462 905954 659125 103443 839924 004473 086570 284008 528032 104770 322694 518559 619351 961847 848445 769449 197872 418566 323879 418130 418205 455008 113774 409094 524059 818672 365668 307131 096080 965760 826886 591859 196829 538141 457750 523862 756264 148413 841518 209248 675942 289406 865815 775656 652069 383935 024853 529673 933935 121618 559844 431440 924398 390959 107951 078294 113027 005666 619691 (427 digits)/448 941212 627099 663084 202177 998387 779842 410554 714137 447715 590477 748805 741080 841156 851015 176429 005534 583253 637111 270975 123216 106249 318751 278839 256084 479010 782825 231475 348139 299294 674036 094597 860647 814423 016714 392414 909311 588192 472725 852932 142123 928479 234276 762387 231516 370806 485350 729815 837036 113607 399485 301733 352431 789080 639414 248809 265888 166407 059509 673794 131655 810178 851233 705796 027726 165622 742869 707257 262894 043471 889289 082368 (429 digits), a[821] = 10
                                                                                      A[822]/B[822] = 5 074438 375111 652232 403635 253769 335513 585587 491540 581868 167166 112742 036300 953308 249872 390570 615263 766738 818280 322847 906924 309021 798914 769386 149908 036672 401280 199766 313975 207873 403382 571256 785593 573944 594505 124659 985655 990103 076807 295594 988425 375165 475981 672349 578323 120042 896950 399720 827158 872800 907244 707083 551651 626727 639000 617349 927595 290732 178859 324121 196326 941848 385288 420327 008341 887515 985523 921584 250851 279312 718677 599556 (427 digits)/493 202555 361636 071186 303658 873287 164721 587243 980020 413492 727027 754870 781755 452577 015660 955309 617527 160163 385167 457649 971046 682445 130805 167222 484086 540836 968852 331724 915194 432250 812338 417299 747521 504185 059871 542517 105590 263965 460178 226876 738467 690653 677839 967105 670855 389132 919854 533426 726174 840962 994801 342886 754594 927292 160167 368627 092048 693478 836453 737934 996534 792596 739093 291368 707521 918419 637276 771199 367410 604336 499267 751299 (429 digits), a[822] = 1
                                                                                      A[823]/B[823] = 14 767921 182898 032402 184642 040167 848019 651607 234618 157547 193134 444737 541776 421079 405699 440266 333971 373401 641033 732266 097857 146075 702599 861466 818375 692696 764408 247978 397399 613619 225331 466392 989317 566094 644018 363094 380406 504265 972286 956858 283981 846411 917724 171585 748505 436915 332042 257192 178180 501865 962903 255685 312551 929397 567408 100515 630847 233533 741653 673095 922327 817631 892195 400498 448124 699430 362006 951119 579996 671652 443021 818803 (428 digits)/1435 346323 350371 805456 809495 744962 109285 585042 674178 274701 044533 258547 304591 746310 882337 087048 240588 903580 407446 186275 065309 471139 580361 613284 224257 560684 720529 894925 178528 163796 298712 929197 355690 822793 136457 477449 120492 116123 393082 306685 619059 309786 589956 696598 573227 149072 325059 796669 289385 795533 389087 987506 861621 643664 959748 986063 449985 553364 732417 149664 124725 395372 329420 288533 442770 002462 017423 249655 997715 252144 887824 584966 (430 digits), a[823] = 2
                                                                                      A[824]/B[824] = 19 842359 558009 684634 588277 293937 183533 237194 726158 739415 360300 557479 578077 374387 655571 830836 949235 140140 459314 055114 004781 455097 501514 630852 968283 729369 165688 447744 711374 821492 628714 037649 774911 140039 238523 487754 366062 494369 049094 252453 272407 221577 393705 843935 326828 556958 228992 656913 005339 374666 870147 962768 864203 556125 206408 717865 558442 524265 920512 997217 118654 759480 277483 820825 456466 586946 347530 872703 830847 950965 161699 418359 (428 digits)/1928 548878 712007 876643 113154 618249 274007 172286 654198 688193 771561 013418 086347 198887 897998 042357 858116 063743 792613 643925 036356 153584 711166 780506 708344 101521 689382 226650 093722 596047 111051 346497 103212 326978 196329 019966 226082 380088 853260 533562 357527 000440 267796 663704 244082 538205 244914 330096 015560 636496 383889 330393 616216 570957 119916 354690 542034 246843 568870 887599 121260 187969 068513 579902 150291 920881 654700 020855 365125 856481 387092 336265 (430 digits), a[824] = 1
                                                                                      A[825]/B[825] = 54 452640 298917 401671 361196 628042 215086 125996 686935 636377 913735 559696 697931 169854 716843 101940 232441 653682 559661 842494 107420 056270 705629 123172 754943 151435 095785 143467 820149 256604 482759 541692 539139 846173 121065 338603 112531 493004 070475 461764 828796 289566 705135 859456 402162 550831 790027 571018 188859 251199 703199 181223 040959 041647 980225 536246 747732 282065 582679 667530 159637 336592 447163 042149 361057 873323 057068 696527 241692 573582 766420 655521 (428 digits)/5292 444080 774387 558743 035804 981460 657299 929615 982575 651088 587655 285383 477286 144086 678333 171763 956821 031067 992673 474125 138021 778309 002695 174297 640945 763728 099294 348225 365973 355890 520815 622191 562115 476749 529115 517381 572656 876301 099603 373810 334113 310667 125550 024007 061392 225482 814888 456861 320507 068526 156866 648294 094054 785579 199581 695444 534054 047051 870158 924862 367245 771310 466447 448337 743353 844225 326823 291366 727966 965107 662009 257496 (430 digits), a[825] = 2
                                                                                      A[826]/B[826] = 74 294999 856927 086305 949473 921979 398619 363191 413094 375793 274036 117176 276008 544242 372414 932777 181676 793823 018975 897608 112201 511368 207143 754025 723226 880804 261473 591212 531524 078097 111473 579342 314050 986212 359588 826357 478593 987373 119569 714218 101203 511144 098841 703391 728991 107790 019020 227931 194198 625866 573347 143991 905162 597773 186634 254112 306174 806331 503192 664747 278292 096072 724646 862974 817524 460269 404599 569231 072540 524547 928120 073880 (428 digits)/7220 992959 486395 435386 148959 599709 931307 101902 636774 339282 359216 298801 563633 342974 576331 214121 814937 094811 785287 118050 174377 931893 713861 954804 349289 865249 788676 574875 459695 951937 631866 968688 665327 803727 725444 537347 798739 256389 952863 907372 691640 311107 393346 687711 305474 763688 059802 786957 336067 705022 540755 978687 710271 356536 319498 050135 076088 293895 439029 812461 488505 959279 534961 028239 893645 765106 981523 312222 093092 821589 049101 593761 (430 digits), a[826] = 1
                                                                                      A[827]/B[827] = 277 337639 869698 660589 209618 393980 410944 215570 926218 763757 735843 911225 525956 802581 834087 900271 777472 035151 616589 535318 444024 590375 327060 385249 924623 793847 880205 917105 414721 490895 817180 279719 481292 804810 199831 817675 548313 455123 429184 604419 132406 822999 001660 969631 589135 874201 847088 254811 771455 128799 423240 613198 756446 834967 540128 298583 666256 701060 092257 661771 994513 624810 621103 631073 813631 254131 270867 404220 459314 147226 550780 877161 (429 digits)/26955 422959 233573 864901 482683 780590 451221 235323 892898 668935 665304 181788 168186 173010 407326 814129 401632 315503 348534 828275 661155 573990 144281 038710 688815 359477 465324 072851 745061 211703 416416 528257 558098 887932 705449 129424 968874 645470 958195 095928 409034 243989 305590 087140 977816 516546 994296 817733 328710 183593 779134 584357 224868 855188 158075 845849 762318 928738 187248 362246 832763 649149 071330 533057 424291 139546 271393 228033 007245 429874 809314 038779 (431 digits), a[827] = 3
                                                                                      A[828]/B[828] = 1738 320839 075119 049841 207184 285861 864284 656616 970406 958339 689099 584529 431749 359733 376942 334407 846509 004732 718513 109518 776349 053620 169506 065525 270969 643891 542709 093845 019853 023472 014555 257659 201807 815073 558579 732410 768474 718113 694677 340732 895644 449138 108807 521181 263806 353001 101549 756801 822929 398663 112790 823184 443843 607578 427404 045614 303715 012692 056738 635379 245373 844936 451268 649417 699311 985057 029803 994553 828425 407907 232805 336846 (430 digits)/168953 530714 887838 624795 045062 283252 638634 513845 994166 352896 351041 389530 572750 381037 020292 098898 224730 987831 876496 087704 141311 375834 579548 187068 482182 022114 580621 011985 930063 222158 130366 138234 013921 131323 958139 313897 611987 129215 702034 482943 145845 775043 226887 210557 172373 862970 025583 693357 308328 806585 215563 484831 059484 487665 267953 125233 650001 866324 562519 985942 485087 854173 962944 226584 439392 602384 609882 680420 136565 400837 904985 826435 (432 digits), a[828] = 6
                                                                                      A[829]/B[829] = 31567 112743 221841 557730 938935 539493 968068 034676 393544 013872 139636 432755 297445 277782 619049 919613 014634 120340 549825 506656 418307 555538 378169 564704 802077 383895 648969 606315 772075 913392 079174 917585 113833 476134 254267 001069 380858 381169 933376 737611 254006 907484 960196 350894 337650 228221 674983 877244 584184 304735 453475 430518 745631 771379 233401 119641 133126 929517 113553 098598 411242 833666 743939 320592 401246 985157 807339 306189 370971 489556 741276 940389 (431 digits)/3 068118 975827 214669 111212 293804 879137 946642 484551 787893 021069 984049 193338 477693 031676 772584 594297 446790 096477 125464 406950 204760 339012 576148 405943 368091 757539 916502 288598 486199 210549 763007 016469 808679 251763 951956 779581 984642 971353 594815 788905 034258 194767 389559 877170 080546 050007 454803 298164 878628 702127 659277 311316 295589 633162 981232 100055 462352 522580 312608 109211 564345 024280 404326 611577 333357 982469 249281 475595 465422 644957 099058 914609 (433 digits), a[829] = 18
                                                                                      A[830]/B[830] = 64872 546325 518802 165303 085055 364849 800420 725969 757494 986083 968372 450040 026639 915298 615042 173633 875777 245413 818164 122831 612964 164696 925845 194934 875124 411682 840648 306476 564004 850256 172905 092829 429474 767342 067113 734549 530191 480453 561430 815955 403658 264108 029200 222969 939106 809444 451517 511290 991298 008134 019741 684221 935107 150336 894206 284896 569968 871726 283844 832576 067859 512269 939147 290602 501805 955372 644482 606932 570368 387020 715359 217624 (431 digits)/6 305191 482369 317176 847219 632672 041528 531919 482949 569952 395036 319139 776207 528136 444390 565461 287493 118311 180786 127424 901604 550832 053859 731844 998955 218365 537194 413625 589182 902461 643257 656380 171173 631279 634851 862052 873061 581273 071922 891666 060753 214362 164578 006006 964897 333465 962984 935190 289687 065586 210840 534118 107463 650663 753991 230417 325344 574706 911485 187736 204365 613777 902734 771597 449739 106108 567323 108445 631611 067410 690752 103103 655653 (433 digits), a[830] = 2
                                                                                      A[831]/B[831] = 226184 751719 778248 053640 194101 634043 369330 212585 666028 972124 044753 782875 377365 023678 464176 440514 641965 856582 004317 875151 257200 049629 155705 149509 427450 618944 170914 525745 464090 464160 597890 196073 402257 778160 455608 204717 971432 822530 617669 185477 464981 699809 047797 019804 154970 656555 029536 411117 558078 329137 512700 483184 550953 222389 916019 974330 843033 544695 965087 596326 614821 370476 561381 192399 906664 851275 740787 126987 082076 650618 887354 593261 (432 digits)/21 983693 422935 166199 652871 191821 003723 542400 933400 497750 206178 941468 521961 062102 364848 468968 456776 801723 638835 507739 111763 857256 500591 771683 402809 023188 369123 157379 056147 193584 140322 732147 529990 702518 156319 538115 398766 728462 187122 269813 971164 677344 688501 407580 771862 080943 938962 260374 167226 075387 334649 261631 633707 247580 895136 672484 076089 186473 257035 875816 722308 405678 732484 719118 960794 651683 684438 574618 370428 667654 717213 408369 881568 (434 digits), a[831] = 3
                                                                                      A[832]/B[832] = 2 552904 815243 079530 755345 220173 339326 863053 064412 083813 679448 460664 061669 177655 175761 720983 019294 937401 667815 865660 749495 442164 710617 638601 839538 577081 220068 720708 089676 668999 956022 749697 249636 854310 327107 078803 986447 215952 528290 355791 856207 518456 962007 554967 440815 643784 031549 776418 033584 130159 628646 659446 999251 995592 596625 970426 002535 843337 863381 899808 392168 830894 587512 114340 407001 475119 319405 793141 003790 473211 543828 476259 743495 (433 digits)/248 125819 134656 145373 028802 742703 082487 498329 750355 045204 663004 675293 517779 211262 457723 724114 312037 937271 207976 712555 131006 980653 560369 220362 429854 473437 597549 144795 206802 031887 186807 710003 001071 358979 354366 781322 259495 594357 130267 859619 743564 665153 738093 489395 455380 223849 291569 799306 129173 894846 891982 412066 078243 374053 600494 627742 162325 625912 738879 821720 149758 076243 960066 681906 018480 274629 096147 429247 706326 411612 580099 595172 352901 (435 digits), a[832] = 11
                                                                                      A[833]/B[833] = 2 779089 566962 857778 808985 414274 973370 232383 276997 749842 651572 505417 844544 555020 199440 185159 459809 579367 524397 869978 624646 699364 760246 794306 989048 004531 839012 891622 615422 133090 420183 347587 445710 256568 105267 534412 191165 187385 350820 973461 041684 983438 661816 602764 460619 798754 688104 805954 444701 688237 957784 172147 482436 546545 819015 886445 976866 686371 408077 864895 988495 445715 957988 675721 599401 381784 170681 533928 130777 555288 194447 363614 336756 (433 digits)/270 109512 557591 311572 681673 934524 086211 040730 683755 542954 869183 616762 039740 273364 822572 193082 768814 738994 846812 220294 242770 837910 060960 992045 832663 496625 966672 302174 262949 225471 327130 442150 531062 061497 510686 319437 658262 322819 317390 129433 714729 342498 426594 896976 227242 304793 230532 059680 296399 970234 226631 673697 711950 621634 495631 300226 238414 812385 995915 697536 872066 481922 692551 401024 979274 926312 780586 003866 076755 079267 297313 003542 234469 (435 digits), a[833] = 1
                                                                                      A[834]/B[834] = 5 331994 382205 937309 564330 634448 312697 095436 341409 833656 331020 966081 906213 732675 375201 906142 479104 516769 192213 735639 374142 141529 470864 432908 828586 581613 059081 612330 705098 802090 376206 097284 695347 110878 432374 613216 177612 403337 879111 329252 897892 501895 623824 157731 901435 442538 719654 582372 478285 818397 586430 831594 481688 542138 415641 856871 979402 529709 271459 764704 380664 276610 545500 790062 006402 856903 490087 327069 134568 028499 738275 839874 080251 (433 digits)/518 235331 692247 456945 710476 677227 168698 539060 434110 588159 532188 292055 557519 484627 280295 917197 080852 676266 054788 932849 373777 818563 621330 212408 262517 970063 564221 446969 469751 257358 513938 152153 532133 420476 865053 100759 917757 917176 447657 989053 458294 007652 164688 386371 682622 528642 522101 858986 425573 865081 118614 085763 790193 995688 096125 927968 400740 438298 734795 519257 021824 558166 652618 082930 997755 200941 876733 433113 783081 490879 877412 598714 587370 (435 digits), a[834] = 1
                                                                                      A[835]/B[835] = 130 746954 739905 353208 352920 641034 478100 522855 470833 757594 596075 691383 593674 139229 204285 932578 958317 981828 137527 525323 604058 096072 060993 184118 875125 963245 256971 587559 537793 383259 449129 682420 134040 917650 482258 251600 453862 867494 449492 875530 591105 028933 633596 388330 095070 419683 959814 782893 923561 329780 032124 130415 042961 557867 794420 451373 482527 399393 923112 217801 124438 084369 050007 637209 753069 947467 932777 383587 360410 239281 913067 520592 262780 (435 digits)/12707 757473 171530 278269 733114 187976 134975 978181 102409 658783 641702 626095 420207 904419 549674 205812 709278 969380 161746 608679 213438 483436 972886 089844 133094 778151 507987 029441 536979 402075 661646 093835 302264 152942 271960 737675 684452 335054 061181 866716 713785 526150 379116 169896 610182 992213 760976 675354 510172 732181 073369 732028 676606 518148 802653 571467 856185 331555 631008 159705 395855 877922 355385 391368 925399 748917 822188 398596 870710 860384 355215 372692 331349 (437 digits), a[835] = 24
                                                                                      A[836]/B[836] = 2228 030224 960596 941851 563981 532034 440405 983979 345583 712764 464307 719602 998674 099571 848062 759984 770510 207847 530181 666140 643129 774754 507748 562929 705727 956782 427598 600842 847586 317501 011410 698426 974042 710936 630764 890423 893281 150743 520490 213272 946677 993767 394962 759343 517632 577166 036505 891569 178828 424658 132541 048650 212035 025890 920789 530221 182368 319405 964367 467323 496111 710884 395630 622627 808591 963858 347302 848054 261542 096292 260423 689942 547511 (436 digits)/216550 112375 608262 187531 173417 872821 463290 168139 175074 787481 441132 935677 701053 859759 624757 416013 138595 155728 804481 280396 002232 036992 160393 739758 525129 198639 200000 947475 598401 092644 761921 747353 670624 020495 488385 641246 553447 613095 487749 723237 592647 952208 609663 274614 055733 396276 458705 340013 098510 312159 365899 530251 292504 804217 741236 642921 955891 074744 461934 234248 751374 482846 694169 736202 729550 932544 853936 209260 585166 117413 916073 934484 220303 (438 digits), a[836] = 17
                                                                                      A[837]/B[837] = 11270 898079 542890 062466 172828 301206 680130 442752 198752 321416 917614 289398 587044 637088 444599 732502 810869 021065 788435 856026 819706 969844 599735 998767 403765 747157 394964 591773 775724 970764 506183 174555 004254 472333 636082 703719 920268 621212 051943 941895 324494 997770 608410 185047 683233 305514 142344 240739 817703 453070 694829 373666 103136 687322 398368 102479 394368 996423 744949 554418 604996 638791 028160 750348 796029 766759 669291 623858 668120 720743 215185 970305 000335 (437 digits)/1 095458 319351 212841 215925 600203 552083 451426 818876 977783 596190 847367 304483 925477 203217 673461 285878 402254 748024 184153 010659 224598 668397 774854 788636 758740 771347 507991 766819 528984 865299 471254 830603 655384 255419 713888 943908 451690 400531 499930 482904 677025 287193 427432 542966 888849 973596 054503 375420 002724 292977 902867 383285 139130 539237 508836 786077 635640 705277 940679 330949 152728 292155 826234 072382 573154 411642 091869 444899 796541 447453 935585 045113 432864 (439 digits), a[837] = 5
                                                                                      A[838]/B[838] = 13498 928304 503487 004317 736809 833241 120536 426731 544336 034181 381922 009001 585718 736660 292662 492487 581379 228913 318617 522167 462836 744599 107484 561697 109493 703939 822563 192616 623311 288265 517593 872981 978297 183270 266847 594143 813549 771955 572434 155168 271172 991538 003372 944391 200865 882680 178850 132308 996531 877728 827370 422316 315171 713213 319157 632700 576737 315829 709317 021742 101108 349675 423791 372976 604621 730618 016594 471912 929662 817035 475609 660247 547846 (437 digits)/1 312008 431726 821103 403456 773621 424904 914716 987016 152858 383672 288500 240161 626531 062977 298218 701891 540849 903752 988634 291055 226830 705389 935248 528395 283869 969986 707992 714295 127385 957944 233176 577957 326008 275915 202274 585155 005138 013626 987680 206142 269673 239402 037095 817580 944583 369872 513208 715433 101234 605137 268766 913536 431635 343455 250073 428999 591531 780022 402613 565197 904102 775002 520403 808585 302705 344186 945805 654160 381707 564867 851658 979597 653167 (439 digits), a[838] = 1
                                                                                      A[839]/B[839] = 24769 826384 046377 066783 909638 134447 800666 869483 743088 355598 299536 298400 172763 373748 737262 224990 392248 249979 107053 378194 282543 714443 707220 560464 513259 451097 217527 784390 399036 259030 023777 047536 982551 655603 902930 297863 733818 393167 624378 097063 595667 989308 611783 129438 884099 188194 321194 373048 814235 330799 522199 795982 418308 400535 717525 735179 971106 312253 454266 576160 706104 988466 451952 123325 400651 497377 685886 095771 597783 537778 690795 630552 548181 (437 digits)/2 407466 751078 033944 619382 373824 976988 366143 805893 130641 979863 135867 544645 552008 266194 971679 987769 943104 651777 172787 301714 451429 373787 710103 317032 042610 741334 215984 481114 656370 823243 704431 408560 981392 531334 916163 529063 456828 414158 487610 689046 946698 526595 464528 360547 833433 343468 567712 090853 103958 898115 171634 296821 570765 882692 758910 215077 227172 485300 343292 896147 056831 067158 346637 880967 875859 755829 037675 099060 178249 012321 787244 024711 086031 (439 digits), a[839] = 1
                                                                                      A[840]/B[840] = 335506 671297 106388 872508 562105 581062 529205 730020 204484 656959 275893 888203 831642 595393 877071 417362 680606 478641 710311 438693 135905 032367 301351 847735 781866 568203 650424 389691 810782 655655 826695 490962 751468 706121 004941 466372 353188 883134 689349 416995 014856 852549 956553 627096 694155 329206 354376 981943 581591 178122 615967 770087 753180 920177 646992 190040 201119 375124 614782 511831 280473 199739 299168 976206 813091 196527 933113 716943 700848 808158 455952 857430 674199 (438 digits)/32 609076 195741 262383 455427 633346 125753 674586 463626 851204 121893 054778 320553 802638 523511 930058 542900 801210 376856 234869 213343 095412 564630 166591 649811 837809 607331 515790 968785 660206 660112 390784 889250 084111 183269 112400 462979 943907 397687 326619 163752 576754 085143 075964 504702 779216 834963 893465 896523 452700 280634 500012 772216 851591 818461 115906 225003 544774 088926 865421 215109 642906 648061 026696 261167 688882 169964 435581 941942 698944 725051 085831 300841 771570 (440 digits), a[840] = 13
                                                                                      A[841]/B[841] = 360276 497681 152765 939292 471743 715510 329872 599503 947573 012557 575430 186604 004405 969142 614333 642353 072854 728620 817364 816887 418448 746811 008572 408200 295126 019300 867952 174082 209818 914685 850472 538499 734020 361724 907871 764236 087007 276302 313727 514058 610524 841858 568336 756535 578254 517400 675571 354992 395826 508922 138167 566070 171489 320713 364517 925220 172225 687378 069049 087991 986578 188205 751121 099532 213742 693905 618999 812715 298632 345937 146748 487983 222380 (438 digits)/35 016542 946819 296328 074810 007171 102742 040730 269519 981846 101756 190645 865199 354646 789706 901738 530670 744315 028633 407656 515057 546841 938417 876694 966843 880420 348665 731775 449900 316577 483356 095216 297811 065503 714604 028563 992043 400735 811845 814229 852799 523452 611738 540492 865250 612650 178432 461177 987376 556659 178749 671647 069038 422357 701153 874816 440080 771946 574227 208714 111256 699737 715219 373334 142135 564741 925793 473257 041002 877193 737372 873075 325552 857601 (440 digits), a[841] = 1
                                                                                      A[842]/B[842] = 18 709608 053035 897451 776424 621035 072089 352708 304721 530708 297395 622833 405008 056347 021667 208087 177369 396197 638303 395917 099951 476791 119728 738544 665950 833293 552547 915985 267884 511547 304634 200794 954449 186507 154091 306401 442412 790559 974552 689452 633984 151623 787336 941728 210411 185135 716640 808516 086555 768743 133151 662513 639666 499136 276559 237406 376268 984629 431406 136285 999422 595960 798232 606345 052349 713968 585714 502104 165423 931098 450952 940125 744575 015579 (440 digits)/1818 452766 483525 375115 270737 999072 365597 751830 209145 925355 311458 777717 445720 889624 798563 918723 607108 761276 837160 025351 481277 984351 423941 878034 958849 739247 389283 836338 913701 805658 311273 246816 077614 424800 628074 569164 057193 381433 801823 852341 656528 272837 283808 641100 632484 024375 935019 413543 252727 842318 396867 754013 293176 391834 577308 731544 669122 914049 374514 509840 889201 329530 124249 066737 510081 490720 385431 571691 033089 435825 331067 612672 904037 509221 (442 digits), a[842] = 51
                                                                                      A[843]/B[843] = 224 875573 134111 922187 256387 924164 580582 562372 256162 316072 581305 049431 046700 680570 229149 111379 770785 827226 388261 568370 016305 139942 183555 871108 399610 294648 649875 859775 388696 348386 570296 260011 991889 972106 210820 584689 073189 573726 970934 587159 121868 430010 289901 869075 281469 799883 117090 377764 393661 620744 106742 088331 242068 161124 639424 213394 440447 987778 864251 704481 081063 138107 766997 027261 727728 781365 722479 644249 797802 471813 757372 428257 422883 409328 (441 digits)/21856 449740 749123 797711 323665 996039 489915 062692 779271 086109 839261 523255 213850 030144 372473 926421 815975 879637 074553 711874 290393 359059 025720 413114 473040 751389 020071 767842 414321 984477 218635 057009 229184 163111 251498 858532 678363 977941 433732 042329 731138 797500 017442 233700 455058 905161 398665 423697 020110 664479 941162 719806 587155 124372 628858 653352 469555 740539 068401 326804 781672 654099 206208 174184 263113 453386 550972 333549 438076 107097 710184 225150 174002 968253 (443 digits), a[843] = 12
                                                                                      A[844]/B[844] = 2717 216485 662378 963698 853079 711010 039080 101175 378669 323579 273056 216005 965416 223189 771456 544644 426799 322914 297442 216357 295613 156097 322399 191845 461274 369077 351058 233289 932240 692186 148189 320938 857128 851781 683938 322670 320687 675283 625767 735362 096405 311747 266159 370631 588048 783733 121725 341688 810495 217672 414056 722488 544484 432631 949649 798139 661644 837975 802426 590058 972180 253254 002196 933485 785095 090357 255470 233101 739053 592863 539422 079214 819175 927515 (442 digits)/264095 849655 473010 947651 154729 951546 244578 504143 560398 958673 382597 056780 011921 251357 268251 035785 398819 316921 731804 567842 965998 293059 732586 835408 635338 755915 630145 050447 885565 619384 934893 930926 827824 382135 646060 871556 197561 116731 006608 360298 430193 842837 493115 445506 093190 886312 719004 497907 494055 816077 690820 391692 339037 884306 123612 571774 303791 800518 195330 431498 269273 178720 598747 156948 667442 931358 997099 574284 290002 720997 853278 314474 992073 128257 (444 digits), a[844] = 12
                                                                                      A[845]/B[845] = 30114 256915 420280 522874 640264 745275 010463 675301 421524 875444 584923 425496 666279 135657 715171 102468 465578 379283 660125 948300 268049 857012 729946 981408 473628 354499 511516 425964 643343 962434 200378 790339 420307 341704 734142 134062 600754 001846 854379 676142 182326 859230 217654 946022 750006 420947 456069 136341 309109 015140 661366 035705 231396 920076 085571 992930 718541 205512 690944 195129 775045 923901 791163 295605 363774 775295 532652 208368 927391 993312 691015 299620 433818 611993 (443 digits)/2 926910 795950 952244 221874 025695 463048 180278 608271 943659 631517 047829 147835 344983 795074 323235 320061 202988 365776 124403 958146 916374 582716 084175 602609 461767 066460 951667 322769 155543 797711 502468 297204 335252 366603 358168 445650 851536 261982 506424 005612 463271 068712 441712 134267 480158 654601 307714 900679 454724 641334 540187 028422 316571 851739 988596 942869 811265 546239 217036 073285 743677 620025 792426 900619 604985 698335 519067 650676 628106 038074 096245 684375 086807 379080 (445 digits), a[845] = 11
                                                                                      A[846]/B[846] = 394202 556386 126025 761069 176521 399585 175107 880093 858492 704358 877060 747462 627044 986740 068680 876734 479318 253601 879079 544260 780261 297262 811709 950155 618442 977571 000771 770830 295712 203830 753113 595351 321124 293943 227786 065484 130489 699292 732703 525210 466654 481740 095673 668927 338132 256050 050624 114125 828912 414501 011815 186656 552644 393621 062085 706239 002680 509640 784701 126746 047777 263977 287319 776355 514167 169199 179948 941897 795149 505928 522620 974280 458817 883424 (444 digits)/38 313936 197017 852185 832013 488770 971172 588200 411678 827974 168395 004375 978639 496710 587323 470310 196581 037668 072011 349056 023752 878867 868368 826869 669331 638310 619908 001820 246446 907634 989634 466981 794583 186105 147979 302250 665017 267532 522503 590120 433260 452717 736099 235373 190983 335253 396129 719298 206740 405476 153426 713251 761182 454471 956925 975372 829081 850243 901628 016799 384212 937082 239055 900296 865003 532257 009720 744979 033080 455381 215961 104472 211351 120569 056297 (446 digits), a[846] = 13
                                                                                      A[847]/B[847] = 1 212721 926073 798357 806082 169828 944030 535787 315582 997002 988521 216105 667884 547414 095877 921213 732671 903533 140089 297364 581082 608833 748801 165076 831875 328957 287212 513831 738455 530480 573926 459719 576393 383680 223534 417500 330514 992223 099725 052490 251773 582290 304450 504675 952804 764403 189097 607941 478718 795846 258643 696811 595674 889330 100939 271829 111647 726582 734435 045047 575367 918377 715833 653122 624671 906276 282893 072499 034062 312840 511098 258878 222461 810272 262265 (445 digits)/117 868719 387004 508801 717914 492008 376565 944879 843308 427582 136702 060957 083753 835115 557044 734165 909804 315992 581810 171572 029405 552978 187822 564784 610604 376698 926184 957128 062109 878448 766614 903413 680953 893567 810541 264920 440702 654133 829493 276785 305393 821424 277010 147831 707217 485918 842990 465609 520900 671153 101614 679942 311969 679987 722517 914715 430115 361997 251123 267434 225924 554924 337193 493317 495630 201756 727497 754004 749917 994249 685957 409662 318428 448514 547971 (447 digits), a[847] = 3
                                                                                      A[848]/B[848] = 4 032368 334607 521099 179315 686008 231676 782469 826842 849501 669922 525377 751116 269287 274373 832322 074750 189917 673869 771173 287508 606762 543666 306940 445781 605314 839208 542266 986196 887153 925610 132272 324531 472164 964546 480287 057029 107158 998467 890174 280531 213525 395091 609701 527341 631341 823342 874448 550282 216451 190432 102249 973681 220634 696438 877573 041182 182428 712945 919843 852849 802910 411478 246687 650371 232996 017878 397446 044084 733671 039223 299255 641665 889634 670219 (445 digits)/391 920094 358031 378590 985756 964796 100870 422839 941604 110720 578501 187247 229901 002057 258457 672807 925993 985645 817441 863772 111969 537802 431836 521223 501144 768407 398462 873204 432776 542981 289479 177222 837444 866808 579603 097011 987125 229934 010983 420476 349441 916990 567129 678868 312635 793009 925101 116126 769442 418935 458270 753078 697091 494435 124479 719519 119427 936235 654997 819102 061986 601855 250636 380249 351894 137527 192214 006993 282834 438130 273833 333459 166636 466112 700210 (447 digits), a[848] = 3
                                                                                      A[849]/B[849] = 17 342195 264503 882754 523344 913861 870737 665666 622954 395009 668211 317616 672349 624563 193373 250502 031672 663203 835568 382057 731117 035883 923466 392838 615001 750216 644046 682899 683243 079096 276366 988808 874519 272340 081720 338648 558631 420859 093596 613187 373898 436391 884816 943482 062171 289770 482469 105735 679847 661651 020372 105811 490399 771868 886694 782121 276376 456297 586218 724422 986767 130019 361746 639873 226156 838260 354406 662283 210401 247524 667991 455900 789125 368810 943141 (446 digits)/1685 549096 819130 023165 660942 351192 780047 636239 609724 870464 450706 809946 003357 843344 590875 425397 613780 258575 851577 626660 477283 704187 915168 649678 615183 450328 520036 449945 793216 050373 924531 612305 030733 360802 128953 652968 389203 573869 873426 958690 703161 489386 545528 863304 957760 657958 543394 930116 598670 346894 934697 692257 100335 657728 220436 792791 907827 106939 871114 543842 473870 962345 339739 014314 903206 751865 496353 781977 881255 746770 781290 743498 984974 312965 348811 (448 digits), a[849] = 4
                                                                                      A[850]/B[850] = 56 058954 128119 169362 749350 427593 843889 779469 695706 034530 674556 478227 768165 142976 854493 583828 169768 179529 180574 917346 480859 714414 314065 485456 290786 855964 771348 590966 035926 124442 754711 098698 948089 289185 209707 496232 732923 369736 279257 729736 402226 522701 049542 440147 713855 500653 270750 191655 589825 201404 251548 419684 444880 536241 356523 223936 870311 551321 471602 093112 813151 192968 496718 166307 328841 747777 081098 384295 675288 476245 043197 666958 009041 996067 499642 (446 digits)/5448 567384 815421 448087 968584 018374 441013 331558 770778 722113 930621 617085 239974 532091 031083 949000 767334 761373 372174 743753 543820 650366 177342 470259 346695 119392 958572 223041 812424 694103 063074 014137 929644 949214 966464 055917 154735 951543 631264 296548 458926 385150 203716 268783 185917 766885 555285 906476 565453 459620 262363 829849 998098 467619 785790 097894 842909 257055 268341 450629 483599 488891 269853 423194 061514 393123 681275 352926 926601 678442 617705 563956 121559 405008 746643 (448 digits), a[850] = 3
                                                                                      A[851]/B[851] = 73 401149 392623 052117 272695 341455 714627 445136 318660 429540 342767 795844 440514 767540 047866 834330 201440 842733 016143 299404 211976 750298 237531 878294 905788 606181 415395 273865 719169 203539 031078 087507 822608 561525 291427 834881 291554 790595 372854 342923 776124 959092 934359 383629 776026 790423 753219 297391 269672 863055 271920 525495 935280 308110 243218 006058 146688 007619 057820 817535 799918 322987 858464 806180 554998 586037 435505 046578 885689 723769 711189 122858 798167 364878 442783 (446 digits)/7134 116481 634551 471253 629526 369567 221060 967798 380503 592578 381328 427031 243332 375435 621959 374398 381115 019949 223752 370414 021104 354554 092511 119937 961878 569721 478608 672987 605640 744476 987605 626442 960378 310017 095417 708885 543939 525413 504691 255239 162087 874536 749245 132088 143678 424844 098680 836593 164123 806515 197061 522107 098434 125348 006226 890686 750736 363995 139455 994471 957470 451236 609592 437508 964721 144989 177629 134904 807857 425213 398996 307455 106533 717974 095454 (448 digits), a[851] = 1
                                                                                      A[852]/B[852] = 496 465850 483857 482066 385522 476328 131654 450287 607668 611772 731163 253294 411253 748217 141694 589809 378413 235927 277434 713771 752720 216203 739256 755225 725518 493053 263720 234160 350941 345676 941179 623745 883740 658336 958274 505520 482252 113308 516383 787279 058976 277258 655698 741926 370016 243195 790065 976003 207862 379735 883071 572660 056562 384902 815831 260285 750439 597035 818526 998327 612661 130895 647507 003390 658833 264001 694128 663768 989426 818863 310332 404110 798046 185338 156340 (447 digits)/48253 266274 622730 275609 745742 235777 767379 138349 053800 277584 218592 179272 699968 784704 762840 195391 054024 881068 714688 966237 670446 777690 732409 189887 117966 537721 830224 260967 446269 160964 988707 772795 691914 809317 538970 309230 418373 104024 659411 827983 431453 632370 699187 061312 047988 315950 147370 926035 550196 298711 444732 962492 588703 219707 823151 442015 347327 441026 105077 417461 228422 196310 927408 048247 849841 263058 747050 162355 773746 229723 011683 408686 760761 712853 319367 (449 digits), a[852] = 6
                                                                                      A[853]/B[853] = 569 866999 876480 534183 658217 817783 846281 895423 926329 041313 073931 049138 851768 515757 189561 424139 579854 078660 293578 013175 964696 966501 976788 633520 631307 099234 679115 508026 070110 549215 972257 711253 706349 219862 249702 340401 773806 903903 889238 130202 835101 236351 590058 125556 146043 033619 543285 273394 477535 242791 154992 098155 991842 693013 059049 266343 897127 604654 876347 815863 412579 453883 505971 809571 213831 850039 129633 710347 875116 542633 021521 526969 596213 550216 599123 (447 digits)/55387 382756 257281 746863 375268 605344 988440 106147 434303 870162 599920 606303 943301 160140 384799 569789 435139 901017 938441 336651 691551 132244 824920 309825 079845 107443 308832 933955 051909 905441 976313 399238 652293 119334 634388 018115 962312 629438 164103 083222 593541 506907 448432 193400 191666 740794 246051 762628 714320 105226 641794 484599 687137 345055 829378 332702 098063 805021 244533 411933 185892 647547 537000 485756 814562 408047 924679 297260 581603 654936 410679 716141 867295 430827 414821 (449 digits), a[853] = 1
                                                                                      A[854]/B[854] = 2775 933849 989779 618801 018393 747463 516782 031983 312984 777025 026887 449849 818327 811245 899940 286367 697829 550568 451746 766475 611508 082211 646411 289308 250746 889991 980182 266264 631383 542540 830210 468760 709137 537785 957083 867127 577479 728924 073336 308090 399381 222665 015931 244150 954188 377673 963207 069581 118003 350900 503039 965284 023933 156955 052028 325661 338950 015655 323918 261781 262978 946429 671394 241675 514160 664158 212663 505160 489892 989395 396418 511989 182900 386204 552832 (448 digits)/269802 797299 651857 263063 246816 657157 721139 562938 791015 758234 618274 604488 473173 425266 302038 474548 794584 485140 468454 312844 436651 306670 032090 429187 437346 967495 065555 996787 653908 782732 893961 369750 301087 286656 076522 381694 267623 621777 315824 160873 805619 660000 492915 834912 814655 279127 131577 976550 407476 719618 011910 900891 337252 599931 140664 772823 739582 661111 083211 065193 971992 786501 075409 991275 108090 895250 445767 351398 100160 849468 654402 273254 229943 436162 978651 (450 digits), a[854] = 4
                                                                                      A[855]/B[855] = 3345 800849 866260 152984 676611 565247 363063 927407 239313 818338 100818 498988 670096 327003 089501 710507 277683 629228 745324 779651 576205 048713 623199 922828 882053 989226 659297 774290 701494 091756 802468 180014 415486 757648 206786 207529 351286 632827 962574 438293 234482 459016 605989 369707 100231 411293 506492 342975 595538 593691 658032 063440 015775 849968 111077 592005 236077 620310 200266 077644 675558 400313 177366 051246 727992 514197 342297 215508 365009 532028 417940 038958 779113 936421 151955 (448 digits)/325190 180055 909139 009926 622085 262502 709579 669086 225319 628397 218195 210792 416474 585406 686838 044338 229724 386158 406895 649496 128202 438914 857010 739012 517192 074938 374388 930742 705818 688174 870274 768988 953380 405990 710910 399810 229936 251215 479927 244096 399161 166907 941348 028313 006322 019921 377629 739179 121796 824844 653705 385491 024389 944986 970043 105525 837646 466132 327744 477127 157885 434048 612410 477031 922653 303298 370446 648658 681764 504405 065081 989396 097238 866990 393472 (450 digits), a[855] = 1
                                                                                      A[856]/B[856] = 9467 535549 722299 924770 371616 877958 242909 886797 791612 413701 228524 447827 158520 465252 078943 707382 253196 809025 942396 325778 763918 179638 892811 134966 014854 868445 298777 814846 034371 726054 435146 828789 540111 053082 370656 282186 280052 994579 998485 184676 868346 140698 227909 983565 154651 200260 976191 755532 309080 538283 819104 092164 055484 856891 274183 509671 811105 256275 724450 417070 614095 747056 026126 344168 970145 692552 897257 936177 219912 053452 232298 589906 741128 259046 856742 (448 digits)/920183 157411 470135 282916 490987 182163 140298 901111 241655 015029 054665 026073 306122 596079 675714 563225 254033 257457 282245 611836 693056 184499 746111 907212 471731 117371 814333 858273 065546 159082 634510 907728 207848 098637 498343 181314 727496 124208 275678 649066 603941 993816 375611 891538 827299 318969 886837 454908 651070 369307 319321 671873 386032 489905 080750 983875 414875 593375 738700 019448 287763 654598 300230 945338 953397 501847 186660 648715 463689 858278 784566 252046 424421 170143 765595 (450 digits), a[856] = 2
                                                                                      A[857]/B[857] = 12813 336399 588560 077755 048228 443205 605973 814205 030926 232039 329342 946815 828616 792255 168445 417889 530880 438254 687721 105430 340123 228352 516011 057794 896908 857671 958075 589136 735865 817811 237615 008803 955597 810730 577442 489715 631339 627407 961059 622970 102828 599714 833899 353272 254882 611554 482684 098507 904619 131975 477136 155604 071260 706859 385261 101677 047182 876585 924716 494715 289654 147369 203492 395415 698138 206750 239555 151685 584921 585480 650238 628865 520242 195468 008697 (449 digits)/1 245373 337467 379274 292843 113072 444665 849878 570197 466974 643426 272860 236865 722597 181486 362552 607563 483757 643615 689141 261332 821258 623414 603122 646224 988923 192310 188722 789015 771364 847257 504785 676717 161228 504628 209253 581124 957432 375423 755605 893163 003103 160724 316959 919851 833621 338891 264467 194087 772867 194151 973027 057364 410422 434892 050794 089401 252522 059508 066444 496575 445649 088646 912641 422370 876050 805145 557107 297374 145454 362683 849648 241442 521660 037134 159067 (451 digits), a[857] = 1
                                                                                      A[858]/B[858] = 47907 544748 487980 158035 516302 207575 060831 329412 884391 109819 216553 288274 644370 842017 584279 961050 845838 123790 005559 642069 784287 864696 440844 308350 705581 441461 173004 582256 241969 179488 147991 855201 406904 485274 102983 751333 174071 876803 881664 053587 176831 939842 729608 043381 919299 034924 424244 051056 022937 934210 250512 558976 269266 977469 429966 814702 952653 886033 498599 901216 483058 189163 636603 530416 064560 312803 615923 391233 974676 809894 183014 476503 301854 845450 882833 (449 digits)/4 656303 169813 607958 161445 830204 516160 689934 611703 642578 945307 873245 736670 473914 140538 763372 385915 705306 188304 349669 395835 156832 054743 555479 845887 438500 694302 380502 225320 379640 700855 148867 937879 691533 612522 126103 924689 599793 250479 542496 328555 613251 475989 326491 651094 328163 335643 680239 037171 969671 951763 238402 843966 617299 794581 233133 252079 172441 771899 938033 509174 624710 920539 038155 212451 581549 917283 857982 540837 900052 946330 333510 976373 989401 281546 242796 (451 digits), a[858] = 3
                                                                                      A[859]/B[859] = 108628 425896 564520 393826 080832 858355 727636 473030 799708 451677 762449 523365 117358 476290 337005 339991 222556 685834 698840 389569 908698 957745 397699 674496 308071 740594 304084 753649 219804 176787 533598 719206 769406 781278 783409 992381 979483 381015 724387 730144 456492 479400 293115 440036 093480 681403 331172 200619 950495 000395 978161 273556 609794 661798 245194 731082 952490 648652 921916 297148 255770 525696 476699 456247 827258 832357 471401 934153 534275 205269 016267 581872 123951 886369 774363 (450 digits)/10 557979 677094 595190 615734 773481 476987 229747 793604 752132 534042 019351 710206 670425 462563 889297 379394 894370 020224 388480 053003 134922 732901 714082 337999 865924 580914 949727 239656 530646 248967 802521 552476 544295 729672 461461 430504 157018 876382 840598 550274 229606 112702 969943 222040 489948 010178 624945 268431 712211 097678 449832 745297 645022 024054 517060 593559 597405 603307 942511 514924 695070 929724 988951 847274 039150 639713 273072 379049 945560 255344 516670 194190 500462 600226 644659 (452 digits), a[859] = 2
                                                                                      A[860]/B[860] = 482421 248334 746061 733339 839633 640997 971377 221536 083224 916530 266351 381735 113804 747178 932301 321015 736064 867128 800921 200349 419083 695678 031643 006335 937868 403838 389343 596853 121185 886638 282386 732028 484531 610389 236623 720861 092005 400866 779214 974165 002801 857443 902069 803526 293221 760537 748932 853535 824917 935794 163157 653202 708445 624662 410745 739034 762616 480645 186265 089809 506140 291949 543401 355407 373595 642233 501531 127848 111777 630970 248084 803991 797662 390929 980285 (450 digits)/46 888221 878191 988720 624384 924130 424109 608925 786122 651109 081475 950652 577497 155615 990794 320561 903495 282786 269201 903589 607847 696522 986350 411809 197886 902199 017962 179411 183946 502225 696726 358954 147785 868716 531211 971949 646706 227868 756010 904890 529652 531675 926801 206264 539256 287955 376358 180020 110898 818516 342477 037733 825157 197387 890799 301375 626317 562064 185131 708079 568873 404994 639438 993962 601547 738152 476136 950272 057037 682293 967708 400191 753135 991251 682452 821432 (452 digits), a[860] = 4
                                                                                      A[861]/B[861] = 3 967998 412574 533014 260544 797901 986339 498654 245319 465507 783919 893260 577246 027796 453721 795415 908117 111075 622865 106209 992365 261368 523169 650843 725183 811018 971301 418833 528474 189291 269893 792692 575434 645659 664392 676399 759270 715526 587949 958107 523464 478907 338951 509673 868246 439254 765705 322635 028906 549838 486749 283422 499178 277359 659097 531160 643361 053422 493814 412037 015624 304892 861292 823910 299506 816023 970225 483650 956938 428496 253031 000946 013806 505251 013809 616643 (451 digits)/385 663754 702630 504955 610814 166524 869864 101154 082585 961005 185849 624572 330183 915353 388918 453792 607357 156660 173839 617196 915784 707106 623705 008555 921095 083516 724612 385016 711228 548451 822778 674154 734763 494027 979368 237058 604153 979968 924470 079722 787494 483013 527112 620059 536090 793591 021044 065106 155622 260341 837494 751703 346555 224125 150448 928065 604100 093919 084361 607148 065911 935028 045236 940652 659655 944370 448808 875248 835351 403911 997011 718204 219278 430476 059849 216115 (453 digits), a[861] = 8
                                                                                      A[862]/B[862] = 20 322413 311207 411133 036063 829143 572695 464648 448133 410763 836129 732654 267965 252787 015787 909380 861601 291442 981454 331971 162175 725926 311526 285861 632254 992963 260345 483511 239224 067642 236107 245849 609201 712829 932352 618622 517214 669638 340616 569752 591487 397338 552201 450439 144758 489495 589064 362107 998068 574110 369540 580270 149094 095243 920150 066548 955840 029728 949717 246450 167931 030604 598413 662952 852941 453715 493360 919785 912540 254258 896125 252814 873024 323917 459978 063500 (452 digits)/1975 206995 391344 513498 678455 756754 773430 114696 199052 456135 010724 073514 228416 732382 935386 589524 940281 066087 138399 989574 186771 232056 104875 454588 803362 319782 641024 104494 740089 244484 810619 729727 821603 338856 428053 157242 667476 127713 378361 303504 467124 946743 562364 306562 219710 255910 481578 505550 889010 120225 529950 796250 557933 318013 643043 941703 646818 031659 606939 743819 898433 080134 865623 697225 899827 460004 720181 326516 233794 701853 952766 991212 849528 143631 981698 902007 (454 digits), a[862] = 5
                                                                                      A[863]/B[863] = 186 869718 213441 233211 585119 260194 140598 680490 278520 162382 309087 487148 988933 302879 595812 979843 662528 734062 455954 093950 451946 794705 326906 223598 415478 747688 314410 770434 681490 798071 394859 005339 058250 061129 055566 244002 414202 742271 653499 085880 846851 054954 308764 563626 171072 844715 067284 581607 011523 716831 812614 505853 841025 134554 940448 130101 245921 320983 041269 630088 527003 580334 247015 790485 975979 899463 410473 761724 169800 716826 318158 276279 871025 420508 153612 188143 (453 digits)/18162 526713 224731 126443 716915 977317 830735 133419 874058 066220 282366 286200 385934 506799 807397 759517 069886 751444 419439 523364 596725 795611 567584 099855 151355 961560 493829 325469 372031 748815 118356 241705 129193 543735 831846 652242 611439 129389 329721 811262 991619 003705 588391 379119 513483 096785 355250 615064 156713 342371 607051 917958 367955 086247 937844 403398 425462 378855 546819 301527 151809 656241 835850 215685 758103 084412 930440 813894 939503 720597 571914 639119 865031 723163 895139 334178 (455 digits), a[863] = 9
                                                                                      A[864]/B[864] = 954 671004 378413 577190 961660 130114 275688 867099 840734 222675 381567 168399 212631 767184 994852 808599 174244 961755 261224 801723 421909 699452 946057 403853 709648 731404 832399 335684 646678 057999 210402 272544 900452 018475 210183 838634 588228 380996 608111 999156 825742 672110 096024 268570 000122 713070 925487 270143 055687 158269 432613 109539 354219 768018 622390 717055 185446 634644 156065 396892 802948 932275 833492 615382 732840 951032 545729 728406 761543 838390 486916 634214 228151 426458 228039 004215 (453 digits)/92787 840561 515000 145717 263035 643343 927105 781795 569342 787236 422555 504516 158089 266381 972375 387110 289714 823309 235597 606397 170400 210113 942795 953864 560142 127585 110170 731841 600247 988560 402400 938253 467571 057535 587286 418455 724671 774660 026970 359819 425219 965271 504321 202159 787125 739837 257831 580871 672576 832083 565210 386042 397708 749253 332265 958695 774129 925937 341036 251455 657481 361344 044874 775654 690342 882069 372385 395990 931313 304841 812340 186812 174686 759451 457395 572897 (455 digits), a[864] = 5
                                                                                      A[865]/B[865] = 2096 211726 970268 387593 508439 520422 691976 414689 959988 607733 072221 823947 414196 837249 585518 597042 011018 657572 978403 697397 295766 193611 219021 031305 834776 210497 979209 441803 974846 914069 815663 550428 859154 098079 475933 921271 590659 504264 869723 084194 498336 399174 500813 100766 171318 270856 918259 121893 122898 033370 677840 724932 549464 670592 185229 564211 616814 590271 353400 423874 132901 444885 914001 021251 441661 801528 501933 218537 692888 393607 291991 544708 327328 273424 609690 196573 (454 digits)/203738 207836 254731 417878 242987 264005 684946 697011 012743 640693 127477 295232 702113 039563 752148 533737 649316 398062 890634 736158 937526 215839 453176 007584 271640 216730 714170 789152 572527 725935 923158 118212 064335 658807 006419 489154 060782 678709 383662 530901 842058 934248 597033 783439 087734 576459 870913 776807 501867 006538 737472 690043 163372 584754 602376 320789 973722 230730 228891 804438 466772 378929 925599 766995 138788 848551 675211 605876 802130 330281 196595 012744 214405 242066 809930 479972 (456 digits), a[865] = 2
                                                                                      A[866]/B[866] = 5147 094458 318950 352377 978539 170959 659641 696479 760711 438141 526010 816294 041025 441684 165890 002683 196282 276901 218032 196518 013442 086675 384099 466465 379201 152400 790818 219292 596371 886138 841729 373402 618760 214634 162051 681177 769547 389526 347558 167545 822415 470459 097650 470102 342759 254784 762005 513929 301483 225010 788294 559404 453149 109202 992849 845478 419075 815186 862866 244641 068751 822047 661494 657885 616164 554089 549596 165482 147320 625605 070899 723630 882807 973307 447419 397361 (454 digits)/500264 256234 024462 981473 749010 171355 296999 175817 594830 068622 677510 094981 562315 345509 476672 454585 588347 619435 016867 078715 045452 641792 849147 969033 103422 561046 538512 310146 745303 440432 248717 174677 596242 375149 600125 396763 846237 132078 794295 421623 109337 833768 698388 769037 962594 892756 999659 134486 676310 845161 040155 766128 724453 918762 537018 600275 721574 387397 798819 860332 591026 119203 896074 309644 967920 579172 722808 607744 535573 965404 205530 212300 603497 243585 077256 532841 (456 digits), a[866] = 2
                                                                                      A[867]/B[867] = 7243 306185 289218 739971 486978 691382 351618 111169 720700 045874 598232 640241 455222 278933 751408 599725 207300 934474 196435 893915 309208 280286 603120 497771 213977 362898 770027 661096 571218 800208 657392 923831 477914 312713 637985 602449 360206 893791 217281 251740 320751 869633 598463 570868 514077 525641 680264 635822 424381 258381 466135 284337 002613 779795 178079 409690 035890 405458 216266 668515 201653 266933 575495 679137 057826 355618 051529 384019 840209 019212 362891 268339 210136 246732 057109 593934 (454 digits)/704002 464070 279194 399351 991997 435360 981945 872828 607573 709315 804987 390214 264428 385073 228820 988323 237664 017497 907501 814873 982978 857632 302323 976617 375062 777777 252683 099299 317831 166368 171875 292889 660578 033956 606544 885917 907019 810788 177957 952524 951396 768017 295422 552477 050329 469216 870572 911294 178177 851699 777628 456171 887826 503517 139394 921065 695296 618128 027711 664771 057798 498133 821674 076640 106709 427724 398020 213621 337704 295685 402125 225044 817902 485651 887187 012813 (456 digits), a[867] = 1
                                                                                      A[868]/B[868] = 41363 625384 765044 052235 413432 627871 417732 252328 364211 667514 517174 017501 317136 836352 922933 001309 232786 949272 200211 666094 559483 488108 399701 955321 449087 966894 640956 524775 452465 887182 128693 992560 008331 778202 351979 693424 570581 858482 433964 426247 426174 818627 089968 324444 913146 882993 163328 693041 423389 516918 118970 981089 466218 008178 883246 893928 598527 842477 944199 587217 077018 156715 538973 053570 905296 332179 807243 085581 348365 721666 885356 065326 933489 206967 732967 367031 (455 digits)/4 020276 576585 420434 978233 708997 348160 206728 539960 632698 615201 702447 046052 884457 270875 620777 396201 776667 706924 554376 153084 960346 929954 360767 852119 978736 449932 801927 806643 334459 272273 108093 639125 899132 544932 632849 826353 381336 186019 684085 184247 866321 673855 175501 531423 214242 238841 352523 690957 567200 103659 928298 046988 163586 436348 233993 205604 198057 478037 937378 184187 880018 609873 004444 692845 501467 717794 712909 675851 224095 443831 216156 337524 693009 671844 513191 596906 (457 digits), a[868] = 5
                                                                                      A[869]/B[869] = 89970 556954 819306 844442 313843 947125 187082 615826 449123 380903 632580 675244 089495 951639 597274 602343 672874 833018 596859 226104 428175 256503 402524 408414 112153 296688 051940 710647 476150 574572 914780 908951 494577 869118 341944 989298 501370 610756 085210 104235 173101 506887 778400 219758 340371 291628 006922 021905 271160 292217 704077 246515 935049 796152 944573 197547 232946 090414 104665 842949 355689 580364 653441 786278 868419 019977 666015 555182 536940 462546 133603 398993 077114 660667 523044 327996 (455 digits)/8 744555 617241 120064 355819 409992 131681 395402 952749 872970 939719 209881 482320 033342 926824 470375 780726 790999 431347 016254 121043 903672 717541 023859 680857 332535 677642 856538 712585 986749 710914 388062 571141 458843 123821 872244 538624 669692 182827 546128 321020 684040 115727 646425 615323 478813 946899 575620 293209 312578 059019 634224 550148 214999 376213 607381 332274 091411 574203 902468 033146 817835 717879 830563 462331 109644 863313 823839 565323 785895 183347 834437 900094 203921 829340 913570 206625 (457 digits), a[869] = 2
                                                                                      A[870]/B[870] = 221304 739294 403657 741120 041120 522121 791897 483981 262458 429321 782335 367989 496128 739632 117482 205996 578536 615309 393930 118303 415834 001115 204750 772149 673394 560270 744837 946070 404767 036327 958255 810462 997487 516439 035869 672021 573323 079994 604384 634717 772377 832402 646768 763961 593889 466249 177172 736851 965710 101353 527125 474121 336317 600484 772393 289023 064420 023306 153531 273115 788397 317444 845856 626128 642134 372135 139274 195946 422246 646759 152562 863313 087718 528302 779056 023023 (456 digits)/21 509387 811067 660563 689872 528981 611522 997534 445460 378640 494640 122210 010692 951143 124524 561528 957655 358666 569618 586884 395172 767692 365036 408487 213834 643807 805218 515005 231815 307958 694101 884218 781408 816818 792576 377338 903602 720720 551674 776341 826289 234401 905310 468352 762070 171870 132640 503764 277376 192356 221699 196747 147284 593585 188775 448755 870152 380880 626445 742314 250481 515690 045632 665571 617507 720757 444422 360588 806498 795885 810526 885032 137713 100853 330526 340332 010156 (458 digits), a[870] = 2
                                                                                      A[871]/B[871] = 311275 296249 222964 585562 354964 469246 978980 099807 711581 810225 414916 043233 585624 691271 714756 808340 251411 448327 990789 344407 844009 257618 607275 180563 785547 856958 796778 656717 880917 610900 873036 719414 492065 385557 377814 661320 074693 690750 689594 738952 945479 339290 425168 983719 934260 757877 184094 758757 236870 393571 231202 720637 271367 396637 716966 486570 297366 113720 258197 116065 144086 897809 499298 412407 510553 392112 805289 751128 959187 109305 286166 262306 164833 188970 302100 351019 (456 digits)/30 253943 428308 780628 045691 938973 743204 392937 398210 251611 434359 332091 493012 984486 051349 031904 738382 149666 000965 603138 516216 671365 082577 432346 894691 976343 482861 371543 944401 294708 405016 272281 352550 275661 916398 249583 442227 390412 734502 322470 147309 918442 021038 114778 377393 650684 079540 079384 570585 504934 280718 830971 697432 808584 564989 056137 202426 472292 200649 644782 283628 333525 763512 496135 079838 830402 307736 184428 371822 581780 993874 719470 037807 304775 159867 253902 216781 (458 digits), a[871] = 1
                                                                                      A[872]/B[872] = 3 645332 998035 856268 182305 945729 683838 560678 581866 089858 341801 346411 843558 938000 343620 979807 097739 344062 546917 292612 906789 699935 834919 884777 758351 314420 986817 509403 169967 094860 756237 561659 724022 410206 757570 191830 946542 394953 678252 189926 763200 172650 564597 323627 584880 870757 802898 202215 083181 571284 430637 070355 401131 321358 963499 659024 641296 335447 274228 993699 549832 373353 193349 338139 162611 258221 685375 997461 458364 973304 849117 300391 748680 900883 606976 102159 884232 (457 digits)/354 302765 522464 247472 192483 857692 786771 319845 825773 146366 272592 775216 433835 780489 689363 912481 079859 004992 580240 221408 073556 152708 273388 164303 055446 383586 116693 601988 620229 549751 149280 879313 659461 849099 872957 122756 768104 015260 631200 323513 446698 337264 136729 730914 913400 329395 007581 376994 553816 746633 309606 337435 819045 488015 403655 066265 096843 576094 833591 834919 370393 184473 444270 123057 495734 855182 829520 389300 896547 195476 743148 799202 553593 453380 089066 133256 394747 (459 digits), a[872] = 11
                                                                                      A[873]/B[873] = 3 956608 294285 079232 767868 300694 153085 539658 681673 801440 152026 761327 886792 523625 034892 694563 906079 595473 995245 283402 251197 543945 092538 492052 938915 099968 843776 306181 826684 975778 367138 434696 443436 902272 143127 569645 607862 469647 369002 879521 502153 118129 903887 748796 568600 805018 560775 386309 841938 808154 824208 301558 121768 592726 360137 375991 127866 632813 387949 251896 665897 517440 091158 837437 575018 768775 077488 802751 209493 932491 958422 586558 010987 065716 795946 404260 235251 (457 digits)/384 556708 950773 028100 238175 796666 529975 712783 223983 397977 706952 107307 926848 764975 740712 944385 818241 154658 581205 824546 589772 824073 355965 596649 950138 359929 599554 973532 564630 844459 554297 151595 012012 124761 789355 372340 210331 405673 365702 645983 594008 255706 157767 845693 290793 980079 087121 456379 124402 251567 590325 168407 516478 296599 968644 122402 299270 048387 034241 479701 654021 517999 207782 619192 575573 685585 137256 573729 268369 777257 737023 518672 591400 758155 248933 387158 611528 (459 digits), a[873] = 1
                                                                                      A[874]/B[874] = 11 558549 586606 014733 718042 547117 990009 639995 945213 692738 645854 869067 617143 985250 413406 368934 909898 535010 537407 859417 409184 787826 019996 868883 636181 514358 674370 121766 823337 046417 490514 431052 610896 214751 043825 331122 162267 334248 416257 948969 767506 408910 372372 821220 722082 480794 924448 974834 767059 187594 079053 673471 644668 506811 683774 411006 897029 601074 050127 497492 881627 408233 375667 013014 312648 795771 840353 602963 877352 838288 765962 473507 770655 032317 198868 910680 354734 (458 digits)/1123 416183 424010 303672 668835 451025 846722 745412 273739 942321 686496 989832 287533 310441 170789 801252 716341 314309 742651 870501 253101 800854 985319 357602 955723 103445 315803 549053 749491 238670 257875 182503 683486 098623 451667 867437 188766 826607 362605 615480 634714 848676 452265 422301 494988 289553 181824 289752 802621 249768 490256 674250 852002 081215 340943 311069 695383 672868 902074 794322 678436 220471 859835 361442 646882 226353 104033 536759 433286 749992 217195 836547 736394 969690 586932 907573 617803 (460 digits), a[874] = 2
                                                                                      A[875]/B[875] = 27 073707 467497 108700 203953 394930 133104 819650 572101 186917 443736 499463 121080 494125 861705 432433 725876 665495 070061 002237 069567 119597 132532 229820 211278 128686 192516 549715 473359 068613 348167 296801 665229 331774 230778 231889 932397 138144 201518 777461 037165 935950 648633 391238 012765 766608 409673 335979 376057 183342 982315 648501 411105 606349 727686 198004 921925 834961 488204 246882 429152 333906 842492 863466 200316 360318 758196 008678 964199 609069 490347 533573 552297 130351 193684 225620 944719 (458 digits)/2631 389075 798793 635445 575846 698718 223421 203607 771463 282621 079946 086972 501915 385858 082292 546891 250923 783278 066509 565549 095976 425783 326604 311855 861584 566820 231162 071640 063613 321800 070047 516602 378984 322008 692691 107214 587865 058888 090913 876944 863437 953059 062298 690296 280770 559185 450770 035884 729644 751104 570838 516909 220482 459030 650530 744541 690037 394124 838391 068347 010893 958942 927453 342077 869338 138291 345323 647248 134943 277242 171415 191768 064190 697536 422799 202305 847134 (460 digits), a[875] = 2
                                                                                      A[876]/B[876] = 255 221916 794079 993035 553623 101489 187953 016851 094124 374995 639483 364235 706868 432383 168755 260838 442788 524466 167956 879551 035288 864200 212786 937265 537684 672534 407019 069206 083568 663937 624020 102267 597960 200719 120829 418131 553841 577546 229926 946119 101999 832466 210073 342362 836974 380270 611508 998649 151573 837680 919894 509984 344618 963959 232950 193051 194362 115727 443965 719434 743998 413394 958102 784210 115496 038640 664117 681074 555149 319914 179090 275669 741329 205477 942026 941268 857205 (459 digits)/24805 917865 613153 022682 851455 739489 857513 577882 216909 485911 406011 772584 804771 783163 911422 723273 974655 363812 341237 960443 116889 632904 924758 164305 709984 204827 396262 193814 322011 134870 888302 831925 094344 996701 685887 832368 479552 356600 180830 507984 405656 426208 012953 634968 021923 322222 238754 612715 369424 009709 627803 326433 836344 212491 195720 011944 905720 219992 447594 409445 776481 850958 206915 440143 470925 470975 211946 361992 647776 245171 759932 562460 314111 247518 392125 728326 242009 (461 digits), a[876] = 9
                                                                                      A[877]/B[877] = 1047 961374 643817 080842 418445 800886 884916 887054 948598 686900 001669 956405 948554 223658 536726 475787 497030 763359 741888 520441 210722 576397 983679 978882 362016 818823 820592 826539 807633 724363 844247 705872 057070 134650 714095 904416 147763 448329 121226 561937 445165 265815 488926 760689 360663 287690 855709 330575 982352 534066 661893 688438 789581 462186 659486 970209 699374 297871 264067 124621 405145 987486 674904 000306 662300 514881 414666 732977 184796 888726 206708 636252 517613 952262 961791 990696 373539 (460 digits)/101855 060538 251405 726176 981669 656677 653475 515136 639101 226266 703993 177311 721002 518513 727983 439987 149545 238527 431461 407321 563534 957403 025636 969078 701521 386129 816210 846897 351657 861283 623258 844302 756364 308815 436242 436688 506074 485288 814235 908882 486063 657891 114113 230168 368463 848074 405788 486746 207340 789943 082051 822644 565859 308995 433410 792321 312918 274094 628768 706130 116821 362775 755115 102651 753040 022192 193109 095218 726048 257929 211145 441609 320635 687609 991302 115610 815170 (462 digits), a[877] = 4
                                                                                      A[878]/B[878] = 1303 183291 437897 073877 972068 902376 072869 903906 042723 061895 641153 320641 655422 656041 705481 736625 939819 287825 909845 399992 246011 440598 196466 916147 899701 491358 227611 895745 891202 388301 468267 808139 655030 335369 834925 322547 701605 025875 351153 508056 547165 098281 699000 103052 197637 667961 467218 329225 133926 371747 581788 198423 134200 426145 892437 163260 893736 413598 708032 844056 149144 400881 633006 784516 777796 553522 078784 414051 739946 208640 385798 911922 258943 157740 903818 931965 230744 (460 digits)/126660 978403 864558 748859 833125 396167 510989 093018 856010 712178 110004 949896 525774 301677 639406 163261 124200 602339 772699 367764 680424 590307 950395 133384 411505 590957 212473 040711 673668 996154 511561 676227 850709 305517 122130 269056 985626 841888 995066 416866 891720 084099 127066 865136 390387 170296 644543 099461 576764 799652 709855 149078 402203 521486 629130 804266 218638 494087 076363 115575 893303 213733 962030 542795 223965 493167 405055 457211 373824 503100 971078 004069 634746 935128 383427 843937 057179 (462 digits), a[878] = 1
                                                                                      A[879]/B[879] = 6260 694540 395405 376354 306721 410391 176396 502679 119490 934482 566283 238972 570244 847825 358653 422291 256307 914663 381270 120410 194768 338790 769547 643473 960822 784256 731040 409523 372443 277569 717318 938430 677191 476130 053797 194606 954183 551830 525840 594163 633825 658942 284927 172898 151213 959536 724582 647476 518058 021056 989046 482131 326383 166770 229235 623253 274319 952266 096198 500846 001723 591013 206931 138373 773486 728969 729804 389184 144581 723287 749904 283941 553386 583226 577067 718557 296515 (460 digits)/608498 974153 709640 721616 314171 241347 697431 887212 063144 074979 144012 976897 824099 725224 285608 093031 646347 647886 522258 878380 285233 318634 827217 502616 347543 749958 666103 009744 046333 845901 669505 549214 159201 530883 924763 512916 448581 852844 794501 576350 052943 994287 622380 690713 930012 529260 983960 884592 514399 988553 921472 418958 174673 394941 949934 009386 187472 250442 934221 168433 690034 217711 603237 273832 648901 994861 813330 924064 221346 270333 095457 457887 859623 428123 525013 491359 043886 (462 digits), a[879] = 4
                                                                                      A[880]/B[880] = 7563 877831 833302 450232 278790 312767 249266 406585 162213 996378 207436 559614 225667 503867 064135 158917 196127 202489 291115 520402 440779 779388 966014 559621 860524 275614 958652 305269 263645 665871 185586 746570 332221 811499 888722 517154 655788 577705 876994 102220 180990 757223 983927 275950 348851 627498 191800 976701 651984 392804 570834 680554 460583 592916 121672 786514 168056 365864 804231 344902 150867 991894 839937 922890 551283 282491 808588 803235 884527 931928 135703 195863 812329 740967 480886 650522 527259 (460 digits)/735159 952557 574199 470476 147296 637515 208420 980230 919154 787157 254017 926794 349874 026901 925014 256292 770548 250226 294958 246144 965657 908942 777612 636000 759049 340915 878576 050455 720002 842056 181067 225442 009910 836401 046893 781973 434208 694733 789567 993216 944664 078386 749447 555850 320399 699557 628503 984054 091164 788206 631327 568036 576876 916428 579064 813652 406110 744530 010584 284009 583337 431445 565267 816627 872867 488029 218386 381275 595170 773434 066535 461957 494370 363251 908441 335296 101065 (462 digits), a[880] = 1
                                                                                      A[881]/B[881] = 44080 083699 561917 627515 700672 974227 422728 535604 930560 916373 603466 037043 698582 367160 679329 216877 236943 927109 836847 722422 398667 235735 599620 441583 263444 162331 524301 935869 690671 606925 645252 671282 338300 533629 497409 780380 233126 440359 910811 105264 538779 445062 204563 552649 895472 097027 683587 530984 777979 985079 843219 884903 629301 131350 837599 555824 114601 781590 117355 225356 756063 550487 406620 752826 529903 141428 772748 405363 567221 382928 428420 263260 615035 288063 981500 971169 932810 (461 digits)/4 284298 736941 580638 073997 050654 428923 739536 788366 658918 010765 414102 610869 573469 859733 910679 374495 499088 899017 997050 109105 113522 863348 715280 682620 142790 454538 058983 262022 646348 056182 574841 676424 208755 712889 159232 422783 619625 326513 742341 542434 776264 386221 369618 469965 532011 027049 126480 804862 970223 929587 078110 259141 059057 977084 845258 077648 218025 973092 987142 588481 606721 374939 429576 356972 013239 435007 905262 830442 197200 137503 428134 767675 331475 244383 067220 167839 549211 (463 digits), a[881] = 5
                                                                                      A[882]/B[882] = 448364 714827 452478 725389 285520 055041 476551 762634 467823 160114 242096 930051 211491 175473 857427 327689 565566 473587 659592 744626 427452 136744 962218 975454 494965 898930 201671 663966 170361 735127 638113 459393 715227 147794 862820 320956 987052 981304 985105 154865 568785 207846 029562 802449 303572 597775 027676 286549 431784 243603 003033 529590 753594 906424 497668 344755 314074 181765 977783 598469 711503 496768 906145 451155 850314 696779 536072 856871 556741 761212 419905 828469 962682 621607 295896 362221 855359 (462 digits)/43 578147 321973 380580 210446 653840 926752 603788 863897 508334 894811 395044 035490 084572 624241 031808 001247 761437 240406 265459 337196 100886 542429 930419 462202 186953 886296 468408 670682 183483 403881 929483 989684 097467 965292 639218 009809 630461 959871 212983 417564 707307 940600 445632 255505 640509 970048 893312 032683 793404 084077 412430 159447 167456 687277 031645 590134 586370 475459 882010 168825 650551 180839 861031 386348 005261 838108 271014 685697 567172 148468 347883 138710 809122 807082 580643 013691 593175 (464 digits), a[882] = 10
                                                                                      A[883]/B[883] = 492444 798527 014396 352904 986193 029268 899280 298239 398384 076487 845562 967094 910073 542634 536756 544566 802510 400697 496440 467048 826119 372480 561839 417037 758410 061261 725973 599835 861033 342053 283366 130676 053527 681424 360230 101337 220179 421664 895916 260130 107564 652908 234126 355099 199044 694802 711263 817534 209764 228682 846253 414494 382896 037775 335267 900579 428675 963356 095138 823826 467567 047256 312766 203982 380217 838208 308821 262235 123963 144140 848326 091730 577717 909671 277397 333391 788169 (462 digits)/47 862446 058914 961218 284443 704495 355676 343325 652264 167252 905576 809146 646359 658042 483974 942487 375743 260526 139424 262509 446301 214409 405778 645700 144822 329744 340834 527391 932704 829831 460064 504325 666108 306223 678181 798450 432593 250087 286384 955324 959999 483572 326821 815250 725471 172520 997098 019792 837546 763628 013664 490540 418588 226514 664361 876903 667782 804396 448552 869152 757307 257272 555779 290607 743320 018501 273116 176277 516139 764372 285971 776017 906386 140598 051465 647863 181531 142386 (464 digits), a[883] = 1
                                                                                      A[884]/B[884] = 940809 513354 466875 078294 271713 084310 375832 060873 866207 236602 087659 897146 121564 718108 394183 872256 368076 874285 156033 211675 253571 509225 524058 392492 253375 960191 927645 263802 031395 077180 921479 590069 768754 829219 223050 422294 207232 402969 881021 414995 676349 860754 263689 157548 502617 292577 738940 104083 641548 472285 849286 944085 136490 944199 832936 245334 742750 145122 072922 422296 179070 544025 218911 655138 230532 534987 844894 119106 680704 905353 268231 920200 540400 531278 573293 695613 643528 (462 digits)/91 440593 380888 341798 494890 358336 282428 947114 516161 675587 800388 204190 681849 742615 108215 974295 376991 021963 379830 527968 783497 315295 948208 576119 607024 516698 227130 995800 603387 013314 863946 433809 655792 403691 643474 437668 442402 880549 246256 168308 377564 190880 267422 260882 980976 813030 967146 913104 870230 557032 097741 902970 578035 393971 351638 908549 257917 390766 924012 751162 926132 907823 736619 151639 129668 023763 111224 447292 201837 331544 434440 123901 045096 949720 858548 228506 195222 735561 (464 digits), a[884] = 1
                                                                                      A[885]/B[885] = 2 374063 825235 948146 509493 529619 197889 650944 419987 130798 549692 020882 761387 153202 978851 325124 289079 538664 149267 808506 890399 333262 390931 609956 202022 265161 981645 581264 127439 923823 496415 126325 310815 591037 339862 806330 945925 634644 227604 657959 090121 460264 374416 761504 670196 204279 279958 189144 025701 492861 173254 544827 302664 655877 926175 001140 391248 914176 253600 240983 668418 825708 135306 750589 514258 841282 908183 998609 500448 485372 954847 384789 932131 658518 972228 423984 724619 075225 (463 digits)/230 743632 820691 644815 274224 421167 920534 237554 684587 518428 506353 217528 010059 143272 700406 891078 129725 304452 899085 318447 013295 845001 302195 797939 358871 363140 795096 518993 139478 856461 187957 371944 977693 113606 965130 673787 317399 011185 778897 291941 715127 865332 861666 337016 687424 798582 931391 846002 578007 877692 209148 296481 574659 014457 367639 694002 183617 585930 296578 371478 609573 072920 029017 593886 002656 066027 495565 070861 919814 427461 154852 023819 996580 040039 768562 104875 571976 613508 (465 digits), a[885] = 2
                                                                                      A[886]/B[886] = 3 314873 338590 415021 587787 801332 282200 026776 480860 997005 786294 108542 658533 274767 696959 719308 161335 906741 023552 964540 102074 586833 900157 134014 594514 518537 941837 508909 391241 955218 573596 047804 900885 359792 169082 029381 368219 841876 630574 538980 505117 136614 235171 025193 827744 706896 572535 928084 129785 134409 645540 394114 246749 792368 870374 834076 636583 656926 398722 313906 090715 004778 679331 969501 169397 071815 443171 843503 619555 166077 860200 653021 852332 198919 503506 997278 420232 718753 (463 digits)/322 184226 201579 986613 769114 779504 202963 184669 200749 194016 306741 421718 691908 885887 808622 865373 506716 326416 278915 846415 796793 160297 250404 374058 965895 879839 022227 514793 742865 869776 051903 805754 633485 517298 608605 111455 759801 891735 025153 460250 092692 056213 129088 597899 668401 611613 898538 759107 448238 434724 306890 199452 152694 408428 719278 602551 441534 976697 220591 122641 535705 980743 765636 745525 132324 089790 606789 518154 121651 759005 589292 147721 041676 989760 627110 333381 767199 349069 (465 digits), a[886] = 1
                                                                                      A[887]/B[887] = 9 003810 502416 778189 685069 132283 762289 704497 381709 124810 122280 237968 078453 702738 372770 763740 611751 352146 196373 737587 094548 506930 191245 877985 391051 302237 865320 599082 909923 834260 643607 221935 112586 310621 678026 865093 682365 318397 488753 735920 100355 733492 844758 811892 325685 618072 425030 045312 285271 761680 464335 333055 796164 240615 666924 669293 664416 228029 051044 868795 849848 835265 493970 689591 853052 984913 794527 685616 739558 817528 675248 690833 636796 056357 979242 418541 565084 512731 (463 digits)/875 112085 223851 618042 812453 980176 326460 606893 086085 906461 119836 060965 393876 915048 317652 621825 143157 957285 456917 011278 606882 165595 803004 546057 290663 122818 839551 548580 625210 596013 291764 983454 244664 148204 182340 896698 837002 794655 829204 212441 900511 977759 119843 532816 024228 021810 728469 364217 474484 747140 822928 695385 880047 831314 806196 899105 066687 539324 737760 616761 680985 034407 560291 084936 267304 245608 709144 107170 163117 945472 333436 319262 079934 019561 022782 771639 106375 311646 (465 digits), a[887] = 2
                                                                                      A[888]/B[888] = 93 352978 362758 196918 438479 124169 905097 071750 297952 245107 009096 488223 443070 302151 424667 356714 278849 428202 987290 340411 047559 656135 812615 913868 505027 540916 595043 499738 490480 297825 009668 267156 026748 466008 949350 680318 191873 025851 518111 898181 508674 471542 682759 144117 084600 887620 822836 381206 982502 751214 288893 724672 208392 198525 539621 527013 280745 937216 909171 001864 589203 357433 619038 865419 699926 920953 388448 699671 015143 341364 612687 561358 220292 762499 295931 182694 071077 846063 (464 digits)/9073 305078 440096 167041 893654 581267 467569 253600 061608 258627 505102 031372 630678 036370 985149 083624 938295 899270 848085 959201 865614 816255 280449 834631 872527 108027 417743 000599 994971 829908 969553 640297 080126 999340 432014 078444 129829 838293 317195 584669 097811 833804 327523 926059 910681 829721 183232 401282 193085 906132 536177 153310 953172 721576 781247 593602 108410 369944 598197 290258 345556 324819 368547 594887 805366 545877 698230 589855 752831 213728 923655 340341 841017 185370 854938 049772 830952 465529 (466 digits), a[888] = 10
                                                                                      A[889]/B[889] = 195 709767 227933 172026 562027 380623 572483 847997 977613 615024 140473 214414 964594 307041 222105 477169 169450 208552 170954 418409 189667 819201 816477 705722 401106 384071 055407 598559 890884 429910 662943 756247 166083 242639 576728 225730 066111 370100 524977 532283 117704 676578 210277 100126 494887 393314 070702 807726 250277 264109 042122 782400 212948 637666 746167 723320 225908 102462 869386 872525 028255 550132 732048 420431 252906 826820 571425 084958 769845 500257 900623 813550 077381 581356 571104 783929 707240 204857 (465 digits)/19021 722242 104043 952126 599763 142711 261599 114093 209302 423716 130040 123710 655232 987790 287950 789075 019749 755827 153088 929682 338111 798106 363904 215321 035717 338873 675037 549780 615154 255831 230872 264048 404918 146885 046369 053587 096662 471242 463595 381780 096135 645367 774891 384935 845591 681253 094934 166781 860656 559405 895283 002007 786393 274468 368692 086309 283508 279213 934155 197278 372097 684046 297386 274711 878037 337364 105605 286881 668780 372930 180746 999945 761968 390302 732658 871184 768280 242704 (467 digits), a[889] = 2
                                                                                      A[890]/B[890] = 3028 999486 781755 777316 868889 833523 492354 791719 962156 470469 116194 704447 911984 907769 756249 514251 820602 556485 551606 616548 892576 944163 059781 499704 521623 301982 426157 478136 853746 746484 953824 610863 517997 105602 600274 066269 183543 577359 392774 882428 274244 620215 836915 646014 507911 787331 883378 497100 736661 712849 920735 460675 402621 763526 732137 376816 669367 474159 949974 089740 013036 609424 599765 171888 493529 323261 959824 974052 562825 845233 122044 764609 381016 482847 862502 941639 679680 918918 (466 digits)/294399 138710 000755 448940 890101 721936 391555 964998 201144 614369 455703 887032 459172 853225 304410 919750 234542 236678 144419 904436 937291 787850 739013 064447 408287 191132 543306 247309 222285 667377 432637 601023 153899 202616 127549 882250 579766 906930 271126 311370 539846 514320 950894 700097 594557 048517 607244 903010 102934 297220 965422 183427 749071 838602 311628 888241 361034 558153 610525 249433 927021 585513 829341 715565 975926 606339 282309 893080 784536 807681 634860 339528 270543 039911 844821 117544 355156 106089 (468 digits), a[890] = 15
                                                                                      A[891]/B[891] = 15340 707201 136712 058610 906476 548241 034257 806597 788395 967369 721446 736654 524518 845890 003353 048428 272462 990979 928987 501153 652552 540017 115385 204245 009222 893983 186194 989244 159618 162335 432066 810564 756068 770652 578098 557075 983829 256897 488851 944424 488927 777657 394855 330199 034446 329973 487595 293229 933585 828358 645800 085777 226057 455300 406854 607403 572745 473262 619257 321225 093438 597255 730874 279873 720553 443130 370549 955221 583974 726423 510847 636596 982463 995595 883619 492128 105644 799447 (467 digits)/1 491017 415792 107821 196831 050271 752393 219378 939084 215025 495563 408559 558872 951097 253916 810005 387826 192460 939217 875188 451867 024570 737360 058969 537558 077153 294536 391568 786326 726582 592718 394060 269164 174414 159965 684118 464839 995497 005893 819226 938632 795368 216972 529364 885423 818376 923841 131158 681832 375328 045510 722393 919146 531752 467479 926836 527516 088681 069981 986781 444448 007205 611615 444094 852541 757670 369060 517154 752285 591464 411338 355048 697587 114683 589861 956764 458906 544060 773149 (469 digits), a[891] = 5
                                                                                      A[892]/B[892] = 386546 679515 199557 242589 530803 539549 348799 956664 672055 654712 152363 120811 024956 055019 840075 724958 632177 330983 776294 145390 206390 444590 944411 605829 752195 651562 081032 209240 844200 804870 755494 874982 419716 371917 052737 993168 779274 999796 614073 493040 497439 061650 708298 900990 369070 036669 073260 827849 076307 421816 065737 605106 054058 146036 903502 561905 988004 305725 431407 120367 349001 540817 871622 168731 507365 401521 223573 854592 162194 005820 893235 679533 942616 372744 952990 244842 320800 905093 (468 digits)/37 569834 533512 696285 369717 146895 531766 876029 442103 576782 003454 669692 858856 236604 201145 554545 615405 046065 717125 024131 201112 551560 221852 213251 503399 337119 554542 332525 905477 386850 485337 284144 330127 514253 201758 230511 503250 467192 054275 751799 777190 424051 938634 185016 835693 053980 144545 886211 948819 486135 434989 025270 162091 042883 525600 482542 076143 578061 307703 280061 360634 107161 875899 931713 029109 917685 832852 211178 700220 571147 091140 511077 779206 137632 786460 763932 590207 956675 434814 (470 digits), a[892] = 25
                                                                                      A[893]/B[893] = 401887 386716 336269 301200 437280 087790 383057 763262 460451 622081 873809 857465 549474 900909 843428 773386 904640 321963 705281 646543 858942 984608 059796 810074 761418 545545 267227 198485 003818 967206 187561 685547 175785 142569 630836 550244 763104 256694 102925 437464 986366 839308 103154 231189 403516 366642 560856 121079 009893 250174 711537 690883 280115 601337 310357 169309 560749 778988 050664 441592 442440 138073 602496 448605 227918 844651 594123 809813 746168 732244 404083 316130 925080 368340 836609 736970 426445 704540 (468 digits)/39 060851 949304 804106 566548 197167 284160 095408 381187 791807 499018 078252 417729 187701 455062 364551 003231 238526 656342 899319 652979 576130 959212 272221 040957 414272 849078 724094 691804 113433 078055 678204 599291 688667 361723 914629 968090 462689 060169 571026 715823 219420 155606 714381 721116 872357 068387 017370 630651 861463 480499 747664 081237 574635 993080 409378 603659 666742 377685 266842 805082 114367 487515 375807 881651 675356 201912 728333 452506 162611 502478 866126 476793 252316 376322 720697 049114 500736 207963 (470 digits), a[893] = 1
                                                                                      A[894]/B[894] = 1 190321 452947 872095 844990 405363 715130 114915 483189 592958 898875 899982 835742 123905 856839 526933 271732 441457 974911 186857 438477 924276 413807 064005 225979 275032 742652 615486 606210 851838 739283 130618 246076 771286 657056 314411 093658 305483 513184 819924 367970 470172 740266 914607 363369 176102 769954 194973 070007 096093 922165 488812 986872 614289 348711 524216 900525 109503 863701 532736 003552 233881 816965 076615 065941 963203 090824 411821 474219 654531 470309 701402 311795 792777 109426 626209 718783 173692 314173 (469 digits)/115 691538 432122 304498 502813 541230 100087 066846 204479 160397 001490 826197 694314 612007 111270 283647 621867 523119 029810 822770 507071 703822 140276 757693 585314 165665 252699 780715 289085 613716 641448 640553 528710 891587 925206 059771 439431 392570 174614 893853 208836 862892 249847 613780 277926 798694 281319 920953 210123 209062 395988 520598 324566 192155 511761 301299 283462 911546 063073 813746 970798 335896 850930 683328 792413 268398 236677 667845 605232 896370 096098 243330 732792 642265 539106 205326 688436 958147 850740 (471 digits), a[894] = 2
                                                                                      A[895]/B[895] = 1 592208 839664 208365 146190 842643 802920 497973 246452 053410 520957 773792 693207 673380 757749 370362 045119 346098 296874 892139 085021 783219 398415 123802 036054 036451 288197 882713 804695 855657 706489 318179 931623 947071 799625 945247 643903 068587 769878 922849 805435 456539 579575 017761 594558 579619 136596 755829 191086 105987 172340 200350 677755 894404 950048 834574 069834 670253 642689 583400 445144 676321 955038 679111 514547 191121 935476 005945 284033 400700 202554 105485 627926 717857 477767 462819 455753 600138 018713 (469 digits)/154 752390 381427 108605 069361 738397 384247 162254 585666 952204 500508 904450 112043 799708 566332 648198 625098 761645 686153 722090 160051 279953 099489 029914 626271 579938 101778 504809 980889 727149 719504 318758 128002 580255 286929 974401 407521 855259 234784 464879 924660 082312 405454 328161 999043 671051 349706 938323 840775 070525 876488 268262 405803 766791 504841 710677 887122 578288 440759 080589 775880 450264 338446 059136 674064 943754 438590 396179 057739 058981 598577 109457 209585 894581 915428 926023 737551 458884 058703 (471 digits), a[895] = 1
                                                                                      A[896]/B[896] = 15 520201 009925 747382 160707 989157 941414 596674 701258 073653 587495 864117 074611 184332 676583 860191 677806 556342 646785 216109 203673 973250 999543 178223 550465 603094 336433 559910 848473 552758 097686 994237 630692 294932 853689 821639 888785 922773 442095 125572 616889 579028 956442 074461 714396 392674 999324 997435 789782 049978 473227 291969 086675 663933 899151 035383 529037 141786 647907 783340 009854 320779 412313 188618 696866 683300 510108 465329 030520 260833 293296 650772 963136 253494 409333 791584 820565 574934 482590 (470 digits)/1508 463051 864966 281944 127069 186806 558311 527137 475481 730237 506070 966248 702708 809384 208264 117435 247756 377930 205194 321581 947533 223400 035678 026925 221758 385108 168706 324005 117093 158064 116987 509376 680734 113885 507575 829384 107128 089903 287675 077772 530777 603703 898936 567238 269319 838156 428682 365867 777098 843795 284382 934959 976800 093279 055336 697400 267566 116142 029905 539054 953722 388275 896945 215558 858997 762188 183991 233457 124884 427204 483292 228445 619065 693502 777966 539540 326400 088104 379067 (472 digits), a[896] = 9
                                                                                      A[897]/B[897] = 17 112409 849589 955747 306898 831801 744335 094647 947710 127064 108453 637909 767818 857713 434333 230553 722925 902440 943660 108248 288695 756470 397958 302025 586519 639545 624631 442624 653169 408415 804176 312417 562316 242004 653315 766887 532688 991361 211974 048422 422325 035568 536017 092223 308954 972294 135921 753264 980868 155965 645567 492319 764431 558338 849199 869957 598871 812040 290597 366740 454998 997101 367351 867730 211413 874422 445584 471274 314553 661533 495850 756258 591062 971351 887101 254404 276319 175072 501303 (470 digits)/1663 215442 246393 390549 196430 925203 942558 689392 061148 682442 006579 870698 814752 609092 774596 765633 872855 139575 891348 043672 107584 503353 135167 056839 848029 965046 270484 828815 097982 885213 836491 828134 808736 694140 794505 803785 514649 945162 522459 542652 455437 686016 304390 895400 268363 509207 778389 304191 617873 914321 160871 203222 382603 860070 560178 408078 154688 694430 470664 619644 729602 838540 235391 274695 533062 705942 622581 629636 182623 486186 081869 337902 828651 588084 693395 465564 063951 546988 437770 (472 digits), a[897] = 1
                                                                                      A[898]/B[898] = 66 857430 558695 614624 081404 484563 174419 880618 544388 454845 912856 777846 378067 757472 979583 551852 846584 263665 477765 540854 069761 242662 193418 084300 310024 521731 210327 887784 807981 778005 510215 931490 317641 020946 813637 122302 486852 896857 078017 270839 883864 685734 564493 351131 641261 309557 407090 257230 732386 517875 409929 768928 379970 338950 446750 645256 325652 577907 519699 883561 374851 312083 514368 791809 331108 306567 846861 879151 974181 245433 780848 919548 736325 167550 070637 554797 649523 100151 986499 (470 digits)/6498 109378 604146 453591 716361 962418 385987 595313 658927 777563 525810 578345 146966 636662 532054 414336 866321 796657 879238 452598 270286 733459 441179 197444 765848 280246 980160 810450 411041 813705 626462 993781 106944 196307 891093 240740 651077 925390 855053 705729 897090 661752 812109 253439 074410 365779 763850 278442 630720 586758 766996 544627 124611 673490 735871 921634 731632 199433 441899 397989 142530 903896 603119 039645 458185 880016 051736 122365 672754 885762 728900 242154 105020 457756 858152 936232 518254 729069 692377 (472 digits), a[898] = 3
                                                                                      A[899]/B[899] = 6368 568312 925673 345035 040324 865303 314223 753409 664613 337425 829847 533315 684255 817646 494770 656574 148430 950661 331386 489384 916013 809378 772676 310555 038849 204010 605780 782181 411438 318939 274689 803997 738213 231951 948842 385623 783714 192783 623614 778211 389470 180352 162885 449729 228779 380247 809496 190184 557587 354129 588895 540515 861613 758631 290511 169308 535866 713254 662086 305071 065873 645035 232387 089616 666702 998367 897462 990711 861771 977742 676498 113388 541953 888608 597668 960180 981013 689511 218708 (472 digits)/618983 606409 640306 481762 250817 354950 611380 244189 659287 550976 958584 813487 776583 092033 319766 127636 173425 822074 419001 040507 784824 182000 047190 814092 603616 588509 385761 821604 146955 187248 350476 237339 968435 343390 448363 674147 367052 857293 752561 586992 679050 552533 454769 972112 337348 258285 344165 756241 536329 656404 025542 942799 220712 841690 468010 963377 659747 640607 451107 428613 270038 708717 531700 041014 060721 307467 537513 254375 094337 633645 327392 342542 805595 074986 217924 407653 298150 808609 213585 (474 digits), a[899] = 95
                                                                                      A[900]/B[900] = 6435 425743 484368 959659 121729 349866 488643 634028 209001 792271 742704 311162 062323 575119 474354 208426 995015 214326 809152 030238 985775 052040 966094 394855 348873 725741 816108 669966 219420 096944 784905 735488 055854 252898 762479 507926 270567 089640 701632 049051 273334 866086 727378 800860 870040 689805 216586 447415 289973 872004 998825 309444 241584 097581 737261 814564 861519 291162 181786 188632 440724 957118 746755 881425 997811 304935 744324 869863 835953 223176 457347 032937 278279 056158 668306 514978 630536 789663 205207 (472 digits)/625481 715788 244452 935353 967179 317368 997367 839503 318215 328540 484395 391832 923549 728695 851820 541973 039747 618732 298239 493106 055110 915459 488370 011537 369464 868756 365922 632054 557997 000953 976939 231121 075379 539698 339456 914888 018130 782684 607615 292722 576141 214286 266879 225551 411758 624065 108016 034684 167050 243162 792539 487426 345324 515181 203882 885012 391379 840040 893006 826602 412569 612614 134819 080659 518907 187483 589249 376740 767092 519408 056292 584696 910615 532743 076077 343885 816405 537678 905962 (474 digits), a[900] = 1
                                                                                      A[901]/B[901] = 1 119697 221935 721503 366063 099502 392205 849572 440289 821923 400437 317693 364352 466234 313315 558048 714444 286063 029199 314687 720729 455097 812465 907006 620530 394003 757344 792580 686337 371115 090387 063382 043431 400998 983437 857797 256868 591820 700625 005959 264081 676402 013355 999417 998659 745818 716550 278951 593029 723067 210994 385674 074369 655662 640271 836805 089029 578704 084312 111096 938483 311291 226578 421154 576314 288058 752251 665665 477155 481679 587269 797534 811537 684230 604058 214696 051484 063878 301245 719519 (475 digits)/108 827320 437775 930664 297998 572839 259787 156016 478263 710539 388480 758987 600583 550686 156415 684719 888972 049763 862762 014433 347855 319012 556491 535202 810057 521038 883360 690377 167042 680436 352286 360963 221286 009095 711203 174409 949774 503678 261730 870007 227998 351480 624057 624875 992506 571590 221549 030939 756602 436021 723567 134874 267556 961853 968038 739750 070521 368459 967681 941288 430830 644581 690962 855400 995110 831664 742128 477655 430527 801343 491239 066009 495108 342082 239538 379304 899899 536308 827059 945011 (477 digits), a[901] = 173
                                                                                      A[902]/B[902] = 1 126132 647679 205872 325722 221231 742072 338216 074318 030925 192709 060397 675514 528557 888435 032402 922871 281078 243526 123839 750968 440872 864506 873101 015385 742877 483086 608689 356303 590535 187331 848287 778919 456853 236336 620276 764794 862387 790265 707591 313132 949736 879442 726796 799520 615859 406355 495538 040445 013041 082999 384499 383813 897246 737853 574066 903594 440223 375474 292883 127115 752016 183697 167910 457740 285870 057187 409990 347019 317632 810446 254881 844474 962509 660216 883002 566462 694415 090908 924726 (475 digits)/109 452802 153564 175117 233352 540018 577156 153384 317767 028754 717021 243382 992416 474235 885111 536540 430945 089511 481494 312672 840961 374123 471951 023572 821594 890503 752117 056299 799097 238433 353240 337902 452407 084475 250901 513866 864662 521809 044415 477622 520720 927621 838343 891755 218057 983348 845614 138955 791286 603071 966729 927413 754983 307178 483219 943632 955533 759839 807722 834295 257433 057151 303576 990220 075770 350571 929612 066904 807268 568436 010647 122302 079805 252697 772281 455382 243785 352714 364738 850973 (477 digits), a[902] = 1
                                                                                      A[903]/B[903] = 2 245829 869614 927375 691785 320734 134278 187788 514607 852848 593146 378091 039866 994792 201750 590451 637315 567141 272725 438527 471697 895970 676972 780107 635916 136881 240431 401270 042640 961650 277718 911669 822350 857852 219774 478074 021663 454208 490890 713550 577214 626138 892798 726214 798180 361678 122905 774489 633474 736108 293993 770173 458183 552909 378125 410871 992624 018927 459786 403980 065599 063307 410275 589065 034054 573928 809439 075655 824174 799312 397716 052416 656012 646740 264275 097698 617946 758293 392154 644245 (475 digits)/218 280122 591340 105781 531351 112857 836943 309400 796030 739294 105502 002370 593000 024922 041527 221260 319917 139275 344256 327106 188816 693136 028442 558775 631652 411542 635477 746676 966139 918869 705526 698865 673693 093570 962104 688276 814437 025487 306146 347629 748719 279102 462401 516631 210564 554939 067163 169895 547889 039093 690297 062288 022540 269032 451258 683383 026055 128299 775404 775583 688263 701732 994539 845621 070881 182236 671740 544560 237796 369779 501886 188311 574913 594780 011819 834687 143684 889023 191798 795984 (477 digits), a[903] = 1
                                                                                      A[904]/B[904] = 7 863622 256523 987999 401078 183434 144906 901581 618141 589470 972148 194670 795115 512934 493686 803757 834817 982502 061702 439422 166062 128784 895425 213423 923134 153521 204380 812499 484226 475486 020488 583297 245972 030409 895660 054498 829785 225013 262937 848243 044776 828153 557838 905441 194061 700893 775072 819006 940869 221365 964980 695019 758364 555974 872229 806682 881466 497005 754833 504823 323912 941938 414523 935105 559904 007656 485504 636957 819543 715570 003594 412131 812512 902730 453042 176098 420302 969295 267372 857461 (475 digits)/764 293169 927584 492461 827405 878592 087986 081586 705859 246637 033527 250494 771416 549002 009693 200321 390696 507337 514263 293991 407411 453531 557278 699899 716552 125131 658550 296330 697516 995042 469820 434499 473486 365188 137215 578697 307973 598270 962854 520511 766878 764929 225548 441648 849751 648166 047103 648642 434953 720353 037621 114277 822604 114275 836995 993782 033699 144739 133937 161046 322224 162350 287196 527083 288413 897281 944833 700585 520657 677774 516305 687236 804546 037037 807740 959443 674840 019783 940135 238925 (477 digits), a[904] = 3
                                                                                      A[905]/B[905] = 25 836696 639186 891373 895019 871036 568998 892533 369032 621261 509590 962103 425213 533595 682811 001725 141769 514647 457832 756793 969884 282325 363248 420379 405318 597444 853573 838768 495320 388108 339184 661561 560266 949081 906754 641570 511019 129248 279704 258279 711545 110599 566315 442538 380365 464359 448124 231510 456082 400206 188935 855232 733277 220833 994814 830920 637023 509944 724286 918450 037337 889122 653847 394381 713766 596898 265952 986529 282805 946022 408499 288812 093551 354931 623401 625993 878855 666179 194273 216628 (476 digits)/2511 159632 374093 583167 013568 748634 100901 554160 913608 479205 206083 753854 907249 671928 070606 822224 492006 661287 887046 209080 411051 053730 700278 658474 781308 786937 611128 635669 058690 903997 114988 002364 094152 189135 373751 424368 738357 820300 194709 909165 049355 573890 139046 841577 759819 499437 208474 115822 852750 200152 803160 405121 490352 611859 962246 664729 127152 562517 177216 258722 654936 188783 856129 426870 936122 874082 506241 646316 799769 403103 050803 250021 988551 705893 435042 713018 168204 948375 012204 512759 (478 digits), a[905] = 3
                                                                                      A[906]/B[906] = 59 537015 534897 770747 191117 925507 282904 686648 356206 831993 991330 118877 645542 580125 859308 807208 118357 011796 977367 953010 105830 693435 621922 054182 733771 348410 911528 490036 474867 251702 698857 906420 366505 928573 709169 337639 851823 483509 822346 364802 467867 049352 690469 790517 954792 629612 671321 282027 853034 021778 342852 405485 224918 997642 861859 468524 155513 516895 203407 341723 398588 720183 722218 723868 987437 201453 017410 610016 385155 607614 820592 989755 999615 612593 699845 428086 178014 301653 655919 290717 (476 digits)/5786 612434 675771 658795 854543 375860 289789 189908 533076 205047 445694 758204 585915 892858 150906 844770 374709 829913 288355 712152 229513 560992 957836 016849 279169 699006 880807 567668 814898 803036 699796 439227 661790 743458 884718 427434 784689 238871 352274 338841 865589 912709 503642 124804 369390 647040 464051 880288 140454 120658 643941 924520 803309 337995 761489 323240 288004 269773 488369 678491 632096 539917 999455 380825 160659 645446 957316 993219 120196 483980 617912 187280 781649 448824 677826 385480 011249 916533 964544 264443 (478 digits), a[906] = 2
                                                                                      A[907]/B[907] = 85 373712 174084 662121 086137 796543 851903 579181 725239 453255 500921 080981 070756 113721 542119 808933 260126 526444 435200 709804 075714 975760 985170 474562 139089 945855 765102 328804 970187 639811 038042 567981 926772 877655 615923 979210 362842 612758 102050 623082 179412 159952 256785 233056 335158 093972 119445 513538 309116 421984 531788 260717 958196 218476 856674 299444 792537 026839 927694 260173 435926 609306 376066 118250 701203 798351 283363 596545 667961 553637 229092 278568 093166 967525 323247 054080 056869 967832 850192 507345 (476 digits)/8297 772067 049865 241962 868112 124494 390690 744069 446684 684252 651778 512059 493165 564786 221513 666994 866716 491201 175401 921232 640564 614723 658114 675324 060478 485944 491936 203337 873589 707033 814784 441591 755942 932594 258469 851803 523047 059171 546984 248006 914945 486599 642688 966382 129210 146477 672525 996110 993204 320811 447102 329642 293661 949855 723735 987969 415156 832290 665585 937214 287032 728701 855584 807696 096782 519529 463558 639535 919965 887083 668715 437302 770201 154718 112869 098498 179454 864908 976748 777202 (478 digits), a[907] = 1
                                                                                      A[908]/B[908] = 144 910727 708982 432868 277255 722051 134808 265830 081446 285249 492251 199858 716298 693847 401428 616141 378483 538241 412568 662814 181545 669196 607092 528744 872861 294266 676630 818841 445054 891513 736900 474402 293278 806229 325093 316850 214666 096267 924396 987884 647279 209304 947255 023574 289950 723584 790766 795566 162150 443762 874640 666203 183115 216119 718533 767968 948050 543735 131101 601896 834515 329490 098284 842119 688640 999804 300774 206562 053117 161252 049685 268324 092782 580119 023092 482166 234884 269486 506111 798062 (477 digits)/14084 384501 725636 900758 722655 500354 680479 933977 979760 889300 097473 270264 079081 457644 372420 511765 241426 321114 463757 633384 870078 175716 615950 692173 339648 184951 372743 771006 688488 510070 514580 880819 417733 676053 143188 279238 307736 298042 899258 586848 780535 399309 146331 091186 498600 793518 136577 876399 133658 441470 091044 254163 096971 287851 485225 311209 703161 102064 153955 615705 919129 268619 855040 188521 257442 164976 420875 632755 040162 371064 286627 624583 551850 603542 790695 483978 190704 781442 941293 041645 (479 digits), a[908] = 1
                                                                                      A[909]/B[909] = 809 927350 718996 826462 472416 406799 525944 908332 132470 879502 962177 080274 652249 582958 549262 889640 152544 217651 498044 023874 983443 321744 020633 118286 503396 417189 148256 423012 195462 097379 722544 939993 393166 908802 241390 563461 436173 094097 724035 562505 415808 206476 993060 350927 784911 711896 073279 491369 119868 640798 904991 591733 873772 299075 449343 139289 532789 745515 583202 269657 608503 256756 867490 328849 144408 797372 787234 629355 933547 359897 477518 620188 557079 868120 438709 464911 231291 315265 380751 497655 (477 digits)/78719 694575 678049 745756 481389 626267 793090 413959 345489 130753 139144 863379 888572 853008 083616 225821 073848 096773 494190 088156 990955 493306 737868 136190 758719 410701 355655 058371 316032 257386 387688 845688 844611 312859 974411 247995 061728 549386 043277 182250 817622 483145 374344 422314 622214 114068 355415 378106 661496 528161 902323 600457 778518 389113 149862 544017 930962 342611 435364 015743 882679 071801 130785 750302 383993 344411 567936 803311 120777 742405 101853 560220 529454 172432 066346 518389 132978 772123 683213 985427 (479 digits), a[909] = 5
                                                                                      A[910]/B[910] = 954 838078 427979 259330 749672 128850 660753 174162 213917 164752 454428 280133 368548 276805 950691 505781 531027 755892 910612 686689 164988 990940 627725 647031 376257 711455 824887 241853 640516 988893 459445 414395 686445 715031 566483 880311 650839 190365 648432 550390 063087 415781 940315 374502 074862 435480 864046 286935 282019 084561 779632 257937 056887 515195 167876 907258 480840 289250 714303 871554 443018 586246 965775 170968 833049 797177 088008 835917 986664 521149 527203 888512 649862 448239 461801 947077 466175 584751 886863 295717 (477 digits)/92804 079077 403686 646515 204045 126622 473570 347937 325250 020053 236618 133643 967654 310652 456036 737586 315274 417887 957947 721541 861033 669023 353818 828364 098367 595652 728398 829378 004520 767456 902269 726508 262344 988913 117599 527233 369464 847428 942535 769099 598157 882454 520675 513501 120814 907586 491993 254505 795154 969631 993367 854620 875489 676964 635087 855227 634123 444675 589319 631449 801808 340420 985825 938823 641435 509387 988812 436066 160940 113469 388481 184804 081304 775974 857042 002367 323683 553566 624507 027072 (479 digits), a[910] = 1
                                                                                      A[911]/B[911] = 9403 470056 570810 160439 219465 566455 472723 475792 057725 362275 052031 601474 969184 074212 105486 441673 931794 020687 693558 204077 468344 240209 670163 941568 889715 820291 572241 599694 960114 997420 857553 669554 571178 344086 339745 486266 293725 807388 559928 516015 983594 948514 455898 721446 458673 631223 849696 073786 658040 401854 921681 913167 385759 935831 960235 304615 860352 348772 011937 113647 595670 532979 559466 867568 641856 971966 579314 152617 813528 050243 222353 616802 405841 902275 594926 988608 426871 578032 362521 159108 (478 digits)/913956 406272 311229 564393 317795 765870 055223 545395 272739 311232 268708 066175 597461 648880 187946 864097 911317 857765 115719 582033 740258 514516 922237 591467 644027 771575 911244 522773 356719 164498 508116 384263 205716 213078 032806 993095 386912 176246 526099 104147 201043 425236 060424 043824 709548 282346 783354 668658 817891 254849 842634 292045 657925 481794 865653 241066 638073 344691 739240 698792 098954 135590 003219 199715 156912 928903 467248 727906 569238 763629 598184 223457 261197 156205 779724 539695 046130 754223 303777 229075 (480 digits), a[911] = 9
                                                                                      A[912]/B[912] = 19761 778191 569599 580209 188603 261761 606200 125746 329367 889302 558491 483083 306916 425230 161664 389129 394615 797268 297729 094844 101677 471359 968053 530169 155689 352038 969370 441243 560746 983735 174552 753504 828802 403204 245974 852844 238290 805142 768289 582422 030277 312810 852112 817394 992209 697928 563438 434508 598099 888271 622996 084271 828407 386859 088347 516490 201544 986794 738178 098849 634359 652206 084708 906106 116763 741110 246637 141153 613720 621635 971911 122117 461546 252790 651655 924294 319918 740816 611905 613933 (479 digits)/1 920716 891622 026145 775301 839636 658362 584017 438727 870728 642517 774034 265995 162577 608412 831930 465782 137910 133418 189386 885609 341550 698057 198294 011299 386423 138804 550887 874924 717959 096453 918502 495034 673777 415069 183213 513424 143289 199921 994733 977394 000244 732926 641523 601150 539911 472280 058702 591823 430937 479331 678636 438712 191340 640554 366394 337360 910270 134059 067801 029033 999716 611600 992264 338253 955261 367194 923309 891879 299417 640728 584849 631718 603699 088386 416491 081757 415945 062013 232061 485222 (481 digits), a[912] = 2
                                                                                      A[913]/B[913] = 108212 361014 418808 061485 162481 875263 503724 104523 704564 808787 844489 016891 503766 200362 913808 387320 904873 007029 182203 678297 976731 597009 510431 592414 668162 580486 419093 805912 763849 916096 730317 437078 715190 360107 569619 750487 485179 833102 401376 428126 134981 512568 716462 808421 419722 120866 666888 246329 648539 843213 036662 334526 527796 870127 401972 887066 868077 282745 702827 607895 767468 794009 983011 398099 225675 677517 812499 858385 882131 158423 081909 227389 713573 166228 853206 610080 026465 282115 422049 228773 (480 digits)/10 517540 864382 441958 440902 515979 057682 975310 739034 626382 523821 138879 396151 410349 690944 347599 193008 600868 524856 062654 010080 448012 004802 913707 647964 576143 465598 665683 897396 946514 646768 100628 859436 574603 288423 948874 560216 103358 175856 499768 991117 202267 089869 268042 049577 409105 643747 076867 627775 972578 651508 235816 485606 614628 684566 697624 927871 189424 014987 078245 843962 097537 193594 964540 890984 933219 764878 083798 187303 066326 967272 522432 382050 279692 598137 862179 948482 125856 064289 464084 655185 (482 digits), a[913] = 5
                                                                                      A[914]/B[914] = 127974 139205 988407 641694 351085 137025 109924 230270 033932 698090 402980 499974 810682 625593 075472 776450 299488 804297 479932 773142 078409 068369 478485 122583 823851 932525 388464 247156 324596 899831 904870 190583 543992 763311 815594 603331 723470 638245 169666 010548 165258 825379 568575 625816 411931 818795 230326 680838 246639 731484 659658 418798 356204 256986 490320 403557 069622 269540 441005 706745 401828 446216 067720 304205 342439 418628 059136 999539 495851 780059 053820 349507 175119 419019 504862 534374 346384 022932 033954 842706 (480 digits)/12 438257 756004 468104 216204 355615 716045 559328 177762 497111 166338 912913 662146 572927 299357 179529 658790 738778 658274 252040 895689 789562 702860 112001 659263 962566 604403 216571 772321 664473 743222 019131 354471 248380 703493 132088 073640 246647 375778 494502 968511 202511 822795 909565 650727 949017 116027 135570 219599 403516 130839 914452 924318 805969 325121 064019 265232 099694 149046 146046 872996 097253 805195 956805 229238 888481 132073 007108 079182 365744 608001 107282 013768 883391 686524 278671 030239 541801 126302 696146 140407 (482 digits), a[914] = 1
                                                                                      A[915]/B[915] = 1 004031 335456 337661 553345 620077 834439 273193 716413 942093 695420 665352 516715 178544 579514 442117 822473 001294 637111 541733 090292 525595 075595 859827 450501 435126 108164 138343 536007 036028 214920 064408 771163 523139 703290 278781 973809 549474 300818 589038 501963 291793 290225 696492 189136 303244 852433 279175 012197 375017 963605 654271 266115 021226 669032 834215 711966 355433 169528 789867 555113 580267 917522 457053 527536 622751 607914 226458 855162 353093 618836 458651 673939 939409 099365 387244 350700 451153 442639 659733 127715 (481 digits)/97 585345 156413 718687 954333 005289 070001 890607 983372 106160 688193 529275 031177 420840 786444 604306 804543 772319 132775 826940 279908 974950 924823 697719 262812 314109 696421 181686 303648 597830 849322 234548 340735 313268 212875 873491 075697 829889 806305 961289 770695 619849 849440 635001 604673 052225 455937 025859 164971 797191 567387 636986 955838 256413 960414 145759 784495 887283 058310 100573 954934 778313 829966 662177 495657 152587 689389 133554 741579 626539 223280 273406 478432 463434 403807 812877 160158 918463 948408 337107 638034 (482 digits), a[915] = 7
                                                                                      A[916]/B[916] = 1 132005 474662 326069 195039 971162 971464 383117 946683 976026 393511 068333 016689 989227 205107 517590 598923 300783 441409 021665 863434 604004 143965 338312 573085 258978 040689 526807 783163 360625 114751 969278 961747 067132 466602 094376 577141 272944 939063 758704 512511 457052 115605 265067 814952 715176 671228 509501 693035 621657 695090 313929 684913 377430 926019 324536 115523 425055 439069 230873 261858 982096 363738 524773 831741 965191 026542 285595 854701 848945 398895 512472 023447 114528 518384 892106 885074 797537 465571 693687 970421 (481 digits)/110 023602 912418 186792 170537 360904 786047 449936 161134 603271 854532 442188 693323 993768 085801 783836 463334 511097 791050 078981 175598 764513 627683 809720 922076 276676 300824 398258 075970 262304 592544 253679 695206 561648 916369 005579 149338 076537 182084 455792 739206 822361 672236 544567 255401 001242 571964 161429 384571 200707 698227 551439 880157 062383 285535 209779 049727 986977 207356 246620 827930 875567 635162 618982 724896 041068 821462 140662 820761 992283 831281 380688 492201 346826 090332 091548 190398 460265 074711 033253 778441 (483 digits), a[916] = 1
                                                                                      A[917]/B[917] = 3 268042 284780 989799 943425 562403 777368 039429 609781 894146 482442 802018 550095 156998 989729 477299 020319 602861 519929 585064 817161 733603 363526 536452 596671 953082 189543 191959 102333 757278 444424 002966 694657 657404 636494 467535 128092 095364 178946 106447 526986 205897 521436 226627 819041 733598 194890 298178 398268 618333 353786 282130 635941 776088 521071 483287 943013 205544 047667 251614 078831 544460 644999 506601 191020 553133 660998 797650 564566 050984 416627 483595 720834 168466 136135 171458 120850 046228 373783 047109 068557 (481 digits)/317 632550 981250 092272 295407 727098 642096 790480 305641 312704 397258 413652 417825 408376 958048 171979 731212 794514 714875 984902 631106 503978 180191 317161 106964 867462 298069 978202 455589 122440 034410 741907 731148 436566 045613 884649 374373 982964 170474 872875 249109 264573 193913 724136 115475 054710 599865 348717 934114 198606 963842 739866 716152 381180 531484 565317 883951 861237 473022 593815 610796 529449 100291 900142 945449 234725 332313 414880 383103 611106 885843 034783 462835 157086 584471 995973 540955 838994 097830 403615 194916 (483 digits), a[917] = 2
                                                                                      A[918]/B[918] = 4 400047 759443 315869 138465 533566 748832 422547 556465 870172 875953 870351 566785 146226 194836 994889 619242 903644 961338 606730 680596 337607 507491 874765 169757 212060 230232 718766 885497 117903 559175 972245 656404 724537 103096 561911 705233 368309 118009 865152 039497 662949 637041 491695 633994 448774 866118 807680 091304 239991 048876 596060 320855 153519 447090 807824 058536 630599 486736 482487 340690 526557 008738 031375 022762 518324 687541 083246 419267 899929 815522 996067 744281 282994 654520 063565 005924 843765 839354 740797 038978 (481 digits)/427 656153 893668 279064 465945 088003 428144 240416 466775 915976 251790 855841 111149 402145 043849 955816 194547 305612 505926 063883 806705 268491 807875 126882 029041 144138 598894 376460 531559 384744 626954 995587 426354 998214 961982 890228 523712 059501 352559 328667 988316 086934 866150 268703 370876 055953 171829 510147 318685 399314 662070 291306 596309 443563 817019 775096 933679 848214 680378 840436 438727 405016 735454 519125 670345 275794 153775 555543 203865 603390 717124 415471 955036 503912 674804 087521 731354 299259 172541 436868 973357 (483 digits), a[918] = 1
                                                                                      A[919]/B[919] = 7 668090 044224 305669 081891 095970 526200 461977 166247 764319 358396 672370 116880 303225 184566 472188 639562 506506 481268 191795 497758 071210 871018 411217 766429 165142 419775 910725 987830 875182 003599 975212 351062 381941 739591 029446 833325 463673 296955 971599 566483 868847 158477 718323 453036 182373 061009 105858 489572 858324 402662 878190 956796 929607 968162 291112 001549 836143 534403 734101 419522 071017 653737 537976 213783 071458 348539 880896 983833 950914 232150 479663 465115 451460 790655 235023 126774 889994 213137 787906 107535 (481 digits)/745 288704 874918 371336 761352 815102 070241 030896 772417 228680 649049 269493 528974 810522 001898 127795 925760 100127 220802 048786 437811 772469 988066 444043 136006 011600 896964 354662 987148 507184 661365 737495 157503 434781 007596 774877 898086 042465 523034 201543 237425 351508 060063 992839 486351 110663 771694 858865 252799 597921 625913 031173 312461 824744 348504 340414 817631 709452 153401 434252 049523 934465 835746 419268 615794 510519 486088 970423 586969 214497 602967 450255 417871 660999 259276 083495 272310 138253 270371 840484 168273 (483 digits), a[919] = 1
                                                                                      A[920]/B[920] = 12 068137 803667 621538 220356 629537 275032 884524 722713 634492 234350 542721 683665 449451 379403 467078 258805 410151 442606 798526 178354 408818 378510 285982 936186 377202 650008 629492 873327 993085 562775 947458 007467 106478 842687 591358 538558 831982 414965 836751 605981 531796 795519 210019 087030 631147 927127 913538 580877 098315 451539 474251 277652 083127 415253 098936 060086 466743 021140 216588 760212 597574 662475 569351 236545 589783 036080 964143 403101 850844 047673 475731 209396 734455 445175 298588 132699 733760 052492 528703 146513 (482 digits)/1172 944858 768586 650401 227297 903105 498385 271313 239193 144656 900840 125334 640124 212667 045748 083612 120307 405739 726728 112670 244517 040961 795941 570925 165047 155739 495858 731123 518707 891929 288320 733082 583858 432995 969579 665106 421798 101966 875593 530211 225741 438442 926214 261542 857227 166616 943524 369012 571484 997236 287983 322479 908771 268308 165524 115511 751311 557666 833780 274688 488251 339482 571200 938394 286139 786313 639864 525966 790834 817888 320091 865727 372908 164911 934080 171017 003664 437512 442913 277353 141630 (484 digits), a[920] = 1
                                                                                      A[921]/B[921] = 19 736227 847891 927207 302247 725507 801233 346501 888961 398811 592747 215091 800545 752676 563969 939266 898367 916657 923874 990321 676112 480029 249528 697200 702615 542345 069784 540218 861158 868267 566375 922670 358529 488420 582278 620805 371884 295655 711921 808351 172465 400643 953996 928342 540066 813520 988137 019397 070449 956639 854202 352442 234449 012735 383415 390048 061636 302886 555543 950690 179734 668592 316213 107327 450328 661241 384620 845040 386935 801758 279823 955394 674512 185916 235830 533611 259474 623754 265630 316609 254048 (482 digits)/1918 233563 643505 021737 988650 718207 568626 302210 011610 373337 549889 394828 169099 023189 047646 211408 046067 505866 947530 161456 682328 813431 784008 014968 301053 167340 392823 085786 505856 399113 949686 470577 741361 867776 977176 439984 319884 144432 398627 731754 463166 789950 986278 254382 343578 277280 715219 227877 824284 595157 913896 353653 221233 093052 514028 455926 568943 267118 987181 708940 537775 273948 406947 357662 901934 296833 125953 496390 377804 032385 923059 315982 790779 825911 193356 254512 275974 575765 713285 117837 309903 (484 digits), a[921] = 1
                                                                                      A[922]/B[922] = 248 902871 978370 748025 847329 335630 889833 042547 390250 420231 347317 123823 290214 481570 147042 738281 039220 410046 529106 682386 291704 169169 372854 652391 367572 885343 487423 112119 207234 412296 359287 019502 309820 967525 830031 041023 001170 379850 958027 536965 675566 339524 243482 350129 567832 393399 784772 146303 426276 577993 701967 703558 091040 235952 016237 779512 799722 101381 687667 624870 917028 620682 457032 857280 640489 524679 651531 104628 046331 471943 405560 940467 303542 965450 275141 701923 246395 218811 240056 328014 195089 (483 digits)/24191 747622 490646 911257 091106 521596 321900 897833 378517 624707 499512 863272 669312 490935 617502 620508 673117 476143 097090 050150 432462 802143 204037 750544 777685 163824 209735 760561 588984 681296 684558 380015 480200 846319 695696 944918 260407 835155 659126 311264 783742 917854 761553 314130 980166 493985 526155 103546 462900 139131 254739 566318 563568 384938 333865 586630 578630 763094 679960 781974 941554 626863 454569 230349 109351 348311 151306 482651 324483 206519 396803 657520 862266 075846 254355 225164 315359 346701 002334 691400 860466 (485 digits), a[922] = 12
                                                                                      A[923]/B[923] = 268 639099 826262 675233 149577 061138 691066 389049 279211 819042 940064 338915 090760 234246 711012 677547 937588 326704 452981 672707 967816 649198 622383 349592 070188 427688 557207 652338 068393 280563 925662 942172 668350 455946 412309 661828 373054 675506 669949 345316 848031 740168 197479 278472 107899 206920 772909 165700 496726 534633 556170 056000 325489 248687 399653 169560 861358 404268 243211 575561 096763 289274 773245 964608 090818 185921 036151 949668 433267 273701 685384 895861 978055 151366 510972 235534 505869 842565 505686 644623 449137 (483 digits)/26109 981186 134151 932995 079757 239803 890527 200043 390127 998045 049402 258100 838411 514124 665148 831916 719184 982010 044620 211607 114791 615574 988045 765513 078738 331164 602558 846348 094841 080410 634244 850593 221562 714096 672873 384902 580291 979588 057754 043019 246909 707805 747831 568513 323744 771266 241374 331424 287184 734289 168635 919971 784801 477990 847894 042557 147574 030213 667142 490915 479329 900811 861516 588012 011285 645144 277259 979041 702287 238905 319862 973503 653045 901757 447711 479676 591333 922466 715619 809238 170369 (485 digits), a[923] = 1
                                                                                      A[924]/B[924] = 1592 098371 109684 124191 595214 641324 345164 987793 786309 515446 047638 818398 744015 652803 702106 126020 727162 043568 794015 045926 130787 415162 484771 400351 718515 023786 273461 373809 549200 815115 987601 730365 651573 247257 891579 350164 866443 757384 307774 263549 915725 040365 230878 742490 107328 428003 649317 974805 909909 251161 482817 983559 718486 479389 014503 627317 106514 122722 903725 502676 400845 067056 323262 680321 094580 454284 832290 852970 212667 840451 832485 419777 193818 722282 830002 879595 775744 431638 768489 551131 440774 (484 digits)/154741 653553 161406 576232 489892 720615 774536 898050 329157 614932 746524 153776 861370 061558 943246 780092 269042 386193 320191 108186 006420 880018 144266 578110 171376 819647 222529 992302 063190 083349 855782 632981 588014 416803 060063 869431 161867 733095 947896 526361 018291 456883 500711 156697 598890 350316 733026 760667 898823 810577 097919 166177 487575 774892 573335 799416 316500 914163 015673 236552 338204 130922 762152 170409 165779 574032 537606 377859 835919 401045 996118 525039 127495 584633 492912 623547 272028 959034 580433 737591 712311 (486 digits), a[924] = 5
                                                                                      A[925]/B[925] = 629147 495688 151491 730913 259360 384255 031236 567594 871470 420231 757397 606418 976943 091709 042932 455735 166595 536378 088924 813529 628845 638380 107086 488520 883622 823266 574450 307110 002715 251379 028346 436605 039783 122813 586152 976950 618338 842308 240783 447533 559422 684434 394582 562064 502628 268362 253509 214034 910880 743419 269273 562089 127648 607348 128585 959817 934436 879815 214785 132739 430564 776522 462004 691440 450097 628429 791038 872902 437064 252175 517125 707853 536450 453084 362109 675865 924920 339879 059059 341542 554867 (486 digits)/61 149063 134684 889749 544828 587381 883034 832601 929923 407385 896479 926442 999961 079585 829907 247626 968362 990927 528371 520107 945079 651039 222741 973344 119030 772582 091817 501905 805663 054924 003603 668384 878320 487257 351305 398101 810211 518046 552487 476881 955621 472035 176788 528738 464064 885433 146375 786944 795244 322589 912242 846706 560079 377232 560557 315534 812002 165435 124604 858070 929089 069961 615302 911623 899632 494217 387996 631779 233676 890450 652073 786680 363959 013801 831987 148197 780849 042772 741125 986946 157964 533214 (488 digits), a[925] = 395
                                                                                      A[926]/B[926] = 630739 594059 261175 855104 854575 025579 376401 555388 657779 935677 805036 424817 720958 744512 745038 581755 893757 579946 882939 859455 759633 053542 591857 888872 602137 847052 847911 680919 551916 066495 015948 166970 691356 370071 477732 327115 484782 599692 548557 711083 475147 724799 625461 304554 609956 696365 902827 188840 820789 994580 752091 545648 846135 086737 143089 587135 040951 002538 118510 635415 831409 843578 785267 371761 544678 082714 623329 725872 649732 092627 349611 127630 730269 175367 192112 555461 700664 771517 827548 892673 995641 (486 digits)/61 303804 788238 051156 121061 077274 603650 607138 827973 736543 511412 672967 153737 940955 891466 190873 748455 259969 914564 840299 053265 657460 102760 117610 697140 943958 911464 724435 797965 118114 086953 524167 511302 075271 768108 458165 679642 679914 285583 424778 481982 490326 633672 029449 620762 484323 496692 519971 555912 221413 722819 944625 726256 864808 335449 888870 611418 481936 038767 873744 165641 408165 746225 673776 070041 659996 962029 169385 611536 726370 053119 782798 888998 141297 416620 641110 404396 314801 700160 567379 895556 245525 (488 digits), a[926] = 1
                                                                                      A[927]/B[927] = 10 090241 406577 069129 557486 077985 767945 677259 898424 738169 455398 832943 978684 791324 259400 218511 182073 572959 235581 333022 705366 023341 441518 984954 821609 915690 529059 293125 520903 281456 248804 267568 941165 410128 673885 752137 883682 890077 837696 469149 113785 686638 556428 776502 130383 651978 713850 795917 046647 222730 662130 550646 746821 819674 908405 274929 766843 548701 917886 992444 663976 901712 430204 241015 267863 620268 869149 140984 760992 183045 641585 761292 622314 490488 083592 243798 007791 434891 912646 472292 731652 489482 (488 digits)/980 706134 958255 657091 360744 746500 937793 939684 349529 455538 567670 020950 306030 193924 201900 110733 195191 890476 246844 124593 744064 512940 764143 737504 576144 931965 763788 368442 775139 826635 307906 530897 547851 616333 872932 270587 004851 716760 836238 848559 185358 826934 681868 970482 775502 150285 596763 586518 133927 643795 754542 016092 453932 349357 592305 648593 983279 394475 706122 964233 413710 192447 808688 018264 950257 394171 818434 172563 406727 786001 448870 528663 698931 133263 081296 764853 846793 764798 243534 497644 591308 216089 (489 digits), a[927] = 15
                                                                                      A[928]/B[928] = 81 352670 846675 814212 314993 478461 169144 794480 742786 563135 578868 468588 254296 051552 819714 493128 038344 477431 464597 547121 502383 946364 585694 471496 461751 927662 079527 192915 848145 803566 056929 156499 696293 972385 761157 494835 396578 605405 301264 301750 621368 968256 176229 837478 347623 825786 407172 270163 562018 602635 291625 157265 520223 403534 353979 342527 721883 430566 345634 058067 947231 045109 285212 713389 514670 506829 035907 751207 813810 114097 225313 439952 106146 654173 844105 142496 617793 179800 072689 605890 745893 911497 (488 digits)/7906 952884 454283 307887 007019 049282 106002 124613 624209 380852 052772 840569 601979 492349 506667 076739 309990 383779 889317 837049 005781 760986 215910 017647 306300 399685 021771 671977 999083 731196 550205 771347 894115 005942 751566 622861 718456 414000 975494 213251 964853 105804 088623 793311 824779 686608 270801 212116 627333 371779 759156 073365 357715 659669 073895 077622 477653 637741 687751 587611 475322 947748 215729 819895 672100 813371 509502 549892 865359 014381 644084 012108 480447 207402 066994 759941 178746 433187 648436 548536 626021 974237 (490 digits), a[928] = 8
                                                                                      A[929]/B[929] = 172 795583 099928 697554 187473 034908 106235 266221 383997 864440 613135 770120 487276 894429 898829 204767 258762 527822 164776 427265 710133 916070 612907 927947 745113 771014 688113 678957 217194 888588 362662 580568 333753 354900 196200 741808 676840 100888 440225 072650 356523 623150 908888 451458 825631 303551 528195 336244 170684 428001 245380 865177 787268 626743 616363 959985 210610 409834 609155 108580 558438 991931 000629 667794 297204 633926 940964 643400 388612 411240 092212 641196 834607 798835 771802 528791 243377 794492 058025 684074 223440 312476 (489 digits)/16794 611903 866822 272865 374782 845065 149798 188911 597948 217242 673215 702089 509989 178623 215234 264211 815172 658036 025479 798691 755628 034913 195963 772799 188745 731335 807331 712398 773307 289028 408318 073593 336081 628219 376065 516310 441764 544762 787227 275063 115065 038542 859116 557106 425061 523502 138366 010751 388594 387355 272854 162823 169363 668695 740095 803838 938586 669959 081626 139456 364356 087944 240147 658056 294459 020914 837439 272349 137445 814764 737038 552880 659825 548067 215286 284736 204286 631173 540407 594717 843352 164563 (491 digits), a[929] = 2
                                                                                      A[930]/B[930] = 254 148253 946604 511766 502466 513369 275380 060702 126784 427576 192004 238708 741572 945982 718543 697895 297107 005253 629373 974387 212517 862435 198602 399444 206865 698676 767640 871873 065340 692154 419591 737068 030047 327285 957358 236644 073418 706293 741489 374400 977892 591407 085118 288937 173255 129337 935367 606407 732703 030636 537006 022443 307492 030277 970343 302512 932493 840400 954789 166648 505670 037040 285842 381183 811875 140755 976872 394608 202422 525337 317526 081148 940754 453009 615907 671287 861170 974292 130715 289964 969334 223973 (489 digits)/24701 564788 321105 580752 381801 894347 255800 313525 222157 598094 725988 542659 111968 670972 721901 340951 125163 041815 914797 635740 761409 795899 411873 790446 495046 131020 829103 384376 772391 020224 958523 844941 230196 634162 127632 139172 160220 958763 762721 488315 079918 144346 947740 350418 249841 210110 409167 222868 015927 759135 032010 236188 527079 328364 813990 881461 416240 307700 769377 727067 839679 035692 455877 477951 966559 834286 346941 822242 002804 829146 381122 564989 140272 755469 282281 044677 383033 064361 188844 143254 469374 138800 (491 digits), a[930] = 1
                                                                                      A[931]/B[931] = 681 092090 993137 721087 192406 061646 656995 387625 637566 719592 997144 247537 970422 786395 335916 600557 852976 538329 423524 376040 135169 640941 010112 726836 158845 168368 223395 422703 347876 272897 201846 054704 393848 009472 110917 215096 823677 513475 923203 821452 312308 805965 079125 029333 172141 562227 398930 549059 636090 489274 319392 910064 402252 687299 557050 565011 075598 090636 518733 441877 569779 066011 572314 430161 920954 915438 894709 432616 793457 461914 727264 803494 716116 704855 003617 871366 965719 743076 319456 264004 162108 760422 (489 digits)/66197 741480 509033 434370 138386 633759 661398 815962 042263 413432 125192 787407 733926 520568 659036 946114 065498 741667 855075 070173 278447 626712 019711 353692 178837 993377 465538 481152 318089 329478 325365 763475 796474 896543 631329 794654 762206 462290 312670 251693 274901 327236 754597 257942 924743 943722 956700 456487 420449 905625 336874 635200 223522 325425 368077 566761 771067 285360 620381 593592 043714 159329 151902 613960 227578 689487 531322 916833 143055 473057 499283 682858 940371 059005 779848 374090 970352 759895 918095 881226 782100 442163 (491 digits), a[931] = 2
                                                                                      A[932]/B[932] = 935 240344 939742 232853 694872 575015 932375 448327 764351 147169 189148 486246 711995 732378 054460 298453 150083 543583 052898 350427 347687 503376 208715 126280 365710 867044 991036 294576 413216 965051 621437 791772 423895 336758 068275 451740 897096 219769 664693 195853 290201 397372 164243 318270 345396 691565 334298 155467 368793 519910 856398 932507 709744 717577 527393 867524 008091 931037 473522 608526 075449 103051 858156 811345 732830 056194 871581 827224 995879 987252 044790 884643 656871 157864 619525 542654 826890 717368 450171 553969 131442 984395 (489 digits)/90899 306268 830139 015122 520188 528106 917199 129487 264421 011526 851181 330066 845895 191541 380938 287065 190661 783483 769872 705914 039857 422611 431585 144138 673884 124398 294641 865529 090480 349703 283889 608417 026671 530705 758961 933826 922427 421054 075391 740008 354819 471583 702337 608361 174585 153833 365867 679355 436377 664760 368884 871388 750601 653790 182068 448223 187307 593061 389759 320659 883393 195021 607780 091912 194138 523773 878264 739075 145860 302203 880406 247848 080643 814475 062129 418768 353385 824257 106940 024481 251474 580963 (491 digits), a[932] = 1
                                                                                      A[933]/B[933] = 4422 053470 752106 652501 971896 361710 386497 180936 694971 308269 753738 192524 818405 715907 553757 794370 453310 712661 635117 777749 525919 654445 844973 231957 621688 636548 187540 601009 000744 133103 687597 221794 089429 356504 384019 022060 412062 392554 581976 604865 473114 395453 736098 302414 553728 328488 736123 170929 111264 568917 744988 640095 241231 557609 666626 035107 107965 814786 412823 875981 871575 478219 004941 675544 852275 140218 381036 741516 776977 410922 906428 342069 343601 336313 481720 041986 273282 612550 120142 479880 687880 698002 (490 digits)/429794 966555 829589 494860 219140 746187 330195 333911 099947 459539 529918 107675 117507 286734 182790 094374 828145 875602 934565 893829 437877 317157 746051 930246 874374 490970 644105 943268 680010 728291 460924 197143 903161 019366 667177 529962 451916 146506 614237 211726 694179 213571 563947 691387 623084 559056 420171 173909 165960 564666 812414 120755 225928 940586 096351 359654 520297 657606 179418 876231 577286 939415 583022 981609 004132 784583 044381 873133 726496 681873 020908 674251 262946 316906 028366 049164 383896 056924 345855 979151 787998 766015 (492 digits), a[933] = 4
                                                                                      A[934]/B[934] = 14201 400757 196062 190359 610561 660147 091866 991137 849265 071978 450363 063821 167212 880100 715733 681564 510015 681567 958251 683675 925446 466713 743634 822153 230776 776689 553658 097603 415449 364362 684229 457154 692183 406271 220332 517922 133283 397433 410623 010449 709544 583733 372538 225514 006581 677031 542667 668254 702587 226664 091364 852793 433439 390406 527271 972845 331989 375396 711994 236471 690175 537708 872981 837980 289655 476850 014692 051775 326812 220020 764075 910851 687675 166805 064685 668613 646738 555018 810598 993611 195085 078401 (491 digits)/1 380284 205936 318907 499703 177610 766668 907785 131220 564263 390145 440935 653092 198417 051743 929308 570189 675099 410292 573570 387402 353489 374084 669740 934879 297007 597310 226959 695335 130512 534577 666662 199848 736154 588805 760494 523714 278175 860573 918103 375188 437357 112298 394180 682524 043838 831002 626381 201082 934259 358760 806127 233654 428388 475548 471122 527186 748200 565879 928015 949354 615254 013268 356849 036739 206536 877523 011410 358476 325350 347822 943132 270601 869482 765193 147227 566261 505073 995030 144507 961936 615470 879008 (493 digits), a[934] = 3
                                                                                      A[935]/B[935] = 18623 454227 948168 842861 582458 021857 478364 172074 544236 380248 204101 256345 985618 596008 269491 475934 963326 394229 593369 461425 451366 121159 588608 054110 852465 413237 741198 698612 416193 497466 371826 678948 781612 762775 604351 539982 545345 789987 992599 615315 182658 979187 108636 527928 560310 005520 278790 839183 813851 795581 836353 492888 674670 948016 193898 007952 439955 190183 124818 112453 561751 015927 877923 513525 141930 617068 395728 793292 103789 630943 670504 252921 031276 503118 546405 710599 920021 167568 930741 473491 882965 776403 (491 digits)/1 810079 172492 148496 994563 396751 512856 237980 465131 664210 849684 970853 760767 315924 338478 112098 664564 503245 285895 508136 281231 791366 691242 415792 865126 171382 088280 871065 638603 810523 262869 127586 396992 639315 608172 427672 053676 730092 007080 532340 586915 131536 325869 958128 373911 666923 390059 046552 374992 100219 923427 618541 354409 654317 416134 567473 886841 268498 223486 107434 825586 192540 952683 939872 018348 210669 662106 055792 231610 051847 029695 964040 944853 132429 082099 175593 615425 888970 051954 490363 941088 403469 645023 (493 digits), a[935] = 1
                                                                                      A[936]/B[936] = 70071 763441 040568 718944 357935 725719 526959 507361 481974 212723 062666 832859 124068 668125 524208 109369 399994 864256 738360 067952 279544 830192 509458 984485 788173 016402 777254 193440 664029 856761 799709 494001 037021 694598 033387 137869 769320 767397 388421 856395 257521 521294 698447 809299 687511 693592 379040 185806 144142 613409 600425 331459 457452 234455 108965 996702 651854 945946 086448 573832 375428 585492 506752 378555 715447 328055 201878 431651 638181 112851 775588 669614 781504 676160 703902 800413 406802 057725 602823 414086 843982 407610 (491 digits)/6 810521 723412 764398 483393 367865 305237 621726 526615 556895 939200 353496 935394 146190 067178 265604 563883 184835 267979 097979 231097 727589 447811 917119 530257 811153 862152 840156 611146 562082 323185 049421 390826 654101 413323 043510 684744 468451 881815 515125 135933 831966 089908 268565 804259 044609 001179 766038 326059 234919 129043 661751 296883 391340 723952 173544 187710 553695 236338 250320 426113 192876 871320 176465 091783 838545 863841 178787 053306 480891 436910 835255 105161 266770 011490 674008 412539 171984 150893 615599 785201 825879 814077 (493 digits), a[936] = 3
                                                                                      A[937]/B[937] = 88695 217668 988737 561805 940393 747577 005323 679436 026210 592971 266768 089205 109687 264133 793699 585304 363321 258486 331729 529377 730910 951352 098067 038596 640638 429640 518452 892053 080223 354228 171536 172949 818634 457373 637738 677852 314666 557385 381021 471710 440180 500481 807084 337228 247821 699112 657831 024989 957994 408991 436778 824348 132123 182471 302864 004655 091810 136129 211266 686285 937179 601420 384675 892080 857377 945123 597607 224943 741970 743795 446092 922535 812781 179279 250308 511013 326823 225294 533564 887578 726948 184013 (491 digits)/8 620600 895904 912895 477956 764616 818093 859706 991747 221106 788885 324350 696161 462114 405656 377703 228447 688080 553874 606115 512329 518956 139054 332912 395383 982535 950433 711222 249750 372605 586054 177007 787819 293417 021495 471182 738421 198543 888896 047465 722848 963502 415778 226694 178170 711532 391238 812590 701051 335139 052471 280292 651293 045658 140086 741018 074551 822193 459824 357755 251699 385417 824004 116337 110132 049215 525947 234579 284916 532738 466606 799296 050014 399199 093589 849602 027965 060954 202848 105963 726290 229349 459100 (493 digits), a[937] = 1
                                                                                      A[938]/B[938] = 336157 416448 006781 404362 179116 968450 542930 545669 560605 991636 862971 100474 453130 460526 905306 865282 489958 639715 733548 656085 472277 684248 803660 100275 710088 305324 332612 869599 904699 919446 314318 012850 492925 066718 946603 171426 713320 439553 531486 271526 578063 022740 119700 820984 430976 790930 352533 260776 018125 840383 910761 804503 853821 781869 017558 010667 927285 354333 720248 632690 186967 389753 660780 054798 287581 163425 994700 106482 864093 344238 113867 437222 219848 213998 454828 333453 387271 733609 203518 076823 024826 959649 (492 digits)/32 672324 411127 503084 917263 661715 759519 200847 501857 220216 305856 326549 023878 532533 284147 398714 249226 249076 929602 916325 768086 284457 864974 915856 716409 758761 713453 973823 360397 679899 081347 580444 754284 534352 477809 457058 900008 064083 548503 657522 304480 722473 337242 948648 338771 179206 174896 203810 429213 240336 286457 502629 250762 528315 144212 396598 411366 020275 615811 323586 181211 349130 343332 525476 422179 986192 441682 882524 908056 079106 836731 233143 255204 464367 292260 222814 496434 354846 759437 933490 964072 513928 191377 (494 digits), a[938] = 3
                                                                                      A[939]/B[939] = 8 492630 628869 158272 670860 418317 958840 578587 321175 041360 383892 841045 601066 437948 777306 426371 217366 612287 251379 670445 931514 537853 057572 189569 545489 392846 062748 833774 632050 697721 340386 029486 494212 141761 125347 302817 963520 147677 546223 668178 259874 891756 068984 799604 861839 022241 472371 471162 544390 411140 418589 205823 936944 477667 729196 741814 271353 273943 994472 217482 503540 611364 345261 904177 262038 046907 030773 465109 887015 344304 349748 292778 853091 308986 529240 621016 847348 008616 565524 621516 808154 347622 175238 (493 digits)/825 428711 174092 490018 409548 307510 806073 880894 538177 726514 435293 488076 293124 775446 509341 345559 459103 915003 793947 514259 714486 630402 763427 229330 305627 951578 786783 056806 259692 370082 619743 688126 644932 652228 966731 897655 238622 800632 601487 485523 334867 025335 846851 942902 647450 191686 763643 907851 431382 343546 213908 846023 920356 253536 745396 655978 358702 329083 855107 447409 781983 113676 407317 253247 664631 704026 568019 297701 986318 510409 384887 627877 430126 008381 400095 419964 438823 932123 188796 443237 828103 077554 243525 (495 digits), a[939] = 25
                                                                                      A[940]/B[940] = 204 159292 509307 805325 505012 218747 980624 429026 253870 553255 205065 048065 526068 963901 115881 138216 082081 184852 672827 824251 012434 380751 065981 353329 192021 138393 811296 343204 038816 650012 088711 021993 873941 895192 075054 214234 295910 257581 548921 567764 508523 980208 678375 310217 505120 964772 127845 660434 326145 885495 886524 850536 291171 317847 282590 821100 523146 501941 221666 939828 717664 859711 676039 361034 343711 413349 901989 157337 394851 127397 738197 140559 911413 635524 915773 359232 669805 594069 306200 119921 472527 367759 165361 (495 digits)/19842 961392 589347 263526 746423 041975 105292 342316 418122 656562 752900 040380 058873 143249 508339 692141 267720 209167 984343 258558 915765 414124 187228 419784 051480 596652 596247 337173 593014 561881 955196 095484 232668 187847 679375 000784 626955 279265 984203 310082 341289 330533 661689 578311 877575 779688 502349 992244 782389 485445 420269 807203 339312 613197 033732 140079 020221 918288 138390 061420 948806 077364 118946 603420 373340 882830 074146 027372 579700 328932 074034 302201 578228 665520 894550 301961 028208 725803 290552 571198 838546 375230 035977 (497 digits), a[940] = 24
                                                                                      A[941]/B[941] = 212 651923 138176 963598 175872 637065 939465 007613 575045 594615 588957 889111 127135 401849 893187 564587 299447 797139 924207 494696 943948 918604 123553 542898 737510 531239 874045 176978 670867 347733 429097 051480 368154 036953 200401 517052 259430 405259 095145 235942 768398 871964 747360 109822 366959 987013 600217 131596 870536 296636 305114 056360 228115 795515 011787 562914 794499 775885 216139 157311 221205 471076 021301 265211 605749 460256 932762 622447 281866 471702 087945 433338 764504 944511 445013 980249 517153 602685 871724 741438 280681 715381 340599 (495 digits)/20668 390103 763439 753545 155971 349485 911366 223210 956300 383077 188193 528456 351997 918696 017681 037700 726824 124171 778290 772818 630252 044526 950655 649114 357108 548231 383030 393979 852706 931964 574939 783610 877600 840076 646106 898439 865578 079898 585690 795605 676156 355869 508541 521214 525025 971375 265993 900096 213771 828991 634178 653227 259668 866733 779128 796057 378924 247371 993497 508830 730789 191040 526263 856668 037972 586856 642165 325074 566018 839341 458921 930079 008354 673902 294645 721925 467032 657926 479349 014436 666649 452784 279502 (497 digits), a[941] = 1
                                                                                      A[942]/B[942] = 1267 418908 200192 623316 384375 404077 677949 467094 129098 526333 149854 493621 161745 973150 581818 961152 579320 170552 293865 297735 732178 973771 683749 067822 879573 794593 181522 228097 393153 388679 234196 279395 714712 079958 077061 799495 593062 283877 024647 747478 350518 340032 415175 859329 339920 899840 128931 318418 678827 368677 412095 132337 431750 295422 341528 635674 495645 381367 302362 726384 823692 215091 782545 687092 372458 714634 565802 269573 804183 485908 177924 307253 733938 358082 140843 260480 255573 607498 664823 827112 875935 944665 868356 (496 digits)/123184 911911 406546 031252 526279 789404 662123 458371 199624 571948 693867 682661 818862 736729 596744 880644 901840 830026 875797 122652 067025 636758 940506 665355 837023 337809 511399 307072 856549 221704 829895 013538 620672 388230 909909 492983 954845 678758 912657 288110 722071 109881 204397 184384 502705 636564 832319 492725 851248 630403 591163 073339 637656 946865 929376 120365 914843 155148 105877 605574 602752 032566 750265 886760 563203 817113 284972 652745 409794 525639 368643 952596 620002 035032 367778 911588 363372 015435 687297 643382 171793 639151 433487 (498 digits), a[942] = 5
                                                                                      A[943]/B[943] = 10352 003188 739717 950129 250875 869687 363060 744366 607833 805280 787793 838080 421103 187054 547739 253807 934009 161558 275129 876582 801380 708777 593546 085481 774100 887985 326223 001757 816094 457167 302667 286646 085850 676617 816895 913017 003928 676275 292327 215769 572545 592224 068766 984457 086327 185734 631667 678946 301155 246055 601875 115059 682118 158893 744016 648310 759662 826823 635040 968389 810743 191810 281666 761950 585419 177333 459180 779037 715334 358967 511339 891368 636011 809168 571760 064091 561742 462675 190315 358341 288169 272708 287447 (497 digits)/1 006147 685395 015808 003565 366209 664723 208353 890180 553296 958666 739134 989750 902899 812532 791640 082859 941550 764386 784667 754035 166457 138598 474708 971961 053295 250707 474224 850562 705100 705603 214099 891919 842979 945923 925382 842311 504343 509969 886949 100491 452725 234919 143718 996290 546671 063893 924549 841903 023760 872220 363483 239944 360924 441661 214137 758984 697669 488556 840518 353427 552805 451574 528390 950752 543603 123762 921946 547037 844375 044456 408073 550851 968370 954161 236877 014632 374008 781411 977730 161494 040998 565995 747398 (499 digits), a[943] = 8
                                                                                      A[944]/B[944] = 84083 444418 117936 224350 391382 361576 582435 422026 991768 968579 452205 198264 530571 469586 963732 991616 051393 463018 494904 310398 143224 643992 432117 751677 072380 898475 791306 242159 921909 046017 655534 572564 401517 492900 612229 103631 624491 694079 363265 473634 930883 077824 965311 734986 030538 385717 182272 749989 088069 337122 227096 052814 888695 566572 293661 822160 572947 995956 382690 473503 309637 749574 035879 782697 055812 133302 239248 501875 526858 357648 268643 438202 822032 831430 714923 773212 749513 308900 187346 693843 181290 126332 167932 (497 digits)/8 172366 395071 533010 059775 455957 107190 328954 579815 626000 241282 606947 600669 042061 236991 929865 543524 434246 945121 153139 154933 398682 745546 738178 441044 263385 343469 305198 111574 497354 866530 542694 148897 364511 955622 312972 231475 989593 758518 008250 092042 343872 989234 354149 154708 876074 147716 228718 227950 041335 608166 499028 992894 525052 480155 642478 192243 496199 063602 830024 432995 025195 645162 977393 492780 912028 807216 660545 029048 164794 881290 633232 359412 366969 668322 262795 028647 355442 266731 509138 935334 499782 167117 412671 (499 digits), a[944] = 8
                                                                                      A[945]/B[945] = 1 860187 780387 334314 885837 861287 824372 176640 028960 426751 114028 736308 199900 093675 517967 749865 069361 064665 347965 163024 705341 952322 876611 100136 622377 366480 654452 734960 329276 098093 469555 724427 883062 919235 520431 285936 192912 742745 946021 284167 635738 051973 304373 305625 154149 758171 671512 641668 178706 238680 662744 597988 276987 233420 623484 204576 735843 364518 737864 054231 385462 622773 682439 071021 981285 813286 109982 722647 820299 306218 227229 421495 531830 720734 100644 300083 074772 051035 258479 311942 622891 276552 052015 981951 (499 digits)/180 798208 376968 742029 318625 397266 022910 445354 646124 325302 266884 091982 204469 828247 026355 248682 040397 494983 557052 153729 162569 937477 540626 714634 674934 847772 807032 188583 305201 646907 769275 153371 167661 862242 969614 810771 934783 275406 197366 068451 125423 017930 998074 935000 399885 820302 313650 956350 856803 933144 251883 342121 083623 912079 005085 348657 988341 614048 887819 101055 879318 107109 645160 031047 791932 608236 882529 453937 186097 469862 432850 339185 457924 041703 657251 018367 644874 193738 649505 178786 738853 036206 242578 826160 (501 digits), a[945] = 22
                                                                                      A[946]/B[946] = 3 804459 005192 786565 996026 113958 010320 935715 479947 845271 196636 924821 598064 717922 505522 463463 130338 180724 158948 820953 721082 047870 397214 632390 996431 805342 207381 261226 900712 118095 985129 104390 338690 239988 533763 184101 489457 109983 586121 931600 745111 034829 686571 576562 043285 546881 728742 465609 107401 565430 662611 423072 606789 355536 813540 702815 293847 301985 471684 491153 244428 555185 114452 177923 745268 682384 353267 684544 142474 139294 812107 111634 501864 263501 032719 315089 922756 851583 825858 811231 939625 734394 230364 131834 (499 digits)/369 768783 149009 017068 697026 250489 153011 219663 872064 276604 775050 790912 009608 698555 289702 427229 624319 424214 059225 460597 480073 273637 826800 167447 790913 958930 957533 682364 721977 791170 405080 849436 484221 088997 894851 934516 101042 540406 153250 145152 342888 379734 985384 224149 954480 516678 775018 141419 941557 907624 111933 183271 160142 349210 490326 339794 168926 724296 839241 032136 191631 239414 935483 039489 076646 128502 572275 568419 401243 104519 746991 311603 275260 450376 982824 299530 318395 742919 565741 866712 413040 572194 652275 064991 (501 digits), a[946] = 2
                                                                                      A[947]/B[947] = 5 664646 785580 120880 881863 975245 834693 112355 508908 272022 310665 661129 797964 811598 023490 213328 199699 245389 506913 983978 426424 000193 273825 732527 618809 171822 861833 996187 229988 216189 454684 828818 221753 159224 054194 470037 682369 852729 532143 215768 380849 086802 990944 882187 197435 305053 400255 107277 286107 804111 325356 021060 883776 588957 437024 907392 029690 666504 209548 545384 629891 177958 796891 248945 726554 495670 463250 407191 962773 445513 039336 533130 033694 984235 133363 615172 997528 902619 084338 123174 562517 010946 282380 113785 (499 digits)/550 566991 525977 759098 015651 647755 175921 665018 518188 601907 041934 882894 214078 526802 316057 675911 664716 919197 616277 614326 642643 211115 367426 882082 465848 806703 764565 870948 027179 438078 174356 002807 651882 951240 864466 745288 035825 815812 350616 213603 468311 397665 983459 159150 354366 336981 088669 097770 798361 840768 363816 525392 243766 261289 495411 688452 157268 338345 727060 133192 070949 346524 580643 070536 868578 736739 454805 022356 587340 574382 179841 650788 733184 492080 640075 317897 963269 936658 215247 045499 151893 608400 894853 891151 (501 digits), a[947] = 1
                                                                                      A[948]/B[948] = 20 798399 361933 149208 641618 039695 514400 272782 006672 661338 128633 908210 991959 152716 575993 103447 729435 916892 679690 772889 000354 048450 218691 829973 852859 320810 792883 249788 590676 766664 349183 590845 003949 717660 696346 594214 536566 668172 182551 578905 887658 295238 659406 223123 635591 462041 929507 787440 965724 977764 638679 486255 258119 122409 124615 424991 382919 301498 100330 127307 134102 089061 505125 924760 924932 169395 743018 906120 030794 475833 930116 711024 602949 216206 432810 160608 915343 559441 078873 180755 627176 767233 077504 473189 (500 digits)/2021 469757 726942 294362 743981 193754 680776 214719 426630 082325 900855 439594 651844 278962 237875 454964 618470 181806 908058 303577 408002 906983 929080 813695 188460 379042 251231 295208 803516 105404 928148 857859 439869 942720 488252 170380 208519 987843 205098 785962 747822 572732 935761 701601 017579 527622 041025 434732 336643 429929 203382 759447 891441 133078 976561 405150 640731 739334 020421 431712 404479 278988 677412 251099 682382 338720 936690 635489 163264 827666 286516 263969 474813 926618 903050 253224 208205 552894 211483 003209 868721 397397 336836 738444 (502 digits), a[948] = 3
                                                                                      A[949]/B[949] = 484 027832 110042 552679 639078 888242 665899 386341 662379 482799 269245 549982 613025 324079 271331 592625 976725 333921 139801 760425 434567 114548 303737 821926 234573 550471 098148 741324 815553 849469 485907 418253 312596 665420 070166 136972 023403 220689 730829 530603 796989 877292 157288 014030 816038 932017 778934 218419 497782 292698 014984 204931 820516 404367 303179 682193 836834 600960 517141 473448 714239 226373 414787 518446 999994 391772 552685 247952 671046 389693 432020 886695 901526 956983 087997 309178 050430 769763 898421 280553 987582 657307 064982 997132 (501 digits)/47044 371419 245650 529441 127219 104112 833774 603565 330680 495402 761609 993571 206496 942933 787193 140097 889531 100756 501618 596607 026710 071745 736285 597071 800437 524675 542885 660750 508049 862391 521779 733574 768891 633812 094266 664032 831785 536206 067888 290746 668230 570523 505978 295973 758695 472288 032254 096614 541160 729140 041619 992693 746912 322105 956324 006916 894098 343028 196753 062577 373972 763264 161124 845829 563372 527320 998689 638607 342431 610706 769715 722086 653904 804315 410231 142054 751997 653225 079356 119326 132485 748539 642098 875363 (503 digits), a[949] = 23
                                                                                      A[950]/B[950] = 504 826231 471975 701888 280696 927938 180299 659123 669052 144137 397879 458193 604984 476795 847324 696073 706161 250813 819492 533314 434921 162998 522429 651900 087432 871281 891031 991113 406230 616133 835091 009098 316546 383080 766512 731186 559969 888861 913381 109509 684648 172530 816694 237154 451630 394059 708442 005860 463507 270462 653663 691187 078635 526776 427795 107185 219753 902458 617471 600755 848341 315434 919913 443207 924926 561168 295704 154072 701840 865527 362137 597720 504476 173189 520807 469786 965774 329204 977294 461309 614759 424540 142487 470321 (501 digits)/49065 841176 972592 823803 871200 297867 514550 818284 757310 577728 662465 433165 858341 221896 025068 595062 508001 282563 409676 900184 434712 978729 665366 410766 988897 903717 794116 955959 311565 967796 449928 591434 208761 576532 582518 834413 040305 524049 272987 076709 416053 143256 441739 997574 776274 999910 073279 531346 877804 159069 245002 752141 638353 455184 932885 412067 534830 082362 217174 494289 778452 042252 838537 096929 245754 866041 935380 274096 505696 438373 056231 986056 128718 730934 313281 395278 960203 206119 290839 122536 001207 145936 978935 613807 (503 digits), a[950] = 1
                                                                                      A[951]/B[951] = 988 854063 582018 254567 919775 816180 846199 045465 331431 626936 667125 008176 218009 800875 118656 288699 682886 584734 959294 293739 869488 277546 826167 473826 322006 421752 989180 732438 221784 465603 320998 427351 629143 048500 836678 868158 583373 109551 644210 640113 481638 049822 973982 251185 267669 326077 487376 224279 961289 563160 668647 896118 899151 931143 730974 789379 056588 503419 134613 074204 562580 541808 334700 961654 924920 952940 848389 402025 372887 255220 794158 484416 406003 130172 608804 778965 016205 098968 875715 741863 602342 081847 207470 467453 (501 digits)/96110 212596 218243 353244 998419 401980 348325 421850 087991 073131 424075 426737 064838 164829 812261 735160 397532 383319 911295 496791 461423 050475 401652 007838 789335 428393 337002 616709 819615 830187 971708 325008 977653 210344 676785 498445 872091 060255 340875 367456 084283 713779 947718 293548 534970 472198 105533 627961 418964 888209 286622 744835 385265 777290 889209 418984 428928 425390 413927 556867 152424 805516 999661 942758 809127 393362 934069 912703 848128 049079 825947 708142 782623 535249 723512 537333 712200 859344 370195 241862 133692 894476 621034 489170 (503 digits), a[951] = 1
                                                                                      A[952]/B[952] = 1493 680295 053993 956456 200472 744119 026498 704589 000483 771074 065004 466369 822994 277670 965980 984773 389047 835548 778786 827054 304409 440545 348597 125726 409439 293034 880212 723551 628015 081737 156089 436449 945689 431581 603191 599345 143342 998413 557591 749623 166286 222353 790676 488339 719299 720137 195818 230140 424796 833623 322311 587305 977787 457920 158769 896564 276342 405877 752084 674960 410921 857243 254614 404862 849847 514109 144093 556098 074728 120748 156296 082136 910479 303362 129612 248751 981979 428173 853010 203173 217101 506387 349957 937774 (502 digits)/145176 053773 190836 177048 869619 699847 862876 240134 845301 650860 086540 859902 923179 386725 837330 330222 905533 665883 320972 396975 896136 029205 067018 418605 778233 332111 131119 572669 131181 797984 421636 916443 186414 786877 259304 332858 912396 584304 613862 444165 500336 857036 389458 291123 311245 472108 178813 159308 296769 047278 531625 496977 023619 232475 822094 831051 963758 507752 631102 051156 930876 847769 838199 039688 054882 259404 869450 186800 353824 487452 882179 694198 911342 266184 036793 932612 672404 065463 661034 364398 134900 040413 599970 102977 (504 digits), a[952] = 1
                                                                                      A[953]/B[953] = 2482 534358 636012 211024 120248 560299 872697 750054 331915 398010 732129 474546 041004 078546 084637 273473 071934 420283 738081 120794 173897 718092 174764 599552 731445 714787 869393 455989 849799 547340 477087 863801 574832 480082 439870 467503 726716 107965 201802 389736 647924 272176 764658 739524 986969 046214 683194 454420 386086 396783 990959 483424 876939 389063 889744 685943 332930 909296 886697 749164 973502 399051 589315 366517 774768 467049 992482 958123 447615 375968 950454 566553 316482 433534 738417 027716 998184 527142 728725 945036 819443 588234 557428 405227 (502 digits)/241286 266369 409079 530293 868039 101828 211201 661984 933292 723991 510616 286639 988017 551555 649592 065383 303066 049203 232267 893767 357559 079680 468670 426444 567568 760504 468122 189378 950797 628172 393345 241452 164067 997221 936089 831304 784487 644559 954737 811621 584620 570816 337176 584671 846215 944306 284346 787269 715733 935487 818248 241812 408885 009766 711304 250036 392686 933143 045029 608024 083301 653286 837860 982446 864009 652767 803520 099504 201952 536532 708127 402341 693965 801433 760306 469946 384604 924808 031229 606260 268592 934890 221004 592147 (504 digits), a[953] = 1
                                                                                      A[954]/B[954] = 3976 214653 690006 167480 320721 304418 899196 454643 332399 169084 797133 940915 863998 356217 050618 258246 460982 255832 516867 947848 478307 158637 523361 725279 140885 007822 749606 179541 477814 629077 633177 300251 520521 911664 043062 066848 870059 106378 759394 139359 814210 494530 555335 227864 706268 766351 879012 684560 810883 230407 313271 070730 854726 846984 048514 582507 609273 315174 638782 424125 384424 256294 843929 771380 624615 981159 136576 514221 522343 496717 106750 648690 226961 736896 868029 276468 980163 955316 581736 148210 036545 094621 907386 343001 (502 digits)/386462 320142 599915 707342 737658 801676 074077 902119 778594 374851 597157 146542 911196 938281 486922 395606 208599 715086 553240 290743 253695 108885 535688 845050 345802 092615 599241 762048 081979 426156 814982 157895 350482 784099 195394 164163 696884 228864 568600 255787 084957 427852 726634 875795 157461 416414 463159 946578 012502 982766 349873 738789 432504 242242 533399 081088 356445 440895 676131 659181 014178 501056 676060 022134 918891 912172 672970 286304 555777 023985 590307 096540 605308 067617 797100 402559 057008 990271 692263 970658 403492 975303 820974 695124 (504 digits), a[954] = 1
                                                                                      A[955]/B[955] = 26339 822280 776049 215906 044576 386813 267876 477914 326310 412519 514933 120041 224994 215848 388346 822951 837827 955278 839288 807885 043740 669917 314934 951227 576755 761724 367030 533238 716687 321806 276151 665310 697963 950066 698242 868596 947070 746237 758167 225895 533187 239360 096670 106713 224581 644325 957270 561785 251385 779227 870585 907810 005300 470968 180832 180988 988570 800344 719392 293917 280047 936820 652893 994801 522464 354004 811942 043452 581676 356271 590958 458694 678252 854915 946592 686530 879168 259042 219142 834297 038714 155966 001746 463233 (503 digits)/2 560060 187225 008573 774350 293991 911884 655669 074703 604858 973101 093559 165897 455199 181244 571126 439020 554664 339722 551709 638226 879729 732993 682803 496746 642381 316198 063572 761667 442674 185113 283238 188824 266964 701817 108454 816286 965793 017747 366339 346344 094365 137932 696985 839442 790984 442793 063306 466737 790751 832085 917490 674549 003910 463221 911698 736566 531359 578517 101819 563110 168372 659626 894221 115256 377361 125803 841341 817331 536614 680446 249969 981585 325814 207140 542908 885300 726658 866438 184813 430210 689550 786713 146852 762891 (505 digits), a[955] = 6
                                                                                      A[956]/B[956] = 135675 326057 570252 247010 543603 238485 238578 844214 963951 231682 371799 541121 988969 435458 992352 373005 650122 032226 713311 987273 697010 508224 098036 481417 024663 816444 584758 845735 061251 238109 013935 626805 010341 661997 534276 409833 605412 837567 550230 268837 480146 691331 038685 761430 829176 987981 665365 493487 067812 126546 666200 609780 881229 201824 952675 487452 552127 316898 235743 893711 784663 940398 108399 745388 236937 751183 196286 731484 430725 278075 061542 942163 618226 011476 600992 709123 376005 250527 677450 319695 230115 874451 916118 659166 (504 digits)/13 186763 256267 642784 579094 207618 361099 352423 275637 802889 240357 064952 976030 187192 844504 342554 590708 981921 413699 311788 481877 652343 773853 949706 328783 557708 673605 917105 570385 295350 351723 231173 102016 685306 293184 737668 245598 525849 317601 400296 987507 556783 117516 211564 073009 112383 630379 779692 280266 966262 143195 937327 111534 452056 558352 091892 763921 013243 333481 185229 474731 856041 799191 147165 598416 805697 541191 879679 372962 238850 426216 840157 004467 234379 103320 511644 829062 690303 322462 616331 121711 851246 908869 555238 509579 (506 digits), a[956] = 5
                                                                                      A[957]/B[957] = 569041 126511 057058 203948 218989 340754 222191 854774 182115 339249 002131 284529 180871 957684 357756 314974 438316 084185 692536 756979 831782 702813 707080 876895 675411 027502 706065 916178 961692 274242 331894 172530 739330 598056 835348 507931 368722 096507 959088 301245 453774 004684 251413 152436 541289 596252 618732 535733 522634 285414 535388 346933 530217 278267 991534 130799 197080 067937 662367 868764 418703 698413 086492 976354 470215 358737 597088 969390 304577 468571 837130 227349 151156 900822 350563 523024 383189 261152 928944 113077 959177 653773 666221 099897 (504 digits)/55 307113 212295 579712 090727 124465 356282 065362 177254 816415 934529 353371 070018 203970 559261 941344 801856 482349 994519 798863 565737 489104 828409 481628 811880 873216 010621 731995 043208 624075 592006 207930 596891 008189 874556 059127 798681 069190 288152 967527 296374 321497 607997 543242 131479 240518 964312 182075 587805 655800 404869 666799 120686 812136 696630 279269 792250 584332 912441 842737 462037 592539 856391 482883 508923 600151 290571 360059 309180 492016 385313 610597 999454 263330 620422 589488 201551 487872 156288 650137 917058 094538 422191 367806 801207 (506 digits), a[957] = 4
                                                                                      A[958]/B[958] = 704716 452568 627310 450958 762592 579239 460770 698989 146066 570931 373930 825651 169841 393143 350108 687980 088438 116412 405848 744253 528793 211037 805117 358312 700074 843947 290824 761914 022943 512351 345829 799335 749672 260054 369624 917764 974134 934075 509318 570082 933920 696015 290098 913867 370466 584234 284098 029220 590446 411961 201588 956714 411446 480092 944209 618251 749207 384835 898111 762476 203367 638811 194892 721742 707153 109920 793375 700874 735302 746646 898673 169512 769382 912298 951556 232147 759194 511680 606394 432773 189293 528225 582339 759063 (504 digits)/68 493876 468563 222496 669821 332083 717381 417785 452892 619305 174886 418324 046048 391163 403766 283899 392565 464271 408219 110652 047615 141448 602263 431335 140664 430924 684227 649100 613593 919425 943729 439103 698907 693496 167740 796796 044279 595039 605754 367824 283881 878280 725513 754806 204488 352902 594691 961767 868072 622062 548065 604126 232221 264193 254982 371162 556171 597576 245923 027966 936769 448581 655582 630049 107340 405848 831763 239738 682142 730866 811530 450755 003921 497709 723743 101133 030614 178175 478751 266469 038769 945785 331060 923045 310786 (506 digits), a[958] = 1
                                                                                      A[959]/B[959] = 1 273757 579079 684368 654906 981581 919993 682962 553763 328181 910180 376062 110180 350713 350827 707865 002954 526754 200598 098385 501233 360575 913851 512198 235208 375485 871449 996890 678092 984635 786593 677723 971866 489002 858111 204973 425696 342857 030583 468406 871328 387694 700699 541512 066303 911756 180486 902830 564954 113080 697375 736977 303647 941663 758360 935743 749050 946287 452773 560479 631240 622071 337224 281385 698097 177368 468658 390464 670265 039880 215218 735803 396861 920539 813121 302119 755172 142383 772833 535338 545851 148471 181999 248560 858960 (505 digits)/123 800989 680858 802208 760548 456549 073663 483147 630147 435721 109415 771695 116066 595133 963028 225244 194421 946621 402738 909515 613352 630553 430672 912963 952545 304140 694849 381095 656802 543501 535735 647034 295798 701686 042296 855923 842960 664229 893907 335351 580256 199778 333511 298048 335967 593421 559004 143843 455878 277862 952935 270925 352908 076329 951612 650432 348422 181909 158364 870704 398807 041121 511974 112932 616264 006000 122334 599797 991323 222883 196844 061353 003375 761040 344165 690621 232165 666047 635039 916606 955828 040323 753252 290852 111993 (507 digits), a[959] = 1
                                                                                      A[960]/B[960] = 18 537322 559684 208471 619656 504739 459151 022246 451675 740613 313456 638800 368176 079828 304731 260218 729343 462996 924785 783245 761520 576856 004958 975892 651229 956877 044247 247294 255215 807844 524662 833965 405466 595712 273611 239252 877513 774133 362244 067014 768680 361646 505808 871267 842122 135053 111050 923725 938578 173576 175221 519271 207785 594739 097146 044622 104964 997231 723665 744826 599844 912366 359951 134292 495103 190311 671138 259881 084585 293625 759709 199920 725579 656940 295997 181232 804557 752567 331350 101134 074689 267890 076215 062191 784503 (506 digits)/1801 707732 000586 453419 317499 723770 748670 181852 274956 719400 706707 222055 670980 723038 886161 437318 114472 716971 046563 843870 634551 969196 631684 212830 476298 688894 412118 984439 808829 528447 444028 497583 840089 517100 759896 779729 845728 894258 120457 062746 407468 675177 394671 927482 908034 660804 420749 975576 250368 512143 889159 397081 172934 332812 577559 477215 434082 144304 463031 217828 520068 024282 823220 211105 735036 489850 544447 636910 560667 851231 567347 309697 051182 152274 542062 769830 280933 502842 369310 098966 420362 510317 876592 994974 878688 (508 digits), a[960] = 14
                                                                                      A[961]/B[961] = 149 572338 056553 352141 612159 019497 593201 860934 167169 253088 417833 486465 055588 989339 788677 789614 837702 230729 598884 364351 593397 975423 953523 319339 445048 030502 225427 975244 719819 447391 983896 349447 215599 254701 047001 118996 445806 535923 928536 004525 020771 280866 747170 511654 803280 992181 068894 292638 073579 501690 099147 891146 965932 699576 535529 292720 588770 924141 242099 519092 429999 921002 216833 355725 658922 699861 837764 469513 346947 388886 292892 335169 201499 176062 181098 751982 191634 162922 423634 344411 143365 291591 791719 746095 134984 (507 digits)/14537 462845 685550 429563 300546 246715 063024 937965 829801 190926 763073 548140 483912 379445 052319 723789 110203 682389 775249 660480 689768 384126 484146 615607 762934 815295 991801 256614 127438 771081 087963 627705 016514 838492 121471 093762 608791 818294 857563 837322 840005 601197 490886 717911 600244 879856 925003 948453 458826 375014 066210 447574 736382 738830 572088 468155 821079 336344 862614 613332 559351 235384 097735 801778 496555 924804 477915 695082 476666 032735 735622 538929 412832 979236 680667 849263 479633 688786 589520 708338 318728 122866 765996 250651 141497 (509 digits), a[961] = 8
                                                                                      A[962]/B[962] = 168 109660 616237 560613 231815 524237 052352 883180 618844 993701 731290 125265 423765 069168 093409 049833 567045 693726 523670 147597 354918 552279 958482 295232 096277 987379 269675 222538 975035 255236 508559 183412 621065 850413 320612 358249 323320 310057 290780 071539 789451 642513 252979 382922 645403 127234 179945 216364 012157 675266 274369 410418 173718 294315 632675 337342 693735 921372 965765 263919 029844 833368 576784 490018 154025 890173 508902 729394 431532 682512 052601 535089 927078 833002 477095 933214 996191 915489 754984 445545 218054 559481 867934 808286 919487 (507 digits)/16339 170577 686136 882982 618045 970485 811695 119818 104757 910327 469780 770196 154893 102483 938481 161107 224676 399360 821813 504351 324320 353323 115830 828438 239233 504190 403920 241053 936268 299528 531992 125288 856604 355592 881367 873492 454520 712552 978020 900069 247474 276374 885558 645394 508279 540661 345753 924029 709194 887157 955369 844655 909317 071643 149647 945371 255161 480649 325645 831161 079419 259666 920956 012884 231592 414655 022363 331993 037333 883967 302969 848626 464015 131511 222730 619093 760567 191628 958830 807304 739090 633184 642589 245626 020185 (509 digits), a[962] = 1
                                                                                      A[963]/B[963] = 317 681998 672790 912754 843974 543734 645554 744114 786014 246790 149123 611730 479354 058507 882086 839448 404747 924456 122554 511948 948316 527703 912005 614571 541326 017881 495103 197783 694854 702628 492455 532859 836665 105114 367613 477245 769126 845981 219316 076064 810222 923380 000149 894577 448684 119415 248839 509002 085737 176956 373517 301565 139650 993892 168204 630063 282506 845514 207864 783011 459844 754370 793617 845743 812948 590035 346667 198907 778480 071398 345493 870259 128578 009064 658194 685197 187826 078412 178618 789956 361419 851073 659654 554382 054471 (507 digits)/30876 633423 371687 312545 918592 217200 874720 057783 934559 101254 232854 318336 638805 481928 990800 884896 334880 081750 597063 164832 014088 737449 599977 444046 002168 319486 395721 497668 063707 070609 619955 752993 873119 194085 002838 967255 063312 530847 835584 737392 087479 877572 376445 363306 108524 420518 270757 872483 168021 262172 021580 292230 645699 810473 721736 413527 076240 816994 188260 444493 638770 495051 018691 814662 728148 339459 500279 027075 513999 916703 038592 387555 876848 110747 903398 468357 240200 880415 548351 515643 057818 756051 408585 496277 161682 (509 digits), a[963] = 1
                                                                                      A[964]/B[964] = 3662 611646 016937 600916 515535 505318 153455 068443 265001 708393 371649 854300 696659 712754 796364 283766 019272 862743 871769 779035 786400 357022 990544 055519 050864 184075 715810 398159 618436 984149 925570 044870 824382 006671 364360 607952 783715 615850 703256 908252 701903 799693 254628 223274 580928 440801 917179 815386 955266 621786 383059 727634 709879 227129 482926 268038 801311 222029 252277 877045 088137 131447 306580 793200 096460 380562 322241 917379 994813 467893 853034 107940 341436 932713 717237 470384 062278 778023 719791 135065 193672 921292 124134 906489 518668 (508 digits)/355982 138234 774697 320987 722560 359695 433615 755441 384908 024124 031178 271899 181753 403702 837290 894966 908357 298617 389508 317503 479296 465268 715582 712944 263085 018540 756856 715402 637046 076234 351505 408221 460915 490527 912596 513298 150958 551879 169453 011382 209752 929671 026457 641761 702048 166362 324090 521344 557428 771050 192753 059193 012014 986854 088748 494169 093810 467585 396510 720591 105894 705228 126565 974174 241224 148709 525432 629823 691332 967700 727486 111741 109344 349738 160113 771023 402776 876199 990697 479378 375096 949750 137029 704674 798687 (510 digits), a[964] = 11
                                                                                      A[965]/B[965] = 3980 293644 689728 513671 359510 049052 799009 812558 051015 955183 520773 466031 176013 771262 678451 123214 424020 787199 994324 290984 734716 884726 902549 670090 592190 201957 210913 595943 313291 686778 418025 577730 661047 111785 731974 085198 552842 461831 922572 984317 512126 723073 254778 117852 029612 560217 166019 324389 041003 798742 756577 029199 849530 221021 651130 898102 083818 067543 460142 660056 547981 885818 100198 638943 909408 970597 668909 116287 773293 539292 198527 978199 470014 941778 375432 155581 250104 856435 898409 925021 555092 772365 783789 460871 573139 (508 digits)/386858 771658 146384 633533 641152 576896 308335 813225 319467 125378 264032 590235 820558 885631 828091 779863 243237 380367 986571 482335 493385 202718 315560 156990 265253 338027 152578 213070 700753 146843 971461 161215 334034 684612 915435 480553 214271 082727 005037 748774 297232 807243 402903 005067 810572 586880 594848 393827 725450 033222 214333 351423 657714 797327 810484 907696 170051 284579 584771 165084 744665 200279 145257 788836 969372 488169 025711 656899 205332 884403 766078 499296 986192 460486 063512 239380 642977 756615 539048 995021 432915 705801 545615 200951 960369 (510 digits), a[965] = 1
                                                                                      A[966]/B[966] = 7642 905290 706666 114587 875045 554370 952464 881001 316017 663576 892423 320331 872673 484017 474815 406980 443293 649943 866094 070020 521117 241749 893093 725609 643054 386032 926723 994102 931728 670928 343595 622601 485429 118457 096334 693151 336558 077682 625829 892570 214030 522766 509406 341126 610541 001019 083199 139775 996270 420529 139636 756834 559409 448151 134057 166140 885129 289572 712420 537101 636119 017265 406779 432144 005869 351159 991151 033667 768107 007186 051562 086139 811451 874492 092669 625965 312383 634459 618201 060086 748765 693657 907924 367361 091807 (508 digits)/742840 909892 921081 954521 363712 936591 741951 568666 704375 149502 295210 862135 002312 289334 665382 674830 151594 678985 376079 799838 972681 667987 031142 869934 528338 356567 909434 928473 337799 223078 322966 569436 794950 175140 828031 993851 365229 634606 174490 760156 506985 736914 429360 646829 512620 753242 918938 915172 282878 804272 407086 410616 669729 784181 899233 401865 263861 752164 981281 885675 850559 905507 271823 763011 210596 636878 551144 286722 896665 852104 493564 611038 095536 810224 223626 010404 045754 632815 529746 474399 808012 655551 682644 905626 759056 (510 digits), a[966] = 1
                                                                                      A[967]/B[967] = 42194 820098 223059 086610 734737 820907 561334 217564 631104 273067 982890 067690 539381 191350 052528 158116 640489 036919 324794 641087 340303 093476 368018 298138 807462 132121 844533 566457 971935 041420 136003 690738 088192 704071 213647 550955 235632 850245 051722 447168 582279 336905 801809 823485 082317 565312 582015 023269 022355 901388 454760 813372 646577 461777 321416 728806 509464 515407 022245 345564 728576 972145 134095 799663 938755 726397 624664 284626 613828 575222 456338 408898 527274 314238 838780 285407 812023 028733 989415 225455 298921 240655 323411 297677 032174 (509 digits)/4 101063 321122 751794 406140 459717 259855 018093 656558 841342 872889 740086 900910 832120 332305 155005 154014 001210 775294 866970 481530 356793 542653 471274 506662 906945 120866 699752 855437 389749 262235 586294 008399 308785 560317 055595 449810 040419 255757 877491 549556 832161 491815 549706 239215 373676 353095 189542 969689 139844 054584 249765 404507 006363 718237 306651 917022 489360 045404 491180 593463 997464 727815 504376 603893 022355 672561 781433 090513 688662 144926 233901 554487 463876 511607 181642 291400 871750 920693 187781 367020 472978 983559 958839 729085 755649 (511 digits), a[967] = 5
                                                                                      A[968]/B[968] = 303006 645978 268079 720863 018210 300723 881804 403953 733747 575052 772653 794165 648341 823467 842512 513796 926716 908379 139656 557631 903238 896084 469221 812581 295289 310885 838458 959308 735273 960869 295621 457768 102778 046955 591867 549837 985988 029397 987887 022750 289985 881107 122075 105522 186763 958207 157304 302659 152761 730248 322962 450443 085451 680592 383974 267786 451380 897421 868137 956054 736157 822281 345450 029791 577159 435943 363801 026054 064907 033743 245930 948429 502372 074163 964131 623819 996544 835597 544107 638273 841214 378245 171803 451100 317025 (510 digits)/29 450284 157752 183642 797504 581733 755576 868607 164578 593775 259730 475819 168510 827154 615470 750418 752928 160070 106049 444873 170551 470236 466561 330064 416574 876954 202634 807704 916535 066044 058727 427024 628231 956449 097360 217200 142521 648164 424911 316931 607054 332116 179623 277304 321337 128355 224909 245739 702996 261787 186362 155444 242165 714275 811843 045796 821022 689382 069996 419546 039923 832813 000215 802459 990262 367086 344811 021175 920318 717300 866588 130875 492450 342672 391474 495122 050210 148011 077667 844216 043543 118865 540471 394523 009227 048599 (512 digits), a[968] = 7
                                                                                      A[969]/B[969] = 345201 466076 491138 807473 752948 121631 443138 621518 364851 848120 755543 861856 187723 014817 895040 671913 567205 945298 464451 198719 243541 989560 837240 110720 102751 443007 682992 525766 707209 002289 431625 148506 190970 751026 805515 100793 221620 879643 039609 469918 872265 218012 923884 929007 269081 523519 739319 325928 175117 631636 777723 263815 732029 142369 705390 996592 960845 412828 890383 301619 464734 794426 479545 829455 515915 162340 988465 310680 678735 608965 702269 357328 029646 388402 802911 909227 808567 864331 533522 863729 140135 618900 495214 748777 349199 (510 digits)/33 551347 478874 935437 203645 041451 015431 886700 821137 435118 132620 215906 069421 659274 947775 905423 906942 161280 881344 311843 652081 827030 009214 801338 923237 783899 323501 507457 771972 455793 320963 013318 636631 265234 657677 272795 592331 688583 680669 194423 156611 164277 671438 827010 560552 502031 578004 435282 672685 401631 240946 405209 646672 720639 530080 352448 738045 178742 115400 910726 633387 830277 728031 306836 594155 389442 017372 802609 010832 405963 011514 364777 046937 806548 903081 676764 341611 019761 998361 031997 410563 591844 524031 353362 738312 804248 (512 digits), a[969] = 1
                                                                                      A[970]/B[970] = 1 338611 044207 741496 143284 277054 665618 211220 268508 828303 119415 039285 379734 211510 867921 527634 529537 628334 744274 533010 153789 633864 864766 980942 144741 603543 639908 887436 536608 856900 967737 590496 903286 675690 300036 008412 852217 650850 668327 106715 432506 906781 535145 893729 892543 994008 528766 375262 280443 678114 625158 656132 241890 281539 107701 500147 257565 333917 135908 539287 860913 130362 205560 784087 518158 124904 922966 329196 958096 101113 860640 352739 020413 591311 239372 372867 351503 422248 428592 144676 229461 261621 234946 657447 697432 364622 (511 digits)/130 104326 594376 989954 408439 706086 801872 528709 627990 899129 657591 123537 376775 804979 458798 466690 473754 643912 750082 380404 126796 951326 494205 734081 186288 228652 173139 330078 232452 433424 021616 466980 538125 752153 070392 035586 919516 713915 466918 900201 076887 824949 193939 758336 002994 634449 958922 551587 721052 466680 909201 371073 182183 876194 402084 103143 035158 225608 416199 151725 940087 323646 184309 722969 772728 535412 396929 429002 952815 935189 901131 225206 633263 762319 100719 525415 075043 207297 072750 940208 275233 894399 112565 454611 224165 461343 (513 digits), a[970] = 3
                                                                                      A[971]/B[971] = 3 022423 554491 974131 094042 307057 452867 865579 158536 021458 086950 834114 621324 610744 750660 950309 730988 823875 433847 530471 506298 511271 719094 799124 400203 309838 722825 457865 598984 421010 937764 612618 955079 542351 351098 822340 805228 523322 216297 253040 334932 685828 288304 711344 714095 257098 581052 489843 886815 531346 881954 089987 747596 295107 357772 705685 511723 628679 684645 968959 023445 725459 205548 047720 865771 765725 008273 646859 226872 880963 330246 407747 398155 212268 867147 548646 612234 653064 721515 822875 322651 663378 088793 810110 143642 078443 (511 digits)/293 760000 667628 915346 020524 453624 619176 944120 077119 233377 447802 462980 822973 269233 865372 838804 854451 449106 381509 072651 905675 729682 997626 269501 295814 241203 669780 167614 236877 322641 364195 947279 712882 769540 798461 343969 431365 116414 614506 994825 310386 814176 059318 343682 566541 770931 495849 538458 114790 334993 059349 147356 011040 473028 334248 558734 808361 629958 947799 214178 513562 477570 096650 752776 139612 460266 811231 660614 916464 276342 813776 815190 313465 331187 104520 727594 491697 434356 143862 912413 961031 380642 749162 262585 186643 726934 (513 digits), a[971] = 2
                                                                                      A[972]/B[972] = 838 549935 638484 575809 193003 331969 110016 976647 182986 772193 204796 089035 486651 387806 801004 763430 013441 841829 920040 473617 398477 256131 054026 338401 001058 428869 862560 716207 455293 476930 728535 285947 460319 907014 554409 796815 900518 611104 582666 198888 208860 881217 395550 936215 696930 210315 480306 062018 928345 861200 926441 582738 326064 026277 210740 975034 005010 478189 782841 940937 355379 082562 142370 002767 336937 230732 214766 509202 801884 127956 338895 298768 309407 389787 439243 347978 940502 321176 288475 081140 603972 017351 830832 057957 486288 093333 (513 digits)/81501 624511 527586 540802 093713 360106 313886 049970 990018 544682 698873 369225 340371 382760 167074 815635 156806 046380 428095 504981 998974 073516 836682 385940 126833 042068 702245 759221 847470 805081 903893 863461 006652 914954 244184 315119 407653 960763 685356 466812 054035 351717 625120 958406 935065 182474 309244 704485 517975 259758 348915 188688 240394 905042 988934 872684 951329 724236 956581 479174 196893 610562 956568 241960 445380 029319 108099 419334 813420 482149 317309 032923 463160 501147 052961 069089 275232 523948 922777 678875 480926 332440 630512 190707 924477 822061 (515 digits), a[972] = 277
                                                                                      A[973]/B[973] = 841 572359 192976 549940 287045 639026 562884 842226 341522 793651 291746 923150 107975 998551 551665 713739 744430 665705 353888 004088 904775 767402 773121 137525 401261 738708 585386 174073 054277 897941 666299 898566 415399 449365 905508 619156 705747 134426 798963 451928 543793 567045 683855 647560 411025 467414 061358 551862 815161 392547 808395 672726 073660 321384 568513 680719 516734 106869 467487 909896 378824 808021 347918 050488 202708 996457 223040 156062 028757 008919 669141 706515 707562 602056 306390 896625 552736 974241 009990 904015 926623 680729 919625 868067 629930 171776 (513 digits)/81795 384512 195215 456148 114237 813730 933062 994091 067137 778060 146675 832206 163344 651994 032447 654440 011257 495486 809604 577633 904649 803199 834308 655441 422647 283272 372025 926836 084348 127723 268089 810740 719535 684495 042645 659088 839019 077178 299863 461637 364422 165893 684439 302089 501606 953405 805094 242943 632765 594751 408264 336044 251435 378071 323183 431419 759691 354195 904380 693352 710456 088133 053218 994736 584992 489585 919331 079949 729884 758492 131085 848113 776625 832334 157481 796683 766929 958305 066640 591289 441957 713083 379674 453293 111121 548995 (515 digits), a[973] = 1
                                                                                      A[974]/B[974] = 8412 701168 375273 525271 776414 083208 175980 556684 256691 915054 830518 397386 458435 374770 765996 187087 713317 833178 105032 510417 541459 162756 012116 576129 612414 077247 131036 282864 943794 558405 725234 373045 198914 951307 703987 369226 252242 820945 773337 266245 103002 984628 550251 764259 396159 417042 032533 028784 264798 394131 202002 637272 989006 918738 327364 101509 655617 440014 990233 130004 764802 354754 273632 457161 161318 198847 222127 913761 060697 208233 361170 657409 677470 808294 196761 417608 915135 089345 378393 217283 943585 143921 107464 870566 155659 639317 (514 digits)/817660 085121 284525 646135 121853 683684 711452 996790 594258 547224 018955 859080 810473 250706 459103 705595 258123 505761 714536 703687 140822 302315 345460 284912 930658 591520 050479 100746 606603 954591 316702 160127 482474 075409 627995 246918 958825 655368 384127 621548 333834 844760 785074 677212 449527 763126 555092 890978 212865 612521 023294 213086 503313 307684 897585 755462 788551 912000 096007 719348 590998 403760 435539 194589 710312 435592 382079 138882 382383 308578 497081 665947 452792 992154 470297 239243 177602 148694 522543 000480 458545 750191 047582 270345 924571 763016 (516 digits), a[974] = 9
                                                                                      A[975]/B[975] = 34492 377032 694070 651027 392701 971859 266807 068963 368290 453870 613820 512695 941717 497634 615650 462090 597701 998417 774018 045759 070612 418426 821587 442043 850918 047697 109531 305532 829456 131564 567237 390747 211059 254596 721458 096061 714718 418209 892312 516908 955805 505559 884862 704597 995663 135582 191490 666999 874354 969072 616406 221818 029687 996337 877970 086758 139203 866929 428420 429915 438034 227038 442447 879132 847981 791846 111551 811106 271545 841853 113824 336154 417445 835233 093436 567061 213277 331622 523563 773151 700964 256414 349485 350332 252568 729044 (515 digits)/3 352435 724997 333318 040688 601652 548469 778874 981253 444171 966956 222499 268529 405237 654819 868862 476821 043751 518533 667751 392382 467939 012461 216149 795093 145281 649352 573942 329822 510763 946088 534898 451250 649431 986133 554626 646764 674321 698651 836373 947830 699761 544936 824738 010939 299718 005912 025465 806856 484228 044835 501441 188390 264688 608810 913526 453270 913899 002196 288411 570747 074449 703174 795375 773095 426242 231955 447647 635479 259417 992806 119412 511903 587797 800952 038670 753656 477338 553083 156812 593211 276140 713847 570003 534676 809408 601059 (517 digits), a[975] = 4
                                                                                      A[976]/B[976] = 215366 963364 539697 431436 132625 914363 776822 970464 466434 638278 513441 473562 108740 360578 459898 959631 299529 823684 749140 784971 965133 673316 941641 228392 717922 363429 788224 116061 920531 347793 128658 717528 465270 478888 032735 945596 540553 330205 127212 367698 837836 017987 859427 991847 370138 230535 181477 030783 510928 208566 900439 968181 167134 896765 595184 622058 490840 641591 560755 709497 393007 716984 928319 731958 249208 949923 891438 780398 689972 259352 044116 674336 182145 819692 757380 819976 194799 079080 519775 856194 149370 682407 204376 972559 671072 013581 (516 digits)/20 932274 435105 284433 890266 731768 974503 384702 884311 259290 348961 353951 470257 241899 179625 672278 566521 520632 616963 721045 057981 948456 377082 642359 055471 802348 487635 494133 079681 671187 631122 526092 867631 379065 992210 955755 127507 004755 847279 402371 308532 532404 114381 733502 742848 247835 798598 707887 732117 118233 881534 031941 343428 091444 960550 378744 475088 271945 925177 826477 143831 037696 622809 207793 833162 267765 827325 067964 951757 938891 265415 213556 737368 979579 797866 702321 761182 041633 467193 463418 559748 115390 033276 467603 478406 781023 369370 (518 digits), a[976] = 6
                                                                                      A[977]/B[977] = 249859 340397 233768 082463 525327 886223 043630 039427 834725 092149 127261 986258 050457 858213 075549 421721 897231 822102 523158 830731 035746 091743 763228 670436 568840 411126 897755 421594 749987 479357 695896 108275 676329 733484 754194 041658 255271 748415 019524 884607 793641 523547 744290 696445 365801 366117 372967 697783 385283 177639 516846 189999 196822 893103 473154 708816 630044 508520 989176 139412 831041 944023 370767 611091 097190 741770 002990 591504 961518 101205 157941 010490 599591 654925 850817 387037 408076 410703 043339 629345 850334 938821 553862 322891 923640 742625 (516 digits)/24 284710 160102 617751 930955 333421 522973 163577 865564 703462 315917 576450 738786 647136 834445 541141 043342 564384 135497 388796 450364 416395 389543 858508 850564 947630 136988 068075 409504 181951 577211 060991 318882 028497 978344 510381 774271 679077 545931 238745 256363 232165 659318 558240 753787 547553 804510 733353 538973 602461 926369 533382 531818 356133 569361 292270 928359 185844 927374 114888 714578 112146 325984 003169 606257 694008 059280 515612 587237 198309 258221 332969 249272 567377 598818 740992 514838 518972 020276 620231 152959 391530 747124 037607 013083 590431 970429 (518 digits), a[977] = 1
                                                                                      A[978]/B[978] = 465226 303761 773465 513899 657953 800586 820453 009892 301159 730427 640703 459820 159198 218791 535448 381353 196761 645787 272299 615703 000879 765060 704869 898829 286762 774556 685979 537656 670518 827150 824554 825804 141600 212372 786929 987254 795825 078620 146737 252306 631477 541535 603718 688292 735939 596652 554444 728566 896211 386206 417286 158180 363957 789869 068339 330875 120885 150112 549931 848910 224049 661008 299087 343049 346399 691693 894429 371903 651490 360557 202057 684826 781737 474618 608198 207013 602875 489783 563115 485539 999705 621228 758239 295451 594712 756206 (516 digits)/45 216984 595207 902185 821222 065190 497476 548280 749875 962752 664878 930402 209043 889036 014071 213419 609864 085016 752461 109841 508346 364851 766626 500867 906036 749978 624623 562208 489185 853139 208333 587084 186513 407563 970555 466136 901778 683833 393210 641116 564895 764569 773700 291743 496635 795389 603109 441241 271090 720695 807903 565323 875246 447578 529911 671015 403447 457790 852551 941365 858409 149842 948793 210963 439419 961773 886605 583577 538995 137200 523636 546525 986641 546957 396685 443314 276020 560605 487470 083649 712707 506920 780400 505210 491490 371455 339799 (518 digits), a[978] = 1
                                                                                      A[979]/B[979] = 715085 644159 007233 596363 183281 686809 864083 049320 135884 822576 767965 446078 209656 077004 610997 803075 093993 467889 795458 446434 036625 856804 468098 569265 855603 185683 583734 959251 420506 306508 520450 934079 817929 945857 541124 028913 051096 827035 166262 136914 425119 065083 348009 384738 101740 962769 927412 426350 281494 563845 934132 348179 560780 682972 541494 039691 750929 658633 539107 988323 055091 605031 669854 954140 443590 433463 897419 963408 613008 461762 359998 695317 381329 129544 459015 594051 010951 900486 606455 114885 850040 560050 312101 618343 518353 498831 (516 digits)/69 501694 755310 519937 752177 398612 020449 711858 615440 666214 980796 506852 947830 536172 848516 754560 653206 649400 887958 498637 958710 781247 156170 359376 756601 697608 761611 630283 898690 035090 785544 648075 505395 436061 948899 976518 676050 362910 939141 879861 821258 996735 433018 849984 250423 342943 407620 174594 810064 323157 734273 098706 407064 803712 099272 963286 331806 643635 779926 056254 572987 261989 274777 214133 045677 655781 945886 099190 126232 335509 781857 879495 235914 114334 995504 184306 790859 079577 507746 703880 865666 898451 527524 542817 504573 961887 310228 (518 digits), a[979] = 1
                                                                                      A[980]/B[980] = 4 040654 524556 809633 495715 574362 234636 140868 256492 980583 843311 480530 690211 207478 603814 590437 396728 666728 985236 249591 847873 184009 049083 045362 745158 564778 702974 604654 333913 773050 359693 426809 496203 231249 941660 492550 131820 051309 213795 978047 936878 757072 866952 343765 611983 244644 410502 191506 860318 303684 205436 087947 899078 167861 204731 775809 529333 875533 443280 245471 790525 499507 686166 648362 113751 564351 859013 381529 188946 716532 669369 002051 161413 688383 122340 903276 177268 657634 992216 595391 059969 249908 421480 318747 387169 186480 250361 (517 digits)/392 725458 371760 501874 582109 058250 599725 107573 827079 293827 568861 464666 948196 569900 256654 986222 875897 332021 192253 603031 301900 271087 547478 297751 689045 238022 432681 713627 982636 028593 136056 827461 713490 587873 715055 348730 282030 498388 088920 040425 671190 748246 938794 541664 748752 510106 641210 314215 321412 336484 479269 058855 910570 466139 026276 487447 062480 675969 752182 222638 723345 459789 322679 281628 667808 240683 616036 079528 170156 814749 432925 944002 166212 118632 374206 364848 230315 958493 026203 603054 041041 999178 418023 219298 014360 180891 890939 (519 digits), a[980] = 5
                                                                                      A[981]/B[981] = 4 755740 168715 816867 092078 757643 921446 004951 305813 116468 665888 248496 136289 417134 680819 201435 199803 760722 453126 045050 294307 220634 905887 513461 314424 420381 888658 188389 293165 193556 666201 947260 430283 049179 887518 033674 160733 102406 040831 144310 073793 182191 932035 691774 996721 346385 373272 118919 286668 585178 769282 022080 247257 728641 887704 317303 569025 626463 101913 784579 778848 554599 291198 318217 067892 007942 292477 278949 152355 329541 131131 362049 856731 069712 251885 362291 771319 668586 892703 201846 174855 099948 981530 630849 005512 704833 749192 (517 digits)/462 227153 127071 021812 334286 456862 620174 819432 442519 960042 549657 971519 896027 106073 105171 740783 529103 981422 080212 101669 260611 052334 703648 657128 445646 935631 194293 343911 881326 063683 921601 475537 218886 023935 663955 325248 958080 861299 028061 920287 492449 744982 371813 391648 999175 853050 048830 488810 131476 659642 213542 157562 317635 269851 125549 450733 394287 319605 532108 278893 296332 721778 597456 495761 713485 896465 561922 178718 296389 150259 214783 823497 402126 232967 369710 549155 021175 038070 533950 306934 906708 897629 945547 762115 518934 142779 201167 (519 digits), a[981] = 1
                                                                                      A[982]/B[982] = 23 063615 199420 077101 864030 604937 920420 160673 479745 446458 506864 474515 235368 876017 327091 396178 195943 709618 797740 429793 025102 066548 672633 099208 002856 246306 257607 358211 506574 547277 024501 215851 217335 427969 491732 627246 774752 460933 377120 555288 232051 485840 595095 110865 598868 630185 903590 667184 006992 644399 282564 176268 888109 082428 755549 045023 805436 381385 850935 383790 905919 717904 850959 921230 385319 596121 028922 497325 798368 034697 193894 450250 588337 967232 129882 352443 262547 331982 563029 402775 759389 649704 347602 842143 409220 005815 247129 (518 digits)/2241 634070 880044 589123 919254 885701 080424 385303 597159 133997 767493 350746 532304 994192 677341 949356 992313 257709 513102 009708 344344 480426 362072 926265 471632 980547 209855 089275 507940 283328 822462 729610 589034 683616 370876 649726 114353 943584 201167 721575 640989 728176 426048 108260 745455 922306 836532 269455 847318 975053 333437 689105 181111 545543 528474 290380 639629 954391 880615 338211 908676 346903 712505 264675 521751 826545 863724 794401 355713 415786 292061 237991 774717 050501 853048 561468 315016 110775 162004 830793 667877 589698 200214 267760 090096 752008 695607 (520 digits), a[982] = 4
                                                                                      A[983]/B[983] = 50 882970 567555 971070 820139 967519 762286 326298 265304 009385 679617 197526 607027 169169 335001 993791 591691 179960 048606 904636 344511 353732 251153 711877 320136 912994 403872 904812 306314 288110 715204 378962 864953 905118 870983 288167 710238 024272 795072 254886 537896 153873 122225 913506 194458 606757 180453 453287 300653 873977 334410 374618 023475 893499 398802 407351 179898 389234 803784 552161 590687 990408 993118 160677 838531 200184 350322 273600 749091 398935 518920 262551 033407 004176 511650 067178 296414 332552 018762 007397 693634 399357 676736 315135 823952 716464 243450 (518 digits)/4945 495294 887160 200060 172796 228264 781023 590039 636838 228038 084644 673012 960637 094458 459855 639497 513730 496841 106416 121085 949300 013187 427794 509659 388912 896725 614003 522462 897206 630341 566526 934758 396955 391168 405708 624701 186788 748467 430397 363438 774429 201335 223909 608170 490087 697663 721895 027721 826114 609748 880417 535772 679858 360938 182498 031494 673547 228389 293338 955317 113685 415586 022467 025112 756989 549557 289371 767521 007815 981831 798906 299480 951560 333971 075807 672091 651207 259620 857959 968522 242464 077026 345976 297635 699127 646796 592381 (520 digits), a[983] = 2
                                                                                      A[984]/B[984] = 73 946585 766976 048172 684170 572457 682706 486971 745049 455844 186481 672041 842396 045186 662093 389969 787634 889578 846347 334429 369613 420280 923786 811085 322993 159300 661480 263023 812888 835387 739705 594814 082289 333088 362715 915414 484990 485206 172192 810174 769947 639713 717321 024371 793327 236943 084044 120471 307646 518376 616974 550886 911584 975928 154351 452374 985334 770620 654719 935952 496607 708313 844078 081908 223850 796305 379244 770926 547459 433632 712814 712801 621744 971408 641532 419621 558961 664534 581791 410173 453024 049062 024339 157279 233172 722279 490579 (518 digits)/7187 129365 767204 789184 092051 113965 861447 975343 233997 362035 852138 023759 492942 088651 137197 588854 506043 754550 619518 130794 293644 493613 789867 435924 860545 877272 823858 611738 405146 913670 388989 664368 985990 074784 776585 274427 301142 692051 631565 085014 415418 929511 649957 716431 235543 619970 558427 297177 673433 584802 213855 224877 860969 906481 710972 321875 313177 182781 173954 293529 022361 762489 734972 289788 278741 376103 153096 561922 363529 397618 090967 537472 726277 384472 928856 233559 966223 370396 019964 799315 910341 666724 546190 565395 789224 398805 287988 (520 digits), a[984] = 1
                                                                                      A[985]/B[985] = 124 829556 334532 019243 504310 539977 444992 813270 010353 465229 866098 869568 449423 214355 997095 383761 379326 069538 894954 239065 714124 774013 174940 522962 643130 072295 065353 167836 119203 123498 454909 973776 947243 238207 233699 203582 195228 509478 967265 065061 307843 793586 839546 937877 987785 843700 264497 573758 608300 392353 951384 925504 935060 869427 553153 859726 165233 159855 458504 488114 087295 698722 837196 242586 062381 996489 729567 044527 296550 832568 231734 975352 655151 975585 153182 486799 855375 997086 600553 417571 146658 448419 701075 472415 057125 438743 734029 (519 digits)/12132 624660 654364 989244 264847 342230 642471 565382 870835 590073 936782 696772 453579 183109 597053 228352 019774 251391 725934 251880 242944 506801 217661 945584 249458 773998 437862 134201 302353 544011 955516 599127 382945 465953 182293 899128 487931 440519 061962 448453 189848 130846 873867 324601 725631 317634 280322 324899 499548 194551 094272 760650 540828 267419 893470 353369 986724 411170 467293 248846 136047 178075 757439 314901 035730 925660 442468 329443 371345 379449 889873 836953 677837 718444 004663 905651 617430 630016 877924 767838 152805 743750 892166 863031 488352 045601 880369 (521 digits), a[985] = 1
                                                                                      A[986]/B[986] = 323 605698 436040 086659 692791 652412 572692 113511 765756 386303 918679 411178 741242 473898 656284 157492 546287 028656 636255 812560 797862 968307 273667 857010 609253 303890 792186 598696 051295 082384 649525 542367 976775 809502 830114 322578 875447 504164 106722 940297 385635 226887 396414 900127 768898 924343 613039 267988 524247 303084 519744 401896 781706 714783 260659 171827 315801 090331 571728 912180 671199 105759 518470 567080 348614 789284 838378 859981 140561 098769 176284 663506 932048 922578 947897 393221 269713 658707 782898 245315 746340 945901 426490 102109 347423 599766 958637 (519 digits)/31452 378687 075934 767672 621745 798427 146391 106108 975668 542183 725703 417304 400100 454870 331304 045558 545592 257334 071386 634554 779533 507216 225191 327093 359463 425269 699582 880141 009854 001694 300022 862623 751881 006691 141173 072684 277005 573089 755489 981920 795115 191205 397692 365634 686806 255239 119071 946976 672529 973904 402400 746178 942626 441321 497913 028615 286626 005122 108540 791221 294456 118641 249850 919590 350203 227424 038033 220809 106220 156517 870715 211380 081952 821360 938184 044863 201084 630429 775814 334992 215953 154226 330524 291458 765928 490009 048726 (521 digits), a[986] = 2
                                                                                      A[987]/B[987] = 448 435254 770572 105903 197102 192390 017684 926781 776109 851533 784778 280747 190665 688254 653379 541253 925613 098195 531210 051626 511987 742320 448608 379973 252383 376185 857539 766532 170498 205883 104435 516144 924019 047710 063813 526161 070676 013643 073988 005358 693479 020474 235961 838005 756684 768043 877536 841747 132547 695438 471129 327401 716767 584210 813813 031553 481034 250187 030233 400294 758494 804482 355666 809666 410996 785774 567945 904508 437111 931337 408019 638859 587200 898164 101079 880021 125089 655794 383451 662886 892999 394321 127565 574524 404549 038510 692666 (519 digits)/43585 003347 730299 756916 886593 140657 788862 671491 846504 132257 662486 114076 853679 637979 928357 273910 565366 508725 797320 886435 022478 014017 442853 272677 608922 199268 137445 014342 312207 545706 255539 461751 134826 472644 323466 971812 764937 013608 817452 430373 984963 322052 271559 690236 412437 572873 399394 271876 172078 168455 496673 506829 483454 708741 391383 381985 273350 416292 575834 040067 430503 296717 007290 234491 385934 153084 480501 550252 477565 535967 760589 048333 759790 539804 942847 950514 818515 260446 653739 102830 368758 897977 222691 154490 254280 535610 929095 (521 digits), a[987] = 1
                                                                                      A[988]/B[988] = 16018 839615 406063 793271 591368 386063 191664 550873 929601 189986 385919 237330 414541 562811 524568 101379 942745 465500 228607 619488 717433 949522 974961 156074 442671 470395 806078 427322 018732 288293 304768 607440 317442 479355 063587 738216 349107 981671 696303 127851 657400 943485 655079 230329 252865 805879 326828 729138 163416 643431 009270 860956 868572 162161 744115 276199 151999 846877 629897 922497 218517 262641 966808 905404 733502 291394 716485 517776 439478 695578 456972 023592 484080 358322 485693 193960 647851 611511 203706 446357 001319 747140 891285 210463 506639 947641 201947 (521 digits)/1 556927 495857 636426 259763 652505 721449 756584 608323 603313 171201 912717 409994 278887 784167 823808 632428 333420 062736 977617 659780 566263 997826 725055 870809 671740 399654 510158 382121 937118 101413 243904 023913 470807 549242 462517 086131 049801 049398 366325 045010 268831 463034 902281 523909 122121 305808 097871 462642 695265 869846 785973 485210 863541 247270 196331 398099 853890 575362 262732 193581 362071 503736 505009 126788 857898 585380 855587 479645 821013 915389 491331 903061 674621 714533 937862 312881 849118 746062 656682 934055 122514 583429 124714 698617 665747 236391 567051 (523 digits), a[988] = 35
                                                                                      A[989]/B[989] = 48504 954100 988763 485717 971207 350579 592678 579403 564913 421492 942535 992738 434290 376689 227083 845393 753849 494696 217032 910092 664289 590889 373491 848196 580397 787373 275775 048498 226695 070763 018741 338465 876346 485775 254576 740810 117999 958658 162897 388913 665681 850931 201199 528993 515282 185681 858023 029161 622797 625731 498941 910272 322484 070696 046158 860150 937033 790819 919927 167786 414046 592408 256093 525880 611503 659958 717402 457837 755548 018072 778935 709637 039441 973131 558159 461903 068644 490327 994571 001957 896958 635743 801421 205914 924468 881434 298507 (521 digits)/4 714367 490920 639578 536207 844110 305007 058616 496462 656443 645863 400638 344059 690342 990483 399783 171195 565626 696936 730173 865776 721270 007497 618020 885106 624143 398231 667920 160708 123561 849945 987251 533491 547249 120371 711018 230205 914340 161803 916427 565404 791457 711156 978404 261963 778801 490297 693008 659804 257875 777995 854593 962462 074078 450551 980377 576284 835022 142379 364030 620811 516717 807926 522317 614857 959629 909227 047263 989189 940607 282136 234584 757518 783655 683406 756434 889160 365871 498634 623787 904995 736302 648264 596835 250343 251522 244785 630248 (523 digits), a[989] = 3
                                                                                      A[990]/B[990] = 113028 747817 383590 764707 533783 087222 377021 709681 059428 032972 270991 222807 283122 316189 978735 792167 450444 454892 662673 439674 046013 131301 721944 852467 603467 045142 357628 524318 472122 429819 342251 284372 070135 450905 572741 219836 585107 898988 022097 905678 988764 645348 057478 288316 283430 177243 042874 787461 409011 894894 007154 681501 513540 303553 836432 996501 026067 428517 469752 258070 046610 447458 478995 957165 956509 611312 151290 433451 950574 731724 014843 442866 562964 304585 602012 117766 785140 592167 192848 450272 795237 018628 494127 622293 355577 710509 798961 (522 digits)/10 985662 477698 915583 332179 340726 331463 873817 601248 916200 462928 713994 098113 659573 765134 623374 974819 464673 456610 437965 391334 008804 012821 961097 641022 920027 196117 845998 703538 184241 801305 218407 090896 565305 789985 884553 546542 878481 373006 199180 175819 851746 885348 859090 047836 679724 286403 483888 782251 211017 425838 495161 410135 011698 148374 157086 550669 523934 860120 990793 435204 395507 119589 549644 356504 777158 403834 950115 458025 702228 479661 960501 418099 241933 081347 450732 091202 580861 743331 904258 744046 595119 879958 318385 199304 168791 725962 827547 (524 digits), a[990] = 2
                                                                                      A[991]/B[991] = 952734 936640 057489 603378 241472 048358 608852 256852 040337 685271 110465 775196 699268 906209 056970 182733 357405 133837 518420 427485 032394 641303 149050 667937 408134 148512 136803 243046 003674 509317 756751 613442 437430 093019 836506 499502 798863 150562 339680 634345 575799 013715 661025 835523 782723 603626 201021 328852 894892 784883 556179 362284 430806 499126 737622 832159 145573 218959 677945 232346 786930 172076 088061 183208 263580 550455 927725 925453 360145 871864 897683 252569 543156 409816 374256 404037 349769 227665 537358 604140 258854 784771 754442 184261 769090 565512 690195 (522 digits)/92 599667 312511 964245 193642 569920 956718 049157 306453 986047 349293 112591 128968 966933 111560 386782 969751 283014 349820 233896 996448 791702 110073 306802 013289 984360 967174 435909 789013 597496 260387 734508 260664 069695 440258 787446 602548 942191 145853 509868 971963 605432 793947 851124 644657 216595 781525 564118 917813 946015 184703 815885 243542 167663 637545 237069 981641 026501 023347 290378 102446 680774 764642 919472 466896 176897 139906 648187 653395 558435 119431 918596 102312 719120 334186 362291 618781 012765 445289 857857 857368 497261 687931 143916 844776 601856 052488 250624 (524 digits), a[991] = 8
                                                                                      A[992]/B[992] = 3 923968 494377 613549 178220 499671 280656 812430 737089 220778 774056 712854 323594 080197 941026 206616 523100 880064 990242 736355 149614 175591 696514 318147 524217 236003 639190 904841 496502 486820 467090 369257 738141 819855 822984 918767 217847 780560 501237 380820 443061 291960 700210 701581 630411 414324 591747 846960 102872 988583 034428 231872 130639 236766 300060 786924 325137 608360 304356 181533 187457 194331 135762 831240 689999 010831 813135 862194 135265 391158 219183 605576 453144 735589 943851 099037 733916 184217 502829 342282 866833 830656 157715 511896 359340 431939 972560 559741 (523 digits)/381 384331 727746 772564 106749 620410 158336 070446 827064 860389 860101 164358 613989 527306 211376 170506 853824 596730 855891 373553 377129 175612 453115 188305 694182 857471 064815 589637 859592 574226 842856 156440 133552 844087 551021 034339 956738 647245 956420 238656 063674 273478 061140 263588 626465 546107 412505 740364 453506 995078 164653 758702 384303 682352 698555 105366 477233 629938 953510 152305 844991 118606 178161 227534 224089 484746 963461 542866 071607 935968 957389 634885 827350 118414 418092 899898 566326 631923 524491 335690 173520 584166 631682 894052 578410 576215 935915 830043 (525 digits), a[992] = 4
                                                                                      A[993]/B[993] = 83 356073 318569 942022 346008 734568 942151 669897 735725 676691 940462 080406 570672 383425 667759 395917 167851 838769 928934 981878 569382 719820 268103 830148 676499 364210 571521 138474 669598 226904 318215 511164 114420 654402 375703 130618 074306 190633 676547 336909 938632 706973 718140 394240 074163 483540 030330 987183 489185 655136 507876 425494 105708 402898 800403 263033 660048 921139 610439 490142 168947 867884 023095 544115 673187 491048 626309 033802 766026 574468 474720 614788 768608 990545 230689 454048 816277 218336 787081 725298 807650 702634 096797 504265 730410 839829 989284 444756 (524 digits)/8101 670633 595194 188091 435384 598534 281775 528540 674816 054234 411417 564122 022749 040363 550459 967426 900067 814362 323539 078517 916161 479563 625492 261221 591129 991253 328301 818304 840457 656259 960367 019751 065273 795534 011700 508585 694060 534356 230678 521646 309123 348472 077893 386485 800433 684851 444146 111772 441460 842656 642432 748635 313919 497070 307202 449766 003547 255219 047060 488800 847260 171504 506028 697691 172775 356583 372599 048375 157162 213783 224614 251198 476665 205823 114137 260161 511640 283159 459607 907351 501300 764760 953271 919020 991398 702390 706720 681527 (526 digits), a[993] = 21
                                                                                      A[994]/B[994] = 87 280041 812947 555571 524229 234240 222808 482328 472814 897470 714518 793260 894266 463623 608785 602533 690952 718834 919177 718233 718996 895411 964618 148296 200716 600214 210712 043316 166100 713724 785305 880421 852562 474258 198688 049385 292153 971194 177784 717730 381693 998934 418351 095821 704574 897864 622078 834143 592058 643719 542304 657366 236347 639665 100464 049957 985186 529499 914795 671675 356405 062215 158858 375356 363186 501880 439444 895996 901291 965626 693904 220365 221753 726135 174540 553086 550193 402554 289911 067581 674484 533290 254513 016162 089751 271769 961845 004497 (524 digits)/8483 054965 322940 960655 542134 218944 440111 598987 501880 914624 271518 728480 636738 567669 761836 137933 753892 411093 179430 452071 293290 655176 078607 449527 285312 848724 393117 407942 700050 230486 803223 176191 198826 639621 562721 542925 650799 181602 187098 760302 372797 621950 139033 650074 426899 230958 856651 852136 894967 837734 807086 507337 698223 179423 005757 555132 480780 885158 000570 641106 692251 290110 684189 925225 396864 841330 336060 591241 228770 149752 182003 886084 304015 324237 532230 160060 077966 915082 984099 243041 674821 348927 584954 813073 569809 278606 642636 511570 (526 digits), a[994] = 1
                                                                                      A[995]/B[995] = 432 476240 570360 164308 442925 671529 833385 599211 626985 266574 798537 253450 147738 237920 102901 806051 931662 714109 605645 854813 445370 301468 126576 423333 479365 765067 414369 311739 334001 081803 459439 032851 524670 551435 170455 328159 242922 075410 387686 207831 465408 702711 391544 777526 892463 074998 518646 323757 857420 230014 677095 054959 051098 961559 202259 462865 600795 039139 269622 176843 594568 116744 658529 045541 125933 498570 384088 617790 371194 436975 250337 496249 655623 895085 928851 666395 017050 828553 946725 995625 505588 835795 114849 568914 089415 926909 836664 462744 (525 digits)/42033 890494 886958 030713 603921 474312 042221 924490 682339 712731 497492 478044 569703 311042 597804 519161 915637 458735 041260 886803 089324 100267 939922 059330 732381 386150 900771 450075 640658 578207 173259 724515 860580 354020 262586 680288 297257 260764 979073 562855 800313 836272 634027 986783 508030 608686 870753 520320 021332 193595 870778 777986 106812 214762 330232 670295 926670 795851 049343 053227 616265 331947 242788 398592 760234 721904 716841 413340 072242 812791 952629 795535 692726 502773 243057 900401 823507 943491 396004 879518 200586 160471 293091 171315 270635 816817 277266 727807 (527 digits), a[995] = 4
                                                                                      A[996]/B[996] = 1384 708763 524028 048496 853006 248829 722965 279963 353770 697195 110130 553611 337481 177383 917491 020689 485940 861163 736115 282674 055107 799816 344347 418296 638813 895416 453819 978534 168103 959135 163622 978976 426574 128563 710054 033863 020920 197425 340843 341224 777920 107068 592985 428402 381964 122860 178017 805417 164319 333763 573589 822243 389644 524342 707242 438554 787571 646917 723662 202206 140109 412449 134445 511979 740986 997591 591710 749368 014875 276552 444916 709114 188625 411392 961095 552271 601345 888216 130089 054458 191251 040675 599061 722904 357999 052499 471838 392729 (526 digits)/134584 726449 983815 052796 353898 641880 566777 372459 548900 052818 763996 162614 345848 500797 555249 695419 500804 787298 303213 112480 561262 955979 898373 627519 482457 007177 095431 758169 622025 965108 323002 349738 780567 701682 350481 583790 542570 963897 124319 448869 773739 130768 041117 610424 950991 057019 468912 413096 958964 418522 419422 841296 018659 823709 996455 566020 260793 272711 148599 800789 541047 285952 412555 121003 677569 007044 486584 831261 445498 588128 039893 272691 382194 832557 261403 861265 548490 745557 172113 881596 276579 830341 464228 327019 381716 729058 474436 694991 (528 digits), a[996] = 3
                                                                                      A[997]/B[997] = 1817 185004 094388 212805 295931 920359 556350 879174 980755 963769 908667 807061 485219 415304 020392 826741 417603 575273 341761 137487 500478 101284 470923 841630 118179 660483 868189 290273 502105 040938 623062 011827 951244 679998 880509 362022 263842 272835 728529 549056 243328 809779 984530 205929 274427 197858 696664 129175 021739 563778 250684 877202 440743 485901 909501 901420 388366 686056 993284 379049 734677 529193 792974 557520 866920 496161 975799 367158 386069 713527 695254 205363 844249 306478 889947 218666 618396 716770 076815 050083 696839 876470 713911 291818 447414 979409 308502 855473 (526 digits)/176618 616944 870773 083509 957820 116192 608999 296950 231239 765550 261488 640658 915551 811840 153054 214581 416442 246033 344473 999283 650587 056247 838295 686850 214838 393327 996203 208245 262684 543315 496262 074254 641148 055702 613068 264078 839828 224662 103393 011725 574052 967040 675145 597208 459021 665706 339665 933416 980296 612118 290201 619282 125472 038472 326688 236316 187464 068562 197942 854017 157312 617899 655343 519596 437803 728949 203426 244601 517741 400919 992523 068227 074921 335330 504461 761667 371998 689048 568118 761114 477165 990812 757319 498334 652352 545875 751703 422798 (528 digits), a[997] = 1
                                                                                      A[998]/B[998] = 5019 078771 712804 474107 444870 089548 835667 038313 315282 624734 927466 167734 307920 007991 958276 674172 321148 011710 419637 557649 056064 002385 286195 101556 875173 216384 190198 559081 172314 041012 409747 002632 329063 488561 471072 757907 548604 743096 797902 439337 264577 726628 562045 840260 930818 518577 571346 063767 207798 461320 074959 576648 271131 496146 526246 241395 564305 019031 710230 960305 609464 470836 720394 627021 474827 989915 543309 483684 787014 703607 835425 119841 877124 024350 740989 989604 838139 321756 283719 154625 584930 793617 026884 306541 252829 011318 088844 103675 (526 digits)/487821 960339 725361 219816 269538 874265 784775 966360 011379 583919 286973 443932 176952 124477 861358 124582 333689 279364 992161 111047 862437 068475 574965 001219 912133 793833 087838 174660 147395 051739 315526 498248 062863 813087 576618 111948 222227 413221 331105 472320 921845 064849 391408 804841 869034 388432 148244 279930 919557 642758 999826 079860 269603 900654 649832 038652 635721 409835 544485 508823 855672 521751 723242 160196 553176 464942 893437 320464 480981 389968 024939 409145 532037 503218 270327 384600 292488 123654 308351 403825 230911 811966 978867 323688 686421 820809 977843 540587 (528 digits), a[998] = 2
                                                                                      A[999]/B[999] = 11855 342547 519997 161020 185672 099457 227684 955801 611321 213239 763600 142530 101059 431287 936946 175086 059899 598694 181036 252785 612606 106055 043314 044743 868526 093252 248586 408435 846733 122963 442556 017092 609371 657121 822654 877837 361051 759029 324334 427730 772484 263037 108621 886451 136064 235013 839356 256709 437336 486418 400604 030498 983006 478194 961994 384211 516976 724120 413746 299660 953606 470867 233763 811563 816576 475993 062418 334527 960099 120743 366104 445047 598497 355180 371927 197876 294675 360282 644253 359334 866701 463704 767679 904900 953073 002045 486191 062823 (527 digits)/1 152262 537624 321495 523142 496897 864724 178551 229670 253998 933388 835435 528523 269456 060795 875770 463746 083820 804763 328796 221379 375461 193198 988225 689290 039105 980994 171879 557565 557474 646794 127315 070750 766875 681877 766304 487975 284283 051104 765603 956367 417743 096739 457963 206892 197090 442570 636154 493278 819411 897636 289853 779002 664679 839781 626352 313621 458906 888233 286913 871664 868657 661403 101827 839989 544156 658834 990300 885530 479704 180856 042401 886518 138996 341767 045116 530867 956974 936357 184821 568764 938989 614746 715054 145712 025196 187495 707390 503972 (529 digits), a[999] = 2
                                                                                      A[1000]/B[1000] = 16874 421319 232801 635127 630542 189006 063351 994114 926603 837974 691066 310264 408979 439279 895222 849258 381047 610404 600673 810434 668670 108440 329509 146300 743699 309636 438784 967517 019047 163975 852303 019724 938435 145683 293727 635744 909656 502126 122236 867068 037061 989665 670667 726712 066882 753591 410702 320476 645134 947738 475563 607147 254137 974341 488240 625607 081281 743152 123977 259966 563070 941703 954158 438585 291404 465908 605727 818212 747113 824351 201529 564889 475621 379531 112917 187481 132814 682038 927972 513960 451632 257321 794564 211442 205902 013363 575035 166498 (527 digits)/1 640084 497964 046856 742958 766436 738989 963327 196030 265378 517308 122408 972455 446408 185273 737128 588328 417510 084128 320957 332427 237898 261674 563190 690509 951239 774827 259717 732225 704869 698533 442841 568998 829739 494965 342922 599923 506510 464326 096709 428688 339588 161588 849372 011734 066124 831002 784398 773209 738969 540395 289679 858862 934283 740436 276184 352274 094628 298068 831399 380488 724330 183154 825070 000186 097333 123777 883738 205994 960685 570824 067341 295663 671033 844985 315443 915468 249463 060011 493172 972590 169901 426713 693921 469400 711618 008305 685234 044559 (529 digits), a[1000] = 1
                                                                                      A[1001]/B[1001] = 62478 606505 218402 066403 077298 666475 417740 938146 391132 727163 836799 073323 327997 749127 622614 722861 203042 429907 983057 684089 618616 431376 031841 483646 099624 022161 564941 310986 903874 614890 999465 076267 424677 094171 703837 785072 090021 265407 691045 028934 883670 232034 120625 066587 336712 495788 071463 218139 372741 329633 827294 851940 745420 401219 426716 261032 760821 953576 785678 079560 642819 295979 096239 127319 690789 873718 879601 789166 201440 593796 970693 139716 025361 493773 710678 760319 693119 406399 428170 901216 221598 235670 151372 539227 570779 042136 211296 562317 (527 digits)/6 072516 031516 462065 752018 796208 081694 068532 817761 050134 485313 202662 445889 608680 616617 087156 228731 336351 057148 291668 218661 089155 978222 677797 760819 892825 305475 951032 754242 672083 742394 455839 777747 256094 166773 795072 287745 803814 444083 055732 242432 436507 581506 006079 242094 395464 935578 989350 812908 036320 518822 158893 355591 467531 061090 454905 370443 742791 782439 781112 013131 041648 210867 577037 840547 836156 030168 641515 503515 361760 893328 244425 773509 152097 876722 991448 277272 705364 116391 664340 486535 448693 894887 796818 553914 160050 212412 763092 637649 (529 digits), a[1001] = 3
                                                                                      A[1002]/B[1002] = 79353 027824 451203 701530 707840 855481 481092 932261 317736 565138 527865 383587 736977 188407 517837 572119 584090 040312 583731 494524 287286 539816 361350 629946 843323 331798 003726 278503 922921 778866 851768 095992 363112 239854 997565 420816 999677 767533 813281 896002 920732 221699 791292 793299 403595 249379 482165 538616 017876 277372 302858 459087 999558 375560 914956 886639 842103 696728 909655 339527 205890 237683 050397 565904 982194 339627 485329 607378 948554 418148 172222 704605 500982 873304 823595 947800 825934 088438 356143 415176 673230 492991 945936 750669 776681 055499 786331 728815 (527 digits)/7 712600 529480 508922 494977 562644 820684 031860 013791 315513 002621 325071 418345 055088 801890 824284 817059 753861 141276 612625 551088 327054 239897 240988 451329 844065 080303 210750 486468 376953 440927 898681 346746 085833 661739 137994 887669 310324 908409 152441 671120 776095 743094 855451 253828 461589 766581 773749 586117 775290 059217 448573 214454 401814 801526 731089 722717 837420 080508 612511 393619 765978 394022 402107 840733 933489 153946 525253 709510 322446 464152 311767 069172 823131 721708 306892 192740 954827 176403 157513 459125 618595 321601 490740 023314 871668 220718 448326 682208 (529 digits), a[1002] = 1
                                                                                      A[1003]/B[1003] = 538596 773451 925624 275587 324343 799364 304298 531714 297552 117995 003991 374849 749860 879572 729640 155578 707582 671783 485446 651235 342335 670274 199945 263327 159564 012949 587298 982010 441405 288092 110073 652221 603350 533301 689230 309974 088087 870610 570736 404952 408063 562232 868381 826383 758283 992064 964456 449835 479998 993867 644445 606468 742770 654584 916457 580871 813444 133950 243610 116723 878160 722077 398624 522749 583955 911483 791579 433439 892767 102686 004029 367349 031258 733602 652254 447124 648723 937029 565031 392276 260981 193621 826993 043246 230865 375134 929286 935207 (528 digits)/52 348119 208399 515600 721884 172077 005798 259692 900508 943212 501041 153090 955959 939213 427962 032865 131089 859517 904807 967421 525191 051481 417606 123728 468798 957215 787295 215535 673052 933804 387961 847927 858223 771096 137208 623041 613761 665763 894537 970382 269157 093082 040075 138786 765065 165003 535069 631848 329614 688060 874126 850332 642317 878419 870250 841443 706750 767312 265491 456180 374849 637518 575001 989684 884951 437090 953847 793037 760577 296439 678242 115028 188546 090888 206972 832801 433718 434327 174810 609421 241289 160265 824496 741258 693803 390059 536723 453052 730897 (530 digits), a[1003] = 6
                                                                                      A[1004]/B[1004] = 8 158304 629603 335567 835340 572997 845946 045570 907975 781018 335063 587736 006333 984890 381998 462439 905800 197830 117064 865431 263054 422321 593929 360529 579854 236783 526041 813211 008660 544001 100248 502872 879316 413370 239380 336020 070428 320995 826692 374327 970289 041685 655192 817020 189055 777855 130353 949012 286148 217861 185386 969542 556119 141118 194334 661820 599717 043765 705982 563807 090385 378301 068844 029765 407148 741533 011884 359021 108977 340060 958438 232663 214840 969863 877344 607412 654670 556793 143881 831614 299320 587948 397319 350832 399363 239661 682523 725635 756920 (529 digits)/792 934388 655473 242933 323240 143799 907657 927253 521425 463700 518238 621435 757744 143290 221321 317261 783407 646629 713396 123948 428954 099275 503989 096915 483314 202301 889731 443785 582262 384019 260355 617599 220102 652275 719868 483619 094094 296783 326478 708175 708477 172326 344221 937252 729805 936642 792626 251474 530338 096203 171120 203562 849222 578112 855289 352745 323979 347104 062880 455217 016364 328757 019052 247381 115005 489853 461663 420820 118169 769041 637784 037189 897364 186454 826300 798913 698517 469734 798562 298832 078463 022582 689052 609620 430365 722561 271570 244117 645663 (531 digits), a[1004] = 15
                                                                                      A[1005]/B[1005] = 16 855206 032658 596759 946268 470339 491256 395440 347665 859588 788122 179463 387517 719641 643569 654519 967179 103242 905913 216309 177344 186978 858132 921004 423035 633131 065033 213720 999331 529407 488589 115819 410854 430091 012062 361270 450830 730079 523995 319392 345530 491434 872618 502422 204495 313994 252772 862481 022131 915721 364641 583530 718707 025007 043254 240098 780305 900975 545915 371224 297494 634762 859765 458155 337047 067021 935252 509621 651394 572889 019562 469355 797030 970986 488291 867079 756465 762310 224793 228259 990917 436877 988260 528657 841972 710188 740182 380558 449047 (530 digits)/1638 216896 519346 001467 368364 459676 821114 114199 943359 870613 537518 395962 471448 225793 870604 667388 697905 152777 331600 215318 383099 250032 425584 317559 435427 361819 566758 103106 837577 701842 908673 083126 298429 075647 576945 590279 801950 259330 547495 386733 686111 437734 728519 013292 224677 038289 120322 134797 390290 880467 216367 257458 340763 034645 580829 546934 354709 461520 391252 366614 407578 295032 613106 484447 114962 416797 877174 634677 996916 834522 953810 189407 983274 463797 859574 430628 830753 373796 771935 207085 398215 205431 202601 960499 554534 835182 079863 941288 022223 (532 digits), a[1005] = 2
                                                                                      A[1006]/B[1006] = 58 723922 727579 125847 674145 984016 319715 231891 950973 359784 699430 126126 168887 143815 312707 425999 807337 507558 834804 514358 795086 983258 168328 123542 848961 136176 721141 454374 006655 132223 566015 850331 111879 703643 275567 419831 422920 511234 398678 332505 006880 515990 273048 324286 802541 719837 888672 536455 352543 965025 279311 720134 712240 216139 324097 382116 940634 746692 343728 677479 982869 282589 648140 404231 418289 942598 817641 887886 063161 058728 017125 640730 605933 882823 342220 208651 924067 843723 818261 516394 272072 898582 362100 936805 925281 370227 903070 867311 104061 (530 digits)/5707 585078 213511 247335 428333 522830 371000 269853 351505 075541 130793 809323 172088 820671 833135 319427 877123 104961 708196 769903 578251 849372 780742 049593 789596 287760 590005 753106 094995 489547 986374 866978 115389 879218 450705 254458 499945 074774 968964 868376 766811 485530 529778 977129 403837 051510 153592 655866 701210 737604 820221 975937 871511 682049 597777 993548 388107 731665 236637 555060 239099 213854 858371 700722 459892 740247 093187 324854 108920 272610 499214 605413 847187 577848 405024 090800 190777 591125 114367 920088 273108 638876 296858 491119 093970 228107 511162 067981 712332 (532 digits), a[1006] = 3
                                                                                      A[1007]/B[1007] = 251 750896 942975 100150 642852 406404 770117 323008 151559 298727 585842 683968 063066 294902 894399 358519 196529 133478 245131 273744 357692 120011 531445 415175 818880 177837 949599 031217 025952 058301 752652 517143 858373 244664 114332 040596 142512 775017 118708 649412 373052 555395 964811 799569 414662 193345 807463 008302 432307 775822 481888 464069 567667 889564 339643 768566 542844 887744 920830 081144 228971 765121 452327 075081 010206 837417 205820 061165 904038 807801 088065 032278 220766 502279 857172 701687 452737 137205 497839 293837 079209 031207 436664 275881 543098 191100 352465 849802 865291 (531 digits)/24468 557209 373390 990809 081698 550998 305115 193613 349380 172778 060693 633255 159803 508481 203145 945100 206397 572624 164387 294932 696106 647523 548552 515934 593812 512861 926781 115531 217559 660034 854172 551038 759988 592521 379766 608113 801730 558430 423354 860240 753357 379856 847634 921809 840025 244329 734692 758264 195133 830886 497255 161209 826809 762843 971941 521127 907140 388181 337802 586855 363975 150452 046593 287336 954533 377786 249923 934094 432597 924964 950668 611063 372024 775191 479670 793829 593863 738297 229406 887438 490649 760936 390035 924975 930415 747612 124512 213214 871551 (533 digits), a[1007] = 4
                                                                                      A[1008]/B[1008] = 3834 987376 872205 628107 316932 080087 871475 077014 224362 840698 487070 385647 114881 567358 728697 803787 755274 509732 511773 620524 160468 783431 140009 351180 132163 803745 965126 922629 395936 006749 855803 607488 987478 373604 990548 028773 560612 136491 179308 073690 602668 846929 745225 317828 022474 620025 000617 660991 837160 602362 507638 681178 227258 559604 418753 910615 083308 062866 156179 894643 417445 759411 433046 530446 571392 503856 904942 805374 623743 175744 338101 124903 917431 417021 199810 733963 715124 901806 285850 923950 460208 366693 912065 075029 071754 236733 190058 614354 083426 (532 digits)/372735 943218 814376 109471 653811 787804 947728 174053 592207 667212 041198 308150 569141 447889 880324 495930 973086 694324 174006 193894 019851 562226 009029 788612 696783 980689 491722 486074 358390 390070 798963 132559 515218 767039 147204 376165 525903 451231 319287 771988 067172 183383 244302 804277 004215 716456 173984 029829 628218 200902 279049 394085 273658 124709 176900 810466 995213 554385 303676 357890 698726 470635 557271 010776 777893 407040 842046 336270 597889 147084 759243 771364 427559 205720 600085 998244 098733 665583 555471 231665 632855 052922 147397 365758 050206 442289 378845 266204 785597 (534 digits), a[1008] = 15
                                                                                      A[1009]/B[1009] = 4086 738273 815180 728257 959784 486492 641592 400022 375922 139426 072913 069615 177947 862261 623097 162306 951803 643210 756904 894268 518160 903442 671454 766355 951043 981583 914725 953846 421888 065051 608456 124632 845851 618269 104880 069369 703124 911508 298016 723102 975721 402325 710037 117397 437136 813370 808080 669294 269468 378184 989527 145247 794926 449168 758397 679181 626152 950611 077009 975787 646417 524532 885373 605527 581599 341274 110762 866540 527781 983545 426166 157182 138197 919301 056983 435651 167862 039011 783690 217787 539417 397901 348729 350910 614852 427833 542524 464156 948717 (532 digits)/397204 500428 187767 100280 735510 338803 252843 367666 941587 839990 101891 941405 728944 956371 083470 441031 179484 266948 338393 488826 715958 209749 557582 304547 290596 493551 418503 601605 575950 050105 653135 683598 275207 359560 526970 984279 327634 009661 742642 632228 820529 563240 091937 726086 844240 960785 908676 788093 823352 031788 776304 555295 100467 887553 148842 331594 902353 942566 641478 944746 062701 621087 603864 298113 732426 784827 091970 270365 030487 072049 709912 382427 799583 980912 079756 792073 692597 403880 784878 119104 123504 813858 537433 290733 980622 189901 503357 479419 657148 (534 digits), a[1009] = 1
                                                                                      A[1010]/B[1010] = 7921 725650 687386 356365 276716 566580 513067 477036 600284 980124 559983 455262 292829 429620 351794 966094 707078 152943 268678 514792 678629 686873 811464 117536 083207 785329 879852 876475 817824 071801 464259 732121 833329 991874 095428 098143 263737 047999 477324 796793 578390 249255 455262 435225 459611 433395 808698 330286 106628 980547 497165 826426 022185 008773 177151 589796 709461 013477 233189 870431 063863 283944 318420 135974 152991 845131 015705 671915 151525 159289 764267 282086 055629 336322 256794 169614 882986 940818 069541 141737 999625 764595 260794 425939 686606 664566 732583 078511 032143 (532 digits)/769940 443647 002143 209752 389322 126608 200571 541720 533795 507202 143090 249556 298086 404260 963794 936962 152570 961272 512399 682720 735809 771975 566612 093159 987380 474240 910226 087679 934340 440176 452098 816157 790426 126599 674175 360444 853537 460893 061930 404216 887701 746623 336240 530363 848456 677242 082660 817923 451570 232691 055353 949380 374126 012262 325743 142061 897567 496951 945155 302636 761428 091723 161135 308890 510320 191867 934016 606635 628376 219134 469156 153792 227143 186632 679842 790317 791331 069464 340349 350769 756359 866780 684830 656492 030828 632190 882202 745624 442745 (534 digits), a[1010] = 1
                                                                                      A[1011]/B[1011] = 12008 463924 502567 084623 236501 053073 154659 877058 976207 119550 632896 524877 470777 291881 974892 128401 658881 796154 025583 409061 196790 590316 482918 883892 034251 766913 794578 830322 239712 136853 072715 856754 679181 610143 200308 167512 966861 959507 775341 519896 554111 651581 165299 552622 896748 246766 616778 999580 376097 358732 486692 971673 817111 457941 935549 268978 335613 964088 310199 846218 710280 808477 203793 741501 734591 186405 126468 538455 679307 142835 190433 439268 193827 255623 313777 605266 050848 979829 853231 359525 539043 162496 609523 776850 301459 092400 275107 542667 980860 (533 digits)/1 167144 944075 189910 310033 124832 465411 453414 909387 475383 347192 244982 190962 027031 360632 047265 377993 332055 228220 850793 171547 451767 981725 124194 397707 277976 967792 328729 689285 510290 490282 105234 499756 065633 486160 201146 344724 181171 470554 804573 036445 708231 309863 428178 256450 692697 638027 991337 606017 274922 264479 831658 504675 474593 899815 474585 473656 799921 439518 586634 247382 824129 712810 764999 607004 242746 976695 025986 877000 658863 291184 179068 536220 026727 167544 759599 582391 483928 473345 125227 469873 879864 680639 222263 947226 011450 822092 385560 225044 099893 (535 digits), a[1011] = 1
                                                                                      A[1012]/B[1012] = 31938 653499 692520 525611 749718 672726 822387 231154 552699 219225 825776 505017 234384 013384 301579 222898 024841 745251 319845 332915 072210 867506 777301 885320 151711 319157 469010 537120 297248 345507 609691 445631 191693 212160 496044 433169 197460 967015 028007 836586 686613 552417 785861 540471 253107 926929 042256 329446 858823 698012 470551 769773 656407 924657 048250 127753 380688 941653 853589 562868 484424 900898 726007 618977 622174 217941 268642 748826 510139 444960 145134 160622 443283 847568 884349 380146 984684 900477 776003 860789 077712 089588 479841 979640 289524 849367 282798 163846 993863 (533 digits)/3 104230 331797 381963 829818 638987 057431 107401 360495 484562 201586 633054 631480 352149 125525 058325 692948 816681 417714 213986 025815 639345 735425 815000 888574 543334 409825 567685 466250 954921 420740 662567 815669 921693 098920 076468 049893 215880 402002 671076 477108 304164 366350 192597 043265 233851 953298 065336 029958 001414 761650 718670 958731 323313 811893 274914 089375 497410 375989 118423 797402 409687 517344 691134 522898 995814 145257 985990 360636 946102 801502 827293 226232 280597 521722 199041 955100 759188 016154 590804 290517 516089 228059 129358 550944 053730 276375 653323 195712 642531 (535 digits), a[1012] = 2
                                                                                      A[1013]/B[1013] = 43947 117424 195087 610234 986219 725799 977047 108213 528906 338776 458673 029894 705161 305266 276471 351299 683723 541405 345428 741976 269001 457823 260220 769212 185963 086071 263589 367442 536960 482360 682407 302385 870874 822303 696352 600682 164322 926522 803349 356483 240725 203998 951161 093094 149856 173695 659035 329027 234921 056744 957244 741447 473519 382598 983799 396731 716302 905742 163789 409087 194705 709375 929801 360479 356765 404346 395111 287282 189446 587795 335567 599890 637111 103192 198126 985413 035533 880307 629235 220314 616755 252085 089365 756490 590983 941767 557905 706514 974723 (533 digits)/4 271375 275872 571874 139851 763819 522842 560816 269882 959945 548778 878036 822442 379180 486157 105591 070942 148736 645935 064779 197363 091113 717150 939195 286281 821311 377617 896415 155536 465211 911022 767802 315425 987326 585080 277614 394617 397051 872557 475649 513554 012395 676213 620775 299715 926549 591326 056673 635975 276337 026130 550329 463406 797907 711708 749499 563032 297331 815507 705058 044785 233817 230155 456134 129903 238561 121953 011977 237637 604966 092687 006361 762452 307324 689266 958641 537492 243116 489499 716031 760391 395953 908698 351622 498170 065181 098468 038883 420756 742424 (535 digits), a[1013] = 1
                                                                                      A[1014]/B[1014] = 383515 592893 253221 407491 639476 479126 638764 096862 783949 929437 495160 744174 875674 455514 513350 033295 494630 076494 083275 268725 224222 530092 859068 039017 639416 007727 577725 476660 592932 204393 068949 864718 158691 790590 066865 238626 512044 379197 454802 688452 612415 184409 395150 285224 451957 316494 314538 961664 738192 151972 128509 701353 444562 985448 918645 301607 111112 187591 163904 835566 042070 575906 164418 502812 476297 452712 429533 047084 025712 147322 829674 959747 540172 673106 469365 263451 268955 942938 809885 623306 011754 106269 194768 031565 017396 383507 746043 815966 791647 (534 digits)/37 275232 538777 956956 948632 749543 240171 593931 519559 164126 591817 657349 211019 385593 014781 903054 260486 006574 585194 732219 604720 368255 472633 328563 178829 113825 430768 739006 710542 676616 708922 804986 339077 820305 779562 297383 206832 392295 382462 476272 585540 403329 776059 158799 440992 646248 683906 518725 117760 212110 970695 121306 665985 706575 505563 270910 593633 876064 900050 758888 155684 280225 358588 340207 562124 904303 120882 081808 261737 785831 542998 878187 325850 739195 035857 868174 255038 704119 932152 319058 373648 683720 497645 942338 536304 575179 064119 964390 561766 581923 (536 digits), a[1014] = 8
                                                                                      A[1015]/B[1015] = 16 151602 018940 830386 724883 844231 849118 805139 176450 454803 375151 255424 285239 483488 436875 837172 749710 458186 754156 842990 028435 686347 721723 341078 407953 041435 410629 528059 387187 440113 066869 578301 620548 535930 027086 504692 622995 670186 852815 905062 271492 962162 949193 547473 072521 132063 466456 869671 718946 238991 439574 354652 198292 145164 771453 566902 064230 383014 784571 047792 502860 961669 897434 835378 478603 361258 418268 435499 264811 269356 775354 181915 909287 324363 373663 911468 050366 331683 483737 644431 399167 110427 715391 269623 082221 321632 049092 891745 977120 223897 (536 digits)/1569 831141 904546 764065 982427 244635 610049 505940 091367 853262 405120 486703 685256 574087 106997 033870 011354 424869 224113 818002 595618 557843 567750 738848 797104 601979 469904 934696 998328 883113 685780 577228 556694 440169 326696 767709 081577 873457 935981 479098 106250 952246 270698 290351 821407 068994 315399 843128 581904 184997 795325 645209 434806 474078 945366 127744 495655 092057 617639 578360 583525 003282 290865 744851 739149 219292 199000 447924 230624 609890 898639 890229 448183 353516 195297 421960 249117 816153 639897 116483 453636 112214 809827 929841 022962 222701 791506 543287 014953 183190 (538 digits), a[1015] = 42
                                                                                      A[1016]/B[1016] = 16 535117 611834 083608 132375 483708 328245 443903 273313 238753 304588 750585 029414 359162 892390 350522 783005 952816 830650 926265 297160 910570 251816 200146 446970 680851 418357 105784 863848 033045 271262 647251 485266 694621 817676 571557 861622 182231 232013 359864 959945 574578 133602 942623 357745 584020 782951 184210 680610 977183 591546 483161 899645 589727 756902 485547 365837 494126 972162 211697 338427 003740 473340 999796 981415 837555 870980 865032 311895 295068 922677 011590 869034 864536 046770 380833 313817 600639 426676 454317 022473 122181 821660 464391 113786 339028 432600 637789 793087 015544 (536 digits)/1607 106374 443324 721022 931059 994178 850221 099871 610927 017388 996938 144052 896275 959680 121778 936924 271840 431443 809308 550222 200338 926099 040384 067411 975933 715804 900673 673703 708871 559730 394703 382214 895772 260475 106259 065092 288410 265753 318443 955370 691791 355576 046757 449151 262399 715242 999306 361853 699664 397108 766020 766516 100792 180654 450929 398655 089288 968122 517690 337248 739209 283507 649454 085059 301274 123595 319882 529732 492362 395722 441638 768416 774034 092711 231155 290134 504156 520273 572049 435541 827284 795935 307473 872179 559266 797880 855626 507677 576719 765113 (538 digits), a[1016] = 1
                                                                                      A[1017]/B[1017] = 694 091424 104138 258320 152278 676273 307182 005173 382293 243688 863290 029410 491228 209167 024880 208606 852954 523676 810844 819867 212033 019728 046187 547082 733750 956343 563270 865238 804956 794969 188638 115612 516483 015424 551825 938564 949505 141667 365363 659525 629261 519866 426914 195030 740090 076915 567455 422309 623996 303518 692980 164290 083761 324002 804455 474344 063567 642220 643221 727383 378368 115029 304415 827054 716652 701049 128483 901824 052518 367182 605111 657141 539716 770341 291249 525633 916887 957899 977472 271429 320565 119882 403470 309658 747461 221797 785719 041127 493687 861201 (537 digits)/67461 192494 080860 326006 155887 005968 469114 600676 139375 566211 279584 392872 432570 920972 099933 447765 156812 114065 405764 377112 809514 527904 223497 502739 810386 949980 397525 556549 062062 832059 868619 248039 283357 119648 683318 436492 906398 769343 992183 649296 469696 530864 187753 705553 579795 393957 286960 679130 268144 466457 202177 072369 567285 880911 433471 472603 156502 785080 842943 405558 891105 627095 918483 232283 091388 286700 314184 166956 417482 834511 005829 395317 183581 154676 672664 317474 919535 147370 093923 973698 372312 745562 416256 689202 952900 935816 872193 358067 660463 552823 (539 digits), a[1017] = 41
                                                                                      A[1018]/B[1018] = 710 626541 715972 341928 284654 159981 635427 449076 655606 482442 167878 779995 520642 568329 917270 559129 635960 476493 641495 746132 509193 930298 298003 747229 180721 637194 981627 971023 668804 828014 459900 762864 001749 710046 369502 510122 811127 323898 597377 019390 589207 094444 560517 137654 097835 660936 350406 606520 304607 280702 284526 647451 983406 913730 561357 959891 429405 136347 615383 939080 716795 118769 777756 826851 698068 538604 999464 766856 364413 662251 527788 668732 408751 634877 338019 906467 230705 558539 404148 725746 343038 242064 225130 774049 861247 560826 218319 678917 286774 876745 (537 digits)/69068 298868 524185 047029 086947 000147 319335 700547 750302 583600 276522 536925 328846 880652 221712 384689 428652 545509 215072 927335 009853 454003 263881 570151 786320 665785 298199 230252 770934 391790 263322 630254 179129 380123 789577 501585 194809 035097 310627 604667 161487 886440 234511 154704 842195 109200 286267 040983 967808 863565 968197 838885 668078 061565 884400 871258 245791 753203 360633 742807 630314 910603 567937 317342 392662 410295 634066 696688 909845 230233 447468 163733 957615 247387 903819 607609 423691 667643 665973 409240 199597 541497 723730 561382 512167 733697 727819 865745 237183 317936 (539 digits), a[1018] = 1
                                                                                      A[1019]/B[1019] = 1404 717965 820110 600248 436932 836254 942609 454250 037899 726131 031168 809406 011870 777496 942150 767736 488915 000170 452340 565999 721226 950026 344191 294311 914472 593538 544898 836262 473761 622983 648538 878476 518232 725470 921328 448687 760632 465565 962740 678916 218468 614310 987431 332684 837925 737851 917862 028829 928603 584220 977506 811742 067168 237733 365813 434235 492972 778568 258605 666464 095163 233799 082172 653906 414721 239654 127948 668680 416932 029434 132900 325873 948468 405218 629269 432101 147593 516439 381620 997175 663603 361946 628601 083708 608708 782624 004038 720044 780462 737946 (538 digits)/136529 491362 605045 373035 242834 006115 788450 301223 889678 149811 556106 929797 761417 801624 321645 832454 585464 659574 620837 304447 819367 981907 487379 072891 596707 615765 695724 786801 832997 223850 131941 878293 462486 499772 472895 938078 101207 804441 302811 253963 631184 417304 422264 860258 421990 503157 573227 720114 235953 330023 170374 911255 235363 942477 317872 343861 402294 538284 203577 148366 521420 537699 486420 549625 484050 696995 948250 863645 327328 064744 453297 559051 141196 402064 576483 925084 343226 815013 759897 382938 571910 287060 139987 250585 465068 669514 600013 223812 897646 870759 (540 digits), a[1019] = 1
                                                                                      A[1020]/B[1020] = 3520 062473 356193 542425 158519 832491 520646 357576 731405 934704 230216 398807 544384 123323 801572 094602 613790 476834 546176 878131 951647 830350 986386 335853 009666 824272 071425 643548 616328 073981 756978 519817 038215 160988 212159 407498 332392 255030 522858 377223 026144 323066 535379 803023 773687 136640 186130 664180 161814 449144 239540 270936 117743 389197 292984 828362 415350 693484 132595 272008 907121 586367 942102 134664 527511 017913 255362 104217 198277 721119 793589 320480 305688 445314 596558 770669 525892 591418 167390 720097 670244 965957 482332 941467 078665 126074 226397 119006 847700 352637 (538 digits)/342127 281593 734275 793099 572615 012378 896236 302995 529658 883223 388736 396520 851682 483900 865004 049598 599581 864658 456747 536230 648589 417818 238639 715934 979735 897316 689648 803856 436928 839490 527206 386841 104102 379668 735369 377741 397224 643979 916250 112594 423856 721049 079040 875221 686176 115515 432722 481212 439715 523612 308947 661396 138805 946520 520145 558981 050380 829771 767788 039540 673155 986002 540778 416593 360763 804287 530568 423979 564501 359722 354063 281836 240008 051517 056787 457778 110145 297671 185768 175117 343418 115618 003705 062553 442305 072726 927846 313371 032477 059454 (540 digits), a[1020] = 2
                                                                                      A[1021]/B[1021] = 4924 780439 176304 142673 595452 668746 463255 811826 769305 660835 261385 208213 556254 900820 743722 862339 102705 477004 998517 444131 672874 780377 330577 630164 924139 417810 616324 479811 090089 696965 405517 398293 556447 886459 133487 856186 093024 720596 485599 056139 244612 937377 522811 135708 611612 874492 103992 693010 090418 033365 217047 082678 184911 626930 658798 262597 908323 472052 391200 938473 002284 820167 024274 788570 942232 257567 383310 772897 615209 750553 926489 646354 254156 850533 225828 202770 673486 107857 549011 717273 333848 327904 110934 025175 687373 908698 230435 839051 628163 090583 (538 digits)/478656 772956 339321 166134 815449 018494 684686 604219 419337 033034 944843 326318 613100 285525 186649 882053 185046 524233 077584 840678 467957 399725 726018 788826 576443 513082 385373 590658 269926 063340 659148 265134 566588 879441 208265 315819 498432 448421 219061 366558 055041 138353 501305 735480 108166 618673 005950 201326 675668 853635 479322 572651 374169 888997 838017 902842 452675 368055 971365 187907 194576 523702 027198 966218 844814 501283 478819 287624 891829 424466 807360 840887 381204 453581 633271 382862 453372 112684 945665 558055 915328 402678 143692 313138 907373 742241 527859 537183 930123 930213 (540 digits), a[1021] = 1
                                                                                      A[1022]/B[1022] = 8444 842912 532497 685098 753972 501237 983902 169403 500711 595539 491601 607021 100639 024144 545294 956941 716495 953839 544694 322263 624522 610728 316963 966017 933806 242082 687750 123359 706417 770947 162495 918110 594663 047447 345647 263684 425416 975627 008457 433362 270757 260444 058190 938732 385300 011132 290123 357190 252232 482509 456587 353614 302655 016127 951783 090960 323674 165536 523796 210481 909406 406534 966376 923235 469743 275480 638672 877114 813487 471673 720078 966834 559845 295847 822386 973440 199378 699275 716402 437371 004093 293861 593266 966642 766039 034772 456832 958058 475863 443220 (538 digits)/820784 054550 073596 959234 388064 030873 580922 907214 948995 916258 333579 722839 464782 769426 051653 931651 784628 388891 534332 376909 116546 817543 964658 504761 556179 410399 075022 394514 706854 902831 186354 651975 670691 259109 943634 693560 895657 092401 135311 479152 478897 859402 580346 610701 794342 734188 438672 682539 115384 377247 788270 234047 512975 835518 358163 461823 503056 197827 739153 227447 867732 509704 567977 382812 205578 305571 009387 711604 456330 784189 161424 122723 621212 505098 690058 840640 563517 410356 131433 733173 258746 518296 147397 375692 349678 814968 455705 850554 962600 989667 (540 digits), a[1022] = 1
                                                                                      A[1023]/B[1023] = 13369 623351 708801 827772 349425 169984 447157 981230 270017 256374 752986 815234 656893 924965 289017 819280 819201 430844 543211 766395 297397 391105 647541 596182 857945 659893 304074 603170 796507 467912 568013 316404 151110 933906 479135 119870 518441 696223 494056 489501 515370 197821 581002 074440 996912 885624 394116 050200 342650 515874 673634 436292 487566 643058 610581 353558 231997 637588 914997 148954 911691 226701 990651 711806 411975 533048 021983 650012 428697 222227 646568 613188 814002 146381 048215 176210 872864 807133 265414 154644 337941 621765 704200 991818 453412 943470 687268 797110 104026 533803 (539 digits)/1 299440 827506 412918 125369 203513 049368 265609 511434 368332 949293 278423 049158 077883 054951 238303 813704 969674 913124 611917 217587 584504 217269 690677 293588 132622 923481 460395 985172 976780 966171 845502 917110 237280 138551 151900 009380 394089 540822 354372 845710 533938 997756 081652 346181 902509 352861 444622 883865 791053 230883 267592 806698 887145 724516 196181 364665 955731 565883 710518 415355 062309 033406 595176 349031 050392 806854 488206 999229 348160 208655 968784 963611 002416 958680 323330 223503 016889 523041 077099 291229 174074 920974 291089 688831 257052 557209 983565 387738 892724 919880 (541 digits), a[1023] = 1
                                                                                      A[1024]/B[1024] = 21814 466264 241299 512871 103397 671222 431060 150633 770728 851914 244588 422255 757532 949109 834312 776222 535697 384684 087906 088658 921920 001833 964505 562200 791751 901975 991824 726530 502925 238859 730509 234514 745773 981353 824782 383554 943858 671850 502513 922863 786127 458265 639193 013173 382212 896756 684239 407390 594882 998384 130221 789906 790221 659186 562364 444518 555671 803125 438793 359436 821097 633236 957028 635041 881718 808528 660656 527127 242184 693901 366647 580023 373847 442228 870602 149651 072243 506408 981816 592015 342034 915627 297467 958461 219451 978243 144101 755168 579889 977023 (539 digits)/2 120224 882056 486515 084603 591577 080241 846532 418649 317328 865551 612002 771997 542665 824377 289957 745356 754303 302016 146249 594496 701051 034813 655335 798349 688802 333880 535418 379687 683635 869003 031857 569085 907971 397661 095534 702941 289746 633223 489684 324863 012836 857158 661998 956883 696852 087049 883295 566404 906437 608131 055863 040746 400121 560034 554344 826489 458787 763711 449671 642802 930041 543111 163153 731843 255971 112425 497594 710833 804490 992845 130209 086334 623629 463779 013389 064143 580406 933397 208533 024402 432821 439270 438487 064523 606731 372178 439271 238293 855325 909547 (541 digits), a[1024] = 1
                                                                                      A[1025]/B[1025] = 35184 089615 950101 340643 452822 841206 878218 131864 040746 108288 997575 237490 414426 874075 123330 595503 354898 815528 631117 855054 219317 392939 612047 158383 649697 561869 295899 329701 299432 706772 298522 550918 896884 915260 303917 503425 462300 368073 996570 412365 301497 656087 220195 087614 379125 782381 078355 457590 937533 514258 803856 226199 277788 302245 172945 798076 787669 440714 353790 508391 732788 859938 947680 346848 293694 341576 682640 177139 670881 916129 013216 193212 187849 588609 918817 325861 945108 313542 247230 746659 679976 537393 001668 950279 672864 921713 831370 552278 683916 510826 (539 digits)/3 419665 709562 899433 209972 795090 129610 112141 930083 685661 814844 890425 821155 620548 879328 528261 559061 723978 215140 758166 812084 285555 252083 346013 091937 821425 257361 995814 364860 660416 835174 877360 486196 145251 536212 247434 712321 683836 174045 844057 170573 546775 854914 743651 303065 599361 439911 327918 450270 697490 839014 323455 847445 287267 284550 750526 191155 414519 329595 160190 058157 992350 576517 758330 080874 306363 919279 985801 710063 152651 201501 098994 049945 626046 422459 336719 287646 597296 456438 285632 315631 606896 360244 729576 753354 863783 929388 422836 626032 748050 829427 (541 digits), a[1025] = 1
                                                                                      A[1026]/B[1026] = 92182 645496 141502 194158 009043 353636 187496 414361 852221 068492 239738 897236 586386 697260 080973 967229 245495 015741 350141 798767 360554 787713 188599 878968 091147 025714 583623 385933 101790 652404 327554 336352 539543 811874 432617 390405 868459 407998 495654 747594 389122 770440 079583 188402 140464 461518 840950 322572 469950 026901 737934 242305 345798 263676 908256 040672 131010 684554 146374 376220 286675 353114 852389 328738 469107 491682 025936 881406 583948 526159 393079 966447 749546 619448 708236 801374 962460 133493 476278 085334 701987 990413 300805 859020 565181 821670 806842 859725 947722 998675 (539 digits)/8 959556 301182 285381 504549 181757 339462 070816 278816 688652 495241 392854 414308 783763 583034 346480 863480 202259 732297 662583 218665 272161 538980 347361 982225 331652 848604 527047 109409 004469 539352 786578 541478 198474 470085 590404 127584 657418 981315 177798 666010 106388 566988 149301 563014 895574 966872 539132 466946 301419 286159 702774 735636 974656 129136 055397 208800 287826 422901 770051 759118 914742 696146 679813 893591 868698 950985 469198 130960 109793 395847 328197 186225 875722 308697 686827 639436 774999 846273 779797 655665 646614 159759 897640 571233 334299 230955 284944 490359 351427 568401 (541 digits), a[1026] = 2
                                                                                      A[1027]/B[1027] = 127366 735112 091603 534801 461866 194843 065714 546225 892967 176781 237314 134727 000813 571335 204304 562732 600393 831269 981259 653821 579872 180652 800647 037351 740844 587583 879522 715634 401223 359176 626076 887271 436428 727134 736534 893831 330759 776072 492225 159959 690620 426527 299778 276016 519590 243899 919305 780163 407483 541160 541790 468504 623586 565922 081201 838748 918680 125268 500164 884612 019464 213053 800069 675586 762801 833258 708577 058546 254830 442288 406296 159659 937396 208058 627054 127236 907568 447035 723508 831994 381964 527806 302474 809300 238046 743384 638213 412004 631639 509501 (540 digits)/12 379222 010745 184814 714521 976847 469072 182958 208900 374314 310086 283280 235464 404312 462362 874742 422541 926237 947438 420750 030749 557716 791063 693375 074163 153078 105966 522861 474269 664886 374527 663939 027674 343726 006297 837838 839906 341255 155361 021855 836583 653164 421902 892952 866080 494936 406783 867050 917216 998910 125174 026230 583082 261923 413686 805923 399955 702345 752496 930241 817276 907093 272664 438143 974466 175062 870265 454999 841023 262444 597348 427191 236171 501768 731157 023546 927083 372296 302712 065429 971297 253510 520004 627217 324588 198083 160343 707781 116392 099478 397828 (542 digits), a[1027] = 1
                                                                                      A[1028]/B[1028] = 3 021617 553074 248383 494591 631965 835026 698930 977557 390466 134460 697963 995957 605098 837969 779978 910079 054553 134950 919113 836663 697614 942727 603481 738058 130572 540143 812645 845524 329927 913466 727322 743595 577404 535973 372919 948526 475934 257665 816833 426667 273392 580567 974483 536782 091040 071216 984983 266330 842071 473594 199115 017911 688289 279884 775898 331897 260653 565729 650166 722296 734352 253352 253991 867234 013549 656632 323209 227970 445048 698792 737891 638626 309659 404797 130481 727823 836534 415315 116981 221205 487172 129958 257726 472926 040256 919517 485751 335832 475431 717198 (541 digits)/293 681662 548321 536119 938554 649249 128122 278855 083525 297881 627225 908299 829990 082950 217380 465556 581944 505732 523381 339833 925905 099647 733445 294988 687977 852449 285834 552861 017611 296856 153489 057176 177988 104172 614935 860697 445430 506287 554618 680482 907434 129170 270754 687217 482866 279112 322901 481303 562937 276352 165162 306078 146528 998894 643932 591635 407781 441778 730331 165613 556487 777887 967428 757125 306313 895144 967090 934194 474495 146019 134861 153595 618170 416403 125309 228406 962354 337814 808651 284686 995502 477356 119866 323639 036761 890211 918860 563910 167377 639430 718445 (543 digits), a[1028] = 23
                                                                                      A[1029]/B[1029] = 48 473247 584300 065739 448267 573319 555270 248610 187144 140425 328152 404738 070048 682394 978851 683967 123997 473243 990484 687081 040440 741711 264294 456354 846281 830005 229884 881856 244023 680069 974644 263240 784800 674901 302708 703254 070254 945707 898725 561559 986636 064901 715614 891514 864529 976231 383371 679038 041456 880627 118667 727630 755091 636215 044078 495575 149105 089137 176942 902832 441359 769100 266689 863939 551330 979596 339375 879924 706073 375609 622972 212562 377680 891946 684812 714761 772418 292119 092077 595208 371282 176718 607138 426098 376116 882157 455664 410234 785324 238546 984669 (542 digits)/4711 285822 783889 762733 731396 364833 519028 644639 545305 140420 345700 816077 515305 731515 940450 323647 733654 017958 321539 858092 845231 152080 526188 413194 081808 792266 679319 368637 756050 414584 830352 578757 875484 010487 845271 608997 966794 441856 029259 909582 355529 719888 753977 888432 591940 960733 573207 567907 924213 420544 767770 923480 927546 244237 716608 272089 924458 770805 437795 580058 721081 353300 751524 552148 875488 497382 343720 402111 432945 598750 755126 884721 126898 164218 736104 678058 324752 777333 241132 620421 899336 891208 437865 805441 912778 441473 862112 730343 794434 330369 892948 (544 digits), a[1029] = 16
                                                                                      A[1030]/B[1030] = 99 968112 721674 379862 391126 778604 945567 196151 351845 671316 790765 507440 136054 969888 795673 147913 158074 001041 115920 293275 917545 181037 471316 516191 430621 790582 999913 576358 333571 690067 862755 253804 313196 927207 141390 779428 089036 367350 055116 939953 399939 403196 011797 757513 265842 043502 837960 343059 349244 603325 710929 654376 528094 960719 368041 767048 630107 438927 919615 455831 605016 272552 786731 981870 969895 972742 335384 083058 640117 196267 944737 163016 393988 093552 774422 560005 272660 420772 599470 307397 963769 840609 344235 109923 225159 804571 830846 306220 906480 952525 686536 (542 digits)/9716 253308 116101 061587 401347 378916 166179 568134 174135 578722 318627 540454 860601 545982 098281 112852 049252 541649 166461 056019 616367 403808 785822 121376 851595 436982 644473 290136 529712 126025 814194 214691 928956 125148 305479 078693 379019 389999 613138 499647 618493 568947 778710 464082 666748 200579 469316 617119 411364 117441 700704 153040 001621 487370 077149 135815 256698 983389 605922 325730 998650 484489 470477 861423 057290 889909 654531 738417 340386 343520 645114 923037 871966 744840 597518 584523 611859 892481 290916 525530 794176 259772 995597 934522 862318 773159 643086 024597 756246 300170 504341 (544 digits), a[1030] = 2
                                                                                      A[1031]/B[1031] = 248 409473 027648 825464 230521 130529 446404 640912 890835 483058 909683 419618 342158 622172 570197 979793 440145 475326 222325 273632 875531 103786 206927 488737 707525 411171 229712 034572 911167 060205 700154 770849 411194 529315 585490 262110 248327 680408 008959 441466 786514 871293 739210 406541 396214 063237 059292 365156 739946 087278 540527 036383 811281 557653 780162 029672 409319 966993 016173 814495 651392 314205 840153 827681 491122 925081 010144 046041 986307 768145 512446 538595 165657 079052 233657 834772 317739 133664 291018 210004 298821 857937 295608 645944 826436 491301 117357 022676 598286 143598 357741 (543 digits)/24143 792439 016091 885908 534091 122665 851387 780907 893576 297864 982955 896987 236508 823480 137012 549351 832159 101256 654461 970132 077965 959698 097832 655947 784999 666231 968265 948910 815474 666636 458741 008141 733396 260784 456229 766384 724833 221855 255536 908877 592516 857784 311398 816597 925437 361892 511840 802146 746941 655428 169179 229560 930789 218977 870906 543720 437856 737584 649640 231520 718382 322279 692480 274994 990070 277201 652783 878946 113718 285792 045356 730796 870831 653899 931141 847105 548472 562295 822965 671483 487689 410754 429061 674487 637415 987793 148284 779539 306926 930710 901630 (545 digits), a[1031] = 2
                                                                                      A[1032]/B[1032] = 845 196531 804620 856255 082690 170193 284781 118890 024352 120493 519815 766295 162530 836406 506267 087293 478510 427019 782896 114174 544138 492396 092098 982404 553198 024096 689049 680077 067072 870684 963219 566352 546780 515153 897861 565758 834019 408574 081995 264353 759484 017077 229428 977137 454484 233214 015837 438529 569082 865161 332510 763527 961939 633680 708527 856065 858067 339906 968136 899318 559193 215170 307193 464915 443264 747985 365816 221184 599040 500704 482076 778801 890959 330709 475396 064322 225877 821765 472524 937410 860235 414421 231061 047757 704469 278475 182917 374250 701339 383320 759759 (543 digits)/82147 630625 164376 719313 003620 746913 720342 910857 854864 472317 267495 231416 570128 016422 509318 760907 545729 845419 129846 966415 850265 282903 079320 089220 206594 435678 549271 136868 976136 125935 190417 239117 129144 907501 674168 377847 553519 055565 379749 226280 396044 142300 712906 913876 443060 286257 004839 023559 652189 083726 208241 841722 793989 144303 689868 766976 570269 196143 554843 020293 153797 451328 547918 686408 027501 721514 612883 375255 681541 200896 781185 115428 484461 706540 390944 125840 257277 579368 759813 539981 257244 492036 282782 957985 774566 736539 087940 363215 677027 092303 209231 (545 digits), a[1032] = 3
                                                                                      A[1033]/B[1033] = 1093 606004 832269 681719 313211 300722 731185 759802 915187 603552 429499 185913 504689 458579 076465 067086 918655 902346 005221 387807 419669 596182 299026 471142 260723 435267 918761 714649 978239 930890 663374 337201 957975 044469 483351 827869 082347 088982 090954 705820 545998 888370 968639 383678 850698 296451 075129 803686 309028 952439 873037 799911 773221 191334 488689 885738 267387 306899 984310 713814 210585 529376 147347 292596 934387 673066 375960 267226 585348 268849 994523 317397 056616 409761 709053 899094 543616 955429 763543 147415 159057 272358 526669 693702 530905 769776 300274 396927 299625 526919 117500 (544 digits)/106291 423064 180468 605221 537711 869579 571730 691765 748440 770182 250451 128403 806636 839902 646331 310259 377888 946675 784308 936547 928231 242601 177152 745167 991594 101910 517537 085779 791610 792571 649158 247258 862541 168286 130398 144232 278352 277420 635286 135157 988561 000085 024305 730474 368497 648149 516679 825706 399130 739154 377421 071283 724778 363281 560775 310697 008125 933728 204483 251813 872179 773608 240398 961403 017571 998716 265667 254201 795259 486688 826541 846225 355293 360440 322085 972945 805750 141664 582779 211464 744933 902790 711844 632473 411982 724332 236225 142754 983954 023014 110861 (546 digits), a[1033] = 1
                                                                                      A[1034]/B[1034] = 4126 014546 301429 901413 022324 072361 478338 398298 769914 931150 808313 324035 676599 212143 735662 288554 234478 134057 798560 277596 803147 280942 989178 395831 335368 329900 445334 824027 001792 663356 953342 577958 420705 648562 347917 049366 081060 675520 354859 381815 397480 682190 135347 128174 006579 122567 241226 849588 496169 722480 951624 163263 281603 207684 174597 513280 660229 260606 921069 040761 190949 803298 749235 342706 246427 767184 493697 022864 355085 307254 465646 730993 060808 559994 602557 761605 856728 688054 763154 379656 337407 231496 811070 128865 297186 587804 083740 565032 600215 964078 112259 (544 digits)/401021 899817 705782 534977 616756 355652 435534 986155 100186 782864 018848 616627 990038 536130 448312 691685 679396 685446 482773 776059 634959 010706 610778 324724 181376 741410 101882 394208 350968 503650 137891 980893 716768 412360 065362 810544 388575 887827 285607 631754 361727 142555 785824 105299 548553 230705 554878 500678 849581 301189 340505 055573 968324 234148 372194 699067 594646 997328 168292 775734 770336 772153 269115 570617 080217 717663 409885 137861 067319 660963 260810 654104 550341 787861 357202 044677 674528 004362 508151 174375 492046 200408 418316 855406 010514 909535 796615 791480 628889 161345 541814 (546 digits), a[1034] = 3
                                                                                      A[1035]/B[1035] = 5219 620551 133699 583132 335535 373084 209524 158101 685102 534703 237812 509949 181288 670722 812127 355641 153134 036403 803781 665404 222816 877125 288204 866973 596091 765168 364096 538676 980032 594247 616716 915160 378680 693031 831268 877235 163407 764502 445814 087635 943479 570561 103986 511852 857277 419018 316356 653274 805198 674920 824661 963175 054824 399018 663287 399018 927616 567506 905379 754575 401535 332674 896582 635303 180815 440250 869657 290090 940433 576104 460170 048390 117424 969756 311611 660700 400345 643484 526697 527071 496464 503855 337739 822567 828092 357580 384014 961959 899841 490997 229759 (544 digits)/507313 322881 886251 140199 154468 225232 007265 677920 848627 553046 269299 745031 796675 376033 094644 001945 057285 632122 267082 712607 563190 253307 787931 069892 172970 843320 619419 479988 142579 296221 787050 228152 579309 580646 195760 954776 666928 165247 920893 766912 350288 142640 810129 835773 917050 878855 071558 326385 248712 040343 717926 126857 693102 597429 932970 009764 602772 931056 372776 027548 642516 545761 509514 532020 097789 716379 675552 392062 862579 147652 087352 500329 905635 148301 679288 017623 480278 146027 090930 385840 236980 103199 130161 487879 422497 633868 032840 934235 612843 184359 652675 (546 digits), a[1035] = 1
                                                                                      A[1036]/B[1036] = 9345 635097 435129 484545 357859 445445 687862 556400 455017 465854 046125 833984 857887 882866 547789 644195 387612 170461 602341 943001 025964 158068 277383 262804 931460 095068 809431 362703 981825 257604 570059 493118 799386 341594 179185 926601 244468 440022 800673 469451 340960 252751 239333 640026 863856 541585 557583 502863 301368 397401 776286 126438 336427 606702 837884 912299 587845 828113 826448 795336 592485 135973 645817 978009 427243 207435 363354 312955 295518 883358 925816 779383 178233 529750 914169 422306 257074 331539 289851 906727 833871 735352 148809 951433 125278 945384 467755 526992 500057 455075 342018 (544 digits)/908335 222699 592033 675176 771224 580884 442800 664075 948814 335910 288148 361659 786713 912163 542956 693630 736682 317568 749856 488667 198149 264014 398709 394616 354347 584730 721301 874196 493547 799871 924942 209046 296077 993006 261123 765321 055504 053075 206501 398666 712015 285196 595953 941073 465604 109560 626436 827064 098293 341533 058431 182431 661426 831578 305164 708832 197419 928384 541068 803283 412853 317914 778630 102637 178007 434043 085437 529923 929898 808615 348163 154434 455976 936163 036490 062301 154806 150389 599081 560215 729026 303607 548478 343285 433012 543403 829456 725716 241732 345705 194489 (546 digits), a[1036] = 1
                                                                                      A[1037]/B[1037] = 23910 890746 003958 552223 051254 263975 585249 270902 595137 466411 330064 177918 897064 436455 907706 644031 928358 377327 008465 551406 274745 193261 842971 392583 459011 955305 982959 264084 943683 109456 756835 901397 977453 376220 189640 730437 652344 644548 047161 026538 625400 076063 582653 791906 584990 502189 431523 659001 407935 469724 377234 216051 727679 612424 339057 223618 103308 223734 558277 345248 586505 604622 188218 591322 035301 855121 596365 916001 531471 342822 311803 607156 473892 029258 139950 505312 914494 306563 106401 340527 164207 974559 635359 725434 078650 248349 319526 015944 899956 401147 913795 (545 digits)/2 323983 768281 070318 490552 696917 387000 892867 006072 746256 224866 845596 468351 370103 200360 180557 389206 530650 267259 766795 689941 959488 781336 585349 859124 881666 012782 062023 228381 129674 895965 636934 646245 171465 566658 718008 485418 777936 271398 333896 564245 774318 713034 002037 717920 848259 097976 324431 980513 445298 723409 834788 491721 015956 260586 543299 427428 997612 787825 454913 634115 468223 181591 066774 737294 453804 584465 846427 451910 722376 764882 783678 809198 817589 020627 752268 142225 789890 446806 289093 506271 695032 710414 227118 174450 288522 720675 691754 385668 096307 875770 041653 (547 digits), a[1037] = 2
                                                                                      A[1038]/B[1038] = 176721 870319 462839 350106 716639 293274 784607 452718 620979 730733 356575 079417 137338 938057 901736 152418 886120 811750 661600 802844 949180 510901 178183 010889 144543 782210 690146 211298 587607 023801 867910 802904 641559 975135 506671 039664 810880 951859 130800 655221 718760 785196 317910 183372 958790 056911 578249 115873 156916 685472 416925 638800 430184 893673 211285 477626 311003 394255 734390 212076 698024 368328 963348 117263 674356 193286 537915 724966 015818 283115 108442 029478 495477 734557 893822 959496 658534 477481 034661 290417 983327 557269 596328 029471 675830 683829 704437 638606 799752 263110 738583 (546 digits)/17 176221 600667 084263 109045 649646 289890 692869 706585 172607 909978 207323 640119 377436 314684 806858 418076 451234 188387 117426 318260 914570 733370 496158 408490 526009 674205 155464 472864 401272 071631 383484 732762 496336 959617 287183 163252 501057 952863 543777 348387 132246 276434 610217 966519 403417 795394 897460 690658 215384 405401 901950 624478 773120 655684 108260 700835 180709 443162 725464 242091 690415 589052 246053 263698 354639 525304 010429 693298 986536 162794 833914 818826 179100 080557 302367 057881 684039 278033 622736 104117 594255 276507 138305 564437 452671 588133 671737 425392 915887 476095 486060 (548 digits), a[1038] = 7
                                                                                      A[1039]/B[1039] = 907520 242343 318155 302756 634450 730349 508286 534495 700036 120078 112939 575004 583759 126745 416387 406126 358962 436080 316469 565631 020647 747767 733886 447029 181730 866359 433690 320577 881718 228466 096389 915921 185253 251897 722995 928761 706749 403843 701164 302647 219204 002045 172204 708771 378940 786747 322769 238367 192518 897086 461862 410053 878604 080790 395484 611749 658325 195013 230228 405632 076627 446267 004959 177640 407082 821554 285944 540831 610562 758397 854013 754548 951280 702047 609065 302796 207166 693968 279707 792617 080845 760907 616999 872792 457803 667497 841714 208978 898717 716701 606710 (546 digits)/88 205091 771616 491634 035780 945148 836454 357215 538998 609295 774757 882214 668948 257284 773784 214849 479588 786821 209195 353927 281246 532342 448189 066141 901577 511714 383807 839345 592703 136035 254122 554358 310057 653150 364745 153924 301681 283226 035716 052783 306181 435550 095207 053127 550517 865348 074950 811735 433804 522220 750419 344541 614114 881559 539007 084602 931604 901160 003639 082234 844573 920301 126852 297041 055786 227002 210985 898575 918405 655057 578856 953252 903329 713089 423414 264103 431634 210086 836974 402774 026859 666309 092949 918645 996637 551880 661344 050441 512632 675745 256247 471953 (548 digits), a[1039] = 5
                                                                                      A[1040]/B[1040] = 23 772248 171245 734877 221779 212358 282362 000057 349606 821918 852764 293004 029536 315076 233438 727808 711704 219144 149838 889809 509251 486021 952862 259230 633647 869546 307555 966094 546323 512280 963920 374048 616855 458144 524476 304565 187469 186365 451795 361072 524049 418064 838370 795232 611428 811250 512341 970249 313420 162408 009720 425348 300201 273890 994223 493885 383117 427458 464599 720328 758510 690337 971271 092286 735914 258509 553697 972473 786587 890450 001459 312799 647751 228775 987795 729520 832198 044868 520656 307063 898462 085317 340867 638324 722075 578726 038773 589007 072058 166412 897352 513043 (548 digits)/2310 508607 662695 866748 039350 223516 037703 980473 720549 014298 053683 144905 032774 066840 433074 392944 887384 908585 627466 319535 630670 755474 386286 215847 849505 830583 653208 978449 883145 938188 678817 796800 794261 478246 442991 289215 006965 864934 881480 916143 309104 456548 751817 991534 279983 902467 744116 002581 969575 793123 916304 860032 591465 693668 669868 307936 922562 610869 537778 863570 201013 618244 887211 969120 714140 256697 010937 373403 571846 018033 213075 618490 305398 719425 089328 169056 280371 146297 039368 094860 802468 918291 693205 023101 477013 801568 783078 983216 753842 485264 138529 756838 (550 digits), a[1040] = 26
                                                                                      A[1041]/B[1041] = 24 679768 413589 053032 524535 846809 012711 508343 884102 521954 972842 405943 604540 898835 360184 144196 117830 578106 585919 206279 074882 506669 700629 993117 080677 051277 173915 399784 866901 393999 192386 470438 532776 643397 776374 027561 116230 893114 855639 062236 826696 637268 840415 967437 320200 190191 299089 293018 551787 354926 906806 887210 710255 152495 075013 889369 994867 085783 659612 950557 164142 766965 417538 097245 913554 665592 375252 258418 327419 501012 759857 166813 402300 180056 689843 338586 134994 252035 214624 586771 691079 166163 101775 255324 594868 036529 706271 430721 281037 065130 614054 119753 (548 digits)/2398 713699 434312 358382 075131 168664 874158 337689 259547 623593 828441 027119 701722 324125 206858 607794 366973 695406 836661 673462 911917 287816 834475 281989 751083 342298 037016 817795 475849 074223 932940 351159 104319 131396 807736 443139 308647 148160 917196 968926 615285 892098 847025 044661 830501 767815 819066 814317 403380 315344 666724 204574 205580 575228 208875 392539 854167 512029 541417 945805 045587 538546 014064 266161 769926 483699 221923 271979 490251 673090 791932 571743 208728 432514 512742 433159 712005 356383 876342 497634 829328 584600 786154 941747 473651 353449 444423 033658 266475 161009 394777 228791 (550 digits), a[1041] = 1
                                                                                      A[1042]/B[1042] = 97 811553 412012 893974 795386 752785 320496 525089 001914 387783 771291 510834 843159 011582 313991 160397 065195 953463 907596 508646 733899 006031 054752 238581 875679 023377 829302 165449 147027 694278 541079 785364 215185 388337 853598 387248 536161 865710 018712 547783 004139 329871 359618 697544 572029 381824 409609 849304 968782 227188 730141 086980 430966 731376 219265 161995 367718 684809 443438 572000 250938 991234 223885 384024 476578 255286 679454 747728 768846 393488 281030 813239 854651 768946 057325 745279 237180 800974 164530 067378 971699 583806 646193 404298 506679 688315 157587 881170 915169 361804 739514 872302 (548 digits)/9506 649705 965632 941894 264743 729510 660178 993541 499191 885079 539006 226264 137941 039216 053650 216327 988305 994806 137451 339924 366422 618924 889712 061817 102755 857477 764259 431836 310693 160860 477638 850278 107218 872436 866200 618632 932907 309417 633071 822923 154962 132845 292893 125519 771489 205915 201316 445534 179716 739157 916477 473755 208207 419353 296494 485556 485065 146958 162032 700985 337776 233882 929404 767606 023919 707794 676707 189342 042601 037305 588873 333719 931584 016968 627555 468535 416387 215448 668395 587765 290454 672094 051669 848343 897967 861917 116348 084191 553267 968292 322861 443211 (550 digits), a[1042] = 3
                                                                                      A[1043]/B[1043] = 318 114428 649627 734956 910696 105164 974201 083610 889845 685306 286716 938448 134017 933582 302157 625387 313418 438498 308708 732219 276579 524762 864886 708862 707714 121410 661821 896132 307984 476834 815625 826531 178332 808411 337169 189306 724716 490244 911776 705585 839114 626882 919272 060071 036288 335664 527918 840933 458134 036493 097230 148152 003155 346623 732809 375356 098023 140211 989928 666557 916959 740668 089194 249319 343289 431452 413616 501604 633958 681477 602949 606532 966255 486894 861820 574423 846536 654957 708214 788908 606177 917583 040355 468220 114907 101475 179035 074234 026545 150544 832598 736659 (549 digits)/30918 662817 331211 184064 869362 357196 854695 318313 757123 278832 445459 705912 115545 441773 367809 256778 331891 679825 249015 693236 011185 144591 503611 467441 059350 914731 329795 113304 407928 556805 365856 901993 425975 748707 406338 299038 107369 076413 816412 437696 080172 290634 725704 421221 144969 385561 423016 150919 942530 532818 416156 625839 830202 833288 098358 849209 309362 952904 027516 048761 058916 240194 802278 568979 841685 607083 252044 840005 618054 785007 558552 572903 003480 483420 395408 838765 961167 002729 881529 260930 700692 600882 941164 486779 167554 939200 793467 286232 926279 065886 363361 558424 (551 digits), a[1043] = 3
                                                                                      A[1044]/B[1044] = 415 925982 061640 628931 706082 857950 294697 608699 891760 073090 058008 449282 977176 945164 616148 785784 378614 391962 216305 240866 010478 530793 919638 947444 583393 144788 491124 061581 455012 171113 356705 611895 393518 196749 190767 576555 260878 355954 930489 253368 843253 956754 278890 757615 608317 717488 937528 690238 426916 263681 827371 235132 434122 077999 952074 537351 465741 825021 433367 238558 167898 731902 313079 633343 819867 686739 093071 249333 402805 074965 883980 419772 820907 255840 919146 319703 083717 455931 872744 856287 577877 501389 686548 872518 621586 789790 336622 955404 941714 512349 572113 608961 (549 digits)/40425 312523 296844 125959 134106 086707 514874 311855 256315 163911 984465 932176 253486 480989 421459 473106 320197 674631 386467 033160 377607 763516 393323 529258 162106 772209 094054 545140 718621 717665 843495 752271 533194 621144 272538 917671 040276 385831 449484 260619 235134 423480 018597 546740 916458 591476 624332 596454 122247 271976 332634 099595 038410 252641 394853 334765 794428 099862 189548 749746 396692 474077 731683 336585 865605 314877 928752 029347 660655 822313 147425 906622 935064 500389 022964 307301 377554 218178 549924 848695 991147 272976 992834 335123 065522 801117 909815 370424 479547 034178 686223 001635 (551 digits), a[1044] = 1
                                                                                      A[1045]/B[1045] = 1981 818356 896190 250683 735027 536966 152991 518410 456885 977666 518750 735580 042725 714240 766752 768524 827876 006347 173929 695683 318493 647938 543442 498641 041286 700564 626318 142458 128033 161288 242448 274112 752405 595408 100239 495527 768229 914064 633733 719061 212130 453900 034835 090533 469559 205620 278033 601887 165799 091220 406715 088681 739643 658623 541107 524761 960990 440297 723397 620790 588554 668277 341512 782694 622760 178408 785901 498938 245178 981341 138871 285624 249884 510258 538405 853236 181406 478685 199194 214058 917687 923141 786550 958294 601254 260636 525526 895853 793403 199943 121053 172503 (550 digits)/192619 912910 518587 687901 405786 704026 914192 565734 782383 934480 383323 434617 129491 365731 053647 149203 612682 378350 794883 825877 521616 198657 076905 584473 707778 003567 706013 293867 282415 427468 739839 911079 558754 233284 496493 969722 268474 619739 614349 480173 020709 984554 800094 608184 810803 751467 920346 536736 431519 620723 746693 024219 983843 843853 677772 188272 487075 352352 785711 047746 645686 136505 729011 915323 304106 866594 967052 957396 260678 074260 148256 199394 743738 484976 487266 067971 471383 875444 081228 655714 665281 692790 912501 827271 429646 143672 432728 767930 844467 202601 108253 564964 (552 digits), a[1045] = 4
                                                                                      A[1046]/B[1046] = 14288 654480 334972 383717 851275 616713 365638 237573 089961 916755 689263 598343 276256 944849 983418 165458 173746 436392 433813 110649 239934 066363 723736 437931 872400 048740 875351 058788 351244 300131 053843 530684 660357 364605 892444 045249 638487 754407 366625 286797 328167 134054 522736 391349 895232 156830 883763 903448 587509 902224 674376 855904 611627 688364 739827 210685 192674 907105 497150 584092 287781 409843 703669 112206 179188 935600 594381 741901 119057 944353 856079 419142 570098 827650 687987 292356 353562 806728 267104 354700 001692 963382 192405 580580 830366 614246 015311 226381 495536 911951 419485 816482 (551 digits)/1 388764 702896 926957 941268 974613 014895 914222 271998 733002 705274 667729 974496 159926 041106 796989 517531 608974 323086 950653 814303 028921 154115 931662 620574 116552 797183 036147 602211 695529 709947 022375 129828 444474 254135 747996 705726 919598 724008 749930 621830 380104 315363 619259 804034 592084 851752 066758 353609 142884 617042 559485 269134 925317 159617 139258 652673 203955 566331 689526 083972 916495 429617 834766 743848 994353 381042 698122 731121 485402 342134 185219 302386 141233 895224 433826 783101 677241 346287 118525 438698 648119 122513 380347 126023 073045 806824 938916 745940 390817 452386 443997 956383 (553 digits), a[1046] = 7
                                                                                      A[1047]/B[1047] = 244888 944522 590720 773887 206713 021093 368841 557152 986238 562513 236231 907415 739093 776690 484861 581313 781565 425018 548752 576720 397372 776121 846961 943482 872087 529159 507286 141860 099186 263516 157788 295751 978480 793708 271788 264771 622521 738989 866363 594615 790971 732826 921353 743481 688505 871745 302019 960513 153467 429039 871121 639060 137314 360824 118170 106410 236463 861091 174957 550359 480838 635620 303887 690199 668972 083618 890391 111257 269164 035356 692221 411047 941564 580320 234189 823294 191974 193065 739968 243958 946468 300639 057445 828168 717486 702818 785817 744339 217530 703117 252312 052697 (552 digits)/23 801619 862158 276872 689473 974207 957257 455971 189713 243429 924149 734733 001051 848234 064546 602468 947240 965245 870828 955998 669029 013275 818627 915170 134233 689175 555679 320522 531466 106420 496568 120217 118163 114816 553592 212437 967079 901652 927888 363170 051289 482483 345736 327511 276772 876246 231253 055238 548091 860558 110447 257942 599513 714235 557345 045169 283716 954319 979991 507654 475286 226108 440008 920046 560756 208114 344320 835139 386461 512517 890541 296984 339959 144714 703791 862321 380699 984486 762325 096161 113591 683306 775518 378402 969663 671424 859696 394313 448917 488363 893170 656218 823475 (554 digits), a[1047] = 17
                                                                                      A[1048]/B[1048] = 1 238733 377093 288576 253153 884840 722180 209846 023338 021154 729321 870423 135421 971725 828302 407726 072027 081573 561485 177575 994251 226797 946972 958546 155346 232837 694538 411781 768088 847175 617711 842785 009444 552761 333147 251385 369107 751096 449356 698443 259876 283025 798189 129505 108758 337761 515557 393863 706014 354847 047424 029985 051205 298199 492485 330677 742736 374994 212561 371938 335889 691974 587945 223107 563204 524049 353695 046337 298187 464878 121137 317186 474382 277921 729251 858936 408827 313433 772056 966945 574494 734034 466577 479634 721424 417800 128339 944399 948077 583190 427537 681046 079967 (553 digits)/120 396864 013688 311321 388638 845652 801183 194078 220564 950152 326023 341394 979755 401096 363839 809334 253736 435203 677231 730647 159448 095300 247255 507513 291742 562430 575579 638760 259542 227632 192787 623460 720644 018557 022096 810186 541126 427863 363450 565780 878277 792521 044045 256816 187898 973316 008017 342951 094068 445675 169278 849198 266703 496494 946342 365105 071257 975555 466289 227798 460404 047037 629662 434999 547630 034925 102646 873819 663429 047991 794840 670141 002181 864807 414183 745433 686601 599675 157912 599331 006657 064653 000105 272361 974341 430170 105306 910483 990527 832636 918239 725092 073758 (555 digits), a[1048] = 5
                                                                                      A[1049]/B[1049] = 70 852691 438840 039567 203658 642634 185365 330064 887420 192058 133859 850350 626468 127465 989927 725247 686857 431258 429673 670584 249040 324855 753580 484092 798218 143836 117848 978846 922924 388196 473091 196533 834091 485876 783101 600754 303913 435019 352321 677629 407563 923442 229607 303144 942706 940912 258516 752251 203331 379749 132209 580269 557762 134685 432487 966801 442383 611133 977089 375442 696071 923390 148498 021018 792857 539785 244236 531617 107942 767216 940183 771850 450837 783103 147676 193565 126451 057699 200312 855865 990158 786432 895555 396624 949360 532094 018195 616614 784761 459385 072765 071938 610816 (554 digits)/6886 422868 642392 022191 841888 176417 624699 518429 761915 402112 507480 194246 847109 710726 803415 734521 410217 771855 473037 602886 757570 445389 912191 843427 763559 747718 363718 729857 325373 081455 485462 657478 194872 172566 813110 393070 811286 289864 644570 612680 113123 656182 856315 966033 987014 355258 688241 603450 909993 264042 759341 662243 801613 014447 498859 856158 345421 560981 558477 492166 718316 907253 330767 715020 775668 198845 195192 642860 201917 248050 196459 495021 464325 438737 312265 352041 516991 165970 763343 258028 493044 368527 781518 903035 507125 191120 862190 291900 909003 948668 232834 986467 027681 (556 digits), a[1049] = 57
                                                                                      A[1050]/B[1050] = 142 944116 254773 367710 660471 170109 092910 869975 798178 405270 997041 571124 388358 226657 808157 858221 445741 944090 420832 518744 492331 876509 454133 926731 751782 520509 930236 369475 613937 623568 563894 235852 677627 524514 899350 452893 976934 621135 154000 053702 075004 129910 257403 735794 994172 219586 032590 898366 112677 114345 311843 190524 166729 567570 357461 264280 627503 597262 166740 122823 728033 538754 884941 265145 148919 603619 842168 109571 514072 999312 001504 860887 376057 844128 024604 246066 661729 428832 172682 678677 554812 306900 257688 272884 620145 481988 164731 177629 517600 501960 573067 824923 301599 (555 digits)/13893 242601 298472 355705 072415 198488 050582 230937 744395 754377 340983 729888 673974 822549 970671 278377 074171 978914 623306 936420 674588 986080 071639 194368 818862 057867 303017 098474 910288 390543 163712 938417 110388 363690 648317 596328 163699 007592 652591 791141 104525 104886 756677 188884 161927 683833 384500 549852 914054 973760 687962 173685 869929 525389 944062 077421 762101 097518 583244 212131 897037 861544 291197 865041 098966 432615 493032 159540 067263 544092 187759 660183 930832 742282 038714 449516 720583 931616 684599 115387 992745 801708 563143 078432 988591 812411 829687 494285 808535 729973 383909 698026 129120 (557 digits), a[1050] = 2
                                                                                      A[1051]/B[1051] = 213 796807 693613 407277 864129 812743 278276 200040 685598 597329 130901 421475 014826 354123 798085 583469 132599 375348 850506 189328 741372 201365 207714 410824 550000 664346 048085 348322 536862 011765 036985 432386 511719 010391 682452 053648 280848 056154 506321 731331 482568 053352 487011 038939 936879 160498 291107 650617 316008 494094 444052 770793 724491 702255 789949 231082 069887 208396 143829 498266 424105 462145 033439 286163 941777 143405 086404 641188 622015 766528 941688 632737 826895 627231 172280 439631 788180 486531 372995 534543 544971 093333 153243 669509 569506 014082 182926 794244 302361 961345 645832 896861 912415 (555 digits)/20779 665469 940864 377896 914303 374905 675281 749367 506311 156489 848463 924135 521084 533276 774087 012898 484389 750770 096344 539307 432159 431469 983831 037796 582421 805585 666735 828332 235661 471998 649175 595895 305260 536257 461427 989398 974985 297457 297162 403821 217648 761069 612993 154918 148942 039092 072742 153303 824048 237803 447303 835929 671542 539837 442921 933580 107522 658500 141721 704298 615354 768797 621965 580061 874634 631460 688224 802400 269180 792142 384219 155205 395158 181019 350979 801558 237575 097587 447942 373416 485790 170236 344661 981468 495717 003532 691877 786186 717539 678641 616744 684493 156801 (557 digits), a[1051] = 1
                                                                                      A[1052]/B[1052] = 5701 661116 288721 956935 127846 301434 328092 071033 623741 935828 400478 529474 773843 433876 558383 028418 893325 703160 533993 441291 768009 112004 854708 608170 051799 793507 180455 425861 572349 929459 525515 477901 982321 794698 643103 847749 278984 081152 318365 068320 621773 517074 919690 748233 353030 392541 601389 814416 328897 960800 857215 231161 003513 826220 896141 272414 444571 015561 906307 077750 754775 554525 754362 705407 635125 332152 088688 780475 686482 929064 485409 312070 875344 152138 503895 676493 154422 078647 870566 576809 724060 733562 242023 680133 427301 848124 920827 827981 379011 496947 364723 143333 024389 (556 digits)/554164 544819 760946 181024 844302 946035 607907 714492 908485 823113 401045 757412 222172 687746 096933 613737 668305 498937 128264 958413 910734 204299 651246 177079 961829 003094 638148 635113 037486 662508 042278 431695 047162 306384 645445 320701 513316 741482 378814 290492 763392 892696 694499 216756 034420 700227 275796 535752 339309 156650 317861 907857 330035 561163 460032 350504 557690 218522 268008 523895 896261 850282 462302 946649 839466 850593 386877 021947 065964 139794 177457 695524 204945 448785 164189 290030 897536 468890 331100 824216 623290 227853 524354 596613 877233 904261 818509 935140 464567 374655 419271 494848 205946 (558 digits), a[1052] = 26
                                                                                      A[1053]/B[1053] = 5915 457923 982335 364212 991976 114177 606368 271074 309340 533157 531379 950949 788669 788000 356468 611888 025925 078509 384499 630620 509381 313370 062423 018994 601800 457853 228540 774184 109211 941224 562500 910288 494040 805090 325555 901397 559832 137306 824686 799652 104341 570427 406701 787173 289909 553039 892497 465033 644906 454895 301268 001954 728005 528476 686090 503496 514458 223958 050136 576017 178881 016670 787801 991571 576902 475557 175093 421664 308498 695593 427097 944808 702239 779369 676176 116124 942602 565179 243562 111353 269031 826895 395267 349642 996807 862207 103754 622225 681373 458293 010556 040194 936804 (556 digits)/574944 210289 701810 558921 758606 320941 283189 463860 414796 979603 249509 681547 743257 221022 871020 626636 152695 249707 224609 497721 342893 635769 635077 214876 544250 808680 304884 463445 273148 134506 691454 027590 352422 842642 106873 310100 488302 038939 675976 694313 981041 653766 307492 371674 183362 739319 348538 689056 163357 394453 765165 743787 001578 101000 902954 284084 665212 877022 409730 228194 511616 619080 084268 526711 714101 482054 075101 824347 335144 931936 561676 850729 600103 629804 515169 091589 135111 566477 779043 197633 109080 398089 869016 578082 372950 907794 510387 721327 182107 053297 036016 179341 362747 (558 digits), a[1053] = 1
                                                                                      A[1054]/B[1054] = 100348 987900 006087 784342 999464 128276 029984 408222 573190 466348 902557 744671 392560 041882 261880 818627 308126 959310 685987 531219 918110 125925 853476 912083 680607 119158 837107 812807 319740 989052 525530 042517 886974 676143 851998 270110 236298 278061 513353 862754 291238 643913 426919 343005 991583 241179 881349 254954 647401 239125 677503 262436 651602 281847 873589 328358 675902 598890 708492 294025 616871 821258 359194 570552 865564 941066 890183 527104 622462 058559 318976 429010 111180 622053 322713 534492 236063 121515 767560 358462 028569 963888 566301 274421 376227 643438 580901 783592 280986 829635 533619 786452 013253 (558 digits)/9 753271 909454 989915 123772 982004 081096 138939 136259 545237 496765 393200 662176 114288 224112 033263 639916 111429 494252 722016 921955 397032 376613 812481 615104 669841 941979 516300 050237 407856 814615 105542 873140 685927 788658 355418 282309 326149 364517 194441 399516 460059 352957 614377 163542 968224 529336 852415 560650 953027 467910 560513 808449 355285 177177 907300 895859 201096 250880 823692 175008 082127 755563 810599 374037 265090 563458 588506 211504 428283 050779 164287 307197 806603 525657 406894 755457 059321 532534 795791 986346 368576 597291 428619 845931 844448 428973 984713 476375 378280 227407 995530 364310 009898 (559 digits), a[1054] = 16
                                                                                      A[1055]/B[1055] = 306962 421624 000598 717241 990368 499005 696321 495742 028911 932204 239053 184963 966349 913647 142111 067769 950305 956441 442462 224280 263711 691147 622853 755245 643621 815329 739864 212606 068434 908382 139091 037842 154964 833521 881550 711728 268726 971491 364748 387914 978057 502167 687459 816191 264659 276579 536545 229897 587110 172272 333777 789264 682812 374020 306858 488572 542166 020630 175613 458094 029496 480445 865385 703230 173597 298757 845644 002978 175884 871271 384027 231839 035781 645529 644316 719601 650791 929726 546243 186739 354741 718561 094171 172907 125490 792522 846459 973002 524333 947199 611415 399550 976563 (558 digits)/29 834759 938654 671555 930240 704618 564229 700006 872639 050509 469899 429111 668076 086121 893358 970811 546384 486983 732465 390660 263587 533990 765611 072522 060190 553776 634618 853784 614157 496718 578352 008082 647012 410206 208617 173128 157028 466750 132491 259300 892863 361219 712639 150623 862303 088036 327329 905785 371009 022439 798185 446707 169135 067433 632534 624856 971662 268501 629664 880806 753218 757999 885771 516066 648823 509373 172429 840620 458860 619994 084274 054538 772323 019914 206776 735853 357960 313076 164082 166419 156672 214810 189964 154876 115877 906296 194716 464528 150453 316947 735521 022607 272271 392441 (560 digits), a[1055] = 3
                                                                                      A[1056]/B[1056] = 407311 409524 006686 501584 989832 627281 726305 903964 602102 398553 141610 929635 358909 955529 403991 886397 258432 915752 128449 755500 181821 817073 476330 667329 324228 934488 576972 025413 388175 897434 664621 080360 041939 509665 733548 981838 505025 249552 878102 250669 269296 146081 114379 159197 256242 517759 417894 484852 234511 411398 011281 051701 334414 655868 180447 816931 218068 619520 884105 752119 646368 301704 224580 273783 039162 239824 735827 530082 798346 929830 703003 660849 146962 267582 967030 254093 886855 051242 313803 545201 383311 682449 660472 447328 501718 435961 427361 756594 805320 776835 145035 186002 989816 (558 digits)/39 588031 848109 661471 054013 686622 645325 838946 008898 595746 966664 822312 330252 200410 117471 004075 186300 598413 226718 112677 185542 931023 142224 885003 675295 223618 576598 370084 664394 904575 392967 113625 520153 096133 997275 528546 439337 792899 497008 453742 292379 821279 065596 765001 025846 056260 856666 758200 931659 975467 266096 007220 977584 422718 809712 532157 867521 469597 880545 704498 928226 840127 641335 326666 022860 774463 735888 429126 670365 048277 135053 218826 079520 826517 732434 142748 113417 372397 696616 962211 143018 583386 787255 583495 961809 750744 623690 449241 626828 695227 962929 018137 636581 402339 (560 digits), a[1056] = 1
                                                                                      A[1057]/B[1057] = 2 750830 878768 040717 726751 929364 262696 054156 919529 641526 323523 088718 762776 119809 646823 566062 386153 500903 450954 213160 757281 354642 593588 480837 759221 588995 422261 201696 365086 397490 292990 126817 520002 406601 891516 282844 602759 298878 468808 633361 891930 593834 378654 373734 771374 802114 383136 043912 139010 994178 640660 401464 099472 689300 309229 389545 390159 850577 737755 480247 970811 907706 290671 212867 345928 408570 737706 260609 183474 965966 450255 602049 196933 917555 251027 446498 244164 971922 237180 429064 457947 654611 813259 057005 856878 135801 408291 410630 512571 356258 608210 481626 515568 915459 (559 digits)/267 362951 027312 640382 254322 824354 436184 733682 926030 624991 269888 362985 649589 288582 598184 995262 664188 077463 092774 066723 376845 120129 618960 382544 111961 895488 094209 074292 600526 924170 936154 689835 767930 987010 192270 344406 793055 224147 114541 981754 647142 288894 106219 740630 017379 425601 467330 454990 960968 875243 394761 490033 034641 603746 490809 817804 176791 086088 912939 107800 322579 798765 733783 476062 785988 156155 587760 415380 481050 909656 894593 367495 249447 979020 601381 592342 038464 547462 343783 939686 014783 715130 913497 655851 886736 410763 936859 159977 911425 488315 513095 131433 091759 806475 (561 digits), a[1057] = 6
                                                                                      A[1058]/B[1058] = 3 158142 288292 047404 228336 919196 889977 780462 823494 243628 722076 230329 692411 478719 602352 970054 272550 759336 366706 341610 512781 536464 410661 957168 426550 913224 356749 778668 390499 785666 190424 791438 600362 448541 401182 016393 584597 803903 718361 511464 142599 863130 524735 488113 930572 058356 900895 461806 623863 228690 052058 412745 151174 023714 965097 569993 207091 068646 357276 364353 722931 554074 592375 437447 619711 447732 977530 996436 713557 764313 380086 305052 857783 064517 518610 413528 498258 858777 288422 742868 003149 037923 495708 717478 304206 637519 844252 837992 269166 161579 385045 626661 701571 905275 (559 digits)/306 950982 875422 301853 308336 510977 081510 572628 934929 220738 236553 185297 979841 488992 715655 999337 850488 675876 319492 179400 562388 051152 761185 267547 787257 119106 670807 444377 264921 828746 329121 803461 288084 083144 189545 872953 232393 017046 611550 435496 939522 110173 171816 505631 043225 481862 323997 213191 892628 850710 660857 497254 012226 026465 300522 349962 044312 555686 793484 812299 250806 638893 375118 802728 808848 930619 323648 844507 151415 957934 029646 586321 328968 805538 333815 735090 151881 919860 040400 901897 157802 298517 700753 239347 848546 161508 560549 609219 538254 183543 476024 149570 728341 208814 (561 digits), a[1058] = 1
                                                                                      A[1059]/B[1059] = 28 015969 185104 419951 553447 282939 382518 297859 507483 590556 100132 931356 302067 949566 465647 326496 566559 575594 384604 946044 859533 646357 878884 138185 171628 894790 276259 431043 489084 682819 816388 458326 322901 994933 100972 413993 279541 730108 215700 725075 032729 498878 576538 278646 215951 268969 590299 738365 129916 823699 057127 703425 308864 879020 030009 949491 046888 399748 595966 395077 754264 340303 029674 712448 303619 990434 557954 232102 891937 080473 490946 042472 059198 433695 399910 754726 230235 842140 544562 372008 483139 957999 778928 796832 290531 235960 162314 114568 665900 648893 688575 494920 128144 157659 (560 digits)/2722 970814 030691 055208 721014 912171 088269 314714 405464 390897 162313 845369 488321 200524 323432 989965 468097 484473 648711 501927 875949 529351 708442 522926 410018 848341 460668 629310 719901 554141 569129 117526 072603 652163 708637 328032 652199 360520 006945 465730 163319 170279 480751 785678 363183 280500 059308 160526 101999 680928 681621 468065 132449 815468 894988 617500 531291 531583 260817 606194 329032 909912 734733 897893 256779 601110 176951 171437 692378 573129 131766 058065 881198 423327 271907 473063 253519 906342 666991 154863 277202 103272 519523 570634 675105 702832 421256 033734 217458 956663 321288 327998 918489 476987 (562 digits), a[1059] = 8
                                                                                      A[1060]/B[1060] = 31 174111 473396 467355 781784 202136 272496 078322 330977 834184 822209 161685 994479 428286 068000 296550 839110 334930 751311 287655 372315 182822 289546 095353 598179 808014 633009 209711 879584 468486 006813 249764 923264 443474 502154 430386 864139 534011 934062 236539 175329 362009 101273 766760 146523 327326 491195 200171 753780 052389 109186 116170 460038 902734 995107 519484 253979 468394 953242 759431 477195 894377 622050 149895 923331 438167 535485 228539 605494 844786 871032 347524 916981 498212 918521 168254 728494 700917 832985 114876 486288 995923 274637 514310 594737 873480 006566 952560 935066 810473 073621 121581 829716 062934 (560 digits)/3029 921796 906113 357062 029351 423148 169779 887343 340393 611635 398867 030667 468162 689517 039088 989303 318586 160349 968203 681328 438337 580504 469627 790474 197275 967448 131476 073687 984823 382887 898250 920987 360687 735307 898183 200985 884592 377566 618495 901227 102841 280452 652568 291309 406408 762362 383305 373717 994628 531639 342478 965319 144675 841934 195510 967462 575604 087270 054302 418493 579839 548806 109852 700622 065628 531729 500600 015944 843794 531063 161412 644387 210167 228865 605723 208153 405401 826202 707392 056760 435004 401790 220276 809982 523651 864340 981805 642953 755713 140206 797312 477569 646830 685801 (562 digits), a[1060] = 1
                                                                                      A[1061]/B[1061] = 121 538303 605293 822018 898799 889348 200006 532826 500417 093110 566760 416414 285506 234424 669648 216149 083890 580386 638538 809010 976479 194824 747522 424245 966168 318834 175287 060179 127838 088277 836828 207621 092695 325356 607435 705153 871960 332144 017887 434692 558717 584905 880359 578926 655521 250949 063885 338880 391256 980866 384686 051936 688981 587225 015332 507943 808826 804933 455694 673372 185852 023435 895825 162136 073614 304937 164409 917721 708421 614834 104043 085046 810142 928334 155474 259490 415719 944894 043517 716637 942006 945769 602841 339764 074744 856400 182014 972251 471101 080312 909438 859665 617292 346461 (561 digits)/11812 736204 749031 126394 809069 181615 597608 976744 426645 225803 358914 937371 892809 269075 440699 957875 423855 965523 553322 545913 190962 270865 117325 894349 001846 750685 855096 850374 674371 702805 263881 880488 154666 858087 403186 930990 305976 493219 862433 169411 471843 011637 438456 659606 582409 567587 209224 281680 085885 275846 709058 364022 566477 341271 481521 519888 258103 793393 423724 861675 068551 556331 064291 999759 453665 196298 678751 219272 223762 166318 616003 991227 511700 109924 089077 097523 469725 384950 789167 325144 582215 308643 180354 000582 246061 295855 366672 962595 484598 377283 713225 760707 858981 534390 (563 digits), a[1061] = 3
                                                                                      A[1062]/B[1062] = 152 712415 078690 289374 680584 091484 472502 611148 831394 927295 388969 578100 279985 662710 737648 512699 923000 915317 389850 096666 348794 377647 037068 519599 564348 126848 808296 269891 007422 556763 843641 457386 015959 768831 109590 135540 736099 866155 951949 671231 734046 946914 981633 345686 802044 578275 555080 539052 145037 033255 493872 168107 149020 489960 010440 027428 062806 273328 408937 432803 663047 917813 517875 312031 996945 743104 699895 146261 313916 459620 975075 432571 727124 426547 073995 427745 144214 645811 876502 831514 428295 941692 877478 854074 669482 729880 188581 924812 406167 890785 983059 981247 447008 409395 (561 digits)/14842 658001 655144 483456 838420 604763 767388 864087 767038 837438 757781 968039 360971 958592 479788 947178 742442 125873 521526 227241 629299 851369 586953 684823 199122 718133 986572 924062 659195 085693 162132 801475 515354 593395 301370 131976 190568 870786 480929 070638 574684 292090 091024 950915 988818 329949 592529 655398 080513 807486 051537 329341 711153 183205 677032 487350 833707 880663 478027 280168 648391 105137 174144 700381 519293 728028 179351 235217 067556 697381 777416 635614 721867 338789 694800 305676 875127 211153 496559 381905 017219 710433 400630 810564 769713 160196 348478 605549 240311 517490 510538 238277 505812 220191 (563 digits), a[1062] = 1
                                                                                      A[1063]/B[1063] = 274 250718 683984 111393 579383 980832 672509 143975 331812 020405 955729 994514 565491 897135 407296 728849 006891 495704 028388 905677 325273 572471 784590 943845 530516 445682 983583 330070 135260 645041 680469 665007 108655 094187 717025 840694 608060 198299 969837 105924 292764 531820 861992 924613 457565 829224 618965 877932 536294 014121 878558 220043 838002 077185 025772 535371 871633 078261 864632 106175 848899 941249 413700 474168 070560 048041 864305 063983 022338 074455 079118 517618 537267 354881 229469 687235 559934 590705 920020 548152 370302 887462 480320 193838 744227 586280 370596 897063 877268 971098 892498 840913 064300 755856 (561 digits)/26655 394206 404175 609851 647489 786379 364997 840832 193684 063242 116696 905411 253781 227667 920488 905054 166298 091397 074848 773154 820262 122234 704279 579172 200969 468819 841669 774437 333566 788498 426014 681963 670021 451482 704557 062966 496545 364006 343362 240050 046527 303727 529481 610522 571227 897536 801753 937078 166399 083332 760595 693364 277630 524477 158554 007239 091811 674056 901752 141843 716942 661468 238436 700140 972958 924326 858102 454489 291318 863700 393420 626842 233567 448713 783877 403200 344852 596104 285726 707049 599435 019076 580984 811147 015774 456051 715151 568144 724909 894774 223763 998985 364793 754581 (563 digits), a[1063] = 1
                                                                                      A[1064]/B[1064] = 975 464571 130642 623555 418736 033982 490030 043074 826830 988513 256159 561643 976461 354116 959538 699246 943675 402429 475016 813698 324615 095062 390841 351136 155897 463897 759046 260101 413204 491888 885050 452407 341925 051394 260667 657624 560280 461055 861460 989004 612340 542377 567612 119527 174742 065949 411978 172849 753919 075621 129546 828238 663026 721515 087757 633543 677705 508114 002833 751331 209747 741561 758976 734536 208625 887230 292810 338210 380930 682986 212430 985427 338926 491190 762404 489451 824018 417929 636564 475971 539204 604080 318439 435590 902165 488721 300372 616004 037974 804082 660556 503986 639910 676963 (561 digits)/94808 840620 867671 313011 780889 963901 862382 386584 348091 027165 107872 684273 122315 641596 241255 662341 241336 400064 746072 546706 090086 218073 699792 422339 802031 124593 511582 247374 659895 451188 440176 847366 525418 947843 415041 320875 680204 962805 511015 790788 714266 203272 679469 782483 702502 022559 997791 466632 579711 057484 333324 409434 544044 756637 152694 509068 109142 902834 183283 705699 799219 089541 889454 800804 438170 501008 753658 598684 941513 288482 957678 516141 422569 684931 046432 515277 909684 999466 353739 503053 815524 767663 143585 244005 817036 528351 493933 309983 415041 201813 181830 235233 600193 483934 (563 digits), a[1064] = 3
                                                                                      A[1065]/B[1065] = 4176 109003 206554 605615 254328 116762 632629 316274 639135 974458 980368 241090 471337 313603 245451 525836 781593 105421 928456 160470 623733 952721 347956 348390 154106 301274 019768 370475 788078 612597 220671 474636 476355 299764 759696 471192 849182 042523 415681 061942 742126 701331 132441 402722 156534 093022 266878 569331 551970 316606 396745 532998 490108 963245 376803 069546 582455 110717 875967 111500 687890 907496 449607 412312 905063 596963 035546 416824 546060 806399 928842 459327 892973 319644 279087 645042 856008 262424 466278 452038 527121 303783 754077 936202 352889 541165 572087 361080 029168 187429 534724 856859 623943 463708 (562 digits)/405890 756689 874860 861898 771049 641986 814527 387169 586048 171902 548187 642503 743043 794052 885511 554419 131643 691656 059138 959979 180606 994529 503449 268531 409093 967193 887998 763935 973148 593252 186722 071429 771697 242856 364722 346469 217365 215228 387425 403204 903592 116818 247360 740457 381235 987776 792919 803608 485243 313270 093893 331102 453809 551025 769332 043511 528383 285393 634886 964642 913819 019635 796255 903358 725640 928361 872736 849229 057372 017632 224134 691407 923846 188437 969607 464311 983592 593969 700684 719264 861534 089729 155325 787170 283920 569457 690884 808078 385074 702026 951084 939919 765567 690317 (564 digits), a[1065] = 4
                                                                                      A[1066]/B[1066] = 5151 573574 337197 229170 673064 150745 122659 359349 465966 962972 236527 802734 447798 667720 204990 225083 725268 507851 403472 974168 948349 047783 738797 699526 310003 765171 778814 630577 201283 104486 105721 927043 818280 351159 020364 128817 409462 503579 277142 050947 354467 243708 700053 522249 331276 158971 678856 742181 305889 392227 526292 361237 153135 684760 464560 703090 260160 618831 878800 862831 897638 649058 208584 146849 113689 484193 328356 755034 926991 489386 141273 444755 231899 810835 041492 134494 680026 680354 102842 928010 066325 907864 072517 371793 255055 029886 872459 977084 067142 991512 195281 360846 263854 140671 (562 digits)/500699 597310 742532 174910 551939 605888 676909 773753 934139 199067 656060 326776 865359 435649 126767 216760 372980 091720 805211 506685 270693 212603 203241 690871 211125 091787 399581 011310 633044 044440 626898 918796 297116 190699 779763 667344 897570 178033 898441 193993 617858 320090 926830 522941 083738 010336 790711 270241 064954 370754 427217 740536 997854 307662 922026 552579 637526 188227 818170 670342 713038 109177 685710 704163 163811 429370 626395 447913 998885 306115 181813 207549 346415 873369 016039 979589 893277 593436 054424 222318 677058 857392 298911 031176 100957 097809 184818 118061 800115 903840 132915 175153 365761 174251 (564 digits), a[1066] = 1
                                                                                      A[1067]/B[1067] = 19630 829726 218146 293127 273520 568998 000607 394323 037036 863375 689951 649293 814733 316763 860422 201087 957398 628976 138875 082977 468781 096072 564349 446969 084117 596789 356212 262207 391927 926055 537837 255767 931196 353241 820788 857645 077569 553261 247107 214784 805528 432457 232601 969470 150362 569937 303448 795875 469638 493288 975622 616709 949516 017526 770485 178817 362936 967213 512369 699996 380806 854671 075359 852860 246132 049543 020616 681929 327035 274558 352662 793593 588672 752149 403564 048526 896088 303486 774807 236068 726099 027375 971630 051582 118054 630826 189467 292332 230597 161966 120568 939398 415505 885721 (563 digits)/1 907989 548622 102457 386630 426868 459652 845256 708431 388465 769105 516368 622834 339122 101000 265813 204700 250583 966818 474773 480034 992686 632339 113174 341145 042469 242556 086741 797867 872280 726574 067418 827818 663045 814955 704013 348503 910075 749330 082748 985185 757167 077091 027852 309280 632450 018787 165053 614331 680106 425533 375546 552713 447372 474014 535411 701250 440961 850077 089398 975671 052933 347168 853388 015848 217075 216473 751923 192971 054027 935977 769574 314055 963093 808545 017727 403081 663425 374277 863957 386220 892710 661906 052058 880698 586791 862885 245339 162263 785422 413547 349830 465379 862851 213070 (565 digits), a[1067] = 3
                                                                                      A[1068]/B[1068] = 122936 551931 646074 987934 314187 564733 126303 725287 688188 143226 376237 698497 336198 568303 367523 431611 469660 281708 236723 472033 761035 624219 124894 381340 814709 345907 916088 203821 552850 660819 332745 461651 405458 470609 945097 274687 874879 823146 759785 339656 187637 838452 095665 339070 233451 578595 499549 517434 123720 351961 380028 061496 850231 789921 087471 775994 437782 422112 953019 062810 182479 777084 660743 264010 590481 781451 452056 846610 889203 136736 257250 206316 763936 323731 462876 425656 056556 501274 751686 344422 422920 072119 902297 681285 963382 814844 009263 731077 450725 963308 918694 997236 756889 454997 (564 digits)/11 948636 889043 357276 494693 113150 363805 748450 024342 264933 813700 754272 063782 900092 041650 721646 444961 876483 892631 653852 386895 226813 006637 882287 737741 465940 547123 920031 798517 866728 403885 031411 885708 275391 080434 003843 758368 358024 674014 394935 105108 160860 782637 093944 378624 878438 123059 781032 956231 145592 923954 680497 056817 682089 151750 134496 760082 283297 288690 354564 524369 030638 192190 806038 799252 466262 728213 137934 605740 323052 921981 799259 091885 124978 724639 122404 398079 873829 839103 238168 539644 033322 828828 611264 315367 621708 275120 656853 091644 512650 385124 231897 967432 542868 452671 (566 digits), a[1068] = 6
                                                                                      A[1069]/B[1069] = 1 248996 349042 678896 172470 415396 216329 263644 647199 918918 295639 452328 634267 176718 999797 535656 517202 654001 446058 506109 803315 079137 338263 813293 260377 231211 055868 517094 300422 920434 534248 865291 872281 985781 059341 271761 604523 826367 784728 844960 611346 681906 816978 189255 360172 484878 355892 298943 970216 706842 012902 775903 231678 451833 916737 645202 938761 740761 188343 042560 328098 205604 625517 682792 492966 150949 864057 541185 148038 219066 641920 925164 856761 228035 989464 032328 305087 461653 316234 291670 680292 955299 748574 994606 864441 751882 779266 282104 603106 737856 795055 307518 911765 984400 435691 (565 digits)/121 394358 439055 675222 333561 558372 097710 329756 951854 037803 906113 059089 260663 340042 517507 482277 654319 015422 893135 013297 348987 260816 698717 936051 718559 701874 713795 287059 783046 539564 765424 381537 684901 416956 619295 742450 932187 490322 489474 032100 036267 365774 903461 967296 095529 416831 249384 975383 176643 136035 665080 180517 120890 268263 991515 880379 302073 273934 736980 635044 219361 359315 269076 913776 008372 879702 498605 131269 250374 284557 155795 762165 232907 212881 054936 241771 383880 401723 765310 245642 782661 225938 950192 164702 034374 803874 614091 813870 078708 911926 264789 668810 139705 291535 739780 (567 digits), a[1069] = 10
                                                                                      A[1070]/B[1070] = 1 371932 900974 324971 160404 729583 781062 389948 372487 607106 438865 828566 332764 512917 568100 903179 948814 123661 727766 742833 275348 840172 962482 938187 641718 045920 401776 433182 504244 473285 195068 198037 333933 391239 529951 216858 879211 701247 607875 604745 951002 869544 655430 284920 699242 718329 934487 798493 487650 830562 364864 155931 293175 302065 706658 732674 714756 178543 610455 995579 390908 388084 402602 343535 756976 741431 645508 993241 994649 108269 778657 182415 063077 991972 313195 495204 730743 518209 817509 043357 024715 378219 820694 896904 545727 715265 594110 291368 334184 188582 758364 226213 909002 741289 890688 (565 digits)/133 342995 328099 032498 828254 671522 461516 078206 976196 302737 719813 813361 324446 240134 559158 203924 099280 891906 785766 667149 735882 487629 705355 818339 456301 167815 260919 207091 581564 406293 169309 412949 570609 692347 699729 746294 690555 848347 163488 427035 141375 526635 686099 061240 474154 295269 372444 756416 132874 281628 589034 861014 177707 950353 143266 014876 062155 557232 025670 989608 743730 389953 461267 719814 807625 345965 226818 269203 856114 607610 077777 561424 324792 337859 779575 364175 781960 275553 604413 483811 322305 259261 779020 775966 349742 425582 889212 470723 170353 424576 649913 900708 107137 834404 192451 (567 digits), a[1070] = 1
                                                                                      A[1071]/B[1071] = 784 622682 805382 237428 763571 007735 202953 924165 337623 576694 888027 563704 642804 052650 385413 251407 290067 264848 000868 663910 027502 817898 916021 518436 681381 451760 470211 864304 224017 166280 918189 944609 548248 383552 661486 098181 634405 238751 881699 154898 633985 191905 067670 878974 627764 651270 948425 238725 418840 957952 350335 812671 634775 931352 418874 002465 064539 689162 758716 518392 536787 801798 511455 841709 726685 508419 449692 682364 092679 041110 255172 084165 874294 644226 824091 794229 559636 359459 113898 048531 792773 918817 365361 127102 474967 168537 016242 653423 422278 418611 821028 475660 952331 260928 018539 (567 digits)/76260 244690 783603 232053 266978 997697 623390 985940 359942 901041 919800 488405 519466 456875 796841 922938 343708 294197 565901 955796 537887 697378 456890 207881 266526 524388 698662 536352 856322 532964 441099 175742 503035 747493 164980 876719 239576 896552 841365 869165 761693 074751 666025 935606 837632 015642 915340 888995 047857 945960 003985 819612 592129 919908 796410 374610 792896 453421 395115 701636 889414 022741 652944 928031 162445 425847 011836 846671 091815 229911 566783 335454 689332 130815 192469 186142 883197 742831 885409 501907 818964 264414 771055 241487 737299 811704 354412 596800 350514 345193 365626 973139 315408 736329 629301 (569 digits), a[1071] = 571
                                                                                      A[1072]/B[1072] = 3139 862664 122503 274686 214688 760524 592878 086609 722981 913885 990976 083384 903980 723519 109753 908809 109083 183053 731241 398473 385360 111768 626569 011934 367243 852962 282623 890399 400313 138408 867827 976475 526926 925450 175895 609585 416832 656255 134672 224340 486943 637164 926113 800819 210301 323413 728188 753395 163014 662371 766207 406617 832279 027475 382154 742534 972914 935194 645322 069149 538059 595278 448425 710374 663718 775109 444279 722698 365365 272710 799345 519078 560256 568879 609562 672122 969288 956046 273101 237484 195811 053489 282139 405314 445596 389413 659080 905062 023297 863030 042478 128857 718327 785001 964844 (568 digits)/305174 321758 462511 960711 896170 662312 955080 021968 415967 906905 399015 766983 402312 067637 746525 895677 474114 068697 049374 490335 887433 277143 532916 649864 522407 265370 055569 352503 006854 538150 933706 115919 582752 682320 359653 253171 648863 434558 528951 903698 188147 825642 350202 803667 824682 357841 033808 312396 324306 065468 604978 139464 546227 629988 328907 513319 233741 370917 606133 796156 301386 480920 073047 431939 457407 049353 274165 655888 223375 527256 344910 903243 082120 861120 549452 108747 314751 246881 146051 491442 598162 316920 863241 741917 298941 672400 306862 857924 572410 805350 112421 793265 368772 779722 709655 (570 digits), a[1072] = 4
                                                                                      A[1073]/B[1073] = 29043 386659 907911 709604 695769 852456 538856 703652 844460 801668 806812 314168 778630 564322 373198 430689 271815 912331 582041 250170 495743 823816 555142 625845 986576 128421 013826 877898 826835 411960 728641 732889 290590 712604 244546 584450 385899 145048 093749 173963 016477 926389 402695 086347 520476 561994 502124 019281 885972 919298 246202 472232 125287 178630 858266 685279 820774 105914 566615 140738 379324 159304 547287 235081 700154 484404 448210 186649 380966 495507 449281 755872 916603 764143 310155 843336 283236 963875 571809 185889 555073 400220 904615 774932 485334 673259 947970 798981 631959 185882 203331 635380 417281 325945 702135 (569 digits)/2 822829 140516 946210 878460 332514 958514 219111 183656 103654 063190 510942 391256 140275 065615 515574 984035 610734 912471 010272 368819 524787 191670 253140 056661 968191 912719 198786 708879 918013 376322 844454 219018 747809 888376 401860 155264 079347 807579 601933 002449 455023 505532 817851 168617 259773 236212 219615 700561 966612 535177 448789 074793 508178 589803 756577 994483 896568 791679 850319 867043 601892 351022 310371 815486 279108 870026 479327 749665 102194 975218 670981 464642 428419 880900 137538 164868 715958 964762 199872 924891 202425 116702 540230 918743 427774 863307 116178 318121 502211 593344 377423 112527 634363 753834 016196 (571 digits), a[1073] = 9
                                                                                      A[1074]/B[1074] = 32183 249324 030414 984290 910458 612981 131734 790262 567442 715554 797788 397553 682611 287841 482952 339498 380899 095385 313282 648643 881103 935585 181711 637780 353819 981383 296450 768298 227148 550369 596469 709364 817517 638054 420442 194035 802731 801303 228421 398303 503421 563554 328808 887166 730777 885408 230312 772677 048987 581670 012409 878849 957566 206106 240421 427814 793689 041109 211937 209887 917383 754582 995712 945456 363873 259513 892489 909347 746331 768218 248627 274951 476860 333022 919718 515459 252525 919921 844910 423373 750884 453710 186755 180246 930931 062673 607051 704043 655257 048912 245809 764238 135609 110947 666979 (569 digits)/3 128003 462275 408722 839172 228685 620827 174191 205624 519621 970095 909958 158239 542587 133253 262100 879713 084848 981168 059646 859155 412220 468813 786056 706526 490599 178089 254356 061382 924867 914473 778160 334938 330562 570696 761513 408435 728211 242138 130884 906147 643171 331175 168053 972285 084455 594053 253424 012958 290918 600646 053767 214258 054406 219792 085485 507803 130310 162597 456453 663199 903278 831942 383419 247425 736515 919379 753493 405553 325570 502475 015892 367885 510540 742020 686990 273616 030710 211643 345924 416333 800587 433623 403472 660660 726716 535707 423041 176046 074622 398694 489844 905793 003136 533556 725851 (571 digits), a[1074] = 1
                                                                                      A[1075]/B[1075] = 93409 885307 968741 678186 516687 078418 802326 284177 979346 232778 402389 109276 143853 140005 339103 109686 033614 103102 208606 547458 257951 694986 918565 901406 694216 091187 606728 414495 281132 512699 921581 151618 925625 988713 085430 972521 991362 747654 550591 970570 023321 053498 060312 860680 982032 332810 962749 564635 983948 082638 271022 229932 040419 590843 339109 540909 408152 188132 990489 560514 214091 668470 538713 125994 427901 003432 233190 005344 873630 031943 946536 305775 870324 430189 149592 874254 788288 803719 261630 032637 056842 307641 278126 135426 347196 798607 162074 207068 942473 283706 694951 163856 688499 547841 036093 (569 digits)/9 078836 065067 763656 556804 789886 200168 567493 594905 142898 003382 330858 707735 225449 332122 039776 743461 780432 874807 129566 087130 349228 129297 825253 469714 949390 268897 707498 831645 767749 205270 400774 888895 408935 029769 924886 972135 535770 291855 863702 814744 741366 167883 153959 113187 428684 424318 726463 726478 548449 736469 556323 503309 616991 029387 927549 010090 157189 116874 763227 193443 408450 014907 077210 310337 752140 708785 986314 560771 753335 980168 702766 200413 449501 364941 511518 712100 777379 388048 891721 757558 803599 983949 347176 240064 881207 934721 962260 670213 651456 390733 357112 924113 640636 820947 467898 (571 digits), a[1075] = 2
                                                                                      A[1076]/B[1076] = 219003 019939 967898 340663 943832 769818 736387 358618 526135 181111 602566 616105 970317 567852 161158 558870 448127 301589 730495 743560 397007 325559 018843 440593 742252 163758 509907 597288 789413 575769 439632 012602 668769 615480 591304 139079 785457 296612 329605 339443 550063 670550 449434 608528 694842 551030 155811 901949 016883 746946 554454 338714 038405 387792 918640 509633 609993 417375 192916 330916 345567 091524 073139 197445 219675 266378 358869 920037 493591 832106 141699 886503 217509 193401 218904 263968 829103 527360 368170 488647 864569 068992 743007 451099 625324 659887 931200 118181 540203 616325 635712 091951 512608 206629 739165 (570 digits)/21 285675 592410 936035 952781 808458 021164 309178 395434 805417 976860 571675 573709 993485 797497 341654 366636 645714 730782 318779 033416 110676 727409 436563 645956 389379 715884 669353 724674 460366 325014 579710 112729 148432 630236 611287 352706 799751 825849 858290 535637 125903 666941 475972 198659 941824 442690 706351 465915 387818 073585 166414 220877 288388 278567 940583 527983 444688 396346 982908 050086 720178 861756 537839 868101 240797 336951 726122 527096 832242 462812 421424 768712 409543 471903 710027 697817 585468 987741 129367 931451 407787 401522 097825 140790 489132 405151 347562 516473 377535 180161 204070 754020 284410 175451 661647 (572 digits), a[1076] = 2
                                                                                      A[1077]/B[1077] = 969421 965067 840335 040842 292018 157693 747875 718652 083886 957224 812655 573700 025123 411413 983737 345167 826123 309461 130589 521699 845980 997222 993939 663781 663224 746221 646358 803650 438786 815777 680109 202029 600704 450635 450647 528841 133191 934103 869013 328344 223575 735699 858051 294795 761402 536931 585997 172432 051483 070424 488839 584788 194041 142015 013671 579443 848125 857633 762154 884179 596360 034566 831269 915775 306602 068945 668669 685494 847997 360368 513335 851788 740361 203794 025209 930130 104702 913160 734311 987228 515118 583612 250155 939824 848495 438158 886874 679795 103287 749009 237799 531662 738932 374359 992753 (570 digits)/94 221538 434711 507800 367932 023718 284825 804207 176644 364569 910824 617561 002575 199392 522111 406394 210008 363291 797936 404682 220794 791935 038935 571508 053540 506909 132436 384913 730343 609214 505328 719615 339812 002665 550716 370036 382962 734777 595255 296864 957293 244980 835649 057847 907827 195982 195081 551869 590140 099722 030810 221980 386818 770544 143659 689883 122023 935942 702262 694859 393790 289165 461933 228569 782742 715330 056592 890804 669159 082305 831418 388465 275263 087675 252556 351629 503371 119255 339013 409193 483364 434749 590037 738476 803226 837737 555327 352510 736107 161597 111378 173395 940194 778277 522754 114486 (572 digits), a[1077] = 4
                                                                                      A[1078]/B[1078] = 1 188424 985007 808233 381506 235850 927512 484263 077270 610022 138336 415222 189805 995440 979266 144895 904038 274250 611050 861085 265260 242988 322782 012783 104375 405476 909980 156266 400939 228200 391547 119741 214632 269474 066116 041951 667920 918649 230716 198618 667787 773639 406250 307485 903324 456245 087961 741809 074381 068366 817371 043293 923502 232446 529807 932312 089077 458119 275008 955071 215095 941927 126090 904409 113220 526277 335324 027539 605532 341589 192474 655035 738291 957870 397195 244114 194098 933806 440521 102482 475876 379687 652604 993163 390924 473820 098046 818074 797976 643491 365334 873511 623614 251540 580989 731918 (571 digits)/115 507214 027122 443836 320713 832176 305990 113385 572079 169987 887685 189236 576285 192878 319608 748048 576645 009006 528718 723461 254210 902611 766345 008071 699496 896288 848321 054267 455018 069580 830343 299325 452541 151098 180952 981323 735669 534529 421105 155155 492930 370884 502590 533820 106487 137806 637772 258221 056055 487540 104395 388394 607696 058932 422227 630466 650007 380631 098609 677767 443877 009344 323689 766409 650843 956127 393544 616927 196255 914548 294230 809890 043975 497218 724460 061657 201188 704724 326754 538561 414815 842536 991559 836301 944017 326869 960478 700073 252580 539132 291539 377466 694215 062687 698205 776133 (573 digits), a[1078] = 1
                                                                                      A[1079]/B[1079] = 2 157846 950075 648568 422348 527869 085206 232138 795922 693909 095561 227877 763506 020564 390680 128633 249206 100373 920511 991674 786960 088969 320005 006722 768157 068701 656201 802625 204589 666987 207324 799850 416661 870178 516751 492599 196762 051841 164820 067631 996131 997215 141950 165537 198120 217647 624893 327806 246813 119849 887795 532133 508290 426487 671822 945983 668521 306245 132642 717226 099275 538287 160657 735679 028995 832879 404269 696209 291027 189586 552843 168371 590080 698231 600989 269324 124229 038509 353681 836794 463104 894806 236217 243319 330749 322315 536205 704949 477771 746779 114344 111311 155276 990472 955349 724671 (571 digits)/209 728752 461833 951636 688645 855894 590815 917592 748723 534557 798509 806797 578860 392270 841720 154442 786653 372298 326655 128143 475005 694546 805280 579579 753037 403197 980757 439181 185361 678795 335672 018940 792353 153763 731669 351360 118632 269307 016360 452020 450223 615865 338239 591668 014314 333788 832853 810090 646195 587262 135205 610374 994514 829476 565887 320349 772031 316573 800872 372626 837667 298509 785622 994979 433586 671457 450137 507731 865414 996854 125649 198355 319238 584893 977016 413286 704559 823979 665767 947754 898180 277286 581597 574778 747244 164607 515806 052583 988687 700729 402917 550862 634409 840965 220959 890619 (573 digits), a[1079] = 1
                                                                                      A[1080]/B[1080] = 3 346271 935083 456801 803854 763720 012718 716401 873193 303931 233897 643099 953312 016005 369946 273529 153244 374624 531562 852760 052220 331957 642787 019505 872532 474178 566181 958891 605528 895187 598871 919591 631294 139652 582867 534550 864682 970490 395536 266250 663919 770854 548200 473023 101444 673892 712855 069615 321194 188216 705166 575427 431792 658934 201630 878295 757598 764364 407651 672297 314371 480214 286748 640088 142216 359156 739593 723748 896559 531175 745317 823407 328372 656101 998184 513438 318327 972315 794202 939276 938981 274493 888822 236482 721673 796135 634252 523024 275748 390270 479678 984822 778891 242013 536339 456589 (571 digits)/325 235966 488956 395473 009359 688070 896806 030978 320802 704545 686194 996034 155145 585149 161328 902491 363298 381304 855373 851604 729216 597158 571625 587651 452534 299486 829078 493448 640379 748376 166015 318266 244894 304861 912622 332683 854301 803836 437465 607175 943153 986749 840830 125488 120801 471595 470626 068311 702251 074802 239600 998769 602210 888408 988114 950816 422038 697204 899482 050394 281544 307854 109312 761389 084430 627584 843682 124659 061670 911402 419880 008245 363214 082112 701476 474943 905748 528703 992522 486316 312996 119823 573157 411080 691261 491477 476284 752657 241268 239861 694456 928329 328624 903652 919165 666752 (573 digits), a[1080] = 1
                                                                                      A[1081]/B[1081] = 5 504118 885159 105370 226203 291589 097924 948540 669115 997840 329458 870977 716818 036569 760626 402162 402450 474998 452074 844434 839180 420926 962792 026228 640689 542880 222383 761516 810118 562174 806196 719442 047956 009831 099619 027150 061445 022331 560356 333882 660051 768069 690150 638560 299564 891540 337748 397421 568007 308066 592962 107560 940083 085421 873453 824279 426120 070609 540294 389523 413647 018501 447406 375767 171212 192036 143863 419958 187586 720762 298160 991778 918453 354333 599173 782762 442557 010825 147884 776071 402086 169300 125039 479802 052423 118451 170458 227973 753520 137049 594023 096133 934168 232486 491689 181260 (571 digits)/534 964718 950790 347109 698005 543965 487621 948571 069526 239103 484704 802831 734005 977420 003049 056934 149951 753603 182028 979748 204222 291705 376906 167231 205571 702684 809835 932629 825741 427171 501687 337207 037247 458625 644291 684043 972934 073143 453826 059196 393377 602615 179069 717156 135115 805384 303479 878402 348446 662064 374806 609144 596725 717885 554002 271166 194070 013778 700354 423021 119211 606363 894935 756368 518017 299042 293819 632390 927085 908256 545529 206600 682452 667006 678492 888230 610308 352683 658290 434071 211176 397110 154754 985859 438505 656084 992090 805241 229955 940591 097374 479191 963034 744618 140125 557371 (573 digits), a[1081] = 1
                                                                                      A[1082]/B[1082] = 14 354509 705401 667542 256261 346898 208568 613483 211425 299611 892815 385055 386948 089144 891199 077853 958145 324621 435712 541629 730581 173811 568371 071963 153911 559939 010949 481925 225766 019537 211265 358475 727206 159314 782105 588850 987573 015153 516248 934015 984023 306993 928501 750143 700574 456973 388351 864458 457208 804349 891090 790549 311958 829777 948538 526854 609838 905583 488240 451344 141665 517217 181561 391622 484640 743229 027320 563665 271732 972700 341639 806965 165279 364769 196532 078963 203441 993966 089972 491419 743153 613094 138901 196086 826520 033037 975168 978971 782788 664369 667725 177090 647227 706986 519717 819109 (572 digits)/1395 165404 390537 089692 405370 776001 872049 928120 459855 182752 655604 601697 623157 539989 167427 016359 663201 888511 219431 811101 137661 180569 325437 922113 863677 704856 448750 358708 291862 602719 169389 992680 319389 222113 201205 700771 800169 950123 345117 725568 729909 191980 198969 559800 391033 082364 077585 825116 399144 398930 989214 217058 795662 324180 096119 493148 810178 724762 300190 896436 519967 520581 899184 274126 120465 225669 431321 389440 915842 727915 510938 421446 728119 416126 058462 251405 126365 234071 309103 354458 735348 914043 882667 382799 568272 803647 460466 363139 701180 121043 889205 886713 254694 392889 199416 781494 (574 digits), a[1082] = 2
                                                                                      A[1083]/B[1083] = 91 631177 117569 110623 763771 372978 349336 629439 937667 795511 686351 181310 038506 571439 107820 869286 151322 422727 066350 094213 222667 463796 373018 458007 564158 902514 288080 653068 164714 679398 073788 870296 411192 965719 792252 560255 986883 113252 657849 937978 564191 610033 261161 139422 503011 633380 667859 584172 311260 134165 939506 850856 811836 064089 564684 985407 085153 504110 469737 097588 263640 121804 536774 725502 079056 651410 307786 801949 817984 556964 347999 833569 910129 542948 778366 256541 663208 974621 687719 724589 861007 847864 958446 656323 011543 316679 021472 101804 450252 123267 600374 158677 817534 474405 609996 095914 (572 digits)/8905 957145 294012 885264 130230 199976 719921 517293 828657 335619 418332 413017 472951 217355 007611 155092 129163 084670 498619 846355 030189 375121 329533 699914 387637 931823 502338 084879 576917 043486 518027 293288 953582 791304 851525 888674 773953 773883 524532 412608 772832 754496 372887 075958 481314 299568 768994 829100 743313 055650 310091 911497 370699 662966 130719 230059 055142 362352 501499 801640 239016 729855 290041 401125 240808 653058 881747 969036 422142 275749 611159 735281 051169 163763 029266 396661 368499 757111 512910 560823 623269 881373 450759 282656 848142 477969 754888 984079 437036 666854 432609 799471 491201 101953 336626 246335 (574 digits), a[1083] = 6
                                                                                      A[1084]/B[1084] = 472 510395 293247 220661 075118 211789 955251 760682 899764 277170 324571 291605 579480 946340 430303 424284 714757 438256 767463 012695 843918 492793 433463 362000 974706 072510 451352 747266 049339 416527 580209 709957 783170 987913 743368 390130 921988 581416 805498 623908 804981 357160 234307 447256 215632 623876 727649 785320 013509 475179 588625 044833 371139 150225 771963 453890 035606 426135 836925 939285 459866 126239 865435 019132 879924 000280 566254 573414 361655 757522 081638 974814 715927 079513 088363 361671 519486 867074 528571 114369 048192 852418 931134 477701 884236 616433 082529 487994 034049 280707 669595 970479 734900 079014 569698 298679 (573 digits)/45924 951130 860601 516013 056521 775885 471657 514589 603141 860849 747266 666784 987913 626764 205482 791820 309017 311863 712531 042876 288608 056175 973106 421685 801867 363973 960440 783106 176447 820151 759526 459125 087303 178637 458835 144145 669938 819540 967779 788612 594072 964462 063404 939592 797604 580207 922559 970620 115709 677182 539673 774545 649160 639010 749715 643444 085890 536524 807689 904637 715051 169858 349391 279752 324508 490963 840061 234623 026554 106663 566737 097851 983965 234941 204794 234711 968864 019628 873656 158576 851698 320911 136463 796083 808985 193496 234911 283536 886363 455316 052254 884070 710699 902655 882548 013169 (575 digits), a[1084] = 5
                                                                                      A[1085]/B[1085] = 564 141572 410816 331284 838889 584768 304588 390122 837432 072682 010922 472915 617987 517779 538124 293570 866079 860983 833813 106909 066585 956589 806481 820008 538864 975024 739433 400334 214054 095925 653998 580254 194363 953633 535620 950386 908871 694669 463348 561887 369172 967193 495468 586678 718644 257257 395509 369492 324769 609345 528131 895690 182975 214315 336648 439297 120759 930246 306663 036873 723506 248044 402209 744634 958980 651690 874041 375364 179640 314486 429638 808384 626056 622461 866729 618213 182695 841696 216290 838958 909200 700283 889581 134024 895779 933112 104001 589798 484301 403975 269970 129157 552434 553420 179694 394593 (573 digits)/54830 908276 154614 401277 186751 975862 191579 031883 431799 196469 165599 079802 460864 844119 213093 946912 438180 396534 211150 889231 318797 431297 302640 121600 189505 295797 462778 867985 753364 863638 277553 752414 040885 969942 310361 032820 443892 593424 492312 201221 366905 718958 436292 015551 278918 879776 691554 799720 859022 732832 849765 686043 019860 301976 880434 873503 141032 898877 309189 706277 954067 899713 639432 680877 565317 144022 721809 203659 448696 382413 177896 833133 035134 398704 234060 631373 337363 776740 386566 719400 474968 202284 587223 078740 657127 671465 989800 267616 323400 122170 484864 683542 201901 004609 219174 259504 (575 digits), a[1085] = 1
                                                                                      A[1086]/B[1086] = 2729 076684 936512 545800 430676 550863 173605 321174 249492 567898 368261 183268 051431 017458 582800 598568 179076 882192 102715 440332 110262 319152 659390 642035 130165 972609 409086 348602 905555 800230 196204 030974 560626 802447 885852 191678 557475 360094 658892 871458 281673 225934 216181 793971 090209 652906 309687 263289 312587 912561 701152 627594 103040 007487 118557 211078 518646 147121 063578 086780 353891 118417 474273 997672 715846 607044 062420 074871 080217 015467 800194 208353 220153 569360 555281 834524 250270 233859 393734 470204 684995 653554 489459 013801 467356 348881 498535 847187 971254 896608 749476 487109 944638 292695 288475 877051 (574 digits)/265248 584235 479059 121121 803529 679334 237973 642123 330338 646726 409662 985994 831373 003241 057858 579470 061738 898000 557134 599801 563797 781365 183666 908086 559888 547163 811556 255049 189907 274704 869741 468781 250847 058406 700279 275427 445509 193238 937028 593498 061695 840295 808573 001797 913280 099314 688779 169503 551800 608513 938736 518717 728601 846918 271455 137456 650022 132034 044448 729749 531322 768712 907122 003262 585777 067054 727298 049260 821339 636316 278324 430384 124502 829758 141036 760205 318319 126590 419923 036178 751571 130049 485356 111046 437495 879360 194112 354002 179963 943997 991713 618239 518303 921092 759245 051185 (576 digits), a[1086] = 4
                                                                                      A[1087]/B[1087] = 8751 371627 220353 968686 130919 237357 825404 353645 585909 776377 115706 022719 772280 570155 286526 089275 403310 507560 141959 427905 397372 914047 784653 746113 929362 892852 966692 446142 930721 496616 242610 673177 876244 360977 193177 525422 581297 774953 440027 176262 214192 644996 144013 968591 989273 215976 324571 159360 262533 347030 631589 778472 492095 236776 692320 072532 676698 371609 497397 297214 785179 603296 825031 737653 106520 472823 061301 599977 420291 360889 830221 433444 286517 330543 532575 121785 933506 543274 397494 249572 964187 660947 357958 175429 297848 979756 599609 131362 398066 093801 518399 590487 386349 431506 045122 025746 (574 digits)/850576 660982 591791 764642 597341 013864 905499 958253 422815 136648 394588 037786 954983 853842 386669 685322 623397 090535 882554 688636 010190 775392 853640 845859 869170 937288 897447 633133 323086 687752 886778 158757 793427 145162 411198 859102 780420 173141 303397 981715 551993 239845 862011 020945 018759 177720 757892 308231 514424 558374 665975 242196 205665 842731 694800 285873 091099 294979 442535 895526 548036 205852 360798 690665 322648 345186 903703 351441 912715 291362 012870 124285 408642 887978 657170 911989 292321 156511 646335 827936 729681 592433 043291 411879 969615 309546 572137 329622 863291 954164 460005 538260 756812 767887 496909 413059 (576 digits), a[1087] = 3
                                                                                      A[1088]/B[1088] = 11480 448312 156866 514486 561595 788220 999009 674819 835402 344275 483967 205987 823711 587613 869326 687843 582387 389752 244674 868237 507635 233200 444044 388149 059528 865462 375778 794745 836277 296846 438814 704152 436871 163425 079029 717101 138773 135048 098920 047720 495865 870930 360195 762563 079482 868882 634258 422649 575121 259592 332742 406066 595135 244263 810877 283611 195344 518730 560975 383995 139070 721714 299305 735325 822367 079867 123721 674848 500508 376357 630415 641797 506670 899904 087856 956310 183776 777133 791228 719777 649183 314501 847417 189230 765205 328638 098144 978550 369320 990410 267876 077597 330987 724201 333597 902797 (575 digits)/1 115825 245218 070850 885764 400870 693199 143473 600376 753153 783374 804251 023781 786356 857083 444528 264792 685135 988536 439689 288437 573988 556758 037307 753946 429059 484452 709003 888182 512993 962457 756519 627539 044274 203569 111478 134530 225929 366380 240426 575213 613689 080141 670584 022742 932039 277035 446671 477735 066225 166888 604711 760913 934267 689649 966255 423329 741121 427013 486984 625276 079358 974565 267920 693927 908425 412241 631001 400702 734054 927678 291194 554669 533145 717736 798207 672194 610640 283102 066258 864115 481252 722482 528647 522926 407111 188906 766249 683625 043255 898162 451719 156500 275116 688980 256154 464244 (577 digits), a[1088] = 1
                                                                                      A[1089]/B[1089] = 31712 268251 534086 997659 254110 813799 823423 703285 256714 464928 083640 434695 419703 745383 025179 464962 568085 287064 631309 164380 412643 380448 672742 522412 048420 623777 718250 035634 603276 090309 120240 081482 749986 687827 351236 959624 858844 045049 637867 271703 205924 386856 864405 493718 148238 953741 593088 004659 412775 866215 297074 590605 682365 725304 314074 639755 067387 409070 619348 065205 063321 046725 423643 208304 751254 632557 308744 949674 421308 113605 091052 717039 299859 130351 708289 034406 301060 097541 979951 689128 262554 289951 052792 553890 828259 637032 795899 088463 136708 074622 054151 745682 048324 879908 712317 831340 (575 digits)/3 082227 151418 733493 536171 399082 400263 192447 159006 929122 703398 003090 085350 527697 568009 275726 214907 993669 067608 761933 265511 158167 888908 928256 353752 727289 906194 315455 409498 349074 612668 399817 413835 881975 552300 634155 128163 232278 905901 784251 132142 779371 400129 203179 066430 882837 731791 651235 263701 646874 892151 875398 764024 074201 222031 627311 132532 573342 149006 416505 146078 706754 154982 896640 078521 139499 169670 165706 152847 380825 146718 595259 233624 474934 323452 253586 256378 513601 722715 778853 556167 692187 037398 100586 457732 783837 687360 104636 696872 949803 750489 363443 851261 307046 145848 009218 341547 (577 digits), a[1089] = 2
                                                                                      A[1090]/B[1090] = 43192 716563 690953 512145 815706 602020 822433 378105 092116 809203 567607 640683 243415 332996 894506 152806 150472 676816 875984 032617 920278 613649 116786 910561 107949 489240 094028 830380 439553 387155 559054 785635 186857 851252 430266 676725 997617 180097 736787 319423 701790 257787 224601 256281 227721 822624 227346 427308 987897 125807 629816 996672 277500 969568 124951 923366 262731 927801 180323 449200 202391 768439 722948 943630 573621 712424 432466 624522 921816 489962 721468 358836 806530 030255 796145 990716 484836 874675 771180 408905 911737 604452 900209 743121 593464 965670 894044 067013 506029 065032 322027 823279 379312 604110 045915 734137 (575 digits)/4 198052 396636 804344 421935 799953 093462 335920 759383 682276 486772 807341 109132 314054 425092 720254 479700 678805 056145 201622 553948 732156 445666 965564 107699 156349 390647 024459 297680 862068 575126 156337 041374 926249 755869 745633 262693 458208 272282 024677 707356 393060 480270 873763 089173 814877 008827 097906 741436 713100 059040 480110 524938 008468 911681 593566 555862 314463 576019 903489 771354 786113 129548 164560 772449 047924 581911 796707 553550 114880 074396 886453 788294 008080 041189 051793 928573 124242 005817 845112 420283 173439 759880 629233 980659 190948 876266 870886 380497 993059 648651 815163 007761 582162 834828 265372 805791 (577 digits), a[1090] = 1
                                                                                      A[1091]/B[1091] = 74904 984815 225040 509805 069817 415820 645857 081390 348831 274131 651248 075378 663119 078379 919685 617768 718557 963881 507293 196998 332921 994097 789529 432973 156370 113017 812278 866015 042829 477464 679294 867117 936844 539079 781503 636350 856461 225147 374654 591126 907714 644644 089006 749999 375960 776365 820434 431968 400672 992022 926891 587277 959866 694872 439026 563121 330119 336871 799671 514405 265712 815165 146592 151935 324876 344981 741211 574197 343124 603567 812521 075876 106389 160607 504435 025122 785896 972217 751132 098034 174291 894403 953002 297012 421724 602703 689943 155476 642737 139654 376179 568961 427637 484018 758233 565477 (575 digits)/7 280279 548055 537837 958107 199035 493725 528367 918390 611399 190170 810431 194482 841751 993101 995980 694608 672474 123753 963555 819459 890324 334575 893820 461451 883639 296841 339914 707179 211143 187794 556154 455210 808225 308170 379788 390856 690487 178183 808928 839499 172431 880400 076942 155604 697714 740618 749142 005138 359974 951192 355509 288962 082670 133713 220877 688394 887805 725026 319994 917433 492867 284531 061200 850970 187423 751581 962413 706397 495705 221115 481713 021918 483014 364641 305380 184951 637843 728533 623965 976450 865626 797278 729820 438391 974786 563626 975523 077370 942863 399141 178606 859022 889208 980676 274591 147338 (577 digits), a[1091] = 1
                                                                                      A[1092]/B[1092] = 118097 701378 915994 021950 885524 017841 468290 459495 440948 083335 218855 716061 906534 411376 814191 770574 869030 640698 383277 229616 253200 607746 906316 343534 264319 602257 906307 696395 482382 864620 238349 652753 123702 390332 211770 313076 854078 405245 111441 910550 609504 902431 313608 006280 603682 598990 047780 859277 388570 117830 556708 583950 237367 664440 563978 486487 592851 264672 979994 963605 468104 583604 869541 095565 898498 057406 173678 198720 264941 093530 533989 434712 912919 190863 300581 015839 270733 846893 522312 506940 086029 498856 853212 040134 015189 568374 583987 222490 148766 204686 698207 392240 806950 088128 804149 299614 (576 digits)/11 478331 944692 342182 380042 998988 587187 864288 677774 293675 676943 617772 303615 155806 418194 716235 174309 351279 179899 165178 373408 622480 780242 859384 569151 039988 687488 364374 004860 073211 762920 712491 496585 734475 064040 125421 653550 148695 450465 833606 546855 565492 360670 950705 244778 512591 749445 847048 746575 073075 010232 835619 813900 091139 045394 814444 244257 202269 301046 223484 688788 278980 414079 225761 623419 235348 333493 759121 259947 610585 295512 368166 810212 491094 405830 357174 113524 762085 734351 469078 396734 039066 557159 359054 419051 165735 439893 846409 457868 935923 047792 993769 866784 471371 815504 539963 953129 (578 digits), a[1092] = 1
                                                                                      A[1093]/B[1093] = 547295 790330 889016 597608 611913 487186 519018 919372 112623 607472 526670 939626 289256 723887 176452 700068 194680 526675 040402 115463 345724 425085 414794 807110 213648 522049 437509 651596 972360 935945 632693 478130 431654 100408 628584 888658 272774 846127 820422 233329 345734 254369 343438 775121 790691 172326 011557 869077 954953 463345 153725 923078 909337 352634 694940 509071 701524 395563 719651 368827 138131 149584 624756 534198 918868 574606 435924 369078 402888 977689 948478 814727 758065 924060 706759 088479 868832 359791 840382 125794 518409 889831 365850 457548 482482 876202 025892 045437 237801 958401 169009 137924 655437 836533 974830 763933 (576 digits)/53 193607 326824 906567 478279 194989 842476 985522 629487 786101 897945 281520 408943 464977 665880 860921 391846 077590 843350 624269 313094 380247 455547 331358 738056 043594 046794 797410 726619 503990 239477 406120 441553 746125 564330 881475 005057 285268 980047 143355 026921 434401 323083 879763 134718 748081 738402 137336 991438 652274 992123 697988 544562 447226 315292 478654 665423 696882 929211 213933 672586 608788 940847 964247 344647 128817 085556 998898 746187 938046 403164 954380 262768 447391 987962 734076 639050 686186 665939 500279 563387 021893 025916 166038 114596 637728 323202 361160 908846 686555 590313 153686 326160 774696 242694 434446 959854 (578 digits), a[1093] = 4
                                                                                      A[1094]/B[1094] = 1 212689 282040 694027 217168 109350 992214 506328 298239 666195 298280 272197 595314 485047 859151 167097 170711 258391 694048 464081 460542 944649 457917 735905 957754 691616 646356 781326 999589 427104 736511 503736 609013 987010 591149 468940 090393 399628 097500 752286 377209 300973 411170 000485 556524 185064 943642 070896 597433 298477 044520 864160 430108 056042 369709 953859 504630 995900 055800 419297 701259 744366 882774 119054 163963 736235 206619 045526 936877 070719 048910 430947 064168 429051 038984 714099 192799 008398 566477 203076 758529 122849 278519 584912 955230 980155 320778 635771 313364 624370 121489 036225 668090 117825 761196 753810 827480 (577 digits)/117 865546 598342 155317 336601 388968 272141 835333 936749 865879 472834 180813 121502 085761 749956 438077 958001 506460 866600 413716 999597 382975 691337 522102 045263 127176 781077 959195 458099 081192 241875 524732 379693 226726 192701 888371 663664 719233 410560 120316 600698 434295 006838 710231 514216 008755 226250 121722 729452 377624 994480 231596 903024 985591 675979 771753 575104 596035 159468 651352 033961 496558 295775 154256 312713 492982 504607 756918 752323 486678 101842 276927 335749 385878 381755 825327 391626 134459 066230 469637 523508 082852 608991 691130 648244 441192 086298 568731 275562 309034 228419 301142 519106 020764 300893 408857 872837 (579 digits), a[1094] = 2
                                                                                      A[1095]/B[1095] = 1 759985 072371 583043 814776 721264 479401 025347 217611 778818 905752 798868 534940 774304 583038 343549 870779 453072 220723 504483 576006 290373 883003 150700 764864 905265 168406 218836 651186 399465 672457 136430 087144 418664 691558 097524 979051 672402 943628 572708 610538 646707 665539 343924 331645 975756 115968 082454 466511 253430 507866 017886 353186 965379 722344 648800 013702 697424 451364 138949 070086 882498 032358 743810 698162 655103 781225 481451 305955 473608 026600 379425 878896 187116 963045 420858 281278 877230 926269 043458 884323 641259 168350 950763 412779 462638 196980 661663 358801 862172 079890 205234 806014 773263 597730 728641 591413 (577 digits)/171 059153 925167 061884 814880 583958 114618 820856 566237 651981 370779 462333 530445 550739 415837 298999 349847 584051 709951 037986 312691 763223 146884 853460 783319 170770 827872 756606 184718 585182 481352 930852 821246 972851 757032 769846 668722 004502 390607 263671 627619 868696 329922 589994 648934 756836 964652 259059 720891 029899 986603 929585 447587 432817 991272 250408 240528 292918 088679 865285 706548 105347 236623 118503 657360 621799 590164 755817 498511 424724 505007 231307 598517 833270 369718 559404 030676 820645 732169 969917 086895 104745 634907 857168 762841 078920 409500 929892 184408 995589 818732 454828 845266 795460 543587 843304 832691 (579 digits), a[1095] = 1
                                                                                      A[1096]/B[1096] = 10 012614 643898 609246 291051 715673 389219 633064 386298 560289 827044 266540 270018 356570 774342 884846 524608 523752 797665 986499 340574 396518 872933 489409 782079 217942 488387 875510 255521 424433 098797 185887 044736 080334 048939 956564 985651 761642 815643 615829 429902 534511 738866 720107 214754 063845 523482 483168 929989 565629 583850 953592 196042 882940 981433 197859 573144 483022 312621 114043 051694 156857 044567 838107 654777 011754 112746 452783 466654 438759 181912 328076 458649 364635 854211 818390 599193 394553 197822 420371 180147 329145 120274 338730 019128 293346 305681 944088 107373 935230 520940 062399 698163 984143 749850 397018 784545 (578 digits)/973 161316 224177 464741 411004 308758 845235 939616 767938 125786 326731 492480 773729 839458 829142 933074 707239 426719 416355 603648 563056 199091 425761 789405 961858 981030 920441 742226 381692 007104 648640 178996 485928 090984 977865 737605 007274 741745 363596 438674 738797 777776 656451 660204 758889 792940 049511 417021 333907 527124 927499 879524 140962 149681 632341 023794 777746 060625 602867 977780 566702 023294 478890 746774 599516 601980 455431 536006 244880 610300 626878 433465 328338 552230 230348 622347 545010 237687 727080 319222 957983 606580 783530 976974 462449 835794 133803 218192 197607 286983 322081 575286 745439 998067 018832 625382 036292 (579 digits), a[1096] = 5
                                                                                      A[1097]/B[1097] = 11 772599 716270 192290 105828 436937 868620 658411 603910 339108 732797 065408 804959 130875 357381 228396 395387 976825 018389 490982 916580 686892 755936 640110 546944 123207 656794 094346 906707 823898 771254 322317 131880 498998 740498 054089 964703 434045 759272 188538 040441 181219 404406 064031 546400 039601 639450 565623 396500 819060 091716 971478 549229 848320 703777 846659 586847 180446 763985 252992 121781 039355 076926 581918 352939 666857 893971 934234 772609 912367 208512 707502 337545 551752 817257 239248 880472 271784 124091 463830 064470 970404 288625 289493 431907 755984 502662 605751 466175 797402 600830 267634 504178 757407 347581 125660 375958 (578 digits)/1144 220470 149344 526626 225884 892716 959854 760473 334175 777767 697510 954814 304175 390198 244980 232074 057087 010771 126306 641634 875747 962314 572646 642866 745178 151801 748314 498832 566410 592287 129993 109849 307175 063836 734898 507451 675996 746247 754203 702346 366417 646472 986374 250199 407824 549777 014163 676081 054798 557024 914103 809109 588549 582499 623613 274203 018274 353543 691547 843066 273250 128641 715513 865278 256877 223780 045596 291823 743392 035025 131885 664772 926856 385500 600067 181751 575687 058333 459250 289140 044878 711326 418438 834143 225290 914714 543304 148084 382016 282573 140814 030115 590706 793527 562420 468686 868983 (580 digits), a[1097] = 1
                                                                                      A[1098]/B[1098] = 45 330413 792709 186116 608537 026486 995081 608299 198029 577616 025435 462766 684895 749196 846486 570035 710772 454227 852834 459448 090316 457197 140743 409741 422911 587565 458770 158550 975644 896129 412560 152838 440377 577330 270434 118834 879762 063780 093460 181443 551226 078169 952084 912201 853954 182650 441834 180039 119492 022809 859001 868027 843732 427903 092766 737838 333686 024362 604576 873019 417037 274922 275347 583862 713596 012327 794662 255487 784484 175860 807450 450583 471286 019894 305983 536137 240610 209905 570096 811861 373560 240357 986150 207210 314851 561299 813669 761342 505901 327438 323430 865303 210700 256365 792593 773999 912419 (578 digits)/4405 822726 672211 044620 088658 986909 724800 221036 770465 459089 419264 356923 686256 010053 564083 629296 878500 459032 795275 528553 190300 086035 143701 718006 197393 436436 165385 238724 080923 783966 038619 508544 407453 282495 182561 259960 035264 980488 626207 545713 838050 717195 615574 410802 982363 442271 092002 445264 498303 198199 669811 306852 906610 897180 503180 846403 832569 121256 677511 506979 386452 409219 625432 342609 370148 273320 592220 411477 475056 715376 022535 427784 108907 708732 030550 167602 272071 412688 104831 186643 092619 740560 038847 479404 138322 579937 763715 662445 343656 134702 744523 665633 517560 378649 706094 031442 643241 (580 digits), a[1098] = 3
                                                                                      A[1099]/B[1099] = 283 755082 472525 308989 757050 595859 839110 308206 792087 804804 885409 842008 914333 626056 436300 648610 660022 702192 135396 247671 458479 430075 600397 098559 084413 648600 409415 045652 760577 200675 246615 239347 774145 962980 363102 767099 243275 816726 320033 277199 347797 650239 116915 537242 670125 135504 290455 645858 113452 955919 245728 179645 611624 415739 260378 273689 588963 326622 391446 491108 624004 688888 729012 085094 634515 740824 661945 467161 479514 967532 053215 411003 165261 671118 653158 456072 324133 531217 544672 334998 305832 412552 205526 532755 321017 123783 384681 173806 501583 762032 541415 459453 768380 295602 103143 769659 850472 (579 digits)/27579 156830 182610 794346 757838 814175 308656 086693 956968 532304 213097 096356 421711 450519 629482 007855 328089 764967 897959 812954 017548 478525 434856 950903 929538 770418 740625 931177 051953 296083 361710 161115 751894 758807 830266 067211 887586 629179 511448 976629 394721 949646 679820 715017 302005 203403 566178 347668 044617 746222 932971 650227 028214 965582 642698 352626 013689 081083 756616 884942 591964 583959 468107 920934 477766 863703 598918 760688 593732 327281 267098 231477 580302 637892 783368 187365 208115 534462 088237 408998 600597 154686 651523 710568 055226 394341 125598 122756 443953 090789 607956 023916 696069 065425 798984 657342 728429 (581 digits), a[1099] = 6
                                                                                      A[1100]/B[1100] = 2031 615991 100386 349044 907891 197505 868853 765746 742644 211250 223304 356829 085231 131591 900591 110310 330931 369572 800608 193148 299672 467726 343523 099655 013807 127768 324675 478120 299685 300856 138866 828272 859399 318192 812153 488529 582692 780864 333693 121838 985809 629843 770493 672900 544830 131180 475023 701045 913662 714244 579099 125547 125103 338077 915414 653665 456429 310719 344702 310779 785070 097143 378432 179525 155206 198100 428280 525618 141088 948585 179958 327605 628117 717724 878092 728643 509544 928428 382803 156849 514387 128223 424835 936497 561971 427783 506437 977988 016987 661666 113339 081479 589362 325580 514600 161618 865723 (580 digits)/197459 920537 950486 605047 393530 686136 885392 827894 469245 185218 910944 031418 638236 163690 970457 684284 175128 813808 080994 219231 313139 435713 187700 374333 704164 829367 349766 756963 444596 856549 570590 636354 670716 594149 994423 730443 248371 384745 206350 382119 601104 364722 374319 415924 096399 866096 055250 878940 810627 421760 200612 858442 104115 656259 002069 314785 928392 688842 973829 701577 530204 496935 902187 789150 714516 319245 784651 736297 631183 006344 892223 048127 171026 173981 514127 479158 728880 153922 722493 049633 296799 823366 599513 453380 524907 340325 642902 521740 451327 770230 000215 833050 390043 836630 298986 632841 742244 (582 digits), a[1100] = 7
                                                                                      A[1101]/B[1101] = 2315 371073 572911 658034 664941 793365 707964 073953 534732 016055 108714 198837 999564 757648 336891 758920 990954 071764 936004 440819 758151 897801 943920 198214 098220 776368 734090 523773 060262 501531 385482 067620 633545 281173 175256 255628 825968 597590 653726 399038 333607 280082 887409 210143 214955 266684 765479 346904 027115 670163 824827 305192 736727 753817 175792 927355 045392 637341 736148 801888 409074 786032 107444 264619 789721 938925 090225 992779 620603 916117 233173 738608 793379 388843 531251 184715 833678 459645 927475 491847 820219 540775 630362 469252 882988 551566 891119 151794 518571 423698 654754 540933 357742 621182 617743 931278 716195 (580 digits)/225039 077368 133097 399394 151369 500312 194048 914588 426213 717523 124041 127775 059947 614210 599939 692139 503218 578775 978954 032185 330687 914238 622557 325237 633703 599786 090392 688140 496550 152632 932300 797470 422611 352957 824689 797655 135958 013924 717799 358748 995826 314369 054140 130941 398405 069499 621429 226608 855245 167983 133584 508669 132330 621841 644767 667411 942081 769926 730446 586520 122169 080895 370295 710085 192283 182949 383570 496986 224915 333626 159321 279604 751328 811874 297495 666523 936995 688384 810730 458631 897396 978053 251037 163948 580133 734666 768500 644496 895280 861019 608171 856967 086112 902056 097971 290184 470673 (582 digits), a[1101] = 1
                                                                                      A[1102]/B[1102] = 4346 987064 673298 007079 572832 990871 576817 839700 277376 227305 332018 555667 084795 889240 237482 869231 321885 441337 736612 633968 057824 365528 287443 297869 112027 904137 058766 001893 359947 802387 524348 895893 492944 599365 987409 744158 408661 378454 987419 520877 319416 909926 657902 883043 759785 397865 240503 047949 940778 384408 403926 430739 861831 091895 091207 581020 501821 948061 080851 112668 194144 883175 485876 444144 944928 137025 518506 518397 761692 864702 413132 066214 421497 106568 409343 913359 343223 388074 310278 648697 334606 668999 055198 405750 444959 979350 397557 129782 535559 085364 768093 622412 947104 946763 132344 092897 581918 (580 digits)/422498 997906 083584 004441 544900 186449 079441 742482 895458 902742 034985 159193 698183 777901 570397 376423 678347 392584 059948 251416 643827 349951 810257 699571 337868 429153 440159 445103 941147 009182 502891 433825 093327 947107 819113 528098 384329 398669 924149 740868 596930 679091 428459 546865 494804 935595 676680 105549 665872 589743 334197 367111 236446 278100 646836 982197 870474 458769 704276 288097 652373 577831 272483 499235 906799 502195 168222 233283 856098 339971 051544 327731 922354 985855 811623 145682 665875 842307 533223 508265 194196 801419 850550 617329 105041 074992 411403 166237 346608 631249 608387 690017 476156 738686 396957 923026 212917 (582 digits), a[1102] = 1
                                                                                      A[1103]/B[1103] = 71867 164108 345679 771307 830269 647310 937049 509157 972751 652940 421011 089511 356298 985492 136617 666622 141121 133168 721806 584308 683341 746254 543012 964119 890667 242561 674346 554066 819427 339731 775064 401916 520658 871028 973812 162163 364550 652870 452438 733075 444277 838909 413855 338843 371521 632528 613528 114103 079569 820698 287650 197030 526025 224138 635114 223683 074543 806319 029766 604579 515392 916839 881467 370938 908572 131333 386330 287143 807689 751355 843286 798039 537333 093938 080753 798465 325252 668834 891933 871005 173926 244760 513536 961260 002348 221173 252033 228315 087516 789534 944252 499540 511421 769392 735249 417640 026883 (581 digits)/6 985023 043865 470441 470458 869772 483497 465116 794314 753556 161395 683803 674874 230888 060635 726297 714918 356776 860120 938126 054851 631925 513467 586680 518379 039598 466241 132943 809803 554902 299552 978563 738671 915858 506682 930506 247229 285228 392643 504195 212646 546717 179831 909492 880789 315284 039030 448310 915403 509206 603876 480742 382448 915471 071451 994159 382577 869673 110241 998867 196082 560146 326195 730031 697859 701075 218072 075126 229527 922488 773162 984030 523315 509008 585567 283465 997446 591009 165305 342306 590875 004545 800770 859847 041214 260790 934545 350951 304294 441018 961013 342374 897246 704620 721038 449298 058603 877345 (583 digits), a[1103] = 16
                                                                                      A[1104]/B[1104] = 76214 151173 018977 778387 403102 638182 513867 348858 250127 880245 753029 645178 441094 874732 374100 535853 463006 574506 458419 218276 741166 111782 830456 261989 002695 146698 733112 555960 179375 142119 299413 297810 013603 470394 961221 906321 773212 031325 439858 253952 763694 748836 071758 221887 131307 030393 854031 162053 020348 205106 691576 627770 387856 316033 726321 804703 576365 754380 110617 717247 709537 800015 367343 815083 853500 268358 904836 805541 569382 616058 256418 864253 958830 200506 490097 711824 668476 056909 202212 519702 508532 913759 568735 367010 447308 200523 649590 358097 623075 874899 712346 121953 458526 716155 867593 510537 608801 (581 digits)/7 407522 041771 554025 474900 414672 669946 544558 536797 649015 064137 718788 834067 929071 838537 296695 091342 035124 252704 998074 306268 275752 863419 396938 217950 377466 895394 573103 254907 496049 308735 481455 172497 009186 453790 749619 775327 669557 791313 428344 953515 143647 858923 337952 427654 810088 974626 124991 020953 175079 193619 814939 749560 151917 349552 640996 364775 740147 569011 703143 484180 212519 904027 002515 197095 607874 720267 243348 462811 778587 113134 035574 851047 431363 571423 095089 143129 256885 007612 875530 099140 198742 602190 710397 658543 365832 009537 762354 470531 787627 592262 950762 587264 180777 459724 846255 981630 090262 (583 digits), a[1104] = 1
                                                                                      A[1105]/B[1105] = 376723 768800 421590 884857 442680 200040 992518 904590 973263 173923 433129 670225 120678 484421 633019 810035 993147 431194 555483 457415 648006 193385 864838 012075 901447 829356 606796 777907 536927 908208 972717 593156 575072 752608 818699 787450 457398 778172 211871 748886 499056 834253 700888 226391 896749 754104 029652 762315 160962 641125 053956 708112 077450 488273 540401 442497 380006 823839 472237 473570 353544 116901 350842 631274 322573 204769 005677 509310 085220 215588 868962 255055 372653 895964 041144 645763 999156 896471 700783 949815 208057 899798 788478 429301 791581 023267 850394 660705 579820 289133 793636 987354 345528 634016 205623 459790 462087 (582 digits)/36 615111 210951 686543 370060 528463 163283 643350 941505 349616 417946 558959 011145 947175 414784 913078 080286 497273 870940 930423 279924 734936 967145 174433 390180 549466 047819 425356 829433 539099 534494 904384 428659 952604 321845 928985 348539 963459 557897 217575 026707 121308 615525 261302 591408 555639 937534 948274 999216 209523 378355 740501 380689 523140 469662 558144 841680 830263 386288 811441 132803 410225 942303 740092 486242 132574 099141 048520 080775 036837 225699 126329 927505 234462 871259 663822 569963 618549 195756 844426 987435 799516 209533 701437 675387 724118 972696 400369 186421 591529 330065 145425 246303 427730 559937 834321 985124 238393 (584 digits), a[1105] = 4
                                                                                      A[1106]/B[1106] = 2 713280 532775 970113 972389 501864 038469 461499 680995 062970 097709 784937 336754 285844 265683 805239 206105 415038 592868 346803 420186 277209 465483 884322 346520 312829 952194 980690 001312 937870 499582 108436 449906 039112 738656 692120 418474 975003 478530 922960 496158 257092 588611 977975 806630 408555 309122 061600 498259 147086 692982 069273 584554 930009 733948 509131 902185 236413 521256 416280 032240 184346 618324 823242 234004 111512 701741 944579 370712 165924 125180 339154 649641 567407 472254 778110 232172 662574 332211 107700 168408 964938 212351 088084 372122 988375 363398 602352 983036 681817 898836 267805 033433 877227 154269 306957 729070 843410 (583 digits)/263 713300 518433 359829 065324 113914 812932 048015 127335 096329 989763 631501 912089 559299 742031 688241 653347 516041 349291 511037 265741 420311 633435 617971 949214 223729 230130 550601 060942 269746 050199 812146 173116 677416 706712 252517 215107 413774 696593 951370 140464 992808 167600 167070 567514 699568 537370 762916 015466 641742 842109 998449 414386 813900 637190 548010 256541 551991 273033 383231 413804 084101 500153 183162 600790 535893 414254 582989 028237 036447 693027 919884 343584 072603 670240 741847 132874 586729 377910 786519 011190 795356 068926 620461 386257 434664 818412 564938 775482 928332 902718 968739 311388 174891 379289 686509 877499 759013 (585 digits), a[1106] = 7
                                                                                      A[1107]/B[1107] = 8 516565 367128 331932 802025 948272 315449 377017 947576 162173 467052 787941 680487 978211 281473 048737 428352 238263 209799 595893 717974 479634 589837 517805 051636 839937 685941 548866 781846 350539 406955 298026 942874 692410 968578 895061 042875 382409 213764 980753 237361 270334 600089 634815 646283 122415 681470 214454 257092 602222 720071 261777 461776 867479 690119 067797 149053 089247 387608 721077 570290 906583 971875 820569 333286 657111 309994 839415 621446 582992 591129 886426 203980 074876 312728 375475 342281 986879 893105 023884 455042 102872 536852 052731 545670 756707 113463 657453 609815 625273 985642 597052 087655 977210 096824 126496 647002 992317 (583 digits)/827 755012 766251 766030 566032 870207 602079 787396 323510 638606 387237 453464 747414 625074 640879 977803 040329 045397 918815 463535 077148 995871 867452 028349 237823 220653 738211 077160 012260 348337 685094 340822 948009 984854 441982 686536 993862 204783 647679 071685 448102 099733 118325 762514 293952 654345 549647 237023 045616 134751 904685 735849 623849 964842 381234 202175 611305 486237 205388 961135 374215 662530 442763 289580 288613 740254 341904 797487 165486 146180 304782 885982 958257 452273 881981 889363 968587 378737 329489 203984 021008 185584 416313 562821 834160 028113 427934 095185 512870 376528 038222 051643 180467 952404 697806 893851 617623 515432 (585 digits), a[1107] = 3
                                                                                      A[1108]/B[1108] = 11 229845 899904 302046 774415 450136 353918 838517 628571 225143 564762 572879 017242 264055 547156 853976 634457 653301 802667 942697 138160 756844 055321 402127 398157 152767 638136 529556 783159 288409 906537 406463 392780 731523 707235 587181 461350 357412 692295 903713 733519 527427 188701 612791 452913 530970 990592 276054 755351 749309 413053 331051 046331 797489 424067 576929 051238 325660 908865 137357 602531 090930 590200 643811 567290 768624 011736 783994 992158 748916 716310 225580 853621 642283 784983 153585 574454 649454 225316 131584 623451 067810 749203 140815 917793 745082 476862 259806 592852 307091 884478 864857 121089 854437 251093 433454 376073 835727 (584 digits)/1091 468313 284685 125859 631356 984122 415011 835411 450845 734936 377001 084966 659504 184374 382911 666044 693676 561439 268106 974572 342890 416183 500887 646321 187037 444382 968341 627761 073202 618083 735294 152969 121126 662271 148694 939054 208969 618558 344273 023055 588567 092541 285925 929584 861467 353914 087017 999939 061082 776494 746795 734299 038236 778743 018424 750185 867847 038228 478422 344366 788019 746631 942916 472742 889404 276147 756159 380476 193723 182627 997810 805867 301841 524877 552222 631211 101461 965466 707399 990503 032198 980940 485240 183283 220417 462778 246346 660124 288353 304860 940941 020382 491856 127296 077096 580361 495123 274445 (586 digits), a[1108] = 1
                                                                                      A[1109]/B[1109] = 132 044870 266075 654447 320595 899772 208556 600711 861859 638752 679441 089610 870152 882822 300198 442480 407386 424583 039146 965562 237742 804919 198372 941206 431365 520381 705443 373991 396598 523048 378866 769124 263462 739171 748170 354057 117729 313948 829019 921604 306076 072033 675807 375521 628331 963096 577985 251056 565961 844626 263657 903338 971426 639863 354862 414016 712674 671517 385125 232011 198132 906820 464082 902496 573485 111975 439099 463360 535192 821076 470542 367815 593818 139997 947543 064916 661283 130876 371582 471315 313003 848790 778086 601706 641401 952614 358948 515326 131191 003284 714910 110480 419644 376019 858851 894494 783815 185314 (585 digits)/12833 906458 897788 150486 510959 695554 167209 976922 282813 722906 534249 388098 001960 653192 852908 304294 670771 221229 867992 183830 848943 573890 377216 137882 295235 108866 389968 982531 817489 147258 773330 023483 280403 269837 077627 016133 292528 008925 434682 325296 922340 117687 263510 987947 770093 547400 506845 236352 717526 676194 119438 813139 044454 531015 583906 454220 157622 906750 468034 749170 042432 875481 814844 489752 072060 777879 659657 982725 296441 155088 280701 750523 278514 225926 956430 832686 084668 998871 110889 099517 375196 975929 753955 578937 258752 118674 137747 356552 684756 729998 388573 275850 590885 352661 545869 277828 063979 534327 (587 digits), a[1109] = 11
                                                                                      A[1110]/B[1110] = 275 319586 432055 610941 415607 249680 771032 039941 352290 502648 923644 752100 757548 029700 147553 738937 449230 502467 880961 873821 613646 366682 452067 284540 260888 193531 049023 277539 576356 334506 664270 944711 919706 209867 203576 295295 696808 985310 350335 746922 345671 671494 540316 363834 709577 457164 146562 778167 887275 438561 940369 137728 989185 077216 133792 404962 476587 668695 679115 601379 998796 904571 518366 448804 714260 992574 889935 710716 062544 391069 657394 961212 041257 922279 680069 283418 897020 911206 968481 074215 249458 765392 305376 344229 200597 650311 194759 290458 855234 313661 314299 085817 960378 606476 968797 222443 943704 206355 (585 digits)/26759 281231 080261 426832 653276 375230 749431 789256 016473 180749 445499 861162 663425 490760 088728 274634 035219 003899 004091 342234 040777 563964 255319 922085 777507 662115 748279 592824 708180 912601 281954 199935 681933 201945 303948 971320 794025 636409 213637 673649 433247 327915 812947 905480 401654 448715 100708 472644 496136 128882 985673 360577 127145 840774 186237 658626 183092 851729 414491 842706 872885 497595 572605 452247 033525 831907 075475 345926 786605 492804 559214 306913 858869 976731 465084 296583 270799 963208 929178 189537 782592 932799 993151 341157 737921 700126 521841 373229 657866 764857 718087 572083 673626 832619 168835 136017 623082 343099 (587 digits), a[1110] = 2
                                                                                      A[1111]/B[1111] = 407 364456 698131 265388 736203 149452 979588 640653 214150 141401 603085 841711 627700 912522 447752 181417 856616 927050 920108 839383 851389 171601 650440 225746 692253 713912 754466 651530 972954 857555 043137 713836 183168 949038 951746 649352 814538 299259 179355 668526 651747 743528 216123 739356 337909 420260 724548 029224 453237 283188 204027 041067 960611 717079 488654 818979 189262 340213 064240 833391 196929 811391 982449 351301 287746 104550 329035 174076 597737 212146 127937 329027 635076 062277 627612 348335 558304 042083 340063 545530 562462 614183 083462 945935 841999 602925 553707 805784 986425 316946 029209 196298 380022 982496 827649 116938 727519 391669 (585 digits)/39593 187689 978049 577319 164236 070784 916641 766178 299286 903655 979749 249260 665386 143952 941636 578928 705990 225128 872083 526064 889721 137854 632536 059968 072742 770982 138248 575356 525670 059860 055284 223418 962336 471782 381575 987454 086553 645334 648319 998946 355587 445603 076458 893428 171747 996115 607553 708997 213662 805077 105112 173716 171600 371789 770144 112846 340715 758479 882526 591876 915318 373077 387449 941999 105586 609786 735133 328652 083046 647892 839916 057437 137384 202658 421515 129269 355468 962080 040067 289055 157789 908729 747106 920094 996673 818800 659588 729782 342623 494856 106660 847934 264512 185280 714704 413845 687061 877426 (587 digits), a[1111] = 1
                                                                                      A[1112]/B[1112] = 4348 964153 413368 264828 777638 744210 566918 446473 493791 916664 954503 169217 034557 154924 625075 553116 015399 772977 082050 267660 127538 082698 956469 542007 183425 332658 593689 792849 305904 910057 095648 083073 751395 700256 721042 788823 842191 977902 143892 432188 863149 106776 701553 757398 088671 659771 392043 070412 419648 270443 980639 548408 595302 248011 020340 594754 369211 070826 321523 935291 968095 018491 342859 961817 591722 038078 180287 451482 039916 512530 936768 251488 392018 545055 956192 766774 480061 332040 369116 529520 874084 907223 140005 803587 620593 679566 731837 348308 719487 483121 606391 048801 760608 431445 245288 391831 218898 123045 (586 digits)/422691 158130 860757 200024 295637 083079 915849 451039 009342 217309 242992 353769 317286 930289 505094 063921 095121 255187 724926 602882 937988 942510 580680 521766 504935 371937 130765 346389 964881 511201 834796 434125 305297 919769 119708 845861 659562 089755 696837 663112 989121 783946 577536 839762 119134 409871 176245 562616 632764 179654 036795 097738 843149 558671 887678 787089 590250 436528 239757 761476 026069 228369 447104 872238 089391 929774 426808 632447 617071 971732 958374 881285 232712 003315 680235 589276 825489 584009 329851 080089 360492 020097 464220 542107 704659 888133 117728 671053 084101 713418 784696 051426 318748 685426 315879 274474 493701 117359 (588 digits), a[1112] = 10
                                                                                      A[1113]/B[1113] = 22152 185223 764972 589532 624396 870505 814180 873020 683109 724726 375601 687796 800486 687145 573129 946997 933615 791936 330360 177684 489079 585096 432787 935782 609380 377205 722915 615777 502479 407840 521378 129204 940147 450322 556960 593472 025498 188769 898817 829470 967493 277411 723892 526346 781267 719117 684763 381286 551478 635408 107224 783110 937122 957134 590357 792751 035317 694344 671860 509851 037404 903848 696749 160389 246356 294941 230472 431486 797319 774800 811778 586469 595168 787557 408576 182207 958610 702285 185646 193134 932887 150298 783491 963873 944968 000759 212894 547328 583862 732554 061164 440307 183065 139723 054091 076094 822010 006894 (587 digits)/2 153048 978344 281835 577440 642421 486184 495889 021373 345997 990202 194711 018107 251820 795400 467106 898534 181596 501067 496716 540479 579665 850407 535938 668800 597419 630667 792075 307306 350077 615869 229266 394045 488826 070627 980120 216762 384364 094113 132508 314511 301196 365335 964143 092238 767420 045471 488781 522080 377483 703347 289087 662410 387348 165149 208538 048294 291967 941121 081315 399257 045664 514924 622974 303189 552546 258658 869176 490890 168406 506557 631790 463863 300944 219236 822693 075653 482916 882126 689322 689501 960250 009217 068209 630633 519973 259466 248232 085047 763132 061950 030141 105065 858255 612412 294100 786218 155567 464221 (589 digits), a[1113] = 5
                                                                                      A[1114]/B[1114] = 26501 149377 178340 854361 402035 614716 381099 319494 176901 641391 330104 857013 835043 842070 198205 500113 949015 564913 412410 445344 616617 667795 389257 477789 792805 709864 316605 408626 808384 317897 617026 212278 691543 150579 278003 382295 867690 166672 042710 261659 830642 384188 425446 283744 869939 378889 076806 451698 971126 905852 087864 331519 532425 205145 610698 387505 404528 765170 993384 445143 005499 922340 039609 122206 838078 333019 410759 882968 837236 287331 748546 837957 987187 332613 364768 948982 438672 034325 554762 722655 806972 057521 923497 767461 565561 680325 944731 895637 303350 215675 667555 489108 943673 571168 299379 467926 040908 129939 (587 digits)/2 575740 136475 142592 777464 938058 569264 411738 472412 355340 207511 437703 371876 569107 725689 972200 962455 276717 756255 221643 143362 517654 792918 116619 190567 102355 002604 922840 653696 314959 127071 064062 828170 794123 990397 099829 062624 043926 183868 829345 977624 290318 149282 541679 932000 886554 455342 665027 084697 010247 883001 325882 760149 230497 723821 096216 835383 882218 377649 321073 160733 071733 743294 070079 175427 641938 188433 295985 123337 785478 478290 590165 345148 533656 222552 502928 664930 308406 466136 019173 769591 320742 029314 532430 172741 224633 147599 365960 756100 847233 775368 814837 156492 177004 297838 609980 060692 649268 581580 (589 digits), a[1114] = 1
                                                                                      A[1115]/B[1115] = 75154 483978 121654 298255 428468 099938 576379 512009 036913 007509 035811 401824 470574 371285 969540 947225 831646 921763 155181 068373 722314 920687 211302 891362 194991 796934 356126 433031 119248 043635 755430 553762 323233 751481 112967 358063 760878 522113 984238 352790 628778 045788 574785 093836 521146 476895 838376 284684 493732 447112 282953 446150 001973 367425 811754 567761 844375 224686 658629 400137 048404 748528 775967 404802 922512 960980 051992 197424 471792 349464 308872 262385 569543 452784 138114 080172 835954 770936 295171 638446 546831 265342 630487 498797 076091 361411 102358 338603 190563 163905 396275 418525 070412 282059 652850 011946 903826 266772 (587 digits)/7 304529 251294 567021 132370 518538 624713 319365 966198 056678 405225 070117 761860 390036 246780 411508 823444 735032 013577 940002 827204 614975 436243 769177 049934 802129 635877 637756 614698 979995 870011 357392 050387 077074 051422 179778 342010 472216 461850 791200 269759 881832 663901 047502 956240 540528 956156 818835 691474 397979 469349 940853 182708 848343 612791 400971 719062 056404 696419 723461 720723 189132 001512 763132 654044 836422 635525 461146 737565 739363 463138 812121 154160 368256 664341 828550 405514 099729 814398 727670 228684 601734 067846 133069 976115 969239 554664 980153 597249 457599 612687 659815 418050 212264 208089 514060 907603 454104 627381 (589 digits), a[1115] = 2
                                                                                      A[1116]/B[1116] = 2 882371 540545 801204 188067 683823 412382 283520 775837 579595 926734 690938 126343 716869 950937 040761 494695 551598 591913 309291 043546 064584 653909 418767 349553 202493 993369 849409 863809 339809 976056 323387 255246 974425 706861 570762 988718 781074 007003 443767 667703 724208 124154 267279 849532 673505 500930 935105 269709 732959 896118 840095 285219 607413 167326 457371 962455 490787 303264 021301 650350 844880 366433 526370 504717 893570 850261 386463 385098 765345 566975 485692 808609 629838 538410 613103 995550 204953 329904 771284 983624 586560 140541 882022 721750 457033 413947 834348 762558 544750 444080 726021 393061 619340 289435 107679 921908 386306 267275 (589 digits)/280 147851 685668 689395 807544 642526 308370 547645 187938 509119 606064 102178 322571 390485 103345 609536 253355 207934 272216 941750 577137 886721 370181 345347 088089 583281 165955 157592 012257 554802 187502 644960 742879 722937 944439 931406 059021 988151 734198 894956 228499 799959 377522 346792 269141 426654 789301 780783 360724 133467 718299 078303 703085 467555 009894 333142 159742 025596 841598 812618 548214 258749 800779 069120 029131 425998 338400 819561 150835 881290 077565 450769 203242 527409 467541 987844 074466 098139 413287 670642 459606 186636 607467 589089 265148 055736 224868 611797 451580 236019 057499 887823 042400 243044 205240 144294 549623 905244 422058 (591 digits), a[1116] = 38
                                                                                      A[1117]/B[1117] = 2 957526 024523 922858 486323 112291 512320 859900 287846 616508 934243 726749 528168 187444 322223 010302 441921 383245 513676 464472 111919 786899 574596 630070 240915 397485 790304 205536 296840 459058 019692 078817 809009 297659 458342 683730 346782 541952 529117 428006 020494 352986 169942 842064 943369 194651 977826 773481 554394 226692 343231 123048 731369 609386 534752 269126 530217 335162 527950 679931 050487 893285 114962 302337 909520 816083 811241 438455 582523 237137 916439 794565 070995 199381 991194 751218 075723 040908 100841 066456 622071 133391 405884 512510 220547 533124 775358 936707 101161 735313 607986 122296 811586 689752 571494 760529 933855 290132 534047 (589 digits)/287 452380 936963 256416 939915 161064 933083 867011 154136 565798 011289 172296 084431 780521 350126 021045 076799 942966 285794 881753 404342 501696 806425 114524 138024 385410 801832 795348 626956 534798 057514 002352 793266 800011 995862 111184 401032 460368 196049 686156 498259 681792 041423 394295 225381 967183 745458 599619 052198 531447 187649 019156 885794 315898 622685 734113 878804 082001 538018 536080 268937 447881 802291 832252 683176 262420 973926 280707 888401 620653 540704 262890 357402 895666 131883 816394 479980 197869 227686 398312 688290 788370 675313 722159 241264 024975 779533 591951 048829 693618 670187 547638 460450 455308 413329 658355 457227 359349 049439 (591 digits), a[1117] = 1
                                                                                      A[1118]/B[1118] = 64 990418 055548 181232 400853 041945 171120 341426 820616 526283 545852 952678 217875 653200 717620 257112 775044 599754 379119 063205 393861 589475 720438 650242 408776 549695 589758 165672 097458 980028 389589 978561 244442 225274 332057 929100 271152 162077 118469 431894 098085 136917 692953 950643 660285 761197 035293 178217 911988 493499 103972 424118 643981 404530 397124 109029 097019 529200 390228 299853 710596 603867 780641 875466 604655 031330 886331 594030 618086 745241 812211 171559 299508 816860 353500 388683 585734 064023 447567 166874 047118 387779 664116 644737 353248 652653 696485 505197 886954 986336 211789 294254 436382 104144 290825 078808 532869 479089 482262 (590 digits)/6316 647851 361897 074151 545763 024889 903131 754879 424806 390877 843136 720396 095638 781433 455992 051482 866154 010226 273909 458572 068330 422354 305108 750353 986601 676908 004443 859913 178344 785561 395296 694369 401482 523189 857544 266278 480703 655883 851242 304242 691953 117592 247413 626992 002162 737513 443932 372783 456893 293858 658928 480598 304766 101426 086294 749533 614627 747629 139988 070304 195900 664267 648907 546426 375832 936838 790852 714426 807269 915014 432354 971466 708703 336398 237102 132128 154050 253393 194702 035208 913712 742420 789055 754433 331692 580227 595074 042769 477003 802011 131438 388230 711859 804520 885162 969759 151398 451574 460277 (592 digits), a[1118] = 21
                                                                                      A[1119]/B[1119] = 67 947944 080072 104090 887176 154236 683441 201327 108463 142792 480096 679427 746043 840645 039843 267415 216965 982999 892795 527677 505781 376375 295035 280312 649691 947181 380062 371208 394299 439086 409282 057379 053451 522933 790400 612830 617934 704029 647586 859900 118579 489903 862896 792708 603654 955849 013119 951699 466382 720191 447203 547167 375351 013916 931876 378155 627236 864362 918178 979784 761084 497152 895604 177804 514175 847414 697573 032486 200609 982379 728650 966124 370504 016242 344695 139901 661457 104931 548408 233330 669189 521171 070001 157247 573796 185778 471844 441904 988116 721649 819775 416551 247968 793896 862319 839338 466724 769222 016309 (590 digits)/6604 100232 298860 330568 485678 185954 836215 621890 578942 956675 854425 892692 180070 561954 806118 072527 942953 953192 559704 340325 472672 924051 111533 864878 124626 062318 806276 655261 805301 320359 452810 696722 194749 323201 853406 377462 881736 116252 047291 990399 190212 799384 288837 021287 227544 704697 189390 972402 509091 825305 846577 499755 190560 417324 708980 483647 493431 829630 678006 606384 464838 112149 451199 378679 059009 199259 764778 995134 695671 535667 973059 234357 066106 232064 368985 948522 634030 451262 422388 433521 602003 530791 464369 476592 572956 605203 374607 634720 525833 495629 801625 935869 172310 259829 298492 628114 608625 810923 509716 (592 digits), a[1119] = 1
                                                                                      A[1120]/B[1120] = 132 938362 135620 285323 288029 196181 854561 542753 929079 669076 025949 632105 963919 493845 757463 524527 992010 582754 271914 590882 899642 965851 015473 930555 058468 496876 969820 536880 491758 419114 798872 035940 297893 748208 122458 541930 889086 866106 766056 291794 216664 626821 555850 743352 263940 717046 048413 129917 378371 213690 551175 971286 019332 418447 329000 487184 724256 393563 308407 279638 471681 101020 676246 053271 118830 878745 583904 626516 818696 727621 540862 137683 670012 833102 698195 528585 247191 168954 995975 400204 716307 908950 734117 801984 927044 838432 168329 947102 875071 707986 031564 710805 684350 898041 153144 918146 999594 248311 498571 (591 digits)/12920 748083 660757 404720 031441 210844 739347 376770 003749 347553 697562 613088 275709 343388 262110 124010 809107 963418 833613 798897 541003 346405 416642 615232 111227 739226 810720 515174 983646 105920 848107 391091 596231 846391 710950 643741 362439 772135 898534 294641 882165 916976 536250 648279 229707 442210 633323 345185 965985 119164 505505 980353 495326 518750 795275 233181 108059 577259 817994 676688 660738 776417 100106 925105 434842 136098 555631 709561 502941 450682 405414 205823 774809 568462 606088 080650 788080 704655 617090 468730 515716 273212 253425 231025 904649 185430 969681 677490 002837 297640 933064 324099 884170 064350 183655 597873 760024 262497 969993 (593 digits), a[1120] = 1
                                                                                      A[1121]/B[1121] = 466 763030 486932 960060 751263 742782 247125 829588 895702 150020 557945 575745 637802 322182 312233 840999 192997 731262 708539 300326 204710 273928 341457 071977 825097 437812 289523 981849 869574 696430 805898 165199 947132 767558 157776 238623 285195 302349 945755 735282 768573 370368 530449 022765 395477 106987 158359 341451 601496 361263 100731 461025 433348 269258 918877 839709 800006 045052 843400 818700 176127 800214 924342 337617 870668 483651 449286 912036 656700 165244 351237 379175 380542 515550 439281 725657 403030 611796 536334 433944 818113 248023 272354 563202 354930 701074 976834 283213 613331 845607 914469 548968 301021 488020 321754 593779 465507 514156 512022 (591 digits)/45366 344483 281132 544728 580001 818489 054257 752200 590190 999336 947113 731957 007198 592119 592448 444560 370277 843449 060545 737018 095682 963267 361461 710574 458309 279999 238438 200786 756239 638121 997132 869996 983444 862376 986258 308686 969055 432659 742894 874324 836710 550313 897588 966124 916667 031329 089361 007960 407047 182799 363095 440815 676539 973577 094806 183190 817610 561410 131990 636450 447054 441400 751520 153995 363535 607555 431674 123819 204495 887715 189301 851828 390534 937452 187250 190474 998272 565229 273659 839713 149152 350428 224645 169670 286904 161496 283652 667190 534345 388552 600818 908168 824820 452879 849459 421735 888698 598417 419695 (593 digits), a[1121] = 3
                                                                                      A[1122]/B[1122] = 599 701392 622553 245384 039292 938964 101687 372342 824781 819096 583895 207851 601721 816028 069697 365527 185008 314016 980453 891209 104353 239779 356931 002532 883565 934689 259344 518730 361333 115545 604770 201140 245026 515766 280234 780554 174282 168456 711812 027076 985237 997190 086299 766117 659417 824033 206772 471368 979867 574953 651907 432311 452680 687706 247878 326894 524262 438616 151808 098338 647808 901235 600588 390888 989499 362397 033191 538553 475396 892865 892099 516859 050555 348653 137477 254242 650221 780751 532309 834149 534421 156974 006472 365187 281975 539507 145164 230316 488403 553593 946034 259773 985372 386061 474899 511926 465101 762468 010593 (591 digits)/58287 092566 941889 949448 611443 029333 793605 128970 593940 346890 644676 345045 282907 935507 854558 568571 179385 806867 894159 535915 636686 309672 778104 325806 569537 019226 049158 715961 739885 744042 845240 261088 579676 708768 697208 952428 331495 204795 641429 168966 718876 467290 433839 614404 146374 473539 722684 353146 373032 301963 868601 421169 171866 492327 890081 416371 925670 138669 949985 313139 107793 217817 851627 079100 798377 743653 987305 833380 707437 338397 594716 057652 165344 505914 793338 271125 786353 269884 890750 308443 664868 623640 478070 400696 191553 346927 253334 344680 537182 686193 533883 232268 708990 517230 033115 019609 648722 860915 389688 (593 digits), a[1122] = 1
                                                                                      A[1123]/B[1123] = 1066 464423 109486 205444 790556 681746 348813 201931 720483 969117 141840 783597 239524 138210 381931 206526 378006 045279 688993 191535 309063 513707 698388 074510 708663 372501 548868 500580 230907 811976 410668 366340 192159 283324 438011 019177 459477 470806 657567 762359 753811 367558 616748 788883 054894 931020 365131 812820 581363 936216 752638 893336 886028 956965 166756 166604 324268 483668 995208 917038 823936 701450 524930 728506 860167 846048 482478 450590 132097 058110 243336 896034 431097 864203 576758 979900 053252 392548 068644 268094 352534 404997 278826 928389 636906 240582 121998 513530 101735 399201 860503 808742 286393 874081 796654 105705 930609 276624 522615 (592 digits)/103653 437050 223022 494177 191444 847822 847862 881171 184131 346227 591790 077002 290106 527627 447007 013131 549663 650316 954705 272933 732369 272940 139566 036381 027846 299225 287596 916748 496125 382164 842373 131085 563121 571145 683467 261115 300550 637455 384324 043291 555587 017604 331428 580529 063041 504868 812045 361106 780079 484763 231696 861984 848406 465904 984887 599562 743280 700080 081975 949589 554847 659218 603147 233096 161913 351209 418979 957199 911933 226112 784017 909480 555879 443366 980588 461600 784625 835114 164410 148156 814020 974068 702715 570366 478457 508423 536987 011871 071528 074746 134702 140437 533810 970109 882574 441345 537421 459332 809383 (594 digits), a[1123] = 1
                                                                                      A[1124]/B[1124] = 2732 630238 841525 656273 620406 302456 799313 776206 265749 757330 867576 775046 080770 092448 833559 778579 941020 404576 358440 274279 722480 267194 753707 151554 300892 679692 357081 519890 823148 739498 426106 933820 629345 082415 156256 818909 093237 110070 026947 551796 492860 732307 319797 343883 769207 686073 937036 097010 142595 447387 157185 218985 224738 601636 581390 660103 172799 405954 142225 932416 295682 304136 650449 847902 709835 054493 998148 439733 739591 009086 378773 308927 912751 077060 290995 214042 756726 565847 669598 370338 239489 966968 564126 221966 555788 020671 389161 257376 691874 351997 667041 877258 558160 134225 068207 723338 326320 315717 055823 (592 digits)/265593 966667 387934 937802 994332 724979 489330 891312 962203 039345 828256 499049 863120 990762 748572 594834 278713 107501 803570 081783 101424 855553 057236 398568 625229 617676 624352 549458 732136 508372 529986 523259 705919 851060 064143 474658 932596 479706 410077 255549 830050 502499 096696 775462 272457 483277 346775 075359 933191 271490 331995 145138 868679 424137 859856 615497 412231 538830 113937 212318 217488 536255 057921 545293 122204 446072 825265 747780 531303 790623 162751 876613 277103 392648 754515 194327 355604 940113 219570 604757 292910 571777 883501 541429 148468 363774 327308 368422 680238 835685 803287 513143 776612 457449 798263 902300 723565 779581 008454 (594 digits), a[1124] = 2
                                                                                      A[1125]/B[1125] = 33858 027289 207794 080728 235432 311227 940578 516406 909481 057087 552762 084150 208765 247596 384648 549485 670250 900195 990276 482891 978826 720044 742873 893162 319375 528809 833846 739270 108692 685957 523951 572187 744300 272306 313092 846086 578322 791646 980938 383917 668140 155246 454316 915488 285387 163907 609564 976942 292509 304862 638861 521159 582892 176604 143444 087842 397861 355118 701920 106034 372124 351090 330328 903339 378188 499976 460259 727395 007189 167146 788616 603169 384110 788927 068701 548413 133971 182720 103824 712153 226414 008620 048341 591988 306362 488638 791933 602050 404227 623173 865006 335844 984315 484782 615146 785765 846453 065229 192491 (593 digits)/3 290781 037058 878241 747813 123437 547576 719833 576926 730567 818377 530868 065600 647558 416780 429878 151142 894220 940338 597546 254330 949467 539576 826402 819204 530601 711344 779827 510253 281763 482635 202211 410202 034159 783866 453188 957022 491708 393932 305251 109889 516193 047593 491789 886076 332531 304196 973346 265425 978374 742647 215638 603651 272559 555559 303166 985531 690059 166041 449222 497408 164710 094279 298205 776613 628366 704083 322168 930566 287578 713590 737040 428839 881120 155152 034770 793529 051885 116472 799257 405244 328947 835403 304734 067516 260077 873715 464687 432943 234394 102975 774152 298162 853160 459507 461741 268954 220210 814304 910831 (595 digits), a[1125] = 12
                                                                                      A[1126]/B[1126] = 70448 684817 257113 817730 091270 924912 680470 809020 084711 871505 973100 943346 498300 587641 602856 877551 281522 204968 338993 240063 680133 707284 239454 937878 939643 737312 024774 998431 040534 111413 474010 078196 117945 627027 782442 511082 249882 693363 988824 319631 829141 042800 228431 174860 339982 013889 156166 050894 727614 057112 434908 261304 390522 954844 868278 835787 968522 116191 546066 144485 039931 006317 311107 654581 466212 054446 918667 894523 753969 343379 956006 515266 680972 654914 428398 310869 024668 931287 877247 794644 692317 984208 660809 405943 168512 997948 973028 461477 500329 598345 397054 548948 526791 103790 298501 294870 019226 446175 440805 (593 digits)/6 847156 040785 144418 433429 241207 820132 928998 045166 423338 676100 889992 630251 158237 824323 608328 897120 067154 988178 998662 590445 000359 934706 710042 036977 686433 040366 184007 569965 295663 473642 934409 343663 774239 418792 970521 388703 916013 267571 020579 475328 862436 597686 080276 547614 937520 091671 293467 606211 889940 756784 763272 352441 413798 535256 466190 586560 792349 870913 012382 207134 546908 724813 654333 098520 378937 854239 469603 608913 106461 217804 636832 734293 039343 702952 824056 781385 459375 173058 818085 415245 950806 242584 492969 676461 668624 111205 256683 234309 149027 041637 351592 109469 482933 376464 721746 440209 163987 408190 830116 (595 digits), a[1126] = 2
                                                                                      A[1127]/B[1127] = 245204 081740 979135 533918 509245 085965 981990 943467 163616 671605 472064 914189 703667 010521 193219 182139 514817 515101 007256 203083 019227 841897 461238 706799 138306 740745 908171 734563 230295 020197 945981 806776 098137 153389 660420 379333 327970 871738 947411 342813 155563 283647 139610 440069 305333 205575 078063 129626 475351 476199 943586 305072 754461 041138 748280 595206 303427 703693 340118 539489 491917 370042 263651 867083 776824 663317 216263 410966 269097 197286 656636 148969 427028 753670 353896 481020 207977 976583 735568 096087 303367 961246 030769 809817 811901 482485 711018 986482 905216 418210 056169 982690 564688 796153 510650 670375 904132 403755 514906 (594 digits)/23 832249 159414 311497 048100 847061 007975 506827 712426 000583 846680 200845 956354 122271 889751 254864 842503 095685 904875 593534 025665 950547 343696 956528 930137 589900 832443 331850 220149 168753 903564 005439 441193 356878 040245 364753 123134 239748 196645 366989 535876 103502 840651 732619 528921 145091 579210 853749 084061 648197 013001 505455 660975 513955 161328 701738 745214 067108 778780 486369 118811 805436 268720 261205 072174 765180 266801 730979 757305 606962 367004 647538 631718 999151 264010 506941 137685 430010 635649 253513 650982 181366 563156 783643 096901 265950 207331 234737 135870 681475 227887 828928 626571 301960 588901 626980 589581 712173 038877 401179 (596 digits), a[1127] = 3
                                                                                      A[1128]/B[1128] = 560856 848299 215384 885567 109761 096844 644452 695954 411945 214716 917230 771725 905634 608683 989295 241830 311157 235170 353505 646229 718589 391079 161932 351477 216257 218803 841118 467557 501124 151809 365973 691748 314219 933807 103283 269748 905824 436841 883647 005258 140267 610094 507652 054998 950648 425039 312292 310147 678317 009512 322080 871449 899445 037122 364840 026200 575377 523578 226303 223464 023765 746401 838411 388749 019861 381081 351194 716456 292163 737953 269278 813205 535030 162255 136191 272909 440624 884455 348383 986819 299053 906700 722349 025578 792315 962920 395066 434443 310762 434765 509394 514329 656168 696097 319802 635621 827491 253686 470617 (594 digits)/54 511654 359613 767412 529630 935329 836083 942653 470018 424506 369461 291684 542959 402781 603826 118058 582126 258526 797930 185730 641776 901454 622100 623099 897252 866234 705252 847708 010263 633171 280770 945288 226050 487995 499283 700027 634972 395509 660861 754558 547081 069442 278989 545515 605457 227703 250093 000965 774335 186334 782787 774183 674392 441708 857913 869668 076988 926567 428473 985120 444758 157781 262254 176743 242869 909298 387842 931563 123524 320385 951813 931909 997731 037646 230973 837939 056756 319396 444357 325112 717210 313539 368898 060255 870264 200524 525867 726157 506050 511977 497413 009449 362612 086854 554267 975707 619372 588333 485945 632474 (596 digits), a[1128] = 2
                                                                                      A[1129]/B[1129] = 806060 930040 194520 419485 619006 182810 626443 639421 575561 886322 389295 685915 609301 619205 182514 423969 825974 750271 360761 849312 737817 232976 623171 058276 354563 959549 749290 202120 731419 172007 311955 498524 412357 087196 763703 649082 233795 308580 831058 348071 295830 893741 647262 495068 255981 630614 390355 439774 153668 485712 265667 176522 653906 078261 113120 621406 878805 227271 566421 762953 515683 116444 102063 255832 796686 044398 567458 127422 561260 935239 925914 962174 962058 915925 490087 753929 648602 861039 083952 082906 602421 867946 753118 835396 604217 445406 106085 420926 215978 852975 565564 497020 220857 492250 830453 305997 731623 657441 985523 (594 digits)/78 343903 519028 078909 577731 782390 844059 449481 182444 425090 216141 492530 499313 525053 493577 372923 424629 354212 702805 779264 667442 852001 965797 579628 827390 456135 537696 179558 230412 801925 184334 950727 667243 844873 539529 064780 758106 635257 857507 121548 082957 172945 119641 278135 134378 372794 829303 854714 858396 834531 795789 279639 335367 955664 019242 571406 822202 993676 207254 471489 563569 963217 530974 437948 315044 674478 654644 662542 880829 927348 318818 579448 629450 036797 494984 344880 194441 749407 080006 578626 368192 494905 932054 843898 967165 466474 733198 960894 641921 193452 725300 838377 989183 388815 143169 602688 208954 300506 524823 033653 (596 digits), a[1129] = 1
                                                                                      A[1130]/B[1130] = 4 591161 498500 187986 982995 204792 010897 776670 893062 289754 646328 863709 201303 952142 704709 901867 361679 441030 986527 157314 892793 407675 555962 277787 642858 989077 016552 587569 478161 158220 011845 925751 184370 376005 369790 921801 515160 074800 979746 038938 745614 619422 078802 743964 530340 230556 578111 264069 509018 446659 438073 650416 754063 168975 428427 930443 133234 969403 659936 058412 038231 602181 328622 348727 667913 003291 603074 188485 353569 098468 414152 898853 624080 345324 741882 586630 042557 683639 189650 768144 401352 311163 246434 487943 202561 813403 189950 925493 539074 390656 699643 337216 999430 760456 157351 472069 165610 485609 540896 398232 (595 digits)/446 231171 954754 161960 418289 847284 056381 190059 382240 549957 450168 754337 039527 028049 071712 982675 705273 029590 311959 082053 978991 161464 451088 521244 034205 146912 393733 745499 162327 642797 202445 698926 562269 712363 196929 023931 425505 571798 948397 362298 961866 934167 877195 936191 277349 091677 396612 274540 066319 358993 761734 172380 351232 220028 954126 726702 188003 894948 464746 342568 262607 973868 917126 366484 818093 281691 661066 244277 527673 957127 545906 829153 144981 221633 705895 562340 028965 066431 844390 218244 558172 788069 029172 279750 706091 532898 191862 530630 715656 479241 123917 201339 308529 030930 270115 989148 664144 090866 110060 800739 (597 digits), a[1130] = 5
                                                                                      A[1131]/B[1131] = 19 170706 924040 946468 351466 438174 226401 733127 211670 734580 471637 844132 491131 417872 438044 789983 870687 590098 696379 990021 420486 368519 456825 734321 629712 310872 025760 099568 114765 364299 219391 014960 236005 916378 566360 450909 709722 532999 227564 986813 330529 773519 208952 623120 616429 178207 943059 446633 475847 940306 238006 867334 192775 329807 791972 834893 154346 756419 867015 800069 915879 924408 430933 496973 927484 809852 456695 321399 541698 955134 591851 521329 458496 343357 883455 836607 924160 383159 619642 156529 688315 847074 853684 704891 645643 857830 205209 808059 577223 778605 651548 914432 494743 262682 121656 718729 968439 674061 821027 578451 (596 digits)/1863 268591 338044 726751 250891 171527 069584 209718 711406 624920 016816 509878 657421 637249 780429 303626 245721 472573 950642 107480 583407 497859 770151 664604 964211 043785 112631 161554 879723 373113 994117 746433 916322 694326 327245 160506 460128 922453 651096 570743 930424 909616 628425 022900 243774 739504 415752 952875 123674 270506 842725 969160 740296 835779 835749 478215 574218 573470 066239 841762 614001 858693 199479 903887 587417 801245 298909 639652 991525 755858 502445 896061 209374 923332 318566 594240 310302 015134 457567 451604 600883 647182 048743 962901 791531 598067 500649 083417 504547 110417 220969 643735 223299 512536 223633 559282 865530 663970 965066 236609 (598 digits), a[1131] = 4
                                                                                      A[1132]/B[1132] = 23 761868 422541 134455 334461 642966 237299 509798 104733 024335 117966 707841 692435 370015 142754 691851 232367 031129 682907 147336 313279 776195 012788 012109 272571 299949 042312 687137 592926 522519 231236 940711 420376 292383 936151 372711 224882 607800 207311 025752 076144 392941 287755 367085 146769 408764 521170 710702 984866 386965 676080 517750 946838 498783 220400 765336 287581 725823 526951 858481 954111 526589 759555 845701 595397 813144 059769 509884 895268 053603 006004 420183 082576 688682 625338 423237 966718 066798 809292 924674 089668 158238 100119 192834 848205 671233 395160 733553 116298 169262 351192 251649 494174 023138 279008 190799 134050 159671 361923 976683 (596 digits)/2309 499763 292798 888711 669181 018811 125965 399778 093647 174877 466985 264215 696948 665298 852142 286301 950994 502164 262601 189534 562398 659324 221240 185848 998416 190697 506364 907054 042051 015911 196563 445360 478592 406689 524174 184437 885634 494252 599493 933042 892291 843784 505620 959091 521123 831181 812365 227415 189993 629500 604460 141541 091529 055808 789876 204917 762222 468418 530986 184330 876609 832562 116606 270372 405511 082936 959975 883930 519199 712986 048352 725214 354356 144966 024462 156580 339267 081566 301957 669849 159056 435251 077916 242652 497623 130965 692511 614048 220203 589658 344886 845074 531828 543466 493749 548431 529674 754837 075127 037348 (598 digits), a[1132] = 1
                                                                                      A[1133]/B[1133] = 42 932575 346582 080923 685928 081140 463701 242925 316403 758915 589604 551974 183566 787887 580799 481835 103054 621228 379287 137357 733766 144714 469613 746430 902283 610821 068072 786705 707691 886818 450627 955671 656382 208762 502511 823620 934605 140799 434876 012565 406674 166460 496707 990205 763198 586972 464230 157336 460714 327271 914087 385085 139613 828591 012373 600229 441928 482243 393967 658551 869991 450998 190489 342675 522882 622996 516464 831284 436967 008737 597855 941512 541073 032040 508794 259845 890878 449958 428935 081203 777984 005312 953803 897726 493849 529063 600370 541612 693521 947868 002741 166081 988917 285820 400664 909529 102489 833733 182951 555134 (596 digits)/4172 768354 630843 615462 920072 190338 195549 609496 805053 799797 483801 774094 354370 302548 632571 589928 196715 974738 213243 297015 145806 157183 991391 850453 962627 234482 618996 068608 921774 389025 190681 191794 394915 101015 851419 344944 345763 416706 250590 503786 822716 753401 134045 981991 764898 570686 228118 180290 313667 900007 447186 110701 831825 891588 625625 683133 336441 041888 597226 026093 490611 691255 316086 174259 992928 884182 258885 523583 510725 468844 550798 621275 563731 068298 343028 750820 649569 096700 759525 121453 759940 082433 126660 205554 289154 729033 193160 697465 724750 700075 565856 488809 755128 056002 717383 107714 395205 418808 040193 273957 (598 digits), a[1133] = 1
                                                                                      A[1134]/B[1134] = 195 492169 808869 458150 078173 967528 092104 481499 370348 059997 476384 915738 426702 521565 465952 619191 644585 516043 200055 696767 248344 355052 891242 997832 881705 743233 314603 833960 423694 069793 033748 763398 045905 127433 946198 667194 963303 170997 946815 076013 702841 058783 274587 327908 199563 756654 378091 340048 827723 696053 332430 058091 505293 813147 269895 166254 055295 654797 102822 492689 434077 330582 521513 216403 686928 305130 125628 835022 643136 088553 397428 186233 246868 816844 660515 462621 530231 866632 525033 249489 201604 179489 915334 783740 823603 787487 796642 900003 890385 960734 362156 915977 449843 166419 881667 828915 544009 494604 093730 197219 (597 digits)/19000 573181 816173 350563 349469 780163 908163 837765 313862 374067 402192 360593 114429 875493 382428 646014 737858 401117 115574 377595 145623 288060 186807 587664 848925 128627 982349 181489 729148 572011 959288 212538 058252 810752 929851 564215 268688 161077 601855 948190 183158 857389 041804 887058 580718 113926 724837 948576 444665 229530 393204 584348 418832 622163 292378 937451 107986 635972 919890 288704 839056 597583 380950 967412 377226 619665 995517 978264 562101 588364 251547 210316 609280 418159 396577 159862 937543 468369 340058 155664 198816 764983 584557 064869 654242 047098 465154 403911 119206 389960 608312 800313 552340 767477 363281 979289 110496 430069 235900 133176 (599 digits), a[1134] = 4
                                                                                      A[1135]/B[1135] = 824 901254 582059 913523 998623 951252 832119 168922 797795 998905 495144 214927 890376 874149 444609 958601 681396 685401 179509 924426 727143 564926 034585 737762 429106 583754 326488 122547 402468 165990 585623 009263 840002 718498 287306 492400 787817 824791 222136 316620 218038 401593 595057 301838 561453 613589 976595 517531 771609 111485 243807 617451 160789 081180 091954 265245 663111 101431 805257 629309 606300 773328 276542 208290 270595 843517 018980 171375 009511 362951 187568 686445 528548 299419 150856 110332 011805 916488 529068 079160 584400 723272 615143 032689 788264 679014 786942 141628 255065 790805 451368 829991 788289 951499 927336 225191 278527 812149 557872 344010 (597 digits)/80175 061081 895537 017716 317951 310993 828204 960558 060503 296067 092571 216466 812089 804522 162286 173987 148149 579206 675540 807395 728299 309424 738622 201113 358327 748994 548392 794567 838368 677073 027834 041946 627926 344027 570825 601805 420516 061016 658014 296547 555352 182957 301265 530226 087771 026393 127469 974596 092328 818129 020004 448095 507156 380241 795141 432937 768387 585780 276787 180912 846838 081588 839890 043909 501835 362846 240957 436641 759131 822301 556987 462542 000852 740935 929337 390272 399742 970178 119757 744110 555207 142367 464888 465032 906122 917427 053778 313110 201576 259917 999107 690063 964491 125912 170511 024870 837191 139084 983793 806661 (599 digits), a[1135] = 4
                                                                                      A[1136]/B[1136] = 1020 393424 390929 371674 076797 918780 924223 650422 168144 058902 971529 130666 317079 395714 910562 577793 325982 201444 379565 621193 975487 919978 925828 735595 310812 326987 641091 956507 826162 235783 619371 772661 885907 845932 233505 159595 751120 995789 168951 392633 920879 460376 869644 629746 761017 370244 354686 857580 599332 807538 576237 675542 666082 894327 361849 431499 718406 756228 908080 121999 040378 103910 798055 424693 957524 148647 144609 006397 652647 451504 584996 872678 775417 116263 811371 572953 542037 783121 054101 328649 786004 902762 530477 816430 611868 466502 583585 041632 145451 751539 813525 745969 238133 117919 809004 054106 822537 306753 651602 541229 (598 digits)/99175 634263 711710 368279 667421 091157 736368 798323 374365 670134 494763 577059 926519 680015 544714 820001 886007 980323 791115 184990 873922 597484 925429 788778 207252 877622 530741 976057 567517 249084 987122 254484 686179 154780 500677 166020 689204 222094 259870 244737 738511 040346 343070 417284 668489 140319 852307 923172 536994 047659 413209 032443 925989 002405 087520 370388 876374 221753 196677 469617 685894 679172 220841 011321 879061 982512 236475 414906 321233 410665 808534 672858 610133 159095 325914 550135 337286 438547 459815 899774 754023 907351 049445 529902 560364 964525 518932 717021 320782 649878 607420 490377 516831 893389 533793 004159 947687 569154 219693 939837 (599 digits), a[1136] = 1
                                                                                      A[1137]/B[1137] = 1845 294678 972989 285198 075421 870033 756342 819344 965940 057808 466673 345594 207456 269864 355172 536395 007378 886845 559075 545620 702631 484904 960414 473357 739918 910741 967580 079055 228630 401774 204994 781925 725910 564430 520811 651996 538938 820580 391087 709254 138917 861970 464701 931585 322470 983834 331282 375112 370941 919023 820045 292993 826871 975507 453803 696745 381517 857660 713337 751308 646678 877239 074597 632984 228119 992164 163589 177772 662158 814455 772565 559124 303965 415682 962227 683285 553843 699609 583169 407810 370405 626035 145620 849120 400133 145517 370527 183260 400517 542345 264894 575961 026423 069419 736340 279298 101065 118903 209474 885239 (598 digits)/179350 695345 607247 385995 985372 402151 564573 758881 434868 966201 587334 793526 738609 484537 707000 993989 034157 559530 466655 992386 602221 906909 664051 989891 565580 626617 079134 770625 405885 926158 014956 296431 314105 498808 071502 767826 109720 283110 917884 541285 293863 223303 644335 947510 756260 166712 979777 897768 629322 865788 433213 480539 433145 382646 882661 803326 644761 807533 473464 650530 532732 760761 060731 055231 380897 345358 477432 851548 080365 232967 365522 135400 610985 900031 255251 940407 737029 408725 579573 643885 309231 049718 514333 994935 466487 881952 572711 030131 522358 909796 606528 180441 481323 019301 704304 029030 784878 708239 203487 746498 (600 digits), a[1137] = 1
                                                                                      A[1138]/B[1138] = 6556 277461 309897 227268 303063 528882 193252 108457 065964 232328 371549 167448 939448 205307 976080 186978 348118 861981 056792 258056 083382 374693 807072 155668 530569 059213 543832 193673 512053 441106 234356 118439 063639 539223 795940 115585 367937 457530 342214 520396 337633 046288 263750 424502 728430 321747 348533 982917 712158 564610 036373 554524 146698 820849 723260 521735 862960 329211 048093 375924 980414 735628 021848 323646 641884 125139 635376 539715 639123 894871 902693 550051 687313 363312 698054 622810 203568 881949 803609 552080 897221 780867 967340 363791 812267 903054 695166 591413 347004 378575 608209 473852 317402 326179 018024 892001 125732 663463 280027 196946 (598 digits)/637227 720300 533452 526267 623538 297612 430090 074967 678972 568739 256767 957640 142348 133628 665717 801968 988480 658915 191083 162150 680588 318213 917585 758452 903994 757473 768146 287933 785175 027559 031991 143778 628495 651204 715185 469499 018365 071427 013523 868593 620100 710257 276078 259816 937269 640458 791641 616478 424962 645024 712849 474062 225425 150345 735505 780368 810659 644353 617071 421209 284092 961455 403034 177016 021754 018587 668773 969550 562329 109567 905101 079060 443090 859189 091670 371358 548374 664724 198536 831430 681717 056506 592447 514708 959828 610383 237065 807415 887859 379268 427005 031701 960800 951294 646705 091252 302323 693871 830157 179331 (600 digits), a[1138] = 3
                                                                                      A[1139]/B[1139] = 41182 959446 832372 648807 893803 043326 915855 470087 361725 451778 695968 350287 844145 501712 211653 658265 096092 058731 899829 093957 202925 733067 802847 407368 923333 266023 230573 241096 300951 048411 611131 492560 107747 799773 296452 345508 746563 565762 444374 831632 164716 139700 047204 478601 693052 914318 422486 272618 643893 306684 038286 620138 707064 900605 793366 827160 559279 832927 001898 006858 529167 291007 205687 574864 079424 743001 975848 416066 496902 183687 188726 859434 427845 595559 150555 420146 775256 991308 404826 720295 753736 311242 949663 031871 273740 563845 541526 731740 482543 813798 914151 419074 930837 026493 844489 631304 855461 099682 889638 066915 (599 digits)/4 002717 017148 807962 543601 726602 187826 145114 208687 508704 378637 127942 539367 592698 286309 701307 805802 965041 513021 613154 965290 685751 816193 169566 540608 989549 171459 688012 498228 116936 091512 206903 159103 085079 406036 362615 584820 219910 711672 999027 752847 014467 484847 300805 506412 379878 009465 729627 596639 179098 735936 710310 324912 785696 284721 295696 485539 508719 673655 175893 177786 237290 529493 478936 117327 511421 456884 490076 668851 454339 890374 796128 609763 269531 055165 805274 168559 027277 397070 770794 632469 399533 388758 069019 083189 225459 544251 995105 874626 849515 185407 168558 370653 246128 727069 584534 576544 598820 871470 184430 822484 (601 digits), a[1139] = 6
                                                                                      A[1140]/B[1140] = 171288 115248 639387 822499 878275 702189 856673 988806 512866 039443 155422 568600 316030 212156 822694 820038 732487 096908 656108 633884 895085 306965 018461 785144 223902 123306 466125 158058 715857 634752 678882 088679 494630 738316 981749 497620 354191 720580 119713 846924 996497 605088 452568 338909 500641 979021 038479 073392 287731 791346 189520 035078 974958 423272 896727 830378 100079 660919 055685 403359 097083 899656 844598 623102 959583 097147 538770 203981 626732 629620 657600 987789 398695 745549 300276 303397 304596 847183 422916 433263 912167 025839 765992 491276 907230 158436 861273 518375 277179 633771 264815 150152 040750 432154 395983 417220 547577 062194 838579 464606 (600 digits)/16 648095 788895 765302 700674 529947 048917 010546 909717 713790 083287 768538 115110 513141 278867 470949 025180 848646 711001 643703 023313 423595 582986 595851 920888 862191 443312 520196 280846 252919 393607 859603 780190 968813 275350 165647 808779 898007 918119 009634 879981 677970 649646 479300 285466 456781 678321 710152 003035 141357 588771 554090 773713 368210 289230 918291 722526 845538 338974 320644 132354 233255 079429 318778 646326 067439 846125 629080 644956 379688 671067 089615 518113 521215 079852 312767 045594 657484 253007 281715 361308 279850 611538 868523 847465 861666 787391 217489 305923 285920 120897 101238 514314 945315 859572 984843 397430 697607 179752 567880 469267 (602 digits), a[1140] = 4
                                                                                      A[1141]/B[1141] = 212471 074695 471760 471307 772078 745516 772529 458893 874591 491221 851390 918888 160175 713869 034348 478303 828579 155640 555937 727842 098011 040032 821309 192513 147235 389329 696698 399155 016808 683164 290013 581239 602378 538090 278201 843129 100755 286342 564088 678557 161213 744788 499772 817511 193694 893339 460965 346010 931625 098030 227806 655217 682023 323878 690094 657538 659359 493846 057583 410217 626251 190664 050286 197967 039007 840149 514618 620048 123634 813307 846327 847223 826541 341108 450831 723544 079853 838491 827743 153559 665903 337082 715655 523148 180970 722282 402800 250115 759723 447570 178966 569226 971587 458648 240473 048525 403038 161877 728217 531521 (600 digits)/20 650812 806044 573265 244276 256549 236743 155661 118405 222494 461924 896480 654478 105839 565177 172256 830983 813688 224023 256857 988604 109347 399179 765418 461497 851740 614772 208208 779074 369855 485120 066506 939294 053892 681386 528263 393600 117918 629792 008662 632828 692438 134493 780105 791878 836659 687787 439779 599674 320456 324708 264401 098626 153906 573952 213988 208066 354258 012629 496537 310140 470545 608922 797714 763653 578861 303010 119157 313807 834028 561441 885744 127876 790746 135018 118041 214153 684761 650078 052509 993777 679384 000296 937542 930655 087126 331643 212595 180550 135435 306304 269796 884968 191444 586642 569377 973975 296428 051222 752311 291751 (602 digits), a[1141] = 1
                                                                                      A[1142]/B[1142] = 596230 264639 582908 765115 422433 193223 401732 906594 262049 021886 858204 406376 636381 639894 891391 776646 389645 408189 767984 089569 091107 387030 661080 170170 518372 901965 859521 956368 749475 001081 258909 251158 699387 814497 538153 183878 555702 293265 247891 204039 318925 094665 452113 973931 888031 765699 960409 765414 150981 987406 645133 345514 339005 071030 276917 145455 418798 648611 170852 223794 349586 280984 945171 019037 037598 777446 568007 444077 874002 256236 350256 682237 051778 427766 201939 750485 464304 524167 078402 740383 243973 700005 197303 537573 269171 603001 666874 018606 796626 528911 622748 288605 983925 349450 876929 514271 353653 385950 295014 527648 (600 digits)/57 949721 400984 911833 189227 043045 522403 321869 146528 158779 007137 561499 424066 724820 409221 815462 687148 476023 159048 157419 000521 642290 381346 126688 843884 565672 672856 936613 838994 992630 363847 992617 658779 076598 638123 222174 595980 133845 177703 026960 145639 062846 918634 039511 869224 130101 053896 589711 202383 782270 238188 082892 970965 676023 437135 346268 138659 554054 364233 313718 752635 174346 297274 914208 173633 225162 452145 867395 272572 047745 793950 861103 773867 102707 349888 548849 473902 027007 553163 386735 348863 638618 612132 743609 708776 035919 450677 642679 667023 556790 733505 640832 284251 328205 032858 123599 345381 290463 282198 072503 052769 (602 digits), a[1142] = 2
                                                                                      A[1143]/B[1143] = 808701 339335 054669 236423 194511 938740 174262 365488 136640 513108 709595 325264 796557 353763 925740 254950 218224 563830 323921 817411 189118 427063 482389 362683 665608 291295 556220 355523 766283 684245 548922 832398 301766 352587 816355 027007 656457 579607 811979 882596 480138 839453 951886 791443 081726 659039 421375 111425 082607 085436 872940 000732 021028 394908 967011 802994 078158 142457 228435 634011 975837 471648 995457 217004 076606 617596 082626 064125 997637 069544 196584 529460 878319 768874 652771 474029 544158 362658 906145 893942 909877 037087 912959 060721 450142 325284 069674 268722 556349 976481 801714 857832 955512 808099 117402 562796 756691 547828 023232 059169 (600 digits)/78 600534 207029 485098 433503 299594 759146 477530 264933 381273 469062 457980 078544 830659 974398 987719 518132 289711 383071 414276 989125 751637 780525 892107 305382 417413 287629 144822 618069 362485 848968 059124 598073 130491 319509 750437 989580 251763 807495 035622 778467 755285 053127 819617 661102 966760 741684 029490 802058 102726 562896 347294 069591 829930 011087 560256 346725 908312 376862 810256 062775 644891 906197 711922 937286 804023 755155 986552 586379 881774 355392 746847 901743 893453 484906 666890 688055 711769 203241 439245 342641 318002 612429 681152 639431 123045 782320 855274 847573 692226 039809 910629 169219 519649 619500 692977 319356 586891 333420 824814 344520 (602 digits), a[1143] = 1
                                                                                      A[1144]/B[1144] = 1 404931 603974 637578 001538 616945 131963 575995 272082 398689 534995 567799 731641 432938 993658 817132 031596 607869 972020 091905 906980 280225 814094 143469 532854 183981 193261 415742 311892 515758 685326 807832 083557 001154 167085 354508 210886 212159 872873 059871 086635 799063 934119 404000 765374 969758 424739 381784 876839 233589 072843 518073 346246 360033 465939 243928 948449 496956 791068 399287 857806 325423 752633 940628 236041 114205 395042 650633 508203 871639 325780 546841 211697 930098 196640 854711 224515 008462 886825 984548 634326 153850 737093 110262 598294 719313 928285 736548 287329 352976 505393 424463 146438 939438 157549 994332 077068 110344 933778 318246 586817 (601 digits)/136 550255 608014 396931 622730 342640 281549 799399 411461 540052 476200 019479 502611 555480 383620 803182 205280 765734 542119 571695 989647 393928 161872 018796 149266 983085 960486 081436 457064 355116 212816 051742 256852 207089 957632 972612 585560 385608 985198 062582 924106 818131 971761 859129 530327 096861 795580 619202 004441 884996 801084 430187 040557 505953 448222 906524 485385 462366 741096 123974 815410 819238 203472 626131 110920 029186 207301 853947 858951 929520 149343 607951 675610 996160 834795 215740 161957 738776 756404 825980 691504 956621 224562 424762 348207 158965 232998 497954 514597 249016 773315 551461 453470 847854 652358 816576 664737 877354 615618 897317 397289 (603 digits), a[1144] = 1
                                                                                      A[1145]/B[1145] = 54 196102 290371 282633 294890 638426 953356 062082 704619 286842 842940 285985 127639 248239 112798 976757 455621 317283 500593 816346 282661 837699 362640 934231 611142 656893 635229 354428 207439 365113 726664 246542 007564 345624 701831 287667 040683 718532 748784 087081 174756 844568 335991 303915 875691 932546 799135 929200 431315 958991 853490 559727 158093 702300 100600 236311 844074 962516 203056 401374 230652 341940 071738 739330 186566 416411 629216 806699 375873 119931 449204 976550 573982 222051 241227 131798 005599 865748 062046 318993 998336 756205 046626 102937 795920 784071 600142 058509 187237 969457 181431 931314 422512 654162 794998 902021 491384 949799 031404 116602 358215 (602 digits)/5267 510247 311576 568500 097256 319925 458038 854707 900471 903267 564663 198201 177783 938914 551989 508643 318801 387623 983615 138724 595726 720907 931662 606360 977527 774679 786100 239407 986514 856901 935978 025330 358456 999909 709562 709716 240874 904905 245021 413773 894526 844299 980078 466539 813532 647508 973747 559166 970849 732605 004104 694401 610777 056161 043558 008186 791373 478248 538515 521299 048386 775943 638157 504905 152247 913099 632626 436571 226553 203540 030449 849011 574961 747565 207124 865016 842449 785285 946624 826511 619829 669609 145801 822121 871303 163724 636263 777546 402269 154863 425800 866164 401111 738126 409135 722890 579395 926366 726938 922875 441502 (604 digits), a[1145] = 38
                                                                                      A[1146]/B[1146] = 55 601033 894345 920211 296429 255372 085319 638077 976701 685532 377935 853784 859280 681178 106457 793889 487217 925153 472613 908252 189642 117925 176735 077701 143996 840874 828490 770170 519331 880872 411991 054374 091121 346778 868916 642175 251569 930692 621657 146952 261392 643632 270110 707916 641066 902305 223875 310985 308155 192580 926334 077800 504340 062333 566539 480240 792524 459472 994124 800662 088458 667363 824372 679958 422607 530617 024259 457332 884076 991570 774985 523391 785680 152149 437867 986509 230114 874210 948872 303542 632662 910055 783719 213200 394215 503385 528427 795057 474567 322433 686825 355777 568951 593600 952548 896353 568453 060143 965182 434848 945032 (602 digits)/5404 060502 919590 965431 719986 662565 739588 654107 311933 443320 040863 217680 680395 494394 935610 311825 524082 153358 525734 710420 585374 114836 093534 625157 126794 757765 746586 320844 443579 212018 148794 077072 615309 206999 667195 682328 826435 290514 230219 476356 818633 662431 951840 325669 343859 744370 769328 178368 975291 617601 805189 124588 651334 562114 491780 914711 276758 940615 279611 645273 863797 595181 841630 131036 263167 942285 839928 290519 085505 133060 179793 456963 250572 743726 041920 080757 004407 524062 703029 652492 311334 626230 370364 246884 219510 322689 869262 275500 916866 403880 199116 417625 854582 585981 061494 539467 244133 803721 342557 820192 838791 (604 digits), a[1146] = 1
                                                                                      A[1147]/B[1147] = 109 797136 184717 202844 591319 893799 038675 700160 681320 972375 220876 139769 986919 929417 219256 770646 942839 242436 973207 724598 472303 955624 539376 011932 755139 497768 463720 124598 726771 245986 138655 300916 098685 692403 570747 929842 292253 649225 370441 234033 436149 488200 606102 011832 516758 834852 023011 240185 739471 151572 779824 637527 662433 764633 667139 716552 636599 421989 197181 202036 319111 009303 896111 419288 609173 947028 653476 264032 259950 111502 224190 499942 359662 374200 679095 118307 235714 739959 010918 622536 630999 666260 830345 316138 190136 287457 128569 853566 661805 291890 868257 287091 991464 247763 747547 798375 059838 009942 996586 551451 303247 (603 digits)/10671 570750 231167 533931 817242 982491 197627 508815 212405 346587 605526 415881 858179 433309 487599 820468 842883 540982 509349 849145 181100 835744 025197 231518 104322 532445 532686 560252 430094 068920 084772 102402 973766 206909 376758 392045 067310 195419 475240 890130 713160 506731 931918 792209 157392 391879 743075 737535 946141 350206 809293 818990 262111 618275 535338 922898 068132 418863 818127 166572 912184 371125 479787 635941 415415 855385 472554 727090 312058 336600 210243 305974 825534 491291 249044 945773 846857 309348 649654 479003 931164 295839 516166 069006 090813 486414 505526 053047 319135 558743 624917 283790 255694 324107 470630 262357 823529 730088 069496 743068 280293 (605 digits), a[1147] = 1
                                                                                      A[1148]/B[1148] = 275 195306 263780 325900 479069 042970 162671 038399 339343 630282 819688 133324 833120 540012 544971 335183 372896 410027 419029 357449 134250 029174 255487 101566 654275 836411 755931 019367 972874 372844 689301 656206 288492 731586 010412 501859 836077 229143 362539 615019 133691 620033 482314 731581 674584 572009 269897 791356 787097 495726 485983 352855 829207 591600 900818 913346 065723 303451 388487 204734 726680 685971 616595 518535 640955 424674 331211 985397 403977 214575 223366 523276 505004 900550 796058 223123 701544 354128 970709 548615 894662 242577 444409 845476 774488 078299 785567 502190 798177 906215 423339 929961 551880 089128 447644 493103 688129 080029 958355 537751 551526 (603 digits)/26747 202003 381926 033295 354472 627548 134843 671737 736744 136495 251916 049444 396754 361013 910809 952763 209849 235323 544434 408710 947575 786324 143929 088193 335439 822656 811959 441349 303767 349858 318338 281878 562841 620818 420712 466418 961055 681353 180701 256618 244954 675895 815677 910087 658644 528130 255479 653440 867574 318015 423776 762569 175557 798665 562458 760507 413023 778342 915865 978419 688166 337432 801205 402919 093999 653056 785037 744699 709621 806260 600280 068912 901641 726308 540009 972304 698122 142760 002338 610500 173663 217909 402696 384896 401137 295518 880314 381595 555137 521367 448950 985206 365971 234196 002755 064182 891193 263897 481551 306329 399377 (605 digits), a[1148] = 2
                                                                                      A[1149]/B[1149] = 384 992442 448497 528745 070388 936769 201346 738560 020664 602658 040564 273094 820040 469429 764228 105830 315735 652464 392237 082047 606553 984798 794863 113499 409415 334180 219651 143966 699645 618830 827956 957122 387178 423989 581160 431702 128330 878368 732980 849052 569841 108234 088416 743414 191343 406861 292909 031542 526568 647299 265807 990383 491641 356234 567958 629898 702322 725440 585668 406771 045791 695275 512706 937824 250129 371702 984688 249429 663927 326077 447557 023218 864667 274751 475153 341430 937259 094087 981628 171152 525661 908838 274755 161614 964624 365756 914137 355757 459983 198106 291597 217053 543344 336892 195192 291478 747967 089972 954942 089202 854773 (603 digits)/37418 772753 613093 567227 171715 610039 332471 180552 949149 483082 857442 465326 254933 794323 398409 773232 052732 776306 053784 257856 128676 622068 169126 319711 439762 355102 344646 001601 733861 418778 403110 384281 536607 827727 797470 858464 028365 876772 655942 146748 958115 182627 747596 702296 816036 920009 998555 390976 813715 668222 233070 581559 437669 416941 097797 683405 481156 197206 733993 144992 600350 708558 280993 038860 509415 508442 257592 471790 021680 142860 810523 374887 727176 217599 789054 918078 544979 452108 651993 089504 104827 513748 918862 453902 491950 781933 385840 434642 874273 080111 073868 268996 621665 558303 473385 326540 714722 993985 551048 049397 679670 (605 digits), a[1149] = 1
                                                                                      A[1150]/B[1150] = 660 187748 712277 854645 549457 979739 364017 776959 360008 232940 860252 406419 653161 009442 309199 441013 688632 062491 811266 439496 740804 013973 050350 215066 063691 170591 975582 163334 672519 991675 517258 613328 675671 155575 591572 933561 964408 107512 095520 464071 703532 728267 570731 474995 865927 978870 562806 822899 313666 143025 751791 343239 320848 947835 468777 543244 768046 028891 974155 611505 772472 381247 129302 456359 891084 796377 315900 234827 067904 540652 670923 546495 369672 175302 271211 564554 638803 448216 952337 719768 420324 151415 719165 007091 739112 444056 699704 857948 258161 104321 714937 147015 095224 426020 642836 784582 436096 170002 913297 626954 406299 (603 digits)/64165 974756 995019 600522 526188 237587 467314 852290 685893 619578 109358 514770 651688 155337 309219 725995 262582 011629 598218 666567 076252 408392 313055 407904 775202 177759 156605 442951 037628 768636 721448 666160 099449 448546 218183 324882 989421 558125 836643 403367 203069 858523 563274 612384 474681 448140 254035 044417 681289 986237 656847 344128 613227 215606 660256 443912 894179 975549 649859 123412 288517 045991 082198 441779 603415 161499 042630 216489 731301 949121 410803 443800 628817 943908 329064 890383 243101 594868 654331 700004 278490 731658 321558 838798 893088 077452 266154 816238 429410 601478 522819 254202 987636 792499 476140 390723 605916 257883 032599 355727 079047 (605 digits), a[1150] = 1
                                                                                      A[1151]/B[1151] = 40656 445113 897446 662123 587325 700870 406431 133080 981166 812050 515961 064693 662862 045410 625394 007665 322291 464464 879489 891348 795598 837154 866226 232529 294576 740290 730163 107381 723365 111037 380732 370171 603118 914100 667109 378981 957225 436606 559729 157426 485337 532555 903036 718162 012950 117965 624125 228400 660203 371870 125079 927982 063427 174198 163388 767829 553130 487851 009160 708623 166606 951350 400156 775777 606301 950719 254602 573880 806104 305890 373893 359436 414669 968190 019058 779263 904269 435322 074229 077026 165435 145197 143820 594211 050483 453215 596133 690601 207810 561730 902763 184974 352034 324151 408236 151007 349833 460150 666097 333421 639012 (605 digits)/3 951543 232930 309289 199101 269198 102874 838677 170284 788660 277347 528311 866336 007911 269899 260813 058943 070235 485711 545122 918447 780073 533999 265506 201902 727095 198410 897578 021615 029216 305618 411479 020047 603024 189047 106653 676326 383080 922448 691189 752148 345376 552565 107348 057749 771605 256565 494693 100455 372404 828719 300758 573404 844529 568947 373440 762092 026134 705735 375399 673142 199890 514014 295097 987416 317740 359883 858035 677663 631099 039266 869533 446726 085070 796007 862013 231456 374176 739096 566226 789765 092762 144906 533951 620634 970323 506521 621284 225187 068319 770300 965842 775378 867509 900771 517949 160680 675614 724850 539608 748749 501537 (607 digits), a[1151] = 61
                                                                                      A[1152]/B[1152] = 447881 084001 584191 138005 010040 689313 834760 240850 152843 165496 535824 118049 944643 508959 188533 525332 233838 171605 485655 244333 492391 222676 578838 772888 304035 313790 007376 344533 629536 213086 705314 685216 309979 210682 929776 102363 493887 910184 252541 195763 042245 586382 504135 374778 008379 276492 428184 335306 575903 233597 127670 551042 018547 864015 266053 989369 852481 395253 074923 406360 605148 846101 531026 989913 560406 254289 116528 547515 935051 905446 783750 500295 931041 825392 480858 136457 585767 236759 768857 567056 240110 748584 301191 543413 294430 429428 257175 454561 544077 283361 645332 181732 967601 991686 133434 445663 284264 231660 240368 294592 435431 (606 digits)/43 531141 536990 397200 790636 487367 369210 692763 725423 361156 670400 920789 044466 738712 124229 178163 374369 035172 354456 594570 769492 657061 282384 233623 628834 773249 360279 029963 680716 359008 130439 247717 886683 732715 528064 391373 764473 203311 705061 439730 676999 002211 936739 744103 247631 962339 270360 695659 149426 777743 102149 965191 651581 903052 474027 768104 826925 181661 738638 779255 527976 487312 700148 328276 303359 098559 120221 481022 670789 673391 381056 975671 357787 564596 699994 811210 436403 359045 724930 882826 387420 298874 325630 195026 665783 566646 649190 100281 293296 180928 074789 147089 783370 530245 700986 173581 158211 037678 231238 968295 591971 595954 (608 digits), a[1152] = 11
                                                                                      A[1153]/B[1153] = 488537 529115 481637 800128 597366 390184 241191 373931 134009 977547 051785 182743 607505 554369 813927 532997 556129 636070 365145 135682 287990 059831 445065 005417 598612 054080 737539 451915 352901 324124 086047 055387 913098 124783 596885 481345 451113 346790 812270 353189 527583 118938 407172 092940 021329 394458 052309 563707 236106 605467 252750 479024 081975 038213 429442 757199 405611 883104 084084 114983 771755 797451 931183 765691 166708 205008 371131 121396 741156 211337 157643 859732 345711 793582 499916 915721 490036 672081 843086 644082 405545 893781 445012 137624 344913 882643 853309 145162 751887 845092 548095 366707 319636 315837 541670 596670 634097 691810 906465 628014 074443 (606 digits)/47 482684 769920 706489 989737 756565 472085 531440 895708 149816 947748 449100 910802 746623 394128 438976 433312 105407 840168 139693 687940 437134 816383 499129 830737 500344 558689 927541 702331 388224 436057 659196 906731 335739 717111 498027 440799 586392 627510 130920 429147 347588 489304 851451 305381 733944 526926 190352 249882 150147 930869 265950 224986 747582 042975 141545 589017 207796 444374 154655 201118 687203 214162 623374 290775 416299 480105 339058 348453 304490 420323 845204 804513 649667 496002 673223 667859 733222 464027 449053 177185 391636 470536 728978 286418 536970 155711 721565 518483 249247 845090 112932 558749 397755 601757 691530 318891 713292 956089 507904 340721 097491 (608 digits), a[1153] = 1
                                                                                      A[1154]/B[1154] = 936418 613117 065828 938133 607407 079498 075951 614781 286853 143043 587609 300793 552149 063329 002461 058329 789967 807675 850800 380015 780381 282508 023903 778305 902647 367870 744915 796448 982437 537210 791361 740604 223077 335466 526661 583708 945001 256975 064811 548952 569828 705320 911307 467718 029708 670950 480493 899013 812009 839064 380421 030066 100522 902228 695496 746569 258093 278357 159007 521344 376904 643553 462210 755604 727114 459297 487659 668912 676208 116783 941394 360028 276753 618974 980775 052179 075803 908841 611944 211138 645656 642365 746203 681037 639344 312072 110484 599724 295965 128454 193427 548440 287238 307523 675105 042333 918361 923471 146833 922606 509874 (606 digits)/91 013826 306911 103690 780374 243932 841296 224204 621131 510973 618149 369889 955269 485335 518357 617139 807681 140580 194624 734264 457433 094196 098767 732753 459572 273593 918968 957505 383047 747232 566496 906914 793415 068455 245175 889401 205272 789704 332571 570651 106146 349800 426044 595554 553013 696283 797286 886011 399308 927891 033019 231141 876568 650634 517002 909650 415942 389458 183012 933910 729095 174515 914310 951650 594134 514858 600326 820081 019242 977881 801380 820876 162301 214264 195997 484434 104263 092268 188958 331879 564605 690510 796166 924004 952202 103616 804901 821846 811779 430175 919879 260022 342119 928001 302743 865111 477102 750971 187328 476199 932692 693445 (608 digits), a[1154] = 1
                                                                                      A[1155]/B[1155] = 1 424956 142232 547466 738262 204773 469682 317142 988712 420863 120590 639394 483537 159654 617698 816388 591327 346097 443746 215945 515698 068371 342339 468968 783723 501259 421951 482455 248364 335338 861334 877408 795992 136175 460250 123547 065054 396114 603765 877081 902142 097411 824259 318479 560658 051038 065408 532803 462721 048116 444531 633171 509090 182497 940442 124939 503768 663705 161461 243091 636328 148660 441005 393394 521295 893822 664305 858790 790309 417364 328121 099038 219760 622465 412557 480691 967900 565840 580923 455030 855221 051202 536147 191215 818661 984258 194715 963793 744887 047852 973546 741522 915147 606874 623361 216775 639004 552459 615282 053299 550620 584317 (607 digits)/138 496511 076831 810180 770112 000498 313381 755645 516839 660790 565897 818990 866072 231958 912486 056116 240993 245988 034792 873958 145373 531330 915151 231883 290309 773938 477658 885047 085379 135457 002554 566111 700146 404194 962287 387428 646072 376096 960081 701571 535293 697388 915349 447005 858395 430228 324213 076363 649191 078038 963888 497092 101555 398216 559978 051196 004959 597254 627387 088565 930213 861719 128473 575024 884909 931158 080432 159139 367696 282372 221704 666080 966814 863931 692000 157657 772122 825490 652985 780932 741791 082147 266703 652983 238620 640586 960613 543412 330262 679423 764969 372954 900869 325756 904501 556641 795994 464264 143417 984104 273413 790936 (609 digits), a[1155] = 1
                                                                                      A[1156]/B[1156] = 2 361374 755349 613295 676395 812180 549180 393094 603493 707716 263634 227003 784330 711803 681027 818849 649657 136065 251422 066745 895713 848752 624847 492872 562029 403906 789822 227371 044813 317776 398545 668770 536596 359252 795716 650208 648763 341115 860740 941893 451094 667240 529580 229787 028376 080746 736359 013297 361734 860126 283596 013592 539156 283020 842670 820436 250337 921798 439818 402099 157672 525565 084558 855605 276900 620937 123603 346450 459222 093572 444905 040432 579788 899219 031532 461467 020079 641644 489765 066975 066359 696859 178512 937419 499699 623602 506788 074278 344611 343818 102000 934950 463587 894112 930884 891880 681338 470821 538753 200133 473227 094191 (607 digits)/229 510337 383742 913871 550486 244431 154677 979850 137971 171764 184047 188880 821341 717294 430843 673256 048674 386568 229417 608222 602806 625527 013918 964636 749882 047532 396627 842552 468426 882689 569051 473026 493561 472650 207463 276829 851345 165801 292653 272222 641440 047189 341394 042560 411409 126512 121499 962375 048500 005929 996907 728233 978124 048851 076980 960846 420901 986712 810400 022476 659309 036235 042784 526675 479044 446016 680758 979220 386939 260254 023085 486957 129116 078195 887997 642091 876385 917758 841944 112812 306396 772658 062870 576988 190822 744203 765515 365259 142042 109599 684848 632977 242989 253758 207245 421753 273097 215235 330746 460304 206106 484381 (609 digits), a[1156] = 1
                                                                                      A[1157]/B[1157] = 10 870455 163631 000649 443845 453495 666403 889521 402687 251728 175127 547409 620860 006869 341810 091787 189955 890358 449434 482929 098553 463381 841729 440459 031841 116886 581240 391939 427617 606444 455517 552490 942377 573186 643116 724381 660107 760578 046729 644655 706520 766373 942580 237627 674162 374025 010844 585992 909660 488621 578915 687541 665715 314581 311125 406684 505120 350898 920734 851488 267018 250920 779240 815815 628898 377571 158719 244592 627197 791654 107741 260768 538916 219341 538687 326560 048219 132418 539983 722931 120659 838639 250198 940893 817460 478668 221868 260907 123332 423125 381550 481324 769499 183326 346900 784298 364358 435745 770294 853833 443528 961081 (608 digits)/1056 537860 611803 465666 972056 978222 932093 675046 068724 347847 302086 574514 151439 101136 635860 749140 435690 792260 952463 306848 556600 033438 970827 090430 289837 964068 064170 255256 959086 666215 278760 458217 674392 294795 792140 494748 051453 039302 130694 790462 101053 886146 280925 617247 504031 936276 810212 925863 843191 101758 951519 410028 014051 593620 867901 894581 688567 544105 868987 178472 567450 006659 299611 681726 801087 715224 803468 076020 915453 323388 314046 613909 483279 176715 243990 726025 277666 496526 020762 232181 967378 172779 518185 960936 001911 617402 022675 004448 898431 117822 504363 904863 872826 340789 733483 243654 888383 325205 466403 825321 097839 728460 (610 digits), a[1157] = 4
                                                                                      A[1158]/B[1158] = 13 231829 918980 613945 120241 265676 215584 282616 006180 959444 438761 774413 405190 718673 022837 910636 839613 026423 700856 549674 994267 312134 466576 933331 593870 520793 371062 619310 472430 924220 854063 221261 478973 932439 438833 374590 308871 101693 907470 586549 157615 433614 472160 467414 702538 454771 747203 599290 271395 348747 862511 701134 204871 597602 153796 227120 755458 272697 360553 253587 424690 776485 863799 671420 905798 998508 282322 591043 086419 885226 552646 301201 118705 118560 570219 788027 068298 774063 029748 789906 187019 535498 428711 878313 317160 102270 728656 335185 467943 766943 483551 416275 233087 077439 277785 676179 045696 906567 309048 053966 916756 055272 (608 digits)/1286 048197 995546 379538 522543 222654 086771 654896 206695 519611 486133 763394 972780 818431 066704 422396 484365 178829 181880 915071 159406 658965 984746 055067 039720 011600 460798 097809 427513 548904 847811 931244 167953 767445 999603 771577 902798 205103 423348 062684 742493 933335 622319 659807 915441 062788 931712 888238 891691 107688 948427 138261 992175 642471 944882 855428 109469 530818 679387 200949 226759 042894 342396 208402 280132 161241 484227 055241 302392 583642 337132 100866 612395 254911 131988 368117 154052 414284 862706 344994 273774 945437 581056 537924 192734 361605 788190 369708 040473 227422 189212 537841 115815 594547 940728 665408 161480 540440 797150 285625 303946 212841 (610 digits), a[1158] = 1
                                                                                      A[1159]/B[1159] = 24 102285 082611 614594 564086 719171 881988 172137 408868 211172 613889 321823 026050 725542 364648 002424 029568 916782 150291 032604 092820 775516 308306 373790 625711 637679 952303 011249 900048 530665 309580 773752 421351 505626 081950 098971 968978 862271 954200 231204 864136 199988 414740 705042 376700 828796 758048 185283 181055 837369 441427 388675 870586 912183 464921 633805 260578 623596 281288 105075 691709 027406 643040 487236 534697 376079 441041 835635 713617 676880 660387 561969 657621 337902 108907 114587 116517 906481 569732 512837 307679 374137 678910 819207 134620 580938 950524 596092 591276 190068 865101 897600 002586 260765 624686 460477 410055 342313 079342 907800 360285 016353 (608 digits)/2342 586058 607349 845205 494600 200877 018865 329942 275419 867458 788220 337909 124219 919567 702565 171536 920055 971090 134344 221919 716006 692404 955573 145497 329557 975668 524968 353066 386600 215120 126572 389461 842346 062241 791744 266325 954251 244405 554042 853146 843547 819481 903245 277055 419472 999065 741925 814102 734882 209447 899946 548290 006227 236092 812784 750009 798037 074924 548374 379421 794209 049553 642007 890129 081219 876466 287695 131262 217845 907030 651178 714776 095674 431626 375979 094142 431718 910810 883468 577176 241153 118217 099242 498860 194645 979007 810865 374156 938904 345244 693576 442704 988641 935337 674211 909063 049863 865646 263554 110946 401785 941301 (610 digits), a[1159] = 1
                                                                                      A[1160]/B[1160] = 37 334115 001592 228539 684327 984848 097572 454753 415049 170617 052651 096236 431241 444215 387485 913060 869181 943205 851147 582279 087088 087650 774883 307122 219582 158473 323365 630560 372479 454886 163643 995013 900325 438065 520783 473562 277849 963965 861670 817754 021751 633602 886901 172457 079239 283568 505251 784573 452451 186117 303939 089810 075458 509785 618717 860926 016036 896293 641841 358663 116399 803892 506840 158657 440496 374587 723364 426678 800037 562107 213033 863170 776326 456462 679126 902614 184816 680544 599481 302743 494698 909636 107622 697520 451780 683209 679180 931278 059219 957012 348653 313875 235673 338204 902472 136656 455752 248880 388390 961767 277041 071625 (608 digits)/3628 634256 602896 224744 017143 423531 105636 984838 482115 387070 274354 101304 097000 737998 769269 593933 404421 149919 316225 136990 875413 351370 940319 200564 369277 987268 985766 450875 814113 764024 974384 320706 010299 829687 791348 037903 857049 449508 977390 915831 586041 752817 525564 936863 334914 061854 673638 702341 626573 317136 848373 686551 998402 878564 757667 605437 907506 605743 227761 580371 020968 092447 984404 098531 361352 037707 771922 186503 520238 490672 988310 815642 708069 686537 507967 462259 585771 325095 746174 922170 514928 063654 680299 036784 387380 340613 599055 743864 979377 572666 882788 980546 104457 529885 614940 574471 211344 406087 060704 396571 705732 154142 (610 digits), a[1160] = 1
                                                                                      A[1161]/B[1161] = 61 436400 084203 843134 248414 704019 979560 626890 823917 381789 666540 418059 457292 169757 752133 915484 898750 859988 001438 614883 179908 863167 083189 680912 845293 796153 275668 641810 272527 985551 473224 768766 321676 943691 602733 572534 246828 826237 815871 048958 885887 833591 301641 877499 455940 112365 263299 969856 633507 023486 745366 478485 946045 421969 083639 494731 276615 519889 923129 463738 808108 831299 149880 645893 975193 750667 164406 262314 513655 238987 873421 425140 433947 794364 788034 017201 301334 587026 169213 815580 802378 283773 786533 516727 586401 264148 629705 527370 650496 147081 213755 211475 238259 598970 527158 597133 865807 591193 467733 869567 637326 087978 (608 digits)/5971 220315 210246 069949 511743 624408 124502 314780 757535 254529 062574 439213 221220 657566 471834 765470 324477 121009 450569 358910 591420 043775 895892 346061 698835 962937 510734 803942 200713 979145 100956 710167 852645 891929 583092 304229 811300 693914 531433 768978 429589 572299 428810 213918 754387 060920 415564 516444 361455 526584 748320 234842 004630 114657 570452 355447 705543 680667 776135 959792 815177 142001 626411 988660 442571 914174 059617 317765 738084 397703 639489 530418 803744 118163 883946 556402 017490 235906 629643 499346 756081 181871 779541 535644 582026 319621 409921 118021 918281 917911 576365 423251 093099 465223 289152 483534 261208 271733 324258 507518 107518 095443 (610 digits), a[1161] = 1
                                                                                      A[1162]/B[1162] = 98 770515 085796 071673 932742 688868 077133 081644 238966 552406 719191 514295 888533 613973 139619 828545 767932 803193 852586 197162 266996 950817 858072 988035 064875 954626 599034 272370 645007 440437 636868 763780 222002 381757 123517 046096 524678 790203 677541 866712 907639 467194 188543 049956 535179 395933 768551 754430 085958 209604 049305 568296 021503 931754 702357 355657 292652 416183 564970 822401 924508 635191 656720 804551 415690 125254 887770 688993 313692 801095 086455 288311 210274 250827 467160 919815 486151 267570 768695 118324 297077 193409 894156 214248 038181 947358 308886 458648 709716 104093 562408 525350 473932 937175 429630 733790 321559 840073 856124 831334 914367 159603 (608 digits)/9599 854571 813142 294693 528887 047939 230139 299619 239650 641599 336928 540517 318221 395565 241104 359403 728898 270928 766794 495901 466833 395146 836211 546626 068113 950206 496501 254818 014827 743170 075341 030873 862945 721617 374440 342133 668350 143423 508824 684810 015631 325116 954375 150782 089301 122775 089203 218785 988028 843721 596693 921394 003032 993222 328119 960885 613050 286411 003897 540163 836145 234449 610816 087191 803923 951881 831539 504269 258322 888376 627800 346061 511813 804701 391914 018661 603261 561002 375818 421517 271009 245526 459840 572428 969406 660235 008976 861886 897659 490578 459154 403797 197556 995108 904093 058005 472552 677820 384962 904089 813250 249585 (610 digits), a[1162] = 1
                                                                                      A[1163]/B[1163] = 456 518460 427388 129829 979385 459492 288092 953467 779783 591416 543306 475243 011426 625650 310613 229667 970482 072763 411783 403532 247896 666438 515481 633053 104797 614659 671805 731292 852557 747302 020699 823887 209686 470720 096801 756920 345543 987052 526038 515810 516445 702368 055814 077325 596657 696100 337506 987576 977339 861902 942588 751670 032061 148987 893068 917360 447225 184624 183012 753346 506143 372065 776763 864099 637954 251686 715489 018287 768426 443368 219242 578385 275044 797674 656677 696463 245939 657309 243994 288877 990687 057413 363158 373719 739129 053581 865251 361965 489360 563455 463389 312877 133991 347672 245681 532295 152046 951488 892233 194907 294794 726390 (609 digits)/44370 638602 462815 248723 627291 816165 045059 513257 716137 820926 410288 601282 494106 239827 436252 203085 240070 204724 517747 342516 458753 624363 240738 532565 971291 763763 496739 823214 260024 951825 402320 833663 304428 778399 080853 672764 484701 267608 566732 508218 492114 872767 246310 817047 111591 552020 772377 391588 313570 901471 135095 920418 016762 087546 882932 198990 157744 826311 791726 120448 159758 079800 069676 337427 658267 721701 385775 334842 771375 951210 150690 914664 850999 336969 451602 631048 430536 479916 132917 185415 840118 163977 618903 825360 459652 960561 445828 565569 508919 880225 412983 038439 883327 445658 905524 715556 151418 983014 864110 123877 360519 093783 (611 digits), a[1163] = 4
                                                                                      A[1164]/B[1164] = 3750 918198 504901 110313 767826 364806 381876 709386 477235 283739 065643 316239 979946 619175 624525 665889 531789 385301 146853 425420 250170 282325 981926 052459 903256 871903 973480 122713 465469 418853 802467 354877 899494 147517 897931 101459 289030 686623 885849 993197 039205 086138 635055 668561 308440 964736 468607 655045 904677 104827 590015 581656 277993 123657 846908 694540 870453 893177 029072 849173 973655 611717 870831 717348 519324 138748 611682 835295 461104 348040 840395 915393 410632 632224 720582 491521 453668 526044 720649 429348 222573 652716 799423 204005 951214 376013 230897 354372 624600 611737 269523 028367 545863 718553 395082 992151 537935 451984 993990 390593 272724 970723 (610 digits)/364564 963391 515664 284482 547221 577259 590615 405680 968753 209010 619237 350777 271071 314184 731121 984085 649459 908724 908773 236033 136862 390052 762119 807153 838448 060314 470419 840532 095027 357773 293907 700180 298375 948810 021269 724249 545960 284292 042684 750557 952550 307254 924861 687158 982033 538941 268222 351492 496596 055490 677461 284738 137129 693597 391577 552806 875008 896905 337706 503749 114209 872850 168226 786613 070065 725492 917742 183011 429330 498057 833327 663380 319808 500457 004735 067049 047553 400331 439155 904843 991954 557347 411071 175312 646630 344726 575605 386442 969018 532381 763018 711316 264176 560380 148290 782454 683904 541939 297843 895108 697402 999849 (612 digits), a[1164] = 8
                                                                                      A[1165]/B[1165] = 15460 191254 446992 571085 050690 918717 815599 791013 688724 726372 805879 740202 931213 102352 808715 893226 097639 613967 999197 105213 248577 795742 443185 842892 717825 102275 565726 222146 714435 422717 230569 243398 807663 060791 688526 162757 501666 733548 069438 488598 673266 046922 596036 751570 830421 555046 211937 607760 596048 281213 302651 078295 144033 643619 280703 695523 929040 757332 299304 150042 400765 818937 260090 733493 715250 806681 162220 359469 612843 835531 580826 239958 917575 326573 539007 662549 060613 761488 126592 006270 880981 668280 560851 189743 543986 557634 788840 779455 987763 010404 541481 426347 317446 221885 826013 500901 303788 759428 868194 757280 385694 609282 (611 digits)/1 502630 492168 525472 386653 816178 125203 407521 135981 591150 656968 887238 004391 578391 496566 360740 139427 837909 839624 152840 286649 006203 184574 289217 761181 325084 005021 378419 185342 640134 382918 577951 634384 497932 573639 165932 569762 668542 404776 737471 510450 302316 101786 945757 565683 039725 707785 845266 797558 299955 123433 844941 059370 565280 861936 449242 410217 657780 413933 142552 135444 616597 571200 742583 483879 938530 623673 056744 066888 488697 943441 484001 568186 130233 338797 470542 899244 620750 081241 889540 804791 807936 393367 263188 526611 046174 339467 748250 111341 384994 009752 465057 883704 940033 687179 498687 845374 887037 150772 055485 704312 150131 093179 (613 digits), a[1165] = 4
                                                                                      A[1166]/B[1166] = 19211 109452 951893 681398 818517 283524 197476 500400 165960 010111 871523 056442 911159 721528 433241 559115 629428 999269 146050 530633 498748 078068 425111 895352 621081 974179 539206 344860 179904 841571 033036 598276 707157 208309 586457 264216 790697 420171 955288 481795 712471 133061 231092 420132 138862 519782 680545 262806 500725 386040 892666 659951 422026 767277 127612 390064 799494 650509 328376 999216 374421 430655 130922 450842 234574 945429 773903 194765 073948 183572 421222 155352 328207 958798 259590 154070 514282 287532 847241 435619 103555 320997 360274 393749 495200 933648 019738 133828 612363 622141 811004 454714 863309 940439 221096 493052 841724 211413 862185 147873 658419 580005 (611 digits)/1 867195 455560 041136 671136 363399 702462 998136 541662 559903 865979 506475 355168 849462 810751 091862 123513 487369 748349 061613 522682 143065 574627 051337 568335 163532 065335 848839 025874 735161 740691 871859 334564 796308 522449 187202 294012 214502 689068 780156 261008 254866 409041 870619 252842 021759 246727 113489 149050 796551 178924 522402 344108 702410 555533 840819 963024 532789 310838 480258 639193 730807 444050 910810 270493 008596 349165 974486 249899 918028 441499 317329 231566 450041 839254 475277 966293 668303 481573 328696 709635 799890 950714 674259 701923 692804 684194 323855 497784 354012 542134 228076 595021 204210 247559 646978 627829 570941 692711 353329 599420 847534 093028 (613 digits), a[1166] = 1
                                                                                      A[1167]/B[1167] = 53882 410160 350779 933882 687725 485766 210552 791814 020644 746596 548925 853088 753532 545409 675199 011457 356497 612506 291298 166480 246073 951879 293409 633597 959989 050634 644138 911867 074245 105859 296642 439952 221977 477410 861440 691191 083061 573891 980015 452190 098208 313045 058221 591835 108146 594611 573028 133373 597499 053295 087984 398197 988087 178173 535928 475653 528030 058350 956058 148475 149608 680247 521935 635178 184400 697540 710026 748999 760740 202676 423270 550663 573991 244170 058187 970690 089178 336553 821074 877509 088092 310275 281399 977242 534388 424930 828317 047113 212490 254688 163490 335777 044066 102764 268206 487006 987237 182256 592565 053027 702533 769292 (611 digits)/5 237021 403288 607745 728926 542977 530129 403794 219306 710958 388927 900188 714729 277317 118068 544464 386454 812649 336322 276067 332013 292334 333828 391892 897851 652148 135693 076097 237092 110457 864302 321670 303514 090549 618537 540337 157787 097547 782914 297784 032466 812048 919870 686996 071367 083244 201240 072245 095659 893057 481282 889745 747587 970101 973004 130882 336266 723359 035610 103069 413832 078212 459302 564204 024865 955723 322005 005716 566688 324754 826440 118660 031319 030317 017306 421098 831831 957357 044388 546934 224063 407718 294796 611707 930458 431783 707856 395961 106910 093019 094020 921211 073747 348454 182298 792645 101034 028920 536194 762144 903153 845199 279235 (613 digits), a[1167] = 2
                                                                                      A[1168]/B[1168] = 73093 519613 302673 615281 506242 769290 408029 292214 186604 756708 420448 909531 664692 266938 108440 570572 985926 611775 437348 697113 744822 029947 718521 528950 581071 024814 183345 256727 254149 947430 329679 038228 929134 685720 447897 955407 873758 994063 935303 933985 810679 446106 289314 011967 247009 114394 253573 396180 098224 439335 980651 058149 410113 945450 663540 865718 327524 708860 284435 147691 524030 110902 652858 086020 418975 642970 483929 943764 834688 386248 844492 706015 902199 202968 317778 124760 603460 624086 668316 313128 191647 631272 641674 370992 029589 358578 848055 180941 824853 876829 974494 790491 907376 043203 489302 980059 828961 393670 454750 200901 360953 349297 (611 digits)/7 104216 858848 648882 400062 906377 232592 401930 760969 270862 254907 406664 069898 126779 928819 636326 509968 300019 084671 337680 854695 435399 908455 443230 466186 815680 201028 924936 262966 845619 604994 193529 638078 886858 140986 727539 451799 312050 471983 077940 293475 066915 328912 557615 324209 105003 447967 185734 244710 689608 660207 412148 091696 672512 528537 971702 299291 256148 346448 583328 053025 809019 903353 475014 295358 964319 671170 980202 816588 242783 267939 435989 262885 480358 856560 896376 798125 625660 525961 875630 933699 207609 245511 285967 632382 124588 392050 719816 604694 447031 636155 149287 668768 552664 429858 439623 728863 599862 228906 115474 502574 692733 372263 (613 digits), a[1168] = 1
                                                                                      A[1169]/B[1169] = 200069 449386 956127 164445 700211 024347 026611 376242 393854 260013 389823 672152 082917 079285 892080 152603 328350 836057 165995 560707 735718 011774 730452 691499 122131 100263 010829 425321 582545 000719 956000 516410 080246 848851 757236 602006 830579 562019 850623 320161 719567 205257 636849 615769 602164 823400 080174 925733 793947 931967 049286 514496 808315 069074 863010 207090 183079 476071 524928 443858 197668 902052 827651 807219 022351 983481 677886 636529 430116 975174 112255 962695 378389 650106 693744 220211 296099 584727 157707 503765 471387 572820 564748 719226 593567 142088 524427 408996 862198 008348 112479 916760 858818 189171 246812 447126 645159 969597 502065 454830 424440 467886 (612 digits)/19 445455 120985 905510 529052 355731 995314 207655 741245 252682 898742 713516 854525 530876 975707 817117 406391 412687 505664 951429 041404 163134 150739 278353 830225 283508 537750 925969 763025 801697 074290 708729 579671 864265 900510 995416 061385 721648 726880 453664 619416 945879 577695 802226 719785 293251 097174 443713 585081 272274 801697 714041 930981 315127 030080 074286 934849 235655 728507 269725 519883 696252 266009 514232 615583 884362 664346 966122 199864 810321 362318 990638 557089 991034 730428 213852 428083 208678 096312 298196 091461 822936 785819 183643 195222 680960 491957 835594 316298 987082 366331 219786 411284 453783 042015 671892 558761 228644 994006 993093 908303 230666 023761 (614 digits), a[1169] = 2
                                                                                      A[1170]/B[1170] = 673301 867774 171055 108618 606875 842331 487863 420941 368167 536748 589919 925987 913443 504795 784681 028382 970979 119946 935335 379236 951976 065271 909879 603447 947464 325603 215833 532692 001784 949590 197680 587459 169875 232275 719607 761428 365497 680123 487173 894470 969381 061879 199862 859276 053503 584594 494098 173381 480068 235237 128510 601639 835059 152675 252571 486988 876763 137074 859220 479266 117036 817061 135813 507677 486031 593415 517589 853353 125039 311771 181260 594102 037368 153288 399010 785394 491759 378268 141438 824424 605810 349734 335920 528671 810290 784844 421337 407932 411447 901874 311934 540774 483830 610717 229740 321439 764441 302462 960946 565392 634274 752955 (612 digits)/65 440582 221806 365413 987219 973573 218535 024897 984705 028910 951135 547214 633474 719410 855943 087678 729142 538081 601666 191967 978907 924802 360673 278291 956862 666205 814281 702845 552044 250710 827866 319718 377094 479655 842519 713787 635956 476996 652624 438934 151725 904554 061999 964295 483564 984756 739490 516874 999954 506433 065300 554273 884640 617893 618778 194563 103838 963115 531970 392504 612676 897776 701382 017712 142110 617407 664211 878569 416182 673747 354896 407904 934155 453463 047845 537934 082375 251694 814898 770219 208084 676419 602968 836897 218050 167469 867924 226599 553591 408278 735148 808646 902621 914013 555905 455301 405147 285797 210927 094756 227484 384731 443546 (614 digits), a[1170] = 3
                                                                                      A[1171]/B[1171] = 873371 317161 127182 273064 307086 866678 514474 797183 762021 796761 979743 598139 996360 584081 676761 180986 299329 956004 101330 939944 687694 077046 640332 294947 069595 425866 226662 958013 584329 950310 153681 103869 250122 081127 476844 363435 196077 242143 337797 214632 688948 267136 836712 475045 655668 407994 574273 099115 274016 167204 177797 116136 643374 221750 115581 694079 059842 613146 384148 923124 314705 719113 963465 314896 508383 576897 195476 489882 555156 286945 293516 556797 415757 803395 092755 005605 787858 962995 299146 328190 077197 922554 900669 247898 403857 926932 945764 816929 273645 910222 424414 457535 342648 799888 476552 768566 409601 272060 463012 020223 058715 220841 (612 digits)/84 886037 342792 270924 516272 329305 213849 232553 725950 281593 849878 260731 488000 250287 831650 904796 135533 950769 107331 143397 020312 087936 511412 556645 787087 949714 352032 628815 315070 052407 902157 028447 956766 343921 743030 709203 697342 198645 379504 892598 771142 850433 639695 766522 203350 278007 836664 960588 585035 778707 866998 268315 815621 933020 648858 268850 038688 198771 260477 662230 132560 594028 967391 531944 757694 501770 328558 844691 616047 484068 717215 398543 491245 444497 778273 751786 510458 460372 911211 068415 299546 499356 388788 020540 413272 848430 359882 062193 869890 395361 101480 028433 313906 367796 597921 127193 963908 514442 204934 087850 135787 615397 467307 (614 digits), a[1171] = 1
                                                                                      A[1172]/B[1172] = 1 546673 184935 298237 381682 913962 709010 002338 218125 130189 333510 569663 524127 909804 088877 461442 209369 270309 075951 036666 319181 639670 142318 550211 898395 017059 751469 442496 490705 586114 899900 351361 691328 419997 313403 196452 124863 561574 922266 824971 109103 658329 329016 036575 334321 709171 992589 068371 272496 754084 402441 306307 717776 478433 374425 368153 181067 936605 750221 243369 402390 431742 536175 099278 822573 994415 170312 713066 343235 680195 598716 474777 150899 453125 956683 491765 791000 279618 341263 440585 152614 683008 272289 236589 776570 214148 711777 367102 224861 685093 812096 736348 998309 826479 410605 706293 090006 174042 574523 423958 585615 692989 973796 (613 digits)/150 326619 564598 636338 503492 302878 432384 257451 710655 310504 801013 807946 121474 969698 687593 992474 864676 488850 708997 335364 999220 012738 872085 834937 743950 615920 166314 331660 867114 303118 730023 348166 333860 823577 585550 422991 333298 675642 032129 331532 922868 754987 701695 730817 686915 262764 576155 477463 584990 285140 932298 822589 700262 550914 267636 463413 142527 161886 792448 054734 745237 491805 668773 549656 899805 119177 992770 723261 032230 157816 072111 806448 425400 897960 826119 289720 592833 712067 726109 838634 507631 175775 991756 857437 631323 015900 227806 288793 423481 803639 836628 837080 216528 281810 153826 582495 369055 800239 415861 182606 363272 000128 910853 (615 digits), a[1172] = 1
                                                                                      A[1173]/B[1173] = 2 420044 502096 425419 654747 221049 575688 516813 015308 892211 130272 549407 122267 906164 672959 138203 390355 569639 031955 137997 259126 327364 219365 190544 193342 086655 177335 669159 448719 170444 850210 505042 795197 670119 394530 673296 488298 757652 164410 162768 323736 347277 596152 873287 809367 364840 400583 642644 371612 028100 569645 484104 833913 121807 596175 483734 875146 996448 363367 627518 325514 746448 255289 062744 137470 502798 747209 908542 833118 235351 885661 768293 707696 868883 760078 584520 796606 067477 304258 739731 480804 760206 194844 137259 024468 618006 638710 312867 041790 958739 722319 160763 455845 169128 210494 182845 858572 583643 846583 886970 605838 751705 194637 (613 digits)/235 212656 907390 907263 019764 632183 646233 490005 436605 592098 650892 068677 609475 219986 519244 897271 000210 439619 816328 478762 019532 100675 383498 391583 531038 565634 518346 960476 182184 355526 632180 376614 290627 167499 328581 132195 030640 874287 411634 224131 694011 605421 341391 497339 890265 540772 412820 438052 170026 063848 799297 090905 515884 483934 916494 732263 181215 360658 052925 716964 877798 085834 636165 081601 657499 620948 321329 567952 648277 641884 789327 204991 916646 342458 604393 041507 103292 172440 637320 907049 807177 675132 380544 877978 044595 864330 587688 350987 293372 199000 938108 865513 530434 649606 751747 709689 332964 314681 620795 270456 499059 615526 378160 (615 digits), a[1173] = 1
                                                                                      A[1174]/B[1174] = 6 386762 189128 149076 691177 356061 860387 035964 248742 914611 594055 668477 768663 722133 434795 737848 990080 409587 139861 312660 837434 294398 581048 931300 285079 190370 106140 780815 388143 927004 600321 361447 281723 760236 102464 543045 101461 076879 251087 150507 756576 352884 521321 783150 953056 438852 793756 353660 015720 810285 541732 274517 385602 722048 566776 335622 931361 929502 476956 498406 053419 924639 046753 224767 097515 000012 664732 530152 009472 150899 370040 011364 566293 190893 476840 660807 384212 414572 949780 920048 114224 203420 661977 511107 825507 450161 989197 992836 308443 602573 256735 057875 910000 164735 831594 071984 807151 341330 267691 197899 797293 196400 363070 (613 digits)/620 751933 379380 450864 543021 567245 724851 237462 583866 494702 102797 945301 340425 409671 726083 787016 865097 368090 341654 292889 038284 214089 639082 618104 806027 747189 203008 252613 231483 014171 994384 101394 915115 158576 242712 687381 394580 424216 855397 779796 310891 965830 384478 725497 467446 344309 401796 353567 925042 412838 530893 004400 732031 518784 100625 927939 504957 883202 898299 488664 500833 663474 941103 712860 214804 361074 635429 859166 328785 441585 650766 216432 258693 582878 034905 372734 799418 056949 000751 652734 121986 526040 752846 613393 720514 744561 403182 990768 010226 201641 712846 568107 277397 581023 657322 001874 034984 429602 657451 723519 361391 231181 667173 (615 digits), a[1174] = 2
                                                                                      A[1175]/B[1175] = 8 806806 691224 574496 345924 577111 436075 552777 264051 806822 724328 217884 890931 628298 107754 876052 380435 979226 171816 450658 096560 621762 800414 121844 478421 277025 283476 449974 836863 097449 450531 866490 076921 430355 496995 216341 589759 834531 415497 313276 080312 700162 117474 656438 762423 803693 194339 996304 387332 838386 111377 758622 219515 843856 162951 819357 806508 925950 840324 125924 378934 671087 302042 287511 234985 502811 411942 438694 842590 386251 255701 779658 273990 059777 236919 245328 180818 482050 254039 659779 595028 963626 856821 648366 849976 068168 627908 305703 350234 561312 979054 218639 365845 333864 042088 254830 665723 924974 114275 084870 403131 948105 557707 (613 digits)/855 964590 286771 358127 562786 199429 371084 727468 020472 086800 753690 013978 949900 629658 245328 684287 865307 807710 157982 771651 057816 314765 022581 009688 337066 312823 721355 213089 413667 369698 626564 478009 205742 326075 571293 819576 425221 298504 267032 003928 004903 571251 725870 222837 357711 885081 814616 791620 095068 476687 330190 095306 247916 002719 017120 660202 686173 243860 951225 205629 378631 749309 577268 794461 872303 982022 956759 427118 977063 083470 440093 421424 175339 925336 639298 414241 902710 229389 638072 559783 929164 201173 133391 491371 765110 608891 990871 341755 303598 400642 650955 433620 807832 230630 409069 711563 367948 744284 278246 993975 860450 846708 045333 (615 digits), a[1175] = 1
                                                                                      A[1176]/B[1176] = 112 068442 483823 043032 842272 281399 093293 669291 417364 596484 285994 283096 459843 261710 727854 250477 555312 160301 201658 720557 996161 755552 186018 393434 026134 514673 507858 180513 430501 096398 006703 759328 204780 924502 066407 139144 178579 091256 237054 909820 720328 754829 931017 660416 102142 083171 125836 309312 663714 870918 878265 377984 019792 848322 522198 167916 609469 040912 560846 009498 600635 977686 671260 674901 917341 033749 608041 794490 120556 785914 438461 367263 854173 908220 319871 604745 554034 199175 998256 837403 254571 766942 943837 291510 025220 268185 524097 661276 511258 338329 005385 681548 300144 171104 336653 129952 795838 441019 638992 216344 634876 573667 055554 (615 digits)/10892 327016 820636 748395 296455 960398 177867 967078 829531 536311 147078 113048 739232 965570 670027 998471 248791 060612 237447 552701 732079 991269 910054 734364 850823 501073 859270 809686 195491 450555 513157 837505 384023 071483 098238 522298 497236 006268 059781 826932 369734 820851 094921 399545 759988 965291 177197 853009 065864 133086 493174 148075 707023 551412 306073 850371 739036 809534 313001 956217 044414 655189 868329 246402 682452 145350 116542 984594 053542 443230 931887 273522 362772 686917 706486 343637 631940 809624 657622 370141 271956 940118 353544 509854 901842 051265 293639 091831 653407 009353 524311 771556 971384 348588 566158 540634 450369 361013 996415 651229 686801 391678 211169 (617 digits), a[1176] = 12
                                                                                      A[1177]/B[1177] = 232 943691 658870 660562 030469 139909 622662 891360 098780 999791 296316 784077 810618 151719 563463 377007 491060 299828 575133 891774 088884 132867 172450 908712 530690 306372 299192 811001 697865 290245 463939 385146 486483 279359 629809 494629 946918 017043 889607 132917 520970 209821 979509 977270 966707 970035 446012 614929 714762 580223 867908 514590 259101 540501 207348 155191 025447 007775 962016 144921 580206 626460 644563 637315 069667 570310 628026 027675 083703 958080 132624 514185 982337 876217 876662 454819 288886 880402 250553 334586 104172 497512 744496 231386 900416 604539 676103 628256 372751 237970 989825 581735 966133 676072 715394 514736 257400 807013 392259 517559 672885 095439 668815 (615 digits)/22640 618623 928044 854918 155698 120225 726820 661625 679535 159423 047846 240076 428366 560799 585384 681230 362889 928934 632877 877054 521976 297304 842690 478418 038713 314971 439896 832461 804650 270809 652880 153019 973788 469041 767770 864173 419693 311040 386595 657792 744373 212953 915713 021928 877689 815664 169012 497638 226796 742860 316538 391457 661963 105543 629268 360946 164246 862929 577229 118063 467461 059689 313927 287267 237208 272723 189845 396307 084147 969932 303867 968468 900885 299172 052271 101517 166591 848638 953317 300066 473078 081409 840480 511081 568794 711422 578149 525418 610412 419349 699578 976734 750600 927807 541386 792832 268687 466312 271078 296435 234053 630064 467671 (617 digits), a[1177] = 2
                                                                                      A[1178]/B[1178] = 1276 786900 778176 345842 994617 980947 206608 126091 911269 595440 767578 203485 512934 020308 545171 135515 010613 659444 077328 179428 440582 419888 048272 936996 679586 046535 003822 235521 919827 547625 326400 685060 637197 321300 215454 612293 913169 176475 685090 574408 325179 803939 828567 546770 935681 933348 355899 383961 237527 772038 217807 950935 315300 550828 558938 943871 736704 079792 370926 734106 501669 109989 894078 861477 265678 885302 748171 932865 539076 576315 101583 938193 765863 289309 703183 878841 998468 601187 251023 510333 775434 254506 666318 448444 527303 290883 904615 802558 375014 528183 954513 590228 130812 551467 913625 703634 082842 476086 600289 804142 999302 050865 399629 (616 digits)/124095 420136 460861 022986 074946 561526 811971 275207 227207 333426 386309 313430 881065 769568 596951 404623 063240 705285 401836 937974 341961 477794 123507 126455 044390 075931 058754 971995 218742 804603 777558 602605 252965 416691 937092 843165 595702 561469 992760 115896 091600 885620 673486 509190 148438 043612 022260 341200 199847 847388 075866 105364 016839 079130 452415 655102 560271 124182 199147 546534 381719 953636 437965 682738 868493 508966 065769 966129 474282 292892 451227 115866 867199 182777 967841 851223 464900 052819 424208 870473 637347 347167 555947 065262 745815 608378 184386 718924 705469 106102 022206 655230 724388 987626 273092 504795 793806 692575 351807 133405 857069 542000 549524 (618 digits), a[1178] = 5
                                                                                      A[1179]/B[1179] = 1509 730592 437047 006405 025087 120856 829271 017452 010050 595232 063894 987563 323552 172028 108634 512522 501673 959272 652462 071202 529466 552755 220723 845709 210276 352907 303015 046523 617692 837870 790340 070207 123680 600659 845264 106923 860087 193519 574697 707325 846150 013761 808077 524041 902389 903383 801911 998890 952290 352262 085716 465525 574402 091329 766287 099062 762151 087568 332942 879028 081875 736450 538642 498792 335346 455613 376197 960540 622780 534395 234208 452379 748201 165527 579846 333661 287355 481589 501576 844919 879606 752019 410814 679831 427719 895423 580719 430814 747765 766154 944339 171964 096946 227540 629020 218370 340243 283099 992549 321702 672187 146305 068444 (616 digits)/146736 038760 388905 877904 230644 681752 538791 936832 906742 492849 434155 553507 309432 330368 182336 085853 426130 634220 034714 815028 863937 775098 966197 604873 083103 390902 498651 804457 023393 075413 430438 755625 226753 885733 704863 707339 015395 872510 379355 773688 835974 098574 589199 531119 026127 859276 191272 838838 426644 590248 392404 496821 678802 184674 081684 016048 724517 987111 776376 664597 849181 013325 751892 970006 105701 781689 255615 362436 558430 262824 755095 084335 768084 481950 020112 952740 631491 901458 377526 170540 110425 428577 396427 576344 314610 319800 762536 244343 315881 525451 721785 631965 474989 915433 814479 297628 062494 158887 622885 429841 091123 172065 017195 (618 digits), a[1179] = 1
                                                                                      A[1180]/B[1180] = 93370 353039 438043 736549 524932 353213 792140 190664 524355 904596 665172 444848 249616 514023 171876 399387 612725 175075 877514 522782 738042 137956 512427 525258 506443 573880 487740 073462 599090 657743 537144 967695 181713 961550 776565 134649 378487 981169 741650 721284 940330 643410 121296 513326 981466 039760 272531 316309 327239 260025 446512 347995 353828 121944 302451 986700 227920 421460 680442 354819 496089 033472 751271 287809 721812 677718 696247 525843 528689 174424 388299 533358 406134 386492 073810 232180 527152 978146 847211 050446 431446 127690 726013 918161 618216 911722 328501 082257 988726 263635 559203 080038 044532 431446 283859 024224 837682 745186 145798 428006 002717 975474 574713 (617 digits)/9 074993 784520 184119 575144 144272 148431 678279 422014 538499 397241 869798 077376 756437 922027 719452 641682 057209 392707 519440 654735 042165 758831 061561 023713 113696 920983 476515 043873 645720 404823 034322 695744 084952 446447 933778 990845 534850 784603 133462 310915 086020 898670 614657 907450 742237 459459 689903 510344 225167 852540 012540 411486 423772 344249 435140 634074 755868 338000 558124 087003 181761 766507 303436 853111 316302 192010 658307 074759 538528 325202 512027 260348 720352 581729 194731 968401 985906 041780 453305 273420 373298 490388 738029 222265 937045 116224 699097 623866 974242 158657 051130 205124 698773 829088 956329 660107 605950 384720 347818 353712 415583 037966 598419 (619 digits), a[1180] = 61
                                                                                      A[1181]/B[1181] = 468361 495789 627265 689152 649748 886925 789971 970774 631830 118215 389757 211804 571634 742143 968016 509460 565299 834652 040034 685116 219677 242537 782861 472001 742494 222309 741715 413836 613146 126588 476064 908683 032250 408413 728089 780170 752527 099368 282951 313750 547803 230812 414560 090676 809720 102185 164568 580437 588486 652389 318278 205502 343542 701051 278547 032563 901753 194871 735154 653125 562320 903814 294998 937840 944409 844206 857435 589758 266226 406517 175706 119171 778873 097987 948897 494563 923120 372323 737632 097152 036837 390473 040884 270639 518804 454035 223224 842104 691397 084332 740354 572154 319608 384772 048315 339494 528657 009030 721541 461732 685777 023677 942009 (618 digits)/45 521704 961361 309503 753624 952005 423910 930189 046905 599239 479058 783145 940391 091621 940506 779599 294263 712177 597757 631918 088704 074766 569254 274002 723438 651587 995819 881227 023825 251995 099528 602052 234345 651516 117973 373758 661566 689649 795526 046667 328264 266078 591927 662489 068372 737315 156574 640790 390559 552483 852948 455106 554253 797663 905921 257387 186422 503859 677114 566997 099613 757989 845862 269077 235562 687212 741742 547150 736234 251071 888837 315231 386079 369847 390595 993772 794750 561022 110360 644052 537641 976917 880521 086573 687673 999835 900924 258024 363678 187092 318736 977436 657588 968859 060878 596127 598166 092246 082489 361977 198403 169038 361898 009290 (620 digits), a[1181] = 5
                                                                                      A[1182]/B[1182] = 3 371900 823566 828903 560618 073174 561694 321943 986086 947166 732104 393472 927480 251059 709030 947991 965611 569824 017640 157757 318596 275782 835720 992457 829270 703903 130048 679747 970318 891113 543862 869599 328476 407466 820446 873193 595844 646177 676747 722309 917538 774953 259097 023217 148064 649506 755056 424511 379372 446645 826750 674459 786511 758627 029303 252281 214647 540192 785562 826524 926698 432335 360172 816263 852696 332681 587166 698296 654151 392274 020044 618242 367560 858246 072407 716092 694127 988995 584413 010635 730510 689307 861002 012203 812638 249848 089968 891074 976990 828505 853964 741685 085118 281791 124850 622066 400686 538281 808401 196588 660134 803157 141220 168776 (619 digits)/327 726928 514049 350645 850518 808310 115808 189602 750353 733175 750653 351819 660114 397791 505575 176647 701528 042452 577010 942867 275663 565531 743610 979580 087783 674812 891722 645104 210650 409686 101523 248688 336163 645565 272261 550089 621812 362399 353285 460133 608764 948571 042164 252081 386059 903443 555482 175436 244261 092554 823179 198286 291263 007419 685698 236850 939032 282886 077802 527103 784299 487690 687543 186977 502050 126791 384208 488362 228399 296031 547063 718646 962904 309284 315901 151141 531655 913060 814304 961673 036914 211723 654036 344045 035983 935896 422694 505268 169614 283888 389815 893186 808247 480787 255239 129222 847270 251672 962145 881658 742534 598851 571252 663449 (621 digits), a[1182] = 7
                                                                                      A[1183]/B[1183] = 3 840262 319356 456169 249770 722923 448620 111915 956861 578996 850319 783230 139284 822694 451174 916008 475072 135123 852292 197792 003712 495460 078258 775319 301272 446397 352358 421463 384155 504259 670451 345664 237159 439717 228860 601283 376015 398704 776116 005261 231289 322756 489909 437777 238741 459226 857241 589079 959810 035132 479139 992737 992014 102169 730354 530828 247211 441945 980434 561679 579823 994656 263987 111262 790537 277091 431373 555732 243909 658500 426561 793948 486732 637119 170395 664990 188691 912115 956736 748267 827662 726145 251475 053088 083277 768652 544004 114299 819095 519902 938297 482039 657272 601399 509622 670381 740181 066938 817431 918130 121867 488934 164898 110785 (619 digits)/373 248633 475410 660149 604143 760315 539719 119791 797259 332415 229712 134965 600505 489413 446081 956246 995791 754630 174768 574785 364367 640298 312865 253582 811222 326400 887542 526331 234475 661681 201051 850740 570509 297081 390234 923848 283379 052049 148811 506800 937029 214649 634091 914570 454432 640758 712056 816226 634820 645038 676127 653392 845516 805083 591619 494238 125454 786745 754917 094100 883913 245680 533405 456054 737612 814004 125951 035512 964633 547103 435901 033878 348983 679131 706497 144914 326406 474082 924665 605725 574556 188641 534557 430618 723657 935732 323618 763292 533292 470980 708552 870623 465836 449646 316117 725350 445436 343919 044635 243635 940937 767889 933150 672739 (621 digits), a[1183] = 1
                                                                                      A[1184]/B[1184] = 118 579770 404260 513981 053739 760878 020297 679422 691934 317072 241697 890377 106024 931893 244278 428246 217775 623539 586406 091517 429971 139585 183484 252036 867444 095823 700801 323649 494984 018903 657403 239526 443259 598983 686264 911694 876306 607320 960227 880146 856218 457647 956380 156534 310308 426312 472304 096910 173673 500620 200950 456599 546934 823718 939939 177128 630990 798572 198599 676912 321418 272023 279786 154147 568814 645424 528373 370263 971441 147286 816898 436696 969539 971821 184277 665798 354885 352474 286515 458670 560392 473665 405253 604846 310971 309424 410092 320069 549856 425594 002889 202874 803296 323776 413530 733518 606118 546446 331358 740492 316159 471182 088163 492326 (621 digits)/11525 185932 776369 155133 974831 617776 307381 783356 668133 705632 642017 400787 675279 080194 888033 864057 575280 681357 820068 186428 206692 774481 129568 587064 424453 466839 517998 435041 244920 260122 133078 770905 451442 558006 979309 265538 123183 923873 817630 664161 719641 388060 064921 689195 019039 126204 917186 662235 288880 443715 107008 800071 656767 159927 434283 063994 702675 885258 725315 350130 301696 858106 689706 868619 630434 546915 162739 553751 167405 709134 624094 734997 432414 683235 510815 498571 323850 135548 554273 133440 273599 870969 690759 262606 745722 007866 131257 404044 168388 413309 646402 011890 783340 970176 738770 889736 210360 569244 301203 190736 970667 635549 565772 845619 (623 digits), a[1184] = 30
                                                                                      A[1185]/B[1185] = 2375 435670 404566 735790 324565 940483 854573 700369 795547 920441 684277 590772 259783 460559 336743 480932 830584 605915 580414 028140 603135 287163 747943 816056 650154 362871 368384 894453 283835 882332 818516 136193 102351 419390 954158 835180 902147 545123 980673 608198 355658 475715 617512 568463 444909 985476 303323 527283 433280 047536 498149 124728 930710 576548 529138 073400 867027 413389 952428 099926 008189 435121 859710 194214 166830 185581 998840 961011 672732 604236 764530 527887 877532 073542 855948 980957 286398 961601 687045 921679 035512 199453 356547 150014 302703 957140 745850 515690 816224 031782 996081 539535 723199 076927 780237 340753 862551 995865 444606 727976 445056 912575 928167 957305 (622 digits)/230876 967289 002793 762829 100776 115841 687354 786925 159933 445068 070060 150719 106087 093311 206759 237398 501405 381786 576132 303349 498223 129920 904236 994871 300291 663191 247511 227156 132880 864123 862627 268849 599360 457220 976420 234610 747057 529525 501424 790035 329856 975850 932525 698470 835215 164857 055790 060932 412429 519340 816303 654825 980860 003632 277280 774132 178972 491920 261224 096706 917850 407814 327542 828447 346303 752307 380742 110536 312747 729795 917795 733826 997277 343841 922807 116340 803409 185054 010128 274531 046553 608035 349742 682753 638098 093054 948766 844175 901060 737173 636593 108439 132655 853181 091535 520074 652647 728805 068699 058375 354290 478881 248607 585119 (624 digits), a[1185] = 20
                                                                                      A[1186]/B[1186] = 7244 886781 617960 721352 027437 582329 584018 780532 078578 078397 294530 662693 885375 313571 254508 871044 709529 441286 327648 175939 239377 001076 427315 700206 817907 184437 805956 007009 346491 665902 112951 648105 750313 857156 548741 417237 582749 242692 902248 704741 923193 884794 808917 861924 645038 382741 382274 678760 473513 643229 695397 830786 339066 553364 527353 397331 232073 038742 055883 976690 345986 577388 858916 736790 069305 202170 524896 253298 989638 959997 110490 020360 602136 192449 752124 608670 214082 237279 347653 223707 666929 072025 474895 054889 219083 180846 647643 867141 998528 520942 991133 821481 972893 554559 754242 755780 193774 534042 665178 924421 651330 208909 872667 364241 (622 digits)/704156 087799 784750 443621 277159 965301 369446 144132 147934 040836 852197 852944 993540 360128 508311 576253 079496 826717 548465 096476 701362 164243 842279 571678 325328 456413 260532 116509 643562 852493 720960 577454 249523 929669 908569 969370 364356 512450 321905 034267 709212 315612 862498 784607 524684 620776 084556 845032 526169 001737 555919 764549 599347 170824 266125 386391 239593 361019 508987 640251 055248 081549 672335 353961 669345 803837 304965 885360 105648 898522 377481 936478 424246 714761 279236 847593 734077 690710 584657 957033 413260 695075 739987 310867 660016 287030 977557 936571 871570 624830 556181 337208 181308 529720 013377 449960 168303 755659 507300 365863 033539 072193 311595 600976 (624 digits), a[1186] = 3
                                                                                      A[1187]/B[1187] = 60334 529923 348252 506606 544066 599120 526723 944626 424172 547620 040522 892323 342785 969129 372814 449290 506820 136206 201599 435654 518151 295775 166469 417711 193411 838373 816032 950528 055769 209549 722129 321039 104862 276643 344090 173081 564141 486667 198663 246133 741209 554074 088855 463860 605217 047407 361520 957367 221389 193374 061331 771019 643243 003464 747965 252050 723611 723326 399499 913448 776082 054232 731044 088534 721271 802946 198010 987403 589844 284213 648450 690772 694621 613140 872945 850318 999056 859836 468271 711340 370944 775657 155707 589128 055369 403913 927001 452826 804452 199326 925152 111391 506347 513405 814179 386995 412748 268206 766038 123349 655698 583854 909506 871233 (623 digits)/5 864125 669687 280797 311799 318055 838252 642923 939982 343405 771762 887642 974279 054409 974339 273251 847423 137379 995526 963853 075163 109120 443871 642473 568297 902919 314497 331768 159233 281383 684073 630311 888483 595551 894580 244979 989573 661909 629128 076665 064177 003555 500753 832515 975331 032692 131065 732244 821192 621781 533241 263661 771222 775637 370226 406283 865262 095719 380076 333125 218715 359835 060211 706225 660140 701070 183005 820469 193417 157938 917974 937651 225654 391251 061932 156701 897090 676030 710738 687391 930798 352639 168641 269641 169694 918228 389302 769230 336750 873625 735818 086043 806104 583124 090941 198555 119755 999077 774081 127101 985279 622603 056427 741372 392927 (625 digits), a[1187] = 8
                                                                                      A[1188]/B[1188] = 67579 416704 966213 227958 571504 181450 110742 725158 502750 626017 335053 555017 228161 282700 627323 320335 216349 577492 529247 611593 757528 296851 593785 117918 011319 022811 621988 957537 402260 875451 835080 969144 855176 133799 892831 590319 146890 729360 100911 950875 664403 438868 897773 325785 250255 430148 743795 636127 694902 836603 756729 601805 982309 556829 275318 649381 955684 762068 455383 890139 122068 631621 589960 825324 790577 005116 722907 240702 579483 244210 758940 711133 296757 805590 625070 458989 213139 097115 815924 935048 037873 847682 630602 644017 274452 584760 574645 319968 802980 720269 916285 932873 479241 067965 568422 142775 606522 802249 431217 047771 307028 792764 782174 235474 (623 digits)/6 568281 757487 065547 755420 595215 803554 012370 084114 491339 812599 739840 827224 047950 334467 781563 423676 216876 822244 512318 171639 810482 608115 484753 139976 228247 770910 592300 275742 924946 536567 351272 465937 845075 824250 153549 958944 026266 141578 398570 098444 712767 816366 695014 759938 557376 751841 816801 666225 147950 534978 819581 535772 374984 541050 672409 251653 335312 741095 842112 858966 415083 141761 378561 014102 370415 986843 125435 078777 263587 816497 315133 162132 815497 776693 435938 744684 410108 401449 272049 887831 765899 863717 009628 480562 578244 676333 746788 273322 745196 360648 642225 143312 764432 620661 211932 569716 167381 529740 634402 351142 656142 128621 052967 993903 (625 digits), a[1188] = 1
                                                                                      A[1189]/B[1189] = 127913 946628 314465 734565 115570 780570 637466 669784 926923 173637 375576 447340 570947 251830 000137 769625 723169 713698 730847 047248 275679 592626 760254 535629 204730 861185 438021 908065 458030 085001 557210 290183 960038 410443 236921 763400 711032 216027 299575 197009 405612 992942 986628 789645 855472 477556 105316 593494 916292 029977 818061 372825 625552 560294 023283 901432 679296 485394 854883 803587 898150 685854 321004 913859 511848 808062 920918 228106 169327 528424 407391 401905 991379 418731 498016 309308 212195 956952 284196 646388 408818 623339 786310 233145 329821 988674 501646 772795 607432 919596 841438 044264 985588 581371 382601 529771 019271 070456 197255 171120 962727 376619 691681 106707 (624 digits)/12 432407 427174 346345 067219 913271 641806 655294 024096 834745 584362 627483 801503 102360 308807 054815 271099 354256 817771 476171 246802 919603 051987 127226 708274 131167 085407 924068 434976 206330 220640 981584 354421 440627 718830 398529 948517 688175 770706 475235 162621 716323 317120 527530 735269 590068 882907 549046 487417 769732 068220 083243 306995 150621 911277 078693 116915 431032 121172 175238 077681 774918 201973 084786 674243 071486 169848 945904 272194 421526 734472 252784 387787 206748 838625 592640 641775 086139 112187 959441 818630 118539 032358 279269 650257 496473 065636 516018 610073 618822 096466 728268 949417 347556 711602 410487 689472 166459 303821 761504 336422 278745 185048 794340 386830 (626 digits), a[1189] = 1
                                                                                      A[1190]/B[1190] = 195493 363333 280678 962523 687074 962020 748209 394943 429673 799654 710630 002357 799108 534530 627461 089960 939519 291191 260094 658842 033207 889478 354039 653547 216049 883997 060010 865602 860290 960453 392291 259328 815214 544243 129753 353719 857922 945387 400487 147885 070016 431811 884402 115431 105727 907704 849112 229622 611194 866581 574790 974631 607862 117123 298602 550814 634981 247463 310267 693727 020219 317475 910965 739184 302425 813179 643825 468808 748810 772635 166332 113039 288137 224322 123086 768297 425335 054068 100121 581436 446692 471022 416912 877162 604274 573435 076292 092764 410413 639866 757723 977138 464829 649336 951023 672546 625793 872705 628472 218892 269756 169384 473855 342181 (624 digits)/19 000689 184661 411892 822640 508487 445360 667664 108211 326085 396962 367324 628727 150310 643274 836378 694775 571133 640015 988489 418442 730085 660102 611979 848250 359414 856318 516368 710719 131276 757208 332856 820359 285703 543080 552079 907461 714441 912284 873805 261066 429091 133487 222545 495208 147445 634749 365848 153642 917682 603198 902824 842767 525606 452327 751102 368568 766344 862268 017350 936648 190001 343734 463347 688345 441902 156692 071339 350971 685114 550969 567917 549920 022246 615319 028579 386459 496247 513637 231491 706461 884438 896075 288898 130820 074717 741970 262806 883396 364018 457115 370494 092730 111989 332263 622420 259188 333840 833562 395906 687564 934887 313669 847308 380733 (626 digits), a[1190] = 1
                                                                                      A[1191]/B[1191] = 323407 309961 595144 697088 802645 742591 385676 064728 356596 973292 086206 449698 370055 786360 627598 859586 662689 004889 990941 706090 308887 482105 114294 189176 420780 745182 498032 773668 318321 045454 949501 549512 775252 954686 366675 117120 568955 161414 700062 344894 475629 424754 871030 905076 961200 385260 954428 823117 527486 896559 392852 347457 233414 677417 321886 452247 314277 732858 165151 497314 918370 003330 231970 653043 814274 621242 564743 696914 918138 301059 573723 514945 279516 643053 621103 077605 637531 011020 384318 227824 855511 094362 203223 110307 934096 562109 577938 865560 017846 559463 599162 021403 450418 230708 333625 202317 645064 943161 825727 390013 232483 546004 165536 448888 (624 digits)/31 433096 611835 758237 889860 421759 087167 322958 132308 160830 981324 994808 430230 252670 952081 891193 965874 925390 457787 464660 665245 649688 712089 739206 556524 490581 941726 440437 145695 337606 977849 314441 174780 726331 261910 950609 855979 402617 682991 349040 423688 145414 450607 750076 230477 737514 517656 914894 641060 687414 671418 986068 149762 676228 363604 829795 485484 197376 983440 192589 014329 964919 545707 548134 362588 513388 326541 017243 623166 106641 285441 820701 937707 228995 453944 621220 028234 582386 625825 190933 525092 002977 928433 568167 781077 571190 807606 778825 493469 982840 553582 098763 042147 459546 043866 032907 948660 500300 137384 157411 023987 213632 498718 641648 767563 (626 digits), a[1191] = 1
                                                                                      A[1192]/B[1192] = 518900 673294 875823 659612 489720 704612 133885 459671 786270 772946 796836 452056 169164 320891 255059 949547 602208 296081 251036 364932 342095 371583 468333 842723 636830 629179 558043 639271 178612 005908 341792 808841 590467 498929 496428 470840 426878 106802 100549 492779 545645 856566 755433 020508 066928 292965 803541 052740 138681 763140 967643 322088 841276 794540 620489 003061 949258 980321 475419 191041 938589 320806 142936 392228 116700 434422 208569 165723 666949 073694 740055 627984 567653 867375 744189 845903 062866 065088 484439 809261 302203 565384 620135 987470 538371 135544 654230 958324 428260 199330 356885 998541 915247 880045 284648 874864 270858 815867 454199 608905 502239 715388 639391 791069 (624 digits)/50 433785 796497 170130 712500 930246 532527 990622 240519 486916 378287 362133 058957 402981 595356 727572 660650 496524 097803 453150 083688 379774 372192 351186 404774 849996 798044 956805 856414 468883 735057 647297 995140 012034 804991 502689 763441 117059 595276 222845 684754 574505 584094 972621 725685 884960 152406 280742 794703 605097 274617 888892 992530 201834 815932 580897 854052 963721 845708 209939 950978 154920 889442 011482 050933 955290 483233 088582 974137 791755 836411 388619 487627 251242 069263 649799 414694 078634 139462 422425 231553 887416 824508 857065 911897 645908 549577 041632 376866 346859 010697 469257 134877 571535 376129 655328 207848 834140 970946 553317 711552 148519 812388 488957 148296 (626 digits), a[1192] = 1
                                                                                      A[1193]/B[1193] = 1 361208 656551 346792 016313 782087 151815 653446 984071 929138 519185 679879 353810 708384 428143 137718 758681 867105 597052 493014 435954 993078 225272 050961 874623 694442 003541 614120 052210 675545 057271 633087 167195 956187 952545 359532 058801 422711 375018 901161 330453 566921 137888 381896 946093 095056 971192 561510 928597 804850 422841 328138 991634 915968 266498 562864 458371 212795 693501 115989 879398 795548 644942 517843 437500 047675 490086 981882 028362 252036 448449 053834 770914 414824 377805 109482 769411 763263 141197 353197 846347 459918 225131 443495 085249 010838 833198 886400 782208 874366 958124 312934 018487 280913 990798 902922 952046 186782 574896 734126 607824 236962 976781 444320 031026 (625 digits)/132 300668 204830 098499 314862 282252 152223 304202 613347 134663 737899 719074 548145 058634 142795 346339 287175 918438 653394 370960 832622 409237 456474 441579 366074 190575 537816 354048 858524 275374 447964 609037 165060 750400 871893 955989 382861 636736 873543 794731 793197 294425 618797 695319 681849 507434 822469 476380 230467 897609 220654 763854 134823 079897 995469 991591 193590 124820 674856 612468 916286 274761 324591 571098 464456 423969 293007 194409 571441 690152 958264 597940 912961 731479 592471 920818 857622 739654 904750 035783 988199 777811 577451 282299 604872 863007 906760 862090 247202 676558 574977 037277 311902 602616 796125 343564 364358 168582 079277 264046 447091 510672 123495 619563 064155 (627 digits), a[1193] = 2
                                                                                      A[1194]/B[1194] = 3 241317 986397 569407 692240 053895 008243 440779 427815 644547 811318 156595 159677 585933 177177 530497 466911 336419 490186 237065 236842 328251 822127 570257 591971 025714 636262 786283 743692 529702 120451 607967 143233 502843 404020 215492 588443 272300 856839 902872 153686 679488 132343 519226 912694 257042 235350 926562 909935 748382 608823 623921 305358 673213 327537 746217 919804 374850 367323 707398 949839 529686 610691 178623 267228 212051 414596 172333 222448 171021 970592 847725 169813 397302 622985 963155 384726 589392 347483 190835 501956 222040 015647 507126 157968 560048 801942 427032 522742 176994 115578 982754 035516 477075 861643 090494 778956 644423 965660 922452 824553 976165 668951 528031 853121 (625 digits)/315 035122 206157 367129 342225 494750 836974 599027 467213 756243 854086 800282 155247 520249 880947 420251 235002 333401 404592 195071 748933 198249 285141 234345 136923 231147 873677 664903 573463 019632 630986 865372 325261 512836 548779 414668 529164 390533 342363 812309 271149 163356 821690 363261 089384 899829 797345 233503 255639 400315 715927 416601 262176 361630 806872 564080 241233 213363 195421 434877 783550 704443 538625 153678 979846 803229 069247 477402 117021 172061 752940 584501 313550 714201 254207 491437 129939 557943 948962 493993 207953 443039 979411 421665 121643 371924 363098 765812 871271 699976 160651 543811 758682 776768 968380 342456 936565 171305 129501 081410 605735 169864 059379 728083 276606 (627 digits), a[1194] = 2
                                                                                      A[1195]/B[1195] = 4 602526 642948 916199 708553 835982 160059 094226 411887 573686 330503 836474 513488 294317 605320 668216 225593 203525 087238 730079 672797 321330 047399 621219 466594 720156 639804 400403 795903 205247 177723 241054 310429 459031 356565 575024 647244 695012 231858 804033 484140 246409 270231 901123 858787 352099 206543 488073 838533 553233 031664 952060 296993 589181 594036 309082 378175 587646 060824 823388 829238 325235 255633 696466 704728 259726 904683 154215 250810 423058 419041 901559 940727 812127 000791 072638 154138 352655 488680 544033 348303 681958 240778 950621 243217 570887 635141 313433 304951 051361 073703 295688 054003 757989 852441 993417 731002 831206 540557 656579 432378 213128 645732 972351 884147 (625 digits)/447 335790 410987 465628 657087 777002 989197 903230 080560 890907 591986 519356 703392 578884 023742 766590 522178 251840 057986 566032 581555 607486 741615 675924 502997 421723 411494 018952 431987 295007 078951 474409 490322 263237 420673 370657 912026 027270 215907 607041 064346 457782 440488 058580 771234 407264 619814 709883 486107 297924 936582 180455 396999 441528 802342 555671 434823 338183 870278 047346 699836 979204 863216 724777 444303 227198 362254 671811 688462 862214 711205 182442 226512 445680 846679 412255 987562 297598 853712 529777 196153 220851 556862 703964 726516 234932 269859 627903 118474 376534 735628 581089 070585 379385 764505 686021 300923 339887 208778 345457 052826 680536 182875 347646 340761 (627 digits), a[1195] = 1
                                                                                      A[1196]/B[1196] = 7 843844 629346 485607 400793 889877 168302 535005 839703 218234 141821 993069 673165 880250 782498 198713 692504 539944 577424 967144 909639 649581 869527 191477 058565 745871 276067 186687 539595 734949 298174 849021 453662 961874 760585 790517 235687 967313 088698 706905 637826 925897 402575 420350 771481 609141 441894 414636 748469 301615 640488 575981 602352 262394 921574 055300 297979 962496 428148 530787 779077 854921 866324 875089 971956 471778 319279 326548 473258 594080 389634 749285 110541 209429 623777 035793 538864 942047 836163 734868 850259 903998 256426 457747 401186 130936 437083 740465 827693 228355 189282 278442 089520 235065 714085 083912 509959 475630 506218 579032 256932 189294 314684 500383 737268 (625 digits)/762 370912 617144 832757 999313 271753 826172 502257 547774 647151 446073 319638 858640 099133 904690 186841 757180 585241 462578 761104 330488 805736 026756 910269 639920 652871 285171 683856 005450 314639 709938 339781 815583 776073 969452 785326 441190 417803 558271 419350 335495 621139 262178 421841 860619 307094 417159 943386 741746 698240 652509 597056 659175 803159 609215 119751 676056 551547 065699 482224 483387 683648 401841 878456 424150 030427 431502 149213 805484 034276 464145 766943 540063 159882 100886 903693 117501 855542 802675 023770 404106 663891 536274 125629 848159 606856 632958 393715 989746 076510 896280 124900 829268 156154 732886 028478 237488 511192 338279 426867 658561 850400 242255 075729 617367 (627 digits), a[1196] = 1
                                                                                      A[1197]/B[1197] = 12 446371 272295 401807 109347 725859 328361 629232 251590 791920 472325 829544 186654 174568 387818 866929 918097 743469 664663 697224 582436 970911 916926 812696 525160 466027 915871 587091 335498 940196 475898 090075 764092 420906 117151 365541 882932 662325 320557 510939 121967 172306 672807 321474 630268 961240 648437 902710 587002 854848 672153 528041 899345 851576 515610 364382 676155 550142 488973 354176 608316 180157 121958 571556 676684 731505 223962 480763 724069 017138 808676 650845 051269 021556 624568 108431 693003 294703 324844 278902 198563 585956 497205 408368 644403 701824 072225 053899 132644 279716 262985 574130 143523 993055 566527 077330 240962 306837 046776 235611 689310 402422 960417 472735 621415 (626 digits)/1209 706703 028132 298386 656401 048756 815370 405487 628335 538059 038059 838995 562032 678017 928432 953432 279358 837081 520565 327136 912044 413222 768372 586194 142918 074594 696665 702808 437437 609646 788889 814191 305906 039311 390126 155984 353216 445073 774179 026391 399842 078921 702666 480422 631853 714359 036974 653270 227853 996165 589091 777512 056175 244688 411557 675423 110879 889730 935977 529571 183224 662853 265058 603233 868453 257625 793756 821025 493946 896491 175350 949385 766575 605562 947566 315949 105064 153141 656387 553547 600259 884743 093136 829594 574675 841788 902818 021619 108220 453045 631908 705989 899853 535540 497391 714499 538411 851079 547057 772324 711388 530936 425130 423375 958128 (628 digits), a[1197] = 1
                                                                                      A[1198]/B[1198] = 45 182958 446232 691028 728837 067455 153387 422702 594475 593995 558799 481702 233128 403955 945954 799503 446797 770353 571416 058818 656950 562317 620307 629566 634047 143955 023681 947961 546092 555538 725869 119248 745940 224593 112039 887142 884485 954289 050371 239723 003728 442817 420997 384774 662288 492863 387208 122768 509477 866161 656949 160107 300389 817124 468405 148448 326446 612923 895068 593317 604026 395393 232200 589760 002010 666293 991166 768839 645465 645496 815664 701820 264348 274099 497481 361088 617874 826157 810696 571575 445950 661867 748042 682853 334397 236408 653758 902163 225626 067503 978239 000832 520092 214232 413666 315903 232846 396141 646547 285867 324863 396563 195936 918590 601513 (626 digits)/4391 491021 701541 727917 968516 418024 272283 718720 432781 261328 560252 836625 544738 133187 689989 047138 595257 096486 024274 742515 066622 045404 331874 668852 068674 876655 375168 792281 317763 143580 076607 782355 733301 894008 139831 253279 500839 753024 880808 498524 535021 857904 370177 863109 756180 450171 528083 903197 425308 686737 419784 929592 827701 537224 843888 146021 008696 220739 873632 070938 033061 672208 197017 688158 029509 803304 812772 612290 287324 723749 990198 615100 839789 976570 943585 851540 432694 314967 771837 684413 204886 318120 815684 614413 572187 132223 341412 458573 314407 435647 792006 242870 528828 762776 225061 171976 852724 064430 979452 743841 792727 443209 517646 345857 491751 (628 digits), a[1198] = 3
                                                                                      A[1199]/B[1199] = 57 629329 718528 092835 838184 793314 481749 051934 846066 385916 031125 311246 419782 578524 333773 666433 364895 513823 236079 756043 239387 533229 537234 442263 159207 609982 939553 535052 881591 495735 201767 209324 510032 645499 229191 252684 767418 616614 370928 750662 125695 615124 093804 706249 292557 454104 035646 025479 096480 721010 329102 688149 199735 668700 984015 512831 002602 163066 384041 947494 212342 575550 354159 161316 678695 397799 215129 249603 369534 662635 624341 352665 315617 295656 122049 469520 310878 120861 135540 850477 644514 247824 245248 091221 978800 938232 725983 956062 358270 347220 241224 574962 663616 207287 980193 393233 473808 702978 693323 521479 014173 798986 156354 391326 222928 (626 digits)/5601 197724 729674 026304 624917 466781 087654 124208 061116 799387 598312 675621 106770 811205 618422 000570 874615 933567 544840 069651 978666 458627 100247 255046 211592 951250 071834 495089 755200 753226 865497 596547 039207 933319 529957 409263 854056 198098 654987 524915 934863 936826 072844 343532 388034 164530 565058 556467 653162 682903 008876 707104 883876 781913 255445 821444 119576 110470 809609 600509 216286 335061 462076 291391 897963 060930 606529 433315 781271 620241 165549 564486 606365 582133 891152 167489 537758 468109 428225 237960 805146 202863 908821 444008 146862 974012 244230 480192 422627 888693 423914 948860 428682 298316 722452 886476 391135 915510 526510 516166 504115 974145 942776 769233 449879 (628 digits), a[1199] = 1
                                                                                      A[1200]/B[1200] = 794 364244 787097 897894 625239 380543 416125 097855 593338 610903 963428 527905 690301 924772 285012 463137 190439 450055 640452 887380 768988 494301 604355 378987 703746 073733 237877 903649 006782 000096 348842 840467 376364 616083 091526 172044 860927 970275 872444 998330 637771 439430 640458 566015 465535 396215 850606 453996 763727 239295 935284 106046 896953 510237 260606 815251 360274 732786 887613 910742 364479 877547 836269 686876 825050 837683 787847 013683 449416 259759 932102 286469 367373 117629 084124 464852 659290 397352 572727 627784 824635 883582 936267 868739 058809 433434 091550 330973 883140 581367 114158 475347 147102 908976 156180 427938 392359 534864 659753 065094 509122 783383 228544 005831 499577 (627 digits)/77207 061443 187304 069878 092443 486178 411787 333425 227299 653367 338317 619699 932758 678860 729475 054559 965264 232864 107195 647990 789286 007556 635088 984452 819383 242906 309017 228448 135372 935529 328076 537467 243005 027162 029277 573709 603570 328307 395646 322431 688253 036643 317154 329030 800624 589068 873845 137276 916423 564476 535182 121956 318099 702097 164683 824794 563185 656860 398556 877557 844784 028007 204009 476252 703029 595402 697655 245395 443855 786885 142342 953426 722542 544311 528564 028904 423554 400390 338765 777903 671786 955351 630363 386519 481405 794382 516408 701074 808569 988662 302900 578056 101698 640893 616948 696169 937490 966067 824089 454006 346235 107106 773744 345892 340178 (629 digits), a[1200] = 13
                                                                                      A[1201]/B[1201] = 851 993574 505625 990730 463424 173857 897874 149790 439404 996819 994553 839152 110084 503296 618786 129570 555334 963878 876532 643424 008376 027531 141589 821250 862953 683716 177431 438701 888373 495831 550610 049791 886397 261582 320717 424729 628346 586890 243373 748992 763467 054554 734263 272264 758092 850319 886252 479475 860207 960306 264386 794196 096689 178938 244622 328082 362876 895853 271655 858236 576822 453098 190428 848193 503746 235483 002976 263286 818950 922395 556443 639134 682990 413285 206173 934372 970168 518213 708268 478262 469150 131407 181515 959961 037610 371666 817534 287036 241410 928587 355383 050309 810719 116264 136373 821171 866168 237843 353076 586573 523296 582369 384898 397157 722505 (627 digits)/82808 259167 916978 096182 717360 952959 499441 457633 288416 452754 936630 295321 039529 490066 347897 055130 839880 166431 652035 717642 767952 466183 735336 239499 030976 194156 380851 723537 890573 688756 193574 134014 282212 960481 559234 982973 457626 526406 050633 847347 623116 973469 389998 672563 188658 753599 438903 693744 569586 247379 544058 829061 201976 484010 420129 646238 682761 767331 208166 478067 061070 363068 666085 767644 600992 656333 304184 678711 225127 407126 307892 517913 328908 126445 419716 196393 961312 868499 766991 015864 476933 158215 539184 830527 628268 768394 760639 181267 231197 877355 726815 526916 530380 939210 339401 582646 328626 881578 350599 970172 850351 081252 716521 115125 790057 (629 digits), a[1201] = 1
                                                                                      A[1202]/B[1202] = 6758 319266 326479 833007 869208 597548 701244 146388 669173 588643 925305 401970 460893 447848 616515 370131 077784 197207 776181 391348 827620 687019 595484 127743 744421 859746 479897 974562 225396 470917 203113 189010 581145 447159 336548 145152 259354 078507 576061 241279 982040 821313 780301 471868 772185 348455 054373 810327 785182 961439 785991 665419 573777 762804 972963 111827 900413 003759 789204 918398 402237 049235 169271 624231 351274 486064 808680 856691 182072 716528 827207 760412 148306 010625 527342 005463 450470 024848 530606 975622 108686 803433 206879 588466 322082 035101 814290 340227 573017 081478 601839 827515 822136 722825 110797 176141 455537 199768 131289 171109 172198 859968 922832 785935 557112 (628 digits)/656864 875618 606150 743157 113970 156894 907877 536858 246214 822651 894729 686947 209465 109325 164754 440475 844425 397885 671445 671490 164953 270842 782442 660946 036216 602000 974979 293213 369388 756822 683095 475567 218495 750532 943922 454523 806956 013149 750083 253865 050071 850929 047145 036973 121235 864264 946170 993488 903527 296133 343593 925384 731935 090170 105591 348465 342518 028178 855722 224027 272276 569487 866609 849764 909978 189735 826947 996374 019747 636769 297590 578820 024899 429429 466577 403662 152744 479888 707702 888955 010319 062860 404657 200212 879287 173145 840882 969945 426955 130152 390609 266471 814365 215365 992759 774694 237879 137116 278289 245216 298692 675875 789392 151772 870577 (630 digits), a[1202] = 7
                                                                                      A[1203]/B[1203] = 7610 312840 832105 823738 332632 771406 599118 296179 108578 585463 919859 241122 570977 951145 235301 499701 633119 161086 652714 034772 835996 714550 737073 948994 607375 543462 657329 413264 113769 966748 753723 238802 467542 708741 657265 569881 887700 665397 819434 990272 745507 875868 514564 744133 530278 198774 940626 289803 645390 921746 050378 459615 670466 941743 217585 439910 263289 899613 060860 776634 979059 502333 359700 472424 855020 721547 811657 119978 001023 638924 383651 399546 831296 423910 733515 939836 420638 543062 238875 453884 577836 934840 388395 548427 359692 406768 631824 627263 814428 010065 957222 877825 632855 839089 247170 997313 321705 437611 484365 757682 695495 442338 307731 183093 279617 (628 digits)/739673 134786 523128 839339 831331 109854 407318 994491 534631 275406 831359 982268 248994 599391 512651 495606 684305 564317 323481 389132 932905 737026 517778 900445 067192 796157 355831 016751 259962 445578 876669 609581 500708 711014 503157 437497 264582 539555 800717 101212 673188 824398 437143 709536 309894 617864 385074 687233 473113 543512 887652 754445 933911 574180 525720 994704 025279 795510 063888 702094 333346 932556 532695 617409 510970 846069 131132 675085 244875 043895 605483 096733 353807 555874 886293 600056 114057 348388 474693 904819 487252 221075 943842 030740 507555 941540 601522 151212 658153 007508 117424 793388 344746 154576 332161 357340 566506 018694 628889 215389 149043 757128 505913 266898 660634 (630 digits), a[1203] = 1
                                                                                      A[1204]/B[1204] = 37199 570629 654903 127961 199739 683175 097717 331105 103487 930499 604742 366460 744805 252429 557721 368937 610260 841554 387037 530440 171607 545222 543779 923722 173924 033597 109215 627618 680476 337912 218006 144220 451316 282125 965610 424679 810156 740098 853801 202370 964072 324787 838560 448402 893298 143554 816878 969542 366746 648423 987505 503882 255645 529777 843304 871468 953572 602212 032648 024938 318475 058568 608073 513930 771357 372256 055309 336603 186167 272226 361813 358599 473491 706268 461405 764809 133024 197097 486108 791160 420034 542794 760461 782175 760851 662176 341588 849282 830729 121742 430731 338818 353560 079182 099481 165394 742358 950214 068752 201839 954180 629322 153757 518308 675580 (629 digits)/3 615557 414764 698666 100516 439294 596312 537153 514824 384739 924279 220169 616020 205443 506891 215360 422902 581647 655154 965371 228021 896576 218948 853558 262726 304987 786630 398303 360218 409238 539138 189773 913893 221330 594590 956552 204512 865286 171372 952951 658715 742827 148522 795719 875118 360814 335722 486469 742422 795981 470184 894204 943168 467581 386892 208475 327281 443637 210219 111277 032404 605664 299713 997392 319402 953861 574012 351478 696714 999247 812351 719522 965753 440129 652929 011751 803886 608973 873442 606478 508232 959327 947164 180025 323174 909510 939308 246971 574796 059567 160184 860308 440025 193349 833671 321405 204056 503903 211894 793846 106772 894867 704389 813045 219367 513113 (631 digits), a[1204] = 4
                                                                                      A[1205]/B[1205] = 82009 454100 141912 079660 732112 137756 794552 958389 315554 446463 129343 974044 060588 456004 350744 237576 853640 844195 426789 095653 179211 804995 824633 796438 955223 610656 875760 668501 474722 642573 189735 527243 370175 272993 588486 419241 508014 145595 527037 395014 673652 525444 191685 640939 316874 485884 574384 228888 378884 218594 025389 467380 181758 001298 904195 182848 170435 104037 126156 826511 616009 619470 575847 500286 397735 466059 922275 793184 373358 183377 107278 116745 778279 836447 656327 469454 686686 937257 211093 036205 417906 020429 909319 112778 881395 731121 315002 325829 475886 253550 818685 555462 339975 997453 446133 328102 806423 338039 621870 161362 603856 700982 615246 219710 630777 (629 digits)/7 970787 964315 920461 040372 709920 302479 481626 024140 304111 123965 271699 214308 659881 613173 943372 341411 847600 874627 254223 845176 726058 174924 224895 425897 677168 369418 152437 737188 078439 523855 256217 437367 943369 900196 416261 846522 995154 882301 706620 418644 158843 121444 028583 459773 031523 289309 358014 172079 065076 483882 676062 640782 869074 347964 942671 649266 912554 215948 286442 766903 544675 531984 527480 256215 418693 994093 834090 068515 243370 668599 044529 028240 234066 861732 909797 207829 332005 095273 687650 921285 405908 115404 303892 677090 326577 820157 095465 300804 777287 327877 838041 673438 731445 821918 974971 765453 574312 442484 216581 428934 938779 165908 132003 705633 686860 (631 digits), a[1205] = 2
                                                                                      A[1206]/B[1206] = 1 267341 382131 783584 322872 181421 749527 016011 706944 836804 627446 544901 977121 653632 092494 818884 932590 414873 504485 788873 965237 859784 620159 913286 870306 502278 193450 245625 655140 801315 976510 064039 052871 003945 377029 792906 713302 430368 924031 759362 127591 068860 206450 713845 062492 646415 431823 432642 402868 050009 927334 368347 514584 982015 549261 406232 614191 510099 162768 925000 422612 558619 350627 245786 018226 737389 363154 889446 234368 786540 022882 970985 109786 147689 252983 306317 806629 433328 255955 652504 334241 688624 849243 400248 473858 981787 628996 066623 736724 969022 925004 711014 670753 453200 040983 791481 086936 838709 020808 396804 622279 012031 144061 382450 813968 137235 (631 digits)/123 177376 879503 505581 706107 088099 133504 761543 876928 946406 783758 295657 830650 103667 704500 365945 544080 295660 774563 778728 905672 787448 842812 226989 651191 462513 327902 684869 418039 585831 396967 033035 474412 371879 097537 200479 902357 792609 405898 552257 938378 125473 970183 224471 771713 833663 675362 856682 323608 772128 728425 035144 554911 503696 606366 348550 066285 131950 449443 407918 535957 775797 279481 909596 162634 234271 485419 862829 724443 649807 841337 387458 389356 951132 578922 658709 921326 589050 302547 921242 327514 047949 678228 738415 479529 808178 241664 678951 086867 718877 078352 430933 541606 165037 162455 945981 685860 118589 849158 042567 540796 976555 193011 793100 803872 816013 (633 digits), a[1206] = 15
                                                                                      A[1207]/B[1207] = 2 616692 218363 709080 725405 094955 636810 826576 372278 989163 701356 219147 928287 367852 640993 988514 102757 683387 853167 004537 026128 898781 045315 651207 537051 959779 997557 367011 978783 077354 595593 317813 632985 378066 027053 174299 845846 368751 993659 045761 650196 811372 938345 619375 765924 609705 349531 439669 034624 478904 073262 762084 496550 145789 099821 716660 411231 190633 429574 976157 671736 733248 320725 067419 536739 872514 192369 701168 261921 946438 229143 049248 336318 073658 342414 268963 082713 553343 449168 516101 704688 795155 718916 709816 060496 844970 989113 448249 799279 413932 103560 240714 896969 246376 079421 029095 501976 483841 379656 415479 405920 627918 989105 380147 847646 905247 (631 digits)/254 325541 723322 931624 452586 886118 569489 004713 777998 196924 691481 863014 875608 867217 022174 675263 429572 438922 423754 811681 656522 300955 860548 678874 728280 602195 025223 522176 573267 250102 317789 322288 386192 687128 095270 817221 651238 580373 694098 811136 295400 409791 061810 477527 003200 698850 640035 071378 819296 609333 940732 746351 750605 876467 560697 639771 781837 176455 114835 102279 838819 096270 090948 346672 581483 887236 964933 559749 517402 542986 351273 819445 806954 136332 019578 227217 050482 510105 700369 530135 576313 501807 471861 780723 636149 942934 303486 453367 474540 215041 484582 699908 756651 061520 146830 866935 137173 811492 140800 301716 510528 891889 551931 718205 313379 318886 (633 digits), a[1207] = 2
                                                                                      A[1208]/B[1208] = 6 500725 818859 201745 773682 371333 023148 669164 451502 815132 030158 983197 833696 389337 374482 795913 138105 781649 210819 797948 017495 657346 710791 215701 944410 421838 188564 979649 612706 956025 167696 699666 318841 760077 431136 141506 404995 167872 911349 850885 427984 691606 083141 952596 594341 865826 130886 311980 472117 007818 073859 892516 507685 273593 748904 839553 436653 891366 021918 877315 766086 025115 992077 380625 091706 482417 747894 291782 758212 679416 481169 069481 782422 295005 937811 844243 972056 540015 154292 684707 743619 278936 287076 819880 594852 671729 607222 963123 335283 796887 132125 192444 464691 945952 199825 849672 090889 806391 780121 227763 434120 267869 122272 142746 509261 947729 (631 digits)/631 828460 326149 368830 611280 860336 272482 770971 432925 340256 166722 021687 581867 838101 748849 716472 403225 173505 622073 402092 218717 389360 563909 584739 107752 666903 378349 729222 564574 086036 032545 677612 246797 746135 288078 834923 204834 953356 794096 174530 529178 945056 093804 179525 778115 231364 955432 999439 962201 990796 609890 527848 056123 256631 727761 628093 629959 484860 679113 612478 213595 968337 461378 602941 325602 008745 415286 982328 759248 735780 543885 026350 003265 223796 618079 113144 022291 609261 703286 981513 480141 051564 621952 299862 751829 694046 848637 585686 035948 148960 047517 830751 054908 288077 456117 679851 960207 741574 130758 646000 561854 760334 296875 229511 430631 453785 (633 digits), a[1208] = 2
                                                                                      A[1209]/B[1209] = 15 618143 856082 112572 272769 837621 683108 164905 275284 619427 761674 185543 595680 146527 389959 580340 378969 246686 274806 600433 061120 213474 466898 082611 425872 803456 374687 326311 204196 989404 930986 717146 270668 898220 889325 457312 655836 704497 816358 747532 506166 194585 104629 524568 954608 341357 611304 063629 978858 494540 220982 547117 511920 692976 597631 395767 284538 973365 473412 730789 203908 783480 304879 828669 720152 837349 688158 284733 778347 305271 191481 188211 901162 663670 218037 957451 026826 633373 757753 885517 191927 353028 293070 349577 250202 188430 203559 374496 469847 007706 367810 625603 826353 138280 479072 728439 683756 096624 939898 871006 274161 163657 233649 665640 866170 800705 (632 digits)/1517 982462 375621 669285 675148 606791 114454 546656 643848 877437 024925 906390 039344 543420 519874 108208 236022 785933 667901 615866 093957 079676 988367 848352 943785 936001 781922 980621 702415 422174 382880 677512 879788 179398 671428 487068 060908 487087 282291 160197 353758 299903 249418 836578 559431 161580 550901 070258 743700 590927 160513 802047 862852 389731 016220 895959 041756 146176 473062 327236 266011 032945 013705 552555 232687 904727 795507 524407 035900 014547 439043 872145 813484 583925 255736 453505 095065 728629 106943 493162 536595 604936 715766 380449 139809 331028 000761 624739 546436 512961 579618 361410 866467 637675 059066 226639 057589 294640 402317 593717 634238 412558 145682 177228 174642 226456 (634 digits), a[1209] = 2
                                                                                      A[1210]/B[1210] = 53 355157 387105 539462 591991 884198 072473 163880 277356 673415 315181 539828 620736 828919 544361 536934 275013 521708 035239 599247 200856 297770 111485 463536 222028 832207 312626 958583 225297 924239 960656 851105 130848 454740 099112 513444 372505 281366 360426 093482 946483 275361 397030 526303 458166 889898 964798 502870 408692 491438 736807 533869 043447 352523 541799 026855 290270 811462 442157 069683 377812 375556 906716 866634 252164 994466 812369 145984 093254 595230 055612 634117 485910 286016 591925 716597 052536 440136 427554 341259 319401 338021 166287 868612 345459 237020 217901 086612 744824 820006 235557 069255 943751 360793 637044 034991 142158 096266 599817 840782 256603 758840 823221 139669 107774 349844 (632 digits)/5185 775847 453014 376687 636726 680709 615846 410941 364471 972567 241499 740857 699901 468363 308472 041097 111293 531306 625778 249690 500588 628391 529013 129797 939110 474908 724118 671087 671820 352559 181187 710150 886162 284331 302364 296127 387560 414618 640969 655122 590453 844765 842060 689261 456408 716106 608136 210216 193303 763578 091431 933991 644680 425824 776424 315970 755227 923390 098300 594187 011629 067172 502495 260607 023665 722928 801809 555549 866948 779422 861016 642787 443718 975572 385288 473659 307488 795149 024117 461001 089927 866374 769251 441210 171257 687130 850922 459904 675257 687844 786372 914983 654311 201102 633316 359769 132975 625495 337711 427153 464569 998008 733921 761195 954558 133153 (634 digits), a[1210] = 3
                                                                                      A[1211]/B[1211] = 68 973301 243187 652034 864761 721819 755581 328785 552641 292843 076855 725372 216416 975446 934321 117274 653982 768394 310046 199680 261976 511244 578383 546147 647901 635663 687314 284894 429494 913644 891643 568251 401517 352960 988437 970757 028341 985864 176784 841015 452649 469946 501660 050872 412775 231256 576102 566500 387550 985978 957790 080986 555368 045500 139430 422622 574809 784827 915569 800472 581721 159037 211596 695303 972317 831816 500527 430717 871601 900501 247093 822329 387072 949686 809963 674048 079363 073510 185308 226776 511328 691049 459358 218189 595661 425450 421460 461109 214671 827712 603367 694859 770104 499074 116116 763430 825914 192891 539716 711788 530764 922498 056870 805309 973945 150549 (632 digits)/6703 758309 828636 045973 311875 287500 730300 957598 008320 850004 266425 647247 739246 011783 828346 149305 347316 317240 293679 865556 594545 708068 517380 978150 882896 410910 506041 651709 374235 774733 564068 387663 765950 463729 973792 783195 448468 901705 923260 815319 944212 144669 091479 525840 015839 877687 159037 280474 937004 354505 251945 736039 507532 815555 792645 211929 796984 069566 571362 921423 277640 100117 516200 813162 256353 627656 597317 079956 902848 793970 300060 514933 257203 559497 641024 927164 402554 523778 131060 954163 626523 471311 485017 821659 311067 018158 851684 084644 221694 200806 365991 276394 520778 838777 692382 586408 190564 920135 740029 020871 098808 410566 879603 938424 129200 359609 (634 digits), a[1211] = 1
                                                                                      A[1212]/B[1212] = 1708 714387 223609 188299 346273 207872 206425 054733 540747 701649 159718 948761 814744 239645 968068 351525 970599 963171 476348 391573 488292 567639 992690 571079 771668 088135 808169 796049 533175 851717 360102 489138 767264 925803 821623 811613 052712 942106 603262 277853 810070 554077 436871 747241 364772 440056 791260 098879 709916 154933 723769 477546 372280 444526 888129 169797 085705 647332 415832 281025 339120 192449 985037 553929 587792 958062 825027 483213 011700 207259 985864 370022 775661 078500 031053 893750 957250 204380 874951 783895 591289 923208 190885 105162 641333 447830 332952 153233 896948 685108 716381 745890 426259 338572 423846 357330 964098 725663 553018 923706 994961 898794 188120 467108 482457 963020 (634 digits)/166075 975283 340279 480047 121733 580727 143069 393293 564172 372669 635715 274803 441805 751175 188779 624425 446885 145073 674095 023048 769685 622035 946156 605419 128624 336760 869118 312112 653478 946164 718829 014081 268973 413850 673391 092818 150814 055560 799229 222801 251545 316824 037569 309421 836565 780598 425030 941614 681408 271704 138129 598939 825467 999163 799909 402285 882845 592987 811010 708345 674991 469992 891314 776501 176152 786687 137419 474515 535319 834710 062469 001185 616604 403515 769886 725604 968797 365824 169580 360928 126491 177850 409679 161033 636866 122943 291340 491365 995918 507197 570163 548452 153003 331767 250498 433565 706533 708753 098407 928059 835971 851613 844416 283375 055366 763769 (636 digits), a[1212] = 24
                                                                                      A[1213]/B[1213] = 3486 402075 690406 028633 557308 137564 168431 438252 634136 696141 396293 622895 845905 454738 870457 820326 595182 694737 262742 982827 238561 646524 563764 688307 191237 811935 303653 876993 495846 617079 611848 546528 936047 204568 631685 593983 133767 870077 383309 396723 072790 578101 375403 545355 142320 111370 158622 764259 807383 295846 405329 036079 299928 934553 915688 762216 746221 079492 747234 362523 259961 543937 181671 803163 147903 747942 150582 397143 895002 315021 218822 562374 938395 106686 872071 461549 993863 482271 935211 794567 693908 537465 841128 428514 878328 321111 087364 767577 008569 197930 036131 186640 622623 176218 963809 478092 754111 644218 645754 559202 520688 720086 433111 739526 938861 076589 (634 digits)/338855 708876 509195 006067 555342 448955 016439 744185 136665 595343 537856 196854 622857 514134 205905 398156 241086 607387 641869 911654 133916 952140 409694 188989 140145 084432 244278 275934 681193 667063 001726 415826 303897 291431 320574 968831 750097 012827 521719 260922 447302 778317 166618 144683 688971 438884 009099 163704 299820 897913 528204 933919 158468 813883 392464 016501 562675 255542 193384 338114 627623 040103 298830 366164 608659 201030 872156 028987 973488 463390 424998 517304 490412 366529 180798 378374 340149 255426 470221 676019 879505 827012 304376 143726 584799 264045 434365 067376 213531 215201 506318 373298 826785 502312 193379 453539 603632 337641 936844 876990 770752 113794 568436 505174 239933 887147 (636 digits), a[1213] = 2
                                                                                      A[1214]/B[1214] = 8681 518538 604421 245566 460889 483000 543287 931238 809021 093931 952306 194553 506555 149123 708983 992179 160965 352646 001834 357227 965415 860689 120219 947694 154143 712006 415477 550036 524869 085876 583799 582196 639359 334941 084994 999579 320248 682261 369881 071299 955651 710280 187678 837951 649412 662797 108505 627399 324682 746626 534427 549704 972138 313634 719506 694230 578147 806317 910301 006071 859043 280324 348381 160255 883600 453947 126192 277500 801704 837302 423509 494772 652451 291873 775196 816850 944977 168924 745375 373030 979106 998139 873141 962192 397990 090052 507681 688387 914087 080968 788644 119171 671505 691010 351465 313516 472322 014100 844528 042112 036339 338967 054343 946162 360180 116198 (634 digits)/843787 393036 358669 492182 232418 478637 175948 881663 837503 563356 711427 668512 687520 779443 600590 420737 929058 359848 957834 846357 037519 526316 765544 983397 408914 505625 357674 863982 015866 280290 722281 845733 876767 996713 314541 030481 651008 081215 842667 744646 146150 873458 370805 598789 214508 658366 443229 269023 281050 067531 194539 466778 142405 626930 584837 435289 008196 104072 197779 384574 930237 550199 488975 508830 393471 188748 881731 532491 482296 761490 912466 035794 597429 136574 131483 482353 649095 876677 110023 712967 885502 831875 018431 448486 806464 651034 160070 626118 422980 937600 582800 295049 806574 336391 637257 340644 913798 384036 972097 682041 377476 079202 981289 293723 535234 538063 (636 digits), a[1214] = 2
                                                                                      A[1215]/B[1215] = 46893 994768 712512 256465 861755 552566 884871 094446 679242 165801 157824 595663 378681 200357 415377 781222 400009 457967 271914 768967 065640 949970 164864 426777 961956 371967 381041 627176 120192 046462 530846 457512 132843 879274 056660 591879 735011 281384 232714 753222 851049 129502 313797 735113 389383 425355 701150 901256 430797 028979 077466 784604 160620 502727 513222 233369 636960 111082 298739 392882 555177 945558 923577 604442 565906 017677 781543 784647 903526 501533 336370 036238 200651 566055 748055 545804 718749 326895 662088 659722 589443 528165 206838 239476 868278 771373 625773 209516 579004 602773 979351 782498 980151 631270 721136 045675 115721 714722 868394 769762 702385 414921 704831 470338 739761 657579 (635 digits)/4 557792 674058 302542 466978 717434 842140 896184 152504 324183 412127 094994 539418 060461 411352 208857 501845 886378 406632 431044 143439 321514 583724 237419 105976 184717 612559 032652 595844 760525 068516 613135 644495 687737 274997 893280 121240 005137 418906 735057 984153 178057 145609 020646 138629 761514 730716 225245 508820 705071 235569 500902 267809 870496 948536 316651 192946 603655 775903 182281 260989 278810 791100 743707 910316 576015 144775 280813 691445 384972 270844 987328 696277 477558 049399 838215 790142 585628 638812 020340 240859 307019 986387 396533 386160 617122 519216 234718 197968 328435 903204 420319 848547 859657 184270 379666 156764 172624 257826 797333 287197 658132 509809 474882 973791 916106 577462 (637 digits), a[1215] = 5
                                                                                      A[1216]/B[1216] = 102469 508076 029445 758498 184400 588134 313030 120132 167505 425534 267955 385880 263917 549838 539739 554623 960984 268580 545663 895162 096697 760629 449948 801250 078056 455941 177560 804388 765253 178801 645492 497220 905047 093489 198316 183338 790271 245029 835310 577745 657749 969284 815274 308178 428179 513508 510807 429912 186276 804584 689361 118913 293379 319089 745951 160969 852068 028482 507779 791836 969399 171442 195536 369141 015412 489302 689279 846796 608757 840369 096249 567249 053754 423985 271307 908460 382475 822716 069552 692476 157994 054470 286818 441146 134547 632799 759228 107421 072096 286516 747347 684169 631808 953551 793737 404866 703765 443546 581317 581637 441110 168810 464006 886839 839703 431356 (636 digits)/9 959372 741152 963754 426139 667288 162918 968317 186672 485870 387610 901416 747348 808443 602148 018305 424429 701815 173113 819923 133235 680548 693765 240383 195349 778349 730743 422980 055671 536916 417323 948553 134725 252242 546709 101101 272961 661282 919029 312783 712952 502265 164676 412097 876048 737538 119798 893720 286664 691192 538670 196344 002397 883399 524003 218139 821182 215507 655878 562341 906553 487859 132400 976391 329463 545501 478299 443358 915382 252241 303180 887123 428349 552545 235373 807915 062638 820353 154301 150704 194686 499542 804649 811498 220808 040709 689466 629507 022055 079852 744009 423439 992145 525888 704932 396589 654173 259046 899690 566764 256436 693741 098821 931055 241307 367447 692987 (637 digits), a[1216] = 2
                                                                                      A[1217]/B[1217] = 764180 551300 918632 565953 152559 669507 076081 935371 851780 144541 033512 296825 226104 049227 193554 663590 126899 338031 091562 035101 742525 274376 314506 035528 508351 563555 623967 257897 476964 298074 049293 938058 468173 533698 444873 875251 266909 996593 079888 797442 455298 914496 020717 892362 386640 019915 276802 910641 734734 661071 902994 616997 214275 736355 734880 360158 601436 310459 853197 935741 340972 145654 292332 188429 673793 442796 606502 712224 164831 384117 010117 006981 576932 533952 647210 905027 396080 085908 148957 507055 695401 909457 214567 327499 810112 200971 940369 961464 083678 608391 210785 571686 402814 306133 277297 879742 042079 819548 937617 841224 790156 596594 952879 678217 617685 677071 (636 digits)/74 273401 862129 048823 449956 388451 982573 674404 459211 725276 125403 404911 770859 719566 626388 336995 472853 799084 618429 170506 076089 085355 440080 920101 473424 633165 727762 993512 985545 518939 989784 253007 587572 453435 101961 600989 031971 634117 852111 924543 974820 693913 298343 905331 270970 924281 569308 481287 515473 543419 006260 875310 284595 054293 616558 843629 941222 112209 367053 118674 606863 693824 717907 578447 216561 394525 492871 384326 099121 150661 393111 197192 694724 345374 697016 493621 228614 328100 718920 075269 603664 803819 618936 077020 931816 902090 345482 641267 352353 887405 111270 384399 793566 540878 118797 155793 735976 985952 555660 764683 082254 514320 201562 992269 662943 488240 428371 (638 digits), a[1217] = 7
                                                                                      A[1218]/B[1218] = 866650 059376 948078 324451 336960 257641 389112 055504 019285 570075 301467 682705 490021 599065 733294 218214 087883 606611 637225 930263 839223 035005 764454 836778 586408 019496 801528 062286 242217 476875 694786 435279 373220 627187 643190 058590 057181 241622 915199 375188 113048 883780 835992 200540 814819 533423 787610 340553 921011 465656 592355 735910 507655 055445 480831 521128 453504 338942 360977 727578 310371 317096 487868 557570 689205 932099 295782 559020 773589 224486 106366 574230 630686 957937 918518 813487 778555 908624 218510 199531 853395 963927 501385 768645 944659 833771 699598 068885 155774 894907 958133 255856 034623 259685 071035 284608 745845 263095 518935 422862 231266 765405 416886 565057 457389 108427 (636 digits)/84 232774 603282 012577 876096 055740 145492 642721 645884 211146 513014 306328 518208 528010 228536 355300 897283 500899 791542 990429 209324 765904 133846 160484 668774 411515 458506 416493 041217 055856 407108 201560 722297 705677 648670 702090 304933 295400 771141 237327 687773 196178 463020 317429 147019 661819 689107 375007 802138 234611 544931 071654 286992 937693 140562 061769 762404 327717 022931 681016 513417 181683 850308 554838 546024 940026 971170 827685 014503 402902 696292 084316 123073 897919 932390 301536 291253 148453 873221 225973 798351 303362 423585 888519 152624 942800 034949 270774 374408 967257 855279 807839 785712 066766 823729 552383 390150 244999 455351 331447 338691 208061 300384 923324 904250 855688 121358 (638 digits), a[1218] = 1
                                                                                      A[1219]/B[1219] = 5 097430 848185 659024 188209 837360 957714 021642 212891 948207 994917 540850 710352 676212 044555 860025 754660 566317 371089 277691 686420 938640 449405 136780 219421 440391 661039 631607 569328 688051 682452 523226 114455 334276 669636 660824 168201 552816 204707 655885 673383 020543 333400 200678 895066 460737 687034 214854 613411 339791 989354 864773 296549 752551 013583 139037 965800 868958 005171 658086 573632 892828 731136 731674 976283 119823 103293 085415 507328 032777 506547 541949 878134 730367 323642 239804 972466 288859 629029 241508 504714 962381 729094 721496 170729 533411 369830 438360 305889 862553 082931 001451 850966 575930 604558 632474 302785 771306 135026 532294 955535 946490 423622 037312 503504 904631 219206 (637 digits)/495 437274 878539 111712 830436 667152 710036 888012 688632 781008 690474 936554 361902 359617 769070 113499 959271 303583 576144 122652 122712 914876 109311 722524 817296 690743 020295 075978 191630 798222 025325 260811 199060 981823 345315 111440 556638 111121 707818 111182 413686 674805 613445 492477 006069 233380 014845 356326 526164 716476 730916 233581 719559 742759 319369 152478 753243 750794 481711 523757 173949 602243 969450 352639 946686 094660 348725 522751 171638 165174 874571 618773 310093 834974 358968 001302 684880 070370 085026 205138 595421 320631 736865 519616 694941 616090 520228 995139 224398 723694 387669 423598 722126 874712 237444 917710 686728 210949 832417 421919 775710 554626 703487 608894 184197 766681 035161 (639 digits), a[1219] = 5
                                                                                      A[1220]/B[1220] = 123 204990 415832 764658 841487 433623 242777 908525 164910 776277 448096 281884 731169 719110 668406 373912 330067 679500 512754 301826 404366 366593 820729 047180 102893 155807 884447 960109 726174 755457 855736 252213 182207 395860 698467 502970 095427 324770 154606 656455 536380 606088 885385 652285 682135 872524 022244 944121 062426 076019 210173 346914 853104 568879 381440 817742 700349 308496 463062 155055 494767 738260 864378 048067 988365 564960 411133 345754 734893 560249 381627 113163 649464 159502 725351 673838 152678 711187 005326 014714 312690 950557 462200 817293 866154 746532 709702 220245 410241 857048 885251 992977 679053 856957 769092 250418 551467 257192 503732 294014 355724 947036 932334 312386 649175 168538 369371 (639 digits)/11974 727371 688220 693685 806576 067405 186377 955026 173070 955355 084412 783633 203865 158836 686219 079299 919794 786905 619001 934080 154434 722930 757327 501080 283894 989347 945588 239969 640356 213185 014914 461029 499761 269437 936233 376663 664247 962321 758775 905705 616253 391513 185712 136877 292681 262940 045395 926844 430091 430053 086920 677615 556426 763916 805421 721259 840254 346784 584008 251188 688207 635539 117117 018197 266491 211875 340583 373713 133819 367099 686010 934875 565325 937304 547622 332800 728374 837335 913850 149300 088462 998524 108358 359319 831223 728972 520445 154115 759978 335923 159345 974209 116757 059860 522407 577439 871627 307795 433369 457521 955744 519102 184087 536785 324997 256032 965222 (641 digits), a[1220] = 24
                                                                                      A[1221]/B[1221] = 128 302421 264018 423683 029697 270984 200491 930167 377802 724485 443013 822735 441522 395322 712962 233938 084728 245817 883843 579518 090787 305234 270134 183960 322314 596199 545487 591717 295503 443509 538188 775439 296662 730137 368104 163794 263628 877586 359314 312341 209763 626632 218785 852964 577202 333261 709279 158975 675837 415811 199528 211688 149654 321430 395023 956780 666150 177454 468233 813142 068400 631089 595514 779742 964648 684783 514426 431170 242221 593026 888174 655113 527598 889870 048993 913643 125145 000046 634355 256222 817405 912939 191295 538790 036884 279944 079532 658605 716131 719601 968182 994429 530020 432888 373650 882892 854253 028498 638758 826309 311260 893527 355956 349699 152680 073169 588577 (639 digits)/12470 164646 566759 805398 637012 734557 896414 843038 861703 736363 774887 720187 565767 518454 455289 192799 879066 090489 195146 056732 277147 637806 866639 223605 101191 680090 965883 315947 831987 011407 040239 721840 698822 251261 281548 488104 220886 073443 466594 016888 029940 066318 799157 629354 298750 496320 060241 283170 956256 146529 817836 911197 275986 506676 124790 873738 593498 097579 065719 774945 862157 237783 086567 370837 213177 306535 689308 896464 305457 532274 560582 553648 875419 772278 906590 334103 413254 907705 998876 354438 683884 319155 845223 878936 526165 345063 040674 149254 984377 059617 547015 397807 838883 934572 759852 495150 558355 518745 265786 879441 731455 073728 887575 145679 509195 022714 000383 (641 digits), a[1221] = 1
                                                                                      A[1222]/B[1222] = 379 809832 943869 612024 900881 975591 643761 768859 920516 225248 334123 927355 614214 509756 094330 841788 499524 171136 280441 460862 585940 977062 360997 415100 747522 348206 975423 143544 317181 642476 932113 803091 775532 856135 434675 830558 622685 079942 873235 281137 955907 859353 322957 358214 836540 539047 440803 262072 414100 907641 609229 770291 152413 211740 171488 731304 032649 663405 399529 781339 631569 000440 055407 607553 917662 934527 439986 208095 219336 746303 157976 423390 704661 939242 823339 501124 402968 711280 274036 527159 947502 776435 844791 894873 939923 306420 868767 537456 842505 296252 821617 981836 739094 722734 516394 016204 259973 314189 781249 946632 978246 734091 644247 011784 954535 314877 546525 (639 digits)/36915 056664 821740 304483 080601 536520 979207 641103 896478 428082 634188 224008 335400 195745 596797 464899 677926 967884 009294 047544 708729 998544 490605 948290 486278 349529 877354 871865 304330 235999 095393 904710 897405 771960 499330 352872 106020 109208 691963 939481 676133 524150 784027 395585 890182 255580 165878 493186 342603 723112 722594 500010 108399 777269 055003 468737 027250 541942 715447 801080 412522 111105 290251 759871 692845 824946 719201 166641 744734 431648 807176 042173 316165 481862 360803 001007 554884 652747 911602 858177 456231 636835 798806 117192 883554 419098 601793 452625 728732 455158 253376 769824 794524 929006 042112 567740 988338 345285 964943 216405 418654 666559 959237 828144 343387 301460 965988 (641 digits), a[1222] = 2
                                                                                      A[1223]/B[1223] = 887 922087 151757 647732 831461 222167 488015 467887 218835 174982 111261 677446 669951 414834 901623 917515 083776 588090 444726 501243 262669 259358 992129 014161 817359 292613 496333 878805 929866 728463 402416 381622 847728 442408 237455 824911 508999 037472 105784 874617 121579 345338 864700 569394 250283 411356 590885 683120 504039 231094 417987 752270 454480 744910 738001 419388 731449 504265 267293 375821 331538 631969 706329 994850 799974 553838 394398 847360 680895 085633 204127 501894 936922 768355 695672 915891 931082 422607 182428 310542 712411 465810 880879 328537 916730 892785 817067 733519 401142 312107 611418 958103 008209 878357 406438 915301 374199 656878 201258 719575 267754 361710 644450 373269 061750 702924 681627 (639 digits)/86300 277976 210240 414364 798215 807599 854830 125246 654660 592529 043264 168204 236567 909945 648884 122599 234920 026257 213734 151821 694607 634895 847851 120186 073748 379150 720593 059678 440647 483405 231027 531262 493633 795182 280209 193848 432926 291860 850521 895851 382207 114620 367212 420526 079115 007480 391998 269543 641463 592755 263025 911217 492786 061214 234797 811212 647999 181464 496615 377106 687201 459993 667070 890580 598868 956429 127711 229747 794926 395572 174934 637995 507750 736003 628196 336118 523024 213201 822082 070793 596347 592827 442836 113322 293274 183260 244261 054506 441841 969934 053768 937457 427933 792584 844077 630632 535032 209317 195673 312252 568764 406848 806050 801968 195969 625635 932359 (641 digits), a[1223] = 2
                                                                                      A[1224]/B[1224] = 2155 654007 247384 907490 563804 419926 619792 704634 358186 575212 556647 282248 954117 339425 897578 676818 667077 347317 169894 463349 111279 495780 345255 443424 382240 933433 968090 901156 176915 099403 736946 566337 470989 740951 909587 480381 640683 154887 084805 030372 199066 550031 052358 497003 337107 361760 622574 628313 422179 369830 445205 274832 061374 701561 647491 570081 495548 671935 934116 532982 294646 264379 468067 597255 517612 042204 228783 902816 581126 917569 566231 427180 578507 475954 214685 332908 265133 556494 638893 148245 372325 708057 606550 551949 773385 091992 502903 004495 644789 920468 044455 898042 755514 479449 329271 846807 008372 627946 183767 385783 513755 457512 933147 758323 078036 720726 909779 (640 digits)/209515 612617 242221 133212 677033 151720 688867 891597 205799 613140 720716 560416 808536 015636 894565 710098 147767 020398 436762 351188 097945 268336 186308 188662 633775 107831 318540 991222 185625 202809 557448 967235 884673 362325 059748 740568 971872 692930 393007 731184 440547 753391 518452 236638 048412 270540 949875 032273 625530 908623 248646 322445 093971 899697 524599 091162 323248 904871 708678 555293 786925 031092 624393 541032 890583 737804 974623 626137 334587 222793 157045 318164 331666 953869 617195 673244 600933 079151 555766 999764 648926 822490 684478 343837 470102 785619 090315 561638 612416 395026 360914 644739 650392 514175 730267 829006 058402 763920 356289 840910 556183 480257 571339 432080 735326 552732 830706 (642 digits), a[1224] = 2
                                                                                      A[1225]/B[1225] = 20288 808152 378221 815147 905701 001507 066149 809596 442514 351895 121087 217687 257007 469667 979832 008883 087472 713944 973776 671385 264184 721382 099428 004981 257527 693519 209151 989211 522102 623097 034935 478660 086636 110975 423743 148346 275147 431455 869030 147966 913178 295618 335927 042424 284249 667202 194057 337941 303653 559568 424835 225759 006853 058965 565425 550122 191387 551688 674342 172661 983355 011384 918938 370150 458482 933676 453453 972709 911037 343759 300210 346520 143490 051943 627840 912066 317284 431058 932466 644751 063342 838329 339834 296085 877196 720718 343194 773980 204251 596320 011522 040487 807840 193401 369885 536564 449553 308393 855165 191626 891553 479327 042780 198176 764081 189466 869638 (641 digits)/1 971940 791531 390230 613278 891514 173086 054641 149621 506857 110795 529713 211955 513392 050677 699975 513482 564823 209843 144595 312514 576115 049921 524624 818149 777724 349632 587461 980678 111274 308691 248068 236385 455694 056107 817947 858969 179780 528234 387591 476511 347136 895144 033282 550268 514825 442348 940873 560006 271241 770364 500842 813223 338533 158491 956189 631673 557239 325309 874722 374750 769526 739827 286612 759876 614122 596673 899323 864983 806211 400710 588342 501474 492753 320830 182957 395319 931421 925565 823985 068675 436688 995243 603141 207859 524199 253832 057101 109253 953589 525171 302000 740114 281466 420166 416488 091687 060657 084600 402281 880447 574415 729166 948105 690694 813908 600231 408713 (643 digits), a[1225] = 9
                                                                                      A[1226]/B[1226] = 712263 939340 485148 437667 263339 472673 935036 040509 846188 891541 794699 901302 949378 777805 191698 987726 728622 335391 252077 961833 357744 744153 825235 617768 395710 206606 288410 523559 450506 907799 959688 319440 503253 625091 740597 672501 270843 255842 500860 209214 160306 896672 809804 981853 285845 713837 414581 456259 050053 954725 314438 176397 301231 765356 437385 824358 194112 981039 536092 576151 712071 662851 630910 552521 564514 720880 099672 947663 467433 949145 073593 555385 600659 293981 189117 255229 370088 643557 275225 714532 589325 049584 500750 914955 475270 317134 514720 093802 793595 791668 447727 315116 029921 248497 275265 626562 742738 421731 114549 092724 718127 233959 430454 694509 820878 352067 347109 (642 digits)/69 227443 316215 900292 597973 880029 209732 601308 128349 945798 490984 260678 978859 777257 789356 393708 681987 916579 364908 497598 289198 261972 015589 548176 823904 854127 344971 879710 314956 080226 007003 239837 240726 833965 326098 687923 804490 264191 181133 958709 409081 590339 083432 683341 496036 067302 752753 880449 632493 118992 871380 778144 785261 942632 446915 991236 199736 826625 290717 323961 671570 720360 925047 655840 136714 384874 621391 450958 900570 551986 247663 749032 869771 578033 182926 020704 509442 200700 473955 395244 403404 933041 656016 794420 618920 817076 669741 088854 385526 988049 776021 930940 548739 501717 220000 307351 038053 181400 724934 436155 656575 660734 001100 755038 606399 222127 560832 135661 (644 digits), a[1226] = 35
                                                                                      A[1227]/B[1227] = 732552 747492 863370 252815 169040 474181 001185 850106 288703 243436 915787 118990 206386 247473 171530 996609 816095 049336 225854 633218 621929 465535 924663 622749 653237 900125 497562 512770 972609 530896 994623 798100 589889 736067 164340 820847 545990 687298 369890 357181 073485 192291 145732 024277 570095 381039 608638 794200 353707 514293 739273 402156 308084 824322 002811 374480 385500 532728 210434 748813 695426 674236 549848 922672 022997 654556 553126 920373 378471 292904 373803 901905 744149 345924 816958 167295 687373 074616 207692 359283 652667 887913 840585 211041 352467 037852 857914 867782 997847 387988 459249 355603 837761 441898 645151 163127 192291 730124 969714 284351 609680 713286 473234 892686 584959 541534 216747 (642 digits)/71 199384 107747 290523 211252 771543 382818 655949 277971 452655 601779 790392 190815 290649 840034 093684 195470 481402 574751 642193 601712 838087 065511 072801 642054 631851 694604 467172 295634 191500 315694 487905 477112 289659 382206 505871 663459 443971 709368 346300 885592 937475 978576 716624 046304 582128 195102 821323 192499 390234 641745 278987 598485 281165 605407 947425 831410 383864 616027 198684 046321 489887 664874 942452 896590 998997 218065 350282 765554 358197 648374 337375 371246 070786 503756 203661 904762 132122 399521 219229 472080 369730 651260 397561 826780 341275 923573 145955 494780 941639 301193 232941 288853 783183 640166 723839 129740 242057 809534 838437 537023 235149 730267 703144 297094 036036 161063 544374 (644 digits), a[1227] = 1
                                                                                      A[1228]/B[1228] = 7 305238 666776 255480 713003 784703 740302 945708 691466 444518 082474 036783 972214 806855 005063 735477 957215 073477 779417 284769 660800 955109 933977 147208 222515 274851 307735 766473 138498 203992 685872 911302 502345 812261 249696 219665 060129 184759 441527 829873 423843 821673 627293 121393 200351 416704 143193 892330 604062 233421 583368 967898 795804 073995 184254 462688 194681 663617 775593 430005 315474 970911 730980 579550 856569 771493 611889 077815 231023 873675 585284 437828 672537 298003 407304 541740 760890 556446 315103 144456 948085 463336 040809 066017 814327 647473 657810 235953 903849 774222 283564 580971 515550 569774 225585 081626 094707 473363 992855 841977 651889 205253 653537 689568 728689 085514 225875 297832 (643 digits)/710 021900 285941 515001 499248 823919 655100 504851 630093 019698 907002 374208 696197 393106 349663 236866 441222 249202 537673 277340 704613 804755 605189 203391 602396 540792 596412 084260 975663 803728 848253 630986 534737 440899 765957 240768 775625 259936 565449 075417 379418 027622 890623 132957 912777 306456 508679 272358 364987 631104 647088 289033 171629 473122 895587 518068 682430 281406 834962 112118 088464 129349 908922 137916 206033 375849 583979 603503 790559 775765 083032 785411 210986 215111 716731 853661 652301 389802 069646 368309 652128 260617 517360 372477 059943 888559 981899 402453 838555 462803 486761 027412 148423 550369 981500 821903 205715 359921 010747 982093 489784 777081 573510 083337 280245 546453 010404 035027 (645 digits), a[1228] = 9
                                                                                      A[1229]/B[1229] = 15 343030 081045 374331 678822 738447 954786 892603 233039 177739 408384 989355 063419 820096 257600 642486 911039 963050 608170 795393 954820 532149 333490 219080 067780 202940 515597 030508 789767 380594 902642 817228 802792 214412 235459 603670 941105 915509 570354 029637 204868 716832 446877 388518 424980 403503 667427 393300 002324 820550 681031 675070 993764 456075 192830 928187 763843 712736 083915 070445 379763 637250 136197 708950 635811 565984 878334 708757 382421 125822 463473 249461 246980 340156 160533 900439 689076 800265 704822 496606 255454 579339 969531 972620 839696 647414 353473 329822 675482 546291 955117 621192 386704 977309 893068 808403 352542 139019 715836 653669 588130 020188 020361 852372 350064 755987 993284 812411 (644 digits)/1491 243184 679630 320526 209750 419382 693019 665652 538157 492053 415784 538809 583210 076862 539360 567417 077914 979807 650098 196875 010940 447598 275889 479584 846847 713436 887428 635694 246961 798958 012201 749878 546587 171458 914120 987409 214709 963844 840266 497135 644428 992721 759822 982539 871859 195041 212461 366039 922474 652443 935921 857053 941744 227411 396582 983563 196270 946678 285951 422920 223249 748587 482719 218285 308657 750696 386024 557290 346673 909727 814439 908197 793218 501009 937219 910985 209364 911726 538813 955848 776336 890965 685981 142515 946668 118395 887371 950863 171891 867246 274715 287765 585700 883923 603168 367645 541170 961899 831030 802624 516592 789312 877287 869818 857585 128942 181871 614428 (646 digits), a[1229] = 2
                                                                                      A[1230]/B[1230] = 22 648268 747821 629812 391826 523151 695089 838311 924505 622257 490859 026139 035634 626951 262664 377964 868255 036528 387588 080163 615621 487259 267467 366288 290295 477791 823332 796981 928265 584587 588515 728531 305138 026673 485155 823336 001235 100269 011881 859510 628712 538506 074170 509911 625331 820207 810621 285630 606387 053972 264400 642969 789568 530070 377085 390875 958525 376353 859508 500450 695238 608161 867178 288501 492381 337478 490223 786572 613444 999498 048757 687289 919517 638159 567838 442180 449967 356712 019925 641063 203540 042676 010341 038638 654024 294888 011283 565776 579332 320514 238682 202163 902255 547084 118653 890029 447249 612383 708692 495647 240019 225441 673899 541941 078753 841502 219160 110243 (644 digits)/2201 265084 965571 835527 708999 243302 348120 170504 168250 511752 322786 913018 279407 469968 889023 804283 519137 229010 187771 474215 715554 252353 881078 682976 449244 254229 483840 719955 222625 602686 860455 380865 081324 612358 680078 228177 990335 223781 405715 572553 023847 020344 650446 115497 784636 501497 721140 638398 287462 283548 583010 146087 113373 700534 292170 501631 878701 228085 120913 535038 311713 877937 391641 356201 514691 126545 970004 160794 137233 685492 897472 693609 004204 716121 653951 764646 861666 301528 608460 324158 428465 151583 203341 514993 006612 006955 869271 353317 010447 330049 761476 315177 734124 434293 584669 189548 746886 321820 841778 784718 006377 566394 450797 953156 137830 675395 192275 649455 (646 digits), a[1230] = 1
                                                                                      A[1231]/B[1231] = 83 287836 324510 263768 854302 307903 040056 407539 006556 044511 880962 067772 170323 700950 045593 776381 515805 072635 770935 035884 801684 993927 135892 317944 938666 636315 985595 421454 574564 134357 668190 002822 718206 294432 690927 073678 944811 216316 605999 608169 091006 332350 669388 918253 300975 864127 099291 250191 821485 982467 474233 603980 362470 046286 324087 100815 639419 841797 662440 571797 465479 461735 737732 574455 112955 578420 349006 068475 222756 124316 609746 311331 005533 254634 864049 226981 038978 870401 764599 419795 866074 707368 000555 088536 801769 532078 387324 027152 413479 507834 671164 227684 093471 618562 249030 478491 694290 976170 841914 140611 308187 696513 042060 478195 586326 280494 650765 143140 (644 digits)/8095 038439 576345 827109 336748 149289 737380 177165 042909 027310 384145 277864 421432 486769 206431 980267 635326 666838 213412 619522 157603 204659 919125 528514 194580 476125 338950 795559 914838 607018 593567 892473 790561 008534 954355 671943 185715 635189 057413 214794 715970 053755 711161 329033 225768 699534 375883 281234 784861 503089 684952 295315 281865 329014 273094 488458 832374 630933 648692 028035 158391 382399 657643 286889 852731 130334 296037 039672 758374 966206 506857 989024 805832 649374 899075 204925 794363 816312 364194 928324 061732 345715 296005 687494 966504 139263 495186 010814 203233 857395 559144 233298 788074 186804 357175 936291 781829 927362 356367 156778 535725 488496 229681 729287 271077 155127 758698 562793 (646 digits), a[1231] = 3
                                                                                      A[1232]/B[1232] = 105 936105 072331 893581 246128 831054 735146 245850 931061 666769 371821 093911 205958 327901 308258 154346 384060 109164 158523 116048 417306 481186 403359 684233 228962 114107 808928 218436 502829 718945 256705 731354 023344 321106 176082 897014 946046 316585 617881 467679 719718 870856 743559 428164 926307 684334 909912 535822 427873 036439 738634 246950 152038 576356 701172 491691 597945 218151 521949 072248 160718 069897 604910 862956 605336 915898 839229 855047 836201 123814 658503 998620 925050 892794 431887 669161 488946 227113 784525 060859 069614 750044 010896 127175 455793 826966 398607 592928 992811 828348 909846 429847 995727 165646 367684 368521 141540 588554 550606 636258 548206 921954 715960 020136 665080 121996 869925 253383 (645 digits)/10296 303524 541917 662637 045747 392592 085500 347669 211159 539062 706932 190882 700839 956738 095455 784551 154463 895848 401184 093737 873157 457013 800204 211490 643824 730354 822791 515515 137464 209705 454023 273338 871885 620893 634433 900121 176050 858970 463128 787347 739817 074100 361607 444531 010405 201032 097023 919633 072323 786638 267962 441402 395239 029548 565264 990090 711075 859018 769605 563073 470105 260337 049284 643091 367422 256880 266041 200466 895608 651699 404330 682633 810037 365496 553026 969572 656030 117840 972655 252482 490197 497298 499347 202487 973116 146219 364457 364131 213681 187445 320620 548476 522198 621097 941845 125840 528716 249183 198145 941496 542103 054890 680479 682443 408907 830522 950974 212248 (647 digits), a[1232] = 1
                                                                                      A[1233]/B[1233] = 1672 329412 409488 667487 546234 773724 067250 095302 972481 046052 458278 476440 259698 619469 669466 091577 276706 710098 148781 776611 061282 211723 186287 581443 373098 347933 119518 698002 117009 918536 518775 973133 068371 111025 332170 528903 135505 965100 874221 623364 886789 395201 822780 340727 195591 129150 747979 287528 239581 529063 553747 308232 643048 691636 841674 476189 608598 114070 491676 655519 876250 510199 811395 518804 193009 316902 937453 894192 765772 981536 487306 290644 881296 646551 342364 264403 373172 277108 532475 332681 910295 958028 163996 996168 638676 936574 366437 921087 305656 933068 318860 675404 029379 103257 764296 006308 817399 804489 101013 684489 531291 525833 781460 780245 562528 110447 699643 943885 (646 digits)/162539 591307 705110 766665 022959 038171 019885 392203 210302 113250 988128 141104 934031 837840 638268 748534 952285 104564 231174 025590 254965 059866 922188 700873 851951 431447 680823 528286 976801 752600 403916 992556 868845 321939 470864 173760 826478 519746 004345 025010 813226 165261 135272 996998 381846 715015 831242 075730 869718 302663 704388 916351 210450 772242 752069 339819 498512 516215 192775 474137 209970 287455 396912 933260 364064 983538 286655 046676 192504 741697 571818 228531 956393 131823 194479 748515 634815 583926 954023 715561 414694 805192 786213 724814 563246 332553 962046 472782 408451 669075 368452 460446 621053 503273 484852 823899 712573 665110 328556 279226 667271 311856 436876 965938 404694 612972 023311 746513 (648 digits), a[1233] = 15
                                                                                      A[1234]/B[1234] = 5122 924342 300797 896043 884833 152226 936896 531759 848504 804926 746656 523231 985054 186310 316656 429078 214180 239458 604868 445881 601153 116355 962222 428563 348257 157907 167484 312442 853859 474554 813033 650753 228457 654182 172594 483724 352564 211888 240546 337774 380087 056462 211900 450346 513081 071787 153850 398407 146617 623630 399876 171648 081184 651267 226195 920260 423739 560362 996979 038807 789469 600497 039097 419369 184364 866607 651591 537626 133520 068424 120422 870555 568940 832448 458980 462371 608463 058439 381951 058904 800502 624128 502887 115681 371824 636689 497921 356190 909782 627553 866428 456060 083864 475419 660572 387447 593740 002021 853647 689727 142081 499456 060342 360873 352664 453339 968857 085038 (646 digits)/497915 077447 657249 962632 114624 507105 145156 524278 842065 878815 671316 614197 502935 470260 010262 030156 011319 209541 094706 170508 638052 636614 566770 314112 199679 024697 865262 100376 067869 467506 665774 251009 478421 586712 047026 421403 655486 418208 476163 862380 179495 569883 767426 435526 155945 346079 590750 146825 681478 694629 381129 190456 026591 346276 821473 009549 206613 407664 347931 985485 100016 122703 240023 442872 459617 207495 126006 340495 473122 876792 119785 368229 679216 760966 136466 215119 560476 869621 834726 399166 734281 912876 857988 376931 662855 143881 250596 782478 439036 194671 425977 929816 385359 130918 396403 597539 666437 244514 183814 779176 543916 990459 991110 580258 622991 669439 020909 451787 (648 digits), a[1234] = 3
                                                                                      A[1235]/B[1235] = 221958 076131 343798 197374 594060 319482 353800 960976 458187 657902 564508 975415 617028 630813 285692 541940 486457 006818 158124 949519 910866 215029 561852 009667 348156 137941 321344 133044 832967 324393 479222 955521 892050 240858 753733 329050 295767 076295 217714 147663 230532 823076 934499 705627 258077 215998 363546 419035 544139 345170 748422 689100 133988 696127 568099 047387 829399 209679 361775 324254 823443 331572 492584 551679 120698 581031 955890 012116 507135 923773 665489 724534 345752 441835 078524 146382 537083 790001 956370 865588 331908 795553 788142 970467 627136 314222 777056 237296 426309 917884 575284 285987 635551 546303 168908 666555 348219 891428 807864 342756 640796 002444 376182 297799 727099 604066 360498 600519 (648 digits)/21 572887 921556 966859 159845 951812 843692 261615 936193 419134 902324 854742 551597 560257 059021 079536 045243 439011 114831 303539 357461 691228 434293 293312 207698 438149 493455 887093 844457 895188 855387 032209 785964 440973 550557 493000 294118 012394 502710 479391 107358 531535 670263 134609 724623 087496 596438 233498 389235 173302 171727 092944 105960 353878 662146 075408 750435 382889 045782 153850 849996 510663 563694 717920 976776 127604 905828 704927 687981 536788 443758 722589 062408 162713 853367 062526 998656 735320 977665 847258 879730 988817 058897 679713 932876 066017 519447 737708 119355 287008 039946 685503 442551 191496 132764 530207 518105 369375 179220 232591 783818 055701 901636 054631 917059 193336 398849 922418 173354 (650 digits), a[1235] = 43
                                                                                      A[1236]/B[1236] = 227081 000473 644596 093418 478893 471709 290697 492736 306692 462829 311165 498647 602082 817123 602348 971018 700637 246276 762993 395401 512019 331385 524074 438230 696413 295848 488828 445487 686826 798948 292256 606275 120507 895040 926327 812774 648331 288183 458260 485437 610619 879539 146400 155973 771158 287785 517396 817442 690756 968801 148298 860748 215173 347394 794294 967648 253138 770042 358754 363062 612912 932069 531681 971048 305063 447639 607481 549742 640655 992197 785912 595089 914693 274283 537504 608754 145546 848441 338321 924493 132411 419682 291030 086148 998960 950912 274977 593487 336092 545438 441712 742047 719416 021722 829481 054002 941959 893450 661512 032483 782877 501900 436524 658673 079764 057406 329355 685557 (648 digits)/22 070802 999004 624109 122478 066437 350797 406772 460472 261200 781140 526059 165795 063192 529281 089798 075399 450330 324372 398245 527970 329281 070907 860082 521810 637828 518153 752355 944833 963058 322893 697984 036973 919395 137269 540026 715521 667880 920918 955554 969738 711031 240146 902036 160149 243441 942517 824248 536060 854780 866356 474073 296416 380470 008422 896881 759984 589502 453446 501782 835481 610679 686397 957944 419648 587222 113323 830934 028477 009911 320550 842374 430637 841930 614333 198993 213776 295797 847287 681985 278897 723098 971774 537702 309807 728872 663328 988304 901833 726044 234618 111481 372367 576855 263682 926611 115645 035812 423734 416406 562994 599618 892096 045742 497317 816328 068288 943327 625141 (650 digits), a[1236] = 1
                                                                                      A[1237]/B[1237] = 676120 077078 632990 384211 551847 262900 935195 946449 071572 583561 186839 972710 821194 265060 490390 483977 887731 499371 684111 740322 934904 877800 610000 886128 740982 729638 299001 024020 206620 922290 063736 168072 133066 030940 606388 954599 592429 652662 134235 118538 451772 582155 227300 017574 800393 791569 398340 053920 925653 282773 045020 410596 564335 390917 156688 982684 335676 749764 079284 050380 049269 195711 555948 493775 730825 476311 170853 111601 788447 908169 237314 914714 175138 990402 153533 363890 828177 486884 633014 714574 596731 634918 370203 142765 625058 216047 327011 424271 098495 008761 458709 770083 074383 589748 827870 774561 232139 678330 130888 407724 206551 006245 249231 615145 886627 718879 019209 971633 (648 digits)/65 714493 919566 215077 404802 084687 545287 075160 857137 941536 464605 906860 883187 686642 117583 259132 196042 339671 763576 100030 413402 349790 576109 013477 251319 713806 529763 391805 734125 821305 501174 428177 859912 279763 825096 573053 725161 348156 344548 390501 046835 953598 150556 938682 044921 574380 481473 881995 461356 882863 904440 041090 698793 114818 678991 869172 270404 561893 952675 157416 520959 732022 936490 633809 816073 302049 132476 366795 744935 556611 084860 407337 923683 846575 082033 460513 426209 326916 672241 211229 437526 435015 002446 755118 552491 523762 846105 714317 923022 739096 509182 908466 187286 345206 660130 383429 749395 441000 026689 065404 909807 254939 685828 146116 911694 825992 535427 809073 423636 (650 digits), a[1237] = 2
                                                                                      A[1238]/B[1238] = 3 607681 385866 809548 014476 238129 786213 966677 224981 664555 380635 245365 362201 708054 142426 054301 390908 139294 743135 183552 097016 186543 720388 574078 868874 401326 944039 983833 565588 719931 410398 610937 446635 785838 049743 958272 585772 610479 551494 129436 078129 869482 790315 282900 243847 773127 245632 509097 087047 319023 382666 373400 913731 036850 301980 577739 881069 931522 518862 755174 614962 859258 910627 311424 439926 959190 829195 461747 107751 582895 533043 972487 168660 790388 226294 305171 428208 286434 282864 503395 497366 116069 594274 142045 799977 124252 031148 910034 714842 828567 589245 735261 592463 091333 970466 968834 926809 102658 285101 315954 071104 815632 533126 682682 734402 512902 651801 425405 543722 (649 digits)/350 643272 596835 699496 146488 489875 077232 782576 746161 968883 104170 060363 581733 496403 117197 385459 055611 148689 142252 898397 594982 078233 951452 927468 778409 206861 166970 711384 615463 069585 828765 838873 336535 318214 262752 405295 341328 408662 643660 908060 203918 479021 992931 595446 384757 115344 349887 234225 842845 269100 388556 679526 790381 954563 403382 242743 112007 398972 216822 288865 440280 270794 368851 126993 500015 097467 775705 664912 753154 792966 744852 879064 049057 074806 024500 501560 344822 930381 208493 738132 466529 898173 984008 313295 072265 347686 893857 559894 516947 421526 780532 653812 308799 302888 564334 843759 862622 240812 557179 743431 112030 874317 321236 776327 055791 946290 745427 988694 743321 (651 digits), a[1238] = 5
                                                                                      A[1239]/B[1239] = 4 283801 462945 442538 398687 789977 049114 901873 171430 736127 964196 432205 334912 529248 407486 544691 874886 027026 242506 867663 837339 121448 598189 184079 755003 142309 673678 282834 589608 926552 332688 674673 614707 918904 080684 564661 540372 202909 204156 263671 196668 321255 372470 510200 261422 573521 037201 907437 140968 244676 665439 418421 324327 601185 692897 734428 863754 267199 268626 834458 665342 908528 106338 867372 933702 690016 305506 632600 219353 371343 441213 209802 083374 965527 216696 458704 792099 114611 769749 136410 211940 712801 229192 512248 942742 749310 247196 237046 139113 927062 598007 193971 362546 165717 560215 796705 701370 334797 963431 446842 478829 022183 539371 931914 349548 399530 370680 444615 515355 (649 digits)/416 357766 516401 914573 551290 574562 622519 857737 603299 910419 568775 967224 464921 183045 234780 644591 251653 488360 905828 998428 008384 428024 527561 940946 029728 920667 696734 103190 349588 890891 329940 267051 196447 597978 087848 978349 066489 756818 988209 298561 250754 432620 143488 534128 429678 689724 831361 116221 304202 151964 292996 720617 489175 069382 082374 111915 382411 960866 169497 446281 961240 002817 305341 760803 316088 399516 908182 031708 498090 349577 829713 286401 972740 921381 106533 962073 771032 257297 880734 949361 904056 333188 986455 068413 624756 871449 739963 274212 439970 160623 289715 562278 496085 648095 224465 227189 612017 681812 583868 808836 021838 129257 007064 922443 967486 772283 280855 797768 166957 (651 digits), a[1239] = 1
                                                                                      A[1240]/B[1240] = 7 891482 848812 252086 413164 028106 835328 868550 396412 400683 344831 677570 697114 237302 549912 598993 265794 166320 985642 051215 934355 307992 318577 758158 623877 543636 617718 266668 155197 646483 743087 285611 061343 704742 130428 522934 126144 813388 755650 393107 274798 190738 162785 793100 505270 346648 282834 416534 228015 563700 048105 791822 238058 638035 994878 312168 744824 198721 787489 589633 280305 767787 016966 178797 373629 649207 134702 094347 327104 954238 974257 182289 252035 755915 442990 763876 220307 401046 052613 639805 709306 828870 823466 654294 742719 873562 278345 147080 853956 755630 187252 929232 955009 257051 530682 765540 628179 437456 248532 762796 549933 837816 072498 614597 083950 912433 022481 870021 059077 (649 digits)/767 001039 113237 614069 697779 064437 699752 640314 349461 879302 672946 027588 046654 679448 351978 030050 307264 637050 048081 896825 603366 506258 479014 868414 808138 127528 863704 814574 965051 960477 158706 105924 532982 916192 350601 383644 407818 165481 631870 206621 454672 911642 136420 129574 814435 805069 181248 350447 147047 421064 681553 400144 279557 023945 485756 354658 494419 359838 386319 735147 401520 273611 674192 887796 816103 496984 683887 696621 251245 142544 574566 165466 021797 996187 131034 463634 115855 187679 089228 687494 370586 231362 970463 381708 697022 219136 633820 834106 956917 582150 070248 216090 804884 950983 788800 070949 474639 922625 141048 552267 133869 003574 328301 698771 023278 718574 026283 786462 910278 (651 digits), a[1240] = 1
                                                                                      A[1241]/B[1241] = 20 066767 160569 946711 225015 846190 719772 638973 964255 537494 653859 787346 729141 003853 507311 742678 406474 359668 213790 970095 706049 737433 235344 700397 002758 229582 909114 816170 900004 219519 818863 245895 737395 328388 341541 610529 792661 829686 715457 049885 746264 702731 698042 096401 271963 266817 602870 740505 596999 372076 761651 002065 800444 877257 682654 358766 353402 664642 843606 013725 225954 444102 140271 224967 680961 988430 574910 821294 873563 279821 389727 574380 587446 477358 102677 986457 232713 916703 874976 416021 630554 370542 876125 820838 428182 496434 803886 531207 847027 438322 972513 052437 272564 679820 621581 327786 957729 209710 460496 972435 578696 697815 684369 161108 517450 224396 415644 184657 633509 (650 digits)/1950 359844 742877 142712 946848 703438 022025 138366 302223 669024 914668 022400 558230 541941 938736 704691 866182 762461 001992 792079 215117 440541 485591 677775 646005 175725 424143 732340 279692 811845 647352 478900 262413 430362 789051 745637 882126 087782 251949 711804 160100 255904 416328 793278 058550 299863 193857 817115 598296 994093 656103 520906 048289 117273 053886 821232 371250 680542 942136 916576 764280 550040 653727 536396 948295 393486 275957 424951 000580 634666 978845 617334 016336 913755 368602 889342 002742 632656 059192 324350 645228 795914 927381 831831 018801 309723 007604 942426 353805 324923 430211 994460 105855 550062 802065 369088 561297 527062 865965 913370 289576 136405 663668 319986 014044 209431 333423 370693 987513 (652 digits), a[1241] = 2
                                                                                      A[1242]/B[1242] = 108 225318 651661 985642 538243 259060 434192 063420 217690 088156 614130 614304 342819 256570 086471 312385 298165 964662 054596 901694 464603 995158 495301 260143 637668 691551 163292 347522 655218 744082 837403 515089 748320 346683 838136 575583 089453 961822 332935 642536 006121 704396 652996 275106 865086 680736 297188 119062 213012 424083 856360 802151 240283 024324 408150 106000 511837 521936 005519 658259 410077 988297 718322 303635 778439 591360 009256 200821 694921 353345 922895 054192 189268 142705 956380 696162 383876 984565 427495 719913 862078 681585 204095 758486 883632 355736 297777 803120 089093 947245 049818 191419 317832 656154 638589 404475 416825 486008 551017 624974 443417 326894 494344 420139 671202 034415 100702 793309 226622 (651 digits)/10518 800262 827623 327634 432022 581627 809878 332145 860580 224427 246286 139590 837807 389158 045661 553509 638178 449355 058045 857221 678953 708965 906973 257293 038164 006155 984423 476276 363516 019705 395468 500425 845050 068006 295860 111833 818448 604392 891618 765642 255174 191164 218064 095965 107187 304385 150537 436025 138532 391532 962071 004674 521002 610310 755190 460820 350672 762553 097004 318031 222923 023814 942830 569781 557580 464416 063674 821376 254148 315879 468794 252136 103482 564963 974048 910344 129568 350959 385190 309247 596730 210937 607372 540863 791028 767751 671845 546238 725944 206767 221308 188391 334162 701297 799126 916392 281127 557939 470878 119118 581749 685602 646643 298701 093499 765730 693400 639932 847843 (653 digits), a[1242] = 5
                                                                                      A[1243]/B[1243] = 236 517404 463893 917996 301502 364311 588156 765814 399635 713807 882121 015955 414779 516993 680254 367449 002806 288992 322984 773484 635257 727750 225947 220684 278095 612685 235699 511216 210441 707685 493670 276075 234036 021756 017814 761695 971569 753331 381328 334957 758508 111525 004034 646615 002136 628290 197246 978630 023024 220244 474372 606368 281010 925906 498954 570767 377077 708514 854645 330244 046110 420697 576915 832239 237841 171150 593423 222938 263405 986513 235517 682764 965982 762770 015439 378782 000467 885834 729967 855849 354711 733713 284317 337812 195447 207907 399442 137448 025215 332813 072149 435275 908229 992129 898760 136737 791380 181727 562532 222384 465531 351604 673058 001387 859854 293226 617049 771276 086753 (651 digits)/22987 960370 398123 797981 810893 866693 641781 802658 023384 117879 407240 301582 233845 320258 030059 811711 142539 661171 118084 506522 573024 858473 299538 192361 722333 188037 392990 684893 006724 851256 438289 479751 952513 566375 380771 969305 519023 296568 035187 243088 670448 638232 852456 985208 272924 908633 494932 689165 875361 777159 580245 530255 090294 337894 564267 742873 072596 205649 136145 552639 210126 597670 539388 675960 063456 322318 403307 067703 508877 266425 916434 121606 223302 043683 316700 710030 261879 334574 829572 942845 838689 217790 142126 913558 600858 845226 351296 034903 805693 738457 872828 371242 774180 952658 400319 201873 123552 642941 807722 151607 453075 507610 956954 917388 201043 740892 720224 650559 683199 (653 digits), a[1243] = 2
                                                                                      A[1244]/B[1244] = 3182 951576 682282 919594 457773 995111 080230 019007 412954 367659 081703 821724 734952 977487 929778 089222 334647 721562 253398 956994 722954 455911 432615 129039 252911 656459 227385 993333 390960 943994 255117 104067 790788 629512 069728 477630 719860 755130 290203 996986 866727 154221 705446 681101 892862 848508 861398 841252 512327 287262 023204 684938 893425 061108 894559 525976 413847 732629 115908 951432 009513 457366 218228 122745 870374 816317 723758 099019 119199 178017 984624 930136 747044 058716 157092 620328 389959 500416 917077 845955 473331 219857 900221 150045 424446 058532 490525 589944 416893 273814 987760 850006 124822 553843 322471 182066 704767 848466 863936 515972 495324 897755 244098 438181 849307 846361 122349 819898 354411 (652 digits)/309362 285078 003232 701397 973642 848645 153041 766700 164573 756859 540410 060159 877796 552512 436439 105754 491194 044579 593144 442015 128276 869118 800969 757995 428495 450642 093302 379885 450939 086039 093231 737201 227726 430886 245895 712805 565751 459777 349052 925794 971006 488191 300004 903672 655211 116620 584662 395181 518235 494607 505262 897990 694829 002940 090671 118170 294423 435991 866896 502340 954568 793531 954883 357262 382512 654555 306666 701521 869552 779416 382437 833017 006409 132847 091158 140737 533999 700432 169638 566243 499690 042209 455022 417125 602193 755694 238693 999988 199962 806719 568077 014547 398515 085857 003276 540742 887311 916182 971266 090015 471731 284545 087057 224747 707068 397336 056321 097208 729430 (654 digits), a[1244] = 13
                                                                                      A[1245]/B[1245] = 19334 226864 557591 435563 048146 334978 069536 879858 877361 919762 372343 946303 824497 381921 258922 902783 010692 618365 843378 515452 972984 463218 821637 994919 795565 551440 600015 471216 556207 371651 024372 900481 978767 798828 436185 627480 290734 284113 122552 316878 958871 036855 236714 733226 359313 719343 365640 026145 096987 943816 613600 716001 641561 292559 866311 726625 860164 104289 550099 038836 103191 164894 886284 568714 460090 069056 935971 817052 978601 054621 143267 263585 448247 115066 957995 100752 340224 888336 232434 931582 194699 052860 685644 238084 742123 559102 342595 677114 526574 975702 998714 535312 657165 315189 833587 229138 019987 272528 746151 318219 437480 738136 137648 630478 955701 371393 351148 690666 213219 (653 digits)/1 879161 670838 417520 006369 652750 958564 560032 402859 010826 659036 649700 662541 500624 635332 648694 446238 089703 928648 676951 158613 342686 073186 105356 740334 293305 891889 952804 964205 712359 367490 997679 902959 318872 151692 856146 246138 913532 055232 129504 797858 496487 567380 652486 407244 204191 608357 002907 060254 984774 744804 611822 918199 259268 355535 108294 451894 839136 821600 337524 566684 937539 358862 268688 819534 358532 249650 243307 276834 726193 942924 211061 119708 261756 840765 863649 554455 465877 537167 847404 340306 836829 471046 872261 416312 214021 379391 783460 034833 005470 578775 281290 458527 165271 467800 419978 446330 447424 140039 635318 691700 283463 214881 479298 265874 443454 124909 058151 233812 059779 (655 digits), a[1245] = 6
                                                                                      A[1246]/B[1246] = 22517 178441 239874 355157 505920 330089 149766 898866 290316 287421 454047 768028 559450 359409 188700 992005 345340 339928 096777 472447 695938 919130 254253 123959 048477 207899 827401 464549 947168 315645 279490 004549 769556 428340 505914 105111 010595 039243 412756 313865 825598 191076 942161 414328 252176 567852 227038 867397 609315 231078 636805 400940 534986 353668 760871 252602 274011 836918 666007 990268 112704 622261 104512 691460 330464 885374 659729 916072 097800 232639 127892 193722 195291 173783 115087 721080 730184 388753 149512 777537 668030 272718 585865 388130 166569 617634 833121 267058 943468 249517 986475 385318 781987 869033 156058 411204 724755 120995 610087 834191 932805 635891 381747 068660 805009 217754 473498 510564 567630 (653 digits)/2 188523 955916 420752 707767 626393 807209 713074 169559 175400 415896 190110 722701 378421 187845 085133 551992 580897 973228 270095 600628 470962 942304 906326 498329 721801 342532 046107 344091 163298 453530 090911 640160 546598 582579 102041 958944 479283 515009 478557 723653 467494 055571 952491 310916 859402 724977 587569 455436 503010 239412 117085 816189 954097 358475 198965 570065 133560 257592 204421 069025 892108 152394 223572 176796 741044 904205 549973 978356 595746 722340 593498 952725 268165 973612 954807 695192 999877 237600 017042 906550 336519 513256 327283 833437 816215 135086 022154 034821 205433 385494 849367 473074 563786 553657 423254 987073 334736 056222 606584 781715 755194 499426 566355 490622 150522 522245 114472 331020 789209 (655 digits), a[1246] = 1
                                                                                      A[1247]/B[1247] = 86885 762188 277214 501035 565907 325245 518837 576457 748310 782026 734487 250389 502848 460148 825025 878799 046713 638150 133710 932796 060801 220609 584397 366796 940997 175140 082219 864866 397712 318586 862842 914131 287437 083849 953927 942813 322519 401843 360821 258476 435665 610086 063198 976211 115843 422900 046756 628337 924933 637052 524016 918823 246520 353566 148925 484432 682199 615045 548123 009640 441305 031678 199822 643095 451484 725180 915161 565269 272001 752538 526943 844752 034120 636416 303258 263994 530778 054595 680973 264195 198789 871016 443240 402475 241832 412006 841959 478291 356979 724256 958140 691269 003128 922289 301762 462752 194252 635515 576414 820795 235897 645810 282889 836461 370729 024656 771644 222359 916109 (653 digits)/8 444733 538587 679778 129672 531932 380193 699254 911536 537027 906725 220032 830645 635888 198867 904095 102215 832397 848333 487237 960498 755574 900100 824336 235323 458709 919486 091126 996479 202254 728081 270414 823440 958667 899430 162272 122972 351382 600260 565177 968818 898969 734096 509960 339994 782399 783289 765615 426564 493805 463040 963080 366769 121560 430960 705191 162090 239817 594376 950787 773762 613863 816044 939405 349924 581666 962266 893229 211904 513434 109945 991557 977884 066254 761604 728072 640034 465509 249967 898533 059957 846388 010815 854112 916625 662666 784649 849922 139296 621770 735259 829392 877750 856631 128772 689743 407550 451632 308707 455073 036847 549046 713161 178364 737740 895021 691644 401568 226874 427406 (655 digits), a[1247] = 3
                                                                                      A[1248]/B[1248] = 109402 940629 517088 856193 071827 655334 668604 475324 038627 069448 188535 018418 062298 819558 013726 870804 392053 978078 230488 405243 756740 139739 838650 490755 989474 383039 909621 329416 344880 634232 142332 918681 056993 512190 459842 047924 333114 441086 773577 572342 261263 801163 005360 390539 368019 990752 273795 495735 534248 868131 160822 319763 781506 707234 909796 737034 956211 451964 214130 999908 554009 653939 304335 334555 781949 610555 574891 481341 369801 985177 654836 038474 229411 810199 418345 985075 260962 443348 830486 041732 866820 143735 029105 790605 408402 029641 675080 745350 300447 973774 944616 076587 785116 791322 457820 873956 919007 756511 186502 654987 168703 281701 664636 905122 175738 242411 245142 732924 483739 (654 digits)/10 633257 494504 100530 837440 158326 187403 412329 081095 712428 322621 410143 553347 014309 386712 989228 654208 413295 821561 757333 561127 226537 842405 730662 733653 180511 262018 137234 340570 365553 181611 361326 463601 505266 482009 264314 081916 830666 115270 043735 692472 366463 789668 462451 650911 641802 508267 353184 882000 996815 702453 080166 182959 075657 789435 904156 732155 373377 851969 155208 842788 505971 968439 162977 526721 322711 866472 443203 190261 109180 832286 585056 930609 334420 735217 682880 335227 465386 487567 915575 966508 182907 524072 181396 750063 478881 919735 872076 174117 827204 120754 678760 350825 420417 682430 112998 394623 786368 364930 061657 818563 304241 212587 744720 228363 045544 213889 516040 557895 216615 (656 digits), a[1248] = 1
                                                                                      A[1249]/B[1249] = 1 071512 227853 931014 206773 212356 223257 536277 854374 095954 407060 431302 416152 063537 836170 948567 716038 575199 440854 208106 579989 871462 478268 132251 783600 846266 622499 268811 829613 501638 026676 143839 182260 800378 693564 092506 374132 320549 371624 323019 409556 787039 820553 111442 491065 428023 339670 510916 089957 733173 450232 971417 796697 280080 718680 337096 117747 288102 682723 475302 008817 427391 917131 938840 654097 489031 220181 089184 897341 600219 619137 420468 191020 098826 928211 068372 129671 879440 044735 155347 639791 000171 164631 705192 517923 917450 678781 917686 186444 061011 488231 459685 380559 069180 044191 422150 328364 465322 444116 254938 715679 754227 181125 264621 982560 952373 206357 977928 818680 269760 (655 digits)/104 144050 989124 584555 666633 956868 066824 410216 641397 948882 810317 911324 810768 764672 679284 807152 990091 552060 242389 303240 010643 794415 481752 400300 838202 083311 277649 326236 061612 492233 362583 522352 995854 506066 237513 541098 860223 827377 637690 958799 201070 197143 841112 672025 198199 558622 357695 944279 364573 465146 785118 684576 013400 802480 535883 842601 751488 600218 262099 347667 358859 167611 531997 406203 090416 486073 760518 882057 924254 496061 600525 257070 353368 076041 378563 873995 657081 653987 638079 138716 758531 492555 727465 486683 667196 972604 062272 698607 706357 066607 822051 938236 035179 640390 270643 706728 959164 528947 593078 009993 403917 287217 626450 880846 793008 304919 616650 045933 247931 376941 (657 digits), a[1249] = 9
                                                                                      A[1250]/B[1250] = 1 180915 168483 448103 062966 284183 878592 204882 329698 134581 476508 619837 434570 125836 655728 962294 586842 967253 418932 438594 985233 628202 618007 970902 274356 835741 005539 178433 159029 846518 660908 286172 100941 857372 205754 552348 422056 653663 812711 096596 981899 048303 621716 116802 881604 796043 330422 784711 585693 267422 318364 132240 116461 061587 425915 246892 854782 244314 134687 689433 008725 981401 571071 243175 988653 270980 830736 664076 378682 970021 604315 075304 229494 328238 738410 486718 114747 140402 488083 985833 681523 866991 308366 734298 308529 325852 708423 592766 931794 361459 462006 404301 457146 854296 835513 879971 202321 384330 200627 441441 370666 922930 462826 929258 887683 128111 448769 223071 551604 753499 (655 digits)/114 777308 483628 685086 504074 115194 254227 822545 722493 661311 132939 321468 364115 778982 065997 796381 644299 965356 063951 060573 571771 020953 324158 130963 571855 263822 539667 463470 402182 857786 544194 883679 459456 011332 719522 805412 942140 658043 752961 002534 893542 563607 630781 134476 849111 200424 865963 297464 246574 461962 487571 764742 196359 878138 325319 746758 483643 973596 114068 502876 201647 673583 500436 569180 617137 808785 626991 325261 114515 605242 432811 842127 283977 410462 113781 556875 992309 119374 125647 054292 725039 675463 251537 668080 417260 451485 982008 570683 880474 893811 942806 616996 386005 060807 953073 819727 353788 315315 958008 071651 222480 591458 839038 625567 021371 350463 830539 561973 805826 593556 (657 digits), a[1250] = 1
                                                                                      A[1251]/B[1251] = 2 252427 396337 379117 269739 496540 101849 741160 184072 230535 883569 051139 850722 189374 491899 910862 302881 542452 859786 646701 565223 499665 096276 103154 057957 682007 628038 447244 988643 348156 687584 430011 283202 657750 899318 644854 796188 974213 184335 419616 391455 835343 442269 228245 372670 224066 670093 295627 675651 000595 768597 103657 913158 341668 144595 583988 972529 532416 817411 164735 017543 408793 488203 182016 642750 760012 050917 753261 276024 570241 223452 495772 420514 427065 666621 555090 244419 019842 532819 141181 321314 867162 472998 439490 826453 243303 387205 510453 118238 422470 950237 863986 837705 923476 879705 302121 530685 849652 644743 696380 086346 677157 643952 193880 870244 080484 655127 201000 370285 023259 (655 digits)/218 921359 472753 269642 170708 072062 321052 232762 363891 610193 943257 232793 174884 543654 745282 603534 634391 517416 306340 363813 582414 815368 805910 531264 410057 347133 817316 789706 463795 350019 906778 406032 455310 517398 957036 346511 802364 485421 390651 961334 094612 760751 471893 806502 047310 759047 223659 241743 611147 927109 272690 449318 209760 680618 861203 589360 235132 573814 376167 850543 560506 841195 032433 975383 707554 294859 387510 207319 038770 101304 033337 099197 637345 486503 492345 430871 649390 773361 763726 193009 483571 168018 979003 154764 084457 424090 044281 269291 586831 960419 764858 555232 421184 701198 223717 526456 312952 844263 551086 081644 626397 878676 465489 506413 814379 655383 447189 607907 053757 970497 (657 digits), a[1251] = 1
                                                                                      A[1252]/B[1252] = 37 219753 509881 513979 378798 228825 508188 063445 274853 823155 613613 438075 046125 155828 526127 536091 432947 646499 175518 785820 028809 622844 158425 621367 201679 747863 054154 334352 977323 417025 662259 166352 632184 381386 594852 870025 161080 241074 762077 810459 245192 413798 698023 768728 844328 381110 051915 514754 396109 276954 615917 790766 726994 528277 739444 590716 415254 762983 213266 325193 289420 522097 382322 155442 272665 431173 645420 716256 795076 093881 179555 007662 957725 161289 404355 368162 025451 457883 013190 244734 822561 741590 876341 766151 531781 218706 903711 760016 823609 120994 665812 228090 860441 629926 910798 713915 693294 978772 516526 583522 752213 757452 766062 031352 811588 415865 930804 439077 476165 125643 (656 digits)/3617 519060 047680 999361 235403 268191 391063 546743 544759 424414 225055 046159 162268 477457 990519 452935 794564 244016 965396 881590 890408 066854 218726 631194 132772 817963 616736 098773 822908 458105 052649 380198 744424 289716 032104 349601 779972 424786 003392 383880 407346 735631 181082 038509 606083 345180 444511 165362 024941 295710 850618 953833 552530 768040 104577 176522 245765 154626 132754 111573 169757 132704 019380 175319 938006 526535 827154 642365 734837 226106 966205 429289 481505 194517 991308 450822 382561 493162 345266 142444 462178 363766 915588 144305 768579 236926 690508 879349 269786 260528 180543 500715 124960 279979 532554 243028 361033 823532 775385 377965 244846 650282 286870 728188 051445 836598 985573 288486 665954 121508 (658 digits), a[1252] = 16
                                                                                      A[1253]/B[1253] = 113 911687 925981 921055 406134 183016 626413 931496 008633 700002 724409 365364 989097 656860 070282 519136 601724 481950 386343 004161 651652 368197 571552 967255 662996 925596 790501 450303 920613 599233 674361 929069 179755 801910 683877 254930 279429 697437 470568 850994 127033 076739 536340 534431 905655 367396 825839 839890 863978 831459 616350 475958 094141 926501 362929 356138 218293 821366 457210 140314 885804 975085 635169 648343 460747 053532 987179 902031 661252 851884 762117 518761 293689 910933 879687 659576 320773 393491 572389 875385 789000 091935 102023 737945 421796 899424 098340 790503 589065 785454 947674 548259 419030 813257 612101 443868 610570 785970 194323 446948 342987 949515 942138 287939 305009 328082 447540 518232 798780 400188 (657 digits)/11071 478539 615796 267725 876917 876636 494242 872992 998169 883436 618422 371270 661689 976028 716840 962342 018084 249467 202531 008586 253639 015931 462090 424846 808375 801024 667525 086027 932520 724335 064726 546628 688583 386547 053349 395317 142281 759779 400829 112975 316652 967645 015139 922030 865560 794588 557192 737829 685971 814241 824547 310818 867352 984739 174935 118926 972428 037692 774430 185263 069778 239307 090574 501343 521573 874466 868974 134416 243281 779624 931953 387066 081861 070057 466270 783338 797075 252848 799524 620342 870106 259319 725767 587681 390195 134870 115807 907339 396190 742004 306489 057377 796065 541136 821380 255541 396054 314861 877242 215540 360937 829523 326101 690977 968717 165180 403909 473367 051620 335021 (659 digits), a[1253] = 3
                                                                                      A[1254]/B[1254] = 151 131441 435863 435034 784932 411842 134601 994941 283487 523158 338022 803440 035222 812688 596410 055228 034672 128449 561861 789981 680461 991041 729978 588622 864676 673459 844655 784656 897937 016259 336621 095421 811940 183297 278730 124955 440509 938512 232646 661453 372225 490538 234364 303160 749983 748506 877755 354645 260088 108414 232268 266724 821136 454779 102373 946854 633548 584349 670476 465508 175225 497183 017491 803785 733412 484706 632600 618288 456328 945765 941672 526424 251415 072223 284043 027738 346224 851374 585580 120120 611561 833525 978365 504096 953578 118131 002052 550520 412674 906449 613486 776350 279472 443184 522900 157784 303865 764742 710850 030471 095201 706968 708200 319292 116597 743948 378344 957310 274945 525831 (657 digits)/14688 997599 663477 267087 112321 144827 885306 419736 542929 307850 843477 417429 823958 453486 707360 415277 812648 493484 167927 890177 144047 082785 680817 056040 941148 618988 284261 184801 755429 182440 117375 926827 433007 676263 085453 744918 922254 184565 404221 496855 723999 703276 196221 960540 471644 139769 001703 903191 710913 109952 675166 264652 419883 752779 279512 295449 218193 192318 907184 296836 239535 372011 109954 676663 459580 401002 696128 776781 978119 005731 898158 816355 563366 264575 457579 234161 179636 746011 144790 762787 332284 623086 641355 731987 158774 371796 806316 786688 665977 002532 487032 558092 921025 821116 353934 498569 757088 138394 652627 593505 605784 479805 612972 419166 020163 001779 389482 761853 717574 456529 (659 digits), a[1254] = 1
                                                                                      A[1255]/B[1255] = 265 043129 361845 356090 191066 594858 761015 926437 292121 223161 062432 168805 024320 469548 666692 574364 636396 610399 948204 794143 332114 359239 301531 555878 527673 599056 635157 234960 818550 615493 010983 024490 991695 985207 962607 379885 719939 635949 703215 512447 499258 567277 770704 837592 655639 115903 703595 194536 124066 939873 848618 742682 915278 381280 465303 302992 851842 405716 127686 605823 061030 472268 652661 452129 194159 538239 619780 520320 117581 797650 703790 045185 545104 983157 163730 687314 666998 244866 157969 995506 400561 925461 080389 242042 375375 017555 100393 341024 001740 691904 561161 324609 698503 256442 135001 601652 914436 550712 905173 477419 438189 656484 650338 607231 421607 072030 825885 475543 073725 926019 (657 digits)/25760 476139 279273 534812 989239 021464 379549 292729 541099 191287 461899 788700 485648 429515 424201 377619 830732 742951 370458 898763 397686 098717 142907 480887 749524 420012 951786 270829 687949 906775 182102 473456 121591 062810 138803 140236 064535 944344 805050 609831 040652 670921 211361 882571 337204 934357 558896 641021 396884 924194 499713 575471 287236 737518 454447 414376 190621 230011 681614 482099 309313 611318 200529 178006 981154 275469 565102 911198 221400 785356 830112 203421 645227 334632 923850 017499 976711 998859 944315 383130 202390 882406 367123 319668 548969 506666 922124 694028 062167 744536 793521 615470 717091 362253 175314 754111 153142 453256 529869 809045 966722 309328 939074 110143 988880 166959 793392 235220 769194 791550 (659 digits), a[1255] = 1
                                                                                      A[1256]/B[1256] = 416 174570 797708 791124 975999 006700 895617 921378 575608 746319 400454 972245 059543 282237 263102 629592 671068 738849 510066 584125 012576 350281 031510 144501 392350 272516 479813 019617 716487 631752 347604 119912 803636 168505 241337 504841 160449 574461 935862 173900 871484 057816 005069 140753 405622 864410 581350 549181 384155 048288 080887 009407 736414 836059 567677 249847 485390 990065 798163 071331 236255 969451 670153 255914 927572 022946 252381 138608 573910 743416 645462 571609 796520 055380 447773 715053 013223 096240 743550 115627 012123 758987 058754 746139 328953 135686 102445 891544 414415 598354 174648 100959 977975 699626 657901 759437 218302 315455 616023 507890 533391 363453 358538 926523 538204 815979 204230 432853 348671 451850 (657 digits)/40449 473738 942750 801900 101560 166292 264855 712466 084028 499138 305377 206130 309606 883002 131561 792897 643381 236435 538386 788940 541733 181502 823724 536928 690673 039001 236047 455631 443379 089215 299478 400283 554598 739073 224256 885154 986790 128910 209272 106686 764652 374197 407583 843111 808849 074126 560600 544213 107798 034147 174879 840123 707120 490297 733959 709825 408814 422330 588798 778935 548848 983329 310483 854670 440734 676472 261231 687980 199519 791088 728271 019777 208593 599208 381429 251661 156348 744871 089106 145917 534675 505493 008479 051655 707743 878463 728441 480716 728144 747069 280554 173563 638117 183369 529249 252680 910230 591651 182497 402551 572506 789134 552046 529310 009043 168739 182874 997074 486769 248079 (659 digits), a[1256] = 1
                                                                                      A[1257]/B[1257] = 681 217700 159554 147215 167065 601559 656633 847815 867729 969480 462887 141050 083863 751785 929795 203957 307465 349249 458271 378268 344690 709520 333041 700379 920023 871573 114970 254578 535038 247245 358587 144403 795332 153713 203944 884726 880389 210411 639077 686348 370742 625093 775773 978346 061261 980314 284945 743717 508221 988161 929505 752090 651693 217340 032980 552840 337233 395781 925849 677154 297286 441720 322814 708044 121731 561185 872161 658928 691492 541067 349252 616795 341625 038537 611504 402367 680221 341106 901520 111133 412685 684448 139143 988181 704328 153241 202839 232568 416156 290258 735809 425569 676478 956068 792903 361090 132738 866168 521196 985309 971581 019938 008877 533754 959811 888010 030115 908396 422397 377869 (657 digits)/66209 949878 222024 336713 090799 187756 644405 005195 625127 690425 767276 994830 795255 312517 555763 170517 474113 979386 908845 687703 939419 280219 966632 017816 440197 459014 187833 726461 131328 995990 481580 873739 676189 801883 363060 025391 051326 073255 014322 716517 805305 045118 618945 725683 146054 008484 119497 185234 504682 958341 674593 415594 994357 227816 188407 124201 599435 652342 270413 261034 858162 594647 511013 032677 421888 951941 826334 599178 420920 576445 558383 223198 853820 933841 305279 269161 133060 743731 033421 529047 737066 387899 375602 371324 256713 385130 650566 174744 790312 491606 074075 789034 355208 545622 704564 006792 063373 044907 712367 211597 539229 098463 491120 639453 997923 335698 976267 232295 255964 039629 (659 digits), a[1257] = 1
                                                                                      A[1258]/B[1258] = 1097 392270 957262 938340 143064 608260 552251 769194 443338 715799 863342 113295 143407 034023 192897 833549 978534 088098 968337 962393 357267 059801 364551 844881 312374 144089 594783 274196 251525 878997 706191 264316 598968 322218 445282 389568 040838 784873 574939 860249 242226 682909 780843 119099 466884 844724 866296 292898 892377 036450 010392 761498 388108 053399 600657 802687 822624 385847 724012 748485 533542 411171 992967 963959 049303 584132 124542 797537 265403 284483 994715 188405 138145 093918 059278 117420 693444 437347 645070 226760 424809 443435 197898 734321 033281 288927 305285 124112 830571 888612 910457 526529 654454 655695 450805 120527 351041 181624 137220 493200 504972 383391 367416 460278 498016 703989 234346 341249 771068 829719 (658 digits)/106659 423617 164775 138613 192359 354048 909260 717661 709156 189564 072654 200961 104862 195519 687324 963415 117495 215822 447232 476644 481152 461722 790356 554745 130870 498015 423881 182092 574708 085205 781059 274023 230788 540956 587316 910546 038116 202165 223594 823204 569957 419316 026529 568794 954903 082610 680097 729447 612480 992488 849473 255718 701477 718113 922366 834027 008250 074672 859212 039970 407011 577976 821496 887347 862623 628414 087566 287158 620440 367534 286654 242976 062414 533049 686708 520822 289409 488602 122527 674965 271741 893392 384081 422979 964457 263594 379007 655461 518457 238675 354629 962597 993325 728992 233813 259472 973603 636558 894864 614149 111735 887598 043167 168764 006966 504438 159142 229369 742733 287708 (660 digits), a[1258] = 1
                                                                                      A[1259]/B[1259] = 1778 609971 116817 085555 310130 209820 208885 617010 311068 685280 326229 254345 227270 785809 122693 037507 285999 437348 426609 340661 701957 769321 697593 545261 232398 015662 709753 528774 786564 126243 064778 408720 394300 475931 649227 274294 921227 995285 214017 546597 612969 308003 556617 097445 528146 825039 151242 036616 400599 024611 939898 513589 039801 270739 633638 355528 159857 781629 649862 425639 830828 852892 315782 672003 171035 145317 996704 456465 956895 825551 343967 805200 479770 132455 670782 519788 373665 778454 546590 337893 837495 127883 337042 722502 737609 442168 508124 356681 246728 178871 646266 952099 330933 611764 243708 481617 483780 047792 658417 478510 476553 403329 376293 994033 457828 591999 264462 249646 193466 207588 (658 digits)/172869 373495 386799 475326 283158 541805 553665 722857 334283 879989 839931 195791 900117 508037 243088 133932 591609 195209 356078 164348 420571 741942 756988 572561 571067 957029 611714 908553 706037 081196 262640 147762 906978 342839 950376 935937 089442 275420 237917 539722 375262 464434 645475 294478 100957 091094 799594 914682 117163 950830 524066 671313 695834 945930 110773 958228 607685 727015 129625 301005 265174 172624 332509 920025 284512 580355 913900 886337 041360 943979 845037 466174 916235 466890 991987 789983 422470 232333 155949 204013 008808 281291 759683 794304 221170 648725 029573 830206 308769 730281 428705 751632 348534 274614 938377 266265 036976 681466 607231 825746 650964 986061 534287 808218 004889 840137 135409 461664 998697 327337 (660 digits), a[1259] = 1
                                                                                      A[1260]/B[1260] = 2876 002242 074080 023895 453194 818080 761137 386204 754407 401080 189571 367640 370677 819832 315590 871057 264533 525447 394947 303055 059224 829123 062145 390142 544772 159752 304536 802971 038090 005240 770969 673036 993268 798150 094509 663862 962066 780158 788957 406846 855195 990913 337460 216544 995031 669764 017538 329515 292976 061061 950291 275087 427909 324139 234296 158215 982482 167477 373875 174125 364371 264064 308750 635962 220338 729450 121247 254003 222299 110035 338682 993605 617915 226373 730060 637209 067110 215802 191660 564654 262304 571318 534941 456823 770890 731095 813409 480794 077300 067484 556724 478628 985388 267459 694513 602144 834821 229416 795637 971710 981525 786720 743710 454311 955845 295988 498808 590895 964535 037307 (658 digits)/279528 797112 551574 613939 475517 895854 462926 440519 043440 069553 912585 396753 004979 703556 930413 097347 709104 411031 803310 640992 901724 203665 547345 127306 701938 455045 035596 090646 280745 166402 043699 421786 137766 883796 537693 846483 127558 477585 461512 362926 945219 883750 672004 863273 055860 173705 479692 644129 729644 943319 373539 927032 397312 664044 033140 792255 615935 801687 988837 340975 672185 750601 154006 807373 147136 208770 001467 173495 661801 311514 131691 709150 978649 999940 678696 310805 711879 720935 278476 878978 280550 174684 143765 217284 185627 912319 408581 485667 827226 968956 783335 714230 341860 003607 172190 525738 010580 318025 502096 439895 762700 873659 577454 976982 011856 344575 294551 691034 741430 615045 (660 digits), a[1260] = 1
                                                                                      A[1261]/B[1261] = 53546 650328 450257 515673 467636 935273 909358 568695 890401 904723 738513 871871 899471 542790 803328 716538 047602 895401 535660 795652 768004 693536 816210 567827 038296 891204 191415 982253 472184 220576 942232 523386 273138 842633 350401 223828 238430 038143 415250 869841 006497 144443 630900 995255 438716 880791 466931 967891 674168 123727 045141 465162 742169 105245 850969 203415 844536 796222 379615 559896 389511 606049 873294 119323 137132 275420 179155 028523 958279 806187 440261 690101 602244 207182 811873 989551 581649 662893 996480 501670 558977 411616 965988 945330 613642 601893 149495 010974 638129 393593 667307 567421 067922 426038 744953 320224 510562 177294 979900 969308 144017 564302 763082 171648 663043 919792 243016 885773 555096 879114 (659 digits)/5 204387 721521 315142 526236 842480 667185 886341 652200 116205 131960 266468 337345 989752 172061 990523 886191 355488 593781 815669 702220 651607 407922 609200 864082 205960 147840 252444 540186 759450 076433 049229 739913 386782 251177 628866 172633 385494 871958 545140 072407 389220 371946 741562 833393 106440 217793 434062 509017 250772 930579 247785 357896 847462 898722 707308 218829 694530 157398 928697 438567 364517 683445 104632 452741 932964 338215 940310 009258 953784 551234 215488 230892 531935 465823 208521 384486 236305 209168 168533 025622 058711 425606 347457 705419 562473 070474 384040 572227 198855 171503 528748 607778 502014 339544 037806 729549 227422 405925 644967 743870 379580 711933 928477 393894 218304 042492 437339 900290 344448 398147 (661 digits), a[1261] = 18
                                                                                      A[1262]/B[1262] = 56422 652570 524337 539568 920831 753354 670495 954900 644809 305803 928085 239512 270149 362623 118919 587595 312136 420848 930608 098707 827229 522659 878355 957969 583069 050956 495952 785224 510274 225817 713202 196423 266407 640783 444910 887691 200496 818302 204208 276687 861693 135356 968361 211800 433748 550555 484470 297406 967144 184788 995432 740250 170078 429385 085265 361631 827018 963699 753490 734021 753882 870114 182044 755285 357471 004870 300402 282527 180578 916222 778944 683707 220159 433556 541934 626760 648759 878696 188141 066324 821281 982935 500930 402154 384533 332988 962904 491768 715429 461078 224032 046050 053310 693498 439466 922369 345383 406711 775538 941019 125543 351023 506792 625960 618889 215780 741825 476669 519631 916421 (659 digits)/5 483916 518633 866717 140176 317998 563040 349268 092719 159645 201514 179053 734098 994731 875618 920936 983539 064593 004813 618980 343213 553331 611588 156545 991388 907898 602885 288040 630833 040195 242835 092929 161699 524549 134974 166560 019116 513053 349544 006652 435334 334440 255697 413567 696666 162300 391498 913755 153146 980417 873898 621325 284929 244775 562766 740449 011085 310465 959086 917534 779543 036703 434046 258639 260115 080100 546985 941777 182754 615585 862748 347179 940043 510585 465763 887217 695291 948184 930103 447009 904600 339261 600290 491222 922703 748100 982793 792622 057895 026082 140460 312084 322008 843874 343151 209997 255287 238002 723951 147064 183766 142281 585593 505932 370876 230160 387067 731891 591325 085879 013192 (661 digits), a[1262] = 1
                                                                                      A[1263]/B[1263] = 222814 608040 023270 134380 230132 195337 920846 433397 824829 822135 522769 590408 709919 630660 160087 479323 984012 157948 327485 091776 249693 261516 451278 441735 787504 044073 679274 337927 003006 898030 081839 112656 072361 764983 685133 886901 839920 493050 027875 699904 591576 550514 535984 630656 739962 532457 920342 860112 575600 678094 031439 685913 252404 393401 106765 288311 325593 687321 640087 761961 651160 216392 419428 385179 209545 290031 080361 876105 500016 554855 777095 741223 262722 507852 437677 869833 527929 298982 560903 700645 022823 360423 468780 151793 767242 600860 038208 486280 784417 776828 339403 705571 227854 506534 063354 087332 546712 397430 306517 792365 520647 617373 283460 049530 519711 567134 468493 315782 113992 628377 (660 digits)/21 656137 277422 915293 946765 796476 356306 934145 930357 595140 736502 803629 539642 973947 798918 753334 836808 549267 608222 672610 731861 311602 242687 078838 838248 929655 956496 116566 432685 880035 804938 328017 225011 960429 656100 128546 229982 924654 920590 565097 378410 392541 139038 982265 923391 593341 392290 175327 968458 192026 552275 111761 212684 581789 587022 928655 252085 625928 034659 681301 777196 474627 985583 880550 233087 173265 979173 765641 557522 800542 139479 257028 051023 063691 863114 870174 470362 080859 999478 509562 739423 076496 226477 821126 473530 806776 018855 761906 745912 277101 592884 465001 573805 033637 368997 667798 495410 941430 577779 086160 295168 806425 468714 446274 506522 908785 203695 633014 674265 602085 437723 (662 digits), a[1263] = 3
                                                                                      A[1264]/B[1264] = 502051 868650 570877 808329 381096 144030 512188 821696 294468 950074 973624 420329 689988 623943 439094 546243 280160 736745 585578 282260 326616 045692 780912 841441 158077 139103 854501 461078 516288 021877 876880 421735 411131 170750 815178 661494 880337 804402 259959 676497 044846 236386 040330 473113 913673 615471 325156 017632 118345 540977 058312 112076 674887 216187 298795 938254 478206 338343 033666 257945 056203 302899 020901 525643 776561 584932 461126 034738 180612 025934 333136 166153 745604 449261 417290 366427 704618 476661 309948 467614 866928 703782 438490 705741 919018 534709 039321 464330 284265 014734 902839 457192 509019 706566 566175 097034 438808 201572 388574 525750 166838 585770 073712 725021 658312 350049 678812 108233 747617 173175 (660 digits)/48 796191 073479 697305 033707 910951 275654 217559 953434 349926 674519 786312 813384 942627 473456 427606 657156 163128 221258 964201 806936 176536 096962 314223 667886 767210 515877 521173 496204 800266 852711 748963 611723 445408 447174 423652 479082 362363 190725 136847 192155 119522 533775 378099 543449 348983 176079 264411 090063 364470 978448 844847 710298 408354 736812 597759 515256 562322 028406 280138 333935 985959 405214 019739 726289 426632 505333 473060 297800 216670 141706 861236 042089 637969 191993 627566 636016 109904 929060 466135 383446 492254 053246 133475 869765 361653 020505 316435 549719 580285 326229 242087 469618 911149 081146 545594 246109 120863 879509 319384 774103 755132 523022 398481 383922 047730 794458 997920 939856 290049 888638 (662 digits), a[1264] = 2
                                                                                      A[1265]/B[1265] = 5 243333 294545 732048 217674 041093 635643 042734 650360 769519 322885 259013 793705 609805 870094 551032 941756 785619 525404 183267 914379 515853 718444 260406 856147 368275 435112 224288 948712 165887 116808 850643 330010 183673 472491 836920 501850 643298 537072 627472 464875 040038 914374 939289 361795 876698 687171 171903 036433 759056 087864 614560 806680 001276 555274 094724 670856 107657 070751 976750 341412 213193 245382 628443 641616 975161 139355 691622 223487 306136 814199 108457 402760 718767 000466 610581 534110 574114 065595 660388 376793 692110 398247 853687 209212 957427 947950 431423 129583 627067 924177 367798 277496 318051 572199 725105 057676 934794 413154 192263 049867 189033 475074 020587 299747 102835 067631 256614 398119 590164 360127 (661 digits)/509 618048 012219 888344 283844 905989 112849 109745 464701 094407 481700 666757 673492 400222 533483 029401 408370 180549 820812 314628 801223 076963 212310 221075 517116 601761 115271 328301 394733 882704 332055 817653 342246 414514 127844 365071 020806 548286 827841 933569 299961 587766 476792 763261 357885 083173 153082 819438 869091 836736 336763 560238 315668 665336 955148 906250 404651 249148 318722 482685 116556 334222 037724 077947 495981 439591 032508 496244 535524 967243 556547 869388 471919 443383 783051 145840 830523 179909 290083 170916 573887 999036 758939 155885 171184 423306 223908 926262 243108 079954 855176 885876 269994 145128 180463 123740 956502 150069 372872 280008 036206 357750 698938 431088 345743 386093 148285 612224 072828 502584 324103 (663 digits), a[1265] = 10
                                                                                      A[1266]/B[1266] = 16 232051 752287 767022 461351 504377 050959 640392 772778 603026 918730 750665 801446 519406 234227 092193 371513 637019 312958 135382 025398 874177 201025 562133 409883 262903 444440 527368 307215 013949 372304 428810 411765 962151 588226 325940 167046 810233 415620 142377 071122 164962 979510 858198 558501 543769 676984 840865 126933 395513 804570 901994 532116 678716 882009 582969 950822 801177 550598 963917 282181 695783 039046 906232 450494 702045 002999 535992 705200 099022 468531 658508 374435 901905 450661 249034 968759 426960 673448 291113 597995 943259 898525 999552 333380 791302 378560 333590 853081 165468 787267 006234 289681 463174 423165 741490 270065 243191 441034 965363 675351 733939 010992 135474 624262 966817 552943 448655 302592 518110 253556 (662 digits)/1577 650335 110139 362337 885242 628918 614201 546796 347537 633149 119621 786585 833862 143295 073905 515810 882266 704777 683695 908088 210605 407425 733892 977450 219236 572493 861691 506077 680406 448379 848879 201923 638462 688950 830707 518865 541502 007223 674250 937555 092039 882821 964153 667883 617104 598502 635327 722727 697338 874679 988739 525562 657304 404365 602259 316510 729210 309766 984573 728193 683604 988625 518386 253582 214233 745405 602858 961793 904375 118400 811350 469401 457847 968120 541147 065089 127585 649632 799309 978885 105110 489364 330063 601131 383318 631571 692232 095222 279043 820149 891759 899716 279601 346533 622535 916817 115615 571071 998126 159408 882722 828384 619837 691746 421152 206010 239315 834593 158341 797802 860947 (664 digits), a[1266] = 3
                                                                                      A[1267]/B[1267] = 21 475385 046833 499070 679025 545470 686602 683127 423139 372546 241616 009679 595152 129212 104321 643226 313270 422638 838362 318649 939778 390030 919469 822540 266030 631178 879552 751657 255927 179836 489113 279453 741776 145825 060718 162860 668897 453531 952692 769849 535997 205001 893885 797487 920297 420468 364156 012768 163367 154569 892435 516555 338796 679993 437283 677694 621678 908834 621350 940667 623593 908976 284429 534676 092111 677206 142355 227614 928687 405159 282730 766965 777196 620672 451127 859616 502870 001074 739043 951501 974789 635370 296773 853239 542593 748730 326510 765013 982664 792536 711444 374032 567177 781225 995365 466595 327742 177985 854189 157626 725218 922972 486066 156061 924010 069652 620574 705269 700712 108274 613683 (662 digits)/2087 268383 122359 250682 169087 534907 727050 656541 812238 727556 601322 453343 507354 543517 607388 545212 290636 885327 504508 222717 011828 484388 946203 198525 736353 174254 976962 834379 075140 331084 180935 019576 980709 103464 958551 883936 562308 555510 502092 871124 392001 470588 440946 431144 974989 681675 788410 542166 566430 711416 325503 085800 972973 069702 557408 222761 133861 558915 303296 210878 800161 322847 556110 331529 710215 184996 635367 458038 439900 085644 367898 338789 929767 411504 324198 210929 958108 829542 089393 149801 678998 488401 089002 757016 554503 054877 916141 021484 522151 900104 746936 785592 549595 491661 802999 040558 072117 721141 370998 439416 918929 186135 318776 122834 766895 592103 387601 446817 231170 300387 185050 (664 digits), a[1267] = 1
                                                                                      A[1268]/B[1268] = 2013 442861 107803 180595 610727 233150 905009 171243 124740 249827 389019 650868 150594 536131 936139 912240 505662 942431 280653 769826 424789 147052 711719 058378 150731 962539 242846 431493 108442 738742 859839 418008 396947 523882 235015 471982 374509 988705 016047 738383 918862 230139 110890 024575 146161 647327 543494 028304 320078 770513 801073 941641 040207 918106 549391 608569 766961 322797 336236 446006 276415 230577 490993 631109 016880 682216 242035 704181 073128 778835 762492 986325 653721 624443 405552 193369 735669 526911 404535 780797 253432 032697 498494 350829 794599 423222 744061 479891 240906 871382 951593 791263 037215 117191 992154 134855 750087 795875 880626 624649 120711 570380 215144 649233 557199 444511 266391 038737 468818 587649 326075 (664 digits)/195693 609965 489549 675779 610383 375337 229912 605184 885739 295913 042609 947532 017834 690432 561040 220553 911497 040235 602960 620770 310654 455597 730790 440343 700081 778206 719235 103331 668457 239208 675836 022582 844409 311191 976032 724965 836197 669700 368887 952123 548176 647546 972171 764366 291144 994350 957508 144218 375395 036398 260526 505053 143799 886703 441224 033296 178335 288890 191121 339922 098608 013448 236647 085845 264245 950092 692032 559368 815083 083327 025895 976864 926217 238022 691580 681575 231706 797047 112872 910441 251969 910665 607320 003670 952102 735217 893347 093282 839170 529891 356880 959823 391982 071081 301446 688717 822563 637219 500981 025182 343137 138969 266017 115379 742442 271625 286250 388595 657179 733811 070597 (666 digits), a[1268] = 93
                                                                                      A[1269]/B[1269] = 2034 918246 154636 679666 289752 778621 591611 854370 547879 622373 630635 660547 745746 665344 040461 555466 818933 365070 119016 088476 364567 537083 631188 880918 416762 593718 122399 183150 364369 918579 348952 697462 138723 669707 295733 634843 043407 442236 968740 508233 454859 435141 004775 822063 066459 067795 907650 041072 483445 925083 693509 458196 379004 598099 986675 286264 388640 231631 957587 386673 900009 139553 775423 165785 108992 359422 384390 931796 001816 183995 045223 753291 430918 245115 856680 052986 238539 527986 143579 732299 228221 668067 795268 204069 337193 171953 070572 244905 223571 663919 663038 165295 604392 898417 987519 601451 077829 973861 734815 782275 845930 493352 701210 805295 481209 514163 886965 744007 169530 695923 939758 (664 digits)/197780 878348 611908 926461 779470 910244 956963 261726 697978 023469 643932 400875 525189 233950 168428 765766 202133 925563 107468 843487 322482 939986 676993 638869 436434 952461 696197 937710 743597 570292 856771 042159 825118 414656 934584 608902 398506 225210 870980 823247 940178 118135 413118 195511 266134 676026 745918 686384 941825 747814 586029 590854 116772 956405 998632 256057 312196 847805 494417 550800 898769 336295 792757 417374 974461 135089 327400 017407 254983 168971 393794 315654 855984 649527 015778 892505 189815 626589 202266 060242 930968 399066 696322 760687 506605 790095 809488 114767 361322 429996 103817 745415 941577 562743 104445 729275 894681 358360 871979 464599 262066 325104 584793 238214 509337 863728 673851 835412 888350 034198 255647 (666 digits), a[1269] = 1
                                                                                      A[1270]/B[1270] = 6083 279353 417076 539928 190232 790394 088232 879984 220499 494574 650290 971963 642087 866820 017063 023174 143529 672571 518685 946779 153924 221219 974096 820214 984257 149975 487644 797793 837182 575901 557744 812932 674394 863296 826482 741668 461324 873178 953528 754850 828581 100421 120441 668701 279079 782919 358794 110449 286970 620681 188092 858033 798217 114306 522742 181098 544241 786061 251411 219354 076433 509685 041839 962679 234865 401061 010817 567773 076761 146825 852940 492908 515558 114675 118912 299342 212748 582883 691695 245395 709875 368833 089030 758968 468985 767128 885205 969701 688050 199222 277670 121854 246000 914027 967193 337757 905747 743599 350258 189200 812572 557085 617566 259824 519618 472839 040322 526751 807879 979497 205591 (664 digits)/591255 366662 713367 528703 169325 195827 143839 128638 281695 342852 330474 749283 068213 158332 897897 752086 315764 891361 817898 307744 955620 335571 084777 718082 572951 683130 111630 978753 155652 379794 389378 106902 494646 140505 845201 942770 633210 120122 110849 598619 428532 883817 798408 155388 823414 346404 449345 516988 259046 532027 432585 686761 377345 799515 438488 545410 802728 984501 179956 441523 896146 686039 822161 920595 213168 220271 346832 594183 325049 421269 813484 608174 638186 537076 723138 466585 611338 050225 517405 030927 113906 708798 999965 525045 965314 315409 512323 322817 561815 389883 564516 450655 275137 196567 510338 147269 611926 353941 244939 954380 867269 789178 435603 591808 761117 999082 633954 059421 433879 802207 581891 (666 digits), a[1270] = 2
                                                                                      A[1271]/B[1271] = 8118 197599 571713 219594 479985 569015 679844 734354 768379 116948 280926 632511 387834 532164 057524 578640 962463 037641 637702 035255 518491 758303 605285 701133 401019 743693 610043 980944 201552 494480 906697 510394 813118 533004 122216 376511 504732 315415 922269 263084 283440 535562 125217 490764 345538 850715 266444 151521 770416 545764 881602 316230 177221 712406 509417 467362 932882 017693 208998 606027 976442 649238 817263 128464 343857 760483 395208 499569 078577 330820 898164 246199 946476 359790 975592 352328 451288 110869 835274 977694 938097 036900 884298 963037 806178 939081 955778 214606 911621 863141 940708 287149 850393 812445 954712 939208 983577 717461 085073 971476 658503 050438 318777 065120 000827 987002 927288 270758 977410 675421 145349 (664 digits)/789036 245011 325276 455164 948796 106072 100802 390364 979673 366321 974407 150158 593402 392283 066326 517852 517898 816924 925367 151232 278103 275557 761771 356952 009386 635591 807828 916463 899249 950087 246149 149062 319764 555162 779786 551673 031716 345332 981830 421867 368711 001953 211526 350900 089549 022431 195264 203373 200872 279842 018615 277615 494118 755921 437120 801468 114925 832306 674373 992324 794916 022335 614919 337970 187629 355360 674232 611590 580032 590241 207278 923829 494171 186603 738917 359090 801153 676814 719671 091170 044875 107865 696288 285733 471920 105505 321811 437584 923137 819879 668334 196071 216714 759310 614783 876545 506607 712302 116919 418980 129336 114283 020396 830023 270455 862811 307805 894834 322229 836405 837538 (666 digits), a[1271] = 1
                                                                                      A[1272]/B[1272] = 22319 674552 560502 979117 150203 928425 447922 348693 757257 728471 212144 236986 417756 931148 132112 180456 068455 747854 794090 017290 190907 737827 184668 222481 786296 637362 707732 759682 240287 564863 371139 833722 300631 929305 070915 494691 470789 504010 798067 281019 395462 171545 370876 650229 970157 484349 891682 413492 827803 712210 951297 490494 152660 539119 541577 115824 410005 821447 669408 431410 029318 808162 676366 219607 922580 922027 801234 566911 233915 808467 649268 985308 408510 834257 070097 003999 115324 804623 362245 200785 586069 442634 857628 685044 081343 645292 796762 398915 511293 925506 159086 696153 946788 538919 876619 216175 872903 178521 520406 132154 129578 657962 255120 390064 521274 446844 894899 068269 762701 330339 496289 (665 digits)/2 169327 856685 363920 439033 066917 407971 345443 909368 241042 075496 279289 049600 255017 942899 030550 787791 351562 525211 668632 610209 511826 886686 608320 431986 591724 954313 727288 811680 954152 279968 881676 405027 134175 250831 404775 046116 696642 810788 074510 442354 165954 887724 221460 857189 002512 391266 839873 923734 660791 091711 469816 241992 365583 311358 312730 148347 032580 649114 528704 426173 485978 730711 052000 596535 588426 930992 695297 817364 485114 601752 228042 455833 626528 910284 200973 184767 213645 403854 956747 213267 203656 924530 392542 096512 909154 526420 155946 197987 408091 029642 901184 842797 708566 715188 739905 900360 625141 778545 478778 792341 125942 017744 476397 251855 302029 724705 249565 849090 078339 475019 256967 (667 digits), a[1272] = 2
                                                                                      A[1273]/B[1273] = 164355 919467 495234 073414 531413 067993 815301 175211 069183 216246 765936 291416 312133 050200 982309 841833 441653 272625 196332 156286 854845 923093 897963 258505 905096 205232 564173 298719 883565 448524 504676 346450 917542 038139 618624 839351 800258 843491 508740 230220 051675 736379 721354 042374 136641 241164 508221 045971 565042 531241 540684 749689 245845 486243 300457 278133 802922 767826 894857 625898 181674 306377 551826 665719 801924 214678 003850 467947 715987 990094 443047 143358 806052 199590 466271 380322 258561 743233 370991 383194 040583 135344 887699 758346 375584 456131 533115 007015 490679 341685 054315 160227 477913 584885 091047 452440 093899 967111 727916 896555 565553 656174 104619 795571 649749 114917 191581 748647 316319 987797 619372 (666 digits)/15 974331 241808 872719 528396 417217 961871 518909 755942 666967 894795 929430 497360 378527 992576 280182 032391 978836 493406 605795 422698 860891 482364 020014 380858 151461 315787 898850 598230 578315 909869 417883 984252 258991 310982 613211 874489 908216 020849 503403 518346 530395 216022 761752 351223 107135 761299 074381 669515 826409 921822 307328 971562 053201 935429 626231 839897 342990 376108 375304 975539 196767 137312 978923 513719 306617 872309 541317 333141 975834 802506 803576 114664 879873 558593 145729 652461 296671 503799 416901 584040 470473 579578 444082 961323 836001 790446 413434 823496 779775 027379 976628 095655 176681 765631 794125 179069 882600 162120 468370 965368 010930 238494 355177 593010 384663 935748 054766 838464 870606 161540 636307 (668 digits), a[1273] = 7
                                                                                      A[1274]/B[1274] = 186675 594020 055737 052531 681616 996419 263223 523904 826440 944717 978080 528402 729889 981349 114422 022289 510109 020479 990422 173577 045753 660921 082631 480987 691392 842595 271906 058402 123853 013387 875816 180173 218173 967444 689540 334043 271048 347502 306807 511239 447137 907925 092230 692604 106798 725514 399903 459464 392846 243452 491982 240183 398506 025362 842034 393958 212928 589274 564266 057308 210993 114540 228192 885327 724505 136705 805085 034858 949903 798562 092316 128667 214563 033847 536368 384321 373886 547856 733236 583979 626652 577979 745328 443390 456928 101424 329877 405931 001973 267191 213401 856381 424702 123804 967666 668615 966803 145633 248323 028709 695132 314136 359740 185636 171023 561762 086480 816917 079021 318137 115661 (666 digits)/18 143659 098494 236639 967429 484135 369842 864353 665310 908009 970292 208719 546960 633545 935475 310732 820183 330399 018618 274428 032908 372718 369050 628334 812844 743186 270101 626139 409911 532468 189838 299560 389279 393166 561814 017986 920606 604858 831637 577913 960700 696350 103746 983213 208412 109648 152565 914255 593250 487201 013533 777145 213554 418785 246787 938961 988244 375571 025222 904009 401712 682745 868024 030924 110254 895044 803302 236615 150506 460949 404259 031618 570498 506402 468877 346702 837228 510316 907654 373648 797307 674130 504108 836625 057836 745156 316866 569381 021484 187866 057022 877812 938452 885248 480820 534031 079430 507741 940665 947149 757709 136872 256238 831574 844865 686693 660453 304332 687554 948945 636559 893274 (668 digits), a[1274] = 1
                                                                                      A[1275]/B[1275] = 351031 513487 550971 125946 213030 064413 078524 699115 895624 160964 744016 819819 042023 031550 096731 864122 951762 293105 186754 329863 900599 584014 980594 739493 596489 047827 836079 357122 007418 461912 380492 526624 135716 005584 308165 173395 071307 190993 815547 741459 498813 644304 813584 734978 243439 966678 908124 505435 957888 774694 032666 989872 644351 511606 142491 672092 015851 357101 459123 683206 392667 420917 780019 551047 526429 351383 808935 502806 665891 788656 535363 272026 020615 233438 002639 764643 632448 291090 104227 967173 667235 713324 633028 201736 832512 557555 862992 412946 492652 608876 267717 016608 902615 708690 058714 121056 060703 112744 976239 925265 260685 970310 464359 981207 820772 676679 278062 565564 395341 305934 735033 (666 digits)/34 117990 340303 109359 495825 901353 331714 383263 421253 574977 865088 138150 044321 012073 928051 590914 852575 309235 512024 880223 455607 233609 851414 648349 193702 894647 585889 524990 008142 110784 099707 717444 373531 652157 872796 631198 795096 513074 852487 081317 479047 226745 319769 744965 559635 216783 913864 988637 262766 313610 935356 084474 185116 471987 182217 565193 828141 718561 401331 279314 377251 879513 005337 009847 623974 201662 675611 777932 483648 436784 206765 835194 685163 386276 027470 492432 489689 806988 411453 790550 381348 144604 083687 280708 019160 581158 107312 982815 844980 967641 084402 854441 034108 061930 246452 328156 258500 390342 102786 415520 723077 147802 494733 186752 437876 071357 596201 359099 526019 819551 798100 529581 (668 digits), a[1275] = 1
                                                                                      A[1276]/B[1276] = 5 452148 296333 320303 941724 877067 962615 441094 010643 260803 359189 138332 825688 360235 454600 565399 984133 786543 417057 791737 121535 554747 421145 791552 573391 638728 560012 813096 415232 235129 942073 583204 079535 253914 051209 312017 934969 340656 212409 540023 633131 929342 572497 296001 717277 758398 225698 021771 041003 761177 863862 981987 088273 063778 699454 979409 475338 450698 945796 451121 305404 101004 428306 928486 151040 620945 407462 939117 576958 938280 628410 122765 209057 523791 535417 575964 853975 860610 914208 296656 091584 635188 277849 240751 469442 944616 464762 274763 600128 391762 400335 229157 105514 963937 754155 848378 484456 877349 836807 891921 907688 605421 868793 325139 903753 482613 711951 257419 300383 009140 907158 141156 (667 digits)/529 913514 203040 877032 404818 004435 345558 613304 984114 532677 946614 280970 211775 814654 856249 174455 608812 968931 698991 477779 867016 876866 140270 353572 718388 162900 058444 500989 532043 194229 685454 061225 992254 175534 653763 485968 847054 300981 618943 797676 146409 097529 900293 157696 602940 361406 860540 743814 534745 191365 043875 044257 990301 498592 980051 416869 410370 153992 045192 093725 060490 875440 948079 178638 469867 919984 937478 905602 405233 012712 505746 559538 847949 300542 880934 733190 182575 615143 079461 231904 517529 843191 759418 047245 345245 462527 926561 311618 696198 702482 323065 694428 450073 814202 177605 456374 956936 362873 482462 179960 603866 353909 677236 632861 413006 757057 603473 690825 577852 242222 608067 836989 (669 digits), a[1276] = 15
                                                                                      A[1277]/B[1277] = 33 063921 291487 472794 776295 475437 840105 725088 762975 460444 316099 574013 773949 203435 759153 489131 768925 671022 795451 937177 059077 229084 110889 729910 179843 428860 407904 714657 848515 418198 114353 879717 003835 659200 312840 180272 783211 115244 465451 055689 540251 074869 079288 589595 038644 793829 320867 038750 751458 524955 957871 924589 519511 027023 708336 018948 524122 720045 031880 165851 515630 998693 990759 350936 457291 252101 796161 443640 964560 295575 559117 271954 526371 163364 445943 458428 888498 796113 776339 884164 516681 478365 380420 077537 018394 500211 346129 511574 013716 843227 010887 642659 649698 686242 233625 148985 027797 324802 133592 327771 371396 893217 183070 415199 403728 716454 948386 822578 367862 450186 748883 581969 (668 digits)/3213 599075 558548 371553 924733 927965 405066 063093 325940 771045 544773 823971 314975 900003 065546 637648 505453 122825 705973 746902 657708 494806 693036 769785 504031 872047 936556 530927 200401 276162 212432 084800 327056 705365 795377 547011 877422 318964 566149 867374 357501 811924 721528 691145 177277 385225 077109 451524 471237 461801 198606 350022 126925 463545 062526 066410 290362 642513 672483 841664 740197 132158 693812 081678 443181 721572 300485 211546 915046 513059 241245 192427 772859 189533 313078 891573 585143 497846 888221 181977 486527 203754 640195 564180 090633 356325 666680 852528 022173 182535 022797 021011 734550 947143 312085 066406 000118 567582 997559 495284 346275 271260 558152 983920 915916 613703 217043 504052 993133 272887 446507 551515 (670 digits), a[1277] = 6
                                                                                      A[1278]/B[1278] = 38 516069 587820 793098 718020 352505 802721 166182 773618 721247 675288 712346 599637 563671 213754 054531 753059 457566 212509 728914 180612 783831 532035 521462 753235 067588 967917 527754 263747 653328 056427 462921 083370 913114 364049 492290 718180 455900 677860 595713 173383 004211 651785 885596 755922 552227 546565 060521 792462 286133 821734 906576 607784 090802 407790 998357 999461 170743 977676 616972 821035 099698 419066 279422 608331 873047 203624 382758 541519 233856 187527 394719 735428 687155 981361 034393 742474 656724 690548 180820 608266 113553 658269 318288 487837 444827 810891 786337 613845 234989 411222 871816 755213 650179 987780 997363 512254 202151 970400 219693 279085 498639 051863 740339 307482 199068 660338 079997 668245 459327 656041 723125 (668 digits)/3743 512589 761589 248586 329551 932400 750624 676398 310055 303723 491388 104941 526751 714657 921795 812104 114266 091757 404965 224682 524725 371672 833307 123358 222420 034947 995001 031916 732444 470391 897886 146026 319310 880900 449141 032980 724476 619946 185093 665050 503910 909454 621821 848841 780217 746631 937650 195339 005982 653166 242481 394280 117226 962138 042577 483279 700732 796505 717675 935389 800688 007599 641891 260316 913049 641557 237964 117149 320279 525771 746991 751966 620808 490076 194013 624763 767719 112989 967682 413882 004057 046946 399613 611425 435878 818853 593242 164146 718371 885017 345862 715440 184624 761345 489690 522780 957054 930456 480021 675244 950141 625170 235389 616782 328923 370760 820517 194878 570985 515110 054575 388504 (670 digits), a[1278] = 1
                                                                                      A[1279]/B[1279] = 957 449591 399186 507164 008783 935577 105413 713475 329824 770388 523028 670332 165250 731544 889250 797893 842352 652611 895685 431117 393784 041040 879742 245016 257485 050995 637925 380760 178459 098071 468612 989823 004737 573945 050027 995250 019542 056860 734105 352805 701443 175948 722149 843917 180786 047290 438428 491273 770553 392167 679509 682428 106329 206281 495319 979540 511190 817900 496118 973199 220473 391456 048350 057079 057256 205234 683146 629845 961021 908124 059774 745228 176659 655107 998608 283878 707890 557506 349496 223859 115068 203653 178883 716460 726493 176078 807532 383676 746002 482972 880236 566261 774826 290561 940369 085709 321898 176449 423197 600410 069448 860554 427800 183342 783301 494102 796500 742522 405753 474050 493884 936969 (669 digits)/93057 901229 836690 337625 833980 305583 420058 296652 767268 060409 338088 342567 957017 051793 188646 128147 247839 325003 425139 139283 251117 414954 692407 730382 842112 710799 816581 296928 779068 565567 761699 589431 990517 846976 574762 338549 264861 197673 008397 828586 451363 638835 645253 063347 902503 304391 580714 139660 614821 137791 018159 812744 940372 554858 084385 665123 107949 758650 896706 291019 956709 314550 099202 329284 356373 118946 011624 023130 601755 131581 169047 239626 672262 951361 969405 885904 010402 209606 112599 115145 583896 330468 230922 238390 551725 008811 904492 792049 263098 422951 323502 191576 165545 219435 064657 613148 969436 898538 518079 701163 149674 275346 207503 786696 810077 511962 909456 181138 696785 635528 756316 875611 (671 digits), a[1279] = 24
                                                                                      A[1280]/B[1280] = 1953 415252 386193 807426 735588 223660 013548 593133 433268 262024 721346 053010 930139 026760 992255 650319 437764 762790 003880 591148 968180 865913 291520 011495 268205 169580 243768 289274 620665 849470 993653 442567 092846 061004 464105 482790 757264 569622 146071 301324 576269 356109 096085 573431 117494 646808 423422 043069 333569 070469 180754 271432 820442 503365 398430 957439 021842 806544 969914 563371 261981 882610 515766 393580 722844 283516 569917 642450 463563 050104 307076 885176 088747 997371 978577 602151 158255 771737 389540 628538 838402 520860 016036 751209 940823 796985 425956 553691 105850 200935 171696 004340 304866 231303 868519 168782 156050 555050 816795 420513 417983 219747 907464 107024 874085 187274 253339 565042 479752 407428 643811 597063 (670 digits)/189859 315049 434969 923837 997512 543567 590741 269703 844591 424542 167564 790077 440785 818244 299088 068398 609944 741764 255243 503249 026960 201582 218122 584123 906645 456547 628163 625774 290581 601527 421285 324890 300346 574853 598665 710079 254199 015292 201889 322223 406638 187125 912327 975537 585224 355415 099078 474660 235624 928748 278801 019769 997972 071854 211348 813525 916632 313807 511088 517429 714106 636699 840295 918885 625795 879449 261212 163410 523789 788934 085086 231219 965334 392800 132825 396571 788523 532202 192880 644173 171849 707882 861458 088206 539328 836477 402227 748245 244568 730919 992867 098592 515715 200215 619005 749078 895928 727533 516181 077571 249490 175862 650397 190175 949078 394686 639429 557155 964556 786167 567209 139726 (672 digits), a[1280] = 2
                                                                                      A[1281]/B[1281] = 8771 110600 943961 736870 951136 830217 159608 086009 062897 818487 408412 882375 885806 838588 858273 399171 593411 703771 911207 795713 266507 504694 045822 290997 330305 729316 612998 537858 661122 495955 443226 760091 376121 817962 906449 926413 048600 335349 318390 558104 006520 600385 106492 137641 650764 634524 132116 663551 104829 674044 402526 768159 388099 219743 089043 809296 598562 044080 375777 226684 268400 921898 111415 631401 948633 339300 962817 199647 815274 108541 288082 285932 531651 644595 912918 692483 340913 644455 907658 738014 468678 287093 243030 721300 489788 364020 511358 598441 169403 286713 567020 583622 994291 215777 414445 760837 946100 396652 690379 282463 741381 739546 057656 611442 279642 243199 809859 002692 324763 103765 069131 325221 (670 digits)/852495 161427 576570 032977 824030 479853 783023 375468 145633 758578 008347 502877 720160 324770 384998 401741 687618 292060 446113 152279 358958 221283 564898 066878 468694 536990 329235 800025 941394 971677 446840 888993 191904 146390 969425 178866 281657 258841 815955 117480 077916 387339 294564 965498 243400 726051 977028 038301 557320 852784 133363 891824 932260 842274 929780 919226 774479 013880 941060 360738 813135 861349 460386 004826 859556 636743 056472 676772 696914 287317 509392 164506 533600 522562 500707 472191 164496 338414 884121 691838 271295 161999 676754 591216 709040 354721 513403 785030 241373 346631 294970 585946 228406 020297 540680 609464 553151 808672 582804 011448 147634 978796 809092 547400 606391 090709 467174 409762 555012 780199 025153 434515 (672 digits), a[1281] = 4
                                                                                      A[1282]/B[1282] = 80893 410660 881849 439265 295819 695614 450021 367214 999348 628411 397061 994393 902400 574060 716716 242863 778470 096737 204750 752568 366748 408159 703920 630471 240956 733429 760755 130002 570768 313069 982694 283389 477942 422670 622154 820508 194667 587766 011586 324260 634954 759575 054514 812205 974376 357525 612472 015029 277036 136868 803495 184867 313335 481053 199825 241108 408901 203268 351909 603529 677590 179693 518507 076198 260544 337225 235272 439280 801030 026975 899817 458568 873612 798735 194845 834501 226478 571840 558469 270669 056507 104699 203313 242914 348919 073170 028183 939661 630479 781357 274881 256947 253487 173300 598531 016323 670954 124925 030208 962687 090418 875662 426373 610005 390865 376072 542070 589273 402620 341314 265993 524052 (671 digits)/7 862315 767897 624100 220638 413786 862251 637951 648917 155295 251744 242692 315976 922228 741177 764073 684073 798509 370308 270261 873763 257584 193134 302205 186030 124896 289460 591285 826007 763136 346624 442853 325829 027483 892372 323492 319875 789114 344868 545485 379544 107885 673179 563412 665021 775830 889882 892330 819374 251512 603805 479076 046194 388319 652328 579377 086566 886943 438735 980631 764079 032329 388844 983769 962327 361805 610136 769466 254364 796018 374791 669615 711778 767739 095862 639192 646292 268990 577936 149975 870717 613506 165879 952249 409156 920692 028971 022861 813517 416928 850601 647602 372108 571369 382893 485131 234259 874295 005586 761417 180604 578204 985033 932230 116781 406598 211071 843999 245018 959671 807958 793590 050361 (673 digits), a[1282] = 9
                                                                                      A[1283]/B[1283] = 89664 521261 825811 176136 246956 525831 609629 453224 062246 446898 805474 876769 788207 412649 574989 642035 371881 800509 115958 548281 633255 912853 749742 921468 571262 462746 373753 667861 231890 809025 425921 043480 854064 240633 528604 746921 243267 923115 329976 882364 641475 359960 161006 949847 625140 992049 744588 678580 381865 810913 206021 953026 701434 700796 288869 050405 007463 247348 727686 830213 945991 101591 629922 707600 209177 676526 198089 638928 616304 135517 187899 744501 405264 443331 107764 526984 567392 216296 466128 008683 525185 391792 446343 964214 838707 437190 539542 538102 799883 068070 841901 840570 247778 389078 012976 777161 617054 521577 720588 245150 831800 615208 484030 221447 670507 619272 351929 591965 727383 445079 335124 849273 (671 digits)/8 714810 929325 200670 253616 237817 342105 420975 024385 300929 010322 251039 818854 642389 065948 149072 085815 486127 662368 716375 026042 616542 414417 867103 252908 593590 826450 920521 626033 704531 318301 889694 214822 219388 038763 292917 498742 070771 603710 361440 497024 185802 060518 857977 630520 019231 615934 869358 857675 808833 456589 612439 938019 320580 494603 509158 005793 661422 452616 921692 124817 845465 250194 444155 967154 221362 246879 825938 931137 492932 662109 179007 876285 301339 618425 139900 118483 433486 916351 034097 562555 884801 327879 629004 000373 629732 383692 536265 598547 658302 197232 942572 958054 799775 403191 025811 843724 427446 814259 344221 192052 725839 963830 741322 664182 012989 301781 311173 654781 514684 588157 818743 484876 (673 digits), a[1283] = 1
                                                                                      A[1284]/B[1284] = 618880 538231 836716 496082 777558 850604 107798 086559 372827 309804 229911 255012 631645 049958 166654 095076 009760 899791 900502 042258 166283 885282 202378 159282 668531 509908 003277 137169 962113 167222 538220 544274 602327 866471 793783 302035 654275 126457 991447 618448 483806 919336 020556 511291 725222 309824 080004 086511 568231 002348 039626 903027 521943 685830 933039 543538 453680 687360 718030 584813 353536 789243 298043 321799 515610 396382 423810 272852 498854 840079 027215 925577 305199 458721 841432 996408 630831 869619 355237 322770 207619 455453 881377 028203 381163 696313 265439 168278 429778 189782 326292 300368 740157 507768 676391 679293 373281 254391 353738 433592 081222 566913 330554 938691 413911 091706 653648 141067 766921 011790 276742 619690 (672 digits)/60 151181 343848 828121 742335 840690 914884 163801 795228 960869 313677 748931 229104 776563 136866 658506 198966 715275 344520 568512 030018 956838 679641 504824 703481 686441 248166 114415 582209 990324 256435 781018 614762 343812 124952 080997 312328 213743 967130 714128 361689 222698 036292 711278 448141 891220 585492 108483 965429 104513 343343 153715 674310 311802 619949 634325 121328 855478 154437 510784 512986 105120 890011 648705 765252 689979 091415 725099 841189 753614 347446 743662 969490 575776 806413 478593 357192 869912 076042 354561 246052 922314 133157 726273 411398 699086 331126 240455 404803 366742 033999 303040 120437 370021 802039 640002 296606 438975 891142 826744 332920 933244 768018 380166 101873 484534 021759 711041 173708 047779 336905 706050 959617 (674 digits), a[1284] = 6
                                                                                      A[1285]/B[1285] = 1 327425 597725 499244 168301 802074 227039 825225 626342 807901 066507 265297 386795 051497 512565 908297 832187 391403 600092 916962 632797 965823 683418 154499 240033 908325 482562 380307 942201 156117 143470 502362 132030 058719 973577 116171 350992 551818 176031 312872 119261 609089 198632 202119 972431 075585 611697 904596 851603 518327 815609 285275 759081 745322 072458 154948 137481 914824 622070 163747 999840 653064 680078 226009 351199 240398 469291 045710 184633 614013 815675 242331 595656 015663 360774 790630 519801 829055 955535 176602 654223 940424 302700 209098 020621 601034 829817 070420 874659 659439 447635 494486 441307 728093 404615 365760 135748 363617 030360 428065 112334 994245 749035 145140 098830 498329 802685 659225 874101 261225 468659 888610 088653 (673 digits)/129 017173 617022 856913 738287 919199 171873 748578 614843 222667 637677 748902 277064 195515 339681 466084 483748 916678 351409 853399 086080 530219 773700 876752 659871 966473 322783 149352 790453 685179 831173 451731 444346 907012 288667 454912 123398 498259 537971 789697 220402 631198 133104 280534 526803 801672 786919 086326 788534 017860 143275 919871 286639 944185 734502 777808 248451 372378 761491 943261 150790 055707 030217 741567 497659 601320 429711 276138 613517 000161 357002 666333 815266 452893 231252 097086 832869 173311 068435 743220 054661 729429 594195 081550 823171 027905 045945 017176 408154 391786 265231 548653 198929 539819 007270 305816 436937 305398 596544 997709 857894 592329 499867 501654 867928 982057 345300 733256 002197 610243 261969 230845 404110 (675 digits), a[1285] = 2
                                                                                      A[1286]/B[1286] = 1 946306 135957 335960 664384 579633 077643 933023 712902 180728 376311 495208 641807 683142 562524 074951 927263 401164 499884 817464 675056 132107 568700 356877 399316 576856 992470 383585 079371 118230 310693 040582 676304 661047 840048 909954 653028 206093 302489 304319 737710 092896 117968 222676 483722 800807 921521 984600 938115 086558 817957 324902 662109 267265 758289 087987 681020 368505 309430 881778 584654 006601 469321 524052 672998 756008 865673 469520 457486 112868 655754 269547 521233 320862 819496 632063 516210 459887 825154 531839 976994 148043 758154 090475 048824 982198 526130 335860 042938 089217 637417 820778 741676 468250 912384 042151 815041 736898 284751 781803 545927 075468 315948 475695 037521 912240 894392 312874 015169 028146 480450 165352 708343 (673 digits)/189 168354 960871 685035 480623 759890 086757 912380 410072 183536 951355 497833 506168 972078 476548 124590 682715 631953 695930 421911 116099 487058 453342 381577 363353 652914 570949 263768 372663 675504 087609 232750 059109 250824 413619 535909 435726 712003 505102 503825 582091 853896 169396 991812 974945 692893 372411 194810 753963 122373 486619 073586 960950 255988 354452 412133 369780 227856 915929 454045 663776 160827 920229 390273 262912 291299 521127 001238 454706 753775 704449 409996 784757 028670 037665 575680 190062 043223 144478 097781 300714 651743 727352 807824 234569 726991 377071 257631 812957 758528 299230 851693 319366 909840 809309 945818 733543 744374 487687 824454 190815 525574 267885 881820 969802 466591 367060 444297 175905 658022 598874 936896 363727 (675 digits), a[1286] = 1
                                                                                      A[1287]/B[1287] = 5 220037 869640 171165 497070 961340 382327 691273 052147 169357 819130 255714 670410 417782 637614 058201 686714 193732 599862 551891 982910 230038 820818 868254 038667 062039 467503 147478 100943 392577 764856 583527 484639 380815 653674 936080 657048 964004 781009 921511 594681 794881 434568 647472 939876 677201 454741 873798 727833 691445 451523 935081 083300 279853 589036 330923 499522 651835 240931 927305 169148 666267 618721 274114 697196 752416 200637 984751 099605 839751 127183 781426 638122 657388 999768 054757 552222 748831 605844 240282 608212 236511 819008 390048 118271 565431 882077 742140 960535 837874 722471 136043 924660 664595 229383 450063 765831 837413 599863 991672 204189 145182 380932 096530 173874 322811 591470 284973 904439 317518 429560 219315 505339 (673 digits)/507 353883 538766 226984 699535 438979 345389 573339 434987 589741 540388 744569 289402 139672 292777 715265 849180 180585 743270 697221 318279 504336 680385 639907 386579 272302 464681 676889 535781 036188 006391 917231 562565 408661 115906 526730 994851 922266 548176 797348 384586 338990 471898 264160 476695 187459 531741 475948 296460 262607 116514 067045 208540 456162 443407 602074 988011 828092 593350 851352 478342 377362 870676 522114 023484 183919 471965 278615 522930 507712 765901 486327 384780 510233 306583 248447 212993 259757 357391 938782 656091 032917 048900 697199 292310 481887 800087 532440 034069 908842 863693 252039 837663 359500 625890 197453 904024 794147 571920 646618 239525 643478 035639 265296 807533 915240 079421 621850 354008 926288 459719 104638 131564 (675 digits), a[1287] = 2
                                                                                      A[1288]/B[1288] = 7 166344 005597 507126 161455 540973 459971 624296 765049 350086 195441 750923 312218 100925 200138 133153 613977 594897 099747 369356 657966 362146 389519 225131 437983 638896 459973 531063 180314 510808 075549 624110 160944 041863 493723 846035 310077 170098 083499 225831 332391 887777 552536 870149 423599 478009 376263 858399 665948 778004 269481 259983 745409 547119 347325 418911 180543 020340 550362 809083 753802 672869 088042 798167 370195 508425 066311 454271 557091 952619 782938 050974 159355 978251 819264 686821 068433 208719 430998 772122 585206 384555 577162 480523 167096 547630 408208 078001 003473 927092 359888 956822 666337 132846 141767 492215 580873 574311 884615 773475 750116 220650 696880 572225 211396 235052 485862 597847 919608 345664 910010 384668 213682 (673 digits)/696 522238 499637 912020 180159 198869 432147 485719 845059 773278 491744 242402 795571 111750 769325 839856 531895 812539 439201 119132 434378 991395 133728 021484 749932 925217 035630 940657 908444 711692 094001 149981 621674 659485 529526 062640 430578 634270 053279 301173 966678 192886 641295 255973 451640 880352 904152 670759 050423 384980 603133 140632 169490 712150 797860 014208 357792 055949 509280 305398 142118 538190 790905 912387 286396 475218 993092 279853 977637 261488 470350 896324 169537 538903 344248 824127 403055 302980 501870 036563 956805 684660 776253 505023 526880 208879 177158 790071 847027 667371 162924 103733 157030 269341 435200 143272 637568 538522 059608 471072 430341 169052 303525 147117 777336 381831 446482 066147 529914 584311 058594 041534 495291 (675 digits), a[1288] = 1
                                                                                      A[1289]/B[1289] = 26 719069 886432 692543 981437 584260 762242 564163 347295 219616 405455 508484 607064 720558 238028 457662 528646 978423 899104 659961 956809 316477 989376 543648 352617 978728 847423 740667 641886 925001 991505 455857 967471 506406 134846 474186 587280 474299 031507 599005 591857 458214 092179 257921 210675 111229 583533 448997 725680 025458 259967 715032 319528 921211 631012 587657 041151 712856 892020 354556 430556 684874 882849 668616 807783 277691 399572 347565 770881 697610 475997 934349 116190 592144 457562 115220 757522 374989 898840 556650 363831 390178 550495 831617 619561 208323 106701 976143 970957 619151 802138 006511 923672 063133 654685 926710 508452 560349 253711 312099 454537 807134 471573 813205 808063 027969 049058 078517 663264 354513 159591 373320 146385 (674 digits)/2596 920599 037679 963045 240013 035587 641832 030498 970166 909577 015621 471777 676115 474924 600755 234835 444867 618204 060874 054618 621416 478522 081569 704361 636378 047953 571574 498863 261115 171264 288395 367176 427589 387117 704484 714652 286587 825076 708014 700870 284620 917650 395784 032080 831617 828518 244199 488225 447730 417548 925913 488941 717012 592614 836987 644700 061387 995941 121191 767546 904697 991935 243394 259275 882673 609576 451242 118177 455842 292178 176954 175299 893393 126943 339329 720829 422159 168698 863002 048474 526508 086899 377661 212269 872951 108525 331563 902655 575152 910956 352465 563239 308754 167524 931490 627271 816730 409713 750746 059835 530549 150634 946214 706650 139543 060734 418867 820292 943752 679221 635501 229241 617437 (676 digits), a[1289] = 3
                                                                                      A[1290]/B[1290] = 808 738440 598578 283445 604583 068796 327248 549197 183905 938578 359107 005461 524159 717672 340991 863029 473386 947614 072887 168215 362245 856486 070815 534582 016523 000761 882685 751092 436922 260867 820713 299849 185089 234047 539118 071632 928491 399069 028727 195999 088115 634200 317914 607785 743852 814896 882267 328331 436349 541752 068512 710953 331277 183468 277703 048622 415094 406047 310973 445776 670503 219115 573532 856671 603693 839167 053481 881244 683542 880934 062876 081447 645073 742585 546128 143443 794104 458416 396215 471633 500148 089912 092037 429051 753932 797323 609267 362320 132202 501646 424029 152180 376499 026855 782345 293530 834450 384789 495955 136459 386250 434684 844094 968399 453287 074123 957604 953377 817538 981059 697751 584272 605232 (675 digits)/78604 140209 630036 803377 380550 266498 687108 400688 950067 060588 960388 395733 079035 359488 791982 884919 877924 358661 265422 757691 076873 347057 580819 152333 841274 363824 182865 906555 741899 849620 745862 165274 449356 273016 664067 502209 028213 386571 293720 327282 505305 722398 514816 218398 400175 735900 230137 317522 482335 911448 380537 808883 679868 490595 907489 355210 199431 934183 145033 331805 283058 296248 092733 690663 766604 762512 530355 825177 652906 026833 778976 155320 971331 347203 524140 449010 067830 363946 391931 490799 752048 291642 106089 873119 715413 464639 124075 869739 101614 996061 736891 000912 419655 295089 379918 961427 139480 829934 581990 266138 346815 688100 689966 346621 963628 203864 012516 674935 842494 960960 123630 918783 018401 (677 digits), a[1290] = 30
                                                                                      A[1291]/B[1291] = 2452 934391 682167 542880 795186 790649 743988 211754 899013 035351 482776 524869 179543 873575 261004 046750 948807 821266 117766 164608 043546 885936 201823 147394 402186 981014 495480 993944 952653 707605 453645 355405 522739 208548 752200 689085 372754 671506 117689 187002 856204 360815 045923 081278 442233 555920 230335 433992 034728 650714 465505 847892 313360 471616 464121 733524 286434 930998 824940 691886 442066 342221 603448 238631 618864 795192 560017 991299 821510 340412 664626 178692 051411 819901 095946 545552 139835 750239 087486 971550 864275 659914 826608 118772 881359 600293 934504 063104 367565 124091 074225 463053 053169 143701 001721 807303 011803 714717 741576 721477 613289 111189 003858 718404 167924 250340 921872 938651 115881 297692 252846 126137 962081 (676 digits)/238409 341227 927790 373177 381663 835083 703157 232565 820368 091343 896786 658976 913221 553390 976703 889595 078640 694187 857142 327691 852036 519694 824027 161363 160201 139426 120172 218530 486814 720126 525981 862999 775658 206167 696687 221279 371227 984790 589175 682717 800538 084845 940232 687276 032145 036218 934611 440792 894738 151894 067526 915592 756618 064402 559455 710330 659683 798490 556291 762962 753872 880679 521595 331267 182487 897114 042309 593710 414560 372679 513882 641262 807387 168553 911751 067859 625650 260538 038796 520873 782652 961825 695930 831629 019191 502442 703791 511872 879997 899141 563138 565976 567720 052793 071247 511553 235172 899517 496716 858250 570996 214937 016113 746516 030427 672326 456417 845100 471237 562102 006393 985590 672640 (678 digits), a[1291] = 3
                                                                                      A[1292]/B[1292] = 5714 607223 962913 369207 194956 650095 815224 972706 981932 009281 324660 055199 883247 464822 862999 956531 371002 590146 308419 497431 449339 628358 474461 829370 820896 962790 873647 738982 342229 676078 728004 010660 230567 651145 043519 449803 674000 742081 264105 570004 800524 355830 409760 770342 628319 926737 342938 196315 505806 843180 999524 406737 957998 126701 205946 515670 987964 268044 960854 829549 554635 903558 780429 333934 841423 429552 173517 863844 326563 561759 392128 438831 747897 382387 738021 234548 073775 958894 571189 414735 228699 409741 745253 666597 516651 997911 478275 488528 867332 749828 572480 078286 482837 314257 785788 908136 858057 814224 979108 579414 612828 657062 851812 405207 789135 574805 801350 830680 049301 576444 203443 836548 529394 (676 digits)/555422 822665 485617 549732 143877 936666 093422 865820 590803 243276 753961 713686 905478 466270 745390 664110 035205 747036 979707 413074 780946 386447 228873 475060 161676 642676 423210 343616 715529 289873 797825 891274 000672 685352 057441 944767 770669 356152 472071 692718 106381 892090 395281 592950 464465 808338 099360 199108 271812 215236 515591 640069 193104 619401 026400 775871 518799 531164 257616 857730 790804 057607 135924 353198 131580 556740 614975 012598 482026 772192 806741 437846 586105 684311 347642 584729 319130 885022 469524 532547 317354 215293 497951 536377 753796 469524 531658 893484 861610 794344 863168 132865 555095 400675 522413 984533 609826 628969 575423 982639 488808 117974 722193 839654 024483 548516 925352 365136 784970 085164 136418 889964 363681 (678 digits), a[1292] = 2
                                                                                      A[1293]/B[1293] = 13882 148839 607994 281295 185100 090841 374438 157168 862877 053914 132096 635268 946038 803220 987003 959813 690813 001558 734605 159470 942226 142653 150746 806136 043980 906596 242776 471909 637113 059762 909653 376725 983874 510838 839239 588692 720756 155668 645900 327012 457253 072475 865444 621963 698873 409394 916211 826623 046342 337076 464554 661368 229356 725018 876014 764866 262363 467088 746650 350985 551338 149339 164306 906501 301711 654296 907053 718988 474637 463931 448883 056355 547206 584676 571989 014648 287387 668028 229865 801021 321674 479398 317115 451967 914663 596116 891055 040162 102230 623748 219185 619626 018843 772216 573299 623576 727919 343167 699793 880306 838946 425314 707483 528819 746195 399952 524574 600011 214484 450580 659733 799235 020869 (677 digits)/1 349254 986558 899025 472641 669419 708415 890002 964207 001974 577897 404710 086350 724178 485932 467485 217815 149052 188261 816557 153841 413929 292589 281774 111483 483554 424778 966592 905763 917873 299874 121633 645547 777003 576871 811571 110814 912566 697095 533319 068154 013301 869026 730795 873176 961076 652895 133331 839009 438362 582367 098710 195731 142827 303204 612257 262073 697282 860819 071525 478424 335480 995893 793444 037663 445649 010595 272259 618907 378613 917065 127365 516955 979598 537176 607036 237318 263912 030582 977845 585968 417361 392412 691833 904384 526784 441491 767109 298842 603219 487831 289474 831707 677910 854144 116075 480620 454826 157456 647564 823529 548612 450886 460501 425824 079394 769360 307122 575374 041177 732430 279231 765519 400002 (679 digits), a[1293] = 2
                                                                                      A[1294]/B[1294] = 19596 756063 570907 650502 380056 740937 189663 129875 844809 063195 456756 690468 829286 268043 850003 916345 061815 591705 043024 656902 391565 771011 625208 635506 864877 869387 116424 210891 979342 735841 637657 387386 214442 161983 882759 038496 394756 897749 910005 897017 257777 428306 275205 392306 327193 336132 259150 022938 552149 180257 464079 068106 187354 851720 081961 280537 250327 735133 707505 180535 105974 052897 944736 240436 143135 083849 080571 582832 801201 025690 841011 495187 295103 967064 310010 249196 361163 626922 801055 215756 550373 889140 062369 118565 431315 594028 369330 528690 969563 373576 791665 697912 501681 086474 359088 531713 585977 157392 678902 459721 451775 082377 559295 934027 535330 974758 325925 430691 263786 027024 863177 635783 550263 (677 digits)/1 904677 809224 384643 022373 813297 645081 983425 830027 592777 821174 158671 800037 629656 952203 212875 881925 184257 935298 796264 566916 194875 679036 510647 586543 645231 067455 389803 249380 633402 589747 919459 536821 777676 262223 869013 055582 683236 053248 005390 760872 119683 761117 126077 466127 425542 461233 232692 038117 710174 797603 614301 835800 335931 922605 638658 037945 216082 391983 329142 336155 126285 053500 929368 390861 577229 567335 887234 631505 860640 689257 934106 954802 565704 221487 954678 822047 583042 915605 447370 118515 734715 607706 189785 440762 280580 911016 298768 192327 464830 282176 152642 964573 233006 254819 638489 465154 064652 786426 222988 806169 037420 568861 182695 265478 103878 317877 232474 940510 826147 817594 415650 655483 763683 (679 digits), a[1294] = 1
                                                                                      A[1295]/B[1295] = 111865 929157 462532 533807 085383 795527 322753 806548 086922 369891 415880 087613 092470 143440 237023 541538 999890 960083 949728 443982 900054 997711 276789 983670 368370 253531 824897 526369 533826 738971 097940 313657 056085 320758 253034 781174 694540 644418 195929 812098 746140 214007 241471 583495 334840 090056 211961 941315 807088 238363 784950 001899 166130 983619 285821 167552 514002 142757 284176 253661 081208 413828 887988 108682 017387 073542 309911 633152 480642 592385 653940 532292 022726 419998 122040 260630 093205 802642 235141 879804 073543 925098 628961 044795 071241 566258 737707 683616 950047 491632 177514 109188 527249 204588 368742 282144 657805 130131 094306 178914 097821 837202 503963 198957 422850 273744 154201 753467 533414 585704 975621 978152 772184 (678 digits)/10 872644 032680 822240 584510 735907 933825 807132 114344 965863 683768 198069 086538 872463 246948 531864 627441 070341 864755 797879 988422 388307 687771 835012 044201 709709 762055 915609 152667 084886 248613 718931 329656 665384 887991 156636 388728 328746 963335 560272 872514 611720 674612 361183 203814 088788 959061 296792 029597 989236 570385 170219 374732 822486 916232 805547 451799 777694 820735 717237 159199 966906 263398 440285 991971 331796 847274 708432 776436 681817 363354 797900 290968 808119 644616 380430 347556 179126 608610 214696 178547 090939 430943 640761 108195 929688 996573 260950 260479 927370 898712 052689 654573 842942 128242 308522 806390 778090 089587 762508 854374 735715 295192 373977 753214 598786 358746 469497 277928 171916 820402 357485 042938 218417 (680 digits), a[1295] = 5
                                                                                      A[1296]/B[1296] = 243328 614378 495972 718116 550824 331991 835170 742972 018653 802978 288516 865695 014226 554924 324050 999423 061597 511872 942481 544868 191675 766434 178788 602847 601618 376450 766219 263631 046996 213783 833538 014700 326612 803500 388828 600845 783838 186586 301865 521214 750057 856320 758148 559296 996873 516244 683073 905570 166325 656985 033979 071904 519616 818958 653603 615642 278332 020648 275857 687857 268390 880555 720712 457800 177909 230933 700394 849137 762486 210462 148892 559771 340556 807060 554090 770456 547575 232207 271338 975364 697461 739337 320291 208155 573798 726545 844745 895924 869658 356841 146693 916289 556179 495651 096573 096002 901587 417654 867514 817549 647418 756782 567222 331942 381031 522246 634328 937626 330615 198434 814421 592089 094631 (678 digits)/23 649965 874586 029124 191395 285113 512733 597690 058717 524505 188710 554809 973115 374583 446100 276605 136807 324941 664810 392024 543760 971491 054580 180671 674947 064650 591567 221021 554714 803175 086975 357322 196135 108446 038206 182285 833039 340729 979919 125936 505901 343125 110341 848443 873755 603120 379355 826276 097313 688647 938373 954740 585265 980905 755071 249752 941544 771472 033454 763616 654555 060097 580297 809940 374804 240823 261885 304100 184379 224275 415967 529907 536740 181943 510720 715539 517159 941296 132825 876762 475609 916594 469593 471307 657154 139958 904162 820668 713287 319572 079600 258022 273720 918890 511304 255535 077935 620832 965601 748006 514918 508851 159245 930650 771907 301451 035370 171469 496367 169981 458399 130620 741360 200517 (680 digits), a[1296] = 2
                                                                                      A[1297]/B[1297] = 598523 157914 454477 970040 187032 459510 993095 292492 124229 975847 992913 819003 120923 253288 885125 540385 123085 983829 834691 533719 283406 530579 634367 189365 571607 006433 357336 053631 627819 166538 765016 343057 709310 927759 030691 982866 262217 017590 799660 854528 246255 926648 757768 702089 328587 122545 578109 752456 139739 552333 852908 145708 205364 621536 593028 398837 070666 184053 835891 629375 617990 174940 329413 024282 373205 535409 710701 331428 005615 013309 951725 651834 703840 034119 230221 801543 188356 267056 777819 830533 468467 403773 269543 461106 218839 019350 427199 475466 689364 205314 470901 941767 639608 195890 561888 474150 460979 965440 829335 814013 392659 350767 638407 862842 184913 318237 422859 628720 194644 982574 604465 162330 961446 (678 digits)/58 172575 781852 880488 967301 306134 959293 002512 231780 014874 061189 307689 032769 621630 139149 085074 901055 720225 194376 581929 075944 331289 796932 196355 394095 839010 945190 357652 262096 691236 422564 433575 721926 882276 964403 521208 054807 010206 923173 812145 884317 297970 895296 058070 951325 295029 717772 949344 224225 366532 447133 079700 545264 784298 426375 305053 334889 320638 887645 244470 468310 087101 423994 060166 741579 813443 371045 316633 145195 130368 195289 857715 364449 172006 666057 811509 381876 061718 874261 968221 129766 924128 370130 583376 422504 209606 804898 902287 687054 566515 057912 568734 202015 680723 150850 819592 962262 019756 020791 258521 884211 753417 613684 235279 297029 201688 429486 812436 270662 511879 737200 618726 525658 619451 (680 digits), a[1297] = 2
                                                                                      A[1298]/B[1298] = 841851 772292 950450 688156 737856 791502 828266 035464 142883 778826 281430 684698 135149 808213 209176 539808 184683 495702 777173 078587 475082 297013 813155 792213 173225 382884 123555 317262 674815 380322 598554 357758 035923 731259 419520 583712 046055 204177 101526 375742 996313 782969 515917 261386 325460 638790 261183 658026 306065 209318 886887 217612 724981 440495 246632 014479 348998 204702 111749 317232 886381 055496 050125 482082 551114 766343 411096 180565 768101 223772 100618 211606 044396 841179 784312 571999 735931 499264 049158 805898 165929 143110 589834 669261 792637 745896 271945 371391 559022 562155 617595 858057 195787 691541 658461 570153 362567 383095 696850 631563 040078 107550 205630 194784 565944 840484 057188 566346 525260 181009 418886 754420 056077 (678 digits)/81 822541 656438 909613 158696 591248 472026 600202 290497 539379 249899 862499 005884 996213 585249 361680 037863 045166 859186 973953 619705 302780 851512 377027 069042 903661 536757 578673 816811 494411 509539 790897 918061 990723 002609 703493 887846 350936 903092 938082 390218 641096 005637 906514 825080 898150 097128 775620 321539 055180 385507 034441 130530 765204 181446 554806 276434 092110 921100 008087 122865 147199 004291 870107 116384 054266 632930 620733 329574 354643 611257 387622 901189 353950 176778 527048 899036 003015 007087 844983 605376 840722 839724 054684 079658 349565 709061 722956 400341 886087 137512 826756 475736 599613 662155 075128 040197 640588 986393 006528 399130 262268 772930 165930 068936 503139 464856 983905 767029 681861 195599 749347 267018 819968 (680 digits), a[1298] = 1
                                                                                      A[1299]/B[1299] = 4 807782 019379 206731 410823 876316 417025 134425 469812 838648 869979 400067 242493 796672 294354 931008 239426 046503 462343 720556 926656 658818 015648 700146 150431 437733 920853 975112 639945 001896 068151 757788 131847 888929 584056 128294 901426 492493 038476 307292 733243 227824 841496 337355 009020 955890 316496 884028 042587 670065 598928 287344 233771 830271 824012 826188 471233 815657 207564 394638 215540 049895 452420 580040 434695 128779 367126 766182 234256 846121 132170 454816 709864 925824 240018 151784 661541 868013 763377 023613 860024 298113 119326 218716 807415 182027 748831 786926 332424 484477 016092 558881 232053 618546 653598 854196 324917 273816 880919 313588 971828 593049 888518 666558 836765 014637 520657 708802 460452 820945 887621 698898 934431 241831 (679 digits)/467 285284 064047 428554 760784 262377 319426 003523 684267 711770 310688 620184 062194 602698 065395 893475 090370 946059 490311 451697 174470 845194 054494 081490 739310 357318 628978 251021 346154 163293 970263 388065 312236 835891 977452 038677 494038 764891 438638 502557 835410 503450 923485 590645 076729 785780 203416 827445 831920 642434 374668 251906 197918 610319 333608 079084 717059 781193 493145 284906 082635 823096 445453 410702 323500 084776 535698 420299 793066 903586 251576 795829 870395 941757 549950 446753 877056 076793 909701 193139 156651 127742 568750 856796 820795 957435 350207 517069 688763 996950 745476 702516 580698 678791 461626 195233 163250 222700 952756 291163 879863 064761 478335 064929 641711 717385 753771 731965 105810 921185 715199 365462 860752 719291 (681 digits), a[1299] = 5
                                                                                      A[1300]/B[1300] = 5 649633 791672 157182 098980 614173 208527 962691 505276 981532 648805 681497 927191 931822 102568 140184 779234 231186 958046 497730 005244 133900 312662 513301 942644 610959 303738 098667 957207 676711 448474 356342 489605 924853 315315 547815 485138 538548 242653 408819 108986 224138 624465 853272 270407 281350 955287 145211 700613 976130 808247 174231 451384 555253 264508 072820 485713 164655 412266 506387 532772 936276 507916 630165 916777 679894 133470 177278 414822 614222 355942 555434 921470 970221 081197 936097 233541 603945 262641 072772 665922 464042 262436 808551 476676 974665 494728 058871 703816 043499 578248 176477 090110 814334 345140 512657 895070 636384 264015 010439 603391 633127 996068 872189 031549 580582 361141 765991 026799 346206 068631 117785 688851 297908 (679 digits)/549 107825 720486 338167 919480 853625 791452 603725 974765 251149 560588 482683 068079 598911 650645 255155 128233 991226 349498 425650 794176 147974 906006 458517 808353 260980 165735 829695 162965 657705 479803 178963 230298 826614 980061 742171 381885 115828 341731 440640 225629 144546 929123 497159 901810 683930 300545 603066 153459 697614 760175 286347 328449 375523 515054 633890 993493 873304 414245 292993 205500 970295 449745 280809 439884 139043 168629 041033 122641 258229 862834 183452 771585 295707 726728 973802 776092 079808 916789 038122 762027 968465 408474 911480 900454 307001 059269 240026 089105 883037 882989 529273 056435 278405 123781 270361 203447 863289 939149 297692 278993 327030 251265 230859 710648 220525 218628 715870 872840 603046 910799 114810 127771 539259 (681 digits), a[1300] = 1
                                                                                      A[1301]/B[1301] = 50 004852 352756 464188 202668 789702 085248 835957 512028 690910 060424 852050 660029 251249 114900 052486 473299 895999 126715 702396 968609 730020 516948 806561 691588 325408 350758 764456 297606 415587 655946 608528 048695 287756 106580 510818 782534 800878 979703 577845 605133 020933 837223 163533 172279 206697 958794 045721 647499 479112 064905 681195 844848 272297 940077 408752 356939 132900 505696 445738 477723 540107 515753 621367 768916 567932 434888 184409 552837 759899 979710 898296 081632 687592 889601 640562 529874 699575 864505 605795 187404 010451 218820 687128 620830 979351 706656 257899 962952 832473 642077 970697 952940 133221 414722 955459 485482 364890 993039 397105 798961 658073 857069 644071 089161 659296 409791 836730 674847 590594 436670 641184 445241 625095 (680 digits)/4860 147889 827938 133898 116631 091383 651046 833331 482389 720966 795396 481648 606831 393991 270557 934716 116242 875870 286298 856903 527880 028993 302545 749633 206136 445159 954864 888582 649879 424937 808688 819771 154627 448811 817945 976048 549119 691518 172490 027679 640443 659826 356473 567924 291215 257222 607781 651975 059598 223352 456070 542684 825513 614507 454045 150212 665010 767628 807107 628851 726643 585460 043415 657177 842573 197121 884730 748564 774196 969425 154250 263452 043078 307419 363782 237176 085792 715265 244013 498121 252874 875465 836550 148644 024430 413443 824361 437278 401611 061253 809392 936701 032180 906032 451876 358122 790833 129020 465950 672702 111809 681003 488456 911807 326897 481587 502801 458932 088535 745561 001592 283943 882925 033363 (682 digits), a[1301] = 8
                                                                                      A[1302]/B[1302] = 55 654486 144428 621370 301649 403875 293776 798649 017305 672442 709230 533548 587221 183071 217468 192671 252534 127186 084762 200126 973853 863920 829611 319863 634232 936367 654496 863124 254814 092299 104420 964870 538301 212609 421896 058634 267673 339427 222356 986664 714119 245072 461689 016805 442686 488048 914081 190933 348113 455242 873152 855427 296232 827551 204585 481572 842652 297555 917962 952126 010496 476384 023670 251533 685694 247826 568358 361687 967660 374122 335653 453731 003103 657813 970799 576659 763416 303521 127146 678567 853326 474493 481257 495680 097507 954017 201384 316771 666768 875973 220326 147175 043050 947555 759863 468117 380553 001275 257054 407545 402353 291201 853138 516260 120711 239878 770933 602721 701646 936800 505301 758970 134092 923003 (680 digits)/5409 255715 548424 472066 036111 945009 442499 437057 457154 972116 355984 964331 674910 992902 921203 189871 244476 867096 635797 282554 322056 176968 208552 208151 014489 706140 120600 718277 812845 082643 288491 998734 384926 275426 798007 718219 931004 807346 514221 468319 866072 804373 285597 065084 193025 941152 908327 255041 213057 920967 216245 829032 153962 990030 969099 784103 658504 640933 221352 921844 932144 555755 493160 937987 282457 336165 053359 789597 896838 227655 017084 446904 814663 603127 090511 210978 861884 795074 160802 536244 014902 843931 245025 060124 924884 720444 883630 677304 490716 944291 692382 465974 088616 184437 575657 628483 994280 992310 405099 970394 390803 008033 739722 142667 037545 702112 721430 174802 961376 348607 912391 398754 010696 572622 (682 digits), a[1302] = 1
                                                                                      A[1303]/B[1303] = 105 659338 497185 085558 504318 193577 379025 634606 529334 363352 769655 385599 247250 434320 332368 245157 725834 023185 211477 902523 942463 593941 346560 126425 325821 261776 005255 627580 552420 507886 760367 573398 586996 500365 528476 569453 050208 140306 202060 564510 319252 266006 298912 180338 614965 694746 872875 236654 995612 934354 938058 536623 141081 099849 144662 890325 199591 430456 423659 397864 488220 016491 539423 872901 454610 815759 003246 546097 520498 134022 315364 352027 084736 345406 860401 217222 293291 003096 991652 284363 040730 484944 700078 182808 718338 933368 908040 574671 629721 708446 862404 117872 995991 080777 174586 423576 866035 366166 250093 804651 201314 949275 710208 160331 209872 899175 180725 439452 376494 527394 941972 400154 579334 548098 (681 digits)/10269 403605 376362 605964 152743 036393 093546 270388 939544 693083 151381 445980 281742 386894 191761 124587 360719 742966 922096 139457 849936 205961 511097 957784 220626 151300 075465 606860 462724 507581 097180 818505 539553 724238 615953 694268 480124 498864 686711 495999 506516 464199 642070 633008 484241 198375 516108 907016 272656 144319 672316 371716 979476 604538 423144 934316 323515 408562 028460 550696 658788 141215 536576 595165 125030 533286 938090 538162 671035 197080 171334 710356 857741 910546 454293 448154 947677 510339 404816 034365 267777 719397 081575 208768 949315 133888 707992 114582 892328 005545 501775 402675 120797 090470 027533 986606 785114 121330 871050 643096 502612 689037 228179 054474 364443 183700 224231 633735 049912 094168 913983 682697 893621 605985 (683 digits), a[1303] = 1
                                                                                      A[1304]/B[1304] = 900 929194 121909 305838 336194 952494 325981 875501 251980 579264 866473 618342 565224 657633 876414 153933 059206 312667 776585 420318 513562 615451 602092 331266 240803 030575 696541 883768 674178 155393 187361 552059 234273 215533 649708 614258 669338 461876 838841 502747 268137 373122 852986 459514 362412 046023 897083 084173 313016 930082 377621 148412 424881 626344 361888 604174 439383 741207 307238 135041 916256 608316 339061 234745 322580 773898 594330 730468 131645 446300 858568 269947 680994 421068 854009 314438 109744 328297 060364 953472 179170 354051 081882 958149 844219 420968 465708 914144 704542 543548 119559 090159 010979 593773 156554 856732 308835 930605 257804 844755 012872 885407 534803 798909 799694 433280 216737 118340 713603 155960 041080 960206 768769 307787 (681 digits)/87564 484558 559325 319779 258056 236154 190869 600168 973512 516781 567036 532173 928850 088056 455292 186570 130234 810832 012566 398217 121545 824660 297335 870424 779498 916540 724325 573161 514641 143292 065938 546778 701356 069335 725637 272367 772000 798264 007913 436315 918204 517970 422162 129152 066955 528157 037198 511171 394307 075524 594776 802767 989775 826338 354259 258634 246627 909429 449037 327418 202449 685479 785773 699308 282701 602460 558084 094899 265119 804296 387762 129759 676598 887498 724858 796218 443304 877789 399330 811166 157124 599107 897626 730276 519405 791554 547567 593967 629340 988655 706585 687375 054992 908197 795929 521338 275193 962957 373505 115166 411704 520331 565154 578461 953091 171714 515283 244683 360673 101959 224260 860337 159669 420502 (683 digits), a[1304] = 8
                                                                                      A[1305]/B[1305] = 3709 376114 984822 308911 849098 003554 682953 136611 537256 680412 235549 858969 508149 064855 838024 860889 962659 273856 317819 583797 996714 055747 754929 451490 289033 384078 791423 162655 249133 129459 509813 781635 524089 362500 127311 026487 727561 987813 557426 575499 391801 758497 710858 018396 064613 878842 461207 573348 247680 654684 448543 130272 840607 605226 592217 307022 957126 395285 652611 938032 153246 449756 895668 811882 744933 911353 380569 467970 047079 919225 749637 431817 808714 029682 276438 474974 732268 316285 233112 098251 757411 901149 027610 015408 095216 617242 770876 231250 447891 882639 340640 478509 039909 455869 800805 850506 101379 088587 281313 183671 252806 490905 849423 355970 408650 632296 047673 912815 230907 151235 106296 240981 654411 779246 (682 digits)/360527 341839 613663 885081 184967 981009 857024 671064 833594 760209 419527 574675 997142 739120 012929 870867 881658 986294 972361 732326 336119 504602 700441 439483 338621 817462 972767 899506 521289 080749 360935 005620 344978 001581 518502 783739 568127 691920 718365 241263 179334 536081 330719 149616 752063 311003 664902 951701 849884 446418 051423 582788 938579 909891 840181 968853 310027 046279 824609 860369 468586 883134 679671 392398 255836 943129 170426 917759 731514 414265 722383 229395 564137 460541 353728 633028 720897 021497 002139 279029 896276 115828 672082 129875 026938 300106 898262 490453 409691 960168 328118 152175 340768 723261 211252 071959 885889 973160 365071 103762 149430 770363 488797 368322 176807 870558 285364 612468 492604 502005 811027 124046 532299 287993 (684 digits), a[1305] = 4
                                                                                      A[1306]/B[1306] = 52832 194803 909421 630604 223567 002259 887325 788062 773574 105036 164171 643915 679311 565615 608762 206392 536436 146656 226059 593490 467559 395920 171104 652130 287270 407678 776466 160942 162041 967826 324754 494956 571524 290535 432062 985086 855206 291266 642813 559738 753361 992090 804998 717059 267006 349818 353989 111048 780546 095664 657224 972232 193388 099516 652930 902495 839153 275206 443805 267492 061706 904912 878424 601103 751655 532845 922303 282048 790764 315461 353492 315397 002990 836620 724147 964084 361500 756290 323934 328996 782936 970137 468423 173863 177252 062367 257976 151650 975028 900498 888525 789285 569711 975950 367836 763817 728143 170827 196189 416152 552163 758089 426730 782495 520803 285424 884171 897753 946303 273251 529228 333949 930534 217231 (683 digits)/5 134947 270313 150619 710915 847607 970292 189214 995076 643839 159713 440422 577637 888848 435736 636310 378720 473460 618961 625630 650785 827218 889098 103516 023191 520204 361022 343076 166252 812688 273783 119028 625463 531048 091476 984676 244721 725788 485154 065026 814000 428888 023109 052230 223786 595841 882208 345839 834997 292689 325377 314706 961813 129894 564824 116806 822580 587006 557346 993575 372590 762666 049365 301173 192883 864418 806268 944060 943535 506321 604016 501127 341297 574523 335077 677059 658620 535863 178747 429280 717584 704990 220709 306776 548526 896541 993051 123242 460315 365028 431012 300239 817829 825755 033854 753458 528776 677653 587202 484500 567836 503735 305420 408317 734972 428401 359530 510387 819242 257136 130040 578640 596988 611859 452404 (685 digits), a[1306] = 14
                                                                                      A[1307]/B[1307] = 479199 129350 169616 984349 861201 023893 668885 229176 499423 625737 713094 654210 621953 155396 316884 718422 790584 593762 352355 925212 204748 619029 294871 320662 874467 053187 779618 611134 707510 839896 432604 236244 667807 977319 015877 892269 424418 609213 342748 613148 172059 687314 955846 471929 467671 027207 647109 572787 272595 515666 363567 880362 581100 500876 468595 429485 509505 872143 646859 345460 708608 593972 801490 221816 509833 706966 681299 006409 163958 758377 931068 270390 835631 559268 793770 151733 985775 122898 148521 059222 803844 632386 243418 580176 690485 178548 092661 596109 223151 987129 337372 582079 167317 239423 111336 724865 654667 626032 047017 929044 222280 313710 690000 398430 095880 201120 005220 992600 747636 610498 869351 246531 029219 734325 (684 digits)/46 575052 774657 969241 283323 813439 713639 559959 626754 628147 197630 383330 773416 996778 660749 739723 279352 142804 556949 603037 589398 781089 506485 632085 648207 020461 066664 060453 395781 835483 544797 432192 634792 124410 824874 380588 986235 100224 058307 303606 567267 039326 744062 800791 163696 114640 250878 777461 466677 484088 374813 883786 239107 107630 993308 891443 372078 593086 062402 766788 213686 332581 327422 390230 128353 035606 199549 666975 409579 288408 850414 232529 301073 734847 476240 447265 560613 543665 630223 865665 737292 241188 102212 433071 066617 095816 237567 007444 633291 694947 839279 030276 512643 772564 027953 992378 830949 984772 257982 725576 214290 683048 519147 163656 983074 032420 106332 878854 985648 806829 672371 018792 496944 039034 359629 (686 digits), a[1307] = 9
                                                                                      A[1308]/B[1308] = 532031 324154 079038 614954 084768 026153 556211 017239 272997 730773 877266 298126 301264 721011 925646 924815 327020 740418 578415 518702 672308 014949 465975 972793 161737 460866 556084 772076 869552 807722 757358 731201 239332 267854 447940 877356 279624 900479 985562 172886 925421 679405 760845 188988 734677 377026 001098 683836 053141 611331 020792 852594 774488 600393 121526 331981 348659 147350 090664 612952 770315 498885 679914 822920 261489 239812 603602 288457 954723 073839 284560 585787 838622 395889 517918 115818 347275 879188 472455 388219 586781 602523 711841 754039 867737 240915 350637 747760 198180 887628 225898 371364 737029 215373 479173 488683 382810 796859 243207 345196 774444 071800 116731 180925 616683 486544 889392 890354 693939 883750 398579 580480 959753 951556 (684 digits)/51 710000 044971 119860 994239 661047 683931 749174 621831 271986 357343 823753 351054 885627 096486 376033 658072 616265 175911 228668 240184 608308 395583 735601 671398 540665 427686 403529 562034 648171 818580 551221 260255 655458 916351 365265 230956 826012 543461 368633 381267 468214 767171 853021 387482 710482 133087 123301 301674 776777 700191 198493 200920 237525 558133 008250 194659 180092 619749 760363 586277 095247 376787 691403 321236 900025 005818 611036 353114 794730 454430 733656 642371 309370 811318 124325 219234 079528 808971 294946 454876 946178 322921 739847 615143 992358 230618 130687 093607 059976 270291 330516 330473 598319 061808 745837 359726 662425 845185 210076 782127 186783 824567 571974 718046 460821 465863 389242 804891 063965 802411 597433 093932 650893 812033 (686 digits), a[1308] = 1
                                                                                      A[1309]/B[1309] = 6 331543 695045 039041 748844 793649 311582 787206 418808 502398 664250 363023 933599 935865 086527 499000 891391 387812 738366 714926 630941 600136 783473 420607 021387 653579 122719 896551 103980 272591 724846 763550 279458 300462 923717 943227 543188 500292 514493 183932 514904 351698 160778 325143 550805 549122 174493 659195 094983 857153 240307 592289 258905 100475 105200 805385 081280 344756 492994 644170 087941 182079 081715 280553 273939 386215 344905 320924 179446 665912 570610 061234 714057 060477 914053 490869 425735 805809 793971 345530 329638 258442 260147 073677 874615 235594 828616 949676 821471 403141 751039 822254 667091 274638 608531 382245 100382 865586 391483 722298 726208 741165 103511 974043 388611 879398 553113 788542 786502 380975 331753 253726 631821 586513 201441 (685 digits)/615 385053 269340 287712 219960 084964 236888 800880 466898 619997 128412 444617 635020 738676 722099 876093 518150 921721 491973 118388 231429 472481 857906 723704 033590 967780 771214 499278 578162 965373 549183 495626 497604 334458 904739 398506 526760 186362 036382 358573 761209 189689 182953 184026 426005 929943 714837 133775 785100 028643 076917 067211 449229 720412 132771 982195 513329 574104 879650 130787 662734 380302 472086 995666 661958 935881 263554 388375 293842 030443 849152 302752 367158 137926 400739 814842 972188 418482 528908 110076 740938 649149 654351 571394 833201 011756 774366 445002 662969 354686 812483 665956 147853 354073 707850 196589 787943 271456 555020 036420 817689 737670 589390 455378 881585 101456 230830 160525 839450 510453 498898 590556 530203 198866 291992 (687 digits), a[1309] = 11
                                                                                      A[1310]/B[1310] = 19 526662 409289 196163 861488 465715 960901 917830 273664 780193 723524 966338 098926 108859 980594 422649 598989 490458 955518 723195 411527 472718 365369 727797 036956 122474 829026 245738 084017 687327 982263 048009 569576 140721 039008 277623 506921 780502 443959 537359 717599 980516 161740 736275 841405 382043 900506 978683 968787 624601 332253 797660 629310 075913 915995 537681 575822 382928 626334 023174 876776 316552 744031 521574 644738 420135 274528 566374 826797 952460 785669 468264 727959 020056 138049 990526 393025 764705 261102 509046 377134 362108 382964 932875 377885 574521 726766 199668 212174 407606 140747 692662 372638 560945 040967 625908 789831 979569 971310 410103 523822 997939 382336 038861 346761 254879 145886 255021 249861 836865 879010 159759 475945 719293 555879 (686 digits)/1897 865159 852991 982997 654119 915940 394598 151816 022527 131977 742581 157606 256117 101657 262786 004314 212525 381429 651830 583832 934473 025753 969303 906713 772171 444007 741329 901365 296523 544292 466131 038100 753068 658835 630569 560784 811237 385098 652608 444354 664895 037282 316031 405100 665500 500313 277598 524628 656974 862706 930942 400127 548609 398761 956448 954836 734647 902407 258700 152726 574480 236154 793048 678403 307113 707668 796481 776162 234640 886062 001887 641913 743845 723150 013537 568854 135799 334976 395695 625176 677692 893627 285976 454032 114747 027628 553717 465695 082515 124036 707742 328384 774033 660540 185359 335606 723556 476795 510245 319339 235196 399795 592738 938111 362801 765190 158353 870820 323242 595326 299107 369102 684542 247492 688009 (688 digits), a[1310] = 3
                                                                                      A[1311]/B[1311] = 787 398040 066612 885596 208383 422287 747659 500417 365399 710147 605249 016547 890644 290264 310304 404984 850971 006170 959115 642743 092040 508871 398262 532488 499632 552572 283769 726074 464687 765711 015368 683933 062503 929304 484049 048167 820059 720390 272874 678321 218903 572344 630407 776177 207020 830878 194772 806553 846488 841206 530459 498714 431308 137031 745022 312648 114175 661901 546355 571165 158993 844188 842976 143539 063476 191626 326047 975917 251364 764343 997388 791823 832417 862723 436053 111925 146766 394020 238071 707385 415012 742777 578744 388692 990038 216463 899264 936405 308447 707387 380947 528749 572633 712440 247236 418596 693662 048385 243900 126439 679128 658740 396953 528497 259062 074564 388563 989392 780975 855610 492159 644105 669650 358255 436601 (687 digits)/76529 991447 389019 607618 384756 722580 020814 873521 367983 899106 831658 748867 879704 804967 233540 048662 019166 178907 565196 471705 610350 502640 630062 992254 920448 728090 424410 553890 439104 737072 194425 019656 620350 687884 127521 829898 976255 590308 140720 132760 357010 680981 824209 388053 046025 942474 818778 118922 064094 536920 314613 072313 393605 670890 390730 175664 899245 670395 227656 239850 641943 826494 194034 131798 946507 242633 122825 434864 679477 472923 924657 979302 120987 063926 942242 569008 404161 817538 356733 117143 848654 394241 093409 732679 423082 116898 923065 072805 963574 316155 122176 801347 109199 775681 122223 620858 730202 343276 964832 809990 225545 729494 298947 979833 393655 709062 564984 993338 769154 323505 463193 354663 911893 098573 812352 (689 digits), a[1311] = 40
                                                                                      A[1312]/B[1312] = 806 924702 475902 081760 069871 888003 708561 418247 639064 490341 328773 982885 989570 399124 290898 827634 449960 496629 914634 365938 503567 981589 763632 260285 536588 675047 112795 971812 548705 453038 997631 731942 632080 070025 523057 325791 326981 500892 716834 215680 936503 552860 792148 512453 048426 212922 095279 785237 815276 465807 862713 296375 060618 212945 661017 850329 689998 044830 172689 594340 035770 160741 587007 665113 708214 611761 600576 542292 078162 716804 783058 260088 560376 882779 574103 102451 539792 158725 499174 216431 792147 104885 961709 321568 367923 790985 626031 136073 520622 114993 521695 221411 945272 273385 288204 044505 483494 027955 215210 536543 202951 656679 779289 567358 605823 329443 534450 244414 030837 692476 371169 803865 145596 077548 992480 (687 digits)/78427 856607 242011 590616 038876 638520 415413 025337 390511 031084 574239 906474 135821 906624 496326 052976 231691 560337 217027 055538 544823 528394 599366 898968 692620 172098 165740 455255 735628 281364 660556 057757 373419 346719 758091 390683 787492 975406 793328 577115 021905 718264 140240 793153 711526 442788 096376 643550 721069 399627 245555 472440 942215 069652 347179 130501 633893 572802 486356 392577 216424 062648 987082 810202 253620 950301 919307 211026 914118 358985 926545 621215 864832 787076 955780 137862 539961 152514 752428 742320 526347 287868 379386 186711 537829 144527 476782 538501 046089 440191 829919 129731 883233 436221 307582 956465 453758 820072 475078 129329 460742 129289 891686 917944 756457 474252 723338 864159 092396 918831 762300 723766 596435 346066 500361 (689 digits), a[1312] = 1
                                                                                      A[1313]/B[1313] = 2401 247445 018417 049116 348127 198295 164782 336912 643528 690830 262796 982319 869785 088512 892102 060253 750891 999430 788384 374620 099176 472050 925527 053059 572809 902666 509361 669699 562098 671789 010632 147818 326664 069355 530163 699750 474022 722175 706543 109683 091910 678066 214704 801083 303873 256722 385332 377029 477041 772822 255886 091464 552544 562923 067058 013307 494171 751561 891734 759845 230534 165672 016991 473766 479905 415149 527201 060501 407690 197953 563505 312000 953171 628282 584259 316828 226350 711471 236420 140248 999306 952549 502163 031829 725885 798435 151327 208552 349691 937374 424337 971573 463178 259210 823644 507607 660650 104295 674321 199526 085031 972099 955532 663214 470708 733451 457464 478220 842651 240563 234499 251835 960842 513353 421561 (688 digits)/233385 704661 873042 788850 462509 999620 851640 924196 149005 961275 980138 561816 151348 618216 226192 154614 482549 299581 999250 582782 699997 559429 828796 790192 305689 072286 755891 464401 910361 299801 515537 135171 367189 381323 643704 611266 551241 541121 727377 286990 400822 117510 104690 974360 469078 828051 011531 406023 506233 336174 805724 017195 278035 810195 085088 436668 167032 816000 200369 025005 074791 951792 168199 752203 453749 143236 961439 856918 507714 190895 777749 221733 850652 638080 853802 844733 484084 122567 861590 601784 901348 969977 852182 106102 498740 405953 876630 149808 055753 196538 782015 060810 875666 648123 737389 533789 637719 983421 914989 068649 147029 988074 082321 815722 906570 657568 011662 721656 953948 161168 987794 802197 104763 790706 813074 (690 digits), a[1313] = 2
                                                                                      A[1314]/B[1314] = 5609 419592 512736 179992 766126 284594 038126 092072 926121 872001 854367 947525 729140 576150 075102 948141 951744 495491 491403 115178 701920 925691 614686 366404 682208 480380 131519 311211 672902 796617 018896 027579 285408 208736 583384 725292 275026 945244 129920 435047 120324 908993 221558 114619 656172 726366 865944 539296 769360 011452 374485 479304 165707 338791 795133 876944 678341 547953 956159 114030 496838 492085 620990 612646 668025 442060 654978 663294 893543 112711 910068 884090 466720 139344 742621 736107 992493 581667 972014 496929 790761 009984 966035 385227 819695 387855 928685 553178 220005 989742 370371 164558 871628 791806 935493 059720 804794 236546 563852 935595 373015 600879 690354 893787 547240 796346 449379 200855 716140 173602 840168 307537 067281 104255 835602 (688 digits)/545199 265930 988097 168316 963896 637762 118694 873729 688522 953636 534517 030106 438519 143056 948710 362205 196790 159501 215528 221103 944818 647254 256960 479353 303998 316671 677523 384059 556350 880967 691630 328100 107798 109367 045500 613216 889976 057650 248083 151095 823549 953284 349622 741874 649684 098890 119439 455597 733536 071976 857003 506831 498286 690042 517356 003837 967959 204802 887094 442587 366007 966233 323482 314609 161119 236775 842186 924863 929546 740777 482044 064683 566138 063238 663385 827329 508129 397650 475609 945890 329045 227824 083750 398916 535309 956435 230042 838117 157595 833269 393949 251353 634566 732468 782362 024044 729198 786916 305056 266627 754802 105438 056330 549390 569598 789388 746664 307473 000293 241169 737890 328160 805962 927480 126509 (690 digits), a[1314] = 2
                                                                                      A[1315]/B[1315] = 13620 086630 043889 409101 880379 767483 241034 521058 495772 434833 971532 877371 328066 240813 042307 956537 654380 990413 771190 604977 503018 323434 154899 785868 937226 863426 772400 292122 907904 265023 048424 202976 897480 486828 696933 150335 024076 612663 966383 979777 332560 496052 657821 030322 616218 709456 117221 455623 015761 795727 004857 050072 883959 240506 657325 767196 850854 847469 804052 987906 224211 149843 258972 699059 815956 299270 837158 387091 194776 423377 383643 080181 886611 906972 069502 789044 211337 874807 180449 134108 580828 972519 434233 802285 365276 574147 008698 314908 789703 916859 165080 300691 206435 842824 694630 627049 270238 577388 802027 070716 831063 173859 336242 450789 565190 326144 356222 879932 274931 587768 914835 866910 095404 721865 092765 (689 digits)/1 323784 236523 849237 125484 390303 275145 089030 671655 526051 868549 049172 622029 028386 904330 123612 879024 876129 618584 430307 024990 589634 853938 342717 748898 913685 705630 110938 232521 023063 061736 898797 791371 582785 600057 734705 837700 331193 656422 223543 589182 047922 024078 803936 458109 768447 025831 250410 317218 973305 480128 519731 030858 274609 190280 119800 444344 102951 225605 974557 910179 806807 884258 815164 381421 775987 616788 645813 706646 366807 672450 741837 351100 982928 764558 180574 499392 500342 917868 812810 493565 559439 425626 019682 903935 569360 318824 336715 826042 370944 863077 569913 563518 144800 113061 302113 581879 096117 557254 525101 601904 656634 198950 194982 914504 045768 236345 504991 336602 954534 643508 463575 458518 716689 645667 066092 (691 digits), a[1315] = 2
                                                                                      A[1316]/B[1316] = 46469 679482 644404 407298 407265 587043 761229 655248 413439 176503 768966 579639 713339 298589 202026 817754 914887 466732 804974 930111 210975 895994 079385 724011 493889 070660 448720 187580 396615 591686 164168 636509 977849 669222 674184 176297 347256 783236 029072 374379 118006 397151 195021 205587 504828 854735 217608 906165 816645 398633 389056 629522 817585 060311 767111 178535 230906 090363 368318 077749 169471 941615 397908 709826 115894 339873 166453 824568 477872 382844 060998 124636 126555 860260 951130 103240 626507 206089 513361 899255 533247 927543 268736 792083 915525 110296 954780 497904 589117 740319 865612 066632 490936 320281 019384 940868 615509 968712 969934 147745 866205 122457 699082 246156 242811 774779 518047 840652 540934 936909 584675 908267 353495 269851 113897 (689 digits)/4 516551 975502 535808 544770 134806 463197 385786 888696 266678 559283 682034 896193 523679 856047 319548 999279 825179 015254 506449 296075 713723 209069 285113 726050 045055 433562 010338 081622 625540 066178 388023 702214 856154 909540 249618 126317 883557 026916 918713 918641 967316 025520 761432 116203 955025 176383 870670 407254 653452 512362 416196 599406 322114 260882 876757 336870 276812 881620 810768 173126 786431 619009 768975 458874 489082 087141 779628 044803 029969 758129 707556 117986 514924 356913 205109 325507 009158 151256 914041 426587 007363 504702 142799 110723 243390 912908 240190 316244 270430 422502 103689 941908 068967 071652 688702 769682 017551 458679 880361 072341 724704 702288 641279 292902 706903 498425 261638 317281 863897 171695 128616 703716 956031 864481 324785 (691 digits), a[1316] = 3
                                                                                      A[1317]/B[1317] = 60089 766112 688293 816400 287645 354527 002264 176306 909211 611337 740499 457011 041405 539402 244334 774292 569268 457146 576165 535088 713994 219428 234285 509880 431115 934087 221120 479703 304519 856709 212592 839486 875330 156051 371117 326632 371333 395899 995456 354156 450566 893203 852842 235910 121047 564191 334830 361788 832407 194360 393913 679595 701544 300818 424436 945732 081760 937833 172371 065655 393683 091458 656881 408885 931850 639144 003612 211659 672648 806221 444641 204818 013167 767233 020632 892284 837845 080896 693811 033364 114076 900062 702970 594369 280801 684443 963478 812813 378821 657179 030692 367323 697372 163105 714015 567917 885748 546101 771961 218462 697268 296317 035324 696945 808002 100923 874270 720584 815866 524678 499511 775177 448899 991716 206662 (689 digits)/5 840336 212026 385045 670254 525109 738342 474817 560351 792730 427832 731207 518222 552066 760377 443161 878304 701308 633838 936756 321066 303358 063007 627831 474948 958741 139192 121276 314143 648603 127915 286821 493586 438940 509597 984323 964018 214750 683339 142257 507824 015238 049599 565368 574313 723472 202215 121080 724473 626757 992490 935927 630264 596723 451162 996557 781214 379764 107226 785326 083306 593239 503268 584139 840296 265069 703930 425441 751449 396777 430580 449393 469087 497853 121471 385683 824899 509501 069125 726851 920152 566802 930328 162482 014658 812751 231732 576906 142286 641375 285579 673603 505426 213767 184713 990816 351561 113669 015934 405462 674246 381338 901238 836262 207406 752671 734770 766629 653884 818431 815203 592192 162235 672721 510148 390877 (691 digits), a[1317] = 1
                                                                                      A[1318]/B[1318] = 166649 211708 020992 040098 982556 296097 765758 007862 231862 399179 249965 493661 796150 377393 690696 366340 053424 381025 957306 000288 638964 334850 547956 743772 356120 938834 890961 146987 005655 305104 589354 315483 728509 981325 416418 829562 089923 575036 019985 082692 019140 183558 900705 677407 746923 983117 887269 629743 481459 787354 176883 988714 220673 661948 615985 069999 394427 966029 713060 209059 956838 124532 711671 527597 979595 618161 173678 247887 823169 995286 950280 534272 152891 394726 992395 887810 302197 367882 900983 965983 761401 727668 674677 980822 477128 479184 881738 123531 346761 054677 926996 801279 885680 646492 447416 076704 387007 060916 513856 584671 260741 715091 769731 640047 858815 976627 266589 281822 172667 986266 583699 458622 251295 253283 527221 (690 digits)/16 197224 399555 305899 885279 185025 939882 335422 009399 852139 414949 144449 932638 627813 376802 205872 755889 227796 282932 379961 938208 320439 335084 540776 675947 962537 711946 252890 709909 922746 322008 961666 689387 734035 928736 218266 054354 313058 393595 203228 934289 997792 124719 892169 264831 401969 580814 112831 856201 906968 497344 288051 859935 515561 163208 869872 899299 036341 096074 381420 339739 972910 625546 937255 139467 019221 495002 630511 547701 823524 619290 606343 056161 510630 599855 976476 975306 028160 289508 367745 266892 140969 365358 467763 140040 868893 376373 394002 600817 553180 993661 450896 952760 496501 441080 670335 472804 244889 490548 691286 420834 487382 504766 313803 707716 212246 967966 794897 625051 500760 802102 313001 028188 301474 884778 106539 (692 digits), a[1318] = 2
                                                                                      A[1319]/B[1319] = 393388 189528 730277 896598 252757 946722 533780 192031 372936 409696 240430 444334 633706 294189 625727 506972 676117 219198 490777 535665 991922 889129 330198 997425 143357 811757 003042 773677 315830 466918 391301 470454 332350 118702 203954 985756 551180 545972 035426 519540 488847 260321 654253 590725 614895 530427 109369 621275 795326 769068 747681 657024 142891 624715 656407 085730 870616 869892 598491 483775 307359 340524 080224 464081 891041 875466 350968 707435 318988 796795 345202 273362 318950 556687 005424 667905 442239 816662 495778 965331 636880 355400 052326 556014 235058 642813 726955 059876 072343 766534 884685 969883 468733 456090 608847 721326 659762 667934 799674 387805 218751 726500 574787 977041 525634 054178 407449 284229 161202 497211 666910 692421 951490 498283 261104 (690 digits)/38 234785 011136 996845 440812 895161 618107 145661 579151 497009 257731 020107 383499 807693 513981 854907 390083 156901 199703 696680 197482 944236 733176 709384 826844 883816 563084 627057 733963 494095 771933 210154 872361 907012 367070 420856 072726 840867 470529 548715 376404 010822 299039 349707 103976 527411 363843 346744 436877 440694 987179 512031 350135 627845 777580 736303 579812 452446 299375 548166 762786 539060 754362 458650 119230 303512 693935 686464 846853 043826 669161 662079 581410 519114 321183 338637 775511 565821 648142 462342 453936 848741 661045 098008 294740 550537 984479 364911 343921 747737 272902 575397 410947 206770 066875 331487 297169 603447 997031 788035 515915 356103 910771 463869 622839 177165 670704 356424 903987 819953 419408 218194 218612 275671 279704 603955 (692 digits), a[1319] = 2
                                                                                      A[1320]/B[1320] = 4 493919 296524 054048 902679 762893 710045 637340 120207 334162 905837 894700 381342 766919 613479 573698 943039 490713 792209 355858 892614 550116 115273 180145 715448 933056 868161 924431 657437 479790 441206 893670 490481 384361 287049 659923 672884 152909 580728 409676 797637 396460 047097 097495 175389 510774 817816 090335 463777 230054 247110 401382 215979 792481 533820 836463 013038 971213 534848 296466 530588 337790 870297 594140 632498 781056 248291 034334 029676 332046 760035 747505 541257 661347 518284 052067 234770 166835 351170 354552 584631 767085 637069 250270 096979 062773 550135 878243 782168 142542 486561 658542 469998 041748 663489 144741 011297 644396 408199 310274 850528 667010 706598 092399 387504 640790 572589 748531 408342 945895 455594 919717 075263 717690 734399 399365 (691 digits)/436 779859 522062 271199 734221 031803 739060 937699 380066 319241 249990 365631 151136 512442 030602 609854 046803 953709 479673 043444 110520 707043 400028 344009 771241 684519 905877 150525 783508 357799 813274 273370 285368 711171 966510 847682 854349 562600 569420 239098 074734 116837 414152 738947 408573 203494 583090 927020 661853 754613 356318 920396 711427 421864 716596 969212 277236 013250 389205 411254 730391 902578 923533 982406 451000 357861 128295 181624 863085 305617 980068 889218 451677 220888 132872 701492 505933 252198 419075 453512 260197 477127 636854 545854 382186 924811 205646 408027 383956 778290 995589 780268 473179 770972 176709 316695 741669 882817 457898 359677 095903 404525 523252 416369 558947 161069 345714 715571 568917 520248 415592 713137 432923 333858 961528 750044 (693 digits), a[1320] = 11
                                                                                      A[1321]/B[1321] = 4 887307 486052 784326 799278 015651 656768 171120 312238 707099 315534 135130 825677 400625 907669 199426 450012 166831 011407 846636 428280 542039 004402 510344 712874 076414 679918 927474 431114 795620 908125 284971 960935 716711 405751 863878 658640 704090 126700 445103 317177 885307 307418 751748 766115 125670 348243 199705 085053 025381 016179 149063 873003 935373 158536 492870 098769 841830 404740 894958 014363 645150 210821 674365 096580 672098 123757 385302 737111 651035 556831 092707 814619 980298 074971 057491 902675 609075 167832 850331 549963 403965 992469 302596 652993 297832 192949 605198 842044 214886 253096 543228 439881 510482 119579 753588 732624 304159 076134 109949 238333 885762 433098 667187 364546 166424 626768 155980 692572 107097 952806 586627 767685 669181 232682 660469 (691 digits)/475 014644 533199 268045 175033 926965 357168 083360 959217 816250 507721 385738 534636 320135 544584 464761 436887 110610 679376 740124 308003 651280 133205 053394 598086 568336 468961 777583 517471 851895 585207 483525 157730 618184 333581 268538 927076 403468 039949 787813 451138 127659 713192 088654 512549 730905 946934 273765 098731 195308 343498 432428 061563 049710 494177 705515 857048 465696 688580 959421 493178 441639 677896 441056 570230 661373 822230 868089 709938 349444 649230 551298 033087 740002 454056 040130 281444 818020 067217 915854 714134 325869 297899 643862 676927 475349 190125 772938 727878 526028 268492 355665 884126 977742 243584 648183 038839 486265 454930 147712 611818 760629 434023 880239 181786 338235 016419 071996 472905 340201 835000 931331 651535 609530 241233 353999 (693 digits), a[1321] = 1
                                                                                      A[1322]/B[1322] = 14 268534 268629 622702 501235 794197 023581 979580 744684 748361 536906 164962 032697 568171 428817 972551 843063 824375 815025 049131 749175 634194 124078 200835 141197 085886 227999 779380 519667 071032 257457 463614 412352 817784 098553 387680 990165 561089 834129 299883 431993 167074 661934 600992 707619 762115 514302 489745 633883 280816 279468 699509 961987 663227 850893 822203 210578 654874 344330 086382 559315 628091 291940 942870 825660 125252 495805 804939 503899 634117 873697 932921 170497 621943 668226 167051 040121 384985 686836 055215 684558 575017 622007 855463 402965 658437 936035 088641 466256 572314 992754 744999 349761 062712 902648 651918 476546 252714 560467 530173 327196 438535 572795 426774 116596 973639 826126 060492 793487 160091 361208 092972 610635 056053 199764 720303 (692 digits)/1386 809148 588460 807290 084288 885734 453397 104421 298501 951742 265433 137108 220409 152713 119771 539376 920578 174930 838426 523692 726528 009603 666438 450798 967414 821192 843800 705692 818452 061590 983689 240420 600829 947540 633673 384760 708502 369536 649319 814724 977010 372156 840536 916256 433672 665306 476959 474550 859316 145230 043315 785252 834553 521285 704952 380243 991332 944643 766367 330097 716748 785858 279326 864519 591461 680608 772756 917804 282962 004507 278529 991814 517852 700893 040984 781753 068822 888238 553511 285221 688466 128866 232653 833579 736041 875509 585897 953904 839713 830347 532574 491600 241433 726456 663878 613061 819348 855348 367758 655102 319540 925784 391300 176847 922519 837539 378552 859564 514728 200652 085594 575800 735994 552919 443995 458042 (694 digits), a[1322] = 2
                                                                                      A[1323]/B[1323] = 19 155841 754682 407029 300513 809848 680350 150701 056923 455460 852440 300092 858374 968797 336487 171978 293075 991206 826432 895768 177456 176233 128480 711179 854071 162300 907918 706854 950781 866653 165582 748586 373288 534495 504305 251559 648806 265179 960829 744986 749171 052381 969353 352741 473734 887785 862545 689450 718936 306197 295647 848573 834991 598601 009430 315073 309348 496704 749070 981340 573679 273241 502762 617235 922240 797350 619563 190242 241011 285153 430529 025628 985117 602241 743197 224542 942796 994060 854668 905547 234521 978983 614477 158060 055958 956270 128984 693840 308300 787201 245851 288227 789642 573195 022228 405507 209170 556873 636601 640122 565530 324298 005894 093961 481143 140064 452894 216473 486059 267189 314014 679600 378320 725234 432447 380772 (692 digits)/1861 823793 121660 075335 259322 812699 810565 187782 257719 767992 773154 522846 755045 472848 664356 004138 357465 285541 517803 263817 034531 660883 799643 504193 565501 389529 312762 483276 335923 913486 568896 723945 758560 565724 967254 653299 635578 773004 689269 602538 428148 499816 553729 004910 946222 396212 423893 748315 958047 340538 386814 217680 896116 570996 199130 085759 848381 410340 454948 289519 209927 227497 957223 305576 161692 341982 594987 785893 992900 353951 927760 543112 550940 440895 495040 821883 350267 706258 620729 201076 402600 454735 530553 477442 412969 350858 776023 726843 567592 356375 801066 847266 125560 704198 907463 261244 858188 341613 822688 802814 931359 686413 825324 057087 104306 175774 394971 931560 987633 540853 920595 507132 387530 162449 685228 812041 (694 digits), a[1323] = 1
                                                                                      A[1324]/B[1324] = 8960 046633 705313 705385 841184 993530 747102 356974 327938 448579 626526 308326 893807 996527 568327 286414 709551 717963 759187 372870 621209 935065 124570 321826 992429 880410 226035 880642 534798 798060 584601 053450 738098 427184 609105 866036 982691 400131 541620 208695 294874 629454 349950 331260 941812 358113 323139 463231 377138 274953 347013 983490 903064 209899 254850 961438 676326 615992 160478 372430 467536 231873 082083 192046 512112 487991 831815 648066 056169 800769 930752 901657 220417 868837 741330 028605 326317 611404 817214 945774 206322 760365 582840 669509 535798 236588 171887 112065 442724 195296 805306 347377 112842 744788 283314 023785 159196 312702 853433 467411 429857 885704 325337 306785 810443 383739 327725 153610 783164 937501 006063 466349 286413 740533 152691 540827 (694 digits)/870858 520536 403715 988856 188042 416545 987339 798735 653633 604367 328595 306542 826644 973039 374025 471989 856866 522819 652550 726247 852813 642338 099954 909194 056563 731381 903880 395741 694919 659818 658459 323089 848614 141100 341596 475690 523789 362726 538224 200170 922359 786487 431982 209668 319531 696508 435339 938103 267424 176656 685555 442231 320992 176510 698702 430093 185451 573636 227218 535568 752764 027404 302610 568587 101785 386480 632052 930298 967427 300057 542703 625375 807038 599089 225048 601277 643841 711014 434048 187901 702878 490359 001127 799186 592728 726557 988978 389850 905344 257846 630792 164880 878282 587346 449221 614410 593304 389003 563429 569675 264514 481040 817634 836525 633503 924181 830444 898545 739591 779433 003696 406625 712580 416922 445850 681189 (696 digits), a[1324] = 467
                                                                                      A[1325]/B[1325] = 17939 249109 165309 817800 982883 796910 174554 864649 712800 352620 105492 916746 645990 961852 473141 744807 712179 427134 344807 641509 419876 046363 377621 354833 838930 923121 359990 468140 020379 462774 334784 855487 849485 388864 722516 983633 614189 065443 044070 162377 338920 311290 669254 015263 357359 604012 508824 615913 473212 856103 989675 815555 641120 018399 519132 237950 662001 728689 070027 726201 508751 736987 666929 001328 946465 773334 283194 486374 353350 886693 292034 828943 425953 339917 225857 281753 595432 216870 489098 797095 647167 499714 780158 497079 127555 429446 472758 917971 193749 177794 856463 982982 015328 062771 588856 453077 527563 182279 343468 574945 425246 095706 656568 707533 102029 907543 108344 523695 052389 142191 326141 612298 951148 206300 737830 462426 (695 digits)/1 743578 864865 929092 053047 635407 645791 785244 785253 564986 976727 430345 135932 408335 418927 412406 948118 071198 331180 822904 716312 740158 945559 999553 322581 678628 852293 120523 274759 725763 233123 885815 370125 455788 847925 650447 604680 683157 498457 765718 002880 272868 072791 417693 424247 585285 789229 294573 624522 492895 693851 757925 102143 538100 924017 596534 945946 219284 557612 909385 360656 715455 282306 562444 442750 365263 114943 859093 646491 927754 954067 013167 793864 165017 639073 945138 024438 637951 128287 488825 576879 808357 435453 532809 075815 598426 803974 753980 506545 378280 872069 062651 177027 882125 878891 805906 490066 044797 119620 949547 942165 460388 648495 460593 730138 371314 024138 055861 728652 466817 099719 927988 320383 812690 996294 576930 174419 (697 digits), a[1325] = 2
                                                                                      A[1326]/B[1326] = 26899 295742 870623 523186 824068 790440 921657 221624 040738 801199 732019 225073 539798 958380 041469 031222 421731 145098 103995 014380 041085 981428 502191 676660 831360 803531 586026 348782 555178 260834 919385 908938 587583 816049 331622 849670 596880 465574 585690 371072 633794 940745 019204 346524 299171 962125 831964 079144 850351 131057 336689 799046 544184 228298 773983 199389 338328 344681 230506 098631 976287 968860 749012 193375 458578 261326 115010 134440 409520 687463 222787 730600 646371 208754 967187 310358 921749 828275 306313 742869 853490 260080 362999 166588 663353 666034 644646 030036 636473 373091 661770 330359 128170 807559 872170 476862 686759 494982 196902 042356 855103 981410 981906 014318 912473 291282 436069 677305 835554 079692 332205 078648 237561 946833 890522 003253 (695 digits)/2 614437 385402 332808 041903 823450 062337 772584 583989 218620 581094 758940 442475 234980 391966 786432 420107 928064 854000 475455 442560 592972 587898 099508 231775 735192 583675 024403 670501 420682 892942 544274 693215 304402 989025 992044 080371 206946 861184 303942 203051 195227 859278 849675 633915 904817 485737 729913 562625 760319 870508 443480 544374 859093 100528 295237 376039 404736 131249 136603 896225 468219 309710 865055 011337 467048 501424 491146 576790 895182 254124 555871 419239 972056 238163 170186 625716 281792 839301 922873 764781 511235 925812 533936 875002 191155 530532 742958 896396 283625 129915 693443 341908 760408 466238 255128 104476 638101 508624 512977 511840 724903 129536 278228 566664 004817 948319 886306 627198 206408 879152 931684 727009 525271 413217 022780 855608 (697 digits), a[1326] = 1
                                                                                      A[1327]/B[1327] = 44838 544852 035933 340987 806952 587351 096212 086273 753539 153819 837512 141820 185789 920232 514610 776030 133910 572232 448802 655889 460962 027791 879813 031494 670291 726652 946016 816922 575557 723609 254170 764426 437069 204914 054139 833304 211069 531017 629760 533449 972715 252035 688458 361787 656531 566138 340788 695058 323563 987161 326365 614602 185304 246698 293115 437340 000330 073370 300533 824833 485039 705848 415941 194704 405044 034660 398204 620814 762871 574156 514822 559544 072324 548672 193044 592112 517182 045145 795412 539965 500657 759795 143157 663667 790909 095481 117404 948007 830222 550886 518234 313341 143498 870331 461026 929940 214322 677261 540370 617302 280350 077117 638474 721852 014503 198825 544414 201000 887943 221883 658346 690947 188710 153134 628352 465679 (695 digits)/4 358016 250268 261900 094951 458857 708129 557829 369242 783607 557822 189285 578407 643315 810894 198839 368225 999263 185181 298360 158873 333131 533458 099061 554357 413821 435968 144926 945261 146446 126066 430090 063340 760191 836951 642491 685051 890104 359642 069660 205931 468095 932070 267369 058163 490103 274967 024487 187148 253215 564360 201405 646518 397194 024545 891772 321985 624020 688862 045989 256882 183674 592017 427499 454087 832311 616368 350240 223282 822937 208191 569039 213104 137073 877237 115324 650154 919743 967589 411699 341661 319593 361266 066745 950817 789582 334507 496939 402941 661906 001984 756094 518936 642534 345130 061034 594542 682898 628245 462525 454006 185291 778031 738822 296802 376131 972457 942168 355850 673225 978872 859673 047393 337962 409511 599711 030027 (697 digits), a[1327] = 1
                                                                                      A[1328]/B[1328] = 71737 840594 906556 864174 631021 377792 017869 307897 794277 955019 569531 366893 725588 878612 556079 807252 555641 717330 552797 670269 502048 009220 382004 708155 501652 530184 532043 165705 130735 984444 173556 673365 024653 020963 385762 682974 807949 996592 215450 904522 606510 192780 707662 708311 955703 528264 172752 774203 173915 118218 663055 413648 729488 474997 067098 636729 338658 418051 531039 923465 461327 674709 164953 388079 863622 295986 513214 755255 172392 261619 737610 290144 718695 757427 160231 902471 438931 873421 101726 282835 354148 019875 506156 830256 454262 761515 762050 978044 466695 923978 180004 643700 271669 677891 333197 406802 901082 172243 737272 659659 135454 058528 620380 736170 926976 490107 980483 878306 723497 301575 990551 769595 426272 099968 518874 468932 (695 digits)/6 972453 635670 594708 136855 282307 770467 330413 953232 002228 138916 948226 020882 878296 202860 985271 788333 927328 039181 773815 601433 926104 121356 198569 786133 149014 019643 169330 615762 567129 019008 974364 756556 064594 825977 634535 765423 097051 220826 373602 408982 663323 791349 117044 692079 394920 760704 754400 749774 013535 434868 644886 190893 256287 125074 187009 698025 028756 820111 182593 153107 651893 901728 292554 465425 299360 117792 841386 800073 718119 462316 124910 632344 109130 115400 285511 275871 201536 806891 334573 106442 830829 287078 600682 825819 980737 865040 239898 299337 945531 131900 449537 860845 402942 811368 316162 699019 321000 136869 975502 965846 910194 907568 017050 863466 380949 920777 828474 983048 879634 858025 791357 774402 863233 822728 622491 885635 (697 digits), a[1328] = 1
                                                                                      A[1329]/B[1329] = 116576 385446 942490 205162 437973 965143 114081 394171 547817 108839 407043 508713 911378 798845 070690 583282 689552 289563 001600 326158 963010 037012 261817 739650 171944 256837 478059 982627 706293 708053 427727 437791 461722 225877 439902 516279 019019 527609 845211 437972 579225 444816 396121 070099 612235 094402 513541 469261 497479 105379 989421 028250 914792 721695 360214 074069 338988 491421 831573 748298 946367 380557 580894 582784 268666 330646 911419 376069 935263 835776 252432 849688 791020 306099 353276 494583 956113 918566 897138 822800 854805 779670 649314 493924 245171 856996 879455 926052 296918 474864 698238 957041 415168 548222 794224 336743 115404 849505 277643 276961 415804 135646 258855 458022 941479 688933 524898 079307 611440 523459 648898 460542 614982 253103 147226 934611 (696 digits)/11 330469 885938 856608 231806 741165 478596 888243 322474 785835 696739 137511 599290 521612 013755 184111 156559 926591 224363 072175 760307 259235 654814 297631 340490 562835 455611 314257 561023 713575 145075 404454 819896 824786 662929 277027 450474 987155 580468 443262 614914 131419 723419 384413 750242 885024 035671 778887 936922 266750 999228 846291 837411 653481 149620 078782 020010 652777 508973 228582 409989 835568 493745 720053 919513 131671 734161 191627 023356 541056 670507 693949 845448 246203 992637 400835 926026 121280 774480 746272 448104 150422 648344 667428 776637 770320 199547 736837 702279 607437 133885 205632 379782 045477 156498 377197 293562 003898 765115 438028 419853 095486 685599 755873 160268 757081 893235 770643 338899 552860 836898 651030 821796 201196 232240 222202 915662 (698 digits), a[1329] = 1
                                                                                      A[1330]/B[1330] = 188314 226041 849047 069337 068995 342935 131950 702069 342095 063858 976574 875607 636967 677457 626770 390535 245194 006893 554397 996428 465058 046232 643822 447805 673596 787022 010103 148332 837029 692497 601284 111156 486375 246840 825665 199253 826969 524202 060662 342495 185735 637597 103783 778411 567938 622666 686294 243464 671394 223598 652476 441899 644281 196692 427312 710798 677646 909473 362613 671764 407695 055266 745847 970864 132288 626633 424634 131325 107656 097395 990043 139833 509716 063526 513508 397055 395045 791987 998865 105636 208953 799546 155471 324180 699434 618512 641506 904096 763614 398842 878243 600741 686838 226114 127421 743546 016487 021749 014915 936620 551258 194174 879236 194193 868456 179041 505381 957614 334937 825035 639450 230138 041254 353071 666101 403543 (696 digits)/18 302923 521609 451316 368662 023473 249064 218657 275706 788063 835656 085737 620173 399908 216616 169382 944893 853919 263544 845991 361741 185339 776170 496201 126623 711849 475254 483588 176786 280704 164084 378819 576452 889381 488906 911563 215898 084206 801294 816865 023896 794743 514768 501458 442322 279944 796376 533288 686696 280286 434097 491178 028304 909768 274694 265791 718035 681534 329084 411175 563097 487462 395474 012608 384938 431031 851954 033013 823430 259176 132823 818860 477792 355334 108037 686347 201897 322817 581372 080845 554546 981251 935423 268111 602457 751058 064587 976736 001617 552968 265785 655170 240627 448419 967866 693359 992581 324898 901985 413531 385700 005681 593167 772924 023735 138031 814013 599118 321948 432495 694924 442388 596199 064430 054968 844694 801297 (698 digits), a[1330] = 1
                                                                                      A[1331]/B[1331] = 1 434775 967739 885819 690521 920941 365689 037736 308656 942482 555852 243067 637967 370152 541048 458083 317029 405910 337817 882386 301158 218416 360640 768574 874289 887121 765991 548782 020957 565501 555536 636716 215886 866348 953763 219558 911055 807806 197024 269847 835438 879374 907996 122607 518980 587805 453069 317601 173514 197238 670570 556756 121548 424761 098542 351403 049660 082516 857735 369869 450649 800232 767424 801830 378833 194686 717080 883858 295345 688856 517548 182734 828523 359032 750784 947835 273971 721434 462482 889194 562254 317482 376493 737613 763189 141214 186585 370004 254729 642219 266764 845944 162233 223036 131021 686176 541565 230814 001748 382054 833305 274611 494870 413508 817380 020672 942224 062571 782607 956005 298709 125050 071508 903762 724604 809936 759412 (697 digits)/139 450934 537205 015822 812440 905478 222046 418844 252422 302282 546331 737674 940504 320969 530068 369791 770816 904026 069176 994115 292495 556614 088007 771039 226856 545781 782392 699374 798527 678504 293666 056191 855067 050457 085277 657969 961761 576603 189532 161317 782191 694624 326798 894622 846498 844637 610307 511908 743796 228756 037911 284538 035546 021859 072479 939324 046260 423517 812564 106811 351672 247805 262063 808312 614082 148894 697839 422723 787368 355289 600274 425973 189994 733542 748901 205266 339307 381003 844085 312191 329933 019186 196307 544209 993842 027726 651663 573989 713602 478214 994384 791824 064174 184416 931565 230717 241631 278191 079013 332748 119753 135257 837774 166341 326414 723304 591330 964471 592538 580330 701369 747750 995189 652206 617022 135066 524741 (699 digits), a[1331] = 7
                                                                                      A[1332]/B[1332] = 1 623090 193781 734866 759858 989936 708624 169687 010726 284577 619711 219642 513575 007120 218506 084853 707564 651104 344711 436784 297586 683474 406873 412397 322095 560718 553013 558885 169290 402531 248034 238000 327043 352724 200604 045224 110309 634775 721226 330510 177934 065110 545593 226391 297392 155744 075736 003895 416978 868632 894169 209232 563448 069042 295234 778715 760458 760163 767208 732483 122414 207927 822691 547678 349697 326975 343714 308492 426670 796512 614944 172777 968356 868748 814311 461343 671027 116480 254470 888059 667890 526436 176039 893085 087369 840648 805098 011511 158826 405833 665607 724187 762974 909874 357135 813598 285111 247301 023497 396970 769925 825869 689045 292745 011573 889129 121265 567953 740222 290943 123744 764500 301646 945017 077676 476038 162955 (697 digits)/157 753858 058814 467139 181102 928951 471110 637501 528129 090346 381987 823412 560677 720877 746684 539174 715710 757945 332721 840106 654236 741953 864178 267240 353480 257631 257647 182962 975313 959208 457750 435011 431519 939838 574184 569533 177659 660809 990826 978182 806088 489367 841567 396081 288821 124582 406684 045197 430492 509042 472008 775716 063850 931627 347174 205115 764296 105052 141648 517986 914769 735267 657537 820920 999020 579926 549793 455737 610798 614465 733098 244833 667787 088876 856938 891613 541204 703821 425457 393036 884480 000438 131730 812321 596299 778784 716251 550725 715220 031183 260170 446994 304801 632836 899431 924077 234212 603089 980998 746279 505453 140939 430941 939265 350149 861336 405344 563589 914487 012826 396294 190139 591388 716636 671990 979761 326038 (699 digits), a[1332] = 1
                                                                                      A[1333]/B[1333] = 3 057866 161521 620686 450380 910878 074313 207423 319383 227060 175563 462710 151542 377272 759554 542937 024594 057014 682529 319170 598744 901890 767514 180972 196385 447840 319005 107667 190247 968032 803570 874716 542930 219073 154367 264783 021365 442581 918250 600358 013372 944485 453589 348998 816372 743549 528805 321496 590493 065871 564739 765988 684996 493803 393777 130118 810118 842680 624944 102352 573064 008160 590116 349508 728530 521662 060795 192350 722016 485369 132492 355512 796880 227781 565096 409178 944998 837914 716953 777254 230144 843918 552533 630698 850558 981862 991683 381515 413556 048052 932372 570131 925208 132910 488157 499774 826676 478115 025245 779025 603231 100481 183915 706253 828953 909802 063489 630525 522830 246948 422453 889550 373155 848779 802281 285974 922367 (697 digits)/297 204792 596019 482961 993543 834429 693157 056345 780551 392628 928319 561087 501182 041847 276752 908966 486527 661971 401898 834221 946732 298567 952186 038279 580336 803413 040039 882337 773841 637712 751416 491203 286586 990295 659462 227503 139421 237413 180359 139500 588280 183992 168366 290704 135319 969220 016991 557106 174288 737798 509920 060254 099396 953486 419654 144439 810556 528569 954212 624798 266441 983072 919601 629233 613102 728821 247632 878461 398166 969755 333372 670806 857781 822419 605840 096879 880512 084825 269542 705228 214413 019624 328038 356531 590141 806511 367915 124715 428822 509398 254555 238818 368975 817253 830997 154794 475843 881281 060012 079027 625206 276197 268716 105606 676564 584640 996675 528061 507025 593157 097663 937890 586578 368843 289013 114827 850779 (699 digits), a[1333] = 1
                                                                                      A[1334]/B[1334] = 10 796688 678346 596926 111001 722570 931563 791956 968875 965758 146401 607772 968202 138938 497169 713664 781346 822148 392299 394296 093821 389146 709415 955313 911251 904239 510028 881886 740034 306629 658746 862149 955834 009943 663705 839573 174405 962521 475978 131584 218052 898566 906361 273387 746510 386392 662151 968385 188458 066247 588388 507198 618437 550452 476566 169072 190815 288205 642041 039540 841606 232409 593040 596204 535288 891961 526099 885544 592720 252620 012421 239316 358997 552093 509600 688880 506023 630224 405332 219822 358325 058191 833640 785181 639046 786237 780148 156057 399494 549992 462725 434583 538599 308605 821608 312922 765140 681646 099234 734047 579619 127313 240792 411506 498435 618535 311734 459530 308713 031788 391106 433151 421114 491356 484520 333962 930056 (698 digits)/1049 368235 846872 916025 161734 432240 550581 806538 869783 268233 166946 506675 064223 846419 576943 266074 175293 743859 538418 342772 494433 637657 720736 382079 094490 667870 377766 829976 296838 872346 711999 908621 291280 910725 552571 252042 595923 373049 531904 396684 570929 041344 346666 268193 694781 032242 457658 716515 953358 722438 001768 956478 362041 792086 606136 638435 195965 690762 004286 392381 714095 684486 416342 708621 838328 766390 292692 091121 805299 523731 733216 257254 241132 556135 674459 182253 182740 958297 234085 508721 527719 059311 115845 881916 366725 198318 819996 924872 001687 559378 023836 163449 411729 084598 392423 388460 661744 246933 161034 983362 381071 969531 237090 256085 379843 615259 395371 147774 435563 792297 689286 003811 351123 823166 539030 324244 878375 (700 digits), a[1334] = 3
                                                                                      A[1335]/B[1335] = 13 854554 839868 217612 561382 633449 005876 999380 288259 192818 321965 070483 119744 516211 256724 256601 805940 879163 074828 713466 692566 291037 476930 136286 107637 352079 829033 989553 930282 274662 462317 736866 498764 229016 818073 104356 195771 405103 394228 731942 231425 843052 359950 622386 562883 129942 190957 289881 778951 132119 153128 273187 303434 044255 870343 299191 000934 130886 266985 141893 414670 240570 183156 945713 263819 413623 586895 077895 314736 737989 144913 594829 155877 779875 074697 098059 451022 468139 122285 997076 588469 902110 386174 415880 489605 768100 771831 537572 813050 598045 395098 004715 463807 441516 309765 812697 591817 159761 124480 513073 182850 227794 424708 117760 327389 528337 375224 090055 831543 278736 813560 322701 794270 340136 286801 619937 852423 (698 digits)/1346 573028 442892 398987 155278 266670 243738 862884 650334 660862 095266 067762 565405 888266 853696 175040 661821 405830 940317 176994 441165 936225 672922 420358 674827 471283 417806 712314 070680 510059 463416 399824 577867 901021 212033 479545 735344 610462 712263 536185 159209 225336 515032 558897 830101 001462 474650 273622 127647 460236 511689 016732 461438 745573 025790 782875 006522 219331 958499 017179 980537 667559 335944 337855 451431 495211 540324 969583 203466 493487 066588 928061 098914 378555 280299 279133 063253 043122 503628 213949 742132 078935 443884 238447 956867 004830 187912 049587 430510 068776 278391 402267 780704 901852 223420 543255 137588 128214 221047 062390 006278 245728 505806 361692 056408 199900 392046 675835 942589 385454 786949 941701 937702 192009 828043 439072 729154 (700 digits), a[1335] = 1
                                                                                      A[1336]/B[1336] = 24 651243 518214 814538 672384 356019 937440 791337 257135 158576 468366 678256 087946 655149 753893 970266 587287 701311 467128 107762 786387 680184 186346 091600 018889 256319 339062 871440 670316 581292 121064 599016 454598 238960 481778 943929 370177 367624 870206 863526 449478 741619 266311 895774 309393 516334 853109 258266 967409 198366 741516 780385 921871 594708 346909 468263 191749 419091 909026 181434 256276 472979 776197 541917 799108 305585 112994 963439 907456 990609 157334 834145 514875 331968 584297 786939 957046 098363 527618 216898 946794 960302 219815 201062 128652 554338 551979 693630 212545 148037 857823 439299 002406 750122 131374 125620 356957 841407 223715 247120 762469 355107 665500 529266 825825 146872 686958 549586 140256 310525 204666 755853 215384 831492 771321 953900 782479 (698 digits)/2395 941264 289765 315012 317012 698910 794320 669423 520117 929095 262212 574437 629629 734686 430639 441114 837115 149690 478735 519766 935599 573883 393658 802437 769318 139153 795573 542290 367519 382406 175416 308445 869148 811746 764604 731588 331267 983512 244167 932869 730138 266680 861698 827091 524882 033704 932308 990138 081006 182674 513457 973210 823480 537659 631927 421310 202487 910093 962785 409561 694633 352045 752287 046477 289760 261601 833017 060705 008766 017218 799805 185315 340046 934690 954758 461386 245994 001419 737713 722671 269851 138246 559730 120364 323592 203149 007908 974459 432197 628154 302227 565717 192433 986450 615843 931715 799332 375147 382082 045752 387350 215259 742896 617777 436251 815159 787417 823610 378153 177752 476235 945513 288826 015176 367073 763317 607529 (700 digits), a[1336] = 1
                                                                                      A[1337]/B[1337] = 63 157041 876297 846689 906151 345488 880758 582054 802529 509971 258698 426995 295637 826510 764512 197134 980516 281786 009084 928992 265341 651405 849622 319486 145415 864718 507159 732435 270915 437246 704446 934899 407960 706937 781630 992214 936126 140353 134642 458995 130383 326290 892574 413935 181670 162611 897175 806415 713769 528852 636161 833959 147177 233672 564162 235717 384432 969070 085037 504761 927223 186529 735552 029548 862036 024793 812885 004775 129650 719207 459583 263120 185628 443812 243292 671939 365114 664866 177522 430874 482059 822714 825804 818004 746910 876777 875790 924833 238140 894121 110744 883313 468620 941760 572514 063938 305732 842575 571911 007314 707788 938009 755709 176293 979039 822082 749141 189228 112055 899787 222893 834408 225040 003121 829445 527739 417381 (698 digits)/6138 455557 022423 029011 789303 664491 832380 201731 690570 519052 619691 216637 824665 357639 714975 057270 336051 705211 897788 216528 312365 083992 460240 025234 213463 749591 008953 796894 805719 274871 814249 016716 316165 524514 741242 942722 397880 577487 200599 401924 619485 758698 238430 213080 879865 068872 339268 253898 289659 825585 538604 963154 108399 820892 289645 625495 411498 039519 884069 836303 369804 371650 840518 430810 030952 018415 206359 090993 220998 527924 666199 298691 779008 247937 189816 201905 555241 045961 979055 659292 281834 355428 563344 479176 604051 411128 203729 998506 294905 325084 882846 533702 165572 874753 455108 406686 736252 878508 985211 153894 780978 676247 991599 597246 928911 830219 966882 323056 698895 740959 739421 832728 515354 222362 562190 965707 944212 (700 digits), a[1337] = 2
                                                                                      A[1338]/B[1338] = 340 436452 899704 047988 203141 083464 341233 701611 269782 708432 761858 813232 566135 787703 576454 955941 489869 110241 512552 752724 113095 937213 434457 689030 745968 579911 874861 533617 024893 767525 643299 273513 494401 773649 389933 905004 050808 069390 543419 158502 101395 373073 729183 965450 217744 329394 338988 290345 536256 842629 922325 950181 657757 763071 167720 646850 113914 264442 334213 705243 892392 405628 453957 689662 109288 429554 177419 987315 555710 586646 455251 149746 443017 551029 800761 146636 782619 422694 415230 371271 357094 073876 348839 291085 863206 938227 930934 317796 403249 618643 411547 855866 345511 458924 993944 445311 885622 054285 083270 283694 301414 045156 444046 410736 721024 257286 432664 495726 700535 809461 319135 927894 340584 847101 918549 592597 869384 (699 digits)/33088 219049 401880 460071 263531 021369 956221 678081 972970 524358 360668 657626 752956 522885 005514 727466 517373 675749 967676 602408 497424 993845 694858 928608 836636 887108 840342 526764 396115 756765 246661 392027 449976 434320 470819 445200 320670 870948 247164 942492 827567 060172 053849 892495 924207 378066 628650 259629 529305 310602 206482 788981 365479 642121 080155 548787 259978 107693 383134 591078 543655 210299 954879 200527 444520 353677 864812 515671 113758 656842 130801 678774 235088 174376 903839 470914 022199 231229 632992 019132 679022 915389 376452 516247 343849 258790 026558 966990 906724 253578 716460 234228 020298 360217 891385 965149 480596 767692 308137 815226 292243 596499 700894 604012 080810 966259 621829 438893 872631 882551 173345 109155 865597 126989 178028 591857 328589 (701 digits), a[1338] = 5
                                                                                      A[1339]/B[1339] = 403 593494 776001 894678 109292 428953 221992 283666 072312 218404 020557 240227 861773 614214 340967 153076 470385 392027 521637 681716 378437 588619 284080 008516 891384 444630 382021 266052 295809 204772 347746 208412 902362 480587 171564 897218 986934 209743 678061 617497 231778 699364 621758 379385 399414 492006 236164 096761 250026 371482 558487 784140 804934 996743 731882 882567 498347 233512 419251 210005 819615 592158 189509 719210 971324 454347 990304 992090 685361 305853 914834 412866 628645 994842 044053 818576 147734 087560 592752 802145 839153 896591 174644 109090 610117 815005 806725 242629 641390 512764 522292 739179 814132 400685 566458 509250 191354 896860 655181 291009 009202 983166 199755 587030 700064 079369 181805 684954 812591 709248 542029 762302 565624 850223 747995 120337 286765 (699 digits)/39226 674606 424303 489083 052834 685861 788601 879813 663541 043410 980359 874264 577621 880524 720489 784736 853425 380961 865464 818936 809790 077838 155098 953843 050100 636699 849296 323659 201835 031637 060910 408743 766141 958835 212062 387922 718551 448435 447764 344417 447052 818870 292280 105576 804072 446938 967918 513527 818965 136187 745087 752135 473879 463013 369801 174282 671476 147213 267204 427381 913459 581950 795397 631337 475472 372093 071171 606664 334757 184766 797000 977466 014096 422314 093655 672819 577440 277191 612047 678424 960857 270817 939796 995423 947900 669918 230288 965497 201629 578663 599306 767930 185871 234971 346494 371836 216849 646201 293348 969121 073222 272747 692494 201259 009722 796479 588711 761950 571527 623510 912766 941884 380951 349351 740219 557565 272801 (701 digits), a[1339] = 1
                                                                                      A[1340]/B[1340] = 4376 371400 659722 994769 296065 372996 561156 538271 992904 892472 967431 215511 183871 929846 986126 486706 193723 030516 728929 569887 897471 823406 275257 774199 659813 026215 695074 194139 982985 815249 120761 357642 518026 579521 105582 877193 920150 166827 324035 333474 419182 366719 946767 759304 211889 249456 700629 257958 036520 557455 507203 791589 707107 730508 486549 472525 097386 599566 526725 805302 088548 327210 349054 881771 822532 973034 080469 908222 409323 645185 603595 278412 729477 499450 241299 332398 259960 298300 342758 392729 748633 039788 095280 381991 964385 088285 998186 744092 817154 746288 634475 247664 486835 465780 658529 537813 799171 022891 635083 193784 393443 876818 441602 281043 721665 050978 250721 345274 826452 901946 739433 550919 996833 349339 398500 795970 737034 (700 digits)/425354 965113 644915 350901 791877 879987 842240 476218 608380 958468 164267 400272 529175 328132 210412 574835 051627 485368 622324 791776 595325 772227 245848 467039 337643 254107 333305 763356 414466 073135 855765 479465 111396 022672 591443 324427 506185 355302 724808 386667 298095 248874 976650 948263 964931 847456 307835 394907 718956 672479 657360 310336 104274 272254 778167 291613 974739 579826 055178 864897 678251 029807 908855 513902 199244 074608 576528 582314 461330 504510 100811 453434 376052 397517 840396 199109 796602 003145 753468 803382 287595 623568 774422 470486 822855 957972 329448 621962 923020 040214 709527 913529 879010 709931 356329 683511 649093 229705 241627 506437 024466 323976 625836 616602 178038 931055 508947 058399 587908 117660 301014 527999 675110 620506 580224 167510 056599 (702 digits), a[1340] = 10
                                                                                      A[1341]/B[1341] = 4779 964895 435724 889447 405357 801949 783148 821938 065217 110876 987988 455739 045645 544061 327093 639782 664108 422544 250567 251604 275909 412025 559337 782716 551197 470846 077095 460192 278795 020021 468507 566055 420389 060108 277147 774412 907084 376571 002096 950971 650961 066084 568526 138689 611303 741462 936793 354719 286546 928938 065691 575730 512042 727252 218432 355092 595733 833078 945977 015307 908163 919368 538564 600982 793857 427382 070774 900313 094684 951039 518429 691279 358123 494292 285353 150974 407694 385860 935511 194875 587786 936379 269924 491082 574502 903291 804911 986722 458545 259053 156767 986844 300967 866466 224988 047063 990525 919752 290264 484793 402646 859984 641357 868074 421729 130347 432527 030229 639044 611195 281463 313222 562458 199563 146495 916308 023799 (700 digits)/464581 639720 069218 839984 844712 565849 630842 356032 271922 001879 144627 274537 106797 208656 930902 359571 905052 866330 487789 610713 405115 850065 400947 420882 387743 890807 182602 087015 616301 104772 916675 888208 877537 981507 803505 712350 224736 803738 172572 731084 745148 067745 268931 053840 769004 294395 275753 908435 537921 808667 402448 062471 578153 735268 147968 465896 646215 727039 322383 292279 591710 611758 704253 145239 674716 446701 647700 188978 796087 689276 897812 430900 390148 819831 934051 871929 374042 280337 365516 481807 248452 894386 714219 465910 770756 627890 559737 587460 124649 618878 308834 681460 064881 944902 702824 055347 865942 875906 534976 475558 097688 596724 318330 817861 187761 727535 097658 820350 159435 741171 213781 469884 056061 969858 320443 725075 329400 (702 digits), a[1341] = 1
                                                                                      A[1342]/B[1342] = 99975 669309 374220 783717 403221 411992 224132 977033 297247 110012 727200 330292 096782 811073 527999 282359 475891 481401 740274 601973 415660 063917 462013 428530 683762 443137 236983 397985 558886 215678 490912 678750 925807 781686 648538 365452 061837 698247 365974 352907 438403 688411 317290 533096 437964 078715 436496 352343 767459 136216 821035 306199 947962 275552 855196 574377 012063 261145 446266 111460 251826 714581 120346 901427 699681 520675 495967 914484 303022 665975 972189 103999 891947 385295 948362 351886 413848 015519 052982 290241 504371 767373 493770 203643 454443 154122 096426 478541 988059 927351 769834 984550 506192 795105 158290 479093 609689 417937 440372 889652 446381 076511 268759 642532 156247 657926 901261 949867 607345 125852 368699 815371 245997 340602 328419 122131 213014 (701 digits)/9 716987 759515 029292 150598 686129 196980 459087 596864 046820 996051 056812 891014 665119 501270 828459 766273 152684 811978 378117 006044 697642 773535 264796 884687 092521 070250 985347 503668 740488 168594 189283 243642 662155 652828 661557 571432 000921 430066 176263 008362 201056 603780 355272 025079 345017 735361 822913 563618 477392 845827 706321 559767 667348 977617 737536 609546 899054 120612 502844 710489 512463 264981 993918 418695 693573 008641 530532 361890 383084 290048 057060 071442 179028 794156 521433 637697 277447 609893 063798 439527 256653 511303 058811 788702 237988 515783 524200 371165 416012 417780 886221 542731 176649 607985 412810 790468 967950 747835 941157 017598 978238 258462 992452 973825 933273 481757 462123 465402 776622 941084 576643 925680 796350 017672 989098 669016 644599 (703 digits), a[1342] = 20
                                                                                      A[1343]/B[1343] = 204731 303514 184166 456882 211800 625934 231414 776004 659711 330902 442389 116323 239211 166208 383092 204501 615891 385347 731116 455551 107229 539860 483364 639777 918722 357120 551062 256163 396567 451378 450332 923557 272004 623481 574224 505317 030759 773065 734045 656786 527768 442907 203107 204882 487231 898893 809786 059406 821465 201371 707762 188130 407967 278357 928825 503846 619860 355369 838509 238228 411817 348530 779258 403838 193220 468733 062710 729281 700730 282991 462807 899279 142018 264884 182077 854747 235390 416899 041475 775358 596530 471126 257464 898369 483389 211535 997764 943806 434665 113756 696437 955945 313353 456676 541569 005251 209904 755627 171010 264098 295409 013007 178877 153138 734224 446201 235050 929964 853734 862900 018862 943965 054452 880767 803334 160570 449827 (702 digits)/19 898557 158750 127803 141182 216970 959810 549017 549760 365563 993981 258253 056566 437036 211198 587821 892118 210422 490287 244023 622802 800401 397135 930541 190256 572786 031309 153297 094353 097277 441961 295242 375494 201849 287165 126620 855214 226579 663870 525098 747809 147261 275305 979475 103999 459039 765118 921581 035672 492707 500322 815091 182006 912851 690503 623041 684990 444323 968264 328072 713258 616637 141722 692089 982631 061862 463984 708764 912759 562256 269373 011932 573784 748206 408144 976919 147323 928937 500123 493113 360861 761759 916992 831843 043315 246733 659457 608138 329790 956674 454440 081277 766922 418181 160873 528445 636285 801844 371578 417290 510756 054165 113650 303236 765513 054308 691050 021905 751155 712681 623340 367069 321245 648762 005204 298641 063108 618598 (704 digits), a[1343] = 2
                                                                                      A[1344]/B[1344] = 11 564928 666103 687542 369121 264056 464309 183360 433294 241081 640549 500990 844393 492608 118742 981162 734449 965809 060874 682796 112835 420514 296104 530433 256094 132214 441888 096469 743135 766663 492871 709556 397958 158066 696654 805110 663205 784384 989928 472531 132952 993436 491214 691294 006515 722950 416768 784515 679125 769510 413032 455717 841502 794129 863596 869424 789787 724243 161856 402783 452251 313598 232304 758817 516366 520027 769727 007768 754259 543918 513497 889431 463631 844970 218810 144722 217731 595711 361865 375625 710322 910078 150443 911804 512334 524239 000137 971263 331702 329306 297726 770360 517488 053986 368991 486154 773161 364355 733059 016947 679156 989285 804913 285880 218301 272816 645196 064114 027899 416497 448253 425024 677414 295358 663599 315132 114076 403326 (704 digits)/1124 036188 649522 186268 056802 836502 946371 204070 383444 518404 659001 518984 058735 139147 328391 746485 724892 936344 268064 043439 883001 520121 013147 375103 539055 168538 823563 569984 787442 188024 918426 722856 271317 965715 734075 752325 463428 689382 606815 581792 885674 447688 020915 205877 849049 051244 582021 431451 561278 069012 863905 351427 752154 787043 645820 627870 969011 781196 343414 874916 652972 044143 201452 750957 446035 157870 991785 221367 476425 869435 374936 725284 203388 078587 650275 228905 887837 297947 616808 678146 647785 915208 862901 642022 214356 055073 445409 579946 839458 989781 866425 437776 490386 594794 616903 005766 422473 871235 556227 309425 619938 011484 622879 973711 842556 974560 180558 688845 530122 686793 848145 132525 915437 127022 309113 712998 203099 286087 (706 digits), a[1344] = 56
                                                                                      A[1345]/B[1345] = 23 334588 635721 559251 195124 739913 554552 598135 642593 141874 612001 444370 805110 224427 403694 345417 673401 547509 507097 096708 681221 948258 132069 544231 151966 183151 240896 744001 742434 929894 437121 869445 719473 588138 016791 184445 831728 599529 752922 679107 922692 514641 425336 585695 217913 933132 732431 378817 417658 360486 027436 619197 871135 996227 005551 667675 083422 068346 679082 644076 142731 039013 813140 296893 436571 233276 008187 078248 237800 788567 309987 241670 826542 831958 702504 471522 290210 426813 140629 792727 196004 416686 772014 081073 923038 531867 211811 940291 607211 093277 709210 237158 990921 421326 194659 513878 551573 938616 221745 204905 622412 273980 622833 750637 589741 279857 736593 363278 985763 686729 759406 868912 298793 645170 207966 433598 388723 256479 (704 digits)/2267 970934 457794 500339 254787 889976 852552 957158 316649 402373 311984 296221 174036 715330 867982 080793 341904 083111 026415 330903 388805 840643 423430 680748 268366 909863 678436 293266 669237 473327 278814 740954 918130 133280 755316 631271 782071 605344 877501 688684 519158 042637 317136 391230 802097 561528 929161 784484 158228 630733 228133 517946 686316 486938 982144 878783 623014 006716 655094 077906 019202 704923 544628 194004 874701 377604 447555 151499 865611 301127 019246 462500 980560 905381 708695 434730 922998 524832 733740 849406 656433 592177 642796 115887 472027 356880 550276 768032 008708 936238 187290 956830 747695 607770 394679 539978 481233 544315 484033 036141 750632 077134 359410 250660 450627 003429 052167 399596 811401 086269 319630 632121 152119 902806 623431 724637 469307 190772 (706 digits), a[1345] = 2
                                                                                      A[1346]/B[1346] = 58 234105 937546 806044 759370 743883 573414 379631 718480 524830 864552 389732 454613 941462 926131 671998 081253 060828 075068 876213 475279 317030 560243 618895 560026 498516 923681 584473 228005 626452 367115 448447 836905 334342 730237 174002 326662 983444 495773 830746 978338 022719 341887 862684 442343 589215 881631 542150 514442 490482 467905 694113 583774 786583 874700 204774 956631 860936 520021 690935 737713 391625 858585 352604 389508 986579 786101 164265 229861 121053 133472 372773 116717 508887 623819 087766 798152 449337 643124 961080 102331 743451 694472 073952 358411 587973 423761 851846 546124 515861 716147 244678 499330 896638 758310 513911 876309 241588 176549 426758 923981 537247 050580 787155 397783 832532 118382 790671 999426 789956 967067 162849 275001 585699 079532 182328 891522 916284 (704 digits)/5659 978057 565111 186946 566378 616456 651477 118387 016743 323151 282970 111426 406808 569809 064355 908072 408701 102566 320894 705246 660613 201407 860008 736600 075788 988266 180436 156518 125917 134679 476056 204766 107578 232277 244709 014869 027571 900072 361818 959161 923990 532962 655187 988339 453244 174302 440345 000419 877735 330479 320172 387321 124787 760921 610110 385438 215039 794629 653603 030728 691377 453990 290709 138967 195437 913079 886895 524367 207648 471689 413429 650286 164509 889351 067666 098367 733834 347613 084290 376959 960653 099564 148493 873797 158410 768834 545963 116010 856876 862258 241007 351437 985777 810335 406262 085723 384940 959866 524293 381709 121202 165753 341700 475032 743810 981418 284893 488039 152924 859332 487406 396768 219676 932635 555977 162273 141713 667631 (706 digits), a[1346] = 2
                                                                                      A[1347]/B[1347] = 198 036906 448361 977385 473236 971564 274795 737030 798034 716367 205658 613568 168952 048816 182089 361411 917160 729993 732303 725349 107059 899349 812800 400917 832045 678702 011941 497421 426451 809251 538468 214789 230189 591166 207502 706452 811717 549863 240244 171348 857706 582799 451000 173748 544944 700780 377326 005268 960985 831933 431153 701538 622460 355978 629652 281999 953317 651156 239147 716883 355871 213891 388896 354706 605098 193015 366490 571043 927384 151726 710404 359990 176695 358621 573961 734822 684667 774826 070004 675967 502999 647041 855430 302930 998273 295787 483097 495831 245584 640862 857651 971194 488914 111242 469591 055614 180501 663380 751393 485182 394356 885721 774576 112103 783092 777454 091741 735294 984044 056600 660608 357460 123798 402267 446562 980585 063292 005331 (705 digits)/19247 905107 153128 061178 953923 739346 806984 312319 366879 371827 160894 630500 394462 424758 061049 805010 568007 390809 989099 446643 370645 444867 003456 890548 495733 874662 219744 762821 046988 877365 706983 355253 240864 830112 489443 675878 864787 305561 962958 566170 291129 641525 282700 356249 161830 084436 250196 785743 791434 622171 188650 679910 060679 769703 812476 035098 268133 390605 615903 170092 093335 066894 416755 610906 461015 116844 108241 724601 488556 716195 259535 413359 474090 573434 911693 729834 124501 567671 986611 980286 538392 890870 088277 737278 947259 663384 188166 116064 579339 523012 910313 011144 705029 038776 613465 797148 636056 423915 056913 181269 114238 574394 384511 675758 682059 947683 906847 863714 270175 664266 781849 822425 811150 700713 291363 211456 894448 193665 (707 digits), a[1347] = 3
                                                                                      A[1348]/B[1348] = 850 381731 730994 715586 652318 630140 672597 327754 910619 390299 687186 844005 130422 136727 654489 117645 749895 980803 004283 777609 903518 914429 811445 222566 888209 213324 971447 574158 933812 863458 520988 307604 757663 699007 560247 999813 573533 182897 456750 516142 409164 353917 145888 557678 622122 392337 390935 563226 358385 818216 192520 500268 073616 210498 393309 332774 769902 465561 476612 558469 161198 247191 414170 771430 809901 758641 252063 448440 939397 727959 975089 812733 823498 943373 919666 027057 536823 548641 923143 664950 114330 331619 116193 285676 351504 771123 356151 835171 528463 079313 146755 129456 454987 341608 636674 736368 598315 895111 182123 367488 501409 080134 148885 235570 530154 942348 485349 731851 935603 016359 609500 592689 770195 194768 865784 104669 144690 937608 (705 digits)/82651 598486 177623 431662 382073 573843 879414 367664 484260 810459 926548 633427 984658 268841 308555 128114 680730 665806 277292 491820 143194 980875 873836 298794 058724 486915 059415 207802 313872 644142 303989 625779 071037 552727 202483 718384 486721 122320 213653 223843 088509 099063 785989 413336 100564 512047 441132 143395 043473 819164 074775 106961 367506 839736 860014 525831 287573 357052 117215 711097 064717 721567 957731 582593 039498 380456 319862 422773 161875 336470 451571 303724 060872 183090 714441 017704 231840 618301 030738 298106 114224 663044 501604 822912 947449 422371 298627 580269 174234 954309 882259 396016 805893 965441 860125 274317 929166 655526 751946 106785 578156 463330 879747 178067 472050 772153 912284 942896 233627 516399 614805 686471 464279 735488 721430 008100 719506 442291 (707 digits), a[1348] = 4
                                                                                      A[1349]/B[1349] = 7851 472492 027314 417665 344104 642830 328171 686824 993609 229064 390340 209614 342751 279365 072491 420223 666224 557220 770857 723838 238730 129218 115807 404019 825928 598626 754969 664851 830767 580378 227362 983232 049162 882234 249734 704774 973516 195940 350998 816630 540185 768053 763997 192856 144046 231816 895746 074306 186458 195879 163838 203951 285006 250464 169436 276972 882439 841209 528660 743105 806655 438614 116433 297583 894214 020786 635061 607012 381963 703366 486212 674594 588185 848986 850955 978340 516079 712603 378297 660518 531972 631613 901169 874018 161816 235897 688464 012375 001752 354681 178448 136302 583800 185720 199663 682931 565344 719381 390503 792578 907038 606929 114543 232238 554487 258590 459889 321962 404471 203837 146113 691668 055555 155187 238619 922607 365510 443803 (706 digits)/763112 291482 751738 946140 392585 903941 721713 621299 725226 665966 499832 331352 256386 844329 838045 958042 694583 383066 484731 873024 659400 272749 867983 579695 024254 256897 754481 633041 871842 674646 442889 987264 880202 804657 311797 141339 245277 406443 885837 580758 087711 533099 356605 076274 066910 692863 220386 076299 182698 994647 861626 642562 368241 327335 552606 767579 856293 604074 670844 569965 675794 561006 036339 854243 816500 540950 987003 529559 945434 744429 323677 146876 021940 221251 341662 889172 211067 132381 263256 663241 566414 858270 602721 143495 474304 464725 875814 338487 147454 111801 850647 575295 958074 727753 354593 266009 998556 323655 824428 142339 317646 744372 302236 278365 930516 897069 117412 349780 372823 311863 315101 000668 989668 320111 784233 284363 370006 174284 (708 digits), a[1349] = 9
                                                                                      A[1350]/B[1350] = 8701 854223 758309 133251 996423 272971 000769 014579 904228 619364 077527 053619 473173 416092 726980 537869 416120 538023 775141 501448 142249 043647 927252 626586 714137 811951 726417 239010 764580 443836 748351 290836 806826 581241 809982 704588 547049 378837 807749 332772 949350 121970 909885 750534 766168 624154 286681 637532 544844 014095 356358 704219 358622 460962 562745 609747 652342 306771 005273 301574 967853 685805 530604 069014 704115 779427 887125 055453 321361 431326 461302 487328 411684 792360 770622 005398 052903 261245 301441 325468 646302 963233 017363 159694 513321 007021 044615 847546 530215 433994 325203 265759 038787 527328 836338 419300 163660 614492 572627 160067 408447 687063 263428 467809 084642 200938 945239 053814 340074 220196 755614 284357 825750 349956 104404 027276 510201 381411 (706 digits)/845763 889968 929362 377802 774659 477785 601127 988964 209487 476426 426380 964780 241045 113171 146601 086157 375314 048872 762024 364844 802595 253625 741819 878489 082978 743812 813896 840844 185715 318788 746879 613043 951240 357384 514280 859723 731998 528764 099490 804601 176220 632163 142594 489610 167475 204910 661518 219694 226172 813811 936401 749523 735748 167072 412621 293411 143866 961126 788060 281062 740512 282573 994071 436836 855998 921407 306865 952333 107310 080899 775248 450600 082812 404342 056103 906876 442907 750682 293994 961347 680639 521315 104325 966408 421753 887097 174441 918756 321689 066111 732906 971312 763968 693195 214718 540327 927722 979182 576374 249124 895803 207703 181983 456433 402567 669223 029697 292676 606450 828262 929906 687140 453948 055600 505663 292464 089512 616575 (708 digits), a[1350] = 1
                                                                                      A[1351]/B[1351] = 16553 326715 785623 550917 340527 915801 328940 701404 897837 848428 467867 263233 815924 695457 799471 958093 082345 095244 545999 225286 380979 172866 043060 030606 540066 410578 481386 903862 595348 024214 975714 274068 855989 463476 059717 409363 520565 574778 158748 149403 489535 890024 673882 943390 910214 855971 182427 711838 731302 209974 520196 908170 643628 711426 732181 886720 534782 147980 533934 044680 774509 124419 647037 366598 598329 800214 522186 662465 703325 134692 947515 161922 999870 641347 621577 983738 568982 973848 679738 985987 178275 594846 918533 033712 675137 242918 733079 859921 531967 788675 503651 402061 622587 713049 036002 102231 729005 333873 963130 952646 315486 293992 377971 700047 639129 459529 405128 375776 744545 424033 901727 976025 881305 505143 343023 949883 875711 825214 (707 digits)/1 608876 181451 681101 323943 167245 381727 322841 610263 934714 142392 926213 296132 497431 957500 984647 044200 069897 431939 246756 237869 461995 526375 609803 458184 107233 000710 568378 473886 057557 993435 189769 600308 831443 162041 826078 001062 977275 935207 985328 385359 263932 165262 499199 565884 234385 897773 881904 295993 408871 808459 798028 392086 103989 494407 965228 060991 000160 565201 458904 851028 416306 843580 030411 291080 672499 462358 293869 481893 052744 825329 098925 597476 104752 625593 397766 796048 653974 883063 557251 624589 247054 379585 707047 109903 896058 351823 050256 257243 469143 177913 583554 546608 722043 420948 569311 806337 926279 302838 400802 391464 213449 952075 484219 734799 333084 566292 147109 642456 979274 140126 245007 687809 443616 375712 289896 576827 459518 790859 (709 digits), a[1351] = 1
                                                                                      A[1352]/B[1352] = 3 153833 930223 026783 807546 696727 275223 499502 281510 493419 820772 972307 068044 498865 553074 626652 575555 061688 634487 514994 305860 528291 888196 108658 441829 326755 821863 189928 972903 880705 044682 134063 363919 444824 641693 156290 483657 454508 586687 969897 719435 961169 226658 947644 994807 706991 258678 947946 886891 492263 909254 193771 256641 648077 632041 677304 086649 260950 423072 452741 790922 124587 325538 467703 722748 386777 820187 102590 923936 953137 022986 489183 252698 387106 648408 870438 915726 159668 292494 451848 663032 518665 984147 538639 565102 789397 161580 329789 232637 604095 282340 018969 657467 330453 006645 676737 843328 674674 050545 567508 162867 350843 545615 078051 476860 519239 511525 919630 451395 803704 786638 083929 729275 273796 327191 278954 505212 895448 172071 (709 digits)/306 532238 365788 338613 927004 551282 005976 941033 939111 805174 531082 406907 229954 753117 038358 229539 484170 655826 117329 645709 560042 581745 264991 604476 933469 457248 878820 805806 879195 121734 071474 803103 671721 925441 145331 469101 061689 414426 218281 311884 022861 323332 032037 990512 007614 700795 781948 223334 458441 911816 421173 561796 245883 493752 104585 805952 881701 174374 349403 979981 976461 838812 562779 772216 742164 630896 769483 142067 512013 128826 893428 571111 971059 985811 267087 631795 156120 698135 532758 171803 633304 620971 642599 443276 848148 672840 733476 723130 795015 458892 869692 608270 826969 952218 673423 383961 744533 920790 518478 728828 627325 451294 102045 183733 068306 688635 264730 980529 359502 668537 452249 481367 370934 741059 440935 586012 889681 398082 879785 (711 digits), a[1352] = 190
                                                                                      A[1353]/B[1353] = 15 785722 977830 919542 588650 824164 291918 826452 108957 364936 952293 329402 603456 310252 460830 932734 835868 390788 267682 120970 754589 022438 613846 586352 239753 173845 519894 431031 768381 998873 247625 646031 093666 080112 671941 841169 827650 793108 508218 008236 746583 295382 023319 412107 917429 445171 149365 922162 146296 192621 756245 489053 191378 884016 871635 118702 319966 839534 263342 797642 999291 397445 752111 985555 980340 532218 901150 035141 282150 469010 249625 393431 425414 935403 883391 973772 562369 367324 436320 938982 301149 771605 515584 611730 859226 622123 050820 382026 023109 552444 200375 598499 689398 274852 746277 419691 318875 102375 586601 800671 766983 069704 022067 768229 084350 235327 017159 003280 632755 763069 357224 321376 622402 250287 141099 737796 475948 352952 685569 (710 digits)/1534 270068 010393 374170 958965 923655 411612 028011 305822 960586 797804 960749 445906 263017 149292 132344 465053 349028 018587 475304 038082 370721 851333 632188 125531 393477 394814 597412 869861 666228 350809 205287 958918 458648 888699 171583 309510 049407 026614 544748 499665 880592 325452 451759 603957 738364 807514 998576 588202 967953 914327 607009 621503 572750 017336 994992 469496 872032 312221 358814 733337 610369 657478 891495 001903 826983 309774 004207 041958 696879 292471 954485 452776 033808 961031 556742 576652 144652 546854 416269 791112 351912 592582 923431 350647 260262 019206 665910 232320 763607 526376 624908 681458 483136 788065 489120 529007 530231 895232 044945 528091 469920 462301 402885 076332 776260 889947 049756 439970 321961 401373 651844 542483 148913 580390 219961 025234 449933 189784 (712 digits), a[1353] = 5
                                                                                      A[1354]/B[1354] = 82 082448 819377 624496 750800 817548 734817 631762 826297 318104 582239 619320 085326 050127 857229 290326 754897 015629 972898 119848 078805 640484 957429 040419 640595 195983 421335 345087 814813 875071 282810 364218 832249 845388 001402 362139 621911 420051 127778 011081 452352 438079 343256 008184 581954 932847 005508 558757 618372 455372 690481 639037 213536 068161 990217 270815 686483 458621 739786 440956 787379 111816 086098 395483 624451 047872 325937 278297 334689 298188 271113 456340 379773 064126 065368 739301 727572 996290 474099 146760 168781 376693 562070 597293 861235 900012 415682 239919 348185 366316 284218 011468 104458 704716 738032 775194 437704 186551 983554 570866 997782 699363 655953 919196 898611 695874 597320 936033 615174 619051 572759 690812 841286 525232 032689 967936 884954 660211 599916 (710 digits)/7977 882578 417755 209468 721834 169559 064037 081090 468226 608108 520107 210654 459486 068202 784818 891261 809437 400966 210267 022229 750454 435354 521659 765417 561126 424635 852893 792871 228503 452875 825520 829543 466314 218685 588827 327017 609239 661461 351354 035626 521190 726293 659300 249310 027403 392619 819523 216217 399456 751585 992811 596844 353401 357502 191270 780915 229185 534535 910510 774055 643149 890660 850174 229691 751683 765813 318353 163102 721806 613223 355788 343539 234940 154856 072245 415508 039381 421398 267030 253152 588866 380534 605514 060433 601384 974150 829510 052681 956619 276930 501575 732814 234262 367902 613750 829564 389571 571949 994638 953556 267782 800896 413552 198158 449970 569939 714466 229311 559354 278344 459117 740590 083350 485627 342886 685818 015853 647748 828705 (712 digits), a[1354] = 5
                                                                                      A[1355]/B[1355] = 2642 424085 197914 903438 614276 985723 806083 042862 550471 544283 583961 147645 333889 914343 892168 223190 992572 890947 400421 956109 276369 517957 251575 879780 738799 445315 002625 473841 842426 001154 297557 301033 725661 132528 716817 429637 728816 234744 597114 362843 221861 313921 007511 674014 539987 296275 325639 802405 934214 764547 851657 938244 024533 065200 558587 784804 287437 515429 936508 908260 195422 975560 507260 641031 962774 064133 331142 940655 992208 011034 925255 996323 578152 987437 975191 631427 844705 248619 607493 635307 702153 825799 501843 725134 418775 422520 352652 059445 165041 274565 295351 965479 032076 825788 363326 225913 325409 072039 060348 068415 696029 449341 012593 182529 839924 503314 131428 956356 318343 572719 685534 427387 543571 057712 187178 711776 794497 479723 882881 (712 digits)/256826 512577 378560 077170 057659 349545 460798 622906 289074 420059 441235 701692 149460 445506 263496 652722 367050 179946 747132 186656 052624 302066 544446 125550 081576 981824 687415 969292 181972 158254 767475 750678 880973 456587 731173 636146 805179 216170 269943 684797 177769 121989 423060 429680 480866 302199 032257 917533 370819 018705 684298 706028 930347 012820 138001 984279 803433 977181 448566 128595 314134 111516 863054 241631 055784 333009 497075 223494 139770 320026 677698 947740 970860 989203 272884 852999 836857 629397 091822 517152 634836 529019 969032 857306 594966 433088 563528 351732 844137 625383 576800 074964 177854 256020 428092 035180 995297 832631 723678 558746 097141 098605 695971 743955 475391 014331 752866 387726 339307 228984 093141 350727 209698 688988 552764 166137 532551 177895 708344 (714 digits), a[1355] = 32
                                                                                      A[1356]/B[1356] = 2724 506534 017292 527935 365077 803272 540900 674625 376768 862388 166200 766965 419215 964471 749397 513517 747469 906577 373320 075957 355175 158442 209004 920200 379394 641298 423960 818929 657239 876225 580367 665252 557910 977916 718219 791777 350727 654795 724892 373924 674213 752000 350767 682199 121942 229122 331148 361163 552587 219920 542139 577281 238069 133362 548805 055619 973920 974051 676295 349216 982802 087376 593359 036515 587225 112005 657080 218953 326897 309223 196369 452663 957926 051564 040560 370729 572278 244910 081592 782067 870935 202493 063914 322428 280011 322532 768334 299364 513226 640881 579569 976947 136535 530505 101359 001107 763113 258591 043902 639282 693812 148704 668547 101726 738536 199188 728749 892389 933518 191771 258294 118200 384857 582944 219868 679713 679452 139935 482797 (712 digits)/264804 395155 796315 286638 779493 519104 524835 703996 757301 028167 961342 912346 608946 513709 048315 543984 176487 580912 957399 208885 803078 737421 066105 890967 642703 406460 540309 762163 410475 611130 592996 580222 347287 675273 320000 963164 414418 877631 621297 720423 698959 848283 082360 678990 508269 694818 851781 133750 770275 770291 677110 302873 283748 370322 329272 765195 032619 511717 359076 902650 957284 002177 713228 471322 807468 098822 815428 386596 861576 933250 033487 291280 205801 144059 345130 268507 876239 050795 358852 770305 223702 909554 574546 917740 196351 407239 393038 404414 800756 902314 078375 807778 412116 623923 041842 864745 384869 404581 718317 512302 364923 899502 109523 942113 925361 584271 467332 617037 898661 507328 552259 091317 293049 174615 895650 851955 548404 825644 537049 (714 digits), a[1356] = 1
                                                                                      A[1357]/B[1357] = 5366 930619 215207 431373 979354 788996 346983 717487 927240 406671 750161 914610 753105 878815 641565 736708 740042 797524 773742 032066 631544 676399 460580 799981 118194 086613 426586 292771 499665 877379 877924 966286 283572 110445 435037 221415 079543 889540 322006 736767 896075 065921 358279 356213 661929 525397 656788 163569 486801 984468 393797 515525 262602 198563 107392 840424 261358 489481 612804 257477 178225 062937 100619 677547 549999 176138 988223 159609 319105 320258 121625 448987 536079 039002 015752 002157 416983 493529 689086 417375 573089 028292 565758 047562 698786 745053 120986 358809 678267 915446 874921 942426 168612 356293 464685 227021 088522 330630 104250 707698 389841 598045 681140 284256 578460 702502 860178 848746 251861 764490 943828 545587 928428 640656 407047 391490 473949 619659 365678 (712 digits)/521630 907733 174875 363808 837152 868649 985634 326903 046375 448227 402578 614038 758406 959215 311812 196706 543537 760859 704531 395541 855703 039487 610552 016517 724280 388285 227725 731455 592447 769385 360472 330901 228261 131861 051174 599311 219598 093801 891241 405220 876728 970272 505421 108670 989135 997017 884039 051284 141094 788997 361409 008902 214095 383142 467274 749474 836053 488898 807643 031246 271418 113694 576282 712953 863252 431832 312503 610091 001347 253276 711186 239021 176662 133262 618015 121507 713096 680192 450675 287457 858539 438574 543579 775046 791317 840327 956566 756147 644894 527697 655175 882742 589970 879943 469934 899926 380167 237213 441996 071048 462064 998107 805495 686069 400752 598603 220199 004764 237968 736312 645400 442044 502747 863604 448415 018093 080956 003540 245393 (714 digits), a[1357] = 1
                                                                                      A[1358]/B[1358] = 8091 437153 232499 959309 344432 592268 887884 392113 304009 269059 916362 681576 172321 843287 390963 250226 487512 704102 147062 108023 986719 834841 669585 720181 497588 727911 850547 111701 156905 753605 458292 631538 841483 088362 153257 013192 430271 544336 046899 110692 570288 817921 709047 038412 783871 754519 987936 524733 039389 204388 935937 092806 500671 331925 656197 896044 235279 463533 289099 606694 161027 150313 693978 714063 137224 288144 645303 378562 646002 629481 317994 901651 494005 090566 056312 372886 989261 738439 770679 199443 444024 230785 629672 369990 978798 067585 889320 658174 191494 556328 454491 919373 305147 886798 566044 228128 851635 589221 148153 346981 083653 746750 349687 385983 316996 901691 588928 741136 185379 956262 202122 663788 313286 223600 626916 071204 153401 759594 848475 (712 digits)/786435 302888 971190 650447 616646 387754 510470 030899 803676 476395 363921 526385 367353 472924 360127 740690 720025 341772 661930 604427 658781 776908 676657 907485 366983 794745 768035 493619 002923 380515 953468 911123 575548 807134 371175 562475 634016 971433 512539 125644 575688 818555 587781 787661 497405 691836 735820 185034 911370 559289 038519 311775 497843 753464 796547 514669 868673 000616 166719 933897 228702 115872 289511 184276 670720 530655 127931 996687 862924 186526 744673 530301 382463 277321 963145 390015 589335 730987 809528 057763 082242 348129 118126 692786 987669 247567 349605 160562 445651 430011 733551 690521 002087 503866 511777 764671 765036 641795 160313 583350 826988 897609 915019 628183 326114 182874 687531 621802 136630 243641 197659 533361 795797 038220 344065 870048 629360 829184 782442 (714 digits), a[1358] = 1
                                                                                      A[1359]/B[1359] = 13458 367772 447707 390683 323787 381265 234868 109601 231249 675731 666524 596186 925427 722103 032528 986935 227555 501626 920804 140090 618264 511241 130166 520162 615782 814525 277133 404472 656571 630985 336217 597825 125055 198807 588294 234607 509815 433876 368905 847460 466363 883843 067326 394626 445801 279917 644724 688302 526191 188857 329734 608331 763273 530488 763590 736468 496637 953014 901903 864171 339252 213250 794598 391610 687223 464283 633526 538171 965107 949739 439620 350639 030084 129568 072064 375044 406245 231969 459765 616819 017113 259078 195430 417553 677584 812639 010307 016983 869762 471775 329413 861799 473760 243092 030729 455149 940157 919851 252404 054679 473495 344796 030827 670239 895457 604194 449107 589882 437241 720753 145951 209376 241714 864257 033963 462694 627351 379254 214153 (713 digits)/1 308066 210622 146066 014256 453799 256404 496104 357802 850051 924622 766500 140424 125760 432139 671939 937397 263563 102632 366461 999969 514484 816396 287209 924003 091264 183030 995761 225074 595371 149901 313941 242024 803809 938995 422350 161786 853615 065235 403780 530865 452417 788828 093202 896332 486541 688854 619859 236319 052465 348286 399928 320677 711939 136607 263822 264144 704726 489514 974362 965143 500120 229566 865793 897230 533972 962487 440435 606778 864271 439803 455859 769322 559125 410584 581160 511523 302432 411180 260203 345220 940781 786703 661706 467833 778987 087895 306171 916710 090545 957709 388727 573263 592058 383809 981712 664598 145203 879008 602309 654399 289053 895717 720515 314252 726866 781477 907730 626566 374598 979953 843059 975406 298544 901824 792480 888141 710316 832725 027835 (715 digits), a[1359] = 1
                                                                                      A[1360]/B[1360] = 75383 276015 471036 912725 963369 498595 062224 940119 460257 647718 248985 662510 799460 453802 553608 184902 625290 212236 751082 808477 078042 391047 320418 320994 576502 800538 236214 134064 439763 908532 139380 620664 466759 082400 094728 186229 979348 713717 891428 347994 902108 237137 045679 011545 012878 154108 211559 966245 670345 148675 584610 134465 317038 984369 474151 578386 718469 228607 798618 927550 857288 216567 666970 672116 573341 609562 812936 069422 471542 378178 516096 654846 644425 738406 416634 248109 020487 898287 069507 283538 529590 526176 606824 457759 366722 130780 940855 743093 540306 915205 101561 228370 673949 102258 719691 503878 552425 188477 410173 620378 451130 470730 503825 737182 794284 922663 834466 690548 371588 560027 931878 710669 521860 544885 796733 384677 290158 655865 919240 (713 digits)/7 326766 355999 701520 721729 885642 669776 990991 819914 053936 099509 196422 228505 996155 633622 719827 427677 037840 854934 494240 604275 231205 858890 112707 527500 823304 709900 746841 618991 979779 130022 523175 121247 594598 502111 482926 371409 902092 297610 531441 779971 837777 762696 053796 269323 930114 136109 835116 366630 173697 300721 038160 915164 057539 436501 115658 835393 392305 448191 038534 759614 729303 263706 618480 670429 340585 343092 330110 030582 184281 385544 023972 376914 178090 330244 868947 947632 101497 786889 110544 783867 786151 281647 426659 031955 882604 687043 880464 744112 898381 218558 677189 556838 962379 422916 420341 087662 491056 036838 171861 855347 272258 376198 517596 199446 960448 090264 226184 754634 009625 143410 412959 410393 288521 547344 306470 310757 180944 992809 921617 (715 digits), a[1360] = 5
                                                                                      A[1361]/B[1361] = 88841 643787 918744 303409 287156 879860 297093 049720 691507 323449 915510 258697 724888 175905 586137 171837 852845 713863 671886 948567 696306 902288 450584 841157 192285 615063 513347 538537 096335 539517 475598 218489 591814 281207 683022 420837 489164 147594 260334 195455 368472 120980 113005 406171 458679 434025 856284 654548 196536 337532 914344 742797 080312 514858 237742 314855 215107 181622 700522 791722 196540 429818 461569 063727 260565 073846 446462 607594 436650 327917 955717 005485 674509 867974 488698 623153 426733 130256 529272 900357 546703 785254 802254 875313 044306 943419 951162 760077 410069 386980 430975 090170 147709 345350 750420 959028 492583 108328 662577 675057 924625 815526 534653 407422 689742 526858 283574 280430 808830 280781 077829 920045 763575 409142 830696 847371 917510 035120 133393 (713 digits)/8 634832 566621 847586 735986 339441 926181 487096 177716 903988 024131 962922 368930 121916 065762 391767 365074 301403 957566 860702 604244 745690 675286 399917 451503 914568 892931 742602 844066 575150 279923 837116 363272 398408 441106 905276 533196 755707 362845 935222 310837 290195 551524 146999 165656 416655 824964 454975 602949 226162 649007 438089 235841 769478 573108 379481 099538 097031 937706 012897 724758 229423 493273 484274 567659 874558 305579 770545 637361 048552 825347 479832 146236 737215 740829 450108 459155 403930 198069 370748 129088 726933 068351 088365 499789 661591 774939 186636 660822 988927 176268 065917 130102 554437 806726 402053 752260 636259 915846 774171 509746 561312 271916 238111 513699 687314 871742 133915 381200 384224 123364 256019 385799 587066 449169 098951 198898 891261 825534 949452 (715 digits), a[1361] = 1
                                                                                      A[1362]/B[1362] = 253066 563591 308525 519544 537683 258315 656411 039560 843272 294618 080006 179906 249236 805613 725882 528578 330981 639964 094856 705612 470656 195624 221588 003308 961074 030665 262909 211138 632434 987567 090577 057643 650387 644815 460773 027904 957677 008906 412096 738905 639052 479097 271689 823887 930237 022159 924129 275342 063417 823741 413299 620059 477664 014085 949636 208097 148683 591853 199664 510995 250369 076204 590108 799571 094471 757255 705861 284611 344843 034014 427530 665817 993445 474355 394031 494415 873954 158800 128053 084253 622998 096686 211334 208385 455336 017620 843181 263248 360445 689165 963511 408710 969367 792960 220533 421935 537591 405134 735328 970494 300382 101783 573132 552028 173769 976380 401615 251409 989249 121590 087538 550761 049011 363171 458127 079421 125178 726106 186026 (714 digits)/24 596431 489243 396694 193702 564526 522139 965184 175347 861912 147773 122266 966366 239987 765147 503362 157825 640648 770068 215645 812764 722587 209462 912542 430508 652442 495764 232047 307125 130079 689870 197407 847792 391415 384325 293479 437803 413507 023302 401886 401646 418168 865744 347794 600636 763425 786038 745067 572528 626022 598735 914339 386847 596496 582717 874621 034469 586369 323603 064330 209131 188150 250253 587029 805749 089701 954251 871201 305304 281387 036238 983636 669387 652521 811903 769164 865942 909358 183027 852041 042045 240017 418349 603390 031535 205788 236922 253738 065758 876235 571094 809023 817044 071255 036369 224448 592183 763575 868531 720204 874840 394882 920030 993819 226846 335077 833748 494015 517034 778073 390138 924998 181992 462654 445682 504372 708554 963468 643879 820521 (716 digits), a[1362] = 2
                                                                                      A[1363]/B[1363] = 341908 207379 227269 822953 824840 138175 953504 089281 534779 618067 995516 438603 974124 981519 312019 700416 183827 353827 766743 654180 166963 097912 672172 844466 153359 645728 776256 749675 728770 527084 566175 276133 242201 926023 143795 448742 446841 156500 672430 934361 007524 600077 384695 230059 388916 456185 780413 929890 259954 161274 327644 362856 557976 528944 187378 522952 363790 773475 900187 302717 446909 506023 051677 863298 355036 831102 152323 892205 781493 361932 383247 671303 667955 342329 882730 117569 300687 289056 657325 984611 169701 881941 013589 083698 499642 961040 794344 023325 770515 076146 394486 498881 117077 138310 970954 380964 030174 513463 397906 645552 225007 917310 107785 959450 863512 503238 685189 531840 798079 402371 165368 470806 812586 772314 288823 926793 042688 761226 319419 (714 digits)/33 231264 055865 244280 929688 903968 448321 452280 353064 765900 171905 085189 335296 361903 830909 895129 522899 942052 727635 076348 417009 468277 884749 312459 882012 567011 388695 974650 151191 705229 969794 034524 211064 789823 825432 198755 971000 169214 386148 337108 712483 708364 417268 494793 766293 180081 611003 200043 175477 852185 247743 352428 622689 365975 155826 254102 134007 683401 261309 077227 933889 417573 743527 071304 373408 964260 259831 641746 942665 329939 861586 463468 815624 389737 552733 219273 325098 313288 381097 222789 171133 966950 486700 691755 531324 867380 011861 440374 726581 865162 747362 874940 947146 625692 843095 626502 344444 399835 784378 494376 384586 956195 191947 231930 740546 022392 705490 627930 898235 162297 513503 181017 567792 049720 894851 603323 907453 854730 469414 769973 (716 digits), a[1363] = 1
                                                                                      A[1364]/B[1364] = 594974 770970 535795 342498 362523 396491 609915 128842 378051 912686 075522 618510 223361 787133 037902 228994 514808 993791 861600 359792 637619 293536 893760 847775 114433 676394 039165 960814 361205 514651 656752 333776 892589 570838 604568 476647 404518 165407 084527 673266 646577 079174 656385 053947 319153 478345 704543 205232 323371 985015 740943 982916 035640 543030 137014 731049 512474 365329 099851 813712 697278 582227 641786 662869 449508 588357 858185 176817 126336 395946 810778 337121 661400 816685 276761 611985 174641 447856 785379 068864 792699 978627 224923 292083 954978 978661 637525 286574 130960 765312 357997 907592 086444 931271 191487 802899 567765 918598 133235 616046 525390 019093 680918 511479 037282 479619 086804 783250 787328 523961 252907 021567 861598 135485 746951 006214 167867 487332 505445 (714 digits)/57 827695 545108 640975 123391 468494 970461 417464 528412 627812 319678 207456 301662 601891 596057 398491 680725 582701 497703 291994 229774 190865 094212 225002 312521 219453 884460 206697 458316 835309 659664 231932 058857 181239 209757 492235 408803 582721 409450 738995 114130 126533 283012 842588 366929 943507 397041 945110 748006 478207 846479 266768 009536 962471 738544 128723 168477 269770 584912 141558 143020 605723 993780 658334 179158 053962 214083 512948 247969 611326 897825 447105 485012 042259 364636 988438 191041 222646 564125 074830 213179 206967 905050 295145 562860 073168 248783 694112 792340 741398 318457 683964 764190 696947 879464 850950 936628 163411 652910 214581 259427 351078 111978 225749 967392 357470 539239 121946 415269 940370 903642 106015 749784 512375 340534 107696 616008 818199 113294 590494 (716 digits), a[1364] = 1
                                                                                      A[1365]/B[1365] = 1 531857 749320 298860 507950 549886 931159 173334 346966 290883 443440 146561 675624 420848 555785 387824 158405 213445 341411 489944 373765 442201 684986 459694 540016 382226 998516 854588 671304 451181 556387 879679 943687 027381 067700 352932 402037 255877 487314 841486 280894 300678 758426 697465 337954 027223 412877 189500 340354 906698 131305 809532 328688 629257 615004 461407 985051 388739 504134 099890 930142 841466 670478 335251 189037 254054 007817 868694 245840 034166 153826 004804 345546 990756 975700 436253 341539 649970 184770 228084 122340 755101 839195 463435 667866 409600 918364 069394 596474 032436 606771 110482 314065 289967 000853 353929 986763 165706 350659 664377 877645 275787 955497 469622 982408 938077 462476 858799 098342 372736 450293 671182 513942 535783 043285 782725 939221 378423 735891 330309 (715 digits)/148 886655 146082 526231 176471 840958 389244 287209 409890 021524 811261 500101 938621 565687 023024 692112 884351 107455 723041 660336 876557 850008 073173 762464 507055 005919 157616 388045 067825 375849 289122 498388 328779 152302 244947 183226 788607 334657 205049 815098 940743 961430 983294 179970 500153 067096 405087 090264 671490 808600 940701 885964 641763 290918 632914 511548 470962 222942 431133 360344 219930 629021 731088 387972 731725 072184 687998 667643 438604 552593 657237 357679 785648 474256 282007 196149 707180 758581 509347 372449 597492 380886 296801 282046 657045 013716 509428 828600 311263 347959 384278 242870 475528 019588 602025 328404 217700 726659 090198 923538 903441 658351 415903 683430 675330 737333 783968 871823 728775 043039 320787 393049 067361 074471 575919 818717 139471 491128 696003 950961 (717 digits), a[1365] = 2
                                                                                      A[1366]/B[1366] = 2 126832 520290 834655 850448 912410 327650 783249 475808 668935 356126 222084 294134 644210 342918 425726 387399 728254 335203 351544 733558 079820 978523 353455 387791 496660 674910 893754 632118 812387 071039 536432 277463 919970 638538 957500 878684 660395 652721 926013 954160 947255 837601 353850 391901 346376 891222 894043 545587 230070 116321 550476 311604 664898 158034 598422 716100 901213 869463 199742 743855 538745 252705 977037 851906 703562 596175 726879 422657 160502 549772 815582 682668 652157 792385 713014 953524 824611 632627 013463 191205 547801 817822 688358 959950 364579 897025 706919 883048 163397 372083 468480 221657 376411 932124 545417 789662 733472 269257 797613 493691 801177 974591 150541 493887 975359 942095 945603 881593 160064 974254 924089 535510 397381 178771 529676 945435 546291 223223 835754 (715 digits)/206 714350 691191 167206 299863 309453 359705 704673 938302 649337 130939 707558 240284 167578 619082 090604 565076 690157 220744 952331 106332 040873 167385 987466 819576 225373 042076 594742 526142 211158 948786 730320 387636 333541 454704 675462 197410 917378 614500 554094 054874 087964 266307 022558 867083 010603 802129 035375 419497 286808 787181 152732 651300 253390 371458 640271 639439 492713 016045 501902 362951 234745 724869 046306 910883 126146 902082 180591 686574 163920 555062 804785 270660 516515 646644 184587 898221 981228 073472 447279 810671 587854 201851 577192 219905 086884 758212 522713 103604 089357 702735 926835 239718 716536 481490 179355 154328 890070 743109 138120 162869 009429 527881 909180 642723 094804 323207 993770 144044 983410 224429 499064 817145 586846 916453 926413 755480 309327 809298 541455 (717 digits), a[1366] = 1
                                                                                      A[1367]/B[1367] = 3 658690 269611 133516 358399 462297 258809 956583 822774 959818 799566 368645 969759 065058 898703 813550 545804 941699 676614 841489 107323 522022 663509 813149 927807 878887 673427 748343 303423 263568 627427 416112 221150 947351 706239 310433 280721 916273 140036 767500 235055 247934 596028 051315 729855 373600 304100 083543 885942 136768 247627 360008 640293 294155 773039 059830 701152 289953 373597 299633 673998 380211 923184 312289 040943 957616 603993 595573 668497 194668 703598 820387 028215 642914 768086 149268 295064 474581 817397 241547 313546 302903 657018 151794 627816 774180 815389 776314 479522 195833 978854 578962 535722 666378 932977 899347 776425 899178 619917 461991 371337 076965 930088 620164 476296 913437 404572 804402 979935 532801 424548 595272 049452 933164 222057 312402 884656 924714 959115 166063 (715 digits)/355 601005 837273 693437 476335 150411 748949 991883 348192 670861 942201 207660 178905 733265 642106 782717 449427 797612 943786 612667 982889 890881 240559 749931 326631 231292 199692 982787 593967 587008 237909 228708 716415 485843 699651 858688 986018 252035 819550 369192 995618 049395 249601 202529 367236 077700 207216 125640 090988 095409 727883 038697 293063 544309 004373 151820 110401 715655 447178 862246 582881 863767 455957 434279 642608 198331 590080 848235 125178 716514 212300 162465 056308 990771 928651 380737 605402 739809 582819 819729 408163 968740 498652 859238 876950 100601 267641 351313 414867 437317 087014 169705 715246 736125 083515 507759 372029 616729 833308 061659 066310 667780 943785 592611 318053 832138 107176 865593 872820 026449 545216 892113 884506 661318 492373 745130 894951 800456 505302 492416 (717 digits), a[1367] = 1
                                                                                      A[1368]/B[1368] = 386 289310 829459 853873 482392 453622 502696 224550 867179 449909 310594 929911 118836 475394 706818 848533 696918 606720 379761 707901 002527 892200 647053 734197 807618 779866 384824 469801 491561 487092 950918 228215 498313 391899 793666 552995 354485 869075 356582 513538 634961 980388 420546 742002 026715 574408 821731 666151 569511 590736 117194 351383 542400 551254 327135 880646 337091 346318 097179 661278 513685 460997 187058 767387 151022 253306 015503 262114 614862 600716 427648 956220 645311 158208 441431 386185 935294 655702 459337 375931 113567 352685 804728 626794 880711 653565 512952 219940 232878 725965 151814 259546 472537 346199 894803 976934 314382 147227 360591 306707 484084 882600 633896 267811 505063 886287 422240 407916 774824 104214 551857 427654 728068 379624 494789 331979 834412 641361 930316 272369 (717 digits)/37544 819963 604928 978141 315054 102686 999454 852425 498533 089841 062066 511877 025386 160471 040294 275936 754995 439516 318339 282469 309770 583403 426159 730256 115855 511054 009839 787439 892738 847023 929255 744735 611262 347129 918149 837805 729327 381139 667289 319358 594769 274465 474433 288142 426871 169125 559822 227584 973247 304830 214900 215948 422972 405835 830639 581383 231619 636534 969826 037793 565546 930328 600399 645669 384743 950963 860571 245279 830339 397912 846579 863616 183104 547568 155039 162036 465509 661234 269553 518867 667888 305606 560401 797274 299665 650017 860554 410621 664685 007651 839223 745935 340626 009670 250618 494089 217438 646703 240455 612322 125489 126428 625369 133369 038375 469305 576778 881126 790147 760612 472203 171022 690345 025288 615697 165157 725419 357260 866060 245135 (719 digits), a[1368] = 105
                                                                                      A[1369]/B[1369] = 389 948001 099070 987389 840791 915919 761506 181134 689954 409728 110161 298557 088595 540453 605522 662084 242723 548420 056376 549390 109851 414223 310563 547347 735426 658754 058252 218144 794984 750661 578345 644327 719464 339251 499905 863428 635207 785348 496619 281038 870017 228323 016574 793317 756570 948009 125831 749695 455453 727504 364821 711392 182693 845410 100174 940477 038243 636271 470776 960912 187683 841209 110243 079676 191966 210922 619496 857688 283359 795385 131247 776607 673526 801123 209517 535454 230359 130284 276734 617478 427113 655589 461746 778589 508528 427746 328341 996254 712400 921799 130668 838509 008260 012578 827781 876282 090808 046405 980508 768698 855421 959566 563984 887975 981360 799724 826813 212319 754759 637015 976406 022926 777521 312788 716846 644382 719069 566076 889431 438432 (717 digits)/37900 420969 442202 671578 791389 253098 748404 844308 846725 760703 004267 719537 204291 893736 682401 058654 204423 237129 262125 895137 292660 474284 666719 480187 442486 742346 209532 770227 486706 434032 167164 973444 327677 832973 617801 696494 715345 633175 486839 688551 590387 323860 724034 490671 794107 246825 767038 353225 064235 400239 942783 254645 716035 950144 835012 733203 342021 352190 417004 900040 148428 794096 056357 079949 027352 149295 450652 093514 955518 114427 058880 026081 239413 538340 083690 542774 070912 401043 852373 338597 076052 274347 059054 656513 176615 750619 128195 761935 079552 444968 926237 915641 055872 745795 334134 001848 589468 263433 073763 673981 191799 794209 569154 725980 356429 301443 683955 746720 662967 787062 017420 063136 574851 686607 108070 910288 620371 157717 371362 737551 (719 digits), a[1369] = 1
                                                                                      A[1370]/B[1370] = 776 237311 928530 841263 323184 369542 264202 405685 557133 859637 420756 228468 207432 015848 312341 510617 939642 155140 436138 257291 112379 306423 957617 281545 543045 438620 443076 687946 286546 237754 529263 872543 217777 731151 293572 416423 989693 654423 853201 794577 504979 208711 437121 535319 783286 522417 947563 415847 024965 318240 482016 062775 725094 396664 427310 821123 375334 982589 567956 622190 701369 302206 297301 847063 342988 464228 635000 119802 898222 396101 558896 732828 318837 959331 650948 921640 165653 785986 736071 993409 540681 008275 266475 405384 389240 081311 841294 216194 945279 647764 282483 098055 480797 358778 722585 853216 405190 193633 341100 075406 339506 842167 197881 155787 486424 686012 249053 620236 529583 741230 528263 450581 505589 692413 211635 976362 553482 207438 819747 710801 (717 digits)/75445 240933 047131 649720 106443 355785 747859 696734 345258 850544 066334 231414 229678 054207 722695 334590 959418 676645 580465 177606 602431 057688 092879 210443 558342 253400 219372 557667 379445 281056 096420 718179 938940 180103 535951 534300 444673 014315 154129 007910 185156 598326 198467 778814 220978 415951 326860 580810 037482 705070 157683 470594 139008 355980 665652 314586 573640 988725 386830 937833 713975 724424 656756 725618 412096 100259 311223 338794 785857 512339 905459 889697 422518 085908 238729 704810 536422 062278 121926 857464 743940 579953 619456 453787 476281 400636 988750 172556 744237 452620 765461 661576 396498 755465 584752 495937 806906 910136 314219 286303 317288 920638 194523 859349 394804 770749 260734 627847 453115 547674 489623 234159 265196 711895 723768 075446 345790 514978 237422 982686 (719 digits), a[1370] = 1
                                                                                      A[1371]/B[1371] = 1942 422624 956132 669916 487160 655004 289910 992505 804222 129002 951673 755493 503459 572150 230205 683320 122007 858700 928653 063972 334610 027071 225798 110438 821517 535994 944405 594037 368077 226170 636873 389414 155019 801554 087050 696276 614595 094196 203022 870193 879975 645745 890817 863957 323143 992845 020958 581389 505384 363985 328853 836943 632882 638738 954796 582723 788913 601450 606690 205293 590422 445621 704846 773802 877943 139379 889497 097294 079804 587588 249041 242264 311202 719786 511415 378734 561666 702257 748878 604297 508475 672139 994697 589358 287008 590370 010930 428644 602960 217327 695635 034619 969854 730136 272953 582714 901188 433672 662708 919511 534435 643900 959747 199550 954210 171749 324920 452792 813927 119477 032932 924089 788700 697615 140118 597107 826033 980954 528926 860034 (718 digits)/188790 902835 536465 971019 004275 964670 244124 237777 537243 461791 136936 182365 663648 002152 127791 727836 123260 590420 423056 250350 497522 589660 852477 901074 559171 249146 648277 885562 245596 996144 360006 409804 205558 193180 689704 765095 604691 661805 795097 704371 960700 520513 120970 048300 236064 078728 420759 514845 139200 810380 258150 195833 994052 662106 166317 362376 489303 329641 190666 775707 576380 242945 369870 531185 851544 349814 073098 771104 527233 139106 869799 805476 084449 710156 561149 952395 143756 525600 096227 053526 563933 434254 297967 564088 129178 551893 105696 107048 568027 350210 457161 238793 848870 256726 503638 993724 203282 083705 702202 246587 826377 635485 958202 444679 146038 842942 205425 002415 569198 882410 996666 531455 105245 110398 555607 061181 311952 187673 846208 702923 (720 digits), a[1371] = 2
                                                                                      A[1372]/B[1372] = 8545 927811 753061 520929 271826 989559 423846 375708 774022 375649 227451 250442 221270 304449 233164 243898 427673 589944 150750 513180 450819 414708 860809 723300 829115 582600 220699 064095 758855 142437 076757 430199 837856 937367 641775 201530 448074 031208 665293 275353 024881 791695 000392 991149 075862 493798 031397 741405 046502 774181 797431 410550 256624 951620 246497 152018 530989 388391 994717 443365 063059 084693 116688 942274 854761 021748 192988 508979 217440 746454 555061 701885 563648 838477 696610 436578 412320 595017 731586 410599 574583 696835 245265 762817 537274 442791 885015 930773 357120 517075 065023 236535 360216 279323 814400 184076 009943 928323 991935 753452 477249 417771 036869 953991 303265 373009 548735 431407 785292 219138 659995 146940 660392 482873 772110 364793 857618 131256 935455 150937 (718 digits)/830608 852275 192995 533796 123547 214466 724356 647844 494232 697708 614078 960876 884270 062816 233862 245935 452461 038327 272690 179008 592521 416331 502790 814741 795027 249986 812484 099916 361833 265633 536446 357396 761172 952826 294770 594682 863439 661538 334519 825398 027958 680378 682347 972015 165234 730865 009898 640190 594285 946591 190284 253930 115219 004405 330921 764092 530854 307290 149498 040664 019496 696206 136238 850361 818273 499515 603618 423212 894790 068767 384659 111601 760316 926534 483329 514391 111448 164678 506835 071570 999674 316970 811326 710139 992995 608209 411534 600751 016346 853462 594106 616751 791979 782371 599308 470834 620035 244959 123028 272654 622799 462582 027333 638065 978960 142518 082434 637509 729911 077318 476289 359979 686177 153489 946196 320171 593599 265673 622257 794378 (720 digits), a[1372] = 4
                                                                                      A[1373]/B[1373] = 19034 278248 462255 711775 030814 634123 137603 743923 352266 880301 406576 256377 946000 181048 696534 171116 977355 038589 230154 090333 236248 856488 947417 557040 479748 701195 385803 722228 885787 511044 790388 249813 830733 676289 370601 099337 510743 156613 533609 420899 929739 229135 891603 846255 474868 980441 083754 064199 598389 912348 923716 658044 146132 541979 447790 886760 850892 378234 596125 092023 716540 615007 938224 658352 587465 182876 275474 115252 514686 080497 359164 646035 438500 396741 904636 251891 386307 892293 212051 425496 657643 065810 485229 114993 361557 475953 780962 290191 317201 251477 825681 507690 690287 288783 901753 950866 921076 290320 646580 426416 488934 479443 033487 107533 560740 917768 422391 315608 384511 557754 352923 217971 109485 663362 684339 326695 541270 243468 399837 161908 (719 digits)/1 850008 607385 922457 038611 251370 393603 692837 533466 525708 857208 365094 104119 432188 127784 595516 219707 028182 667074 968436 608367 682565 422323 858059 530558 149225 749120 273246 085394 969263 527411 432899 124597 727904 098833 279245 954461 331570 984882 464137 355168 016617 881270 485665 992330 566533 540458 440556 795226 327772 703562 638718 703694 224490 670916 828160 890561 551011 944221 489662 857035 615373 635357 642348 231909 488091 348845 280335 617530 316813 276641 639118 028679 605083 563225 527808 981177 366652 854957 109897 196668 563282 068195 920620 984368 115169 768311 928765 308550 600721 057135 645374 472297 432829 821469 702255 935393 443352 573623 948258 791897 071976 560650 012869 720811 103959 127978 370294 277435 029021 037047 949245 251414 477599 417378 447999 701524 499150 719021 090724 291679 (721 digits), a[1373] = 2
                                                                                      A[1374]/B[1374] = 27580 206060 215317 232704 302641 623682 561450 119632 126289 255950 634027 506820 167270 485497 929698 415015 405028 628533 380904 603513 687068 271197 808227 280341 308864 283795 606502 786324 644642 653481 867145 680013 668590 613657 012376 300867 958817 187822 198902 696252 954621 020830 891996 837404 550731 474239 115151 805604 644892 686530 721148 068594 402757 493599 694288 038779 381881 766626 590842 535388 779599 699701 054913 600627 442226 204624 468462 624231 732126 826951 914226 347921 002149 235219 601246 688469 798628 487310 943637 836096 232226 762645 730494 877810 898831 918745 665978 220964 674321 768552 890704 744226 050503 568107 716154 134942 931020 218644 638516 179868 966183 897214 070357 061524 864006 290777 971126 747016 169803 776893 012918 364911 769878 146236 456449 691489 398888 374725 335292 312845 (719 digits)/2 680617 459661 115452 572407 374917 608070 417194 181311 019941 554916 979173 064996 316458 190600 829378 465642 480643 705402 241126 787376 275086 838655 360850 345299 944252 999107 085730 185311 331096 793044 969345 481994 489077 051659 574016 549144 195010 646420 798657 180566 044576 561649 168013 964345 731768 271323 450455 435416 922058 650153 829002 957624 339709 675322 159082 654654 081866 251511 639160 897699 634870 331563 778587 082271 306364 848360 883954 040743 211603 345409 023777 140281 365400 489760 011138 495568 478101 019635 616732 268239 562956 385166 731947 694508 108165 376521 340299 909301 617067 910598 239481 089049 224809 603841 301564 406228 063387 818583 071287 064551 694776 023232 040203 358877 082919 270496 452728 914944 758932 114366 425534 611394 163776 570868 394196 021696 092749 984694 712982 086057 (721 digits), a[1374] = 1
                                                                                      A[1375]/B[1375] = 74194 690368 892890 177183 636097 881488 260503 983187 604845 392202 674631 270018 280541 152044 555931 001147 787412 295655 991963 297360 610385 398884 563872 117723 097477 268786 598809 294878 175072 818008 524679 609841 167914 903603 395353 701073 428377 532257 931414 813405 838981 270797 675597 521064 576331 928919 314057 675408 888175 285410 366012 795232 951647 529178 836366 964319 614655 911487 777810 162801 275740 014410 048051 859607 471917 592125 212399 363715 978939 734401 187617 341877 442798 867181 107129 628830 983564 866915 099327 097689 122096 591101 946218 870615 159221 313445 112918 732120 665844 788583 607090 996142 791294 424999 334062 220752 783116 727609 923612 786154 421302 273871 174201 230583 288753 499324 364644 809640 724119 111540 378759 947794 649241 955835 597238 709674 339046 992919 070421 787598 (719 digits)/7 211243 526708 153362 183426 001205 609744 527225 896088 565591 967042 323440 234112 065104 508986 254273 150991 989470 077879 450690 183120 232739 099634 579760 221158 037731 747334 444706 456017 631457 113501 371590 088586 706058 202152 427279 052749 721592 277724 061451 716300 105771 004568 821693 921022 030070 083105 341467 666060 171890 003870 296724 618942 903910 021561 146326 199869 714744 447244 767984 652434 885114 298485 199522 396452 100821 045567 048243 699016 740019 967459 686672 309242 335884 542745 550085 972314 322854 894228 343361 733147 689194 838529 384516 373384 331500 521354 609365 127153 834856 878332 124336 650395 882449 029152 305384 747849 570128 210790 090832 921000 461528 607114 093276 438565 269797 668971 275752 107324 546885 265780 800314 474202 805152 559115 236391 744916 684650 688410 516688 463793 (721 digits), a[1375] = 2
                                                                                      A[1376]/B[1376] = 472748 348273 572658 295806 119228 912612 124474 018757 755361 609166 681815 126929 850517 397765 265284 421902 129502 402469 332684 387677 349380 664505 191459 986679 893727 896515 199358 555593 695079 561533 015223 339060 676080 035277 384498 507308 529082 381369 787391 576687 988508 645616 945581 963792 008723 047754 999497 858057 973944 398992 917224 839992 112642 668672 712489 824697 069817 235553 257703 512196 434039 786161 343224 758272 273731 757375 742858 806527 605765 233359 039930 399185 658942 438306 244024 461455 700017 688801 539600 422230 964806 309257 407808 101501 854159 799416 343490 613688 669390 500054 533250 721082 798270 118103 720527 459459 629720 584304 180192 896795 493997 540441 115564 445024 596527 286724 158995 604860 514518 446135 285478 051679 665329 881250 039881 949535 433170 332239 757823 038433 (720 digits)/45 948078 619910 035625 672963 382151 266537 580549 557842 413493 357170 919814 469668 707085 244518 355017 371594 417464 172678 945267 886097 671521 436462 839411 672248 170643 483113 753968 921417 119839 474053 198886 013514 725426 264574 137690 865642 524564 312765 167367 478366 679202 589062 098177 490477 912188 769955 499261 431777 953398 673375 609350 671281 763169 804689 037039 853872 370332 934980 247068 812308 945556 122474 975721 460983 911291 121763 173416 234843 651723 150167 143810 995735 380707 746233 311654 329454 415230 385005 676902 667125 698125 416343 039045 934814 097168 504648 996490 672224 626209 180590 985500 991424 519503 778755 133872 893325 484157 083323 616284 590554 463947 665916 599861 990268 701705 284324 107241 558892 040243 709051 227421 456610 994691 925559 812546 491196 200654 115157 813112 868815 (722 digits), a[1376] = 6
                                                                                      A[1377]/B[1377] = 546943 038642 465548 472989 755326 794100 384978 001945 360207 001369 356446 396948 131058 549809 821215 423049 916914 698125 324647 685037 959766 063389 755332 104402 991205 165301 798167 850471 870152 379541 539902 948901 843994 938880 779852 208381 957459 913627 718806 390093 827489 916414 621179 484856 585054 976674 313555 533466 862119 684403 283237 635225 064290 197851 548856 789016 684473 147041 035513 674997 709779 800571 391276 617879 745649 349500 955258 170243 584704 967760 227547 741063 101741 305487 351154 090286 683582 555716 638927 519920 086902 900359 354026 972117 013381 112861 456409 345809 335235 288638 140341 717225 589564 543103 054589 680212 412837 311914 103805 682949 915299 814312 289765 675607 885280 786048 523640 414501 238637 557675 664237 999474 314571 837085 637120 659209 772217 325158 828244 826031 (720 digits)/53 159322 146618 188987 856389 383356 876282 107775 453930 979085 324213 243254 703780 772189 753504 609290 522586 406934 250558 395958 069217 904260 536097 419171 893406 208375 230448 198675 377434 751296 587554 570476 102101 431484 466726 564969 918392 246156 590489 228819 194666 784973 593630 919871 411499 942258 853060 840729 097838 125288 677245 906075 290224 667079 826250 183366 053742 085077 382225 015053 464743 830670 420960 175243 857436 012112 167330 221659 933860 391743 117626 830483 304977 716592 288978 861740 301768 738085 279234 020264 400273 387320 254872 423562 308198 428669 026003 605855 799378 461066 058923 109837 641820 401952 807907 439257 641175 054285 294113 707117 511554 925476 273030 693138 428833 971502 953295 382993 666216 587128 974832 027735 930813 799844 484675 048938 236112 885304 803568 329801 332608 (722 digits), a[1377] = 1
                                                                                      A[1378]/B[1378] = 1 019691 386916 038206 768795 874555 706712 509452 020703 115568 610536 038261 523877 981575 947575 086499 844952 046417 100594 657332 072715 309146 727894 946792 091082 884933 061816 997526 406065 565231 941074 555126 287962 520074 974158 164350 715690 486542 294997 506197 966781 815998 562031 566761 448648 593778 024429 313053 391524 836064 083396 200462 475217 176932 866524 261346 613713 754290 382594 293217 187194 143819 586732 734501 376152 019381 106876 698116 976771 190470 201119 267478 140248 760683 743793 595178 551742 383600 244518 178527 942151 051709 209616 761835 073618 867540 912277 799899 959498 004625 788692 673592 438308 387834 661206 775117 139672 042557 896218 283998 579745 409297 354753 405330 120632 481808 072772 682636 019361 753156 003810 949716 051153 979901 718335 677002 608745 205387 657398 586067 864464 (721 digits)/99 107400 766528 224613 529352 765508 142819 688325 011773 392578 681384 163069 173449 479274 998022 964307 894180 824398 423237 341225 955315 575781 972560 258583 565654 379018 713561 952644 298851 871136 061607 769362 115616 156910 731300 702660 784034 770720 903254 396186 673033 464176 182693 018048 901977 854447 623016 339990 529616 078687 350621 515425 961506 430249 630939 220405 907614 455410 317205 262122 277052 776226 543435 150965 318419 923403 289093 395076 168704 043466 267793 974294 300713 097300 035212 173394 631223 153315 664239 697167 067399 085445 671215 462608 243012 525837 530652 602346 471603 087275 239514 095338 633244 921456 586662 573130 534500 538442 377437 323402 102109 389423 938947 293000 419102 673208 237619 490235 225108 627372 683883 255157 387424 794536 410234 861484 727309 085958 918726 142914 201423 (722 digits), a[1378] = 1
                                                                                      A[1379]/B[1379] = 3 606017 199390 580168 779377 378993 914237 913334 064054 706912 832977 471230 968582 075786 392535 080714 957906 056165 999909 296643 903183 887206 247074 595708 377651 646004 350752 790747 068668 565848 202765 205281 812789 404219 861355 272904 355453 417086 798620 237400 290439 275485 602509 321463 830802 366389 049962 252715 708041 370311 934591 884625 060876 595088 797424 332896 630157 947344 294823 915165 236580 141238 560769 594780 746335 803792 670131 049609 100557 156115 571118 029982 161809 383792 536868 136689 745513 834383 289271 174511 346373 242030 529209 639532 192973 616003 849694 856109 224303 349112 654716 161119 032150 753068 526723 379941 099228 540511 000568 955801 422186 143191 878572 505756 037505 330705 004366 571548 472586 498105 569108 513386 152936 254276 992092 668128 485445 388380 297354 586448 419423 (721 digits)/350 481524 446202 862828 444447 679881 304741 172750 489251 156821 368365 732462 224129 210014 747573 502214 205128 880129 520270 419635 935164 631606 453778 194922 590369 345431 371134 056608 273990 364704 772377 878562 448949 902216 660628 672952 270496 558319 300252 417379 213767 177502 141709 974018 117433 505601 722109 860700 686686 361350 729110 452353 174743 957828 719067 844583 776585 451308 333840 801420 295902 159350 051265 628139 812695 782322 034610 406888 439972 522141 921008 753366 207117 008492 394615 381924 195438 198032 271953 111765 602470 643657 268518 811387 037236 006181 617961 412895 214187 722891 777465 395853 541555 166322 567895 158649 244676 669612 426425 677323 817883 093748 089872 572139 686141 991127 666153 853699 341542 469247 026481 793208 093088 183453 715379 633392 418040 143181 559746 758543 936877 (723 digits), a[1379] = 3
                                                                                      A[1380]/B[1380] = 4 625708 586306 618375 548173 253549 620950 422786 084757 822481 443513 509492 492460 057362 340110 167214 802858 102583 100503 953975 975899 196352 974969 542500 468734 530937 412569 788273 474734 131080 143839 760408 100751 924294 835513 437255 071143 903629 093617 743598 257221 091484 164540 888225 279450 960167 074391 565769 099566 206376 017988 085087 536093 772021 663948 594243 243871 701634 677418 208382 423774 285058 147502 329282 122487 823173 777007 747726 077328 346585 772237 297460 302058 144476 280661 731868 297256 217983 533789 353039 288524 293739 738826 401367 266592 483544 761972 656009 183801 353738 443408 834711 470459 140903 187930 155058 238900 583068 896787 239800 001931 552489 233325 911086 158137 812513 077139 254184 491948 251261 572919 463102 204090 234178 710428 345131 094190 593767 954753 172516 283887 (721 digits)/449 588925 212731 087441 973800 445389 447560 861075 501024 549400 049749 895531 397578 689289 745596 466522 099309 704527 943507 760861 890480 207388 426338 453506 156023 724450 084696 009252 572842 235840 833985 647924 564566 059127 391929 375613 054531 329040 203506 813565 886800 641678 324402 992067 019411 360049 345126 200691 216302 440038 079731 967779 136250 388078 350007 064989 684199 906718 651046 063542 572954 935576 594700 779105 131115 705725 323703 801964 608676 565608 188802 727660 507830 105792 429827 555318 826661 351347 936192 808932 669869 729102 939734 273995 280248 532019 148614 015241 685790 810167 016979 491192 174800 087779 154557 731779 779177 208054 803863 000725 919992 483172 028819 865140 105244 664335 903773 343934 566651 096619 710365 048365 480512 977990 125614 494877 145349 229140 478472 901458 138300 (723 digits), a[1380] = 1
                                                                                      A[1381]/B[1381] = 17 483142 958310 435295 423897 139642 777089 181692 318328 174357 163517 999708 445962 247873 412865 582359 366480 363915 301421 158571 830881 476265 171983 223209 783855 238816 588462 155567 492870 959088 634284 486506 115045 177104 367895 584669 568885 127974 079473 468195 062102 549938 096131 986139 669155 246890 273136 950023 006739 989439 988556 139887 669157 911153 789270 115626 361773 052248 327078 540312 507902 996413 003276 582627 113799 273314 001154 292787 332542 195872 887829 922363 067983 817221 378853 332294 637282 488333 890639 233629 211946 123249 745688 843633 992751 066638 135612 824136 775707 410327 984942 665253 443528 175778 090513 845115 815930 289717 690930 675201 427980 800659 578550 239014 511918 768244 235784 334101 948431 251890 287866 902692 765206 956813 123377 703521 768017 169684 161614 103997 271084 (722 digits)/1699 248300 084396 125154 365849 016049 647423 755976 992324 805021 517615 419056 416865 277883 984362 901780 503057 993713 350793 702221 606605 253771 732793 555441 058440 518781 625222 084365 992517 072227 274334 822336 142648 079598 836416 799791 434090 545439 910772 858076 874169 102537 114918 950219 175667 585749 757488 462774 335593 681464 968306 355690 583495 122063 769089 039552 829185 171464 286978 992048 014766 966079 835367 965455 206042 899498 005721 812782 266002 218966 487416 936347 730607 325869 684098 047880 675422 252076 080531 538563 612079 830966 087721 633372 877981 602239 063803 458620 271560 153392 828403 869430 065955 429660 031568 353988 582208 293776 838014 679501 577860 543264 176332 167560 001875 984135 377473 885503 041495 759106 157576 938304 534627 117424 092223 118023 854087 830602 995165 462918 351777 (724 digits), a[1381] = 3
                                                                                      A[1382]/B[1382] = 896 265999 460138 818442 166927 375331 252498 689094 319494 714696 782931 494623 236534 698906 396254 867542 493356 662263 472983 041139 350854 485876 746113 926199 445351 710583 424139 722215 611153 044600 492348 572219 968055 956617 598188 255403 084285 430307 146764 621546 424451 138327 067272 181348 406368 551571 004376 016942 443305 667815 434351 219358 663147 240864 916724 491187 694297 366299 358423 764320 326827 102121 314608 043264 926250 762187 835876 679880 036980 336103 051563 337976 769232 822766 602181 678894 798663 123011 956390 268129 097776 579476 768957 426700 896896 882089 678226 686984 744879 280465 675484 762637 090396 105585 804136 255964 851345 358671 134251 675072 828952 386127 739388 100826 265994 992969 102140 293383 861942 097666 254131 500433 229645 031648 002691 224741 263066 247660 197072 476377 109171 (723 digits)/87111 252229 516933 470314 632100 263921 466172 415902 109589 605497 448136 267408 657707 861372 948104 457327 755267 383908 833986 574163 827348 149746 798809 781000 136490 182312 971022 311918 191212 919431 825061 587067 839618 118668 049186 164976 193149 146475 652922 575486 469424 871071 185269 453244 978458 233286 977037 802182 331580 194751 463356 107998 894501 613330 573548 082183 972643 651397 286974 657991 326070 205648 198467 017320 639303 580123 615516 253860 174789 732899 047066 481394 768803 725146 318827 997233 273196 207228 043301 275676 885941 108373 413537 576012 057310 246211 402590 404875 535358 633201 265576 832125 538527 000440 764543 785197 471800 190673 542611 655306 390880 189645 021760 410700 200919 855240 154941 504589 682934 811033 746788 901896 746495 966618 828993 514093 703828 589893 231911 510294 078927 (725 digits), a[1382] = 51
                                                                                      A[1383]/B[1383] = 913 749142 418449 253737 590824 514974 029587 870786 637822 889053 946449 494331 682496 946779 809120 449901 859837 026178 774404 199711 181735 962141 918097 149409 229206 949400 012601 877783 104024 003689 126633 058726 083101 133721 966083 840072 653170 558281 226238 089741 486553 688265 163404 167488 075523 798461 277512 966965 450045 657255 422907 359246 332305 152018 705994 606814 056070 418547 685502 304632 834730 098534 317884 625892 040050 035501 837030 972667 369522 531975 939393 260339 837216 639987 981035 011189 435945 611345 847029 501758 309722 702726 514646 270334 889647 948727 813839 511121 520586 690793 660427 427890 533924 281363 894650 101080 667275 648388 825182 350274 256933 186787 317938 339840 777913 761213 337924 627485 810373 349556 541998 403125 994851 988461 126068 928263 031083 417344 358686 580374 380255 (723 digits)/88810 500529 601329 595468 997949 279971 113596 171879 101914 410518 965751 686465 074573 139256 932467 359108 258325 377622 184780 276385 433953 403518 531603 336441 194930 701094 596244 396284 183729 991659 099396 409403 982266 198266 885602 964767 627239 691915 563695 433563 343593 973608 300188 403464 154125 819036 734526 264956 667173 876216 431662 463689 477996 735394 342637 121736 801828 822861 573953 650039 340837 171728 033834 982775 845346 479621 621238 066642 440791 951865 534483 417742 499411 051016 002926 045113 948618 459304 123832 814240 498020 939339 501259 209384 935291 848450 466393 863495 806918 786594 093980 701555 604482 430100 796112 139186 054008 484450 380626 334807 968740 732909 198092 578260 202795 839375 532415 390092 724430 570139 904365 840201 281123 084042 921216 632117 557916 420496 227076 973212 430704 (725 digits), a[1383] = 1
                                                                                      A[1384]/B[1384] = 2723 764284 297037 325917 348576 405279 311674 430667 595140 492804 675830 483286 601528 592466 014495 767346 213030 714621 021791 440561 714326 410160 582308 225017 903765 609383 449343 477781 819201 051978 745614 689672 134258 224061 530355 935548 390626 546869 599240 801029 397558 514857 394080 516324 557416 148493 559401 950873 343396 982326 280165 937851 327757 544902 328713 704815 806438 203394 729428 373585 996287 299189 950377 295049 006350 833191 509938 625214 776025 400054 930349 858656 443666 102742 564251 701273 670554 345703 650449 271645 717221 984929 798249 967370 676192 779545 305905 709227 786052 662052 996339 618418 158244 668313 593436 458126 185896 655448 784616 375621 342818 759702 375264 780507 821822 515395 777989 548355 482688 796779 338128 306685 219349 008570 254829 081267 325233 082348 914445 637125 869681 (724 digits)/264732 253288 719592 661252 627998 823863 693364 759660 313418 426535 379639 640338 806854 139886 813039 175544 271918 139153 203547 126934 695254 956783 862016 453882 526351 584502 163511 104486 558672 902750 023854 405875 804150 515201 820392 094511 447628 530306 780313 442613 156612 818287 785646 260173 286709 871360 446090 332095 665927 947184 326681 035377 850495 084119 258822 325657 576301 297120 434881 958070 007744 549104 266136 982872 329996 539366 857992 387145 056373 636630 116033 316879 767625 827178 324680 087461 170433 125836 290966 904157 881982 987052 416055 994781 927893 943112 335378 131867 149196 206389 453538 235236 747491 860642 356768 063569 579817 159574 303864 324922 328361 655463 417945 567220 606511 533991 219772 284775 131795 951313 555520 582299 308742 134704 671426 778328 819661 430885 686065 456718 940335 (726 digits), a[1384] = 2
                                                                                      A[1385]/B[1385] = 3637 513426 715486 579654 939400 920253 341262 301454 232963 381858 622279 977618 284025 539245 823616 217248 072867 740799 796195 640272 896062 372302 500405 374427 132972 558783 461945 355564 923225 055667 872247 748398 217359 357783 496439 775621 043797 105150 825478 890770 884112 203122 557484 683812 632939 946954 836914 917838 793442 639581 703073 297097 660062 696921 034708 311629 862508 621942 414930 678218 831017 397724 268261 920941 046400 868693 346969 597882 145547 932030 869743 118996 280882 742730 545286 712463 106499 957049 497478 773404 026944 687656 312896 237705 565840 728273 119745 220349 306639 352846 656767 046308 692168 949677 488086 559206 853172 303837 609798 725895 599751 946489 693203 120348 599736 276609 115914 175841 293062 146335 880126 709811 214200 997031 380898 009530 356316 499693 273132 217500 249936 (724 digits)/353542 753818 320922 256721 625948 103834 806960 931539 415332 837054 345391 326803 881427 279143 745506 534652 530243 516775 388327 403320 129208 360302 393619 790323 721282 285596 759755 500770 742402 894409 123250 815279 786416 713468 705995 059279 074868 222222 344008 876176 500206 791896 085834 663637 440835 690397 180616 597052 333101 823400 758343 499067 328491 819513 601459 447394 378130 119982 008835 608109 348581 720832 299971 965648 175343 018988 479230 453787 497165 588495 650516 734622 267036 878194 327606 132575 119051 585140 414799 718398 380003 926391 917315 204166 863185 791562 801771 995362 956114 992983 547518 936792 351974 290743 152880 202755 633825 644024 684490 659730 297102 388372 616038 145480 809307 373366 752187 674867 856226 521453 459886 422500 589865 218747 592643 410446 377577 851381 913142 429931 371039 (726 digits), a[1385] = 1
                                                                                      A[1386]/B[1386] = 395575 214369 569587 928650 803875 792640 168002 987724 755185 733535 882068 066061 276286 831014 965047 230138 082746 720999 010920 590034 489062 618830 626088 663148 264801 957997 339441 878793 527507 064108 948371 516679 609068 864679 145851 702621 120713 903158 750961 004284 881676 452093 602426 368088 914930 419615 946213 077463 035202 057150 212082 024398 614528 812374 077211 360840 957369 373175 541941 621219 746166 253410 922664 756682 017644 652072 982655 196486 495202 059388 862606 710254 779002 317641 455216 647289 172549 707049 378156 799280 627248 251811 591043 639571 786991 433042 238389 506952 903102 769491 927180 619756 912491 233482 306784 852466 328505 469910 642878 772346 116028 980589 241201 778156 593340 389180 296720 539215 133400 601054 391812 966296 353056 687959 391814 110545 807415 049222 412725 127152 862769 (726 digits)/38 447349 665667 379196 387188 230394 038022 845145 365917 169364 828404 681902 935158 001000 287411 327744 918017 538217 950895 142906 685508 649757 869442 372953 808844 424838 428952 217105 187726 738185 498935 334942 456092 737155 569822 067858 496651 533396 530319 933272 069675 178946 343065 055789 933016 896964 434255 952682 813747 640924 874466 227778 934649 327611 591588 216442 644250 414354 255177 389127 633879 654570 398992 663109 272875 267042 590122 614881 396194 750257 194160 371840 656084 607608 672165 706142 405574 028004 321001 089336 491182 922407 037379 486098 044803 151959 431894 926753 631066 409615 448612 585583 408810 760715 260902 867829 961178 032986 714240 228855 575794 415419 599705 950065 279148 011707 857600 456041 170503 604260 268287 223254 212363 014185 759444 676915 106537 598069 380132 305447 889307 012547 (728 digits), a[1386] = 108
                                                                                      A[1387]/B[1387] = 399212 727796 285074 508305 743276 712893 509265 289178 988149 115394 504348 043679 560312 370260 788663 447386 155614 461798 807116 230307 385124 991133 126494 037575 397774 516780 801387 234358 450732 119776 820619 265077 826428 222462 642291 478242 164511 008309 576439 895055 765788 655216 159911 051901 547870 366570 783127 995301 828644 696731 915155 321496 274591 509295 111919 672470 819877 995117 956872 299438 577183 651135 190926 677623 064045 520766 329624 794368 640749 991419 732349 829251 059885 060372 000503 359752 279049 664098 875635 572684 654192 939467 903939 877277 352832 161315 358134 727302 209742 122338 583947 666065 604660 183159 794871 411673 181677 773748 252677 498241 715780 927078 934404 898505 193076 665789 412634 715056 426462 747390 271939 676107 567257 684990 772712 120076 163731 548915 685857 344653 112705 (726 digits)/38 800892 419485 700118 643909 856342 141857 652106 297456 584697 665459 027294 261961 882427 566555 073251 452670 068461 467670 531234 088828 778966 229744 766573 599168 146120 714548 976860 688497 480588 393344 458193 271372 523572 283290 773853 555930 608264 752542 277280 945851 679153 134961 141624 596654 337800 124653 133299 410799 974026 697866 986122 433716 656103 411101 817902 091644 792484 375159 397963 241989 003152 119824 963081 238523 442385 609111 094111 849982 247422 782656 022357 390706 874645 550360 033748 538149 147055 906141 504136 209581 302410 963771 403413 248970 015145 223457 728525 626429 365730 441596 133102 345603 112689 551646 020710 163933 666812 358264 913346 235524 712521 988078 566103 424628 821015 230967 208228 845371 460486 789740 683140 634863 604050 978192 269558 516983 975647 231514 218590 319238 383586 (728 digits), a[1387] = 1
                                                                                      A[1388]/B[1388] = 1 992426 125554 709885 961873 776982 644214 205064 144440 707782 195113 899460 240779 517536 312058 119701 019682 705204 568194 239385 511264 029562 583363 132064 813449 855900 025120 544990 816227 330435 543216 230848 576990 914781 754529 715017 615589 778757 936397 056720 584507 944831 072958 242070 575695 106411 885899 078725 058670 349780 844077 872703 310383 712894 849554 524890 050724 236881 353647 369430 818974 054900 857951 686371 467174 273826 735138 301154 373961 058202 025067 792006 027259 018542 559129 457230 086298 288748 363444 880699 090019 244020 009683 206803 148681 198320 078303 670928 416161 742071 258846 262971 284019 331131 966121 486270 499159 055216 564903 653588 765312 979152 688904 978821 372177 365647 052337 947259 399440 839251 590615 479571 670726 622087 427922 482662 590850 462341 244885 156154 505765 313589 (727 digits)/193 650919 343610 179670 962827 655762 605453 453570 555743 508155 490240 791079 983005 530710 553631 620750 728697 812063 821577 267843 040823 765622 788421 439248 205517 009321 287148 124547 941716 660539 072313 167715 541582 831444 702985 163272 720373 966455 540489 042395 853081 895558 882909 622288 319634 248164 932868 485880 456947 537031 665934 172268 669515 952025 235995 488051 010829 584291 755814 980980 601835 667178 878292 515434 226969 036585 026566 991328 796123 739948 324784 461270 218912 106190 873605 841136 558170 616227 945567 105881 329508 132050 892465 099751 040683 212540 325725 840856 136783 872537 214997 117992 791223 211473 467486 950670 616912 700236 147299 882240 517893 265507 552020 214478 977663 295768 781469 288956 551989 446207 427249 955816 751817 430389 672213 755149 174473 500658 306189 179809 166260 546891 (729 digits), a[1388] = 4
                                                                                      A[1389]/B[1389] = 4 384064 978905 704846 432053 297242 001321 919393 578060 403713 505622 303268 525238 595384 994377 028065 486751 566023 598187 285887 252835 444250 157859 390623 664475 109574 567021 891368 866813 111603 206209 282316 419059 655991 731522 072326 709421 722026 881103 689881 064071 655450 801132 644052 203291 760694 138368 940578 112642 528206 384887 660561 942263 700381 208404 161699 773919 293640 702412 695733 937386 686985 367038 563669 611971 611698 991042 931933 542290 757154 041555 316361 883769 096970 178630 914963 532348 856546 390988 637033 752723 142232 958834 317546 174639 749472 317922 699991 559625 693884 640031 109890 234104 266924 115402 767412 409991 292110 903555 559855 028867 674086 304888 892047 642859 924370 770465 307153 513938 104965 928621 231083 017560 811432 540835 738037 301777 088414 038685 998166 356183 739883 (727 digits)/426 102731 106706 059460 569565 167867 352764 559247 408943 601008 645940 609454 227972 943848 673818 314752 910065 692589 110825 066920 170476 310211 806587 645070 010202 164763 288845 225956 571930 801666 537970 793624 354538 186461 689261 100398 996678 541175 833520 362072 652015 470270 900780 386201 235922 834129 990390 105060 324695 048090 029735 330659 772748 560153 883092 794004 113303 961067 886789 359924 445660 337509 876409 993949 692461 515555 662245 076769 442229 727319 432224 944897 828531 087027 297571 716021 654490 379511 797275 715898 868597 566512 748701 602915 330336 440225 874909 410237 899997 110804 871590 369087 928049 535636 486619 922051 397759 067284 652864 677827 271311 243537 092118 995061 379955 412552 793905 786141 949350 352901 644240 594774 138498 464830 322619 779856 865930 976963 843892 578208 651759 477368 (729 digits), a[1389] = 2
                                                                                      A[1390]/B[1390] = 6 376491 104460 414732 393927 074224 645536 124457 722501 111495 700736 202728 766018 112921 306435 147766 506434 271228 166381 525272 764099 473812 741222 522688 477924 965474 592142 436359 683040 442038 749425 513164 996050 570773 486051 787344 325011 500784 817500 746601 648579 600281 874090 886122 778986 867106 024268 019303 171312 877987 228965 533265 252647 413276 057958 686589 824643 530522 056060 065164 756360 741886 224990 250041 079145 885525 726181 233087 916251 815356 066623 108367 911028 115512 737760 372193 618647 145294 754433 517732 842742 386252 968517 524349 323320 947792 396226 370919 975787 435955 898877 372861 518123 598056 081524 253682 909150 347327 468459 213443 794180 653238 993793 870869 015037 290017 822803 254412 913378 944217 519236 710654 688287 433519 968758 220699 892627 550755 283571 154320 861949 053472 (727 digits)/619 753650 450316 239131 532392 823629 958218 012817 964687 109164 136181 400534 210978 474559 227449 935503 638763 504652 932402 334763 211300 075834 595009 084318 215719 174084 575993 350504 513647 462205 610283 961339 896121 017906 392246 263671 717052 507631 374009 404468 505097 365829 783690 008489 555557 082294 923258 590940 781642 585121 695669 502928 442264 512179 119088 282055 124133 545359 642604 340905 047496 004688 754702 509383 919430 552140 688812 068098 238353 467267 757009 406168 047443 193218 171177 557158 212660 995739 742842 821780 198105 698563 641166 702666 371019 652766 200635 251094 036780 983342 086587 487080 719272 747109 954106 872722 014671 767520 800164 560067 789204 509044 644139 209540 357618 708321 575375 075098 501339 799109 071490 550590 890315 895219 994833 535006 040404 477622 150081 758017 818020 024259 (729 digits), a[1390] = 1
                                                                                      A[1391]/B[1391] = 189 302307 008257 732085 855938 449756 721869 528667 530592 637088 826972 182402 739763 870102 880996 313294 173345 431640 423251 518797 411720 184819 653312 548589 524299 108337 739152 545799 674985 930726 939549 164101 304526 208422 827023 905312 134755 244786 588625 341328 872880 063625 149768 341612 793910 906768 842141 500370 080715 989836 024888 125254 269038 685386 889206 072804 688581 678780 328154 585511 871848 201685 891755 814860 907202 291945 050298 691483 113593 402479 973625 459031 303584 446839 573681 708578 473116 070094 269560 651286 192252 343569 045842 523676 550947 235451 808487 456670 857461 336605 707474 922874 259688 610550 479606 124216 775351 364607 488872 749725 060106 618017 124911 147249 078941 334887 631759 685128 001927 487273 986485 840068 977896 383511 634824 138334 187976 060317 262249 473471 352706 290571 (729 digits)/18398 958594 165876 994275 008957 053136 141086 930968 384869 766768 595201 224946 346348 706066 269866 444358 434207 327524 150492 775053 298178 509415 061851 090298 266058 213215 992652 390587 467707 205629 236205 672481 342047 705747 064402 746878 791201 262485 679793 091659 299839 079334 627790 632398 347078 220682 764889 242342 992330 016619 204150 915584 598419 413348 336652 973602 713176 776497 522315 246170 823044 473483 762782 766083 355947 527635 637795 051618 354480 278084 385497 723771 204383 690354 261720 873609 821659 255964 339717 547524 613662 824858 342535 980240 089906 370445 693331 691964 966645 627725 382627 494428 786959 201825 155719 230989 823240 325387 857636 919793 158242 005831 772156 071731 750897 953878 479782 963998 488204 527064 717466 561909 957659 426210 172792 295032 037660 828006 196263 560725 374340 180879 (731 digits), a[1391] = 29
                                                                                      A[1392]/B[1392] = 195 678798 112718 146818 249865 523981 367405 653125 253093 748584 527708 385131 505781 983024 187431 461060 679779 702868 589633 044070 175819 658632 394535 071278 002224 073812 331294 982159 358026 372765 688974 677266 300576 779196 313075 692656 459766 745571 406126 087930 521459 663907 023859 227735 572897 773874 866409 519673 252028 867823 253853 658519 521686 098662 947164 759394 513225 209302 384214 650676 628208 943572 116746 064901 986348 177470 776479 924571 029845 217836 040248 567399 214612 562352 311442 080772 091763 215389 023994 169019 034994 729822 014360 048025 874268 183244 204713 827590 833248 772561 606352 295735 777812 208606 561130 377899 684501 711934 957331 963168 854287 271256 118705 018118 093978 624905 454562 939540 915306 431491 505722 550723 666183 817031 603582 359034 080603 611072 545820 627792 214655 344043 (729 digits)/19018 712244 616193 233406 541349 876766 099304 943786 349556 875932 731382 625480 557327 180625 497316 379862 072970 832177 082895 109816 509478 585249 656860 174616 481777 387300 568645 741091 981354 667834 846489 633821 238168 723653 456649 010550 508253 770117 053802 496127 804936 445164 411480 640887 902635 302977 688147 833283 773972 601740 899820 418513 040683 925527 455741 255657 837310 321857 164919 587075 870540 478172 517485 275467 275378 079776 326607 119716 592833 745352 142507 129939 251826 883572 432898 430768 034320 251704 082560 369304 811768 523421 983702 682906 460926 023211 893966 943059 003426 611067 469214 981509 506231 948935 109826 103711 837912 092908 657801 479860 947446 514876 416295 281272 108516 662200 055158 039096 989544 326173 788957 112500 847975 321430 167625 830038 078065 305628 346345 318743 192360 205138 (731 digits), a[1392] = 1
                                                                                      A[1393]/B[1393] = 776 338701 346412 172540 605535 021700 824086 488043 289873 882842 410097 337797 257109 819175 443290 696476 212684 540246 192150 651007 939179 160716 836917 762423 530971 329774 733037 492277 749065 049024 006473 195900 206256 546011 766250 983281 514055 481500 807003 605120 437259 055346 221346 024819 512604 228393 441370 059389 836802 593305 786449 100812 834096 981375 730700 350988 228257 306687 480798 537541 756475 032402 241994 009566 866246 824357 379738 465196 203129 055988 094371 161228 947422 133896 508007 950894 748405 716261 341543 158343 297236 533035 088922 667754 173751 785184 422628 939443 357207 654290 526531 810081 593125 236370 162997 257915 828856 500412 360868 639231 622968 431785 481026 201603 360877 209603 995448 503750 747846 781748 503653 492239 976447 834606 445571 215436 429786 893534 899711 356847 996672 322700 (729 digits)/75455 095328 014456 694494 633006 683434 439001 762327 433540 394566 789349 101388 018330 247942 761815 583944 653119 824055 399178 104502 826614 265164 032431 614147 711390 375117 698589 613863 411771 209133 775674 573945 056553 876707 434349 778530 315962 572836 841200 580042 714648 414827 862232 555062 054984 129615 829332 742194 314247 821841 903612 171123 720471 189930 703876 740576 225107 742069 017074 007398 434665 908001 315238 592485 182081 766964 617616 410768 132981 514140 813019 113588 959864 341071 560416 165913 924620 011076 587398 655439 048968 395124 293644 028959 472684 440081 375232 521141 976925 460927 790272 438957 305655 048630 485197 542125 336976 604113 831041 359376 000581 550461 021041 915548 076447 940478 645257 081289 456837 505586 084337 899412 501585 390500 675669 785146 271856 744891 235299 516954 951420 796293 (731 digits), a[1393] = 3
                                                                                      A[1394]/B[1394] = 972 017499 459130 319358 855400 545682 191492 141168 542967 631426 937805 722928 762891 802199 630722 157536 892464 243114 781783 695078 114998 819349 231452 833701 533195 403587 064332 474437 107091 421789 695447 873166 506833 325208 079326 675937 973822 227072 213129 693050 958718 719253 245205 252555 085502 002268 307779 579063 088831 461129 040302 759332 355783 080038 677865 110382 741482 515989 865013 188218 384683 975974 358740 074468 852595 001828 156218 389767 232974 273824 134619 728628 162034 696248 819450 031666 840168 931650 365537 327362 332231 262857 103282 715780 048019 968428 627342 767034 190456 426852 132884 105817 370937 444976 724127 635815 513358 212347 318200 602400 477255 703041 599731 219721 454855 834509 450011 443291 663153 213240 009376 042963 642631 651638 049153 574470 510390 504607 445531 984640 211327 666743 (729 digits)/94473 807572 630649 927901 174356 560200 538306 706113 783097 270499 520731 726868 575657 428568 259131 963806 726090 656232 482073 214319 336092 850413 689291 788764 193167 762418 267235 354955 393125 876968 622164 207766 294722 600360 890998 789080 824216 342953 895003 076170 519584 859992 273713 195949 957619 432593 517480 575478 088220 423582 803432 589636 761155 115458 159617 996234 062418 063926 181993 594474 305206 386173 832723 867952 457459 846740 944223 530484 725815 259492 955526 243528 211691 224643 993314 596681 958940 262780 669959 024743 860736 918546 277346 711865 933610 463293 269199 464200 980352 071995 259487 420466 811886 997565 595023 645837 174888 697022 488842 839236 948028 065337 437337 196820 184964 602678 700415 120386 446381 831759 873295 011913 349560 711930 843295 615184 349922 050519 581644 835698 143781 001431 (731 digits), a[1394] = 1
                                                                                      A[1395]/B[1395] = 1748 356200 805542 491899 460935 567383 015578 629211 832841 514269 347903 060726 020001 621375 074012 854013 105148 783360 973934 346086 054177 980066 068370 596125 064166 733361 797369 966714 856156 470813 701921 069066 713089 871219 845577 659219 487877 708573 020133 298171 395977 774599 466551 277374 598106 230661 749149 638452 925634 054434 826751 860145 189880 061414 408565 461370 969739 822677 345811 725760 141159 008376 600734 084035 718841 826185 535956 854963 436103 329812 228990 889857 109456 830145 327457 982561 588574 647911 707080 485705 629467 795892 192205 383534 221771 753613 049971 706477 547664 081142 659415 915898 964062 681346 887124 893731 342214 712759 679069 241632 100224 134827 080757 421324 815733 044113 445459 947042 410999 994988 513029 535203 619079 486244 494724 789906 940177 398142 345243 341488 207999 989443 (730 digits)/169928 902900 645106 622395 807363 243634 977308 468441 216637 665066 310080 828256 593987 676511 020947 547751 379210 480287 881251 318822 162707 115577 721723 402911 904558 137535 965824 968818 804897 086102 397838 781711 351276 477068 325348 567611 140178 915790 736203 656213 234233 274820 135945 751012 012603 562209 346813 317672 402468 245424 707044 760760 481626 305388 863494 736810 287525 805995 199067 601872 739872 294175 147962 460437 639541 613705 561839 941252 858796 773633 768545 357117 171555 565715 553730 762595 883560 273857 257357 680182 909705 313670 570990 740825 406294 903374 644431 985342 957277 532923 049759 859424 117542 046196 080221 187962 511865 301136 319884 198612 948609 615798 458379 112368 261412 543157 345672 201675 903219 337345 957632 911325 851146 102431 518965 400330 621778 795410 816944 352653 095201 797724 (732 digits), a[1395] = 1
                                                                                      A[1396]/B[1396] = 4468 729901 070215 303157 777271 680448 222649 399592 208650 659965 633611 844380 802895 044949 778747 865563 102761 809836 729652 387250 223354 779481 368194 025951 661528 870310 659072 407866 819404 363417 099290 011299 933013 067647 770481 994376 949577 644218 253396 289393 750674 268452 178307 807304 281714 463591 806078 855968 940099 569998 693806 479622 735543 202867 494996 033124 680962 161344 556636 639738 667001 992727 560208 242540 290278 654199 228132 099694 105180 933448 592601 508342 380948 356539 474365 996790 017318 227473 779698 298773 591166 854641 487693 482848 491563 475654 727286 179989 285784 589137 451715 937615 299062 807670 498377 423278 197787 637866 676339 085664 677703 972695 761246 062371 086321 922736 340931 337376 485153 203217 035435 113370 880790 624127 038603 154284 390745 300892 136018 667616 627327 645629 (730 digits)/434331 613373 920863 172692 789083 047470 492923 642996 216372 600632 140893 383381 763632 781590 301027 059309 484511 616808 244575 851963 661507 081569 132738 594588 002284 037490 198885 292593 002920 049173 417841 771188 997275 554497 541695 924303 104574 174535 367410 388596 988051 409632 545604 697973 982826 557012 211107 210822 893156 914432 217522 111157 724407 726235 886607 469854 637469 675916 580128 798219 784950 974524 128648 788827 736543 074152 067903 412990 443408 806760 492616 957762 554802 356075 100776 121873 726060 810495 184674 385109 680147 545887 419328 193516 746200 270042 558063 434886 894907 137841 359007 139315 046971 089957 755466 021762 198619 299295 128611 236462 845247 296934 354095 421556 707789 688993 391759 523738 252820 506451 788560 834565 051852 916793 881226 415845 593479 641341 215533 541004 334184 596879 (732 digits), a[1396] = 2
                                                                                      A[1397]/B[1397] = 19623 275805 086403 704530 570022 289175 906176 227580 667444 154131 882350 438249 231581 801174 189004 316265 516196 022707 892543 895086 947597 097991 541146 699931 710282 214604 433659 598182 133773 924482 099081 114266 445142 141810 927505 636727 286188 285446 033718 455746 398674 848408 179782 506591 724964 085028 973465 062328 686032 334429 601977 778636 132052 872884 388549 593869 693588 468055 572358 284714 809166 979286 841567 054196 879956 442982 448485 253739 856827 063606 599396 923226 633250 256303 224921 969721 657847 557806 825873 680799 994135 214458 142979 314928 188025 656231 959116 426434 690802 437692 466279 666360 160313 912028 880634 586844 133365 264226 384425 584290 811040 025610 125741 670809 161020 735058 809185 296548 351612 807856 654769 988687 142241 982752 649137 407044 503158 601710 889318 011954 717310 571959 (731 digits)/1 907255 356396 328559 313166 963695 433516 949003 040426 082128 067594 873654 361783 648518 802872 225055 784989 317256 947520 859554 726676 808735 441854 252677 781263 913694 287496 761366 139190 816577 282796 069205 866467 340378 695058 492132 264823 558475 613932 205845 210601 186438 913350 318364 542907 943909 790258 191242 160963 975095 903153 577133 205391 379257 210332 409924 616228 837404 509661 519582 794751 879676 192271 662557 615748 585713 910313 833453 593214 632432 000675 739013 188167 390764 990015 956835 250090 787803 515837 996055 220621 630295 497220 248303 514892 391095 983544 876685 724890 536906 084288 485788 416684 305426 406027 102085 275011 306342 498316 834329 144464 329598 803535 874760 798595 092571 299130 912710 296628 914501 363153 111876 249586 058557 769607 043871 063712 995697 360775 679078 516670 431940 185240 (733 digits), a[1397] = 4
                                                                                      A[1398]/B[1398] = 43715 281511 243022 712218 917316 258800 035001 854753 543538 968229 398312 720879 266058 647298 156756 498094 135153 855252 514740 177424 118548 975464 450487 425815 082093 299519 526391 604231 086952 212381 297452 239832 823297 351269 625493 267831 521954 215110 320833 200886 548023 965268 537872 820487 731642 633649 753008 980626 312164 238857 897762 036894 999648 948636 272095 220864 068139 097455 701353 209168 285335 951301 243342 350934 050191 540164 125102 607173 818835 060661 791395 354795 647448 869145 924209 936233 333013 343087 431445 660373 579437 283557 773652 112704 867614 788118 645519 032858 667389 464522 384275 270335 619690 631728 259646 596966 464518 166319 445190 254246 299784 023916 012729 403989 408363 392853 959301 930473 188378 818930 344975 090745 165274 589632 336877 968373 397062 504313 914654 691526 061948 789547 (731 digits)/4 248842 326166 577981 799026 716473 914504 390929 723848 380628 735821 888202 106949 060670 387334 751138 629288 119025 511849 963685 305317 278977 965277 638094 157115 829672 612483 721617 570974 636074 614765 556253 504123 678032 944614 525960 453950 221525 402399 779100 809799 360929 236333 182333 783789 870646 137528 593591 532750 843348 720739 371788 521940 482922 146900 706456 702312 312278 695239 619294 387723 544303 359067 453764 020324 907970 894779 734810 599419 708272 808111 970643 334097 336332 336107 014446 622055 301667 842171 176784 826352 940738 540327 915935 223301 528392 237132 311434 884667 968719 306418 330583 972683 657823 902011 959636 571784 811304 295928 797269 525391 504444 904006 103617 018746 892932 287255 217180 116996 081823 232758 012313 333737 168968 456007 968968 543271 584874 362892 573690 574345 198064 967359 (733 digits), a[1398] = 2
                                                                                      A[1399]/B[1399] = 63338 557316 329426 416749 487338 547975 941178 082334 210983 122361 280663 159128 497640 448472 345760 814359 651349 877960 407284 072511 066146 073455 991634 125746 792375 514123 960051 202413 220726 136863 396533 354099 268439 493080 552998 904558 808142 500556 354551 656632 946698 813676 717655 327079 456606 718678 726474 042954 998196 573287 499739 815531 131701 821520 660644 814733 761727 565511 273711 493883 094502 930588 084909 405130 930147 983146 573587 860913 675662 124268 390792 278022 280699 125449 149131 905954 990860 900894 257319 341173 573572 498015 916631 427633 055640 444350 604635 459293 358191 902214 850554 936695 780004 543757 140281 183810 597883 430545 829615 838537 110824 049526 138471 074798 569384 127912 768487 227021 539991 626786 999745 079432 307516 572384 986015 375417 900221 106024 803972 703480 779259 361506 (731 digits)/6 156097 682562 906541 112193 680169 348021 339932 764274 462756 803416 761856 468732 709189 190206 976194 414277 436282 459370 823240 031994 087713 407131 890771 938379 743366 899980 482983 710165 452651 897561 625459 370591 018411 639673 018092 718773 780001 016331 984946 020400 547368 149683 500698 326697 814555 927786 784833 693714 818444 623892 948921 727331 862179 357233 116381 318541 149683 204901 138877 182475 423979 551339 116321 636073 493684 805093 568264 192634 340704 808787 709656 522264 727097 326122 971281 872146 089471 358009 172840 046974 571034 037548 164238 738193 919488 220677 188120 609558 505625 390706 816372 389367 963250 308039 061721 846796 117646 794245 631598 669855 834043 707541 978377 817341 985503 586386 129890 413624 996324 595911 124189 583323 227526 225615 012839 606984 580571 723668 252769 091015 630005 152599 (733 digits), a[1399] = 1
                                                                                      A[1400]/B[1400] = 360408 068092 890154 795966 354008 998679 740892 266424 598454 580035 801628 516521 754260 889659 885560 569892 391903 245054 551160 539979 449279 342744 408658 054549 043970 870139 326647 616297 190582 896698 280119 010329 165494 816672 390487 790625 562666 717892 093591 484051 281518 033652 126149 455885 014676 227043 385379 195401 303147 105295 396461 114550 658158 056239 575319 294532 876776 925012 069910 678583 757850 604241 667889 376588 700931 455896 993041 911742 197145 682003 745356 744907 050944 496391 669869 466008 287317 847558 718042 366241 447299 773637 356809 250870 145817 009871 668696 329325 458348 975596 637049 953814 519713 350513 961052 516019 453935 319048 593269 446931 853904 271546 705084 777982 255284 032417 801738 065580 888336 952865 343700 487906 702857 451557 266954 845462 898168 034437 934518 208929 958245 597077 (732 digits)/35 029330 738981 110687 359995 117320 654611 090593 545220 694412 752905 697484 450612 606616 338369 632110 700675 300437 808704 079885 465287 717545 000937 091953 849014 546507 112386 136536 121801 899334 102573 683550 357078 770091 142979 616424 047819 121530 484059 703830 911802 097769 984750 685825 417278 943425 776462 517760 001324 935571 840204 116397 158599 793818 933066 288363 295018 060694 719745 313680 300100 664201 115763 035372 200692 376394 920247 576131 562591 411796 852050 518925 945420 971818 966721 870855 982785 749024 632217 040985 061225 795908 728068 737128 914271 125833 340518 252037 932460 496846 259952 412445 919523 474075 442207 268245 805765 399538 267156 955262 874670 674663 441715 995506 105456 820450 219185 866632 185121 063446 212313 633261 250353 306599 584083 033166 578194 487732 981233 837536 029423 348090 730354 (734 digits), a[1400] = 5
                                                                                      A[1401]/B[1401] = 2 946603 102059 450664 784480 319410 537413 868316 213730 998619 762647 693691 291302 531727 565751 430245 373498 786575 838396 816568 392346 660380 815411 260898 562139 144142 475238 573232 132790 745389 310449 637485 436732 592398 026459 676901 229563 309476 243693 103283 529043 198843 082893 726850 974159 574016 535025 809507 606165 423373 415650 671428 731936 396966 271437 263199 170996 775942 965607 832996 922553 157307 764521 428024 417840 537599 630322 517923 154851 252827 580298 353646 237278 688255 096582 508087 634021 289403 681364 001658 271105 151970 687114 771105 434594 222176 523323 954206 093897 024983 706987 946954 567211 937711 347868 828701 311966 229365 982934 575771 413991 942058 221899 779149 298656 611656 387255 182391 751668 646687 249709 749348 982685 930376 184843 121654 139121 085565 381528 280118 374920 445224 138122 (733 digits)/286 390743 594411 792039 992154 618734 584910 064681 126040 018058 826662 341732 073633 562119 897164 033080 019679 839784 929003 462323 754295 828073 414628 626402 730496 115423 799069 575272 684580 647324 718151 093862 227221 179140 783509 949485 101326 752244 888809 615593 314817 329528 027688 987301 664929 361962 139486 926913 704314 303019 345525 880098 996130 212730 821763 423287 678685 635240 962863 648319 583280 737588 477443 399299 241612 504844 167074 177316 693365 635079 625191 861064 085632 501649 059897 938129 734432 081668 415745 500720 536780 938303 862098 061270 052362 926154 944823 204424 069242 480395 470326 115939 745555 755853 845697 207688 292919 313952 931501 273701 667221 231351 241269 942426 660996 549105 339873 062947 894593 503894 294420 190279 586149 680322 898279 278172 232540 482435 573538 953057 326402 414730 995431 (735 digits), a[1401] = 8
                                                                                      A[1402]/B[1402] = 3 307011 170152 340819 580446 673419 536093 609208 480155 597074 342683 495319 807824 285988 455411 315805 943391 178479 083451 367728 932326 109660 158155 669556 616688 188113 345377 899879 749087 935972 207147 917604 447061 757892 843132 067389 020188 872142 961585 196875 013094 480361 116545 853000 430044 588692 762069 194886 801566 726520 520946 067889 846487 055124 327676 838518 465529 652719 890619 902907 601136 915158 368763 095913 794429 238531 086219 510965 066593 449973 262302 099002 982185 739199 592974 177957 100029 576721 528922 719700 637346 599270 460752 127914 685464 367993 533195 622902 423222 483332 682584 584004 521026 457424 698382 789753 827985 683301 301983 169040 860923 795962 493446 484234 076638 866940 419672 984129 817249 535024 202575 093049 470592 633233 636400 388608 984583 983733 415966 214636 583850 403469 735199 (733 digits)/321 420074 333392 902727 352149 736055 239521 155274 671260 712471 579568 039216 524246 168736 235533 665190 720355 140222 737707 542209 219583 545618 415565 718356 579510 661930 911455 711808 806382 546658 820724 777412 584299 949231 926489 565909 149145 873775 372869 319424 226619 427298 012439 673127 082208 305387 915949 444673 705639 238591 185729 996496 154730 006549 754829 711650 973703 695935 682608 961999 883381 401789 593206 434671 442304 881239 087321 753448 255957 046876 477242 379990 031053 473468 026619 808985 717217 830693 047962 541705 598006 734212 590166 798398 966634 051988 285341 456462 001702 977241 730278 528385 665079 229929 287904 475934 098684 713491 198658 228964 541891 906014 682985 937932 766453 369555 559058 929580 079714 567340 506733 823540 836502 986922 482362 311338 810734 970168 554772 790593 355825 762821 725785 (735 digits), a[1402] = 1
                                                                                      A[1403]/B[1403] = 9 560625 442364 132303 945373 666249 609601 086733 174042 192768 448014 684330 906951 103704 476574 061857 260281 143534 005299 552026 256998 879701 131722 600011 795515 520369 165994 372991 630966 617333 724745 472694 330856 108183 712723 811679 269941 053762 166863 497033 555232 159565 315985 432851 834248 751402 059164 199281 209298 876414 457542 807208 424910 507214 926790 940236 102056 081382 746847 638812 124826 987624 502047 619852 006699 014661 802761 539853 288038 152774 104902 551652 201650 166654 282530 864001 834080 442846 739209 441059 545798 350511 608619 026934 805522 958163 589715 200010 940341 991649 072157 114963 609264 852560 744634 408208 967937 595968 586900 913853 135839 533983 208792 747617 451934 345537 226601 150651 386167 716735 654859 935447 923871 196843 457643 898872 108289 053032 213460 709391 542621 252163 608520 (733 digits)/929 230892 261197 597494 696454 090845 063952 375230 468561 443001 985798 420165 122125 899592 368231 363461 460390 120230 404418 546742 193462 919310 245760 063115 889517 439285 621980 998890 297345 740642 359600 648687 395821 077604 636489 081303 399618 499795 634548 254441 768056 184124 052568 333555 829345 972737 971385 816261 115592 780201 716985 873091 305590 225830 331422 846589 626093 027112 328081 572319 350043 541167 663856 268642 126222 267322 341717 684213 205279 728832 579676 621044 147739 448585 113137 556101 168867 743054 511670 584131 732794 406729 042431 658067 985631 030131 515506 117348 072648 434878 930883 172711 075714 215712 421506 159556 490288 740935 328817 731630 751005 043380 607241 818292 193903 288216 457990 922108 054022 638575 307887 837361 259155 654167 863003 900849 854010 422772 683084 534244 038053 940374 447001 (735 digits), a[1403] = 2
                                                                                      A[1404]/B[1404] = 79 792014 709065 399251 143436 003416 412902 303073 872493 139221 926800 969967 063433 115624 268003 810664 025640 326751 125847 783938 988317 147269 211936 469650 980812 351066 673332 883812 796820 874642 005111 699159 093910 623362 544922 560823 179717 302240 296493 173143 454951 756883 644429 315815 104034 599909 235382 789136 475957 737836 181288 525557 245771 112843 742004 360407 281978 303781 865401 013404 599752 816154 385144 054729 848021 355825 508311 829791 370898 672166 101522 512220 595387 072433 853221 089971 772673 119495 442598 248177 003733 403363 329704 343393 129648 033302 250917 222989 945958 416525 259841 503713 395145 277910 655458 055425 571486 451049 997190 479865 947640 067828 163788 465173 692113 631238 232482 189340 906591 268909 441454 576632 861562 207981 297551 579585 850896 407991 123651 889768 924820 420778 603359 (734 digits)/7755 267212 422973 682684 923782 462815 751140 157118 419752 256487 465955 400537 501253 365475 181384 572882 403476 102065 973055 916146 767286 900100 381646 223283 695650 176215 887303 702931 185148 471797 697529 966911 750868 570069 018402 216336 346093 872140 449255 354958 371068 900290 432986 341573 716976 087291 687035 974762 630381 480204 921616 981226 599451 813192 406212 484367 982447 912834 307261 540554 683729 731130 904056 583808 452083 019817 821063 227153 898194 877537 114655 348343 212969 062148 931720 257795 068159 775129 141327 214759 460361 988044 929620 062942 851682 293040 409390 395246 582890 456273 177343 910074 270792 955628 659953 752386 020994 640973 829200 082010 549932 253059 540920 484270 317679 675287 222986 306444 511895 675942 969836 522430 909748 220265 386393 518137 642818 352350 019449 064545 660257 285817 301793 (736 digits), a[1404] = 8
                                                                                      A[1405]/B[1405] = 248 936669 569560 330057 375681 676498 848307 995954 791521 610434 228417 594232 097250 450577 280585 493849 337202 123787 382842 903843 221950 321508 767532 008964 737952 573569 185993 024430 021429 241259 740080 570171 612587 978271 347491 494148 809092 960483 056343 016463 920087 430216 249273 380297 146352 551129 765312 566690 637172 089923 001408 383880 162223 845746 152804 021457 947990 992728 343050 679025 924085 436087 657479 784041 550763 082138 327697 029227 400734 169272 409470 088313 987811 383955 842194 133917 152099 801333 067004 185590 556998 560601 597732 057114 194467 058070 342466 868980 778217 241224 851681 626103 794700 686292 711008 574485 682396 949118 578472 353450 978759 737467 700158 143138 528275 239251 924047 718674 105941 523463 979223 665346 508557 820787 350298 637629 660978 277005 584416 378698 317082 514499 418597 (735 digits)/24195 032529 530118 645549 467801 479292 317372 846585 727818 212464 383664 621777 625885 996017 912385 082108 670818 426428 323586 295182 495323 619611 390698 732966 976467 967933 283892 107683 852791 156035 452190 549422 648426 787811 691695 730312 437900 116216 982314 319316 881262 884995 351527 358276 980274 234613 032493 740549 006737 220816 481836 816771 103945 665407 550060 299693 573436 765615 249866 193983 401232 734560 376026 020067 482471 326775 804907 365674 899864 361443 923642 666073 786646 635031 908298 329486 373347 068441 935652 228410 113880 370863 831291 846896 540677 909252 743677 303087 821319 803698 462914 902933 888093 082598 401367 416714 553272 663856 816417 977662 400801 802559 230003 271103 146942 314078 126949 841441 589709 666404 217397 404653 988400 314964 022184 455262 782465 479822 741431 727881 018825 797826 352380 (737 digits), a[1405] = 3
                                                                                      A[1406]/B[1406] = 328 728684 278625 729308 519117 679915 261210 299028 664014 749656 155218 564199 160683 566201 548589 304513 362842 450538 508690 687782 210267 468777 979468 478615 718764 924635 859325 908242 818250 115901 745192 269330 706498 601633 892414 054971 988810 262723 352836 189607 375039 187099 893702 696112 250387 151039 000695 355827 113129 827759 182696 909437 407994 958589 894808 381865 229969 296510 208451 692430 523838 252242 042623 838771 398784 437963 836008 859018 771632 841438 510992 600534 583198 456389 695415 223888 924772 920828 509602 433767 560731 963964 927436 400507 324115 091372 593384 091970 724175 657750 111523 129817 189845 964203 366466 629911 253883 400168 575662 833316 926399 805295 863946 608312 220388 870490 156529 908015 012532 792373 420678 241979 370120 028768 647850 217215 511874 684996 708068 268467 241902 935278 021956 (735 digits)/31950 299741 953092 328234 391583 942108 068513 003704 147570 468951 849620 022315 127139 361493 093769 654991 074294 528494 296642 211329 262610 519711 772344 956250 672118 144149 171195 810615 037939 627833 149720 516334 399295 357880 710097 946648 783993 988357 431569 674275 252331 785285 784513 699850 697250 321904 719529 715311 637118 701021 403453 797997 703397 478599 956272 784061 555884 678449 557127 734538 084962 465691 280082 603875 934554 346593 625970 592828 798059 238981 038298 014416 999615 697180 840018 587281 441506 843571 076979 443169 574242 358908 760911 909839 392360 202293 153067 698334 404210 259971 640258 813008 158886 038227 061321 169100 574267 304830 645618 059672 950734 055618 770923 755373 464621 989365 349936 147886 101605 342347 187233 927084 898148 535229 408577 973400 425283 832172 760880 792426 679083 083643 654173 (737 digits), a[1406] = 1
                                                                                      A[1407]/B[1407] = 27533 417464 695495 862664 462449 109465 528762 815333 904745 831895 111558 422762 433986 445305 813497 768458 453125 518483 604169 989766 674150 230081 063415 734069 395441 318345 510043 408583 936188 861104 591038 924620 251971 913884 417858 056823 880344 766521 341746 753876 048339 959507 426597 157613 928486 087366 823027 100341 026947 793935 165251 867185 025805 408707 421899 716272 035442 603075 644541 150759 402660 372177 195258 402067 649871 433136 716432 327785 446260 008668 821855 932684 393283 264300 561657 716697 908252 230099 364006 188298 097751 569690 574953 299222 096019 641995 593346 502550 884796 834484 108101 400930 551915 715172 127738 857119 754719 163110 358487 518755 869943 577024 407726 633052 820551 489934 916030 083920 146163 290457 895517 749634 228520 208585 121866 666517 146577 131732 354082 661479 395026 142575 240945 (737 digits)/2 676069 911111 636781 889003 969268 674262 003952 154029 976167 135467 902126 473933 178452 999944 695266 446367 837264 291454 944889 835511 291996 755688 495330 101772 762273 932314 493144 388732 001780 266186 878993 405177 789941 491910 629825 302161 509401 149883 802597 284162 824801 063715 466164 445884 852050 952704 753460 111414 887589 405592 968502 050580 485936 389203 920701 376802 711865 076928 491468 160644 453117 386936 622882 141770 050482 094046 760466 570465 138781 196870 102377 862684 754749 501041 629841 073846 018415 084841 324946 011484 775996 160290 986980 363566 106574 699584 448296 264843 370771 381344 604396 382611 075634 255444 491024 452062 217458 964800 402716 930517 311728 418917 216674 967100 710567 431402 171650 115988 022953 081220 757813 352700 534728 739004 934156 247498 081023 550161 894537 499295 382721 740249 648739 (739 digits), a[1407] = 83
                                                                                      A[1408]/B[1408] = 27862 146148 974121 591972 981566 789380 789973 114362 568760 581551 266776 986961 594670 011507 362087 072971 815967 969022 112860 677548 884417 698859 042884 212685 114206 242981 369369 316826 754438 977006 336231 193950 958470 515518 310272 111795 869155 029244 694582 943483 423379 146607 320299 853726 178873 238405 823722 456168 140077 621694 347948 776622 433800 367297 316708 098137 265411 899585 852992 843189 926498 624419 237882 240839 048655 871100 552441 186804 217892 850107 332848 533218 976481 720690 257072 940586 833025 150927 873608 622065 658483 533655 502389 699729 420134 733368 186730 594521 608972 492234 219624 530747 741761 679375 494205 487031 008602 563278 934150 352072 796343 382320 271673 241365 040940 360425 072559 991935 158696 082831 316195 991613 598640 237353 769716 883732 658451 816729 062150 929946 636929 077853 262901 (737 digits)/2 708020 210853 589874 217238 360852 616370 072465 157734 123737 604419 751746 496248 305592 361437 789036 101358 911558 819949 241532 046840 554607 275400 267675 058023 434392 076463 664340 199347 039719 894020 028713 921512 189236 849791 339923 248810 293395 138241 234166 958438 077132 849001 250678 145735 549301 274609 472989 826726 524708 106614 371955 848578 189333 867803 876974 160864 267749 755378 048595 895182 538079 852627 902964 745645 985036 440640 386437 163293 936840 435851 140675 877101 754365 198222 469859 661127 459921 928412 401925 454654 350238 519199 747892 273405 498934 901877 601363 963177 774981 641316 244655 195619 234520 293671 552345 621162 791726 269631 048334 990190 262462 474535 987598 722474 175189 420767 521586 263874 124558 423567 945047 279785 432877 274234 342734 220898 506307 382334 655418 291722 061804 823893 302912 (739 digits), a[1408] = 1
                                                                                      A[1409]/B[1409] = 55395 563613 669617 454637 444015 898846 318735 929696 473506 413446 378335 409724 028656 456813 175584 841430 269093 487505 717030 667315 558567 928940 106299 946754 509647 561326 879412 725410 690627 838110 927270 118571 210442 429402 728130 168619 749499 795766 036329 697359 471719 106114 746897 011340 107359 325772 646749 556509 167025 415629 513200 643807 459605 776004 738607 814409 300854 502661 497533 993949 329158 996596 433140 642906 698527 304237 268873 514589 664152 858776 154704 465903 369764 984990 818730 657284 741277 381027 237614 810363 756235 103346 077342 998951 516154 375363 780077 097072 493769 326718 327725 931678 293677 394547 621944 344150 763321 726389 292637 870828 666286 959344 679399 874417 861491 850359 988590 075855 304859 373289 211713 741247 827160 445938 891583 550249 805028 948461 416233 591426 031955 220428 503846 (737 digits)/5 384090 121965 226656 106242 330121 290632 076417 311764 099904 739887 653872 970181 484045 361382 484302 547726 748823 111404 186421 882351 846604 031088 763005 159796 196666 008778 157484 588079 041500 160206 907707 326689 979178 341701 969748 550971 802796 288125 036764 242600 901933 912716 716842 591620 401352 227314 226449 938141 412297 512207 340457 899158 675270 257007 797675 537666 979614 832306 540064 055826 991197 239564 525846 887416 035518 534687 146903 733759 075621 632721 243053 739786 509114 699264 099700 734973 478337 013253 726871 466139 126234 679490 734872 636971 605509 601462 049660 228021 145753 022660 849051 578230 310154 549116 043370 073225 009185 234431 451051 920707 574190 893453 204273 689574 885756 852169 693236 379862 147511 504788 702860 632485 967606 013239 276890 468396 587330 932496 549955 791017 444526 564142 951651 (739 digits), a[1409] = 1
                                                                                      A[1410]/B[1410] = 83257 709762 643739 046610 425582 688227 108709 044059 042266 994997 645112 396685 623326 468320 537671 914402 085061 456527 829891 344864 442985 627799 149184 159439 623853 804308 248782 042237 445066 815117 263501 312522 168912 944921 038402 280415 618654 825010 730912 640842 895098 252722 067196 865066 286232 564178 470472 012677 307103 037323 861149 420429 893406 143302 055315 912546 566266 402247 350526 837139 255657 621015 671022 883745 747183 175337 821314 701393 882045 708883 487552 999122 346246 705681 075803 597871 574302 531955 111223 432429 414718 637001 579732 698680 936289 108731 966807 691594 102741 818952 547350 462426 035439 073923 116149 831181 771924 289668 226788 222901 462630 341664 951073 115782 902432 210785 061150 067790 463555 456120 527909 732861 425800 683292 661300 433982 463480 765190 478384 521372 668884 298281 766747 (737 digits)/8 092110 332818 816530 323480 690973 907002 148882 469498 223642 344307 405619 466429 789637 722820 273338 649085 660381 931353 427953 929192 401211 306489 030680 217819 631058 085241 821824 787426 081220 054226 936421 248202 168415 191493 309671 799782 096191 426366 270931 201038 979066 761717 967520 737355 950653 501923 699439 764867 937005 618821 712413 747736 864604 124811 674649 698531 247364 587684 588659 951009 529277 092192 428811 633062 020554 975327 533340 897053 012462 068572 383729 616888 263479 897486 569560 396100 938258 941666 128796 920793 476473 198690 482764 910377 104444 503339 651024 191198 920734 663977 093706 773849 544674 842787 595715 694387 800911 504062 499386 910897 836653 367989 191872 412049 060946 272937 214822 643736 272069 928356 647907 912271 400483 287473 619624 689295 093638 314831 205374 082739 506331 388036 254563 (739 digits), a[1410] = 1
                                                                                      A[1411]/B[1411] = 1 137745 790528 038225 060572 976590 845798 731953 502464 022977 348415 764796 566637 131900 544980 165319 728657 374892 422367 505618 150553 317381 090329 045694 019469 619747 017334 113579 274497 476496 434635 352787 181359 406310 713376 227359 814022 792012 520905 538194 028317 107996 391501 620456 257201 828382 660092 762885 721314 159364 900839 708143 109396 073885 638931 457714 677514 662317 731877 054382 876759 652708 069800 156438 131601 411908 583628 945964 632710 130747 074261 492893 454493 870972 158844 804177 429615 207210 296443 683519 431946 147577 384366 613868 081803 687912 788879 348577 087795 829412 973101 443281 943216 754385 355548 131892 149513 798337 492076 240884 768547 680481 400989 043350 379595 593110 590565 783540 957131 331080 302856 074540 268446 362569 328743 488489 192021 830278 895937 635232 369270 727451 098091 471557 (739 digits)/110 581524 448609 841550 311491 312782 081660 011889 415241 007255 215883 926926 033768 749335 758046 037704 985840 333788 218998 749822 961853 062351 015446 161847 991451 400421 116921 841206 824618 097360 865157 081183 553318 168575 831114 995481 948139 053284 830886 558869 856107 629801 815050 294612 177247 759847 752322 319166 881424 593370 556889 601836 619737 915123 879559 568121 618573 195354 472206 192643 418950 871799 438066 100398 117222 302733 213945 080335 395448 237628 524162 231538 759333 934353 366589 503985 884285 675703 254913 401231 436454 320386 262467 010816 471873 963288 144877 512974 713607 115303 654363 067239 638274 390927 505354 787674 100266 421034 787243 943081 762379 450684 677312 698615 046212 678058 400353 485930 748433 684420 573425 125663 492014 173888 750396 332011 429232 804629 025302 219818 866631 026834 608614 260970 (741 digits), a[1411] = 13
                                                                                      A[1412]/B[1412] = 1 221003 500290 681964 107183 402173 534025 840662 546523 065244 343413 409908 963322 755227 013300 702991 643059 459953 878895 335509 495417 760366 718128 194878 178909 243600 821642 362361 316734 921563 249752 616288 493881 575223 658297 265762 094438 410667 345916 269106 669160 003094 644223 687653 122268 114615 224271 233357 733991 466467 938163 569292 529825 967291 782233 513030 590061 228584 134124 404909 713898 908365 690815 827461 015347 159091 758966 767279 334104 012792 783144 980446 453616 217218 864525 879981 027486 781512 828398 794742 864375 562296 021368 193600 780484 624201 897611 315384 779389 932154 792053 990632 405642 789824 429471 248041 980695 570261 781744 467672 991449 143111 742653 994423 495378 495542 801350 844691 024921 794635 758976 602450 001307 788370 012036 149789 626004 293759 661128 113616 890643 396335 396373 238304 (739 digits)/118 673634 781428 658080 634972 003755 988662 160771 884739 230897 560191 332545 500198 538973 480866 311043 634925 994170 150352 177776 891045 463562 321935 192528 209271 031479 202163 663031 612044 178580 919384 017604 801520 336991 022608 305153 747921 149476 257252 829801 057146 608868 576768 262132 914603 710501 254246 018606 646292 530376 175711 314250 367474 779728 004371 242771 317104 442719 059890 781303 369960 401076 530258 529209 750284 323288 189272 613676 292501 250090 592734 615268 376222 197833 264076 073546 280386 613962 196579 530028 357247 796859 461157 493581 382251 067732 648217 163998 904806 036038 318340 160946 412123 935602 348142 383389 794654 221946 291306 442468 673277 287338 045301 890487 458261 739004 673290 700753 392169 956490 501781 773571 404285 574372 037869 951636 118527 898267 340133 425192 949370 533165 996650 515533 (741 digits), a[1412] = 1
                                                                                      A[1413]/B[1413] = 2 358749 290818 720189 167756 378764 379824 572616 048987 088221 691829 174705 529959 887127 558280 868311 371716 834846 301262 841127 645971 077747 808457 240572 198378 863347 838976 475940 591232 398059 684387 969075 675240 981534 371673 493121 908461 202679 866821 807300 697477 111091 035725 308109 379469 942997 884363 996243 455305 625832 839003 277435 639222 041177 421164 970745 267575 890901 866001 459292 590658 561073 760615 983899 146948 571000 342595 713243 966814 143539 857406 473339 908110 088191 023370 684158 457101 988723 124842 478262 296321 709873 405734 807468 862288 312114 686490 663961 867185 761567 765155 433914 348859 544209 785019 379934 130209 368599 273820 708557 759996 823593 143643 037773 874974 088653 391916 628231 982053 125716 061832 676990 269754 150939 340779 638278 818026 124038 557065 748849 259914 123786 494464 709861 (739 digits)/229 255159 230038 499630 946463 316538 070322 172661 299980 238152 776075 259471 533967 288309 238912 348748 620766 327958 369350 927599 852898 525913 337381 354376 200722 431900 319085 504238 436662 275941 784541 098788 354838 505566 853723 300635 696060 202761 088139 388670 913254 238670 391818 556745 091851 470349 006568 337773 527717 123746 732600 916086 987212 694851 883930 810892 935677 638073 532096 973946 788911 272875 968324 629607 867506 626021 403217 694011 687949 487719 116896 846807 135556 132186 630665 577532 164672 289665 451492 931259 793702 117245 723624 504397 854125 031020 793094 676973 618413 151341 972703 228186 050398 326529 853497 171063 894920 642981 078550 385550 435656 738022 722614 589102 504474 417063 073644 186684 140603 640911 075206 899234 896299 748260 788266 283647 547760 702896 365435 645011 816001 560000 605264 776503 (741 digits), a[1413] = 1
                                                                                      A[1414]/B[1414] = 3 579752 791109 402153 274939 780937 913850 413278 595510 153466 035242 584614 493282 642354 571581 571303 014776 294800 180158 176637 141388 838114 526585 435450 377288 106948 660618 838301 907967 319622 934140 585364 169122 556758 029970 758884 002899 613347 212738 076407 366637 114185 679948 995762 501738 057613 108635 229601 189297 092300 777166 846728 169048 008469 203398 483775 857637 119486 000125 864202 304557 469439 451431 811360 162295 730092 101562 480523 300918 156332 640551 453786 361726 305409 887896 564139 484588 770235 953241 273005 160697 272169 427103 001069 642772 936316 584101 979346 646575 693722 557209 424546 754502 334034 214490 627976 110904 938861 055565 176230 751445 966704 886297 032197 370352 584196 193267 472923 006974 920351 820809 279440 271061 939309 352815 788068 444030 417798 218193 862466 150557 520121 890837 948165 (739 digits)/347 928794 011467 157711 581435 320294 058984 333433 184719 469050 336266 592017 034165 827282 719778 659792 255692 322128 519703 105376 743943 989475 659316 546904 409993 463379 521249 167270 048706 454522 703925 116393 156358 842557 876331 605789 443981 352237 345392 218471 970400 847538 968586 818878 006455 180850 260814 356380 174009 654122 908312 230337 354687 474579 888302 053664 252782 080792 591987 755250 158871 673952 498583 158817 617790 949309 592490 307687 980450 737809 709631 462075 511778 330019 894741 651078 445058 903627 648072 461288 150949 914105 184781 997979 236376 098753 441311 840972 523219 187380 291043 389132 462522 262132 201639 554453 689574 864927 369856 828019 108934 025360 767916 479589 962736 156067 746934 887437 532773 597401 576988 672806 300585 322632 826136 235283 666288 601163 705569 070204 765372 093166 601915 292036 (741 digits), a[1414] = 1
                                                                                      A[1415]/B[1415] = 45 315782 784131 546028 467033 750019 346029 531959 195108 929814 114740 190079 449351 595382 417259 723947 549032 372448 463160 960773 342637 135122 127482 465976 725836 146731 766402 535563 486840 233534 894074 993445 704711 662630 731322 599729 943256 562846 419678 724189 097122 481319 195113 257259 400326 634355 187986 751457 726870 733442 165005 438173 667798 142807 861946 776055 559221 324733 867511 829720 245348 194347 177797 720221 094497 332105 561345 479523 577832 019531 544023 918776 248825 753109 678129 453832 272167 231554 563737 754324 224688 975906 530970 820304 575563 547913 695714 416121 626094 086238 451668 528475 402887 552620 358906 915647 461068 634931 940602 823326 777348 424051 779207 424142 319205 099007 711126 303308 065752 169937 911544 030273 522497 422651 574569 095100 146391 137617 175392 098443 066604 365249 184520 087841 (740 digits)/4404 400687 367644 392169 923687 160066 778134 173859 516613 866756 811274 363675 943957 215701 876256 266255 689074 193500 605788 192120 780226 399621 249179 917229 120643 992454 574075 511479 021139 730214 231642 495506 231144 616261 369702 570109 023836 429609 232846 010334 558064 409138 014860 383281 169313 640552 136340 614335 615832 973221 632347 680135 243462 389810 543555 454863 969062 607584 635950 036948 695371 360305 951322 535419 280998 017736 513101 386267 453358 341435 632474 391713 276896 092425 367565 390473 505379 133197 228362 466717 605101 086507 941008 480148 690638 216062 088836 768643 897043 399905 465223 897775 600665 472116 273171 824508 169819 022109 516832 321779 742865 042351 937612 344182 057308 289876 036862 835934 533886 809729 999070 972910 503323 619854 701901 107051 543223 916860 832264 487469 000466 677999 828248 280935 (742 digits), a[1415] = 12
                                                                                      A[1416]/B[1416] = 48 895535 575240 948181 741973 530957 259879 945237 790619 083280 149982 774693 942634 237736 988841 295250 563808 667248 643319 137410 484025 973236 654067 901427 103124 253680 427021 373865 394807 553157 828215 578809 873834 219388 761293 358613 946156 176193 632416 800596 463759 595504 875062 253021 902064 691968 296621 981058 916167 825742 942172 284901 836846 151277 065345 259831 416858 444219 867637 693922 549905 663786 629229 531581 256793 062197 662907 960046 878750 175864 184575 372562 610552 058519 566026 017971 756756 001790 516979 027329 385386 248075 958073 821374 218336 484230 279816 395468 272669 779961 008877 953022 157389 886654 573397 543623 571973 573792 996167 999557 528794 390756 665504 456339 689557 683203 904393 776231 072727 090289 732353 309713 793559 361960 927384 883168 590421 555415 393585 960909 217161 885371 075358 036006 (740 digits)/4752 329481 379111 549881 505122 480360 837118 507292 701333 335807 147540 955692 978123 042984 596034 926047 944766 515629 125491 297497 524170 389096 908496 464133 530637 455834 095324 678749 069846 184736 935567 611899 387503 458819 246034 175898 467817 781846 578238 228806 528465 256676 983447 202159 175768 821402 397154 970715 789842 627344 540659 910472 598149 864390 431857 508528 221844 688377 227937 792198 854243 034258 449905 694236 898788 967046 105591 693955 433809 079245 342105 853788 788674 422445 262307 041551 950438 036824 876434 928005 756051 000613 125790 478127 927014 314815 530148 609616 420262 587285 756267 286908 063187 734248 474811 378961 859393 887036 886689 149798 851799 067712 705528 823772 020044 445943 783797 723372 066660 407131 576059 645716 803908 942487 528037 342335 209512 518024 537833 557673 765838 771166 430163 572971 (742 digits), a[1416] = 1
                                                                                      A[1417]/B[1417] = 192 002389 509854 390573 692954 342891 125669 367672 566966 179654 564688 514161 277254 308593 383783 609699 240458 374194 393118 373004 794715 054832 089686 170258 035208 907773 047466 657159 671262 893008 378721 729875 326214 320797 015202 675571 781725 091427 316929 125978 488401 267833 820300 016325 106520 710260 077852 694634 475374 210670 991522 292879 178336 596639 057982 555549 809796 657393 470424 911487 895065 185707 065486 314964 864876 518698 550069 359664 214082 547124 097750 036464 080481 928668 376207 507747 542435 236926 114674 836312 380847 720134 405192 284427 230573 000604 535163 602526 444103 426121 478302 387541 875057 212584 079099 546518 176989 356310 929106 821999 363731 596321 775720 793161 387878 148619 424307 632001 283933 440807 108603 959414 903175 508534 356723 744605 917655 803863 356149 981170 718090 021362 410594 195859 (741 digits)/18661 389131 504979 041814 439054 601149 289489 695737 620613 874178 253897 230754 878326 344655 664361 044399 523373 740387 982262 084613 352737 566911 974669 309629 712556 359956 860049 547726 230678 284425 038345 331204 393654 992719 107805 097804 427289 775148 967560 696754 143460 179168 965201 989758 696620 104759 327805 526482 985360 855255 254327 411553 037911 982981 839127 980448 634596 672716 319763 413545 258100 463081 301039 618129 977364 918874 829876 468133 754785 579171 658791 953079 642919 359761 154486 515129 356693 243671 857667 250734 873254 088347 318379 914532 471681 160508 679282 597493 157831 161762 734025 758499 790228 674861 697605 961393 748000 683220 176899 771176 298262 245490 054198 815498 117441 627707 388256 006050 733868 031124 727249 910060 915050 447317 286013 134057 171761 470934 445765 160490 297982 991499 118738 999848 (743 digits), a[1417] = 3
                                                                                      A[1418]/B[1418] = 624 902704 104804 119902 820836 559630 636888 048255 491517 622243 844048 317177 774397 163517 140192 124348 285183 789831 822674 256424 868171 137732 923126 412201 208750 976999 569421 345344 408596 232182 964380 768435 852477 181779 806901 385329 291331 450475 583204 178531 928963 399006 335962 301997 221626 822748 530180 064962 342290 457755 916739 163539 371855 941194 239292 926480 846248 416400 278912 428386 235101 220907 825688 476475 851422 618293 313116 039039 520997 817236 477825 481954 851997 844524 694648 541214 384061 712568 861003 536266 527929 408479 173650 674655 910055 486043 885307 203047 604980 058325 443785 115647 782561 524406 810696 183178 102941 642725 783488 465555 619989 179721 992666 835823 853192 129062 177316 672234 924527 412711 058165 187958 503085 887563 997556 116986 343388 967005 462035 904421 371431 949458 307140 623583 (741 digits)/60736 496875 894048 675324 822286 283808 705587 594505 563174 958341 909232 647957 613102 076951 589118 059246 514887 736793 072277 551337 582383 089832 832504 393022 668306 535704 675473 321927 761881 038012 050603 605512 568468 436976 569449 469311 749687 107293 480920 319068 958845 794183 879053 171435 265629 135680 380571 550164 745925 193110 303642 145131 711885 813335 949241 449874 125634 706526 187228 032834 628544 423502 353024 548626 830883 723670 595221 098356 698165 816760 318481 713027 717432 501728 725766 586940 020517 767840 449436 680210 375813 265655 080930 221725 342057 796341 567996 402095 893756 072573 958344 562407 433873 758833 567629 263143 103395 936697 417388 463327 746585 804182 868125 270266 372369 329065 948565 741524 268264 500505 757809 375899 549060 284439 386076 744506 724796 930827 875129 039144 659787 745663 786380 572515 (743 digits), a[1418] = 3
                                                                                      A[1419]/B[1419] = 4566 321318 243483 229893 438810 260305 583885 705461 007589 535361 473026 734405 698034 453213 365128 480137 236744 903017 151838 167978 871913 018962 551571 055666 496465 746770 033416 074570 531436 518289 129387 108926 293554 593255 663512 372876 821045 244756 399358 375701 991145 060878 172036 130305 657908 469499 789113 149370 871407 414962 408696 437654 781328 184998 733033 040915 733535 572195 422811 910191 540773 732061 845305 650295 824834 846751 741881 632940 861067 267779 442528 410148 044466 840341 238747 296248 230867 224908 141699 590178 076353 579488 620747 007018 600961 402911 732314 023859 678963 834399 584798 197076 352987 883431 753972 828764 897580 855391 413526 080888 703655 854375 724388 643928 360223 052054 665524 337645 755625 329784 515760 275124 424776 721482 339616 563510 321378 572901 590401 312120 318113 667570 560578 560940 (742 digits)/443816 867262 763319 769088 195058 587810 228602 857276 562838 582571 618525 766458 170040 883316 788187 459125 127587 897939 488204 943976 429419 195741 802200 060788 390702 109889 588362 801220 563845 550509 392570 569792 372934 051555 093951 382986 675099 526203 334002 930236 855380 738456 118574 189805 556024 054521 991806 377636 206837 207027 379822 427475 021112 676333 483818 129567 514039 618399 630359 643387 657911 427597 772211 458517 793550 984568 996424 156630 641946 296493 888163 944273 664946 871862 234852 623709 500317 618555 003724 012207 503946 947932 884891 466609 866085 734899 655257 412164 414123 669780 442437 695351 827344 986696 671010 803395 471772 240102 098619 014470 524362 874770 131075 707362 724026 931169 028216 196720 611719 534665 031915 541357 758472 438392 988550 345604 245339 986729 571668 434502 916497 211145 623403 007453 (744 digits), a[1419] = 7
                                                                                      A[1420]/B[1420] = 46288 115886 539636 418837 208939 162686 475745 102865 567412 975858 574315 661234 754741 695650 791476 925720 652632 820003 341055 936213 587301 327358 438836 968866 173408 444699 903582 091049 722961 415074 258251 857698 788023 114336 442025 114097 501783 898039 576787 935551 840414 007788 056323 605053 800711 517746 421311 558671 056364 607380 003703 540087 185137 791181 569623 335638 181604 138354 507031 530301 642838 541526 278744 979434 099771 085810 731932 368448 131670 495030 903109 583435 296666 247937 082121 503696 692733 961650 277999 438047 291465 203365 381120 744841 919669 515161 208447 441644 394618 402321 291767 086411 312440 358724 350424 470827 078750 196639 918749 274442 656547 723479 236553 275107 455422 649608 832560 048692 480780 710556 215767 939202 750853 102387 393721 752089 557174 696021 366049 025624 552568 625163 912926 232983 (743 digits)/4 498905 169503 527246 366206 772872 161910 991616 167271 191560 784058 094490 312539 313510 910119 470992 650497 790766 716187 954326 991101 876575 047250 854505 000906 575327 634600 559101 334133 400336 543105 976309 303436 297808 952527 508963 299178 500682 369326 820949 621437 512653 178745 064795 069490 825869 680900 298635 326526 814297 263384 101866 419881 923012 576670 787422 745549 266030 890522 490824 466711 207658 699480 075139 133804 766393 569360 559462 664663 117628 781699 200121 155764 366901 220351 074292 824035 023693 953390 486676 802285 415282 744983 929844 887824 002915 145338 120570 523740 034992 770378 382721 515925 707323 625800 277737 297097 821118 337718 403578 608032 990214 551884 178882 343893 612638 640756 230727 708730 385459 847156 076964 789477 133784 668369 271580 200549 178196 798123 591813 384173 824759 857120 020410 647045 (745 digits), a[1420] = 10
                                                                                      A[1421]/B[1421] = 97142 553091 322756 067567 856688 585678 535375 911192 142415 487078 621658 056875 207517 844514 948082 331578 542010 543023 833950 040406 046515 673679 429244 993398 843282 636169 840580 256669 977359 348437 645890 824323 869600 821928 547562 601071 824613 040835 552934 246805 671973 076454 284683 340413 259331 504992 631736 266712 984136 629722 416103 517829 151603 767361 872279 712192 096743 848904 436874 970794 826450 815114 402795 609164 024377 018373 205746 369837 124408 257841 248747 577018 637799 336215 402990 303641 616335 148208 697698 466272 659283 986219 382988 496702 440300 433234 149208 907148 468200 639042 168332 369898 977868 600880 454821 770419 055081 248671 251024 629774 016751 301334 197495 194143 271068 351272 330644 435030 717186 750896 947296 153529 926482 926257 127060 067689 435727 964944 322499 363369 423250 917898 386431 026906 (743 digits)/9 441627 206269 817812 501501 740802 911632 211835 191818 945960 150687 807506 391536 797062 703555 730172 760120 709121 330315 396858 926180 182569 290243 511210 062601 541357 379090 706565 469487 364518 636721 345189 176664 968551 956610 111877 981343 676464 264856 975902 173111 880687 095946 248164 328787 207763 416322 589077 030689 835431 733795 583555 267238 867137 829675 058663 620666 046101 399444 612008 576810 073228 826557 922489 726127 326338 123290 115349 485956 877203 859892 288406 255802 398749 312564 383438 271779 547705 525335 977077 616778 334512 437900 744581 242257 871916 025575 896398 459644 484109 210537 207880 727203 241992 238297 226485 397591 114008 915538 905776 230536 504791 978538 488840 395149 949304 212681 489671 614181 382639 228977 185845 120312 026041 775131 531710 746702 601733 582976 755295 202850 566016 925385 664224 301543 (745 digits), a[1421] = 2
                                                                                      A[1422]/B[1422] = 143430 668977 862392 486405 065627 748365 011121 014057 709828 462937 195973 718109 962259 540165 739559 257299 194643 363027 175005 976619 633817 001037 868081 962265 016691 080869 744162 347719 700320 763511 904142 682022 657623 936264 989587 715169 326396 938875 129722 182357 512387 084242 341006 945467 060043 022739 053047 825384 040501 237102 419807 057916 336741 558543 441903 047830 278347 987258 943906 501096 469289 356640 681540 588598 124148 104183 937678 738285 256078 752872 151857 160453 934465 584152 485111 807338 309069 109858 975697 904319 950749 189584 764109 241544 359969 948395 357656 348792 862819 041363 460099 456310 290308 959604 805246 241246 133831 445311 169773 904216 673299 024813 434048 469250 726491 000881 163204 483723 197967 461453 163064 092732 677336 028644 520781 819778 992902 660965 688548 388993 975819 543062 299357 259889 (744 digits)/13 940532 375773 345058 867708 513675 073543 203451 359090 137520 934745 901996 704076 110573 613675 201165 410618 499888 046503 351185 917282 059144 337494 365715 063508 116685 013691 265666 803620 764855 179827 321498 480101 266360 909137 620841 280522 177146 634183 796851 794549 393340 274691 312959 398278 033633 097222 887712 357216 649728 997179 685421 687120 790150 406345 846086 366215 312132 289967 102833 043521 280887 526037 997628 859932 092731 692650 674812 150619 994832 641591 488527 411566 765650 532915 457731 095814 571399 478726 463754 419063 749795 182884 674426 130081 874831 170914 016968 983384 519101 980915 590602 243128 949315 864097 504222 694688 935127 253257 309354 838569 495006 530422 667722 739043 561942 853437 720399 322911 768099 076133 262809 909789 159826 443500 803290 947251 779930 381100 347108 587024 390776 782505 684634 948588 (746 digits), a[1422] = 1
                                                                                      A[1423]/B[1423] = 814295 897980 634718 499593 184827 327503 590980 981480 691557 801764 601526 647425 018815 545343 645878 618074 515227 358159 708979 923504 215600 678868 769654 804723 926738 040518 561391 995268 478963 165997 166604 234437 157720 503253 495501 176918 456597 735211 201545 158593 233908 497665 989718 067748 559546 618687 896975 393633 186642 815234 515138 807410 835311 560079 081794 951343 488483 785199 156407 476277 172897 598317 810498 552154 645117 539292 894140 061263 404802 022202 008033 379288 310127 256977 828549 340333 161680 697503 576187 987872 413029 934143 203534 704424 240150 175210 937490 651112 782295 845859 468829 651450 429413 398904 481052 976649 724238 475227 099894 150857 383246 425401 367737 540396 903523 355678 146666 853646 707024 058162 762616 617193 313163 069479 730969 166584 400241 269772 765241 308339 302348 633209 883217 326351 (744 digits)/79 144289 085136 543106 840044 309178 279348 229091 987269 633564 824417 317489 911917 349930 771931 735999 813213 208561 562832 152788 512590 478290 977715 339785 380142 124782 447547 034899 487591 188794 535857 952681 577171 300356 502298 216084 383954 562197 435775 960161 145858 847388 469402 812961 320177 375928 902437 027638 816773 084076 719694 010663 702842 817889 861404 289095 451742 606762 849280 126173 794416 477666 456747 910634 025787 789996 586543 489410 239056 851367 067849 731043 313636 227001 977141 672093 750852 404702 918968 295849 712097 083488 352324 116711 892667 246071 880145 981243 376567 079619 115115 160891 942847 988571 558784 747598 871035 789645 181825 452550 423383 979824 630651 827454 090367 759018 479870 091668 228740 223134 609643 499894 669257 825173 992635 548165 482961 501385 488478 490838 137972 519900 837914 087399 044483 (746 digits), a[1423] = 5
                                                                                      A[1424]/B[1424] = 957726 566958 497110 985998 250455 075868 602101 995538 401386 264701 797500 365534 981075 085509 385437 875373 709870 721186 883985 900123 849417 679906 637736 766988 943429 121388 305554 342988 179283 929509 070746 916459 815344 439518 485088 892087 782994 674086 331267 340950 746295 581908 330725 013215 619589 641426 950023 219017 227144 052336 934945 865327 172053 118622 523697 999173 766831 772458 100313 977373 642186 954958 492039 140752 769265 643476 831818 799548 660880 775074 159890 539742 244592 841130 313661 147671 470749 807362 551885 892192 363779 123727 967643 945968 600120 123606 295146 999905 645114 887222 928929 107760 719722 358509 286299 217895 858069 920538 269668 055074 056545 450214 801786 009647 630014 356559 309871 337369 904991 519615 925680 709925 990499 098124 251750 986363 393143 930738 453789 697333 278168 176272 182574 586240 (744 digits)/93 084821 460909 888165 707752 822853 352891 432543 346359 771085 759163 219486 615993 460504 385606 937165 223831 708449 609335 503974 429872 537435 315209 705500 443650 241467 461238 300566 291211 953649 715685 274180 057272 566717 411435 836925 664476 739344 069959 757012 940408 240728 744094 125920 718455 409561 999659 915351 173989 733805 716873 696085 389963 608040 267750 135181 817957 918895 139247 229006 837937 758553 982785 908262 885719 882728 279194 164222 389676 846199 709441 219570 725202 992652 510057 129824 846666 976102 397694 759604 131160 833283 535208 791138 022749 120903 051059 998212 359951 598721 096030 751494 185976 937887 422882 251821 565724 724772 435082 761905 261953 474831 161074 495176 829411 320961 333307 812067 551651 991233 685776 762704 579046 985000 436136 351456 430213 281315 869578 837946 724996 910677 620419 772033 993071 (746 digits), a[1424] = 1
                                                                                      A[1425]/B[1425] = 2 729749 031897 628940 471589 685737 479240 795184 972557 494330 331168 196527 378494 980965 716362 416754 368821 934968 800533 476951 723751 914436 038682 045128 338701 813596 283295 172500 681244 837531 025015 308098 067356 788409 382290 465678 961094 022587 083383 864079 840494 726499 661482 651168 094179 798725 901541 797021 831667 640930 919908 385030 538065 179417 797324 129190 949691 022147 330115 357035 431024 457271 508234 794576 833660 183648 826246 557777 660360 726563 572350 327814 458772 799312 939238 455871 635676 103180 312228 679959 772257 140588 181599 138822 596361 440390 422423 527784 650924 072525 620305 326687 866971 868858 115923 053651 412441 440378 316303 639230 261005 496337 325830 971309 559692 163552 068796 766409 528386 517007 097394 613978 037045 294161 265728 234471 139311 186529 131249 672820 703005 858684 985754 248366 498831 (745 digits)/265 313932 006956 319438 255549 954884 985131 094178 679989 175736 342743 756463 143904 270939 543145 610330 260876 625460 781503 160737 372335 553161 608134 750786 267442 607717 370023 636032 070015 096093 967228 501041 691716 433791 325169 889935 712908 040885 575695 474187 026675 328845 957591 064802 757088 195052 901756 858341 164752 551688 153441 402834 482770 033970 396904 559459 087658 444553 127774 584187 470291 994774 422319 727159 797227 555453 144931 817855 018410 543766 486732 170184 764042 212306 997255 931743 444186 356907 714357 815057 974418 750055 422741 698987 938165 487877 982265 977668 096470 277061 307176 663880 314801 864346 404549 251242 002485 239190 051990 976360 947290 929486 952800 817807 749190 400941 146485 715803 332044 205601 981197 025303 827351 795174 864908 251078 343388 064017 227636 166731 587966 341256 078753 631467 030625 (747 digits), a[1425] = 2
                                                                                      A[1426]/B[1426] = 3 687475 598856 126051 457587 936192 555109 397286 968095 895716 595869 994027 744029 962040 801871 802192 244195 644839 521720 360937 623875 763853 718588 682865 105690 757025 404683 478055 024233 016814 954524 378844 983816 603753 821808 950767 853181 805581 757470 195347 181445 472795 243390 981893 107395 418315 542968 747045 050684 868074 972245 319976 403392 351470 915946 652888 948864 788979 102573 457349 408398 099458 463193 286615 974412 952914 469723 389596 459909 387444 347424 487704 998515 043905 780368 769532 783347 573930 119591 231845 664449 504367 305327 106466 542330 040510 546029 822931 650829 717640 507528 255616 974732 588580 474432 339950 630337 298448 236841 908898 316079 552882 776045 773095 569339 793566 425356 076280 865756 421998 617010 539658 746971 284660 363852 486222 125674 579673 061988 126610 400339 136853 162026 430941 085071 (745 digits)/358 398753 467866 207603 963302 777738 338022 526722 026348 946822 101906 975949 759897 731443 928752 547495 484708 333910 390838 664711 802208 090596 923344 456286 711092 849184 831261 936598 361227 049743 682913 775221 748989 000508 736605 726861 377384 780229 645655 231199 967083 569574 701685 190723 475543 604614 901416 773692 338742 285493 870315 098919 872733 642010 664654 694640 905616 363448 267021 813194 308229 753328 405105 635422 682947 438181 424125 982077 408087 389966 196173 389755 489245 204959 507313 061568 290853 333010 112052 574662 105579 583338 957950 490125 960914 608781 033325 975880 456421 875782 403207 415374 500778 802233 827431 503063 568209 963962 487073 738266 209244 404318 113875 312984 578601 721902 479793 527870 883696 196835 666973 788008 406398 780175 301044 602534 773601 345333 097215 004678 312963 251933 699173 403501 023696 (747 digits), a[1426] = 1
                                                                                      A[1427]/B[1427] = 10 104700 229609 881043 386765 558122 589459 589758 908749 285763 522908 184582 866554 905047 320106 021138 857213 224647 843974 198826 971503 442143 475859 410858 550083 327647 092662 128610 729710 871160 934064 065788 034989 995917 025908 367214 667457 633750 598324 254774 203385 672090 148264 614954 308970 635356 987479 291111 933037 377080 864399 024983 344849 882359 629217 434968 847420 600105 535262 271734 247820 656188 434621 367808 782486 089477 765693 336970 580179 501452 267199 303224 455802 887124 499975 994937 202371 251040 551411 143651 101156 149322 792253 351755 681021 521411 514483 173647 952583 507806 635361 837921 816437 046019 064787 733552 673116 037274 789987 457026 893164 602102 877922 517500 698371 750684 919508 918971 259899 361004 331415 693295 530987 863481 993433 206915 390660 345875 255225 926041 503684 132391 309807 110248 668973 (746 digits)/982 111438 942688 734646 182155 510361 661176 147622 732687 069380 546557 708362 663699 733827 400650 705321 230293 293281 563180 490160 976751 734355 454823 663359 689628 306087 032547 509228 792469 195581 333056 051485 189694 434808 798381 343658 467677 601344 867005 936586 960842 467995 360961 446249 708175 404282 704590 405725 842237 122675 894071 600674 228237 317991 726213 948740 898891 171449 661818 210576 086751 501431 232530 998005 163122 431815 993183 782009 834585 323698 879078 949695 742532 622226 011882 054880 025893 022927 938462 964382 185577 916733 338642 679239 859994 705440 048917 929429 009314 028626 113591 494629 316359 468814 059412 257369 138905 167115 026138 452893 365779 738123 180551 443776 906393 844746 106072 771545 099436 599273 315144 601320 640149 355525 466997 456147 890590 754683 422066 176088 213892 845123 477100 438469 078017 (747 digits), a[1427] = 2
                                                                                      A[1428]/B[1428] = 13 792175 828466 007094 844353 494315 144568 987045 876845 181480 118778 178610 610584 867088 121977 823331 101408 869487 365694 559764 595379 205997 194448 093723 655774 084672 497345 606665 753943 887975 888588 444633 018806 599670 847717 317982 520639 439332 355794 450121 384831 144885 391655 596847 416366 053672 530448 038156 983722 245155 836644 344959 748242 233830 545164 087857 796285 389084 637835 729083 656218 755646 897814 654424 756899 042392 235416 726567 040088 888896 614623 790929 454317 931030 280344 764469 985718 824970 671002 375496 765605 653690 097580 458222 223351 561922 060512 996579 603413 225447 142890 093538 791169 634599 539220 073503 303453 335723 026829 365925 209244 154985 653968 290596 267711 544251 344864 995252 125655 783002 948426 232954 277959 148142 357285 693137 516334 925548 317214 052651 904023 269244 471833 541189 754044 (746 digits)/1340 510192 410554 942250 145458 288099 999198 674344 759036 016202 648464 684312 423597 465271 329403 252816 715001 627191 954019 154872 778959 824952 378168 119646 400721 155271 863809 445827 153696 245325 015969 826706 938683 435317 534987 070519 845062 381574 512661 167786 927926 037570 062646 636973 183719 008897 606007 179418 180979 408169 764386 699594 100970 960002 390868 643381 804507 534897 928840 023770 394981 254759 637636 633427 846069 869997 417309 764087 242672 713665 075252 339451 231777 827185 519195 116448 316746 355938 050515 539044 291157 500072 296593 169365 820909 314221 082243 905309 465735 904408 516798 910003 817138 271047 886843 760432 707115 131077 513212 191159 575024 142441 294426 756761 484995 566648 585866 299415 983132 796108 982118 389329 046548 135700 768042 058682 664192 100016 519281 180766 526856 097057 176273 841970 101713 (748 digits), a[1428] = 1
                                                                                      A[1429]/B[1429] = 23 896876 058075 888138 231119 052437 734028 576804 785594 467243 641686 363193 477139 772135 442083 844469 958622 094135 209668 758591 566882 648140 670307 504582 205857 412319 590007 735276 483654 759136 822652 510421 053796 595587 873625 685197 188097 073082 954118 704895 588216 816975 539920 211801 725336 689029 517927 329268 916759 622236 701043 369943 093092 116190 174381 522826 643705 989190 173098 000817 904039 411835 332436 022233 539385 131870 001110 063537 620268 390348 881823 094153 910120 818154 780320 759407 188090 076011 222413 519147 866761 803012 889833 809977 904373 083333 574996 170227 555996 733253 778251 931460 607606 680618 604007 807055 976569 372997 816816 822952 102408 757088 531890 808096 966083 294936 264373 914223 385555 144007 279841 926249 808947 011624 350718 900052 906995 271423 572439 978693 407707 401635 781640 651438 423017 (746 digits)/2322 621631 353243 676896 327613 798461 660374 821967 491723 085583 195022 392675 087297 199098 730053 958137 945294 920473 517199 645033 755711 559307 832991 783006 090349 461358 896356 955055 946165 440906 349025 878192 128377 870126 333368 414178 312739 982919 379667 104373 888768 505565 423608 083222 891894 413180 310597 585144 023216 530845 658458 300268 329208 277994 117082 592122 703398 706347 590658 234346 481732 756190 870167 631433 009192 301813 410493 546097 077258 037363 954331 289146 974310 449411 531077 171328 342639 378865 988978 503426 476735 416805 635235 848605 680904 019661 131161 834738 475049 933034 630390 404633 133497 739861 946256 017801 846020 298192 539350 644052 940803 880564 474978 200538 391389 411394 691939 070961 082569 395382 297262 990649 686697 491226 235039 514830 554782 854699 941347 356854 740748 942180 653374 280439 179730 (748 digits), a[1429] = 1
                                                                                      A[1430]/B[1430] = 37 689051 886541 895233 075472 546752 878597 563850 662439 648723 760464 541804 087724 639223 564061 667801 060030 963622 575363 318356 162261 854137 864755 598305 861631 496992 087353 341942 237598 647112 711240 955054 072603 195258 721343 003179 708736 512415 309913 155016 973047 961860 931575 808649 141702 742702 048375 367425 900481 867392 537687 714902 841334 350020 719545 610684 439991 378274 810933 729901 560258 167482 230250 676658 296284 174262 236526 790104 660357 279245 496446 885083 364438 749185 060665 523877 173808 900981 893415 894644 632367 456702 987414 268200 127724 645255 635509 166807 159409 958700 921142 024999 398776 315218 143227 880559 280022 708720 843646 188877 311652 912074 185859 098693 233794 839187 609238 909475 511210 927010 228268 159204 086906 159766 708004 593190 423330 196971 889654 031345 311730 670880 253474 192628 177061 (746 digits)/3663 131823 763798 619146 473072 086561 659573 496312 250759 101785 843487 076987 510894 664370 059457 210954 660296 547665 471218 799906 534671 384260 211159 902652 491070 616630 760166 400883 099861 686231 364995 704899 067061 305443 868355 484698 157802 364493 892328 272160 816694 543135 486254 720196 075613 422077 916604 764562 204195 939015 422844 999862 430179 237996 507951 235504 507906 241245 519498 258116 876714 010950 507804 264860 855262 171810 827803 310184 319930 751029 029583 628598 206088 276597 050272 287776 659385 734804 039494 042470 767892 916877 931829 017971 501813 333882 213405 740047 940785 837443 147189 314636 950636 010909 833099 778234 553135 429270 052562 835212 515828 023005 769404 957299 876384 978043 277805 370377 065702 191491 279381 379978 733245 626927 003081 573513 218974 954716 460628 537621 267605 039237 829648 122409 281443 (748 digits), a[1430] = 1
                                                                                      A[1431]/B[1431] = 61 585927 944617 783371 306591 599190 612626 140655 448034 115967 402150 904997 564864 411359 006145 512271 018653 057757 785032 076947 729144 502278 535063 102888 067488 909311 677361 077218 721253 406249 533893 465475 126399 790846 594968 688376 896833 585498 264031 859912 561264 778836 471496 020450 867039 431731 566302 696694 817241 489629 238731 084845 934426 466210 893927 133511 083697 367464 984031 730719 464297 579317 562686 698891 835669 306132 237636 853642 280625 669594 378269 979237 274559 567339 840986 283284 361898 976993 115829 413792 499129 259715 877248 078178 032097 728589 210505 337034 715406 691954 699393 956460 006382 995836 747235 687615 256592 081718 660463 011829 414061 669162 717749 906790 199878 134123 873612 823698 896766 071017 508110 085453 895853 171391 058723 493243 330325 468395 462094 010038 719438 072516 035114 844066 600078 (746 digits)/5985 753455 117042 296042 800685 885023 319948 318279 742482 187369 038509 469662 598191 863468 789511 169092 605591 468138 988418 444940 290382 943568 044151 685658 581420 077989 656523 355939 046027 127137 714021 583091 195439 175570 201723 898876 470542 347413 271995 376534 705463 048700 909862 803418 967507 835258 227202 349706 227412 469861 081303 300130 759387 515990 625033 827627 211304 947593 110156 492463 358446 767141 377971 896293 864454 473624 238296 856281 397188 788392 983914 917745 180398 726008 581349 459105 002025 113670 028472 545897 244628 333683 567064 866577 182717 353543 344567 574786 415835 770477 777579 719270 084133 750771 779355 796036 399155 727462 591913 479265 456631 903570 244383 157838 267774 389437 969744 441338 148271 586873 576644 370628 419943 118153 238121 088343 773757 809416 401975 894476 008353 981418 483022 402848 461173 (748 digits), a[1431] = 1
                                                                                      A[1432]/B[1432] = 160 860907 775777 461975 688655 745134 103849 845161 558507 880658 564766 351799 217453 461941 576352 692343 097337 079138 145427 472251 620550 858694 934881 804081 996609 315615 442075 496379 680105 459611 779027 886004 325402 776951 911280 379933 502403 683411 837976 874842 095577 519533 874567 849550 875781 606165 180980 760815 534964 846651 015149 884594 710187 282442 507399 877706 607386 113204 778997 191340 488853 326117 355624 074441 967622 786526 711800 497389 221608 618434 252986 843557 913557 883864 742638 090445 897606 854968 125074 722229 630625 976134 741910 424556 191920 102434 056519 840876 590223 342610 319929 937919 411542 306891 637699 255789 793206 872158 164572 212536 139776 250399 621358 912273 633551 107435 356464 556873 304743 069045 244488 330111 878612 502548 825451 579677 083981 133762 813842 051422 750606 815912 323703 880761 377217 (747 digits)/15634 638733 997883 211232 074443 856608 299470 132871 735723 476523 920506 016312 707278 391307 638479 549139 871479 483943 448055 689787 115437 271396 299463 273969 653910 772610 073213 112761 191915 940506 793038 871081 457939 656584 271803 282451 098887 059320 436319 025230 227620 640537 305980 327034 010629 092594 371009 463974 659020 878737 585451 600123 948954 269977 758018 890758 930516 136431 739811 243043 593607 545233 263748 057448 584171 119059 304397 022747 114308 327814 997413 464088 566885 728614 212971 205986 663435 962144 096439 134265 257149 584245 065958 751125 867248 040968 902540 889620 772457 378398 702348 753177 118903 512453 391811 370307 351446 884195 236389 793743 429091 830146 258171 272976 411933 756919 217294 253053 362245 365238 432670 121235 573131 863233 479323 750200 766490 573549 264580 326573 284313 002074 795692 928106 203789 (749 digits), a[1432] = 2
                                                                                      A[1433]/B[1433] = 383 307743 496172 707322 683903 089458 820325 830978 565049 877284 531683 608595 999771 335242 158850 896957 213327 216034 075887 021450 970246 219668 404826 711052 060707 540542 561512 069978 081464 325473 091949 237483 777205 344750 417529 448243 901640 952321 939985 609596 752419 817904 220631 719552 618602 644061 928264 218325 887171 182931 269030 854035 354801 031095 908726 888924 298469 593874 542026 113400 442004 231552 273934 847775 770914 879185 661237 848420 723842 906462 884243 666353 101675 335069 326262 464176 157112 686929 365978 858251 760381 211985 361068 927290 415937 933457 323545 018787 895853 377175 339253 832298 829467 609620 022634 199194 843005 826034 989607 436901 693614 169961 960467 731337 466980 348994 586541 937445 506252 209107 997086 745677 653078 176488 709626 652597 498287 735921 089778 112884 220651 704340 682522 605589 354512 (747 digits)/37255 030923 112808 718506 949573 598239 918888 584023 213929 140416 879521 502288 012748 646084 066470 267372 348550 436025 884529 824514 521257 486360 643078 233597 889241 623209 802949 581461 429859 008151 300099 325254 111318 488738 745330 463778 668316 466054 144633 426995 160704 329775 521823 457486 988766 020446 969221 277655 545454 227336 252206 500378 657296 055946 141071 609145 072337 220456 589778 978550 545661 857607 905468 011191 032796 711742 847090 901775 625805 444022 978741 845922 314170 183237 007291 871078 328897 037958 221350 814427 758927 502173 698982 368828 917213 435481 149649 354027 960750 527275 182277 225624 321940 775678 562978 536651 102049 495853 064693 066752 314815 563862 760725 703791 091641 903276 404332 947444 872762 317350 441984 613099 566206 844620 196768 588745 306738 956514 931136 547622 576979 985568 074408 259060 868751 (749 digits), a[1433] = 2
                                                                                      A[1434]/B[1434] = 927 476394 768122 876621 056461 924051 744501 507118 688607 635227 628133 568991 216996 132425 894054 486257 523991 511206 297201 515153 561043 298031 744535 226186 118024 396700 565099 636335 843034 110557 962926 360971 879813 466452 746339 276421 305685 588055 717948 094035 600417 155342 315831 288656 112986 894289 037509 197467 309307 212513 553211 592665 419789 344634 324853 655555 204325 300953 863049 418141 372861 789221 903493 769993 509452 544898 034276 194230 669294 431360 021474 176264 116908 554003 395163 018798 211832 228826 857032 438733 151388 400105 464048 279137 023795 969348 703609 878452 381930 096960 998437 602517 070477 526131 682967 654179 479218 524228 143787 086339 527004 590323 542294 374948 567511 805424 529548 431764 317247 487261 238661 821467 184768 855526 244704 884872 080556 605604 993398 277191 191910 224593 688749 091940 086241 (747 digits)/90144 700580 223500 648245 973591 053088 137247 300918 163581 757357 679549 020888 732775 683475 771420 083884 568580 355995 217115 338816 157952 244117 585619 741165 432394 019029 679112 275684 051633 956809 393237 521589 680576 634061 762464 210008 435519 991428 725585 879220 549029 300088 349627 242007 988161 133488 309452 019285 749929 333410 089864 600881 263546 381870 040162 109049 075190 577344 919369 200144 684931 260449 074684 079830 649764 542544 998578 826298 365919 215860 954897 155933 195226 095088 227554 948143 321230 038060 539140 763120 775004 588592 463923 488783 701674 911931 201839 597676 693958 432949 066903 204425 762785 063810 517768 443609 555545 875901 365775 927248 058722 957871 779622 680558 595217 563472 025960 147943 107769 999939 316639 347434 705545 552473 872860 927691 379968 486579 126853 421818 438272 973210 944509 446227 941291 (749 digits), a[1434] = 2
                                                                                      A[1435]/B[1435] = 3165 736927 800541 337185 853288 861614 053830 352334 630872 782967 416084 315569 650759 732519 841014 355729 785301 749652 967491 566911 653376 113763 638432 389610 414780 730644 256810 978985 610566 657146 980728 320399 416645 744108 656547 277507 818697 716489 093829 891703 553671 283931 168125 585520 957563 326929 040791 810727 815092 820471 928665 632031 614169 064998 883287 855589 911445 496736 131174 367824 560589 599217 984416 157756 299272 513879 764066 431112 731726 200542 948666 195145 452400 997079 511751 520570 792609 373409 937076 174451 214546 412301 753213 764701 487325 841503 434374 654145 041643 668058 334566 639850 040900 188015 071537 161733 280661 398719 420968 695920 274627 940932 587350 856183 169515 765268 175187 232738 457994 670891 713072 210079 207384 743067 443741 307213 739957 552736 069972 944457 796382 378121 748769 881409 613235 (748 digits)/307689 132663 783310 663244 870346 757504 330630 486777 704674 412489 918168 564954 211075 696511 380730 519026 054291 504011 535875 840962 995114 218713 399937 457094 186423 680298 840286 408513 584760 878579 479811 890023 153048 390924 032723 093803 974876 440340 321391 064656 807792 230040 570705 183510 953249 420911 897577 335512 795242 227566 521800 303022 447935 201556 261557 936292 297908 952491 347886 578984 600455 638955 129520 250682 982090 339377 842827 380670 723563 091605 843433 313721 899848 468501 689956 715508 292587 152139 838773 103790 083941 267951 090752 835180 022238 171274 755168 147058 042625 826122 382986 838901 610295 967110 116283 867479 768687 123557 162020 848496 490984 437478 099593 745466 877294 593692 482213 391274 196072 317168 391902 655403 682843 502041 815351 371819 446644 416252 311696 813077 891798 905200 907936 597744 692624 (750 digits), a[1435] = 3
                                                                                      A[1436]/B[1436] = 444130 646286 843910 082640 516902 550019 280750 833967 010797 250665 879937 748742 323358 685203 636064 288427 466236 462621 746020 882785 033699 224941 125069 771644 187326 686896 518636 694321 322366 111135 264891 216890 210217 641664 662958 127515 923365 896528 854132 932533 114396 905705 853413 261590 171852 664354 748362 699361 422302 078583 566400 077091 403458 444477 985153 438142 806694 844012 227460 913579 855405 679739 721755 855875 407604 488065 003576 550013 110962 507372 834741 496627 453048 145135 040375 898709 177144 506218 047696 861903 187886 122350 913975 337345 249413 779829 516061 458758 212043 625127 837767 181522 796503 848241 698170 296838 771814 344947 079404 515177 974916 320885 771414 240592 299718 942969 055761 015148 436501 412101 068771 232556 218632 884968 368487 894795 674613 988654 789610 501282 685443 161638 516532 489285 939141 (750 digits)/43 166623 273509 886993 502527 822137 103694 425515 449796 817999 505946 223148 114478 283373 195069 073692 747532 169390 917610 239733 073635 473942 863993 576863 734351 531709 260867 319209 467585 918156 957936 566902 124831 107351 363426 343697 342564 918221 639073 720334 931173 639941 505768 248352 933541 443080 061153 970278 991077 083841 192723 141907 024023 974474 599746 658273 189970 782443 926133 623490 257988 748720 714167 207519 175448 142412 055442 994412 120199 664752 040679 035561 076999 174011 685324 821495 119304 283431 337637 967375 293732 526782 101745 169320 413986 815018 890396 925380 185802 661574 090082 685060 650651 204220 459226 797509 890777 171743 173904 048694 716756 796544 204805 722747 045921 416460 680419 535834 926330 557894 403514 183011 103950 303635 838328 022052 982413 910186 761902 764407 252723 290119 701338 055633 130484 908651 (752 digits), a[1436] = 140
                                                                                      A[1437]/B[1437] = 447296 383214 644451 419826 370191 411633 334581 186301 641670 033633 296022 064311 974118 417723 477078 644157 251538 212274 713512 449696 687075 338704 763502 161254 602107 417540 775447 673306 932932 768282 245619 537289 626863 385773 319505 405023 742063 613017 947962 824236 668068 189637 021538 847111 129415 991283 789154 510089 237394 899055 495065 709123 017627 509476 868441 293732 718140 340748 358635 281404 415995 278957 706172 013631 706877 001944 767642 981125 842688 707915 783407 691772 905449 142214 552127 419279 969753 879627 984773 036354 402432 534652 667189 102046 736739 621332 950436 112903 253687 293186 172333 821372 837404 036256 769707 458572 052475 743666 500373 211098 249544 261818 358765 096775 469234 708237 230948 247886 894496 082992 781843 442635 426017 628035 812229 202009 414571 541390 859583 445740 481825 539760 265302 370695 552376 (750 digits)/43 474312 406173 670304 165772 692483 861198 756145 936574 522673 918436 141316 679432 494448 891580 454423 266558 223682 421621 775608 914598 469057 082706 976801 191445 718132 941166 159495 876099 502917 836516 046714 014854 260399 754350 376420 436368 893098 079414 041725 995830 447733 735808 819058 117052 396329 482065 867856 326589 879083 420289 663707 327046 422409 801302 919831 126263 080352 878624 971376 836973 349176 353122 337039 426131 124502 394820 837239 500870 388315 132284 878994 390721 073860 153826 511451 834812 576018 489777 806148 397522 610723 369696 260073 249166 837257 061671 680548 332860 704199 916205 068047 489552 814516 426336 913793 758256 940430 297461 210715 565253 287528 642283 822340 791388 293755 274112 018048 317604 753966 720682 574913 759353 986479 340369 837404 354233 356831 178155 076104 065801 181918 606538 963569 728229 601275 (752 digits), a[1437] = 1
                                                                                      A[1438]/B[1438] = 1 786019 795930 777264 342119 627476 784919 284494 392871 935807 351565 768003 941678 245713 938374 067300 220899 220851 099445 886558 231875 094925 241055 415576 255407 993648 939518 844979 714242 121164 415982 001749 828759 090807 798984 621474 342587 149556 735582 698021 405243 118601 474616 918029 802923 560100 638206 115826 229629 134486 775750 051597 204460 456340 972908 590477 319340 961115 866257 303366 757793 103391 516612 840271 896770 528235 493899 306505 493390 639028 631120 184964 571946 169395 571778 696758 156549 086406 145102 002015 970966 395183 726308 915542 643485 459632 643828 367369 797467 973105 504686 354768 645641 308715 957012 007292 672554 929241 575946 580524 148472 723549 106340 847709 530918 707423 067680 748605 758809 119989 661079 414301 560462 496685 769075 805175 500823 918328 612827 368360 838504 130919 780919 312439 601372 596269 (751 digits)/173 589560 492030 897905 999845 899588 687290 693953 259520 386021 261254 647098 152775 766719 869810 436962 547206 840438 182475 566559 817430 881114 112114 507267 308688 686108 084365 797697 095884 426910 467484 707044 169393 888550 626477 472958 651671 597515 877315 845512 918664 983142 713194 705527 284698 632068 507351 573847 970846 721091 453592 133029 005163 241704 003655 417766 568760 023502 562008 537620 768908 796249 773534 218637 453841 515919 239905 506130 622810 829697 437533 672544 249162 395592 146804 355850 623742 011486 806971 385820 486300 358952 210833 949540 161487 326790 075411 967025 184384 774173 838697 889203 119309 647769 738237 538891 165547 993034 066287 680841 412516 659130 131657 189769 420086 297726 502755 589979 879144 819794 565561 907752 382012 263073 859437 534266 045113 980680 296367 992719 450126 835875 520954 946342 315173 712476 (753 digits), a[1438] = 3
                                                                                      A[1439]/B[1439] = 2 233316 179145 421715 761945 997668 196552 619075 579173 577477 385199 064026 005990 219832 356097 544378 865056 472389 311720 600070 681571 782000 579760 179078 416662 595756 357059 620427 387549 054097 184264 247369 366048 717671 184757 940979 747610 891620 348600 645984 229479 786669 664253 939568 650034 689516 629489 904980 739718 371881 674805 546662 913583 473968 482385 458918 613073 679256 207005 662002 039197 519386 795570 546443 910402 235112 495844 074148 474516 481717 339035 968372 263719 074844 713993 248885 575829 056160 024729 986789 007320 797616 260961 582731 745532 196372 265161 317805 910371 226792 797872 527102 467014 146119 993268 777000 131126 981717 319613 080897 359570 973093 368159 206474 627694 176657 775917 979554 006696 014485 744072 196145 003097 922703 397111 617404 702833 332900 154218 227944 284244 612745 320679 577741 972068 148645 (751 digits)/217 063872 898204 568210 165618 592072 548489 450099 196094 908695 179690 788414 832208 261168 761390 891385 813765 064120 604097 342168 732029 350171 194821 484068 500134 404241 025531 957192 971983 929828 304000 753758 184248 148950 380827 849379 088040 490613 956729 887238 914495 430876 449003 524585 401751 028397 989417 441704 297436 600174 873881 796736 332209 664113 804958 337597 695023 103855 440633 508997 605882 145426 126656 555676 879972 640421 634726 343370 123681 218012 569818 551538 639883 469452 300630 867302 458554 587505 296749 191968 883822 969675 580530 209613 410654 164047 137083 647573 517245 478373 754902 957250 608862 462286 164574 452684 923804 933464 363748 891556 977769 946658 773941 012110 211474 591481 776867 608028 196749 573761 286244 482666 141366 249553 199807 371670 399347 337511 474523 068823 515928 017794 127493 909912 043403 313751 (753 digits), a[1439] = 1
                                                                                      A[1440]/B[1440] = 6 252652 154221 620695 866011 622813 178024 522645 551219 090762 121963 896055 953658 685378 650569 156057 951012 165629 722887 086699 595018 658926 400575 773733 088733 185161 653638 085834 489340 229358 784510 496488 560856 526150 168500 503433 837808 932797 432783 989989 864202 691940 803124 797167 102992 939133 897185 925787 709065 878250 125361 144923 031627 404277 937679 508314 545488 319628 280268 627370 836188 142165 107753 933159 717574 998460 485587 454802 442423 602463 309192 121709 099384 319084 999765 194529 308207 198726 194561 975593 985607 990416 248232 081006 134549 852377 174151 002981 618210 426691 100431 408973 579669 600955 943549 561292 934808 892676 215172 742318 867614 669735 842659 260658 786307 060738 619516 707713 772201 148961 149223 806591 566658 342092 563299 039984 906490 584128 921263 824249 406993 356410 422278 467923 545508 893559 (751 digits)/607 717306 288440 034326 331083 083733 784269 594151 651710 203411 620636 223927 817192 289057 392592 219734 174736 968679 390670 250897 281489 581456 501757 475404 308957 494590 135429 712083 039852 286567 075486 214560 537890 186451 388133 171716 827752 578743 790775 619990 747655 844895 611201 754698 088200 688864 486186 457256 565719 921441 201355 726501 669582 569931 613572 092961 958806 231213 443275 555615 980673 087102 026847 329991 213786 796762 509358 192870 870173 265722 577170 775621 528929 334496 748066 090455 540851 186497 400469 769758 253946 298303 371894 368766 982795 654884 349579 262172 218875 730921 348503 803704 337034 572342 067386 444261 013157 859962 793785 463955 368056 552447 679539 213989 843035 480690 056490 806036 272643 967317 138050 873084 664744 762180 259052 277606 843808 655703 245414 130366 481982 871463 775942 766166 401980 339978 (753 digits), a[1440] = 2
                                                                                      A[1441]/B[1441] = 77 265142 029804 870066 154085 471426 332846 890822 193802 666622 848765 816697 449894 444376 162927 417074 277202 459945 986365 640465 821795 689117 386669 463875 481460 817696 200716 650441 259631 806402 598390 205232 096327 031473 206763 982185 801318 085189 542008 525862 599912 089959 301751 505573 885949 959123 395721 014433 248508 910883 179139 285739 293112 325303 734539 558693 158933 514795 570229 190452 073455 225368 088617 744360 521302 216638 322893 531777 783599 711277 049341 428881 456330 903864 711175 583237 274315 440874 359473 693916 834616 682611 239746 554805 360130 424898 354973 353585 328896 347086 003049 434785 423049 357591 315863 512515 348833 693831 901685 988723 770947 009923 480070 334380 063378 905521 210118 472119 273109 802019 534757 875243 802998 027814 156700 097223 580720 342447 209384 118937 168164 889670 388021 192824 518174 871353 (752 digits)/7509 671548 359484 980126 138615 596877 959724 579919 016617 349634 627325 475548 638515 729857 472497 528195 910608 688273 292140 352936 109904 327649 215911 188920 207624 339322 650688 502189 450211 368633 209835 328484 638930 386367 038425 909981 021071 435539 446037 327127 886365 569623 783424 580962 460159 294771 823654 928783 086075 657469 290150 514756 367200 503293 167823 453141 200697 878416 759940 176389 373959 190650 448824 515571 445414 201571 747024 657820 565760 406683 495867 858996 987035 483413 277423 952768 948768 825474 102386 429067 931178 549316 043262 634817 204202 022659 332034 793640 143754 249429 936948 601702 653277 330390 973211 783817 081699 253017 889174 459021 394448 576030 928411 579988 327900 359762 454757 280463 468477 181566 942854 959682 118303 395716 308434 702952 525051 205950 419492 633221 299722 475359 438807 103908 867167 393487 (754 digits), a[1441] = 12
                                                                                      A[1442]/B[1442] = 778 904072 452270 321357 406866 337076 506493 430867 489245 756990 609622 063030 452603 129140 279843 326800 723036 765089 586543 491357 812975 550100 267270 412487 903341 362123 660804 590247 085658 293384 768412 548809 524126 840882 236140 325291 850989 784692 852869 248615 863323 591533 820639 852905 962492 530367 854396 070120 194154 987081 916754 002315 962750 657315 283075 095246 134823 467583 982560 531891 570740 395845 993931 376764 930597 164843 714522 772580 278420 715233 802606 410523 662693 357732 111521 026902 051361 607469 789298 914762 331774 816528 645697 629059 735854 101360 723884 538834 907173 897551 130925 756827 810163 176869 102184 686446 423145 830995 232032 629556 577084 768970 643362 604459 420096 115950 720701 428906 503299 169156 496802 559029 596638 620234 130300 012220 713694 008601 015105 013621 088642 253114 302490 396168 727257 607089 (753 digits)/75704 432789 883289 835587 717239 052513 381515 393341 817883 699757 893890 979414 202349 587632 117567 501693 280823 851412 312073 780258 380532 857948 660869 364606 385200 887816 642314 733977 541965 972899 173839 499406 927194 050121 772392 271527 038466 934138 251148 891269 611311 541133 445447 564322 689793 636582 722735 745087 426476 496134 102860 874065 341587 602863 291806 624373 965785 015381 042677 319509 720264 993606 515092 485705 667928 812479 979604 771076 527777 332557 535849 365591 399284 168629 522305 618145 028539 441238 424334 060437 565731 791463 804520 716939 024815 881477 669927 198573 656418 225220 717989 820730 869807 876251 799504 282431 830150 390141 685530 054169 312542 312756 963655 013873 122039 078314 604063 610670 957415 782986 566600 469905 847778 719343 343399 307132 094320 715207 440340 462579 479207 625058 164013 805255 073654 274848 (755 digits), a[1442] = 10
                                                                                      A[1443]/B[1443] = 1635 073286 934345 512780 967818 145579 345833 752557 172294 180604 068009 942758 355100 702656 722614 070675 723275 990125 159452 623181 447746 789317 921210 288851 288143 541943 522325 830935 430948 393172 135215 302851 144580 713237 679044 632769 503297 654575 247747 023094 326559 273026 943031 211385 810935 019859 104513 154673 636818 885047 012647 290371 218613 639934 300689 749185 428580 449963 535350 254235 214936 017060 076480 497890 382496 546325 751939 076938 340441 141744 654554 249928 781717 619328 934217 637041 377038 655813 938071 523441 498166 315668 531141 812924 831838 627619 802742 431255 143244 142188 264900 948441 043375 711329 520232 885408 195125 355822 365751 247836 925116 547864 766795 543298 903571 137422 651521 329932 279708 140332 528362 993302 996275 268282 417300 121665 008108 359649 239594 146179 345449 395898 993001 985161 972690 085531 (754 digits)/158918 537128 126064 651301 573093 701904 722755 366602 652384 749150 415107 434377 043214 905121 707632 531582 472256 391097 916287 913452 870970 043546 537649 918132 978026 114955 935317 970144 534143 314431 557514 327298 493318 486610 583210 453035 098005 303815 948335 109667 108988 651890 674319 709607 839746 567937 269126 418957 939028 649737 495872 262887 050375 709019 751436 701889 132267 909178 845294 815408 814489 177863 479009 486982 781271 826531 706234 199973 621315 071798 567566 590179 785603 820672 322035 189059 005847 707950 951054 549943 062642 132243 652304 068695 253833 785614 671889 190787 456590 699871 372928 243164 392893 082894 572220 348680 742000 033301 260234 567360 019533 201544 855721 607734 571978 516391 662884 501805 383308 747540 076055 899493 813860 834402 995233 317216 713692 636365 300173 558380 258137 725475 766834 714419 014475 943183 (756 digits), a[1443] = 2
                                                                                      A[1444]/B[1444] = 4049 050646 320961 346919 342502 628235 198160 935981 833834 118198 745641 948547 162804 534453 725071 468152 169588 745339 905448 737720 708469 128736 109690 990190 479628 446010 705456 252117 947555 079729 038843 154511 813288 267357 594229 590830 857585 093843 348363 294804 516442 137587 706702 275677 584362 570086 063422 379467 467792 757175 942048 583058 399977 937183 884454 593616 991984 367511 053261 040362 000612 429966 146892 372545 695590 257495 218400 926456 959302 998723 111714 910381 226128 596389 979956 300984 805438 919097 665441 961645 328107 447865 707981 254909 399531 356600 329369 401345 193662 181927 660727 653709 896914 599528 142650 457262 813396 542639 963535 125230 427317 864700 176953 691057 227238 390796 023744 088771 062715 449821 553528 545635 589189 156798 964900 255550 729910 727899 494293 305979 779541 044912 288494 366492 672637 778151 (754 digits)/393541 507046 135419 138190 863426 456322 827026 126547 122653 198058 724105 848168 288779 397875 532832 564858 225336 633608 144649 607164 122472 945041 736169 200872 341253 117728 512950 674266 610252 601762 288868 154003 913831 023342 938813 177597 234477 541770 147819 110603 829288 844914 794086 983538 369286 772457 260988 583003 304533 795609 094605 399839 442339 020902 794680 028152 230320 833738 733266 950327 349243 349333 473111 459671 230472 465543 392073 171023 770407 476154 670982 545950 970491 809974 166375 996263 040234 857140 326443 160323 691016 055951 109128 854329 532483 452707 013705 580148 569599 624963 463846 307059 655594 042040 943944 979793 314150 456744 205999 188889 351608 715846 675098 229342 265996 111097 929832 614281 724033 278066 718712 268893 475500 388149 333865 941565 521705 987938 040687 579339 995483 076009 697683 234093 102606 161214 (756 digits), a[1444] = 2
                                                                                      A[1445]/B[1445] = 5684 123933 255306 859700 310320 773814 543994 688539 006128 298802 813651 891305 517905 237110 447685 538827 892864 735465 064901 360902 156215 918054 030901 279041 767771 987954 227782 083053 378503 472901 174058 457362 957868 980595 273274 223600 360882 748418 596110 317898 843001 410614 649733 487063 395297 589945 167935 534141 104611 642222 954695 873429 618591 577118 185144 342802 420564 817474 588611 294597 215548 447026 223372 870436 078086 803820 970340 003395 299744 140467 766269 160310 007846 215718 914173 938026 182477 574911 603513 485086 826273 763534 239123 067834 231369 984220 132111 832600 336906 324115 925628 602150 940290 310857 662883 342671 008521 898462 329286 373067 352434 412564 943749 234356 130809 528218 675265 418703 342423 590154 081891 538938 585464 425081 382200 377215 738019 087548 733887 452159 124990 440811 281496 351654 645327 863682 (754 digits)/552460 044174 261483 789492 436520 158227 549781 493149 775037 947209 139213 282545 331994 302997 240465 096440 697593 024706 060937 520616 993442 988588 273819 119005 319279 232684 448268 644411 144395 916193 846382 481302 407149 509953 522023 630632 332482 845586 096154 220270 938277 496805 468406 693146 209033 340394 530115 001961 243562 445346 590477 662726 492714 729922 546116 730041 362588 742917 578561 765736 163732 527196 952120 946654 011744 292075 098307 370997 391722 547953 238549 136130 756095 630646 488411 185322 046082 565091 277497 710266 753658 188194 761432 923024 786317 238321 685594 770936 026190 324834 836774 550224 048487 124935 516165 328474 056150 490045 466233 756249 371141 917391 530819 837076 837974 627489 592717 116087 107342 025606 794768 168387 289361 222552 329099 258782 235398 624303 340861 137720 253620 801485 464517 948512 117082 104397 (756 digits), a[1445] = 1
                                                                                      A[1446]/B[1446] = 9733 174579 576268 206619 652823 402049 742155 624520 839962 417001 559293 839852 680709 771564 172757 006980 062453 480804 970350 098622 864685 046790 140592 269232 247400 433964 933238 335171 326058 552630 212901 611874 771157 247952 867503 814431 218467 842261 944473 612703 359443 548202 356435 762740 979660 160031 231357 913608 572404 399398 896744 456488 018569 514302 069598 936419 412549 184985 641872 334959 216160 876992 370265 242981 773677 061316 188740 929852 259047 139190 877984 070691 233974 812108 894130 239010 987916 494009 268955 446732 154381 211399 947104 322743 630901 340820 461481 233945 530568 506043 586356 255860 837204 910385 805533 799933 821918 441102 292821 498297 779752 277265 120702 925413 358047 919014 699009 507474 405139 039975 635420 084574 174653 581880 347100 632766 467929 815448 228180 758138 904531 485723 569990 718147 317965 641833 (754 digits)/946001 551220 396902 927683 299946 614550 376807 619696 897691 145267 863319 130713 620773 700872 773297 661298 922929 658314 205587 127781 115915 933630 009988 319877 660532 350412 961219 318677 754648 517956 135250 635306 320980 533296 460836 808229 566960 387356 243973 330874 767566 341720 262493 676684 578320 112851 791103 584964 548096 240955 685083 062565 935053 750825 340796 758193 592909 576656 311828 716063 512975 876530 425232 406325 242216 757618 490380 542021 162130 024107 909531 682081 726587 440620 654787 181585 086317 422231 603940 870590 444674 244145 870561 777354 318800 691028 699300 351084 595789 949798 300620 857283 704081 166976 460110 308267 370300 946789 672232 945138 722750 633238 205918 066419 103970 738587 522549 730368 831375 303673 513480 437280 764861 610701 662965 200347 757104 612241 381548 717060 249103 877495 162201 182605 219688 265611 (756 digits), a[1446] = 1
                                                                                      A[1447]/B[1447] = 103015 869729 017988 925896 838554 794311 965550 933747 405752 468818 406590 289832 325002 952752 175255 608628 517399 543514 768402 347130 803066 385955 436823 971364 241776 327603 560165 434766 639088 999203 303074 576110 669441 460123 948312 367912 545561 171038 040846 444932 437436 892638 214091 114473 191899 190257 481514 670226 828655 636211 922140 438309 804286 720138 881133 706996 546056 667331 007334 644189 377157 216949 926025 300253 814857 416982 857749 301917 890215 532376 546109 867222 347594 336807 855476 328136 061642 515004 293067 952408 370085 877533 710166 295270 540383 392424 746924 172055 642591 384551 789191 160759 312339 414715 718221 342009 227706 309485 257501 356045 149957 185216 150778 488489 711288 718365 665360 493447 393813 989910 436092 384680 332000 243884 853206 704880 417317 242031 015695 033548 170305 298046 981403 533127 824984 282012 (756 digits)/10 012475 556378 230513 066325 435986 303731 317857 690118 751949 399887 772404 589681 539731 311724 973441 709429 926889 607848 116808 798428 152602 324888 373702 317781 924602 736814 060461 831188 690881 095755 198888 834365 616954 842918 130391 712928 002086 719148 535887 529018 613940 914008 093343 459991 992234 468912 441150 851606 724524 854903 441308 288385 843252 238175 954084 311977 291684 509480 696848 926371 293491 292501 204445 009906 433911 868260 002112 791209 013022 789032 333865 956948 021970 036853 036283 001172 909256 787407 316906 416171 200400 629653 467050 696567 974324 148608 678598 281781 984089 822817 842983 123061 089298 794700 117268 411147 759159 957942 188563 207636 598648 249773 590000 501267 877682 013364 818214 419775 421095 062341 929572 541194 937977 329568 958751 262259 806444 746717 156348 308322 744659 576437 086529 774564 313964 760507 (758 digits), a[1447] = 10
                                                                                      A[1448]/B[1448] = 936876 002140 738168 539691 199816 550857 432114 028247 491734 636367 218606 448343 605736 346333 750057 484636 719049 372437 885971 222800 092282 520389 072008 011510 423387 382396 974727 248071 077859 545459 940572 796870 796130 389068 402315 125644 128518 381604 312091 617095 296375 581946 283255 792999 706752 872348 564989 945650 030305 125306 196008 401276 257149 995551 999802 299388 327059 190964 707884 132663 610575 829541 704492 945266 107393 814161 908484 647113 270986 930579 792972 875692 362323 843379 593417 192235 542699 129047 906567 018407 485154 109203 338600 980178 494351 872643 183798 782446 313890 967009 689076 702694 648259 642827 269525 878016 871275 226469 610333 702704 129366 944210 477709 321820 759646 384305 687253 948500 949464 949169 560251 546697 162655 776844 025960 976690 223784 993727 369436 060072 437279 168146 402622 516297 742824 179941 (756 digits)/91 058281 558624 471520 524612 223823 348132 237526 830765 665235 744257 814960 437847 478355 506397 534273 046168 264936 128947 256866 313634 489336 857625 373309 179914 981956 981739 505375 799375 972578 379752 925250 144596 873574 119559 634362 224581 585740 859693 066961 092042 293034 567793 102584 816612 508430 333063 761461 249425 068819 935086 656857 658038 524323 894408 927555 565989 218070 161982 583469 053405 154397 509041 265237 495483 147423 571958 509395 662902 279335 125398 914325 294613 924317 772297 981334 192141 269628 508897 456098 616131 248279 911027 074018 046466 087718 028506 806684 887122 452598 355158 887468 964833 507770 319277 515526 008597 202740 568269 369301 813868 110584 881200 515922 577830 003108 858870 886479 508347 621230 864750 879633 308035 206657 576822 291726 560686 015107 332695 788683 491964 951040 065428 940969 153684 045371 110174 (758 digits), a[1448] = 9
                                                                                      A[1449]/B[1449] = 17 903659 910403 043191 180029 635069 260603 175717 470449 748710 559795 560112 808360 833993 533093 426347 816726 179337 619834 601855 580332 556434 273347 804976 190062 286136 593146 079983 148117 118420 362942 173957 716655 795918 852423 592299 755150 987410 421519 970587 169743 068572 949617 595951 181467 620203 764880 216323 637577 404453 017029 646300 062558 690136 635626 877377 395374 760181 295660 457133 164797 978097 978242 311391 260309 855339 886059 118957 597070 038967 213392 612594 505377 231747 361020 130402 980611 372925 966914 517841 302150 588013 952397 143584 918661 933068 972645 239101 038535 606519 757735 881648 511957 629272 628433 839213 024329 781935 612407 853841 707423 607929 125215 227255 603084 144570 020173 723185 514965 433648 024132 080871 771926 422460 003921 346465 261994 669232 122851 034980 174924 478609 492828 631231 342784 938643 700891 (758 digits)/1740 119825 170243 189403 033957 688629 918243 830867 474666 391428 540786 256652 908783 628485 933278 124629 586626 960676 057845 997268 757483 450002 619770 466576 736166 581785 389864 662602 019332 169870 311060 778641 581706 214863 114551 183273 979978 131163 053316 808148 277822 181597 702077 042454 975629 652410 797123 908914 590683 032103 621549 921603 791117 805406 231945 577640 065772 435017 587149 782760 941069 227043 964285 243957 424086 234959 735471 680630 386352 320390 171611 706046 554612 584007 710514 681632 651857 032198 456458 982780 122664 917718 939167 873393 579423 640966 690238 005611 137108 583458 570836 704893 454897 736934 860972 912262 574494 611230 755060 205297 671130 699760 992583 392529 480037 936750 331911 661325 078380 224481 492608 642605 393863 864471 289192 501555 915294 093484 067937 141334 655656 814420 819586 964943 694561 176015 853813 (760 digits), a[1449] = 19
                                                                                      A[1450]/B[1450] = 54 647855 733349 867742 079780 105024 332666 959266 439596 737866 315753 898944 873426 107716 945614 029100 934815 257062 231941 691537 963797 761585 340432 486936 581697 281797 161835 214676 692422 433120 634286 462445 946838 183886 946339 179214 391097 090749 646164 223853 126324 502094 430799 071109 337402 567364 166989 213960 858382 243664 176395 134908 588952 327559 902432 631934 485512 607603 077946 079283 627057 544869 764268 638666 726195 673413 472339 265357 438323 387888 570757 630756 391824 057565 926439 984626 134069 661477 029791 460090 924859 249195 966394 769355 736164 293558 790578 901101 898053 133450 240217 334022 238567 536077 528128 787164 951006 217082 063693 171858 824974 953154 319856 159476 131073 193356 444826 856810 493397 250409 021565 802866 862476 430035 788608 065356 762674 231481 362280 474376 584845 873107 646632 296316 544652 558755 282614 (758 digits)/5311 417757 069354 039729 626485 289713 102863 730129 254764 839521 366616 584919 164198 363813 306231 908161 806049 146964 302485 248672 586084 839344 716936 773039 388414 727313 151333 493181 857372 482189 312935 261174 889715 518163 463213 184184 164515 979230 019643 491405 925508 837827 674024 229949 743501 465662 724435 488205 021474 165130 799736 421669 031391 940542 590245 660475 763306 523122 923431 931751 876612 835529 401896 997109 767741 852302 778373 551286 821959 240505 640234 032464 958451 676340 903842 026232 147712 366223 878274 404438 984126 001436 728530 694198 784737 010618 099220 823518 298448 202974 067669 002149 329526 718574 902196 252313 732081 036432 833449 985194 827260 209867 858950 693511 017943 813359 854605 870454 743488 294675 342576 807449 489626 800071 444399 796394 306568 295559 536507 212687 458935 394302 524189 835800 237367 573418 671613 (760 digits), a[1450] = 3
                                                                                      A[1451]/B[1451] = 72 551515 643752 910933 259809 740093 593270 134983 910046 486576 875549 459057 681786 941710 478707 455448 751541 436399 851776 293393 544130 318019 613780 291912 771759 567933 754981 294659 840539 551540 997228 636403 663493 979805 798762 771514 146248 078160 067684 194440 296067 570667 380416 667060 518870 187567 931869 430284 495959 648117 193424 781208 651511 017696 538059 509311 880887 367784 373606 536416 791855 522967 742510 950057 986505 528753 358398 384315 035393 426855 784150 243350 897201 289313 287460 115029 114681 034402 996705 977932 227009 837209 918791 912940 654826 226627 763224 140202 936588 739969 997953 215670 750525 165350 156562 626377 975335 999017 676101 025700 532398 561083 445071 386731 734157 337926 465000 579996 008362 684057 045697 883738 634402 852495 792529 411822 024668 900713 485131 509356 759770 351717 139460 927547 887437 497398 983505 (758 digits)/7051 537582 239597 229132 660442 978343 021107 560996 729431 230949 907402 841572 072981 992299 239510 032791 392676 107640 360331 245941 343568 289347 336707 239616 124581 309098 541198 155783 876704 652059 623996 039816 471421 733026 577764 367458 144494 110393 072960 299554 203331 019425 376101 272404 719131 118073 521559 397119 612157 197234 421286 343272 822509 745948 822191 238115 829078 958140 510581 714512 817682 062573 366182 241067 191828 087262 513845 231917 208311 560895 811845 738511 513064 260348 614356 707864 799569 398422 334733 387219 106790 919155 667698 567592 364160 651584 789458 829129 435556 786432 638505 707042 784424 455509 763169 164576 306575 647663 588510 190492 498390 909628 851534 086040 497981 750110 186517 531779 821868 519156 835185 450054 883490 664542 733592 297950 221862 389043 604444 354022 114592 208723 343776 800743 931928 749434 525426 (760 digits), a[1451] = 1
                                                                                      A[1452]/B[1452] = 127 199371 377102 778675 339589 845117 925937 094250 349643 224443 191303 358002 555213 049427 424321 484549 686356 693462 083717 984931 507928 079604 954212 778849 353456 849730 916816 509336 532961 984661 631515 098849 610332 163692 745101 950728 537345 168909 713848 418293 422392 072761 811215 738169 856272 754932 098858 644245 354341 891781 369819 916117 240463 345256 440492 141246 366399 975387 451552 615700 418913 067837 506779 588724 712701 202166 830737 649672 473716 814744 354907 874107 289025 346879 213900 099655 248750 695880 026497 438023 151869 086405 885186 682296 390990 520186 553803 041304 834641 873420 238170 549692 989092 701427 684691 413542 926342 216099 739794 197559 357373 514237 764927 546207 865230 531282 909827 436806 501759 934466 067263 686605 496879 282531 581137 477178 787343 132194 847411 983733 344616 224824 786093 223864 432090 056154 266119 (759 digits)/12362 955339 308951 268862 286928 268056 123971 291125 984196 070471 274019 426491 237180 356112 545741 940953 198725 254604 662816 494613 929653 128692 053644 012655 512996 036411 692531 648965 734077 134248 936931 300991 361137 251190 040977 551642 309010 089623 092603 790960 128839 857253 050125 502354 462632 583736 245994 885324 633631 362365 221022 764941 853901 686491 412436 898591 592385 481263 434013 646264 694294 898102 768079 238176 959569 939565 292218 783204 030270 801401 452079 770976 471515 936689 518198 734096 947281 764646 213007 791658 090916 920592 396229 261791 148897 662202 888679 652647 734004 989406 706174 709192 113951 174084 665365 416890 038656 684096 421960 175687 325651 119496 710484 779551 515925 563470 041123 402234 565356 813832 177762 257504 373117 464614 177992 094344 528430 684603 140951 566709 573527 603025 867966 636544 169296 322853 197039 (761 digits), a[1452] = 1
                                                                                      A[1453]/B[1453] = 4142 931399 711041 828544 126684 783867 223257 150995 098629 668758 997256 915139 448604 523388 056994 961038 714955 627186 530751 811201 797828 865378 148589 215092 082378 759323 093109 593428 895323 060713 205711 799591 194123 217973 642025 194827 341293 483270 910833 579829 812613 899045 339320 288495 919598 345395 095346 046135 834900 185121 027662 096960 346338 065902 633808 029195 605686 580182 823290 238830 197073 693767 959457 789248 792943 998091 942003 173834 194331 498675 141202 214784 146012 389448 132263 303997 074703 302563 844623 994673 086820 602198 244765 746425 166522 872597 484921 461957 645128 689417 619410 805846 401491 611036 066687 859751 618286 914209 349515 347599 968351 016691 922752 865383 421534 338979 579478 557804 064680 586971 198135 855114 534539 893506 388928 681543 219649 130948 602314 988823 787489 546110 294444 091209 714319 294335 499313 (760 digits)/402666 108440 126037 832725 842147 556138 988188 877028 223705 486030 676024 489291 662753 387900 703252 143293 751884 254989 570459 073587 092468 407493 053315 644592 540454 474272 702210 922687 367172 948025 605797 671540 027813 771107 889046 020012 032816 978332 036281 610278 326206 451522 980117 347747 523373 797633 393395 727507 888360 792921 494014 821412 147363 713674 020171 993046 785414 358570 399018 394983 035118 801861 944717 862729 898066 153351 864846 294446 176977 205742 278398 409758 601574 234413 196716 198967 112585 867101 150982 720278 016132 378112 347034 944909 128885 842077 227207 713856 923716 447447 236096 401190 430862 026219 054862 505057 543589 538749 091235 812486 919226 733523 587047 031689 007599 781151 502466 403285 913286 561786 523577 690194 823249 532196 429339 316975 131644 296344 114894 488728 467475 505551 118709 170157 349411 080736 830674 (762 digits), a[1453] = 32
                                                                                      A[1454]/B[1454] = 4270 130771 088144 607219 466274 628985 149194 245245 448272 893202 188560 273142 003817 572815 481316 445588 401312 320648 614469 796133 305756 944983 102801 993941 435835 609054 009926 102765 428285 045374 837226 898440 804455 381666 387127 145555 878638 652180 624681 998123 235005 971807 150536 026665 775871 100327 194204 690381 189242 076902 397482 013077 586801 411159 074300 170441 972086 555570 274842 854530 615986 761605 466237 377973 505645 200258 772740 823506 668048 313419 496110 088891 435037 736327 346163 403652 323453 998443 871121 432696 238689 688604 129952 428721 557513 392784 038724 503262 479770 562837 857581 355539 390584 312463 751379 273294 544629 130309 089309 545159 325724 530929 687680 411591 286764 870262 489305 994610 566440 521437 265399 541720 031419 176037 970066 158722 006992 263143 449726 972557 132105 770935 080537 315074 146409 350489 765432 (760 digits)/415029 063779 434989 101588 129075 824195 112160 168154 207901 556501 950043 915782 899933 744013 248994 084246 950609 509594 233275 568201 022121 536185 106959 657248 053450 510684 394742 571653 101250 082274 542728 972531 388951 022297 930023 571654 341827 067955 128885 401238 455046 308776 030242 850101 986006 381369 639390 612832 521992 155286 715037 586354 001265 400165 432608 891638 377799 839833 833032 041247 729413 699964 712797 100906 857636 092917 157065 077650 207248 007143 730478 180735 073090 171102 714914 933064 059867 631747 363990 511936 107049 298704 743264 206700 277783 504280 115887 366504 657721 436853 942271 110382 544813 200303 720227 921947 582246 222845 513195 988174 244877 853020 297531 811240 523525 344621 543589 805520 478643 375618 701339 947699 196366 996810 607331 411319 660074 980947 255846 055438 041003 108576 986675 806701 518707 403590 027713 (762 digits), a[1454] = 1
                                                                                      A[1455]/B[1455] = 8413 062170 799186 435763 592959 412852 372451 396240 546902 561961 185817 188281 452422 096203 538311 406627 116267 947835 145221 607335 103585 810361 251391 209033 518214 368377 103035 696194 323608 106088 042938 698031 998578 599640 029152 340383 219932 135451 535515 577953 047619 870852 489856 315161 695469 445722 289550 736517 024142 262023 425144 110037 933139 477061 708108 199637 577773 135753 098133 093360 813060 455373 425695 167222 298589 198350 714743 997340 862379 812094 637312 303675 581050 125775 478426 707649 398157 301007 715745 427369 325510 290802 374718 175146 724036 265381 523645 965220 124899 252255 476992 161385 792075 923499 818067 133046 162916 044518 438824 892759 294075 547621 610433 276974 708299 209242 068784 552414 631121 108408 463535 396834 565959 069544 358994 840265 226641 394092 052041 961380 919595 317045 374981 406283 860728 644825 264745 (760 digits)/817695 172219 561026 934313 971223 380334 100349 045182 431607 042532 626068 405074 562687 131913 952246 227540 702493 764583 803734 641788 114589 943678 160275 301840 593904 984957 096953 494340 468423 030300 148526 644071 416764 793405 819069 591666 374644 046287 165167 011516 781252 760299 010360 197849 509380 179003 032786 340340 410352 948208 209052 407766 148629 113839 452780 884685 163214 198404 232050 436230 764532 501826 657514 963636 755702 246269 021911 372096 384225 212886 008876 590493 674664 405515 911631 132031 172453 498848 514973 232214 123181 676817 090299 151609 406669 346357 343095 080361 581437 884301 178367 511572 975675 226522 775090 427005 125835 761594 604431 800661 164104 586543 884578 842929 531125 125773 046056 208806 391929 937405 224917 637894 019616 529007 036670 728294 791719 277291 370740 544166 508478 614128 105384 976858 868118 484326 858387 (762 digits), a[1455] = 1
                                                                                      A[1456]/B[1456] = 46335 441625 084076 786037 431071 693247 011451 226448 182785 703008 117646 214549 265928 053833 172873 478723 982652 059824 340577 832808 823685 996789 359758 039109 026907 450939 525104 583737 046325 575815 051920 388600 797348 379866 532888 847471 978299 329438 302259 887888 473105 326069 599817 602474 253218 328938 641958 372966 309953 387019 523202 563267 252498 796467 614841 168629 860952 234335 765508 321334 681289 038472 594713 214084 998591 192012 346460 810210 979947 373892 682671 607269 340288 365204 738296 941899 314240 503482 449848 569542 866241 142616 003543 304455 177694 719691 656954 329363 104266 824115 242542 162468 350963 929962 841714 938525 359209 352901 283434 008955 796102 269037 739846 796464 828260 916472 833228 756683 722046 063479 583076 525892 861214 523759 765040 360048 140199 233603 709936 779461 730082 356161 955444 346493 450052 574616 089157 (761 digits)/4 503504 924877 240123 773157 985192 725865 613905 394066 365936 769165 080385 941155 713369 403583 010225 221950 463078 332513 251948 777141 595071 254575 908336 166451 022975 435469 879510 043355 443365 233775 285362 192888 472774 989327 025371 529986 215047 299390 954720 458822 361310 110271 082043 839349 532907 276384 803322 314534 573756 896327 760299 625184 744410 969362 696513 315064 193870 831854 993284 222401 552076 209098 000371 919090 636147 324262 266621 938132 128374 071573 774861 133203 446412 198682 273070 593219 922135 125989 938856 673006 722957 682790 194759 964747 311130 236066 831362 768312 564910 858359 834108 668247 423189 332917 595680 056973 211425 030818 535354 991480 065400 785739 720426 025888 179150 973486 773870 849552 438293 062644 825928 137169 294449 641845 790685 052793 618671 367404 109548 776270 583396 179217 513600 690995 859299 825224 319648 (763 digits), a[1456] = 5
                                                                                      A[1457]/B[1457] = 471767 478421 639954 296137 903676 345322 486963 660722 374759 592042 362279 333774 111702 634535 267046 193866 942788 546078 550999 935423 340445 778254 848971 600123 787288 877772 354081 533564 786863 864238 562142 584039 972062 398305 358040 815103 002925 429834 558114 456837 778673 131548 488032 339904 227652 735108 709134 466180 123676 132218 657169 742710 458127 441737 856519 885936 187295 479110 753216 306707 625950 840099 372827 308072 284501 118474 179352 099450 661853 551021 464028 376368 983933 777822 861396 126642 540562 335832 214231 122797 987921 716962 410151 219698 500983 462298 093189 258851 167567 493407 902413 786069 301715 223128 235216 518299 755009 573531 273164 982317 255098 237999 008901 241622 990908 373970 401072 119251 851581 743204 294300 655763 178104 307142 009398 440746 628633 730129 151409 755998 220418 878664 929424 871218 361254 390986 156315 (762 digits)/45 852744 420991 962264 665893 823150 638990 239402 985846 090974 734183 429927 816631 696381 167744 054498 447045 333277 089716 323222 413204 065302 489437 243636 966350 823659 339655 892053 927894 902075 368053 002148 572956 144514 686676 072784 891528 525117 040196 712371 599740 394353 863009 830798 591344 838452 942851 066009 485686 147921 911485 812048 659613 592738 807466 417914 035327 101922 516954 164892 660246 285294 592806 661234 154543 117175 488891 688130 753417 667965 928623 757487 922528 138786 392338 642337 064230 393804 758747 903539 962281 352758 504719 037898 799082 517971 707025 656722 763487 230546 467899 519454 194047 207568 555698 731890 996737 240086 069779 957981 715461 818112 443941 088839 101811 322634 860640 784764 704330 774860 563853 484199 009586 964112 947464 943521 256230 978432 951332 466228 306872 342440 406303 241391 886817 461116 736570 054867 (764 digits), a[1457] = 10
                                                                                      A[1458]/B[1458] = 3 348707 790576 563756 859002 756806 110504 420196 851504 806102 847304 653601 550968 047846 495580 042196 835792 582171 882374 197577 380772 206806 444573 302559 239975 537929 595346 003675 318690 554372 625484 986918 476880 601785 168004 039174 553192 998777 338280 209061 085752 923817 246909 016043 981803 846787 474699 605899 636227 175686 312550 123390 762240 459390 888632 610480 370183 172020 588111 038022 468288 062944 919168 204504 370590 990099 021331 601925 506365 612922 231042 930870 241852 227824 809964 768069 828397 098176 854307 949466 429128 781693 161352 874601 842344 684578 955778 309279 141321 277239 277970 559438 664953 462970 491860 488230 566623 644276 367620 195588 885176 581789 935030 802155 487825 764619 534265 640733 591446 683118 265909 643181 116235 107944 673753 830829 445274 540635 344507 769805 071449 273014 506816 461418 445021 978833 311519 183362 (763 digits)/325 472715 871820 975976 434414 747247 198797 289726 294989 002759 908449 089880 657577 588037 577791 391714 351267 796017 960527 514505 669570 052188 680636 613794 930906 788590 813061 123887 538619 757892 810146 300402 203581 484377 796059 534865 770685 890866 580767 941321 657005 121787 151339 897633 978763 402077 876342 265388 714337 609210 276728 444640 242479 893582 621627 621911 562353 907328 450534 147532 844125 549138 358744 629011 000892 456375 746504 083537 212055 804135 571940 077276 590900 417916 945052 769430 042832 678768 437225 263636 408976 192267 215823 460051 558324 936932 185246 428422 112723 178736 133656 470288 026577 876169 222808 718917 034133 892027 519278 241226 999712 792187 893327 342299 738567 437594 997972 267223 779867 862317 009619 215321 204278 043240 274100 395333 846410 467702 026731 373146 924376 980479 023340 203343 898718 087116 981214 703717 (765 digits), a[1458] = 7
                                                                                      A[1459]/B[1459] = 3 820475 268998 203711 155140 660482 455826 907160 512227 180862 439347 015880 884742 159549 130115 309243 029659 524960 428452 748577 316195 547252 222828 151530 840099 325218 473118 357756 852255 341236 489723 549061 060920 573847 566309 397215 368296 001702 768114 767175 542590 702490 378457 504076 321708 074440 209808 315034 102407 299362 444768 780560 504950 917518 330370 467000 256119 359316 067221 791238 774995 688895 759267 577331 678663 274600 139805 781277 605816 274775 782064 394898 618221 211758 587787 629465 955039 638739 190140 163697 551926 769614 878315 284753 062043 185562 418076 402468 400172 444806 771378 461852 451022 764685 714988 723447 084923 399285 941151 468753 867493 836888 173029 811056 729448 755527 908236 041805 710698 534700 009113 937481 771998 286048 980895 840227 886021 169269 074636 921214 827447 493433 385481 390843 316240 340087 702505 339677 (763 digits)/371 325460 292812 938241 100308 570397 837787 529129 280835 093734 642632 519808 474209 284418 745535 446212 798313 129295 050243 837728 082774 117491 170073 857431 897257 612250 152717 015941 466514 659968 178199 302550 776537 628892 482735 607650 662214 415983 620964 653693 256745 516141 014349 728432 570108 240530 819193 331398 200023 757132 188214 256688 902093 486321 429094 039825 597681 009250 967488 312425 504371 834432 951551 290245 155435 573551 235395 771667 965473 472101 500563 834764 513428 556703 337391 411767 107063 072573 195973 167176 371257 545025 720542 497950 357407 454903 892272 085144 876210 409282 601555 989742 220625 083737 778507 450808 030871 132113 589058 199208 715174 610300 337268 431138 840378 760229 858613 051988 484198 637177 573472 699520 213865 007353 221565 338855 102641 446134 978063 839375 231249 322919 429643 444735 785535 548233 717784 758584 (765 digits), a[1459] = 1
                                                                                      A[1460]/B[1460] = 22 451084 135567 582312 634706 059218 389638 955999 412640 710415 044039 733005 974678 845592 146156 588411 984090 206974 024637 940463 961749 943067 558714 060213 440472 164021 960937 792459 579967 260555 074102 732223 781483 471022 999551 025251 394673 007291 178854 044938 798706 436269 139196 536425 590344 218988 523741 181070 148263 672498 536394 026193 286995 046982 540484 945481 650779 968600 924219 994216 343266 507423 715506 091162 763907 363099 720360 508313 535446 986801 141364 905363 332958 286617 748902 915399 603595 291872 805008 767954 188762 629767 552929 298367 152560 612391 046160 321621 142183 501273 134862 868700 920067 286399 066804 105465 991240 640706 073377 539358 222645 766230 800179 857439 135069 542259 075445 849762 144939 356618 311479 330589 976226 538189 578233 031968 875380 386980 717692 375879 208686 740181 434223 415635 026223 679271 824045 881747 (764 digits)/2182 100017 335885 667181 935957 599236 387734 935372 699164 471433 121611 688923 028624 010131 305468 622778 342833 442493 211746 703146 083440 639644 531005 900954 417194 849841 576646 203594 871193 057733 701142 813156 086269 628840 209737 573119 081757 970784 685591 209787 940732 702492 223088 539796 829304 604731 972308 922379 714456 394871 217799 728084 752947 325189 767097 821039 550758 953583 287975 709660 365984 721303 116501 080236 778070 324131 923482 941877 039423 164643 074759 251099 158043 201433 632009 828265 578148 041634 417091 099518 265263 917395 818535 949803 345362 211451 646606 854146 493775 225149 141436 418999 129703 294858 115345 972957 188489 552595 464569 237270 575585 843689 579669 497993 940461 238744 291037 527166 200861 048204 876982 712922 273603 080006 381927 089609 359617 698376 917050 570023 080623 595076 171557 427022 826395 828285 570138 496637 (766 digits), a[1460] = 5
                                                                                      A[1461]/B[1461] = 48 722643 540133 368336 424552 778919 235104 819159 337508 601692 527426 481892 834099 850733 422428 486066 997839 938908 477728 629505 239695 433387 340256 271957 721043 653262 394993 942676 012189 862346 637929 013508 623887 515893 565411 447718 157642 016285 125822 857053 140003 575028 656850 576927 502396 512417 257290 677174 398934 644359 517556 832947 078941 011483 411340 357963 557679 296517 915661 779671 461528 703743 190279 759657 206478 000799 580526 797904 676710 248378 064794 205625 284137 784994 085593 460265 162230 222484 800157 699605 929452 029149 984173 881487 367164 410344 510397 045710 684539 447353 041104 199254 291157 337483 848596 934379 067404 680698 087906 547470 312785 369349 773389 525934 999587 840046 059127 741330 000577 247936 632072 598661 724451 362428 137361 904165 636781 943230 510021 672973 244820 973796 253928 222113 368687 698631 350597 103171 (764 digits)/4735 525494 964584 272604 972223 768870 613257 399874 679164 036600 885855 897654 531457 304681 356472 691769 483980 014281 473737 244020 249655 396780 232085 659340 731647 311933 306009 423131 208900 775435 580484 928862 949076 886572 902210 753888 825730 357552 992147 073269 138210 921125 460526 808026 228717 449994 763811 176157 628936 546874 623813 712858 407988 136700 963289 681904 699198 916417 543439 731746 236341 277039 184553 450718 711576 221815 082361 655422 044319 801387 650082 336962 829514 959570 601411 068298 263359 155842 030155 366212 901785 379817 357614 397557 048131 877807 185485 793437 863760 859580 884428 827740 480031 673454 009199 396722 407850 237304 518196 673749 866346 297679 496607 427126 721301 237718 440688 106320 885920 733587 327438 125364 761071 167365 985419 518073 821876 842888 812164 979421 392496 513071 772758 298781 438327 204804 858061 751858 (766 digits), a[1461] = 2
                                                                                      A[1462]/B[1462] = 71 173727 675700 950649 059258 838137 624743 775158 750149 312107 571466 214898 808778 696325 568585 074478 981930 145882 502366 569969 201445 376454 898970 332171 161515 817284 355931 735135 592157 122901 712031 745732 405370 986916 564962 472969 552315 023576 304676 901991 938710 011297 796047 113353 092740 731405 781031 858244 547198 316858 053950 859140 365936 058465 951825 303445 208459 265118 839881 773887 804795 211166 905785 850819 970385 363899 300887 306218 212157 235179 206159 110988 617096 071611 834496 375664 765825 514357 605166 467560 118214 658917 537103 179854 519725 022735 556557 367331 826722 948626 175967 067955 211224 623882 915401 039845 058645 321404 161284 086828 535431 135580 573569 383374 134657 382305 134573 591092 145516 604554 943551 929251 700677 900617 715594 936134 512162 330211 227714 048852 453507 713977 688151 637748 394911 377903 174642 984918 (764 digits)/6917 625512 300469 939786 908181 368107 000992 335247 378328 508034 007467 586577 560081 314812 661941 314547 826813 456774 685483 947166 333096 036424 763091 560295 148842 161774 882655 626726 080093 833169 281627 742019 035346 515413 111948 327007 907488 328337 677738 283057 078943 623617 683615 347823 058022 054726 736120 098537 343392 941745 841613 440943 160935 461890 730387 502944 249957 870000 831415 441406 602325 998342 301054 530955 489646 545947 005844 597299 083742 966030 724841 588061 987558 161004 233420 896563 841507 197476 447246 465731 167049 297213 176150 347360 393494 089258 832092 647584 357536 084730 025865 246739 609734 968312 124545 369679 596339 789899 982765 911020 441932 141369 076276 925120 661762 476462 731725 633487 086781 781792 204420 838287 034674 247372 367346 607683 181494 541265 729215 549444 473120 108147 944315 725804 264723 033090 428200 248495 (766 digits), a[1462] = 1
                                                                                      A[1463]/B[1463] = 1401 023469 378451 430668 550470 703534 105236 547175 590345 531736 385284 564970 200895 080919 225544 901167 654512 710676 022693 458920 067157 586030 420692 583209 789844 181665 157696 910252 263175 197479 166532 182424 325936 267308 299698 434139 651627 464234 914683 994899 975493 789686 781745 730636 264470 409127 096895 983820 795702 664662 542623 156614 031726 122336 496021 123422 518405 333775 873415 483539 752637 715914 400210 925236 643799 914886 297385 616050 707697 716782 981817 314409 008963 145618 941024 597895 712914 995279 298320 583248 175530 548583 189134 298723 241939 842320 084987 025015 392275 471250 384478 490403 304425 191259 241216 691435 181665 787377 152304 197212 485976 945380 671207 810043 558078 103843 616025 972080 765392 734480 559559 254444 037331 474164 733665 690721 367866 217243 836588 601169 861467 539372 328809 339332 872003 878791 668813 816613 (766 digits)/136170 410228 673513 128556 227669 762903 632111 769574 867405 689247 027740 042628 173002 286121 933357 668178 193435 693000 497932 240180 578480 088850 730825 304948 559648 385656 076466 330926 730683 605651 931412 027224 620660 679422 029228 967039 068008 595968 869174 451353 638139 769861 449218 416664 331136 489802 750093 048367 153402 440045 614469 090778 465761 912624 840652 237845 448398 446433 340333 118471 680535 245542 904589 538873 014860 594808 193409 004104 635436 155971 422072 510140 593120 018651 036408 103011 251995 907894 527838 215105 075722 026867 704470 997404 524519 573724 995246 097540 656946 469451 375868 515793 064996 071384 375561 420634 738306 245404 190748 983138 263056 983691 945869 004419 294788 290510 343475 142575 534774 587639 211434 052818 419881 867440 965005 064054 270273 126937 667260 418866 381778 567882 714757 089062 468064 833522 993866 473263 (768 digits), a[1463] = 19
                                                                                      A[1464]/B[1464] = 1472 197197 054152 381317 609729 541671 729980 322334 340494 843843 956750 779869 009673 777244 794129 975646 636442 856558 525060 028889 268602 962485 319662 915380 951359 998949 513628 645387 855332 320380 878563 928156 731307 254224 864660 907109 203942 487811 219360 896891 914203 800984 577792 843989 357211 140532 877927 842065 342900 981520 596574 015754 397662 180802 447846 426867 726864 598894 713297 257427 557432 927081 305996 776056 614185 278785 598272 922268 919854 951962 187976 425397 626059 217230 775520 973560 478740 509636 903487 050808 293745 207500 726237 478577 761664 865055 641544 392347 218998 419876 560445 558358 515649 815142 156617 731280 240311 108781 313588 284041 021408 080961 244777 193417 692735 486148 750599 563172 910909 339035 503111 183695 738009 374782 449260 626855 880028 547455 064302 650022 314975 253350 016960 977081 266915 256694 843456 801531 (766 digits)/143088 035740 973983 068343 135851 131010 633104 104822 245734 197281 035207 629205 733083 600934 595298 982726 020249 149775 183416 187346 911576 125275 493916 865243 708490 547430 959121 957652 810777 438821 213039 769243 656007 194835 141177 294046 975496 924306 546912 734410 717083 393479 132833 764487 389158 544529 486213 146904 496795 381791 456082 531721 626697 374515 571039 740789 698356 316434 171748 559878 282861 243885 205644 069828 504507 140755 199253 601403 719179 122002 146914 098202 580678 179655 269828 999575 093503 105370 975084 680836 242771 324080 880621 344764 918013 662983 827338 745125 014482 554181 401733 762532 674731 039696 500106 790314 334646 035304 173514 894158 704989 125061 022145 929539 956550 766973 075200 776062 621556 369431 415854 891105 454556 114813 332351 671737 451767 668203 396475 968310 854898 676030 659072 814866 732787 866613 422066 721758 (768 digits), a[1464] = 1
                                                                                      A[1465]/B[1465] = 4345 417863 486756 193303 769929 786877 565197 191844 271335 219424 298786 124708 220242 635408 813804 852460 927398 423793 072813 516698 604363 511001 060018 413971 692564 179564 184954 201027 973839 838240 923660 038737 788550 775758 029020 248358 059512 439857 353405 788683 803901 391655 937331 418614 978892 690192 852751 667951 481504 627703 735771 188122 827050 483941 391713 977157 972134 531565 300009 998394 867503 570077 012204 477349 872170 472457 493931 460588 547407 620707 357770 165204 261081 580080 492066 545016 670396 014553 105294 684864 763020 963584 641609 255878 765269 572431 368075 809709 830272 311003 505369 607120 335724 821543 554452 153995 662288 004939 779480 765294 528793 107303 160762 196878 943549 076141 117225 098426 587211 412551 565781 621835 513350 223729 632186 944433 127923 312153 965193 901214 491418 046072 362731 293495 405834 392181 355727 419675 (766 digits)/422346 481710 621479 265242 499372 024924 898319 979219 358874 083809 098155 301039 639169 487991 123955 633630 233933 992550 864764 614874 401632 339401 718659 035435 976629 480517 994710 246232 352238 483294 357491 565711 932675 069092 311583 555133 019002 444581 962999 920175 072306 556819 714885 945639 109453 578861 722519 342176 146993 203628 526634 154221 719156 661655 982731 719424 845111 079301 683830 238228 246257 733313 315877 678530 023874 876318 591916 206912 073794 399975 715900 706545 754476 377961 576066 102161 439002 118636 478007 576777 561264 675029 465713 686934 360546 899692 649923 587790 685911 577814 179336 040858 414458 150777 375775 001263 407598 316012 537778 771455 673035 233813 990160 863499 207889 824456 493876 694700 777887 326502 043143 835029 328994 097067 629708 407529 173808 463344 460212 355488 091575 919944 032902 718795 933640 566749 837999 916779 (768 digits), a[1465] = 2
                                                                                      A[1466]/B[1466] = 231779 343961 852230 626417 416008 246182 685431 490080 721261 473331 792415 389404 682533 453911 925787 156075 788559 317591 384176 413915 299869 045541 500638 855880 657261 515851 316201 299870 468843 747149 832545 981259 524498 369400 402734 070086 358101 800250 949867 697133 520977 558749 256358 030583 238523 720754 073766 243493 862646 249818 592446 986264 231337 829696 208687 216240 249994 771855 613827 172355 535122 141162 952834 075599 839220 319032 776640 333461 932458 849452 149795 181223 463382 961496 855047 859444 009729 280951 484105 348640 733856 277486 731528 040152 320952 203918 149562 306968 223430 903062 345034 735736 309065 356950 542581 893050 341575 370589 626068 844651 047442 768028 765173 628001 700836 521627 963529 779782 033114 204268 489537 140977 945571 232452 955168 681811 659964 091615 219579 414390 360131 695185 241719 532337 776138 042306 697010 044306 (768 digits)/22 527451 566403 912384 126195 602568 452030 244063 003448 266060 639163 237438 584306 609066 464464 164947 565128 418750 754971 015940 775690 198090 113566 582845 743350 469853 014884 678765 007967 479417 053422 160092 751976 087785 856727 655105 716096 982626 487150 585908 503689 549330 904924 021788 883360 190198 224200 779738 282240 287435 174103 367692 705472 742000 442282 655820 870306 489243 519423 414751 185975 334521 109490 947161 031919 769875 585640 570812 567743 630282 320715 089651 545127 567926 211618 801332 414131 360615 393104 309486 250046 989799 100642 563446 752286 026999 346694 273288 898031 367796 178332 906543 928028 641013 030897 416181 857274 937356 783968 675789 781309 375856 517202 500671 694997 974711 463167 250665 595203 849584 674039 702478 147659 891243 259397 706897 270783 663616 225459 787730 809179 708422 433064 402916 911051 215737 904354 836062 311045 (770 digits), a[1466] = 53
                                                                                      A[1467]/B[1467] = 9 970857 208223 132673 129252 658284 372733 038751 265315 285578 572691 372647 869109 569181 153621 622652 563719 835449 080222 592399 315056 498732 469285 587489 216839 954809 361170 781610 095458 134120 965683 723137 232897 341980 659975 346585 262071 457889 850648 197716 765425 205936 417873 960726 733694 235412 682618 024700 138187 575293 369903 210991 597484 774577 160878 365264 275488 721909 721356 694578 409682 877755 640083 984069 728142 958644 190866 889465 799451 643138 147149 798962 957813 186548 924445 259124 501109 088755 095466 921824 676416 318840 895514 097314 982428 566214 340911 799255 009343 437801 142684 341863 243781 625535 170416 885473 555160 350028 940293 700441 085289 568832 132540 063228 200952 079519 506143 549005 629054 011122 196096 615878 683887 172913 219206 704440 262334 506379 251608 407108 719999 977080 939037 756671 184019 779770 211369 327159 324833 (769 digits)/969 102763 837078 853996 691653 409815 462225 393029 127494 799481 567828 308014 426223 829027 459950 216700 934152 240216 456304 550217 969552 919507 222764 781025 999506 180309 120559 181605 588833 967171 780447 241479 900683 707466 908381 481129 347303 271941 392057 157065 578825 693535 468552 651807 930127 287977 219495 251265 478508 506705 690073 337420 489549 625175 679810 183029 142603 882582 414508 518131 235167 630665 441424 043802 051080 128525 058863 136856 619888 175934 190724 570917 147031 175303 477570 033359 909809 945464 022121 785916 328798 122626 002659 693924 035233 521518 807546 401346 203139 501147 246129 160724 946089 978018 479366 271594 864085 713940 026665 596739 367758 834865 473521 519043 748412 120482 740648 272497 288466 310028 310209 249704 184404 652454 251169 026291 051226 709306 158115 332637 150215 553740 541713 358329 893998 210370 454007 788679 291714 (771 digits), a[1467] = 43
                                                                                      A[1468]/B[1468] = 10 202636 552184 984903 755670 074292 618915 724182 755396 006840 046023 165063 258514 251714 607533 548439 719795 624008 397813 976575 728971 798601 514827 088128 072720 612070 877022 097811 395328 602964 712833 555683 214156 866479 029375 749319 332157 815991 650899 147584 462558 726913 976623 217084 764277 473936 403372 098466 381681 437939 619721 803438 583749 005914 990574 573951 491728 971904 493212 308405 582038 412877 781246 936903 803742 797864 509899 666106 132913 575596 996601 948758 139036 649931 885942 114172 360553 098484 376418 405930 025057 052697 173000 828843 022580 887166 544829 948817 316311 661232 045746 686897 979517 934600 527367 428055 448210 691604 310883 326509 929940 616274 900568 828401 828953 780356 027771 512535 408836 044236 400365 105415 824865 118484 451659 659608 944146 166343 343223 626688 134390 337212 634222 998390 716357 555908 253676 024169 369139 (770 digits)/991 630215 403482 766380 817849 012383 914255 637092 130943 065542 206991 545453 010530 438093 924414 381648 499280 658967 211275 566158 745243 117597 336331 363871 742856 650162 135443 860370 596801 446588 833869 401572 652659 795252 765109 136235 063400 254567 879207 742974 082515 242866 373476 673596 813487 478175 443696 031003 760748 794140 864176 705113 195022 367176 122092 838850 012910 371825 933931 932882 421142 965186 550914 990963 082999 898400 644503 707669 187631 806216 511439 660568 692158 743229 689188 834692 323941 306079 415226 095402 578845 112425 103302 257370 787519 548518 154240 674635 101170 868943 424462 067268 874118 619031 510263 687776 721360 651296 810634 272529 149068 210721 990724 019715 443410 095194 203815 523162 883670 159612 984248 952182 332064 543697 510566 733188 322010 372922 383575 120367 959395 262162 974777 761246 805049 426108 358362 624741 602759 (771 digits), a[1468] = 1
                                                                                      A[1469]/B[1469] = 1479 150520 722860 958813 945743 356421 496597 321068 042340 270545 200027 141757 095161 816084 638452 597972 214289 692658 365435 219304 286995 497350 604386 277931 688608 093015 652352 866451 022776 961039 613715 741520 071486 114960 890083 248569 092796 960687 580125 449879 373881 881549 051617 220932 789650 482254 768200 203859 100314 638598 609842 906147 657341 626335 803617 014279 084460 676156 743929 104982 223214 332156 139642 898217 467105 851133 616418 808748 939006 529105 657830 420134 979090 776740 500109 699944 420755 270505 299717 375748 284631 907233 807633 450710 234076 318196 796424 428948 558222 655215 730207 255172 294364 208011 111326 525458 097499 941049 707492 717870 996738 312417 814451 353091 570296 450787 505241 354104 501444 381163 848671 795757 464464 234674 258197 688128 219382 459820 675810 650200 072208 535700 267149 524934 339507 830558 740716 807548 480849 (772 digits)/143763 853781 938597 212834 461911 193099 115037 134295 983296 237559 374610 853247 942606 914552 575621 174084 830567 131494 879986 077077 284561 853523 654481 178556 970863 803656 624475 074971 528242 275963 857641 067941 883694 223865 084097 098978 476939 929715 997972 145333 461020 666293 249193 649749 072324 145241 111723 715807 026334 862990 131518 873720 572770 498537 261178 977431 001697 425516 900706 853199 879754 617528 773182 742486 003065 498217 867397 041219 638868 271111 838035 692808 817890 200378 720762 229054 557358 020899 814679 523887 682494 311840 878184 755317 438048 508133 018203 548800 771744 629000 368666 847442 819171 118555 957337 311442 740019 500680 758000 840936 833581 178832 137780 358067 599465 828448 090083 607952 536969 294298 042058 363960 001698 944895 772778 605409 420720 410129 392932 665623 303133 305208 909710 977869 821115 569974 058225 751470 089010 (774 digits), a[1469] = 144
                                                                                      A[1470]/B[1470] = 19239 159405 949377 449485 050333 707772 074680 898067 305819 523927 646376 007905 495617 860814 907417 322078 505561 628567 148471 827531 459913 264159 371848 701240 024625 821274 357609 361674 691429 096479 691138 195444 143476 360970 600457 980717 538518 304930 192529 996016 323023 187051 647647 089211 029733 743248 389974 748634 685771 739721 547679 583358 129190 148280 437595 759579 589717 761942 164290 673174 483824 730907 596604 613730 876118 862601 523344 179842 339998 453970 548397 410512 867216 747558 387368 213449 830371 615053 272744 290657 725271 846736 672235 688076 065573 023724 898347 525148 573206 179036 538441 004137 806252 638744 974612 259010 715709 925250 508288 658832 887538 677706 488436 418592 242807 640593 595909 115893 927612 999366 433098 450262 862900 169249 808229 605275 796118 144012 128762 079289 073101 301316 107166 822537 129959 353171 882994 522299 620176 (773 digits)/1 869921 729380 605246 533228 822694 522672 409738 382939 913794 153814 076932 637676 264420 327277 407489 644751 296653 368400 651094 568163 444547 213404 844586 685112 364086 097698 253619 835000 463951 034118 983203 284817 140684 705498 858371 422955 263619 340875 852845 632309 075783 904678 612994 120334 753701 366309 896104 336495 103102 013012 573922 063480 641038 848160 517419 545453 034976 903545 643121 024480 857952 993060 602290 643281 122851 375232 920665 243524 492919 330670 405903 667083 324731 348153 059097 812401 569595 577777 006059 905942 451271 166356 519704 076497 482150 154247 390886 809045 133851 045948 217131 084025 523343 160258 955648 736532 341614 160146 664645 204707 985623 535539 781868 674594 236465 865019 374902 426545 864270 985487 531007 683662 354150 827342 556688 603510 791375 704604 491699 773470 900128 229878 801020 473554 479551 835771 115297 393852 759889 (775 digits), a[1470] = 13
                                                                                      A[1471]/B[1471] = 97674 947550 469748 206239 197411 895281 870001 811404 571437 890183 431907 181284 573251 120159 175539 208364 742097 835494 107794 356961 586561 818147 463629 784131 811737 199387 440399 674824 479922 443438 069406 718740 788867 919813 892373 152156 785388 485338 542775 429960 988997 816807 289852 666987 938319 198496 718073 947032 529173 337206 348240 822938 303292 367737 991595 812177 033049 485867 565382 470854 642337 986694 122665 966871 847700 164141 233139 707960 638998 798958 399817 472699 315174 514532 436950 767193 572613 345771 663438 829036 910991 140917 168811 891090 561941 436821 288162 054691 424253 550398 422412 275861 325627 401735 984387 820511 676049 567302 248936 012035 434431 700950 256633 446052 784334 653755 484786 933574 139509 377996 014164 047071 778965 080923 299345 714507 199973 179881 319621 046645 437715 042280 802983 637619 989304 596418 155689 419046 581729 (773 digits)/9 493372 500684 964829 878978 575383 806461 163729 048995 552267 006629 759274 041629 264708 550939 613069 397841 313833 973498 135458 917894 507297 920547 877414 604118 791294 292147 892574 249973 847997 446558 773657 492027 587117 751359 375954 213754 795036 634095 262200 306878 839940 189686 314164 251422 840830 976790 592245 398282 541844 928053 001129 191123 777964 739339 848276 704696 176581 943245 116311 975604 169519 582831 784635 958891 617322 374382 470723 258842 103464 924463 867554 028225 441546 941144 016251 291062 405335 909784 844979 053599 938850 143623 476705 137804 848799 279369 972637 594026 440999 858741 454322 267570 435886 919850 735580 994104 448090 301414 081226 864476 761698 856531 047123 731038 781795 153544 964595 740681 858324 221735 697096 782271 772453 081608 556221 622963 377598 933151 851431 532977 803774 454602 914813 345642 218874 748829 634712 720733 888455 (775 digits), a[1471] = 5
                                                                                      A[1472]/B[1472] = 116914 106956 419125 655724 247745 603053 944682 709471 877257 414111 078283 189190 068868 980974 082956 530443 247659 464061 256266 184493 046475 082306 835478 485371 836363 020661 798009 036499 171351 539917 760544 914184 932344 280784 492831 132874 323906 790268 735305 425977 312021 003858 937499 756198 968052 941745 108048 695667 214945 076927 895920 406296 432482 516018 429191 571756 622767 247809 729673 144029 126162 717601 719270 580602 723819 026742 756483 887802 978997 252928 948214 883212 182391 262090 824318 980643 402984 960824 936183 119694 636262 987653 841047 579166 627514 460546 186509 579839 997459 729434 960853 279999 131880 040480 959000 079522 391759 492552 757224 670868 321970 378656 745069 864645 027142 294349 080696 049468 067122 377362 447262 497334 641865 250173 107575 319782 996091 323893 448383 125934 510816 343596 910150 460157 119263 949590 038683 941346 201905 (774 digits)/11 363294 230065 570076 412207 398078 329133 573467 431935 466061 160443 836206 679305 529128 878217 020559 042592 610487 341898 786553 486057 951845 133952 722001 289231 155380 389846 146194 084974 311948 480677 756860 776844 727802 456858 234325 636710 058655 974971 115045 939187 915724 094364 927158 371757 594532 343100 488349 734777 644946 941065 575051 254604 419003 587500 365696 250149 211558 846790 759433 000085 027472 575892 386926 602172 740173 749615 391388 502366 596384 255134 273457 695308 766278 289297 075349 103463 974931 487561 851038 959542 390121 309979 996409 214302 330949 433617 363524 403071 574850 904689 671453 351595 959230 080109 691229 730636 789704 461560 745872 069184 747322 392070 828992 405633 018261 018564 339498 167227 722595 207223 228104 465934 126603 908951 112910 226474 168974 637756 343131 306448 703902 684481 715833 819196 698426 584600 750010 114586 648344 (776 digits), a[1472] = 1
                                                                                      A[1473]/B[1473] = 214589 054506 888873 861963 445157 498335 814684 520876 448695 304294 510190 370474 642120 101133 258495 738807 989757 299555 364060 541454 633036 900454 299108 269503 648100 220049 238408 711323 651273 983355 829951 632925 721212 200598 385204 285031 109295 275607 278080 855938 301018 820666 227352 423186 906372 140241 826122 642699 744118 414134 244161 229234 735774 883756 420787 383933 655816 733677 295055 614883 768500 704295 841936 547474 571519 190883 989623 595763 617996 051887 348032 355911 497565 776623 261269 747836 975598 306596 599621 948731 547254 128571 009859 470257 189455 897367 474671 634531 421713 279833 383265 555860 457507 442216 943387 900034 067809 059855 006160 682903 756402 079607 001703 310697 811476 948104 565482 983042 206631 755358 461426 544406 420830 331096 406921 034290 196064 503774 768004 172579 948531 385877 713134 097777 108568 546008 194373 360392 783634 (774 digits)/20 856666 730750 534906 291185 973462 135594 737196 480931 018328 167073 595480 720934 793837 429156 633628 440433 924321 315396 922012 403952 459143 054500 599415 893349 946674 681994 038768 334948 159945 927236 530518 268872 314920 208217 610279 850464 853692 609066 377246 246066 755664 284051 241322 623180 435363 319891 080595 133060 186791 869118 576180 445728 196968 326840 213972 954845 388140 790035 875744 975689 196992 158724 171562 561064 357496 123997 862111 761208 699849 179598 141011 723534 207825 230441 091600 394526 380267 397346 696018 013142 328971 453603 473114 352107 179748 712987 336161 997098 015850 763431 125775 619166 395116 999960 426810 724741 237794 762974 827098 933661 509021 248601 876116 136671 800056 172109 304093 907909 580919 428958 925201 248205 899056 990559 669131 849437 546573 570908 194562 839426 507677 139084 630647 164838 917301 333430 384722 835320 536799 (776 digits), a[1473] = 1
                                                                                      A[1474]/B[1474] = 760681 270477 085747 241614 583218 098061 388736 272101 223343 326994 608854 300613 995229 284373 858443 746867 216931 362727 348447 808856 945585 783669 732803 293882 780663 680809 513235 170470 125173 489985 250399 812962 095980 882579 648443 987967 651792 617090 569547 993792 215077 465857 619557 025759 687169 362470 586416 623766 447300 319330 628404 094000 639807 167287 691553 723557 590217 448841 614839 988680 431664 830489 245080 223026 438376 599394 725354 675093 832985 408590 992311 950946 675088 591960 608128 224154 329779 880614 735048 965889 278025 373366 870625 989938 195882 152648 610524 483434 262599 568935 110649 947580 504402 367131 789163 779624 595186 672117 775706 719579 591176 617477 750179 796738 461573 138662 777144 998594 687017 643437 831542 130553 904356 243462 328338 422653 584284 835217 752395 643674 356410 501230 049552 753488 444969 587614 621804 022524 552807 (774 digits)/73 933294 422317 174795 285765 318464 735917 785056 874728 521045 661664 622648 842109 910641 165686 921444 363894 383451 288089 552590 697915 329274 297454 520248 969280 995404 435828 262499 089818 791786 262387 348415 583461 672563 081511 065165 188104 619733 802170 246784 677388 182716 946518 651126 241298 900622 302773 730135 133958 205322 548421 303592 591789 009908 568021 007615 114685 375981 216898 386667 927152 618449 052064 901614 285365 812662 121608 977723 785992 695931 793928 696492 865911 389753 980620 350150 287043 115733 679601 939092 998969 377035 670790 415752 270623 870195 572579 372010 394365 622403 194983 048780 209095 144581 079990 971661 904860 503088 750485 227168 870169 274386 137876 457340 815648 418429 534892 251779 890956 465353 494100 003708 210551 823774 880630 120305 774786 808695 350480 926819 824728 226934 101735 607775 313713 450330 584891 904178 620548 258741 (776 digits), a[1474] = 3
                                                                                      A[1475]/B[1475] = 1 735951 595461 060368 345192 611593 694458 592157 065078 895381 958283 727898 971702 632578 669880 975383 232542 423620 025010 060956 159168 524208 467793 764714 857269 209427 581668 264879 052263 901620 963326 330751 258849 913173 965757 682092 260966 412880 509788 417176 843522 731173 752381 466466 474706 280710 865182 998955 890232 638719 052795 500969 417236 015389 218331 803894 831048 836251 631360 524735 592244 631830 365274 332096 993527 448272 389673 440332 945951 283966 869069 332656 257804 847742 960544 477526 196145 635158 067826 069719 880510 103304 875304 751111 450133 581220 202664 695720 601399 946912 417703 604565 451021 466312 176480 521715 459283 258182 404090 557574 122062 938755 314562 502062 904174 734623 225430 119772 980231 580667 042234 124510 805514 229542 818021 063597 879597 364634 174210 272795 459928 661352 388337 812239 604753 998507 721237 437981 405441 889248 (775 digits)/168 723255 575384 884496 862716 610391 607430 307310 230388 060419 490402 840778 405154 615119 760530 476517 168222 691223 891576 027193 799783 117691 649409 639913 831911 937483 553650 563766 514585 743518 452011 227349 435795 660046 371239 740610 226674 093160 213406 870815 600843 121098 177088 543575 105778 236607 925438 540865 400976 597436 965961 183365 629306 216785 462882 229203 184216 140103 223832 649080 829994 433890 262853 974791 131795 982820 367215 817559 333194 091712 767455 533997 455356 987333 191681 791900 968612 611734 756550 574204 011081 083042 795184 304618 893354 920139 858146 080182 785829 260657 153397 223336 037356 684279 159942 370134 534462 243972 263945 281436 674000 057793 524354 790797 767968 636915 241893 807653 689822 511626 417158 932617 669309 546606 751819 909743 399011 163964 271870 048202 488882 961545 342555 846197 792265 817962 503214 193080 076417 054281 (777 digits), a[1475] = 2
                                                                                      A[1476]/B[1476] = 9 440439 247782 387588 967577 641186 570354 349521 597495 700253 118413 248349 159127 158122 633778 735359 909579 335031 487777 653228 604699 566628 122638 556377 580228 827801 589150 837630 431789 633278 306616 904156 107211 661850 711368 058905 292799 716195 166032 655432 211405 870946 227764 951889 399291 090723 688385 581196 074929 640895 583308 133251 180180 716753 258946 711027 878801 771475 605644 238517 949903 590816 656860 905565 190663 679738 547761 927019 404850 252819 753937 655593 239970 913803 394682 995759 204882 505570 219745 083648 368439 794549 749890 626183 240606 101983 165972 089127 490433 997161 657453 133477 202687 835963 249534 397741 076040 886098 692570 563577 329894 284953 190290 260494 317612 134689 265813 376009 899752 590352 854608 454096 158125 052070 333567 646327 820640 407455 706269 116372 943317 663172 442919 110750 777258 437508 193801 811711 049733 999047 (775 digits)/917 549572 299241 597279 599348 370422 773069 321608 026668 823143 113678 826540 867882 986239 968339 304030 205007 839570 745969 688559 696830 917732 544502 719818 128840 682822 204081 081331 662747 509378 522443 485162 762439 972794 937709 768216 321475 085534 869204 600862 681603 788207 831961 369001 770190 083661 929966 434462 138841 192507 378227 220420 738320 093835 882432 153631 035766 076497 336061 632072 077124 787900 366334 775569 944345 726763 957688 065520 451963 154495 631206 366480 142696 326419 939029 309655 130106 174407 462354 810113 054374 792249 646711 938846 737398 470894 863309 772924 323511 925688 961969 165460 395878 565976 879702 822334 577171 722950 070211 634352 240169 563353 759650 411329 655491 603005 744361 290048 340069 023485 579894 666796 557099 556808 639729 669022 769842 628516 709831 167832 269143 034660 814514 838764 275042 540143 100962 869579 002633 530146 (777 digits), a[1476] = 5
                                                                                      A[1477]/B[1477] = 39 497708 586590 610724 215503 176339 975875 990243 455061 696394 431936 721295 608211 265069 204995 916822 870859 763745 976120 673870 577966 790720 958347 990225 178184 520633 938271 615400 779422 434734 189793 947375 687696 560576 811229 917713 432165 277661 173919 038905 689146 214958 663441 274024 071870 643605 618725 323740 189951 202301 386028 033974 137958 882402 254118 648006 346255 922154 053937 478807 391858 995096 992717 954357 756182 167226 580721 148410 565352 295245 884819 955029 217688 502956 539276 460563 015675 657438 946806 404313 354269 281503 874867 255844 412557 989152 866553 052230 563135 935559 047516 138474 261772 810165 174618 112679 763446 802577 174372 811883 441640 078568 075723 544040 174623 273380 288683 623812 579241 942078 460667 940895 438014 437824 152291 648909 162158 994456 999286 738287 233199 314042 160014 255242 713787 748540 496444 684825 604377 885436 (776 digits)/3838 921544 772351 273615 260110 092082 699707 593742 337063 352991 945118 146941 876686 560079 633887 692637 988254 049506 875454 781432 587106 788621 827420 519186 347274 668772 369974 889093 165575 781032 541785 168000 485555 551226 122078 813475 512574 435299 690225 274266 327258 273929 504934 019582 186538 571255 645304 278713 956341 367466 478870 065048 582586 592128 992610 843727 327280 446092 568079 177369 138493 585491 728193 077070 909178 889876 197968 079641 141046 709695 292280 999918 026142 293012 947799 030521 489037 309364 605969 814656 228580 252041 382032 060005 842948 803719 311385 171880 079876 963413 001273 885177 620870 948186 678753 659472 843149 135772 544791 818845 634678 311208 562956 436116 389935 048938 219338 967847 050098 605568 736737 599803 897707 773841 310738 585834 478381 678031 111194 719531 565455 100188 600615 201254 892435 978534 907065 671396 086951 174865 (778 digits), a[1477] = 4
                                                                                      A[1478]/B[1478] = 48 938147 834372 998313 183080 817526 546230 339765 052557 396647 550349 969644 767338 423191 838774 652182 780439 098777 463898 327099 182666 357349 080986 546602 758413 348435 527422 453031 211212 068012 496410 851531 794908 222427 522597 976618 724964 993856 339951 694337 900552 085904 891206 225913 471161 734329 307110 904936 264880 843196 969336 167225 318139 599155 513065 359034 225057 693629 659581 717325 341762 585913 649578 859922 946845 846965 128483 075429 970202 548065 638757 610622 457659 416759 933959 456322 220558 163009 166551 487961 722709 076053 624757 882027 653164 091136 032525 141358 053569 932720 704969 271951 464460 646128 424152 510420 839487 688675 866943 375460 771534 363521 266013 804534 492235 408069 554496 999822 478994 532431 315276 394991 596139 489894 485859 295236 982799 401912 705555 854660 176516 977214 602933 365993 491046 186048 690246 496536 654111 884483 (776 digits)/4756 471117 071592 870894 859458 462505 472776 915350 363732 176135 058796 973482 744569 546319 602226 996668 193261 889077 621424 469992 283937 706354 371923 239004 476115 351594 574055 970424 828323 290411 064228 653163 247995 524021 059788 581691 834049 520834 559429 875129 008862 062137 336895 388583 956728 654917 575270 713176 095182 559973 857097 285469 320906 685964 875042 997358 363046 522589 904140 809441 215618 373392 094527 852640 853524 616640 155656 145161 593009 864190 923487 366398 168838 619432 886828 340176 619143 483772 068324 624769 282955 044291 028743 998852 580347 274614 174694 944804 403388 889101 963243 050638 016749 514163 558456 481807 420320 858722 615003 453197 874847 874562 322606 847446 045426 651943 963700 257895 390167 629054 316632 266600 454807 330649 950468 254857 248224 306547 821025 887363 834598 134849 415130 040019 167478 518678 008028 540975 089584 705011 (778 digits), a[1478] = 1
                                                                                      A[1479]/B[1479] = 137 374004 255336 607350 581664 811393 068336 669773 560176 489689 532636 660585 142888 111452 882545 221188 431737 961300 903917 328068 943299 505419 120321 083430 695011 217504 993116 521463 201846 570759 182615 650439 277513 005431 856425 870950 882095 265373 853822 427581 490250 386768 445853 725851 014194 112264 232947 133612 719712 888695 324700 368424 774238 080713 280249 366074 796371 309413 373100 913458 075384 166924 291875 674203 649873 861156 837687 299270 505757 391377 162335 176274 133007 336476 407195 373207 456791 983457 279909 380236 799687 433611 124383 019899 718886 171424 931603 334946 670275 801000 457454 682377 190694 102422 022923 133521 442422 179928 908259 562804 984708 805610 607751 153109 159094 089519 397677 623457 537231 006941 091220 730878 630293 417613 124010 239383 127757 798282 410398 447607 586233 268471 365880 987229 695880 120637 876937 677898 912601 654402 (777 digits)/13351 863778 915537 015404 979027 017093 645261 424443 064527 705262 062712 093907 365825 652718 838341 685974 374777 827662 118303 721417 154982 201330 571266 997195 299505 371961 518086 829942 822222 361854 670242 474326 981546 599268 241655 976859 180673 476968 809085 024524 344982 398204 178724 796750 099995 881090 795845 705066 146706 487414 193064 635987 224399 964058 742696 838444 053373 491272 376360 796251 569730 332275 917248 782352 616228 123156 509280 369964 327066 438077 139255 732714 363819 531878 721455 710874 727324 276908 742619 064194 794490 340623 439520 057711 003643 352947 660775 061488 886654 741616 927759 986453 654369 976513 795666 623087 683790 853217 774798 725241 384374 060333 208170 131008 480788 352826 146739 483637 830433 863677 370002 133004 807322 435141 211675 095548 974830 291126 753246 494259 234651 369887 430875 281293 227393 015890 923122 753346 266120 584887 (779 digits), a[1479] = 2
                                                                                      A[1480]/B[1480] = 30683 341096 774436 437492 894333 758180 785307 699268 971914 597413 328325 280131 631387 277184 646358 977203 058004 468879 037462 486473 538456 065812 912588 151647 745914 852048 992406 739325 222997 347310 219700 899490 680308 433731 505567 198665 432209 172225 742353 045010 226388 335268 316587 090689 636448 769253 254321 700572 760855 022254 377518 325949 973231 598217 008673 993713 815859 692811 861085 418476 152431 810030 737854 207336 868716 884939 932750 812752 754100 825172 839501 919754 118295 450998 738527 681585 085170 473982 586343 280768 053006 771334 362171 319664 964780 318895 780068 834465 525073 555822 717363 442064 989245 486239 536011 285702 499633 812822 408825 880972 361598 014686 794520 947876 970217 370895 236607 030853 281509 080294 657499 380926 151571 617621 140142 677674 472788 418890 224409 671151 906535 846329 194393 518215 672313 088295 247348 667994 164280 816129 (779 digits)/2 982222 093815 236347 306205 182483 274388 366074 566153 753410 449575 043593 914825 323690 102620 552422 968953 768717 457730 003154 346017 844968 603071 764463 613556 265813 299013 107419 047674 183909 984002 528300 428080 132887 160838 949071 421289 124234 884878 985390 344057 939936 861669 192525 063856 255810 138165 048862 942926 810729 253338 910511 110620 362098 671064 496437 970382 265335 076329 832598 373541 265482 470921 641006 317274 272396 080541 725178 647206 528825 555392 977515 761701 300594 228387 771451 865240 812457 234421 672375 940208 454301 003318 041716 868406 392814 981942 527533 656826 127396 269676 853720 029802 941254 276739 992113 430360 905681 126286 395119 182026 590263 328867 744546 062337 261229 332174 686605 109131 576919 229107 827107 926672 487710 367140 154014 562278 635379 227813 794994 107173 161853 619746 500317 768408 876121 062353 864402 537192 434475 134812 (781 digits), a[1480] = 223
                                                                                      A[1481]/B[1481] = 30820 715101 029773 044843 475998 569573 853644 369042 532091 087102 860961 940716 774275 388637 528904 198391 489742 430179 941379 814542 481755 571232 032909 235078 440926 069553 985523 260788 424843 918069 402316 549929 957821 439163 361993 069616 314304 437599 596175 472591 716638 722036 762440 816540 650642 881517 487268 834185 480567 910949 702218 694374 747469 678930 288923 359788 612231 002225 234186 331934 227815 976955 029729 881540 518590 746096 770438 112023 259858 216550 001837 096028 251302 787475 145723 054792 541962 457439 866252 661004 852694 204945 486554 339564 683666 490320 711672 169412 195349 356823 174818 124442 179939 588661 558934 419223 942055 992751 317085 443777 346306 820297 402272 100986 129311 460414 634284 654310 818740 087235 748720 111804 781865 035234 264152 917057 600546 217172 634808 118759 492769 114800 560274 505445 368193 208933 124286 345893 076882 470531 (779 digits)/2 995573 957594 151884 321610 161510 291482 011335 990596 817938 154837 106306 008732 689515 755339 390764 654928 143495 285392 121458 067434 999950 804402 335730 610751 565318 670974 625505 877617 006132 345857 198542 902407 114433 760107 190727 398148 304908 361847 794475 368582 284919 259873 371249 860606 355806 019255 844708 647992 957435 740753 103575 746607 586498 635123 239134 808826 318708 567602 208959 169792 835212 803197 558255 099626 888624 203698 234459 017170 855891 993470 116771 494415 664413 760266 492907 576115 539781 511330 414995 004403 248791 343941 481236 926117 396458 334890 188308 718315 014051 011293 781480 016256 595624 253253 787780 053448 589471 979504 169917 907267 974637 389200 952716 193345 742017 685000 833344 592769 407353 092785 197110 059677 295032 802281 365689 657827 610209 518940 548240 601432 396504 989633 931193 049702 103514 078244 787525 290538 700595 719699 (781 digits), a[1481] = 1
                                                                                      A[1482]/B[1482] = 61504 056197 804209 482336 370332 327754 638952 068311 504005 684516 189287 220848 405662 665822 175263 175594 547746 899058 978842 301016 020211 637044 945497 386726 186840 921602 977930 000113 647841 265379 622017 449420 638129 872894 867560 268281 746513 609825 338528 517601 943027 057305 079027 907230 287091 650770 741590 534758 241422 933204 079737 020324 720701 277147 297597 353502 428090 695037 095271 750410 380247 786985 767584 088877 387307 631036 703188 924776 013959 041722 841339 015782 369598 238473 884250 736377 627132 931422 452595 941772 905700 976279 848725 659229 648446 809216 491741 003877 720422 912645 892181 566507 169185 074901 094945 704926 441689 805573 725911 324749 707904 834984 196793 048863 099528 831309 870891 685164 100249 167530 406219 492730 933436 652855 404295 594732 073334 636062 859217 789911 399304 961129 754668 023661 040506 297228 371635 013887 241163 286660 (779 digits)/5 977796 051409 388231 627815 343993 565870 377410 556750 571348 604412 149899 923558 013205 857959 943187 623881 912212 743122 124612 413452 844919 407474 100194 224307 831131 969987 732924 925291 190042 329859 726843 330487 247320 920946 139798 819437 429143 246726 779865 712640 224856 121542 563774 924462 611616 157420 893571 590919 768164 994092 014086 857227 948597 306187 735572 779208 584043 643932 041557 543334 100695 274119 199261 416901 161020 284239 959637 664377 384717 548863 094287 256116 965007 988654 264359 441356 352238 745752 087370 944611 703092 347259 522953 794523 789273 316832 715842 375141 141447 280970 635200 046059 536878 529993 779893 483809 495153 105790 565037 089294 564900 718068 697262 255683 003247 017175 519949 701900 984272 321893 024217 986349 782743 169421 519704 220106 245588 746754 343234 708605 558358 609380 431510 818110 979635 140598 651927 827731 135070 854511 (781 digits), a[1482] = 1
                                                                                      A[1483]/B[1483] = 461349 108485 659239 421198 068324 863856 326308 847223 060130 878716 185972 486655 613914 049392 755746 427553 323970 723592 793275 921654 623237 030546 651390 942161 748812 520774 831033 261583 959732 775726 756438 695874 424730 549427 434914 947588 539899 706376 965875 095805 317828 123172 315636 167152 660284 436912 678402 577493 170528 443378 260377 836647 792378 618961 372104 834305 608865 867484 901088 584806 889550 485855 402818 503682 229744 163353 692760 585455 357571 508609 891210 206504 838490 456792 335478 209435 931892 977397 034424 253415 192601 038904 427633 954172 222794 154836 153859 196556 238309 745344 420089 089992 364235 112969 223554 353709 033884 631767 398464 717025 301640 665186 779823 443027 826013 279583 730526 450459 520484 259948 592256 560921 315921 605222 094222 080182 113888 669612 649332 648139 287903 842708 842950 671072 651737 289531 725731 443103 765025 477151 (780 digits)/44 840146 317459 869505 716317 569465 252574 653209 887850 817378 385722 155605 473638 781956 761058 993078 022101 528984 487246 993744 961604 914386 656721 037090 180906 383242 460888 755980 354655 336428 654875 286446 215817 845680 206730 169319 134210 308911 088935 253535 357063 858912 110671 317674 331844 637119 121202 099709 784431 334590 699397 202183 747203 226679 778437 388144 263286 407014 075126 499861 973131 540079 722031 953085 017935 015766 193377 951922 667812 548914 835511 776782 287234 419469 680846 343423 665610 005452 731595 026591 616685 170437 774758 141913 487783 921371 552719 199205 344303 004181 978088 227880 338673 353773 963210 247034 440115 055543 720038 125177 532329 928942 415681 833551 983126 764746 805229 472992 506076 297259 346036 366635 964125 774234 988232 003619 198571 329330 746220 950883 561671 305015 255296 951768 776478 960960 062435 351020 084656 646091 701276 (782 digits), a[1483] = 7
                                                                                      A[1484]/B[1484] = 522853 164683 463448 903534 438657 191610 965260 915534 564136 563232 375259 707504 019576 715214 931009 603147 871717 622651 772118 222670 643448 667591 596888 328887 935653 442377 808963 261697 607574 041106 378456 145295 062860 422322 302475 215870 286413 316202 304403 613407 260855 180477 394664 074382 947376 087683 419993 112251 411951 376582 340114 856972 513079 896108 669702 187808 036956 562521 996360 335217 269798 272841 170402 592559 617051 794390 395949 510231 371530 550332 732549 222287 208088 695266 219728 945813 559025 908819 487020 195188 098302 015184 276359 613401 871240 964052 645600 200433 958732 657990 312270 656499 533420 187870 318500 058635 475574 437341 124376 041775 009545 500170 976616 491890 925542 110893 601418 135623 620733 427478 998476 053652 249358 258077 498517 674914 187223 305675 508550 438050 687208 803838 597618 694733 692243 586760 097366 456991 006188 763811 (780 digits)/50 817942 368869 257737 344132 913458 818445 030620 444601 388726 990134 305505 397196 795162 619018 936265 645983 441197 230369 118357 375057 759306 064195 137284 405214 214374 430876 488905 279946 526470 984735 013289 546305 093001 127676 309117 953647 738054 335662 033401 069704 083768 232213 881449 256307 248735 278622 993281 375351 102755 693489 216270 604431 175277 084625 123717 042494 991057 719058 541419 516465 640774 996151 152346 434836 176786 477617 911560 332189 933632 384374 871069 543351 384477 669500 607783 106966 357691 477347 113962 561296 873530 122017 664867 282307 710644 869551 915047 719444 145629 259058 863080 384732 890652 493204 026927 923924 550696 825828 690214 621624 493843 133750 530814 238809 767993 822404 992942 207977 281531 667929 390853 950475 556978 157653 523323 418677 574919 492975 294118 270276 863373 864677 383279 594589 940595 203034 002947 912387 781162 555787 (782 digits), a[1484] = 1
                                                                                      A[1485]/B[1485] = 2 029908 602536 049586 131801 384296 438689 222091 593826 752540 568413 311751 609167 672644 195037 548775 236996 939123 591548 109630 589666 553583 033321 442055 928825 555772 847908 257923 046676 782454 899045 891807 131759 613311 816394 342340 595199 399139 654983 879085 936027 100393 664604 499628 390301 502412 699962 938381 914247 406382 573125 280722 407565 331618 307287 381211 397729 719735 555050 890169 590458 698945 304378 914026 281361 080899 546524 880609 116149 472163 159608 088857 873366 462756 542590 994665 046876 608970 703855 495484 838979 487507 084457 256712 794377 836517 046994 090659 797858 114507 719315 356901 059490 964495 676580 179054 529615 460607 943790 771592 842350 330277 165699 709672 918700 602639 612264 534780 857330 382684 542385 587684 721878 063996 379454 589775 104924 675558 586639 174983 962291 349530 254224 635806 755273 728468 049812 017830 814076 783591 768584 (781 digits)/197 293973 424067 642717 748716 309841 707909 745071 221654 983559 356125 072121 665229 167444 618115 801874 960051 852576 178354 348817 086778 192304 849306 448943 396549 026365 753518 222696 194494 915841 609080 326314 854733 124683 589759 096672 995153 523074 095921 353738 566176 110216 807312 962022 100766 383324 957071 079553 910484 642857 779864 850995 560496 752511 032312 759295 390771 380187 232302 124120 522528 462404 710485 410124 322443 546125 626231 686603 664382 349811 988636 389990 917288 572902 689348 166772 986509 078527 163636 368479 300575 791028 140811 136515 334707 053306 161374 944348 502635 441069 755264 817121 492872 025731 442822 327818 211888 707634 197524 195821 397203 410471 816933 425994 699556 068728 272444 451819 130008 141854 349824 539197 815552 445169 461192 573589 454604 054089 225146 833238 372501 895136 849329 101607 560248 782745 671537 359863 821819 989579 368637 (783 digits), a[1485] = 3
                                                                                      A[1486]/B[1486] = 2 552761 767219 513035 035335 822953 630300 187352 509361 316677 131645 687011 316671 692220 910252 479784 840144 810841 214199 881748 812337 197031 700913 038944 257713 491426 290286 066886 308374 390028 940152 270263 277054 676172 238716 644815 811069 685552 971186 183489 549434 361248 845081 894292 464684 449788 787646 358375 026498 818333 949707 620837 264537 844698 203396 050913 585537 756692 117572 886529 925675 968743 577220 084428 873920 697951 340915 276558 626380 843693 709940 821407 095653 670845 237857 214393 992690 167996 612674 982505 034167 585809 099641 533072 407779 707758 011046 736259 998292 073240 377305 669171 715990 497915 864450 497554 588250 936182 381131 895968 884125 339822 665870 686289 410591 528181 723158 136198 992954 003417 969864 586160 775530 313354 637532 088292 779838 862781 892314 683534 400342 036739 058063 233425 450007 420711 636572 115197 271067 789780 532395 (781 digits)/248 111915 792936 900455 092849 223300 526354 775691 666256 372286 346259 377627 062425 962607 237134 738140 606035 293773 408723 467174 461835 951610 913501 586227 801763 240740 184394 711601 474441 442312 593815 339604 401038 217684 717435 405790 948801 261128 431583 387139 635880 193985 039526 843471 357073 632060 235694 072835 285835 745613 473354 067266 164927 927788 116937 883012 433266 371244 951360 665540 038994 103179 706636 562470 757279 722912 103849 598163 996572 283444 373011 261060 460639 957380 358848 774556 093475 436218 640983 482441 861872 664558 262828 801382 617014 763951 030926 859396 222079 586699 014323 680201 877604 916383 936026 354746 135813 258331 023352 886036 018827 904314 950683 956808 938365 836722 094849 444761 337985 423386 017753 930051 766028 002147 618846 096912 873281 629008 718122 127356 642778 758510 714006 484887 154838 723340 874571 362811 734207 770741 924424 (783 digits), a[1486] = 1
                                                                                      A[1487]/B[1487] = 9 688193 904194 588691 237808 853157 329589 784149 121910 702571 963350 372785 559182 749306 925794 988129 757431 371647 234147 754877 026678 144678 136060 558888 701966 030051 718766 458581 971799 952541 719502 702596 962923 641828 532544 276788 028408 455798 568542 429554 584330 184140 199850 182505 784354 851779 062902 013506 993743 861384 422248 143234 201178 865712 917475 533952 154342 989811 907769 549759 367486 605176 036039 167312 903123 174753 569270 710284 995292 003244 289430 553079 160327 475292 256162 637847 024947 112960 541880 442999 941482 244934 383381 855930 017716 959791 080134 299439 792734 334228 851232 364416 207462 458243 269931 671718 294368 269155 087186 459499 494726 349745 163311 768541 150475 187184 781738 943377 836192 392938 451979 346167 048469 004060 292050 854653 444441 263904 263583 225587 163317 459747 428414 336083 105295 990602 959528 363422 627280 152933 365769 (781 digits)/941 629720 802878 344083 027263 979743 286974 072146 220424 100418 394903 205002 852507 055266 329520 016296 778157 733896 404524 750340 472286 047137 589811 207626 801838 748586 306702 357500 617819 242779 390526 345128 057847 777737 742065 314045 841557 306459 390671 515157 473816 692171 925893 492436 171987 279505 664153 298059 767991 879698 199927 052794 055280 535875 383126 408332 690570 493922 086384 120740 639510 771943 830395 097536 594282 714861 937780 481095 654099 200145 107670 173172 299208 445043 765894 490441 266935 387183 086586 815804 886193 784702 929297 540663 185751 345159 254155 522537 168874 201166 798235 857727 125686 774883 250901 392056 619328 482627 267582 853929 453687 123416 668985 296421 514653 578894 556992 786103 143964 412012 403086 329353 113636 451612 317730 864328 074448 941115 379513 215308 300838 170668 991348 556269 024764 952768 295251 448299 024443 301805 141909 (783 digits), a[1487] = 3
                                                                                      A[1488]/B[1488] = 12 240955 671414 101726 273144 676110 959889 971501 631272 019249 094996 059796 875854 441527 836047 467914 597576 182488 448347 636625 839015 341709 836973 597832 959679 521478 009052 525468 280174 342570 659654 972860 239978 318000 771260 921603 839478 141351 539728 613044 133764 545389 044932 076798 249039 301567 850548 371882 020242 679718 371955 764071 465716 710411 120871 584865 739880 746504 025342 436289 293162 573919 613259 251741 777043 872704 910185 986843 621672 846937 999371 374486 255981 146137 494019 852241 017637 280957 154555 425504 975649 830743 483023 389002 425496 667549 091181 035699 791026 407469 228538 033587 923452 956159 134382 169272 882619 205337 468318 355468 378851 689567 829182 454830 561066 715366 504897 079576 829146 396356 421843 932327 823999 317414 929582 942946 224280 126686 155897 909121 563659 496486 486477 569508 555303 411314 596100 478619 898347 942713 898164 (782 digits)/1189 741636 595815 244538 120113 203043 813328 847837 886680 472704 741162 582629 914933 017873 566654 754437 384193 027669 813248 217514 934121 998748 503312 793854 603601 989326 491097 069102 092260 685091 984341 684732 458885 995422 459500 719836 790358 567587 822254 902297 109696 886156 965420 335907 529060 911565 899847 370895 053827 625311 673281 120060 220208 463663 500064 291345 123836 865167 037744 786280 678504 875123 537031 660007 351562 437774 041630 079259 650671 483589 480681 434232 759848 402424 124743 264997 360410 823401 727570 298246 748066 449261 192126 342045 802766 109110 285082 381933 390953 787865 812559 537929 003291 691267 186927 746802 755141 740958 290935 739965 472515 027731 619669 253230 453019 415616 651842 230864 481949 835398 420840 259404 879664 453759 936576 961240 947730 570124 097635 342664 943616 929179 705355 041156 179603 676109 169822 811110 758651 072547 066333 (784 digits), a[1488] = 1
                                                                                      A[1489]/B[1489] = 21 929149 575608 690417 510953 529268 289479 755650 753182 721821 058346 432582 435037 190834 761842 456044 355007 554135 682495 391502 865693 486387 973034 156721 661645 551529 727818 984050 251974 295112 379157 675457 202901 959829 303805 198391 867886 597150 108271 042598 718094 729529 244782 259304 033394 153346 913450 385389 013986 541102 794203 907305 666895 576124 038347 118817 894223 736315 933111 986048 660649 179095 649298 419054 680167 047458 479456 697128 616964 850182 288801 927565 416308 621429 750182 490088 042584 393917 696435 868504 917132 075677 866405 244932 443213 627340 171315 335139 583760 741698 079770 398004 130915 414402 404313 840991 176987 474492 555504 814967 873578 039312 992494 223371 711541 902551 286636 022954 665338 789294 873823 278494 872468 321475 221633 797599 668721 390590 419481 134708 726976 956233 914891 905591 660599 401917 555628 842042 525628 095647 263933 (782 digits)/2131 371357 398693 588621 147377 182787 100302 919984 107104 573123 136065 787632 767440 073139 896174 770734 162350 761566 217772 967855 406408 045886 093124 001481 405440 737912 797799 426602 710079 927871 374868 029860 516733 773160 201566 033882 631915 874047 212926 417454 583513 578328 891313 828343 701048 191071 564000 668954 821819 505009 873208 172854 275488 999538 883190 699677 814407 359089 124128 907021 318015 647067 367426 757543 945845 152635 979410 560355 304770 683734 588351 607405 059056 847467 890637 755438 627346 210584 814157 114051 634260 233964 121423 882708 988517 454269 539237 904470 559827 989032 610795 395656 128978 466150 437829 138859 374470 223585 558518 593894 926202 151148 288654 549651 967672 994511 208835 016967 625914 247410 823926 588757 993300 905372 254307 825569 022179 511239 477148 557973 244455 099848 696703 597425 204368 628877 465074 259409 783094 374352 208242 (784 digits), a[1489] = 1
                                                                                      A[1490]/B[1490] = 34 170105 247022 792143 784098 205379 249369 727152 384454 741070 153342 492379 310891 632362 597889 923958 952583 736624 130843 028128 704708 828097 810007 754554 621325 073007 736871 509518 532148 637683 038812 648317 442880 277830 075066 119995 707364 738501 647999 655642 851859 274918 289714 336102 282433 454914 763998 757271 034229 220821 166159 671377 132612 286535 159218 703683 634104 482819 958454 422337 953811 753015 262557 670796 457210 920163 389642 683972 238637 697120 288173 302051 672289 767567 244202 342329 060221 674874 850991 294009 892781 906421 349428 633934 868710 294889 262496 370839 374787 149167 308308 431592 054368 370561 538696 010264 059606 679830 023823 170436 252429 728880 821676 678202 272608 617917 791533 102531 494485 185651 295667 210822 696467 638890 151216 740545 893001 517276 575379 043830 290636 452720 401369 475100 215902 813232 151729 320662 423976 038361 162097 (782 digits)/3321 112993 994508 833159 267490 385830 913631 767821 993785 045827 877228 370262 682373 091013 462829 525171 546543 789236 031021 185370 340530 044634 596436 795336 009042 727239 288896 495704 802340 612963 359209 714592 975619 768582 661066 753719 422274 441635 035181 319751 693210 464485 856734 164251 230109 102637 463848 039849 875647 130321 546489 292914 495697 463202 383254 991022 938244 224256 161873 693301 996520 522190 904458 417551 297407 590410 021040 639614 955442 167324 069033 041637 818905 249892 015381 020435 987757 033986 541727 412298 382326 683225 313550 224754 791283 563379 824320 286403 950781 776898 423354 933585 132270 157417 624756 885662 129611 964543 849454 333860 398717 178879 908323 802882 420692 410127 860677 247832 107864 082809 244766 848162 872965 359132 190884 786809 969910 081363 574783 900638 188072 029028 402058 638581 383972 304986 634897 070520 541745 446899 274575 (784 digits), a[1490] = 1
                                                                                      A[1491]/B[1491] = 90 269360 069654 274705 079149 940026 788219 209955 522092 203961 365031 417341 056820 455559 957622 303962 260175 027383 944181 447760 275111 142583 593049 665830 904295 697545 201562 003087 316271 570478 456782 972092 088662 515489 453937 438383 282616 074153 404270 353884 421813 279365 824210 931508 598261 063176 441447 899931 082444 982745 126523 250059 932120 149194 356784 526185 162432 701955 850020 830724 568272 685126 174413 760647 594588 887785 258742 065073 094240 244422 865148 531668 760888 156564 238587 174746 163027 743667 398418 456524 702695 888520 565262 512802 180634 217118 696308 076818 333335 040032 696387 261188 239652 155525 481705 861519 296200 834152 603151 155840 378437 497074 635847 579776 256759 138386 869702 228017 654309 160597 465157 700140 265403 599255 524067 278691 454724 425143 570239 222369 308249 861674 717630 855792 092405 028381 859087 483367 373580 172369 588127 (782 digits)/8773 597345 387711 254939 682357 954448 927566 455628 094674 664778 890522 528158 132186 255166 821833 821077 255438 340038 279815 338596 087468 135155 285997 592153 423526 192391 375592 418012 314761 153798 093287 459046 467973 310325 523699 541321 476464 757317 283289 056957 969934 507300 604782 156846 161266 396346 491696 748654 573113 765652 966186 758683 266883 925943 649700 681723 690895 807601 447876 293625 311056 691449 176343 592646 540660 333456 021491 839585 215655 018382 726417 690680 696867 347251 921399 796310 602860 278557 897611 938648 398913 600414 748524 332218 571084 581029 187878 477278 461391 542829 457505 262826 393518 780985 687342 910183 633694 152673 257427 261615 723636 508908 105302 155416 809057 814766 930189 512631 841642 413029 313460 285083 739231 623636 636077 399188 961999 673966 626716 359249 620599 157905 500820 874587 972313 238850 734868 400450 866585 268150 757392 (784 digits), a[1491] = 2
                                                                                      A[1492]/B[1492] = 214 708825 386331 341553 942398 085432 825808 147063 428639 148992 883405 327061 424532 543482 513134 531883 472933 791392 019205 923649 254931 113264 996107 086216 429916 468098 139995 515693 164691 778639 952378 592501 620205 308808 982940 996762 272596 886808 456540 363411 695485 833649 938136 199119 478955 581267 646894 557133 199119 186311 419206 171496 996852 584923 872787 756053 958969 886731 658496 083787 090357 123267 611385 192091 646388 695733 907126 814118 427118 185966 018470 365389 194066 080695 721376 691821 386277 162209 647828 207059 298173 683462 479953 659539 229978 729126 655112 524476 041457 229232 701082 953968 533672 681612 502107 733302 652008 348135 230125 482117 009304 723030 093371 837754 786126 894691 530937 558566 803103 506846 225982 611103 227274 837401 199351 297928 802450 367563 715857 488568 907136 176069 836631 186684 400712 869995 869904 287397 171136 383100 338351 (783 digits)/20868 307684 769931 343038 632206 294728 768764 679078 183134 375385 658273 426578 946745 601347 106497 167326 057420 469312 590651 862562 515466 314945 168431 979642 856095 112022 040081 331729 431862 920559 545784 632685 911566 389233 708465 836362 375203 956269 601759 433667 633079 479087 066298 477943 552641 895330 447241 537159 021874 661627 478862 810281 029465 315089 682656 354470 320035 839459 057626 280552 618633 905089 257145 602844 378728 257322 064024 318785 386752 204089 521868 422999 212639 944395 858180 613057 193477 591102 336951 289595 180153 884054 810598 889191 933452 725438 200077 240960 873564 862557 338365 459237 919307 719388 999442 706029 397000 269890 364308 857091 845990 196696 118928 113716 038808 039661 721056 273095 791148 908867 871687 418330 351428 606405 463039 585187 893909 429296 828216 619137 429270 344839 403700 387757 328598 782688 104633 871422 274915 983200 789359 (785 digits), a[1492] = 2
                                                                                      A[1493]/B[1493] = 519 687010 842316 957812 963946 110892 439835 504082 379370 501947 131842 071463 905885 542524 983891 367729 206042 610167 982593 295058 784973 369113 585263 838263 764128 633741 481553 034473 645655 127758 361540 157095 329073 133107 419819 431907 827809 847770 317351 080707 812784 946665 700483 329747 556172 225711 735237 014197 480683 355367 964935 593053 925825 319042 102360 038293 080372 475419 167012 998298 748986 931661 397184 144830 887366 279253 072995 693309 948476 616354 902089 262447 149020 317955 681340 558388 935582 068086 694074 870643 299043 255445 525169 831880 640591 675372 006533 125770 416249 498498 098553 169125 306997 518750 485921 328124 600217 530423 063402 120074 397046 943134 822591 255285 829012 927769 931577 345151 260516 174289 917122 922346 719953 274057 922769 874549 059625 160271 001954 199507 122522 213814 390893 229160 893830 768373 598896 058161 715852 938570 264829 (783 digits)/50510 212714 927573 941016 946770 543906 465095 813784 460943 415550 207069 381316 025677 457861 034828 155729 370279 278663 461119 063721 118400 765045 622861 551439 135716 416435 455755 081471 178486 994917 184856 724418 291106 088792 940631 214046 226872 669856 486807 924293 236093 465474 737379 112733 266550 187007 386179 822972 616863 088907 923912 379245 325814 556123 015013 390664 330967 486519 563128 854730 548324 501627 690634 798335 298116 848100 149540 477155 989159 426561 770154 536679 122147 236043 637761 022424 989815 460762 571514 517838 759221 368524 369722 110602 437990 031905 588032 959200 208521 267944 134236 181302 232134 219763 686228 322242 427694 692453 986044 975799 415616 902300 343158 382848 886673 894090 372302 058823 423940 230765 056835 121744 442088 836447 562156 569564 749818 532560 283149 597524 479139 847584 308221 650102 629510 804226 944136 143295 416417 234552 336110 (785 digits), a[1493] = 2
                                                                                      A[1494]/B[1494] = 1254 082847 070965 257179 870290 307217 705479 155228 187380 152887 147089 469989 236303 628532 480917 267341 885019 011727 984392 513766 824877 851492 166634 762743 958173 735581 103101 584640 456002 034156 675458 906692 278351 575023 822579 860577 928216 582349 091242 524827 321055 726981 339102 858614 591300 032691 117368 585528 160485 897047 349077 357604 848503 223008 077507 832640 119714 837569 992522 080384 588330 986590 405753 481753 421121 254240 053118 200738 324071 418675 822648 890283 492106 716607 084057 808599 257441 298383 035977 948345 896260 194353 530293 323300 511162 079870 668178 776016 873956 226228 898189 292219 147667 719113 473950 389551 852443 408981 356929 722265 803398 609299 738554 348326 444152 750231 394092 248869 324135 855426 060228 455796 667181 385517 044891 047026 921700 688105 719765 887583 152180 603698 618417 645006 188374 406743 067696 403720 602842 260240 868009 (784 digits)/121888 733114 625079 225072 525747 382541 698956 306647 105021 206486 072412 189210 998100 517069 176153 478784 797979 026639 512889 990004 752267 845036 414155 082521 127527 944892 951591 494671 788836 910393 915498 081522 493778 566819 589728 264454 828949 295982 575375 282254 105266 410036 541056 703410 085742 269345 219601 183104 255600 839443 326687 568771 681094 427335 712683 135798 981970 812498 183883 990013 715282 908344 638415 199514 974961 953522 363105 273097 365071 057213 062177 496357 456934 416483 133702 657907 173108 512627 479980 325272 698596 621103 550043 110396 809432 789249 376143 159361 290607 398445 606837 821842 383576 158916 371899 350514 252389 654798 336398 808690 677224 001296 805244 879413 812155 827842 465660 390742 639029 370397 985357 661819 235606 279300 587352 724317 393546 494417 394515 814186 387550 040008 020143 687962 587620 391141 992906 158013 107750 452305 461579 (786 digits), a[1494] = 2
                                                                                      A[1495]/B[1495] = 1773 769857 913282 214992 834236 418110 145314 659310 566750 654834 278931 541453 142189 171057 464808 635071 091061 621895 966985 808825 609851 220605 751898 601007 722302 369322 584654 619114 101657 161915 036999 063787 607424 708131 242399 292485 756026 430119 408593 605535 133840 673647 039586 188362 147472 258402 852605 599725 641169 252415 314012 950658 774328 542050 179867 870933 200087 312989 159535 078683 337317 918251 802937 626584 308487 533493 126113 894048 272548 035030 724738 152730 641127 034562 765398 366988 193023 366469 730052 818989 195303 449799 055463 155181 151753 755242 674711 901787 290205 724726 996742 461344 454665 237863 959871 717676 452660 939404 420331 842340 200445 552434 561145 603612 273165 678001 325669 594020 584652 029715 977351 378143 387134 659574 967660 921575 981325 848376 721720 087090 274702 817513 009310 874167 082205 175116 666592 461882 318695 198811 132838 (784 digits)/172398 945829 552653 166089 472517 926448 164052 120431 565964 622036 279481 570527 023777 974930 210981 634514 168258 305302 974009 053725 870668 610082 037016 633960 263244 361328 407346 576142 967323 905311 100354 805940 784884 655612 530359 478501 055821 965839 062183 206547 341359 875511 278435 816143 352292 456352 605781 006076 872463 928351 250599 948017 006908 983458 727696 526463 312938 299017 747012 844744 263607 409972 329049 997850 273078 801622 512645 750253 354230 483774 832332 033036 579081 652526 771463 680332 162923 973390 051494 843111 457817 989627 919765 220999 247422 821154 964176 118561 499128 666389 741074 003144 615710 378680 058127 672756 680084 347252 322443 784490 092840 903597 148403 262262 698829 721932 837962 449566 062969 601163 042192 783563 677695 115748 149509 293882 143365 026977 677665 411710 866689 887592 328365 338065 217131 195368 937042 301308 524167 686857 797689 (786 digits), a[1495] = 1
                                                                                      A[1496]/B[1496] = 3027 852704 984247 472172 704526 725327 850793 814538 754130 807721 426021 011442 378492 799589 945725 902412 976080 633623 951378 322592 434729 072097 918533 363751 680476 104903 687756 203754 557659 196071 712457 970479 885776 283155 064979 153063 684243 012468 499836 130362 454896 400628 378689 046976 738772 291093 969974 185253 801655 149462 663090 308263 622831 765058 257375 703573 319802 150559 152057 159067 925648 904842 208691 108337 729608 787733 179232 094786 596619 453706 547387 043014 133233 751169 849456 175587 450464 664852 766030 767335 091563 644152 585756 478481 662915 835113 342890 677804 164161 950955 894931 753563 602332 956977 433822 107228 305104 348385 777261 564606 003844 161734 299699 951938 717318 428232 719761 842889 908787 885142 037579 833940 054316 045092 012551 968602 903026 536482 441485 974673 426883 421211 627728 519173 270579 581859 734288 865602 921537 459052 000847 (784 digits)/294287 678944 177732 391161 998265 308989 863008 427078 670985 828522 351893 759738 021878 491999 387135 113298 966237 331942 486899 043730 622936 455118 451171 716481 390772 306221 358938 070814 756160 815705 015852 887463 278663 222432 120087 742955 884771 261821 637558 488801 446626 285547 819492 519553 438034 725697 825382 189181 128064 767794 577287 516788 688003 410794 440379 662262 294909 111515 930896 834757 978890 318316 967465 197365 248040 755144 875751 023350 719301 540987 894509 529394 036016 069009 905166 338239 336032 486017 531475 168384 156414 610731 469808 331396 056855 610404 340319 277922 789736 064835 347911 824986 999286 537596 430027 023270 932474 002050 658842 593180 770064 904893 953648 141676 510985 549775 303622 840308 701998 971561 027550 445382 913301 395048 736862 018199 536911 521395 072181 225897 254239 927600 348509 026027 804751 586510 929948 459321 631918 139163 259268 (786 digits), a[1496] = 1
                                                                                      A[1497]/B[1497] = 7829 475267 881777 159338 243289 868765 846902 288388 075012 270277 130973 564337 899174 770237 356260 439897 043222 889143 869742 454010 479309 364801 588965 328511 083254 579129 960167 026623 216975 554058 461915 004747 378977 274441 372357 598613 124512 455056 408265 866260 043633 474903 796964 282315 625016 840590 792553 970233 244479 551340 640193 567186 019992 072166 694619 278079 839691 614107 463649 396819 188615 727936 220319 843259 767705 108959 484578 083621 465786 942443 819512 238758 907594 536902 464310 718163 093952 696175 262114 353659 378430 738104 226976 112144 477585 425469 360493 257395 618529 626638 786605 968471 659331 151818 827515 932133 062869 636175 974854 971552 208133 875903 160545 507489 707802 534466 765193 279800 402227 800000 052511 046023 495766 749758 992764 858781 787378 921341 604692 036437 128469 659936 264767 912513 623364 338836 135170 193088 161770 116915 134532 (784 digits)/760974 303717 908117 948413 469048 544427 890068 974588 907936 279080 983269 090003 067534 958928 985251 861112 100732 969187 947807 141187 116541 520318 939360 066923 044788 973771 125222 717772 479645 536721 132060 580867 342211 100476 770534 964412 825364 489482 337300 184150 234612 446606 917420 855250 228361 907748 256545 384439 128593 463940 405174 981594 382915 805047 608455 850987 902756 522049 608806 514260 221388 046606 263980 392580 769160 311912 264147 796954 792833 565750 621351 091824 651113 790546 581796 356810 834988 945425 114445 179879 770647 211090 859381 883791 361134 041963 644814 674407 078600 796060 436897 653118 614283 453872 918181 719298 545032 351353 640128 970851 632970 713385 055699 545615 720800 821483 445208 130183 466967 544285 097293 674329 504297 905845 623233 330281 217188 069767 822027 863505 375169 742793 025383 390120 826634 368390 796939 219951 788003 965184 316225 (786 digits), a[1497] = 2
                                                                                      A[1498]/B[1498] = 112640 506455 329127 702908 110584 888049 707425 851971 804302 591601 259650 912172 966939 582912 933372 060971 581201 081638 127772 678739 145060 179320 164047 962906 846040 212723 130094 576479 595316 952890 179268 036943 191458 125334 277985 533647 427417 383258 215558 258003 065765 049281 536188 999395 489008 059365 065729 768519 224368 868231 625800 248867 902720 775391 982045 596691 075484 748063 643148 714536 566269 095949 293168 913974 477480 313165 963325 265487 117636 647920 020558 385638 839557 267804 349806 229870 765802 411306 435631 718566 389593 977611 763422 048504 349111 791684 389796 281342 823576 723898 907415 312166 832969 082441 019045 157091 185279 254849 425231 166336 917718 424378 547337 056794 626553 910767 432467 760095 539977 085142 772734 478268 995050 541717 911259 991547 926331 435264 907174 484793 225458 660319 334479 294363 997680 325565 626671 568837 186319 095863 884295 (786 digits)/10 947927 930994 891383 668950 564944 930980 323974 071323 382093 735656 117661 019780 967367 917005 180661 168868 376498 900573 756199 020350 254517 739583 602212 653404 017817 939017 112056 119629 471198 329800 864701 019606 069618 629106 907577 244735 439874 114574 359761 066904 731200 538044 663384 493056 635101 434173 417017 571328 928373 262960 249737 259110 048824 681460 958761 576092 933500 420210 454188 034401 078322 970804 663190 693496 016285 121916 573820 180717 818971 461496 593424 814939 151609 136662 050315 333591 025877 721969 133707 686700 945475 566003 501154 704475 112732 197895 367724 719621 890147 209681 464478 968647 599254 891817 284571 093450 562926 921001 620648 185103 631654 892284 733441 780296 602197 050543 536536 662877 239544 591552 389661 885995 973472 076887 462128 642136 577544 498144 580571 314972 506616 326702 703876 487719 377632 743982 087097 538646 663973 651743 686418 (788 digits), a[1498] = 14
                                                                                      A[1499]/B[1499] = 233110 488178 540032 565154 464459 644865 261753 992331 683617 453479 650275 388683 833053 936063 223004 561840 205625 052420 125287 811488 769429 723441 917061 254324 775335 004576 220356 179582 407609 459838 820451 078633 761893 525109 928328 665907 979347 221572 839382 382266 175163 573466 869342 281106 603032 959320 924013 507271 693217 287803 891794 064921 825433 622950 658710 471461 990661 110234 749946 825892 321153 919834 806657 671208 722665 735291 411228 614595 701060 238283 860629 010036 586709 072511 163923 177904 625557 518788 133377 790792 157618 693327 753820 209153 175809 008838 140085 820081 265683 074436 601436 592805 325269 316700 865606 246315 433428 145874 825317 304226 043570 724660 255219 621078 960910 356001 630128 799991 482181 970285 597980 002561 485867 833194 815284 841877 640041 791871 419041 006023 579386 980574 933726 501241 618724 989967 388513 330762 534408 308642 903122 (786 digits)/22 656830 165707 690885 286314 598938 406388 538017 117235 672123 750393 218591 129565 002270 792939 346574 198848 853730 770335 460205 181887 625576 999486 143785 373731 080424 851805 349334 957031 422042 196322 861462 620079 481448 358690 585689 453883 705112 718631 056822 317959 697013 522696 244189 841363 498564 776095 090580 527096 985339 989860 904649 499814 480565 167969 525979 003173 769757 362470 517182 583062 378033 988215 590361 779572 801730 555745 411788 158390 430776 488743 808200 721702 954332 063870 682427 023992 886744 389363 381860 553281 661598 343097 861691 292741 586598 437754 380264 113650 858895 215423 365855 590413 812793 237507 487323 906199 670886 193356 881425 341058 896280 497954 522583 106208 925194 922570 518281 455937 946056 727389 876617 446321 451242 059620 547490 614554 372277 066056 983170 493450 388402 396198 433136 365559 581899 856354 971134 297245 115951 268671 689061 (788 digits), a[1499] = 2
                                                                                      A[1500]/B[1500] = 1 045082 459169 489257 963525 968423 467510 754441 821298 538772 405519 860752 466908 299155 327165 825390 308332 403701 291318 628923 924694 222779 073087 832292 980205 947380 231028 011519 294809 225754 792245 461072 351478 239032 225773 991300 197279 344806 269549 573087 787067 766419 343149 013558 123821 901139 896648 761783 797605 997238 019447 192976 508555 204455 267194 616887 482539 038129 189002 642936 018105 850884 775288 519799 598809 368143 254331 608239 723869 921877 601055 463074 425785 186393 557849 005498 941489 268032 486458 969142 881735 020068 750922 778702 885117 052347 827036 950139 561667 886309 021645 313161 683388 134046 349244 481470 142352 918991 838348 726500 383241 092001 323019 568215 541110 470195 334773 952982 960061 468704 966285 164654 488514 938521 874497 172399 359058 486498 602750 583338 508887 543006 582619 069385 299330 472580 285435 180724 891887 323952 330435 496783 (787 digits)/101 575248 593825 654924 814208 960698 556534 476042 540266 070588 737228 992025 538040 976451 088762 566957 964263 791421 981915 597019 747900 756825 737528 177354 148328 339517 346238 509395 947755 159367 115092 310551 499923 995412 063869 250335 060270 260324 989098 587050 338743 519254 628829 640143 858510 629360 538553 779339 679716 869733 222403 868335 258367 971085 353339 062677 588788 012529 870092 522918 366650 590458 923667 024637 811787 223207 344898 220972 814279 542077 416471 826227 701750 968937 392144 780023 429562 572855 279422 661149 899827 591868 938394 947919 875441 459125 948912 888781 174225 325728 071374 927901 330302 850427 841847 233866 718249 246471 694429 146349 549339 216776 884102 823774 205132 302976 740825 609662 486629 023771 501111 896131 671281 778440 315369 652091 100354 066652 762372 513253 288774 060225 911496 436421 949957 705232 169401 971634 727627 127778 726430 442662 (789 digits), a[1500] = 4
                                                                                      A[1501]/B[1501] = 1 278192 947348 029290 528680 432883 112376 016195 813630 222389 858999 511027 855592 132209 263229 048394 870172 609326 343738 754211 736182 992208 796529 749354 234530 722715 235604 231875 474391 633364 252084 281523 430112 000925 750883 919628 863187 324153 491122 412470 169333 941582 916615 882900 404928 504172 855969 685797 304877 690455 307251 084770 573477 029888 890145 275597 954001 028790 299237 392882 843998 172038 695123 326457 270018 090808 989623 019468 338465 622937 839339 323703 435821 773102 630360 169422 119393 893590 005247 102520 672527 177687 444250 532523 094270 228156 835875 090225 381749 151992 096081 914598 276193 459315 665945 347076 388668 352419 984223 551817 687467 135572 047679 823435 162189 431105 690775 583111 760052 950886 936570 762634 491076 424389 707691 987684 200936 126540 394622 002379 514911 122393 563194 003111 800572 091305 275402 569238 222649 858360 639078 399905 (787 digits)/124 232078 759533 345810 100523 559636 962923 014059 657501 742712 487622 210616 667605 978721 881701 913532 163112 645152 752251 057224 929788 382402 737014 321139 522059 419942 198043 858730 904786 581409 311415 172014 120003 476860 422559 836024 514153 965437 707729 643872 656703 216268 151525 884333 699874 127925 314648 869920 206813 855073 212264 772984 758182 451650 521308 588656 591961 782287 232563 040100 949712 968492 911882 614999 591360 024937 900643 632760 972669 972853 905215 634428 423453 923269 456015 462450 453555 459599 668786 043010 453109 253467 281492 809611 168183 045724 386667 269045 287876 184623 286798 293756 920716 663221 079354 721190 624448 917357 887786 027774 890398 113057 382057 346357 311341 228171 663396 127943 942566 969828 228501 772749 117603 229682 374990 199581 714908 438929 828429 496423 782224 448628 307694 869558 315517 287132 025756 942769 024872 243729 995102 131723 (789 digits), a[1501] = 1
                                                                                      A[1502]/B[1502] = 6 157854 248561 606420 078247 699955 917014 819225 075819 428331 841517 904863 889276 827992 380082 018969 789022 841006 666273 645770 869426 191614 259206 829709 918328 838241 173444 939021 192375 759211 800582 587166 071926 242735 229309 669815 650028 641420 234039 222968 464403 532751 009612 545159 743535 917831 320527 504973 017116 759059 248451 532058 802463 324010 827775 719279 298543 153290 385952 214467 394098 539039 555781 825628 678881 731379 212823 686113 077732 413628 958412 757888 169072 278804 079289 683187 419064 842392 507447 379225 571843 730818 527924 908795 262197 964975 170537 311041 088664 494277 405972 971554 788161 971309 013025 869775 697026 328671 775242 933771 133109 634289 513738 861956 189868 194618 097876 285430 000273 272252 712568 215192 452820 636080 705265 123136 162802 992660 181238 592856 568532 032580 835395 081832 501618 837801 387045 457677 782486 757394 886749 096403 (787 digits)/598 503563 631959 038165 216303 199246 408226 532281 170273 041438 687717 834492 208464 891338 615570 221086 616714 372032 990919 825919 467054 286436 685585 461912 236566 019286 138413 944319 566901 485004 360752 998607 979937 902853 754108 594433 116886 122075 820017 162540 965556 384327 234933 177478 658007 141061 797149 259020 506972 290026 071462 960274 291097 777687 438573 417303 956635 141678 800344 683322 165502 464430 571197 484636 177227 322958 947472 752016 704959 433493 037334 363941 395566 662015 216206 629825 243784 411253 954566 833191 712264 605738 064366 186364 548173 642023 495581 964962 325730 064221 218568 102929 013169 503312 159266 118629 216044 915903 245573 257449 110931 669006 412332 209203 450497 215663 394410 121438 256896 903084 415118 987128 141694 697169 815330 450417 959987 822372 076090 498948 417671 854739 142275 914655 212026 853760 272429 742710 827116 102698 706838 969554 (789 digits), a[1502] = 4
                                                                                      A[1503]/B[1503] = 7 436047 195909 635710 606928 132839 029390 835420 889449 650721 700517 415891 744868 960201 643311 067364 659195 450333 010012 399982 605609 183823 055736 579064 152859 560956 409049 170896 666767 392576 052666 868689 502038 243660 980193 589444 513215 965573 725161 635438 633737 474333 926228 428060 148464 422004 176497 190770 321994 449514 555702 616829 375940 353899 717920 994877 252544 182080 685189 607350 238096 711078 250905 152085 948899 822188 202446 705581 416198 036566 797752 081591 604894 051906 709649 852609 538458 735982 512694 481746 244370 908505 972175 441318 356468 193132 006412 401266 470413 646269 502054 886153 064355 430624 678971 216852 085694 681091 759466 485588 820576 769861 561418 685391 352057 625723 788651 868541 760326 223139 649138 977826 943897 060470 412957 110820 363739 119200 575860 595236 083443 154974 398589 084944 302190 929106 662448 026916 005136 615755 525827 496308 (787 digits)/722 735642 391492 383975 316826 758883 371149 546340 827774 784151 175340 045108 876070 870060 497272 134618 779827 017185 743170 883144 396842 668839 422599 783051 758625 439228 336457 803050 471688 066413 672168 170622 099941 379714 176668 430457 631040 087513 527746 806413 622259 600595 386459 061812 357881 268987 111798 128940 713786 145099 283727 733259 049280 229337 959882 005960 548596 923966 032907 723423 115215 432923 483080 099635 768587 347896 848116 384777 677629 406346 942549 998369 819020 585284 672222 092275 697339 870853 623352 876202 165373 859205 345858 995975 716356 687747 882249 234007 613606 248844 505366 396685 933886 166533 238620 839819 840493 833261 133359 285224 001329 782063 794389 555560 761838 443835 057806 249382 199463 872912 643620 759877 259297 926852 190320 649999 674896 261301 904519 995372 199896 303367 449970 784213 527544 140892 298186 685479 851988 346428 701941 101277 (789 digits), a[1503] = 1
                                                                                      A[1504]/B[1504] = 13 593901 444471 242130 685175 832794 946405 654645 965269 079053 542035 320755 634145 788194 023393 086334 448218 291339 676286 045753 475035 375437 314943 408774 071188 399197 582494 109917 859143 151787 853249 455855 573964 486396 209503 259260 163244 606993 959200 858407 098141 007084 935840 973219 892000 339835 497024 695743 339111 208573 804154 148888 178403 677910 545696 714156 551087 335371 071141 821817 632195 250117 806686 977714 627781 553567 415270 391694 493930 450195 756164 839479 773966 330710 788939 535796 957523 578375 020141 860971 816214 639324 500100 350113 618666 158107 176949 712307 559078 140546 908027 857707 852517 401933 691997 086627 782721 009763 534709 419359 953686 404151 075157 547347 541925 820341 886528 153971 760599 495392 361707 193019 396717 696551 118222 233956 526542 111860 757099 188092 651975 187555 233984 166776 803809 766908 049493 484593 787623 373150 412576 592711 (788 digits)/1321 239206 023451 422140 533129 958129 779376 078621 998047 825589 863057 879601 084535 761399 112842 355705 396541 389218 734090 709063 863896 955276 108185 244963 995191 458514 474871 747370 038589 551418 032921 169230 079879 282567 930777 024890 747926 209589 347763 968954 587815 984922 621392 239291 015888 410048 908947 387961 220758 435125 355190 693533 340378 007025 398455 423264 505232 065644 833252 406745 280717 897354 054277 584271 945814 670855 795589 136794 382588 839839 979884 362311 214587 247299 888428 722100 941124 282107 577919 709393 877638 464943 410225 182340 264530 329771 377831 198969 939336 313065 723934 499614 947055 669845 397886 958449 056538 749164 378932 542673 112261 451070 206721 764764 212335 659498 452216 370820 456360 775997 058739 747005 400992 624022 005651 100417 634884 083673 980610 494320 617568 158106 592246 698868 739570 994652 570616 428190 679104 449127 408780 070831 (790 digits), a[1504] = 1
                                                                                      A[1505]/B[1505] = 61 811652 973794 604233 347631 464018 815013 454004 750525 966935 868658 698914 281452 112977 736883 412702 452068 615691 715156 582996 505750 685572 315510 214160 437613 157746 739025 610568 103339 999727 465664 692111 797896 189245 818206 626485 166194 393549 561965 069067 026301 502673 669592 320939 716465 781346 164595 973743 678439 283809 772319 212382 089555 065541 900707 851503 456893 523564 969756 894620 766877 711549 477653 062944 460026 036457 863528 272359 391919 837349 822411 439510 700759 374749 865407 995797 368553 049482 593261 925633 509229 465803 972576 841772 831132 825560 714211 250496 706726 208457 134166 316984 474425 038359 446959 563363 216578 720145 898304 163028 635322 386465 862048 874781 519760 907091 334764 484428 802724 204709 095967 749904 530767 846674 885846 046646 469907 566643 604257 347606 691343 905195 334525 752051 517429 996738 860421 965291 155630 108357 176133 867152 (788 digits)/6007 692466 485298 072537 449346 591402 488653 860828 819966 086510 627571 563513 214213 915656 948641 557440 365992 574060 679533 719399 852430 489943 855340 762907 739391 273286 235944 792530 626046 272085 803852 847542 419458 509985 899776 530020 622744 925870 918802 682231 973523 540285 872028 018976 421434 909182 747587 680785 596819 885600 704490 507392 410792 257439 553703 699018 569525 186545 365917 350404 238087 022339 700190 436723 551846 031320 030472 931955 207984 765706 862087 447614 677369 574484 225936 980679 461836 999283 935031 713777 675927 718978 986759 725336 774478 006833 393574 029887 370951 501107 401104 395145 722108 845914 830168 673616 066648 829918 649089 455916 450375 586344 621276 614617 611181 081828 866671 732664 024906 976900 878579 747898 863268 422940 212925 051670 214432 595997 826961 972654 670168 935793 818957 579688 485828 119502 580652 398242 568406 142938 337061 384601 (790 digits), a[1505] = 4
                                                                                      A[1506]/B[1506] = 878 957043 077595 701397 552016 329058 356594 010712 472632 616155 703257 105555 574475 369882 339760 864168 777178 911023 688478 207704 555544 973449 732086 407020 197772 607651 928852 657871 305903 147972 372555 145420 744511 135837 664396 030052 489966 116687 826711 825345 466362 044516 310133 466375 922521 278681 801368 328154 837261 181910 616623 122237 432174 595497 155606 635204 947596 665280 647738 346508 368483 211810 493829 858937 068146 063977 504666 204725 980808 173093 269924 992629 584597 577208 904651 476960 117266 271131 325808 819840 945427 160580 116176 134933 254525 715957 175907 219261 453245 058946 786356 295490 494467 938965 949430 973712 814823 091806 110967 701760 848199 814673 143841 794288 818578 519620 573230 935974 998738 361319 705255 691682 827467 549999 520066 887007 105248 044871 216702 054586 330789 860289 917344 695498 047829 721252 095400 998669 966444 890150 878450 732839 (789 digits)/85428 933736 817624 437664 823982 237764 620530 130225 477573 036738 649059 768786 083530 580596 393824 159870 520437 426068 247562 780661 797923 814490 082955 925672 346669 284521 778098 842798 803237 360619 286861 034823 952298 422370 527648 445179 466355 171782 211001 520202 217145 548924 829784 504960 915977 138607 375174 918959 576236 833535 218057 797027 091469 611179 150307 209524 478584 677279 956095 312404 613936 210109 856943 698401 671659 109336 222210 184167 294375 559736 049108 628916 697761 290079 051546 451613 406842 272082 668363 702281 340626 530649 224861 337055 107222 425438 887867 617393 132657 328569 339396 031655 056579 512653 020248 389073 989622 368025 466184 925503 417519 659894 904594 369410 768870 805102 585620 628116 805058 452609 358856 217589 486750 545184 986601 823800 636940 427643 558078 111485 999933 259220 057652 814507 541164 667688 699750 003586 636790 450264 127639 455245 (791 digits), a[1506] = 14
                                                                                      A[1507]/B[1507] = 1819 725739 128986 007028 451664 122135 528201 475429 695791 199247 275172 910025 430402 852742 416405 141040 006426 437739 092112 998405 616840 632471 779683 028200 833158 373050 596730 926310 715146 295672 210774 982953 286918 460921 146998 686590 146126 626925 215388 719757 959025 591706 289859 253691 561508 338709 767332 630053 352961 647631 005565 456856 953904 256536 211921 121913 352086 854126 265233 587637 503844 135170 465312 780818 596318 164412 872860 681811 353536 183536 362261 424769 869954 529167 674710 949717 603085 591745 244879 565315 400083 786964 204929 111639 340184 257475 066025 689019 613216 326350 706878 907965 463360 916291 345821 510788 846224 903758 120239 566550 331722 015812 149732 463359 156917 946332 481226 356378 800200 927348 506479 133270 185702 946673 925979 820660 680403 656386 037661 456779 352923 625775 169215 143047 613089 439243 051223 962631 088519 888658 933035 332830 (790 digits)/176865 559940 120546 947867 097311 066931 729714 121279 775112 159987 925691 101085 381275 076849 736289 877181 406867 426197 174659 280723 448278 118924 021252 614252 432729 842329 792142 478128 232520 993324 377574 917190 324055 354726 955073 420379 555455 269435 340805 722636 407814 638135 531597 028898 253389 186397 497937 518704 749293 552671 140606 101446 593731 479797 854318 118067 526694 541105 278107 975213 465959 442559 414077 833526 895164 249992 474893 300289 796735 885178 960304 705448 072892 154642 329029 883906 275521 543449 271759 118340 357180 780277 436482 399446 988922 857711 169309 264673 636266 158246 079896 458455 835267 871220 870665 451764 045893 565969 581459 306923 285414 906134 430465 353439 148922 692034 037912 988897 635023 882119 596292 183077 836769 513310 186128 699271 488313 451284 943118 195626 670035 454233 934263 208703 568157 454879 980152 405415 841987 043466 592340 295091 (792 digits), a[1507] = 2
                                                                                      A[1508]/B[1508] = 8157 859999 593539 729511 358672 817600 469399 912431 255797 413144 803948 745657 296086 780852 005381 428328 802884 661980 056930 201327 022907 503336 850818 519823 530406 099854 315776 363114 166488 330661 215655 077233 892184 979522 252390 776413 074472 624388 688266 704377 302464 411341 469570 481142 168554 633520 870698 848368 249107 772434 638884 949665 247791 621642 003291 122858 355944 081785 708672 697058 383859 752492 355080 982211 453418 721628 996108 931971 394952 907238 718970 691709 064415 693879 603495 275830 529608 638112 305327 081102 545762 308436 935892 581490 615262 745857 440009 975339 906110 364349 613871 927352 347911 604131 332717 016868 199722 706838 591925 967962 175087 877921 742771 647725 446250 304950 498136 361490 199542 070713 731172 224763 570279 336695 223986 169649 826862 670415 367347 881703 742484 363390 594205 267688 500187 478224 300296 849194 320524 444786 610592 064159 (790 digits)/792891 173497 299812 229133 213226 505491 539386 615344 578021 676690 351824 173127 608630 887995 338983 668596 147907 130856 946199 903555 591036 290186 167966 382682 077588 653840 946668 755311 733321 333916 797160 703585 248519 841278 347942 126697 688176 249523 574224 410747 848404 101466 956172 620553 929533 884197 366924 993778 573411 044219 780482 202813 466395 530370 567579 681794 585362 841701 068527 213258 477773 980347 513255 032509 252316 109306 121783 385326 481319 100451 890327 450708 989329 908648 367665 987238 508928 445879 755400 175642 769349 651758 970790 934843 062913 856283 565104 676087 677721 961553 658981 865478 397650 997536 502910 196130 173196 631903 792022 153196 559179 284432 626455 783167 364561 573238 737272 583707 345153 981087 744024 949900 833828 598425 731116 620886 590194 232783 330550 893992 680075 076155 794705 649321 813794 487208 620359 625250 004738 624130 497000 635609 (792 digits), a[1508] = 4
                                                                                      A[1509]/B[1509] = 9977 585738 722525 736539 810336 939735 997601 387860 951588 612392 079121 655682 726489 633594 421786 569368 809311 099719 149043 199732 639748 135808 630501 548024 363564 472904 912507 289424 881634 626333 426430 060187 179103 440443 399389 463003 220599 251313 903655 424135 261490 003047 759429 734833 730062 972230 638031 478421 602069 420065 644450 406522 201695 878178 215212 244771 708030 935911 973906 284695 887703 887662 820393 763030 049736 886041 868969 613782 748489 090775 081232 116478 934370 223047 278206 225548 132694 229857 550206 646417 945846 095401 140821 693129 955447 003332 506035 664359 519326 690700 320750 835317 811272 520422 678538 527657 045947 610596 712165 534512 506809 893733 892504 111084 603168 251282 979362 717868 999742 998062 237651 358033 755982 283369 149965 990310 507266 326801 405009 338483 095407 989165 763420 410736 113276 917467 351520 811825 409044 333445 543627 396989 (790 digits)/969756 733437 420359 177000 310537 572423 269100 736624 353133 836678 277515 274212 989905 964845 075273 545777 554774 557054 120859 184279 039314 409110 189218 996934 510318 496170 738811 233439 965842 327241 174735 620775 572575 196005 303015 547077 243631 518958 915030 133384 256218 739602 487769 649452 182923 070594 864862 512483 322704 596890 921088 304260 060127 010168 421897 799862 112057 382806 346635 188471 943733 422906 927332 866036 147480 359298 596676 685616 278054 985630 850632 156157 062222 063290 696695 871144 784449 989329 027159 293983 126530 432036 407273 334290 051836 713994 734413 940761 313988 119799 738878 323934 232918 868757 373575 647894 219090 197873 373481 460119 844594 190567 056921 136606 513484 265272 775185 572604 980177 863207 340317 132978 670598 111735 917245 320158 078507 684068 273669 089619 350110 530389 728968 858025 381951 942088 600512 030665 846725 667597 089340 930700 (792 digits), a[1509] = 1
                                                                                      A[1510]/B[1510] = 18135 445738 316065 466051 169009 757336 467001 300292 207386 025536 883070 401340 022576 414446 427167 997697 612195 761699 205973 401059 662655 639145 481320 067847 893970 572759 228283 652539 048122 956994 642085 137421 071288 419965 651780 239416 295071 875702 591922 128512 563954 414389 229000 215975 898617 605751 508730 326789 851177 192500 283335 356187 449487 499820 218503 367630 063975 017697 682578 981754 271563 640155 175474 745241 503155 607670 865078 545754 143441 998013 800202 808187 998785 916926 881701 501378 662302 867969 855533 727520 491608 403838 076714 274620 570709 749189 946045 639699 425437 055049 934622 762670 159184 124554 011255 544525 245670 317435 304091 502474 681897 771655 635275 758810 049418 556233 477499 079359 199285 068775 968823 582797 326261 620064 373952 159960 334128 997216 772357 220186 837892 352556 357625 678424 613464 395691 651817 661019 729568 778232 154219 461148 (791 digits)/1 762647 906934 720171 406133 523764 077914 808487 351968 931155 513368 629339 447340 598536 852840 414257 214373 702681 687911 067059 087834 630350 699296 357185 379616 587907 150011 685479 988751 699163 661157 971896 324360 821095 037283 650957 673774 931807 768482 489254 544132 104622 841069 443942 270006 112456 954792 231787 506261 896115 641110 701570 507073 526522 540538 989477 481656 697420 224507 415162 401730 421507 403254 440587 898545 399796 468604 718460 070942 759374 086082 740959 606866 051551 971939 064361 858383 293378 435208 782559 469625 895880 083795 378064 269133 114750 570278 299518 616848 991710 081353 397860 189412 630569 866293 876485 844024 392286 829777 165503 613316 403773 474999 683376 919773 878045 838511 512458 156312 325331 844295 084342 082879 504426 710161 648361 941044 668701 916851 604219 983612 030185 606545 523674 507347 195746 429297 220871 655915 851464 291727 586341 566309 (793 digits), a[1510] = 1
                                                                                      A[1511]/B[1511] = 64383 922953 670722 134693 317366 211745 398605 288737 573746 689002 728332 859702 794218 876933 703290 562461 645898 384816 766963 402911 627715 053245 074461 751568 045476 191182 597358 247042 026003 497317 352685 472450 392968 700340 354730 181252 105814 878421 679421 809672 953353 246215 446430 382761 425915 789485 164222 458791 155600 997566 494456 475084 550158 377638 870722 347661 899955 989005 021643 229958 702394 808128 346817 998754 559203 709054 464205 251045 178815 084816 481840 541042 930727 973827 923310 729684 119602 833767 116807 828979 420671 306915 370964 516991 667576 250902 344172 583457 795637 855850 124619 123328 288824 894084 712305 161232 782958 562902 624440 041936 552503 208700 798331 387514 751423 919983 411859 955946 597598 204390 144122 106425 734767 143562 271822 470191 509653 318451 722080 999043 609085 046834 836297 446009 953670 104542 306973 794884 597750 668142 006285 780433 (791 digits)/6 257700 454241 580873 395400 881829 806167 694562 792531 146600 376784 165533 616234 785516 523366 318045 188898 662819 620787 322036 447782 930366 506999 260775 135784 274039 946205 795251 199695 063333 310715 090424 593858 035860 307856 255888 568402 039054 824406 382793 765780 570087 262810 819596 459470 520293 934971 560225 031269 011051 520223 025799 825480 639694 631785 390330 244832 204318 056328 592122 393663 208255 632670 249096 561672 346869 765112 752056 898444 556177 243879 073510 976755 216877 979107 889781 446294 664585 294955 374837 702860 814170 683422 541466 141689 396088 424829 632969 791308 289118 363859 932458 892172 124628 467639 003033 179967 395950 687204 869992 300069 055914 615566 107051 895928 147621 780807 312560 041541 956173 396092 593343 381617 183878 242220 862331 143292 084613 434623 086329 040455 440667 350026 299992 380066 969191 229980 263126 998413 401118 542779 848365 629627 (793 digits), a[1511] = 3
                                                                                      A[1512]/B[1512] = 1 177046 058904 389063 890530 881601 568753 641896 497568 534826 427585 993061 875990 318516 199253 086398 122007 238366 688401 011314 653468 961526 597556 821631 596072 712542 014045 980732 099295 516185 908706 990423 641528 144725 026092 036923 501954 199739 687292 821514 702625 724312 846267 264747 105681 565101 816484 464734 585030 651995 148697 183551 907709 352338 297319 891505 625544 263182 819788 072157 121010 914670 186465 418198 722823 568822 370651 220773 064567 362113 524710 473332 546960 751889 445829 501294 635692 815153 875777 958074 649150 063691 928314 754075 580470 587082 265432 141152 141939 746918 460352 177766 982579 358032 218078 832748 446715 338924 449682 544012 257332 626955 528270 005240 734075 575049 115934 890978 286397 956052 747798 563021 498460 552070 204185 266756 623407 507888 729347 769815 202971 801423 195583 410979 706603 779526 277453 177345 968942 489080 804788 267363 508942 (793 digits)/114 401256 083283 175892 523349 396700 588933 310617 617529 569962 295483 608944 539566 737834 273434 139070 614549 633434 862082 863715 147927 376947 825283 051137 823733 520626 181716 000001 583262 839163 254029 599539 013805 466580 578696 256951 905011 634794 607797 379542 328182 366193 571664 196678 540475 477747 784280 315838 069104 095043 005125 165967 365725 041025 912676 015421 888636 375145 238422 073365 487668 170108 791318 924326 008647 643452 240634 255484 242944 770564 475906 064157 188459 955355 595881 080427 891687 255913 744405 529638 121120 550952 385401 124454 819542 244342 217211 692974 860398 195840 630832 182120 248510 873882 283795 931083 083437 519399 199464 825365 014559 410236 555189 610311 046480 535237 893043 138538 904067 536452 973961 764522 951988 814235 070137 170322 520302 191743 740067 158142 711809 962197 907018 923537 348552 641188 568941 957157 627357 071598 061764 856922 899595 (795 digits), a[1512] = 18
                                                                                      A[1513]/B[1513] = 1 241429 981858 059786 025224 198967 780499 040501 786306 108573 116588 721394 735693 112735 076186 789688 684468 884265 073217 778278 056380 589241 650801 896093 347640 758018 205228 578090 346337 542189 406024 343109 113978 537693 726432 391653 683206 305554 565714 500936 512298 677666 092482 711177 488442 991017 605969 628957 043821 807596 146263 678008 382793 902496 674958 762227 973206 163138 808793 093800 350969 617064 994593 765016 721578 128026 079705 684978 315612 540928 609526 955173 088003 682617 419657 424605 365376 934756 709545 074882 478129 484363 235230 125040 097462 254658 516334 485324 725397 542556 316202 302386 105907 646857 112163 545053 607948 121883 012585 168452 299269 179458 736970 803572 121590 326473 035918 302838 242344 553650 952188 707143 604886 286837 347747 538579 093599 017542 047799 491896 202015 410508 242418 247277 152613 733196 381995 484319 763827 086831 472930 273649 289375 (793 digits)/120 658956 537524 756765 918750 278530 395101 005180 410060 716562 672267 774478 155801 523350 796800 457115 803448 296254 482870 185751 595710 307314 332282 311912 959517 794666 127921 795252 782957 902496 564744 689963 607663 502440 886552 512840 473413 673849 432203 762336 093962 936280 834475 016274 999945 998041 719251 876063 100373 106094 525348 191767 191205 680720 544461 405752 133468 579463 294750 665487 881331 378364 423989 173422 570319 990322 005747 007541 141389 326741 719785 137668 165215 172233 574988 970209 337981 920499 039360 904475 823981 365123 068823 665920 961231 640430 642041 325944 651706 484958 994692 114579 140682 998510 751434 934116 263404 915349 886669 695357 314628 466151 170755 717362 942408 682859 673850 451098 945609 492626 370054 357866 333605 998113 312358 032653 663594 276357 174690 244471 752265 402865 257045 223529 728619 610379 798922 220284 625770 472716 604544 705288 529222 (795 digits), a[1513] = 1
                                                                                      A[1514]/B[1514] = 4 901336 004478 568421 966203 478504 910250 763401 856486 860545 777352 157246 083069 656721 427813 455464 175413 891161 908054 346148 822610 729251 549962 509911 638994 986596 629731 715003 138308 142754 126780 019750 983463 757806 205389 211884 551573 116403 384436 324324 239521 757311 123715 398279 571010 538154 634393 351605 716496 074783 587488 217577 056091 059828 322196 178189 545162 752599 246167 353558 173919 765865 170246 713248 887557 952900 609768 275708 011404 984899 353291 338851 810971 799741 704801 775110 731823 619424 004413 182722 083538 516781 634005 129195 872857 351057 814435 597126 318132 374587 408959 084925 300302 298603 554569 467909 270559 704573 487438 049369 155140 165331 739182 415957 098846 554468 223689 799493 013431 617005 604364 684452 313119 412582 247427 882493 904204 560514 872746 245503 809018 032947 922838 152811 164444 979115 423439 630305 260423 749575 223579 088311 377067 (793 digits)/476 378125 695857 446190 279600 232291 774236 326158 847711 719650 312286 932379 006971 307886 663835 510418 024894 522198 310693 420969 935058 298890 822129 986876 702286 904624 565481 385759 932136 546652 948263 669429 836795 973903 238353 795473 325252 656342 904408 666550 610071 175036 075089 245503 540313 471872 942035 944027 370223 413326 581169 741268 939342 083187 546060 232678 289042 113535 122674 069829 131662 305202 063286 444593 719607 614418 257875 278107 667112 750789 635261 477161 684105 472056 320847 991055 905633 017410 862488 243065 593064 646321 591872 122217 703237 165634 143335 670808 815517 650717 614908 525857 670559 869414 538100 733431 873652 265448 859473 911436 958444 808690 067456 762399 873706 583816 914594 491835 740896 014332 084124 838121 952806 808575 007211 268283 511085 020815 264137 891557 968606 170793 678154 594126 534411 472327 965708 618011 504668 489747 875398 972788 487261 (795 digits), a[1514] = 3
                                                                                      A[1515]/B[1515] = 60 057462 035600 880849 619665 941026 703508 201324 064148 435122 444814 608347 732528 993392 209948 255258 789435 578207 969869 932063 927709 340260 250352 015033 015580 597177 762009 158128 006035 255238 927384 580120 915543 631368 191102 934268 302083 702395 178950 392827 386559 765399 577067 490532 340569 448873 218689 848225 641774 704999 196122 288933 055886 620436 541312 900502 515159 194329 762801 336498 438006 807447 037554 324003 372273 562833 396924 993474 452472 359720 849023 021394 819665 279517 877278 725934 147260 367844 762503 267547 480591 685742 843291 675390 571750 467352 289561 650840 542986 037605 223711 321489 709535 230099 766997 159964 854664 576764 861841 760882 160951 163439 607159 795057 307748 980091 720195 896754 403523 957718 204564 920571 362319 237824 316882 128505 944053 743720 520754 437941 910231 805883 316476 081011 125953 482581 463271 047982 888912 081734 155879 333385 814179 (794 digits)/5837 196464 887814 111049 273953 066031 685936 919086 582601 352366 419710 963026 239457 217990 762826 582132 102182 562634 211191 237390 816409 894004 197842 154433 386960 650160 913698 424371 968596 462331 943908 723121 649215 189279 746798 058520 376445 549964 285107 760943 414817 036713 735545 962317 483707 660517 023683 204391 543054 066013 499385 086994 463310 678971 097184 197891 601973 941884 766839 503437 461279 040789 183426 508547 205611 363341 100250 344833 146742 336217 342922 863608 374480 836909 425164 862880 205578 129429 389219 821262 940757 120982 171289 132533 400077 628040 362069 375650 437918 293570 373594 424871 187401 431485 208643 735298 747232 100736 200356 632600 815966 170431 980236 866161 426887 688662 648984 353127 836361 664611 379552 415329 767287 701013 398893 252055 796614 526140 344344 943167 375539 452389 394900 353048 141557 278315 387425 636422 681792 349691 109332 378750 376354 (796 digits), a[1515] = 12
                                                                                      A[1516]/B[1516] = 64 958798 040079 449271 585869 419531 613758 964725 920635 295668 222166 765593 815598 650113 637761 710722 964849 469369 877924 278212 750320 069511 800314 524944 654575 583774 391740 873131 144343 397993 054164 599871 899007 389174 396492 146152 853656 818798 563386 717151 626081 522710 700782 888811 911579 987027 853083 199831 358270 779782 783610 506510 111977 680264 863509 078692 060321 946929 008968 690056 611926 573312 207801 037252 259831 515734 006693 269182 463877 344620 202314 360246 630637 079259 582080 501044 879083 987268 766916 450269 564130 202524 477296 804586 444607 818410 103997 247966 861118 412192 632670 406415 009837 528703 321566 627874 125224 281338 349279 810251 316091 328771 346342 211014 406595 534559 943885 696247 416955 574723 808929 605023 675438 650406 564310 010999 848258 304235 393500 683445 719249 838831 239314 233822 290398 461696 886710 678288 149335 831309 379458 421697 191246 (794 digits)/6313 574590 583671 557239 553553 298323 460173 245245 430313 072016 731997 895405 246428 525877 426662 092550 127077 084832 521884 658360 751468 192895 019972 141310 089247 554785 479179 810131 900733 008984 892172 392551 486011 163182 985151 853993 701698 206307 189516 427494 024888 211749 810635 207821 024021 132389 965719 148418 913277 479340 080554 828263 402652 762158 643244 430569 891016 055419 889513 573266 592941 345991 246712 953140 925218 977759 358125 622940 813855 087006 978184 340770 058586 308965 746012 853936 111211 146840 251708 064328 533821 767303 763161 254751 103314 793674 505405 046459 253435 944287 988502 950728 857961 300899 746744 468730 620884 366185 059830 544037 774410 979122 047693 628561 300594 272479 563578 844963 577257 678943 463677 253451 720094 509588 406104 520339 307699 546955 608482 834725 344145 623183 073054 947174 675968 750643 353134 254434 186460 839438 984731 351538 863615 (796 digits), a[1516] = 1
                                                                                      A[1517]/B[1517] = 125 016260 075680 330121 205535 360558 317267 166049 984783 730790 666981 373941 548127 643505 847709 965981 754285 047577 847794 210276 678029 409772 050666 539977 670156 180952 153750 031259 150378 653231 981549 179992 814551 020542 587595 080421 155740 521193 742337 109979 012641 288110 277850 379344 252149 435901 071773 048057 000045 484781 979732 795443 167864 300701 404821 979194 575481 141258 771770 026555 049933 380759 245355 361255 632105 078567 403618 262656 916349 704341 051337 381641 450302 358777 459359 226979 026344 355113 529419 717817 044721 888267 320588 479977 016358 285762 393558 898807 404104 449797 856381 727904 719372 758803 088563 787838 979888 858103 211121 571133 477042 492210 953502 006071 714344 514651 664081 593001 820479 532442 013494 525595 037757 888230 881192 139505 792312 047955 914255 121387 629481 644714 555790 314833 416351 944278 349981 726271 038247 913043 535337 755083 005425 (795 digits)/12150 771055 471485 668288 827506 364355 146110 164332 012914 424383 151708 858431 485885 743868 189488 674682 229259 647466 733075 895751 567878 086899 217814 295743 476208 204946 392878 234503 869329 471316 836081 115673 135226 352462 731949 912514 078143 756271 474624 188437 439705 248463 546181 170138 507728 792906 989402 352810 456331 545353 579939 915257 865963 441129 740428 628461 492989 997304 656353 076704 054220 386780 430139 461688 130830 341100 458375 967773 960597 423224 321107 204378 433067 145875 171177 716816 316789 276269 640927 885591 474578 888285 934450 387284 503392 421714 867474 422109 691354 237858 362097 375600 045362 732384 955388 204029 368116 466921 260187 176638 590377 149554 027930 494722 727481 961142 212563 198091 413619 343554 843229 668781 487382 210601 804997 772395 104314 073095 952827 777892 719685 075572 467955 300222 817526 028958 740559 890856 868253 189130 094063 730289 239969 (797 digits), a[1517] = 1
                                                                                      A[1518]/B[1518] = 314 991318 191440 109513 996940 140648 248293 296825 890202 757249 556129 513476 911853 937125 333181 642686 473419 564525 573512 698766 106378 889055 901647 604899 994887 945678 699240 935649 445100 704457 017262 959857 528109 430259 571682 306995 165137 861186 048060 937109 651364 098931 256483 647500 415878 858829 996629 295945 358361 749346 743076 097396 447706 281667 673153 037081 211284 229446 552508 743166 711793 334830 698511 759763 524041 672868 813929 794496 296576 753302 304989 123529 531241 796814 500798 955002 931772 697495 825755 885903 653573 979059 118473 764540 477324 389934 891115 045581 669327 311788 345433 862224 448583 046309 498694 203552 085001 997544 771522 952518 270176 313193 253346 223157 835284 563863 272048 882251 057914 639607 835918 656213 750954 426868 326694 290011 432882 400147 222010 926220 978213 128260 350894 863489 123102 350253 586674 130830 225831 657396 450133 931863 202096 (795 digits)/30615 116701 526642 893817 208566 027033 752393 573909 456141 920783 035415 612268 218200 013613 805639 441914 585596 379765 988036 449863 887224 366693 455600 732797 041663 964678 264936 279139 639391 951618 564334 623897 756463 868108 449051 679021 857985 718850 138764 804368 904298 708676 902997 548098 039478 718203 944523 854039 825940 570047 240434 658779 134579 644418 124101 687492 876996 050029 202219 726674 701382 119552 106991 876517 186879 659960 274877 558488 735049 933455 620398 749526 924720 600716 088368 287568 744789 699379 533563 835511 482979 543875 632062 029320 110099 637104 240353 890678 636144 420004 712697 701928 948686 765669 657520 876789 357117 300027 580204 897314 955165 278230 103554 618006 755558 194763 988705 241146 404496 366053 150136 591014 694858 930792 016100 065129 516327 693147 514138 390510 783515 774328 008965 547620 311020 808560 834254 036147 922967 217699 172858 812117 343553 (797 digits), a[1518] = 2
                                                                                      A[1519]/B[1519] = 440 007578 267120 439635 202475 501206 565560 462875 874986 488040 223110 887418 459981 580631 180891 608668 227704 612103 421306 909042 784408 298827 952314 144877 665044 126630 852990 966908 595479 357688 998812 139850 342660 450802 159277 387416 320878 382379 790398 047088 664005 387041 534334 026844 668028 294731 068402 344002 358407 234128 722808 892839 615570 582369 077975 016275 786765 370705 324278 769721 761726 715589 943867 121019 156146 751436 217548 057153 212926 457643 356326 505170 981544 155591 960158 181981 958117 052609 355175 603720 698295 867326 439062 244517 493682 675697 284673 944389 073431 761586 201815 590129 167955 805112 587257 991391 064890 855647 982644 523651 747218 805404 206848 229229 549629 078514 936130 475252 878394 172049 849413 181808 788712 315099 207886 429517 225194 448103 136266 047608 607694 772974 906685 178322 539454 294531 936655 857101 264079 570439 985471 686946 207521 (795 digits)/42765 887756 998128 562106 036072 391388 898503 738241 469056 345166 187124 470699 704085 757481 995128 116596 814856 027232 721112 345615 455102 453592 673415 028540 517872 169624 657814 513643 508721 422935 400415 739570 891690 220571 181001 591535 936129 475121 613388 992806 344003 957140 449178 718236 547207 511110 933926 206850 282272 115400 820374 574037 000543 085547 864530 315954 369986 047333 858572 803378 755602 506332 537131 338205 317710 001060 733253 526262 695647 356679 941505 953905 357787 746591 259546 004385 061578 975649 174491 721102 957558 432161 566512 416604 613492 058819 107828 312788 327498 657863 074795 077528 994049 498054 612909 080818 725233 766948 840392 073953 545542 427784 131485 112729 483040 155906 201268 439237 818115 709607 993366 259796 182241 141393 821097 837524 620641 766243 466966 168403 503200 849900 476920 847843 128546 837519 574813 927004 791220 406829 266922 542406 583522 (797 digits), a[1519] = 1
                                                                                      A[1520]/B[1520] = 13515 218666 205053 298570 071205 176845 215107 183102 139797 398456 249456 136030 711301 356060 759929 902733 304557 927628 212719 970049 638627 853894 471071 951229 946211 744604 288969 942907 309481 435126 981627 155367 807922 954324 350003 929484 791489 332579 760002 349769 571525 710177 286504 452840 456727 700762 048699 616016 110578 773208 427342 882584 914823 752740 012403 525354 814245 350606 280871 834819 563594 802529 014525 390338 208444 215955 340371 509092 684370 482602 994784 278658 977566 464573 305544 414461 675284 275776 481023 997524 602449 998852 290341 100065 287804 660853 431333 377253 872280 159374 399901 566099 487257 199687 116433 945284 031727 666984 250858 662070 686740 475319 458793 100044 324156 919311 355963 139837 409739 801103 318314 110477 412323 879844 563287 175528 188715 843241 309992 354479 209056 317507 551450 213165 306731 186211 686349 843868 148218 770596 014284 540249 427726 (797 digits)/1 313591 749411 470499 756998 290737 768700 707505 721153 527832 275768 649149 733259 340772 738073 659482 939819 031277 196747 621406 818327 540297 974473 658051 589012 577829 053417 999371 688444 901034 639680 576806 811024 507170 485243 879099 425099 941869 972498 540434 588559 224417 422890 378359 095194 455704 051531 962310 059548 294104 032071 851671 879889 150872 210854 060011 166123 976577 470044 959403 828037 369457 309528 220932 022676 718179 691782 272483 346369 604470 633853 865577 366687 658352 998453 874748 419120 592158 968854 768315 468600 209732 508722 627434 527458 514861 401677 475203 274328 461104 155896 956550 027798 770171 707308 044793 301351 114130 308492 791967 115921 321438 111754 048107 999891 246762 871950 026758 418280 947967 654292 951124 384900 162093 172606 649035 190868 135580 680451 523123 442615 879541 271342 316590 982914 167425 934148 078671 846291 659579 422577 180535 084314 849213 (799 digits), a[1520] = 30
                                                                                      A[1521]/B[1521] = 54500 882243 087333 633915 487296 208587 425989 195284 434176 081865 220935 431541 305187 004874 220611 219601 445936 322616 272186 789241 338919 714405 836601 949797 449891 105048 008870 738537 833405 098196 925320 761321 574352 268099 559293 105355 486835 712698 830407 446166 950108 227750 680351 838206 494939 097779 263200 808066 800722 326962 432180 423179 274865 593329 127589 117695 043746 773130 447766 109000 016105 925706 001968 682371 989923 615257 579034 093523 950408 388055 335463 619806 891810 013885 182335 839828 659254 155715 279271 593819 108095 862735 600426 644778 644901 319111 010007 453404 562552 399083 801421 854527 116984 603861 052993 772527 191801 523584 986079 171934 494180 706682 042020 629406 846256 755760 359983 034602 517353 376463 122669 623718 438007 834477 461035 131629 980057 821068 376235 465525 443920 043005 112486 030983 766379 039378 682055 232573 856954 652824 042609 847943 918425 (797 digits)/5 297132 885402 880127 590099 199023 466191 728526 622855 580385 448240 783723 403737 067176 709776 633059 875872 939964 814223 206739 618925 616294 351487 305621 384590 829188 383296 655301 267423 112859 981657 707642 983668 920372 161546 697399 291935 703609 365115 775127 347043 241673 648701 962615 099014 370023 717238 783166 445043 458688 243688 227062 093593 604031 928964 104574 980450 276295 927513 696188 115528 233431 744445 420859 428912 190428 768189 823186 911741 113529 892095 403815 420655 991199 740406 758539 680867 430214 851068 247753 595503 796488 467052 076250 526438 672937 665529 008641 410102 171915 281450 900995 188724 074736 327286 792082 286223 181755 000920 008260 537638 831294 874800 323917 112294 470091 643706 308302 112361 609986 326779 797863 799396 830613 831820 417238 600997 162964 488049 559459 938867 021365 935269 743284 779499 798250 574111 889501 312171 429538 097137 989062 879665 980374 (799 digits), a[1521] = 4
                                                                                      A[1522]/B[1522] = 68016 100909 292386 932485 558501 385432 641096 378386 573973 480321 470391 567572 016488 360934 980541 122334 750494 250244 484906 759290 977547 568300 307673 901027 396102 849652 297840 681445 142886 533323 906947 916689 382275 222423 909297 034840 278325 045278 590409 795936 521633 937927 966856 291046 951666 798541 311900 424082 911301 100170 859523 305764 189689 346069 139992 643049 857992 123736 728637 943819 579700 728235 016494 072710 198367 831212 919405 602616 634778 870658 330247 898465 869376 478458 487880 254290 334538 431491 760295 591343 710545 861587 890767 744843 932705 979964 441340 830658 434832 558458 201323 420626 604241 803548 169427 717811 223529 190569 236937 834005 180921 182001 500813 729451 170413 675071 715946 174439 927093 177566 440983 734195 850331 714322 024322 307158 168773 664309 686227 820004 652976 360512 663936 244149 073110 225590 368405 076442 005173 423420 056894 388193 346151 (797 digits)/6 610724 634814 350627 347097 489761 234892 436032 344009 108217 724009 432873 136996 407949 447850 292542 815691 971242 010970 828146 437253 156592 325960 963672 973603 407017 436714 654672 955868 013894 621338 284449 794693 427542 646790 576498 717035 645479 337614 315561 935602 466091 071592 340974 194208 825727 768770 745476 504591 752792 275760 078733 973482 754904 139818 164586 146574 252873 397558 655591 943565 602889 053973 641791 451588 908608 459972 095670 258110 718000 525949 269392 787343 649552 738860 633288 099988 022373 819923 016069 064104 006220 975774 703685 053897 187799 067206 483844 684430 633019 437347 857545 216522 844908 034594 836875 587574 295885 309412 800227 653560 152732 986554 372025 112185 716854 515656 335060 530642 557953 981072 748988 184296 992707 004427 066273 791865 298545 168501 082583 381482 900907 206612 059875 762413 965676 508259 968173 158463 089117 519715 169597 963980 829587 (799 digits), a[1522] = 1
                                                                                      A[1523]/B[1523] = 190533 084061 672107 498886 604298 979452 708181 952057 582123 042508 161718 566685 338163 726744 181693 464270 946924 823105 242000 307823 294014 851006 451949 751852 242096 804352 604552 101428 119178 164844 739216 594700 338902 712947 377887 175036 043485 803256 011227 038039 993376 103606 614064 420300 398272 694861 887001 656232 623324 527304 151227 034707 654244 285467 407574 403794 759731 020603 905041 996639 175507 382176 034956 827792 386659 277683 417845 298757 219966 129371 995959 416738 630562 970802 158096 348409 328331 018698 799862 776506 529187 585911 381962 134466 510313 279039 892689 114721 432217 516000 204068 695780 325468 210957 391849 208149 638859 904723 459954 839944 856023 070685 043648 088309 187084 105903 791875 383482 371539 731596 004637 092110 138671 263121 509679 745946 317605 149687 748691 105534 749872 764030 440358 519281 912599 490559 418865 385457 867301 499664 156398 624330 610727 (798 digits)/18 518582 155031 581382 284294 178545 935976 600591 310873 796820 896259 649469 677729 883075 605477 218145 507256 882448 836164 863032 493431 929479 003409 232967 331797 643223 256725 964647 179159 140649 224334 276542 573055 775457 455127 850396 726006 994568 040344 406251 218248 173855 791886 644563 487432 021479 254780 274119 454226 964272 795208 384530 040559 113840 208600 433747 273598 782042 722631 007372 002659 439209 852392 704442 332090 007645 688134 014527 427962 549530 943993 942600 995343 290305 218128 025115 880843 474962 490914 279891 723711 808930 418601 483620 634233 048535 799941 976330 778963 437954 156146 616085 621769 764552 396476 465833 461371 773525 619745 608715 844759 136760 847909 067967 336665 903800 675018 978423 173646 725894 288925 295840 167990 816027 840674 549786 184727 760054 825051 724626 701832 823180 348493 863036 304327 729603 590631 825847 629097 607773 136568 328258 807627 639548 (800 digits), a[1523] = 2
                                                                                      A[1524]/B[1524] = 258549 184970 964494 431372 162800 364885 349278 330444 156096 522829 632110 134257 354652 087679 162234 586605 697419 073349 726907 067114 271562 419306 759623 652879 638199 654004 902392 782873 262064 698168 646164 511389 721177 935371 287184 209876 321810 848534 601636 833976 515010 041534 580920 711347 349939 493403 198902 080315 534625 627475 010750 340471 843933 631536 547567 046844 617723 144340 633679 940458 755208 110411 051450 900502 585027 108896 337250 901373 854745 000030 326207 315204 499939 449260 645976 602699 662869 450190 560158 367850 239733 447499 272729 879310 443019 259004 334029 945379 867050 074458 405392 116406 929710 014505 561276 925960 862389 095292 696892 673950 036944 252686 544461 817760 357497 780975 507821 557922 298632 909162 445620 826305 989002 977443 534002 053104 486378 813997 434918 925539 402849 124543 104294 763430 985709 716149 787270 461899 872474 923084 213293 012523 956878 (798 digits)/25 129306 789845 932009 631391 668307 170869 036623 654882 905038 620269 082342 814726 291025 053327 510688 322948 853690 847135 691178 930685 086071 329370 196640 305401 050240 693440 619320 135027 154543 845672 560992 367749 203000 101918 426895 443042 640047 377958 721813 153850 639946 863478 985537 681640 847207 023551 019595 958818 717065 070968 463264 014041 868744 348418 598333 420173 034916 120189 662963 946225 042098 906366 346233 783678 916254 148106 110197 686073 267531 469943 211993 782686 939857 956988 658403 980831 497336 310837 295960 787815 815151 394376 187305 688130 236334 867148 460175 463394 070973 593494 473630 838292 609460 431071 302709 048946 069410 929158 408943 498319 289493 834463 439992 448851 620655 190675 313483 704289 283848 269998 044828 352287 808734 845101 616059 976593 058599 993552 807210 083315 724087 555105 922912 066741 695280 098891 794020 787560 696890 656283 497856 771608 469135 (800 digits), a[1524] = 1
                                                                                      A[1525]/B[1525] = 707631 454003 601096 361630 929899 709223 406738 612945 894316 088167 425938 835200 047467 902102 506162 637482 341762 969804 695814 442051 837139 689619 971197 057611 518496 112362 409337 667174 643307 561182 031545 617479 781258 583689 952255 594788 687107 500325 214500 705993 023396 186675 775905 842995 098151 681668 284805 816863 692575 782254 172727 715651 342111 548540 502708 497483 995177 309285 172401 877556 685923 602998 137858 628797 556713 495476 092347 101504 929456 129432 648374 047147 630441 869323 450049 553808 654069 919079 920179 512207 008654 480909 927421 893087 396351 797048 560749 005481 166317 664917 014852 928594 184888 239968 514403 060071 363638 095308 853740 187844 929911 576058 132571 723829 902079 667854 807518 499326 968805 549920 895878 744722 116677 218008 577683 852155 290362 777682 618528 956613 555571 013116 648948 046143 884018 922858 993406 309257 612251 345832 582984 649378 524483 (798 digits)/68 777195 734723 445401 547077 515160 277714 673838 620639 606898 136797 814155 307182 465125 712132 239522 153154 589830 530436 245390 354802 101621 662149 626247 942599 743704 643607 203287 449213 449736 915679 398527 308554 181457 658964 704187 612092 274662 796261 849877 525949 453749 518844 615638 850713 715893 301882 313311 371864 398402 937145 311058 068642 851328 905437 630414 113944 851874 963010 333299 895109 523407 665125 396909 899447 840153 984346 234922 800109 084593 883880 366588 560717 170021 132105 341923 842506 469635 112588 871813 299343 439233 207353 858232 010493 521205 534238 896681 705751 579901 343135 563347 298354 983473 258619 071251 559263 912347 478062 426602 841397 715748 516835 947952 234369 145111 056369 605390 582225 293590 828921 385496 872566 433497 530877 781906 137913 877254 812157 339046 868464 271355 458705 708860 437811 120163 788415 413889 204219 001554 449135 323972 350844 577818 (800 digits), a[1525] = 2
                                                                                      A[1526]/B[1526] = 966180 638974 565590 793003 092700 074108 756016 943390 050412 610997 058048 969457 402119 989781 668397 224088 039182 043154 422721 509166 108702 108926 730820 710491 156695 766367 311730 450047 905372 259350 677710 128869 502436 519061 239439 804665 008918 348859 816137 539969 538406 228210 356826 554342 448091 175071 483707 897179 227201 409729 183478 056123 186045 180077 050275 544328 612900 453625 806081 818015 441131 713409 189309 529300 141740 604372 429598 002878 784201 129462 974581 362352 130381 318584 096026 156508 316939 369270 480337 880057 248387 928409 200151 772397 839371 056052 894778 950861 033367 739375 420245 045001 114598 254474 075679 986032 226027 190601 550632 861794 966855 828744 677033 541590 259577 448830 315340 057249 267438 459083 341499 571028 105680 195452 111685 905259 776741 591680 053447 882152 958420 137659 753242 809574 869728 639008 780676 771157 484726 268916 796277 661902 481361 (798 digits)/93 906502 524569 377411 178469 183467 448583 710462 275522 511936 757066 896498 121908 756150 765459 750210 476103 443521 377571 936569 285487 187692 991519 822888 248000 793945 337047 822607 584240 604280 761351 959519 676303 384457 760883 131083 055134 914710 174220 571690 679800 093696 382323 601176 532354 563100 325433 332907 330683 115468 008113 774322 082684 720073 253856 228747 534117 886791 083199 996263 841334 565506 571491 743143 683126 756408 132452 345120 486182 352125 353823 578582 343404 109879 089094 000327 823337 966971 423426 167774 087159 254384 601730 045537 698623 757540 401387 356857 169145 650874 936630 036978 136647 592933 689690 373960 608209 981758 407220 835546 339717 005242 351299 387944 683220 765766 247044 918874 286514 577439 098919 430325 224854 242232 375979 397966 114506 935854 805710 146256 951779 995443 013811 631772 504552 815443 887307 207909 991779 698445 105418 821829 122453 046953 (800 digits), a[1526] = 1
                                                                                      A[1527]/B[1527] = 1 673812 092978 166687 154634 022599 783332 162755 556335 944728 699164 483987 804657 449587 891884 174559 861570 380945 012959 118535 951217 945841 798546 702017 768102 675191 878729 721068 117222 548679 820532 709255 746349 283695 102751 191695 399453 696025 849185 030638 245962 561802 414886 132732 397337 546242 856739 768513 714042 919777 191983 356205 771774 528156 728617 552984 041812 608077 762910 978483 695572 127055 316407 327168 158097 698454 099848 521945 104383 713657 258895 622955 409499 760823 187907 546075 710316 971009 288350 400517 392264 257042 409319 127573 665485 235722 853101 455527 956342 199685 404292 435097 973595 299486 494442 590083 046103 589665 285910 404373 049639 896767 404802 809605 265420 161657 116685 122858 556576 236244 009004 237378 315750 222357 413460 689369 757415 067104 369362 671976 838766 513991 150776 402190 855718 753747 561867 774083 080415 096977 614749 379262 311281 005844 (799 digits)/162 683698 259292 822812 725546 698627 726298 384300 896162 118834 893864 710653 429091 221276 477591 989732 629258 033351 908008 181959 640289 289314 653669 449136 190600 537649 980655 025895 033454 054017 677031 358046 984857 565915 419847 835270 667227 189372 970482 421568 205749 547445 901168 216815 383068 278993 627315 646218 702547 513870 945259 085380 151327 571402 159293 859161 648062 738666 046210 329563 736444 088914 236617 140053 582574 596562 116798 580043 286291 436719 237703 945170 904121 279900 221199 342251 665844 436606 536015 039587 386502 693617 809083 903769 709117 278745 935626 253538 874897 230776 279765 600325 435002 576406 948309 445212 167473 894105 885283 262149 181114 720990 868135 335896 917589 910877 303414 524264 868739 871029 927840 815822 097420 675729 906857 179872 252420 813109 617867 485303 820244 266798 472517 340632 942363 935607 675722 621799 195998 699999 554554 145801 473297 624771 (801 digits), a[1527] = 1
                                                                                      A[1528]/B[1528] = 11 009053 196843 565713 720807 228298 774101 732550 281405 718784 805983 961975 797402 099647 341086 715756 393510 324852 120909 133937 216473 783752 900206 942927 319107 207847 038745 638139 153383 197451 182546 933244 606965 204607 135568 389612 201387 185073 443969 999967 015744 909220 717527 153220 938367 725548 315510 094790 181436 745864 561629 320712 686770 354985 551782 368179 795204 261367 031091 676983 991448 203463 611853 152318 477886 332465 203463 561268 629181 066144 682836 712313 819350 695320 446029 372480 418410 142995 099372 883442 233642 790642 384323 965593 765309 253708 174661 627946 688914 231480 165130 030832 886572 911517 221129 616178 262653 764018 906063 976871 159634 347460 257561 534665 134111 229520 148941 052491 396706 684902 513108 765769 465529 439824 676216 247904 449750 179367 807856 085308 914752 042367 042318 166387 943887 392214 010215 425175 253648 066591 957413 071851 529588 516425 (800 digits)/1070 008692 080326 314287 531749 375233 806374 016267 652495 224946 120255 160418 696456 083809 631011 688606 251651 643632 825621 028327 127222 923580 913536 517705 391604 019845 220977 977977 784964 928386 823540 107801 585448 779950 279970 142707 058498 050947 997115 101099 914297 378371 789332 902068 830764 237062 089327 210219 545968 198693 679668 286602 990650 148486 209619 383717 422494 318787 360461 973646 259999 098991 991194 583465 178574 335780 833243 825380 203930 972440 780047 249607 768131 789280 416290 053837 818404 586610 639516 405298 406175 416091 456233 468155 953327 430016 015144 878090 418529 035532 615223 638930 746663 051375 379547 045233 613053 346393 718920 408441 426405 331187 560111 403326 188760 231030 067532 064463 498953 803618 665964 325257 809378 296611 817122 477199 629031 814512 512915 058079 873245 596233 848915 675570 158736 429089 941642 938705 167771 898442 432743 696637 962238 795579 (802 digits), a[1528] = 6
                                                                                      A[1529]/B[1529] = 34 700971 683508 863828 317055 707496 105637 360406 400553 101083 117116 369915 196863 748529 915144 321829 042101 355501 375686 520347 600639 297100 499167 530799 725424 298732 994966 635485 577372 141033 368173 508989 567244 897516 509456 360532 003615 251246 181095 030539 293197 289464 567467 592395 212440 722887 803270 052884 258353 157370 876871 318343 832085 593113 383964 657523 427425 392178 856186 009435 669916 737446 151966 784123 591756 695849 710239 205750 991926 912091 307405 759896 867551 846784 525995 663516 965547 399994 586469 050844 093192 628969 562291 024354 961412 996847 377086 339368 023084 894125 899682 527596 633314 034038 157831 438617 834064 881722 004102 334986 528542 939148 177487 413600 667753 850217 563508 280332 746696 290951 548330 534686 712338 541831 442109 433083 106665 605207 792930 927903 583022 641092 277730 901354 687380 930389 592514 049608 841359 296753 486988 594816 900046 555119 (800 digits)/3372 709774 500271 765675 320794 824329 145420 433103 853647 793673 254630 191909 518459 472705 370627 055551 384212 964250 384871 266941 021958 060057 394279 002252 365412 597185 643588 959828 388348 839178 147651 681451 741203 905766 259758 263391 842721 342216 961827 724867 948641 682561 269166 923021 875360 990179 895297 276877 340452 109951 984263 945189 123278 016860 788152 010313 915545 695028 127596 250502 516441 385890 210200 890449 118297 603904 616530 056183 898084 354041 577845 693994 208516 647741 470069 503765 121058 196438 454564 255482 605028 941892 177784 308237 569099 568793 981060 887810 130484 337374 125436 517117 674991 730533 086950 580913 006633 933287 042044 487473 460330 714553 548469 545875 483870 603967 506010 717655 365601 281885 925733 791595 525555 565565 358224 611471 139516 256647 156612 659543 439981 055500 019264 367343 418573 222877 500651 437914 699314 395326 852785 235715 360014 011508 (802 digits), a[1529] = 3
                                                                                      A[1530]/B[1530] = 219 214883 297896 748683 623141 473275 407925 894988 684724 325283 508682 181466 978584 590826 831952 646730 646118 457860 375028 256022 820309 566355 895212 127725 671653 000245 008545 451052 617616 043651 391587 987182 010434 589706 192306 552804 223078 692550 530540 183202 774928 646008 122332 707592 213012 062875 135130 412095 731555 690089 822857 230775 679283 913665 855570 313320 359756 614440 168207 733598 010948 628140 523653 857060 028426 507563 464898 795774 580742 538692 527271 271695 024661 776027 602003 353582 211694 542962 618187 188506 792798 564459 758070 111723 533787 234792 437179 664154 827423 596235 563225 196412 686457 115746 168118 247885 267043 054350 930677 986790 330891 982349 322486 016269 140634 330825 529990 734487 876884 430611 803091 973889 739560 690813 328872 846403 089743 810614 565441 652730 412887 888920 708703 574516 068172 974551 565299 722828 301803 847112 879344 640752 929867 847139 (801 digits)/21306 267339 081956 908339 456518 321208 678896 614890 774381 986985 648036 311875 807212 920041 854774 021914 556929 429135 134848 629973 258971 283925 279210 531219 584079 602959 082511 736948 115057 963455 709450 196512 032672 214547 838519 723058 114826 104249 768081 450307 606147 473739 404334 440200 082930 178141 461110 871483 588680 858405 585251 957737 730318 249650 938531 445600 915768 488956 126039 476661 358647 414333 252399 926159 888359 959208 532424 162483 592437 096690 247121 413573 019231 675729 236707 076428 544753 765241 366901 938194 036349 067444 522939 317581 367924 842779 901510 204951 201435 059777 367842 741636 796613 434573 901250 530711 652856 946115 971187 333282 188389 618508 850928 678579 091983 854835 103596 370395 692561 494934 220367 074830 962711 690003 966470 146026 466129 354395 452591 015340 513131 929233 964501 879630 670175 766354 945551 566193 363658 270403 549455 110930 122322 864627 (803 digits), a[1530] = 6
                                                                                      A[1531]/B[1531] = 1349 990271 470889 355930 055904 547148 553192 730338 508899 052784 169209 458717 068371 293490 906860 202212 918812 102663 625856 056484 522496 695235 870440 297153 755342 300203 046239 341801 283068 402941 717701 432081 629852 435753 663295 677357 342087 406549 364336 129755 942769 165513 301463 837948 490513 100138 614052 525458 647687 297909 814014 702997 907789 075108 517386 537445 585965 078819 865432 411023 735608 506289 293889 926483 762315 741230 499631 980398 476382 144246 471033 390067 015522 502950 138015 785010 235714 657770 295592 181884 849984 015728 110711 694696 164136 405602 000164 324296 987626 471539 279033 706072 752056 728515 166540 925929 436323 207827 588170 255728 513894 833244 112403 511215 511559 835170 743452 687260 008002 874622 366882 378025 149702 686711 415346 511501 645128 468895 185580 844286 060349 974616 529952 348451 096418 777698 984312 386578 652182 379430 763056 439334 479253 637953 (802 digits)/131210 313808 992013 215712 059904 751581 218800 122448 499939 715587 142848 063164 361736 992956 499271 187038 725789 539061 193963 046780 575785 763609 069542 189569 869890 214940 138659 381517 078696 619912 404352 860523 937237 193053 290876 601740 531677 967715 570316 426713 585526 524997 695173 564222 372942 059028 661962 505778 872537 260385 495775 691615 505187 514766 419340 683919 410156 628764 883833 110470 668325 871889 724600 447408 448457 359155 811075 031085 452706 934183 060574 175432 323906 702116 890311 962336 389580 787886 655975 884646 823123 346559 315420 213725 776648 625473 390122 117517 339094 696038 332492 966938 454672 337976 494453 765182 923775 609982 869168 487166 590668 425606 654041 617350 035773 732978 127588 940029 520970 251491 247936 240581 301825 705589 157045 487629 936292 383019 872158 751586 518772 630903 806275 645127 439627 821007 173960 835074 881264 017748 149515 901296 093951 199270 (804 digits), a[1531] = 6
                                                                                      A[1532]/B[1532] = 1569 205154 768786 104613 679046 020423 961118 625327 193623 378067 677891 640184 046955 884317 738812 848943 564930 560524 000884 312507 342806 261591 765652 424879 426995 300448 054784 792853 900684 446593 109289 419263 640287 025459 855602 230161 565166 099099 894876 312958 717697 811521 423796 545540 703525 163013 749182 937554 379242 987999 636871 933773 587072 988774 372956 850765 945721 693260 033640 144621 746557 134429 817543 783543 790742 248793 964530 776173 057124 682938 998304 661762 040184 278977 740019 138592 447409 200732 913779 370391 642782 580187 868781 806419 697923 640394 437343 988451 815050 067774 842258 902485 438513 844261 334659 173814 703366 262178 518848 242518 844786 815593 434889 527484 652194 165996 273443 421747 884887 305234 169974 351914 889263 377524 744219 357904 734872 279509 751022 497016 473237 863537 238655 922967 164591 752250 549612 109406 953986 226543 642401 080087 409121 485092 (802 digits)/152516 581148 073970 124051 516423 072789 897696 737339 274321 702572 790884 375040 168949 912998 354045 208953 282718 968196 328811 676753 834757 047534 348752 720789 453969 817899 221171 118465 193754 583368 113803 057035 969909 407601 129396 324798 646504 071965 338397 877021 191673 998737 099508 004422 455872 237170 123073 377262 461218 118791 081027 649353 235505 764417 357872 129520 325925 117721 009872 587132 026973 286222 977000 373568 336817 318364 343499 193569 045144 030873 307695 589005 343138 377846 127019 038764 934334 553128 022877 822840 859472 414003 838359 531307 144573 468253 291632 322468 540529 755815 700335 708575 251285 772550 395704 295894 576632 556098 840355 820448 779058 044115 504970 295929 127757 587813 231185 310425 213531 746425 468303 315412 264537 395593 123515 633656 402421 737415 324749 766927 031904 560137 770777 524758 109803 587362 119512 401268 244922 288151 698971 012226 216274 063897 (804 digits), a[1532] = 1
                                                                                      A[1533]/B[1533] = 6057 605735 777247 669771 093042 608420 436548 606320 089769 186987 202884 379269 209238 946444 123298 749043 613603 784235 628508 994006 550915 480011 167397 571792 036328 201547 210593 720362 985121 742721 045569 689872 550713 512133 230102 367842 037585 703849 048965 068632 095862 600077 572853 474570 601088 589179 861601 338121 785416 261908 724630 504318 669008 041431 636257 089743 423130 158599 966352 844888 975279 909578 746521 277115 134542 487612 393224 308917 647756 193063 465947 375353 136075 339883 358073 200787 577942 259969 036930 293059 778331 756291 717057 113955 257907 326785 312196 289652 432776 674863 805810 413529 067598 261299 170518 447373 546421 994363 144714 983285 048255 280024 417072 093669 468142 333159 563782 952503 662664 790324 876805 433769 817492 819285 648004 585215 849745 307424 438648 335335 480063 565228 245920 117352 590194 034450 633148 714799 514141 059061 690259 679596 706618 093229 (802 digits)/588760 057253 213923 587866 609173 969950 911890 334466 322904 823305 515501 188284 868586 731951 561406 813898 573946 443650 180398 077042 080056 906212 115800 351938 231799 668637 802172 736912 659960 370016 745762 031631 846965 415856 679065 576136 471190 183611 585510 057777 160548 521208 993697 577489 740558 770539 031182 637566 256191 616758 738858 639675 211704 808018 492957 072480 387931 981927 913450 871866 749245 730558 655601 568113 458909 314248 841572 611792 588139 026802 983660 942448 353321 835655 271369 078631 192584 447270 724609 353169 401540 588570 830498 807647 210369 030233 265019 084922 960683 963485 433500 092664 208529 655627 681566 652866 653673 278279 390235 948512 927842 557953 168952 505137 419046 496417 821144 871305 161565 490767 652846 186818 095437 892368 527592 388599 143557 595265 846408 052367 614486 311317 118608 219401 769038 583093 532498 038879 616030 882203 246428 937974 742773 390961 (804 digits), a[1533] = 3
                                                                                      A[1534]/B[1534] = 19742 022362 100529 113926 958173 845685 270764 444287 462930 939029 286544 777991 674672 723650 108709 096074 405741 913230 886411 294526 995552 701625 267845 140255 535979 905089 686565 953942 856049 674756 245998 488881 292427 561859 545909 333687 677923 210647 041771 518855 005285 611754 142356 969252 506790 930553 333986 951919 735491 773725 810763 446729 594097 113069 281728 119996 215112 169059 932698 679288 672396 863166 057107 614889 194369 711631 144203 702926 000393 262129 396146 787821 448410 298627 814238 740955 181235 980640 024570 249570 977777 849063 019953 148285 471645 620750 373932 857409 113380 092366 259690 143072 641308 628158 846214 515935 342632 245267 952993 192373 989552 655666 686105 808493 056621 165474 964792 279258 872881 676208 800390 653224 341741 835381 688233 113552 284108 201783 066967 503022 913428 559221 976416 275024 935173 855602 449058 253805 496409 403728 713180 118877 528975 764779 (803 digits)/1 918796 752907 715740 887651 343944 982642 633367 740738 243036 172489 337387 939894 774710 108853 038265 650649 004558 299146 870005 907880 074927 766170 696153 776604 149368 823812 627689 329203 173635 693418 351089 151931 510805 655171 166593 053208 060074 622800 094928 050352 673319 562364 080600 736891 677548 548787 216621 289961 229792 969067 297603 568378 870620 188472 836743 346961 489721 063504 750225 202732 274710 477898 943805 077908 713545 261110 868217 028946 809561 111282 258678 416350 403103 884811 941126 274658 512087 894940 196705 882349 064094 179716 329855 954248 775680 558953 086689 577237 422581 646272 000835 986567 876874 739433 440404 254494 537652 390937 011063 665987 562585 717975 011827 811341 384897 077066 694619 924340 698228 218728 426841 875866 550851 072698 706292 799453 833094 523212 863973 924029 875363 494089 126602 182963 416919 336642 717006 517907 093014 934761 438257 826150 444594 236780 (805 digits), a[1534] = 3
                                                                                      A[1535]/B[1535] = 65283 672822 078835 011551 967564 145476 248841 939182 478562 004075 062518 713244 233257 117394 449426 037266 830829 523928 287742 877587 537573 584886 970932 992558 644267 916816 270291 582191 553270 766989 783565 156516 427996 197711 867830 368905 071355 335790 174279 625197 111719 435339 999924 382328 121461 380839 863562 193880 991891 583086 156920 844507 451299 380639 481441 449732 068466 665779 764448 882754 992470 499076 917844 121782 717651 622505 825835 417695 648935 979451 654387 738817 481306 235766 800789 423653 121650 201889 110641 041772 711665 303480 776916 558811 672844 189036 433994 861879 772916 951962 584880 842746 991524 145775 709161 995179 574318 730167 003694 560407 016913 247024 475389 519148 638005 829584 458159 790280 281309 818951 277977 393442 842718 325430 712703 925872 702069 912773 639550 844404 220349 242894 175168 942427 395715 601257 980323 476216 003369 270247 829800 036229 293545 387566 (803 digits)/6 345150 315976 361146 250820 641008 917878 811993 556681 052013 340773 527665 007969 192717 058510 676203 765845 587621 341090 790415 800682 304840 204724 204261 681750 679906 140075 685240 724522 180867 450271 799029 487426 379382 381370 178844 735760 651414 052011 870294 208835 180507 208301 235499 788164 773204 416900 681046 507449 945570 523960 631669 344811 823565 373437 003187 113364 857095 172442 164126 480063 573377 164255 487016 801839 599545 097581 446223 698633 016822 360649 759696 191499 562633 490091 094747 902606 728848 132091 314727 000216 593823 127719 820066 670393 537410 707092 525087 816635 228428 902301 436008 052367 839153 873928 002779 416350 266630 451090 423426 946475 615599 711878 204435 939161 573737 727617 905004 644327 256250 146952 933371 814417 747991 110464 646470 786960 642841 164904 438329 824457 240576 793584 498414 768292 019796 593021 683517 592600 895075 686487 561202 416426 076556 101301 (805 digits), a[1535] = 3
                                                                                      A[1536]/B[1536] = 215593 040828 337034 148582 860866 282114 017290 261834 898616 951254 474100 917724 374444 075833 456987 207874 898230 485015 749639 927289 608273 456286 180644 117931 468783 655538 497440 700517 515861 975725 596693 958430 576416 154995 149400 440402 891989 218017 564610 394446 340443 917774 142130 116236 871175 073072 924673 533562 711166 522984 281525 980251 947995 254987 726052 469192 420512 166399 226045 327553 649808 360396 810639 980237 347324 579148 621709 956012 947201 200484 359310 004273 892329 005928 216607 011914 546186 586307 356493 374889 112773 759505 350702 824720 490178 187859 675917 443048 432130 948254 014332 671313 615881 065485 973700 501474 065588 435768 964076 873595 040292 396740 112274 365938 970638 654228 339271 650099 716811 133062 634322 833552 869896 811673 826344 891170 390317 940103 985620 036235 574476 287904 501923 102307 122320 659376 390028 682453 506517 214472 202580 227565 409611 927477 (804 digits)/20 954247 700836 799179 640113 266971 736279 069348 410781 399076 194809 920382 963802 352861 284385 066876 948185 767422 322419 241253 309926 989448 380343 308938 821856 189087 244039 683411 502769 716238 044233 748177 614210 648952 799281 703127 260490 014316 778835 705810 676858 214841 187267 787100 101385 997161 799489 259760 812311 066504 540949 192611 602814 341316 308783 846304 687056 061006 580831 242604 642922 994841 970665 404855 483427 512180 553855 206888 124845 860028 193231 537766 990849 091004 355085 225369 982478 698632 291214 140886 882998 845563 562875 790055 965429 387912 680230 661953 027143 107868 353176 308860 143671 394336 361217 448742 503545 337543 744208 281344 505414 409384 853609 625135 628826 106110 259920 409633 857322 466978 659587 226957 319119 794824 404092 645705 160335 761618 017926 178963 397401 597093 874842 621846 487839 476309 115707 767559 295709 778241 994224 121865 075428 674262 540683 (806 digits), a[1536] = 3
                                                                                      A[1537]/B[1537] = 280876 713650 415869 160134 828430 427590 266132 201017 377178 955329 536619 630968 607701 193227 906413 245141 729060 008944 037382 804877 145847 041173 151577 110490 113051 572354 767732 282709 069132 742715 380259 114947 004412 352707 017230 809307 963344 553807 738890 019643 452163 353114 142054 498564 992636 453912 788235 727443 703058 106070 438446 824759 399294 635627 207493 918924 488978 832178 990494 210308 642278 859473 728484 102020 064976 201654 447545 373708 596137 179936 013697 743091 373635 241695 017396 435567 667836 788196 467134 416661 824439 062986 127619 383532 163022 376896 109912 304928 205047 900216 599213 514060 607405 211261 682862 496653 639907 165935 967771 434002 057205 643764 587663 885087 608644 483812 797431 440379 998120 952013 912300 226995 712615 137104 539048 817043 092387 852877 625170 880639 794825 530798 677092 044734 518036 260634 370352 158669 509886 484720 032380 263794 703157 315043 (804 digits)/27 299398 016813 160325 890933 907980 654157 881341 967462 451089 535583 448047 971771 545578 342895 743080 714031 355043 663510 031669 110609 294288 585067 513200 503606 868993 384115 368652 227291 897105 494505 547207 101637 028335 180651 881971 996250 665730 830847 576104 885693 395348 395569 022599 889550 770366 216389 940807 319761 012075 064909 824280 947626 164881 682220 849491 800420 918101 753273 406731 122986 568219 134920 891872 285267 111725 651436 653111 823478 876850 553881 297463 182348 653637 845176 320117 885085 427480 423305 455613 883215 439386 690595 610122 635822 925323 387323 187040 843778 336297 255477 744868 196039 233490 235145 451521 919895 604174 195298 704771 451890 024984 565487 829571 567987 679847 987538 314638 501649 723228 806540 160329 133537 542815 514557 292175 947296 404459 182830 617293 221858 837670 668427 120261 256131 496105 708729 451076 888310 673317 680711 683067 491854 750818 641984 (806 digits), a[1537] = 1
                                                                                      A[1538]/B[1538] = 777346 468129 168772 468852 517727 137294 549554 663869 652974 861913 547340 179661 589846 462289 269813 698158 356350 502903 824405 537043 899967 538632 483798 338911 694886 800248 032905 265935 654127 461156 357212 188324 585240 860409 183862 059018 818678 325633 042390 433733 244770 624002 426239 113366 856447 980898 501144 988450 117282 735125 158419 629770 746584 526242 141040 307041 398469 830757 207033 748170 934366 079344 267608 184277 477276 982457 516800 703430 139475 560356 386705 490456 639599 489318 251399 883049 881860 162700 290762 208212 761651 885477 605941 591784 816222 941651 895742 052904 842226 748687 212759 699434 830691 488009 339425 494781 345402 767640 899619 741599 154703 684269 287602 136114 187927 621853 934134 530859 713053 037090 458923 287544 295127 085882 904442 525256 575093 645859 235961 797515 164127 349501 856107 191776 158393 180645 130732 999792 526290 183912 267340 755154 815926 557563 (804 digits)/75 553043 734463 119831 421981 082933 044594 832032 345706 301255 265976 816478 907345 444017 970176 553038 376248 477509 649439 304591 531145 578025 550478 335339 829069 927074 012270 420715 957353 510449 033244 842591 817484 705623 160585 467071 252991 345778 440530 858020 448245 005537 978405 832299 880487 537894 232269 141375 451833 090654 670768 841173 498066 671079 673225 545288 287897 897210 087378 056066 888896 131280 240507 188600 053961 735631 856728 513111 771803 613729 300994 132693 355546 398280 045437 865605 752649 553593 137825 052114 649429 724336 944067 010301 237075 238559 454877 036034 714699 780462 864131 798596 535749 861316 831508 351786 343336 545892 134805 690887 409194 459353 984585 284278 764801 465806 234997 038910 860621 913436 272667 547615 586194 880455 433207 230057 054928 570536 383587 413549 841119 272435 211696 862369 000102 468520 533166 669713 072331 124877 355647 488000 059138 175899 824651 (806 digits), a[1538] = 2
                                                                                      A[1539]/B[1539] = 2 612916 118037 922186 566692 381611 839473 914796 192626 336103 541070 178640 169953 377240 580095 715854 339616 798111 517655 510599 416008 845749 657070 602972 127225 197711 973098 866448 080516 031515 126184 451895 679920 760134 933934 568816 986364 419379 530706 866061 320843 186475 225121 420771 838665 561980 396608 291670 692794 054906 311445 913705 714071 639048 214353 630614 840048 684388 324450 611595 454821 445377 097506 531308 654852 496807 149026 997947 483999 014563 861005 173814 214461 292433 709649 771596 084717 313417 276297 339421 041300 109394 719418 945444 158886 611691 201851 797138 463642 731728 146278 237492 612365 099479 675289 701138 980997 676115 468858 666630 658799 521316 696572 450470 293430 172427 349374 599835 032959 137280 063285 289070 089628 597996 394753 252376 392812 817668 790455 333056 273185 287207 579304 245413 620062 993215 802569 762551 158047 088757 036456 834402 529259 150936 987732 (805 digits)/253 958529 220202 519820 156877 156779 787942 377439 004581 354855 333513 897484 693807 877632 253425 402195 842776 787572 611827 945443 704046 028365 236502 519219 990816 650215 420926 630800 099352 428452 594240 074982 554091 145204 662408 283185 755224 703066 152440 150166 230428 411962 330786 519499 531013 384048 913197 364933 675260 284039 077216 347801 441826 178120 701897 485356 664114 609732 015407 574931 789674 962059 856442 457672 447152 318621 221622 192447 138889 718038 456863 695543 248987 848477 981489 916935 143034 088259 836780 611957 831504 612397 522796 641026 347048 641001 751954 295144 987877 677685 847873 140657 803288 817440 729670 506880 949905 241850 599715 777433 679473 403046 519243 682407 862392 077266 692529 431371 083515 463537 624542 803175 892122 184181 814178 982347 112082 116068 333592 857942 745216 654976 303517 707368 256438 901667 308229 460216 105304 047949 747654 147067 669269 278518 115937 (807 digits), a[1539] = 3
                                                                                      A[1540]/B[1540] = 19 067759 294394 624078 435699 189010 013611 953128 012254 005699 649404 797821 369335 230530 522959 280794 075475 943131 126492 398601 449105 820215 138126 704603 229488 078870 611940 098041 829547 874733 344447 520481 947769 906185 397951 165580 963569 754335 040581 104819 679635 550097 199852 371641 984025 790310 757156 542839 838008 501626 915246 554359 628272 219922 026717 555344 187382 189188 101911 488201 931921 052005 761889 986768 768244 954927 025646 502433 091423 241422 587392 603404 991685 686635 456866 652572 476071 075781 096781 666709 497313 527414 921410 224050 703991 098061 354614 475711 298403 964323 772634 875207 985990 527049 215037 247398 361765 078211 049651 566034 353195 803920 560276 440894 190125 394919 067476 132979 761573 674013 480087 482413 914944 481101 849155 671077 274946 298775 179046 567355 709812 174580 404631 574002 532217 110903 798633 468591 106122 147589 439110 108158 459968 872485 471687 (806 digits)/1853 262748 275880 758572 520121 180391 560191 474105 377775 785242 600574 098871 764000 587443 744154 368409 275685 990517 932234 922697 459467 776582 205995 969879 764786 478581 958756 836316 652820 509617 192925 367469 696122 722055 797443 449371 539564 267241 507611 909184 061243 889274 293911 468796 597581 226236 624650 695911 178655 078928 211283 275783 590849 917924 586507 942784 936700 165334 195231 080589 416620 865699 235604 392307 184027 965980 408083 860241 744031 639998 499040 001496 098461 337625 915867 284151 753888 171411 995289 335819 469962 011119 603643 497485 666415 725571 718557 102049 629843 524263 799243 783201 158771 583401 939201 899952 992673 238846 332816 132923 165508 280679 619291 061133 801546 006673 082703 058508 445230 158199 644467 169846 831050 169728 132460 106486 839503 383014 718737 419149 057635 857269 336320 813946 795174 780191 690772 891225 809459 460525 589226 517473 744023 125526 636210 (808 digits), a[1540] = 7
                                                                                      A[1541]/B[1541] = 78 883953 295616 418500 309489 137651 893921 727308 241642 358902 138689 369925 647294 299362 671932 839030 641520 570636 023625 105005 212432 126610 209577 421385 045177 513194 420859 258615 398707 530448 503974 533823 471000 384876 525739 231140 840643 436719 693031 285340 039385 386864 024530 907339 774768 723223 425234 463030 044828 061413 972432 131144 227160 518736 321223 851991 589577 441140 732096 564403 182505 653400 145066 478383 727832 316515 251613 007679 849691 980254 210575 587434 181204 038975 537116 381885 989001 616541 663424 006259 030554 219054 405059 841646 974851 003936 620309 699983 657258 589023 236817 738324 556327 207676 535438 690732 428057 988959 667464 930768 071582 736998 937678 214047 053931 752103 619279 131754 079253 833333 983635 218725 749406 522403 791375 936685 492598 012769 506641 602479 112433 985529 197830 541423 748931 436830 997103 636915 582535 679114 792897 267036 369134 640878 874480 (806 digits)/7667 009522 323725 554110 237361 878346 028708 273860 515684 495825 735810 292971 749810 227407 230042 875832 945520 749644 340767 636233 541917 134694 060486 398739 049962 564543 255953 976066 710634 466921 365941 544861 338582 033427 852182 080671 913481 772032 182887 786902 475403 969059 506432 394685 921338 288995 411800 148578 389880 599751 922349 450935 805225 849819 047929 256496 410915 271068 796331 897289 456158 424856 798860 026901 183264 182542 853957 633414 115016 278032 453023 701527 642833 198981 644959 053542 158586 773907 817937 955235 711352 656875 937370 630969 012711 543288 626182 703343 507251 774741 044848 273462 438375 151048 486478 106692 920598 197235 930980 309126 341506 525764 996407 926943 068576 103959 023341 665404 864436 096336 202411 482563 216322 863094 344019 408294 470095 648127 208542 534538 975760 084053 648800 963155 437138 022434 071321 025119 343141 890052 104560 216962 645361 780624 660777 (808 digits), a[1541] = 4
                                                                                      A[1542]/B[1542] = 571 255432 363709 553580 602123 152573 271064 044285 703750 518014 620230 387300 900395 326069 226489 154008 566119 937583 291868 133637 936130 706486 605168 654298 545730 671231 557954 908349 620500 587872 872269 257246 244772 600321 078125 783566 848073 811372 891800 102199 955333 258145 371568 723020 407406 852874 733797 784050 151804 931524 722271 472369 218395 851076 275284 519285 314424 277173 226587 439024 209460 625806 777355 335454 863071 170533 786937 556192 039267 103202 061421 715444 260113 959464 216681 325774 399082 391572 740749 710522 711193 060795 756829 115579 527948 125617 696782 375596 899214 087486 430359 043479 880280 980784 963108 082525 358171 000928 721906 081410 854274 962913 124023 939223 567647 659644 402430 055258 316350 507351 365534 013494 160790 137928 388787 227875 723132 388161 725537 784709 496850 073284 789445 363968 774737 168720 778358 927000 183871 901392 989390 977413 043911 358637 593047 (807 digits)/55522 329404 541959 637344 181654 328813 761149 391128 987567 256022 751246 149674 012672 179294 354454 499239 894331 238028 317608 376332 252887 719440 629400 761053 114524 430384 750434 668783 627261 778066 754516 181499 066196 956050 762718 014074 933936 671466 787826 417501 389071 672690 838938 231598 046949 249204 507251 735959 907819 277191 667729 432334 227430 866657 922012 738259 813107 062815 769554 361615 609729 839696 827624 580615 466877 243780 385787 294140 549145 586225 670205 912189 598293 730497 430580 658946 863995 588766 720855 022469 449430 609251 165237 914268 755396 528592 101836 025454 180605 947451 113181 697438 227397 640741 344548 646803 436860 619497 849678 296807 556053 961034 594146 549735 281578 734386 246094 716342 496282 832553 061347 547789 345310 211388 540595 964548 130172 919905 178535 160921 887956 445644 877927 556034 855140 937230 190020 067061 211452 690890 321148 036212 261555 589899 261649 (809 digits), a[1542] = 7
                                                                                      A[1543]/B[1543] = 1221 394818 023035 525661 513735 442798 436049 815879 649143 394931 379150 144527 448084 951501 124911 147047 773760 445802 607361 372281 084693 539583 419914 729982 136638 855657 536769 075314 639708 706194 248513 048315 960545 585518 681990 798274 536791 059465 476631 489739 950051 903154 767668 353380 589582 428972 892830 031130 348437 924463 416975 075882 663952 220888 871792 890562 218425 995487 185271 442451 601426 905013 699777 149293 453974 657582 825488 120063 928226 186658 333419 018322 701431 957903 970479 033434 787166 399687 144923 427304 452940 340645 918718 072806 030747 255172 013874 451177 455686 763996 097535 825284 316889 169246 461654 855783 144399 990817 111277 093589 780132 662825 185726 092494 189227 071392 424139 242270 711954 848036 714703 245714 070986 798260 568950 392436 938862 789092 957717 171898 106134 132098 776721 269361 298405 774272 553821 490915 950279 481900 771679 221862 456957 358154 060574 (808 digits)/118711 668331 407644 828798 600670 535973 551007 056118 490819 007871 238302 592319 775154 585995 938951 874312 734183 225700 975984 388898 047692 573575 319287 920845 279011 425312 756823 313633 965158 023054 874973 907859 470975 945529 377618 108821 781355 114965 758540 621905 253547 314441 184308 857882 015236 787404 426303 620498 205519 154135 257808 315604 260087 583134 891954 733016 037129 396700 335440 620520 675618 104250 454109 188132 117018 670103 625532 221695 213307 450483 793435 525906 839420 659976 506120 371435 886577 951441 259648 000174 610213 875378 267846 459506 523504 600472 829854 754251 868463 669643 271211 668338 893170 432531 175575 400299 794319 436231 630336 902741 453614 447834 184701 026413 631733 572731 515531 098089 857001 761442 325106 578141 906943 285871 425211 337390 730441 487937 565612 856382 751672 975343 404656 075225 147419 896894 451361 159241 766047 271832 746856 289387 168472 960423 184075 (810 digits), a[1543] = 2
                                                                                      A[1544]/B[1544] = 4235 439886 432816 130565 143329 480968 579213 491924 651180 702808 757680 820883 244650 180572 601222 595151 887401 274991 113952 250481 190211 325236 864912 844244 955647 238204 168262 134293 539626 706455 617808 402194 126409 356877 124098 178390 458446 989769 321694 571419 805488 967609 674573 783162 176154 139793 412287 877441 197118 704914 973196 700017 210252 513742 890663 190971 969702 263634 782401 766379 013741 340847 876686 783335 224995 143282 263401 916383 823945 663177 061678 770412 364409 833176 128118 426078 760581 590634 175519 992436 070014 082733 512983 333997 620189 891133 738405 729129 266274 379474 722966 519332 830948 488524 348072 649874 791370 973380 055737 362180 194672 951388 681202 216706 135328 873821 674847 782070 452215 051461 509643 750636 373750 532710 095638 405186 539720 755440 598689 300403 815252 469581 119609 172052 669954 491538 439823 399748 034710 347095 304428 643000 414783 433099 774769 (808 digits)/411657 334398 764894 123739 983665 936734 414170 559484 460024 279636 466153 926633 338135 937282 171310 122178 096880 915131 245561 543026 395965 440166 587264 523588 951558 706323 020904 609685 522735 847231 379437 905077 479124 792638 895572 340540 278002 016364 063448 283217 149713 616014 391864 805244 092659 611417 786162 597454 524376 739597 441154 379147 007693 616062 597876 937307 924495 252916 775876 223177 636584 152448 189952 145011 817933 254091 262383 959226 189067 937677 050512 489910 116555 710426 948941 773254 523729 443090 499799 022993 280072 235385 968777 292788 325910 330010 591400 288209 785996 956380 926816 702454 906908 938334 871274 847702 819818 928192 740689 005031 916897 304537 148249 628976 176779 452580 792688 010612 067288 116880 036667 282215 066140 069002 816229 976720 321497 383717 875373 730070 142975 371675 091895 781710 297400 627913 544103 544786 509594 506388 561716 904373 766974 471168 813874 (810 digits), a[1544] = 3
                                                                                      A[1545]/B[1545] = 18163 154363 754300 047922 087053 366672 752903 783578 253866 206166 409873 428060 426685 673791 529801 527655 323365 545767 063170 374205 845538 840530 879566 106961 959227 808474 209817 612488 798215 532016 719746 657092 466183 013027 178383 511836 370579 018542 763409 775419 172007 773593 465963 486029 294198 988146 541981 540895 136912 744123 309761 875951 504962 275860 434445 654450 097235 050026 314878 507967 656392 268405 206524 282634 353955 230711 879095 785599 224008 839366 580134 099972 159071 290608 482952 737749 829492 762223 847003 397048 732996 671579 970651 408796 511506 819706 967497 367694 520784 281894 989401 902615 640683 123343 853945 455282 309883 884337 334226 542310 558824 468379 910534 959318 730542 566679 123530 370552 520815 053882 753278 248259 565988 929100 951504 013183 097745 810855 352474 373513 367144 010423 255157 957571 978223 740426 313115 089908 089120 870281 989393 793864 116091 090553 159650 (809 digits)/1 765341 005926 467221 323758 535334 282911 207689 294056 330916 126417 102918 298853 127698 335124 624192 363025 121706 886225 958230 561003 631554 334241 668346 015201 085246 250604 840441 752376 056101 411980 392725 528169 387475 116084 959907 470982 893363 180422 012333 754773 852401 778498 751768 078858 385875 233075 570954 010316 303026 112525 022425 832192 290862 047385 283462 482247 735110 408367 438945 513231 221954 714043 213917 768179 388751 686468 675068 058599 969579 201191 995485 485547 305643 501684 301887 464453 981495 723803 258844 092147 730502 816922 142955 630659 827145 920515 195455 907091 012451 495166 978478 478158 520806 185870 660674 791111 073595 149002 593092 922869 121203 665982 777699 542318 338851 383054 686283 140538 126154 228962 471775 707002 171503 561882 690131 244272 016431 022809 067107 776663 323574 462043 772239 202066 337022 408548 627775 338387 804425 297386 993723 906882 236370 845098 439571 (811 digits), a[1545] = 4
                                                                                      A[1546]/B[1546] = 22398 594250 187116 178487 230382 847641 332117 275502 905046 908975 167554 248943 671335 854364 131024 122807 210766 820758 177122 624687 035750 165767 744478 951206 914875 046678 378079 746782 337842 238472 337555 059286 592592 369904 302481 690226 829026 008312 085104 346838 977496 741203 140537 269191 470353 127939 954269 418336 334031 449038 282958 575968 715214 789603 325108 845422 066937 313661 097280 274346 670133 609253 083211 065969 578950 373994 142497 701983 047954 502543 641812 870384 523481 123784 611071 163828 590074 352858 022523 389484 803010 754313 483634 742794 131696 710840 705903 096823 787058 661369 712368 421948 471631 611868 202018 105157 101254 857717 389963 904490 753497 419768 591737 176024 865871 440500 798378 152622 973030 105344 262921 998895 939739 461811 047142 418369 637466 566295 951163 673917 182396 480004 374767 129624 648178 231964 752938 489656 123831 217377 293822 436864 530874 523652 934419 (809 digits)/2 176998 340325 232115 447498 519000 219645 621859 853540 790940 406053 569072 225486 465834 272406 795502 485203 218587 801357 203792 104030 027519 774408 255610 538790 036804 956927 861346 362061 578837 259211 772163 433246 866599 908723 855479 811523 171365 196786 075782 037991 002115 394513 143632 884102 478534 844493 357116 607770 827402 852122 463580 211339 298555 663447 881339 419555 659605 661284 214821 736408 858538 866491 403869 913191 206684 940559 937452 017826 158647 138869 045997 975457 422199 212111 250829 237708 505225 166893 758643 115141 010575 052308 111732 923448 153056 250525 786856 195300 798448 451547 905295 180613 427715 124205 531949 638813 893414 077195 333781 927901 038100 970519 925949 171294 515630 835635 478971 151150 193442 345842 508442 989217 237643 630885 506361 220992 337928 406526 942481 506733 466549 833718 864134 983776 634423 036462 171878 883174 314019 803775 555440 811256 003345 316267 253445 (811 digits), a[1546] = 1
                                                                                      A[1547]/B[1547] = 331743 473866 373926 546743 312413 233651 402545 640618 924522 931818 755632 913271 825387 634889 364139 246956 274101 036381 542887 119824 346041 161279 302271 423858 767478 461971 502934 067441 528006 870629 445517 487104 762476 191687 413127 175011 976943 134911 954870 631164 856962 150437 433485 254709 879142 779305 901753 397603 813353 030659 271181 939513 517969 330306 985969 490359 034357 441281 676802 348821 038262 797948 371479 206208 459260 466629 874063 613361 895371 874977 565514 285355 487807 023593 037949 031350 090533 702236 162330 849835 975147 231968 741537 807914 355260 771476 850140 723227 539605 541070 962559 809894 243525 689498 682198 927481 727451 892380 793721 205181 107788 345140 194855 423666 852742 733690 300824 507274 143236 528702 434186 232802 722341 394455 611497 870358 022277 738998 668765 808353 920694 730484 501897 772317 052718 987932 854253 945093 822757 913564 102907 909967 548334 421694 241516 (810 digits)/32 243317 770479 716837 588737 801337 357949 913727 243627 404081 811167 069929 455663 649378 148819 761227 155870 181936 105226 811320 017424 016831 175957 246893 558261 600515 647594 899290 821238 159823 040945 203013 593625 519873 838218 936624 832307 292475 935427 073282 286647 882017 301682 762628 456293 085363 055982 570586 519107 886666 042239 512548 790942 470641 335655 622214 356026 969589 666346 446449 822955 241498 844922 868096 552856 282340 854307 799396 308166 190639 145358 639457 141951 216432 471241 813496 792373 054648 060315 879847 704121 878553 549235 707216 558933 969933 427876 211442 641302 190729 816837 652611 006746 508817 924748 107969 734505 581392 229737 266039 913483 654617 253261 740987 940441 557683 081951 391879 256640 834347 070757 589977 556043 498514 394279 779188 338164 747428 714186 261848 870931 855272 134107 870128 974939 218944 919019 034079 702828 200702 550244 769895 264466 283205 272839 987801 (812 digits), a[1547] = 14
                                                                                      A[1548]/B[1548] = 354142 068116 561042 725230 542796 081292 734662 916121 829569 840793 923187 162215 496723 489253 495163 369763 484867 857139 720009 744511 381791 327047 046750 375065 682353 508649 881013 814223 865849 109101 783072 546391 355068 561591 715608 865238 805969 143224 039974 978003 834458 891640 574022 523901 349495 907245 856022 815940 147384 479697 554140 515482 233184 119910 311078 335781 101294 754942 774082 623167 708396 407201 454690 272178 038210 840624 016561 315344 943326 377521 207327 155740 011288 147377 649020 195178 680608 055094 184854 239320 778157 986282 225172 550708 486957 482317 556043 820051 326664 202440 674928 231842 715157 301366 884217 032638 828706 750098 183685 109671 861285 764908 786592 599691 718614 174191 099202 659897 116266 634046 697108 231698 662080 856266 658640 288727 659744 305294 619929 482271 103091 210488 876664 901941 700897 219897 607192 434749 946589 130941 396730 346832 079208 945347 175935 (810 digits)/34 420316 110804 948953 036236 320337 577595 535587 097168 195022 217220 639001 681150 115212 421226 556729 641073 400523 906584 015112 121454 044350 950365 502504 097051 637320 604522 760637 183299 738660 300156 975177 026872 386473 746942 792104 643830 463841 132213 149064 324638 884132 696195 906261 340395 563897 900475 927703 126878 714068 894361 976129 002281 769196 999103 503553 775582 629195 327630 661271 559364 100037 711414 271966 466047 489025 794867 736848 325992 349286 284227 685455 117408 638631 683353 064326 030081 559873 227209 638490 819262 889128 601543 818949 482382 122989 678401 998298 836602 989178 268385 557906 187359 936533 048953 639919 373319 474806 306932 599821 841384 692718 223781 666937 111736 073313 917586 870850 407791 027789 416600 098420 545260 736158 025165 285549 559157 085357 120713 204330 377665 321821 967826 734263 958715 853367 955481 205958 586002 514722 354020 325336 075722 286550 589107 241246 (812 digits), a[1548] = 1
                                                                                      A[1549]/B[1549] = 1 748311 746332 618097 447665 483597 558822 341197 305106 242802 294994 448381 562133 812281 591903 344792 726010 213572 464940 422926 097869 873206 469467 489272 924121 496892 496571 026989 324336 991403 307036 577807 672670 182750 438054 275562 635967 200819 707808 114770 543180 194797 716999 729575 350315 277126 408289 325844 661364 402890 949449 487744 001442 450705 809948 230282 833483 439536 461052 773132 841491 871848 426754 190240 294920 612103 829125 940308 874741 668677 385062 394822 908315 532959 613103 634029 812064 812965 922612 901747 807119 087779 177097 642228 010748 303090 700747 074316 003432 846262 350833 662272 737265 104154 894966 219067 058037 042278 892773 528461 643868 552931 404775 341225 822433 727199 430454 697635 146862 608303 064889 222619 159597 370664 819522 246059 025268 661254 960177 148483 737438 333059 572440 008557 380083 856307 867523 283023 684093 609114 437329 689829 297295 865170 203082 945256 (811 digits)/169 924582 213699 512649 733683 082687 668332 056075 632300 184170 680049 625936 180264 110227 833725 988145 720163 784031 731562 871768 503240 194234 977419 256909 946468 149798 065685 941839 554437 114464 241573 103721 701115 065768 825990 105043 407629 147840 464279 669539 585203 418548 086466 387673 817875 340954 657886 281399 026622 742941 619687 417064 800069 547429 332069 636429 458357 486370 976869 091536 060411 641649 690579 955962 417046 238444 033778 746789 612135 587784 282269 381277 611585 770959 204654 070800 912699 294140 969154 433810 981173 435067 955410 983014 488462 461892 141484 204637 987714 147442 890379 884235 756186 254950 120562 667647 227783 480617 457467 665327 279022 425490 148388 408736 387385 850938 752298 875280 887804 945504 737157 983659 737086 443146 494940 921386 574793 088857 197039 079170 381593 142560 005414 807184 809802 632416 740943 857914 046838 259591 966326 071239 567355 429407 629268 952785 (813 digits), a[1549] = 4
                                                                                      A[1550]/B[1550] = 3 850765 560781 797237 620561 509991 198937 417057 526334 315174 430782 819950 286483 121286 673060 184748 821783 912012 787020 565861 940251 128204 265982 025296 223308 676138 501791 934992 462897 848655 723174 938687 891731 720569 437700 266734 137173 207608 558840 269516 064364 224054 325640 033173 224531 903748 723824 507712 138668 953166 378596 529628 518367 134595 739806 771644 002747 980367 677048 320348 306151 452093 260709 835170 862019 262418 498875 897179 064828 280681 147645 996972 972371 077207 373584 917079 819308 306539 900319 988349 853558 953716 340477 509628 572205 093138 883811 704675 826917 019188 904107 999473 706372 923467 091299 322351 148712 913264 535645 240608 397408 967148 574459 469044 244559 173013 035100 494472 953622 332872 763825 142346 550893 403410 495311 150758 339264 982254 225648 916896 957147 769210 355368 893779 662109 413512 954944 173239 802937 164818 005600 776388 941423 809549 351513 066447 (811 digits)/374 269480 538203 974252 503602 485712 914259 647738 361768 563363 577319 890874 041678 335668 088678 533021 081400 968587 369709 758649 127934 432820 905204 016323 989987 936916 735894 644316 292173 967588 783303 182620 429102 518011 398923 002191 459088 759522 060772 488143 495045 721228 869128 681608 976146 245807 216248 490501 180124 199952 133736 810258 602420 864055 663242 776412 692297 601937 281368 844343 680187 383337 092574 183891 300139 965913 862425 230427 550263 524854 848766 448010 340580 180550 092661 205927 855480 148155 165518 506112 781609 759264 512365 784978 459307 046773 961370 407574 812031 284064 049145 326377 699732 446433 290078 975213 828886 436041 221867 930476 399429 543698 520558 484409 886507 775191 422184 621412 183400 918798 890916 065740 019433 622451 015047 128322 708743 263071 514791 362671 140851 606941 978656 348633 578321 118201 437368 921786 679679 033906 286672 467815 210433 145365 847645 146816 (813 digits), a[1550] = 2
                                                                                      A[1551]/B[1551] = 24 852905 111023 401523 171034 543544 752446 843542 463112 133848 879691 368083 281032 540001 630264 453285 656713 685649 187063 818097 739376 642432 065359 641050 263973 553723 507322 636944 101724 083337 646086 209935 023060 506167 064255 875967 459006 446471 060849 731866 929365 539123 670839 928614 697506 699618 751236 372117 493378 121889 221028 665515 111645 258280 248788 860146 849971 321742 523342 695222 678400 584407 991013 201265 467036 186614 822381 323383 263711 352764 270938 376660 742541 996203 854613 136508 727914 652205 324532 831846 928472 810077 219962 699999 443978 861924 003617 302370 964934 961395 775481 659114 975502 644957 442762 153173 950314 521866 106644 972112 028322 355822 851532 155491 289788 765277 641057 664472 868596 605539 647840 076698 464957 791127 791389 150609 060858 554780 314070 649865 480324 948321 704653 371235 352740 337385 597188 322462 501716 598022 470934 348162 945838 722466 312161 343938 (812 digits)/2415 541465 442923 358164 755297 996965 153889 942505 802911 564352 143968 971180 430334 124236 365797 186272 208569 595555 949821 423663 270846 791160 408643 354853 886395 771298 481053 807737 307480 919996 941392 199444 275730 173837 219528 118192 162161 704972 828914 598400 555477 745921 301238 477327 674752 815797 955377 224406 107367 942654 422108 278616 414594 731763 311526 294905 612143 097994 665082 157598 141535 941672 246025 059310 217886 033927 208330 129354 913716 736913 374868 069339 655066 854259 760621 306368 045580 183071 962265 470487 670831 990655 029605 692885 244304 742535 909706 650086 859901 851827 185251 842501 954580 933549 861036 518930 201102 096864 788675 248185 675599 687681 271739 315195 706432 502087 285406 603753 988210 458298 082654 378099 853688 177852 585223 691322 827252 667286 285787 255197 226702 784211 877352 898986 279729 341625 365157 388634 124912 463029 686360 878130 829954 301602 715139 833681 (814 digits), a[1551] = 6
                                                                                      A[1552]/B[1552] = 53 556575 782828 600283 962630 597080 703831 104142 452558 582872 190165 556116 848548 201289 933589 091320 135211 283311 161148 202057 419004 413068 396701 307396 751255 783585 516437 208880 666346 015331 015347 358557 937852 732903 566212 018669 055186 100550 680539 733249 923095 302301 667319 890402 619545 302986 226297 251947 125425 196944 820653 860658 741657 651156 237384 491937 702690 623852 723733 710793 662952 620909 242736 237701 796091 635648 143638 543945 592250 986209 689522 750294 457455 069615 082811 190097 275137 610950 549385 652043 710504 573870 780402 909627 460162 816986 891046 309417 756786 941980 455071 317703 657378 213381 976823 628699 049341 956996 748935 184832 454053 678794 277523 780026 824136 703568 317215 823418 690815 543952 059505 295743 480808 985666 078089 451976 460982 091814 853790 216627 917797 665853 764675 636250 367590 088284 149320 818164 806370 360862 947469 472714 833101 254481 975835 754323 (812 digits)/5205 352411 424050 690582 014198 479643 222039 532749 967591 692067 865257 833234 902346 584140 820272 905565 498540 159699 269352 605975 669628 015141 722490 726031 762779 479513 698002 259790 907135 807582 666087 581508 980562 865685 837979 238575 783412 169467 718601 684944 606001 213071 471605 636264 325651 877403 127002 939313 394860 085260 977953 367491 431610 327582 286295 366223 916583 797926 611533 159539 963259 266681 584624 302511 735912 033768 279085 489137 377696 998681 598502 586689 650713 889069 613903 818663 946640 514299 090049 447088 123273 740574 571577 170748 947916 531845 780783 707748 531834 987718 419649 011381 608894 313533 012152 013074 231090 629770 799218 426847 750628 919061 064037 114801 299372 779365 992997 828920 159821 835395 056224 821939 726809 978156 185494 510968 363248 597644 086365 873065 594257 175365 733362 146606 137779 801452 167683 699054 929503 959965 659394 224076 870341 748571 277924 814178 (814 digits), a[1552] = 2
                                                                                      A[1553]/B[1553] = 78 409480 893852 001807 133665 140625 456277 947684 915670 716721 069856 924200 129580 741291 563853 544605 791924 968960 348212 020155 158381 055500 462060 948447 015229 337309 023759 845824 768070 098668 661433 568492 960913 239070 630467 894636 514192 547021 741389 465116 852460 841425 338159 819017 317052 002604 977533 624064 618803 318834 041682 526173 853302 909436 486173 352084 552661 945595 247076 406016 341353 205317 233749 438967 263127 822262 966019 867328 855962 338973 960461 126955 199997 065818 937424 326606 003052 263155 873918 483890 638977 383948 000365 609626 904141 678910 894663 611788 721721 903376 230552 976818 632880 858339 419585 781872 999656 478862 855580 156944 482376 034617 129055 935518 113925 468845 958273 487891 559412 149491 707345 372441 945766 776793 869478 602585 521840 646595 167860 866493 398122 614175 469329 007485 720330 425669 746509 140627 308086 958885 418403 820877 778939 976948 287997 098261 (812 digits)/7620 893876 866974 048746 769496 476608 375929 475255 770503 256420 009226 804415 332680 708377 186070 091837 707109 755255 219174 029638 940474 806302 131134 080885 649175 250812 179056 067528 214616 727579 607479 780953 256293 039523 057507 356767 945573 874440 547516 283345 161478 958992 772844 113592 000404 693201 082380 163719 502228 027915 400061 646107 846205 059345 597821 661129 528726 895921 276615 317138 104795 208353 830649 361821 953798 067695 487415 618492 291413 735594 973370 656029 305780 743329 374525 125031 992220 697371 052314 917575 794105 731229 601182 863634 192221 274381 690490 357835 391736 839545 604900 853883 563475 247082 873188 532004 432192 726635 587893 675033 426228 606742 335776 429997 005805 281453 278404 432674 148032 293693 138879 200039 580498 156008 770718 202291 190501 264930 372153 128262 820959 959577 610715 045592 417509 143077 532841 087689 054416 422995 345755 102207 700296 050173 993064 647859 (814 digits), a[1553] = 1
                                                                                      A[1554]/B[1554] = 131 966056 676680 602091 096295 737706 160109 051827 368229 299593 260022 480316 978128 942581 497442 635925 927136 252271 509360 222212 577385 468568 858762 255843 766485 120894 540197 054705 434416 113999 676780 927050 898765 971974 196679 913305 569378 647572 421929 198366 775556 143727 005479 709419 936597 305591 203830 876011 744228 515778 862336 386832 594960 560592 723557 844022 255352 569447 970810 116810 004305 826226 476485 676669 059219 457911 109658 411274 448213 325183 649983 877249 657452 135434 020235 516703 278189 874106 423304 135934 349481 957818 780768 519254 364304 495897 785709 921206 478508 845356 685624 294522 290259 071721 396409 410572 048998 435859 604515 341776 936429 713411 406579 715544 938062 172414 275489 311310 250227 693443 766850 668185 426575 762459 947568 054561 982822 738410 021651 083121 315920 280029 234004 643736 087920 513953 895829 958792 114457 319748 365873 293592 612041 231430 263832 852584 (813 digits)/12826 246288 291024 739328 783694 956251 597969 008005 738094 948487 874484 637650 235027 292518 006342 997403 205649 914954 488526 635614 610102 821443 853624 806917 411954 730325 877058 327319 121752 535162 273567 362462 236855 905208 895486 595343 728986 043908 266117 968289 767480 172064 244449 749856 326056 570604 209383 103032 897088 113176 378015 013599 277815 386927 884117 027353 445310 693847 888148 476678 068054 475035 415273 664333 689710 101463 766501 107629 669110 734276 571873 242718 956494 632398 988428 943695 938861 211670 142364 364663 917379 471804 172760 034383 140137 806227 471274 065583 923571 827264 024549 865265 172369 560615 885340 545078 663283 356406 387112 101881 176857 525803 399813 544798 305178 060819 271402 261594 307854 129088 195104 021979 307308 134164 956212 713259 553749 862574 458519 001328 415217 134943 344077 192198 555288 944529 700524 786743 983920 382961 005149 326284 570637 798745 270989 462037 (815 digits), a[1554] = 1
                                                                                      A[1555]/B[1555] = 2717 730614 427464 043629 059579 894748 658458 984232 280256 708586 270306 530539 692159 592921 512706 263124 334650 014390 535416 464406 706090 426877 637306 065322 344931 755199 827700 939933 456392 378662 197052 109510 936232 678554 564066 160747 901765 498470 179973 432452 363583 715965 447754 007416 048998 114429 054151 144299 503373 634411 288410 262825 752514 121290 957330 232529 659713 334554 663278 742216 427469 729846 763462 972348 447516 980485 159188 092817 820228 842646 960138 671948 349039 774499 342134 660671 566849 745284 340001 202577 628616 540323 615735 994714 190231 596866 608862 035918 291898 810509 943038 867264 438062 292767 347773 993313 979625 196054 945886 992483 210970 302845 260650 246416 875168 917131 468059 714096 563966 018367 044358 736150 477282 025992 820839 693825 178295 414795 600882 528919 716528 214760 149421 882207 478740 704747 663108 316469 597233 353852 735869 692730 019764 605553 564654 149941 (814 digits)/264145 819642 687468 835322 443395 601640 335309 635370 532402 226177 498919 557420 033226 558737 312930 039901 820108 054344 989706 741931 142531 235179 203630 219233 888269 857329 720222 613910 649667 430825 078827 030197 993411 143700 967239 263642 525294 752605 869875 649140 511082 400277 661839 110718 521536 105285 270042 224377 443990 291442 960361 918093 402512 797903 280162 208198 434940 772879 039584 850699 465884 709062 136122 648495 748000 096970 817437 771085 673628 421126 410835 510408 435673 391309 143103 998950 769444 930773 899602 210854 141695 167313 056383 551296 994977 398931 115971 669513 863173 384826 095898 159187 010866 459400 579999 433577 697859 854763 330135 712656 963379 122810 332047 325963 109366 497838 706449 664560 305114 875457 040959 639625 726660 839307 894972 467482 265498 516419 542533 154831 125302 658444 492258 889563 523288 033671 543336 822568 732824 082215 448741 627899 113052 025079 412853 888599 (816 digits), a[1555] = 20
                                                                                      A[1556]/B[1556] = 2849 696671 104144 645720 155875 632454 818568 036059 648486 008179 530329 010856 670288 535503 010148 899050 261786 266662 044776 686619 283475 895446 496068 321166 111416 876094 367897 994638 890808 492661 873833 036561 834998 650528 760746 074053 471144 146042 601902 630819 139139 859692 453233 716835 985595 420020 257982 020311 247602 150190 150746 649658 347474 681883 680888 076551 915065 904002 634088 859026 431775 556073 239948 649017 506736 438396 268846 504092 268442 167830 610122 549198 006491 909933 362370 177374 845039 619390 763305 338511 978098 498142 396504 513968 554536 092764 394571 957124 770407 655866 628663 161786 728321 364488 744183 403886 028623 631914 550402 334260 147400 016256 667229 961961 813231 089545 743549 025406 814193 711810 811209 404335 903857 788452 768407 748387 161118 153205 622533 612041 032448 494789 383426 525943 566661 218701 558938 275261 711690 673601 101742 986322 631805 836983 828487 002525 (814 digits)/276972 065930 978493 574651 227090 557891 933278 643376 270497 174665 373404 195070 268253 851255 319273 037305 025757 969299 478233 377545 752634 056623 057255 026151 300224 587655 597280 941229 771419 965987 352394 392660 230267 048909 862725 858986 254280 796514 135993 617430 278562 572341 906288 860574 847592 675889 479425 327410 341078 404619 338376 931692 680328 184831 164279 235551 880251 466726 927733 327377 533939 184097 551396 312829 437710 198434 583938 878715 342739 155402 982708 753127 392168 023708 131532 942646 708306 142444 041966 575518 059074 639117 229143 585680 135115 205158 587245 735097 786745 212090 120448 024452 183236 020016 465339 978656 361143 211169 717247 814538 140236 648613 731860 870761 414544 558657 977851 926154 612969 004545 236063 661605 033968 973472 851185 180741 819248 378994 001052 156159 540519 793387 836336 081762 078576 978201 243861 609312 716744 465176 453890 954183 683689 823824 683843 350636 (816 digits), a[1556] = 1
                                                                                      A[1557]/B[1557] = 11266 820627 739897 980789 527206 792113 114163 092411 225714 733124 861293 563109 703025 199430 543152 960275 120008 814376 669746 524264 556518 113217 125511 028820 679182 383482 931394 923850 128817 856647 818551 219196 441228 630140 846304 382908 315197 936597 985681 324909 781003 295042 807455 157924 005784 374489 828097 205233 246180 084981 740650 211800 794938 166941 999994 462185 404911 046562 565545 319295 722796 398066 483308 919400 967726 295673 965727 605094 625555 346138 790506 319542 368515 504299 429245 192796 101968 603456 629917 218113 562912 034750 805249 536619 853839 875159 792577 907292 603121 778109 829028 352624 623026 386233 580324 204972 065496 091798 597093 995263 653170 351615 262340 132302 314862 185768 698706 790317 006547 153799 477986 949158 188855 391351 126062 938986 661649 874412 468483 365042 813873 699128 299701 460038 178724 360852 339923 142254 732305 374656 041098 651697 915182 116505 050115 157516 (815 digits)/1 095062 017435 622949 559276 124667 275316 135145 565499 343893 750173 619132 142630 837988 112503 270749 151816 897381 962243 424406 874568 400433 405048 375395 297687 788943 620296 512065 437599 963927 328787 136010 208178 684212 290430 555416 840601 288137 142148 277856 501431 346770 117303 380705 692443 064314 132953 708318 206608 467225 505300 975492 713171 443497 352396 772999 914854 075695 173059 822784 832832 067702 261354 790311 586984 061130 692274 569254 407231 701845 887335 358961 769790 612177 462433 537702 826890 894363 358106 025501 937408 318919 084664 743814 308337 400323 014406 877708 874807 223409 021096 457242 232543 560574 519449 976019 369546 781289 488272 481879 156271 384089 068651 527629 938247 353000 173812 640005 443024 144021 889092 749150 624440 828567 759726 448528 009707 723243 653401 545689 623309 746862 038608 001267 134849 759018 968275 274921 650506 883057 477744 810414 490450 164121 496553 464383 940507 (817 digits), a[1557] = 3
                                                                                      A[1558]/B[1558] = 25383 337926 583940 607299 210289 216681 046894 220882 099915 474429 252916 137076 076338 934364 096454 819600 501803 895415 384269 735148 396512 121880 747090 378807 469781 643060 230687 842339 148444 205957 510935 474954 717455 910810 453354 839870 101540 019238 573265 280638 701146 449778 068144 032683 997164 168999 914176 430777 739962 320153 632047 073259 937351 015767 680877 000922 724887 997127 765179 497617 877368 352206 206566 487819 442189 029744 200301 714281 519552 860108 191135 188282 743522 918532 220860 562967 048976 826304 023139 774739 103922 567644 007003 587208 262215 843083 979727 771709 976651 212086 286719 867035 974374 136955 904831 813830 159615 815511 744590 324787 453740 719487 191910 226566 442955 461083 140962 606040 827288 019409 767183 302652 281568 571155 020533 626360 484417 902030 559500 342126 660195 893045 982829 446019 924109 940406 238784 559771 176301 422913 183940 289718 462170 069993 928717 317557 (815 digits)/2 467096 100802 224392 693203 476425 108524 203569 774374 958284 675012 611668 480331 944230 076261 860771 340938 820521 893786 327047 126682 553500 866719 808045 621526 878111 828248 621411 816429 699274 623561 624414 809017 598691 629770 973559 540188 830555 080810 691706 620292 972102 806948 667700 245460 976220 941796 896061 740627 275529 415221 289362 358035 567322 889624 710279 065260 031641 812846 573302 993041 669343 706807 132019 486797 559971 582983 722447 693178 746430 930073 700632 292708 616522 948575 206938 596428 497032 858656 092970 450334 696912 808446 716772 202354 935761 233972 342663 484712 233563 254283 034932 489539 304385 058916 417378 717749 923722 187714 681006 127080 908414 785916 787120 747256 120544 906283 257862 812202 901012 782730 734364 910486 691104 492925 748241 200157 265735 685797 092431 402779 034243 870603 838870 351461 596614 914751 793704 910326 482859 420666 074719 935084 011932 816931 612611 231650 (817 digits), a[1558] = 2
                                                                                      A[1559]/B[1559] = 36650 158554 323838 588088 737496 008794 161057 313293 325630 207554 114209 700185 779364 133794 639607 779875 621812 709792 054016 259412 953030 235097 872601 407628 148964 026543 162082 766189 277262 062605 329486 694151 158684 540951 299659 222778 416737 955836 558946 605548 482149 744820 875599 190608 002948 543489 742273 636010 986142 405135 372697 285060 732289 182709 680871 463108 129799 043690 330724 816913 600164 750272 689875 407220 409915 325418 166029 319376 145108 206246 981641 507825 112038 422831 650105 755763 150945 429760 653056 992852 666834 602394 812253 123828 116055 718243 772305 679002 579772 990196 115748 219660 597400 523189 485156 018802 225111 907310 341684 320051 106911 071102 454250 358868 757817 646851 839669 396357 833835 173209 245170 251810 470423 962506 146596 565347 146067 776443 027983 707169 474069 592174 282530 906058 102834 301258 578707 702025 908606 797569 225038 941416 377352 186498 978832 475073 (815 digits)/3 562158 118237 847342 252479 601092 383840 338715 339874 302178 425186 230800 622962 782218 188765 131520 492755 717903 856029 751454 001250 953934 271768 183440 919214 667055 448545 133477 254029 663201 952348 760425 017196 282903 920201 528976 380790 118692 222958 969563 121724 318872 924252 048405 937904 040535 074750 604379 947235 742754 920522 264855 071207 010820 242021 483278 980114 107336 985906 396087 825873 737045 968161 922331 073781 621102 275258 291702 100410 448276 817409 059594 062499 228700 411008 744641 423319 391396 216762 118472 387743 015831 893111 460586 510692 336084 248379 220372 359519 456972 275379 492174 722082 864959 578366 393398 087296 705011 675987 162885 283352 292503 854568 314750 685503 473545 080095 897868 255227 045034 671823 483515 534927 519672 252652 196769 209864 988979 339198 638121 026088 781105 909211 840137 486311 355633 883027 068626 560833 365916 898410 885134 425534 176054 313485 076995 172157 (817 digits), a[1559] = 1
                                                                                      A[1560]/B[1560] = 62033 496480 907779 195387 947785 225475 207951 534175 425545 681983 367125 837261 855703 068158 736062 599476 123616 605207 438285 994561 349542 356978 619691 786435 618745 669603 392770 608528 425706 268562 840422 169105 876140 451761 753014 062648 518277 975075 132211 886187 183296 194598 943743 223292 000112 712489 656450 066788 726104 725289 004744 358320 669640 198477 361748 464030 854687 040818 095904 314531 477533 102478 896441 895039 852104 355162 366331 033657 664661 066355 172776 696107 855561 341363 870966 318730 199922 256064 676196 767591 770757 170038 819256 711036 378271 561327 752033 450712 556424 202282 402468 086696 571774 660145 389987 832632 384727 722822 086274 644838 560651 790589 646160 585435 200773 107934 980632 002398 661123 192619 012353 554462 751992 533661 167130 191707 630485 678473 587484 049296 134265 485220 265360 352078 026944 241664 817492 261797 084908 220482 408979 231134 839522 256492 907549 792630 (815 digits)/6 029254 219040 071734 945683 077517 492364 542285 114249 260463 100198 842469 103294 726448 265026 992291 833694 538425 749816 078501 127933 507435 138487 991486 540741 545167 276793 754889 070459 362476 575910 384839 826213 881595 549972 502535 920978 949247 303769 661269 742017 290975 731200 716106 183365 016756 016547 500441 687863 018284 335743 554217 429242 578143 131646 193558 045374 138978 798752 969390 818915 406389 674969 054350 560579 181073 858242 014149 793589 194707 747482 760226 355207 845223 359583 951580 019747 888429 075418 211442 838077 712744 701558 177358 713047 271845 482351 563035 844231 690535 529662 527107 211622 169344 637282 810776 805046 628733 863701 843891 410433 200918 640485 101871 432759 594089 986379 155731 067429 946047 454554 217880 445414 210776 745577 945010 410022 254715 024995 730552 428867 815349 779815 679007 837772 952248 797778 862331 471159 848776 319076 959854 360618 187987 130416 689606 403807 (817 digits), a[1560] = 1
                                                                                      A[1561]/B[1561] = 905119 109287 032747 323520 006489 165447 072378 791749 283269 755321 253971 421851 759207 088016 944484 172541 352445 182696 190020 183271 846623 232798 548286 417726 811403 400990 660871 285587 237149 822485 095397 061633 424650 865615 841856 099857 672629 606888 409913 012169 048296 469206 088004 316696 004526 518344 932574 571053 151608 559181 439118 301550 107251 961392 745349 959540 095417 615143 673385 220354 285628 184977 240061 937778 339376 297691 294663 790583 450363 135219 400515 253335 089897 201925 843634 217985 949857 014666 119811 739137 457434 982938 281847 078337 411857 576832 300773 988978 369711 822149 750301 433412 602245 765224 944985 675655 611300 026819 549529 347790 956036 139357 500498 554961 568641 157941 568517 429939 089559 869875 418120 014288 998319 433762 486419 249253 972867 275073 252760 397315 353786 385257 997575 835150 480053 684566 023599 367185 097321 884322 950748 177304 130663 777399 684529 571893 (816 digits)/87 971717 184798 851631 492042 686337 276943 930706 939363 948661 827970 025368 069088 952493 899143 023606 164479 255864 353454 850469 792320 058026 210600 064252 489596 299397 323657 701924 240460 737874 015094 148182 584190 625241 619816 564479 274495 408154 475734 227339 509966 392533 161062 073892 505014 275119 306415 610563 577317 998735 620932 023899 080603 104824 085068 193091 615352 053040 168447 967559 290689 426501 417728 683238 921890 156136 290646 489799 210659 174185 282167 702763 035409 061827 445184 066761 699789 829403 272617 078672 120830 994257 714925 943608 493354 141921 001301 102874 178763 124469 690654 871675 684793 235784 500325 744273 357949 507285 767812 977365 029417 105364 821359 740950 744137 790804 889404 078103 199246 289699 035582 533841 770726 470546 690743 426914 950176 554989 689138 865855 030238 196002 826631 346247 215132 687117 051931 141267 157071 248785 365488 323095 474188 807874 139318 731484 825455 (818 digits), a[1561] = 14
                                                                                      A[1562]/B[1562] = 5 492748 152203 104263 136507 986720 218157 642224 284671 125164 213910 890954 368372 410945 596260 402967 634724 238287 701384 578407 094192 429281 753769 909410 292796 487166 075547 357998 322051 848605 203473 412804 538906 424045 645456 804150 661794 554055 616405 591689 959201 473075 009835 471769 123468 027271 822559 251897 493107 635756 080377 639454 167621 313151 966833 833848 221271 427192 731680 136215 636657 191302 212342 336813 521709 888362 141310 134313 777158 366839 877671 575868 216118 394944 552918 932771 626645 899064 344061 395067 202416 515367 067668 510339 181060 849417 022321 556677 384582 774695 135180 904276 687172 185249 251495 059901 886566 052527 883739 383450 731584 296868 626734 649151 915204 612620 055584 391736 582033 198482 411871 521073 640196 741909 136236 085645 687231 467689 328913 104046 433188 256983 796768 250815 362980 907266 349060 959088 464907 668839 526420 113468 294959 623504 920891 014727 223988 (817 digits)/533 859557 327833 181523 897939 195541 154028 126526 750432 952434 068018 994677 517828 441411 659885 133928 820570 073611 870545 181319 881853 855592 402088 377001 478319 341551 218739 966434 513223 789720 666475 273935 331357 633045 268871 889411 567951 398174 158175 025306 801815 646174 697573 159461 213450 667471 855041 163823 151771 010698 061335 697611 912861 207087 642055 352107 737486 457219 809440 774746 563051 965398 181341 153784 091920 117891 602120 952945 057544 239819 440488 976804 567662 216188 030688 352150 218486 864848 711120 683475 563063 678290 991113 839009 673172 123371 490158 180280 916810 437353 673591 757161 320381 584051 639237 276416 952743 672448 470579 708081 586935 833107 568643 547575 897586 338919 322803 624350 262907 684241 668049 420931 069773 034056 890038 506500 111081 584653 159828 925682 610296 991366 739603 756491 128569 074951 109365 709934 413587 341488 512006 898427 205751 035231 966329 078515 356537 (819 digits), a[1562] = 6
                                                                                      A[1563]/B[1563] = 50 339852 479114 971115 552091 886971 128865 852397 353789 409747 680519 272560 737203 457717 454360 571192 885059 497034 495157 395684 031003 710159 016727 732979 052895 195898 080916 882856 184053 874596 653745 810637 911791 241061 674727 079212 056008 659130 154538 735122 644982 305971 557725 333926 427908 249972 921378 199652 009021 873413 282580 194205 810141 925619 662897 249983 950982 940152 200264 899325 950269 007348 096058 271383 633167 334635 569482 503487 785008 751922 034263 583329 198400 644398 178196 238578 857799 041436 111218 675416 560886 095738 591954 874899 707885 056610 777726 310870 450223 341968 038777 888791 617962 269489 028680 484102 654750 084050 980474 000585 932049 627853 779969 342865 791803 082221 658201 094146 668237 875901 576719 107782 776059 675501 659887 257230 434337 182071 235291 189178 296009 666640 556172 254914 101978 645450 826114 655395 551354 116877 622103 971962 831940 742208 065418 817074 587785 (818 digits)/4892 707733 135297 485346 573495 446207 663197 069447 693260 520568 440140 977465 729544 925198 838109 228965 549609 918371 188361 482348 729004 758357 829395 457265 794470 373358 292317 399834 859474 845360 013371 613600 566409 322649 039663 569183 386057 991721 899309 455100 726307 208105 439220 509043 426070 282366 001786 084971 943257 095018 172953 302406 296353 968612 863566 362061 252730 168018 453414 940278 358157 115085 049799 067295 749171 217160 709735 066304 728557 332560 246568 494004 144369 007519 721379 236113 666171 613041 672703 229952 188404 098876 634950 494695 551903 252264 412724 725402 430057 060652 752980 686127 568227 492249 253461 232025 932642 559322 003030 350099 311839 603332 939151 669133 822414 841078 794636 697255 565415 447874 048027 322221 398683 777058 701089 985415 949910 816868 127599 196998 522911 118303 483065 154667 372254 361677 036222 530676 879357 322181 973550 408940 325948 124961 836280 438123 034288 (820 digits), a[1563] = 9
                                                                                      A[1564]/B[1564] = 55 832600 631318 075378 688599 873691 347023 494621 638460 534911 894430 163515 105575 868663 050620 974160 519783 735322 196541 974091 125196 139440 770497 642389 345691 683064 156464 240854 506105 723201 857219 223442 450697 665107 320183 883362 717803 213185 770944 326812 604183 779046 567560 805695 551376 277244 743937 451549 502129 509169 362957 833659 977763 238771 629731 083832 172254 367344 931945 035541 586926 198650 308400 608197 154877 222997 710792 637801 562167 118761 911935 159197 414519 039342 731115 171350 484444 940500 455280 070483 763302 611105 659623 385238 888945 906027 800047 867547 834806 116663 173958 793068 305134 454738 280175 544004 541316 136578 864213 384036 663633 924722 406703 992017 707007 694841 713785 485883 250271 074383 988590 628856 416256 417410 796123 342876 121568 649760 564204 293224 729197 923624 352940 505729 464959 552717 175175 614484 016261 785717 148524 085431 126900 365712 986309 831801 811773 (818 digits)/5426 567290 463130 666870 471434 641748 817225 195974 443693 473002 508159 972143 247373 366610 497994 362894 370179 991983 058906 663668 610858 613950 231483 834267 272789 714909 511057 366269 372698 635080 679846 887535 897766 955694 308535 458594 954009 389896 057484 480407 528122 854280 136793 668504 639520 949837 856827 248795 095028 105716 234289 000018 209215 175700 505621 714168 990216 625238 262855 715024 921209 080483 231140 221079 841091 335052 311856 019249 786101 572379 687057 470808 712031 223707 752067 588263 884658 477890 383823 913427 751467 777167 626064 333705 225075 375635 902882 905683 346867 498006 426572 443288 888609 076300 892698 508442 885386 231770 473610 058180 898775 436440 507795 216709 720001 179998 117440 321605 828323 132115 716076 743152 468456 811115 591128 491916 060992 401521 287428 122681 133208 109670 222668 911158 500823 436628 145588 240611 292944 663670 485557 307367 531699 160193 802609 516638 390825 (820 digits), a[1564] = 1
                                                                                      A[1565]/B[1565] = 217 837654 373069 197251 617891 508045 169936 336262 269171 014483 363809 763106 053931 063706 606223 493674 444410 703001 084783 317957 406592 128481 328220 660147 089970 245090 550309 605419 702371 044202 225403 480965 263884 236383 635278 729300 209418 298687 467371 715560 457533 643111 260407 751013 082037 081707 153190 554300 515410 400921 371453 695185 743431 641934 552090 501480 467746 042186 996100 005950 711047 603299 021260 095975 097799 003628 701860 416892 471510 108207 770069 060921 441957 762426 371541 752630 311133 862937 477058 886867 850793 929055 570825 030616 374722 774694 177869 913513 954641 691957 560654 267996 533365 633703 869207 116116 278698 493787 573114 152695 922951 402021 000081 318918 912826 166746 799557 551796 419051 099053 542490 994352 024828 927734 048257 285858 799043 131352 927904 068852 483603 437513 614993 772102 496857 303602 351641 498847 600139 474029 067676 228256 212641 839347 024348 312480 023104 (819 digits)/21172 409604 524689 485957 987799 371454 114872 657371 024340 939575 964620 893895 471665 025030 332092 317648 660149 894320 365081 473354 561580 600208 523846 960067 612839 518086 825489 498642 977570 750602 052912 276208 259710 189731 965269 944968 248086 161410 071762 896323 310675 770945 849601 514557 344633 131879 572267 831357 228341 412166 875820 302460 923999 495714 380431 504568 223380 043733 241982 085353 121784 356534 743219 730535 272445 222317 645303 124054 086862 049699 307740 906430 280462 678642 977582 000905 320147 046712 824174 970235 442807 430379 513143 495811 227129 379172 121373 442452 470659 554672 032698 015994 234054 721151 931556 757354 588801 254633 423860 524642 008165 912654 462537 319262 982418 381073 146957 662073 050384 844221 196257 551678 804054 210405 474475 461164 132888 021431 989883 565041 922535 447314 151071 888142 874724 671561 472987 252510 758191 313193 430222 331042 921045 605543 244108 988038 206763 (821 digits), a[1565] = 3
                                                                                      A[1566]/B[1566] = 273 670255 004387 272630 306491 381736 516959 830883 907631 549395 258239 926621 159506 932369 656844 467834 964194 438323 281325 292048 531788 267922 098718 302536 435661 928154 706773 846274 208476 767404 082622 704407 714581 901490 955462 612662 927221 511873 238316 042373 061717 422157 827968 556708 633413 358951 897128 005850 017539 910090 734411 528845 721194 880706 181821 585312 640000 409531 928045 041492 297973 801949 329660 704172 252676 226626 412653 054694 033677 226969 682004 220118 856476 801769 102656 923980 795578 803437 932338 957351 614096 540161 230448 415855 263668 680721 977917 781061 789447 808620 734613 061064 838500 088442 149382 660120 820014 630366 437327 536732 586585 326743 406785 310936 619833 861588 513343 037679 669322 173437 531081 623208 441085 345144 844380 628734 920611 781113 492108 362077 212801 361137 967934 277831 961816 856319 526817 113331 616401 259746 216200 313687 339542 205060 010658 144281 834877 (819 digits)/26598 976894 987820 152828 459234 013202 932097 853345 468034 412578 472780 866038 719038 391640 830086 680543 030329 886303 423988 137023 172439 214158 755330 794334 885629 232996 336546 864912 350269 385682 732759 163744 157477 145426 273805 403563 202095 551306 129247 376730 838798 625225 986395 183061 984154 081717 429095 080152 323369 517883 110109 302479 133214 671414 886053 218737 213596 668971 504837 800378 042993 437017 974359 951615 113536 557369 957159 143303 872963 622078 994798 377238 992493 902350 729649 589169 204805 524603 207998 883663 194275 207547 139207 829516 452204 754808 024256 348135 817527 052678 459270 459283 122663 797452 824255 265797 474187 486403 897470 582822 906941 349094 970332 535972 702419 561071 264397 983678 878707 976336 912334 294831 272511 021521 065603 953080 193880 422953 277311 687723 055743 556984 373740 799301 375548 108189 618575 493122 051135 976863 915779 638410 452744 765737 046718 504676 597588 (821 digits), a[1566] = 1
                                                                                      A[1567]/B[1567] = 2133 529439 403780 105663 763331 180200 788655 152449 622591 860250 171489 249454 170479 590294 204134 768519 193771 771264 054060 362297 129110 003936 019248 777902 139603 742173 497726 529339 161708 416030 803762 411819 265957 546820 323517 017940 699968 881800 135584 012171 889555 598216 056187 647973 515930 594370 433086 595250 638189 771556 512334 397105 791795 806877 824841 598668 947748 908910 492415 296396 796864 216944 328885 025180 866532 590013 590431 799750 707250 696995 544098 601753 437295 374810 090140 220495 880185 487003 003431 588329 149469 710184 183963 941603 220403 539748 023294 380946 480776 352302 702945 695450 402866 252798 914885 736962 018800 906352 634406 909824 029048 689224 847578 495475 251663 197866 392958 815554 104306 313116 260062 356811 112426 343747 958921 687003 243325 599147 372662 603392 973212 965479 390533 716926 229575 297839 039361 292168 914948 292252 581078 424067 589437 274767 098955 322452 867243 (820 digits)/207365 247869 439430 555757 202437 463874 639557 630789 300581 827625 274086 956166 504933 766516 142699 081449 872459 098444 332998 432516 768655 099319 811162 520411 812244 149061 181317 553029 429456 450381 182226 422417 362050 207715 881907 769910 662755 020552 976494 533439 182266 147527 754367 795991 233711 703901 575933 392423 491928 037348 646585 419814 856502 195618 582804 035728 718556 726533 775846 687999 422738 415660 563739 391841 067201 123907 345417 127181 197607 404252 271329 547103 227919 995098 085129 125089 753785 718935 280167 155877 802733 883209 487598 302426 392562 662828 291167 879403 193348 923421 247591 230976 092701 303321 701343 617936 908113 659460 706154 604402 356755 356319 254865 071071 899355 308571 997743 547825 201340 678579 582597 615497 711631 361052 933703 132725 490050 982104 931065 379103 312740 346204 767257 483252 503561 428888 803015 704365 116143 151240 840679 799916 090258 965702 571138 520774 389879 (822 digits), a[1567] = 7
                                                                                      A[1568]/B[1568] = 2407 199694 408167 378294 069822 561937 305614 983333 530223 409645 429729 176075 329986 522663 860979 236354 157966 209587 335385 654345 660898 271858 117967 080438 575265 670328 204500 375613 370185 183434 886385 116226 980539 448311 278979 630603 627190 393673 373900 054544 951273 020373 884156 204682 149343 953322 330214 601100 655729 681647 246745 925951 512990 687584 006663 183981 587749 318442 420460 337889 094838 018893 658545 729353 119208 816640 003084 854444 740927 923965 226102 821872 293772 176579 192797 144476 675764 290440 935770 545680 763566 250345 414412 357458 484072 220470 001212 162008 270224 160923 437558 756515 241366 341241 064268 397082 838815 536719 071734 446556 615634 015968 254363 806411 871497 059454 906301 853233 773628 486553 791143 980019 553511 688892 803302 315738 163937 380260 864770 965470 186014 326617 358467 994758 191392 154158 566178 405500 531349 551998 797278 737754 928979 479827 109613 466734 702120 (820 digits)/233964 224764 427250 708585 661671 477077 571655 484134 768616 240203 746867 822205 223972 158156 972785 761992 902788 984747 756986 569539 941094 313478 566493 314746 697873 382057 517864 417941 779725 836063 914985 586161 519527 353142 155713 173473 864850 571859 105741 910170 021064 772753 740762 979053 217865 785619 005028 472575 815297 555231 756694 722293 989716 867033 468857 254465 932153 395505 280684 488377 465731 852678 538099 343456 180737 681277 302576 270485 070571 026331 266127 924342 220413 897448 814778 714258 958591 243538 488166 039540 997009 090756 626806 131942 844767 417636 315424 227539 010875 976099 706861 690259 215365 100774 525598 883734 382301 145864 603625 187225 263696 705414 225197 607044 601774 869643 262141 531504 080048 654916 494931 910328 984142 382573 999307 085805 683931 405058 208377 066826 368483 903189 140998 282553 879109 537078 421591 197487 167279 128104 756459 438326 543003 731439 617857 025450 987467 (822 digits), a[1568] = 1
                                                                                      A[1569]/B[1569] = 9355 128522 628282 240545 972798 866012 705500 102450 213262 089186 460676 777680 160439 158285 787072 477581 667670 400026 060217 325334 111804 819510 373150 019217 865400 753158 111227 656179 272263 966335 462917 760500 207575 891754 160455 909751 581540 062820 257284 175806 743374 659337 708656 262019 963962 454337 423730 398552 605378 816498 252572 174960 330767 869629 844831 150613 710996 864237 753796 310064 081378 273625 304522 213240 224159 039933 599686 363084 930034 468891 222407 067370 318611 904547 668531 653925 907478 358325 810743 225371 440168 461220 427201 013978 672620 201158 026930 866971 291448 835073 015621 964996 126965 276522 107690 928210 535247 516509 849610 249493 875950 737129 610669 914710 866154 376231 111864 375255 425191 772777 633494 296869 772961 410426 368828 634217 735137 739929 966975 499803 531255 945331 465937 701200 803751 760314 737896 508670 508996 948248 972914 637332 376375 714248 427795 722656 973603 (820 digits)/909257 922162 721182 681514 187451 895107 354524 083193 606430 548236 514690 422782 176850 240987 061056 367428 580826 052687 603958 141136 591938 039755 510642 464651 905864 295233 734910 806854 768633 958572 927183 180901 920632 267142 349047 290332 257306 736130 293720 263949 245460 465788 976656 733150 887309 060758 591018 810150 937820 703043 916669 586696 825652 796718 989375 799126 515016 913049 617900 153131 819933 973696 178037 422209 609414 167739 253145 938636 409320 483246 069713 320129 889161 687444 529465 267866 629559 449550 744665 274500 793761 155479 368016 698254 926864 915737 237440 562020 225976 851720 368176 301753 738796 605645 278140 269140 055017 097054 517030 166078 147845 472561 930457 892205 704679 917501 784168 142337 441486 643329 067393 346484 664058 508774 931624 390142 541845 197279 556196 579582 418192 055772 190252 330914 140890 040124 067789 296826 617980 535555 110058 114895 719270 160021 424709 597127 352280 (822 digits), a[1569] = 3
                                                                                      A[1570]/B[1570] = 11762 328217 036449 618840 042621 427950 011115 085783 743485 498831 890405 953755 490425 680949 648051 713935 825636 609613 395602 979679 772703 091368 491117 099656 440666 423486 315728 031792 642449 149770 349302 876727 188115 340065 439435 540355 208730 456493 631184 230351 694647 679711 592812 466702 113306 407659 753944 999653 261108 498145 499318 100911 843758 557213 851494 334595 298746 182680 174256 647953 176216 292518 963067 942593 343367 856573 602771 217529 670962 392856 448509 889242 612384 081126 861328 798402 583242 648766 746513 771052 203734 711565 841613 371437 156692 421628 028143 028979 561672 995996 453180 721511 368331 617763 171959 325293 374063 053228 921344 696050 491584 753097 865033 721122 737651 435686 018166 228489 198820 259331 424638 276889 326473 099319 172130 949955 899075 120190 831746 465273 717270 271948 824405 695958 995143 914473 304074 914171 040346 500247 770193 375087 305355 194075 537409 189391 675723 (821 digits)/1 143222 146927 148433 390099 849123 372184 926179 567328 375046 788440 261558 244987 400822 399144 033842 129421 483615 037435 360944 710676 533032 353234 077135 779398 603737 677291 252775 224796 548359 794636 842168 767063 440159 620284 504760 463806 122157 307989 399462 174119 266525 238542 717419 712204 105174 846377 596047 282726 753118 258275 673364 308990 815369 663752 458233 053592 447170 308554 898584 641509 285665 826374 716136 765665 790151 849016 555722 209121 479891 509577 335841 244472 109575 584893 344243 982125 588150 693089 232831 314041 790770 246235 994822 830197 771632 333373 552864 789559 236852 827820 075037 992012 954161 706419 803739 152874 437318 242919 120655 353303 411542 177976 155655 499250 306454 787145 046309 673841 521535 298245 562325 256813 648200 891348 930931 475948 225776 602337 764573 646408 786675 958961 331250 613468 019999 577202 489380 494313 785259 663659 866517 553222 262273 891461 042566 622578 339747 (823 digits), a[1570] = 1
                                                                                      A[1571]/B[1571] = 68166 769607 810530 334746 185906 005762 761075 531368 930689 583345 912706 546457 612567 563034 027331 047260 795853 448093 038232 223732 975320 276352 828735 517500 068732 870589 689867 815142 484509 715187 209432 144136 148152 592081 357633 611527 625192 345288 413205 327565 216613 057895 672718 595530 530494 492636 193455 396818 910921 307225 749162 679519 549560 655699 102302 823590 204727 777638 625079 549829 962459 736220 119861 926206 940998 322801 613542 450733 284846 433173 464956 513583 380532 310181 975175 645938 823691 602159 543312 080632 458842 019049 635267 871164 456082 309298 167646 011869 099813 815055 281525 572552 968623 365337 967487 554677 405562 782654 456333 729746 333874 502618 935838 520324 554411 554661 202695 517701 419293 069434 756685 681316 405326 907022 229483 383997 230513 340884 125707 826172 117607 305075 587966 180995 779471 332681 258271 079525 710729 449487 823881 512768 903151 684626 114841 669615 352218 (821 digits)/6 625368 656798 463349 632013 433068 756031 985421 919835 481664 490437 822481 647719 180962 236707 230267 014535 998901 239864 408681 694519 257099 805925 896321 361644 924552 681689 998786 930837 510432 931757 138027 016219 121430 368564 872849 609362 868093 276077 291031 134545 578086 658502 563755 294171 413183 292646 571255 223784 703411 994422 283491 131650 902501 115481 280541 067088 750868 455824 110823 360678 248263 105569 758721 250538 560173 412822 031756 984243 808778 031132 748919 542490 437039 611911 250685 178494 570312 914996 908821 844709 747612 386659 342130 849243 785026 582605 001764 509816 410240 990820 743366 261818 509605 137744 296836 033512 241608 311650 120306 932595 205556 362442 708735 388457 236953 853227 015716 511545 049163 134556 879019 630552 905062 965519 586281 769883 670728 208968 379064 811626 351571 850578 846505 398254 240887 926136 514691 768395 544278 853854 442645 881007 030639 617326 637542 710019 051015 (823 digits), a[1571] = 5
                                                                                      A[1572]/B[1572] = 148095 867432 657510 288332 414433 439475 533266 148521 604864 665523 715819 046670 715560 807017 702713 808457 417343 505799 472067 427145 723343 644074 148588 134656 578132 164665 695463 662077 611468 580144 768167 164999 484420 524228 154702 763410 459115 147070 457594 885482 127873 795502 938249 657763 174295 392932 140855 793291 082951 112596 997643 459950 942879 868612 056099 981775 708201 737957 424415 747613 101135 764959 202791 795007 225364 502176 829856 118996 240655 259203 378422 916409 373448 701490 811680 090280 230625 853085 833137 932317 121418 749665 112149 113766 068857 040224 363435 052717 761300 626107 016231 866617 305578 348439 106934 434648 185188 618537 834012 155543 159333 758335 736710 761771 846474 545008 423557 263892 037406 398200 938009 639522 137126 913363 631097 717950 360101 801959 083162 117617 952484 882100 000338 057950 554086 579835 820617 073222 461805 399223 417956 400625 111658 563327 767092 528622 380159 (822 digits)/14 393959 460524 075132 654126 715260 884248 897023 406999 338375 769315 906521 540425 762746 872558 494376 158493 481417 517164 178308 099715 047231 965085 869778 502688 452843 040671 250349 086471 569225 658151 118222 799501 683020 357414 250459 682531 858343 860143 981524 443210 422698 555547 844930 300546 931541 431670 738557 730296 159942 247120 240346 572292 620371 894715 019315 187769 948907 220203 120231 362865 782192 037514 233579 266742 910498 674660 619236 177609 097447 571842 833680 329452 983654 808715 845614 339114 728776 523083 050475 003461 285995 019554 679084 528685 341685 498583 556393 809192 057334 809461 561770 515649 973371 981908 397411 219898 920534 866219 361269 218493 822654 902861 573126 276164 780362 493599 077742 696931 619861 567359 320364 517919 458326 822388 103495 015715 567233 020274 522703 269661 489819 660119 024261 409976 501775 429475 518764 031104 873817 371368 751809 315236 323553 126114 317652 042616 441777 (824 digits), a[1572] = 2
                                                                                      A[1573]/B[1573] = 216262 637040 468040 623078 600339 445238 294341 679890 535554 248869 628525 593128 328128 370051 730044 855718 213196 953892 510299 650878 698663 920426 977323 652156 646865 035255 385331 477220 095978 295331 977599 309135 632573 116309 512336 374938 084307 492358 870800 213047 344486 853398 610968 253293 704789 885568 334311 190109 993872 419822 746806 139470 492440 524311 158402 805365 912929 515596 049495 297443 063595 501179 322653 721214 166362 824978 443398 569729 525501 692376 843379 429992 753981 011672 786855 736219 054317 455245 376450 012949 580260 768714 747416 984930 524939 349522 531081 064586 861114 441162 297757 439170 274201 713777 074421 989325 590751 401192 290345 885289 493208 260954 672549 282096 400886 099669 626252 781593 456699 467635 694695 320838 542453 820385 860581 101947 590615 142843 208869 943790 070092 187175 588304 238946 333557 912517 078888 152748 172534 848711 241837 913394 014810 247953 881934 198237 732377 (822 digits)/21 019328 117322 538482 286140 148329 640280 882445 326834 820040 259753 729003 188144 943709 109265 724643 173029 480318 757028 586989 794234 304331 771011 766099 864333 377395 722361 249136 017309 079658 589908 256249 815720 804450 725979 123309 291894 726437 136221 272555 577756 000785 214050 408685 594718 344724 724317 309812 954080 863354 241542 523837 703943 522873 010196 299856 254858 699775 676027 231054 723544 030455 143083 992300 517281 470672 087482 650993 161852 906225 602975 582599 871943 420694 420627 096299 517609 299089 438079 959296 848171 033607 406214 021215 377929 126712 081188 558158 319008 467575 800282 305136 777468 482977 119652 694247 253411 162143 177869 481576 151089 028211 265304 281861 664622 017316 346826 093459 208476 669024 701916 199384 148472 363389 787907 689776 785599 237961 229242 901768 081287 841391 510697 870766 808230 742663 355612 033455 799500 418096 225223 194455 196243 354192 743440 955194 752635 492792 (824 digits), a[1573] = 1
                                                                                      A[1574]/B[1574] = 4 473348 608242 018322 749904 421222 344241 420099 746332 315949 642916 286330 909237 278128 208052 303610 922821 681282 583649 678060 444719 696622 052613 695061 177789 515432 869773 402093 206479 531034 486784 320153 347712 135882 850418 401430 262172 145264 994247 873599 146429 017610 863475 157614 723637 270093 104298 827079 595490 960399 509051 933766 249360 791690 354835 224156 089093 966792 049878 414321 696474 373045 788545 655866 219290 552621 001745 697827 513586 750689 106740 246011 516264 453068 934946 548794 814661 316974 957993 362138 191308 726634 123960 060488 812376 567644 030674 985056 344454 983589 449352 971380 650022 789612 623980 595374 221160 000216 642383 640929 861333 023498 977429 187696 403699 864196 538400 948612 895761 171395 750914 831916 056292 986203 321080 842719 756902 172404 658823 260560 993419 354328 625611 766422 836877 225244 830177 398380 128185 912502 373448 254714 668505 407863 522405 405776 493377 027699 (823 digits)/434 780521 806974 844778 376929 681853 689866 545929 943695 739180 964390 486585 303324 636929 057872 987239 619083 087792 657735 918103 984401 133867 385321 191775 789356 000757 487896 233069 432653 162397 456316 243219 113917 772034 876996 716645 520426 387086 584569 432635 998330 438402 836556 018642 194913 826035 918016 934816 811913 427027 077970 717100 651163 077832 098641 016440 284943 944420 740747 741325 833746 391294 899194 079589 612372 323940 424313 639099 414667 221959 631354 485677 768321 397543 221257 771604 691300 710565 284682 236411 966881 958143 143835 103392 087267 875927 122354 719560 189361 408850 815107 664506 065019 632914 374962 282356 288122 163398 423608 992792 240274 386880 208947 210359 568605 126689 430120 946926 866465 000355 605683 308047 487366 726122 580541 899030 727700 326457 605132 558064 895418 317649 874076 439597 574591 355042 541716 187880 021113 235741 875832 640913 240103 407407 994933 421547 095326 297617 (825 digits), a[1574] = 20
                                                                                      A[1575]/B[1575] = 4 689611 245282 486363 372983 021561 789479 714441 426222 851503 891785 914856 502365 606256 578104 033655 778539 894479 537542 188360 095598 395285 973040 672384 829946 162297 905028 787424 683699 627012 782116 297752 656847 768455 966727 913766 637110 229572 486606 744399 359476 362097 716873 768582 976930 974882 989867 161390 785600 954271 928874 680572 388831 284130 879146 382558 894459 879721 565474 463816 993917 436641 289724 978519 940504 718983 826724 141226 083316 276190 799117 089390 946257 207049 946619 335650 550880 371292 413238 738588 204258 306894 892674 807905 797307 092583 380197 516137 409041 844703 890515 269138 089193 063814 337757 669796 210485 590968 043575 931275 746622 516707 238383 860245 685796 265082 638070 574865 677354 628095 218550 526611 377131 528657 141466 703300 858849 763019 801666 469430 937209 424420 812787 354727 075823 558802 742694 477268 280934 085037 222159 496552 581899 422673 770359 287710 691614 760076 (823 digits)/455 799849 924297 383260 663069 830183 330147 428375 270530 559221 224144 215588 491469 580638 167138 711882 792112 568111 414764 505093 778635 438199 156332 957875 653689 378153 210257 482205 449962 242056 046224 499468 929638 576485 602975 839954 812321 113523 720790 705191 576086 439188 050606 427327 789632 170760 642334 244629 765994 290381 319513 240938 355106 600705 108837 316296 539802 644196 416774 972380 557290 421750 042278 071890 129653 794612 511796 290092 576520 128185 234330 068277 640264 818237 641884 867904 208910 009654 722762 195708 815052 991750 550049 124607 465197 002639 203543 277718 508369 876426 615389 969642 842488 115891 494614 976603 541533 325541 601478 474368 391363 415091 474251 492221 233227 144005 776947 040386 074941 669380 307599 507431 635839 089512 368449 588807 513299 564418 834375 459832 976706 159041 384774 310364 382822 097705 897328 221335 820613 653838 101055 835368 436346 761600 738374 376741 847961 790409 (825 digits), a[1575] = 1
                                                                                      A[1576]/B[1576] = 13 852571 098806 991049 495870 464345 923200 848982 598778 018957 426488 116043 913968 490641 364260 370922 479901 470241 658734 054780 635916 487193 998695 039830 837681 840028 679830 976942 573878 785060 051016 915658 661407 672794 783874 228963 536392 604409 967461 362397 865381 741806 297222 694780 677499 219859 084033 149861 166692 868943 366801 294911 027023 359952 113127 989273 878013 726235 180827 341955 684309 246328 367995 612906 100299 990588 655193 980279 680219 303070 704974 424793 408778 867168 828185 220095 916422 059559 784470 839314 599825 340423 909309 676300 406990 752810 791070 017331 162538 672997 230383 509656 828408 917241 299495 934966 642131 182152 729535 503481 354578 056913 454196 908187 775292 394361 814542 098344 250470 427586 188015 885138 810556 043517 604014 249321 474601 698444 262156 199422 867838 203170 251186 475876 988524 342850 315566 352916 690054 082576 817767 247819 832304 253211 063123 981197 876606 547851 (824 digits)/1346 380221 655569 611299 703069 342220 350161 402680 484756 857623 412678 917762 286263 798205 392150 411005 203308 224015 487264 928291 541672 010265 697987 107527 096734 757063 908411 197480 332577 646509 548765 242156 973194 925006 082948 396555 145068 614134 026150 843019 150503 316778 937768 873297 774178 167557 202685 424076 343902 007789 716997 198977 361376 279242 316315 649033 364549 232813 574297 686086 948327 234794 983750 223369 871679 913165 447906 219284 567707 478330 100014 622233 048851 034018 505027 507413 109120 729874 730206 627829 596987 941644 243933 352607 017661 881205 529441 274997 206101 161704 045887 603791 749995 864697 364192 235563 371188 814481 626565 941529 023001 217063 157450 194802 035059 414700 984015 027699 016348 339116 220882 322910 759044 905147 317441 076645 754299 455295 273883 477730 848830 635732 643625 060326 340235 550454 336372 630551 662340 543418 077944 311650 112796 930609 471682 175030 791249 878435 (826 digits), a[1576] = 2
                                                                                      A[1577]/B[1577] = 18 542182 344089 477412 868853 485907 712680 563424 025000 870461 318274 030900 416334 096897 942364 404578 258441 364721 196276 243140 731514 882479 971735 712215 667628 002326 584859 764367 257578 412072 833133 213411 318255 441250 750602 142730 173502 833982 454068 106797 224858 103904 014096 463363 654430 194742 073900 311251 952293 823215 295675 975483 415854 644082 992274 371832 772473 605956 746301 805772 678226 682969 657720 591426 040804 709572 481918 121505 763535 579261 504091 514184 355036 074218 774804 555746 467302 430852 197709 577902 804083 647318 801984 484206 204297 845394 171267 533468 571580 517701 120898 778794 917601 981055 637253 604762 852616 773120 773111 434757 101200 573620 692580 768433 461088 659444 452612 673209 927825 055681 406566 411750 187687 572174 745480 952622 333451 461464 063822 668853 805047 627591 063973 830604 064347 901653 058260 830184 970988 167614 039926 744372 414203 675884 833483 268908 568221 307927 (824 digits)/1802 180071 579866 994560 366139 172403 680308 831055 755287 416844 636823 133350 777733 378843 559289 122887 995420 792126 902029 433385 320307 448464 854320 065402 750424 135217 118668 679685 782539 888565 594989 741625 902833 501491 685924 236509 957389 727657 746941 548210 726589 755966 988375 300625 563810 338317 845019 668706 109896 298171 036510 439915 716482 879947 425152 965329 904351 877009 991072 658467 505617 656545 026028 295260 001333 707777 959702 509377 144227 606515 334344 690510 689115 852256 146912 375317 318030 739529 452968 823538 412040 933394 793982 477214 482858 883844 732984 552715 714471 038130 661277 573434 592483 980588 858807 212166 912722 140023 228044 415897 414364 632154 631701 687023 268286 558706 760962 068085 091290 008496 528481 830342 394883 994659 685890 665453 267599 019714 108258 937563 825536 794774 028399 370690 723057 648160 233700 851887 482954 197256 179000 147018 549143 692210 210056 551772 639211 668844 (826 digits), a[1577] = 1
                                                                                      A[1578]/B[1578] = 32 394753 442896 468462 364723 950253 635881 412406 623778 889418 744762 146944 330302 587539 306624 775500 738342 834962 855010 297921 367431 369673 970430 752046 505309 842355 264690 741309 831457 197132 884150 129069 979663 114045 534476 371693 709895 438392 421529 469195 090239 845710 311319 158144 331929 414601 157933 461113 118986 692158 662477 270394 442878 004035 105402 361106 650487 332191 927129 147728 362535 929298 025716 204332 141104 700161 137112 101785 443754 882332 209065 938977 763814 941387 602989 775842 383724 490411 982180 417217 403908 987742 711294 160506 611288 598204 962337 550799 734119 190698 351282 288451 746010 898296 936749 539729 494747 955273 502646 938238 455778 630534 146777 676621 236381 053806 267154 771554 178295 483267 594582 296888 998243 615692 349495 201943 808053 159908 325978 868276 672885 830761 315160 306481 052872 244503 373827 183101 661042 250190 857693 992192 246507 929095 896607 250106 444827 855778 (824 digits)/3148 560293 235436 605860 069208 514624 030470 233736 240044 274468 049502 051113 063997 177048 951439 533893 198729 016142 389294 361676 861979 458730 552307 172929 847158 892281 027079 877166 115117 535075 143754 983782 876028 426497 768872 633065 102458 341791 773092 391229 877093 072745 926144 173923 337988 505875 047705 092782 453798 305960 753507 638893 077859 159189 741468 614363 268901 109823 565370 344554 453944 891340 009778 518629 873013 620943 407608 728661 711935 084845 434359 312743 737966 886274 651939 882730 427151 469404 183175 451368 009028 875039 037915 829821 500520 765050 262425 827712 920572 199834 707165 177226 342479 845286 222999 447730 283910 954504 854610 357426 437365 849217 789151 881825 303345 973407 744977 095784 107638 347612 749364 153253 153928 899807 003331 742099 021898 475009 382142 415294 674367 430506 672024 431017 063293 198614 570073 482439 145294 740674 256944 458668 661940 622819 681738 726803 430461 547279 (826 digits), a[1578] = 1
                                                                                      A[1579]/B[1579] = 50 936935 786985 945875 233577 436161 348561 975830 648779 759880 063036 177844 746636 684437 248989 180078 996784 199684 051286 541062 098946 252153 942166 464262 172937 844681 849550 505677 089035 609205 717283 342481 297918 555296 285078 514423 883398 272374 875597 575992 315097 949614 325415 621507 986359 609343 231833 772365 071280 515373 958153 245877 858732 648118 097676 732939 422960 938148 673430 953501 040762 612267 683436 795758 181909 409733 619030 223291 207290 461593 713157 453162 118851 015606 377794 331588 851026 921264 179889 995120 207992 635061 513278 644712 815586 443599 133605 084268 305699 708399 472181 067246 663612 879352 574003 144492 347364 728394 275758 372995 556979 204154 839358 445054 697469 713250 719767 444764 106120 538949 001148 708639 185931 187867 094976 154566 141504 621372 389801 537130 477933 458352 379134 137085 117220 146156 432088 013286 632030 417804 897620 736564 660711 604980 730090 519015 013049 163705 (824 digits)/4950 740364 815303 600420 435347 687027 710779 064791 995331 691312 686325 184463 841730 555892 510728 656781 194149 808269 291323 795062 182286 907195 406627 238332 597583 027498 145748 556851 897657 423640 738744 725408 778861 927989 454796 869575 059848 069449 520033 939440 603682 828712 914519 474548 901798 844192 892724 761488 563694 604131 790018 078808 794342 039137 166621 579693 173252 986833 556443 003021 959562 547885 035806 813889 874347 328721 367311 238038 856162 691360 768704 003254 427082 738530 798852 258047 745182 208933 636144 274906 421069 808433 831898 307035 983379 648894 995410 380428 635043 237965 368442 750660 934963 825875 081806 659897 196633 094528 082654 773323 851730 481372 420853 568848 571632 532114 505939 163869 198928 356109 277845 983595 548812 894466 689222 407552 289497 494723 490401 352858 499904 225280 700423 801707 786350 846774 803774 334326 628248 937930 435944 605687 211084 315029 891795 278576 069673 216123 (826 digits), a[1579] = 1
                                                                                      A[1580]/B[1580] = 439 890239 738784 035464 233343 439544 424377 219051 814016 968459 249051 569702 303396 063037 298538 216132 712616 432435 265302 626418 159001 386905 507762 466143 888812 599810 061094 786726 543742 070778 622416 868920 363011 556415 815104 487084 777081 617391 426310 077133 611023 442624 914644 130208 222806 289347 012603 640033 689230 815150 327703 237417 312739 188979 886816 224622 034174 837381 314576 775736 688636 827439 493210 570397 596379 978030 089353 888115 102078 575081 914325 564274 714623 066238 625344 428553 191939 860525 421300 378179 067850 068234 817523 318209 135980 146998 031178 224946 179716 857894 128730 826425 054913 933117 528774 695668 273665 782427 708713 922202 911612 263772 861645 237058 816138 759812 025294 329667 027259 794859 603771 966002 485693 118629 109304 438472 940090 130887 444391 165320 496353 497580 348233 403161 990633 413754 830531 289394 717285 592630 038659 884709 532200 768941 737331 402226 549221 165418 (825 digits)/42754 483211 757865 409223 551990 010845 716702 752072 202697 804969 540103 526823 797841 624189 037268 788142 751927 482296 719884 722174 320274 716293 805325 079590 627823 112266 193068 331981 296376 924201 053712 787053 106923 850413 407247 589665 581242 897387 933363 906754 706555 702449 242299 970314 552379 259418 189503 184690 963355 139015 073652 269363 432595 472287 074441 251908 654925 004492 016914 368730 130445 274420 296233 029748 867792 250714 346098 632972 561236 615731 583991 338779 154628 794521 042757 947112 388609 140873 272329 650619 377587 342509 693102 286109 367557 956210 225708 871142 000918 103557 654707 182513 822190 452286 877452 726907 856975 710729 515848 544017 251209 700197 155980 432613 876406 230323 792490 406737 699065 196486 972132 022017 544432 055540 517111 002517 337878 432797 305353 238162 673601 232752 275414 844679 354099 972813 000268 157052 171286 244117 744501 304166 350615 143058 816100 955411 987847 276263 (827 digits), a[1580] = 8
                                                                                      A[1581]/B[1581] = 490 827175 525769 981339 466920 875705 772939 194882 462796 728339 312087 747547 050032 747474 547527 396211 709400 632119 316589 167480 257947 639059 449928 930406 061750 444491 910645 292403 632777 679984 339700 211401 660930 111712 100183 001508 660479 889766 301907 653125 926121 392239 240059 751716 209165 898690 244437 412398 760511 330524 285856 483295 171471 837097 984492 957561 457135 775529 988007 729237 729399 439707 176647 366155 778289 387763 708384 111406 309369 036675 627483 017436 833474 081845 003138 760142 042966 781789 601190 373299 275842 703296 330801 962921 951566 590597 164783 309214 485416 566293 600911 893671 718526 812470 102777 840160 621030 510821 984472 295198 468591 467927 701003 682113 513608 473062 745061 774431 133380 333808 604920 674641 671624 306496 204280 593039 081594 752259 834192 702450 974286 955932 727367 540247 107853 559911 262619 302681 349316 010434 936280 621274 192912 373922 467421 921241 562270 329123 (825 digits)/47705 223576 573169 009643 987337 697873 427481 816864 198029 496282 226428 711287 639572 180081 547997 444923 946077 290566 011208 517236 502561 623489 211952 317923 225406 139764 338816 888833 194034 347841 792457 512461 885785 778402 862044 459240 641090 966837 453397 846195 310238 531162 156819 444863 454178 103611 082227 946179 527049 743146 863670 348172 226937 511424 241062 831601 828177 991325 573357 371752 090007 822305 332039 843638 742139 579435 713409 871011 417399 307092 352695 342033 581711 533051 841610 205160 133791 349806 908473 925525 798657 150943 525000 593145 350937 605105 221119 251570 635961 341523 023149 933174 757154 278161 959259 386805 053608 805257 598503 317341 102940 181569 576834 001462 448038 762438 298429 570606 897993 552596 249978 005613 093244 950007 206333 410069 627375 927520 795754 591021 173505 458032 975838 646387 140450 819587 804042 491378 799535 182048 180445 909853 561699 458088 707896 233988 057520 492386 (827 digits), a[1581] = 1
                                                                                      A[1582]/B[1582] = 930 717415 264554 016803 700264 315250 197316 413934 276813 696798 561139 317249 353428 810511 846065 612344 422017 064554 581891 793898 416949 025964 957691 396549 950563 044301 971740 079130 176519 750762 962117 080322 023941 668127 915287 488593 437561 507157 728217 730259 537144 834864 154703 881924 431972 188037 257041 052432 449742 145674 613559 720712 484211 026077 871309 182183 491310 612911 302584 504974 418036 267146 669857 936553 374669 365793 797737 999521 411447 611757 541808 581711 548097 148083 628483 188695 234906 642315 022490 751478 343692 771531 148325 281131 087546 737595 195961 534160 665133 424187 729642 720096 773440 745587 631552 535828 894696 293249 693186 217401 380203 731700 562648 919172 329747 232874 770356 104098 160640 128668 208692 640644 157317 425125 313585 031512 021684 883147 278583 867771 470640 453513 075600 943409 098486 973666 093150 592076 066601 603064 974940 505983 725113 142864 204753 323468 111491 494541 (825 digits)/90459 706788 331034 418867 539327 708719 144184 568936 400727 301251 766532 238111 437413 804270 585266 233066 698004 772862 731093 239410 822836 339783 017277 397513 853229 252030 531885 220814 490411 272042 846170 299514 992709 628816 269292 048906 222333 864225 386761 752950 016794 233611 399119 415178 006557 363029 271731 130870 490404 882161 937322 617535 659532 983711 315504 083510 483102 995817 590271 740482 220453 096725 628272 873387 609931 830150 059508 503983 978635 922823 936686 680812 736340 327572 884368 152272 522400 490680 180803 576145 176244 493453 218102 879254 718495 561315 446828 122712 636879 445080 677857 115688 579344 730448 836712 113712 910584 515987 114351 861358 354149 881766 732814 434076 324444 992762 090919 977344 597058 749083 222110 027630 637677 005547 723444 412586 965254 360318 101107 829183 847106 690785 251253 491066 494550 792400 804310 648430 970821 426165 924947 214019 912314 601147 523997 189400 045367 768649 (827 digits), a[1582] = 1
                                                                                      A[1583]/B[1583] = 2352 262006 054878 014946 867449 506206 167572 022751 016424 121936 434366 382045 756890 368498 239658 620900 553434 761228 480372 755277 091845 690989 365311 723505 962876 533095 854125 450663 985817 181510 263934 372045 708813 447967 930757 978695 535602 904081 758343 113645 000411 061967 549467 515565 073110 274764 758519 517263 659995 621873 512975 924720 139893 889253 727111 321928 439757 001352 593176 739186 565471 974000 516363 239262 527628 119351 303860 110449 132264 260190 711100 180859 929668 378012 260105 137532 512780 066419 646171 876255 963228 246358 627452 525184 126660 065787 556706 377535 815683 414669 060197 333865 265408 303645 365882 911818 410423 097321 370844 730001 228998 931328 826301 520458 173102 938812 285773 982627 454660 591145 022305 955929 986259 156746 831450 656063 124964 518554 391360 437993 915567 862958 878569 427065 304827 507243 448920 486833 482519 216564 886161 633241 643138 659650 876928 568177 785253 318205 (826 digits)/228624 637153 235237 847379 065993 115311 715850 954736 999484 098785 759493 187510 514399 788622 718529 911057 342086 836291 473394 996058 148234 303055 246507 112950 931864 643825 402587 330462 174856 891927 484798 111491 871205 036035 400628 557053 085758 695288 226921 352095 343826 998384 955058 275219 467292 829669 625690 207920 507859 507470 738315 583243 546003 478846 872070 998622 794383 982960 753900 852716 530914 015756 588585 590413 962003 239735 832426 878979 374671 152740 226068 703659 054392 188197 610346 509705 178592 331167 270081 077816 151146 137849 961206 351654 787928 727736 114775 496995 909720 231684 378864 164551 915843 739059 632683 614230 874777 837231 827207 040057 811239 945103 042462 869615 096928 747962 480269 525296 092111 050762 694198 060874 368598 961102 653222 235243 557884 648156 997970 249388 867718 839603 478345 628520 129552 404389 412663 788240 741178 034380 030340 337893 386328 660383 755890 612788 148256 029684 (828 digits), a[1583] = 2
                                                                                      A[1584]/B[1584] = 5635 241427 374310 046697 435163 327662 532460 459436 309661 940671 429872 081340 867209 547508 325382 854145 528886 587011 542637 304452 600640 407943 688314 843561 876316 110493 679990 980458 148154 113783 489985 824413 441568 564063 776803 445984 508767 315321 244903 957549 537966 958799 253638 913054 578192 737566 774080 086959 769733 389421 639511 570152 763998 804585 325531 826040 370824 615616 488937 983347 548980 215147 702584 415078 429925 604496 405458 220419 675976 132138 964008 943431 407433 904108 148693 463760 260466 775154 314834 503990 270149 264248 403230 331499 340866 869170 309374 289232 296500 253525 850037 387827 304257 352878 363318 359465 715542 487892 434875 677403 838201 594358 215251 960088 675953 110499 341904 069353 069961 310958 253304 552504 129835 738618 976486 343638 271613 920256 061304 743759 301776 179430 832739 797539 708141 988152 990991 565743 031640 036194 747263 772467 011390 462165 958610 459823 681998 130951 (826 digits)/547708 981094 801510 113625 671313 939342 575886 478410 399695 498823 285518 613132 466213 381516 022326 055181 382178 445445 677883 231527 119304 945893 510291 623415 716958 539681 337059 881738 840125 055897 815766 522498 735119 700887 070549 163012 393851 254801 840604 457140 704448 230381 309235 965616 941143 022368 523111 546711 506123 897103 413953 784022 751539 941405 059646 080756 071870 961739 098073 445915 282281 128238 805444 054215 533938 309621 724362 261942 727978 228304 388824 088130 845124 703968 105061 171682 879585 153014 720965 731777 478536 769153 140515 582564 294353 016787 676379 116704 456319 908449 435585 444792 411032 208568 102079 342174 660140 190450 768765 941473 976629 771972 817740 173306 518302 488687 051459 027936 781280 850608 610506 149379 374874 927753 029888 883074 081023 656632 097048 327961 582544 369992 207944 748106 753655 601179 629638 224912 453177 494925 985627 889806 684971 921915 035778 414976 341879 828017 (828 digits), a[1584] = 2
                                                                                      A[1585]/B[1585] = 53069 434852 423668 435223 783919 455168 959716 157677 803381 587979 303215 114113 561776 296073 168104 308210 313414 044332 364108 495350 497609 362482 560145 315562 849721 527538 974044 274787 319204 205561 673806 791766 682930 524541 921988 992556 114508 741972 962478 731590 842113 691160 832217 733056 276844 912865 725240 299901 587596 126668 268580 056095 015883 130521 656897 756291 777178 541900 993618 589314 506293 910329 839622 974968 396958 559818 952984 094226 216049 449441 387180 671742 596573 514985 598346 311374 856981 042808 479682 412168 394571 624594 256525 508678 194461 888320 341074 980626 484185 696401 710533 824311 003724 479550 635748 147009 850305 488353 284725 826635 772813 280552 763569 161256 256680 933306 362910 606805 084312 389769 302046 928467 154780 804317 619827 748807 569489 800858 943103 131827 631553 477836 373227 604922 678105 400620 367844 578520 767279 542317 611535 585444 745652 819144 504422 706590 923236 496764 (827 digits)/5 158005 467006 448828 870010 107818 569394 898829 260430 596743 588195 329160 705702 710320 222266 919464 407689 781692 845302 574344 079802 221978 816096 839131 723692 384491 500957 436126 266111 735982 395007 826696 813980 487282 344019 035571 024164 630419 988504 792361 466361 683861 071816 738181 965771 937580 030986 333694 128324 062974 581401 463899 639448 309862 951492 408885 725427 441222 638612 636561 865954 071444 169905 837582 078353 767448 026331 351687 236463 926475 207479 725485 496836 660514 523910 555897 054851 094858 708299 758772 663813 457977 060228 225846 594733 437105 878825 202187 547336 016599 407729 299133 167683 615133 616172 551397 693802 816039 551288 746100 513323 600907 892858 402124 429373 761651 146145 943400 776727 123638 706240 188753 405288 742473 310879 922222 182910 287097 557845 871405 201043 110618 169533 349848 361480 912452 815006 079407 812452 819775 488713 900991 346153 551075 957619 077896 347575 225174 481837 (829 digits), a[1585] = 9
                                                                                      A[1586]/B[1586] = 217912 980837 068983 787592 570841 148338 371325 090147 523188 292588 642732 537795 114314 731800 997800 086986 782542 764340 999071 285854 591077 857873 928896 105813 275202 220649 576168 079607 424970 936030 185212 991480 173290 662231 464759 416208 966802 283213 094818 883912 906421 723442 582509 845279 685572 389029 675041 286566 120117 896094 713831 794532 827531 326671 953122 851207 479538 783220 463412 340605 574155 856467 061076 314952 017759 843772 217394 597324 540173 929904 512731 630401 793727 964050 542078 709259 688390 946388 233564 152663 848435 762625 429332 366212 118714 422451 673674 211738 233243 039132 692172 685071 319155 271080 906310 947505 116764 441305 573778 983946 929454 716569 269528 605113 702676 843724 793546 496573 407210 870035 461492 266372 748958 955889 455797 338868 549573 123691 833717 271069 827990 090776 325650 217230 420563 590634 462369 879826 100758 205465 193406 114245 994001 738743 976301 286187 374944 118007 (828 digits)/21 179730 849120 596825 593666 102588 216922 171203 520132 786669 851604 602161 435943 307494 270583 700183 685940 508949 826655 975259 550736 007220 210280 866818 518185 254924 543511 081564 946185 784054 635929 122553 778420 684249 076963 212833 259670 915531 208821 010050 322587 439892 517648 261963 828704 691463 146313 857888 060007 758022 222709 269552 341815 990991 747374 695188 982465 836761 516189 644320 909731 568057 807862 155772 367630 603730 414947 131111 207798 433879 058223 290766 075477 487182 799610 328649 391087 259019 986213 756056 387031 310445 010066 043901 961498 042776 532088 485129 306048 522717 539366 632118 115526 871566 673258 307670 117385 924298 395605 753167 994768 380261 343406 426237 890801 564907 073270 825062 134845 275835 675569 365519 770534 344768 171272 718777 614715 229413 888015 582669 132134 025017 048125 607338 194030 403466 861203 947269 474723 732279 449781 589593 274420 889275 752391 347363 805277 242577 755365 (830 digits), a[1586] = 4
                                                                                      A[1587]/B[1587] = 706808 377363 630619 798001 496442 900184 073691 428120 372946 465745 231412 727498 904720 491476 161504 569170 661042 337355 361322 352914 270842 936104 346833 633002 675328 189487 702548 513609 594117 013652 229445 766207 202802 511236 316267 241183 014915 591612 246935 383329 561378 861488 579747 268895 333562 079954 750364 159599 947949 814952 410075 439693 498477 110537 516266 309914 215794 891562 383855 611131 228761 479731 022851 919824 450238 091135 605167 886199 836571 239154 925375 562947 977757 407137 224582 439153 922153 881973 180374 870159 939878 912470 544522 607314 550605 155675 362097 615841 183914 813799 787051 879524 961190 292793 354680 989525 200598 812270 006062 778476 561177 430260 572154 976597 364711 464480 743550 096525 305944 999875 686523 727585 401657 671985 987219 765413 218209 171934 444254 945037 115523 750165 350178 256613 939796 172523 754954 217999 069554 158713 191753 928182 727658 035376 433326 565153 048068 850785 (828 digits)/68 697198 014368 239305 651008 415583 220161 412439 820828 956753 143009 135645 013532 632803 034018 020015 465511 308542 325270 500122 732010 243639 446939 439587 278248 149265 131490 680821 104669 088146 302795 194358 149242 540029 574908 674070 803177 377013 614967 822512 434124 003538 624761 524073 451886 011969 469927 907358 308347 337041 249529 272556 664896 282838 193616 494452 672824 951507 187181 569524 595148 775617 593492 304899 181245 578639 271172 745020 859859 228112 382149 597783 723269 122062 922741 541845 228112 871918 666941 026941 824907 389312 090426 357552 479227 565435 475090 657575 465481 584752 025829 195487 514264 229833 635947 474408 045960 588934 738106 005604 497628 741691 923077 680838 101778 456372 365958 418587 181262 951145 732948 285312 716891 776777 824698 078555 027055 975339 221892 619412 597445 185669 313910 171862 943572 122853 398617 921216 236624 016613 838058 669771 169416 218903 214793 119987 763406 952907 747932 (830 digits), a[1587] = 3
                                                                                      A[1588]/B[1588] = 924721 358200 699603 585594 067284 048522 445016 518267 896134 758333 874145 265294 019035 223277 159304 656157 443585 101696 360393 638768 861920 793978 275729 738815 950530 410137 278716 593217 019087 949682 414658 757687 376093 173467 781026 657391 981717 874825 341754 267242 467800 584931 162257 114175 019134 468984 425405 446166 068067 711047 123907 234226 326008 437209 469389 161121 695333 674782 847267 951736 802917 336198 083928 234776 467997 934907 822562 483524 376745 169059 438107 193349 771485 371187 766661 148413 610544 828361 413939 022823 788314 675095 973854 973526 669319 578127 035771 827579 417157 852932 479224 564596 280345 563874 260991 937030 317363 253575 579841 762423 490632 146829 841683 581711 067388 308205 537096 593098 713155 869911 148015 993958 150616 627875 443017 104281 767782 295626 277972 216106 943513 840941 675828 473844 360359 763158 217324 097825 170312 364178 385160 042428 721659 774120 409627 851340 423012 968792 (828 digits)/89 876928 863488 836131 244674 518171 437083 583643 340961 743422 994613 737806 449475 940297 304601 720199 151451 817492 151926 475382 282746 250859 657220 306405 796433 404189 675001 762386 050854 872200 938724 316911 927663 224278 651871 886904 062848 292544 823788 832562 756711 443431 142409 786037 280590 703432 616241 765246 368355 095063 472238 542109 006712 273829 940991 189641 655290 788268 703371 213845 504880 343675 401354 460671 548876 182369 686119 876132 067657 661991 440372 888549 798746 609245 722351 870494 619200 130938 653154 782998 211938 699757 100492 401454 440725 608212 007179 142704 771530 107469 565195 827605 629791 101400 309205 782078 163346 513233 133711 758772 492397 121953 266484 107075 992580 021279 439229 243649 316108 226981 408517 650832 487426 121545 995970 797332 641771 204753 109908 202081 729579 210686 362035 779201 137602 526320 259821 868485 711347 748893 287840 259364 443837 108178 967184 467351 568684 195485 503297 (830 digits), a[1588] = 1
                                                                                      A[1589]/B[1589] = 4 405693 810166 429034 140377 765579 094273 853757 501191 957485 499080 727993 788674 980861 384584 798723 193800 435382 744140 802896 907989 718526 112017 449752 588266 477449 830036 817414 886477 670468 812381 888080 796956 707175 205107 440373 870750 941787 090913 613952 452299 432581 201213 228775 725595 410099 955892 451985 944264 220220 659140 905704 376598 802510 859375 393822 954400 997129 590693 772927 418078 440430 824523 358564 858930 322229 830766 895417 820297 343551 915392 677804 336347 063698 891888 291227 032808 364333 195418 836130 961455 093137 612854 439942 501421 227883 468183 505184 926158 852546 225529 703950 137910 082572 548290 398648 737646 470051 826572 325429 828170 523706 017579 938889 303441 634264 697302 891936 468920 158568 479520 278587 703418 004124 183487 759288 182540 289338 354439 556143 809464 889579 113932 053492 151991 381235 225156 624250 609299 750803 615426 732394 097897 614297 131858 071837 970514 740120 725953 (829 digits)/428 204913 468323 583830 629706 488268 968495 747013 184675 930445 121464 086870 811436 393992 252424 900812 071318 578510 932976 401651 862995 247078 075820 665210 463981 766023 831497 730365 308088 576950 057692 462005 859895 437144 182396 221687 054570 547192 910123 152763 460969 777263 194400 668222 574248 825699 934894 968343 781767 717295 138483 440992 691745 378157 957581 253019 293988 104582 000666 424906 614670 150319 198910 147585 376750 308118 015652 249549 130489 876078 143641 151982 918255 559045 812149 023823 704913 395673 279560 158934 672662 188340 492395 963370 242129 998283 503807 228394 551602 014630 286612 505910 033428 635434 872770 602720 699346 641867 272953 040694 467217 229504 989014 109142 072098 541490 122875 393184 445695 859071 367018 888642 666596 262961 808581 267885 594140 794351 661525 427739 515762 028414 762053 288667 493982 228134 437905 395159 082015 012186 989419 707228 944764 651619 083530 989394 038143 734849 761120 (831 digits), a[1589] = 4
                                                                                      A[1590]/B[1590] = 5 330415 168367 128637 725971 832863 142796 298774 019459 853620 257414 602139 053968 999896 607861 958027 849957 878967 845837 163290 546758 580446 905995 725482 327082 427980 240174 096131 479694 689556 762064 302739 554644 083268 378575 221400 528142 923504 965738 955706 719541 900381 786144 391032 839770 429234 424876 877391 390430 288288 370188 029611 610825 128519 296584 863212 115522 692463 265476 620195 369815 243348 160721 442493 093706 790227 765674 717980 303821 720297 084452 115911 529696 835184 263076 057888 181221 974878 023780 250069 984278 881452 287950 413797 474947 897203 046310 540956 753738 269704 078462 183174 702506 362918 112164 659640 674676 787415 080147 905271 590594 014338 164409 780572 885152 701653 005508 429033 062018 871724 349431 426603 697376 154740 811363 202305 286822 057120 650065 834116 025571 833092 954873 729320 625835 741594 988314 841574 707124 921115 979605 117554 140326 335956 905978 481465 821855 163133 694745 (829 digits)/518 081842 331812 419961 874381 006440 405579 330656 525637 673868 116077 824677 260912 334289 557026 621011 222770 396003 084902 877034 145741 497937 733040 971616 260415 170213 506499 492751 358943 449150 996416 778917 787558 661422 834268 108591 117418 839737 733911 985326 217681 220694 336810 454259 854839 529132 551136 733590 150122 812358 610721 983101 698457 651987 898572 442660 949278 892850 704037 638752 119550 493994 600264 608256 925626 490487 701772 125681 198147 538069 584014 040532 717002 168291 534500 894318 324113 526611 932714 941932 884600 888097 592888 364824 682855 606495 510986 371099 323132 122099 851808 333515 663219 736835 181976 384798 862693 155100 406664 799466 959614 351458 255498 216218 064678 562769 562104 636833 761804 086052 775536 539475 154022 384507 804552 065218 235911 999104 771433 629821 245341 239101 124089 067868 631584 754454 697727 263644 793362 761080 277259 966593 388601 759798 050715 456745 606827 930335 264417 (831 digits), a[1590] = 1
                                                                                      A[1591]/B[1591] = 15 066524 146900 686309 592321 431305 379866 451305 540111 664726 013909 932271 896612 980654 600308 714778 893716 193318 435815 129478 001506 879419 924008 900717 242431 333410 310385 009677 845867 049582 336510 493559 906244 873711 962257 883174 927036 788797 022391 525365 891383 233344 773502 010841 405136 268568 805646 206768 725124 796797 399516 964927 598249 059549 452545 120247 185446 382056 121647 013318 157708 927127 145966 243551 046343 902685 362116 331378 427940 784146 084296 909627 395740 734067 418040 407003 395252 314089 242979 336270 930012 856042 188755 267537 451317 022289 560804 587098 433635 391954 382454 070299 542922 808408 772619 717930 087000 044881 986868 135973 009358 552382 346399 500035 073747 037570 708319 750002 592957 902017 178383 131795 098170 313605 806214 163898 756184 403579 654571 224375 860608 555765 023679 512133 403662 864425 201786 307400 023549 593035 574636 967502 378550 286210 943815 034769 614225 066388 115443 (830 digits)/1464 368598 131948 423754 378468 501149 779654 408326 235951 278181 353619 736225 333261 062571 366478 142834 516859 370517 102782 155720 154478 242953 541902 608442 984812 106450 844496 715868 025975 475252 050526 019841 435012 759989 850932 438869 289408 226668 377947 123415 896332 218651 868021 576742 283927 883965 037168 435524 082013 342012 359927 407196 088660 682133 754726 138341 192545 890283 408741 702410 853771 138308 399439 364099 228003 289093 419196 500911 526784 952217 311669 233048 352259 895628 881150 812460 353140 448897 144990 042800 441863 964535 678172 693019 607841 211274 525779 970593 197866 258829 990229 172941 359868 109105 236723 372318 424732 952068 086282 639628 386445 932421 500010 541578 201455 667029 247084 666851 969304 031176 918091 967592 974641 031977 417685 398322 065964 792561 204392 687382 006444 506617 010231 424404 757151 737043 833359 922448 668740 534347 543939 640415 721968 171215 184961 902885 251799 595520 289954 (832 digits), a[1591] = 2
                                                                                      A[1592]/B[1592] = 20 396939 315267 814947 318293 264168 522662 750079 559571 518346 271324 534410 950581 980551 208170 672806 743674 072286 281652 292768 548265 459866 830004 626199 569513 761390 550559 105809 325561 739139 098574 796299 460888 956980 340833 104575 455179 712301 988130 481072 610925 133726 559646 401874 244906 697803 230523 084160 115555 085085 769704 994539 209074 188068 749129 983459 300969 074519 387123 633513 527524 170475 306687 686044 140050 692913 127791 049358 731762 504443 168749 025538 925437 569251 681116 464891 576474 288967 266759 586340 914291 737494 476705 681334 926264 919492 607115 128055 187373 661658 460916 253474 245429 171326 884784 377570 761676 832297 067016 041244 599952 566720 510809 280607 958899 739223 713828 179035 654976 773741 527814 558398 795546 468346 617577 366204 043006 460700 304637 058491 886180 388857 978553 241454 029498 606020 190101 148974 730674 514151 554242 085056 518876 622167 849793 516235 436080 229521 810188 (830 digits)/1982 450440 463760 843716 252849 507590 185233 738982 761588 952049 469697 560902 594173 396860 923504 763845 739629 766520 187685 032754 300219 740891 274943 580059 245227 276664 350996 208619 384918 924403 046942 798759 222571 421412 685200 547460 406827 066406 111859 108742 114013 439346 204832 031002 138767 413097 588305 169114 232136 154370 970649 390297 787118 334121 653298 581002 141824 783134 112779 341162 973321 632302 999703 972356 153629 779581 120968 626592 724932 490286 895683 273581 069262 063920 415651 706778 677253 975509 077704 984733 326464 852633 271061 057844 290696 817770 036766 341692 520998 380929 842037 506457 023087 845940 418699 757117 287426 107168 492947 439095 346060 283879 755508 757796 266134 229798 809189 303685 731108 117229 693628 507068 128663 416485 222237 463540 301876 791665 975826 317203 251785 745718 134320 492273 388736 491498 531087 186093 462103 295427 821199 607009 110569 931013 235677 359630 858627 525855 554371 (832 digits), a[1592] = 1
                                                                                      A[1593]/B[1593] = 55 860402 777436 316204 228907 959642 425191 951464 659254 701418 556559 001093 797776 941757 016650 060392 381064 337890 999119 715015 098037 799153 584018 153116 381458 856191 411503 221296 496990 527860 533660 086158 828022 787672 643924 092325 837396 213400 998652 487511 113233 500797 892794 814589 894949 664175 266692 375088 956234 966968 938926 954006 016397 435686 950805 087165 787384 531094 895894 280345 212757 268077 759341 615639 326445 288511 617698 430095 891465 793032 421794 960705 246615 872570 780273 336786 548200 892023 776498 508952 758596 331031 142166 630207 303846 861274 775034 843208 808382 715271 304286 577248 033781 151062 542188 473071 610353 709476 120900 218462 209263 685823 368018 061250 991546 516018 135976 108073 902911 449500 234012 248592 689263 250299 041368 896306 842197 324980 263845 341359 632969 333480 980785 995041 462660 076465 581988 605349 484898 621338 683121 137615 416303 530546 643402 067240 486385 525431 735819 (830 digits)/5429 269479 059470 111186 884167 516330 150121 886291 759129 182280 293014 858030 521607 856293 213487 670525 996118 903557 478152 221228 754917 724736 091789 768561 475266 659779 546489 133106 795813 324058 144411 617359 880155 602815 221333 533790 103062 359480 601665 340900 124359 097344 277685 638746 561462 710160 213778 773752 546285 650754 301226 187791 662897 350377 061323 300345 476195 456551 634300 384736 800414 402914 398847 308811 535262 848255 661133 754096 976649 932791 103035 780210 490784 023469 712454 226017 707648 399915 300400 012267 094793 669802 220294 808708 189234 846814 599312 653978 239863 020689 674304 185855 406043 800986 074122 886552 999585 166405 072177 517819 078566 500181 011028 057170 733724 126626 865463 274223 431520 265636 305348 981729 231967 864947 862160 325402 669718 375893 156045 321788 510015 998053 278872 408951 534624 720040 895534 294635 592947 125203 186338 854433 943108 033241 656316 622146 969054 647231 398696 (832 digits), a[1593] = 2
                                                                                      A[1594]/B[1594] = 76 257342 092704 131151 547201 223810 947854 701544 218826 219764 827883 535504 748358 922308 224820 733199 124738 410177 280772 007783 646303 259020 414022 779315 950972 617581 962062 327105 822552 266999 632234 882458 288911 744652 984757 196901 292575 925702 986782 968583 724158 634524 452441 216464 139856 361978 497215 459249 071790 052054 708631 948545 225471 623755 699935 070625 088353 605614 283017 913858 740281 438553 066029 301683 466495 981424 745489 479454 623228 297475 590543 986244 172053 441822 461389 801678 124675 180991 043258 095293 672888 068525 618872 311542 230111 780767 382149 971263 995756 376929 765202 830722 279210 322389 426972 850642 372030 541773 187916 259706 809216 252543 878827 341858 950446 255241 849804 287109 557888 223241 761826 806991 484809 718645 658946 262510 885203 785680 568482 399851 519149 722338 959339 236495 492158 682485 772089 754324 215573 135490 237363 222671 935180 152714 493195 583475 922465 754953 546007 (830 digits)/7411 719919 523230 954903 137017 023920 335355 625274 520718 134329 762712 418933 115781 253154 136992 434371 735748 670077 665837 253983 055137 465627 366733 348620 720493 936443 897485 341726 180732 248461 191354 416119 102727 024227 906534 081250 509889 425886 713524 449642 238372 536690 482517 669748 700230 123257 802083 942866 778421 805125 271875 578089 450015 684498 714621 881347 618020 239685 747079 725899 773736 035217 398551 281167 688892 627836 782102 380689 701582 423077 998719 053791 560046 087390 128105 932796 384902 375424 378104 997000 421258 522435 491355 866552 479931 664584 636078 995670 760861 401619 516341 692312 429131 646926 492822 643670 287011 273573 565124 956914 424626 784060 766536 814966 999858 356425 674652 577909 162628 382865 998977 488797 360631 281433 084397 788942 971595 167559 131871 638991 761801 743771 413192 901224 923361 211539 426621 480729 055050 420631 007538 461443 053677 964254 891993 981777 827682 173086 953067 (832 digits), a[1594] = 1
                                                                                      A[1595]/B[1595] = 132 117744 870140 447355 776109 183453 373046 653008 878080 921183 384442 536598 546135 864065 241470 793591 505802 748068 279891 722798 744341 058173 998040 932432 332431 473773 373565 548402 319542 794860 165894 968617 116934 532325 628681 289227 129972 139103 985435 456094 837392 135322 345236 031054 034806 026153 763907 834338 028025 019023 647558 902551 241869 059442 650740 157790 875738 136709 178912 194203 953038 706630 825370 917322 792941 269936 363187 909550 514694 090508 012338 946949 418669 314393 241663 138464 672876 073014 819756 604246 431484 399556 761038 941749 533958 642042 157184 814472 804139 092201 069489 407970 312991 473451 969161 323713 982384 251249 308816 478169 018479 938367 246845 403109 941992 771259 985780 395183 460799 672741 995839 055584 174072 968944 700315 158817 727401 110660 832327 741211 152119 055819 940125 231536 954818 758951 354078 359673 700471 756828 920484 360287 351483 683261 136597 650716 408851 280385 281826 (831 digits)/12840 989398 582701 066090 021184 540250 485477 511566 279847 316610 055727 276963 637389 109447 350480 104897 731867 573635 143989 475211 810055 190363 458523 117182 195760 596223 443974 474832 976545 572519 335766 033478 982882 627043 127867 615040 612951 785367 315189 790542 362731 634034 760203 308495 261692 833418 015862 716619 324707 455879 573101 765881 112913 034875 775945 181693 094215 696237 381380 110636 574150 438131 797398 589979 224155 476092 443236 134786 678232 355869 101754 834002 050830 110859 840560 158814 092550 775339 678505 009267 516052 192237 711650 675260 669166 511399 235391 649649 000724 422309 190645 878167 835175 447912 566945 530223 286596 439978 637302 474733 503193 284241 777564 872137 733582 483052 540115 852132 594148 648502 304326 470526 592599 146380 946558 114345 641313 543452 287916 960780 271817 741824 692065 310176 457985 931580 322155 775364 647997 545834 193877 315876 996785 997496 548310 603924 796736 820318 351763 (833 digits), a[1595] = 1
                                                                                      A[1596]/B[1596] = 340 492831 832985 025863 099419 590717 693948 007561 974988 062131 596768 608701 840630 650438 707762 320382 136343 906313 840555 453381 134985 375368 410104 644180 615835 565128 709193 423910 461637 856719 964024 819692 522780 809304 242119 775355 552520 203910 957653 880773 398942 905169 142913 278572 209468 414286 025031 127925 127840 090102 003749 753647 709209 742641 001415 386206 839829 879032 640842 302266 646358 851814 716771 136329 052378 521297 471865 298555 652616 478491 615221 880143 009392 070608 944716 078607 470427 327020 682771 303786 535856 867639 140950 195041 298029 064851 696519 600209 604034 561331 904181 646662 905193 269293 365295 498070 336799 044271 805549 216044 846176 129278 372518 148078 834431 797761 821365 077476 479487 568725 753504 918159 832955 656535 059576 580146 340006 007002 233137 882273 823387 833978 839589 699569 401796 200388 480246 473671 616516 649148 078331 943246 638147 519236 766390 884908 740168 315724 109659 (831 digits)/33093 698716 688633 087083 179386 104421 306310 648407 080412 767549 874166 972860 390559 472048 837952 644167 199483 817347 953816 204406 675247 846354 283779 582985 112015 128890 785434 291392 133823 393499 862886 483077 068492 278314 162269 311331 735792 996621 343904 030726 963835 804760 002924 286739 223615 790093 833809 376105 427836 716884 418079 109851 675841 754250 266512 244733 806451 632160 509839 947172 922036 911480 993348 461126 137203 580021 668574 650263 058047 134816 202228 721795 661706 309109 809226 250424 570003 926103 735115 015535 453362 906910 914657 217073 818264 687383 106862 294968 762310 246237 897633 448648 099482 542751 626713 704116 860204 153530 839729 906381 431013 352544 321666 559242 467023 322530 754884 282174 350925 679870 607630 429850 545829 574194 977514 017634 254222 254463 707705 560552 305437 227420 797323 521577 839333 074700 070933 031458 351045 512299 395293 093197 047249 959247 988615 189627 421155 813723 656593 (833 digits), a[1596] = 2
                                                                                      A[1597]/B[1597] = 813 103408 536110 499081 974948 364888 760942 668132 828057 045446 577979 754002 227397 164942 656995 434355 778490 560695 961002 629561 014311 808910 818250 220793 564102 604030 791952 396223 242818 508300 093944 608002 162496 150934 112920 839938 235012 546925 900743 217641 635277 945660 631062 588198 453742 854725 813970 090188 283705 199227 655058 409846 660288 544724 653570 930204 555397 894774 460596 798737 245756 410260 258913 189980 897698 312531 306918 506661 819927 047491 242782 707235 437453 455611 131095 295679 613730 727056 185299 211819 503198 134835 042939 331832 130016 771745 550224 014892 012208 214864 877852 701296 123378 012038 699752 319854 655982 339792 919914 910258 710832 196923 991881 699267 610856 366783 628510 550136 419774 810193 502848 891903 839984 282014 819468 319110 407413 124665 298603 505758 798894 723777 619304 630675 758411 159728 314571 307016 933505 055125 077148 246780 627778 721734 669379 420533 889187 911833 501144 (831 digits)/79028 386831 959967 240256 379956 749093 098098 808380 440672 851709 804061 222684 418508 053545 026385 393232 130835 208331 051621 884025 160550 883072 026082 283152 419790 854005 014843 057617 244192 359519 061538 999633 119867 183671 452406 237704 084537 778610 002997 851996 290403 243554 766051 881973 708924 413605 683481 468830 180380 889648 409259 985584 464596 543376 308969 671160 707118 960558 401060 004982 418224 261093 784095 512231 498562 636135 780385 435312 794326 625501 506212 277593 374242 729079 459012 659663 232558 627547 148735 040338 422778 006059 540965 109408 305695 886165 449116 239586 525344 914784 985912 775464 034140 533415 820372 938457 007004 747040 316762 287496 365219 989330 420897 990622 667629 128114 049884 416481 296000 008243 519587 330227 684258 294770 901586 149614 149758 052379 703328 081884 882692 196666 286712 353332 136652 080980 464021 838281 350088 570432 984463 502271 091285 915992 525540 983179 639048 447765 664949 (833 digits), a[1597] = 2
                                                                                      A[1598]/B[1598] = 1966 699648 905206 024027 049316 320495 215833 343827 631102 153024 752728 116706 295424 980324 021753 189093 693325 027705 762560 712503 163608 993190 046605 085767 744040 773190 293098 216356 947274 873320 151914 035696 847773 111172 467961 455232 022545 297762 759140 316056 669498 796490 405038 454969 116954 123737 652971 308301 695250 488557 313866 573341 029786 832090 308557 246615 950625 668581 562035 899741 137871 672335 234597 516290 847775 146360 085702 311879 292470 573474 100787 294613 884298 981831 206906 669966 697888 781133 053369 727425 542253 137309 226828 858705 558062 608342 796967 629993 628450 991061 659887 049255 151949 293370 764800 137779 648763 723857 645379 036562 267840 523126 356281 546614 056144 531329 078386 177749 319037 189112 759202 701967 512924 220564 698513 218367 154832 256332 830344 893791 421177 281534 078198 960920 918618 519845 109389 087705 483526 759398 232628 436807 893704 962706 105149 725976 518544 139391 111947 (832 digits)/191150 472380 608567 567595 939299 602607 502508 265167 961758 470969 482289 418229 227575 579138 890723 430631 461154 234010 057059 972456 996349 612498 335944 149289 951596 836900 815120 406626 622208 112537 985964 482343 308226 645657 067081 786739 904868 553841 349899 734719 544642 291869 535028 050686 641464 617305 200772 313765 788598 496181 236599 081020 605034 841002 884451 587055 220689 553277 311959 957137 758485 433668 561539 485589 134328 852293 229345 520888 646700 385819 214653 276982 410191 767268 727251 569751 035121 181198 032585 096212 298918 919029 996587 435890 429656 459714 005094 774141 813000 075807 869458 999576 167763 609583 267459 581030 874213 647611 473254 481374 161453 331205 163462 540487 802281 578758 854653 115136 942925 696357 646805 090305 914346 163736 780686 316862 553738 359223 114361 724322 070821 620753 370748 228242 112637 236660 998976 708021 051222 653165 364220 097739 229821 791233 039697 155986 699252 709254 986491 (834 digits), a[1598] = 2
                                                                                      A[1599]/B[1599] = 2779 803057 441316 523109 024264 685383 976776 011960 459159 198471 330707 870708 522822 145266 678748 623449 471815 588401 723563 342064 177920 802100 864855 306561 308143 377221 085050 612580 190093 381620 245858 643699 010269 262106 580882 295170 257557 844688 659883 533698 304776 742151 036101 043167 570696 978463 466941 398489 978955 687784 968924 983187 690075 376814 962128 176820 506023 563356 022632 698478 383628 082595 493510 706271 745473 458891 392620 818541 112397 620965 343570 001849 321752 437442 338001 965646 311619 508189 238668 939245 045451 272144 269768 190537 688079 380088 347191 644885 640659 205926 537739 750551 275327 305409 464552 457634 304746 063650 565293 946820 978672 720050 348163 245881 667000 898112 706896 727885 738811 999306 262051 593871 352908 502579 517981 537477 562245 380998 128948 399550 220072 005311 697503 591596 677029 679573 423960 394722 417031 814523 309776 683588 521483 684440 774529 146510 407732 051224 613091 (832 digits)/270178 859212 568534 807852 319256 351700 600607 073548 402431 322679 286350 640913 646083 632683 917108 823863 591989 442341 108681 856482 156900 495570 362026 432442 371387 690905 829963 464243 866400 472057 047503 481976 428093 829328 519488 024443 989406 332451 352897 586715 835045 535424 301079 932660 350389 030910 884253 782595 968979 385829 645859 066605 069631 384379 193421 258215 927808 513835 713019 962120 176709 694762 345634 997820 632891 488429 009730 956201 441027 011320 720865 554575 784434 496348 186264 229414 267679 808745 181320 136550 721696 925089 537552 545298 735352 345879 454211 013728 338344 990592 855371 775040 201904 142999 087832 519487 881218 394651 790016 768870 526673 320535 584360 531110 469910 706872 904537 531618 238925 704601 166392 420533 598604 458507 682272 466476 703496 411602 817689 806206 953513 817419 657460 581574 249289 317641 462998 546302 401311 223598 348683 600010 321107 707225 565238 139166 338301 157020 651440 (834 digits), a[1599] = 1
                                                                                      A[1600]/B[1600] = 4746 502706 346522 547136 073581 005879 192609 355788 090261 351496 083435 987414 818247 125590 700501 812543 165140 616107 486124 054567 341529 795290 911460 392329 052184 150411 378148 828937 137368 254940 397772 679395 858042 373279 048843 750402 280103 142451 419023 849754 974275 538641 441139 498136 687651 102201 119912 706791 674206 176342 282791 556528 719862 208905 270685 423436 456649 231937 584668 598219 521499 754930 728108 222562 593248 605251 478323 130420 404868 194439 444357 296463 206051 419273 544908 635613 009508 289322 292038 666670 587704 409453 496597 049243 246141 988431 144159 274879 269110 196988 197626 799806 427276 598780 229352 595413 953509 787508 210672 983383 246513 243176 704444 792495 723145 429441 785282 905635 057849 188419 021254 295838 865832 723144 216494 755844 717077 637330 959293 293341 641249 286845 775702 552517 595648 199418 533349 482427 900558 573921 542405 120396 415188 647146 879678 872486 926276 190615 725038 (832 digits)/461329 331593 177102 375448 258555 954308 103115 338716 364189 793648 768640 059142 873659 211822 807832 254495 053143 676351 165741 828939 153250 108068 697970 581732 322984 527806 645083 870870 488608 584595 033467 964319 736320 474985 586569 811183 894274 886292 702797 321435 379687 827293 836107 983346 991853 648216 085026 096361 757577 882010 882458 147625 674666 225382 077872 845271 148498 067113 024979 919257 935195 128430 907174 483409 767220 340722 239076 477090 087727 397139 935518 831558 194626 263616 913515 799165 302800 989943 213905 232763 020615 844119 534139 981189 165008 805593 459305 787870 151345 066400 724830 774616 369667 752582 355292 100518 755432 042263 263271 250244 688126 651740 747823 071598 272192 285631 759190 646755 181851 400958 813197 510839 512950 622244 462958 783339 257234 770825 932051 530529 024335 438173 028208 809816 361926 554302 461975 254323 452533 876763 712903 697749 550929 498458 604935 295153 037553 866275 637931 (834 digits), a[1600] = 1
                                                                                      A[1601]/B[1601] = 17019 311176 480884 164517 245007 703021 554604 079324 729943 252959 581015 832952 977563 522038 780254 061078 967237 436724 181935 505766 202510 187973 599236 483548 464695 828455 219497 099391 602198 146441 439176 681886 584396 381943 727413 546377 097867 272042 916955 082963 227603 358075 359519 537577 633650 285066 826679 518865 001574 216811 817299 652773 849662 003530 774184 447129 875971 259168 776638 493136 948127 347387 677835 373959 525219 274645 827590 209802 327002 204283 676641 891238 939906 695262 972727 872485 340144 376156 114784 939256 808564 500504 759559 338267 426505 345381 779669 469523 447989 796891 130620 149970 557157 101750 152610 243876 165275 426175 197312 896970 718212 449580 461497 623368 836437 186438 062745 444790 912359 564563 325814 481387 950406 672012 167465 805011 713478 292991 006828 279575 143819 865849 024611 249149 463974 277829 024008 842006 118707 536287 936992 044777 767049 625881 413565 763971 186560 623071 788205 (833 digits)/1 654166 853992 099841 934197 094924 214624 909953 089697 495000 703625 592270 818342 267061 268152 340605 587348 751420 471394 605907 343299 616650 819776 455938 177639 340341 274325 765215 076855 332226 225842 147907 374935 637055 254285 279197 457995 672230 991329 461289 551021 974109 017305 809403 882701 325949 975559 139332 071681 241713 031862 293233 509482 093630 060525 427039 794029 373302 715174 787959 719893 982295 080055 067158 448049 934552 510595 726960 387471 704209 202740 527422 049250 368313 287198 926811 626910 176082 778574 823035 834839 783544 457448 139972 488866 230378 762659 832128 377338 792380 189795 029864 098889 310907 400746 153708 821044 147514 521441 579830 519604 591053 275757 827829 745905 286487 563768 182109 471883 784479 907477 605984 953052 137456 325241 071148 816494 475200 724080 613844 397794 026520 131938 742087 011023 335068 980548 848924 309272 758912 853889 487394 693258 973896 202601 380044 024625 450962 755847 565233 (835 digits), a[1601] = 3
                                                                                      A[1602]/B[1602] = 38785 125059 308290 876170 563596 411922 301817 514437 550147 857415 245467 653320 773374 169668 261009 934701 099615 489555 849995 066099 746550 171238 109933 359425 981575 807321 817143 027720 341764 547823 276126 043169 026835 137166 503670 843156 475837 686537 252934 015681 429482 254792 160178 573291 954951 672334 773271 744521 677354 609965 917390 862076 419186 215966 819054 317696 208591 750275 137945 584493 417754 449706 083778 970481 643687 154543 133503 550025 058872 603006 797641 078941 085864 809799 490364 380583 689797 041634 521608 545184 204833 410463 015715 725778 099152 679194 703498 213926 165089 790770 458867 099747 541590 802280 534573 083166 284060 639858 605298 777324 682938 142337 627440 039233 396019 802317 910773 795216 882568 317545 672883 258614 766646 067168 551426 365868 144034 223312 972949 852491 928889 018543 824925 050816 523596 755076 581367 166440 137973 646497 416389 209951 949287 898909 706810 400429 299397 436759 301448 (833 digits)/3 769663 039577 376786 243842 448404 383557 923021 518111 354191 200899 953181 695827 407781 748127 489043 429192 555984 619140 377556 515538 386551 747621 609846 937011 003667 076458 175514 024581 153061 036279 329282 714191 010430 983556 144964 727175 238736 868951 625376 423479 327905 861905 454915 748749 643753 599334 363690 239724 241003 945735 468925 166589 861926 346432 931952 433329 895103 497462 600899 359045 899785 288541 041491 379509 636325 361913 692997 252033 496145 802620 990362 930058 931252 838014 767139 052985 654966 547092 859976 902442 587704 759015 814084 958921 625766 330913 123562 542547 736105 445990 784558 972394 991482 554074 662709 742607 050461 085146 422932 289453 870233 203256 403482 563408 845167 413168 123409 590522 750811 215914 025167 416943 787863 272726 605256 416328 207636 218987 159740 326117 077375 702050 512382 831863 032064 515400 159823 872868 970359 584542 687693 084267 498721 903661 365023 344403 939479 377970 768397 (835 digits), a[1602] = 2
                                                                                      A[1603]/B[1603] = 327300 311650 947211 173881 753778 998399 969144 194825 131126 112281 544757 059519 164556 879384 868333 538687 764161 353170 981896 034564 174911 557878 478703 358956 317302 287029 756641 321154 336314 529027 648185 027238 799077 479275 756780 291628 904568 764340 940427 208414 663461 396412 640948 123913 273263 663745 012853 475038 420411 096539 156426 549385 203151 731265 326618 988699 544705 261369 880203 169084 290162 945036 348067 137812 674716 510990 895618 610002 797983 028338 057770 522767 626825 173658 895642 917154 858520 709232 287653 300730 447231 784208 885285 144492 219726 778939 407655 180932 768708 123054 801556 947950 889883 519994 429194 909206 437760 545044 039703 115568 181717 588281 481017 937236 004595 604981 348935 806525 972906 104928 708880 550306 083575 209360 578876 731956 865752 079494 790427 099510 574932 014199 624011 655681 652748 318441 674946 173527 222496 708267 268105 724393 361352 817159 068048 967405 581740 117146 199789 (834 digits)/31 811471 170611 114131 884936 682159 283088 294125 234588 328530 310825 217724 384961 529315 253172 252953 020889 199297 424517 626359 467606 709064 800749 334713 673727 369677 885991 169327 273504 556714 516076 782169 088463 720503 122734 438915 275397 582125 942942 464300 938856 597355 912549 448729 872698 475978 770234 048853 989475 169744 597746 044634 842200 989040 831988 882659 260668 534130 694875 595154 592261 180577 388383 399089 484127 025155 405905 270938 403739 673375 623708 450325 489721 818335 991317 063924 050795 415815 155317 702851 054380 485182 529574 652652 160239 236509 409964 820628 717720 681223 757721 306335 878049 242767 833343 455386 761900 551203 202612 963288 835235 552918 901809 055690 253176 047826 869113 169386 196065 790969 634789 807324 288602 440362 507053 913200 147120 136290 475977 891767 006730 645525 748342 841149 665927 591585 103750 127515 292224 521789 530230 988939 367398 963671 431892 300230 779856 966797 779613 712409 (836 digits), a[1603] = 8
                                                                                      A[1604]/B[1604] = 693385 748361 202713 223934 071154 408722 240105 904087 812400 081978 334981 772359 102487 928437 997677 012076 627938 195897 813787 135228 096373 286995 067340 077338 616180 381381 330425 670029 014393 605878 572496 097646 624990 095718 017231 426414 284975 215219 133788 432510 756405 047617 442074 821118 501478 999824 798978 694598 518176 803044 230243 960846 825489 678497 472292 295095 298002 273014 898351 922661 998080 339778 779913 246106 993120 176524 924740 770030 654838 659682 913182 124476 339515 157117 281650 214893 406838 460099 096915 146645 099296 978880 786286 014762 538606 237073 518808 575791 702506 036880 061980 995649 321357 842269 392962 901579 159581 729946 684705 008461 046373 318900 589475 913705 405211 012280 608645 408268 828380 527403 090644 359226 933796 485889 709179 829781 875538 382302 553804 051513 078753 046943 072948 362179 829093 391959 931259 513494 582967 063031 952600 658738 671993 533227 842908 335240 462877 671051 701026 (834 digits)/67 392605 380799 605050 013715 812722 949734 511271 987288 011251 822550 388630 465750 466412 254471 994949 470970 954579 468175 630275 450751 804681 349120 279274 284465 743022 848440 514168 571590 266490 068432 893620 891118 451437 229025 022795 277970 402988 754836 553978 301192 522617 687004 352375 494146 595711 139802 461398 218674 580493 141227 558194 850991 840008 010410 697270 954666 963364 887213 791208 543568 260940 065307 839670 347763 686636 173724 234874 059512 842897 050037 891013 909502 567924 820648 894987 154576 486596 857728 265679 011203 558069 818165 119389 279400 098785 150842 764819 977989 098552 961433 397230 728493 477018 220761 573483 266408 152867 490372 349509 959924 976071 006874 514863 069760 940821 151394 462181 982654 332750 485493 639815 994148 668588 286834 431656 710568 480217 170942 943274 339578 368427 198736 194682 163718 215234 722900 414854 457318 013938 645004 665571 819065 426064 767445 965484 904117 873074 937198 193215 (836 digits), a[1604] = 2
                                                                                      A[1605]/B[1605] = 11 421472 285430 190622 756826 892249 537955 810838 660230 129527 423934 904465 417264 804363 734392 831165 731913 811172 487536 002490 198213 716884 149799 556144 596374 176188 389131 043452 041618 566612 223084 808122 589584 798919 010764 032483 114257 464172 207847 081042 128586 765942 158291 714145 261809 296927 660941 796512 588614 711239 945246 840329 922934 410986 587224 883295 710224 312741 629608 253833 931676 259448 381496 826679 075524 564639 335389 691470 930493 275401 583264 668684 514389 059067 687535 402046 355449 367936 070817 838295 647052 035983 446301 465861 380692 837426 572115 708592 393600 008804 713135 793252 878340 031608 996304 716601 334472 991068 224190 994983 250944 923690 690690 912632 556522 487971 801471 087262 338827 226994 543378 159190 297937 024318 983595 925754 008466 874366 196335 651291 923719 834980 765288 791185 450558 918242 589800 575098 389440 549969 716778 509716 264212 113249 348804 554582 331252 987782 853973 416205 (836 digits)/1110 093157 263404 794932 104389 685726 478840 474477 031196 508559 471631 435811 836968 991911 324724 172144 556424 472568 915327 710766 679635 583966 386673 803102 225179 258043 461039 396024 418948 820555 611003 080103 346358 943498 787134 803639 722924 029946 020327 327953 757936 959238 904619 086737 779044 007357 007073 431225 488268 457634 857386 975752 458070 429168 998560 038994 535339 947968 890296 254491 289353 355618 433308 833815 048346 011334 185493 028923 355945 159728 424314 706548 041762 905133 121699 383718 524019 201364 878969 953715 233637 414299 620216 562880 630640 817071 823449 057748 365546 258071 140655 662027 533944 875059 365528 631119 024430 997083 048570 555448 194035 170055 011801 293499 369351 100965 291424 564297 918535 114977 402688 044380 194981 137775 096404 819707 516215 819765 211064 984156 439984 540360 928121 956064 285419 035340 670156 765186 609312 744807 850305 638088 472445 780707 711027 747989 245742 935996 774784 803849 (838 digits), a[1605] = 16
                                                                                      A[1606]/B[1606] = 12 114858 033791 393335 980760 963403 946678 050944 564317 941927 505913 239447 189623 906851 662830 828842 743990 439110 683433 816277 333441 813257 436794 623484 673712 792368 770512 373877 711647 581005 828963 380618 687231 423909 106482 049714 540671 749147 423066 214830 561097 522347 205909 156220 082927 798406 660766 595491 283213 229416 748291 070573 883781 236476 265722 355588 005319 610743 902623 152185 854338 257528 721275 606592 321631 557759 511914 616211 700523 930240 242947 581866 638865 398582 844652 683696 570342 774774 530916 935210 793697 135280 425182 252147 395455 376032 809189 227400 969391 711310 750015 855233 873989 352966 838574 109564 236052 150649 954137 679688 259405 970064 009591 502108 470227 893182 813751 695907 747096 055375 070781 249834 657163 958115 469485 634933 838248 749904 578638 205095 975232 913733 812231 864133 812738 747335 981760 506357 902935 132936 779810 462316 922950 785242 882032 397490 666493 450660 525025 117231 (836 digits)/1177 485762 644204 399982 118105 498449 428574 985749 018484 519811 294181 824442 302719 458323 579196 167094 027395 427148 383503 341042 130387 388647 735794 082376 509645 001066 309479 910192 990539 087045 679435 973724 237477 394936 016159 826435 000894 432934 775163 881932 059129 481856 591623 439113 273190 603068 146875 892623 706943 038127 998614 533947 309062 269177 008970 736265 490006 911333 777510 045699 832921 616558 498616 673485 396109 697970 359217 263797 415458 002625 474352 597561 951265 473057 942348 278705 678595 687961 736698 219394 244840 972369 438381 682269 910040 915856 974291 822568 343535 356624 102089 059258 262438 352077 586290 204602 290839 149950 538942 904958 153960 146126 018675 808362 439112 041786 442819 026479 901189 447727 888181 684196 189129 806363 383239 251364 226784 299982 382007 927430 779562 908788 126858 150746 449137 250575 393057 180041 066630 758746 495310 303660 291511 206772 478473 713474 149860 809071 711982 997064 (838 digits), a[1606] = 1
                                                                                      A[1607]/B[1607] = 84 110620 488178 550638 641392 672673 218024 116506 046137 781092 459414 341148 555008 245473 711377 804222 195856 445836 588138 900154 198864 596428 770567 297052 638650 930401 012205 286718 311504 052647 196865 091834 712973 342373 649656 330770 358287 959056 746244 370025 495171 900025 393746 651465 759376 087367 625541 369460 287894 087740 434993 263773 225621 829844 181559 016823 742141 977205 045347 166949 057705 804620 709150 466233 005313 911196 406877 388741 133636 856843 040950 159884 347581 450564 755451 504225 777506 016583 256319 449560 409234 847665 997394 978745 753425 093623 427251 072998 209950 276669 213230 924656 122276 149410 027749 373986 750785 894967 949017 073112 807380 744074 748239 925283 377889 847068 683981 262708 821403 559244 968065 658198 240920 773011 800509 735357 037959 373793 668164 881867 775117 317383 638679 975988 326991 402258 480363 613245 807051 347590 395641 283617 801916 824706 640998 939526 330213 691746 004124 119591 (836 digits)/8175 007733 128631 194824 813022 676423 050290 388971 142103 627427 236722 382465 653285 741852 799901 174708 720797 035459 216347 757019 461959 915852 801438 297361 283049 264441 317918 857182 362183 342829 687618 922448 771223 313114 884093 762249 728290 627554 671310 619546 112713 850378 454359 721417 418187 625765 888328 786967 729926 686402 849074 179436 312444 044231 052384 456587 475381 415971 555356 528690 286883 054969 425008 874727 425004 199156 340796 611707 848693 175481 270430 291919 749355 743480 775789 055952 595593 329135 299159 270080 702683 248516 250506 656500 090886 312213 669199 993158 426758 397815 753190 017577 108574 987524 883269 858732 769465 896786 282227 985197 117796 046811 123856 143674 004023 351683 948338 723177 325671 801344 731778 149557 329759 975955 395840 327892 876921 619659 503112 548741 117361 993089 689270 860542 980242 538793 028499 845433 009097 297286 822167 460050 221513 021342 581870 028834 144907 790427 046682 786233 (838 digits), a[1607] = 6
                                                                                      A[1608]/B[1608] = 180 336099 010148 494613 263546 308750 382726 283956 656593 504112 424741 921744 299640 397799 085586 437287 135703 330783 859711 616585 731171 006114 977929 217589 951014 653170 794922 947314 334655 686300 222693 564288 113178 108656 405794 711255 257247 667260 915554 954881 551441 322397 993402 459151 601679 973141 911849 334411 859001 404897 618277 598120 335024 896164 628840 389235 489603 565153 993317 486083 969749 866770 139576 539058 332259 380152 325669 393693 967797 643926 324847 901635 334028 299712 355555 692148 125354 807941 043555 834331 612166 830612 419972 209638 902305 563279 663691 373397 389292 264649 176477 704546 118541 651786 894072 857537 737623 940585 852171 825913 874167 458213 506071 352675 226007 587320 181714 221325 389903 173865 006912 566231 139005 504139 070505 105647 914167 497491 914967 968831 525467 548501 089591 816110 466721 551852 942487 732849 517037 828117 571093 029552 526784 434656 164030 276543 326920 834152 533273 356413 (837 digits)/17527 501228 901466 789631 744150 851295 529155 763691 302691 774665 767626 589373 609290 942029 178998 516511 468989 498066 816198 855081 054307 220353 338670 677099 075743 529948 945317 624557 714905 772705 054673 818621 779924 021165 784347 350934 457475 688044 117785 121024 284557 182613 500342 881948 109565 854599 923533 466559 166796 410933 696762 892819 933950 357639 113739 649440 440769 743276 888223 103080 406687 726497 348634 422940 246118 096283 040810 487213 112844 353588 015213 181401 449976 960019 493926 390610 869782 346232 335016 759555 650207 469401 939394 995270 091813 540284 312691 808885 197052 152255 608469 094412 479588 327127 352829 922067 829770 943523 103398 875352 389552 239748 266388 095710 447158 745154 339496 472834 552533 050417 351737 983310 848649 758274 174919 907149 980627 539301 388233 024913 014286 894967 505399 871832 409622 328161 450056 870907 084825 353320 139645 223760 734537 249457 642213 771142 439676 389925 805348 569530 (839 digits), a[1608] = 2
                                                                                      A[1609]/B[1609] = 985 791115 538921 023704 959124 216425 131655 536289 329105 301654 583123 949870 053210 234469 139309 990657 874373 099755 886696 983082 854719 627003 660213 385002 393724 196254 986820 023289 984782 484148 310332 913275 278863 885655 678629 887046 644526 295361 324019 144433 252378 512015 360758 947223 767775 953077 184788 041519 582901 112228 526381 254374 900746 310667 325760 963001 190159 802975 011934 597368 906455 138471 407033 161524 666610 811958 035224 357210 972625 076474 665189 668061 017722 949126 533229 964966 404280 056288 474098 621218 470069 000728 097256 026940 264952 910021 745707 939985 156411 599915 095619 447386 714984 408344 498113 661675 438905 597897 209876 202682 178218 035142 278596 688659 507927 783669 592552 369335 770919 428570 002628 489353 935948 293707 153035 263596 608796 861253 243004 726025 402455 059889 086639 056540 660599 161523 192802 277493 392240 488178 251106 431380 435838 997987 461150 322242 964817 862508 670490 901656 (837 digits)/95812 513877 635965 142983 533776 932900 696069 207427 655562 500756 074855 329333 699740 451998 694893 757266 065744 525793 297342 032424 733496 017619 494791 682856 661766 914186 044506 979970 936712 206354 960988 015557 670843 418943 805830 516922 015669 067775 260236 224667 535499 763445 956074 131157 966016 898765 505996 119763 563908 741071 332888 643535 982195 832426 621082 703789 679230 132355 996472 044092 320321 687456 168180 989428 655594 680571 544849 047773 412914 943421 346496 198926 999240 543578 245421 009006 944505 060296 974243 067858 953720 595525 947481 632850 549954 013635 232659 037584 412019 159093 795535 489639 506516 623161 647419 469071 918320 614401 799222 361959 065557 245552 455796 622226 239817 077455 645821 087350 088337 053431 490468 066111 573008 767326 270439 863642 780059 316166 444277 673306 188796 467927 216270 219705 028354 179600 278784 199968 433224 063887 520393 578853 894199 268630 792938 884546 343289 740056 073425 633883 (839 digits), a[1609] = 5
                                                                                      A[1610]/B[1610] = 1166 127214 549069 518318 222670 525175 514381 820245 985698 805767 007865 871614 352850 632268 224896 427945 010076 430539 746408 599668 585890 633118 638142 602592 344738 849425 781742 970604 319438 170448 533026 477563 392041 994312 084424 598301 901773 962622 239574 099314 803819 834413 354161 406375 369455 926219 096637 375931 441902 517126 144658 852495 235771 206831 954601 352236 679763 368129 005252 083452 876205 005241 546609 700582 998870 192110 360893 750904 940422 720400 990037 569696 351751 248838 888785 657114 529634 864229 517654 455550 082235 831340 517228 236579 167258 473301 409399 313382 545703 864564 272097 151932 833526 060131 392186 519213 176529 538483 062048 028596 052385 493355 784668 041334 733935 370989 774266 590661 160822 602435 009541 055585 074953 797846 223540 369244 522964 358745 157972 694856 927922 608390 176230 872651 127320 713376 135290 010342 909278 316295 822199 460932 962623 432643 625180 598786 291738 696661 203764 258069 (838 digits)/113340 015106 537431 932615 277927 784196 225224 971118 958254 275421 842481 918707 309031 394027 873892 273777 534734 023860 113540 887505 787803 237972 833462 359955 737510 444134 989824 604528 651617 979060 015661 834179 450767 440109 590177 867856 473144 755819 378021 345691 820056 946059 456417 013106 075582 753365 429529 586322 730705 152005 029651 536355 916146 190065 734822 353230 119999 875632 884695 147172 727009 413953 516815 412368 901712 776854 585659 534986 525759 297009 361709 380328 449217 503597 739347 399617 814287 406529 309259 827414 603928 064927 886876 628120 641767 553919 545350 846469 609071 311349 404004 584051 986104 950289 000249 391139 748091 557924 902621 237311 455109 485300 722184 717936 686975 822609 985317 560184 640870 103848 842206 049422 421658 525600 445359 770792 760686 855467 832510 698219 203083 362894 721670 091537 437976 507761 728841 070875 518049 417207 660038 802614 628736 518088 435152 655688 782966 129981 878774 203413 (840 digits), a[1610] = 1
                                                                                      A[1611]/B[1611] = 14979 317690 127755 243523 631170 518531 304237 379241 157490 970858 677514 409242 287417 821687 838067 125997 995290 266232 843600 179105 885407 224427 317924 616110 530590 389364 367735 670541 818040 529530 706650 644035 983367 817400 691725 066669 465813 846828 198908 336210 898216 524975 610695 823728 201247 067706 344436 552696 885731 317742 262287 484317 730000 792650 780977 189841 347320 220523 074959 598803 420915 201369 966349 568520 653053 117282 365949 368070 257697 721286 545640 504417 238737 935193 198657 850340 759898 427042 685952 087819 456898 976814 303994 865890 272054 589638 658499 700575 704857 974686 360785 270580 717297 129921 204351 892233 557260 059693 954452 545834 806843 955411 694613 184676 315152 235546 883751 457269 700790 657790 117121 156374 835393 867861 835519 694530 884369 166195 138677 064308 537526 360571 201409 528354 188447 722036 816282 401608 303580 283728 117499 962575 987320 189710 963317 507678 465682 222443 115661 998484 (839 digits)/1 455892 695156 085148 334366 868910 343255 398768 860855 154613 805818 184638 353821 408117 180333 181601 042596 482552 812114 659832 682494 187134 873293 496340 002325 511892 243805 922402 234314 756127 955075 148930 025711 080052 700258 887964 931199 693406 137607 796492 372969 376183 116159 433078 288430 873009 939150 660351 155636 332370 565131 688707 079806 975950 113215 438950 942551 119228 639950 612813 810165 044434 654898 369965 937855 476148 002826 572763 467611 722026 507533 687008 762868 389850 586751 117589 804420 715953 938648 685360 996834 200857 374660 590001 170298 251164 660669 776869 195219 720874 895286 643590 498263 339776 026629 650412 162748 895419 309500 630677 209696 526871 069161 122013 237466 483526 948775 469631 809565 778778 299617 596940 659180 632911 074531 614757 113155 908301 581780 434406 051936 625796 822663 876311 318154 284072 272741 024877 050474 649817 070379 440859 210229 439037 485692 014770 752811 738883 299838 618716 074839 (841 digits), a[1611] = 12
                                                                                      A[1612]/B[1612] = 16145 444904 676824 761841 853841 043706 818619 199487 143189 776625 685380 280856 640268 453956 062963 553943 005366 696772 590008 778774 471297 857545 956067 218702 875329 238790 149478 641146 137478 699979 239677 121599 375409 811712 776149 664971 367587 809450 438482 435525 702036 359388 964857 230103 570702 993925 441073 928628 327633 834868 406946 336812 965771 999482 735578 542078 027083 588652 080211 682256 297120 206611 512959 269103 651923 309392 726843 118975 198120 441687 535678 074113 590489 184032 087443 507455 289533 291272 203606 543369 539134 808154 821223 102469 439313 062940 067899 013958 250561 839250 632882 422513 550823 190052 596538 411446 733789 598177 016500 574430 859229 448767 479281 226011 049087 606536 658018 047930 861613 260225 126662 211959 910347 665708 059060 063775 407333 524940 296649 759165 465448 968961 377640 401005 315768 435412 951572 411951 212858 600023 939699 423508 949943 622354 588498 106464 757420 919104 319426 256553 (839 digits)/1 569232 710262 622580 266982 146838 127451 623993 831974 112868 081240 027120 272528 717148 574361 055493 316374 017286 835974 773373 569999 974938 111266 329802 362281 249402 687940 912226 838843 407745 934135 164591 859890 530820 140368 478142 799056 166550 893427 174513 718661 196240 062218 889495 301536 948592 692516 089880 741959 063075 717136 718358 616162 892096 303281 173773 295781 239228 515583 497508 957337 771444 068851 886781 350224 377860 779681 158423 002598 247785 804543 048718 143196 839068 090348 856937 204038 530241 345177 994620 824248 804785 439588 476877 798418 892932 214589 322220 041689 329946 206636 047595 082315 325880 976918 650661 553888 643510 867425 533298 447007 981980 554461 844197 955403 170502 771385 454949 369750 419648 403466 439146 708603 054569 600132 060116 883948 668988 437248 266916 750155 828880 185558 597981 409691 722048 780502 753718 121350 167866 487587 100898 012844 067774 003780 449923 408500 521849 429820 497490 278252 (841 digits), a[1612] = 1
                                                                                      A[1613]/B[1613] = 31124 762594 804580 005365 485011 562238 122856 578728 300680 747484 362894 690098 927686 275643 901030 679941 000656 963005 433608 957880 356705 081973 273991 834813 405919 628154 517214 311687 955519 229509 946327 765635 358777 629113 467874 731640 833401 656278 637390 771736 600252 884364 575553 053831 771950 061631 785510 481325 213365 152610 669233 821130 695772 792133 516555 731919 374403 809175 155171 281059 718035 407981 479308 837624 304976 426675 092792 487045 455818 162974 081318 578530 829227 119225 286101 357796 049431 718314 889558 631188 996033 784969 125217 968359 711367 652578 726398 714533 955419 813936 993667 693094 268120 319973 800890 303680 291049 657870 970953 120265 666073 404179 173894 410687 364239 842083 541769 505200 562403 918015 243783 368334 745741 533569 894579 758306 291702 691135 435326 823474 002975 329532 579049 929359 504216 157449 767854 813559 516438 883752 057199 386084 937263 812065 551815 614143 223103 141547 435088 255037 (839 digits)/3 025125 405418 707728 601349 015748 470707 022762 692829 267481 887058 211758 626350 125265 754694 237094 358970 499839 648089 433206 252494 162072 984559 826142 364606 761294 931746 834629 073158 163873 889210 313521 885601 610872 840627 366107 730255 859957 031034 971006 091630 572423 178378 322573 589967 821602 631666 750231 897595 395446 282268 407065 695969 868046 416496 612724 238332 358457 155534 110322 767502 815878 723750 256747 288079 854008 782507 731186 470209 969812 312076 735726 906065 228918 677099 974527 008459 246195 283826 679981 821083 005642 814249 066878 968717 144096 875259 099089 236909 050821 101922 691185 580578 665657 003548 301073 716637 538930 176926 163975 656704 508851 623622 966211 192869 654029 720160 924581 179316 198426 703084 036087 367783 687480 674663 674873 997104 577290 019028 701322 802092 454677 008222 474292 727846 006121 053243 778595 171824 817683 557966 541757 223073 506811 489472 464694 161312 260732 729659 116206 353091 (841 digits), a[1613] = 1
                                                                                      A[1614]/B[1614] = 78394 970094 285984 772572 823864 168183 064332 356943 744551 271594 411169 661054 495641 005243 865024 913825 006680 622783 457226 694535 184708 021492 504050 888329 687168 495099 183907 264522 048517 158999 132332 652870 092965 069939 711899 128253 034391 122007 713263 978998 902542 128118 115963 337767 114603 117189 012094 891278 754364 140089 745413 979074 357317 583749 768690 005916 775891 207002 390554 244375 733191 022574 471576 944352 261876 162742 912428 093066 109756 767635 698315 231175 248943 422482 659646 223047 388396 727901 982723 805747 531202 378093 071659 039188 862048 368097 520696 443026 161401 467124 620217 808702 087063 830000 198319 018807 315888 913918 958406 814962 191376 257125 827070 047385 777567 290703 741557 058331 986421 096255 614228 948629 401830 732847 848219 580387 990738 907211 167303 406113 471399 628026 535740 259724 324200 750312 487282 039070 245736 367528 054098 195678 824471 246485 692129 334751 203627 202199 189602 766627 (839 digits)/7 619483 521100 038037 469680 178335 068865 669519 217632 647831 855356 450637 525228 967680 083749 529682 034315 016966 132153 639786 074988 299084 080385 982087 091494 771992 551434 581484 985159 735493 712555 791635 631093 752565 821623 210358 259567 886464 955497 116525 901922 341086 418975 534642 481472 591797 955849 590344 537149 853968 281673 532490 008102 628189 136274 399221 772445 956142 826651 718154 492343 403201 516352 400275 926384 085878 344696 620795 943018 187410 428696 520171 955327 296905 444548 805991 220957 022631 912831 354584 466414 816071 068086 610635 735853 181125 965107 520398 515507 431588 410481 429966 243472 657194 984015 252808 987163 721371 221277 861249 760416 999683 801707 776620 341142 478562 211707 304111 728382 816501 809634 511321 444170 429530 949459 409864 878157 823568 475305 669562 354340 738234 202003 546566 865383 734290 886990 310908 464999 803233 603520 184412 458991 081396 982725 379311 731125 043314 889138 729902 984434 (841 digits), a[1614] = 2
                                                                                      A[1615]/B[1615] = 109519 732689 090564 777938 308875 730421 187188 935672 045232 019078 774064 351153 423327 280887 766055 593766 007337 585788 890835 652415 541413 103465 778042 723143 093088 123253 701121 576210 004036 388509 078660 418505 451742 699053 179773 859893 867792 778286 350654 750735 502795 012482 691516 391598 886553 178820 797605 372603 967729 292700 414647 800205 053090 375883 285245 737836 150295 016177 545725 525435 451226 430555 950885 781976 566852 589418 005220 580111 565574 930609 779633 809706 078170 541707 945747 580843 437828 446216 872282 436936 527236 163062 196877 007548 573416 020676 247095 157560 116821 281061 613885 501796 355184 149973 999209 322487 606938 571789 929359 935227 857449 661305 000964 458073 141807 132787 283326 563532 548825 014270 858012 316964 147572 266417 742799 338694 282441 598346 602630 229587 474374 957559 114790 189083 828416 907762 255136 852629 762175 251280 111297 581763 761735 058551 243944 948894 426730 343746 624691 021664 (840 digits)/10 644608 926518 745766 071029 194083 539572 692281 910461 915313 742414 662396 151579 092945 838443 766776 393285 516805 780243 072992 327482 461157 064945 808229 456101 533287 483181 416114 058317 899367 601766 105157 516695 363438 662250 576465 989823 746421 986532 087531 993552 913509 597353 857216 071440 413400 587516 340576 434745 249414 563941 939555 704072 496235 552771 011946 010778 314599 982185 828477 259846 219080 240102 657023 214463 939887 127204 351982 413228 157222 740773 255898 861392 525824 121648 780518 229416 268827 196658 034566 287497 821713 882335 677514 704570 325222 840366 619487 752416 482409 512404 121151 824051 322851 987563 553882 703801 260301 398204 025225 417121 508535 425330 742831 534012 132591 931868 228692 907699 014928 512718 547408 811954 117011 624123 084738 875262 400858 494334 370885 156433 192911 210226 020859 593229 740411 940234 089503 636824 620917 161486 726169 682064 588208 472197 844005 892437 304047 618797 846109 337525 (842 digits), a[1615] = 1
                                                                                      A[1616]/B[1616] = 187914 702783 376549 550511 132739 898604 251521 292615 789783 290673 185234 012207 918968 286131 631080 507591 014018 208572 348062 346950 726121 124958 282093 611472 780256 618352 885028 840732 052553 547508 210993 071375 544707 768992 891672 988146 902183 900294 063918 729734 405337 140600 807479 729366 001156 296009 809700 263882 722093 432790 160061 779279 410407 959633 053935 743752 926186 223179 936279 769811 184417 453130 422462 726328 828728 752160 917648 673177 675331 698245 477949 040881 327113 964190 605393 803890 826225 174118 855006 242684 058438 541155 268536 046737 435464 388773 767791 600586 278222 748186 234103 310498 442247 979974 197528 341294 922827 485708 887766 750190 048825 918430 828034 505458 919374 423491 024883 621864 535246 110526 472241 265593 549402 999265 591018 919082 273180 505557 769933 635700 945774 585585 650530 448808 152617 658074 742418 891700 007911 618808 165395 777442 586206 305036 936074 283645 630357 545945 814293 788291 (840 digits)/18 264092 447618 783803 540709 372418 608438 361801 128094 563145 597771 113033 676808 060625 922193 296458 427600 533771 912396 712778 402470 760241 145331 790316 547596 305280 034615 997599 043477 634861 314321 896793 147789 116004 483873 786824 249391 632886 942029 204057 895475 254596 016329 391858 552913 005198 543365 930920 971895 103382 845615 472045 712175 124424 689045 411167 783224 270742 808837 546631 752189 622281 756455 057299 140848 025765 471900 972778 356246 344633 169469 776070 816719 822729 566197 586509 450373 291459 109489 389150 753912 637784 950422 288150 440423 506348 805474 139886 267923 913997 922885 551118 067523 980046 971578 806691 690964 981672 619481 886475 177538 508219 227038 519451 875154 611154 143575 532804 636081 831430 322353 058730 256124 546542 573582 494603 753420 224426 969640 040447 510773 931145 412229 567426 458613 474702 827224 400412 101824 424150 765006 910582 141055 669605 454923 223317 623562 347362 507936 576012 321959 (842 digits), a[1616] = 1
                                                                                      A[1617]/B[1617] = 861178 543822 596762 979982 839835 324838 193274 106135 204365 181771 515000 399985 099200 425414 290377 624130 063410 420078 283085 040218 445897 603298 906417 169034 214114 596665 241236 939138 214250 578541 922632 704007 630573 775024 746465 812481 476528 379462 606329 669673 124143 574885 921435 309062 891178 362860 036406 428134 856103 023861 054894 917322 694722 214415 500988 712847 855039 908897 290844 604680 188896 243077 640736 687291 881767 598061 675815 272822 266901 723591 691429 973231 386626 398470 367322 796406 742729 142692 292307 407672 760990 327683 271021 194498 315273 575771 318261 559905 229712 273806 550298 743790 124176 069870 789322 687667 298248 514625 480426 935988 052753 335028 313102 479908 819304 826751 382861 050990 689809 456376 746977 379338 345184 263480 106875 015023 375163 620577 682364 772391 257473 299901 716911 984316 438887 540061 224812 419429 793821 726512 772880 691534 106560 278698 988242 083476 948160 527529 881866 174828 (840 digits)/83 700978 716993 880980 233866 683757 973326 139486 422840 167896 133499 114530 858811 335449 527216 952610 103687 651893 429829 924105 937365 502121 646272 969495 646486 754407 621645 406510 232228 438812 859053 692330 107851 827456 597745 723762 987390 277969 754648 903763 575453 931893 662671 424650 283092 434194 760980 064260 322325 662945 946403 827738 552772 993934 308952 656617 143675 397571 217536 015004 268604 708207 265922 886219 777856 042949 014808 243095 838213 535755 418652 360182 128271 816742 386439 126556 030909 434663 634615 591169 303148 372853 684024 830116 466264 350618 062263 179032 824112 138401 203946 325624 094147 243039 873878 780649 467661 186991 876131 571126 127275 541412 333484 820639 034630 577208 506170 359911 452026 340649 802130 782329 836452 303181 918453 063153 888943 298566 372894 532675 199528 917492 859144 290565 427683 639223 249131 691152 044122 317520 221514 368498 246287 266630 291890 737276 386686 693497 650544 150158 625361 (842 digits), a[1617] = 4
                                                                                      A[1618]/B[1618] = 1 049093 246605 973312 530493 972575 223442 444795 398750 994148 472444 700234 412193 018168 711545 921458 131721 077428 628650 631147 387169 172018 728257 188510 780506 994371 215018 126265 779870 266804 126050 133625 775383 175281 544017 638138 800628 378712 279756 670248 399407 529480 715486 728915 038428 892334 658869 846106 692017 578196 456651 214956 696602 105130 174048 554924 456600 781226 132077 227124 374491 373313 696208 063199 413620 710496 350222 593463 945999 942233 421837 169379 014112 713740 362660 972716 600297 568954 316811 147313 650356 819428 868838 539557 241235 750737 964545 086053 160491 507935 021992 784402 054288 566424 049844 986851 028962 221076 000334 368193 686178 101579 253459 141136 985367 738679 250242 407744 672855 225055 566903 219218 644931 894587 262745 697893 934105 648344 126135 452298 408092 203247 885487 367442 433124 591505 198135 967231 311129 801733 345320 938276 468976 692766 583735 924316 367122 578518 073475 696159 963119 (841 digits)/101 965071 164612 664783 774576 056176 581764 501287 550934 731041 731270 227564 535619 396075 449410 249068 531288 185665 342226 636884 339836 262362 791604 759812 194083 059687 656261 404109 275706 073674 173375 589123 255640 943461 081619 510587 236781 910856 696678 107821 470929 186489 679000 816508 836005 439393 304345 995181 294220 766328 792019 299784 264948 118358 997998 067784 926899 668314 026373 561636 020794 330489 022377 943518 918704 068714 486709 215874 194459 880388 588122 136252 944991 639471 952636 713065 481282 726122 744104 980320 057061 010638 634447 118266 906687 856966 867737 318919 092036 052399 126831 876742 161671 223086 845457 587341 158626 168664 495613 457601 304814 049631 560523 340090 909785 188362 649745 892716 088108 172080 124483 841060 092576 849724 492035 557757 642363 522993 342534 573122 710302 848638 271373 857991 886297 113926 076356 091564 145946 741670 986521 279080 387342 936235 746813 960594 010249 040860 158480 726170 947320 (843 digits), a[1618] = 1
                                                                                      A[1619]/B[1619] = 1 910271 790428 570075 510476 812410 548280 638069 504886 198513 654216 215234 812178 117369 136960 211835 755851 140839 048728 914232 427387 617916 331556 094927 949541 208485 811683 367502 719008 481054 704592 056258 479390 805855 319042 384604 613109 855240 659219 276578 069080 653624 290372 650350 347491 783513 021729 882513 120152 434299 480512 269851 613924 799852 388464 055913 169448 636266 040974 517968 979171 562209 939285 703936 100912 592263 948284 269279 218822 209135 145428 860808 987344 100366 761131 340039 396704 311683 459503 439621 058029 580419 196521 810578 435734 066011 540316 404314 720396 737647 295799 334700 798078 690600 119715 776173 716629 519324 514959 848620 622166 154332 588487 454239 465276 557984 076993 790605 723845 914865 023279 966196 024270 239771 526225 804768 949129 023507 746713 134663 180483 460721 185389 084354 417441 030392 738197 192043 730559 595555 071833 711157 160510 799326 862434 912558 450599 526678 601005 578026 137947 (841 digits)/185 666049 881606 545764 008442 739934 555090 640773 973774 898937 864769 342095 394430 731524 976627 201678 634975 837558 772056 560990 277201 764484 437877 729307 840569 814095 277906 810619 507934 512487 032429 281453 363492 770917 679365 234350 224172 188826 451327 011585 046383 118383 341672 241159 119097 873588 065326 059441 616546 429274 738423 127522 817721 112293 306950 724402 070575 065885 243909 576640 289399 038696 288300 829738 696560 111663 501517 458970 032673 416144 006774 496435 073263 456214 339075 839621 512192 160786 378720 571489 360209 383492 318471 948383 372952 207584 930000 497951 916148 190800 330778 202366 255818 466126 719336 367990 626287 355656 371745 028727 432089 591043 894008 160729 944415 765571 155916 252627 540134 512729 926614 623389 929029 152906 410488 620911 531306 821559 715429 105797 909831 766131 130518 148557 313980 753149 325487 782716 190069 059191 208035 647578 633630 202866 038704 697870 396935 734357 809024 876329 572681 (843 digits), a[1619] = 1
                                                                                      A[1620]/B[1620] = 4 869636 827463 113463 551447 597396 320003 720934 408523 391175 780877 130704 036549 252906 985466 345129 643423 359106 726108 459612 241944 407851 391369 378366 679589 411342 838384 861271 217887 228913 535234 246142 734164 786992 182102 407348 026848 089193 598195 223404 537568 836729 296232 029615 733412 459360 702329 611132 932322 446795 417675 754659 924451 704834 950976 666750 795498 053758 214026 263062 332834 497733 574779 471071 615445 895024 246791 132022 383644 360503 712694 890996 988800 914473 884923 652795 393706 192321 235818 026555 766415 980267 261882 160714 112703 882761 045177 894682 601284 983229 613591 453803 650445 947624 289276 539198 462221 259725 030254 065434 930510 410244 430434 049615 915920 854647 404229 988956 120547 054785 613463 151610 693472 374130 315197 307431 832363 695359 619561 721624 769059 124690 256265 536151 268006 652290 674530 351318 772248 992843 488988 360590 789998 291420 308605 749433 268321 631875 275486 852212 239013 (841 digits)/473 297170 927825 756311 791461 536045 691945 782835 498484 528917 460808 911755 324480 859125 402664 652425 801239 860782 886339 758864 894239 791331 667360 218427 875222 687878 212075 025348 291575 098648 238234 152029 982626 485296 440349 979287 685126 288509 599332 130991 563695 423256 362345 298827 074201 186569 434998 114064 527313 624878 268865 554829 900390 342945 611899 516589 068049 800084 514192 714916 599592 407881 598979 602996 311824 292041 489744 133814 259806 712676 601671 129123 091518 551900 630788 392308 505667 047695 501546 123298 777479 777623 271391 015033 652592 272136 727738 314822 924332 433999 788388 281474 673308 155340 284130 323322 411200 879977 239103 515056 168993 231719 348539 661550 798616 719504 961578 397971 168377 197539 977713 087839 950635 155537 313012 799580 704977 166112 773392 784718 529966 380900 532410 155106 514258 620224 727331 656996 526084 860053 402592 574237 654603 341967 824223 356334 804120 509575 776530 478830 092682 (843 digits), a[1620] = 2
                                                                                      A[1621]/B[1621] = 16 519182 272817 910466 164819 604599 508291 800872 730456 372040 996847 607346 921825 876090 093359 247224 686121 218159 227054 293069 153220 841470 505664 230027 988309 442514 326837 951316 372670 167795 310294 794686 681885 166831 865349 606648 693654 122821 453804 946791 681787 163812 179068 739197 547729 161595 128718 715911 917119 774685 733539 533831 387279 914357 241394 056165 555942 797540 683053 307155 977675 055410 663624 117150 947250 277336 688657 665346 369755 290646 283513 533799 953746 843788 415902 298425 577822 888647 166957 519288 357277 521220 982168 292720 773845 714294 675850 088362 524251 687336 136573 696111 749416 533472 987545 393769 103293 298499 605722 044925 413697 385065 879789 603087 213039 121926 289683 757474 085487 079221 863669 421028 104687 362162 471817 727064 446220 109586 605398 299537 487660 834791 954185 692808 221460 987264 761788 246000 047306 574085 538798 792929 530505 673587 788252 160858 255564 422304 427466 134662 854986 (842 digits)/1605 557562 665083 814699 382827 348071 630927 989280 469228 485690 247196 077361 367873 308901 184621 158956 038695 419907 431075 837584 959921 138479 439958 384591 466237 877729 914131 886664 382659 808431 747131 737543 311372 226807 000415 172213 279551 054355 249323 404559 737469 388152 428708 137640 341701 433296 370320 401635 198487 303909 545019 792012 518892 141130 142649 274169 274724 466138 786487 721390 088176 262341 085239 638727 632032 987787 970749 860412 812093 554173 811787 883804 347819 111916 231441 016547 029193 303872 883358 941385 692648 716362 132644 993484 330729 023995 113215 442420 689145 492799 695943 046790 275742 932147 571727 337957 859889 995588 089055 573895 939069 286201 939627 145382 340265 924086 040651 446541 045266 105349 859753 886909 780934 619518 349527 019653 646238 319898 035607 459953 499730 908832 727748 613876 856756 613823 507482 753705 768323 639351 415813 370291 597440 228769 511374 766874 809297 263085 138616 312819 850727 (844 digits), a[1621] = 3
                                                                                      A[1622]/B[1622] = 21 388819 100281 023929 716267 201995 828295 521807 138979 763216 777724 738050 958375 128997 078825 592354 329544 577265 953162 752681 395165 249321 897033 608394 667898 853857 165222 812587 590557 396708 845529 040829 416049 953824 047452 013996 720502 212015 052000 170196 219356 000541 475300 768813 281141 620955 831048 327044 849442 221481 151215 288491 311731 619192 192370 722916 351440 851298 897079 570218 310509 553144 238403 588222 562696 172360 935448 797368 753399 651149 996208 424796 942547 758262 300825 951220 971529 080968 402775 545844 123693 501488 244050 453434 886549 597055 721027 983045 125536 670565 750165 149915 399862 481097 276821 932967 565514 558224 635976 110360 344207 795310 310223 652703 128959 976573 693913 746430 206034 134007 477132 572638 798159 736292 787015 034496 278583 804946 224960 021162 256719 959482 210451 228959 489467 639555 436318 597318 819555 566929 027787 153520 320503 965008 096857 910291 523886 054179 702952 986875 093999 (842 digits)/2078 854733 592909 571011 174288 884117 322873 772115 967713 014607 708004 989116 692354 168026 587285 811381 839935 280690 317415 596449 854160 929811 107318 603019 341460 565608 126206 912012 674234 907079 985365 889573 293998 712103 440765 151500 964677 342864 848655 535551 301164 811408 791053 436467 415902 619865 805318 515699 725800 928787 813885 346842 419282 484075 754548 790758 342774 266223 300680 436306 687768 670222 684219 241723 943857 279829 460493 994227 071900 266850 413459 012927 439337 663816 862229 408855 534860 351568 384905 064684 470128 493985 404036 008517 983321 296131 840953 757243 613477 926799 484331 328264 949051 087487 855857 661280 271090 875565 328159 088952 108062 517921 288166 806933 138882 643591 002229 844512 213643 302889 837466 974749 731569 775055 662539 819234 351215 486010 809000 244672 029697 289733 260158 768983 371015 234048 234814 410702 294408 499404 818405 944529 252043 570737 335598 123209 613417 772660 915146 791649 943409 (844 digits), a[1622] = 1
                                                                                      A[1623]/B[1623] = 37 908001 373098 934395 881086 806595 336587 322679 869436 135257 774572 345397 880201 005087 172184 839579 015665 795425 180217 045750 548386 090792 402697 838422 656208 296371 492060 763903 963227 564504 155823 835516 097935 120655 912801 620645 414156 334836 505805 116987 901143 164353 654369 508010 828870 782550 959767 042956 766561 996166 884754 822322 699011 533549 433764 779081 907383 648839 580132 877374 288184 608554 902027 705373 509946 449697 624106 462715 123154 941796 279721 958596 896294 602050 716728 249646 549351 969615 569733 065132 480971 022709 226218 746155 660395 311350 396878 071407 649788 357901 886738 846027 149279 014570 264367 326736 668807 856724 241698 155285 757905 180376 190013 255790 341999 098499 983597 503904 291521 213229 340801 993666 902847 098455 258832 761560 724803 914532 830358 320699 744380 794274 164636 921767 710928 626820 198106 843318 866862 141014 566585 946449 851009 638595 885110 071149 779450 476484 130419 121537 948985 (842 digits)/3684 412296 257993 385710 557116 232188 953801 761396 436941 500297 955201 066478 060227 476927 771906 970337 878630 700597 748491 434034 814082 068290 547276 987610 807698 443338 040338 798677 056894 715511 732497 627116 605370 938910 441180 323714 244228 397220 097978 940111 038634 199561 219761 574107 757604 053162 175638 917334 924288 232697 358905 138854 938174 625205 897198 064927 617498 732362 087168 157696 775944 932563 769458 880451 575890 267617 431243 854639 883993 821024 225246 896731 787156 775733 093670 425402 564053 655441 268264 006070 162777 210347 536681 002002 314050 320126 954169 199664 302623 419599 180274 375055 224794 019635 427584 999238 130980 871153 417214 662848 047131 804123 227793 952315 479148 567677 042881 291053 258909 408239 697220 861659 512504 394574 012066 838887 997453 805908 844607 704625 529428 198565 987907 382860 227771 847871 742297 164408 062732 138756 234219 314820 849483 799506 846972 890084 422715 035746 053763 104469 794136 (844 digits), a[1623] = 1
                                                                                      A[1624]/B[1624] = 210 928825 965775 695909 121701 234972 511232 135206 486160 439505 650586 465040 359380 154432 939749 790249 407873 554391 854247 981434 137095 703283 910522 800507 948940 335714 625526 632107 406695 219229 624648 218409 905725 557103 611460 117223 791283 886197 581025 755135 725071 822309 747148 308867 425495 533710 629883 541828 682252 202315 574989 400104 806789 286939 361194 618325 888359 095496 797743 957089 751432 595918 748542 115090 112428 420849 055981 110944 369174 360131 394818 217781 424020 768515 884467 199453 718288 929046 251440 871506 528548 615034 375144 184213 188526 153807 705418 340083 374478 460075 183859 380051 146257 553948 598658 566650 909553 841845 844466 886789 133733 697191 260289 931654 838955 469073 611901 265951 663640 200154 181142 540973 312395 228569 081178 842299 902603 377610 376751 624660 978623 930853 033635 837798 044110 773656 426852 813913 153866 272001 860716 885769 575552 157987 522408 266040 421138 436600 355048 594564 838924 (843 digits)/20500 916214 882876 499563 959870 045062 091882 579098 152420 516097 484010 321506 993491 552665 446820 663071 233088 783679 059872 766623 924571 271263 843703 541073 379952 782298 327900 905397 958708 484638 647854 025156 320853 406655 646666 770072 185819 328965 338550 236106 494335 809214 889861 307006 203922 885676 683513 102374 347242 092274 608411 041117 110155 610105 240539 115396 430267 928033 736521 224790 567493 333041 531513 643981 823308 617916 616713 267426 491869 371971 539693 496586 375121 542482 330581 535868 355128 628774 726225 095035 284014 545723 087441 018529 553572 896766 611799 755565 126595 024795 385703 203541 073021 185664 993782 657470 925995 231332 414232 403192 343721 538537 427136 568510 534625 481976 216636 299778 508190 344088 323571 283047 294091 747925 722874 013674 338484 515555 032038 767799 676838 282563 199695 683284 509874 473406 946300 232742 608069 193185 989502 518633 499462 568271 570462 573631 726992 951391 183962 313998 914089 (845 digits), a[1624] = 5
                                                                                      A[1625]/B[1625] = 248 836827 338874 630305 002788 041567 847819 457886 355596 574763 425158 810438 239581 159520 111934 629828 423539 349817 034465 027184 685481 794076 313220 638930 605148 632086 117587 396011 369922 783733 780472 053926 003660 677759 524261 737869 205440 221034 086830 872123 626214 986663 401517 816878 254366 316261 589650 584785 448814 198482 459744 222427 505800 820488 794959 397407 795742 744336 377876 834464 039617 204473 650569 820463 622374 870546 680087 573659 492329 301927 674540 176378 320315 370566 601195 449100 267640 898661 821173 936639 009519 637743 601362 930368 848921 465158 102296 411491 024266 817977 070598 226078 295536 568518 863025 893387 578361 698570 086165 042074 891638 877567 450303 187445 180954 567573 595498 769855 955161 413383 521944 534640 215242 327024 340011 603860 627407 292143 207109 945360 723004 725127 198272 759565 755039 400476 624959 657232 020728 413016 427302 832219 426561 796583 407518 337190 200588 913084 485467 716102 787909 (843 digits)/24185 328511 140869 885274 516986 277251 045684 340494 589362 016395 439211 387985 053719 029593 218727 633409 111719 484276 808364 200658 738653 339554 390980 528684 187651 225636 368239 704075 015603 200150 380351 652272 926224 345566 087847 093786 430047 726185 436529 176217 532970 008776 109622 881113 961526 938838 859152 019709 271530 324971 967316 179972 048330 235311 137737 180324 047766 660395 823689 382487 343438 265605 300972 524433 399198 885534 047957 122066 375863 192995 764940 393318 162278 318215 424251 961270 919182 284215 994489 101105 446791 756070 624122 020531 867623 216893 565968 955229 429218 444394 565977 578596 297815 205300 421367 656709 056976 102485 831447 066040 390853 342660 654930 520826 013774 049653 259517 590831 767099 752328 020792 144706 806596 142499 734940 852562 335938 321463 876646 472425 206266 481129 187603 066144 737646 321278 688597 397150 670801 331942 223721 833454 348946 367778 417435 463716 149707 987137 237725 418468 708225 (845 digits), a[1625] = 1
                                                                                      A[1626]/B[1626] = 708 602480 643524 956519 127277 318108 206871 050979 197353 589032 500904 085916 838542 473473 163619 049906 254952 254025 923178 035803 508059 291436 536964 078369 159237 599886 860701 424130 146540 786697 185592 326261 913046 912622 659983 592962 202164 328265 754687 499382 977501 795636 550183 942623 934228 166233 809184 711399 579880 599280 494477 844959 818390 927916 951113 413141 479844 584169 553497 626017 830667 004866 049681 756017 357178 161942 416156 258263 353832 963986 743898 570538 064651 509649 086858 097654 253570 726369 893788 744784 547587 890521 577870 044950 886369 084123 910011 163065 423012 096029 325055 832207 737330 690986 324710 353426 066277 238986 016796 970938 917011 452326 160896 306545 200864 604220 802898 805663 573963 026921 225031 610253 742879 882617 761202 050021 157417 961896 790971 515382 424633 381107 430181 356929 554189 574609 676772 128377 195323 098034 715322 550208 428675 751154 337444 940420 822316 262769 325984 026770 414742 (843 digits)/68871 573237 164616 270112 993842 599564 183251 260087 331144 548888 362433 097477 100929 611851 884275 929889 456527 752232 676601 167941 401877 950372 625664 598441 755255 233571 064380 313547 989914 884939 408557 329702 173302 097787 822360 957645 045914 781336 211608 588541 560275 826767 109107 069234 126976 763354 401817 141792 890302 742218 543043 401061 206816 080727 516013 476044 525801 248825 383899 989765 254369 864252 133458 692848 621706 388984 712627 511559 243595 757963 069574 283222 699678 178913 179085 458410 193493 197206 715203 297246 177598 057864 335685 059593 288819 330553 743737 666023 985031 913584 517658 360733 668651 596265 836517 970889 039947 436304 077126 535273 125428 223858 736997 610162 562173 581282 735671 481442 042389 848744 365155 572460 907284 032925 192755 718799 010361 158482 785331 712650 089371 244821 574901 815573 985167 115964 323495 027043 949671 857070 436946 185542 197355 303828 405333 501064 026408 925665 659413 150936 330539 (845 digits), a[1626] = 2
                                                                                      A[1627]/B[1627] = 957 439307 982399 586824 130065 359676 054690 508865 552950 163795 926062 896355 078123 632993 275553 679734 678491 603842 957643 062988 193541 085512 850184 717299 764386 231972 978288 820141 516463 570430 966064 380187 916707 590382 184245 330831 407604 549299 841518 371506 603716 782299 951701 759502 188594 482495 398835 296185 028694 797762 954222 067387 324191 748405 746072 810549 275587 328505 931374 460481 870284 209339 700251 576480 979553 032489 096243 831922 846162 265914 418438 746916 384966 880215 688053 546754 521211 625031 714962 681423 557107 528265 179232 975319 735290 549282 012307 574556 447278 914006 395654 058286 032867 259505 187736 246813 644638 937556 102962 013013 808650 329893 611199 493990 381819 171794 398397 575519 529124 440304 746976 144893 958122 209642 101213 653881 784825 254039 998081 460743 147638 106234 628454 116495 309228 975086 301731 785609 216051 511051 142625 382427 855237 547737 744963 277611 022905 175853 811451 742873 202651 (843 digits)/93056 901748 305486 155387 510828 876815 228935 600581 920506 565283 801644 485462 154648 641445 103003 563298 568247 236509 484965 368600 140531 289927 016645 127125 942906 459207 432620 017623 005518 085089 788908 981975 099526 443353 910208 051431 475962 507521 648137 764759 093245 835543 218729 950348 088503 702193 260969 161502 161833 067190 510359 581033 255146 316038 653750 656368 573567 909221 207589 372252 597808 129857 434431 217282 020905 274518 760584 633625 619458 950958 834514 676540 861956 497128 603337 419681 112675 481422 709692 398351 624389 813934 959807 080125 156442 547447 309706 621253 414250 357979 083635 939329 966466 801566 257885 627598 096923 538789 908573 601313 516281 566519 391928 130988 575947 630935 995189 072273 809489 601072 385947 717167 713880 175424 927696 571361 346299 479946 661978 185075 295637 725950 762504 881718 722813 437243 012092 424194 620473 189012 660668 018996 546301 671606 822768 964780 176116 912802 897138 569405 038764 (845 digits), a[1627] = 1
                                                                                      A[1628]/B[1628] = 7410 677636 520322 064288 037734 835840 589704 613038 068004 735603 983344 360402 385407 904426 092494 808049 004393 480926 626679 476720 862846 890026 488257 099467 509941 223697 708723 165120 761785 779713 948042 987577 330000 045297 949700 908782 055396 173364 645316 099929 203519 271736 212096 259139 254389 543701 601031 784694 780744 183621 174032 316671 087733 166757 173623 086986 408955 883711 073118 849390 922656 470243 951442 791384 214049 389366 089863 081723 276968 825387 672969 798952 759419 671158 903232 924935 902052 101591 898527 514749 447340 588377 832500 872189 033402 929097 996164 184960 553964 494074 094634 240209 967401 507522 638864 081121 578749 801878 737531 062035 577563 761581 439292 764477 873598 806781 591681 834300 277834 109054 453864 624511 449735 350112 469697 627193 651194 740176 777541 740584 458100 124749 829360 172396 718792 400213 788894 627641 707683 675392 713700 227203 415338 585318 552187 883697 982652 493746 006146 226882 833299 (844 digits)/720269 885475 303019 357825 569644 737270 785800 464160 774690 505874 973944 495712 183470 101967 605300 872979 434258 407799 071358 748142 385596 979861 742180 488323 355600 448023 092720 436909 028541 480567 930920 203527 869987 201265 193817 317665 377652 333987 748572 941855 212996 675569 640216 721670 746502 678707 228601 272308 023134 212552 115560 468293 992840 292998 092268 070624 540776 613373 837025 595533 439026 773254 174477 213822 768043 310616 036719 946938 579808 414674 911177 019008 733373 658813 402447 396177 982221 567165 683050 085707 548326 755409 054334 620469 383917 162684 911684 014797 884784 419438 103109 936043 433919 207229 641717 364075 718412 207833 437141 744467 739399 189494 480494 527082 593806 997834 701994 987358 708817 056251 066789 592634 904445 260899 686631 718328 434457 518109 419179 008177 158835 326476 912435 987605 044861 176665 408141 996406 292984 180159 061622 318518 021467 005076 164716 254525 259227 315285 939383 136771 601887 (846 digits), a[1628] = 7
                                                                                      A[1629]/B[1629] = 8368 116944 502721 651112 167800 195516 644395 121903 620954 899399 909407 256757 463531 537419 368048 487783 682885 084769 584322 539709 056387 975539 338441 816767 274327 455670 687011 985262 278249 350144 914107 367765 246707 635680 133946 239613 463000 722664 486834 471435 807236 054036 163798 018641 442984 026196 999867 080879 809438 981384 128254 384058 411924 915162 919695 897535 684543 212217 004493 309872 792940 679583 651694 367865 193602 421855 186106 913646 123131 091302 091408 545869 144386 551374 591286 471690 423263 726623 613490 196173 004448 116643 011733 847508 768693 478380 008471 759517 001243 408080 490288 298496 000268 767027 826600 327935 223388 739434 840493 075049 386214 091475 050492 258468 255417 978575 990079 409819 806958 549359 200840 769405 407857 559754 570911 281075 436019 994216 775623 201327 605738 230984 457814 288892 028021 375300 090626 413250 923735 186443 856325 609631 270576 133056 297151 161309 005557 669599 817597 969756 035950 (844 digits)/813326 787223 608505 513213 080473 614086 014736 064742 695197 071158 775588 981174 338118 743412 708304 436278 002505 644308 556324 116742 526128 269788 758825 615449 298506 907230 525340 454532 034059 565657 719829 185502 969513 644619 104025 369096 853614 841509 396710 706614 306242 511112 858946 672018 835006 380900 489570 433810 184967 279742 625920 049327 247986 609036 746018 726993 114344 522595 044614 967786 036834 903111 608908 431104 788948 585134 797304 580564 199267 365633 745691 695549 595330 155942 005784 815859 094897 048588 392742 484059 172716 569344 014141 700594 540359 710132 221390 636051 299034 777417 186745 875373 400386 008795 899602 991673 815335 746623 345715 345781 255680 756013 872422 658071 169754 628770 697184 059632 518306 657323 452737 309802 618325 436324 614328 289689 780756 998056 081157 193252 454473 052427 674940 869323 767674 613908 420234 420600 913457 369171 722290 337514 567768 676682 987485 219305 435344 228088 836521 706176 640651 (846 digits), a[1629] = 1
                                                                                      A[1630]/B[1630] = 15778 794581 023043 715400 205535 031357 234099 734941 688959 635003 892751 617159 848939 441845 460543 295832 687278 565696 211002 016429 919234 865565 826698 916234 784268 679368 395735 150383 040035 129858 862150 355342 576707 680978 083647 148395 518396 896029 132150 571365 010755 325772 375894 277780 697373 569898 600898 865574 590183 165005 302286 700729 499658 081920 093318 984522 093499 095928 077612 159263 715597 149827 603137 159249 407651 811221 275969 995369 400099 916689 764378 344821 903806 222533 494519 396626 325315 828215 512017 710922 451788 705020 844234 719697 802096 407478 004635 944477 555207 902154 584922 538705 967670 274550 465464 409056 802138 541313 578024 137084 963777 853056 489785 022946 129016 785357 581761 244120 084792 658413 654705 393916 857592 909867 040608 908269 087214 734393 553164 941912 063838 355734 287174 461288 746813 775513 879521 040892 631418 861836 570025 836834 685914 718374 849339 045006 988210 163345 823744 196638 869249 (845 digits)/1 533596 672698 911524 871038 650118 351356 800536 528903 469887 577033 749533 476886 521588 845380 313605 309257 436764 052107 627682 864884 911725 249650 501006 103772 654107 355253 618060 891441 062601 046225 650749 389030 839500 845884 297842 686762 231267 175497 145283 648469 519239 186682 499163 393689 581509 059607 718171 706118 208101 492294 741480 517621 240826 902034 838286 797617 655121 135968 881640 563319 475861 676365 783385 644927 556991 895750 834024 527502 779075 780308 656868 714558 328703 814755 408232 212037 077118 615754 075792 569766 721043 324753 068476 321063 924276 872817 133074 650849 183819 196855 289855 811416 834305 216025 541320 355749 533747 954456 782857 090248 995079 945508 352917 185153 763561 626605 399179 046991 227123 713574 519526 902437 522770 697224 300960 008018 215214 516165 500336 201429 613308 378904 587376 856928 812535 790573 828376 417007 206441 549330 783912 656032 589235 681759 152201 473830 694571 543374 775904 842948 242538 (847 digits), a[1630] = 1
                                                                                      A[1631]/B[1631] = 702635 078509 516645 128721 211341 575234 944783 459337 935178 839571 190478 411790 816866 978619 631953 504421 923141 975402 868411 262625 502722 060435 713194 131097 782149 347880 099358 602116 039795 063934 848723 002838 621845 598715 814420 769016 272464 147946 301459 611496 280470 388020 703146 240992 127421 101735 439417 166161 777498 241617 428869 216156 396880 519647 025731 216507 798503 433052 419428 317476 279215 271998 189729 374839 130282 115591 328786 709899 727527 425651 724055 718032 911860 342848 350139 923248 737160 168106 142269 476760 883151 137560 158061 514212 060935 407412 212453 316529 430391 102882 226880 001558 577760 847248 307034 326434 517484 557232 273555 106787 792439 625960 601033 268097 932156 534309 587574 151103 537835 519560 007878 101747 141945 593904 357703 244915 273468 307533 114880 645458 414625 883293 093490 585596 887827 497910 789552 212526 706165 107252 937462 430357 450823 741549 668069 141616 486804 856816 062342 621866 282906 (846 digits)/68 291580 385975 715599 838913 685681 073785 238343 336495 370250 460643 755061 964181 288027 940146 506938 043605 220123 937044 174370 171678 642039 254410 803094 181446 079230 538389 720019 677938 788505 599586 352802 302859 907550 863528 209103 586635 029370 563383 789191 239273 152766 725142 822135 994360 421405 003640 089125 503011 341432 940711 251062 824661 844370 298569 630637 822169 939674 505225 836799 753842 974748 663206 077876 807917 296591 998171 494383 790686 478601 699214 647915 136116 058298 005179 968002 145490 488116 141767 727615 553794 898622 858479 027099 827407 208542 114086 076675 273415 387079 439049 940401 577714 109815 513919 717698 644653 300245 742721 791427 316737 039198 358381 400778 804836 766466 199408 261062 127246 511750 054602 311921 017053 620236 114193 856568 642491 250195 709338 095950 056155 440041 724229 519522 574191 519249 399156 868796 768917 996885 539726 214447 202948 494138 674085 684350 067855 996492 136578 976334 795899 312323 (848 digits), a[1631] = 44
                                                                                      A[1632]/B[1632] = 718413 873090 539688 844121 416876 606592 178883 194279 624138 474575 083230 028950 665806 420465 092496 800254 610420 541099 079413 279055 421956 926001 539893 047332 566418 027248 495093 752499 079830 193793 710873 358181 198553 279693 898067 917411 790861 043975 433610 182861 291225 713793 079040 518772 824794 671634 040316 031736 367681 406622 731155 916885 896538 601567 119050 201029 892002 528980 497040 476739 994812 421825 792866 534088 537933 926812 604756 705269 127627 342341 488434 062854 815666 565381 844659 319875 062475 996321 654287 187683 334939 842581 002296 233909 863031 814890 217089 261006 985599 005036 811802 540264 545431 121798 772498 735491 319623 098545 851579 243872 756217 479017 090818 291044 061173 319667 169335 395223 622628 177973 662583 495663 999538 503771 398312 153184 360683 041926 668045 587370 478464 239027 380665 046885 634641 273424 669073 253419 337583 969089 507488 267192 136738 459924 517408 186623 475015 020161 886086 818505 152155 (846 digits)/69 825177 058674 627124 709952 335799 425142 038879 865398 840138 037677 504595 441067 809616 785526 820543 352862 656887 989151 802053 036563 553764 504061 304100 285218 733337 893643 338080 569379 851106 645812 003551 691890 747051 709412 506946 273397 260637 738880 934474 887742 672005 911825 321299 388050 002914 063247 807297 209129 549534 433005 992543 342283 085197 200604 468924 619787 594795 641194 718440 317162 450610 339571 861262 452844 853583 893922 328408 318189 257677 479523 304783 850674 387001 819935 376234 357527 565234 757521 803408 123561 619666 183232 095576 148471 132818 986903 209749 924264 570898 635905 230257 389130 944120 729945 259019 000402 833993 697178 574284 406986 034278 303889 753695 989990 530027 826013 660241 174237 738873 768176 831447 919491 143006 811418 157528 650509 465410 225503 596286 257585 053350 103134 106899 431120 331785 189730 697173 185925 203327 089056 998359 858981 083374 355844 836551 541686 691063 679953 752239 638847 554861 (848 digits), a[1632] = 1
                                                                                      A[1633]/B[1633] = 4 294704 443962 215089 349328 295724 608195 839199 430736 055871 212446 606628 556544 145899 080945 094437 505694 975244 680898 265477 657902 612506 690443 412659 367760 614239 484122 574827 364611 438946 032903 403089 793744 614611 997185 304760 356075 226769 367823 469510 525802 736598 956986 098348 834856 251394 459905 640997 324843 615905 274731 084648 800585 879573 527482 620982 221657 258516 077954 904630 701176 253277 381127 154062 045281 819951 749654 352570 236245 365664 137359 166226 032306 990193 169757 573436 522624 049540 149714 413705 415177 557850 350465 169542 683761 376094 481863 297899 621564 358386 128066 285892 702881 304916 456242 169528 003891 115600 049961 531451 326151 573527 021046 055124 723318 238023 132645 434251 127221 650976 409428 320795 580067 139638 112761 349264 010837 076883 517166 455108 582310 806947 078429 996815 820025 061033 865034 134918 479623 394084 952700 474903 766318 134516 041172 255110 074733 861879 957625 492776 714392 043681 (847 digits)/417 417465 679348 851223 388675 364678 199495 432742 663489 570940 649031 278039 169520 336111 867780 609654 807918 504563 882803 184635 354496 410861 774717 323595 607539 745920 006606 410422 524838 044038 828646 370560 762313 642809 410590 743834 953621 332559 257788 461565 677986 512796 284269 428632 934610 435975 319879 125611 548659 089105 105741 213779 536077 270356 301591 975260 921107 913652 711199 429001 339655 227800 361065 384189 072141 564511 467783 136425 381632 766989 096831 171834 389487 993307 104856 849173 933128 314289 929376 744656 171602 996953 774639 504980 569762 872637 048602 125424 894738 241572 618576 091688 523368 830419 163646 012793 646667 470214 228614 662849 351667 210589 877830 169258 754789 416605 329476 562267 998435 206118 895486 469160 614509 335270 171284 644211 895038 577246 836856 077381 344080 706792 239900 054019 729793 178175 347810 354662 698544 013520 985011 206246 497853 911010 453309 867107 776289 451810 536347 737532 990137 086628 (849 digits), a[1633] = 5
                                                                                      A[1634]/B[1634] = 22 191936 092901 615135 590762 895499 647571 374880 347959 903494 536808 116372 811671 395301 825190 564684 328729 486643 945590 406801 568568 484490 378218 603189 886135 637615 447861 369230 575556 274560 358310 726322 326904 271613 265620 421869 697787 924707 883092 781162 811874 974220 498723 570784 693054 081766 971162 245302 655954 447207 780278 154399 919815 294406 238980 223961 309316 184582 918755 020193 982621 261199 327461 563176 760497 637692 675084 367607 886495 955948 029137 319564 224389 766632 414169 711841 932995 310176 744893 722814 263571 124191 594906 850009 652716 743504 224206 706587 368828 777529 645368 241266 054671 070013 403009 620138 754946 897623 348353 508835 874630 623852 584247 366441 907635 251288 982894 340591 031331 877510 225115 266561 395999 697729 067578 144632 207369 745100 627758 943588 498924 513199 631177 364744 147010 939810 598595 343665 651536 308008 732591 882007 098782 809318 665785 792958 560292 784414 808289 349970 390465 370560 (848 digits)/2156 912505 455418 883241 653329 159190 422619 202593 182846 694841 282833 894791 288669 490176 124429 868817 392455 179707 403167 725229 809045 608073 377647 922078 322917 462937 926675 390193 193570 071300 789043 856355 503458 961098 762366 226121 041503 923434 027823 242303 277675 235987 333172 464464 061102 182790 662643 435354 952424 995059 961712 061441 022669 436978 708564 345229 225327 163059 197191 863447 015438 589612 144898 782207 813552 676141 232838 010535 226353 092622 963679 163955 798114 353537 344219 622104 023169 136684 404405 526688 981576 604435 056429 620478 997285 496004 229913 836874 397955 778761 728785 688700 005975 096216 548175 322987 233740 185064 840251 888531 165322 087227 693040 599989 763937 613054 473396 471581 166413 769468 245609 177250 992037 819357 667841 378588 125702 351644 409783 983192 977988 587311 302634 376998 080086 222661 928782 470486 678645 270932 014113 029592 348250 638426 622394 172090 423133 950116 361692 439904 589532 988001 (850 digits), a[1634] = 5
                                                                                      A[1635]/B[1635] = 114270 573646 794378 548246 187477 223409 953205 098111 076279 149241 237437 810235 852558 554996 987162 654046 133821 704920 525902 886754 217029 253464 138031 237383 080158 696180 522312 743060 903869 150230 974833 236751 023839 151316 676737 511834 266099 547659 412553 676828 870044 997946 884652 068733 370323 269528 974306 704372 834292 288765 926948 089835 929536 777298 036655 797763 890691 675964 747553 883447 218050 168614 480715 951201 847618 299535 759063 165577 803922 542066 165417 602417 415215 380493 729603 847549 515476 149599 607493 184348 542896 020372 525835 869244 522273 679344 922195 516261 720939 858530 129140 564808 204220 803928 552776 263977 225466 978220 722178 527369 799233 790483 310735 864507 137227 124996 055605 137471 455058 951125 527935 845423 582510 746607 072628 060499 757654 600015 847966 992289 544629 271848 010681 064428 779354 145806 032458 669358 240073 331049 068300 929455 399003 316326 172220 198737 022280 813727 839488 490317 220585 057121 (852 digits)/11 106359 908055 631178 662496 380516 036164 265769 585041 141121 308705 960755 558384 528725 252976 557175 150408 559638 817982 793420 392922 130332 380683 283868 104880 309556 413304 458190 515176 217135 171801 615462 745048 072504 340336 834289 041077 657323 094368 519663 081142 427776 611574 789288 954083 549749 625097 270927 768261 584958 652847 961145 573605 261008 273726 699405 560542 130670 505459 052104 317683 832953 140734 444894 972221 054871 015719 350699 382305 873706 682629 080846 380238 880294 357092 491691 062789 231013 102288 213433 666222 309539 233059 330755 351337 592781 798416 874948 191699 969043 085714 136087 208019 289139 249425 718384 074060 174880 369076 685588 709819 595094 345981 343879 516553 269559 034088 847908 733693 862934 198115 537140 134518 617241 207901 886542 994471 136447 194312 814585 538025 007316 772689 504307 217134 093753 664446 648750 890571 043044 042461 653000 577247 640391 169689 160901 960696 492998 600956 890720 806264 495492 303777 (854 digits), a[1635] = 5149

                                                                                      (the period has 1634 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x = the fraction whose numerator is 1 + 3 and the denominator is -1

                                                                                      A[0]/B[0] = -3/1, a[0] = -3
                                                                                      A[1]/B[1] = -8/3, a[1] = 3
                                                                                      start periodic partA[2]/B[2] = -11/4, a[2] = 1
                                                                                      A[3]/B[3] = -30/11, a[3] = 2

                                                                                      (the period has 2 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2

                                                                                      x = the fraction whose numerator is 5 + 27 and the denominator is 991

                                                                                      A[0]/B[0] = 0/1, a[0] = 0
                                                                                      A[1]/B[1] = 1/97, a[1] = 97
                                                                                      start periodic partA[2]/B[2] = 5/486, a[2] = 5
                                                                                      A[3]/B[3] = 26/2527, a[3] = 5
                                                                                      A[4]/B[4] = 31/3013, a[4] = 1
                                                                                      A[5]/B[5] = 1390/135099, a[5] = 44
                                                                                      A[6]/B[6] = 1421/138112, a[6] = 1
                                                                                      A[7]/B[7] = 2811/273211, a[7] = 1
                                                                                      A[8]/B[8] = 21098/2 050589, a[8] = 7
                                                                                      A[9]/B[9] = 23909/2 323800, a[9] = 1
                                                                                      A[10]/B[10] = 68916/6 698189, a[10] = 2
                                                                                      A[11]/B[11] = 92825/9 021989, a[11] = 1
                                                                                      A[12]/B[12] = 533041/51 808134, a[12] = 5
                                                                                      A[13]/B[13] = 625866/60 830123, a[13] = 1
                                                                                      A[14]/B[14] = 1 158907/112 638257, a[14] = 1
                                                                                      A[15]/B[15] = 4 102587/398 744894, a[15] = 3
                                                                                      A[16]/B[16] = 9 364081/910 128045, a[16] = 2
                                                                                      A[17]/B[17] = 13 466668/1308 872939, a[17] = 1
                                                                                      A[18]/B[18] = 22 830749/2219 000984, a[18] = 1
                                                                                      A[19]/B[19] = 104 789664/10184 876875, a[19] = 4
                                                                                      A[20]/B[20] = 127 620413/12403 877859, a[20] = 1
                                                                                      A[21]/B[21] = 232 410077/22588 754734, a[21] = 1
                                                                                      A[22]/B[22] = 592 440567/57581 387327, a[22] = 2
                                                                                      A[23]/B[23] = 824 850644/80170 142061, a[23] = 1
                                                                                      A[24]/B[24] = 1417 291211/137751 529388, a[24] = 1
                                                                                      A[25]/B[25] = 17832 345176/1 733188 494717, a[25] = 12
                                                                                      A[26]/B[26] = 19249 636387/1 870940 024105, a[26] = 1
                                                                                      A[27]/B[27] = 114080 527111/11 087888 615242, a[27] = 5
                                                                                      A[28]/B[28] = 247410 690609/24 046717 254589, a[28] = 2
                                                                                      A[29]/B[29] = 1 598544 670765/155 368192 142776, a[29] = 6
                                                                                      A[30]/B[30] = 1 845955 361374/179 414909 397365, a[30] = 1
                                                                                      A[31]/B[31] = 31 133830 452749/3026 006742 500616, a[31] = 16
                                                                                      A[32]/B[32] = 64 113616 266872/6231 428394 398597, a[32] = 2
                                                                                      A[33]/B[33] = 544 042760 587725/52877 433897 689392, a[33] = 8
                                                                                      A[34]/B[34] = 1152 199137 442322/111986 296189 777381, a[34] = 2
                                                                                      A[35]/B[35] = 4000 640172 914691/388836 322467 021535, a[35] = 3
                                                                                      A[36]/B[36] = 5152 839310 357013/500822 618656 798916, a[36] = 1
                                                                                      A[37]/B[37] = 9153 479483 271704/889658 941123 820451, a[37] = 1
                                                                                      A[38]/B[38] = 23459 798276 900421/2 280140 500904 439818, a[38] = 2
                                                                                      A[39]/B[39] = 56073 076037 072546/5 449939 942932 700087, a[39] = 2
                                                                                      A[40]/B[40] = 135605 950351 045513/13 180020 386769 839992, a[40] = 2
                                                                                      A[41]/B[41] = 191679 026388 118059/18 629960 329702 540079, a[41] = 1
                                                                                      A[42]/B[42] = 327284 976739 163572/31 809980 716472 380071, a[42] = 1
                                                                                      A[43]/B[43] = 846248 979866 445203/82 249921 762647 300221, a[43] = 2
                                                                                      A[44]/B[44] = 1 173533 956605 608775/114 059902 479119 680292, a[44] = 1
                                                                                      A[45]/B[45] = 3 193316 893077 662753/310 369726 720886 660805, a[45] = 2
                                                                                      A[46]/B[46] = 4 366850 849683 271528/424 429629 200006 341097, a[46] = 1
                                                                                      A[47]/B[47] = 20 660720 291810 748865/2008 088243 520912 025193, a[47] = 4
                                                                                      A[48]/B[48] = 25 027571 141494 020393/2432 517872 720918 366290, a[48] = 1
                                                                                      A[49]/B[49] = 95 743433 716292 810044/9305 641861 683667 124063, a[49] = 3
                                                                                      A[50]/B[50] = 408 001306 006665 260569/39655 085319 455586 862542, a[50] = 4
                                                                                      A[51]/B[51] = 3767 755187 776280 155165/366201 409736 783948 886941, a[51] = 9
                                                                                      A[52]/B[52] = 7943 511681 559225 570899/772057 904793 023484 636424, a[52] = 2
                                                                                      A[53]/B[53] = 19654 778550 894731 296963/1 910317 219322 830918 159789, a[53] = 2
                                                                                      A[54]/B[54] = 27598 290232 453956 867862/2 682375 124115 854402 796213, a[54] = 1
                                                                                      A[55]/B[55] = 47253 068783 348688 164825/4 592692 343438 685320 956002, a[55] = 1
                                                                                      A[56]/B[56] = 405622 840499 243462 186462/39 423913 871625 336970 444229, a[56] = 8
                                                                                      A[57]/B[57] = 452875 909282 592150 351287/44 016606 215064 022291 400231, a[57] = 1
                                                                                      A[58]/B[58] = 858498 749781 835612 537749/83 440520 086689 359261 844460, a[58] = 1
                                                                                      A[59]/B[59] = 1 311374 659064 427762 889036/127 457126 301753 381553 244691, a[59] = 1
                                                                                      A[60]/B[60] = 3 481248 067910 691138 315821/338 354772 690196 122368 333842, a[60] = 2
                                                                                      A[61]/B[61] = 4 792622 726975 118901 204857/465 811898 991949 503921 578533, a[61] = 1
                                                                                      A[62]/B[62] = 99 333702 607413 069162 412961/9654 592752 529186 200799 904502, a[62] = 20
                                                                                      A[63]/B[63] = 104 126325 334388 188063 617818/10120 404651 521135 704721 483035, a[63] = 1
                                                                                      A[64]/B[64] = 307 586353 276189 445289 648597/29895 402055 571457 610242 870572, a[64] = 2
                                                                                      A[65]/B[65] = 1642 058091 715335 414511 860803/159597 414929 378423 755935 835895, a[65] = 5
                                                                                      A[66]/B[66] = 1949 644444 991524 859801 509400/189492 816984 949881 366178 706467, a[66] = 1
                                                                                      A[67]/B[67] = 7490 991426 689909 993916 389003/728075 865884 228067 854471 955296, a[67] = 3
                                                                                      A[68]/B[68] = 9440 635871 681434 853717 898403/917568 682869 177949 220650 661763, a[68] = 1
                                                                                      A[69]/B[69] = 73575 442528 459953 969941 677824/7 151056 645968 473712 399026 587637 (31 digits), a[69] = 7
                                                                                      A[70]/B[70] = 83016 078400 141388 823659 576227/8 068625 328837 651661 619677 249400 (31 digits), a[70] = 1
                                                                                      A[71]/B[71] = 322623 677728 884120 440920 406505/31 356932 632481 428697 258058 335837 (32 digits), a[71] = 3
                                                                                      A[72]/B[72] = 405639 756129 025509 264579 982732/39 425557 961319 080358 877735 585237 (32 digits), a[72] = 1
                                                                                      A[73]/B[73] = 3 973381 482890 113703 822140 251093 (31 digits)/386 186954 284353 151927 157678 602970 (33 digits), a[73] = 9
                                                                                      A[74]/B[74] = 24 245928 653469 707732 197421 489290 (32 digits)/2356 547283 667437 991921 823807 203057 (34 digits), a[74] = 6
                                                                                      A[75]/B[75] = 343 416382 631466 021954 586041 101153 (33 digits)/33377 848925 628485 038832 690979 445768 (35 digits), a[75] = 14
                                                                                      A[76]/B[76] = 367 662311 284935 729686 783462 590443 (33 digits)/35734 396209 295923 030754 514786 648825 (35 digits), a[76] = 1
                                                                                      A[77]/B[77] = 711 078693 916401 751641 369503 691596 (33 digits)/69112 245134 924408 069587 205766 094593 (35 digits), a[77] = 1
                                                                                      A[78]/B[78] = 1789 819699 117739 232969 522469 973635 (34 digits)/173958 886479 144739 169928 926318 838011 (36 digits), a[78] = 2
                                                                                      A[79]/B[79] = 6080 537791 269619 450549 936913 612501 (34 digits)/590988 904572 358625 579373 984722 608626 (36 digits), a[79] = 3
                                                                                      A[80]/B[80] = 7870 357490 387358 683519 459383 586136 (34 digits)/764947 791051 503364 749302 911041 446637 (36 digits), a[80] = 1
                                                                                      A[81]/B[81] = 163487 687599 016793 120939 124585 335221 (36 digits)/15 889944 725602 425920 565432 205551 541366 (38 digits), a[81] = 20
                                                                                      A[82]/B[82] = 171358 045089 404151 804458 583968 921357 (36 digits)/16 654892 516653 929285 314735 116592 988003 (38 digits), a[82] = 1
                                                                                      A[83]/B[83] = 334845 732688 420944 925397 708554 256578 (36 digits)/32 544837 242256 355205 880167 322144 529369 (38 digits), a[83] = 1
                                                                                      A[84]/B[84] = 841049 510466 246041 655254 001077 434513 (36 digits)/81 744567 001166 639697 075069 760882 046741 (38 digits), a[84] = 2
                                                                                      A[85]/B[85] = 5 381142 795485 897194 856921 715018 863656 (37 digits)/523 012239 249256 193388 330585 887436 809815 (39 digits), a[85] = 6
                                                                                      A[86]/B[86] = 11 603335 101438 040431 369097 431115 161825 (38 digits)/1127 769045 499679 026473 736241 535755 666371 (40 digits), a[86] = 2
                                                                                      A[87]/B[87] = 51 794483 201238 058920 333311 439479 510956 (38 digits)/5034 088421 247972 299283 275552 030459 475299 (40 digits), a[87] = 4
                                                                                      A[88]/B[88] = 63 397818 302676 099351 702408 870594 672781 (38 digits)/6161 857466 747651 325757 011793 566215 141670 (40 digits), a[88] = 1
                                                                                      A[89]/B[89] = 939 363939 438703 449844 167035 627804 929890 (39 digits)/91300 092955 715090 859881 440661 957471 458679 (41 digits), a[89] = 14
                                                                                      A[90]/B[90] = 1002 761757 741379 549195 869444 498399 602671 (40 digits)/97461 950422 462742 185638 452455 523686 600349 (41 digits), a[90] = 1
                                                                                      A[91]/B[91] = 4950 410970 404221 646627 644813 621403 340574 (40 digits)/481147 894645 566059 602435 250484 052217 860075 (42 digits), a[91] = 4
                                                                                      A[92]/B[92] = 15853 994668 954044 489078 803885 362609 624393 (41 digits)/1 540905 634359 160920 992944 203907 680340 180574 (43 digits), a[92] = 3
                                                                                      A[93]/B[93] = 36658 400308 312310 624785 252584 346622 589360 (41 digits)/3 562959 163363 887901 588323 658299 412898 221223 (43 digits), a[93] = 2
                                                                                      A[94]/B[94] = 272462 796827 140218 862575 571975 788967 749913 (42 digits)/26 481619 777906 376232 111209 812003 570627 729135 (44 digits), a[94] = 7
                                                                                      A[95]/B[95] = 1 126509 587616 873186 075087 540487 502493 589012 (43 digits)/109 489438 274989 392830 033162 906313 695409 137763 (45 digits), a[95] = 4
                                                                                      A[96]/B[96] = 8 158029 910145 252521 388188 355388 306422 872997 (43 digits)/792 907687 702832 126042 343350 156199 438491 693476 (45 digits), a[96] = 7
                                                                                      A[97]/B[97] = 25 600599 318052 630750 239652 606652 421762 208003 (44 digits)/2488 212501 383485 770957 063213 374912 010884 218191 (46 digits), a[97] = 3
                                                                                      A[98]/B[98] = 59 359228 546250 514021 867493 568693 149947 289003 (44 digits)/5769 332690 469803 667956 469776 906023 460260 129858 (46 digits), a[98] = 2
                                                                                      A[99]/B[99] = 84 959827 864303 144772 107146 175345 571709 497006 (44 digits)/8257 545191 853289 438913 532990 280935 471144 348049 (46 digits), a[99] = 1
                                                                                      A[100]/B[100] = 314 238712 139159 948338 188932 094729 865075 780021 (45 digits)/30541 968266 029671 984697 068747 748829 873693 174005 (47 digits), a[100] = 3
                                                                                      A[101]/B[101] = 1027 675964 281782 989786 673942 459535 166936 837069 (46 digits)/99883 449989 942305 393004 739233 527425 092223 870064 (47 digits), a[101] = 3
                                                                                      A[102]/B[102] = 3397 266604 984508 917698 210759 473335 365886 291228 (46 digits)/330192 318235 856588 163711 286448 331105 150364 784197 (48 digits), a[102] = 3
                                                                                      A[103]/B[103] = 11219 475779 235309 742881 306220 879541 264595 710753 (47 digits)/1 090460 404697 512069 884138 598578 520740 543318 222655 (49 digits), a[103] = 3
                                                                                      A[104]/B[104] = 14616 742384 219818 660579 516980 352876 630482 001981 (47 digits)/1 420652 722933 368658 047849 885026 851845 693683 006852 (49 digits), a[104] = 1
                                                                                      A[105]/B[105] = 98919 930084 554221 706358 408102 996801 047487 722639 (47 digits)/9 614376 742297 724018 171237 908739 631814 705416 263767 (49 digits), a[105] = 6
                                                                                      A[106]/B[106] = 608136 322891 545148 898729 965598 333682 915408 337815 (48 digits)/59 106913 176719 712767 075277 337464 642733 926180 589454 (50 digits), a[106] = 6
                                                                                      A[107]/B[107] = 1 923328 898759 189668 402548 304897 997849 793712 736084 (49 digits)/186 935116 272456 862319 397069 921133 560016 483958 032129 (51 digits), a[107] = 3
                                                                                      A[108]/B[108] = 12 148109 715446 683159 314019 794986 320781 677684 754319 (50 digits)/1180 717610 811460 886683 457696 864266 002832 829928 782228 (52 digits), a[108] = 6
                                                                                      A[109]/B[109] = 14 071438 614205 872827 716568 099884 318631 471397 490403 (50 digits)/1367 652727 083917 749002 854766 785399 562849 313886 814357 (52 digits), a[109] = 1
                                                                                      A[110]/B[110] = 26 219548 329652 555987 030587 894870 639413 149082 244722 (50 digits)/2548 370337 895378 635686 312463 649665 565682 143815 596585 (52 digits), a[110] = 1
                                                                                      A[111]/B[111] = 66 510535 273510 984801 777743 889625 597457 769561 979847 (50 digits)/6464 393402 874675 020375 479694 084730 694213 601518 007527 (52 digits), a[111] = 2
                                                                                      A[112]/B[112] = 92 730083 603163 540788 808331 784496 236870 918644 224569 (50 digits)/9012 763740 770053 656061 792157 734396 259895 745333 604112 (52 digits), a[112] = 1
                                                                                      A[113]/B[113] = 251 970702 479838 066379 394407 458618 071199 606850 428985 (51 digits)/24489 920884 414782 332499 064009 553523 214005 092185 215751 (53 digits), a[113] = 2
                                                                                      A[114]/B[114] = 344 700786 083001 607168 202739 243114 308070 525494 653554 (51 digits)/33502 684625 184835 988560 856167 287919 473900 837518 819863 (53 digits), a[114] = 1
                                                                                      A[115]/B[115] = 1630 773846 811844 495052 205364 431075 303481 708829 043201 (52 digits)/158500 659385 154126 286742 488678 705201 109608 442260 495203 (54 digits), a[115] = 4
                                                                                      A[116]/B[116] = 49267 916190 438336 458734 363672 175373 412521 790365 949584 (53 digits)/4 788522 466179 808624 590835 516528 443952 762154 105333 675953 (55 digits), a[116] = 30
                                                                                      A[117]/B[117] = 50898 690037 250180 953786 569036 606448 716003 499194 992785 (53 digits)/4 947023 125564 962750 877578 005207 149153 871762 547594 171156 (55 digits), a[117] = 1
                                                                                      A[118]/B[118] = 151065 296264 938698 366307 501745 388270 844528 788755 935154 (54 digits)/14 682568 717309 734126 345991 526942 742260 505679 200522 018265 (56 digits), a[118] = 2
                                                                                      A[119]/B[119] = 201963 986302 188879 320094 070781 994719 560532 287950 927939 (54 digits)/19 629591 842874 696877 223569 532149 891414 377441 748116 189421 (56 digits), a[119] = 1
                                                                                      A[120]/B[120] = 353029 282567 127577 686401 572527 382990 405061 076706 863093 (54 digits)/34 312160 560184 431003 569561 059092 633674 883120 948638 207686 (56 digits), a[120] = 1
                                                                                      A[121]/B[121] = 4 438315 377107 719811 556912 941110 590604 421265 208433 285055 (55 digits)/431 375518 565087 868920 058302 241261 495512 974893 131774 681653 (57 digits), a[121] = 12
                                                                                      A[122]/B[122] = 13 667975 413890 287012 357140 395859 154803 668856 702006 718258 (56 digits)/1328 438716 255448 037763 744467 782877 120213 807800 343962 252645 (58 digits), a[122] = 3
                                                                                      A[123]/B[123] = 18 106290 790998 006823 914053 336969 745408 090121 910440 003313 (56 digits)/1759 814234 820535 906683 802770 024138 615726 782693 475736 934298 (58 digits), a[123] = 1
                                                                                      A[124]/B[124] = 339 581209 651854 409842 810100 461314 572149 291051 089926 777892 (57 digits)/33005 094943 025094 358072 194328 217372 203295 896282 907227 070009 (59 digits), a[124] = 18
                                                                                      A[125]/B[125] = 1036 849919 746561 236352 344354 720913 461855 963275 180220 336989 (58 digits)/100775 099063 895818 980900 385754 676255 225614 471542 197418 144325 (60 digits), a[125] = 3
                                                                                      A[126]/B[126] = 1376 431129 398415 646195 154455 182228 034005 254326 270147 114881 (58 digits)/133780 194006 920913 338972 580082 893627 428910 367825 104645 214334 (60 digits), a[126] = 1
                                                                                      A[127]/B[127] = 2413 281049 144976 882547 498809 903141 495861 217601 450367 451870 (58 digits)/234555 293070 816732 319872 965837 569882 654524 839367 302063 358659 (60 digits), a[127] = 1
                                                                                      A[128]/B[128] = 11029 555325 978323 176385 149694 794794 017450 124732 071616 922361 (59 digits)/1 072001 366290 187842 618464 443433 173158 047009 725294 312898 648970 (61 digits), a[128] = 4
                                                                                      A[129]/B[129] = 24472 391701 101623 235317 798199 492729 530761 467065 593601 296592 (59 digits)/2 378558 025651 192417 556801 852703 916198 748544 289955 927860 656599 (61 digits), a[129] = 2
                                                                                      A[130]/B[130] = 353643 039141 401048 470834 324487 693007 448110 663650 382035 074649 (60 digits)/34 371813 725406 881688 413690 381287 999940 526629 784677 302947 841356 (62 digits), a[130] = 14
                                                                                      A[131]/B[131] = 1 439044 548266 705817 118655 096150 264759 323204 121667 121741 595188 (61 digits)/139 865812 927278 719171 211563 377855 915960 855063 428665 139652 022023 (63 digits), a[131] = 4
                                                                                      A[132]/B[132] = 1 792687 587408 106865 589489 420637 957766 771314 785317 503776 669837 (61 digits)/174 237626 652685 600859 625253 759143 915901 381693 213342 442599 863379 (63 digits), a[132] = 1
                                                                                      A[133]/B[133] = 3 231732 135674 812682 708144 516788 222526 094518 906984 625518 265025 (61 digits)/314 103439 579964 320030 836817 136999 831862 236756 642007 582251 885402 (63 digits), a[133] = 1
                                                                                      A[134]/B[134] = 14 719616 130107 357596 422067 487790 847871 149390 413256 005849 729937 (62 digits)/1430 651384 972542 880982 972522 307143 243350 328719 781372 771607 404987 (64 digits), a[134] = 4
                                                                                      A[135]/B[135] = 17 951348 265782 170279 130212 004579 070397 243909 320240 631367 994962 (62 digits)/1744 754824 552507 201013 809339 444143 075212 565476 423380 353859 290389 (64 digits), a[135] = 1
                                                                                      A[136]/B[136] = 86 525009 193236 038712 942915 506107 129460 125027 694218 531321 709785 (62 digits)/8409 670683 182571 685038 209880 083715 544200 590625 474894 187044 566543 (64 digits), a[136] = 4
                                                                                      A[137]/B[137] = 191 001366 652254 247705 016043 016793 329317 493964 708677 694011 414532 (63 digits)/18564 096190 917650 571090 229099 611574 163613 746727 373168 727948 423475 (65 digits), a[137] = 2
                                                                                      A[138]/B[138] = 2760 544142 324795 506583 167517 741213 739905 040533 615706 247481 513233 (64 digits)/268307 017356 029679 680301 417274 645753 834793 044808 699256 378322 495193 (66 digits), a[138] = 14
                                                                                      A[139]/B[139] = 5712 089651 301845 260871 351078 499220 809127 575031 940090 188974 440998 (64 digits)/555178 130902 977009 931693 063648 903081 833199 836344 771681 484593 413861 (66 digits), a[139] = 2
                                                                                      A[140]/B[140] = 8472 633793 626640 767454 518596 240434 549032 615565 555796 436455 954231 (64 digits)/823485 148259 006689 611994 480923 548835 667992 881153 470937 862915 909054 (66 digits), a[140] = 1
                                                                                      A[141]/B[141] = 14184 723444 928486 028325 869674 739655 358160 190597 495886 625430 395229 (65 digits)/1 378663 279161 983699 543687 544572 451917 501192 717498 242619 347509 322915 (67 digits), a[141] = 1
                                                                                      A[142]/B[142] = 36842 080683 483612 824106 257945 719745 265352 996760 547569 687316 744689 (65 digits)/3 580811 706582 974088 699369 570068 452670 670378 316149 956176 557934 554884 (67 digits), a[142] = 2
                                                                                      A[143]/B[143] = 87868 884811 895711 676538 385566 179145 888866 184118 591026 000063 884607 (65 digits)/8 540286 692327 931876 942426 684709 357258 841949 349798 154972 463378 432683 (67 digits), a[143] = 2
                                                                                      A[144]/B[144] = 212579 850307 275036 177183 029078 078037 043085 364997 729621 687444 513903 (66 digits)/20 661385 091238 837842 584222 939487 167188 354277 015746 266121 484691 420250 (68 digits), a[144] = 2
                                                                                      A[145]/B[145] = 513028 585426 445784 030904 443722 335219 975036 914114 050269 374952 912413 (66 digits)/49 863056 874805 607562 110872 563683 691635 550503 381290 687215 432761 273183 (68 digits), a[145] = 2
                                                                                      A[146]/B[146] = 725608 435733 720820 208087 472800 413257 018122 279111 779891 062397 426316 (66 digits)/70 524441 966044 445404 695095 503170 858823 904780 397036 953336 917452 693433 (68 digits), a[146] = 1
                                                                                      A[147]/B[147] = 1 238637 021160 166604 238991 916522 748476 993159 193225 830160 437350 338729 (67 digits)/120 387498 840850 052966 805968 066854 550459 455283 778327 640552 350213 966616 (69 digits), a[147] = 1
                                                                                      A[148]/B[148] = 1 964245 456893 887424 447079 389323 161734 011281 472337 610051 499747 765045 (67 digits)/190 911940 806894 498371 501063 570025 409283 360064 175364 593889 267666 660049 (69 digits), a[148] = 1
                                                                                      A[149]/B[149] = 7 131373 391841 828877 580230 084492 233679 027003 610238 660314 936593 633864 (67 digits)/693 123321 261533 548081 309158 776930 778309 535476 304421 422220 153213 946763 (69 digits), a[149] = 3
                                                                                      A[150]/B[150] = 9 095618 848735 716302 027309 473815 395413 038285 082576 270366 436341 398909 (67 digits)/884 035262 068428 046452 810222 346956 187592 895540 479786 016109 420880 606812 (69 digits), a[150] = 1
                                                                                      A[151]/B[151] = 34 418229 938048 977783 662158 505938 419918 141858 857967 471414 245617 830591 (68 digits)/3345 229107 466817 687439 739825 817799 341088 222097 743779 470548 415855 767199 (70 digits), a[151] = 3
                                                                                      A[152]/B[152] = 43 513848 786784 694085 689467 979753 815331 180143 940543 741780 681959 229500 (68 digits)/4229 264369 535245 733892 550048 164755 528681 117638 223565 486657 836736 374011 (70 digits), a[152] = 1
                                                                                      A[153]/B[153] = 339 015171 445541 836383 488434 364215 127236 402866 441773 663879 019332 437091 (69 digits)/32950 079694 213537 824687 590162 971088 041856 045565 308737 877153 273010 385276 (71 digits), a[153] = 7
                                                                                      A[154]/B[154] = 382 529020 232326 530469 177902 343968 942567 583010 382317 405659 701291 666591 (69 digits)/37179 344063 748783 558580 140211 135843 570537 163203 532303 363811 109746 759287 (71 digits), a[154] = 1
                                                                                      A[155]/B[155] = 721 544191 677868 366852 666336 708184 069803 985876 824091 069538 720624 103682 (69 digits)/70129 423757 962321 383267 730374 106931 612393 208768 841041 240964 382757 144563 (71 digits), a[155] = 1
                                                                                      A[156]/B[156] = 161286 883764 396972 338613 770988 269016 508856 433542 154625 912794 400466 787677 (72 digits)/15 676040 842089 346452 027284 013636 981593 134222 718655 084500 098868 464589 996836 (74 digits), a[156] = 223
                                                                                      A[157]/B[157] = 323295 311720 471813 044080 208313 246217 087516 852961 133342 895127 521557 679036 (72 digits)/31 422211 107936 655225 437835 757648 070117 880838 646079 010041 438701 311937 138235 (74 digits), a[157] = 2
                                                                                      A[158]/B[158] = 484582 195484 868785 382693 979301 515233 596373 286503 287968 807921 922024 466713 (72 digits)/47 098251 950026 001677 465119 771285 051711 015061 364734 094541 537569 776527 135071 (74 digits), a[158] = 1
                                                                                      A[159]/B[159] = 2 261624 093659 946954 574856 125519 307151 473009 998974 285218 126815 209655 545888 (73 digits)/219 815218 908040 661935 298314 842788 276961 941084 105015 388207 588980 418045 678519 (75 digits), a[159] = 4
                                                                                      A[160]/B[160] = 11 792702 663784 603558 256974 606898 050990 961423 281374 714059 441997 970302 196153 (74 digits)/1146 174346 490229 311353 956693 985226 436520 720481 889811 035579 482471 866755 527666 (76 digits), a[160] = 5
                                                                                      A[161]/B[161] = 25 847029 421229 154071 088805 339315 409133 395856 561723 713337 010811 150259 938194 (74 digits)/2512 163911 888499 284643 211702 813241 150003 382047 884637 459366 553924 151556 733851 (76 digits), a[161] = 2
                                                                                      A[162]/B[162] = 89 333790 927472 065771 523390 624844 278391 148992 966545 854070 474431 421082 010735 (74 digits)/8682 666082 155727 165283 591802 424949 886530 866625 543723 413679 144244 321425 729219 (76 digits), a[162] = 3
                                                                                      A[163]/B[163] = 115 180820 348701 219842 612195 964159 687524 544849 528269 567407 485242 571341 948929 (75 digits)/11194 829994 044226 449926 803505 238191 036534 248673 428360 873045 698168 472982 463070 (77 digits), a[163] = 1
                                                                                      A[164]/B[164] = 204 514611 276173 285614 135586 589003 965915 693842 494815 421477 959673 992423 959664 (75 digits)/19877 496076 199953 615210 395307 663140 923065 115298 972084 286724 842412 794408 192289 (77 digits), a[164] = 1
                                                                                      A[165]/B[165] = 1137 753876 729567 647913 290128 909179 517103 014062 002346 674797 283612 533461 747249 (76 digits)/110582 310375 043994 525978 780043 553895 651859 825168 288782 306669 910232 445023 424515 (78 digits), a[165] = 5
                                                                                      A[166]/B[166] = 14995 315008 760552 708486 907262 408337 688254 876648 525322 193842 646636 927426 673901 (77 digits)/1 457447 530951 771882 452934 535873 863784 397242 842486 726254 273433 675434 579712 710984 (79 digits), a[166] = 13
                                                                                      A[167]/B[167] = 2 160463 115138 249157 670027 935915 709806 625805 251449 648742 588138 399330 082902 788993 (79 digits)/209 983026 767430 195067 748551 945879 938848 854829 143256 869397 681119 172811 923653 806211 (81 digits), a[167] = 144
                                                                                      A[168]/B[168] = 2 175458 430147 009710 378514 843178 118144 314060 128098 174064 781981 045967 010329 462894 (79 digits)/211 440474 298381 966950 201486 481753 802633 252071 985743 595651 954552 848246 503366 517195 (81 digits), a[168] = 1
                                                                                      A[169]/B[169] = 95 705175 611459 666703 946166 192574 790012 130390 759671 133528 213323 375911 527069 693435 (80 digits)/9301 923421 597854 773926 412470 661293 452078 693924 530231 482431 726891 647411 568414 045596 (82 digits), a[169] = 43
                                                                                      A[170]/B[170] = 5074 549765 837509 345019 525323 049641 988787 224770 390668 251060 088119 969277 945023 214949 (82 digits)/493213 381818 984684 985050 062431 530306 762804 030072 088012 164533 479810 161059 629310 933783 (84 digits), a[170] = 53
                                                                                      A[171]/B[171] = 10244 804707 286478 356742 996812 291858 767586 579931 541007 635648 389563 314467 417116 123333 (83 digits)/995728 687059 567224 744026 537333 721906 977686 754068 706255 811498 686511 969530 827035 913162 (84 digits), a[171] = 2
                                                                                      A[172]/B[172] = 15319 354473 123987 701762 522135 341500 756373 804701 931675 886708 477683 283745 362139 338282 (83 digits)/1 488942 068878 551909 729076 599765 252213 740490 784140 794267 976032 166322 130590 456346 846945 (85 digits), a[172] = 1
                                                                                      A[173]/B[173] = 301312 539696 642244 690230 917383 780373 138688 869268 242849 483109 465545 705629 297763 550691 (84 digits)/29 285627 995752 053509 596481 932873 513968 047011 652743 797347 356109 846632 450749 497626 005117 (86 digits), a[173] = 19
                                                                                      A[174]/B[174] = 316631 894169 766232 391993 439519 121873 895062 673970 174525 369817 943228 989374 659902 888973 (84 digits)/30 774570 064630 605419 325558 532638 766181 787502 436884 591615 332142 012954 581339 953972 852062 (86 digits), a[174] = 1
                                                                                      A[175]/B[175] = 934576 328036 174709 474217 796422 024120 928814 217208 591900 222745 352003 684378 617569 328637 (84 digits)/90 834768 125013 264348 247598 998151 046331 622016 526512 980578 020393 872541 613429 405571 709241 (86 digits), a[175] = 2
                                                                                      A[176]/B[176] = 4 989513 534350 639779 763082 421629 242478 539133 760013 134026 483544 703247 411267 747749 532158 (85 digits)/484 948410 689696 927160 563553 523393 997839 897585 069449 494505 434111 375662 648486 981831 398267 (87 digits), a[176] = 5
                                                                                      A[177]/B[177] = 5 924089 862386 814489 237300 218051 266599 467947 977221 725926 706290 055251 095646 365318 860795 (85 digits)/575 783178 814710 191508 811152 521545 044171 519601 595962 475083 454505 248204 261916 387403 107508 (87 digits), a[177] = 1
                                                                                      A[178]/B[178] = 46 458142 571058 341204 424183 947988 108674 814769 600565 215513 427575 090005 080792 304981 557723 (86 digits)/4515 430662 392668 267722 241621 174209 307040 534796 241186 820089 615648 113092 481901 693653 150823 (88 digits), a[178] = 7
                                                                                      A[179]/B[179] = 470 505515 572970 226533 479139 697932 353347 615643 982873 881060 982040 955301 903569 415134 438025 (87 digits)/45730 089802 741392 868731 227364 263638 114576 867564 007830 675979 610986 379129 080933 323934 615738 (89 digits), a[179] = 10
                                                                                      A[180]/B[180] = 2398 985720 435909 473871 819882 437649 875412 892989 514934 620818 337779 866514 598639 380653 747848 (88 digits)/233165 879676 099632 611378 378442 492399 879924 872616 280340 199987 670580 008737 886568 313326 229513 (90 digits), a[180] = 5
                                                                                      A[181]/B[181] = 2869 491236 008879 700405 299022 135582 228760 508633 497808 501879 319820 821816 502208 795788 185873 (88 digits)/278895 969478 841025 480109 605806 756037 994501 740180 288170 875967 281566 387866 967501 637260 845251 (90 digits), a[181] = 1
                                                                                      A[182]/B[182] = 5268 476956 444789 174277 118904 573232 104173 401623 012743 122697 657600 688331 100848 176441 933721 (88 digits)/512061 849154 940658 091487 984249 248437 874426 612796 568511 075954 952146 396604 854069 950587 074764 (90 digits), a[182] = 1
                                                                                      A[183]/B[183] = 171460 753842 242133 277273 103968 479009 562309 360569 905588 428204 363042 848411 729350 441930 064945 (90 digits)/16 664875 142436 942084 407725 101782 706049 976153 349670 480525 306525 750251 079222 297740 056047 237699 (92 digits), a[183] = 32
                                                                                      A[184]/B[184] = 176729 230798 686922 451550 222873 052241 666482 762192 918331 550902 020643 536742 830198 618371 998666 (90 digits)/17 176936 991591 882742 499213 086031 954487 850579 962467 049036 382480 702397 475827 151810 006634 312463 (92 digits), a[184] = 1
                                                                                      A[185]/B[185] = 348189 984640 929055 728823 326841 531251 228792 122762 823919 979106 383686 385154 559549 060302 063611 (90 digits)/33 841812 134028 824826 906938 187814 660537 826733 312137 529561 689006 452648 555049 449550 062681 550162 (92 digits), a[185] = 1
                                                                                      A[186]/B[186] = 1 221299 184721 474089 638020 203397 645995 352859 130481 390091 488221 171702 692206 508845 799278 189499 (91 digits)/118 702373 393678 357223 220027 649475 936101 330779 898879 637721 449500 060343 140975 500460 194678 962949 (93 digits), a[186] = 3
                                                                                      A[187]/B[187] = 23 552874 494348 936758 851207 191396 805162 933115 601909 235658 255308 646037 537078 227619 246587 664092 (92 digits)/2289 186906 613917 612068 087463 527857 446463 111551 390850 646269 229507 599168 233583 958293 761581 846193 (94 digits), a[187] = 19
                                                                                      A[188]/B[188] = 213 197169 633861 904919 298884 925968 892461 750899 547664 511015 785998 986040 525910 557419 018567 166327 (93 digits)/20721 384532 918936 865836 007199 400192 954269 334742 416535 454144 515068 452857 243231 125104 048915 578686 (95 digits), a[188] = 9
                                                                                      A[189]/B[189] = 2155 524570 832967 985951 840056 451085 729780 442111 078554 345816 115298 506442 796183 801809 432259 327362 (94 digits)/209503 032235 803286 270428 159457 529786 989156 458975 556205 187714 380192 127740 665895 209334 250737 633053 (96 digits), a[189] = 10
                                                                                      A[190]/B[190] = 2368 721740 466829 890871 138941 377054 622242 193010 626218 856831 901297 492483 322094 359228 450826 493689 (94 digits)/230224 416768 722223 136264 166656 929979 943425 793717 972740 641858 895260 580597 909126 334438 299653 211739 (96 digits), a[190] = 1
                                                                                      A[191]/B[191] = 4524 246311 299797 876822 978997 828140 352022 635121 704773 202648 016595 998926 118278 161037 883085 821051 (94 digits)/439727 449004 525509 406692 326114 459766 932582 252693 528945 829573 275452 708338 575021 543772 550390 844792 (96 digits), a[191] = 1
                                                                                      A[192]/B[192] = 11417 214363 066425 644517 096937 033335 326287 463254 035765 262127 934489 490335 558650 681304 216998 135791 (95 digits)/1 109679 314777 773241 949648 818885 849513 808590 299105 030632 301005 446165 997275 059169 421983 400434 901323 (97 digits), a[192] = 2
                                                                                      A[193]/B[193] = 27358 675037 432649 165857 172871 894811 004597 561629 776303 726903 885574 979597 235579 523646 317082 092633 (95 digits)/2 659086 078560 071993 305989 963886 158794 549762 850903 590210 431584 167784 702888 693360 387739 351260 647438 (97 digits), a[193] = 2
                                                                                      A[194]/B[194] = 285003 964737 392917 303088 825655 981445 372263 079551 798802 531166 790239 286307 914445 917767 387819 062121 (96 digits)/27 700540 100378 493175 009548 457747 437459 306218 808140 932736 616847 124013 026161 992773 299376 913041 375703 (98 digits), a[194] = 10
                                                                                      A[195]/B[195] = 3 447406 251886 147656 802923 080743 672155 471754 516251 361934 100905 368446 415292 208930 536854 970910 838085 (97 digits)/335 065567 283101 990093 420571 456855 408306 224388 548594 783049 833749 655941 016832 606639 980262 307757 155874 (99 digits), a[195] = 12
                                                                                      A[196]/B[196] = 7 179816 468509 688230 908934 987143 325756 315772 112054 522670 732977 527132 116892 332306 991477 329640 738291 (97 digits)/697 831674 666582 473361 850691 371458 254071 754995 905330 498836 284346 435895 059827 206053 259901 528555 687451 (99 digits), a[196] = 2
                                                                                      A[197]/B[197] = 10 627222 720395 835887 711858 067886 997911 787526 628305 884604 833882 895578 532184 541237 528332 300551 576376 (98 digits)/1032 897241 949684 463455 271262 828313 662377 979384 453925 281886 118096 091836 076659 812693 240163 836312 843325 (100 digits), a[197] = 1
                                                                                      A[198]/B[198] = 39 061484 629697 195894 044509 190804 319491 678351 996972 176485 234626 213867 713445 956019 576474 231295 467419 (98 digits)/3796 523400 515635 863727 664479 856399 241205 693149 267106 344494 638634 711403 289806 644132 980393 037494 217426 (100 digits), a[198] = 3
                                                                                      A[199]/B[199] = 49 688707 350093 031781 756367 258691 317403 465878 625278 061090 068509 109446 245630 497257 104806 531847 043795 (98 digits)/4829 420642 465320 327182 935742 684712 903583 672533 721031 626380 756730 803239 366466 456826 220556 873807 060751 (100 digits), a[199] = 1
                                                                                      A[200]/B[200] = 6995 480513 642721 645339 935925 407588 755976 901359 535900 729094 825901 536342 101715 572014 249388 689881 598719 (100 digits)/679915 413345 660481 669338 668455 716205 742919 847870 211534 037800 580947 164914 595110 599803 858355 370482 722566 (102 digits), a[200] = 140
                                                                                      A[201]/B[201] = 21036 130248 278257 967801 564143 481457 585334 169957 232980 248374 546213 718472 550777 213299 852972 601491 839952 (101 digits)/2 044575 660679 446765 335198 941109 833330 132343 216144 355633 739782 499572 297983 151798 256237 795622 985255 228449 (103 digits), a[201] = 3
                                                                                      A[202]/B[202] = 49067 741010 199237 580943 064212 370503 926645 241274 001861 225843 918328 973287 203269 998613 955333 892865 278623 (101 digits)/4 769066 734704 554012 339736 550675 382866 007606 280158 922801 517365 580091 760880 898707 112279 449601 340993 179464 (103 digits), a[202] = 2
                                                                                      A[203]/B[203] = 119171 612268 676733 129687 692568 222465 438624 652505 236702 700062 382871 665046 957317 210527 763640 387222 397198 (102 digits)/11 582709 130088 554790 014672 042460 599062 147555 776462 201236 774513 659755 819744 949212 480796 694825 667241 587377 (104 digits), a[203] = 2
                                                                                      A[204]/B[204] = 287410 965547 552703 840318 449348 815434 803894 546284 475266 625968 684072 303381 117904 419669 482614 667310 073019 (102 digits)/27 934484 994881 663592 369080 635596 580990 302717 833083 325275 066392 899603 400370 797132 073872 839252 675476 354218 (104 digits), a[204] = 2
                                                                                      A[205]/B[205] = 406582 577816 229436 970006 141917 037900 242519 198789 711969 326031 066943 968428 075221 630197 246255 054532 470217 (102 digits)/39 517194 124970 218382 383752 678057 180052 450273 609545 526511 840906 559359 220115 746344 554669 534078 342717 941595 (104 digits), a[205] = 1
                                                                                      A[206]/B[206] = 693993 543363 782140 810324 591265 853335 046413 745074 187235 951999 751016 271809 193126 049866 728869 721842 543236 (102 digits)/67 451679 119851 881974 752833 313653 761042 752991 442628 851786 907299 458962 620486 543476 628542 373331 018194 295813 (104 digits), a[206] = 1
                                                                                      A[207]/B[207] = 1 100576 121180 011577 780330 733182 891235 288932 943863 899205 278030 817960 240237 268347 680063 975124 776375 013453 (103 digits)/106 968873 244822 100357 136585 991710 941095 203265 052174 378298 748206 018321 840602 289821 183211 907409 360912 237408 (105 digits), a[207] = 1
                                                                                      A[208]/B[208] = 1 794569 664543 793718 590655 324448 744570 335346 688938 086441 230030 568976 512046 461473 729930 703994 498217 556689 (103 digits)/174 420552 364673 982331 889419 305364 702137 956256 494803 230085 655505 477284 461088 833297 811754 280740 379106 533221 (105 digits), a[208] = 1
                                                                                      A[209]/B[209] = 4 689715 450267 599014 961641 382080 380375 959626 321740 072087 738091 955913 264330 191295 139925 383113 772810 126831 (103 digits)/455 809977 974170 065020 915424 602440 345371 115778 041780 838470 059216 972890 762779 956416 806720 468890 119125 303850 (105 digits), a[209] = 2
                                                                                      A[210]/B[210] = 6 484285 114811 392733 552296 706529 124946 294973 010678 158528 968122 524889 776376 652768 869856 087108 271027 683520 (103 digits)/630 230530 338844 047352 804843 907805 047509 072034 536584 068555 714722 450175 223868 789714 618474 749630 498231 837071 (105 digits), a[210] = 1
                                                                                      A[211]/B[211] = 17 658285 679890 384482 066234 795138 630268 549572 343096 389145 674337 005692 817083 496832 879637 557330 314865 493871 (104 digits)/1716 271038 651858 159726 525112 418050 440389 259847 114948 975581 488661 873241 210517 535846 043669 968151 115588 977992 (106 digits), a[211] = 2
                                                                                      A[212]/B[212] = 24 142570 794701 777215 618531 501667 755214 844545 353774 547674 642459 530582 593460 149601 749493 644438 585893 177391 (104 digits)/2346 501568 990702 207079 329956 325855 487898 331881 651533 044137 203384 323416 434386 325560 662144 717781 613820 815063 (106 digits), a[212] = 1
                                                                                      A[213]/B[213] = 138 371139 653399 270560 158892 303477 406342 772299 111969 127518 886634 658605 784384 244841 627105 779523 244331 380826 (105 digits)/13448 778883 605369 195123 174894 047327 879880 919255 372614 196267 505583 490323 382449 163649 354393 557059 184693 053307 (107 digits), a[213] = 5
                                                                                      A[214]/B[214] = 162 513710 448101 047775 777423 805145 161557 616844 465743 675193 529094 189188 377844 394443 376599 423961 830224 558217 (105 digits)/15795 280452 596071 402202 504850 373183 367779 251137 024147 240404 708967 813739 816835 489210 016538 274840 798513 868370 (107 digits), a[214] = 1
                                                                                      A[215]/B[215] = 463 398560 549601 366111 713739 913767 729458 005988 043456 477905 944823 036982 540073 033728 380304 627446 904780 497260 (105 digits)/45039 339788 797511 999528 184594 793694 615439 421529 420908 677076 923519 117803 016120 142069 387470 106740 781720 790047 (107 digits), a[215] = 2
                                                                                      A[216]/B[216] = 4796 499315 944114 708892 914822 942822 456137 676724 900308 454252 977324 559013 778574 731727 179645 698430 878029 530817 (106 digits)/466188 678340 571191 397484 350798 310129 522173 466431 233234 011173 944158 991769 978036 909903 891239 342248 615721 768840 (108 digits), a[216] = 10
                                                                                      A[217]/B[217] = 34038 893772 158404 328362 117500 513524 922421 743062 345615 657676 786094 950078 990096 155818 637824 516463 050987 212979 (107 digits)/3 308360 088172 795851 781918 640182 964601 270653 686548 053546 755294 532632 060192 862378 511396 626145 502481 091773 171927 (109 digits), a[217] = 7
                                                                                      A[218]/B[218] = 106913 180632 419327 693979 267324 483397 223402 905911 937155 427283 335609 409250 748863 199183 093119 247820 030991 169754 (108 digits)/10 391268 942858 958746 743240 271347 203933 334134 526075 393874 277057 542055 172348 565172 444093 769675 849691 891041 284621 (110 digits), a[218] = 3
                                                                                      A[219]/B[219] = 354778 435669 416387 410299 919473 963716 592630 460798 157081 939526 792923 177831 236685 753367 917182 259923 143960 722241 (108 digits)/34 482166 916749 672092 011639 454224 576401 273057 264774 235169 586467 158797 577238 557895 843677 935173 051556 764897 025790 (110 digits), a[219] = 3
                                                                                      A[220]/B[220] = 461691 616301 835715 104279 186798 447113 816033 366710 094237 366810 128532 587081 985548 952551 010301 507743 174951 891995 (108 digits)/44 873435 859608 630838 754879 725571 780334 607191 790849 629043 863524 700852 749587 123068 287771 704848 901248 655938 310411 (110 digits), a[220] = 1
                                                                                      A[221]/B[221] = 5 895077 831291 444968 661650 161055 329082 385030 861319 287930 341248 335314 222815 063273 183980 040800 352841 243383 426181 (109 digits)/572 963397 232053 242157 070196 161085 940416 559358 754969 783695 948763 569030 572284 034715 296938 393359 866540 636156 750722 (111 digits), a[221] = 12
                                                                                      A[222]/B[222] = 6 356769 447593 280683 765929 347853 776196 201064 228029 382167 708058 463846 809897 048822 136531 051101 860584 418335 318176 (109 digits)/617 836833 091661 872995 825075 886657 720751 166550 545819 412739 812288 269883 321871 157783 584710 098208 767789 292095 061133 (111 digits), a[222] = 1
                                                                                      A[223]/B[223] = 12 251847 278884 725652 427579 508909 105278 586095 089348 670098 049306 799161 032712 112095 320511 091902 213425 661718 744357 (110 digits)/1190 800230 323715 115152 895272 047743 661167 725909 300789 196435 761051 838913 894155 192498 881648 491568 634329 928251 811855 (112 digits), a[223] = 1
                                                                                      A[224]/B[224] = 18 608616 726478 006336 193508 856762 881474 787159 317378 052265 757365 263007 842609 160917 457042 143004 074010 080054 062533 (110 digits)/1808 637063 415376 988148 720347 934401 381918 892459 846608 609175 573340 108797 216026 350282 466358 589777 402119 220346 872988 (112 digits), a[224] = 1
                                                                                      A[225]/B[225] = 254 163864 723098 808022 943194 646826 564450 819166 215263 349552 895055 218262 986631 204022 262058 950955 175556 702421 557286 (111 digits)/24703 082054 723615 961086 259795 194961 626113 327887 306701 115718 214473 253277 702497 746170 944310 158674 861879 792761 160699 (113 digits), a[225] = 13
                                                                                      A[226]/B[226] = 272 772481 449576 814359 136703 503589 445925 606325 532641 401818 652420 481270 829240 364939 719101 093959 249566 782475 619819 (111 digits)/26511 719118 138992 949234 980143 129363 008032 220347 153309 724893 787813 362074 918524 096453 410668 748452 263999 013108 033687 (113 digits), a[226] = 1
                                                                                      A[227]/B[227] = 526 936346 172675 622382 079898 150416 010376 425491 747904 751371 547475 699533 815871 568961 981160 044914 425123 484897 177105 (111 digits)/51214 801172 862608 910321 239938 324324 634145 548234 460010 840612 002286 615352 621021 842624 354978 907127 125878 805869 194386 (113 digits), a[227] = 1
                                                                                      A[228]/B[228] = 799 708827 622252 436741 216601 654005 456302 031817 280546 153190 199896 180804 645111 933901 700261 138873 674690 267372 796924 (111 digits)/77726 520291 001601 859556 220081 453687 642177 768581 613320 565505 790099 977427 539545 939077 765647 655579 389877 818977 228073 (113 digits), a[228] = 1
                                                                                      A[229]/B[229] = 66902 769038 819627 871903 057835 432868 883445 066326 033235 466158 138858 706319 360162 082803 102834 571429 424415 676839 321797 (113 digits)/6 502515 985325 995563 253487 506698 980398 934900 340508 365617 777592 580584 741838 403334 786078 903734 320216 485737 780979 124445 (115 digits), a[229] = 83
                                                                                      A[230]/B[230] = 67702 477866 441880 308644 274437 086874 339747 098143 313781 619348 338754 887124 005274 016704 803095 710303 099105 944212 118721 (113 digits)/6 580242 505616 997165 113043 726780 434086 577078 109089 978938 343098 370684 719265 942880 725156 669381 975795 875615 599956 352518 (115 digits), a[230] = 1
                                                                                      A[231]/B[231] = 270010 202638 145268 797835 881146 693491 902686 360755 974580 324203 155123 367691 375984 132917 512121 702338 721733 509475 677960 (114 digits)/26 243243 502176 987058 592618 687040 282658 666134 667778 302432 806887 692638 899636 231976 961548 911880 247604 112584 580848 181999 (116 digits), a[231] = 3
                                                                                      A[232]/B[232] = 2 227784 098971 604030 691331 323610 634809 561237 984191 110424 212973 579741 828655 013147 080044 900069 329012 872974 020017 542401 (115 digits)/216 526190 523032 893633 853993 223102 695355 906155 451316 398400 798199 911795 916355 798696 417547 964423 956628 776292 246741 808510 (117 digits), a[232] = 8
                                                                                      A[233]/B[233] = 4 725578 400581 353330 180498 528367 963111 025162 329138 195428 750150 314607 025001 402278 293007 312260 360364 467681 549510 762762 (115 digits)/459 295624 548242 774326 300605 133245 673370 478445 570411 099234 403287 516230 732347 829369 796644 840728 160861 665169 074331 799019 (117 digits), a[233] = 2
                                                                                      A[234]/B[234] = 6 953362 499552 957360 871829 851978 597920 586400 313329 305852 963123 894348 853656 415425 373052 212329 689377 340655 569528 305163 (115 digits)/675 821815 071275 667960 154598 356348 368726 384601 021727 497635 201487 428026 648703 628066 214192 805152 117490 441461 321073 607529 (117 digits), a[234] = 1
                                                                                      A[235]/B[235] = 60 352478 397005 012217 155137 344196 746475 716364 835772 642252 455141 469397 854252 725681 277425 010897 875383 192926 105737 204066 (116 digits)/5865 870145 118448 118007 537391 984032 623181 555253 744231 080316 015186 940443 921976 853899 510187 281945 100785 196859 642920 659251 (118 digits), a[235] = 8
                                                                                      A[236]/B[236] = 308 715754 484578 018446 647516 572962 330299 168224 492192 517115 238831 241338 124920 043831 760177 266819 066293 305286 098214 325493 (117 digits)/30005 172540 663516 257997 841558 276511 484634 160869 742882 899215 277422 130246 258587 897563 765129 214877 621416 425759 535676 903784 (119 digits), a[236] = 5
                                                                                      A[237]/B[237] = 369 068232 881583 030663 802653 917159 076774 884589 327965 159367 693972 710735 979172 769513 037602 277716 941676 498212 203951 529559 (117 digits)/35871 042685 781964 376005 378950 260544 107815 716123 487113 979531 292609 070690 180564 751463 275316 496822 722201 622619 178597 563035 (119 digits), a[237] = 1
                                                                                      A[238]/B[238] = 1046 852220 247744 079774 252824 407280 483848 937403 148122 835850 626776 662810 083265 582857 835381 822252 949646 301710 506117 384611 (118 digits)/101747 257912 227445 010008 599458 797599 700265 593116 717110 858277 862640 271626 619717 400490 315762 208523 065819 670997 892872 029854 (120 digits), a[238] = 2
                                                                                      A[239]/B[239] = 4556 477113 872559 349760 813951 546281 012170 634201 920456 502770 201079 361976 312235 100944 379129 566728 740261 705054 228421 068003 (118 digits)/442860 074334 691744 416039 776785 450942 908878 088590 355557 412642 743170 157196 659434 353424 538365 330914 985480 306610 750085 682451 (120 digits), a[239] = 4
                                                                                      A[240]/B[240] = 10159 806447 992862 779295 880727 499842 508190 205806 989035 841391 028935 386762 707735 784746 593640 955710 430169 711818 962959 520617 (119 digits)/987467 406581 610933 842088 153029 699485 518021 770297 428225 683563 348980 586019 938586 107339 392492 870353 036780 284219 393043 394756 (120 digits), a[240] = 2
                                                                                      A[241]/B[241] = 14716 283561 865422 129056 694679 046123 520360 840008 909492 344161 230014 748739 019970 885690 972770 522439 170431 416873 191380 588620 (119 digits)/1 430327 480916 302678 258127 929815 150428 426899 858887 783783 096206 092150 743216 598020 460763 930858 201268 022260 590830 143129 077207 (121 digits), a[241] = 1
                                                                                      A[242]/B[242] = 24876 090009 858284 908352 575406 545966 028551 045815 898528 185552 258950 135501 727706 670437 566411 478149 600601 128692 154340 109237 (119 digits)/2 417794 887497 913612 100216 082844 849913 944921 629185 212008 779769 441131 329236 536606 568103 323351 071621 059040 875049 536172 471963 (121 digits), a[242] = 1
                                                                                      A[243]/B[243] = 89344 553591 440276 854114 420898 684021 606013 977456 605076 900818 006865 155244 203090 897003 672004 956887 972234 802949 654400 916331 (119 digits)/8 683712 143410 043514 558776 178349 700170 261664 746443 419809 435514 415544 730926 207840 165073 900911 416131 199383 215978 751646 493096 (121 digits), a[243] = 3
                                                                                      A[244]/B[244] = 114220 643601 298561 762466 996305 229987 634565 023272 503605 086370 265815 290745 930797 567441 238416 435037 572835 931641 808741 025568 (120 digits)/11 101507 030907 957126 658992 261194 550084 206586 375628 631818 215283 856676 060162 744446 733177 224262 487752 258424 091028 287818 965059 (122 digits), a[244] = 1
                                                                                      A[245]/B[245] = 3 401743 218029 098567 965657 313750 353663 008399 652359 209624 405555 715508 586876 196220 352799 586081 572977 584476 820562 107890 657803 (121 digits)/330 627416 039740 800187 669551 752991 652612 252669 639673 742537 678746 259150 475645 796795 427213 404523 560946 693681 855799 098396 479807 (123 digits), a[245] = 29
                                                                                      A[246]/B[246] = 3 515963 861630 397129 728124 310055 583650 642964 675631 713229 491925 981323 877622 127017 920240 824498 008015 157312 752203 916631 683371 (121 digits)/341 728923 070648 757314 328544 014186 202696 459256 015302 374355 894030 115826 535808 541242 160390 628786 048698 952105 946827 386215 444866 (123 digits), a[246] = 1
                                                                                      A[247]/B[247] = 10 433670 941289 892827 421905 933861 520964 294329 003622 636083 389407 678156 342120 450256 193281 235077 589007 899102 324969 941154 024545 (122 digits)/1014 085262 181038 314816 326639 781364 058005 171181 670278 491249 466806 490803 547262 879279 747994 662095 658344 597893 749453 870827 369539 (124 digits), a[247] = 2
                                                                                      A[248]/B[248] = 45 250647 626789 968439 415748 045501 667507 820280 690122 257563 049556 693949 246103 928042 693365 764808 364046 753722 052083 681247 781551 (122 digits)/4398 069971 794802 016579 635103 139642 434717 143982 696416 339353 761256 079040 724860 058361 152369 277168 682077 343680 944642 869524 923022 (124 digits), a[248] = 4
                                                                                      A[249]/B[249] = 55 684318 568079 861266 837653 979363 188472 114609 693744 893646 438964 372105 588224 378298 886646 999885 953054 652824 377053 622401 806096 (122 digits)/5412 155233 975840 331395 961742 921006 492722 315164 366694 830603 228062 569844 272122 937640 900363 939264 340421 941574 694096 740352 292561 (124 digits), a[249] = 1
                                                                                      A[250]/B[250] = 6059 157052 979414 985257 882377 816726 022496 198127 614570 771378 457708 881352 774336 784322 451241 752491 293949 258754 773874 900642 839919 (124 digits)/588910 835241 185557 807343 503338 608343 648727 181734 299458 044502 392013 622222 114137 323578 391674 717717 447647 033747 907090 827572 519610 (126 digits), a[250] = 108
                                                                                      A[251]/B[251] = 6114 841371 547494 846524 720031 796089 210968 312737 308315 665024 896673 253458 362561 162621 337888 752377 247003 911579 150928 523044 646015 (124 digits)/594322 990475 161398 138739 465081 529350 141449 496898 666152 875105 620076 192066 386260 261219 292038 656981 788068 975322 601187 567924 812171 (126 digits), a[251] = 1
                                                                                      A[252]/B[252] = 18288 839796 074404 678307 322441 408904 444432 823602 231202 101428 251055 388269 499459 109565 127019 257245 787957 081913 075731 946732 131949 (125 digits)/1 777556 816191 508354 084822 433501 667043 931626 175531 631763 794713 632166 006354 886657 846016 975752 031681 023784 984393 109465 963422 143952 (127 digits), a[252] = 2
                                                                                      A[253]/B[253] = 24403 681167 621899 524832 042473 204993 655401 136339 539517 766453 147728 641727 862020 272186 464908 009623 034960 993492 226660 469776 777964 (125 digits)/2 371879 806666 669752 223561 898583 196394 073075 672430 297916 669819 252242 198421 272918 107236 267790 688662 811853 959715 710653 531346 956123 (127 digits), a[253] = 1
                                                                                      A[254]/B[254] = 1 262876 579344 791280 444741 488574 863580 869890 776918 746608 190538 785216 116390 462492 991074 837327 748020 570967 750016 635415 905347 808113 (127 digits)/122 743426 956191 665717 486479 261244 683141 658485 469476 825513 955495 496518 125839 805481 315066 633077 153484 428336 929894 352796 062116 906225 (129 digits), a[254] = 51
                                                                                      A[255]/B[255] = 3 813033 419201 995740 859056 508197 795736 265073 467095 779342 338069 503376 990899 249499 245410 976891 253684 747864 243542 132908 185820 202303 (127 digits)/370 602160 675241 666904 682999 682317 245819 048532 080860 774458 536305 741796 575940 689362 052436 167022 149116 096864 749398 769041 717697 674798 (129 digits), a[255] = 3
                                                                                      A[256]/B[256] = 5 075909 998546 787021 303797 996772 659317 134964 244014 525950 528608 288593 107289 711992 236485 814219 001705 318831 993558 768324 091168 010416 (127 digits)/493 345587 631433 332622 169478 943561 928960 707017 550337 599972 491801 238314 701780 494843 367502 800099 302600 525201 679293 121837 779814 581023 (129 digits), a[256] = 1
                                                                                      A[257]/B[257] = 19 040763 414842 356804 770450 498515 773687 669966 199139 357193 923894 369156 312768 385475 954868 419548 258800 704360 224218 437880 459324 233551 (128 digits)/1850 638923 569541 664771 191436 513003 032701 169584 731873 574376 011709 456740 681282 173892 154944 567320 056917 672469 787278 134555 057141 417867 (130 digits), a[257] = 3
                                                                                      A[258]/B[258] = 24 116673 413389 143826 074248 495288 433004 804930 443153 883144 452502 657749 420058 097468 191354 233767 260506 023192 217777 206204 550492 243967 (128 digits)/2343 984511 200974 997393 360915 456564 961661 876602 282211 174348 503510 695055 383062 668735 522447 367419 359518 197671 466571 256392 836955 998890 (130 digits), a[258] = 1
                                                                                      A[259]/B[259] = 43 157436 828231 500630 844698 993804 206692 474896 642293 240338 376397 026905 732826 482944 146222 653315 519306 727552 441995 644085 009816 477518 (128 digits)/4194 623434 770516 662164 552351 969567 994363 046187 014084 748724 515220 151796 064344 842627 677391 934739 416435 870141 253849 390947 894097 416757 (130 digits), a[259] = 1
                                                                                      A[260]/B[260] = 283 061294 382778 147611 142442 458113 673159 654310 296913 325174 710884 819183 817016 995133 068690 153660 376346 388506 869751 070714 609391 109075 (129 digits)/27511 725119 824074 970380 675027 273972 927840 153724 366719 666695 594831 605831 769131 724501 586798 975855 858133 418518 989667 602080 201540 499432 (131 digits), a[260] = 6
                                                                                      A[261]/B[261] = 609 280025 593787 795853 129583 910031 553011 783517 236119 890687 798166 665273 366860 473210 283602 960636 271999 504566 181497 785514 228598 695668 (129 digits)/59218 073674 418666 602925 902406 517513 850043 353635 747524 082115 704883 363459 602608 291630 850989 886451 132702 707179 233184 595108 297178 415621 (131 digits), a[261] = 2
                                                                                      A[262]/B[262] = 892 341319 976565 943464 272026 368145 226171 437827 533033 215862 509051 484457 183877 468343 352293 114296 648345 893073 051248 856228 837989 804743 (129 digits)/86729 798794 242741 573306 577433 791486 777883 507360 114243 748811 299714 969291 371740 016132 437788 862306 990836 125698 222852 197188 498718 915053 (131 digits), a[262] = 1
                                                                                      A[263]/B[263] = 2393 962665 546919 682781 673636 646322 005354 659172 302186 322412 816269 634187 734615 409896 988189 189229 568691 290712 283995 497971 904578 305154 (130 digits)/232677 671262 904149 749539 057274 100487 405810 368355 976011 579738 304313 302042 346088 323895 726567 611065 114374 958575 678888 989485 294616 245727 (132 digits), a[263] = 2
                                                                                      A[264]/B[264] = 10468 191982 164244 674590 966572 953433 247590 074516 741778 505513 774130 021208 122339 107931 305049 871214 923111 055922 187230 848116 456303 025359 (131 digits)/1 017440 483845 859340 571462 806530 193436 401124 980784 018290 067764 516968 177460 756093 311715 344059 306567 448335 960000 938408 155129 677183 897961 (133 digits), a[264] = 4
                                                                                      A[265]/B[265] = 23330 346629 875409 031963 606782 553188 500534 808205 785743 333440 364529 676603 979293 625759 598288 931659 414913 402556 658457 194204 817184 355872 (131 digits)/2 267558 638954 622830 892464 670334 487360 208060 329924 012591 715267 338249 656963 858274 947326 414686 224200 011046 878577 555705 299744 648984 041649 (133 digits), a[265] = 2
                                                                                      A[266]/B[266] = 33798 538612 039653 706554 573355 506621 748124 882722 527521 838954 138659 697812 101632 733690 903338 802874 338024 458478 845688 042321 273487 381231 (131 digits)/3 284999 122800 482171 463927 476864 680796 609185 310708 030881 783031 855217 834424 614368 259041 758745 530767 459382 838578 494113 454874 326167 939610 (133 digits), a[266] = 1
                                                                                      A[267]/B[267] = 57128 885241 915062 738518 180138 059810 248659 690928 313265 172394 503189 374416 080926 359450 501627 734533 752937 861035 504145 236526 090671 737103 (131 digits)/5 552557 761755 105002 356392 147199 168156 817245 640632 043473 498299 193467 491388 472643 206368 173431 754967 470429 717156 049818 754618 975151 981259 (133 digits), a[267] = 1
                                                                                      A[268]/B[268] = 6 032331 489013 121241 250963 487851 786697 857392 430195 420364 940376 973544 011500 598900 475993 574250 928918 396499 867206 780937 877560 794019 777046 (133 digits)/586 303564 107086 507418 885102 932777 337262 419977 577072 595599 104447 169304 430214 241904 927699 969079 802351 854503 139963 725082 689866 717125 971805 (135 digits), a[268] = 105
                                                                                      A[269]/B[269] = 6 089460 374255 036303 989481 667989 846508 106052 121123 733630 112771 476733 385916 679826 835444 075878 663452 149437 728242 285083 114086 884691 514149 (133 digits)/591 856121 868841 612421 241495 079976 505419 237223 217704 639072 602746 362771 921602 714548 134068 142511 557319 324932 857119 774901 444485 692277 953064 (135 digits), a[269] = 1
                                                                                      A[270]/B[270] = 12 121791 863268 157545 240445 155841 633205 963444 551319 153995 053148 450277 397417 278727 311437 650129 592370 545937 595449 066020 991647 678711 291195 (134 digits)/1178 159685 975928 119840 126598 012753 842681 657200 794777 234671 707193 532076 351816 956453 061768 111591 359671 179435 997083 499984 134352 409403 924869 (136 digits), a[270] = 1
                                                                                      A[271]/B[271] = 30 333044 100791 351394 470371 979673 112920 032941 223762 041620 219068 377288 180751 237281 458319 376137 848193 241312 919140 417125 097382 242114 096539 (134 digits)/2948 175493 820697 852101 494691 105484 190782 551624 807259 108416 017133 426924 625236 627454 257604 365694 276661 683804 851286 774869 713190 511085 802802 (136 digits), a[271] = 2
                                                                                      A[272]/B[272] = 42 454835 964059 508939 710817 135514 746125 996385 775081 195615 272216 827565 578168 516008 769757 026267 440563 787250 514589 483146 089029 920825 387734 (134 digits)/4126 335179 796625 971941 621289 118238 033464 208825 602036 343087 724326 959000 977053 583907 319372 477285 636332 863240 848370 274853 847542 920489 727671 (136 digits), a[272] = 1
                                                                                      A[273]/B[273] = 72 787880 064850 860334 181189 115187 859046 029326 998843 237235 491285 204853 758919 753290 228076 402405 288757 028563 433729 900271 186412 162939 484273 (134 digits)/7074 510673 617323 824043 115980 223722 224246 760450 409295 451503 741460 385925 602290 211361 576976 842979 912994 547045 699657 049723 560733 431575 530473 (136 digits), a[273] = 1
                                                                                      A[274]/B[274] = 188 030596 093761 229608 073195 365890 464218 055039 772767 670086 254787 237273 096008 022589 225909 831078 018077 844377 382049 283688 461854 246704 356280 (135 digits)/18275 356527 031273 620027 853249 565682 481957 729726 420627 246095 207247 730852 181634 006630 473326 163245 462321 957332 247684 374300 969009 783640 788617 (137 digits), a[274] = 2
                                                                                      A[275]/B[275] = 260 818476 158612 089942 254384 481078 323264 084366 771610 907321 746072 442126 854927 775879 453986 233483 306834 872940 815779 183959 648266 409643 840553 (135 digits)/25349 867200 648597 444070 969229 789404 706204 490176 829922 697598 948708 116777 783924 217992 050303 006225 375316 504377 947341 424024 529743 215216 319090 (137 digits), a[275] = 1
                                                                                      A[276]/B[276] = 1492 122976 886821 679319 345117 771282 080538 476873 630822 206694 985149 447907 370646 901986 495840 998494 552252 209081 460945 203486 703186 294923 559045 (136 digits)/145024 692530 274260 840382 699398 512706 012980 180610 570240 734089 950788 314741 101255 096590 724841 194372 338904 479221 984391 494423 617725 859722 384067 (138 digits), a[276] = 5
                                                                                      A[277]/B[277] = 1752 941453 045433 769261 599502 252360 403802 561240 402433 114016 731221 890034 225574 677865 949827 231977 859087 082022 276724 387446 351452 704567 399598 (136 digits)/170374 559730 922858 284453 668628 302110 719184 670787 400163 431688 899496 431518 885179 314582 775144 200597 714220 983599 931732 918448 147469 074938 703157 (138 digits), a[277] = 1
                                                                                      A[278]/B[278] = 3245 064429 932255 448580 944620 023642 484341 038114 033255 320711 716371 337941 596221 579852 445668 230472 411339 291103 737669 590933 054638 999490 958643 (136 digits)/315399 252261 197119 124836 368026 814816 732164 851397 970404 165778 850284 746259 986434 411173 499985 394970 053125 462821 916124 412871 765194 934661 087224 (138 digits), a[278] = 1
                                                                                      A[279]/B[279] = 4998 005882 977689 217842 544122 276002 888143 599354 435688 434728 447593 227975 821796 257718 395495 462450 270426 373126 014393 978379 406091 704058 358241 (136 digits)/485773 811992 119977 409290 036655 116927 451349 522185 370567 597467 749781 177778 871613 725756 275129 595567 767346 446421 847857 331319 912664 009599 790381 (138 digits), a[279] = 1
                                                                                      A[280]/B[280] = 8243 070312 909944 666423 488742 299645 372484 637468 468943 755440 163964 565917 418017 837570 841163 692922 681765 664229 752063 569312 460730 703549 316884 (136 digits)/801173 064253 317096 534126 404681 931744 183514 373583 340971 763246 600065 924038 858048 136929 775114 990537 820471 909243 763981 744191 677858 944260 877605 (138 digits), a[280] = 1
                                                                                      A[281]/B[281] = 268776 255896 095918 543394 183875 864654 807651 998345 441888 608813 694459 337333 198367 059985 312733 635976 086927 628478 080428 196378 149474 217636 498529 (138 digits)/26 123311 868098 267066 501334 986476 932741 323809 476852 281664 021358 951890 747022 329154 107509 078809 292778 022447 542222 295273 145453 604150 225947 873741 (140 digits), a[281] = 32
                                                                                      A[282]/B[282] = 1 352124 349793 389537 383394 408121 622919 410744 629195 678386 799508 636261 252583 409853 137497 404831 872803 116403 806620 154204 551203 208101 791731 809529 (139 digits)/131 417732 404744 652429 040801 337066 595450 802561 757844 749291 870041 359519 659150 503818 674475 169161 454427 932709 620355 240347 471459 698610 074000 246310 (141 digits), a[282] = 5
                                                                                      A[283]/B[283] = 7 029398 004863 043605 460366 224483 979251 861375 144323 833822 606356 875765 600250 247632 747472 336892 999991 668946 661578 851450 952394 189983 176295 546174 (139 digits)/683 211973 891821 529211 705341 671809 909995 336618 266076 028123 371565 749489 042774 848247 479884 924616 564917 685995 643998 497010 502752 097200 595949 105291 (141 digits), a[283] = 5
                                                                                      A[284]/B[284] = 1336 937745 273771 674574 852977 060077 680773 072022 050724 104682 007315 031725 300130 460075 157241 414501 871220 216269 506601 929885 506099 304905 287885 582589 (142 digits)/129941 692771 850835 202653 055718 980949 494564 760032 312290 092732 467533 762437 786371 670839 852610 846308 788788 271881 980069 672342 994358 166723 304330 251600 (144 digits), a[284] = 190
                                                                                      A[285]/B[285] = 1343 967143 278634 718180 313343 284561 660024 933397 195047 938504 613671 907490 900380 707707 904713 751394 871211 885216 168180 781336 458493 494888 464181 128763 (142 digits)/130624 904745 742656 731864 761060 652759 404560 096650 578366 120855 839099 511926 829146 519087 332495 770925 353705 957877 624068 169353 497110 263923 900279 356891 (144 digits), a[285] = 1
                                                                                      A[286]/B[286] = 2680 904888 552406 392755 166320 344639 340798 005419 245772 043186 620986 939216 200511 167783 061955 165896 742432 101485 674782 711221 964592 799793 752066 711352 (142 digits)/260566 597517 593491 934517 816779 633708 899124 856682 890656 213588 306633 274364 615518 189927 185106 617234 142494 229759 604137 841696 491468 430647 204609 608491 (144 digits), a[286] = 1
                                                                                      A[287]/B[287] = 25472 111140 250292 252976 810226 386315 727206 982170 406996 327184 202554 360436 704981 217755 462310 244465 553100 798587 241225 182334 139828 693032 232781 530931 (143 digits)/2 475724 282404 084084 142525 112077 356139 496683 806796 594272 043150 598798 981208 368810 228431 998455 326032 636154 025714 061308 744621 920326 139748 741765 833310 (145 digits), a[287] = 9
                                                                                      A[288]/B[288] = 104569 349449 553575 404662 407225 889902 249625 934100 873757 351923 431204 380963 020436 038804 911196 143758 954835 295834 639683 440558 523907 571922 683192 835076 (144 digits)/10 163463 727133 929828 504618 265089 058266 885860 083869 267744 386190 701829 199198 090759 103655 178927 921364 687110 332615 849372 820184 172772 989642 171672 941731 (146 digits), a[288] = 4
                                                                                      A[289]/B[289] = 339180 159488 911018 466964 031904 056022 476084 784473 028268 382954 496167 503325 766289 334170 195898 675742 417606 686091 160275 504009 711551 408800 282360 036159 (144 digits)/32 966115 463805 873569 656379 907344 530940 154264 058404 397505 201722 704286 578802 641087 539397 535239 090126 697485 023561 609427 205174 438645 108675 256784 658503 (146 digits), a[289] = 3
                                                                                      A[290]/B[290] = 782929 668427 375612 338590 471034 001947 201795 503046 930294 117832 423539 387614 553014 707145 302993 495243 790048 668016 960234 448577 947010 389523 247912 907394 (144 digits)/76 095694 654745 676967 817378 079778 120147 194388 200678 062754 789636 110402 356803 372934 182450 249406 101618 082080 379739 068227 230533 050063 206992 685242 258737 (146 digits), a[290] = 2
                                                                                      A[291]/B[291] = 1 905039 496343 662243 144144 973972 059916 879675 790566 888856 618619 343246 278554 872318 748460 801885 666229 997704 022125 080744 401165 605572 187846 778185 850947 (145 digits)/185 157504 773297 227505 291136 066900 771234 543040 459760 523014 780994 925091 292409 386955 904298 034051 293362 861645 783039 745881 666240 538771 522660 627269 175977 (147 digits), a[291] = 2
                                                                                      A[292]/B[292] = 107 465141 463672 461228 410709 013469 357292 463639 774792 706264 760515 645330 986687 402864 620950 208590 804123 661473 907021 481920 913851 859052 908942 826320 560426 (147 digits)/10444 915961 959390 417264 120997 826221 309281 604653 947267 351582 525351 915514 731729 042464 823140 156278 529938 334244 229964 837600 540003 221268 475987 812316 113449 (149 digits), a[292] = 56
                                                                                      A[293]/B[293] = 216 835322 423688 584699 965563 000910 774501 806955 340152 301386 139650 633908 251929 678047 990361 219067 274477 320651 836168 044586 228869 323678 005732 430826 971799 (147 digits)/21074 989428 692078 062033 533131 719343 389797 752348 354295 226179 831698 756120 755867 471885 550578 346608 353239 530134 242969 421082 746246 981308 474636 251901 402875 (149 digits), a[293] = 2
                                                                                      A[294]/B[294] = 4444 171589 937444 155227 721969 031684 847328 602746 577838 733987 553528 323496 025280 963824 428174 589936 293670 074510 630382 373645 491238 332613 023591 442859 996406 (148 digits)/431944 704535 800951 657934 783632 213089 105236 651621 033171 875179 159327 037929 849078 480175 834707 088445 594728 936929 089353 259255 464942 847437 968712 850344 170949 (150 digits), a[294] = 20
                                                                                      A[295]/B[295] = 4661 006912 361132 739927 687532 032595 621830 409701 917991 035373 693178 957404 277210 641872 418535 809003 568147 395162 466550 418231 720107 656291 029323 873686 968205 (148 digits)/453019 693964 493029 719968 316763 932432 495034 403969 387467 101358 991025 794050 604945 952061 385285 435053 947968 467063 332322 680338 211189 828746 443349 102245 573824 (150 digits), a[295] = 1
                                                                                      A[296]/B[296] = 51054 240713 548771 554504 597289 357641 065632 699765 757749 087724 485317 897538 797387 382548 613532 679971 975144 026135 295886 555962 692314 895523 316830 179729 678456 (149 digits)/4 962141 644180 731248 857617 951271 537414 055580 691314 907842 888769 069584 978435 898538 000789 687561 438985 074413 607562 412580 062637 576841 134902 402203 872799 909189 (151 digits), a[296] = 10
                                                                                      A[297]/B[297] = 55715 247625 909904 294432 284821 390236 687463 109467 675740 123098 178496 854943 074598 024421 032068 488975 543291 421297 762436 974194 412422 551814 346154 053416 646661 (149 digits)/5 415161 338145 224278 577586 268035 469846 550615 095284 295309 990128 060610 772486 503483 952851 072846 874039 022382 074625 744902 742975 788030 963648 845552 975045 483013 (151 digits), a[297] = 1
                                                                                      A[298]/B[298] = 329630 478843 098293 026666 021396 308824 502948 247104 136449 703215 377802 172254 170377 504653 773875 124849 691601 132624 108071 426934 754427 654595 047600 446812 911761 (150 digits)/32 037948 334906 852641 745549 291448 886646 808656 167736 384392 839409 372638 840868 415957 765045 051795 809180 186323 980691 137093 777516 516995 953146 629968 748027 324254 (152 digits), a[298] = 5
                                                                                      A[299]/B[299] = 714976 205312 106490 347764 327614 007885 693359 603675 948639 529528 934101 199451 415353 033728 579818 738674 926493 686545 978579 828063 921277 861004 441354 947042 470183 (150 digits)/69 491058 007958 929562 068684 850933 243140 167927 430757 064095 668946 805888 454223 335399 482941 176438 492399 395030 036008 019090 298008 822022 869942 105490 471100 131521 (152 digits), a[299] = 2
                                                                                      A[300]/B[300] = 1 044606 684155 204783 374430 349010 316710 196307 850780 085089 232744 311903 371705 585730 538382 353693 863524 618094 819170 086651 254998 675705 515599 488955 393855 381944 (151 digits)/101 529006 342865 782203 814234 142382 129786 976583 598493 448488 508356 178527 295091 751357 247986 228234 301579 581354 016699 156184 075525 339018 823088 735459 219127 455775 (153 digits), a[300] = 1
                                                                                      A[301]/B[301] = 1 759582 889467 311273 722194 676624 324595 889667 454456 033728 762273 246004 571157 001083 572110 933512 602199 544588 505716 065231 083062 596983 376603 930310 340897 852127 (151 digits)/171 020064 350824 711765 882918 993315 372927 144511 029250 512584 177302 984415 749315 086756 730927 404672 793978 976384 052707 175274 373534 161041 693030 840949 690227 587296 (153 digits), a[301] = 1
                                                                                      A[302]/B[302] = 6 323355 352557 138604 541014 378883 290497 865310 214148 186275 519564 049917 085176 588981 254715 154231 670123 251860 336318 282344 504186 466655 645411 279886 416548 938325 (151 digits)/614 589199 395339 917501 462991 122328 248568 410116 686244 986241 040265 131774 543037 011627 440768 442252 683516 510506 174820 682007 196127 822143 902181 258308 289810 217663 (153 digits), a[302] = 3
                                                                                      A[303]/B[303] = 8 082938 242024 449878 263209 055507 615093 754977 668604 220004 281837 295921 656333 590064 826826 087744 272322 796448 842034 347575 587249 063639 022015 210196 757446 790452 (151 digits)/785 609263 746164 629267 345910 115643 621495 554627 715495 498825 217568 116190 292352 098384 171695 846925 477495 486890 227527 857281 569661 983185 595212 099257 980037 804959 (153 digits), a[303] = 1
                                                                                      A[304]/B[304] = 14 406293 594581 588482 804223 434390 905591 620287 882752 406279 801401 345838 741510 179046 081541 241975 942446 048309 178352 629920 091435 530294 667426 490083 173995 728777 (152 digits)/1400 198463 141504 546768 808901 237971 870063 964744 401740 485066 257833 247964 835389 110011 612464 289178 161011 997396 402348 539288 765789 805329 497393 357566 269848 022622 (154 digits), a[304] = 1
                                                                                      A[305]/B[305] = 108 926993 404095 569257 892773 096243 954235 096992 847871 063962 891646 716792 846904 843387 397614 781575 869445 134613 090502 757016 227297 775701 694000 640778 975416 891891 (153 digits)/10586 998505 736696 456649 008218 781446 711943 307838 527678 894289 022400 851944 140075 868465 458945 871172 604579 468665 043967 632302 930190 620492 076965 602221 868973 963313 (155 digits), a[305] = 7
                                                                                      A[306]/B[306] = 123 333286 998677 157740 696996 530634 859826 717280 730623 470242 693048 062631 588415 022433 479156 023551 811891 182922 268855 386936 318733 305996 361427 130862 149412 620668 (153 digits)/11987 196968 878201 003417 817120 019418 582007 272582 929419 379355 280234 099908 975464 978477 071410 160350 765591 466061 446316 171591 695980 425821 574358 959788 138821 985935 (155 digits), a[306] = 1
                                                                                      A[307]/B[307] = 232 260280 402772 726998 589769 626878 814061 814273 578494 534205 584694 779424 435319 865820 876770 805127 681336 317535 359358 143952 546031 081698 055427 771641 124829 512559 (153 digits)/22574 195474 614897 460066 825338 800865 293950 580421 457098 273644 302634 951853 115540 846942 530356 031523 370170 934726 490283 803894 626171 046313 651324 562010 007795 949248 (155 digits), a[307] = 1
                                                                                      A[308]/B[308] = 355 593567 401449 884739 286766 157513 673888 531554 309118 004448 277742 842056 023734 888254 355926 828679 493227 500457 628213 530888 864764 387694 416854 902503 274242 133227 (153 digits)/34561 392443 493098 463484 642458 820283 875957 853004 386517 652999 582869 051762 091005 825419 601766 191874 135762 400787 936599 975486 322151 472135 225683 521798 146617 935183 (155 digits), a[308] = 1
                                                                                      A[309]/B[309] = 587 853847 804222 611737 876535 784392 487950 345827 887612 538653 862437 621480 459054 754075 232697 633807 174563 817992 987571 674841 410795 469392 472282 674144 399071 645786 (153 digits)/57135 587918 107995 923551 467797 621149 169908 433425 843615 926643 885504 003615 206546 672362 132122 223397 505933 335514 426883 779380 948322 518448 877008 083808 154413 884431 (155 digits), a[309] = 1
                                                                                      A[310]/B[310] = 943 447415 205672 496477 163301 941906 161838 877382 196730 543102 140180 463536 482789 642329 588624 462486 667791 318450 615785 205730 275559 857086 889137 576647 673313 779013 (153 digits)/91696 980361 601094 387036 110256 441433 045866 286430 230133 579643 468373 055377 297552 497781 733888 415271 641695 736302 363483 754867 270473 990584 102691 605606 301031 819614 (155 digits), a[310] = 1
                                                                                      A[311]/B[311] = 2474 748678 215567 604692 203139 668204 811628 100592 281073 624858 142798 548553 424634 038734 409946 558780 510146 454894 219142 086301 961915 183566 250557 827439 745699 203812 (154 digits)/240529 548641 310184 697623 688310 504015 261641 006286 303883 085930 822250 114369 801651 667925 599899 053940 789324 808119 153851 289115 489270 499617 082391 295020 756477 523659 (156 digits), a[311] = 2
                                                                                      A[312]/B[312] = 1 156651 080141 875743 887736 029526 993553 192161 853977 458113 351854 827102 637985 786885 731299 033667 412984 906185 754050 955139 508746 489950 582525 899642 991008 914841 959217 (157 digits)/112 418996 195853 457348 177298 551261 816560 232216 222134 143534 709337 459176 466074 668881 419036 886746 605620 256381 127947 212035 771800 759797 311761 579426 380299 576035 368367 (159 digits), a[312] = 467
                                                                                      A[313]/B[313] = 1 159125 828820 091311 492428 232666 661758 003789 954569 739186 976712 969901 186539 211519 770033 443613 971765 416332 208945 174281 595048 451865 766092 150200 818448 660541 163029 (157 digits)/112 659525 744494 767532 874922 239572 320575 493857 228420 447417 795268 281426 580444 470533 086962 486645 659561 045705 936066 365887 060916 249067 811378 661817 675320 332512 892026 (159 digits), a[313] = 1
                                                                                      A[314]/B[314] = 3 474902 737782 058366 872592 494860 317069 199741 763116 936487 305280 766905 011064 209925 271365 920895 356515 738850 171941 303702 698843 393682 114710 200044 627906 235924 285275 (157 digits)/337 738047 684842 992413 927143 030406 457711 219930 678975 038370 299874 022029 626963 609947 592961 860037 924742 347793 000079 943809 893633 257932 934518 903061 730940 241061 152419 (159 digits), a[314] = 2
                                                                                      A[315]/B[315] = 4 634028 566602 149678 365020 727526 978827 203531 717686 675674 281993 736806 197603 421445 041399 364509 328281 155182 380886 477984 293891 845547 880802 350245 446354 896465 448304 (157 digits)/450 397573 429337 759946 802065 269978 778286 713787 907395 485788 095142 303456 207408 080480 679924 346683 584303 393498 936146 309696 954549 507000 745897 564879 406260 573574 044445 (159 digits), a[315] = 1
                                                                                      A[316]/B[316] = 54 449216 970405 704828 887820 497657 084168 438590 657670 368904 407211 871773 184701 845820 726758 930497 967608 445856 361692 561529 931653 694708 803536 052744 537810 097044 216619 (158 digits)/5292 111355 407558 351828 749861 000173 018865 071597 660325 382039 346439 360047 908452 495235 072129 673557 352079 676281 297689 350476 393677 834941 139392 116735 199806 550375 641314 (160 digits), a[316] = 11
                                                                                      A[317]/B[317] = 113 532462 507413 559336 140661 722841 147164 080713 033027 413483 096417 480352 567007 113086 494917 225505 263498 046895 104271 601044 157199 234965 487874 455734 521975 090553 881542 (159 digits)/11034 620284 244454 463604 301787 270324 816016 856983 228046 249866 788021 023552 024313 070950 824183 693798 288462 746061 531525 010649 741905 176883 024681 798349 805873 674325 327073 (161 digits), a[317] = 2
                                                                                      A[318]/B[318] = 281 514141 985232 823501 169143 943339 378496 600016 723725 195870 600046 832478 318716 071993 716593 381508 494604 539646 570235 763618 246052 164639 779284 964213 581760 278151 979703 (159 digits)/27361 351923 896467 279037 353435 540822 650898 785564 116417 881772 922481 407151 957078 637136 720497 061153 929005 168404 360739 371775 877488 188707 188755 713434 811553 899026 295460 (161 digits), a[318] = 2
                                                                                      A[319]/B[319] = 395 046604 492646 382837 309805 666180 525660 680729 756752 609353 696464 312830 885723 185080 211510 607013 758102 586541 674507 364662 403251 399605 267159 419948 103735 368705 861245 (159 digits)/38395 972208 140921 742641 655222 811147 466915 642547 344464 131639 710502 430703 981391 708087 544680 754952 217467 914465 892264 382425 619393 365590 213437 511784 617427 573351 622533 (161 digits), a[319] = 1
                                                                                      A[320]/B[320] = 1466 653955 463171 972013 098560 941880 955478 642205 993983 023931 689439 770970 975885 627234 351125 202549 768912 299271 593757 857605 455806 363455 580763 224057 892966 384269 563438 (160 digits)/142549 268548 319232 506962 319103 974265 051645 713206 149810 276692 053988 699263 901253 761399 354539 326010 581408 911802 037532 519052 735668 285477 829068 248788 663836 619081 163059 (162 digits), a[320] = 3
                                                                                      A[321]/B[321] = 3328 354515 418990 326863 506927 549942 436617 965141 744718 657217 075343 854772 837494 439548 913761 012113 295927 185084 862023 079873 314864 126516 428685 868063 889668 137244 988121 (160 digits)/323494 509304 779386 756566 293430 759677 570207 068959 644084 685023 818479 829231 783899 230886 253759 406973 380285 738069 967329 420531 090729 936545 871574 009361 945100 811513 948651 (162 digits), a[321] = 2
                                                                                      A[322]/B[322] = 8123 362986 301152 625740 112416 041765 828714 572489 483420 338365 840127 480516 650874 506332 178647 226776 360766 669441 317804 017352 085534 616488 438134 960185 672302 658759 539680 (160 digits)/789538 287157 878006 020094 905965 493620 192059 851125 437979 646739 690948 357727 469052 223171 862058 139957 341980 387941 972191 360114 917128 158569 572216 267512 554038 242109 060361 (162 digits), a[322] = 2
                                                                                      A[323]/B[323] = 19575 080488 021295 578343 731759 633474 094047 110120 711559 333948 755598 815806 139243 452213 271055 465666 017460 523967 497631 114577 485933 359493 304955 788435 234273 454764 067481 (161 digits)/1 902571 083620 535398 796756 105361 746917 954326 771210 520043 978503 200376 544686 722003 677229 977875 686888 064246 513953 911712 140760 924986 253685 016006 544387 053177 295732 069373 (163 digits), a[323] = 2
                                                                                      A[324]/B[324] = 27698 443474 322448 204083 844175 675239 922761 682610 194979 672314 595726 296322 790117 958545 449702 692442 378227 193408 815435 131929 571467 975981 743090 748620 906576 113523 607161 (161 digits)/2 692109 370778 413404 816851 011327 240538 146386 622335 958023 625242 891324 902414 191055 900401 839933 826845 406226 901895 883903 500875 842114 412254 588222 811899 607215 537841 129734 (163 digits), a[324] = 1
                                                                                      A[325]/B[325] = 1 127512 819460 919223 741697 498786 643071 004514 414528 510746 226532 584650 668717 743961 794031 259163 163361 146548 260320 115036 391760 344652 398763 028585 733271 497317 995708 353921 (163 digits)/109 586945 914757 071591 470796 558451 368443 809791 664648 840988 988218 853372 641254 364239 693303 575228 760704 313322 589789 267852 175794 609562 743868 544919 020371 341798 809377 258733 (165 digits), a[325] = 40
                                                                                      A[326]/B[326] = 3 410236 901857 080119 429176 340535 604452 936304 926195 727218 351912 349678 302476 022003 340639 227192 182525 817871 974369 160544 307210 605425 172270 828847 948435 398530 100648 668924 (163 digits)/331 452947 115049 628179 229240 686681 345869 575761 616282 480990 589899 451442 826177 283774 980312 565620 108958 346194 671263 687460 028259 670802 643860 222979 873013 632611 965972 905933 (165 digits), a[326] = 3
                                                                                      A[327]/B[327] = 38 640118 739888 800537 462637 244678 292053 303868 602681 510148 097568 431111 995953 985998 541062 758277 171145 143139 978380 881023 771077 004329 293742 145913 166060 881149 102843 712085 (164 digits)/3755 569364 180302 981562 992444 111946 173009 143169 443756 131885 477112 819243 729204 485764 476741 797049 959246 121463 973689 829912 486650 988391 826330 997697 623521 300530 435079 223996 (166 digits), a[327] = 11
                                                                                      A[328]/B[328] = 42 050355 641745 880656 891813 585213 896506 240173 528877 237366 449480 780790 298430 008001 881701 985469 353670 961011 952750 041568 078287 609754 466012 974761 114496 279679 203492 381009 (164 digits)/4087 022311 295352 609742 221684 798627 518878 718931 060038 612876 067012 270686 555381 769539 457054 362670 068204 467658 644953 517372 514910 659194 470191 220677 496534 933142 401052 129929 (166 digits), a[328] = 1
                                                                                      A[329]/B[329] = 417 093319 515601 726449 488959 511603 360609 465430 362576 646446 142895 458224 681824 058015 476380 627501 354183 792247 553131 255136 475665 492119 487858 918763 196527 398261 934275 141166 (165 digits)/40538 770165 838476 469242 987607 299593 842917 613548 984103 647770 080223 255422 727640 411619 590231 061080 573086 330391 778271 486265 120846 921142 058051 983795 092335 698812 044548 393357 (167 digits), a[329] = 9
                                                                                      A[330]/B[330] = 5881 356828 860170 050949 737246 747660 945038 756198 604950 287612 450017 195935 843966 820218 551030 770488 312244 052477 696587 613478 737604 499427 296037 837445 865879 855346 283344 357333 (166 digits)/571629 804633 034023 179144 048186 992941 319725 308616 837489 681657 190137 846604 742347 532213 720289 217798 091413 093143 540754 325084 206767 555183 282918 993808 789234 716511 024729 636927 (168 digits), a[330] = 14
                                                                                      A[331]/B[331] = 23942 520634 956281 930248 437946 502247 140764 490224 782377 796895 942964 241968 057691 338889 680503 709454 603160 002158 339481 709051 426083 489828 672010 268546 660046 819647 067652 570498 (167 digits)/2 327057 988697 974569 185819 180355 271359 121818 848016 334062 374398 840774 641841 697030 540474 471387 932272 938738 702965 941288 786601 947917 141875 189727 959030 249274 564856 143466 941065 (169 digits), a[331] = 4
                                                                                      A[332]/B[332] = 197421 521908 510425 492937 240818 765638 071154 677996 863972 662779 993731 131680 305497 531335 995060 446125 137524 069744 412441 285890 146272 418056 672119 985819 146254 412522 824564 921317 (168 digits)/19 188093 714216 830576 665697 491029 163814 294276 092747 509988 676847 916334 981338 318591 856009 491392 675981 601322 716871 071064 617899 790104 690184 800742 666050 783431 235360 172465 165447 (170 digits), a[332] = 8
                                                                                      A[333]/B[333] = 221364 042543 466707 423185 678765 267885 211919 168221 646350 459675 936695 373648 363188 870225 675564 155579 740684 071902 751922 994941 572355 907885 344130 254365 806301 232169 892217 491815 (168 digits)/21 515151 702914 805145 851516 671384 435173 416094 940763 844051 051246 757109 623180 015622 396483 962780 608254 540061 419837 012353 404501 738021 832059 990470 625081 032705 800216 315932 106512 (170 digits), a[333] = 1
                                                                                      A[334]/B[334] = 418785 564451 977132 916122 919584 033523 283073 846218 510323 122455 930426 505328 668686 401561 670624 601704 878208 141647 164364 280831 718628 325942 016250 240184 952555 644692 716782 413132 (168 digits)/40 703245 417131 635722 517214 162413 598987 710371 033511 354039 728094 673444 604518 334214 252493 454173 284236 141384 136708 083418 022401 528126 522244 791213 291131 816137 035576 488397 271959 (170 digits), a[334] = 1
                                                                                      A[335]/B[335] = 3 571648 558159 283770 752169 035437 536071 476509 937969 728935 439323 380107 416277 712680 082719 040560 969218 766349 205080 066837 241595 321382 515421 474132 175845 426746 389711 626476 796871 (169 digits)/347 141115 039967 890925 989229 970693 227075 099063 208854 676368 876004 144666 459326 689336 416431 596166 882143 671134 513501 679697 583713 963034 010018 320176 954135 561802 084828 223110 282184 (171 digits), a[335] = 8
                                                                                      A[336]/B[336] = 3 990434 122611 260903 668291 955021 569594 759583 784188 239258 561779 310533 921606 381366 484280 711185 570923 644557 346727 231201 522427 040010 841363 490382 416030 379302 034404 343259 210003 (169 digits)/387 844360 457099 526648 506444 133106 826062 809434 242366 030408 604098 818111 063845 023550 668925 050340 166379 812518 650209 763115 606115 491160 532263 111390 245267 377939 120404 711507 554143 (171 digits), a[336] = 1
                                                                                      A[337]/B[337] = 23 523819 171215 588289 093628 810545 384045 274428 858910 925228 248219 932777 024309 619512 504122 596488 823836 989135 938716 222844 853730 521436 722238 926044 255997 323256 561733 342772 846886 (170 digits)/2286 362917 325465 524168 521450 636227 357389 146234 420684 828411 896498 235221 778551 807089 761056 847867 714042 733727 764550 495275 614291 418836 671333 877128 180472 451497 686851 780648 052899 (172 digits), a[337] = 5
                                                                                      A[338]/B[338] = 27 514253 293826 849192 761920 765566 953640 034012 643099 164486 809999 243310 945916 000878 988403 307674 394760 633693 285443 454046 376157 561447 563602 416426 672027 702558 596137 686032 056889 (170 digits)/2674 207277 782565 050817 027894 769334 183451 955668 663050 858820 500597 053332 842396 830640 429981 898207 880422 546246 414760 258391 220406 909997 203596 988518 425739 829436 807256 492155 607042 (172 digits), a[338] = 1
                                                                                      A[339]/B[339] = 78 552325 758869 286674 617470 341679 291325 342454 145109 254201 868218 419398 916141 621270 480929 211837 613358 256522 509603 130937 606045 644331 849443 758897 600052 728373 754008 714836 960664 (170 digits)/7634 777472 890595 625802 577240 174895 724293 057571 746786 546052 897692 341887 463345 468370 621020 644283 474887 826220 594071 012058 055105 238831 078527 854165 031952 110371 301364 764959 266983 (172 digits), a[339] = 2
                                                                                      A[340]/B[340] = 184 618904 811565 422541 996861 448925 536290 718920 933317 672890 546436 082108 778199 243419 950261 731349 621477 146738 304649 715921 588248 850111 262489 934221 872133 159306 104155 115705 978217 (171 digits)/17943 762223 563756 302422 182375 119125 632038 070812 156623 950926 295981 737107 769087 767381 672023 186774 830198 198687 602902 282507 330617 387659 360652 696848 489644 050179 409986 022074 141008 (173 digits), a[340] = 2
                                                                                      A[341]/B[341] = 1001 646849 816696 399384 601777 586306 972778 937058 811697 618654 600398 829942 807137 838370 232237 868585 720743 990214 032851 710545 547289 894888 161893 430006 960718 524904 274784 293366 851749 (172 digits)/97353 588590 709377 137913 489115 770523 884483 411632 529906 300684 377601 027426 308784 305278 981136 578157 625878 819658 608582 424594 708192 177127 881791 338407 480172 361268 351294 875329 972023 (173 digits), a[341] = 5
                                                                                      A[342]/B[342] = 1186 265754 628261 821926 598639 035232 509069 655979 745015 291545 146834 912051 585337 081790 182499 599935 342221 136952 337501 426467 135538 744999 424383 364228 832851 684210 378939 409072 829966 (172 digits)/115297 350814 273133 440335 671490 889649 516521 482444 686530 251610 673582 764534 077872 072660 653159 764932 456077 018346 211484 707102 038809 564787 242444 035255 969816 411447 761280 897404 113031 (174 digits), a[342] = 1
                                                                                      A[343]/B[343] = 3374 178359 073220 043237 799055 656771 990918 249018 301728 201744 894068 654045 977812 001950 597237 068456 405186 264118 707854 563479 818367 384887 010660 158464 626421 893325 032663 111512 511681 (172 digits)/327948 290219 255644 018584 832097 549822 917526 376521 902966 803905 724766 556494 464528 450600 287456 108022 538032 856351 031551 838798 785811 306702 366679 408919 419805 184163 873856 670138 198085 (174 digits), a[343] = 2
                                                                                      A[344]/B[344] = 7934 622472 774701 908402 196750 348776 490906 154016 348471 695034 934972 220143 540961 085691 376973 736848 152593 665189 753210 553426 772273 514773 445703 681158 085695 470860 444265 632097 853328 (172 digits)/771193 931252 784421 477505 335685 989295 351574 235488 492463 859422 123115 877523 006928 973861 228071 980977 532142 731048 274588 384699 610432 178191 975802 853094 809426 779775 508994 237680 509201 (174 digits), a[344] = 2
                                                                                      A[345]/B[345] = 27178 045777 397325 768444 389306 703101 463636 711067 347143 286849 698985 314476 600695 259024 728158 279000 862967 259687 967486 223760 135187 929207 347771 201938 883508 305906 365460 007806 071665 (173 digits)/2 641530 083977 608908 451100 839155 517708 972249 082987 380358 382172 094114 189063 485315 372183 971672 050955 134461 049495 855316 992897 617107 841278 294087 968203 848085 523490 400839 383179 725688 (175 digits), a[345] = 3
                                                                                      A[346]/B[346] = 823275 995794 694474 961733 875951 441820 400007 486036 762770 300525 904531 654441 561818 856433 221722 106874 041611 455828 777797 266230 827911 390993 878839 739324 590944 648051 408065 866280 003278 (174 digits)/80 017096 450581 051675 010530 510351 520564 519046 725109 903215 324584 946541 549427 566390 139380 378233 509631 565974 215923 934098 171628 123667 416540 798441 899210 251992 484487 534175 733072 279841 (176 digits), a[346] = 30
                                                                                      A[347]/B[347] = 2 497006 033161 480750 653646 017161 028562 663659 169177 635454 188427 412580 277801 286151 828324 393324 599622 987801 627174 300878 022452 618922 102188 984290 419912 656342 250060 589657 606646 081499 (175 digits)/242 692819 435720 763933 482692 370210 079402 529389 258317 090004 355926 933738 837346 184485 790325 106372 579849 832383 697267 657611 507781 988110 090900 689413 665834 604062 976953 003366 582396 565211 (177 digits), a[347] = 3
                                                                                      A[348]/B[348] = 3 320282 028956 175225 615379 893112 470383 063666 655214 398224 488953 317111 932242 847970 684757 615046 706497 029413 083003 078675 288683 446833 493182 863130 159237 247286 898111 997723 472926 084777 (175 digits)/322 709915 886301 815608 493222 880561 599967 048435 983426 993219 680511 880280 386773 750875 929705 484606 089481 398357 913191 591709 679410 111777 507441 487855 565044 856055 461440 537542 315468 845052 (177 digits), a[348] = 1
                                                                                      A[349]/B[349] = 9 137570 091073 831201 884405 803385 969328 790992 479606 431903 166334 046804 142286 982093 197839 623418 012617 046627 793180 458228 599819 512589 088554 710550 738387 150916 046284 585104 552498 251053 (175 digits)/888 112651 208324 395150 469138 131333 279336 626261 225171 076443 716950 694299 610893 686237 649736 075584 758812 629099 523650 841030 866602 211665 105783 665124 795924 316173 899834 078451 213334 255315 (177 digits), a[349] = 2
                                                                                      A[350]/B[350] = 12 457852 120030 006427 499785 696498 439711 854659 134820 830127 655287 363916 074529 830063 882597 238464 719114 076040 876183 536903 888502 959422 581737 573680 897624 398202 944396 582828 025424 335830 (176 digits)/1210 822567 094626 210758 962361 011894 879303 674697 208598 069663 397462 574579 997667 437113 579441 560190 848294 027457 436842 432740 546012 323442 613225 152980 360969 172229 361274 615993 528803 100367 (178 digits), a[350] = 1
                                                                                      A[351]/B[351] = 34 053274 331133 844056 883977 196382 848752 500310 749248 092158 476908 774636 291346 642220 963034 100347 450845 198709 545547 532036 376825 431434 252029 857912 533635 947321 935077 750760 603346 922713 (176 digits)/3309 757785 397576 816668 393860 155123 037943 975655 642367 215770 511875 843459 606228 560464 808619 195966 455400 684014 397335 706511 958626 858550 332233 971085 517862 660632 622383 310438 270940 456049 (178 digits), a[351] = 2
                                                                                      A[352]/B[352] = 216 777498 106833 070768 803648 874795 532226 856523 630309 383078 516740 011733 822609 683389 660801 840549 424185 268298 149468 729122 149455 548028 093916 721156 099440 082134 554863 087391 645505 872108 (177 digits)/21069 369279 480087 110769 325521 942633 106967 528631 062801 364286 468717 635337 635038 799902 431156 735989 580698 131543 820856 671812 297773 474744 606628 979493 468145 136025 095574 478623 154445 836661 (179 digits), a[352] = 6
                                                                                      A[353]/B[353] = 250 830772 437966 914825 687626 071178 380979 356834 379557 475236 993648 786370 113956 325610 623835 940896 875030 467007 695016 261158 526280 979462 345946 579068 633076 029456 489940 838152 248852 794821 (177 digits)/24379 127064 877663 927437 719382 097756 144911 504286 705168 580056 980593 478797 241267 360367 239775 931956 036098 815558 218192 378324 256400 333294 938862 950578 986007 796657 717957 789061 425386 292710 (179 digits), a[353] = 1
                                                                                      A[354]/B[354] = 2474 254450 048535 304199 992283 515400 961041 068033 046326 660211 459579 089064 848216 613885 275325 308621 299459 471367 404615 079548 885984 363189 207435 932773 797124 347242 964330 630761 885181 025497 (178 digits)/240481 512863 379062 457708 799960 822438 411171 067211 409318 584799 294058 944512 806445 043207 589140 123593 905587 471567 784588 076730 605376 474399 056395 534704 342215 305944 557194 580175 982922 471051 (180 digits), a[354] = 9
                                                                                      A[355]/B[355] = 10147 848572 632108 131625 656760 132782 225143 628966 564864 116082 831965 142629 506822 781151 725137 175382 072868 352477 313476 579354 070218 432219 175690 310163 821573 418428 347263 361199 789576 896809 (179 digits)/986305 178518 393913 758272 919225 387509 789595 773132 342442 919254 156829 256848 467047 533197 596336 426331 658448 701829 356544 685246 677906 230891 164445 089396 354869 020435 946736 109765 357076 176914 (180 digits), a[355] = 4
                                                                                      A[356]/B[356] = 22769 951595 312751 567451 305803 780965 411328 325966 176054 892377 123509 374323 861862 176188 725599 659385 445196 176322 031568 238257 026421 227627 558816 553101 440271 184099 658857 353161 464334 819115 (179 digits)/2 213091 869900 166889 974254 638411 597457 990362 613476 094204 423307 607717 458209 740540 109602 781812 976257 222484 875226 497677 447223 961188 936181 385285 713497 051953 346816 450666 799706 697074 824879 (181 digits), a[356] = 2
                                                                                      A[357]/B[357] = 556626 686860 138145 750456 996050 875952 097023 452154 790181 533133 796190 126402 191515 009681 139529 000632 757576 584206 071114 297522 704327 895280 587287 584598 388081 836820 159839 837074 933612 555569 (180 digits)/54 100510 056122 399273 140384 241103 726501 558298 496558 603349 078636 742048 253882 240010 163664 359847 856504 998085 707265 300803 418621 746440 699244 411302 213325 601749 344030 762739 302726 086871 974010 (182 digits), a[357] = 24
                                                                                      A[358]/B[358] = 579396 638455 450897 317908 301854 656917 508351 778120 966236 425510 919699 500726 053377 185869 865128 660018 202772 760528 102682 535779 730749 122908 146104 137699 828353 020919 818697 190236 397947 374684 (180 digits)/56 313601 926022 566163 114638 879515 323959 548661 110034 697553 501944 349765 712091 980550 273267 141660 832762 220570 582491 798480 865845 707629 635425 796587 926822 653702 690847 213406 102432 783946 798889 (182 digits), a[358] = 1
                                                                                      A[359]/B[359] = 4 033006 517592 843529 657906 807178 817457 147134 120880 587600 086199 314387 130758 511778 124900 330300 960741 974213 147374 687209 512201 088822 632729 463912 410797 358199 962339 072022 978493 321296 803673 (181 digits)/391 982121 612257 796251 828217 518195 670258 850265 156766 788670 090302 840642 526434 123311 803267 209812 853078 321509 202216 091688 613695 992218 511799 190829 774261 523965 489114 043175 917322 790552 767344 (183 digits), a[359] = 6
                                                                                      A[360]/B[360] = 61 074494 402348 103842 186510 409536 918774 715363 591329 780237 718500 635506 462103 730049 059374 819643 071147 815969 971148 410825 218796 063088 613850 104790 299660 201352 456005 899041 867636 217399 429779 (182 digits)/5936 045426 109889 509940 537901 652450 377842 302638 461536 527604 856486 959403 608603 830227 322275 288853 628937 043208 615733 173810 071285 590907 312413 659034 540745 513185 027557 861044 862274 642238 309049 (184 digits), a[360] = 15
                                                                                      A[361]/B[361] = 65 107500 919940 947371 844417 216715 736231 862497 712210 367837 804699 949893 592862 241827 184275 149944 031889 790183 118523 098034 730997 151911 246579 568702 710457 559552 418344 971064 846129 538696 233452 (182 digits)/6328 027547 722147 306192 366119 170646 048101 152903 618303 316274 946789 800046 135037 953539 125542 498666 482015 364717 817949 265498 684981 583125 824212 849864 315007 037150 516671 904220 779597 432791 076393 (184 digits), a[361] = 1
                                                                                      A[362]/B[362] = 126 181995 322289 051214 030927 626252 655006 577861 303540 148075 523200 585400 054965 971876 243649 969587 103037 606153 089671 508859 949793 214999 860429 673493 010117 760904 874350 870106 713765 756095 663231 (183 digits)/12264 072973 832036 816132 904020 823096 425943 455542 079839 843879 803276 759449 743641 783766 447817 787520 110952 407926 433682 439308 756267 174033 136626 508898 855752 550335 544229 765265 641872 075029 385442 (185 digits), a[362] = 1
                                                                                      A[363]/B[363] = 948 381468 175964 305870 060910 600484 321277 907526 836991 404366 467104 047693 977624 044960 889824 937053 753153 033254 746223 660054 379549 656910 269587 283153 781281 885886 538801 061811 842489 831365 876069 (183 digits)/92176 538364 546405 019122 694264 932321 029705 341698 177182 223433 569727 116194 340530 439904 260267 011307 258682 220202 853726 340659 978851 801357 780598 412156 305274 889499 326280 261080 272701 957996 774487 (185 digits), a[363] = 7
                                                                                      A[364]/B[364] = 2022 944931 674217 662954 152748 827221 297562 392914 977522 956808 457408 680788 010214 061798 023299 843694 609343 672662 582118 828968 708892 528820 399604 239800 572681 532677 951952 993730 398745 418827 415369 (184 digits)/196617 149702 924846 854378 292550 687738 485354 138938 434204 290746 942730 991838 424702 663574 968351 810134 628316 848332 141135 120628 713970 776748 697823 333211 466302 329334 196790 287426 187275 991022 934416 (186 digits), a[364] = 2
                                                                                      A[365]/B[365] = 2971 326399 850181 968824 213659 427705 618840 300441 814514 361174 924512 728481 987838 106758 913124 780748 362496 705917 328342 489023 088442 185730 669191 522954 353963 418564 490754 055542 241235 250193 291438 (184 digits)/288793 688067 471251 873500 986815 620059 515059 480636 611386 514180 512458 108032 765233 103479 228618 821441 886999 068534 994861 461288 692822 578106 478421 745367 771577 218833 523070 548506 459977 949019 708903 (186 digits), a[365] = 1
                                                                                      A[366]/B[366] = 7965 597731 374581 600602 580067 682632 535242 993798 606551 679158 306434 137751 985890 275315 849549 405191 334337 084497 238803 807014 885776 900281 737987 285709 280608 369806 933461 104814 881215 919213 998245 (184 digits)/774204 525837 867350 601380 266181 927857 515473 100211 656977 319107 967647 207903 955168 870533 425589 453018 402314 985402 130858 043206 099615 932961 654666 823947 009456 767001 242931 384439 107231 889062 352222 (186 digits), a[366] = 2
                                                                                      A[367]/B[367] = 10936 924131 224763 569426 793727 110338 154083 294240 421066 040333 230946 866233 973728 382074 762674 185939 696833 790414 567146 296037 974219 086012 407178 808663 634571 788371 424215 160357 122451 169407 289683 (185 digits)/1 062998 213905 338602 474881 252997 547917 030532 580848 268363 833288 480105 315936 720401 974012 654208 274460 289314 053937 125719 504494 792438 511068 133088 569314 781033 985834 766001 932945 567209 838082 061125 (187 digits), a[367] = 1
                                                                                      A[368]/B[368] = 1 025099 541935 277593 557294 396688 944080 864989 358157 765693 430148 784492 697511 542629 808268 778248 697583 139879 593051 983409 338546 488151 899435 605616 491427 295784 688349 385471 018027 269174 674091 938764 (187 digits)/99 633038 419034 357380 765336 794953 884141 355003 119100 614813 814936 617441 590018 952552 453710 266958 977825 308522 001554 822771 961221 796397 462298 031903 770221 645617 449634 481111 148376 857746 830694 036847 (188 digits), a[368] = 93
                                                                                      A[369]/B[369] = 1 036036 466066 502357 126721 190416 054419 019072 652398 186759 470482 015439 563745 516358 190343 540922 883522 836713 383466 550555 634584 462370 985448 012795 300090 930356 476720 809686 178384 391625 843499 228447 (187 digits)/100 696036 632939 695983 240218 047951 432058 385535 699948 883177 648225 097546 905955 672954 427722 921167 252285 597836 055491 948491 465716 588835 973366 164992 339536 426651 435469 247113 081322 424956 668776 097972 (189 digits), a[369] = 1
                                                                                      A[370]/B[370] = 4 133208 940134 784664 937457 967937 107337 922207 315352 325971 841594 830811 388748 091704 379299 401017 348151 650019 743451 635076 242299 875264 855779 644002 391700 086854 118511 814529 553180 444052 204589 624105 (187 digits)/401 721148 317853 445330 485990 938808 180316 511610 218947 264346 759611 910082 307885 971415 736879 030460 734682 102030 168030 668246 358371 562905 382396 526880 788830 925571 756042 222450 392344 132616 837022 330763 (189 digits), a[370] = 3
                                                                                      A[371]/B[371] = 42 368125 867414 349006 501300 869787 127798 241145 805921 446477 886430 323553 451226 433401 983337 551096 365039 336910 817982 901318 057583 215019 543244 452819 217091 798897 661838 954981 710188 832147 889395 469497 (188 digits)/4117 907519 811474 149288 100127 436033 235223 501637 889421 526645 244344 198369 984815 387111 796513 225774 599106 618137 735798 630955 049432 217889 797331 433800 227845 682368 995891 471617 004763 751125 038999 405602 (190 digits), a[371] = 10
                                                                                      A[372]/B[372] = 88 869460 674963 482677 940059 707511 362934 404498 927195 218927 614455 477918 291200 958508 345974 503210 078230 323841 379417 437712 357466 305303 942268 549640 825883 684649 442189 724492 973558 108347 983380 563099 (188 digits)/8637 536187 940801 743906 686245 810874 650763 514885 997790 317637 248300 306822 277516 745639 329905 482009 932895 338305 639627 930156 457235 998684 977059 394481 244522 290309 747825 165684 401871 634866 915021 141967 (190 digits), a[372] = 2
                                                                                      A[373]/B[373] = 308 976507 892304 797040 321479 992321 216601 454642 587507 103260 729796 757308 324829 308927 021261 060726 599730 308434 956235 214455 129982 130931 370050 101741 694742 852845 988408 128460 630863 157191 839537 158794 (189 digits)/30030 516083 633879 381008 158864 868657 187514 046295 882792 479556 989245 118836 817365 624029 786229 671804 397792 633054 654682 421424 421140 213944 728509 617243 961412 553298 239366 968670 210378 655725 784062 831503 (191 digits), a[373] = 3
                                                                                      A[374]/B[374] = 397 845968 567268 279718 261539 699832 579535 859141 514702 322188 344252 235226 616030 267435 367235 563936 677960 632276 335652 652167 487448 436235 312318 651382 520626 537495 430597 852953 604421 265539 822917 721893 (189 digits)/38668 052271 574681 124914 845110 679531 838277 561181 880582 797194 237545 425659 094882 369669 116135 153814 330687 971360 294310 351580 878376 212629 705569 011725 205934 843607 987192 134354 612250 290592 699083 973470 (191 digits), a[374] = 1
                                                                                      A[375]/B[375] = 7470 203942 103133 831969 029194 589307 648246 919189 852148 902650 926336 991387 413374 122763 631501 211586 803021 689408 997982 953469 904053 983166 991785 826627 066020 527763 739169 481625 510445 936908 652056 152868 (190 digits)/726055 456971 978139 629475 370857 100230 276510 147569 733282 829053 265062 780700 525248 278073 876662 440462 350176 117539 952268 749880 231912 041279 428751 828297 668239 738242 008825 387053 230883 886394 367574 353963 (192 digits), a[375] = 18
                                                                                      A[376]/B[376] = 7868 049910 670402 111687 290734 289140 227782 778331 366851 224839 270589 226614 029404 390198 998736 775523 480982 321685 333635 605637 391502 419402 304104 478009 586647 065259 169767 334579 114867 202448 474973 874761 (190 digits)/764723 509243 552820 754390 215967 779762 114787 708751 613865 626247 502608 206359 620130 647742 992797 594276 680864 088900 246579 101461 110288 253909 134320 840022 874174 581849 996017 521407 843134 176987 066658 327433 (192 digits), a[376] = 1
                                                                                      A[377]/B[377] = 15338 253852 773535 943656 319928 878447 876029 697521 219000 127490 196926 218001 442778 512962 630237 987110 284004 011094 331618 559107 295556 402569 295890 304636 652667 593022 908936 816204 625313 139357 127030 027629 (191 digits)/1 490778 966215 530960 383865 586824 879992 391297 856321 347148 455300 767670 987060 145378 925816 869460 034739 031040 206440 198847 851341 342200 295188 563072 668320 542414 320092 004842 908461 074018 063381 434232 681396 (193 digits), a[377] = 1
                                                                                      A[378]/B[378] = 23206 303763 443938 055343 610663 167588 103812 475852 585851 352329 467515 444615 472182 903161 628974 762633 764986 332779 665254 164744 687058 821971 599994 782646 239314 658282 078704 150783 740180 341805 602003 902390 (191 digits)/2 255502 475459 083781 138255 802792 659754 506085 565072 961014 081548 270279 193419 765509 573559 862257 629015 711904 295340 445426 952802 452488 549097 697393 508343 416588 901942 000860 429868 917152 240368 500891 008829 (193 digits), a[378] = 1
                                                                                      A[379]/B[379] = 38544 557616 217473 998999 930592 046035 979842 173373 804851 479819 664441 662616 914961 416124 259212 749744 048990 343873 996872 723851 982615 224540 895885 087282 891982 251304 987640 966988 365493 481162 729033 930019 (191 digits)/3 746281 441674 614741 522121 389617 539746 897383 421394 308162 536849 037950 180479 910888 499376 731717 663754 742944 501780 644274 804143 794688 844286 260466 176663 959003 222034 005703 338329 991170 303749 935123 690225 (193 digits), a[379] = 1
                                                                                      A[380]/B[380] = 61750 861379 661412 054343 541255 213624 083654 649226 390702 832149 131957 107232 387144 319285 888187 512377 813976 676653 662126 888596 669674 046512 495879 869929 131296 909587 066345 117772 105673 822968 331037 832409 (191 digits)/6 001783 917133 698522 660377 192410 199501 403468 986467 269176 618397 308229 373899 676398 072936 593975 292770 454848 797121 089701 756946 247177 393383 957859 685007 375592 123976 006563 768198 908322 544118 436014 699054 (193 digits), a[380] = 1
                                                                                      A[381]/B[381] = 100295 418995 878886 053343 471847 259660 063496 822600 195554 311968 796398 769849 302105 735410 147400 262121 862967 020527 658999 612448 652289 271053 391764 957212 023279 160892 053986 084760 471167 304131 060071 762428 (192 digits)/9 748065 358808 313264 182498 582027 739248 300852 407861 577339 155246 346179 554379 587286 572313 325692 956525 197793 298901 733976 561090 041866 237670 218325 861671 334595 346010 012267 106528 899492 847868 371138 389279 (193 digits), a[381] = 1
                                                                                      A[382]/B[382] = 162046 280375 540298 107687 013102 473284 147151 471826 586257 144117 928355 877081 689250 054696 035587 774499 676943 697181 321126 501045 321963 317565 887644 827141 154576 070479 120331 202532 576841 127099 391109 594837 (192 digits)/15 749849 275942 011786 842875 774437 938749 704321 394328 846515 773643 654408 928279 263684 645249 919668 249295 652642 096022 823678 318036 289043 631054 176185 546678 710187 469986 018830 874727 807815 391986 807153 088333 (194 digits), a[382] = 1
                                                                                      A[383]/B[383] = 586434 260122 499780 376404 511154 679512 504951 238079 954325 744322 581466 401094 369855 899498 254163 585620 893798 112071 622379 115584 618179 223751 054699 438635 487007 372329 414979 692358 201690 685429 233400 546939 (192 digits)/56 997613 186634 348624 711125 905341 555497 413816 590848 116886 476177 309406 339217 378340 508063 084697 704412 155719 586970 205011 515198 908997 130832 746882 501707 465157 755968 068759 730712 322939 023828 792597 654278 (194 digits), a[383] = 3
                                                                                      A[384]/B[384] = 9 544994 442335 536784 130159 191577 345484 226371 281105 855469 053279 231818 294591 606944 446668 102205 144433 977713 490327 279192 350399 212830 897582 762835 845308 946694 027749 760006 280263 803892 093967 125518 345861 (193 digits)/927 711660 262091 589782 220890 259902 826708 325386 847898 716699 392480 604910 355757 317132 774259 274831 519890 144155 487546 103862 561218 832997 724378 126305 573998 152711 565475 118986 566124 974839 773247 488715 556781 (195 digits), a[384] = 16
                                                                                      A[385]/B[385] = 10 131428 702458 036564 506563 702732 024996 731322 519185 809794 797601 813284 695685 976800 346166 356368 730054 871511 602398 901571 465983 831010 121333 817535 283944 433701 400079 174985 972622 005582 779396 358918 892800 (194 digits)/984 709273 448725 938406 932016 165244 382205 739203 438746 833585 868657 914316 694974 695473 282322 359529 224302 299875 074516 308874 076417 741994 855210 873188 075705 617869 321443 187746 296837 297778 797076 281313 211059 (195 digits), a[385] = 1
                                                                                      A[386]/B[386] = 19 676423 144793 573348 636722 894309 370480 957693 800291 665263 850881 045102 990277 583744 792834 458573 874488 849225 092726 180763 816383 043841 018916 580371 129253 380395 427828 934992 252885 809474 873363 484437 238661 (194 digits)/1912 420933 710817 528189 152906 425147 208914 064590 286645 550285 261138 519227 050732 012606 056581 634360 744192 444030 562062 412736 637636 574992 579588 999493 649703 770580 886918 306732 862962 272618 570323 770028 767840 (196 digits), a[386] = 1
                                                                                      A[387]/B[387] = 187 219237 005600 196702 237069 751516 359325 350566 721810 797169 455531 219211 608184 230503 481676 483533 600454 514537 436934 528445 813431 225579 291583 040875 447224 857260 250539 589916 248594 290856 639667 718854 040749 (195 digits)/18196 497676 846083 692109 308173 991569 262432 320516 018556 786153 218904 587360 151562 808927 791557 068775 922034 296150 133078 023503 815146 916928 071511 868630 923039 553097 303707 948342 063497 751345 929990 211572 121619 (197 digits), a[387] = 9
                                                                                      A[388]/B[388] = 206 895660 150393 770050 873792 645825 729806 308260 522102 462433 306412 264314 598461 814248 274510 942107 474943 363762 529660 709209 629814 269420 310499 621246 576478 237655 678368 524908 501480 100331 513031 203291 279410 (195 digits)/20108 918610 556901 220298 461080 416716 471346 385106 305202 336438 480043 106587 202294 821533 848138 703136 666226 740180 695140 436240 452783 491920 651100 868124 572743 323678 190626 255074 926460 023964 500313 981600 889459 (197 digits), a[388] = 1
                                                                                      A[389]/B[389] = 807 906217 456781 506854 858447 688993 548744 275348 288118 184469 374768 012155 403569 673248 305209 309856 025284 605825 025916 656074 702874 033840 223081 904615 176659 570227 285645 164641 753034 591851 178761 328727 878979 (195 digits)/78523 253508 516787 353004 691415 241718 676471 475834 934163 795468 659033 907121 758447 273529 335973 178185 920714 516692 218499 332225 173497 392690 024814 473004 641269 524131 875586 713566 842877 823239 430932 156374 789996 (197 digits), a[389] = 3
                                                                                      A[390]/B[390] = 1014 801877 607175 276905 732240 334819 278550 583608 810220 646902 681180 276470 002031 487496 579720 251963 500227 969587 555577 365284 332688 303260 533581 525861 753137 807882 964013 689550 254514 692182 691792 532019 158389 (196 digits)/98632 172119 073688 573303 152495 658435 147817 860941 239366 131907 139077 013708 960742 095063 184111 881322 586941 256872 913639 768465 626280 884610 675915 341129 214012 847810 066212 968641 769337 847203 931246 137975 679455 (197 digits), a[390] = 1
                                                                                      A[391]/B[391] = 6896 717483 099833 168289 251889 697909 220047 777001 149442 065885 461849 670975 415758 598227 783530 821637 026652 423350 359380 847780 699003 853403 424571 059785 695486 417525 069727 301943 280122 744947 329516 520842 829313 (196 digits)/670316 286222 958918 792823 606389 192329 563378 641482 370360 586911 493495 989375 522899 843908 440644 466121 442362 057929 700337 943018 931182 700354 080306 519779 925346 610992 272864 525417 458904 906463 018408 984228 866726 (198 digits), a[391] = 6
                                                                                      A[392]/B[392] = 90672 129157 905006 464666 006806 407639 139171 684623 752967 503413 685225 999150 406893 264457 765620 933244 846709 473142 227528 386433 419738 397505 053005 303075 794461 235708 870468 614812 896110 376497 975507 302975 939458 (197 digits)/8 812743 893017 539632 880010 035555 158719 471740 200212 054053 761756 554524 875590 758440 065872 912489 940901 337648 009959 018033 027711 731655 989213 719900 098268 243518 790709 613451 799068 735101 631223 170562 932950 946893 (199 digits), a[392] = 13
                                                                                      A[393]/B[393] = 188240 975798 909846 097621 265502 513187 498391 146248 655377 072712 832301 669276 229545 127143 314772 688126 720071 369634 814437 620647 538480 648413 530581 665937 284408 888942 810664 531569 072343 497943 280531 126794 708229 (198 digits)/18 295804 072258 038184 552843 677499 509768 506859 041906 478468 110424 602545 740557 039779 975654 265624 347924 117658 077847 736403 998442 394494 678781 520106 716316 412384 192411 499768 123554 929108 168909 359534 850130 760512 (200 digits), a[393] = 2
                                                                                      A[394]/B[394] = 1 031877 008152 454236 952772 334318 973576 631127 415867 029852 866977 846734 345531 554618 900174 339484 373878 447066 321316 299716 489671 112141 639572 705913 632762 216505 680422 923791 272658 257827 866214 378162 936949 480603 (199 digits)/100 291764 254307 730555 644228 423052 707562 006035 409744 446394 313879 567253 578375 957339 944144 240611 680521 925938 399197 700053 019923 704129 383121 320433 679850 305439 752767 112292 416843 380642 475769 968237 183604 749453 (201 digits), a[394] = 5
                                                                                      A[395]/B[395] = 2 251994 992103 818320 003165 934140 460340 760645 977982 715082 806668 525770 360339 338782 927491 993741 435883 614204 012267 413870 599989 762763 927558 942408 931461 717420 249788 658247 076885 587999 230372 036857 000693 669435 (199 digits)/218 879332 580873 499295 841300 523604 924892 518929 861395 371256 738183 737052 897308 954459 863942 746847 708967 969534 876243 136510 038289 802753 445024 160974 076017 023263 697945 724352 957241 690393 120449 296009 217340 259418 (201 digits), a[395] = 2
                                                                                      A[396]/B[396] = 3 283872 000256 272556 955938 268459 433917 391773 393849 744935 673646 372504 705870 893401 827666 333225 809762 061270 333583 713587 089660 874905 567131 648322 564223 933925 930211 582038 349543 845827 096586 415019 937643 150038 (199 digits)/319 171096 835181 229851 485528 946657 632454 524965 271139 817651 052063 304306 475684 911799 808086 987459 389489 895473 275440 836563 058213 506882 828145 481407 755867 328703 450712 836645 374085 071035 596219 264246 400945 008871 (201 digits), a[396] = 1
                                                                                      A[397]/B[397] = 5 535866 992360 090876 959104 202599 894258 152419 371832 460018 480314 898275 066210 232184 755158 326967 245645 675474 345851 127457 689650 637669 494690 590731 495685 651346 180000 240285 426429 433826 326958 451876 938336 819473 (199 digits)/538 050429 416054 729147 326829 470262 557347 043895 132535 188907 790247 041359 372993 866259 672029 734307 098457 865008 151683 973073 096503 309636 273169 642381 831884 351967 148658 560998 331326 761428 716668 560255 618285 268289 (201 digits), a[397] = 1
                                                                                      A[398]/B[398] = 30 963206 962056 726941 751459 281458 905208 153870 253012 045028 075220 863880 036922 054325 603457 968062 037990 438642 062839 350875 537914 063253 040584 601980 042652 190656 830212 783465 481691 014958 731378 674404 629327 247403 (200 digits)/3009 423243 915454 875588 119676 297970 419189 744440 933815 762190 003298 511103 340654 243098 168235 658994 881779 220514 033860 701928 540730 055064 193993 693316 915289 088539 194005 641637 030718 878179 179562 065524 492371 350316 (202 digits), a[398] = 5
                                                                                      A[399]/B[399] = 67 462280 916473 544760 462022 765517 704674 460159 877856 550074 630756 626035 140054 340835 962074 263091 321626 552758 471529 829208 765478 764175 575859 794691 580990 032659 840425 807216 389811 463743 789715 800686 196991 314279 (200 digits)/6556 896917 246964 480323 566182 066203 395726 532777 000166 713287 796844 063566 054302 352456 008501 052296 862016 306036 219405 376930 177963 419764 661157 029015 662462 529045 536669 844272 392764 517787 075792 691304 603027 968921 (202 digits), a[399] = 2
                                                                                      A[400]/B[400] = 98 425487 878530 271702 213482 046976 609882 614030 130868 595102 705977 489915 176976 395161 565532 231153 359616 991400 534369 180084 303392 827428 616444 396671 623642 223316 670638 590681 871502 478702 521094 475090 826318 561682 (200 digits)/9566 320161 162419 355911 685858 364173 814916 277217 933982 475477 800142 574669 394956 595554 176736 711291 743795 526550 253266 078858 718693 474828 855150 722332 577751 617584 730675 485909 423483 395966 255354 756829 095399 319237 (202 digits), a[400] = 1
                                                                                      A[401]/B[401] = 4299 758259 693275 227955 641750 785511 929626 863455 505206 139490 987788 692387 750039 332783 279960 202685 785157 182981 449404 572833 811370 343606 082968 851571 397605 635276 677885 206536 864418 047952 196778 229591 728689 466605 (202 digits)/417908 663847 230996 784526 058091 725677 437126 453148 161413 158833 202974 774350 037435 961285 608179 637841 845223 947697 109846 767855 081782 837405 432638 089316 505782 085188 955715 738377 602550 544336 056047 234955 705198 696112 (204 digits), a[401] = 43
                                                                                      A[402]/B[402] = 12997 700266 958355 955569 138734 403512 398763 204396 646487 013575 669343 567078 427094 393511 405412 839210 715088 540344 882582 898585 737503 858246 865350 951385 816459 129146 704294 210292 464756 622559 111429 163866 012386 961497 (203 digits)/1 263292 311702 855409 709489 860133 541206 126295 636662 418221 951977 409066 897719 507264 479411 001275 624817 279467 369641 582806 382423 964041 987045 153064 990282 095097 873151 597822 701042 231135 028974 423496 461696 210995 407573 (205 digits), a[402] = 3
                                                                                      A[403]/B[403] = 199265 262264 068614 561492 722766 838197 911074 929405 202511 343126 027942 198564 156455 235454 361152 790846 511485 288154 688148 051619 873928 217309 063233 122358 644492 572477 242298 360923 835767 386338 868215 687581 914493 889060 (204 digits)/19 367293 339390 062142 426873 960094 843769 331561 003084 434742 438494 338978 240142 646403 152450 627314 010101 037234 492320 851942 504214 542412 643082 728612 943547 932250 182462 923056 254011 069575 978952 408494 160398 870129 809707 (206 digits), a[403] = 15
                                                                                      A[404]/B[404] = 212262 962531 026970 517061 861501 241710 309838 133801 848998 356701 697285 765642 583549 628965 766565 630057 226573 828499 570730 950205 611432 075555 928584 073744 460951 701623 946592 571216 300524 008897 979644 851447 926880 850557 (204 digits)/20 630585 651092 917552 136363 820228 384975 457856 639746 852964 390471 748045 137862 153667 631861 628589 634918 316701 861962 434748 886638 506454 630127 881677 933830 027348 055614 520878 955053 300711 007926 831990 622095 081125 217280 (206 digits), a[404] = 1
                                                                                      A[405]/B[405] = 836054 149857 149526 112678 307270 563328 840589 330810 749506 413231 119799 495491 907104 122351 660849 681018 191206 773653 400340 902236 708224 443976 848985 343592 027347 677349 082076 074572 737339 413032 807150 241925 695136 440731 (204 digits)/81 259050 292668 814798 835965 420779 998695 705130 922324 993635 609909 583113 653729 107406 048035 513082 914855 987340 078208 156189 164130 061776 533466 373646 745038 014294 349306 485693 119170 971709 002732 904466 026684 113505 461547 (206 digits), a[405] = 3
                                                                                      A[406]/B[406] = 1 048317 112388 176496 629740 168771 805039 150427 464612 598504 769932 817085 261134 490653 751317 427415 311075 417780 602152 971071 852442 319656 519532 777569 417336 488299 378973 028668 645789 037863 421930 786795 093373 622017 291288 (205 digits)/101 889635 943761 732350 972329 241008 383671 162987 562071 846600 000381 331158 791591 261073 679897 141672 549774 304041 940170 590938 050768 568231 163594 255324 678868 041642 404921 006572 074224 272420 010659 736456 648779 194630 678827 (207 digits), a[406] = 1
                                                                                      A[407]/B[407] = 2 932688 374633 502519 372158 644814 173407 141444 260035 946515 953096 753970 017760 888411 624986 515680 303169 026767 977959 342484 607121 347537 483042 404124 178265 003946 435295 139413 366150 813066 256894 380740 428672 939171 023307 (205 digits)/285 038322 180192 279500 780623 902796 766038 031106 046468 686835 610672 245431 236911 629553 407829 796428 014404 595423 958549 338065 265667 198238 860654 884296 102774 097579 159148 498837 267619 516549 024052 377379 324242 502766 819201 (207 digits), a[407] = 2
                                                                                      A[408]/B[408] = 27 442512 484089 699170 979167 972099 365703 423425 804936 117148 347803 602815 420982 486358 376196 068538 039596 658692 403787 053433 316534 447493 866914 414687 021721 523817 296629 283388 941146 355459 733980 213458 951430 074556 501051 (206 digits)/2667 234535 565492 247857 997944 366179 278013 442941 980290 028120 496431 540039 923795 927054 350365 309524 679415 662857 567114 633525 441773 352380 909488 213989 603834 919854 837257 496107 482799 921361 227131 132870 566961 719532 051636 (208 digits), a[408] = 9
                                                                                      A[409]/B[409] = 30 375200 858723 201690 351326 616913 539110 564870 064972 063664 300900 356785 438743 374770 001182 584218 342765 685460 381746 395917 923655 795031 349956 818811 199986 527763 731924 422802 307297 168525 990874 594199 380103 013727 524358 (206 digits)/2952 272857 745684 527358 778568 268976 044051 474048 026758 714956 107103 785471 160707 556607 758195 105952 693820 258281 525663 971590 707440 550619 770143 098285 706609 017433 996405 994944 750419 437910 251183 510249 891204 222298 870837 (208 digits), a[409] = 1
                                                                                      A[410]/B[410] = 1090 574542 539401 758333 275599 564073 234573 193878 078958 345398 879316 090305 777000 603308 417586 516180 036395 649805 764910 910560 644487 273591 115403 073079 021249 995547 913984 081469 696547 253869 414591 010437 255035 555019 853581 (208 digits)/105996 784556 664450 705415 247833 780340 819815 034622 916845 051584 245064 031530 548560 408325 887194 017868 963124 702710 965353 639200 202192 624072 864496 653989 335150 530044 711467 319173 747480 248220 018553 991616 759109 499992 530931 (210 digits), a[410] = 35
                                                                                      A[411]/B[411] = 9845 546083 713339 026689 831722 693572 650269 309772 775597 172254 214745 169537 431748 804545 759461 229838 670326 533712 265944 590963 724041 257351 388584 476522 391236 487694 957781 156029 576222 453350 722193 688134 675423 008906 206587 (208 digits)/956923 333867 725740 876096 009072 292043 422386 785654 278364 179214 312680 069246 097751 231540 742941 266773 361942 582680 213846 724392 527174 167275 550612 984189 722963 787836 399611 867508 477741 671890 418169 434800 723189 722231 649216 (210 digits), a[411] = 9
                                                                                      A[412]/B[412] = 20781 666709 966079 811712 939044 951218 535111 813423 630152 689907 308806 429380 640498 212399 936508 975857 377048 717230 296800 092488 092569 788293 892572 026123 803722 970937 829546 393528 848992 160570 858978 386706 605881 572832 266755 (209 digits)/2 019843 452292 115932 457607 265978 364427 664588 605931 473573 410012 870424 170022 744062 871407 373076 551415 687009 868071 393047 087985 256540 958623 965722 622368 781078 105717 510691 054190 702963 592000 854892 861218 205488 944455 829363 (211 digits), a[412] = 2
                                                                                      A[413]/B[413] = 51408 879503 645498 650115 709812 596009 720492 936620 035902 552068 832358 028298 712745 229345 632479 181553 424423 968172 859544 775939 909180 833939 173728 528769 998682 429570 616873 943087 274206 774492 440150 461547 887186 154570 740097 (209 digits)/4 996610 238451 957605 791310 541029 020898 751563 997517 225510 999240 053528 409291 585876 974355 489094 369604 735962 318822 999940 900363 040256 084523 482058 228927 285119 999271 420993 975889 883668 855892 127955 157237 134167 611143 307942 (211 digits), a[413] = 2
                                                                                      A[414]/B[414] = 123599 425717 257077 111944 358670 143237 976097 686663 701957 794044 973522 485978 065988 671091 201467 338964 225896 653576 015889 644367 910931 456172 240029 083663 801087 830079 063294 279703 397405 709555 739279 309802 380253 881973 746949 (210 digits)/12 013063 929196 031144 040228 348036 406225 167716 600965 924595 408492 977480 988605 915816 820118 351265 290625 158934 505717 392928 888711 337053 127670 929839 080223 351318 104260 352679 005970 470301 303785 110803 175692 473824 166742 445247 (212 digits), a[414] = 2
                                                                                      A[415]/B[415] = 175008 305220 902575 762060 068482 739247 696590 623283 737860 346113 805880 514276 778733 900436 833946 520517 650320 621748 875434 420307 820112 290111 413757 612433 799770 259649 680168 222790 671612 484048 179429 771350 267440 036544 487046 (210 digits)/17 009674 167647 988749 831538 889065 427123 919280 598483 150106 407733 031009 397897 501693 794473 840359 660229 894896 824540 392869 789074 377309 212194 411897 309150 636438 103531 773672 981860 353970 159677 238758 332929 607991 777885 753189 (212 digits), a[415] = 1
                                                                                      A[416]/B[416] = 4 323798 751018 918895 401386 002255 885182 694272 645473 410606 100776 314654 828620 755602 281575 216183 831387 833591 575549 026315 731755 593626 418846 170211 782074 995574 061671 387331 626679 516105 326712 045593 822208 798814 759041 436053 (211 digits)/420 245243 952747 761139 997161 685606 657199 230450 964561 527149 194085 721706 538145 956467 887490 519897 136142 636458 294686 821803 826496 392474 220336 815374 499838 625832 589022 920830 570618 965585 136038 841003 166003 065626 836000 521783 (213 digits), a[416] = 24
                                                                                      A[417]/B[417] = 21 794002 060315 497052 768990 079762 165161 167953 850650 790890 849995 379154 657380 556745 308312 914865 677456 818278 499494 007013 079085 788244 384342 264816 522808 777640 568006 616826 356188 252139 117608 407398 882394 261513 831751 667311 (212 digits)/2118 235893 931386 794449 817347 317098 713120 071535 421290 785852 378161 639542 088627 284033 231926 439845 340943 077188 297974 501888 921556 339680 313878 488769 808343 765601 048646 377825 834955 181895 839871 443774 162944 936125 957888 362104 (214 digits), a[417] = 5
                                                                                      A[418]/B[418] = 26 117800 811334 415948 170376 082018 050343 862226 496124 201496 950771 693809 486001 312347 589888 131049 508844 651870 075043 033328 810841 381870 803188 435028 304883 773214 629678 004157 982867 768244 444320 452992 704603 060328 590793 103364 (212 digits)/2538 481137 884134 555589 814509 002705 370319 301986 385852 313001 572247 361248 626773 240501 119416 959742 477085 713646 592661 323692 748052 732154 534215 304144 308182 391433 637669 298656 405574 147480 975910 284777 328948 001752 793888 883887 (214 digits), a[418] = 1
                                                                                      A[419]/B[419] = 204 618607 739656 408689 961622 653888 517568 203539 323520 201369 505397 235821 059389 743178 437529 832212 239369 381369 024795 240314 754975 461340 006661 310014 656995 190142 975752 645932 236262 629850 227851 578347 814615 683813 967303 390859 (213 digits)/19887 603859 120328 683578 518910 336036 305355 185440 122256 976863 383893 168282 476039 967541 067845 158042 680543 072714 446603 767738 157925 464762 053385 617779 965620 505636 512331 468420 673974 214262 671243 437215 465580 948395 515110 549313 (215 digits), a[419] = 7
                                                                                      A[420]/B[420] = 435 355016 290647 233328 093621 389795 085480 269305 143164 604235 961566 165451 604780 798704 464947 795473 987583 414608 124633 513958 320792 304550 816511 055057 618874 153500 581183 296022 455393 027944 900023 609688 333834 427956 525399 885082 (213 digits)/42313 688856 124791 922746 852329 674777 981029 672866 630366 266728 340033 697813 578853 175583 255107 275827 838171 859075 485868 859169 063903 661678 640986 539704 239423 402706 662332 235497 753522 576006 318397 159208 260109 898543 824109 982513 (215 digits), a[420] = 2
                                                                                      A[421]/B[421] = 2381 393689 192892 575330 429729 602863 944969 550065 039343 222549 313228 063079 083293 736700 762268 809582 177286 454409 647962 810106 358936 984094 089216 585302 751365 957645 881669 126044 513227 769574 727969 626789 483787 823596 594302 816269 (214 digits)/231456 048139 744288 297312 780558 709926 210503 549773 274088 310505 084061 657350 370305 845457 343381 537181 871402 368091 875948 063583 477443 773155 258318 316301 162737 519169 823992 645909 441587 094294 263229 233256 766130 441114 635660 461878 (216 digits), a[421] = 5
                                                                                      A[422]/B[422] = 5198 142394 676432 383988 953080 595522 975419 369435 221851 049334 588022 291609 771368 272105 989485 414638 342156 323427 420559 134171 038666 272738 994944 225663 121606 068792 344521 548111 481848 567094 355962 863267 301410 075149 714005 517620 (214 digits)/505225 785135 613368 517372 413447 094630 402036 772413 178542 887738 508157 012514 319464 866497 941870 350191 580976 595259 237764 986336 018791 207989 157623 172306 564898 441046 310317 527316 636696 764594 844855 625721 792370 780773 095430 906269 (216 digits), a[422] = 2
                                                                                      A[423]/B[423] = 12777 678478 545757 343308 335890 793909 895808 288935 483045 321218 489272 646298 626030 280912 741239 638858 861599 101264 489081 078448 436269 529572 079105 036628 994578 095230 570712 222267 476924 903763 439895 353324 086607 973896 022313 851509 (215 digits)/1 241907 618410 971025 332057 607452 899187 014577 094599 631174 085982 100375 682379 009235 578453 227122 237565 033355 558610 351478 036255 515026 189133 573564 660914 292534 401262 444627 700542 714980 623483 952940 484700 350872 002660 826522 274416 (217 digits), a[423] = 2
                                                                                      A[424]/B[424] = 311862 425879 774608 623389 014459 649360 474818 303886 814938 758578 330565 802776 796095 014011 779236 747251 020534 753775 158505 016933 509134 982468 893465 104758 991480 354326 041614 882530 928046 257416 913451 343045 380001 448654 249537 953836 (216 digits)/30 311008 626998 917976 486754 992316 675118 751887 042804 326720 951308 917173 389610 541118 749375 392804 051752 381510 001907 673237 856468 379419 747194 923175 034249 585724 071344 981382 340341 796231 728209 715427 258530 213298 844632 931965 492253 (218 digits), a[424] = 24
                                                                                      A[425]/B[425] = 324640 104358 320365 966697 350350 443270 370626 592822 297984 079796 819838 449075 422125 294924 520476 386109 882133 855039 647586 095381 945404 512040 972570 141387 986058 449556 612327 104798 404971 161180 353346 696369 466609 422550 271851 805345 (216 digits)/31 552916 245409 889001 818812 599769 574305 766464 137403 957895 037291 017549 071989 550354 327828 619926 289317 414865 560518 024715 892723 894445 936328 496739 695163 878258 472607 426010 040884 511212 351693 668367 743230 564170 847293 758487 766669 (218 digits), a[425] = 1
                                                                                      A[426]/B[426] = 1 285782 738954 735706 523481 065510 979171 586698 082353 708890 997968 790081 150003 062470 898785 340665 905580 666936 318894 101263 303079 345348 518591 811175 528922 949655 702995 878596 196926 142959 740957 973491 432153 779829 716305 065093 369871 (217 digits)/124 969757 363228 584981 943192 791625 398036 051279 455016 200406 063181 969820 605579 192181 732861 252582 919704 626106 683461 747385 534640 062757 556180 413394 119741 220499 489167 259412 462995 329868 783290 720530 488221 905811 386514 207428 792260 (219 digits), a[426] = 3
                                                                                      A[427]/B[427] = 2 896205 582267 791779 013659 481372 401613 544022 757529 715766 075734 400000 749081 547067 092495 201808 197271 216006 492827 850112 701540 636101 549224 594921 199233 885369 855548 369519 498650 690890 643096 300329 560677 026268 855160 402038 545087 (217 digits)/281 492430 971867 058965 705198 183020 370377 869023 047436 358707 163654 957190 283147 934717 793551 125092 128726 667078 927441 519486 962004 019961 048689 323527 934646 319257 450941 944834 966875 170949 918275 109428 719674 375793 620322 173345 351189 (219 digits), a[427] = 2
                                                                                      A[428]/B[428] = 7 078193 903490 319264 550800 028255 782398 674743 597413 140423 149437 590082 648166 156605 083775 744282 300123 098949 304549 801488 706160 617551 617041 001017 927390 720395 414092 617635 194227 524741 027150 574150 553507 832367 426625 869170 460045 (217 digits)/687 954619 306962 702913 353589 157666 138791 789325 549888 917820 390491 884201 171875 061617 319963 502767 177157 960264 538344 786359 458648 102679 653559 060449 989033 859014 391051 149082 396745 671768 619840 939387 927570 657398 627158 554119 494638 (219 digits), a[428] = 2
                                                                                      A[429]/B[429] = 17 052593 389248 430308 115259 537883 966410 893509 952355 996612 374609 580166 045413 860277 260046 690372 797517 413905 101927 453090 113861 871204 783306 596957 054015 326160 683733 604789 887105 740372 697397 448630 667692 691003 708412 140379 465177 (218 digits)/1657 401669 585792 464792 412376 498352 647961 447674 147214 194347 944638 725592 626898 057952 433478 130626 483042 587608 004131 092205 879300 225320 355807 444427 912714 037286 233044 242999 760366 514487 157956 988204 574815 690590 874639 281584 340465 (220 digits), a[429] = 2
                                                                                      A[430]/B[430] = 262 867094 742216 773886 279693 096515 278562 077392 882753 089608 768581 292573 329374 060763 984476 099874 262884 307525 833461 597840 414088 685623 366639 955373 737620 612805 670096 689483 500813 630331 488112 303610 568898 197423 052807 974862 437700 (219 digits)/25548 979663 093849 674799 539236 632955 858213 504437 758101 833039 560072 768090 575345 930903 822135 462164 422796 774384 600311 169447 648151 482484 990670 726868 679744 418307 886714 794078 802243 389075 989195 762456 549806 016261 746747 777884 601613 (221 digits), a[430] = 15
                                                                                      A[431]/B[431] = 542 786782 873681 978080 674645 730914 523535 048295 717862 175829 911772 165312 704161 981805 228998 890121 323286 028956 768850 648770 942039 242451 516586 507704 529256 551772 023926 983756 888733 001035 673622 055851 805489 085849 814028 090104 340577 (219 digits)/52755 360995 773491 814391 490849 764264 364388 456549 663417 860427 064784 261773 777589 919760 077749 054955 328636 136377 204753 431101 175603 190290 337148 898165 272202 873902 006473 831157 364853 292639 136348 513117 674427 723114 368134 837353 543691 (221 digits), a[431] = 2
                                                                                      A[432]/B[432] = 2434 014226 236944 686208 978276 020173 372702 270575 754201 792928 415669 953824 146021 987984 900471 660359 556028 423352 908864 192924 182245 655429 432985 986191 854646 819893 765804 624511 055745 634474 182600 527017 790854 540822 308920 335279 800008 (220 digits)/236570 423646 187816 932365 502635 690013 315767 330636 411773 274747 819209 815185 685705 609944 133131 681985 737341 319893 419324 893852 350564 243646 339266 319529 768555 913915 912610 118708 261656 559632 534589 814927 247516 908719 219287 127298 776377 (222 digits), a[432] = 4
                                                                                      A[433]/B[433] = 2976 801009 110626 664289 652921 751087 896237 318871 472063 968758 327442 119136 850183 969790 129470 550480 879314 452309 677714 841695 124284 897880 949572 493896 383903 371665 789731 608267 944478 635509 856222 582869 596343 626672 122948 425384 140585 (220 digits)/289325 784641 961308 746756 993485 454277 680155 787186 075191 135174 883994 076959 463295 529704 210880 736941 065977 456270 624078 324953 526167 433936 676415 217695 040758 787817 919083 949865 626509 852271 670938 328044 921944 631833 587421 964652 320068 (222 digits), a[433] = 1
                                                                                      A[434]/B[434] = 23271 621290 011331 336236 548728 277788 646363 502676 058649 574236 707764 787782 097309 776515 806765 513725 711229 589520 652868 084790 052239 940596 079993 443466 541970 421554 293925 882386 667096 083043 176158 607104 965259 927527 169559 312968 784103 (221 digits)/2 261850 916139 916978 159664 457033 869957 076857 840938 938111 220972 007168 353901 928774 317873 609296 840573 199183 513787 787873 168527 033736 281203 074172 843395 053867 428641 346197 767767 647225 525534 231158 111241 701129 331554 331240 879865 016853 (223 digits), a[434] = 7
                                                                                      A[435]/B[435] = 26248 422299 121958 000526 201650 028876 542600 821547 530713 542995 035206 906918 947493 746305 936236 064206 590544 041830 330582 926485 176524 838477 029565 937362 925873 793220 083657 490654 611574 718553 032381 189974 561603 554199 292507 738352 924688 (221 digits)/2 551176 700781 878286 906421 450519 324234 757013 628125 013302 356146 891162 430861 392069 847577 820177 577514 265160 970058 411951 493480 559903 715139 750588 061090 094626 216459 265281 717633 273735 377805 902096 439286 623073 963387 918662 844517 336921 (223 digits), a[435] = 1
                                                                                      A[436]/B[436] = 364501 111178 596785 343077 170178 653183 700174 182793 957925 633172 165454 577728 414728 478492 977834 348411 388302 133314 950446 129097 347062 840797 464350 629184 578329 733415 381473 260896 617567 424232 597114 076774 266106 132117 972159 911556 805047 (222 digits)/35 427148 026304 334707 943143 313785 085008 918035 006564 111041 850881 592279 955100 025682 336385 271605 348258 646276 124547 143242 583774 312484 578019 831817 637566 284008 242611 794860 097000 205785 437010 958411 821967 801090 855597 273857 858590 396826 (224 digits), a[436] = 13
                                                                                      A[437]/B[437] = 390749 533477 718743 343603 371828 682060 242775 004341 488639 176167 200661 484647 362222 224798 914070 412617 978846 175145 281029 055582 523587 679274 493916 566547 504203 526635 465130 751551 229142 142785 629495 266748 827709 686317 264667 649909 729735 (222 digits)/37 978324 727086 212994 849564 764304 409243 675048 634689 124344 207028 483442 385961 417752 183963 091782 925772 911437 094605 555194 077254 872388 293159 582405 698656 378634 459071 060141 814633 479520 814816 860508 261254 424164 818985 192520 703107 733747 (224 digits), a[437] = 1
                                                                                      A[438]/B[438] = 1 536749 711611 753015 373887 285664 699364 428499 195818 423843 161673 767439 031670 501395 152889 720045 586265 324840 658750 793533 295844 917825 878620 946100 328827 090940 313321 776865 515550 304993 852589 485599 877020 749235 191069 766162 861285 994252 (223 digits)/149 362122 207562 973692 491837 606698 312739 943180 910631 484074 471967 042607 112984 278938 888274 546954 125577 380587 408363 808824 815538 929649 457498 579034 733535 419911 619824 975285 540900 644347 881461 539936 605731 073585 312552 851419 967913 598067 (225 digits), a[438] = 3
                                                                                      A[439]/B[439] = 1 927499 245089 471758 717490 657493 381424 671274 200159 912482 337840 968100 516317 863617 377688 634115 998883 303686 833896 074562 351427 441413 557895 440016 895374 595143 839957 241996 267101 534135 995375 115095 143769 576944 877387 030830 511195 723987 (223 digits)/187 340446 934649 186687 341402 371002 721983 618229 545320 608418 678995 526049 498945 696691 072237 638737 051350 292024 502969 364018 892793 802037 750658 161440 432191 798546 078896 035427 355534 123868 696278 400444 866985 497750 131538 043940 671021 331814 (225 digits), a[439] = 1
                                                                                      A[440]/B[440] = 3 464248 956701 224774 091377 943158 080789 099773 395978 336325 499514 735539 547988 365012 530578 354161 585148 628527 492646 868095 647272 359239 436516 386117 224201 686084 153279 018861 782651 839129 847964 600695 020790 326180 068456 796993 372481 718239 (223 digits)/336 702569 142212 160379 833239 977701 034723 561410 455952 092493 150962 568656 611929 975629 960512 185691 176927 672611 911333 172843 708332 731687 208156 740475 165727 218457 698721 010712 896434 768216 577739 940381 472716 571335 444090 895360 638934 929881 (225 digits), a[440] = 1
                                                                                      A[441]/B[441] = 5 391748 201790 696532 808868 600651 462213 771047 596138 248807 837355 703640 064306 228629 908266 988277 584031 932214 326542 942657 998699 800652 994411 826134 119576 281227 993236 260858 049753 373265 843339 715790 164559 903124 945843 827823 883677 442226 (223 digits)/524 043016 076861 347067 174642 348703 756707 179640 001272 700911 829958 094706 110875 672321 032749 824428 228277 964636 414302 536862 601126 533724 958814 901915 597919 017003 777617 046140 251968 892085 274018 340826 339702 069085 575628 939301 309956 261695 (225 digits), a[441] = 1
                                                                                      A[442]/B[442] = 14 247745 360282 617839 709115 144461 005216 641868 588254 833941 174226 142819 676600 822272 347112 330716 753212 492956 145732 753411 644671 960545 425340 038385 463354 248540 139751 540577 882158 585661 534644 032275 349910 132429 960144 452641 139836 602691 (224 digits)/1384 788601 295934 854514 182524 675108 548137 920690 458497 494316 810878 758068 833681 320272 026011 834547 633483 601884 739938 246568 910585 799137 125786 544306 361565 252465 253955 102993 400372 552387 125776 622034 152120 709506 595348 773963 258847 453271 (226 digits), a[442] = 2
                                                                                      A[443]/B[443] = 33 887238 922355 932212 227098 889573 472647 054784 772647 916690 185807 989279 417507 873174 602491 649711 090456 918126 618008 449481 288043 721743 845091 902905 046284 778308 272739 342013 814070 544588 912627 780340 864380 167984 866132 733106 163350 647608 (224 digits)/3293 620218 668731 056095 539691 698920 852983 021020 918267 689545 451715 610843 778238 312865 084773 493523 495245 168405 894179 030000 422298 131999 210387 990528 321049 521934 285527 252127 052713 996859 525571 584894 643943 488098 766326 487227 827651 168237 (226 digits), a[443] = 2
                                                                                      A[444]/B[444] = 48 134984 282638 550051 936214 034034 477863 696653 360902 750631 360034 132099 094108 695446 949603 980427 843669 411082 763741 202892 932715 682289 270431 941290 509639 026848 412490 882591 696229 130250 447271 812616 214290 300414 826277 185747 303187 250299 (224 digits)/4678 408819 964665 910609 722216 374029 401120 941711 376765 183862 262594 368912 611919 633137 110785 328071 128728 770290 634117 276569 332883 931136 336174 534834 682614 774399 539482 355120 453086 549246 651348 206928 796064 197605 361675 261191 086498 621508 (226 digits), a[444] = 1
                                                                                      A[445]/B[445] = 82 022223 204994 482264 163312 923607 950510 751438 133550 667321 545842 121378 511616 568621 552095 630138 934126 329209 381749 652374 220759 404033 115523 844195 555923 805156 685230 224605 510299 674839 359899 592957 078670 468399 692409 918853 466537 897907 (224 digits)/7972 029038 633396 966705 261908 072950 254103 962732 295032 873407 714309 979756 390157 946002 195558 821594 623973 938696 528296 306569 755182 063135 546562 525363 003664 296333 825009 607247 505800 546106 176919 791823 440007 685704 128001 748418 914149 789745 (226 digits), a[445] = 1
                                                                                      A[446]/B[446] = 130 157207 487633 032316 099526 957642 428374 448091 494453 417952 905876 253477 605725 264068 501699 610566 777795 740292 145490 855267 153475 086322 385955 785486 065562 832005 097721 107197 206528 805089 807171 405573 292960 768814 518687 104600 769725 148206 (225 digits)/12650 437858 598062 877314 984124 446979 655224 904443 671798 057269 976904 348669 002077 579139 306344 149665 752702 708987 162413 583139 088065 994271 882737 060197 686279 070733 364491 962367 958887 095352 828267 998752 236071 883309 489677 009610 000648 411253 (227 digits), a[446] = 1
                                                                                      A[447]/B[447] = 212 179430 692627 514580 262839 881250 378885 199529 628004 085274 451718 374856 117341 832690 053795 240705 711922 069501 527240 507641 374234 490355 501479 629681 621486 637161 782951 331802 716828 479929 167070 998530 371631 237214 211097 023454 236263 046113 (225 digits)/20622 466897 231459 844020 246032 519929 909328 867175 966830 930677 691214 328425 392235 525141 501902 971260 376676 647683 690709 889708 843248 057407 429299 585560 689943 367067 189501 569615 464687 641459 005187 790575 676079 569013 617678 758028 914798 200998 (227 digits), a[447] = 1
                                                                                      A[448]/B[448] = 342 336638 180260 546896 362366 838892 807259 647621 122457 503227 357594 628333 723067 096758 555494 851272 489717 809793 672731 362908 527709 576677 887435 415167 687049 469166 880672 438999 923357 285018 974242 404103 664592 006028 729784 128055 005988 194319 (225 digits)/33272 904755 829522 721335 230156 966909 564553 771619 638628 987947 668118 677094 394313 104280 808247 120926 129379 356670 853123 472847 931314 051679 312036 645758 376222 437800 553993 531983 423574 736811 833455 789327 912151 452323 107355 767638 915446 612251 (227 digits), a[448] = 1
                                                                                      A[449]/B[449] = 2950 872536 134711 889751 161774 592392 836962 380498 607664 111093 312475 401525 901878 606758 497754 050885 629664 547850 909091 410909 595911 103778 600962 951023 117882 390496 828330 843802 103686 760080 961010 231359 688367 285444 049370 047894 284168 600665 (226 digits)/286805 704943 867641 614702 087288 255206 425759 040133 075862 834259 036163 745180 546740 359387 967879 938669 411711 501050 515697 672492 293760 470841 925592 751627 699722 869471 621449 825482 853285 535953 672834 105198 973291 187598 476524 899140 238371 099006 (228 digits), a[449] = 8
                                                                                      A[450]/B[450] = 9194 954246 584396 216149 847690 616071 318146 789116 945449 836507 295020 832911 428702 917034 048757 003929 378711 453346 400005 595637 315442 888013 690324 268237 040696 640657 365664 970406 234417 565261 857273 098182 729693 862360 877894 271737 858493 996314 (226 digits)/893690 019587 432447 565441 492021 732528 841830 892018 866217 490724 776609 912636 034534 182444 711886 936934 364513 859822 400216 490324 812595 464205 088814 900641 475391 046215 418343 008431 983431 344672 851958 104924 832025 015118 536930 465059 630559 909269 (228 digits), a[450] = 3
                                                                                      A[451]/B[451] = 186849 957467 822636 212748 115586 913819 199898 162837 516660 841239 212892 059754 475936 947439 472894 129473 203893 614778 909203 323655 904768 864052 407448 315763 931815 203644 141630 251926 792038 065318 106472 195014 282244 532661 607255 482651 454048 526945 (228 digits)/18 160606 096692 516592 923531 927722 905783 262376 880510 400212 648754 568361 997901 237424 008282 205618 677356 701988 697498 520027 478988 545669 754943 701890 764457 207543 793779 988309 994122 521912 429410 711996 203695 613791 489969 215134 200332 849569 284386 (230 digits), a[451] = 20
                                                                                      A[452]/B[452] = 5 614693 678281 263482 598593 315298 030647 315091 674242 445275 073683 681782 625545 706811 340218 235580 888125 495519 896713 676105 305314 458508 809585 913773 741154 995152 749981 614572 528209 995559 524805 051438 948611 197029 842209 095558 751281 479949 804664 (229 digits)/545 711872 920362 930235 271399 323708 906026 713137 307330 872596 953361 827469 849673 157254 430910 880447 257635 424174 784778 001040 859981 182688 112516 145537 834357 701704 859615 067642 832107 640804 226994 211844 215793 245769 714194 990956 475045 117638 440849 (231 digits), a[452] = 30
                                                                                      A[453]/B[453] = 5 801543 635749 086118 811341 430884 944466 514989 837079 961935 914922 894674 685300 182748 287657 708475 017598 699413 511492 585308 628970 363277 673638 321222 056918 926967 953625 756202 780136 787597 590123 157911 143625 479274 374870 702814 233932 933998 331609 (229 digits)/563 872479 017055 446828 194931 251431 811809 975514 187841 272809 602116 395831 847574 394678 439193 086065 934992 126163 482276 521068 338969 728357 867459 847428 598814 909248 653395 055952 826230 162716 656404 923840 419488 859561 204164 206090 675377 967207 725235 (231 digits), a[453] = 1
                                                                                      A[454]/B[454] = 46 225499 128524 866314 277983 331492 641912 920020 533802 178826 478143 944505 422646 986049 353822 194906 011316 391414 477161 773265 708107 001452 525054 162328 139587 483928 425361 907991 989167 508742 655667 156816 953989 551950 466304 015258 388812 017938 125927 (230 digits)/4492 819226 039751 058032 635918 083731 588696 541736 622219 782264 168176 598292 782693 920003 505262 482908 802580 307319 160713 648519 232769 281193 184735 077538 026062 066445 433380 459312 615718 779820 821828 678727 152215 262698 143344 433591 202690 888092 517494 (232 digits), a[454] = 7
                                                                                      A[455]/B[455] = 236 929039 278373 417690 201258 088348 154031 115092 506090 856068 305642 617201 798535 112995 056768 683005 074180 656485 897301 451637 169505 370540 298909 132862 754856 346610 080435 296162 725974 331310 868458 941995 913573 239026 706390 779106 177993 023688 961244 (231 digits)/23027 968609 215810 736991 374521 670089 755292 684197 298940 184130 442999 387295 761043 994695 965505 500609 947893 662759 285844 763664 502816 134323 791135 235118 729125 241475 820297 352515 904824 061820 765548 317476 180565 173051 920886 374046 688832 407670 312705 (233 digits), a[455] = 5
                                                                                      A[456]/B[456] = 14498 896895 109303 345416 554726 720730 037810 940663 405344 398993 122343 593815 133288 878747 816711 858215 536336 437054 212550 323133 047934 604410 758511 266956 185824 627143 331914 973918 273601 718705 631662 618567 681957 132579 556141 540735 246386 462964 761811 (233 digits)/1 409198 904388 204206 014506 481739 959206 661550 277771 857571 014221 191139 223334 206377 596457 401098 020115 624093 735635 597244 232053 904553 474944 443984 419780 502701 796470 471518 962782 809986 550887 520276 044774 166690 818865 317413 250439 221467 755981 592499 (235 digits), a[456] = 61
                                                                                      A[457]/B[457] = 14735 825934 387676 763106 755984 809078 191842 055755 911435 255061 427986 211016 931823 991742 873480 541220 610517 093540 109851 774770 217439 974951 057420 399818 940680 973753 412350 270080 999576 050016 500121 560563 595530 371606 262532 319841 424379 486653 723055 (233 digits)/1 432226 872997 420016 751497 856261 629296 416842 961969 156511 198351 634138 610629 967421 591153 366603 520725 571987 398394 883088 995718 407369 609268 235119 654899 231827 037946 291816 315298 714810 612708 285824 362250 347255 991917 238299 624485 910300 163651 905204 (235 digits), a[457] = 1
                                                                                      A[458]/B[458] = 88178 026567 047687 160950 334650 766120 997021 219442 962520 674300 262274 648899 792408 837462 184114 564318 588921 904754 761809 196984 135134 479166 045613 266050 889229 495910 393666 324323 271481 968788 132270 421385 659608 990610 868803 139942 368283 896233 377086 (233 digits)/8 570333 269375 304289 771995 763048 105688 745765 087617 640127 005979 361832 276484 043485 552224 234115 623743 484030 727610 012689 210645 941401 521285 619582 694276 661836 986201 930600 539276 384039 614428 949397 856025 902970 778451 508911 372868 772968 574241 118519 (235 digits), a[458] = 5
                                                                                      A[459]/B[459] = 191091 879068 483051 085007 425286 341320 185884 494641 836476 603661 952535 508816 516641 666667 241709 669857 788360 903049 633470 168738 487708 933283 148646 931920 719139 965574 199682 918727 542539 987592 764662 403334 914748 352828 000138 599726 160947 279120 477227 (234 digits)/18 572893 411748 028596 295489 382357 840673 908373 137204 436765 210310 357803 163598 054392 695601 834834 768212 540048 853614 908467 417010 290172 651839 474285 043452 555501 010350 153017 393851 482889 841566 184620 074302 153197 548820 256122 370223 456237 312134 142242 (236 digits), a[459] = 2
                                                                                      A[460]/B[460] = 2 381280 575388 844300 181039 438086 861963 227635 155145 000239 918243 692700 754697 992108 837469 084630 602612 049252 741350 363451 221845 987641 678563 829376 449099 518909 082800 789861 349053 781961 819901 308219 261404 636589 224546 870466 336656 299651 245679 103810 (235 digits)/231 445054 210351 647445 317868 351342 193775 646242 734070 881309 529703 655470 239660 696197 899446 252132 842293 964616 970988 914298 214769 423473 343359 311003 215707 327849 110403 766809 265494 178717 713223 164838 747651 741341 364294 582379 815550 247816 319850 825423 (237 digits), a[460] = 12
                                                                                      A[461]/B[461] = 2 572372 454457 327351 266046 863373 203283 413519 649786 836716 521905 645236 263514 508750 504136 326340 272469 837613 644399 996921 390584 475350 611846 978023 381020 238049 048374 989544 267781 324501 807494 072881 664739 551337 577374 870604 936382 460598 524799 581037 (235 digits)/250 017947 622099 676041 613357 733700 034449 554615 871275 318074 740014 013273 403258 750590 595048 086967 610506 504665 824603 822765 631779 713645 995198 785288 259159 883350 120753 919826 659345 661607 554789 349458 821953 894538 913114 838502 185773 704053 631984 967665 (237 digits), a[461] = 1
                                                                                      A[462]/B[462] = 7 526025 484303 499002 713133 164833 268530 054674 454718 673672 962054 983173 281727 009609 845741 737311 147551 724480 030150 357294 003014 938342 902257 785423 211139 995007 179550 768949 884616 430965 434889 453982 590883 739264 379296 611676 209421 220848 295278 265884 (235 digits)/731 480949 454550 999528 544583 818742 262674 755474 476621 517459 009731 682017 046178 197379 089542 426068 063306 973948 620196 559829 478328 850765 333756 881579 734027 094549 351911 606462 584185 501932 822801 863756 391559 530419 190524 259384 187097 655923 583820 760753 (237 digits), a[462] = 2
                                                                                      A[463]/B[463] = 10 098397 938760 826353 979180 028206 471813 468194 104505 510389 483960 628409 545241 518360 349878 063651 420021 562093 674550 354215 393599 413693 514104 763446 592160 233056 227925 758494 152397 755467 242383 526864 255623 290601 956671 482281 145803 681446 820077 846921 (236 digits)/981 498897 076650 675570 157941 552442 297124 310090 347896 835533 749745 695290 449436 947969 684590 513035 673813 478614 444800 382595 110108 564411 328955 666867 993186 977899 472665 526289 243531 163540 377591 213215 213513 424958 103639 097886 372871 359977 215805 728418 (237 digits), a[463] = 1
                                                                                      A[464]/B[464] = 17 624423 423064 325356 692313 193039 740343 522868 559224 184062 446015 611582 826968 527970 195619 800962 567573 286573 704700 711509 396614 352036 416362 548869 803300 228063 407476 527444 037014 186432 677272 980846 846507 029866 335968 093957 355224 902295 115356 112805 (236 digits)/1712 979846 531201 675098 702525 371184 559799 065564 824518 352992 759477 377307 495615 145348 774132 939103 737120 452563 064996 942424 588437 415176 662712 548447 727214 072448 824577 132751 827716 665473 200393 076971 605072 955377 294163 357270 559969 015900 799626 489171 (238 digits), a[464] = 1
                                                                                      A[465]/B[465] = 27 722821 361825 151710 671493 221246 212156 991062 663729 694451 929976 239992 372210 046330 545497 864613 987594 848667 379251 065724 790213 765729 930467 312316 395460 461119 635402 285938 189411 941899 919656 507711 102130 320468 292639 576238 501028 583741 935433 959726 (236 digits)/2694 478743 607852 350668 860466 923626 856923 375655 172415 188526 509223 072597 945052 093318 458723 452139 410933 931177 509797 325019 698545 979587 991668 215315 720401 050348 297242 659041 071247 829013 577984 290186 818586 380335 397802 455156 932840 375878 015432 217589 (238 digits), a[465] = 1
                                                                                      A[466]/B[466] = 100 792887 508539 780488 706792 856778 376814 496056 550413 267418 235944 331559 943598 666961 832113 394804 530357 832575 842453 908683 767255 649226 207764 485818 989681 611422 313683 385258 605250 012132 436242 503980 152897 991271 213886 822672 858310 653520 921657 991983 (237 digits)/9796 416077 354758 727105 283926 142065 130569 192530 341763 918572 287146 595101 330771 425304 150303 295521 969922 246095 594388 917483 684075 353940 637717 194394 888417 223493 716305 109875 041460 152513 934345 947532 060832 096383 487570 722741 358490 143534 845923 141938 (238 digits), a[466] = 3
                                                                                      A[467]/B[467] = 229 308596 378904 712688 085078 934802 965785 983175 764556 229288 401864 903112 259407 380254 209724 654223 048310 513819 064158 883092 324725 064182 345996 283954 374823 683964 262769 056455 399911 966164 792141 515671 407926 303010 720413 221584 217649 890783 778749 943692 (237 digits)/22287 310898 317369 804879 428319 207757 118061 760715 855943 025671 083516 262800 606594 943926 759330 043183 350778 423368 698575 159987 066696 687469 267102 604105 497235 497335 729852 878791 154168 134041 446676 185250 940250 573102 372943 900639 649820 662947 707278 501465 (239 digits), a[467] = 2
                                                                                      A[468]/B[468] = 330 101483 887444 493176 791871 791581 342600 479232 314969 496706 637809 234672 203006 047216 041838 049027 578668 346394 906612 791776 091980 713408 553760 769773 364505 295386 576452 441714 005161 978297 228384 019651 560824 294281 934300 044257 075960 544304 700407 935675 (237 digits)/32083 726975 672128 531984 712245 349822 248630 953246 197706 944243 370662 857901 937366 369230 909633 338705 320700 669464 292964 077470 750772 041409 904819 798500 385652 720829 446157 988666 195628 286555 381022 132783 001082 669485 860514 623381 008310 806482 553201 643403 (239 digits), a[468] = 1
                                                                                      A[469]/B[469] = 889 511564 153793 699041 668822 517965 650986 941640 394495 222701 677483 372456 665419 474686 293400 752278 205647 206608 877384 466644 508686 490999 453517 823501 103834 274737 415673 939883 410235 922759 248909 554974 529574 891574 589013 310098 369570 979393 179565 815042 (237 digits)/86454 764849 661626 868848 852809 907401 615323 667208 251356 914157 824841 978604 481327 682388 578596 720593 992179 762297 284503 314928 568240 770289 076742 201106 268540 938994 622168 856123 545424 707152 208720 450816 942415 912074 093973 147401 666442 275912 813681 788271 (239 digits), a[469] = 2
                                                                                      A[470]/B[470] = 1219 613048 041238 192218 460694 309546 993587 420872 709464 719408 315292 607128 868425 521902 335238 801305 784315 553003 783997 258420 600667 204408 007278 593274 468339 570123 992126 381597 415397 901056 477293 574626 090399 185856 523313 354355 445531 523697 879973 750717 (238 digits)/118538 491825 333755 400833 565055 257223 863954 620454 449063 858401 195504 836506 418694 051619 488230 059299 312880 431761 577467 392399 319012 811698 981561 999606 654193 659824 068326 844789 741052 993707 589742 583599 943498 581559 954487 770782 674753 082395 366883 431674 (240 digits), a[470] = 1
                                                                                      A[471]/B[471] = 5767 963756 318746 467915 511599 756153 625336 625131 232354 100334 938653 800972 139121 562295 634355 957501 342909 418624 013373 500326 911355 308631 482632 196598 977192 555233 384179 466273 071827 526985 158083 853478 891171 635000 682266 727520 151697 074184 699460 817910 (238 digits)/560608 732150 996648 472183 113030 936297 071142 149026 047612 347762 606861 324630 156103 888866 531516 957791 243701 489343 594372 884525 844292 017085 002990 199532 885315 578290 895476 235282 509636 681982 567690 785216 716410 238313 911924 230532 365454 605494 281215 514967 (240 digits), a[471] = 4
                                                                                      A[472]/B[472] = 47363 323098 591209 935542 553492 358775 996280 421922 568297 522087 824523 014905 981398 020267 410086 461316 527590 901995 890985 261035 891509 673459 868336 166066 285880 011991 065562 111781 990018 116937 741964 402457 219772 265861 981447 174516 659108 117175 475660 293997 (239 digits)/4 603408 349033 306943 178298 469302 747600 433091 812662 829962 640502 050395 433547 667525 162551 740365 721629 262492 346510 332450 468606 073348 948379 005483 595869 736718 286151 232136 727049 818146 449568 131268 865333 674780 488071 249881 615041 598389 926349 616607 551410 (241 digits), a[472] = 8
                                                                                      A[473]/B[473] = 195221 256150 683586 210085 725569 191257 610458 312821 505544 188686 236745 860596 064713 643365 274701 802767 453273 026607 577314 544470 477394 002470 955976 860864 120712 603197 646427 913401 031899 994736 125941 463307 770260 698448 608055 425586 788129 542886 602101 993898 (240 digits)/18 974242 128284 224421 185376 990241 926698 803509 399677 367462 909770 808443 058820 826204 539073 492979 844308 293670 875384 924174 758950 137687 810601 024924 583011 832188 722895 824023 143481 782222 480255 092766 246551 415532 190598 911450 690698 759014 310892 747645 720607 (242 digits), a[473] = 4
                                                                                      A[474]/B[474] = 242584 579249 274796 145628 279061 550033 606738 734744 073841 710774 061268 875502 046111 663632 684788 264083 980863 928603 468299 805506 368903 675930 824313 026930 406592 615188 711990 025183 021918 111673 867905 865764 990032 964310 589502 600103 447237 660062 077762 287895 (240 digits)/23 577650 477317 531364 363675 459544 674299 236601 212340 197425 550272 858838 492368 493729 701625 233345 565937 556163 221895 256625 227556 211036 758980 030408 178881 568907 009047 056159 870531 600368 929823 224035 111885 090312 678670 161332 305740 357404 237242 364253 272017 (242 digits), a[474] = 1
                                                                                      A[475]/B[475] = 437805 835399 958382 355714 004630 741291 217197 047565 579385 899460 298014 736098 110825 306997 959490 066851 434136 955211 045614 349976 846297 678401 780289 887794 527305 218386 358417 938584 053818 106409 993847 329072 760293 662759 197558 025690 235367 202948 679864 281793 (240 digits)/42 551892 605601 755785 549052 449786 600998 040110 612017 564888 460043 667281 551189 319934 240698 726325 410245 849834 097280 180799 986506 348724 569581 055332 761893 401095 731942 880183 014013 382591 410078 316801 358436 505844 869269 072782 996439 116418 548135 111898 992624 (242 digits), a[475] = 1
                                                                                      A[476]/B[476] = 680390 414649 233178 501342 283692 291324 823935 782309 653227 610234 359283 611600 156936 970630 644278 330935 415000 883814 513914 155483 215201 354332 604602 914724 933897 833575 070407 963767 075736 218083 861753 194837 750326 627069 787060 625793 682604 863010 757626 569688 (240 digits)/66 129543 082919 287149 912727 909331 275297 276711 824357 762314 010316 526120 043557 813663 942323 959670 976183 405997 319175 437425 214062 559761 328561 085740 940774 970002 740989 936342 884544 982960 339901 540836 470321 596157 547939 234115 302179 473822 785377 476152 264641 (242 digits), a[476] = 1
                                                                                      A[477]/B[477] = 1 118196 250049 191560 857056 288323 032616 041132 829875 232613 509694 657298 347698 267762 277628 603768 397786 849137 839025 559528 505460 061499 032734 384892 802519 461203 051961 428825 902351 129554 324493 855600 523910 510620 289828 984618 651483 917972 065959 437490 851481 (241 digits)/108 681435 688521 042935 461780 359117 876295 316822 436375 327202 470360 193401 594747 133598 183022 685996 386429 255831 416455 618225 200568 908485 898142 141073 702668 371098 472932 816525 898558 365551 749979 857637 828758 102002 417208 306898 298618 590241 333512 588051 257265 (243 digits), a[477] = 1
                                                                                      A[478]/B[478] = 1 798586 664698 424739 358398 572015 323940 865068 612184 885841 119929 016581 959298 424699 248259 248046 728722 264138 722840 073442 660943 276700 387066 989495 717244 395100 885536 499233 866118 205290 542577 717353 718748 260946 916898 771679 277277 600576 928970 195117 421169 (241 digits)/174 810978 771440 330085 374508 268449 151592 593534 260733 089516 480676 719521 638304 947262 125346 645667 362612 661828 735631 055650 414631 468247 226703 226814 643443 341101 213922 752868 783103 348512 089881 398474 299079 698159 965147 541013 600798 064064 118890 064203 521906 (243 digits), a[478] = 1
                                                                                      A[479]/B[479] = 8 312542 908842 890518 290650 576384 328379 501407 278614 775977 989410 723626 184891 966559 270665 595955 312675 905692 730385 853299 149233 168300 581002 342875 671497 041606 594107 425761 366823 950716 494804 725015 398903 554407 957424 071335 760594 320279 781840 217960 536157 (241 digits)/807 925350 774282 363276 959813 432914 482665 690959 479307 685268 393067 071488 147966 922646 684409 268665 836879 903146 358979 840826 859094 781474 804955 048332 276441 735503 328623 828001 030971 759600 109505 451535 025076 894642 277798 470952 701810 846497 809072 844865 344889 (243 digits), a[479] = 4
                                                                                      A[480]/B[480] = 10 111129 573541 315257 649049 148399 652320 366475 890799 661819 109339 740208 144190 391258 518924 844002 041398 169831 453225 926741 810176 445000 968069 332371 388741 436707 479643 924995 232942 156007 037382 442369 117651 815354 874322 843015 037871 920856 710810 413077 957326 (242 digits)/982 736329 545722 693362 334321 701363 634258 284493 740040 774784 873743 791009 786271 869908 809755 914333 199492 564975 094610 896477 273726 249722 031658 275146 919885 076604 542546 580869 814075 108112 199386 850009 324156 592802 242946 011966 302608 910561 927962 909068 866795 (243 digits), a[480] = 1
                                                                                      A[481]/B[481] = 18 423672 482384 205775 939699 724783 980699 867883 169414 437797 098750 463834 329082 357817 789590 439957 354074 075524 183611 780040 959409 613301 549071 675247 060238 478314 073751 350756 599766 106723 532187 167384 516555 369762 831746 914350 798466 241136 492650 631038 493483 (242 digits)/1790 661680 320005 056639 294135 134278 116923 975453 219348 460053 266810 862497 934238 792555 494165 182999 036372 468121 453590 737304 132821 031196 836613 323479 196326 812107 871170 408870 845046 867712 308892 301544 349233 487444 520744 482919 004419 757059 737035 753934 211684 (244 digits), a[481] = 1
                                                                                      A[482]/B[482] = 28 534802 055925 521033 588748 873183 633020 234359 060214 099616 208090 204042 473272 749076 308515 283959 395472 245355 636837 706782 769586 058302 517141 007618 448979 915021 553395 275751 832708 262730 569569 609753 634207 185117 706069 757365 836338 161993 203461 044116 450809 (242 digits)/2773 398009 865727 750001 628456 835641 751182 259946 959389 234838 140554 653507 720510 662464 303921 097332 235865 033096 548201 633781 406547 280918 868271 598626 116211 888712 413716 989740 659121 975824 508279 151553 673390 080246 763690 494885 307028 667621 664998 663003 078479 (244 digits), a[482] = 1
                                                                                      A[483]/B[483] = 46 958474 538309 726809 528448 597967 613720 102242 229628 537413 306840 667876 802355 106894 098105 723916 749546 320879 820449 486823 728995 671604 066212 682865 509218 393335 627146 626508 432474 369454 101756 777138 150762 554880 537816 671716 634804 403129 696111 675154 944292 (242 digits)/4564 059690 185732 806640 922591 969919 868106 235400 178737 694891 407365 516005 654749 455019 798086 280331 272237 501218 001792 371085 539368 312115 704884 922105 312538 700820 284887 398611 504168 843536 817171 453098 022623 567691 284434 977804 311448 424681 402034 416937 290163 (244 digits), a[483] = 1
                                                                                      A[484]/B[484] = 545 078021 977332 515938 401683 450827 383941 359023 586128 011162 583337 550687 299178 924911 387678 247043 640481 775033 661782 061843 788538 445947 245480 519139 050382 241713 452008 167344 589926 326725 688894 158273 292595 288803 622053 146248 819186 596419 860689 470820 838021 (243 digits)/52978 054601 908788 623051 776968 504760 300350 849348 925503 878643 621575 329569 922754 667682 082870 180976 230477 546494 567917 715722 339598 714191 622005 741784 554137 597735 547478 374467 204979 254729 497165 135631 922249 324850 892475 250732 732961 339117 087377 249313 270272 (245 digits), a[484] = 11
                                                                                      A[485]/B[485] = 33296 717815 155593 199052 031139 098438 034143 002680 983437 218330 890431 259802 052269 526488 746478 793578 818934 597933 189155 259294 829840 874386 040524 350347 582535 137856 199644 834528 417980 299721 124300 431808 999075 171901 483058 592894 605186 784741 198169 395226 063573 (245 digits)/3 236225 390406 621838 812799 317670 760298 189508 045684 634474 292152 323460 619770 942784 183626 853167 319881 331367 837386 644773 030148 254889 877804 647235 170963 114932 162688 681068 241111 007903 382036 144244 726645 279832 383595 725425 272501 022090 110823 732046 625046 776755 (247 digits), a[485] = 61
                                                                                      A[486]/B[486] = 33841 795837 132925 714990 432822 549265 418084 361704 569565 229493 473768 810489 351448 451400 134157 040622 459416 372966 850937 321138 618379 320333 286004 869486 632917 379569 651653 001873 007906 626446 813194 590082 291670 460705 105111 739143 424373 381161 058858 866046 901594 (245 digits)/3 289203 445008 530627 435851 094639 265058 489858 895033 559978 170795 945035 949340 865538 851308 936037 500857 561845 383881 212690 745870 594488 591996 269240 912747 669069 760424 228546 615578 212882 636765 641409 862277 202081 708446 617900 523233 755051 449940 819423 874360 047027 (247 digits), a[486] = 1
                                                                                      A[487]/B[487] = 67138 513652 288518 914042 463961 647703 452227 364385 553002 447824 364200 070291 403717 977888 880635 834201 278350 970900 040092 580433 448220 194719 326529 219834 215452 517425 851297 836401 425886 926167 937495 021891 290745 632606 588170 332038 029560 165902 257028 261272 965167 (245 digits)/6 525428 835415 152466 248650 412310 025356 679366 940718 194452 462948 268496 569111 808323 034935 789204 820738 893213 221267 857463 776018 849378 469800 916476 083710 784001 923112 909614 856689 220786 018801 785654 588922 481914 092042 343325 795734 777141 560764 551470 499406 823782 (247 digits), a[487] = 1
                                                                                      A[488]/B[488] = 168118 823141 709963 543075 360745 844672 322539 090475 675570 125142 202168 951072 158884 407177 895428 709025 016118 314766 931122 482005 514819 709771 939063 309155 063822 414421 354248 674675 859680 478782 688184 633864 873161 725918 281452 403219 483493 712965 572915 388592 831928 (246 digits)/16 340061 115838 835559 933151 919259 315771 848592 776469 948883 096692 482029 087564 482184 921180 514447 142335 348271 826416 927618 297908 293245 531598 102193 080169 237073 606650 047776 328956 654454 674369 212719 040122 165909 892531 304552 114703 309334 571469 922364 873173 694591 (248 digits), a[488] = 2
                                                                                      A[489]/B[489] = 235257 336793 998482 457117 824707 492375 774766 454861 228572 572966 566369 021363 562602 385066 776064 543226 294469 285666 971215 062438 963039 904491 265592 528989 279274 931847 205546 511077 285567 404950 625679 655756 163907 358524 869622 735257 513053 878867 829943 649865 797095 (246 digits)/22 865489 951253 988026 181802 331569 341128 527959 717188 143335 559640 750525 656676 290507 956116 303651 963074 241485 047684 785082 073927 142624 001399 018669 163880 021075 529762 957391 185645 875240 693170 998373 629044 647823 984573 647877 910438 086476 132234 473835 372580 518373 (248 digits), a[489] = 1
                                                                                      A[490]/B[490] = 403376 159935 708446 000193 185453 337048 097305 545336 904142 698108 768537 972435 721486 792244 671493 252251 310587 600433 902337 544444 477859 614263 204655 838144 343097 346268 559795 185753 145247 883733 313864 289621 037069 084443 151075 138476 996547 591833 402859 038458 629023 (246 digits)/39 205551 067092 823586 114954 250828 656900 376552 493658 092218 656333 232554 744240 772692 877296 818099 105409 589756 874101 712700 371835 435869 532997 120862 244049 258149 136413 005167 514602 529695 367540 211092 669166 813733 877104 952430 025141 395810 703704 396200 245754 212964 (248 digits), a[490] = 1
                                                                                      A[491]/B[491] = 15 563551 414350 919430 464458 871934 300203 472377 177663 585995 101099 770811 973920 979100 490364 292808 128776 096798 102155 260041 751329 121705 246493 042514 378474 316974 090052 477763 569696 804986 986816 552522 661355 572532 567364 610477 997383 381862 368537 138587 111293 699969 (248 digits)/1512 676430 500781 284298 550063 863058 303342 836954 476195 647644 500303 587605 937825 652837 293395 391417 968638 652246 263549 867696 203673 705666 255289 611434 437751 830742 713457 153756 740542 003664 659699 019895 057383 569711 314561 840218 865811 127282 873001 529444 711240 611005 (250 digits), a[491] = 38
                                                                                      A[492]/B[492] = 15 966927 574286 627876 464652 057387 637251 569682 723000 490137 799208 539349 946356 700587 282608 964301 381027 407385 702589 162379 295773 599564 860756 247170 216618 660071 436321 037558 755449 950234 870549 866386 950976 609601 651807 761553 135860 378409 960370 541446 149752 328992 (248 digits)/1551 881981 567874 107884 665018 113886 960243 213506 969853 739863 156636 820160 682066 425530 170692 209517 074048 242003 137651 580396 575509 141535 788286 732296 681801 088891 849870 158924 255144 533360 027239 230987 726550 383445 191666 792648 890952 523093 576705 925644 956994 823969 (250 digits), a[492] = 1
                                                                                      A[493]/B[493] = 31 530478 988637 547306 929110 929321 937455 042059 900664 076132 900308 310161 920277 679687 772973 257109 509803 504183 804744 422421 047102 721270 107249 289684 595092 977045 526373 515322 325146 755221 857366 418909 612332 182134 219172 372031 133243 760272 328907 680033 261046 028961 (248 digits)/3064 558412 068655 392183 215081 976945 263586 050461 446049 387507 656940 407766 619892 078367 464087 600935 042686 894249 401201 448092 779182 847202 043576 343731 119552 919634 563327 312680 995686 537024 686938 250882 783933 953156 506228 632867 756763 650376 449707 455089 668235 434974 (250 digits), a[493] = 1
                                                                                      A[494]/B[494] = 79 027885 551561 722490 322873 916031 512161 653802 524328 642403 599825 159673 786912 059962 828555 478520 400634 415753 312078 007221 389979 042105 075254 826539 406804 614162 489068 068203 405743 460678 585282 704206 175640 973870 090152 505615 402347 898954 618185 901512 671844 386914 (248 digits)/7680 998805 705184 892251 095182 067777 487415 314429 861952 514878 470517 635693 921850 582265 098867 411387 159422 030501 940054 476582 133874 835939 875439 419758 920906 928160 976524 784286 246517 607409 401115 732753 294418 289758 204124 058384 404479 823846 476120 835824 293465 693917 (250 digits), a[494] = 2
                                                                                      A[495]/B[495] = 110 558364 540199 269797 251984 845353 449616 695862 424992 718536 500133 469835 707189 739650 601528 735629 910437 919937 116822 429642 437081 763375 182504 116224 001897 591208 015441 583525 730890 215900 442649 123115 787973 156004 309324 877646 535591 659226 947093 581545 932890 415875 (249 digits)/10745 557217 773840 284434 310264 044722 751001 364891 308001 902386 127458 043460 541742 660632 562955 012322 202108 924751 341255 924674 913057 683141 919015 763490 040459 847795 539852 096967 242204 144434 088053 983636 078352 242914 710352 691252 161243 474222 925828 290913 961701 128891 (251 digits), a[495] = 1
                                                                                      A[496]/B[496] = 521 261343 712358 801679 330813 297445 310628 437252 224299 516549 600359 039016 615671 018565 234670 421040 042386 095501 779367 725791 138306 095605 805271 291435 414394 978994 550834 402306 329304 324280 355879 196669 327533 597887 327452 016201 544714 535862 406560 227696 403406 050414 (249 digits)/50663 227676 800546 029988 336238 246668 491420 773995 093960 124422 980349 809536 088821 224795 350687 460675 967857 729507 305078 175281 786105 568507 551502 473719 082746 319343 135933 172155 215334 185145 753331 667297 607827 261417 045534 823393 049453 720738 179433 999480 140270 209481 (251 digits), a[496] = 4
                                                                                      A[497]/B[497] = 3238 126426 814352 079873 236864 630025 313387 319375 770789 817834 102287 703935 401215 851042 009551 261870 164754 492947 793028 784389 266918 337010 014131 864836 488267 465175 320447 997363 706716 161582 577924 303131 753174 743328 274036 974855 803878 874401 386454 947724 353326 718359 (250 digits)/314724 923278 577116 464364 327693 524733 699526 008861 871762 648924 009556 900677 074670 009404 667079 776378 009255 301795 171724 976365 629691 094187 228030 605804 536937 763854 355451 129898 534209 255308 608043 987421 725315 811416 983561 631610 457965 798652 002432 287794 803322 385777 (252 digits), a[497] = 6
                                                                                      A[498]/B[498] = 10235 640624 155415 041299 041407 187521 250790 395379 536668 970051 907222 150822 819318 571691 263324 206650 536649 574345 158454 078958 939061 106635 847666 885944 879197 374520 512178 394397 449452 809028 089652 106064 587057 827872 149562 940768 956351 159066 565925 070869 463386 205491 (251 digits)/994837 997512 531895 423081 319318 820869 589998 800580 709248 071195 009020 511567 312831 253009 351926 789809 995623 634892 820253 104378 675178 851069 235594 291132 693559 610906 202286 561850 817961 951071 577463 629562 783774 695667 996219 718224 423351 116694 186730 862864 550237 366812 (252 digits), a[498] = 3
                                                                                      A[499]/B[499] = 13473 767050 969767 121172 278271 817546 564177 714755 307458 787886 009509 854758 220534 422733 272875 468520 701404 067292 951482 863348 205979 443645 861798 750781 367464 839695 832626 391761 156168 970610 667576 409196 340232 571200 423599 915624 760230 033467 952380 018593 816712 923850 (251 digits)/1 309562 920791 109011 887445 647012 345603 289524 809442 581010 720119 018577 412244 387501 262414 019006 566188 004878 936687 991978 080744 304869 945256 463624 896937 230497 374760 557737 691749 352171 206380 185507 616984 509090 507084 979781 349834 881316 915346 189163 150659 353559 752589 (253 digits), a[499] = 1
                                                                                      A[500]/B[500] = 23709 407675 125182 162471 319679 005067 814968 110134 844127 757937 916732 005581 039852 994424 536199 675171 238053 641638 109936 942307 145040 550281 709465 636726 246662 214216 344804 786158 605621 779638 757228 515260 927290 399072 573162 856393 716581 192534 518305 089463 280099 129341 (251 digits)/2 304400 918303 640907 310526 966331 166472 879523 610023 290258 791314 027597 923811 700332 515423 370933 355998 000502 571580 812231 185122 980048 796325 699219 188069 924056 985666 760024 253600 170133 157451 762971 246547 292865 202752 976001 068059 304668 032040 375894 013523 903797 119401 (253 digits), a[500] = 1
                                                                                      A[501]/B[501] = 108311 397751 470495 771057 556987 837817 824050 155294 683969 819637 676437 877082 379946 400431 417674 169205 653618 633845 391230 632576 786141 644772 699661 297686 354113 696561 211845 536395 578656 089165 696490 470240 049394 167490 716251 341199 626554 803606 025600 376446 937109 441214 (252 digits)/10 527166 594005 672641 129553 512337 011494 807619 249535 742045 885375 128969 107491 188831 324107 502739 990180 006889 223011 240902 821236 225065 130559 260501 649216 926725 317427 597834 706150 032703 836187 237392 603173 680551 318096 883785 622072 099989 043507 692739 204754 968748 230193 (254 digits), a[501] = 4
                                                                                      A[502]/B[502] = 456954 998681 007165 246701 547630 356339 111168 731313 580007 036488 622483 513910 559638 596150 206896 351993 852528 177019 674859 472614 289607 129372 508110 827471 663117 000461 192186 931740 920246 136301 543190 396221 124867 069035 438168 221192 222800 406958 620706 595251 028536 894197 (252 digits)/44 413067 294326 331471 828741 015679 212452 110000 608166 258442 332814 543474 353776 455657 811853 381893 316718 028059 463625 775842 470067 880309 318562 741225 784937 630958 255377 151363 078200 300948 502200 712541 659242 015070 475140 511143 556347 704624 206071 146850 832543 778790 040173 (254 digits), a[502] = 4
                                                                                      A[503]/B[503] = 565266 396432 477661 017759 104618 194156 935218 886608 263976 856126 298921 390992 939584 996581 624570 521199 506146 810865 066090 105191 075748 774145 207772 125158 017230 697022 404032 468136 498902 225467 239680 866461 174261 236526 154419 562391 849355 210564 646306 971697 965646 335411 (252 digits)/54 940233 888332 004112 958294 528016 223946 917619 857702 000488 218189 672443 461267 644489 135960 884633 306898 034948 686637 016745 291304 105374 449122 001727 434154 557683 572804 749197 784350 333652 338387 949934 262415 695621 793237 394929 178419 804613 249578 839590 037298 747538 270366 (254 digits), a[503] = 1
                                                                                      A[504]/B[504] = 1 022221 395113 484826 264460 652248 550496 046387 617921 843983 892614 921404 904903 499223 592731 831466 873193 358674 987884 740949 577805 365355 903517 715882 952629 680347 697483 596219 399877 419148 361768 782871 262682 299128 305561 592587 783584 072155 617523 267013 566948 994183 229608 (253 digits)/99 353301 182658 335584 787035 543695 436399 027620 465868 258930 551004 215917 815044 100146 947814 266526 623616 063008 150262 792587 761371 985683 767684 742953 219092 188641 828181 900560 862550 634600 840588 662475 921657 710692 268377 906072 734767 509237 455649 986440 869842 526328 310539 (254 digits), a[504] = 1
                                                                                      A[505]/B[505] = 4 654151 976886 416966 075601 713612 396141 120769 358295 639912 426585 984541 010606 936479 367508 950438 013972 940846 762404 029888 416412 537172 388216 071303 935676 738621 486956 788910 067646 175495 672542 371165 917190 370774 458772 524770 696728 137977 680657 714361 239493 942379 253843 (253 digits)/452 353438 618965 346452 106436 702797 969543 028101 721175 036210 422206 536114 721444 045076 927217 950739 801362 286981 287688 187096 336792 048109 519860 973540 310523 312250 885532 351441 234552 872055 700742 599837 949046 538390 866749 019220 117489 841563 072178 785353 516668 852851 512522 (255 digits), a[505] = 4
                                                                                      A[506]/B[506] = 24 292981 279545 569656 642469 220310 531201 650234 409400 043546 025544 844109 957938 181620 430276 583656 943058 062908 799904 890391 659868 051217 844598 072402 631013 373455 132267 540769 738108 296626 724480 638700 848634 153000 599424 216441 267224 762044 020811 838819 764418 706079 498823 (254 digits)/2361 120494 277485 067845 319219 057685 284114 168129 071743 439982 662036 896491 422264 325531 583904 020225 630427 497914 588703 728069 445332 226231 366989 610654 771708 749896 255843 657767 035314 994879 344301 661665 666890 402646 602123 002173 322216 717052 816543 913208 453186 790585 873149 (256 digits), a[506] = 5
                                                                                      A[507]/B[507] = 28 947133 256431 986622 718070 933922 927342 771003 767695 683458 452130 828650 968545 118099 797785 534094 957031 003755 562308 920280 076280 588390 232814 143706 566690 112076 619224 329679 805754 472122 397023 009866 765824 523775 058196 741211 963952 900021 701469 553181 003912 648458 752666 (254 digits)/2813 473932 896450 414297 425655 760483 253657 196230 792918 476193 084243 432606 143708 370608 511121 970965 431789 784895 876391 915165 782124 274340 886850 584195 082232 062147 141376 009208 269867 866935 045044 261503 615936 941037 468872 021393 439706 558615 888722 698561 969855 643437 385671 (256 digits), a[507] = 1
                                                                                      A[508]/B[508] = 82 187247 792409 542902 078611 088156 385887 192241 944791 410462 929806 501411 895028 417820 025847 651846 857120 070419 924522 730951 812429 227998 310226 359815 764393 597608 370716 200129 349617 240871 518526 658434 380283 200550 715817 698865 195130 562087 423750 945181 772244 002997 004155 (254 digits)/7988 068360 070385 896440 170530 578651 791428 560590 657580 392368 830523 761703 709681 066748 606147 962156 494007 067706 341487 558401 009580 774913 140690 779044 936172 874190 538595 676183 575050 728749 434390 184672 898764 284721 539867 044960 201629 834284 593989 310332 392898 077460 644491 (256 digits), a[508] = 2
                                                                                      A[509]/B[509] = 275 508876 633660 615328 953904 198392 085004 347729 602069 914847 241550 332886 653630 371559 875328 489635 528391 215015 335877 113135 513568 272385 163493 223153 859870 904901 731372 930067 854606 194736 952602 985169 906674 125427 205649 837807 549344 586283 972722 388726 320644 657449 765131 (255 digits)/26777 679013 107608 103617 937247 496438 627942 878002 765659 653299 575814 717717 272751 570854 329565 857434 913810 988014 900854 590368 810866 599080 308922 921329 890750 684718 757163 037758 995020 053183 348214 815522 312229 795202 088473 156274 044596 061469 670690 629559 148549 875819 319144 (257 digits), a[509] = 3
                                                                                      A[510]/B[510] = 633 205001 059730 773559 986419 484940 555895 887701 148931 240157 412907 167185 202289 160939 776504 631117 913902 500450 596276 957222 839565 772768 637212 806123 484135 407411 833462 060265 058829 630345 423732 628774 193631 451405 127117 374480 293819 734655 369195 722634 413533 317896 534417 (255 digits)/61543 426386 285602 103676 045025 571529 047314 316596 188899 698967 982153 197138 255184 208457 265279 677026 321629 043736 143196 739138 631313 973073 758536 621704 717674 243628 052921 751701 565090 835116 130819 815717 523223 875125 716813 357508 290821 957223 935370 569450 689997 829099 282779 (257 digits), a[510] = 2
                                                                                      A[511]/B[511] = 7873 968889 350429 898048 790938 017678 755755 000143 389244 796736 196436 339109 081100 302837 193384 063050 495221 220422 491200 599809 588357 545608 810046 896635 669495 793843 732917 653248 560561 758882 037394 530460 230251 542288 731058 331571 075181 402148 403071 060339 283044 472208 178135 (256 digits)/765298 795648 534833 347730 477554 354787 195714 677157 032456 040915 361653 083376 334962 072341 512921 981750 773359 512848 619215 460032 386634 275965 411362 381786 502841 608255 392224 058177 776110 074576 918052 604132 590916 296710 690233 446373 534459 548156 895137 462967 428523 825010 712492 (258 digits), a[511] = 12
                                                                                      A[512]/B[512] = 16381 142779 760590 569657 568295 520298 067405 887987 927420 833629 805779 845403 364489 766614 163272 757218 904344 941295 578678 156842 016280 863986 257306 599394 823126 995099 299297 366762 179953 148109 498521 689694 654134 535982 589234 037622 444182 538952 175337 843312 979622 262312 890687 (257 digits)/1 592141 017683 355268 799137 000134 281103 438743 670910 253811 780798 705459 363890 925108 353140 291123 640527 868348 069433 381627 659203 404582 525004 581261 385277 723357 460138 837369 868057 117310 984269 966925 023982 705056 468547 097280 250255 359741 053537 725645 495385 547045 479120 707763 (259 digits), a[512] = 2
                                                                                      A[513]/B[513] = 24255 111669 111020 467706 359233 537976 823160 888131 316665 630366 002216 184512 445590 069451 356656 820269 399566 161718 069878 756651 604638 409595 067353 496030 492622 788943 032215 020010 740514 906991 535916 220154 884386 078271 320292 369193 519363 941100 578408 903652 262666 734521 068822 (257 digits)/2 357439 813331 890102 146867 477688 635890 634458 348067 286267 821714 067112 447267 260070 425481 804045 622278 641707 582282 000843 119235 791216 800969 992623 767064 226199 068394 229593 926234 893421 058846 884977 628115 295972 765257 787513 696628 894200 601694 620782 958352 975569 304131 420255 (259 digits), a[513] = 1
                                                                                      A[514]/B[514] = 40636 254448 871611 037363 927529 058274 890566 776119 244086 463995 807996 029915 810079 836065 519929 577488 303911 103013 648556 913493 620919 273581 324660 095425 315749 784042 331512 386772 920468 055101 034437 909849 538520 614253 909526 406815 963546 480052 753746 746965 242288 996833 959509 (257 digits)/3 949580 831015 245370 946004 477822 916994 073202 018977 540079 602512 772571 811158 185178 778622 095169 262806 510055 651715 382470 778439 195799 325974 573885 152341 949556 528533 066963 794292 010732 043116 851902 652098 001029 233804 884793 946884 253941 655232 346428 453738 522614 783252 128018 (259 digits), a[514] = 1
                                                                                      A[515]/B[515] = 146163 875015 725853 579798 141820 712801 494861 216489 048925 022353 426204 274259 875829 577647 916445 552734 311299 470759 015549 497132 467396 230339 041333 782306 439872 141070 026752 180329 501919 072294 639229 949703 499947 921033 048871 589641 410003 381258 839649 144547 989533 725022 947349 (258 digits)/14 206182 306377 626214 984880 911157 386872 854064 404999 906506 629252 384827 880741 815606 761348 089553 410698 171874 537428 148255 454553 378614 778893 714279 224090 074868 653993 430485 309110 925617 188197 440685 584409 299060 466672 441895 537281 656025 567391 660068 319568 543413 653887 804309 (260 digits), a[515] = 3
                                                                                      A[516]/B[516] = 186800 129464 597464 617162 069349 771076 385427 992608 293011 486349 234200 304175 685909 413713 436375 130222 615210 573772 664106 410626 088315 503920 365993 877731 755621 925112 358264 567102 422387 127395 673667 859553 038468 535286 958397 996457 373549 861311 593395 891513 231822 721856 906858 (258 digits)/18 155763 137392 871585 930885 388980 303866 927266 423977 446586 231765 157399 691900 000785 539970 184722 673504 681930 189143 530726 232992 574414 104868 288164 376432 024425 182526 497449 103402 936349 231314 292588 236507 300089 700477 326689 484165 909967 222624 006496 773307 066028 437139 932327 (260 digits), a[516] = 1
                                                                                      A[517]/B[517] = 332964 004480 323318 196960 211170 483877 880289 209097 341936 508702 660404 578435 561738 991361 352820 682956 926510 044531 679655 907758 555711 734259 407327 660038 195494 066182 385016 747431 924306 199690 312897 809256 538416 456320 007269 586098 783553 242570 433045 036061 221356 446879 854207 (258 digits)/32 361945 443770 497800 915766 300137 690739 781330 828977 353092 861017 542227 572641 816392 301318 274276 084202 853804 726571 678981 687545 953028 883762 002443 600522 099293 836519 927934 412513 861966 419511 733273 820916 599150 167149 768585 021447 565992 790015 666565 092875 609442 091027 736636 (260 digits), a[517] = 1
                                                                                      A[518]/B[518] = 7 179044 223551 387146 753326 503929 932511 871501 383652 473678 169105 102696 451322 482428 232301 845609 472318 071921 508937 936880 473555 758261 923367 919874 738533 860997 314942 443616 263172 832817 320892 244521 853940 345214 118007 111059 304531 828167 955290 687341 648798 880308 106333 845205 (259 digits)/697 756617 456573 325405 161977 691871 809402 335213 832501 861536 313133 544178 717378 145023 867653 944520 441764 611829 447148 789341 671457 588020 663870 339479 987396 109595 749444 984071 766194 037644 041060 691338 475755 882243 210622 466974 934564 795815 812953 004363 723694 864312 348722 401683 (261 digits), a[518] = 21
                                                                                      A[519]/B[519] = 7 512008 228031 710464 950286 715100 416389 751790 592749 815614 677807 763101 029758 044167 223663 198430 155274 998431 553469 616536 381314 313973 657627 327202 398572 056491 381124 828633 010604 757123 520582 557419 663196 883630 574327 118328 890630 611721 197861 120386 684860 101664 553213 699412 (259 digits)/730 118562 900343 823206 077743 992009 500142 116544 661479 214629 174151 086406 290019 961416 168972 218796 525967 465634 173720 468323 359003 541049 547632 341923 587918 208889 585964 912006 178707 899610 460572 424612 296672 481393 377772 235559 956012 361808 602968 670928 816570 473754 439750 138319 (261 digits), a[519] = 1
                                                                                      A[520]/B[520] = 292 635356 888756 384814 864221 677745 755322 439543 908145 467035 925800 100535 582128 160782 731503 385955 372768 012320 540783 365262 963499 689260 913206 353565 884272 007669 797685 931670 666153 603511 103029 426469 055421 923175 942437 607557 148495 073573 474013 262035 673482 743561 128454 422861 (261 digits)/28442 262007 669638 607236 116249 388232 814802 763910 968712 017444 930874 827617 738136 678838 288598 258788 428528 305928 048526 585629 313592 147903 473899 332576 328288 047400 016111 640306 557094 222841 542812 826605 749310 175191 565967 418253 263034 544542 725762 499658 753372 866981 059227 657805 (263 digits), a[520] = 38
                                                                                      A[521]/B[521] = 592 782722 005544 480094 678730 070591 927034 630878 409040 749686 529407 964172 194014 365732 686669 970340 900811 023072 635036 347062 308313 692495 484040 034334 167116 071830 976496 691974 342911 964145 726641 410357 774040 729982 459202 333443 187620 758868 145887 644458 031825 588786 810122 545134 (261 digits)/57614 642578 239621 037678 310242 768475 129747 644366 598903 249519 035900 741641 766293 319092 746168 736373 383024 077490 270773 639581 986187 836856 495431 007076 244494 303689 618188 192619 292896 345293 546198 077823 795292 831776 509707 072066 482081 450894 054493 670246 323316 207716 558205 453929 (263 digits), a[521] = 2
                                                                                      A[522]/B[522] = 885 418078 894300 864909 542951 748337 682357 070422 317186 216722 455208 064707 776142 526515 418173 356296 273579 035393 175819 712325 271813 381756 397246 387900 051388 079500 774182 623645 009065 567656 829670 836826 829462 653158 401639 941000 336115 832441 619900 906493 705308 332347 938576 967995 (261 digits)/86056 904585 909259 644914 426492 156707 944550 408277 567615 266963 966775 569259 504429 997931 034766 995161 811552 383418 319300 225211 299779 984759 969330 339652 572782 351089 634299 832925 849990 568135 089010 904429 544603 006968 075674 490319 745115 995436 780256 169905 076689 074697 617433 111734 (263 digits), a[522] = 1
                                                                                      A[523]/B[523] = 5019 873116 477048 804642 393488 812280 338819 982989 994971 833298 805448 287711 074726 998309 777536 751822 268706 200038 514134 908688 667380 601277 470271 973834 424056 469334 847409 810199 388239 802429 874995 594491 921353 995774 467402 038444 868199 921076 245392 176926 558367 250526 503007 385109 (262 digits)/487899 165507 785919 262250 442703 552014 852499 685754 436979 584338 869778 587939 288443 308747 920003 712182 440785 994581 867274 765638 485087 760656 342082 705339 108406 059137 789687 357248 542849 185968 991252 599971 518307 866616 888079 523665 207661 428077 955774 519771 706761 581204 645371 012599 (264 digits), a[523] = 5
                                                                                      A[524]/B[524] = 51084 149243 664788 911333 477839 871141 070556 900322 266904 549710 509690 941818 523412 509613 193540 874518 960641 035778 317168 799211 945619 394531 099966 126244 291952 772849 248280 725638 891463 591955 579626 781746 043002 610903 075660 325449 018115 043204 073822 675759 288980 837612 968650 819085 (263 digits)/4 965048 559663 768452 267418 853527 676856 469547 265821 937411 110352 664561 448652 388863 085410 234804 116986 219412 329236 992047 881596 150657 591323 390157 393043 656842 942467 531173 405411 278482 427825 001536 904144 727681 673136 956469 726971 821730 276216 338001 367622 144304 886744 071143 237724 (265 digits), a[524] = 10
                                                                                      A[525]/B[525] = 56104 022360 141837 715975 871328 683421 409376 883312 261876 383009 315139 229529 598139 507922 971077 626341 229347 235816 831303 707900 612999 995808 570238 100078 716009 242184 095690 535838 279703 394385 454622 376237 964356 606677 543062 363893 886314 964280 319214 852685 847348 088139 471658 204194 (263 digits)/5 452947 725171 554371 529669 296231 228871 322046 951576 374390 694691 534340 036591 677306 394158 154807 829168 660198 323818 859322 647234 635745 351979 732240 098382 765249 001605 320860 762659 821331 613793 992789 504116 245989 539753 844549 250637 029391 704294 293775 887393 851066 467948 716514 250323 (265 digits), a[525] = 1
                                                                                      A[526]/B[526] = 163292 193963 948464 343285 220497 237983 889310 666946 790657 315729 139969 400877 719691 525459 135696 127201 419335 507411 979776 215013 171619 386148 240442 326401 723971 257217 439661 797315 450870 380726 488871 534221 971715 824258 161785 053236 790744 971764 712252 381130 983677 013891 911967 227473 (264 digits)/15 870944 010006 877195 326757 445990 134599 113641 168974 686192 499735 733241 521835 743475 873726 544419 775323 539808 976874 710693 176065 422148 295282 854637 589809 187340 945678 172894 930730 921145 655412 987115 912377 219660 752644 645568 228245 880513 684804 925553 142409 846437 822641 504171 738370 (266 digits), a[526] = 2
                                                                                      A[527]/B[527] = 1 852318 155963 574945 492113 296798 301244 191794 219726 959106 856029 854802 639184 514746 287973 463735 025556 842037 817348 608842 073045 500813 243439 215103 690497 679693 071575 931970 306308 239277 582376 832209 252679 653230 673517 322697 949498 584509 653692 153991 045126 667795 240950 503297 706397 (265 digits)/180 033331 835247 203520 124001 202122 709461 572099 810297 922508 191784 599996 776784 855541 005150 143425 357727 598097 069440 676947 583954 279376 600091 133253 586283 825999 404065 222705 000699 953933 823336 851064 540265 662257 818844 945799 761341 715042 237148 474860 453902 161882 517005 262403 372393 (267 digits), a[527] = 11
                                                                                      A[528]/B[528] = 2 015610 349927 523409 835398 517295 539228 081104 886673 749764 171758 994772 040062 234437 813432 599431 152758 261373 324760 588618 288058 672432 629587 455546 016899 403664 328793 371632 103623 690147 963103 321080 786901 624946 497775 484483 002735 375254 625456 866243 426257 651472 254842 415264 933870 (265 digits)/195 904275 845254 080715 450758 648112 844060 685740 979272 608700 691520 333238 298620 599016 878876 687845 133051 137906 046315 387640 760019 701524 895373 987891 176093 013340 349743 395599 931430 875079 478749 838180 452642 881918 571489 591367 989587 595555 921953 400413 596312 008320 339646 766575 110763 (267 digits), a[528] = 1
                                                                                      A[529]/B[529] = 7 899149 205746 145174 998308 848684 918928 435108 879748 208399 371306 839118 759371 218059 728271 262028 483831 626157 791630 374696 937221 518111 132201 581741 741195 890686 057956 046866 617179 309721 471686 795451 613384 528070 166843 776146 957704 710273 530062 752721 323899 622212 005477 749092 508007 (265 digits)/767 746159 371009 445666 476277 146461 241643 629322 748115 748610 266345 599711 672646 652591 641780 206960 756881 011815 208386 839869 864013 383951 286213 096927 114562 866020 453295 409504 794992 579172 259586 365605 898194 308013 533313 719903 730104 501710 003008 676101 242838 186843 535945 562128 704682 (267 digits), a[529] = 3
                                                                                      A[530]/B[530] = 57 309654 790150 539634 823560 458089 971727 126867 044911 208559 770906 868603 355660 760855 911331 433630 539579 644477 866173 211496 848609 299210 554998 527738 205270 638466 734485 699698 423878 858198 264910 889242 080593 321437 665681 917511 706668 347169 335896 135292 693555 006956 293186 658912 489919 (266 digits)/5570 127391 442320 200380 784698 673341 535566 091000 216082 848972 555939 531220 007147 167158 371338 136570 431218 220612 505023 266729 808113 389183 898865 666380 978033 075483 522811 262133 496378 929285 295854 397421 740003 038013 304685 630694 100319 107525 943014 133122 296179 316225 091265 701476 043537 (268 digits), a[530] = 7
                                                                                      A[531]/B[531] = 237 137768 366348 303714 292550 681044 805836 942577 059393 042638 454934 313532 182014 261483 373596 996550 642150 204069 256323 220684 331658 714953 352195 692694 562278 444552 995898 845660 312694 742514 531330 352419 935757 813820 829571 446193 784378 098950 873647 293892 098119 650037 178224 384742 467683 (267 digits)/23048 255725 140290 247189 615071 839827 383907 993323 612447 144500 490103 724591 701235 321225 127132 753242 481753 894265 228479 906789 096466 940686 881675 762451 026695 167954 544540 458038 780508 296313 443003 955292 858206 460066 752056 242680 131380 931813 775065 208590 427555 451743 901008 368032 878830 (269 digits), a[531] = 4
                                                                                      A[532]/B[532] = 294 447423 156498 843349 116111 139134 777564 069444 104304 251198 225841 182135 537675 022339 284928 430181 181729 848547 122496 432181 180268 014163 907194 220432 767549 083019 730384 545358 736573 600712 796241 241662 016351 135258 495253 363705 491046 446120 209543 429184 791674 656993 471411 043654 957602 (267 digits)/28618 383116 582610 447570 399770 513168 919474 084323 828529 993473 046043 255811 708382 488383 498470 889812 912972 114877 733503 173518 904580 329870 780541 428832 004728 243438 067351 720172 276887 225598 738858 352714 598209 498080 056741 873374 231700 039339 718079 341712 723734 767968 992274 069508 922367 (269 digits), a[532] = 1
                                                                                      A[533]/B[533] = 4948 296538 870329 797300 150328 907201 246862 053682 728261 061810 068393 227700 784814 618911 932451 879449 549827 780823 216266 135583 215946 941575 867303 219618 843063 772868 682051 571400 097872 353919 271190 219012 197375 977956 753625 265481 641121 236874 226342 160848 764914 161932 720801 083221 789315 (268 digits)/480942 385590 462057 408316 011400 050530 095493 342504 868927 040069 226795 817579 035355 135361 102666 990249 089307 732308 964530 683091 569752 218619 370338 623763 102347 062963 622167 980795 210703 905893 264737 598726 429558 429347 659926 216667 838581 561249 264334 675994 007311 739247 777393 480175 636702 (270 digits), a[533] = 16
                                                                                      A[534]/B[534] = 5242 743962 026828 640649 266440 046336 024426 123126 832565 313008 294234 409836 322489 641251 217380 309630 731557 629370 338762 567764 396214 955739 774497 440051 610612 855888 412436 116758 834445 954632 067431 460674 213727 113215 248878 629187 132167 682994 435885 590033 556588 818926 192212 126876 746917 (268 digits)/509560 768707 044667 855886 411170 563699 014967 426828 697457 033542 272839 073390 743737 623744 601137 880062 002279 847186 698033 856610 474332 548490 150880 052595 107075 306401 689519 700967 487591 131492 003595 951441 027767 927427 716668 090042 070281 600588 982414 017706 731046 507216 769667 549684 559069 (270 digits), a[534] = 1
                                                                                      A[535]/B[535] = 10191 040500 897158 437949 416768 953537 271288 176809 560826 374818 362627 637537 107304 260163 149832 189080 281385 410193 555028 703347 612161 897315 641800 659670 453676 628757 094487 688158 932318 308551 338621 679686 411103 091172 002503 894668 773288 919868 662227 750882 321502 980858 913013 210098 536232 (269 digits)/990503 154297 506725 264202 422570 614229 110460 769333 566384 073611 499634 890969 779092 759105 703804 870311 091587 579495 662564 539702 044084 767109 521218 676358 209422 369365 311687 681762 698295 037385 268333 550167 457326 356775 376594 306709 908863 161838 246748 693700 738358 246464 547061 029860 195771 (270 digits), a[535] = 1
                                                                                      A[536]/B[536] = 76580 027468 306937 706295 183822 721096 923443 360793 758349 936736 832627 872596 073619 462393 266205 633192 701255 500725 223963 491197 681348 236949 267102 057744 786349 257188 073849 933871 360674 114491 437783 218479 091448 751419 266405 891868 545190 122075 071479 846209 807109 684938 583304 597566 500541 (269 digits)/7 443082 848789 591744 705303 369164 863302 788192 812163 662145 548822 770283 310179 197386 937484 527771 972239 643392 903656 335985 634524 782925 918256 799410 787102 573031 891958 871333 473306 375656 393188 881930 802613 229052 424855 352828 237011 432323 733456 709654 873611 899554 232468 599094 758705 929466 (271 digits), a[536] = 7
                                                                                      A[537]/B[537] = 469671 205310 738784 675720 519705 280118 811948 341572 110925 995239 358394 873113 549021 034522 747065 988236 488918 414544 898809 650533 700251 319011 244413 006139 171772 171885 537587 291387 096362 995499 965320 990560 959795 599687 600939 245880 044429 652319 091106 828141 164161 090490 412840 795497 539478 (270 digits)/45 649000 247035 057193 496022 637559 794045 839617 642315 539257 366548 121334 752044 963414 384012 870436 703748 951945 001433 678478 346850 741640 276650 317683 398973 647613 721118 539688 521600 952233 396518 559918 365846 831640 905907 493563 728778 502805 562578 504677 935372 135683 641276 141629 582095 772567 (272 digits), a[537] = 6
                                                                                      A[538]/B[538] = 1 485593 643400 523291 733456 742938 561453 359288 385510 091127 922454 907812 491936 720682 565961 507403 597902 168010 744359 920392 442798 782102 193983 000341 076162 301665 772844 686611 808032 649763 100991 333746 190161 970835 550482 069223 629508 678479 079032 344800 330633 299592 956409 821826 984059 118975 (271 digits)/144 390083 589894 763325 193371 281844 245440 307045 739110 279917 648467 134287 566314 087630 089523 139082 083486 499227 907957 371420 675077 007846 748207 752460 984023 515873 055314 490399 038109 232356 582744 561685 900153 723975 142577 833519 423346 940740 421192 223688 679728 306605 156297 023983 504993 247167 (273 digits), a[538] = 3
                                                                                      A[539]/B[539] = 1 955264 848711 262076 409177 262643 841572 171236 727082 202053 917694 266207 365050 269703 600484 254469 586138 656929 158904 819202 093332 482353 512994 244754 082301 473437 944730 224199 099419 746126 096491 299067 180722 930631 150169 670162 875388 722908 731351 435907 158774 463754 046900 234667 779556 658453 (271 digits)/190 039083 836929 820518 689393 919404 039486 146663 381425 819175 015015 255622 318359 051044 473536 009518 787235 451172 909391 049899 021927 749487 024858 070144 382997 163486 776433 030087 559710 184589 979263 121604 266000 555616 048485 327083 152125 443545 983770 728366 615100 442288 797573 165613 087089 019734 (273 digits), a[539] = 1
                                                                                      A[540]/B[540] = 11 261917 886956 833673 779343 056157 769314 215472 020921 101397 510926 238849 317188 069200 568382 779751 528595 452656 538884 016402 909461 193869 758954 224111 487669 668855 496495 807607 305131 380393 583447 829082 093776 623991 301330 420038 006452 293022 735789 524336 124505 618363 190910 995165 881842 411240 (272 digits)/1094 585502 774543 865918 640340 878864 442871 040362 646239 375792 723543 412399 158109 342852 457203 186676 019663 755092 454912 620915 784715 755281 872498 103182 899009 333306 937479 640836 836660 155306 479060 169707 230156 502055 385004 468935 183974 158470 340045 865521 755230 518049 144162 852048 940438 345837 (274 digits), a[540] = 5
                                                                                      A[541]/B[541] = 13 217182 735668 095750 188520 318801 610886 386708 748003 303451 428620 505056 682238 338904 168867 034221 114734 109585 697788 835605 002793 676223 271948 468865 569971 142293 441226 031806 404551 126519 679939 128149 274499 554622 451500 090200 881841 015931 467140 960243 283280 082117 237811 229833 661399 069693 (272 digits)/1284 624586 611473 686437 329734 798268 482357 187026 027665 194967 738558 668021 476468 393896 930739 196194 806899 206265 364303 670814 806643 504768 897356 173327 282006 496793 713912 670924 396370 339896 458323 291311 496157 057671 433489 796018 336099 602016 323816 593888 370330 960337 941736 017662 027527 365571 (274 digits), a[541] = 1
                                                                                      A[542]/B[542] = 37 696283 358293 025174 156383 693760 991086 988889 516927 708300 368167 248962 681664 747008 906116 848193 758063 671827 934461 687612 915048 546316 302851 161842 627611 953442 378947 871220 114233 633432 943326 085380 642775 733236 204330 600439 770134 324885 670071 444822 691065 782597 666533 454833 204640 550626 (272 digits)/3663 834675 997491 238793 299810 475401 407585 414414 701569 765728 200660 748442 111046 130646 318681 579065 633462 167623 183519 962545 398002 764819 667210 449837 463022 326894 365304 982685 629400 835099 395706 752330 222470 617398 251984 060971 856173 362502 987679 053298 495892 438725 027634 887372 995493 076979 (274 digits), a[542] = 2
                                                                                      A[543]/B[543] = 164 002316 168840 196446 814055 093845 575234 342266 815714 136652 901289 500907 408897 326939 793334 426996 146988 796897 435635 586056 662987 861488 483353 116236 080418 956062 957017 516686 861485 660251 453243 469671 845602 487567 268822 491959 962378 315474 147426 739534 047543 212507 903945 049166 479961 272197 (273 digits)/15939 963290 601438 641610 528976 699874 112698 844684 833944 257880 541201 661789 920652 916482 205465 512457 340747 876758 098383 520996 398654 564047 566197 972677 134095 804371 175132 601666 913973 680294 041150 300632 386039 527264 441426 039905 760793 052028 274532 807082 353900 715238 052275 567154 009499 673487 (275 digits), a[543] = 4
                                                                                      A[544]/B[544] = 201 698599 527133 221620 970438 787606 566321 331156 332641 844953 269456 749870 090562 073948 699451 275189 905052 468725 370097 273669 578036 407804 786204 278078 708030 909505 335965 387906 975719 293684 396569 555052 488378 220803 473153 092399 732512 640359 817498 184356 738608 995105 570478 503999 684601 822823 (273 digits)/19603 797966 598929 880403 828787 175275 520284 259099 535514 023608 741862 410232 031699 047128 524147 091522 974210 044381 281903 483541 796657 328867 233408 422514 597118 131265 540437 584352 543374 515393 436857 052962 608510 144662 693410 100877 616966 414531 262211 860380 849793 153963 079910 454527 004992 750466 (275 digits), a[544] = 1
                                                                                      A[545]/B[545] = 365 700915 695973 418067 784493 881452 141555 673423 148355 981606 170746 250777 499459 400888 492785 702186 052041 265622 805732 859726 241024 269293 269557 394314 788449 865568 292982 904593 837204 953935 849813 024724 333980 708370 741975 584359 694890 955833 964924 923890 786152 207613 474423 553166 164563 095020 (273 digits)/35543 761257 200368 522014 357763 875149 632983 103784 369458 281489 283064 072021 952351 963610 729612 603980 314957 921139 380287 004538 195311 892914 799606 395191 731213 935636 715570 186019 457348 195687 478007 353594 994549 671927 134836 140783 377759 466559 536744 667463 203693 869201 132186 021681 014492 423953 (275 digits), a[545] = 1
                                                                                      A[546]/B[546] = 567 399515 223106 639688 754932 669058 707877 004579 480997 826559 440203 000647 590021 474837 192236 977375 957093 734348 175830 133395 819060 677098 055761 672393 496480 775073 628948 292500 812924 247620 246382 579776 822358 929174 215128 676759 427403 596193 782423 108247 524761 202719 044902 057165 849164 917843 (273 digits)/55147 559223 799298 402418 186551 050425 153267 362883 904972 305098 024926 482253 984051 010739 253759 695503 289167 965520 662190 488079 991969 221782 033014 817706 328332 066902 256007 770372 000722 711080 914864 406557 603059 816589 828246 241660 994725 881090 798956 527844 053487 023164 212096 476208 019485 174419 (275 digits), a[546] = 1
                                                                                      A[547]/B[547] = 1500 499946 142186 697445 294359 219569 557309 682582 110351 634725 051152 252072 679502 350562 877259 656937 966228 734319 157393 126517 879145 623489 381080 739101 781411 415715 550879 489595 463053 449176 342578 184277 978698 566719 172232 937878 549698 148221 529771 140385 835674 613051 564227 667497 862892 930706 (274 digits)/145838 879704 798965 326850 730865 975999 939517 829552 179402 891685 332917 036529 920453 985089 237131 994986 893293 852180 704667 980698 179250 336478 865636 030604 387878 069441 227585 726763 458793 617849 307736 166710 200669 305106 791328 624105 367211 228741 134657 723151 310667 915529 556378 974097 053462 772791 (276 digits), a[547] = 2
                                                                                      A[548]/B[548] = 2067 899461 365293 337134 049291 888628 265186 687161 591349 461284 491355 252720 269523 825400 069496 634313 923322 468667 333223 259913 698206 300587 436842 411495 277892 190789 179827 782096 275977 696796 588960 764054 801057 495893 387361 614637 977101 744415 312194 248633 360435 815770 609129 724663 712057 848549 (274 digits)/200986 438928 598263 729268 917417 026425 092785 192436 084375 196783 357843 518783 904504 995828 490891 690490 182461 817701 366858 468778 171219 558260 898650 848310 716210 136343 483593 497135 459516 328930 222600 573267 803729 121696 619574 865766 361937 109831 933614 250995 364154 938693 768475 450305 072947 947210 (276 digits), a[548] = 1
                                                                                      A[549]/B[549] = 7704 198330 238066 708847 442234 885454 352869 744066 884400 018578 525218 010233 488073 826763 085749 559879 736196 140321 157062 906258 973764 525251 691607 973587 615087 988083 090362 835884 290986 539566 109460 476442 381871 054399 334317 781792 481003 381467 466353 886285 916982 060363 391616 841488 999066 476353 (274 digits)/748798 196490 593756 514657 483117 055275 217873 406860 432528 482035 406447 592881 633968 972574 709807 066457 440679 305284 805243 387032 692909 011261 561588 575536 536508 478471 678366 218169 837342 604639 975537 886513 611856 670196 650053 221404 453022 558236 935500 476137 403132 731610 861805 325012 272306 614421 (276 digits), a[549] = 3
                                                                                      A[550]/B[550] = 32884 692782 317560 172523 818231 430445 676665 663429 128949 535598 592227 293654 221819 132452 412494 873832 868107 029951 961474 884949 593264 401594 203274 305845 738244 143121 541279 125633 439923 855061 026802 669824 328541 713490 724632 741807 901115 270285 177609 793777 028364 057224 175597 090619 708323 753961 (275 digits)/3 196179 224890 973289 787898 849885 247525 964278 819877 814489 124924 983633 890310 440380 886127 330119 956319 945179 038840 587832 016908 942855 603307 145005 150456 862244 050230 197058 369814 808886 747490 124752 119322 251155 802483 219787 751384 174027 342779 675616 155544 976685 865137 215696 750354 162174 404894 (277 digits), a[550] = 4
                                                                                      A[551]/B[551] = 40588 891112 555626 881371 260466 315900 029535 407496 013349 554177 117445 303887 709892 959215 498244 433712 604303 170273 118537 791208 567028 926845 894882 279433 353332 131204 631641 961517 730910 394627 136263 146266 710412 767890 058950 523600 382118 651752 643963 680062 945346 117587 567213 932108 707390 230314 (275 digits)/3 944977 421381 567046 302556 333002 302801 182152 226738 247017 606960 390081 483192 074349 858702 039927 022777 385858 344125 393075 403941 635764 614568 706593 725993 398752 528701 875424 587984 646229 352130 100290 005835 863012 472679 869840 972788 627049 901016 611116 631682 379818 596748 077502 075366 434481 019315 (277 digits), a[551] = 1
                                                                                      A[552]/B[552] = 235829 148345 095694 579380 120563 009945 824342 700909 195697 306484 179453 813092 771283 928529 903717 042395 889622 881317 554163 840992 428409 035823 677685 703012 504904 799144 699488 933222 094475 828196 708118 401157 880605 552941 019385 359809 811708 529048 397428 194091 755094 645162 011666 751163 245274 905531 (276 digits)/22 921066 331798 808521 300680 514896 761531 875039 953569 049577 159726 934041 306270 812130 179637 529755 070206 874470 759467 553209 036617 121678 676150 677973 780423 856006 693739 574181 309738 040033 508140 626202 148501 566218 165882 568992 615327 309276 847862 731199 313956 875778 848877 603207 127186 334579 501469 (278 digits), a[552] = 5
                                                                                      A[553]/B[553] = 1 455563 781183 129794 357651 983844 375574 975591 612951 187533 393082 194168 182444 337596 530394 920546 688087 942040 458178 443520 837163 137483 141787 960996 497508 382760 926072 828575 560850 297765 363807 384973 553213 994046 085536 175262 682459 252369 826043 028532 844613 475913 988559 637214 439088 179039 663500 (277 digits)/141 471375 412174 418174 106639 422382 871992 432391 948152 544480 565321 994329 320816 947130 936527 218457 444018 632682 900930 712329 623644 365836 671472 774436 408536 534792 691139 320512 446412 886430 400973 857502 896845 260321 467975 283796 664752 482710 988192 998312 515423 634491 690013 696744 838484 441958 028129 (279 digits), a[553] = 6
                                                                                      A[554]/B[554] = 3 146956 710711 355283 294684 088251 761095 775525 926811 570764 092648 567790 177981 446476 989319 744810 418571 773703 797674 441205 515318 703375 319399 599678 698029 270426 651290 356640 054922 690006 555811 478065 507585 868697 724013 369910 724728 316448 181134 454493 883318 706922 622281 286095 629339 603354 232531 (277 digits)/305 863817 156147 644869 513959 359662 505516 739823 849874 138538 290370 922699 947904 706392 052691 966669 958244 139836 561328 977868 283905 853352 019096 226846 597496 925592 076018 215206 202563 812894 310088 341207 942192 086861 101833 136585 944832 274698 824248 727824 344804 144762 228904 996696 804155 218495 557727 (279 digits), a[554] = 2
                                                                                      A[555]/B[555] = 4 602520 491894 485077 652336 072096 136670 751117 539762 758297 485730 761958 360425 784073 519714 665357 106659 715744 255852 884726 352481 840858 461187 560675 195537 653187 577363 185215 615772 987771 919618 863039 060799 862743 809549 545173 407187 568818 007177 483026 727932 182836 610840 923310 068427 782393 896031 (277 digits)/447 335192 568322 063043 620598 782045 377509 172215 798026 683018 855692 917029 268721 653522 989219 185127 402262 772519 462259 690197 907550 219188 690569 001283 006033 460384 767157 535718 648976 699324 711062 198710 839037 347182 569808 420382 609584 757409 812441 726136 860227 779253 918918 693441 642639 660453 585856 (279 digits), a[555] = 1
                                                                                      A[556]/B[556] = 7 749477 202605 840360 947020 160347 897766 526643 466574 329061 578379 329748 538407 230550 509034 410167 525231 489448 053527 325931 867800 544233 780587 160353 893566 923614 228653 541855 670695 677778 475430 341104 568385 731441 533562 915084 131915 885266 188311 937520 611250 889759 233122 209405 697767 385748 128562 (277 digits)/753 199009 724469 707913 134558 141707 883025 912039 647900 821557 146063 839729 216626 359915 041911 151797 360506 912356 023588 668066 191456 072540 709665 228129 603530 385976 843175 750924 851540 512219 021150 539918 781229 434043 671641 556968 554417 032108 636690 453961 205031 924016 147823 690138 446794 878949 143583 (279 digits), a[556] = 1
                                                                                      A[557]/B[557] = 12 351997 694500 325438 599356 232444 034437 277761 006337 087359 064110 091706 898833 014624 028749 075524 631891 205192 309380 210658 220282 385092 241774 721029 089104 576801 806016 727071 286468 665550 395049 204143 629185 594185 343112 460257 539103 454084 195489 420547 339183 072595 843963 132715 766195 168142 024593 (278 digits)/1200 534202 292791 770956 755156 923753 260535 084255 445927 504576 001756 756758 485348 013438 031130 336924 762769 684875 485848 358264 099006 291729 400234 229412 609563 846361 610333 286643 500517 211543 732212 738629 620266 781226 241449 977351 164001 789518 449132 180098 065259 703270 066742 383580 089434 539402 729439 (280 digits), a[557] = 1
                                                                                      A[558]/B[558] = 20 101474 897106 165799 546376 392791 932203 804404 472911 416420 642489 421455 437240 245174 537783 485692 157122 694640 362907 536590 088082 929326 022361 881382 982671 500416 034670 268926 957164 343328 870479 545248 197571 325626 876675 375341 671019 339350 383801 358067 950433 962355 077085 342121 463962 553890 153155 (278 digits)/1953 733212 017261 478869 889715 065461 143560 996295 093828 326133 147820 596487 701974 373353 073041 488722 123276 597231 509437 026330 290462 364270 109899 457542 213094 232338 453509 037568 352057 723762 753363 278548 401496 215269 913091 534319 718418 821627 085822 634059 270291 627286 214566 073718 536229 418351 873022 (280 digits), a[558] = 1
                                                                                      A[559]/B[559] = 92 757897 282924 988636 784861 803611 763252 495378 897982 753041 634067 777528 647793 995322 179883 018293 260381 983753 761010 357018 572614 102396 331222 246561 019790 578465 944697 802779 115126 038865 876967 385136 419470 896692 849813 961624 223180 811485 730694 852819 140918 922016 152304 501201 622045 383702 637213 (278 digits)/9015 467050 361837 686436 314017 185597 834779 069435 821240 809108 593039 142709 293245 506850 323296 291813 255876 073801 523596 463585 260855 748809 839832 059581 461940 775715 424369 436916 908748 106594 745665 852823 226251 642305 893816 114630 037677 076026 792422 716335 146426 212414 925006 678454 234352 212810 221527 (280 digits), a[559] = 4
                                                                                      A[560]/B[560] = 205 617269 462956 143073 116100 000015 458708 795162 268876 922503 910624 976512 732828 235818 897549 522278 677886 662147 884928 250627 233311 134118 684806 374505 022252 657347 924065 874485 187416 421060 624414 315521 036513 119012 576303 298590 117380 962321 845191 063706 232271 806387 381694 344524 708053 321295 427581 (279 digits)/19984 667312 740936 851742 517749 436656 813119 135166 736309 944350 333898 881906 288465 387053 719634 072348 635028 744834 556629 953500 812173 861889 789563 576705 136975 783769 302247 911402 169553 936952 244694 984194 853999 499881 700723 763579 793772 973680 670668 066729 563144 052116 064579 430627 004933 843972 316076 (281 digits), a[560] = 2
                                                                                      A[561]/B[561] = 503 992436 208837 274783 017061 803642 680670 085703 435736 598049 455317 730554 113450 466959 974982 062850 616155 308049 530866 858273 039236 370633 700834 995571 064295 893161 792829 551749 489958 880987 125796 016178 492497 134718 002420 558804 457942 736129 421076 980231 605462 534790 915693 190251 038152 026293 492375 (279 digits)/48984 801675 843711 389921 349516 058911 461017 339769 293860 697809 260836 906521 870176 280957 762564 436510 525933 563470 636856 370586 885203 472589 418959 212991 735892 343254 028865 259721 247855 980499 235055 821212 934250 642069 295263 641789 625223 023388 133758 849794 272714 316647 054165 539708 244219 900754 853679 (281 digits), a[561] = 2
                                                                                      A[562]/B[562] = 709 609705 671793 417856 133161 803658 139378 880865 704613 520553 365942 707066 846278 702778 872531 585129 294041 970197 415795 108900 272547 504752 385641 370076 086548 550509 716895 426234 677375 302047 750210 331699 529010 253730 578723 857394 575323 698451 266268 043937 837734 341178 297387 534775 746205 347588 919956 (279 digits)/68969 468988 584648 241663 867265 495568 274136 474936 030170 642159 594735 788428 158641 668011 482198 508859 160962 308305 193486 324087 697377 334479 208522 789696 872868 127023 331113 171123 417409 917451 479750 805407 788250 141950 995987 405369 418995 997068 804426 916523 835858 368763 118744 970335 249153 744727 169755 (281 digits), a[562] = 1
                                                                                      A[563]/B[563] = 6890 479787 254978 035488 215518 036565 935080 013494 777258 283029 748802 094155 729958 791969 827766 329014 262533 039826 273022 838375 492163 913405 171607 326255 843232 847749 244888 387861 586336 599416 877689 001474 253589 418293 210935 275355 635856 022190 817489 375672 145071 605395 592181 003232 754000 154593 771979 (280 digits)/669710 022573 105545 564896 154905 519025 928245 614193 565396 477245 613459 002375 297951 293061 102351 016242 974594 338217 378233 287376 161599 482902 295664 320263 591705 486464 008883 799832 004545 237562 552813 069883 028501 919628 259150 290114 396186 997007 373601 098508 795439 635515 122870 272725 486603 603299 381474 (282 digits), a[563] = 9
                                                                                      A[564]/B[564] = 28271 528854 691705 559808 995233 949921 879698 934844 813646 652672 361151 083689 766113 870658 183596 901186 344174 129502 507886 462402 241203 158373 072070 675099 459479 941506 696448 977681 022721 699715 260966 337596 543367 926903 422464 958817 118747 787214 536225 546626 418020 762760 666111 547706 762205 965964 007872 (281 digits)/2 747809 559281 006830 501248 486887 571671 987118 931710 291756 551142 048571 797929 350446 840255 891602 573831 059339 661174 706419 473592 343775 266088 391180 070751 239690 072879 366648 370451 435590 867701 691003 084939 902257 820464 032588 565827 003743 985098 298831 310559 017616 910823 610226 061237 195568 157924 695651 (283 digits), a[564] = 4
                                                                                      A[565]/B[565] = 16 149933 455816 218852 686424 494103 441959 243171 809883 369496 958947 966070 881012 180978 937792 661596 906416 785960 985758 276192 870055 219167 344429 323962 808047 206279 448072 917254 643725 560427 136830 889467 769100 516675 680147 438426 759930 440842 521691 002276 499356 834927 141735 941874 743793 973606 720042 266891 (284 digits)/1569 668968 372028 005761 777782 167708 943730 573155 620770 158387 179355 347955 620034 403097 079175 207420 673777 857540 868974 743752 708604 457276 419373 659484 719221 454737 100582 365103 327601 726930 695228 115574 570567 217717 404590 867221 377333 534002 488136 006279 427707 854695 715796 561951 239164 156021 778300 598195 (286 digits), a[565] = 571
                                                                                      A[566]/B[566] = 16 178204 984670 910558 246233 489337 391881 122870 744728 183143 611620 327221 964701 947092 808450 845193 807603 130135 115260 784079 332457 460370 502802 396033 483146 665759 389579 613703 621406 583148 836546 150434 106697 060043 607050 860891 718747 559590 308905 538502 045983 252947 904496 607986 291500 735812 686006 274763 (284 digits)/1572 416777 931309 012592 279030 654596 515402 560274 552480 450143 730497 396527 417963 753543 919431 099023 247608 916880 530149 450172 182196 801051 685462 050664 789972 694427 173461 731751 698053 162521 562929 806577 655507 119975 225054 899809 943160 537746 473234 305110 738266 872312 626620 172177 300401 351589 936225 293846 (286 digits), a[566] = 1
                                                                                      A[567]/B[567] = 177 931983 302525 324435 148759 387477 360770 471879 257165 200933 075151 238290 528031 651907 022301 113534 982448 087312 138366 116986 194629 822872 372453 284297 639513 863873 343869 054290 857791 391915 502292 393808 836071 117111 750656 047343 947406 036745 610746 387296 959189 364406 186702 021737 658801 331733 580105 014521 (285 digits)/17293 836747 685118 131684 568088 713674 097756 175901 145574 659824 484329 313229 799671 938536 273486 197653 149867 026346 170469 245474 530572 467793 273994 166132 618948 399008 835199 682620 308133 352146 324526 181351 125638 417469 655139 865320 808938 911467 220479 057386 810376 577821 981998 283724 243177 671921 140553 536655 (287 digits), a[567] = 10
                                                                                      A[568]/B[568] = 1083 770104 799822 857169 138789 814201 556503 954146 287719 388742 062527 756965 132891 858534 942257 526403 702291 654007 945457 485996 500236 397604 737522 101819 320229 848999 452793 939448 768154 934641 850300 513287 123123 762714 110987 144955 403183 780063 973383 862283 801119 439385 024708 738412 244308 726214 166636 361889 (286 digits)/105335 437264 042017 802699 687562 936641 101939 615681 425928 409090 636473 275906 215995 384761 560348 284942 146811 074957 552964 923019 365631 607811 329427 047460 503663 088480 184659 827473 546853 275399 510086 894684 409337 624793 155894 091734 796794 006549 796108 649431 600526 339244 518609 874522 759467 383116 779546 513776 (288 digits), a[568] = 6
                                                                                      A[569]/B[569] = 3429 242297 701993 895942 565128 830082 030282 334318 120323 367159 262734 509185 926707 227511 849073 692746 089323 049335 974738 574975 695339 015686 585019 589755 600203 410871 702250 872637 162256 195841 053193 933670 205442 405254 083617 482210 156957 376937 530897 974148 362547 682561 260828 236974 391727 510376 080014 100188 (286 digits)/333300 148539 811171 539783 630777 523597 403575 022945 423359 887096 393749 140948 447658 092820 954531 052479 590300 251218 829364 014532 627467 291227 262275 308514 129937 664449 389179 165040 948693 178344 854786 865404 353651 291849 122822 140525 199320 931116 608805 005681 611955 595555 537827 907292 521579 821271 479193 077983 (288 digits), a[569] = 3
                                                                                      A[570]/B[570] = 4513 012402 501816 753111 703918 644283 586786 288464 408042 755901 325262 266151 059599 086046 791331 219149 791614 703343 920196 060972 195575 413291 322541 691574 920433 259871 155044 812085 930411 130482 903494 446957 328566 167968 194604 627165 560141 157001 504281 836432 163667 121946 285536 975386 636036 236590 246650 462077 (286 digits)/438635 585803 853189 342483 318340 460238 505514 638626 849288 296187 030222 416854 663653 477582 514879 337421 737111 326176 382328 937551 993098 899038 591702 355974 633600 752929 573838 992514 495546 453744 364873 760088 762988 916642 278716 232259 996114 937666 404913 655113 212481 934800 056437 781815 281047 204388 258739 591759 (288 digits), a[570] = 1
                                                                                      A[571]/B[571] = 21481 291907 709260 908389 380803 407216 377427 488175 752494 390764 563783 573790 165103 571699 014398 569345 255781 862711 655522 818864 477640 668851 875186 356055 281936 450356 322430 120980 883900 717772 667171 721499 519707 077126 862035 990872 397522 004943 548025 319877 017216 170346 402976 138520 935872 456737 066615 948496 (287 digits)/2 087842 491755 223928 909716 904139 364551 425633 577452 820513 071844 514638 808367 102272 003151 014048 402166 538745 555924 358679 764740 599862 887381 629084 732412 664340 676167 684535 135098 930878 993322 314281 905759 405606 958418 237687 069565 183780 681782 228459 626134 461883 334755 763579 034553 645768 638824 514151 445019 (289 digits), a[571] = 4
                                                                                      A[572]/B[572] = 68956 888125 629599 478279 846328 865932 719068 752991 665525 928195 016612 987521 554909 801143 834526 927185 558960 291478 886764 517565 628497 419846 948100 759740 766242 610940 122335 175028 582113 283800 905009 611455 887687 399348 780712 599782 752707 171832 148357 796063 215315 632985 494465 390949 443653 606801 446498 307565 (287 digits)/6 702163 061069 524976 071634 030758 553892 782415 370985 310827 511720 574138 841955 970469 487035 557024 543921 353347 993949 458368 231773 792687 561183 478956 553212 626622 781432 627444 397811 288183 433711 307719 477366 979809 791896 991777 440955 547456 983013 090292 533516 598131 939067 347174 885476 218353 120861 801193 926816 (289 digits), a[572] = 3
                                                                                      A[573]/B[573] = 90438 180033 338860 386669 227132 273149 096496 241167 418020 318959 580396 561311 720013 372842 848925 496530 814742 154190 542287 336430 106138 088698 823287 115796 048179 061296 444765 296009 466014 001573 572181 332955 407394 476475 642748 590655 150229 176775 696383 115940 232531 803331 897441 529470 379526 063538 513114 256061 (287 digits)/8 790005 552824 748904 981350 934897 918444 208048 948438 131340 583565 088777 650323 072741 490186 571072 946087 892093 549873 817047 996514 392550 448565 108041 285625 290963 457600 311979 532910 219062 427033 622001 383126 385416 750315 229464 510520 731237 664795 318752 159651 060015 273823 110753 920029 864121 759686 315345 371835 (289 digits), a[573] = 1
                                                                                      A[574]/B[574] = 159395 068158 968459 864949 073461 139081 815564 994159 083546 247154 597009 548833 274923 173986 683452 423716 373702 445669 429051 853995 734635 508545 771387 875536 814421 672236 567100 471038 048127 285374 477190 944411 295081 875824 423461 190437 902936 348607 844740 912003 447847 436317 391906 920419 823179 670339 959612 563626 (288 digits)/15 492168 613894 273881 052984 965656 472336 990464 319423 442168 095285 662916 492279 043210 977222 128097 490009 245441 543823 275416 228288 185238 009748 586997 838837 917586 239032 939423 930721 507245 860744 929720 860493 365226 542212 221241 951476 278694 647808 409044 693167 658147 212890 457928 805506 082474 880548 116539 298651 (290 digits), a[574] = 1
                                                                                      A[575]/B[575] = 568623 384510 244239 981516 447515 690394 543191 223644 668659 060423 371425 207811 544782 894802 899282 767679 935849 491198 829442 898417 310044 614336 137450 742406 491444 078006 146066 709123 610395 857697 003754 166189 292640 103948 913132 161968 859038 222599 230605 851950 576074 112284 073162 290729 849065 074558 391951 946939 (288 digits)/55 266511 394507 570548 140305 831867 335455 179441 906708 457844 869422 077527 127160 202374 421852 955365 416115 628418 181343 643296 681378 948264 477810 869034 802139 043722 174699 130251 325074 740800 009268 411163 964606 481096 376951 893190 364949 567321 608220 545886 239154 034456 912494 484540 336548 111546 401330 664963 267788 (290 digits), a[575] = 3
                                                                                      A[576]/B[576] = 728018 452669 212699 846465 520976 829476 358756 217803 752205 307577 968434 756644 819706 068789 582735 191396 309551 936868 258494 752413 044680 122881 908838 617943 305865 750242 713167 180161 658523 143071 480945 110600 587721 979773 336593 352406 761974 571207 075346 763954 023921 548601 465069 211149 672244 744898 351564 510565 (288 digits)/70 758680 008401 844429 193290 797523 807792 169906 226131 900012 964707 740443 619439 245585 399075 083462 906124 873859 725166 918712 909667 133502 487559 456032 640976 961308 413732 069675 255796 248045 870013 340884 825099 846322 919164 114432 316425 846016 256028 954930 932321 692604 125384 942469 142054 194021 281878 781502 566439 (290 digits), a[576] = 1
                                                                                      A[577]/B[577] = 6 392771 005863 945838 753240 615330 326205 413240 966074 686301 521047 118903 260970 102431 445119 561164 298850 412264 986144 897400 917721 667485 597391 408159 685952 938370 079947 851404 150416 878581 002268 851315 050993 994415 942135 605878 981222 954834 792255 833379 963582 767446 501095 793715 979927 227023 033745 204468 031459 (289 digits)/621 335951 461722 325981 686632 212057 797792 538691 715763 657948 587084 001076 082674 167057 614453 623068 665114 619295 982678 992999 958716 016284 378286 517295 929954 734189 484555 687653 371444 725166 969375 138242 565405 251679 730264 808648 896356 335451 656452 185333 697727 575289 915574 024293 472981 663716 656360 916983 799300 (291 digits), a[577] = 8
                                                                                      A[578]/B[578] = 7 120789 458533 158538 599706 136307 155681 771997 183878 438506 828625 087338 017614 922137 513909 143899 490246 721816 923013 155895 670134 712165 720273 316998 303896 244235 830190 564571 330578 537104 145340 332260 161594 582137 921908 942472 333629 716809 363462 908726 727536 791368 049697 258785 191076 899267 778643 556032 542024 (289 digits)/692 094631 470124 170410 879923 009581 605584 708597 941895 557961 551791 741519 702113 412643 013528 706531 571239 493155 707845 911712 868383 149786 865845 973328 570931 695497 898287 757328 627240 973212 839388 479127 390505 098002 649428 923081 212782 181467 912481 140264 630049 267894 040958 966762 615035 857737 938239 698486 365739 (291 digits), a[578] = 1
                                                                                      A[579]/B[579] = 49 117507 757062 897070 351477 433173 260296 045224 069345 317342 492797 642931 366659 635256 528574 424561 240330 743166 524223 832774 938529 940479 919031 310149 509330 403785 061091 238832 133888 101205 874310 844876 020561 487243 473589 260712 983001 255690 973033 285740 328803 515654 799279 346427 126388 622629 705606 540663 283603 (290 digits)/4773 903740 282467 348446 966170 269547 431300 790279 367137 005717 897834 450194 295354 642915 695625 862258 092551 578230 229754 463277 169014 915005 573362 357267 355544 907176 874282 231625 134890 564444 005706 013006 908435 839695 626838 347136 173049 424259 131339 026921 478023 182654 161327 824869 163196 810144 285799 107901 993734 (292 digits), a[579] = 6
                                                                                      A[580]/B[580] = 56 238297 215596 055608 951183 569480 415977 817221 253223 755849 321422 730269 384274 557394 042483 568460 730577 464983 447236 988670 608664 652645 639304 627147 813226 648020 891281 803403 464466 638310 019651 177136 182156 069381 395498 203185 316630 972500 336496 194467 056340 307022 848976 605212 317465 521897 484250 096695 825627 (290 digits)/5465 998371 752591 518857 846093 279129 036885 498877 309032 563679 449626 191713 997468 055558 709154 568789 663791 071385 937600 374990 037398 064792 439208 330595 926476 602674 772569 988953 762131 537656 845094 492134 298940 937698 276267 270217 385831 605727 043820 167186 108072 450548 202286 791631 778232 667882 224038 806388 359473 (292 digits), a[580] = 1
                                                                                      A[581]/B[581] = 217 832399 403851 063897 205028 141614 508229 496887 829016 584890 457065 833739 519483 307438 656025 129943 432063 138116 865934 798786 764523 898416 836945 191592 949010 347847 734936 649042 527288 016135 933264 376284 567029 695387 660083 870268 932894 173191 982521 869141 497824 436723 346209 162064 078785 188322 158356 830750 760484 (291 digits)/21171 898855 540241 905020 504450 106934 541957 286911 294234 696756 246713 025336 287758 809591 823089 568627 083924 792388 042555 588247 281209 109382 890987 349055 134974 715201 191992 198486 421285 177414 540989 489409 805258 652790 455640 157788 330544 241440 262799 528479 802240 534298 768188 199764 497894 813790 957915 527067 072153 (293 digits), a[581] = 3
                                                                                      A[582]/B[582] = 3541 556687 677213 077964 231633 835312 547649 767426 517489 114096 634476 070101 696007 476412 538885 647555 643587 674853 302193 769258 841047 027315 030427 692634 997392 213584 650268 188083 901074 896484 951881 197689 254631 195583 956840 127488 242937 743572 056846 100731 021531 294596 388323 198237 578028 535052 017959 388707 993371 (292 digits)/344216 380060 396461 999185 917294 990081 708202 089458 016787 711779 397034 597094 601609 009027 878587 666823 006587 749594 618489 786946 536743 814918 695005 915478 086072 045893 844445 164736 502694 376289 500926 322691 183079 382345 566509 794830 674539 468771 248612 622862 943920 999328 493297 987863 744549 688537 550687 239461 513921 (294 digits), a[582] = 16
                                                                                      A[583]/B[583] = 3759 389087 081064 141861 436661 976927 055879 264314 346505 698987 091541 903841 215490 783851 194910 777499 075650 812970 168128 568045 605570 925731 867372 884227 946402 561432 385204 837126 428362 912620 885145 573973 821660 890971 616923 997757 175831 916764 039367 969872 519355 731319 734532 360301 656813 723374 176316 219458 753855 (292 digits)/365388 278915 936703 904206 421745 097016 250159 376369 311022 408535 643747 622430 889367 818619 701677 235450 090512 541982 661045 375193 817952 924301 585993 264533 221046 761095 036437 363222 923979 553704 041915 812100 988338 035136 022149 952619 005083 710211 511412 151342 746161 533627 261486 187628 242444 502328 508602 766528 586074 (294 digits), a[583] = 1
                                                                                      A[584]/B[584] = 101285 672951 784880 766361 584845 235416 000510 639599 526637 287761 014565 569973 298767 856543 606565 862531 610508 812077 673536 538444 585891 096343 582122 682561 603858 810826 665593 953371 038510 624627 965666 121008 617814 360845 996864 069174 814567 579437 080413 317416 524780 308909 486164 566080 655185 342780 602181 094635 593601 (294 digits)/9 844311 631874 750763 508552 882667 512504 212345 875060 103370 333706 134472 780297 725172 293140 122195 788525 359913 841143 805669 541985 803519 846759 930830 793341 833287 834364 791816 608532 526162 772594 590737 437316 879868 295882 142408 562924 806715 934270 545328 557774 344120 873637 291938 866198 048106 749078 774359 169204 751845 (295 digits), a[584] = 26
                                                                                      A[585]/B[585] = 105045 062038 865944 908223 021507 212343 056389 903913 873142 986748 106107 473814 514258 640394 801476 640030 686159 625047 841665 106490 191462 022075 449495 566789 550261 372259 050798 790497 466873 537248 850811 694982 439475 251817 613788 066931 990399 496201 119781 287289 044136 040229 220696 926382 311999 066154 778497 314094 347456 (294 digits)/10 209699 910790 687467 412759 304412 609520 462505 251429 414392 742241 778220 402728 614540 111759 823873 023975 450426 383126 466714 917179 621472 771061 516824 057875 054334 595459 828253 971755 450142 326298 632653 249417 868206 331018 164558 515543 811799 644482 056740 709117 090282 407264 553425 053826 290551 251407 282961 935733 337919 (296 digits), a[585] = 1
                                                                                      A[586]/B[586] = 311375 797029 516770 582807 627859 660102 113290 447427 272923 261257 226780 517602 327285 137333 209519 142592 982828 062173 356866 751424 968815 140494 481113 816140 704381 555344 767191 534365 972257 699125 667289 510973 496764 864481 224440 203038 795366 571839 319975 891994 613052 389367 927558 418845 279183 475090 159175 722824 288513 (294 digits)/30 263711 453456 125698 334071 491492 731545 137356 377918 932155 818189 690913 585754 954252 516659 769941 836476 260766 607396 739099 376345 046465 388882 964478 909091 941957 025284 448324 552043 426447 425191 856043 936152 616280 957918 471525 594012 430315 223234 658809 976008 524685 688166 398788 973850 629209 251893 340283 040671 427683 (296 digits), a[586] = 2
                                                                                      A[587]/B[587] = 17 853465 492721 321868 128257 809507 838163 513945 407268 429768 878410 032596 977147 169511 468387 744067 767830 707359 168929 183069 937713 413925 030260 872983 086809 700010 026910 780716 249357 885562 387411 886313 820471 755072 527247 406879 640143 326294 091042 358407 130981 988122 234201 091526 800563 225457 146293 851513 515078 792697 (296 digits)/1735 241252 757789 852272 454834 319498 307593 291818 792808 547274 379054 160294 790761 006933 561366 710557 703122 314123 004740 595379 368847 269999 937390 492121 876115 745885 036673 382753 438230 757645 562234 427157 610116 996220 932371 041517 374252 339767 368857 608909 341602 997366 632749 284396 563312 155478 609327 679095 254004 715850 (298 digits), a[587] = 57
                                                                                      A[588]/B[588] = 89 578703 260636 126111 224096 675398 850919 683017 483769 421767 653307 389765 403338 174842 479271 929857 981746 519623 906819 272216 439992 038440 291798 846029 250189 204431 689898 670772 781155 400069 636185 098858 613332 272127 500718 258838 403755 426837 027051 112011 546904 553663 560373 385192 421661 406469 206559 416743 298218 251998 (296 digits)/8706 469975 242405 387060 608243 088984 269511 596450 341961 668527 713460 492387 539559 988920 323493 322730 352087 831381 631099 715996 220581 396465 075835 425088 289670 671382 208651 362091 743197 214675 236363 991831 986737 597385 619773 679112 465274 129152 067522 703356 684023 511518 851912 820771 790411 406602 298531 735759 310695 006933 (298 digits), a[588] = 5
                                                                                      A[589]/B[589] = 1540 691420 923535 465758 937901 291288 303798 125242 631348 599818 984635 658608 833896 141833 616010 551653 457521 540965 584856 810749 417578 067409 990841 255480 340026 175348 755188 183853 528999 686746 202558 566910 247120 381240 039457 807132 503985 582523 550911 262603 428359 400402 760548 639797 968807 135433 657803 936149 584789 076663 (298 digits)/149745 230831 878681 432302 794966 832230 889290 431474 606156 912245 507882 530882 963280 818579 060753 196973 688615 447610 733435 767315 118731 009906 226592 718622 800517 159382 583746 538313 072583 407124 580422 288301 384656 151776 468523 586429 283912 535352 516743 565972 970002 693187 115267 237517 000306 067717 684367 187003 535819 833711 (300 digits), a[589] = 17
                                                                                      A[590]/B[590] = 10874 418649 725384 386423 789405 714416 977506 559715 903209 620500 545757 000027 240611 167677 791345 791432 184397 306383 000816 947462 363038 510310 227687 634391 630372 431872 976215 957747 484153 207293 054095 067230 343174 940807 776922 908765 931654 504501 883429 950235 545420 356482 884213 863778 203311 354504 811186 969790 391741 788639 (299 digits)/1 056923 085798 393175 413180 173010 914600 494544 616772 585060 054246 268638 208568 282525 718973 748765 701546 172395 964656 765150 087202 051698 465808 661984 455447 893290 787060 294877 130283 251281 064547 299320 009941 679330 659820 899438 784117 452661 876619 684727 665167 474042 363828 658783 483390 792553 880626 089102 044784 061433 842910 (301 digits), a[590] = 7
                                                                                      A[591]/B[591] = 45038 366019 825073 011454 095524 148956 213824 364106 244187 081821 167663 658717 796340 812544 781393 717382 195110 766497 588124 600598 869732 108650 901591 793046 861515 902840 660052 014843 465612 515918 418938 835831 619820 144471 147149 442196 230603 600531 084631 063545 610040 826334 297404 094910 782052 553452 902551 815311 151756 231219 (299 digits)/4 377437 574025 451383 085023 487010 490632 867468 898564 946397 129230 582435 365156 093383 694474 055816 003158 378199 306237 794036 116123 325524 873140 874530 540414 373680 307623 763255 059446 077707 665313 777702 328068 101978 791060 066278 722899 094560 041831 255654 226642 866172 148501 750401 171080 170521 590222 040775 366139 781555 205351 (301 digits), a[591] = 4
                                                                                      A[592]/B[592] = 55912 784669 550457 397877 884929 863373 191330 923822 147396 702321 713420 658745 036951 980222 572739 508814 379508 072880 588941 548061 232770 618961 129279 427438 491888 334713 636267 972590 949765 723211 473033 903061 962995 085278 924072 350962 162258 105032 968061 013781 155461 182817 181617 958688 985363 907957 713738 785101 543498 019858 (299 digits)/5 434360 659823 844558 498203 660021 405233 362013 515337 531457 183476 851073 573724 375909 413447 804581 704704 550595 270894 559186 203325 377223 338949 536514 995862 266971 094684 058132 189729 328988 729861 077022 338009 781309 450880 965717 507016 547221 918450 940381 891810 340214 512330 409184 654470 963075 470848 129877 410923 842989 048261 (301 digits), a[592] = 1
                                                                                      A[593]/B[593] = 212776 720028 476445 205087 750313 739075 787817 135572 686377 188786 307925 634952 907196 753212 499612 243825 333634 985139 354949 244782 568043 965534 289430 075362 337180 906981 568855 932616 314909 685552 838040 545017 508805 400307 919366 495082 717377 915629 988814 104889 076424 374785 842257 970977 738144 277326 043768 170615 782250 290793 (300 digits)/20 680519 553496 985058 579634 467074 706332 953509 444577 540768 679661 135656 086329 221111 934817 469561 117272 029985 118921 471594 726099 457194 889989 484075 528001 174593 591675 937651 628634 064673 854897 008769 342097 445907 143702 963431 243948 736225 797184 076799 902073 886815 685492 977955 134493 059748 002766 430407 598911 310522 350134 (302 digits), a[593] = 3
                                                                                      A[594]/B[594] = 694242 944754 979793 013141 135871 080600 554782 330540 206528 268680 637197 563603 758542 239860 071576 240290 380413 028298 653789 282408 936902 515563 997569 653525 503431 055658 342835 770439 894494 779869 987155 538114 489411 286202 682171 836210 314391 851922 934503 328448 384734 307174 708391 871622 199796 739935 845043 296948 890248 892237 (300 digits)/67 475919 320314 799734 237107 061245 524232 222541 849070 153763 222460 258041 832712 039245 217900 213265 056520 640550 627658 973970 381623 748808 008917 988741 579865 790751 869711 871087 075631 523010 294552 103330 364302 119030 881989 856011 238862 755899 310003 170781 598032 000661 568809 343050 057950 142319 479147 421100 207657 774556 098663 (302 digits), a[594] = 3
                                                                                      A[595]/B[595] = 907019 664783 456238 218228 886184 819676 342599 466112 892905 457466 945123 198556 665738 993072 571188 484115 714048 013438 008738 527191 504946 481098 286999 728887 840611 962639 911691 703056 209404 465422 825196 083131 998216 686510 601538 331293 031769 767552 923317 433337 461158 681960 550649 842599 937941 017261 888811 467564 672499 183030 (300 digits)/88 156438 873811 784792 816741 528320 230565 176051 293647 694531 902121 393697 919041 260357 152717 682826 173792 670535 746580 445565 107723 206002 898907 472817 107866 965345 461387 808738 704265 587684 149449 112099 706399 564938 025692 819442 482811 492125 107187 247581 500105 887477 254302 321005 192443 202067 481913 851507 806569 085078 448797 (302 digits), a[595] = 1
                                                                                      A[596]/B[596] = 24 276754 229124 841986 687092 176676 392185 462368 449475 422070 162821 210400 726077 067756 059746 922476 827298 945661 377686 880990 989388 065511 024119 459562 604609 359342 084296 046820 049901 339010 880863 442253 699546 443045 135478 322168 449829 140405 808298 940756 595222 374860 038149 025287 779220 586263 188744 954141 453630 375227 651017 (302 digits)/2359 543330 039421 204347 472386 797571 518926 799875 483910 211592 677616 494187 727784 808531 188559 966745 575130 074480 038750 558663 182427 104883 380512 281986 384406 889733 865794 898293 386536 802798 180229 017922 730690 807419 550003 161515 791961 551152 096871 607900 600785 075070 180669 689185 061473 396074 008907 560303 178453 986595 767385 (304 digits), a[596] = 26
                                                                                      A[597]/B[597] = 122 290790 810407 666171 653689 769566 780603 654441 713490 003256 271572 997126 828942 004519 291807 183572 620610 442354 901872 413693 474131 832501 601695 584812 751934 637322 384120 145791 952562 904458 869740 036464 580864 213442 363902 212380 580438 733798 809047 627100 409449 335458 872705 677088 738702 869256 960986 659518 735716 548637 438115 (303 digits)/11885 873089 070917 806530 178675 516177 825199 175428 713198 752495 290203 864636 557965 303013 095517 516554 049443 042935 940333 238881 019858 730419 801468 882749 029901 414014 790362 300205 636949 601675 050594 201713 359853 602035 775708 627021 442619 247885 591545 287084 504031 262828 157650 766930 499810 182437 526451 653023 698839 018057 285722 (305 digits), a[597] = 5
                                                                                      A[598]/B[598] = 880 312289 901978 505188 262920 563643 856411 043460 443905 444864 063832 190288 528671 099391 102397 207485 171572 042145 690793 776845 308310 893022 235988 553251 868151 820598 773137 067363 717841 670222 969043 697505 765595 937141 682793 808832 512900 276997 471632 330459 461367 723072 147088 764908 950140 671061 915651 570772 603646 215689 717822 (303 digits)/85560 654953 535845 850058 723115 410816 295321 027876 476301 479059 709043 546643 633541 929622 857182 582623 921231 375031 621083 230830 321438 217821 990794 461229 593716 787837 398330 999732 845184 014523 534388 429916 249666 021669 979963 550665 890296 286351 237688 617492 129003 914867 284225 057698 560144 673136 694069 131469 070327 112996 767439 (305 digits), a[598] = 7
                                                                                      A[599]/B[599] = 1882 915370 614364 676548 179530 896854 493425 741362 601300 892984 399237 377703 886284 203301 496601 598542 963754 526646 283459 967384 090753 618546 073672 691316 488238 278519 930394 280519 388246 244904 807827 431476 112056 087725 729489 830045 606239 287793 752312 288019 332184 781603 166883 206906 638984 211380 792289 801063 943008 980016 873759 (304 digits)/183007 182996 142609 506647 624906 337810 415841 231181 665801 710614 708290 957923 825049 162258 809882 681801 891905 792999 182499 700541 662735 166063 783057 805208 217334 989689 587024 299671 327317 630722 119371 061545 859185 645375 735635 728353 223211 820588 066922 522068 762039 092562 726100 882327 620099 528710 914589 915961 839493 244050 820600 (306 digits), a[599] = 2
                                                                                      A[600]/B[600] = 2763 227660 516343 181736 442451 460498 349836 784823 045206 337848 463069 567992 414955 302692 598998 806028 135326 568791 974253 744229 399064 511568 309661 244568 356390 099118 703531 347883 106087 915127 776871 128981 877652 024867 412283 638878 119139 564791 223944 618478 793552 504675 313971 971815 589124 882442 707941 371836 546655 195706 591581 (304 digits)/268567 837949 678455 356706 348021 748626 711162 259058 142103 189674 417334 504567 458591 091881 667065 264425 813137 168030 803582 931371 984173 383885 773852 266437 811051 777526 985355 299404 172501 645245 653759 491462 108851 667045 715599 279019 113508 106939 304611 139560 891043 007430 010325 940026 180244 201847 608659 047430 909820 357047 588039 (306 digits), a[600] = 1
                                                                                      A[601]/B[601] = 4646 143031 130707 858284 621982 357352 843262 526185 646507 230832 862306 945696 301239 505994 095600 404571 099081 095438 257713 711613 489818 130114 383333 935884 844628 377638 633925 628402 494334 160032 584698 560457 989708 112593 141773 468923 725378 852584 976256 906498 125737 286278 480855 178722 228109 093823 500231 172900 489664 175723 465340 (304 digits)/451575 020945 821064 863353 972928 086437 127003 490239 807904 900289 125625 462491 283640 254140 476947 946227 705042 961029 986082 631913 646908 549949 556910 071646 028386 767216 572379 599075 499819 275967 773130 553007 968037 312421 451235 007372 336719 927527 371533 661629 653082 099992 736426 822353 800343 730558 523248 963392 749313 601098 408639 (306 digits), a[601] = 1
                                                                                      A[602]/B[602] = 16701 656753 908466 756590 308398 532556 879624 363379 984728 030347 049990 405081 318673 820674 885800 019741 432569 855106 747394 879069 868518 901911 459663 052222 890275 232034 605308 233090 589090 395225 530966 810355 846776 362646 837604 045649 295276 122546 152715 337973 170764 363510 756537 507982 273452 163913 208634 890538 015647 722876 987601 (305 digits)/1 623292 900787 141649 946768 266806 007938 092172 729777 565817 890541 794210 892041 309511 854303 097909 103108 928266 051120 761830 827112 924899 033734 444582 481375 896212 079176 702494 096630 671959 473148 973151 150486 012963 604310 069304 301136 123667 889521 419212 124449 850289 307408 219606 407087 581275 393523 178405 937609 157761 160342 813956 (307 digits), a[602] = 3
                                                                                      A[603]/B[603] = 21347 799785 039174 614874 930380 889909 722886 889565 631235 261179 912297 350777 619913 326668 981400 424312 531650 950545 005108 590683 358337 032025 842996 988107 734903 609673 239233 861493 083424 555258 115665 370813 836484 475239 979377 514573 020654 975131 128972 244471 296501 649789 237392 686704 501561 257736 708866 063438 505311 898600 452941 (305 digits)/2 074867 921732 962714 810122 239734 094375 219176 220017 373722 790830 919836 354532 593152 108443 574857 049336 633309 012150 747913 459026 571807 583684 001492 553021 924598 846393 274873 695706 171778 749116 746281 703493 981000 916731 520539 308508 460387 817048 790745 786079 503371 407400 956033 229441 381619 124081 701654 901001 907074 761441 222595 (307 digits), a[603] = 1
                                                                                      A[604]/B[604] = 80745 056109 025990 601215 099541 202286 048285 032076 878433 813886 786882 457414 178413 800681 830001 292679 027522 706741 762720 651119 943529 997988 988654 016546 094986 061054 323009 817569 839364 060999 877962 922797 356229 788366 775736 589368 357241 047939 539632 071387 060269 312878 468715 568095 778135 937123 335233 080853 531583 418678 346424 (305 digits)/7 847896 665986 029794 377134 986008 291063 749701 389829 686986 263034 553719 955639 088968 179633 822480 251118 828193 087573 005571 204192 640321 784786 449060 140441 670008 618356 527115 183749 187295 720499 211996 260967 955966 354504 630922 226661 504831 340667 791449 482688 360403 529611 087706 095411 726132 765768 283370 640614 878985 444666 481741 (307 digits), a[604] = 3
                                                                                      A[605]/B[605] = 182837 912003 091155 817305 129463 294481 819456 953719 388102 888953 486062 265605 976740 928032 641403 009670 586696 364028 530549 892923 245397 028003 820305 021199 924875 731781 885253 496632 762152 677257 871591 216408 548944 051973 530850 693309 735137 071010 208236 387245 417040 275546 174823 822896 057833 131983 379332 225145 568478 735957 145789 (306 digits)/17 770661 253705 022303 564392 211750 676502 718578 999676 747695 316900 027276 265810 771088 467711 219817 551574 289695 187296 759055 867411 852451 153256 899612 833905 264616 083106 329104 063204 546370 190115 170274 225429 892933 625740 782383 761831 470050 498384 373644 751456 224178 466623 131445 420264 833884 655618 268396 182231 665045 650774 186077 (308 digits), a[605] = 2
                                                                                      A[606]/B[606] = 446420 880115 208302 235825 358467 791249 687198 939515 654639 591793 759006 988626 131895 656747 112807 312020 200915 434798 823820 436966 434324 053996 629264 058945 944737 524618 093516 810835 363669 415515 621145 355614 454117 892313 837437 975987 827515 189959 956104 845877 894349 863970 818363 213887 893802 201090 093897 531144 668540 890592 638002 (306 digits)/43 389219 173396 074401 505919 409509 644069 186859 389183 182376 896834 608272 487260 631145 115056 262115 354267 407583 462166 523682 939016 345224 091300 248285 808252 199240 784569 185323 310158 280036 100729 552544 711827 741833 605986 195689 750324 444932 337436 538738 985600 808760 462857 350596 935941 393902 077004 820163 005078 209076 746214 853895 (308 digits), a[606] = 2
                                                                                      A[607]/B[607] = 7 325571 993846 423991 590510 864947 954476 814639 985969 862336 357653 630174 083624 087071 435986 446320 001993 801343 320809 711676 884386 194581 891949 888529 964335 040676 125671 381522 469998 580863 325507 809916 906239 814830 328994 929858 309114 975380 110369 505913 921291 726638 099079 268635 245102 358668 349424 881692 723460 265132 985439 353821 (307 digits)/711 998168 028042 212727 659102 763904 981609 708329 226607 665725 666253 759636 061980 869410 308611 413663 219852 811030 581961 137982 891673 376036 614060 872185 765940 452468 636213 294277 025737 026947 801788 010989 614673 762271 321519 913419 767022 588967 897368 993468 521069 164345 872340 740996 395327 136317 887695 391004 263483 010273 590211 848397 (309 digits), a[607] = 16
                                                                                      A[608]/B[608] = 168 934576 738582 960108 817575 252270 744216 423918 616822 488375 817827 253010 911980 134538 684435 378167 357877 631811 813422 192388 777848 909707 568844 065453 238651 880288 415059 868533 620802 723525 902195 249234 199130 195215 459197 224179 085632 261257 728458 592125 035587 607026 142793 996973 851242 143174 237862 372830 170730 766599 555697 775885 (309 digits)/16419 347083 818366 967137 665282 979324 221092 478431 601159 494067 220671 079901 912820 627582 213118 776369 410882 061286 847272 697289 447503 994066 214700 308558 424882 606019 417474 953694 902109 899835 541853 805305 849324 274074 000944 204344 391843 991193 976923 388514 970191 588715 526694 393514 028465 529213 493998 813261 065187 445369 321087 367026 (311 digits), a[608] = 23
                                                                                      A[609]/B[609] = 176 260148 732429 384100 408086 117218 698693 238558 602792 350712 175480 883184 995604 221610 120421 824487 359871 433155 134231 904065 662235 104289 460793 953983 202986 920964 540731 250056 090801 304389 227703 059151 105370 010045 788192 154037 394747 236637 838828 098038 956879 333664 241873 265609 096344 501842 587287 254522 894191 031732 541137 129706 (309 digits)/17131 345251 846409 179865 324385 743229 202702 186760 827767 159792 886924 839537 974801 496992 521730 190032 630734 872317 429233 835272 339177 370102 828761 180744 190823 058488 053688 247971 927846 926783 343641 816295 463998 036345 322464 117764 158866 580161 874292 381983 491260 753061 399035 134510 423792 665531 381694 204265 328670 455642 911299 215423 (311 digits), a[609] = 1
                                                                                      A[610]/B[610] = 521 454874 203441 728309 633747 486708 141602 901035 822407 189800 168789 019380 903188 577758 925279 027142 077620 498122 081886 000520 102319 118286 490431 973419 644625 722217 496522 368645 802405 332304 357601 367536 409870 215307 035581 532253 875126 734533 406114 788202 949346 274354 626540 528192 043931 146859 412436 881875 959112 830064 637972 035297 (309 digits)/50682 037587 511185 326868 314054 465782 626496 851953 256693 813652 994520 758977 862423 621567 256579 156434 672351 805921 705740 367834 125858 734271 872222 670046 806528 722995 524851 449638 757803 753402 229137 437896 777320 346764 645872 439872 709577 151517 725508 152481 952713 094838 324764 662534 876050 860276 257387 221791 722528 356655 143685 797872 (311 digits), a[610] = 2
                                                                                      A[611]/B[611] = 697 715022 935871 112410 041833 603926 840296 139594 425199 540512 344269 902565 898792 799369 045700 851629 437491 931277 216117 904585 764554 222575 951225 927402 847612 643182 037253 618701 893206 636693 585304 426687 515240 225352 823773 686291 269873 971171 244942 886241 906225 608018 868413 793801 140275 648701 999724 136398 853303 861797 179109 165003 (309 digits)/67813 382839 357594 506733 638440 209011 829199 038714 084460 973445 881445 598515 837225 118559 778309 346467 303086 678239 134974 203106 465036 104374 700983 850790 997351 781483 578539 697610 685650 680185 572779 254192 241318 383109 968336 557636 868443 731679 599800 534465 443973 847899 723799 797045 299843 525807 639081 426057 051198 812298 054985 013295 (311 digits), a[611] = 1
                                                                                      A[612]/B[612] = 1219 169897 139312 840719 675581 090634 981899 040630 247606 730312 513058 921946 801981 377127 970979 878771 515112 429399 298003 905105 866873 340862 441657 900822 492238 365399 533775 987347 695611 968997 942905 794223 925110 440659 859355 218545 145000 705704 651057 674444 855571 882373 494954 321993 184206 795561 412161 018274 812416 691861 817081 200300 (310 digits)/118495 420426 868779 833601 952494 674794 455695 890667 341154 787098 875966 357493 699648 740127 034888 502901 975438 484160 840714 570940 590894 838646 573206 520837 803880 504479 103391 147249 443454 433587 801916 692089 018638 729874 614208 997509 578020 883197 325308 686947 396686 942738 048564 459580 175894 386083 896468 647848 773727 168953 198670 811167 (312 digits), a[612] = 1
                                                                                      A[613]/B[613] = 1916 884920 075183 953129 717414 694561 822195 180224 672806 270824 857328 824512 700774 176497 016680 730400 952604 360676 514121 809691 631427 563438 392883 828225 339851 008581 571029 606049 588818 605691 528210 220911 440350 666012 683128 904836 414874 676875 896000 560686 761797 490392 363368 115794 324482 444263 411885 154673 665720 553658 996190 365303 (310 digits)/186308 803266 226374 340335 590934 883806 284894 929381 425615 760544 757411 956009 536873 858686 813197 849369 278525 162399 975688 774047 055930 943021 274190 371628 801232 285962 681930 844860 129105 113773 374695 946281 259957 112984 582545 555146 446464 614876 925109 221412 840660 790637 772364 256625 475737 911891 535550 073905 824925 981251 253655 824462 (312 digits), a[613] = 1
                                                                                      A[614]/B[614] = 3136 054817 214496 793849 392995 785196 804094 220854 920413 001137 370387 746459 502755 553624 987660 609172 467716 790075 812125 714797 498300 904300 834541 729047 832089 373981 104805 593397 284430 574689 471116 015135 365461 106672 542484 123381 559875 382580 547058 235131 617369 372765 858322 437787 508689 239824 824046 172948 478137 245520 813271 565603 (310 digits)/304804 223693 095154 173937 543429 558600 740590 820048 766770 547643 633378 313503 236522 598813 848086 352271 253963 646560 816403 344987 646825 781667 847396 892466 605112 790441 785321 992109 572559 547361 176612 638370 278595 842859 196754 552656 024485 498074 250417 908360 237347 733375 820928 716205 651632 297975 432018 721754 598653 150204 452326 635629 (312 digits), a[614] = 1
                                                                                      A[615]/B[615] = 5052 939737 289680 746979 110410 479758 626289 401079 593219 271962 227716 570972 203529 730122 004341 339573 420321 150752 326247 524489 129728 467739 227425 557273 171940 382562 675835 199446 873249 180380 999326 236046 805811 772685 225613 028217 974750 059456 443058 795818 379166 863158 221690 553581 833171 684088 235931 327622 143857 799179 809461 930906 (310 digits)/491113 026959 321528 514273 134364 442407 025485 749430 192386 308188 390790 269512 773396 457500 661284 201640 532488 808960 792092 119034 702756 724689 121587 264095 406345 076404 467252 836969 701664 661134 551308 584651 538552 955843 779300 107802 470950 112951 175527 129773 078008 524013 593292 972831 127370 209866 967568 795660 423579 131455 705982 460091 (312 digits), a[615] = 1
                                                                                      A[616]/B[616] = 13241 934291 793858 287807 613816 744714 056673 023014 106851 545061 825820 888403 909815 013868 996343 288319 308359 091580 464620 763775 757757 839779 289392 843594 175970 139106 456475 992291 030928 935451 469768 487228 977084 652042 993710 179817 509375 501493 433175 826768 375703 099082 301703 544951 175032 608001 295908 828192 765852 843880 432195 427415 (311 digits)/1 287030 277611 738211 202483 812158 443414 791562 318909 151543 164020 414958 852528 783315 513815 170654 755552 318941 264482 400587 583057 052339 231046 090571 420657 417802 943250 719827 666048 975888 869630 279229 807673 355701 754546 755354 768260 966385 723976 601472 167906 393364 781403 007514 661867 906372 717709 367156 313075 445811 413115 864291 555811 (313 digits), a[616] = 2
                                                                                      A[617]/B[617] = 18294 874029 083539 034786 724227 224472 682962 424093 700070 817024 053537 459376 113344 743991 000684 627892 728680 242332 790868 288264 887486 307518 516818 400867 347910 521669 132311 191737 904178 115832 469094 723275 782896 424728 219323 208035 484125 560949 876234 622586 754869 962240 523394 098533 008204 292089 531840 155814 909710 643060 241657 358321 (311 digits)/1 778143 304571 059739 716756 946522 885821 817048 068339 343929 472208 805749 122041 556711 971315 831938 957192 851430 073443 192679 702091 755095 955735 212158 684752 824148 019655 187080 503018 677553 530764 830538 392324 894254 710390 534654 876063 437335 836927 776999 297679 471373 305416 600807 634699 033742 927576 334725 108735 869390 544571 570274 015902 (313 digits), a[617] = 1
                                                                                      A[618]/B[618] = 31536 808320 877397 322594 338043 969186 739635 447107 806922 362085 879358 347780 023159 757859 997027 916212 037039 333913 255489 052040 645244 147297 806211 244461 523880 660775 588787 184028 935107 051283 938863 210504 759981 076771 213033 387852 993501 062443 309410 449355 130573 061322 825097 643484 183236 900090 827748 984007 675563 486940 673852 785736 (311 digits)/3 065173 582182 797950 919240 758681 329236 608610 387248 495472 636229 220707 974570 340027 485131 002593 712745 170371 337925 593267 285148 807435 186781 302730 105410 241950 962905 906908 169067 653442 400395 109768 199998 249956 464937 290009 644324 403721 560904 378471 465585 864738 086819 608322 296566 940115 645285 701881 421811 315201 957687 434565 571713 (313 digits), a[618] = 1
                                                                                      A[619]/B[619] = 1 311304 015185 056829 261154 584029 961129 008015 755513 783887 662545 107229 718357 062894 816250 878829 192586 247292 932776 265919 421931 342496 346728 571479 423789 827017 613468 272585 736924 243567 218473 962486 353970 942120 572347 953692 110008 217669 121125 562063 046147 108365 476476 352397 481384 520917 195813 469548 500129 607813 607627 869621 573497 (313 digits)/127 450260 174065 775727 405628 052457 384522 770073 945527 658307 557606 854776 079425 497838 861686 938281 179744 836654 928392 516638 393192 859938 613768 624093 006572 744137 498797 370315 434792 468691 946964 331034 592253 142469 772819 425050 293363 989919 834007 294329 386699 925634 865020 542021 793943 578484 384290 111863 402999 792670 809756 387462 456135 (315 digits), a[619] = 41
                                                                                      A[620]/B[620] = 1 342840 823505 934226 583748 922073 930315 747651 202621 590810 024630 986588 066137 086054 574110 875857 108798 284332 266689 521408 473971 987740 494026 377690 668251 350898 274243 861372 920953 178674 269757 901349 564475 702101 649119 166725 497861 211170 183568 871473 495502 238938 537799 177495 124868 704154 095904 297297 484137 283377 094568 543474 359233 (313 digits)/130 515433 756248 573678 324868 811138 713759 378684 332776 153780 193836 075484 053995 837866 346817 940874 892490 007026 266318 109905 678341 667373 800549 926823 111982 986088 461703 277223 603860 122134 347359 440802 792251 392426 237756 715059 937688 393641 394911 672800 852285 790372 951840 150344 090510 518600 029575 813744 824811 107872 767443 822028 027848 (315 digits), a[620] = 1
                                                                                      A[621]/B[621] = 57 710618 602434 294345 778609 311135 034390 409366 265620 597908 697046 543928 496114 677186 928907 664827 762114 189248 133736 165075 328754 827597 095836 434487 490346 564745 131710 450248 416957 747886 548305 819168 061950 430389 835352 956163 020179 086816 831018 163949 857241 143784 064041 807192 725870 095389 223793 956042 833895 509651 579506 695544 661283 (314 digits)/5609 098477 936505 870217 050118 120283 362416 674815 922126 117075 698722 025106 347250 688225 428040 455026 664325 131758 113753 132676 883542 889638 236865 550663 709858 159852 890335 013706 796917 598334 536060 844751 866811 624371 758601 457567 676276 522858 420297 551965 182703 121298 842306 856473 595385 359685 626474 289146 045066 323327 042396 912639 625751 (316 digits), a[621] = 42
                                                                                      A[622]/B[622] = 463 027789 642980 288992 812623 411154 205439 022581 327586 374079 601003 338016 035054 503550 005372 194479 205711 798317 336578 842011 104010 608517 260717 853590 591023 868859 327927 463360 256615 161766 656204 454694 060079 145220 331942 816029 659293 905704 831714 183072 353431 389211 050133 635036 931829 467267 886255 945640 155301 360589 730622 107831 649497 (315 digits)/45003 303257 248295 535414 725813 773405 613092 777211 709785 090385 783612 276334 832001 343669 771141 581088 207091 061091 176343 171320 746684 784479 695474 332132 790848 264911 584383 386877 979200 908810 635846 198817 726744 387400 306568 375601 347900 576508 757292 088522 313910 760763 690295 002132 853593 396085 041370 126913 185341 694489 106619 123145 033856 (317 digits), a[622] = 8
                                                                                      A[623]/B[623] = 520 738408 245414 583338 591232 722289 239829 431947 593206 971988 298049 881944 531169 180736 934279 859306 967825 987565 470315 007086 432765 436114 356554 288078 081370 433604 459637 913608 673572 909653 204510 273862 122029 575610 167295 772192 679472 992521 662732 347022 210672 532995 114175 442229 657699 562657 110049 901682 989196 870241 310128 803376 310780 (315 digits)/50612 401735 184801 405631 775931 893688 975509 452027 631911 207461 482334 301441 179252 031895 199182 036114 871416 192849 290096 303997 630227 674117 932339 882796 500706 424764 474718 400584 776118 507145 171907 043569 593556 011772 065169 833169 024177 099367 177589 640487 496613 882062 532601 858606 448978 755770 667844 416059 230408 017816 149016 035784 659607 (317 digits), a[623] = 1
                                                                                      A[624]/B[624] = 1504 504606 133809 455669 995088 855732 685097 886476 514000 318056 197103 101905 097392 865023 873931 913093 141363 773448 277208 856183 969541 480745 973826 429746 753764 736068 247203 290577 603760 981073 065225 002418 304138 296440 666534 360415 018239 890748 157178 877116 774776 455201 278484 519496 247228 592582 106355 749006 133695 101072 350879 714584 271057 (316 digits)/146228 106727 617898 346678 277677 560783 564111 681266 973607 505308 748280 879217 190505 407460 169505 653317 949923 446789 756535 779316 007140 132715 560154 097725 792261 114440 533820 188047 531437 923100 979660 285956 913856 410944 436908 041939 396254 775243 112471 369497 307138 524888 755498 719345 751550 907626 377058 959031 646157 730121 404651 194714 353070 (318 digits), a[624] = 2
                                                                                      A[625]/B[625] = 2025 243014 379224 039008 586321 578021 924927 318424 107207 290044 495152 983849 628562 045760 808211 772400 109189 761013 747523 863270 402306 916860 330380 717824 835135 169672 706841 204186 277333 890726 269735 276280 426167 872050 833830 132607 697712 883269 819911 224138 985448 988196 392659 961725 904928 155239 216405 650689 122891 971313 661008 517960 581837 (316 digits)/196840 508462 802699 752310 053609 454472 539621 133294 605518 712770 230615 180658 369757 439355 368687 689432 821339 639639 046632 083313 637367 806833 492493 980522 292967 539205 008538 588632 307556 430246 151567 329526 507412 422716 502077 875108 420431 874610 290061 009984 803752 406951 288100 577952 200529 663397 044903 375090 876565 747937 553667 230499 012677 (318 digits), a[625] = 1
                                                                                      A[626]/B[626] = 3529 747620 513033 494678 581410 433754 610025 204900 621207 608100 692256 085754 725954 910784 682143 685493 250553 534462 024732 719454 371848 397606 304207 147571 588899 905740 954044 494763 881094 871799 334960 278698 730306 168491 500364 493022 715952 774017 977090 101255 760225 443397 671144 481222 152156 747821 322761 399695 256587 072386 011888 232544 852894 (316 digits)/343068 615190 420598 098988 331287 015256 103732 814561 579126 218078 978896 059875 560262 846815 538193 342750 771263 086428 803167 862629 644507 939549 052648 078248 085228 653645 542358 776679 838994 353347 131227 615483 421268 833660 938985 917047 816686 649853 402532 379482 110890 931840 043599 297297 952080 571023 421962 334122 522723 478058 958318 425213 365747 (318 digits), a[626] = 1
                                                                                      A[627]/B[627] = 5554 990634 892257 533687 167732 011776 534952 523324 728414 898145 187409 069604 354516 956545 490355 457893 359743 295475 772256 582724 774155 314466 634587 865396 424035 075413 660885 698950 158428 762525 604695 554979 156474 040542 334194 625630 413665 657287 797001 325394 745674 431594 063804 442948 057084 903060 539167 050384 379479 043699 672896 750505 434731 (316 digits)/539909 123653 223297 851298 384896 469728 643353 947856 184644 930849 209511 240533 930020 286170 906881 032183 592602 726067 849799 945943 281875 746382 545142 058770 378196 192850 550897 365312 146550 783593 282794 945009 928681 256377 441063 792156 237118 524463 692593 389466 914643 338791 331699 875250 152610 234420 466865 709213 399289 225996 511985 655712 378424 (318 digits), a[627] = 1
                                                                                      A[628]/B[628] = 86854 607143 896896 499986 097390 610402 634313 054771 547431 080278 503392 129820 043709 258967 037475 553893 646702 966598 608581 460325 984178 114605 823025 128517 949426 036945 867329 979016 257526 309683 405393 603386 077416 776626 513283 877478 920937 633334 932109 982176 945341 917308 628211 125443 008430 293729 410267 155460 948772 727881 105339 490126 373859 (317 digits)/8 441705 469988 770065 868464 104734 061185 754042 032404 348800 180817 121564 667884 510567 139379 141408 825504 660303 977446 550167 051778 872644 135287 229778 959803 758171 546403 805819 256362 037256 107246 373151 790632 351487 679322 554942 799391 373464 516808 791433 221485 830541 013710 019097 426050 241234 087330 424947 972323 512061 868006 638103 260899 042107 (319 digits), a[628] = 15
                                                                                      A[629]/B[629] = 352973 419210 479843 533631 557294 453387 072204 742410 918139 219259 200977 588884 529353 992413 640257 673467 946555 161870 206582 424028 710867 772889 926688 379468 221739 223197 130205 615015 188534 001259 226269 968523 466141 147048 387330 135546 097416 190627 525441 254102 527042 100828 576648 944720 090806 077978 180235 672228 174569 955224 094254 711010 930167 (318 digits)/34 306731 003608 303561 325154 803832 714471 659522 077473 579845 654117 695769 912071 972288 843687 472516 334202 233818 635854 050468 153058 772452 287531 464257 897985 410882 378465 774174 390760 295575 212578 775402 107539 334631 973667 660834 989721 730976 591698 858326 275410 236807 393631 408089 579451 117546 583742 166657 598507 447536 698023 064398 699308 546852 (320 digits), a[629] = 4
                                                                                      A[630]/B[630] = 1 145774 864775 336427 100880 769273 970563 850927 282004 301848 738056 106324 896473 631771 236207 958248 574297 486368 452209 228328 732412 116781 433275 603090 266922 614643 706537 257946 824061 823128 313461 084203 508956 475840 217771 675274 284117 213186 205217 508433 744484 526468 219794 358157 959603 280848 527663 950974 172145 472482 593553 388103 623159 164360 (319 digits)/111 361898 480813 680749 843928 516232 204600 732608 264825 088337 143170 208874 404100 427433 670441 558957 828111 361759 885008 701571 510955 190000 997881 622552 653759 990818 681801 128342 428642 923981 744982 699358 113250 355383 600325 537447 768556 566394 291905 366412 047716 540963 194604 243366 164403 593873 838556 924920 767845 854671 962075 831299 358824 682663 (321 digits), a[630] = 3
                                                                                      A[631]/B[631] = 2 644523 148761 152697 735393 095842 394514 774059 306419 521836 695371 413627 381831 792896 464829 556754 822062 919292 066288 663239 888852 944430 639441 132868 913313 451026 636271 646099 263138 834790 628181 394676 986436 417821 582591 737878 703780 523788 601062 542308 743071 579978 540417 292964 863926 652503 133306 082184 016519 119535 142330 870461 957329 258887 (319 digits)/257 030527 965235 665061 013011 836297 123673 124738 607123 756519 940458 113518 720272 827156 184570 590431 990424 957338 405871 453611 174969 152454 283294 709363 205505 392519 742068 030859 248046 143538 702544 174118 334040 045399 174318 735730 526834 863765 175509 591150 370843 318733 782839 894821 908258 305294 260856 016499 134199 156880 622174 726997 416957 912178 (321 digits), a[631] = 2
                                                                                      A[632]/B[632] = 40 813622 096192 626893 131777 206909 888285 461816 878297 129399 168627 310735 623950 525218 208651 309570 905241 275749 446539 176927 065206 283241 024892 596123 966624 380043 250611 949435 771144 344987 736182 004358 305502 743163 956647 743454 840825 070015 221155 643064 890558 226146 326053 752630 918503 068395 527255 183734 419932 265509 728516 445032 983098 047665 (320 digits)/3966 819817 959348 656665 039106 060689 059697 603687 371681 436136 250041 911655 208192 834776 439000 415437 684485 721835 973080 505739 135492 476815 247302 263000 736340 878614 812821 591231 149335 077062 283145 311133 123851 036371 215106 573405 671079 522871 924549 233667 610366 321969 937202 665694 788278 173287 751397 172407 780833 207881 294696 736260 613193 365333 (322 digits), a[632] = 15
                                                                                      A[633]/B[633] = 247 526255 725916 914056 526056 337301 724227 544960 576202 298231 707135 278041 125534 944205 716737 414180 253510 573788 745523 724802 280090 643876 788796 709612 713059 731286 139943 342713 890004 904717 045273 420826 819452 876805 322478 198607 748730 943879 927996 400698 086420 936856 496739 808750 374945 062876 296837 184590 536112 712593 513429 540659 855917 544877 (321 digits)/24057 949435 721327 605051 247648 200431 481858 746862 837212 373337 440709 583449 969429 835814 818573 083058 097339 288354 244354 488045 987924 013345 767108 287367 623550 664208 618997 578246 144056 605912 401416 040917 077146 263626 464958 176164 553312 000996 722804 993156 033041 250553 406055 888990 637927 345020 769239 050945 819198 404168 390355 144561 096118 104176 (323 digits), a[633] = 6
                                                                                      A[634]/B[634] = 288 339877 822109 540949 657833 544211 612513 006777 454499 427630 875762 588776 749485 469423 925388 723751 158751 849538 192062 901729 345296 927117 813689 305736 679684 111329 390555 292149 661149 249704 781455 425185 124955 619969 279125 942062 589556 013895 149152 043762 976979 163002 822793 561381 293448 131271 824092 368324 956044 978103 241945 985692 839015 592542 (321 digits)/28024 769253 680676 261716 286754 261120 541556 350550 208893 809473 690751 495105 177622 670591 257573 498495 781825 010190 217434 993785 123416 490161 014410 550368 359891 542823 431819 169477 293391 682974 684561 352050 200997 299997 680064 749570 224391 523868 647354 226823 643407 572523 343258 554685 426205 518308 520636 223353 600031 612049 685051 880821 709311 469509 (323 digits), a[634] = 1
                                                                                      A[635]/B[635] = 1112 545889 192245 536905 499556 969936 561766 565292 939700 581124 334423 044371 373991 352477 492903 585433 729766 122403 321712 429990 315981 425230 229864 626822 752112 065274 311609 219162 873452 653831 389639 696382 194319 736713 159856 024795 517398 985565 375452 531987 017358 425864 965120 492894 255289 456691 769114 289565 404247 646903 239267 497738 372964 322503 (322 digits)/108132 257196 763356 390200 107910 983793 106527 798513 463893 801758 512964 068765 502297 847588 591293 578545 442814 318924 896659 469401 358173 483828 810339 938472 703225 292678 914455 086678 024231 654836 455100 097067 680138 163619 505152 424875 226486 572602 664867 673626 963263 968123 435831 553046 916543 899946 331147 721006 619293 240317 445510 787026 224052 512703 (324 digits), a[635] = 3
                                                                                      A[636]/B[636] = 1400 885767 014355 077855 157390 514148 174279 572070 394200 008755 210185 633148 123476 821901 418292 309184 888517 971941 513775 331719 661278 352348 043553 932559 431796 176603 702164 511312 534601 903536 171095 121567 319275 356682 438981 966858 106954 999460 524604 575749 994337 588867 787914 054275 548737 587963 593206 657890 360292 625006 481213 483431 211979 915045 (322 digits)/136157 026450 444032 651916 394665 244913 648084 149063 672787 611232 203715 563870 679920 518179 848867 077041 224639 329115 114094 463186 481589 973989 824750 488841 063116 835502 346274 256155 317623 337811 139661 449117 881135 463617 185217 174445 450878 096471 312221 900450 606671 540646 779090 107732 342749 418254 851783 944360 219324 852367 130562 667847 933363 982212 (324 digits), a[636] = 1
                                                                                      A[637]/B[637] = 3914 317423 220955 692615 814337 998232 910325 709433 728100 598634 754794 310667 620944 996280 329488 203803 506802 066286 349263 093429 638538 129926 316972 491941 615704 418481 715938 241787 942656 460903 731829 939516 832870 450078 037819 958511 731308 984486 424661 683487 006033 603600 540948 601445 352764 632618 955527 605346 124832 896916 201694 464600 796924 152593 (322 digits)/380446 310097 651421 694032 897241 473620 402696 096640 809469 024222 920395 196506 862138 883948 289027 732627 892092 977155 124848 395774 321353 431808 459840 916154 829458 963683 607003 598988 659478 330458 734422 995303 442409 090853 875586 773766 128242 765545 289311 474528 176607 049416 994011 768511 602042 736456 034715 609727 057942 945051 706636 122722 090780 477127 (324 digits), a[637] = 2
                                                                                      A[638]/B[638] = 9229 520613 456266 463086 786066 510613 994930 990937 850401 206024 719774 254483 365366 814462 077268 716791 902122 104514 212301 518578 938354 612200 677498 916442 663205 013567 134040 994888 419914 825343 634755 000600 985016 256838 514621 883881 569572 968433 373927 942724 006404 796068 869811 257166 254266 853201 504261 868582 609958 418838 884602 412632 805828 220231 (322 digits)/897049 646645 746876 039982 189148 192154 453476 342345 291725 659678 044505 956884 404198 286076 426922 542297 008825 283425 363791 254735 124296 837606 744432 321150 722034 762869 560281 454132 636579 998728 608507 439724 765953 645324 936390 721977 707363 627561 890844 849506 959885 639480 767113 644755 546834 891166 921215 163814 335210 742470 543834 913292 114924 936466 (324 digits), a[638] = 2
                                                                                      A[639]/B[639] = 13143 838036 677222 155702 600404 508846 905256 700371 578501 804659 474568 565150 986311 810742 406756 920595 408924 170800 561564 612008 576892 742126 994471 408384 278909 432048 849979 236676 362571 286247 366584 940117 817886 706916 552441 842393 300881 952919 798589 626211 012438 399669 410759 858611 607031 485820 459789 473928 734791 315755 086296 877233 602752 372824 (323 digits)/1 277495 956743 398297 734015 086389 665774 856172 438986 101194 683900 964901 153391 266337 170024 715950 274924 900918 260580 488639 650509 445650 269415 204273 237305 551493 726553 167285 053121 296058 329187 342930 435028 208362 736178 811977 495743 835606 393107 180156 324035 136492 688897 761125 413267 148877 627622 955930 773541 393153 687522 250471 036014 205705 413593 (325 digits), a[639] = 1
                                                                                      A[640]/B[640] = 48661 034723 487932 930194 587280 037154 710701 092052 585906 620003 143479 949936 324302 246689 297539 478578 128894 616915 896995 354604 669032 838581 660913 141595 499933 309713 683978 704917 507628 684085 734509 820954 438676 377588 171947 411061 472218 827192 769696 821357 043719 995077 102090 833001 075361 310662 883630 290368 814332 366104 143493 044333 614085 338703 (323 digits)/4 729537 516875 941769 242027 448317 189479 021993 659303 595309 711380 939209 417058 203209 796150 574773 367071 711580 065166 829710 206263 461247 645852 357252 033067 376515 942529 062136 613496 524754 986290 637298 744809 391041 853861 372323 209209 214182 806883 431313 821612 369363 706174 050489 884556 993467 774035 789007 484438 514671 805037 295248 021334 732041 177245 (325 digits), a[640] = 3
                                                                                      A[641]/B[641] = 207787 976930 628953 876480 949524 657465 748061 068581 922128 284672 048488 364896 283520 797499 596914 834907 924502 638464 149546 030427 253024 096453 638123 974766 278642 670903 585894 056346 393086 022590 304624 223935 572592 217269 240231 486639 189757 261690 877376 911639 187318 379977 819123 190615 908476 728471 994310 635403 992120 780171 660269 054568 059093 727636 (324 digits)/20 195646 024247 165374 702124 879658 423690 944147 076200 482433 529424 721738 821624 079176 354627 015043 743211 747238 521247 807480 475563 290640 852824 633281 369575 057557 496669 415831 507107 395078 274349 892125 414265 772530 151624 301270 332580 692337 620640 905411 610484 613947 513593 963084 951495 122748 723766 111960 711295 451840 907671 431463 121353 133870 122573 (326 digits), a[641] = 4
                                                                                      A[642]/B[642] = 256449 011654 116886 806675 536804 694620 458762 160634 508034 904675 191968 314832 607823 044188 894454 313486 053397 255380 046541 385031 922056 935035 299037 116361 778575 980617 269872 761263 900714 706676 039134 044890 011268 594857 412178 897700 661976 088883 647073 732996 231038 375054 921214 023616 983838 039134 877940 925772 806453 146275 803762 098901 673179 066339 (324 digits)/24 925183 541123 107143 944152 327975 613169 966140 735504 077743 240805 660948 238682 282386 150777 589817 110283 458818 586414 637190 681826 751888 498676 990533 402642 434073 439198 477968 120603 919833 260640 529424 159075 163572 005485 673593 541789 906520 427524 336725 432096 983311 219768 013574 836052 116216 497801 900968 195733 966512 712708 726711 142687 865911 299818 (326 digits), a[642] = 1
                                                                                      A[643]/B[643] = 5 593217 221667 083576 816667 222423 244495 382066 441906 590861 282851 079822 976381 047804 725466 380455 418115 045845 001445 126915 116097 616219 732194 917903 418363 628738 263866 253222 042888 308094 862787 126439 166625 809232 709274 895988 338353 091255 128247 465925 304560 039124 256131 164617 686572 569075 550304 431070 076632 927636 851963 539273 131503 195854 120755 (325 digits)/543 624500 387832 415397 529323 767146 300260 233102 521786 115041 586343 601651 833952 009285 520956 401203 059164 382428 835955 188484 793925 080299 325041 434482 825066 173099 719837 453162 039789 711576 747801 010032 754844 207542 266823 446734 710168 729266 598651 976645 684521 263483 128722 248156 508589 563295 177606 032292 821708 748607 874554 692397 117798 318007 418751 (327 digits), a[643] = 21
                                                                                      A[644]/B[644] = 22 629317 898322 451194 073344 426497 672601 987027 928260 871480 036079 511260 220356 799041 946054 416275 985946 236777 261160 554201 849422 386935 863814 970650 789816 293529 036082 282760 932817 133094 157824 544890 711393 248199 431956 996132 251113 026996 601873 510774 951236 387535 399579 579684 769907 260140 240352 602221 232304 517000 554129 960854 624914 456595 549359 (326 digits)/2199 423185 092452 768734 061447 396560 814210 898550 822648 537909 586180 067555 574490 319528 234603 194629 346940 988533 930235 391129 857527 073085 798842 728464 702907 126472 318548 290616 279762 766140 251844 569555 178451 993741 072779 460532 382464 823586 822132 243308 170182 037243 734657 006200 870410 369397 208226 030139 482568 960944 210927 496299 613881 137940 974822 (328 digits), a[644] = 4
                                                                                      A[645]/B[645] = 186 627760 408246 693129 403422 634404 625311 278289 867993 562701 571487 169904 739235 440140 293901 710663 305684 940063 090729 560529 911476 711706 642714 683109 736893 976970 552524 515309 505425 372848 125383 485564 857771 794828 164930 865046 347257 307227 943235 552124 914451 139407 452767 802095 845830 650197 473125 248839 935069 063641 285003 226110 130818 848618 515627 (327 digits)/18139 009981 127454 565270 020902 939632 813947 421509 102974 418318 275784 142096 429874 565511 397781 958237 834692 290700 277838 317523 654141 664985 715783 262200 448323 184878 268223 778092 277891 840698 762557 566474 182460 157470 849059 130993 769887 317961 175709 923111 045977 561433 005978 297763 471872 518472 843414 273408 682260 436161 561974 662794 028847 421535 217327 (329 digits), a[645] = 8
                                                                                      A[646]/B[646] = 395 884838 714815 837452 880189 695306 923224 543607 664247 996883 179053 851069 698827 679322 533857 837602 597316 116903 442619 675261 672375 810349 149244 336870 263604 247470 141131 313379 943667 878790 408591 516020 426936 837855 761818 726224 945627 641452 488344 615024 780138 666350 305115 183876 461568 560535 186603 099901 102442 644283 124136 413074 886552 153832 580613 (327 digits)/38477 443147 347361 899274 103253 275826 442105 741569 028597 374546 137748 351748 434239 450551 030167 111105 016325 569934 485912 026177 165810 403057 230409 252865 599553 496228 854995 846800 835546 447537 776959 702503 543372 308682 770897 722519 922239 459509 173552 089530 262137 160109 746613 601727 814155 406342 895054 576956 847089 833267 334876 821887 671575 981011 409476 (329 digits), a[646] = 2
                                                                                      A[647]/B[647] = 1374 282276 552694 205488 043991 720325 394984 909112 860737 553351 108648 723113 835718 478107 895475 223471 097633 290773 418588 586314 928604 142754 090447 693720 527706 719380 975918 455449 336429 009219 351158 033626 138582 308395 450387 043721 184140 231585 408269 397199 254867 138458 368113 353725 230536 331803 032934 548543 242396 996490 657412 465334 790475 310116 257466 (328 digits)/133571 339423 169540 263092 330662 767112 140264 646216 188766 541956 689029 197341 732592 917164 488283 291552 883669 000503 735574 396055 151572 874157 407011 020797 246983 673564 833211 318494 784531 183312 093436 673984 812577 083519 161752 298553 536605 696488 696366 191701 832389 041762 245819 102946 914338 737501 528578 004279 223529 935963 566605 128457 043575 364569 445755 (330 digits), a[647] = 3
                                                                                      A[648]/B[648] = 48495 764518 059113 029534 419899 906695 747696 362557 790062 364171 981759 160053 948974 413098 875490 659091 014481 293973 093220 196284 173520 806742 314913 617088 733339 425804 298277 254106 718683 201467 699122 692935 277317 631696 525365 256466 390535 746941 777773 516998 700488 512393 189082 564259 530340 173641 339312 298914 586337 521456 133572 699792 553188 007901 591923 (329 digits)/4 713474 322958 281271 107505 676450 124751 351368 359135 635426 343030 253770 258709 074991 551308 120082 315455 944740 587565 231015 888107 470860 998566 475794 980769 243982 070998 017391 994118 294137 863461 047243 291971 983570 231853 432228 171893 703438 836613 546368 799094 395753 621788 350282 204869 816011 218896 395284 726729 670637 591992 166056 317884 196713 740942 010901 (331 digits), a[648] = 35
                                                                                      A[649]/B[649] = 49870 046794 611807 235022 463891 627021 142681 271670 650799 917523 090407 883167 784692 891206 770965 882562 112114 584746 511808 782599 102124 949496 405361 310809 261046 145185 274195 709556 055112 210687 050280 726561 415899 940091 975752 300187 574675 978527 186042 914197 955355 650851 557195 917984 760876 505444 372246 847457 828734 517946 790985 165127 343663 318017 849389 (329 digits)/4 847045 662381 450811 370598 007112 891863 491633 005351 824192 884986 942799 456050 807584 468472 608365 607008 828409 588068 966590 284162 622433 872723 882806 001566 490965 744562 850603 312613 078669 046773 140679 965956 796147 315372 593980 470447 240044 533102 242734 990796 228142 663550 596101 307816 730349 956397 923862 731008 894167 527955 732661 446341 240289 105511 456656 (331 digits), a[649] = 1
                                                                                      A[650]/B[650] = 148235 858107 282727 499579 347683 160738 033058 905899 091662 199218 162574 926389 518360 195512 417422 424215 238710 463466 116837 761482 377770 705735 125636 238707 255431 716174 846668 673218 828907 622841 799684 146058 109117 511880 476869 856841 539887 703996 149859 345394 611199 814096 303474 400229 052093 184530 083805 993830 243806 557349 715543 030047 240514 643937 290701 (330 digits)/14 407565 647721 182893 848701 690675 908478 334634 369839 283812 113004 139369 170810 690160 488253 336813 529473 601559 763703 164196 456432 715728 744014 241406 983902 225913 560123 718598 619344 451475 957007 328603 223885 575864 862598 620189 112788 183527 902818 031838 780686 852038 948889 542484 820503 276711 131692 243010 188747 458972 647903 631379 210566 677291 951964 924213 (332 digits), a[650] = 2
                                                                                      A[651]/B[651] = 198105 904901 894534 734601 811574 787759 175740 177569 742462 116741 252982 809557 303053 086719 188388 306777 350825 048212 628646 544081 479895 655231 530997 549516 516477 861360 120864 382774 884019 833528 849964 872619 525017 451972 452622 157029 114563 682523 335902 259592 566555 464947 860670 318213 812969 689974 456052 841288 072541 075296 506528 195174 584177 961955 140090 (330 digits)/19 254611 310102 633705 219299 697788 800341 826267 375191 108004 997991 082168 626861 497744 956725 945179 136482 429969 351772 130786 740595 338162 616738 124212 985468 716879 304686 569201 931957 530145 003780 469283 189842 372012 177971 214169 583235 423572 435920 274573 771483 080181 612440 138586 128320 007061 088090 166872 919756 353140 175859 364040 656907 917581 057476 380869 (332 digits), a[651] = 1
                                                                                      A[652]/B[652] = 346341 763009 177262 234181 159257 948497 208799 083468 834124 315959 415557 735946 821413 282231 605810 730992 589535 511678 745484 305563 857666 360966 656633 788223 771909 577534 967533 055993 712927 456370 649649 018677 634134 963852 929492 013870 654451 386519 485761 604987 177755 279044 164144 718442 865062 874504 539858 835118 316347 632646 222071 225221 824692 605892 430791 (330 digits)/33 662176 957823 816599 068001 388464 708820 160901 745030 391817 110995 221537 797672 187905 444979 281992 665956 031529 115475 294983 197028 053891 360752 365619 969370 942792 864810 287800 551301 981620 960787 797886 413727 947877 040569 834358 696023 607100 338738 306412 552169 932220 561329 681070 948823 283772 219782 409883 108503 812112 823762 995419 867474 594873 009441 305082 (332 digits), a[652] = 1
                                                                                      A[653]/B[653] = 890789 430920 249059 202964 130090 684753 593338 344507 410710 748660 084098 281450 945879 651182 400009 768762 529896 071570 119615 155209 195228 377164 844265 125964 060297 016430 055930 494762 309874 746270 149262 909974 793287 379678 311606 184770 423466 455562 307425 469566 922066 023036 188959 755099 543095 438983 535770 511524 705236 340588 950670 645618 233563 173740 001672 (330 digits)/86 578965 225750 266903 355302 474718 217982 148070 865251 891639 219981 525244 222205 873555 846684 509164 468394 493027 582722 720753 134651 445945 338242 855452 924210 602465 034307 144803 034561 493386 925356 065056 017298 267766 259110 882886 975282 637773 113396 887398 875822 944622 735099 500728 025966 574605 527654 986639 136763 977365 823385 354880 391857 107327 076358 991033 (332 digits), a[653] = 2
                                                                                      A[654]/B[654] = 3 909499 486690 173499 046037 679620 687511 582152 461498 476967 310599 751950 861750 604931 886961 205849 806042 709119 797959 223944 926400 638579 869626 033694 292080 013097 643255 191255 035042 952426 441451 246700 658576 807284 482566 175916 752952 348317 208768 715463 483254 866019 371188 919983 738841 037444 630438 682940 881217 137292 995002 024753 807694 758945 300852 437479 (331 digits)/379 978037 860824 884212 489211 287337 580748 753185 206037 958373 990921 322514 686495 682128 831717 318650 539534 003639 446366 177995 735633 837672 713723 787431 666213 352653 002038 867012 689547 955168 662212 058110 482921 018942 077013 365906 597154 158192 792325 856008 055461 710711 501727 683983 052689 582194 330402 356439 655559 721576 117304 414941 434903 024181 314877 269214 (333 digits), a[654] = 4
                                                                                      A[655]/B[655] = 4 800288 917610 422558 249001 809711 372265 175490 806005 887678 059259 836049 143201 550811 538143 605859 574805 239015 869529 343560 081609 833808 246790 877959 418044 073394 659685 247185 529805 262301 187721 395963 568551 600571 862244 487522 937722 771783 664331 022888 952821 788085 394225 108943 493940 580540 069422 218711 392741 842529 335590 975424 453312 992508 474592 439151 (331 digits)/466 557003 086575 151115 844513 762055 798730 901256 071289 850013 210902 847758 908701 555684 678401 827815 007928 496667 029088 898748 870285 283618 051966 642884 590423 955118 036346 011815 724109 448555 587568 123166 500219 286708 336124 248793 572436 795965 905722 743406 931284 655334 236827 184711 078656 156799 858057 343078 792323 698941 940689 769821 826760 131508 391236 260247 (333 digits), a[655] = 1
                                                                                      A[656]/B[656] = 27 910944 074742 286290 291046 728177 548837 459606 491527 915357 606898 932196 577758 358989 577679 235147 680068 904199 145605 941745 334449 807621 103580 423491 382300 380070 941681 427182 684069 263932 380058 226518 501334 810143 793788 613531 441566 207235 530423 829908 247363 806446 342314 464701 208543 940144 977549 776497 844926 349939 672956 901876 074259 721487 673814 633234 (332 digits)/2712 763053 293700 639791 711780 097616 574403 259465 562487 208440 045435 561309 230003 460552 223726 457725 579176 486974 591810 671740 087060 255762 973557 001854 618333 128243 183768 926091 310095 197946 600052 673942 984017 452483 757634 609874 459338 138022 320939 573042 711884 987382 685863 607538 445970 366193 620689 071833 617178 216285 820753 264050 568703 681723 271058 570449 (334 digits), a[656] = 5
                                                                                      A[657]/B[657] = 32 711232 992352 708848 540048 537888 921102 635097 297533 803035 666158 768245 720959 909801 115822 841007 254874 143215 015135 285305 416059 641429 350371 301450 800344 453465 601366 674368 213874 526233 567779 622482 069886 410715 656033 101054 379288 979019 194754 852797 200185 594531 736539 573644 702484 520685 046971 995209 237668 192469 008547 877300 527572 713996 148407 072385 (332 digits)/3179 320056 380275 790907 556293 859672 373134 160721 633777 058453 256338 409068 138705 016236 902128 285540 587104 983641 620899 570488 957345 539381 025523 644739 208757 083361 220114 937907 034204 646502 187620 797109 484236 739192 093758 858668 031774 933988 226662 316449 643169 642716 922690 792249 524626 522993 478746 414912 409501 915227 761443 033872 395463 813231 662294 830696 (334 digits), a[657] = 1
                                                                                      A[658]/B[658] = 60 622177 067094 995138 831095 266066 469940 094703 789061 718393 273057 700442 298718 268790 693502 076154 934943 047414 160741 227050 750509 449050 453951 724942 182644 833536 543048 101550 897943 790165 947837 849000 571221 220859 449821 714585 820855 186254 725178 682705 447549 400978 078854 038345 911028 460830 024521 771707 082594 542408 681504 779176 601832 435483 822221 705619 (332 digits)/5892 083109 673976 430699 268073 957288 947537 420187 196264 266893 301773 970377 368708 476789 125854 743266 166281 470616 212710 242229 044405 795143 999080 646593 827090 211604 403883 863998 344299 844448 787673 471052 468254 191675 851393 468542 491113 072010 547601 889492 355054 630099 608554 399787 970596 889187 099435 486746 026680 131513 582196 297922 964167 494954 933353 401145 (334 digits), a[658] = 1
                                                                                      A[659]/B[659] = 93 333410 059447 703987 371143 803955 391042 729801 086595 521428 939216 468688 019678 178591 809324 917162 189817 190629 175876 512356 166569 090479 804323 026392 982989 287002 144414 775919 111818 316399 515617 471482 641107 631575 105854 815640 200144 165273 919933 535502 647734 995509 815393 611990 613512 981515 071493 766916 320262 734877 690052 656477 129405 149479 970628 778004 (332 digits)/9071 403166 054252 221606 824367 816961 320671 580908 830041 325346 558112 379445 507413 493026 027983 028806 753386 454257 833609 812718 001751 334525 024604 291333 035847 294965 623998 801905 378504 490950 975294 268161 952490 930867 945152 327210 522888 005998 774264 205941 998224 272816 531245 192037 495223 412180 578181 901658 436182 046741 343639 331795 359631 308186 595648 231841 (334 digits), a[659] = 1
                                                                                      A[660]/B[660] = 620 622637 423781 219063 057958 089798 816196 473510 308634 846966 908356 512570 416787 340341 549451 579128 073846 191189 216000 301187 749923 991929 279889 883300 080580 555549 409536 757065 568853 688563 041542 677896 417867 010310 084950 608427 021720 177898 244779 895721 333959 374036 971215 710289 592106 349920 453484 373205 004170 951674 821820 718039 378263 332363 645994 373643 (333 digits)/60320 502105 999489 760340 214280 859056 871566 905640 176512 218972 650448 247050 413189 434945 293752 916106 686600 196163 214369 118537 054913 802294 146706 394592 042173 981398 147876 675430 615326 790154 639439 080024 183199 776883 522307 431805 628441 108003 193187 125144 344400 266998 796025 552012 941937 362270 568526 896696 643772 411961 644032 288695 121955 344074 507242 792191 (335 digits), a[660] = 6
                                                                                      A[661]/B[661] = 2575 823959 754572 580239 602976 163150 655828 623842 321134 909296 572642 518969 686827 539958 007131 233674 485201 955386 039877 717107 166265 058196 923882 559593 305311 509199 782561 804181 387233 070651 681788 183068 312575 672815 445657 249348 287024 876866 899053 118387 983572 491657 700256 453148 981938 381196 885431 259736 336946 541576 977335 528634 642458 478934 554606 272576 (334 digits)/250353 411590 052211 262967 681491 253188 806939 203469 536090 201237 159905 367647 160171 232807 202994 693233 499787 238910 691086 286866 221406 543701 611429 869701 204543 220558 215505 503627 839811 651569 533050 588258 685290 038402 034382 054433 036652 438011 547012 706519 375825 340811 715347 400089 262972 861262 852289 488445 011271 694587 919768 486575 847452 684484 624619 400605 (336 digits), a[661] = 4
                                                                                      A[662]/B[662] = 23803 038275 214934 441219 484743 558154 718654 088091 198849 030636 062139 183297 598235 199963 613632 682198 440663 789663 574899 755152 246309 515701 594832 919639 828384 138347 452592 994698 053951 324428 177636 325511 231048 065649 095865 852561 604944 069700 336257 961213 186111 798956 273523 788630 429551 780692 422365 710832 036689 825867 617840 475751 160389 642774 637450 826827 (335 digits)/2 313501 206416 469391 127049 347702 137756 134019 736866 001324 030107 089596 555874 854730 530210 120705 155208 184685 346359 434145 700333 047572 695608 649575 221902 883062 966422 087426 208081 173631 654280 436894 374352 350810 122501 831745 921702 958313 050107 116301 483818 726828 334304 234152 152816 308693 113636 239132 292701 745217 663252 921948 667877 749029 504436 128817 397636 (337 digits), a[662] = 9
                                                                                      A[663]/B[663] = 26378 862234 969507 021459 087719 721305 374482 711933 519983 939932 634781 702267 285062 739921 620763 915872 925865 745049 614777 472259 412574 573898 518715 479233 133695 647547 235154 798879 441184 395079 859424 508579 543623 738464 541523 101909 891968 946567 235311 079601 169684 290613 973780 241779 411490 161889 307796 970568 373636 367444 595176 004385 802848 121709 192057 099403 (335 digits)/2 563854 618006 521602 390017 029193 390944 940958 940335 537414 231344 249501 923522 014901 763017 323699 848441 684472 585270 125231 987199 268979 239310 261005 091604 087606 186980 302931 711709 013443 305849 969944 962611 036100 160903 866127 976135 994965 488118 663314 190338 102653 675115 949499 552905 571665 974899 091421 781146 756489 357840 841717 154453 596482 188920 753436 798241 (337 digits), a[663] = 1
                                                                                      A[664]/B[664] = 7 330747 877361 768379 385386 783106 359743 450365 293676 234400 391975 896670 711335 560614 158252 565237 378998 905475 168406 868259 571009 529466 485591 279020 667217 862078 508931 590472 284303 262028 761549 238225 202044 814823 620327 097765 081601 680342 268824 517427 010737 188660 299027 010650 761527 412326 624030 682126 558271 533963 608020 481593 690618 549319 356220 837267 361458 (337 digits)/712 501230 394222 953253 161766 434271 429504 779646 209809 865066 112464 201629 371472 982518 886008 785563 173554 783591 466184 123406 154530 554821 984550 947985 596235 149976 759965 999510 351477 897427 374722 111649 017609 350554 692872 749195 311373 563753 258976 854332 207473 161896 341422 245528 307659 660168 160684 562965 670353 292769 785166 077600 451523 974595 835484 830810 510393 (339 digits), a[664] = 277
                                                                                      A[665]/B[665] = 14 687874 616958 506265 792232 653932 440792 275213 299285 988784 723884 428123 124938 406291 056426 751238 673870 736816 081863 351296 614278 471507 545081 076756 813668 857852 665410 416099 367485 965241 918178 335874 912669 173270 979118 737053 265113 252653 484216 270165 101075 547004 888667 995081 764834 236143 409950 672050 087111 441563 583485 558363 385622 901486 834150 866591 822319 (338 digits)/1427 566315 406452 428108 713549 897736 249954 500251 359955 267546 456272 652760 666467 979939 535034 894826 195551 251655 517638 372044 296260 378623 208412 156976 284074 387559 706912 301952 414664 808298 055294 193242 997829 737209 546649 364518 598883 122472 006072 371978 605284 426446 357960 440556 168224 892002 296268 217353 121853 342028 928172 996918 057501 545673 859890 415057 819027 (340 digits), a[665] = 2
                                                                                      A[666]/B[666] = 51 394371 728237 287176 762084 744903 682120 276005 191534 200754 563629 181040 086150 779487 327532 818953 400611 115923 413996 922149 413844 943989 120834 509291 108224 435636 505162 838770 386761 157754 516084 245849 940052 334636 557683 308924 876941 438302 721473 327922 313963 829674 965030 995896 056030 120756 853882 698276 819605 858654 358477 156683 847487 253779 858673 437042 828415 (338 digits)/4995 200176 613580 237579 302416 127480 179368 280400 289675 667705 481282 159911 370876 922337 491113 470041 760208 538558 019099 239539 043311 690691 609787 418914 448458 312655 880702 905367 595472 322321 540604 691378 011098 562183 332820 842751 108022 931169 277193 970268 023326 441235 415303 567196 812334 336175 049489 215025 035913 318856 569685 068354 624028 611617 415156 075983 967474 (340 digits), a[666] = 3
                                                                                      A[667]/B[667] = 66 082246 345195 793442 554317 398836 122912 551218 490820 189539 287513 609163 211089 185778 383959 570192 074481 852739 495860 273446 028123 415496 665915 586047 921893 293489 170573 254869 754247 122996 434262 581724 852721 507907 536802 045978 142054 690956 205689 598087 415039 376679 853698 990977 820864 356900 263833 370326 906717 300217 941962 715047 233110 155266 692824 303634 650734 (338 digits)/6422 766492 020032 665688 015966 025216 429322 780651 649630 935251 937554 812672 037344 902277 026148 364867 955759 790213 536737 611583 339572 069314 818199 575890 732532 700215 587615 207320 010137 130619 595898 884621 008928 299392 879470 207269 706906 053641 283266 342246 628610 867681 773264 007752 980559 228177 345757 432378 157766 660885 497858 065272 681530 157291 275046 491041 786501 (340 digits), a[667] = 1
                                                                                      A[668]/B[668] = 513 970096 144607 841274 642306 536756 542508 134534 627275 527529 576224 445182 563775 079936 015249 810297 921984 085099 885018 836271 610708 852465 782243 611626 561477 490060 699175 622858 666491 018729 555922 317923 909102 889989 315297 630771 871324 274996 161300 514534 219239 466433 940923 932740 802080 619058 700716 290565 166626 960179 952216 162014 479258 340646 708443 562485 383553 (339 digits)/49954 565620 753808 897395 414178 303995 184627 744961 837092 214469 044165 848615 632291 238276 674152 024117 450527 070052 776262 520622 420316 175895 337184 450149 576187 214164 994009 356607 666432 236658 711896 883725 073596 657933 489112 293639 056365 306658 260058 365994 423602 515007 828151 621467 676248 933416 469791 241672 140279 945055 054691 525263 394739 712656 340481 513276 472981 (341 digits), a[668] = 7
                                                                                      A[669]/B[669] = 2635 932727 068234 999815 765850 082618 835453 223891 627197 827187 168635 835076 029964 585458 460208 621681 684402 278238 920954 454804 081667 677825 577133 644180 729280 743792 666451 369163 086702 216644 213874 171344 398235 957854 113290 199837 498676 065937 012192 170758 511236 708849 558318 654681 831267 452193 767414 823152 739852 101117 703043 525119 629401 858500 235042 116061 568499 (340 digits)/256195 594595 789077 152665 086857 545192 352461 505460 835092 007597 158384 055750 198801 093660 396908 485455 208395 140477 418050 214695 441152 948791 504121 826638 613468 771040 557661 990358 342298 313913 155383 303246 376911 589060 325031 675464 988732 586932 583558 172218 746623 442720 914022 115091 361803 895259 694713 640738 859166 386160 771315 691589 655228 720572 977454 057424 151406 (342 digits), a[669] = 5
                                                                                      A[670]/B[670] = 3149 902823 212842 841090 408156 619375 377961 358426 254473 354716 744860 280258 593739 665394 475458 431979 606386 363338 805973 291075 692376 530291 359377 255807 290758 233853 365626 992021 753193 235373 769796 489268 307338 847843 428587 830609 370000 340933 173492 685292 730476 175283 499242 587422 633348 071252 468131 113717 906479 061297 655259 687134 108660 199146 943485 678546 952052 (340 digits)/306150 160216 542886 050060 501035 849187 537089 250422 672184 222066 202549 904365 831092 331937 071060 509572 658922 210530 194312 735317 861469 124686 841306 276788 189655 985205 551671 346966 008730 550571 867280 186971 450508 246993 814143 969104 045097 893590 843616 538213 170225 957728 742173 736559 038052 828676 164504 882410 999446 331215 826007 216853 049968 433229 317935 570700 624387 (342 digits), a[670] = 1
                                                                                      A[671]/B[671] = 5785 835550 281077 840906 174006 701994 213414 582317 881671 181903 913496 115334 623704 250852 935667 053661 290788 641577 726927 745879 774044 208116 936510 899988 020038 977646 032078 361184 839895 452017 983670 660612 705574 805697 541878 030446 868676 406870 185684 856051 241712 884133 057561 242104 464615 523446 235545 936870 646331 162415 358303 212253 738062 057647 178527 794608 520551 (340 digits)/562345 754812 331963 202725 587893 394379 889550 755883 507276 229663 360933 960116 029893 425597 467968 995027 867317 351007 612362 950013 302622 073478 345428 103426 803124 756246 109333 337324 351028 864485 022663 490217 827419 836054 139175 644569 033830 480523 427174 710431 916849 400449 656195 851650 399856 723935 859218 523149 858612 717376 597322 908442 705197 153802 295389 628124 775793 (342 digits), a[671] = 1
                                                                                      A[672]/B[672] = 66794 093876 304699 091058 322230 341311 725521 763922 952856 355659 793317 548939 454486 424776 767796 022253 805061 420693 802178 495753 206862 819577 660997 155675 511186 987959 718488 965054 992043 207571 590173 756008 068661 710516 389246 165524 925440 816505 216026 101856 389317 900747 132416 250571 744118 829161 059136 419295 016121 847866 596595 021925 227342 833265 907291 419240 678113 (341 digits)/6 491953 463152 194481 280041 967863 187366 322147 565141 252222 748363 172823 465642 159920 013509 218719 454879 199413 071613 930305 185464 190311 932948 641015 414483 024028 303912 754338 057533 870048 059907 116578 579367 552126 443589 345076 059363 417233 179348 542538 352964 255569 362674 960328 104713 436476 791970 615908 637059 444186 222358 396559 209722 807137 125054 567221 480073 158110 (343 digits), a[672] = 11
                                                                                      A[673]/B[673] = 72579 929426 585776 931964 496237 043305 938936 346240 834527 537563 706813 664274 078190 675629 703463 075915 095850 062271 529106 241632 980907 027694 597508 055663 531225 965605 750567 326239 831938 659589 573844 416620 774236 516213 931124 195971 794117 223375 401710 957907 631030 784880 189977 492676 208734 352607 294682 356165 662453 010281 954898 234178 965404 890913 085819 213849 198664 (341 digits)/7 054299 217964 526444 482767 555756 581746 211698 321024 759498 978026 533757 425758 189813 439106 686688 449907 066730 422621 542668 135477 492934 006426 986443 517909 827153 060158 863671 394858 221076 924392 139242 069585 379546 279643 484251 703932 451063 659871 969713 063396 172418 763124 616523 956363 836333 515906 475127 160209 302798 939734 993882 118165 512334 278856 862611 108197 933903 (343 digits), a[673] = 1
                                                                                      A[674]/B[674] = 139374 023302 890476 023022 818467 384617 664458 110163 787383 893223 500131 213213 532677 100406 471259 098168 900911 482965 331284 737386 187769 847272 258505 211339 042412 953565 469056 291294 823981 867161 164018 172628 842898 226730 320370 361496 719558 039880 617737 059764 020348 685627 322393 743247 952853 181768 353818 775460 678574 858148 551493 256104 192747 724178 993110 633089 876777 (342 digits)/13 546252 681116 720925 762809 523619 769112 533845 886166 011721 726389 706580 891400 349733 452615 905407 904786 266143 494235 472973 320941 683245 939375 627458 932392 851181 364071 618009 452392 091124 984299 255820 648952 931672 723232 829327 763295 868296 839220 512251 416360 427988 125799 576852 061077 272810 307877 091035 797268 746985 162093 390441 327888 319471 403911 429832 588271 092013 (344 digits), a[674] = 1
                                                                                      A[675]/B[675] = 1 187572 115849 709585 116147 043976 120247 254601 227551 133598 683351 707863 369982 339607 478881 473535 861266 303141 925994 179384 140722 483065 805872 665549 746375 870529 594129 503017 656598 423793 596878 885989 797651 517422 330056 494087 087945 550581 542420 343607 436019 793820 269898 769127 438659 831559 806754 125232 559851 091051 875470 366844 283012 507386 684345 030704 278568 212880 (343 digits)/115 424320 666898 293850 585243 744714 734646 482465 410352 853272 789144 186404 556960 987681 060033 929951 688197 195878 376505 326454 703010 958901 521432 006114 977052 636603 972731 807747 013994 950076 798786 185807 261208 832928 065506 118873 810299 397438 373636 067724 394279 596323 769521 231340 444982 018815 978923 203413 538359 278680 236482 117412 741272 068105 510148 301271 814366 670007 (345 digits), a[675] = 8
                                                                                      A[676]/B[676] = 16 765383 645198 824667 649081 434133 068079 228875 295879 657765 460147 410218 392966 287181 804747 100761 155897 144898 446883 842662 707500 950691 129489 576201 660601 229827 271378 511303 483672 757092 223465 567875 339750 086810 847521 237589 592734 427699 633765 428241 164041 133832 464210 090177 884485 594690 476326 107074 613375 953301 114733 687313 218279 296161 305009 422970 533044 857097 (344 digits)/1629 486742 017692 834833 956221 949626 054163 288361 631105 957540 774408 316244 688854 177268 293090 924731 539547 008440 765310 043339 163095 107867 239423 713068 611129 763636 982316 926467 648321 392200 167305 857122 305876 592665 640318 493561 107487 432434 070125 460392 936274 776520 899096 815618 290825 536234 012801 938825 334298 648508 472843 034219 705697 272948 545987 647637 989404 472111 (346 digits), a[676] = 14
                                                                                      A[677]/B[677] = 17 952955 761048 534252 765228 478109 188326 483476 523430 791364 143499 118081 762948 626789 283628 574297 017163 448040 372878 022046 848223 433756 935362 241751 406977 100356 865508 014321 140271 180885 820344 453865 137401 604233 177577 731676 680679 978281 176185 771848 600060 927652 734108 859305 323145 426250 283080 232307 173227 044352 990204 054157 501291 803547 989354 453674 811613 069977 (344 digits)/1744 911062 684591 128684 541465 694340 788809 770827 041458 810813 563552 502649 245815 164949 353124 854683 227744 204319 141815 369793 866106 066768 760855 719183 588182 400240 955048 734214 662316 342276 966092 042929 567085 425593 705824 612434 917786 829872 443761 528117 330554 372844 668618 046958 735807 555049 991725 142238 872657 927188 709325 151632 446969 341054 056135 948909 803771 142118 (346 digits), a[677] = 1
                                                                                      A[678]/B[678] = 34 718339 406247 358920 414309 912242 256405 712351 819310 449129 603646 528300 155914 913971 088375 675058 173060 592938 819761 864709 555724 384448 064851 817953 067578 330184 136886 525624 623943 937978 043810 021740 477151 691044 025098 969266 273414 405980 809951 200089 764102 061485 198318 949483 207631 020940 759406 339381 786602 997654 104937 741470 719571 099709 294363 876645 344657 927074 (344 digits)/3374 397804 702283 963518 497687 643966 842973 059188 672564 768354 337960 818893 934669 342217 646215 779414 767291 212759 907125 413133 029201 174636 000279 432252 199312 163877 937365 660682 310637 734477 133397 900051 872962 018259 346143 105996 025274 262306 513886 988510 266829 149365 567714 862577 026633 091284 004527 081064 206956 575697 182168 185852 152666 614002 602123 596547 793175 614229 (346 digits), a[678] = 1
                                                                                      A[679]/B[679] = 156 826313 386037 969934 422468 127078 213949 332883 800672 587882 558085 231282 386608 282673 637131 274529 709405 819795 651925 480885 071120 971549 194769 513563 677290 421093 413054 116819 636046 932797 995584 540827 046008 368409 277973 608741 774337 602204 415990 572207 656469 173593 527384 657238 153669 510013 320705 589834 319639 034969 409955 020040 379576 202385 166809 960256 190244 778273 (345 digits)/15242 502281 493726 982758 532216 270208 160702 007581 731717 884230 915395 778224 984492 533819 937987 972342 296909 055358 770317 022325 982910 765312 761973 448192 385431 055752 704511 376943 904867 280185 499683 643137 058933 498631 090397 036419 018883 879098 499309 482158 397870 970306 939477 497266 842339 920186 009833 466495 700484 229977 437997 895041 057635 797064 464630 335100 976473 599034 (347 digits), a[679] = 4
                                                                                      A[680]/B[680] = 818 849906 336437 208592 526650 547633 326152 376770 822673 388542 394072 684712 088956 327339 274032 047706 720089 691917 079389 269134 911329 242194 038699 385771 454030 435651 202157 109722 804178 601968 021732 725875 707193 533090 414967 012975 145102 417002 889904 061128 046447 929452 835242 235673 975978 571007 362934 288553 384798 172501 154712 841672 617452 111635 128413 677926 295881 818439 (345 digits)/79586 909212 170918 877311 158768 995007 646483 097097 331154 189508 914939 710018 857132 011317 336155 641126 251836 489553 758710 524762 943755 001199 810146 673214 126467 442641 459922 545401 834974 135404 631816 115737 167629 511414 798128 288091 119693 657799 010434 399302 256184 000900 265102 348911 238332 692214 053694 413542 709377 725584 372157 661057 440845 599324 925275 272052 675543 609399 (347 digits), a[680] = 5
                                                                                      A[681]/B[681] = 5069 925751 404661 221489 582371 412878 170863 593508 736712 919136 922521 339554 920346 246709 281323 560770 029943 971298 128261 095694 539096 424713 426965 828192 401473 035000 625996 775156 461118 544606 125980 896081 289169 566951 767775 686592 644952 104221 755414 938975 935156 750310 538838 071282 009540 936057 498311 321154 628428 069976 338232 070076 084288 872195 937292 027813 965535 688907 (346 digits)/492763 957554 519240 246625 484830 240254 039600 590165 718643 021284 405034 038338 127284 601723 954921 819099 807927 992681 322580 170903 645440 772511 622853 487477 144235 711601 464046 649354 914712 092613 290580 337560 064710 567119 879166 764965 737045 825892 561915 877971 934974 975708 530091 590734 272336 073470 331999 947751 956750 583483 670943 861385 702709 393014 016281 967417 029735 255428 (348 digits), a[681] = 6
                                                                                      A[682]/B[682] = 5888 775657 741098 430082 109021 960511 497015 970279 559386 307679 316594 024267 009302 574048 555355 608476 750033 663215 207650 364829 450425 666907 465665 213963 855503 470651 828153 884879 265297 146574 147713 621956 996363 100042 182742 699567 790054 521224 645319 000103 981604 679763 374080 306955 985519 507064 861245 609708 013226 242477 492944 911748 701740 983831 065705 705740 261417 507346 (346 digits)/572350 866766 690159 123936 643599 235261 686083 687263 049797 210793 319973 748356 984416 613041 291077 460226 059764 482235 081290 695666 589195 773711 433000 160691 270703 154242 923969 194756 749686 228017 922396 453297 232340 078534 677295 053056 856739 483691 572350 277274 191158 976608 795193 939645 510668 765684 385694 361294 666128 309068 043101 522443 143554 992338 941557 239469 705278 864827 (348 digits), a[682] = 1
                                                                                      A[683]/B[683] = 10958 701409 145759 651571 691393 373389 667879 563788 296099 226816 239115 363821 929648 820757 836679 169246 779977 634513 335911 460523 989522 091620 892631 042156 256976 505652 454150 660035 726415 691180 273694 518038 285532 666993 950518 386160 435006 625446 400733 939079 916761 430073 912918 378237 995060 443122 359556 930862 641654 312453 831176 981824 786029 856027 002997 733554 226953 196253 (347 digits)/1 065114 824321 209399 370562 128429 475515 725684 277428 768440 232077 725007 786695 111701 214765 245999 279325 867692 474916 403870 866570 234636 546223 055853 648168 414938 865844 388015 844111 664398 320631 212976 790857 297050 645654 556461 818022 593785 309584 134266 155246 126133 952317 325285 530379 783004 839154 717694 309046 622878 892551 714045 383828 846264 385352 957839 206886 735014 120255 (349 digits), a[683] = 1
                                                                                      A[684]/B[684] = 16847 477066 886858 081653 800415 333901 164895 534067 855485 534495 555709 388088 938951 394806 392034 777723 530011 297728 543561 825353 439947 758528 358296 256120 112479 976304 282304 544914 991712 837754 421408 139995 281895 767036 133261 085728 225061 146671 046052 939183 898366 109837 286998 685193 980579 950187 220802 540570 654880 554931 324121 893573 487770 839858 068703 439294 488370 703599 (347 digits)/1 637465 691087 899558 494498 772028 710777 411767 964691 818237 442871 044981 535052 096117 827806 537076 739551 927456 957151 485161 562236 823832 319934 488853 808859 685642 020087 311985 038868 414084 548649 135373 244154 529390 724189 233756 871079 450524 793275 706616 432520 317292 928926 120479 470025 293673 604839 103388 670341 289007 201619 757146 906271 989819 377691 899396 446356 440292 985082 (349 digits), a[684] = 1
                                                                                      A[685]/B[685] = 27806 178476 032617 733225 491808 707290 832775 097856 151584 761311 794824 751910 868600 215564 228713 946970 309988 932241 879473 285877 429469 850149 250927 298276 369456 481956 736455 204950 718128 528934 695102 658033 567428 434030 083779 471888 660067 772117 446786 878263 815127 539911 199917 063431 975640 393309 580359 471433 296534 867385 155298 875398 273800 695885 071701 172848 715323 899852 (347 digits)/2 702580 515409 108957 865060 900458 186293 137452 242120 586677 674948 769989 321747 207819 042571 783076 018877 795149 432067 889032 428807 058468 866157 544707 457028 100580 885931 700000 882980 078482 869280 348350 035011 826441 369843 790218 689102 044310 102859 840882 587766 443426 881243 445765 000405 076678 443993 821082 979387 911886 094171 471192 290100 836083 763044 857235 653243 175307 105337 (349 digits), a[685] = 1
                                                                                      A[686]/B[686] = 44653 655542 919475 814879 292224 041191 997670 631924 007070 295807 350534 139999 807551 610370 620748 724693 840000 229970 423035 111230 869417 608677 609223 554396 481936 458261 018759 749865 709841 366689 116510 798028 849324 201066 217040 557616 885128 918788 492839 817447 713493 649748 486915 748625 956220 343496 801162 012003 951415 422316 479420 768971 761571 535743 140404 612143 203694 603451 (347 digits)/4 340046 206497 008516 359559 672486 897070 549220 206812 404915 117819 814970 856799 303936 870378 320152 758429 722606 389219 374193 991043 882301 186092 033561 265887 786222 906019 011985 921848 492567 417929 483723 279166 355832 094033 023975 560181 494834 896135 547499 020286 760719 810169 566244 470430 370352 048832 924471 649729 200893 295791 228339 196372 825903 140736 756632 099599 615600 090419 (349 digits), a[686] = 1
                                                                                      A[687]/B[687] = 1 054840 255963 180561 475449 212961 654706 779199 632108 314201 564880 857109 971906 442287 254088 505934 614928 629994 221561 609280 844187 426074 849734 263069 049395 453995 021960 167929 451862 044479 962784 374851 012697 101885 058553 075712 297077 018032 904252 782102 679561 225481 484126 398979 281828 968708 293736 007085 747524 179089 580664 181976 561748 789946 017977 301007 252142 400299 779225 (349 digits)/102 523643 264840 304834 134933 367656 818915 769516 998805 899725 384804 514319 028131 198367 061273 146589 462761 415096 384113 495494 222816 351396 146274 316616 572447 183707 724368 975677 085495 407533 481658 473985 455838 010579 532603 341656 573276 425512 713977 433360 054361 939982 515143 469387 820303 594775 567151 083930 923159 532431 897369 722993 806675 831855 999990 259773 944034 334109 184974 (351 digits), a[687] = 23
                                                                                      A[688]/B[688] = 3 209174 423432 461160 241226 931109 005312 335269 528248 949674 990449 921864 055719 134413 372636 138552 569479 729982 894655 250877 643793 147642 157880 398430 702582 843921 524141 522548 105451 843281 255042 241063 836120 154979 376725 444177 448847 939227 631546 839147 856131 389938 102127 683853 594112 862345 224704 822419 254576 488684 164309 025350 454218 131409 589675 043426 368570 404593 941126 (349 digits)/311 910976 001017 923018 764359 775457 353817 857771 203230 104091 272233 357927 941192 899038 054197 759921 146713 967895 541559 860676 659492 936489 624914 983410 983229 337346 079125 939017 178334 715167 862904 905679 646680 387570 691843 048945 280010 771373 038067 847579 183372 580667 355599 974407 931341 154678 750286 176264 419207 798188 987900 397320 616400 321471 140707 535953 931702 617927 645341 (351 digits), a[688] = 3
                                                                                      A[689]/B[689] = 4 264014 679395 641721 716676 144070 660019 114469 160357 263876 555330 778974 027625 576700 626724 644487 184408 359977 116216 860158 487980 573717 007614 661499 751978 297916 546101 690477 557313 887761 217826 615914 848817 256864 435278 519889 745924 957260 535799 621250 535692 615419 586254 082832 875941 831053 518440 829505 002100 667773 744973 207327 015966 921355 607652 344433 620712 804893 720351 (349 digits)/414 434619 265858 227852 899293 143114 172733 627288 202036 003816 657037 872246 969324 097405 115470 906510 609475 382991 925673 356170 882309 287885 771189 300027 555676 521053 803494 914694 263830 122701 344563 379665 102518 398150 224446 390601 853287 196885 752045 280939 237734 520649 870743 443795 751644 749454 317437 260195 342367 330620 885270 120314 423076 153327 140697 795727 875736 952036 830315 (351 digits), a[689] = 1
                                                                                      A[690]/B[690] = 11 737203 782223 744603 674579 219250 325350 564207 848963 477428 101111 479812 110970 287814 626085 427526 938296 449937 127088 971194 619754 295076 173109 721430 206539 439754 616344 903503 220079 618803 690695 472893 533754 668708 247282 483956 940697 853748 703146 081648 927516 620777 274635 849519 345996 524452 261586 481429 258777 824231 654255 440004 486151 974120 804979 732293 609996 014381 381828 (350 digits)/1140 780214 532734 378724 562946 061685 699285 112347 607302 111724 586309 102421 879841 093848 285139 572942 365664 733879 392906 573018 424111 512261 167293 583466 094582 379453 686115 768405 705994 960570 552031 665009 851717 183871 140735 830148 986585 165144 542158 409457 658841 621967 097086 861999 434630 653587 385160 696655 103942 459430 758440 637949 462552 628125 422103 127409 683176 522001 305971 (352 digits), a[690] = 2
                                                                                      A[691]/B[691] = 262 482497 888318 023002 557418 967577 817731 527041 837553 767294 779783 334840 468971 908622 400604 050079 826930 258593 912174 226440 122575 065392 816028 532964 295845 972518 105689 567548 399065 501442 413127 019572 591419 968445 875493 166942 441277 739732 005013 417526 941058 272519 628242 772258 487865 369003 273343 420948 695212 800870 138592 887425 711310 352013 317206 454893 040625 121284 120567 (351 digits)/25511 599338 986014 559793 284106 500199 557006 098935 562682 461757 555838 125528 325828 162067 388541 511242 654099 528338 569617 962576 212762 557631 451648 136281 636488 869034 898041 819619 795719 255253 489260 009881 840296 443315 320634 653879 558160 830065 679530 289007 732250 203926 006654 407783 313519 128376 790972 586607 629101 438097 570964 155202 599233 972086 426966 598740 905620 436065 561677 (353 digits), a[691] = 22
                                                                                      A[692]/B[692] = 2111 597186 888767 928624 133930 959872 867202 780542 549393 615786 339378 158535 862745 556793 830917 828165 553738 518688 424482 782715 600354 818218 701337 985144 573307 219899 461861 443890 412603 630342 995711 629474 265114 416275 251227 819496 470919 771604 743253 421864 455982 800934 300578 027587 248919 476478 448333 849018 820480 231192 762998 539410 176634 790227 342631 371437 934996 984654 346364 (352 digits)/205233 574926 420850 857070 835798 063282 155333 903832 108761 805785 033014 106648 486466 390387 393471 662883 598460 960587 949850 273628 126211 973312 780478 673719 186493 331732 870450 325364 071749 002598 466111 744064 574088 730393 705813 061185 451871 805669 978400 721519 516843 253375 150322 124265 942783 680601 712941 389516 136753 964211 326153 879570 256424 404816 837835 917336 928140 010525 799387 (354 digits), a[692] = 8
                                                                                      A[693]/B[693] = 17155 259992 998461 451995 628866 646560 755353 771382 232702 693585 494808 603127 370936 362973 047946 675404 256838 408101 308036 488164 925413 611142 426732 414120 882303 731713 800581 118671 699894 544186 378820 055366 712335 298647 885315 722914 208635 912569 951040 792442 588920 679994 032866 992956 479221 180830 860014 213099 259054 650412 242581 202707 124388 673832 058257 426396 520600 998518 891479 (353 digits)/1 667380 198750 352821 416359 970491 006456 799677 329592 432776 908037 819950 978716 217559 285166 536314 814311 441787 213042 168420 151601 222458 344133 695477 526035 128435 522897 861644 422532 369711 276041 218153 962398 433006 286464 967139 143363 173135 275425 506736 061163 866996 230927 209231 401910 855788 573190 494503 702736 723133 151788 180195 191764 650629 210621 129653 937436 330740 520271 956773 (355 digits), a[693] = 8
                                                                                      A[694]/B[694] = 87887 897151 881075 188602 278264 192676 643971 637453 712907 083713 813421 174172 717427 371659 070651 205186 837930 559194 964665 223540 227422 873930 835000 055748 984825 878468 464767 037248 912076 351274 889811 906307 826790 909514 677806 434067 514099 334454 498457 384077 400586 200904 464912 992369 645025 380632 748404 914515 115753 483253 975904 552945 798578 159387 633918 503420 538001 977248 803759 (353 digits)/8 542134 568678 184957 938870 688253 095566 153720 551794 272646 345974 132769 000229 574262 816220 075045 734440 807397 025798 791951 031634 238503 693981 257866 303894 828670 946222 178672 438025 920305 382804 556881 556056 739120 162718 541508 778001 317548 182797 512081 027338 851824 408011 196479 133820 221726 546554 185459 903199 752419 723152 227129 838393 509570 457922 486105 604518 581842 611885 583252 (355 digits), a[694] = 5
                                                                                      A[695]/B[695] = 105043 157144 879536 640597 907130 839237 399325 408835 945609 777299 308229 777300 088363 734632 118597 880591 094768 967296 272701 711705 152836 485073 261732 469869 867129 610182 265348 155920 611970 895461 268631 961674 539126 208162 563122 156981 722735 247024 449498 176519 989506 880898 497779 985326 124246 561463 608419 127614 374808 133666 218485 755652 922966 833219 692175 929817 058602 975767 695238 (354 digits)/10 209514 767428 537779 355230 658744 102022 953397 881386 705423 254011 952719 978945 791822 101386 611360 548752 249184 238840 960371 183235 460962 038114 953343 829929 957106 469120 040316 860558 290016 658845 775035 518455 172126 449183 508647 921364 490683 458223 018817 088502 718820 638938 405710 535731 077515 119744 679963 605936 475552 874940 407325 030158 160199 668543 615759 541954 912583 132157 540025 (356 digits), a[695] = 1
                                                                                      A[696]/B[696] = 2 608923 668628 989954 562952 049404 334374 227781 449516 407541 738897 210935 829374 838157 002829 917000 339373 112385 774305 509506 304463 895498 515689 116579 332625 795936 522842 833122 779343 599377 842345 336978 986496 765819 905416 192738 201628 859745 263041 286413 620557 148751 342468 411632 640196 626942 855759 350463 977260 111148 691243 219562 688615 949782 156660 246140 819029 944473 395673 489471 (355 digits)/253 570488 986963 091662 464406 498111 544117 035269 705075 202804 442260 998048 494928 577993 249498 747698 904494 787818 757981 840859 429285 301592 608740 138118 222213 799226 205103 146277 091424 880705 195103 157733 998980 870154 943122 749058 890749 093951 180149 963691 151404 103519 742532 933531 991366 082089 420426 504586 445675 165688 721722 002930 562189 354362 502969 264334 611436 483837 783666 543852 (357 digits), a[696] = 24
                                                                                      A[697]/B[697] = 65 328134 872869 628400 714399 142239 198593 093861 646746 134153 249729 581625 511671 042288 805380 043606 364918 904413 324934 010359 323302 540299 377301 176215 785514 765542 681253 093417 639510 596416 954094 693106 624093 684623 843567 381577 197703 216366 823056 609838 690448 708290 442608 788595 990241 797817 955447 370018 559117 153525 414746 707552 971051 667520 749725 845696 405565 670437 867604 932013 (356 digits)/6349 471739 441505 829340 965393 111532 704948 835140 508266 775534 310536 903932 352160 241653 338855 303833 161121 944653 188386 981856 915368 000777 256618 406299 385274 937761 596698 697244 146180 307646 536424 718385 492976 926000 027252 235120 190091 839462 961972 111095 873605 306814 202261 744010 319883 129750 630407 294624 747815 617770 917990 480589 084892 019262 242775 224124 827867 008527 723821 136325 (358 digits), a[697] = 25
                                                                                      A[698]/B[698] = 198 593328 287237 875156 706149 476121 930153 509366 389754 810001 488085 955812 364387 965023 418970 047819 434129 825625 749107 540584 274371 516396 647592 645226 689170 092564 566602 113375 697875 388628 704629 416298 858777 819691 436118 337469 794738 508845 732211 115929 691903 273622 670294 777420 610922 020396 722101 460519 654611 571724 935483 342221 601770 952344 405837 783230 035726 955786 998488 285510 (357 digits)/19301 985707 311480 579685 360585 832709 658963 540691 229875 529407 373871 709845 551409 302953 266064 659198 387860 621778 323142 786430 175389 303924 378595 357016 378038 612510 995199 238009 529965 803644 804377 312890 477911 648155 024879 454419 461024 612340 066066 296978 772220 023962 349318 165562 951015 471341 311648 388460 689122 019001 475693 444697 816865 412149 231294 936709 095037 509420 955129 952827 (359 digits), a[698] = 3
                                                                                      A[699]/B[699] = 263 921463 160107 503557 420548 618361 128746 603228 036500 944154 737815 537437 876059 007312 224350 091425 799048 730039 074041 550943 597674 056696 024893 821442 474684 858107 247855 206793 337385 985045 658724 109405 482871 504315 279685 719046 992441 725212 555267 725768 382351 981913 112903 566016 601163 818214 677548 830538 213728 725250 350230 049774 572822 619865 155563 628926 441292 626224 866093 217523 (357 digits)/25651 457446 752986 409026 325978 944242 363912 375831 738142 304941 684408 613777 903569 544606 604919 963031 548982 566431 511529 768287 090757 304701 635213 763315 763313 550272 591897 935253 676146 111291 340802 031275 970888 574155 052131 689539 651116 451803 028038 408074 645825 330776 551579 909573 270898 601091 942055 683085 436937 636772 393683 925286 901757 431411 474070 160833 922904 517948 678951 089152 (359 digits), a[699] = 1
                                                                                      A[700]/B[700] = 990 357717 767560 385828 967795 331205 316393 319050 499257 642465 701532 568125 992564 986960 092020 322096 831276 015742 971232 193415 067393 686484 722274 109554 113224 666886 310167 733755 710033 343765 680801 744515 307392 332637 275175 494610 772063 684483 398014 293234 838959 219362 009005 475470 414413 475040 754747 952134 295797 747475 986173 491545 320238 811939 872528 670009 359604 834461 596767 938079 (357 digits)/96256 358047 570439 806764 338522 665436 750700 668186 444302 444232 427097 551179 262117 936773 080824 548293 034808 321072 857732 091291 447661 218029 284236 646963 667979 263328 770893 043770 558404 137518 826783 406718 390577 370620 181274 523038 414373 967749 150181 521202 709696 016292 004057 894282 763711 274617 137815 437716 999934 929318 656745 220558 522137 706383 653505 419210 863751 063266 991983 220283 (359 digits), a[700] = 3
                                                                                      A[701]/B[701] = 1254 279180 927667 889386 388343 949566 445139 922278 535758 586620 439348 105563 868623 994272 316370 413522 630324 745782 045273 744358 665067 743180 747167 930996 587909 524993 558022 940549 047419 328811 339525 853920 790263 836952 554861 213657 764505 409695 953282 019003 221311 201275 121909 041487 015577 293255 432296 782672 509526 472726 336403 541319 893061 431805 028092 298935 800897 460686 462861 155602 (358 digits)/121907 815494 323426 215790 664501 609679 114613 044018 182444 749174 111506 164957 165687 481379 685744 511324 583790 887504 369261 859578 538418 522730 919450 410279 431292 813601 362790 979024 234550 248810 167585 437994 361465 944775 233406 212578 065490 419552 178219 929277 355521 347068 555637 803856 034609 875709 079871 120802 436872 566091 050429 145845 423895 137795 127575 580044 786655 581215 670934 309435 (360 digits), a[701] = 1
                                                                                      A[702]/B[702] = 4753 195260 550564 053988 132827 179904 651813 085886 106533 402327 019576 884817 598436 969777 041131 562664 722250 253089 107053 426491 062596 916026 963777 902543 876953 241866 984236 555402 852291 330199 699379 306277 678183 843494 939759 135584 065579 913571 257860 350244 502892 823187 374732 599931 461145 354807 051638 300151 824377 165654 995384 115504 999423 107354 956805 566816 762297 216520 985351 404885 (358 digits)/461979 804530 540718 454136 332027 494474 094539 800240 991636 691754 761616 046050 759180 380912 138058 082266 786180 983585 965517 670027 062916 786222 042587 877801 961857 704132 859265 980843 262054 883949 329539 720701 474975 204945 881493 160772 610845 226405 684841 309034 776260 057497 670971 305850 867540 901744 377428 800124 310552 627591 808032 658094 793823 119769 036232 159345 223717 806914 004786 148588 (360 digits), a[702] = 3
                                                                                      A[703]/B[703] = 20267 060223 129924 105338 919652 669185 052392 265822 961892 195928 517655 644834 262371 873380 480896 664181 519325 758138 473487 450322 915455 407288 602279 541172 095722 492461 494969 162160 456584 649610 137043 079031 502999 210932 313897 755994 026825 063980 984723 419981 232882 494024 620839 441212 860158 712483 638849 983279 807035 135346 317940 003339 890753 861224 855314 566202 850086 326770 404266 775142 (359 digits)/1 969827 033616 486300 032335 992611 587575 492772 244982 148991 516193 157970 349160 202409 005028 237976 840391 728514 821848 231332 539686 790085 667619 089801 921487 278723 630132 799854 902397 282769 784607 485744 320800 261366 764558 759378 855668 508871 325174 917585 165416 460561 577059 239523 027259 504773 482686 589586 321299 679083 076458 282559 778224 599187 616871 272504 217425 681526 808871 690078 903787 (361 digits), a[703] = 4
                                                                                      A[704]/B[704] = 25020 255483 680488 159327 052479 849089 704205 351709 068425 598255 537232 529651 860808 843157 522028 226846 241576 011227 580540 876813 978052 323315 566057 443715 972675 734328 479205 717563 308875 979809 836422 385309 181183 054427 253656 891578 092404 977552 242583 770225 735775 317211 995572 041144 321304 067290 690488 283431 631412 301001 313324 118844 890176 968579 812120 133019 612383 543291 389618 180027 (359 digits)/2 431806 838147 027018 486472 324639 082049 587312 045223 140628 207947 919586 395210 961589 385940 376034 922658 514695 805434 196850 209713 853002 453841 132389 799289 240581 334265 659120 883240 544824 668556 815284 041501 736341 969504 640872 016441 119716 551580 602426 474451 236821 634556 910494 333110 372314 384430 967015 121423 989635 704050 090592 436319 393010 736640 308736 376770 905244 615785 694865 052375 (361 digits), a[704] = 1
                                                                                      A[705]/B[705] = 70307 571190 490900 423993 024612 367364 460802 969241 098743 392439 592120 704137 983989 559695 524953 117874 002477 780593 634569 203950 871560 053919 734394 428604 041073 961118 453380 597287 074336 609229 809887 849649 865365 319786 821211 539150 211635 019085 469890 960432 704433 128448 611983 523501 502766 847065 019826 550143 069859 737348 944588 241029 671107 798384 479554 832242 074853 413353 183503 135196 (359 digits)/6 833440 709910 540337 005280 641889 751674 667396 335428 430247 932088 997143 139582 125587 776908 990046 685708 757906 432716 625032 959114 496090 575301 354581 520065 759886 298664 118096 668878 372419 121721 116312 403803 734050 703568 041122 888550 748304 428336 122438 114318 934204 846173 060511 693480 249402 251548 523616 564147 658354 484558 463744 650863 385209 090151 889976 970967 492016 040443 079809 008537 (361 digits), a[705] = 2
                                                                                      A[706]/B[706] = 95327 826674 171388 583320 077092 216454 165008 320950 167168 990695 129353 233789 844798 402853 046981 344720 244053 791821 215110 080764 849612 377235 300451 872320 013749 695446 932586 314850 383212 589039 646310 234959 046548 374214 074868 430728 304039 996637 712474 730658 440208 445660 607555 564645 824070 914355 710314 833574 701272 038350 257912 359874 561284 766964 291674 965261 687236 956644 573121 315223 (359 digits)/9 265247 548057 567355 491752 966528 833724 254708 380651 570876 140036 916729 534793 087177 162849 366081 608367 272602 238150 821883 168828 349093 029142 486971 319355 000467 632929 777217 552118 917243 790277 931596 445305 470392 673072 681994 904991 868020 979916 724864 588770 171026 480729 971006 026590 621716 635979 490631 685571 647990 188608 554337 087182 778219 826792 198713 347738 397260 656228 774674 060912 (361 digits), a[706] = 1
                                                                                      A[707]/B[707] = 260963 224538 833677 590633 178796 800272 790819 611141 433081 373829 850827 171717 673586 365401 618915 807314 490585 364236 064789 365480 570784 808390 335298 173244 068573 352012 318553 226987 840761 787309 102508 319567 958462 068214 970948 400606 819715 012360 894840 421749 584850 019769 827094 652793 150908 675776 440456 217292 472403 814049 460412 960778 793677 332313 062904 762765 449327 326642 329745 765642 (360 digits)/25 363935 806025 675047 988786 574947 419123 176813 096731 572000 212162 830602 209168 299942 102607 722209 902443 303110 909018 268799 296771 194276 633586 328524 158775 760821 564523 672531 773116 206906 702276 979505 294414 674836 049713 405112 698534 484346 388169 572167 291859 276257 807633 002523 746661 492835 523507 504879 935290 954334 861775 572418 825228 941648 743736 287403 666444 286537 352900 629157 130361 (362 digits), a[707] = 2
                                                                                      A[708]/B[708] = 2 183033 622984 840809 308385 507466 618636 491565 210081 631819 981333 935970 607531 233489 326065 998307 803236 168736 705709 733425 004609 415890 844357 982837 258272 562336 511545 481012 130753 109306 887512 466376 791502 714244 919933 842455 635582 861760 095524 871198 104655 119008 603819 224312 786991 031340 320567 233964 571914 480502 550745 941216 046104 910703 425468 794913 067385 281855 569783 211087 440359 (361 digits)/212 176733 996262 967739 402045 566108 186709 669213 154504 146877 837339 561547 208139 486713 983711 143760 827913 697489 510296 972277 542997 903306 097833 115164 589561 087040 149119 157471 737048 572497 408493 767638 800622 869081 070779 922896 493267 742792 085273 302202 923644 381088 941793 991195 999882 564400 824039 529671 167899 282669 082813 133687 689014 311409 776682 497942 679292 689559 479433 807931 103800 (363 digits), a[708] = 8
                                                                                      A[709]/B[709] = 33 006467 569311 445817 216415 790796 079820 164297 762365 910381 093838 890386 284686 175926 256391 593532 855857 021635 949882 066164 434621 809147 473760 077857 047332 503621 025194 533735 188284 480365 099996 098160 192108 672135 867222 607782 934349 746116 445233 962811 991576 369979 077058 191786 457658 621013 484284 949924 796009 679942 075238 578653 652352 454228 714344 986600 773544 677160 873390 496057 371027 (362 digits)/3208 014945 749970 191139 019470 066570 219768 215010 414293 775167 772256 253810 331260 600651 858274 878622 321148 765453 563472 852962 441739 743868 101083 055993 002192 066423 801311 034607 828844 794367 829683 494087 303757 711052 111412 248560 097550 626227 667269 105211 146524 992591 934542 870463 744899 958847 884100 449947 453780 194371 103972 577734 160443 612795 393973 756543 855834 629929 544407 748123 687361 (364 digits), a[709] = 15
                                                                                      A[710]/B[710] = 35 189501 192296 286626 524801 298262 698456 655862 972447 542201 075172 826356 892217 409415 582457 591840 659093 190372 655591 799589 439231 225038 318118 060694 305605 065957 536740 014747 319037 589671 987508 564536 983611 386380 787156 450238 569932 607876 540758 834010 096231 488987 680877 416099 244649 652353 804852 183889 367924 160444 625984 519869 698457 364932 139813 781513 840929 959016 443173 707144 811386 (362 digits)/3420 191679 746233 158878 421515 632678 406477 884223 568797 922045 609595 815357 539400 087365 841986 022383 149062 462943 073769 825239 984737 647174 198916 171157 591753 153463 950430 192079 565893 366865 238177 261726 104380 580133 182192 171456 590818 369019 752542 407414 070169 373680 876336 861659 744782 523248 708139 979618 621679 477040 186785 711421 849457 924205 170656 254486 535127 319489 023841 556054 791161 (364 digits), a[710] = 1
                                                                                      A[711]/B[711] = 13932 859438 526344 663294 512928 604561 970199 230171 879145 079805 787105 301358 710562 895081 327140 370593 197667 218834 908642 903992 930955 699283 130394 052107 761333 556848 037500 358926 208132 400800 165879 090268 718606 292546 794020 452018 057729 857350 044973 396800 003014 520113 023637 550988 094271 300766 400897 586225 126053 055569 339123 927184 543011 602423 940788 684567 940878 488655 927004 818257 868497 (365 digits)/1 354183 728445 512067 948115 518144 974540 778532 483320 089472 983183 562603 320038 394295 110159 442753 719966 200821 627967 702553 822756 413110 377676 672970 663241 744687 684684 221236 906036 356724 706136 909701 875898 534086 863659 077319 973913 470806 389029 921520 033768 863427 596538 087603 226062 933996 642087 599392 399303 017173 625244 884328 589364 696323 673837 803194 278725 231125 828093 961822 389766 195956 (367 digits), a[711] = 395
                                                                                      A[712]/B[712] = 69699 486693 824019 603099 089444 321072 549452 806722 368172 941230 010699 333150 445031 884822 218159 444806 647429 284547 198806 319554 094009 721453 970088 321233 112272 850197 724241 809378 359699 593672 816904 015880 576642 849114 757258 710328 858581 894626 765625 818010 111304 089552 799065 171039 716006 156185 809340 115014 998189 438291 321604 155792 413515 377051 843757 204353 545322 402296 078197 798434 153871 (365 digits)/6 774338 833907 306572 899456 012240 505382 299140 300824 016162 837963 422612 415549 510875 638163 055754 622214 153170 602781 586538 939022 050289 535557 563769 487366 315191 576885 056614 722261 349516 897549 786686 641218 774814 898428 568792 041023 944850 314169 360142 576258 387307 356371 314352 991974 414765 733686 705101 976133 707547 603264 608428 658245 331076 293394 186627 648112 690756 459958 832953 504885 770941 (367 digits), a[712] = 5
                                                                                      A[713]/B[713] = 83632 346132 350364 266393 602372 925634 519652 036894 247318 021035 797804 634509 155594 779903 545299 815399 845096 503382 107449 223547 024965 420737 100482 373340 873606 407045 761742 168304 567831 994472 982783 106149 295249 141661 551279 162346 916311 751976 810599 214810 114318 609665 822702 722027 810277 456952 210237 701240 124242 493860 660728 082976 956526 979475 784545 888921 486200 890952 005202 616692 022368 (365 digits)/8 128522 562352 818640 847571 530385 479923 077672 784144 105635 821146 985215 735587 905170 748322 498508 342180 353992 230749 289092 761778 463399 913234 236740 150608 059879 261569 277851 628297 706241 603686 696388 517117 308901 762087 646112 014937 415656 703199 281662 610027 250734 952909 401956 218037 348762 375774 304494 375436 724721 228509 492757 247610 027399 967231 989821 926837 921882 288052 794775 894651 966897 (367 digits), a[713] = 1
                                                                                      A[714]/B[714] = 1 073287 640282 028390 799822 317919 428686 785277 249453 335989 193659 584354 947260 312169 243664 761757 229604 788587 325132 488197 002118 393594 770299 175876 801323 595549 734746 865147 829033 173683 527348 610301 289672 119632 549053 372608 658491 854322 918348 492816 395731 483127 405542 671497 835373 439335 639612 332192 529896 489099 364619 250341 151515 891839 130761 258307 871411 379733 093720 140629 198738 422287 (367 digits)/104 316609 582141 130263 070314 376866 264459 231213 710553 283792 691727 245201 242604 372924 618033 037854 728378 401077 371773 055652 080363 611088 494368 404651 294663 033742 715716 390834 261833 824416 141790 143348 846626 481636 043480 322136 220272 932730 752560 740093 896585 396126 791284 137827 608422 599914 242978 359034 481374 404202 345378 521515 629565 659875 900178 064490 770167 753343 916592 370264 240709 373705 (369 digits), a[714] = 12
                                                                                      A[715]/B[715] = 1 156919 986414 378755 066215 920292 354321 304929 286347 583307 214695 382159 581769 467764 023568 307057 045004 633683 828514 595646 225665 418560 191036 276359 174664 469156 141792 626889 997337 741515 521821 593084 395821 414881 690714 923887 820838 770634 670325 303415 610541 597446 015208 494200 557401 249613 096564 542430 231136 613341 858479 911069 234492 848366 110237 042853 760332 865933 984672 145831 815430 444655 (367 digits)/112 445132 144493 948903 917885 907251 744382 308886 494697 389428 512874 230416 978192 278095 366355 536363 070558 755069 602522 344744 842142 074488 407602 641391 445271 093621 977285 668685 890131 530657 745476 839737 363743 790537 805567 968248 235210 348387 455760 021756 506612 646861 744193 539783 826459 948676 618752 663528 856811 128923 573888 014272 877175 687275 867410 054312 697005 675226 204645 165040 135361 340602 (369 digits), a[715] = 1
                                                                                      A[716]/B[716] = 2 230207 626696 407145 866038 238211 783008 090206 535800 919296 408354 966514 529029 779933 267233 068814 274609 422271 153647 083843 227783 812154 961335 452235 975988 064705 876539 492037 826370 915199 049170 203385 685493 534514 239768 296496 479330 624957 588673 796232 006273 080573 420751 165698 392774 688948 736176 874622 761033 102441 223099 161410 386008 740205 240998 301161 631744 245667 078392 286461 014168 866942 (367 digits)/216 761741 726635 079166 988200 284118 008841 540100 205250 673221 204601 475618 220796 651019 984388 574217 798937 156146 974295 400396 922505 685576 901971 046042 739934 127364 693002 059520 151965 355073 887266 983086 210370 272173 849048 290384 455483 281118 208320 761850 403198 042988 535477 677611 434882 548590 861731 022563 338185 533125 919266 535788 506741 347151 767588 118803 467173 428570 121237 535304 376070 714307 (369 digits), a[716] = 1
                                                                                      A[717]/B[717] = 3 387127 613110 785900 932254 158504 137329 395135 822148 502603 623050 348674 110799 247697 290801 375871 319614 055954 982161 679489 453449 230715 152371 728595 150652 533862 018332 118927 823708 656714 570991 796470 081314 949395 930483 220384 300169 395592 258999 099647 616814 678019 435959 659898 950175 938561 832741 417052 992169 715783 081579 072479 620501 588571 351235 344015 392077 111601 063064 432292 829599 311597 (367 digits)/329 206873 871129 028070 906086 191369 753223 848986 699948 062649 717475 706035 198988 929115 350744 110580 869495 911216 576817 745141 764647 760065 309573 687434 185205 220986 670287 728206 042096 885731 632743 822823 574114 062711 654616 258632 690693 629505 664080 783606 909810 689850 279671 217395 261342 497267 480483 686092 194996 662049 493154 550061 383917 034427 634998 173116 164179 103796 325882 700344 511432 054909 (369 digits), a[717] = 1
                                                                                      A[718]/B[718] = 5 617335 239807 193046 798292 396715 920337 485342 357949 421900 031405 315188 639829 027630 558034 444685 594223 478226 135808 763332 681233 042870 113707 180831 126640 598567 894871 610965 650079 571913 620161 999855 766808 483910 170251 516880 779500 020549 847672 895879 623087 758592 856710 825597 342950 627510 568918 291675 753202 818224 304678 233890 006510 328776 592233 645177 023821 357268 141456 718753 843768 178539 (367 digits)/545 968615 597764 107237 894286 475487 762065 389086 905198 735870 922077 181653 419785 580135 335132 684798 668433 067363 551113 145538 687153 445642 211544 733476 925139 348351 363289 787726 194062 240805 520010 805909 784484 334885 503664 549017 146176 910623 872401 545457 313008 732838 815148 895006 696225 045858 342214 708655 533182 195175 412421 085849 890658 381579 402586 291919 631352 532366 447120 235648 887502 769216 (369 digits), a[718] = 1
                                                                                      A[719]/B[719] = 14 621798 092725 171994 528838 951935 978004 365820 538047 346403 685860 979051 390457 302958 406870 265242 508061 012407 253779 206154 815915 316455 379786 090257 403933 730997 808075 340859 123867 800541 811315 796181 614931 917216 270986 254145 859169 436691 954344 891406 862990 195205 149381 311093 636077 193582 970578 000404 498575 352231 690935 540259 633522 246124 535702 634369 439719 826137 345977 869800 517135 668675 (368 digits)/1421 144105 066657 242546 694659 142345 277354 627160 510345 534391 561630 069342 038560 089386 021009 480178 206362 045943 679044 036219 138954 651349 732663 154388 035483 917689 396867 303658 430221 367342 672765 434643 143082 732482 661945 356666 983047 450753 408883 874521 535828 155527 909969 007408 653792 588984 164913 103403 261361 052400 317996 721761 165233 797586 440170 756955 426884 168529 220123 171642 286437 593341 (370 digits), a[719] = 2
                                                                                      A[720]/B[720] = 20 239133 332532 365041 327131 348651 898341 851162 895996 768303 717266 294240 030286 330588 964904 709928 102284 490633 389587 969487 497148 359325 493493 271088 530574 329565 702946 951824 773947 372455 431477 796037 381740 401126 441237 771026 638669 457241 802017 787286 486077 953798 006092 136690 979027 821093 539496 292080 251778 170455 995613 774149 640032 574901 127936 279546 463541 183405 487434 588554 360903 847214 (368 digits)/1967 112720 664421 349784 588945 617833 039420 016247 415544 270262 483707 250995 458345 669521 356142 164976 874795 113307 230157 181757 826108 096991 944207 887864 960623 266040 760157 091384 624283 608148 192776 240552 927567 067368 165609 905684 129224 361377 281285 419978 848836 888366 725117 902415 350017 634842 507127 812058 794543 247575 730417 807611 055892 179165 842757 048875 058236 700895 667243 407291 173940 362557 (370 digits), a[720] = 1
                                                                                      A[721]/B[721] = 156 295731 420451 727283 818758 392499 266397 323960 810024 724529 706725 038731 602461 617081 161203 234739 224052 446840 980894 992567 295953 831733 834238 987877 117954 037957 728704 003632 541499 407729 831660 368443 287114 725101 359650 651332 329855 637384 568469 402412 265535 871791 192026 267930 489271 941237 747052 044966 261022 545423 660231 959307 113750 270432 431256 591194 684508 109975 758019 989681 043462 599173 (369 digits)/15190 933149 717606 691038 817278 467176 553294 740892 419155 426228 947580 826310 246979 776035 514004 635016 329927 839094 290144 308523 921711 330293 342118 369442 759846 779974 717966 943350 800206 624380 022199 118513 636052 204059 821214 696455 887617 980394 377881 814373 477686 374094 985794 324316 103916 032881 714807 787814 823163 785430 430921 375038 556479 051747 339470 099080 834541 074798 890827 022680 504020 131240 (371 digits), a[721] = 7
                                                                                      A[722]/B[722] = 176 534864 752984 092325 145889 741151 164739 175123 706021 492833 423991 332971 632747 947670 126107 944667 326336 937474 370482 962054 793102 191059 327732 258965 648528 367523 431650 955457 315446 780185 263138 164480 668855 126227 800888 422358 968525 094626 370487 189698 751613 825589 198118 404621 468299 762331 286548 337046 512800 715879 655845 733456 753782 845333 559192 870741 148049 293381 245454 578235 404366 446387 (369 digits)/17158 045870 382028 040823 406224 085009 592714 757139 834699 696491 431288 077305 705325 445556 870146 799993 204722 952401 520301 490281 747819 427285 286326 257307 720470 046015 478124 034735 424490 232528 214975 359066 563619 271427 986824 602140 016842 341771 659167 234352 326523 262461 710912 226731 453933 667724 221935 599873 617707 033006 161339 182649 612371 230913 182227 147955 892777 775694 558070 429971 677960 493797 (371 digits), a[722] = 1
                                                                                      A[723]/B[723] = 1038 970055 185372 188909 548207 098255 090093 199579 340132 188696 826681 703589 766201 355431 791742 958075 855737 134212 833309 802841 261464 787030 472900 282705 360595 875574 886958 780919 118733 308656 147351 190846 631390 356240 364092 763127 172481 110516 420905 350906 023604 999737 182618 291037 830770 752894 179793 730198 825026 124821 939460 626590 882664 497100 227220 944900 424754 576881 985292 880858 065294 831108 (370 digits)/100981 162501 627746 895155 848398 892224 516868 526591 592653 908686 104021 212838 773607 003819 864738 634982 353542 601101 891651 759932 660808 466719 773749 655981 362197 010052 108587 117027 922657 787021 097075 913846 454148 561199 755337 707155 971829 689252 673717 986135 110302 686403 540355 457973 373584 371502 824485 787182 911698 950461 237617 288286 618335 206313 250605 838860 298429 953271 681179 172538 893822 600225 (372 digits), a[723] = 5
                                                                                      A[724]/B[724] = 2254 474975 123728 470144 242303 937661 344925 574282 386285 870227 077354 740151 165150 658533 709593 860819 037811 205900 037102 567737 316031 765120 273532 824376 369720 118673 205568 517295 552913 397497 557840 546173 931635 838708 529073 948613 313487 315659 212297 891510 798823 825063 563354 986697 129841 268119 646135 797444 162852 965523 534766 986638 519111 839534 013634 760541 997558 447145 216040 339951 534956 108603 (370 digits)/219120 370873 637521 831135 103021 869458 626451 810323 020007 513863 639330 502983 252539 453196 599624 069957 911808 154605 303605 010147 069436 360724 833825 569270 444864 066119 695298 268791 269805 806570 409127 186759 471916 393827 497500 016451 960501 720277 006603 206622 547128 635268 791623 142678 201102 410729 870907 174239 441104 933928 636573 759222 849041 643539 683438 825676 489637 682237 920428 775049 465605 694247 (372 digits), a[724] = 2
                                                                                      A[725]/B[725] = 21329 244831 298928 420207 728942 537207 194423 368120 816705 020740 522874 364950 252557 282235 178087 705447 196037 987313 167232 912477 105750 673112 934695 702092 688076 943633 737075 436579 094953 886134 167916 106412 016112 904617 125758 300646 993866 951449 331586 374503 213019 425309 252813 171311 999342 165970 995015 907196 290702 814533 752363 506337 554671 052906 349933 789778 402780 601188 929655 940421 879899 808535 (371 digits)/2 073064 500364 365443 375371 775595 717352 154934 819498 772721 533458 857995 739688 046462 082589 261355 264603 559815 992549 624096 851256 285735 713243 278179 779415 365973 605129 366271 536149 350910 046154 779220 594681 701396 105647 232837 855223 616345 171745 733146 845738 034460 403822 664963 742077 183506 068071 662650 355337 881643 355818 966781 121292 259709 998170 401555 269948 705169 093412 965038 147984 084273 848448 (373 digits), a[725] = 9
                                                                                      A[726]/B[726] = 23583 719806 422656 890351 971246 474868 539348 942403 202990 890967 600229 105101 417707 940768 887681 566266 233849 193213 204335 480214 421782 438233 208228 526469 057797 062306 942643 953874 647867 283631 725756 652585 947748 743325 654832 249260 307354 267108 543884 266014 011843 250372 816168 158009 129183 434090 641151 704640 453555 780057 287130 492976 073782 892440 363568 550320 400339 048334 145696 280373 414855 917138 (371 digits)/2 292184 871238 002965 206506 878617 586810 781386 629821 792729 047322 497326 242671 299001 535785 860979 334561 471624 147154 927701 861403 355172 073968 112005 348685 810837 671249 061569 804940 620715 852725 188347 781441 173312 499474 730337 871675 576846 892022 739750 052360 581589 039091 456586 884755 384608 478801 533557 529577 322748 289747 603354 880515 108751 641710 084994 095625 194806 775650 885466 923033 549879 542695 (373 digits), a[726] = 1
                                                                                      A[727]/B[727] = 139247 843863 412212 871967 585174 911549 891168 080136 831659 475578 524019 890457 341096 986079 616495 536778 365283 953379 188910 313549 214662 864278 975838 334437 977062 255168 450295 205952 334290 304292 796699 369341 754856 621245 399919 546948 530638 286992 051007 704573 272235 677173 333653 961357 645259 336424 200774 430398 558481 714820 188015 971217 923585 515108 167776 541380 404475 842859 658137 342288 954179 394225 (372 digits)/13 533988 856554 380269 407906 168683 651406 061867 968607 736366 770071 344626 953044 541469 761518 566251 937410 917936 728324 262606 158273 061596 083083 838206 522844 420161 961374 674120 560852 454489 309780 720959 501887 567958 603020 884527 213601 500579 631859 431897 107540 942405 599279 947898 165854 106548 462079 330438 003224 495384 804556 983555 523867 803468 206720 826525 748074 679202 971667 392372 763151 833671 561923 (374 digits), a[727] = 5
                                                                                      A[728]/B[728] = 162831 563669 834869 762319 556421 386418 430517 022540 034650 366546 124248 995558 758804 926848 504177 103044 599133 146592 393245 793763 636445 302512 184066 860907 034859 317475 392939 159826 982157 587924 522456 021927 702605 364571 054751 796208 837992 554100 594891 970587 284078 927546 149822 119366 774442 770514 841926 135039 012037 494877 475146 464193 997368 407548 531345 091700 804814 891193 803833 622662 369035 311363 (372 digits)/15 826173 727792 383234 614413 047301 238216 843254 598429 529095 817393 841953 195715 840471 297304 427231 271972 389560 875479 190308 019676 416768 157051 950211 871530 230999 632623 735690 365793 075205 162505 909307 283328 741271 102495 614865 085277 077426 523882 171647 159901 523994 638371 404485 050609 491156 940880 863995 532801 818133 094304 586910 404382 912219 848430 911519 843699 874009 747318 277839 686185 383551 104618 (374 digits), a[728] = 1
                                                                                      A[729]/B[729] = 302079 407533 247082 634287 141596 297968 321685 102676 866309 842124 648268 886016 099901 912928 120672 639822 964417 099971 582156 107312 851108 166791 159905 195345 011921 572643 843234 365779 316447 892217 319155 391269 457461 985816 454671 343157 368630 841092 645899 675160 556314 604719 483476 080724 419702 106939 042700 565437 570519 209697 663162 435411 920953 922656 699121 633081 209290 734053 461970 964951 323214 705588 (372 digits)/29 360162 584346 763504 022319 215984 889622 905122 567037 265462 587465 186580 148760 381941 058822 993483 209383 307497 603803 452914 177949 478364 240135 788418 394374 651161 593998 409810 926645 529694 472286 630266 785216 309229 705516 499392 298878 578006 155741 603544 267442 466400 237651 352383 216463 597705 402960 194433 536026 313517 898861 570465 928250 715688 055151 738045 591774 553212 718985 670212 449337 217222 666541 (374 digits), a[729] = 1
                                                                                      A[730]/B[730] = 766990 378736 329035 030893 839613 982355 073887 227893 767270 050795 420786 767590 958608 752704 745522 382690 527967 346535 557558 008389 338661 636094 503877 251597 058702 462763 079407 891385 615053 372359 160766 804466 617529 336203 964094 482523 575254 236285 886691 320908 396708 136985 116774 280815 613846 984392 927327 265914 153075 914272 801471 335017 839276 252861 929588 357863 223396 359300 727775 552565 015464 722539 (372 digits)/74 546498 896485 910242 659051 479271 017462 653499 732504 060020 992324 215113 493236 604353 414950 414197 690739 004556 083086 096136 375575 373496 637323 527048 660279 533322 820620 555312 219084 134594 107079 169840 853761 359730 513528 613649 683034 233438 835365 378735 694786 456795 113674 109251 483536 686567 746801 252862 604854 445168 892027 727842 260884 343595 958734 387611 027248 980435 185289 618264 584859 817996 437700 (374 digits), a[730] = 2
                                                                                      A[731]/B[731] = 2 603050 543742 234187 726968 660438 245033 543346 786358 168119 994510 910629 188788 975728 171042 357239 787894 548319 139578 254830 132480 867093 075074 671536 950136 188028 960933 081458 039936 161608 009294 801455 804669 310049 994428 346954 790728 094393 549950 305973 637885 746439 015674 833798 923171 261243 060117 824682 363180 029746 952516 067576 440465 438782 681242 487886 706670 879479 811955 645297 622646 369608 873205 (373 digits)/252 999659 273804 494231 999473 653797 942010 865621 764549 445525 564437 831920 628470 195001 303674 236076 281600 321165 853061 741323 304675 598854 152106 369564 375213 251130 055860 075747 583897 933476 793524 139789 346500 388421 246102 340341 347981 278322 661837 739751 351801 836785 578673 680137 667073 657408 643363 953021 350589 649024 574944 753992 710903 746475 931354 900878 673521 494518 274854 525006 203916 671211 979641 (375 digits), a[731] = 3
                                                                                      A[732]/B[732] = 8 576142 009963 031598 211799 820928 717455 703927 586968 271630 034328 152674 333957 885793 265831 817241 746374 172924 765270 322048 405831 939940 861318 518488 102005 622789 345562 323782 011194 099877 400243 565134 218474 547679 319489 004958 854707 858434 886136 804612 234565 636025 184009 618171 050329 397576 164746 401374 355454 242316 771821 004200 656414 155624 296589 393248 477875 861835 795167 663668 420504 124291 342154 (373 digits)/833 545476 717899 392938 657472 440664 843495 250365 026152 396597 685637 710875 378647 189357 325973 122426 535539 968053 642271 320106 289602 170059 093642 635741 785919 286712 988200 782554 970777 935024 487651 589208 893262 524994 251835 634673 726978 068406 820878 597989 750191 967151 849695 149664 484757 658793 676893 111926 656623 392242 616861 989820 393595 583023 752799 090247 047813 463990 009853 193283 196609 831632 376623 (375 digits), a[732] = 3
                                                                                      A[733]/B[733] = 11 179192 553705 265785 938768 481366 962489 247274 373326 439750 028839 063303 522746 861521 436874 174481 534268 721243 904848 576878 538312 807033 936393 190025 052141 810818 306495 405240 051130 261485 409538 366590 023143 857729 313917 351913 645435 952828 436087 110585 872451 382464 199684 451969 973500 658819 224864 226056 718634 272063 724337 071777 096879 594406 977831 881135 184546 741315 607123 308966 043150 493900 215359 (374 digits)/1086 545135 991703 887170 656946 094462 785506 115986 790701 842123 250075 542796 007117 384358 629647 358502 817140 289219 495333 061429 594277 768913 245749 005306 161132 537843 044060 858302 554675 868501 281175 728998 239762 913415 497937 975015 074959 346729 482716 337741 101993 803937 428368 829802 151831 316202 320257 064948 007213 041267 191806 743813 104499 329499 684153 991125 721334 958508 284707 718289 400526 502844 356264 (376 digits), a[733] = 1
                                                                                      A[734]/B[734] = 19 755334 563668 297384 150568 302295 679944 951201 960294 711380 063167 215977 856704 747314 702705 991723 280642 894168 670118 898926 944144 746974 797711 708513 154147 433607 652057 729022 062324 361362 809781 931724 241618 405408 633406 356872 500143 811263 322223 915198 107017 018489 383694 070141 023830 056395 389610 627431 074088 514380 496158 075977 753293 750031 274421 274383 662422 603151 402290 972634 463654 618191 557513 (374 digits)/1920 090612 709603 280109 314418 535127 629001 366351 816854 238720 935713 253671 385764 573715 955620 480929 352680 257273 137604 381535 883879 938972 339391 641047 947051 824556 032261 640857 525453 803525 768827 318207 133025 438409 749773 609688 801937 415136 303594 935730 852185 771089 278063 979466 636588 974995 997150 176874 663836 433509 808668 733633 498094 912523 436953 081372 769148 422498 294560 911572 597136 334476 732887 (376 digits), a[734] = 1
                                                                                      A[735]/B[735] = 3428 852072 068320 713243 987084 778519 592965 805213 504311 508500 956767 427472 732668 146965 005010 742609 085489 412423 835418 091239 875354 033673 940518 762800 719647 824942 112482 526056 833244 777251 501812 554883 823127 993422 893217 090856 170315 301383 180824 439858 386395 581127 578758 586367 096100 415221 627502 771632 535947 259889 559684 215928 416698 349817 452712 349508 783657 086508 203461 574728 255399 441039 665108 (376 digits)/333262 221134 753071 346082 051352 671542 602742 494851 106485 140845 128468 427945 744388 637218 951990 559280 830824 797472 300891 067137 505507 211127 960502 906601 001098 186036 625324 726654 458183 878459 288301 778832 253163 758302 208772 451177 810132 165310 004640 219178 530132 202382 533437 277530 281723 990509 827237 664264 850916 038464 091497 662408 274919 196054 277037 068614 784012 050713 243745 420348 705112 367319 145715 (378 digits), a[735] = 173
                                                                                      A[736]/B[736] = 3448 607406 631989 010628 137653 080815 272910 756415 464606 219881 019934 643450 589372 894279 707716 734332 366132 306592 505536 990166 819498 780648 738230 471313 873795 258549 764540 255078 895569 138614 311594 486608 064746 398831 526623 447728 670459 112646 503048 355056 493412 599616 962452 656508 119930 471617 017113 399063 610035 774270 055842 291906 169992 099848 727133 623892 446079 689659 605752 547362 719054 059231 222621 (376 digits)/335182 311747 462674 626191 365771 206670 231743 861202 923339 379566 064181 681617 130153 210934 907611 040210 183505 054745 438495 448673 389387 150100 299894 547648 948150 010592 657586 367511 983637 681985 057129 097039 386189 196711 958546 060866 612069 580446 308235 154909 382317 973471 811501 256996 918312 965505 824387 841139 514752 471973 900166 396041 773014 108577 713990 149987 553160 473211 538306 331921 302248 701795 878602 (378 digits), a[736] = 1
                                                                                      A[737]/B[737] = 331046 555702 107276 722917 064127 455970 519487 664682 641902 397197 850558 555278 723093 103537 238100 504183 868058 538711 861432 157087 727738 195304 072413 537618 730197 387169 743806 758551 912312 945611 103288 782649 974035 882417 922444 625079 863931 002800 970418 170225 260592 544739 011760 954638 489495 218838 253275 682675 489345 815544 864701 947014 565947 835446 530406 619291 161227 604170 749953 574186 565535 068005 814103 (378 digits)/32 175581 837143 707160 834261 799617 305214 618409 309128 823726 199621 225728 181573 108943 676035 175039 379248 263804 998288 957958 691109 497286 470656 450484 933251 075349 192339 096029 640292 903763 667039 715565 997573 941137 445938 270648 233505 956742 307709 286979 935569 850339 682204 626056 692237 521455 713563 144082 572518 752400 875984 607305 286376 711259 510937 106101 317432 334257 005809 382846 952872 418739 037927 612905 (380 digits), a[737] = 95
                                                                                      A[738]/B[738] = 996588 274512 953819 179379 330035 448726 831373 750463 390313 411474 571610 309286 758652 204891 422018 246883 970307 922728 089833 461430 002713 366560 955471 084170 064387 420058 995960 530734 632507 975447 621460 834557 986854 046085 293957 322968 262252 121049 414302 865732 275190 233833 997735 520423 588416 128131 776940 447090 078073 220904 649948 132949 867835 606188 318353 481765 929762 502171 855613 269922 415659 263248 664930 (378 digits)/96 861927 823178 584157 128976 764623 122314 086971 788589 394517 978429 741366 226336 456984 239040 432729 177954 974920 049612 312371 522001 881246 562069 651349 347402 174197 587609 945675 288390 694928 683104 203827 089761 209601 534526 770490 761384 482296 503574 169174 961618 933337 020085 689671 333709 482680 106195 256635 558695 771955 099927 722082 255171 906792 641389 032294 102284 555931 490639 686847 190538 558465 815578 717317 (380 digits), a[738] = 3
                                                                                      A[739]/B[739] = 1 327634 830215 061095 902296 394162 904697 350861 415146 032215 808672 422168 864565 481745 308428 660118 751067 838366 461439 951265 618517 730451 561865 027884 621788 794584 807228 739767 289286 544820 921058 724749 617207 960889 928503 216401 948048 126183 123850 384721 035957 535782 778573 009496 475062 077911 346970 030216 129765 567419 036449 514650 079964 433783 441634 848760 101057 090990 106342 605566 844108 981194 331254 479033 (379 digits)/129 037509 660322 291317 963238 564240 427528 705381 097718 218244 178050 967094 407909 565927 915075 607768 557203 238725 047901 270330 213111 378533 032726 101834 280653 249546 779949 041704 928683 598692 350143 919393 087335 150738 980465 041138 994890 439038 811283 456154 897188 783676 702290 315728 025947 004135 819758 400718 131214 524355 975912 329387 541548 618052 152326 138395 419716 890188 496449 069694 143410 977204 853506 330222 (381 digits), a[739] = 1
                                                                                      A[740]/B[740] = 12 945301 746448 503682 300046 877501 591002 989126 486777 680255 689526 371130 090376 094359 980749 363087 006494 515606 075687 651224 028089 576777 423346 206432 680269 215650 685117 653866 134313 535896 264976 144207 389429 634863 402614 241574 855401 397900 235702 876792 189350 097235 240991 083203 795982 289618 250862 048885 614980 184844 548950 281798 852629 771886 580901 957194 391279 748673 459255 305714 866903 246408 244538 976227 (380 digits)/1258 199514 766079 206018 798123 842786 970072 435401 668053 358715 580888 445215 897522 550335 474720 902646 192784 123445 480723 745343 440004 288043 856604 567857 873281 420118 607151 321019 646543 083159 834399 478364 875777 566252 358712 140741 715398 433645 805125 274569 036317 986427 340698 531223 567232 519902 484020 863098 739626 491158 883138 686570 129109 469262 012324 277852 879736 567627 958681 314094 481237 353309 497135 689315 (382 digits), a[740] = 9
                                                                                      A[741]/B[741] = 14 272936 576663 564778 202343 271664 495700 339987 901923 712471 498198 793298 954941 576105 289178 023205 757562 353972 537127 602489 646607 307228 985211 234317 302058 010235 492346 393633 423600 080717 186034 868957 006637 595753 331117 457976 803449 524083 359553 261513 225307 633018 019564 092700 271044 367529 597832 079101 744745 752263 585399 796448 932594 205670 022536 805954 492336 839663 565597 911281 711012 227602 575793 455260 (380 digits)/1387 237024 426401 497336 761362 407027 397601 140782 765771 576959 758939 412310 305432 116263 389796 510414 749987 362170 528625 015673 653115 666576 889330 669692 153934 669665 387100 362724 575226 681852 184543 397757 963112 716991 339177 181880 710288 872684 616408 730723 933506 770104 042988 846951 593179 524038 303779 263816 870841 015514 859051 015957 670658 087314 164650 416248 299453 457816 455130 383788 624648 330514 350642 019537 (382 digits), a[741] = 1
                                                                                      A[742]/B[742] = 41 491174 899775 633238 704733 420830 582403 669102 290625 105198 685923 957728 000259 246570 559105 409498 521619 223551 149942 856203 321304 191235 393768 675067 284385 236121 669810 441132 981513 697330 637045 882121 402704 826370 064849 157528 462300 446066 954809 399818 639965 363271 280119 268604 338071 024677 446526 207089 104471 689371 719749 874696 717818 183226 625975 569103 375953 428000 590451 128278 288927 701613 396125 886747 (380 digits)/4032 673563 618882 200692 320848 656841 765274 716967 199596 512635 098767 269836 508386 782862 254313 923475 692758 847786 537973 776690 746235 621197 635265 907242 181150 759449 381352 046468 796996 446864 203486 273880 802003 000235 037066 504503 135976 179015 037942 736016 903331 526635 426676 225126 753591 567979 091579 390732 481308 522188 601240 718485 470425 643890 341625 110349 478643 483260 868942 081671 730534 014338 198419 728389 (382 digits), a[742] = 2
                                                                                      A[743]/B[743] = 55 764111 476439 198016 907076 692495 078104 009090 192548 817670 184122 751026 955200 822675 848283 432704 279181 577523 687070 458692 967911 498464 378979 909384 586443 246357 162156 834766 405113 778047 823080 751078 409342 422123 395966 615505 265749 970150 314362 661331 865272 996289 299683 361304 609115 392207 044358 286190 849217 441635 305149 671145 650412 388896 648512 375057 868290 267664 156049 039559 999939 929215 971919 342007 (380 digits)/5419 910588 045283 698029 082211 063869 162875 857749 965368 089594 857706 682146 813818 899125 644110 433890 442746 209957 066598 792364 399351 287774 524596 576934 335085 429114 768452 409193 372223 128716 388029 671638 765115 717226 376243 686383 846265 051699 654351 466740 836838 296739 469665 072078 346771 092017 395358 654549 352149 537703 460291 734443 141083 731204 506275 526597 778096 941077 324072 465460 355182 344852 549061 747926 (382 digits), a[743] = 1
                                                                                      A[744]/B[744] = 1435 593961 810755 583661 381650 733207 535003 896357 104345 546953 288992 733401 880279 813466 766191 227105 501158 661643 326704 323527 519091 652844 868266 409681 945466 395050 723731 310293 109358 148526 214064 659081 636265 379454 964014 545160 106049 699824 813875 933115 271790 270503 772203 301219 565955 829853 555483 361860 334907 730254 348491 653337 978127 905642 838784 945550 083210 119604 491677 117278 287425 932012 694109 436922 (382 digits)/139530 438264 750974 651419 376125 253570 837171 160716 333798 752506 541434 323506 853859 261003 357074 770736 761414 096713 202943 585800 730017 815560 750180 330600 558286 487318 592662 276303 102574 664773 904228 064849 929895 930894 443158 664099 292602 471506 396729 404537 824288 945122 168303 027085 422868 868413 975545 754466 285046 964775 108534 079563 997518 924002 998513 275293 931067 010193 970753 718180 610092 635651 924963 426539 (384 digits), a[744] = 25
                                                                                      A[745]/B[745] = 7233 733920 530217 116323 815330 358532 753123 490875 714276 552436 629086 418036 356599 890009 679239 568231 784974 885740 320592 076330 563369 762688 720311 957794 313775 221610 780813 386231 951904 520678 893404 046486 590669 319398 216039 341305 795998 469274 383742 326908 224224 348808 160699 867402 438894 541474 821775 095492 523756 092907 047607 937835 541051 917110 842437 102808 284340 865686 614434 625951 437069 589279 442466 526617 (382 digits)/703072 101911 800156 955125 962837 331723 348731 661331 634361 852127 564878 299681 083115 204142 429484 287574 249816 693523 081316 721368 049440 365578 275498 229937 126517 865707 731763 790708 885096 452585 909169 995888 414595 371698 592037 006880 309277 409231 637998 489429 958283 022350 311180 207505 461115 434087 273087 426880 777384 361579 002962 132263 128678 351219 498841 903067 433431 992047 177841 056363 405645 523112 173878 880621 (384 digits), a[745] = 5
                                                                                      A[746]/B[746] = 109941 602769 764012 328518 611606 111198 831856 259492 818493 833502 725289 003947 229278 163611 954784 750582 275781 947748 135585 468485 969638 093175 672945 776596 652094 719212 435932 103772 387925 958709 615125 356380 496305 170428 204604 664747 046026 738940 570010 836738 635155 502626 182701 312256 149373 951975 882109 794248 191249 123860 062610 720871 093906 662305 475341 487674 348323 104903 708196 506549 843469 771204 331107 336177 (384 digits)/10 685611 966941 753328 978308 818685 229421 068146 080690 849226 534420 014608 818723 100587 323139 799339 084350 508664 499559 422694 406321 471623 299234 882653 779657 456054 472934 569119 136936 379021 453562 541778 003176 148826 506373 323713 767303 931763 609980 966706 745987 198534 280376 836006 139667 339600 379723 071857 157677 945812 388460 152966 063510 927694 192295 481141 821305 432546 890901 638369 563631 694775 482334 533146 635854 (386 digits), a[746] = 15
                                                                                      A[747]/B[747] = 227116 939460 058241 773361 038542 580930 416836 009861 351264 219442 079664 425930 815156 217233 588809 069396 336538 781236 591763 013302 502645 949040 066203 510987 617964 660035 652677 593776 727756 438098 123654 759247 583279 660254 625248 670799 888051 947155 523764 000385 494535 354060 526102 491914 737642 445426 585994 683988 906254 340627 172829 379577 728865 241721 793120 078156 980987 075494 030827 639051 124009 131688 104681 198971 (384 digits)/22 074296 035795 306814 911743 600207 790565 485023 822713 332814 920967 594095 937127 284289 850422 028162 456275 267145 692641 926705 534010 992686 964048 040805 789252 038626 811576 870002 064581 643139 359710 992726 002240 712248 384445 239464 541488 172804 629193 571411 981404 355351 583103 983192 486840 140316 193533 416801 742236 669009 138499 308894 259284 984066 735810 461125 545678 298525 773850 454580 183626 795196 487781 240172 152329 (386 digits), a[747] = 2
                                                                                      A[748]/B[748] = 2 381110 997370 346430 062128 997031 920503 000216 358106 331136 027923 521933 263255 380840 335947 842875 444545 641169 760114 053215 601510 996097 583576 334980 886472 831741 319568 962708 041539 665490 339690 851672 948856 329101 772974 457091 372745 926546 210495 807650 840593 580509 043231 443726 231403 525798 406241 742056 634137 253792 530131 790904 516648 382559 079523 406542 269244 158193 859844 016472 897061 083561 088085 377919 325887 (385 digits)/231 428572 324894 821478 095744 820763 135075 918384 307824 177375 744095 955568 189995 943485 827360 080963 647103 180121 425978 689749 746431 398492 939715 290711 672177 842322 588703 269139 782752 810415 050672 469038 025583 271310 350825 718359 182185 659809 901916 680826 560030 752050 111416 667931 008068 742762 315057 239874 580044 635903 773453 241908 656360 768361 550400 092397 278088 417804 629406 184171 399899 646740 360146 934868 159144 (387 digits), a[748] = 10
                                                                                      A[749]/B[749] = 4 989338 934200 751101 897619 032606 421936 417268 726074 013536 275289 123530 952441 576836 889129 274559 958487 618878 301464 698194 216324 494841 116192 736165 283933 281447 299173 578093 676856 058737 117479 827000 656960 241483 206203 539431 416291 741144 368147 139065 681572 655553 440523 413554 954721 789239 257910 070107 952263 413839 400890 754638 412874 493983 400768 606204 616645 297374 795182 063773 433173 291131 307858 860519 850745 (385 digits)/484 931440 685584 949771 103233 241734 060717 321792 438361 687566 409159 505232 317119 171261 505142 190089 750481 627388 544599 306205 026873 789672 843478 622229 133607 723271 988983 408281 630087 263969 461055 930802 053407 254869 086096 676182 905859 492424 433026 933065 101465 859451 805937 319054 502977 625840 823647 896550 902325 940816 685405 792711 572006 520789 836610 645920 101855 134135 032662 822922 983426 088677 208075 109908 470617 (387 digits), a[749] = 2
                                                                                      A[750]/B[750] = 7 370449 931571 097531 959748 029638 342439 417485 084180 344672 303212 645464 215696 957677 225077 117435 403033 260048 061578 751409 817835 490938 699769 071146 170406 113188 618742 540801 718395 724227 457170 678673 605816 570584 979177 996522 789037 667690 578642 946716 522166 236062 483754 857281 186125 315037 664151 812164 586400 667631 931022 545542 929522 876542 480292 012746 885889 455568 655026 080246 330234 374692 395944 238439 176632 (385 digits)/716 360013 010479 771249 198978 062497 195793 240176 746185 864942 153255 460800 507115 114747 332502 271053 397584 807509 970577 995954 773305 188165 783193 912940 805785 565594 577686 677421 412840 074384 511728 399840 078990 526179 436922 394542 088045 152234 334943 613891 661496 611501 917353 986985 511046 368603 138705 136425 482370 576720 458859 034620 228367 289151 387010 738317 379943 551939 662069 007094 383325 735417 568222 044776 629761 (387 digits), a[750] = 1
                                                                                      A[751]/B[751] = 19 730238 797342 946165 817115 091883 106815 252238 894434 702880 881714 414459 383835 492191 339283 509430 764554 138974 424622 201013 851995 476718 515730 878457 624745 507824 536658 659697 113647 507192 031821 184347 868593 382653 164559 532476 994367 076525 525433 032498 725905 127678 408033 128117 326972 419314 586213 694437 125064 749103 262935 845724 271920 247068 361352 631698 388424 208512 105234 224266 093642 040516 099747 337398 204009 (386 digits)/1917 651466 706544 492269 501189 366728 452303 802145 930733 417450 715670 426833 331349 400756 170146 732196 545651 242408 485755 298114 573484 166004 409866 448110 745178 854461 144356 763124 455767 412738 484512 730482 211388 307227 959941 465267 081949 796893 102914 160848 424459 082455 640645 293025 525070 363047 101058 169401 867067 094257 603123 861952 028741 099092 610632 122554 861742 238014 356800 837111 750077 559512 344519 199461 730139 (388 digits), a[751] = 2
                                                                                      A[752]/B[752] = 27 100688 728914 043697 776863 121521 449254 669723 978615 047553 184927 059923 599532 449868 564360 626866 167587 399022 486200 952423 669830 967657 215499 949603 795151 621013 155401 200498 832043 231419 488991 863021 474409 953238 143737 528999 783404 744216 104075 979215 248071 363740 891787 985398 513097 734352 250365 506601 711465 416735 193958 391267 201443 123610 841644 644445 274313 664080 760260 304512 423876 415208 495691 575837 380641 (386 digits)/2634 011479 717024 263518 700167 429225 648097 042322 676919 282392 868925 887633 838464 515503 502649 003249 943236 049918 456333 294069 346789 354170 193060 361051 550964 420055 722043 440545 868607 487122 996241 130322 290378 833407 396863 859809 169994 949127 437857 774740 085955 693957 557999 280011 036116 731650 239763 305827 349437 670978 061982 896572 257108 388243 997642 860872 241685 789954 018869 844206 133403 294929 912741 244238 359900 (388 digits), a[752] = 1
                                                                                      A[753]/B[753] = 46 830927 526256 989863 593978 213404 556069 921962 873049 750434 066641 474382 983367 942059 903644 136296 932141 537996 910823 153437 521826 444375 731230 828061 419897 128837 692059 860195 945690 738611 520813 047369 343003 335891 308297 061476 777771 820741 629509 011713 973976 491419 299821 113515 840070 153666 836579 201038 836530 165838 456894 236991 473363 370679 202997 276143 662737 872592 865494 528778 517518 455724 595438 913235 584650 (386 digits)/4551 662946 423568 755788 201356 795954 100400 844468 607652 699843 584596 314467 169813 916259 672795 735446 488887 292326 942088 592183 920273 520174 602926 809162 296143 274516 866400 203670 324374 899861 480753 860804 501767 140635 356805 325076 251944 746020 540771 935588 510414 776413 198644 573036 561187 094697 340821 475229 216504 765235 665106 758524 285849 487336 608274 983427 103428 027968 375670 681317 883480 854442 257260 443700 090039 (388 digits), a[753] = 1
                                                                                      A[754]/B[754] = 495 409963 991483 942333 716645 255567 009953 889352 709112 551893 851341 803753 433211 870467 600801 989835 489002 778991 594432 486798 888095 411414 527808 230217 994122 909390 075999 802458 288950 617534 697122 336714 904443 312151 226708 143767 561122 951632 399166 096354 987836 277933 889999 120556 913799 271020 616157 516990 076767 075119 762900 761181 935076 830402 871617 405881 901692 390009 415205 592297 599060 972454 450080 708193 227141 (387 digits)/48150 640943 952711 821400 713735 388766 652105 487008 753446 280828 714889 032305 536603 678100 230606 357714 832108 973187 877219 215908 549524 555916 222328 452674 512397 165224 386045 477249 112356 485737 803779 738367 308050 239760 964917 110571 689442 409332 845577 130625 190103 458089 544445 010376 647987 678623 647978 058119 514485 323334 713050 481815 115603 261610 080392 695143 275966 069637 775576 657384 968211 839352 485345 681239 260290 (389 digits), a[754] = 10
                                                                                      A[755]/B[755] = 2523 880747 483676 701532 177204 491239 605839 368726 418612 509903 323350 493150 149427 294397 907654 085474 377155 432954 882985 587431 962303 501448 370271 979151 390511 675788 072058 872487 390443 826285 006424 730943 865219 896647 441837 780314 583386 578903 625339 493488 913157 881088 749816 716300 409066 508769 917366 785989 220365 541437 271398 042901 148747 522693 561084 305553 171199 822639 941522 490266 512823 317996 845842 454201 720355 (388 digits)/245304 867666 187127 862791 770033 739787 360928 279512 374884 103987 159041 475994 852832 306760 825827 524020 649432 158266 328184 671726 667896 299755 714569 072534 858129 100638 796627 589915 886157 328550 499652 552641 042018 339440 181390 877934 699156 792684 768657 588714 460932 066860 920869 624919 801125 487815 580711 765826 788931 381909 230359 167599 863865 795387 010238 459143 483258 376157 253553 968242 724540 051204 683988 849896 391489 (390 digits), a[755] = 5
                                                                                      A[756]/B[756] = 3019 290711 475160 643865 893849 746806 615793 258079 127725 061797 174692 296903 582639 164865 508456 075309 866158 211946 477418 074230 850398 912862 898080 209369 384634 585178 148058 674945 679394 443819 703547 067658 769663 208798 668545 924082 144509 530536 024505 589843 900994 159022 639815 836857 322865 779790 533524 302979 297132 616557 034298 804083 083824 353096 432701 711435 072892 212649 356728 082564 111884 290451 295923 162394 947496 (388 digits)/293455 508610 139839 684192 483769 128554 013033 766521 128330 384815 873930 508300 389435 984861 056433 881735 481541 131454 205403 887635 217420 855671 936897 525209 370526 265863 182673 067164 998513 814288 303432 291008 350068 579201 146307 988506 388599 202017 614234 719339 651035 524950 465314 635296 449113 166439 228689 823946 303416 705243 943409 649414 979469 056997 090631 154286 759224 445795 029130 625627 692751 890557 169334 531135 651779 (390 digits), a[756] = 1
                                                                                      A[757]/B[757] = 14601 043593 384319 276995 752603 478466 069012 401042 929512 757092 022119 680764 479983 953859 941478 386713 841788 280740 792657 884355 363899 152899 962592 816628 929050 016500 664293 572270 108021 601563 820613 001578 943872 731842 116021 476643 161424 701047 723361 852864 517134 517179 309080 063729 700529 627932 051463 997906 408896 007665 408593 259233 484044 935079 291891 151293 462768 673237 368434 820522 960360 479802 029535 103781 510339 (389 digits)/1 419126 902106 746486 599561 705110 254003 413063 345596 888205 643250 654763 509196 410576 246205 051563 050962 575596 684083 149800 222267 537579 722443 462159 173372 340234 164091 527319 858575 880212 585703 713381 716674 442292 656244 766622 831960 253553 600755 225596 466073 065074 166662 782128 166105 597578 153572 495471 061612 002598 202885 003997 765259 781742 023375 372763 076290 520156 159337 370076 470753 495547 613433 361326 974438 998605 (391 digits), a[757] = 4
                                                                                      A[758]/B[758] = 17620 334304 859479 920861 646453 225272 684805 659122 057237 818889 196811 977668 062623 118725 449934 462023 707946 492687 270075 958586 214298 065762 860673 025998 313684 601678 812352 247215 787416 045383 524160 069237 713535 940640 784567 400725 305934 231583 747867 442708 418128 676201 948895 900587 023395 407722 584988 300885 706028 624222 442892 063316 567869 288175 724592 862728 535660 885886 725162 903087 072244 770253 325458 266176 457835 (389 digits)/1 712582 410716 886326 283754 188879 382557 426097 112118 016536 028066 528694 017496 800012 231066 107996 932698 057137 815537 355204 109902 755000 578115 399056 698581 710760 429954 709992 925740 878726 399992 016814 007682 792361 235445 912930 820466 642152 802772 839831 185412 716109 691613 247442 801402 046691 320011 724160 885558 306014 908128 947407 414674 761211 080372 463394 230577 279380 605132 399207 096381 188299 503990 530661 505574 650384 (391 digits), a[758] = 1
                                                                                      A[759]/B[759] = 85082 380812 822238 960442 338416 379556 808235 037531 158464 032648 809367 591436 730476 428761 741216 234808 673574 251489 872961 718700 221091 415951 405284 920622 183788 423215 913702 561133 257685 783097 917253 278529 798016 494405 254291 079544 385161 627382 714831 623698 189649 221987 104663 666077 794111 258822 391417 201449 233010 504555 180161 512499 755522 087782 190262 602207 605412 216784 269086 432871 249339 560815 331368 168487 341679 (389 digits)/8 269456 544974 291791 734578 460627 784233 117451 794068 954349 755516 769539 579183 610625 170469 483550 781754 804147 946232 570616 661878 557582 034905 058385 967699 183275 883910 367291 561539 395118 185671 780637 747405 611737 598028 418346 113826 822164 811846 584921 207723 929512 933115 771899 371713 784343 433619 392114 603845 226657 835400 793627 423958 826586 344865 226339 998599 637678 579866 966904 856278 248745 629395 483972 996737 600141 (391 digits), a[759] = 4
                                                                                      A[760]/B[760] = 783361 761620 259630 564842 692200 641283 958920 996902 483414 112728 481120 300598 636910 977581 120880 575301 770114 756096 126731 426888 204120 809325 508237 311597 967780 410622 035675 297415 106588 093264 779439 576005 895684 390288 073187 116624 772388 878028 181352 055992 124971 674085 890868 895287 170396 737124 107743 113928 803123 165219 064345 675814 367568 078215 436956 282596 984370 836945 146940 798928 316300 817591 307771 782562 532946 (390 digits)/76 137691 315485 512451 894960 334529 440655 483163 258738 605683 827717 454550 230149 295638 765291 459953 968491 294469 331630 490754 066809 773238 892260 924530 407874 360243 385148 015616 979595 434790 071038 042553 734333 297999 617701 678045 844908 041636 109392 104122 054928 081726 089655 194537 146826 105782 222586 253192 320165 345935 426736 090054 230304 200488 184159 500454 217974 018487 823935 101350 802885 427010 168549 886418 476213 051653 (392 digits), a[760] = 9
                                                                                      A[761]/B[761] = 1 651805 904053 341500 090127 722817 662124 726077 031336 125292 258105 771608 192634 004298 383923 982977 385412 213803 763682 126424 572476 629333 034602 421759 543818 119349 244459 985053 155963 470861 969627 476132 430541 589385 274981 400665 312793 929939 383439 077535 735682 439592 570158 886401 456652 134904 733070 606903 429306 839256 834993 308852 864128 490658 244213 064175 167401 574153 890674 562968 030727 881941 195997 946911 733612 407571 (391 digits)/160 544839 175945 316695 524499 129686 665544 083778 311546 165717 410951 678640 039482 201902 701052 403458 718737 393086 609493 552124 795498 104059 819426 907446 783447 903762 654206 398525 520730 264698 327747 865745 216072 207736 833431 774437 803642 905437 030630 793165 317580 092965 112426 160973 665365 995907 878791 898499 244175 918528 688872 973735 884567 227562 713184 227248 434547 674654 227737 169606 462049 102765 966495 256809 949163 703447 (393 digits), a[761] = 2
                                                                                      A[762]/B[762] = 4 086973 569726 942630 745098 137835 965533 411075 059574 733998 628940 024336 685866 645507 745429 086835 346126 197722 283460 379580 571841 462786 878530 351756 399234 206478 899542 005781 609342 048312 032519 731704 437089 074454 940250 874517 742212 632267 644906 336423 527357 004156 814403 663671 808591 440206 203265 321549 972542 481636 835205 682051 404071 348884 566641 565306 617400 132678 618294 272876 860384 080183 209587 201595 249787 348088 (391 digits)/397 227369 667376 145842 943958 593902 771743 650719 881830 937118 649620 811830 309113 699444 167396 266871 405966 080642 550617 595003 657805 981358 531114 739423 974770 167768 693560 812668 021055 964186 726533 774044 166477 713473 284565 226921 452193 852510 170653 690452 690088 267656 314507 516484 477558 097597 980170 050190 808517 182992 804482 037525 999438 655613 610527 954951 087069 367796 279409 440563 726983 632542 101540 400038 374540 458547 (393 digits), a[762] = 2
                                                                                      A[763]/B[763] = 5 738779 473780 284130 835225 860653 627658 137152 090910 859290 887045 795944 878500 649806 129353 069812 731538 411526 047142 506005 144318 092119 913132 773515 943052 325828 144001 990834 765305 519174 002147 207836 867630 663840 215232 275183 055006 562207 028345 413959 263039 443749 384562 550073 265243 575110 936335 928453 401849 320893 670198 990904 268199 839542 810854 629481 784801 706832 508968 835844 891111 962124 405585 148506 983399 755659 (391 digits)/557 772208 843321 462538 468457 723589 437287 734498 193377 102836 060572 490470 348595 901346 868448 670330 124703 473729 160111 147128 453304 085418 350541 646870 758218 071531 347767 211193 541786 228885 054281 639789 382549 921210 117997 001359 255836 757947 201284 483618 007668 360621 426933 677458 142924 093505 858961 948690 052693 101521 493355 011261 884005 883176 323712 182199 521617 042450 507146 610170 189032 735308 068035 656848 323704 161994 (393 digits), a[763] = 1
                                                                                      A[764]/B[764] = 67 213547 781310 068069 932582 605025 869772 919748 059594 186198 386443 779730 349373 793375 168312 854775 393048 724508 802027 945637 159340 476105 922990 860431 772809 790588 483563 904964 027702 759226 056139 017909 981026 376697 307805 901531 347284 816544 956705 889975 420790 885400 044591 714477 726270 766426 502960 534537 392885 011467 207394 581998 354269 583855 486042 489606 250218 907836 216951 467170 662615 663551 671023 835172 067184 660337 (392 digits)/6532 721666 943912 233766 096993 553386 581908 730200 008979 068315 315918 207004 143668 614259 720331 640502 777704 291663 311840 213416 644150 920960 387072 855002 315168 954613 519000 135796 980704 481922 323631 811727 374526 846784 582532 241873 266398 189929 384783 010250 774440 234492 010777 968524 049723 126162 428751 485781 388141 299729 231387 161406 723503 370553 171361 959145 824856 834751 858022 152435 806343 720930 849932 625369 935286 240481 (394 digits), a[764] = 11
                                                                                      A[765]/B[765] = 72 952327 255090 352200 767808 465679 497431 056900 150505 045489 273489 575675 227874 443181 297665 924588 124587 136034 849170 451642 303658 568225 836123 633947 715862 116416 627565 895798 793008 278400 058286 225746 848657 040537 523038 176714 402291 378751 985051 303934 683830 329149 429154 264550 991514 341537 439296 462990 794734 332360 877593 572902 622469 423398 296897 119088 035020 614668 725920 303015 553727 625676 076608 983679 050584 415996 (392 digits)/7090 493875 787233 696304 565451 276976 019196 464698 202356 171151 376490 697474 492264 515606 588780 310832 902407 765392 471951 360545 097455 006378 737614 501873 073387 026144 866767 346990 522490 710807 377913 451516 757076 767994 700529 243232 522234 947876 586067 493868 782108 595113 437711 645982 192647 219668 287713 434471 440834 401250 724742 172668 607509 253729 495074 141345 346473 877202 365168 762605 995376 456238 917968 282218 258990 402475 (394 digits), a[765] = 1
                                                                                      A[766]/B[766] = 213 118202 291490 772471 468199 536384 864635 033548 360604 277176 933422 931080 805122 679737 763644 703951 642222 996578 500368 848921 766657 612557 595238 128327 204534 023421 738695 696561 613719 316026 172711 469403 678340 457772 353882 254960 151867 574048 926808 497844 788451 543698 902900 243579 709299 449501 381553 460518 982353 676188 962581 727803 599208 430652 079836 727782 320260 137173 668792 073201 770070 914903 824241 802530 168353 492329 (393 digits)/20713 709418 518379 626375 227896 107338 620301 659596 413691 410618 068899 601953 128197 645472 897892 262168 582519 822448 255742 934506 839060 933717 862301 858748 461943 006903 252534 829778 025685 903537 079458 714760 888680 382773 983590 728338 310868 085682 556917 997988 338657 424718 886201 260488 435017 565499 004178 354724 269810 102230 680871 506743 938521 878012 161510 241836 517804 589156 588359 677647 797096 633408 685869 189806 453267 045431 (395 digits), a[766] = 2
                                                                                      A[767]/B[767] = 499 188731 838071 897143 704207 538449 226701 123996 871713 599843 140335 437836 838119 802656 824955 332491 409033 129191 849908 149485 836973 793341 026599 890602 124930 163260 104957 288922 020446 910452 403709 164554 205337 956082 230802 686634 706026 526849 838668 299624 260733 416547 234954 751710 410113 240540 202403 384028 759441 684738 802757 028509 820886 284702 456570 574652 675540 889016 063504 449419 093869 455483 725092 588739 387291 400654 (393 digits)/48517 912712 823992 949055 021243 491653 259799 783891 029738 992387 514289 901380 748659 806552 384564 835170 067447 410288 983437 229558 775576 873814 462218 219369 997273 039951 371837 006546 573862 517881 536830 881038 534437 533542 667710 699909 143971 119241 699903 489845 459423 444551 210114 166959 062682 350666 296070 143919 980454 605712 086485 186156 484553 009753 818094 625018 382083 055515 541888 117901 589569 723056 289706 661831 165524 493337 (395 digits), a[767] = 2
                                                                                      A[768]/B[768] = 2709 061861 481850 258189 989237 228630 998140 653532 719172 276392 635100 120264 995721 693021 888421 366408 687388 642537 749909 596350 951526 579262 728237 581337 829184 839722 263482 141171 715953 868288 191257 292174 705030 238183 507895 688133 682000 208298 120149 995966 092118 626435 077674 002131 759865 652202 393570 380662 779562 099882 976366 870352 703639 854164 362689 601045 697964 582253 986314 320297 239418 192322 449704 746227 104810 495599 (394 digits)/263303 272982 638344 371650 334113 565604 919300 579051 562386 372555 640349 108856 871496 678234 820716 438018 919756 873893 172929 082300 716945 302790 173392 955598 448308 206660 111719 862510 894998 492944 763613 119953 560868 050487 322144 227884 030723 681891 056435 447215 635774 647474 936772 095283 748429 318830 484529 074324 172083 130791 113297 437526 361286 926781 251983 366928 428219 866734 297800 267155 744945 248690 134402 498962 280889 512116 (396 digits), a[768] = 5
                                                                                      A[769]/B[769] = 3208 250593 319922 155333 693444 767080 224841 777529 590885 876235 775435 558101 833841 495678 713376 698900 096421 771729 599817 745836 788500 372603 754837 471939 954115 002982 368439 430093 736400 778740 594966 456728 910368 194265 738698 374768 388026 735147 958818 295590 352852 042982 312628 753842 169978 892742 595973 764691 539003 784621 779123 898862 524526 138866 819260 175698 373505 471270 049818 769716 333287 647806 174797 334966 492101 896253 (394 digits)/311821 185695 462337 320705 355357 057258 179100 362942 592125 364943 154639 010237 620156 484787 205281 273188 987204 284182 156366 311859 492522 176604 635611 174968 445581 246611 483556 869057 468861 010826 300444 000992 095305 584029 989854 927793 174694 801132 756338 937061 095198 092026 146886 262242 811111 669496 780599 218244 152537 736503 199782 623682 845839 936535 070077 991946 810302 922249 839688 385057 334514 971746 424109 160793 446414 005453 (396 digits), a[769] = 1
                                                                                      A[770]/B[770] = 9125 563048 121694 568857 376126 762791 447824 208591 900944 028864 185971 236468 663404 684379 315174 764208 880232 185996 949545 088024 528527 324470 237912 525217 737414 845687 000361 001359 188755 425769 381190 205632 525766 626714 985292 437670 458053 678594 037786 587146 797822 712399 702931 509816 099823 437687 585517 910045 857569 669126 534614 668077 752692 131898 001209 952442 444975 524794 085951 859729 905993 487934 799299 416160 089014 288105 (394 digits)/886945 644373 563019 013061 044827 680121 277501 304936 746637 102441 949627 129332 111809 647809 231278 984396 894165 442257 485661 706019 701989 655999 444615 305535 339470 699883 078833 600625 832720 514597 364501 121937 751479 218547 301854 083470 380113 284156 569113 321337 826170 831527 230544 619769 370652 657824 045727 510812 477158 603797 512862 684892 052966 799851 392139 350822 048825 711233 977177 037270 413975 192182 982620 820549 173717 523022 (396 digits), a[770] = 2
                                                                                      A[771]/B[771] = 21459 376689 563311 293048 445698 292663 120490 194713 392773 933964 147378 031039 160650 864437 343726 227317 856886 143723 498907 921885 845555 021544 230662 522375 428944 694356 369161 432812 113911 630279 357346 867993 961901 447695 709283 250109 304134 092336 034391 469883 948497 467781 718491 773474 369625 768117 767009 584783 254143 122874 848353 235018 029910 402662 821680 080583 263456 520858 221722 489176 145274 623675 773396 167286 670130 472463 (395 digits)/2 085712 474442 588375 346827 445012 417500 734102 972816 085399 569827 053893 268901 843775 780405 667839 241982 775535 168697 127689 723898 896501 488603 524841 786039 124522 646377 641224 070309 134302 040021 029446 244867 598264 021124 593563 094733 934921 369445 894565 579736 747539 755080 607975 501781 552416 985144 872054 239869 106854 944098 225507 993466 951773 536237 854356 693590 907954 344717 794042 459598 162465 356112 389350 801891 793849 051497 (397 digits), a[771] = 2
                                                                                      A[772]/B[772] = 116422 446495 938251 034099 604618 226107 050275 182158 864813 698684 922861 391664 466659 006566 033805 900798 164662 904614 444084 697453 756302 432191 391225 137094 882138 317468 846168 165419 758313 577166 167924 545602 335273 865193 531708 688216 978724 140274 209743 936566 540310 051308 295390 377187 947952 278276 420565 833962 128285 283500 776380 843167 902244 145212 109610 355358 762258 129085 194564 305610 632366 606313 666280 252593 439666 650420 (396 digits)/11 315508 016586 504895 747198 269889 767624 948016 169017 173634 951577 219093 473841 330688 549837 570475 194310 771841 285743 124110 325514 184497 099017 068824 235730 962083 931771 284953 952171 504230 714702 511732 346275 742799 324170 269669 557140 054720 131386 041941 220021 563869 606930 270422 128677 132737 583548 405998 710158 011433 324288 640402 652226 811834 481040 663922 818776 588597 434822 947389 335261 226301 972744 929374 830008 142962 780507 (398 digits), a[772] = 5
                                                                                      A[773]/B[773] = 1 069261 395153 007570 599944 887262 327626 572966 834143 176097 222128 453130 556019 360581 923531 647979 334501 338852 285253 495670 198969 652276 911266 751688 756229 368189 551575 984674 921589 938733 824774 868667 778414 979366 234437 494661 444062 112651 354803 922086 898982 811287 929556 377005 168165 901196 272605 552102 090442 408710 674381 835780 823529 150107 709571 808173 278812 123779 682624 972801 239671 836574 080498 769918 440627 627130 326243 (397 digits)/103 925284 623721 132437 071611 874020 326125 266248 493970 648114 134022 025734 533473 819972 728943 802115 990779 722106 740385 244682 653526 556975 379757 144259 907617 783278 032319 205809 639852 672378 472343 635037 361349 283457 938657 020589 108994 427402 551920 272036 559930 822366 217453 041774 659875 747055 237080 526042 631291 209754 862695 989131 863508 258283 865603 829662 062580 205331 258124 320546 476949 199183 110816 753724 271965 080514 076060 (399 digits), a[773] = 9
                                                                                      A[774]/B[774] = 5 462729 422260 976104 033824 040929 864239 915109 352874 745299 809327 188514 171761 269568 624224 273702 573304 858924 330881 922435 692302 017686 988525 149668 918241 723086 075348 769542 773369 451982 701040 511263 437677 232105 037381 005015 908527 541980 914293 820178 431480 596749 699090 180416 218017 453933 641304 181076 286174 171838 655409 955284 960813 652782 693071 150476 749419 381156 542210 058570 503969 815237 008807 515872 455731 575318 281635 (397 digits)/530 941931 135192 167081 105257 639991 398251 279258 638870 414205 621687 347766 141210 430552 194556 581055 148209 382374 987669 347523 593146 969373 997802 790123 773819 878474 093367 314002 151434 866123 076420 686919 153022 160089 017455 372615 102112 191732 890987 402124 019675 675700 694195 479295 428055 868013 768951 036211 866614 060207 637768 586061 969768 103253 809059 812233 131677 615253 725444 550121 720007 222217 526828 697996 189833 545533 160807 (399 digits), a[774] = 5
                                                                                      A[775]/B[775] = 44 771096 773240 816402 870537 214701 241545 893841 657141 138495 696745 961243 930109 517130 917325 837599 920940 210246 932308 875155 737385 793772 819467 949040 102163 152878 154366 141017 108545 554595 433098 958775 279832 836206 533485 534788 712282 448498 669154 483514 350827 585285 522277 820334 912305 532665 403039 000712 379835 783419 917661 478060 510038 372369 254141 011987 274167 173032 020305 441365 271430 358470 150958 896898 086480 229676 579323 (398 digits)/4351 460733 705258 469085 913672 993951 512135 500317 604933 961759 107520 807863 663157 264390 285396 450557 176454 781106 641740 024871 398702 311967 362179 465250 098176 811070 779257 717826 851331 601363 083709 130390 585526 564170 078300 001509 925891 961265 679819 489028 717336 227971 771016 876138 084322 691165 388688 815737 564203 691415 964844 677627 621653 084314 338082 327527 116001 127361 061680 721520 237006 976923 325446 337693 790633 444779 362516 (400 digits), a[775] = 8
                                                                                      A[776]/B[776] = 184 547116 515224 241715 515972 899734 830423 490475 981439 299282 596311 033489 892199 338092 293527 624102 257065 699912 060117 423058 641845 192778 266396 945829 326894 334598 692813 333611 207551 670364 433436 346364 557008 576931 171323 144170 757657 335975 590911 754235 834790 937891 788201 461755 867239 584595 253460 183925 805517 305518 326055 867527 000967 142259 709635 198425 846088 073284 623431 824031 589691 249117 612643 103464 801652 494024 598927 (399 digits)/17936 784865 956226 043424 759949 615797 446793 280529 058606 261242 051770 579220 793839 488113 336142 383283 854028 506801 554629 447009 187956 217243 446520 651124 166527 122757 210398 185309 556761 271575 411257 208481 495128 416769 330655 378654 805680 036795 610265 358238 889020 587587 778262 983847 765346 632675 323706 299162 123428 825871 497147 296572 456380 440511 161389 122341 595682 124697 972167 436202 668035 129910 828614 048771 352367 324650 610871 (401 digits), a[776] = 4
                                                                                      A[777]/B[777] = 413 865329 803689 299833 902483 014170 902392 874793 620019 737060 889368 028223 714508 193315 504381 085804 435071 610071 052543 721273 021076 179329 352261 840698 755951 822075 539992 808239 523648 895324 299971 651504 393849 990068 876131 823130 227597 120449 850977 991986 020409 461069 098680 743846 646784 701855 909959 368563 990870 394456 569773 213114 511972 656888 673411 408838 966343 319601 267169 089428 450812 856705 376245 103827 689785 217725 777177 (399 digits)/40225 030465 617710 555935 433572 225546 405722 061375 722146 484243 211061 966305 250836 240616 957681 217124 884511 794709 750998 918889 774614 746454 255220 767498 431231 056585 200054 088445 964854 144513 906223 547353 575783 397708 739610 758819 537252 034856 900350 205506 495377 403147 327542 843833 615015 956516 036101 414061 811061 343158 959139 270772 534413 965336 660860 572210 307365 376757 006015 593925 573077 236744 982674 435236 495368 094080 584258 (401 digits), a[777] = 2
                                                                                      A[778]/B[778] = 1426 143105 926292 141217 223421 942247 537602 114856 841498 510465 264415 118161 035723 918038 806670 881515 562280 530125 217748 586877 705073 730766 323182 467925 594749 800825 312791 758329 778498 356337 333351 300877 738558 547137 799718 613561 440448 697325 143845 730193 896019 321099 084243 693295 807593 690162 983338 289617 778128 488888 035375 506870 536885 112925 729869 424942 745118 032088 424939 092316 942129 819233 741378 414947 871008 147201 930458 (400 digits)/138611 876262 809357 711231 060666 292436 663959 464656 225045 713971 684956 478136 546348 209964 209186 034658 507563 890930 807626 203678 511800 456606 212182 953619 460220 292512 810560 450647 451323 705117 129927 850542 222478 609895 549487 655113 417436 141366 311315 974758 375152 797029 760891 515348 610394 502223 432010 541347 556612 855348 374565 108890 059622 336521 143970 838972 517778 254968 990214 217979 387266 840145 776637 354480 838471 606892 363645 (402 digits), a[778] = 3
                                                                                      A[779]/B[779] = 1840 008435 729981 441051 125904 956418 439994 989650 461518 247526 153783 146384 750232 111354 311051 967319 997352 140196 270292 308150 726149 910095 675444 308624 350701 622900 852784 566569 302147 251661 633322 952382 132408 537206 675850 436691 668045 817774 994823 722179 916428 782168 182924 437142 454378 392018 893297 658181 768998 883344 605148 719985 048857 769814 403280 833781 711461 351689 692108 181745 392942 675939 117623 518775 560793 364927 707635 (400 digits)/178836 906728 427068 267166 494238 517983 069681 526031 947192 198214 896018 444441 797184 450581 166867 251783 392075 685640 558625 122568 286415 203060 467403 721117 891451 349098 010614 539093 416177 849631 036151 397895 798262 007604 289098 413932 954688 176223 211666 180264 870530 200177 088434 359182 225410 458739 468111 955409 367674 198507 333704 379662 594036 301857 804831 411182 825143 631725 996229 811904 960344 076890 759311 789717 333839 700972 947903 (402 digits), a[779] = 1
                                                                                      A[780]/B[780] = 5106 159977 386255 023319 475231 855084 417592 094157 764535 005517 571981 410930 536188 140747 428774 816155 556984 810517 758333 203179 157373 550957 674071 085174 296153 046627 018360 891468 382792 859660 599997 205642 003375 621551 151419 486944 776540 332875 133493 174553 728876 885435 450092 567580 716350 474200 769933 605981 316126 255577 245672 946840 634600 652554 536431 092506 168040 735467 809155 455807 728015 171111 976625 452498 992594 877057 345728 (400 digits)/496285 689719 663494 245564 049143 328402 803322 516720 119430 110401 476993 367020 140717 111126 542920 538225 291715 262211 924876 448815 084630 862727 146990 395855 243122 990708 831789 528834 283679 404379 202230 646333 819002 625104 127684 482979 326812 493812 734648 335288 116213 197383 937760 233713 061215 419702 368234 452166 291961 252363 041973 868215 247694 940236 753633 661338 168065 518420 982673 841789 307954 993927 295260 933915 506151 008838 259451 (402 digits), a[780] = 2
                                                                                      A[781]/B[781] = 6946 168413 116236 464370 601136 811502 857587 083808 226053 253043 725764 557315 286420 252101 739826 783475 554336 950714 028625 511329 883523 461053 349515 393798 646854 669527 871145 458037 684940 111322 233320 158024 135784 158757 827269 923636 444586 150650 128316 896733 645305 667603 633017 004723 170728 866219 663231 264163 085125 138921 850821 666825 683458 422368 939711 926287 879502 087157 501263 637553 120957 847051 094248 971274 553388 241985 053363 (400 digits)/675122 596448 090562 512730 543381 846385 873004 042752 066622 308616 373011 811461 937901 561707 709787 790008 683790 947852 483501 571383 371046 065787 614394 116973 134574 339806 842404 067927 699857 254010 238382 044229 617264 632708 416782 896912 281500 670035 946314 515552 986743 397561 026194 592895 286625 878441 836346 407575 659635 450870 375678 247877 841731 242094 558465 072520 993209 150146 978903 653694 268299 070818 054572 723632 839990 709811 207354 (402 digits), a[781] = 1
                                                                                      A[782]/B[782] = 32890 833629 851200 880801 879779 101095 847940 429390 668748 017692 475039 640191 681869 149154 388081 950057 774332 613373 872835 248498 691467 395171 072132 660368 883571 724738 502942 723619 122553 304949 533277 837738 546512 256582 460499 181490 554884 935475 646760 761488 310099 555849 982160 586473 399265 939079 422858 662633 656626 811264 648959 614143 368434 342030 295278 797657 686049 084097 814210 006020 211846 559316 353621 337597 206147 844997 559180 (401 digits)/3 196776 075512 025744 296486 222670 713946 295338 687728 385919 344866 969040 612867 892323 357957 382071 698260 026879 053621 858882 734348 568815 125877 604566 863747 781420 349936 201405 800545 083108 420420 155758 823252 288061 155937 794816 070628 452815 173956 519906 397500 063186 787628 042538 605294 207718 933469 713620 082468 930503 055844 544686 859726 614619 908614 987493 951422 140902 119008 898288 456566 381151 277199 513551 828446 866113 848083 088867 (403 digits), a[782] = 4
                                                                                      A[783]/B[783] = 39837 002042 967437 345172 480915 912598 705527 513198 894801 270736 200804 197506 968289 401256 127908 733533 328669 564087 901460 759828 574990 856224 421648 054167 530426 394266 374088 181656 807493 416271 766597 995762 682296 415340 287769 105126 999471 086125 775077 658221 955405 223453 615177 591196 569994 805299 086089 926796 741751 950186 499781 280969 051892 764399 234990 723945 565551 171255 315473 643573 332804 406367 447870 308871 759536 086982 612543 (401 digits)/3 871898 671960 116306 809216 766052 560332 168342 730480 452541 653483 342052 424329 830224 919665 091859 488268 710670 001474 342384 305731 939861 191665 218960 980720 915994 689743 043809 868472 782965 674430 394140 867481 905325 788646 211598 967540 734315 843992 466220 913053 049930 185189 068733 198189 494344 811911 549966 490044 590138 506714 920365 107604 456351 150709 545959 023943 134111 269155 877192 110260 649450 348017 568124 552079 706104 557894 296221 (403 digits), a[783] = 1
                                                                                      A[784]/B[784] = 271912 845887 655824 951836 765274 576688 081105 508584 037555 642109 679864 825233 491605 556691 155534 351257 746349 997901 281599 807470 141412 532517 602020 985374 066130 090336 747471 813559 967513 802580 132865 812314 640290 748624 187113 812252 551711 452230 297226 710820 042530 896571 673226 133652 819234 770873 939398 223414 107138 512383 647647 299957 679790 928425 705223 141331 079356 111629 707051 867460 208672 997521 040843 190827 763364 366893 234438 (402 digits)/26 428168 107272 723585 151786 818986 075939 305395 070611 101169 265767 021355 158846 873672 875947 933228 627872 290899 062467 913188 568740 207982 275868 918332 748073 277388 488394 464265 011381 780902 467002 520604 028143 720015 887815 064409 875872 858710 237911 317231 875818 362767 898762 454937 794431 173787 804939 013419 022736 471334 096134 066877 505353 352726 812872 263248 095080 945569 733944 161441 118130 277853 365304 922299 140925 102741 195448 866193 (404 digits), a[784] = 6
                                                                                      A[785]/B[785] = 311749 847930 623262 297009 246190 489286 786633 021782 932356 912845 880669 022740 459894 957947 283443 084791 075019 561989 183060 567298 716403 388742 023669 039541 596556 484603 121559 995216 775007 218851 899463 808077 322587 163964 474882 917379 551182 538356 072304 369041 997936 120025 288403 724849 389229 576173 025488 150210 848890 462570 147428 580926 731683 692824 940213 865276 644907 282885 022525 511033 541477 403888 488713 499699 522900 453875 846981 (402 digits)/30 300066 779232 839891 961003 585038 636271 473737 801091 553710 919250 363407 583176 703897 795613 025088 116141 001569 063942 255572 874472 147843 467534 137293 728794 193383 178137 508074 879854 563868 141432 914744 895625 625341 676461 276008 843413 593026 081903 783452 788871 412698 083951 523670 992620 668132 616850 563385 512781 061472 602848 987242 612957 809077 963581 809207 119024 079681 003100 038633 228390 927303 713322 490423 693004 808845 753343 162414 (404 digits), a[785] = 1
                                                                                      A[786]/B[786] = 1 207162 389679 525611 842864 503846 044548 441004 573932 834626 380647 321871 893454 871290 430533 005863 605630 971408 683868 830781 509366 290622 698743 673028 103998 855799 544146 112151 799210 292535 459135 831257 236546 608052 240517 611762 564391 205259 067298 514139 817946 036339 256647 538437 308200 986923 499393 015862 674046 653809 900094 089933 042737 874842 006900 525864 737161 014077 960284 774628 400560 833105 209186 506983 689926 332065 728520 775381 (403 digits)/117 328368 444971 243261 034797 574101 984753 726608 473885 762302 023518 111577 908376 985366 262787 008492 976295 295606 254294 679907 192156 651512 678471 330213 934455 857538 022806 988489 650945 472506 891301 264838 715020 596040 917198 892436 406113 637788 483622 667590 242432 600862 150617 025950 772293 178185 655490 703575 561079 655751 904681 028605 344226 779960 703617 690869 452153 184612 743244 277340 803303 059764 505272 393570 219939 529278 455478 353435 (405 digits), a[786] = 3
                                                                                      A[787]/B[787] = 5 140399 406648 725709 668467 261574 667480 550651 317514 270862 435435 168156 596559 945056 680079 306897 507314 960654 297464 506186 604763 878894 183716 715781 455537 019754 661187 570167 192057 945149 055395 224492 754263 754796 126034 921933 174944 372218 807550 128863 640826 143293 146615 442152 957653 336923 573745 088938 846397 464130 062946 507160 751878 231051 720427 043672 813920 701219 124024 121039 113276 873898 240634 516648 259404 851163 367958 948505 (403 digits)/499 613540 559117 812936 100193 881446 575286 380171 696634 602919 013322 809719 216684 645362 846761 059060 021322 183994 081120 975201 643098 753894 181419 458149 466617 623535 269365 462033 483636 453895 706637 974099 755708 009505 345256 845754 467868 144180 016394 453813 758601 816146 686419 627474 081793 380875 238813 377687 757099 684480 221573 101663 989864 928920 778052 572684 927636 818131 976077 147996 441603 166361 734412 064704 572762 925959 575256 576154 (405 digits), a[787] = 4
                                                                                      A[788]/B[788] = 16 628360 609625 702740 848266 288570 046990 092958 526475 647213 686952 826341 683134 706460 470770 926556 127575 853371 576262 349341 323657 927305 249893 820372 470609 915063 527708 822653 375384 127982 625321 504735 499337 872440 618622 377562 089224 321915 489948 900730 740424 466218 696493 864896 181160 997694 220628 282679 213239 046200 088933 611415 298372 567997 168181 656883 178923 117735 332357 137745 740391 454799 931090 056928 468140 885555 832397 620896 (404 digits)/1616 168990 122324 682069 335379 218441 710612 867123 563789 571059 063486 540735 558430 921454 803070 185673 040261 847588 497657 605512 121452 913195 222729 704662 334308 728143 830903 374590 101854 834194 011215 187137 982144 624556 952969 429699 809718 070328 532806 029031 518238 049302 209875 908373 017673 320811 371930 836638 832378 709192 569400 333597 313821 566723 037775 408924 235063 639008 671475 721330 128112 558849 708508 587683 938228 307157 181248 081897 (406 digits), a[788] = 3
                                                                                      A[789]/B[789] = 55 025481 235525 833932 213266 127284 808450 829526 896941 212503 496293 647181 645964 064438 092392 086565 890042 520769 026251 554210 575737 660809 933398 176898 867366 764945 244314 038127 318210 329096 931359 738699 252277 372117 981902 054619 442617 337965 277396 831055 862099 541949 236097 036841 501136 330006 235629 936976 486114 602730 329747 341406 646995 935043 224972 014322 350690 054425 121095 534276 334451 238298 033904 687433 663827 507830 865151 811193 (404 digits)/5348 120510 926091 859144 106331 536771 707124 981542 388003 316096 203782 431925 891977 409727 255971 616079 142107 726759 574093 791738 007457 493479 849608 572136 469543 807966 762075 585803 789200 956477 740283 535513 702141 883176 204165 134853 897022 355165 614812 540908 313315 964053 316047 352593 134813 343309 354605 887604 254235 812057 929774 102455 931329 629089 891378 799457 632827 735157 990504 311986 825940 842910 859937 827756 387447 847431 119000 821845 (406 digits), a[789] = 3
                                                                                      A[790]/B[790] = 731 959616 671461 543859 620725 943272 556850 876808 186711 409759 138770 239703 080667 544155 671868 051912 698128 623368 917532 554078 808247 517834 384070 120057 746377 859351 703791 318308 512118 406242 732998 107825 778943 709974 383349 087614 843249 715464 096107 704456 947718 511558 765755 343835 695933 287775 283817 463373 532728 881694 375649 049701 709319 723559 092817 843073 737893 825261 906599 083338 088257 552674 371850 993566 097898 487357 079371 166405 (405 digits)/71141 735632 161518 850942 717689 196473 903237 627174 607832 680309 712658 155772 154137 247909 130701 194701 887662 295462 960876 898106 218400 328433 267641 142436 438378 231711 737885 990039 361467 268404 634901 148816 109989 105847 607116 182800 471008 687481 525369 060839 591345 581995 318491 492083 770246 783832 981807 375494 137444 265945 656463 665524 421106 744891 625699 801873 461824 196062 548031 777158 865343 516690 887700 348516 975050 323761 728258 765882 (407 digits), a[790] = 13
                                                                                      A[791]/B[791] = 8106 581264 621602 816388 041251 503282 933810 474416 950766 719854 022766 283915 533307 050150 482940 657605 569457 377827 119109 649077 466460 356988 158169 497534 077523 217813 986018 539520 951512 797766 994338 924782 820658 181836 198742 018382 718364 208070 334581 580082 287003 169095 659405 819034 156402 495534 357622 034085 346132 301368 461886 888125 449512 894193 245968 288133 467522 132306 093685 450995 305284 317716 124265 616660 740710 868758 738234 641648 (406 digits)/787907 212464 702799 219514 000912 697984 642738 880463 074162 799503 043022 145419 587487 136727 693684 757799 906392 976852 143739 670906 409861 106245 793661 138937 291704 356795 878821 476236 765340 908928 724196 172490 912022 047499 882443 145659 078117 917462 393872 210143 818117 366001 819453 765514 607527 965472 154487 018039 766122 737460 150874 423224 563503 822897 774076 620065 712893 891846 018853 860734 344719 526510 624641 661443 113001 408810 129847 246547 (408 digits), a[791] = 11
                                                                                      A[792]/B[792] = 98010 934792 130695 340516 115743 982667 762576 569811 595912 048007 411965 646689 480352 145961 467155 943179 531617 157294 346848 343008 405771 801692 282104 090466 676656 473119 536013 792559 930271 979446 665065 205219 626841 892008 768253 308207 463620 212308 111086 665444 391756 540706 678625 172245 572763 234187 575281 872397 686316 498115 918291 707207 103474 453878 044437 300675 348159 412935 030824 495281 751669 365267 863038 393494 986428 912461 938186 866181 (407 digits)/9 526028 285208 595109 485110 728641 572289 616104 192731 497786 274346 228923 900807 203982 888641 454918 288300 764378 017688 685752 948983 136733 603382 791574 809683 938830 513262 283743 704880 545558 175549 325255 218707 054253 675846 196433 930709 408423 697030 251835 582565 408753 974017 151936 678259 060582 369498 835651 591971 330917 115467 466956 744219 183152 619664 914619 242662 016550 898214 774278 105971 001977 834818 383400 285834 331067 229483 286425 724446 (409 digits), a[792] = 12
                                                                                      A[793]/B[793] = 1 184237 798770 189946 902581 430179 295296 084729 312156 101711 295942 966354 044189 297532 801688 088811 975759 948863 265359 281289 765178 335721 977295 543418 583134 197400 895248 418184 050240 114776 551126 975121 387418 342760 885941 417781 716872 281806 755767 667621 565414 988081 657575 802907 885981 029561 305785 261004 502857 581930 278759 481387 374610 691206 340729 779215 896237 645435 087526 463579 394376 325316 700930 480726 338600 577857 818301 996477 035820 (409 digits)/115 100246 634967 844113 040842 744611 565460 035989 193241 047598 091657 790108 955106 035281 800425 152704 217409 078929 189116 372775 058704 050664 346839 292558 855144 557670 515943 283745 934803 312039 015520 627258 796975 563066 157654 239650 314171 979202 281825 415899 200928 723165 054207 642693 904623 334516 399458 182306 121695 737128 123069 754355 353854 761335 258876 749507 532009 911504 670423 310191 132386 368453 544331 225445 091455 085808 162609 566955 939899 (411 digits), a[793] = 12
                                                                                      A[794]/B[794] = 60 494138 672071 817987 372169 054888 042768 083771 489772 783188 141098 696021 900343 654525 032053 996566 706936 923643 690617 692626 367103 527592 643764 996451 830310 744102 130788 863400 354805 783876 086922 396255 963555 107647 075021 075120 868693 835764 756459 159786 501608 783921 077072 626927 357278 080389 829235 886511 518134 364760 714849 469047 812352 354997 831096 784448 008795 265348 876784 673373 608474 342821 112722 380081 662124 457177 645863 758515 693001 (410 digits)/5879 638606 668568 644874 568090 703831 410751 451553 048024 925288 948893 524480 611215 003354 710324 242833 376163 789766 662623 697280 942889 720615 292186 712076 422056 380026 826369 754786 379849 459547 967101 315453 864460 770627 716212 418599 953480 347740 070126 462694 829930 290171 738606 929325 814049 120918 741866 133263 798453 924451 392024 939079 790812 011250 822379 139503 375167 503289 089803 594025 857675 793108 595710 881099 950043 707283 522571 201178 659295 (412 digits), a[794] = 51
                                                                                      A[795]/B[795] = 61 678376 470842 007934 274750 485067 338064 168500 801928 884899 437041 662375 944532 952057 833742 085378 682696 872506 955976 973916 132281 863314 621060 539870 413444 941503 026037 281584 405045 898652 638049 371377 350973 450407 960962 492902 585566 117571 512226 827408 067023 772002 734648 429835 243259 109951 135021 147516 020991 946690 993608 950435 186963 046204 171826 563663 905032 910783 964311 136953 002850 668137 813652 860808 000725 035035 464165 754992 728821 (410 digits)/5994 738853 303536 488987 608933 448442 976211 487542 241265 972887 040551 314589 566321 038636 510749 395537 593572 868695 851740 070056 001593 771279 639026 004635 277200 937697 342313 038532 314652 771586 982621 942712 661436 333693 873866 658250 267652 326942 351951 878594 030859 013336 792814 572019 718672 455435 141324 315569 920149 661579 515094 693435 144666 772586 081255 889010 907177 414793 760226 904216 990062 161562 140042 106545 041498 793091 685180 768134 599194 (412 digits), a[795] = 1
                                                                                      A[796]/B[796] = 862 313032 793017 921132 943925 360763 437602 274281 914848 286880 822640 306909 179272 031276 870701 106489 581996 266234 118318 353536 086767 750682 717552 014767 205094 983641 469273 523997 620402 466360 381564 224161 526209 962950 567533 482854 481053 364194 415407 916091 372917 819956 627502 214785 519646 509754 584510 804219 791029 671743 631765 824705 242871 955652 064842 112078 774223 105540 412829 453762 645533 028612 690209 570585 671549 912638 680018 573421 167674 (411 digits)/83811 243699 614543 001713 484225 533590 101500 789602 184482 572820 476060 614144 973388 505629 350066 384822 092611 082812 735244 608008 963608 747250 599524 772335 025668 570092 276439 255706 470335 490178 741186 570718 463133 108648 076478 975853 432960 597990 645500 884417 231097 463550 045196 365582 156791 041575 579082 235672 760399 524985 088255 953736 671480 054869 878705 696645 168473 895607 972753 348846 728483 893416 416258 266185 489528 017475 429921 186928 448817 (413 digits), a[796] = 13
                                                                                      A[797]/B[797] = 923 991409 263859 929067 218675 845830 775666 442782 716777 171780 259681 969285 123804 983334 704443 191868 264693 138741 074295 327452 219049 613997 338612 554637 618539 925144 495310 805582 025448 365013 019613 595538 877183 413358 528495 975757 066619 481765 927634 743499 439941 591959 362150 644620 762905 619705 719531 951735 812021 618434 625374 775140 429835 001856 236668 675742 679256 016324 377140 590715 648383 696750 503862 431393 672274 947674 144184 328413 896495 (411 digits)/89805 982552 918079 490701 093158 982033 077712 277144 425748 545707 516611 928734 539709 544265 860815 780359 686183 951508 586984 678064 965202 518530 238550 776970 302869 507789 618752 294238 784988 261765 723808 513431 124569 442341 950345 634103 700612 924932 997452 763011 261956 476886 838010 937601 875463 497010 720406 551242 680549 186564 603350 647171 816146 827455 959961 585656 075651 310401 732980 253063 718546 054978 556300 372730 531026 810567 115101 955063 048011 (413 digits), a[797] = 1
                                                                                      A[798]/B[798] = 1786 304442 056877 850200 162601 206594 213268 717064 631625 458661 082322 276194 303077 014611 575144 298357 846689 404975 192613 680988 305817 364680 056164 569404 823634 908785 964584 329579 645850 831373 401177 819700 403393 376309 096029 458611 547672 845960 343042 659590 812859 411915 989652 859406 282552 129460 304042 755955 603051 290178 257140 599845 672706 957508 301510 787821 453479 121864 789970 044478 293916 725363 194072 001979 343824 860312 824202 901835 064169 (412 digits)/173617 226252 532622 492414 577384 515623 179213 066746 610231 118527 992672 542879 513098 049895 210882 165181 778795 034321 322229 286073 928811 265780 838075 549305 328538 077881 895191 549945 255323 751944 464995 084149 587702 550990 026824 609957 133573 522923 642953 647428 493053 940436 883207 303184 032254 538586 299488 786915 440948 711549 691606 600908 487626 882325 838667 282301 244125 206009 705733 601910 447029 948394 972558 638916 020554 828042 545023 141991 496828 (414 digits), a[798] = 1
                                                                                      A[799]/B[799] = 9855 513619 548249 180068 031681 878801 842010 028105 874904 465085 671293 350256 639190 056392 580164 683657 498140 163617 037363 732393 748136 437397 619435 401661 736714 469074 318232 453480 254702 521880 025502 694040 894150 294904 008643 268814 804983 711567 642848 041453 504238 651539 310414 941652 175666 267007 239745 731513 827278 069325 911077 774368 793369 789397 744222 614849 946651 625648 326990 813107 117967 323566 474222 441290 391399 249238 265198 837589 217340 (412 digits)/957892 113815 581191 952773 980081 560148 973777 610877 476904 138347 479974 643132 105199 793741 915226 606268 580159 123115 198131 108434 609258 847434 428928 523496 945559 897199 094710 043965 061607 021488 048783 934179 063082 197292 084468 683889 368480 539551 212221 000153 727226 179071 254047 453522 036736 189942 217850 485819 885292 744313 061383 651714 254281 239085 153297 997162 296277 340450 261648 262615 953695 796953 419093 567310 633800 950779 840217 665020 532151 (414 digits), a[799] = 5
                                                                                      A[800]/B[800] = 169330 035974 377113 911356 701193 146225 527439 194864 505001 365117 494309 230557 169307 973285 437943 920535 315072 186464 827797 131682 024136 800439 586566 397654 347780 883049 374536 038743 975793 703333 834723 618395 603948 389677 242965 028463 232395 942610 271459 364300 384916 488084 266706 867493 268878 668583 379720 191690 666778 468718 745462 764115 159993 377269 953295 240270 546556 757886 348813 867299 299361 225993 255853 503915 997612 097363 332583 140851 758949 (414 digits)/16 457783 161117 412885 689572 238771 038155 733432 451663 717601 470435 152241 476125 301494 543507 769734 471747 641500 127279 690458 129462 286211 672166 129860 448753 403056 330266 505262 297351 302643 117241 294321 965193 660099 904955 462792 236076 397742 695294 250710 650041 855898 984648 202014 013058 656769 767604 002947 045853 490925 364871 735128 680050 810407 946773 444733 234060 280839 993664 153754 066381 659858 496603 097149 283196 795170 991299 828723 447340 543395 (416 digits), a[800] = 17
                                                                                      A[801]/B[801] = 4 073776 377004 598983 052628 860317 388214 500550 704853 994937 227905 534714 883628 702581 415243 090818 776505 059872 638772 904494 892762 327419 647947 697028 945366 083455 662259 307097 383335 673751 401892 058869 535535 388911 647157 839803 951932 382486 334214 157872 784662 742234 365561 711379 761490 628754 313008 353030 332089 829961 318575 802184 113132 633210 843876 623308 381343 064013 814920 698523 628290 302636 747404 614706 535274 334089 585958 247194 218031 432116 (415 digits)/395 944687 980633 490448 502507 710586 475886 576156 450806 699339 428791 133770 070139 341068 837928 388853 928211 976162 177827 769126 215529 478338 979421 545579 293578 618911 823595 221005 180396 325041 835279 112511 098826 905479 916223 191482 349722 914305 226613 229276 601158 268801 810628 102383 766929 799210 612438 288579 586303 667501 501234 704471 972933 704071 961647 826895 614609 036437 188389 951745 855775 790299 715427 750676 364033 717904 741975 729580 401193 573631 (417 digits), a[801] = 24
                                                                                      A[802]/B[802] = 4 243106 412978 976096 963985 561510 534440 027989 899718 499938 593023 029024 114185 871889 388528 528762 697040 374944 825237 732292 024444 351556 448387 283595 343020 431236 545308 681633 422079 649545 105225 893593 153930 992860 036835 082768 980395 614882 276824 429332 148963 127150 853645 978086 628983 897632 981591 732750 523780 496739 787294 547646 877247 793204 221146 576603 621613 610570 572807 047337 495589 601997 973397 870560 039190 331701 683321 579777 358883 191065 (415 digits)/412 402471 141750 903334 192079 949357 514042 309588 902470 416940 899226 286011 546264 642563 381436 158588 399959 617662 305107 459584 344991 764550 651587 675439 742332 021968 153861 726267 477747 627684 952520 406833 064020 565579 821178 654274 585799 312047 921907 479987 251200 124700 795276 304397 779988 455980 380042 291526 632157 158426 866106 439600 652984 514479 908421 271628 848669 317277 182054 105499 922157 450158 212030 847825 647230 513075 733275 558303 848534 117026 (417 digits), a[802] = 1
                                                                                      A[803]/B[803] = 8 316882 789983 575080 016614 421827 922654 528540 604572 494875 820928 563738 997814 574470 803771 619581 473545 434817 464010 636786 917206 678976 096334 980624 288386 514692 207567 988730 805415 323296 507117 952462 689466 381771 683992 922572 932327 997368 611038 587204 933625 869385 219207 689466 390474 526387 294600 085780 855870 326701 105870 349830 990380 426415 065023 199912 002956 674584 387727 745861 123879 904634 720802 485266 574464 665791 269279 826971 576914 623181 (415 digits)/808 347159 122384 393782 694587 659943 989928 885745 353277 116280 328017 419781 616403 983632 219364 547442 328171 593824 482935 228710 560521 242889 631009 221019 035910 640879 977456 947272 658143 952726 787799 519344 162847 471059 737401 845756 935522 226353 148520 709263 852358 393502 605904 406781 546918 255190 992480 580106 218460 825928 367341 144072 625918 218551 870069 098524 463278 353714 370444 057245 777933 240457 927458 598502 011264 230980 475251 287884 249727 690657 (417 digits), a[803] = 1
                                                                                      A[804]/B[804] = 95 728817 102798 301977 146744 201617 683639 841936 550015 943572 623237 230153 090146 191068 230016 344158 906040 157936 929354 736948 113717 820293 508072 070462 515272 092850 828556 557672 281648 205806 683523 370682 738061 192348 560757 231071 236003 585936 998248 888586 418847 690388 264930 562216 924203 687893 222192 676339 938354 090451 951868 395787 771432 483769 936401 775635 654137 030998 837812 251809 858268 552979 902225 208492 358301 655405 645399 676464 704944 046056 (416 digits)/9304 221221 487979 234943 832544 208741 403260 052787 788518 696024 507417 903609 326708 462517 794446 180454 009847 149731 617394 975400 510725 436336 592689 106649 137349 071647 905888 146266 717331 107679 618315 119618 855342 747236 932598 957600 876543 801932 555635 281889 627142 453229 460224 778994 796089 263081 297328 672695 035226 243638 906859 024399 538084 918550 479181 355397 944731 208135 256938 735203 479423 095195 414075 431347 771137 053860 961039 725030 595538 714253 (418 digits), a[804] = 11
                                                                                      A[805]/B[805] = 295 503334 098378 481011 456847 026680 973574 054350 254620 325593 690640 254198 268253 147675 493820 652058 191665 908628 252074 847631 258360 139856 620551 192011 834202 793244 693237 661747 650359 940716 557688 064510 903649 958817 366264 615786 640338 755179 605785 252964 190168 940550 013999 376117 163085 590066 961178 114800 670932 598056 961475 537194 304677 877724 874228 526818 965367 767580 901164 501290 698685 563574 427478 110743 649369 632008 205478 856365 691746 761349 (417 digits)/28721 010823 586322 098614 192220 286168 199709 044108 718833 204353 850271 130609 596529 371185 602703 088804 357713 043019 335120 154912 092697 551899 409076 540966 447957 855823 695121 386072 810137 275765 642744 878200 728875 712770 535198 718559 565153 632150 815426 554932 733785 753190 986578 743765 935186 044434 884466 598191 324139 556845 087918 217271 240172 974203 307613 164718 297471 978120 141260 262856 216202 526044 169684 892545 324675 392563 358370 462976 036343 833416 (419 digits), a[805] = 3
                                                                                      A[806]/B[806] = 686 735485 299555 264000 060438 254979 630787 950637 059256 594760 004517 738549 626652 486419 217657 648275 289371 975193 433504 432210 630438 100006 749174 454486 183677 679340 215031 881167 582368 087239 798899 499704 545361 109983 293286 462644 516681 096296 209819 394514 799185 571488 292929 314451 250374 868027 144548 905941 280219 286565 874819 470176 380788 239219 684858 829273 584872 566160 640141 254391 255639 680128 757181 429979 657040 919422 056357 389196 088437 568754 (417 digits)/66746 242868 660623 432172 216984 781077 802678 141005 226185 104732 207960 164828 519767 204888 999852 358062 725273 235770 287635 285224 696120 540135 410842 188582 033264 783295 296130 918412 337605 659210 903804 876020 313094 172778 002996 394720 006851 066234 186488 391755 094713 959611 433382 266526 666461 351951 066261 869077 683505 357329 082695 458942 018430 866957 094407 684834 539675 164375 539459 260915 911828 147283 753445 216438 420487 838987 677780 650982 668226 381085 (419 digits), a[806] = 2
                                                                                      A[807]/B[807] = 12656 742069 490373 233012 544735 616314 327757 165817 321239 031273 771959 548091 547997 903221 411658 321013 400361 462110 055154 627422 606245 939978 105691 372763 140401 021368 563811 522764 132985 511032 937879 059192 720149 938516 645420 943387 940598 488511 382534 354230 575509 227339 286727 036239 669833 214555 563058 421743 714879 756242 708226 000369 158866 183679 201687 453743 493073 958472 423707 080333 300199 805892 056743 850377 476106 181605 219911 861895 283622 998921 (419 digits)/1 230153 382459 477543 877714 097946 345568 647915 582202 790165 089533 593554 097522 952339 059187 600045 533933 412631 286884 512555 288956 622867 274336 804235 935443 046723 955139 025477 917494 887039 141561 911232 646566 364570 822774 589133 823519 688472 824366 172217 606524 438637 026196 787459 541245 931490 379554 077180 241589 627235 988768 576436 478227 571928 579431 006951 491740 011624 936879 851526 959342 629109 177151 731698 788436 893456 494341 558422 180664 064418 692946 (421 digits), a[807] = 18
                                                                                      A[808]/B[808] = 76627 187902 241794 662075 328851 952865 597330 945540 986690 782402 636275 027098 914639 905747 687607 574355 691540 747853 764432 196746 267913 739875 383322 691065 026083 807551 597901 017752 380281 153437 426173 854860 866260 741083 165812 122972 160272 027364 505025 519898 252240 935524 013291 531889 269374 155360 522899 436403 569497 824022 124175 472391 333985 341294 894983 551734 543316 316995 182383 736391 056838 515481 097644 532244 513678 009053 375828 560567 790175 562280 (419 digits)/7 447666 537625 525886 698456 804662 854489 690171 634221 967175 641933 769284 749966 233801 560014 600125 561663 201060 957077 362967 018964 433324 186156 236257 801240 313608 514129 448998 423381 659840 508582 371200 755418 500519 109425 537799 335838 137688 012431 219794 030901 726536 116792 158139 514002 255403 629275 529343 318615 446921 289940 541314 328307 450002 343543 136116 635274 609424 785654 648621 016971 686483 210194 143637 947059 781226 805037 028313 734967 054738 538761 (421 digits), a[808] = 6
                                                                                      A[809]/B[809] = 242538 305776 215757 219238 531291 474911 119750 002440 281311 378481 680784 629388 291917 620464 474481 044080 474983 705671 348451 217661 409987 159604 255659 445958 218652 444023 357514 576021 273828 971345 216400 623775 318932 161766 142857 312304 421414 570604 897610 913925 332232 033911 326601 631907 477955 680637 131756 730954 423373 228309 080752 417543 160822 207563 886638 108947 123022 909457 970858 289506 470715 352335 349677 447111 017140 208765 347397 543598 654149 685761 (420 digits)/23 573152 995336 055203 973084 511934 909037 718430 484868 691692 015334 901408 347421 653743 739231 400422 218923 015814 158116 601456 345849 922839 832805 513009 339163 987549 497527 372473 187639 866560 667309 024834 912821 866128 151051 202531 831034 101536 861659 831599 699229 618245 376573 261878 083252 697701 267380 665210 197435 967999 858590 200379 463149 921935 610060 415301 397563 839899 293843 797390 010257 688558 807734 162612 629616 237136 909452 643363 385565 228634 309229 (422 digits), a[809] = 3
                                                                                      A[810]/B[810] = 319165 493678 457551 881313 860143 427776 717080 947981 268002 160884 317059 656487 206557 526212 162088 618436 166524 453525 112883 414407 677900 899479 638982 137023 244736 251574 955415 593773 654110 124782 642574 478636 185192 902849 308669 435276 581686 597969 402636 433823 584472 969435 339893 163796 747329 835997 654656 167357 992871 052331 204927 889934 494807 548858 781621 660681 666339 226453 153242 025897 527553 867816 447321 979355 530818 217818 723226 104166 444325 248041 (420 digits)/31 020819 532961 581090 671541 316597 763527 408602 119090 658867 657268 670693 097387 887545 299246 000547 780586 216875 115193 964423 364814 356164 018961 749267 140404 301158 011656 821471 611021 526401 175891 396035 668240 366647 260476 740331 166872 239224 874091 051393 730131 344781 493365 420017 597254 953104 896656 194553 516051 414921 148530 741693 791457 371937 953603 551418 032838 449324 079498 446011 027229 375042 017928 306250 576676 018363 714489 671677 120532 283372 847990 (422 digits), a[810] = 1
                                                                                      A[811]/B[811] = 880869 293133 130860 981866 251578 330464 553911 898402 817315 700250 314903 942362 705032 672888 798658 280952 808032 612721 574218 046476 765788 958563 533623 720004 708124 947173 268345 763568 582049 220910 501549 581047 689317 967464 760196 182857 584787 766543 702883 781572 501177 972782 006387 959500 972615 352632 441069 065670 409115 332971 490608 197412 150437 305281 449881 430310 455701 362364 277342 341301 525823 087968 244321 405822 078776 644402 793849 751931 542800 181843 (420 digits)/85 614792 061259 217385 316167 145130 436092 535634 723050 009427 329872 242794 542197 428834 337723 401517 780095 449564 388504 530303 075478 635167 870729 011543 619972 589865 520841 015416 409682 919363 019091 816906 249302 599422 672004 683194 164778 579986 609841 934387 159492 307808 363304 101913 277762 603911 060693 054317 229538 797842 155651 683767 046064 665811 517267 518137 463240 738547 452840 689412 064716 438642 843590 775113 782968 273864 338431 986717 626629 795380 005209 (422 digits), a[811] = 2
                                                                                      A[812]/B[812] = 1 200034 786811 588412 863180 111721 758241 270992 846384 085317 861134 631963 598849 911590 199100 960746 899388 974557 066246 687101 460884 443689 858043 172605 857027 952861 198748 223761 357342 236159 345693 144124 059683 874510 870314 068865 618134 166474 364513 105520 215396 085650 942217 346281 123297 719945 188630 095725 233028 401986 385302 695536 087346 645244 854140 231503 090992 122040 588817 430584 367199 053376 955784 691643 385177 609594 862221 517075 856097 987125 429884 (421 digits)/116 635611 594220 798475 987708 461728 199619 944236 842140 668294 987140 913487 639585 316379 636969 402065 560681 666439 503698 494726 440292 991331 889690 760810 760376 891023 532497 836888 020704 445764 194983 212941 917542 966069 932481 423525 331650 819211 483932 985780 889623 652589 856669 521930 875017 557015 957349 248870 745590 212763 304182 425460 837522 037749 470871 069555 496079 187871 532339 135423 091945 813684 861519 081364 359644 292228 052921 658394 747162 078752 853199 (423 digits), a[812] = 1
                                                                                      A[813]/B[813] = 3 280938 866756 307686 708226 475021 846947 095897 591170 987951 422519 578831 140062 528213 071090 720152 079730 757146 745214 948420 968245 653168 674649 878835 434060 613847 344669 715868 478253 054367 912296 789797 700415 438339 708092 897927 419125 917736 495569 913924 212364 672479 857216 698950 206096 412505 729892 632519 531727 213088 103576 881680 372105 440927 013561 912887 612294 699782 539999 138511 075699 632576 999537 627608 176177 297966 368845 828001 464127 517051 041611 (421 digits)/318 886015 249700 814337 291584 068586 835332 424108 407331 346017 304154 069769 821368 061593 611662 205648 901458 782443 395901 519755 956064 617831 650110 533165 140726 371912 585836 689192 451091 810891 409058 242790 084388 531562 536967 530244 828080 218409 577707 905948 938739 612988 076643 145775 027797 717942 975391 552058 720719 223368 764016 534688 721108 741310 459009 657248 455399 114290 517518 960258 248608 066012 566628 937842 502256 858320 444275 303507 120953 952885 711607 (423 digits), a[813] = 2
                                                                                      A[814]/B[814] = 4 480973 653567 896099 571406 586743 605188 366890 437555 073269 283654 210794 738912 439803 270191 680898 979119 731703 811461 635522 429130 096858 532693 051441 291088 566708 543417 939629 835595 290527 257989 933921 760099 312850 578406 966793 037260 084210 860083 019444 427760 758130 799434 045231 329394 132450 918522 728244 764755 615074 488879 577216 459452 086171 867702 144390 703286 821823 128816 569095 442898 685953 955322 319251 561354 907561 231067 345077 320225 504176 471495 (421 digits)/435 521626 843921 612813 279292 530315 034952 368345 249472 014312 291294 983257 460953 377973 248631 607714 462140 448882 899600 014482 396357 609163 539801 293975 901103 262936 118334 526080 471796 256655 604041 455732 001931 497632 469448 953770 159731 037621 061640 891729 828363 265577 933312 667705 902815 274958 932740 800929 466309 436132 068198 960149 558630 779059 929880 726803 951478 302162 049858 095681 340553 879697 428148 019206 861901 150548 497196 961901 868116 031638 564806 (423 digits), a[814] = 1
                                                                                      A[815]/B[815] = 48 090675 402435 268682 422292 342457 898830 764801 966721 720644 259061 686778 529186 926245 773007 529141 870928 074184 859831 303645 259546 621754 001580 393248 344946 280932 778849 112166 834205 959640 492196 129015 301408 566845 492162 565857 791726 759845 096400 108368 489972 253787 851557 151263 500037 737014 915119 914967 179283 363832 992372 653844 966626 302645 690583 356794 645162 918013 828164 829465 504686 492116 552760 820123 789726 373578 679519 278774 666382 558815 756561 (422 digits)/4674 102283 688916 942470 084509 371737 184856 107560 902051 489140 217103 902344 430901 841326 097978 282793 522863 271272 391901 664579 919640 709467 048123 472924 151759 001273 769181 949997 169054 377447 449472 800110 103703 507887 231457 067946 425390 594620 194116 823247 222372 268767 409769 822834 055950 467532 302799 561353 383813 584689 446006 136184 307416 531909 757816 925287 970182 135911 016099 917071 654146 862986 848109 129911 121268 363805 416244 922525 802114 269271 359667 (424 digits), a[815] = 10
                                                                                      A[816]/B[816] = 293 025026 068179 508194 105160 641490 998172 955702 237885 397134 838024 331465 914033 997277 908236 855750 204688 176812 970449 457393 986409 827382 542175 410931 360766 252305 216512 612630 840831 048370 211166 708013 568550 713923 531382 361939 787620 643281 438483 669655 367594 280857 908776 952812 329620 554540 409242 218047 840455 798072 443115 500286 259209 902046 011202 285158 574264 329906 097805 545888 471017 638653 271887 239994 299713 149033 308183 017725 318520 857071 010861 (423 digits)/28480 135328 977423 267633 786348 760738 144089 013710 661780 949153 593918 397324 046364 425929 836501 304475 599320 076517 251010 001961 914201 865965 828542 131520 811657 270578 733426 226063 486122 521340 300878 256392 624152 544955 858191 361448 712074 605342 226341 831213 162596 878182 391931 604710 238518 080152 749538 169049 769190 944268 744235 777255 403129 970518 476782 278531 772571 117628 146457 598111 265435 057618 516802 798673 589511 333380 994666 497056 680801 647266 722808 (425 digits), a[816] = 6
                                                                                      A[817]/B[817] = 341 115701 470614 776876 527452 983948 897003 720504 204607 117779 097086 018244 443220 923523 681244 384892 075616 250997 830280 761039 245956 449136 543755 804179 705712 533237 995361 724797 675037 008010 703362 837028 869959 280769 023544 927797 579347 403126 534883 778023 857566 534645 760334 104075 829658 291555 324362 133015 019739 161905 435488 154131 225836 204691 701785 641953 219427 247919 925970 375353 975704 130769 824648 060118 089439 522611 987702 296499 984903 415886 767422 (423 digits)/33154 237612 666340 210103 870858 132475 328945 121271 563832 438293 811022 299668 477266 267255 934479 587269 122183 347789 642911 666541 833842 575432 876665 604444 963416 271852 502608 176060 655176 898787 750351 056502 727856 052843 089648 429395 137465 199962 420458 654460 384969 146949 801701 427544 294468 547685 052337 730403 153004 528958 190241 913439 710546 502428 234599 203819 742753 253539 162557 515182 919581 920605 364911 928584 710779 697186 410911 419582 482915 916538 082475 (425 digits), a[817] = 1
                                                                                      A[818]/B[818] = 64763 892604 014372 337857 793774 607832 531876 130996 908630 657384 187281 779665 682788 543253 663425 600352 496159 615402 893513 293811 472178 714189 312022 400895 740435 034286 339878 599391 422825 562393 146742 906469 990854 779268 981373 715682 284279 834196 531517 716164 447669 328906 611922 623144 135037 658496 713685 357886 571157 398199 750376 631087 942252 588777 648688 614317 046014 186772 106206 487789 879098 354150 130370 602313 203782 922698 983917 056222 465266 459670 053619 (425 digits)/6 294631 044122 915722 977265 378535 798575 314716 934036 226111 786683 877133 034666 249688 937301 453143 298339 691972 808759 761314 978368 510448 622779 518341 371618 897332 650701 726371 501527 314556 392225 117227 935408 188946 532299 801744 517129 692997 398239 693027 524225 921765 651694 913501 410581 893073 592627 641369 215245 687046 917366 699957 417360 696418 929454 816031 800463 152936 036529 869827 967683 066418 052032 485157 301183 926874 101612 656924 798145 951909 872964 310583 (427 digits), a[818] = 189
                                                                                      A[819]/B[819] = 65105 008305 484987 114734 321227 591781 428879 851501 113237 775163 284367 797910 126009 466777 344669 985244 571775 866400 723794 054850 718135 163325 855778 205075 446147 567524 335240 324189 097862 570403 850105 743498 860814 060038 004918 643479 863627 237323 066401 494188 305235 863552 372256 727219 964695 950052 038047 490901 590896 560105 185864 785219 168088 793469 350474 256270 265441 434692 032176 863143 854802 484919 955018 662431 293222 445310 971619 352722 450169 875556 821041 (425 digits)/6 327785 281735 582063 187369 249393 931050 643662 055307 789944 224977 688155 334334 726955 204557 387622 885608 814156 156549 404226 644910 344291 198212 395006 976063 860748 922554 228979 677587 969733 291012 867578 991910 916802 585142 891392 946524 830462 598202 113486 178686 306734 798644 715202 838126 187542 140312 693706 945648 840051 446324 890199 330800 406965 431883 050631 004282 895689 290069 032385 482865 985999 972637 850069 229768 637653 798799 067836 217728 434825 789502 393058 (427 digits), a[819] = 1
                                                                                      A[820]/B[820] = 455393 942436 924295 026263 721140 158521 105155 240003 588057 308363 893488 567126 438845 343917 731445 511819 926814 813807 236277 622915 780989 694144 446691 631348 417320 439432 351320 544526 010000 984816 247377 367463 155739 139497 010885 576561 466043 258134 929926 681294 279084 510220 845462 986463 923213 358808 941970 303296 116536 758830 865565 342402 950785 349593 751534 151938 638662 794924 299267 666653 007913 263669 860482 576900 963117 594564 813633 172557 166285 713010 979865 (426 digits)/44 261342 734536 408102 101480 874899 384879 176689 265882 965777 136550 006065 040674 611420 164645 778880 611992 576909 748056 186674 847830 576195 812053 888383 228002 061826 186027 100249 567055 132956 138302 322701 886873 689762 043157 150102 196278 675772 987452 373944 596343 762174 443563 204718 439339 018326 434503 803610 889138 727355 595316 041153 402163 138211 520753 119817 826160 527071 776944 064140 864878 982417 887859 585572 679795 752796 894407 063942 104516 560864 609978 668931 (428 digits), a[820] = 6
                                                                                      A[821]/B[821] = 4 619044 432674 727937 377371 532629 176992 480432 251536 993810 858802 219253 469174 514462 905954 659125 103443 839924 004473 086570 284008 528032 104770 322694 518559 619351 961847 848445 769449 197872 418566 323879 418130 418205 455008 113774 409094 524059 818672 365668 307131 096080 965760 826886 591859 196829 538141 457750 523862 756264 148413 841518 209248 675942 289406 865815 775656 652069 383935 024853 529673 933935 121618 559844 431440 924398 390959 107951 078294 113027 005666 619691 (427 digits)/448 941212 627099 663084 202177 998387 779842 410554 714137 447715 590477 748805 741080 841156 851015 176429 005534 583253 637111 270975 123216 106249 318751 278839 256084 479010 782825 231475 348139 299294 674036 094597 860647 814423 016714 392414 909311 588192 472725 852932 142123 928479 234276 762387 231516 370806 485350 729815 837036 113607 399485 301733 352431 789080 639414 248809 265888 166407 059509 673794 131655 810178 851233 705796 027726 165622 742869 707257 262894 043471 889289 082368 (429 digits), a[821] = 10
                                                                                      A[822]/B[822] = 5 074438 375111 652232 403635 253769 335513 585587 491540 581868 167166 112742 036300 953308 249872 390570 615263 766738 818280 322847 906924 309021 798914 769386 149908 036672 401280 199766 313975 207873 403382 571256 785593 573944 594505 124659 985655 990103 076807 295594 988425 375165 475981 672349 578323 120042 896950 399720 827158 872800 907244 707083 551651 626727 639000 617349 927595 290732 178859 324121 196326 941848 385288 420327 008341 887515 985523 921584 250851 279312 718677 599556 (427 digits)/493 202555 361636 071186 303658 873287 164721 587243 980020 413492 727027 754870 781755 452577 015660 955309 617527 160163 385167 457649 971046 682445 130805 167222 484086 540836 968852 331724 915194 432250 812338 417299 747521 504185 059871 542517 105590 263965 460178 226876 738467 690653 677839 967105 670855 389132 919854 533426 726174 840962 994801 342886 754594 927292 160167 368627 092048 693478 836453 737934 996534 792596 739093 291368 707521 918419 637276 771199 367410 604336 499267 751299 (429 digits), a[822] = 1
                                                                                      A[823]/B[823] = 14 767921 182898 032402 184642 040167 848019 651607 234618 157547 193134 444737 541776 421079 405699 440266 333971 373401 641033 732266 097857 146075 702599 861466 818375 692696 764408 247978 397399 613619 225331 466392 989317 566094 644018 363094 380406 504265 972286 956858 283981 846411 917724 171585 748505 436915 332042 257192 178180 501865 962903 255685 312551 929397 567408 100515 630847 233533 741653 673095 922327 817631 892195 400498 448124 699430 362006 951119 579996 671652 443021 818803 (428 digits)/1435 346323 350371 805456 809495 744962 109285 585042 674178 274701 044533 258547 304591 746310 882337 087048 240588 903580 407446 186275 065309 471139 580361 613284 224257 560684 720529 894925 178528 163796 298712 929197 355690 822793 136457 477449 120492 116123 393082 306685 619059 309786 589956 696598 573227 149072 325059 796669 289385 795533 389087 987506 861621 643664 959748 986063 449985 553364 732417 149664 124725 395372 329420 288533 442770 002462 017423 249655 997715 252144 887824 584966 (430 digits), a[823] = 2
                                                                                      A[824]/B[824] = 19 842359 558009 684634 588277 293937 183533 237194 726158 739415 360300 557479 578077 374387 655571 830836 949235 140140 459314 055114 004781 455097 501514 630852 968283 729369 165688 447744 711374 821492 628714 037649 774911 140039 238523 487754 366062 494369 049094 252453 272407 221577 393705 843935 326828 556958 228992 656913 005339 374666 870147 962768 864203 556125 206408 717865 558442 524265 920512 997217 118654 759480 277483 820825 456466 586946 347530 872703 830847 950965 161699 418359 (428 digits)/1928 548878 712007 876643 113154 618249 274007 172286 654198 688193 771561 013418 086347 198887 897998 042357 858116 063743 792613 643925 036356 153584 711166 780506 708344 101521 689382 226650 093722 596047 111051 346497 103212 326978 196329 019966 226082 380088 853260 533562 357527 000440 267796 663704 244082 538205 244914 330096 015560 636496 383889 330393 616216 570957 119916 354690 542034 246843 568870 887599 121260 187969 068513 579902 150291 920881 654700 020855 365125 856481 387092 336265 (430 digits), a[824] = 1
                                                                                      A[825]/B[825] = 54 452640 298917 401671 361196 628042 215086 125996 686935 636377 913735 559696 697931 169854 716843 101940 232441 653682 559661 842494 107420 056270 705629 123172 754943 151435 095785 143467 820149 256604 482759 541692 539139 846173 121065 338603 112531 493004 070475 461764 828796 289566 705135 859456 402162 550831 790027 571018 188859 251199 703199 181223 040959 041647 980225 536246 747732 282065 582679 667530 159637 336592 447163 042149 361057 873323 057068 696527 241692 573582 766420 655521 (428 digits)/5292 444080 774387 558743 035804 981460 657299 929615 982575 651088 587655 285383 477286 144086 678333 171763 956821 031067 992673 474125 138021 778309 002695 174297 640945 763728 099294 348225 365973 355890 520815 622191 562115 476749 529115 517381 572656 876301 099603 373810 334113 310667 125550 024007 061392 225482 814888 456861 320507 068526 156866 648294 094054 785579 199581 695444 534054 047051 870158 924862 367245 771310 466447 448337 743353 844225 326823 291366 727966 965107 662009 257496 (430 digits), a[825] = 2
                                                                                      A[826]/B[826] = 74 294999 856927 086305 949473 921979 398619 363191 413094 375793 274036 117176 276008 544242 372414 932777 181676 793823 018975 897608 112201 511368 207143 754025 723226 880804 261473 591212 531524 078097 111473 579342 314050 986212 359588 826357 478593 987373 119569 714218 101203 511144 098841 703391 728991 107790 019020 227931 194198 625866 573347 143991 905162 597773 186634 254112 306174 806331 503192 664747 278292 096072 724646 862974 817524 460269 404599 569231 072540 524547 928120 073880 (428 digits)/7220 992959 486395 435386 148959 599709 931307 101902 636774 339282 359216 298801 563633 342974 576331 214121 814937 094811 785287 118050 174377 931893 713861 954804 349289 865249 788676 574875 459695 951937 631866 968688 665327 803727 725444 537347 798739 256389 952863 907372 691640 311107 393346 687711 305474 763688 059802 786957 336067 705022 540755 978687 710271 356536 319498 050135 076088 293895 439029 812461 488505 959279 534961 028239 893645 765106 981523 312222 093092 821589 049101 593761 (430 digits), a[826] = 1
                                                                                      A[827]/B[827] = 277 337639 869698 660589 209618 393980 410944 215570 926218 763757 735843 911225 525956 802581 834087 900271 777472 035151 616589 535318 444024 590375 327060 385249 924623 793847 880205 917105 414721 490895 817180 279719 481292 804810 199831 817675 548313 455123 429184 604419 132406 822999 001660 969631 589135 874201 847088 254811 771455 128799 423240 613198 756446 834967 540128 298583 666256 701060 092257 661771 994513 624810 621103 631073 813631 254131 270867 404220 459314 147226 550780 877161 (429 digits)/26955 422959 233573 864901 482683 780590 451221 235323 892898 668935 665304 181788 168186 173010 407326 814129 401632 315503 348534 828275 661155 573990 144281 038710 688815 359477 465324 072851 745061 211703 416416 528257 558098 887932 705449 129424 968874 645470 958195 095928 409034 243989 305590 087140 977816 516546 994296 817733 328710 183593 779134 584357 224868 855188 158075 845849 762318 928738 187248 362246 832763 649149 071330 533057 424291 139546 271393 228033 007245 429874 809314 038779 (431 digits), a[827] = 3
                                                                                      A[828]/B[828] = 1738 320839 075119 049841 207184 285861 864284 656616 970406 958339 689099 584529 431749 359733 376942 334407 846509 004732 718513 109518 776349 053620 169506 065525 270969 643891 542709 093845 019853 023472 014555 257659 201807 815073 558579 732410 768474 718113 694677 340732 895644 449138 108807 521181 263806 353001 101549 756801 822929 398663 112790 823184 443843 607578 427404 045614 303715 012692 056738 635379 245373 844936 451268 649417 699311 985057 029803 994553 828425 407907 232805 336846 (430 digits)/168953 530714 887838 624795 045062 283252 638634 513845 994166 352896 351041 389530 572750 381037 020292 098898 224730 987831 876496 087704 141311 375834 579548 187068 482182 022114 580621 011985 930063 222158 130366 138234 013921 131323 958139 313897 611987 129215 702034 482943 145845 775043 226887 210557 172373 862970 025583 693357 308328 806585 215563 484831 059484 487665 267953 125233 650001 866324 562519 985942 485087 854173 962944 226584 439392 602384 609882 680420 136565 400837 904985 826435 (432 digits), a[828] = 6
                                                                                      A[829]/B[829] = 31567 112743 221841 557730 938935 539493 968068 034676 393544 013872 139636 432755 297445 277782 619049 919613 014634 120340 549825 506656 418307 555538 378169 564704 802077 383895 648969 606315 772075 913392 079174 917585 113833 476134 254267 001069 380858 381169 933376 737611 254006 907484 960196 350894 337650 228221 674983 877244 584184 304735 453475 430518 745631 771379 233401 119641 133126 929517 113553 098598 411242 833666 743939 320592 401246 985157 807339 306189 370971 489556 741276 940389 (431 digits)/3 068118 975827 214669 111212 293804 879137 946642 484551 787893 021069 984049 193338 477693 031676 772584 594297 446790 096477 125464 406950 204760 339012 576148 405943 368091 757539 916502 288598 486199 210549 763007 016469 808679 251763 951956 779581 984642 971353 594815 788905 034258 194767 389559 877170 080546 050007 454803 298164 878628 702127 659277 311316 295589 633162 981232 100055 462352 522580 312608 109211 564345 024280 404326 611577 333357 982469 249281 475595 465422 644957 099058 914609 (433 digits), a[829] = 18
                                                                                      A[830]/B[830] = 64872 546325 518802 165303 085055 364849 800420 725969 757494 986083 968372 450040 026639 915298 615042 173633 875777 245413 818164 122831 612964 164696 925845 194934 875124 411682 840648 306476 564004 850256 172905 092829 429474 767342 067113 734549 530191 480453 561430 815955 403658 264108 029200 222969 939106 809444 451517 511290 991298 008134 019741 684221 935107 150336 894206 284896 569968 871726 283844 832576 067859 512269 939147 290602 501805 955372 644482 606932 570368 387020 715359 217624 (431 digits)/6 305191 482369 317176 847219 632672 041528 531919 482949 569952 395036 319139 776207 528136 444390 565461 287493 118311 180786 127424 901604 550832 053859 731844 998955 218365 537194 413625 589182 902461 643257 656380 171173 631279 634851 862052 873061 581273 071922 891666 060753 214362 164578 006006 964897 333465 962984 935190 289687 065586 210840 534118 107463 650663 753991 230417 325344 574706 911485 187736 204365 613777 902734 771597 449739 106108 567323 108445 631611 067410 690752 103103 655653 (433 digits), a[830] = 2
                                                                                      A[831]/B[831] = 226184 751719 778248 053640 194101 634043 369330 212585 666028 972124 044753 782875 377365 023678 464176 440514 641965 856582 004317 875151 257200 049629 155705 149509 427450 618944 170914 525745 464090 464160 597890 196073 402257 778160 455608 204717 971432 822530 617669 185477 464981 699809 047797 019804 154970 656555 029536 411117 558078 329137 512700 483184 550953 222389 916019 974330 843033 544695 965087 596326 614821 370476 561381 192399 906664 851275 740787 126987 082076 650618 887354 593261 (432 digits)/21 983693 422935 166199 652871 191821 003723 542400 933400 497750 206178 941468 521961 062102 364848 468968 456776 801723 638835 507739 111763 857256 500591 771683 402809 023188 369123 157379 056147 193584 140322 732147 529990 702518 156319 538115 398766 728462 187122 269813 971164 677344 688501 407580 771862 080943 938962 260374 167226 075387 334649 261631 633707 247580 895136 672484 076089 186473 257035 875816 722308 405678 732484 719118 960794 651683 684438 574618 370428 667654 717213 408369 881568 (434 digits), a[831] = 3
                                                                                      A[832]/B[832] = 2 552904 815243 079530 755345 220173 339326 863053 064412 083813 679448 460664 061669 177655 175761 720983 019294 937401 667815 865660 749495 442164 710617 638601 839538 577081 220068 720708 089676 668999 956022 749697 249636 854310 327107 078803 986447 215952 528290 355791 856207 518456 962007 554967 440815 643784 031549 776418 033584 130159 628646 659446 999251 995592 596625 970426 002535 843337 863381 899808 392168 830894 587512 114340 407001 475119 319405 793141 003790 473211 543828 476259 743495 (433 digits)/248 125819 134656 145373 028802 742703 082487 498329 750355 045204 663004 675293 517779 211262 457723 724114 312037 937271 207976 712555 131006 980653 560369 220362 429854 473437 597549 144795 206802 031887 186807 710003 001071 358979 354366 781322 259495 594357 130267 859619 743564 665153 738093 489395 455380 223849 291569 799306 129173 894846 891982 412066 078243 374053 600494 627742 162325 625912 738879 821720 149758 076243 960066 681906 018480 274629 096147 429247 706326 411612 580099 595172 352901 (435 digits), a[832] = 11
                                                                                      A[833]/B[833] = 2 779089 566962 857778 808985 414274 973370 232383 276997 749842 651572 505417 844544 555020 199440 185159 459809 579367 524397 869978 624646 699364 760246 794306 989048 004531 839012 891622 615422 133090 420183 347587 445710 256568 105267 534412 191165 187385 350820 973461 041684 983438 661816 602764 460619 798754 688104 805954 444701 688237 957784 172147 482436 546545 819015 886445 976866 686371 408077 864895 988495 445715 957988 675721 599401 381784 170681 533928 130777 555288 194447 363614 336756 (433 digits)/270 109512 557591 311572 681673 934524 086211 040730 683755 542954 869183 616762 039740 273364 822572 193082 768814 738994 846812 220294 242770 837910 060960 992045 832663 496625 966672 302174 262949 225471 327130 442150 531062 061497 510686 319437 658262 322819 317390 129433 714729 342498 426594 896976 227242 304793 230532 059680 296399 970234 226631 673697 711950 621634 495631 300226 238414 812385 995915 697536 872066 481922 692551 401024 979274 926312 780586 003866 076755 079267 297313 003542 234469 (435 digits), a[833] = 1
                                                                                      A[834]/B[834] = 5 331994 382205 937309 564330 634448 312697 095436 341409 833656 331020 966081 906213 732675 375201 906142 479104 516769 192213 735639 374142 141529 470864 432908 828586 581613 059081 612330 705098 802090 376206 097284 695347 110878 432374 613216 177612 403337 879111 329252 897892 501895 623824 157731 901435 442538 719654 582372 478285 818397 586430 831594 481688 542138 415641 856871 979402 529709 271459 764704 380664 276610 545500 790062 006402 856903 490087 327069 134568 028499 738275 839874 080251 (433 digits)/518 235331 692247 456945 710476 677227 168698 539060 434110 588159 532188 292055 557519 484627 280295 917197 080852 676266 054788 932849 373777 818563 621330 212408 262517 970063 564221 446969 469751 257358 513938 152153 532133 420476 865053 100759 917757 917176 447657 989053 458294 007652 164688 386371 682622 528642 522101 858986 425573 865081 118614 085763 790193 995688 096125 927968 400740 438298 734795 519257 021824 558166 652618 082930 997755 200941 876733 433113 783081 490879 877412 598714 587370 (435 digits), a[834] = 1
                                                                                      A[835]/B[835] = 130 746954 739905 353208 352920 641034 478100 522855 470833 757594 596075 691383 593674 139229 204285 932578 958317 981828 137527 525323 604058 096072 060993 184118 875125 963245 256971 587559 537793 383259 449129 682420 134040 917650 482258 251600 453862 867494 449492 875530 591105 028933 633596 388330 095070 419683 959814 782893 923561 329780 032124 130415 042961 557867 794420 451373 482527 399393 923112 217801 124438 084369 050007 637209 753069 947467 932777 383587 360410 239281 913067 520592 262780 (435 digits)/12707 757473 171530 278269 733114 187976 134975 978181 102409 658783 641702 626095 420207 904419 549674 205812 709278 969380 161746 608679 213438 483436 972886 089844 133094 778151 507987 029441 536979 402075 661646 093835 302264 152942 271960 737675 684452 335054 061181 866716 713785 526150 379116 169896 610182 992213 760976 675354 510172 732181 073369 732028 676606 518148 802653 571467 856185 331555 631008 159705 395855 877922 355385 391368 925399 748917 822188 398596 870710 860384 355215 372692 331349 (437 digits), a[835] = 24
                                                                                      A[836]/B[836] = 2228 030224 960596 941851 563981 532034 440405 983979 345583 712764 464307 719602 998674 099571 848062 759984 770510 207847 530181 666140 643129 774754 507748 562929 705727 956782 427598 600842 847586 317501 011410 698426 974042 710936 630764 890423 893281 150743 520490 213272 946677 993767 394962 759343 517632 577166 036505 891569 178828 424658 132541 048650 212035 025890 920789 530221 182368 319405 964367 467323 496111 710884 395630 622627 808591 963858 347302 848054 261542 096292 260423 689942 547511 (436 digits)/216550 112375 608262 187531 173417 872821 463290 168139 175074 787481 441132 935677 701053 859759 624757 416013 138595 155728 804481 280396 002232 036992 160393 739758 525129 198639 200000 947475 598401 092644 761921 747353 670624 020495 488385 641246 553447 613095 487749 723237 592647 952208 609663 274614 055733 396276 458705 340013 098510 312159 365899 530251 292504 804217 741236 642921 955891 074744 461934 234248 751374 482846 694169 736202 729550 932544 853936 209260 585166 117413 916073 934484 220303 (438 digits), a[836] = 17
                                                                                      A[837]/B[837] = 11270 898079 542890 062466 172828 301206 680130 442752 198752 321416 917614 289398 587044 637088 444599 732502 810869 021065 788435 856026 819706 969844 599735 998767 403765 747157 394964 591773 775724 970764 506183 174555 004254 472333 636082 703719 920268 621212 051943 941895 324494 997770 608410 185047 683233 305514 142344 240739 817703 453070 694829 373666 103136 687322 398368 102479 394368 996423 744949 554418 604996 638791 028160 750348 796029 766759 669291 623858 668120 720743 215185 970305 000335 (437 digits)/1 095458 319351 212841 215925 600203 552083 451426 818876 977783 596190 847367 304483 925477 203217 673461 285878 402254 748024 184153 010659 224598 668397 774854 788636 758740 771347 507991 766819 528984 865299 471254 830603 655384 255419 713888 943908 451690 400531 499930 482904 677025 287193 427432 542966 888849 973596 054503 375420 002724 292977 902867 383285 139130 539237 508836 786077 635640 705277 940679 330949 152728 292155 826234 072382 573154 411642 091869 444899 796541 447453 935585 045113 432864 (439 digits), a[837] = 5
                                                                                      A[838]/B[838] = 13498 928304 503487 004317 736809 833241 120536 426731 544336 034181 381922 009001 585718 736660 292662 492487 581379 228913 318617 522167 462836 744599 107484 561697 109493 703939 822563 192616 623311 288265 517593 872981 978297 183270 266847 594143 813549 771955 572434 155168 271172 991538 003372 944391 200865 882680 178850 132308 996531 877728 827370 422316 315171 713213 319157 632700 576737 315829 709317 021742 101108 349675 423791 372976 604621 730618 016594 471912 929662 817035 475609 660247 547846 (437 digits)/1 312008 431726 821103 403456 773621 424904 914716 987016 152858 383672 288500 240161 626531 062977 298218 701891 540849 903752 988634 291055 226830 705389 935248 528395 283869 969986 707992 714295 127385 957944 233176 577957 326008 275915 202274 585155 005138 013626 987680 206142 269673 239402 037095 817580 944583 369872 513208 715433 101234 605137 268766 913536 431635 343455 250073 428999 591531 780022 402613 565197 904102 775002 520403 808585 302705 344186 945805 654160 381707 564867 851658 979597 653167 (439 digits), a[838] = 1
                                                                                      A[839]/B[839] = 24769 826384 046377 066783 909638 134447 800666 869483 743088 355598 299536 298400 172763 373748 737262 224990 392248 249979 107053 378194 282543 714443 707220 560464 513259 451097 217527 784390 399036 259030 023777 047536 982551 655603 902930 297863 733818 393167 624378 097063 595667 989308 611783 129438 884099 188194 321194 373048 814235 330799 522199 795982 418308 400535 717525 735179 971106 312253 454266 576160 706104 988466 451952 123325 400651 497377 685886 095771 597783 537778 690795 630552 548181 (437 digits)/2 407466 751078 033944 619382 373824 976988 366143 805893 130641 979863 135867 544645 552008 266194 971679 987769 943104 651777 172787 301714 451429 373787 710103 317032 042610 741334 215984 481114 656370 823243 704431 408560 981392 531334 916163 529063 456828 414158 487610 689046 946698 526595 464528 360547 833433 343468 567712 090853 103958 898115 171634 296821 570765 882692 758910 215077 227172 485300 343292 896147 056831 067158 346637 880967 875859 755829 037675 099060 178249 012321 787244 024711 086031 (439 digits), a[839] = 1
                                                                                      A[840]/B[840] = 335506 671297 106388 872508 562105 581062 529205 730020 204484 656959 275893 888203 831642 595393 877071 417362 680606 478641 710311 438693 135905 032367 301351 847735 781866 568203 650424 389691 810782 655655 826695 490962 751468 706121 004941 466372 353188 883134 689349 416995 014856 852549 956553 627096 694155 329206 354376 981943 581591 178122 615967 770087 753180 920177 646992 190040 201119 375124 614782 511831 280473 199739 299168 976206 813091 196527 933113 716943 700848 808158 455952 857430 674199 (438 digits)/32 609076 195741 262383 455427 633346 125753 674586 463626 851204 121893 054778 320553 802638 523511 930058 542900 801210 376856 234869 213343 095412 564630 166591 649811 837809 607331 515790 968785 660206 660112 390784 889250 084111 183269 112400 462979 943907 397687 326619 163752 576754 085143 075964 504702 779216 834963 893465 896523 452700 280634 500012 772216 851591 818461 115906 225003 544774 088926 865421 215109 642906 648061 026696 261167 688882 169964 435581 941942 698944 725051 085831 300841 771570 (440 digits), a[840] = 13
                                                                                      A[841]/B[841] = 360276 497681 152765 939292 471743 715510 329872 599503 947573 012557 575430 186604 004405 969142 614333 642353 072854 728620 817364 816887 418448 746811 008572 408200 295126 019300 867952 174082 209818 914685 850472 538499 734020 361724 907871 764236 087007 276302 313727 514058 610524 841858 568336 756535 578254 517400 675571 354992 395826 508922 138167 566070 171489 320713 364517 925220 172225 687378 069049 087991 986578 188205 751121 099532 213742 693905 618999 812715 298632 345937 146748 487983 222380 (438 digits)/35 016542 946819 296328 074810 007171 102742 040730 269519 981846 101756 190645 865199 354646 789706 901738 530670 744315 028633 407656 515057 546841 938417 876694 966843 880420 348665 731775 449900 316577 483356 095216 297811 065503 714604 028563 992043 400735 811845 814229 852799 523452 611738 540492 865250 612650 178432 461177 987376 556659 178749 671647 069038 422357 701153 874816 440080 771946 574227 208714 111256 699737 715219 373334 142135 564741 925793 473257 041002 877193 737372 873075 325552 857601 (440 digits), a[841] = 1
                                                                                      A[842]/B[842] = 18 709608 053035 897451 776424 621035 072089 352708 304721 530708 297395 622833 405008 056347 021667 208087 177369 396197 638303 395917 099951 476791 119728 738544 665950 833293 552547 915985 267884 511547 304634 200794 954449 186507 154091 306401 442412 790559 974552 689452 633984 151623 787336 941728 210411 185135 716640 808516 086555 768743 133151 662513 639666 499136 276559 237406 376268 984629 431406 136285 999422 595960 798232 606345 052349 713968 585714 502104 165423 931098 450952 940125 744575 015579 (440 digits)/1818 452766 483525 375115 270737 999072 365597 751830 209145 925355 311458 777717 445720 889624 798563 918723 607108 761276 837160 025351 481277 984351 423941 878034 958849 739247 389283 836338 913701 805658 311273 246816 077614 424800 628074 569164 057193 381433 801823 852341 656528 272837 283808 641100 632484 024375 935019 413543 252727 842318 396867 754013 293176 391834 577308 731544 669122 914049 374514 509840 889201 329530 124249 066737 510081 490720 385431 571691 033089 435825 331067 612672 904037 509221 (442 digits), a[842] = 51
                                                                                      A[843]/B[843] = 224 875573 134111 922187 256387 924164 580582 562372 256162 316072 581305 049431 046700 680570 229149 111379 770785 827226 388261 568370 016305 139942 183555 871108 399610 294648 649875 859775 388696 348386 570296 260011 991889 972106 210820 584689 073189 573726 970934 587159 121868 430010 289901 869075 281469 799883 117090 377764 393661 620744 106742 088331 242068 161124 639424 213394 440447 987778 864251 704481 081063 138107 766997 027261 727728 781365 722479 644249 797802 471813 757372 428257 422883 409328 (441 digits)/21856 449740 749123 797711 323665 996039 489915 062692 779271 086109 839261 523255 213850 030144 372473 926421 815975 879637 074553 711874 290393 359059 025720 413114 473040 751389 020071 767842 414321 984477 218635 057009 229184 163111 251498 858532 678363 977941 433732 042329 731138 797500 017442 233700 455058 905161 398665 423697 020110 664479 941162 719806 587155 124372 628858 653352 469555 740539 068401 326804 781672 654099 206208 174184 263113 453386 550972 333549 438076 107097 710184 225150 174002 968253 (443 digits), a[843] = 12
                                                                                      A[844]/B[844] = 2717 216485 662378 963698 853079 711010 039080 101175 378669 323579 273056 216005 965416 223189 771456 544644 426799 322914 297442 216357 295613 156097 322399 191845 461274 369077 351058 233289 932240 692186 148189 320938 857128 851781 683938 322670 320687 675283 625767 735362 096405 311747 266159 370631 588048 783733 121725 341688 810495 217672 414056 722488 544484 432631 949649 798139 661644 837975 802426 590058 972180 253254 002196 933485 785095 090357 255470 233101 739053 592863 539422 079214 819175 927515 (442 digits)/264095 849655 473010 947651 154729 951546 244578 504143 560398 958673 382597 056780 011921 251357 268251 035785 398819 316921 731804 567842 965998 293059 732586 835408 635338 755915 630145 050447 885565 619384 934893 930926 827824 382135 646060 871556 197561 116731 006608 360298 430193 842837 493115 445506 093190 886312 719004 497907 494055 816077 690820 391692 339037 884306 123612 571774 303791 800518 195330 431498 269273 178720 598747 156948 667442 931358 997099 574284 290002 720997 853278 314474 992073 128257 (444 digits), a[844] = 12
                                                                                      A[845]/B[845] = 30114 256915 420280 522874 640264 745275 010463 675301 421524 875444 584923 425496 666279 135657 715171 102468 465578 379283 660125 948300 268049 857012 729946 981408 473628 354499 511516 425964 643343 962434 200378 790339 420307 341704 734142 134062 600754 001846 854379 676142 182326 859230 217654 946022 750006 420947 456069 136341 309109 015140 661366 035705 231396 920076 085571 992930 718541 205512 690944 195129 775045 923901 791163 295605 363774 775295 532652 208368 927391 993312 691015 299620 433818 611993 (443 digits)/2 926910 795950 952244 221874 025695 463048 180278 608271 943659 631517 047829 147835 344983 795074 323235 320061 202988 365776 124403 958146 916374 582716 084175 602609 461767 066460 951667 322769 155543 797711 502468 297204 335252 366603 358168 445650 851536 261982 506424 005612 463271 068712 441712 134267 480158 654601 307714 900679 454724 641334 540187 028422 316571 851739 988596 942869 811265 546239 217036 073285 743677 620025 792426 900619 604985 698335 519067 650676 628106 038074 096245 684375 086807 379080 (445 digits), a[845] = 11
                                                                                      A[846]/B[846] = 394202 556386 126025 761069 176521 399585 175107 880093 858492 704358 877060 747462 627044 986740 068680 876734 479318 253601 879079 544260 780261 297262 811709 950155 618442 977571 000771 770830 295712 203830 753113 595351 321124 293943 227786 065484 130489 699292 732703 525210 466654 481740 095673 668927 338132 256050 050624 114125 828912 414501 011815 186656 552644 393621 062085 706239 002680 509640 784701 126746 047777 263977 287319 776355 514167 169199 179948 941897 795149 505928 522620 974280 458817 883424 (444 digits)/38 313936 197017 852185 832013 488770 971172 588200 411678 827974 168395 004375 978639 496710 587323 470310 196581 037668 072011 349056 023752 878867 868368 826869 669331 638310 619908 001820 246446 907634 989634 466981 794583 186105 147979 302250 665017 267532 522503 590120 433260 452717 736099 235373 190983 335253 396129 719298 206740 405476 153426 713251 761182 454471 956925 975372 829081 850243 901628 016799 384212 937082 239055 900296 865003 532257 009720 744979 033080 455381 215961 104472 211351 120569 056297 (446 digits), a[846] = 13
                                                                                      A[847]/B[847] = 1 212721 926073 798357 806082 169828 944030 535787 315582 997002 988521 216105 667884 547414 095877 921213 732671 903533 140089 297364 581082 608833 748801 165076 831875 328957 287212 513831 738455 530480 573926 459719 576393 383680 223534 417500 330514 992223 099725 052490 251773 582290 304450 504675 952804 764403 189097 607941 478718 795846 258643 696811 595674 889330 100939 271829 111647 726582 734435 045047 575367 918377 715833 653122 624671 906276 282893 072499 034062 312840 511098 258878 222461 810272 262265 (445 digits)/117 868719 387004 508801 717914 492008 376565 944879 843308 427582 136702 060957 083753 835115 557044 734165 909804 315992 581810 171572 029405 552978 187822 564784 610604 376698 926184 957128 062109 878448 766614 903413 680953 893567 810541 264920 440702 654133 829493 276785 305393 821424 277010 147831 707217 485918 842990 465609 520900 671153 101614 679942 311969 679987 722517 914715 430115 361997 251123 267434 225924 554924 337193 493317 495630 201756 727497 754004 749917 994249 685957 409662 318428 448514 547971 (447 digits), a[847] = 3
                                                                                      A[848]/B[848] = 4 032368 334607 521099 179315 686008 231676 782469 826842 849501 669922 525377 751116 269287 274373 832322 074750 189917 673869 771173 287508 606762 543666 306940 445781 605314 839208 542266 986196 887153 925610 132272 324531 472164 964546 480287 057029 107158 998467 890174 280531 213525 395091 609701 527341 631341 823342 874448 550282 216451 190432 102249 973681 220634 696438 877573 041182 182428 712945 919843 852849 802910 411478 246687 650371 232996 017878 397446 044084 733671 039223 299255 641665 889634 670219 (445 digits)/391 920094 358031 378590 985756 964796 100870 422839 941604 110720 578501 187247 229901 002057 258457 672807 925993 985645 817441 863772 111969 537802 431836 521223 501144 768407 398462 873204 432776 542981 289479 177222 837444 866808 579603 097011 987125 229934 010983 420476 349441 916990 567129 678868 312635 793009 925101 116126 769442 418935 458270 753078 697091 494435 124479 719519 119427 936235 654997 819102 061986 601855 250636 380249 351894 137527 192214 006993 282834 438130 273833 333459 166636 466112 700210 (447 digits), a[848] = 3
                                                                                      A[849]/B[849] = 17 342195 264503 882754 523344 913861 870737 665666 622954 395009 668211 317616 672349 624563 193373 250502 031672 663203 835568 382057 731117 035883 923466 392838 615001 750216 644046 682899 683243 079096 276366 988808 874519 272340 081720 338648 558631 420859 093596 613187 373898 436391 884816 943482 062171 289770 482469 105735 679847 661651 020372 105811 490399 771868 886694 782121 276376 456297 586218 724422 986767 130019 361746 639873 226156 838260 354406 662283 210401 247524 667991 455900 789125 368810 943141 (446 digits)/1685 549096 819130 023165 660942 351192 780047 636239 609724 870464 450706 809946 003357 843344 590875 425397 613780 258575 851577 626660 477283 704187 915168 649678 615183 450328 520036 449945 793216 050373 924531 612305 030733 360802 128953 652968 389203 573869 873426 958690 703161 489386 545528 863304 957760 657958 543394 930116 598670 346894 934697 692257 100335 657728 220436 792791 907827 106939 871114 543842 473870 962345 339739 014314 903206 751865 496353 781977 881255 746770 781290 743498 984974 312965 348811 (448 digits), a[849] = 4
                                                                                      A[850]/B[850] = 56 058954 128119 169362 749350 427593 843889 779469 695706 034530 674556 478227 768165 142976 854493 583828 169768 179529 180574 917346 480859 714414 314065 485456 290786 855964 771348 590966 035926 124442 754711 098698 948089 289185 209707 496232 732923 369736 279257 729736 402226 522701 049542 440147 713855 500653 270750 191655 589825 201404 251548 419684 444880 536241 356523 223936 870311 551321 471602 093112 813151 192968 496718 166307 328841 747777 081098 384295 675288 476245 043197 666958 009041 996067 499642 (446 digits)/5448 567384 815421 448087 968584 018374 441013 331558 770778 722113 930621 617085 239974 532091 031083 949000 767334 761373 372174 743753 543820 650366 177342 470259 346695 119392 958572 223041 812424 694103 063074 014137 929644 949214 966464 055917 154735 951543 631264 296548 458926 385150 203716 268783 185917 766885 555285 906476 565453 459620 262363 829849 998098 467619 785790 097894 842909 257055 268341 450629 483599 488891 269853 423194 061514 393123 681275 352926 926601 678442 617705 563956 121559 405008 746643 (448 digits), a[850] = 3
                                                                                      A[851]/B[851] = 73 401149 392623 052117 272695 341455 714627 445136 318660 429540 342767 795844 440514 767540 047866 834330 201440 842733 016143 299404 211976 750298 237531 878294 905788 606181 415395 273865 719169 203539 031078 087507 822608 561525 291427 834881 291554 790595 372854 342923 776124 959092 934359 383629 776026 790423 753219 297391 269672 863055 271920 525495 935280 308110 243218 006058 146688 007619 057820 817535 799918 322987 858464 806180 554998 586037 435505 046578 885689 723769 711189 122858 798167 364878 442783 (446 digits)/7134 116481 634551 471253 629526 369567 221060 967798 380503 592578 381328 427031 243332 375435 621959 374398 381115 019949 223752 370414 021104 354554 092511 119937 961878 569721 478608 672987 605640 744476 987605 626442 960378 310017 095417 708885 543939 525413 504691 255239 162087 874536 749245 132088 143678 424844 098680 836593 164123 806515 197061 522107 098434 125348 006226 890686 750736 363995 139455 994471 957470 451236 609592 437508 964721 144989 177629 134904 807857 425213 398996 307455 106533 717974 095454 (448 digits), a[851] = 1
                                                                                      A[852]/B[852] = 496 465850 483857 482066 385522 476328 131654 450287 607668 611772 731163 253294 411253 748217 141694 589809 378413 235927 277434 713771 752720 216203 739256 755225 725518 493053 263720 234160 350941 345676 941179 623745 883740 658336 958274 505520 482252 113308 516383 787279 058976 277258 655698 741926 370016 243195 790065 976003 207862 379735 883071 572660 056562 384902 815831 260285 750439 597035 818526 998327 612661 130895 647507 003390 658833 264001 694128 663768 989426 818863 310332 404110 798046 185338 156340 (447 digits)/48253 266274 622730 275609 745742 235777 767379 138349 053800 277584 218592 179272 699968 784704 762840 195391 054024 881068 714688 966237 670446 777690 732409 189887 117966 537721 830224 260967 446269 160964 988707 772795 691914 809317 538970 309230 418373 104024 659411 827983 431453 632370 699187 061312 047988 315950 147370 926035 550196 298711 444732 962492 588703 219707 823151 442015 347327 441026 105077 417461 228422 196310 927408 048247 849841 263058 747050 162355 773746 229723 011683 408686 760761 712853 319367 (449 digits), a[852] = 6
                                                                                      A[853]/B[853] = 569 866999 876480 534183 658217 817783 846281 895423 926329 041313 073931 049138 851768 515757 189561 424139 579854 078660 293578 013175 964696 966501 976788 633520 631307 099234 679115 508026 070110 549215 972257 711253 706349 219862 249702 340401 773806 903903 889238 130202 835101 236351 590058 125556 146043 033619 543285 273394 477535 242791 154992 098155 991842 693013 059049 266343 897127 604654 876347 815863 412579 453883 505971 809571 213831 850039 129633 710347 875116 542633 021521 526969 596213 550216 599123 (447 digits)/55387 382756 257281 746863 375268 605344 988440 106147 434303 870162 599920 606303 943301 160140 384799 569789 435139 901017 938441 336651 691551 132244 824920 309825 079845 107443 308832 933955 051909 905441 976313 399238 652293 119334 634388 018115 962312 629438 164103 083222 593541 506907 448432 193400 191666 740794 246051 762628 714320 105226 641794 484599 687137 345055 829378 332702 098063 805021 244533 411933 185892 647547 537000 485756 814562 408047 924679 297260 581603 654936 410679 716141 867295 430827 414821 (449 digits), a[853] = 1
                                                                                      A[854]/B[854] = 2775 933849 989779 618801 018393 747463 516782 031983 312984 777025 026887 449849 818327 811245 899940 286367 697829 550568 451746 766475 611508 082211 646411 289308 250746 889991 980182 266264 631383 542540 830210 468760 709137 537785 957083 867127 577479 728924 073336 308090 399381 222665 015931 244150 954188 377673 963207 069581 118003 350900 503039 965284 023933 156955 052028 325661 338950 015655 323918 261781 262978 946429 671394 241675 514160 664158 212663 505160 489892 989395 396418 511989 182900 386204 552832 (448 digits)/269802 797299 651857 263063 246816 657157 721139 562938 791015 758234 618274 604488 473173 425266 302038 474548 794584 485140 468454 312844 436651 306670 032090 429187 437346 967495 065555 996787 653908 782732 893961 369750 301087 286656 076522 381694 267623 621777 315824 160873 805619 660000 492915 834912 814655 279127 131577 976550 407476 719618 011910 900891 337252 599931 140664 772823 739582 661111 083211 065193 971992 786501 075409 991275 108090 895250 445767 351398 100160 849468 654402 273254 229943 436162 978651 (450 digits), a[854] = 4
                                                                                      A[855]/B[855] = 3345 800849 866260 152984 676611 565247 363063 927407 239313 818338 100818 498988 670096 327003 089501 710507 277683 629228 745324 779651 576205 048713 623199 922828 882053 989226 659297 774290 701494 091756 802468 180014 415486 757648 206786 207529 351286 632827 962574 438293 234482 459016 605989 369707 100231 411293 506492 342975 595538 593691 658032 063440 015775 849968 111077 592005 236077 620310 200266 077644 675558 400313 177366 051246 727992 514197 342297 215508 365009 532028 417940 038958 779113 936421 151955 (448 digits)/325190 180055 909139 009926 622085 262502 709579 669086 225319 628397 218195 210792 416474 585406 686838 044338 229724 386158 406895 649496 128202 438914 857010 739012 517192 074938 374388 930742 705818 688174 870274 768988 953380 405990 710910 399810 229936 251215 479927 244096 399161 166907 941348 028313 006322 019921 377629 739179 121796 824844 653705 385491 024389 944986 970043 105525 837646 466132 327744 477127 157885 434048 612410 477031 922653 303298 370446 648658 681764 504405 065081 989396 097238 866990 393472 (450 digits), a[855] = 1
                                                                                      A[856]/B[856] = 9467 535549 722299 924770 371616 877958 242909 886797 791612 413701 228524 447827 158520 465252 078943 707382 253196 809025 942396 325778 763918 179638 892811 134966 014854 868445 298777 814846 034371 726054 435146 828789 540111 053082 370656 282186 280052 994579 998485 184676 868346 140698 227909 983565 154651 200260 976191 755532 309080 538283 819104 092164 055484 856891 274183 509671 811105 256275 724450 417070 614095 747056 026126 344168 970145 692552 897257 936177 219912 053452 232298 589906 741128 259046 856742 (448 digits)/920183 157411 470135 282916 490987 182163 140298 901111 241655 015029 054665 026073 306122 596079 675714 563225 254033 257457 282245 611836 693056 184499 746111 907212 471731 117371 814333 858273 065546 159082 634510 907728 207848 098637 498343 181314 727496 124208 275678 649066 603941 993816 375611 891538 827299 318969 886837 454908 651070 369307 319321 671873 386032 489905 080750 983875 414875 593375 738700 019448 287763 654598 300230 945338 953397 501847 186660 648715 463689 858278 784566 252046 424421 170143 765595 (450 digits), a[856] = 2
                                                                                      A[857]/B[857] = 12813 336399 588560 077755 048228 443205 605973 814205 030926 232039 329342 946815 828616 792255 168445 417889 530880 438254 687721 105430 340123 228352 516011 057794 896908 857671 958075 589136 735865 817811 237615 008803 955597 810730 577442 489715 631339 627407 961059 622970 102828 599714 833899 353272 254882 611554 482684 098507 904619 131975 477136 155604 071260 706859 385261 101677 047182 876585 924716 494715 289654 147369 203492 395415 698138 206750 239555 151685 584921 585480 650238 628865 520242 195468 008697 (449 digits)/1 245373 337467 379274 292843 113072 444665 849878 570197 466974 643426 272860 236865 722597 181486 362552 607563 483757 643615 689141 261332 821258 623414 603122 646224 988923 192310 188722 789015 771364 847257 504785 676717 161228 504628 209253 581124 957432 375423 755605 893163 003103 160724 316959 919851 833621 338891 264467 194087 772867 194151 973027 057364 410422 434892 050794 089401 252522 059508 066444 496575 445649 088646 912641 422370 876050 805145 557107 297374 145454 362683 849648 241442 521660 037134 159067 (451 digits), a[857] = 1
                                                                                      A[858]/B[858] = 47907 544748 487980 158035 516302 207575 060831 329412 884391 109819 216553 288274 644370 842017 584279 961050 845838 123790 005559 642069 784287 864696 440844 308350 705581 441461 173004 582256 241969 179488 147991 855201 406904 485274 102983 751333 174071 876803 881664 053587 176831 939842 729608 043381 919299 034924 424244 051056 022937 934210 250512 558976 269266 977469 429966 814702 952653 886033 498599 901216 483058 189163 636603 530416 064560 312803 615923 391233 974676 809894 183014 476503 301854 845450 882833 (449 digits)/4 656303 169813 607958 161445 830204 516160 689934 611703 642578 945307 873245 736670 473914 140538 763372 385915 705306 188304 349669 395835 156832 054743 555479 845887 438500 694302 380502 225320 379640 700855 148867 937879 691533 612522 126103 924689 599793 250479 542496 328555 613251 475989 326491 651094 328163 335643 680239 037171 969671 951763 238402 843966 617299 794581 233133 252079 172441 771899 938033 509174 624710 920539 038155 212451 581549 917283 857982 540837 900052 946330 333510 976373 989401 281546 242796 (451 digits), a[858] = 3
                                                                                      A[859]/B[859] = 108628 425896 564520 393826 080832 858355 727636 473030 799708 451677 762449 523365 117358 476290 337005 339991 222556 685834 698840 389569 908698 957745 397699 674496 308071 740594 304084 753649 219804 176787 533598 719206 769406 781278 783409 992381 979483 381015 724387 730144 456492 479400 293115 440036 093480 681403 331172 200619 950495 000395 978161 273556 609794 661798 245194 731082 952490 648652 921916 297148 255770 525696 476699 456247 827258 832357 471401 934153 534275 205269 016267 581872 123951 886369 774363 (450 digits)/10 557979 677094 595190 615734 773481 476987 229747 793604 752132 534042 019351 710206 670425 462563 889297 379394 894370 020224 388480 053003 134922 732901 714082 337999 865924 580914 949727 239656 530646 248967 802521 552476 544295 729672 461461 430504 157018 876382 840598 550274 229606 112702 969943 222040 489948 010178 624945 268431 712211 097678 449832 745297 645022 024054 517060 593559 597405 603307 942511 514924 695070 929724 988951 847274 039150 639713 273072 379049 945560 255344 516670 194190 500462 600226 644659 (452 digits), a[859] = 2
                                                                                      A[860]/B[860] = 482421 248334 746061 733339 839633 640997 971377 221536 083224 916530 266351 381735 113804 747178 932301 321015 736064 867128 800921 200349 419083 695678 031643 006335 937868 403838 389343 596853 121185 886638 282386 732028 484531 610389 236623 720861 092005 400866 779214 974165 002801 857443 902069 803526 293221 760537 748932 853535 824917 935794 163157 653202 708445 624662 410745 739034 762616 480645 186265 089809 506140 291949 543401 355407 373595 642233 501531 127848 111777 630970 248084 803991 797662 390929 980285 (450 digits)/46 888221 878191 988720 624384 924130 424109 608925 786122 651109 081475 950652 577497 155615 990794 320561 903495 282786 269201 903589 607847 696522 986350 411809 197886 902199 017962 179411 183946 502225 696726 358954 147785 868716 531211 971949 646706 227868 756010 904890 529652 531675 926801 206264 539256 287955 376358 180020 110898 818516 342477 037733 825157 197387 890799 301375 626317 562064 185131 708079 568873 404994 639438 993962 601547 738152 476136 950272 057037 682293 967708 400191 753135 991251 682452 821432 (452 digits), a[860] = 4
                                                                                      A[861]/B[861] = 3 967998 412574 533014 260544 797901 986339 498654 245319 465507 783919 893260 577246 027796 453721 795415 908117 111075 622865 106209 992365 261368 523169 650843 725183 811018 971301 418833 528474 189291 269893 792692 575434 645659 664392 676399 759270 715526 587949 958107 523464 478907 338951 509673 868246 439254 765705 322635 028906 549838 486749 283422 499178 277359 659097 531160 643361 053422 493814 412037 015624 304892 861292 823910 299506 816023 970225 483650 956938 428496 253031 000946 013806 505251 013809 616643 (451 digits)/385 663754 702630 504955 610814 166524 869864 101154 082585 961005 185849 624572 330183 915353 388918 453792 607357 156660 173839 617196 915784 707106 623705 008555 921095 083516 724612 385016 711228 548451 822778 674154 734763 494027 979368 237058 604153 979968 924470 079722 787494 483013 527112 620059 536090 793591 021044 065106 155622 260341 837494 751703 346555 224125 150448 928065 604100 093919 084361 607148 065911 935028 045236 940652 659655 944370 448808 875248 835351 403911 997011 718204 219278 430476 059849 216115 (453 digits), a[861] = 8
                                                                                      A[862]/B[862] = 20 322413 311207 411133 036063 829143 572695 464648 448133 410763 836129 732654 267965 252787 015787 909380 861601 291442 981454 331971 162175 725926 311526 285861 632254 992963 260345 483511 239224 067642 236107 245849 609201 712829 932352 618622 517214 669638 340616 569752 591487 397338 552201 450439 144758 489495 589064 362107 998068 574110 369540 580270 149094 095243 920150 066548 955840 029728 949717 246450 167931 030604 598413 662952 852941 453715 493360 919785 912540 254258 896125 252814 873024 323917 459978 063500 (452 digits)/1975 206995 391344 513498 678455 756754 773430 114696 199052 456135 010724 073514 228416 732382 935386 589524 940281 066087 138399 989574 186771 232056 104875 454588 803362 319782 641024 104494 740089 244484 810619 729727 821603 338856 428053 157242 667476 127713 378361 303504 467124 946743 562364 306562 219710 255910 481578 505550 889010 120225 529950 796250 557933 318013 643043 941703 646818 031659 606939 743819 898433 080134 865623 697225 899827 460004 720181 326516 233794 701853 952766 991212 849528 143631 981698 902007 (454 digits), a[862] = 5
                                                                                      A[863]/B[863] = 186 869718 213441 233211 585119 260194 140598 680490 278520 162382 309087 487148 988933 302879 595812 979843 662528 734062 455954 093950 451946 794705 326906 223598 415478 747688 314410 770434 681490 798071 394859 005339 058250 061129 055566 244002 414202 742271 653499 085880 846851 054954 308764 563626 171072 844715 067284 581607 011523 716831 812614 505853 841025 134554 940448 130101 245921 320983 041269 630088 527003 580334 247015 790485 975979 899463 410473 761724 169800 716826 318158 276279 871025 420508 153612 188143 (453 digits)/18162 526713 224731 126443 716915 977317 830735 133419 874058 066220 282366 286200 385934 506799 807397 759517 069886 751444 419439 523364 596725 795611 567584 099855 151355 961560 493829 325469 372031 748815 118356 241705 129193 543735 831846 652242 611439 129389 329721 811262 991619 003705 588391 379119 513483 096785 355250 615064 156713 342371 607051 917958 367955 086247 937844 403398 425462 378855 546819 301527 151809 656241 835850 215685 758103 084412 930440 813894 939503 720597 571914 639119 865031 723163 895139 334178 (455 digits), a[863] = 9
                                                                                      A[864]/B[864] = 954 671004 378413 577190 961660 130114 275688 867099 840734 222675 381567 168399 212631 767184 994852 808599 174244 961755 261224 801723 421909 699452 946057 403853 709648 731404 832399 335684 646678 057999 210402 272544 900452 018475 210183 838634 588228 380996 608111 999156 825742 672110 096024 268570 000122 713070 925487 270143 055687 158269 432613 109539 354219 768018 622390 717055 185446 634644 156065 396892 802948 932275 833492 615382 732840 951032 545729 728406 761543 838390 486916 634214 228151 426458 228039 004215 (453 digits)/92787 840561 515000 145717 263035 643343 927105 781795 569342 787236 422555 504516 158089 266381 972375 387110 289714 823309 235597 606397 170400 210113 942795 953864 560142 127585 110170 731841 600247 988560 402400 938253 467571 057535 587286 418455 724671 774660 026970 359819 425219 965271 504321 202159 787125 739837 257831 580871 672576 832083 565210 386042 397708 749253 332265 958695 774129 925937 341036 251455 657481 361344 044874 775654 690342 882069 372385 395990 931313 304841 812340 186812 174686 759451 457395 572897 (455 digits), a[864] = 5
                                                                                      A[865]/B[865] = 2096 211726 970268 387593 508439 520422 691976 414689 959988 607733 072221 823947 414196 837249 585518 597042 011018 657572 978403 697397 295766 193611 219021 031305 834776 210497 979209 441803 974846 914069 815663 550428 859154 098079 475933 921271 590659 504264 869723 084194 498336 399174 500813 100766 171318 270856 918259 121893 122898 033370 677840 724932 549464 670592 185229 564211 616814 590271 353400 423874 132901 444885 914001 021251 441661 801528 501933 218537 692888 393607 291991 544708 327328 273424 609690 196573 (454 digits)/203738 207836 254731 417878 242987 264005 684946 697011 012743 640693 127477 295232 702113 039563 752148 533737 649316 398062 890634 736158 937526 215839 453176 007584 271640 216730 714170 789152 572527 725935 923158 118212 064335 658807 006419 489154 060782 678709 383662 530901 842058 934248 597033 783439 087734 576459 870913 776807 501867 006538 737472 690043 163372 584754 602376 320789 973722 230730 228891 804438 466772 378929 925599 766995 138788 848551 675211 605876 802130 330281 196595 012744 214405 242066 809930 479972 (456 digits), a[865] = 2
                                                                                      A[866]/B[866] = 5147 094458 318950 352377 978539 170959 659641 696479 760711 438141 526010 816294 041025 441684 165890 002683 196282 276901 218032 196518 013442 086675 384099 466465 379201 152400 790818 219292 596371 886138 841729 373402 618760 214634 162051 681177 769547 389526 347558 167545 822415 470459 097650 470102 342759 254784 762005 513929 301483 225010 788294 559404 453149 109202 992849 845478 419075 815186 862866 244641 068751 822047 661494 657885 616164 554089 549596 165482 147320 625605 070899 723630 882807 973307 447419 397361 (454 digits)/500264 256234 024462 981473 749010 171355 296999 175817 594830 068622 677510 094981 562315 345509 476672 454585 588347 619435 016867 078715 045452 641792 849147 969033 103422 561046 538512 310146 745303 440432 248717 174677 596242 375149 600125 396763 846237 132078 794295 421623 109337 833768 698388 769037 962594 892756 999659 134486 676310 845161 040155 766128 724453 918762 537018 600275 721574 387397 798819 860332 591026 119203 896074 309644 967920 579172 722808 607744 535573 965404 205530 212300 603497 243585 077256 532841 (456 digits), a[866] = 2
                                                                                      A[867]/B[867] = 7243 306185 289218 739971 486978 691382 351618 111169 720700 045874 598232 640241 455222 278933 751408 599725 207300 934474 196435 893915 309208 280286 603120 497771 213977 362898 770027 661096 571218 800208 657392 923831 477914 312713 637985 602449 360206 893791 217281 251740 320751 869633 598463 570868 514077 525641 680264 635822 424381 258381 466135 284337 002613 779795 178079 409690 035890 405458 216266 668515 201653 266933 575495 679137 057826 355618 051529 384019 840209 019212 362891 268339 210136 246732 057109 593934 (454 digits)/704002 464070 279194 399351 991997 435360 981945 872828 607573 709315 804987 390214 264428 385073 228820 988323 237664 017497 907501 814873 982978 857632 302323 976617 375062 777777 252683 099299 317831 166368 171875 292889 660578 033956 606544 885917 907019 810788 177957 952524 951396 768017 295422 552477 050329 469216 870572 911294 178177 851699 777628 456171 887826 503517 139394 921065 695296 618128 027711 664771 057798 498133 821674 076640 106709 427724 398020 213621 337704 295685 402125 225044 817902 485651 887187 012813 (456 digits), a[867] = 1
                                                                                      A[868]/B[868] = 41363 625384 765044 052235 413432 627871 417732 252328 364211 667514 517174 017501 317136 836352 922933 001309 232786 949272 200211 666094 559483 488108 399701 955321 449087 966894 640956 524775 452465 887182 128693 992560 008331 778202 351979 693424 570581 858482 433964 426247 426174 818627 089968 324444 913146 882993 163328 693041 423389 516918 118970 981089 466218 008178 883246 893928 598527 842477 944199 587217 077018 156715 538973 053570 905296 332179 807243 085581 348365 721666 885356 065326 933489 206967 732967 367031 (455 digits)/4 020276 576585 420434 978233 708997 348160 206728 539960 632698 615201 702447 046052 884457 270875 620777 396201 776667 706924 554376 153084 960346 929954 360767 852119 978736 449932 801927 806643 334459 272273 108093 639125 899132 544932 632849 826353 381336 186019 684085 184247 866321 673855 175501 531423 214242 238841 352523 690957 567200 103659 928298 046988 163586 436348 233993 205604 198057 478037 937378 184187 880018 609873 004444 692845 501467 717794 712909 675851 224095 443831 216156 337524 693009 671844 513191 596906 (457 digits), a[868] = 5
                                                                                      A[869]/B[869] = 89970 556954 819306 844442 313843 947125 187082 615826 449123 380903 632580 675244 089495 951639 597274 602343 672874 833018 596859 226104 428175 256503 402524 408414 112153 296688 051940 710647 476150 574572 914780 908951 494577 869118 341944 989298 501370 610756 085210 104235 173101 506887 778400 219758 340371 291628 006922 021905 271160 292217 704077 246515 935049 796152 944573 197547 232946 090414 104665 842949 355689 580364 653441 786278 868419 019977 666015 555182 536940 462546 133603 398993 077114 660667 523044 327996 (455 digits)/8 744555 617241 120064 355819 409992 131681 395402 952749 872970 939719 209881 482320 033342 926824 470375 780726 790999 431347 016254 121043 903672 717541 023859 680857 332535 677642 856538 712585 986749 710914 388062 571141 458843 123821 872244 538624 669692 182827 546128 321020 684040 115727 646425 615323 478813 946899 575620 293209 312578 059019 634224 550148 214999 376213 607381 332274 091411 574203 902468 033146 817835 717879 830563 462331 109644 863313 823839 565323 785895 183347 834437 900094 203921 829340 913570 206625 (457 digits), a[869] = 2
                                                                                      A[870]/B[870] = 221304 739294 403657 741120 041120 522121 791897 483981 262458 429321 782335 367989 496128 739632 117482 205996 578536 615309 393930 118303 415834 001115 204750 772149 673394 560270 744837 946070 404767 036327 958255 810462 997487 516439 035869 672021 573323 079994 604384 634717 772377 832402 646768 763961 593889 466249 177172 736851 965710 101353 527125 474121 336317 600484 772393 289023 064420 023306 153531 273115 788397 317444 845856 626128 642134 372135 139274 195946 422246 646759 152562 863313 087718 528302 779056 023023 (456 digits)/21 509387 811067 660563 689872 528981 611522 997534 445460 378640 494640 122210 010692 951143 124524 561528 957655 358666 569618 586884 395172 767692 365036 408487 213834 643807 805218 515005 231815 307958 694101 884218 781408 816818 792576 377338 903602 720720 551674 776341 826289 234401 905310 468352 762070 171870 132640 503764 277376 192356 221699 196747 147284 593585 188775 448755 870152 380880 626445 742314 250481 515690 045632 665571 617507 720757 444422 360588 806498 795885 810526 885032 137713 100853 330526 340332 010156 (458 digits), a[870] = 2
                                                                                      A[871]/B[871] = 311275 296249 222964 585562 354964 469246 978980 099807 711581 810225 414916 043233 585624 691271 714756 808340 251411 448327 990789 344407 844009 257618 607275 180563 785547 856958 796778 656717 880917 610900 873036 719414 492065 385557 377814 661320 074693 690750 689594 738952 945479 339290 425168 983719 934260 757877 184094 758757 236870 393571 231202 720637 271367 396637 716966 486570 297366 113720 258197 116065 144086 897809 499298 412407 510553 392112 805289 751128 959187 109305 286166 262306 164833 188970 302100 351019 (456 digits)/30 253943 428308 780628 045691 938973 743204 392937 398210 251611 434359 332091 493012 984486 051349 031904 738382 149666 000965 603138 516216 671365 082577 432346 894691 976343 482861 371543 944401 294708 405016 272281 352550 275661 916398 249583 442227 390412 734502 322470 147309 918442 021038 114778 377393 650684 079540 079384 570585 504934 280718 830971 697432 808584 564989 056137 202426 472292 200649 644782 283628 333525 763512 496135 079838 830402 307736 184428 371822 581780 993874 719470 037807 304775 159867 253902 216781 (458 digits), a[871] = 1
                                                                                      A[872]/B[872] = 3 645332 998035 856268 182305 945729 683838 560678 581866 089858 341801 346411 843558 938000 343620 979807 097739 344062 546917 292612 906789 699935 834919 884777 758351 314420 986817 509403 169967 094860 756237 561659 724022 410206 757570 191830 946542 394953 678252 189926 763200 172650 564597 323627 584880 870757 802898 202215 083181 571284 430637 070355 401131 321358 963499 659024 641296 335447 274228 993699 549832 373353 193349 338139 162611 258221 685375 997461 458364 973304 849117 300391 748680 900883 606976 102159 884232 (457 digits)/354 302765 522464 247472 192483 857692 786771 319845 825773 146366 272592 775216 433835 780489 689363 912481 079859 004992 580240 221408 073556 152708 273388 164303 055446 383586 116693 601988 620229 549751 149280 879313 659461 849099 872957 122756 768104 015260 631200 323513 446698 337264 136729 730914 913400 329395 007581 376994 553816 746633 309606 337435 819045 488015 403655 066265 096843 576094 833591 834919 370393 184473 444270 123057 495734 855182 829520 389300 896547 195476 743148 799202 553593 453380 089066 133256 394747 (459 digits), a[872] = 11
                                                                                      A[873]/B[873] = 3 956608 294285 079232 767868 300694 153085 539658 681673 801440 152026 761327 886792 523625 034892 694563 906079 595473 995245 283402 251197 543945 092538 492052 938915 099968 843776 306181 826684 975778 367138 434696 443436 902272 143127 569645 607862 469647 369002 879521 502153 118129 903887 748796 568600 805018 560775 386309 841938 808154 824208 301558 121768 592726 360137 375991 127866 632813 387949 251896 665897 517440 091158 837437 575018 768775 077488 802751 209493 932491 958422 586558 010987 065716 795946 404260 235251 (457 digits)/384 556708 950773 028100 238175 796666 529975 712783 223983 397977 706952 107307 926848 764975 740712 944385 818241 154658 581205 824546 589772 824073 355965 596649 950138 359929 599554 973532 564630 844459 554297 151595 012012 124761 789355 372340 210331 405673 365702 645983 594008 255706 157767 845693 290793 980079 087121 456379 124402 251567 590325 168407 516478 296599 968644 122402 299270 048387 034241 479701 654021 517999 207782 619192 575573 685585 137256 573729 268369 777257 737023 518672 591400 758155 248933 387158 611528 (459 digits), a[873] = 1
                                                                                      A[874]/B[874] = 11 558549 586606 014733 718042 547117 990009 639995 945213 692738 645854 869067 617143 985250 413406 368934 909898 535010 537407 859417 409184 787826 019996 868883 636181 514358 674370 121766 823337 046417 490514 431052 610896 214751 043825 331122 162267 334248 416257 948969 767506 408910 372372 821220 722082 480794 924448 974834 767059 187594 079053 673471 644668 506811 683774 411006 897029 601074 050127 497492 881627 408233 375667 013014 312648 795771 840353 602963 877352 838288 765962 473507 770655 032317 198868 910680 354734 (458 digits)/1123 416183 424010 303672 668835 451025 846722 745412 273739 942321 686496 989832 287533 310441 170789 801252 716341 314309 742651 870501 253101 800854 985319 357602 955723 103445 315803 549053 749491 238670 257875 182503 683486 098623 451667 867437 188766 826607 362605 615480 634714 848676 452265 422301 494988 289553 181824 289752 802621 249768 490256 674250 852002 081215 340943 311069 695383 672868 902074 794322 678436 220471 859835 361442 646882 226353 104033 536759 433286 749992 217195 836547 736394 969690 586932 907573 617803 (460 digits), a[874] = 2
                                                                                      A[875]/B[875] = 27 073707 467497 108700 203953 394930 133104 819650 572101 186917 443736 499463 121080 494125 861705 432433 725876 665495 070061 002237 069567 119597 132532 229820 211278 128686 192516 549715 473359 068613 348167 296801 665229 331774 230778 231889 932397 138144 201518 777461 037165 935950 648633 391238 012765 766608 409673 335979 376057 183342 982315 648501 411105 606349 727686 198004 921925 834961 488204 246882 429152 333906 842492 863466 200316 360318 758196 008678 964199 609069 490347 533573 552297 130351 193684 225620 944719 (458 digits)/2631 389075 798793 635445 575846 698718 223421 203607 771463 282621 079946 086972 501915 385858 082292 546891 250923 783278 066509 565549 095976 425783 326604 311855 861584 566820 231162 071640 063613 321800 070047 516602 378984 322008 692691 107214 587865 058888 090913 876944 863437 953059 062298 690296 280770 559185 450770 035884 729644 751104 570838 516909 220482 459030 650530 744541 690037 394124 838391 068347 010893 958942 927453 342077 869338 138291 345323 647248 134943 277242 171415 191768 064190 697536 422799 202305 847134 (460 digits), a[875] = 2
                                                                                      A[876]/B[876] = 255 221916 794079 993035 553623 101489 187953 016851 094124 374995 639483 364235 706868 432383 168755 260838 442788 524466 167956 879551 035288 864200 212786 937265 537684 672534 407019 069206 083568 663937 624020 102267 597960 200719 120829 418131 553841 577546 229926 946119 101999 832466 210073 342362 836974 380270 611508 998649 151573 837680 919894 509984 344618 963959 232950 193051 194362 115727 443965 719434 743998 413394 958102 784210 115496 038640 664117 681074 555149 319914 179090 275669 741329 205477 942026 941268 857205 (459 digits)/24805 917865 613153 022682 851455 739489 857513 577882 216909 485911 406011 772584 804771 783163 911422 723273 974655 363812 341237 960443 116889 632904 924758 164305 709984 204827 396262 193814 322011 134870 888302 831925 094344 996701 685887 832368 479552 356600 180830 507984 405656 426208 012953 634968 021923 322222 238754 612715 369424 009709 627803 326433 836344 212491 195720 011944 905720 219992 447594 409445 776481 850958 206915 440143 470925 470975 211946 361992 647776 245171 759932 562460 314111 247518 392125 728326 242009 (461 digits), a[876] = 9
                                                                                      A[877]/B[877] = 1047 961374 643817 080842 418445 800886 884916 887054 948598 686900 001669 956405 948554 223658 536726 475787 497030 763359 741888 520441 210722 576397 983679 978882 362016 818823 820592 826539 807633 724363 844247 705872 057070 134650 714095 904416 147763 448329 121226 561937 445165 265815 488926 760689 360663 287690 855709 330575 982352 534066 661893 688438 789581 462186 659486 970209 699374 297871 264067 124621 405145 987486 674904 000306 662300 514881 414666 732977 184796 888726 206708 636252 517613 952262 961791 990696 373539 (460 digits)/101855 060538 251405 726176 981669 656677 653475 515136 639101 226266 703993 177311 721002 518513 727983 439987 149545 238527 431461 407321 563534 957403 025636 969078 701521 386129 816210 846897 351657 861283 623258 844302 756364 308815 436242 436688 506074 485288 814235 908882 486063 657891 114113 230168 368463 848074 405788 486746 207340 789943 082051 822644 565859 308995 433410 792321 312918 274094 628768 706130 116821 362775 755115 102651 753040 022192 193109 095218 726048 257929 211145 441609 320635 687609 991302 115610 815170 (462 digits), a[877] = 4
                                                                                      A[878]/B[878] = 1303 183291 437897 073877 972068 902376 072869 903906 042723 061895 641153 320641 655422 656041 705481 736625 939819 287825 909845 399992 246011 440598 196466 916147 899701 491358 227611 895745 891202 388301 468267 808139 655030 335369 834925 322547 701605 025875 351153 508056 547165 098281 699000 103052 197637 667961 467218 329225 133926 371747 581788 198423 134200 426145 892437 163260 893736 413598 708032 844056 149144 400881 633006 784516 777796 553522 078784 414051 739946 208640 385798 911922 258943 157740 903818 931965 230744 (460 digits)/126660 978403 864558 748859 833125 396167 510989 093018 856010 712178 110004 949896 525774 301677 639406 163261 124200 602339 772699 367764 680424 590307 950395 133384 411505 590957 212473 040711 673668 996154 511561 676227 850709 305517 122130 269056 985626 841888 995066 416866 891720 084099 127066 865136 390387 170296 644543 099461 576764 799652 709855 149078 402203 521486 629130 804266 218638 494087 076363 115575 893303 213733 962030 542795 223965 493167 405055 457211 373824 503100 971078 004069 634746 935128 383427 843937 057179 (462 digits), a[878] = 1
                                                                                      A[879]/B[879] = 6260 694540 395405 376354 306721 410391 176396 502679 119490 934482 566283 238972 570244 847825 358653 422291 256307 914663 381270 120410 194768 338790 769547 643473 960822 784256 731040 409523 372443 277569 717318 938430 677191 476130 053797 194606 954183 551830 525840 594163 633825 658942 284927 172898 151213 959536 724582 647476 518058 021056 989046 482131 326383 166770 229235 623253 274319 952266 096198 500846 001723 591013 206931 138373 773486 728969 729804 389184 144581 723287 749904 283941 553386 583226 577067 718557 296515 (460 digits)/608498 974153 709640 721616 314171 241347 697431 887212 063144 074979 144012 976897 824099 725224 285608 093031 646347 647886 522258 878380 285233 318634 827217 502616 347543 749958 666103 009744 046333 845901 669505 549214 159201 530883 924763 512916 448581 852844 794501 576350 052943 994287 622380 690713 930012 529260 983960 884592 514399 988553 921472 418958 174673 394941 949934 009386 187472 250442 934221 168433 690034 217711 603237 273832 648901 994861 813330 924064 221346 270333 095457 457887 859623 428123 525013 491359 043886 (462 digits), a[879] = 4
                                                                                      A[880]/B[880] = 7563 877831 833302 450232 278790 312767 249266 406585 162213 996378 207436 559614 225667 503867 064135 158917 196127 202489 291115 520402 440779 779388 966014 559621 860524 275614 958652 305269 263645 665871 185586 746570 332221 811499 888722 517154 655788 577705 876994 102220 180990 757223 983927 275950 348851 627498 191800 976701 651984 392804 570834 680554 460583 592916 121672 786514 168056 365864 804231 344902 150867 991894 839937 922890 551283 282491 808588 803235 884527 931928 135703 195863 812329 740967 480886 650522 527259 (460 digits)/735159 952557 574199 470476 147296 637515 208420 980230 919154 787157 254017 926794 349874 026901 925014 256292 770548 250226 294958 246144 965657 908942 777612 636000 759049 340915 878576 050455 720002 842056 181067 225442 009910 836401 046893 781973 434208 694733 789567 993216 944664 078386 749447 555850 320399 699557 628503 984054 091164 788206 631327 568036 576876 916428 579064 813652 406110 744530 010584 284009 583337 431445 565267 816627 872867 488029 218386 381275 595170 773434 066535 461957 494370 363251 908441 335296 101065 (462 digits), a[880] = 1
                                                                                      A[881]/B[881] = 44080 083699 561917 627515 700672 974227 422728 535604 930560 916373 603466 037043 698582 367160 679329 216877 236943 927109 836847 722422 398667 235735 599620 441583 263444 162331 524301 935869 690671 606925 645252 671282 338300 533629 497409 780380 233126 440359 910811 105264 538779 445062 204563 552649 895472 097027 683587 530984 777979 985079 843219 884903 629301 131350 837599 555824 114601 781590 117355 225356 756063 550487 406620 752826 529903 141428 772748 405363 567221 382928 428420 263260 615035 288063 981500 971169 932810 (461 digits)/4 284298 736941 580638 073997 050654 428923 739536 788366 658918 010765 414102 610869 573469 859733 910679 374495 499088 899017 997050 109105 113522 863348 715280 682620 142790 454538 058983 262022 646348 056182 574841 676424 208755 712889 159232 422783 619625 326513 742341 542434 776264 386221 369618 469965 532011 027049 126480 804862 970223 929587 078110 259141 059057 977084 845258 077648 218025 973092 987142 588481 606721 374939 429576 356972 013239 435007 905262 830442 197200 137503 428134 767675 331475 244383 067220 167839 549211 (463 digits), a[881] = 5
                                                                                      A[882]/B[882] = 448364 714827 452478 725389 285520 055041 476551 762634 467823 160114 242096 930051 211491 175473 857427 327689 565566 473587 659592 744626 427452 136744 962218 975454 494965 898930 201671 663966 170361 735127 638113 459393 715227 147794 862820 320956 987052 981304 985105 154865 568785 207846 029562 802449 303572 597775 027676 286549 431784 243603 003033 529590 753594 906424 497668 344755 314074 181765 977783 598469 711503 496768 906145 451155 850314 696779 536072 856871 556741 761212 419905 828469 962682 621607 295896 362221 855359 (462 digits)/43 578147 321973 380580 210446 653840 926752 603788 863897 508334 894811 395044 035490 084572 624241 031808 001247 761437 240406 265459 337196 100886 542429 930419 462202 186953 886296 468408 670682 183483 403881 929483 989684 097467 965292 639218 009809 630461 959871 212983 417564 707307 940600 445632 255505 640509 970048 893312 032683 793404 084077 412430 159447 167456 687277 031645 590134 586370 475459 882010 168825 650551 180839 861031 386348 005261 838108 271014 685697 567172 148468 347883 138710 809122 807082 580643 013691 593175 (464 digits), a[882] = 10
                                                                                      A[883]/B[883] = 492444 798527 014396 352904 986193 029268 899280 298239 398384 076487 845562 967094 910073 542634 536756 544566 802510 400697 496440 467048 826119 372480 561839 417037 758410 061261 725973 599835 861033 342053 283366 130676 053527 681424 360230 101337 220179 421664 895916 260130 107564 652908 234126 355099 199044 694802 711263 817534 209764 228682 846253 414494 382896 037775 335267 900579 428675 963356 095138 823826 467567 047256 312766 203982 380217 838208 308821 262235 123963 144140 848326 091730 577717 909671 277397 333391 788169 (462 digits)/47 862446 058914 961218 284443 704495 355676 343325 652264 167252 905576 809146 646359 658042 483974 942487 375743 260526 139424 262509 446301 214409 405778 645700 144822 329744 340834 527391 932704 829831 460064 504325 666108 306223 678181 798450 432593 250087 286384 955324 959999 483572 326821 815250 725471 172520 997098 019792 837546 763628 013664 490540 418588 226514 664361 876903 667782 804396 448552 869152 757307 257272 555779 290607 743320 018501 273116 176277 516139 764372 285971 776017 906386 140598 051465 647863 181531 142386 (464 digits), a[883] = 1
                                                                                      A[884]/B[884] = 940809 513354 466875 078294 271713 084310 375832 060873 866207 236602 087659 897146 121564 718108 394183 872256 368076 874285 156033 211675 253571 509225 524058 392492 253375 960191 927645 263802 031395 077180 921479 590069 768754 829219 223050 422294 207232 402969 881021 414995 676349 860754 263689 157548 502617 292577 738940 104083 641548 472285 849286 944085 136490 944199 832936 245334 742750 145122 072922 422296 179070 544025 218911 655138 230532 534987 844894 119106 680704 905353 268231 920200 540400 531278 573293 695613 643528 (462 digits)/91 440593 380888 341798 494890 358336 282428 947114 516161 675587 800388 204190 681849 742615 108215 974295 376991 021963 379830 527968 783497 315295 948208 576119 607024 516698 227130 995800 603387 013314 863946 433809 655792 403691 643474 437668 442402 880549 246256 168308 377564 190880 267422 260882 980976 813030 967146 913104 870230 557032 097741 902970 578035 393971 351638 908549 257917 390766 924012 751162 926132 907823 736619 151639 129668 023763 111224 447292 201837 331544 434440 123901 045096 949720 858548 228506 195222 735561 (464 digits), a[884] = 1
                                                                                      A[885]/B[885] = 2 374063 825235 948146 509493 529619 197889 650944 419987 130798 549692 020882 761387 153202 978851 325124 289079 538664 149267 808506 890399 333262 390931 609956 202022 265161 981645 581264 127439 923823 496415 126325 310815 591037 339862 806330 945925 634644 227604 657959 090121 460264 374416 761504 670196 204279 279958 189144 025701 492861 173254 544827 302664 655877 926175 001140 391248 914176 253600 240983 668418 825708 135306 750589 514258 841282 908183 998609 500448 485372 954847 384789 932131 658518 972228 423984 724619 075225 (463 digits)/230 743632 820691 644815 274224 421167 920534 237554 684587 518428 506353 217528 010059 143272 700406 891078 129725 304452 899085 318447 013295 845001 302195 797939 358871 363140 795096 518993 139478 856461 187957 371944 977693 113606 965130 673787 317399 011185 778897 291941 715127 865332 861666 337016 687424 798582 931391 846002 578007 877692 209148 296481 574659 014457 367639 694002 183617 585930 296578 371478 609573 072920 029017 593886 002656 066027 495565 070861 919814 427461 154852 023819 996580 040039 768562 104875 571976 613508 (465 digits), a[885] = 2
                                                                                      A[886]/B[886] = 3 314873 338590 415021 587787 801332 282200 026776 480860 997005 786294 108542 658533 274767 696959 719308 161335 906741 023552 964540 102074 586833 900157 134014 594514 518537 941837 508909 391241 955218 573596 047804 900885 359792 169082 029381 368219 841876 630574 538980 505117 136614 235171 025193 827744 706896 572535 928084 129785 134409 645540 394114 246749 792368 870374 834076 636583 656926 398722 313906 090715 004778 679331 969501 169397 071815 443171 843503 619555 166077 860200 653021 852332 198919 503506 997278 420232 718753 (463 digits)/322 184226 201579 986613 769114 779504 202963 184669 200749 194016 306741 421718 691908 885887 808622 865373 506716 326416 278915 846415 796793 160297 250404 374058 965895 879839 022227 514793 742865 869776 051903 805754 633485 517298 608605 111455 759801 891735 025153 460250 092692 056213 129088 597899 668401 611613 898538 759107 448238 434724 306890 199452 152694 408428 719278 602551 441534 976697 220591 122641 535705 980743 765636 745525 132324 089790 606789 518154 121651 759005 589292 147721 041676 989760 627110 333381 767199 349069 (465 digits), a[886] = 1
                                                                                      A[887]/B[887] = 9 003810 502416 778189 685069 132283 762289 704497 381709 124810 122280 237968 078453 702738 372770 763740 611751 352146 196373 737587 094548 506930 191245 877985 391051 302237 865320 599082 909923 834260 643607 221935 112586 310621 678026 865093 682365 318397 488753 735920 100355 733492 844758 811892 325685 618072 425030 045312 285271 761680 464335 333055 796164 240615 666924 669293 664416 228029 051044 868795 849848 835265 493970 689591 853052 984913 794527 685616 739558 817528 675248 690833 636796 056357 979242 418541 565084 512731 (463 digits)/875 112085 223851 618042 812453 980176 326460 606893 086085 906461 119836 060965 393876 915048 317652 621825 143157 957285 456917 011278 606882 165595 803004 546057 290663 122818 839551 548580 625210 596013 291764 983454 244664 148204 182340 896698 837002 794655 829204 212441 900511 977759 119843 532816 024228 021810 728469 364217 474484 747140 822928 695385 880047 831314 806196 899105 066687 539324 737760 616761 680985 034407 560291 084936 267304 245608 709144 107170 163117 945472 333436 319262 079934 019561 022782 771639 106375 311646 (465 digits), a[887] = 2
                                                                                      A[888]/B[888] = 93 352978 362758 196918 438479 124169 905097 071750 297952 245107 009096 488223 443070 302151 424667 356714 278849 428202 987290 340411 047559 656135 812615 913868 505027 540916 595043 499738 490480 297825 009668 267156 026748 466008 949350 680318 191873 025851 518111 898181 508674 471542 682759 144117 084600 887620 822836 381206 982502 751214 288893 724672 208392 198525 539621 527013 280745 937216 909171 001864 589203 357433 619038 865419 699926 920953 388448 699671 015143 341364 612687 561358 220292 762499 295931 182694 071077 846063 (464 digits)/9073 305078 440096 167041 893654 581267 467569 253600 061608 258627 505102 031372 630678 036370 985149 083624 938295 899270 848085 959201 865614 816255 280449 834631 872527 108027 417743 000599 994971 829908 969553 640297 080126 999340 432014 078444 129829 838293 317195 584669 097811 833804 327523 926059 910681 829721 183232 401282 193085 906132 536177 153310 953172 721576 781247 593602 108410 369944 598197 290258 345556 324819 368547 594887 805366 545877 698230 589855 752831 213728 923655 340341 841017 185370 854938 049772 830952 465529 (466 digits), a[888] = 10
                                                                                      A[889]/B[889] = 195 709767 227933 172026 562027 380623 572483 847997 977613 615024 140473 214414 964594 307041 222105 477169 169450 208552 170954 418409 189667 819201 816477 705722 401106 384071 055407 598559 890884 429910 662943 756247 166083 242639 576728 225730 066111 370100 524977 532283 117704 676578 210277 100126 494887 393314 070702 807726 250277 264109 042122 782400 212948 637666 746167 723320 225908 102462 869386 872525 028255 550132 732048 420431 252906 826820 571425 084958 769845 500257 900623 813550 077381 581356 571104 783929 707240 204857 (465 digits)/19021 722242 104043 952126 599763 142711 261599 114093 209302 423716 130040 123710 655232 987790 287950 789075 019749 755827 153088 929682 338111 798106 363904 215321 035717 338873 675037 549780 615154 255831 230872 264048 404918 146885 046369 053587 096662 471242 463595 381780 096135 645367 774891 384935 845591 681253 094934 166781 860656 559405 895283 002007 786393 274468 368692 086309 283508 279213 934155 197278 372097 684046 297386 274711 878037 337364 105605 286881 668780 372930 180746 999945 761968 390302 732658 871184 768280 242704 (467 digits), a[889] = 2
                                                                                      A[890]/B[890] = 3028 999486 781755 777316 868889 833523 492354 791719 962156 470469 116194 704447 911984 907769 756249 514251 820602 556485 551606 616548 892576 944163 059781 499704 521623 301982 426157 478136 853746 746484 953824 610863 517997 105602 600274 066269 183543 577359 392774 882428 274244 620215 836915 646014 507911 787331 883378 497100 736661 712849 920735 460675 402621 763526 732137 376816 669367 474159 949974 089740 013036 609424 599765 171888 493529 323261 959824 974052 562825 845233 122044 764609 381016 482847 862502 941639 679680 918918 (466 digits)/294399 138710 000755 448940 890101 721936 391555 964998 201144 614369 455703 887032 459172 853225 304410 919750 234542 236678 144419 904436 937291 787850 739013 064447 408287 191132 543306 247309 222285 667377 432637 601023 153899 202616 127549 882250 579766 906930 271126 311370 539846 514320 950894 700097 594557 048517 607244 903010 102934 297220 965422 183427 749071 838602 311628 888241 361034 558153 610525 249433 927021 585513 829341 715565 975926 606339 282309 893080 784536 807681 634860 339528 270543 039911 844821 117544 355156 106089 (468 digits), a[890] = 15
                                                                                      A[891]/B[891] = 15340 707201 136712 058610 906476 548241 034257 806597 788395 967369 721446 736654 524518 845890 003353 048428 272462 990979 928987 501153 652552 540017 115385 204245 009222 893983 186194 989244 159618 162335 432066 810564 756068 770652 578098 557075 983829 256897 488851 944424 488927 777657 394855 330199 034446 329973 487595 293229 933585 828358 645800 085777 226057 455300 406854 607403 572745 473262 619257 321225 093438 597255 730874 279873 720553 443130 370549 955221 583974 726423 510847 636596 982463 995595 883619 492128 105644 799447 (467 digits)/1 491017 415792 107821 196831 050271 752393 219378 939084 215025 495563 408559 558872 951097 253916 810005 387826 192460 939217 875188 451867 024570 737360 058969 537558 077153 294536 391568 786326 726582 592718 394060 269164 174414 159965 684118 464839 995497 005893 819226 938632 795368 216972 529364 885423 818376 923841 131158 681832 375328 045510 722393 919146 531752 467479 926836 527516 088681 069981 986781 444448 007205 611615 444094 852541 757670 369060 517154 752285 591464 411338 355048 697587 114683 589861 956764 458906 544060 773149 (469 digits), a[891] = 5
                                                                                      A[892]/B[892] = 386546 679515 199557 242589 530803 539549 348799 956664 672055 654712 152363 120811 024956 055019 840075 724958 632177 330983 776294 145390 206390 444590 944411 605829 752195 651562 081032 209240 844200 804870 755494 874982 419716 371917 052737 993168 779274 999796 614073 493040 497439 061650 708298 900990 369070 036669 073260 827849 076307 421816 065737 605106 054058 146036 903502 561905 988004 305725 431407 120367 349001 540817 871622 168731 507365 401521 223573 854592 162194 005820 893235 679533 942616 372744 952990 244842 320800 905093 (468 digits)/37 569834 533512 696285 369717 146895 531766 876029 442103 576782 003454 669692 858856 236604 201145 554545 615405 046065 717125 024131 201112 551560 221852 213251 503399 337119 554542 332525 905477 386850 485337 284144 330127 514253 201758 230511 503250 467192 054275 751799 777190 424051 938634 185016 835693 053980 144545 886211 948819 486135 434989 025270 162091 042883 525600 482542 076143 578061 307703 280061 360634 107161 875899 931713 029109 917685 832852 211178 700220 571147 091140 511077 779206 137632 786460 763932 590207 956675 434814 (470 digits), a[892] = 25
                                                                                      A[893]/B[893] = 401887 386716 336269 301200 437280 087790 383057 763262 460451 622081 873809 857465 549474 900909 843428 773386 904640 321963 705281 646543 858942 984608 059796 810074 761418 545545 267227 198485 003818 967206 187561 685547 175785 142569 630836 550244 763104 256694 102925 437464 986366 839308 103154 231189 403516 366642 560856 121079 009893 250174 711537 690883 280115 601337 310357 169309 560749 778988 050664 441592 442440 138073 602496 448605 227918 844651 594123 809813 746168 732244 404083 316130 925080 368340 836609 736970 426445 704540 (468 digits)/39 060851 949304 804106 566548 197167 284160 095408 381187 791807 499018 078252 417729 187701 455062 364551 003231 238526 656342 899319 652979 576130 959212 272221 040957 414272 849078 724094 691804 113433 078055 678204 599291 688667 361723 914629 968090 462689 060169 571026 715823 219420 155606 714381 721116 872357 068387 017370 630651 861463 480499 747664 081237 574635 993080 409378 603659 666742 377685 266842 805082 114367 487515 375807 881651 675356 201912 728333 452506 162611 502478 866126 476793 252316 376322 720697 049114 500736 207963 (470 digits), a[893] = 1
                                                                                      A[894]/B[894] = 1 190321 452947 872095 844990 405363 715130 114915 483189 592958 898875 899982 835742 123905 856839 526933 271732 441457 974911 186857 438477 924276 413807 064005 225979 275032 742652 615486 606210 851838 739283 130618 246076 771286 657056 314411 093658 305483 513184 819924 367970 470172 740266 914607 363369 176102 769954 194973 070007 096093 922165 488812 986872 614289 348711 524216 900525 109503 863701 532736 003552 233881 816965 076615 065941 963203 090824 411821 474219 654531 470309 701402 311795 792777 109426 626209 718783 173692 314173 (469 digits)/115 691538 432122 304498 502813 541230 100087 066846 204479 160397 001490 826197 694314 612007 111270 283647 621867 523119 029810 822770 507071 703822 140276 757693 585314 165665 252699 780715 289085 613716 641448 640553 528710 891587 925206 059771 439431 392570 174614 893853 208836 862892 249847 613780 277926 798694 281319 920953 210123 209062 395988 520598 324566 192155 511761 301299 283462 911546 063073 813746 970798 335896 850930 683328 792413 268398 236677 667845 605232 896370 096098 243330 732792 642265 539106 205326 688436 958147 850740 (471 digits), a[894] = 2
                                                                                      A[895]/B[895] = 1 592208 839664 208365 146190 842643 802920 497973 246452 053410 520957 773792 693207 673380 757749 370362 045119 346098 296874 892139 085021 783219 398415 123802 036054 036451 288197 882713 804695 855657 706489 318179 931623 947071 799625 945247 643903 068587 769878 922849 805435 456539 579575 017761 594558 579619 136596 755829 191086 105987 172340 200350 677755 894404 950048 834574 069834 670253 642689 583400 445144 676321 955038 679111 514547 191121 935476 005945 284033 400700 202554 105485 627926 717857 477767 462819 455753 600138 018713 (469 digits)/154 752390 381427 108605 069361 738397 384247 162254 585666 952204 500508 904450 112043 799708 566332 648198 625098 761645 686153 722090 160051 279953 099489 029914 626271 579938 101778 504809 980889 727149 719504 318758 128002 580255 286929 974401 407521 855259 234784 464879 924660 082312 405454 328161 999043 671051 349706 938323 840775 070525 876488 268262 405803 766791 504841 710677 887122 578288 440759 080589 775880 450264 338446 059136 674064 943754 438590 396179 057739 058981 598577 109457 209585 894581 915428 926023 737551 458884 058703 (471 digits), a[895] = 1
                                                                                      A[896]/B[896] = 15 520201 009925 747382 160707 989157 941414 596674 701258 073653 587495 864117 074611 184332 676583 860191 677806 556342 646785 216109 203673 973250 999543 178223 550465 603094 336433 559910 848473 552758 097686 994237 630692 294932 853689 821639 888785 922773 442095 125572 616889 579028 956442 074461 714396 392674 999324 997435 789782 049978 473227 291969 086675 663933 899151 035383 529037 141786 647907 783340 009854 320779 412313 188618 696866 683300 510108 465329 030520 260833 293296 650772 963136 253494 409333 791584 820565 574934 482590 (470 digits)/1508 463051 864966 281944 127069 186806 558311 527137 475481 730237 506070 966248 702708 809384 208264 117435 247756 377930 205194 321581 947533 223400 035678 026925 221758 385108 168706 324005 117093 158064 116987 509376 680734 113885 507575 829384 107128 089903 287675 077772 530777 603703 898936 567238 269319 838156 428682 365867 777098 843795 284382 934959 976800 093279 055336 697400 267566 116142 029905 539054 953722 388275 896945 215558 858997 762188 183991 233457 124884 427204 483292 228445 619065 693502 777966 539540 326400 088104 379067 (472 digits), a[896] = 9
                                                                                      A[897]/B[897] = 17 112409 849589 955747 306898 831801 744335 094647 947710 127064 108453 637909 767818 857713 434333 230553 722925 902440 943660 108248 288695 756470 397958 302025 586519 639545 624631 442624 653169 408415 804176 312417 562316 242004 653315 766887 532688 991361 211974 048422 422325 035568 536017 092223 308954 972294 135921 753264 980868 155965 645567 492319 764431 558338 849199 869957 598871 812040 290597 366740 454998 997101 367351 867730 211413 874422 445584 471274 314553 661533 495850 756258 591062 971351 887101 254404 276319 175072 501303 (470 digits)/1663 215442 246393 390549 196430 925203 942558 689392 061148 682442 006579 870698 814752 609092 774596 765633 872855 139575 891348 043672 107584 503353 135167 056839 848029 965046 270484 828815 097982 885213 836491 828134 808736 694140 794505 803785 514649 945162 522459 542652 455437 686016 304390 895400 268363 509207 778389 304191 617873 914321 160871 203222 382603 860070 560178 408078 154688 694430 470664 619644 729602 838540 235391 274695 533062 705942 622581 629636 182623 486186 081869 337902 828651 588084 693395 465564 063951 546988 437770 (472 digits), a[897] = 1
                                                                                      A[898]/B[898] = 66 857430 558695 614624 081404 484563 174419 880618 544388 454845 912856 777846 378067 757472 979583 551852 846584 263665 477765 540854 069761 242662 193418 084300 310024 521731 210327 887784 807981 778005 510215 931490 317641 020946 813637 122302 486852 896857 078017 270839 883864 685734 564493 351131 641261 309557 407090 257230 732386 517875 409929 768928 379970 338950 446750 645256 325652 577907 519699 883561 374851 312083 514368 791809 331108 306567 846861 879151 974181 245433 780848 919548 736325 167550 070637 554797 649523 100151 986499 (470 digits)/6498 109378 604146 453591 716361 962418 385987 595313 658927 777563 525810 578345 146966 636662 532054 414336 866321 796657 879238 452598 270286 733459 441179 197444 765848 280246 980160 810450 411041 813705 626462 993781 106944 196307 891093 240740 651077 925390 855053 705729 897090 661752 812109 253439 074410 365779 763850 278442 630720 586758 766996 544627 124611 673490 735871 921634 731632 199433 441899 397989 142530 903896 603119 039645 458185 880016 051736 122365 672754 885762 728900 242154 105020 457756 858152 936232 518254 729069 692377 (472 digits), a[898] = 3
                                                                                      A[899]/B[899] = 6368 568312 925673 345035 040324 865303 314223 753409 664613 337425 829847 533315 684255 817646 494770 656574 148430 950661 331386 489384 916013 809378 772676 310555 038849 204010 605780 782181 411438 318939 274689 803997 738213 231951 948842 385623 783714 192783 623614 778211 389470 180352 162885 449729 228779 380247 809496 190184 557587 354129 588895 540515 861613 758631 290511 169308 535866 713254 662086 305071 065873 645035 232387 089616 666702 998367 897462 990711 861771 977742 676498 113388 541953 888608 597668 960180 981013 689511 218708 (472 digits)/618983 606409 640306 481762 250817 354950 611380 244189 659287 550976 958584 813487 776583 092033 319766 127636 173425 822074 419001 040507 784824 182000 047190 814092 603616 588509 385761 821604 146955 187248 350476 237339 968435 343390 448363 674147 367052 857293 752561 586992 679050 552533 454769 972112 337348 258285 344165 756241 536329 656404 025542 942799 220712 841690 468010 963377 659747 640607 451107 428613 270038 708717 531700 041014 060721 307467 537513 254375 094337 633645 327392 342542 805595 074986 217924 407653 298150 808609 213585 (474 digits), a[899] = 95
                                                                                      A[900]/B[900] = 6435 425743 484368 959659 121729 349866 488643 634028 209001 792271 742704 311162 062323 575119 474354 208426 995015 214326 809152 030238 985775 052040 966094 394855 348873 725741 816108 669966 219420 096944 784905 735488 055854 252898 762479 507926 270567 089640 701632 049051 273334 866086 727378 800860 870040 689805 216586 447415 289973 872004 998825 309444 241584 097581 737261 814564 861519 291162 181786 188632 440724 957118 746755 881425 997811 304935 744324 869863 835953 223176 457347 032937 278279 056158 668306 514978 630536 789663 205207 (472 digits)/625481 715788 244452 935353 967179 317368 997367 839503 318215 328540 484395 391832 923549 728695 851820 541973 039747 618732 298239 493106 055110 915459 488370 011537 369464 868756 365922 632054 557997 000953 976939 231121 075379 539698 339456 914888 018130 782684 607615 292722 576141 214286 266879 225551 411758 624065 108016 034684 167050 243162 792539 487426 345324 515181 203882 885012 391379 840040 893006 826602 412569 612614 134819 080659 518907 187483 589249 376740 767092 519408 056292 584696 910615 532743 076077 343885 816405 537678 905962 (474 digits), a[900] = 1
                                                                                      A[901]/B[901] = 1 119697 221935 721503 366063 099502 392205 849572 440289 821923 400437 317693 364352 466234 313315 558048 714444 286063 029199 314687 720729 455097 812465 907006 620530 394003 757344 792580 686337 371115 090387 063382 043431 400998 983437 857797 256868 591820 700625 005959 264081 676402 013355 999417 998659 745818 716550 278951 593029 723067 210994 385674 074369 655662 640271 836805 089029 578704 084312 111096 938483 311291 226578 421154 576314 288058 752251 665665 477155 481679 587269 797534 811537 684230 604058 214696 051484 063878 301245 719519 (475 digits)/108 827320 437775 930664 297998 572839 259787 156016 478263 710539 388480 758987 600583 550686 156415 684719 888972 049763 862762 014433 347855 319012 556491 535202 810057 521038 883360 690377 167042 680436 352286 360963 221286 009095 711203 174409 949774 503678 261730 870007 227998 351480 624057 624875 992506 571590 221549 030939 756602 436021 723567 134874 267556 961853 968038 739750 070521 368459 967681 941288 430830 644581 690962 855400 995110 831664 742128 477655 430527 801343 491239 066009 495108 342082 239538 379304 899899 536308 827059 945011 (477 digits), a[901] = 173
                                                                                      A[902]/B[902] = 1 126132 647679 205872 325722 221231 742072 338216 074318 030925 192709 060397 675514 528557 888435 032402 922871 281078 243526 123839 750968 440872 864506 873101 015385 742877 483086 608689 356303 590535 187331 848287 778919 456853 236336 620276 764794 862387 790265 707591 313132 949736 879442 726796 799520 615859 406355 495538 040445 013041 082999 384499 383813 897246 737853 574066 903594 440223 375474 292883 127115 752016 183697 167910 457740 285870 057187 409990 347019 317632 810446 254881 844474 962509 660216 883002 566462 694415 090908 924726 (475 digits)/109 452802 153564 175117 233352 540018 577156 153384 317767 028754 717021 243382 992416 474235 885111 536540 430945 089511 481494 312672 840961 374123 471951 023572 821594 890503 752117 056299 799097 238433 353240 337902 452407 084475 250901 513866 864662 521809 044415 477622 520720 927621 838343 891755 218057 983348 845614 138955 791286 603071 966729 927413 754983 307178 483219 943632 955533 759839 807722 834295 257433 057151 303576 990220 075770 350571 929612 066904 807268 568436 010647 122302 079805 252697 772281 455382 243785 352714 364738 850973 (477 digits), a[902] = 1
                                                                                      A[903]/B[903] = 2 245829 869614 927375 691785 320734 134278 187788 514607 852848 593146 378091 039866 994792 201750 590451 637315 567141 272725 438527 471697 895970 676972 780107 635916 136881 240431 401270 042640 961650 277718 911669 822350 857852 219774 478074 021663 454208 490890 713550 577214 626138 892798 726214 798180 361678 122905 774489 633474 736108 293993 770173 458183 552909 378125 410871 992624 018927 459786 403980 065599 063307 410275 589065 034054 573928 809439 075655 824174 799312 397716 052416 656012 646740 264275 097698 617946 758293 392154 644245 (475 digits)/218 280122 591340 105781 531351 112857 836943 309400 796030 739294 105502 002370 593000 024922 041527 221260 319917 139275 344256 327106 188816 693136 028442 558775 631652 411542 635477 746676 966139 918869 705526 698865 673693 093570 962104 688276 814437 025487 306146 347629 748719 279102 462401 516631 210564 554939 067163 169895 547889 039093 690297 062288 022540 269032 451258 683383 026055 128299 775404 775583 688263 701732 994539 845621 070881 182236 671740 544560 237796 369779 501886 188311 574913 594780 011819 834687 143684 889023 191798 795984 (477 digits), a[903] = 1
                                                                                      A[904]/B[904] = 7 863622 256523 987999 401078 183434 144906 901581 618141 589470 972148 194670 795115 512934 493686 803757 834817 982502 061702 439422 166062 128784 895425 213423 923134 153521 204380 812499 484226 475486 020488 583297 245972 030409 895660 054498 829785 225013 262937 848243 044776 828153 557838 905441 194061 700893 775072 819006 940869 221365 964980 695019 758364 555974 872229 806682 881466 497005 754833 504823 323912 941938 414523 935105 559904 007656 485504 636957 819543 715570 003594 412131 812512 902730 453042 176098 420302 969295 267372 857461 (475 digits)/764 293169 927584 492461 827405 878592 087986 081586 705859 246637 033527 250494 771416 549002 009693 200321 390696 507337 514263 293991 407411 453531 557278 699899 716552 125131 658550 296330 697516 995042 469820 434499 473486 365188 137215 578697 307973 598270 962854 520511 766878 764929 225548 441648 849751 648166 047103 648642 434953 720353 037621 114277 822604 114275 836995 993782 033699 144739 133937 161046 322224 162350 287196 527083 288413 897281 944833 700585 520657 677774 516305 687236 804546 037037 807740 959443 674840 019783 940135 238925 (477 digits), a[904] = 3
                                                                                      A[905]/B[905] = 25 836696 639186 891373 895019 871036 568998 892533 369032 621261 509590 962103 425213 533595 682811 001725 141769 514647 457832 756793 969884 282325 363248 420379 405318 597444 853573 838768 495320 388108 339184 661561 560266 949081 906754 641570 511019 129248 279704 258279 711545 110599 566315 442538 380365 464359 448124 231510 456082 400206 188935 855232 733277 220833 994814 830920 637023 509944 724286 918450 037337 889122 653847 394381 713766 596898 265952 986529 282805 946022 408499 288812 093551 354931 623401 625993 878855 666179 194273 216628 (476 digits)/2511 159632 374093 583167 013568 748634 100901 554160 913608 479205 206083 753854 907249 671928 070606 822224 492006 661287 887046 209080 411051 053730 700278 658474 781308 786937 611128 635669 058690 903997 114988 002364 094152 189135 373751 424368 738357 820300 194709 909165 049355 573890 139046 841577 759819 499437 208474 115822 852750 200152 803160 405121 490352 611859 962246 664729 127152 562517 177216 258722 654936 188783 856129 426870 936122 874082 506241 646316 799769 403103 050803 250021 988551 705893 435042 713018 168204 948375 012204 512759 (478 digits), a[905] = 3
                                                                                      A[906]/B[906] = 59 537015 534897 770747 191117 925507 282904 686648 356206 831993 991330 118877 645542 580125 859308 807208 118357 011796 977367 953010 105830 693435 621922 054182 733771 348410 911528 490036 474867 251702 698857 906420 366505 928573 709169 337639 851823 483509 822346 364802 467867 049352 690469 790517 954792 629612 671321 282027 853034 021778 342852 405485 224918 997642 861859 468524 155513 516895 203407 341723 398588 720183 722218 723868 987437 201453 017410 610016 385155 607614 820592 989755 999615 612593 699845 428086 178014 301653 655919 290717 (476 digits)/5786 612434 675771 658795 854543 375860 289789 189908 533076 205047 445694 758204 585915 892858 150906 844770 374709 829913 288355 712152 229513 560992 957836 016849 279169 699006 880807 567668 814898 803036 699796 439227 661790 743458 884718 427434 784689 238871 352274 338841 865589 912709 503642 124804 369390 647040 464051 880288 140454 120658 643941 924520 803309 337995 761489 323240 288004 269773 488369 678491 632096 539917 999455 380825 160659 645446 957316 993219 120196 483980 617912 187280 781649 448824 677826 385480 011249 916533 964544 264443 (478 digits), a[906] = 2
                                                                                      A[907]/B[907] = 85 373712 174084 662121 086137 796543 851903 579181 725239 453255 500921 080981 070756 113721 542119 808933 260126 526444 435200 709804 075714 975760 985170 474562 139089 945855 765102 328804 970187 639811 038042 567981 926772 877655 615923 979210 362842 612758 102050 623082 179412 159952 256785 233056 335158 093972 119445 513538 309116 421984 531788 260717 958196 218476 856674 299444 792537 026839 927694 260173 435926 609306 376066 118250 701203 798351 283363 596545 667961 553637 229092 278568 093166 967525 323247 054080 056869 967832 850192 507345 (476 digits)/8297 772067 049865 241962 868112 124494 390690 744069 446684 684252 651778 512059 493165 564786 221513 666994 866716 491201 175401 921232 640564 614723 658114 675324 060478 485944 491936 203337 873589 707033 814784 441591 755942 932594 258469 851803 523047 059171 546984 248006 914945 486599 642688 966382 129210 146477 672525 996110 993204 320811 447102 329642 293661 949855 723735 987969 415156 832290 665585 937214 287032 728701 855584 807696 096782 519529 463558 639535 919965 887083 668715 437302 770201 154718 112869 098498 179454 864908 976748 777202 (478 digits), a[907] = 1
                                                                                      A[908]/B[908] = 144 910727 708982 432868 277255 722051 134808 265830 081446 285249 492251 199858 716298 693847 401428 616141 378483 538241 412568 662814 181545 669196 607092 528744 872861 294266 676630 818841 445054 891513 736900 474402 293278 806229 325093 316850 214666 096267 924396 987884 647279 209304 947255 023574 289950 723584 790766 795566 162150 443762 874640 666203 183115 216119 718533 767968 948050 543735 131101 601896 834515 329490 098284 842119 688640 999804 300774 206562 053117 161252 049685 268324 092782 580119 023092 482166 234884 269486 506111 798062 (477 digits)/14084 384501 725636 900758 722655 500354 680479 933977 979760 889300 097473 270264 079081 457644 372420 511765 241426 321114 463757 633384 870078 175716 615950 692173 339648 184951 372743 771006 688488 510070 514580 880819 417733 676053 143188 279238 307736 298042 899258 586848 780535 399309 146331 091186 498600 793518 136577 876399 133658 441470 091044 254163 096971 287851 485225 311209 703161 102064 153955 615705 919129 268619 855040 188521 257442 164976 420875 632755 040162 371064 286627 624583 551850 603542 790695 483978 190704 781442 941293 041645 (479 digits), a[908] = 1
                                                                                      A[909]/B[909] = 809 927350 718996 826462 472416 406799 525944 908332 132470 879502 962177 080274 652249 582958 549262 889640 152544 217651 498044 023874 983443 321744 020633 118286 503396 417189 148256 423012 195462 097379 722544 939993 393166 908802 241390 563461 436173 094097 724035 562505 415808 206476 993060 350927 784911 711896 073279 491369 119868 640798 904991 591733 873772 299075 449343 139289 532789 745515 583202 269657 608503 256756 867490 328849 144408 797372 787234 629355 933547 359897 477518 620188 557079 868120 438709 464911 231291 315265 380751 497655 (477 digits)/78719 694575 678049 745756 481389 626267 793090 413959 345489 130753 139144 863379 888572 853008 083616 225821 073848 096773 494190 088156 990955 493306 737868 136190 758719 410701 355655 058371 316032 257386 387688 845688 844611 312859 974411 247995 061728 549386 043277 182250 817622 483145 374344 422314 622214 114068 355415 378106 661496 528161 902323 600457 778518 389113 149862 544017 930962 342611 435364 015743 882679 071801 130785 750302 383993 344411 567936 803311 120777 742405 101853 560220 529454 172432 066346 518389 132978 772123 683213 985427 (479 digits), a[909] = 5
                                                                                      A[910]/B[910] = 954 838078 427979 259330 749672 128850 660753 174162 213917 164752 454428 280133 368548 276805 950691 505781 531027 755892 910612 686689 164988 990940 627725 647031 376257 711455 824887 241853 640516 988893 459445 414395 686445 715031 566483 880311 650839 190365 648432 550390 063087 415781 940315 374502 074862 435480 864046 286935 282019 084561 779632 257937 056887 515195 167876 907258 480840 289250 714303 871554 443018 586246 965775 170968 833049 797177 088008 835917 986664 521149 527203 888512 649862 448239 461801 947077 466175 584751 886863 295717 (477 digits)/92804 079077 403686 646515 204045 126622 473570 347937 325250 020053 236618 133643 967654 310652 456036 737586 315274 417887 957947 721541 861033 669023 353818 828364 098367 595652 728398 829378 004520 767456 902269 726508 262344 988913 117599 527233 369464 847428 942535 769099 598157 882454 520675 513501 120814 907586 491993 254505 795154 969631 993367 854620 875489 676964 635087 855227 634123 444675 589319 631449 801808 340420 985825 938823 641435 509387 988812 436066 160940 113469 388481 184804 081304 775974 857042 002367 323683 553566 624507 027072 (479 digits), a[910] = 1
                                                                                      A[911]/B[911] = 9403 470056 570810 160439 219465 566455 472723 475792 057725 362275 052031 601474 969184 074212 105486 441673 931794 020687 693558 204077 468344 240209 670163 941568 889715 820291 572241 599694 960114 997420 857553 669554 571178 344086 339745 486266 293725 807388 559928 516015 983594 948514 455898 721446 458673 631223 849696 073786 658040 401854 921681 913167 385759 935831 960235 304615 860352 348772 011937 113647 595670 532979 559466 867568 641856 971966 579314 152617 813528 050243 222353 616802 405841 902275 594926 988608 426871 578032 362521 159108 (478 digits)/913956 406272 311229 564393 317795 765870 055223 545395 272739 311232 268708 066175 597461 648880 187946 864097 911317 857765 115719 582033 740258 514516 922237 591467 644027 771575 911244 522773 356719 164498 508116 384263 205716 213078 032806 993095 386912 176246 526099 104147 201043 425236 060424 043824 709548 282346 783354 668658 817891 254849 842634 292045 657925 481794 865653 241066 638073 344691 739240 698792 098954 135590 003219 199715 156912 928903 467248 727906 569238 763629 598184 223457 261197 156205 779724 539695 046130 754223 303777 229075 (480 digits), a[911] = 9
                                                                                      A[912]/B[912] = 19761 778191 569599 580209 188603 261761 606200 125746 329367 889302 558491 483083 306916 425230 161664 389129 394615 797268 297729 094844 101677 471359 968053 530169 155689 352038 969370 441243 560746 983735 174552 753504 828802 403204 245974 852844 238290 805142 768289 582422 030277 312810 852112 817394 992209 697928 563438 434508 598099 888271 622996 084271 828407 386859 088347 516490 201544 986794 738178 098849 634359 652206 084708 906106 116763 741110 246637 141153 613720 621635 971911 122117 461546 252790 651655 924294 319918 740816 611905 613933 (479 digits)/1 920716 891622 026145 775301 839636 658362 584017 438727 870728 642517 774034 265995 162577 608412 831930 465782 137910 133418 189386 885609 341550 698057 198294 011299 386423 138804 550887 874924 717959 096453 918502 495034 673777 415069 183213 513424 143289 199921 994733 977394 000244 732926 641523 601150 539911 472280 058702 591823 430937 479331 678636 438712 191340 640554 366394 337360 910270 134059 067801 029033 999716 611600 992264 338253 955261 367194 923309 891879 299417 640728 584849 631718 603699 088386 416491 081757 415945 062013 232061 485222 (481 digits), a[912] = 2
                                                                                      A[913]/B[913] = 108212 361014 418808 061485 162481 875263 503724 104523 704564 808787 844489 016891 503766 200362 913808 387320 904873 007029 182203 678297 976731 597009 510431 592414 668162 580486 419093 805912 763849 916096 730317 437078 715190 360107 569619 750487 485179 833102 401376 428126 134981 512568 716462 808421 419722 120866 666888 246329 648539 843213 036662 334526 527796 870127 401972 887066 868077 282745 702827 607895 767468 794009 983011 398099 225675 677517 812499 858385 882131 158423 081909 227389 713573 166228 853206 610080 026465 282115 422049 228773 (480 digits)/10 517540 864382 441958 440902 515979 057682 975310 739034 626382 523821 138879 396151 410349 690944 347599 193008 600868 524856 062654 010080 448012 004802 913707 647964 576143 465598 665683 897396 946514 646768 100628 859436 574603 288423 948874 560216 103358 175856 499768 991117 202267 089869 268042 049577 409105 643747 076867 627775 972578 651508 235816 485606 614628 684566 697624 927871 189424 014987 078245 843962 097537 193594 964540 890984 933219 764878 083798 187303 066326 967272 522432 382050 279692 598137 862179 948482 125856 064289 464084 655185 (482 digits), a[913] = 5
                                                                                      A[914]/B[914] = 127974 139205 988407 641694 351085 137025 109924 230270 033932 698090 402980 499974 810682 625593 075472 776450 299488 804297 479932 773142 078409 068369 478485 122583 823851 932525 388464 247156 324596 899831 904870 190583 543992 763311 815594 603331 723470 638245 169666 010548 165258 825379 568575 625816 411931 818795 230326 680838 246639 731484 659658 418798 356204 256986 490320 403557 069622 269540 441005 706745 401828 446216 067720 304205 342439 418628 059136 999539 495851 780059 053820 349507 175119 419019 504862 534374 346384 022932 033954 842706 (480 digits)/12 438257 756004 468104 216204 355615 716045 559328 177762 497111 166338 912913 662146 572927 299357 179529 658790 738778 658274 252040 895689 789562 702860 112001 659263 962566 604403 216571 772321 664473 743222 019131 354471 248380 703493 132088 073640 246647 375778 494502 968511 202511 822795 909565 650727 949017 116027 135570 219599 403516 130839 914452 924318 805969 325121 064019 265232 099694 149046 146046 872996 097253 805195 956805 229238 888481 132073 007108 079182 365744 608001 107282 013768 883391 686524 278671 030239 541801 126302 696146 140407 (482 digits), a[914] = 1
                                                                                      A[915]/B[915] = 1 004031 335456 337661 553345 620077 834439 273193 716413 942093 695420 665352 516715 178544 579514 442117 822473 001294 637111 541733 090292 525595 075595 859827 450501 435126 108164 138343 536007 036028 214920 064408 771163 523139 703290 278781 973809 549474 300818 589038 501963 291793 290225 696492 189136 303244 852433 279175 012197 375017 963605 654271 266115 021226 669032 834215 711966 355433 169528 789867 555113 580267 917522 457053 527536 622751 607914 226458 855162 353093 618836 458651 673939 939409 099365 387244 350700 451153 442639 659733 127715 (481 digits)/97 585345 156413 718687 954333 005289 070001 890607 983372 106160 688193 529275 031177 420840 786444 604306 804543 772319 132775 826940 279908 974950 924823 697719 262812 314109 696421 181686 303648 597830 849322 234548 340735 313268 212875 873491 075697 829889 806305 961289 770695 619849 849440 635001 604673 052225 455937 025859 164971 797191 567387 636986 955838 256413 960414 145759 784495 887283 058310 100573 954934 778313 829966 662177 495657 152587 689389 133554 741579 626539 223280 273406 478432 463434 403807 812877 160158 918463 948408 337107 638034 (482 digits), a[915] = 7
                                                                                      A[916]/B[916] = 1 132005 474662 326069 195039 971162 971464 383117 946683 976026 393511 068333 016689 989227 205107 517590 598923 300783 441409 021665 863434 604004 143965 338312 573085 258978 040689 526807 783163 360625 114751 969278 961747 067132 466602 094376 577141 272944 939063 758704 512511 457052 115605 265067 814952 715176 671228 509501 693035 621657 695090 313929 684913 377430 926019 324536 115523 425055 439069 230873 261858 982096 363738 524773 831741 965191 026542 285595 854701 848945 398895 512472 023447 114528 518384 892106 885074 797537 465571 693687 970421 (481 digits)/110 023602 912418 186792 170537 360904 786047 449936 161134 603271 854532 442188 693323 993768 085801 783836 463334 511097 791050 078981 175598 764513 627683 809720 922076 276676 300824 398258 075970 262304 592544 253679 695206 561648 916369 005579 149338 076537 182084 455792 739206 822361 672236 544567 255401 001242 571964 161429 384571 200707 698227 551439 880157 062383 285535 209779 049727 986977 207356 246620 827930 875567 635162 618982 724896 041068 821462 140662 820761 992283 831281 380688 492201 346826 090332 091548 190398 460265 074711 033253 778441 (483 digits), a[916] = 1
                                                                                      A[917]/B[917] = 3 268042 284780 989799 943425 562403 777368 039429 609781 894146 482442 802018 550095 156998 989729 477299 020319 602861 519929 585064 817161 733603 363526 536452 596671 953082 189543 191959 102333 757278 444424 002966 694657 657404 636494 467535 128092 095364 178946 106447 526986 205897 521436 226627 819041 733598 194890 298178 398268 618333 353786 282130 635941 776088 521071 483287 943013 205544 047667 251614 078831 544460 644999 506601 191020 553133 660998 797650 564566 050984 416627 483595 720834 168466 136135 171458 120850 046228 373783 047109 068557 (481 digits)/317 632550 981250 092272 295407 727098 642096 790480 305641 312704 397258 413652 417825 408376 958048 171979 731212 794514 714875 984902 631106 503978 180191 317161 106964 867462 298069 978202 455589 122440 034410 741907 731148 436566 045613 884649 374373 982964 170474 872875 249109 264573 193913 724136 115475 054710 599865 348717 934114 198606 963842 739866 716152 381180 531484 565317 883951 861237 473022 593815 610796 529449 100291 900142 945449 234725 332313 414880 383103 611106 885843 034783 462835 157086 584471 995973 540955 838994 097830 403615 194916 (483 digits), a[917] = 2
                                                                                      A[918]/B[918] = 4 400047 759443 315869 138465 533566 748832 422547 556465 870172 875953 870351 566785 146226 194836 994889 619242 903644 961338 606730 680596 337607 507491 874765 169757 212060 230232 718766 885497 117903 559175 972245 656404 724537 103096 561911 705233 368309 118009 865152 039497 662949 637041 491695 633994 448774 866118 807680 091304 239991 048876 596060 320855 153519 447090 807824 058536 630599 486736 482487 340690 526557 008738 031375 022762 518324 687541 083246 419267 899929 815522 996067 744281 282994 654520 063565 005924 843765 839354 740797 038978 (481 digits)/427 656153 893668 279064 465945 088003 428144 240416 466775 915976 251790 855841 111149 402145 043849 955816 194547 305612 505926 063883 806705 268491 807875 126882 029041 144138 598894 376460 531559 384744 626954 995587 426354 998214 961982 890228 523712 059501 352559 328667 988316 086934 866150 268703 370876 055953 171829 510147 318685 399314 662070 291306 596309 443563 817019 775096 933679 848214 680378 840436 438727 405016 735454 519125 670345 275794 153775 555543 203865 603390 717124 415471 955036 503912 674804 087521 731354 299259 172541 436868 973357 (483 digits), a[918] = 1
                                                                                      A[919]/B[919] = 7 668090 044224 305669 081891 095970 526200 461977 166247 764319 358396 672370 116880 303225 184566 472188 639562 506506 481268 191795 497758 071210 871018 411217 766429 165142 419775 910725 987830 875182 003599 975212 351062 381941 739591 029446 833325 463673 296955 971599 566483 868847 158477 718323 453036 182373 061009 105858 489572 858324 402662 878190 956796 929607 968162 291112 001549 836143 534403 734101 419522 071017 653737 537976 213783 071458 348539 880896 983833 950914 232150 479663 465115 451460 790655 235023 126774 889994 213137 787906 107535 (481 digits)/745 288704 874918 371336 761352 815102 070241 030896 772417 228680 649049 269493 528974 810522 001898 127795 925760 100127 220802 048786 437811 772469 988066 444043 136006 011600 896964 354662 987148 507184 661365 737495 157503 434781 007596 774877 898086 042465 523034 201543 237425 351508 060063 992839 486351 110663 771694 858865 252799 597921 625913 031173 312461 824744 348504 340414 817631 709452 153401 434252 049523 934465 835746 419268 615794 510519 486088 970423 586969 214497 602967 450255 417871 660999 259276 083495 272310 138253 270371 840484 168273 (483 digits), a[919] = 1
                                                                                      A[920]/B[920] = 12 068137 803667 621538 220356 629537 275032 884524 722713 634492 234350 542721 683665 449451 379403 467078 258805 410151 442606 798526 178354 408818 378510 285982 936186 377202 650008 629492 873327 993085 562775 947458 007467 106478 842687 591358 538558 831982 414965 836751 605981 531796 795519 210019 087030 631147 927127 913538 580877 098315 451539 474251 277652 083127 415253 098936 060086 466743 021140 216588 760212 597574 662475 569351 236545 589783 036080 964143 403101 850844 047673 475731 209396 734455 445175 298588 132699 733760 052492 528703 146513 (482 digits)/1172 944858 768586 650401 227297 903105 498385 271313 239193 144656 900840 125334 640124 212667 045748 083612 120307 405739 726728 112670 244517 040961 795941 570925 165047 155739 495858 731123 518707 891929 288320 733082 583858 432995 969579 665106 421798 101966 875593 530211 225741 438442 926214 261542 857227 166616 943524 369012 571484 997236 287983 322479 908771 268308 165524 115511 751311 557666 833780 274688 488251 339482 571200 938394 286139 786313 639864 525966 790834 817888 320091 865727 372908 164911 934080 171017 003664 437512 442913 277353 141630 (484 digits), a[920] = 1
                                                                                      A[921]/B[921] = 19 736227 847891 927207 302247 725507 801233 346501 888961 398811 592747 215091 800545 752676 563969 939266 898367 916657 923874 990321 676112 480029 249528 697200 702615 542345 069784 540218 861158 868267 566375 922670 358529 488420 582278 620805 371884 295655 711921 808351 172465 400643 953996 928342 540066 813520 988137 019397 070449 956639 854202 352442 234449 012735 383415 390048 061636 302886 555543 950690 179734 668592 316213 107327 450328 661241 384620 845040 386935 801758 279823 955394 674512 185916 235830 533611 259474 623754 265630 316609 254048 (482 digits)/1918 233563 643505 021737 988650 718207 568626 302210 011610 373337 549889 394828 169099 023189 047646 211408 046067 505866 947530 161456 682328 813431 784008 014968 301053 167340 392823 085786 505856 399113 949686 470577 741361 867776 977176 439984 319884 144432 398627 731754 463166 789950 986278 254382 343578 277280 715219 227877 824284 595157 913896 353653 221233 093052 514028 455926 568943 267118 987181 708940 537775 273948 406947 357662 901934 296833 125953 496390 377804 032385 923059 315982 790779 825911 193356 254512 275974 575765 713285 117837 309903 (484 digits), a[921] = 1
                                                                                      A[922]/B[922] = 248 902871 978370 748025 847329 335630 889833 042547 390250 420231 347317 123823 290214 481570 147042 738281 039220 410046 529106 682386 291704 169169 372854 652391 367572 885343 487423 112119 207234 412296 359287 019502 309820 967525 830031 041023 001170 379850 958027 536965 675566 339524 243482 350129 567832 393399 784772 146303 426276 577993 701967 703558 091040 235952 016237 779512 799722 101381 687667 624870 917028 620682 457032 857280 640489 524679 651531 104628 046331 471943 405560 940467 303542 965450 275141 701923 246395 218811 240056 328014 195089 (483 digits)/24191 747622 490646 911257 091106 521596 321900 897833 378517 624707 499512 863272 669312 490935 617502 620508 673117 476143 097090 050150 432462 802143 204037 750544 777685 163824 209735 760561 588984 681296 684558 380015 480200 846319 695696 944918 260407 835155 659126 311264 783742 917854 761553 314130 980166 493985 526155 103546 462900 139131 254739 566318 563568 384938 333865 586630 578630 763094 679960 781974 941554 626863 454569 230349 109351 348311 151306 482651 324483 206519 396803 657520 862266 075846 254355 225164 315359 346701 002334 691400 860466 (485 digits), a[922] = 12
                                                                                      A[923]/B[923] = 268 639099 826262 675233 149577 061138 691066 389049 279211 819042 940064 338915 090760 234246 711012 677547 937588 326704 452981 672707 967816 649198 622383 349592 070188 427688 557207 652338 068393 280563 925662 942172 668350 455946 412309 661828 373054 675506 669949 345316 848031 740168 197479 278472 107899 206920 772909 165700 496726 534633 556170 056000 325489 248687 399653 169560 861358 404268 243211 575561 096763 289274 773245 964608 090818 185921 036151 949668 433267 273701 685384 895861 978055 151366 510972 235534 505869 842565 505686 644623 449137 (483 digits)/26109 981186 134151 932995 079757 239803 890527 200043 390127 998045 049402 258100 838411 514124 665148 831916 719184 982010 044620 211607 114791 615574 988045 765513 078738 331164 602558 846348 094841 080410 634244 850593 221562 714096 672873 384902 580291 979588 057754 043019 246909 707805 747831 568513 323744 771266 241374 331424 287184 734289 168635 919971 784801 477990 847894 042557 147574 030213 667142 490915 479329 900811 861516 588012 011285 645144 277259 979041 702287 238905 319862 973503 653045 901757 447711 479676 591333 922466 715619 809238 170369 (485 digits), a[923] = 1
                                                                                      A[924]/B[924] = 1592 098371 109684 124191 595214 641324 345164 987793 786309 515446 047638 818398 744015 652803 702106 126020 727162 043568 794015 045926 130787 415162 484771 400351 718515 023786 273461 373809 549200 815115 987601 730365 651573 247257 891579 350164 866443 757384 307774 263549 915725 040365 230878 742490 107328 428003 649317 974805 909909 251161 482817 983559 718486 479389 014503 627317 106514 122722 903725 502676 400845 067056 323262 680321 094580 454284 832290 852970 212667 840451 832485 419777 193818 722282 830002 879595 775744 431638 768489 551131 440774 (484 digits)/154741 653553 161406 576232 489892 720615 774536 898050 329157 614932 746524 153776 861370 061558 943246 780092 269042 386193 320191 108186 006420 880018 144266 578110 171376 819647 222529 992302 063190 083349 855782 632981 588014 416803 060063 869431 161867 733095 947896 526361 018291 456883 500711 156697 598890 350316 733026 760667 898823 810577 097919 166177 487575 774892 573335 799416 316500 914163 015673 236552 338204 130922 762152 170409 165779 574032 537606 377859 835919 401045 996118 525039 127495 584633 492912 623547 272028 959034 580433 737591 712311 (486 digits), a[924] = 5
                                                                                      A[925]/B[925] = 629147 495688 151491 730913 259360 384255 031236 567594 871470 420231 757397 606418 976943 091709 042932 455735 166595 536378 088924 813529 628845 638380 107086 488520 883622 823266 574450 307110 002715 251379 028346 436605 039783 122813 586152 976950 618338 842308 240783 447533 559422 684434 394582 562064 502628 268362 253509 214034 910880 743419 269273 562089 127648 607348 128585 959817 934436 879815 214785 132739 430564 776522 462004 691440 450097 628429 791038 872902 437064 252175 517125 707853 536450 453084 362109 675865 924920 339879 059059 341542 554867 (486 digits)/61 149063 134684 889749 544828 587381 883034 832601 929923 407385 896479 926442 999961 079585 829907 247626 968362 990927 528371 520107 945079 651039 222741 973344 119030 772582 091817 501905 805663 054924 003603 668384 878320 487257 351305 398101 810211 518046 552487 476881 955621 472035 176788 528738 464064 885433 146375 786944 795244 322589 912242 846706 560079 377232 560557 315534 812002 165435 124604 858070 929089 069961 615302 911623 899632 494217 387996 631779 233676 890450 652073 786680 363959 013801 831987 148197 780849 042772 741125 986946 157964 533214 (488 digits), a[925] = 395
                                                                                      A[926]/B[926] = 630739 594059 261175 855104 854575 025579 376401 555388 657779 935677 805036 424817 720958 744512 745038 581755 893757 579946 882939 859455 759633 053542 591857 888872 602137 847052 847911 680919 551916 066495 015948 166970 691356 370071 477732 327115 484782 599692 548557 711083 475147 724799 625461 304554 609956 696365 902827 188840 820789 994580 752091 545648 846135 086737 143089 587135 040951 002538 118510 635415 831409 843578 785267 371761 544678 082714 623329 725872 649732 092627 349611 127630 730269 175367 192112 555461 700664 771517 827548 892673 995641 (486 digits)/61 303804 788238 051156 121061 077274 603650 607138 827973 736543 511412 672967 153737 940955 891466 190873 748455 259969 914564 840299 053265 657460 102760 117610 697140 943958 911464 724435 797965 118114 086953 524167 511302 075271 768108 458165 679642 679914 285583 424778 481982 490326 633672 029449 620762 484323 496692 519971 555912 221413 722819 944625 726256 864808 335449 888870 611418 481936 038767 873744 165641 408165 746225 673776 070041 659996 962029 169385 611536 726370 053119 782798 888998 141297 416620 641110 404396 314801 700160 567379 895556 245525 (488 digits), a[926] = 1
                                                                                      A[927]/B[927] = 10 090241 406577 069129 557486 077985 767945 677259 898424 738169 455398 832943 978684 791324 259400 218511 182073 572959 235581 333022 705366 023341 441518 984954 821609 915690 529059 293125 520903 281456 248804 267568 941165 410128 673885 752137 883682 890077 837696 469149 113785 686638 556428 776502 130383 651978 713850 795917 046647 222730 662130 550646 746821 819674 908405 274929 766843 548701 917886 992444 663976 901712 430204 241015 267863 620268 869149 140984 760992 183045 641585 761292 622314 490488 083592 243798 007791 434891 912646 472292 731652 489482 (488 digits)/980 706134 958255 657091 360744 746500 937793 939684 349529 455538 567670 020950 306030 193924 201900 110733 195191 890476 246844 124593 744064 512940 764143 737504 576144 931965 763788 368442 775139 826635 307906 530897 547851 616333 872932 270587 004851 716760 836238 848559 185358 826934 681868 970482 775502 150285 596763 586518 133927 643795 754542 016092 453932 349357 592305 648593 983279 394475 706122 964233 413710 192447 808688 018264 950257 394171 818434 172563 406727 786001 448870 528663 698931 133263 081296 764853 846793 764798 243534 497644 591308 216089 (489 digits), a[927] = 15
                                                                                      A[928]/B[928] = 81 352670 846675 814212 314993 478461 169144 794480 742786 563135 578868 468588 254296 051552 819714 493128 038344 477431 464597 547121 502383 946364 585694 471496 461751 927662 079527 192915 848145 803566 056929 156499 696293 972385 761157 494835 396578 605405 301264 301750 621368 968256 176229 837478 347623 825786 407172 270163 562018 602635 291625 157265 520223 403534 353979 342527 721883 430566 345634 058067 947231 045109 285212 713389 514670 506829 035907 751207 813810 114097 225313 439952 106146 654173 844105 142496 617793 179800 072689 605890 745893 911497 (488 digits)/7906 952884 454283 307887 007019 049282 106002 124613 624209 380852 052772 840569 601979 492349 506667 076739 309990 383779 889317 837049 005781 760986 215910 017647 306300 399685 021771 671977 999083 731196 550205 771347 894115 005942 751566 622861 718456 414000 975494 213251 964853 105804 088623 793311 824779 686608 270801 212116 627333 371779 759156 073365 357715 659669 073895 077622 477653 637741 687751 587611 475322 947748 215729 819895 672100 813371 509502 549892 865359 014381 644084 012108 480447 207402 066994 759941 178746 433187 648436 548536 626021 974237 (490 digits), a[928] = 8
                                                                                      A[929]/B[929] = 172 795583 099928 697554 187473 034908 106235 266221 383997 864440 613135 770120 487276 894429 898829 204767 258762 527822 164776 427265 710133 916070 612907 927947 745113 771014 688113 678957 217194 888588 362662 580568 333753 354900 196200 741808 676840 100888 440225 072650 356523 623150 908888 451458 825631 303551 528195 336244 170684 428001 245380 865177 787268 626743 616363 959985 210610 409834 609155 108580 558438 991931 000629 667794 297204 633926 940964 643400 388612 411240 092212 641196 834607 798835 771802 528791 243377 794492 058025 684074 223440 312476 (489 digits)/16794 611903 866822 272865 374782 845065 149798 188911 597948 217242 673215 702089 509989 178623 215234 264211 815172 658036 025479 798691 755628 034913 195963 772799 188745 731335 807331 712398 773307 289028 408318 073593 336081 628219 376065 516310 441764 544762 787227 275063 115065 038542 859116 557106 425061 523502 138366 010751 388594 387355 272854 162823 169363 668695 740095 803838 938586 669959 081626 139456 364356 087944 240147 658056 294459 020914 837439 272349 137445 814764 737038 552880 659825 548067 215286 284736 204286 631173 540407 594717 843352 164563 (491 digits), a[929] = 2
                                                                                      A[930]/B[930] = 254 148253 946604 511766 502466 513369 275380 060702 126784 427576 192004 238708 741572 945982 718543 697895 297107 005253 629373 974387 212517 862435 198602 399444 206865 698676 767640 871873 065340 692154 419591 737068 030047 327285 957358 236644 073418 706293 741489 374400 977892 591407 085118 288937 173255 129337 935367 606407 732703 030636 537006 022443 307492 030277 970343 302512 932493 840400 954789 166648 505670 037040 285842 381183 811875 140755 976872 394608 202422 525337 317526 081148 940754 453009 615907 671287 861170 974292 130715 289964 969334 223973 (489 digits)/24701 564788 321105 580752 381801 894347 255800 313525 222157 598094 725988 542659 111968 670972 721901 340951 125163 041815 914797 635740 761409 795899 411873 790446 495046 131020 829103 384376 772391 020224 958523 844941 230196 634162 127632 139172 160220 958763 762721 488315 079918 144346 947740 350418 249841 210110 409167 222868 015927 759135 032010 236188 527079 328364 813990 881461 416240 307700 769377 727067 839679 035692 455877 477951 966559 834286 346941 822242 002804 829146 381122 564989 140272 755469 282281 044677 383033 064361 188844 143254 469374 138800 (491 digits), a[930] = 1
                                                                                      A[931]/B[931] = 681 092090 993137 721087 192406 061646 656995 387625 637566 719592 997144 247537 970422 786395 335916 600557 852976 538329 423524 376040 135169 640941 010112 726836 158845 168368 223395 422703 347876 272897 201846 054704 393848 009472 110917 215096 823677 513475 923203 821452 312308 805965 079125 029333 172141 562227 398930 549059 636090 489274 319392 910064 402252 687299 557050 565011 075598 090636 518733 441877 569779 066011 572314 430161 920954 915438 894709 432616 793457 461914 727264 803494 716116 704855 003617 871366 965719 743076 319456 264004 162108 760422 (489 digits)/66197 741480 509033 434370 138386 633759 661398 815962 042263 413432 125192 787407 733926 520568 659036 946114 065498 741667 855075 070173 278447 626712 019711 353692 178837 993377 465538 481152 318089 329478 325365 763475 796474 896543 631329 794654 762206 462290 312670 251693 274901 327236 754597 257942 924743 943722 956700 456487 420449 905625 336874 635200 223522 325425 368077 566761 771067 285360 620381 593592 043714 159329 151902 613960 227578 689487 531322 916833 143055 473057 499283 682858 940371 059005 779848 374090 970352 759895 918095 881226 782100 442163 (491 digits), a[931] = 2
                                                                                      A[932]/B[932] = 935 240344 939742 232853 694872 575015 932375 448327 764351 147169 189148 486246 711995 732378 054460 298453 150083 543583 052898 350427 347687 503376 208715 126280 365710 867044 991036 294576 413216 965051 621437 791772 423895 336758 068275 451740 897096 219769 664693 195853 290201 397372 164243 318270 345396 691565 334298 155467 368793 519910 856398 932507 709744 717577 527393 867524 008091 931037 473522 608526 075449 103051 858156 811345 732830 056194 871581 827224 995879 987252 044790 884643 656871 157864 619525 542654 826890 717368 450171 553969 131442 984395 (489 digits)/90899 306268 830139 015122 520188 528106 917199 129487 264421 011526 851181 330066 845895 191541 380938 287065 190661 783483 769872 705914 039857 422611 431585 144138 673884 124398 294641 865529 090480 349703 283889 608417 026671 530705 758961 933826 922427 421054 075391 740008 354819 471583 702337 608361 174585 153833 365867 679355 436377 664760 368884 871388 750601 653790 182068 448223 187307 593061 389759 320659 883393 195021 607780 091912 194138 523773 878264 739075 145860 302203 880406 247848 080643 814475 062129 418768 353385 824257 106940 024481 251474 580963 (491 digits), a[932] = 1
                                                                                      A[933]/B[933] = 4422 053470 752106 652501 971896 361710 386497 180936 694971 308269 753738 192524 818405 715907 553757 794370 453310 712661 635117 777749 525919 654445 844973 231957 621688 636548 187540 601009 000744 133103 687597 221794 089429 356504 384019 022060 412062 392554 581976 604865 473114 395453 736098 302414 553728 328488 736123 170929 111264 568917 744988 640095 241231 557609 666626 035107 107965 814786 412823 875981 871575 478219 004941 675544 852275 140218 381036 741516 776977 410922 906428 342069 343601 336313 481720 041986 273282 612550 120142 479880 687880 698002 (490 digits)/429794 966555 829589 494860 219140 746187 330195 333911 099947 459539 529918 107675 117507 286734 182790 094374 828145 875602 934565 893829 437877 317157 746051 930246 874374 490970 644105 943268 680010 728291 460924 197143 903161 019366 667177 529962 451916 146506 614237 211726 694179 213571 563947 691387 623084 559056 420171 173909 165960 564666 812414 120755 225928 940586 096351 359654 520297 657606 179418 876231 577286 939415 583022 981609 004132 784583 044381 873133 726496 681873 020908 674251 262946 316906 028366 049164 383896 056924 345855 979151 787998 766015 (492 digits), a[933] = 4
                                                                                      A[934]/B[934] = 14201 400757 196062 190359 610561 660147 091866 991137 849265 071978 450363 063821 167212 880100 715733 681564 510015 681567 958251 683675 925446 466713 743634 822153 230776 776689 553658 097603 415449 364362 684229 457154 692183 406271 220332 517922 133283 397433 410623 010449 709544 583733 372538 225514 006581 677031 542667 668254 702587 226664 091364 852793 433439 390406 527271 972845 331989 375396 711994 236471 690175 537708 872981 837980 289655 476850 014692 051775 326812 220020 764075 910851 687675 166805 064685 668613 646738 555018 810598 993611 195085 078401 (491 digits)/1 380284 205936 318907 499703 177610 766668 907785 131220 564263 390145 440935 653092 198417 051743 929308 570189 675099 410292 573570 387402 353489 374084 669740 934879 297007 597310 226959 695335 130512 534577 666662 199848 736154 588805 760494 523714 278175 860573 918103 375188 437357 112298 394180 682524 043838 831002 626381 201082 934259 358760 806127 233654 428388 475548 471122 527186 748200 565879 928015 949354 615254 013268 356849 036739 206536 877523 011410 358476 325350 347822 943132 270601 869482 765193 147227 566261 505073 995030 144507 961936 615470 879008 (493 digits), a[934] = 3
                                                                                      A[935]/B[935] = 18623 454227 948168 842861 582458 021857 478364 172074 544236 380248 204101 256345 985618 596008 269491 475934 963326 394229 593369 461425 451366 121159 588608 054110 852465 413237 741198 698612 416193 497466 371826 678948 781612 762775 604351 539982 545345 789987 992599 615315 182658 979187 108636 527928 560310 005520 278790 839183 813851 795581 836353 492888 674670 948016 193898 007952 439955 190183 124818 112453 561751 015927 877923 513525 141930 617068 395728 793292 103789 630943 670504 252921 031276 503118 546405 710599 920021 167568 930741 473491 882965 776403 (491 digits)/1 810079 172492 148496 994563 396751 512856 237980 465131 664210 849684 970853 760767 315924 338478 112098 664564 503245 285895 508136 281231 791366 691242 415792 865126 171382 088280 871065 638603 810523 262869 127586 396992 639315 608172 427672 053676 730092 007080 532340 586915 131536 325869 958128 373911 666923 390059 046552 374992 100219 923427 618541 354409 654317 416134 567473 886841 268498 223486 107434 825586 192540 952683 939872 018348 210669 662106 055792 231610 051847 029695 964040 944853 132429 082099 175593 615425 888970 051954 490363 941088 403469 645023 (493 digits), a[935] = 1
                                                                                      A[936]/B[936] = 70071 763441 040568 718944 357935 725719 526959 507361 481974 212723 062666 832859 124068 668125 524208 109369 399994 864256 738360 067952 279544 830192 509458 984485 788173 016402 777254 193440 664029 856761 799709 494001 037021 694598 033387 137869 769320 767397 388421 856395 257521 521294 698447 809299 687511 693592 379040 185806 144142 613409 600425 331459 457452 234455 108965 996702 651854 945946 086448 573832 375428 585492 506752 378555 715447 328055 201878 431651 638181 112851 775588 669614 781504 676160 703902 800413 406802 057725 602823 414086 843982 407610 (491 digits)/6 810521 723412 764398 483393 367865 305237 621726 526615 556895 939200 353496 935394 146190 067178 265604 563883 184835 267979 097979 231097 727589 447811 917119 530257 811153 862152 840156 611146 562082 323185 049421 390826 654101 413323 043510 684744 468451 881815 515125 135933 831966 089908 268565 804259 044609 001179 766038 326059 234919 129043 661751 296883 391340 723952 173544 187710 553695 236338 250320 426113 192876 871320 176465 091783 838545 863841 178787 053306 480891 436910 835255 105161 266770 011490 674008 412539 171984 150893 615599 785201 825879 814077 (493 digits), a[936] = 3
                                                                                      A[937]/B[937] = 88695 217668 988737 561805 940393 747577 005323 679436 026210 592971 266768 089205 109687 264133 793699 585304 363321 258486 331729 529377 730910 951352 098067 038596 640638 429640 518452 892053 080223 354228 171536 172949 818634 457373 637738 677852 314666 557385 381021 471710 440180 500481 807084 337228 247821 699112 657831 024989 957994 408991 436778 824348 132123 182471 302864 004655 091810 136129 211266 686285 937179 601420 384675 892080 857377 945123 597607 224943 741970 743795 446092 922535 812781 179279 250308 511013 326823 225294 533564 887578 726948 184013 (491 digits)/8 620600 895904 912895 477956 764616 818093 859706 991747 221106 788885 324350 696161 462114 405656 377703 228447 688080 553874 606115 512329 518956 139054 332912 395383 982535 950433 711222 249750 372605 586054 177007 787819 293417 021495 471182 738421 198543 888896 047465 722848 963502 415778 226694 178170 711532 391238 812590 701051 335139 052471 280292 651293 045658 140086 741018 074551 822193 459824 357755 251699 385417 824004 116337 110132 049215 525947 234579 284916 532738 466606 799296 050014 399199 093589 849602 027965 060954 202848 105963 726290 229349 459100 (493 digits), a[937] = 1
                                                                                      A[938]/B[938] = 336157 416448 006781 404362 179116 968450 542930 545669 560605 991636 862971 100474 453130 460526 905306 865282 489958 639715 733548 656085 472277 684248 803660 100275 710088 305324 332612 869599 904699 919446 314318 012850 492925 066718 946603 171426 713320 439553 531486 271526 578063 022740 119700 820984 430976 790930 352533 260776 018125 840383 910761 804503 853821 781869 017558 010667 927285 354333 720248 632690 186967 389753 660780 054798 287581 163425 994700 106482 864093 344238 113867 437222 219848 213998 454828 333453 387271 733609 203518 076823 024826 959649 (492 digits)/32 672324 411127 503084 917263 661715 759519 200847 501857 220216 305856 326549 023878 532533 284147 398714 249226 249076 929602 916325 768086 284457 864974 915856 716409 758761 713453 973823 360397 679899 081347 580444 754284 534352 477809 457058 900008 064083 548503 657522 304480 722473 337242 948648 338771 179206 174896 203810 429213 240336 286457 502629 250762 528315 144212 396598 411366 020275 615811 323586 181211 349130 343332 525476 422179 986192 441682 882524 908056 079106 836731 233143 255204 464367 292260 222814 496434 354846 759437 933490 964072 513928 191377 (494 digits), a[938] = 3
                                                                                      A[939]/B[939] = 8 492630 628869 158272 670860 418317 958840 578587 321175 041360 383892 841045 601066 437948 777306 426371 217366 612287 251379 670445 931514 537853 057572 189569 545489 392846 062748 833774 632050 697721 340386 029486 494212 141761 125347 302817 963520 147677 546223 668178 259874 891756 068984 799604 861839 022241 472371 471162 544390 411140 418589 205823 936944 477667 729196 741814 271353 273943 994472 217482 503540 611364 345261 904177 262038 046907 030773 465109 887015 344304 349748 292778 853091 308986 529240 621016 847348 008616 565524 621516 808154 347622 175238 (493 digits)/825 428711 174092 490018 409548 307510 806073 880894 538177 726514 435293 488076 293124 775446 509341 345559 459103 915003 793947 514259 714486 630402 763427 229330 305627 951578 786783 056806 259692 370082 619743 688126 644932 652228 966731 897655 238622 800632 601487 485523 334867 025335 846851 942902 647450 191686 763643 907851 431382 343546 213908 846023 920356 253536 745396 655978 358702 329083 855107 447409 781983 113676 407317 253247 664631 704026 568019 297701 986318 510409 384887 627877 430126 008381 400095 419964 438823 932123 188796 443237 828103 077554 243525 (495 digits), a[939] = 25
                                                                                      A[940]/B[940] = 204 159292 509307 805325 505012 218747 980624 429026 253870 553255 205065 048065 526068 963901 115881 138216 082081 184852 672827 824251 012434 380751 065981 353329 192021 138393 811296 343204 038816 650012 088711 021993 873941 895192 075054 214234 295910 257581 548921 567764 508523 980208 678375 310217 505120 964772 127845 660434 326145 885495 886524 850536 291171 317847 282590 821100 523146 501941 221666 939828 717664 859711 676039 361034 343711 413349 901989 157337 394851 127397 738197 140559 911413 635524 915773 359232 669805 594069 306200 119921 472527 367759 165361 (495 digits)/19842 961392 589347 263526 746423 041975 105292 342316 418122 656562 752900 040380 058873 143249 508339 692141 267720 209167 984343 258558 915765 414124 187228 419784 051480 596652 596247 337173 593014 561881 955196 095484 232668 187847 679375 000784 626955 279265 984203 310082 341289 330533 661689 578311 877575 779688 502349 992244 782389 485445 420269 807203 339312 613197 033732 140079 020221 918288 138390 061420 948806 077364 118946 603420 373340 882830 074146 027372 579700 328932 074034 302201 578228 665520 894550 301961 028208 725803 290552 571198 838546 375230 035977 (497 digits), a[940] = 24
                                                                                      A[941]/B[941] = 212 651923 138176 963598 175872 637065 939465 007613 575045 594615 588957 889111 127135 401849 893187 564587 299447 797139 924207 494696 943948 918604 123553 542898 737510 531239 874045 176978 670867 347733 429097 051480 368154 036953 200401 517052 259430 405259 095145 235942 768398 871964 747360 109822 366959 987013 600217 131596 870536 296636 305114 056360 228115 795515 011787 562914 794499 775885 216139 157311 221205 471076 021301 265211 605749 460256 932762 622447 281866 471702 087945 433338 764504 944511 445013 980249 517153 602685 871724 741438 280681 715381 340599 (495 digits)/20668 390103 763439 753545 155971 349485 911366 223210 956300 383077 188193 528456 351997 918696 017681 037700 726824 124171 778290 772818 630252 044526 950655 649114 357108 548231 383030 393979 852706 931964 574939 783610 877600 840076 646106 898439 865578 079898 585690 795605 676156 355869 508541 521214 525025 971375 265993 900096 213771 828991 634178 653227 259668 866733 779128 796057 378924 247371 993497 508830 730789 191040 526263 856668 037972 586856 642165 325074 566018 839341 458921 930079 008354 673902 294645 721925 467032 657926 479349 014436 666649 452784 279502 (497 digits), a[941] = 1
                                                                                      A[942]/B[942] = 1267 418908 200192 623316 384375 404077 677949 467094 129098 526333 149854 493621 161745 973150 581818 961152 579320 170552 293865 297735 732178 973771 683749 067822 879573 794593 181522 228097 393153 388679 234196 279395 714712 079958 077061 799495 593062 283877 024647 747478 350518 340032 415175 859329 339920 899840 128931 318418 678827 368677 412095 132337 431750 295422 341528 635674 495645 381367 302362 726384 823692 215091 782545 687092 372458 714634 565802 269573 804183 485908 177924 307253 733938 358082 140843 260480 255573 607498 664823 827112 875935 944665 868356 (496 digits)/123184 911911 406546 031252 526279 789404 662123 458371 199624 571948 693867 682661 818862 736729 596744 880644 901840 830026 875797 122652 067025 636758 940506 665355 837023 337809 511399 307072 856549 221704 829895 013538 620672 388230 909909 492983 954845 678758 912657 288110 722071 109881 204397 184384 502705 636564 832319 492725 851248 630403 591163 073339 637656 946865 929376 120365 914843 155148 105877 605574 602752 032566 750265 886760 563203 817113 284972 652745 409794 525639 368643 952596 620002 035032 367778 911588 363372 015435 687297 643382 171793 639151 433487 (498 digits), a[942] = 5
                                                                                      A[943]/B[943] = 10352 003188 739717 950129 250875 869687 363060 744366 607833 805280 787793 838080 421103 187054 547739 253807 934009 161558 275129 876582 801380 708777 593546 085481 774100 887985 326223 001757 816094 457167 302667 286646 085850 676617 816895 913017 003928 676275 292327 215769 572545 592224 068766 984457 086327 185734 631667 678946 301155 246055 601875 115059 682118 158893 744016 648310 759662 826823 635040 968389 810743 191810 281666 761950 585419 177333 459180 779037 715334 358967 511339 891368 636011 809168 571760 064091 561742 462675 190315 358341 288169 272708 287447 (497 digits)/1 006147 685395 015808 003565 366209 664723 208353 890180 553296 958666 739134 989750 902899 812532 791640 082859 941550 764386 784667 754035 166457 138598 474708 971961 053295 250707 474224 850562 705100 705603 214099 891919 842979 945923 925382 842311 504343 509969 886949 100491 452725 234919 143718 996290 546671 063893 924549 841903 023760 872220 363483 239944 360924 441661 214137 758984 697669 488556 840518 353427 552805 451574 528390 950752 543603 123762 921946 547037 844375 044456 408073 550851 968370 954161 236877 014632 374008 781411 977730 161494 040998 565995 747398 (499 digits), a[943] = 8
                                                                                      A[944]/B[944] = 84083 444418 117936 224350 391382 361576 582435 422026 991768 968579 452205 198264 530571 469586 963732 991616 051393 463018 494904 310398 143224 643992 432117 751677 072380 898475 791306 242159 921909 046017 655534 572564 401517 492900 612229 103631 624491 694079 363265 473634 930883 077824 965311 734986 030538 385717 182272 749989 088069 337122 227096 052814 888695 566572 293661 822160 572947 995956 382690 473503 309637 749574 035879 782697 055812 133302 239248 501875 526858 357648 268643 438202 822032 831430 714923 773212 749513 308900 187346 693843 181290 126332 167932 (497 digits)/8 172366 395071 533010 059775 455957 107190 328954 579815 626000 241282 606947 600669 042061 236991 929865 543524 434246 945121 153139 154933 398682 745546 738178 441044 263385 343469 305198 111574 497354 866530 542694 148897 364511 955622 312972 231475 989593 758518 008250 092042 343872 989234 354149 154708 876074 147716 228718 227950 041335 608166 499028 992894 525052 480155 642478 192243 496199 063602 830024 432995 025195 645162 977393 492780 912028 807216 660545 029048 164794 881290 633232 359412 366969 668322 262795 028647 355442 266731 509138 935334 499782 167117 412671 (499 digits), a[944] = 8
                                                                                      A[945]/B[945] = 1 860187 780387 334314 885837 861287 824372 176640 028960 426751 114028 736308 199900 093675 517967 749865 069361 064665 347965 163024 705341 952322 876611 100136 622377 366480 654452 734960 329276 098093 469555 724427 883062 919235 520431 285936 192912 742745 946021 284167 635738 051973 304373 305625 154149 758171 671512 641668 178706 238680 662744 597988 276987 233420 623484 204576 735843 364518 737864 054231 385462 622773 682439 071021 981285 813286 109982 722647 820299 306218 227229 421495 531830 720734 100644 300083 074772 051035 258479 311942 622891 276552 052015 981951 (499 digits)/180 798208 376968 742029 318625 397266 022910 445354 646124 325302 266884 091982 204469 828247 026355 248682 040397 494983 557052 153729 162569 937477 540626 714634 674934 847772 807032 188583 305201 646907 769275 153371 167661 862242 969614 810771 934783 275406 197366 068451 125423 017930 998074 935000 399885 820302 313650 956350 856803 933144 251883 342121 083623 912079 005085 348657 988341 614048 887819 101055 879318 107109 645160 031047 791932 608236 882529 453937 186097 469862 432850 339185 457924 041703 657251 018367 644874 193738 649505 178786 738853 036206 242578 826160 (501 digits), a[945] = 22
                                                                                      A[946]/B[946] = 3 804459 005192 786565 996026 113958 010320 935715 479947 845271 196636 924821 598064 717922 505522 463463 130338 180724 158948 820953 721082 047870 397214 632390 996431 805342 207381 261226 900712 118095 985129 104390 338690 239988 533763 184101 489457 109983 586121 931600 745111 034829 686571 576562 043285 546881 728742 465609 107401 565430 662611 423072 606789 355536 813540 702815 293847 301985 471684 491153 244428 555185 114452 177923 745268 682384 353267 684544 142474 139294 812107 111634 501864 263501 032719 315089 922756 851583 825858 811231 939625 734394 230364 131834 (499 digits)/369 768783 149009 017068 697026 250489 153011 219663 872064 276604 775050 790912 009608 698555 289702 427229 624319 424214 059225 460597 480073 273637 826800 167447 790913 958930 957533 682364 721977 791170 405080 849436 484221 088997 894851 934516 101042 540406 153250 145152 342888 379734 985384 224149 954480 516678 775018 141419 941557 907624 111933 183271 160142 349210 490326 339794 168926 724296 839241 032136 191631 239414 935483 039489 076646 128502 572275 568419 401243 104519 746991 311603 275260 450376 982824 299530 318395 742919 565741 866712 413040 572194 652275 064991 (501 digits), a[946] = 2
                                                                                      A[947]/B[947] = 5 664646 785580 120880 881863 975245 834693 112355 508908 272022 310665 661129 797964 811598 023490 213328 199699 245389 506913 983978 426424 000193 273825 732527 618809 171822 861833 996187 229988 216189 454684 828818 221753 159224 054194 470037 682369 852729 532143 215768 380849 086802 990944 882187 197435 305053 400255 107277 286107 804111 325356 021060 883776 588957 437024 907392 029690 666504 209548 545384 629891 177958 796891 248945 726554 495670 463250 407191 962773 445513 039336 533130 033694 984235 133363 615172 997528 902619 084338 123174 562517 010946 282380 113785 (499 digits)/550 566991 525977 759098 015651 647755 175921 665018 518188 601907 041934 882894 214078 526802 316057 675911 664716 919197 616277 614326 642643 211115 367426 882082 465848 806703 764565 870948 027179 438078 174356 002807 651882 951240 864466 745288 035825 815812 350616 213603 468311 397665 983459 159150 354366 336981 088669 097770 798361 840768 363816 525392 243766 261289 495411 688452 157268 338345 727060 133192 070949 346524 580643 070536 868578 736739 454805 022356 587340 574382 179841 650788 733184 492080 640075 317897 963269 936658 215247 045499 151893 608400 894853 891151 (501 digits), a[947] = 1
                                                                                      A[948]/B[948] = 20 798399 361933 149208 641618 039695 514400 272782 006672 661338 128633 908210 991959 152716 575993 103447 729435 916892 679690 772889 000354 048450 218691 829973 852859 320810 792883 249788 590676 766664 349183 590845 003949 717660 696346 594214 536566 668172 182551 578905 887658 295238 659406 223123 635591 462041 929507 787440 965724 977764 638679 486255 258119 122409 124615 424991 382919 301498 100330 127307 134102 089061 505125 924760 924932 169395 743018 906120 030794 475833 930116 711024 602949 216206 432810 160608 915343 559441 078873 180755 627176 767233 077504 473189 (500 digits)/2021 469757 726942 294362 743981 193754 680776 214719 426630 082325 900855 439594 651844 278962 237875 454964 618470 181806 908058 303577 408002 906983 929080 813695 188460 379042 251231 295208 803516 105404 928148 857859 439869 942720 488252 170380 208519 987843 205098 785962 747822 572732 935761 701601 017579 527622 041025 434732 336643 429929 203382 759447 891441 133078 976561 405150 640731 739334 020421 431712 404479 278988 677412 251099 682382 338720 936690 635489 163264 827666 286516 263969 474813 926618 903050 253224 208205 552894 211483 003209 868721 397397 336836 738444 (502 digits), a[948] = 3
                                                                                      A[949]/B[949] = 484 027832 110042 552679 639078 888242 665899 386341 662379 482799 269245 549982 613025 324079 271331 592625 976725 333921 139801 760425 434567 114548 303737 821926 234573 550471 098148 741324 815553 849469 485907 418253 312596 665420 070166 136972 023403 220689 730829 530603 796989 877292 157288 014030 816038 932017 778934 218419 497782 292698 014984 204931 820516 404367 303179 682193 836834 600960 517141 473448 714239 226373 414787 518446 999994 391772 552685 247952 671046 389693 432020 886695 901526 956983 087997 309178 050430 769763 898421 280553 987582 657307 064982 997132 (501 digits)/47044 371419 245650 529441 127219 104112 833774 603565 330680 495402 761609 993571 206496 942933 787193 140097 889531 100756 501618 596607 026710 071745 736285 597071 800437 524675 542885 660750 508049 862391 521779 733574 768891 633812 094266 664032 831785 536206 067888 290746 668230 570523 505978 295973 758695 472288 032254 096614 541160 729140 041619 992693 746912 322105 956324 006916 894098 343028 196753 062577 373972 763264 161124 845829 563372 527320 998689 638607 342431 610706 769715 722086 653904 804315 410231 142054 751997 653225 079356 119326 132485 748539 642098 875363 (503 digits), a[949] = 23
                                                                                      A[950]/B[950] = 504 826231 471975 701888 280696 927938 180299 659123 669052 144137 397879 458193 604984 476795 847324 696073 706161 250813 819492 533314 434921 162998 522429 651900 087432 871281 891031 991113 406230 616133 835091 009098 316546 383080 766512 731186 559969 888861 913381 109509 684648 172530 816694 237154 451630 394059 708442 005860 463507 270462 653663 691187 078635 526776 427795 107185 219753 902458 617471 600755 848341 315434 919913 443207 924926 561168 295704 154072 701840 865527 362137 597720 504476 173189 520807 469786 965774 329204 977294 461309 614759 424540 142487 470321 (501 digits)/49065 841176 972592 823803 871200 297867 514550 818284 757310 577728 662465 433165 858341 221896 025068 595062 508001 282563 409676 900184 434712 978729 665366 410766 988897 903717 794116 955959 311565 967796 449928 591434 208761 576532 582518 834413 040305 524049 272987 076709 416053 143256 441739 997574 776274 999910 073279 531346 877804 159069 245002 752141 638353 455184 932885 412067 534830 082362 217174 494289 778452 042252 838537 096929 245754 866041 935380 274096 505696 438373 056231 986056 128718 730934 313281 395278 960203 206119 290839 122536 001207 145936 978935 613807 (503 digits), a[950] = 1
                                                                                      A[951]/B[951] = 988 854063 582018 254567 919775 816180 846199 045465 331431 626936 667125 008176 218009 800875 118656 288699 682886 584734 959294 293739 869488 277546 826167 473826 322006 421752 989180 732438 221784 465603 320998 427351 629143 048500 836678 868158 583373 109551 644210 640113 481638 049822 973982 251185 267669 326077 487376 224279 961289 563160 668647 896118 899151 931143 730974 789379 056588 503419 134613 074204 562580 541808 334700 961654 924920 952940 848389 402025 372887 255220 794158 484416 406003 130172 608804 778965 016205 098968 875715 741863 602342 081847 207470 467453 (501 digits)/96110 212596 218243 353244 998419 401980 348325 421850 087991 073131 424075 426737 064838 164829 812261 735160 397532 383319 911295 496791 461423 050475 401652 007838 789335 428393 337002 616709 819615 830187 971708 325008 977653 210344 676785 498445 872091 060255 340875 367456 084283 713779 947718 293548 534970 472198 105533 627961 418964 888209 286622 744835 385265 777290 889209 418984 428928 425390 413927 556867 152424 805516 999661 942758 809127 393362 934069 912703 848128 049079 825947 708142 782623 535249 723512 537333 712200 859344 370195 241862 133692 894476 621034 489170 (503 digits), a[951] = 1
                                                                                      A[952]/B[952] = 1493 680295 053993 956456 200472 744119 026498 704589 000483 771074 065004 466369 822994 277670 965980 984773 389047 835548 778786 827054 304409 440545 348597 125726 409439 293034 880212 723551 628015 081737 156089 436449 945689 431581 603191 599345 143342 998413 557591 749623 166286 222353 790676 488339 719299 720137 195818 230140 424796 833623 322311 587305 977787 457920 158769 896564 276342 405877 752084 674960 410921 857243 254614 404862 849847 514109 144093 556098 074728 120748 156296 082136 910479 303362 129612 248751 981979 428173 853010 203173 217101 506387 349957 937774 (502 digits)/145176 053773 190836 177048 869619 699847 862876 240134 845301 650860 086540 859902 923179 386725 837330 330222 905533 665883 320972 396975 896136 029205 067018 418605 778233 332111 131119 572669 131181 797984 421636 916443 186414 786877 259304 332858 912396 584304 613862 444165 500336 857036 389458 291123 311245 472108 178813 159308 296769 047278 531625 496977 023619 232475 822094 831051 963758 507752 631102 051156 930876 847769 838199 039688 054882 259404 869450 186800 353824 487452 882179 694198 911342 266184 036793 932612 672404 065463 661034 364398 134900 040413 599970 102977 (504 digits), a[952] = 1
                                                                                      A[953]/B[953] = 2482 534358 636012 211024 120248 560299 872697 750054 331915 398010 732129 474546 041004 078546 084637 273473 071934 420283 738081 120794 173897 718092 174764 599552 731445 714787 869393 455989 849799 547340 477087 863801 574832 480082 439870 467503 726716 107965 201802 389736 647924 272176 764658 739524 986969 046214 683194 454420 386086 396783 990959 483424 876939 389063 889744 685943 332930 909296 886697 749164 973502 399051 589315 366517 774768 467049 992482 958123 447615 375968 950454 566553 316482 433534 738417 027716 998184 527142 728725 945036 819443 588234 557428 405227 (502 digits)/241286 266369 409079 530293 868039 101828 211201 661984 933292 723991 510616 286639 988017 551555 649592 065383 303066 049203 232267 893767 357559 079680 468670 426444 567568 760504 468122 189378 950797 628172 393345 241452 164067 997221 936089 831304 784487 644559 954737 811621 584620 570816 337176 584671 846215 944306 284346 787269 715733 935487 818248 241812 408885 009766 711304 250036 392686 933143 045029 608024 083301 653286 837860 982446 864009 652767 803520 099504 201952 536532 708127 402341 693965 801433 760306 469946 384604 924808 031229 606260 268592 934890 221004 592147 (504 digits), a[953] = 1
                                                                                      A[954]/B[954] = 3976 214653 690006 167480 320721 304418 899196 454643 332399 169084 797133 940915 863998 356217 050618 258246 460982 255832 516867 947848 478307 158637 523361 725279 140885 007822 749606 179541 477814 629077 633177 300251 520521 911664 043062 066848 870059 106378 759394 139359 814210 494530 555335 227864 706268 766351 879012 684560 810883 230407 313271 070730 854726 846984 048514 582507 609273 315174 638782 424125 384424 256294 843929 771380 624615 981159 136576 514221 522343 496717 106750 648690 226961 736896 868029 276468 980163 955316 581736 148210 036545 094621 907386 343001 (502 digits)/386462 320142 599915 707342 737658 801676 074077 902119 778594 374851 597157 146542 911196 938281 486922 395606 208599 715086 553240 290743 253695 108885 535688 845050 345802 092615 599241 762048 081979 426156 814982 157895 350482 784099 195394 164163 696884 228864 568600 255787 084957 427852 726634 875795 157461 416414 463159 946578 012502 982766 349873 738789 432504 242242 533399 081088 356445 440895 676131 659181 014178 501056 676060 022134 918891 912172 672970 286304 555777 023985 590307 096540 605308 067617 797100 402559 057008 990271 692263 970658 403492 975303 820974 695124 (504 digits), a[954] = 1
                                                                                      A[955]/B[955] = 26339 822280 776049 215906 044576 386813 267876 477914 326310 412519 514933 120041 224994 215848 388346 822951 837827 955278 839288 807885 043740 669917 314934 951227 576755 761724 367030 533238 716687 321806 276151 665310 697963 950066 698242 868596 947070 746237 758167 225895 533187 239360 096670 106713 224581 644325 957270 561785 251385 779227 870585 907810 005300 470968 180832 180988 988570 800344 719392 293917 280047 936820 652893 994801 522464 354004 811942 043452 581676 356271 590958 458694 678252 854915 946592 686530 879168 259042 219142 834297 038714 155966 001746 463233 (503 digits)/2 560060 187225 008573 774350 293991 911884 655669 074703 604858 973101 093559 165897 455199 181244 571126 439020 554664 339722 551709 638226 879729 732993 682803 496746 642381 316198 063572 761667 442674 185113 283238 188824 266964 701817 108454 816286 965793 017747 366339 346344 094365 137932 696985 839442 790984 442793 063306 466737 790751 832085 917490 674549 003910 463221 911698 736566 531359 578517 101819 563110 168372 659626 894221 115256 377361 125803 841341 817331 536614 680446 249969 981585 325814 207140 542908 885300 726658 866438 184813 430210 689550 786713 146852 762891 (505 digits), a[955] = 6
                                                                                      A[956]/B[956] = 135675 326057 570252 247010 543603 238485 238578 844214 963951 231682 371799 541121 988969 435458 992352 373005 650122 032226 713311 987273 697010 508224 098036 481417 024663 816444 584758 845735 061251 238109 013935 626805 010341 661997 534276 409833 605412 837567 550230 268837 480146 691331 038685 761430 829176 987981 665365 493487 067812 126546 666200 609780 881229 201824 952675 487452 552127 316898 235743 893711 784663 940398 108399 745388 236937 751183 196286 731484 430725 278075 061542 942163 618226 011476 600992 709123 376005 250527 677450 319695 230115 874451 916118 659166 (504 digits)/13 186763 256267 642784 579094 207618 361099 352423 275637 802889 240357 064952 976030 187192 844504 342554 590708 981921 413699 311788 481877 652343 773853 949706 328783 557708 673605 917105 570385 295350 351723 231173 102016 685306 293184 737668 245598 525849 317601 400296 987507 556783 117516 211564 073009 112383 630379 779692 280266 966262 143195 937327 111534 452056 558352 091892 763921 013243 333481 185229 474731 856041 799191 147165 598416 805697 541191 879679 372962 238850 426216 840157 004467 234379 103320 511644 829062 690303 322462 616331 121711 851246 908869 555238 509579 (506 digits), a[956] = 5
                                                                                      A[957]/B[957] = 569041 126511 057058 203948 218989 340754 222191 854774 182115 339249 002131 284529 180871 957684 357756 314974 438316 084185 692536 756979 831782 702813 707080 876895 675411 027502 706065 916178 961692 274242 331894 172530 739330 598056 835348 507931 368722 096507 959088 301245 453774 004684 251413 152436 541289 596252 618732 535733 522634 285414 535388 346933 530217 278267 991534 130799 197080 067937 662367 868764 418703 698413 086492 976354 470215 358737 597088 969390 304577 468571 837130 227349 151156 900822 350563 523024 383189 261152 928944 113077 959177 653773 666221 099897 (504 digits)/55 307113 212295 579712 090727 124465 356282 065362 177254 816415 934529 353371 070018 203970 559261 941344 801856 482349 994519 798863 565737 489104 828409 481628 811880 873216 010621 731995 043208 624075 592006 207930 596891 008189 874556 059127 798681 069190 288152 967527 296374 321497 607997 543242 131479 240518 964312 182075 587805 655800 404869 666799 120686 812136 696630 279269 792250 584332 912441 842737 462037 592539 856391 482883 508923 600151 290571 360059 309180 492016 385313 610597 999454 263330 620422 589488 201551 487872 156288 650137 917058 094538 422191 367806 801207 (506 digits), a[957] = 4
                                                                                      A[958]/B[958] = 704716 452568 627310 450958 762592 579239 460770 698989 146066 570931 373930 825651 169841 393143 350108 687980 088438 116412 405848 744253 528793 211037 805117 358312 700074 843947 290824 761914 022943 512351 345829 799335 749672 260054 369624 917764 974134 934075 509318 570082 933920 696015 290098 913867 370466 584234 284098 029220 590446 411961 201588 956714 411446 480092 944209 618251 749207 384835 898111 762476 203367 638811 194892 721742 707153 109920 793375 700874 735302 746646 898673 169512 769382 912298 951556 232147 759194 511680 606394 432773 189293 528225 582339 759063 (504 digits)/68 493876 468563 222496 669821 332083 717381 417785 452892 619305 174886 418324 046048 391163 403766 283899 392565 464271 408219 110652 047615 141448 602263 431335 140664 430924 684227 649100 613593 919425 943729 439103 698907 693496 167740 796796 044279 595039 605754 367824 283881 878280 725513 754806 204488 352902 594691 961767 868072 622062 548065 604126 232221 264193 254982 371162 556171 597576 245923 027966 936769 448581 655582 630049 107340 405848 831763 239738 682142 730866 811530 450755 003921 497709 723743 101133 030614 178175 478751 266469 038769 945785 331060 923045 310786 (506 digits), a[958] = 1
                                                                                      A[959]/B[959] = 1 273757 579079 684368 654906 981581 919993 682962 553763 328181 910180 376062 110180 350713 350827 707865 002954 526754 200598 098385 501233 360575 913851 512198 235208 375485 871449 996890 678092 984635 786593 677723 971866 489002 858111 204973 425696 342857 030583 468406 871328 387694 700699 541512 066303 911756 180486 902830 564954 113080 697375 736977 303647 941663 758360 935743 749050 946287 452773 560479 631240 622071 337224 281385 698097 177368 468658 390464 670265 039880 215218 735803 396861 920539 813121 302119 755172 142383 772833 535338 545851 148471 181999 248560 858960 (505 digits)/123 800989 680858 802208 760548 456549 073663 483147 630147 435721 109415 771695 116066 595133 963028 225244 194421 946621 402738 909515 613352 630553 430672 912963 952545 304140 694849 381095 656802 543501 535735 647034 295798 701686 042296 855923 842960 664229 893907 335351 580256 199778 333511 298048 335967 593421 559004 143843 455878 277862 952935 270925 352908 076329 951612 650432 348422 181909 158364 870704 398807 041121 511974 112932 616264 006000 122334 599797 991323 222883 196844 061353 003375 761040 344165 690621 232165 666047 635039 916606 955828 040323 753252 290852 111993 (507 digits), a[959] = 1
                                                                                      A[960]/B[960] = 18 537322 559684 208471 619656 504739 459151 022246 451675 740613 313456 638800 368176 079828 304731 260218 729343 462996 924785 783245 761520 576856 004958 975892 651229 956877 044247 247294 255215 807844 524662 833965 405466 595712 273611 239252 877513 774133 362244 067014 768680 361646 505808 871267 842122 135053 111050 923725 938578 173576 175221 519271 207785 594739 097146 044622 104964 997231 723665 744826 599844 912366 359951 134292 495103 190311 671138 259881 084585 293625 759709 199920 725579 656940 295997 181232 804557 752567 331350 101134 074689 267890 076215 062191 784503 (506 digits)/1801 707732 000586 453419 317499 723770 748670 181852 274956 719400 706707 222055 670980 723038 886161 437318 114472 716971 046563 843870 634551 969196 631684 212830 476298 688894 412118 984439 808829 528447 444028 497583 840089 517100 759896 779729 845728 894258 120457 062746 407468 675177 394671 927482 908034 660804 420749 975576 250368 512143 889159 397081 172934 332812 577559 477215 434082 144304 463031 217828 520068 024282 823220 211105 735036 489850 544447 636910 560667 851231 567347 309697 051182 152274 542062 769830 280933 502842 369310 098966 420362 510317 876592 994974 878688 (508 digits), a[960] = 14
                                                                                      A[961]/B[961] = 149 572338 056553 352141 612159 019497 593201 860934 167169 253088 417833 486465 055588 989339 788677 789614 837702 230729 598884 364351 593397 975423 953523 319339 445048 030502 225427 975244 719819 447391 983896 349447 215599 254701 047001 118996 445806 535923 928536 004525 020771 280866 747170 511654 803280 992181 068894 292638 073579 501690 099147 891146 965932 699576 535529 292720 588770 924141 242099 519092 429999 921002 216833 355725 658922 699861 837764 469513 346947 388886 292892 335169 201499 176062 181098 751982 191634 162922 423634 344411 143365 291591 791719 746095 134984 (507 digits)/14537 462845 685550 429563 300546 246715 063024 937965 829801 190926 763073 548140 483912 379445 052319 723789 110203 682389 775249 660480 689768 384126 484146 615607 762934 815295 991801 256614 127438 771081 087963 627705 016514 838492 121471 093762 608791 818294 857563 837322 840005 601197 490886 717911 600244 879856 925003 948453 458826 375014 066210 447574 736382 738830 572088 468155 821079 336344 862614 613332 559351 235384 097735 801778 496555 924804 477915 695082 476666 032735 735622 538929 412832 979236 680667 849263 479633 688786 589520 708338 318728 122866 765996 250651 141497 (509 digits), a[961] = 8
                                                                                      A[962]/B[962] = 168 109660 616237 560613 231815 524237 052352 883180 618844 993701 731290 125265 423765 069168 093409 049833 567045 693726 523670 147597 354918 552279 958482 295232 096277 987379 269675 222538 975035 255236 508559 183412 621065 850413 320612 358249 323320 310057 290780 071539 789451 642513 252979 382922 645403 127234 179945 216364 012157 675266 274369 410418 173718 294315 632675 337342 693735 921372 965765 263919 029844 833368 576784 490018 154025 890173 508902 729394 431532 682512 052601 535089 927078 833002 477095 933214 996191 915489 754984 445545 218054 559481 867934 808286 919487 (507 digits)/16339 170577 686136 882982 618045 970485 811695 119818 104757 910327 469780 770196 154893 102483 938481 161107 224676 399360 821813 504351 324320 353323 115830 828438 239233 504190 403920 241053 936268 299528 531992 125288 856604 355592 881367 873492 454520 712552 978020 900069 247474 276374 885558 645394 508279 540661 345753 924029 709194 887157 955369 844655 909317 071643 149647 945371 255161 480649 325645 831161 079419 259666 920956 012884 231592 414655 022363 331993 037333 883967 302969 848626 464015 131511 222730 619093 760567 191628 958830 807304 739090 633184 642589 245626 020185 (509 digits), a[962] = 1
                                                                                      A[963]/B[963] = 317 681998 672790 912754 843974 543734 645554 744114 786014 246790 149123 611730 479354 058507 882086 839448 404747 924456 122554 511948 948316 527703 912005 614571 541326 017881 495103 197783 694854 702628 492455 532859 836665 105114 367613 477245 769126 845981 219316 076064 810222 923380 000149 894577 448684 119415 248839 509002 085737 176956 373517 301565 139650 993892 168204 630063 282506 845514 207864 783011 459844 754370 793617 845743 812948 590035 346667 198907 778480 071398 345493 870259 128578 009064 658194 685197 187826 078412 178618 789956 361419 851073 659654 554382 054471 (507 digits)/30876 633423 371687 312545 918592 217200 874720 057783 934559 101254 232854 318336 638805 481928 990800 884896 334880 081750 597063 164832 014088 737449 599977 444046 002168 319486 395721 497668 063707 070609 619955 752993 873119 194085 002838 967255 063312 530847 835584 737392 087479 877572 376445 363306 108524 420518 270757 872483 168021 262172 021580 292230 645699 810473 721736 413527 076240 816994 188260 444493 638770 495051 018691 814662 728148 339459 500279 027075 513999 916703 038592 387555 876848 110747 903398 468357 240200 880415 548351 515643 057818 756051 408585 496277 161682 (509 digits), a[963] = 1
                                                                                      A[964]/B[964] = 3662 611646 016937 600916 515535 505318 153455 068443 265001 708393 371649 854300 696659 712754 796364 283766 019272 862743 871769 779035 786400 357022 990544 055519 050864 184075 715810 398159 618436 984149 925570 044870 824382 006671 364360 607952 783715 615850 703256 908252 701903 799693 254628 223274 580928 440801 917179 815386 955266 621786 383059 727634 709879 227129 482926 268038 801311 222029 252277 877045 088137 131447 306580 793200 096460 380562 322241 917379 994813 467893 853034 107940 341436 932713 717237 470384 062278 778023 719791 135065 193672 921292 124134 906489 518668 (508 digits)/355982 138234 774697 320987 722560 359695 433615 755441 384908 024124 031178 271899 181753 403702 837290 894966 908357 298617 389508 317503 479296 465268 715582 712944 263085 018540 756856 715402 637046 076234 351505 408221 460915 490527 912596 513298 150958 551879 169453 011382 209752 929671 026457 641761 702048 166362 324090 521344 557428 771050 192753 059193 012014 986854 088748 494169 093810 467585 396510 720591 105894 705228 126565 974174 241224 148709 525432 629823 691332 967700 727486 111741 109344 349738 160113 771023 402776 876199 990697 479378 375096 949750 137029 704674 798687 (510 digits), a[964] = 11
                                                                                      A[965]/B[965] = 3980 293644 689728 513671 359510 049052 799009 812558 051015 955183 520773 466031 176013 771262 678451 123214 424020 787199 994324 290984 734716 884726 902549 670090 592190 201957 210913 595943 313291 686778 418025 577730 661047 111785 731974 085198 552842 461831 922572 984317 512126 723073 254778 117852 029612 560217 166019 324389 041003 798742 756577 029199 849530 221021 651130 898102 083818 067543 460142 660056 547981 885818 100198 638943 909408 970597 668909 116287 773293 539292 198527 978199 470014 941778 375432 155581 250104 856435 898409 925021 555092 772365 783789 460871 573139 (508 digits)/386858 771658 146384 633533 641152 576896 308335 813225 319467 125378 264032 590235 820558 885631 828091 779863 243237 380367 986571 482335 493385 202718 315560 156990 265253 338027 152578 213070 700753 146843 971461 161215 334034 684612 915435 480553 214271 082727 005037 748774 297232 807243 402903 005067 810572 586880 594848 393827 725450 033222 214333 351423 657714 797327 810484 907696 170051 284579 584771 165084 744665 200279 145257 788836 969372 488169 025711 656899 205332 884403 766078 499296 986192 460486 063512 239380 642977 756615 539048 995021 432915 705801 545615 200951 960369 (510 digits), a[965] = 1
                                                                                      A[966]/B[966] = 7642 905290 706666 114587 875045 554370 952464 881001 316017 663576 892423 320331 872673 484017 474815 406980 443293 649943 866094 070020 521117 241749 893093 725609 643054 386032 926723 994102 931728 670928 343595 622601 485429 118457 096334 693151 336558 077682 625829 892570 214030 522766 509406 341126 610541 001019 083199 139775 996270 420529 139636 756834 559409 448151 134057 166140 885129 289572 712420 537101 636119 017265 406779 432144 005869 351159 991151 033667 768107 007186 051562 086139 811451 874492 092669 625965 312383 634459 618201 060086 748765 693657 907924 367361 091807 (508 digits)/742840 909892 921081 954521 363712 936591 741951 568666 704375 149502 295210 862135 002312 289334 665382 674830 151594 678985 376079 799838 972681 667987 031142 869934 528338 356567 909434 928473 337799 223078 322966 569436 794950 175140 828031 993851 365229 634606 174490 760156 506985 736914 429360 646829 512620 753242 918938 915172 282878 804272 407086 410616 669729 784181 899233 401865 263861 752164 981281 885675 850559 905507 271823 763011 210596 636878 551144 286722 896665 852104 493564 611038 095536 810224 223626 010404 045754 632815 529746 474399 808012 655551 682644 905626 759056 (510 digits), a[966] = 1
                                                                                      A[967]/B[967] = 42194 820098 223059 086610 734737 820907 561334 217564 631104 273067 982890 067690 539381 191350 052528 158116 640489 036919 324794 641087 340303 093476 368018 298138 807462 132121 844533 566457 971935 041420 136003 690738 088192 704071 213647 550955 235632 850245 051722 447168 582279 336905 801809 823485 082317 565312 582015 023269 022355 901388 454760 813372 646577 461777 321416 728806 509464 515407 022245 345564 728576 972145 134095 799663 938755 726397 624664 284626 613828 575222 456338 408898 527274 314238 838780 285407 812023 028733 989415 225455 298921 240655 323411 297677 032174 (509 digits)/4 101063 321122 751794 406140 459717 259855 018093 656558 841342 872889 740086 900910 832120 332305 155005 154014 001210 775294 866970 481530 356793 542653 471274 506662 906945 120866 699752 855437 389749 262235 586294 008399 308785 560317 055595 449810 040419 255757 877491 549556 832161 491815 549706 239215 373676 353095 189542 969689 139844 054584 249765 404507 006363 718237 306651 917022 489360 045404 491180 593463 997464 727815 504376 603893 022355 672561 781433 090513 688662 144926 233901 554487 463876 511607 181642 291400 871750 920693 187781 367020 472978 983559 958839 729085 755649 (511 digits), a[967] = 5
                                                                                      A[968]/B[968] = 303006 645978 268079 720863 018210 300723 881804 403953 733747 575052 772653 794165 648341 823467 842512 513796 926716 908379 139656 557631 903238 896084 469221 812581 295289 310885 838458 959308 735273 960869 295621 457768 102778 046955 591867 549837 985988 029397 987887 022750 289985 881107 122075 105522 186763 958207 157304 302659 152761 730248 322962 450443 085451 680592 383974 267786 451380 897421 868137 956054 736157 822281 345450 029791 577159 435943 363801 026054 064907 033743 245930 948429 502372 074163 964131 623819 996544 835597 544107 638273 841214 378245 171803 451100 317025 (510 digits)/29 450284 157752 183642 797504 581733 755576 868607 164578 593775 259730 475819 168510 827154 615470 750418 752928 160070 106049 444873 170551 470236 466561 330064 416574 876954 202634 807704 916535 066044 058727 427024 628231 956449 097360 217200 142521 648164 424911 316931 607054 332116 179623 277304 321337 128355 224909 245739 702996 261787 186362 155444 242165 714275 811843 045796 821022 689382 069996 419546 039923 832813 000215 802459 990262 367086 344811 021175 920318 717300 866588 130875 492450 342672 391474 495122 050210 148011 077667 844216 043543 118865 540471 394523 009227 048599 (512 digits), a[968] = 7
                                                                                      A[969]/B[969] = 345201 466076 491138 807473 752948 121631 443138 621518 364851 848120 755543 861856 187723 014817 895040 671913 567205 945298 464451 198719 243541 989560 837240 110720 102751 443007 682992 525766 707209 002289 431625 148506 190970 751026 805515 100793 221620 879643 039609 469918 872265 218012 923884 929007 269081 523519 739319 325928 175117 631636 777723 263815 732029 142369 705390 996592 960845 412828 890383 301619 464734 794426 479545 829455 515915 162340 988465 310680 678735 608965 702269 357328 029646 388402 802911 909227 808567 864331 533522 863729 140135 618900 495214 748777 349199 (510 digits)/33 551347 478874 935437 203645 041451 015431 886700 821137 435118 132620 215906 069421 659274 947775 905423 906942 161280 881344 311843 652081 827030 009214 801338 923237 783899 323501 507457 771972 455793 320963 013318 636631 265234 657677 272795 592331 688583 680669 194423 156611 164277 671438 827010 560552 502031 578004 435282 672685 401631 240946 405209 646672 720639 530080 352448 738045 178742 115400 910726 633387 830277 728031 306836 594155 389442 017372 802609 010832 405963 011514 364777 046937 806548 903081 676764 341611 019761 998361 031997 410563 591844 524031 353362 738312 804248 (512 digits), a[969] = 1
                                                                                      A[970]/B[970] = 1 338611 044207 741496 143284 277054 665618 211220 268508 828303 119415 039285 379734 211510 867921 527634 529537 628334 744274 533010 153789 633864 864766 980942 144741 603543 639908 887436 536608 856900 967737 590496 903286 675690 300036 008412 852217 650850 668327 106715 432506 906781 535145 893729 892543 994008 528766 375262 280443 678114 625158 656132 241890 281539 107701 500147 257565 333917 135908 539287 860913 130362 205560 784087 518158 124904 922966 329196 958096 101113 860640 352739 020413 591311 239372 372867 351503 422248 428592 144676 229461 261621 234946 657447 697432 364622 (511 digits)/130 104326 594376 989954 408439 706086 801872 528709 627990 899129 657591 123537 376775 804979 458798 466690 473754 643912 750082 380404 126796 951326 494205 734081 186288 228652 173139 330078 232452 433424 021616 466980 538125 752153 070392 035586 919516 713915 466918 900201 076887 824949 193939 758336 002994 634449 958922 551587 721052 466680 909201 371073 182183 876194 402084 103143 035158 225608 416199 151725 940087 323646 184309 722969 772728 535412 396929 429002 952815 935189 901131 225206 633263 762319 100719 525415 075043 207297 072750 940208 275233 894399 112565 454611 224165 461343 (513 digits), a[970] = 3
                                                                                      A[971]/B[971] = 3 022423 554491 974131 094042 307057 452867 865579 158536 021458 086950 834114 621324 610744 750660 950309 730988 823875 433847 530471 506298 511271 719094 799124 400203 309838 722825 457865 598984 421010 937764 612618 955079 542351 351098 822340 805228 523322 216297 253040 334932 685828 288304 711344 714095 257098 581052 489843 886815 531346 881954 089987 747596 295107 357772 705685 511723 628679 684645 968959 023445 725459 205548 047720 865771 765725 008273 646859 226872 880963 330246 407747 398155 212268 867147 548646 612234 653064 721515 822875 322651 663378 088793 810110 143642 078443 (511 digits)/293 760000 667628 915346 020524 453624 619176 944120 077119 233377 447802 462980 822973 269233 865372 838804 854451 449106 381509 072651 905675 729682 997626 269501 295814 241203 669780 167614 236877 322641 364195 947279 712882 769540 798461 343969 431365 116414 614506 994825 310386 814176 059318 343682 566541 770931 495849 538458 114790 334993 059349 147356 011040 473028 334248 558734 808361 629958 947799 214178 513562 477570 096650 752776 139612 460266 811231 660614 916464 276342 813776 815190 313465 331187 104520 727594 491697 434356 143862 912413 961031 380642 749162 262585 186643 726934 (513 digits), a[971] = 2
                                                                                      A[972]/B[972] = 838 549935 638484 575809 193003 331969 110016 976647 182986 772193 204796 089035 486651 387806 801004 763430 013441 841829 920040 473617 398477 256131 054026 338401 001058 428869 862560 716207 455293 476930 728535 285947 460319 907014 554409 796815 900518 611104 582666 198888 208860 881217 395550 936215 696930 210315 480306 062018 928345 861200 926441 582738 326064 026277 210740 975034 005010 478189 782841 940937 355379 082562 142370 002767 336937 230732 214766 509202 801884 127956 338895 298768 309407 389787 439243 347978 940502 321176 288475 081140 603972 017351 830832 057957 486288 093333 (513 digits)/81501 624511 527586 540802 093713 360106 313886 049970 990018 544682 698873 369225 340371 382760 167074 815635 156806 046380 428095 504981 998974 073516 836682 385940 126833 042068 702245 759221 847470 805081 903893 863461 006652 914954 244184 315119 407653 960763 685356 466812 054035 351717 625120 958406 935065 182474 309244 704485 517975 259758 348915 188688 240394 905042 988934 872684 951329 724236 956581 479174 196893 610562 956568 241960 445380 029319 108099 419334 813420 482149 317309 032923 463160 501147 052961 069089 275232 523948 922777 678875 480926 332440 630512 190707 924477 822061 (515 digits), a[972] = 277
                                                                                      A[973]/B[973] = 841 572359 192976 549940 287045 639026 562884 842226 341522 793651 291746 923150 107975 998551 551665 713739 744430 665705 353888 004088 904775 767402 773121 137525 401261 738708 585386 174073 054277 897941 666299 898566 415399 449365 905508 619156 705747 134426 798963 451928 543793 567045 683855 647560 411025 467414 061358 551862 815161 392547 808395 672726 073660 321384 568513 680719 516734 106869 467487 909896 378824 808021 347918 050488 202708 996457 223040 156062 028757 008919 669141 706515 707562 602056 306390 896625 552736 974241 009990 904015 926623 680729 919625 868067 629930 171776 (513 digits)/81795 384512 195215 456148 114237 813730 933062 994091 067137 778060 146675 832206 163344 651994 032447 654440 011257 495486 809604 577633 904649 803199 834308 655441 422647 283272 372025 926836 084348 127723 268089 810740 719535 684495 042645 659088 839019 077178 299863 461637 364422 165893 684439 302089 501606 953405 805094 242943 632765 594751 408264 336044 251435 378071 323183 431419 759691 354195 904380 693352 710456 088133 053218 994736 584992 489585 919331 079949 729884 758492 131085 848113 776625 832334 157481 796683 766929 958305 066640 591289 441957 713083 379674 453293 111121 548995 (515 digits), a[973] = 1
                                                                                      A[974]/B[974] = 8412 701168 375273 525271 776414 083208 175980 556684 256691 915054 830518 397386 458435 374770 765996 187087 713317 833178 105032 510417 541459 162756 012116 576129 612414 077247 131036 282864 943794 558405 725234 373045 198914 951307 703987 369226 252242 820945 773337 266245 103002 984628 550251 764259 396159 417042 032533 028784 264798 394131 202002 637272 989006 918738 327364 101509 655617 440014 990233 130004 764802 354754 273632 457161 161318 198847 222127 913761 060697 208233 361170 657409 677470 808294 196761 417608 915135 089345 378393 217283 943585 143921 107464 870566 155659 639317 (514 digits)/817660 085121 284525 646135 121853 683684 711452 996790 594258 547224 018955 859080 810473 250706 459103 705595 258123 505761 714536 703687 140822 302315 345460 284912 930658 591520 050479 100746 606603 954591 316702 160127 482474 075409 627995 246918 958825 655368 384127 621548 333834 844760 785074 677212 449527 763126 555092 890978 212865 612521 023294 213086 503313 307684 897585 755462 788551 912000 096007 719348 590998 403760 435539 194589 710312 435592 382079 138882 382383 308578 497081 665947 452792 992154 470297 239243 177602 148694 522543 000480 458545 750191 047582 270345 924571 763016 (516 digits), a[974] = 9
                                                                                      A[975]/B[975] = 34492 377032 694070 651027 392701 971859 266807 068963 368290 453870 613820 512695 941717 497634 615650 462090 597701 998417 774018 045759 070612 418426 821587 442043 850918 047697 109531 305532 829456 131564 567237 390747 211059 254596 721458 096061 714718 418209 892312 516908 955805 505559 884862 704597 995663 135582 191490 666999 874354 969072 616406 221818 029687 996337 877970 086758 139203 866929 428420 429915 438034 227038 442447 879132 847981 791846 111551 811106 271545 841853 113824 336154 417445 835233 093436 567061 213277 331622 523563 773151 700964 256414 349485 350332 252568 729044 (515 digits)/3 352435 724997 333318 040688 601652 548469 778874 981253 444171 966956 222499 268529 405237 654819 868862 476821 043751 518533 667751 392382 467939 012461 216149 795093 145281 649352 573942 329822 510763 946088 534898 451250 649431 986133 554626 646764 674321 698651 836373 947830 699761 544936 824738 010939 299718 005912 025465 806856 484228 044835 501441 188390 264688 608810 913526 453270 913899 002196 288411 570747 074449 703174 795375 773095 426242 231955 447647 635479 259417 992806 119412 511903 587797 800952 038670 753656 477338 553083 156812 593211 276140 713847 570003 534676 809408 601059 (517 digits), a[975] = 4
                                                                                      A[976]/B[976] = 215366 963364 539697 431436 132625 914363 776822 970464 466434 638278 513441 473562 108740 360578 459898 959631 299529 823684 749140 784971 965133 673316 941641 228392 717922 363429 788224 116061 920531 347793 128658 717528 465270 478888 032735 945596 540553 330205 127212 367698 837836 017987 859427 991847 370138 230535 181477 030783 510928 208566 900439 968181 167134 896765 595184 622058 490840 641591 560755 709497 393007 716984 928319 731958 249208 949923 891438 780398 689972 259352 044116 674336 182145 819692 757380 819976 194799 079080 519775 856194 149370 682407 204376 972559 671072 013581 (516 digits)/20 932274 435105 284433 890266 731768 974503 384702 884311 259290 348961 353951 470257 241899 179625 672278 566521 520632 616963 721045 057981 948456 377082 642359 055471 802348 487635 494133 079681 671187 631122 526092 867631 379065 992210 955755 127507 004755 847279 402371 308532 532404 114381 733502 742848 247835 798598 707887 732117 118233 881534 031941 343428 091444 960550 378744 475088 271945 925177 826477 143831 037696 622809 207793 833162 267765 827325 067964 951757 938891 265415 213556 737368 979579 797866 702321 761182 041633 467193 463418 559748 115390 033276 467603 478406 781023 369370 (518 digits), a[976] = 6
                                                                                      A[977]/B[977] = 249859 340397 233768 082463 525327 886223 043630 039427 834725 092149 127261 986258 050457 858213 075549 421721 897231 822102 523158 830731 035746 091743 763228 670436 568840 411126 897755 421594 749987 479357 695896 108275 676329 733484 754194 041658 255271 748415 019524 884607 793641 523547 744290 696445 365801 366117 372967 697783 385283 177639 516846 189999 196822 893103 473154 708816 630044 508520 989176 139412 831041 944023 370767 611091 097190 741770 002990 591504 961518 101205 157941 010490 599591 654925 850817 387037 408076 410703 043339 629345 850334 938821 553862 322891 923640 742625 (516 digits)/24 284710 160102 617751 930955 333421 522973 163577 865564 703462 315917 576450 738786 647136 834445 541141 043342 564384 135497 388796 450364 416395 389543 858508 850564 947630 136988 068075 409504 181951 577211 060991 318882 028497 978344 510381 774271 679077 545931 238745 256363 232165 659318 558240 753787 547553 804510 733353 538973 602461 926369 533382 531818 356133 569361 292270 928359 185844 927374 114888 714578 112146 325984 003169 606257 694008 059280 515612 587237 198309 258221 332969 249272 567377 598818 740992 514838 518972 020276 620231 152959 391530 747124 037607 013083 590431 970429 (518 digits), a[977] = 1
                                                                                      A[978]/B[978] = 465226 303761 773465 513899 657953 800586 820453 009892 301159 730427 640703 459820 159198 218791 535448 381353 196761 645787 272299 615703 000879 765060 704869 898829 286762 774556 685979 537656 670518 827150 824554 825804 141600 212372 786929 987254 795825 078620 146737 252306 631477 541535 603718 688292 735939 596652 554444 728566 896211 386206 417286 158180 363957 789869 068339 330875 120885 150112 549931 848910 224049 661008 299087 343049 346399 691693 894429 371903 651490 360557 202057 684826 781737 474618 608198 207013 602875 489783 563115 485539 999705 621228 758239 295451 594712 756206 (516 digits)/45 216984 595207 902185 821222 065190 497476 548280 749875 962752 664878 930402 209043 889036 014071 213419 609864 085016 752461 109841 508346 364851 766626 500867 906036 749978 624623 562208 489185 853139 208333 587084 186513 407563 970555 466136 901778 683833 393210 641116 564895 764569 773700 291743 496635 795389 603109 441241 271090 720695 807903 565323 875246 447578 529911 671015 403447 457790 852551 941365 858409 149842 948793 210963 439419 961773 886605 583577 538995 137200 523636 546525 986641 546957 396685 443314 276020 560605 487470 083649 712707 506920 780400 505210 491490 371455 339799 (518 digits), a[978] = 1
                                                                                      A[979]/B[979] = 715085 644159 007233 596363 183281 686809 864083 049320 135884 822576 767965 446078 209656 077004 610997 803075 093993 467889 795458 446434 036625 856804 468098 569265 855603 185683 583734 959251 420506 306508 520450 934079 817929 945857 541124 028913 051096 827035 166262 136914 425119 065083 348009 384738 101740 962769 927412 426350 281494 563845 934132 348179 560780 682972 541494 039691 750929 658633 539107 988323 055091 605031 669854 954140 443590 433463 897419 963408 613008 461762 359998 695317 381329 129544 459015 594051 010951 900486 606455 114885 850040 560050 312101 618343 518353 498831 (516 digits)/69 501694 755310 519937 752177 398612 020449 711858 615440 666214 980796 506852 947830 536172 848516 754560 653206 649400 887958 498637 958710 781247 156170 359376 756601 697608 761611 630283 898690 035090 785544 648075 505395 436061 948899 976518 676050 362910 939141 879861 821258 996735 433018 849984 250423 342943 407620 174594 810064 323157 734273 098706 407064 803712 099272 963286 331806 643635 779926 056254 572987 261989 274777 214133 045677 655781 945886 099190 126232 335509 781857 879495 235914 114334 995504 184306 790859 079577 507746 703880 865666 898451 527524 542817 504573 961887 310228 (518 digits), a[979] = 1
                                                                                      A[980]/B[980] = 4 040654 524556 809633 495715 574362 234636 140868 256492 980583 843311 480530 690211 207478 603814 590437 396728 666728 985236 249591 847873 184009 049083 045362 745158 564778 702974 604654 333913 773050 359693 426809 496203 231249 941660 492550 131820 051309 213795 978047 936878 757072 866952 343765 611983 244644 410502 191506 860318 303684 205436 087947 899078 167861 204731 775809 529333 875533 443280 245471 790525 499507 686166 648362 113751 564351 859013 381529 188946 716532 669369 002051 161413 688383 122340 903276 177268 657634 992216 595391 059969 249908 421480 318747 387169 186480 250361 (517 digits)/392 725458 371760 501874 582109 058250 599725 107573 827079 293827 568861 464666 948196 569900 256654 986222 875897 332021 192253 603031 301900 271087 547478 297751 689045 238022 432681 713627 982636 028593 136056 827461 713490 587873 715055 348730 282030 498388 088920 040425 671190 748246 938794 541664 748752 510106 641210 314215 321412 336484 479269 058855 910570 466139 026276 487447 062480 675969 752182 222638 723345 459789 322679 281628 667808 240683 616036 079528 170156 814749 432925 944002 166212 118632 374206 364848 230315 958493 026203 603054 041041 999178 418023 219298 014360 180891 890939 (519 digits), a[980] = 5
                                                                                      A[981]/B[981] = 4 755740 168715 816867 092078 757643 921446 004951 305813 116468 665888 248496 136289 417134 680819 201435 199803 760722 453126 045050 294307 220634 905887 513461 314424 420381 888658 188389 293165 193556 666201 947260 430283 049179 887518 033674 160733 102406 040831 144310 073793 182191 932035 691774 996721 346385 373272 118919 286668 585178 769282 022080 247257 728641 887704 317303 569025 626463 101913 784579 778848 554599 291198 318217 067892 007942 292477 278949 152355 329541 131131 362049 856731 069712 251885 362291 771319 668586 892703 201846 174855 099948 981530 630849 005512 704833 749192 (517 digits)/462 227153 127071 021812 334286 456862 620174 819432 442519 960042 549657 971519 896027 106073 105171 740783 529103 981422 080212 101669 260611 052334 703648 657128 445646 935631 194293 343911 881326 063683 921601 475537 218886 023935 663955 325248 958080 861299 028061 920287 492449 744982 371813 391648 999175 853050 048830 488810 131476 659642 213542 157562 317635 269851 125549 450733 394287 319605 532108 278893 296332 721778 597456 495761 713485 896465 561922 178718 296389 150259 214783 823497 402126 232967 369710 549155 021175 038070 533950 306934 906708 897629 945547 762115 518934 142779 201167 (519 digits), a[981] = 1
                                                                                      A[982]/B[982] = 23 063615 199420 077101 864030 604937 920420 160673 479745 446458 506864 474515 235368 876017 327091 396178 195943 709618 797740 429793 025102 066548 672633 099208 002856 246306 257607 358211 506574 547277 024501 215851 217335 427969 491732 627246 774752 460933 377120 555288 232051 485840 595095 110865 598868 630185 903590 667184 006992 644399 282564 176268 888109 082428 755549 045023 805436 381385 850935 383790 905919 717904 850959 921230 385319 596121 028922 497325 798368 034697 193894 450250 588337 967232 129882 352443 262547 331982 563029 402775 759389 649704 347602 842143 409220 005815 247129 (518 digits)/2241 634070 880044 589123 919254 885701 080424 385303 597159 133997 767493 350746 532304 994192 677341 949356 992313 257709 513102 009708 344344 480426 362072 926265 471632 980547 209855 089275 507940 283328 822462 729610 589034 683616 370876 649726 114353 943584 201167 721575 640989 728176 426048 108260 745455 922306 836532 269455 847318 975053 333437 689105 181111 545543 528474 290380 639629 954391 880615 338211 908676 346903 712505 264675 521751 826545 863724 794401 355713 415786 292061 237991 774717 050501 853048 561468 315016 110775 162004 830793 667877 589698 200214 267760 090096 752008 695607 (520 digits), a[982] = 4
                                                                                      A[983]/B[983] = 50 882970 567555 971070 820139 967519 762286 326298 265304 009385 679617 197526 607027 169169 335001 993791 591691 179960 048606 904636 344511 353732 251153 711877 320136 912994 403872 904812 306314 288110 715204 378962 864953 905118 870983 288167 710238 024272 795072 254886 537896 153873 122225 913506 194458 606757 180453 453287 300653 873977 334410 374618 023475 893499 398802 407351 179898 389234 803784 552161 590687 990408 993118 160677 838531 200184 350322 273600 749091 398935 518920 262551 033407 004176 511650 067178 296414 332552 018762 007397 693634 399357 676736 315135 823952 716464 243450 (518 digits)/4945 495294 887160 200060 172796 228264 781023 590039 636838 228038 084644 673012 960637 094458 459855 639497 513730 496841 106416 121085 949300 013187 427794 509659 388912 896725 614003 522462 897206 630341 566526 934758 396955 391168 405708 624701 186788 748467 430397 363438 774429 201335 223909 608170 490087 697663 721895 027721 826114 609748 880417 535772 679858 360938 182498 031494 673547 228389 293338 955317 113685 415586 022467 025112 756989 549557 289371 767521 007815 981831 798906 299480 951560 333971 075807 672091 651207 259620 857959 968522 242464 077026 345976 297635 699127 646796 592381 (520 digits), a[983] = 2
                                                                                      A[984]/B[984] = 73 946585 766976 048172 684170 572457 682706 486971 745049 455844 186481 672041 842396 045186 662093 389969 787634 889578 846347 334429 369613 420280 923786 811085 322993 159300 661480 263023 812888 835387 739705 594814 082289 333088 362715 915414 484990 485206 172192 810174 769947 639713 717321 024371 793327 236943 084044 120471 307646 518376 616974 550886 911584 975928 154351 452374 985334 770620 654719 935952 496607 708313 844078 081908 223850 796305 379244 770926 547459 433632 712814 712801 621744 971408 641532 419621 558961 664534 581791 410173 453024 049062 024339 157279 233172 722279 490579 (518 digits)/7187 129365 767204 789184 092051 113965 861447 975343 233997 362035 852138 023759 492942 088651 137197 588854 506043 754550 619518 130794 293644 493613 789867 435924 860545 877272 823858 611738 405146 913670 388989 664368 985990 074784 776585 274427 301142 692051 631565 085014 415418 929511 649957 716431 235543 619970 558427 297177 673433 584802 213855 224877 860969 906481 710972 321875 313177 182781 173954 293529 022361 762489 734972 289788 278741 376103 153096 561922 363529 397618 090967 537472 726277 384472 928856 233559 966223 370396 019964 799315 910341 666724 546190 565395 789224 398805 287988 (520 digits), a[984] = 1
                                                                                      A[985]/B[985] = 124 829556 334532 019243 504310 539977 444992 813270 010353 465229 866098 869568 449423 214355 997095 383761 379326 069538 894954 239065 714124 774013 174940 522962 643130 072295 065353 167836 119203 123498 454909 973776 947243 238207 233699 203582 195228 509478 967265 065061 307843 793586 839546 937877 987785 843700 264497 573758 608300 392353 951384 925504 935060 869427 553153 859726 165233 159855 458504 488114 087295 698722 837196 242586 062381 996489 729567 044527 296550 832568 231734 975352 655151 975585 153182 486799 855375 997086 600553 417571 146658 448419 701075 472415 057125 438743 734029 (519 digits)/12132 624660 654364 989244 264847 342230 642471 565382 870835 590073 936782 696772 453579 183109 597053 228352 019774 251391 725934 251880 242944 506801 217661 945584 249458 773998 437862 134201 302353 544011 955516 599127 382945 465953 182293 899128 487931 440519 061962 448453 189848 130846 873867 324601 725631 317634 280322 324899 499548 194551 094272 760650 540828 267419 893470 353369 986724 411170 467293 248846 136047 178075 757439 314901 035730 925660 442468 329443 371345 379449 889873 836953 677837 718444 004663 905651 617430 630016 877924 767838 152805 743750 892166 863031 488352 045601 880369 (521 digits), a[985] = 1
                                                                                      A[986]/B[986] = 323 605698 436040 086659 692791 652412 572692 113511 765756 386303 918679 411178 741242 473898 656284 157492 546287 028656 636255 812560 797862 968307 273667 857010 609253 303890 792186 598696 051295 082384 649525 542367 976775 809502 830114 322578 875447 504164 106722 940297 385635 226887 396414 900127 768898 924343 613039 267988 524247 303084 519744 401896 781706 714783 260659 171827 315801 090331 571728 912180 671199 105759 518470 567080 348614 789284 838378 859981 140561 098769 176284 663506 932048 922578 947897 393221 269713 658707 782898 245315 746340 945901 426490 102109 347423 599766 958637 (519 digits)/31452 378687 075934 767672 621745 798427 146391 106108 975668 542183 725703 417304 400100 454870 331304 045558 545592 257334 071386 634554 779533 507216 225191 327093 359463 425269 699582 880141 009854 001694 300022 862623 751881 006691 141173 072684 277005 573089 755489 981920 795115 191205 397692 365634 686806 255239 119071 946976 672529 973904 402400 746178 942626 441321 497913 028615 286626 005122 108540 791221 294456 118641 249850 919590 350203 227424 038033 220809 106220 156517 870715 211380 081952 821360 938184 044863 201084 630429 775814 334992 215953 154226 330524 291458 765928 490009 048726 (521 digits), a[986] = 2
                                                                                      A[987]/B[987] = 448 435254 770572 105903 197102 192390 017684 926781 776109 851533 784778 280747 190665 688254 653379 541253 925613 098195 531210 051626 511987 742320 448608 379973 252383 376185 857539 766532 170498 205883 104435 516144 924019 047710 063813 526161 070676 013643 073988 005358 693479 020474 235961 838005 756684 768043 877536 841747 132547 695438 471129 327401 716767 584210 813813 031553 481034 250187 030233 400294 758494 804482 355666 809666 410996 785774 567945 904508 437111 931337 408019 638859 587200 898164 101079 880021 125089 655794 383451 662886 892999 394321 127565 574524 404549 038510 692666 (519 digits)/43585 003347 730299 756916 886593 140657 788862 671491 846504 132257 662486 114076 853679 637979 928357 273910 565366 508725 797320 886435 022478 014017 442853 272677 608922 199268 137445 014342 312207 545706 255539 461751 134826 472644 323466 971812 764937 013608 817452 430373 984963 322052 271559 690236 412437 572873 399394 271876 172078 168455 496673 506829 483454 708741 391383 381985 273350 416292 575834 040067 430503 296717 007290 234491 385934 153084 480501 550252 477565 535967 760589 048333 759790 539804 942847 950514 818515 260446 653739 102830 368758 897977 222691 154490 254280 535610 929095 (521 digits), a[987] = 1
                                                                                      A[988]/B[988] = 16018 839615 406063 793271 591368 386063 191664 550873 929601 189986 385919 237330 414541 562811 524568 101379 942745 465500 228607 619488 717433 949522 974961 156074 442671 470395 806078 427322 018732 288293 304768 607440 317442 479355 063587 738216 349107 981671 696303 127851 657400 943485 655079 230329 252865 805879 326828 729138 163416 643431 009270 860956 868572 162161 744115 276199 151999 846877 629897 922497 218517 262641 966808 905404 733502 291394 716485 517776 439478 695578 456972 023592 484080 358322 485693 193960 647851 611511 203706 446357 001319 747140 891285 210463 506639 947641 201947 (521 digits)/1 556927 495857 636426 259763 652505 721449 756584 608323 603313 171201 912717 409994 278887 784167 823808 632428 333420 062736 977617 659780 566263 997826 725055 870809 671740 399654 510158 382121 937118 101413 243904 023913 470807 549242 462517 086131 049801 049398 366325 045010 268831 463034 902281 523909 122121 305808 097871 462642 695265 869846 785973 485210 863541 247270 196331 398099 853890 575362 262732 193581 362071 503736 505009 126788 857898 585380 855587 479645 821013 915389 491331 903061 674621 714533 937862 312881 849118 746062 656682 934055 122514 583429 124714 698617 665747 236391 567051 (523 digits), a[988] = 35
                                                                                      A[989]/B[989] = 48504 954100 988763 485717 971207 350579 592678 579403 564913 421492 942535 992738 434290 376689 227083 845393 753849 494696 217032 910092 664289 590889 373491 848196 580397 787373 275775 048498 226695 070763 018741 338465 876346 485775 254576 740810 117999 958658 162897 388913 665681 850931 201199 528993 515282 185681 858023 029161 622797 625731 498941 910272 322484 070696 046158 860150 937033 790819 919927 167786 414046 592408 256093 525880 611503 659958 717402 457837 755548 018072 778935 709637 039441 973131 558159 461903 068644 490327 994571 001957 896958 635743 801421 205914 924468 881434 298507 (521 digits)/4 714367 490920 639578 536207 844110 305007 058616 496462 656443 645863 400638 344059 690342 990483 399783 171195 565626 696936 730173 865776 721270 007497 618020 885106 624143 398231 667920 160708 123561 849945 987251 533491 547249 120371 711018 230205 914340 161803 916427 565404 791457 711156 978404 261963 778801 490297 693008 659804 257875 777995 854593 962462 074078 450551 980377 576284 835022 142379 364030 620811 516717 807926 522317 614857 959629 909227 047263 989189 940607 282136 234584 757518 783655 683406 756434 889160 365871 498634 623787 904995 736302 648264 596835 250343 251522 244785 630248 (523 digits), a[989] = 3
                                                                                      A[990]/B[990] = 113028 747817 383590 764707 533783 087222 377021 709681 059428 032972 270991 222807 283122 316189 978735 792167 450444 454892 662673 439674 046013 131301 721944 852467 603467 045142 357628 524318 472122 429819 342251 284372 070135 450905 572741 219836 585107 898988 022097 905678 988764 645348 057478 288316 283430 177243 042874 787461 409011 894894 007154 681501 513540 303553 836432 996501 026067 428517 469752 258070 046610 447458 478995 957165 956509 611312 151290 433451 950574 731724 014843 442866 562964 304585 602012 117766 785140 592167 192848 450272 795237 018628 494127 622293 355577 710509 798961 (522 digits)/10 985662 477698 915583 332179 340726 331463 873817 601248 916200 462928 713994 098113 659573 765134 623374 974819 464673 456610 437965 391334 008804 012821 961097 641022 920027 196117 845998 703538 184241 801305 218407 090896 565305 789985 884553 546542 878481 373006 199180 175819 851746 885348 859090 047836 679724 286403 483888 782251 211017 425838 495161 410135 011698 148374 157086 550669 523934 860120 990793 435204 395507 119589 549644 356504 777158 403834 950115 458025 702228 479661 960501 418099 241933 081347 450732 091202 580861 743331 904258 744046 595119 879958 318385 199304 168791 725962 827547 (524 digits), a[990] = 2
                                                                                      A[991]/B[991] = 952734 936640 057489 603378 241472 048358 608852 256852 040337 685271 110465 775196 699268 906209 056970 182733 357405 133837 518420 427485 032394 641303 149050 667937 408134 148512 136803 243046 003674 509317 756751 613442 437430 093019 836506 499502 798863 150562 339680 634345 575799 013715 661025 835523 782723 603626 201021 328852 894892 784883 556179 362284 430806 499126 737622 832159 145573 218959 677945 232346 786930 172076 088061 183208 263580 550455 927725 925453 360145 871864 897683 252569 543156 409816 374256 404037 349769 227665 537358 604140 258854 784771 754442 184261 769090 565512 690195 (522 digits)/92 599667 312511 964245 193642 569920 956718 049157 306453 986047 349293 112591 128968 966933 111560 386782 969751 283014 349820 233896 996448 791702 110073 306802 013289 984360 967174 435909 789013 597496 260387 734508 260664 069695 440258 787446 602548 942191 145853 509868 971963 605432 793947 851124 644657 216595 781525 564118 917813 946015 184703 815885 243542 167663 637545 237069 981641 026501 023347 290378 102446 680774 764642 919472 466896 176897 139906 648187 653395 558435 119431 918596 102312 719120 334186 362291 618781 012765 445289 857857 857368 497261 687931 143916 844776 601856 052488 250624 (524 digits), a[991] = 8
                                                                                      A[992]/B[992] = 3 923968 494377 613549 178220 499671 280656 812430 737089 220778 774056 712854 323594 080197 941026 206616 523100 880064 990242 736355 149614 175591 696514 318147 524217 236003 639190 904841 496502 486820 467090 369257 738141 819855 822984 918767 217847 780560 501237 380820 443061 291960 700210 701581 630411 414324 591747 846960 102872 988583 034428 231872 130639 236766 300060 786924 325137 608360 304356 181533 187457 194331 135762 831240 689999 010831 813135 862194 135265 391158 219183 605576 453144 735589 943851 099037 733916 184217 502829 342282 866833 830656 157715 511896 359340 431939 972560 559741 (523 digits)/381 384331 727746 772564 106749 620410 158336 070446 827064 860389 860101 164358 613989 527306 211376 170506 853824 596730 855891 373553 377129 175612 453115 188305 694182 857471 064815 589637 859592 574226 842856 156440 133552 844087 551021 034339 956738 647245 956420 238656 063674 273478 061140 263588 626465 546107 412505 740364 453506 995078 164653 758702 384303 682352 698555 105366 477233 629938 953510 152305 844991 118606 178161 227534 224089 484746 963461 542866 071607 935968 957389 634885 827350 118414 418092 899898 566326 631923 524491 335690 173520 584166 631682 894052 578410 576215 935915 830043 (525 digits), a[992] = 4
                                                                                      A[993]/B[993] = 83 356073 318569 942022 346008 734568 942151 669897 735725 676691 940462 080406 570672 383425 667759 395917 167851 838769 928934 981878 569382 719820 268103 830148 676499 364210 571521 138474 669598 226904 318215 511164 114420 654402 375703 130618 074306 190633 676547 336909 938632 706973 718140 394240 074163 483540 030330 987183 489185 655136 507876 425494 105708 402898 800403 263033 660048 921139 610439 490142 168947 867884 023095 544115 673187 491048 626309 033802 766026 574468 474720 614788 768608 990545 230689 454048 816277 218336 787081 725298 807650 702634 096797 504265 730410 839829 989284 444756 (524 digits)/8101 670633 595194 188091 435384 598534 281775 528540 674816 054234 411417 564122 022749 040363 550459 967426 900067 814362 323539 078517 916161 479563 625492 261221 591129 991253 328301 818304 840457 656259 960367 019751 065273 795534 011700 508585 694060 534356 230678 521646 309123 348472 077893 386485 800433 684851 444146 111772 441460 842656 642432 748635 313919 497070 307202 449766 003547 255219 047060 488800 847260 171504 506028 697691 172775 356583 372599 048375 157162 213783 224614 251198 476665 205823 114137 260161 511640 283159 459607 907351 501300 764760 953271 919020 991398 702390 706720 681527 (526 digits), a[993] = 21
                                                                                      A[994]/B[994] = 87 280041 812947 555571 524229 234240 222808 482328 472814 897470 714518 793260 894266 463623 608785 602533 690952 718834 919177 718233 718996 895411 964618 148296 200716 600214 210712 043316 166100 713724 785305 880421 852562 474258 198688 049385 292153 971194 177784 717730 381693 998934 418351 095821 704574 897864 622078 834143 592058 643719 542304 657366 236347 639665 100464 049957 985186 529499 914795 671675 356405 062215 158858 375356 363186 501880 439444 895996 901291 965626 693904 220365 221753 726135 174540 553086 550193 402554 289911 067581 674484 533290 254513 016162 089751 271769 961845 004497 (524 digits)/8483 054965 322940 960655 542134 218944 440111 598987 501880 914624 271518 728480 636738 567669 761836 137933 753892 411093 179430 452071 293290 655176 078607 449527 285312 848724 393117 407942 700050 230486 803223 176191 198826 639621 562721 542925 650799 181602 187098 760302 372797 621950 139033 650074 426899 230958 856651 852136 894967 837734 807086 507337 698223 179423 005757 555132 480780 885158 000570 641106 692251 290110 684189 925225 396864 841330 336060 591241 228770 149752 182003 886084 304015 324237 532230 160060 077966 915082 984099 243041 674821 348927 584954 813073 569809 278606 642636 511570 (526 digits), a[994] = 1
                                                                                      A[995]/B[995] = 432 476240 570360 164308 442925 671529 833385 599211 626985 266574 798537 253450 147738 237920 102901 806051 931662 714109 605645 854813 445370 301468 126576 423333 479365 765067 414369 311739 334001 081803 459439 032851 524670 551435 170455 328159 242922 075410 387686 207831 465408 702711 391544 777526 892463 074998 518646 323757 857420 230014 677095 054959 051098 961559 202259 462865 600795 039139 269622 176843 594568 116744 658529 045541 125933 498570 384088 617790 371194 436975 250337 496249 655623 895085 928851 666395 017050 828553 946725 995625 505588 835795 114849 568914 089415 926909 836664 462744 (525 digits)/42033 890494 886958 030713 603921 474312 042221 924490 682339 712731 497492 478044 569703 311042 597804 519161 915637 458735 041260 886803 089324 100267 939922 059330 732381 386150 900771 450075 640658 578207 173259 724515 860580 354020 262586 680288 297257 260764 979073 562855 800313 836272 634027 986783 508030 608686 870753 520320 021332 193595 870778 777986 106812 214762 330232 670295 926670 795851 049343 053227 616265 331947 242788 398592 760234 721904 716841 413340 072242 812791 952629 795535 692726 502773 243057 900401 823507 943491 396004 879518 200586 160471 293091 171315 270635 816817 277266 727807 (527 digits), a[995] = 4
                                                                                      A[996]/B[996] = 1384 708763 524028 048496 853006 248829 722965 279963 353770 697195 110130 553611 337481 177383 917491 020689 485940 861163 736115 282674 055107 799816 344347 418296 638813 895416 453819 978534 168103 959135 163622 978976 426574 128563 710054 033863 020920 197425 340843 341224 777920 107068 592985 428402 381964 122860 178017 805417 164319 333763 573589 822243 389644 524342 707242 438554 787571 646917 723662 202206 140109 412449 134445 511979 740986 997591 591710 749368 014875 276552 444916 709114 188625 411392 961095 552271 601345 888216 130089 054458 191251 040675 599061 722904 357999 052499 471838 392729 (526 digits)/134584 726449 983815 052796 353898 641880 566777 372459 548900 052818 763996 162614 345848 500797 555249 695419 500804 787298 303213 112480 561262 955979 898373 627519 482457 007177 095431 758169 622025 965108 323002 349738 780567 701682 350481 583790 542570 963897 124319 448869 773739 130768 041117 610424 950991 057019 468912 413096 958964 418522 419422 841296 018659 823709 996455 566020 260793 272711 148599 800789 541047 285952 412555 121003 677569 007044 486584 831261 445498 588128 039893 272691 382194 832557 261403 861265 548490 745557 172113 881596 276579 830341 464228 327019 381716 729058 474436 694991 (528 digits), a[996] = 3
                                                                                      A[997]/B[997] = 1817 185004 094388 212805 295931 920359 556350 879174 980755 963769 908667 807061 485219 415304 020392 826741 417603 575273 341761 137487 500478 101284 470923 841630 118179 660483 868189 290273 502105 040938 623062 011827 951244 679998 880509 362022 263842 272835 728529 549056 243328 809779 984530 205929 274427 197858 696664 129175 021739 563778 250684 877202 440743 485901 909501 901420 388366 686056 993284 379049 734677 529193 792974 557520 866920 496161 975799 367158 386069 713527 695254 205363 844249 306478 889947 218666 618396 716770 076815 050083 696839 876470 713911 291818 447414 979409 308502 855473 (526 digits)/176618 616944 870773 083509 957820 116192 608999 296950 231239 765550 261488 640658 915551 811840 153054 214581 416442 246033 344473 999283 650587 056247 838295 686850 214838 393327 996203 208245 262684 543315 496262 074254 641148 055702 613068 264078 839828 224662 103393 011725 574052 967040 675145 597208 459021 665706 339665 933416 980296 612118 290201 619282 125472 038472 326688 236316 187464 068562 197942 854017 157312 617899 655343 519596 437803 728949 203426 244601 517741 400919 992523 068227 074921 335330 504461 761667 371998 689048 568118 761114 477165 990812 757319 498334 652352 545875 751703 422798 (528 digits), a[997] = 1
                                                                                      A[998]/B[998] = 5019 078771 712804 474107 444870 089548 835667 038313 315282 624734 927466 167734 307920 007991 958276 674172 321148 011710 419637 557649 056064 002385 286195 101556 875173 216384 190198 559081 172314 041012 409747 002632 329063 488561 471072 757907 548604 743096 797902 439337 264577 726628 562045 840260 930818 518577 571346 063767 207798 461320 074959 576648 271131 496146 526246 241395 564305 019031 710230 960305 609464 470836 720394 627021 474827 989915 543309 483684 787014 703607 835425 119841 877124 024350 740989 989604 838139 321756 283719 154625 584930 793617 026884 306541 252829 011318 088844 103675 (526 digits)/487821 960339 725361 219816 269538 874265 784775 966360 011379 583919 286973 443932 176952 124477 861358 124582 333689 279364 992161 111047 862437 068475 574965 001219 912133 793833 087838 174660 147395 051739 315526 498248 062863 813087 576618 111948 222227 413221 331105 472320 921845 064849 391408 804841 869034 388432 148244 279930 919557 642758 999826 079860 269603 900654 649832 038652 635721 409835 544485 508823 855672 521751 723242 160196 553176 464942 893437 320464 480981 389968 024939 409145 532037 503218 270327 384600 292488 123654 308351 403825 230911 811966 978867 323688 686421 820809 977843 540587 (528 digits), a[998] = 2
                                                                                      A[999]/B[999] = 11855 342547 519997 161020 185672 099457 227684 955801 611321 213239 763600 142530 101059 431287 936946 175086 059899 598694 181036 252785 612606 106055 043314 044743 868526 093252 248586 408435 846733 122963 442556 017092 609371 657121 822654 877837 361051 759029 324334 427730 772484 263037 108621 886451 136064 235013 839356 256709 437336 486418 400604 030498 983006 478194 961994 384211 516976 724120 413746 299660 953606 470867 233763 811563 816576 475993 062418 334527 960099 120743 366104 445047 598497 355180 371927 197876 294675 360282 644253 359334 866701 463704 767679 904900 953073 002045 486191 062823 (527 digits)/1 152262 537624 321495 523142 496897 864724 178551 229670 253998 933388 835435 528523 269456 060795 875770 463746 083820 804763 328796 221379 375461 193198 988225 689290 039105 980994 171879 557565 557474 646794 127315 070750 766875 681877 766304 487975 284283 051104 765603 956367 417743 096739 457963 206892 197090 442570 636154 493278 819411 897636 289853 779002 664679 839781 626352 313621 458906 888233 286913 871664 868657 661403 101827 839989 544156 658834 990300 885530 479704 180856 042401 886518 138996 341767 045116 530867 956974 936357 184821 568764 938989 614746 715054 145712 025196 187495 707390 503972 (529 digits), a[999] = 2
                                                                                      A[1000]/B[1000] = 16874 421319 232801 635127 630542 189006 063351 994114 926603 837974 691066 310264 408979 439279 895222 849258 381047 610404 600673 810434 668670 108440 329509 146300 743699 309636 438784 967517 019047 163975 852303 019724 938435 145683 293727 635744 909656 502126 122236 867068 037061 989665 670667 726712 066882 753591 410702 320476 645134 947738 475563 607147 254137 974341 488240 625607 081281 743152 123977 259966 563070 941703 954158 438585 291404 465908 605727 818212 747113 824351 201529 564889 475621 379531 112917 187481 132814 682038 927972 513960 451632 257321 794564 211442 205902 013363 575035 166498 (527 digits)/1 640084 497964 046856 742958 766436 738989 963327 196030 265378 517308 122408 972455 446408 185273 737128 588328 417510 084128 320957 332427 237898 261674 563190 690509 951239 774827 259717 732225 704869 698533 442841 568998 829739 494965 342922 599923 506510 464326 096709 428688 339588 161588 849372 011734 066124 831002 784398 773209 738969 540395 289679 858862 934283 740436 276184 352274 094628 298068 831399 380488 724330 183154 825070 000186 097333 123777 883738 205994 960685 570824 067341 295663 671033 844985 315443 915468 249463 060011 493172 972590 169901 426713 693921 469400 711618 008305 685234 044559 (529 digits), a[1000] = 1
                                                                                      A[1001]/B[1001] = 62478 606505 218402 066403 077298 666475 417740 938146 391132 727163 836799 073323 327997 749127 622614 722861 203042 429907 983057 684089 618616 431376 031841 483646 099624 022161 564941 310986 903874 614890 999465 076267 424677 094171 703837 785072 090021 265407 691045 028934 883670 232034 120625 066587 336712 495788 071463 218139 372741 329633 827294 851940 745420 401219 426716 261032 760821 953576 785678 079560 642819 295979 096239 127319 690789 873718 879601 789166 201440 593796 970693 139716 025361 493773 710678 760319 693119 406399 428170 901216 221598 235670 151372 539227 570779 042136 211296 562317 (527 digits)/6 072516 031516 462065 752018 796208 081694 068532 817761 050134 485313 202662 445889 608680 616617 087156 228731 336351 057148 291668 218661 089155 978222 677797 760819 892825 305475 951032 754242 672083 742394 455839 777747 256094 166773 795072 287745 803814 444083 055732 242432 436507 581506 006079 242094 395464 935578 989350 812908 036320 518822 158893 355591 467531 061090 454905 370443 742791 782439 781112 013131 041648 210867 577037 840547 836156 030168 641515 503515 361760 893328 244425 773509 152097 876722 991448 277272 705364 116391 664340 486535 448693 894887 796818 553914 160050 212412 763092 637649 (529 digits), a[1001] = 3
                                                                                      A[1002]/B[1002] = 79353 027824 451203 701530 707840 855481 481092 932261 317736 565138 527865 383587 736977 188407 517837 572119 584090 040312 583731 494524 287286 539816 361350 629946 843323 331798 003726 278503 922921 778866 851768 095992 363112 239854 997565 420816 999677 767533 813281 896002 920732 221699 791292 793299 403595 249379 482165 538616 017876 277372 302858 459087 999558 375560 914956 886639 842103 696728 909655 339527 205890 237683 050397 565904 982194 339627 485329 607378 948554 418148 172222 704605 500982 873304 823595 947800 825934 088438 356143 415176 673230 492991 945936 750669 776681 055499 786331 728815 (527 digits)/7 712600 529480 508922 494977 562644 820684 031860 013791 315513 002621 325071 418345 055088 801890 824284 817059 753861 141276 612625 551088 327054 239897 240988 451329 844065 080303 210750 486468 376953 440927 898681 346746 085833 661739 137994 887669 310324 908409 152441 671120 776095 743094 855451 253828 461589 766581 773749 586117 775290 059217 448573 214454 401814 801526 731089 722717 837420 080508 612511 393619 765978 394022 402107 840733 933489 153946 525253 709510 322446 464152 311767 069172 823131 721708 306892 192740 954827 176403 157513 459125 618595 321601 490740 023314 871668 220718 448326 682208 (529 digits), a[1002] = 1
                                                                                      A[1003]/B[1003] = 538596 773451 925624 275587 324343 799364 304298 531714 297552 117995 003991 374849 749860 879572 729640 155578 707582 671783 485446 651235 342335 670274 199945 263327 159564 012949 587298 982010 441405 288092 110073 652221 603350 533301 689230 309974 088087 870610 570736 404952 408063 562232 868381 826383 758283 992064 964456 449835 479998 993867 644445 606468 742770 654584 916457 580871 813444 133950 243610 116723 878160 722077 398624 522749 583955 911483 791579 433439 892767 102686 004029 367349 031258 733602 652254 447124 648723 937029 565031 392276 260981 193621 826993 043246 230865 375134 929286 935207 (528 digits)/52 348119 208399 515600 721884 172077 005798 259692 900508 943212 501041 153090 955959 939213 427962 032865 131089 859517 904807 967421 525191 051481 417606 123728 468798 957215 787295 215535 673052 933804 387961 847927 858223 771096 137208 623041 613761 665763 894537 970382 269157 093082 040075 138786 765065 165003 535069 631848 329614 688060 874126 850332 642317 878419 870250 841443 706750 767312 265491 456180 374849 637518 575001 989684 884951 437090 953847 793037 760577 296439 678242 115028 188546 090888 206972 832801 433718 434327 174810 609421 241289 160265 824496 741258 693803 390059 536723 453052 730897 (530 digits), a[1003] = 6
                                                                                      A[1004]/B[1004] = 8 158304 629603 335567 835340 572997 845946 045570 907975 781018 335063 587736 006333 984890 381998 462439 905800 197830 117064 865431 263054 422321 593929 360529 579854 236783 526041 813211 008660 544001 100248 502872 879316 413370 239380 336020 070428 320995 826692 374327 970289 041685 655192 817020 189055 777855 130353 949012 286148 217861 185386 969542 556119 141118 194334 661820 599717 043765 705982 563807 090385 378301 068844 029765 407148 741533 011884 359021 108977 340060 958438 232663 214840 969863 877344 607412 654670 556793 143881 831614 299320 587948 397319 350832 399363 239661 682523 725635 756920 (529 digits)/792 934388 655473 242933 323240 143799 907657 927253 521425 463700 518238 621435 757744 143290 221321 317261 783407 646629 713396 123948 428954 099275 503989 096915 483314 202301 889731 443785 582262 384019 260355 617599 220102 652275 719868 483619 094094 296783 326478 708175 708477 172326 344221 937252 729805 936642 792626 251474 530338 096203 171120 203562 849222 578112 855289 352745 323979 347104 062880 455217 016364 328757 019052 247381 115005 489853 461663 420820 118169 769041 637784 037189 897364 186454 826300 798913 698517 469734 798562 298832 078463 022582 689052 609620 430365 722561 271570 244117 645663 (531 digits), a[1004] = 15
                                                                                      A[1005]/B[1005] = 16 855206 032658 596759 946268 470339 491256 395440 347665 859588 788122 179463 387517 719641 643569 654519 967179 103242 905913 216309 177344 186978 858132 921004 423035 633131 065033 213720 999331 529407 488589 115819 410854 430091 012062 361270 450830 730079 523995 319392 345530 491434 872618 502422 204495 313994 252772 862481 022131 915721 364641 583530 718707 025007 043254 240098 780305 900975 545915 371224 297494 634762 859765 458155 337047 067021 935252 509621 651394 572889 019562 469355 797030 970986 488291 867079 756465 762310 224793 228259 990917 436877 988260 528657 841972 710188 740182 380558 449047 (530 digits)/1638 216896 519346 001467 368364 459676 821114 114199 943359 870613 537518 395962 471448 225793 870604 667388 697905 152777 331600 215318 383099 250032 425584 317559 435427 361819 566758 103106 837577 701842 908673 083126 298429 075647 576945 590279 801950 259330 547495 386733 686111 437734 728519 013292 224677 038289 120322 134797 390290 880467 216367 257458 340763 034645 580829 546934 354709 461520 391252 366614 407578 295032 613106 484447 114962 416797 877174 634677 996916 834522 953810 189407 983274 463797 859574 430628 830753 373796 771935 207085 398215 205431 202601 960499 554534 835182 079863 941288 022223 (532 digits), a[1005] = 2
                                                                                      A[1006]/B[1006] = 58 723922 727579 125847 674145 984016 319715 231891 950973 359784 699430 126126 168887 143815 312707 425999 807337 507558 834804 514358 795086 983258 168328 123542 848961 136176 721141 454374 006655 132223 566015 850331 111879 703643 275567 419831 422920 511234 398678 332505 006880 515990 273048 324286 802541 719837 888672 536455 352543 965025 279311 720134 712240 216139 324097 382116 940634 746692 343728 677479 982869 282589 648140 404231 418289 942598 817641 887886 063161 058728 017125 640730 605933 882823 342220 208651 924067 843723 818261 516394 272072 898582 362100 936805 925281 370227 903070 867311 104061 (530 digits)/5707 585078 213511 247335 428333 522830 371000 269853 351505 075541 130793 809323 172088 820671 833135 319427 877123 104961 708196 769903 578251 849372 780742 049593 789596 287760 590005 753106 094995 489547 986374 866978 115389 879218 450705 254458 499945 074774 968964 868376 766811 485530 529778 977129 403837 051510 153592 655866 701210 737604 820221 975937 871511 682049 597777 993548 388107 731665 236637 555060 239099 213854 858371 700722 459892 740247 093187 324854 108920 272610 499214 605413 847187 577848 405024 090800 190777 591125 114367 920088 273108 638876 296858 491119 093970 228107 511162 067981 712332 (532 digits), a[1006] = 3
                                                                                      A[1007]/B[1007] = 251 750896 942975 100150 642852 406404 770117 323008 151559 298727 585842 683968 063066 294902 894399 358519 196529 133478 245131 273744 357692 120011 531445 415175 818880 177837 949599 031217 025952 058301 752652 517143 858373 244664 114332 040596 142512 775017 118708 649412 373052 555395 964811 799569 414662 193345 807463 008302 432307 775822 481888 464069 567667 889564 339643 768566 542844 887744 920830 081144 228971 765121 452327 075081 010206 837417 205820 061165 904038 807801 088065 032278 220766 502279 857172 701687 452737 137205 497839 293837 079209 031207 436664 275881 543098 191100 352465 849802 865291 (531 digits)/24468 557209 373390 990809 081698 550998 305115 193613 349380 172778 060693 633255 159803 508481 203145 945100 206397 572624 164387 294932 696106 647523 548552 515934 593812 512861 926781 115531 217559 660034 854172 551038 759988 592521 379766 608113 801730 558430 423354 860240 753357 379856 847634 921809 840025 244329 734692 758264 195133 830886 497255 161209 826809 762843 971941 521127 907140 388181 337802 586855 363975 150452 046593 287336 954533 377786 249923 934094 432597 924964 950668 611063 372024 775191 479670 793829 593863 738297 229406 887438 490649 760936 390035 924975 930415 747612 124512 213214 871551 (533 digits), a[1007] = 4
                                                                                      A[1008]/B[1008] = 3834 987376 872205 628107 316932 080087 871475 077014 224362 840698 487070 385647 114881 567358 728697 803787 755274 509732 511773 620524 160468 783431 140009 351180 132163 803745 965126 922629 395936 006749 855803 607488 987478 373604 990548 028773 560612 136491 179308 073690 602668 846929 745225 317828 022474 620025 000617 660991 837160 602362 507638 681178 227258 559604 418753 910615 083308 062866 156179 894643 417445 759411 433046 530446 571392 503856 904942 805374 623743 175744 338101 124903 917431 417021 199810 733963 715124 901806 285850 923950 460208 366693 912065 075029 071754 236733 190058 614354 083426 (532 digits)/372735 943218 814376 109471 653811 787804 947728 174053 592207 667212 041198 308150 569141 447889 880324 495930 973086 694324 174006 193894 019851 562226 009029 788612 696783 980689 491722 486074 358390 390070 798963 132559 515218 767039 147204 376165 525903 451231 319287 771988 067172 183383 244302 804277 004215 716456 173984 029829 628218 200902 279049 394085 273658 124709 176900 810466 995213 554385 303676 357890 698726 470635 557271 010776 777893 407040 842046 336270 597889 147084 759243 771364 427559 205720 600085 998244 098733 665583 555471 231665 632855 052922 147397 365758 050206 442289 378845 266204 785597 (534 digits), a[1008] = 15
                                                                                      A[1009]/B[1009] = 4086 738273 815180 728257 959784 486492 641592 400022 375922 139426 072913 069615 177947 862261 623097 162306 951803 643210 756904 894268 518160 903442 671454 766355 951043 981583 914725 953846 421888 065051 608456 124632 845851 618269 104880 069369 703124 911508 298016 723102 975721 402325 710037 117397 437136 813370 808080 669294 269468 378184 989527 145247 794926 449168 758397 679181 626152 950611 077009 975787 646417 524532 885373 605527 581599 341274 110762 866540 527781 983545 426166 157182 138197 919301 056983 435651 167862 039011 783690 217787 539417 397901 348729 350910 614852 427833 542524 464156 948717 (532 digits)/397204 500428 187767 100280 735510 338803 252843 367666 941587 839990 101891 941405 728944 956371 083470 441031 179484 266948 338393 488826 715958 209749 557582 304547 290596 493551 418503 601605 575950 050105 653135 683598 275207 359560 526970 984279 327634 009661 742642 632228 820529 563240 091937 726086 844240 960785 908676 788093 823352 031788 776304 555295 100467 887553 148842 331594 902353 942566 641478 944746 062701 621087 603864 298113 732426 784827 091970 270365 030487 072049 709912 382427 799583 980912 079756 792073 692597 403880 784878 119104 123504 813858 537433 290733 980622 189901 503357 479419 657148 (534 digits), a[1009] = 1
                                                                                      A[1010]/B[1010] = 7921 725650 687386 356365 276716 566580 513067 477036 600284 980124 559983 455262 292829 429620 351794 966094 707078 152943 268678 514792 678629 686873 811464 117536 083207 785329 879852 876475 817824 071801 464259 732121 833329 991874 095428 098143 263737 047999 477324 796793 578390 249255 455262 435225 459611 433395 808698 330286 106628 980547 497165 826426 022185 008773 177151 589796 709461 013477 233189 870431 063863 283944 318420 135974 152991 845131 015705 671915 151525 159289 764267 282086 055629 336322 256794 169614 882986 940818 069541 141737 999625 764595 260794 425939 686606 664566 732583 078511 032143 (532 digits)/769940 443647 002143 209752 389322 126608 200571 541720 533795 507202 143090 249556 298086 404260 963794 936962 152570 961272 512399 682720 735809 771975 566612 093159 987380 474240 910226 087679 934340 440176 452098 816157 790426 126599 674175 360444 853537 460893 061930 404216 887701 746623 336240 530363 848456 677242 082660 817923 451570 232691 055353 949380 374126 012262 325743 142061 897567 496951 945155 302636 761428 091723 161135 308890 510320 191867 934016 606635 628376 219134 469156 153792 227143 186632 679842 790317 791331 069464 340349 350769 756359 866780 684830 656492 030828 632190 882202 745624 442745 (534 digits), a[1010] = 1
                                                                                      A[1011]/B[1011] = 12008 463924 502567 084623 236501 053073 154659 877058 976207 119550 632896 524877 470777 291881 974892 128401 658881 796154 025583 409061 196790 590316 482918 883892 034251 766913 794578 830322 239712 136853 072715 856754 679181 610143 200308 167512 966861 959507 775341 519896 554111 651581 165299 552622 896748 246766 616778 999580 376097 358732 486692 971673 817111 457941 935549 268978 335613 964088 310199 846218 710280 808477 203793 741501 734591 186405 126468 538455 679307 142835 190433 439268 193827 255623 313777 605266 050848 979829 853231 359525 539043 162496 609523 776850 301459 092400 275107 542667 980860 (533 digits)/1 167144 944075 189910 310033 124832 465411 453414 909387 475383 347192 244982 190962 027031 360632 047265 377993 332055 228220 850793 171547 451767 981725 124194 397707 277976 967792 328729 689285 510290 490282 105234 499756 065633 486160 201146 344724 181171 470554 804573 036445 708231 309863 428178 256450 692697 638027 991337 606017 274922 264479 831658 504675 474593 899815 474585 473656 799921 439518 586634 247382 824129 712810 764999 607004 242746 976695 025986 877000 658863 291184 179068 536220 026727 167544 759599 582391 483928 473345 125227 469873 879864 680639 222263 947226 011450 822092 385560 225044 099893 (535 digits), a[1011] = 1
                                                                                      A[1012]/B[1012] = 31938 653499 692520 525611 749718 672726 822387 231154 552699 219225 825776 505017 234384 013384 301579 222898 024841 745251 319845 332915 072210 867506 777301 885320 151711 319157 469010 537120 297248 345507 609691 445631 191693 212160 496044 433169 197460 967015 028007 836586 686613 552417 785861 540471 253107 926929 042256 329446 858823 698012 470551 769773 656407 924657 048250 127753 380688 941653 853589 562868 484424 900898 726007 618977 622174 217941 268642 748826 510139 444960 145134 160622 443283 847568 884349 380146 984684 900477 776003 860789 077712 089588 479841 979640 289524 849367 282798 163846 993863 (533 digits)/3 104230 331797 381963 829818 638987 057431 107401 360495 484562 201586 633054 631480 352149 125525 058325 692948 816681 417714 213986 025815 639345 735425 815000 888574 543334 409825 567685 466250 954921 420740 662567 815669 921693 098920 076468 049893 215880 402002 671076 477108 304164 366350 192597 043265 233851 953298 065336 029958 001414 761650 718670 958731 323313 811893 274914 089375 497410 375989 118423 797402 409687 517344 691134 522898 995814 145257 985990 360636 946102 801502 827293 226232 280597 521722 199041 955100 759188 016154 590804 290517 516089 228059 129358 550944 053730 276375 653323 195712 642531 (535 digits), a[1012] = 2
                                                                                      A[1013]/B[1013] = 43947 117424 195087 610234 986219 725799 977047 108213 528906 338776 458673 029894 705161 305266 276471 351299 683723 541405 345428 741976 269001 457823 260220 769212 185963 086071 263589 367442 536960 482360 682407 302385 870874 822303 696352 600682 164322 926522 803349 356483 240725 203998 951161 093094 149856 173695 659035 329027 234921 056744 957244 741447 473519 382598 983799 396731 716302 905742 163789 409087 194705 709375 929801 360479 356765 404346 395111 287282 189446 587795 335567 599890 637111 103192 198126 985413 035533 880307 629235 220314 616755 252085 089365 756490 590983 941767 557905 706514 974723 (533 digits)/4 271375 275872 571874 139851 763819 522842 560816 269882 959945 548778 878036 822442 379180 486157 105591 070942 148736 645935 064779 197363 091113 717150 939195 286281 821311 377617 896415 155536 465211 911022 767802 315425 987326 585080 277614 394617 397051 872557 475649 513554 012395 676213 620775 299715 926549 591326 056673 635975 276337 026130 550329 463406 797907 711708 749499 563032 297331 815507 705058 044785 233817 230155 456134 129903 238561 121953 011977 237637 604966 092687 006361 762452 307324 689266 958641 537492 243116 489499 716031 760391 395953 908698 351622 498170 065181 098468 038883 420756 742424 (535 digits), a[1013] = 1
                                                                                      A[1014]/B[1014] = 383515 592893 253221 407491 639476 479126 638764 096862 783949 929437 495160 744174 875674 455514 513350 033295 494630 076494 083275 268725 224222 530092 859068 039017 639416 007727 577725 476660 592932 204393 068949 864718 158691 790590 066865 238626 512044 379197 454802 688452 612415 184409 395150 285224 451957 316494 314538 961664 738192 151972 128509 701353 444562 985448 918645 301607 111112 187591 163904 835566 042070 575906 164418 502812 476297 452712 429533 047084 025712 147322 829674 959747 540172 673106 469365 263451 268955 942938 809885 623306 011754 106269 194768 031565 017396 383507 746043 815966 791647 (534 digits)/37 275232 538777 956956 948632 749543 240171 593931 519559 164126 591817 657349 211019 385593 014781 903054 260486 006574 585194 732219 604720 368255 472633 328563 178829 113825 430768 739006 710542 676616 708922 804986 339077 820305 779562 297383 206832 392295 382462 476272 585540 403329 776059 158799 440992 646248 683906 518725 117760 212110 970695 121306 665985 706575 505563 270910 593633 876064 900050 758888 155684 280225 358588 340207 562124 904303 120882 081808 261737 785831 542998 878187 325850 739195 035857 868174 255038 704119 932152 319058 373648 683720 497645 942338 536304 575179 064119 964390 561766 581923 (536 digits), a[1014] = 8
                                                                                      A[1015]/B[1015] = 16 151602 018940 830386 724883 844231 849118 805139 176450 454803 375151 255424 285239 483488 436875 837172 749710 458186 754156 842990 028435 686347 721723 341078 407953 041435 410629 528059 387187 440113 066869 578301 620548 535930 027086 504692 622995 670186 852815 905062 271492 962162 949193 547473 072521 132063 466456 869671 718946 238991 439574 354652 198292 145164 771453 566902 064230 383014 784571 047792 502860 961669 897434 835378 478603 361258 418268 435499 264811 269356 775354 181915 909287 324363 373663 911468 050366 331683 483737 644431 399167 110427 715391 269623 082221 321632 049092 891745 977120 223897 (536 digits)/1569 831141 904546 764065 982427 244635 610049 505940 091367 853262 405120 486703 685256 574087 106997 033870 011354 424869 224113 818002 595618 557843 567750 738848 797104 601979 469904 934696 998328 883113 685780 577228 556694 440169 326696 767709 081577 873457 935981 479098 106250 952246 270698 290351 821407 068994 315399 843128 581904 184997 795325 645209 434806 474078 945366 127744 495655 092057 617639 578360 583525 003282 290865 744851 739149 219292 199000 447924 230624 609890 898639 890229 448183 353516 195297 421960 249117 816153 639897 116483 453636 112214 809827 929841 022962 222701 791506 543287 014953 183190 (538 digits), a[1015] = 42
                                                                                      A[1016]/B[1016] = 16 535117 611834 083608 132375 483708 328245 443903 273313 238753 304588 750585 029414 359162 892390 350522 783005 952816 830650 926265 297160 910570 251816 200146 446970 680851 418357 105784 863848 033045 271262 647251 485266 694621 817676 571557 861622 182231 232013 359864 959945 574578 133602 942623 357745 584020 782951 184210 680610 977183 591546 483161 899645 589727 756902 485547 365837 494126 972162 211697 338427 003740 473340 999796 981415 837555 870980 865032 311895 295068 922677 011590 869034 864536 046770 380833 313817 600639 426676 454317 022473 122181 821660 464391 113786 339028 432600 637789 793087 015544 (536 digits)/1607 106374 443324 721022 931059 994178 850221 099871 610927 017388 996938 144052 896275 959680 121778 936924 271840 431443 809308 550222 200338 926099 040384 067411 975933 715804 900673 673703 708871 559730 394703 382214 895772 260475 106259 065092 288410 265753 318443 955370 691791 355576 046757 449151 262399 715242 999306 361853 699664 397108 766020 766516 100792 180654 450929 398655 089288 968122 517690 337248 739209 283507 649454 085059 301274 123595 319882 529732 492362 395722 441638 768416 774034 092711 231155 290134 504156 520273 572049 435541 827284 795935 307473 872179 559266 797880 855626 507677 576719 765113 (538 digits), a[1016] = 1
                                                                                      A[1017]/B[1017] = 694 091424 104138 258320 152278 676273 307182 005173 382293 243688 863290 029410 491228 209167 024880 208606 852954 523676 810844 819867 212033 019728 046187 547082 733750 956343 563270 865238 804956 794969 188638 115612 516483 015424 551825 938564 949505 141667 365363 659525 629261 519866 426914 195030 740090 076915 567455 422309 623996 303518 692980 164290 083761 324002 804455 474344 063567 642220 643221 727383 378368 115029 304415 827054 716652 701049 128483 901824 052518 367182 605111 657141 539716 770341 291249 525633 916887 957899 977472 271429 320565 119882 403470 309658 747461 221797 785719 041127 493687 861201 (537 digits)/67461 192494 080860 326006 155887 005968 469114 600676 139375 566211 279584 392872 432570 920972 099933 447765 156812 114065 405764 377112 809514 527904 223497 502739 810386 949980 397525 556549 062062 832059 868619 248039 283357 119648 683318 436492 906398 769343 992183 649296 469696 530864 187753 705553 579795 393957 286960 679130 268144 466457 202177 072369 567285 880911 433471 472603 156502 785080 842943 405558 891105 627095 918483 232283 091388 286700 314184 166956 417482 834511 005829 395317 183581 154676 672664 317474 919535 147370 093923 973698 372312 745562 416256 689202 952900 935816 872193 358067 660463 552823 (539 digits), a[1017] = 41
                                                                                      A[1018]/B[1018] = 710 626541 715972 341928 284654 159981 635427 449076 655606 482442 167878 779995 520642 568329 917270 559129 635960 476493 641495 746132 509193 930298 298003 747229 180721 637194 981627 971023 668804 828014 459900 762864 001749 710046 369502 510122 811127 323898 597377 019390 589207 094444 560517 137654 097835 660936 350406 606520 304607 280702 284526 647451 983406 913730 561357 959891 429405 136347 615383 939080 716795 118769 777756 826851 698068 538604 999464 766856 364413 662251 527788 668732 408751 634877 338019 906467 230705 558539 404148 725746 343038 242064 225130 774049 861247 560826 218319 678917 286774 876745 (537 digits)/69068 298868 524185 047029 086947 000147 319335 700547 750302 583600 276522 536925 328846 880652 221712 384689 428652 545509 215072 927335 009853 454003 263881 570151 786320 665785 298199 230252 770934 391790 263322 630254 179129 380123 789577 501585 194809 035097 310627 604667 161487 886440 234511 154704 842195 109200 286267 040983 967808 863565 968197 838885 668078 061565 884400 871258 245791 753203 360633 742807 630314 910603 567937 317342 392662 410295 634066 696688 909845 230233 447468 163733 957615 247387 903819 607609 423691 667643 665973 409240 199597 541497 723730 561382 512167 733697 727819 865745 237183 317936 (539 digits), a[1018] = 1
                                                                                      A[1019]/B[1019] = 1404 717965 820110 600248 436932 836254 942609 454250 037899 726131 031168 809406 011870 777496 942150 767736 488915 000170 452340 565999 721226 950026 344191 294311 914472 593538 544898 836262 473761 622983 648538 878476 518232 725470 921328 448687 760632 465565 962740 678916 218468 614310 987431 332684 837925 737851 917862 028829 928603 584220 977506 811742 067168 237733 365813 434235 492972 778568 258605 666464 095163 233799 082172 653906 414721 239654 127948 668680 416932 029434 132900 325873 948468 405218 629269 432101 147593 516439 381620 997175 663603 361946 628601 083708 608708 782624 004038 720044 780462 737946 (538 digits)/136529 491362 605045 373035 242834 006115 788450 301223 889678 149811 556106 929797 761417 801624 321645 832454 585464 659574 620837 304447 819367 981907 487379 072891 596707 615765 695724 786801 832997 223850 131941 878293 462486 499772 472895 938078 101207 804441 302811 253963 631184 417304 422264 860258 421990 503157 573227 720114 235953 330023 170374 911255 235363 942477 317872 343861 402294 538284 203577 148366 521420 537699 486420 549625 484050 696995 948250 863645 327328 064744 453297 559051 141196 402064 576483 925084 343226 815013 759897 382938 571910 287060 139987 250585 465068 669514 600013 223812 897646 870759 (540 digits), a[1019] = 1
                                                                                      A[1020]/B[1020] = 3520 062473 356193 542425 158519 832491 520646 357576 731405 934704 230216 398807 544384 123323 801572 094602 613790 476834 546176 878131 951647 830350 986386 335853 009666 824272 071425 643548 616328 073981 756978 519817 038215 160988 212159 407498 332392 255030 522858 377223 026144 323066 535379 803023 773687 136640 186130 664180 161814 449144 239540 270936 117743 389197 292984 828362 415350 693484 132595 272008 907121 586367 942102 134664 527511 017913 255362 104217 198277 721119 793589 320480 305688 445314 596558 770669 525892 591418 167390 720097 670244 965957 482332 941467 078665 126074 226397 119006 847700 352637 (538 digits)/342127 281593 734275 793099 572615 012378 896236 302995 529658 883223 388736 396520 851682 483900 865004 049598 599581 864658 456747 536230 648589 417818 238639 715934 979735 897316 689648 803856 436928 839490 527206 386841 104102 379668 735369 377741 397224 643979 916250 112594 423856 721049 079040 875221 686176 115515 432722 481212 439715 523612 308947 661396 138805 946520 520145 558981 050380 829771 767788 039540 673155 986002 540778 416593 360763 804287 530568 423979 564501 359722 354063 281836 240008 051517 056787 457778 110145 297671 185768 175117 343418 115618 003705 062553 442305 072726 927846 313371 032477 059454 (540 digits), a[1020] = 2
                                                                                      A[1021]/B[1021] = 4924 780439 176304 142673 595452 668746 463255 811826 769305 660835 261385 208213 556254 900820 743722 862339 102705 477004 998517 444131 672874 780377 330577 630164 924139 417810 616324 479811 090089 696965 405517 398293 556447 886459 133487 856186 093024 720596 485599 056139 244612 937377 522811 135708 611612 874492 103992 693010 090418 033365 217047 082678 184911 626930 658798 262597 908323 472052 391200 938473 002284 820167 024274 788570 942232 257567 383310 772897 615209 750553 926489 646354 254156 850533 225828 202770 673486 107857 549011 717273 333848 327904 110934 025175 687373 908698 230435 839051 628163 090583 (538 digits)/478656 772956 339321 166134 815449 018494 684686 604219 419337 033034 944843 326318 613100 285525 186649 882053 185046 524233 077584 840678 467957 399725 726018 788826 576443 513082 385373 590658 269926 063340 659148 265134 566588 879441 208265 315819 498432 448421 219061 366558 055041 138353 501305 735480 108166 618673 005950 201326 675668 853635 479322 572651 374169 888997 838017 902842 452675 368055 971365 187907 194576 523702 027198 966218 844814 501283 478819 287624 891829 424466 807360 840887 381204 453581 633271 382862 453372 112684 945665 558055 915328 402678 143692 313138 907373 742241 527859 537183 930123 930213 (540 digits), a[1021] = 1
                                                                                      A[1022]/B[1022] = 8444 842912 532497 685098 753972 501237 983902 169403 500711 595539 491601 607021 100639 024144 545294 956941 716495 953839 544694 322263 624522 610728 316963 966017 933806 242082 687750 123359 706417 770947 162495 918110 594663 047447 345647 263684 425416 975627 008457 433362 270757 260444 058190 938732 385300 011132 290123 357190 252232 482509 456587 353614 302655 016127 951783 090960 323674 165536 523796 210481 909406 406534 966376 923235 469743 275480 638672 877114 813487 471673 720078 966834 559845 295847 822386 973440 199378 699275 716402 437371 004093 293861 593266 966642 766039 034772 456832 958058 475863 443220 (538 digits)/820784 054550 073596 959234 388064 030873 580922 907214 948995 916258 333579 722839 464782 769426 051653 931651 784628 388891 534332 376909 116546 817543 964658 504761 556179 410399 075022 394514 706854 902831 186354 651975 670691 259109 943634 693560 895657 092401 135311 479152 478897 859402 580346 610701 794342 734188 438672 682539 115384 377247 788270 234047 512975 835518 358163 461823 503056 197827 739153 227447 867732 509704 567977 382812 205578 305571 009387 711604 456330 784189 161424 122723 621212 505098 690058 840640 563517 410356 131433 733173 258746 518296 147397 375692 349678 814968 455705 850554 962600 989667 (540 digits), a[1022] = 1
                                                                                      A[1023]/B[1023] = 13369 623351 708801 827772 349425 169984 447157 981230 270017 256374 752986 815234 656893 924965 289017 819280 819201 430844 543211 766395 297397 391105 647541 596182 857945 659893 304074 603170 796507 467912 568013 316404 151110 933906 479135 119870 518441 696223 494056 489501 515370 197821 581002 074440 996912 885624 394116 050200 342650 515874 673634 436292 487566 643058 610581 353558 231997 637588 914997 148954 911691 226701 990651 711806 411975 533048 021983 650012 428697 222227 646568 613188 814002 146381 048215 176210 872864 807133 265414 154644 337941 621765 704200 991818 453412 943470 687268 797110 104026 533803 (539 digits)/1 299440 827506 412918 125369 203513 049368 265609 511434 368332 949293 278423 049158 077883 054951 238303 813704 969674 913124 611917 217587 584504 217269 690677 293588 132622 923481 460395 985172 976780 966171 845502 917110 237280 138551 151900 009380 394089 540822 354372 845710 533938 997756 081652 346181 902509 352861 444622 883865 791053 230883 267592 806698 887145 724516 196181 364665 955731 565883 710518 415355 062309 033406 595176 349031 050392 806854 488206 999229 348160 208655 968784 963611 002416 958680 323330 223503 016889 523041 077099 291229 174074 920974 291089 688831 257052 557209 983565 387738 892724 919880 (541 digits), a[1023] = 1
                                                                                      A[1024]/B[1024] = 21814 466264 241299 512871 103397 671222 431060 150633 770728 851914 244588 422255 757532 949109 834312 776222 535697 384684 087906 088658 921920 001833 964505 562200 791751 901975 991824 726530 502925 238859 730509 234514 745773 981353 824782 383554 943858 671850 502513 922863 786127 458265 639193 013173 382212 896756 684239 407390 594882 998384 130221 789906 790221 659186 562364 444518 555671 803125 438793 359436 821097 633236 957028 635041 881718 808528 660656 527127 242184 693901 366647 580023 373847 442228 870602 149651 072243 506408 981816 592015 342034 915627 297467 958461 219451 978243 144101 755168 579889 977023 (539 digits)/2 120224 882056 486515 084603 591577 080241 846532 418649 317328 865551 612002 771997 542665 824377 289957 745356 754303 302016 146249 594496 701051 034813 655335 798349 688802 333880 535418 379687 683635 869003 031857 569085 907971 397661 095534 702941 289746 633223 489684 324863 012836 857158 661998 956883 696852 087049 883295 566404 906437 608131 055863 040746 400121 560034 554344 826489 458787 763711 449671 642802 930041 543111 163153 731843 255971 112425 497594 710833 804490 992845 130209 086334 623629 463779 013389 064143 580406 933397 208533 024402 432821 439270 438487 064523 606731 372178 439271 238293 855325 909547 (541 digits), a[1024] = 1
                                                                                      A[1025]/B[1025] = 35184 089615 950101 340643 452822 841206 878218 131864 040746 108288 997575 237490 414426 874075 123330 595503 354898 815528 631117 855054 219317 392939 612047 158383 649697 561869 295899 329701 299432 706772 298522 550918 896884 915260 303917 503425 462300 368073 996570 412365 301497 656087 220195 087614 379125 782381 078355 457590 937533 514258 803856 226199 277788 302245 172945 798076 787669 440714 353790 508391 732788 859938 947680 346848 293694 341576 682640 177139 670881 916129 013216 193212 187849 588609 918817 325861 945108 313542 247230 746659 679976 537393 001668 950279 672864 921713 831370 552278 683916 510826 (539 digits)/3 419665 709562 899433 209972 795090 129610 112141 930083 685661 814844 890425 821155 620548 879328 528261 559061 723978 215140 758166 812084 285555 252083 346013 091937 821425 257361 995814 364860 660416 835174 877360 486196 145251 536212 247434 712321 683836 174045 844057 170573 546775 854914 743651 303065 599361 439911 327918 450270 697490 839014 323455 847445 287267 284550 750526 191155 414519 329595 160190 058157 992350 576517 758330 080874 306363 919279 985801 710063 152651 201501 098994 049945 626046 422459 336719 287646 597296 456438 285632 315631 606896 360244 729576 753354 863783 929388 422836 626032 748050 829427 (541 digits), a[1025] = 1
                                                                                      A[1026]/B[1026] = 92182 645496 141502 194158 009043 353636 187496 414361 852221 068492 239738 897236 586386 697260 080973 967229 245495 015741 350141 798767 360554 787713 188599 878968 091147 025714 583623 385933 101790 652404 327554 336352 539543 811874 432617 390405 868459 407998 495654 747594 389122 770440 079583 188402 140464 461518 840950 322572 469950 026901 737934 242305 345798 263676 908256 040672 131010 684554 146374 376220 286675 353114 852389 328738 469107 491682 025936 881406 583948 526159 393079 966447 749546 619448 708236 801374 962460 133493 476278 085334 701987 990413 300805 859020 565181 821670 806842 859725 947722 998675 (539 digits)/8 959556 301182 285381 504549 181757 339462 070816 278816 688652 495241 392854 414308 783763 583034 346480 863480 202259 732297 662583 218665 272161 538980 347361 982225 331652 848604 527047 109409 004469 539352 786578 541478 198474 470085 590404 127584 657418 981315 177798 666010 106388 566988 149301 563014 895574 966872 539132 466946 301419 286159 702774 735636 974656 129136 055397 208800 287826 422901 770051 759118 914742 696146 679813 893591 868698 950985 469198 130960 109793 395847 328197 186225 875722 308697 686827 639436 774999 846273 779797 655665 646614 159759 897640 571233 334299 230955 284944 490359 351427 568401 (541 digits), a[1026] = 2
                                                                                      A[1027]/B[1027] = 127366 735112 091603 534801 461866 194843 065714 546225 892967 176781 237314 134727 000813 571335 204304 562732 600393 831269 981259 653821 579872 180652 800647 037351 740844 587583 879522 715634 401223 359176 626076 887271 436428 727134 736534 893831 330759 776072 492225 159959 690620 426527 299778 276016 519590 243899 919305 780163 407483 541160 541790 468504 623586 565922 081201 838748 918680 125268 500164 884612 019464 213053 800069 675586 762801 833258 708577 058546 254830 442288 406296 159659 937396 208058 627054 127236 907568 447035 723508 831994 381964 527806 302474 809300 238046 743384 638213 412004 631639 509501 (540 digits)/12 379222 010745 184814 714521 976847 469072 182958 208900 374314 310086 283280 235464 404312 462362 874742 422541 926237 947438 420750 030749 557716 791063 693375 074163 153078 105966 522861 474269 664886 374527 663939 027674 343726 006297 837838 839906 341255 155361 021855 836583 653164 421902 892952 866080 494936 406783 867050 917216 998910 125174 026230 583082 261923 413686 805923 399955 702345 752496 930241 817276 907093 272664 438143 974466 175062 870265 454999 841023 262444 597348 427191 236171 501768 731157 023546 927083 372296 302712 065429 971297 253510 520004 627217 324588 198083 160343 707781 116392 099478 397828 (542 digits), a[1027] = 1
                                                                                      A[1028]/B[1028] = 3 021617 553074 248383 494591 631965 835026 698930 977557 390466 134460 697963 995957 605098 837969 779978 910079 054553 134950 919113 836663 697614 942727 603481 738058 130572 540143 812645 845524 329927 913466 727322 743595 577404 535973 372919 948526 475934 257665 816833 426667 273392 580567 974483 536782 091040 071216 984983 266330 842071 473594 199115 017911 688289 279884 775898 331897 260653 565729 650166 722296 734352 253352 253991 867234 013549 656632 323209 227970 445048 698792 737891 638626 309659 404797 130481 727823 836534 415315 116981 221205 487172 129958 257726 472926 040256 919517 485751 335832 475431 717198 (541 digits)/293 681662 548321 536119 938554 649249 128122 278855 083525 297881 627225 908299 829990 082950 217380 465556 581944 505732 523381 339833 925905 099647 733445 294988 687977 852449 285834 552861 017611 296856 153489 057176 177988 104172 614935 860697 445430 506287 554618 680482 907434 129170 270754 687217 482866 279112 322901 481303 562937 276352 165162 306078 146528 998894 643932 591635 407781 441778 730331 165613 556487 777887 967428 757125 306313 895144 967090 934194 474495 146019 134861 153595 618170 416403 125309 228406 962354 337814 808651 284686 995502 477356 119866 323639 036761 890211 918860 563910 167377 639430 718445 (543 digits), a[1028] = 23
                                                                                      A[1029]/B[1029] = 48 473247 584300 065739 448267 573319 555270 248610 187144 140425 328152 404738 070048 682394 978851 683967 123997 473243 990484 687081 040440 741711 264294 456354 846281 830005 229884 881856 244023 680069 974644 263240 784800 674901 302708 703254 070254 945707 898725 561559 986636 064901 715614 891514 864529 976231 383371 679038 041456 880627 118667 727630 755091 636215 044078 495575 149105 089137 176942 902832 441359 769100 266689 863939 551330 979596 339375 879924 706073 375609 622972 212562 377680 891946 684812 714761 772418 292119 092077 595208 371282 176718 607138 426098 376116 882157 455664 410234 785324 238546 984669 (542 digits)/4711 285822 783889 762733 731396 364833 519028 644639 545305 140420 345700 816077 515305 731515 940450 323647 733654 017958 321539 858092 845231 152080 526188 413194 081808 792266 679319 368637 756050 414584 830352 578757 875484 010487 845271 608997 966794 441856 029259 909582 355529 719888 753977 888432 591940 960733 573207 567907 924213 420544 767770 923480 927546 244237 716608 272089 924458 770805 437795 580058 721081 353300 751524 552148 875488 497382 343720 402111 432945 598750 755126 884721 126898 164218 736104 678058 324752 777333 241132 620421 899336 891208 437865 805441 912778 441473 862112 730343 794434 330369 892948 (544 digits), a[1029] = 16
                                                                                      A[1030]/B[1030] = 99 968112 721674 379862 391126 778604 945567 196151 351845 671316 790765 507440 136054 969888 795673 147913 158074 001041 115920 293275 917545 181037 471316 516191 430621 790582 999913 576358 333571 690067 862755 253804 313196 927207 141390 779428 089036 367350 055116 939953 399939 403196 011797 757513 265842 043502 837960 343059 349244 603325 710929 654376 528094 960719 368041 767048 630107 438927 919615 455831 605016 272552 786731 981870 969895 972742 335384 083058 640117 196267 944737 163016 393988 093552 774422 560005 272660 420772 599470 307397 963769 840609 344235 109923 225159 804571 830846 306220 906480 952525 686536 (542 digits)/9716 253308 116101 061587 401347 378916 166179 568134 174135 578722 318627 540454 860601 545982 098281 112852 049252 541649 166461 056019 616367 403808 785822 121376 851595 436982 644473 290136 529712 126025 814194 214691 928956 125148 305479 078693 379019 389999 613138 499647 618493 568947 778710 464082 666748 200579 469316 617119 411364 117441 700704 153040 001621 487370 077149 135815 256698 983389 605922 325730 998650 484489 470477 861423 057290 889909 654531 738417 340386 343520 645114 923037 871966 744840 597518 584523 611859 892481 290916 525530 794176 259772 995597 934522 862318 773159 643086 024597 756246 300170 504341 (544 digits), a[1030] = 2
                                                                                      A[1031]/B[1031] = 248 409473 027648 825464 230521 130529 446404 640912 890835 483058 909683 419618 342158 622172 570197 979793 440145 475326 222325 273632 875531 103786 206927 488737 707525 411171 229712 034572 911167 060205 700154 770849 411194 529315 585490 262110 248327 680408 008959 441466 786514 871293 739210 406541 396214 063237 059292 365156 739946 087278 540527 036383 811281 557653 780162 029672 409319 966993 016173 814495 651392 314205 840153 827681 491122 925081 010144 046041 986307 768145 512446 538595 165657 079052 233657 834772 317739 133664 291018 210004 298821 857937 295608 645944 826436 491301 117357 022676 598286 143598 357741 (543 digits)/24143 792439 016091 885908 534091 122665 851387 780907 893576 297864 982955 896987 236508 823480 137012 549351 832159 101256 654461 970132 077965 959698 097832 655947 784999 666231 968265 948910 815474 666636 458741 008141 733396 260784 456229 766384 724833 221855 255536 908877 592516 857784 311398 816597 925437 361892 511840 802146 746941 655428 169179 229560 930789 218977 870906 543720 437856 737584 649640 231520 718382 322279 692480 274994 990070 277201 652783 878946 113718 285792 045356 730796 870831 653899 931141 847105 548472 562295 822965 671483 487689 410754 429061 674487 637415 987793 148284 779539 306926 930710 901630 (545 digits), a[1031] = 2
                                                                                      A[1032]/B[1032] = 845 196531 804620 856255 082690 170193 284781 118890 024352 120493 519815 766295 162530 836406 506267 087293 478510 427019 782896 114174 544138 492396 092098 982404 553198 024096 689049 680077 067072 870684 963219 566352 546780 515153 897861 565758 834019 408574 081995 264353 759484 017077 229428 977137 454484 233214 015837 438529 569082 865161 332510 763527 961939 633680 708527 856065 858067 339906 968136 899318 559193 215170 307193 464915 443264 747985 365816 221184 599040 500704 482076 778801 890959 330709 475396 064322 225877 821765 472524 937410 860235 414421 231061 047757 704469 278475 182917 374250 701339 383320 759759 (543 digits)/82147 630625 164376 719313 003620 746913 720342 910857 854864 472317 267495 231416 570128 016422 509318 760907 545729 845419 129846 966415 850265 282903 079320 089220 206594 435678 549271 136868 976136 125935 190417 239117 129144 907501 674168 377847 553519 055565 379749 226280 396044 142300 712906 913876 443060 286257 004839 023559 652189 083726 208241 841722 793989 144303 689868 766976 570269 196143 554843 020293 153797 451328 547918 686408 027501 721514 612883 375255 681541 200896 781185 115428 484461 706540 390944 125840 257277 579368 759813 539981 257244 492036 282782 957985 774566 736539 087940 363215 677027 092303 209231 (545 digits), a[1032] = 3
                                                                                      A[1033]/B[1033] = 1093 606004 832269 681719 313211 300722 731185 759802 915187 603552 429499 185913 504689 458579 076465 067086 918655 902346 005221 387807 419669 596182 299026 471142 260723 435267 918761 714649 978239 930890 663374 337201 957975 044469 483351 827869 082347 088982 090954 705820 545998 888370 968639 383678 850698 296451 075129 803686 309028 952439 873037 799911 773221 191334 488689 885738 267387 306899 984310 713814 210585 529376 147347 292596 934387 673066 375960 267226 585348 268849 994523 317397 056616 409761 709053 899094 543616 955429 763543 147415 159057 272358 526669 693702 530905 769776 300274 396927 299625 526919 117500 (544 digits)/106291 423064 180468 605221 537711 869579 571730 691765 748440 770182 250451 128403 806636 839902 646331 310259 377888 946675 784308 936547 928231 242601 177152 745167 991594 101910 517537 085779 791610 792571 649158 247258 862541 168286 130398 144232 278352 277420 635286 135157 988561 000085 024305 730474 368497 648149 516679 825706 399130 739154 377421 071283 724778 363281 560775 310697 008125 933728 204483 251813 872179 773608 240398 961403 017571 998716 265667 254201 795259 486688 826541 846225 355293 360440 322085 972945 805750 141664 582779 211464 744933 902790 711844 632473 411982 724332 236225 142754 983954 023014 110861 (546 digits), a[1033] = 1
                                                                                      A[1034]/B[1034] = 4126 014546 301429 901413 022324 072361 478338 398298 769914 931150 808313 324035 676599 212143 735662 288554 234478 134057 798560 277596 803147 280942 989178 395831 335368 329900 445334 824027 001792 663356 953342 577958 420705 648562 347917 049366 081060 675520 354859 381815 397480 682190 135347 128174 006579 122567 241226 849588 496169 722480 951624 163263 281603 207684 174597 513280 660229 260606 921069 040761 190949 803298 749235 342706 246427 767184 493697 022864 355085 307254 465646 730993 060808 559994 602557 761605 856728 688054 763154 379656 337407 231496 811070 128865 297186 587804 083740 565032 600215 964078 112259 (544 digits)/401021 899817 705782 534977 616756 355652 435534 986155 100186 782864 018848 616627 990038 536130 448312 691685 679396 685446 482773 776059 634959 010706 610778 324724 181376 741410 101882 394208 350968 503650 137891 980893 716768 412360 065362 810544 388575 887827 285607 631754 361727 142555 785824 105299 548553 230705 554878 500678 849581 301189 340505 055573 968324 234148 372194 699067 594646 997328 168292 775734 770336 772153 269115 570617 080217 717663 409885 137861 067319 660963 260810 654104 550341 787861 357202 044677 674528 004362 508151 174375 492046 200408 418316 855406 010514 909535 796615 791480 628889 161345 541814 (546 digits), a[1034] = 3
                                                                                      A[1035]/B[1035] = 5219 620551 133699 583132 335535 373084 209524 158101 685102 534703 237812 509949 181288 670722 812127 355641 153134 036403 803781 665404 222816 877125 288204 866973 596091 765168 364096 538676 980032 594247 616716 915160 378680 693031 831268 877235 163407 764502 445814 087635 943479 570561 103986 511852 857277 419018 316356 653274 805198 674920 824661 963175 054824 399018 663287 399018 927616 567506 905379 754575 401535 332674 896582 635303 180815 440250 869657 290090 940433 576104 460170 048390 117424 969756 311611 660700 400345 643484 526697 527071 496464 503855 337739 822567 828092 357580 384014 961959 899841 490997 229759 (544 digits)/507313 322881 886251 140199 154468 225232 007265 677920 848627 553046 269299 745031 796675 376033 094644 001945 057285 632122 267082 712607 563190 253307 787931 069892 172970 843320 619419 479988 142579 296221 787050 228152 579309 580646 195760 954776 666928 165247 920893 766912 350288 142640 810129 835773 917050 878855 071558 326385 248712 040343 717926 126857 693102 597429 932970 009764 602772 931056 372776 027548 642516 545761 509514 532020 097789 716379 675552 392062 862579 147652 087352 500329 905635 148301 679288 017623 480278 146027 090930 385840 236980 103199 130161 487879 422497 633868 032840 934235 612843 184359 652675 (546 digits), a[1035] = 1
                                                                                      A[1036]/B[1036] = 9345 635097 435129 484545 357859 445445 687862 556400 455017 465854 046125 833984 857887 882866 547789 644195 387612 170461 602341 943001 025964 158068 277383 262804 931460 095068 809431 362703 981825 257604 570059 493118 799386 341594 179185 926601 244468 440022 800673 469451 340960 252751 239333 640026 863856 541585 557583 502863 301368 397401 776286 126438 336427 606702 837884 912299 587845 828113 826448 795336 592485 135973 645817 978009 427243 207435 363354 312955 295518 883358 925816 779383 178233 529750 914169 422306 257074 331539 289851 906727 833871 735352 148809 951433 125278 945384 467755 526992 500057 455075 342018 (544 digits)/908335 222699 592033 675176 771224 580884 442800 664075 948814 335910 288148 361659 786713 912163 542956 693630 736682 317568 749856 488667 198149 264014 398709 394616 354347 584730 721301 874196 493547 799871 924942 209046 296077 993006 261123 765321 055504 053075 206501 398666 712015 285196 595953 941073 465604 109560 626436 827064 098293 341533 058431 182431 661426 831578 305164 708832 197419 928384 541068 803283 412853 317914 778630 102637 178007 434043 085437 529923 929898 808615 348163 154434 455976 936163 036490 062301 154806 150389 599081 560215 729026 303607 548478 343285 433012 543403 829456 725716 241732 345705 194489 (546 digits), a[1036] = 1
                                                                                      A[1037]/B[1037] = 23910 890746 003958 552223 051254 263975 585249 270902 595137 466411 330064 177918 897064 436455 907706 644031 928358 377327 008465 551406 274745 193261 842971 392583 459011 955305 982959 264084 943683 109456 756835 901397 977453 376220 189640 730437 652344 644548 047161 026538 625400 076063 582653 791906 584990 502189 431523 659001 407935 469724 377234 216051 727679 612424 339057 223618 103308 223734 558277 345248 586505 604622 188218 591322 035301 855121 596365 916001 531471 342822 311803 607156 473892 029258 139950 505312 914494 306563 106401 340527 164207 974559 635359 725434 078650 248349 319526 015944 899956 401147 913795 (545 digits)/2 323983 768281 070318 490552 696917 387000 892867 006072 746256 224866 845596 468351 370103 200360 180557 389206 530650 267259 766795 689941 959488 781336 585349 859124 881666 012782 062023 228381 129674 895965 636934 646245 171465 566658 718008 485418 777936 271398 333896 564245 774318 713034 002037 717920 848259 097976 324431 980513 445298 723409 834788 491721 015956 260586 543299 427428 997612 787825 454913 634115 468223 181591 066774 737294 453804 584465 846427 451910 722376 764882 783678 809198 817589 020627 752268 142225 789890 446806 289093 506271 695032 710414 227118 174450 288522 720675 691754 385668 096307 875770 041653 (547 digits), a[1037] = 2
                                                                                      A[1038]/B[1038] = 176721 870319 462839 350106 716639 293274 784607 452718 620979 730733 356575 079417 137338 938057 901736 152418 886120 811750 661600 802844 949180 510901 178183 010889 144543 782210 690146 211298 587607 023801 867910 802904 641559 975135 506671 039664 810880 951859 130800 655221 718760 785196 317910 183372 958790 056911 578249 115873 156916 685472 416925 638800 430184 893673 211285 477626 311003 394255 734390 212076 698024 368328 963348 117263 674356 193286 537915 724966 015818 283115 108442 029478 495477 734557 893822 959496 658534 477481 034661 290417 983327 557269 596328 029471 675830 683829 704437 638606 799752 263110 738583 (546 digits)/17 176221 600667 084263 109045 649646 289890 692869 706585 172607 909978 207323 640119 377436 314684 806858 418076 451234 188387 117426 318260 914570 733370 496158 408490 526009 674205 155464 472864 401272 071631 383484 732762 496336 959617 287183 163252 501057 952863 543777 348387 132246 276434 610217 966519 403417 795394 897460 690658 215384 405401 901950 624478 773120 655684 108260 700835 180709 443162 725464 242091 690415 589052 246053 263698 354639 525304 010429 693298 986536 162794 833914 818826 179100 080557 302367 057881 684039 278033 622736 104117 594255 276507 138305 564437 452671 588133 671737 425392 915887 476095 486060 (548 digits), a[1038] = 7
                                                                                      A[1039]/B[1039] = 907520 242343 318155 302756 634450 730349 508286 534495 700036 120078 112939 575004 583759 126745 416387 406126 358962 436080 316469 565631 020647 747767 733886 447029 181730 866359 433690 320577 881718 228466 096389 915921 185253 251897 722995 928761 706749 403843 701164 302647 219204 002045 172204 708771 378940 786747 322769 238367 192518 897086 461862 410053 878604 080790 395484 611749 658325 195013 230228 405632 076627 446267 004959 177640 407082 821554 285944 540831 610562 758397 854013 754548 951280 702047 609065 302796 207166 693968 279707 792617 080845 760907 616999 872792 457803 667497 841714 208978 898717 716701 606710 (546 digits)/88 205091 771616 491634 035780 945148 836454 357215 538998 609295 774757 882214 668948 257284 773784 214849 479588 786821 209195 353927 281246 532342 448189 066141 901577 511714 383807 839345 592703 136035 254122 554358 310057 653150 364745 153924 301681 283226 035716 052783 306181 435550 095207 053127 550517 865348 074950 811735 433804 522220 750419 344541 614114 881559 539007 084602 931604 901160 003639 082234 844573 920301 126852 297041 055786 227002 210985 898575 918405 655057 578856 953252 903329 713089 423414 264103 431634 210086 836974 402774 026859 666309 092949 918645 996637 551880 661344 050441 512632 675745 256247 471953 (548 digits), a[1039] = 5
                                                                                      A[1040]/B[1040] = 23 772248 171245 734877 221779 212358 282362 000057 349606 821918 852764 293004 029536 315076 233438 727808 711704 219144 149838 889809 509251 486021 952862 259230 633647 869546 307555 966094 546323 512280 963920 374048 616855 458144 524476 304565 187469 186365 451795 361072 524049 418064 838370 795232 611428 811250 512341 970249 313420 162408 009720 425348 300201 273890 994223 493885 383117 427458 464599 720328 758510 690337 971271 092286 735914 258509 553697 972473 786587 890450 001459 312799 647751 228775 987795 729520 832198 044868 520656 307063 898462 085317 340867 638324 722075 578726 038773 589007 072058 166412 897352 513043 (548 digits)/2310 508607 662695 866748 039350 223516 037703 980473 720549 014298 053683 144905 032774 066840 433074 392944 887384 908585 627466 319535 630670 755474 386286 215847 849505 830583 653208 978449 883145 938188 678817 796800 794261 478246 442991 289215 006965 864934 881480 916143 309104 456548 751817 991534 279983 902467 744116 002581 969575 793123 916304 860032 591465 693668 669868 307936 922562 610869 537778 863570 201013 618244 887211 969120 714140 256697 010937 373403 571846 018033 213075 618490 305398 719425 089328 169056 280371 146297 039368 094860 802468 918291 693205 023101 477013 801568 783078 983216 753842 485264 138529 756838 (550 digits), a[1040] = 26
                                                                                      A[1041]/B[1041] = 24 679768 413589 053032 524535 846809 012711 508343 884102 521954 972842 405943 604540 898835 360184 144196 117830 578106 585919 206279 074882 506669 700629 993117 080677 051277 173915 399784 866901 393999 192386 470438 532776 643397 776374 027561 116230 893114 855639 062236 826696 637268 840415 967437 320200 190191 299089 293018 551787 354926 906806 887210 710255 152495 075013 889369 994867 085783 659612 950557 164142 766965 417538 097245 913554 665592 375252 258418 327419 501012 759857 166813 402300 180056 689843 338586 134994 252035 214624 586771 691079 166163 101775 255324 594868 036529 706271 430721 281037 065130 614054 119753 (548 digits)/2398 713699 434312 358382 075131 168664 874158 337689 259547 623593 828441 027119 701722 324125 206858 607794 366973 695406 836661 673462 911917 287816 834475 281989 751083 342298 037016 817795 475849 074223 932940 351159 104319 131396 807736 443139 308647 148160 917196 968926 615285 892098 847025 044661 830501 767815 819066 814317 403380 315344 666724 204574 205580 575228 208875 392539 854167 512029 541417 945805 045587 538546 014064 266161 769926 483699 221923 271979 490251 673090 791932 571743 208728 432514 512742 433159 712005 356383 876342 497634 829328 584600 786154 941747 473651 353449 444423 033658 266475 161009 394777 228791 (550 digits), a[1041] = 1
                                                                                      A[1042]/B[1042] = 97 811553 412012 893974 795386 752785 320496 525089 001914 387783 771291 510834 843159 011582 313991 160397 065195 953463 907596 508646 733899 006031 054752 238581 875679 023377 829302 165449 147027 694278 541079 785364 215185 388337 853598 387248 536161 865710 018712 547783 004139 329871 359618 697544 572029 381824 409609 849304 968782 227188 730141 086980 430966 731376 219265 161995 367718 684809 443438 572000 250938 991234 223885 384024 476578 255286 679454 747728 768846 393488 281030 813239 854651 768946 057325 745279 237180 800974 164530 067378 971699 583806 646193 404298 506679 688315 157587 881170 915169 361804 739514 872302 (548 digits)/9506 649705 965632 941894 264743 729510 660178 993541 499191 885079 539006 226264 137941 039216 053650 216327 988305 994806 137451 339924 366422 618924 889712 061817 102755 857477 764259 431836 310693 160860 477638 850278 107218 872436 866200 618632 932907 309417 633071 822923 154962 132845 292893 125519 771489 205915 201316 445534 179716 739157 916477 473755 208207 419353 296494 485556 485065 146958 162032 700985 337776 233882 929404 767606 023919 707794 676707 189342 042601 037305 588873 333719 931584 016968 627555 468535 416387 215448 668395 587765 290454 672094 051669 848343 897967 861917 116348 084191 553267 968292 322861 443211 (550 digits), a[1042] = 3
                                                                                      A[1043]/B[1043] = 318 114428 649627 734956 910696 105164 974201 083610 889845 685306 286716 938448 134017 933582 302157 625387 313418 438498 308708 732219 276579 524762 864886 708862 707714 121410 661821 896132 307984 476834 815625 826531 178332 808411 337169 189306 724716 490244 911776 705585 839114 626882 919272 060071 036288 335664 527918 840933 458134 036493 097230 148152 003155 346623 732809 375356 098023 140211 989928 666557 916959 740668 089194 249319 343289 431452 413616 501604 633958 681477 602949 606532 966255 486894 861820 574423 846536 654957 708214 788908 606177 917583 040355 468220 114907 101475 179035 074234 026545 150544 832598 736659 (549 digits)/30918 662817 331211 184064 869362 357196 854695 318313 757123 278832 445459 705912 115545 441773 367809 256778 331891 679825 249015 693236 011185 144591 503611 467441 059350 914731 329795 113304 407928 556805 365856 901993 425975 748707 406338 299038 107369 076413 816412 437696 080172 290634 725704 421221 144969 385561 423016 150919 942530 532818 416156 625839 830202 833288 098358 849209 309362 952904 027516 048761 058916 240194 802278 568979 841685 607083 252044 840005 618054 785007 558552 572903 003480 483420 395408 838765 961167 002729 881529 260930 700692 600882 941164 486779 167554 939200 793467 286232 926279 065886 363361 558424 (551 digits), a[1043] = 3
                                                                                      A[1044]/B[1044] = 415 925982 061640 628931 706082 857950 294697 608699 891760 073090 058008 449282 977176 945164 616148 785784 378614 391962 216305 240866 010478 530793 919638 947444 583393 144788 491124 061581 455012 171113 356705 611895 393518 196749 190767 576555 260878 355954 930489 253368 843253 956754 278890 757615 608317 717488 937528 690238 426916 263681 827371 235132 434122 077999 952074 537351 465741 825021 433367 238558 167898 731902 313079 633343 819867 686739 093071 249333 402805 074965 883980 419772 820907 255840 919146 319703 083717 455931 872744 856287 577877 501389 686548 872518 621586 789790 336622 955404 941714 512349 572113 608961 (549 digits)/40425 312523 296844 125959 134106 086707 514874 311855 256315 163911 984465 932176 253486 480989 421459 473106 320197 674631 386467 033160 377607 763516 393323 529258 162106 772209 094054 545140 718621 717665 843495 752271 533194 621144 272538 917671 040276 385831 449484 260619 235134 423480 018597 546740 916458 591476 624332 596454 122247 271976 332634 099595 038410 252641 394853 334765 794428 099862 189548 749746 396692 474077 731683 336585 865605 314877 928752 029347 660655 822313 147425 906622 935064 500389 022964 307301 377554 218178 549924 848695 991147 272976 992834 335123 065522 801117 909815 370424 479547 034178 686223 001635 (551 digits), a[1044] = 1
                                                                                      A[1045]/B[1045] = 1981 818356 896190 250683 735027 536966 152991 518410 456885 977666 518750 735580 042725 714240 766752 768524 827876 006347 173929 695683 318493 647938 543442 498641 041286 700564 626318 142458 128033 161288 242448 274112 752405 595408 100239 495527 768229 914064 633733 719061 212130 453900 034835 090533 469559 205620 278033 601887 165799 091220 406715 088681 739643 658623 541107 524761 960990 440297 723397 620790 588554 668277 341512 782694 622760 178408 785901 498938 245178 981341 138871 285624 249884 510258 538405 853236 181406 478685 199194 214058 917687 923141 786550 958294 601254 260636 525526 895853 793403 199943 121053 172503 (550 digits)/192619 912910 518587 687901 405786 704026 914192 565734 782383 934480 383323 434617 129491 365731 053647 149203 612682 378350 794883 825877 521616 198657 076905 584473 707778 003567 706013 293867 282415 427468 739839 911079 558754 233284 496493 969722 268474 619739 614349 480173 020709 984554 800094 608184 810803 751467 920346 536736 431519 620723 746693 024219 983843 843853 677772 188272 487075 352352 785711 047746 645686 136505 729011 915323 304106 866594 967052 957396 260678 074260 148256 199394 743738 484976 487266 067971 471383 875444 081228 655714 665281 692790 912501 827271 429646 143672 432728 767930 844467 202601 108253 564964 (552 digits), a[1045] = 4
                                                                                      A[1046]/B[1046] = 14288 654480 334972 383717 851275 616713 365638 237573 089961 916755 689263 598343 276256 944849 983418 165458 173746 436392 433813 110649 239934 066363 723736 437931 872400 048740 875351 058788 351244 300131 053843 530684 660357 364605 892444 045249 638487 754407 366625 286797 328167 134054 522736 391349 895232 156830 883763 903448 587509 902224 674376 855904 611627 688364 739827 210685 192674 907105 497150 584092 287781 409843 703669 112206 179188 935600 594381 741901 119057 944353 856079 419142 570098 827650 687987 292356 353562 806728 267104 354700 001692 963382 192405 580580 830366 614246 015311 226381 495536 911951 419485 816482 (551 digits)/1 388764 702896 926957 941268 974613 014895 914222 271998 733002 705274 667729 974496 159926 041106 796989 517531 608974 323086 950653 814303 028921 154115 931662 620574 116552 797183 036147 602211 695529 709947 022375 129828 444474 254135 747996 705726 919598 724008 749930 621830 380104 315363 619259 804034 592084 851752 066758 353609 142884 617042 559485 269134 925317 159617 139258 652673 203955 566331 689526 083972 916495 429617 834766 743848 994353 381042 698122 731121 485402 342134 185219 302386 141233 895224 433826 783101 677241 346287 118525 438698 648119 122513 380347 126023 073045 806824 938916 745940 390817 452386 443997 956383 (553 digits), a[1046] = 7
                                                                                      A[1047]/B[1047] = 244888 944522 590720 773887 206713 021093 368841 557152 986238 562513 236231 907415 739093 776690 484861 581313 781565 425018 548752 576720 397372 776121 846961 943482 872087 529159 507286 141860 099186 263516 157788 295751 978480 793708 271788 264771 622521 738989 866363 594615 790971 732826 921353 743481 688505 871745 302019 960513 153467 429039 871121 639060 137314 360824 118170 106410 236463 861091 174957 550359 480838 635620 303887 690199 668972 083618 890391 111257 269164 035356 692221 411047 941564 580320 234189 823294 191974 193065 739968 243958 946468 300639 057445 828168 717486 702818 785817 744339 217530 703117 252312 052697 (552 digits)/23 801619 862158 276872 689473 974207 957257 455971 189713 243429 924149 734733 001051 848234 064546 602468 947240 965245 870828 955998 669029 013275 818627 915170 134233 689175 555679 320522 531466 106420 496568 120217 118163 114816 553592 212437 967079 901652 927888 363170 051289 482483 345736 327511 276772 876246 231253 055238 548091 860558 110447 257942 599513 714235 557345 045169 283716 954319 979991 507654 475286 226108 440008 920046 560756 208114 344320 835139 386461 512517 890541 296984 339959 144714 703791 862321 380699 984486 762325 096161 113591 683306 775518 378402 969663 671424 859696 394313 448917 488363 893170 656218 823475 (554 digits), a[1047] = 17
                                                                                      A[1048]/B[1048] = 1 238733 377093 288576 253153 884840 722180 209846 023338 021154 729321 870423 135421 971725 828302 407726 072027 081573 561485 177575 994251 226797 946972 958546 155346 232837 694538 411781 768088 847175 617711 842785 009444 552761 333147 251385 369107 751096 449356 698443 259876 283025 798189 129505 108758 337761 515557 393863 706014 354847 047424 029985 051205 298199 492485 330677 742736 374994 212561 371938 335889 691974 587945 223107 563204 524049 353695 046337 298187 464878 121137 317186 474382 277921 729251 858936 408827 313433 772056 966945 574494 734034 466577 479634 721424 417800 128339 944399 948077 583190 427537 681046 079967 (553 digits)/120 396864 013688 311321 388638 845652 801183 194078 220564 950152 326023 341394 979755 401096 363839 809334 253736 435203 677231 730647 159448 095300 247255 507513 291742 562430 575579 638760 259542 227632 192787 623460 720644 018557 022096 810186 541126 427863 363450 565780 878277 792521 044045 256816 187898 973316 008017 342951 094068 445675 169278 849198 266703 496494 946342 365105 071257 975555 466289 227798 460404 047037 629662 434999 547630 034925 102646 873819 663429 047991 794840 670141 002181 864807 414183 745433 686601 599675 157912 599331 006657 064653 000105 272361 974341 430170 105306 910483 990527 832636 918239 725092 073758 (555 digits), a[1048] = 5
                                                                                      A[1049]/B[1049] = 70 852691 438840 039567 203658 642634 185365 330064 887420 192058 133859 850350 626468 127465 989927 725247 686857 431258 429673 670584 249040 324855 753580 484092 798218 143836 117848 978846 922924 388196 473091 196533 834091 485876 783101 600754 303913 435019 352321 677629 407563 923442 229607 303144 942706 940912 258516 752251 203331 379749 132209 580269 557762 134685 432487 966801 442383 611133 977089 375442 696071 923390 148498 021018 792857 539785 244236 531617 107942 767216 940183 771850 450837 783103 147676 193565 126451 057699 200312 855865 990158 786432 895555 396624 949360 532094 018195 616614 784761 459385 072765 071938 610816 (554 digits)/6886 422868 642392 022191 841888 176417 624699 518429 761915 402112 507480 194246 847109 710726 803415 734521 410217 771855 473037 602886 757570 445389 912191 843427 763559 747718 363718 729857 325373 081455 485462 657478 194872 172566 813110 393070 811286 289864 644570 612680 113123 656182 856315 966033 987014 355258 688241 603450 909993 264042 759341 662243 801613 014447 498859 856158 345421 560981 558477 492166 718316 907253 330767 715020 775668 198845 195192 642860 201917 248050 196459 495021 464325 438737 312265 352041 516991 165970 763343 258028 493044 368527 781518 903035 507125 191120 862190 291900 909003 948668 232834 986467 027681 (556 digits), a[1049] = 57
                                                                                      A[1050]/B[1050] = 142 944116 254773 367710 660471 170109 092910 869975 798178 405270 997041 571124 388358 226657 808157 858221 445741 944090 420832 518744 492331 876509 454133 926731 751782 520509 930236 369475 613937 623568 563894 235852 677627 524514 899350 452893 976934 621135 154000 053702 075004 129910 257403 735794 994172 219586 032590 898366 112677 114345 311843 190524 166729 567570 357461 264280 627503 597262 166740 122823 728033 538754 884941 265145 148919 603619 842168 109571 514072 999312 001504 860887 376057 844128 024604 246066 661729 428832 172682 678677 554812 306900 257688 272884 620145 481988 164731 177629 517600 501960 573067 824923 301599 (555 digits)/13893 242601 298472 355705 072415 198488 050582 230937 744395 754377 340983 729888 673974 822549 970671 278377 074171 978914 623306 936420 674588 986080 071639 194368 818862 057867 303017 098474 910288 390543 163712 938417 110388 363690 648317 596328 163699 007592 652591 791141 104525 104886 756677 188884 161927 683833 384500 549852 914054 973760 687962 173685 869929 525389 944062 077421 762101 097518 583244 212131 897037 861544 291197 865041 098966 432615 493032 159540 067263 544092 187759 660183 930832 742282 038714 449516 720583 931616 684599 115387 992745 801708 563143 078432 988591 812411 829687 494285 808535 729973 383909 698026 129120 (557 digits), a[1050] = 2
                                                                                      A[1051]/B[1051] = 213 796807 693613 407277 864129 812743 278276 200040 685598 597329 130901 421475 014826 354123 798085 583469 132599 375348 850506 189328 741372 201365 207714 410824 550000 664346 048085 348322 536862 011765 036985 432386 511719 010391 682452 053648 280848 056154 506321 731331 482568 053352 487011 038939 936879 160498 291107 650617 316008 494094 444052 770793 724491 702255 789949 231082 069887 208396 143829 498266 424105 462145 033439 286163 941777 143405 086404 641188 622015 766528 941688 632737 826895 627231 172280 439631 788180 486531 372995 534543 544971 093333 153243 669509 569506 014082 182926 794244 302361 961345 645832 896861 912415 (555 digits)/20779 665469 940864 377896 914303 374905 675281 749367 506311 156489 848463 924135 521084 533276 774087 012898 484389 750770 096344 539307 432159 431469 983831 037796 582421 805585 666735 828332 235661 471998 649175 595895 305260 536257 461427 989398 974985 297457 297162 403821 217648 761069 612993 154918 148942 039092 072742 153303 824048 237803 447303 835929 671542 539837 442921 933580 107522 658500 141721 704298 615354 768797 621965 580061 874634 631460 688224 802400 269180 792142 384219 155205 395158 181019 350979 801558 237575 097587 447942 373416 485790 170236 344661 981468 495717 003532 691877 786186 717539 678641 616744 684493 156801 (557 digits), a[1051] = 1
                                                                                      A[1052]/B[1052] = 5701 661116 288721 956935 127846 301434 328092 071033 623741 935828 400478 529474 773843 433876 558383 028418 893325 703160 533993 441291 768009 112004 854708 608170 051799 793507 180455 425861 572349 929459 525515 477901 982321 794698 643103 847749 278984 081152 318365 068320 621773 517074 919690 748233 353030 392541 601389 814416 328897 960800 857215 231161 003513 826220 896141 272414 444571 015561 906307 077750 754775 554525 754362 705407 635125 332152 088688 780475 686482 929064 485409 312070 875344 152138 503895 676493 154422 078647 870566 576809 724060 733562 242023 680133 427301 848124 920827 827981 379011 496947 364723 143333 024389 (556 digits)/554164 544819 760946 181024 844302 946035 607907 714492 908485 823113 401045 757412 222172 687746 096933 613737 668305 498937 128264 958413 910734 204299 651246 177079 961829 003094 638148 635113 037486 662508 042278 431695 047162 306384 645445 320701 513316 741482 378814 290492 763392 892696 694499 216756 034420 700227 275796 535752 339309 156650 317861 907857 330035 561163 460032 350504 557690 218522 268008 523895 896261 850282 462302 946649 839466 850593 386877 021947 065964 139794 177457 695524 204945 448785 164189 290030 897536 468890 331100 824216 623290 227853 524354 596613 877233 904261 818509 935140 464567 374655 419271 494848 205946 (558 digits), a[1052] = 26
                                                                                      A[1053]/B[1053] = 5915 457923 982335 364212 991976 114177 606368 271074 309340 533157 531379 950949 788669 788000 356468 611888 025925 078509 384499 630620 509381 313370 062423 018994 601800 457853 228540 774184 109211 941224 562500 910288 494040 805090 325555 901397 559832 137306 824686 799652 104341 570427 406701 787173 289909 553039 892497 465033 644906 454895 301268 001954 728005 528476 686090 503496 514458 223958 050136 576017 178881 016670 787801 991571 576902 475557 175093 421664 308498 695593 427097 944808 702239 779369 676176 116124 942602 565179 243562 111353 269031 826895 395267 349642 996807 862207 103754 622225 681373 458293 010556 040194 936804 (556 digits)/574944 210289 701810 558921 758606 320941 283189 463860 414796 979603 249509 681547 743257 221022 871020 626636 152695 249707 224609 497721 342893 635769 635077 214876 544250 808680 304884 463445 273148 134506 691454 027590 352422 842642 106873 310100 488302 038939 675976 694313 981041 653766 307492 371674 183362 739319 348538 689056 163357 394453 765165 743787 001578 101000 902954 284084 665212 877022 409730 228194 511616 619080 084268 526711 714101 482054 075101 824347 335144 931936 561676 850729 600103 629804 515169 091589 135111 566477 779043 197633 109080 398089 869016 578082 372950 907794 510387 721327 182107 053297 036016 179341 362747 (558 digits), a[1053] = 1
                                                                                      A[1054]/B[1054] = 100348 987900 006087 784342 999464 128276 029984 408222 573190 466348 902557 744671 392560 041882 261880 818627 308126 959310 685987 531219 918110 125925 853476 912083 680607 119158 837107 812807 319740 989052 525530 042517 886974 676143 851998 270110 236298 278061 513353 862754 291238 643913 426919 343005 991583 241179 881349 254954 647401 239125 677503 262436 651602 281847 873589 328358 675902 598890 708492 294025 616871 821258 359194 570552 865564 941066 890183 527104 622462 058559 318976 429010 111180 622053 322713 534492 236063 121515 767560 358462 028569 963888 566301 274421 376227 643438 580901 783592 280986 829635 533619 786452 013253 (558 digits)/9 753271 909454 989915 123772 982004 081096 138939 136259 545237 496765 393200 662176 114288 224112 033263 639916 111429 494252 722016 921955 397032 376613 812481 615104 669841 941979 516300 050237 407856 814615 105542 873140 685927 788658 355418 282309 326149 364517 194441 399516 460059 352957 614377 163542 968224 529336 852415 560650 953027 467910 560513 808449 355285 177177 907300 895859 201096 250880 823692 175008 082127 755563 810599 374037 265090 563458 588506 211504 428283 050779 164287 307197 806603 525657 406894 755457 059321 532534 795791 986346 368576 597291 428619 845931 844448 428973 984713 476375 378280 227407 995530 364310 009898 (559 digits), a[1054] = 16
                                                                                      A[1055]/B[1055] = 306962 421624 000598 717241 990368 499005 696321 495742 028911 932204 239053 184963 966349 913647 142111 067769 950305 956441 442462 224280 263711 691147 622853 755245 643621 815329 739864 212606 068434 908382 139091 037842 154964 833521 881550 711728 268726 971491 364748 387914 978057 502167 687459 816191 264659 276579 536545 229897 587110 172272 333777 789264 682812 374020 306858 488572 542166 020630 175613 458094 029496 480445 865385 703230 173597 298757 845644 002978 175884 871271 384027 231839 035781 645529 644316 719601 650791 929726 546243 186739 354741 718561 094171 172907 125490 792522 846459 973002 524333 947199 611415 399550 976563 (558 digits)/29 834759 938654 671555 930240 704618 564229 700006 872639 050509 469899 429111 668076 086121 893358 970811 546384 486983 732465 390660 263587 533990 765611 072522 060190 553776 634618 853784 614157 496718 578352 008082 647012 410206 208617 173128 157028 466750 132491 259300 892863 361219 712639 150623 862303 088036 327329 905785 371009 022439 798185 446707 169135 067433 632534 624856 971662 268501 629664 880806 753218 757999 885771 516066 648823 509373 172429 840620 458860 619994 084274 054538 772323 019914 206776 735853 357960 313076 164082 166419 156672 214810 189964 154876 115877 906296 194716 464528 150453 316947 735521 022607 272271 392441 (560 digits), a[1055] = 3
                                                                                      A[1056]/B[1056] = 407311 409524 006686 501584 989832 627281 726305 903964 602102 398553 141610 929635 358909 955529 403991 886397 258432 915752 128449 755500 181821 817073 476330 667329 324228 934488 576972 025413 388175 897434 664621 080360 041939 509665 733548 981838 505025 249552 878102 250669 269296 146081 114379 159197 256242 517759 417894 484852 234511 411398 011281 051701 334414 655868 180447 816931 218068 619520 884105 752119 646368 301704 224580 273783 039162 239824 735827 530082 798346 929830 703003 660849 146962 267582 967030 254093 886855 051242 313803 545201 383311 682449 660472 447328 501718 435961 427361 756594 805320 776835 145035 186002 989816 (558 digits)/39 588031 848109 661471 054013 686622 645325 838946 008898 595746 966664 822312 330252 200410 117471 004075 186300 598413 226718 112677 185542 931023 142224 885003 675295 223618 576598 370084 664394 904575 392967 113625 520153 096133 997275 528546 439337 792899 497008 453742 292379 821279 065596 765001 025846 056260 856666 758200 931659 975467 266096 007220 977584 422718 809712 532157 867521 469597 880545 704498 928226 840127 641335 326666 022860 774463 735888 429126 670365 048277 135053 218826 079520 826517 732434 142748 113417 372397 696616 962211 143018 583386 787255 583495 961809 750744 623690 449241 626828 695227 962929 018137 636581 402339 (560 digits), a[1056] = 1
                                                                                      A[1057]/B[1057] = 2 750830 878768 040717 726751 929364 262696 054156 919529 641526 323523 088718 762776 119809 646823 566062 386153 500903 450954 213160 757281 354642 593588 480837 759221 588995 422261 201696 365086 397490 292990 126817 520002 406601 891516 282844 602759 298878 468808 633361 891930 593834 378654 373734 771374 802114 383136 043912 139010 994178 640660 401464 099472 689300 309229 389545 390159 850577 737755 480247 970811 907706 290671 212867 345928 408570 737706 260609 183474 965966 450255 602049 196933 917555 251027 446498 244164 971922 237180 429064 457947 654611 813259 057005 856878 135801 408291 410630 512571 356258 608210 481626 515568 915459 (559 digits)/267 362951 027312 640382 254322 824354 436184 733682 926030 624991 269888 362985 649589 288582 598184 995262 664188 077463 092774 066723 376845 120129 618960 382544 111961 895488 094209 074292 600526 924170 936154 689835 767930 987010 192270 344406 793055 224147 114541 981754 647142 288894 106219 740630 017379 425601 467330 454990 960968 875243 394761 490033 034641 603746 490809 817804 176791 086088 912939 107800 322579 798765 733783 476062 785988 156155 587760 415380 481050 909656 894593 367495 249447 979020 601381 592342 038464 547462 343783 939686 014783 715130 913497 655851 886736 410763 936859 159977 911425 488315 513095 131433 091759 806475 (561 digits), a[1057] = 6
                                                                                      A[1058]/B[1058] = 3 158142 288292 047404 228336 919196 889977 780462 823494 243628 722076 230329 692411 478719 602352 970054 272550 759336 366706 341610 512781 536464 410661 957168 426550 913224 356749 778668 390499 785666 190424 791438 600362 448541 401182 016393 584597 803903 718361 511464 142599 863130 524735 488113 930572 058356 900895 461806 623863 228690 052058 412745 151174 023714 965097 569993 207091 068646 357276 364353 722931 554074 592375 437447 619711 447732 977530 996436 713557 764313 380086 305052 857783 064517 518610 413528 498258 858777 288422 742868 003149 037923 495708 717478 304206 637519 844252 837992 269166 161579 385045 626661 701571 905275 (559 digits)/306 950982 875422 301853 308336 510977 081510 572628 934929 220738 236553 185297 979841 488992 715655 999337 850488 675876 319492 179400 562388 051152 761185 267547 787257 119106 670807 444377 264921 828746 329121 803461 288084 083144 189545 872953 232393 017046 611550 435496 939522 110173 171816 505631 043225 481862 323997 213191 892628 850710 660857 497254 012226 026465 300522 349962 044312 555686 793484 812299 250806 638893 375118 802728 808848 930619 323648 844507 151415 957934 029646 586321 328968 805538 333815 735090 151881 919860 040400 901897 157802 298517 700753 239347 848546 161508 560549 609219 538254 183543 476024 149570 728341 208814 (561 digits), a[1058] = 1
                                                                                      A[1059]/B[1059] = 28 015969 185104 419951 553447 282939 382518 297859 507483 590556 100132 931356 302067 949566 465647 326496 566559 575594 384604 946044 859533 646357 878884 138185 171628 894790 276259 431043 489084 682819 816388 458326 322901 994933 100972 413993 279541 730108 215700 725075 032729 498878 576538 278646 215951 268969 590299 738365 129916 823699 057127 703425 308864 879020 030009 949491 046888 399748 595966 395077 754264 340303 029674 712448 303619 990434 557954 232102 891937 080473 490946 042472 059198 433695 399910 754726 230235 842140 544562 372008 483139 957999 778928 796832 290531 235960 162314 114568 665900 648893 688575 494920 128144 157659 (560 digits)/2722 970814 030691 055208 721014 912171 088269 314714 405464 390897 162313 845369 488321 200524 323432 989965 468097 484473 648711 501927 875949 529351 708442 522926 410018 848341 460668 629310 719901 554141 569129 117526 072603 652163 708637 328032 652199 360520 006945 465730 163319 170279 480751 785678 363183 280500 059308 160526 101999 680928 681621 468065 132449 815468 894988 617500 531291 531583 260817 606194 329032 909912 734733 897893 256779 601110 176951 171437 692378 573129 131766 058065 881198 423327 271907 473063 253519 906342 666991 154863 277202 103272 519523 570634 675105 702832 421256 033734 217458 956663 321288 327998 918489 476987 (562 digits), a[1059] = 8
                                                                                      A[1060]/B[1060] = 31 174111 473396 467355 781784 202136 272496 078322 330977 834184 822209 161685 994479 428286 068000 296550 839110 334930 751311 287655 372315 182822 289546 095353 598179 808014 633009 209711 879584 468486 006813 249764 923264 443474 502154 430386 864139 534011 934062 236539 175329 362009 101273 766760 146523 327326 491195 200171 753780 052389 109186 116170 460038 902734 995107 519484 253979 468394 953242 759431 477195 894377 622050 149895 923331 438167 535485 228539 605494 844786 871032 347524 916981 498212 918521 168254 728494 700917 832985 114876 486288 995923 274637 514310 594737 873480 006566 952560 935066 810473 073621 121581 829716 062934 (560 digits)/3029 921796 906113 357062 029351 423148 169779 887343 340393 611635 398867 030667 468162 689517 039088 989303 318586 160349 968203 681328 438337 580504 469627 790474 197275 967448 131476 073687 984823 382887 898250 920987 360687 735307 898183 200985 884592 377566 618495 901227 102841 280452 652568 291309 406408 762362 383305 373717 994628 531639 342478 965319 144675 841934 195510 967462 575604 087270 054302 418493 579839 548806 109852 700622 065628 531729 500600 015944 843794 531063 161412 644387 210167 228865 605723 208153 405401 826202 707392 056760 435004 401790 220276 809982 523651 864340 981805 642953 755713 140206 797312 477569 646830 685801 (562 digits), a[1060] = 1
                                                                                      A[1061]/B[1061] = 121 538303 605293 822018 898799 889348 200006 532826 500417 093110 566760 416414 285506 234424 669648 216149 083890 580386 638538 809010 976479 194824 747522 424245 966168 318834 175287 060179 127838 088277 836828 207621 092695 325356 607435 705153 871960 332144 017887 434692 558717 584905 880359 578926 655521 250949 063885 338880 391256 980866 384686 051936 688981 587225 015332 507943 808826 804933 455694 673372 185852 023435 895825 162136 073614 304937 164409 917721 708421 614834 104043 085046 810142 928334 155474 259490 415719 944894 043517 716637 942006 945769 602841 339764 074744 856400 182014 972251 471101 080312 909438 859665 617292 346461 (561 digits)/11812 736204 749031 126394 809069 181615 597608 976744 426645 225803 358914 937371 892809 269075 440699 957875 423855 965523 553322 545913 190962 270865 117325 894349 001846 750685 855096 850374 674371 702805 263881 880488 154666 858087 403186 930990 305976 493219 862433 169411 471843 011637 438456 659606 582409 567587 209224 281680 085885 275846 709058 364022 566477 341271 481521 519888 258103 793393 423724 861675 068551 556331 064291 999759 453665 196298 678751 219272 223762 166318 616003 991227 511700 109924 089077 097523 469725 384950 789167 325144 582215 308643 180354 000582 246061 295855 366672 962595 484598 377283 713225 760707 858981 534390 (563 digits), a[1061] = 3
                                                                                      A[1062]/B[1062] = 152 712415 078690 289374 680584 091484 472502 611148 831394 927295 388969 578100 279985 662710 737648 512699 923000 915317 389850 096666 348794 377647 037068 519599 564348 126848 808296 269891 007422 556763 843641 457386 015959 768831 109590 135540 736099 866155 951949 671231 734046 946914 981633 345686 802044 578275 555080 539052 145037 033255 493872 168107 149020 489960 010440 027428 062806 273328 408937 432803 663047 917813 517875 312031 996945 743104 699895 146261 313916 459620 975075 432571 727124 426547 073995 427745 144214 645811 876502 831514 428295 941692 877478 854074 669482 729880 188581 924812 406167 890785 983059 981247 447008 409395 (561 digits)/14842 658001 655144 483456 838420 604763 767388 864087 767038 837438 757781 968039 360971 958592 479788 947178 742442 125873 521526 227241 629299 851369 586953 684823 199122 718133 986572 924062 659195 085693 162132 801475 515354 593395 301370 131976 190568 870786 480929 070638 574684 292090 091024 950915 988818 329949 592529 655398 080513 807486 051537 329341 711153 183205 677032 487350 833707 880663 478027 280168 648391 105137 174144 700381 519293 728028 179351 235217 067556 697381 777416 635614 721867 338789 694800 305676 875127 211153 496559 381905 017219 710433 400630 810564 769713 160196 348478 605549 240311 517490 510538 238277 505812 220191 (563 digits), a[1062] = 1
                                                                                      A[1063]/B[1063] = 274 250718 683984 111393 579383 980832 672509 143975 331812 020405 955729 994514 565491 897135 407296 728849 006891 495704 028388 905677 325273 572471 784590 943845 530516 445682 983583 330070 135260 645041 680469 665007 108655 094187 717025 840694 608060 198299 969837 105924 292764 531820 861992 924613 457565 829224 618965 877932 536294 014121 878558 220043 838002 077185 025772 535371 871633 078261 864632 106175 848899 941249 413700 474168 070560 048041 864305 063983 022338 074455 079118 517618 537267 354881 229469 687235 559934 590705 920020 548152 370302 887462 480320 193838 744227 586280 370596 897063 877268 971098 892498 840913 064300 755856 (561 digits)/26655 394206 404175 609851 647489 786379 364997 840832 193684 063242 116696 905411 253781 227667 920488 905054 166298 091397 074848 773154 820262 122234 704279 579172 200969 468819 841669 774437 333566 788498 426014 681963 670021 451482 704557 062966 496545 364006 343362 240050 046527 303727 529481 610522 571227 897536 801753 937078 166399 083332 760595 693364 277630 524477 158554 007239 091811 674056 901752 141843 716942 661468 238436 700140 972958 924326 858102 454489 291318 863700 393420 626842 233567 448713 783877 403200 344852 596104 285726 707049 599435 019076 580984 811147 015774 456051 715151 568144 724909 894774 223763 998985 364793 754581 (563 digits), a[1063] = 1
                                                                                      A[1064]/B[1064] = 975 464571 130642 623555 418736 033982 490030 043074 826830 988513 256159 561643 976461 354116 959538 699246 943675 402429 475016 813698 324615 095062 390841 351136 155897 463897 759046 260101 413204 491888 885050 452407 341925 051394 260667 657624 560280 461055 861460 989004 612340 542377 567612 119527 174742 065949 411978 172849 753919 075621 129546 828238 663026 721515 087757 633543 677705 508114 002833 751331 209747 741561 758976 734536 208625 887230 292810 338210 380930 682986 212430 985427 338926 491190 762404 489451 824018 417929 636564 475971 539204 604080 318439 435590 902165 488721 300372 616004 037974 804082 660556 503986 639910 676963 (561 digits)/94808 840620 867671 313011 780889 963901 862382 386584 348091 027165 107872 684273 122315 641596 241255 662341 241336 400064 746072 546706 090086 218073 699792 422339 802031 124593 511582 247374 659895 451188 440176 847366 525418 947843 415041 320875 680204 962805 511015 790788 714266 203272 679469 782483 702502 022559 997791 466632 579711 057484 333324 409434 544044 756637 152694 509068 109142 902834 183283 705699 799219 089541 889454 800804 438170 501008 753658 598684 941513 288482 957678 516141 422569 684931 046432 515277 909684 999466 353739 503053 815524 767663 143585 244005 817036 528351 493933 309983 415041 201813 181830 235233 600193 483934 (563 digits), a[1064] = 3
                                                                                      A[1065]/B[1065] = 4176 109003 206554 605615 254328 116762 632629 316274 639135 974458 980368 241090 471337 313603 245451 525836 781593 105421 928456 160470 623733 952721 347956 348390 154106 301274 019768 370475 788078 612597 220671 474636 476355 299764 759696 471192 849182 042523 415681 061942 742126 701331 132441 402722 156534 093022 266878 569331 551970 316606 396745 532998 490108 963245 376803 069546 582455 110717 875967 111500 687890 907496 449607 412312 905063 596963 035546 416824 546060 806399 928842 459327 892973 319644 279087 645042 856008 262424 466278 452038 527121 303783 754077 936202 352889 541165 572087 361080 029168 187429 534724 856859 623943 463708 (562 digits)/405890 756689 874860 861898 771049 641986 814527 387169 586048 171902 548187 642503 743043 794052 885511 554419 131643 691656 059138 959979 180606 994529 503449 268531 409093 967193 887998 763935 973148 593252 186722 071429 771697 242856 364722 346469 217365 215228 387425 403204 903592 116818 247360 740457 381235 987776 792919 803608 485243 313270 093893 331102 453809 551025 769332 043511 528383 285393 634886 964642 913819 019635 796255 903358 725640 928361 872736 849229 057372 017632 224134 691407 923846 188437 969607 464311 983592 593969 700684 719264 861534 089729 155325 787170 283920 569457 690884 808078 385074 702026 951084 939919 765567 690317 (564 digits), a[1065] = 4
                                                                                      A[1066]/B[1066] = 5151 573574 337197 229170 673064 150745 122659 359349 465966 962972 236527 802734 447798 667720 204990 225083 725268 507851 403472 974168 948349 047783 738797 699526 310003 765171 778814 630577 201283 104486 105721 927043 818280 351159 020364 128817 409462 503579 277142 050947 354467 243708 700053 522249 331276 158971 678856 742181 305889 392227 526292 361237 153135 684760 464560 703090 260160 618831 878800 862831 897638 649058 208584 146849 113689 484193 328356 755034 926991 489386 141273 444755 231899 810835 041492 134494 680026 680354 102842 928010 066325 907864 072517 371793 255055 029886 872459 977084 067142 991512 195281 360846 263854 140671 (562 digits)/500699 597310 742532 174910 551939 605888 676909 773753 934139 199067 656060 326776 865359 435649 126767 216760 372980 091720 805211 506685 270693 212603 203241 690871 211125 091787 399581 011310 633044 044440 626898 918796 297116 190699 779763 667344 897570 178033 898441 193993 617858 320090 926830 522941 083738 010336 790711 270241 064954 370754 427217 740536 997854 307662 922026 552579 637526 188227 818170 670342 713038 109177 685710 704163 163811 429370 626395 447913 998885 306115 181813 207549 346415 873369 016039 979589 893277 593436 054424 222318 677058 857392 298911 031176 100957 097809 184818 118061 800115 903840 132915 175153 365761 174251 (564 digits), a[1066] = 1
                                                                                      A[1067]/B[1067] = 19630 829726 218146 293127 273520 568998 000607 394323 037036 863375 689951 649293 814733 316763 860422 201087 957398 628976 138875 082977 468781 096072 564349 446969 084117 596789 356212 262207 391927 926055 537837 255767 931196 353241 820788 857645 077569 553261 247107 214784 805528 432457 232601 969470 150362 569937 303448 795875 469638 493288 975622 616709 949516 017526 770485 178817 362936 967213 512369 699996 380806 854671 075359 852860 246132 049543 020616 681929 327035 274558 352662 793593 588672 752149 403564 048526 896088 303486 774807 236068 726099 027375 971630 051582 118054 630826 189467 292332 230597 161966 120568 939398 415505 885721 (563 digits)/1 907989 548622 102457 386630 426868 459652 845256 708431 388465 769105 516368 622834 339122 101000 265813 204700 250583 966818 474773 480034 992686 632339 113174 341145 042469 242556 086741 797867 872280 726574 067418 827818 663045 814955 704013 348503 910075 749330 082748 985185 757167 077091 027852 309280 632450 018787 165053 614331 680106 425533 375546 552713 447372 474014 535411 701250 440961 850077 089398 975671 052933 347168 853388 015848 217075 216473 751923 192971 054027 935977 769574 314055 963093 808545 017727 403081 663425 374277 863957 386220 892710 661906 052058 880698 586791 862885 245339 162263 785422 413547 349830 465379 862851 213070 (565 digits), a[1067] = 3
                                                                                      A[1068]/B[1068] = 122936 551931 646074 987934 314187 564733 126303 725287 688188 143226 376237 698497 336198 568303 367523 431611 469660 281708 236723 472033 761035 624219 124894 381340 814709 345907 916088 203821 552850 660819 332745 461651 405458 470609 945097 274687 874879 823146 759785 339656 187637 838452 095665 339070 233451 578595 499549 517434 123720 351961 380028 061496 850231 789921 087471 775994 437782 422112 953019 062810 182479 777084 660743 264010 590481 781451 452056 846610 889203 136736 257250 206316 763936 323731 462876 425656 056556 501274 751686 344422 422920 072119 902297 681285 963382 814844 009263 731077 450725 963308 918694 997236 756889 454997 (564 digits)/11 948636 889043 357276 494693 113150 363805 748450 024342 264933 813700 754272 063782 900092 041650 721646 444961 876483 892631 653852 386895 226813 006637 882287 737741 465940 547123 920031 798517 866728 403885 031411 885708 275391 080434 003843 758368 358024 674014 394935 105108 160860 782637 093944 378624 878438 123059 781032 956231 145592 923954 680497 056817 682089 151750 134496 760082 283297 288690 354564 524369 030638 192190 806038 799252 466262 728213 137934 605740 323052 921981 799259 091885 124978 724639 122404 398079 873829 839103 238168 539644 033322 828828 611264 315367 621708 275120 656853 091644 512650 385124 231897 967432 542868 452671 (566 digits), a[1068] = 6
                                                                                      A[1069]/B[1069] = 1 248996 349042 678896 172470 415396 216329 263644 647199 918918 295639 452328 634267 176718 999797 535656 517202 654001 446058 506109 803315 079137 338263 813293 260377 231211 055868 517094 300422 920434 534248 865291 872281 985781 059341 271761 604523 826367 784728 844960 611346 681906 816978 189255 360172 484878 355892 298943 970216 706842 012902 775903 231678 451833 916737 645202 938761 740761 188343 042560 328098 205604 625517 682792 492966 150949 864057 541185 148038 219066 641920 925164 856761 228035 989464 032328 305087 461653 316234 291670 680292 955299 748574 994606 864441 751882 779266 282104 603106 737856 795055 307518 911765 984400 435691 (565 digits)/121 394358 439055 675222 333561 558372 097710 329756 951854 037803 906113 059089 260663 340042 517507 482277 654319 015422 893135 013297 348987 260816 698717 936051 718559 701874 713795 287059 783046 539564 765424 381537 684901 416956 619295 742450 932187 490322 489474 032100 036267 365774 903461 967296 095529 416831 249384 975383 176643 136035 665080 180517 120890 268263 991515 880379 302073 273934 736980 635044 219361 359315 269076 913776 008372 879702 498605 131269 250374 284557 155795 762165 232907 212881 054936 241771 383880 401723 765310 245642 782661 225938 950192 164702 034374 803874 614091 813870 078708 911926 264789 668810 139705 291535 739780 (567 digits), a[1069] = 10
                                                                                      A[1070]/B[1070] = 1 371932 900974 324971 160404 729583 781062 389948 372487 607106 438865 828566 332764 512917 568100 903179 948814 123661 727766 742833 275348 840172 962482 938187 641718 045920 401776 433182 504244 473285 195068 198037 333933 391239 529951 216858 879211 701247 607875 604745 951002 869544 655430 284920 699242 718329 934487 798493 487650 830562 364864 155931 293175 302065 706658 732674 714756 178543 610455 995579 390908 388084 402602 343535 756976 741431 645508 993241 994649 108269 778657 182415 063077 991972 313195 495204 730743 518209 817509 043357 024715 378219 820694 896904 545727 715265 594110 291368 334184 188582 758364 226213 909002 741289 890688 (565 digits)/133 342995 328099 032498 828254 671522 461516 078206 976196 302737 719813 813361 324446 240134 559158 203924 099280 891906 785766 667149 735882 487629 705355 818339 456301 167815 260919 207091 581564 406293 169309 412949 570609 692347 699729 746294 690555 848347 163488 427035 141375 526635 686099 061240 474154 295269 372444 756416 132874 281628 589034 861014 177707 950353 143266 014876 062155 557232 025670 989608 743730 389953 461267 719814 807625 345965 226818 269203 856114 607610 077777 561424 324792 337859 779575 364175 781960 275553 604413 483811 322305 259261 779020 775966 349742 425582 889212 470723 170353 424576 649913 900708 107137 834404 192451 (567 digits), a[1070] = 1
                                                                                      A[1071]/B[1071] = 784 622682 805382 237428 763571 007735 202953 924165 337623 576694 888027 563704 642804 052650 385413 251407 290067 264848 000868 663910 027502 817898 916021 518436 681381 451760 470211 864304 224017 166280 918189 944609 548248 383552 661486 098181 634405 238751 881699 154898 633985 191905 067670 878974 627764 651270 948425 238725 418840 957952 350335 812671 634775 931352 418874 002465 064539 689162 758716 518392 536787 801798 511455 841709 726685 508419 449692 682364 092679 041110 255172 084165 874294 644226 824091 794229 559636 359459 113898 048531 792773 918817 365361 127102 474967 168537 016242 653423 422278 418611 821028 475660 952331 260928 018539 (567 digits)/76260 244690 783603 232053 266978 997697 623390 985940 359942 901041 919800 488405 519466 456875 796841 922938 343708 294197 565901 955796 537887 697378 456890 207881 266526 524388 698662 536352 856322 532964 441099 175742 503035 747493 164980 876719 239576 896552 841365 869165 761693 074751 666025 935606 837632 015642 915340 888995 047857 945960 003985 819612 592129 919908 796410 374610 792896 453421 395115 701636 889414 022741 652944 928031 162445 425847 011836 846671 091815 229911 566783 335454 689332 130815 192469 186142 883197 742831 885409 501907 818964 264414 771055 241487 737299 811704 354412 596800 350514 345193 365626 973139 315408 736329 629301 (569 digits), a[1071] = 571
                                                                                      A[1072]/B[1072] = 3139 862664 122503 274686 214688 760524 592878 086609 722981 913885 990976 083384 903980 723519 109753 908809 109083 183053 731241 398473 385360 111768 626569 011934 367243 852962 282623 890399 400313 138408 867827 976475 526926 925450 175895 609585 416832 656255 134672 224340 486943 637164 926113 800819 210301 323413 728188 753395 163014 662371 766207 406617 832279 027475 382154 742534 972914 935194 645322 069149 538059 595278 448425 710374 663718 775109 444279 722698 365365 272710 799345 519078 560256 568879 609562 672122 969288 956046 273101 237484 195811 053489 282139 405314 445596 389413 659080 905062 023297 863030 042478 128857 718327 785001 964844 (568 digits)/305174 321758 462511 960711 896170 662312 955080 021968 415967 906905 399015 766983 402312 067637 746525 895677 474114 068697 049374 490335 887433 277143 532916 649864 522407 265370 055569 352503 006854 538150 933706 115919 582752 682320 359653 253171 648863 434558 528951 903698 188147 825642 350202 803667 824682 357841 033808 312396 324306 065468 604978 139464 546227 629988 328907 513319 233741 370917 606133 796156 301386 480920 073047 431939 457407 049353 274165 655888 223375 527256 344910 903243 082120 861120 549452 108747 314751 246881 146051 491442 598162 316920 863241 741917 298941 672400 306862 857924 572410 805350 112421 793265 368772 779722 709655 (570 digits), a[1072] = 4
                                                                                      A[1073]/B[1073] = 29043 386659 907911 709604 695769 852456 538856 703652 844460 801668 806812 314168 778630 564322 373198 430689 271815 912331 582041 250170 495743 823816 555142 625845 986576 128421 013826 877898 826835 411960 728641 732889 290590 712604 244546 584450 385899 145048 093749 173963 016477 926389 402695 086347 520476 561994 502124 019281 885972 919298 246202 472232 125287 178630 858266 685279 820774 105914 566615 140738 379324 159304 547287 235081 700154 484404 448210 186649 380966 495507 449281 755872 916603 764143 310155 843336 283236 963875 571809 185889 555073 400220 904615 774932 485334 673259 947970 798981 631959 185882 203331 635380 417281 325945 702135 (569 digits)/2 822829 140516 946210 878460 332514 958514 219111 183656 103654 063190 510942 391256 140275 065615 515574 984035 610734 912471 010272 368819 524787 191670 253140 056661 968191 912719 198786 708879 918013 376322 844454 219018 747809 888376 401860 155264 079347 807579 601933 002449 455023 505532 817851 168617 259773 236212 219615 700561 966612 535177 448789 074793 508178 589803 756577 994483 896568 791679 850319 867043 601892 351022 310371 815486 279108 870026 479327 749665 102194 975218 670981 464642 428419 880900 137538 164868 715958 964762 199872 924891 202425 116702 540230 918743 427774 863307 116178 318121 502211 593344 377423 112527 634363 753834 016196 (571 digits), a[1073] = 9
                                                                                      A[1074]/B[1074] = 32183 249324 030414 984290 910458 612981 131734 790262 567442 715554 797788 397553 682611 287841 482952 339498 380899 095385 313282 648643 881103 935585 181711 637780 353819 981383 296450 768298 227148 550369 596469 709364 817517 638054 420442 194035 802731 801303 228421 398303 503421 563554 328808 887166 730777 885408 230312 772677 048987 581670 012409 878849 957566 206106 240421 427814 793689 041109 211937 209887 917383 754582 995712 945456 363873 259513 892489 909347 746331 768218 248627 274951 476860 333022 919718 515459 252525 919921 844910 423373 750884 453710 186755 180246 930931 062673 607051 704043 655257 048912 245809 764238 135609 110947 666979 (569 digits)/3 128003 462275 408722 839172 228685 620827 174191 205624 519621 970095 909958 158239 542587 133253 262100 879713 084848 981168 059646 859155 412220 468813 786056 706526 490599 178089 254356 061382 924867 914473 778160 334938 330562 570696 761513 408435 728211 242138 130884 906147 643171 331175 168053 972285 084455 594053 253424 012958 290918 600646 053767 214258 054406 219792 085485 507803 130310 162597 456453 663199 903278 831942 383419 247425 736515 919379 753493 405553 325570 502475 015892 367885 510540 742020 686990 273616 030710 211643 345924 416333 800587 433623 403472 660660 726716 535707 423041 176046 074622 398694 489844 905793 003136 533556 725851 (571 digits), a[1074] = 1
                                                                                      A[1075]/B[1075] = 93409 885307 968741 678186 516687 078418 802326 284177 979346 232778 402389 109276 143853 140005 339103 109686 033614 103102 208606 547458 257951 694986 918565 901406 694216 091187 606728 414495 281132 512699 921581 151618 925625 988713 085430 972521 991362 747654 550591 970570 023321 053498 060312 860680 982032 332810 962749 564635 983948 082638 271022 229932 040419 590843 339109 540909 408152 188132 990489 560514 214091 668470 538713 125994 427901 003432 233190 005344 873630 031943 946536 305775 870324 430189 149592 874254 788288 803719 261630 032637 056842 307641 278126 135426 347196 798607 162074 207068 942473 283706 694951 163856 688499 547841 036093 (569 digits)/9 078836 065067 763656 556804 789886 200168 567493 594905 142898 003382 330858 707735 225449 332122 039776 743461 780432 874807 129566 087130 349228 129297 825253 469714 949390 268897 707498 831645 767749 205270 400774 888895 408935 029769 924886 972135 535770 291855 863702 814744 741366 167883 153959 113187 428684 424318 726463 726478 548449 736469 556323 503309 616991 029387 927549 010090 157189 116874 763227 193443 408450 014907 077210 310337 752140 708785 986314 560771 753335 980168 702766 200413 449501 364941 511518 712100 777379 388048 891721 757558 803599 983949 347176 240064 881207 934721 962260 670213 651456 390733 357112 924113 640636 820947 467898 (571 digits), a[1075] = 2
                                                                                      A[1076]/B[1076] = 219003 019939 967898 340663 943832 769818 736387 358618 526135 181111 602566 616105 970317 567852 161158 558870 448127 301589 730495 743560 397007 325559 018843 440593 742252 163758 509907 597288 789413 575769 439632 012602 668769 615480 591304 139079 785457 296612 329605 339443 550063 670550 449434 608528 694842 551030 155811 901949 016883 746946 554454 338714 038405 387792 918640 509633 609993 417375 192916 330916 345567 091524 073139 197445 219675 266378 358869 920037 493591 832106 141699 886503 217509 193401 218904 263968 829103 527360 368170 488647 864569 068992 743007 451099 625324 659887 931200 118181 540203 616325 635712 091951 512608 206629 739165 (570 digits)/21 285675 592410 936035 952781 808458 021164 309178 395434 805417 976860 571675 573709 993485 797497 341654 366636 645714 730782 318779 033416 110676 727409 436563 645956 389379 715884 669353 724674 460366 325014 579710 112729 148432 630236 611287 352706 799751 825849 858290 535637 125903 666941 475972 198659 941824 442690 706351 465915 387818 073585 166414 220877 288388 278567 940583 527983 444688 396346 982908 050086 720178 861756 537839 868101 240797 336951 726122 527096 832242 462812 421424 768712 409543 471903 710027 697817 585468 987741 129367 931451 407787 401522 097825 140790 489132 405151 347562 516473 377535 180161 204070 754020 284410 175451 661647 (572 digits), a[1076] = 2
                                                                                      A[1077]/B[1077] = 969421 965067 840335 040842 292018 157693 747875 718652 083886 957224 812655 573700 025123 411413 983737 345167 826123 309461 130589 521699 845980 997222 993939 663781 663224 746221 646358 803650 438786 815777 680109 202029 600704 450635 450647 528841 133191 934103 869013 328344 223575 735699 858051 294795 761402 536931 585997 172432 051483 070424 488839 584788 194041 142015 013671 579443 848125 857633 762154 884179 596360 034566 831269 915775 306602 068945 668669 685494 847997 360368 513335 851788 740361 203794 025209 930130 104702 913160 734311 987228 515118 583612 250155 939824 848495 438158 886874 679795 103287 749009 237799 531662 738932 374359 992753 (570 digits)/94 221538 434711 507800 367932 023718 284825 804207 176644 364569 910824 617561 002575 199392 522111 406394 210008 363291 797936 404682 220794 791935 038935 571508 053540 506909 132436 384913 730343 609214 505328 719615 339812 002665 550716 370036 382962 734777 595255 296864 957293 244980 835649 057847 907827 195982 195081 551869 590140 099722 030810 221980 386818 770544 143659 689883 122023 935942 702262 694859 393790 289165 461933 228569 782742 715330 056592 890804 669159 082305 831418 388465 275263 087675 252556 351629 503371 119255 339013 409193 483364 434749 590037 738476 803226 837737 555327 352510 736107 161597 111378 173395 940194 778277 522754 114486 (572 digits), a[1077] = 4
                                                                                      A[1078]/B[1078] = 1 188424 985007 808233 381506 235850 927512 484263 077270 610022 138336 415222 189805 995440 979266 144895 904038 274250 611050 861085 265260 242988 322782 012783 104375 405476 909980 156266 400939 228200 391547 119741 214632 269474 066116 041951 667920 918649 230716 198618 667787 773639 406250 307485 903324 456245 087961 741809 074381 068366 817371 043293 923502 232446 529807 932312 089077 458119 275008 955071 215095 941927 126090 904409 113220 526277 335324 027539 605532 341589 192474 655035 738291 957870 397195 244114 194098 933806 440521 102482 475876 379687 652604 993163 390924 473820 098046 818074 797976 643491 365334 873511 623614 251540 580989 731918 (571 digits)/115 507214 027122 443836 320713 832176 305990 113385 572079 169987 887685 189236 576285 192878 319608 748048 576645 009006 528718 723461 254210 902611 766345 008071 699496 896288 848321 054267 455018 069580 830343 299325 452541 151098 180952 981323 735669 534529 421105 155155 492930 370884 502590 533820 106487 137806 637772 258221 056055 487540 104395 388394 607696 058932 422227 630466 650007 380631 098609 677767 443877 009344 323689 766409 650843 956127 393544 616927 196255 914548 294230 809890 043975 497218 724460 061657 201188 704724 326754 538561 414815 842536 991559 836301 944017 326869 960478 700073 252580 539132 291539 377466 694215 062687 698205 776133 (573 digits), a[1078] = 1
                                                                                      A[1079]/B[1079] = 2 157846 950075 648568 422348 527869 085206 232138 795922 693909 095561 227877 763506 020564 390680 128633 249206 100373 920511 991674 786960 088969 320005 006722 768157 068701 656201 802625 204589 666987 207324 799850 416661 870178 516751 492599 196762 051841 164820 067631 996131 997215 141950 165537 198120 217647 624893 327806 246813 119849 887795 532133 508290 426487 671822 945983 668521 306245 132642 717226 099275 538287 160657 735679 028995 832879 404269 696209 291027 189586 552843 168371 590080 698231 600989 269324 124229 038509 353681 836794 463104 894806 236217 243319 330749 322315 536205 704949 477771 746779 114344 111311 155276 990472 955349 724671 (571 digits)/209 728752 461833 951636 688645 855894 590815 917592 748723 534557 798509 806797 578860 392270 841720 154442 786653 372298 326655 128143 475005 694546 805280 579579 753037 403197 980757 439181 185361 678795 335672 018940 792353 153763 731669 351360 118632 269307 016360 452020 450223 615865 338239 591668 014314 333788 832853 810090 646195 587262 135205 610374 994514 829476 565887 320349 772031 316573 800872 372626 837667 298509 785622 994979 433586 671457 450137 507731 865414 996854 125649 198355 319238 584893 977016 413286 704559 823979 665767 947754 898180 277286 581597 574778 747244 164607 515806 052583 988687 700729 402917 550862 634409 840965 220959 890619 (573 digits), a[1079] = 1
                                                                                      A[1080]/B[1080] = 3 346271 935083 456801 803854 763720 012718 716401 873193 303931 233897 643099 953312 016005 369946 273529 153244 374624 531562 852760 052220 331957 642787 019505 872532 474178 566181 958891 605528 895187 598871 919591 631294 139652 582867 534550 864682 970490 395536 266250 663919 770854 548200 473023 101444 673892 712855 069615 321194 188216 705166 575427 431792 658934 201630 878295 757598 764364 407651 672297 314371 480214 286748 640088 142216 359156 739593 723748 896559 531175 745317 823407 328372 656101 998184 513438 318327 972315 794202 939276 938981 274493 888822 236482 721673 796135 634252 523024 275748 390270 479678 984822 778891 242013 536339 456589 (571 digits)/325 235966 488956 395473 009359 688070 896806 030978 320802 704545 686194 996034 155145 585149 161328 902491 363298 381304 855373 851604 729216 597158 571625 587651 452534 299486 829078 493448 640379 748376 166015 318266 244894 304861 912622 332683 854301 803836 437465 607175 943153 986749 840830 125488 120801 471595 470626 068311 702251 074802 239600 998769 602210 888408 988114 950816 422038 697204 899482 050394 281544 307854 109312 761389 084430 627584 843682 124659 061670 911402 419880 008245 363214 082112 701476 474943 905748 528703 992522 486316 312996 119823 573157 411080 691261 491477 476284 752657 241268 239861 694456 928329 328624 903652 919165 666752 (573 digits), a[1080] = 1
                                                                                      A[1081]/B[1081] = 5 504118 885159 105370 226203 291589 097924 948540 669115 997840 329458 870977 716818 036569 760626 402162 402450 474998 452074 844434 839180 420926 962792 026228 640689 542880 222383 761516 810118 562174 806196 719442 047956 009831 099619 027150 061445 022331 560356 333882 660051 768069 690150 638560 299564 891540 337748 397421 568007 308066 592962 107560 940083 085421 873453 824279 426120 070609 540294 389523 413647 018501 447406 375767 171212 192036 143863 419958 187586 720762 298160 991778 918453 354333 599173 782762 442557 010825 147884 776071 402086 169300 125039 479802 052423 118451 170458 227973 753520 137049 594023 096133 934168 232486 491689 181260 (571 digits)/534 964718 950790 347109 698005 543965 487621 948571 069526 239103 484704 802831 734005 977420 003049 056934 149951 753603 182028 979748 204222 291705 376906 167231 205571 702684 809835 932629 825741 427171 501687 337207 037247 458625 644291 684043 972934 073143 453826 059196 393377 602615 179069 717156 135115 805384 303479 878402 348446 662064 374806 609144 596725 717885 554002 271166 194070 013778 700354 423021 119211 606363 894935 756368 518017 299042 293819 632390 927085 908256 545529 206600 682452 667006 678492 888230 610308 352683 658290 434071 211176 397110 154754 985859 438505 656084 992090 805241 229955 940591 097374 479191 963034 744618 140125 557371 (573 digits), a[1081] = 1
                                                                                      A[1082]/B[1082] = 14 354509 705401 667542 256261 346898 208568 613483 211425 299611 892815 385055 386948 089144 891199 077853 958145 324621 435712 541629 730581 173811 568371 071963 153911 559939 010949 481925 225766 019537 211265 358475 727206 159314 782105 588850 987573 015153 516248 934015 984023 306993 928501 750143 700574 456973 388351 864458 457208 804349 891090 790549 311958 829777 948538 526854 609838 905583 488240 451344 141665 517217 181561 391622 484640 743229 027320 563665 271732 972700 341639 806965 165279 364769 196532 078963 203441 993966 089972 491419 743153 613094 138901 196086 826520 033037 975168 978971 782788 664369 667725 177090 647227 706986 519717 819109 (572 digits)/1395 165404 390537 089692 405370 776001 872049 928120 459855 182752 655604 601697 623157 539989 167427 016359 663201 888511 219431 811101 137661 180569 325437 922113 863677 704856 448750 358708 291862 602719 169389 992680 319389 222113 201205 700771 800169 950123 345117 725568 729909 191980 198969 559800 391033 082364 077585 825116 399144 398930 989214 217058 795662 324180 096119 493148 810178 724762 300190 896436 519967 520581 899184 274126 120465 225669 431321 389440 915842 727915 510938 421446 728119 416126 058462 251405 126365 234071 309103 354458 735348 914043 882667 382799 568272 803647 460466 363139 701180 121043 889205 886713 254694 392889 199416 781494 (574 digits), a[1082] = 2
                                                                                      A[1083]/B[1083] = 91 631177 117569 110623 763771 372978 349336 629439 937667 795511 686351 181310 038506 571439 107820 869286 151322 422727 066350 094213 222667 463796 373018 458007 564158 902514 288080 653068 164714 679398 073788 870296 411192 965719 792252 560255 986883 113252 657849 937978 564191 610033 261161 139422 503011 633380 667859 584172 311260 134165 939506 850856 811836 064089 564684 985407 085153 504110 469737 097588 263640 121804 536774 725502 079056 651410 307786 801949 817984 556964 347999 833569 910129 542948 778366 256541 663208 974621 687719 724589 861007 847864 958446 656323 011543 316679 021472 101804 450252 123267 600374 158677 817534 474405 609996 095914 (572 digits)/8905 957145 294012 885264 130230 199976 719921 517293 828657 335619 418332 413017 472951 217355 007611 155092 129163 084670 498619 846355 030189 375121 329533 699914 387637 931823 502338 084879 576917 043486 518027 293288 953582 791304 851525 888674 773953 773883 524532 412608 772832 754496 372887 075958 481314 299568 768994 829100 743313 055650 310091 911497 370699 662966 130719 230059 055142 362352 501499 801640 239016 729855 290041 401125 240808 653058 881747 969036 422142 275749 611159 735281 051169 163763 029266 396661 368499 757111 512910 560823 623269 881373 450759 282656 848142 477969 754888 984079 437036 666854 432609 799471 491201 101953 336626 246335 (574 digits), a[1083] = 6
                                                                                      A[1084]/B[1084] = 472 510395 293247 220661 075118 211789 955251 760682 899764 277170 324571 291605 579480 946340 430303 424284 714757 438256 767463 012695 843918 492793 433463 362000 974706 072510 451352 747266 049339 416527 580209 709957 783170 987913 743368 390130 921988 581416 805498 623908 804981 357160 234307 447256 215632 623876 727649 785320 013509 475179 588625 044833 371139 150225 771963 453890 035606 426135 836925 939285 459866 126239 865435 019132 879924 000280 566254 573414 361655 757522 081638 974814 715927 079513 088363 361671 519486 867074 528571 114369 048192 852418 931134 477701 884236 616433 082529 487994 034049 280707 669595 970479 734900 079014 569698 298679 (573 digits)/45924 951130 860601 516013 056521 775885 471657 514589 603141 860849 747266 666784 987913 626764 205482 791820 309017 311863 712531 042876 288608 056175 973106 421685 801867 363973 960440 783106 176447 820151 759526 459125 087303 178637 458835 144145 669938 819540 967779 788612 594072 964462 063404 939592 797604 580207 922559 970620 115709 677182 539673 774545 649160 639010 749715 643444 085890 536524 807689 904637 715051 169858 349391 279752 324508 490963 840061 234623 026554 106663 566737 097851 983965 234941 204794 234711 968864 019628 873656 158576 851698 320911 136463 796083 808985 193496 234911 283536 886363 455316 052254 884070 710699 902655 882548 013169 (575 digits), a[1084] = 5
                                                                                      A[1085]/B[1085] = 564 141572 410816 331284 838889 584768 304588 390122 837432 072682 010922 472915 617987 517779 538124 293570 866079 860983 833813 106909 066585 956589 806481 820008 538864 975024 739433 400334 214054 095925 653998 580254 194363 953633 535620 950386 908871 694669 463348 561887 369172 967193 495468 586678 718644 257257 395509 369492 324769 609345 528131 895690 182975 214315 336648 439297 120759 930246 306663 036873 723506 248044 402209 744634 958980 651690 874041 375364 179640 314486 429638 808384 626056 622461 866729 618213 182695 841696 216290 838958 909200 700283 889581 134024 895779 933112 104001 589798 484301 403975 269970 129157 552434 553420 179694 394593 (573 digits)/54830 908276 154614 401277 186751 975862 191579 031883 431799 196469 165599 079802 460864 844119 213093 946912 438180 396534 211150 889231 318797 431297 302640 121600 189505 295797 462778 867985 753364 863638 277553 752414 040885 969942 310361 032820 443892 593424 492312 201221 366905 718958 436292 015551 278918 879776 691554 799720 859022 732832 849765 686043 019860 301976 880434 873503 141032 898877 309189 706277 954067 899713 639432 680877 565317 144022 721809 203659 448696 382413 177896 833133 035134 398704 234060 631373 337363 776740 386566 719400 474968 202284 587223 078740 657127 671465 989800 267616 323400 122170 484864 683542 201901 004609 219174 259504 (575 digits), a[1085] = 1
                                                                                      A[1086]/B[1086] = 2729 076684 936512 545800 430676 550863 173605 321174 249492 567898 368261 183268 051431 017458 582800 598568 179076 882192 102715 440332 110262 319152 659390 642035 130165 972609 409086 348602 905555 800230 196204 030974 560626 802447 885852 191678 557475 360094 658892 871458 281673 225934 216181 793971 090209 652906 309687 263289 312587 912561 701152 627594 103040 007487 118557 211078 518646 147121 063578 086780 353891 118417 474273 997672 715846 607044 062420 074871 080217 015467 800194 208353 220153 569360 555281 834524 250270 233859 393734 470204 684995 653554 489459 013801 467356 348881 498535 847187 971254 896608 749476 487109 944638 292695 288475 877051 (574 digits)/265248 584235 479059 121121 803529 679334 237973 642123 330338 646726 409662 985994 831373 003241 057858 579470 061738 898000 557134 599801 563797 781365 183666 908086 559888 547163 811556 255049 189907 274704 869741 468781 250847 058406 700279 275427 445509 193238 937028 593498 061695 840295 808573 001797 913280 099314 688779 169503 551800 608513 938736 518717 728601 846918 271455 137456 650022 132034 044448 729749 531322 768712 907122 003262 585777 067054 727298 049260 821339 636316 278324 430384 124502 829758 141036 760205 318319 126590 419923 036178 751571 130049 485356 111046 437495 879360 194112 354002 179963 943997 991713 618239 518303 921092 759245 051185 (576 digits), a[1086] = 4
                                                                                      A[1087]/B[1087] = 8751 371627 220353 968686 130919 237357 825404 353645 585909 776377 115706 022719 772280 570155 286526 089275 403310 507560 141959 427905 397372 914047 784653 746113 929362 892852 966692 446142 930721 496616 242610 673177 876244 360977 193177 525422 581297 774953 440027 176262 214192 644996 144013 968591 989273 215976 324571 159360 262533 347030 631589 778472 492095 236776 692320 072532 676698 371609 497397 297214 785179 603296 825031 737653 106520 472823 061301 599977 420291 360889 830221 433444 286517 330543 532575 121785 933506 543274 397494 249572 964187 660947 357958 175429 297848 979756 599609 131362 398066 093801 518399 590487 386349 431506 045122 025746 (574 digits)/850576 660982 591791 764642 597341 013864 905499 958253 422815 136648 394588 037786 954983 853842 386669 685322 623397 090535 882554 688636 010190 775392 853640 845859 869170 937288 897447 633133 323086 687752 886778 158757 793427 145162 411198 859102 780420 173141 303397 981715 551993 239845 862011 020945 018759 177720 757892 308231 514424 558374 665975 242196 205665 842731 694800 285873 091099 294979 442535 895526 548036 205852 360798 690665 322648 345186 903703 351441 912715 291362 012870 124285 408642 887978 657170 911989 292321 156511 646335 827936 729681 592433 043291 411879 969615 309546 572137 329622 863291 954164 460005 538260 756812 767887 496909 413059 (576 digits), a[1087] = 3
                                                                                      A[1088]/B[1088] = 11480 448312 156866 514486 561595 788220 999009 674819 835402 344275 483967 205987 823711 587613 869326 687843 582387 389752 244674 868237 507635 233200 444044 388149 059528 865462 375778 794745 836277 296846 438814 704152 436871 163425 079029 717101 138773 135048 098920 047720 495865 870930 360195 762563 079482 868882 634258 422649 575121 259592 332742 406066 595135 244263 810877 283611 195344 518730 560975 383995 139070 721714 299305 735325 822367 079867 123721 674848 500508 376357 630415 641797 506670 899904 087856 956310 183776 777133 791228 719777 649183 314501 847417 189230 765205 328638 098144 978550 369320 990410 267876 077597 330987 724201 333597 902797 (575 digits)/1 115825 245218 070850 885764 400870 693199 143473 600376 753153 783374 804251 023781 786356 857083 444528 264792 685135 988536 439689 288437 573988 556758 037307 753946 429059 484452 709003 888182 512993 962457 756519 627539 044274 203569 111478 134530 225929 366380 240426 575213 613689 080141 670584 022742 932039 277035 446671 477735 066225 166888 604711 760913 934267 689649 966255 423329 741121 427013 486984 625276 079358 974565 267920 693927 908425 412241 631001 400702 734054 927678 291194 554669 533145 717736 798207 672194 610640 283102 066258 864115 481252 722482 528647 522926 407111 188906 766249 683625 043255 898162 451719 156500 275116 688980 256154 464244 (577 digits), a[1088] = 1
                                                                                      A[1089]/B[1089] = 31712 268251 534086 997659 254110 813799 823423 703285 256714 464928 083640 434695 419703 745383 025179 464962 568085 287064 631309 164380 412643 380448 672742 522412 048420 623777 718250 035634 603276 090309 120240 081482 749986 687827 351236 959624 858844 045049 637867 271703 205924 386856 864405 493718 148238 953741 593088 004659 412775 866215 297074 590605 682365 725304 314074 639755 067387 409070 619348 065205 063321 046725 423643 208304 751254 632557 308744 949674 421308 113605 091052 717039 299859 130351 708289 034406 301060 097541 979951 689128 262554 289951 052792 553890 828259 637032 795899 088463 136708 074622 054151 745682 048324 879908 712317 831340 (575 digits)/3 082227 151418 733493 536171 399082 400263 192447 159006 929122 703398 003090 085350 527697 568009 275726 214907 993669 067608 761933 265511 158167 888908 928256 353752 727289 906194 315455 409498 349074 612668 399817 413835 881975 552300 634155 128163 232278 905901 784251 132142 779371 400129 203179 066430 882837 731791 651235 263701 646874 892151 875398 764024 074201 222031 627311 132532 573342 149006 416505 146078 706754 154982 896640 078521 139499 169670 165706 152847 380825 146718 595259 233624 474934 323452 253586 256378 513601 722715 778853 556167 692187 037398 100586 457732 783837 687360 104636 696872 949803 750489 363443 851261 307046 145848 009218 341547 (577 digits), a[1089] = 2
                                                                                      A[1090]/B[1090] = 43192 716563 690953 512145 815706 602020 822433 378105 092116 809203 567607 640683 243415 332996 894506 152806 150472 676816 875984 032617 920278 613649 116786 910561 107949 489240 094028 830380 439553 387155 559054 785635 186857 851252 430266 676725 997617 180097 736787 319423 701790 257787 224601 256281 227721 822624 227346 427308 987897 125807 629816 996672 277500 969568 124951 923366 262731 927801 180323 449200 202391 768439 722948 943630 573621 712424 432466 624522 921816 489962 721468 358836 806530 030255 796145 990716 484836 874675 771180 408905 911737 604452 900209 743121 593464 965670 894044 067013 506029 065032 322027 823279 379312 604110 045915 734137 (575 digits)/4 198052 396636 804344 421935 799953 093462 335920 759383 682276 486772 807341 109132 314054 425092 720254 479700 678805 056145 201622 553948 732156 445666 965564 107699 156349 390647 024459 297680 862068 575126 156337 041374 926249 755869 745633 262693 458208 272282 024677 707356 393060 480270 873763 089173 814877 008827 097906 741436 713100 059040 480110 524938 008468 911681 593566 555862 314463 576019 903489 771354 786113 129548 164560 772449 047924 581911 796707 553550 114880 074396 886453 788294 008080 041189 051793 928573 124242 005817 845112 420283 173439 759880 629233 980659 190948 876266 870886 380497 993059 648651 815163 007761 582162 834828 265372 805791 (577 digits), a[1090] = 1
                                                                                      A[1091]/B[1091] = 74904 984815 225040 509805 069817 415820 645857 081390 348831 274131 651248 075378 663119 078379 919685 617768 718557 963881 507293 196998 332921 994097 789529 432973 156370 113017 812278 866015 042829 477464 679294 867117 936844 539079 781503 636350 856461 225147 374654 591126 907714 644644 089006 749999 375960 776365 820434 431968 400672 992022 926891 587277 959866 694872 439026 563121 330119 336871 799671 514405 265712 815165 146592 151935 324876 344981 741211 574197 343124 603567 812521 075876 106389 160607 504435 025122 785896 972217 751132 098034 174291 894403 953002 297012 421724 602703 689943 155476 642737 139654 376179 568961 427637 484018 758233 565477 (575 digits)/7 280279 548055 537837 958107 199035 493725 528367 918390 611399 190170 810431 194482 841751 993101 995980 694608 672474 123753 963555 819459 890324 334575 893820 461451 883639 296841 339914 707179 211143 187794 556154 455210 808225 308170 379788 390856 690487 178183 808928 839499 172431 880400 076942 155604 697714 740618 749142 005138 359974 951192 355509 288962 082670 133713 220877 688394 887805 725026 319994 917433 492867 284531 061200 850970 187423 751581 962413 706397 495705 221115 481713 021918 483014 364641 305380 184951 637843 728533 623965 976450 865626 797278 729820 438391 974786 563626 975523 077370 942863 399141 178606 859022 889208 980676 274591 147338 (577 digits), a[1091] = 1
                                                                                      A[1092]/B[1092] = 118097 701378 915994 021950 885524 017841 468290 459495 440948 083335 218855 716061 906534 411376 814191 770574 869030 640698 383277 229616 253200 607746 906316 343534 264319 602257 906307 696395 482382 864620 238349 652753 123702 390332 211770 313076 854078 405245 111441 910550 609504 902431 313608 006280 603682 598990 047780 859277 388570 117830 556708 583950 237367 664440 563978 486487 592851 264672 979994 963605 468104 583604 869541 095565 898498 057406 173678 198720 264941 093530 533989 434712 912919 190863 300581 015839 270733 846893 522312 506940 086029 498856 853212 040134 015189 568374 583987 222490 148766 204686 698207 392240 806950 088128 804149 299614 (576 digits)/11 478331 944692 342182 380042 998988 587187 864288 677774 293675 676943 617772 303615 155806 418194 716235 174309 351279 179899 165178 373408 622480 780242 859384 569151 039988 687488 364374 004860 073211 762920 712491 496585 734475 064040 125421 653550 148695 450465 833606 546855 565492 360670 950705 244778 512591 749445 847048 746575 073075 010232 835619 813900 091139 045394 814444 244257 202269 301046 223484 688788 278980 414079 225761 623419 235348 333493 759121 259947 610585 295512 368166 810212 491094 405830 357174 113524 762085 734351 469078 396734 039066 557159 359054 419051 165735 439893 846409 457868 935923 047792 993769 866784 471371 815504 539963 953129 (578 digits), a[1092] = 1
                                                                                      A[1093]/B[1093] = 547295 790330 889016 597608 611913 487186 519018 919372 112623 607472 526670 939626 289256 723887 176452 700068 194680 526675 040402 115463 345724 425085 414794 807110 213648 522049 437509 651596 972360 935945 632693 478130 431654 100408 628584 888658 272774 846127 820422 233329 345734 254369 343438 775121 790691 172326 011557 869077 954953 463345 153725 923078 909337 352634 694940 509071 701524 395563 719651 368827 138131 149584 624756 534198 918868 574606 435924 369078 402888 977689 948478 814727 758065 924060 706759 088479 868832 359791 840382 125794 518409 889831 365850 457548 482482 876202 025892 045437 237801 958401 169009 137924 655437 836533 974830 763933 (576 digits)/53 193607 326824 906567 478279 194989 842476 985522 629487 786101 897945 281520 408943 464977 665880 860921 391846 077590 843350 624269 313094 380247 455547 331358 738056 043594 046794 797410 726619 503990 239477 406120 441553 746125 564330 881475 005057 285268 980047 143355 026921 434401 323083 879763 134718 748081 738402 137336 991438 652274 992123 697988 544562 447226 315292 478654 665423 696882 929211 213933 672586 608788 940847 964247 344647 128817 085556 998898 746187 938046 403164 954380 262768 447391 987962 734076 639050 686186 665939 500279 563387 021893 025916 166038 114596 637728 323202 361160 908846 686555 590313 153686 326160 774696 242694 434446 959854 (578 digits), a[1093] = 4
                                                                                      A[1094]/B[1094] = 1 212689 282040 694027 217168 109350 992214 506328 298239 666195 298280 272197 595314 485047 859151 167097 170711 258391 694048 464081 460542 944649 457917 735905 957754 691616 646356 781326 999589 427104 736511 503736 609013 987010 591149 468940 090393 399628 097500 752286 377209 300973 411170 000485 556524 185064 943642 070896 597433 298477 044520 864160 430108 056042 369709 953859 504630 995900 055800 419297 701259 744366 882774 119054 163963 736235 206619 045526 936877 070719 048910 430947 064168 429051 038984 714099 192799 008398 566477 203076 758529 122849 278519 584912 955230 980155 320778 635771 313364 624370 121489 036225 668090 117825 761196 753810 827480 (577 digits)/117 865546 598342 155317 336601 388968 272141 835333 936749 865879 472834 180813 121502 085761 749956 438077 958001 506460 866600 413716 999597 382975 691337 522102 045263 127176 781077 959195 458099 081192 241875 524732 379693 226726 192701 888371 663664 719233 410560 120316 600698 434295 006838 710231 514216 008755 226250 121722 729452 377624 994480 231596 903024 985591 675979 771753 575104 596035 159468 651352 033961 496558 295775 154256 312713 492982 504607 756918 752323 486678 101842 276927 335749 385878 381755 825327 391626 134459 066230 469637 523508 082852 608991 691130 648244 441192 086298 568731 275562 309034 228419 301142 519106 020764 300893 408857 872837 (579 digits), a[1094] = 2
                                                                                      A[1095]/B[1095] = 1 759985 072371 583043 814776 721264 479401 025347 217611 778818 905752 798868 534940 774304 583038 343549 870779 453072 220723 504483 576006 290373 883003 150700 764864 905265 168406 218836 651186 399465 672457 136430 087144 418664 691558 097524 979051 672402 943628 572708 610538 646707 665539 343924 331645 975756 115968 082454 466511 253430 507866 017886 353186 965379 722344 648800 013702 697424 451364 138949 070086 882498 032358 743810 698162 655103 781225 481451 305955 473608 026600 379425 878896 187116 963045 420858 281278 877230 926269 043458 884323 641259 168350 950763 412779 462638 196980 661663 358801 862172 079890 205234 806014 773263 597730 728641 591413 (577 digits)/171 059153 925167 061884 814880 583958 114618 820856 566237 651981 370779 462333 530445 550739 415837 298999 349847 584051 709951 037986 312691 763223 146884 853460 783319 170770 827872 756606 184718 585182 481352 930852 821246 972851 757032 769846 668722 004502 390607 263671 627619 868696 329922 589994 648934 756836 964652 259059 720891 029899 986603 929585 447587 432817 991272 250408 240528 292918 088679 865285 706548 105347 236623 118503 657360 621799 590164 755817 498511 424724 505007 231307 598517 833270 369718 559404 030676 820645 732169 969917 086895 104745 634907 857168 762841 078920 409500 929892 184408 995589 818732 454828 845266 795460 543587 843304 832691 (579 digits), a[1095] = 1
                                                                                      A[1096]/B[1096] = 10 012614 643898 609246 291051 715673 389219 633064 386298 560289 827044 266540 270018 356570 774342 884846 524608 523752 797665 986499 340574 396518 872933 489409 782079 217942 488387 875510 255521 424433 098797 185887 044736 080334 048939 956564 985651 761642 815643 615829 429902 534511 738866 720107 214754 063845 523482 483168 929989 565629 583850 953592 196042 882940 981433 197859 573144 483022 312621 114043 051694 156857 044567 838107 654777 011754 112746 452783 466654 438759 181912 328076 458649 364635 854211 818390 599193 394553 197822 420371 180147 329145 120274 338730 019128 293346 305681 944088 107373 935230 520940 062399 698163 984143 749850 397018 784545 (578 digits)/973 161316 224177 464741 411004 308758 845235 939616 767938 125786 326731 492480 773729 839458 829142 933074 707239 426719 416355 603648 563056 199091 425761 789405 961858 981030 920441 742226 381692 007104 648640 178996 485928 090984 977865 737605 007274 741745 363596 438674 738797 777776 656451 660204 758889 792940 049511 417021 333907 527124 927499 879524 140962 149681 632341 023794 777746 060625 602867 977780 566702 023294 478890 746774 599516 601980 455431 536006 244880 610300 626878 433465 328338 552230 230348 622347 545010 237687 727080 319222 957983 606580 783530 976974 462449 835794 133803 218192 197607 286983 322081 575286 745439 998067 018832 625382 036292 (579 digits), a[1096] = 5
                                                                                      A[1097]/B[1097] = 11 772599 716270 192290 105828 436937 868620 658411 603910 339108 732797 065408 804959 130875 357381 228396 395387 976825 018389 490982 916580 686892 755936 640110 546944 123207 656794 094346 906707 823898 771254 322317 131880 498998 740498 054089 964703 434045 759272 188538 040441 181219 404406 064031 546400 039601 639450 565623 396500 819060 091716 971478 549229 848320 703777 846659 586847 180446 763985 252992 121781 039355 076926 581918 352939 666857 893971 934234 772609 912367 208512 707502 337545 551752 817257 239248 880472 271784 124091 463830 064470 970404 288625 289493 431907 755984 502662 605751 466175 797402 600830 267634 504178 757407 347581 125660 375958 (578 digits)/1144 220470 149344 526626 225884 892716 959854 760473 334175 777767 697510 954814 304175 390198 244980 232074 057087 010771 126306 641634 875747 962314 572646 642866 745178 151801 748314 498832 566410 592287 129993 109849 307175 063836 734898 507451 675996 746247 754203 702346 366417 646472 986374 250199 407824 549777 014163 676081 054798 557024 914103 809109 588549 582499 623613 274203 018274 353543 691547 843066 273250 128641 715513 865278 256877 223780 045596 291823 743392 035025 131885 664772 926856 385500 600067 181751 575687 058333 459250 289140 044878 711326 418438 834143 225290 914714 543304 148084 382016 282573 140814 030115 590706 793527 562420 468686 868983 (580 digits), a[1097] = 1
                                                                                      A[1098]/B[1098] = 45 330413 792709 186116 608537 026486 995081 608299 198029 577616 025435 462766 684895 749196 846486 570035 710772 454227 852834 459448 090316 457197 140743 409741 422911 587565 458770 158550 975644 896129 412560 152838 440377 577330 270434 118834 879762 063780 093460 181443 551226 078169 952084 912201 853954 182650 441834 180039 119492 022809 859001 868027 843732 427903 092766 737838 333686 024362 604576 873019 417037 274922 275347 583862 713596 012327 794662 255487 784484 175860 807450 450583 471286 019894 305983 536137 240610 209905 570096 811861 373560 240357 986150 207210 314851 561299 813669 761342 505901 327438 323430 865303 210700 256365 792593 773999 912419 (578 digits)/4405 822726 672211 044620 088658 986909 724800 221036 770465 459089 419264 356923 686256 010053 564083 629296 878500 459032 795275 528553 190300 086035 143701 718006 197393 436436 165385 238724 080923 783966 038619 508544 407453 282495 182561 259960 035264 980488 626207 545713 838050 717195 615574 410802 982363 442271 092002 445264 498303 198199 669811 306852 906610 897180 503180 846403 832569 121256 677511 506979 386452 409219 625432 342609 370148 273320 592220 411477 475056 715376 022535 427784 108907 708732 030550 167602 272071 412688 104831 186643 092619 740560 038847 479404 138322 579937 763715 662445 343656 134702 744523 665633 517560 378649 706094 031442 643241 (580 digits), a[1098] = 3
                                                                                      A[1099]/B[1099] = 283 755082 472525 308989 757050 595859 839110 308206 792087 804804 885409 842008 914333 626056 436300 648610 660022 702192 135396 247671 458479 430075 600397 098559 084413 648600 409415 045652 760577 200675 246615 239347 774145 962980 363102 767099 243275 816726 320033 277199 347797 650239 116915 537242 670125 135504 290455 645858 113452 955919 245728 179645 611624 415739 260378 273689 588963 326622 391446 491108 624004 688888 729012 085094 634515 740824 661945 467161 479514 967532 053215 411003 165261 671118 653158 456072 324133 531217 544672 334998 305832 412552 205526 532755 321017 123783 384681 173806 501583 762032 541415 459453 768380 295602 103143 769659 850472 (579 digits)/27579 156830 182610 794346 757838 814175 308656 086693 956968 532304 213097 096356 421711 450519 629482 007855 328089 764967 897959 812954 017548 478525 434856 950903 929538 770418 740625 931177 051953 296083 361710 161115 751894 758807 830266 067211 887586 629179 511448 976629 394721 949646 679820 715017 302005 203403 566178 347668 044617 746222 932971 650227 028214 965582 642698 352626 013689 081083 756616 884942 591964 583959 468107 920934 477766 863703 598918 760688 593732 327281 267098 231477 580302 637892 783368 187365 208115 534462 088237 408998 600597 154686 651523 710568 055226 394341 125598 122756 443953 090789 607956 023916 696069 065425 798984 657342 728429 (581 digits), a[1099] = 6
                                                                                      A[1100]/B[1100] = 2031 615991 100386 349044 907891 197505 868853 765746 742644 211250 223304 356829 085231 131591 900591 110310 330931 369572 800608 193148 299672 467726 343523 099655 013807 127768 324675 478120 299685 300856 138866 828272 859399 318192 812153 488529 582692 780864 333693 121838 985809 629843 770493 672900 544830 131180 475023 701045 913662 714244 579099 125547 125103 338077 915414 653665 456429 310719 344702 310779 785070 097143 378432 179525 155206 198100 428280 525618 141088 948585 179958 327605 628117 717724 878092 728643 509544 928428 382803 156849 514387 128223 424835 936497 561971 427783 506437 977988 016987 661666 113339 081479 589362 325580 514600 161618 865723 (580 digits)/197459 920537 950486 605047 393530 686136 885392 827894 469245 185218 910944 031418 638236 163690 970457 684284 175128 813808 080994 219231 313139 435713 187700 374333 704164 829367 349766 756963 444596 856549 570590 636354 670716 594149 994423 730443 248371 384745 206350 382119 601104 364722 374319 415924 096399 866096 055250 878940 810627 421760 200612 858442 104115 656259 002069 314785 928392 688842 973829 701577 530204 496935 902187 789150 714516 319245 784651 736297 631183 006344 892223 048127 171026 173981 514127 479158 728880 153922 722493 049633 296799 823366 599513 453380 524907 340325 642902 521740 451327 770230 000215 833050 390043 836630 298986 632841 742244 (582 digits), a[1100] = 7
                                                                                      A[1101]/B[1101] = 2315 371073 572911 658034 664941 793365 707964 073953 534732 016055 108714 198837 999564 757648 336891 758920 990954 071764 936004 440819 758151 897801 943920 198214 098220 776368 734090 523773 060262 501531 385482 067620 633545 281173 175256 255628 825968 597590 653726 399038 333607 280082 887409 210143 214955 266684 765479 346904 027115 670163 824827 305192 736727 753817 175792 927355 045392 637341 736148 801888 409074 786032 107444 264619 789721 938925 090225 992779 620603 916117 233173 738608 793379 388843 531251 184715 833678 459645 927475 491847 820219 540775 630362 469252 882988 551566 891119 151794 518571 423698 654754 540933 357742 621182 617743 931278 716195 (580 digits)/225039 077368 133097 399394 151369 500312 194048 914588 426213 717523 124041 127775 059947 614210 599939 692139 503218 578775 978954 032185 330687 914238 622557 325237 633703 599786 090392 688140 496550 152632 932300 797470 422611 352957 824689 797655 135958 013924 717799 358748 995826 314369 054140 130941 398405 069499 621429 226608 855245 167983 133584 508669 132330 621841 644767 667411 942081 769926 730446 586520 122169 080895 370295 710085 192283 182949 383570 496986 224915 333626 159321 279604 751328 811874 297495 666523 936995 688384 810730 458631 897396 978053 251037 163948 580133 734666 768500 644496 895280 861019 608171 856967 086112 902056 097971 290184 470673 (582 digits), a[1101] = 1
                                                                                      A[1102]/B[1102] = 4346 987064 673298 007079 572832 990871 576817 839700 277376 227305 332018 555667 084795 889240 237482 869231 321885 441337 736612 633968 057824 365528 287443 297869 112027 904137 058766 001893 359947 802387 524348 895893 492944 599365 987409 744158 408661 378454 987419 520877 319416 909926 657902 883043 759785 397865 240503 047949 940778 384408 403926 430739 861831 091895 091207 581020 501821 948061 080851 112668 194144 883175 485876 444144 944928 137025 518506 518397 761692 864702 413132 066214 421497 106568 409343 913359 343223 388074 310278 648697 334606 668999 055198 405750 444959 979350 397557 129782 535559 085364 768093 622412 947104 946763 132344 092897 581918 (580 digits)/422498 997906 083584 004441 544900 186449 079441 742482 895458 902742 034985 159193 698183 777901 570397 376423 678347 392584 059948 251416 643827 349951 810257 699571 337868 429153 440159 445103 941147 009182 502891 433825 093327 947107 819113 528098 384329 398669 924149 740868 596930 679091 428459 546865 494804 935595 676680 105549 665872 589743 334197 367111 236446 278100 646836 982197 870474 458769 704276 288097 652373 577831 272483 499235 906799 502195 168222 233283 856098 339971 051544 327731 922354 985855 811623 145682 665875 842307 533223 508265 194196 801419 850550 617329 105041 074992 411403 166237 346608 631249 608387 690017 476156 738686 396957 923026 212917 (582 digits), a[1102] = 1
                                                                                      A[1103]/B[1103] = 71867 164108 345679 771307 830269 647310 937049 509157 972751 652940 421011 089511 356298 985492 136617 666622 141121 133168 721806 584308 683341 746254 543012 964119 890667 242561 674346 554066 819427 339731 775064 401916 520658 871028 973812 162163 364550 652870 452438 733075 444277 838909 413855 338843 371521 632528 613528 114103 079569 820698 287650 197030 526025 224138 635114 223683 074543 806319 029766 604579 515392 916839 881467 370938 908572 131333 386330 287143 807689 751355 843286 798039 537333 093938 080753 798465 325252 668834 891933 871005 173926 244760 513536 961260 002348 221173 252033 228315 087516 789534 944252 499540 511421 769392 735249 417640 026883 (581 digits)/6 985023 043865 470441 470458 869772 483497 465116 794314 753556 161395 683803 674874 230888 060635 726297 714918 356776 860120 938126 054851 631925 513467 586680 518379 039598 466241 132943 809803 554902 299552 978563 738671 915858 506682 930506 247229 285228 392643 504195 212646 546717 179831 909492 880789 315284 039030 448310 915403 509206 603876 480742 382448 915471 071451 994159 382577 869673 110241 998867 196082 560146 326195 730031 697859 701075 218072 075126 229527 922488 773162 984030 523315 509008 585567 283465 997446 591009 165305 342306 590875 004545 800770 859847 041214 260790 934545 350951 304294 441018 961013 342374 897246 704620 721038 449298 058603 877345 (583 digits), a[1103] = 16
                                                                                      A[1104]/B[1104] = 76214 151173 018977 778387 403102 638182 513867 348858 250127 880245 753029 645178 441094 874732 374100 535853 463006 574506 458419 218276 741166 111782 830456 261989 002695 146698 733112 555960 179375 142119 299413 297810 013603 470394 961221 906321 773212 031325 439858 253952 763694 748836 071758 221887 131307 030393 854031 162053 020348 205106 691576 627770 387856 316033 726321 804703 576365 754380 110617 717247 709537 800015 367343 815083 853500 268358 904836 805541 569382 616058 256418 864253 958830 200506 490097 711824 668476 056909 202212 519702 508532 913759 568735 367010 447308 200523 649590 358097 623075 874899 712346 121953 458526 716155 867593 510537 608801 (581 digits)/7 407522 041771 554025 474900 414672 669946 544558 536797 649015 064137 718788 834067 929071 838537 296695 091342 035124 252704 998074 306268 275752 863419 396938 217950 377466 895394 573103 254907 496049 308735 481455 172497 009186 453790 749619 775327 669557 791313 428344 953515 143647 858923 337952 427654 810088 974626 124991 020953 175079 193619 814939 749560 151917 349552 640996 364775 740147 569011 703143 484180 212519 904027 002515 197095 607874 720267 243348 462811 778587 113134 035574 851047 431363 571423 095089 143129 256885 007612 875530 099140 198742 602190 710397 658543 365832 009537 762354 470531 787627 592262 950762 587264 180777 459724 846255 981630 090262 (583 digits), a[1104] = 1
                                                                                      A[1105]/B[1105] = 376723 768800 421590 884857 442680 200040 992518 904590 973263 173923 433129 670225 120678 484421 633019 810035 993147 431194 555483 457415 648006 193385 864838 012075 901447 829356 606796 777907 536927 908208 972717 593156 575072 752608 818699 787450 457398 778172 211871 748886 499056 834253 700888 226391 896749 754104 029652 762315 160962 641125 053956 708112 077450 488273 540401 442497 380006 823839 472237 473570 353544 116901 350842 631274 322573 204769 005677 509310 085220 215588 868962 255055 372653 895964 041144 645763 999156 896471 700783 949815 208057 899798 788478 429301 791581 023267 850394 660705 579820 289133 793636 987354 345528 634016 205623 459790 462087 (582 digits)/36 615111 210951 686543 370060 528463 163283 643350 941505 349616 417946 558959 011145 947175 414784 913078 080286 497273 870940 930423 279924 734936 967145 174433 390180 549466 047819 425356 829433 539099 534494 904384 428659 952604 321845 928985 348539 963459 557897 217575 026707 121308 615525 261302 591408 555639 937534 948274 999216 209523 378355 740501 380689 523140 469662 558144 841680 830263 386288 811441 132803 410225 942303 740092 486242 132574 099141 048520 080775 036837 225699 126329 927505 234462 871259 663822 569963 618549 195756 844426 987435 799516 209533 701437 675387 724118 972696 400369 186421 591529 330065 145425 246303 427730 559937 834321 985124 238393 (584 digits), a[1105] = 4
                                                                                      A[1106]/B[1106] = 2 713280 532775 970113 972389 501864 038469 461499 680995 062970 097709 784937 336754 285844 265683 805239 206105 415038 592868 346803 420186 277209 465483 884322 346520 312829 952194 980690 001312 937870 499582 108436 449906 039112 738656 692120 418474 975003 478530 922960 496158 257092 588611 977975 806630 408555 309122 061600 498259 147086 692982 069273 584554 930009 733948 509131 902185 236413 521256 416280 032240 184346 618324 823242 234004 111512 701741 944579 370712 165924 125180 339154 649641 567407 472254 778110 232172 662574 332211 107700 168408 964938 212351 088084 372122 988375 363398 602352 983036 681817 898836 267805 033433 877227 154269 306957 729070 843410 (583 digits)/263 713300 518433 359829 065324 113914 812932 048015 127335 096329 989763 631501 912089 559299 742031 688241 653347 516041 349291 511037 265741 420311 633435 617971 949214 223729 230130 550601 060942 269746 050199 812146 173116 677416 706712 252517 215107 413774 696593 951370 140464 992808 167600 167070 567514 699568 537370 762916 015466 641742 842109 998449 414386 813900 637190 548010 256541 551991 273033 383231 413804 084101 500153 183162 600790 535893 414254 582989 028237 036447 693027 919884 343584 072603 670240 741847 132874 586729 377910 786519 011190 795356 068926 620461 386257 434664 818412 564938 775482 928332 902718 968739 311388 174891 379289 686509 877499 759013 (585 digits), a[1106] = 7
                                                                                      A[1107]/B[1107] = 8 516565 367128 331932 802025 948272 315449 377017 947576 162173 467052 787941 680487 978211 281473 048737 428352 238263 209799 595893 717974 479634 589837 517805 051636 839937 685941 548866 781846 350539 406955 298026 942874 692410 968578 895061 042875 382409 213764 980753 237361 270334 600089 634815 646283 122415 681470 214454 257092 602222 720071 261777 461776 867479 690119 067797 149053 089247 387608 721077 570290 906583 971875 820569 333286 657111 309994 839415 621446 582992 591129 886426 203980 074876 312728 375475 342281 986879 893105 023884 455042 102872 536852 052731 545670 756707 113463 657453 609815 625273 985642 597052 087655 977210 096824 126496 647002 992317 (583 digits)/827 755012 766251 766030 566032 870207 602079 787396 323510 638606 387237 453464 747414 625074 640879 977803 040329 045397 918815 463535 077148 995871 867452 028349 237823 220653 738211 077160 012260 348337 685094 340822 948009 984854 441982 686536 993862 204783 647679 071685 448102 099733 118325 762514 293952 654345 549647 237023 045616 134751 904685 735849 623849 964842 381234 202175 611305 486237 205388 961135 374215 662530 442763 289580 288613 740254 341904 797487 165486 146180 304782 885982 958257 452273 881981 889363 968587 378737 329489 203984 021008 185584 416313 562821 834160 028113 427934 095185 512870 376528 038222 051643 180467 952404 697806 893851 617623 515432 (585 digits), a[1107] = 3
                                                                                      A[1108]/B[1108] = 11 229845 899904 302046 774415 450136 353918 838517 628571 225143 564762 572879 017242 264055 547156 853976 634457 653301 802667 942697 138160 756844 055321 402127 398157 152767 638136 529556 783159 288409 906537 406463 392780 731523 707235 587181 461350 357412 692295 903713 733519 527427 188701 612791 452913 530970 990592 276054 755351 749309 413053 331051 046331 797489 424067 576929 051238 325660 908865 137357 602531 090930 590200 643811 567290 768624 011736 783994 992158 748916 716310 225580 853621 642283 784983 153585 574454 649454 225316 131584 623451 067810 749203 140815 917793 745082 476862 259806 592852 307091 884478 864857 121089 854437 251093 433454 376073 835727 (584 digits)/1091 468313 284685 125859 631356 984122 415011 835411 450845 734936 377001 084966 659504 184374 382911 666044 693676 561439 268106 974572 342890 416183 500887 646321 187037 444382 968341 627761 073202 618083 735294 152969 121126 662271 148694 939054 208969 618558 344273 023055 588567 092541 285925 929584 861467 353914 087017 999939 061082 776494 746795 734299 038236 778743 018424 750185 867847 038228 478422 344366 788019 746631 942916 472742 889404 276147 756159 380476 193723 182627 997810 805867 301841 524877 552222 631211 101461 965466 707399 990503 032198 980940 485240 183283 220417 462778 246346 660124 288353 304860 940941 020382 491856 127296 077096 580361 495123 274445 (586 digits), a[1108] = 1
                                                                                      A[1109]/B[1109] = 132 044870 266075 654447 320595 899772 208556 600711 861859 638752 679441 089610 870152 882822 300198 442480 407386 424583 039146 965562 237742 804919 198372 941206 431365 520381 705443 373991 396598 523048 378866 769124 263462 739171 748170 354057 117729 313948 829019 921604 306076 072033 675807 375521 628331 963096 577985 251056 565961 844626 263657 903338 971426 639863 354862 414016 712674 671517 385125 232011 198132 906820 464082 902496 573485 111975 439099 463360 535192 821076 470542 367815 593818 139997 947543 064916 661283 130876 371582 471315 313003 848790 778086 601706 641401 952614 358948 515326 131191 003284 714910 110480 419644 376019 858851 894494 783815 185314 (585 digits)/12833 906458 897788 150486 510959 695554 167209 976922 282813 722906 534249 388098 001960 653192 852908 304294 670771 221229 867992 183830 848943 573890 377216 137882 295235 108866 389968 982531 817489 147258 773330 023483 280403 269837 077627 016133 292528 008925 434682 325296 922340 117687 263510 987947 770093 547400 506845 236352 717526 676194 119438 813139 044454 531015 583906 454220 157622 906750 468034 749170 042432 875481 814844 489752 072060 777879 659657 982725 296441 155088 280701 750523 278514 225926 956430 832686 084668 998871 110889 099517 375196 975929 753955 578937 258752 118674 137747 356552 684756 729998 388573 275850 590885 352661 545869 277828 063979 534327 (587 digits), a[1109] = 11
                                                                                      A[1110]/B[1110] = 275 319586 432055 610941 415607 249680 771032 039941 352290 502648 923644 752100 757548 029700 147553 738937 449230 502467 880961 873821 613646 366682 452067 284540 260888 193531 049023 277539 576356 334506 664270 944711 919706 209867 203576 295295 696808 985310 350335 746922 345671 671494 540316 363834 709577 457164 146562 778167 887275 438561 940369 137728 989185 077216 133792 404962 476587 668695 679115 601379 998796 904571 518366 448804 714260 992574 889935 710716 062544 391069 657394 961212 041257 922279 680069 283418 897020 911206 968481 074215 249458 765392 305376 344229 200597 650311 194759 290458 855234 313661 314299 085817 960378 606476 968797 222443 943704 206355 (585 digits)/26759 281231 080261 426832 653276 375230 749431 789256 016473 180749 445499 861162 663425 490760 088728 274634 035219 003899 004091 342234 040777 563964 255319 922085 777507 662115 748279 592824 708180 912601 281954 199935 681933 201945 303948 971320 794025 636409 213637 673649 433247 327915 812947 905480 401654 448715 100708 472644 496136 128882 985673 360577 127145 840774 186237 658626 183092 851729 414491 842706 872885 497595 572605 452247 033525 831907 075475 345926 786605 492804 559214 306913 858869 976731 465084 296583 270799 963208 929178 189537 782592 932799 993151 341157 737921 700126 521841 373229 657866 764857 718087 572083 673626 832619 168835 136017 623082 343099 (587 digits), a[1110] = 2
                                                                                      A[1111]/B[1111] = 407 364456 698131 265388 736203 149452 979588 640653 214150 141401 603085 841711 627700 912522 447752 181417 856616 927050 920108 839383 851389 171601 650440 225746 692253 713912 754466 651530 972954 857555 043137 713836 183168 949038 951746 649352 814538 299259 179355 668526 651747 743528 216123 739356 337909 420260 724548 029224 453237 283188 204027 041067 960611 717079 488654 818979 189262 340213 064240 833391 196929 811391 982449 351301 287746 104550 329035 174076 597737 212146 127937 329027 635076 062277 627612 348335 558304 042083 340063 545530 562462 614183 083462 945935 841999 602925 553707 805784 986425 316946 029209 196298 380022 982496 827649 116938 727519 391669 (585 digits)/39593 187689 978049 577319 164236 070784 916641 766178 299286 903655 979749 249260 665386 143952 941636 578928 705990 225128 872083 526064 889721 137854 632536 059968 072742 770982 138248 575356 525670 059860 055284 223418 962336 471782 381575 987454 086553 645334 648319 998946 355587 445603 076458 893428 171747 996115 607553 708997 213662 805077 105112 173716 171600 371789 770144 112846 340715 758479 882526 591876 915318 373077 387449 941999 105586 609786 735133 328652 083046 647892 839916 057437 137384 202658 421515 129269 355468 962080 040067 289055 157789 908729 747106 920094 996673 818800 659588 729782 342623 494856 106660 847934 264512 185280 714704 413845 687061 877426 (587 digits), a[1111] = 1
                                                                                      A[1112]/B[1112] = 4348 964153 413368 264828 777638 744210 566918 446473 493791 916664 954503 169217 034557 154924 625075 553116 015399 772977 082050 267660 127538 082698 956469 542007 183425 332658 593689 792849 305904 910057 095648 083073 751395 700256 721042 788823 842191 977902 143892 432188 863149 106776 701553 757398 088671 659771 392043 070412 419648 270443 980639 548408 595302 248011 020340 594754 369211 070826 321523 935291 968095 018491 342859 961817 591722 038078 180287 451482 039916 512530 936768 251488 392018 545055 956192 766774 480061 332040 369116 529520 874084 907223 140005 803587 620593 679566 731837 348308 719487 483121 606391 048801 760608 431445 245288 391831 218898 123045 (586 digits)/422691 158130 860757 200024 295637 083079 915849 451039 009342 217309 242992 353769 317286 930289 505094 063921 095121 255187 724926 602882 937988 942510 580680 521766 504935 371937 130765 346389 964881 511201 834796 434125 305297 919769 119708 845861 659562 089755 696837 663112 989121 783946 577536 839762 119134 409871 176245 562616 632764 179654 036795 097738 843149 558671 887678 787089 590250 436528 239757 761476 026069 228369 447104 872238 089391 929774 426808 632447 617071 971732 958374 881285 232712 003315 680235 589276 825489 584009 329851 080089 360492 020097 464220 542107 704659 888133 117728 671053 084101 713418 784696 051426 318748 685426 315879 274474 493701 117359 (588 digits), a[1112] = 10
                                                                                      A[1113]/B[1113] = 22152 185223 764972 589532 624396 870505 814180 873020 683109 724726 375601 687796 800486 687145 573129 946997 933615 791936 330360 177684 489079 585096 432787 935782 609380 377205 722915 615777 502479 407840 521378 129204 940147 450322 556960 593472 025498 188769 898817 829470 967493 277411 723892 526346 781267 719117 684763 381286 551478 635408 107224 783110 937122 957134 590357 792751 035317 694344 671860 509851 037404 903848 696749 160389 246356 294941 230472 431486 797319 774800 811778 586469 595168 787557 408576 182207 958610 702285 185646 193134 932887 150298 783491 963873 944968 000759 212894 547328 583862 732554 061164 440307 183065 139723 054091 076094 822010 006894 (587 digits)/2 153048 978344 281835 577440 642421 486184 495889 021373 345997 990202 194711 018107 251820 795400 467106 898534 181596 501067 496716 540479 579665 850407 535938 668800 597419 630667 792075 307306 350077 615869 229266 394045 488826 070627 980120 216762 384364 094113 132508 314511 301196 365335 964143 092238 767420 045471 488781 522080 377483 703347 289087 662410 387348 165149 208538 048294 291967 941121 081315 399257 045664 514924 622974 303189 552546 258658 869176 490890 168406 506557 631790 463863 300944 219236 822693 075653 482916 882126 689322 689501 960250 009217 068209 630633 519973 259466 248232 085047 763132 061950 030141 105065 858255 612412 294100 786218 155567 464221 (589 digits), a[1113] = 5
                                                                                      A[1114]/B[1114] = 26501 149377 178340 854361 402035 614716 381099 319494 176901 641391 330104 857013 835043 842070 198205 500113 949015 564913 412410 445344 616617 667795 389257 477789 792805 709864 316605 408626 808384 317897 617026 212278 691543 150579 278003 382295 867690 166672 042710 261659 830642 384188 425446 283744 869939 378889 076806 451698 971126 905852 087864 331519 532425 205145 610698 387505 404528 765170 993384 445143 005499 922340 039609 122206 838078 333019 410759 882968 837236 287331 748546 837957 987187 332613 364768 948982 438672 034325 554762 722655 806972 057521 923497 767461 565561 680325 944731 895637 303350 215675 667555 489108 943673 571168 299379 467926 040908 129939 (587 digits)/2 575740 136475 142592 777464 938058 569264 411738 472412 355340 207511 437703 371876 569107 725689 972200 962455 276717 756255 221643 143362 517654 792918 116619 190567 102355 002604 922840 653696 314959 127071 064062 828170 794123 990397 099829 062624 043926 183868 829345 977624 290318 149282 541679 932000 886554 455342 665027 084697 010247 883001 325882 760149 230497 723821 096216 835383 882218 377649 321073 160733 071733 743294 070079 175427 641938 188433 295985 123337 785478 478290 590165 345148 533656 222552 502928 664930 308406 466136 019173 769591 320742 029314 532430 172741 224633 147599 365960 756100 847233 775368 814837 156492 177004 297838 609980 060692 649268 581580 (589 digits), a[1114] = 1
                                                                                      A[1115]/B[1115] = 75154 483978 121654 298255 428468 099938 576379 512009 036913 007509 035811 401824 470574 371285 969540 947225 831646 921763 155181 068373 722314 920687 211302 891362 194991 796934 356126 433031 119248 043635 755430 553762 323233 751481 112967 358063 760878 522113 984238 352790 628778 045788 574785 093836 521146 476895 838376 284684 493732 447112 282953 446150 001973 367425 811754 567761 844375 224686 658629 400137 048404 748528 775967 404802 922512 960980 051992 197424 471792 349464 308872 262385 569543 452784 138114 080172 835954 770936 295171 638446 546831 265342 630487 498797 076091 361411 102358 338603 190563 163905 396275 418525 070412 282059 652850 011946 903826 266772 (587 digits)/7 304529 251294 567021 132370 518538 624713 319365 966198 056678 405225 070117 761860 390036 246780 411508 823444 735032 013577 940002 827204 614975 436243 769177 049934 802129 635877 637756 614698 979995 870011 357392 050387 077074 051422 179778 342010 472216 461850 791200 269759 881832 663901 047502 956240 540528 956156 818835 691474 397979 469349 940853 182708 848343 612791 400971 719062 056404 696419 723461 720723 189132 001512 763132 654044 836422 635525 461146 737565 739363 463138 812121 154160 368256 664341 828550 405514 099729 814398 727670 228684 601734 067846 133069 976115 969239 554664 980153 597249 457599 612687 659815 418050 212264 208089 514060 907603 454104 627381 (589 digits), a[1115] = 2
                                                                                      A[1116]/B[1116] = 2 882371 540545 801204 188067 683823 412382 283520 775837 579595 926734 690938 126343 716869 950937 040761 494695 551598 591913 309291 043546 064584 653909 418767 349553 202493 993369 849409 863809 339809 976056 323387 255246 974425 706861 570762 988718 781074 007003 443767 667703 724208 124154 267279 849532 673505 500930 935105 269709 732959 896118 840095 285219 607413 167326 457371 962455 490787 303264 021301 650350 844880 366433 526370 504717 893570 850261 386463 385098 765345 566975 485692 808609 629838 538410 613103 995550 204953 329904 771284 983624 586560 140541 882022 721750 457033 413947 834348 762558 544750 444080 726021 393061 619340 289435 107679 921908 386306 267275 (589 digits)/280 147851 685668 689395 807544 642526 308370 547645 187938 509119 606064 102178 322571 390485 103345 609536 253355 207934 272216 941750 577137 886721 370181 345347 088089 583281 165955 157592 012257 554802 187502 644960 742879 722937 944439 931406 059021 988151 734198 894956 228499 799959 377522 346792 269141 426654 789301 780783 360724 133467 718299 078303 703085 467555 009894 333142 159742 025596 841598 812618 548214 258749 800779 069120 029131 425998 338400 819561 150835 881290 077565 450769 203242 527409 467541 987844 074466 098139 413287 670642 459606 186636 607467 589089 265148 055736 224868 611797 451580 236019 057499 887823 042400 243044 205240 144294 549623 905244 422058 (591 digits), a[1116] = 38
                                                                                      A[1117]/B[1117] = 2 957526 024523 922858 486323 112291 512320 859900 287846 616508 934243 726749 528168 187444 322223 010302 441921 383245 513676 464472 111919 786899 574596 630070 240915 397485 790304 205536 296840 459058 019692 078817 809009 297659 458342 683730 346782 541952 529117 428006 020494 352986 169942 842064 943369 194651 977826 773481 554394 226692 343231 123048 731369 609386 534752 269126 530217 335162 527950 679931 050487 893285 114962 302337 909520 816083 811241 438455 582523 237137 916439 794565 070995 199381 991194 751218 075723 040908 100841 066456 622071 133391 405884 512510 220547 533124 775358 936707 101161 735313 607986 122296 811586 689752 571494 760529 933855 290132 534047 (589 digits)/287 452380 936963 256416 939915 161064 933083 867011 154136 565798 011289 172296 084431 780521 350126 021045 076799 942966 285794 881753 404342 501696 806425 114524 138024 385410 801832 795348 626956 534798 057514 002352 793266 800011 995862 111184 401032 460368 196049 686156 498259 681792 041423 394295 225381 967183 745458 599619 052198 531447 187649 019156 885794 315898 622685 734113 878804 082001 538018 536080 268937 447881 802291 832252 683176 262420 973926 280707 888401 620653 540704 262890 357402 895666 131883 816394 479980 197869 227686 398312 688290 788370 675313 722159 241264 024975 779533 591951 048829 693618 670187 547638 460450 455308 413329 658355 457227 359349 049439 (591 digits), a[1117] = 1
                                                                                      A[1118]/B[1118] = 64 990418 055548 181232 400853 041945 171120 341426 820616 526283 545852 952678 217875 653200 717620 257112 775044 599754 379119 063205 393861 589475 720438 650242 408776 549695 589758 165672 097458 980028 389589 978561 244442 225274 332057 929100 271152 162077 118469 431894 098085 136917 692953 950643 660285 761197 035293 178217 911988 493499 103972 424118 643981 404530 397124 109029 097019 529200 390228 299853 710596 603867 780641 875466 604655 031330 886331 594030 618086 745241 812211 171559 299508 816860 353500 388683 585734 064023 447567 166874 047118 387779 664116 644737 353248 652653 696485 505197 886954 986336 211789 294254 436382 104144 290825 078808 532869 479089 482262 (590 digits)/6316 647851 361897 074151 545763 024889 903131 754879 424806 390877 843136 720396 095638 781433 455992 051482 866154 010226 273909 458572 068330 422354 305108 750353 986601 676908 004443 859913 178344 785561 395296 694369 401482 523189 857544 266278 480703 655883 851242 304242 691953 117592 247413 626992 002162 737513 443932 372783 456893 293858 658928 480598 304766 101426 086294 749533 614627 747629 139988 070304 195900 664267 648907 546426 375832 936838 790852 714426 807269 915014 432354 971466 708703 336398 237102 132128 154050 253393 194702 035208 913712 742420 789055 754433 331692 580227 595074 042769 477003 802011 131438 388230 711859 804520 885162 969759 151398 451574 460277 (592 digits), a[1118] = 21
                                                                                      A[1119]/B[1119] = 67 947944 080072 104090 887176 154236 683441 201327 108463 142792 480096 679427 746043 840645 039843 267415 216965 982999 892795 527677 505781 376375 295035 280312 649691 947181 380062 371208 394299 439086 409282 057379 053451 522933 790400 612830 617934 704029 647586 859900 118579 489903 862896 792708 603654 955849 013119 951699 466382 720191 447203 547167 375351 013916 931876 378155 627236 864362 918178 979784 761084 497152 895604 177804 514175 847414 697573 032486 200609 982379 728650 966124 370504 016242 344695 139901 661457 104931 548408 233330 669189 521171 070001 157247 573796 185778 471844 441904 988116 721649 819775 416551 247968 793896 862319 839338 466724 769222 016309 (590 digits)/6604 100232 298860 330568 485678 185954 836215 621890 578942 956675 854425 892692 180070 561954 806118 072527 942953 953192 559704 340325 472672 924051 111533 864878 124626 062318 806276 655261 805301 320359 452810 696722 194749 323201 853406 377462 881736 116252 047291 990399 190212 799384 288837 021287 227544 704697 189390 972402 509091 825305 846577 499755 190560 417324 708980 483647 493431 829630 678006 606384 464838 112149 451199 378679 059009 199259 764778 995134 695671 535667 973059 234357 066106 232064 368985 948522 634030 451262 422388 433521 602003 530791 464369 476592 572956 605203 374607 634720 525833 495629 801625 935869 172310 259829 298492 628114 608625 810923 509716 (592 digits), a[1119] = 1
                                                                                      A[1120]/B[1120] = 132 938362 135620 285323 288029 196181 854561 542753 929079 669076 025949 632105 963919 493845 757463 524527 992010 582754 271914 590882 899642 965851 015473 930555 058468 496876 969820 536880 491758 419114 798872 035940 297893 748208 122458 541930 889086 866106 766056 291794 216664 626821 555850 743352 263940 717046 048413 129917 378371 213690 551175 971286 019332 418447 329000 487184 724256 393563 308407 279638 471681 101020 676246 053271 118830 878745 583904 626516 818696 727621 540862 137683 670012 833102 698195 528585 247191 168954 995975 400204 716307 908950 734117 801984 927044 838432 168329 947102 875071 707986 031564 710805 684350 898041 153144 918146 999594 248311 498571 (591 digits)/12920 748083 660757 404720 031441 210844 739347 376770 003749 347553 697562 613088 275709 343388 262110 124010 809107 963418 833613 798897 541003 346405 416642 615232 111227 739226 810720 515174 983646 105920 848107 391091 596231 846391 710950 643741 362439 772135 898534 294641 882165 916976 536250 648279 229707 442210 633323 345185 965985 119164 505505 980353 495326 518750 795275 233181 108059 577259 817994 676688 660738 776417 100106 925105 434842 136098 555631 709561 502941 450682 405414 205823 774809 568462 606088 080650 788080 704655 617090 468730 515716 273212 253425 231025 904649 185430 969681 677490 002837 297640 933064 324099 884170 064350 183655 597873 760024 262497 969993 (593 digits), a[1120] = 1
                                                                                      A[1121]/B[1121] = 466 763030 486932 960060 751263 742782 247125 829588 895702 150020 557945 575745 637802 322182 312233 840999 192997 731262 708539 300326 204710 273928 341457 071977 825097 437812 289523 981849 869574 696430 805898 165199 947132 767558 157776 238623 285195 302349 945755 735282 768573 370368 530449 022765 395477 106987 158359 341451 601496 361263 100731 461025 433348 269258 918877 839709 800006 045052 843400 818700 176127 800214 924342 337617 870668 483651 449286 912036 656700 165244 351237 379175 380542 515550 439281 725657 403030 611796 536334 433944 818113 248023 272354 563202 354930 701074 976834 283213 613331 845607 914469 548968 301021 488020 321754 593779 465507 514156 512022 (591 digits)/45366 344483 281132 544728 580001 818489 054257 752200 590190 999336 947113 731957 007198 592119 592448 444560 370277 843449 060545 737018 095682 963267 361461 710574 458309 279999 238438 200786 756239 638121 997132 869996 983444 862376 986258 308686 969055 432659 742894 874324 836710 550313 897588 966124 916667 031329 089361 007960 407047 182799 363095 440815 676539 973577 094806 183190 817610 561410 131990 636450 447054 441400 751520 153995 363535 607555 431674 123819 204495 887715 189301 851828 390534 937452 187250 190474 998272 565229 273659 839713 149152 350428 224645 169670 286904 161496 283652 667190 534345 388552 600818 908168 824820 452879 849459 421735 888698 598417 419695 (593 digits), a[1121] = 3
                                                                                      A[1122]/B[1122] = 599 701392 622553 245384 039292 938964 101687 372342 824781 819096 583895 207851 601721 816028 069697 365527 185008 314016 980453 891209 104353 239779 356931 002532 883565 934689 259344 518730 361333 115545 604770 201140 245026 515766 280234 780554 174282 168456 711812 027076 985237 997190 086299 766117 659417 824033 206772 471368 979867 574953 651907 432311 452680 687706 247878 326894 524262 438616 151808 098338 647808 901235 600588 390888 989499 362397 033191 538553 475396 892865 892099 516859 050555 348653 137477 254242 650221 780751 532309 834149 534421 156974 006472 365187 281975 539507 145164 230316 488403 553593 946034 259773 985372 386061 474899 511926 465101 762468 010593 (591 digits)/58287 092566 941889 949448 611443 029333 793605 128970 593940 346890 644676 345045 282907 935507 854558 568571 179385 806867 894159 535915 636686 309672 778104 325806 569537 019226 049158 715961 739885 744042 845240 261088 579676 708768 697208 952428 331495 204795 641429 168966 718876 467290 433839 614404 146374 473539 722684 353146 373032 301963 868601 421169 171866 492327 890081 416371 925670 138669 949985 313139 107793 217817 851627 079100 798377 743653 987305 833380 707437 338397 594716 057652 165344 505914 793338 271125 786353 269884 890750 308443 664868 623640 478070 400696 191553 346927 253334 344680 537182 686193 533883 232268 708990 517230 033115 019609 648722 860915 389688 (593 digits), a[1122] = 1
                                                                                      A[1123]/B[1123] = 1066 464423 109486 205444 790556 681746 348813 201931 720483 969117 141840 783597 239524 138210 381931 206526 378006 045279 688993 191535 309063 513707 698388 074510 708663 372501 548868 500580 230907 811976 410668 366340 192159 283324 438011 019177 459477 470806 657567 762359 753811 367558 616748 788883 054894 931020 365131 812820 581363 936216 752638 893336 886028 956965 166756 166604 324268 483668 995208 917038 823936 701450 524930 728506 860167 846048 482478 450590 132097 058110 243336 896034 431097 864203 576758 979900 053252 392548 068644 268094 352534 404997 278826 928389 636906 240582 121998 513530 101735 399201 860503 808742 286393 874081 796654 105705 930609 276624 522615 (592 digits)/103653 437050 223022 494177 191444 847822 847862 881171 184131 346227 591790 077002 290106 527627 447007 013131 549663 650316 954705 272933 732369 272940 139566 036381 027846 299225 287596 916748 496125 382164 842373 131085 563121 571145 683467 261115 300550 637455 384324 043291 555587 017604 331428 580529 063041 504868 812045 361106 780079 484763 231696 861984 848406 465904 984887 599562 743280 700080 081975 949589 554847 659218 603147 233096 161913 351209 418979 957199 911933 226112 784017 909480 555879 443366 980588 461600 784625 835114 164410 148156 814020 974068 702715 570366 478457 508423 536987 011871 071528 074746 134702 140437 533810 970109 882574 441345 537421 459332 809383 (594 digits), a[1123] = 1
                                                                                      A[1124]/B[1124] = 2732 630238 841525 656273 620406 302456 799313 776206 265749 757330 867576 775046 080770 092448 833559 778579 941020 404576 358440 274279 722480 267194 753707 151554 300892 679692 357081 519890 823148 739498 426106 933820 629345 082415 156256 818909 093237 110070 026947 551796 492860 732307 319797 343883 769207 686073 937036 097010 142595 447387 157185 218985 224738 601636 581390 660103 172799 405954 142225 932416 295682 304136 650449 847902 709835 054493 998148 439733 739591 009086 378773 308927 912751 077060 290995 214042 756726 565847 669598 370338 239489 966968 564126 221966 555788 020671 389161 257376 691874 351997 667041 877258 558160 134225 068207 723338 326320 315717 055823 (592 digits)/265593 966667 387934 937802 994332 724979 489330 891312 962203 039345 828256 499049 863120 990762 748572 594834 278713 107501 803570 081783 101424 855553 057236 398568 625229 617676 624352 549458 732136 508372 529986 523259 705919 851060 064143 474658 932596 479706 410077 255549 830050 502499 096696 775462 272457 483277 346775 075359 933191 271490 331995 145138 868679 424137 859856 615497 412231 538830 113937 212318 217488 536255 057921 545293 122204 446072 825265 747780 531303 790623 162751 876613 277103 392648 754515 194327 355604 940113 219570 604757 292910 571777 883501 541429 148468 363774 327308 368422 680238 835685 803287 513143 776612 457449 798263 902300 723565 779581 008454 (594 digits), a[1124] = 2
                                                                                      A[1125]/B[1125] = 33858 027289 207794 080728 235432 311227 940578 516406 909481 057087 552762 084150 208765 247596 384648 549485 670250 900195 990276 482891 978826 720044 742873 893162 319375 528809 833846 739270 108692 685957 523951 572187 744300 272306 313092 846086 578322 791646 980938 383917 668140 155246 454316 915488 285387 163907 609564 976942 292509 304862 638861 521159 582892 176604 143444 087842 397861 355118 701920 106034 372124 351090 330328 903339 378188 499976 460259 727395 007189 167146 788616 603169 384110 788927 068701 548413 133971 182720 103824 712153 226414 008620 048341 591988 306362 488638 791933 602050 404227 623173 865006 335844 984315 484782 615146 785765 846453 065229 192491 (593 digits)/3 290781 037058 878241 747813 123437 547576 719833 576926 730567 818377 530868 065600 647558 416780 429878 151142 894220 940338 597546 254330 949467 539576 826402 819204 530601 711344 779827 510253 281763 482635 202211 410202 034159 783866 453188 957022 491708 393932 305251 109889 516193 047593 491789 886076 332531 304196 973346 265425 978374 742647 215638 603651 272559 555559 303166 985531 690059 166041 449222 497408 164710 094279 298205 776613 628366 704083 322168 930566 287578 713590 737040 428839 881120 155152 034770 793529 051885 116472 799257 405244 328947 835403 304734 067516 260077 873715 464687 432943 234394 102975 774152 298162 853160 459507 461741 268954 220210 814304 910831 (595 digits), a[1125] = 12
                                                                                      A[1126]/B[1126] = 70448 684817 257113 817730 091270 924912 680470 809020 084711 871505 973100 943346 498300 587641 602856 877551 281522 204968 338993 240063 680133 707284 239454 937878 939643 737312 024774 998431 040534 111413 474010 078196 117945 627027 782442 511082 249882 693363 988824 319631 829141 042800 228431 174860 339982 013889 156166 050894 727614 057112 434908 261304 390522 954844 868278 835787 968522 116191 546066 144485 039931 006317 311107 654581 466212 054446 918667 894523 753969 343379 956006 515266 680972 654914 428398 310869 024668 931287 877247 794644 692317 984208 660809 405943 168512 997948 973028 461477 500329 598345 397054 548948 526791 103790 298501 294870 019226 446175 440805 (593 digits)/6 847156 040785 144418 433429 241207 820132 928998 045166 423338 676100 889992 630251 158237 824323 608328 897120 067154 988178 998662 590445 000359 934706 710042 036977 686433 040366 184007 569965 295663 473642 934409 343663 774239 418792 970521 388703 916013 267571 020579 475328 862436 597686 080276 547614 937520 091671 293467 606211 889940 756784 763272 352441 413798 535256 466190 586560 792349 870913 012382 207134 546908 724813 654333 098520 378937 854239 469603 608913 106461 217804 636832 734293 039343 702952 824056 781385 459375 173058 818085 415245 950806 242584 492969 676461 668624 111205 256683 234309 149027 041637 351592 109469 482933 376464 721746 440209 163987 408190 830116 (595 digits), a[1126] = 2
                                                                                      A[1127]/B[1127] = 245204 081740 979135 533918 509245 085965 981990 943467 163616 671605 472064 914189 703667 010521 193219 182139 514817 515101 007256 203083 019227 841897 461238 706799 138306 740745 908171 734563 230295 020197 945981 806776 098137 153389 660420 379333 327970 871738 947411 342813 155563 283647 139610 440069 305333 205575 078063 129626 475351 476199 943586 305072 754461 041138 748280 595206 303427 703693 340118 539489 491917 370042 263651 867083 776824 663317 216263 410966 269097 197286 656636 148969 427028 753670 353896 481020 207977 976583 735568 096087 303367 961246 030769 809817 811901 482485 711018 986482 905216 418210 056169 982690 564688 796153 510650 670375 904132 403755 514906 (594 digits)/23 832249 159414 311497 048100 847061 007975 506827 712426 000583 846680 200845 956354 122271 889751 254864 842503 095685 904875 593534 025665 950547 343696 956528 930137 589900 832443 331850 220149 168753 903564 005439 441193 356878 040245 364753 123134 239748 196645 366989 535876 103502 840651 732619 528921 145091 579210 853749 084061 648197 013001 505455 660975 513955 161328 701738 745214 067108 778780 486369 118811 805436 268720 261205 072174 765180 266801 730979 757305 606962 367004 647538 631718 999151 264010 506941 137685 430010 635649 253513 650982 181366 563156 783643 096901 265950 207331 234737 135870 681475 227887 828928 626571 301960 588901 626980 589581 712173 038877 401179 (596 digits), a[1127] = 3
                                                                                      A[1128]/B[1128] = 560856 848299 215384 885567 109761 096844 644452 695954 411945 214716 917230 771725 905634 608683 989295 241830 311157 235170 353505 646229 718589 391079 161932 351477 216257 218803 841118 467557 501124 151809 365973 691748 314219 933807 103283 269748 905824 436841 883647 005258 140267 610094 507652 054998 950648 425039 312292 310147 678317 009512 322080 871449 899445 037122 364840 026200 575377 523578 226303 223464 023765 746401 838411 388749 019861 381081 351194 716456 292163 737953 269278 813205 535030 162255 136191 272909 440624 884455 348383 986819 299053 906700 722349 025578 792315 962920 395066 434443 310762 434765 509394 514329 656168 696097 319802 635621 827491 253686 470617 (594 digits)/54 511654 359613 767412 529630 935329 836083 942653 470018 424506 369461 291684 542959 402781 603826 118058 582126 258526 797930 185730 641776 901454 622100 623099 897252 866234 705252 847708 010263 633171 280770 945288 226050 487995 499283 700027 634972 395509 660861 754558 547081 069442 278989 545515 605457 227703 250093 000965 774335 186334 782787 774183 674392 441708 857913 869668 076988 926567 428473 985120 444758 157781 262254 176743 242869 909298 387842 931563 123524 320385 951813 931909 997731 037646 230973 837939 056756 319396 444357 325112 717210 313539 368898 060255 870264 200524 525867 726157 506050 511977 497413 009449 362612 086854 554267 975707 619372 588333 485945 632474 (596 digits), a[1128] = 2
                                                                                      A[1129]/B[1129] = 806060 930040 194520 419485 619006 182810 626443 639421 575561 886322 389295 685915 609301 619205 182514 423969 825974 750271 360761 849312 737817 232976 623171 058276 354563 959549 749290 202120 731419 172007 311955 498524 412357 087196 763703 649082 233795 308580 831058 348071 295830 893741 647262 495068 255981 630614 390355 439774 153668 485712 265667 176522 653906 078261 113120 621406 878805 227271 566421 762953 515683 116444 102063 255832 796686 044398 567458 127422 561260 935239 925914 962174 962058 915925 490087 753929 648602 861039 083952 082906 602421 867946 753118 835396 604217 445406 106085 420926 215978 852975 565564 497020 220857 492250 830453 305997 731623 657441 985523 (594 digits)/78 343903 519028 078909 577731 782390 844059 449481 182444 425090 216141 492530 499313 525053 493577 372923 424629 354212 702805 779264 667442 852001 965797 579628 827390 456135 537696 179558 230412 801925 184334 950727 667243 844873 539529 064780 758106 635257 857507 121548 082957 172945 119641 278135 134378 372794 829303 854714 858396 834531 795789 279639 335367 955664 019242 571406 822202 993676 207254 471489 563569 963217 530974 437948 315044 674478 654644 662542 880829 927348 318818 579448 629450 036797 494984 344880 194441 749407 080006 578626 368192 494905 932054 843898 967165 466474 733198 960894 641921 193452 725300 838377 989183 388815 143169 602688 208954 300506 524823 033653 (596 digits), a[1129] = 1
                                                                                      A[1130]/B[1130] = 4 591161 498500 187986 982995 204792 010897 776670 893062 289754 646328 863709 201303 952142 704709 901867 361679 441030 986527 157314 892793 407675 555962 277787 642858 989077 016552 587569 478161 158220 011845 925751 184370 376005 369790 921801 515160 074800 979746 038938 745614 619422 078802 743964 530340 230556 578111 264069 509018 446659 438073 650416 754063 168975 428427 930443 133234 969403 659936 058412 038231 602181 328622 348727 667913 003291 603074 188485 353569 098468 414152 898853 624080 345324 741882 586630 042557 683639 189650 768144 401352 311163 246434 487943 202561 813403 189950 925493 539074 390656 699643 337216 999430 760456 157351 472069 165610 485609 540896 398232 (595 digits)/446 231171 954754 161960 418289 847284 056381 190059 382240 549957 450168 754337 039527 028049 071712 982675 705273 029590 311959 082053 978991 161464 451088 521244 034205 146912 393733 745499 162327 642797 202445 698926 562269 712363 196929 023931 425505 571798 948397 362298 961866 934167 877195 936191 277349 091677 396612 274540 066319 358993 761734 172380 351232 220028 954126 726702 188003 894948 464746 342568 262607 973868 917126 366484 818093 281691 661066 244277 527673 957127 545906 829153 144981 221633 705895 562340 028965 066431 844390 218244 558172 788069 029172 279750 706091 532898 191862 530630 715656 479241 123917 201339 308529 030930 270115 989148 664144 090866 110060 800739 (597 digits), a[1130] = 5
                                                                                      A[1131]/B[1131] = 19 170706 924040 946468 351466 438174 226401 733127 211670 734580 471637 844132 491131 417872 438044 789983 870687 590098 696379 990021 420486 368519 456825 734321 629712 310872 025760 099568 114765 364299 219391 014960 236005 916378 566360 450909 709722 532999 227564 986813 330529 773519 208952 623120 616429 178207 943059 446633 475847 940306 238006 867334 192775 329807 791972 834893 154346 756419 867015 800069 915879 924408 430933 496973 927484 809852 456695 321399 541698 955134 591851 521329 458496 343357 883455 836607 924160 383159 619642 156529 688315 847074 853684 704891 645643 857830 205209 808059 577223 778605 651548 914432 494743 262682 121656 718729 968439 674061 821027 578451 (596 digits)/1863 268591 338044 726751 250891 171527 069584 209718 711406 624920 016816 509878 657421 637249 780429 303626 245721 472573 950642 107480 583407 497859 770151 664604 964211 043785 112631 161554 879723 373113 994117 746433 916322 694326 327245 160506 460128 922453 651096 570743 930424 909616 628425 022900 243774 739504 415752 952875 123674 270506 842725 969160 740296 835779 835749 478215 574218 573470 066239 841762 614001 858693 199479 903887 587417 801245 298909 639652 991525 755858 502445 896061 209374 923332 318566 594240 310302 015134 457567 451604 600883 647182 048743 962901 791531 598067 500649 083417 504547 110417 220969 643735 223299 512536 223633 559282 865530 663970 965066 236609 (598 digits), a[1131] = 4
                                                                                      A[1132]/B[1132] = 23 761868 422541 134455 334461 642966 237299 509798 104733 024335 117966 707841 692435 370015 142754 691851 232367 031129 682907 147336 313279 776195 012788 012109 272571 299949 042312 687137 592926 522519 231236 940711 420376 292383 936151 372711 224882 607800 207311 025752 076144 392941 287755 367085 146769 408764 521170 710702 984866 386965 676080 517750 946838 498783 220400 765336 287581 725823 526951 858481 954111 526589 759555 845701 595397 813144 059769 509884 895268 053603 006004 420183 082576 688682 625338 423237 966718 066798 809292 924674 089668 158238 100119 192834 848205 671233 395160 733553 116298 169262 351192 251649 494174 023138 279008 190799 134050 159671 361923 976683 (596 digits)/2309 499763 292798 888711 669181 018811 125965 399778 093647 174877 466985 264215 696948 665298 852142 286301 950994 502164 262601 189534 562398 659324 221240 185848 998416 190697 506364 907054 042051 015911 196563 445360 478592 406689 524174 184437 885634 494252 599493 933042 892291 843784 505620 959091 521123 831181 812365 227415 189993 629500 604460 141541 091529 055808 789876 204917 762222 468418 530986 184330 876609 832562 116606 270372 405511 082936 959975 883930 519199 712986 048352 725214 354356 144966 024462 156580 339267 081566 301957 669849 159056 435251 077916 242652 497623 130965 692511 614048 220203 589658 344886 845074 531828 543466 493749 548431 529674 754837 075127 037348 (598 digits), a[1132] = 1
                                                                                      A[1133]/B[1133] = 42 932575 346582 080923 685928 081140 463701 242925 316403 758915 589604 551974 183566 787887 580799 481835 103054 621228 379287 137357 733766 144714 469613 746430 902283 610821 068072 786705 707691 886818 450627 955671 656382 208762 502511 823620 934605 140799 434876 012565 406674 166460 496707 990205 763198 586972 464230 157336 460714 327271 914087 385085 139613 828591 012373 600229 441928 482243 393967 658551 869991 450998 190489 342675 522882 622996 516464 831284 436967 008737 597855 941512 541073 032040 508794 259845 890878 449958 428935 081203 777984 005312 953803 897726 493849 529063 600370 541612 693521 947868 002741 166081 988917 285820 400664 909529 102489 833733 182951 555134 (596 digits)/4172 768354 630843 615462 920072 190338 195549 609496 805053 799797 483801 774094 354370 302548 632571 589928 196715 974738 213243 297015 145806 157183 991391 850453 962627 234482 618996 068608 921774 389025 190681 191794 394915 101015 851419 344944 345763 416706 250590 503786 822716 753401 134045 981991 764898 570686 228118 180290 313667 900007 447186 110701 831825 891588 625625 683133 336441 041888 597226 026093 490611 691255 316086 174259 992928 884182 258885 523583 510725 468844 550798 621275 563731 068298 343028 750820 649569 096700 759525 121453 759940 082433 126660 205554 289154 729033 193160 697465 724750 700075 565856 488809 755128 056002 717383 107714 395205 418808 040193 273957 (598 digits), a[1133] = 1
                                                                                      A[1134]/B[1134] = 195 492169 808869 458150 078173 967528 092104 481499 370348 059997 476384 915738 426702 521565 465952 619191 644585 516043 200055 696767 248344 355052 891242 997832 881705 743233 314603 833960 423694 069793 033748 763398 045905 127433 946198 667194 963303 170997 946815 076013 702841 058783 274587 327908 199563 756654 378091 340048 827723 696053 332430 058091 505293 813147 269895 166254 055295 654797 102822 492689 434077 330582 521513 216403 686928 305130 125628 835022 643136 088553 397428 186233 246868 816844 660515 462621 530231 866632 525033 249489 201604 179489 915334 783740 823603 787487 796642 900003 890385 960734 362156 915977 449843 166419 881667 828915 544009 494604 093730 197219 (597 digits)/19000 573181 816173 350563 349469 780163 908163 837765 313862 374067 402192 360593 114429 875493 382428 646014 737858 401117 115574 377595 145623 288060 186807 587664 848925 128627 982349 181489 729148 572011 959288 212538 058252 810752 929851 564215 268688 161077 601855 948190 183158 857389 041804 887058 580718 113926 724837 948576 444665 229530 393204 584348 418832 622163 292378 937451 107986 635972 919890 288704 839056 597583 380950 967412 377226 619665 995517 978264 562101 588364 251547 210316 609280 418159 396577 159862 937543 468369 340058 155664 198816 764983 584557 064869 654242 047098 465154 403911 119206 389960 608312 800313 552340 767477 363281 979289 110496 430069 235900 133176 (599 digits), a[1134] = 4
                                                                                      A[1135]/B[1135] = 824 901254 582059 913523 998623 951252 832119 168922 797795 998905 495144 214927 890376 874149 444609 958601 681396 685401 179509 924426 727143 564926 034585 737762 429106 583754 326488 122547 402468 165990 585623 009263 840002 718498 287306 492400 787817 824791 222136 316620 218038 401593 595057 301838 561453 613589 976595 517531 771609 111485 243807 617451 160789 081180 091954 265245 663111 101431 805257 629309 606300 773328 276542 208290 270595 843517 018980 171375 009511 362951 187568 686445 528548 299419 150856 110332 011805 916488 529068 079160 584400 723272 615143 032689 788264 679014 786942 141628 255065 790805 451368 829991 788289 951499 927336 225191 278527 812149 557872 344010 (597 digits)/80175 061081 895537 017716 317951 310993 828204 960558 060503 296067 092571 216466 812089 804522 162286 173987 148149 579206 675540 807395 728299 309424 738622 201113 358327 748994 548392 794567 838368 677073 027834 041946 627926 344027 570825 601805 420516 061016 658014 296547 555352 182957 301265 530226 087771 026393 127469 974596 092328 818129 020004 448095 507156 380241 795141 432937 768387 585780 276787 180912 846838 081588 839890 043909 501835 362846 240957 436641 759131 822301 556987 462542 000852 740935 929337 390272 399742 970178 119757 744110 555207 142367 464888 465032 906122 917427 053778 313110 201576 259917 999107 690063 964491 125912 170511 024870 837191 139084 983793 806661 (599 digits), a[1135] = 4
                                                                                      A[1136]/B[1136] = 1020 393424 390929 371674 076797 918780 924223 650422 168144 058902 971529 130666 317079 395714 910562 577793 325982 201444 379565 621193 975487 919978 925828 735595 310812 326987 641091 956507 826162 235783 619371 772661 885907 845932 233505 159595 751120 995789 168951 392633 920879 460376 869644 629746 761017 370244 354686 857580 599332 807538 576237 675542 666082 894327 361849 431499 718406 756228 908080 121999 040378 103910 798055 424693 957524 148647 144609 006397 652647 451504 584996 872678 775417 116263 811371 572953 542037 783121 054101 328649 786004 902762 530477 816430 611868 466502 583585 041632 145451 751539 813525 745969 238133 117919 809004 054106 822537 306753 651602 541229 (598 digits)/99175 634263 711710 368279 667421 091157 736368 798323 374365 670134 494763 577059 926519 680015 544714 820001 886007 980323 791115 184990 873922 597484 925429 788778 207252 877622 530741 976057 567517 249084 987122 254484 686179 154780 500677 166020 689204 222094 259870 244737 738511 040346 343070 417284 668489 140319 852307 923172 536994 047659 413209 032443 925989 002405 087520 370388 876374 221753 196677 469617 685894 679172 220841 011321 879061 982512 236475 414906 321233 410665 808534 672858 610133 159095 325914 550135 337286 438547 459815 899774 754023 907351 049445 529902 560364 964525 518932 717021 320782 649878 607420 490377 516831 893389 533793 004159 947687 569154 219693 939837 (599 digits), a[1136] = 1
                                                                                      A[1137]/B[1137] = 1845 294678 972989 285198 075421 870033 756342 819344 965940 057808 466673 345594 207456 269864 355172 536395 007378 886845 559075 545620 702631 484904 960414 473357 739918 910741 967580 079055 228630 401774 204994 781925 725910 564430 520811 651996 538938 820580 391087 709254 138917 861970 464701 931585 322470 983834 331282 375112 370941 919023 820045 292993 826871 975507 453803 696745 381517 857660 713337 751308 646678 877239 074597 632984 228119 992164 163589 177772 662158 814455 772565 559124 303965 415682 962227 683285 553843 699609 583169 407810 370405 626035 145620 849120 400133 145517 370527 183260 400517 542345 264894 575961 026423 069419 736340 279298 101065 118903 209474 885239 (598 digits)/179350 695345 607247 385995 985372 402151 564573 758881 434868 966201 587334 793526 738609 484537 707000 993989 034157 559530 466655 992386 602221 906909 664051 989891 565580 626617 079134 770625 405885 926158 014956 296431 314105 498808 071502 767826 109720 283110 917884 541285 293863 223303 644335 947510 756260 166712 979777 897768 629322 865788 433213 480539 433145 382646 882661 803326 644761 807533 473464 650530 532732 760761 060731 055231 380897 345358 477432 851548 080365 232967 365522 135400 610985 900031 255251 940407 737029 408725 579573 643885 309231 049718 514333 994935 466487 881952 572711 030131 522358 909796 606528 180441 481323 019301 704304 029030 784878 708239 203487 746498 (600 digits), a[1137] = 1
                                                                                      A[1138]/B[1138] = 6556 277461 309897 227268 303063 528882 193252 108457 065964 232328 371549 167448 939448 205307 976080 186978 348118 861981 056792 258056 083382 374693 807072 155668 530569 059213 543832 193673 512053 441106 234356 118439 063639 539223 795940 115585 367937 457530 342214 520396 337633 046288 263750 424502 728430 321747 348533 982917 712158 564610 036373 554524 146698 820849 723260 521735 862960 329211 048093 375924 980414 735628 021848 323646 641884 125139 635376 539715 639123 894871 902693 550051 687313 363312 698054 622810 203568 881949 803609 552080 897221 780867 967340 363791 812267 903054 695166 591413 347004 378575 608209 473852 317402 326179 018024 892001 125732 663463 280027 196946 (598 digits)/637227 720300 533452 526267 623538 297612 430090 074967 678972 568739 256767 957640 142348 133628 665717 801968 988480 658915 191083 162150 680588 318213 917585 758452 903994 757473 768146 287933 785175 027559 031991 143778 628495 651204 715185 469499 018365 071427 013523 868593 620100 710257 276078 259816 937269 640458 791641 616478 424962 645024 712849 474062 225425 150345 735505 780368 810659 644353 617071 421209 284092 961455 403034 177016 021754 018587 668773 969550 562329 109567 905101 079060 443090 859189 091670 371358 548374 664724 198536 831430 681717 056506 592447 514708 959828 610383 237065 807415 887859 379268 427005 031701 960800 951294 646705 091252 302323 693871 830157 179331 (600 digits), a[1138] = 3
                                                                                      A[1139]/B[1139] = 41182 959446 832372 648807 893803 043326 915855 470087 361725 451778 695968 350287 844145 501712 211653 658265 096092 058731 899829 093957 202925 733067 802847 407368 923333 266023 230573 241096 300951 048411 611131 492560 107747 799773 296452 345508 746563 565762 444374 831632 164716 139700 047204 478601 693052 914318 422486 272618 643893 306684 038286 620138 707064 900605 793366 827160 559279 832927 001898 006858 529167 291007 205687 574864 079424 743001 975848 416066 496902 183687 188726 859434 427845 595559 150555 420146 775256 991308 404826 720295 753736 311242 949663 031871 273740 563845 541526 731740 482543 813798 914151 419074 930837 026493 844489 631304 855461 099682 889638 066915 (599 digits)/4 002717 017148 807962 543601 726602 187826 145114 208687 508704 378637 127942 539367 592698 286309 701307 805802 965041 513021 613154 965290 685751 816193 169566 540608 989549 171459 688012 498228 116936 091512 206903 159103 085079 406036 362615 584820 219910 711672 999027 752847 014467 484847 300805 506412 379878 009465 729627 596639 179098 735936 710310 324912 785696 284721 295696 485539 508719 673655 175893 177786 237290 529493 478936 117327 511421 456884 490076 668851 454339 890374 796128 609763 269531 055165 805274 168559 027277 397070 770794 632469 399533 388758 069019 083189 225459 544251 995105 874626 849515 185407 168558 370653 246128 727069 584534 576544 598820 871470 184430 822484 (601 digits), a[1139] = 6
                                                                                      A[1140]/B[1140] = 171288 115248 639387 822499 878275 702189 856673 988806 512866 039443 155422 568600 316030 212156 822694 820038 732487 096908 656108 633884 895085 306965 018461 785144 223902 123306 466125 158058 715857 634752 678882 088679 494630 738316 981749 497620 354191 720580 119713 846924 996497 605088 452568 338909 500641 979021 038479 073392 287731 791346 189520 035078 974958 423272 896727 830378 100079 660919 055685 403359 097083 899656 844598 623102 959583 097147 538770 203981 626732 629620 657600 987789 398695 745549 300276 303397 304596 847183 422916 433263 912167 025839 765992 491276 907230 158436 861273 518375 277179 633771 264815 150152 040750 432154 395983 417220 547577 062194 838579 464606 (600 digits)/16 648095 788895 765302 700674 529947 048917 010546 909717 713790 083287 768538 115110 513141 278867 470949 025180 848646 711001 643703 023313 423595 582986 595851 920888 862191 443312 520196 280846 252919 393607 859603 780190 968813 275350 165647 808779 898007 918119 009634 879981 677970 649646 479300 285466 456781 678321 710152 003035 141357 588771 554090 773713 368210 289230 918291 722526 845538 338974 320644 132354 233255 079429 318778 646326 067439 846125 629080 644956 379688 671067 089615 518113 521215 079852 312767 045594 657484 253007 281715 361308 279850 611538 868523 847465 861666 787391 217489 305923 285920 120897 101238 514314 945315 859572 984843 397430 697607 179752 567880 469267 (602 digits), a[1140] = 4
                                                                                      A[1141]/B[1141] = 212471 074695 471760 471307 772078 745516 772529 458893 874591 491221 851390 918888 160175 713869 034348 478303 828579 155640 555937 727842 098011 040032 821309 192513 147235 389329 696698 399155 016808 683164 290013 581239 602378 538090 278201 843129 100755 286342 564088 678557 161213 744788 499772 817511 193694 893339 460965 346010 931625 098030 227806 655217 682023 323878 690094 657538 659359 493846 057583 410217 626251 190664 050286 197967 039007 840149 514618 620048 123634 813307 846327 847223 826541 341108 450831 723544 079853 838491 827743 153559 665903 337082 715655 523148 180970 722282 402800 250115 759723 447570 178966 569226 971587 458648 240473 048525 403038 161877 728217 531521 (600 digits)/20 650812 806044 573265 244276 256549 236743 155661 118405 222494 461924 896480 654478 105839 565177 172256 830983 813688 224023 256857 988604 109347 399179 765418 461497 851740 614772 208208 779074 369855 485120 066506 939294 053892 681386 528263 393600 117918 629792 008662 632828 692438 134493 780105 791878 836659 687787 439779 599674 320456 324708 264401 098626 153906 573952 213988 208066 354258 012629 496537 310140 470545 608922 797714 763653 578861 303010 119157 313807 834028 561441 885744 127876 790746 135018 118041 214153 684761 650078 052509 993777 679384 000296 937542 930655 087126 331643 212595 180550 135435 306304 269796 884968 191444 586642 569377 973975 296428 051222 752311 291751 (602 digits), a[1141] = 1
                                                                                      A[1142]/B[1142] = 596230 264639 582908 765115 422433 193223 401732 906594 262049 021886 858204 406376 636381 639894 891391 776646 389645 408189 767984 089569 091107 387030 661080 170170 518372 901965 859521 956368 749475 001081 258909 251158 699387 814497 538153 183878 555702 293265 247891 204039 318925 094665 452113 973931 888031 765699 960409 765414 150981 987406 645133 345514 339005 071030 276917 145455 418798 648611 170852 223794 349586 280984 945171 019037 037598 777446 568007 444077 874002 256236 350256 682237 051778 427766 201939 750485 464304 524167 078402 740383 243973 700005 197303 537573 269171 603001 666874 018606 796626 528911 622748 288605 983925 349450 876929 514271 353653 385950 295014 527648 (600 digits)/57 949721 400984 911833 189227 043045 522403 321869 146528 158779 007137 561499 424066 724820 409221 815462 687148 476023 159048 157419 000521 642290 381346 126688 843884 565672 672856 936613 838994 992630 363847 992617 658779 076598 638123 222174 595980 133845 177703 026960 145639 062846 918634 039511 869224 130101 053896 589711 202383 782270 238188 082892 970965 676023 437135 346268 138659 554054 364233 313718 752635 174346 297274 914208 173633 225162 452145 867395 272572 047745 793950 861103 773867 102707 349888 548849 473902 027007 553163 386735 348863 638618 612132 743609 708776 035919 450677 642679 667023 556790 733505 640832 284251 328205 032858 123599 345381 290463 282198 072503 052769 (602 digits), a[1142] = 2
                                                                                      A[1143]/B[1143] = 808701 339335 054669 236423 194511 938740 174262 365488 136640 513108 709595 325264 796557 353763 925740 254950 218224 563830 323921 817411 189118 427063 482389 362683 665608 291295 556220 355523 766283 684245 548922 832398 301766 352587 816355 027007 656457 579607 811979 882596 480138 839453 951886 791443 081726 659039 421375 111425 082607 085436 872940 000732 021028 394908 967011 802994 078158 142457 228435 634011 975837 471648 995457 217004 076606 617596 082626 064125 997637 069544 196584 529460 878319 768874 652771 474029 544158 362658 906145 893942 909877 037087 912959 060721 450142 325284 069674 268722 556349 976481 801714 857832 955512 808099 117402 562796 756691 547828 023232 059169 (600 digits)/78 600534 207029 485098 433503 299594 759146 477530 264933 381273 469062 457980 078544 830659 974398 987719 518132 289711 383071 414276 989125 751637 780525 892107 305382 417413 287629 144822 618069 362485 848968 059124 598073 130491 319509 750437 989580 251763 807495 035622 778467 755285 053127 819617 661102 966760 741684 029490 802058 102726 562896 347294 069591 829930 011087 560256 346725 908312 376862 810256 062775 644891 906197 711922 937286 804023 755155 986552 586379 881774 355392 746847 901743 893453 484906 666890 688055 711769 203241 439245 342641 318002 612429 681152 639431 123045 782320 855274 847573 692226 039809 910629 169219 519649 619500 692977 319356 586891 333420 824814 344520 (602 digits), a[1143] = 1
                                                                                      A[1144]/B[1144] = 1 404931 603974 637578 001538 616945 131963 575995 272082 398689 534995 567799 731641 432938 993658 817132 031596 607869 972020 091905 906980 280225 814094 143469 532854 183981 193261 415742 311892 515758 685326 807832 083557 001154 167085 354508 210886 212159 872873 059871 086635 799063 934119 404000 765374 969758 424739 381784 876839 233589 072843 518073 346246 360033 465939 243928 948449 496956 791068 399287 857806 325423 752633 940628 236041 114205 395042 650633 508203 871639 325780 546841 211697 930098 196640 854711 224515 008462 886825 984548 634326 153850 737093 110262 598294 719313 928285 736548 287329 352976 505393 424463 146438 939438 157549 994332 077068 110344 933778 318246 586817 (601 digits)/136 550255 608014 396931 622730 342640 281549 799399 411461 540052 476200 019479 502611 555480 383620 803182 205280 765734 542119 571695 989647 393928 161872 018796 149266 983085 960486 081436 457064 355116 212816 051742 256852 207089 957632 972612 585560 385608 985198 062582 924106 818131 971761 859129 530327 096861 795580 619202 004441 884996 801084 430187 040557 505953 448222 906524 485385 462366 741096 123974 815410 819238 203472 626131 110920 029186 207301 853947 858951 929520 149343 607951 675610 996160 834795 215740 161957 738776 756404 825980 691504 956621 224562 424762 348207 158965 232998 497954 514597 249016 773315 551461 453470 847854 652358 816576 664737 877354 615618 897317 397289 (603 digits), a[1144] = 1
                                                                                      A[1145]/B[1145] = 54 196102 290371 282633 294890 638426 953356 062082 704619 286842 842940 285985 127639 248239 112798 976757 455621 317283 500593 816346 282661 837699 362640 934231 611142 656893 635229 354428 207439 365113 726664 246542 007564 345624 701831 287667 040683 718532 748784 087081 174756 844568 335991 303915 875691 932546 799135 929200 431315 958991 853490 559727 158093 702300 100600 236311 844074 962516 203056 401374 230652 341940 071738 739330 186566 416411 629216 806699 375873 119931 449204 976550 573982 222051 241227 131798 005599 865748 062046 318993 998336 756205 046626 102937 795920 784071 600142 058509 187237 969457 181431 931314 422512 654162 794998 902021 491384 949799 031404 116602 358215 (602 digits)/5267 510247 311576 568500 097256 319925 458038 854707 900471 903267 564663 198201 177783 938914 551989 508643 318801 387623 983615 138724 595726 720907 931662 606360 977527 774679 786100 239407 986514 856901 935978 025330 358456 999909 709562 709716 240874 904905 245021 413773 894526 844299 980078 466539 813532 647508 973747 559166 970849 732605 004104 694401 610777 056161 043558 008186 791373 478248 538515 521299 048386 775943 638157 504905 152247 913099 632626 436571 226553 203540 030449 849011 574961 747565 207124 865016 842449 785285 946624 826511 619829 669609 145801 822121 871303 163724 636263 777546 402269 154863 425800 866164 401111 738126 409135 722890 579395 926366 726938 922875 441502 (604 digits), a[1145] = 38
                                                                                      A[1146]/B[1146] = 55 601033 894345 920211 296429 255372 085319 638077 976701 685532 377935 853784 859280 681178 106457 793889 487217 925153 472613 908252 189642 117925 176735 077701 143996 840874 828490 770170 519331 880872 411991 054374 091121 346778 868916 642175 251569 930692 621657 146952 261392 643632 270110 707916 641066 902305 223875 310985 308155 192580 926334 077800 504340 062333 566539 480240 792524 459472 994124 800662 088458 667363 824372 679958 422607 530617 024259 457332 884076 991570 774985 523391 785680 152149 437867 986509 230114 874210 948872 303542 632662 910055 783719 213200 394215 503385 528427 795057 474567 322433 686825 355777 568951 593600 952548 896353 568453 060143 965182 434848 945032 (602 digits)/5404 060502 919590 965431 719986 662565 739588 654107 311933 443320 040863 217680 680395 494394 935610 311825 524082 153358 525734 710420 585374 114836 093534 625157 126794 757765 746586 320844 443579 212018 148794 077072 615309 206999 667195 682328 826435 290514 230219 476356 818633 662431 951840 325669 343859 744370 769328 178368 975291 617601 805189 124588 651334 562114 491780 914711 276758 940615 279611 645273 863797 595181 841630 131036 263167 942285 839928 290519 085505 133060 179793 456963 250572 743726 041920 080757 004407 524062 703029 652492 311334 626230 370364 246884 219510 322689 869262 275500 916866 403880 199116 417625 854582 585981 061494 539467 244133 803721 342557 820192 838791 (604 digits), a[1146] = 1
                                                                                      A[1147]/B[1147] = 109 797136 184717 202844 591319 893799 038675 700160 681320 972375 220876 139769 986919 929417 219256 770646 942839 242436 973207 724598 472303 955624 539376 011932 755139 497768 463720 124598 726771 245986 138655 300916 098685 692403 570747 929842 292253 649225 370441 234033 436149 488200 606102 011832 516758 834852 023011 240185 739471 151572 779824 637527 662433 764633 667139 716552 636599 421989 197181 202036 319111 009303 896111 419288 609173 947028 653476 264032 259950 111502 224190 499942 359662 374200 679095 118307 235714 739959 010918 622536 630999 666260 830345 316138 190136 287457 128569 853566 661805 291890 868257 287091 991464 247763 747547 798375 059838 009942 996586 551451 303247 (603 digits)/10671 570750 231167 533931 817242 982491 197627 508815 212405 346587 605526 415881 858179 433309 487599 820468 842883 540982 509349 849145 181100 835744 025197 231518 104322 532445 532686 560252 430094 068920 084772 102402 973766 206909 376758 392045 067310 195419 475240 890130 713160 506731 931918 792209 157392 391879 743075 737535 946141 350206 809293 818990 262111 618275 535338 922898 068132 418863 818127 166572 912184 371125 479787 635941 415415 855385 472554 727090 312058 336600 210243 305974 825534 491291 249044 945773 846857 309348 649654 479003 931164 295839 516166 069006 090813 486414 505526 053047 319135 558743 624917 283790 255694 324107 470630 262357 823529 730088 069496 743068 280293 (605 digits), a[1147] = 1
                                                                                      A[1148]/B[1148] = 275 195306 263780 325900 479069 042970 162671 038399 339343 630282 819688 133324 833120 540012 544971 335183 372896 410027 419029 357449 134250 029174 255487 101566 654275 836411 755931 019367 972874 372844 689301 656206 288492 731586 010412 501859 836077 229143 362539 615019 133691 620033 482314 731581 674584 572009 269897 791356 787097 495726 485983 352855 829207 591600 900818 913346 065723 303451 388487 204734 726680 685971 616595 518535 640955 424674 331211 985397 403977 214575 223366 523276 505004 900550 796058 223123 701544 354128 970709 548615 894662 242577 444409 845476 774488 078299 785567 502190 798177 906215 423339 929961 551880 089128 447644 493103 688129 080029 958355 537751 551526 (603 digits)/26747 202003 381926 033295 354472 627548 134843 671737 736744 136495 251916 049444 396754 361013 910809 952763 209849 235323 544434 408710 947575 786324 143929 088193 335439 822656 811959 441349 303767 349858 318338 281878 562841 620818 420712 466418 961055 681353 180701 256618 244954 675895 815677 910087 658644 528130 255479 653440 867574 318015 423776 762569 175557 798665 562458 760507 413023 778342 915865 978419 688166 337432 801205 402919 093999 653056 785037 744699 709621 806260 600280 068912 901641 726308 540009 972304 698122 142760 002338 610500 173663 217909 402696 384896 401137 295518 880314 381595 555137 521367 448950 985206 365971 234196 002755 064182 891193 263897 481551 306329 399377 (605 digits), a[1148] = 2
                                                                                      A[1149]/B[1149] = 384 992442 448497 528745 070388 936769 201346 738560 020664 602658 040564 273094 820040 469429 764228 105830 315735 652464 392237 082047 606553 984798 794863 113499 409415 334180 219651 143966 699645 618830 827956 957122 387178 423989 581160 431702 128330 878368 732980 849052 569841 108234 088416 743414 191343 406861 292909 031542 526568 647299 265807 990383 491641 356234 567958 629898 702322 725440 585668 406771 045791 695275 512706 937824 250129 371702 984688 249429 663927 326077 447557 023218 864667 274751 475153 341430 937259 094087 981628 171152 525661 908838 274755 161614 964624 365756 914137 355757 459983 198106 291597 217053 543344 336892 195192 291478 747967 089972 954942 089202 854773 (603 digits)/37418 772753 613093 567227 171715 610039 332471 180552 949149 483082 857442 465326 254933 794323 398409 773232 052732 776306 053784 257856 128676 622068 169126 319711 439762 355102 344646 001601 733861 418778 403110 384281 536607 827727 797470 858464 028365 876772 655942 146748 958115 182627 747596 702296 816036 920009 998555 390976 813715 668222 233070 581559 437669 416941 097797 683405 481156 197206 733993 144992 600350 708558 280993 038860 509415 508442 257592 471790 021680 142860 810523 374887 727176 217599 789054 918078 544979 452108 651993 089504 104827 513748 918862 453902 491950 781933 385840 434642 874273 080111 073868 268996 621665 558303 473385 326540 714722 993985 551048 049397 679670 (605 digits), a[1149] = 1
                                                                                      A[1150]/B[1150] = 660 187748 712277 854645 549457 979739 364017 776959 360008 232940 860252 406419 653161 009442 309199 441013 688632 062491 811266 439496 740804 013973 050350 215066 063691 170591 975582 163334 672519 991675 517258 613328 675671 155575 591572 933561 964408 107512 095520 464071 703532 728267 570731 474995 865927 978870 562806 822899 313666 143025 751791 343239 320848 947835 468777 543244 768046 028891 974155 611505 772472 381247 129302 456359 891084 796377 315900 234827 067904 540652 670923 546495 369672 175302 271211 564554 638803 448216 952337 719768 420324 151415 719165 007091 739112 444056 699704 857948 258161 104321 714937 147015 095224 426020 642836 784582 436096 170002 913297 626954 406299 (603 digits)/64165 974756 995019 600522 526188 237587 467314 852290 685893 619578 109358 514770 651688 155337 309219 725995 262582 011629 598218 666567 076252 408392 313055 407904 775202 177759 156605 442951 037628 768636 721448 666160 099449 448546 218183 324882 989421 558125 836643 403367 203069 858523 563274 612384 474681 448140 254035 044417 681289 986237 656847 344128 613227 215606 660256 443912 894179 975549 649859 123412 288517 045991 082198 441779 603415 161499 042630 216489 731301 949121 410803 443800 628817 943908 329064 890383 243101 594868 654331 700004 278490 731658 321558 838798 893088 077452 266154 816238 429410 601478 522819 254202 987636 792499 476140 390723 605916 257883 032599 355727 079047 (605 digits), a[1150] = 1
                                                                                      A[1151]/B[1151] = 40656 445113 897446 662123 587325 700870 406431 133080 981166 812050 515961 064693 662862 045410 625394 007665 322291 464464 879489 891348 795598 837154 866226 232529 294576 740290 730163 107381 723365 111037 380732 370171 603118 914100 667109 378981 957225 436606 559729 157426 485337 532555 903036 718162 012950 117965 624125 228400 660203 371870 125079 927982 063427 174198 163388 767829 553130 487851 009160 708623 166606 951350 400156 775777 606301 950719 254602 573880 806104 305890 373893 359436 414669 968190 019058 779263 904269 435322 074229 077026 165435 145197 143820 594211 050483 453215 596133 690601 207810 561730 902763 184974 352034 324151 408236 151007 349833 460150 666097 333421 639012 (605 digits)/3 951543 232930 309289 199101 269198 102874 838677 170284 788660 277347 528311 866336 007911 269899 260813 058943 070235 485711 545122 918447 780073 533999 265506 201902 727095 198410 897578 021615 029216 305618 411479 020047 603024 189047 106653 676326 383080 922448 691189 752148 345376 552565 107348 057749 771605 256565 494693 100455 372404 828719 300758 573404 844529 568947 373440 762092 026134 705735 375399 673142 199890 514014 295097 987416 317740 359883 858035 677663 631099 039266 869533 446726 085070 796007 862013 231456 374176 739096 566226 789765 092762 144906 533951 620634 970323 506521 621284 225187 068319 770300 965842 775378 867509 900771 517949 160680 675614 724850 539608 748749 501537 (607 digits), a[1151] = 61
                                                                                      A[1152]/B[1152] = 447881 084001 584191 138005 010040 689313 834760 240850 152843 165496 535824 118049 944643 508959 188533 525332 233838 171605 485655 244333 492391 222676 578838 772888 304035 313790 007376 344533 629536 213086 705314 685216 309979 210682 929776 102363 493887 910184 252541 195763 042245 586382 504135 374778 008379 276492 428184 335306 575903 233597 127670 551042 018547 864015 266053 989369 852481 395253 074923 406360 605148 846101 531026 989913 560406 254289 116528 547515 935051 905446 783750 500295 931041 825392 480858 136457 585767 236759 768857 567056 240110 748584 301191 543413 294430 429428 257175 454561 544077 283361 645332 181732 967601 991686 133434 445663 284264 231660 240368 294592 435431 (606 digits)/43 531141 536990 397200 790636 487367 369210 692763 725423 361156 670400 920789 044466 738712 124229 178163 374369 035172 354456 594570 769492 657061 282384 233623 628834 773249 360279 029963 680716 359008 130439 247717 886683 732715 528064 391373 764473 203311 705061 439730 676999 002211 936739 744103 247631 962339 270360 695659 149426 777743 102149 965191 651581 903052 474027 768104 826925 181661 738638 779255 527976 487312 700148 328276 303359 098559 120221 481022 670789 673391 381056 975671 357787 564596 699994 811210 436403 359045 724930 882826 387420 298874 325630 195026 665783 566646 649190 100281 293296 180928 074789 147089 783370 530245 700986 173581 158211 037678 231238 968295 591971 595954 (608 digits), a[1152] = 11
                                                                                      A[1153]/B[1153] = 488537 529115 481637 800128 597366 390184 241191 373931 134009 977547 051785 182743 607505 554369 813927 532997 556129 636070 365145 135682 287990 059831 445065 005417 598612 054080 737539 451915 352901 324124 086047 055387 913098 124783 596885 481345 451113 346790 812270 353189 527583 118938 407172 092940 021329 394458 052309 563707 236106 605467 252750 479024 081975 038213 429442 757199 405611 883104 084084 114983 771755 797451 931183 765691 166708 205008 371131 121396 741156 211337 157643 859732 345711 793582 499916 915721 490036 672081 843086 644082 405545 893781 445012 137624 344913 882643 853309 145162 751887 845092 548095 366707 319636 315837 541670 596670 634097 691810 906465 628014 074443 (606 digits)/47 482684 769920 706489 989737 756565 472085 531440 895708 149816 947748 449100 910802 746623 394128 438976 433312 105407 840168 139693 687940 437134 816383 499129 830737 500344 558689 927541 702331 388224 436057 659196 906731 335739 717111 498027 440799 586392 627510 130920 429147 347588 489304 851451 305381 733944 526926 190352 249882 150147 930869 265950 224986 747582 042975 141545 589017 207796 444374 154655 201118 687203 214162 623374 290775 416299 480105 339058 348453 304490 420323 845204 804513 649667 496002 673223 667859 733222 464027 449053 177185 391636 470536 728978 286418 536970 155711 721565 518483 249247 845090 112932 558749 397755 601757 691530 318891 713292 956089 507904 340721 097491 (608 digits), a[1153] = 1
                                                                                      A[1154]/B[1154] = 936418 613117 065828 938133 607407 079498 075951 614781 286853 143043 587609 300793 552149 063329 002461 058329 789967 807675 850800 380015 780381 282508 023903 778305 902647 367870 744915 796448 982437 537210 791361 740604 223077 335466 526661 583708 945001 256975 064811 548952 569828 705320 911307 467718 029708 670950 480493 899013 812009 839064 380421 030066 100522 902228 695496 746569 258093 278357 159007 521344 376904 643553 462210 755604 727114 459297 487659 668912 676208 116783 941394 360028 276753 618974 980775 052179 075803 908841 611944 211138 645656 642365 746203 681037 639344 312072 110484 599724 295965 128454 193427 548440 287238 307523 675105 042333 918361 923471 146833 922606 509874 (606 digits)/91 013826 306911 103690 780374 243932 841296 224204 621131 510973 618149 369889 955269 485335 518357 617139 807681 140580 194624 734264 457433 094196 098767 732753 459572 273593 918968 957505 383047 747232 566496 906914 793415 068455 245175 889401 205272 789704 332571 570651 106146 349800 426044 595554 553013 696283 797286 886011 399308 927891 033019 231141 876568 650634 517002 909650 415942 389458 183012 933910 729095 174515 914310 951650 594134 514858 600326 820081 019242 977881 801380 820876 162301 214264 195997 484434 104263 092268 188958 331879 564605 690510 796166 924004 952202 103616 804901 821846 811779 430175 919879 260022 342119 928001 302743 865111 477102 750971 187328 476199 932692 693445 (608 digits), a[1154] = 1
                                                                                      A[1155]/B[1155] = 1 424956 142232 547466 738262 204773 469682 317142 988712 420863 120590 639394 483537 159654 617698 816388 591327 346097 443746 215945 515698 068371 342339 468968 783723 501259 421951 482455 248364 335338 861334 877408 795992 136175 460250 123547 065054 396114 603765 877081 902142 097411 824259 318479 560658 051038 065408 532803 462721 048116 444531 633171 509090 182497 940442 124939 503768 663705 161461 243091 636328 148660 441005 393394 521295 893822 664305 858790 790309 417364 328121 099038 219760 622465 412557 480691 967900 565840 580923 455030 855221 051202 536147 191215 818661 984258 194715 963793 744887 047852 973546 741522 915147 606874 623361 216775 639004 552459 615282 053299 550620 584317 (607 digits)/138 496511 076831 810180 770112 000498 313381 755645 516839 660790 565897 818990 866072 231958 912486 056116 240993 245988 034792 873958 145373 531330 915151 231883 290309 773938 477658 885047 085379 135457 002554 566111 700146 404194 962287 387428 646072 376096 960081 701571 535293 697388 915349 447005 858395 430228 324213 076363 649191 078038 963888 497092 101555 398216 559978 051196 004959 597254 627387 088565 930213 861719 128473 575024 884909 931158 080432 159139 367696 282372 221704 666080 966814 863931 692000 157657 772122 825490 652985 780932 741791 082147 266703 652983 238620 640586 960613 543412 330262 679423 764969 372954 900869 325756 904501 556641 795994 464264 143417 984104 273413 790936 (609 digits), a[1155] = 1
                                                                                      A[1156]/B[1156] = 2 361374 755349 613295 676395 812180 549180 393094 603493 707716 263634 227003 784330 711803 681027 818849 649657 136065 251422 066745 895713 848752 624847 492872 562029 403906 789822 227371 044813 317776 398545 668770 536596 359252 795716 650208 648763 341115 860740 941893 451094 667240 529580 229787 028376 080746 736359 013297 361734 860126 283596 013592 539156 283020 842670 820436 250337 921798 439818 402099 157672 525565 084558 855605 276900 620937 123603 346450 459222 093572 444905 040432 579788 899219 031532 461467 020079 641644 489765 066975 066359 696859 178512 937419 499699 623602 506788 074278 344611 343818 102000 934950 463587 894112 930884 891880 681338 470821 538753 200133 473227 094191 (607 digits)/229 510337 383742 913871 550486 244431 154677 979850 137971 171764 184047 188880 821341 717294 430843 673256 048674 386568 229417 608222 602806 625527 013918 964636 749882 047532 396627 842552 468426 882689 569051 473026 493561 472650 207463 276829 851345 165801 292653 272222 641440 047189 341394 042560 411409 126512 121499 962375 048500 005929 996907 728233 978124 048851 076980 960846 420901 986712 810400 022476 659309 036235 042784 526675 479044 446016 680758 979220 386939 260254 023085 486957 129116 078195 887997 642091 876385 917758 841944 112812 306396 772658 062870 576988 190822 744203 765515 365259 142042 109599 684848 632977 242989 253758 207245 421753 273097 215235 330746 460304 206106 484381 (609 digits), a[1156] = 1
                                                                                      A[1157]/B[1157] = 10 870455 163631 000649 443845 453495 666403 889521 402687 251728 175127 547409 620860 006869 341810 091787 189955 890358 449434 482929 098553 463381 841729 440459 031841 116886 581240 391939 427617 606444 455517 552490 942377 573186 643116 724381 660107 760578 046729 644655 706520 766373 942580 237627 674162 374025 010844 585992 909660 488621 578915 687541 665715 314581 311125 406684 505120 350898 920734 851488 267018 250920 779240 815815 628898 377571 158719 244592 627197 791654 107741 260768 538916 219341 538687 326560 048219 132418 539983 722931 120659 838639 250198 940893 817460 478668 221868 260907 123332 423125 381550 481324 769499 183326 346900 784298 364358 435745 770294 853833 443528 961081 (608 digits)/1056 537860 611803 465666 972056 978222 932093 675046 068724 347847 302086 574514 151439 101136 635860 749140 435690 792260 952463 306848 556600 033438 970827 090430 289837 964068 064170 255256 959086 666215 278760 458217 674392 294795 792140 494748 051453 039302 130694 790462 101053 886146 280925 617247 504031 936276 810212 925863 843191 101758 951519 410028 014051 593620 867901 894581 688567 544105 868987 178472 567450 006659 299611 681726 801087 715224 803468 076020 915453 323388 314046 613909 483279 176715 243990 726025 277666 496526 020762 232181 967378 172779 518185 960936 001911 617402 022675 004448 898431 117822 504363 904863 872826 340789 733483 243654 888383 325205 466403 825321 097839 728460 (610 digits), a[1157] = 4
                                                                                      A[1158]/B[1158] = 13 231829 918980 613945 120241 265676 215584 282616 006180 959444 438761 774413 405190 718673 022837 910636 839613 026423 700856 549674 994267 312134 466576 933331 593870 520793 371062 619310 472430 924220 854063 221261 478973 932439 438833 374590 308871 101693 907470 586549 157615 433614 472160 467414 702538 454771 747203 599290 271395 348747 862511 701134 204871 597602 153796 227120 755458 272697 360553 253587 424690 776485 863799 671420 905798 998508 282322 591043 086419 885226 552646 301201 118705 118560 570219 788027 068298 774063 029748 789906 187019 535498 428711 878313 317160 102270 728656 335185 467943 766943 483551 416275 233087 077439 277785 676179 045696 906567 309048 053966 916756 055272 (608 digits)/1286 048197 995546 379538 522543 222654 086771 654896 206695 519611 486133 763394 972780 818431 066704 422396 484365 178829 181880 915071 159406 658965 984746 055067 039720 011600 460798 097809 427513 548904 847811 931244 167953 767445 999603 771577 902798 205103 423348 062684 742493 933335 622319 659807 915441 062788 931712 888238 891691 107688 948427 138261 992175 642471 944882 855428 109469 530818 679387 200949 226759 042894 342396 208402 280132 161241 484227 055241 302392 583642 337132 100866 612395 254911 131988 368117 154052 414284 862706 344994 273774 945437 581056 537924 192734 361605 788190 369708 040473 227422 189212 537841 115815 594547 940728 665408 161480 540440 797150 285625 303946 212841 (610 digits), a[1158] = 1
                                                                                      A[1159]/B[1159] = 24 102285 082611 614594 564086 719171 881988 172137 408868 211172 613889 321823 026050 725542 364648 002424 029568 916782 150291 032604 092820 775516 308306 373790 625711 637679 952303 011249 900048 530665 309580 773752 421351 505626 081950 098971 968978 862271 954200 231204 864136 199988 414740 705042 376700 828796 758048 185283 181055 837369 441427 388675 870586 912183 464921 633805 260578 623596 281288 105075 691709 027406 643040 487236 534697 376079 441041 835635 713617 676880 660387 561969 657621 337902 108907 114587 116517 906481 569732 512837 307679 374137 678910 819207 134620 580938 950524 596092 591276 190068 865101 897600 002586 260765 624686 460477 410055 342313 079342 907800 360285 016353 (608 digits)/2342 586058 607349 845205 494600 200877 018865 329942 275419 867458 788220 337909 124219 919567 702565 171536 920055 971090 134344 221919 716006 692404 955573 145497 329557 975668 524968 353066 386600 215120 126572 389461 842346 062241 791744 266325 954251 244405 554042 853146 843547 819481 903245 277055 419472 999065 741925 814102 734882 209447 899946 548290 006227 236092 812784 750009 798037 074924 548374 379421 794209 049553 642007 890129 081219 876466 287695 131262 217845 907030 651178 714776 095674 431626 375979 094142 431718 910810 883468 577176 241153 118217 099242 498860 194645 979007 810865 374156 938904 345244 693576 442704 988641 935337 674211 909063 049863 865646 263554 110946 401785 941301 (610 digits), a[1159] = 1
                                                                                      A[1160]/B[1160] = 37 334115 001592 228539 684327 984848 097572 454753 415049 170617 052651 096236 431241 444215 387485 913060 869181 943205 851147 582279 087088 087650 774883 307122 219582 158473 323365 630560 372479 454886 163643 995013 900325 438065 520783 473562 277849 963965 861670 817754 021751 633602 886901 172457 079239 283568 505251 784573 452451 186117 303939 089810 075458 509785 618717 860926 016036 896293 641841 358663 116399 803892 506840 158657 440496 374587 723364 426678 800037 562107 213033 863170 776326 456462 679126 902614 184816 680544 599481 302743 494698 909636 107622 697520 451780 683209 679180 931278 059219 957012 348653 313875 235673 338204 902472 136656 455752 248880 388390 961767 277041 071625 (608 digits)/3628 634256 602896 224744 017143 423531 105636 984838 482115 387070 274354 101304 097000 737998 769269 593933 404421 149919 316225 136990 875413 351370 940319 200564 369277 987268 985766 450875 814113 764024 974384 320706 010299 829687 791348 037903 857049 449508 977390 915831 586041 752817 525564 936863 334914 061854 673638 702341 626573 317136 848373 686551 998402 878564 757667 605437 907506 605743 227761 580371 020968 092447 984404 098531 361352 037707 771922 186503 520238 490672 988310 815642 708069 686537 507967 462259 585771 325095 746174 922170 514928 063654 680299 036784 387380 340613 599055 743864 979377 572666 882788 980546 104457 529885 614940 574471 211344 406087 060704 396571 705732 154142 (610 digits), a[1160] = 1
                                                                                      A[1161]/B[1161] = 61 436400 084203 843134 248414 704019 979560 626890 823917 381789 666540 418059 457292 169757 752133 915484 898750 859988 001438 614883 179908 863167 083189 680912 845293 796153 275668 641810 272527 985551 473224 768766 321676 943691 602733 572534 246828 826237 815871 048958 885887 833591 301641 877499 455940 112365 263299 969856 633507 023486 745366 478485 946045 421969 083639 494731 276615 519889 923129 463738 808108 831299 149880 645893 975193 750667 164406 262314 513655 238987 873421 425140 433947 794364 788034 017201 301334 587026 169213 815580 802378 283773 786533 516727 586401 264148 629705 527370 650496 147081 213755 211475 238259 598970 527158 597133 865807 591193 467733 869567 637326 087978 (608 digits)/5971 220315 210246 069949 511743 624408 124502 314780 757535 254529 062574 439213 221220 657566 471834 765470 324477 121009 450569 358910 591420 043775 895892 346061 698835 962937 510734 803942 200713 979145 100956 710167 852645 891929 583092 304229 811300 693914 531433 768978 429589 572299 428810 213918 754387 060920 415564 516444 361455 526584 748320 234842 004630 114657 570452 355447 705543 680667 776135 959792 815177 142001 626411 988660 442571 914174 059617 317765 738084 397703 639489 530418 803744 118163 883946 556402 017490 235906 629643 499346 756081 181871 779541 535644 582026 319621 409921 118021 918281 917911 576365 423251 093099 465223 289152 483534 261208 271733 324258 507518 107518 095443 (610 digits), a[1161] = 1
                                                                                      A[1162]/B[1162] = 98 770515 085796 071673 932742 688868 077133 081644 238966 552406 719191 514295 888533 613973 139619 828545 767932 803193 852586 197162 266996 950817 858072 988035 064875 954626 599034 272370 645007 440437 636868 763780 222002 381757 123517 046096 524678 790203 677541 866712 907639 467194 188543 049956 535179 395933 768551 754430 085958 209604 049305 568296 021503 931754 702357 355657 292652 416183 564970 822401 924508 635191 656720 804551 415690 125254 887770 688993 313692 801095 086455 288311 210274 250827 467160 919815 486151 267570 768695 118324 297077 193409 894156 214248 038181 947358 308886 458648 709716 104093 562408 525350 473932 937175 429630 733790 321559 840073 856124 831334 914367 159603 (608 digits)/9599 854571 813142 294693 528887 047939 230139 299619 239650 641599 336928 540517 318221 395565 241104 359403 728898 270928 766794 495901 466833 395146 836211 546626 068113 950206 496501 254818 014827 743170 075341 030873 862945 721617 374440 342133 668350 143423 508824 684810 015631 325116 954375 150782 089301 122775 089203 218785 988028 843721 596693 921394 003032 993222 328119 960885 613050 286411 003897 540163 836145 234449 610816 087191 803923 951881 831539 504269 258322 888376 627800 346061 511813 804701 391914 018661 603261 561002 375818 421517 271009 245526 459840 572428 969406 660235 008976 861886 897659 490578 459154 403797 197556 995108 904093 058005 472552 677820 384962 904089 813250 249585 (610 digits), a[1162] = 1
                                                                                      A[1163]/B[1163] = 456 518460 427388 129829 979385 459492 288092 953467 779783 591416 543306 475243 011426 625650 310613 229667 970482 072763 411783 403532 247896 666438 515481 633053 104797 614659 671805 731292 852557 747302 020699 823887 209686 470720 096801 756920 345543 987052 526038 515810 516445 702368 055814 077325 596657 696100 337506 987576 977339 861902 942588 751670 032061 148987 893068 917360 447225 184624 183012 753346 506143 372065 776763 864099 637954 251686 715489 018287 768426 443368 219242 578385 275044 797674 656677 696463 245939 657309 243994 288877 990687 057413 363158 373719 739129 053581 865251 361965 489360 563455 463389 312877 133991 347672 245681 532295 152046 951488 892233 194907 294794 726390 (609 digits)/44370 638602 462815 248723 627291 816165 045059 513257 716137 820926 410288 601282 494106 239827 436252 203085 240070 204724 517747 342516 458753 624363 240738 532565 971291 763763 496739 823214 260024 951825 402320 833663 304428 778399 080853 672764 484701 267608 566732 508218 492114 872767 246310 817047 111591 552020 772377 391588 313570 901471 135095 920418 016762 087546 882932 198990 157744 826311 791726 120448 159758 079800 069676 337427 658267 721701 385775 334842 771375 951210 150690 914664 850999 336969 451602 631048 430536 479916 132917 185415 840118 163977 618903 825360 459652 960561 445828 565569 508919 880225 412983 038439 883327 445658 905524 715556 151418 983014 864110 123877 360519 093783 (611 digits), a[1163] = 4
                                                                                      A[1164]/B[1164] = 3750 918198 504901 110313 767826 364806 381876 709386 477235 283739 065643 316239 979946 619175 624525 665889 531789 385301 146853 425420 250170 282325 981926 052459 903256 871903 973480 122713 465469 418853 802467 354877 899494 147517 897931 101459 289030 686623 885849 993197 039205 086138 635055 668561 308440 964736 468607 655045 904677 104827 590015 581656 277993 123657 846908 694540 870453 893177 029072 849173 973655 611717 870831 717348 519324 138748 611682 835295 461104 348040 840395 915393 410632 632224 720582 491521 453668 526044 720649 429348 222573 652716 799423 204005 951214 376013 230897 354372 624600 611737 269523 028367 545863 718553 395082 992151 537935 451984 993990 390593 272724 970723 (610 digits)/364564 963391 515664 284482 547221 577259 590615 405680 968753 209010 619237 350777 271071 314184 731121 984085 649459 908724 908773 236033 136862 390052 762119 807153 838448 060314 470419 840532 095027 357773 293907 700180 298375 948810 021269 724249 545960 284292 042684 750557 952550 307254 924861 687158 982033 538941 268222 351492 496596 055490 677461 284738 137129 693597 391577 552806 875008 896905 337706 503749 114209 872850 168226 786613 070065 725492 917742 183011 429330 498057 833327 663380 319808 500457 004735 067049 047553 400331 439155 904843 991954 557347 411071 175312 646630 344726 575605 386442 969018 532381 763018 711316 264176 560380 148290 782454 683904 541939 297843 895108 697402 999849 (612 digits), a[1164] = 8
                                                                                      A[1165]/B[1165] = 15460 191254 446992 571085 050690 918717 815599 791013 688724 726372 805879 740202 931213 102352 808715 893226 097639 613967 999197 105213 248577 795742 443185 842892 717825 102275 565726 222146 714435 422717 230569 243398 807663 060791 688526 162757 501666 733548 069438 488598 673266 046922 596036 751570 830421 555046 211937 607760 596048 281213 302651 078295 144033 643619 280703 695523 929040 757332 299304 150042 400765 818937 260090 733493 715250 806681 162220 359469 612843 835531 580826 239958 917575 326573 539007 662549 060613 761488 126592 006270 880981 668280 560851 189743 543986 557634 788840 779455 987763 010404 541481 426347 317446 221885 826013 500901 303788 759428 868194 757280 385694 609282 (611 digits)/1 502630 492168 525472 386653 816178 125203 407521 135981 591150 656968 887238 004391 578391 496566 360740 139427 837909 839624 152840 286649 006203 184574 289217 761181 325084 005021 378419 185342 640134 382918 577951 634384 497932 573639 165932 569762 668542 404776 737471 510450 302316 101786 945757 565683 039725 707785 845266 797558 299955 123433 844941 059370 565280 861936 449242 410217 657780 413933 142552 135444 616597 571200 742583 483879 938530 623673 056744 066888 488697 943441 484001 568186 130233 338797 470542 899244 620750 081241 889540 804791 807936 393367 263188 526611 046174 339467 748250 111341 384994 009752 465057 883704 940033 687179 498687 845374 887037 150772 055485 704312 150131 093179 (613 digits), a[1165] = 4
                                                                                      A[1166]/B[1166] = 19211 109452 951893 681398 818517 283524 197476 500400 165960 010111 871523 056442 911159 721528 433241 559115 629428 999269 146050 530633 498748 078068 425111 895352 621081 974179 539206 344860 179904 841571 033036 598276 707157 208309 586457 264216 790697 420171 955288 481795 712471 133061 231092 420132 138862 519782 680545 262806 500725 386040 892666 659951 422026 767277 127612 390064 799494 650509 328376 999216 374421 430655 130922 450842 234574 945429 773903 194765 073948 183572 421222 155352 328207 958798 259590 154070 514282 287532 847241 435619 103555 320997 360274 393749 495200 933648 019738 133828 612363 622141 811004 454714 863309 940439 221096 493052 841724 211413 862185 147873 658419 580005 (611 digits)/1 867195 455560 041136 671136 363399 702462 998136 541662 559903 865979 506475 355168 849462 810751 091862 123513 487369 748349 061613 522682 143065 574627 051337 568335 163532 065335 848839 025874 735161 740691 871859 334564 796308 522449 187202 294012 214502 689068 780156 261008 254866 409041 870619 252842 021759 246727 113489 149050 796551 178924 522402 344108 702410 555533 840819 963024 532789 310838 480258 639193 730807 444050 910810 270493 008596 349165 974486 249899 918028 441499 317329 231566 450041 839254 475277 966293 668303 481573 328696 709635 799890 950714 674259 701923 692804 684194 323855 497784 354012 542134 228076 595021 204210 247559 646978 627829 570941 692711 353329 599420 847534 093028 (613 digits), a[1166] = 1
                                                                                      A[1167]/B[1167] = 53882 410160 350779 933882 687725 485766 210552 791814 020644 746596 548925 853088 753532 545409 675199 011457 356497 612506 291298 166480 246073 951879 293409 633597 959989 050634 644138 911867 074245 105859 296642 439952 221977 477410 861440 691191 083061 573891 980015 452190 098208 313045 058221 591835 108146 594611 573028 133373 597499 053295 087984 398197 988087 178173 535928 475653 528030 058350 956058 148475 149608 680247 521935 635178 184400 697540 710026 748999 760740 202676 423270 550663 573991 244170 058187 970690 089178 336553 821074 877509 088092 310275 281399 977242 534388 424930 828317 047113 212490 254688 163490 335777 044066 102764 268206 487006 987237 182256 592565 053027 702533 769292 (611 digits)/5 237021 403288 607745 728926 542977 530129 403794 219306 710958 388927 900188 714729 277317 118068 544464 386454 812649 336322 276067 332013 292334 333828 391892 897851 652148 135693 076097 237092 110457 864302 321670 303514 090549 618537 540337 157787 097547 782914 297784 032466 812048 919870 686996 071367 083244 201240 072245 095659 893057 481282 889745 747587 970101 973004 130882 336266 723359 035610 103069 413832 078212 459302 564204 024865 955723 322005 005716 566688 324754 826440 118660 031319 030317 017306 421098 831831 957357 044388 546934 224063 407718 294796 611707 930458 431783 707856 395961 106910 093019 094020 921211 073747 348454 182298 792645 101034 028920 536194 762144 903153 845199 279235 (613 digits), a[1167] = 2
                                                                                      A[1168]/B[1168] = 73093 519613 302673 615281 506242 769290 408029 292214 186604 756708 420448 909531 664692 266938 108440 570572 985926 611775 437348 697113 744822 029947 718521 528950 581071 024814 183345 256727 254149 947430 329679 038228 929134 685720 447897 955407 873758 994063 935303 933985 810679 446106 289314 011967 247009 114394 253573 396180 098224 439335 980651 058149 410113 945450 663540 865718 327524 708860 284435 147691 524030 110902 652858 086020 418975 642970 483929 943764 834688 386248 844492 706015 902199 202968 317778 124760 603460 624086 668316 313128 191647 631272 641674 370992 029589 358578 848055 180941 824853 876829 974494 790491 907376 043203 489302 980059 828961 393670 454750 200901 360953 349297 (611 digits)/7 104216 858848 648882 400062 906377 232592 401930 760969 270862 254907 406664 069898 126779 928819 636326 509968 300019 084671 337680 854695 435399 908455 443230 466186 815680 201028 924936 262966 845619 604994 193529 638078 886858 140986 727539 451799 312050 471983 077940 293475 066915 328912 557615 324209 105003 447967 185734 244710 689608 660207 412148 091696 672512 528537 971702 299291 256148 346448 583328 053025 809019 903353 475014 295358 964319 671170 980202 816588 242783 267939 435989 262885 480358 856560 896376 798125 625660 525961 875630 933699 207609 245511 285967 632382 124588 392050 719816 604694 447031 636155 149287 668768 552664 429858 439623 728863 599862 228906 115474 502574 692733 372263 (613 digits), a[1168] = 1
                                                                                      A[1169]/B[1169] = 200069 449386 956127 164445 700211 024347 026611 376242 393854 260013 389823 672152 082917 079285 892080 152603 328350 836057 165995 560707 735718 011774 730452 691499 122131 100263 010829 425321 582545 000719 956000 516410 080246 848851 757236 602006 830579 562019 850623 320161 719567 205257 636849 615769 602164 823400 080174 925733 793947 931967 049286 514496 808315 069074 863010 207090 183079 476071 524928 443858 197668 902052 827651 807219 022351 983481 677886 636529 430116 975174 112255 962695 378389 650106 693744 220211 296099 584727 157707 503765 471387 572820 564748 719226 593567 142088 524427 408996 862198 008348 112479 916760 858818 189171 246812 447126 645159 969597 502065 454830 424440 467886 (612 digits)/19 445455 120985 905510 529052 355731 995314 207655 741245 252682 898742 713516 854525 530876 975707 817117 406391 412687 505664 951429 041404 163134 150739 278353 830225 283508 537750 925969 763025 801697 074290 708729 579671 864265 900510 995416 061385 721648 726880 453664 619416 945879 577695 802226 719785 293251 097174 443713 585081 272274 801697 714041 930981 315127 030080 074286 934849 235655 728507 269725 519883 696252 266009 514232 615583 884362 664346 966122 199864 810321 362318 990638 557089 991034 730428 213852 428083 208678 096312 298196 091461 822936 785819 183643 195222 680960 491957 835594 316298 987082 366331 219786 411284 453783 042015 671892 558761 228644 994006 993093 908303 230666 023761 (614 digits), a[1169] = 2
                                                                                      A[1170]/B[1170] = 673301 867774 171055 108618 606875 842331 487863 420941 368167 536748 589919 925987 913443 504795 784681 028382 970979 119946 935335 379236 951976 065271 909879 603447 947464 325603 215833 532692 001784 949590 197680 587459 169875 232275 719607 761428 365497 680123 487173 894470 969381 061879 199862 859276 053503 584594 494098 173381 480068 235237 128510 601639 835059 152675 252571 486988 876763 137074 859220 479266 117036 817061 135813 507677 486031 593415 517589 853353 125039 311771 181260 594102 037368 153288 399010 785394 491759 378268 141438 824424 605810 349734 335920 528671 810290 784844 421337 407932 411447 901874 311934 540774 483830 610717 229740 321439 764441 302462 960946 565392 634274 752955 (612 digits)/65 440582 221806 365413 987219 973573 218535 024897 984705 028910 951135 547214 633474 719410 855943 087678 729142 538081 601666 191967 978907 924802 360673 278291 956862 666205 814281 702845 552044 250710 827866 319718 377094 479655 842519 713787 635956 476996 652624 438934 151725 904554 061999 964295 483564 984756 739490 516874 999954 506433 065300 554273 884640 617893 618778 194563 103838 963115 531970 392504 612676 897776 701382 017712 142110 617407 664211 878569 416182 673747 354896 407904 934155 453463 047845 537934 082375 251694 814898 770219 208084 676419 602968 836897 218050 167469 867924 226599 553591 408278 735148 808646 902621 914013 555905 455301 405147 285797 210927 094756 227484 384731 443546 (614 digits), a[1170] = 3
                                                                                      A[1171]/B[1171] = 873371 317161 127182 273064 307086 866678 514474 797183 762021 796761 979743 598139 996360 584081 676761 180986 299329 956004 101330 939944 687694 077046 640332 294947 069595 425866 226662 958013 584329 950310 153681 103869 250122 081127 476844 363435 196077 242143 337797 214632 688948 267136 836712 475045 655668 407994 574273 099115 274016 167204 177797 116136 643374 221750 115581 694079 059842 613146 384148 923124 314705 719113 963465 314896 508383 576897 195476 489882 555156 286945 293516 556797 415757 803395 092755 005605 787858 962995 299146 328190 077197 922554 900669 247898 403857 926932 945764 816929 273645 910222 424414 457535 342648 799888 476552 768566 409601 272060 463012 020223 058715 220841 (612 digits)/84 886037 342792 270924 516272 329305 213849 232553 725950 281593 849878 260731 488000 250287 831650 904796 135533 950769 107331 143397 020312 087936 511412 556645 787087 949714 352032 628815 315070 052407 902157 028447 956766 343921 743030 709203 697342 198645 379504 892598 771142 850433 639695 766522 203350 278007 836664 960588 585035 778707 866998 268315 815621 933020 648858 268850 038688 198771 260477 662230 132560 594028 967391 531944 757694 501770 328558 844691 616047 484068 717215 398543 491245 444497 778273 751786 510458 460372 911211 068415 299546 499356 388788 020540 413272 848430 359882 062193 869890 395361 101480 028433 313906 367796 597921 127193 963908 514442 204934 087850 135787 615397 467307 (614 digits), a[1171] = 1
                                                                                      A[1172]/B[1172] = 1 546673 184935 298237 381682 913962 709010 002338 218125 130189 333510 569663 524127 909804 088877 461442 209369 270309 075951 036666 319181 639670 142318 550211 898395 017059 751469 442496 490705 586114 899900 351361 691328 419997 313403 196452 124863 561574 922266 824971 109103 658329 329016 036575 334321 709171 992589 068371 272496 754084 402441 306307 717776 478433 374425 368153 181067 936605 750221 243369 402390 431742 536175 099278 822573 994415 170312 713066 343235 680195 598716 474777 150899 453125 956683 491765 791000 279618 341263 440585 152614 683008 272289 236589 776570 214148 711777 367102 224861 685093 812096 736348 998309 826479 410605 706293 090006 174042 574523 423958 585615 692989 973796 (613 digits)/150 326619 564598 636338 503492 302878 432384 257451 710655 310504 801013 807946 121474 969698 687593 992474 864676 488850 708997 335364 999220 012738 872085 834937 743950 615920 166314 331660 867114 303118 730023 348166 333860 823577 585550 422991 333298 675642 032129 331532 922868 754987 701695 730817 686915 262764 576155 477463 584990 285140 932298 822589 700262 550914 267636 463413 142527 161886 792448 054734 745237 491805 668773 549656 899805 119177 992770 723261 032230 157816 072111 806448 425400 897960 826119 289720 592833 712067 726109 838634 507631 175775 991756 857437 631323 015900 227806 288793 423481 803639 836628 837080 216528 281810 153826 582495 369055 800239 415861 182606 363272 000128 910853 (615 digits), a[1172] = 1
                                                                                      A[1173]/B[1173] = 2 420044 502096 425419 654747 221049 575688 516813 015308 892211 130272 549407 122267 906164 672959 138203 390355 569639 031955 137997 259126 327364 219365 190544 193342 086655 177335 669159 448719 170444 850210 505042 795197 670119 394530 673296 488298 757652 164410 162768 323736 347277 596152 873287 809367 364840 400583 642644 371612 028100 569645 484104 833913 121807 596175 483734 875146 996448 363367 627518 325514 746448 255289 062744 137470 502798 747209 908542 833118 235351 885661 768293 707696 868883 760078 584520 796606 067477 304258 739731 480804 760206 194844 137259 024468 618006 638710 312867 041790 958739 722319 160763 455845 169128 210494 182845 858572 583643 846583 886970 605838 751705 194637 (613 digits)/235 212656 907390 907263 019764 632183 646233 490005 436605 592098 650892 068677 609475 219986 519244 897271 000210 439619 816328 478762 019532 100675 383498 391583 531038 565634 518346 960476 182184 355526 632180 376614 290627 167499 328581 132195 030640 874287 411634 224131 694011 605421 341391 497339 890265 540772 412820 438052 170026 063848 799297 090905 515884 483934 916494 732263 181215 360658 052925 716964 877798 085834 636165 081601 657499 620948 321329 567952 648277 641884 789327 204991 916646 342458 604393 041507 103292 172440 637320 907049 807177 675132 380544 877978 044595 864330 587688 350987 293372 199000 938108 865513 530434 649606 751747 709689 332964 314681 620795 270456 499059 615526 378160 (615 digits), a[1173] = 1
                                                                                      A[1174]/B[1174] = 6 386762 189128 149076 691177 356061 860387 035964 248742 914611 594055 668477 768663 722133 434795 737848 990080 409587 139861 312660 837434 294398 581048 931300 285079 190370 106140 780815 388143 927004 600321 361447 281723 760236 102464 543045 101461 076879 251087 150507 756576 352884 521321 783150 953056 438852 793756 353660 015720 810285 541732 274517 385602 722048 566776 335622 931361 929502 476956 498406 053419 924639 046753 224767 097515 000012 664732 530152 009472 150899 370040 011364 566293 190893 476840 660807 384212 414572 949780 920048 114224 203420 661977 511107 825507 450161 989197 992836 308443 602573 256735 057875 910000 164735 831594 071984 807151 341330 267691 197899 797293 196400 363070 (613 digits)/620 751933 379380 450864 543021 567245 724851 237462 583866 494702 102797 945301 340425 409671 726083 787016 865097 368090 341654 292889 038284 214089 639082 618104 806027 747189 203008 252613 231483 014171 994384 101394 915115 158576 242712 687381 394580 424216 855397 779796 310891 965830 384478 725497 467446 344309 401796 353567 925042 412838 530893 004400 732031 518784 100625 927939 504957 883202 898299 488664 500833 663474 941103 712860 214804 361074 635429 859166 328785 441585 650766 216432 258693 582878 034905 372734 799418 056949 000751 652734 121986 526040 752846 613393 720514 744561 403182 990768 010226 201641 712846 568107 277397 581023 657322 001874 034984 429602 657451 723519 361391 231181 667173 (615 digits), a[1174] = 2
                                                                                      A[1175]/B[1175] = 8 806806 691224 574496 345924 577111 436075 552777 264051 806822 724328 217884 890931 628298 107754 876052 380435 979226 171816 450658 096560 621762 800414 121844 478421 277025 283476 449974 836863 097449 450531 866490 076921 430355 496995 216341 589759 834531 415497 313276 080312 700162 117474 656438 762423 803693 194339 996304 387332 838386 111377 758622 219515 843856 162951 819357 806508 925950 840324 125924 378934 671087 302042 287511 234985 502811 411942 438694 842590 386251 255701 779658 273990 059777 236919 245328 180818 482050 254039 659779 595028 963626 856821 648366 849976 068168 627908 305703 350234 561312 979054 218639 365845 333864 042088 254830 665723 924974 114275 084870 403131 948105 557707 (613 digits)/855 964590 286771 358127 562786 199429 371084 727468 020472 086800 753690 013978 949900 629658 245328 684287 865307 807710 157982 771651 057816 314765 022581 009688 337066 312823 721355 213089 413667 369698 626564 478009 205742 326075 571293 819576 425221 298504 267032 003928 004903 571251 725870 222837 357711 885081 814616 791620 095068 476687 330190 095306 247916 002719 017120 660202 686173 243860 951225 205629 378631 749309 577268 794461 872303 982022 956759 427118 977063 083470 440093 421424 175339 925336 639298 414241 902710 229389 638072 559783 929164 201173 133391 491371 765110 608891 990871 341755 303598 400642 650955 433620 807832 230630 409069 711563 367948 744284 278246 993975 860450 846708 045333 (615 digits), a[1175] = 1
                                                                                      A[1176]/B[1176] = 112 068442 483823 043032 842272 281399 093293 669291 417364 596484 285994 283096 459843 261710 727854 250477 555312 160301 201658 720557 996161 755552 186018 393434 026134 514673 507858 180513 430501 096398 006703 759328 204780 924502 066407 139144 178579 091256 237054 909820 720328 754829 931017 660416 102142 083171 125836 309312 663714 870918 878265 377984 019792 848322 522198 167916 609469 040912 560846 009498 600635 977686 671260 674901 917341 033749 608041 794490 120556 785914 438461 367263 854173 908220 319871 604745 554034 199175 998256 837403 254571 766942 943837 291510 025220 268185 524097 661276 511258 338329 005385 681548 300144 171104 336653 129952 795838 441019 638992 216344 634876 573667 055554 (615 digits)/10892 327016 820636 748395 296455 960398 177867 967078 829531 536311 147078 113048 739232 965570 670027 998471 248791 060612 237447 552701 732079 991269 910054 734364 850823 501073 859270 809686 195491 450555 513157 837505 384023 071483 098238 522298 497236 006268 059781 826932 369734 820851 094921 399545 759988 965291 177197 853009 065864 133086 493174 148075 707023 551412 306073 850371 739036 809534 313001 956217 044414 655189 868329 246402 682452 145350 116542 984594 053542 443230 931887 273522 362772 686917 706486 343637 631940 809624 657622 370141 271956 940118 353544 509854 901842 051265 293639 091831 653407 009353 524311 771556 971384 348588 566158 540634 450369 361013 996415 651229 686801 391678 211169 (617 digits), a[1176] = 12
                                                                                      A[1177]/B[1177] = 232 943691 658870 660562 030469 139909 622662 891360 098780 999791 296316 784077 810618 151719 563463 377007 491060 299828 575133 891774 088884 132867 172450 908712 530690 306372 299192 811001 697865 290245 463939 385146 486483 279359 629809 494629 946918 017043 889607 132917 520970 209821 979509 977270 966707 970035 446012 614929 714762 580223 867908 514590 259101 540501 207348 155191 025447 007775 962016 144921 580206 626460 644563 637315 069667 570310 628026 027675 083703 958080 132624 514185 982337 876217 876662 454819 288886 880402 250553 334586 104172 497512 744496 231386 900416 604539 676103 628256 372751 237970 989825 581735 966133 676072 715394 514736 257400 807013 392259 517559 672885 095439 668815 (615 digits)/22640 618623 928044 854918 155698 120225 726820 661625 679535 159423 047846 240076 428366 560799 585384 681230 362889 928934 632877 877054 521976 297304 842690 478418 038713 314971 439896 832461 804650 270809 652880 153019 973788 469041 767770 864173 419693 311040 386595 657792 744373 212953 915713 021928 877689 815664 169012 497638 226796 742860 316538 391457 661963 105543 629268 360946 164246 862929 577229 118063 467461 059689 313927 287267 237208 272723 189845 396307 084147 969932 303867 968468 900885 299172 052271 101517 166591 848638 953317 300066 473078 081409 840480 511081 568794 711422 578149 525418 610412 419349 699578 976734 750600 927807 541386 792832 268687 466312 271078 296435 234053 630064 467671 (617 digits), a[1177] = 2
                                                                                      A[1178]/B[1178] = 1276 786900 778176 345842 994617 980947 206608 126091 911269 595440 767578 203485 512934 020308 545171 135515 010613 659444 077328 179428 440582 419888 048272 936996 679586 046535 003822 235521 919827 547625 326400 685060 637197 321300 215454 612293 913169 176475 685090 574408 325179 803939 828567 546770 935681 933348 355899 383961 237527 772038 217807 950935 315300 550828 558938 943871 736704 079792 370926 734106 501669 109989 894078 861477 265678 885302 748171 932865 539076 576315 101583 938193 765863 289309 703183 878841 998468 601187 251023 510333 775434 254506 666318 448444 527303 290883 904615 802558 375014 528183 954513 590228 130812 551467 913625 703634 082842 476086 600289 804142 999302 050865 399629 (616 digits)/124095 420136 460861 022986 074946 561526 811971 275207 227207 333426 386309 313430 881065 769568 596951 404623 063240 705285 401836 937974 341961 477794 123507 126455 044390 075931 058754 971995 218742 804603 777558 602605 252965 416691 937092 843165 595702 561469 992760 115896 091600 885620 673486 509190 148438 043612 022260 341200 199847 847388 075866 105364 016839 079130 452415 655102 560271 124182 199147 546534 381719 953636 437965 682738 868493 508966 065769 966129 474282 292892 451227 115866 867199 182777 967841 851223 464900 052819 424208 870473 637347 347167 555947 065262 745815 608378 184386 718924 705469 106102 022206 655230 724388 987626 273092 504795 793806 692575 351807 133405 857069 542000 549524 (618 digits), a[1178] = 5
                                                                                      A[1179]/B[1179] = 1509 730592 437047 006405 025087 120856 829271 017452 010050 595232 063894 987563 323552 172028 108634 512522 501673 959272 652462 071202 529466 552755 220723 845709 210276 352907 303015 046523 617692 837870 790340 070207 123680 600659 845264 106923 860087 193519 574697 707325 846150 013761 808077 524041 902389 903383 801911 998890 952290 352262 085716 465525 574402 091329 766287 099062 762151 087568 332942 879028 081875 736450 538642 498792 335346 455613 376197 960540 622780 534395 234208 452379 748201 165527 579846 333661 287355 481589 501576 844919 879606 752019 410814 679831 427719 895423 580719 430814 747765 766154 944339 171964 096946 227540 629020 218370 340243 283099 992549 321702 672187 146305 068444 (616 digits)/146736 038760 388905 877904 230644 681752 538791 936832 906742 492849 434155 553507 309432 330368 182336 085853 426130 634220 034714 815028 863937 775098 966197 604873 083103 390902 498651 804457 023393 075413 430438 755625 226753 885733 704863 707339 015395 872510 379355 773688 835974 098574 589199 531119 026127 859276 191272 838838 426644 590248 392404 496821 678802 184674 081684 016048 724517 987111 776376 664597 849181 013325 751892 970006 105701 781689 255615 362436 558430 262824 755095 084335 768084 481950 020112 952740 631491 901458 377526 170540 110425 428577 396427 576344 314610 319800 762536 244343 315881 525451 721785 631965 474989 915433 814479 297628 062494 158887 622885 429841 091123 172065 017195 (618 digits), a[1179] = 1
                                                                                      A[1180]/B[1180] = 93370 353039 438043 736549 524932 353213 792140 190664 524355 904596 665172 444848 249616 514023 171876 399387 612725 175075 877514 522782 738042 137956 512427 525258 506443 573880 487740 073462 599090 657743 537144 967695 181713 961550 776565 134649 378487 981169 741650 721284 940330 643410 121296 513326 981466 039760 272531 316309 327239 260025 446512 347995 353828 121944 302451 986700 227920 421460 680442 354819 496089 033472 751271 287809 721812 677718 696247 525843 528689 174424 388299 533358 406134 386492 073810 232180 527152 978146 847211 050446 431446 127690 726013 918161 618216 911722 328501 082257 988726 263635 559203 080038 044532 431446 283859 024224 837682 745186 145798 428006 002717 975474 574713 (617 digits)/9 074993 784520 184119 575144 144272 148431 678279 422014 538499 397241 869798 077376 756437 922027 719452 641682 057209 392707 519440 654735 042165 758831 061561 023713 113696 920983 476515 043873 645720 404823 034322 695744 084952 446447 933778 990845 534850 784603 133462 310915 086020 898670 614657 907450 742237 459459 689903 510344 225167 852540 012540 411486 423772 344249 435140 634074 755868 338000 558124 087003 181761 766507 303436 853111 316302 192010 658307 074759 538528 325202 512027 260348 720352 581729 194731 968401 985906 041780 453305 273420 373298 490388 738029 222265 937045 116224 699097 623866 974242 158657 051130 205124 698773 829088 956329 660107 605950 384720 347818 353712 415583 037966 598419 (619 digits), a[1180] = 61
                                                                                      A[1181]/B[1181] = 468361 495789 627265 689152 649748 886925 789971 970774 631830 118215 389757 211804 571634 742143 968016 509460 565299 834652 040034 685116 219677 242537 782861 472001 742494 222309 741715 413836 613146 126588 476064 908683 032250 408413 728089 780170 752527 099368 282951 313750 547803 230812 414560 090676 809720 102185 164568 580437 588486 652389 318278 205502 343542 701051 278547 032563 901753 194871 735154 653125 562320 903814 294998 937840 944409 844206 857435 589758 266226 406517 175706 119171 778873 097987 948897 494563 923120 372323 737632 097152 036837 390473 040884 270639 518804 454035 223224 842104 691397 084332 740354 572154 319608 384772 048315 339494 528657 009030 721541 461732 685777 023677 942009 (618 digits)/45 521704 961361 309503 753624 952005 423910 930189 046905 599239 479058 783145 940391 091621 940506 779599 294263 712177 597757 631918 088704 074766 569254 274002 723438 651587 995819 881227 023825 251995 099528 602052 234345 651516 117973 373758 661566 689649 795526 046667 328264 266078 591927 662489 068372 737315 156574 640790 390559 552483 852948 455106 554253 797663 905921 257387 186422 503859 677114 566997 099613 757989 845862 269077 235562 687212 741742 547150 736234 251071 888837 315231 386079 369847 390595 993772 794750 561022 110360 644052 537641 976917 880521 086573 687673 999835 900924 258024 363678 187092 318736 977436 657588 968859 060878 596127 598166 092246 082489 361977 198403 169038 361898 009290 (620 digits), a[1181] = 5
                                                                                      A[1182]/B[1182] = 3 371900 823566 828903 560618 073174 561694 321943 986086 947166 732104 393472 927480 251059 709030 947991 965611 569824 017640 157757 318596 275782 835720 992457 829270 703903 130048 679747 970318 891113 543862 869599 328476 407466 820446 873193 595844 646177 676747 722309 917538 774953 259097 023217 148064 649506 755056 424511 379372 446645 826750 674459 786511 758627 029303 252281 214647 540192 785562 826524 926698 432335 360172 816263 852696 332681 587166 698296 654151 392274 020044 618242 367560 858246 072407 716092 694127 988995 584413 010635 730510 689307 861002 012203 812638 249848 089968 891074 976990 828505 853964 741685 085118 281791 124850 622066 400686 538281 808401 196588 660134 803157 141220 168776 (619 digits)/327 726928 514049 350645 850518 808310 115808 189602 750353 733175 750653 351819 660114 397791 505575 176647 701528 042452 577010 942867 275663 565531 743610 979580 087783 674812 891722 645104 210650 409686 101523 248688 336163 645565 272261 550089 621812 362399 353285 460133 608764 948571 042164 252081 386059 903443 555482 175436 244261 092554 823179 198286 291263 007419 685698 236850 939032 282886 077802 527103 784299 487690 687543 186977 502050 126791 384208 488362 228399 296031 547063 718646 962904 309284 315901 151141 531655 913060 814304 961673 036914 211723 654036 344045 035983 935896 422694 505268 169614 283888 389815 893186 808247 480787 255239 129222 847270 251672 962145 881658 742534 598851 571252 663449 (621 digits), a[1182] = 7
                                                                                      A[1183]/B[1183] = 3 840262 319356 456169 249770 722923 448620 111915 956861 578996 850319 783230 139284 822694 451174 916008 475072 135123 852292 197792 003712 495460 078258 775319 301272 446397 352358 421463 384155 504259 670451 345664 237159 439717 228860 601283 376015 398704 776116 005261 231289 322756 489909 437777 238741 459226 857241 589079 959810 035132 479139 992737 992014 102169 730354 530828 247211 441945 980434 561679 579823 994656 263987 111262 790537 277091 431373 555732 243909 658500 426561 793948 486732 637119 170395 664990 188691 912115 956736 748267 827662 726145 251475 053088 083277 768652 544004 114299 819095 519902 938297 482039 657272 601399 509622 670381 740181 066938 817431 918130 121867 488934 164898 110785 (619 digits)/373 248633 475410 660149 604143 760315 539719 119791 797259 332415 229712 134965 600505 489413 446081 956246 995791 754630 174768 574785 364367 640298 312865 253582 811222 326400 887542 526331 234475 661681 201051 850740 570509 297081 390234 923848 283379 052049 148811 506800 937029 214649 634091 914570 454432 640758 712056 816226 634820 645038 676127 653392 845516 805083 591619 494238 125454 786745 754917 094100 883913 245680 533405 456054 737612 814004 125951 035512 964633 547103 435901 033878 348983 679131 706497 144914 326406 474082 924665 605725 574556 188641 534557 430618 723657 935732 323618 763292 533292 470980 708552 870623 465836 449646 316117 725350 445436 343919 044635 243635 940937 767889 933150 672739 (621 digits), a[1183] = 1
                                                                                      A[1184]/B[1184] = 118 579770 404260 513981 053739 760878 020297 679422 691934 317072 241697 890377 106024 931893 244278 428246 217775 623539 586406 091517 429971 139585 183484 252036 867444 095823 700801 323649 494984 018903 657403 239526 443259 598983 686264 911694 876306 607320 960227 880146 856218 457647 956380 156534 310308 426312 472304 096910 173673 500620 200950 456599 546934 823718 939939 177128 630990 798572 198599 676912 321418 272023 279786 154147 568814 645424 528373 370263 971441 147286 816898 436696 969539 971821 184277 665798 354885 352474 286515 458670 560392 473665 405253 604846 310971 309424 410092 320069 549856 425594 002889 202874 803296 323776 413530 733518 606118 546446 331358 740492 316159 471182 088163 492326 (621 digits)/11525 185932 776369 155133 974831 617776 307381 783356 668133 705632 642017 400787 675279 080194 888033 864057 575280 681357 820068 186428 206692 774481 129568 587064 424453 466839 517998 435041 244920 260122 133078 770905 451442 558006 979309 265538 123183 923873 817630 664161 719641 388060 064921 689195 019039 126204 917186 662235 288880 443715 107008 800071 656767 159927 434283 063994 702675 885258 725315 350130 301696 858106 689706 868619 630434 546915 162739 553751 167405 709134 624094 734997 432414 683235 510815 498571 323850 135548 554273 133440 273599 870969 690759 262606 745722 007866 131257 404044 168388 413309 646402 011890 783340 970176 738770 889736 210360 569244 301203 190736 970667 635549 565772 845619 (623 digits), a[1184] = 30
                                                                                      A[1185]/B[1185] = 2375 435670 404566 735790 324565 940483 854573 700369 795547 920441 684277 590772 259783 460559 336743 480932 830584 605915 580414 028140 603135 287163 747943 816056 650154 362871 368384 894453 283835 882332 818516 136193 102351 419390 954158 835180 902147 545123 980673 608198 355658 475715 617512 568463 444909 985476 303323 527283 433280 047536 498149 124728 930710 576548 529138 073400 867027 413389 952428 099926 008189 435121 859710 194214 166830 185581 998840 961011 672732 604236 764530 527887 877532 073542 855948 980957 286398 961601 687045 921679 035512 199453 356547 150014 302703 957140 745850 515690 816224 031782 996081 539535 723199 076927 780237 340753 862551 995865 444606 727976 445056 912575 928167 957305 (622 digits)/230876 967289 002793 762829 100776 115841 687354 786925 159933 445068 070060 150719 106087 093311 206759 237398 501405 381786 576132 303349 498223 129920 904236 994871 300291 663191 247511 227156 132880 864123 862627 268849 599360 457220 976420 234610 747057 529525 501424 790035 329856 975850 932525 698470 835215 164857 055790 060932 412429 519340 816303 654825 980860 003632 277280 774132 178972 491920 261224 096706 917850 407814 327542 828447 346303 752307 380742 110536 312747 729795 917795 733826 997277 343841 922807 116340 803409 185054 010128 274531 046553 608035 349742 682753 638098 093054 948766 844175 901060 737173 636593 108439 132655 853181 091535 520074 652647 728805 068699 058375 354290 478881 248607 585119 (624 digits), a[1185] = 20
                                                                                      A[1186]/B[1186] = 7244 886781 617960 721352 027437 582329 584018 780532 078578 078397 294530 662693 885375 313571 254508 871044 709529 441286 327648 175939 239377 001076 427315 700206 817907 184437 805956 007009 346491 665902 112951 648105 750313 857156 548741 417237 582749 242692 902248 704741 923193 884794 808917 861924 645038 382741 382274 678760 473513 643229 695397 830786 339066 553364 527353 397331 232073 038742 055883 976690 345986 577388 858916 736790 069305 202170 524896 253298 989638 959997 110490 020360 602136 192449 752124 608670 214082 237279 347653 223707 666929 072025 474895 054889 219083 180846 647643 867141 998528 520942 991133 821481 972893 554559 754242 755780 193774 534042 665178 924421 651330 208909 872667 364241 (622 digits)/704156 087799 784750 443621 277159 965301 369446 144132 147934 040836 852197 852944 993540 360128 508311 576253 079496 826717 548465 096476 701362 164243 842279 571678 325328 456413 260532 116509 643562 852493 720960 577454 249523 929669 908569 969370 364356 512450 321905 034267 709212 315612 862498 784607 524684 620776 084556 845032 526169 001737 555919 764549 599347 170824 266125 386391 239593 361019 508987 640251 055248 081549 672335 353961 669345 803837 304965 885360 105648 898522 377481 936478 424246 714761 279236 847593 734077 690710 584657 957033 413260 695075 739987 310867 660016 287030 977557 936571 871570 624830 556181 337208 181308 529720 013377 449960 168303 755659 507300 365863 033539 072193 311595 600976 (624 digits), a[1186] = 3
                                                                                      A[1187]/B[1187] = 60334 529923 348252 506606 544066 599120 526723 944626 424172 547620 040522 892323 342785 969129 372814 449290 506820 136206 201599 435654 518151 295775 166469 417711 193411 838373 816032 950528 055769 209549 722129 321039 104862 276643 344090 173081 564141 486667 198663 246133 741209 554074 088855 463860 605217 047407 361520 957367 221389 193374 061331 771019 643243 003464 747965 252050 723611 723326 399499 913448 776082 054232 731044 088534 721271 802946 198010 987403 589844 284213 648450 690772 694621 613140 872945 850318 999056 859836 468271 711340 370944 775657 155707 589128 055369 403913 927001 452826 804452 199326 925152 111391 506347 513405 814179 386995 412748 268206 766038 123349 655698 583854 909506 871233 (623 digits)/5 864125 669687 280797 311799 318055 838252 642923 939982 343405 771762 887642 974279 054409 974339 273251 847423 137379 995526 963853 075163 109120 443871 642473 568297 902919 314497 331768 159233 281383 684073 630311 888483 595551 894580 244979 989573 661909 629128 076665 064177 003555 500753 832515 975331 032692 131065 732244 821192 621781 533241 263661 771222 775637 370226 406283 865262 095719 380076 333125 218715 359835 060211 706225 660140 701070 183005 820469 193417 157938 917974 937651 225654 391251 061932 156701 897090 676030 710738 687391 930798 352639 168641 269641 169694 918228 389302 769230 336750 873625 735818 086043 806104 583124 090941 198555 119755 999077 774081 127101 985279 622603 056427 741372 392927 (625 digits), a[1187] = 8
                                                                                      A[1188]/B[1188] = 67579 416704 966213 227958 571504 181450 110742 725158 502750 626017 335053 555017 228161 282700 627323 320335 216349 577492 529247 611593 757528 296851 593785 117918 011319 022811 621988 957537 402260 875451 835080 969144 855176 133799 892831 590319 146890 729360 100911 950875 664403 438868 897773 325785 250255 430148 743795 636127 694902 836603 756729 601805 982309 556829 275318 649381 955684 762068 455383 890139 122068 631621 589960 825324 790577 005116 722907 240702 579483 244210 758940 711133 296757 805590 625070 458989 213139 097115 815924 935048 037873 847682 630602 644017 274452 584760 574645 319968 802980 720269 916285 932873 479241 067965 568422 142775 606522 802249 431217 047771 307028 792764 782174 235474 (623 digits)/6 568281 757487 065547 755420 595215 803554 012370 084114 491339 812599 739840 827224 047950 334467 781563 423676 216876 822244 512318 171639 810482 608115 484753 139976 228247 770910 592300 275742 924946 536567 351272 465937 845075 824250 153549 958944 026266 141578 398570 098444 712767 816366 695014 759938 557376 751841 816801 666225 147950 534978 819581 535772 374984 541050 672409 251653 335312 741095 842112 858966 415083 141761 378561 014102 370415 986843 125435 078777 263587 816497 315133 162132 815497 776693 435938 744684 410108 401449 272049 887831 765899 863717 009628 480562 578244 676333 746788 273322 745196 360648 642225 143312 764432 620661 211932 569716 167381 529740 634402 351142 656142 128621 052967 993903 (625 digits), a[1188] = 1
                                                                                      A[1189]/B[1189] = 127913 946628 314465 734565 115570 780570 637466 669784 926923 173637 375576 447340 570947 251830 000137 769625 723169 713698 730847 047248 275679 592626 760254 535629 204730 861185 438021 908065 458030 085001 557210 290183 960038 410443 236921 763400 711032 216027 299575 197009 405612 992942 986628 789645 855472 477556 105316 593494 916292 029977 818061 372825 625552 560294 023283 901432 679296 485394 854883 803587 898150 685854 321004 913859 511848 808062 920918 228106 169327 528424 407391 401905 991379 418731 498016 309308 212195 956952 284196 646388 408818 623339 786310 233145 329821 988674 501646 772795 607432 919596 841438 044264 985588 581371 382601 529771 019271 070456 197255 171120 962727 376619 691681 106707 (624 digits)/12 432407 427174 346345 067219 913271 641806 655294 024096 834745 584362 627483 801503 102360 308807 054815 271099 354256 817771 476171 246802 919603 051987 127226 708274 131167 085407 924068 434976 206330 220640 981584 354421 440627 718830 398529 948517 688175 770706 475235 162621 716323 317120 527530 735269 590068 882907 549046 487417 769732 068220 083243 306995 150621 911277 078693 116915 431032 121172 175238 077681 774918 201973 084786 674243 071486 169848 945904 272194 421526 734472 252784 387787 206748 838625 592640 641775 086139 112187 959441 818630 118539 032358 279269 650257 496473 065636 516018 610073 618822 096466 728268 949417 347556 711602 410487 689472 166459 303821 761504 336422 278745 185048 794340 386830 (626 digits), a[1189] = 1
                                                                                      A[1190]/B[1190] = 195493 363333 280678 962523 687074 962020 748209 394943 429673 799654 710630 002357 799108 534530 627461 089960 939519 291191 260094 658842 033207 889478 354039 653547 216049 883997 060010 865602 860290 960453 392291 259328 815214 544243 129753 353719 857922 945387 400487 147885 070016 431811 884402 115431 105727 907704 849112 229622 611194 866581 574790 974631 607862 117123 298602 550814 634981 247463 310267 693727 020219 317475 910965 739184 302425 813179 643825 468808 748810 772635 166332 113039 288137 224322 123086 768297 425335 054068 100121 581436 446692 471022 416912 877162 604274 573435 076292 092764 410413 639866 757723 977138 464829 649336 951023 672546 625793 872705 628472 218892 269756 169384 473855 342181 (624 digits)/19 000689 184661 411892 822640 508487 445360 667664 108211 326085 396962 367324 628727 150310 643274 836378 694775 571133 640015 988489 418442 730085 660102 611979 848250 359414 856318 516368 710719 131276 757208 332856 820359 285703 543080 552079 907461 714441 912284 873805 261066 429091 133487 222545 495208 147445 634749 365848 153642 917682 603198 902824 842767 525606 452327 751102 368568 766344 862268 017350 936648 190001 343734 463347 688345 441902 156692 071339 350971 685114 550969 567917 549920 022246 615319 028579 386459 496247 513637 231491 706461 884438 896075 288898 130820 074717 741970 262806 883396 364018 457115 370494 092730 111989 332263 622420 259188 333840 833562 395906 687564 934887 313669 847308 380733 (626 digits), a[1190] = 1
                                                                                      A[1191]/B[1191] = 323407 309961 595144 697088 802645 742591 385676 064728 356596 973292 086206 449698 370055 786360 627598 859586 662689 004889 990941 706090 308887 482105 114294 189176 420780 745182 498032 773668 318321 045454 949501 549512 775252 954686 366675 117120 568955 161414 700062 344894 475629 424754 871030 905076 961200 385260 954428 823117 527486 896559 392852 347457 233414 677417 321886 452247 314277 732858 165151 497314 918370 003330 231970 653043 814274 621242 564743 696914 918138 301059 573723 514945 279516 643053 621103 077605 637531 011020 384318 227824 855511 094362 203223 110307 934096 562109 577938 865560 017846 559463 599162 021403 450418 230708 333625 202317 645064 943161 825727 390013 232483 546004 165536 448888 (624 digits)/31 433096 611835 758237 889860 421759 087167 322958 132308 160830 981324 994808 430230 252670 952081 891193 965874 925390 457787 464660 665245 649688 712089 739206 556524 490581 941726 440437 145695 337606 977849 314441 174780 726331 261910 950609 855979 402617 682991 349040 423688 145414 450607 750076 230477 737514 517656 914894 641060 687414 671418 986068 149762 676228 363604 829795 485484 197376 983440 192589 014329 964919 545707 548134 362588 513388 326541 017243 623166 106641 285441 820701 937707 228995 453944 621220 028234 582386 625825 190933 525092 002977 928433 568167 781077 571190 807606 778825 493469 982840 553582 098763 042147 459546 043866 032907 948660 500300 137384 157411 023987 213632 498718 641648 767563 (626 digits), a[1191] = 1
                                                                                      A[1192]/B[1192] = 518900 673294 875823 659612 489720 704612 133885 459671 786270 772946 796836 452056 169164 320891 255059 949547 602208 296081 251036 364932 342095 371583 468333 842723 636830 629179 558043 639271 178612 005908 341792 808841 590467 498929 496428 470840 426878 106802 100549 492779 545645 856566 755433 020508 066928 292965 803541 052740 138681 763140 967643 322088 841276 794540 620489 003061 949258 980321 475419 191041 938589 320806 142936 392228 116700 434422 208569 165723 666949 073694 740055 627984 567653 867375 744189 845903 062866 065088 484439 809261 302203 565384 620135 987470 538371 135544 654230 958324 428260 199330 356885 998541 915247 880045 284648 874864 270858 815867 454199 608905 502239 715388 639391 791069 (624 digits)/50 433785 796497 170130 712500 930246 532527 990622 240519 486916 378287 362133 058957 402981 595356 727572 660650 496524 097803 453150 083688 379774 372192 351186 404774 849996 798044 956805 856414 468883 735057 647297 995140 012034 804991 502689 763441 117059 595276 222845 684754 574505 584094 972621 725685 884960 152406 280742 794703 605097 274617 888892 992530 201834 815932 580897 854052 963721 845708 209939 950978 154920 889442 011482 050933 955290 483233 088582 974137 791755 836411 388619 487627 251242 069263 649799 414694 078634 139462 422425 231553 887416 824508 857065 911897 645908 549577 041632 376866 346859 010697 469257 134877 571535 376129 655328 207848 834140 970946 553317 711552 148519 812388 488957 148296 (626 digits), a[1192] = 1
                                                                                      A[1193]/B[1193] = 1 361208 656551 346792 016313 782087 151815 653446 984071 929138 519185 679879 353810 708384 428143 137718 758681 867105 597052 493014 435954 993078 225272 050961 874623 694442 003541 614120 052210 675545 057271 633087 167195 956187 952545 359532 058801 422711 375018 901161 330453 566921 137888 381896 946093 095056 971192 561510 928597 804850 422841 328138 991634 915968 266498 562864 458371 212795 693501 115989 879398 795548 644942 517843 437500 047675 490086 981882 028362 252036 448449 053834 770914 414824 377805 109482 769411 763263 141197 353197 846347 459918 225131 443495 085249 010838 833198 886400 782208 874366 958124 312934 018487 280913 990798 902922 952046 186782 574896 734126 607824 236962 976781 444320 031026 (625 digits)/132 300668 204830 098499 314862 282252 152223 304202 613347 134663 737899 719074 548145 058634 142795 346339 287175 918438 653394 370960 832622 409237 456474 441579 366074 190575 537816 354048 858524 275374 447964 609037 165060 750400 871893 955989 382861 636736 873543 794731 793197 294425 618797 695319 681849 507434 822469 476380 230467 897609 220654 763854 134823 079897 995469 991591 193590 124820 674856 612468 916286 274761 324591 571098 464456 423969 293007 194409 571441 690152 958264 597940 912961 731479 592471 920818 857622 739654 904750 035783 988199 777811 577451 282299 604872 863007 906760 862090 247202 676558 574977 037277 311902 602616 796125 343564 364358 168582 079277 264046 447091 510672 123495 619563 064155 (627 digits), a[1193] = 2
                                                                                      A[1194]/B[1194] = 3 241317 986397 569407 692240 053895 008243 440779 427815 644547 811318 156595 159677 585933 177177 530497 466911 336419 490186 237065 236842 328251 822127 570257 591971 025714 636262 786283 743692 529702 120451 607967 143233 502843 404020 215492 588443 272300 856839 902872 153686 679488 132343 519226 912694 257042 235350 926562 909935 748382 608823 623921 305358 673213 327537 746217 919804 374850 367323 707398 949839 529686 610691 178623 267228 212051 414596 172333 222448 171021 970592 847725 169813 397302 622985 963155 384726 589392 347483 190835 501956 222040 015647 507126 157968 560048 801942 427032 522742 176994 115578 982754 035516 477075 861643 090494 778956 644423 965660 922452 824553 976165 668951 528031 853121 (625 digits)/315 035122 206157 367129 342225 494750 836974 599027 467213 756243 854086 800282 155247 520249 880947 420251 235002 333401 404592 195071 748933 198249 285141 234345 136923 231147 873677 664903 573463 019632 630986 865372 325261 512836 548779 414668 529164 390533 342363 812309 271149 163356 821690 363261 089384 899829 797345 233503 255639 400315 715927 416601 262176 361630 806872 564080 241233 213363 195421 434877 783550 704443 538625 153678 979846 803229 069247 477402 117021 172061 752940 584501 313550 714201 254207 491437 129939 557943 948962 493993 207953 443039 979411 421665 121643 371924 363098 765812 871271 699976 160651 543811 758682 776768 968380 342456 936565 171305 129501 081410 605735 169864 059379 728083 276606 (627 digits), a[1194] = 2
                                                                                      A[1195]/B[1195] = 4 602526 642948 916199 708553 835982 160059 094226 411887 573686 330503 836474 513488 294317 605320 668216 225593 203525 087238 730079 672797 321330 047399 621219 466594 720156 639804 400403 795903 205247 177723 241054 310429 459031 356565 575024 647244 695012 231858 804033 484140 246409 270231 901123 858787 352099 206543 488073 838533 553233 031664 952060 296993 589181 594036 309082 378175 587646 060824 823388 829238 325235 255633 696466 704728 259726 904683 154215 250810 423058 419041 901559 940727 812127 000791 072638 154138 352655 488680 544033 348303 681958 240778 950621 243217 570887 635141 313433 304951 051361 073703 295688 054003 757989 852441 993417 731002 831206 540557 656579 432378 213128 645732 972351 884147 (625 digits)/447 335790 410987 465628 657087 777002 989197 903230 080560 890907 591986 519356 703392 578884 023742 766590 522178 251840 057986 566032 581555 607486 741615 675924 502997 421723 411494 018952 431987 295007 078951 474409 490322 263237 420673 370657 912026 027270 215907 607041 064346 457782 440488 058580 771234 407264 619814 709883 486107 297924 936582 180455 396999 441528 802342 555671 434823 338183 870278 047346 699836 979204 863216 724777 444303 227198 362254 671811 688462 862214 711205 182442 226512 445680 846679 412255 987562 297598 853712 529777 196153 220851 556862 703964 726516 234932 269859 627903 118474 376534 735628 581089 070585 379385 764505 686021 300923 339887 208778 345457 052826 680536 182875 347646 340761 (627 digits), a[1195] = 1
                                                                                      A[1196]/B[1196] = 7 843844 629346 485607 400793 889877 168302 535005 839703 218234 141821 993069 673165 880250 782498 198713 692504 539944 577424 967144 909639 649581 869527 191477 058565 745871 276067 186687 539595 734949 298174 849021 453662 961874 760585 790517 235687 967313 088698 706905 637826 925897 402575 420350 771481 609141 441894 414636 748469 301615 640488 575981 602352 262394 921574 055300 297979 962496 428148 530787 779077 854921 866324 875089 971956 471778 319279 326548 473258 594080 389634 749285 110541 209429 623777 035793 538864 942047 836163 734868 850259 903998 256426 457747 401186 130936 437083 740465 827693 228355 189282 278442 089520 235065 714085 083912 509959 475630 506218 579032 256932 189294 314684 500383 737268 (625 digits)/762 370912 617144 832757 999313 271753 826172 502257 547774 647151 446073 319638 858640 099133 904690 186841 757180 585241 462578 761104 330488 805736 026756 910269 639920 652871 285171 683856 005450 314639 709938 339781 815583 776073 969452 785326 441190 417803 558271 419350 335495 621139 262178 421841 860619 307094 417159 943386 741746 698240 652509 597056 659175 803159 609215 119751 676056 551547 065699 482224 483387 683648 401841 878456 424150 030427 431502 149213 805484 034276 464145 766943 540063 159882 100886 903693 117501 855542 802675 023770 404106 663891 536274 125629 848159 606856 632958 393715 989746 076510 896280 124900 829268 156154 732886 028478 237488 511192 338279 426867 658561 850400 242255 075729 617367 (627 digits), a[1196] = 1
                                                                                      A[1197]/B[1197] = 12 446371 272295 401807 109347 725859 328361 629232 251590 791920 472325 829544 186654 174568 387818 866929 918097 743469 664663 697224 582436 970911 916926 812696 525160 466027 915871 587091 335498 940196 475898 090075 764092 420906 117151 365541 882932 662325 320557 510939 121967 172306 672807 321474 630268 961240 648437 902710 587002 854848 672153 528041 899345 851576 515610 364382 676155 550142 488973 354176 608316 180157 121958 571556 676684 731505 223962 480763 724069 017138 808676 650845 051269 021556 624568 108431 693003 294703 324844 278902 198563 585956 497205 408368 644403 701824 072225 053899 132644 279716 262985 574130 143523 993055 566527 077330 240962 306837 046776 235611 689310 402422 960417 472735 621415 (626 digits)/1209 706703 028132 298386 656401 048756 815370 405487 628335 538059 038059 838995 562032 678017 928432 953432 279358 837081 520565 327136 912044 413222 768372 586194 142918 074594 696665 702808 437437 609646 788889 814191 305906 039311 390126 155984 353216 445073 774179 026391 399842 078921 702666 480422 631853 714359 036974 653270 227853 996165 589091 777512 056175 244688 411557 675423 110879 889730 935977 529571 183224 662853 265058 603233 868453 257625 793756 821025 493946 896491 175350 949385 766575 605562 947566 315949 105064 153141 656387 553547 600259 884743 093136 829594 574675 841788 902818 021619 108220 453045 631908 705989 899853 535540 497391 714499 538411 851079 547057 772324 711388 530936 425130 423375 958128 (628 digits), a[1197] = 1
                                                                                      A[1198]/B[1198] = 45 182958 446232 691028 728837 067455 153387 422702 594475 593995 558799 481702 233128 403955 945954 799503 446797 770353 571416 058818 656950 562317 620307 629566 634047 143955 023681 947961 546092 555538 725869 119248 745940 224593 112039 887142 884485 954289 050371 239723 003728 442817 420997 384774 662288 492863 387208 122768 509477 866161 656949 160107 300389 817124 468405 148448 326446 612923 895068 593317 604026 395393 232200 589760 002010 666293 991166 768839 645465 645496 815664 701820 264348 274099 497481 361088 617874 826157 810696 571575 445950 661867 748042 682853 334397 236408 653758 902163 225626 067503 978239 000832 520092 214232 413666 315903 232846 396141 646547 285867 324863 396563 195936 918590 601513 (626 digits)/4391 491021 701541 727917 968516 418024 272283 718720 432781 261328 560252 836625 544738 133187 689989 047138 595257 096486 024274 742515 066622 045404 331874 668852 068674 876655 375168 792281 317763 143580 076607 782355 733301 894008 139831 253279 500839 753024 880808 498524 535021 857904 370177 863109 756180 450171 528083 903197 425308 686737 419784 929592 827701 537224 843888 146021 008696 220739 873632 070938 033061 672208 197017 688158 029509 803304 812772 612290 287324 723749 990198 615100 839789 976570 943585 851540 432694 314967 771837 684413 204886 318120 815684 614413 572187 132223 341412 458573 314407 435647 792006 242870 528828 762776 225061 171976 852724 064430 979452 743841 792727 443209 517646 345857 491751 (628 digits), a[1198] = 3
                                                                                      A[1199]/B[1199] = 57 629329 718528 092835 838184 793314 481749 051934 846066 385916 031125 311246 419782 578524 333773 666433 364895 513823 236079 756043 239387 533229 537234 442263 159207 609982 939553 535052 881591 495735 201767 209324 510032 645499 229191 252684 767418 616614 370928 750662 125695 615124 093804 706249 292557 454104 035646 025479 096480 721010 329102 688149 199735 668700 984015 512831 002602 163066 384041 947494 212342 575550 354159 161316 678695 397799 215129 249603 369534 662635 624341 352665 315617 295656 122049 469520 310878 120861 135540 850477 644514 247824 245248 091221 978800 938232 725983 956062 358270 347220 241224 574962 663616 207287 980193 393233 473808 702978 693323 521479 014173 798986 156354 391326 222928 (626 digits)/5601 197724 729674 026304 624917 466781 087654 124208 061116 799387 598312 675621 106770 811205 618422 000570 874615 933567 544840 069651 978666 458627 100247 255046 211592 951250 071834 495089 755200 753226 865497 596547 039207 933319 529957 409263 854056 198098 654987 524915 934863 936826 072844 343532 388034 164530 565058 556467 653162 682903 008876 707104 883876 781913 255445 821444 119576 110470 809609 600509 216286 335061 462076 291391 897963 060930 606529 433315 781271 620241 165549 564486 606365 582133 891152 167489 537758 468109 428225 237960 805146 202863 908821 444008 146862 974012 244230 480192 422627 888693 423914 948860 428682 298316 722452 886476 391135 915510 526510 516166 504115 974145 942776 769233 449879 (628 digits), a[1199] = 1
                                                                                      A[1200]/B[1200] = 794 364244 787097 897894 625239 380543 416125 097855 593338 610903 963428 527905 690301 924772 285012 463137 190439 450055 640452 887380 768988 494301 604355 378987 703746 073733 237877 903649 006782 000096 348842 840467 376364 616083 091526 172044 860927 970275 872444 998330 637771 439430 640458 566015 465535 396215 850606 453996 763727 239295 935284 106046 896953 510237 260606 815251 360274 732786 887613 910742 364479 877547 836269 686876 825050 837683 787847 013683 449416 259759 932102 286469 367373 117629 084124 464852 659290 397352 572727 627784 824635 883582 936267 868739 058809 433434 091550 330973 883140 581367 114158 475347 147102 908976 156180 427938 392359 534864 659753 065094 509122 783383 228544 005831 499577 (627 digits)/77207 061443 187304 069878 092443 486178 411787 333425 227299 653367 338317 619699 932758 678860 729475 054559 965264 232864 107195 647990 789286 007556 635088 984452 819383 242906 309017 228448 135372 935529 328076 537467 243005 027162 029277 573709 603570 328307 395646 322431 688253 036643 317154 329030 800624 589068 873845 137276 916423 564476 535182 121956 318099 702097 164683 824794 563185 656860 398556 877557 844784 028007 204009 476252 703029 595402 697655 245395 443855 786885 142342 953426 722542 544311 528564 028904 423554 400390 338765 777903 671786 955351 630363 386519 481405 794382 516408 701074 808569 988662 302900 578056 101698 640893 616948 696169 937490 966067 824089 454006 346235 107106 773744 345892 340178 (629 digits), a[1200] = 13
                                                                                      A[1201]/B[1201] = 851 993574 505625 990730 463424 173857 897874 149790 439404 996819 994553 839152 110084 503296 618786 129570 555334 963878 876532 643424 008376 027531 141589 821250 862953 683716 177431 438701 888373 495831 550610 049791 886397 261582 320717 424729 628346 586890 243373 748992 763467 054554 734263 272264 758092 850319 886252 479475 860207 960306 264386 794196 096689 178938 244622 328082 362876 895853 271655 858236 576822 453098 190428 848193 503746 235483 002976 263286 818950 922395 556443 639134 682990 413285 206173 934372 970168 518213 708268 478262 469150 131407 181515 959961 037610 371666 817534 287036 241410 928587 355383 050309 810719 116264 136373 821171 866168 237843 353076 586573 523296 582369 384898 397157 722505 (627 digits)/82808 259167 916978 096182 717360 952959 499441 457633 288416 452754 936630 295321 039529 490066 347897 055130 839880 166431 652035 717642 767952 466183 735336 239499 030976 194156 380851 723537 890573 688756 193574 134014 282212 960481 559234 982973 457626 526406 050633 847347 623116 973469 389998 672563 188658 753599 438903 693744 569586 247379 544058 829061 201976 484010 420129 646238 682761 767331 208166 478067 061070 363068 666085 767644 600992 656333 304184 678711 225127 407126 307892 517913 328908 126445 419716 196393 961312 868499 766991 015864 476933 158215 539184 830527 628268 768394 760639 181267 231197 877355 726815 526916 530380 939210 339401 582646 328626 881578 350599 970172 850351 081252 716521 115125 790057 (629 digits), a[1201] = 1
                                                                                      A[1202]/B[1202] = 6758 319266 326479 833007 869208 597548 701244 146388 669173 588643 925305 401970 460893 447848 616515 370131 077784 197207 776181 391348 827620 687019 595484 127743 744421 859746 479897 974562 225396 470917 203113 189010 581145 447159 336548 145152 259354 078507 576061 241279 982040 821313 780301 471868 772185 348455 054373 810327 785182 961439 785991 665419 573777 762804 972963 111827 900413 003759 789204 918398 402237 049235 169271 624231 351274 486064 808680 856691 182072 716528 827207 760412 148306 010625 527342 005463 450470 024848 530606 975622 108686 803433 206879 588466 322082 035101 814290 340227 573017 081478 601839 827515 822136 722825 110797 176141 455537 199768 131289 171109 172198 859968 922832 785935 557112 (628 digits)/656864 875618 606150 743157 113970 156894 907877 536858 246214 822651 894729 686947 209465 109325 164754 440475 844425 397885 671445 671490 164953 270842 782442 660946 036216 602000 974979 293213 369388 756822 683095 475567 218495 750532 943922 454523 806956 013149 750083 253865 050071 850929 047145 036973 121235 864264 946170 993488 903527 296133 343593 925384 731935 090170 105591 348465 342518 028178 855722 224027 272276 569487 866609 849764 909978 189735 826947 996374 019747 636769 297590 578820 024899 429429 466577 403662 152744 479888 707702 888955 010319 062860 404657 200212 879287 173145 840882 969945 426955 130152 390609 266471 814365 215365 992759 774694 237879 137116 278289 245216 298692 675875 789392 151772 870577 (630 digits), a[1202] = 7
                                                                                      A[1203]/B[1203] = 7610 312840 832105 823738 332632 771406 599118 296179 108578 585463 919859 241122 570977 951145 235301 499701 633119 161086 652714 034772 835996 714550 737073 948994 607375 543462 657329 413264 113769 966748 753723 238802 467542 708741 657265 569881 887700 665397 819434 990272 745507 875868 514564 744133 530278 198774 940626 289803 645390 921746 050378 459615 670466 941743 217585 439910 263289 899613 060860 776634 979059 502333 359700 472424 855020 721547 811657 119978 001023 638924 383651 399546 831296 423910 733515 939836 420638 543062 238875 453884 577836 934840 388395 548427 359692 406768 631824 627263 814428 010065 957222 877825 632855 839089 247170 997313 321705 437611 484365 757682 695495 442338 307731 183093 279617 (628 digits)/739673 134786 523128 839339 831331 109854 407318 994491 534631 275406 831359 982268 248994 599391 512651 495606 684305 564317 323481 389132 932905 737026 517778 900445 067192 796157 355831 016751 259962 445578 876669 609581 500708 711014 503157 437497 264582 539555 800717 101212 673188 824398 437143 709536 309894 617864 385074 687233 473113 543512 887652 754445 933911 574180 525720 994704 025279 795510 063888 702094 333346 932556 532695 617409 510970 846069 131132 675085 244875 043895 605483 096733 353807 555874 886293 600056 114057 348388 474693 904819 487252 221075 943842 030740 507555 941540 601522 151212 658153 007508 117424 793388 344746 154576 332161 357340 566506 018694 628889 215389 149043 757128 505913 266898 660634 (630 digits), a[1203] = 1
                                                                                      A[1204]/B[1204] = 37199 570629 654903 127961 199739 683175 097717 331105 103487 930499 604742 366460 744805 252429 557721 368937 610260 841554 387037 530440 171607 545222 543779 923722 173924 033597 109215 627618 680476 337912 218006 144220 451316 282125 965610 424679 810156 740098 853801 202370 964072 324787 838560 448402 893298 143554 816878 969542 366746 648423 987505 503882 255645 529777 843304 871468 953572 602212 032648 024938 318475 058568 608073 513930 771357 372256 055309 336603 186167 272226 361813 358599 473491 706268 461405 764809 133024 197097 486108 791160 420034 542794 760461 782175 760851 662176 341588 849282 830729 121742 430731 338818 353560 079182 099481 165394 742358 950214 068752 201839 954180 629322 153757 518308 675580 (629 digits)/3 615557 414764 698666 100516 439294 596312 537153 514824 384739 924279 220169 616020 205443 506891 215360 422902 581647 655154 965371 228021 896576 218948 853558 262726 304987 786630 398303 360218 409238 539138 189773 913893 221330 594590 956552 204512 865286 171372 952951 658715 742827 148522 795719 875118 360814 335722 486469 742422 795981 470184 894204 943168 467581 386892 208475 327281 443637 210219 111277 032404 605664 299713 997392 319402 953861 574012 351478 696714 999247 812351 719522 965753 440129 652929 011751 803886 608973 873442 606478 508232 959327 947164 180025 323174 909510 939308 246971 574796 059567 160184 860308 440025 193349 833671 321405 204056 503903 211894 793846 106772 894867 704389 813045 219367 513113 (631 digits), a[1204] = 4
                                                                                      A[1205]/B[1205] = 82009 454100 141912 079660 732112 137756 794552 958389 315554 446463 129343 974044 060588 456004 350744 237576 853640 844195 426789 095653 179211 804995 824633 796438 955223 610656 875760 668501 474722 642573 189735 527243 370175 272993 588486 419241 508014 145595 527037 395014 673652 525444 191685 640939 316874 485884 574384 228888 378884 218594 025389 467380 181758 001298 904195 182848 170435 104037 126156 826511 616009 619470 575847 500286 397735 466059 922275 793184 373358 183377 107278 116745 778279 836447 656327 469454 686686 937257 211093 036205 417906 020429 909319 112778 881395 731121 315002 325829 475886 253550 818685 555462 339975 997453 446133 328102 806423 338039 621870 161362 603856 700982 615246 219710 630777 (629 digits)/7 970787 964315 920461 040372 709920 302479 481626 024140 304111 123965 271699 214308 659881 613173 943372 341411 847600 874627 254223 845176 726058 174924 224895 425897 677168 369418 152437 737188 078439 523855 256217 437367 943369 900196 416261 846522 995154 882301 706620 418644 158843 121444 028583 459773 031523 289309 358014 172079 065076 483882 676062 640782 869074 347964 942671 649266 912554 215948 286442 766903 544675 531984 527480 256215 418693 994093 834090 068515 243370 668599 044529 028240 234066 861732 909797 207829 332005 095273 687650 921285 405908 115404 303892 677090 326577 820157 095465 300804 777287 327877 838041 673438 731445 821918 974971 765453 574312 442484 216581 428934 938779 165908 132003 705633 686860 (631 digits), a[1205] = 2
                                                                                      A[1206]/B[1206] = 1 267341 382131 783584 322872 181421 749527 016011 706944 836804 627446 544901 977121 653632 092494 818884 932590 414873 504485 788873 965237 859784 620159 913286 870306 502278 193450 245625 655140 801315 976510 064039 052871 003945 377029 792906 713302 430368 924031 759362 127591 068860 206450 713845 062492 646415 431823 432642 402868 050009 927334 368347 514584 982015 549261 406232 614191 510099 162768 925000 422612 558619 350627 245786 018226 737389 363154 889446 234368 786540 022882 970985 109786 147689 252983 306317 806629 433328 255955 652504 334241 688624 849243 400248 473858 981787 628996 066623 736724 969022 925004 711014 670753 453200 040983 791481 086936 838709 020808 396804 622279 012031 144061 382450 813968 137235 (631 digits)/123 177376 879503 505581 706107 088099 133504 761543 876928 946406 783758 295657 830650 103667 704500 365945 544080 295660 774563 778728 905672 787448 842812 226989 651191 462513 327902 684869 418039 585831 396967 033035 474412 371879 097537 200479 902357 792609 405898 552257 938378 125473 970183 224471 771713 833663 675362 856682 323608 772128 728425 035144 554911 503696 606366 348550 066285 131950 449443 407918 535957 775797 279481 909596 162634 234271 485419 862829 724443 649807 841337 387458 389356 951132 578922 658709 921326 589050 302547 921242 327514 047949 678228 738415 479529 808178 241664 678951 086867 718877 078352 430933 541606 165037 162455 945981 685860 118589 849158 042567 540796 976555 193011 793100 803872 816013 (633 digits), a[1206] = 15
                                                                                      A[1207]/B[1207] = 2 616692 218363 709080 725405 094955 636810 826576 372278 989163 701356 219147 928287 367852 640993 988514 102757 683387 853167 004537 026128 898781 045315 651207 537051 959779 997557 367011 978783 077354 595593 317813 632985 378066 027053 174299 845846 368751 993659 045761 650196 811372 938345 619375 765924 609705 349531 439669 034624 478904 073262 762084 496550 145789 099821 716660 411231 190633 429574 976157 671736 733248 320725 067419 536739 872514 192369 701168 261921 946438 229143 049248 336318 073658 342414 268963 082713 553343 449168 516101 704688 795155 718916 709816 060496 844970 989113 448249 799279 413932 103560 240714 896969 246376 079421 029095 501976 483841 379656 415479 405920 627918 989105 380147 847646 905247 (631 digits)/254 325541 723322 931624 452586 886118 569489 004713 777998 196924 691481 863014 875608 867217 022174 675263 429572 438922 423754 811681 656522 300955 860548 678874 728280 602195 025223 522176 573267 250102 317789 322288 386192 687128 095270 817221 651238 580373 694098 811136 295400 409791 061810 477527 003200 698850 640035 071378 819296 609333 940732 746351 750605 876467 560697 639771 781837 176455 114835 102279 838819 096270 090948 346672 581483 887236 964933 559749 517402 542986 351273 819445 806954 136332 019578 227217 050482 510105 700369 530135 576313 501807 471861 780723 636149 942934 303486 453367 474540 215041 484582 699908 756651 061520 146830 866935 137173 811492 140800 301716 510528 891889 551931 718205 313379 318886 (633 digits), a[1207] = 2
                                                                                      A[1208]/B[1208] = 6 500725 818859 201745 773682 371333 023148 669164 451502 815132 030158 983197 833696 389337 374482 795913 138105 781649 210819 797948 017495 657346 710791 215701 944410 421838 188564 979649 612706 956025 167696 699666 318841 760077 431136 141506 404995 167872 911349 850885 427984 691606 083141 952596 594341 865826 130886 311980 472117 007818 073859 892516 507685 273593 748904 839553 436653 891366 021918 877315 766086 025115 992077 380625 091706 482417 747894 291782 758212 679416 481169 069481 782422 295005 937811 844243 972056 540015 154292 684707 743619 278936 287076 819880 594852 671729 607222 963123 335283 796887 132125 192444 464691 945952 199825 849672 090889 806391 780121 227763 434120 267869 122272 142746 509261 947729 (631 digits)/631 828460 326149 368830 611280 860336 272482 770971 432925 340256 166722 021687 581867 838101 748849 716472 403225 173505 622073 402092 218717 389360 563909 584739 107752 666903 378349 729222 564574 086036 032545 677612 246797 746135 288078 834923 204834 953356 794096 174530 529178 945056 093804 179525 778115 231364 955432 999439 962201 990796 609890 527848 056123 256631 727761 628093 629959 484860 679113 612478 213595 968337 461378 602941 325602 008745 415286 982328 759248 735780 543885 026350 003265 223796 618079 113144 022291 609261 703286 981513 480141 051564 621952 299862 751829 694046 848637 585686 035948 148960 047517 830751 054908 288077 456117 679851 960207 741574 130758 646000 561854 760334 296875 229511 430631 453785 (633 digits), a[1208] = 2
                                                                                      A[1209]/B[1209] = 15 618143 856082 112572 272769 837621 683108 164905 275284 619427 761674 185543 595680 146527 389959 580340 378969 246686 274806 600433 061120 213474 466898 082611 425872 803456 374687 326311 204196 989404 930986 717146 270668 898220 889325 457312 655836 704497 816358 747532 506166 194585 104629 524568 954608 341357 611304 063629 978858 494540 220982 547117 511920 692976 597631 395767 284538 973365 473412 730789 203908 783480 304879 828669 720152 837349 688158 284733 778347 305271 191481 188211 901162 663670 218037 957451 026826 633373 757753 885517 191927 353028 293070 349577 250202 188430 203559 374496 469847 007706 367810 625603 826353 138280 479072 728439 683756 096624 939898 871006 274161 163657 233649 665640 866170 800705 (632 digits)/1517 982462 375621 669285 675148 606791 114454 546656 643848 877437 024925 906390 039344 543420 519874 108208 236022 785933 667901 615866 093957 079676 988367 848352 943785 936001 781922 980621 702415 422174 382880 677512 879788 179398 671428 487068 060908 487087 282291 160197 353758 299903 249418 836578 559431 161580 550901 070258 743700 590927 160513 802047 862852 389731 016220 895959 041756 146176 473062 327236 266011 032945 013705 552555 232687 904727 795507 524407 035900 014547 439043 872145 813484 583925 255736 453505 095065 728629 106943 493162 536595 604936 715766 380449 139809 331028 000761 624739 546436 512961 579618 361410 866467 637675 059066 226639 057589 294640 402317 593717 634238 412558 145682 177228 174642 226456 (634 digits), a[1209] = 2
                                                                                      A[1210]/B[1210] = 53 355157 387105 539462 591991 884198 072473 163880 277356 673415 315181 539828 620736 828919 544361 536934 275013 521708 035239 599247 200856 297770 111485 463536 222028 832207 312626 958583 225297 924239 960656 851105 130848 454740 099112 513444 372505 281366 360426 093482 946483 275361 397030 526303 458166 889898 964798 502870 408692 491438 736807 533869 043447 352523 541799 026855 290270 811462 442157 069683 377812 375556 906716 866634 252164 994466 812369 145984 093254 595230 055612 634117 485910 286016 591925 716597 052536 440136 427554 341259 319401 338021 166287 868612 345459 237020 217901 086612 744824 820006 235557 069255 943751 360793 637044 034991 142158 096266 599817 840782 256603 758840 823221 139669 107774 349844 (632 digits)/5185 775847 453014 376687 636726 680709 615846 410941 364471 972567 241499 740857 699901 468363 308472 041097 111293 531306 625778 249690 500588 628391 529013 129797 939110 474908 724118 671087 671820 352559 181187 710150 886162 284331 302364 296127 387560 414618 640969 655122 590453 844765 842060 689261 456408 716106 608136 210216 193303 763578 091431 933991 644680 425824 776424 315970 755227 923390 098300 594187 011629 067172 502495 260607 023665 722928 801809 555549 866948 779422 861016 642787 443718 975572 385288 473659 307488 795149 024117 461001 089927 866374 769251 441210 171257 687130 850922 459904 675257 687844 786372 914983 654311 201102 633316 359769 132975 625495 337711 427153 464569 998008 733921 761195 954558 133153 (634 digits), a[1210] = 3
                                                                                      A[1211]/B[1211] = 68 973301 243187 652034 864761 721819 755581 328785 552641 292843 076855 725372 216416 975446 934321 117274 653982 768394 310046 199680 261976 511244 578383 546147 647901 635663 687314 284894 429494 913644 891643 568251 401517 352960 988437 970757 028341 985864 176784 841015 452649 469946 501660 050872 412775 231256 576102 566500 387550 985978 957790 080986 555368 045500 139430 422622 574809 784827 915569 800472 581721 159037 211596 695303 972317 831816 500527 430717 871601 900501 247093 822329 387072 949686 809963 674048 079363 073510 185308 226776 511328 691049 459358 218189 595661 425450 421460 461109 214671 827712 603367 694859 770104 499074 116116 763430 825914 192891 539716 711788 530764 922498 056870 805309 973945 150549 (632 digits)/6703 758309 828636 045973 311875 287500 730300 957598 008320 850004 266425 647247 739246 011783 828346 149305 347316 317240 293679 865556 594545 708068 517380 978150 882896 410910 506041 651709 374235 774733 564068 387663 765950 463729 973792 783195 448468 901705 923260 815319 944212 144669 091479 525840 015839 877687 159037 280474 937004 354505 251945 736039 507532 815555 792645 211929 796984 069566 571362 921423 277640 100117 516200 813162 256353 627656 597317 079956 902848 793970 300060 514933 257203 559497 641024 927164 402554 523778 131060 954163 626523 471311 485017 821659 311067 018158 851684 084644 221694 200806 365991 276394 520778 838777 692382 586408 190564 920135 740029 020871 098808 410566 879603 938424 129200 359609 (634 digits), a[1211] = 1
                                                                                      A[1212]/B[1212] = 1708 714387 223609 188299 346273 207872 206425 054733 540747 701649 159718 948761 814744 239645 968068 351525 970599 963171 476348 391573 488292 567639 992690 571079 771668 088135 808169 796049 533175 851717 360102 489138 767264 925803 821623 811613 052712 942106 603262 277853 810070 554077 436871 747241 364772 440056 791260 098879 709916 154933 723769 477546 372280 444526 888129 169797 085705 647332 415832 281025 339120 192449 985037 553929 587792 958062 825027 483213 011700 207259 985864 370022 775661 078500 031053 893750 957250 204380 874951 783895 591289 923208 190885 105162 641333 447830 332952 153233 896948 685108 716381 745890 426259 338572 423846 357330 964098 725663 553018 923706 994961 898794 188120 467108 482457 963020 (634 digits)/166075 975283 340279 480047 121733 580727 143069 393293 564172 372669 635715 274803 441805 751175 188779 624425 446885 145073 674095 023048 769685 622035 946156 605419 128624 336760 869118 312112 653478 946164 718829 014081 268973 413850 673391 092818 150814 055560 799229 222801 251545 316824 037569 309421 836565 780598 425030 941614 681408 271704 138129 598939 825467 999163 799909 402285 882845 592987 811010 708345 674991 469992 891314 776501 176152 786687 137419 474515 535319 834710 062469 001185 616604 403515 769886 725604 968797 365824 169580 360928 126491 177850 409679 161033 636866 122943 291340 491365 995918 507197 570163 548452 153003 331767 250498 433565 706533 708753 098407 928059 835971 851613 844416 283375 055366 763769 (636 digits), a[1212] = 24
                                                                                      A[1213]/B[1213] = 3486 402075 690406 028633 557308 137564 168431 438252 634136 696141 396293 622895 845905 454738 870457 820326 595182 694737 262742 982827 238561 646524 563764 688307 191237 811935 303653 876993 495846 617079 611848 546528 936047 204568 631685 593983 133767 870077 383309 396723 072790 578101 375403 545355 142320 111370 158622 764259 807383 295846 405329 036079 299928 934553 915688 762216 746221 079492 747234 362523 259961 543937 181671 803163 147903 747942 150582 397143 895002 315021 218822 562374 938395 106686 872071 461549 993863 482271 935211 794567 693908 537465 841128 428514 878328 321111 087364 767577 008569 197930 036131 186640 622623 176218 963809 478092 754111 644218 645754 559202 520688 720086 433111 739526 938861 076589 (634 digits)/338855 708876 509195 006067 555342 448955 016439 744185 136665 595343 537856 196854 622857 514134 205905 398156 241086 607387 641869 911654 133916 952140 409694 188989 140145 084432 244278 275934 681193 667063 001726 415826 303897 291431 320574 968831 750097 012827 521719 260922 447302 778317 166618 144683 688971 438884 009099 163704 299820 897913 528204 933919 158468 813883 392464 016501 562675 255542 193384 338114 627623 040103 298830 366164 608659 201030 872156 028987 973488 463390 424998 517304 490412 366529 180798 378374 340149 255426 470221 676019 879505 827012 304376 143726 584799 264045 434365 067376 213531 215201 506318 373298 826785 502312 193379 453539 603632 337641 936844 876990 770752 113794 568436 505174 239933 887147 (636 digits), a[1213] = 2
                                                                                      A[1214]/B[1214] = 8681 518538 604421 245566 460889 483000 543287 931238 809021 093931 952306 194553 506555 149123 708983 992179 160965 352646 001834 357227 965415 860689 120219 947694 154143 712006 415477 550036 524869 085876 583799 582196 639359 334941 084994 999579 320248 682261 369881 071299 955651 710280 187678 837951 649412 662797 108505 627399 324682 746626 534427 549704 972138 313634 719506 694230 578147 806317 910301 006071 859043 280324 348381 160255 883600 453947 126192 277500 801704 837302 423509 494772 652451 291873 775196 816850 944977 168924 745375 373030 979106 998139 873141 962192 397990 090052 507681 688387 914087 080968 788644 119171 671505 691010 351465 313516 472322 014100 844528 042112 036339 338967 054343 946162 360180 116198 (634 digits)/843787 393036 358669 492182 232418 478637 175948 881663 837503 563356 711427 668512 687520 779443 600590 420737 929058 359848 957834 846357 037519 526316 765544 983397 408914 505625 357674 863982 015866 280290 722281 845733 876767 996713 314541 030481 651008 081215 842667 744646 146150 873458 370805 598789 214508 658366 443229 269023 281050 067531 194539 466778 142405 626930 584837 435289 008196 104072 197779 384574 930237 550199 488975 508830 393471 188748 881731 532491 482296 761490 912466 035794 597429 136574 131483 482353 649095 876677 110023 712967 885502 831875 018431 448486 806464 651034 160070 626118 422980 937600 582800 295049 806574 336391 637257 340644 913798 384036 972097 682041 377476 079202 981289 293723 535234 538063 (636 digits), a[1214] = 2
                                                                                      A[1215]/B[1215] = 46893 994768 712512 256465 861755 552566 884871 094446 679242 165801 157824 595663 378681 200357 415377 781222 400009 457967 271914 768967 065640 949970 164864 426777 961956 371967 381041 627176 120192 046462 530846 457512 132843 879274 056660 591879 735011 281384 232714 753222 851049 129502 313797 735113 389383 425355 701150 901256 430797 028979 077466 784604 160620 502727 513222 233369 636960 111082 298739 392882 555177 945558 923577 604442 565906 017677 781543 784647 903526 501533 336370 036238 200651 566055 748055 545804 718749 326895 662088 659722 589443 528165 206838 239476 868278 771373 625773 209516 579004 602773 979351 782498 980151 631270 721136 045675 115721 714722 868394 769762 702385 414921 704831 470338 739761 657579 (635 digits)/4 557792 674058 302542 466978 717434 842140 896184 152504 324183 412127 094994 539418 060461 411352 208857 501845 886378 406632 431044 143439 321514 583724 237419 105976 184717 612559 032652 595844 760525 068516 613135 644495 687737 274997 893280 121240 005137 418906 735057 984153 178057 145609 020646 138629 761514 730716 225245 508820 705071 235569 500902 267809 870496 948536 316651 192946 603655 775903 182281 260989 278810 791100 743707 910316 576015 144775 280813 691445 384972 270844 987328 696277 477558 049399 838215 790142 585628 638812 020340 240859 307019 986387 396533 386160 617122 519216 234718 197968 328435 903204 420319 848547 859657 184270 379666 156764 172624 257826 797333 287197 658132 509809 474882 973791 916106 577462 (637 digits), a[1215] = 5
                                                                                      A[1216]/B[1216] = 102469 508076 029445 758498 184400 588134 313030 120132 167505 425534 267955 385880 263917 549838 539739 554623 960984 268580 545663 895162 096697 760629 449948 801250 078056 455941 177560 804388 765253 178801 645492 497220 905047 093489 198316 183338 790271 245029 835310 577745 657749 969284 815274 308178 428179 513508 510807 429912 186276 804584 689361 118913 293379 319089 745951 160969 852068 028482 507779 791836 969399 171442 195536 369141 015412 489302 689279 846796 608757 840369 096249 567249 053754 423985 271307 908460 382475 822716 069552 692476 157994 054470 286818 441146 134547 632799 759228 107421 072096 286516 747347 684169 631808 953551 793737 404866 703765 443546 581317 581637 441110 168810 464006 886839 839703 431356 (636 digits)/9 959372 741152 963754 426139 667288 162918 968317 186672 485870 387610 901416 747348 808443 602148 018305 424429 701815 173113 819923 133235 680548 693765 240383 195349 778349 730743 422980 055671 536916 417323 948553 134725 252242 546709 101101 272961 661282 919029 312783 712952 502265 164676 412097 876048 737538 119798 893720 286664 691192 538670 196344 002397 883399 524003 218139 821182 215507 655878 562341 906553 487859 132400 976391 329463 545501 478299 443358 915382 252241 303180 887123 428349 552545 235373 807915 062638 820353 154301 150704 194686 499542 804649 811498 220808 040709 689466 629507 022055 079852 744009 423439 992145 525888 704932 396589 654173 259046 899690 566764 256436 693741 098821 931055 241307 367447 692987 (637 digits), a[1216] = 2
                                                                                      A[1217]/B[1217] = 764180 551300 918632 565953 152559 669507 076081 935371 851780 144541 033512 296825 226104 049227 193554 663590 126899 338031 091562 035101 742525 274376 314506 035528 508351 563555 623967 257897 476964 298074 049293 938058 468173 533698 444873 875251 266909 996593 079888 797442 455298 914496 020717 892362 386640 019915 276802 910641 734734 661071 902994 616997 214275 736355 734880 360158 601436 310459 853197 935741 340972 145654 292332 188429 673793 442796 606502 712224 164831 384117 010117 006981 576932 533952 647210 905027 396080 085908 148957 507055 695401 909457 214567 327499 810112 200971 940369 961464 083678 608391 210785 571686 402814 306133 277297 879742 042079 819548 937617 841224 790156 596594 952879 678217 617685 677071 (636 digits)/74 273401 862129 048823 449956 388451 982573 674404 459211 725276 125403 404911 770859 719566 626388 336995 472853 799084 618429 170506 076089 085355 440080 920101 473424 633165 727762 993512 985545 518939 989784 253007 587572 453435 101961 600989 031971 634117 852111 924543 974820 693913 298343 905331 270970 924281 569308 481287 515473 543419 006260 875310 284595 054293 616558 843629 941222 112209 367053 118674 606863 693824 717907 578447 216561 394525 492871 384326 099121 150661 393111 197192 694724 345374 697016 493621 228614 328100 718920 075269 603664 803819 618936 077020 931816 902090 345482 641267 352353 887405 111270 384399 793566 540878 118797 155793 735976 985952 555660 764683 082254 514320 201562 992269 662943 488240 428371 (638 digits), a[1217] = 7
                                                                                      A[1218]/B[1218] = 866650 059376 948078 324451 336960 257641 389112 055504 019285 570075 301467 682705 490021 599065 733294 218214 087883 606611 637225 930263 839223 035005 764454 836778 586408 019496 801528 062286 242217 476875 694786 435279 373220 627187 643190 058590 057181 241622 915199 375188 113048 883780 835992 200540 814819 533423 787610 340553 921011 465656 592355 735910 507655 055445 480831 521128 453504 338942 360977 727578 310371 317096 487868 557570 689205 932099 295782 559020 773589 224486 106366 574230 630686 957937 918518 813487 778555 908624 218510 199531 853395 963927 501385 768645 944659 833771 699598 068885 155774 894907 958133 255856 034623 259685 071035 284608 745845 263095 518935 422862 231266 765405 416886 565057 457389 108427 (636 digits)/84 232774 603282 012577 876096 055740 145492 642721 645884 211146 513014 306328 518208 528010 228536 355300 897283 500899 791542 990429 209324 765904 133846 160484 668774 411515 458506 416493 041217 055856 407108 201560 722297 705677 648670 702090 304933 295400 771141 237327 687773 196178 463020 317429 147019 661819 689107 375007 802138 234611 544931 071654 286992 937693 140562 061769 762404 327717 022931 681016 513417 181683 850308 554838 546024 940026 971170 827685 014503 402902 696292 084316 123073 897919 932390 301536 291253 148453 873221 225973 798351 303362 423585 888519 152624 942800 034949 270774 374408 967257 855279 807839 785712 066766 823729 552383 390150 244999 455351 331447 338691 208061 300384 923324 904250 855688 121358 (638 digits), a[1218] = 1
                                                                                      A[1219]/B[1219] = 5 097430 848185 659024 188209 837360 957714 021642 212891 948207 994917 540850 710352 676212 044555 860025 754660 566317 371089 277691 686420 938640 449405 136780 219421 440391 661039 631607 569328 688051 682452 523226 114455 334276 669636 660824 168201 552816 204707 655885 673383 020543 333400 200678 895066 460737 687034 214854 613411 339791 989354 864773 296549 752551 013583 139037 965800 868958 005171 658086 573632 892828 731136 731674 976283 119823 103293 085415 507328 032777 506547 541949 878134 730367 323642 239804 972466 288859 629029 241508 504714 962381 729094 721496 170729 533411 369830 438360 305889 862553 082931 001451 850966 575930 604558 632474 302785 771306 135026 532294 955535 946490 423622 037312 503504 904631 219206 (637 digits)/495 437274 878539 111712 830436 667152 710036 888012 688632 781008 690474 936554 361902 359617 769070 113499 959271 303583 576144 122652 122712 914876 109311 722524 817296 690743 020295 075978 191630 798222 025325 260811 199060 981823 345315 111440 556638 111121 707818 111182 413686 674805 613445 492477 006069 233380 014845 356326 526164 716476 730916 233581 719559 742759 319369 152478 753243 750794 481711 523757 173949 602243 969450 352639 946686 094660 348725 522751 171638 165174 874571 618773 310093 834974 358968 001302 684880 070370 085026 205138 595421 320631 736865 519616 694941 616090 520228 995139 224398 723694 387669 423598 722126 874712 237444 917710 686728 210949 832417 421919 775710 554626 703487 608894 184197 766681 035161 (639 digits), a[1219] = 5
                                                                                      A[1220]/B[1220] = 123 204990 415832 764658 841487 433623 242777 908525 164910 776277 448096 281884 731169 719110 668406 373912 330067 679500 512754 301826 404366 366593 820729 047180 102893 155807 884447 960109 726174 755457 855736 252213 182207 395860 698467 502970 095427 324770 154606 656455 536380 606088 885385 652285 682135 872524 022244 944121 062426 076019 210173 346914 853104 568879 381440 817742 700349 308496 463062 155055 494767 738260 864378 048067 988365 564960 411133 345754 734893 560249 381627 113163 649464 159502 725351 673838 152678 711187 005326 014714 312690 950557 462200 817293 866154 746532 709702 220245 410241 857048 885251 992977 679053 856957 769092 250418 551467 257192 503732 294014 355724 947036 932334 312386 649175 168538 369371 (639 digits)/11974 727371 688220 693685 806576 067405 186377 955026 173070 955355 084412 783633 203865 158836 686219 079299 919794 786905 619001 934080 154434 722930 757327 501080 283894 989347 945588 239969 640356 213185 014914 461029 499761 269437 936233 376663 664247 962321 758775 905705 616253 391513 185712 136877 292681 262940 045395 926844 430091 430053 086920 677615 556426 763916 805421 721259 840254 346784 584008 251188 688207 635539 117117 018197 266491 211875 340583 373713 133819 367099 686010 934875 565325 937304 547622 332800 728374 837335 913850 149300 088462 998524 108358 359319 831223 728972 520445 154115 759978 335923 159345 974209 116757 059860 522407 577439 871627 307795 433369 457521 955744 519102 184087 536785 324997 256032 965222 (641 digits), a[1220] = 24
                                                                                      A[1221]/B[1221] = 128 302421 264018 423683 029697 270984 200491 930167 377802 724485 443013 822735 441522 395322 712962 233938 084728 245817 883843 579518 090787 305234 270134 183960 322314 596199 545487 591717 295503 443509 538188 775439 296662 730137 368104 163794 263628 877586 359314 312341 209763 626632 218785 852964 577202 333261 709279 158975 675837 415811 199528 211688 149654 321430 395023 956780 666150 177454 468233 813142 068400 631089 595514 779742 964648 684783 514426 431170 242221 593026 888174 655113 527598 889870 048993 913643 125145 000046 634355 256222 817405 912939 191295 538790 036884 279944 079532 658605 716131 719601 968182 994429 530020 432888 373650 882892 854253 028498 638758 826309 311260 893527 355956 349699 152680 073169 588577 (639 digits)/12470 164646 566759 805398 637012 734557 896414 843038 861703 736363 774887 720187 565767 518454 455289 192799 879066 090489 195146 056732 277147 637806 866639 223605 101191 680090 965883 315947 831987 011407 040239 721840 698822 251261 281548 488104 220886 073443 466594 016888 029940 066318 799157 629354 298750 496320 060241 283170 956256 146529 817836 911197 275986 506676 124790 873738 593498 097579 065719 774945 862157 237783 086567 370837 213177 306535 689308 896464 305457 532274 560582 553648 875419 772278 906590 334103 413254 907705 998876 354438 683884 319155 845223 878936 526165 345063 040674 149254 984377 059617 547015 397807 838883 934572 759852 495150 558355 518745 265786 879441 731455 073728 887575 145679 509195 022714 000383 (641 digits), a[1221] = 1
                                                                                      A[1222]/B[1222] = 379 809832 943869 612024 900881 975591 643761 768859 920516 225248 334123 927355 614214 509756 094330 841788 499524 171136 280441 460862 585940 977062 360997 415100 747522 348206 975423 143544 317181 642476 932113 803091 775532 856135 434675 830558 622685 079942 873235 281137 955907 859353 322957 358214 836540 539047 440803 262072 414100 907641 609229 770291 152413 211740 171488 731304 032649 663405 399529 781339 631569 000440 055407 607553 917662 934527 439986 208095 219336 746303 157976 423390 704661 939242 823339 501124 402968 711280 274036 527159 947502 776435 844791 894873 939923 306420 868767 537456 842505 296252 821617 981836 739094 722734 516394 016204 259973 314189 781249 946632 978246 734091 644247 011784 954535 314877 546525 (639 digits)/36915 056664 821740 304483 080601 536520 979207 641103 896478 428082 634188 224008 335400 195745 596797 464899 677926 967884 009294 047544 708729 998544 490605 948290 486278 349529 877354 871865 304330 235999 095393 904710 897405 771960 499330 352872 106020 109208 691963 939481 676133 524150 784027 395585 890182 255580 165878 493186 342603 723112 722594 500010 108399 777269 055003 468737 027250 541942 715447 801080 412522 111105 290251 759871 692845 824946 719201 166641 744734 431648 807176 042173 316165 481862 360803 001007 554884 652747 911602 858177 456231 636835 798806 117192 883554 419098 601793 452625 728732 455158 253376 769824 794524 929006 042112 567740 988338 345285 964943 216405 418654 666559 959237 828144 343387 301460 965988 (641 digits), a[1222] = 2
                                                                                      A[1223]/B[1223] = 887 922087 151757 647732 831461 222167 488015 467887 218835 174982 111261 677446 669951 414834 901623 917515 083776 588090 444726 501243 262669 259358 992129 014161 817359 292613 496333 878805 929866 728463 402416 381622 847728 442408 237455 824911 508999 037472 105784 874617 121579 345338 864700 569394 250283 411356 590885 683120 504039 231094 417987 752270 454480 744910 738001 419388 731449 504265 267293 375821 331538 631969 706329 994850 799974 553838 394398 847360 680895 085633 204127 501894 936922 768355 695672 915891 931082 422607 182428 310542 712411 465810 880879 328537 916730 892785 817067 733519 401142 312107 611418 958103 008209 878357 406438 915301 374199 656878 201258 719575 267754 361710 644450 373269 061750 702924 681627 (639 digits)/86300 277976 210240 414364 798215 807599 854830 125246 654660 592529 043264 168204 236567 909945 648884 122599 234920 026257 213734 151821 694607 634895 847851 120186 073748 379150 720593 059678 440647 483405 231027 531262 493633 795182 280209 193848 432926 291860 850521 895851 382207 114620 367212 420526 079115 007480 391998 269543 641463 592755 263025 911217 492786 061214 234797 811212 647999 181464 496615 377106 687201 459993 667070 890580 598868 956429 127711 229747 794926 395572 174934 637995 507750 736003 628196 336118 523024 213201 822082 070793 596347 592827 442836 113322 293274 183260 244261 054506 441841 969934 053768 937457 427933 792584 844077 630632 535032 209317 195673 312252 568764 406848 806050 801968 195969 625635 932359 (641 digits), a[1223] = 2
                                                                                      A[1224]/B[1224] = 2155 654007 247384 907490 563804 419926 619792 704634 358186 575212 556647 282248 954117 339425 897578 676818 667077 347317 169894 463349 111279 495780 345255 443424 382240 933433 968090 901156 176915 099403 736946 566337 470989 740951 909587 480381 640683 154887 084805 030372 199066 550031 052358 497003 337107 361760 622574 628313 422179 369830 445205 274832 061374 701561 647491 570081 495548 671935 934116 532982 294646 264379 468067 597255 517612 042204 228783 902816 581126 917569 566231 427180 578507 475954 214685 332908 265133 556494 638893 148245 372325 708057 606550 551949 773385 091992 502903 004495 644789 920468 044455 898042 755514 479449 329271 846807 008372 627946 183767 385783 513755 457512 933147 758323 078036 720726 909779 (640 digits)/209515 612617 242221 133212 677033 151720 688867 891597 205799 613140 720716 560416 808536 015636 894565 710098 147767 020398 436762 351188 097945 268336 186308 188662 633775 107831 318540 991222 185625 202809 557448 967235 884673 362325 059748 740568 971872 692930 393007 731184 440547 753391 518452 236638 048412 270540 949875 032273 625530 908623 248646 322445 093971 899697 524599 091162 323248 904871 708678 555293 786925 031092 624393 541032 890583 737804 974623 626137 334587 222793 157045 318164 331666 953869 617195 673244 600933 079151 555766 999764 648926 822490 684478 343837 470102 785619 090315 561638 612416 395026 360914 644739 650392 514175 730267 829006 058402 763920 356289 840910 556183 480257 571339 432080 735326 552732 830706 (642 digits), a[1224] = 2
                                                                                      A[1225]/B[1225] = 20288 808152 378221 815147 905701 001507 066149 809596 442514 351895 121087 217687 257007 469667 979832 008883 087472 713944 973776 671385 264184 721382 099428 004981 257527 693519 209151 989211 522102 623097 034935 478660 086636 110975 423743 148346 275147 431455 869030 147966 913178 295618 335927 042424 284249 667202 194057 337941 303653 559568 424835 225759 006853 058965 565425 550122 191387 551688 674342 172661 983355 011384 918938 370150 458482 933676 453453 972709 911037 343759 300210 346520 143490 051943 627840 912066 317284 431058 932466 644751 063342 838329 339834 296085 877196 720718 343194 773980 204251 596320 011522 040487 807840 193401 369885 536564 449553 308393 855165 191626 891553 479327 042780 198176 764081 189466 869638 (641 digits)/1 971940 791531 390230 613278 891514 173086 054641 149621 506857 110795 529713 211955 513392 050677 699975 513482 564823 209843 144595 312514 576115 049921 524624 818149 777724 349632 587461 980678 111274 308691 248068 236385 455694 056107 817947 858969 179780 528234 387591 476511 347136 895144 033282 550268 514825 442348 940873 560006 271241 770364 500842 813223 338533 158491 956189 631673 557239 325309 874722 374750 769526 739827 286612 759876 614122 596673 899323 864983 806211 400710 588342 501474 492753 320830 182957 395319 931421 925565 823985 068675 436688 995243 603141 207859 524199 253832 057101 109253 953589 525171 302000 740114 281466 420166 416488 091687 060657 084600 402281 880447 574415 729166 948105 690694 813908 600231 408713 (643 digits), a[1225] = 9
                                                                                      A[1226]/B[1226] = 712263 939340 485148 437667 263339 472673 935036 040509 846188 891541 794699 901302 949378 777805 191698 987726 728622 335391 252077 961833 357744 744153 825235 617768 395710 206606 288410 523559 450506 907799 959688 319440 503253 625091 740597 672501 270843 255842 500860 209214 160306 896672 809804 981853 285845 713837 414581 456259 050053 954725 314438 176397 301231 765356 437385 824358 194112 981039 536092 576151 712071 662851 630910 552521 564514 720880 099672 947663 467433 949145 073593 555385 600659 293981 189117 255229 370088 643557 275225 714532 589325 049584 500750 914955 475270 317134 514720 093802 793595 791668 447727 315116 029921 248497 275265 626562 742738 421731 114549 092724 718127 233959 430454 694509 820878 352067 347109 (642 digits)/69 227443 316215 900292 597973 880029 209732 601308 128349 945798 490984 260678 978859 777257 789356 393708 681987 916579 364908 497598 289198 261972 015589 548176 823904 854127 344971 879710 314956 080226 007003 239837 240726 833965 326098 687923 804490 264191 181133 958709 409081 590339 083432 683341 496036 067302 752753 880449 632493 118992 871380 778144 785261 942632 446915 991236 199736 826625 290717 323961 671570 720360 925047 655840 136714 384874 621391 450958 900570 551986 247663 749032 869771 578033 182926 020704 509442 200700 473955 395244 403404 933041 656016 794420 618920 817076 669741 088854 385526 988049 776021 930940 548739 501717 220000 307351 038053 181400 724934 436155 656575 660734 001100 755038 606399 222127 560832 135661 (644 digits), a[1226] = 35
                                                                                      A[1227]/B[1227] = 732552 747492 863370 252815 169040 474181 001185 850106 288703 243436 915787 118990 206386 247473 171530 996609 816095 049336 225854 633218 621929 465535 924663 622749 653237 900125 497562 512770 972609 530896 994623 798100 589889 736067 164340 820847 545990 687298 369890 357181 073485 192291 145732 024277 570095 381039 608638 794200 353707 514293 739273 402156 308084 824322 002811 374480 385500 532728 210434 748813 695426 674236 549848 922672 022997 654556 553126 920373 378471 292904 373803 901905 744149 345924 816958 167295 687373 074616 207692 359283 652667 887913 840585 211041 352467 037852 857914 867782 997847 387988 459249 355603 837761 441898 645151 163127 192291 730124 969714 284351 609680 713286 473234 892686 584959 541534 216747 (642 digits)/71 199384 107747 290523 211252 771543 382818 655949 277971 452655 601779 790392 190815 290649 840034 093684 195470 481402 574751 642193 601712 838087 065511 072801 642054 631851 694604 467172 295634 191500 315694 487905 477112 289659 382206 505871 663459 443971 709368 346300 885592 937475 978576 716624 046304 582128 195102 821323 192499 390234 641745 278987 598485 281165 605407 947425 831410 383864 616027 198684 046321 489887 664874 942452 896590 998997 218065 350282 765554 358197 648374 337375 371246 070786 503756 203661 904762 132122 399521 219229 472080 369730 651260 397561 826780 341275 923573 145955 494780 941639 301193 232941 288853 783183 640166 723839 129740 242057 809534 838437 537023 235149 730267 703144 297094 036036 161063 544374 (644 digits), a[1227] = 1
                                                                                      A[1228]/B[1228] = 7 305238 666776 255480 713003 784703 740302 945708 691466 444518 082474 036783 972214 806855 005063 735477 957215 073477 779417 284769 660800 955109 933977 147208 222515 274851 307735 766473 138498 203992 685872 911302 502345 812261 249696 219665 060129 184759 441527 829873 423843 821673 627293 121393 200351 416704 143193 892330 604062 233421 583368 967898 795804 073995 184254 462688 194681 663617 775593 430005 315474 970911 730980 579550 856569 771493 611889 077815 231023 873675 585284 437828 672537 298003 407304 541740 760890 556446 315103 144456 948085 463336 040809 066017 814327 647473 657810 235953 903849 774222 283564 580971 515550 569774 225585 081626 094707 473363 992855 841977 651889 205253 653537 689568 728689 085514 225875 297832 (643 digits)/710 021900 285941 515001 499248 823919 655100 504851 630093 019698 907002 374208 696197 393106 349663 236866 441222 249202 537673 277340 704613 804755 605189 203391 602396 540792 596412 084260 975663 803728 848253 630986 534737 440899 765957 240768 775625 259936 565449 075417 379418 027622 890623 132957 912777 306456 508679 272358 364987 631104 647088 289033 171629 473122 895587 518068 682430 281406 834962 112118 088464 129349 908922 137916 206033 375849 583979 603503 790559 775765 083032 785411 210986 215111 716731 853661 652301 389802 069646 368309 652128 260617 517360 372477 059943 888559 981899 402453 838555 462803 486761 027412 148423 550369 981500 821903 205715 359921 010747 982093 489784 777081 573510 083337 280245 546453 010404 035027 (645 digits), a[1228] = 9
                                                                                      A[1229]/B[1229] = 15 343030 081045 374331 678822 738447 954786 892603 233039 177739 408384 989355 063419 820096 257600 642486 911039 963050 608170 795393 954820 532149 333490 219080 067780 202940 515597 030508 789767 380594 902642 817228 802792 214412 235459 603670 941105 915509 570354 029637 204868 716832 446877 388518 424980 403503 667427 393300 002324 820550 681031 675070 993764 456075 192830 928187 763843 712736 083915 070445 379763 637250 136197 708950 635811 565984 878334 708757 382421 125822 463473 249461 246980 340156 160533 900439 689076 800265 704822 496606 255454 579339 969531 972620 839696 647414 353473 329822 675482 546291 955117 621192 386704 977309 893068 808403 352542 139019 715836 653669 588130 020188 020361 852372 350064 755987 993284 812411 (644 digits)/1491 243184 679630 320526 209750 419382 693019 665652 538157 492053 415784 538809 583210 076862 539360 567417 077914 979807 650098 196875 010940 447598 275889 479584 846847 713436 887428 635694 246961 798958 012201 749878 546587 171458 914120 987409 214709 963844 840266 497135 644428 992721 759822 982539 871859 195041 212461 366039 922474 652443 935921 857053 941744 227411 396582 983563 196270 946678 285951 422920 223249 748587 482719 218285 308657 750696 386024 557290 346673 909727 814439 908197 793218 501009 937219 910985 209364 911726 538813 955848 776336 890965 685981 142515 946668 118395 887371 950863 171891 867246 274715 287765 585700 883923 603168 367645 541170 961899 831030 802624 516592 789312 877287 869818 857585 128942 181871 614428 (646 digits), a[1229] = 2
                                                                                      A[1230]/B[1230] = 22 648268 747821 629812 391826 523151 695089 838311 924505 622257 490859 026139 035634 626951 262664 377964 868255 036528 387588 080163 615621 487259 267467 366288 290295 477791 823332 796981 928265 584587 588515 728531 305138 026673 485155 823336 001235 100269 011881 859510 628712 538506 074170 509911 625331 820207 810621 285630 606387 053972 264400 642969 789568 530070 377085 390875 958525 376353 859508 500450 695238 608161 867178 288501 492381 337478 490223 786572 613444 999498 048757 687289 919517 638159 567838 442180 449967 356712 019925 641063 203540 042676 010341 038638 654024 294888 011283 565776 579332 320514 238682 202163 902255 547084 118653 890029 447249 612383 708692 495647 240019 225441 673899 541941 078753 841502 219160 110243 (644 digits)/2201 265084 965571 835527 708999 243302 348120 170504 168250 511752 322786 913018 279407 469968 889023 804283 519137 229010 187771 474215 715554 252353 881078 682976 449244 254229 483840 719955 222625 602686 860455 380865 081324 612358 680078 228177 990335 223781 405715 572553 023847 020344 650446 115497 784636 501497 721140 638398 287462 283548 583010 146087 113373 700534 292170 501631 878701 228085 120913 535038 311713 877937 391641 356201 514691 126545 970004 160794 137233 685492 897472 693609 004204 716121 653951 764646 861666 301528 608460 324158 428465 151583 203341 514993 006612 006955 869271 353317 010447 330049 761476 315177 734124 434293 584669 189548 746886 321820 841778 784718 006377 566394 450797 953156 137830 675395 192275 649455 (646 digits), a[1230] = 1
                                                                                      A[1231]/B[1231] = 83 287836 324510 263768 854302 307903 040056 407539 006556 044511 880962 067772 170323 700950 045593 776381 515805 072635 770935 035884 801684 993927 135892 317944 938666 636315 985595 421454 574564 134357 668190 002822 718206 294432 690927 073678 944811 216316 605999 608169 091006 332350 669388 918253 300975 864127 099291 250191 821485 982467 474233 603980 362470 046286 324087 100815 639419 841797 662440 571797 465479 461735 737732 574455 112955 578420 349006 068475 222756 124316 609746 311331 005533 254634 864049 226981 038978 870401 764599 419795 866074 707368 000555 088536 801769 532078 387324 027152 413479 507834 671164 227684 093471 618562 249030 478491 694290 976170 841914 140611 308187 696513 042060 478195 586326 280494 650765 143140 (644 digits)/8095 038439 576345 827109 336748 149289 737380 177165 042909 027310 384145 277864 421432 486769 206431 980267 635326 666838 213412 619522 157603 204659 919125 528514 194580 476125 338950 795559 914838 607018 593567 892473 790561 008534 954355 671943 185715 635189 057413 214794 715970 053755 711161 329033 225768 699534 375883 281234 784861 503089 684952 295315 281865 329014 273094 488458 832374 630933 648692 028035 158391 382399 657643 286889 852731 130334 296037 039672 758374 966206 506857 989024 805832 649374 899075 204925 794363 816312 364194 928324 061732 345715 296005 687494 966504 139263 495186 010814 203233 857395 559144 233298 788074 186804 357175 936291 781829 927362 356367 156778 535725 488496 229681 729287 271077 155127 758698 562793 (646 digits), a[1231] = 3
                                                                                      A[1232]/B[1232] = 105 936105 072331 893581 246128 831054 735146 245850 931061 666769 371821 093911 205958 327901 308258 154346 384060 109164 158523 116048 417306 481186 403359 684233 228962 114107 808928 218436 502829 718945 256705 731354 023344 321106 176082 897014 946046 316585 617881 467679 719718 870856 743559 428164 926307 684334 909912 535822 427873 036439 738634 246950 152038 576356 701172 491691 597945 218151 521949 072248 160718 069897 604910 862956 605336 915898 839229 855047 836201 123814 658503 998620 925050 892794 431887 669161 488946 227113 784525 060859 069614 750044 010896 127175 455793 826966 398607 592928 992811 828348 909846 429847 995727 165646 367684 368521 141540 588554 550606 636258 548206 921954 715960 020136 665080 121996 869925 253383 (645 digits)/10296 303524 541917 662637 045747 392592 085500 347669 211159 539062 706932 190882 700839 956738 095455 784551 154463 895848 401184 093737 873157 457013 800204 211490 643824 730354 822791 515515 137464 209705 454023 273338 871885 620893 634433 900121 176050 858970 463128 787347 739817 074100 361607 444531 010405 201032 097023 919633 072323 786638 267962 441402 395239 029548 565264 990090 711075 859018 769605 563073 470105 260337 049284 643091 367422 256880 266041 200466 895608 651699 404330 682633 810037 365496 553026 969572 656030 117840 972655 252482 490197 497298 499347 202487 973116 146219 364457 364131 213681 187445 320620 548476 522198 621097 941845 125840 528716 249183 198145 941496 542103 054890 680479 682443 408907 830522 950974 212248 (647 digits), a[1232] = 1
                                                                                      A[1233]/B[1233] = 1672 329412 409488 667487 546234 773724 067250 095302 972481 046052 458278 476440 259698 619469 669466 091577 276706 710098 148781 776611 061282 211723 186287 581443 373098 347933 119518 698002 117009 918536 518775 973133 068371 111025 332170 528903 135505 965100 874221 623364 886789 395201 822780 340727 195591 129150 747979 287528 239581 529063 553747 308232 643048 691636 841674 476189 608598 114070 491676 655519 876250 510199 811395 518804 193009 316902 937453 894192 765772 981536 487306 290644 881296 646551 342364 264403 373172 277108 532475 332681 910295 958028 163996 996168 638676 936574 366437 921087 305656 933068 318860 675404 029379 103257 764296 006308 817399 804489 101013 684489 531291 525833 781460 780245 562528 110447 699643 943885 (646 digits)/162539 591307 705110 766665 022959 038171 019885 392203 210302 113250 988128 141104 934031 837840 638268 748534 952285 104564 231174 025590 254965 059866 922188 700873 851951 431447 680823 528286 976801 752600 403916 992556 868845 321939 470864 173760 826478 519746 004345 025010 813226 165261 135272 996998 381846 715015 831242 075730 869718 302663 704388 916351 210450 772242 752069 339819 498512 516215 192775 474137 209970 287455 396912 933260 364064 983538 286655 046676 192504 741697 571818 228531 956393 131823 194479 748515 634815 583926 954023 715561 414694 805192 786213 724814 563246 332553 962046 472782 408451 669075 368452 460446 621053 503273 484852 823899 712573 665110 328556 279226 667271 311856 436876 965938 404694 612972 023311 746513 (648 digits), a[1233] = 15
                                                                                      A[1234]/B[1234] = 5122 924342 300797 896043 884833 152226 936896 531759 848504 804926 746656 523231 985054 186310 316656 429078 214180 239458 604868 445881 601153 116355 962222 428563 348257 157907 167484 312442 853859 474554 813033 650753 228457 654182 172594 483724 352564 211888 240546 337774 380087 056462 211900 450346 513081 071787 153850 398407 146617 623630 399876 171648 081184 651267 226195 920260 423739 560362 996979 038807 789469 600497 039097 419369 184364 866607 651591 537626 133520 068424 120422 870555 568940 832448 458980 462371 608463 058439 381951 058904 800502 624128 502887 115681 371824 636689 497921 356190 909782 627553 866428 456060 083864 475419 660572 387447 593740 002021 853647 689727 142081 499456 060342 360873 352664 453339 968857 085038 (646 digits)/497915 077447 657249 962632 114624 507105 145156 524278 842065 878815 671316 614197 502935 470260 010262 030156 011319 209541 094706 170508 638052 636614 566770 314112 199679 024697 865262 100376 067869 467506 665774 251009 478421 586712 047026 421403 655486 418208 476163 862380 179495 569883 767426 435526 155945 346079 590750 146825 681478 694629 381129 190456 026591 346276 821473 009549 206613 407664 347931 985485 100016 122703 240023 442872 459617 207495 126006 340495 473122 876792 119785 368229 679216 760966 136466 215119 560476 869621 834726 399166 734281 912876 857988 376931 662855 143881 250596 782478 439036 194671 425977 929816 385359 130918 396403 597539 666437 244514 183814 779176 543916 990459 991110 580258 622991 669439 020909 451787 (648 digits), a[1234] = 3
                                                                                      A[1235]/B[1235] = 221958 076131 343798 197374 594060 319482 353800 960976 458187 657902 564508 975415 617028 630813 285692 541940 486457 006818 158124 949519 910866 215029 561852 009667 348156 137941 321344 133044 832967 324393 479222 955521 892050 240858 753733 329050 295767 076295 217714 147663 230532 823076 934499 705627 258077 215998 363546 419035 544139 345170 748422 689100 133988 696127 568099 047387 829399 209679 361775 324254 823443 331572 492584 551679 120698 581031 955890 012116 507135 923773 665489 724534 345752 441835 078524 146382 537083 790001 956370 865588 331908 795553 788142 970467 627136 314222 777056 237296 426309 917884 575284 285987 635551 546303 168908 666555 348219 891428 807864 342756 640796 002444 376182 297799 727099 604066 360498 600519 (648 digits)/21 572887 921556 966859 159845 951812 843692 261615 936193 419134 902324 854742 551597 560257 059021 079536 045243 439011 114831 303539 357461 691228 434293 293312 207698 438149 493455 887093 844457 895188 855387 032209 785964 440973 550557 493000 294118 012394 502710 479391 107358 531535 670263 134609 724623 087496 596438 233498 389235 173302 171727 092944 105960 353878 662146 075408 750435 382889 045782 153850 849996 510663 563694 717920 976776 127604 905828 704927 687981 536788 443758 722589 062408 162713 853367 062526 998656 735320 977665 847258 879730 988817 058897 679713 932876 066017 519447 737708 119355 287008 039946 685503 442551 191496 132764 530207 518105 369375 179220 232591 783818 055701 901636 054631 917059 193336 398849 922418 173354 (650 digits), a[1235] = 43
                                                                                      A[1236]/B[1236] = 227081 000473 644596 093418 478893 471709 290697 492736 306692 462829 311165 498647 602082 817123 602348 971018 700637 246276 762993 395401 512019 331385 524074 438230 696413 295848 488828 445487 686826 798948 292256 606275 120507 895040 926327 812774 648331 288183 458260 485437 610619 879539 146400 155973 771158 287785 517396 817442 690756 968801 148298 860748 215173 347394 794294 967648 253138 770042 358754 363062 612912 932069 531681 971048 305063 447639 607481 549742 640655 992197 785912 595089 914693 274283 537504 608754 145546 848441 338321 924493 132411 419682 291030 086148 998960 950912 274977 593487 336092 545438 441712 742047 719416 021722 829481 054002 941959 893450 661512 032483 782877 501900 436524 658673 079764 057406 329355 685557 (648 digits)/22 070802 999004 624109 122478 066437 350797 406772 460472 261200 781140 526059 165795 063192 529281 089798 075399 450330 324372 398245 527970 329281 070907 860082 521810 637828 518153 752355 944833 963058 322893 697984 036973 919395 137269 540026 715521 667880 920918 955554 969738 711031 240146 902036 160149 243441 942517 824248 536060 854780 866356 474073 296416 380470 008422 896881 759984 589502 453446 501782 835481 610679 686397 957944 419648 587222 113323 830934 028477 009911 320550 842374 430637 841930 614333 198993 213776 295797 847287 681985 278897 723098 971774 537702 309807 728872 663328 988304 901833 726044 234618 111481 372367 576855 263682 926611 115645 035812 423734 416406 562994 599618 892096 045742 497317 816328 068288 943327 625141 (650 digits), a[1236] = 1
                                                                                      A[1237]/B[1237] = 676120 077078 632990 384211 551847 262900 935195 946449 071572 583561 186839 972710 821194 265060 490390 483977 887731 499371 684111 740322 934904 877800 610000 886128 740982 729638 299001 024020 206620 922290 063736 168072 133066 030940 606388 954599 592429 652662 134235 118538 451772 582155 227300 017574 800393 791569 398340 053920 925653 282773 045020 410596 564335 390917 156688 982684 335676 749764 079284 050380 049269 195711 555948 493775 730825 476311 170853 111601 788447 908169 237314 914714 175138 990402 153533 363890 828177 486884 633014 714574 596731 634918 370203 142765 625058 216047 327011 424271 098495 008761 458709 770083 074383 589748 827870 774561 232139 678330 130888 407724 206551 006245 249231 615145 886627 718879 019209 971633 (648 digits)/65 714493 919566 215077 404802 084687 545287 075160 857137 941536 464605 906860 883187 686642 117583 259132 196042 339671 763576 100030 413402 349790 576109 013477 251319 713806 529763 391805 734125 821305 501174 428177 859912 279763 825096 573053 725161 348156 344548 390501 046835 953598 150556 938682 044921 574380 481473 881995 461356 882863 904440 041090 698793 114818 678991 869172 270404 561893 952675 157416 520959 732022 936490 633809 816073 302049 132476 366795 744935 556611 084860 407337 923683 846575 082033 460513 426209 326916 672241 211229 437526 435015 002446 755118 552491 523762 846105 714317 923022 739096 509182 908466 187286 345206 660130 383429 749395 441000 026689 065404 909807 254939 685828 146116 911694 825992 535427 809073 423636 (650 digits), a[1237] = 2
                                                                                      A[1238]/B[1238] = 3 607681 385866 809548 014476 238129 786213 966677 224981 664555 380635 245365 362201 708054 142426 054301 390908 139294 743135 183552 097016 186543 720388 574078 868874 401326 944039 983833 565588 719931 410398 610937 446635 785838 049743 958272 585772 610479 551494 129436 078129 869482 790315 282900 243847 773127 245632 509097 087047 319023 382666 373400 913731 036850 301980 577739 881069 931522 518862 755174 614962 859258 910627 311424 439926 959190 829195 461747 107751 582895 533043 972487 168660 790388 226294 305171 428208 286434 282864 503395 497366 116069 594274 142045 799977 124252 031148 910034 714842 828567 589245 735261 592463 091333 970466 968834 926809 102658 285101 315954 071104 815632 533126 682682 734402 512902 651801 425405 543722 (649 digits)/350 643272 596835 699496 146488 489875 077232 782576 746161 968883 104170 060363 581733 496403 117197 385459 055611 148689 142252 898397 594982 078233 951452 927468 778409 206861 166970 711384 615463 069585 828765 838873 336535 318214 262752 405295 341328 408662 643660 908060 203918 479021 992931 595446 384757 115344 349887 234225 842845 269100 388556 679526 790381 954563 403382 242743 112007 398972 216822 288865 440280 270794 368851 126993 500015 097467 775705 664912 753154 792966 744852 879064 049057 074806 024500 501560 344822 930381 208493 738132 466529 898173 984008 313295 072265 347686 893857 559894 516947 421526 780532 653812 308799 302888 564334 843759 862622 240812 557179 743431 112030 874317 321236 776327 055791 946290 745427 988694 743321 (651 digits), a[1238] = 5
                                                                                      A[1239]/B[1239] = 4 283801 462945 442538 398687 789977 049114 901873 171430 736127 964196 432205 334912 529248 407486 544691 874886 027026 242506 867663 837339 121448 598189 184079 755003 142309 673678 282834 589608 926552 332688 674673 614707 918904 080684 564661 540372 202909 204156 263671 196668 321255 372470 510200 261422 573521 037201 907437 140968 244676 665439 418421 324327 601185 692897 734428 863754 267199 268626 834458 665342 908528 106338 867372 933702 690016 305506 632600 219353 371343 441213 209802 083374 965527 216696 458704 792099 114611 769749 136410 211940 712801 229192 512248 942742 749310 247196 237046 139113 927062 598007 193971 362546 165717 560215 796705 701370 334797 963431 446842 478829 022183 539371 931914 349548 399530 370680 444615 515355 (649 digits)/416 357766 516401 914573 551290 574562 622519 857737 603299 910419 568775 967224 464921 183045 234780 644591 251653 488360 905828 998428 008384 428024 527561 940946 029728 920667 696734 103190 349588 890891 329940 267051 196447 597978 087848 978349 066489 756818 988209 298561 250754 432620 143488 534128 429678 689724 831361 116221 304202 151964 292996 720617 489175 069382 082374 111915 382411 960866 169497 446281 961240 002817 305341 760803 316088 399516 908182 031708 498090 349577 829713 286401 972740 921381 106533 962073 771032 257297 880734 949361 904056 333188 986455 068413 624756 871449 739963 274212 439970 160623 289715 562278 496085 648095 224465 227189 612017 681812 583868 808836 021838 129257 007064 922443 967486 772283 280855 797768 166957 (651 digits), a[1239] = 1
                                                                                      A[1240]/B[1240] = 7 891482 848812 252086 413164 028106 835328 868550 396412 400683 344831 677570 697114 237302 549912 598993 265794 166320 985642 051215 934355 307992 318577 758158 623877 543636 617718 266668 155197 646483 743087 285611 061343 704742 130428 522934 126144 813388 755650 393107 274798 190738 162785 793100 505270 346648 282834 416534 228015 563700 048105 791822 238058 638035 994878 312168 744824 198721 787489 589633 280305 767787 016966 178797 373629 649207 134702 094347 327104 954238 974257 182289 252035 755915 442990 763876 220307 401046 052613 639805 709306 828870 823466 654294 742719 873562 278345 147080 853956 755630 187252 929232 955009 257051 530682 765540 628179 437456 248532 762796 549933 837816 072498 614597 083950 912433 022481 870021 059077 (649 digits)/767 001039 113237 614069 697779 064437 699752 640314 349461 879302 672946 027588 046654 679448 351978 030050 307264 637050 048081 896825 603366 506258 479014 868414 808138 127528 863704 814574 965051 960477 158706 105924 532982 916192 350601 383644 407818 165481 631870 206621 454672 911642 136420 129574 814435 805069 181248 350447 147047 421064 681553 400144 279557 023945 485756 354658 494419 359838 386319 735147 401520 273611 674192 887796 816103 496984 683887 696621 251245 142544 574566 165466 021797 996187 131034 463634 115855 187679 089228 687494 370586 231362 970463 381708 697022 219136 633820 834106 956917 582150 070248 216090 804884 950983 788800 070949 474639 922625 141048 552267 133869 003574 328301 698771 023278 718574 026283 786462 910278 (651 digits), a[1240] = 1
                                                                                      A[1241]/B[1241] = 20 066767 160569 946711 225015 846190 719772 638973 964255 537494 653859 787346 729141 003853 507311 742678 406474 359668 213790 970095 706049 737433 235344 700397 002758 229582 909114 816170 900004 219519 818863 245895 737395 328388 341541 610529 792661 829686 715457 049885 746264 702731 698042 096401 271963 266817 602870 740505 596999 372076 761651 002065 800444 877257 682654 358766 353402 664642 843606 013725 225954 444102 140271 224967 680961 988430 574910 821294 873563 279821 389727 574380 587446 477358 102677 986457 232713 916703 874976 416021 630554 370542 876125 820838 428182 496434 803886 531207 847027 438322 972513 052437 272564 679820 621581 327786 957729 209710 460496 972435 578696 697815 684369 161108 517450 224396 415644 184657 633509 (650 digits)/1950 359844 742877 142712 946848 703438 022025 138366 302223 669024 914668 022400 558230 541941 938736 704691 866182 762461 001992 792079 215117 440541 485591 677775 646005 175725 424143 732340 279692 811845 647352 478900 262413 430362 789051 745637 882126 087782 251949 711804 160100 255904 416328 793278 058550 299863 193857 817115 598296 994093 656103 520906 048289 117273 053886 821232 371250 680542 942136 916576 764280 550040 653727 536396 948295 393486 275957 424951 000580 634666 978845 617334 016336 913755 368602 889342 002742 632656 059192 324350 645228 795914 927381 831831 018801 309723 007604 942426 353805 324923 430211 994460 105855 550062 802065 369088 561297 527062 865965 913370 289576 136405 663668 319986 014044 209431 333423 370693 987513 (652 digits), a[1241] = 2
                                                                                      A[1242]/B[1242] = 108 225318 651661 985642 538243 259060 434192 063420 217690 088156 614130 614304 342819 256570 086471 312385 298165 964662 054596 901694 464603 995158 495301 260143 637668 691551 163292 347522 655218 744082 837403 515089 748320 346683 838136 575583 089453 961822 332935 642536 006121 704396 652996 275106 865086 680736 297188 119062 213012 424083 856360 802151 240283 024324 408150 106000 511837 521936 005519 658259 410077 988297 718322 303635 778439 591360 009256 200821 694921 353345 922895 054192 189268 142705 956380 696162 383876 984565 427495 719913 862078 681585 204095 758486 883632 355736 297777 803120 089093 947245 049818 191419 317832 656154 638589 404475 416825 486008 551017 624974 443417 326894 494344 420139 671202 034415 100702 793309 226622 (651 digits)/10518 800262 827623 327634 432022 581627 809878 332145 860580 224427 246286 139590 837807 389158 045661 553509 638178 449355 058045 857221 678953 708965 906973 257293 038164 006155 984423 476276 363516 019705 395468 500425 845050 068006 295860 111833 818448 604392 891618 765642 255174 191164 218064 095965 107187 304385 150537 436025 138532 391532 962071 004674 521002 610310 755190 460820 350672 762553 097004 318031 222923 023814 942830 569781 557580 464416 063674 821376 254148 315879 468794 252136 103482 564963 974048 910344 129568 350959 385190 309247 596730 210937 607372 540863 791028 767751 671845 546238 725944 206767 221308 188391 334162 701297 799126 916392 281127 557939 470878 119118 581749 685602 646643 298701 093499 765730 693400 639932 847843 (653 digits), a[1242] = 5
                                                                                      A[1243]/B[1243] = 236 517404 463893 917996 301502 364311 588156 765814 399635 713807 882121 015955 414779 516993 680254 367449 002806 288992 322984 773484 635257 727750 225947 220684 278095 612685 235699 511216 210441 707685 493670 276075 234036 021756 017814 761695 971569 753331 381328 334957 758508 111525 004034 646615 002136 628290 197246 978630 023024 220244 474372 606368 281010 925906 498954 570767 377077 708514 854645 330244 046110 420697 576915 832239 237841 171150 593423 222938 263405 986513 235517 682764 965982 762770 015439 378782 000467 885834 729967 855849 354711 733713 284317 337812 195447 207907 399442 137448 025215 332813 072149 435275 908229 992129 898760 136737 791380 181727 562532 222384 465531 351604 673058 001387 859854 293226 617049 771276 086753 (651 digits)/22987 960370 398123 797981 810893 866693 641781 802658 023384 117879 407240 301582 233845 320258 030059 811711 142539 661171 118084 506522 573024 858473 299538 192361 722333 188037 392990 684893 006724 851256 438289 479751 952513 566375 380771 969305 519023 296568 035187 243088 670448 638232 852456 985208 272924 908633 494932 689165 875361 777159 580245 530255 090294 337894 564267 742873 072596 205649 136145 552639 210126 597670 539388 675960 063456 322318 403307 067703 508877 266425 916434 121606 223302 043683 316700 710030 261879 334574 829572 942845 838689 217790 142126 913558 600858 845226 351296 034903 805693 738457 872828 371242 774180 952658 400319 201873 123552 642941 807722 151607 453075 507610 956954 917388 201043 740892 720224 650559 683199 (653 digits), a[1243] = 2
                                                                                      A[1244]/B[1244] = 3182 951576 682282 919594 457773 995111 080230 019007 412954 367659 081703 821724 734952 977487 929778 089222 334647 721562 253398 956994 722954 455911 432615 129039 252911 656459 227385 993333 390960 943994 255117 104067 790788 629512 069728 477630 719860 755130 290203 996986 866727 154221 705446 681101 892862 848508 861398 841252 512327 287262 023204 684938 893425 061108 894559 525976 413847 732629 115908 951432 009513 457366 218228 122745 870374 816317 723758 099019 119199 178017 984624 930136 747044 058716 157092 620328 389959 500416 917077 845955 473331 219857 900221 150045 424446 058532 490525 589944 416893 273814 987760 850006 124822 553843 322471 182066 704767 848466 863936 515972 495324 897755 244098 438181 849307 846361 122349 819898 354411 (652 digits)/309362 285078 003232 701397 973642 848645 153041 766700 164573 756859 540410 060159 877796 552512 436439 105754 491194 044579 593144 442015 128276 869118 800969 757995 428495 450642 093302 379885 450939 086039 093231 737201 227726 430886 245895 712805 565751 459777 349052 925794 971006 488191 300004 903672 655211 116620 584662 395181 518235 494607 505262 897990 694829 002940 090671 118170 294423 435991 866896 502340 954568 793531 954883 357262 382512 654555 306666 701521 869552 779416 382437 833017 006409 132847 091158 140737 533999 700432 169638 566243 499690 042209 455022 417125 602193 755694 238693 999988 199962 806719 568077 014547 398515 085857 003276 540742 887311 916182 971266 090015 471731 284545 087057 224747 707068 397336 056321 097208 729430 (654 digits), a[1244] = 13
                                                                                      A[1245]/B[1245] = 19334 226864 557591 435563 048146 334978 069536 879858 877361 919762 372343 946303 824497 381921 258922 902783 010692 618365 843378 515452 972984 463218 821637 994919 795565 551440 600015 471216 556207 371651 024372 900481 978767 798828 436185 627480 290734 284113 122552 316878 958871 036855 236714 733226 359313 719343 365640 026145 096987 943816 613600 716001 641561 292559 866311 726625 860164 104289 550099 038836 103191 164894 886284 568714 460090 069056 935971 817052 978601 054621 143267 263585 448247 115066 957995 100752 340224 888336 232434 931582 194699 052860 685644 238084 742123 559102 342595 677114 526574 975702 998714 535312 657165 315189 833587 229138 019987 272528 746151 318219 437480 738136 137648 630478 955701 371393 351148 690666 213219 (653 digits)/1 879161 670838 417520 006369 652750 958564 560032 402859 010826 659036 649700 662541 500624 635332 648694 446238 089703 928648 676951 158613 342686 073186 105356 740334 293305 891889 952804 964205 712359 367490 997679 902959 318872 151692 856146 246138 913532 055232 129504 797858 496487 567380 652486 407244 204191 608357 002907 060254 984774 744804 611822 918199 259268 355535 108294 451894 839136 821600 337524 566684 937539 358862 268688 819534 358532 249650 243307 276834 726193 942924 211061 119708 261756 840765 863649 554455 465877 537167 847404 340306 836829 471046 872261 416312 214021 379391 783460 034833 005470 578775 281290 458527 165271 467800 419978 446330 447424 140039 635318 691700 283463 214881 479298 265874 443454 124909 058151 233812 059779 (655 digits), a[1245] = 6
                                                                                      A[1246]/B[1246] = 22517 178441 239874 355157 505920 330089 149766 898866 290316 287421 454047 768028 559450 359409 188700 992005 345340 339928 096777 472447 695938 919130 254253 123959 048477 207899 827401 464549 947168 315645 279490 004549 769556 428340 505914 105111 010595 039243 412756 313865 825598 191076 942161 414328 252176 567852 227038 867397 609315 231078 636805 400940 534986 353668 760871 252602 274011 836918 666007 990268 112704 622261 104512 691460 330464 885374 659729 916072 097800 232639 127892 193722 195291 173783 115087 721080 730184 388753 149512 777537 668030 272718 585865 388130 166569 617634 833121 267058 943468 249517 986475 385318 781987 869033 156058 411204 724755 120995 610087 834191 932805 635891 381747 068660 805009 217754 473498 510564 567630 (653 digits)/2 188523 955916 420752 707767 626393 807209 713074 169559 175400 415896 190110 722701 378421 187845 085133 551992 580897 973228 270095 600628 470962 942304 906326 498329 721801 342532 046107 344091 163298 453530 090911 640160 546598 582579 102041 958944 479283 515009 478557 723653 467494 055571 952491 310916 859402 724977 587569 455436 503010 239412 117085 816189 954097 358475 198965 570065 133560 257592 204421 069025 892108 152394 223572 176796 741044 904205 549973 978356 595746 722340 593498 952725 268165 973612 954807 695192 999877 237600 017042 906550 336519 513256 327283 833437 816215 135086 022154 034821 205433 385494 849367 473074 563786 553657 423254 987073 334736 056222 606584 781715 755194 499426 566355 490622 150522 522245 114472 331020 789209 (655 digits), a[1246] = 1
                                                                                      A[1247]/B[1247] = 86885 762188 277214 501035 565907 325245 518837 576457 748310 782026 734487 250389 502848 460148 825025 878799 046713 638150 133710 932796 060801 220609 584397 366796 940997 175140 082219 864866 397712 318586 862842 914131 287437 083849 953927 942813 322519 401843 360821 258476 435665 610086 063198 976211 115843 422900 046756 628337 924933 637052 524016 918823 246520 353566 148925 484432 682199 615045 548123 009640 441305 031678 199822 643095 451484 725180 915161 565269 272001 752538 526943 844752 034120 636416 303258 263994 530778 054595 680973 264195 198789 871016 443240 402475 241832 412006 841959 478291 356979 724256 958140 691269 003128 922289 301762 462752 194252 635515 576414 820795 235897 645810 282889 836461 370729 024656 771644 222359 916109 (653 digits)/8 444733 538587 679778 129672 531932 380193 699254 911536 537027 906725 220032 830645 635888 198867 904095 102215 832397 848333 487237 960498 755574 900100 824336 235323 458709 919486 091126 996479 202254 728081 270414 823440 958667 899430 162272 122972 351382 600260 565177 968818 898969 734096 509960 339994 782399 783289 765615 426564 493805 463040 963080 366769 121560 430960 705191 162090 239817 594376 950787 773762 613863 816044 939405 349924 581666 962266 893229 211904 513434 109945 991557 977884 066254 761604 728072 640034 465509 249967 898533 059957 846388 010815 854112 916625 662666 784649 849922 139296 621770 735259 829392 877750 856631 128772 689743 407550 451632 308707 455073 036847 549046 713161 178364 737740 895021 691644 401568 226874 427406 (655 digits), a[1247] = 3
                                                                                      A[1248]/B[1248] = 109402 940629 517088 856193 071827 655334 668604 475324 038627 069448 188535 018418 062298 819558 013726 870804 392053 978078 230488 405243 756740 139739 838650 490755 989474 383039 909621 329416 344880 634232 142332 918681 056993 512190 459842 047924 333114 441086 773577 572342 261263 801163 005360 390539 368019 990752 273795 495735 534248 868131 160822 319763 781506 707234 909796 737034 956211 451964 214130 999908 554009 653939 304335 334555 781949 610555 574891 481341 369801 985177 654836 038474 229411 810199 418345 985075 260962 443348 830486 041732 866820 143735 029105 790605 408402 029641 675080 745350 300447 973774 944616 076587 785116 791322 457820 873956 919007 756511 186502 654987 168703 281701 664636 905122 175738 242411 245142 732924 483739 (654 digits)/10 633257 494504 100530 837440 158326 187403 412329 081095 712428 322621 410143 553347 014309 386712 989228 654208 413295 821561 757333 561127 226537 842405 730662 733653 180511 262018 137234 340570 365553 181611 361326 463601 505266 482009 264314 081916 830666 115270 043735 692472 366463 789668 462451 650911 641802 508267 353184 882000 996815 702453 080166 182959 075657 789435 904156 732155 373377 851969 155208 842788 505971 968439 162977 526721 322711 866472 443203 190261 109180 832286 585056 930609 334420 735217 682880 335227 465386 487567 915575 966508 182907 524072 181396 750063 478881 919735 872076 174117 827204 120754 678760 350825 420417 682430 112998 394623 786368 364930 061657 818563 304241 212587 744720 228363 045544 213889 516040 557895 216615 (656 digits), a[1248] = 1
                                                                                      A[1249]/B[1249] = 1 071512 227853 931014 206773 212356 223257 536277 854374 095954 407060 431302 416152 063537 836170 948567 716038 575199 440854 208106 579989 871462 478268 132251 783600 846266 622499 268811 829613 501638 026676 143839 182260 800378 693564 092506 374132 320549 371624 323019 409556 787039 820553 111442 491065 428023 339670 510916 089957 733173 450232 971417 796697 280080 718680 337096 117747 288102 682723 475302 008817 427391 917131 938840 654097 489031 220181 089184 897341 600219 619137 420468 191020 098826 928211 068372 129671 879440 044735 155347 639791 000171 164631 705192 517923 917450 678781 917686 186444 061011 488231 459685 380559 069180 044191 422150 328364 465322 444116 254938 715679 754227 181125 264621 982560 952373 206357 977928 818680 269760 (655 digits)/104 144050 989124 584555 666633 956868 066824 410216 641397 948882 810317 911324 810768 764672 679284 807152 990091 552060 242389 303240 010643 794415 481752 400300 838202 083311 277649 326236 061612 492233 362583 522352 995854 506066 237513 541098 860223 827377 637690 958799 201070 197143 841112 672025 198199 558622 357695 944279 364573 465146 785118 684576 013400 802480 535883 842601 751488 600218 262099 347667 358859 167611 531997 406203 090416 486073 760518 882057 924254 496061 600525 257070 353368 076041 378563 873995 657081 653987 638079 138716 758531 492555 727465 486683 667196 972604 062272 698607 706357 066607 822051 938236 035179 640390 270643 706728 959164 528947 593078 009993 403917 287217 626450 880846 793008 304919 616650 045933 247931 376941 (657 digits), a[1249] = 9
                                                                                      A[1250]/B[1250] = 1 180915 168483 448103 062966 284183 878592 204882 329698 134581 476508 619837 434570 125836 655728 962294 586842 967253 418932 438594 985233 628202 618007 970902 274356 835741 005539 178433 159029 846518 660908 286172 100941 857372 205754 552348 422056 653663 812711 096596 981899 048303 621716 116802 881604 796043 330422 784711 585693 267422 318364 132240 116461 061587 425915 246892 854782 244314 134687 689433 008725 981401 571071 243175 988653 270980 830736 664076 378682 970021 604315 075304 229494 328238 738410 486718 114747 140402 488083 985833 681523 866991 308366 734298 308529 325852 708423 592766 931794 361459 462006 404301 457146 854296 835513 879971 202321 384330 200627 441441 370666 922930 462826 929258 887683 128111 448769 223071 551604 753499 (655 digits)/114 777308 483628 685086 504074 115194 254227 822545 722493 661311 132939 321468 364115 778982 065997 796381 644299 965356 063951 060573 571771 020953 324158 130963 571855 263822 539667 463470 402182 857786 544194 883679 459456 011332 719522 805412 942140 658043 752961 002534 893542 563607 630781 134476 849111 200424 865963 297464 246574 461962 487571 764742 196359 878138 325319 746758 483643 973596 114068 502876 201647 673583 500436 569180 617137 808785 626991 325261 114515 605242 432811 842127 283977 410462 113781 556875 992309 119374 125647 054292 725039 675463 251537 668080 417260 451485 982008 570683 880474 893811 942806 616996 386005 060807 953073 819727 353788 315315 958008 071651 222480 591458 839038 625567 021371 350463 830539 561973 805826 593556 (657 digits), a[1250] = 1
                                                                                      A[1251]/B[1251] = 2 252427 396337 379117 269739 496540 101849 741160 184072 230535 883569 051139 850722 189374 491899 910862 302881 542452 859786 646701 565223 499665 096276 103154 057957 682007 628038 447244 988643 348156 687584 430011 283202 657750 899318 644854 796188 974213 184335 419616 391455 835343 442269 228245 372670 224066 670093 295627 675651 000595 768597 103657 913158 341668 144595 583988 972529 532416 817411 164735 017543 408793 488203 182016 642750 760012 050917 753261 276024 570241 223452 495772 420514 427065 666621 555090 244419 019842 532819 141181 321314 867162 472998 439490 826453 243303 387205 510453 118238 422470 950237 863986 837705 923476 879705 302121 530685 849652 644743 696380 086346 677157 643952 193880 870244 080484 655127 201000 370285 023259 (655 digits)/218 921359 472753 269642 170708 072062 321052 232762 363891 610193 943257 232793 174884 543654 745282 603534 634391 517416 306340 363813 582414 815368 805910 531264 410057 347133 817316 789706 463795 350019 906778 406032 455310 517398 957036 346511 802364 485421 390651 961334 094612 760751 471893 806502 047310 759047 223659 241743 611147 927109 272690 449318 209760 680618 861203 589360 235132 573814 376167 850543 560506 841195 032433 975383 707554 294859 387510 207319 038770 101304 033337 099197 637345 486503 492345 430871 649390 773361 763726 193009 483571 168018 979003 154764 084457 424090 044281 269291 586831 960419 764858 555232 421184 701198 223717 526456 312952 844263 551086 081644 626397 878676 465489 506413 814379 655383 447189 607907 053757 970497 (657 digits), a[1251] = 1
                                                                                      A[1252]/B[1252] = 37 219753 509881 513979 378798 228825 508188 063445 274853 823155 613613 438075 046125 155828 526127 536091 432947 646499 175518 785820 028809 622844 158425 621367 201679 747863 054154 334352 977323 417025 662259 166352 632184 381386 594852 870025 161080 241074 762077 810459 245192 413798 698023 768728 844328 381110 051915 514754 396109 276954 615917 790766 726994 528277 739444 590716 415254 762983 213266 325193 289420 522097 382322 155442 272665 431173 645420 716256 795076 093881 179555 007662 957725 161289 404355 368162 025451 457883 013190 244734 822561 741590 876341 766151 531781 218706 903711 760016 823609 120994 665812 228090 860441 629926 910798 713915 693294 978772 516526 583522 752213 757452 766062 031352 811588 415865 930804 439077 476165 125643 (656 digits)/3617 519060 047680 999361 235403 268191 391063 546743 544759 424414 225055 046159 162268 477457 990519 452935 794564 244016 965396 881590 890408 066854 218726 631194 132772 817963 616736 098773 822908 458105 052649 380198 744424 289716 032104 349601 779972 424786 003392 383880 407346 735631 181082 038509 606083 345180 444511 165362 024941 295710 850618 953833 552530 768040 104577 176522 245765 154626 132754 111573 169757 132704 019380 175319 938006 526535 827154 642365 734837 226106 966205 429289 481505 194517 991308 450822 382561 493162 345266 142444 462178 363766 915588 144305 768579 236926 690508 879349 269786 260528 180543 500715 124960 279979 532554 243028 361033 823532 775385 377965 244846 650282 286870 728188 051445 836598 985573 288486 665954 121508 (658 digits), a[1252] = 16
                                                                                      A[1253]/B[1253] = 113 911687 925981 921055 406134 183016 626413 931496 008633 700002 724409 365364 989097 656860 070282 519136 601724 481950 386343 004161 651652 368197 571552 967255 662996 925596 790501 450303 920613 599233 674361 929069 179755 801910 683877 254930 279429 697437 470568 850994 127033 076739 536340 534431 905655 367396 825839 839890 863978 831459 616350 475958 094141 926501 362929 356138 218293 821366 457210 140314 885804 975085 635169 648343 460747 053532 987179 902031 661252 851884 762117 518761 293689 910933 879687 659576 320773 393491 572389 875385 789000 091935 102023 737945 421796 899424 098340 790503 589065 785454 947674 548259 419030 813257 612101 443868 610570 785970 194323 446948 342987 949515 942138 287939 305009 328082 447540 518232 798780 400188 (657 digits)/11071 478539 615796 267725 876917 876636 494242 872992 998169 883436 618422 371270 661689 976028 716840 962342 018084 249467 202531 008586 253639 015931 462090 424846 808375 801024 667525 086027 932520 724335 064726 546628 688583 386547 053349 395317 142281 759779 400829 112975 316652 967645 015139 922030 865560 794588 557192 737829 685971 814241 824547 310818 867352 984739 174935 118926 972428 037692 774430 185263 069778 239307 090574 501343 521573 874466 868974 134416 243281 779624 931953 387066 081861 070057 466270 783338 797075 252848 799524 620342 870106 259319 725767 587681 390195 134870 115807 907339 396190 742004 306489 057377 796065 541136 821380 255541 396054 314861 877242 215540 360937 829523 326101 690977 968717 165180 403909 473367 051620 335021 (659 digits), a[1253] = 3
                                                                                      A[1254]/B[1254] = 151 131441 435863 435034 784932 411842 134601 994941 283487 523158 338022 803440 035222 812688 596410 055228 034672 128449 561861 789981 680461 991041 729978 588622 864676 673459 844655 784656 897937 016259 336621 095421 811940 183297 278730 124955 440509 938512 232646 661453 372225 490538 234364 303160 749983 748506 877755 354645 260088 108414 232268 266724 821136 454779 102373 946854 633548 584349 670476 465508 175225 497183 017491 803785 733412 484706 632600 618288 456328 945765 941672 526424 251415 072223 284043 027738 346224 851374 585580 120120 611561 833525 978365 504096 953578 118131 002052 550520 412674 906449 613486 776350 279472 443184 522900 157784 303865 764742 710850 030471 095201 706968 708200 319292 116597 743948 378344 957310 274945 525831 (657 digits)/14688 997599 663477 267087 112321 144827 885306 419736 542929 307850 843477 417429 823958 453486 707360 415277 812648 493484 167927 890177 144047 082785 680817 056040 941148 618988 284261 184801 755429 182440 117375 926827 433007 676263 085453 744918 922254 184565 404221 496855 723999 703276 196221 960540 471644 139769 001703 903191 710913 109952 675166 264652 419883 752779 279512 295449 218193 192318 907184 296836 239535 372011 109954 676663 459580 401002 696128 776781 978119 005731 898158 816355 563366 264575 457579 234161 179636 746011 144790 762787 332284 623086 641355 731987 158774 371796 806316 786688 665977 002532 487032 558092 921025 821116 353934 498569 757088 138394 652627 593505 605784 479805 612972 419166 020163 001779 389482 761853 717574 456529 (659 digits), a[1254] = 1
                                                                                      A[1255]/B[1255] = 265 043129 361845 356090 191066 594858 761015 926437 292121 223161 062432 168805 024320 469548 666692 574364 636396 610399 948204 794143 332114 359239 301531 555878 527673 599056 635157 234960 818550 615493 010983 024490 991695 985207 962607 379885 719939 635949 703215 512447 499258 567277 770704 837592 655639 115903 703595 194536 124066 939873 848618 742682 915278 381280 465303 302992 851842 405716 127686 605823 061030 472268 652661 452129 194159 538239 619780 520320 117581 797650 703790 045185 545104 983157 163730 687314 666998 244866 157969 995506 400561 925461 080389 242042 375375 017555 100393 341024 001740 691904 561161 324609 698503 256442 135001 601652 914436 550712 905173 477419 438189 656484 650338 607231 421607 072030 825885 475543 073725 926019 (657 digits)/25760 476139 279273 534812 989239 021464 379549 292729 541099 191287 461899 788700 485648 429515 424201 377619 830732 742951 370458 898763 397686 098717 142907 480887 749524 420012 951786 270829 687949 906775 182102 473456 121591 062810 138803 140236 064535 944344 805050 609831 040652 670921 211361 882571 337204 934357 558896 641021 396884 924194 499713 575471 287236 737518 454447 414376 190621 230011 681614 482099 309313 611318 200529 178006 981154 275469 565102 911198 221400 785356 830112 203421 645227 334632 923850 017499 976711 998859 944315 383130 202390 882406 367123 319668 548969 506666 922124 694028 062167 744536 793521 615470 717091 362253 175314 754111 153142 453256 529869 809045 966722 309328 939074 110143 988880 166959 793392 235220 769194 791550 (659 digits), a[1255] = 1
                                                                                      A[1256]/B[1256] = 416 174570 797708 791124 975999 006700 895617 921378 575608 746319 400454 972245 059543 282237 263102 629592 671068 738849 510066 584125 012576 350281 031510 144501 392350 272516 479813 019617 716487 631752 347604 119912 803636 168505 241337 504841 160449 574461 935862 173900 871484 057816 005069 140753 405622 864410 581350 549181 384155 048288 080887 009407 736414 836059 567677 249847 485390 990065 798163 071331 236255 969451 670153 255914 927572 022946 252381 138608 573910 743416 645462 571609 796520 055380 447773 715053 013223 096240 743550 115627 012123 758987 058754 746139 328953 135686 102445 891544 414415 598354 174648 100959 977975 699626 657901 759437 218302 315455 616023 507890 533391 363453 358538 926523 538204 815979 204230 432853 348671 451850 (657 digits)/40449 473738 942750 801900 101560 166292 264855 712466 084028 499138 305377 206130 309606 883002 131561 792897 643381 236435 538386 788940 541733 181502 823724 536928 690673 039001 236047 455631 443379 089215 299478 400283 554598 739073 224256 885154 986790 128910 209272 106686 764652 374197 407583 843111 808849 074126 560600 544213 107798 034147 174879 840123 707120 490297 733959 709825 408814 422330 588798 778935 548848 983329 310483 854670 440734 676472 261231 687980 199519 791088 728271 019777 208593 599208 381429 251661 156348 744871 089106 145917 534675 505493 008479 051655 707743 878463 728441 480716 728144 747069 280554 173563 638117 183369 529249 252680 910230 591651 182497 402551 572506 789134 552046 529310 009043 168739 182874 997074 486769 248079 (659 digits), a[1256] = 1
                                                                                      A[1257]/B[1257] = 681 217700 159554 147215 167065 601559 656633 847815 867729 969480 462887 141050 083863 751785 929795 203957 307465 349249 458271 378268 344690 709520 333041 700379 920023 871573 114970 254578 535038 247245 358587 144403 795332 153713 203944 884726 880389 210411 639077 686348 370742 625093 775773 978346 061261 980314 284945 743717 508221 988161 929505 752090 651693 217340 032980 552840 337233 395781 925849 677154 297286 441720 322814 708044 121731 561185 872161 658928 691492 541067 349252 616795 341625 038537 611504 402367 680221 341106 901520 111133 412685 684448 139143 988181 704328 153241 202839 232568 416156 290258 735809 425569 676478 956068 792903 361090 132738 866168 521196 985309 971581 019938 008877 533754 959811 888010 030115 908396 422397 377869 (657 digits)/66209 949878 222024 336713 090799 187756 644405 005195 625127 690425 767276 994830 795255 312517 555763 170517 474113 979386 908845 687703 939419 280219 966632 017816 440197 459014 187833 726461 131328 995990 481580 873739 676189 801883 363060 025391 051326 073255 014322 716517 805305 045118 618945 725683 146054 008484 119497 185234 504682 958341 674593 415594 994357 227816 188407 124201 599435 652342 270413 261034 858162 594647 511013 032677 421888 951941 826334 599178 420920 576445 558383 223198 853820 933841 305279 269161 133060 743731 033421 529047 737066 387899 375602 371324 256713 385130 650566 174744 790312 491606 074075 789034 355208 545622 704564 006792 063373 044907 712367 211597 539229 098463 491120 639453 997923 335698 976267 232295 255964 039629 (659 digits), a[1257] = 1
                                                                                      A[1258]/B[1258] = 1097 392270 957262 938340 143064 608260 552251 769194 443338 715799 863342 113295 143407 034023 192897 833549 978534 088098 968337 962393 357267 059801 364551 844881 312374 144089 594783 274196 251525 878997 706191 264316 598968 322218 445282 389568 040838 784873 574939 860249 242226 682909 780843 119099 466884 844724 866296 292898 892377 036450 010392 761498 388108 053399 600657 802687 822624 385847 724012 748485 533542 411171 992967 963959 049303 584132 124542 797537 265403 284483 994715 188405 138145 093918 059278 117420 693444 437347 645070 226760 424809 443435 197898 734321 033281 288927 305285 124112 830571 888612 910457 526529 654454 655695 450805 120527 351041 181624 137220 493200 504972 383391 367416 460278 498016 703989 234346 341249 771068 829719 (658 digits)/106659 423617 164775 138613 192359 354048 909260 717661 709156 189564 072654 200961 104862 195519 687324 963415 117495 215822 447232 476644 481152 461722 790356 554745 130870 498015 423881 182092 574708 085205 781059 274023 230788 540956 587316 910546 038116 202165 223594 823204 569957 419316 026529 568794 954903 082610 680097 729447 612480 992488 849473 255718 701477 718113 922366 834027 008250 074672 859212 039970 407011 577976 821496 887347 862623 628414 087566 287158 620440 367534 286654 242976 062414 533049 686708 520822 289409 488602 122527 674965 271741 893392 384081 422979 964457 263594 379007 655461 518457 238675 354629 962597 993325 728992 233813 259472 973603 636558 894864 614149 111735 887598 043167 168764 006966 504438 159142 229369 742733 287708 (660 digits), a[1258] = 1
                                                                                      A[1259]/B[1259] = 1778 609971 116817 085555 310130 209820 208885 617010 311068 685280 326229 254345 227270 785809 122693 037507 285999 437348 426609 340661 701957 769321 697593 545261 232398 015662 709753 528774 786564 126243 064778 408720 394300 475931 649227 274294 921227 995285 214017 546597 612969 308003 556617 097445 528146 825039 151242 036616 400599 024611 939898 513589 039801 270739 633638 355528 159857 781629 649862 425639 830828 852892 315782 672003 171035 145317 996704 456465 956895 825551 343967 805200 479770 132455 670782 519788 373665 778454 546590 337893 837495 127883 337042 722502 737609 442168 508124 356681 246728 178871 646266 952099 330933 611764 243708 481617 483780 047792 658417 478510 476553 403329 376293 994033 457828 591999 264462 249646 193466 207588 (658 digits)/172869 373495 386799 475326 283158 541805 553665 722857 334283 879989 839931 195791 900117 508037 243088 133932 591609 195209 356078 164348 420571 741942 756988 572561 571067 957029 611714 908553 706037 081196 262640 147762 906978 342839 950376 935937 089442 275420 237917 539722 375262 464434 645475 294478 100957 091094 799594 914682 117163 950830 524066 671313 695834 945930 110773 958228 607685 727015 129625 301005 265174 172624 332509 920025 284512 580355 913900 886337 041360 943979 845037 466174 916235 466890 991987 789983 422470 232333 155949 204013 008808 281291 759683 794304 221170 648725 029573 830206 308769 730281 428705 751632 348534 274614 938377 266265 036976 681466 607231 825746 650964 986061 534287 808218 004889 840137 135409 461664 998697 327337 (660 digits), a[1259] = 1
                                                                                      A[1260]/B[1260] = 2876 002242 074080 023895 453194 818080 761137 386204 754407 401080 189571 367640 370677 819832 315590 871057 264533 525447 394947 303055 059224 829123 062145 390142 544772 159752 304536 802971 038090 005240 770969 673036 993268 798150 094509 663862 962066 780158 788957 406846 855195 990913 337460 216544 995031 669764 017538 329515 292976 061061 950291 275087 427909 324139 234296 158215 982482 167477 373875 174125 364371 264064 308750 635962 220338 729450 121247 254003 222299 110035 338682 993605 617915 226373 730060 637209 067110 215802 191660 564654 262304 571318 534941 456823 770890 731095 813409 480794 077300 067484 556724 478628 985388 267459 694513 602144 834821 229416 795637 971710 981525 786720 743710 454311 955845 295988 498808 590895 964535 037307 (658 digits)/279528 797112 551574 613939 475517 895854 462926 440519 043440 069553 912585 396753 004979 703556 930413 097347 709104 411031 803310 640992 901724 203665 547345 127306 701938 455045 035596 090646 280745 166402 043699 421786 137766 883796 537693 846483 127558 477585 461512 362926 945219 883750 672004 863273 055860 173705 479692 644129 729644 943319 373539 927032 397312 664044 033140 792255 615935 801687 988837 340975 672185 750601 154006 807373 147136 208770 001467 173495 661801 311514 131691 709150 978649 999940 678696 310805 711879 720935 278476 878978 280550 174684 143765 217284 185627 912319 408581 485667 827226 968956 783335 714230 341860 003607 172190 525738 010580 318025 502096 439895 762700 873659 577454 976982 011856 344575 294551 691034 741430 615045 (660 digits), a[1260] = 1
                                                                                      A[1261]/B[1261] = 53546 650328 450257 515673 467636 935273 909358 568695 890401 904723 738513 871871 899471 542790 803328 716538 047602 895401 535660 795652 768004 693536 816210 567827 038296 891204 191415 982253 472184 220576 942232 523386 273138 842633 350401 223828 238430 038143 415250 869841 006497 144443 630900 995255 438716 880791 466931 967891 674168 123727 045141 465162 742169 105245 850969 203415 844536 796222 379615 559896 389511 606049 873294 119323 137132 275420 179155 028523 958279 806187 440261 690101 602244 207182 811873 989551 581649 662893 996480 501670 558977 411616 965988 945330 613642 601893 149495 010974 638129 393593 667307 567421 067922 426038 744953 320224 510562 177294 979900 969308 144017 564302 763082 171648 663043 919792 243016 885773 555096 879114 (659 digits)/5 204387 721521 315142 526236 842480 667185 886341 652200 116205 131960 266468 337345 989752 172061 990523 886191 355488 593781 815669 702220 651607 407922 609200 864082 205960 147840 252444 540186 759450 076433 049229 739913 386782 251177 628866 172633 385494 871958 545140 072407 389220 371946 741562 833393 106440 217793 434062 509017 250772 930579 247785 357896 847462 898722 707308 218829 694530 157398 928697 438567 364517 683445 104632 452741 932964 338215 940310 009258 953784 551234 215488 230892 531935 465823 208521 384486 236305 209168 168533 025622 058711 425606 347457 705419 562473 070474 384040 572227 198855 171503 528748 607778 502014 339544 037806 729549 227422 405925 644967 743870 379580 711933 928477 393894 218304 042492 437339 900290 344448 398147 (661 digits), a[1261] = 18
                                                                                      A[1262]/B[1262] = 56422 652570 524337 539568 920831 753354 670495 954900 644809 305803 928085 239512 270149 362623 118919 587595 312136 420848 930608 098707 827229 522659 878355 957969 583069 050956 495952 785224 510274 225817 713202 196423 266407 640783 444910 887691 200496 818302 204208 276687 861693 135356 968361 211800 433748 550555 484470 297406 967144 184788 995432 740250 170078 429385 085265 361631 827018 963699 753490 734021 753882 870114 182044 755285 357471 004870 300402 282527 180578 916222 778944 683707 220159 433556 541934 626760 648759 878696 188141 066324 821281 982935 500930 402154 384533 332988 962904 491768 715429 461078 224032 046050 053310 693498 439466 922369 345383 406711 775538 941019 125543 351023 506792 625960 618889 215780 741825 476669 519631 916421 (659 digits)/5 483916 518633 866717 140176 317998 563040 349268 092719 159645 201514 179053 734098 994731 875618 920936 983539 064593 004813 618980 343213 553331 611588 156545 991388 907898 602885 288040 630833 040195 242835 092929 161699 524549 134974 166560 019116 513053 349544 006652 435334 334440 255697 413567 696666 162300 391498 913755 153146 980417 873898 621325 284929 244775 562766 740449 011085 310465 959086 917534 779543 036703 434046 258639 260115 080100 546985 941777 182754 615585 862748 347179 940043 510585 465763 887217 695291 948184 930103 447009 904600 339261 600290 491222 922703 748100 982793 792622 057895 026082 140460 312084 322008 843874 343151 209997 255287 238002 723951 147064 183766 142281 585593 505932 370876 230160 387067 731891 591325 085879 013192 (661 digits), a[1262] = 1
                                                                                      A[1263]/B[1263] = 222814 608040 023270 134380 230132 195337 920846 433397 824829 822135 522769 590408 709919 630660 160087 479323 984012 157948 327485 091776 249693 261516 451278 441735 787504 044073 679274 337927 003006 898030 081839 112656 072361 764983 685133 886901 839920 493050 027875 699904 591576 550514 535984 630656 739962 532457 920342 860112 575600 678094 031439 685913 252404 393401 106765 288311 325593 687321 640087 761961 651160 216392 419428 385179 209545 290031 080361 876105 500016 554855 777095 741223 262722 507852 437677 869833 527929 298982 560903 700645 022823 360423 468780 151793 767242 600860 038208 486280 784417 776828 339403 705571 227854 506534 063354 087332 546712 397430 306517 792365 520647 617373 283460 049530 519711 567134 468493 315782 113992 628377 (660 digits)/21 656137 277422 915293 946765 796476 356306 934145 930357 595140 736502 803629 539642 973947 798918 753334 836808 549267 608222 672610 731861 311602 242687 078838 838248 929655 956496 116566 432685 880035 804938 328017 225011 960429 656100 128546 229982 924654 920590 565097 378410 392541 139038 982265 923391 593341 392290 175327 968458 192026 552275 111761 212684 581789 587022 928655 252085 625928 034659 681301 777196 474627 985583 880550 233087 173265 979173 765641 557522 800542 139479 257028 051023 063691 863114 870174 470362 080859 999478 509562 739423 076496 226477 821126 473530 806776 018855 761906 745912 277101 592884 465001 573805 033637 368997 667798 495410 941430 577779 086160 295168 806425 468714 446274 506522 908785 203695 633014 674265 602085 437723 (662 digits), a[1263] = 3
                                                                                      A[1264]/B[1264] = 502051 868650 570877 808329 381096 144030 512188 821696 294468 950074 973624 420329 689988 623943 439094 546243 280160 736745 585578 282260 326616 045692 780912 841441 158077 139103 854501 461078 516288 021877 876880 421735 411131 170750 815178 661494 880337 804402 259959 676497 044846 236386 040330 473113 913673 615471 325156 017632 118345 540977 058312 112076 674887 216187 298795 938254 478206 338343 033666 257945 056203 302899 020901 525643 776561 584932 461126 034738 180612 025934 333136 166153 745604 449261 417290 366427 704618 476661 309948 467614 866928 703782 438490 705741 919018 534709 039321 464330 284265 014734 902839 457192 509019 706566 566175 097034 438808 201572 388574 525750 166838 585770 073712 725021 658312 350049 678812 108233 747617 173175 (660 digits)/48 796191 073479 697305 033707 910951 275654 217559 953434 349926 674519 786312 813384 942627 473456 427606 657156 163128 221258 964201 806936 176536 096962 314223 667886 767210 515877 521173 496204 800266 852711 748963 611723 445408 447174 423652 479082 362363 190725 136847 192155 119522 533775 378099 543449 348983 176079 264411 090063 364470 978448 844847 710298 408354 736812 597759 515256 562322 028406 280138 333935 985959 405214 019739 726289 426632 505333 473060 297800 216670 141706 861236 042089 637969 191993 627566 636016 109904 929060 466135 383446 492254 053246 133475 869765 361653 020505 316435 549719 580285 326229 242087 469618 911149 081146 545594 246109 120863 879509 319384 774103 755132 523022 398481 383922 047730 794458 997920 939856 290049 888638 (662 digits), a[1264] = 2
                                                                                      A[1265]/B[1265] = 5 243333 294545 732048 217674 041093 635643 042734 650360 769519 322885 259013 793705 609805 870094 551032 941756 785619 525404 183267 914379 515853 718444 260406 856147 368275 435112 224288 948712 165887 116808 850643 330010 183673 472491 836920 501850 643298 537072 627472 464875 040038 914374 939289 361795 876698 687171 171903 036433 759056 087864 614560 806680 001276 555274 094724 670856 107657 070751 976750 341412 213193 245382 628443 641616 975161 139355 691622 223487 306136 814199 108457 402760 718767 000466 610581 534110 574114 065595 660388 376793 692110 398247 853687 209212 957427 947950 431423 129583 627067 924177 367798 277496 318051 572199 725105 057676 934794 413154 192263 049867 189033 475074 020587 299747 102835 067631 256614 398119 590164 360127 (661 digits)/509 618048 012219 888344 283844 905989 112849 109745 464701 094407 481700 666757 673492 400222 533483 029401 408370 180549 820812 314628 801223 076963 212310 221075 517116 601761 115271 328301 394733 882704 332055 817653 342246 414514 127844 365071 020806 548286 827841 933569 299961 587766 476792 763261 357885 083173 153082 819438 869091 836736 336763 560238 315668 665336 955148 906250 404651 249148 318722 482685 116556 334222 037724 077947 495981 439591 032508 496244 535524 967243 556547 869388 471919 443383 783051 145840 830523 179909 290083 170916 573887 999036 758939 155885 171184 423306 223908 926262 243108 079954 855176 885876 269994 145128 180463 123740 956502 150069 372872 280008 036206 357750 698938 431088 345743 386093 148285 612224 072828 502584 324103 (663 digits), a[1265] = 10
                                                                                      A[1266]/B[1266] = 16 232051 752287 767022 461351 504377 050959 640392 772778 603026 918730 750665 801446 519406 234227 092193 371513 637019 312958 135382 025398 874177 201025 562133 409883 262903 444440 527368 307215 013949 372304 428810 411765 962151 588226 325940 167046 810233 415620 142377 071122 164962 979510 858198 558501 543769 676984 840865 126933 395513 804570 901994 532116 678716 882009 582969 950822 801177 550598 963917 282181 695783 039046 906232 450494 702045 002999 535992 705200 099022 468531 658508 374435 901905 450661 249034 968759 426960 673448 291113 597995 943259 898525 999552 333380 791302 378560 333590 853081 165468 787267 006234 289681 463174 423165 741490 270065 243191 441034 965363 675351 733939 010992 135474 624262 966817 552943 448655 302592 518110 253556 (662 digits)/1577 650335 110139 362337 885242 628918 614201 546796 347537 633149 119621 786585 833862 143295 073905 515810 882266 704777 683695 908088 210605 407425 733892 977450 219236 572493 861691 506077 680406 448379 848879 201923 638462 688950 830707 518865 541502 007223 674250 937555 092039 882821 964153 667883 617104 598502 635327 722727 697338 874679 988739 525562 657304 404365 602259 316510 729210 309766 984573 728193 683604 988625 518386 253582 214233 745405 602858 961793 904375 118400 811350 469401 457847 968120 541147 065089 127585 649632 799309 978885 105110 489364 330063 601131 383318 631571 692232 095222 279043 820149 891759 899716 279601 346533 622535 916817 115615 571071 998126 159408 882722 828384 619837 691746 421152 206010 239315 834593 158341 797802 860947 (664 digits), a[1266] = 3
                                                                                      A[1267]/B[1267] = 21 475385 046833 499070 679025 545470 686602 683127 423139 372546 241616 009679 595152 129212 104321 643226 313270 422638 838362 318649 939778 390030 919469 822540 266030 631178 879552 751657 255927 179836 489113 279453 741776 145825 060718 162860 668897 453531 952692 769849 535997 205001 893885 797487 920297 420468 364156 012768 163367 154569 892435 516555 338796 679993 437283 677694 621678 908834 621350 940667 623593 908976 284429 534676 092111 677206 142355 227614 928687 405159 282730 766965 777196 620672 451127 859616 502870 001074 739043 951501 974789 635370 296773 853239 542593 748730 326510 765013 982664 792536 711444 374032 567177 781225 995365 466595 327742 177985 854189 157626 725218 922972 486066 156061 924010 069652 620574 705269 700712 108274 613683 (662 digits)/2087 268383 122359 250682 169087 534907 727050 656541 812238 727556 601322 453343 507354 543517 607388 545212 290636 885327 504508 222717 011828 484388 946203 198525 736353 174254 976962 834379 075140 331084 180935 019576 980709 103464 958551 883936 562308 555510 502092 871124 392001 470588 440946 431144 974989 681675 788410 542166 566430 711416 325503 085800 972973 069702 557408 222761 133861 558915 303296 210878 800161 322847 556110 331529 710215 184996 635367 458038 439900 085644 367898 338789 929767 411504 324198 210929 958108 829542 089393 149801 678998 488401 089002 757016 554503 054877 916141 021484 522151 900104 746936 785592 549595 491661 802999 040558 072117 721141 370998 439416 918929 186135 318776 122834 766895 592103 387601 446817 231170 300387 185050 (664 digits), a[1267] = 1
                                                                                      A[1268]/B[1268] = 2013 442861 107803 180595 610727 233150 905009 171243 124740 249827 389019 650868 150594 536131 936139 912240 505662 942431 280653 769826 424789 147052 711719 058378 150731 962539 242846 431493 108442 738742 859839 418008 396947 523882 235015 471982 374509 988705 016047 738383 918862 230139 110890 024575 146161 647327 543494 028304 320078 770513 801073 941641 040207 918106 549391 608569 766961 322797 336236 446006 276415 230577 490993 631109 016880 682216 242035 704181 073128 778835 762492 986325 653721 624443 405552 193369 735669 526911 404535 780797 253432 032697 498494 350829 794599 423222 744061 479891 240906 871382 951593 791263 037215 117191 992154 134855 750087 795875 880626 624649 120711 570380 215144 649233 557199 444511 266391 038737 468818 587649 326075 (664 digits)/195693 609965 489549 675779 610383 375337 229912 605184 885739 295913 042609 947532 017834 690432 561040 220553 911497 040235 602960 620770 310654 455597 730790 440343 700081 778206 719235 103331 668457 239208 675836 022582 844409 311191 976032 724965 836197 669700 368887 952123 548176 647546 972171 764366 291144 994350 957508 144218 375395 036398 260526 505053 143799 886703 441224 033296 178335 288890 191121 339922 098608 013448 236647 085845 264245 950092 692032 559368 815083 083327 025895 976864 926217 238022 691580 681575 231706 797047 112872 910441 251969 910665 607320 003670 952102 735217 893347 093282 839170 529891 356880 959823 391982 071081 301446 688717 822563 637219 500981 025182 343137 138969 266017 115379 742442 271625 286250 388595 657179 733811 070597 (666 digits), a[1268] = 93
                                                                                      A[1269]/B[1269] = 2034 918246 154636 679666 289752 778621 591611 854370 547879 622373 630635 660547 745746 665344 040461 555466 818933 365070 119016 088476 364567 537083 631188 880918 416762 593718 122399 183150 364369 918579 348952 697462 138723 669707 295733 634843 043407 442236 968740 508233 454859 435141 004775 822063 066459 067795 907650 041072 483445 925083 693509 458196 379004 598099 986675 286264 388640 231631 957587 386673 900009 139553 775423 165785 108992 359422 384390 931796 001816 183995 045223 753291 430918 245115 856680 052986 238539 527986 143579 732299 228221 668067 795268 204069 337193 171953 070572 244905 223571 663919 663038 165295 604392 898417 987519 601451 077829 973861 734815 782275 845930 493352 701210 805295 481209 514163 886965 744007 169530 695923 939758 (664 digits)/197780 878348 611908 926461 779470 910244 956963 261726 697978 023469 643932 400875 525189 233950 168428 765766 202133 925563 107468 843487 322482 939986 676993 638869 436434 952461 696197 937710 743597 570292 856771 042159 825118 414656 934584 608902 398506 225210 870980 823247 940178 118135 413118 195511 266134 676026 745918 686384 941825 747814 586029 590854 116772 956405 998632 256057 312196 847805 494417 550800 898769 336295 792757 417374 974461 135089 327400 017407 254983 168971 393794 315654 855984 649527 015778 892505 189815 626589 202266 060242 930968 399066 696322 760687 506605 790095 809488 114767 361322 429996 103817 745415 941577 562743 104445 729275 894681 358360 871979 464599 262066 325104 584793 238214 509337 863728 673851 835412 888350 034198 255647 (666 digits), a[1269] = 1
                                                                                      A[1270]/B[1270] = 6083 279353 417076 539928 190232 790394 088232 879984 220499 494574 650290 971963 642087 866820 017063 023174 143529 672571 518685 946779 153924 221219 974096 820214 984257 149975 487644 797793 837182 575901 557744 812932 674394 863296 826482 741668 461324 873178 953528 754850 828581 100421 120441 668701 279079 782919 358794 110449 286970 620681 188092 858033 798217 114306 522742 181098 544241 786061 251411 219354 076433 509685 041839 962679 234865 401061 010817 567773 076761 146825 852940 492908 515558 114675 118912 299342 212748 582883 691695 245395 709875 368833 089030 758968 468985 767128 885205 969701 688050 199222 277670 121854 246000 914027 967193 337757 905747 743599 350258 189200 812572 557085 617566 259824 519618 472839 040322 526751 807879 979497 205591 (664 digits)/591255 366662 713367 528703 169325 195827 143839 128638 281695 342852 330474 749283 068213 158332 897897 752086 315764 891361 817898 307744 955620 335571 084777 718082 572951 683130 111630 978753 155652 379794 389378 106902 494646 140505 845201 942770 633210 120122 110849 598619 428532 883817 798408 155388 823414 346404 449345 516988 259046 532027 432585 686761 377345 799515 438488 545410 802728 984501 179956 441523 896146 686039 822161 920595 213168 220271 346832 594183 325049 421269 813484 608174 638186 537076 723138 466585 611338 050225 517405 030927 113906 708798 999965 525045 965314 315409 512323 322817 561815 389883 564516 450655 275137 196567 510338 147269 611926 353941 244939 954380 867269 789178 435603 591808 761117 999082 633954 059421 433879 802207 581891 (666 digits), a[1270] = 2
                                                                                      A[1271]/B[1271] = 8118 197599 571713 219594 479985 569015 679844 734354 768379 116948 280926 632511 387834 532164 057524 578640 962463 037641 637702 035255 518491 758303 605285 701133 401019 743693 610043 980944 201552 494480 906697 510394 813118 533004 122216 376511 504732 315415 922269 263084 283440 535562 125217 490764 345538 850715 266444 151521 770416 545764 881602 316230 177221 712406 509417 467362 932882 017693 208998 606027 976442 649238 817263 128464 343857 760483 395208 499569 078577 330820 898164 246199 946476 359790 975592 352328 451288 110869 835274 977694 938097 036900 884298 963037 806178 939081 955778 214606 911621 863141 940708 287149 850393 812445 954712 939208 983577 717461 085073 971476 658503 050438 318777 065120 000827 987002 927288 270758 977410 675421 145349 (664 digits)/789036 245011 325276 455164 948796 106072 100802 390364 979673 366321 974407 150158 593402 392283 066326 517852 517898 816924 925367 151232 278103 275557 761771 356952 009386 635591 807828 916463 899249 950087 246149 149062 319764 555162 779786 551673 031716 345332 981830 421867 368711 001953 211526 350900 089549 022431 195264 203373 200872 279842 018615 277615 494118 755921 437120 801468 114925 832306 674373 992324 794916 022335 614919 337970 187629 355360 674232 611590 580032 590241 207278 923829 494171 186603 738917 359090 801153 676814 719671 091170 044875 107865 696288 285733 471920 105505 321811 437584 923137 819879 668334 196071 216714 759310 614783 876545 506607 712302 116919 418980 129336 114283 020396 830023 270455 862811 307805 894834 322229 836405 837538 (666 digits), a[1271] = 1
                                                                                      A[1272]/B[1272] = 22319 674552 560502 979117 150203 928425 447922 348693 757257 728471 212144 236986 417756 931148 132112 180456 068455 747854 794090 017290 190907 737827 184668 222481 786296 637362 707732 759682 240287 564863 371139 833722 300631 929305 070915 494691 470789 504010 798067 281019 395462 171545 370876 650229 970157 484349 891682 413492 827803 712210 951297 490494 152660 539119 541577 115824 410005 821447 669408 431410 029318 808162 676366 219607 922580 922027 801234 566911 233915 808467 649268 985308 408510 834257 070097 003999 115324 804623 362245 200785 586069 442634 857628 685044 081343 645292 796762 398915 511293 925506 159086 696153 946788 538919 876619 216175 872903 178521 520406 132154 129578 657962 255120 390064 521274 446844 894899 068269 762701 330339 496289 (665 digits)/2 169327 856685 363920 439033 066917 407971 345443 909368 241042 075496 279289 049600 255017 942899 030550 787791 351562 525211 668632 610209 511826 886686 608320 431986 591724 954313 727288 811680 954152 279968 881676 405027 134175 250831 404775 046116 696642 810788 074510 442354 165954 887724 221460 857189 002512 391266 839873 923734 660791 091711 469816 241992 365583 311358 312730 148347 032580 649114 528704 426173 485978 730711 052000 596535 588426 930992 695297 817364 485114 601752 228042 455833 626528 910284 200973 184767 213645 403854 956747 213267 203656 924530 392542 096512 909154 526420 155946 197987 408091 029642 901184 842797 708566 715188 739905 900360 625141 778545 478778 792341 125942 017744 476397 251855 302029 724705 249565 849090 078339 475019 256967 (667 digits), a[1272] = 2
                                                                                      A[1273]/B[1273] = 164355 919467 495234 073414 531413 067993 815301 175211 069183 216246 765936 291416 312133 050200 982309 841833 441653 272625 196332 156286 854845 923093 897963 258505 905096 205232 564173 298719 883565 448524 504676 346450 917542 038139 618624 839351 800258 843491 508740 230220 051675 736379 721354 042374 136641 241164 508221 045971 565042 531241 540684 749689 245845 486243 300457 278133 802922 767826 894857 625898 181674 306377 551826 665719 801924 214678 003850 467947 715987 990094 443047 143358 806052 199590 466271 380322 258561 743233 370991 383194 040583 135344 887699 758346 375584 456131 533115 007015 490679 341685 054315 160227 477913 584885 091047 452440 093899 967111 727916 896555 565553 656174 104619 795571 649749 114917 191581 748647 316319 987797 619372 (666 digits)/15 974331 241808 872719 528396 417217 961871 518909 755942 666967 894795 929430 497360 378527 992576 280182 032391 978836 493406 605795 422698 860891 482364 020014 380858 151461 315787 898850 598230 578315 909869 417883 984252 258991 310982 613211 874489 908216 020849 503403 518346 530395 216022 761752 351223 107135 761299 074381 669515 826409 921822 307328 971562 053201 935429 626231 839897 342990 376108 375304 975539 196767 137312 978923 513719 306617 872309 541317 333141 975834 802506 803576 114664 879873 558593 145729 652461 296671 503799 416901 584040 470473 579578 444082 961323 836001 790446 413434 823496 779775 027379 976628 095655 176681 765631 794125 179069 882600 162120 468370 965368 010930 238494 355177 593010 384663 935748 054766 838464 870606 161540 636307 (668 digits), a[1273] = 7
                                                                                      A[1274]/B[1274] = 186675 594020 055737 052531 681616 996419 263223 523904 826440 944717 978080 528402 729889 981349 114422 022289 510109 020479 990422 173577 045753 660921 082631 480987 691392 842595 271906 058402 123853 013387 875816 180173 218173 967444 689540 334043 271048 347502 306807 511239 447137 907925 092230 692604 106798 725514 399903 459464 392846 243452 491982 240183 398506 025362 842034 393958 212928 589274 564266 057308 210993 114540 228192 885327 724505 136705 805085 034858 949903 798562 092316 128667 214563 033847 536368 384321 373886 547856 733236 583979 626652 577979 745328 443390 456928 101424 329877 405931 001973 267191 213401 856381 424702 123804 967666 668615 966803 145633 248323 028709 695132 314136 359740 185636 171023 561762 086480 816917 079021 318137 115661 (666 digits)/18 143659 098494 236639 967429 484135 369842 864353 665310 908009 970292 208719 546960 633545 935475 310732 820183 330399 018618 274428 032908 372718 369050 628334 812844 743186 270101 626139 409911 532468 189838 299560 389279 393166 561814 017986 920606 604858 831637 577913 960700 696350 103746 983213 208412 109648 152565 914255 593250 487201 013533 777145 213554 418785 246787 938961 988244 375571 025222 904009 401712 682745 868024 030924 110254 895044 803302 236615 150506 460949 404259 031618 570498 506402 468877 346702 837228 510316 907654 373648 797307 674130 504108 836625 057836 745156 316866 569381 021484 187866 057022 877812 938452 885248 480820 534031 079430 507741 940665 947149 757709 136872 256238 831574 844865 686693 660453 304332 687554 948945 636559 893274 (668 digits), a[1274] = 1
                                                                                      A[1275]/B[1275] = 351031 513487 550971 125946 213030 064413 078524 699115 895624 160964 744016 819819 042023 031550 096731 864122 951762 293105 186754 329863 900599 584014 980594 739493 596489 047827 836079 357122 007418 461912 380492 526624 135716 005584 308165 173395 071307 190993 815547 741459 498813 644304 813584 734978 243439 966678 908124 505435 957888 774694 032666 989872 644351 511606 142491 672092 015851 357101 459123 683206 392667 420917 780019 551047 526429 351383 808935 502806 665891 788656 535363 272026 020615 233438 002639 764643 632448 291090 104227 967173 667235 713324 633028 201736 832512 557555 862992 412946 492652 608876 267717 016608 902615 708690 058714 121056 060703 112744 976239 925265 260685 970310 464359 981207 820772 676679 278062 565564 395341 305934 735033 (666 digits)/34 117990 340303 109359 495825 901353 331714 383263 421253 574977 865088 138150 044321 012073 928051 590914 852575 309235 512024 880223 455607 233609 851414 648349 193702 894647 585889 524990 008142 110784 099707 717444 373531 652157 872796 631198 795096 513074 852487 081317 479047 226745 319769 744965 559635 216783 913864 988637 262766 313610 935356 084474 185116 471987 182217 565193 828141 718561 401331 279314 377251 879513 005337 009847 623974 201662 675611 777932 483648 436784 206765 835194 685163 386276 027470 492432 489689 806988 411453 790550 381348 144604 083687 280708 019160 581158 107312 982815 844980 967641 084402 854441 034108 061930 246452 328156 258500 390342 102786 415520 723077 147802 494733 186752 437876 071357 596201 359099 526019 819551 798100 529581 (668 digits), a[1275] = 1
                                                                                      A[1276]/B[1276] = 5 452148 296333 320303 941724 877067 962615 441094 010643 260803 359189 138332 825688 360235 454600 565399 984133 786543 417057 791737 121535 554747 421145 791552 573391 638728 560012 813096 415232 235129 942073 583204 079535 253914 051209 312017 934969 340656 212409 540023 633131 929342 572497 296001 717277 758398 225698 021771 041003 761177 863862 981987 088273 063778 699454 979409 475338 450698 945796 451121 305404 101004 428306 928486 151040 620945 407462 939117 576958 938280 628410 122765 209057 523791 535417 575964 853975 860610 914208 296656 091584 635188 277849 240751 469442 944616 464762 274763 600128 391762 400335 229157 105514 963937 754155 848378 484456 877349 836807 891921 907688 605421 868793 325139 903753 482613 711951 257419 300383 009140 907158 141156 (667 digits)/529 913514 203040 877032 404818 004435 345558 613304 984114 532677 946614 280970 211775 814654 856249 174455 608812 968931 698991 477779 867016 876866 140270 353572 718388 162900 058444 500989 532043 194229 685454 061225 992254 175534 653763 485968 847054 300981 618943 797676 146409 097529 900293 157696 602940 361406 860540 743814 534745 191365 043875 044257 990301 498592 980051 416869 410370 153992 045192 093725 060490 875440 948079 178638 469867 919984 937478 905602 405233 012712 505746 559538 847949 300542 880934 733190 182575 615143 079461 231904 517529 843191 759418 047245 345245 462527 926561 311618 696198 702482 323065 694428 450073 814202 177605 456374 956936 362873 482462 179960 603866 353909 677236 632861 413006 757057 603473 690825 577852 242222 608067 836989 (669 digits), a[1276] = 15
                                                                                      A[1277]/B[1277] = 33 063921 291487 472794 776295 475437 840105 725088 762975 460444 316099 574013 773949 203435 759153 489131 768925 671022 795451 937177 059077 229084 110889 729910 179843 428860 407904 714657 848515 418198 114353 879717 003835 659200 312840 180272 783211 115244 465451 055689 540251 074869 079288 589595 038644 793829 320867 038750 751458 524955 957871 924589 519511 027023 708336 018948 524122 720045 031880 165851 515630 998693 990759 350936 457291 252101 796161 443640 964560 295575 559117 271954 526371 163364 445943 458428 888498 796113 776339 884164 516681 478365 380420 077537 018394 500211 346129 511574 013716 843227 010887 642659 649698 686242 233625 148985 027797 324802 133592 327771 371396 893217 183070 415199 403728 716454 948386 822578 367862 450186 748883 581969 (668 digits)/3213 599075 558548 371553 924733 927965 405066 063093 325940 771045 544773 823971 314975 900003 065546 637648 505453 122825 705973 746902 657708 494806 693036 769785 504031 872047 936556 530927 200401 276162 212432 084800 327056 705365 795377 547011 877422 318964 566149 867374 357501 811924 721528 691145 177277 385225 077109 451524 471237 461801 198606 350022 126925 463545 062526 066410 290362 642513 672483 841664 740197 132158 693812 081678 443181 721572 300485 211546 915046 513059 241245 192427 772859 189533 313078 891573 585143 497846 888221 181977 486527 203754 640195 564180 090633 356325 666680 852528 022173 182535 022797 021011 734550 947143 312085 066406 000118 567582 997559 495284 346275 271260 558152 983920 915916 613703 217043 504052 993133 272887 446507 551515 (670 digits), a[1277] = 6
                                                                                      A[1278]/B[1278] = 38 516069 587820 793098 718020 352505 802721 166182 773618 721247 675288 712346 599637 563671 213754 054531 753059 457566 212509 728914 180612 783831 532035 521462 753235 067588 967917 527754 263747 653328 056427 462921 083370 913114 364049 492290 718180 455900 677860 595713 173383 004211 651785 885596 755922 552227 546565 060521 792462 286133 821734 906576 607784 090802 407790 998357 999461 170743 977676 616972 821035 099698 419066 279422 608331 873047 203624 382758 541519 233856 187527 394719 735428 687155 981361 034393 742474 656724 690548 180820 608266 113553 658269 318288 487837 444827 810891 786337 613845 234989 411222 871816 755213 650179 987780 997363 512254 202151 970400 219693 279085 498639 051863 740339 307482 199068 660338 079997 668245 459327 656041 723125 (668 digits)/3743 512589 761589 248586 329551 932400 750624 676398 310055 303723 491388 104941 526751 714657 921795 812104 114266 091757 404965 224682 524725 371672 833307 123358 222420 034947 995001 031916 732444 470391 897886 146026 319310 880900 449141 032980 724476 619946 185093 665050 503910 909454 621821 848841 780217 746631 937650 195339 005982 653166 242481 394280 117226 962138 042577 483279 700732 796505 717675 935389 800688 007599 641891 260316 913049 641557 237964 117149 320279 525771 746991 751966 620808 490076 194013 624763 767719 112989 967682 413882 004057 046946 399613 611425 435878 818853 593242 164146 718371 885017 345862 715440 184624 761345 489690 522780 957054 930456 480021 675244 950141 625170 235389 616782 328923 370760 820517 194878 570985 515110 054575 388504 (670 digits), a[1278] = 1
                                                                                      A[1279]/B[1279] = 957 449591 399186 507164 008783 935577 105413 713475 329824 770388 523028 670332 165250 731544 889250 797893 842352 652611 895685 431117 393784 041040 879742 245016 257485 050995 637925 380760 178459 098071 468612 989823 004737 573945 050027 995250 019542 056860 734105 352805 701443 175948 722149 843917 180786 047290 438428 491273 770553 392167 679509 682428 106329 206281 495319 979540 511190 817900 496118 973199 220473 391456 048350 057079 057256 205234 683146 629845 961021 908124 059774 745228 176659 655107 998608 283878 707890 557506 349496 223859 115068 203653 178883 716460 726493 176078 807532 383676 746002 482972 880236 566261 774826 290561 940369 085709 321898 176449 423197 600410 069448 860554 427800 183342 783301 494102 796500 742522 405753 474050 493884 936969 (669 digits)/93057 901229 836690 337625 833980 305583 420058 296652 767268 060409 338088 342567 957017 051793 188646 128147 247839 325003 425139 139283 251117 414954 692407 730382 842112 710799 816581 296928 779068 565567 761699 589431 990517 846976 574762 338549 264861 197673 008397 828586 451363 638835 645253 063347 902503 304391 580714 139660 614821 137791 018159 812744 940372 554858 084385 665123 107949 758650 896706 291019 956709 314550 099202 329284 356373 118946 011624 023130 601755 131581 169047 239626 672262 951361 969405 885904 010402 209606 112599 115145 583896 330468 230922 238390 551725 008811 904492 792049 263098 422951 323502 191576 165545 219435 064657 613148 969436 898538 518079 701163 149674 275346 207503 786696 810077 511962 909456 181138 696785 635528 756316 875611 (671 digits), a[1279] = 24
                                                                                      A[1280]/B[1280] = 1953 415252 386193 807426 735588 223660 013548 593133 433268 262024 721346 053010 930139 026760 992255 650319 437764 762790 003880 591148 968180 865913 291520 011495 268205 169580 243768 289274 620665 849470 993653 442567 092846 061004 464105 482790 757264 569622 146071 301324 576269 356109 096085 573431 117494 646808 423422 043069 333569 070469 180754 271432 820442 503365 398430 957439 021842 806544 969914 563371 261981 882610 515766 393580 722844 283516 569917 642450 463563 050104 307076 885176 088747 997371 978577 602151 158255 771737 389540 628538 838402 520860 016036 751209 940823 796985 425956 553691 105850 200935 171696 004340 304866 231303 868519 168782 156050 555050 816795 420513 417983 219747 907464 107024 874085 187274 253339 565042 479752 407428 643811 597063 (670 digits)/189859 315049 434969 923837 997512 543567 590741 269703 844591 424542 167564 790077 440785 818244 299088 068398 609944 741764 255243 503249 026960 201582 218122 584123 906645 456547 628163 625774 290581 601527 421285 324890 300346 574853 598665 710079 254199 015292 201889 322223 406638 187125 912327 975537 585224 355415 099078 474660 235624 928748 278801 019769 997972 071854 211348 813525 916632 313807 511088 517429 714106 636699 840295 918885 625795 879449 261212 163410 523789 788934 085086 231219 965334 392800 132825 396571 788523 532202 192880 644173 171849 707882 861458 088206 539328 836477 402227 748245 244568 730919 992867 098592 515715 200215 619005 749078 895928 727533 516181 077571 249490 175862 650397 190175 949078 394686 639429 557155 964556 786167 567209 139726 (672 digits), a[1280] = 2
                                                                                      A[1281]/B[1281] = 8771 110600 943961 736870 951136 830217 159608 086009 062897 818487 408412 882375 885806 838588 858273 399171 593411 703771 911207 795713 266507 504694 045822 290997 330305 729316 612998 537858 661122 495955 443226 760091 376121 817962 906449 926413 048600 335349 318390 558104 006520 600385 106492 137641 650764 634524 132116 663551 104829 674044 402526 768159 388099 219743 089043 809296 598562 044080 375777 226684 268400 921898 111415 631401 948633 339300 962817 199647 815274 108541 288082 285932 531651 644595 912918 692483 340913 644455 907658 738014 468678 287093 243030 721300 489788 364020 511358 598441 169403 286713 567020 583622 994291 215777 414445 760837 946100 396652 690379 282463 741381 739546 057656 611442 279642 243199 809859 002692 324763 103765 069131 325221 (670 digits)/852495 161427 576570 032977 824030 479853 783023 375468 145633 758578 008347 502877 720160 324770 384998 401741 687618 292060 446113 152279 358958 221283 564898 066878 468694 536990 329235 800025 941394 971677 446840 888993 191904 146390 969425 178866 281657 258841 815955 117480 077916 387339 294564 965498 243400 726051 977028 038301 557320 852784 133363 891824 932260 842274 929780 919226 774479 013880 941060 360738 813135 861349 460386 004826 859556 636743 056472 676772 696914 287317 509392 164506 533600 522562 500707 472191 164496 338414 884121 691838 271295 161999 676754 591216 709040 354721 513403 785030 241373 346631 294970 585946 228406 020297 540680 609464 553151 808672 582804 011448 147634 978796 809092 547400 606391 090709 467174 409762 555012 780199 025153 434515 (672 digits), a[1281] = 4
                                                                                      A[1282]/B[1282] = 80893 410660 881849 439265 295819 695614 450021 367214 999348 628411 397061 994393 902400 574060 716716 242863 778470 096737 204750 752568 366748 408159 703920 630471 240956 733429 760755 130002 570768 313069 982694 283389 477942 422670 622154 820508 194667 587766 011586 324260 634954 759575 054514 812205 974376 357525 612472 015029 277036 136868 803495 184867 313335 481053 199825 241108 408901 203268 351909 603529 677590 179693 518507 076198 260544 337225 235272 439280 801030 026975 899817 458568 873612 798735 194845 834501 226478 571840 558469 270669 056507 104699 203313 242914 348919 073170 028183 939661 630479 781357 274881 256947 253487 173300 598531 016323 670954 124925 030208 962687 090418 875662 426373 610005 390865 376072 542070 589273 402620 341314 265993 524052 (671 digits)/7 862315 767897 624100 220638 413786 862251 637951 648917 155295 251744 242692 315976 922228 741177 764073 684073 798509 370308 270261 873763 257584 193134 302205 186030 124896 289460 591285 826007 763136 346624 442853 325829 027483 892372 323492 319875 789114 344868 545485 379544 107885 673179 563412 665021 775830 889882 892330 819374 251512 603805 479076 046194 388319 652328 579377 086566 886943 438735 980631 764079 032329 388844 983769 962327 361805 610136 769466 254364 796018 374791 669615 711778 767739 095862 639192 646292 268990 577936 149975 870717 613506 165879 952249 409156 920692 028971 022861 813517 416928 850601 647602 372108 571369 382893 485131 234259 874295 005586 761417 180604 578204 985033 932230 116781 406598 211071 843999 245018 959671 807958 793590 050361 (673 digits), a[1282] = 9
                                                                                      A[1283]/B[1283] = 89664 521261 825811 176136 246956 525831 609629 453224 062246 446898 805474 876769 788207 412649 574989 642035 371881 800509 115958 548281 633255 912853 749742 921468 571262 462746 373753 667861 231890 809025 425921 043480 854064 240633 528604 746921 243267 923115 329976 882364 641475 359960 161006 949847 625140 992049 744588 678580 381865 810913 206021 953026 701434 700796 288869 050405 007463 247348 727686 830213 945991 101591 629922 707600 209177 676526 198089 638928 616304 135517 187899 744501 405264 443331 107764 526984 567392 216296 466128 008683 525185 391792 446343 964214 838707 437190 539542 538102 799883 068070 841901 840570 247778 389078 012976 777161 617054 521577 720588 245150 831800 615208 484030 221447 670507 619272 351929 591965 727383 445079 335124 849273 (671 digits)/8 714810 929325 200670 253616 237817 342105 420975 024385 300929 010322 251039 818854 642389 065948 149072 085815 486127 662368 716375 026042 616542 414417 867103 252908 593590 826450 920521 626033 704531 318301 889694 214822 219388 038763 292917 498742 070771 603710 361440 497024 185802 060518 857977 630520 019231 615934 869358 857675 808833 456589 612439 938019 320580 494603 509158 005793 661422 452616 921692 124817 845465 250194 444155 967154 221362 246879 825938 931137 492932 662109 179007 876285 301339 618425 139900 118483 433486 916351 034097 562555 884801 327879 629004 000373 629732 383692 536265 598547 658302 197232 942572 958054 799775 403191 025811 843724 427446 814259 344221 192052 725839 963830 741322 664182 012989 301781 311173 654781 514684 588157 818743 484876 (673 digits), a[1283] = 1
                                                                                      A[1284]/B[1284] = 618880 538231 836716 496082 777558 850604 107798 086559 372827 309804 229911 255012 631645 049958 166654 095076 009760 899791 900502 042258 166283 885282 202378 159282 668531 509908 003277 137169 962113 167222 538220 544274 602327 866471 793783 302035 654275 126457 991447 618448 483806 919336 020556 511291 725222 309824 080004 086511 568231 002348 039626 903027 521943 685830 933039 543538 453680 687360 718030 584813 353536 789243 298043 321799 515610 396382 423810 272852 498854 840079 027215 925577 305199 458721 841432 996408 630831 869619 355237 322770 207619 455453 881377 028203 381163 696313 265439 168278 429778 189782 326292 300368 740157 507768 676391 679293 373281 254391 353738 433592 081222 566913 330554 938691 413911 091706 653648 141067 766921 011790 276742 619690 (672 digits)/60 151181 343848 828121 742335 840690 914884 163801 795228 960869 313677 748931 229104 776563 136866 658506 198966 715275 344520 568512 030018 956838 679641 504824 703481 686441 248166 114415 582209 990324 256435 781018 614762 343812 124952 080997 312328 213743 967130 714128 361689 222698 036292 711278 448141 891220 585492 108483 965429 104513 343343 153715 674310 311802 619949 634325 121328 855478 154437 510784 512986 105120 890011 648705 765252 689979 091415 725099 841189 753614 347446 743662 969490 575776 806413 478593 357192 869912 076042 354561 246052 922314 133157 726273 411398 699086 331126 240455 404803 366742 033999 303040 120437 370021 802039 640002 296606 438975 891142 826744 332920 933244 768018 380166 101873 484534 021759 711041 173708 047779 336905 706050 959617 (674 digits), a[1284] = 6
                                                                                      A[1285]/B[1285] = 1 327425 597725 499244 168301 802074 227039 825225 626342 807901 066507 265297 386795 051497 512565 908297 832187 391403 600092 916962 632797 965823 683418 154499 240033 908325 482562 380307 942201 156117 143470 502362 132030 058719 973577 116171 350992 551818 176031 312872 119261 609089 198632 202119 972431 075585 611697 904596 851603 518327 815609 285275 759081 745322 072458 154948 137481 914824 622070 163747 999840 653064 680078 226009 351199 240398 469291 045710 184633 614013 815675 242331 595656 015663 360774 790630 519801 829055 955535 176602 654223 940424 302700 209098 020621 601034 829817 070420 874659 659439 447635 494486 441307 728093 404615 365760 135748 363617 030360 428065 112334 994245 749035 145140 098830 498329 802685 659225 874101 261225 468659 888610 088653 (673 digits)/129 017173 617022 856913 738287 919199 171873 748578 614843 222667 637677 748902 277064 195515 339681 466084 483748 916678 351409 853399 086080 530219 773700 876752 659871 966473 322783 149352 790453 685179 831173 451731 444346 907012 288667 454912 123398 498259 537971 789697 220402 631198 133104 280534 526803 801672 786919 086326 788534 017860 143275 919871 286639 944185 734502 777808 248451 372378 761491 943261 150790 055707 030217 741567 497659 601320 429711 276138 613517 000161 357002 666333 815266 452893 231252 097086 832869 173311 068435 743220 054661 729429 594195 081550 823171 027905 045945 017176 408154 391786 265231 548653 198929 539819 007270 305816 436937 305398 596544 997709 857894 592329 499867 501654 867928 982057 345300 733256 002197 610243 261969 230845 404110 (675 digits), a[1285] = 2
                                                                                      A[1286]/B[1286] = 1 946306 135957 335960 664384 579633 077643 933023 712902 180728 376311 495208 641807 683142 562524 074951 927263 401164 499884 817464 675056 132107 568700 356877 399316 576856 992470 383585 079371 118230 310693 040582 676304 661047 840048 909954 653028 206093 302489 304319 737710 092896 117968 222676 483722 800807 921521 984600 938115 086558 817957 324902 662109 267265 758289 087987 681020 368505 309430 881778 584654 006601 469321 524052 672998 756008 865673 469520 457486 112868 655754 269547 521233 320862 819496 632063 516210 459887 825154 531839 976994 148043 758154 090475 048824 982198 526130 335860 042938 089217 637417 820778 741676 468250 912384 042151 815041 736898 284751 781803 545927 075468 315948 475695 037521 912240 894392 312874 015169 028146 480450 165352 708343 (673 digits)/189 168354 960871 685035 480623 759890 086757 912380 410072 183536 951355 497833 506168 972078 476548 124590 682715 631953 695930 421911 116099 487058 453342 381577 363353 652914 570949 263768 372663 675504 087609 232750 059109 250824 413619 535909 435726 712003 505102 503825 582091 853896 169396 991812 974945 692893 372411 194810 753963 122373 486619 073586 960950 255988 354452 412133 369780 227856 915929 454045 663776 160827 920229 390273 262912 291299 521127 001238 454706 753775 704449 409996 784757 028670 037665 575680 190062 043223 144478 097781 300714 651743 727352 807824 234569 726991 377071 257631 812957 758528 299230 851693 319366 909840 809309 945818 733543 744374 487687 824454 190815 525574 267885 881820 969802 466591 367060 444297 175905 658022 598874 936896 363727 (675 digits), a[1286] = 1
                                                                                      A[1287]/B[1287] = 5 220037 869640 171165 497070 961340 382327 691273 052147 169357 819130 255714 670410 417782 637614 058201 686714 193732 599862 551891 982910 230038 820818 868254 038667 062039 467503 147478 100943 392577 764856 583527 484639 380815 653674 936080 657048 964004 781009 921511 594681 794881 434568 647472 939876 677201 454741 873798 727833 691445 451523 935081 083300 279853 589036 330923 499522 651835 240931 927305 169148 666267 618721 274114 697196 752416 200637 984751 099605 839751 127183 781426 638122 657388 999768 054757 552222 748831 605844 240282 608212 236511 819008 390048 118271 565431 882077 742140 960535 837874 722471 136043 924660 664595 229383 450063 765831 837413 599863 991672 204189 145182 380932 096530 173874 322811 591470 284973 904439 317518 429560 219315 505339 (673 digits)/507 353883 538766 226984 699535 438979 345389 573339 434987 589741 540388 744569 289402 139672 292777 715265 849180 180585 743270 697221 318279 504336 680385 639907 386579 272302 464681 676889 535781 036188 006391 917231 562565 408661 115906 526730 994851 922266 548176 797348 384586 338990 471898 264160 476695 187459 531741 475948 296460 262607 116514 067045 208540 456162 443407 602074 988011 828092 593350 851352 478342 377362 870676 522114 023484 183919 471965 278615 522930 507712 765901 486327 384780 510233 306583 248447 212993 259757 357391 938782 656091 032917 048900 697199 292310 481887 800087 532440 034069 908842 863693 252039 837663 359500 625890 197453 904024 794147 571920 646618 239525 643478 035639 265296 807533 915240 079421 621850 354008 926288 459719 104638 131564 (675 digits), a[1287] = 2
                                                                                      A[1288]/B[1288] = 7 166344 005597 507126 161455 540973 459971 624296 765049 350086 195441 750923 312218 100925 200138 133153 613977 594897 099747 369356 657966 362146 389519 225131 437983 638896 459973 531063 180314 510808 075549 624110 160944 041863 493723 846035 310077 170098 083499 225831 332391 887777 552536 870149 423599 478009 376263 858399 665948 778004 269481 259983 745409 547119 347325 418911 180543 020340 550362 809083 753802 672869 088042 798167 370195 508425 066311 454271 557091 952619 782938 050974 159355 978251 819264 686821 068433 208719 430998 772122 585206 384555 577162 480523 167096 547630 408208 078001 003473 927092 359888 956822 666337 132846 141767 492215 580873 574311 884615 773475 750116 220650 696880 572225 211396 235052 485862 597847 919608 345664 910010 384668 213682 (673 digits)/696 522238 499637 912020 180159 198869 432147 485719 845059 773278 491744 242402 795571 111750 769325 839856 531895 812539 439201 119132 434378 991395 133728 021484 749932 925217 035630 940657 908444 711692 094001 149981 621674 659485 529526 062640 430578 634270 053279 301173 966678 192886 641295 255973 451640 880352 904152 670759 050423 384980 603133 140632 169490 712150 797860 014208 357792 055949 509280 305398 142118 538190 790905 912387 286396 475218 993092 279853 977637 261488 470350 896324 169537 538903 344248 824127 403055 302980 501870 036563 956805 684660 776253 505023 526880 208879 177158 790071 847027 667371 162924 103733 157030 269341 435200 143272 637568 538522 059608 471072 430341 169052 303525 147117 777336 381831 446482 066147 529914 584311 058594 041534 495291 (675 digits), a[1288] = 1
                                                                                      A[1289]/B[1289] = 26 719069 886432 692543 981437 584260 762242 564163 347295 219616 405455 508484 607064 720558 238028 457662 528646 978423 899104 659961 956809 316477 989376 543648 352617 978728 847423 740667 641886 925001 991505 455857 967471 506406 134846 474186 587280 474299 031507 599005 591857 458214 092179 257921 210675 111229 583533 448997 725680 025458 259967 715032 319528 921211 631012 587657 041151 712856 892020 354556 430556 684874 882849 668616 807783 277691 399572 347565 770881 697610 475997 934349 116190 592144 457562 115220 757522 374989 898840 556650 363831 390178 550495 831617 619561 208323 106701 976143 970957 619151 802138 006511 923672 063133 654685 926710 508452 560349 253711 312099 454537 807134 471573 813205 808063 027969 049058 078517 663264 354513 159591 373320 146385 (674 digits)/2596 920599 037679 963045 240013 035587 641832 030498 970166 909577 015621 471777 676115 474924 600755 234835 444867 618204 060874 054618 621416 478522 081569 704361 636378 047953 571574 498863 261115 171264 288395 367176 427589 387117 704484 714652 286587 825076 708014 700870 284620 917650 395784 032080 831617 828518 244199 488225 447730 417548 925913 488941 717012 592614 836987 644700 061387 995941 121191 767546 904697 991935 243394 259275 882673 609576 451242 118177 455842 292178 176954 175299 893393 126943 339329 720829 422159 168698 863002 048474 526508 086899 377661 212269 872951 108525 331563 902655 575152 910956 352465 563239 308754 167524 931490 627271 816730 409713 750746 059835 530549 150634 946214 706650 139543 060734 418867 820292 943752 679221 635501 229241 617437 (676 digits), a[1289] = 3
                                                                                      A[1290]/B[1290] = 808 738440 598578 283445 604583 068796 327248 549197 183905 938578 359107 005461 524159 717672 340991 863029 473386 947614 072887 168215 362245 856486 070815 534582 016523 000761 882685 751092 436922 260867 820713 299849 185089 234047 539118 071632 928491 399069 028727 195999 088115 634200 317914 607785 743852 814896 882267 328331 436349 541752 068512 710953 331277 183468 277703 048622 415094 406047 310973 445776 670503 219115 573532 856671 603693 839167 053481 881244 683542 880934 062876 081447 645073 742585 546128 143443 794104 458416 396215 471633 500148 089912 092037 429051 753932 797323 609267 362320 132202 501646 424029 152180 376499 026855 782345 293530 834450 384789 495955 136459 386250 434684 844094 968399 453287 074123 957604 953377 817538 981059 697751 584272 605232 (675 digits)/78604 140209 630036 803377 380550 266498 687108 400688 950067 060588 960388 395733 079035 359488 791982 884919 877924 358661 265422 757691 076873 347057 580819 152333 841274 363824 182865 906555 741899 849620 745862 165274 449356 273016 664067 502209 028213 386571 293720 327282 505305 722398 514816 218398 400175 735900 230137 317522 482335 911448 380537 808883 679868 490595 907489 355210 199431 934183 145033 331805 283058 296248 092733 690663 766604 762512 530355 825177 652906 026833 778976 155320 971331 347203 524140 449010 067830 363946 391931 490799 752048 291642 106089 873119 715413 464639 124075 869739 101614 996061 736891 000912 419655 295089 379918 961427 139480 829934 581990 266138 346815 688100 689966 346621 963628 203864 012516 674935 842494 960960 123630 918783 018401 (677 digits), a[1290] = 30
                                                                                      A[1291]/B[1291] = 2452 934391 682167 542880 795186 790649 743988 211754 899013 035351 482776 524869 179543 873575 261004 046750 948807 821266 117766 164608 043546 885936 201823 147394 402186 981014 495480 993944 952653 707605 453645 355405 522739 208548 752200 689085 372754 671506 117689 187002 856204 360815 045923 081278 442233 555920 230335 433992 034728 650714 465505 847892 313360 471616 464121 733524 286434 930998 824940 691886 442066 342221 603448 238631 618864 795192 560017 991299 821510 340412 664626 178692 051411 819901 095946 545552 139835 750239 087486 971550 864275 659914 826608 118772 881359 600293 934504 063104 367565 124091 074225 463053 053169 143701 001721 807303 011803 714717 741576 721477 613289 111189 003858 718404 167924 250340 921872 938651 115881 297692 252846 126137 962081 (676 digits)/238409 341227 927790 373177 381663 835083 703157 232565 820368 091343 896786 658976 913221 553390 976703 889595 078640 694187 857142 327691 852036 519694 824027 161363 160201 139426 120172 218530 486814 720126 525981 862999 775658 206167 696687 221279 371227 984790 589175 682717 800538 084845 940232 687276 032145 036218 934611 440792 894738 151894 067526 915592 756618 064402 559455 710330 659683 798490 556291 762962 753872 880679 521595 331267 182487 897114 042309 593710 414560 372679 513882 641262 807387 168553 911751 067859 625650 260538 038796 520873 782652 961825 695930 831629 019191 502442 703791 511872 879997 899141 563138 565976 567720 052793 071247 511553 235172 899517 496716 858250 570996 214937 016113 746516 030427 672326 456417 845100 471237 562102 006393 985590 672640 (678 digits), a[1291] = 3
                                                                                      A[1292]/B[1292] = 5714 607223 962913 369207 194956 650095 815224 972706 981932 009281 324660 055199 883247 464822 862999 956531 371002 590146 308419 497431 449339 628358 474461 829370 820896 962790 873647 738982 342229 676078 728004 010660 230567 651145 043519 449803 674000 742081 264105 570004 800524 355830 409760 770342 628319 926737 342938 196315 505806 843180 999524 406737 957998 126701 205946 515670 987964 268044 960854 829549 554635 903558 780429 333934 841423 429552 173517 863844 326563 561759 392128 438831 747897 382387 738021 234548 073775 958894 571189 414735 228699 409741 745253 666597 516651 997911 478275 488528 867332 749828 572480 078286 482837 314257 785788 908136 858057 814224 979108 579414 612828 657062 851812 405207 789135 574805 801350 830680 049301 576444 203443 836548 529394 (676 digits)/555422 822665 485617 549732 143877 936666 093422 865820 590803 243276 753961 713686 905478 466270 745390 664110 035205 747036 979707 413074 780946 386447 228873 475060 161676 642676 423210 343616 715529 289873 797825 891274 000672 685352 057441 944767 770669 356152 472071 692718 106381 892090 395281 592950 464465 808338 099360 199108 271812 215236 515591 640069 193104 619401 026400 775871 518799 531164 257616 857730 790804 057607 135924 353198 131580 556740 614975 012598 482026 772192 806741 437846 586105 684311 347642 584729 319130 885022 469524 532547 317354 215293 497951 536377 753796 469524 531658 893484 861610 794344 863168 132865 555095 400675 522413 984533 609826 628969 575423 982639 488808 117974 722193 839654 024483 548516 925352 365136 784970 085164 136418 889964 363681 (678 digits), a[1292] = 2
                                                                                      A[1293]/B[1293] = 13882 148839 607994 281295 185100 090841 374438 157168 862877 053914 132096 635268 946038 803220 987003 959813 690813 001558 734605 159470 942226 142653 150746 806136 043980 906596 242776 471909 637113 059762 909653 376725 983874 510838 839239 588692 720756 155668 645900 327012 457253 072475 865444 621963 698873 409394 916211 826623 046342 337076 464554 661368 229356 725018 876014 764866 262363 467088 746650 350985 551338 149339 164306 906501 301711 654296 907053 718988 474637 463931 448883 056355 547206 584676 571989 014648 287387 668028 229865 801021 321674 479398 317115 451967 914663 596116 891055 040162 102230 623748 219185 619626 018843 772216 573299 623576 727919 343167 699793 880306 838946 425314 707483 528819 746195 399952 524574 600011 214484 450580 659733 799235 020869 (677 digits)/1 349254 986558 899025 472641 669419 708415 890002 964207 001974 577897 404710 086350 724178 485932 467485 217815 149052 188261 816557 153841 413929 292589 281774 111483 483554 424778 966592 905763 917873 299874 121633 645547 777003 576871 811571 110814 912566 697095 533319 068154 013301 869026 730795 873176 961076 652895 133331 839009 438362 582367 098710 195731 142827 303204 612257 262073 697282 860819 071525 478424 335480 995893 793444 037663 445649 010595 272259 618907 378613 917065 127365 516955 979598 537176 607036 237318 263912 030582 977845 585968 417361 392412 691833 904384 526784 441491 767109 298842 603219 487831 289474 831707 677910 854144 116075 480620 454826 157456 647564 823529 548612 450886 460501 425824 079394 769360 307122 575374 041177 732430 279231 765519 400002 (679 digits), a[1293] = 2
                                                                                      A[1294]/B[1294] = 19596 756063 570907 650502 380056 740937 189663 129875 844809 063195 456756 690468 829286 268043 850003 916345 061815 591705 043024 656902 391565 771011 625208 635506 864877 869387 116424 210891 979342 735841 637657 387386 214442 161983 882759 038496 394756 897749 910005 897017 257777 428306 275205 392306 327193 336132 259150 022938 552149 180257 464079 068106 187354 851720 081961 280537 250327 735133 707505 180535 105974 052897 944736 240436 143135 083849 080571 582832 801201 025690 841011 495187 295103 967064 310010 249196 361163 626922 801055 215756 550373 889140 062369 118565 431315 594028 369330 528690 969563 373576 791665 697912 501681 086474 359088 531713 585977 157392 678902 459721 451775 082377 559295 934027 535330 974758 325925 430691 263786 027024 863177 635783 550263 (677 digits)/1 904677 809224 384643 022373 813297 645081 983425 830027 592777 821174 158671 800037 629656 952203 212875 881925 184257 935298 796264 566916 194875 679036 510647 586543 645231 067455 389803 249380 633402 589747 919459 536821 777676 262223 869013 055582 683236 053248 005390 760872 119683 761117 126077 466127 425542 461233 232692 038117 710174 797603 614301 835800 335931 922605 638658 037945 216082 391983 329142 336155 126285 053500 929368 390861 577229 567335 887234 631505 860640 689257 934106 954802 565704 221487 954678 822047 583042 915605 447370 118515 734715 607706 189785 440762 280580 911016 298768 192327 464830 282176 152642 964573 233006 254819 638489 465154 064652 786426 222988 806169 037420 568861 182695 265478 103878 317877 232474 940510 826147 817594 415650 655483 763683 (679 digits), a[1294] = 1
                                                                                      A[1295]/B[1295] = 111865 929157 462532 533807 085383 795527 322753 806548 086922 369891 415880 087613 092470 143440 237023 541538 999890 960083 949728 443982 900054 997711 276789 983670 368370 253531 824897 526369 533826 738971 097940 313657 056085 320758 253034 781174 694540 644418 195929 812098 746140 214007 241471 583495 334840 090056 211961 941315 807088 238363 784950 001899 166130 983619 285821 167552 514002 142757 284176 253661 081208 413828 887988 108682 017387 073542 309911 633152 480642 592385 653940 532292 022726 419998 122040 260630 093205 802642 235141 879804 073543 925098 628961 044795 071241 566258 737707 683616 950047 491632 177514 109188 527249 204588 368742 282144 657805 130131 094306 178914 097821 837202 503963 198957 422850 273744 154201 753467 533414 585704 975621 978152 772184 (678 digits)/10 872644 032680 822240 584510 735907 933825 807132 114344 965863 683768 198069 086538 872463 246948 531864 627441 070341 864755 797879 988422 388307 687771 835012 044201 709709 762055 915609 152667 084886 248613 718931 329656 665384 887991 156636 388728 328746 963335 560272 872514 611720 674612 361183 203814 088788 959061 296792 029597 989236 570385 170219 374732 822486 916232 805547 451799 777694 820735 717237 159199 966906 263398 440285 991971 331796 847274 708432 776436 681817 363354 797900 290968 808119 644616 380430 347556 179126 608610 214696 178547 090939 430943 640761 108195 929688 996573 260950 260479 927370 898712 052689 654573 842942 128242 308522 806390 778090 089587 762508 854374 735715 295192 373977 753214 598786 358746 469497 277928 171916 820402 357485 042938 218417 (680 digits), a[1295] = 5
                                                                                      A[1296]/B[1296] = 243328 614378 495972 718116 550824 331991 835170 742972 018653 802978 288516 865695 014226 554924 324050 999423 061597 511872 942481 544868 191675 766434 178788 602847 601618 376450 766219 263631 046996 213783 833538 014700 326612 803500 388828 600845 783838 186586 301865 521214 750057 856320 758148 559296 996873 516244 683073 905570 166325 656985 033979 071904 519616 818958 653603 615642 278332 020648 275857 687857 268390 880555 720712 457800 177909 230933 700394 849137 762486 210462 148892 559771 340556 807060 554090 770456 547575 232207 271338 975364 697461 739337 320291 208155 573798 726545 844745 895924 869658 356841 146693 916289 556179 495651 096573 096002 901587 417654 867514 817549 647418 756782 567222 331942 381031 522246 634328 937626 330615 198434 814421 592089 094631 (678 digits)/23 649965 874586 029124 191395 285113 512733 597690 058717 524505 188710 554809 973115 374583 446100 276605 136807 324941 664810 392024 543760 971491 054580 180671 674947 064650 591567 221021 554714 803175 086975 357322 196135 108446 038206 182285 833039 340729 979919 125936 505901 343125 110341 848443 873755 603120 379355 826276 097313 688647 938373 954740 585265 980905 755071 249752 941544 771472 033454 763616 654555 060097 580297 809940 374804 240823 261885 304100 184379 224275 415967 529907 536740 181943 510720 715539 517159 941296 132825 876762 475609 916594 469593 471307 657154 139958 904162 820668 713287 319572 079600 258022 273720 918890 511304 255535 077935 620832 965601 748006 514918 508851 159245 930650 771907 301451 035370 171469 496367 169981 458399 130620 741360 200517 (680 digits), a[1296] = 2
                                                                                      A[1297]/B[1297] = 598523 157914 454477 970040 187032 459510 993095 292492 124229 975847 992913 819003 120923 253288 885125 540385 123085 983829 834691 533719 283406 530579 634367 189365 571607 006433 357336 053631 627819 166538 765016 343057 709310 927759 030691 982866 262217 017590 799660 854528 246255 926648 757768 702089 328587 122545 578109 752456 139739 552333 852908 145708 205364 621536 593028 398837 070666 184053 835891 629375 617990 174940 329413 024282 373205 535409 710701 331428 005615 013309 951725 651834 703840 034119 230221 801543 188356 267056 777819 830533 468467 403773 269543 461106 218839 019350 427199 475466 689364 205314 470901 941767 639608 195890 561888 474150 460979 965440 829335 814013 392659 350767 638407 862842 184913 318237 422859 628720 194644 982574 604465 162330 961446 (678 digits)/58 172575 781852 880488 967301 306134 959293 002512 231780 014874 061189 307689 032769 621630 139149 085074 901055 720225 194376 581929 075944 331289 796932 196355 394095 839010 945190 357652 262096 691236 422564 433575 721926 882276 964403 521208 054807 010206 923173 812145 884317 297970 895296 058070 951325 295029 717772 949344 224225 366532 447133 079700 545264 784298 426375 305053 334889 320638 887645 244470 468310 087101 423994 060166 741579 813443 371045 316633 145195 130368 195289 857715 364449 172006 666057 811509 381876 061718 874261 968221 129766 924128 370130 583376 422504 209606 804898 902287 687054 566515 057912 568734 202015 680723 150850 819592 962262 019756 020791 258521 884211 753417 613684 235279 297029 201688 429486 812436 270662 511879 737200 618726 525658 619451 (680 digits), a[1297] = 2
                                                                                      A[1298]/B[1298] = 841851 772292 950450 688156 737856 791502 828266 035464 142883 778826 281430 684698 135149 808213 209176 539808 184683 495702 777173 078587 475082 297013 813155 792213 173225 382884 123555 317262 674815 380322 598554 357758 035923 731259 419520 583712 046055 204177 101526 375742 996313 782969 515917 261386 325460 638790 261183 658026 306065 209318 886887 217612 724981 440495 246632 014479 348998 204702 111749 317232 886381 055496 050125 482082 551114 766343 411096 180565 768101 223772 100618 211606 044396 841179 784312 571999 735931 499264 049158 805898 165929 143110 589834 669261 792637 745896 271945 371391 559022 562155 617595 858057 195787 691541 658461 570153 362567 383095 696850 631563 040078 107550 205630 194784 565944 840484 057188 566346 525260 181009 418886 754420 056077 (678 digits)/81 822541 656438 909613 158696 591248 472026 600202 290497 539379 249899 862499 005884 996213 585249 361680 037863 045166 859186 973953 619705 302780 851512 377027 069042 903661 536757 578673 816811 494411 509539 790897 918061 990723 002609 703493 887846 350936 903092 938082 390218 641096 005637 906514 825080 898150 097128 775620 321539 055180 385507 034441 130530 765204 181446 554806 276434 092110 921100 008087 122865 147199 004291 870107 116384 054266 632930 620733 329574 354643 611257 387622 901189 353950 176778 527048 899036 003015 007087 844983 605376 840722 839724 054684 079658 349565 709061 722956 400341 886087 137512 826756 475736 599613 662155 075128 040197 640588 986393 006528 399130 262268 772930 165930 068936 503139 464856 983905 767029 681861 195599 749347 267018 819968 (680 digits), a[1298] = 1
                                                                                      A[1299]/B[1299] = 4 807782 019379 206731 410823 876316 417025 134425 469812 838648 869979 400067 242493 796672 294354 931008 239426 046503 462343 720556 926656 658818 015648 700146 150431 437733 920853 975112 639945 001896 068151 757788 131847 888929 584056 128294 901426 492493 038476 307292 733243 227824 841496 337355 009020 955890 316496 884028 042587 670065 598928 287344 233771 830271 824012 826188 471233 815657 207564 394638 215540 049895 452420 580040 434695 128779 367126 766182 234256 846121 132170 454816 709864 925824 240018 151784 661541 868013 763377 023613 860024 298113 119326 218716 807415 182027 748831 786926 332424 484477 016092 558881 232053 618546 653598 854196 324917 273816 880919 313588 971828 593049 888518 666558 836765 014637 520657 708802 460452 820945 887621 698898 934431 241831 (679 digits)/467 285284 064047 428554 760784 262377 319426 003523 684267 711770 310688 620184 062194 602698 065395 893475 090370 946059 490311 451697 174470 845194 054494 081490 739310 357318 628978 251021 346154 163293 970263 388065 312236 835891 977452 038677 494038 764891 438638 502557 835410 503450 923485 590645 076729 785780 203416 827445 831920 642434 374668 251906 197918 610319 333608 079084 717059 781193 493145 284906 082635 823096 445453 410702 323500 084776 535698 420299 793066 903586 251576 795829 870395 941757 549950 446753 877056 076793 909701 193139 156651 127742 568750 856796 820795 957435 350207 517069 688763 996950 745476 702516 580698 678791 461626 195233 163250 222700 952756 291163 879863 064761 478335 064929 641711 717385 753771 731965 105810 921185 715199 365462 860752 719291 (681 digits), a[1299] = 5
                                                                                      A[1300]/B[1300] = 5 649633 791672 157182 098980 614173 208527 962691 505276 981532 648805 681497 927191 931822 102568 140184 779234 231186 958046 497730 005244 133900 312662 513301 942644 610959 303738 098667 957207 676711 448474 356342 489605 924853 315315 547815 485138 538548 242653 408819 108986 224138 624465 853272 270407 281350 955287 145211 700613 976130 808247 174231 451384 555253 264508 072820 485713 164655 412266 506387 532772 936276 507916 630165 916777 679894 133470 177278 414822 614222 355942 555434 921470 970221 081197 936097 233541 603945 262641 072772 665922 464042 262436 808551 476676 974665 494728 058871 703816 043499 578248 176477 090110 814334 345140 512657 895070 636384 264015 010439 603391 633127 996068 872189 031549 580582 361141 765991 026799 346206 068631 117785 688851 297908 (679 digits)/549 107825 720486 338167 919480 853625 791452 603725 974765 251149 560588 482683 068079 598911 650645 255155 128233 991226 349498 425650 794176 147974 906006 458517 808353 260980 165735 829695 162965 657705 479803 178963 230298 826614 980061 742171 381885 115828 341731 440640 225629 144546 929123 497159 901810 683930 300545 603066 153459 697614 760175 286347 328449 375523 515054 633890 993493 873304 414245 292993 205500 970295 449745 280809 439884 139043 168629 041033 122641 258229 862834 183452 771585 295707 726728 973802 776092 079808 916789 038122 762027 968465 408474 911480 900454 307001 059269 240026 089105 883037 882989 529273 056435 278405 123781 270361 203447 863289 939149 297692 278993 327030 251265 230859 710648 220525 218628 715870 872840 603046 910799 114810 127771 539259 (681 digits), a[1300] = 1
                                                                                      A[1301]/B[1301] = 50 004852 352756 464188 202668 789702 085248 835957 512028 690910 060424 852050 660029 251249 114900 052486 473299 895999 126715 702396 968609 730020 516948 806561 691588 325408 350758 764456 297606 415587 655946 608528 048695 287756 106580 510818 782534 800878 979703 577845 605133 020933 837223 163533 172279 206697 958794 045721 647499 479112 064905 681195 844848 272297 940077 408752 356939 132900 505696 445738 477723 540107 515753 621367 768916 567932 434888 184409 552837 759899 979710 898296 081632 687592 889601 640562 529874 699575 864505 605795 187404 010451 218820 687128 620830 979351 706656 257899 962952 832473 642077 970697 952940 133221 414722 955459 485482 364890 993039 397105 798961 658073 857069 644071 089161 659296 409791 836730 674847 590594 436670 641184 445241 625095 (680 digits)/4860 147889 827938 133898 116631 091383 651046 833331 482389 720966 795396 481648 606831 393991 270557 934716 116242 875870 286298 856903 527880 028993 302545 749633 206136 445159 954864 888582 649879 424937 808688 819771 154627 448811 817945 976048 549119 691518 172490 027679 640443 659826 356473 567924 291215 257222 607781 651975 059598 223352 456070 542684 825513 614507 454045 150212 665010 767628 807107 628851 726643 585460 043415 657177 842573 197121 884730 748564 774196 969425 154250 263452 043078 307419 363782 237176 085792 715265 244013 498121 252874 875465 836550 148644 024430 413443 824361 437278 401611 061253 809392 936701 032180 906032 451876 358122 790833 129020 465950 672702 111809 681003 488456 911807 326897 481587 502801 458932 088535 745561 001592 283943 882925 033363 (682 digits), a[1301] = 8
                                                                                      A[1302]/B[1302] = 55 654486 144428 621370 301649 403875 293776 798649 017305 672442 709230 533548 587221 183071 217468 192671 252534 127186 084762 200126 973853 863920 829611 319863 634232 936367 654496 863124 254814 092299 104420 964870 538301 212609 421896 058634 267673 339427 222356 986664 714119 245072 461689 016805 442686 488048 914081 190933 348113 455242 873152 855427 296232 827551 204585 481572 842652 297555 917962 952126 010496 476384 023670 251533 685694 247826 568358 361687 967660 374122 335653 453731 003103 657813 970799 576659 763416 303521 127146 678567 853326 474493 481257 495680 097507 954017 201384 316771 666768 875973 220326 147175 043050 947555 759863 468117 380553 001275 257054 407545 402353 291201 853138 516260 120711 239878 770933 602721 701646 936800 505301 758970 134092 923003 (680 digits)/5409 255715 548424 472066 036111 945009 442499 437057 457154 972116 355984 964331 674910 992902 921203 189871 244476 867096 635797 282554 322056 176968 208552 208151 014489 706140 120600 718277 812845 082643 288491 998734 384926 275426 798007 718219 931004 807346 514221 468319 866072 804373 285597 065084 193025 941152 908327 255041 213057 920967 216245 829032 153962 990030 969099 784103 658504 640933 221352 921844 932144 555755 493160 937987 282457 336165 053359 789597 896838 227655 017084 446904 814663 603127 090511 210978 861884 795074 160802 536244 014902 843931 245025 060124 924884 720444 883630 677304 490716 944291 692382 465974 088616 184437 575657 628483 994280 992310 405099 970394 390803 008033 739722 142667 037545 702112 721430 174802 961376 348607 912391 398754 010696 572622 (682 digits), a[1302] = 1
                                                                                      A[1303]/B[1303] = 105 659338 497185 085558 504318 193577 379025 634606 529334 363352 769655 385599 247250 434320 332368 245157 725834 023185 211477 902523 942463 593941 346560 126425 325821 261776 005255 627580 552420 507886 760367 573398 586996 500365 528476 569453 050208 140306 202060 564510 319252 266006 298912 180338 614965 694746 872875 236654 995612 934354 938058 536623 141081 099849 144662 890325 199591 430456 423659 397864 488220 016491 539423 872901 454610 815759 003246 546097 520498 134022 315364 352027 084736 345406 860401 217222 293291 003096 991652 284363 040730 484944 700078 182808 718338 933368 908040 574671 629721 708446 862404 117872 995991 080777 174586 423576 866035 366166 250093 804651 201314 949275 710208 160331 209872 899175 180725 439452 376494 527394 941972 400154 579334 548098 (681 digits)/10269 403605 376362 605964 152743 036393 093546 270388 939544 693083 151381 445980 281742 386894 191761 124587 360719 742966 922096 139457 849936 205961 511097 957784 220626 151300 075465 606860 462724 507581 097180 818505 539553 724238 615953 694268 480124 498864 686711 495999 506516 464199 642070 633008 484241 198375 516108 907016 272656 144319 672316 371716 979476 604538 423144 934316 323515 408562 028460 550696 658788 141215 536576 595165 125030 533286 938090 538162 671035 197080 171334 710356 857741 910546 454293 448154 947677 510339 404816 034365 267777 719397 081575 208768 949315 133888 707992 114582 892328 005545 501775 402675 120797 090470 027533 986606 785114 121330 871050 643096 502612 689037 228179 054474 364443 183700 224231 633735 049912 094168 913983 682697 893621 605985 (683 digits), a[1303] = 1
                                                                                      A[1304]/B[1304] = 900 929194 121909 305838 336194 952494 325981 875501 251980 579264 866473 618342 565224 657633 876414 153933 059206 312667 776585 420318 513562 615451 602092 331266 240803 030575 696541 883768 674178 155393 187361 552059 234273 215533 649708 614258 669338 461876 838841 502747 268137 373122 852986 459514 362412 046023 897083 084173 313016 930082 377621 148412 424881 626344 361888 604174 439383 741207 307238 135041 916256 608316 339061 234745 322580 773898 594330 730468 131645 446300 858568 269947 680994 421068 854009 314438 109744 328297 060364 953472 179170 354051 081882 958149 844219 420968 465708 914144 704542 543548 119559 090159 010979 593773 156554 856732 308835 930605 257804 844755 012872 885407 534803 798909 799694 433280 216737 118340 713603 155960 041080 960206 768769 307787 (681 digits)/87564 484558 559325 319779 258056 236154 190869 600168 973512 516781 567036 532173 928850 088056 455292 186570 130234 810832 012566 398217 121545 824660 297335 870424 779498 916540 724325 573161 514641 143292 065938 546778 701356 069335 725637 272367 772000 798264 007913 436315 918204 517970 422162 129152 066955 528157 037198 511171 394307 075524 594776 802767 989775 826338 354259 258634 246627 909429 449037 327418 202449 685479 785773 699308 282701 602460 558084 094899 265119 804296 387762 129759 676598 887498 724858 796218 443304 877789 399330 811166 157124 599107 897626 730276 519405 791554 547567 593967 629340 988655 706585 687375 054992 908197 795929 521338 275193 962957 373505 115166 411704 520331 565154 578461 953091 171714 515283 244683 360673 101959 224260 860337 159669 420502 (683 digits), a[1304] = 8
                                                                                      A[1305]/B[1305] = 3709 376114 984822 308911 849098 003554 682953 136611 537256 680412 235549 858969 508149 064855 838024 860889 962659 273856 317819 583797 996714 055747 754929 451490 289033 384078 791423 162655 249133 129459 509813 781635 524089 362500 127311 026487 727561 987813 557426 575499 391801 758497 710858 018396 064613 878842 461207 573348 247680 654684 448543 130272 840607 605226 592217 307022 957126 395285 652611 938032 153246 449756 895668 811882 744933 911353 380569 467970 047079 919225 749637 431817 808714 029682 276438 474974 732268 316285 233112 098251 757411 901149 027610 015408 095216 617242 770876 231250 447891 882639 340640 478509 039909 455869 800805 850506 101379 088587 281313 183671 252806 490905 849423 355970 408650 632296 047673 912815 230907 151235 106296 240981 654411 779246 (682 digits)/360527 341839 613663 885081 184967 981009 857024 671064 833594 760209 419527 574675 997142 739120 012929 870867 881658 986294 972361 732326 336119 504602 700441 439483 338621 817462 972767 899506 521289 080749 360935 005620 344978 001581 518502 783739 568127 691920 718365 241263 179334 536081 330719 149616 752063 311003 664902 951701 849884 446418 051423 582788 938579 909891 840181 968853 310027 046279 824609 860369 468586 883134 679671 392398 255836 943129 170426 917759 731514 414265 722383 229395 564137 460541 353728 633028 720897 021497 002139 279029 896276 115828 672082 129875 026938 300106 898262 490453 409691 960168 328118 152175 340768 723261 211252 071959 885889 973160 365071 103762 149430 770363 488797 368322 176807 870558 285364 612468 492604 502005 811027 124046 532299 287993 (684 digits), a[1305] = 4
                                                                                      A[1306]/B[1306] = 52832 194803 909421 630604 223567 002259 887325 788062 773574 105036 164171 643915 679311 565615 608762 206392 536436 146656 226059 593490 467559 395920 171104 652130 287270 407678 776466 160942 162041 967826 324754 494956 571524 290535 432062 985086 855206 291266 642813 559738 753361 992090 804998 717059 267006 349818 353989 111048 780546 095664 657224 972232 193388 099516 652930 902495 839153 275206 443805 267492 061706 904912 878424 601103 751655 532845 922303 282048 790764 315461 353492 315397 002990 836620 724147 964084 361500 756290 323934 328996 782936 970137 468423 173863 177252 062367 257976 151650 975028 900498 888525 789285 569711 975950 367836 763817 728143 170827 196189 416152 552163 758089 426730 782495 520803 285424 884171 897753 946303 273251 529228 333949 930534 217231 (683 digits)/5 134947 270313 150619 710915 847607 970292 189214 995076 643839 159713 440422 577637 888848 435736 636310 378720 473460 618961 625630 650785 827218 889098 103516 023191 520204 361022 343076 166252 812688 273783 119028 625463 531048 091476 984676 244721 725788 485154 065026 814000 428888 023109 052230 223786 595841 882208 345839 834997 292689 325377 314706 961813 129894 564824 116806 822580 587006 557346 993575 372590 762666 049365 301173 192883 864418 806268 944060 943535 506321 604016 501127 341297 574523 335077 677059 658620 535863 178747 429280 717584 704990 220709 306776 548526 896541 993051 123242 460315 365028 431012 300239 817829 825755 033854 753458 528776 677653 587202 484500 567836 503735 305420 408317 734972 428401 359530 510387 819242 257136 130040 578640 596988 611859 452404 (685 digits), a[1306] = 14
                                                                                      A[1307]/B[1307] = 479199 129350 169616 984349 861201 023893 668885 229176 499423 625737 713094 654210 621953 155396 316884 718422 790584 593762 352355 925212 204748 619029 294871 320662 874467 053187 779618 611134 707510 839896 432604 236244 667807 977319 015877 892269 424418 609213 342748 613148 172059 687314 955846 471929 467671 027207 647109 572787 272595 515666 363567 880362 581100 500876 468595 429485 509505 872143 646859 345460 708608 593972 801490 221816 509833 706966 681299 006409 163958 758377 931068 270390 835631 559268 793770 151733 985775 122898 148521 059222 803844 632386 243418 580176 690485 178548 092661 596109 223151 987129 337372 582079 167317 239423 111336 724865 654667 626032 047017 929044 222280 313710 690000 398430 095880 201120 005220 992600 747636 610498 869351 246531 029219 734325 (684 digits)/46 575052 774657 969241 283323 813439 713639 559959 626754 628147 197630 383330 773416 996778 660749 739723 279352 142804 556949 603037 589398 781089 506485 632085 648207 020461 066664 060453 395781 835483 544797 432192 634792 124410 824874 380588 986235 100224 058307 303606 567267 039326 744062 800791 163696 114640 250878 777461 466677 484088 374813 883786 239107 107630 993308 891443 372078 593086 062402 766788 213686 332581 327422 390230 128353 035606 199549 666975 409579 288408 850414 232529 301073 734847 476240 447265 560613 543665 630223 865665 737292 241188 102212 433071 066617 095816 237567 007444 633291 694947 839279 030276 512643 772564 027953 992378 830949 984772 257982 725576 214290 683048 519147 163656 983074 032420 106332 878854 985648 806829 672371 018792 496944 039034 359629 (686 digits), a[1307] = 9
                                                                                      A[1308]/B[1308] = 532031 324154 079038 614954 084768 026153 556211 017239 272997 730773 877266 298126 301264 721011 925646 924815 327020 740418 578415 518702 672308 014949 465975 972793 161737 460866 556084 772076 869552 807722 757358 731201 239332 267854 447940 877356 279624 900479 985562 172886 925421 679405 760845 188988 734677 377026 001098 683836 053141 611331 020792 852594 774488 600393 121526 331981 348659 147350 090664 612952 770315 498885 679914 822920 261489 239812 603602 288457 954723 073839 284560 585787 838622 395889 517918 115818 347275 879188 472455 388219 586781 602523 711841 754039 867737 240915 350637 747760 198180 887628 225898 371364 737029 215373 479173 488683 382810 796859 243207 345196 774444 071800 116731 180925 616683 486544 889392 890354 693939 883750 398579 580480 959753 951556 (684 digits)/51 710000 044971 119860 994239 661047 683931 749174 621831 271986 357343 823753 351054 885627 096486 376033 658072 616265 175911 228668 240184 608308 395583 735601 671398 540665 427686 403529 562034 648171 818580 551221 260255 655458 916351 365265 230956 826012 543461 368633 381267 468214 767171 853021 387482 710482 133087 123301 301674 776777 700191 198493 200920 237525 558133 008250 194659 180092 619749 760363 586277 095247 376787 691403 321236 900025 005818 611036 353114 794730 454430 733656 642371 309370 811318 124325 219234 079528 808971 294946 454876 946178 322921 739847 615143 992358 230618 130687 093607 059976 270291 330516 330473 598319 061808 745837 359726 662425 845185 210076 782127 186783 824567 571974 718046 460821 465863 389242 804891 063965 802411 597433 093932 650893 812033 (686 digits), a[1308] = 1
                                                                                      A[1309]/B[1309] = 6 331543 695045 039041 748844 793649 311582 787206 418808 502398 664250 363023 933599 935865 086527 499000 891391 387812 738366 714926 630941 600136 783473 420607 021387 653579 122719 896551 103980 272591 724846 763550 279458 300462 923717 943227 543188 500292 514493 183932 514904 351698 160778 325143 550805 549122 174493 659195 094983 857153 240307 592289 258905 100475 105200 805385 081280 344756 492994 644170 087941 182079 081715 280553 273939 386215 344905 320924 179446 665912 570610 061234 714057 060477 914053 490869 425735 805809 793971 345530 329638 258442 260147 073677 874615 235594 828616 949676 821471 403141 751039 822254 667091 274638 608531 382245 100382 865586 391483 722298 726208 741165 103511 974043 388611 879398 553113 788542 786502 380975 331753 253726 631821 586513 201441 (685 digits)/615 385053 269340 287712 219960 084964 236888 800880 466898 619997 128412 444617 635020 738676 722099 876093 518150 921721 491973 118388 231429 472481 857906 723704 033590 967780 771214 499278 578162 965373 549183 495626 497604 334458 904739 398506 526760 186362 036382 358573 761209 189689 182953 184026 426005 929943 714837 133775 785100 028643 076917 067211 449229 720412 132771 982195 513329 574104 879650 130787 662734 380302 472086 995666 661958 935881 263554 388375 293842 030443 849152 302752 367158 137926 400739 814842 972188 418482 528908 110076 740938 649149 654351 571394 833201 011756 774366 445002 662969 354686 812483 665956 147853 354073 707850 196589 787943 271456 555020 036420 817689 737670 589390 455378 881585 101456 230830 160525 839450 510453 498898 590556 530203 198866 291992 (687 digits), a[1309] = 11
                                                                                      A[1310]/B[1310] = 19 526662 409289 196163 861488 465715 960901 917830 273664 780193 723524 966338 098926 108859 980594 422649 598989 490458 955518 723195 411527 472718 365369 727797 036956 122474 829026 245738 084017 687327 982263 048009 569576 140721 039008 277623 506921 780502 443959 537359 717599 980516 161740 736275 841405 382043 900506 978683 968787 624601 332253 797660 629310 075913 915995 537681 575822 382928 626334 023174 876776 316552 744031 521574 644738 420135 274528 566374 826797 952460 785669 468264 727959 020056 138049 990526 393025 764705 261102 509046 377134 362108 382964 932875 377885 574521 726766 199668 212174 407606 140747 692662 372638 560945 040967 625908 789831 979569 971310 410103 523822 997939 382336 038861 346761 254879 145886 255021 249861 836865 879010 159759 475945 719293 555879 (686 digits)/1897 865159 852991 982997 654119 915940 394598 151816 022527 131977 742581 157606 256117 101657 262786 004314 212525 381429 651830 583832 934473 025753 969303 906713 772171 444007 741329 901365 296523 544292 466131 038100 753068 658835 630569 560784 811237 385098 652608 444354 664895 037282 316031 405100 665500 500313 277598 524628 656974 862706 930942 400127 548609 398761 956448 954836 734647 902407 258700 152726 574480 236154 793048 678403 307113 707668 796481 776162 234640 886062 001887 641913 743845 723150 013537 568854 135799 334976 395695 625176 677692 893627 285976 454032 114747 027628 553717 465695 082515 124036 707742 328384 774033 660540 185359 335606 723556 476795 510245 319339 235196 399795 592738 938111 362801 765190 158353 870820 323242 595326 299107 369102 684542 247492 688009 (688 digits), a[1310] = 3
                                                                                      A[1311]/B[1311] = 787 398040 066612 885596 208383 422287 747659 500417 365399 710147 605249 016547 890644 290264 310304 404984 850971 006170 959115 642743 092040 508871 398262 532488 499632 552572 283769 726074 464687 765711 015368 683933 062503 929304 484049 048167 820059 720390 272874 678321 218903 572344 630407 776177 207020 830878 194772 806553 846488 841206 530459 498714 431308 137031 745022 312648 114175 661901 546355 571165 158993 844188 842976 143539 063476 191626 326047 975917 251364 764343 997388 791823 832417 862723 436053 111925 146766 394020 238071 707385 415012 742777 578744 388692 990038 216463 899264 936405 308447 707387 380947 528749 572633 712440 247236 418596 693662 048385 243900 126439 679128 658740 396953 528497 259062 074564 388563 989392 780975 855610 492159 644105 669650 358255 436601 (687 digits)/76529 991447 389019 607618 384756 722580 020814 873521 367983 899106 831658 748867 879704 804967 233540 048662 019166 178907 565196 471705 610350 502640 630062 992254 920448 728090 424410 553890 439104 737072 194425 019656 620350 687884 127521 829898 976255 590308 140720 132760 357010 680981 824209 388053 046025 942474 818778 118922 064094 536920 314613 072313 393605 670890 390730 175664 899245 670395 227656 239850 641943 826494 194034 131798 946507 242633 122825 434864 679477 472923 924657 979302 120987 063926 942242 569008 404161 817538 356733 117143 848654 394241 093409 732679 423082 116898 923065 072805 963574 316155 122176 801347 109199 775681 122223 620858 730202 343276 964832 809990 225545 729494 298947 979833 393655 709062 564984 993338 769154 323505 463193 354663 911893 098573 812352 (689 digits), a[1311] = 40
                                                                                      A[1312]/B[1312] = 806 924702 475902 081760 069871 888003 708561 418247 639064 490341 328773 982885 989570 399124 290898 827634 449960 496629 914634 365938 503567 981589 763632 260285 536588 675047 112795 971812 548705 453038 997631 731942 632080 070025 523057 325791 326981 500892 716834 215680 936503 552860 792148 512453 048426 212922 095279 785237 815276 465807 862713 296375 060618 212945 661017 850329 689998 044830 172689 594340 035770 160741 587007 665113 708214 611761 600576 542292 078162 716804 783058 260088 560376 882779 574103 102451 539792 158725 499174 216431 792147 104885 961709 321568 367923 790985 626031 136073 520622 114993 521695 221411 945272 273385 288204 044505 483494 027955 215210 536543 202951 656679 779289 567358 605823 329443 534450 244414 030837 692476 371169 803865 145596 077548 992480 (687 digits)/78427 856607 242011 590616 038876 638520 415413 025337 390511 031084 574239 906474 135821 906624 496326 052976 231691 560337 217027 055538 544823 528394 599366 898968 692620 172098 165740 455255 735628 281364 660556 057757 373419 346719 758091 390683 787492 975406 793328 577115 021905 718264 140240 793153 711526 442788 096376 643550 721069 399627 245555 472440 942215 069652 347179 130501 633893 572802 486356 392577 216424 062648 987082 810202 253620 950301 919307 211026 914118 358985 926545 621215 864832 787076 955780 137862 539961 152514 752428 742320 526347 287868 379386 186711 537829 144527 476782 538501 046089 440191 829919 129731 883233 436221 307582 956465 453758 820072 475078 129329 460742 129289 891686 917944 756457 474252 723338 864159 092396 918831 762300 723766 596435 346066 500361 (689 digits), a[1312] = 1
                                                                                      A[1313]/B[1313] = 2401 247445 018417 049116 348127 198295 164782 336912 643528 690830 262796 982319 869785 088512 892102 060253 750891 999430 788384 374620 099176 472050 925527 053059 572809 902666 509361 669699 562098 671789 010632 147818 326664 069355 530163 699750 474022 722175 706543 109683 091910 678066 214704 801083 303873 256722 385332 377029 477041 772822 255886 091464 552544 562923 067058 013307 494171 751561 891734 759845 230534 165672 016991 473766 479905 415149 527201 060501 407690 197953 563505 312000 953171 628282 584259 316828 226350 711471 236420 140248 999306 952549 502163 031829 725885 798435 151327 208552 349691 937374 424337 971573 463178 259210 823644 507607 660650 104295 674321 199526 085031 972099 955532 663214 470708 733451 457464 478220 842651 240563 234499 251835 960842 513353 421561 (688 digits)/233385 704661 873042 788850 462509 999620 851640 924196 149005 961275 980138 561816 151348 618216 226192 154614 482549 299581 999250 582782 699997 559429 828796 790192 305689 072286 755891 464401 910361 299801 515537 135171 367189 381323 643704 611266 551241 541121 727377 286990 400822 117510 104690 974360 469078 828051 011531 406023 506233 336174 805724 017195 278035 810195 085088 436668 167032 816000 200369 025005 074791 951792 168199 752203 453749 143236 961439 856918 507714 190895 777749 221733 850652 638080 853802 844733 484084 122567 861590 601784 901348 969977 852182 106102 498740 405953 876630 149808 055753 196538 782015 060810 875666 648123 737389 533789 637719 983421 914989 068649 147029 988074 082321 815722 906570 657568 011662 721656 953948 161168 987794 802197 104763 790706 813074 (690 digits), a[1313] = 2
                                                                                      A[1314]/B[1314] = 5609 419592 512736 179992 766126 284594 038126 092072 926121 872001 854367 947525 729140 576150 075102 948141 951744 495491 491403 115178 701920 925691 614686 366404 682208 480380 131519 311211 672902 796617 018896 027579 285408 208736 583384 725292 275026 945244 129920 435047 120324 908993 221558 114619 656172 726366 865944 539296 769360 011452 374485 479304 165707 338791 795133 876944 678341 547953 956159 114030 496838 492085 620990 612646 668025 442060 654978 663294 893543 112711 910068 884090 466720 139344 742621 736107 992493 581667 972014 496929 790761 009984 966035 385227 819695 387855 928685 553178 220005 989742 370371 164558 871628 791806 935493 059720 804794 236546 563852 935595 373015 600879 690354 893787 547240 796346 449379 200855 716140 173602 840168 307537 067281 104255 835602 (688 digits)/545199 265930 988097 168316 963896 637762 118694 873729 688522 953636 534517 030106 438519 143056 948710 362205 196790 159501 215528 221103 944818 647254 256960 479353 303998 316671 677523 384059 556350 880967 691630 328100 107798 109367 045500 613216 889976 057650 248083 151095 823549 953284 349622 741874 649684 098890 119439 455597 733536 071976 857003 506831 498286 690042 517356 003837 967959 204802 887094 442587 366007 966233 323482 314609 161119 236775 842186 924863 929546 740777 482044 064683 566138 063238 663385 827329 508129 397650 475609 945890 329045 227824 083750 398916 535309 956435 230042 838117 157595 833269 393949 251353 634566 732468 782362 024044 729198 786916 305056 266627 754802 105438 056330 549390 569598 789388 746664 307473 000293 241169 737890 328160 805962 927480 126509 (690 digits), a[1314] = 2
                                                                                      A[1315]/B[1315] = 13620 086630 043889 409101 880379 767483 241034 521058 495772 434833 971532 877371 328066 240813 042307 956537 654380 990413 771190 604977 503018 323434 154899 785868 937226 863426 772400 292122 907904 265023 048424 202976 897480 486828 696933 150335 024076 612663 966383 979777 332560 496052 657821 030322 616218 709456 117221 455623 015761 795727 004857 050072 883959 240506 657325 767196 850854 847469 804052 987906 224211 149843 258972 699059 815956 299270 837158 387091 194776 423377 383643 080181 886611 906972 069502 789044 211337 874807 180449 134108 580828 972519 434233 802285 365276 574147 008698 314908 789703 916859 165080 300691 206435 842824 694630 627049 270238 577388 802027 070716 831063 173859 336242 450789 565190 326144 356222 879932 274931 587768 914835 866910 095404 721865 092765 (689 digits)/1 323784 236523 849237 125484 390303 275145 089030 671655 526051 868549 049172 622029 028386 904330 123612 879024 876129 618584 430307 024990 589634 853938 342717 748898 913685 705630 110938 232521 023063 061736 898797 791371 582785 600057 734705 837700 331193 656422 223543 589182 047922 024078 803936 458109 768447 025831 250410 317218 973305 480128 519731 030858 274609 190280 119800 444344 102951 225605 974557 910179 806807 884258 815164 381421 775987 616788 645813 706646 366807 672450 741837 351100 982928 764558 180574 499392 500342 917868 812810 493565 559439 425626 019682 903935 569360 318824 336715 826042 370944 863077 569913 563518 144800 113061 302113 581879 096117 557254 525101 601904 656634 198950 194982 914504 045768 236345 504991 336602 954534 643508 463575 458518 716689 645667 066092 (691 digits), a[1315] = 2
                                                                                      A[1316]/B[1316] = 46469 679482 644404 407298 407265 587043 761229 655248 413439 176503 768966 579639 713339 298589 202026 817754 914887 466732 804974 930111 210975 895994 079385 724011 493889 070660 448720 187580 396615 591686 164168 636509 977849 669222 674184 176297 347256 783236 029072 374379 118006 397151 195021 205587 504828 854735 217608 906165 816645 398633 389056 629522 817585 060311 767111 178535 230906 090363 368318 077749 169471 941615 397908 709826 115894 339873 166453 824568 477872 382844 060998 124636 126555 860260 951130 103240 626507 206089 513361 899255 533247 927543 268736 792083 915525 110296 954780 497904 589117 740319 865612 066632 490936 320281 019384 940868 615509 968712 969934 147745 866205 122457 699082 246156 242811 774779 518047 840652 540934 936909 584675 908267 353495 269851 113897 (689 digits)/4 516551 975502 535808 544770 134806 463197 385786 888696 266678 559283 682034 896193 523679 856047 319548 999279 825179 015254 506449 296075 713723 209069 285113 726050 045055 433562 010338 081622 625540 066178 388023 702214 856154 909540 249618 126317 883557 026916 918713 918641 967316 025520 761432 116203 955025 176383 870670 407254 653452 512362 416196 599406 322114 260882 876757 336870 276812 881620 810768 173126 786431 619009 768975 458874 489082 087141 779628 044803 029969 758129 707556 117986 514924 356913 205109 325507 009158 151256 914041 426587 007363 504702 142799 110723 243390 912908 240190 316244 270430 422502 103689 941908 068967 071652 688702 769682 017551 458679 880361 072341 724704 702288 641279 292902 706903 498425 261638 317281 863897 171695 128616 703716 956031 864481 324785 (691 digits), a[1316] = 3
                                                                                      A[1317]/B[1317] = 60089 766112 688293 816400 287645 354527 002264 176306 909211 611337 740499 457011 041405 539402 244334 774292 569268 457146 576165 535088 713994 219428 234285 509880 431115 934087 221120 479703 304519 856709 212592 839486 875330 156051 371117 326632 371333 395899 995456 354156 450566 893203 852842 235910 121047 564191 334830 361788 832407 194360 393913 679595 701544 300818 424436 945732 081760 937833 172371 065655 393683 091458 656881 408885 931850 639144 003612 211659 672648 806221 444641 204818 013167 767233 020632 892284 837845 080896 693811 033364 114076 900062 702970 594369 280801 684443 963478 812813 378821 657179 030692 367323 697372 163105 714015 567917 885748 546101 771961 218462 697268 296317 035324 696945 808002 100923 874270 720584 815866 524678 499511 775177 448899 991716 206662 (689 digits)/5 840336 212026 385045 670254 525109 738342 474817 560351 792730 427832 731207 518222 552066 760377 443161 878304 701308 633838 936756 321066 303358 063007 627831 474948 958741 139192 121276 314143 648603 127915 286821 493586 438940 509597 984323 964018 214750 683339 142257 507824 015238 049599 565368 574313 723472 202215 121080 724473 626757 992490 935927 630264 596723 451162 996557 781214 379764 107226 785326 083306 593239 503268 584139 840296 265069 703930 425441 751449 396777 430580 449393 469087 497853 121471 385683 824899 509501 069125 726851 920152 566802 930328 162482 014658 812751 231732 576906 142286 641375 285579 673603 505426 213767 184713 990816 351561 113669 015934 405462 674246 381338 901238 836262 207406 752671 734770 766629 653884 818431 815203 592192 162235 672721 510148 390877 (691 digits), a[1317] = 1
                                                                                      A[1318]/B[1318] = 166649 211708 020992 040098 982556 296097 765758 007862 231862 399179 249965 493661 796150 377393 690696 366340 053424 381025 957306 000288 638964 334850 547956 743772 356120 938834 890961 146987 005655 305104 589354 315483 728509 981325 416418 829562 089923 575036 019985 082692 019140 183558 900705 677407 746923 983117 887269 629743 481459 787354 176883 988714 220673 661948 615985 069999 394427 966029 713060 209059 956838 124532 711671 527597 979595 618161 173678 247887 823169 995286 950280 534272 152891 394726 992395 887810 302197 367882 900983 965983 761401 727668 674677 980822 477128 479184 881738 123531 346761 054677 926996 801279 885680 646492 447416 076704 387007 060916 513856 584671 260741 715091 769731 640047 858815 976627 266589 281822 172667 986266 583699 458622 251295 253283 527221 (690 digits)/16 197224 399555 305899 885279 185025 939882 335422 009399 852139 414949 144449 932638 627813 376802 205872 755889 227796 282932 379961 938208 320439 335084 540776 675947 962537 711946 252890 709909 922746 322008 961666 689387 734035 928736 218266 054354 313058 393595 203228 934289 997792 124719 892169 264831 401969 580814 112831 856201 906968 497344 288051 859935 515561 163208 869872 899299 036341 096074 381420 339739 972910 625546 937255 139467 019221 495002 630511 547701 823524 619290 606343 056161 510630 599855 976476 975306 028160 289508 367745 266892 140969 365358 467763 140040 868893 376373 394002 600817 553180 993661 450896 952760 496501 441080 670335 472804 244889 490548 691286 420834 487382 504766 313803 707716 212246 967966 794897 625051 500760 802102 313001 028188 301474 884778 106539 (692 digits), a[1318] = 2
                                                                                      A[1319]/B[1319] = 393388 189528 730277 896598 252757 946722 533780 192031 372936 409696 240430 444334 633706 294189 625727 506972 676117 219198 490777 535665 991922 889129 330198 997425 143357 811757 003042 773677 315830 466918 391301 470454 332350 118702 203954 985756 551180 545972 035426 519540 488847 260321 654253 590725 614895 530427 109369 621275 795326 769068 747681 657024 142891 624715 656407 085730 870616 869892 598491 483775 307359 340524 080224 464081 891041 875466 350968 707435 318988 796795 345202 273362 318950 556687 005424 667905 442239 816662 495778 965331 636880 355400 052326 556014 235058 642813 726955 059876 072343 766534 884685 969883 468733 456090 608847 721326 659762 667934 799674 387805 218751 726500 574787 977041 525634 054178 407449 284229 161202 497211 666910 692421 951490 498283 261104 (690 digits)/38 234785 011136 996845 440812 895161 618107 145661 579151 497009 257731 020107 383499 807693 513981 854907 390083 156901 199703 696680 197482 944236 733176 709384 826844 883816 563084 627057 733963 494095 771933 210154 872361 907012 367070 420856 072726 840867 470529 548715 376404 010822 299039 349707 103976 527411 363843 346744 436877 440694 987179 512031 350135 627845 777580 736303 579812 452446 299375 548166 762786 539060 754362 458650 119230 303512 693935 686464 846853 043826 669161 662079 581410 519114 321183 338637 775511 565821 648142 462342 453936 848741 661045 098008 294740 550537 984479 364911 343921 747737 272902 575397 410947 206770 066875 331487 297169 603447 997031 788035 515915 356103 910771 463869 622839 177165 670704 356424 903987 819953 419408 218194 218612 275671 279704 603955 (692 digits), a[1319] = 2
                                                                                      A[1320]/B[1320] = 4 493919 296524 054048 902679 762893 710045 637340 120207 334162 905837 894700 381342 766919 613479 573698 943039 490713 792209 355858 892614 550116 115273 180145 715448 933056 868161 924431 657437 479790 441206 893670 490481 384361 287049 659923 672884 152909 580728 409676 797637 396460 047097 097495 175389 510774 817816 090335 463777 230054 247110 401382 215979 792481 533820 836463 013038 971213 534848 296466 530588 337790 870297 594140 632498 781056 248291 034334 029676 332046 760035 747505 541257 661347 518284 052067 234770 166835 351170 354552 584631 767085 637069 250270 096979 062773 550135 878243 782168 142542 486561 658542 469998 041748 663489 144741 011297 644396 408199 310274 850528 667010 706598 092399 387504 640790 572589 748531 408342 945895 455594 919717 075263 717690 734399 399365 (691 digits)/436 779859 522062 271199 734221 031803 739060 937699 380066 319241 249990 365631 151136 512442 030602 609854 046803 953709 479673 043444 110520 707043 400028 344009 771241 684519 905877 150525 783508 357799 813274 273370 285368 711171 966510 847682 854349 562600 569420 239098 074734 116837 414152 738947 408573 203494 583090 927020 661853 754613 356318 920396 711427 421864 716596 969212 277236 013250 389205 411254 730391 902578 923533 982406 451000 357861 128295 181624 863085 305617 980068 889218 451677 220888 132872 701492 505933 252198 419075 453512 260197 477127 636854 545854 382186 924811 205646 408027 383956 778290 995589 780268 473179 770972 176709 316695 741669 882817 457898 359677 095903 404525 523252 416369 558947 161069 345714 715571 568917 520248 415592 713137 432923 333858 961528 750044 (693 digits), a[1320] = 11
                                                                                      A[1321]/B[1321] = 4 887307 486052 784326 799278 015651 656768 171120 312238 707099 315534 135130 825677 400625 907669 199426 450012 166831 011407 846636 428280 542039 004402 510344 712874 076414 679918 927474 431114 795620 908125 284971 960935 716711 405751 863878 658640 704090 126700 445103 317177 885307 307418 751748 766115 125670 348243 199705 085053 025381 016179 149063 873003 935373 158536 492870 098769 841830 404740 894958 014363 645150 210821 674365 096580 672098 123757 385302 737111 651035 556831 092707 814619 980298 074971 057491 902675 609075 167832 850331 549963 403965 992469 302596 652993 297832 192949 605198 842044 214886 253096 543228 439881 510482 119579 753588 732624 304159 076134 109949 238333 885762 433098 667187 364546 166424 626768 155980 692572 107097 952806 586627 767685 669181 232682 660469 (691 digits)/475 014644 533199 268045 175033 926965 357168 083360 959217 816250 507721 385738 534636 320135 544584 464761 436887 110610 679376 740124 308003 651280 133205 053394 598086 568336 468961 777583 517471 851895 585207 483525 157730 618184 333581 268538 927076 403468 039949 787813 451138 127659 713192 088654 512549 730905 946934 273765 098731 195308 343498 432428 061563 049710 494177 705515 857048 465696 688580 959421 493178 441639 677896 441056 570230 661373 822230 868089 709938 349444 649230 551298 033087 740002 454056 040130 281444 818020 067217 915854 714134 325869 297899 643862 676927 475349 190125 772938 727878 526028 268492 355665 884126 977742 243584 648183 038839 486265 454930 147712 611818 760629 434023 880239 181786 338235 016419 071996 472905 340201 835000 931331 651535 609530 241233 353999 (693 digits), a[1321] = 1
                                                                                      A[1322]/B[1322] = 14 268534 268629 622702 501235 794197 023581 979580 744684 748361 536906 164962 032697 568171 428817 972551 843063 824375 815025 049131 749175 634194 124078 200835 141197 085886 227999 779380 519667 071032 257457 463614 412352 817784 098553 387680 990165 561089 834129 299883 431993 167074 661934 600992 707619 762115 514302 489745 633883 280816 279468 699509 961987 663227 850893 822203 210578 654874 344330 086382 559315 628091 291940 942870 825660 125252 495805 804939 503899 634117 873697 932921 170497 621943 668226 167051 040121 384985 686836 055215 684558 575017 622007 855463 402965 658437 936035 088641 466256 572314 992754 744999 349761 062712 902648 651918 476546 252714 560467 530173 327196 438535 572795 426774 116596 973639 826126 060492 793487 160091 361208 092972 610635 056053 199764 720303 (692 digits)/1386 809148 588460 807290 084288 885734 453397 104421 298501 951742 265433 137108 220409 152713 119771 539376 920578 174930 838426 523692 726528 009603 666438 450798 967414 821192 843800 705692 818452 061590 983689 240420 600829 947540 633673 384760 708502 369536 649319 814724 977010 372156 840536 916256 433672 665306 476959 474550 859316 145230 043315 785252 834553 521285 704952 380243 991332 944643 766367 330097 716748 785858 279326 864519 591461 680608 772756 917804 282962 004507 278529 991814 517852 700893 040984 781753 068822 888238 553511 285221 688466 128866 232653 833579 736041 875509 585897 953904 839713 830347 532574 491600 241433 726456 663878 613061 819348 855348 367758 655102 319540 925784 391300 176847 922519 837539 378552 859564 514728 200652 085594 575800 735994 552919 443995 458042 (694 digits), a[1322] = 2
                                                                                      A[1323]/B[1323] = 19 155841 754682 407029 300513 809848 680350 150701 056923 455460 852440 300092 858374 968797 336487 171978 293075 991206 826432 895768 177456 176233 128480 711179 854071 162300 907918 706854 950781 866653 165582 748586 373288 534495 504305 251559 648806 265179 960829 744986 749171 052381 969353 352741 473734 887785 862545 689450 718936 306197 295647 848573 834991 598601 009430 315073 309348 496704 749070 981340 573679 273241 502762 617235 922240 797350 619563 190242 241011 285153 430529 025628 985117 602241 743197 224542 942796 994060 854668 905547 234521 978983 614477 158060 055958 956270 128984 693840 308300 787201 245851 288227 789642 573195 022228 405507 209170 556873 636601 640122 565530 324298 005894 093961 481143 140064 452894 216473 486059 267189 314014 679600 378320 725234 432447 380772 (692 digits)/1861 823793 121660 075335 259322 812699 810565 187782 257719 767992 773154 522846 755045 472848 664356 004138 357465 285541 517803 263817 034531 660883 799643 504193 565501 389529 312762 483276 335923 913486 568896 723945 758560 565724 967254 653299 635578 773004 689269 602538 428148 499816 553729 004910 946222 396212 423893 748315 958047 340538 386814 217680 896116 570996 199130 085759 848381 410340 454948 289519 209927 227497 957223 305576 161692 341982 594987 785893 992900 353951 927760 543112 550940 440895 495040 821883 350267 706258 620729 201076 402600 454735 530553 477442 412969 350858 776023 726843 567592 356375 801066 847266 125560 704198 907463 261244 858188 341613 822688 802814 931359 686413 825324 057087 104306 175774 394971 931560 987633 540853 920595 507132 387530 162449 685228 812041 (694 digits), a[1323] = 1
                                                                                      A[1324]/B[1324] = 8960 046633 705313 705385 841184 993530 747102 356974 327938 448579 626526 308326 893807 996527 568327 286414 709551 717963 759187 372870 621209 935065 124570 321826 992429 880410 226035 880642 534798 798060 584601 053450 738098 427184 609105 866036 982691 400131 541620 208695 294874 629454 349950 331260 941812 358113 323139 463231 377138 274953 347013 983490 903064 209899 254850 961438 676326 615992 160478 372430 467536 231873 082083 192046 512112 487991 831815 648066 056169 800769 930752 901657 220417 868837 741330 028605 326317 611404 817214 945774 206322 760365 582840 669509 535798 236588 171887 112065 442724 195296 805306 347377 112842 744788 283314 023785 159196 312702 853433 467411 429857 885704 325337 306785 810443 383739 327725 153610 783164 937501 006063 466349 286413 740533 152691 540827 (694 digits)/870858 520536 403715 988856 188042 416545 987339 798735 653633 604367 328595 306542 826644 973039 374025 471989 856866 522819 652550 726247 852813 642338 099954 909194 056563 731381 903880 395741 694919 659818 658459 323089 848614 141100 341596 475690 523789 362726 538224 200170 922359 786487 431982 209668 319531 696508 435339 938103 267424 176656 685555 442231 320992 176510 698702 430093 185451 573636 227218 535568 752764 027404 302610 568587 101785 386480 632052 930298 967427 300057 542703 625375 807038 599089 225048 601277 643841 711014 434048 187901 702878 490359 001127 799186 592728 726557 988978 389850 905344 257846 630792 164880 878282 587346 449221 614410 593304 389003 563429 569675 264514 481040 817634 836525 633503 924181 830444 898545 739591 779433 003696 406625 712580 416922 445850 681189 (696 digits), a[1324] = 467
                                                                                      A[1325]/B[1325] = 17939 249109 165309 817800 982883 796910 174554 864649 712800 352620 105492 916746 645990 961852 473141 744807 712179 427134 344807 641509 419876 046363 377621 354833 838930 923121 359990 468140 020379 462774 334784 855487 849485 388864 722516 983633 614189 065443 044070 162377 338920 311290 669254 015263 357359 604012 508824 615913 473212 856103 989675 815555 641120 018399 519132 237950 662001 728689 070027 726201 508751 736987 666929 001328 946465 773334 283194 486374 353350 886693 292034 828943 425953 339917 225857 281753 595432 216870 489098 797095 647167 499714 780158 497079 127555 429446 472758 917971 193749 177794 856463 982982 015328 062771 588856 453077 527563 182279 343468 574945 425246 095706 656568 707533 102029 907543 108344 523695 052389 142191 326141 612298 951148 206300 737830 462426 (695 digits)/1 743578 864865 929092 053047 635407 645791 785244 785253 564986 976727 430345 135932 408335 418927 412406 948118 071198 331180 822904 716312 740158 945559 999553 322581 678628 852293 120523 274759 725763 233123 885815 370125 455788 847925 650447 604680 683157 498457 765718 002880 272868 072791 417693 424247 585285 789229 294573 624522 492895 693851 757925 102143 538100 924017 596534 945946 219284 557612 909385 360656 715455 282306 562444 442750 365263 114943 859093 646491 927754 954067 013167 793864 165017 639073 945138 024438 637951 128287 488825 576879 808357 435453 532809 075815 598426 803974 753980 506545 378280 872069 062651 177027 882125 878891 805906 490066 044797 119620 949547 942165 460388 648495 460593 730138 371314 024138 055861 728652 466817 099719 927988 320383 812690 996294 576930 174419 (697 digits), a[1325] = 2
                                                                                      A[1326]/B[1326] = 26899 295742 870623 523186 824068 790440 921657 221624 040738 801199 732019 225073 539798 958380 041469 031222 421731 145098 103995 014380 041085 981428 502191 676660 831360 803531 586026 348782 555178 260834 919385 908938 587583 816049 331622 849670 596880 465574 585690 371072 633794 940745 019204 346524 299171 962125 831964 079144 850351 131057 336689 799046 544184 228298 773983 199389 338328 344681 230506 098631 976287 968860 749012 193375 458578 261326 115010 134440 409520 687463 222787 730600 646371 208754 967187 310358 921749 828275 306313 742869 853490 260080 362999 166588 663353 666034 644646 030036 636473 373091 661770 330359 128170 807559 872170 476862 686759 494982 196902 042356 855103 981410 981906 014318 912473 291282 436069 677305 835554 079692 332205 078648 237561 946833 890522 003253 (695 digits)/2 614437 385402 332808 041903 823450 062337 772584 583989 218620 581094 758940 442475 234980 391966 786432 420107 928064 854000 475455 442560 592972 587898 099508 231775 735192 583675 024403 670501 420682 892942 544274 693215 304402 989025 992044 080371 206946 861184 303942 203051 195227 859278 849675 633915 904817 485737 729913 562625 760319 870508 443480 544374 859093 100528 295237 376039 404736 131249 136603 896225 468219 309710 865055 011337 467048 501424 491146 576790 895182 254124 555871 419239 972056 238163 170186 625716 281792 839301 922873 764781 511235 925812 533936 875002 191155 530532 742958 896396 283625 129915 693443 341908 760408 466238 255128 104476 638101 508624 512977 511840 724903 129536 278228 566664 004817 948319 886306 627198 206408 879152 931684 727009 525271 413217 022780 855608 (697 digits), a[1326] = 1
                                                                                      A[1327]/B[1327] = 44838 544852 035933 340987 806952 587351 096212 086273 753539 153819 837512 141820 185789 920232 514610 776030 133910 572232 448802 655889 460962 027791 879813 031494 670291 726652 946016 816922 575557 723609 254170 764426 437069 204914 054139 833304 211069 531017 629760 533449 972715 252035 688458 361787 656531 566138 340788 695058 323563 987161 326365 614602 185304 246698 293115 437340 000330 073370 300533 824833 485039 705848 415941 194704 405044 034660 398204 620814 762871 574156 514822 559544 072324 548672 193044 592112 517182 045145 795412 539965 500657 759795 143157 663667 790909 095481 117404 948007 830222 550886 518234 313341 143498 870331 461026 929940 214322 677261 540370 617302 280350 077117 638474 721852 014503 198825 544414 201000 887943 221883 658346 690947 188710 153134 628352 465679 (695 digits)/4 358016 250268 261900 094951 458857 708129 557829 369242 783607 557822 189285 578407 643315 810894 198839 368225 999263 185181 298360 158873 333131 533458 099061 554357 413821 435968 144926 945261 146446 126066 430090 063340 760191 836951 642491 685051 890104 359642 069660 205931 468095 932070 267369 058163 490103 274967 024487 187148 253215 564360 201405 646518 397194 024545 891772 321985 624020 688862 045989 256882 183674 592017 427499 454087 832311 616368 350240 223282 822937 208191 569039 213104 137073 877237 115324 650154 919743 967589 411699 341661 319593 361266 066745 950817 789582 334507 496939 402941 661906 001984 756094 518936 642534 345130 061034 594542 682898 628245 462525 454006 185291 778031 738822 296802 376131 972457 942168 355850 673225 978872 859673 047393 337962 409511 599711 030027 (697 digits), a[1327] = 1
                                                                                      A[1328]/B[1328] = 71737 840594 906556 864174 631021 377792 017869 307897 794277 955019 569531 366893 725588 878612 556079 807252 555641 717330 552797 670269 502048 009220 382004 708155 501652 530184 532043 165705 130735 984444 173556 673365 024653 020963 385762 682974 807949 996592 215450 904522 606510 192780 707662 708311 955703 528264 172752 774203 173915 118218 663055 413648 729488 474997 067098 636729 338658 418051 531039 923465 461327 674709 164953 388079 863622 295986 513214 755255 172392 261619 737610 290144 718695 757427 160231 902471 438931 873421 101726 282835 354148 019875 506156 830256 454262 761515 762050 978044 466695 923978 180004 643700 271669 677891 333197 406802 901082 172243 737272 659659 135454 058528 620380 736170 926976 490107 980483 878306 723497 301575 990551 769595 426272 099968 518874 468932 (695 digits)/6 972453 635670 594708 136855 282307 770467 330413 953232 002228 138916 948226 020882 878296 202860 985271 788333 927328 039181 773815 601433 926104 121356 198569 786133 149014 019643 169330 615762 567129 019008 974364 756556 064594 825977 634535 765423 097051 220826 373602 408982 663323 791349 117044 692079 394920 760704 754400 749774 013535 434868 644886 190893 256287 125074 187009 698025 028756 820111 182593 153107 651893 901728 292554 465425 299360 117792 841386 800073 718119 462316 124910 632344 109130 115400 285511 275871 201536 806891 334573 106442 830829 287078 600682 825819 980737 865040 239898 299337 945531 131900 449537 860845 402942 811368 316162 699019 321000 136869 975502 965846 910194 907568 017050 863466 380949 920777 828474 983048 879634 858025 791357 774402 863233 822728 622491 885635 (697 digits), a[1328] = 1
                                                                                      A[1329]/B[1329] = 116576 385446 942490 205162 437973 965143 114081 394171 547817 108839 407043 508713 911378 798845 070690 583282 689552 289563 001600 326158 963010 037012 261817 739650 171944 256837 478059 982627 706293 708053 427727 437791 461722 225877 439902 516279 019019 527609 845211 437972 579225 444816 396121 070099 612235 094402 513541 469261 497479 105379 989421 028250 914792 721695 360214 074069 338988 491421 831573 748298 946367 380557 580894 582784 268666 330646 911419 376069 935263 835776 252432 849688 791020 306099 353276 494583 956113 918566 897138 822800 854805 779670 649314 493924 245171 856996 879455 926052 296918 474864 698238 957041 415168 548222 794224 336743 115404 849505 277643 276961 415804 135646 258855 458022 941479 688933 524898 079307 611440 523459 648898 460542 614982 253103 147226 934611 (696 digits)/11 330469 885938 856608 231806 741165 478596 888243 322474 785835 696739 137511 599290 521612 013755 184111 156559 926591 224363 072175 760307 259235 654814 297631 340490 562835 455611 314257 561023 713575 145075 404454 819896 824786 662929 277027 450474 987155 580468 443262 614914 131419 723419 384413 750242 885024 035671 778887 936922 266750 999228 846291 837411 653481 149620 078782 020010 652777 508973 228582 409989 835568 493745 720053 919513 131671 734161 191627 023356 541056 670507 693949 845448 246203 992637 400835 926026 121280 774480 746272 448104 150422 648344 667428 776637 770320 199547 736837 702279 607437 133885 205632 379782 045477 156498 377197 293562 003898 765115 438028 419853 095486 685599 755873 160268 757081 893235 770643 338899 552860 836898 651030 821796 201196 232240 222202 915662 (698 digits), a[1329] = 1
                                                                                      A[1330]/B[1330] = 188314 226041 849047 069337 068995 342935 131950 702069 342095 063858 976574 875607 636967 677457 626770 390535 245194 006893 554397 996428 465058 046232 643822 447805 673596 787022 010103 148332 837029 692497 601284 111156 486375 246840 825665 199253 826969 524202 060662 342495 185735 637597 103783 778411 567938 622666 686294 243464 671394 223598 652476 441899 644281 196692 427312 710798 677646 909473 362613 671764 407695 055266 745847 970864 132288 626633 424634 131325 107656 097395 990043 139833 509716 063526 513508 397055 395045 791987 998865 105636 208953 799546 155471 324180 699434 618512 641506 904096 763614 398842 878243 600741 686838 226114 127421 743546 016487 021749 014915 936620 551258 194174 879236 194193 868456 179041 505381 957614 334937 825035 639450 230138 041254 353071 666101 403543 (696 digits)/18 302923 521609 451316 368662 023473 249064 218657 275706 788063 835656 085737 620173 399908 216616 169382 944893 853919 263544 845991 361741 185339 776170 496201 126623 711849 475254 483588 176786 280704 164084 378819 576452 889381 488906 911563 215898 084206 801294 816865 023896 794743 514768 501458 442322 279944 796376 533288 686696 280286 434097 491178 028304 909768 274694 265791 718035 681534 329084 411175 563097 487462 395474 012608 384938 431031 851954 033013 823430 259176 132823 818860 477792 355334 108037 686347 201897 322817 581372 080845 554546 981251 935423 268111 602457 751058 064587 976736 001617 552968 265785 655170 240627 448419 967866 693359 992581 324898 901985 413531 385700 005681 593167 772924 023735 138031 814013 599118 321948 432495 694924 442388 596199 064430 054968 844694 801297 (698 digits), a[1330] = 1
                                                                                      A[1331]/B[1331] = 1 434775 967739 885819 690521 920941 365689 037736 308656 942482 555852 243067 637967 370152 541048 458083 317029 405910 337817 882386 301158 218416 360640 768574 874289 887121 765991 548782 020957 565501 555536 636716 215886 866348 953763 219558 911055 807806 197024 269847 835438 879374 907996 122607 518980 587805 453069 317601 173514 197238 670570 556756 121548 424761 098542 351403 049660 082516 857735 369869 450649 800232 767424 801830 378833 194686 717080 883858 295345 688856 517548 182734 828523 359032 750784 947835 273971 721434 462482 889194 562254 317482 376493 737613 763189 141214 186585 370004 254729 642219 266764 845944 162233 223036 131021 686176 541565 230814 001748 382054 833305 274611 494870 413508 817380 020672 942224 062571 782607 956005 298709 125050 071508 903762 724604 809936 759412 (697 digits)/139 450934 537205 015822 812440 905478 222046 418844 252422 302282 546331 737674 940504 320969 530068 369791 770816 904026 069176 994115 292495 556614 088007 771039 226856 545781 782392 699374 798527 678504 293666 056191 855067 050457 085277 657969 961761 576603 189532 161317 782191 694624 326798 894622 846498 844637 610307 511908 743796 228756 037911 284538 035546 021859 072479 939324 046260 423517 812564 106811 351672 247805 262063 808312 614082 148894 697839 422723 787368 355289 600274 425973 189994 733542 748901 205266 339307 381003 844085 312191 329933 019186 196307 544209 993842 027726 651663 573989 713602 478214 994384 791824 064174 184416 931565 230717 241631 278191 079013 332748 119753 135257 837774 166341 326414 723304 591330 964471 592538 580330 701369 747750 995189 652206 617022 135066 524741 (699 digits), a[1331] = 7
                                                                                      A[1332]/B[1332] = 1 623090 193781 734866 759858 989936 708624 169687 010726 284577 619711 219642 513575 007120 218506 084853 707564 651104 344711 436784 297586 683474 406873 412397 322095 560718 553013 558885 169290 402531 248034 238000 327043 352724 200604 045224 110309 634775 721226 330510 177934 065110 545593 226391 297392 155744 075736 003895 416978 868632 894169 209232 563448 069042 295234 778715 760458 760163 767208 732483 122414 207927 822691 547678 349697 326975 343714 308492 426670 796512 614944 172777 968356 868748 814311 461343 671027 116480 254470 888059 667890 526436 176039 893085 087369 840648 805098 011511 158826 405833 665607 724187 762974 909874 357135 813598 285111 247301 023497 396970 769925 825869 689045 292745 011573 889129 121265 567953 740222 290943 123744 764500 301646 945017 077676 476038 162955 (697 digits)/157 753858 058814 467139 181102 928951 471110 637501 528129 090346 381987 823412 560677 720877 746684 539174 715710 757945 332721 840106 654236 741953 864178 267240 353480 257631 257647 182962 975313 959208 457750 435011 431519 939838 574184 569533 177659 660809 990826 978182 806088 489367 841567 396081 288821 124582 406684 045197 430492 509042 472008 775716 063850 931627 347174 205115 764296 105052 141648 517986 914769 735267 657537 820920 999020 579926 549793 455737 610798 614465 733098 244833 667787 088876 856938 891613 541204 703821 425457 393036 884480 000438 131730 812321 596299 778784 716251 550725 715220 031183 260170 446994 304801 632836 899431 924077 234212 603089 980998 746279 505453 140939 430941 939265 350149 861336 405344 563589 914487 012826 396294 190139 591388 716636 671990 979761 326038 (699 digits), a[1332] = 1
                                                                                      A[1333]/B[1333] = 3 057866 161521 620686 450380 910878 074313 207423 319383 227060 175563 462710 151542 377272 759554 542937 024594 057014 682529 319170 598744 901890 767514 180972 196385 447840 319005 107667 190247 968032 803570 874716 542930 219073 154367 264783 021365 442581 918250 600358 013372 944485 453589 348998 816372 743549 528805 321496 590493 065871 564739 765988 684996 493803 393777 130118 810118 842680 624944 102352 573064 008160 590116 349508 728530 521662 060795 192350 722016 485369 132492 355512 796880 227781 565096 409178 944998 837914 716953 777254 230144 843918 552533 630698 850558 981862 991683 381515 413556 048052 932372 570131 925208 132910 488157 499774 826676 478115 025245 779025 603231 100481 183915 706253 828953 909802 063489 630525 522830 246948 422453 889550 373155 848779 802281 285974 922367 (697 digits)/297 204792 596019 482961 993543 834429 693157 056345 780551 392628 928319 561087 501182 041847 276752 908966 486527 661971 401898 834221 946732 298567 952186 038279 580336 803413 040039 882337 773841 637712 751416 491203 286586 990295 659462 227503 139421 237413 180359 139500 588280 183992 168366 290704 135319 969220 016991 557106 174288 737798 509920 060254 099396 953486 419654 144439 810556 528569 954212 624798 266441 983072 919601 629233 613102 728821 247632 878461 398166 969755 333372 670806 857781 822419 605840 096879 880512 084825 269542 705228 214413 019624 328038 356531 590141 806511 367915 124715 428822 509398 254555 238818 368975 817253 830997 154794 475843 881281 060012 079027 625206 276197 268716 105606 676564 584640 996675 528061 507025 593157 097663 937890 586578 368843 289013 114827 850779 (699 digits), a[1333] = 1
                                                                                      A[1334]/B[1334] = 10 796688 678346 596926 111001 722570 931563 791956 968875 965758 146401 607772 968202 138938 497169 713664 781346 822148 392299 394296 093821 389146 709415 955313 911251 904239 510028 881886 740034 306629 658746 862149 955834 009943 663705 839573 174405 962521 475978 131584 218052 898566 906361 273387 746510 386392 662151 968385 188458 066247 588388 507198 618437 550452 476566 169072 190815 288205 642041 039540 841606 232409 593040 596204 535288 891961 526099 885544 592720 252620 012421 239316 358997 552093 509600 688880 506023 630224 405332 219822 358325 058191 833640 785181 639046 786237 780148 156057 399494 549992 462725 434583 538599 308605 821608 312922 765140 681646 099234 734047 579619 127313 240792 411506 498435 618535 311734 459530 308713 031788 391106 433151 421114 491356 484520 333962 930056 (698 digits)/1049 368235 846872 916025 161734 432240 550581 806538 869783 268233 166946 506675 064223 846419 576943 266074 175293 743859 538418 342772 494433 637657 720736 382079 094490 667870 377766 829976 296838 872346 711999 908621 291280 910725 552571 252042 595923 373049 531904 396684 570929 041344 346666 268193 694781 032242 457658 716515 953358 722438 001768 956478 362041 792086 606136 638435 195965 690762 004286 392381 714095 684486 416342 708621 838328 766390 292692 091121 805299 523731 733216 257254 241132 556135 674459 182253 182740 958297 234085 508721 527719 059311 115845 881916 366725 198318 819996 924872 001687 559378 023836 163449 411729 084598 392423 388460 661744 246933 161034 983362 381071 969531 237090 256085 379843 615259 395371 147774 435563 792297 689286 003811 351123 823166 539030 324244 878375 (700 digits), a[1334] = 3
                                                                                      A[1335]/B[1335] = 13 854554 839868 217612 561382 633449 005876 999380 288259 192818 321965 070483 119744 516211 256724 256601 805940 879163 074828 713466 692566 291037 476930 136286 107637 352079 829033 989553 930282 274662 462317 736866 498764 229016 818073 104356 195771 405103 394228 731942 231425 843052 359950 622386 562883 129942 190957 289881 778951 132119 153128 273187 303434 044255 870343 299191 000934 130886 266985 141893 414670 240570 183156 945713 263819 413623 586895 077895 314736 737989 144913 594829 155877 779875 074697 098059 451022 468139 122285 997076 588469 902110 386174 415880 489605 768100 771831 537572 813050 598045 395098 004715 463807 441516 309765 812697 591817 159761 124480 513073 182850 227794 424708 117760 327389 528337 375224 090055 831543 278736 813560 322701 794270 340136 286801 619937 852423 (698 digits)/1346 573028 442892 398987 155278 266670 243738 862884 650334 660862 095266 067762 565405 888266 853696 175040 661821 405830 940317 176994 441165 936225 672922 420358 674827 471283 417806 712314 070680 510059 463416 399824 577867 901021 212033 479545 735344 610462 712263 536185 159209 225336 515032 558897 830101 001462 474650 273622 127647 460236 511689 016732 461438 745573 025790 782875 006522 219331 958499 017179 980537 667559 335944 337855 451431 495211 540324 969583 203466 493487 066588 928061 098914 378555 280299 279133 063253 043122 503628 213949 742132 078935 443884 238447 956867 004830 187912 049587 430510 068776 278391 402267 780704 901852 223420 543255 137588 128214 221047 062390 006278 245728 505806 361692 056408 199900 392046 675835 942589 385454 786949 941701 937702 192009 828043 439072 729154 (700 digits), a[1335] = 1
                                                                                      A[1336]/B[1336] = 24 651243 518214 814538 672384 356019 937440 791337 257135 158576 468366 678256 087946 655149 753893 970266 587287 701311 467128 107762 786387 680184 186346 091600 018889 256319 339062 871440 670316 581292 121064 599016 454598 238960 481778 943929 370177 367624 870206 863526 449478 741619 266311 895774 309393 516334 853109 258266 967409 198366 741516 780385 921871 594708 346909 468263 191749 419091 909026 181434 256276 472979 776197 541917 799108 305585 112994 963439 907456 990609 157334 834145 514875 331968 584297 786939 957046 098363 527618 216898 946794 960302 219815 201062 128652 554338 551979 693630 212545 148037 857823 439299 002406 750122 131374 125620 356957 841407 223715 247120 762469 355107 665500 529266 825825 146872 686958 549586 140256 310525 204666 755853 215384 831492 771321 953900 782479 (698 digits)/2395 941264 289765 315012 317012 698910 794320 669423 520117 929095 262212 574437 629629 734686 430639 441114 837115 149690 478735 519766 935599 573883 393658 802437 769318 139153 795573 542290 367519 382406 175416 308445 869148 811746 764604 731588 331267 983512 244167 932869 730138 266680 861698 827091 524882 033704 932308 990138 081006 182674 513457 973210 823480 537659 631927 421310 202487 910093 962785 409561 694633 352045 752287 046477 289760 261601 833017 060705 008766 017218 799805 185315 340046 934690 954758 461386 245994 001419 737713 722671 269851 138246 559730 120364 323592 203149 007908 974459 432197 628154 302227 565717 192433 986450 615843 931715 799332 375147 382082 045752 387350 215259 742896 617777 436251 815159 787417 823610 378153 177752 476235 945513 288826 015176 367073 763317 607529 (700 digits), a[1336] = 1
                                                                                      A[1337]/B[1337] = 63 157041 876297 846689 906151 345488 880758 582054 802529 509971 258698 426995 295637 826510 764512 197134 980516 281786 009084 928992 265341 651405 849622 319486 145415 864718 507159 732435 270915 437246 704446 934899 407960 706937 781630 992214 936126 140353 134642 458995 130383 326290 892574 413935 181670 162611 897175 806415 713769 528852 636161 833959 147177 233672 564162 235717 384432 969070 085037 504761 927223 186529 735552 029548 862036 024793 812885 004775 129650 719207 459583 263120 185628 443812 243292 671939 365114 664866 177522 430874 482059 822714 825804 818004 746910 876777 875790 924833 238140 894121 110744 883313 468620 941760 572514 063938 305732 842575 571911 007314 707788 938009 755709 176293 979039 822082 749141 189228 112055 899787 222893 834408 225040 003121 829445 527739 417381 (698 digits)/6138 455557 022423 029011 789303 664491 832380 201731 690570 519052 619691 216637 824665 357639 714975 057270 336051 705211 897788 216528 312365 083992 460240 025234 213463 749591 008953 796894 805719 274871 814249 016716 316165 524514 741242 942722 397880 577487 200599 401924 619485 758698 238430 213080 879865 068872 339268 253898 289659 825585 538604 963154 108399 820892 289645 625495 411498 039519 884069 836303 369804 371650 840518 430810 030952 018415 206359 090993 220998 527924 666199 298691 779008 247937 189816 201905 555241 045961 979055 659292 281834 355428 563344 479176 604051 411128 203729 998506 294905 325084 882846 533702 165572 874753 455108 406686 736252 878508 985211 153894 780978 676247 991599 597246 928911 830219 966882 323056 698895 740959 739421 832728 515354 222362 562190 965707 944212 (700 digits), a[1337] = 2
                                                                                      A[1338]/B[1338] = 340 436452 899704 047988 203141 083464 341233 701611 269782 708432 761858 813232 566135 787703 576454 955941 489869 110241 512552 752724 113095 937213 434457 689030 745968 579911 874861 533617 024893 767525 643299 273513 494401 773649 389933 905004 050808 069390 543419 158502 101395 373073 729183 965450 217744 329394 338988 290345 536256 842629 922325 950181 657757 763071 167720 646850 113914 264442 334213 705243 892392 405628 453957 689662 109288 429554 177419 987315 555710 586646 455251 149746 443017 551029 800761 146636 782619 422694 415230 371271 357094 073876 348839 291085 863206 938227 930934 317796 403249 618643 411547 855866 345511 458924 993944 445311 885622 054285 083270 283694 301414 045156 444046 410736 721024 257286 432664 495726 700535 809461 319135 927894 340584 847101 918549 592597 869384 (699 digits)/33088 219049 401880 460071 263531 021369 956221 678081 972970 524358 360668 657626 752956 522885 005514 727466 517373 675749 967676 602408 497424 993845 694858 928608 836636 887108 840342 526764 396115 756765 246661 392027 449976 434320 470819 445200 320670 870948 247164 942492 827567 060172 053849 892495 924207 378066 628650 259629 529305 310602 206482 788981 365479 642121 080155 548787 259978 107693 383134 591078 543655 210299 954879 200527 444520 353677 864812 515671 113758 656842 130801 678774 235088 174376 903839 470914 022199 231229 632992 019132 679022 915389 376452 516247 343849 258790 026558 966990 906724 253578 716460 234228 020298 360217 891385 965149 480596 767692 308137 815226 292243 596499 700894 604012 080810 966259 621829 438893 872631 882551 173345 109155 865597 126989 178028 591857 328589 (701 digits), a[1338] = 5
                                                                                      A[1339]/B[1339] = 403 593494 776001 894678 109292 428953 221992 283666 072312 218404 020557 240227 861773 614214 340967 153076 470385 392027 521637 681716 378437 588619 284080 008516 891384 444630 382021 266052 295809 204772 347746 208412 902362 480587 171564 897218 986934 209743 678061 617497 231778 699364 621758 379385 399414 492006 236164 096761 250026 371482 558487 784140 804934 996743 731882 882567 498347 233512 419251 210005 819615 592158 189509 719210 971324 454347 990304 992090 685361 305853 914834 412866 628645 994842 044053 818576 147734 087560 592752 802145 839153 896591 174644 109090 610117 815005 806725 242629 641390 512764 522292 739179 814132 400685 566458 509250 191354 896860 655181 291009 009202 983166 199755 587030 700064 079369 181805 684954 812591 709248 542029 762302 565624 850223 747995 120337 286765 (699 digits)/39226 674606 424303 489083 052834 685861 788601 879813 663541 043410 980359 874264 577621 880524 720489 784736 853425 380961 865464 818936 809790 077838 155098 953843 050100 636699 849296 323659 201835 031637 060910 408743 766141 958835 212062 387922 718551 448435 447764 344417 447052 818870 292280 105576 804072 446938 967918 513527 818965 136187 745087 752135 473879 463013 369801 174282 671476 147213 267204 427381 913459 581950 795397 631337 475472 372093 071171 606664 334757 184766 797000 977466 014096 422314 093655 672819 577440 277191 612047 678424 960857 270817 939796 995423 947900 669918 230288 965497 201629 578663 599306 767930 185871 234971 346494 371836 216849 646201 293348 969121 073222 272747 692494 201259 009722 796479 588711 761950 571527 623510 912766 941884 380951 349351 740219 557565 272801 (701 digits), a[1339] = 1
                                                                                      A[1340]/B[1340] = 4376 371400 659722 994769 296065 372996 561156 538271 992904 892472 967431 215511 183871 929846 986126 486706 193723 030516 728929 569887 897471 823406 275257 774199 659813 026215 695074 194139 982985 815249 120761 357642 518026 579521 105582 877193 920150 166827 324035 333474 419182 366719 946767 759304 211889 249456 700629 257958 036520 557455 507203 791589 707107 730508 486549 472525 097386 599566 526725 805302 088548 327210 349054 881771 822532 973034 080469 908222 409323 645185 603595 278412 729477 499450 241299 332398 259960 298300 342758 392729 748633 039788 095280 381991 964385 088285 998186 744092 817154 746288 634475 247664 486835 465780 658529 537813 799171 022891 635083 193784 393443 876818 441602 281043 721665 050978 250721 345274 826452 901946 739433 550919 996833 349339 398500 795970 737034 (700 digits)/425354 965113 644915 350901 791877 879987 842240 476218 608380 958468 164267 400272 529175 328132 210412 574835 051627 485368 622324 791776 595325 772227 245848 467039 337643 254107 333305 763356 414466 073135 855765 479465 111396 022672 591443 324427 506185 355302 724808 386667 298095 248874 976650 948263 964931 847456 307835 394907 718956 672479 657360 310336 104274 272254 778167 291613 974739 579826 055178 864897 678251 029807 908855 513902 199244 074608 576528 582314 461330 504510 100811 453434 376052 397517 840396 199109 796602 003145 753468 803382 287595 623568 774422 470486 822855 957972 329448 621962 923020 040214 709527 913529 879010 709931 356329 683511 649093 229705 241627 506437 024466 323976 625836 616602 178038 931055 508947 058399 587908 117660 301014 527999 675110 620506 580224 167510 056599 (702 digits), a[1340] = 10
                                                                                      A[1341]/B[1341] = 4779 964895 435724 889447 405357 801949 783148 821938 065217 110876 987988 455739 045645 544061 327093 639782 664108 422544 250567 251604 275909 412025 559337 782716 551197 470846 077095 460192 278795 020021 468507 566055 420389 060108 277147 774412 907084 376571 002096 950971 650961 066084 568526 138689 611303 741462 936793 354719 286546 928938 065691 575730 512042 727252 218432 355092 595733 833078 945977 015307 908163 919368 538564 600982 793857 427382 070774 900313 094684 951039 518429 691279 358123 494292 285353 150974 407694 385860 935511 194875 587786 936379 269924 491082 574502 903291 804911 986722 458545 259053 156767 986844 300967 866466 224988 047063 990525 919752 290264 484793 402646 859984 641357 868074 421729 130347 432527 030229 639044 611195 281463 313222 562458 199563 146495 916308 023799 (700 digits)/464581 639720 069218 839984 844712 565849 630842 356032 271922 001879 144627 274537 106797 208656 930902 359571 905052 866330 487789 610713 405115 850065 400947 420882 387743 890807 182602 087015 616301 104772 916675 888208 877537 981507 803505 712350 224736 803738 172572 731084 745148 067745 268931 053840 769004 294395 275753 908435 537921 808667 402448 062471 578153 735268 147968 465896 646215 727039 322383 292279 591710 611758 704253 145239 674716 446701 647700 188978 796087 689276 897812 430900 390148 819831 934051 871929 374042 280337 365516 481807 248452 894386 714219 465910 770756 627890 559737 587460 124649 618878 308834 681460 064881 944902 702824 055347 865942 875906 534976 475558 097688 596724 318330 817861 187761 727535 097658 820350 159435 741171 213781 469884 056061 969858 320443 725075 329400 (702 digits), a[1341] = 1
                                                                                      A[1342]/B[1342] = 99975 669309 374220 783717 403221 411992 224132 977033 297247 110012 727200 330292 096782 811073 527999 282359 475891 481401 740274 601973 415660 063917 462013 428530 683762 443137 236983 397985 558886 215678 490912 678750 925807 781686 648538 365452 061837 698247 365974 352907 438403 688411 317290 533096 437964 078715 436496 352343 767459 136216 821035 306199 947962 275552 855196 574377 012063 261145 446266 111460 251826 714581 120346 901427 699681 520675 495967 914484 303022 665975 972189 103999 891947 385295 948362 351886 413848 015519 052982 290241 504371 767373 493770 203643 454443 154122 096426 478541 988059 927351 769834 984550 506192 795105 158290 479093 609689 417937 440372 889652 446381 076511 268759 642532 156247 657926 901261 949867 607345 125852 368699 815371 245997 340602 328419 122131 213014 (701 digits)/9 716987 759515 029292 150598 686129 196980 459087 596864 046820 996051 056812 891014 665119 501270 828459 766273 152684 811978 378117 006044 697642 773535 264796 884687 092521 070250 985347 503668 740488 168594 189283 243642 662155 652828 661557 571432 000921 430066 176263 008362 201056 603780 355272 025079 345017 735361 822913 563618 477392 845827 706321 559767 667348 977617 737536 609546 899054 120612 502844 710489 512463 264981 993918 418695 693573 008641 530532 361890 383084 290048 057060 071442 179028 794156 521433 637697 277447 609893 063798 439527 256653 511303 058811 788702 237988 515783 524200 371165 416012 417780 886221 542731 176649 607985 412810 790468 967950 747835 941157 017598 978238 258462 992452 973825 933273 481757 462123 465402 776622 941084 576643 925680 796350 017672 989098 669016 644599 (703 digits), a[1342] = 20
                                                                                      A[1343]/B[1343] = 204731 303514 184166 456882 211800 625934 231414 776004 659711 330902 442389 116323 239211 166208 383092 204501 615891 385347 731116 455551 107229 539860 483364 639777 918722 357120 551062 256163 396567 451378 450332 923557 272004 623481 574224 505317 030759 773065 734045 656786 527768 442907 203107 204882 487231 898893 809786 059406 821465 201371 707762 188130 407967 278357 928825 503846 619860 355369 838509 238228 411817 348530 779258 403838 193220 468733 062710 729281 700730 282991 462807 899279 142018 264884 182077 854747 235390 416899 041475 775358 596530 471126 257464 898369 483389 211535 997764 943806 434665 113756 696437 955945 313353 456676 541569 005251 209904 755627 171010 264098 295409 013007 178877 153138 734224 446201 235050 929964 853734 862900 018862 943965 054452 880767 803334 160570 449827 (702 digits)/19 898557 158750 127803 141182 216970 959810 549017 549760 365563 993981 258253 056566 437036 211198 587821 892118 210422 490287 244023 622802 800401 397135 930541 190256 572786 031309 153297 094353 097277 441961 295242 375494 201849 287165 126620 855214 226579 663870 525098 747809 147261 275305 979475 103999 459039 765118 921581 035672 492707 500322 815091 182006 912851 690503 623041 684990 444323 968264 328072 713258 616637 141722 692089 982631 061862 463984 708764 912759 562256 269373 011932 573784 748206 408144 976919 147323 928937 500123 493113 360861 761759 916992 831843 043315 246733 659457 608138 329790 956674 454440 081277 766922 418181 160873 528445 636285 801844 371578 417290 510756 054165 113650 303236 765513 054308 691050 021905 751155 712681 623340 367069 321245 648762 005204 298641 063108 618598 (704 digits), a[1343] = 2
                                                                                      A[1344]/B[1344] = 11 564928 666103 687542 369121 264056 464309 183360 433294 241081 640549 500990 844393 492608 118742 981162 734449 965809 060874 682796 112835 420514 296104 530433 256094 132214 441888 096469 743135 766663 492871 709556 397958 158066 696654 805110 663205 784384 989928 472531 132952 993436 491214 691294 006515 722950 416768 784515 679125 769510 413032 455717 841502 794129 863596 869424 789787 724243 161856 402783 452251 313598 232304 758817 516366 520027 769727 007768 754259 543918 513497 889431 463631 844970 218810 144722 217731 595711 361865 375625 710322 910078 150443 911804 512334 524239 000137 971263 331702 329306 297726 770360 517488 053986 368991 486154 773161 364355 733059 016947 679156 989285 804913 285880 218301 272816 645196 064114 027899 416497 448253 425024 677414 295358 663599 315132 114076 403326 (704 digits)/1124 036188 649522 186268 056802 836502 946371 204070 383444 518404 659001 518984 058735 139147 328391 746485 724892 936344 268064 043439 883001 520121 013147 375103 539055 168538 823563 569984 787442 188024 918426 722856 271317 965715 734075 752325 463428 689382 606815 581792 885674 447688 020915 205877 849049 051244 582021 431451 561278 069012 863905 351427 752154 787043 645820 627870 969011 781196 343414 874916 652972 044143 201452 750957 446035 157870 991785 221367 476425 869435 374936 725284 203388 078587 650275 228905 887837 297947 616808 678146 647785 915208 862901 642022 214356 055073 445409 579946 839458 989781 866425 437776 490386 594794 616903 005766 422473 871235 556227 309425 619938 011484 622879 973711 842556 974560 180558 688845 530122 686793 848145 132525 915437 127022 309113 712998 203099 286087 (706 digits), a[1344] = 56
                                                                                      A[1345]/B[1345] = 23 334588 635721 559251 195124 739913 554552 598135 642593 141874 612001 444370 805110 224427 403694 345417 673401 547509 507097 096708 681221 948258 132069 544231 151966 183151 240896 744001 742434 929894 437121 869445 719473 588138 016791 184445 831728 599529 752922 679107 922692 514641 425336 585695 217913 933132 732431 378817 417658 360486 027436 619197 871135 996227 005551 667675 083422 068346 679082 644076 142731 039013 813140 296893 436571 233276 008187 078248 237800 788567 309987 241670 826542 831958 702504 471522 290210 426813 140629 792727 196004 416686 772014 081073 923038 531867 211811 940291 607211 093277 709210 237158 990921 421326 194659 513878 551573 938616 221745 204905 622412 273980 622833 750637 589741 279857 736593 363278 985763 686729 759406 868912 298793 645170 207966 433598 388723 256479 (704 digits)/2267 970934 457794 500339 254787 889976 852552 957158 316649 402373 311984 296221 174036 715330 867982 080793 341904 083111 026415 330903 388805 840643 423430 680748 268366 909863 678436 293266 669237 473327 278814 740954 918130 133280 755316 631271 782071 605344 877501 688684 519158 042637 317136 391230 802097 561528 929161 784484 158228 630733 228133 517946 686316 486938 982144 878783 623014 006716 655094 077906 019202 704923 544628 194004 874701 377604 447555 151499 865611 301127 019246 462500 980560 905381 708695 434730 922998 524832 733740 849406 656433 592177 642796 115887 472027 356880 550276 768032 008708 936238 187290 956830 747695 607770 394679 539978 481233 544315 484033 036141 750632 077134 359410 250660 450627 003429 052167 399596 811401 086269 319630 632121 152119 902806 623431 724637 469307 190772 (706 digits), a[1345] = 2
                                                                                      A[1346]/B[1346] = 58 234105 937546 806044 759370 743883 573414 379631 718480 524830 864552 389732 454613 941462 926131 671998 081253 060828 075068 876213 475279 317030 560243 618895 560026 498516 923681 584473 228005 626452 367115 448447 836905 334342 730237 174002 326662 983444 495773 830746 978338 022719 341887 862684 442343 589215 881631 542150 514442 490482 467905 694113 583774 786583 874700 204774 956631 860936 520021 690935 737713 391625 858585 352604 389508 986579 786101 164265 229861 121053 133472 372773 116717 508887 623819 087766 798152 449337 643124 961080 102331 743451 694472 073952 358411 587973 423761 851846 546124 515861 716147 244678 499330 896638 758310 513911 876309 241588 176549 426758 923981 537247 050580 787155 397783 832532 118382 790671 999426 789956 967067 162849 275001 585699 079532 182328 891522 916284 (704 digits)/5659 978057 565111 186946 566378 616456 651477 118387 016743 323151 282970 111426 406808 569809 064355 908072 408701 102566 320894 705246 660613 201407 860008 736600 075788 988266 180436 156518 125917 134679 476056 204766 107578 232277 244709 014869 027571 900072 361818 959161 923990 532962 655187 988339 453244 174302 440345 000419 877735 330479 320172 387321 124787 760921 610110 385438 215039 794629 653603 030728 691377 453990 290709 138967 195437 913079 886895 524367 207648 471689 413429 650286 164509 889351 067666 098367 733834 347613 084290 376959 960653 099564 148493 873797 158410 768834 545963 116010 856876 862258 241007 351437 985777 810335 406262 085723 384940 959866 524293 381709 121202 165753 341700 475032 743810 981418 284893 488039 152924 859332 487406 396768 219676 932635 555977 162273 141713 667631 (706 digits), a[1346] = 2
                                                                                      A[1347]/B[1347] = 198 036906 448361 977385 473236 971564 274795 737030 798034 716367 205658 613568 168952 048816 182089 361411 917160 729993 732303 725349 107059 899349 812800 400917 832045 678702 011941 497421 426451 809251 538468 214789 230189 591166 207502 706452 811717 549863 240244 171348 857706 582799 451000 173748 544944 700780 377326 005268 960985 831933 431153 701538 622460 355978 629652 281999 953317 651156 239147 716883 355871 213891 388896 354706 605098 193015 366490 571043 927384 151726 710404 359990 176695 358621 573961 734822 684667 774826 070004 675967 502999 647041 855430 302930 998273 295787 483097 495831 245584 640862 857651 971194 488914 111242 469591 055614 180501 663380 751393 485182 394356 885721 774576 112103 783092 777454 091741 735294 984044 056600 660608 357460 123798 402267 446562 980585 063292 005331 (705 digits)/19247 905107 153128 061178 953923 739346 806984 312319 366879 371827 160894 630500 394462 424758 061049 805010 568007 390809 989099 446643 370645 444867 003456 890548 495733 874662 219744 762821 046988 877365 706983 355253 240864 830112 489443 675878 864787 305561 962958 566170 291129 641525 282700 356249 161830 084436 250196 785743 791434 622171 188650 679910 060679 769703 812476 035098 268133 390605 615903 170092 093335 066894 416755 610906 461015 116844 108241 724601 488556 716195 259535 413359 474090 573434 911693 729834 124501 567671 986611 980286 538392 890870 088277 737278 947259 663384 188166 116064 579339 523012 910313 011144 705029 038776 613465 797148 636056 423915 056913 181269 114238 574394 384511 675758 682059 947683 906847 863714 270175 664266 781849 822425 811150 700713 291363 211456 894448 193665 (707 digits), a[1347] = 3
                                                                                      A[1348]/B[1348] = 850 381731 730994 715586 652318 630140 672597 327754 910619 390299 687186 844005 130422 136727 654489 117645 749895 980803 004283 777609 903518 914429 811445 222566 888209 213324 971447 574158 933812 863458 520988 307604 757663 699007 560247 999813 573533 182897 456750 516142 409164 353917 145888 557678 622122 392337 390935 563226 358385 818216 192520 500268 073616 210498 393309 332774 769902 465561 476612 558469 161198 247191 414170 771430 809901 758641 252063 448440 939397 727959 975089 812733 823498 943373 919666 027057 536823 548641 923143 664950 114330 331619 116193 285676 351504 771123 356151 835171 528463 079313 146755 129456 454987 341608 636674 736368 598315 895111 182123 367488 501409 080134 148885 235570 530154 942348 485349 731851 935603 016359 609500 592689 770195 194768 865784 104669 144690 937608 (705 digits)/82651 598486 177623 431662 382073 573843 879414 367664 484260 810459 926548 633427 984658 268841 308555 128114 680730 665806 277292 491820 143194 980875 873836 298794 058724 486915 059415 207802 313872 644142 303989 625779 071037 552727 202483 718384 486721 122320 213653 223843 088509 099063 785989 413336 100564 512047 441132 143395 043473 819164 074775 106961 367506 839736 860014 525831 287573 357052 117215 711097 064717 721567 957731 582593 039498 380456 319862 422773 161875 336470 451571 303724 060872 183090 714441 017704 231840 618301 030738 298106 114224 663044 501604 822912 947449 422371 298627 580269 174234 954309 882259 396016 805893 965441 860125 274317 929166 655526 751946 106785 578156 463330 879747 178067 472050 772153 912284 942896 233627 516399 614805 686471 464279 735488 721430 008100 719506 442291 (707 digits), a[1348] = 4
                                                                                      A[1349]/B[1349] = 7851 472492 027314 417665 344104 642830 328171 686824 993609 229064 390340 209614 342751 279365 072491 420223 666224 557220 770857 723838 238730 129218 115807 404019 825928 598626 754969 664851 830767 580378 227362 983232 049162 882234 249734 704774 973516 195940 350998 816630 540185 768053 763997 192856 144046 231816 895746 074306 186458 195879 163838 203951 285006 250464 169436 276972 882439 841209 528660 743105 806655 438614 116433 297583 894214 020786 635061 607012 381963 703366 486212 674594 588185 848986 850955 978340 516079 712603 378297 660518 531972 631613 901169 874018 161816 235897 688464 012375 001752 354681 178448 136302 583800 185720 199663 682931 565344 719381 390503 792578 907038 606929 114543 232238 554487 258590 459889 321962 404471 203837 146113 691668 055555 155187 238619 922607 365510 443803 (706 digits)/763112 291482 751738 946140 392585 903941 721713 621299 725226 665966 499832 331352 256386 844329 838045 958042 694583 383066 484731 873024 659400 272749 867983 579695 024254 256897 754481 633041 871842 674646 442889 987264 880202 804657 311797 141339 245277 406443 885837 580758 087711 533099 356605 076274 066910 692863 220386 076299 182698 994647 861626 642562 368241 327335 552606 767579 856293 604074 670844 569965 675794 561006 036339 854243 816500 540950 987003 529559 945434 744429 323677 146876 021940 221251 341662 889172 211067 132381 263256 663241 566414 858270 602721 143495 474304 464725 875814 338487 147454 111801 850647 575295 958074 727753 354593 266009 998556 323655 824428 142339 317646 744372 302236 278365 930516 897069 117412 349780 372823 311863 315101 000668 989668 320111 784233 284363 370006 174284 (708 digits), a[1349] = 9
                                                                                      A[1350]/B[1350] = 8701 854223 758309 133251 996423 272971 000769 014579 904228 619364 077527 053619 473173 416092 726980 537869 416120 538023 775141 501448 142249 043647 927252 626586 714137 811951 726417 239010 764580 443836 748351 290836 806826 581241 809982 704588 547049 378837 807749 332772 949350 121970 909885 750534 766168 624154 286681 637532 544844 014095 356358 704219 358622 460962 562745 609747 652342 306771 005273 301574 967853 685805 530604 069014 704115 779427 887125 055453 321361 431326 461302 487328 411684 792360 770622 005398 052903 261245 301441 325468 646302 963233 017363 159694 513321 007021 044615 847546 530215 433994 325203 265759 038787 527328 836338 419300 163660 614492 572627 160067 408447 687063 263428 467809 084642 200938 945239 053814 340074 220196 755614 284357 825750 349956 104404 027276 510201 381411 (706 digits)/845763 889968 929362 377802 774659 477785 601127 988964 209487 476426 426380 964780 241045 113171 146601 086157 375314 048872 762024 364844 802595 253625 741819 878489 082978 743812 813896 840844 185715 318788 746879 613043 951240 357384 514280 859723 731998 528764 099490 804601 176220 632163 142594 489610 167475 204910 661518 219694 226172 813811 936401 749523 735748 167072 412621 293411 143866 961126 788060 281062 740512 282573 994071 436836 855998 921407 306865 952333 107310 080899 775248 450600 082812 404342 056103 906876 442907 750682 293994 961347 680639 521315 104325 966408 421753 887097 174441 918756 321689 066111 732906 971312 763968 693195 214718 540327 927722 979182 576374 249124 895803 207703 181983 456433 402567 669223 029697 292676 606450 828262 929906 687140 453948 055600 505663 292464 089512 616575 (708 digits), a[1350] = 1
                                                                                      A[1351]/B[1351] = 16553 326715 785623 550917 340527 915801 328940 701404 897837 848428 467867 263233 815924 695457 799471 958093 082345 095244 545999 225286 380979 172866 043060 030606 540066 410578 481386 903862 595348 024214 975714 274068 855989 463476 059717 409363 520565 574778 158748 149403 489535 890024 673882 943390 910214 855971 182427 711838 731302 209974 520196 908170 643628 711426 732181 886720 534782 147980 533934 044680 774509 124419 647037 366598 598329 800214 522186 662465 703325 134692 947515 161922 999870 641347 621577 983738 568982 973848 679738 985987 178275 594846 918533 033712 675137 242918 733079 859921 531967 788675 503651 402061 622587 713049 036002 102231 729005 333873 963130 952646 315486 293992 377971 700047 639129 459529 405128 375776 744545 424033 901727 976025 881305 505143 343023 949883 875711 825214 (707 digits)/1 608876 181451 681101 323943 167245 381727 322841 610263 934714 142392 926213 296132 497431 957500 984647 044200 069897 431939 246756 237869 461995 526375 609803 458184 107233 000710 568378 473886 057557 993435 189769 600308 831443 162041 826078 001062 977275 935207 985328 385359 263932 165262 499199 565884 234385 897773 881904 295993 408871 808459 798028 392086 103989 494407 965228 060991 000160 565201 458904 851028 416306 843580 030411 291080 672499 462358 293869 481893 052744 825329 098925 597476 104752 625593 397766 796048 653974 883063 557251 624589 247054 379585 707047 109903 896058 351823 050256 257243 469143 177913 583554 546608 722043 420948 569311 806337 926279 302838 400802 391464 213449 952075 484219 734799 333084 566292 147109 642456 979274 140126 245007 687809 443616 375712 289896 576827 459518 790859 (709 digits), a[1351] = 1
                                                                                      A[1352]/B[1352] = 3 153833 930223 026783 807546 696727 275223 499502 281510 493419 820772 972307 068044 498865 553074 626652 575555 061688 634487 514994 305860 528291 888196 108658 441829 326755 821863 189928 972903 880705 044682 134063 363919 444824 641693 156290 483657 454508 586687 969897 719435 961169 226658 947644 994807 706991 258678 947946 886891 492263 909254 193771 256641 648077 632041 677304 086649 260950 423072 452741 790922 124587 325538 467703 722748 386777 820187 102590 923936 953137 022986 489183 252698 387106 648408 870438 915726 159668 292494 451848 663032 518665 984147 538639 565102 789397 161580 329789 232637 604095 282340 018969 657467 330453 006645 676737 843328 674674 050545 567508 162867 350843 545615 078051 476860 519239 511525 919630 451395 803704 786638 083929 729275 273796 327191 278954 505212 895448 172071 (709 digits)/306 532238 365788 338613 927004 551282 005976 941033 939111 805174 531082 406907 229954 753117 038358 229539 484170 655826 117329 645709 560042 581745 264991 604476 933469 457248 878820 805806 879195 121734 071474 803103 671721 925441 145331 469101 061689 414426 218281 311884 022861 323332 032037 990512 007614 700795 781948 223334 458441 911816 421173 561796 245883 493752 104585 805952 881701 174374 349403 979981 976461 838812 562779 772216 742164 630896 769483 142067 512013 128826 893428 571111 971059 985811 267087 631795 156120 698135 532758 171803 633304 620971 642599 443276 848148 672840 733476 723130 795015 458892 869692 608270 826969 952218 673423 383961 744533 920790 518478 728828 627325 451294 102045 183733 068306 688635 264730 980529 359502 668537 452249 481367 370934 741059 440935 586012 889681 398082 879785 (711 digits), a[1352] = 190
                                                                                      A[1353]/B[1353] = 15 785722 977830 919542 588650 824164 291918 826452 108957 364936 952293 329402 603456 310252 460830 932734 835868 390788 267682 120970 754589 022438 613846 586352 239753 173845 519894 431031 768381 998873 247625 646031 093666 080112 671941 841169 827650 793108 508218 008236 746583 295382 023319 412107 917429 445171 149365 922162 146296 192621 756245 489053 191378 884016 871635 118702 319966 839534 263342 797642 999291 397445 752111 985555 980340 532218 901150 035141 282150 469010 249625 393431 425414 935403 883391 973772 562369 367324 436320 938982 301149 771605 515584 611730 859226 622123 050820 382026 023109 552444 200375 598499 689398 274852 746277 419691 318875 102375 586601 800671 766983 069704 022067 768229 084350 235327 017159 003280 632755 763069 357224 321376 622402 250287 141099 737796 475948 352952 685569 (710 digits)/1534 270068 010393 374170 958965 923655 411612 028011 305822 960586 797804 960749 445906 263017 149292 132344 465053 349028 018587 475304 038082 370721 851333 632188 125531 393477 394814 597412 869861 666228 350809 205287 958918 458648 888699 171583 309510 049407 026614 544748 499665 880592 325452 451759 603957 738364 807514 998576 588202 967953 914327 607009 621503 572750 017336 994992 469496 872032 312221 358814 733337 610369 657478 891495 001903 826983 309774 004207 041958 696879 292471 954485 452776 033808 961031 556742 576652 144652 546854 416269 791112 351912 592582 923431 350647 260262 019206 665910 232320 763607 526376 624908 681458 483136 788065 489120 529007 530231 895232 044945 528091 469920 462301 402885 076332 776260 889947 049756 439970 321961 401373 651844 542483 148913 580390 219961 025234 449933 189784 (712 digits), a[1353] = 5
                                                                                      A[1354]/B[1354] = 82 082448 819377 624496 750800 817548 734817 631762 826297 318104 582239 619320 085326 050127 857229 290326 754897 015629 972898 119848 078805 640484 957429 040419 640595 195983 421335 345087 814813 875071 282810 364218 832249 845388 001402 362139 621911 420051 127778 011081 452352 438079 343256 008184 581954 932847 005508 558757 618372 455372 690481 639037 213536 068161 990217 270815 686483 458621 739786 440956 787379 111816 086098 395483 624451 047872 325937 278297 334689 298188 271113 456340 379773 064126 065368 739301 727572 996290 474099 146760 168781 376693 562070 597293 861235 900012 415682 239919 348185 366316 284218 011468 104458 704716 738032 775194 437704 186551 983554 570866 997782 699363 655953 919196 898611 695874 597320 936033 615174 619051 572759 690812 841286 525232 032689 967936 884954 660211 599916 (710 digits)/7977 882578 417755 209468 721834 169559 064037 081090 468226 608108 520107 210654 459486 068202 784818 891261 809437 400966 210267 022229 750454 435354 521659 765417 561126 424635 852893 792871 228503 452875 825520 829543 466314 218685 588827 327017 609239 661461 351354 035626 521190 726293 659300 249310 027403 392619 819523 216217 399456 751585 992811 596844 353401 357502 191270 780915 229185 534535 910510 774055 643149 890660 850174 229691 751683 765813 318353 163102 721806 613223 355788 343539 234940 154856 072245 415508 039381 421398 267030 253152 588866 380534 605514 060433 601384 974150 829510 052681 956619 276930 501575 732814 234262 367902 613750 829564 389571 571949 994638 953556 267782 800896 413552 198158 449970 569939 714466 229311 559354 278344 459117 740590 083350 485627 342886 685818 015853 647748 828705 (712 digits), a[1354] = 5
                                                                                      A[1355]/B[1355] = 2642 424085 197914 903438 614276 985723 806083 042862 550471 544283 583961 147645 333889 914343 892168 223190 992572 890947 400421 956109 276369 517957 251575 879780 738799 445315 002625 473841 842426 001154 297557 301033 725661 132528 716817 429637 728816 234744 597114 362843 221861 313921 007511 674014 539987 296275 325639 802405 934214 764547 851657 938244 024533 065200 558587 784804 287437 515429 936508 908260 195422 975560 507260 641031 962774 064133 331142 940655 992208 011034 925255 996323 578152 987437 975191 631427 844705 248619 607493 635307 702153 825799 501843 725134 418775 422520 352652 059445 165041 274565 295351 965479 032076 825788 363326 225913 325409 072039 060348 068415 696029 449341 012593 182529 839924 503314 131428 956356 318343 572719 685534 427387 543571 057712 187178 711776 794497 479723 882881 (712 digits)/256826 512577 378560 077170 057659 349545 460798 622906 289074 420059 441235 701692 149460 445506 263496 652722 367050 179946 747132 186656 052624 302066 544446 125550 081576 981824 687415 969292 181972 158254 767475 750678 880973 456587 731173 636146 805179 216170 269943 684797 177769 121989 423060 429680 480866 302199 032257 917533 370819 018705 684298 706028 930347 012820 138001 984279 803433 977181 448566 128595 314134 111516 863054 241631 055784 333009 497075 223494 139770 320026 677698 947740 970860 989203 272884 852999 836857 629397 091822 517152 634836 529019 969032 857306 594966 433088 563528 351732 844137 625383 576800 074964 177854 256020 428092 035180 995297 832631 723678 558746 097141 098605 695971 743955 475391 014331 752866 387726 339307 228984 093141 350727 209698 688988 552764 166137 532551 177895 708344 (714 digits), a[1355] = 32
                                                                                      A[1356]/B[1356] = 2724 506534 017292 527935 365077 803272 540900 674625 376768 862388 166200 766965 419215 964471 749397 513517 747469 906577 373320 075957 355175 158442 209004 920200 379394 641298 423960 818929 657239 876225 580367 665252 557910 977916 718219 791777 350727 654795 724892 373924 674213 752000 350767 682199 121942 229122 331148 361163 552587 219920 542139 577281 238069 133362 548805 055619 973920 974051 676295 349216 982802 087376 593359 036515 587225 112005 657080 218953 326897 309223 196369 452663 957926 051564 040560 370729 572278 244910 081592 782067 870935 202493 063914 322428 280011 322532 768334 299364 513226 640881 579569 976947 136535 530505 101359 001107 763113 258591 043902 639282 693812 148704 668547 101726 738536 199188 728749 892389 933518 191771 258294 118200 384857 582944 219868 679713 679452 139935 482797 (712 digits)/264804 395155 796315 286638 779493 519104 524835 703996 757301 028167 961342 912346 608946 513709 048315 543984 176487 580912 957399 208885 803078 737421 066105 890967 642703 406460 540309 762163 410475 611130 592996 580222 347287 675273 320000 963164 414418 877631 621297 720423 698959 848283 082360 678990 508269 694818 851781 133750 770275 770291 677110 302873 283748 370322 329272 765195 032619 511717 359076 902650 957284 002177 713228 471322 807468 098822 815428 386596 861576 933250 033487 291280 205801 144059 345130 268507 876239 050795 358852 770305 223702 909554 574546 917740 196351 407239 393038 404414 800756 902314 078375 807778 412116 623923 041842 864745 384869 404581 718317 512302 364923 899502 109523 942113 925361 584271 467332 617037 898661 507328 552259 091317 293049 174615 895650 851955 548404 825644 537049 (714 digits), a[1356] = 1
                                                                                      A[1357]/B[1357] = 5366 930619 215207 431373 979354 788996 346983 717487 927240 406671 750161 914610 753105 878815 641565 736708 740042 797524 773742 032066 631544 676399 460580 799981 118194 086613 426586 292771 499665 877379 877924 966286 283572 110445 435037 221415 079543 889540 322006 736767 896075 065921 358279 356213 661929 525397 656788 163569 486801 984468 393797 515525 262602 198563 107392 840424 261358 489481 612804 257477 178225 062937 100619 677547 549999 176138 988223 159609 319105 320258 121625 448987 536079 039002 015752 002157 416983 493529 689086 417375 573089 028292 565758 047562 698786 745053 120986 358809 678267 915446 874921 942426 168612 356293 464685 227021 088522 330630 104250 707698 389841 598045 681140 284256 578460 702502 860178 848746 251861 764490 943828 545587 928428 640656 407047 391490 473949 619659 365678 (712 digits)/521630 907733 174875 363808 837152 868649 985634 326903 046375 448227 402578 614038 758406 959215 311812 196706 543537 760859 704531 395541 855703 039487 610552 016517 724280 388285 227725 731455 592447 769385 360472 330901 228261 131861 051174 599311 219598 093801 891241 405220 876728 970272 505421 108670 989135 997017 884039 051284 141094 788997 361409 008902 214095 383142 467274 749474 836053 488898 807643 031246 271418 113694 576282 712953 863252 431832 312503 610091 001347 253276 711186 239021 176662 133262 618015 121507 713096 680192 450675 287457 858539 438574 543579 775046 791317 840327 956566 756147 644894 527697 655175 882742 589970 879943 469934 899926 380167 237213 441996 071048 462064 998107 805495 686069 400752 598603 220199 004764 237968 736312 645400 442044 502747 863604 448415 018093 080956 003540 245393 (714 digits), a[1357] = 1
                                                                                      A[1358]/B[1358] = 8091 437153 232499 959309 344432 592268 887884 392113 304009 269059 916362 681576 172321 843287 390963 250226 487512 704102 147062 108023 986719 834841 669585 720181 497588 727911 850547 111701 156905 753605 458292 631538 841483 088362 153257 013192 430271 544336 046899 110692 570288 817921 709047 038412 783871 754519 987936 524733 039389 204388 935937 092806 500671 331925 656197 896044 235279 463533 289099 606694 161027 150313 693978 714063 137224 288144 645303 378562 646002 629481 317994 901651 494005 090566 056312 372886 989261 738439 770679 199443 444024 230785 629672 369990 978798 067585 889320 658174 191494 556328 454491 919373 305147 886798 566044 228128 851635 589221 148153 346981 083653 746750 349687 385983 316996 901691 588928 741136 185379 956262 202122 663788 313286 223600 626916 071204 153401 759594 848475 (712 digits)/786435 302888 971190 650447 616646 387754 510470 030899 803676 476395 363921 526385 367353 472924 360127 740690 720025 341772 661930 604427 658781 776908 676657 907485 366983 794745 768035 493619 002923 380515 953468 911123 575548 807134 371175 562475 634016 971433 512539 125644 575688 818555 587781 787661 497405 691836 735820 185034 911370 559289 038519 311775 497843 753464 796547 514669 868673 000616 166719 933897 228702 115872 289511 184276 670720 530655 127931 996687 862924 186526 744673 530301 382463 277321 963145 390015 589335 730987 809528 057763 082242 348129 118126 692786 987669 247567 349605 160562 445651 430011 733551 690521 002087 503866 511777 764671 765036 641795 160313 583350 826988 897609 915019 628183 326114 182874 687531 621802 136630 243641 197659 533361 795797 038220 344065 870048 629360 829184 782442 (714 digits), a[1358] = 1
                                                                                      A[1359]/B[1359] = 13458 367772 447707 390683 323787 381265 234868 109601 231249 675731 666524 596186 925427 722103 032528 986935 227555 501626 920804 140090 618264 511241 130166 520162 615782 814525 277133 404472 656571 630985 336217 597825 125055 198807 588294 234607 509815 433876 368905 847460 466363 883843 067326 394626 445801 279917 644724 688302 526191 188857 329734 608331 763273 530488 763590 736468 496637 953014 901903 864171 339252 213250 794598 391610 687223 464283 633526 538171 965107 949739 439620 350639 030084 129568 072064 375044 406245 231969 459765 616819 017113 259078 195430 417553 677584 812639 010307 016983 869762 471775 329413 861799 473760 243092 030729 455149 940157 919851 252404 054679 473495 344796 030827 670239 895457 604194 449107 589882 437241 720753 145951 209376 241714 864257 033963 462694 627351 379254 214153 (713 digits)/1 308066 210622 146066 014256 453799 256404 496104 357802 850051 924622 766500 140424 125760 432139 671939 937397 263563 102632 366461 999969 514484 816396 287209 924003 091264 183030 995761 225074 595371 149901 313941 242024 803809 938995 422350 161786 853615 065235 403780 530865 452417 788828 093202 896332 486541 688854 619859 236319 052465 348286 399928 320677 711939 136607 263822 264144 704726 489514 974362 965143 500120 229566 865793 897230 533972 962487 440435 606778 864271 439803 455859 769322 559125 410584 581160 511523 302432 411180 260203 345220 940781 786703 661706 467833 778987 087895 306171 916710 090545 957709 388727 573263 592058 383809 981712 664598 145203 879008 602309 654399 289053 895717 720515 314252 726866 781477 907730 626566 374598 979953 843059 975406 298544 901824 792480 888141 710316 832725 027835 (715 digits), a[1359] = 1
                                                                                      A[1360]/B[1360] = 75383 276015 471036 912725 963369 498595 062224 940119 460257 647718 248985 662510 799460 453802 553608 184902 625290 212236 751082 808477 078042 391047 320418 320994 576502 800538 236214 134064 439763 908532 139380 620664 466759 082400 094728 186229 979348 713717 891428 347994 902108 237137 045679 011545 012878 154108 211559 966245 670345 148675 584610 134465 317038 984369 474151 578386 718469 228607 798618 927550 857288 216567 666970 672116 573341 609562 812936 069422 471542 378178 516096 654846 644425 738406 416634 248109 020487 898287 069507 283538 529590 526176 606824 457759 366722 130780 940855 743093 540306 915205 101561 228370 673949 102258 719691 503878 552425 188477 410173 620378 451130 470730 503825 737182 794284 922663 834466 690548 371588 560027 931878 710669 521860 544885 796733 384677 290158 655865 919240 (713 digits)/7 326766 355999 701520 721729 885642 669776 990991 819914 053936 099509 196422 228505 996155 633622 719827 427677 037840 854934 494240 604275 231205 858890 112707 527500 823304 709900 746841 618991 979779 130022 523175 121247 594598 502111 482926 371409 902092 297610 531441 779971 837777 762696 053796 269323 930114 136109 835116 366630 173697 300721 038160 915164 057539 436501 115658 835393 392305 448191 038534 759614 729303 263706 618480 670429 340585 343092 330110 030582 184281 385544 023972 376914 178090 330244 868947 947632 101497 786889 110544 783867 786151 281647 426659 031955 882604 687043 880464 744112 898381 218558 677189 556838 962379 422916 420341 087662 491056 036838 171861 855347 272258 376198 517596 199446 960448 090264 226184 754634 009625 143410 412959 410393 288521 547344 306470 310757 180944 992809 921617 (715 digits), a[1360] = 5
                                                                                      A[1361]/B[1361] = 88841 643787 918744 303409 287156 879860 297093 049720 691507 323449 915510 258697 724888 175905 586137 171837 852845 713863 671886 948567 696306 902288 450584 841157 192285 615063 513347 538537 096335 539517 475598 218489 591814 281207 683022 420837 489164 147594 260334 195455 368472 120980 113005 406171 458679 434025 856284 654548 196536 337532 914344 742797 080312 514858 237742 314855 215107 181622 700522 791722 196540 429818 461569 063727 260565 073846 446462 607594 436650 327917 955717 005485 674509 867974 488698 623153 426733 130256 529272 900357 546703 785254 802254 875313 044306 943419 951162 760077 410069 386980 430975 090170 147709 345350 750420 959028 492583 108328 662577 675057 924625 815526 534653 407422 689742 526858 283574 280430 808830 280781 077829 920045 763575 409142 830696 847371 917510 035120 133393 (713 digits)/8 634832 566621 847586 735986 339441 926181 487096 177716 903988 024131 962922 368930 121916 065762 391767 365074 301403 957566 860702 604244 745690 675286 399917 451503 914568 892931 742602 844066 575150 279923 837116 363272 398408 441106 905276 533196 755707 362845 935222 310837 290195 551524 146999 165656 416655 824964 454975 602949 226162 649007 438089 235841 769478 573108 379481 099538 097031 937706 012897 724758 229423 493273 484274 567659 874558 305579 770545 637361 048552 825347 479832 146236 737215 740829 450108 459155 403930 198069 370748 129088 726933 068351 088365 499789 661591 774939 186636 660822 988927 176268 065917 130102 554437 806726 402053 752260 636259 915846 774171 509746 561312 271916 238111 513699 687314 871742 133915 381200 384224 123364 256019 385799 587066 449169 098951 198898 891261 825534 949452 (715 digits), a[1361] = 1
                                                                                      A[1362]/B[1362] = 253066 563591 308525 519544 537683 258315 656411 039560 843272 294618 080006 179906 249236 805613 725882 528578 330981 639964 094856 705612 470656 195624 221588 003308 961074 030665 262909 211138 632434 987567 090577 057643 650387 644815 460773 027904 957677 008906 412096 738905 639052 479097 271689 823887 930237 022159 924129 275342 063417 823741 413299 620059 477664 014085 949636 208097 148683 591853 199664 510995 250369 076204 590108 799571 094471 757255 705861 284611 344843 034014 427530 665817 993445 474355 394031 494415 873954 158800 128053 084253 622998 096686 211334 208385 455336 017620 843181 263248 360445 689165 963511 408710 969367 792960 220533 421935 537591 405134 735328 970494 300382 101783 573132 552028 173769 976380 401615 251409 989249 121590 087538 550761 049011 363171 458127 079421 125178 726106 186026 (714 digits)/24 596431 489243 396694 193702 564526 522139 965184 175347 861912 147773 122266 966366 239987 765147 503362 157825 640648 770068 215645 812764 722587 209462 912542 430508 652442 495764 232047 307125 130079 689870 197407 847792 391415 384325 293479 437803 413507 023302 401886 401646 418168 865744 347794 600636 763425 786038 745067 572528 626022 598735 914339 386847 596496 582717 874621 034469 586369 323603 064330 209131 188150 250253 587029 805749 089701 954251 871201 305304 281387 036238 983636 669387 652521 811903 769164 865942 909358 183027 852041 042045 240017 418349 603390 031535 205788 236922 253738 065758 876235 571094 809023 817044 071255 036369 224448 592183 763575 868531 720204 874840 394882 920030 993819 226846 335077 833748 494015 517034 778073 390138 924998 181992 462654 445682 504372 708554 963468 643879 820521 (716 digits), a[1362] = 2
                                                                                      A[1363]/B[1363] = 341908 207379 227269 822953 824840 138175 953504 089281 534779 618067 995516 438603 974124 981519 312019 700416 183827 353827 766743 654180 166963 097912 672172 844466 153359 645728 776256 749675 728770 527084 566175 276133 242201 926023 143795 448742 446841 156500 672430 934361 007524 600077 384695 230059 388916 456185 780413 929890 259954 161274 327644 362856 557976 528944 187378 522952 363790 773475 900187 302717 446909 506023 051677 863298 355036 831102 152323 892205 781493 361932 383247 671303 667955 342329 882730 117569 300687 289056 657325 984611 169701 881941 013589 083698 499642 961040 794344 023325 770515 076146 394486 498881 117077 138310 970954 380964 030174 513463 397906 645552 225007 917310 107785 959450 863512 503238 685189 531840 798079 402371 165368 470806 812586 772314 288823 926793 042688 761226 319419 (714 digits)/33 231264 055865 244280 929688 903968 448321 452280 353064 765900 171905 085189 335296 361903 830909 895129 522899 942052 727635 076348 417009 468277 884749 312459 882012 567011 388695 974650 151191 705229 969794 034524 211064 789823 825432 198755 971000 169214 386148 337108 712483 708364 417268 494793 766293 180081 611003 200043 175477 852185 247743 352428 622689 365975 155826 254102 134007 683401 261309 077227 933889 417573 743527 071304 373408 964260 259831 641746 942665 329939 861586 463468 815624 389737 552733 219273 325098 313288 381097 222789 171133 966950 486700 691755 531324 867380 011861 440374 726581 865162 747362 874940 947146 625692 843095 626502 344444 399835 784378 494376 384586 956195 191947 231930 740546 022392 705490 627930 898235 162297 513503 181017 567792 049720 894851 603323 907453 854730 469414 769973 (716 digits), a[1363] = 1
                                                                                      A[1364]/B[1364] = 594974 770970 535795 342498 362523 396491 609915 128842 378051 912686 075522 618510 223361 787133 037902 228994 514808 993791 861600 359792 637619 293536 893760 847775 114433 676394 039165 960814 361205 514651 656752 333776 892589 570838 604568 476647 404518 165407 084527 673266 646577 079174 656385 053947 319153 478345 704543 205232 323371 985015 740943 982916 035640 543030 137014 731049 512474 365329 099851 813712 697278 582227 641786 662869 449508 588357 858185 176817 126336 395946 810778 337121 661400 816685 276761 611985 174641 447856 785379 068864 792699 978627 224923 292083 954978 978661 637525 286574 130960 765312 357997 907592 086444 931271 191487 802899 567765 918598 133235 616046 525390 019093 680918 511479 037282 479619 086804 783250 787328 523961 252907 021567 861598 135485 746951 006214 167867 487332 505445 (714 digits)/57 827695 545108 640975 123391 468494 970461 417464 528412 627812 319678 207456 301662 601891 596057 398491 680725 582701 497703 291994 229774 190865 094212 225002 312521 219453 884460 206697 458316 835309 659664 231932 058857 181239 209757 492235 408803 582721 409450 738995 114130 126533 283012 842588 366929 943507 397041 945110 748006 478207 846479 266768 009536 962471 738544 128723 168477 269770 584912 141558 143020 605723 993780 658334 179158 053962 214083 512948 247969 611326 897825 447105 485012 042259 364636 988438 191041 222646 564125 074830 213179 206967 905050 295145 562860 073168 248783 694112 792340 741398 318457 683964 764190 696947 879464 850950 936628 163411 652910 214581 259427 351078 111978 225749 967392 357470 539239 121946 415269 940370 903642 106015 749784 512375 340534 107696 616008 818199 113294 590494 (716 digits), a[1364] = 1
                                                                                      A[1365]/B[1365] = 1 531857 749320 298860 507950 549886 931159 173334 346966 290883 443440 146561 675624 420848 555785 387824 158405 213445 341411 489944 373765 442201 684986 459694 540016 382226 998516 854588 671304 451181 556387 879679 943687 027381 067700 352932 402037 255877 487314 841486 280894 300678 758426 697465 337954 027223 412877 189500 340354 906698 131305 809532 328688 629257 615004 461407 985051 388739 504134 099890 930142 841466 670478 335251 189037 254054 007817 868694 245840 034166 153826 004804 345546 990756 975700 436253 341539 649970 184770 228084 122340 755101 839195 463435 667866 409600 918364 069394 596474 032436 606771 110482 314065 289967 000853 353929 986763 165706 350659 664377 877645 275787 955497 469622 982408 938077 462476 858799 098342 372736 450293 671182 513942 535783 043285 782725 939221 378423 735891 330309 (715 digits)/148 886655 146082 526231 176471 840958 389244 287209 409890 021524 811261 500101 938621 565687 023024 692112 884351 107455 723041 660336 876557 850008 073173 762464 507055 005919 157616 388045 067825 375849 289122 498388 328779 152302 244947 183226 788607 334657 205049 815098 940743 961430 983294 179970 500153 067096 405087 090264 671490 808600 940701 885964 641763 290918 632914 511548 470962 222942 431133 360344 219930 629021 731088 387972 731725 072184 687998 667643 438604 552593 657237 357679 785648 474256 282007 196149 707180 758581 509347 372449 597492 380886 296801 282046 657045 013716 509428 828600 311263 347959 384278 242870 475528 019588 602025 328404 217700 726659 090198 923538 903441 658351 415903 683430 675330 737333 783968 871823 728775 043039 320787 393049 067361 074471 575919 818717 139471 491128 696003 950961 (717 digits), a[1365] = 2
                                                                                      A[1366]/B[1366] = 2 126832 520290 834655 850448 912410 327650 783249 475808 668935 356126 222084 294134 644210 342918 425726 387399 728254 335203 351544 733558 079820 978523 353455 387791 496660 674910 893754 632118 812387 071039 536432 277463 919970 638538 957500 878684 660395 652721 926013 954160 947255 837601 353850 391901 346376 891222 894043 545587 230070 116321 550476 311604 664898 158034 598422 716100 901213 869463 199742 743855 538745 252705 977037 851906 703562 596175 726879 422657 160502 549772 815582 682668 652157 792385 713014 953524 824611 632627 013463 191205 547801 817822 688358 959950 364579 897025 706919 883048 163397 372083 468480 221657 376411 932124 545417 789662 733472 269257 797613 493691 801177 974591 150541 493887 975359 942095 945603 881593 160064 974254 924089 535510 397381 178771 529676 945435 546291 223223 835754 (715 digits)/206 714350 691191 167206 299863 309453 359705 704673 938302 649337 130939 707558 240284 167578 619082 090604 565076 690157 220744 952331 106332 040873 167385 987466 819576 225373 042076 594742 526142 211158 948786 730320 387636 333541 454704 675462 197410 917378 614500 554094 054874 087964 266307 022558 867083 010603 802129 035375 419497 286808 787181 152732 651300 253390 371458 640271 639439 492713 016045 501902 362951 234745 724869 046306 910883 126146 902082 180591 686574 163920 555062 804785 270660 516515 646644 184587 898221 981228 073472 447279 810671 587854 201851 577192 219905 086884 758212 522713 103604 089357 702735 926835 239718 716536 481490 179355 154328 890070 743109 138120 162869 009429 527881 909180 642723 094804 323207 993770 144044 983410 224429 499064 817145 586846 916453 926413 755480 309327 809298 541455 (717 digits), a[1366] = 1
                                                                                      A[1367]/B[1367] = 3 658690 269611 133516 358399 462297 258809 956583 822774 959818 799566 368645 969759 065058 898703 813550 545804 941699 676614 841489 107323 522022 663509 813149 927807 878887 673427 748343 303423 263568 627427 416112 221150 947351 706239 310433 280721 916273 140036 767500 235055 247934 596028 051315 729855 373600 304100 083543 885942 136768 247627 360008 640293 294155 773039 059830 701152 289953 373597 299633 673998 380211 923184 312289 040943 957616 603993 595573 668497 194668 703598 820387 028215 642914 768086 149268 295064 474581 817397 241547 313546 302903 657018 151794 627816 774180 815389 776314 479522 195833 978854 578962 535722 666378 932977 899347 776425 899178 619917 461991 371337 076965 930088 620164 476296 913437 404572 804402 979935 532801 424548 595272 049452 933164 222057 312402 884656 924714 959115 166063 (715 digits)/355 601005 837273 693437 476335 150411 748949 991883 348192 670861 942201 207660 178905 733265 642106 782717 449427 797612 943786 612667 982889 890881 240559 749931 326631 231292 199692 982787 593967 587008 237909 228708 716415 485843 699651 858688 986018 252035 819550 369192 995618 049395 249601 202529 367236 077700 207216 125640 090988 095409 727883 038697 293063 544309 004373 151820 110401 715655 447178 862246 582881 863767 455957 434279 642608 198331 590080 848235 125178 716514 212300 162465 056308 990771 928651 380737 605402 739809 582819 819729 408163 968740 498652 859238 876950 100601 267641 351313 414867 437317 087014 169705 715246 736125 083515 507759 372029 616729 833308 061659 066310 667780 943785 592611 318053 832138 107176 865593 872820 026449 545216 892113 884506 661318 492373 745130 894951 800456 505302 492416 (717 digits), a[1367] = 1
                                                                                      A[1368]/B[1368] = 386 289310 829459 853873 482392 453622 502696 224550 867179 449909 310594 929911 118836 475394 706818 848533 696918 606720 379761 707901 002527 892200 647053 734197 807618 779866 384824 469801 491561 487092 950918 228215 498313 391899 793666 552995 354485 869075 356582 513538 634961 980388 420546 742002 026715 574408 821731 666151 569511 590736 117194 351383 542400 551254 327135 880646 337091 346318 097179 661278 513685 460997 187058 767387 151022 253306 015503 262114 614862 600716 427648 956220 645311 158208 441431 386185 935294 655702 459337 375931 113567 352685 804728 626794 880711 653565 512952 219940 232878 725965 151814 259546 472537 346199 894803 976934 314382 147227 360591 306707 484084 882600 633896 267811 505063 886287 422240 407916 774824 104214 551857 427654 728068 379624 494789 331979 834412 641361 930316 272369 (717 digits)/37544 819963 604928 978141 315054 102686 999454 852425 498533 089841 062066 511877 025386 160471 040294 275936 754995 439516 318339 282469 309770 583403 426159 730256 115855 511054 009839 787439 892738 847023 929255 744735 611262 347129 918149 837805 729327 381139 667289 319358 594769 274465 474433 288142 426871 169125 559822 227584 973247 304830 214900 215948 422972 405835 830639 581383 231619 636534 969826 037793 565546 930328 600399 645669 384743 950963 860571 245279 830339 397912 846579 863616 183104 547568 155039 162036 465509 661234 269553 518867 667888 305606 560401 797274 299665 650017 860554 410621 664685 007651 839223 745935 340626 009670 250618 494089 217438 646703 240455 612322 125489 126428 625369 133369 038375 469305 576778 881126 790147 760612 472203 171022 690345 025288 615697 165157 725419 357260 866060 245135 (719 digits), a[1368] = 105
                                                                                      A[1369]/B[1369] = 389 948001 099070 987389 840791 915919 761506 181134 689954 409728 110161 298557 088595 540453 605522 662084 242723 548420 056376 549390 109851 414223 310563 547347 735426 658754 058252 218144 794984 750661 578345 644327 719464 339251 499905 863428 635207 785348 496619 281038 870017 228323 016574 793317 756570 948009 125831 749695 455453 727504 364821 711392 182693 845410 100174 940477 038243 636271 470776 960912 187683 841209 110243 079676 191966 210922 619496 857688 283359 795385 131247 776607 673526 801123 209517 535454 230359 130284 276734 617478 427113 655589 461746 778589 508528 427746 328341 996254 712400 921799 130668 838509 008260 012578 827781 876282 090808 046405 980508 768698 855421 959566 563984 887975 981360 799724 826813 212319 754759 637015 976406 022926 777521 312788 716846 644382 719069 566076 889431 438432 (717 digits)/37900 420969 442202 671578 791389 253098 748404 844308 846725 760703 004267 719537 204291 893736 682401 058654 204423 237129 262125 895137 292660 474284 666719 480187 442486 742346 209532 770227 486706 434032 167164 973444 327677 832973 617801 696494 715345 633175 486839 688551 590387 323860 724034 490671 794107 246825 767038 353225 064235 400239 942783 254645 716035 950144 835012 733203 342021 352190 417004 900040 148428 794096 056357 079949 027352 149295 450652 093514 955518 114427 058880 026081 239413 538340 083690 542774 070912 401043 852373 338597 076052 274347 059054 656513 176615 750619 128195 761935 079552 444968 926237 915641 055872 745795 334134 001848 589468 263433 073763 673981 191799 794209 569154 725980 356429 301443 683955 746720 662967 787062 017420 063136 574851 686607 108070 910288 620371 157717 371362 737551 (719 digits), a[1369] = 1
                                                                                      A[1370]/B[1370] = 776 237311 928530 841263 323184 369542 264202 405685 557133 859637 420756 228468 207432 015848 312341 510617 939642 155140 436138 257291 112379 306423 957617 281545 543045 438620 443076 687946 286546 237754 529263 872543 217777 731151 293572 416423 989693 654423 853201 794577 504979 208711 437121 535319 783286 522417 947563 415847 024965 318240 482016 062775 725094 396664 427310 821123 375334 982589 567956 622190 701369 302206 297301 847063 342988 464228 635000 119802 898222 396101 558896 732828 318837 959331 650948 921640 165653 785986 736071 993409 540681 008275 266475 405384 389240 081311 841294 216194 945279 647764 282483 098055 480797 358778 722585 853216 405190 193633 341100 075406 339506 842167 197881 155787 486424 686012 249053 620236 529583 741230 528263 450581 505589 692413 211635 976362 553482 207438 819747 710801 (717 digits)/75445 240933 047131 649720 106443 355785 747859 696734 345258 850544 066334 231414 229678 054207 722695 334590 959418 676645 580465 177606 602431 057688 092879 210443 558342 253400 219372 557667 379445 281056 096420 718179 938940 180103 535951 534300 444673 014315 154129 007910 185156 598326 198467 778814 220978 415951 326860 580810 037482 705070 157683 470594 139008 355980 665652 314586 573640 988725 386830 937833 713975 724424 656756 725618 412096 100259 311223 338794 785857 512339 905459 889697 422518 085908 238729 704810 536422 062278 121926 857464 743940 579953 619456 453787 476281 400636 988750 172556 744237 452620 765461 661576 396498 755465 584752 495937 806906 910136 314219 286303 317288 920638 194523 859349 394804 770749 260734 627847 453115 547674 489623 234159 265196 711895 723768 075446 345790 514978 237422 982686 (719 digits), a[1370] = 1
                                                                                      A[1371]/B[1371] = 1942 422624 956132 669916 487160 655004 289910 992505 804222 129002 951673 755493 503459 572150 230205 683320 122007 858700 928653 063972 334610 027071 225798 110438 821517 535994 944405 594037 368077 226170 636873 389414 155019 801554 087050 696276 614595 094196 203022 870193 879975 645745 890817 863957 323143 992845 020958 581389 505384 363985 328853 836943 632882 638738 954796 582723 788913 601450 606690 205293 590422 445621 704846 773802 877943 139379 889497 097294 079804 587588 249041 242264 311202 719786 511415 378734 561666 702257 748878 604297 508475 672139 994697 589358 287008 590370 010930 428644 602960 217327 695635 034619 969854 730136 272953 582714 901188 433672 662708 919511 534435 643900 959747 199550 954210 171749 324920 452792 813927 119477 032932 924089 788700 697615 140118 597107 826033 980954 528926 860034 (718 digits)/188790 902835 536465 971019 004275 964670 244124 237777 537243 461791 136936 182365 663648 002152 127791 727836 123260 590420 423056 250350 497522 589660 852477 901074 559171 249146 648277 885562 245596 996144 360006 409804 205558 193180 689704 765095 604691 661805 795097 704371 960700 520513 120970 048300 236064 078728 420759 514845 139200 810380 258150 195833 994052 662106 166317 362376 489303 329641 190666 775707 576380 242945 369870 531185 851544 349814 073098 771104 527233 139106 869799 805476 084449 710156 561149 952395 143756 525600 096227 053526 563933 434254 297967 564088 129178 551893 105696 107048 568027 350210 457161 238793 848870 256726 503638 993724 203282 083705 702202 246587 826377 635485 958202 444679 146038 842942 205425 002415 569198 882410 996666 531455 105245 110398 555607 061181 311952 187673 846208 702923 (720 digits), a[1371] = 2
                                                                                      A[1372]/B[1372] = 8545 927811 753061 520929 271826 989559 423846 375708 774022 375649 227451 250442 221270 304449 233164 243898 427673 589944 150750 513180 450819 414708 860809 723300 829115 582600 220699 064095 758855 142437 076757 430199 837856 937367 641775 201530 448074 031208 665293 275353 024881 791695 000392 991149 075862 493798 031397 741405 046502 774181 797431 410550 256624 951620 246497 152018 530989 388391 994717 443365 063059 084693 116688 942274 854761 021748 192988 508979 217440 746454 555061 701885 563648 838477 696610 436578 412320 595017 731586 410599 574583 696835 245265 762817 537274 442791 885015 930773 357120 517075 065023 236535 360216 279323 814400 184076 009943 928323 991935 753452 477249 417771 036869 953991 303265 373009 548735 431407 785292 219138 659995 146940 660392 482873 772110 364793 857618 131256 935455 150937 (718 digits)/830608 852275 192995 533796 123547 214466 724356 647844 494232 697708 614078 960876 884270 062816 233862 245935 452461 038327 272690 179008 592521 416331 502790 814741 795027 249986 812484 099916 361833 265633 536446 357396 761172 952826 294770 594682 863439 661538 334519 825398 027958 680378 682347 972015 165234 730865 009898 640190 594285 946591 190284 253930 115219 004405 330921 764092 530854 307290 149498 040664 019496 696206 136238 850361 818273 499515 603618 423212 894790 068767 384659 111601 760316 926534 483329 514391 111448 164678 506835 071570 999674 316970 811326 710139 992995 608209 411534 600751 016346 853462 594106 616751 791979 782371 599308 470834 620035 244959 123028 272654 622799 462582 027333 638065 978960 142518 082434 637509 729911 077318 476289 359979 686177 153489 946196 320171 593599 265673 622257 794378 (720 digits), a[1372] = 4
                                                                                      A[1373]/B[1373] = 19034 278248 462255 711775 030814 634123 137603 743923 352266 880301 406576 256377 946000 181048 696534 171116 977355 038589 230154 090333 236248 856488 947417 557040 479748 701195 385803 722228 885787 511044 790388 249813 830733 676289 370601 099337 510743 156613 533609 420899 929739 229135 891603 846255 474868 980441 083754 064199 598389 912348 923716 658044 146132 541979 447790 886760 850892 378234 596125 092023 716540 615007 938224 658352 587465 182876 275474 115252 514686 080497 359164 646035 438500 396741 904636 251891 386307 892293 212051 425496 657643 065810 485229 114993 361557 475953 780962 290191 317201 251477 825681 507690 690287 288783 901753 950866 921076 290320 646580 426416 488934 479443 033487 107533 560740 917768 422391 315608 384511 557754 352923 217971 109485 663362 684339 326695 541270 243468 399837 161908 (719 digits)/1 850008 607385 922457 038611 251370 393603 692837 533466 525708 857208 365094 104119 432188 127784 595516 219707 028182 667074 968436 608367 682565 422323 858059 530558 149225 749120 273246 085394 969263 527411 432899 124597 727904 098833 279245 954461 331570 984882 464137 355168 016617 881270 485665 992330 566533 540458 440556 795226 327772 703562 638718 703694 224490 670916 828160 890561 551011 944221 489662 857035 615373 635357 642348 231909 488091 348845 280335 617530 316813 276641 639118 028679 605083 563225 527808 981177 366652 854957 109897 196668 563282 068195 920620 984368 115169 768311 928765 308550 600721 057135 645374 472297 432829 821469 702255 935393 443352 573623 948258 791897 071976 560650 012869 720811 103959 127978 370294 277435 029021 037047 949245 251414 477599 417378 447999 701524 499150 719021 090724 291679 (721 digits), a[1373] = 2
                                                                                      A[1374]/B[1374] = 27580 206060 215317 232704 302641 623682 561450 119632 126289 255950 634027 506820 167270 485497 929698 415015 405028 628533 380904 603513 687068 271197 808227 280341 308864 283795 606502 786324 644642 653481 867145 680013 668590 613657 012376 300867 958817 187822 198902 696252 954621 020830 891996 837404 550731 474239 115151 805604 644892 686530 721148 068594 402757 493599 694288 038779 381881 766626 590842 535388 779599 699701 054913 600627 442226 204624 468462 624231 732126 826951 914226 347921 002149 235219 601246 688469 798628 487310 943637 836096 232226 762645 730494 877810 898831 918745 665978 220964 674321 768552 890704 744226 050503 568107 716154 134942 931020 218644 638516 179868 966183 897214 070357 061524 864006 290777 971126 747016 169803 776893 012918 364911 769878 146236 456449 691489 398888 374725 335292 312845 (719 digits)/2 680617 459661 115452 572407 374917 608070 417194 181311 019941 554916 979173 064996 316458 190600 829378 465642 480643 705402 241126 787376 275086 838655 360850 345299 944252 999107 085730 185311 331096 793044 969345 481994 489077 051659 574016 549144 195010 646420 798657 180566 044576 561649 168013 964345 731768 271323 450455 435416 922058 650153 829002 957624 339709 675322 159082 654654 081866 251511 639160 897699 634870 331563 778587 082271 306364 848360 883954 040743 211603 345409 023777 140281 365400 489760 011138 495568 478101 019635 616732 268239 562956 385166 731947 694508 108165 376521 340299 909301 617067 910598 239481 089049 224809 603841 301564 406228 063387 818583 071287 064551 694776 023232 040203 358877 082919 270496 452728 914944 758932 114366 425534 611394 163776 570868 394196 021696 092749 984694 712982 086057 (721 digits), a[1374] = 1
                                                                                      A[1375]/B[1375] = 74194 690368 892890 177183 636097 881488 260503 983187 604845 392202 674631 270018 280541 152044 555931 001147 787412 295655 991963 297360 610385 398884 563872 117723 097477 268786 598809 294878 175072 818008 524679 609841 167914 903603 395353 701073 428377 532257 931414 813405 838981 270797 675597 521064 576331 928919 314057 675408 888175 285410 366012 795232 951647 529178 836366 964319 614655 911487 777810 162801 275740 014410 048051 859607 471917 592125 212399 363715 978939 734401 187617 341877 442798 867181 107129 628830 983564 866915 099327 097689 122096 591101 946218 870615 159221 313445 112918 732120 665844 788583 607090 996142 791294 424999 334062 220752 783116 727609 923612 786154 421302 273871 174201 230583 288753 499324 364644 809640 724119 111540 378759 947794 649241 955835 597238 709674 339046 992919 070421 787598 (719 digits)/7 211243 526708 153362 183426 001205 609744 527225 896088 565591 967042 323440 234112 065104 508986 254273 150991 989470 077879 450690 183120 232739 099634 579760 221158 037731 747334 444706 456017 631457 113501 371590 088586 706058 202152 427279 052749 721592 277724 061451 716300 105771 004568 821693 921022 030070 083105 341467 666060 171890 003870 296724 618942 903910 021561 146326 199869 714744 447244 767984 652434 885114 298485 199522 396452 100821 045567 048243 699016 740019 967459 686672 309242 335884 542745 550085 972314 322854 894228 343361 733147 689194 838529 384516 373384 331500 521354 609365 127153 834856 878332 124336 650395 882449 029152 305384 747849 570128 210790 090832 921000 461528 607114 093276 438565 269797 668971 275752 107324 546885 265780 800314 474202 805152 559115 236391 744916 684650 688410 516688 463793 (721 digits), a[1375] = 2
                                                                                      A[1376]/B[1376] = 472748 348273 572658 295806 119228 912612 124474 018757 755361 609166 681815 126929 850517 397765 265284 421902 129502 402469 332684 387677 349380 664505 191459 986679 893727 896515 199358 555593 695079 561533 015223 339060 676080 035277 384498 507308 529082 381369 787391 576687 988508 645616 945581 963792 008723 047754 999497 858057 973944 398992 917224 839992 112642 668672 712489 824697 069817 235553 257703 512196 434039 786161 343224 758272 273731 757375 742858 806527 605765 233359 039930 399185 658942 438306 244024 461455 700017 688801 539600 422230 964806 309257 407808 101501 854159 799416 343490 613688 669390 500054 533250 721082 798270 118103 720527 459459 629720 584304 180192 896795 493997 540441 115564 445024 596527 286724 158995 604860 514518 446135 285478 051679 665329 881250 039881 949535 433170 332239 757823 038433 (720 digits)/45 948078 619910 035625 672963 382151 266537 580549 557842 413493 357170 919814 469668 707085 244518 355017 371594 417464 172678 945267 886097 671521 436462 839411 672248 170643 483113 753968 921417 119839 474053 198886 013514 725426 264574 137690 865642 524564 312765 167367 478366 679202 589062 098177 490477 912188 769955 499261 431777 953398 673375 609350 671281 763169 804689 037039 853872 370332 934980 247068 812308 945556 122474 975721 460983 911291 121763 173416 234843 651723 150167 143810 995735 380707 746233 311654 329454 415230 385005 676902 667125 698125 416343 039045 934814 097168 504648 996490 672224 626209 180590 985500 991424 519503 778755 133872 893325 484157 083323 616284 590554 463947 665916 599861 990268 701705 284324 107241 558892 040243 709051 227421 456610 994691 925559 812546 491196 200654 115157 813112 868815 (722 digits), a[1376] = 6
                                                                                      A[1377]/B[1377] = 546943 038642 465548 472989 755326 794100 384978 001945 360207 001369 356446 396948 131058 549809 821215 423049 916914 698125 324647 685037 959766 063389 755332 104402 991205 165301 798167 850471 870152 379541 539902 948901 843994 938880 779852 208381 957459 913627 718806 390093 827489 916414 621179 484856 585054 976674 313555 533466 862119 684403 283237 635225 064290 197851 548856 789016 684473 147041 035513 674997 709779 800571 391276 617879 745649 349500 955258 170243 584704 967760 227547 741063 101741 305487 351154 090286 683582 555716 638927 519920 086902 900359 354026 972117 013381 112861 456409 345809 335235 288638 140341 717225 589564 543103 054589 680212 412837 311914 103805 682949 915299 814312 289765 675607 885280 786048 523640 414501 238637 557675 664237 999474 314571 837085 637120 659209 772217 325158 828244 826031 (720 digits)/53 159322 146618 188987 856389 383356 876282 107775 453930 979085 324213 243254 703780 772189 753504 609290 522586 406934 250558 395958 069217 904260 536097 419171 893406 208375 230448 198675 377434 751296 587554 570476 102101 431484 466726 564969 918392 246156 590489 228819 194666 784973 593630 919871 411499 942258 853060 840729 097838 125288 677245 906075 290224 667079 826250 183366 053742 085077 382225 015053 464743 830670 420960 175243 857436 012112 167330 221659 933860 391743 117626 830483 304977 716592 288978 861740 301768 738085 279234 020264 400273 387320 254872 423562 308198 428669 026003 605855 799378 461066 058923 109837 641820 401952 807907 439257 641175 054285 294113 707117 511554 925476 273030 693138 428833 971502 953295 382993 666216 587128 974832 027735 930813 799844 484675 048938 236112 885304 803568 329801 332608 (722 digits), a[1377] = 1
                                                                                      A[1378]/B[1378] = 1 019691 386916 038206 768795 874555 706712 509452 020703 115568 610536 038261 523877 981575 947575 086499 844952 046417 100594 657332 072715 309146 727894 946792 091082 884933 061816 997526 406065 565231 941074 555126 287962 520074 974158 164350 715690 486542 294997 506197 966781 815998 562031 566761 448648 593778 024429 313053 391524 836064 083396 200462 475217 176932 866524 261346 613713 754290 382594 293217 187194 143819 586732 734501 376152 019381 106876 698116 976771 190470 201119 267478 140248 760683 743793 595178 551742 383600 244518 178527 942151 051709 209616 761835 073618 867540 912277 799899 959498 004625 788692 673592 438308 387834 661206 775117 139672 042557 896218 283998 579745 409297 354753 405330 120632 481808 072772 682636 019361 753156 003810 949716 051153 979901 718335 677002 608745 205387 657398 586067 864464 (721 digits)/99 107400 766528 224613 529352 765508 142819 688325 011773 392578 681384 163069 173449 479274 998022 964307 894180 824398 423237 341225 955315 575781 972560 258583 565654 379018 713561 952644 298851 871136 061607 769362 115616 156910 731300 702660 784034 770720 903254 396186 673033 464176 182693 018048 901977 854447 623016 339990 529616 078687 350621 515425 961506 430249 630939 220405 907614 455410 317205 262122 277052 776226 543435 150965 318419 923403 289093 395076 168704 043466 267793 974294 300713 097300 035212 173394 631223 153315 664239 697167 067399 085445 671215 462608 243012 525837 530652 602346 471603 087275 239514 095338 633244 921456 586662 573130 534500 538442 377437 323402 102109 389423 938947 293000 419102 673208 237619 490235 225108 627372 683883 255157 387424 794536 410234 861484 727309 085958 918726 142914 201423 (722 digits), a[1378] = 1
                                                                                      A[1379]/B[1379] = 3 606017 199390 580168 779377 378993 914237 913334 064054 706912 832977 471230 968582 075786 392535 080714 957906 056165 999909 296643 903183 887206 247074 595708 377651 646004 350752 790747 068668 565848 202765 205281 812789 404219 861355 272904 355453 417086 798620 237400 290439 275485 602509 321463 830802 366389 049962 252715 708041 370311 934591 884625 060876 595088 797424 332896 630157 947344 294823 915165 236580 141238 560769 594780 746335 803792 670131 049609 100557 156115 571118 029982 161809 383792 536868 136689 745513 834383 289271 174511 346373 242030 529209 639532 192973 616003 849694 856109 224303 349112 654716 161119 032150 753068 526723 379941 099228 540511 000568 955801 422186 143191 878572 505756 037505 330705 004366 571548 472586 498105 569108 513386 152936 254276 992092 668128 485445 388380 297354 586448 419423 (721 digits)/350 481524 446202 862828 444447 679881 304741 172750 489251 156821 368365 732462 224129 210014 747573 502214 205128 880129 520270 419635 935164 631606 453778 194922 590369 345431 371134 056608 273990 364704 772377 878562 448949 902216 660628 672952 270496 558319 300252 417379 213767 177502 141709 974018 117433 505601 722109 860700 686686 361350 729110 452353 174743 957828 719067 844583 776585 451308 333840 801420 295902 159350 051265 628139 812695 782322 034610 406888 439972 522141 921008 753366 207117 008492 394615 381924 195438 198032 271953 111765 602470 643657 268518 811387 037236 006181 617961 412895 214187 722891 777465 395853 541555 166322 567895 158649 244676 669612 426425 677323 817883 093748 089872 572139 686141 991127 666153 853699 341542 469247 026481 793208 093088 183453 715379 633392 418040 143181 559746 758543 936877 (723 digits), a[1379] = 3
                                                                                      A[1380]/B[1380] = 4 625708 586306 618375 548173 253549 620950 422786 084757 822481 443513 509492 492460 057362 340110 167214 802858 102583 100503 953975 975899 196352 974969 542500 468734 530937 412569 788273 474734 131080 143839 760408 100751 924294 835513 437255 071143 903629 093617 743598 257221 091484 164540 888225 279450 960167 074391 565769 099566 206376 017988 085087 536093 772021 663948 594243 243871 701634 677418 208382 423774 285058 147502 329282 122487 823173 777007 747726 077328 346585 772237 297460 302058 144476 280661 731868 297256 217983 533789 353039 288524 293739 738826 401367 266592 483544 761972 656009 183801 353738 443408 834711 470459 140903 187930 155058 238900 583068 896787 239800 001931 552489 233325 911086 158137 812513 077139 254184 491948 251261 572919 463102 204090 234178 710428 345131 094190 593767 954753 172516 283887 (721 digits)/449 588925 212731 087441 973800 445389 447560 861075 501024 549400 049749 895531 397578 689289 745596 466522 099309 704527 943507 760861 890480 207388 426338 453506 156023 724450 084696 009252 572842 235840 833985 647924 564566 059127 391929 375613 054531 329040 203506 813565 886800 641678 324402 992067 019411 360049 345126 200691 216302 440038 079731 967779 136250 388078 350007 064989 684199 906718 651046 063542 572954 935576 594700 779105 131115 705725 323703 801964 608676 565608 188802 727660 507830 105792 429827 555318 826661 351347 936192 808932 669869 729102 939734 273995 280248 532019 148614 015241 685790 810167 016979 491192 174800 087779 154557 731779 779177 208054 803863 000725 919992 483172 028819 865140 105244 664335 903773 343934 566651 096619 710365 048365 480512 977990 125614 494877 145349 229140 478472 901458 138300 (723 digits), a[1380] = 1
                                                                                      A[1381]/B[1381] = 17 483142 958310 435295 423897 139642 777089 181692 318328 174357 163517 999708 445962 247873 412865 582359 366480 363915 301421 158571 830881 476265 171983 223209 783855 238816 588462 155567 492870 959088 634284 486506 115045 177104 367895 584669 568885 127974 079473 468195 062102 549938 096131 986139 669155 246890 273136 950023 006739 989439 988556 139887 669157 911153 789270 115626 361773 052248 327078 540312 507902 996413 003276 582627 113799 273314 001154 292787 332542 195872 887829 922363 067983 817221 378853 332294 637282 488333 890639 233629 211946 123249 745688 843633 992751 066638 135612 824136 775707 410327 984942 665253 443528 175778 090513 845115 815930 289717 690930 675201 427980 800659 578550 239014 511918 768244 235784 334101 948431 251890 287866 902692 765206 956813 123377 703521 768017 169684 161614 103997 271084 (722 digits)/1699 248300 084396 125154 365849 016049 647423 755976 992324 805021 517615 419056 416865 277883 984362 901780 503057 993713 350793 702221 606605 253771 732793 555441 058440 518781 625222 084365 992517 072227 274334 822336 142648 079598 836416 799791 434090 545439 910772 858076 874169 102537 114918 950219 175667 585749 757488 462774 335593 681464 968306 355690 583495 122063 769089 039552 829185 171464 286978 992048 014766 966079 835367 965455 206042 899498 005721 812782 266002 218966 487416 936347 730607 325869 684098 047880 675422 252076 080531 538563 612079 830966 087721 633372 877981 602239 063803 458620 271560 153392 828403 869430 065955 429660 031568 353988 582208 293776 838014 679501 577860 543264 176332 167560 001875 984135 377473 885503 041495 759106 157576 938304 534627 117424 092223 118023 854087 830602 995165 462918 351777 (724 digits), a[1381] = 3
                                                                                      A[1382]/B[1382] = 896 265999 460138 818442 166927 375331 252498 689094 319494 714696 782931 494623 236534 698906 396254 867542 493356 662263 472983 041139 350854 485876 746113 926199 445351 710583 424139 722215 611153 044600 492348 572219 968055 956617 598188 255403 084285 430307 146764 621546 424451 138327 067272 181348 406368 551571 004376 016942 443305 667815 434351 219358 663147 240864 916724 491187 694297 366299 358423 764320 326827 102121 314608 043264 926250 762187 835876 679880 036980 336103 051563 337976 769232 822766 602181 678894 798663 123011 956390 268129 097776 579476 768957 426700 896896 882089 678226 686984 744879 280465 675484 762637 090396 105585 804136 255964 851345 358671 134251 675072 828952 386127 739388 100826 265994 992969 102140 293383 861942 097666 254131 500433 229645 031648 002691 224741 263066 247660 197072 476377 109171 (723 digits)/87111 252229 516933 470314 632100 263921 466172 415902 109589 605497 448136 267408 657707 861372 948104 457327 755267 383908 833986 574163 827348 149746 798809 781000 136490 182312 971022 311918 191212 919431 825061 587067 839618 118668 049186 164976 193149 146475 652922 575486 469424 871071 185269 453244 978458 233286 977037 802182 331580 194751 463356 107998 894501 613330 573548 082183 972643 651397 286974 657991 326070 205648 198467 017320 639303 580123 615516 253860 174789 732899 047066 481394 768803 725146 318827 997233 273196 207228 043301 275676 885941 108373 413537 576012 057310 246211 402590 404875 535358 633201 265576 832125 538527 000440 764543 785197 471800 190673 542611 655306 390880 189645 021760 410700 200919 855240 154941 504589 682934 811033 746788 901896 746495 966618 828993 514093 703828 589893 231911 510294 078927 (725 digits), a[1382] = 51
                                                                                      A[1383]/B[1383] = 913 749142 418449 253737 590824 514974 029587 870786 637822 889053 946449 494331 682496 946779 809120 449901 859837 026178 774404 199711 181735 962141 918097 149409 229206 949400 012601 877783 104024 003689 126633 058726 083101 133721 966083 840072 653170 558281 226238 089741 486553 688265 163404 167488 075523 798461 277512 966965 450045 657255 422907 359246 332305 152018 705994 606814 056070 418547 685502 304632 834730 098534 317884 625892 040050 035501 837030 972667 369522 531975 939393 260339 837216 639987 981035 011189 435945 611345 847029 501758 309722 702726 514646 270334 889647 948727 813839 511121 520586 690793 660427 427890 533924 281363 894650 101080 667275 648388 825182 350274 256933 186787 317938 339840 777913 761213 337924 627485 810373 349556 541998 403125 994851 988461 126068 928263 031083 417344 358686 580374 380255 (723 digits)/88810 500529 601329 595468 997949 279971 113596 171879 101914 410518 965751 686465 074573 139256 932467 359108 258325 377622 184780 276385 433953 403518 531603 336441 194930 701094 596244 396284 183729 991659 099396 409403 982266 198266 885602 964767 627239 691915 563695 433563 343593 973608 300188 403464 154125 819036 734526 264956 667173 876216 431662 463689 477996 735394 342637 121736 801828 822861 573953 650039 340837 171728 033834 982775 845346 479621 621238 066642 440791 951865 534483 417742 499411 051016 002926 045113 948618 459304 123832 814240 498020 939339 501259 209384 935291 848450 466393 863495 806918 786594 093980 701555 604482 430100 796112 139186 054008 484450 380626 334807 968740 732909 198092 578260 202795 839375 532415 390092 724430 570139 904365 840201 281123 084042 921216 632117 557916 420496 227076 973212 430704 (725 digits), a[1383] = 1
                                                                                      A[1384]/B[1384] = 2723 764284 297037 325917 348576 405279 311674 430667 595140 492804 675830 483286 601528 592466 014495 767346 213030 714621 021791 440561 714326 410160 582308 225017 903765 609383 449343 477781 819201 051978 745614 689672 134258 224061 530355 935548 390626 546869 599240 801029 397558 514857 394080 516324 557416 148493 559401 950873 343396 982326 280165 937851 327757 544902 328713 704815 806438 203394 729428 373585 996287 299189 950377 295049 006350 833191 509938 625214 776025 400054 930349 858656 443666 102742 564251 701273 670554 345703 650449 271645 717221 984929 798249 967370 676192 779545 305905 709227 786052 662052 996339 618418 158244 668313 593436 458126 185896 655448 784616 375621 342818 759702 375264 780507 821822 515395 777989 548355 482688 796779 338128 306685 219349 008570 254829 081267 325233 082348 914445 637125 869681 (724 digits)/264732 253288 719592 661252 627998 823863 693364 759660 313418 426535 379639 640338 806854 139886 813039 175544 271918 139153 203547 126934 695254 956783 862016 453882 526351 584502 163511 104486 558672 902750 023854 405875 804150 515201 820392 094511 447628 530306 780313 442613 156612 818287 785646 260173 286709 871360 446090 332095 665927 947184 326681 035377 850495 084119 258822 325657 576301 297120 434881 958070 007744 549104 266136 982872 329996 539366 857992 387145 056373 636630 116033 316879 767625 827178 324680 087461 170433 125836 290966 904157 881982 987052 416055 994781 927893 943112 335378 131867 149196 206389 453538 235236 747491 860642 356768 063569 579817 159574 303864 324922 328361 655463 417945 567220 606511 533991 219772 284775 131795 951313 555520 582299 308742 134704 671426 778328 819661 430885 686065 456718 940335 (726 digits), a[1384] = 2
                                                                                      A[1385]/B[1385] = 3637 513426 715486 579654 939400 920253 341262 301454 232963 381858 622279 977618 284025 539245 823616 217248 072867 740799 796195 640272 896062 372302 500405 374427 132972 558783 461945 355564 923225 055667 872247 748398 217359 357783 496439 775621 043797 105150 825478 890770 884112 203122 557484 683812 632939 946954 836914 917838 793442 639581 703073 297097 660062 696921 034708 311629 862508 621942 414930 678218 831017 397724 268261 920941 046400 868693 346969 597882 145547 932030 869743 118996 280882 742730 545286 712463 106499 957049 497478 773404 026944 687656 312896 237705 565840 728273 119745 220349 306639 352846 656767 046308 692168 949677 488086 559206 853172 303837 609798 725895 599751 946489 693203 120348 599736 276609 115914 175841 293062 146335 880126 709811 214200 997031 380898 009530 356316 499693 273132 217500 249936 (724 digits)/353542 753818 320922 256721 625948 103834 806960 931539 415332 837054 345391 326803 881427 279143 745506 534652 530243 516775 388327 403320 129208 360302 393619 790323 721282 285596 759755 500770 742402 894409 123250 815279 786416 713468 705995 059279 074868 222222 344008 876176 500206 791896 085834 663637 440835 690397 180616 597052 333101 823400 758343 499067 328491 819513 601459 447394 378130 119982 008835 608109 348581 720832 299971 965648 175343 018988 479230 453787 497165 588495 650516 734622 267036 878194 327606 132575 119051 585140 414799 718398 380003 926391 917315 204166 863185 791562 801771 995362 956114 992983 547518 936792 351974 290743 152880 202755 633825 644024 684490 659730 297102 388372 616038 145480 809307 373366 752187 674867 856226 521453 459886 422500 589865 218747 592643 410446 377577 851381 913142 429931 371039 (726 digits), a[1385] = 1
                                                                                      A[1386]/B[1386] = 395575 214369 569587 928650 803875 792640 168002 987724 755185 733535 882068 066061 276286 831014 965047 230138 082746 720999 010920 590034 489062 618830 626088 663148 264801 957997 339441 878793 527507 064108 948371 516679 609068 864679 145851 702621 120713 903158 750961 004284 881676 452093 602426 368088 914930 419615 946213 077463 035202 057150 212082 024398 614528 812374 077211 360840 957369 373175 541941 621219 746166 253410 922664 756682 017644 652072 982655 196486 495202 059388 862606 710254 779002 317641 455216 647289 172549 707049 378156 799280 627248 251811 591043 639571 786991 433042 238389 506952 903102 769491 927180 619756 912491 233482 306784 852466 328505 469910 642878 772346 116028 980589 241201 778156 593340 389180 296720 539215 133400 601054 391812 966296 353056 687959 391814 110545 807415 049222 412725 127152 862769 (726 digits)/38 447349 665667 379196 387188 230394 038022 845145 365917 169364 828404 681902 935158 001000 287411 327744 918017 538217 950895 142906 685508 649757 869442 372953 808844 424838 428952 217105 187726 738185 498935 334942 456092 737155 569822 067858 496651 533396 530319 933272 069675 178946 343065 055789 933016 896964 434255 952682 813747 640924 874466 227778 934649 327611 591588 216442 644250 414354 255177 389127 633879 654570 398992 663109 272875 267042 590122 614881 396194 750257 194160 371840 656084 607608 672165 706142 405574 028004 321001 089336 491182 922407 037379 486098 044803 151959 431894 926753 631066 409615 448612 585583 408810 760715 260902 867829 961178 032986 714240 228855 575794 415419 599705 950065 279148 011707 857600 456041 170503 604260 268287 223254 212363 014185 759444 676915 106537 598069 380132 305447 889307 012547 (728 digits), a[1386] = 108
                                                                                      A[1387]/B[1387] = 399212 727796 285074 508305 743276 712893 509265 289178 988149 115394 504348 043679 560312 370260 788663 447386 155614 461798 807116 230307 385124 991133 126494 037575 397774 516780 801387 234358 450732 119776 820619 265077 826428 222462 642291 478242 164511 008309 576439 895055 765788 655216 159911 051901 547870 366570 783127 995301 828644 696731 915155 321496 274591 509295 111919 672470 819877 995117 956872 299438 577183 651135 190926 677623 064045 520766 329624 794368 640749 991419 732349 829251 059885 060372 000503 359752 279049 664098 875635 572684 654192 939467 903939 877277 352832 161315 358134 727302 209742 122338 583947 666065 604660 183159 794871 411673 181677 773748 252677 498241 715780 927078 934404 898505 193076 665789 412634 715056 426462 747390 271939 676107 567257 684990 772712 120076 163731 548915 685857 344653 112705 (726 digits)/38 800892 419485 700118 643909 856342 141857 652106 297456 584697 665459 027294 261961 882427 566555 073251 452670 068461 467670 531234 088828 778966 229744 766573 599168 146120 714548 976860 688497 480588 393344 458193 271372 523572 283290 773853 555930 608264 752542 277280 945851 679153 134961 141624 596654 337800 124653 133299 410799 974026 697866 986122 433716 656103 411101 817902 091644 792484 375159 397963 241989 003152 119824 963081 238523 442385 609111 094111 849982 247422 782656 022357 390706 874645 550360 033748 538149 147055 906141 504136 209581 302410 963771 403413 248970 015145 223457 728525 626429 365730 441596 133102 345603 112689 551646 020710 163933 666812 358264 913346 235524 712521 988078 566103 424628 821015 230967 208228 845371 460486 789740 683140 634863 604050 978192 269558 516983 975647 231514 218590 319238 383586 (728 digits), a[1387] = 1
                                                                                      A[1388]/B[1388] = 1 992426 125554 709885 961873 776982 644214 205064 144440 707782 195113 899460 240779 517536 312058 119701 019682 705204 568194 239385 511264 029562 583363 132064 813449 855900 025120 544990 816227 330435 543216 230848 576990 914781 754529 715017 615589 778757 936397 056720 584507 944831 072958 242070 575695 106411 885899 078725 058670 349780 844077 872703 310383 712894 849554 524890 050724 236881 353647 369430 818974 054900 857951 686371 467174 273826 735138 301154 373961 058202 025067 792006 027259 018542 559129 457230 086298 288748 363444 880699 090019 244020 009683 206803 148681 198320 078303 670928 416161 742071 258846 262971 284019 331131 966121 486270 499159 055216 564903 653588 765312 979152 688904 978821 372177 365647 052337 947259 399440 839251 590615 479571 670726 622087 427922 482662 590850 462341 244885 156154 505765 313589 (727 digits)/193 650919 343610 179670 962827 655762 605453 453570 555743 508155 490240 791079 983005 530710 553631 620750 728697 812063 821577 267843 040823 765622 788421 439248 205517 009321 287148 124547 941716 660539 072313 167715 541582 831444 702985 163272 720373 966455 540489 042395 853081 895558 882909 622288 319634 248164 932868 485880 456947 537031 665934 172268 669515 952025 235995 488051 010829 584291 755814 980980 601835 667178 878292 515434 226969 036585 026566 991328 796123 739948 324784 461270 218912 106190 873605 841136 558170 616227 945567 105881 329508 132050 892465 099751 040683 212540 325725 840856 136783 872537 214997 117992 791223 211473 467486 950670 616912 700236 147299 882240 517893 265507 552020 214478 977663 295768 781469 288956 551989 446207 427249 955816 751817 430389 672213 755149 174473 500658 306189 179809 166260 546891 (729 digits), a[1388] = 4
                                                                                      A[1389]/B[1389] = 4 384064 978905 704846 432053 297242 001321 919393 578060 403713 505622 303268 525238 595384 994377 028065 486751 566023 598187 285887 252835 444250 157859 390623 664475 109574 567021 891368 866813 111603 206209 282316 419059 655991 731522 072326 709421 722026 881103 689881 064071 655450 801132 644052 203291 760694 138368 940578 112642 528206 384887 660561 942263 700381 208404 161699 773919 293640 702412 695733 937386 686985 367038 563669 611971 611698 991042 931933 542290 757154 041555 316361 883769 096970 178630 914963 532348 856546 390988 637033 752723 142232 958834 317546 174639 749472 317922 699991 559625 693884 640031 109890 234104 266924 115402 767412 409991 292110 903555 559855 028867 674086 304888 892047 642859 924370 770465 307153 513938 104965 928621 231083 017560 811432 540835 738037 301777 088414 038685 998166 356183 739883 (727 digits)/426 102731 106706 059460 569565 167867 352764 559247 408943 601008 645940 609454 227972 943848 673818 314752 910065 692589 110825 066920 170476 310211 806587 645070 010202 164763 288845 225956 571930 801666 537970 793624 354538 186461 689261 100398 996678 541175 833520 362072 652015 470270 900780 386201 235922 834129 990390 105060 324695 048090 029735 330659 772748 560153 883092 794004 113303 961067 886789 359924 445660 337509 876409 993949 692461 515555 662245 076769 442229 727319 432224 944897 828531 087027 297571 716021 654490 379511 797275 715898 868597 566512 748701 602915 330336 440225 874909 410237 899997 110804 871590 369087 928049 535636 486619 922051 397759 067284 652864 677827 271311 243537 092118 995061 379955 412552 793905 786141 949350 352901 644240 594774 138498 464830 322619 779856 865930 976963 843892 578208 651759 477368 (729 digits), a[1389] = 2
                                                                                      A[1390]/B[1390] = 6 376491 104460 414732 393927 074224 645536 124457 722501 111495 700736 202728 766018 112921 306435 147766 506434 271228 166381 525272 764099 473812 741222 522688 477924 965474 592142 436359 683040 442038 749425 513164 996050 570773 486051 787344 325011 500784 817500 746601 648579 600281 874090 886122 778986 867106 024268 019303 171312 877987 228965 533265 252647 413276 057958 686589 824643 530522 056060 065164 756360 741886 224990 250041 079145 885525 726181 233087 916251 815356 066623 108367 911028 115512 737760 372193 618647 145294 754433 517732 842742 386252 968517 524349 323320 947792 396226 370919 975787 435955 898877 372861 518123 598056 081524 253682 909150 347327 468459 213443 794180 653238 993793 870869 015037 290017 822803 254412 913378 944217 519236 710654 688287 433519 968758 220699 892627 550755 283571 154320 861949 053472 (727 digits)/619 753650 450316 239131 532392 823629 958218 012817 964687 109164 136181 400534 210978 474559 227449 935503 638763 504652 932402 334763 211300 075834 595009 084318 215719 174084 575993 350504 513647 462205 610283 961339 896121 017906 392246 263671 717052 507631 374009 404468 505097 365829 783690 008489 555557 082294 923258 590940 781642 585121 695669 502928 442264 512179 119088 282055 124133 545359 642604 340905 047496 004688 754702 509383 919430 552140 688812 068098 238353 467267 757009 406168 047443 193218 171177 557158 212660 995739 742842 821780 198105 698563 641166 702666 371019 652766 200635 251094 036780 983342 086587 487080 719272 747109 954106 872722 014671 767520 800164 560067 789204 509044 644139 209540 357618 708321 575375 075098 501339 799109 071490 550590 890315 895219 994833 535006 040404 477622 150081 758017 818020 024259 (729 digits), a[1390] = 1
                                                                                      A[1391]/B[1391] = 189 302307 008257 732085 855938 449756 721869 528667 530592 637088 826972 182402 739763 870102 880996 313294 173345 431640 423251 518797 411720 184819 653312 548589 524299 108337 739152 545799 674985 930726 939549 164101 304526 208422 827023 905312 134755 244786 588625 341328 872880 063625 149768 341612 793910 906768 842141 500370 080715 989836 024888 125254 269038 685386 889206 072804 688581 678780 328154 585511 871848 201685 891755 814860 907202 291945 050298 691483 113593 402479 973625 459031 303584 446839 573681 708578 473116 070094 269560 651286 192252 343569 045842 523676 550947 235451 808487 456670 857461 336605 707474 922874 259688 610550 479606 124216 775351 364607 488872 749725 060106 618017 124911 147249 078941 334887 631759 685128 001927 487273 986485 840068 977896 383511 634824 138334 187976 060317 262249 473471 352706 290571 (729 digits)/18398 958594 165876 994275 008957 053136 141086 930968 384869 766768 595201 224946 346348 706066 269866 444358 434207 327524 150492 775053 298178 509415 061851 090298 266058 213215 992652 390587 467707 205629 236205 672481 342047 705747 064402 746878 791201 262485 679793 091659 299839 079334 627790 632398 347078 220682 764889 242342 992330 016619 204150 915584 598419 413348 336652 973602 713176 776497 522315 246170 823044 473483 762782 766083 355947 527635 637795 051618 354480 278084 385497 723771 204383 690354 261720 873609 821659 255964 339717 547524 613662 824858 342535 980240 089906 370445 693331 691964 966645 627725 382627 494428 786959 201825 155719 230989 823240 325387 857636 919793 158242 005831 772156 071731 750897 953878 479782 963998 488204 527064 717466 561909 957659 426210 172792 295032 037660 828006 196263 560725 374340 180879 (731 digits), a[1391] = 29
                                                                                      A[1392]/B[1392] = 195 678798 112718 146818 249865 523981 367405 653125 253093 748584 527708 385131 505781 983024 187431 461060 679779 702868 589633 044070 175819 658632 394535 071278 002224 073812 331294 982159 358026 372765 688974 677266 300576 779196 313075 692656 459766 745571 406126 087930 521459 663907 023859 227735 572897 773874 866409 519673 252028 867823 253853 658519 521686 098662 947164 759394 513225 209302 384214 650676 628208 943572 116746 064901 986348 177470 776479 924571 029845 217836 040248 567399 214612 562352 311442 080772 091763 215389 023994 169019 034994 729822 014360 048025 874268 183244 204713 827590 833248 772561 606352 295735 777812 208606 561130 377899 684501 711934 957331 963168 854287 271256 118705 018118 093978 624905 454562 939540 915306 431491 505722 550723 666183 817031 603582 359034 080603 611072 545820 627792 214655 344043 (729 digits)/19018 712244 616193 233406 541349 876766 099304 943786 349556 875932 731382 625480 557327 180625 497316 379862 072970 832177 082895 109816 509478 585249 656860 174616 481777 387300 568645 741091 981354 667834 846489 633821 238168 723653 456649 010550 508253 770117 053802 496127 804936 445164 411480 640887 902635 302977 688147 833283 773972 601740 899820 418513 040683 925527 455741 255657 837310 321857 164919 587075 870540 478172 517485 275467 275378 079776 326607 119716 592833 745352 142507 129939 251826 883572 432898 430768 034320 251704 082560 369304 811768 523421 983702 682906 460926 023211 893966 943059 003426 611067 469214 981509 506231 948935 109826 103711 837912 092908 657801 479860 947446 514876 416295 281272 108516 662200 055158 039096 989544 326173 788957 112500 847975 321430 167625 830038 078065 305628 346345 318743 192360 205138 (731 digits), a[1392] = 1
                                                                                      A[1393]/B[1393] = 776 338701 346412 172540 605535 021700 824086 488043 289873 882842 410097 337797 257109 819175 443290 696476 212684 540246 192150 651007 939179 160716 836917 762423 530971 329774 733037 492277 749065 049024 006473 195900 206256 546011 766250 983281 514055 481500 807003 605120 437259 055346 221346 024819 512604 228393 441370 059389 836802 593305 786449 100812 834096 981375 730700 350988 228257 306687 480798 537541 756475 032402 241994 009566 866246 824357 379738 465196 203129 055988 094371 161228 947422 133896 508007 950894 748405 716261 341543 158343 297236 533035 088922 667754 173751 785184 422628 939443 357207 654290 526531 810081 593125 236370 162997 257915 828856 500412 360868 639231 622968 431785 481026 201603 360877 209603 995448 503750 747846 781748 503653 492239 976447 834606 445571 215436 429786 893534 899711 356847 996672 322700 (729 digits)/75455 095328 014456 694494 633006 683434 439001 762327 433540 394566 789349 101388 018330 247942 761815 583944 653119 824055 399178 104502 826614 265164 032431 614147 711390 375117 698589 613863 411771 209133 775674 573945 056553 876707 434349 778530 315962 572836 841200 580042 714648 414827 862232 555062 054984 129615 829332 742194 314247 821841 903612 171123 720471 189930 703876 740576 225107 742069 017074 007398 434665 908001 315238 592485 182081 766964 617616 410768 132981 514140 813019 113588 959864 341071 560416 165913 924620 011076 587398 655439 048968 395124 293644 028959 472684 440081 375232 521141 976925 460927 790272 438957 305655 048630 485197 542125 336976 604113 831041 359376 000581 550461 021041 915548 076447 940478 645257 081289 456837 505586 084337 899412 501585 390500 675669 785146 271856 744891 235299 516954 951420 796293 (731 digits), a[1393] = 3
                                                                                      A[1394]/B[1394] = 972 017499 459130 319358 855400 545682 191492 141168 542967 631426 937805 722928 762891 802199 630722 157536 892464 243114 781783 695078 114998 819349 231452 833701 533195 403587 064332 474437 107091 421789 695447 873166 506833 325208 079326 675937 973822 227072 213129 693050 958718 719253 245205 252555 085502 002268 307779 579063 088831 461129 040302 759332 355783 080038 677865 110382 741482 515989 865013 188218 384683 975974 358740 074468 852595 001828 156218 389767 232974 273824 134619 728628 162034 696248 819450 031666 840168 931650 365537 327362 332231 262857 103282 715780 048019 968428 627342 767034 190456 426852 132884 105817 370937 444976 724127 635815 513358 212347 318200 602400 477255 703041 599731 219721 454855 834509 450011 443291 663153 213240 009376 042963 642631 651638 049153 574470 510390 504607 445531 984640 211327 666743 (729 digits)/94473 807572 630649 927901 174356 560200 538306 706113 783097 270499 520731 726868 575657 428568 259131 963806 726090 656232 482073 214319 336092 850413 689291 788764 193167 762418 267235 354955 393125 876968 622164 207766 294722 600360 890998 789080 824216 342953 895003 076170 519584 859992 273713 195949 957619 432593 517480 575478 088220 423582 803432 589636 761155 115458 159617 996234 062418 063926 181993 594474 305206 386173 832723 867952 457459 846740 944223 530484 725815 259492 955526 243528 211691 224643 993314 596681 958940 262780 669959 024743 860736 918546 277346 711865 933610 463293 269199 464200 980352 071995 259487 420466 811886 997565 595023 645837 174888 697022 488842 839236 948028 065337 437337 196820 184964 602678 700415 120386 446381 831759 873295 011913 349560 711930 843295 615184 349922 050519 581644 835698 143781 001431 (731 digits), a[1394] = 1
                                                                                      A[1395]/B[1395] = 1748 356200 805542 491899 460935 567383 015578 629211 832841 514269 347903 060726 020001 621375 074012 854013 105148 783360 973934 346086 054177 980066 068370 596125 064166 733361 797369 966714 856156 470813 701921 069066 713089 871219 845577 659219 487877 708573 020133 298171 395977 774599 466551 277374 598106 230661 749149 638452 925634 054434 826751 860145 189880 061414 408565 461370 969739 822677 345811 725760 141159 008376 600734 084035 718841 826185 535956 854963 436103 329812 228990 889857 109456 830145 327457 982561 588574 647911 707080 485705 629467 795892 192205 383534 221771 753613 049971 706477 547664 081142 659415 915898 964062 681346 887124 893731 342214 712759 679069 241632 100224 134827 080757 421324 815733 044113 445459 947042 410999 994988 513029 535203 619079 486244 494724 789906 940177 398142 345243 341488 207999 989443 (730 digits)/169928 902900 645106 622395 807363 243634 977308 468441 216637 665066 310080 828256 593987 676511 020947 547751 379210 480287 881251 318822 162707 115577 721723 402911 904558 137535 965824 968818 804897 086102 397838 781711 351276 477068 325348 567611 140178 915790 736203 656213 234233 274820 135945 751012 012603 562209 346813 317672 402468 245424 707044 760760 481626 305388 863494 736810 287525 805995 199067 601872 739872 294175 147962 460437 639541 613705 561839 941252 858796 773633 768545 357117 171555 565715 553730 762595 883560 273857 257357 680182 909705 313670 570990 740825 406294 903374 644431 985342 957277 532923 049759 859424 117542 046196 080221 187962 511865 301136 319884 198612 948609 615798 458379 112368 261412 543157 345672 201675 903219 337345 957632 911325 851146 102431 518965 400330 621778 795410 816944 352653 095201 797724 (732 digits), a[1395] = 1
                                                                                      A[1396]/B[1396] = 4468 729901 070215 303157 777271 680448 222649 399592 208650 659965 633611 844380 802895 044949 778747 865563 102761 809836 729652 387250 223354 779481 368194 025951 661528 870310 659072 407866 819404 363417 099290 011299 933013 067647 770481 994376 949577 644218 253396 289393 750674 268452 178307 807304 281714 463591 806078 855968 940099 569998 693806 479622 735543 202867 494996 033124 680962 161344 556636 639738 667001 992727 560208 242540 290278 654199 228132 099694 105180 933448 592601 508342 380948 356539 474365 996790 017318 227473 779698 298773 591166 854641 487693 482848 491563 475654 727286 179989 285784 589137 451715 937615 299062 807670 498377 423278 197787 637866 676339 085664 677703 972695 761246 062371 086321 922736 340931 337376 485153 203217 035435 113370 880790 624127 038603 154284 390745 300892 136018 667616 627327 645629 (730 digits)/434331 613373 920863 172692 789083 047470 492923 642996 216372 600632 140893 383381 763632 781590 301027 059309 484511 616808 244575 851963 661507 081569 132738 594588 002284 037490 198885 292593 002920 049173 417841 771188 997275 554497 541695 924303 104574 174535 367410 388596 988051 409632 545604 697973 982826 557012 211107 210822 893156 914432 217522 111157 724407 726235 886607 469854 637469 675916 580128 798219 784950 974524 128648 788827 736543 074152 067903 412990 443408 806760 492616 957762 554802 356075 100776 121873 726060 810495 184674 385109 680147 545887 419328 193516 746200 270042 558063 434886 894907 137841 359007 139315 046971 089957 755466 021762 198619 299295 128611 236462 845247 296934 354095 421556 707789 688993 391759 523738 252820 506451 788560 834565 051852 916793 881226 415845 593479 641341 215533 541004 334184 596879 (732 digits), a[1396] = 2
                                                                                      A[1397]/B[1397] = 19623 275805 086403 704530 570022 289175 906176 227580 667444 154131 882350 438249 231581 801174 189004 316265 516196 022707 892543 895086 947597 097991 541146 699931 710282 214604 433659 598182 133773 924482 099081 114266 445142 141810 927505 636727 286188 285446 033718 455746 398674 848408 179782 506591 724964 085028 973465 062328 686032 334429 601977 778636 132052 872884 388549 593869 693588 468055 572358 284714 809166 979286 841567 054196 879956 442982 448485 253739 856827 063606 599396 923226 633250 256303 224921 969721 657847 557806 825873 680799 994135 214458 142979 314928 188025 656231 959116 426434 690802 437692 466279 666360 160313 912028 880634 586844 133365 264226 384425 584290 811040 025610 125741 670809 161020 735058 809185 296548 351612 807856 654769 988687 142241 982752 649137 407044 503158 601710 889318 011954 717310 571959 (731 digits)/1 907255 356396 328559 313166 963695 433516 949003 040426 082128 067594 873654 361783 648518 802872 225055 784989 317256 947520 859554 726676 808735 441854 252677 781263 913694 287496 761366 139190 816577 282796 069205 866467 340378 695058 492132 264823 558475 613932 205845 210601 186438 913350 318364 542907 943909 790258 191242 160963 975095 903153 577133 205391 379257 210332 409924 616228 837404 509661 519582 794751 879676 192271 662557 615748 585713 910313 833453 593214 632432 000675 739013 188167 390764 990015 956835 250090 787803 515837 996055 220621 630295 497220 248303 514892 391095 983544 876685 724890 536906 084288 485788 416684 305426 406027 102085 275011 306342 498316 834329 144464 329598 803535 874760 798595 092571 299130 912710 296628 914501 363153 111876 249586 058557 769607 043871 063712 995697 360775 679078 516670 431940 185240 (733 digits), a[1397] = 4
                                                                                      A[1398]/B[1398] = 43715 281511 243022 712218 917316 258800 035001 854753 543538 968229 398312 720879 266058 647298 156756 498094 135153 855252 514740 177424 118548 975464 450487 425815 082093 299519 526391 604231 086952 212381 297452 239832 823297 351269 625493 267831 521954 215110 320833 200886 548023 965268 537872 820487 731642 633649 753008 980626 312164 238857 897762 036894 999648 948636 272095 220864 068139 097455 701353 209168 285335 951301 243342 350934 050191 540164 125102 607173 818835 060661 791395 354795 647448 869145 924209 936233 333013 343087 431445 660373 579437 283557 773652 112704 867614 788118 645519 032858 667389 464522 384275 270335 619690 631728 259646 596966 464518 166319 445190 254246 299784 023916 012729 403989 408363 392853 959301 930473 188378 818930 344975 090745 165274 589632 336877 968373 397062 504313 914654 691526 061948 789547 (731 digits)/4 248842 326166 577981 799026 716473 914504 390929 723848 380628 735821 888202 106949 060670 387334 751138 629288 119025 511849 963685 305317 278977 965277 638094 157115 829672 612483 721617 570974 636074 614765 556253 504123 678032 944614 525960 453950 221525 402399 779100 809799 360929 236333 182333 783789 870646 137528 593591 532750 843348 720739 371788 521940 482922 146900 706456 702312 312278 695239 619294 387723 544303 359067 453764 020324 907970 894779 734810 599419 708272 808111 970643 334097 336332 336107 014446 622055 301667 842171 176784 826352 940738 540327 915935 223301 528392 237132 311434 884667 968719 306418 330583 972683 657823 902011 959636 571784 811304 295928 797269 525391 504444 904006 103617 018746 892932 287255 217180 116996 081823 232758 012313 333737 168968 456007 968968 543271 584874 362892 573690 574345 198064 967359 (733 digits), a[1398] = 2
                                                                                      A[1399]/B[1399] = 63338 557316 329426 416749 487338 547975 941178 082334 210983 122361 280663 159128 497640 448472 345760 814359 651349 877960 407284 072511 066146 073455 991634 125746 792375 514123 960051 202413 220726 136863 396533 354099 268439 493080 552998 904558 808142 500556 354551 656632 946698 813676 717655 327079 456606 718678 726474 042954 998196 573287 499739 815531 131701 821520 660644 814733 761727 565511 273711 493883 094502 930588 084909 405130 930147 983146 573587 860913 675662 124268 390792 278022 280699 125449 149131 905954 990860 900894 257319 341173 573572 498015 916631 427633 055640 444350 604635 459293 358191 902214 850554 936695 780004 543757 140281 183810 597883 430545 829615 838537 110824 049526 138471 074798 569384 127912 768487 227021 539991 626786 999745 079432 307516 572384 986015 375417 900221 106024 803972 703480 779259 361506 (731 digits)/6 156097 682562 906541 112193 680169 348021 339932 764274 462756 803416 761856 468732 709189 190206 976194 414277 436282 459370 823240 031994 087713 407131 890771 938379 743366 899980 482983 710165 452651 897561 625459 370591 018411 639673 018092 718773 780001 016331 984946 020400 547368 149683 500698 326697 814555 927786 784833 693714 818444 623892 948921 727331 862179 357233 116381 318541 149683 204901 138877 182475 423979 551339 116321 636073 493684 805093 568264 192634 340704 808787 709656 522264 727097 326122 971281 872146 089471 358009 172840 046974 571034 037548 164238 738193 919488 220677 188120 609558 505625 390706 816372 389367 963250 308039 061721 846796 117646 794245 631598 669855 834043 707541 978377 817341 985503 586386 129890 413624 996324 595911 124189 583323 227526 225615 012839 606984 580571 723668 252769 091015 630005 152599 (733 digits), a[1399] = 1
                                                                                      A[1400]/B[1400] = 360408 068092 890154 795966 354008 998679 740892 266424 598454 580035 801628 516521 754260 889659 885560 569892 391903 245054 551160 539979 449279 342744 408658 054549 043970 870139 326647 616297 190582 896698 280119 010329 165494 816672 390487 790625 562666 717892 093591 484051 281518 033652 126149 455885 014676 227043 385379 195401 303147 105295 396461 114550 658158 056239 575319 294532 876776 925012 069910 678583 757850 604241 667889 376588 700931 455896 993041 911742 197145 682003 745356 744907 050944 496391 669869 466008 287317 847558 718042 366241 447299 773637 356809 250870 145817 009871 668696 329325 458348 975596 637049 953814 519713 350513 961052 516019 453935 319048 593269 446931 853904 271546 705084 777982 255284 032417 801738 065580 888336 952865 343700 487906 702857 451557 266954 845462 898168 034437 934518 208929 958245 597077 (732 digits)/35 029330 738981 110687 359995 117320 654611 090593 545220 694412 752905 697484 450612 606616 338369 632110 700675 300437 808704 079885 465287 717545 000937 091953 849014 546507 112386 136536 121801 899334 102573 683550 357078 770091 142979 616424 047819 121530 484059 703830 911802 097769 984750 685825 417278 943425 776462 517760 001324 935571 840204 116397 158599 793818 933066 288363 295018 060694 719745 313680 300100 664201 115763 035372 200692 376394 920247 576131 562591 411796 852050 518925 945420 971818 966721 870855 982785 749024 632217 040985 061225 795908 728068 737128 914271 125833 340518 252037 932460 496846 259952 412445 919523 474075 442207 268245 805765 399538 267156 955262 874670 674663 441715 995506 105456 820450 219185 866632 185121 063446 212313 633261 250353 306599 584083 033166 578194 487732 981233 837536 029423 348090 730354 (734 digits), a[1400] = 5
                                                                                      A[1401]/B[1401] = 2 946603 102059 450664 784480 319410 537413 868316 213730 998619 762647 693691 291302 531727 565751 430245 373498 786575 838396 816568 392346 660380 815411 260898 562139 144142 475238 573232 132790 745389 310449 637485 436732 592398 026459 676901 229563 309476 243693 103283 529043 198843 082893 726850 974159 574016 535025 809507 606165 423373 415650 671428 731936 396966 271437 263199 170996 775942 965607 832996 922553 157307 764521 428024 417840 537599 630322 517923 154851 252827 580298 353646 237278 688255 096582 508087 634021 289403 681364 001658 271105 151970 687114 771105 434594 222176 523323 954206 093897 024983 706987 946954 567211 937711 347868 828701 311966 229365 982934 575771 413991 942058 221899 779149 298656 611656 387255 182391 751668 646687 249709 749348 982685 930376 184843 121654 139121 085565 381528 280118 374920 445224 138122 (733 digits)/286 390743 594411 792039 992154 618734 584910 064681 126040 018058 826662 341732 073633 562119 897164 033080 019679 839784 929003 462323 754295 828073 414628 626402 730496 115423 799069 575272 684580 647324 718151 093862 227221 179140 783509 949485 101326 752244 888809 615593 314817 329528 027688 987301 664929 361962 139486 926913 704314 303019 345525 880098 996130 212730 821763 423287 678685 635240 962863 648319 583280 737588 477443 399299 241612 504844 167074 177316 693365 635079 625191 861064 085632 501649 059897 938129 734432 081668 415745 500720 536780 938303 862098 061270 052362 926154 944823 204424 069242 480395 470326 115939 745555 755853 845697 207688 292919 313952 931501 273701 667221 231351 241269 942426 660996 549105 339873 062947 894593 503894 294420 190279 586149 680322 898279 278172 232540 482435 573538 953057 326402 414730 995431 (735 digits), a[1401] = 8
                                                                                      A[1402]/B[1402] = 3 307011 170152 340819 580446 673419 536093 609208 480155 597074 342683 495319 807824 285988 455411 315805 943391 178479 083451 367728 932326 109660 158155 669556 616688 188113 345377 899879 749087 935972 207147 917604 447061 757892 843132 067389 020188 872142 961585 196875 013094 480361 116545 853000 430044 588692 762069 194886 801566 726520 520946 067889 846487 055124 327676 838518 465529 652719 890619 902907 601136 915158 368763 095913 794429 238531 086219 510965 066593 449973 262302 099002 982185 739199 592974 177957 100029 576721 528922 719700 637346 599270 460752 127914 685464 367993 533195 622902 423222 483332 682584 584004 521026 457424 698382 789753 827985 683301 301983 169040 860923 795962 493446 484234 076638 866940 419672 984129 817249 535024 202575 093049 470592 633233 636400 388608 984583 983733 415966 214636 583850 403469 735199 (733 digits)/321 420074 333392 902727 352149 736055 239521 155274 671260 712471 579568 039216 524246 168736 235533 665190 720355 140222 737707 542209 219583 545618 415565 718356 579510 661930 911455 711808 806382 546658 820724 777412 584299 949231 926489 565909 149145 873775 372869 319424 226619 427298 012439 673127 082208 305387 915949 444673 705639 238591 185729 996496 154730 006549 754829 711650 973703 695935 682608 961999 883381 401789 593206 434671 442304 881239 087321 753448 255957 046876 477242 379990 031053 473468 026619 808985 717217 830693 047962 541705 598006 734212 590166 798398 966634 051988 285341 456462 001702 977241 730278 528385 665079 229929 287904 475934 098684 713491 198658 228964 541891 906014 682985 937932 766453 369555 559058 929580 079714 567340 506733 823540 836502 986922 482362 311338 810734 970168 554772 790593 355825 762821 725785 (735 digits), a[1402] = 1
                                                                                      A[1403]/B[1403] = 9 560625 442364 132303 945373 666249 609601 086733 174042 192768 448014 684330 906951 103704 476574 061857 260281 143534 005299 552026 256998 879701 131722 600011 795515 520369 165994 372991 630966 617333 724745 472694 330856 108183 712723 811679 269941 053762 166863 497033 555232 159565 315985 432851 834248 751402 059164 199281 209298 876414 457542 807208 424910 507214 926790 940236 102056 081382 746847 638812 124826 987624 502047 619852 006699 014661 802761 539853 288038 152774 104902 551652 201650 166654 282530 864001 834080 442846 739209 441059 545798 350511 608619 026934 805522 958163 589715 200010 940341 991649 072157 114963 609264 852560 744634 408208 967937 595968 586900 913853 135839 533983 208792 747617 451934 345537 226601 150651 386167 716735 654859 935447 923871 196843 457643 898872 108289 053032 213460 709391 542621 252163 608520 (733 digits)/929 230892 261197 597494 696454 090845 063952 375230 468561 443001 985798 420165 122125 899592 368231 363461 460390 120230 404418 546742 193462 919310 245760 063115 889517 439285 621980 998890 297345 740642 359600 648687 395821 077604 636489 081303 399618 499795 634548 254441 768056 184124 052568 333555 829345 972737 971385 816261 115592 780201 716985 873091 305590 225830 331422 846589 626093 027112 328081 572319 350043 541167 663856 268642 126222 267322 341717 684213 205279 728832 579676 621044 147739 448585 113137 556101 168867 743054 511670 584131 732794 406729 042431 658067 985631 030131 515506 117348 072648 434878 930883 172711 075714 215712 421506 159556 490288 740935 328817 731630 751005 043380 607241 818292 193903 288216 457990 922108 054022 638575 307887 837361 259155 654167 863003 900849 854010 422772 683084 534244 038053 940374 447001 (735 digits), a[1403] = 2
                                                                                      A[1404]/B[1404] = 79 792014 709065 399251 143436 003416 412902 303073 872493 139221 926800 969967 063433 115624 268003 810664 025640 326751 125847 783938 988317 147269 211936 469650 980812 351066 673332 883812 796820 874642 005111 699159 093910 623362 544922 560823 179717 302240 296493 173143 454951 756883 644429 315815 104034 599909 235382 789136 475957 737836 181288 525557 245771 112843 742004 360407 281978 303781 865401 013404 599752 816154 385144 054729 848021 355825 508311 829791 370898 672166 101522 512220 595387 072433 853221 089971 772673 119495 442598 248177 003733 403363 329704 343393 129648 033302 250917 222989 945958 416525 259841 503713 395145 277910 655458 055425 571486 451049 997190 479865 947640 067828 163788 465173 692113 631238 232482 189340 906591 268909 441454 576632 861562 207981 297551 579585 850896 407991 123651 889768 924820 420778 603359 (734 digits)/7755 267212 422973 682684 923782 462815 751140 157118 419752 256487 465955 400537 501253 365475 181384 572882 403476 102065 973055 916146 767286 900100 381646 223283 695650 176215 887303 702931 185148 471797 697529 966911 750868 570069 018402 216336 346093 872140 449255 354958 371068 900290 432986 341573 716976 087291 687035 974762 630381 480204 921616 981226 599451 813192 406212 484367 982447 912834 307261 540554 683729 731130 904056 583808 452083 019817 821063 227153 898194 877537 114655 348343 212969 062148 931720 257795 068159 775129 141327 214759 460361 988044 929620 062942 851682 293040 409390 395246 582890 456273 177343 910074 270792 955628 659953 752386 020994 640973 829200 082010 549932 253059 540920 484270 317679 675287 222986 306444 511895 675942 969836 522430 909748 220265 386393 518137 642818 352350 019449 064545 660257 285817 301793 (736 digits), a[1404] = 8
                                                                                      A[1405]/B[1405] = 248 936669 569560 330057 375681 676498 848307 995954 791521 610434 228417 594232 097250 450577 280585 493849 337202 123787 382842 903843 221950 321508 767532 008964 737952 573569 185993 024430 021429 241259 740080 570171 612587 978271 347491 494148 809092 960483 056343 016463 920087 430216 249273 380297 146352 551129 765312 566690 637172 089923 001408 383880 162223 845746 152804 021457 947990 992728 343050 679025 924085 436087 657479 784041 550763 082138 327697 029227 400734 169272 409470 088313 987811 383955 842194 133917 152099 801333 067004 185590 556998 560601 597732 057114 194467 058070 342466 868980 778217 241224 851681 626103 794700 686292 711008 574485 682396 949118 578472 353450 978759 737467 700158 143138 528275 239251 924047 718674 105941 523463 979223 665346 508557 820787 350298 637629 660978 277005 584416 378698 317082 514499 418597 (735 digits)/24195 032529 530118 645549 467801 479292 317372 846585 727818 212464 383664 621777 625885 996017 912385 082108 670818 426428 323586 295182 495323 619611 390698 732966 976467 967933 283892 107683 852791 156035 452190 549422 648426 787811 691695 730312 437900 116216 982314 319316 881262 884995 351527 358276 980274 234613 032493 740549 006737 220816 481836 816771 103945 665407 550060 299693 573436 765615 249866 193983 401232 734560 376026 020067 482471 326775 804907 365674 899864 361443 923642 666073 786646 635031 908298 329486 373347 068441 935652 228410 113880 370863 831291 846896 540677 909252 743677 303087 821319 803698 462914 902933 888093 082598 401367 416714 553272 663856 816417 977662 400801 802559 230003 271103 146942 314078 126949 841441 589709 666404 217397 404653 988400 314964 022184 455262 782465 479822 741431 727881 018825 797826 352380 (737 digits), a[1405] = 3
                                                                                      A[1406]/B[1406] = 328 728684 278625 729308 519117 679915 261210 299028 664014 749656 155218 564199 160683 566201 548589 304513 362842 450538 508690 687782 210267 468777 979468 478615 718764 924635 859325 908242 818250 115901 745192 269330 706498 601633 892414 054971 988810 262723 352836 189607 375039 187099 893702 696112 250387 151039 000695 355827 113129 827759 182696 909437 407994 958589 894808 381865 229969 296510 208451 692430 523838 252242 042623 838771 398784 437963 836008 859018 771632 841438 510992 600534 583198 456389 695415 223888 924772 920828 509602 433767 560731 963964 927436 400507 324115 091372 593384 091970 724175 657750 111523 129817 189845 964203 366466 629911 253883 400168 575662 833316 926399 805295 863946 608312 220388 870490 156529 908015 012532 792373 420678 241979 370120 028768 647850 217215 511874 684996 708068 268467 241902 935278 021956 (735 digits)/31950 299741 953092 328234 391583 942108 068513 003704 147570 468951 849620 022315 127139 361493 093769 654991 074294 528494 296642 211329 262610 519711 772344 956250 672118 144149 171195 810615 037939 627833 149720 516334 399295 357880 710097 946648 783993 988357 431569 674275 252331 785285 784513 699850 697250 321904 719529 715311 637118 701021 403453 797997 703397 478599 956272 784061 555884 678449 557127 734538 084962 465691 280082 603875 934554 346593 625970 592828 798059 238981 038298 014416 999615 697180 840018 587281 441506 843571 076979 443169 574242 358908 760911 909839 392360 202293 153067 698334 404210 259971 640258 813008 158886 038227 061321 169100 574267 304830 645618 059672 950734 055618 770923 755373 464621 989365 349936 147886 101605 342347 187233 927084 898148 535229 408577 973400 425283 832172 760880 792426 679083 083643 654173 (737 digits), a[1406] = 1
                                                                                      A[1407]/B[1407] = 27533 417464 695495 862664 462449 109465 528762 815333 904745 831895 111558 422762 433986 445305 813497 768458 453125 518483 604169 989766 674150 230081 063415 734069 395441 318345 510043 408583 936188 861104 591038 924620 251971 913884 417858 056823 880344 766521 341746 753876 048339 959507 426597 157613 928486 087366 823027 100341 026947 793935 165251 867185 025805 408707 421899 716272 035442 603075 644541 150759 402660 372177 195258 402067 649871 433136 716432 327785 446260 008668 821855 932684 393283 264300 561657 716697 908252 230099 364006 188298 097751 569690 574953 299222 096019 641995 593346 502550 884796 834484 108101 400930 551915 715172 127738 857119 754719 163110 358487 518755 869943 577024 407726 633052 820551 489934 916030 083920 146163 290457 895517 749634 228520 208585 121866 666517 146577 131732 354082 661479 395026 142575 240945 (737 digits)/2 676069 911111 636781 889003 969268 674262 003952 154029 976167 135467 902126 473933 178452 999944 695266 446367 837264 291454 944889 835511 291996 755688 495330 101772 762273 932314 493144 388732 001780 266186 878993 405177 789941 491910 629825 302161 509401 149883 802597 284162 824801 063715 466164 445884 852050 952704 753460 111414 887589 405592 968502 050580 485936 389203 920701 376802 711865 076928 491468 160644 453117 386936 622882 141770 050482 094046 760466 570465 138781 196870 102377 862684 754749 501041 629841 073846 018415 084841 324946 011484 775996 160290 986980 363566 106574 699584 448296 264843 370771 381344 604396 382611 075634 255444 491024 452062 217458 964800 402716 930517 311728 418917 216674 967100 710567 431402 171650 115988 022953 081220 757813 352700 534728 739004 934156 247498 081023 550161 894537 499295 382721 740249 648739 (739 digits), a[1407] = 83
                                                                                      A[1408]/B[1408] = 27862 146148 974121 591972 981566 789380 789973 114362 568760 581551 266776 986961 594670 011507 362087 072971 815967 969022 112860 677548 884417 698859 042884 212685 114206 242981 369369 316826 754438 977006 336231 193950 958470 515518 310272 111795 869155 029244 694582 943483 423379 146607 320299 853726 178873 238405 823722 456168 140077 621694 347948 776622 433800 367297 316708 098137 265411 899585 852992 843189 926498 624419 237882 240839 048655 871100 552441 186804 217892 850107 332848 533218 976481 720690 257072 940586 833025 150927 873608 622065 658483 533655 502389 699729 420134 733368 186730 594521 608972 492234 219624 530747 741761 679375 494205 487031 008602 563278 934150 352072 796343 382320 271673 241365 040940 360425 072559 991935 158696 082831 316195 991613 598640 237353 769716 883732 658451 816729 062150 929946 636929 077853 262901 (737 digits)/2 708020 210853 589874 217238 360852 616370 072465 157734 123737 604419 751746 496248 305592 361437 789036 101358 911558 819949 241532 046840 554607 275400 267675 058023 434392 076463 664340 199347 039719 894020 028713 921512 189236 849791 339923 248810 293395 138241 234166 958438 077132 849001 250678 145735 549301 274609 472989 826726 524708 106614 371955 848578 189333 867803 876974 160864 267749 755378 048595 895182 538079 852627 902964 745645 985036 440640 386437 163293 936840 435851 140675 877101 754365 198222 469859 661127 459921 928412 401925 454654 350238 519199 747892 273405 498934 901877 601363 963177 774981 641316 244655 195619 234520 293671 552345 621162 791726 269631 048334 990190 262462 474535 987598 722474 175189 420767 521586 263874 124558 423567 945047 279785 432877 274234 342734 220898 506307 382334 655418 291722 061804 823893 302912 (739 digits), a[1408] = 1
                                                                                      A[1409]/B[1409] = 55395 563613 669617 454637 444015 898846 318735 929696 473506 413446 378335 409724 028656 456813 175584 841430 269093 487505 717030 667315 558567 928940 106299 946754 509647 561326 879412 725410 690627 838110 927270 118571 210442 429402 728130 168619 749499 795766 036329 697359 471719 106114 746897 011340 107359 325772 646749 556509 167025 415629 513200 643807 459605 776004 738607 814409 300854 502661 497533 993949 329158 996596 433140 642906 698527 304237 268873 514589 664152 858776 154704 465903 369764 984990 818730 657284 741277 381027 237614 810363 756235 103346 077342 998951 516154 375363 780077 097072 493769 326718 327725 931678 293677 394547 621944 344150 763321 726389 292637 870828 666286 959344 679399 874417 861491 850359 988590 075855 304859 373289 211713 741247 827160 445938 891583 550249 805028 948461 416233 591426 031955 220428 503846 (737 digits)/5 384090 121965 226656 106242 330121 290632 076417 311764 099904 739887 653872 970181 484045 361382 484302 547726 748823 111404 186421 882351 846604 031088 763005 159796 196666 008778 157484 588079 041500 160206 907707 326689 979178 341701 969748 550971 802796 288125 036764 242600 901933 912716 716842 591620 401352 227314 226449 938141 412297 512207 340457 899158 675270 257007 797675 537666 979614 832306 540064 055826 991197 239564 525846 887416 035518 534687 146903 733759 075621 632721 243053 739786 509114 699264 099700 734973 478337 013253 726871 466139 126234 679490 734872 636971 605509 601462 049660 228021 145753 022660 849051 578230 310154 549116 043370 073225 009185 234431 451051 920707 574190 893453 204273 689574 885756 852169 693236 379862 147511 504788 702860 632485 967606 013239 276890 468396 587330 932496 549955 791017 444526 564142 951651 (739 digits), a[1409] = 1
                                                                                      A[1410]/B[1410] = 83257 709762 643739 046610 425582 688227 108709 044059 042266 994997 645112 396685 623326 468320 537671 914402 085061 456527 829891 344864 442985 627799 149184 159439 623853 804308 248782 042237 445066 815117 263501 312522 168912 944921 038402 280415 618654 825010 730912 640842 895098 252722 067196 865066 286232 564178 470472 012677 307103 037323 861149 420429 893406 143302 055315 912546 566266 402247 350526 837139 255657 621015 671022 883745 747183 175337 821314 701393 882045 708883 487552 999122 346246 705681 075803 597871 574302 531955 111223 432429 414718 637001 579732 698680 936289 108731 966807 691594 102741 818952 547350 462426 035439 073923 116149 831181 771924 289668 226788 222901 462630 341664 951073 115782 902432 210785 061150 067790 463555 456120 527909 732861 425800 683292 661300 433982 463480 765190 478384 521372 668884 298281 766747 (737 digits)/8 092110 332818 816530 323480 690973 907002 148882 469498 223642 344307 405619 466429 789637 722820 273338 649085 660381 931353 427953 929192 401211 306489 030680 217819 631058 085241 821824 787426 081220 054226 936421 248202 168415 191493 309671 799782 096191 426366 270931 201038 979066 761717 967520 737355 950653 501923 699439 764867 937005 618821 712413 747736 864604 124811 674649 698531 247364 587684 588659 951009 529277 092192 428811 633062 020554 975327 533340 897053 012462 068572 383729 616888 263479 897486 569560 396100 938258 941666 128796 920793 476473 198690 482764 910377 104444 503339 651024 191198 920734 663977 093706 773849 544674 842787 595715 694387 800911 504062 499386 910897 836653 367989 191872 412049 060946 272937 214822 643736 272069 928356 647907 912271 400483 287473 619624 689295 093638 314831 205374 082739 506331 388036 254563 (739 digits), a[1410] = 1
                                                                                      A[1411]/B[1411] = 1 137745 790528 038225 060572 976590 845798 731953 502464 022977 348415 764796 566637 131900 544980 165319 728657 374892 422367 505618 150553 317381 090329 045694 019469 619747 017334 113579 274497 476496 434635 352787 181359 406310 713376 227359 814022 792012 520905 538194 028317 107996 391501 620456 257201 828382 660092 762885 721314 159364 900839 708143 109396 073885 638931 457714 677514 662317 731877 054382 876759 652708 069800 156438 131601 411908 583628 945964 632710 130747 074261 492893 454493 870972 158844 804177 429615 207210 296443 683519 431946 147577 384366 613868 081803 687912 788879 348577 087795 829412 973101 443281 943216 754385 355548 131892 149513 798337 492076 240884 768547 680481 400989 043350 379595 593110 590565 783540 957131 331080 302856 074540 268446 362569 328743 488489 192021 830278 895937 635232 369270 727451 098091 471557 (739 digits)/110 581524 448609 841550 311491 312782 081660 011889 415241 007255 215883 926926 033768 749335 758046 037704 985840 333788 218998 749822 961853 062351 015446 161847 991451 400421 116921 841206 824618 097360 865157 081183 553318 168575 831114 995481 948139 053284 830886 558869 856107 629801 815050 294612 177247 759847 752322 319166 881424 593370 556889 601836 619737 915123 879559 568121 618573 195354 472206 192643 418950 871799 438066 100398 117222 302733 213945 080335 395448 237628 524162 231538 759333 934353 366589 503985 884285 675703 254913 401231 436454 320386 262467 010816 471873 963288 144877 512974 713607 115303 654363 067239 638274 390927 505354 787674 100266 421034 787243 943081 762379 450684 677312 698615 046212 678058 400353 485930 748433 684420 573425 125663 492014 173888 750396 332011 429232 804629 025302 219818 866631 026834 608614 260970 (741 digits), a[1411] = 13
                                                                                      A[1412]/B[1412] = 1 221003 500290 681964 107183 402173 534025 840662 546523 065244 343413 409908 963322 755227 013300 702991 643059 459953 878895 335509 495417 760366 718128 194878 178909 243600 821642 362361 316734 921563 249752 616288 493881 575223 658297 265762 094438 410667 345916 269106 669160 003094 644223 687653 122268 114615 224271 233357 733991 466467 938163 569292 529825 967291 782233 513030 590061 228584 134124 404909 713898 908365 690815 827461 015347 159091 758966 767279 334104 012792 783144 980446 453616 217218 864525 879981 027486 781512 828398 794742 864375 562296 021368 193600 780484 624201 897611 315384 779389 932154 792053 990632 405642 789824 429471 248041 980695 570261 781744 467672 991449 143111 742653 994423 495378 495542 801350 844691 024921 794635 758976 602450 001307 788370 012036 149789 626004 293759 661128 113616 890643 396335 396373 238304 (739 digits)/118 673634 781428 658080 634972 003755 988662 160771 884739 230897 560191 332545 500198 538973 480866 311043 634925 994170 150352 177776 891045 463562 321935 192528 209271 031479 202163 663031 612044 178580 919384 017604 801520 336991 022608 305153 747921 149476 257252 829801 057146 608868 576768 262132 914603 710501 254246 018606 646292 530376 175711 314250 367474 779728 004371 242771 317104 442719 059890 781303 369960 401076 530258 529209 750284 323288 189272 613676 292501 250090 592734 615268 376222 197833 264076 073546 280386 613962 196579 530028 357247 796859 461157 493581 382251 067732 648217 163998 904806 036038 318340 160946 412123 935602 348142 383389 794654 221946 291306 442468 673277 287338 045301 890487 458261 739004 673290 700753 392169 956490 501781 773571 404285 574372 037869 951636 118527 898267 340133 425192 949370 533165 996650 515533 (741 digits), a[1412] = 1
                                                                                      A[1413]/B[1413] = 2 358749 290818 720189 167756 378764 379824 572616 048987 088221 691829 174705 529959 887127 558280 868311 371716 834846 301262 841127 645971 077747 808457 240572 198378 863347 838976 475940 591232 398059 684387 969075 675240 981534 371673 493121 908461 202679 866821 807300 697477 111091 035725 308109 379469 942997 884363 996243 455305 625832 839003 277435 639222 041177 421164 970745 267575 890901 866001 459292 590658 561073 760615 983899 146948 571000 342595 713243 966814 143539 857406 473339 908110 088191 023370 684158 457101 988723 124842 478262 296321 709873 405734 807468 862288 312114 686490 663961 867185 761567 765155 433914 348859 544209 785019 379934 130209 368599 273820 708557 759996 823593 143643 037773 874974 088653 391916 628231 982053 125716 061832 676990 269754 150939 340779 638278 818026 124038 557065 748849 259914 123786 494464 709861 (739 digits)/229 255159 230038 499630 946463 316538 070322 172661 299980 238152 776075 259471 533967 288309 238912 348748 620766 327958 369350 927599 852898 525913 337381 354376 200722 431900 319085 504238 436662 275941 784541 098788 354838 505566 853723 300635 696060 202761 088139 388670 913254 238670 391818 556745 091851 470349 006568 337773 527717 123746 732600 916086 987212 694851 883930 810892 935677 638073 532096 973946 788911 272875 968324 629607 867506 626021 403217 694011 687949 487719 116896 846807 135556 132186 630665 577532 164672 289665 451492 931259 793702 117245 723624 504397 854125 031020 793094 676973 618413 151341 972703 228186 050398 326529 853497 171063 894920 642981 078550 385550 435656 738022 722614 589102 504474 417063 073644 186684 140603 640911 075206 899234 896299 748260 788266 283647 547760 702896 365435 645011 816001 560000 605264 776503 (741 digits), a[1413] = 1
                                                                                      A[1414]/B[1414] = 3 579752 791109 402153 274939 780937 913850 413278 595510 153466 035242 584614 493282 642354 571581 571303 014776 294800 180158 176637 141388 838114 526585 435450 377288 106948 660618 838301 907967 319622 934140 585364 169122 556758 029970 758884 002899 613347 212738 076407 366637 114185 679948 995762 501738 057613 108635 229601 189297 092300 777166 846728 169048 008469 203398 483775 857637 119486 000125 864202 304557 469439 451431 811360 162295 730092 101562 480523 300918 156332 640551 453786 361726 305409 887896 564139 484588 770235 953241 273005 160697 272169 427103 001069 642772 936316 584101 979346 646575 693722 557209 424546 754502 334034 214490 627976 110904 938861 055565 176230 751445 966704 886297 032197 370352 584196 193267 472923 006974 920351 820809 279440 271061 939309 352815 788068 444030 417798 218193 862466 150557 520121 890837 948165 (739 digits)/347 928794 011467 157711 581435 320294 058984 333433 184719 469050 336266 592017 034165 827282 719778 659792 255692 322128 519703 105376 743943 989475 659316 546904 409993 463379 521249 167270 048706 454522 703925 116393 156358 842557 876331 605789 443981 352237 345392 218471 970400 847538 968586 818878 006455 180850 260814 356380 174009 654122 908312 230337 354687 474579 888302 053664 252782 080792 591987 755250 158871 673952 498583 158817 617790 949309 592490 307687 980450 737809 709631 462075 511778 330019 894741 651078 445058 903627 648072 461288 150949 914105 184781 997979 236376 098753 441311 840972 523219 187380 291043 389132 462522 262132 201639 554453 689574 864927 369856 828019 108934 025360 767916 479589 962736 156067 746934 887437 532773 597401 576988 672806 300585 322632 826136 235283 666288 601163 705569 070204 765372 093166 601915 292036 (741 digits), a[1414] = 1
                                                                                      A[1415]/B[1415] = 45 315782 784131 546028 467033 750019 346029 531959 195108 929814 114740 190079 449351 595382 417259 723947 549032 372448 463160 960773 342637 135122 127482 465976 725836 146731 766402 535563 486840 233534 894074 993445 704711 662630 731322 599729 943256 562846 419678 724189 097122 481319 195113 257259 400326 634355 187986 751457 726870 733442 165005 438173 667798 142807 861946 776055 559221 324733 867511 829720 245348 194347 177797 720221 094497 332105 561345 479523 577832 019531 544023 918776 248825 753109 678129 453832 272167 231554 563737 754324 224688 975906 530970 820304 575563 547913 695714 416121 626094 086238 451668 528475 402887 552620 358906 915647 461068 634931 940602 823326 777348 424051 779207 424142 319205 099007 711126 303308 065752 169937 911544 030273 522497 422651 574569 095100 146391 137617 175392 098443 066604 365249 184520 087841 (740 digits)/4404 400687 367644 392169 923687 160066 778134 173859 516613 866756 811274 363675 943957 215701 876256 266255 689074 193500 605788 192120 780226 399621 249179 917229 120643 992454 574075 511479 021139 730214 231642 495506 231144 616261 369702 570109 023836 429609 232846 010334 558064 409138 014860 383281 169313 640552 136340 614335 615832 973221 632347 680135 243462 389810 543555 454863 969062 607584 635950 036948 695371 360305 951322 535419 280998 017736 513101 386267 453358 341435 632474 391713 276896 092425 367565 390473 505379 133197 228362 466717 605101 086507 941008 480148 690638 216062 088836 768643 897043 399905 465223 897775 600665 472116 273171 824508 169819 022109 516832 321779 742865 042351 937612 344182 057308 289876 036862 835934 533886 809729 999070 972910 503323 619854 701901 107051 543223 916860 832264 487469 000466 677999 828248 280935 (742 digits), a[1415] = 12
                                                                                      A[1416]/B[1416] = 48 895535 575240 948181 741973 530957 259879 945237 790619 083280 149982 774693 942634 237736 988841 295250 563808 667248 643319 137410 484025 973236 654067 901427 103124 253680 427021 373865 394807 553157 828215 578809 873834 219388 761293 358613 946156 176193 632416 800596 463759 595504 875062 253021 902064 691968 296621 981058 916167 825742 942172 284901 836846 151277 065345 259831 416858 444219 867637 693922 549905 663786 629229 531581 256793 062197 662907 960046 878750 175864 184575 372562 610552 058519 566026 017971 756756 001790 516979 027329 385386 248075 958073 821374 218336 484230 279816 395468 272669 779961 008877 953022 157389 886654 573397 543623 571973 573792 996167 999557 528794 390756 665504 456339 689557 683203 904393 776231 072727 090289 732353 309713 793559 361960 927384 883168 590421 555415 393585 960909 217161 885371 075358 036006 (740 digits)/4752 329481 379111 549881 505122 480360 837118 507292 701333 335807 147540 955692 978123 042984 596034 926047 944766 515629 125491 297497 524170 389096 908496 464133 530637 455834 095324 678749 069846 184736 935567 611899 387503 458819 246034 175898 467817 781846 578238 228806 528465 256676 983447 202159 175768 821402 397154 970715 789842 627344 540659 910472 598149 864390 431857 508528 221844 688377 227937 792198 854243 034258 449905 694236 898788 967046 105591 693955 433809 079245 342105 853788 788674 422445 262307 041551 950438 036824 876434 928005 756051 000613 125790 478127 927014 314815 530148 609616 420262 587285 756267 286908 063187 734248 474811 378961 859393 887036 886689 149798 851799 067712 705528 823772 020044 445943 783797 723372 066660 407131 576059 645716 803908 942487 528037 342335 209512 518024 537833 557673 765838 771166 430163 572971 (742 digits), a[1416] = 1
                                                                                      A[1417]/B[1417] = 192 002389 509854 390573 692954 342891 125669 367672 566966 179654 564688 514161 277254 308593 383783 609699 240458 374194 393118 373004 794715 054832 089686 170258 035208 907773 047466 657159 671262 893008 378721 729875 326214 320797 015202 675571 781725 091427 316929 125978 488401 267833 820300 016325 106520 710260 077852 694634 475374 210670 991522 292879 178336 596639 057982 555549 809796 657393 470424 911487 895065 185707 065486 314964 864876 518698 550069 359664 214082 547124 097750 036464 080481 928668 376207 507747 542435 236926 114674 836312 380847 720134 405192 284427 230573 000604 535163 602526 444103 426121 478302 387541 875057 212584 079099 546518 176989 356310 929106 821999 363731 596321 775720 793161 387878 148619 424307 632001 283933 440807 108603 959414 903175 508534 356723 744605 917655 803863 356149 981170 718090 021362 410594 195859 (741 digits)/18661 389131 504979 041814 439054 601149 289489 695737 620613 874178 253897 230754 878326 344655 664361 044399 523373 740387 982262 084613 352737 566911 974669 309629 712556 359956 860049 547726 230678 284425 038345 331204 393654 992719 107805 097804 427289 775148 967560 696754 143460 179168 965201 989758 696620 104759 327805 526482 985360 855255 254327 411553 037911 982981 839127 980448 634596 672716 319763 413545 258100 463081 301039 618129 977364 918874 829876 468133 754785 579171 658791 953079 642919 359761 154486 515129 356693 243671 857667 250734 873254 088347 318379 914532 471681 160508 679282 597493 157831 161762 734025 758499 790228 674861 697605 961393 748000 683220 176899 771176 298262 245490 054198 815498 117441 627707 388256 006050 733868 031124 727249 910060 915050 447317 286013 134057 171761 470934 445765 160490 297982 991499 118738 999848 (743 digits), a[1417] = 3
                                                                                      A[1418]/B[1418] = 624 902704 104804 119902 820836 559630 636888 048255 491517 622243 844048 317177 774397 163517 140192 124348 285183 789831 822674 256424 868171 137732 923126 412201 208750 976999 569421 345344 408596 232182 964380 768435 852477 181779 806901 385329 291331 450475 583204 178531 928963 399006 335962 301997 221626 822748 530180 064962 342290 457755 916739 163539 371855 941194 239292 926480 846248 416400 278912 428386 235101 220907 825688 476475 851422 618293 313116 039039 520997 817236 477825 481954 851997 844524 694648 541214 384061 712568 861003 536266 527929 408479 173650 674655 910055 486043 885307 203047 604980 058325 443785 115647 782561 524406 810696 183178 102941 642725 783488 465555 619989 179721 992666 835823 853192 129062 177316 672234 924527 412711 058165 187958 503085 887563 997556 116986 343388 967005 462035 904421 371431 949458 307140 623583 (741 digits)/60736 496875 894048 675324 822286 283808 705587 594505 563174 958341 909232 647957 613102 076951 589118 059246 514887 736793 072277 551337 582383 089832 832504 393022 668306 535704 675473 321927 761881 038012 050603 605512 568468 436976 569449 469311 749687 107293 480920 319068 958845 794183 879053 171435 265629 135680 380571 550164 745925 193110 303642 145131 711885 813335 949241 449874 125634 706526 187228 032834 628544 423502 353024 548626 830883 723670 595221 098356 698165 816760 318481 713027 717432 501728 725766 586940 020517 767840 449436 680210 375813 265655 080930 221725 342057 796341 567996 402095 893756 072573 958344 562407 433873 758833 567629 263143 103395 936697 417388 463327 746585 804182 868125 270266 372369 329065 948565 741524 268264 500505 757809 375899 549060 284439 386076 744506 724796 930827 875129 039144 659787 745663 786380 572515 (743 digits), a[1418] = 3
                                                                                      A[1419]/B[1419] = 4566 321318 243483 229893 438810 260305 583885 705461 007589 535361 473026 734405 698034 453213 365128 480137 236744 903017 151838 167978 871913 018962 551571 055666 496465 746770 033416 074570 531436 518289 129387 108926 293554 593255 663512 372876 821045 244756 399358 375701 991145 060878 172036 130305 657908 469499 789113 149370 871407 414962 408696 437654 781328 184998 733033 040915 733535 572195 422811 910191 540773 732061 845305 650295 824834 846751 741881 632940 861067 267779 442528 410148 044466 840341 238747 296248 230867 224908 141699 590178 076353 579488 620747 007018 600961 402911 732314 023859 678963 834399 584798 197076 352987 883431 753972 828764 897580 855391 413526 080888 703655 854375 724388 643928 360223 052054 665524 337645 755625 329784 515760 275124 424776 721482 339616 563510 321378 572901 590401 312120 318113 667570 560578 560940 (742 digits)/443816 867262 763319 769088 195058 587810 228602 857276 562838 582571 618525 766458 170040 883316 788187 459125 127587 897939 488204 943976 429419 195741 802200 060788 390702 109889 588362 801220 563845 550509 392570 569792 372934 051555 093951 382986 675099 526203 334002 930236 855380 738456 118574 189805 556024 054521 991806 377636 206837 207027 379822 427475 021112 676333 483818 129567 514039 618399 630359 643387 657911 427597 772211 458517 793550 984568 996424 156630 641946 296493 888163 944273 664946 871862 234852 623709 500317 618555 003724 012207 503946 947932 884891 466609 866085 734899 655257 412164 414123 669780 442437 695351 827344 986696 671010 803395 471772 240102 098619 014470 524362 874770 131075 707362 724026 931169 028216 196720 611719 534665 031915 541357 758472 438392 988550 345604 245339 986729 571668 434502 916497 211145 623403 007453 (744 digits), a[1419] = 7
                                                                                      A[1420]/B[1420] = 46288 115886 539636 418837 208939 162686 475745 102865 567412 975858 574315 661234 754741 695650 791476 925720 652632 820003 341055 936213 587301 327358 438836 968866 173408 444699 903582 091049 722961 415074 258251 857698 788023 114336 442025 114097 501783 898039 576787 935551 840414 007788 056323 605053 800711 517746 421311 558671 056364 607380 003703 540087 185137 791181 569623 335638 181604 138354 507031 530301 642838 541526 278744 979434 099771 085810 731932 368448 131670 495030 903109 583435 296666 247937 082121 503696 692733 961650 277999 438047 291465 203365 381120 744841 919669 515161 208447 441644 394618 402321 291767 086411 312440 358724 350424 470827 078750 196639 918749 274442 656547 723479 236553 275107 455422 649608 832560 048692 480780 710556 215767 939202 750853 102387 393721 752089 557174 696021 366049 025624 552568 625163 912926 232983 (743 digits)/4 498905 169503 527246 366206 772872 161910 991616 167271 191560 784058 094490 312539 313510 910119 470992 650497 790766 716187 954326 991101 876575 047250 854505 000906 575327 634600 559101 334133 400336 543105 976309 303436 297808 952527 508963 299178 500682 369326 820949 621437 512653 178745 064795 069490 825869 680900 298635 326526 814297 263384 101866 419881 923012 576670 787422 745549 266030 890522 490824 466711 207658 699480 075139 133804 766393 569360 559462 664663 117628 781699 200121 155764 366901 220351 074292 824035 023693 953390 486676 802285 415282 744983 929844 887824 002915 145338 120570 523740 034992 770378 382721 515925 707323 625800 277737 297097 821118 337718 403578 608032 990214 551884 178882 343893 612638 640756 230727 708730 385459 847156 076964 789477 133784 668369 271580 200549 178196 798123 591813 384173 824759 857120 020410 647045 (745 digits), a[1420] = 10
                                                                                      A[1421]/B[1421] = 97142 553091 322756 067567 856688 585678 535375 911192 142415 487078 621658 056875 207517 844514 948082 331578 542010 543023 833950 040406 046515 673679 429244 993398 843282 636169 840580 256669 977359 348437 645890 824323 869600 821928 547562 601071 824613 040835 552934 246805 671973 076454 284683 340413 259331 504992 631736 266712 984136 629722 416103 517829 151603 767361 872279 712192 096743 848904 436874 970794 826450 815114 402795 609164 024377 018373 205746 369837 124408 257841 248747 577018 637799 336215 402990 303641 616335 148208 697698 466272 659283 986219 382988 496702 440300 433234 149208 907148 468200 639042 168332 369898 977868 600880 454821 770419 055081 248671 251024 629774 016751 301334 197495 194143 271068 351272 330644 435030 717186 750896 947296 153529 926482 926257 127060 067689 435727 964944 322499 363369 423250 917898 386431 026906 (743 digits)/9 441627 206269 817812 501501 740802 911632 211835 191818 945960 150687 807506 391536 797062 703555 730172 760120 709121 330315 396858 926180 182569 290243 511210 062601 541357 379090 706565 469487 364518 636721 345189 176664 968551 956610 111877 981343 676464 264856 975902 173111 880687 095946 248164 328787 207763 416322 589077 030689 835431 733795 583555 267238 867137 829675 058663 620666 046101 399444 612008 576810 073228 826557 922489 726127 326338 123290 115349 485956 877203 859892 288406 255802 398749 312564 383438 271779 547705 525335 977077 616778 334512 437900 744581 242257 871916 025575 896398 459644 484109 210537 207880 727203 241992 238297 226485 397591 114008 915538 905776 230536 504791 978538 488840 395149 949304 212681 489671 614181 382639 228977 185845 120312 026041 775131 531710 746702 601733 582976 755295 202850 566016 925385 664224 301543 (745 digits), a[1421] = 2
                                                                                      A[1422]/B[1422] = 143430 668977 862392 486405 065627 748365 011121 014057 709828 462937 195973 718109 962259 540165 739559 257299 194643 363027 175005 976619 633817 001037 868081 962265 016691 080869 744162 347719 700320 763511 904142 682022 657623 936264 989587 715169 326396 938875 129722 182357 512387 084242 341006 945467 060043 022739 053047 825384 040501 237102 419807 057916 336741 558543 441903 047830 278347 987258 943906 501096 469289 356640 681540 588598 124148 104183 937678 738285 256078 752872 151857 160453 934465 584152 485111 807338 309069 109858 975697 904319 950749 189584 764109 241544 359969 948395 357656 348792 862819 041363 460099 456310 290308 959604 805246 241246 133831 445311 169773 904216 673299 024813 434048 469250 726491 000881 163204 483723 197967 461453 163064 092732 677336 028644 520781 819778 992902 660965 688548 388993 975819 543062 299357 259889 (744 digits)/13 940532 375773 345058 867708 513675 073543 203451 359090 137520 934745 901996 704076 110573 613675 201165 410618 499888 046503 351185 917282 059144 337494 365715 063508 116685 013691 265666 803620 764855 179827 321498 480101 266360 909137 620841 280522 177146 634183 796851 794549 393340 274691 312959 398278 033633 097222 887712 357216 649728 997179 685421 687120 790150 406345 846086 366215 312132 289967 102833 043521 280887 526037 997628 859932 092731 692650 674812 150619 994832 641591 488527 411566 765650 532915 457731 095814 571399 478726 463754 419063 749795 182884 674426 130081 874831 170914 016968 983384 519101 980915 590602 243128 949315 864097 504222 694688 935127 253257 309354 838569 495006 530422 667722 739043 561942 853437 720399 322911 768099 076133 262809 909789 159826 443500 803290 947251 779930 381100 347108 587024 390776 782505 684634 948588 (746 digits), a[1422] = 1
                                                                                      A[1423]/B[1423] = 814295 897980 634718 499593 184827 327503 590980 981480 691557 801764 601526 647425 018815 545343 645878 618074 515227 358159 708979 923504 215600 678868 769654 804723 926738 040518 561391 995268 478963 165997 166604 234437 157720 503253 495501 176918 456597 735211 201545 158593 233908 497665 989718 067748 559546 618687 896975 393633 186642 815234 515138 807410 835311 560079 081794 951343 488483 785199 156407 476277 172897 598317 810498 552154 645117 539292 894140 061263 404802 022202 008033 379288 310127 256977 828549 340333 161680 697503 576187 987872 413029 934143 203534 704424 240150 175210 937490 651112 782295 845859 468829 651450 429413 398904 481052 976649 724238 475227 099894 150857 383246 425401 367737 540396 903523 355678 146666 853646 707024 058162 762616 617193 313163 069479 730969 166584 400241 269772 765241 308339 302348 633209 883217 326351 (744 digits)/79 144289 085136 543106 840044 309178 279348 229091 987269 633564 824417 317489 911917 349930 771931 735999 813213 208561 562832 152788 512590 478290 977715 339785 380142 124782 447547 034899 487591 188794 535857 952681 577171 300356 502298 216084 383954 562197 435775 960161 145858 847388 469402 812961 320177 375928 902437 027638 816773 084076 719694 010663 702842 817889 861404 289095 451742 606762 849280 126173 794416 477666 456747 910634 025787 789996 586543 489410 239056 851367 067849 731043 313636 227001 977141 672093 750852 404702 918968 295849 712097 083488 352324 116711 892667 246071 880145 981243 376567 079619 115115 160891 942847 988571 558784 747598 871035 789645 181825 452550 423383 979824 630651 827454 090367 759018 479870 091668 228740 223134 609643 499894 669257 825173 992635 548165 482961 501385 488478 490838 137972 519900 837914 087399 044483 (746 digits), a[1423] = 5
                                                                                      A[1424]/B[1424] = 957726 566958 497110 985998 250455 075868 602101 995538 401386 264701 797500 365534 981075 085509 385437 875373 709870 721186 883985 900123 849417 679906 637736 766988 943429 121388 305554 342988 179283 929509 070746 916459 815344 439518 485088 892087 782994 674086 331267 340950 746295 581908 330725 013215 619589 641426 950023 219017 227144 052336 934945 865327 172053 118622 523697 999173 766831 772458 100313 977373 642186 954958 492039 140752 769265 643476 831818 799548 660880 775074 159890 539742 244592 841130 313661 147671 470749 807362 551885 892192 363779 123727 967643 945968 600120 123606 295146 999905 645114 887222 928929 107760 719722 358509 286299 217895 858069 920538 269668 055074 056545 450214 801786 009647 630014 356559 309871 337369 904991 519615 925680 709925 990499 098124 251750 986363 393143 930738 453789 697333 278168 176272 182574 586240 (744 digits)/93 084821 460909 888165 707752 822853 352891 432543 346359 771085 759163 219486 615993 460504 385606 937165 223831 708449 609335 503974 429872 537435 315209 705500 443650 241467 461238 300566 291211 953649 715685 274180 057272 566717 411435 836925 664476 739344 069959 757012 940408 240728 744094 125920 718455 409561 999659 915351 173989 733805 716873 696085 389963 608040 267750 135181 817957 918895 139247 229006 837937 758553 982785 908262 885719 882728 279194 164222 389676 846199 709441 219570 725202 992652 510057 129824 846666 976102 397694 759604 131160 833283 535208 791138 022749 120903 051059 998212 359951 598721 096030 751494 185976 937887 422882 251821 565724 724772 435082 761905 261953 474831 161074 495176 829411 320961 333307 812067 551651 991233 685776 762704 579046 985000 436136 351456 430213 281315 869578 837946 724996 910677 620419 772033 993071 (746 digits), a[1424] = 1
                                                                                      A[1425]/B[1425] = 2 729749 031897 628940 471589 685737 479240 795184 972557 494330 331168 196527 378494 980965 716362 416754 368821 934968 800533 476951 723751 914436 038682 045128 338701 813596 283295 172500 681244 837531 025015 308098 067356 788409 382290 465678 961094 022587 083383 864079 840494 726499 661482 651168 094179 798725 901541 797021 831667 640930 919908 385030 538065 179417 797324 129190 949691 022147 330115 357035 431024 457271 508234 794576 833660 183648 826246 557777 660360 726563 572350 327814 458772 799312 939238 455871 635676 103180 312228 679959 772257 140588 181599 138822 596361 440390 422423 527784 650924 072525 620305 326687 866971 868858 115923 053651 412441 440378 316303 639230 261005 496337 325830 971309 559692 163552 068796 766409 528386 517007 097394 613978 037045 294161 265728 234471 139311 186529 131249 672820 703005 858684 985754 248366 498831 (745 digits)/265 313932 006956 319438 255549 954884 985131 094178 679989 175736 342743 756463 143904 270939 543145 610330 260876 625460 781503 160737 372335 553161 608134 750786 267442 607717 370023 636032 070015 096093 967228 501041 691716 433791 325169 889935 712908 040885 575695 474187 026675 328845 957591 064802 757088 195052 901756 858341 164752 551688 153441 402834 482770 033970 396904 559459 087658 444553 127774 584187 470291 994774 422319 727159 797227 555453 144931 817855 018410 543766 486732 170184 764042 212306 997255 931743 444186 356907 714357 815057 974418 750055 422741 698987 938165 487877 982265 977668 096470 277061 307176 663880 314801 864346 404549 251242 002485 239190 051990 976360 947290 929486 952800 817807 749190 400941 146485 715803 332044 205601 981197 025303 827351 795174 864908 251078 343388 064017 227636 166731 587966 341256 078753 631467 030625 (747 digits), a[1425] = 2
                                                                                      A[1426]/B[1426] = 3 687475 598856 126051 457587 936192 555109 397286 968095 895716 595869 994027 744029 962040 801871 802192 244195 644839 521720 360937 623875 763853 718588 682865 105690 757025 404683 478055 024233 016814 954524 378844 983816 603753 821808 950767 853181 805581 757470 195347 181445 472795 243390 981893 107395 418315 542968 747045 050684 868074 972245 319976 403392 351470 915946 652888 948864 788979 102573 457349 408398 099458 463193 286615 974412 952914 469723 389596 459909 387444 347424 487704 998515 043905 780368 769532 783347 573930 119591 231845 664449 504367 305327 106466 542330 040510 546029 822931 650829 717640 507528 255616 974732 588580 474432 339950 630337 298448 236841 908898 316079 552882 776045 773095 569339 793566 425356 076280 865756 421998 617010 539658 746971 284660 363852 486222 125674 579673 061988 126610 400339 136853 162026 430941 085071 (745 digits)/358 398753 467866 207603 963302 777738 338022 526722 026348 946822 101906 975949 759897 731443 928752 547495 484708 333910 390838 664711 802208 090596 923344 456286 711092 849184 831261 936598 361227 049743 682913 775221 748989 000508 736605 726861 377384 780229 645655 231199 967083 569574 701685 190723 475543 604614 901416 773692 338742 285493 870315 098919 872733 642010 664654 694640 905616 363448 267021 813194 308229 753328 405105 635422 682947 438181 424125 982077 408087 389966 196173 389755 489245 204959 507313 061568 290853 333010 112052 574662 105579 583338 957950 490125 960914 608781 033325 975880 456421 875782 403207 415374 500778 802233 827431 503063 568209 963962 487073 738266 209244 404318 113875 312984 578601 721902 479793 527870 883696 196835 666973 788008 406398 780175 301044 602534 773601 345333 097215 004678 312963 251933 699173 403501 023696 (747 digits), a[1426] = 1
                                                                                      A[1427]/B[1427] = 10 104700 229609 881043 386765 558122 589459 589758 908749 285763 522908 184582 866554 905047 320106 021138 857213 224647 843974 198826 971503 442143 475859 410858 550083 327647 092662 128610 729710 871160 934064 065788 034989 995917 025908 367214 667457 633750 598324 254774 203385 672090 148264 614954 308970 635356 987479 291111 933037 377080 864399 024983 344849 882359 629217 434968 847420 600105 535262 271734 247820 656188 434621 367808 782486 089477 765693 336970 580179 501452 267199 303224 455802 887124 499975 994937 202371 251040 551411 143651 101156 149322 792253 351755 681021 521411 514483 173647 952583 507806 635361 837921 816437 046019 064787 733552 673116 037274 789987 457026 893164 602102 877922 517500 698371 750684 919508 918971 259899 361004 331415 693295 530987 863481 993433 206915 390660 345875 255225 926041 503684 132391 309807 110248 668973 (746 digits)/982 111438 942688 734646 182155 510361 661176 147622 732687 069380 546557 708362 663699 733827 400650 705321 230293 293281 563180 490160 976751 734355 454823 663359 689628 306087 032547 509228 792469 195581 333056 051485 189694 434808 798381 343658 467677 601344 867005 936586 960842 467995 360961 446249 708175 404282 704590 405725 842237 122675 894071 600674 228237 317991 726213 948740 898891 171449 661818 210576 086751 501431 232530 998005 163122 431815 993183 782009 834585 323698 879078 949695 742532 622226 011882 054880 025893 022927 938462 964382 185577 916733 338642 679239 859994 705440 048917 929429 009314 028626 113591 494629 316359 468814 059412 257369 138905 167115 026138 452893 365779 738123 180551 443776 906393 844746 106072 771545 099436 599273 315144 601320 640149 355525 466997 456147 890590 754683 422066 176088 213892 845123 477100 438469 078017 (747 digits), a[1427] = 2
                                                                                      A[1428]/B[1428] = 13 792175 828466 007094 844353 494315 144568 987045 876845 181480 118778 178610 610584 867088 121977 823331 101408 869487 365694 559764 595379 205997 194448 093723 655774 084672 497345 606665 753943 887975 888588 444633 018806 599670 847717 317982 520639 439332 355794 450121 384831 144885 391655 596847 416366 053672 530448 038156 983722 245155 836644 344959 748242 233830 545164 087857 796285 389084 637835 729083 656218 755646 897814 654424 756899 042392 235416 726567 040088 888896 614623 790929 454317 931030 280344 764469 985718 824970 671002 375496 765605 653690 097580 458222 223351 561922 060512 996579 603413 225447 142890 093538 791169 634599 539220 073503 303453 335723 026829 365925 209244 154985 653968 290596 267711 544251 344864 995252 125655 783002 948426 232954 277959 148142 357285 693137 516334 925548 317214 052651 904023 269244 471833 541189 754044 (746 digits)/1340 510192 410554 942250 145458 288099 999198 674344 759036 016202 648464 684312 423597 465271 329403 252816 715001 627191 954019 154872 778959 824952 378168 119646 400721 155271 863809 445827 153696 245325 015969 826706 938683 435317 534987 070519 845062 381574 512661 167786 927926 037570 062646 636973 183719 008897 606007 179418 180979 408169 764386 699594 100970 960002 390868 643381 804507 534897 928840 023770 394981 254759 637636 633427 846069 869997 417309 764087 242672 713665 075252 339451 231777 827185 519195 116448 316746 355938 050515 539044 291157 500072 296593 169365 820909 314221 082243 905309 465735 904408 516798 910003 817138 271047 886843 760432 707115 131077 513212 191159 575024 142441 294426 756761 484995 566648 585866 299415 983132 796108 982118 389329 046548 135700 768042 058682 664192 100016 519281 180766 526856 097057 176273 841970 101713 (748 digits), a[1428] = 1
                                                                                      A[1429]/B[1429] = 23 896876 058075 888138 231119 052437 734028 576804 785594 467243 641686 363193 477139 772135 442083 844469 958622 094135 209668 758591 566882 648140 670307 504582 205857 412319 590007 735276 483654 759136 822652 510421 053796 595587 873625 685197 188097 073082 954118 704895 588216 816975 539920 211801 725336 689029 517927 329268 916759 622236 701043 369943 093092 116190 174381 522826 643705 989190 173098 000817 904039 411835 332436 022233 539385 131870 001110 063537 620268 390348 881823 094153 910120 818154 780320 759407 188090 076011 222413 519147 866761 803012 889833 809977 904373 083333 574996 170227 555996 733253 778251 931460 607606 680618 604007 807055 976569 372997 816816 822952 102408 757088 531890 808096 966083 294936 264373 914223 385555 144007 279841 926249 808947 011624 350718 900052 906995 271423 572439 978693 407707 401635 781640 651438 423017 (746 digits)/2322 621631 353243 676896 327613 798461 660374 821967 491723 085583 195022 392675 087297 199098 730053 958137 945294 920473 517199 645033 755711 559307 832991 783006 090349 461358 896356 955055 946165 440906 349025 878192 128377 870126 333368 414178 312739 982919 379667 104373 888768 505565 423608 083222 891894 413180 310597 585144 023216 530845 658458 300268 329208 277994 117082 592122 703398 706347 590658 234346 481732 756190 870167 631433 009192 301813 410493 546097 077258 037363 954331 289146 974310 449411 531077 171328 342639 378865 988978 503426 476735 416805 635235 848605 680904 019661 131161 834738 475049 933034 630390 404633 133497 739861 946256 017801 846020 298192 539350 644052 940803 880564 474978 200538 391389 411394 691939 070961 082569 395382 297262 990649 686697 491226 235039 514830 554782 854699 941347 356854 740748 942180 653374 280439 179730 (748 digits), a[1429] = 1
                                                                                      A[1430]/B[1430] = 37 689051 886541 895233 075472 546752 878597 563850 662439 648723 760464 541804 087724 639223 564061 667801 060030 963622 575363 318356 162261 854137 864755 598305 861631 496992 087353 341942 237598 647112 711240 955054 072603 195258 721343 003179 708736 512415 309913 155016 973047 961860 931575 808649 141702 742702 048375 367425 900481 867392 537687 714902 841334 350020 719545 610684 439991 378274 810933 729901 560258 167482 230250 676658 296284 174262 236526 790104 660357 279245 496446 885083 364438 749185 060665 523877 173808 900981 893415 894644 632367 456702 987414 268200 127724 645255 635509 166807 159409 958700 921142 024999 398776 315218 143227 880559 280022 708720 843646 188877 311652 912074 185859 098693 233794 839187 609238 909475 511210 927010 228268 159204 086906 159766 708004 593190 423330 196971 889654 031345 311730 670880 253474 192628 177061 (746 digits)/3663 131823 763798 619146 473072 086561 659573 496312 250759 101785 843487 076987 510894 664370 059457 210954 660296 547665 471218 799906 534671 384260 211159 902652 491070 616630 760166 400883 099861 686231 364995 704899 067061 305443 868355 484698 157802 364493 892328 272160 816694 543135 486254 720196 075613 422077 916604 764562 204195 939015 422844 999862 430179 237996 507951 235504 507906 241245 519498 258116 876714 010950 507804 264860 855262 171810 827803 310184 319930 751029 029583 628598 206088 276597 050272 287776 659385 734804 039494 042470 767892 916877 931829 017971 501813 333882 213405 740047 940785 837443 147189 314636 950636 010909 833099 778234 553135 429270 052562 835212 515828 023005 769404 957299 876384 978043 277805 370377 065702 191491 279381 379978 733245 626927 003081 573513 218974 954716 460628 537621 267605 039237 829648 122409 281443 (748 digits), a[1430] = 1
                                                                                      A[1431]/B[1431] = 61 585927 944617 783371 306591 599190 612626 140655 448034 115967 402150 904997 564864 411359 006145 512271 018653 057757 785032 076947 729144 502278 535063 102888 067488 909311 677361 077218 721253 406249 533893 465475 126399 790846 594968 688376 896833 585498 264031 859912 561264 778836 471496 020450 867039 431731 566302 696694 817241 489629 238731 084845 934426 466210 893927 133511 083697 367464 984031 730719 464297 579317 562686 698891 835669 306132 237636 853642 280625 669594 378269 979237 274559 567339 840986 283284 361898 976993 115829 413792 499129 259715 877248 078178 032097 728589 210505 337034 715406 691954 699393 956460 006382 995836 747235 687615 256592 081718 660463 011829 414061 669162 717749 906790 199878 134123 873612 823698 896766 071017 508110 085453 895853 171391 058723 493243 330325 468395 462094 010038 719438 072516 035114 844066 600078 (746 digits)/5985 753455 117042 296042 800685 885023 319948 318279 742482 187369 038509 469662 598191 863468 789511 169092 605591 468138 988418 444940 290382 943568 044151 685658 581420 077989 656523 355939 046027 127137 714021 583091 195439 175570 201723 898876 470542 347413 271995 376534 705463 048700 909862 803418 967507 835258 227202 349706 227412 469861 081303 300130 759387 515990 625033 827627 211304 947593 110156 492463 358446 767141 377971 896293 864454 473624 238296 856281 397188 788392 983914 917745 180398 726008 581349 459105 002025 113670 028472 545897 244628 333683 567064 866577 182717 353543 344567 574786 415835 770477 777579 719270 084133 750771 779355 796036 399155 727462 591913 479265 456631 903570 244383 157838 267774 389437 969744 441338 148271 586873 576644 370628 419943 118153 238121 088343 773757 809416 401975 894476 008353 981418 483022 402848 461173 (748 digits), a[1431] = 1
                                                                                      A[1432]/B[1432] = 160 860907 775777 461975 688655 745134 103849 845161 558507 880658 564766 351799 217453 461941 576352 692343 097337 079138 145427 472251 620550 858694 934881 804081 996609 315615 442075 496379 680105 459611 779027 886004 325402 776951 911280 379933 502403 683411 837976 874842 095577 519533 874567 849550 875781 606165 180980 760815 534964 846651 015149 884594 710187 282442 507399 877706 607386 113204 778997 191340 488853 326117 355624 074441 967622 786526 711800 497389 221608 618434 252986 843557 913557 883864 742638 090445 897606 854968 125074 722229 630625 976134 741910 424556 191920 102434 056519 840876 590223 342610 319929 937919 411542 306891 637699 255789 793206 872158 164572 212536 139776 250399 621358 912273 633551 107435 356464 556873 304743 069045 244488 330111 878612 502548 825451 579677 083981 133762 813842 051422 750606 815912 323703 880761 377217 (747 digits)/15634 638733 997883 211232 074443 856608 299470 132871 735723 476523 920506 016312 707278 391307 638479 549139 871479 483943 448055 689787 115437 271396 299463 273969 653910 772610 073213 112761 191915 940506 793038 871081 457939 656584 271803 282451 098887 059320 436319 025230 227620 640537 305980 327034 010629 092594 371009 463974 659020 878737 585451 600123 948954 269977 758018 890758 930516 136431 739811 243043 593607 545233 263748 057448 584171 119059 304397 022747 114308 327814 997413 464088 566885 728614 212971 205986 663435 962144 096439 134265 257149 584245 065958 751125 867248 040968 902540 889620 772457 378398 702348 753177 118903 512453 391811 370307 351446 884195 236389 793743 429091 830146 258171 272976 411933 756919 217294 253053 362245 365238 432670 121235 573131 863233 479323 750200 766490 573549 264580 326573 284313 002074 795692 928106 203789 (749 digits), a[1432] = 2
                                                                                      A[1433]/B[1433] = 383 307743 496172 707322 683903 089458 820325 830978 565049 877284 531683 608595 999771 335242 158850 896957 213327 216034 075887 021450 970246 219668 404826 711052 060707 540542 561512 069978 081464 325473 091949 237483 777205 344750 417529 448243 901640 952321 939985 609596 752419 817904 220631 719552 618602 644061 928264 218325 887171 182931 269030 854035 354801 031095 908726 888924 298469 593874 542026 113400 442004 231552 273934 847775 770914 879185 661237 848420 723842 906462 884243 666353 101675 335069 326262 464176 157112 686929 365978 858251 760381 211985 361068 927290 415937 933457 323545 018787 895853 377175 339253 832298 829467 609620 022634 199194 843005 826034 989607 436901 693614 169961 960467 731337 466980 348994 586541 937445 506252 209107 997086 745677 653078 176488 709626 652597 498287 735921 089778 112884 220651 704340 682522 605589 354512 (747 digits)/37255 030923 112808 718506 949573 598239 918888 584023 213929 140416 879521 502288 012748 646084 066470 267372 348550 436025 884529 824514 521257 486360 643078 233597 889241 623209 802949 581461 429859 008151 300099 325254 111318 488738 745330 463778 668316 466054 144633 426995 160704 329775 521823 457486 988766 020446 969221 277655 545454 227336 252206 500378 657296 055946 141071 609145 072337 220456 589778 978550 545661 857607 905468 011191 032796 711742 847090 901775 625805 444022 978741 845922 314170 183237 007291 871078 328897 037958 221350 814427 758927 502173 698982 368828 917213 435481 149649 354027 960750 527275 182277 225624 321940 775678 562978 536651 102049 495853 064693 066752 314815 563862 760725 703791 091641 903276 404332 947444 872762 317350 441984 613099 566206 844620 196768 588745 306738 956514 931136 547622 576979 985568 074408 259060 868751 (749 digits), a[1433] = 2
                                                                                      A[1434]/B[1434] = 927 476394 768122 876621 056461 924051 744501 507118 688607 635227 628133 568991 216996 132425 894054 486257 523991 511206 297201 515153 561043 298031 744535 226186 118024 396700 565099 636335 843034 110557 962926 360971 879813 466452 746339 276421 305685 588055 717948 094035 600417 155342 315831 288656 112986 894289 037509 197467 309307 212513 553211 592665 419789 344634 324853 655555 204325 300953 863049 418141 372861 789221 903493 769993 509452 544898 034276 194230 669294 431360 021474 176264 116908 554003 395163 018798 211832 228826 857032 438733 151388 400105 464048 279137 023795 969348 703609 878452 381930 096960 998437 602517 070477 526131 682967 654179 479218 524228 143787 086339 527004 590323 542294 374948 567511 805424 529548 431764 317247 487261 238661 821467 184768 855526 244704 884872 080556 605604 993398 277191 191910 224593 688749 091940 086241 (747 digits)/90144 700580 223500 648245 973591 053088 137247 300918 163581 757357 679549 020888 732775 683475 771420 083884 568580 355995 217115 338816 157952 244117 585619 741165 432394 019029 679112 275684 051633 956809 393237 521589 680576 634061 762464 210008 435519 991428 725585 879220 549029 300088 349627 242007 988161 133488 309452 019285 749929 333410 089864 600881 263546 381870 040162 109049 075190 577344 919369 200144 684931 260449 074684 079830 649764 542544 998578 826298 365919 215860 954897 155933 195226 095088 227554 948143 321230 038060 539140 763120 775004 588592 463923 488783 701674 911931 201839 597676 693958 432949 066903 204425 762785 063810 517768 443609 555545 875901 365775 927248 058722 957871 779622 680558 595217 563472 025960 147943 107769 999939 316639 347434 705545 552473 872860 927691 379968 486579 126853 421818 438272 973210 944509 446227 941291 (749 digits), a[1434] = 2
                                                                                      A[1435]/B[1435] = 3165 736927 800541 337185 853288 861614 053830 352334 630872 782967 416084 315569 650759 732519 841014 355729 785301 749652 967491 566911 653376 113763 638432 389610 414780 730644 256810 978985 610566 657146 980728 320399 416645 744108 656547 277507 818697 716489 093829 891703 553671 283931 168125 585520 957563 326929 040791 810727 815092 820471 928665 632031 614169 064998 883287 855589 911445 496736 131174 367824 560589 599217 984416 157756 299272 513879 764066 431112 731726 200542 948666 195145 452400 997079 511751 520570 792609 373409 937076 174451 214546 412301 753213 764701 487325 841503 434374 654145 041643 668058 334566 639850 040900 188015 071537 161733 280661 398719 420968 695920 274627 940932 587350 856183 169515 765268 175187 232738 457994 670891 713072 210079 207384 743067 443741 307213 739957 552736 069972 944457 796382 378121 748769 881409 613235 (748 digits)/307689 132663 783310 663244 870346 757504 330630 486777 704674 412489 918168 564954 211075 696511 380730 519026 054291 504011 535875 840962 995114 218713 399937 457094 186423 680298 840286 408513 584760 878579 479811 890023 153048 390924 032723 093803 974876 440340 321391 064656 807792 230040 570705 183510 953249 420911 897577 335512 795242 227566 521800 303022 447935 201556 261557 936292 297908 952491 347886 578984 600455 638955 129520 250682 982090 339377 842827 380670 723563 091605 843433 313721 899848 468501 689956 715508 292587 152139 838773 103790 083941 267951 090752 835180 022238 171274 755168 147058 042625 826122 382986 838901 610295 967110 116283 867479 768687 123557 162020 848496 490984 437478 099593 745466 877294 593692 482213 391274 196072 317168 391902 655403 682843 502041 815351 371819 446644 416252 311696 813077 891798 905200 907936 597744 692624 (750 digits), a[1435] = 3
                                                                                      A[1436]/B[1436] = 444130 646286 843910 082640 516902 550019 280750 833967 010797 250665 879937 748742 323358 685203 636064 288427 466236 462621 746020 882785 033699 224941 125069 771644 187326 686896 518636 694321 322366 111135 264891 216890 210217 641664 662958 127515 923365 896528 854132 932533 114396 905705 853413 261590 171852 664354 748362 699361 422302 078583 566400 077091 403458 444477 985153 438142 806694 844012 227460 913579 855405 679739 721755 855875 407604 488065 003576 550013 110962 507372 834741 496627 453048 145135 040375 898709 177144 506218 047696 861903 187886 122350 913975 337345 249413 779829 516061 458758 212043 625127 837767 181522 796503 848241 698170 296838 771814 344947 079404 515177 974916 320885 771414 240592 299718 942969 055761 015148 436501 412101 068771 232556 218632 884968 368487 894795 674613 988654 789610 501282 685443 161638 516532 489285 939141 (750 digits)/43 166623 273509 886993 502527 822137 103694 425515 449796 817999 505946 223148 114478 283373 195069 073692 747532 169390 917610 239733 073635 473942 863993 576863 734351 531709 260867 319209 467585 918156 957936 566902 124831 107351 363426 343697 342564 918221 639073 720334 931173 639941 505768 248352 933541 443080 061153 970278 991077 083841 192723 141907 024023 974474 599746 658273 189970 782443 926133 623490 257988 748720 714167 207519 175448 142412 055442 994412 120199 664752 040679 035561 076999 174011 685324 821495 119304 283431 337637 967375 293732 526782 101745 169320 413986 815018 890396 925380 185802 661574 090082 685060 650651 204220 459226 797509 890777 171743 173904 048694 716756 796544 204805 722747 045921 416460 680419 535834 926330 557894 403514 183011 103950 303635 838328 022052 982413 910186 761902 764407 252723 290119 701338 055633 130484 908651 (752 digits), a[1436] = 140
                                                                                      A[1437]/B[1437] = 447296 383214 644451 419826 370191 411633 334581 186301 641670 033633 296022 064311 974118 417723 477078 644157 251538 212274 713512 449696 687075 338704 763502 161254 602107 417540 775447 673306 932932 768282 245619 537289 626863 385773 319505 405023 742063 613017 947962 824236 668068 189637 021538 847111 129415 991283 789154 510089 237394 899055 495065 709123 017627 509476 868441 293732 718140 340748 358635 281404 415995 278957 706172 013631 706877 001944 767642 981125 842688 707915 783407 691772 905449 142214 552127 419279 969753 879627 984773 036354 402432 534652 667189 102046 736739 621332 950436 112903 253687 293186 172333 821372 837404 036256 769707 458572 052475 743666 500373 211098 249544 261818 358765 096775 469234 708237 230948 247886 894496 082992 781843 442635 426017 628035 812229 202009 414571 541390 859583 445740 481825 539760 265302 370695 552376 (750 digits)/43 474312 406173 670304 165772 692483 861198 756145 936574 522673 918436 141316 679432 494448 891580 454423 266558 223682 421621 775608 914598 469057 082706 976801 191445 718132 941166 159495 876099 502917 836516 046714 014854 260399 754350 376420 436368 893098 079414 041725 995830 447733 735808 819058 117052 396329 482065 867856 326589 879083 420289 663707 327046 422409 801302 919831 126263 080352 878624 971376 836973 349176 353122 337039 426131 124502 394820 837239 500870 388315 132284 878994 390721 073860 153826 511451 834812 576018 489777 806148 397522 610723 369696 260073 249166 837257 061671 680548 332860 704199 916205 068047 489552 814516 426336 913793 758256 940430 297461 210715 565253 287528 642283 822340 791388 293755 274112 018048 317604 753966 720682 574913 759353 986479 340369 837404 354233 356831 178155 076104 065801 181918 606538 963569 728229 601275 (752 digits), a[1437] = 1
                                                                                      A[1438]/B[1438] = 1 786019 795930 777264 342119 627476 784919 284494 392871 935807 351565 768003 941678 245713 938374 067300 220899 220851 099445 886558 231875 094925 241055 415576 255407 993648 939518 844979 714242 121164 415982 001749 828759 090807 798984 621474 342587 149556 735582 698021 405243 118601 474616 918029 802923 560100 638206 115826 229629 134486 775750 051597 204460 456340 972908 590477 319340 961115 866257 303366 757793 103391 516612 840271 896770 528235 493899 306505 493390 639028 631120 184964 571946 169395 571778 696758 156549 086406 145102 002015 970966 395183 726308 915542 643485 459632 643828 367369 797467 973105 504686 354768 645641 308715 957012 007292 672554 929241 575946 580524 148472 723549 106340 847709 530918 707423 067680 748605 758809 119989 661079 414301 560462 496685 769075 805175 500823 918328 612827 368360 838504 130919 780919 312439 601372 596269 (751 digits)/173 589560 492030 897905 999845 899588 687290 693953 259520 386021 261254 647098 152775 766719 869810 436962 547206 840438 182475 566559 817430 881114 112114 507267 308688 686108 084365 797697 095884 426910 467484 707044 169393 888550 626477 472958 651671 597515 877315 845512 918664 983142 713194 705527 284698 632068 507351 573847 970846 721091 453592 133029 005163 241704 003655 417766 568760 023502 562008 537620 768908 796249 773534 218637 453841 515919 239905 506130 622810 829697 437533 672544 249162 395592 146804 355850 623742 011486 806971 385820 486300 358952 210833 949540 161487 326790 075411 967025 184384 774173 838697 889203 119309 647769 738237 538891 165547 993034 066287 680841 412516 659130 131657 189769 420086 297726 502755 589979 879144 819794 565561 907752 382012 263073 859437 534266 045113 980680 296367 992719 450126 835875 520954 946342 315173 712476 (753 digits), a[1438] = 3
                                                                                      A[1439]/B[1439] = 2 233316 179145 421715 761945 997668 196552 619075 579173 577477 385199 064026 005990 219832 356097 544378 865056 472389 311720 600070 681571 782000 579760 179078 416662 595756 357059 620427 387549 054097 184264 247369 366048 717671 184757 940979 747610 891620 348600 645984 229479 786669 664253 939568 650034 689516 629489 904980 739718 371881 674805 546662 913583 473968 482385 458918 613073 679256 207005 662002 039197 519386 795570 546443 910402 235112 495844 074148 474516 481717 339035 968372 263719 074844 713993 248885 575829 056160 024729 986789 007320 797616 260961 582731 745532 196372 265161 317805 910371 226792 797872 527102 467014 146119 993268 777000 131126 981717 319613 080897 359570 973093 368159 206474 627694 176657 775917 979554 006696 014485 744072 196145 003097 922703 397111 617404 702833 332900 154218 227944 284244 612745 320679 577741 972068 148645 (751 digits)/217 063872 898204 568210 165618 592072 548489 450099 196094 908695 179690 788414 832208 261168 761390 891385 813765 064120 604097 342168 732029 350171 194821 484068 500134 404241 025531 957192 971983 929828 304000 753758 184248 148950 380827 849379 088040 490613 956729 887238 914495 430876 449003 524585 401751 028397 989417 441704 297436 600174 873881 796736 332209 664113 804958 337597 695023 103855 440633 508997 605882 145426 126656 555676 879972 640421 634726 343370 123681 218012 569818 551538 639883 469452 300630 867302 458554 587505 296749 191968 883822 969675 580530 209613 410654 164047 137083 647573 517245 478373 754902 957250 608862 462286 164574 452684 923804 933464 363748 891556 977769 946658 773941 012110 211474 591481 776867 608028 196749 573761 286244 482666 141366 249553 199807 371670 399347 337511 474523 068823 515928 017794 127493 909912 043403 313751 (753 digits), a[1439] = 1
                                                                                      A[1440]/B[1440] = 6 252652 154221 620695 866011 622813 178024 522645 551219 090762 121963 896055 953658 685378 650569 156057 951012 165629 722887 086699 595018 658926 400575 773733 088733 185161 653638 085834 489340 229358 784510 496488 560856 526150 168500 503433 837808 932797 432783 989989 864202 691940 803124 797167 102992 939133 897185 925787 709065 878250 125361 144923 031627 404277 937679 508314 545488 319628 280268 627370 836188 142165 107753 933159 717574 998460 485587 454802 442423 602463 309192 121709 099384 319084 999765 194529 308207 198726 194561 975593 985607 990416 248232 081006 134549 852377 174151 002981 618210 426691 100431 408973 579669 600955 943549 561292 934808 892676 215172 742318 867614 669735 842659 260658 786307 060738 619516 707713 772201 148961 149223 806591 566658 342092 563299 039984 906490 584128 921263 824249 406993 356410 422278 467923 545508 893559 (751 digits)/607 717306 288440 034326 331083 083733 784269 594151 651710 203411 620636 223927 817192 289057 392592 219734 174736 968679 390670 250897 281489 581456 501757 475404 308957 494590 135429 712083 039852 286567 075486 214560 537890 186451 388133 171716 827752 578743 790775 619990 747655 844895 611201 754698 088200 688864 486186 457256 565719 921441 201355 726501 669582 569931 613572 092961 958806 231213 443275 555615 980673 087102 026847 329991 213786 796762 509358 192870 870173 265722 577170 775621 528929 334496 748066 090455 540851 186497 400469 769758 253946 298303 371894 368766 982795 654884 349579 262172 218875 730921 348503 803704 337034 572342 067386 444261 013157 859962 793785 463955 368056 552447 679539 213989 843035 480690 056490 806036 272643 967317 138050 873084 664744 762180 259052 277606 843808 655703 245414 130366 481982 871463 775942 766166 401980 339978 (753 digits), a[1440] = 2
                                                                                      A[1441]/B[1441] = 77 265142 029804 870066 154085 471426 332846 890822 193802 666622 848765 816697 449894 444376 162927 417074 277202 459945 986365 640465 821795 689117 386669 463875 481460 817696 200716 650441 259631 806402 598390 205232 096327 031473 206763 982185 801318 085189 542008 525862 599912 089959 301751 505573 885949 959123 395721 014433 248508 910883 179139 285739 293112 325303 734539 558693 158933 514795 570229 190452 073455 225368 088617 744360 521302 216638 322893 531777 783599 711277 049341 428881 456330 903864 711175 583237 274315 440874 359473 693916 834616 682611 239746 554805 360130 424898 354973 353585 328896 347086 003049 434785 423049 357591 315863 512515 348833 693831 901685 988723 770947 009923 480070 334380 063378 905521 210118 472119 273109 802019 534757 875243 802998 027814 156700 097223 580720 342447 209384 118937 168164 889670 388021 192824 518174 871353 (752 digits)/7509 671548 359484 980126 138615 596877 959724 579919 016617 349634 627325 475548 638515 729857 472497 528195 910608 688273 292140 352936 109904 327649 215911 188920 207624 339322 650688 502189 450211 368633 209835 328484 638930 386367 038425 909981 021071 435539 446037 327127 886365 569623 783424 580962 460159 294771 823654 928783 086075 657469 290150 514756 367200 503293 167823 453141 200697 878416 759940 176389 373959 190650 448824 515571 445414 201571 747024 657820 565760 406683 495867 858996 987035 483413 277423 952768 948768 825474 102386 429067 931178 549316 043262 634817 204202 022659 332034 793640 143754 249429 936948 601702 653277 330390 973211 783817 081699 253017 889174 459021 394448 576030 928411 579988 327900 359762 454757 280463 468477 181566 942854 959682 118303 395716 308434 702952 525051 205950 419492 633221 299722 475359 438807 103908 867167 393487 (754 digits), a[1441] = 12
                                                                                      A[1442]/B[1442] = 778 904072 452270 321357 406866 337076 506493 430867 489245 756990 609622 063030 452603 129140 279843 326800 723036 765089 586543 491357 812975 550100 267270 412487 903341 362123 660804 590247 085658 293384 768412 548809 524126 840882 236140 325291 850989 784692 852869 248615 863323 591533 820639 852905 962492 530367 854396 070120 194154 987081 916754 002315 962750 657315 283075 095246 134823 467583 982560 531891 570740 395845 993931 376764 930597 164843 714522 772580 278420 715233 802606 410523 662693 357732 111521 026902 051361 607469 789298 914762 331774 816528 645697 629059 735854 101360 723884 538834 907173 897551 130925 756827 810163 176869 102184 686446 423145 830995 232032 629556 577084 768970 643362 604459 420096 115950 720701 428906 503299 169156 496802 559029 596638 620234 130300 012220 713694 008601 015105 013621 088642 253114 302490 396168 727257 607089 (753 digits)/75704 432789 883289 835587 717239 052513 381515 393341 817883 699757 893890 979414 202349 587632 117567 501693 280823 851412 312073 780258 380532 857948 660869 364606 385200 887816 642314 733977 541965 972899 173839 499406 927194 050121 772392 271527 038466 934138 251148 891269 611311 541133 445447 564322 689793 636582 722735 745087 426476 496134 102860 874065 341587 602863 291806 624373 965785 015381 042677 319509 720264 993606 515092 485705 667928 812479 979604 771076 527777 332557 535849 365591 399284 168629 522305 618145 028539 441238 424334 060437 565731 791463 804520 716939 024815 881477 669927 198573 656418 225220 717989 820730 869807 876251 799504 282431 830150 390141 685530 054169 312542 312756 963655 013873 122039 078314 604063 610670 957415 782986 566600 469905 847778 719343 343399 307132 094320 715207 440340 462579 479207 625058 164013 805255 073654 274848 (755 digits), a[1442] = 10
                                                                                      A[1443]/B[1443] = 1635 073286 934345 512780 967818 145579 345833 752557 172294 180604 068009 942758 355100 702656 722614 070675 723275 990125 159452 623181 447746 789317 921210 288851 288143 541943 522325 830935 430948 393172 135215 302851 144580 713237 679044 632769 503297 654575 247747 023094 326559 273026 943031 211385 810935 019859 104513 154673 636818 885047 012647 290371 218613 639934 300689 749185 428580 449963 535350 254235 214936 017060 076480 497890 382496 546325 751939 076938 340441 141744 654554 249928 781717 619328 934217 637041 377038 655813 938071 523441 498166 315668 531141 812924 831838 627619 802742 431255 143244 142188 264900 948441 043375 711329 520232 885408 195125 355822 365751 247836 925116 547864 766795 543298 903571 137422 651521 329932 279708 140332 528362 993302 996275 268282 417300 121665 008108 359649 239594 146179 345449 395898 993001 985161 972690 085531 (754 digits)/158918 537128 126064 651301 573093 701904 722755 366602 652384 749150 415107 434377 043214 905121 707632 531582 472256 391097 916287 913452 870970 043546 537649 918132 978026 114955 935317 970144 534143 314431 557514 327298 493318 486610 583210 453035 098005 303815 948335 109667 108988 651890 674319 709607 839746 567937 269126 418957 939028 649737 495872 262887 050375 709019 751436 701889 132267 909178 845294 815408 814489 177863 479009 486982 781271 826531 706234 199973 621315 071798 567566 590179 785603 820672 322035 189059 005847 707950 951054 549943 062642 132243 652304 068695 253833 785614 671889 190787 456590 699871 372928 243164 392893 082894 572220 348680 742000 033301 260234 567360 019533 201544 855721 607734 571978 516391 662884 501805 383308 747540 076055 899493 813860 834402 995233 317216 713692 636365 300173 558380 258137 725475 766834 714419 014475 943183 (756 digits), a[1443] = 2
                                                                                      A[1444]/B[1444] = 4049 050646 320961 346919 342502 628235 198160 935981 833834 118198 745641 948547 162804 534453 725071 468152 169588 745339 905448 737720 708469 128736 109690 990190 479628 446010 705456 252117 947555 079729 038843 154511 813288 267357 594229 590830 857585 093843 348363 294804 516442 137587 706702 275677 584362 570086 063422 379467 467792 757175 942048 583058 399977 937183 884454 593616 991984 367511 053261 040362 000612 429966 146892 372545 695590 257495 218400 926456 959302 998723 111714 910381 226128 596389 979956 300984 805438 919097 665441 961645 328107 447865 707981 254909 399531 356600 329369 401345 193662 181927 660727 653709 896914 599528 142650 457262 813396 542639 963535 125230 427317 864700 176953 691057 227238 390796 023744 088771 062715 449821 553528 545635 589189 156798 964900 255550 729910 727899 494293 305979 779541 044912 288494 366492 672637 778151 (754 digits)/393541 507046 135419 138190 863426 456322 827026 126547 122653 198058 724105 848168 288779 397875 532832 564858 225336 633608 144649 607164 122472 945041 736169 200872 341253 117728 512950 674266 610252 601762 288868 154003 913831 023342 938813 177597 234477 541770 147819 110603 829288 844914 794086 983538 369286 772457 260988 583003 304533 795609 094605 399839 442339 020902 794680 028152 230320 833738 733266 950327 349243 349333 473111 459671 230472 465543 392073 171023 770407 476154 670982 545950 970491 809974 166375 996263 040234 857140 326443 160323 691016 055951 109128 854329 532483 452707 013705 580148 569599 624963 463846 307059 655594 042040 943944 979793 314150 456744 205999 188889 351608 715846 675098 229342 265996 111097 929832 614281 724033 278066 718712 268893 475500 388149 333865 941565 521705 987938 040687 579339 995483 076009 697683 234093 102606 161214 (756 digits), a[1444] = 2
                                                                                      A[1445]/B[1445] = 5684 123933 255306 859700 310320 773814 543994 688539 006128 298802 813651 891305 517905 237110 447685 538827 892864 735465 064901 360902 156215 918054 030901 279041 767771 987954 227782 083053 378503 472901 174058 457362 957868 980595 273274 223600 360882 748418 596110 317898 843001 410614 649733 487063 395297 589945 167935 534141 104611 642222 954695 873429 618591 577118 185144 342802 420564 817474 588611 294597 215548 447026 223372 870436 078086 803820 970340 003395 299744 140467 766269 160310 007846 215718 914173 938026 182477 574911 603513 485086 826273 763534 239123 067834 231369 984220 132111 832600 336906 324115 925628 602150 940290 310857 662883 342671 008521 898462 329286 373067 352434 412564 943749 234356 130809 528218 675265 418703 342423 590154 081891 538938 585464 425081 382200 377215 738019 087548 733887 452159 124990 440811 281496 351654 645327 863682 (754 digits)/552460 044174 261483 789492 436520 158227 549781 493149 775037 947209 139213 282545 331994 302997 240465 096440 697593 024706 060937 520616 993442 988588 273819 119005 319279 232684 448268 644411 144395 916193 846382 481302 407149 509953 522023 630632 332482 845586 096154 220270 938277 496805 468406 693146 209033 340394 530115 001961 243562 445346 590477 662726 492714 729922 546116 730041 362588 742917 578561 765736 163732 527196 952120 946654 011744 292075 098307 370997 391722 547953 238549 136130 756095 630646 488411 185322 046082 565091 277497 710266 753658 188194 761432 923024 786317 238321 685594 770936 026190 324834 836774 550224 048487 124935 516165 328474 056150 490045 466233 756249 371141 917391 530819 837076 837974 627489 592717 116087 107342 025606 794768 168387 289361 222552 329099 258782 235398 624303 340861 137720 253620 801485 464517 948512 117082 104397 (756 digits), a[1445] = 1
                                                                                      A[1446]/B[1446] = 9733 174579 576268 206619 652823 402049 742155 624520 839962 417001 559293 839852 680709 771564 172757 006980 062453 480804 970350 098622 864685 046790 140592 269232 247400 433964 933238 335171 326058 552630 212901 611874 771157 247952 867503 814431 218467 842261 944473 612703 359443 548202 356435 762740 979660 160031 231357 913608 572404 399398 896744 456488 018569 514302 069598 936419 412549 184985 641872 334959 216160 876992 370265 242981 773677 061316 188740 929852 259047 139190 877984 070691 233974 812108 894130 239010 987916 494009 268955 446732 154381 211399 947104 322743 630901 340820 461481 233945 530568 506043 586356 255860 837204 910385 805533 799933 821918 441102 292821 498297 779752 277265 120702 925413 358047 919014 699009 507474 405139 039975 635420 084574 174653 581880 347100 632766 467929 815448 228180 758138 904531 485723 569990 718147 317965 641833 (754 digits)/946001 551220 396902 927683 299946 614550 376807 619696 897691 145267 863319 130713 620773 700872 773297 661298 922929 658314 205587 127781 115915 933630 009988 319877 660532 350412 961219 318677 754648 517956 135250 635306 320980 533296 460836 808229 566960 387356 243973 330874 767566 341720 262493 676684 578320 112851 791103 584964 548096 240955 685083 062565 935053 750825 340796 758193 592909 576656 311828 716063 512975 876530 425232 406325 242216 757618 490380 542021 162130 024107 909531 682081 726587 440620 654787 181585 086317 422231 603940 870590 444674 244145 870561 777354 318800 691028 699300 351084 595789 949798 300620 857283 704081 166976 460110 308267 370300 946789 672232 945138 722750 633238 205918 066419 103970 738587 522549 730368 831375 303673 513480 437280 764861 610701 662965 200347 757104 612241 381548 717060 249103 877495 162201 182605 219688 265611 (756 digits), a[1446] = 1
                                                                                      A[1447]/B[1447] = 103015 869729 017988 925896 838554 794311 965550 933747 405752 468818 406590 289832 325002 952752 175255 608628 517399 543514 768402 347130 803066 385955 436823 971364 241776 327603 560165 434766 639088 999203 303074 576110 669441 460123 948312 367912 545561 171038 040846 444932 437436 892638 214091 114473 191899 190257 481514 670226 828655 636211 922140 438309 804286 720138 881133 706996 546056 667331 007334 644189 377157 216949 926025 300253 814857 416982 857749 301917 890215 532376 546109 867222 347594 336807 855476 328136 061642 515004 293067 952408 370085 877533 710166 295270 540383 392424 746924 172055 642591 384551 789191 160759 312339 414715 718221 342009 227706 309485 257501 356045 149957 185216 150778 488489 711288 718365 665360 493447 393813 989910 436092 384680 332000 243884 853206 704880 417317 242031 015695 033548 170305 298046 981403 533127 824984 282012 (756 digits)/10 012475 556378 230513 066325 435986 303731 317857 690118 751949 399887 772404 589681 539731 311724 973441 709429 926889 607848 116808 798428 152602 324888 373702 317781 924602 736814 060461 831188 690881 095755 198888 834365 616954 842918 130391 712928 002086 719148 535887 529018 613940 914008 093343 459991 992234 468912 441150 851606 724524 854903 441308 288385 843252 238175 954084 311977 291684 509480 696848 926371 293491 292501 204445 009906 433911 868260 002112 791209 013022 789032 333865 956948 021970 036853 036283 001172 909256 787407 316906 416171 200400 629653 467050 696567 974324 148608 678598 281781 984089 822817 842983 123061 089298 794700 117268 411147 759159 957942 188563 207636 598648 249773 590000 501267 877682 013364 818214 419775 421095 062341 929572 541194 937977 329568 958751 262259 806444 746717 156348 308322 744659 576437 086529 774564 313964 760507 (758 digits), a[1447] = 10
                                                                                      A[1448]/B[1448] = 936876 002140 738168 539691 199816 550857 432114 028247 491734 636367 218606 448343 605736 346333 750057 484636 719049 372437 885971 222800 092282 520389 072008 011510 423387 382396 974727 248071 077859 545459 940572 796870 796130 389068 402315 125644 128518 381604 312091 617095 296375 581946 283255 792999 706752 872348 564989 945650 030305 125306 196008 401276 257149 995551 999802 299388 327059 190964 707884 132663 610575 829541 704492 945266 107393 814161 908484 647113 270986 930579 792972 875692 362323 843379 593417 192235 542699 129047 906567 018407 485154 109203 338600 980178 494351 872643 183798 782446 313890 967009 689076 702694 648259 642827 269525 878016 871275 226469 610333 702704 129366 944210 477709 321820 759646 384305 687253 948500 949464 949169 560251 546697 162655 776844 025960 976690 223784 993727 369436 060072 437279 168146 402622 516297 742824 179941 (756 digits)/91 058281 558624 471520 524612 223823 348132 237526 830765 665235 744257 814960 437847 478355 506397 534273 046168 264936 128947 256866 313634 489336 857625 373309 179914 981956 981739 505375 799375 972578 379752 925250 144596 873574 119559 634362 224581 585740 859693 066961 092042 293034 567793 102584 816612 508430 333063 761461 249425 068819 935086 656857 658038 524323 894408 927555 565989 218070 161982 583469 053405 154397 509041 265237 495483 147423 571958 509395 662902 279335 125398 914325 294613 924317 772297 981334 192141 269628 508897 456098 616131 248279 911027 074018 046466 087718 028506 806684 887122 452598 355158 887468 964833 507770 319277 515526 008597 202740 568269 369301 813868 110584 881200 515922 577830 003108 858870 886479 508347 621230 864750 879633 308035 206657 576822 291726 560686 015107 332695 788683 491964 951040 065428 940969 153684 045371 110174 (758 digits), a[1448] = 9
                                                                                      A[1449]/B[1449] = 17 903659 910403 043191 180029 635069 260603 175717 470449 748710 559795 560112 808360 833993 533093 426347 816726 179337 619834 601855 580332 556434 273347 804976 190062 286136 593146 079983 148117 118420 362942 173957 716655 795918 852423 592299 755150 987410 421519 970587 169743 068572 949617 595951 181467 620203 764880 216323 637577 404453 017029 646300 062558 690136 635626 877377 395374 760181 295660 457133 164797 978097 978242 311391 260309 855339 886059 118957 597070 038967 213392 612594 505377 231747 361020 130402 980611 372925 966914 517841 302150 588013 952397 143584 918661 933068 972645 239101 038535 606519 757735 881648 511957 629272 628433 839213 024329 781935 612407 853841 707423 607929 125215 227255 603084 144570 020173 723185 514965 433648 024132 080871 771926 422460 003921 346465 261994 669232 122851 034980 174924 478609 492828 631231 342784 938643 700891 (758 digits)/1740 119825 170243 189403 033957 688629 918243 830867 474666 391428 540786 256652 908783 628485 933278 124629 586626 960676 057845 997268 757483 450002 619770 466576 736166 581785 389864 662602 019332 169870 311060 778641 581706 214863 114551 183273 979978 131163 053316 808148 277822 181597 702077 042454 975629 652410 797123 908914 590683 032103 621549 921603 791117 805406 231945 577640 065772 435017 587149 782760 941069 227043 964285 243957 424086 234959 735471 680630 386352 320390 171611 706046 554612 584007 710514 681632 651857 032198 456458 982780 122664 917718 939167 873393 579423 640966 690238 005611 137108 583458 570836 704893 454897 736934 860972 912262 574494 611230 755060 205297 671130 699760 992583 392529 480037 936750 331911 661325 078380 224481 492608 642605 393863 864471 289192 501555 915294 093484 067937 141334 655656 814420 819586 964943 694561 176015 853813 (760 digits), a[1449] = 19
                                                                                      A[1450]/B[1450] = 54 647855 733349 867742 079780 105024 332666 959266 439596 737866 315753 898944 873426 107716 945614 029100 934815 257062 231941 691537 963797 761585 340432 486936 581697 281797 161835 214676 692422 433120 634286 462445 946838 183886 946339 179214 391097 090749 646164 223853 126324 502094 430799 071109 337402 567364 166989 213960 858382 243664 176395 134908 588952 327559 902432 631934 485512 607603 077946 079283 627057 544869 764268 638666 726195 673413 472339 265357 438323 387888 570757 630756 391824 057565 926439 984626 134069 661477 029791 460090 924859 249195 966394 769355 736164 293558 790578 901101 898053 133450 240217 334022 238567 536077 528128 787164 951006 217082 063693 171858 824974 953154 319856 159476 131073 193356 444826 856810 493397 250409 021565 802866 862476 430035 788608 065356 762674 231481 362280 474376 584845 873107 646632 296316 544652 558755 282614 (758 digits)/5311 417757 069354 039729 626485 289713 102863 730129 254764 839521 366616 584919 164198 363813 306231 908161 806049 146964 302485 248672 586084 839344 716936 773039 388414 727313 151333 493181 857372 482189 312935 261174 889715 518163 463213 184184 164515 979230 019643 491405 925508 837827 674024 229949 743501 465662 724435 488205 021474 165130 799736 421669 031391 940542 590245 660475 763306 523122 923431 931751 876612 835529 401896 997109 767741 852302 778373 551286 821959 240505 640234 032464 958451 676340 903842 026232 147712 366223 878274 404438 984126 001436 728530 694198 784737 010618 099220 823518 298448 202974 067669 002149 329526 718574 902196 252313 732081 036432 833449 985194 827260 209867 858950 693511 017943 813359 854605 870454 743488 294675 342576 807449 489626 800071 444399 796394 306568 295559 536507 212687 458935 394302 524189 835800 237367 573418 671613 (760 digits), a[1450] = 3
                                                                                      A[1451]/B[1451] = 72 551515 643752 910933 259809 740093 593270 134983 910046 486576 875549 459057 681786 941710 478707 455448 751541 436399 851776 293393 544130 318019 613780 291912 771759 567933 754981 294659 840539 551540 997228 636403 663493 979805 798762 771514 146248 078160 067684 194440 296067 570667 380416 667060 518870 187567 931869 430284 495959 648117 193424 781208 651511 017696 538059 509311 880887 367784 373606 536416 791855 522967 742510 950057 986505 528753 358398 384315 035393 426855 784150 243350 897201 289313 287460 115029 114681 034402 996705 977932 227009 837209 918791 912940 654826 226627 763224 140202 936588 739969 997953 215670 750525 165350 156562 626377 975335 999017 676101 025700 532398 561083 445071 386731 734157 337926 465000 579996 008362 684057 045697 883738 634402 852495 792529 411822 024668 900713 485131 509356 759770 351717 139460 927547 887437 497398 983505 (758 digits)/7051 537582 239597 229132 660442 978343 021107 560996 729431 230949 907402 841572 072981 992299 239510 032791 392676 107640 360331 245941 343568 289347 336707 239616 124581 309098 541198 155783 876704 652059 623996 039816 471421 733026 577764 367458 144494 110393 072960 299554 203331 019425 376101 272404 719131 118073 521559 397119 612157 197234 421286 343272 822509 745948 822191 238115 829078 958140 510581 714512 817682 062573 366182 241067 191828 087262 513845 231917 208311 560895 811845 738511 513064 260348 614356 707864 799569 398422 334733 387219 106790 919155 667698 567592 364160 651584 789458 829129 435556 786432 638505 707042 784424 455509 763169 164576 306575 647663 588510 190492 498390 909628 851534 086040 497981 750110 186517 531779 821868 519156 835185 450054 883490 664542 733592 297950 221862 389043 604444 354022 114592 208723 343776 800743 931928 749434 525426 (760 digits), a[1451] = 1
                                                                                      A[1452]/B[1452] = 127 199371 377102 778675 339589 845117 925937 094250 349643 224443 191303 358002 555213 049427 424321 484549 686356 693462 083717 984931 507928 079604 954212 778849 353456 849730 916816 509336 532961 984661 631515 098849 610332 163692 745101 950728 537345 168909 713848 418293 422392 072761 811215 738169 856272 754932 098858 644245 354341 891781 369819 916117 240463 345256 440492 141246 366399 975387 451552 615700 418913 067837 506779 588724 712701 202166 830737 649672 473716 814744 354907 874107 289025 346879 213900 099655 248750 695880 026497 438023 151869 086405 885186 682296 390990 520186 553803 041304 834641 873420 238170 549692 989092 701427 684691 413542 926342 216099 739794 197559 357373 514237 764927 546207 865230 531282 909827 436806 501759 934466 067263 686605 496879 282531 581137 477178 787343 132194 847411 983733 344616 224824 786093 223864 432090 056154 266119 (759 digits)/12362 955339 308951 268862 286928 268056 123971 291125 984196 070471 274019 426491 237180 356112 545741 940953 198725 254604 662816 494613 929653 128692 053644 012655 512996 036411 692531 648965 734077 134248 936931 300991 361137 251190 040977 551642 309010 089623 092603 790960 128839 857253 050125 502354 462632 583736 245994 885324 633631 362365 221022 764941 853901 686491 412436 898591 592385 481263 434013 646264 694294 898102 768079 238176 959569 939565 292218 783204 030270 801401 452079 770976 471515 936689 518198 734096 947281 764646 213007 791658 090916 920592 396229 261791 148897 662202 888679 652647 734004 989406 706174 709192 113951 174084 665365 416890 038656 684096 421960 175687 325651 119496 710484 779551 515925 563470 041123 402234 565356 813832 177762 257504 373117 464614 177992 094344 528430 684603 140951 566709 573527 603025 867966 636544 169296 322853 197039 (761 digits), a[1452] = 1
                                                                                      A[1453]/B[1453] = 4142 931399 711041 828544 126684 783867 223257 150995 098629 668758 997256 915139 448604 523388 056994 961038 714955 627186 530751 811201 797828 865378 148589 215092 082378 759323 093109 593428 895323 060713 205711 799591 194123 217973 642025 194827 341293 483270 910833 579829 812613 899045 339320 288495 919598 345395 095346 046135 834900 185121 027662 096960 346338 065902 633808 029195 605686 580182 823290 238830 197073 693767 959457 789248 792943 998091 942003 173834 194331 498675 141202 214784 146012 389448 132263 303997 074703 302563 844623 994673 086820 602198 244765 746425 166522 872597 484921 461957 645128 689417 619410 805846 401491 611036 066687 859751 618286 914209 349515 347599 968351 016691 922752 865383 421534 338979 579478 557804 064680 586971 198135 855114 534539 893506 388928 681543 219649 130948 602314 988823 787489 546110 294444 091209 714319 294335 499313 (760 digits)/402666 108440 126037 832725 842147 556138 988188 877028 223705 486030 676024 489291 662753 387900 703252 143293 751884 254989 570459 073587 092468 407493 053315 644592 540454 474272 702210 922687 367172 948025 605797 671540 027813 771107 889046 020012 032816 978332 036281 610278 326206 451522 980117 347747 523373 797633 393395 727507 888360 792921 494014 821412 147363 713674 020171 993046 785414 358570 399018 394983 035118 801861 944717 862729 898066 153351 864846 294446 176977 205742 278398 409758 601574 234413 196716 198967 112585 867101 150982 720278 016132 378112 347034 944909 128885 842077 227207 713856 923716 447447 236096 401190 430862 026219 054862 505057 543589 538749 091235 812486 919226 733523 587047 031689 007599 781151 502466 403285 913286 561786 523577 690194 823249 532196 429339 316975 131644 296344 114894 488728 467475 505551 118709 170157 349411 080736 830674 (762 digits), a[1453] = 32
                                                                                      A[1454]/B[1454] = 4270 130771 088144 607219 466274 628985 149194 245245 448272 893202 188560 273142 003817 572815 481316 445588 401312 320648 614469 796133 305756 944983 102801 993941 435835 609054 009926 102765 428285 045374 837226 898440 804455 381666 387127 145555 878638 652180 624681 998123 235005 971807 150536 026665 775871 100327 194204 690381 189242 076902 397482 013077 586801 411159 074300 170441 972086 555570 274842 854530 615986 761605 466237 377973 505645 200258 772740 823506 668048 313419 496110 088891 435037 736327 346163 403652 323453 998443 871121 432696 238689 688604 129952 428721 557513 392784 038724 503262 479770 562837 857581 355539 390584 312463 751379 273294 544629 130309 089309 545159 325724 530929 687680 411591 286764 870262 489305 994610 566440 521437 265399 541720 031419 176037 970066 158722 006992 263143 449726 972557 132105 770935 080537 315074 146409 350489 765432 (760 digits)/415029 063779 434989 101588 129075 824195 112160 168154 207901 556501 950043 915782 899933 744013 248994 084246 950609 509594 233275 568201 022121 536185 106959 657248 053450 510684 394742 571653 101250 082274 542728 972531 388951 022297 930023 571654 341827 067955 128885 401238 455046 308776 030242 850101 986006 381369 639390 612832 521992 155286 715037 586354 001265 400165 432608 891638 377799 839833 833032 041247 729413 699964 712797 100906 857636 092917 157065 077650 207248 007143 730478 180735 073090 171102 714914 933064 059867 631747 363990 511936 107049 298704 743264 206700 277783 504280 115887 366504 657721 436853 942271 110382 544813 200303 720227 921947 582246 222845 513195 988174 244877 853020 297531 811240 523525 344621 543589 805520 478643 375618 701339 947699 196366 996810 607331 411319 660074 980947 255846 055438 041003 108576 986675 806701 518707 403590 027713 (762 digits), a[1454] = 1
                                                                                      A[1455]/B[1455] = 8413 062170 799186 435763 592959 412852 372451 396240 546902 561961 185817 188281 452422 096203 538311 406627 116267 947835 145221 607335 103585 810361 251391 209033 518214 368377 103035 696194 323608 106088 042938 698031 998578 599640 029152 340383 219932 135451 535515 577953 047619 870852 489856 315161 695469 445722 289550 736517 024142 262023 425144 110037 933139 477061 708108 199637 577773 135753 098133 093360 813060 455373 425695 167222 298589 198350 714743 997340 862379 812094 637312 303675 581050 125775 478426 707649 398157 301007 715745 427369 325510 290802 374718 175146 724036 265381 523645 965220 124899 252255 476992 161385 792075 923499 818067 133046 162916 044518 438824 892759 294075 547621 610433 276974 708299 209242 068784 552414 631121 108408 463535 396834 565959 069544 358994 840265 226641 394092 052041 961380 919595 317045 374981 406283 860728 644825 264745 (760 digits)/817695 172219 561026 934313 971223 380334 100349 045182 431607 042532 626068 405074 562687 131913 952246 227540 702493 764583 803734 641788 114589 943678 160275 301840 593904 984957 096953 494340 468423 030300 148526 644071 416764 793405 819069 591666 374644 046287 165167 011516 781252 760299 010360 197849 509380 179003 032786 340340 410352 948208 209052 407766 148629 113839 452780 884685 163214 198404 232050 436230 764532 501826 657514 963636 755702 246269 021911 372096 384225 212886 008876 590493 674664 405515 911631 132031 172453 498848 514973 232214 123181 676817 090299 151609 406669 346357 343095 080361 581437 884301 178367 511572 975675 226522 775090 427005 125835 761594 604431 800661 164104 586543 884578 842929 531125 125773 046056 208806 391929 937405 224917 637894 019616 529007 036670 728294 791719 277291 370740 544166 508478 614128 105384 976858 868118 484326 858387 (762 digits), a[1455] = 1
                                                                                      A[1456]/B[1456] = 46335 441625 084076 786037 431071 693247 011451 226448 182785 703008 117646 214549 265928 053833 172873 478723 982652 059824 340577 832808 823685 996789 359758 039109 026907 450939 525104 583737 046325 575815 051920 388600 797348 379866 532888 847471 978299 329438 302259 887888 473105 326069 599817 602474 253218 328938 641958 372966 309953 387019 523202 563267 252498 796467 614841 168629 860952 234335 765508 321334 681289 038472 594713 214084 998591 192012 346460 810210 979947 373892 682671 607269 340288 365204 738296 941899 314240 503482 449848 569542 866241 142616 003543 304455 177694 719691 656954 329363 104266 824115 242542 162468 350963 929962 841714 938525 359209 352901 283434 008955 796102 269037 739846 796464 828260 916472 833228 756683 722046 063479 583076 525892 861214 523759 765040 360048 140199 233603 709936 779461 730082 356161 955444 346493 450052 574616 089157 (761 digits)/4 503504 924877 240123 773157 985192 725865 613905 394066 365936 769165 080385 941155 713369 403583 010225 221950 463078 332513 251948 777141 595071 254575 908336 166451 022975 435469 879510 043355 443365 233775 285362 192888 472774 989327 025371 529986 215047 299390 954720 458822 361310 110271 082043 839349 532907 276384 803322 314534 573756 896327 760299 625184 744410 969362 696513 315064 193870 831854 993284 222401 552076 209098 000371 919090 636147 324262 266621 938132 128374 071573 774861 133203 446412 198682 273070 593219 922135 125989 938856 673006 722957 682790 194759 964747 311130 236066 831362 768312 564910 858359 834108 668247 423189 332917 595680 056973 211425 030818 535354 991480 065400 785739 720426 025888 179150 973486 773870 849552 438293 062644 825928 137169 294449 641845 790685 052793 618671 367404 109548 776270 583396 179217 513600 690995 859299 825224 319648 (763 digits), a[1456] = 5
                                                                                      A[1457]/B[1457] = 471767 478421 639954 296137 903676 345322 486963 660722 374759 592042 362279 333774 111702 634535 267046 193866 942788 546078 550999 935423 340445 778254 848971 600123 787288 877772 354081 533564 786863 864238 562142 584039 972062 398305 358040 815103 002925 429834 558114 456837 778673 131548 488032 339904 227652 735108 709134 466180 123676 132218 657169 742710 458127 441737 856519 885936 187295 479110 753216 306707 625950 840099 372827 308072 284501 118474 179352 099450 661853 551021 464028 376368 983933 777822 861396 126642 540562 335832 214231 122797 987921 716962 410151 219698 500983 462298 093189 258851 167567 493407 902413 786069 301715 223128 235216 518299 755009 573531 273164 982317 255098 237999 008901 241622 990908 373970 401072 119251 851581 743204 294300 655763 178104 307142 009398 440746 628633 730129 151409 755998 220418 878664 929424 871218 361254 390986 156315 (762 digits)/45 852744 420991 962264 665893 823150 638990 239402 985846 090974 734183 429927 816631 696381 167744 054498 447045 333277 089716 323222 413204 065302 489437 243636 966350 823659 339655 892053 927894 902075 368053 002148 572956 144514 686676 072784 891528 525117 040196 712371 599740 394353 863009 830798 591344 838452 942851 066009 485686 147921 911485 812048 659613 592738 807466 417914 035327 101922 516954 164892 660246 285294 592806 661234 154543 117175 488891 688130 753417 667965 928623 757487 922528 138786 392338 642337 064230 393804 758747 903539 962281 352758 504719 037898 799082 517971 707025 656722 763487 230546 467899 519454 194047 207568 555698 731890 996737 240086 069779 957981 715461 818112 443941 088839 101811 322634 860640 784764 704330 774860 563853 484199 009586 964112 947464 943521 256230 978432 951332 466228 306872 342440 406303 241391 886817 461116 736570 054867 (764 digits), a[1457] = 10
                                                                                      A[1458]/B[1458] = 3 348707 790576 563756 859002 756806 110504 420196 851504 806102 847304 653601 550968 047846 495580 042196 835792 582171 882374 197577 380772 206806 444573 302559 239975 537929 595346 003675 318690 554372 625484 986918 476880 601785 168004 039174 553192 998777 338280 209061 085752 923817 246909 016043 981803 846787 474699 605899 636227 175686 312550 123390 762240 459390 888632 610480 370183 172020 588111 038022 468288 062944 919168 204504 370590 990099 021331 601925 506365 612922 231042 930870 241852 227824 809964 768069 828397 098176 854307 949466 429128 781693 161352 874601 842344 684578 955778 309279 141321 277239 277970 559438 664953 462970 491860 488230 566623 644276 367620 195588 885176 581789 935030 802155 487825 764619 534265 640733 591446 683118 265909 643181 116235 107944 673753 830829 445274 540635 344507 769805 071449 273014 506816 461418 445021 978833 311519 183362 (763 digits)/325 472715 871820 975976 434414 747247 198797 289726 294989 002759 908449 089880 657577 588037 577791 391714 351267 796017 960527 514505 669570 052188 680636 613794 930906 788590 813061 123887 538619 757892 810146 300402 203581 484377 796059 534865 770685 890866 580767 941321 657005 121787 151339 897633 978763 402077 876342 265388 714337 609210 276728 444640 242479 893582 621627 621911 562353 907328 450534 147532 844125 549138 358744 629011 000892 456375 746504 083537 212055 804135 571940 077276 590900 417916 945052 769430 042832 678768 437225 263636 408976 192267 215823 460051 558324 936932 185246 428422 112723 178736 133656 470288 026577 876169 222808 718917 034133 892027 519278 241226 999712 792187 893327 342299 738567 437594 997972 267223 779867 862317 009619 215321 204278 043240 274100 395333 846410 467702 026731 373146 924376 980479 023340 203343 898718 087116 981214 703717 (765 digits), a[1458] = 7
                                                                                      A[1459]/B[1459] = 3 820475 268998 203711 155140 660482 455826 907160 512227 180862 439347 015880 884742 159549 130115 309243 029659 524960 428452 748577 316195 547252 222828 151530 840099 325218 473118 357756 852255 341236 489723 549061 060920 573847 566309 397215 368296 001702 768114 767175 542590 702490 378457 504076 321708 074440 209808 315034 102407 299362 444768 780560 504950 917518 330370 467000 256119 359316 067221 791238 774995 688895 759267 577331 678663 274600 139805 781277 605816 274775 782064 394898 618221 211758 587787 629465 955039 638739 190140 163697 551926 769614 878315 284753 062043 185562 418076 402468 400172 444806 771378 461852 451022 764685 714988 723447 084923 399285 941151 468753 867493 836888 173029 811056 729448 755527 908236 041805 710698 534700 009113 937481 771998 286048 980895 840227 886021 169269 074636 921214 827447 493433 385481 390843 316240 340087 702505 339677 (763 digits)/371 325460 292812 938241 100308 570397 837787 529129 280835 093734 642632 519808 474209 284418 745535 446212 798313 129295 050243 837728 082774 117491 170073 857431 897257 612250 152717 015941 466514 659968 178199 302550 776537 628892 482735 607650 662214 415983 620964 653693 256745 516141 014349 728432 570108 240530 819193 331398 200023 757132 188214 256688 902093 486321 429094 039825 597681 009250 967488 312425 504371 834432 951551 290245 155435 573551 235395 771667 965473 472101 500563 834764 513428 556703 337391 411767 107063 072573 195973 167176 371257 545025 720542 497950 357407 454903 892272 085144 876210 409282 601555 989742 220625 083737 778507 450808 030871 132113 589058 199208 715174 610300 337268 431138 840378 760229 858613 051988 484198 637177 573472 699520 213865 007353 221565 338855 102641 446134 978063 839375 231249 322919 429643 444735 785535 548233 717784 758584 (765 digits), a[1459] = 1
                                                                                      A[1460]/B[1460] = 22 451084 135567 582312 634706 059218 389638 955999 412640 710415 044039 733005 974678 845592 146156 588411 984090 206974 024637 940463 961749 943067 558714 060213 440472 164021 960937 792459 579967 260555 074102 732223 781483 471022 999551 025251 394673 007291 178854 044938 798706 436269 139196 536425 590344 218988 523741 181070 148263 672498 536394 026193 286995 046982 540484 945481 650779 968600 924219 994216 343266 507423 715506 091162 763907 363099 720360 508313 535446 986801 141364 905363 332958 286617 748902 915399 603595 291872 805008 767954 188762 629767 552929 298367 152560 612391 046160 321621 142183 501273 134862 868700 920067 286399 066804 105465 991240 640706 073377 539358 222645 766230 800179 857439 135069 542259 075445 849762 144939 356618 311479 330589 976226 538189 578233 031968 875380 386980 717692 375879 208686 740181 434223 415635 026223 679271 824045 881747 (764 digits)/2182 100017 335885 667181 935957 599236 387734 935372 699164 471433 121611 688923 028624 010131 305468 622778 342833 442493 211746 703146 083440 639644 531005 900954 417194 849841 576646 203594 871193 057733 701142 813156 086269 628840 209737 573119 081757 970784 685591 209787 940732 702492 223088 539796 829304 604731 972308 922379 714456 394871 217799 728084 752947 325189 767097 821039 550758 953583 287975 709660 365984 721303 116501 080236 778070 324131 923482 941877 039423 164643 074759 251099 158043 201433 632009 828265 578148 041634 417091 099518 265263 917395 818535 949803 345362 211451 646606 854146 493775 225149 141436 418999 129703 294858 115345 972957 188489 552595 464569 237270 575585 843689 579669 497993 940461 238744 291037 527166 200861 048204 876982 712922 273603 080006 381927 089609 359617 698376 917050 570023 080623 595076 171557 427022 826395 828285 570138 496637 (766 digits), a[1460] = 5
                                                                                      A[1461]/B[1461] = 48 722643 540133 368336 424552 778919 235104 819159 337508 601692 527426 481892 834099 850733 422428 486066 997839 938908 477728 629505 239695 433387 340256 271957 721043 653262 394993 942676 012189 862346 637929 013508 623887 515893 565411 447718 157642 016285 125822 857053 140003 575028 656850 576927 502396 512417 257290 677174 398934 644359 517556 832947 078941 011483 411340 357963 557679 296517 915661 779671 461528 703743 190279 759657 206478 000799 580526 797904 676710 248378 064794 205625 284137 784994 085593 460265 162230 222484 800157 699605 929452 029149 984173 881487 367164 410344 510397 045710 684539 447353 041104 199254 291157 337483 848596 934379 067404 680698 087906 547470 312785 369349 773389 525934 999587 840046 059127 741330 000577 247936 632072 598661 724451 362428 137361 904165 636781 943230 510021 672973 244820 973796 253928 222113 368687 698631 350597 103171 (764 digits)/4735 525494 964584 272604 972223 768870 613257 399874 679164 036600 885855 897654 531457 304681 356472 691769 483980 014281 473737 244020 249655 396780 232085 659340 731647 311933 306009 423131 208900 775435 580484 928862 949076 886572 902210 753888 825730 357552 992147 073269 138210 921125 460526 808026 228717 449994 763811 176157 628936 546874 623813 712858 407988 136700 963289 681904 699198 916417 543439 731746 236341 277039 184553 450718 711576 221815 082361 655422 044319 801387 650082 336962 829514 959570 601411 068298 263359 155842 030155 366212 901785 379817 357614 397557 048131 877807 185485 793437 863760 859580 884428 827740 480031 673454 009199 396722 407850 237304 518196 673749 866346 297679 496607 427126 721301 237718 440688 106320 885920 733587 327438 125364 761071 167365 985419 518073 821876 842888 812164 979421 392496 513071 772758 298781 438327 204804 858061 751858 (766 digits), a[1461] = 2
                                                                                      A[1462]/B[1462] = 71 173727 675700 950649 059258 838137 624743 775158 750149 312107 571466 214898 808778 696325 568585 074478 981930 145882 502366 569969 201445 376454 898970 332171 161515 817284 355931 735135 592157 122901 712031 745732 405370 986916 564962 472969 552315 023576 304676 901991 938710 011297 796047 113353 092740 731405 781031 858244 547198 316858 053950 859140 365936 058465 951825 303445 208459 265118 839881 773887 804795 211166 905785 850819 970385 363899 300887 306218 212157 235179 206159 110988 617096 071611 834496 375664 765825 514357 605166 467560 118214 658917 537103 179854 519725 022735 556557 367331 826722 948626 175967 067955 211224 623882 915401 039845 058645 321404 161284 086828 535431 135580 573569 383374 134657 382305 134573 591092 145516 604554 943551 929251 700677 900617 715594 936134 512162 330211 227714 048852 453507 713977 688151 637748 394911 377903 174642 984918 (764 digits)/6917 625512 300469 939786 908181 368107 000992 335247 378328 508034 007467 586577 560081 314812 661941 314547 826813 456774 685483 947166 333096 036424 763091 560295 148842 161774 882655 626726 080093 833169 281627 742019 035346 515413 111948 327007 907488 328337 677738 283057 078943 623617 683615 347823 058022 054726 736120 098537 343392 941745 841613 440943 160935 461890 730387 502944 249957 870000 831415 441406 602325 998342 301054 530955 489646 545947 005844 597299 083742 966030 724841 588061 987558 161004 233420 896563 841507 197476 447246 465731 167049 297213 176150 347360 393494 089258 832092 647584 357536 084730 025865 246739 609734 968312 124545 369679 596339 789899 982765 911020 441932 141369 076276 925120 661762 476462 731725 633487 086781 781792 204420 838287 034674 247372 367346 607683 181494 541265 729215 549444 473120 108147 944315 725804 264723 033090 428200 248495 (766 digits), a[1462] = 1
                                                                                      A[1463]/B[1463] = 1401 023469 378451 430668 550470 703534 105236 547175 590345 531736 385284 564970 200895 080919 225544 901167 654512 710676 022693 458920 067157 586030 420692 583209 789844 181665 157696 910252 263175 197479 166532 182424 325936 267308 299698 434139 651627 464234 914683 994899 975493 789686 781745 730636 264470 409127 096895 983820 795702 664662 542623 156614 031726 122336 496021 123422 518405 333775 873415 483539 752637 715914 400210 925236 643799 914886 297385 616050 707697 716782 981817 314409 008963 145618 941024 597895 712914 995279 298320 583248 175530 548583 189134 298723 241939 842320 084987 025015 392275 471250 384478 490403 304425 191259 241216 691435 181665 787377 152304 197212 485976 945380 671207 810043 558078 103843 616025 972080 765392 734480 559559 254444 037331 474164 733665 690721 367866 217243 836588 601169 861467 539372 328809 339332 872003 878791 668813 816613 (766 digits)/136170 410228 673513 128556 227669 762903 632111 769574 867405 689247 027740 042628 173002 286121 933357 668178 193435 693000 497932 240180 578480 088850 730825 304948 559648 385656 076466 330926 730683 605651 931412 027224 620660 679422 029228 967039 068008 595968 869174 451353 638139 769861 449218 416664 331136 489802 750093 048367 153402 440045 614469 090778 465761 912624 840652 237845 448398 446433 340333 118471 680535 245542 904589 538873 014860 594808 193409 004104 635436 155971 422072 510140 593120 018651 036408 103011 251995 907894 527838 215105 075722 026867 704470 997404 524519 573724 995246 097540 656946 469451 375868 515793 064996 071384 375561 420634 738306 245404 190748 983138 263056 983691 945869 004419 294788 290510 343475 142575 534774 587639 211434 052818 419881 867440 965005 064054 270273 126937 667260 418866 381778 567882 714757 089062 468064 833522 993866 473263 (768 digits), a[1463] = 19
                                                                                      A[1464]/B[1464] = 1472 197197 054152 381317 609729 541671 729980 322334 340494 843843 956750 779869 009673 777244 794129 975646 636442 856558 525060 028889 268602 962485 319662 915380 951359 998949 513628 645387 855332 320380 878563 928156 731307 254224 864660 907109 203942 487811 219360 896891 914203 800984 577792 843989 357211 140532 877927 842065 342900 981520 596574 015754 397662 180802 447846 426867 726864 598894 713297 257427 557432 927081 305996 776056 614185 278785 598272 922268 919854 951962 187976 425397 626059 217230 775520 973560 478740 509636 903487 050808 293745 207500 726237 478577 761664 865055 641544 392347 218998 419876 560445 558358 515649 815142 156617 731280 240311 108781 313588 284041 021408 080961 244777 193417 692735 486148 750599 563172 910909 339035 503111 183695 738009 374782 449260 626855 880028 547455 064302 650022 314975 253350 016960 977081 266915 256694 843456 801531 (766 digits)/143088 035740 973983 068343 135851 131010 633104 104822 245734 197281 035207 629205 733083 600934 595298 982726 020249 149775 183416 187346 911576 125275 493916 865243 708490 547430 959121 957652 810777 438821 213039 769243 656007 194835 141177 294046 975496 924306 546912 734410 717083 393479 132833 764487 389158 544529 486213 146904 496795 381791 456082 531721 626697 374515 571039 740789 698356 316434 171748 559878 282861 243885 205644 069828 504507 140755 199253 601403 719179 122002 146914 098202 580678 179655 269828 999575 093503 105370 975084 680836 242771 324080 880621 344764 918013 662983 827338 745125 014482 554181 401733 762532 674731 039696 500106 790314 334646 035304 173514 894158 704989 125061 022145 929539 956550 766973 075200 776062 621556 369431 415854 891105 454556 114813 332351 671737 451767 668203 396475 968310 854898 676030 659072 814866 732787 866613 422066 721758 (768 digits), a[1464] = 1
                                                                                      A[1465]/B[1465] = 4345 417863 486756 193303 769929 786877 565197 191844 271335 219424 298786 124708 220242 635408 813804 852460 927398 423793 072813 516698 604363 511001 060018 413971 692564 179564 184954 201027 973839 838240 923660 038737 788550 775758 029020 248358 059512 439857 353405 788683 803901 391655 937331 418614 978892 690192 852751 667951 481504 627703 735771 188122 827050 483941 391713 977157 972134 531565 300009 998394 867503 570077 012204 477349 872170 472457 493931 460588 547407 620707 357770 165204 261081 580080 492066 545016 670396 014553 105294 684864 763020 963584 641609 255878 765269 572431 368075 809709 830272 311003 505369 607120 335724 821543 554452 153995 662288 004939 779480 765294 528793 107303 160762 196878 943549 076141 117225 098426 587211 412551 565781 621835 513350 223729 632186 944433 127923 312153 965193 901214 491418 046072 362731 293495 405834 392181 355727 419675 (766 digits)/422346 481710 621479 265242 499372 024924 898319 979219 358874 083809 098155 301039 639169 487991 123955 633630 233933 992550 864764 614874 401632 339401 718659 035435 976629 480517 994710 246232 352238 483294 357491 565711 932675 069092 311583 555133 019002 444581 962999 920175 072306 556819 714885 945639 109453 578861 722519 342176 146993 203628 526634 154221 719156 661655 982731 719424 845111 079301 683830 238228 246257 733313 315877 678530 023874 876318 591916 206912 073794 399975 715900 706545 754476 377961 576066 102161 439002 118636 478007 576777 561264 675029 465713 686934 360546 899692 649923 587790 685911 577814 179336 040858 414458 150777 375775 001263 407598 316012 537778 771455 673035 233813 990160 863499 207889 824456 493876 694700 777887 326502 043143 835029 328994 097067 629708 407529 173808 463344 460212 355488 091575 919944 032902 718795 933640 566749 837999 916779 (768 digits), a[1465] = 2
                                                                                      A[1466]/B[1466] = 231779 343961 852230 626417 416008 246182 685431 490080 721261 473331 792415 389404 682533 453911 925787 156075 788559 317591 384176 413915 299869 045541 500638 855880 657261 515851 316201 299870 468843 747149 832545 981259 524498 369400 402734 070086 358101 800250 949867 697133 520977 558749 256358 030583 238523 720754 073766 243493 862646 249818 592446 986264 231337 829696 208687 216240 249994 771855 613827 172355 535122 141162 952834 075599 839220 319032 776640 333461 932458 849452 149795 181223 463382 961496 855047 859444 009729 280951 484105 348640 733856 277486 731528 040152 320952 203918 149562 306968 223430 903062 345034 735736 309065 356950 542581 893050 341575 370589 626068 844651 047442 768028 765173 628001 700836 521627 963529 779782 033114 204268 489537 140977 945571 232452 955168 681811 659964 091615 219579 414390 360131 695185 241719 532337 776138 042306 697010 044306 (768 digits)/22 527451 566403 912384 126195 602568 452030 244063 003448 266060 639163 237438 584306 609066 464464 164947 565128 418750 754971 015940 775690 198090 113566 582845 743350 469853 014884 678765 007967 479417 053422 160092 751976 087785 856727 655105 716096 982626 487150 585908 503689 549330 904924 021788 883360 190198 224200 779738 282240 287435 174103 367692 705472 742000 442282 655820 870306 489243 519423 414751 185975 334521 109490 947161 031919 769875 585640 570812 567743 630282 320715 089651 545127 567926 211618 801332 414131 360615 393104 309486 250046 989799 100642 563446 752286 026999 346694 273288 898031 367796 178332 906543 928028 641013 030897 416181 857274 937356 783968 675789 781309 375856 517202 500671 694997 974711 463167 250665 595203 849584 674039 702478 147659 891243 259397 706897 270783 663616 225459 787730 809179 708422 433064 402916 911051 215737 904354 836062 311045 (770 digits), a[1466] = 53
                                                                                      A[1467]/B[1467] = 9 970857 208223 132673 129252 658284 372733 038751 265315 285578 572691 372647 869109 569181 153621 622652 563719 835449 080222 592399 315056 498732 469285 587489 216839 954809 361170 781610 095458 134120 965683 723137 232897 341980 659975 346585 262071 457889 850648 197716 765425 205936 417873 960726 733694 235412 682618 024700 138187 575293 369903 210991 597484 774577 160878 365264 275488 721909 721356 694578 409682 877755 640083 984069 728142 958644 190866 889465 799451 643138 147149 798962 957813 186548 924445 259124 501109 088755 095466 921824 676416 318840 895514 097314 982428 566214 340911 799255 009343 437801 142684 341863 243781 625535 170416 885473 555160 350028 940293 700441 085289 568832 132540 063228 200952 079519 506143 549005 629054 011122 196096 615878 683887 172913 219206 704440 262334 506379 251608 407108 719999 977080 939037 756671 184019 779770 211369 327159 324833 (769 digits)/969 102763 837078 853996 691653 409815 462225 393029 127494 799481 567828 308014 426223 829027 459950 216700 934152 240216 456304 550217 969552 919507 222764 781025 999506 180309 120559 181605 588833 967171 780447 241479 900683 707466 908381 481129 347303 271941 392057 157065 578825 693535 468552 651807 930127 287977 219495 251265 478508 506705 690073 337420 489549 625175 679810 183029 142603 882582 414508 518131 235167 630665 441424 043802 051080 128525 058863 136856 619888 175934 190724 570917 147031 175303 477570 033359 909809 945464 022121 785916 328798 122626 002659 693924 035233 521518 807546 401346 203139 501147 246129 160724 946089 978018 479366 271594 864085 713940 026665 596739 367758 834865 473521 519043 748412 120482 740648 272497 288466 310028 310209 249704 184404 652454 251169 026291 051226 709306 158115 332637 150215 553740 541713 358329 893998 210370 454007 788679 291714 (771 digits), a[1467] = 43
                                                                                      A[1468]/B[1468] = 10 202636 552184 984903 755670 074292 618915 724182 755396 006840 046023 165063 258514 251714 607533 548439 719795 624008 397813 976575 728971 798601 514827 088128 072720 612070 877022 097811 395328 602964 712833 555683 214156 866479 029375 749319 332157 815991 650899 147584 462558 726913 976623 217084 764277 473936 403372 098466 381681 437939 619721 803438 583749 005914 990574 573951 491728 971904 493212 308405 582038 412877 781246 936903 803742 797864 509899 666106 132913 575596 996601 948758 139036 649931 885942 114172 360553 098484 376418 405930 025057 052697 173000 828843 022580 887166 544829 948817 316311 661232 045746 686897 979517 934600 527367 428055 448210 691604 310883 326509 929940 616274 900568 828401 828953 780356 027771 512535 408836 044236 400365 105415 824865 118484 451659 659608 944146 166343 343223 626688 134390 337212 634222 998390 716357 555908 253676 024169 369139 (770 digits)/991 630215 403482 766380 817849 012383 914255 637092 130943 065542 206991 545453 010530 438093 924414 381648 499280 658967 211275 566158 745243 117597 336331 363871 742856 650162 135443 860370 596801 446588 833869 401572 652659 795252 765109 136235 063400 254567 879207 742974 082515 242866 373476 673596 813487 478175 443696 031003 760748 794140 864176 705113 195022 367176 122092 838850 012910 371825 933931 932882 421142 965186 550914 990963 082999 898400 644503 707669 187631 806216 511439 660568 692158 743229 689188 834692 323941 306079 415226 095402 578845 112425 103302 257370 787519 548518 154240 674635 101170 868943 424462 067268 874118 619031 510263 687776 721360 651296 810634 272529 149068 210721 990724 019715 443410 095194 203815 523162 883670 159612 984248 952182 332064 543697 510566 733188 322010 372922 383575 120367 959395 262162 974777 761246 805049 426108 358362 624741 602759 (771 digits), a[1468] = 1
                                                                                      A[1469]/B[1469] = 1479 150520 722860 958813 945743 356421 496597 321068 042340 270545 200027 141757 095161 816084 638452 597972 214289 692658 365435 219304 286995 497350 604386 277931 688608 093015 652352 866451 022776 961039 613715 741520 071486 114960 890083 248569 092796 960687 580125 449879 373881 881549 051617 220932 789650 482254 768200 203859 100314 638598 609842 906147 657341 626335 803617 014279 084460 676156 743929 104982 223214 332156 139642 898217 467105 851133 616418 808748 939006 529105 657830 420134 979090 776740 500109 699944 420755 270505 299717 375748 284631 907233 807633 450710 234076 318196 796424 428948 558222 655215 730207 255172 294364 208011 111326 525458 097499 941049 707492 717870 996738 312417 814451 353091 570296 450787 505241 354104 501444 381163 848671 795757 464464 234674 258197 688128 219382 459820 675810 650200 072208 535700 267149 524934 339507 830558 740716 807548 480849 (772 digits)/143763 853781 938597 212834 461911 193099 115037 134295 983296 237559 374610 853247 942606 914552 575621 174084 830567 131494 879986 077077 284561 853523 654481 178556 970863 803656 624475 074971 528242 275963 857641 067941 883694 223865 084097 098978 476939 929715 997972 145333 461020 666293 249193 649749 072324 145241 111723 715807 026334 862990 131518 873720 572770 498537 261178 977431 001697 425516 900706 853199 879754 617528 773182 742486 003065 498217 867397 041219 638868 271111 838035 692808 817890 200378 720762 229054 557358 020899 814679 523887 682494 311840 878184 755317 438048 508133 018203 548800 771744 629000 368666 847442 819171 118555 957337 311442 740019 500680 758000 840936 833581 178832 137780 358067 599465 828448 090083 607952 536969 294298 042058 363960 001698 944895 772778 605409 420720 410129 392932 665623 303133 305208 909710 977869 821115 569974 058225 751470 089010 (774 digits), a[1469] = 144
                                                                                      A[1470]/B[1470] = 19239 159405 949377 449485 050333 707772 074680 898067 305819 523927 646376 007905 495617 860814 907417 322078 505561 628567 148471 827531 459913 264159 371848 701240 024625 821274 357609 361674 691429 096479 691138 195444 143476 360970 600457 980717 538518 304930 192529 996016 323023 187051 647647 089211 029733 743248 389974 748634 685771 739721 547679 583358 129190 148280 437595 759579 589717 761942 164290 673174 483824 730907 596604 613730 876118 862601 523344 179842 339998 453970 548397 410512 867216 747558 387368 213449 830371 615053 272744 290657 725271 846736 672235 688076 065573 023724 898347 525148 573206 179036 538441 004137 806252 638744 974612 259010 715709 925250 508288 658832 887538 677706 488436 418592 242807 640593 595909 115893 927612 999366 433098 450262 862900 169249 808229 605275 796118 144012 128762 079289 073101 301316 107166 822537 129959 353171 882994 522299 620176 (773 digits)/1 869921 729380 605246 533228 822694 522672 409738 382939 913794 153814 076932 637676 264420 327277 407489 644751 296653 368400 651094 568163 444547 213404 844586 685112 364086 097698 253619 835000 463951 034118 983203 284817 140684 705498 858371 422955 263619 340875 852845 632309 075783 904678 612994 120334 753701 366309 896104 336495 103102 013012 573922 063480 641038 848160 517419 545453 034976 903545 643121 024480 857952 993060 602290 643281 122851 375232 920665 243524 492919 330670 405903 667083 324731 348153 059097 812401 569595 577777 006059 905942 451271 166356 519704 076497 482150 154247 390886 809045 133851 045948 217131 084025 523343 160258 955648 736532 341614 160146 664645 204707 985623 535539 781868 674594 236465 865019 374902 426545 864270 985487 531007 683662 354150 827342 556688 603510 791375 704604 491699 773470 900128 229878 801020 473554 479551 835771 115297 393852 759889 (775 digits), a[1470] = 13
                                                                                      A[1471]/B[1471] = 97674 947550 469748 206239 197411 895281 870001 811404 571437 890183 431907 181284 573251 120159 175539 208364 742097 835494 107794 356961 586561 818147 463629 784131 811737 199387 440399 674824 479922 443438 069406 718740 788867 919813 892373 152156 785388 485338 542775 429960 988997 816807 289852 666987 938319 198496 718073 947032 529173 337206 348240 822938 303292 367737 991595 812177 033049 485867 565382 470854 642337 986694 122665 966871 847700 164141 233139 707960 638998 798958 399817 472699 315174 514532 436950 767193 572613 345771 663438 829036 910991 140917 168811 891090 561941 436821 288162 054691 424253 550398 422412 275861 325627 401735 984387 820511 676049 567302 248936 012035 434431 700950 256633 446052 784334 653755 484786 933574 139509 377996 014164 047071 778965 080923 299345 714507 199973 179881 319621 046645 437715 042280 802983 637619 989304 596418 155689 419046 581729 (773 digits)/9 493372 500684 964829 878978 575383 806461 163729 048995 552267 006629 759274 041629 264708 550939 613069 397841 313833 973498 135458 917894 507297 920547 877414 604118 791294 292147 892574 249973 847997 446558 773657 492027 587117 751359 375954 213754 795036 634095 262200 306878 839940 189686 314164 251422 840830 976790 592245 398282 541844 928053 001129 191123 777964 739339 848276 704696 176581 943245 116311 975604 169519 582831 784635 958891 617322 374382 470723 258842 103464 924463 867554 028225 441546 941144 016251 291062 405335 909784 844979 053599 938850 143623 476705 137804 848799 279369 972637 594026 440999 858741 454322 267570 435886 919850 735580 994104 448090 301414 081226 864476 761698 856531 047123 731038 781795 153544 964595 740681 858324 221735 697096 782271 772453 081608 556221 622963 377598 933151 851431 532977 803774 454602 914813 345642 218874 748829 634712 720733 888455 (775 digits), a[1471] = 5
                                                                                      A[1472]/B[1472] = 116914 106956 419125 655724 247745 603053 944682 709471 877257 414111 078283 189190 068868 980974 082956 530443 247659 464061 256266 184493 046475 082306 835478 485371 836363 020661 798009 036499 171351 539917 760544 914184 932344 280784 492831 132874 323906 790268 735305 425977 312021 003858 937499 756198 968052 941745 108048 695667 214945 076927 895920 406296 432482 516018 429191 571756 622767 247809 729673 144029 126162 717601 719270 580602 723819 026742 756483 887802 978997 252928 948214 883212 182391 262090 824318 980643 402984 960824 936183 119694 636262 987653 841047 579166 627514 460546 186509 579839 997459 729434 960853 279999 131880 040480 959000 079522 391759 492552 757224 670868 321970 378656 745069 864645 027142 294349 080696 049468 067122 377362 447262 497334 641865 250173 107575 319782 996091 323893 448383 125934 510816 343596 910150 460157 119263 949590 038683 941346 201905 (774 digits)/11 363294 230065 570076 412207 398078 329133 573467 431935 466061 160443 836206 679305 529128 878217 020559 042592 610487 341898 786553 486057 951845 133952 722001 289231 155380 389846 146194 084974 311948 480677 756860 776844 727802 456858 234325 636710 058655 974971 115045 939187 915724 094364 927158 371757 594532 343100 488349 734777 644946 941065 575051 254604 419003 587500 365696 250149 211558 846790 759433 000085 027472 575892 386926 602172 740173 749615 391388 502366 596384 255134 273457 695308 766278 289297 075349 103463 974931 487561 851038 959542 390121 309979 996409 214302 330949 433617 363524 403071 574850 904689 671453 351595 959230 080109 691229 730636 789704 461560 745872 069184 747322 392070 828992 405633 018261 018564 339498 167227 722595 207223 228104 465934 126603 908951 112910 226474 168974 637756 343131 306448 703902 684481 715833 819196 698426 584600 750010 114586 648344 (776 digits), a[1472] = 1
                                                                                      A[1473]/B[1473] = 214589 054506 888873 861963 445157 498335 814684 520876 448695 304294 510190 370474 642120 101133 258495 738807 989757 299555 364060 541454 633036 900454 299108 269503 648100 220049 238408 711323 651273 983355 829951 632925 721212 200598 385204 285031 109295 275607 278080 855938 301018 820666 227352 423186 906372 140241 826122 642699 744118 414134 244161 229234 735774 883756 420787 383933 655816 733677 295055 614883 768500 704295 841936 547474 571519 190883 989623 595763 617996 051887 348032 355911 497565 776623 261269 747836 975598 306596 599621 948731 547254 128571 009859 470257 189455 897367 474671 634531 421713 279833 383265 555860 457507 442216 943387 900034 067809 059855 006160 682903 756402 079607 001703 310697 811476 948104 565482 983042 206631 755358 461426 544406 420830 331096 406921 034290 196064 503774 768004 172579 948531 385877 713134 097777 108568 546008 194373 360392 783634 (774 digits)/20 856666 730750 534906 291185 973462 135594 737196 480931 018328 167073 595480 720934 793837 429156 633628 440433 924321 315396 922012 403952 459143 054500 599415 893349 946674 681994 038768 334948 159945 927236 530518 268872 314920 208217 610279 850464 853692 609066 377246 246066 755664 284051 241322 623180 435363 319891 080595 133060 186791 869118 576180 445728 196968 326840 213972 954845 388140 790035 875744 975689 196992 158724 171562 561064 357496 123997 862111 761208 699849 179598 141011 723534 207825 230441 091600 394526 380267 397346 696018 013142 328971 453603 473114 352107 179748 712987 336161 997098 015850 763431 125775 619166 395116 999960 426810 724741 237794 762974 827098 933661 509021 248601 876116 136671 800056 172109 304093 907909 580919 428958 925201 248205 899056 990559 669131 849437 546573 570908 194562 839426 507677 139084 630647 164838 917301 333430 384722 835320 536799 (776 digits), a[1473] = 1
                                                                                      A[1474]/B[1474] = 760681 270477 085747 241614 583218 098061 388736 272101 223343 326994 608854 300613 995229 284373 858443 746867 216931 362727 348447 808856 945585 783669 732803 293882 780663 680809 513235 170470 125173 489985 250399 812962 095980 882579 648443 987967 651792 617090 569547 993792 215077 465857 619557 025759 687169 362470 586416 623766 447300 319330 628404 094000 639807 167287 691553 723557 590217 448841 614839 988680 431664 830489 245080 223026 438376 599394 725354 675093 832985 408590 992311 950946 675088 591960 608128 224154 329779 880614 735048 965889 278025 373366 870625 989938 195882 152648 610524 483434 262599 568935 110649 947580 504402 367131 789163 779624 595186 672117 775706 719579 591176 617477 750179 796738 461573 138662 777144 998594 687017 643437 831542 130553 904356 243462 328338 422653 584284 835217 752395 643674 356410 501230 049552 753488 444969 587614 621804 022524 552807 (774 digits)/73 933294 422317 174795 285765 318464 735917 785056 874728 521045 661664 622648 842109 910641 165686 921444 363894 383451 288089 552590 697915 329274 297454 520248 969280 995404 435828 262499 089818 791786 262387 348415 583461 672563 081511 065165 188104 619733 802170 246784 677388 182716 946518 651126 241298 900622 302773 730135 133958 205322 548421 303592 591789 009908 568021 007615 114685 375981 216898 386667 927152 618449 052064 901614 285365 812662 121608 977723 785992 695931 793928 696492 865911 389753 980620 350150 287043 115733 679601 939092 998969 377035 670790 415752 270623 870195 572579 372010 394365 622403 194983 048780 209095 144581 079990 971661 904860 503088 750485 227168 870169 274386 137876 457340 815648 418429 534892 251779 890956 465353 494100 003708 210551 823774 880630 120305 774786 808695 350480 926819 824728 226934 101735 607775 313713 450330 584891 904178 620548 258741 (776 digits), a[1474] = 3
                                                                                      A[1475]/B[1475] = 1 735951 595461 060368 345192 611593 694458 592157 065078 895381 958283 727898 971702 632578 669880 975383 232542 423620 025010 060956 159168 524208 467793 764714 857269 209427 581668 264879 052263 901620 963326 330751 258849 913173 965757 682092 260966 412880 509788 417176 843522 731173 752381 466466 474706 280710 865182 998955 890232 638719 052795 500969 417236 015389 218331 803894 831048 836251 631360 524735 592244 631830 365274 332096 993527 448272 389673 440332 945951 283966 869069 332656 257804 847742 960544 477526 196145 635158 067826 069719 880510 103304 875304 751111 450133 581220 202664 695720 601399 946912 417703 604565 451021 466312 176480 521715 459283 258182 404090 557574 122062 938755 314562 502062 904174 734623 225430 119772 980231 580667 042234 124510 805514 229542 818021 063597 879597 364634 174210 272795 459928 661352 388337 812239 604753 998507 721237 437981 405441 889248 (775 digits)/168 723255 575384 884496 862716 610391 607430 307310 230388 060419 490402 840778 405154 615119 760530 476517 168222 691223 891576 027193 799783 117691 649409 639913 831911 937483 553650 563766 514585 743518 452011 227349 435795 660046 371239 740610 226674 093160 213406 870815 600843 121098 177088 543575 105778 236607 925438 540865 400976 597436 965961 183365 629306 216785 462882 229203 184216 140103 223832 649080 829994 433890 262853 974791 131795 982820 367215 817559 333194 091712 767455 533997 455356 987333 191681 791900 968612 611734 756550 574204 011081 083042 795184 304618 893354 920139 858146 080182 785829 260657 153397 223336 037356 684279 159942 370134 534462 243972 263945 281436 674000 057793 524354 790797 767968 636915 241893 807653 689822 511626 417158 932617 669309 546606 751819 909743 399011 163964 271870 048202 488882 961545 342555 846197 792265 817962 503214 193080 076417 054281 (777 digits), a[1475] = 2
                                                                                      A[1476]/B[1476] = 9 440439 247782 387588 967577 641186 570354 349521 597495 700253 118413 248349 159127 158122 633778 735359 909579 335031 487777 653228 604699 566628 122638 556377 580228 827801 589150 837630 431789 633278 306616 904156 107211 661850 711368 058905 292799 716195 166032 655432 211405 870946 227764 951889 399291 090723 688385 581196 074929 640895 583308 133251 180180 716753 258946 711027 878801 771475 605644 238517 949903 590816 656860 905565 190663 679738 547761 927019 404850 252819 753937 655593 239970 913803 394682 995759 204882 505570 219745 083648 368439 794549 749890 626183 240606 101983 165972 089127 490433 997161 657453 133477 202687 835963 249534 397741 076040 886098 692570 563577 329894 284953 190290 260494 317612 134689 265813 376009 899752 590352 854608 454096 158125 052070 333567 646327 820640 407455 706269 116372 943317 663172 442919 110750 777258 437508 193801 811711 049733 999047 (775 digits)/917 549572 299241 597279 599348 370422 773069 321608 026668 823143 113678 826540 867882 986239 968339 304030 205007 839570 745969 688559 696830 917732 544502 719818 128840 682822 204081 081331 662747 509378 522443 485162 762439 972794 937709 768216 321475 085534 869204 600862 681603 788207 831961 369001 770190 083661 929966 434462 138841 192507 378227 220420 738320 093835 882432 153631 035766 076497 336061 632072 077124 787900 366334 775569 944345 726763 957688 065520 451963 154495 631206 366480 142696 326419 939029 309655 130106 174407 462354 810113 054374 792249 646711 938846 737398 470894 863309 772924 323511 925688 961969 165460 395878 565976 879702 822334 577171 722950 070211 634352 240169 563353 759650 411329 655491 603005 744361 290048 340069 023485 579894 666796 557099 556808 639729 669022 769842 628516 709831 167832 269143 034660 814514 838764 275042 540143 100962 869579 002633 530146 (777 digits), a[1476] = 5
                                                                                      A[1477]/B[1477] = 39 497708 586590 610724 215503 176339 975875 990243 455061 696394 431936 721295 608211 265069 204995 916822 870859 763745 976120 673870 577966 790720 958347 990225 178184 520633 938271 615400 779422 434734 189793 947375 687696 560576 811229 917713 432165 277661 173919 038905 689146 214958 663441 274024 071870 643605 618725 323740 189951 202301 386028 033974 137958 882402 254118 648006 346255 922154 053937 478807 391858 995096 992717 954357 756182 167226 580721 148410 565352 295245 884819 955029 217688 502956 539276 460563 015675 657438 946806 404313 354269 281503 874867 255844 412557 989152 866553 052230 563135 935559 047516 138474 261772 810165 174618 112679 763446 802577 174372 811883 441640 078568 075723 544040 174623 273380 288683 623812 579241 942078 460667 940895 438014 437824 152291 648909 162158 994456 999286 738287 233199 314042 160014 255242 713787 748540 496444 684825 604377 885436 (776 digits)/3838 921544 772351 273615 260110 092082 699707 593742 337063 352991 945118 146941 876686 560079 633887 692637 988254 049506 875454 781432 587106 788621 827420 519186 347274 668772 369974 889093 165575 781032 541785 168000 485555 551226 122078 813475 512574 435299 690225 274266 327258 273929 504934 019582 186538 571255 645304 278713 956341 367466 478870 065048 582586 592128 992610 843727 327280 446092 568079 177369 138493 585491 728193 077070 909178 889876 197968 079641 141046 709695 292280 999918 026142 293012 947799 030521 489037 309364 605969 814656 228580 252041 382032 060005 842948 803719 311385 171880 079876 963413 001273 885177 620870 948186 678753 659472 843149 135772 544791 818845 634678 311208 562956 436116 389935 048938 219338 967847 050098 605568 736737 599803 897707 773841 310738 585834 478381 678031 111194 719531 565455 100188 600615 201254 892435 978534 907065 671396 086951 174865 (778 digits), a[1477] = 4
                                                                                      A[1478]/B[1478] = 48 938147 834372 998313 183080 817526 546230 339765 052557 396647 550349 969644 767338 423191 838774 652182 780439 098777 463898 327099 182666 357349 080986 546602 758413 348435 527422 453031 211212 068012 496410 851531 794908 222427 522597 976618 724964 993856 339951 694337 900552 085904 891206 225913 471161 734329 307110 904936 264880 843196 969336 167225 318139 599155 513065 359034 225057 693629 659581 717325 341762 585913 649578 859922 946845 846965 128483 075429 970202 548065 638757 610622 457659 416759 933959 456322 220558 163009 166551 487961 722709 076053 624757 882027 653164 091136 032525 141358 053569 932720 704969 271951 464460 646128 424152 510420 839487 688675 866943 375460 771534 363521 266013 804534 492235 408069 554496 999822 478994 532431 315276 394991 596139 489894 485859 295236 982799 401912 705555 854660 176516 977214 602933 365993 491046 186048 690246 496536 654111 884483 (776 digits)/4756 471117 071592 870894 859458 462505 472776 915350 363732 176135 058796 973482 744569 546319 602226 996668 193261 889077 621424 469992 283937 706354 371923 239004 476115 351594 574055 970424 828323 290411 064228 653163 247995 524021 059788 581691 834049 520834 559429 875129 008862 062137 336895 388583 956728 654917 575270 713176 095182 559973 857097 285469 320906 685964 875042 997358 363046 522589 904140 809441 215618 373392 094527 852640 853524 616640 155656 145161 593009 864190 923487 366398 168838 619432 886828 340176 619143 483772 068324 624769 282955 044291 028743 998852 580347 274614 174694 944804 403388 889101 963243 050638 016749 514163 558456 481807 420320 858722 615003 453197 874847 874562 322606 847446 045426 651943 963700 257895 390167 629054 316632 266600 454807 330649 950468 254857 248224 306547 821025 887363 834598 134849 415130 040019 167478 518678 008028 540975 089584 705011 (778 digits), a[1478] = 1
                                                                                      A[1479]/B[1479] = 137 374004 255336 607350 581664 811393 068336 669773 560176 489689 532636 660585 142888 111452 882545 221188 431737 961300 903917 328068 943299 505419 120321 083430 695011 217504 993116 521463 201846 570759 182615 650439 277513 005431 856425 870950 882095 265373 853822 427581 490250 386768 445853 725851 014194 112264 232947 133612 719712 888695 324700 368424 774238 080713 280249 366074 796371 309413 373100 913458 075384 166924 291875 674203 649873 861156 837687 299270 505757 391377 162335 176274 133007 336476 407195 373207 456791 983457 279909 380236 799687 433611 124383 019899 718886 171424 931603 334946 670275 801000 457454 682377 190694 102422 022923 133521 442422 179928 908259 562804 984708 805610 607751 153109 159094 089519 397677 623457 537231 006941 091220 730878 630293 417613 124010 239383 127757 798282 410398 447607 586233 268471 365880 987229 695880 120637 876937 677898 912601 654402 (777 digits)/13351 863778 915537 015404 979027 017093 645261 424443 064527 705262 062712 093907 365825 652718 838341 685974 374777 827662 118303 721417 154982 201330 571266 997195 299505 371961 518086 829942 822222 361854 670242 474326 981546 599268 241655 976859 180673 476968 809085 024524 344982 398204 178724 796750 099995 881090 795845 705066 146706 487414 193064 635987 224399 964058 742696 838444 053373 491272 376360 796251 569730 332275 917248 782352 616228 123156 509280 369964 327066 438077 139255 732714 363819 531878 721455 710874 727324 276908 742619 064194 794490 340623 439520 057711 003643 352947 660775 061488 886654 741616 927759 986453 654369 976513 795666 623087 683790 853217 774798 725241 384374 060333 208170 131008 480788 352826 146739 483637 830433 863677 370002 133004 807322 435141 211675 095548 974830 291126 753246 494259 234651 369887 430875 281293 227393 015890 923122 753346 266120 584887 (779 digits), a[1479] = 2
                                                                                      A[1480]/B[1480] = 30683 341096 774436 437492 894333 758180 785307 699268 971914 597413 328325 280131 631387 277184 646358 977203 058004 468879 037462 486473 538456 065812 912588 151647 745914 852048 992406 739325 222997 347310 219700 899490 680308 433731 505567 198665 432209 172225 742353 045010 226388 335268 316587 090689 636448 769253 254321 700572 760855 022254 377518 325949 973231 598217 008673 993713 815859 692811 861085 418476 152431 810030 737854 207336 868716 884939 932750 812752 754100 825172 839501 919754 118295 450998 738527 681585 085170 473982 586343 280768 053006 771334 362171 319664 964780 318895 780068 834465 525073 555822 717363 442064 989245 486239 536011 285702 499633 812822 408825 880972 361598 014686 794520 947876 970217 370895 236607 030853 281509 080294 657499 380926 151571 617621 140142 677674 472788 418890 224409 671151 906535 846329 194393 518215 672313 088295 247348 667994 164280 816129 (779 digits)/2 982222 093815 236347 306205 182483 274388 366074 566153 753410 449575 043593 914825 323690 102620 552422 968953 768717 457730 003154 346017 844968 603071 764463 613556 265813 299013 107419 047674 183909 984002 528300 428080 132887 160838 949071 421289 124234 884878 985390 344057 939936 861669 192525 063856 255810 138165 048862 942926 810729 253338 910511 110620 362098 671064 496437 970382 265335 076329 832598 373541 265482 470921 641006 317274 272396 080541 725178 647206 528825 555392 977515 761701 300594 228387 771451 865240 812457 234421 672375 940208 454301 003318 041716 868406 392814 981942 527533 656826 127396 269676 853720 029802 941254 276739 992113 430360 905681 126286 395119 182026 590263 328867 744546 062337 261229 332174 686605 109131 576919 229107 827107 926672 487710 367140 154014 562278 635379 227813 794994 107173 161853 619746 500317 768408 876121 062353 864402 537192 434475 134812 (781 digits), a[1480] = 223
                                                                                      A[1481]/B[1481] = 30820 715101 029773 044843 475998 569573 853644 369042 532091 087102 860961 940716 774275 388637 528904 198391 489742 430179 941379 814542 481755 571232 032909 235078 440926 069553 985523 260788 424843 918069 402316 549929 957821 439163 361993 069616 314304 437599 596175 472591 716638 722036 762440 816540 650642 881517 487268 834185 480567 910949 702218 694374 747469 678930 288923 359788 612231 002225 234186 331934 227815 976955 029729 881540 518590 746096 770438 112023 259858 216550 001837 096028 251302 787475 145723 054792 541962 457439 866252 661004 852694 204945 486554 339564 683666 490320 711672 169412 195349 356823 174818 124442 179939 588661 558934 419223 942055 992751 317085 443777 346306 820297 402272 100986 129311 460414 634284 654310 818740 087235 748720 111804 781865 035234 264152 917057 600546 217172 634808 118759 492769 114800 560274 505445 368193 208933 124286 345893 076882 470531 (779 digits)/2 995573 957594 151884 321610 161510 291482 011335 990596 817938 154837 106306 008732 689515 755339 390764 654928 143495 285392 121458 067434 999950 804402 335730 610751 565318 670974 625505 877617 006132 345857 198542 902407 114433 760107 190727 398148 304908 361847 794475 368582 284919 259873 371249 860606 355806 019255 844708 647992 957435 740753 103575 746607 586498 635123 239134 808826 318708 567602 208959 169792 835212 803197 558255 099626 888624 203698 234459 017170 855891 993470 116771 494415 664413 760266 492907 576115 539781 511330 414995 004403 248791 343941 481236 926117 396458 334890 188308 718315 014051 011293 781480 016256 595624 253253 787780 053448 589471 979504 169917 907267 974637 389200 952716 193345 742017 685000 833344 592769 407353 092785 197110 059677 295032 802281 365689 657827 610209 518940 548240 601432 396504 989633 931193 049702 103514 078244 787525 290538 700595 719699 (781 digits), a[1481] = 1
                                                                                      A[1482]/B[1482] = 61504 056197 804209 482336 370332 327754 638952 068311 504005 684516 189287 220848 405662 665822 175263 175594 547746 899058 978842 301016 020211 637044 945497 386726 186840 921602 977930 000113 647841 265379 622017 449420 638129 872894 867560 268281 746513 609825 338528 517601 943027 057305 079027 907230 287091 650770 741590 534758 241422 933204 079737 020324 720701 277147 297597 353502 428090 695037 095271 750410 380247 786985 767584 088877 387307 631036 703188 924776 013959 041722 841339 015782 369598 238473 884250 736377 627132 931422 452595 941772 905700 976279 848725 659229 648446 809216 491741 003877 720422 912645 892181 566507 169185 074901 094945 704926 441689 805573 725911 324749 707904 834984 196793 048863 099528 831309 870891 685164 100249 167530 406219 492730 933436 652855 404295 594732 073334 636062 859217 789911 399304 961129 754668 023661 040506 297228 371635 013887 241163 286660 (779 digits)/5 977796 051409 388231 627815 343993 565870 377410 556750 571348 604412 149899 923558 013205 857959 943187 623881 912212 743122 124612 413452 844919 407474 100194 224307 831131 969987 732924 925291 190042 329859 726843 330487 247320 920946 139798 819437 429143 246726 779865 712640 224856 121542 563774 924462 611616 157420 893571 590919 768164 994092 014086 857227 948597 306187 735572 779208 584043 643932 041557 543334 100695 274119 199261 416901 161020 284239 959637 664377 384717 548863 094287 256116 965007 988654 264359 441356 352238 745752 087370 944611 703092 347259 522953 794523 789273 316832 715842 375141 141447 280970 635200 046059 536878 529993 779893 483809 495153 105790 565037 089294 564900 718068 697262 255683 003247 017175 519949 701900 984272 321893 024217 986349 782743 169421 519704 220106 245588 746754 343234 708605 558358 609380 431510 818110 979635 140598 651927 827731 135070 854511 (781 digits), a[1482] = 1
                                                                                      A[1483]/B[1483] = 461349 108485 659239 421198 068324 863856 326308 847223 060130 878716 185972 486655 613914 049392 755746 427553 323970 723592 793275 921654 623237 030546 651390 942161 748812 520774 831033 261583 959732 775726 756438 695874 424730 549427 434914 947588 539899 706376 965875 095805 317828 123172 315636 167152 660284 436912 678402 577493 170528 443378 260377 836647 792378 618961 372104 834305 608865 867484 901088 584806 889550 485855 402818 503682 229744 163353 692760 585455 357571 508609 891210 206504 838490 456792 335478 209435 931892 977397 034424 253415 192601 038904 427633 954172 222794 154836 153859 196556 238309 745344 420089 089992 364235 112969 223554 353709 033884 631767 398464 717025 301640 665186 779823 443027 826013 279583 730526 450459 520484 259948 592256 560921 315921 605222 094222 080182 113888 669612 649332 648139 287903 842708 842950 671072 651737 289531 725731 443103 765025 477151 (780 digits)/44 840146 317459 869505 716317 569465 252574 653209 887850 817378 385722 155605 473638 781956 761058 993078 022101 528984 487246 993744 961604 914386 656721 037090 180906 383242 460888 755980 354655 336428 654875 286446 215817 845680 206730 169319 134210 308911 088935 253535 357063 858912 110671 317674 331844 637119 121202 099709 784431 334590 699397 202183 747203 226679 778437 388144 263286 407014 075126 499861 973131 540079 722031 953085 017935 015766 193377 951922 667812 548914 835511 776782 287234 419469 680846 343423 665610 005452 731595 026591 616685 170437 774758 141913 487783 921371 552719 199205 344303 004181 978088 227880 338673 353773 963210 247034 440115 055543 720038 125177 532329 928942 415681 833551 983126 764746 805229 472992 506076 297259 346036 366635 964125 774234 988232 003619 198571 329330 746220 950883 561671 305015 255296 951768 776478 960960 062435 351020 084656 646091 701276 (782 digits), a[1483] = 7
                                                                                      A[1484]/B[1484] = 522853 164683 463448 903534 438657 191610 965260 915534 564136 563232 375259 707504 019576 715214 931009 603147 871717 622651 772118 222670 643448 667591 596888 328887 935653 442377 808963 261697 607574 041106 378456 145295 062860 422322 302475 215870 286413 316202 304403 613407 260855 180477 394664 074382 947376 087683 419993 112251 411951 376582 340114 856972 513079 896108 669702 187808 036956 562521 996360 335217 269798 272841 170402 592559 617051 794390 395949 510231 371530 550332 732549 222287 208088 695266 219728 945813 559025 908819 487020 195188 098302 015184 276359 613401 871240 964052 645600 200433 958732 657990 312270 656499 533420 187870 318500 058635 475574 437341 124376 041775 009545 500170 976616 491890 925542 110893 601418 135623 620733 427478 998476 053652 249358 258077 498517 674914 187223 305675 508550 438050 687208 803838 597618 694733 692243 586760 097366 456991 006188 763811 (780 digits)/50 817942 368869 257737 344132 913458 818445 030620 444601 388726 990134 305505 397196 795162 619018 936265 645983 441197 230369 118357 375057 759306 064195 137284 405214 214374 430876 488905 279946 526470 984735 013289 546305 093001 127676 309117 953647 738054 335662 033401 069704 083768 232213 881449 256307 248735 278622 993281 375351 102755 693489 216270 604431 175277 084625 123717 042494 991057 719058 541419 516465 640774 996151 152346 434836 176786 477617 911560 332189 933632 384374 871069 543351 384477 669500 607783 106966 357691 477347 113962 561296 873530 122017 664867 282307 710644 869551 915047 719444 145629 259058 863080 384732 890652 493204 026927 923924 550696 825828 690214 621624 493843 133750 530814 238809 767993 822404 992942 207977 281531 667929 390853 950475 556978 157653 523323 418677 574919 492975 294118 270276 863373 864677 383279 594589 940595 203034 002947 912387 781162 555787 (782 digits), a[1484] = 1
                                                                                      A[1485]/B[1485] = 2 029908 602536 049586 131801 384296 438689 222091 593826 752540 568413 311751 609167 672644 195037 548775 236996 939123 591548 109630 589666 553583 033321 442055 928825 555772 847908 257923 046676 782454 899045 891807 131759 613311 816394 342340 595199 399139 654983 879085 936027 100393 664604 499628 390301 502412 699962 938381 914247 406382 573125 280722 407565 331618 307287 381211 397729 719735 555050 890169 590458 698945 304378 914026 281361 080899 546524 880609 116149 472163 159608 088857 873366 462756 542590 994665 046876 608970 703855 495484 838979 487507 084457 256712 794377 836517 046994 090659 797858 114507 719315 356901 059490 964495 676580 179054 529615 460607 943790 771592 842350 330277 165699 709672 918700 602639 612264 534780 857330 382684 542385 587684 721878 063996 379454 589775 104924 675558 586639 174983 962291 349530 254224 635806 755273 728468 049812 017830 814076 783591 768584 (781 digits)/197 293973 424067 642717 748716 309841 707909 745071 221654 983559 356125 072121 665229 167444 618115 801874 960051 852576 178354 348817 086778 192304 849306 448943 396549 026365 753518 222696 194494 915841 609080 326314 854733 124683 589759 096672 995153 523074 095921 353738 566176 110216 807312 962022 100766 383324 957071 079553 910484 642857 779864 850995 560496 752511 032312 759295 390771 380187 232302 124120 522528 462404 710485 410124 322443 546125 626231 686603 664382 349811 988636 389990 917288 572902 689348 166772 986509 078527 163636 368479 300575 791028 140811 136515 334707 053306 161374 944348 502635 441069 755264 817121 492872 025731 442822 327818 211888 707634 197524 195821 397203 410471 816933 425994 699556 068728 272444 451819 130008 141854 349824 539197 815552 445169 461192 573589 454604 054089 225146 833238 372501 895136 849329 101607 560248 782745 671537 359863 821819 989579 368637 (783 digits), a[1485] = 3
                                                                                      A[1486]/B[1486] = 2 552761 767219 513035 035335 822953 630300 187352 509361 316677 131645 687011 316671 692220 910252 479784 840144 810841 214199 881748 812337 197031 700913 038944 257713 491426 290286 066886 308374 390028 940152 270263 277054 676172 238716 644815 811069 685552 971186 183489 549434 361248 845081 894292 464684 449788 787646 358375 026498 818333 949707 620837 264537 844698 203396 050913 585537 756692 117572 886529 925675 968743 577220 084428 873920 697951 340915 276558 626380 843693 709940 821407 095653 670845 237857 214393 992690 167996 612674 982505 034167 585809 099641 533072 407779 707758 011046 736259 998292 073240 377305 669171 715990 497915 864450 497554 588250 936182 381131 895968 884125 339822 665870 686289 410591 528181 723158 136198 992954 003417 969864 586160 775530 313354 637532 088292 779838 862781 892314 683534 400342 036739 058063 233425 450007 420711 636572 115197 271067 789780 532395 (781 digits)/248 111915 792936 900455 092849 223300 526354 775691 666256 372286 346259 377627 062425 962607 237134 738140 606035 293773 408723 467174 461835 951610 913501 586227 801763 240740 184394 711601 474441 442312 593815 339604 401038 217684 717435 405790 948801 261128 431583 387139 635880 193985 039526 843471 357073 632060 235694 072835 285835 745613 473354 067266 164927 927788 116937 883012 433266 371244 951360 665540 038994 103179 706636 562470 757279 722912 103849 598163 996572 283444 373011 261060 460639 957380 358848 774556 093475 436218 640983 482441 861872 664558 262828 801382 617014 763951 030926 859396 222079 586699 014323 680201 877604 916383 936026 354746 135813 258331 023352 886036 018827 904314 950683 956808 938365 836722 094849 444761 337985 423386 017753 930051 766028 002147 618846 096912 873281 629008 718122 127356 642778 758510 714006 484887 154838 723340 874571 362811 734207 770741 924424 (783 digits), a[1486] = 1
                                                                                      A[1487]/B[1487] = 9 688193 904194 588691 237808 853157 329589 784149 121910 702571 963350 372785 559182 749306 925794 988129 757431 371647 234147 754877 026678 144678 136060 558888 701966 030051 718766 458581 971799 952541 719502 702596 962923 641828 532544 276788 028408 455798 568542 429554 584330 184140 199850 182505 784354 851779 062902 013506 993743 861384 422248 143234 201178 865712 917475 533952 154342 989811 907769 549759 367486 605176 036039 167312 903123 174753 569270 710284 995292 003244 289430 553079 160327 475292 256162 637847 024947 112960 541880 442999 941482 244934 383381 855930 017716 959791 080134 299439 792734 334228 851232 364416 207462 458243 269931 671718 294368 269155 087186 459499 494726 349745 163311 768541 150475 187184 781738 943377 836192 392938 451979 346167 048469 004060 292050 854653 444441 263904 263583 225587 163317 459747 428414 336083 105295 990602 959528 363422 627280 152933 365769 (781 digits)/941 629720 802878 344083 027263 979743 286974 072146 220424 100418 394903 205002 852507 055266 329520 016296 778157 733896 404524 750340 472286 047137 589811 207626 801838 748586 306702 357500 617819 242779 390526 345128 057847 777737 742065 314045 841557 306459 390671 515157 473816 692171 925893 492436 171987 279505 664153 298059 767991 879698 199927 052794 055280 535875 383126 408332 690570 493922 086384 120740 639510 771943 830395 097536 594282 714861 937780 481095 654099 200145 107670 173172 299208 445043 765894 490441 266935 387183 086586 815804 886193 784702 929297 540663 185751 345159 254155 522537 168874 201166 798235 857727 125686 774883 250901 392056 619328 482627 267582 853929 453687 123416 668985 296421 514653 578894 556992 786103 143964 412012 403086 329353 113636 451612 317730 864328 074448 941115 379513 215308 300838 170668 991348 556269 024764 952768 295251 448299 024443 301805 141909 (783 digits), a[1487] = 3
                                                                                      A[1488]/B[1488] = 12 240955 671414 101726 273144 676110 959889 971501 631272 019249 094996 059796 875854 441527 836047 467914 597576 182488 448347 636625 839015 341709 836973 597832 959679 521478 009052 525468 280174 342570 659654 972860 239978 318000 771260 921603 839478 141351 539728 613044 133764 545389 044932 076798 249039 301567 850548 371882 020242 679718 371955 764071 465716 710411 120871 584865 739880 746504 025342 436289 293162 573919 613259 251741 777043 872704 910185 986843 621672 846937 999371 374486 255981 146137 494019 852241 017637 280957 154555 425504 975649 830743 483023 389002 425496 667549 091181 035699 791026 407469 228538 033587 923452 956159 134382 169272 882619 205337 468318 355468 378851 689567 829182 454830 561066 715366 504897 079576 829146 396356 421843 932327 823999 317414 929582 942946 224280 126686 155897 909121 563659 496486 486477 569508 555303 411314 596100 478619 898347 942713 898164 (782 digits)/1189 741636 595815 244538 120113 203043 813328 847837 886680 472704 741162 582629 914933 017873 566654 754437 384193 027669 813248 217514 934121 998748 503312 793854 603601 989326 491097 069102 092260 685091 984341 684732 458885 995422 459500 719836 790358 567587 822254 902297 109696 886156 965420 335907 529060 911565 899847 370895 053827 625311 673281 120060 220208 463663 500064 291345 123836 865167 037744 786280 678504 875123 537031 660007 351562 437774 041630 079259 650671 483589 480681 434232 759848 402424 124743 264997 360410 823401 727570 298246 748066 449261 192126 342045 802766 109110 285082 381933 390953 787865 812559 537929 003291 691267 186927 746802 755141 740958 290935 739965 472515 027731 619669 253230 453019 415616 651842 230864 481949 835398 420840 259404 879664 453759 936576 961240 947730 570124 097635 342664 943616 929179 705355 041156 179603 676109 169822 811110 758651 072547 066333 (784 digits), a[1488] = 1
                                                                                      A[1489]/B[1489] = 21 929149 575608 690417 510953 529268 289479 755650 753182 721821 058346 432582 435037 190834 761842 456044 355007 554135 682495 391502 865693 486387 973034 156721 661645 551529 727818 984050 251974 295112 379157 675457 202901 959829 303805 198391 867886 597150 108271 042598 718094 729529 244782 259304 033394 153346 913450 385389 013986 541102 794203 907305 666895 576124 038347 118817 894223 736315 933111 986048 660649 179095 649298 419054 680167 047458 479456 697128 616964 850182 288801 927565 416308 621429 750182 490088 042584 393917 696435 868504 917132 075677 866405 244932 443213 627340 171315 335139 583760 741698 079770 398004 130915 414402 404313 840991 176987 474492 555504 814967 873578 039312 992494 223371 711541 902551 286636 022954 665338 789294 873823 278494 872468 321475 221633 797599 668721 390590 419481 134708 726976 956233 914891 905591 660599 401917 555628 842042 525628 095647 263933 (782 digits)/2131 371357 398693 588621 147377 182787 100302 919984 107104 573123 136065 787632 767440 073139 896174 770734 162350 761566 217772 967855 406408 045886 093124 001481 405440 737912 797799 426602 710079 927871 374868 029860 516733 773160 201566 033882 631915 874047 212926 417454 583513 578328 891313 828343 701048 191071 564000 668954 821819 505009 873208 172854 275488 999538 883190 699677 814407 359089 124128 907021 318015 647067 367426 757543 945845 152635 979410 560355 304770 683734 588351 607405 059056 847467 890637 755438 627346 210584 814157 114051 634260 233964 121423 882708 988517 454269 539237 904470 559827 989032 610795 395656 128978 466150 437829 138859 374470 223585 558518 593894 926202 151148 288654 549651 967672 994511 208835 016967 625914 247410 823926 588757 993300 905372 254307 825569 022179 511239 477148 557973 244455 099848 696703 597425 204368 628877 465074 259409 783094 374352 208242 (784 digits), a[1489] = 1
                                                                                      A[1490]/B[1490] = 34 170105 247022 792143 784098 205379 249369 727152 384454 741070 153342 492379 310891 632362 597889 923958 952583 736624 130843 028128 704708 828097 810007 754554 621325 073007 736871 509518 532148 637683 038812 648317 442880 277830 075066 119995 707364 738501 647999 655642 851859 274918 289714 336102 282433 454914 763998 757271 034229 220821 166159 671377 132612 286535 159218 703683 634104 482819 958454 422337 953811 753015 262557 670796 457210 920163 389642 683972 238637 697120 288173 302051 672289 767567 244202 342329 060221 674874 850991 294009 892781 906421 349428 633934 868710 294889 262496 370839 374787 149167 308308 431592 054368 370561 538696 010264 059606 679830 023823 170436 252429 728880 821676 678202 272608 617917 791533 102531 494485 185651 295667 210822 696467 638890 151216 740545 893001 517276 575379 043830 290636 452720 401369 475100 215902 813232 151729 320662 423976 038361 162097 (782 digits)/3321 112993 994508 833159 267490 385830 913631 767821 993785 045827 877228 370262 682373 091013 462829 525171 546543 789236 031021 185370 340530 044634 596436 795336 009042 727239 288896 495704 802340 612963 359209 714592 975619 768582 661066 753719 422274 441635 035181 319751 693210 464485 856734 164251 230109 102637 463848 039849 875647 130321 546489 292914 495697 463202 383254 991022 938244 224256 161873 693301 996520 522190 904458 417551 297407 590410 021040 639614 955442 167324 069033 041637 818905 249892 015381 020435 987757 033986 541727 412298 382326 683225 313550 224754 791283 563379 824320 286403 950781 776898 423354 933585 132270 157417 624756 885662 129611 964543 849454 333860 398717 178879 908323 802882 420692 410127 860677 247832 107864 082809 244766 848162 872965 359132 190884 786809 969910 081363 574783 900638 188072 029028 402058 638581 383972 304986 634897 070520 541745 446899 274575 (784 digits), a[1490] = 1
                                                                                      A[1491]/B[1491] = 90 269360 069654 274705 079149 940026 788219 209955 522092 203961 365031 417341 056820 455559 957622 303962 260175 027383 944181 447760 275111 142583 593049 665830 904295 697545 201562 003087 316271 570478 456782 972092 088662 515489 453937 438383 282616 074153 404270 353884 421813 279365 824210 931508 598261 063176 441447 899931 082444 982745 126523 250059 932120 149194 356784 526185 162432 701955 850020 830724 568272 685126 174413 760647 594588 887785 258742 065073 094240 244422 865148 531668 760888 156564 238587 174746 163027 743667 398418 456524 702695 888520 565262 512802 180634 217118 696308 076818 333335 040032 696387 261188 239652 155525 481705 861519 296200 834152 603151 155840 378437 497074 635847 579776 256759 138386 869702 228017 654309 160597 465157 700140 265403 599255 524067 278691 454724 425143 570239 222369 308249 861674 717630 855792 092405 028381 859087 483367 373580 172369 588127 (782 digits)/8773 597345 387711 254939 682357 954448 927566 455628 094674 664778 890522 528158 132186 255166 821833 821077 255438 340038 279815 338596 087468 135155 285997 592153 423526 192391 375592 418012 314761 153798 093287 459046 467973 310325 523699 541321 476464 757317 283289 056957 969934 507300 604782 156846 161266 396346 491696 748654 573113 765652 966186 758683 266883 925943 649700 681723 690895 807601 447876 293625 311056 691449 176343 592646 540660 333456 021491 839585 215655 018382 726417 690680 696867 347251 921399 796310 602860 278557 897611 938648 398913 600414 748524 332218 571084 581029 187878 477278 461391 542829 457505 262826 393518 780985 687342 910183 633694 152673 257427 261615 723636 508908 105302 155416 809057 814766 930189 512631 841642 413029 313460 285083 739231 623636 636077 399188 961999 673966 626716 359249 620599 157905 500820 874587 972313 238850 734868 400450 866585 268150 757392 (784 digits), a[1491] = 2
                                                                                      A[1492]/B[1492] = 214 708825 386331 341553 942398 085432 825808 147063 428639 148992 883405 327061 424532 543482 513134 531883 472933 791392 019205 923649 254931 113264 996107 086216 429916 468098 139995 515693 164691 778639 952378 592501 620205 308808 982940 996762 272596 886808 456540 363411 695485 833649 938136 199119 478955 581267 646894 557133 199119 186311 419206 171496 996852 584923 872787 756053 958969 886731 658496 083787 090357 123267 611385 192091 646388 695733 907126 814118 427118 185966 018470 365389 194066 080695 721376 691821 386277 162209 647828 207059 298173 683462 479953 659539 229978 729126 655112 524476 041457 229232 701082 953968 533672 681612 502107 733302 652008 348135 230125 482117 009304 723030 093371 837754 786126 894691 530937 558566 803103 506846 225982 611103 227274 837401 199351 297928 802450 367563 715857 488568 907136 176069 836631 186684 400712 869995 869904 287397 171136 383100 338351 (783 digits)/20868 307684 769931 343038 632206 294728 768764 679078 183134 375385 658273 426578 946745 601347 106497 167326 057420 469312 590651 862562 515466 314945 168431 979642 856095 112022 040081 331729 431862 920559 545784 632685 911566 389233 708465 836362 375203 956269 601759 433667 633079 479087 066298 477943 552641 895330 447241 537159 021874 661627 478862 810281 029465 315089 682656 354470 320035 839459 057626 280552 618633 905089 257145 602844 378728 257322 064024 318785 386752 204089 521868 422999 212639 944395 858180 613057 193477 591102 336951 289595 180153 884054 810598 889191 933452 725438 200077 240960 873564 862557 338365 459237 919307 719388 999442 706029 397000 269890 364308 857091 845990 196696 118928 113716 038808 039661 721056 273095 791148 908867 871687 418330 351428 606405 463039 585187 893909 429296 828216 619137 429270 344839 403700 387757 328598 782688 104633 871422 274915 983200 789359 (785 digits), a[1492] = 2
                                                                                      A[1493]/B[1493] = 519 687010 842316 957812 963946 110892 439835 504082 379370 501947 131842 071463 905885 542524 983891 367729 206042 610167 982593 295058 784973 369113 585263 838263 764128 633741 481553 034473 645655 127758 361540 157095 329073 133107 419819 431907 827809 847770 317351 080707 812784 946665 700483 329747 556172 225711 735237 014197 480683 355367 964935 593053 925825 319042 102360 038293 080372 475419 167012 998298 748986 931661 397184 144830 887366 279253 072995 693309 948476 616354 902089 262447 149020 317955 681340 558388 935582 068086 694074 870643 299043 255445 525169 831880 640591 675372 006533 125770 416249 498498 098553 169125 306997 518750 485921 328124 600217 530423 063402 120074 397046 943134 822591 255285 829012 927769 931577 345151 260516 174289 917122 922346 719953 274057 922769 874549 059625 160271 001954 199507 122522 213814 390893 229160 893830 768373 598896 058161 715852 938570 264829 (783 digits)/50510 212714 927573 941016 946770 543906 465095 813784 460943 415550 207069 381316 025677 457861 034828 155729 370279 278663 461119 063721 118400 765045 622861 551439 135716 416435 455755 081471 178486 994917 184856 724418 291106 088792 940631 214046 226872 669856 486807 924293 236093 465474 737379 112733 266550 187007 386179 822972 616863 088907 923912 379245 325814 556123 015013 390664 330967 486519 563128 854730 548324 501627 690634 798335 298116 848100 149540 477155 989159 426561 770154 536679 122147 236043 637761 022424 989815 460762 571514 517838 759221 368524 369722 110602 437990 031905 588032 959200 208521 267944 134236 181302 232134 219763 686228 322242 427694 692453 986044 975799 415616 902300 343158 382848 886673 894090 372302 058823 423940 230765 056835 121744 442088 836447 562156 569564 749818 532560 283149 597524 479139 847584 308221 650102 629510 804226 944136 143295 416417 234552 336110 (785 digits), a[1493] = 2
                                                                                      A[1494]/B[1494] = 1254 082847 070965 257179 870290 307217 705479 155228 187380 152887 147089 469989 236303 628532 480917 267341 885019 011727 984392 513766 824877 851492 166634 762743 958173 735581 103101 584640 456002 034156 675458 906692 278351 575023 822579 860577 928216 582349 091242 524827 321055 726981 339102 858614 591300 032691 117368 585528 160485 897047 349077 357604 848503 223008 077507 832640 119714 837569 992522 080384 588330 986590 405753 481753 421121 254240 053118 200738 324071 418675 822648 890283 492106 716607 084057 808599 257441 298383 035977 948345 896260 194353 530293 323300 511162 079870 668178 776016 873956 226228 898189 292219 147667 719113 473950 389551 852443 408981 356929 722265 803398 609299 738554 348326 444152 750231 394092 248869 324135 855426 060228 455796 667181 385517 044891 047026 921700 688105 719765 887583 152180 603698 618417 645006 188374 406743 067696 403720 602842 260240 868009 (784 digits)/121888 733114 625079 225072 525747 382541 698956 306647 105021 206486 072412 189210 998100 517069 176153 478784 797979 026639 512889 990004 752267 845036 414155 082521 127527 944892 951591 494671 788836 910393 915498 081522 493778 566819 589728 264454 828949 295982 575375 282254 105266 410036 541056 703410 085742 269345 219601 183104 255600 839443 326687 568771 681094 427335 712683 135798 981970 812498 183883 990013 715282 908344 638415 199514 974961 953522 363105 273097 365071 057213 062177 496357 456934 416483 133702 657907 173108 512627 479980 325272 698596 621103 550043 110396 809432 789249 376143 159361 290607 398445 606837 821842 383576 158916 371899 350514 252389 654798 336398 808690 677224 001296 805244 879413 812155 827842 465660 390742 639029 370397 985357 661819 235606 279300 587352 724317 393546 494417 394515 814186 387550 040008 020143 687962 587620 391141 992906 158013 107750 452305 461579 (786 digits), a[1494] = 2
                                                                                      A[1495]/B[1495] = 1773 769857 913282 214992 834236 418110 145314 659310 566750 654834 278931 541453 142189 171057 464808 635071 091061 621895 966985 808825 609851 220605 751898 601007 722302 369322 584654 619114 101657 161915 036999 063787 607424 708131 242399 292485 756026 430119 408593 605535 133840 673647 039586 188362 147472 258402 852605 599725 641169 252415 314012 950658 774328 542050 179867 870933 200087 312989 159535 078683 337317 918251 802937 626584 308487 533493 126113 894048 272548 035030 724738 152730 641127 034562 765398 366988 193023 366469 730052 818989 195303 449799 055463 155181 151753 755242 674711 901787 290205 724726 996742 461344 454665 237863 959871 717676 452660 939404 420331 842340 200445 552434 561145 603612 273165 678001 325669 594020 584652 029715 977351 378143 387134 659574 967660 921575 981325 848376 721720 087090 274702 817513 009310 874167 082205 175116 666592 461882 318695 198811 132838 (784 digits)/172398 945829 552653 166089 472517 926448 164052 120431 565964 622036 279481 570527 023777 974930 210981 634514 168258 305302 974009 053725 870668 610082 037016 633960 263244 361328 407346 576142 967323 905311 100354 805940 784884 655612 530359 478501 055821 965839 062183 206547 341359 875511 278435 816143 352292 456352 605781 006076 872463 928351 250599 948017 006908 983458 727696 526463 312938 299017 747012 844744 263607 409972 329049 997850 273078 801622 512645 750253 354230 483774 832332 033036 579081 652526 771463 680332 162923 973390 051494 843111 457817 989627 919765 220999 247422 821154 964176 118561 499128 666389 741074 003144 615710 378680 058127 672756 680084 347252 322443 784490 092840 903597 148403 262262 698829 721932 837962 449566 062969 601163 042192 783563 677695 115748 149509 293882 143365 026977 677665 411710 866689 887592 328365 338065 217131 195368 937042 301308 524167 686857 797689 (786 digits), a[1495] = 1
                                                                                      A[1496]/B[1496] = 3027 852704 984247 472172 704526 725327 850793 814538 754130 807721 426021 011442 378492 799589 945725 902412 976080 633623 951378 322592 434729 072097 918533 363751 680476 104903 687756 203754 557659 196071 712457 970479 885776 283155 064979 153063 684243 012468 499836 130362 454896 400628 378689 046976 738772 291093 969974 185253 801655 149462 663090 308263 622831 765058 257375 703573 319802 150559 152057 159067 925648 904842 208691 108337 729608 787733 179232 094786 596619 453706 547387 043014 133233 751169 849456 175587 450464 664852 766030 767335 091563 644152 585756 478481 662915 835113 342890 677804 164161 950955 894931 753563 602332 956977 433822 107228 305104 348385 777261 564606 003844 161734 299699 951938 717318 428232 719761 842889 908787 885142 037579 833940 054316 045092 012551 968602 903026 536482 441485 974673 426883 421211 627728 519173 270579 581859 734288 865602 921537 459052 000847 (784 digits)/294287 678944 177732 391161 998265 308989 863008 427078 670985 828522 351893 759738 021878 491999 387135 113298 966237 331942 486899 043730 622936 455118 451171 716481 390772 306221 358938 070814 756160 815705 015852 887463 278663 222432 120087 742955 884771 261821 637558 488801 446626 285547 819492 519553 438034 725697 825382 189181 128064 767794 577287 516788 688003 410794 440379 662262 294909 111515 930896 834757 978890 318316 967465 197365 248040 755144 875751 023350 719301 540987 894509 529394 036016 069009 905166 338239 336032 486017 531475 168384 156414 610731 469808 331396 056855 610404 340319 277922 789736 064835 347911 824986 999286 537596 430027 023270 932474 002050 658842 593180 770064 904893 953648 141676 510985 549775 303622 840308 701998 971561 027550 445382 913301 395048 736862 018199 536911 521395 072181 225897 254239 927600 348509 026027 804751 586510 929948 459321 631918 139163 259268 (786 digits), a[1496] = 1
                                                                                      A[1497]/B[1497] = 7829 475267 881777 159338 243289 868765 846902 288388 075012 270277 130973 564337 899174 770237 356260 439897 043222 889143 869742 454010 479309 364801 588965 328511 083254 579129 960167 026623 216975 554058 461915 004747 378977 274441 372357 598613 124512 455056 408265 866260 043633 474903 796964 282315 625016 840590 792553 970233 244479 551340 640193 567186 019992 072166 694619 278079 839691 614107 463649 396819 188615 727936 220319 843259 767705 108959 484578 083621 465786 942443 819512 238758 907594 536902 464310 718163 093952 696175 262114 353659 378430 738104 226976 112144 477585 425469 360493 257395 618529 626638 786605 968471 659331 151818 827515 932133 062869 636175 974854 971552 208133 875903 160545 507489 707802 534466 765193 279800 402227 800000 052511 046023 495766 749758 992764 858781 787378 921341 604692 036437 128469 659936 264767 912513 623364 338836 135170 193088 161770 116915 134532 (784 digits)/760974 303717 908117 948413 469048 544427 890068 974588 907936 279080 983269 090003 067534 958928 985251 861112 100732 969187 947807 141187 116541 520318 939360 066923 044788 973771 125222 717772 479645 536721 132060 580867 342211 100476 770534 964412 825364 489482 337300 184150 234612 446606 917420 855250 228361 907748 256545 384439 128593 463940 405174 981594 382915 805047 608455 850987 902756 522049 608806 514260 221388 046606 263980 392580 769160 311912 264147 796954 792833 565750 621351 091824 651113 790546 581796 356810 834988 945425 114445 179879 770647 211090 859381 883791 361134 041963 644814 674407 078600 796060 436897 653118 614283 453872 918181 719298 545032 351353 640128 970851 632970 713385 055699 545615 720800 821483 445208 130183 466967 544285 097293 674329 504297 905845 623233 330281 217188 069767 822027 863505 375169 742793 025383 390120 826634 368390 796939 219951 788003 965184 316225 (786 digits), a[1497] = 2
                                                                                      A[1498]/B[1498] = 112640 506455 329127 702908 110584 888049 707425 851971 804302 591601 259650 912172 966939 582912 933372 060971 581201 081638 127772 678739 145060 179320 164047 962906 846040 212723 130094 576479 595316 952890 179268 036943 191458 125334 277985 533647 427417 383258 215558 258003 065765 049281 536188 999395 489008 059365 065729 768519 224368 868231 625800 248867 902720 775391 982045 596691 075484 748063 643148 714536 566269 095949 293168 913974 477480 313165 963325 265487 117636 647920 020558 385638 839557 267804 349806 229870 765802 411306 435631 718566 389593 977611 763422 048504 349111 791684 389796 281342 823576 723898 907415 312166 832969 082441 019045 157091 185279 254849 425231 166336 917718 424378 547337 056794 626553 910767 432467 760095 539977 085142 772734 478268 995050 541717 911259 991547 926331 435264 907174 484793 225458 660319 334479 294363 997680 325565 626671 568837 186319 095863 884295 (786 digits)/10 947927 930994 891383 668950 564944 930980 323974 071323 382093 735656 117661 019780 967367 917005 180661 168868 376498 900573 756199 020350 254517 739583 602212 653404 017817 939017 112056 119629 471198 329800 864701 019606 069618 629106 907577 244735 439874 114574 359761 066904 731200 538044 663384 493056 635101 434173 417017 571328 928373 262960 249737 259110 048824 681460 958761 576092 933500 420210 454188 034401 078322 970804 663190 693496 016285 121916 573820 180717 818971 461496 593424 814939 151609 136662 050315 333591 025877 721969 133707 686700 945475 566003 501154 704475 112732 197895 367724 719621 890147 209681 464478 968647 599254 891817 284571 093450 562926 921001 620648 185103 631654 892284 733441 780296 602197 050543 536536 662877 239544 591552 389661 885995 973472 076887 462128 642136 577544 498144 580571 314972 506616 326702 703876 487719 377632 743982 087097 538646 663973 651743 686418 (788 digits), a[1498] = 14
                                                                                      A[1499]/B[1499] = 233110 488178 540032 565154 464459 644865 261753 992331 683617 453479 650275 388683 833053 936063 223004 561840 205625 052420 125287 811488 769429 723441 917061 254324 775335 004576 220356 179582 407609 459838 820451 078633 761893 525109 928328 665907 979347 221572 839382 382266 175163 573466 869342 281106 603032 959320 924013 507271 693217 287803 891794 064921 825433 622950 658710 471461 990661 110234 749946 825892 321153 919834 806657 671208 722665 735291 411228 614595 701060 238283 860629 010036 586709 072511 163923 177904 625557 518788 133377 790792 157618 693327 753820 209153 175809 008838 140085 820081 265683 074436 601436 592805 325269 316700 865606 246315 433428 145874 825317 304226 043570 724660 255219 621078 960910 356001 630128 799991 482181 970285 597980 002561 485867 833194 815284 841877 640041 791871 419041 006023 579386 980574 933726 501241 618724 989967 388513 330762 534408 308642 903122 (786 digits)/22 656830 165707 690885 286314 598938 406388 538017 117235 672123 750393 218591 129565 002270 792939 346574 198848 853730 770335 460205 181887 625576 999486 143785 373731 080424 851805 349334 957031 422042 196322 861462 620079 481448 358690 585689 453883 705112 718631 056822 317959 697013 522696 244189 841363 498564 776095 090580 527096 985339 989860 904649 499814 480565 167969 525979 003173 769757 362470 517182 583062 378033 988215 590361 779572 801730 555745 411788 158390 430776 488743 808200 721702 954332 063870 682427 023992 886744 389363 381860 553281 661598 343097 861691 292741 586598 437754 380264 113650 858895 215423 365855 590413 812793 237507 487323 906199 670886 193356 881425 341058 896280 497954 522583 106208 925194 922570 518281 455937 946056 727389 876617 446321 451242 059620 547490 614554 372277 066056 983170 493450 388402 396198 433136 365559 581899 856354 971134 297245 115951 268671 689061 (788 digits), a[1499] = 2
                                                                                      A[1500]/B[1500] = 1 045082 459169 489257 963525 968423 467510 754441 821298 538772 405519 860752 466908 299155 327165 825390 308332 403701 291318 628923 924694 222779 073087 832292 980205 947380 231028 011519 294809 225754 792245 461072 351478 239032 225773 991300 197279 344806 269549 573087 787067 766419 343149 013558 123821 901139 896648 761783 797605 997238 019447 192976 508555 204455 267194 616887 482539 038129 189002 642936 018105 850884 775288 519799 598809 368143 254331 608239 723869 921877 601055 463074 425785 186393 557849 005498 941489 268032 486458 969142 881735 020068 750922 778702 885117 052347 827036 950139 561667 886309 021645 313161 683388 134046 349244 481470 142352 918991 838348 726500 383241 092001 323019 568215 541110 470195 334773 952982 960061 468704 966285 164654 488514 938521 874497 172399 359058 486498 602750 583338 508887 543006 582619 069385 299330 472580 285435 180724 891887 323952 330435 496783 (787 digits)/101 575248 593825 654924 814208 960698 556534 476042 540266 070588 737228 992025 538040 976451 088762 566957 964263 791421 981915 597019 747900 756825 737528 177354 148328 339517 346238 509395 947755 159367 115092 310551 499923 995412 063869 250335 060270 260324 989098 587050 338743 519254 628829 640143 858510 629360 538553 779339 679716 869733 222403 868335 258367 971085 353339 062677 588788 012529 870092 522918 366650 590458 923667 024637 811787 223207 344898 220972 814279 542077 416471 826227 701750 968937 392144 780023 429562 572855 279422 661149 899827 591868 938394 947919 875441 459125 948912 888781 174225 325728 071374 927901 330302 850427 841847 233866 718249 246471 694429 146349 549339 216776 884102 823774 205132 302976 740825 609662 486629 023771 501111 896131 671281 778440 315369 652091 100354 066652 762372 513253 288774 060225 911496 436421 949957 705232 169401 971634 727627 127778 726430 442662 (789 digits), a[1500] = 4
                                                                                      A[1501]/B[1501] = 1 278192 947348 029290 528680 432883 112376 016195 813630 222389 858999 511027 855592 132209 263229 048394 870172 609326 343738 754211 736182 992208 796529 749354 234530 722715 235604 231875 474391 633364 252084 281523 430112 000925 750883 919628 863187 324153 491122 412470 169333 941582 916615 882900 404928 504172 855969 685797 304877 690455 307251 084770 573477 029888 890145 275597 954001 028790 299237 392882 843998 172038 695123 326457 270018 090808 989623 019468 338465 622937 839339 323703 435821 773102 630360 169422 119393 893590 005247 102520 672527 177687 444250 532523 094270 228156 835875 090225 381749 151992 096081 914598 276193 459315 665945 347076 388668 352419 984223 551817 687467 135572 047679 823435 162189 431105 690775 583111 760052 950886 936570 762634 491076 424389 707691 987684 200936 126540 394622 002379 514911 122393 563194 003111 800572 091305 275402 569238 222649 858360 639078 399905 (787 digits)/124 232078 759533 345810 100523 559636 962923 014059 657501 742712 487622 210616 667605 978721 881701 913532 163112 645152 752251 057224 929788 382402 737014 321139 522059 419942 198043 858730 904786 581409 311415 172014 120003 476860 422559 836024 514153 965437 707729 643872 656703 216268 151525 884333 699874 127925 314648 869920 206813 855073 212264 772984 758182 451650 521308 588656 591961 782287 232563 040100 949712 968492 911882 614999 591360 024937 900643 632760 972669 972853 905215 634428 423453 923269 456015 462450 453555 459599 668786 043010 453109 253467 281492 809611 168183 045724 386667 269045 287876 184623 286798 293756 920716 663221 079354 721190 624448 917357 887786 027774 890398 113057 382057 346357 311341 228171 663396 127943 942566 969828 228501 772749 117603 229682 374990 199581 714908 438929 828429 496423 782224 448628 307694 869558 315517 287132 025756 942769 024872 243729 995102 131723 (789 digits), a[1501] = 1
                                                                                      A[1502]/B[1502] = 6 157854 248561 606420 078247 699955 917014 819225 075819 428331 841517 904863 889276 827992 380082 018969 789022 841006 666273 645770 869426 191614 259206 829709 918328 838241 173444 939021 192375 759211 800582 587166 071926 242735 229309 669815 650028 641420 234039 222968 464403 532751 009612 545159 743535 917831 320527 504973 017116 759059 248451 532058 802463 324010 827775 719279 298543 153290 385952 214467 394098 539039 555781 825628 678881 731379 212823 686113 077732 413628 958412 757888 169072 278804 079289 683187 419064 842392 507447 379225 571843 730818 527924 908795 262197 964975 170537 311041 088664 494277 405972 971554 788161 971309 013025 869775 697026 328671 775242 933771 133109 634289 513738 861956 189868 194618 097876 285430 000273 272252 712568 215192 452820 636080 705265 123136 162802 992660 181238 592856 568532 032580 835395 081832 501618 837801 387045 457677 782486 757394 886749 096403 (787 digits)/598 503563 631959 038165 216303 199246 408226 532281 170273 041438 687717 834492 208464 891338 615570 221086 616714 372032 990919 825919 467054 286436 685585 461912 236566 019286 138413 944319 566901 485004 360752 998607 979937 902853 754108 594433 116886 122075 820017 162540 965556 384327 234933 177478 658007 141061 797149 259020 506972 290026 071462 960274 291097 777687 438573 417303 956635 141678 800344 683322 165502 464430 571197 484636 177227 322958 947472 752016 704959 433493 037334 363941 395566 662015 216206 629825 243784 411253 954566 833191 712264 605738 064366 186364 548173 642023 495581 964962 325730 064221 218568 102929 013169 503312 159266 118629 216044 915903 245573 257449 110931 669006 412332 209203 450497 215663 394410 121438 256896 903084 415118 987128 141694 697169 815330 450417 959987 822372 076090 498948 417671 854739 142275 914655 212026 853760 272429 742710 827116 102698 706838 969554 (789 digits), a[1502] = 4
                                                                                      A[1503]/B[1503] = 7 436047 195909 635710 606928 132839 029390 835420 889449 650721 700517 415891 744868 960201 643311 067364 659195 450333 010012 399982 605609 183823 055736 579064 152859 560956 409049 170896 666767 392576 052666 868689 502038 243660 980193 589444 513215 965573 725161 635438 633737 474333 926228 428060 148464 422004 176497 190770 321994 449514 555702 616829 375940 353899 717920 994877 252544 182080 685189 607350 238096 711078 250905 152085 948899 822188 202446 705581 416198 036566 797752 081591 604894 051906 709649 852609 538458 735982 512694 481746 244370 908505 972175 441318 356468 193132 006412 401266 470413 646269 502054 886153 064355 430624 678971 216852 085694 681091 759466 485588 820576 769861 561418 685391 352057 625723 788651 868541 760326 223139 649138 977826 943897 060470 412957 110820 363739 119200 575860 595236 083443 154974 398589 084944 302190 929106 662448 026916 005136 615755 525827 496308 (787 digits)/722 735642 391492 383975 316826 758883 371149 546340 827774 784151 175340 045108 876070 870060 497272 134618 779827 017185 743170 883144 396842 668839 422599 783051 758625 439228 336457 803050 471688 066413 672168 170622 099941 379714 176668 430457 631040 087513 527746 806413 622259 600595 386459 061812 357881 268987 111798 128940 713786 145099 283727 733259 049280 229337 959882 005960 548596 923966 032907 723423 115215 432923 483080 099635 768587 347896 848116 384777 677629 406346 942549 998369 819020 585284 672222 092275 697339 870853 623352 876202 165373 859205 345858 995975 716356 687747 882249 234007 613606 248844 505366 396685 933886 166533 238620 839819 840493 833261 133359 285224 001329 782063 794389 555560 761838 443835 057806 249382 199463 872912 643620 759877 259297 926852 190320 649999 674896 261301 904519 995372 199896 303367 449970 784213 527544 140892 298186 685479 851988 346428 701941 101277 (789 digits), a[1503] = 1
                                                                                      A[1504]/B[1504] = 13 593901 444471 242130 685175 832794 946405 654645 965269 079053 542035 320755 634145 788194 023393 086334 448218 291339 676286 045753 475035 375437 314943 408774 071188 399197 582494 109917 859143 151787 853249 455855 573964 486396 209503 259260 163244 606993 959200 858407 098141 007084 935840 973219 892000 339835 497024 695743 339111 208573 804154 148888 178403 677910 545696 714156 551087 335371 071141 821817 632195 250117 806686 977714 627781 553567 415270 391694 493930 450195 756164 839479 773966 330710 788939 535796 957523 578375 020141 860971 816214 639324 500100 350113 618666 158107 176949 712307 559078 140546 908027 857707 852517 401933 691997 086627 782721 009763 534709 419359 953686 404151 075157 547347 541925 820341 886528 153971 760599 495392 361707 193019 396717 696551 118222 233956 526542 111860 757099 188092 651975 187555 233984 166776 803809 766908 049493 484593 787623 373150 412576 592711 (788 digits)/1321 239206 023451 422140 533129 958129 779376 078621 998047 825589 863057 879601 084535 761399 112842 355705 396541 389218 734090 709063 863896 955276 108185 244963 995191 458514 474871 747370 038589 551418 032921 169230 079879 282567 930777 024890 747926 209589 347763 968954 587815 984922 621392 239291 015888 410048 908947 387961 220758 435125 355190 693533 340378 007025 398455 423264 505232 065644 833252 406745 280717 897354 054277 584271 945814 670855 795589 136794 382588 839839 979884 362311 214587 247299 888428 722100 941124 282107 577919 709393 877638 464943 410225 182340 264530 329771 377831 198969 939336 313065 723934 499614 947055 669845 397886 958449 056538 749164 378932 542673 112261 451070 206721 764764 212335 659498 452216 370820 456360 775997 058739 747005 400992 624022 005651 100417 634884 083673 980610 494320 617568 158106 592246 698868 739570 994652 570616 428190 679104 449127 408780 070831 (790 digits), a[1504] = 1
                                                                                      A[1505]/B[1505] = 61 811652 973794 604233 347631 464018 815013 454004 750525 966935 868658 698914 281452 112977 736883 412702 452068 615691 715156 582996 505750 685572 315510 214160 437613 157746 739025 610568 103339 999727 465664 692111 797896 189245 818206 626485 166194 393549 561965 069067 026301 502673 669592 320939 716465 781346 164595 973743 678439 283809 772319 212382 089555 065541 900707 851503 456893 523564 969756 894620 766877 711549 477653 062944 460026 036457 863528 272359 391919 837349 822411 439510 700759 374749 865407 995797 368553 049482 593261 925633 509229 465803 972576 841772 831132 825560 714211 250496 706726 208457 134166 316984 474425 038359 446959 563363 216578 720145 898304 163028 635322 386465 862048 874781 519760 907091 334764 484428 802724 204709 095967 749904 530767 846674 885846 046646 469907 566643 604257 347606 691343 905195 334525 752051 517429 996738 860421 965291 155630 108357 176133 867152 (788 digits)/6007 692466 485298 072537 449346 591402 488653 860828 819966 086510 627571 563513 214213 915656 948641 557440 365992 574060 679533 719399 852430 489943 855340 762907 739391 273286 235944 792530 626046 272085 803852 847542 419458 509985 899776 530020 622744 925870 918802 682231 973523 540285 872028 018976 421434 909182 747587 680785 596819 885600 704490 507392 410792 257439 553703 699018 569525 186545 365917 350404 238087 022339 700190 436723 551846 031320 030472 931955 207984 765706 862087 447614 677369 574484 225936 980679 461836 999283 935031 713777 675927 718978 986759 725336 774478 006833 393574 029887 370951 501107 401104 395145 722108 845914 830168 673616 066648 829918 649089 455916 450375 586344 621276 614617 611181 081828 866671 732664 024906 976900 878579 747898 863268 422940 212925 051670 214432 595997 826961 972654 670168 935793 818957 579688 485828 119502 580652 398242 568406 142938 337061 384601 (790 digits), a[1505] = 4
                                                                                      A[1506]/B[1506] = 878 957043 077595 701397 552016 329058 356594 010712 472632 616155 703257 105555 574475 369882 339760 864168 777178 911023 688478 207704 555544 973449 732086 407020 197772 607651 928852 657871 305903 147972 372555 145420 744511 135837 664396 030052 489966 116687 826711 825345 466362 044516 310133 466375 922521 278681 801368 328154 837261 181910 616623 122237 432174 595497 155606 635204 947596 665280 647738 346508 368483 211810 493829 858937 068146 063977 504666 204725 980808 173093 269924 992629 584597 577208 904651 476960 117266 271131 325808 819840 945427 160580 116176 134933 254525 715957 175907 219261 453245 058946 786356 295490 494467 938965 949430 973712 814823 091806 110967 701760 848199 814673 143841 794288 818578 519620 573230 935974 998738 361319 705255 691682 827467 549999 520066 887007 105248 044871 216702 054586 330789 860289 917344 695498 047829 721252 095400 998669 966444 890150 878450 732839 (789 digits)/85428 933736 817624 437664 823982 237764 620530 130225 477573 036738 649059 768786 083530 580596 393824 159870 520437 426068 247562 780661 797923 814490 082955 925672 346669 284521 778098 842798 803237 360619 286861 034823 952298 422370 527648 445179 466355 171782 211001 520202 217145 548924 829784 504960 915977 138607 375174 918959 576236 833535 218057 797027 091469 611179 150307 209524 478584 677279 956095 312404 613936 210109 856943 698401 671659 109336 222210 184167 294375 559736 049108 628916 697761 290079 051546 451613 406842 272082 668363 702281 340626 530649 224861 337055 107222 425438 887867 617393 132657 328569 339396 031655 056579 512653 020248 389073 989622 368025 466184 925503 417519 659894 904594 369410 768870 805102 585620 628116 805058 452609 358856 217589 486750 545184 986601 823800 636940 427643 558078 111485 999933 259220 057652 814507 541164 667688 699750 003586 636790 450264 127639 455245 (791 digits), a[1506] = 14
                                                                                      A[1507]/B[1507] = 1819 725739 128986 007028 451664 122135 528201 475429 695791 199247 275172 910025 430402 852742 416405 141040 006426 437739 092112 998405 616840 632471 779683 028200 833158 373050 596730 926310 715146 295672 210774 982953 286918 460921 146998 686590 146126 626925 215388 719757 959025 591706 289859 253691 561508 338709 767332 630053 352961 647631 005565 456856 953904 256536 211921 121913 352086 854126 265233 587637 503844 135170 465312 780818 596318 164412 872860 681811 353536 183536 362261 424769 869954 529167 674710 949717 603085 591745 244879 565315 400083 786964 204929 111639 340184 257475 066025 689019 613216 326350 706878 907965 463360 916291 345821 510788 846224 903758 120239 566550 331722 015812 149732 463359 156917 946332 481226 356378 800200 927348 506479 133270 185702 946673 925979 820660 680403 656386 037661 456779 352923 625775 169215 143047 613089 439243 051223 962631 088519 888658 933035 332830 (790 digits)/176865 559940 120546 947867 097311 066931 729714 121279 775112 159987 925691 101085 381275 076849 736289 877181 406867 426197 174659 280723 448278 118924 021252 614252 432729 842329 792142 478128 232520 993324 377574 917190 324055 354726 955073 420379 555455 269435 340805 722636 407814 638135 531597 028898 253389 186397 497937 518704 749293 552671 140606 101446 593731 479797 854318 118067 526694 541105 278107 975213 465959 442559 414077 833526 895164 249992 474893 300289 796735 885178 960304 705448 072892 154642 329029 883906 275521 543449 271759 118340 357180 780277 436482 399446 988922 857711 169309 264673 636266 158246 079896 458455 835267 871220 870665 451764 045893 565969 581459 306923 285414 906134 430465 353439 148922 692034 037912 988897 635023 882119 596292 183077 836769 513310 186128 699271 488313 451284 943118 195626 670035 454233 934263 208703 568157 454879 980152 405415 841987 043466 592340 295091 (792 digits), a[1507] = 2
                                                                                      A[1508]/B[1508] = 8157 859999 593539 729511 358672 817600 469399 912431 255797 413144 803948 745657 296086 780852 005381 428328 802884 661980 056930 201327 022907 503336 850818 519823 530406 099854 315776 363114 166488 330661 215655 077233 892184 979522 252390 776413 074472 624388 688266 704377 302464 411341 469570 481142 168554 633520 870698 848368 249107 772434 638884 949665 247791 621642 003291 122858 355944 081785 708672 697058 383859 752492 355080 982211 453418 721628 996108 931971 394952 907238 718970 691709 064415 693879 603495 275830 529608 638112 305327 081102 545762 308436 935892 581490 615262 745857 440009 975339 906110 364349 613871 927352 347911 604131 332717 016868 199722 706838 591925 967962 175087 877921 742771 647725 446250 304950 498136 361490 199542 070713 731172 224763 570279 336695 223986 169649 826862 670415 367347 881703 742484 363390 594205 267688 500187 478224 300296 849194 320524 444786 610592 064159 (790 digits)/792891 173497 299812 229133 213226 505491 539386 615344 578021 676690 351824 173127 608630 887995 338983 668596 147907 130856 946199 903555 591036 290186 167966 382682 077588 653840 946668 755311 733321 333916 797160 703585 248519 841278 347942 126697 688176 249523 574224 410747 848404 101466 956172 620553 929533 884197 366924 993778 573411 044219 780482 202813 466395 530370 567579 681794 585362 841701 068527 213258 477773 980347 513255 032509 252316 109306 121783 385326 481319 100451 890327 450708 989329 908648 367665 987238 508928 445879 755400 175642 769349 651758 970790 934843 062913 856283 565104 676087 677721 961553 658981 865478 397650 997536 502910 196130 173196 631903 792022 153196 559179 284432 626455 783167 364561 573238 737272 583707 345153 981087 744024 949900 833828 598425 731116 620886 590194 232783 330550 893992 680075 076155 794705 649321 813794 487208 620359 625250 004738 624130 497000 635609 (792 digits), a[1508] = 4
                                                                                      A[1509]/B[1509] = 9977 585738 722525 736539 810336 939735 997601 387860 951588 612392 079121 655682 726489 633594 421786 569368 809311 099719 149043 199732 639748 135808 630501 548024 363564 472904 912507 289424 881634 626333 426430 060187 179103 440443 399389 463003 220599 251313 903655 424135 261490 003047 759429 734833 730062 972230 638031 478421 602069 420065 644450 406522 201695 878178 215212 244771 708030 935911 973906 284695 887703 887662 820393 763030 049736 886041 868969 613782 748489 090775 081232 116478 934370 223047 278206 225548 132694 229857 550206 646417 945846 095401 140821 693129 955447 003332 506035 664359 519326 690700 320750 835317 811272 520422 678538 527657 045947 610596 712165 534512 506809 893733 892504 111084 603168 251282 979362 717868 999742 998062 237651 358033 755982 283369 149965 990310 507266 326801 405009 338483 095407 989165 763420 410736 113276 917467 351520 811825 409044 333445 543627 396989 (790 digits)/969756 733437 420359 177000 310537 572423 269100 736624 353133 836678 277515 274212 989905 964845 075273 545777 554774 557054 120859 184279 039314 409110 189218 996934 510318 496170 738811 233439 965842 327241 174735 620775 572575 196005 303015 547077 243631 518958 915030 133384 256218 739602 487769 649452 182923 070594 864862 512483 322704 596890 921088 304260 060127 010168 421897 799862 112057 382806 346635 188471 943733 422906 927332 866036 147480 359298 596676 685616 278054 985630 850632 156157 062222 063290 696695 871144 784449 989329 027159 293983 126530 432036 407273 334290 051836 713994 734413 940761 313988 119799 738878 323934 232918 868757 373575 647894 219090 197873 373481 460119 844594 190567 056921 136606 513484 265272 775185 572604 980177 863207 340317 132978 670598 111735 917245 320158 078507 684068 273669 089619 350110 530389 728968 858025 381951 942088 600512 030665 846725 667597 089340 930700 (792 digits), a[1509] = 1
                                                                                      A[1510]/B[1510] = 18135 445738 316065 466051 169009 757336 467001 300292 207386 025536 883070 401340 022576 414446 427167 997697 612195 761699 205973 401059 662655 639145 481320 067847 893970 572759 228283 652539 048122 956994 642085 137421 071288 419965 651780 239416 295071 875702 591922 128512 563954 414389 229000 215975 898617 605751 508730 326789 851177 192500 283335 356187 449487 499820 218503 367630 063975 017697 682578 981754 271563 640155 175474 745241 503155 607670 865078 545754 143441 998013 800202 808187 998785 916926 881701 501378 662302 867969 855533 727520 491608 403838 076714 274620 570709 749189 946045 639699 425437 055049 934622 762670 159184 124554 011255 544525 245670 317435 304091 502474 681897 771655 635275 758810 049418 556233 477499 079359 199285 068775 968823 582797 326261 620064 373952 159960 334128 997216 772357 220186 837892 352556 357625 678424 613464 395691 651817 661019 729568 778232 154219 461148 (791 digits)/1 762647 906934 720171 406133 523764 077914 808487 351968 931155 513368 629339 447340 598536 852840 414257 214373 702681 687911 067059 087834 630350 699296 357185 379616 587907 150011 685479 988751 699163 661157 971896 324360 821095 037283 650957 673774 931807 768482 489254 544132 104622 841069 443942 270006 112456 954792 231787 506261 896115 641110 701570 507073 526522 540538 989477 481656 697420 224507 415162 401730 421507 403254 440587 898545 399796 468604 718460 070942 759374 086082 740959 606866 051551 971939 064361 858383 293378 435208 782559 469625 895880 083795 378064 269133 114750 570278 299518 616848 991710 081353 397860 189412 630569 866293 876485 844024 392286 829777 165503 613316 403773 474999 683376 919773 878045 838511 512458 156312 325331 844295 084342 082879 504426 710161 648361 941044 668701 916851 604219 983612 030185 606545 523674 507347 195746 429297 220871 655915 851464 291727 586341 566309 (793 digits), a[1510] = 1
                                                                                      A[1511]/B[1511] = 64383 922953 670722 134693 317366 211745 398605 288737 573746 689002 728332 859702 794218 876933 703290 562461 645898 384816 766963 402911 627715 053245 074461 751568 045476 191182 597358 247042 026003 497317 352685 472450 392968 700340 354730 181252 105814 878421 679421 809672 953353 246215 446430 382761 425915 789485 164222 458791 155600 997566 494456 475084 550158 377638 870722 347661 899955 989005 021643 229958 702394 808128 346817 998754 559203 709054 464205 251045 178815 084816 481840 541042 930727 973827 923310 729684 119602 833767 116807 828979 420671 306915 370964 516991 667576 250902 344172 583457 795637 855850 124619 123328 288824 894084 712305 161232 782958 562902 624440 041936 552503 208700 798331 387514 751423 919983 411859 955946 597598 204390 144122 106425 734767 143562 271822 470191 509653 318451 722080 999043 609085 046834 836297 446009 953670 104542 306973 794884 597750 668142 006285 780433 (791 digits)/6 257700 454241 580873 395400 881829 806167 694562 792531 146600 376784 165533 616234 785516 523366 318045 188898 662819 620787 322036 447782 930366 506999 260775 135784 274039 946205 795251 199695 063333 310715 090424 593858 035860 307856 255888 568402 039054 824406 382793 765780 570087 262810 819596 459470 520293 934971 560225 031269 011051 520223 025799 825480 639694 631785 390330 244832 204318 056328 592122 393663 208255 632670 249096 561672 346869 765112 752056 898444 556177 243879 073510 976755 216877 979107 889781 446294 664585 294955 374837 702860 814170 683422 541466 141689 396088 424829 632969 791308 289118 363859 932458 892172 124628 467639 003033 179967 395950 687204 869992 300069 055914 615566 107051 895928 147621 780807 312560 041541 956173 396092 593343 381617 183878 242220 862331 143292 084613 434623 086329 040455 440667 350026 299992 380066 969191 229980 263126 998413 401118 542779 848365 629627 (793 digits), a[1511] = 3
                                                                                      A[1512]/B[1512] = 1 177046 058904 389063 890530 881601 568753 641896 497568 534826 427585 993061 875990 318516 199253 086398 122007 238366 688401 011314 653468 961526 597556 821631 596072 712542 014045 980732 099295 516185 908706 990423 641528 144725 026092 036923 501954 199739 687292 821514 702625 724312 846267 264747 105681 565101 816484 464734 585030 651995 148697 183551 907709 352338 297319 891505 625544 263182 819788 072157 121010 914670 186465 418198 722823 568822 370651 220773 064567 362113 524710 473332 546960 751889 445829 501294 635692 815153 875777 958074 649150 063691 928314 754075 580470 587082 265432 141152 141939 746918 460352 177766 982579 358032 218078 832748 446715 338924 449682 544012 257332 626955 528270 005240 734075 575049 115934 890978 286397 956052 747798 563021 498460 552070 204185 266756 623407 507888 729347 769815 202971 801423 195583 410979 706603 779526 277453 177345 968942 489080 804788 267363 508942 (793 digits)/114 401256 083283 175892 523349 396700 588933 310617 617529 569962 295483 608944 539566 737834 273434 139070 614549 633434 862082 863715 147927 376947 825283 051137 823733 520626 181716 000001 583262 839163 254029 599539 013805 466580 578696 256951 905011 634794 607797 379542 328182 366193 571664 196678 540475 477747 784280 315838 069104 095043 005125 165967 365725 041025 912676 015421 888636 375145 238422 073365 487668 170108 791318 924326 008647 643452 240634 255484 242944 770564 475906 064157 188459 955355 595881 080427 891687 255913 744405 529638 121120 550952 385401 124454 819542 244342 217211 692974 860398 195840 630832 182120 248510 873882 283795 931083 083437 519399 199464 825365 014559 410236 555189 610311 046480 535237 893043 138538 904067 536452 973961 764522 951988 814235 070137 170322 520302 191743 740067 158142 711809 962197 907018 923537 348552 641188 568941 957157 627357 071598 061764 856922 899595 (795 digits), a[1512] = 18
                                                                                      A[1513]/B[1513] = 1 241429 981858 059786 025224 198967 780499 040501 786306 108573 116588 721394 735693 112735 076186 789688 684468 884265 073217 778278 056380 589241 650801 896093 347640 758018 205228 578090 346337 542189 406024 343109 113978 537693 726432 391653 683206 305554 565714 500936 512298 677666 092482 711177 488442 991017 605969 628957 043821 807596 146263 678008 382793 902496 674958 762227 973206 163138 808793 093800 350969 617064 994593 765016 721578 128026 079705 684978 315612 540928 609526 955173 088003 682617 419657 424605 365376 934756 709545 074882 478129 484363 235230 125040 097462 254658 516334 485324 725397 542556 316202 302386 105907 646857 112163 545053 607948 121883 012585 168452 299269 179458 736970 803572 121590 326473 035918 302838 242344 553650 952188 707143 604886 286837 347747 538579 093599 017542 047799 491896 202015 410508 242418 247277 152613 733196 381995 484319 763827 086831 472930 273649 289375 (793 digits)/120 658956 537524 756765 918750 278530 395101 005180 410060 716562 672267 774478 155801 523350 796800 457115 803448 296254 482870 185751 595710 307314 332282 311912 959517 794666 127921 795252 782957 902496 564744 689963 607663 502440 886552 512840 473413 673849 432203 762336 093962 936280 834475 016274 999945 998041 719251 876063 100373 106094 525348 191767 191205 680720 544461 405752 133468 579463 294750 665487 881331 378364 423989 173422 570319 990322 005747 007541 141389 326741 719785 137668 165215 172233 574988 970209 337981 920499 039360 904475 823981 365123 068823 665920 961231 640430 642041 325944 651706 484958 994692 114579 140682 998510 751434 934116 263404 915349 886669 695357 314628 466151 170755 717362 942408 682859 673850 451098 945609 492626 370054 357866 333605 998113 312358 032653 663594 276357 174690 244471 752265 402865 257045 223529 728619 610379 798922 220284 625770 472716 604544 705288 529222 (795 digits), a[1513] = 1
                                                                                      A[1514]/B[1514] = 4 901336 004478 568421 966203 478504 910250 763401 856486 860545 777352 157246 083069 656721 427813 455464 175413 891161 908054 346148 822610 729251 549962 509911 638994 986596 629731 715003 138308 142754 126780 019750 983463 757806 205389 211884 551573 116403 384436 324324 239521 757311 123715 398279 571010 538154 634393 351605 716496 074783 587488 217577 056091 059828 322196 178189 545162 752599 246167 353558 173919 765865 170246 713248 887557 952900 609768 275708 011404 984899 353291 338851 810971 799741 704801 775110 731823 619424 004413 182722 083538 516781 634005 129195 872857 351057 814435 597126 318132 374587 408959 084925 300302 298603 554569 467909 270559 704573 487438 049369 155140 165331 739182 415957 098846 554468 223689 799493 013431 617005 604364 684452 313119 412582 247427 882493 904204 560514 872746 245503 809018 032947 922838 152811 164444 979115 423439 630305 260423 749575 223579 088311 377067 (793 digits)/476 378125 695857 446190 279600 232291 774236 326158 847711 719650 312286 932379 006971 307886 663835 510418 024894 522198 310693 420969 935058 298890 822129 986876 702286 904624 565481 385759 932136 546652 948263 669429 836795 973903 238353 795473 325252 656342 904408 666550 610071 175036 075089 245503 540313 471872 942035 944027 370223 413326 581169 741268 939342 083187 546060 232678 289042 113535 122674 069829 131662 305202 063286 444593 719607 614418 257875 278107 667112 750789 635261 477161 684105 472056 320847 991055 905633 017410 862488 243065 593064 646321 591872 122217 703237 165634 143335 670808 815517 650717 614908 525857 670559 869414 538100 733431 873652 265448 859473 911436 958444 808690 067456 762399 873706 583816 914594 491835 740896 014332 084124 838121 952806 808575 007211 268283 511085 020815 264137 891557 968606 170793 678154 594126 534411 472327 965708 618011 504668 489747 875398 972788 487261 (795 digits), a[1514] = 3
                                                                                      A[1515]/B[1515] = 60 057462 035600 880849 619665 941026 703508 201324 064148 435122 444814 608347 732528 993392 209948 255258 789435 578207 969869 932063 927709 340260 250352 015033 015580 597177 762009 158128 006035 255238 927384 580120 915543 631368 191102 934268 302083 702395 178950 392827 386559 765399 577067 490532 340569 448873 218689 848225 641774 704999 196122 288933 055886 620436 541312 900502 515159 194329 762801 336498 438006 807447 037554 324003 372273 562833 396924 993474 452472 359720 849023 021394 819665 279517 877278 725934 147260 367844 762503 267547 480591 685742 843291 675390 571750 467352 289561 650840 542986 037605 223711 321489 709535 230099 766997 159964 854664 576764 861841 760882 160951 163439 607159 795057 307748 980091 720195 896754 403523 957718 204564 920571 362319 237824 316882 128505 944053 743720 520754 437941 910231 805883 316476 081011 125953 482581 463271 047982 888912 081734 155879 333385 814179 (794 digits)/5837 196464 887814 111049 273953 066031 685936 919086 582601 352366 419710 963026 239457 217990 762826 582132 102182 562634 211191 237390 816409 894004 197842 154433 386960 650160 913698 424371 968596 462331 943908 723121 649215 189279 746798 058520 376445 549964 285107 760943 414817 036713 735545 962317 483707 660517 023683 204391 543054 066013 499385 086994 463310 678971 097184 197891 601973 941884 766839 503437 461279 040789 183426 508547 205611 363341 100250 344833 146742 336217 342922 863608 374480 836909 425164 862880 205578 129429 389219 821262 940757 120982 171289 132533 400077 628040 362069 375650 437918 293570 373594 424871 187401 431485 208643 735298 747232 100736 200356 632600 815966 170431 980236 866161 426887 688662 648984 353127 836361 664611 379552 415329 767287 701013 398893 252055 796614 526140 344344 943167 375539 452389 394900 353048 141557 278315 387425 636422 681792 349691 109332 378750 376354 (796 digits), a[1515] = 12
                                                                                      A[1516]/B[1516] = 64 958798 040079 449271 585869 419531 613758 964725 920635 295668 222166 765593 815598 650113 637761 710722 964849 469369 877924 278212 750320 069511 800314 524944 654575 583774 391740 873131 144343 397993 054164 599871 899007 389174 396492 146152 853656 818798 563386 717151 626081 522710 700782 888811 911579 987027 853083 199831 358270 779782 783610 506510 111977 680264 863509 078692 060321 946929 008968 690056 611926 573312 207801 037252 259831 515734 006693 269182 463877 344620 202314 360246 630637 079259 582080 501044 879083 987268 766916 450269 564130 202524 477296 804586 444607 818410 103997 247966 861118 412192 632670 406415 009837 528703 321566 627874 125224 281338 349279 810251 316091 328771 346342 211014 406595 534559 943885 696247 416955 574723 808929 605023 675438 650406 564310 010999 848258 304235 393500 683445 719249 838831 239314 233822 290398 461696 886710 678288 149335 831309 379458 421697 191246 (794 digits)/6313 574590 583671 557239 553553 298323 460173 245245 430313 072016 731997 895405 246428 525877 426662 092550 127077 084832 521884 658360 751468 192895 019972 141310 089247 554785 479179 810131 900733 008984 892172 392551 486011 163182 985151 853993 701698 206307 189516 427494 024888 211749 810635 207821 024021 132389 965719 148418 913277 479340 080554 828263 402652 762158 643244 430569 891016 055419 889513 573266 592941 345991 246712 953140 925218 977759 358125 622940 813855 087006 978184 340770 058586 308965 746012 853936 111211 146840 251708 064328 533821 767303 763161 254751 103314 793674 505405 046459 253435 944287 988502 950728 857961 300899 746744 468730 620884 366185 059830 544037 774410 979122 047693 628561 300594 272479 563578 844963 577257 678943 463677 253451 720094 509588 406104 520339 307699 546955 608482 834725 344145 623183 073054 947174 675968 750643 353134 254434 186460 839438 984731 351538 863615 (796 digits), a[1516] = 1
                                                                                      A[1517]/B[1517] = 125 016260 075680 330121 205535 360558 317267 166049 984783 730790 666981 373941 548127 643505 847709 965981 754285 047577 847794 210276 678029 409772 050666 539977 670156 180952 153750 031259 150378 653231 981549 179992 814551 020542 587595 080421 155740 521193 742337 109979 012641 288110 277850 379344 252149 435901 071773 048057 000045 484781 979732 795443 167864 300701 404821 979194 575481 141258 771770 026555 049933 380759 245355 361255 632105 078567 403618 262656 916349 704341 051337 381641 450302 358777 459359 226979 026344 355113 529419 717817 044721 888267 320588 479977 016358 285762 393558 898807 404104 449797 856381 727904 719372 758803 088563 787838 979888 858103 211121 571133 477042 492210 953502 006071 714344 514651 664081 593001 820479 532442 013494 525595 037757 888230 881192 139505 792312 047955 914255 121387 629481 644714 555790 314833 416351 944278 349981 726271 038247 913043 535337 755083 005425 (795 digits)/12150 771055 471485 668288 827506 364355 146110 164332 012914 424383 151708 858431 485885 743868 189488 674682 229259 647466 733075 895751 567878 086899 217814 295743 476208 204946 392878 234503 869329 471316 836081 115673 135226 352462 731949 912514 078143 756271 474624 188437 439705 248463 546181 170138 507728 792906 989402 352810 456331 545353 579939 915257 865963 441129 740428 628461 492989 997304 656353 076704 054220 386780 430139 461688 130830 341100 458375 967773 960597 423224 321107 204378 433067 145875 171177 716816 316789 276269 640927 885591 474578 888285 934450 387284 503392 421714 867474 422109 691354 237858 362097 375600 045362 732384 955388 204029 368116 466921 260187 176638 590377 149554 027930 494722 727481 961142 212563 198091 413619 343554 843229 668781 487382 210601 804997 772395 104314 073095 952827 777892 719685 075572 467955 300222 817526 028958 740559 890856 868253 189130 094063 730289 239969 (797 digits), a[1517] = 1
                                                                                      A[1518]/B[1518] = 314 991318 191440 109513 996940 140648 248293 296825 890202 757249 556129 513476 911853 937125 333181 642686 473419 564525 573512 698766 106378 889055 901647 604899 994887 945678 699240 935649 445100 704457 017262 959857 528109 430259 571682 306995 165137 861186 048060 937109 651364 098931 256483 647500 415878 858829 996629 295945 358361 749346 743076 097396 447706 281667 673153 037081 211284 229446 552508 743166 711793 334830 698511 759763 524041 672868 813929 794496 296576 753302 304989 123529 531241 796814 500798 955002 931772 697495 825755 885903 653573 979059 118473 764540 477324 389934 891115 045581 669327 311788 345433 862224 448583 046309 498694 203552 085001 997544 771522 952518 270176 313193 253346 223157 835284 563863 272048 882251 057914 639607 835918 656213 750954 426868 326694 290011 432882 400147 222010 926220 978213 128260 350894 863489 123102 350253 586674 130830 225831 657396 450133 931863 202096 (795 digits)/30615 116701 526642 893817 208566 027033 752393 573909 456141 920783 035415 612268 218200 013613 805639 441914 585596 379765 988036 449863 887224 366693 455600 732797 041663 964678 264936 279139 639391 951618 564334 623897 756463 868108 449051 679021 857985 718850 138764 804368 904298 708676 902997 548098 039478 718203 944523 854039 825940 570047 240434 658779 134579 644418 124101 687492 876996 050029 202219 726674 701382 119552 106991 876517 186879 659960 274877 558488 735049 933455 620398 749526 924720 600716 088368 287568 744789 699379 533563 835511 482979 543875 632062 029320 110099 637104 240353 890678 636144 420004 712697 701928 948686 765669 657520 876789 357117 300027 580204 897314 955165 278230 103554 618006 755558 194763 988705 241146 404496 366053 150136 591014 694858 930792 016100 065129 516327 693147 514138 390510 783515 774328 008965 547620 311020 808560 834254 036147 922967 217699 172858 812117 343553 (797 digits), a[1518] = 2
                                                                                      A[1519]/B[1519] = 440 007578 267120 439635 202475 501206 565560 462875 874986 488040 223110 887418 459981 580631 180891 608668 227704 612103 421306 909042 784408 298827 952314 144877 665044 126630 852990 966908 595479 357688 998812 139850 342660 450802 159277 387416 320878 382379 790398 047088 664005 387041 534334 026844 668028 294731 068402 344002 358407 234128 722808 892839 615570 582369 077975 016275 786765 370705 324278 769721 761726 715589 943867 121019 156146 751436 217548 057153 212926 457643 356326 505170 981544 155591 960158 181981 958117 052609 355175 603720 698295 867326 439062 244517 493682 675697 284673 944389 073431 761586 201815 590129 167955 805112 587257 991391 064890 855647 982644 523651 747218 805404 206848 229229 549629 078514 936130 475252 878394 172049 849413 181808 788712 315099 207886 429517 225194 448103 136266 047608 607694 772974 906685 178322 539454 294531 936655 857101 264079 570439 985471 686946 207521 (795 digits)/42765 887756 998128 562106 036072 391388 898503 738241 469056 345166 187124 470699 704085 757481 995128 116596 814856 027232 721112 345615 455102 453592 673415 028540 517872 169624 657814 513643 508721 422935 400415 739570 891690 220571 181001 591535 936129 475121 613388 992806 344003 957140 449178 718236 547207 511110 933926 206850 282272 115400 820374 574037 000543 085547 864530 315954 369986 047333 858572 803378 755602 506332 537131 338205 317710 001060 733253 526262 695647 356679 941505 953905 357787 746591 259546 004385 061578 975649 174491 721102 957558 432161 566512 416604 613492 058819 107828 312788 327498 657863 074795 077528 994049 498054 612909 080818 725233 766948 840392 073953 545542 427784 131485 112729 483040 155906 201268 439237 818115 709607 993366 259796 182241 141393 821097 837524 620641 766243 466966 168403 503200 849900 476920 847843 128546 837519 574813 927004 791220 406829 266922 542406 583522 (797 digits), a[1519] = 1
                                                                                      A[1520]/B[1520] = 13515 218666 205053 298570 071205 176845 215107 183102 139797 398456 249456 136030 711301 356060 759929 902733 304557 927628 212719 970049 638627 853894 471071 951229 946211 744604 288969 942907 309481 435126 981627 155367 807922 954324 350003 929484 791489 332579 760002 349769 571525 710177 286504 452840 456727 700762 048699 616016 110578 773208 427342 882584 914823 752740 012403 525354 814245 350606 280871 834819 563594 802529 014525 390338 208444 215955 340371 509092 684370 482602 994784 278658 977566 464573 305544 414461 675284 275776 481023 997524 602449 998852 290341 100065 287804 660853 431333 377253 872280 159374 399901 566099 487257 199687 116433 945284 031727 666984 250858 662070 686740 475319 458793 100044 324156 919311 355963 139837 409739 801103 318314 110477 412323 879844 563287 175528 188715 843241 309992 354479 209056 317507 551450 213165 306731 186211 686349 843868 148218 770596 014284 540249 427726 (797 digits)/1 313591 749411 470499 756998 290737 768700 707505 721153 527832 275768 649149 733259 340772 738073 659482 939819 031277 196747 621406 818327 540297 974473 658051 589012 577829 053417 999371 688444 901034 639680 576806 811024 507170 485243 879099 425099 941869 972498 540434 588559 224417 422890 378359 095194 455704 051531 962310 059548 294104 032071 851671 879889 150872 210854 060011 166123 976577 470044 959403 828037 369457 309528 220932 022676 718179 691782 272483 346369 604470 633853 865577 366687 658352 998453 874748 419120 592158 968854 768315 468600 209732 508722 627434 527458 514861 401677 475203 274328 461104 155896 956550 027798 770171 707308 044793 301351 114130 308492 791967 115921 321438 111754 048107 999891 246762 871950 026758 418280 947967 654292 951124 384900 162093 172606 649035 190868 135580 680451 523123 442615 879541 271342 316590 982914 167425 934148 078671 846291 659579 422577 180535 084314 849213 (799 digits), a[1520] = 30
                                                                                      A[1521]/B[1521] = 54500 882243 087333 633915 487296 208587 425989 195284 434176 081865 220935 431541 305187 004874 220611 219601 445936 322616 272186 789241 338919 714405 836601 949797 449891 105048 008870 738537 833405 098196 925320 761321 574352 268099 559293 105355 486835 712698 830407 446166 950108 227750 680351 838206 494939 097779 263200 808066 800722 326962 432180 423179 274865 593329 127589 117695 043746 773130 447766 109000 016105 925706 001968 682371 989923 615257 579034 093523 950408 388055 335463 619806 891810 013885 182335 839828 659254 155715 279271 593819 108095 862735 600426 644778 644901 319111 010007 453404 562552 399083 801421 854527 116984 603861 052993 772527 191801 523584 986079 171934 494180 706682 042020 629406 846256 755760 359983 034602 517353 376463 122669 623718 438007 834477 461035 131629 980057 821068 376235 465525 443920 043005 112486 030983 766379 039378 682055 232573 856954 652824 042609 847943 918425 (797 digits)/5 297132 885402 880127 590099 199023 466191 728526 622855 580385 448240 783723 403737 067176 709776 633059 875872 939964 814223 206739 618925 616294 351487 305621 384590 829188 383296 655301 267423 112859 981657 707642 983668 920372 161546 697399 291935 703609 365115 775127 347043 241673 648701 962615 099014 370023 717238 783166 445043 458688 243688 227062 093593 604031 928964 104574 980450 276295 927513 696188 115528 233431 744445 420859 428912 190428 768189 823186 911741 113529 892095 403815 420655 991199 740406 758539 680867 430214 851068 247753 595503 796488 467052 076250 526438 672937 665529 008641 410102 171915 281450 900995 188724 074736 327286 792082 286223 181755 000920 008260 537638 831294 874800 323917 112294 470091 643706 308302 112361 609986 326779 797863 799396 830613 831820 417238 600997 162964 488049 559459 938867 021365 935269 743284 779499 798250 574111 889501 312171 429538 097137 989062 879665 980374 (799 digits), a[1521] = 4
                                                                                      A[1522]/B[1522] = 68016 100909 292386 932485 558501 385432 641096 378386 573973 480321 470391 567572 016488 360934 980541 122334 750494 250244 484906 759290 977547 568300 307673 901027 396102 849652 297840 681445 142886 533323 906947 916689 382275 222423 909297 034840 278325 045278 590409 795936 521633 937927 966856 291046 951666 798541 311900 424082 911301 100170 859523 305764 189689 346069 139992 643049 857992 123736 728637 943819 579700 728235 016494 072710 198367 831212 919405 602616 634778 870658 330247 898465 869376 478458 487880 254290 334538 431491 760295 591343 710545 861587 890767 744843 932705 979964 441340 830658 434832 558458 201323 420626 604241 803548 169427 717811 223529 190569 236937 834005 180921 182001 500813 729451 170413 675071 715946 174439 927093 177566 440983 734195 850331 714322 024322 307158 168773 664309 686227 820004 652976 360512 663936 244149 073110 225590 368405 076442 005173 423420 056894 388193 346151 (797 digits)/6 610724 634814 350627 347097 489761 234892 436032 344009 108217 724009 432873 136996 407949 447850 292542 815691 971242 010970 828146 437253 156592 325960 963672 973603 407017 436714 654672 955868 013894 621338 284449 794693 427542 646790 576498 717035 645479 337614 315561 935602 466091 071592 340974 194208 825727 768770 745476 504591 752792 275760 078733 973482 754904 139818 164586 146574 252873 397558 655591 943565 602889 053973 641791 451588 908608 459972 095670 258110 718000 525949 269392 787343 649552 738860 633288 099988 022373 819923 016069 064104 006220 975774 703685 053897 187799 067206 483844 684430 633019 437347 857545 216522 844908 034594 836875 587574 295885 309412 800227 653560 152732 986554 372025 112185 716854 515656 335060 530642 557953 981072 748988 184296 992707 004427 066273 791865 298545 168501 082583 381482 900907 206612 059875 762413 965676 508259 968173 158463 089117 519715 169597 963980 829587 (799 digits), a[1522] = 1
                                                                                      A[1523]/B[1523] = 190533 084061 672107 498886 604298 979452 708181 952057 582123 042508 161718 566685 338163 726744 181693 464270 946924 823105 242000 307823 294014 851006 451949 751852 242096 804352 604552 101428 119178 164844 739216 594700 338902 712947 377887 175036 043485 803256 011227 038039 993376 103606 614064 420300 398272 694861 887001 656232 623324 527304 151227 034707 654244 285467 407574 403794 759731 020603 905041 996639 175507 382176 034956 827792 386659 277683 417845 298757 219966 129371 995959 416738 630562 970802 158096 348409 328331 018698 799862 776506 529187 585911 381962 134466 510313 279039 892689 114721 432217 516000 204068 695780 325468 210957 391849 208149 638859 904723 459954 839944 856023 070685 043648 088309 187084 105903 791875 383482 371539 731596 004637 092110 138671 263121 509679 745946 317605 149687 748691 105534 749872 764030 440358 519281 912599 490559 418865 385457 867301 499664 156398 624330 610727 (798 digits)/18 518582 155031 581382 284294 178545 935976 600591 310873 796820 896259 649469 677729 883075 605477 218145 507256 882448 836164 863032 493431 929479 003409 232967 331797 643223 256725 964647 179159 140649 224334 276542 573055 775457 455127 850396 726006 994568 040344 406251 218248 173855 791886 644563 487432 021479 254780 274119 454226 964272 795208 384530 040559 113840 208600 433747 273598 782042 722631 007372 002659 439209 852392 704442 332090 007645 688134 014527 427962 549530 943993 942600 995343 290305 218128 025115 880843 474962 490914 279891 723711 808930 418601 483620 634233 048535 799941 976330 778963 437954 156146 616085 621769 764552 396476 465833 461371 773525 619745 608715 844759 136760 847909 067967 336665 903800 675018 978423 173646 725894 288925 295840 167990 816027 840674 549786 184727 760054 825051 724626 701832 823180 348493 863036 304327 729603 590631 825847 629097 607773 136568 328258 807627 639548 (800 digits), a[1523] = 2
                                                                                      A[1524]/B[1524] = 258549 184970 964494 431372 162800 364885 349278 330444 156096 522829 632110 134257 354652 087679 162234 586605 697419 073349 726907 067114 271562 419306 759623 652879 638199 654004 902392 782873 262064 698168 646164 511389 721177 935371 287184 209876 321810 848534 601636 833976 515010 041534 580920 711347 349939 493403 198902 080315 534625 627475 010750 340471 843933 631536 547567 046844 617723 144340 633679 940458 755208 110411 051450 900502 585027 108896 337250 901373 854745 000030 326207 315204 499939 449260 645976 602699 662869 450190 560158 367850 239733 447499 272729 879310 443019 259004 334029 945379 867050 074458 405392 116406 929710 014505 561276 925960 862389 095292 696892 673950 036944 252686 544461 817760 357497 780975 507821 557922 298632 909162 445620 826305 989002 977443 534002 053104 486378 813997 434918 925539 402849 124543 104294 763430 985709 716149 787270 461899 872474 923084 213293 012523 956878 (798 digits)/25 129306 789845 932009 631391 668307 170869 036623 654882 905038 620269 082342 814726 291025 053327 510688 322948 853690 847135 691178 930685 086071 329370 196640 305401 050240 693440 619320 135027 154543 845672 560992 367749 203000 101918 426895 443042 640047 377958 721813 153850 639946 863478 985537 681640 847207 023551 019595 958818 717065 070968 463264 014041 868744 348418 598333 420173 034916 120189 662963 946225 042098 906366 346233 783678 916254 148106 110197 686073 267531 469943 211993 782686 939857 956988 658403 980831 497336 310837 295960 787815 815151 394376 187305 688130 236334 867148 460175 463394 070973 593494 473630 838292 609460 431071 302709 048946 069410 929158 408943 498319 289493 834463 439992 448851 620655 190675 313483 704289 283848 269998 044828 352287 808734 845101 616059 976593 058599 993552 807210 083315 724087 555105 922912 066741 695280 098891 794020 787560 696890 656283 497856 771608 469135 (800 digits), a[1524] = 1
                                                                                      A[1525]/B[1525] = 707631 454003 601096 361630 929899 709223 406738 612945 894316 088167 425938 835200 047467 902102 506162 637482 341762 969804 695814 442051 837139 689619 971197 057611 518496 112362 409337 667174 643307 561182 031545 617479 781258 583689 952255 594788 687107 500325 214500 705993 023396 186675 775905 842995 098151 681668 284805 816863 692575 782254 172727 715651 342111 548540 502708 497483 995177 309285 172401 877556 685923 602998 137858 628797 556713 495476 092347 101504 929456 129432 648374 047147 630441 869323 450049 553808 654069 919079 920179 512207 008654 480909 927421 893087 396351 797048 560749 005481 166317 664917 014852 928594 184888 239968 514403 060071 363638 095308 853740 187844 929911 576058 132571 723829 902079 667854 807518 499326 968805 549920 895878 744722 116677 218008 577683 852155 290362 777682 618528 956613 555571 013116 648948 046143 884018 922858 993406 309257 612251 345832 582984 649378 524483 (798 digits)/68 777195 734723 445401 547077 515160 277714 673838 620639 606898 136797 814155 307182 465125 712132 239522 153154 589830 530436 245390 354802 101621 662149 626247 942599 743704 643607 203287 449213 449736 915679 398527 308554 181457 658964 704187 612092 274662 796261 849877 525949 453749 518844 615638 850713 715893 301882 313311 371864 398402 937145 311058 068642 851328 905437 630414 113944 851874 963010 333299 895109 523407 665125 396909 899447 840153 984346 234922 800109 084593 883880 366588 560717 170021 132105 341923 842506 469635 112588 871813 299343 439233 207353 858232 010493 521205 534238 896681 705751 579901 343135 563347 298354 983473 258619 071251 559263 912347 478062 426602 841397 715748 516835 947952 234369 145111 056369 605390 582225 293590 828921 385496 872566 433497 530877 781906 137913 877254 812157 339046 868464 271355 458705 708860 437811 120163 788415 413889 204219 001554 449135 323972 350844 577818 (800 digits), a[1525] = 2
                                                                                      A[1526]/B[1526] = 966180 638974 565590 793003 092700 074108 756016 943390 050412 610997 058048 969457 402119 989781 668397 224088 039182 043154 422721 509166 108702 108926 730820 710491 156695 766367 311730 450047 905372 259350 677710 128869 502436 519061 239439 804665 008918 348859 816137 539969 538406 228210 356826 554342 448091 175071 483707 897179 227201 409729 183478 056123 186045 180077 050275 544328 612900 453625 806081 818015 441131 713409 189309 529300 141740 604372 429598 002878 784201 129462 974581 362352 130381 318584 096026 156508 316939 369270 480337 880057 248387 928409 200151 772397 839371 056052 894778 950861 033367 739375 420245 045001 114598 254474 075679 986032 226027 190601 550632 861794 966855 828744 677033 541590 259577 448830 315340 057249 267438 459083 341499 571028 105680 195452 111685 905259 776741 591680 053447 882152 958420 137659 753242 809574 869728 639008 780676 771157 484726 268916 796277 661902 481361 (798 digits)/93 906502 524569 377411 178469 183467 448583 710462 275522 511936 757066 896498 121908 756150 765459 750210 476103 443521 377571 936569 285487 187692 991519 822888 248000 793945 337047 822607 584240 604280 761351 959519 676303 384457 760883 131083 055134 914710 174220 571690 679800 093696 382323 601176 532354 563100 325433 332907 330683 115468 008113 774322 082684 720073 253856 228747 534117 886791 083199 996263 841334 565506 571491 743143 683126 756408 132452 345120 486182 352125 353823 578582 343404 109879 089094 000327 823337 966971 423426 167774 087159 254384 601730 045537 698623 757540 401387 356857 169145 650874 936630 036978 136647 592933 689690 373960 608209 981758 407220 835546 339717 005242 351299 387944 683220 765766 247044 918874 286514 577439 098919 430325 224854 242232 375979 397966 114506 935854 805710 146256 951779 995443 013811 631772 504552 815443 887307 207909 991779 698445 105418 821829 122453 046953 (800 digits), a[1526] = 1
                                                                                      A[1527]/B[1527] = 1 673812 092978 166687 154634 022599 783332 162755 556335 944728 699164 483987 804657 449587 891884 174559 861570 380945 012959 118535 951217 945841 798546 702017 768102 675191 878729 721068 117222 548679 820532 709255 746349 283695 102751 191695 399453 696025 849185 030638 245962 561802 414886 132732 397337 546242 856739 768513 714042 919777 191983 356205 771774 528156 728617 552984 041812 608077 762910 978483 695572 127055 316407 327168 158097 698454 099848 521945 104383 713657 258895 622955 409499 760823 187907 546075 710316 971009 288350 400517 392264 257042 409319 127573 665485 235722 853101 455527 956342 199685 404292 435097 973595 299486 494442 590083 046103 589665 285910 404373 049639 896767 404802 809605 265420 161657 116685 122858 556576 236244 009004 237378 315750 222357 413460 689369 757415 067104 369362 671976 838766 513991 150776 402190 855718 753747 561867 774083 080415 096977 614749 379262 311281 005844 (799 digits)/162 683698 259292 822812 725546 698627 726298 384300 896162 118834 893864 710653 429091 221276 477591 989732 629258 033351 908008 181959 640289 289314 653669 449136 190600 537649 980655 025895 033454 054017 677031 358046 984857 565915 419847 835270 667227 189372 970482 421568 205749 547445 901168 216815 383068 278993 627315 646218 702547 513870 945259 085380 151327 571402 159293 859161 648062 738666 046210 329563 736444 088914 236617 140053 582574 596562 116798 580043 286291 436719 237703 945170 904121 279900 221199 342251 665844 436606 536015 039587 386502 693617 809083 903769 709117 278745 935626 253538 874897 230776 279765 600325 435002 576406 948309 445212 167473 894105 885283 262149 181114 720990 868135 335896 917589 910877 303414 524264 868739 871029 927840 815822 097420 675729 906857 179872 252420 813109 617867 485303 820244 266798 472517 340632 942363 935607 675722 621799 195998 699999 554554 145801 473297 624771 (801 digits), a[1527] = 1
                                                                                      A[1528]/B[1528] = 11 009053 196843 565713 720807 228298 774101 732550 281405 718784 805983 961975 797402 099647 341086 715756 393510 324852 120909 133937 216473 783752 900206 942927 319107 207847 038745 638139 153383 197451 182546 933244 606965 204607 135568 389612 201387 185073 443969 999967 015744 909220 717527 153220 938367 725548 315510 094790 181436 745864 561629 320712 686770 354985 551782 368179 795204 261367 031091 676983 991448 203463 611853 152318 477886 332465 203463 561268 629181 066144 682836 712313 819350 695320 446029 372480 418410 142995 099372 883442 233642 790642 384323 965593 765309 253708 174661 627946 688914 231480 165130 030832 886572 911517 221129 616178 262653 764018 906063 976871 159634 347460 257561 534665 134111 229520 148941 052491 396706 684902 513108 765769 465529 439824 676216 247904 449750 179367 807856 085308 914752 042367 042318 166387 943887 392214 010215 425175 253648 066591 957413 071851 529588 516425 (800 digits)/1070 008692 080326 314287 531749 375233 806374 016267 652495 224946 120255 160418 696456 083809 631011 688606 251651 643632 825621 028327 127222 923580 913536 517705 391604 019845 220977 977977 784964 928386 823540 107801 585448 779950 279970 142707 058498 050947 997115 101099 914297 378371 789332 902068 830764 237062 089327 210219 545968 198693 679668 286602 990650 148486 209619 383717 422494 318787 360461 973646 259999 098991 991194 583465 178574 335780 833243 825380 203930 972440 780047 249607 768131 789280 416290 053837 818404 586610 639516 405298 406175 416091 456233 468155 953327 430016 015144 878090 418529 035532 615223 638930 746663 051375 379547 045233 613053 346393 718920 408441 426405 331187 560111 403326 188760 231030 067532 064463 498953 803618 665964 325257 809378 296611 817122 477199 629031 814512 512915 058079 873245 596233 848915 675570 158736 429089 941642 938705 167771 898442 432743 696637 962238 795579 (802 digits), a[1528] = 6
                                                                                      A[1529]/B[1529] = 34 700971 683508 863828 317055 707496 105637 360406 400553 101083 117116 369915 196863 748529 915144 321829 042101 355501 375686 520347 600639 297100 499167 530799 725424 298732 994966 635485 577372 141033 368173 508989 567244 897516 509456 360532 003615 251246 181095 030539 293197 289464 567467 592395 212440 722887 803270 052884 258353 157370 876871 318343 832085 593113 383964 657523 427425 392178 856186 009435 669916 737446 151966 784123 591756 695849 710239 205750 991926 912091 307405 759896 867551 846784 525995 663516 965547 399994 586469 050844 093192 628969 562291 024354 961412 996847 377086 339368 023084 894125 899682 527596 633314 034038 157831 438617 834064 881722 004102 334986 528542 939148 177487 413600 667753 850217 563508 280332 746696 290951 548330 534686 712338 541831 442109 433083 106665 605207 792930 927903 583022 641092 277730 901354 687380 930389 592514 049608 841359 296753 486988 594816 900046 555119 (800 digits)/3372 709774 500271 765675 320794 824329 145420 433103 853647 793673 254630 191909 518459 472705 370627 055551 384212 964250 384871 266941 021958 060057 394279 002252 365412 597185 643588 959828 388348 839178 147651 681451 741203 905766 259758 263391 842721 342216 961827 724867 948641 682561 269166 923021 875360 990179 895297 276877 340452 109951 984263 945189 123278 016860 788152 010313 915545 695028 127596 250502 516441 385890 210200 890449 118297 603904 616530 056183 898084 354041 577845 693994 208516 647741 470069 503765 121058 196438 454564 255482 605028 941892 177784 308237 569099 568793 981060 887810 130484 337374 125436 517117 674991 730533 086950 580913 006633 933287 042044 487473 460330 714553 548469 545875 483870 603967 506010 717655 365601 281885 925733 791595 525555 565565 358224 611471 139516 256647 156612 659543 439981 055500 019264 367343 418573 222877 500651 437914 699314 395326 852785 235715 360014 011508 (802 digits), a[1529] = 3
                                                                                      A[1530]/B[1530] = 219 214883 297896 748683 623141 473275 407925 894988 684724 325283 508682 181466 978584 590826 831952 646730 646118 457860 375028 256022 820309 566355 895212 127725 671653 000245 008545 451052 617616 043651 391587 987182 010434 589706 192306 552804 223078 692550 530540 183202 774928 646008 122332 707592 213012 062875 135130 412095 731555 690089 822857 230775 679283 913665 855570 313320 359756 614440 168207 733598 010948 628140 523653 857060 028426 507563 464898 795774 580742 538692 527271 271695 024661 776027 602003 353582 211694 542962 618187 188506 792798 564459 758070 111723 533787 234792 437179 664154 827423 596235 563225 196412 686457 115746 168118 247885 267043 054350 930677 986790 330891 982349 322486 016269 140634 330825 529990 734487 876884 430611 803091 973889 739560 690813 328872 846403 089743 810614 565441 652730 412887 888920 708703 574516 068172 974551 565299 722828 301803 847112 879344 640752 929867 847139 (801 digits)/21306 267339 081956 908339 456518 321208 678896 614890 774381 986985 648036 311875 807212 920041 854774 021914 556929 429135 134848 629973 258971 283925 279210 531219 584079 602959 082511 736948 115057 963455 709450 196512 032672 214547 838519 723058 114826 104249 768081 450307 606147 473739 404334 440200 082930 178141 461110 871483 588680 858405 585251 957737 730318 249650 938531 445600 915768 488956 126039 476661 358647 414333 252399 926159 888359 959208 532424 162483 592437 096690 247121 413573 019231 675729 236707 076428 544753 765241 366901 938194 036349 067444 522939 317581 367924 842779 901510 204951 201435 059777 367842 741636 796613 434573 901250 530711 652856 946115 971187 333282 188389 618508 850928 678579 091983 854835 103596 370395 692561 494934 220367 074830 962711 690003 966470 146026 466129 354395 452591 015340 513131 929233 964501 879630 670175 766354 945551 566193 363658 270403 549455 110930 122322 864627 (803 digits), a[1530] = 6
                                                                                      A[1531]/B[1531] = 1349 990271 470889 355930 055904 547148 553192 730338 508899 052784 169209 458717 068371 293490 906860 202212 918812 102663 625856 056484 522496 695235 870440 297153 755342 300203 046239 341801 283068 402941 717701 432081 629852 435753 663295 677357 342087 406549 364336 129755 942769 165513 301463 837948 490513 100138 614052 525458 647687 297909 814014 702997 907789 075108 517386 537445 585965 078819 865432 411023 735608 506289 293889 926483 762315 741230 499631 980398 476382 144246 471033 390067 015522 502950 138015 785010 235714 657770 295592 181884 849984 015728 110711 694696 164136 405602 000164 324296 987626 471539 279033 706072 752056 728515 166540 925929 436323 207827 588170 255728 513894 833244 112403 511215 511559 835170 743452 687260 008002 874622 366882 378025 149702 686711 415346 511501 645128 468895 185580 844286 060349 974616 529952 348451 096418 777698 984312 386578 652182 379430 763056 439334 479253 637953 (802 digits)/131210 313808 992013 215712 059904 751581 218800 122448 499939 715587 142848 063164 361736 992956 499271 187038 725789 539061 193963 046780 575785 763609 069542 189569 869890 214940 138659 381517 078696 619912 404352 860523 937237 193053 290876 601740 531677 967715 570316 426713 585526 524997 695173 564222 372942 059028 661962 505778 872537 260385 495775 691615 505187 514766 419340 683919 410156 628764 883833 110470 668325 871889 724600 447408 448457 359155 811075 031085 452706 934183 060574 175432 323906 702116 890311 962336 389580 787886 655975 884646 823123 346559 315420 213725 776648 625473 390122 117517 339094 696038 332492 966938 454672 337976 494453 765182 923775 609982 869168 487166 590668 425606 654041 617350 035773 732978 127588 940029 520970 251491 247936 240581 301825 705589 157045 487629 936292 383019 872158 751586 518772 630903 806275 645127 439627 821007 173960 835074 881264 017748 149515 901296 093951 199270 (804 digits), a[1531] = 6
                                                                                      A[1532]/B[1532] = 1569 205154 768786 104613 679046 020423 961118 625327 193623 378067 677891 640184 046955 884317 738812 848943 564930 560524 000884 312507 342806 261591 765652 424879 426995 300448 054784 792853 900684 446593 109289 419263 640287 025459 855602 230161 565166 099099 894876 312958 717697 811521 423796 545540 703525 163013 749182 937554 379242 987999 636871 933773 587072 988774 372956 850765 945721 693260 033640 144621 746557 134429 817543 783543 790742 248793 964530 776173 057124 682938 998304 661762 040184 278977 740019 138592 447409 200732 913779 370391 642782 580187 868781 806419 697923 640394 437343 988451 815050 067774 842258 902485 438513 844261 334659 173814 703366 262178 518848 242518 844786 815593 434889 527484 652194 165996 273443 421747 884887 305234 169974 351914 889263 377524 744219 357904 734872 279509 751022 497016 473237 863537 238655 922967 164591 752250 549612 109406 953986 226543 642401 080087 409121 485092 (802 digits)/152516 581148 073970 124051 516423 072789 897696 737339 274321 702572 790884 375040 168949 912998 354045 208953 282718 968196 328811 676753 834757 047534 348752 720789 453969 817899 221171 118465 193754 583368 113803 057035 969909 407601 129396 324798 646504 071965 338397 877021 191673 998737 099508 004422 455872 237170 123073 377262 461218 118791 081027 649353 235505 764417 357872 129520 325925 117721 009872 587132 026973 286222 977000 373568 336817 318364 343499 193569 045144 030873 307695 589005 343138 377846 127019 038764 934334 553128 022877 822840 859472 414003 838359 531307 144573 468253 291632 322468 540529 755815 700335 708575 251285 772550 395704 295894 576632 556098 840355 820448 779058 044115 504970 295929 127757 587813 231185 310425 213531 746425 468303 315412 264537 395593 123515 633656 402421 737415 324749 766927 031904 560137 770777 524758 109803 587362 119512 401268 244922 288151 698971 012226 216274 063897 (804 digits), a[1532] = 1
                                                                                      A[1533]/B[1533] = 6057 605735 777247 669771 093042 608420 436548 606320 089769 186987 202884 379269 209238 946444 123298 749043 613603 784235 628508 994006 550915 480011 167397 571792 036328 201547 210593 720362 985121 742721 045569 689872 550713 512133 230102 367842 037585 703849 048965 068632 095862 600077 572853 474570 601088 589179 861601 338121 785416 261908 724630 504318 669008 041431 636257 089743 423130 158599 966352 844888 975279 909578 746521 277115 134542 487612 393224 308917 647756 193063 465947 375353 136075 339883 358073 200787 577942 259969 036930 293059 778331 756291 717057 113955 257907 326785 312196 289652 432776 674863 805810 413529 067598 261299 170518 447373 546421 994363 144714 983285 048255 280024 417072 093669 468142 333159 563782 952503 662664 790324 876805 433769 817492 819285 648004 585215 849745 307424 438648 335335 480063 565228 245920 117352 590194 034450 633148 714799 514141 059061 690259 679596 706618 093229 (802 digits)/588760 057253 213923 587866 609173 969950 911890 334466 322904 823305 515501 188284 868586 731951 561406 813898 573946 443650 180398 077042 080056 906212 115800 351938 231799 668637 802172 736912 659960 370016 745762 031631 846965 415856 679065 576136 471190 183611 585510 057777 160548 521208 993697 577489 740558 770539 031182 637566 256191 616758 738858 639675 211704 808018 492957 072480 387931 981927 913450 871866 749245 730558 655601 568113 458909 314248 841572 611792 588139 026802 983660 942448 353321 835655 271369 078631 192584 447270 724609 353169 401540 588570 830498 807647 210369 030233 265019 084922 960683 963485 433500 092664 208529 655627 681566 652866 653673 278279 390235 948512 927842 557953 168952 505137 419046 496417 821144 871305 161565 490767 652846 186818 095437 892368 527592 388599 143557 595265 846408 052367 614486 311317 118608 219401 769038 583093 532498 038879 616030 882203 246428 937974 742773 390961 (804 digits), a[1533] = 3
                                                                                      A[1534]/B[1534] = 19742 022362 100529 113926 958173 845685 270764 444287 462930 939029 286544 777991 674672 723650 108709 096074 405741 913230 886411 294526 995552 701625 267845 140255 535979 905089 686565 953942 856049 674756 245998 488881 292427 561859 545909 333687 677923 210647 041771 518855 005285 611754 142356 969252 506790 930553 333986 951919 735491 773725 810763 446729 594097 113069 281728 119996 215112 169059 932698 679288 672396 863166 057107 614889 194369 711631 144203 702926 000393 262129 396146 787821 448410 298627 814238 740955 181235 980640 024570 249570 977777 849063 019953 148285 471645 620750 373932 857409 113380 092366 259690 143072 641308 628158 846214 515935 342632 245267 952993 192373 989552 655666 686105 808493 056621 165474 964792 279258 872881 676208 800390 653224 341741 835381 688233 113552 284108 201783 066967 503022 913428 559221 976416 275024 935173 855602 449058 253805 496409 403728 713180 118877 528975 764779 (803 digits)/1 918796 752907 715740 887651 343944 982642 633367 740738 243036 172489 337387 939894 774710 108853 038265 650649 004558 299146 870005 907880 074927 766170 696153 776604 149368 823812 627689 329203 173635 693418 351089 151931 510805 655171 166593 053208 060074 622800 094928 050352 673319 562364 080600 736891 677548 548787 216621 289961 229792 969067 297603 568378 870620 188472 836743 346961 489721 063504 750225 202732 274710 477898 943805 077908 713545 261110 868217 028946 809561 111282 258678 416350 403103 884811 941126 274658 512087 894940 196705 882349 064094 179716 329855 954248 775680 558953 086689 577237 422581 646272 000835 986567 876874 739433 440404 254494 537652 390937 011063 665987 562585 717975 011827 811341 384897 077066 694619 924340 698228 218728 426841 875866 550851 072698 706292 799453 833094 523212 863973 924029 875363 494089 126602 182963 416919 336642 717006 517907 093014 934761 438257 826150 444594 236780 (805 digits), a[1534] = 3
                                                                                      A[1535]/B[1535] = 65283 672822 078835 011551 967564 145476 248841 939182 478562 004075 062518 713244 233257 117394 449426 037266 830829 523928 287742 877587 537573 584886 970932 992558 644267 916816 270291 582191 553270 766989 783565 156516 427996 197711 867830 368905 071355 335790 174279 625197 111719 435339 999924 382328 121461 380839 863562 193880 991891 583086 156920 844507 451299 380639 481441 449732 068466 665779 764448 882754 992470 499076 917844 121782 717651 622505 825835 417695 648935 979451 654387 738817 481306 235766 800789 423653 121650 201889 110641 041772 711665 303480 776916 558811 672844 189036 433994 861879 772916 951962 584880 842746 991524 145775 709161 995179 574318 730167 003694 560407 016913 247024 475389 519148 638005 829584 458159 790280 281309 818951 277977 393442 842718 325430 712703 925872 702069 912773 639550 844404 220349 242894 175168 942427 395715 601257 980323 476216 003369 270247 829800 036229 293545 387566 (803 digits)/6 345150 315976 361146 250820 641008 917878 811993 556681 052013 340773 527665 007969 192717 058510 676203 765845 587621 341090 790415 800682 304840 204724 204261 681750 679906 140075 685240 724522 180867 450271 799029 487426 379382 381370 178844 735760 651414 052011 870294 208835 180507 208301 235499 788164 773204 416900 681046 507449 945570 523960 631669 344811 823565 373437 003187 113364 857095 172442 164126 480063 573377 164255 487016 801839 599545 097581 446223 698633 016822 360649 759696 191499 562633 490091 094747 902606 728848 132091 314727 000216 593823 127719 820066 670393 537410 707092 525087 816635 228428 902301 436008 052367 839153 873928 002779 416350 266630 451090 423426 946475 615599 711878 204435 939161 573737 727617 905004 644327 256250 146952 933371 814417 747991 110464 646470 786960 642841 164904 438329 824457 240576 793584 498414 768292 019796 593021 683517 592600 895075 686487 561202 416426 076556 101301 (805 digits), a[1535] = 3
                                                                                      A[1536]/B[1536] = 215593 040828 337034 148582 860866 282114 017290 261834 898616 951254 474100 917724 374444 075833 456987 207874 898230 485015 749639 927289 608273 456286 180644 117931 468783 655538 497440 700517 515861 975725 596693 958430 576416 154995 149400 440402 891989 218017 564610 394446 340443 917774 142130 116236 871175 073072 924673 533562 711166 522984 281525 980251 947995 254987 726052 469192 420512 166399 226045 327553 649808 360396 810639 980237 347324 579148 621709 956012 947201 200484 359310 004273 892329 005928 216607 011914 546186 586307 356493 374889 112773 759505 350702 824720 490178 187859 675917 443048 432130 948254 014332 671313 615881 065485 973700 501474 065588 435768 964076 873595 040292 396740 112274 365938 970638 654228 339271 650099 716811 133062 634322 833552 869896 811673 826344 891170 390317 940103 985620 036235 574476 287904 501923 102307 122320 659376 390028 682453 506517 214472 202580 227565 409611 927477 (804 digits)/20 954247 700836 799179 640113 266971 736279 069348 410781 399076 194809 920382 963802 352861 284385 066876 948185 767422 322419 241253 309926 989448 380343 308938 821856 189087 244039 683411 502769 716238 044233 748177 614210 648952 799281 703127 260490 014316 778835 705810 676858 214841 187267 787100 101385 997161 799489 259760 812311 066504 540949 192611 602814 341316 308783 846304 687056 061006 580831 242604 642922 994841 970665 404855 483427 512180 553855 206888 124845 860028 193231 537766 990849 091004 355085 225369 982478 698632 291214 140886 882998 845563 562875 790055 965429 387912 680230 661953 027143 107868 353176 308860 143671 394336 361217 448742 503545 337543 744208 281344 505414 409384 853609 625135 628826 106110 259920 409633 857322 466978 659587 226957 319119 794824 404092 645705 160335 761618 017926 178963 397401 597093 874842 621846 487839 476309 115707 767559 295709 778241 994224 121865 075428 674262 540683 (806 digits), a[1536] = 3
                                                                                      A[1537]/B[1537] = 280876 713650 415869 160134 828430 427590 266132 201017 377178 955329 536619 630968 607701 193227 906413 245141 729060 008944 037382 804877 145847 041173 151577 110490 113051 572354 767732 282709 069132 742715 380259 114947 004412 352707 017230 809307 963344 553807 738890 019643 452163 353114 142054 498564 992636 453912 788235 727443 703058 106070 438446 824759 399294 635627 207493 918924 488978 832178 990494 210308 642278 859473 728484 102020 064976 201654 447545 373708 596137 179936 013697 743091 373635 241695 017396 435567 667836 788196 467134 416661 824439 062986 127619 383532 163022 376896 109912 304928 205047 900216 599213 514060 607405 211261 682862 496653 639907 165935 967771 434002 057205 643764 587663 885087 608644 483812 797431 440379 998120 952013 912300 226995 712615 137104 539048 817043 092387 852877 625170 880639 794825 530798 677092 044734 518036 260634 370352 158669 509886 484720 032380 263794 703157 315043 (804 digits)/27 299398 016813 160325 890933 907980 654157 881341 967462 451089 535583 448047 971771 545578 342895 743080 714031 355043 663510 031669 110609 294288 585067 513200 503606 868993 384115 368652 227291 897105 494505 547207 101637 028335 180651 881971 996250 665730 830847 576104 885693 395348 395569 022599 889550 770366 216389 940807 319761 012075 064909 824280 947626 164881 682220 849491 800420 918101 753273 406731 122986 568219 134920 891872 285267 111725 651436 653111 823478 876850 553881 297463 182348 653637 845176 320117 885085 427480 423305 455613 883215 439386 690595 610122 635822 925323 387323 187040 843778 336297 255477 744868 196039 233490 235145 451521 919895 604174 195298 704771 451890 024984 565487 829571 567987 679847 987538 314638 501649 723228 806540 160329 133537 542815 514557 292175 947296 404459 182830 617293 221858 837670 668427 120261 256131 496105 708729 451076 888310 673317 680711 683067 491854 750818 641984 (806 digits), a[1537] = 1
                                                                                      A[1538]/B[1538] = 777346 468129 168772 468852 517727 137294 549554 663869 652974 861913 547340 179661 589846 462289 269813 698158 356350 502903 824405 537043 899967 538632 483798 338911 694886 800248 032905 265935 654127 461156 357212 188324 585240 860409 183862 059018 818678 325633 042390 433733 244770 624002 426239 113366 856447 980898 501144 988450 117282 735125 158419 629770 746584 526242 141040 307041 398469 830757 207033 748170 934366 079344 267608 184277 477276 982457 516800 703430 139475 560356 386705 490456 639599 489318 251399 883049 881860 162700 290762 208212 761651 885477 605941 591784 816222 941651 895742 052904 842226 748687 212759 699434 830691 488009 339425 494781 345402 767640 899619 741599 154703 684269 287602 136114 187927 621853 934134 530859 713053 037090 458923 287544 295127 085882 904442 525256 575093 645859 235961 797515 164127 349501 856107 191776 158393 180645 130732 999792 526290 183912 267340 755154 815926 557563 (804 digits)/75 553043 734463 119831 421981 082933 044594 832032 345706 301255 265976 816478 907345 444017 970176 553038 376248 477509 649439 304591 531145 578025 550478 335339 829069 927074 012270 420715 957353 510449 033244 842591 817484 705623 160585 467071 252991 345778 440530 858020 448245 005537 978405 832299 880487 537894 232269 141375 451833 090654 670768 841173 498066 671079 673225 545288 287897 897210 087378 056066 888896 131280 240507 188600 053961 735631 856728 513111 771803 613729 300994 132693 355546 398280 045437 865605 752649 553593 137825 052114 649429 724336 944067 010301 237075 238559 454877 036034 714699 780462 864131 798596 535749 861316 831508 351786 343336 545892 134805 690887 409194 459353 984585 284278 764801 465806 234997 038910 860621 913436 272667 547615 586194 880455 433207 230057 054928 570536 383587 413549 841119 272435 211696 862369 000102 468520 533166 669713 072331 124877 355647 488000 059138 175899 824651 (806 digits), a[1538] = 2
                                                                                      A[1539]/B[1539] = 2 612916 118037 922186 566692 381611 839473 914796 192626 336103 541070 178640 169953 377240 580095 715854 339616 798111 517655 510599 416008 845749 657070 602972 127225 197711 973098 866448 080516 031515 126184 451895 679920 760134 933934 568816 986364 419379 530706 866061 320843 186475 225121 420771 838665 561980 396608 291670 692794 054906 311445 913705 714071 639048 214353 630614 840048 684388 324450 611595 454821 445377 097506 531308 654852 496807 149026 997947 483999 014563 861005 173814 214461 292433 709649 771596 084717 313417 276297 339421 041300 109394 719418 945444 158886 611691 201851 797138 463642 731728 146278 237492 612365 099479 675289 701138 980997 676115 468858 666630 658799 521316 696572 450470 293430 172427 349374 599835 032959 137280 063285 289070 089628 597996 394753 252376 392812 817668 790455 333056 273185 287207 579304 245413 620062 993215 802569 762551 158047 088757 036456 834402 529259 150936 987732 (805 digits)/253 958529 220202 519820 156877 156779 787942 377439 004581 354855 333513 897484 693807 877632 253425 402195 842776 787572 611827 945443 704046 028365 236502 519219 990816 650215 420926 630800 099352 428452 594240 074982 554091 145204 662408 283185 755224 703066 152440 150166 230428 411962 330786 519499 531013 384048 913197 364933 675260 284039 077216 347801 441826 178120 701897 485356 664114 609732 015407 574931 789674 962059 856442 457672 447152 318621 221622 192447 138889 718038 456863 695543 248987 848477 981489 916935 143034 088259 836780 611957 831504 612397 522796 641026 347048 641001 751954 295144 987877 677685 847873 140657 803288 817440 729670 506880 949905 241850 599715 777433 679473 403046 519243 682407 862392 077266 692529 431371 083515 463537 624542 803175 892122 184181 814178 982347 112082 116068 333592 857942 745216 654976 303517 707368 256438 901667 308229 460216 105304 047949 747654 147067 669269 278518 115937 (807 digits), a[1539] = 3
                                                                                      A[1540]/B[1540] = 19 067759 294394 624078 435699 189010 013611 953128 012254 005699 649404 797821 369335 230530 522959 280794 075475 943131 126492 398601 449105 820215 138126 704603 229488 078870 611940 098041 829547 874733 344447 520481 947769 906185 397951 165580 963569 754335 040581 104819 679635 550097 199852 371641 984025 790310 757156 542839 838008 501626 915246 554359 628272 219922 026717 555344 187382 189188 101911 488201 931921 052005 761889 986768 768244 954927 025646 502433 091423 241422 587392 603404 991685 686635 456866 652572 476071 075781 096781 666709 497313 527414 921410 224050 703991 098061 354614 475711 298403 964323 772634 875207 985990 527049 215037 247398 361765 078211 049651 566034 353195 803920 560276 440894 190125 394919 067476 132979 761573 674013 480087 482413 914944 481101 849155 671077 274946 298775 179046 567355 709812 174580 404631 574002 532217 110903 798633 468591 106122 147589 439110 108158 459968 872485 471687 (806 digits)/1853 262748 275880 758572 520121 180391 560191 474105 377775 785242 600574 098871 764000 587443 744154 368409 275685 990517 932234 922697 459467 776582 205995 969879 764786 478581 958756 836316 652820 509617 192925 367469 696122 722055 797443 449371 539564 267241 507611 909184 061243 889274 293911 468796 597581 226236 624650 695911 178655 078928 211283 275783 590849 917924 586507 942784 936700 165334 195231 080589 416620 865699 235604 392307 184027 965980 408083 860241 744031 639998 499040 001496 098461 337625 915867 284151 753888 171411 995289 335819 469962 011119 603643 497485 666415 725571 718557 102049 629843 524263 799243 783201 158771 583401 939201 899952 992673 238846 332816 132923 165508 280679 619291 061133 801546 006673 082703 058508 445230 158199 644467 169846 831050 169728 132460 106486 839503 383014 718737 419149 057635 857269 336320 813946 795174 780191 690772 891225 809459 460525 589226 517473 744023 125526 636210 (808 digits), a[1540] = 7
                                                                                      A[1541]/B[1541] = 78 883953 295616 418500 309489 137651 893921 727308 241642 358902 138689 369925 647294 299362 671932 839030 641520 570636 023625 105005 212432 126610 209577 421385 045177 513194 420859 258615 398707 530448 503974 533823 471000 384876 525739 231140 840643 436719 693031 285340 039385 386864 024530 907339 774768 723223 425234 463030 044828 061413 972432 131144 227160 518736 321223 851991 589577 441140 732096 564403 182505 653400 145066 478383 727832 316515 251613 007679 849691 980254 210575 587434 181204 038975 537116 381885 989001 616541 663424 006259 030554 219054 405059 841646 974851 003936 620309 699983 657258 589023 236817 738324 556327 207676 535438 690732 428057 988959 667464 930768 071582 736998 937678 214047 053931 752103 619279 131754 079253 833333 983635 218725 749406 522403 791375 936685 492598 012769 506641 602479 112433 985529 197830 541423 748931 436830 997103 636915 582535 679114 792897 267036 369134 640878 874480 (806 digits)/7667 009522 323725 554110 237361 878346 028708 273860 515684 495825 735810 292971 749810 227407 230042 875832 945520 749644 340767 636233 541917 134694 060486 398739 049962 564543 255953 976066 710634 466921 365941 544861 338582 033427 852182 080671 913481 772032 182887 786902 475403 969059 506432 394685 921338 288995 411800 148578 389880 599751 922349 450935 805225 849819 047929 256496 410915 271068 796331 897289 456158 424856 798860 026901 183264 182542 853957 633414 115016 278032 453023 701527 642833 198981 644959 053542 158586 773907 817937 955235 711352 656875 937370 630969 012711 543288 626182 703343 507251 774741 044848 273462 438375 151048 486478 106692 920598 197235 930980 309126 341506 525764 996407 926943 068576 103959 023341 665404 864436 096336 202411 482563 216322 863094 344019 408294 470095 648127 208542 534538 975760 084053 648800 963155 437138 022434 071321 025119 343141 890052 104560 216962 645361 780624 660777 (808 digits), a[1541] = 4
                                                                                      A[1542]/B[1542] = 571 255432 363709 553580 602123 152573 271064 044285 703750 518014 620230 387300 900395 326069 226489 154008 566119 937583 291868 133637 936130 706486 605168 654298 545730 671231 557954 908349 620500 587872 872269 257246 244772 600321 078125 783566 848073 811372 891800 102199 955333 258145 371568 723020 407406 852874 733797 784050 151804 931524 722271 472369 218395 851076 275284 519285 314424 277173 226587 439024 209460 625806 777355 335454 863071 170533 786937 556192 039267 103202 061421 715444 260113 959464 216681 325774 399082 391572 740749 710522 711193 060795 756829 115579 527948 125617 696782 375596 899214 087486 430359 043479 880280 980784 963108 082525 358171 000928 721906 081410 854274 962913 124023 939223 567647 659644 402430 055258 316350 507351 365534 013494 160790 137928 388787 227875 723132 388161 725537 784709 496850 073284 789445 363968 774737 168720 778358 927000 183871 901392 989390 977413 043911 358637 593047 (807 digits)/55522 329404 541959 637344 181654 328813 761149 391128 987567 256022 751246 149674 012672 179294 354454 499239 894331 238028 317608 376332 252887 719440 629400 761053 114524 430384 750434 668783 627261 778066 754516 181499 066196 956050 762718 014074 933936 671466 787826 417501 389071 672690 838938 231598 046949 249204 507251 735959 907819 277191 667729 432334 227430 866657 922012 738259 813107 062815 769554 361615 609729 839696 827624 580615 466877 243780 385787 294140 549145 586225 670205 912189 598293 730497 430580 658946 863995 588766 720855 022469 449430 609251 165237 914268 755396 528592 101836 025454 180605 947451 113181 697438 227397 640741 344548 646803 436860 619497 849678 296807 556053 961034 594146 549735 281578 734386 246094 716342 496282 832553 061347 547789 345310 211388 540595 964548 130172 919905 178535 160921 887956 445644 877927 556034 855140 937230 190020 067061 211452 690890 321148 036212 261555 589899 261649 (809 digits), a[1542] = 7
                                                                                      A[1543]/B[1543] = 1221 394818 023035 525661 513735 442798 436049 815879 649143 394931 379150 144527 448084 951501 124911 147047 773760 445802 607361 372281 084693 539583 419914 729982 136638 855657 536769 075314 639708 706194 248513 048315 960545 585518 681990 798274 536791 059465 476631 489739 950051 903154 767668 353380 589582 428972 892830 031130 348437 924463 416975 075882 663952 220888 871792 890562 218425 995487 185271 442451 601426 905013 699777 149293 453974 657582 825488 120063 928226 186658 333419 018322 701431 957903 970479 033434 787166 399687 144923 427304 452940 340645 918718 072806 030747 255172 013874 451177 455686 763996 097535 825284 316889 169246 461654 855783 144399 990817 111277 093589 780132 662825 185726 092494 189227 071392 424139 242270 711954 848036 714703 245714 070986 798260 568950 392436 938862 789092 957717 171898 106134 132098 776721 269361 298405 774272 553821 490915 950279 481900 771679 221862 456957 358154 060574 (808 digits)/118711 668331 407644 828798 600670 535973 551007 056118 490819 007871 238302 592319 775154 585995 938951 874312 734183 225700 975984 388898 047692 573575 319287 920845 279011 425312 756823 313633 965158 023054 874973 907859 470975 945529 377618 108821 781355 114965 758540 621905 253547 314441 184308 857882 015236 787404 426303 620498 205519 154135 257808 315604 260087 583134 891954 733016 037129 396700 335440 620520 675618 104250 454109 188132 117018 670103 625532 221695 213307 450483 793435 525906 839420 659976 506120 371435 886577 951441 259648 000174 610213 875378 267846 459506 523504 600472 829854 754251 868463 669643 271211 668338 893170 432531 175575 400299 794319 436231 630336 902741 453614 447834 184701 026413 631733 572731 515531 098089 857001 761442 325106 578141 906943 285871 425211 337390 730441 487937 565612 856382 751672 975343 404656 075225 147419 896894 451361 159241 766047 271832 746856 289387 168472 960423 184075 (810 digits), a[1543] = 2
                                                                                      A[1544]/B[1544] = 4235 439886 432816 130565 143329 480968 579213 491924 651180 702808 757680 820883 244650 180572 601222 595151 887401 274991 113952 250481 190211 325236 864912 844244 955647 238204 168262 134293 539626 706455 617808 402194 126409 356877 124098 178390 458446 989769 321694 571419 805488 967609 674573 783162 176154 139793 412287 877441 197118 704914 973196 700017 210252 513742 890663 190971 969702 263634 782401 766379 013741 340847 876686 783335 224995 143282 263401 916383 823945 663177 061678 770412 364409 833176 128118 426078 760581 590634 175519 992436 070014 082733 512983 333997 620189 891133 738405 729129 266274 379474 722966 519332 830948 488524 348072 649874 791370 973380 055737 362180 194672 951388 681202 216706 135328 873821 674847 782070 452215 051461 509643 750636 373750 532710 095638 405186 539720 755440 598689 300403 815252 469581 119609 172052 669954 491538 439823 399748 034710 347095 304428 643000 414783 433099 774769 (808 digits)/411657 334398 764894 123739 983665 936734 414170 559484 460024 279636 466153 926633 338135 937282 171310 122178 096880 915131 245561 543026 395965 440166 587264 523588 951558 706323 020904 609685 522735 847231 379437 905077 479124 792638 895572 340540 278002 016364 063448 283217 149713 616014 391864 805244 092659 611417 786162 597454 524376 739597 441154 379147 007693 616062 597876 937307 924495 252916 775876 223177 636584 152448 189952 145011 817933 254091 262383 959226 189067 937677 050512 489910 116555 710426 948941 773254 523729 443090 499799 022993 280072 235385 968777 292788 325910 330010 591400 288209 785996 956380 926816 702454 906908 938334 871274 847702 819818 928192 740689 005031 916897 304537 148249 628976 176779 452580 792688 010612 067288 116880 036667 282215 066140 069002 816229 976720 321497 383717 875373 730070 142975 371675 091895 781710 297400 627913 544103 544786 509594 506388 561716 904373 766974 471168 813874 (810 digits), a[1544] = 3
                                                                                      A[1545]/B[1545] = 18163 154363 754300 047922 087053 366672 752903 783578 253866 206166 409873 428060 426685 673791 529801 527655 323365 545767 063170 374205 845538 840530 879566 106961 959227 808474 209817 612488 798215 532016 719746 657092 466183 013027 178383 511836 370579 018542 763409 775419 172007 773593 465963 486029 294198 988146 541981 540895 136912 744123 309761 875951 504962 275860 434445 654450 097235 050026 314878 507967 656392 268405 206524 282634 353955 230711 879095 785599 224008 839366 580134 099972 159071 290608 482952 737749 829492 762223 847003 397048 732996 671579 970651 408796 511506 819706 967497 367694 520784 281894 989401 902615 640683 123343 853945 455282 309883 884337 334226 542310 558824 468379 910534 959318 730542 566679 123530 370552 520815 053882 753278 248259 565988 929100 951504 013183 097745 810855 352474 373513 367144 010423 255157 957571 978223 740426 313115 089908 089120 870281 989393 793864 116091 090553 159650 (809 digits)/1 765341 005926 467221 323758 535334 282911 207689 294056 330916 126417 102918 298853 127698 335124 624192 363025 121706 886225 958230 561003 631554 334241 668346 015201 085246 250604 840441 752376 056101 411980 392725 528169 387475 116084 959907 470982 893363 180422 012333 754773 852401 778498 751768 078858 385875 233075 570954 010316 303026 112525 022425 832192 290862 047385 283462 482247 735110 408367 438945 513231 221954 714043 213917 768179 388751 686468 675068 058599 969579 201191 995485 485547 305643 501684 301887 464453 981495 723803 258844 092147 730502 816922 142955 630659 827145 920515 195455 907091 012451 495166 978478 478158 520806 185870 660674 791111 073595 149002 593092 922869 121203 665982 777699 542318 338851 383054 686283 140538 126154 228962 471775 707002 171503 561882 690131 244272 016431 022809 067107 776663 323574 462043 772239 202066 337022 408548 627775 338387 804425 297386 993723 906882 236370 845098 439571 (811 digits), a[1545] = 4
                                                                                      A[1546]/B[1546] = 22398 594250 187116 178487 230382 847641 332117 275502 905046 908975 167554 248943 671335 854364 131024 122807 210766 820758 177122 624687 035750 165767 744478 951206 914875 046678 378079 746782 337842 238472 337555 059286 592592 369904 302481 690226 829026 008312 085104 346838 977496 741203 140537 269191 470353 127939 954269 418336 334031 449038 282958 575968 715214 789603 325108 845422 066937 313661 097280 274346 670133 609253 083211 065969 578950 373994 142497 701983 047954 502543 641812 870384 523481 123784 611071 163828 590074 352858 022523 389484 803010 754313 483634 742794 131696 710840 705903 096823 787058 661369 712368 421948 471631 611868 202018 105157 101254 857717 389963 904490 753497 419768 591737 176024 865871 440500 798378 152622 973030 105344 262921 998895 939739 461811 047142 418369 637466 566295 951163 673917 182396 480004 374767 129624 648178 231964 752938 489656 123831 217377 293822 436864 530874 523652 934419 (809 digits)/2 176998 340325 232115 447498 519000 219645 621859 853540 790940 406053 569072 225486 465834 272406 795502 485203 218587 801357 203792 104030 027519 774408 255610 538790 036804 956927 861346 362061 578837 259211 772163 433246 866599 908723 855479 811523 171365 196786 075782 037991 002115 394513 143632 884102 478534 844493 357116 607770 827402 852122 463580 211339 298555 663447 881339 419555 659605 661284 214821 736408 858538 866491 403869 913191 206684 940559 937452 017826 158647 138869 045997 975457 422199 212111 250829 237708 505225 166893 758643 115141 010575 052308 111732 923448 153056 250525 786856 195300 798448 451547 905295 180613 427715 124205 531949 638813 893414 077195 333781 927901 038100 970519 925949 171294 515630 835635 478971 151150 193442 345842 508442 989217 237643 630885 506361 220992 337928 406526 942481 506733 466549 833718 864134 983776 634423 036462 171878 883174 314019 803775 555440 811256 003345 316267 253445 (811 digits), a[1546] = 1
                                                                                      A[1547]/B[1547] = 331743 473866 373926 546743 312413 233651 402545 640618 924522 931818 755632 913271 825387 634889 364139 246956 274101 036381 542887 119824 346041 161279 302271 423858 767478 461971 502934 067441 528006 870629 445517 487104 762476 191687 413127 175011 976943 134911 954870 631164 856962 150437 433485 254709 879142 779305 901753 397603 813353 030659 271181 939513 517969 330306 985969 490359 034357 441281 676802 348821 038262 797948 371479 206208 459260 466629 874063 613361 895371 874977 565514 285355 487807 023593 037949 031350 090533 702236 162330 849835 975147 231968 741537 807914 355260 771476 850140 723227 539605 541070 962559 809894 243525 689498 682198 927481 727451 892380 793721 205181 107788 345140 194855 423666 852742 733690 300824 507274 143236 528702 434186 232802 722341 394455 611497 870358 022277 738998 668765 808353 920694 730484 501897 772317 052718 987932 854253 945093 822757 913564 102907 909967 548334 421694 241516 (810 digits)/32 243317 770479 716837 588737 801337 357949 913727 243627 404081 811167 069929 455663 649378 148819 761227 155870 181936 105226 811320 017424 016831 175957 246893 558261 600515 647594 899290 821238 159823 040945 203013 593625 519873 838218 936624 832307 292475 935427 073282 286647 882017 301682 762628 456293 085363 055982 570586 519107 886666 042239 512548 790942 470641 335655 622214 356026 969589 666346 446449 822955 241498 844922 868096 552856 282340 854307 799396 308166 190639 145358 639457 141951 216432 471241 813496 792373 054648 060315 879847 704121 878553 549235 707216 558933 969933 427876 211442 641302 190729 816837 652611 006746 508817 924748 107969 734505 581392 229737 266039 913483 654617 253261 740987 940441 557683 081951 391879 256640 834347 070757 589977 556043 498514 394279 779188 338164 747428 714186 261848 870931 855272 134107 870128 974939 218944 919019 034079 702828 200702 550244 769895 264466 283205 272839 987801 (812 digits), a[1547] = 14
                                                                                      A[1548]/B[1548] = 354142 068116 561042 725230 542796 081292 734662 916121 829569 840793 923187 162215 496723 489253 495163 369763 484867 857139 720009 744511 381791 327047 046750 375065 682353 508649 881013 814223 865849 109101 783072 546391 355068 561591 715608 865238 805969 143224 039974 978003 834458 891640 574022 523901 349495 907245 856022 815940 147384 479697 554140 515482 233184 119910 311078 335781 101294 754942 774082 623167 708396 407201 454690 272178 038210 840624 016561 315344 943326 377521 207327 155740 011288 147377 649020 195178 680608 055094 184854 239320 778157 986282 225172 550708 486957 482317 556043 820051 326664 202440 674928 231842 715157 301366 884217 032638 828706 750098 183685 109671 861285 764908 786592 599691 718614 174191 099202 659897 116266 634046 697108 231698 662080 856266 658640 288727 659744 305294 619929 482271 103091 210488 876664 901941 700897 219897 607192 434749 946589 130941 396730 346832 079208 945347 175935 (810 digits)/34 420316 110804 948953 036236 320337 577595 535587 097168 195022 217220 639001 681150 115212 421226 556729 641073 400523 906584 015112 121454 044350 950365 502504 097051 637320 604522 760637 183299 738660 300156 975177 026872 386473 746942 792104 643830 463841 132213 149064 324638 884132 696195 906261 340395 563897 900475 927703 126878 714068 894361 976129 002281 769196 999103 503553 775582 629195 327630 661271 559364 100037 711414 271966 466047 489025 794867 736848 325992 349286 284227 685455 117408 638631 683353 064326 030081 559873 227209 638490 819262 889128 601543 818949 482382 122989 678401 998298 836602 989178 268385 557906 187359 936533 048953 639919 373319 474806 306932 599821 841384 692718 223781 666937 111736 073313 917586 870850 407791 027789 416600 098420 545260 736158 025165 285549 559157 085357 120713 204330 377665 321821 967826 734263 958715 853367 955481 205958 586002 514722 354020 325336 075722 286550 589107 241246 (812 digits), a[1548] = 1
                                                                                      A[1549]/B[1549] = 1 748311 746332 618097 447665 483597 558822 341197 305106 242802 294994 448381 562133 812281 591903 344792 726010 213572 464940 422926 097869 873206 469467 489272 924121 496892 496571 026989 324336 991403 307036 577807 672670 182750 438054 275562 635967 200819 707808 114770 543180 194797 716999 729575 350315 277126 408289 325844 661364 402890 949449 487744 001442 450705 809948 230282 833483 439536 461052 773132 841491 871848 426754 190240 294920 612103 829125 940308 874741 668677 385062 394822 908315 532959 613103 634029 812064 812965 922612 901747 807119 087779 177097 642228 010748 303090 700747 074316 003432 846262 350833 662272 737265 104154 894966 219067 058037 042278 892773 528461 643868 552931 404775 341225 822433 727199 430454 697635 146862 608303 064889 222619 159597 370664 819522 246059 025268 661254 960177 148483 737438 333059 572440 008557 380083 856307 867523 283023 684093 609114 437329 689829 297295 865170 203082 945256 (811 digits)/169 924582 213699 512649 733683 082687 668332 056075 632300 184170 680049 625936 180264 110227 833725 988145 720163 784031 731562 871768 503240 194234 977419 256909 946468 149798 065685 941839 554437 114464 241573 103721 701115 065768 825990 105043 407629 147840 464279 669539 585203 418548 086466 387673 817875 340954 657886 281399 026622 742941 619687 417064 800069 547429 332069 636429 458357 486370 976869 091536 060411 641649 690579 955962 417046 238444 033778 746789 612135 587784 282269 381277 611585 770959 204654 070800 912699 294140 969154 433810 981173 435067 955410 983014 488462 461892 141484 204637 987714 147442 890379 884235 756186 254950 120562 667647 227783 480617 457467 665327 279022 425490 148388 408736 387385 850938 752298 875280 887804 945504 737157 983659 737086 443146 494940 921386 574793 088857 197039 079170 381593 142560 005414 807184 809802 632416 740943 857914 046838 259591 966326 071239 567355 429407 629268 952785 (813 digits), a[1549] = 4
                                                                                      A[1550]/B[1550] = 3 850765 560781 797237 620561 509991 198937 417057 526334 315174 430782 819950 286483 121286 673060 184748 821783 912012 787020 565861 940251 128204 265982 025296 223308 676138 501791 934992 462897 848655 723174 938687 891731 720569 437700 266734 137173 207608 558840 269516 064364 224054 325640 033173 224531 903748 723824 507712 138668 953166 378596 529628 518367 134595 739806 771644 002747 980367 677048 320348 306151 452093 260709 835170 862019 262418 498875 897179 064828 280681 147645 996972 972371 077207 373584 917079 819308 306539 900319 988349 853558 953716 340477 509628 572205 093138 883811 704675 826917 019188 904107 999473 706372 923467 091299 322351 148712 913264 535645 240608 397408 967148 574459 469044 244559 173013 035100 494472 953622 332872 763825 142346 550893 403410 495311 150758 339264 982254 225648 916896 957147 769210 355368 893779 662109 413512 954944 173239 802937 164818 005600 776388 941423 809549 351513 066447 (811 digits)/374 269480 538203 974252 503602 485712 914259 647738 361768 563363 577319 890874 041678 335668 088678 533021 081400 968587 369709 758649 127934 432820 905204 016323 989987 936916 735894 644316 292173 967588 783303 182620 429102 518011 398923 002191 459088 759522 060772 488143 495045 721228 869128 681608 976146 245807 216248 490501 180124 199952 133736 810258 602420 864055 663242 776412 692297 601937 281368 844343 680187 383337 092574 183891 300139 965913 862425 230427 550263 524854 848766 448010 340580 180550 092661 205927 855480 148155 165518 506112 781609 759264 512365 784978 459307 046773 961370 407574 812031 284064 049145 326377 699732 446433 290078 975213 828886 436041 221867 930476 399429 543698 520558 484409 886507 775191 422184 621412 183400 918798 890916 065740 019433 622451 015047 128322 708743 263071 514791 362671 140851 606941 978656 348633 578321 118201 437368 921786 679679 033906 286672 467815 210433 145365 847645 146816 (813 digits), a[1550] = 2
                                                                                      A[1551]/B[1551] = 24 852905 111023 401523 171034 543544 752446 843542 463112 133848 879691 368083 281032 540001 630264 453285 656713 685649 187063 818097 739376 642432 065359 641050 263973 553723 507322 636944 101724 083337 646086 209935 023060 506167 064255 875967 459006 446471 060849 731866 929365 539123 670839 928614 697506 699618 751236 372117 493378 121889 221028 665515 111645 258280 248788 860146 849971 321742 523342 695222 678400 584407 991013 201265 467036 186614 822381 323383 263711 352764 270938 376660 742541 996203 854613 136508 727914 652205 324532 831846 928472 810077 219962 699999 443978 861924 003617 302370 964934 961395 775481 659114 975502 644957 442762 153173 950314 521866 106644 972112 028322 355822 851532 155491 289788 765277 641057 664472 868596 605539 647840 076698 464957 791127 791389 150609 060858 554780 314070 649865 480324 948321 704653 371235 352740 337385 597188 322462 501716 598022 470934 348162 945838 722466 312161 343938 (812 digits)/2415 541465 442923 358164 755297 996965 153889 942505 802911 564352 143968 971180 430334 124236 365797 186272 208569 595555 949821 423663 270846 791160 408643 354853 886395 771298 481053 807737 307480 919996 941392 199444 275730 173837 219528 118192 162161 704972 828914 598400 555477 745921 301238 477327 674752 815797 955377 224406 107367 942654 422108 278616 414594 731763 311526 294905 612143 097994 665082 157598 141535 941672 246025 059310 217886 033927 208330 129354 913716 736913 374868 069339 655066 854259 760621 306368 045580 183071 962265 470487 670831 990655 029605 692885 244304 742535 909706 650086 859901 851827 185251 842501 954580 933549 861036 518930 201102 096864 788675 248185 675599 687681 271739 315195 706432 502087 285406 603753 988210 458298 082654 378099 853688 177852 585223 691322 827252 667286 285787 255197 226702 784211 877352 898986 279729 341625 365157 388634 124912 463029 686360 878130 829954 301602 715139 833681 (814 digits), a[1551] = 6
                                                                                      A[1552]/B[1552] = 53 556575 782828 600283 962630 597080 703831 104142 452558 582872 190165 556116 848548 201289 933589 091320 135211 283311 161148 202057 419004 413068 396701 307396 751255 783585 516437 208880 666346 015331 015347 358557 937852 732903 566212 018669 055186 100550 680539 733249 923095 302301 667319 890402 619545 302986 226297 251947 125425 196944 820653 860658 741657 651156 237384 491937 702690 623852 723733 710793 662952 620909 242736 237701 796091 635648 143638 543945 592250 986209 689522 750294 457455 069615 082811 190097 275137 610950 549385 652043 710504 573870 780402 909627 460162 816986 891046 309417 756786 941980 455071 317703 657378 213381 976823 628699 049341 956996 748935 184832 454053 678794 277523 780026 824136 703568 317215 823418 690815 543952 059505 295743 480808 985666 078089 451976 460982 091814 853790 216627 917797 665853 764675 636250 367590 088284 149320 818164 806370 360862 947469 472714 833101 254481 975835 754323 (812 digits)/5205 352411 424050 690582 014198 479643 222039 532749 967591 692067 865257 833234 902346 584140 820272 905565 498540 159699 269352 605975 669628 015141 722490 726031 762779 479513 698002 259790 907135 807582 666087 581508 980562 865685 837979 238575 783412 169467 718601 684944 606001 213071 471605 636264 325651 877403 127002 939313 394860 085260 977953 367491 431610 327582 286295 366223 916583 797926 611533 159539 963259 266681 584624 302511 735912 033768 279085 489137 377696 998681 598502 586689 650713 889069 613903 818663 946640 514299 090049 447088 123273 740574 571577 170748 947916 531845 780783 707748 531834 987718 419649 011381 608894 313533 012152 013074 231090 629770 799218 426847 750628 919061 064037 114801 299372 779365 992997 828920 159821 835395 056224 821939 726809 978156 185494 510968 363248 597644 086365 873065 594257 175365 733362 146606 137779 801452 167683 699054 929503 959965 659394 224076 870341 748571 277924 814178 (814 digits), a[1552] = 2
                                                                                      A[1553]/B[1553] = 78 409480 893852 001807 133665 140625 456277 947684 915670 716721 069856 924200 129580 741291 563853 544605 791924 968960 348212 020155 158381 055500 462060 948447 015229 337309 023759 845824 768070 098668 661433 568492 960913 239070 630467 894636 514192 547021 741389 465116 852460 841425 338159 819017 317052 002604 977533 624064 618803 318834 041682 526173 853302 909436 486173 352084 552661 945595 247076 406016 341353 205317 233749 438967 263127 822262 966019 867328 855962 338973 960461 126955 199997 065818 937424 326606 003052 263155 873918 483890 638977 383948 000365 609626 904141 678910 894663 611788 721721 903376 230552 976818 632880 858339 419585 781872 999656 478862 855580 156944 482376 034617 129055 935518 113925 468845 958273 487891 559412 149491 707345 372441 945766 776793 869478 602585 521840 646595 167860 866493 398122 614175 469329 007485 720330 425669 746509 140627 308086 958885 418403 820877 778939 976948 287997 098261 (812 digits)/7620 893876 866974 048746 769496 476608 375929 475255 770503 256420 009226 804415 332680 708377 186070 091837 707109 755255 219174 029638 940474 806302 131134 080885 649175 250812 179056 067528 214616 727579 607479 780953 256293 039523 057507 356767 945573 874440 547516 283345 161478 958992 772844 113592 000404 693201 082380 163719 502228 027915 400061 646107 846205 059345 597821 661129 528726 895921 276615 317138 104795 208353 830649 361821 953798 067695 487415 618492 291413 735594 973370 656029 305780 743329 374525 125031 992220 697371 052314 917575 794105 731229 601182 863634 192221 274381 690490 357835 391736 839545 604900 853883 563475 247082 873188 532004 432192 726635 587893 675033 426228 606742 335776 429997 005805 281453 278404 432674 148032 293693 138879 200039 580498 156008 770718 202291 190501 264930 372153 128262 820959 959577 610715 045592 417509 143077 532841 087689 054416 422995 345755 102207 700296 050173 993064 647859 (814 digits), a[1553] = 1
                                                                                      A[1554]/B[1554] = 131 966056 676680 602091 096295 737706 160109 051827 368229 299593 260022 480316 978128 942581 497442 635925 927136 252271 509360 222212 577385 468568 858762 255843 766485 120894 540197 054705 434416 113999 676780 927050 898765 971974 196679 913305 569378 647572 421929 198366 775556 143727 005479 709419 936597 305591 203830 876011 744228 515778 862336 386832 594960 560592 723557 844022 255352 569447 970810 116810 004305 826226 476485 676669 059219 457911 109658 411274 448213 325183 649983 877249 657452 135434 020235 516703 278189 874106 423304 135934 349481 957818 780768 519254 364304 495897 785709 921206 478508 845356 685624 294522 290259 071721 396409 410572 048998 435859 604515 341776 936429 713411 406579 715544 938062 172414 275489 311310 250227 693443 766850 668185 426575 762459 947568 054561 982822 738410 021651 083121 315920 280029 234004 643736 087920 513953 895829 958792 114457 319748 365873 293592 612041 231430 263832 852584 (813 digits)/12826 246288 291024 739328 783694 956251 597969 008005 738094 948487 874484 637650 235027 292518 006342 997403 205649 914954 488526 635614 610102 821443 853624 806917 411954 730325 877058 327319 121752 535162 273567 362462 236855 905208 895486 595343 728986 043908 266117 968289 767480 172064 244449 749856 326056 570604 209383 103032 897088 113176 378015 013599 277815 386927 884117 027353 445310 693847 888148 476678 068054 475035 415273 664333 689710 101463 766501 107629 669110 734276 571873 242718 956494 632398 988428 943695 938861 211670 142364 364663 917379 471804 172760 034383 140137 806227 471274 065583 923571 827264 024549 865265 172369 560615 885340 545078 663283 356406 387112 101881 176857 525803 399813 544798 305178 060819 271402 261594 307854 129088 195104 021979 307308 134164 956212 713259 553749 862574 458519 001328 415217 134943 344077 192198 555288 944529 700524 786743 983920 382961 005149 326284 570637 798745 270989 462037 (815 digits), a[1554] = 1
                                                                                      A[1555]/B[1555] = 2717 730614 427464 043629 059579 894748 658458 984232 280256 708586 270306 530539 692159 592921 512706 263124 334650 014390 535416 464406 706090 426877 637306 065322 344931 755199 827700 939933 456392 378662 197052 109510 936232 678554 564066 160747 901765 498470 179973 432452 363583 715965 447754 007416 048998 114429 054151 144299 503373 634411 288410 262825 752514 121290 957330 232529 659713 334554 663278 742216 427469 729846 763462 972348 447516 980485 159188 092817 820228 842646 960138 671948 349039 774499 342134 660671 566849 745284 340001 202577 628616 540323 615735 994714 190231 596866 608862 035918 291898 810509 943038 867264 438062 292767 347773 993313 979625 196054 945886 992483 210970 302845 260650 246416 875168 917131 468059 714096 563966 018367 044358 736150 477282 025992 820839 693825 178295 414795 600882 528919 716528 214760 149421 882207 478740 704747 663108 316469 597233 353852 735869 692730 019764 605553 564654 149941 (814 digits)/264145 819642 687468 835322 443395 601640 335309 635370 532402 226177 498919 557420 033226 558737 312930 039901 820108 054344 989706 741931 142531 235179 203630 219233 888269 857329 720222 613910 649667 430825 078827 030197 993411 143700 967239 263642 525294 752605 869875 649140 511082 400277 661839 110718 521536 105285 270042 224377 443990 291442 960361 918093 402512 797903 280162 208198 434940 772879 039584 850699 465884 709062 136122 648495 748000 096970 817437 771085 673628 421126 410835 510408 435673 391309 143103 998950 769444 930773 899602 210854 141695 167313 056383 551296 994977 398931 115971 669513 863173 384826 095898 159187 010866 459400 579999 433577 697859 854763 330135 712656 963379 122810 332047 325963 109366 497838 706449 664560 305114 875457 040959 639625 726660 839307 894972 467482 265498 516419 542533 154831 125302 658444 492258 889563 523288 033671 543336 822568 732824 082215 448741 627899 113052 025079 412853 888599 (816 digits), a[1555] = 20
                                                                                      A[1556]/B[1556] = 2849 696671 104144 645720 155875 632454 818568 036059 648486 008179 530329 010856 670288 535503 010148 899050 261786 266662 044776 686619 283475 895446 496068 321166 111416 876094 367897 994638 890808 492661 873833 036561 834998 650528 760746 074053 471144 146042 601902 630819 139139 859692 453233 716835 985595 420020 257982 020311 247602 150190 150746 649658 347474 681883 680888 076551 915065 904002 634088 859026 431775 556073 239948 649017 506736 438396 268846 504092 268442 167830 610122 549198 006491 909933 362370 177374 845039 619390 763305 338511 978098 498142 396504 513968 554536 092764 394571 957124 770407 655866 628663 161786 728321 364488 744183 403886 028623 631914 550402 334260 147400 016256 667229 961961 813231 089545 743549 025406 814193 711810 811209 404335 903857 788452 768407 748387 161118 153205 622533 612041 032448 494789 383426 525943 566661 218701 558938 275261 711690 673601 101742 986322 631805 836983 828487 002525 (814 digits)/276972 065930 978493 574651 227090 557891 933278 643376 270497 174665 373404 195070 268253 851255 319273 037305 025757 969299 478233 377545 752634 056623 057255 026151 300224 587655 597280 941229 771419 965987 352394 392660 230267 048909 862725 858986 254280 796514 135993 617430 278562 572341 906288 860574 847592 675889 479425 327410 341078 404619 338376 931692 680328 184831 164279 235551 880251 466726 927733 327377 533939 184097 551396 312829 437710 198434 583938 878715 342739 155402 982708 753127 392168 023708 131532 942646 708306 142444 041966 575518 059074 639117 229143 585680 135115 205158 587245 735097 786745 212090 120448 024452 183236 020016 465339 978656 361143 211169 717247 814538 140236 648613 731860 870761 414544 558657 977851 926154 612969 004545 236063 661605 033968 973472 851185 180741 819248 378994 001052 156159 540519 793387 836336 081762 078576 978201 243861 609312 716744 465176 453890 954183 683689 823824 683843 350636 (816 digits), a[1556] = 1
                                                                                      A[1557]/B[1557] = 11266 820627 739897 980789 527206 792113 114163 092411 225714 733124 861293 563109 703025 199430 543152 960275 120008 814376 669746 524264 556518 113217 125511 028820 679182 383482 931394 923850 128817 856647 818551 219196 441228 630140 846304 382908 315197 936597 985681 324909 781003 295042 807455 157924 005784 374489 828097 205233 246180 084981 740650 211800 794938 166941 999994 462185 404911 046562 565545 319295 722796 398066 483308 919400 967726 295673 965727 605094 625555 346138 790506 319542 368515 504299 429245 192796 101968 603456 629917 218113 562912 034750 805249 536619 853839 875159 792577 907292 603121 778109 829028 352624 623026 386233 580324 204972 065496 091798 597093 995263 653170 351615 262340 132302 314862 185768 698706 790317 006547 153799 477986 949158 188855 391351 126062 938986 661649 874412 468483 365042 813873 699128 299701 460038 178724 360852 339923 142254 732305 374656 041098 651697 915182 116505 050115 157516 (815 digits)/1 095062 017435 622949 559276 124667 275316 135145 565499 343893 750173 619132 142630 837988 112503 270749 151816 897381 962243 424406 874568 400433 405048 375395 297687 788943 620296 512065 437599 963927 328787 136010 208178 684212 290430 555416 840601 288137 142148 277856 501431 346770 117303 380705 692443 064314 132953 708318 206608 467225 505300 975492 713171 443497 352396 772999 914854 075695 173059 822784 832832 067702 261354 790311 586984 061130 692274 569254 407231 701845 887335 358961 769790 612177 462433 537702 826890 894363 358106 025501 937408 318919 084664 743814 308337 400323 014406 877708 874807 223409 021096 457242 232543 560574 519449 976019 369546 781289 488272 481879 156271 384089 068651 527629 938247 353000 173812 640005 443024 144021 889092 749150 624440 828567 759726 448528 009707 723243 653401 545689 623309 746862 038608 001267 134849 759018 968275 274921 650506 883057 477744 810414 490450 164121 496553 464383 940507 (817 digits), a[1557] = 3
                                                                                      A[1558]/B[1558] = 25383 337926 583940 607299 210289 216681 046894 220882 099915 474429 252916 137076 076338 934364 096454 819600 501803 895415 384269 735148 396512 121880 747090 378807 469781 643060 230687 842339 148444 205957 510935 474954 717455 910810 453354 839870 101540 019238 573265 280638 701146 449778 068144 032683 997164 168999 914176 430777 739962 320153 632047 073259 937351 015767 680877 000922 724887 997127 765179 497617 877368 352206 206566 487819 442189 029744 200301 714281 519552 860108 191135 188282 743522 918532 220860 562967 048976 826304 023139 774739 103922 567644 007003 587208 262215 843083 979727 771709 976651 212086 286719 867035 974374 136955 904831 813830 159615 815511 744590 324787 453740 719487 191910 226566 442955 461083 140962 606040 827288 019409 767183 302652 281568 571155 020533 626360 484417 902030 559500 342126 660195 893045 982829 446019 924109 940406 238784 559771 176301 422913 183940 289718 462170 069993 928717 317557 (815 digits)/2 467096 100802 224392 693203 476425 108524 203569 774374 958284 675012 611668 480331 944230 076261 860771 340938 820521 893786 327047 126682 553500 866719 808045 621526 878111 828248 621411 816429 699274 623561 624414 809017 598691 629770 973559 540188 830555 080810 691706 620292 972102 806948 667700 245460 976220 941796 896061 740627 275529 415221 289362 358035 567322 889624 710279 065260 031641 812846 573302 993041 669343 706807 132019 486797 559971 582983 722447 693178 746430 930073 700632 292708 616522 948575 206938 596428 497032 858656 092970 450334 696912 808446 716772 202354 935761 233972 342663 484712 233563 254283 034932 489539 304385 058916 417378 717749 923722 187714 681006 127080 908414 785916 787120 747256 120544 906283 257862 812202 901012 782730 734364 910486 691104 492925 748241 200157 265735 685797 092431 402779 034243 870603 838870 351461 596614 914751 793704 910326 482859 420666 074719 935084 011932 816931 612611 231650 (817 digits), a[1558] = 2
                                                                                      A[1559]/B[1559] = 36650 158554 323838 588088 737496 008794 161057 313293 325630 207554 114209 700185 779364 133794 639607 779875 621812 709792 054016 259412 953030 235097 872601 407628 148964 026543 162082 766189 277262 062605 329486 694151 158684 540951 299659 222778 416737 955836 558946 605548 482149 744820 875599 190608 002948 543489 742273 636010 986142 405135 372697 285060 732289 182709 680871 463108 129799 043690 330724 816913 600164 750272 689875 407220 409915 325418 166029 319376 145108 206246 981641 507825 112038 422831 650105 755763 150945 429760 653056 992852 666834 602394 812253 123828 116055 718243 772305 679002 579772 990196 115748 219660 597400 523189 485156 018802 225111 907310 341684 320051 106911 071102 454250 358868 757817 646851 839669 396357 833835 173209 245170 251810 470423 962506 146596 565347 146067 776443 027983 707169 474069 592174 282530 906058 102834 301258 578707 702025 908606 797569 225038 941416 377352 186498 978832 475073 (815 digits)/3 562158 118237 847342 252479 601092 383840 338715 339874 302178 425186 230800 622962 782218 188765 131520 492755 717903 856029 751454 001250 953934 271768 183440 919214 667055 448545 133477 254029 663201 952348 760425 017196 282903 920201 528976 380790 118692 222958 969563 121724 318872 924252 048405 937904 040535 074750 604379 947235 742754 920522 264855 071207 010820 242021 483278 980114 107336 985906 396087 825873 737045 968161 922331 073781 621102 275258 291702 100410 448276 817409 059594 062499 228700 411008 744641 423319 391396 216762 118472 387743 015831 893111 460586 510692 336084 248379 220372 359519 456972 275379 492174 722082 864959 578366 393398 087296 705011 675987 162885 283352 292503 854568 314750 685503 473545 080095 897868 255227 045034 671823 483515 534927 519672 252652 196769 209864 988979 339198 638121 026088 781105 909211 840137 486311 355633 883027 068626 560833 365916 898410 885134 425534 176054 313485 076995 172157 (817 digits), a[1559] = 1
                                                                                      A[1560]/B[1560] = 62033 496480 907779 195387 947785 225475 207951 534175 425545 681983 367125 837261 855703 068158 736062 599476 123616 605207 438285 994561 349542 356978 619691 786435 618745 669603 392770 608528 425706 268562 840422 169105 876140 451761 753014 062648 518277 975075 132211 886187 183296 194598 943743 223292 000112 712489 656450 066788 726104 725289 004744 358320 669640 198477 361748 464030 854687 040818 095904 314531 477533 102478 896441 895039 852104 355162 366331 033657 664661 066355 172776 696107 855561 341363 870966 318730 199922 256064 676196 767591 770757 170038 819256 711036 378271 561327 752033 450712 556424 202282 402468 086696 571774 660145 389987 832632 384727 722822 086274 644838 560651 790589 646160 585435 200773 107934 980632 002398 661123 192619 012353 554462 751992 533661 167130 191707 630485 678473 587484 049296 134265 485220 265360 352078 026944 241664 817492 261797 084908 220482 408979 231134 839522 256492 907549 792630 (815 digits)/6 029254 219040 071734 945683 077517 492364 542285 114249 260463 100198 842469 103294 726448 265026 992291 833694 538425 749816 078501 127933 507435 138487 991486 540741 545167 276793 754889 070459 362476 575910 384839 826213 881595 549972 502535 920978 949247 303769 661269 742017 290975 731200 716106 183365 016756 016547 500441 687863 018284 335743 554217 429242 578143 131646 193558 045374 138978 798752 969390 818915 406389 674969 054350 560579 181073 858242 014149 793589 194707 747482 760226 355207 845223 359583 951580 019747 888429 075418 211442 838077 712744 701558 177358 713047 271845 482351 563035 844231 690535 529662 527107 211622 169344 637282 810776 805046 628733 863701 843891 410433 200918 640485 101871 432759 594089 986379 155731 067429 946047 454554 217880 445414 210776 745577 945010 410022 254715 024995 730552 428867 815349 779815 679007 837772 952248 797778 862331 471159 848776 319076 959854 360618 187987 130416 689606 403807 (817 digits), a[1560] = 1
                                                                                      A[1561]/B[1561] = 905119 109287 032747 323520 006489 165447 072378 791749 283269 755321 253971 421851 759207 088016 944484 172541 352445 182696 190020 183271 846623 232798 548286 417726 811403 400990 660871 285587 237149 822485 095397 061633 424650 865615 841856 099857 672629 606888 409913 012169 048296 469206 088004 316696 004526 518344 932574 571053 151608 559181 439118 301550 107251 961392 745349 959540 095417 615143 673385 220354 285628 184977 240061 937778 339376 297691 294663 790583 450363 135219 400515 253335 089897 201925 843634 217985 949857 014666 119811 739137 457434 982938 281847 078337 411857 576832 300773 988978 369711 822149 750301 433412 602245 765224 944985 675655 611300 026819 549529 347790 956036 139357 500498 554961 568641 157941 568517 429939 089559 869875 418120 014288 998319 433762 486419 249253 972867 275073 252760 397315 353786 385257 997575 835150 480053 684566 023599 367185 097321 884322 950748 177304 130663 777399 684529 571893 (816 digits)/87 971717 184798 851631 492042 686337 276943 930706 939363 948661 827970 025368 069088 952493 899143 023606 164479 255864 353454 850469 792320 058026 210600 064252 489596 299397 323657 701924 240460 737874 015094 148182 584190 625241 619816 564479 274495 408154 475734 227339 509966 392533 161062 073892 505014 275119 306415 610563 577317 998735 620932 023899 080603 104824 085068 193091 615352 053040 168447 967559 290689 426501 417728 683238 921890 156136 290646 489799 210659 174185 282167 702763 035409 061827 445184 066761 699789 829403 272617 078672 120830 994257 714925 943608 493354 141921 001301 102874 178763 124469 690654 871675 684793 235784 500325 744273 357949 507285 767812 977365 029417 105364 821359 740950 744137 790804 889404 078103 199246 289699 035582 533841 770726 470546 690743 426914 950176 554989 689138 865855 030238 196002 826631 346247 215132 687117 051931 141267 157071 248785 365488 323095 474188 807874 139318 731484 825455 (818 digits), a[1561] = 14
                                                                                      A[1562]/B[1562] = 5 492748 152203 104263 136507 986720 218157 642224 284671 125164 213910 890954 368372 410945 596260 402967 634724 238287 701384 578407 094192 429281 753769 909410 292796 487166 075547 357998 322051 848605 203473 412804 538906 424045 645456 804150 661794 554055 616405 591689 959201 473075 009835 471769 123468 027271 822559 251897 493107 635756 080377 639454 167621 313151 966833 833848 221271 427192 731680 136215 636657 191302 212342 336813 521709 888362 141310 134313 777158 366839 877671 575868 216118 394944 552918 932771 626645 899064 344061 395067 202416 515367 067668 510339 181060 849417 022321 556677 384582 774695 135180 904276 687172 185249 251495 059901 886566 052527 883739 383450 731584 296868 626734 649151 915204 612620 055584 391736 582033 198482 411871 521073 640196 741909 136236 085645 687231 467689 328913 104046 433188 256983 796768 250815 362980 907266 349060 959088 464907 668839 526420 113468 294959 623504 920891 014727 223988 (817 digits)/533 859557 327833 181523 897939 195541 154028 126526 750432 952434 068018 994677 517828 441411 659885 133928 820570 073611 870545 181319 881853 855592 402088 377001 478319 341551 218739 966434 513223 789720 666475 273935 331357 633045 268871 889411 567951 398174 158175 025306 801815 646174 697573 159461 213450 667471 855041 163823 151771 010698 061335 697611 912861 207087 642055 352107 737486 457219 809440 774746 563051 965398 181341 153784 091920 117891 602120 952945 057544 239819 440488 976804 567662 216188 030688 352150 218486 864848 711120 683475 563063 678290 991113 839009 673172 123371 490158 180280 916810 437353 673591 757161 320381 584051 639237 276416 952743 672448 470579 708081 586935 833107 568643 547575 897586 338919 322803 624350 262907 684241 668049 420931 069773 034056 890038 506500 111081 584653 159828 925682 610296 991366 739603 756491 128569 074951 109365 709934 413587 341488 512006 898427 205751 035231 966329 078515 356537 (819 digits), a[1562] = 6
                                                                                      A[1563]/B[1563] = 50 339852 479114 971115 552091 886971 128865 852397 353789 409747 680519 272560 737203 457717 454360 571192 885059 497034 495157 395684 031003 710159 016727 732979 052895 195898 080916 882856 184053 874596 653745 810637 911791 241061 674727 079212 056008 659130 154538 735122 644982 305971 557725 333926 427908 249972 921378 199652 009021 873413 282580 194205 810141 925619 662897 249983 950982 940152 200264 899325 950269 007348 096058 271383 633167 334635 569482 503487 785008 751922 034263 583329 198400 644398 178196 238578 857799 041436 111218 675416 560886 095738 591954 874899 707885 056610 777726 310870 450223 341968 038777 888791 617962 269489 028680 484102 654750 084050 980474 000585 932049 627853 779969 342865 791803 082221 658201 094146 668237 875901 576719 107782 776059 675501 659887 257230 434337 182071 235291 189178 296009 666640 556172 254914 101978 645450 826114 655395 551354 116877 622103 971962 831940 742208 065418 817074 587785 (818 digits)/4892 707733 135297 485346 573495 446207 663197 069447 693260 520568 440140 977465 729544 925198 838109 228965 549609 918371 188361 482348 729004 758357 829395 457265 794470 373358 292317 399834 859474 845360 013371 613600 566409 322649 039663 569183 386057 991721 899309 455100 726307 208105 439220 509043 426070 282366 001786 084971 943257 095018 172953 302406 296353 968612 863566 362061 252730 168018 453414 940278 358157 115085 049799 067295 749171 217160 709735 066304 728557 332560 246568 494004 144369 007519 721379 236113 666171 613041 672703 229952 188404 098876 634950 494695 551903 252264 412724 725402 430057 060652 752980 686127 568227 492249 253461 232025 932642 559322 003030 350099 311839 603332 939151 669133 822414 841078 794636 697255 565415 447874 048027 322221 398683 777058 701089 985415 949910 816868 127599 196998 522911 118303 483065 154667 372254 361677 036222 530676 879357 322181 973550 408940 325948 124961 836280 438123 034288 (820 digits), a[1563] = 9
                                                                                      A[1564]/B[1564] = 55 832600 631318 075378 688599 873691 347023 494621 638460 534911 894430 163515 105575 868663 050620 974160 519783 735322 196541 974091 125196 139440 770497 642389 345691 683064 156464 240854 506105 723201 857219 223442 450697 665107 320183 883362 717803 213185 770944 326812 604183 779046 567560 805695 551376 277244 743937 451549 502129 509169 362957 833659 977763 238771 629731 083832 172254 367344 931945 035541 586926 198650 308400 608197 154877 222997 710792 637801 562167 118761 911935 159197 414519 039342 731115 171350 484444 940500 455280 070483 763302 611105 659623 385238 888945 906027 800047 867547 834806 116663 173958 793068 305134 454738 280175 544004 541316 136578 864213 384036 663633 924722 406703 992017 707007 694841 713785 485883 250271 074383 988590 628856 416256 417410 796123 342876 121568 649760 564204 293224 729197 923624 352940 505729 464959 552717 175175 614484 016261 785717 148524 085431 126900 365712 986309 831801 811773 (818 digits)/5426 567290 463130 666870 471434 641748 817225 195974 443693 473002 508159 972143 247373 366610 497994 362894 370179 991983 058906 663668 610858 613950 231483 834267 272789 714909 511057 366269 372698 635080 679846 887535 897766 955694 308535 458594 954009 389896 057484 480407 528122 854280 136793 668504 639520 949837 856827 248795 095028 105716 234289 000018 209215 175700 505621 714168 990216 625238 262855 715024 921209 080483 231140 221079 841091 335052 311856 019249 786101 572379 687057 470808 712031 223707 752067 588263 884658 477890 383823 913427 751467 777167 626064 333705 225075 375635 902882 905683 346867 498006 426572 443288 888609 076300 892698 508442 885386 231770 473610 058180 898775 436440 507795 216709 720001 179998 117440 321605 828323 132115 716076 743152 468456 811115 591128 491916 060992 401521 287428 122681 133208 109670 222668 911158 500823 436628 145588 240611 292944 663670 485557 307367 531699 160193 802609 516638 390825 (820 digits), a[1564] = 1
                                                                                      A[1565]/B[1565] = 217 837654 373069 197251 617891 508045 169936 336262 269171 014483 363809 763106 053931 063706 606223 493674 444410 703001 084783 317957 406592 128481 328220 660147 089970 245090 550309 605419 702371 044202 225403 480965 263884 236383 635278 729300 209418 298687 467371 715560 457533 643111 260407 751013 082037 081707 153190 554300 515410 400921 371453 695185 743431 641934 552090 501480 467746 042186 996100 005950 711047 603299 021260 095975 097799 003628 701860 416892 471510 108207 770069 060921 441957 762426 371541 752630 311133 862937 477058 886867 850793 929055 570825 030616 374722 774694 177869 913513 954641 691957 560654 267996 533365 633703 869207 116116 278698 493787 573114 152695 922951 402021 000081 318918 912826 166746 799557 551796 419051 099053 542490 994352 024828 927734 048257 285858 799043 131352 927904 068852 483603 437513 614993 772102 496857 303602 351641 498847 600139 474029 067676 228256 212641 839347 024348 312480 023104 (819 digits)/21172 409604 524689 485957 987799 371454 114872 657371 024340 939575 964620 893895 471665 025030 332092 317648 660149 894320 365081 473354 561580 600208 523846 960067 612839 518086 825489 498642 977570 750602 052912 276208 259710 189731 965269 944968 248086 161410 071762 896323 310675 770945 849601 514557 344633 131879 572267 831357 228341 412166 875820 302460 923999 495714 380431 504568 223380 043733 241982 085353 121784 356534 743219 730535 272445 222317 645303 124054 086862 049699 307740 906430 280462 678642 977582 000905 320147 046712 824174 970235 442807 430379 513143 495811 227129 379172 121373 442452 470659 554672 032698 015994 234054 721151 931556 757354 588801 254633 423860 524642 008165 912654 462537 319262 982418 381073 146957 662073 050384 844221 196257 551678 804054 210405 474475 461164 132888 021431 989883 565041 922535 447314 151071 888142 874724 671561 472987 252510 758191 313193 430222 331042 921045 605543 244108 988038 206763 (821 digits), a[1565] = 3
                                                                                      A[1566]/B[1566] = 273 670255 004387 272630 306491 381736 516959 830883 907631 549395 258239 926621 159506 932369 656844 467834 964194 438323 281325 292048 531788 267922 098718 302536 435661 928154 706773 846274 208476 767404 082622 704407 714581 901490 955462 612662 927221 511873 238316 042373 061717 422157 827968 556708 633413 358951 897128 005850 017539 910090 734411 528845 721194 880706 181821 585312 640000 409531 928045 041492 297973 801949 329660 704172 252676 226626 412653 054694 033677 226969 682004 220118 856476 801769 102656 923980 795578 803437 932338 957351 614096 540161 230448 415855 263668 680721 977917 781061 789447 808620 734613 061064 838500 088442 149382 660120 820014 630366 437327 536732 586585 326743 406785 310936 619833 861588 513343 037679 669322 173437 531081 623208 441085 345144 844380 628734 920611 781113 492108 362077 212801 361137 967934 277831 961816 856319 526817 113331 616401 259746 216200 313687 339542 205060 010658 144281 834877 (819 digits)/26598 976894 987820 152828 459234 013202 932097 853345 468034 412578 472780 866038 719038 391640 830086 680543 030329 886303 423988 137023 172439 214158 755330 794334 885629 232996 336546 864912 350269 385682 732759 163744 157477 145426 273805 403563 202095 551306 129247 376730 838798 625225 986395 183061 984154 081717 429095 080152 323369 517883 110109 302479 133214 671414 886053 218737 213596 668971 504837 800378 042993 437017 974359 951615 113536 557369 957159 143303 872963 622078 994798 377238 992493 902350 729649 589169 204805 524603 207998 883663 194275 207547 139207 829516 452204 754808 024256 348135 817527 052678 459270 459283 122663 797452 824255 265797 474187 486403 897470 582822 906941 349094 970332 535972 702419 561071 264397 983678 878707 976336 912334 294831 272511 021521 065603 953080 193880 422953 277311 687723 055743 556984 373740 799301 375548 108189 618575 493122 051135 976863 915779 638410 452744 765737 046718 504676 597588 (821 digits), a[1566] = 1
                                                                                      A[1567]/B[1567] = 2133 529439 403780 105663 763331 180200 788655 152449 622591 860250 171489 249454 170479 590294 204134 768519 193771 771264 054060 362297 129110 003936 019248 777902 139603 742173 497726 529339 161708 416030 803762 411819 265957 546820 323517 017940 699968 881800 135584 012171 889555 598216 056187 647973 515930 594370 433086 595250 638189 771556 512334 397105 791795 806877 824841 598668 947748 908910 492415 296396 796864 216944 328885 025180 866532 590013 590431 799750 707250 696995 544098 601753 437295 374810 090140 220495 880185 487003 003431 588329 149469 710184 183963 941603 220403 539748 023294 380946 480776 352302 702945 695450 402866 252798 914885 736962 018800 906352 634406 909824 029048 689224 847578 495475 251663 197866 392958 815554 104306 313116 260062 356811 112426 343747 958921 687003 243325 599147 372662 603392 973212 965479 390533 716926 229575 297839 039361 292168 914948 292252 581078 424067 589437 274767 098955 322452 867243 (820 digits)/207365 247869 439430 555757 202437 463874 639557 630789 300581 827625 274086 956166 504933 766516 142699 081449 872459 098444 332998 432516 768655 099319 811162 520411 812244 149061 181317 553029 429456 450381 182226 422417 362050 207715 881907 769910 662755 020552 976494 533439 182266 147527 754367 795991 233711 703901 575933 392423 491928 037348 646585 419814 856502 195618 582804 035728 718556 726533 775846 687999 422738 415660 563739 391841 067201 123907 345417 127181 197607 404252 271329 547103 227919 995098 085129 125089 753785 718935 280167 155877 802733 883209 487598 302426 392562 662828 291167 879403 193348 923421 247591 230976 092701 303321 701343 617936 908113 659460 706154 604402 356755 356319 254865 071071 899355 308571 997743 547825 201340 678579 582597 615497 711631 361052 933703 132725 490050 982104 931065 379103 312740 346204 767257 483252 503561 428888 803015 704365 116143 151240 840679 799916 090258 965702 571138 520774 389879 (822 digits), a[1567] = 7
                                                                                      A[1568]/B[1568] = 2407 199694 408167 378294 069822 561937 305614 983333 530223 409645 429729 176075 329986 522663 860979 236354 157966 209587 335385 654345 660898 271858 117967 080438 575265 670328 204500 375613 370185 183434 886385 116226 980539 448311 278979 630603 627190 393673 373900 054544 951273 020373 884156 204682 149343 953322 330214 601100 655729 681647 246745 925951 512990 687584 006663 183981 587749 318442 420460 337889 094838 018893 658545 729353 119208 816640 003084 854444 740927 923965 226102 821872 293772 176579 192797 144476 675764 290440 935770 545680 763566 250345 414412 357458 484072 220470 001212 162008 270224 160923 437558 756515 241366 341241 064268 397082 838815 536719 071734 446556 615634 015968 254363 806411 871497 059454 906301 853233 773628 486553 791143 980019 553511 688892 803302 315738 163937 380260 864770 965470 186014 326617 358467 994758 191392 154158 566178 405500 531349 551998 797278 737754 928979 479827 109613 466734 702120 (820 digits)/233964 224764 427250 708585 661671 477077 571655 484134 768616 240203 746867 822205 223972 158156 972785 761992 902788 984747 756986 569539 941094 313478 566493 314746 697873 382057 517864 417941 779725 836063 914985 586161 519527 353142 155713 173473 864850 571859 105741 910170 021064 772753 740762 979053 217865 785619 005028 472575 815297 555231 756694 722293 989716 867033 468857 254465 932153 395505 280684 488377 465731 852678 538099 343456 180737 681277 302576 270485 070571 026331 266127 924342 220413 897448 814778 714258 958591 243538 488166 039540 997009 090756 626806 131942 844767 417636 315424 227539 010875 976099 706861 690259 215365 100774 525598 883734 382301 145864 603625 187225 263696 705414 225197 607044 601774 869643 262141 531504 080048 654916 494931 910328 984142 382573 999307 085805 683931 405058 208377 066826 368483 903189 140998 282553 879109 537078 421591 197487 167279 128104 756459 438326 543003 731439 617857 025450 987467 (822 digits), a[1568] = 1
                                                                                      A[1569]/B[1569] = 9355 128522 628282 240545 972798 866012 705500 102450 213262 089186 460676 777680 160439 158285 787072 477581 667670 400026 060217 325334 111804 819510 373150 019217 865400 753158 111227 656179 272263 966335 462917 760500 207575 891754 160455 909751 581540 062820 257284 175806 743374 659337 708656 262019 963962 454337 423730 398552 605378 816498 252572 174960 330767 869629 844831 150613 710996 864237 753796 310064 081378 273625 304522 213240 224159 039933 599686 363084 930034 468891 222407 067370 318611 904547 668531 653925 907478 358325 810743 225371 440168 461220 427201 013978 672620 201158 026930 866971 291448 835073 015621 964996 126965 276522 107690 928210 535247 516509 849610 249493 875950 737129 610669 914710 866154 376231 111864 375255 425191 772777 633494 296869 772961 410426 368828 634217 735137 739929 966975 499803 531255 945331 465937 701200 803751 760314 737896 508670 508996 948248 972914 637332 376375 714248 427795 722656 973603 (820 digits)/909257 922162 721182 681514 187451 895107 354524 083193 606430 548236 514690 422782 176850 240987 061056 367428 580826 052687 603958 141136 591938 039755 510642 464651 905864 295233 734910 806854 768633 958572 927183 180901 920632 267142 349047 290332 257306 736130 293720 263949 245460 465788 976656 733150 887309 060758 591018 810150 937820 703043 916669 586696 825652 796718 989375 799126 515016 913049 617900 153131 819933 973696 178037 422209 609414 167739 253145 938636 409320 483246 069713 320129 889161 687444 529465 267866 629559 449550 744665 274500 793761 155479 368016 698254 926864 915737 237440 562020 225976 851720 368176 301753 738796 605645 278140 269140 055017 097054 517030 166078 147845 472561 930457 892205 704679 917501 784168 142337 441486 643329 067393 346484 664058 508774 931624 390142 541845 197279 556196 579582 418192 055772 190252 330914 140890 040124 067789 296826 617980 535555 110058 114895 719270 160021 424709 597127 352280 (822 digits), a[1569] = 3
                                                                                      A[1570]/B[1570] = 11762 328217 036449 618840 042621 427950 011115 085783 743485 498831 890405 953755 490425 680949 648051 713935 825636 609613 395602 979679 772703 091368 491117 099656 440666 423486 315728 031792 642449 149770 349302 876727 188115 340065 439435 540355 208730 456493 631184 230351 694647 679711 592812 466702 113306 407659 753944 999653 261108 498145 499318 100911 843758 557213 851494 334595 298746 182680 174256 647953 176216 292518 963067 942593 343367 856573 602771 217529 670962 392856 448509 889242 612384 081126 861328 798402 583242 648766 746513 771052 203734 711565 841613 371437 156692 421628 028143 028979 561672 995996 453180 721511 368331 617763 171959 325293 374063 053228 921344 696050 491584 753097 865033 721122 737651 435686 018166 228489 198820 259331 424638 276889 326473 099319 172130 949955 899075 120190 831746 465273 717270 271948 824405 695958 995143 914473 304074 914171 040346 500247 770193 375087 305355 194075 537409 189391 675723 (821 digits)/1 143222 146927 148433 390099 849123 372184 926179 567328 375046 788440 261558 244987 400822 399144 033842 129421 483615 037435 360944 710676 533032 353234 077135 779398 603737 677291 252775 224796 548359 794636 842168 767063 440159 620284 504760 463806 122157 307989 399462 174119 266525 238542 717419 712204 105174 846377 596047 282726 753118 258275 673364 308990 815369 663752 458233 053592 447170 308554 898584 641509 285665 826374 716136 765665 790151 849016 555722 209121 479891 509577 335841 244472 109575 584893 344243 982125 588150 693089 232831 314041 790770 246235 994822 830197 771632 333373 552864 789559 236852 827820 075037 992012 954161 706419 803739 152874 437318 242919 120655 353303 411542 177976 155655 499250 306454 787145 046309 673841 521535 298245 562325 256813 648200 891348 930931 475948 225776 602337 764573 646408 786675 958961 331250 613468 019999 577202 489380 494313 785259 663659 866517 553222 262273 891461 042566 622578 339747 (823 digits), a[1570] = 1
                                                                                      A[1571]/B[1571] = 68166 769607 810530 334746 185906 005762 761075 531368 930689 583345 912706 546457 612567 563034 027331 047260 795853 448093 038232 223732 975320 276352 828735 517500 068732 870589 689867 815142 484509 715187 209432 144136 148152 592081 357633 611527 625192 345288 413205 327565 216613 057895 672718 595530 530494 492636 193455 396818 910921 307225 749162 679519 549560 655699 102302 823590 204727 777638 625079 549829 962459 736220 119861 926206 940998 322801 613542 450733 284846 433173 464956 513583 380532 310181 975175 645938 823691 602159 543312 080632 458842 019049 635267 871164 456082 309298 167646 011869 099813 815055 281525 572552 968623 365337 967487 554677 405562 782654 456333 729746 333874 502618 935838 520324 554411 554661 202695 517701 419293 069434 756685 681316 405326 907022 229483 383997 230513 340884 125707 826172 117607 305075 587966 180995 779471 332681 258271 079525 710729 449487 823881 512768 903151 684626 114841 669615 352218 (821 digits)/6 625368 656798 463349 632013 433068 756031 985421 919835 481664 490437 822481 647719 180962 236707 230267 014535 998901 239864 408681 694519 257099 805925 896321 361644 924552 681689 998786 930837 510432 931757 138027 016219 121430 368564 872849 609362 868093 276077 291031 134545 578086 658502 563755 294171 413183 292646 571255 223784 703411 994422 283491 131650 902501 115481 280541 067088 750868 455824 110823 360678 248263 105569 758721 250538 560173 412822 031756 984243 808778 031132 748919 542490 437039 611911 250685 178494 570312 914996 908821 844709 747612 386659 342130 849243 785026 582605 001764 509816 410240 990820 743366 261818 509605 137744 296836 033512 241608 311650 120306 932595 205556 362442 708735 388457 236953 853227 015716 511545 049163 134556 879019 630552 905062 965519 586281 769883 670728 208968 379064 811626 351571 850578 846505 398254 240887 926136 514691 768395 544278 853854 442645 881007 030639 617326 637542 710019 051015 (823 digits), a[1571] = 5
                                                                                      A[1572]/B[1572] = 148095 867432 657510 288332 414433 439475 533266 148521 604864 665523 715819 046670 715560 807017 702713 808457 417343 505799 472067 427145 723343 644074 148588 134656 578132 164665 695463 662077 611468 580144 768167 164999 484420 524228 154702 763410 459115 147070 457594 885482 127873 795502 938249 657763 174295 392932 140855 793291 082951 112596 997643 459950 942879 868612 056099 981775 708201 737957 424415 747613 101135 764959 202791 795007 225364 502176 829856 118996 240655 259203 378422 916409 373448 701490 811680 090280 230625 853085 833137 932317 121418 749665 112149 113766 068857 040224 363435 052717 761300 626107 016231 866617 305578 348439 106934 434648 185188 618537 834012 155543 159333 758335 736710 761771 846474 545008 423557 263892 037406 398200 938009 639522 137126 913363 631097 717950 360101 801959 083162 117617 952484 882100 000338 057950 554086 579835 820617 073222 461805 399223 417956 400625 111658 563327 767092 528622 380159 (822 digits)/14 393959 460524 075132 654126 715260 884248 897023 406999 338375 769315 906521 540425 762746 872558 494376 158493 481417 517164 178308 099715 047231 965085 869778 502688 452843 040671 250349 086471 569225 658151 118222 799501 683020 357414 250459 682531 858343 860143 981524 443210 422698 555547 844930 300546 931541 431670 738557 730296 159942 247120 240346 572292 620371 894715 019315 187769 948907 220203 120231 362865 782192 037514 233579 266742 910498 674660 619236 177609 097447 571842 833680 329452 983654 808715 845614 339114 728776 523083 050475 003461 285995 019554 679084 528685 341685 498583 556393 809192 057334 809461 561770 515649 973371 981908 397411 219898 920534 866219 361269 218493 822654 902861 573126 276164 780362 493599 077742 696931 619861 567359 320364 517919 458326 822388 103495 015715 567233 020274 522703 269661 489819 660119 024261 409976 501775 429475 518764 031104 873817 371368 751809 315236 323553 126114 317652 042616 441777 (824 digits), a[1572] = 2
                                                                                      A[1573]/B[1573] = 216262 637040 468040 623078 600339 445238 294341 679890 535554 248869 628525 593128 328128 370051 730044 855718 213196 953892 510299 650878 698663 920426 977323 652156 646865 035255 385331 477220 095978 295331 977599 309135 632573 116309 512336 374938 084307 492358 870800 213047 344486 853398 610968 253293 704789 885568 334311 190109 993872 419822 746806 139470 492440 524311 158402 805365 912929 515596 049495 297443 063595 501179 322653 721214 166362 824978 443398 569729 525501 692376 843379 429992 753981 011672 786855 736219 054317 455245 376450 012949 580260 768714 747416 984930 524939 349522 531081 064586 861114 441162 297757 439170 274201 713777 074421 989325 590751 401192 290345 885289 493208 260954 672549 282096 400886 099669 626252 781593 456699 467635 694695 320838 542453 820385 860581 101947 590615 142843 208869 943790 070092 187175 588304 238946 333557 912517 078888 152748 172534 848711 241837 913394 014810 247953 881934 198237 732377 (822 digits)/21 019328 117322 538482 286140 148329 640280 882445 326834 820040 259753 729003 188144 943709 109265 724643 173029 480318 757028 586989 794234 304331 771011 766099 864333 377395 722361 249136 017309 079658 589908 256249 815720 804450 725979 123309 291894 726437 136221 272555 577756 000785 214050 408685 594718 344724 724317 309812 954080 863354 241542 523837 703943 522873 010196 299856 254858 699775 676027 231054 723544 030455 143083 992300 517281 470672 087482 650993 161852 906225 602975 582599 871943 420694 420627 096299 517609 299089 438079 959296 848171 033607 406214 021215 377929 126712 081188 558158 319008 467575 800282 305136 777468 482977 119652 694247 253411 162143 177869 481576 151089 028211 265304 281861 664622 017316 346826 093459 208476 669024 701916 199384 148472 363389 787907 689776 785599 237961 229242 901768 081287 841391 510697 870766 808230 742663 355612 033455 799500 418096 225223 194455 196243 354192 743440 955194 752635 492792 (824 digits), a[1573] = 1
                                                                                      A[1574]/B[1574] = 4 473348 608242 018322 749904 421222 344241 420099 746332 315949 642916 286330 909237 278128 208052 303610 922821 681282 583649 678060 444719 696622 052613 695061 177789 515432 869773 402093 206479 531034 486784 320153 347712 135882 850418 401430 262172 145264 994247 873599 146429 017610 863475 157614 723637 270093 104298 827079 595490 960399 509051 933766 249360 791690 354835 224156 089093 966792 049878 414321 696474 373045 788545 655866 219290 552621 001745 697827 513586 750689 106740 246011 516264 453068 934946 548794 814661 316974 957993 362138 191308 726634 123960 060488 812376 567644 030674 985056 344454 983589 449352 971380 650022 789612 623980 595374 221160 000216 642383 640929 861333 023498 977429 187696 403699 864196 538400 948612 895761 171395 750914 831916 056292 986203 321080 842719 756902 172404 658823 260560 993419 354328 625611 766422 836877 225244 830177 398380 128185 912502 373448 254714 668505 407863 522405 405776 493377 027699 (823 digits)/434 780521 806974 844778 376929 681853 689866 545929 943695 739180 964390 486585 303324 636929 057872 987239 619083 087792 657735 918103 984401 133867 385321 191775 789356 000757 487896 233069 432653 162397 456316 243219 113917 772034 876996 716645 520426 387086 584569 432635 998330 438402 836556 018642 194913 826035 918016 934816 811913 427027 077970 717100 651163 077832 098641 016440 284943 944420 740747 741325 833746 391294 899194 079589 612372 323940 424313 639099 414667 221959 631354 485677 768321 397543 221257 771604 691300 710565 284682 236411 966881 958143 143835 103392 087267 875927 122354 719560 189361 408850 815107 664506 065019 632914 374962 282356 288122 163398 423608 992792 240274 386880 208947 210359 568605 126689 430120 946926 866465 000355 605683 308047 487366 726122 580541 899030 727700 326457 605132 558064 895418 317649 874076 439597 574591 355042 541716 187880 021113 235741 875832 640913 240103 407407 994933 421547 095326 297617 (825 digits), a[1574] = 20
                                                                                      A[1575]/B[1575] = 4 689611 245282 486363 372983 021561 789479 714441 426222 851503 891785 914856 502365 606256 578104 033655 778539 894479 537542 188360 095598 395285 973040 672384 829946 162297 905028 787424 683699 627012 782116 297752 656847 768455 966727 913766 637110 229572 486606 744399 359476 362097 716873 768582 976930 974882 989867 161390 785600 954271 928874 680572 388831 284130 879146 382558 894459 879721 565474 463816 993917 436641 289724 978519 940504 718983 826724 141226 083316 276190 799117 089390 946257 207049 946619 335650 550880 371292 413238 738588 204258 306894 892674 807905 797307 092583 380197 516137 409041 844703 890515 269138 089193 063814 337757 669796 210485 590968 043575 931275 746622 516707 238383 860245 685796 265082 638070 574865 677354 628095 218550 526611 377131 528657 141466 703300 858849 763019 801666 469430 937209 424420 812787 354727 075823 558802 742694 477268 280934 085037 222159 496552 581899 422673 770359 287710 691614 760076 (823 digits)/455 799849 924297 383260 663069 830183 330147 428375 270530 559221 224144 215588 491469 580638 167138 711882 792112 568111 414764 505093 778635 438199 156332 957875 653689 378153 210257 482205 449962 242056 046224 499468 929638 576485 602975 839954 812321 113523 720790 705191 576086 439188 050606 427327 789632 170760 642334 244629 765994 290381 319513 240938 355106 600705 108837 316296 539802 644196 416774 972380 557290 421750 042278 071890 129653 794612 511796 290092 576520 128185 234330 068277 640264 818237 641884 867904 208910 009654 722762 195708 815052 991750 550049 124607 465197 002639 203543 277718 508369 876426 615389 969642 842488 115891 494614 976603 541533 325541 601478 474368 391363 415091 474251 492221 233227 144005 776947 040386 074941 669380 307599 507431 635839 089512 368449 588807 513299 564418 834375 459832 976706 159041 384774 310364 382822 097705 897328 221335 820613 653838 101055 835368 436346 761600 738374 376741 847961 790409 (825 digits), a[1575] = 1
                                                                                      A[1576]/B[1576] = 13 852571 098806 991049 495870 464345 923200 848982 598778 018957 426488 116043 913968 490641 364260 370922 479901 470241 658734 054780 635916 487193 998695 039830 837681 840028 679830 976942 573878 785060 051016 915658 661407 672794 783874 228963 536392 604409 967461 362397 865381 741806 297222 694780 677499 219859 084033 149861 166692 868943 366801 294911 027023 359952 113127 989273 878013 726235 180827 341955 684309 246328 367995 612906 100299 990588 655193 980279 680219 303070 704974 424793 408778 867168 828185 220095 916422 059559 784470 839314 599825 340423 909309 676300 406990 752810 791070 017331 162538 672997 230383 509656 828408 917241 299495 934966 642131 182152 729535 503481 354578 056913 454196 908187 775292 394361 814542 098344 250470 427586 188015 885138 810556 043517 604014 249321 474601 698444 262156 199422 867838 203170 251186 475876 988524 342850 315566 352916 690054 082576 817767 247819 832304 253211 063123 981197 876606 547851 (824 digits)/1346 380221 655569 611299 703069 342220 350161 402680 484756 857623 412678 917762 286263 798205 392150 411005 203308 224015 487264 928291 541672 010265 697987 107527 096734 757063 908411 197480 332577 646509 548765 242156 973194 925006 082948 396555 145068 614134 026150 843019 150503 316778 937768 873297 774178 167557 202685 424076 343902 007789 716997 198977 361376 279242 316315 649033 364549 232813 574297 686086 948327 234794 983750 223369 871679 913165 447906 219284 567707 478330 100014 622233 048851 034018 505027 507413 109120 729874 730206 627829 596987 941644 243933 352607 017661 881205 529441 274997 206101 161704 045887 603791 749995 864697 364192 235563 371188 814481 626565 941529 023001 217063 157450 194802 035059 414700 984015 027699 016348 339116 220882 322910 759044 905147 317441 076645 754299 455295 273883 477730 848830 635732 643625 060326 340235 550454 336372 630551 662340 543418 077944 311650 112796 930609 471682 175030 791249 878435 (826 digits), a[1576] = 2
                                                                                      A[1577]/B[1577] = 18 542182 344089 477412 868853 485907 712680 563424 025000 870461 318274 030900 416334 096897 942364 404578 258441 364721 196276 243140 731514 882479 971735 712215 667628 002326 584859 764367 257578 412072 833133 213411 318255 441250 750602 142730 173502 833982 454068 106797 224858 103904 014096 463363 654430 194742 073900 311251 952293 823215 295675 975483 415854 644082 992274 371832 772473 605956 746301 805772 678226 682969 657720 591426 040804 709572 481918 121505 763535 579261 504091 514184 355036 074218 774804 555746 467302 430852 197709 577902 804083 647318 801984 484206 204297 845394 171267 533468 571580 517701 120898 778794 917601 981055 637253 604762 852616 773120 773111 434757 101200 573620 692580 768433 461088 659444 452612 673209 927825 055681 406566 411750 187687 572174 745480 952622 333451 461464 063822 668853 805047 627591 063973 830604 064347 901653 058260 830184 970988 167614 039926 744372 414203 675884 833483 268908 568221 307927 (824 digits)/1802 180071 579866 994560 366139 172403 680308 831055 755287 416844 636823 133350 777733 378843 559289 122887 995420 792126 902029 433385 320307 448464 854320 065402 750424 135217 118668 679685 782539 888565 594989 741625 902833 501491 685924 236509 957389 727657 746941 548210 726589 755966 988375 300625 563810 338317 845019 668706 109896 298171 036510 439915 716482 879947 425152 965329 904351 877009 991072 658467 505617 656545 026028 295260 001333 707777 959702 509377 144227 606515 334344 690510 689115 852256 146912 375317 318030 739529 452968 823538 412040 933394 793982 477214 482858 883844 732984 552715 714471 038130 661277 573434 592483 980588 858807 212166 912722 140023 228044 415897 414364 632154 631701 687023 268286 558706 760962 068085 091290 008496 528481 830342 394883 994659 685890 665453 267599 019714 108258 937563 825536 794774 028399 370690 723057 648160 233700 851887 482954 197256 179000 147018 549143 692210 210056 551772 639211 668844 (826 digits), a[1577] = 1
                                                                                      A[1578]/B[1578] = 32 394753 442896 468462 364723 950253 635881 412406 623778 889418 744762 146944 330302 587539 306624 775500 738342 834962 855010 297921 367431 369673 970430 752046 505309 842355 264690 741309 831457 197132 884150 129069 979663 114045 534476 371693 709895 438392 421529 469195 090239 845710 311319 158144 331929 414601 157933 461113 118986 692158 662477 270394 442878 004035 105402 361106 650487 332191 927129 147728 362535 929298 025716 204332 141104 700161 137112 101785 443754 882332 209065 938977 763814 941387 602989 775842 383724 490411 982180 417217 403908 987742 711294 160506 611288 598204 962337 550799 734119 190698 351282 288451 746010 898296 936749 539729 494747 955273 502646 938238 455778 630534 146777 676621 236381 053806 267154 771554 178295 483267 594582 296888 998243 615692 349495 201943 808053 159908 325978 868276 672885 830761 315160 306481 052872 244503 373827 183101 661042 250190 857693 992192 246507 929095 896607 250106 444827 855778 (824 digits)/3148 560293 235436 605860 069208 514624 030470 233736 240044 274468 049502 051113 063997 177048 951439 533893 198729 016142 389294 361676 861979 458730 552307 172929 847158 892281 027079 877166 115117 535075 143754 983782 876028 426497 768872 633065 102458 341791 773092 391229 877093 072745 926144 173923 337988 505875 047705 092782 453798 305960 753507 638893 077859 159189 741468 614363 268901 109823 565370 344554 453944 891340 009778 518629 873013 620943 407608 728661 711935 084845 434359 312743 737966 886274 651939 882730 427151 469404 183175 451368 009028 875039 037915 829821 500520 765050 262425 827712 920572 199834 707165 177226 342479 845286 222999 447730 283910 954504 854610 357426 437365 849217 789151 881825 303345 973407 744977 095784 107638 347612 749364 153253 153928 899807 003331 742099 021898 475009 382142 415294 674367 430506 672024 431017 063293 198614 570073 482439 145294 740674 256944 458668 661940 622819 681738 726803 430461 547279 (826 digits), a[1578] = 1
                                                                                      A[1579]/B[1579] = 50 936935 786985 945875 233577 436161 348561 975830 648779 759880 063036 177844 746636 684437 248989 180078 996784 199684 051286 541062 098946 252153 942166 464262 172937 844681 849550 505677 089035 609205 717283 342481 297918 555296 285078 514423 883398 272374 875597 575992 315097 949614 325415 621507 986359 609343 231833 772365 071280 515373 958153 245877 858732 648118 097676 732939 422960 938148 673430 953501 040762 612267 683436 795758 181909 409733 619030 223291 207290 461593 713157 453162 118851 015606 377794 331588 851026 921264 179889 995120 207992 635061 513278 644712 815586 443599 133605 084268 305699 708399 472181 067246 663612 879352 574003 144492 347364 728394 275758 372995 556979 204154 839358 445054 697469 713250 719767 444764 106120 538949 001148 708639 185931 187867 094976 154566 141504 621372 389801 537130 477933 458352 379134 137085 117220 146156 432088 013286 632030 417804 897620 736564 660711 604980 730090 519015 013049 163705 (824 digits)/4950 740364 815303 600420 435347 687027 710779 064791 995331 691312 686325 184463 841730 555892 510728 656781 194149 808269 291323 795062 182286 907195 406627 238332 597583 027498 145748 556851 897657 423640 738744 725408 778861 927989 454796 869575 059848 069449 520033 939440 603682 828712 914519 474548 901798 844192 892724 761488 563694 604131 790018 078808 794342 039137 166621 579693 173252 986833 556443 003021 959562 547885 035806 813889 874347 328721 367311 238038 856162 691360 768704 003254 427082 738530 798852 258047 745182 208933 636144 274906 421069 808433 831898 307035 983379 648894 995410 380428 635043 237965 368442 750660 934963 825875 081806 659897 196633 094528 082654 773323 851730 481372 420853 568848 571632 532114 505939 163869 198928 356109 277845 983595 548812 894466 689222 407552 289497 494723 490401 352858 499904 225280 700423 801707 786350 846774 803774 334326 628248 937930 435944 605687 211084 315029 891795 278576 069673 216123 (826 digits), a[1579] = 1
                                                                                      A[1580]/B[1580] = 439 890239 738784 035464 233343 439544 424377 219051 814016 968459 249051 569702 303396 063037 298538 216132 712616 432435 265302 626418 159001 386905 507762 466143 888812 599810 061094 786726 543742 070778 622416 868920 363011 556415 815104 487084 777081 617391 426310 077133 611023 442624 914644 130208 222806 289347 012603 640033 689230 815150 327703 237417 312739 188979 886816 224622 034174 837381 314576 775736 688636 827439 493210 570397 596379 978030 089353 888115 102078 575081 914325 564274 714623 066238 625344 428553 191939 860525 421300 378179 067850 068234 817523 318209 135980 146998 031178 224946 179716 857894 128730 826425 054913 933117 528774 695668 273665 782427 708713 922202 911612 263772 861645 237058 816138 759812 025294 329667 027259 794859 603771 966002 485693 118629 109304 438472 940090 130887 444391 165320 496353 497580 348233 403161 990633 413754 830531 289394 717285 592630 038659 884709 532200 768941 737331 402226 549221 165418 (825 digits)/42754 483211 757865 409223 551990 010845 716702 752072 202697 804969 540103 526823 797841 624189 037268 788142 751927 482296 719884 722174 320274 716293 805325 079590 627823 112266 193068 331981 296376 924201 053712 787053 106923 850413 407247 589665 581242 897387 933363 906754 706555 702449 242299 970314 552379 259418 189503 184690 963355 139015 073652 269363 432595 472287 074441 251908 654925 004492 016914 368730 130445 274420 296233 029748 867792 250714 346098 632972 561236 615731 583991 338779 154628 794521 042757 947112 388609 140873 272329 650619 377587 342509 693102 286109 367557 956210 225708 871142 000918 103557 654707 182513 822190 452286 877452 726907 856975 710729 515848 544017 251209 700197 155980 432613 876406 230323 792490 406737 699065 196486 972132 022017 544432 055540 517111 002517 337878 432797 305353 238162 673601 232752 275414 844679 354099 972813 000268 157052 171286 244117 744501 304166 350615 143058 816100 955411 987847 276263 (827 digits), a[1580] = 8
                                                                                      A[1581]/B[1581] = 490 827175 525769 981339 466920 875705 772939 194882 462796 728339 312087 747547 050032 747474 547527 396211 709400 632119 316589 167480 257947 639059 449928 930406 061750 444491 910645 292403 632777 679984 339700 211401 660930 111712 100183 001508 660479 889766 301907 653125 926121 392239 240059 751716 209165 898690 244437 412398 760511 330524 285856 483295 171471 837097 984492 957561 457135 775529 988007 729237 729399 439707 176647 366155 778289 387763 708384 111406 309369 036675 627483 017436 833474 081845 003138 760142 042966 781789 601190 373299 275842 703296 330801 962921 951566 590597 164783 309214 485416 566293 600911 893671 718526 812470 102777 840160 621030 510821 984472 295198 468591 467927 701003 682113 513608 473062 745061 774431 133380 333808 604920 674641 671624 306496 204280 593039 081594 752259 834192 702450 974286 955932 727367 540247 107853 559911 262619 302681 349316 010434 936280 621274 192912 373922 467421 921241 562270 329123 (825 digits)/47705 223576 573169 009643 987337 697873 427481 816864 198029 496282 226428 711287 639572 180081 547997 444923 946077 290566 011208 517236 502561 623489 211952 317923 225406 139764 338816 888833 194034 347841 792457 512461 885785 778402 862044 459240 641090 966837 453397 846195 310238 531162 156819 444863 454178 103611 082227 946179 527049 743146 863670 348172 226937 511424 241062 831601 828177 991325 573357 371752 090007 822305 332039 843638 742139 579435 713409 871011 417399 307092 352695 342033 581711 533051 841610 205160 133791 349806 908473 925525 798657 150943 525000 593145 350937 605105 221119 251570 635961 341523 023149 933174 757154 278161 959259 386805 053608 805257 598503 317341 102940 181569 576834 001462 448038 762438 298429 570606 897993 552596 249978 005613 093244 950007 206333 410069 627375 927520 795754 591021 173505 458032 975838 646387 140450 819587 804042 491378 799535 182048 180445 909853 561699 458088 707896 233988 057520 492386 (827 digits), a[1581] = 1
                                                                                      A[1582]/B[1582] = 930 717415 264554 016803 700264 315250 197316 413934 276813 696798 561139 317249 353428 810511 846065 612344 422017 064554 581891 793898 416949 025964 957691 396549 950563 044301 971740 079130 176519 750762 962117 080322 023941 668127 915287 488593 437561 507157 728217 730259 537144 834864 154703 881924 431972 188037 257041 052432 449742 145674 613559 720712 484211 026077 871309 182183 491310 612911 302584 504974 418036 267146 669857 936553 374669 365793 797737 999521 411447 611757 541808 581711 548097 148083 628483 188695 234906 642315 022490 751478 343692 771531 148325 281131 087546 737595 195961 534160 665133 424187 729642 720096 773440 745587 631552 535828 894696 293249 693186 217401 380203 731700 562648 919172 329747 232874 770356 104098 160640 128668 208692 640644 157317 425125 313585 031512 021684 883147 278583 867771 470640 453513 075600 943409 098486 973666 093150 592076 066601 603064 974940 505983 725113 142864 204753 323468 111491 494541 (825 digits)/90459 706788 331034 418867 539327 708719 144184 568936 400727 301251 766532 238111 437413 804270 585266 233066 698004 772862 731093 239410 822836 339783 017277 397513 853229 252030 531885 220814 490411 272042 846170 299514 992709 628816 269292 048906 222333 864225 386761 752950 016794 233611 399119 415178 006557 363029 271731 130870 490404 882161 937322 617535 659532 983711 315504 083510 483102 995817 590271 740482 220453 096725 628272 873387 609931 830150 059508 503983 978635 922823 936686 680812 736340 327572 884368 152272 522400 490680 180803 576145 176244 493453 218102 879254 718495 561315 446828 122712 636879 445080 677857 115688 579344 730448 836712 113712 910584 515987 114351 861358 354149 881766 732814 434076 324444 992762 090919 977344 597058 749083 222110 027630 637677 005547 723444 412586 965254 360318 101107 829183 847106 690785 251253 491066 494550 792400 804310 648430 970821 426165 924947 214019 912314 601147 523997 189400 045367 768649 (827 digits), a[1582] = 1
                                                                                      A[1583]/B[1583] = 2352 262006 054878 014946 867449 506206 167572 022751 016424 121936 434366 382045 756890 368498 239658 620900 553434 761228 480372 755277 091845 690989 365311 723505 962876 533095 854125 450663 985817 181510 263934 372045 708813 447967 930757 978695 535602 904081 758343 113645 000411 061967 549467 515565 073110 274764 758519 517263 659995 621873 512975 924720 139893 889253 727111 321928 439757 001352 593176 739186 565471 974000 516363 239262 527628 119351 303860 110449 132264 260190 711100 180859 929668 378012 260105 137532 512780 066419 646171 876255 963228 246358 627452 525184 126660 065787 556706 377535 815683 414669 060197 333865 265408 303645 365882 911818 410423 097321 370844 730001 228998 931328 826301 520458 173102 938812 285773 982627 454660 591145 022305 955929 986259 156746 831450 656063 124964 518554 391360 437993 915567 862958 878569 427065 304827 507243 448920 486833 482519 216564 886161 633241 643138 659650 876928 568177 785253 318205 (826 digits)/228624 637153 235237 847379 065993 115311 715850 954736 999484 098785 759493 187510 514399 788622 718529 911057 342086 836291 473394 996058 148234 303055 246507 112950 931864 643825 402587 330462 174856 891927 484798 111491 871205 036035 400628 557053 085758 695288 226921 352095 343826 998384 955058 275219 467292 829669 625690 207920 507859 507470 738315 583243 546003 478846 872070 998622 794383 982960 753900 852716 530914 015756 588585 590413 962003 239735 832426 878979 374671 152740 226068 703659 054392 188197 610346 509705 178592 331167 270081 077816 151146 137849 961206 351654 787928 727736 114775 496995 909720 231684 378864 164551 915843 739059 632683 614230 874777 837231 827207 040057 811239 945103 042462 869615 096928 747962 480269 525296 092111 050762 694198 060874 368598 961102 653222 235243 557884 648156 997970 249388 867718 839603 478345 628520 129552 404389 412663 788240 741178 034380 030340 337893 386328 660383 755890 612788 148256 029684 (828 digits), a[1583] = 2
                                                                                      A[1584]/B[1584] = 5635 241427 374310 046697 435163 327662 532460 459436 309661 940671 429872 081340 867209 547508 325382 854145 528886 587011 542637 304452 600640 407943 688314 843561 876316 110493 679990 980458 148154 113783 489985 824413 441568 564063 776803 445984 508767 315321 244903 957549 537966 958799 253638 913054 578192 737566 774080 086959 769733 389421 639511 570152 763998 804585 325531 826040 370824 615616 488937 983347 548980 215147 702584 415078 429925 604496 405458 220419 675976 132138 964008 943431 407433 904108 148693 463760 260466 775154 314834 503990 270149 264248 403230 331499 340866 869170 309374 289232 296500 253525 850037 387827 304257 352878 363318 359465 715542 487892 434875 677403 838201 594358 215251 960088 675953 110499 341904 069353 069961 310958 253304 552504 129835 738618 976486 343638 271613 920256 061304 743759 301776 179430 832739 797539 708141 988152 990991 565743 031640 036194 747263 772467 011390 462165 958610 459823 681998 130951 (826 digits)/547708 981094 801510 113625 671313 939342 575886 478410 399695 498823 285518 613132 466213 381516 022326 055181 382178 445445 677883 231527 119304 945893 510291 623415 716958 539681 337059 881738 840125 055897 815766 522498 735119 700887 070549 163012 393851 254801 840604 457140 704448 230381 309235 965616 941143 022368 523111 546711 506123 897103 413953 784022 751539 941405 059646 080756 071870 961739 098073 445915 282281 128238 805444 054215 533938 309621 724362 261942 727978 228304 388824 088130 845124 703968 105061 171682 879585 153014 720965 731777 478536 769153 140515 582564 294353 016787 676379 116704 456319 908449 435585 444792 411032 208568 102079 342174 660140 190450 768765 941473 976629 771972 817740 173306 518302 488687 051459 027936 781280 850608 610506 149379 374874 927753 029888 883074 081023 656632 097048 327961 582544 369992 207944 748106 753655 601179 629638 224912 453177 494925 985627 889806 684971 921915 035778 414976 341879 828017 (828 digits), a[1584] = 2
                                                                                      A[1585]/B[1585] = 53069 434852 423668 435223 783919 455168 959716 157677 803381 587979 303215 114113 561776 296073 168104 308210 313414 044332 364108 495350 497609 362482 560145 315562 849721 527538 974044 274787 319204 205561 673806 791766 682930 524541 921988 992556 114508 741972 962478 731590 842113 691160 832217 733056 276844 912865 725240 299901 587596 126668 268580 056095 015883 130521 656897 756291 777178 541900 993618 589314 506293 910329 839622 974968 396958 559818 952984 094226 216049 449441 387180 671742 596573 514985 598346 311374 856981 042808 479682 412168 394571 624594 256525 508678 194461 888320 341074 980626 484185 696401 710533 824311 003724 479550 635748 147009 850305 488353 284725 826635 772813 280552 763569 161256 256680 933306 362910 606805 084312 389769 302046 928467 154780 804317 619827 748807 569489 800858 943103 131827 631553 477836 373227 604922 678105 400620 367844 578520 767279 542317 611535 585444 745652 819144 504422 706590 923236 496764 (827 digits)/5 158005 467006 448828 870010 107818 569394 898829 260430 596743 588195 329160 705702 710320 222266 919464 407689 781692 845302 574344 079802 221978 816096 839131 723692 384491 500957 436126 266111 735982 395007 826696 813980 487282 344019 035571 024164 630419 988504 792361 466361 683861 071816 738181 965771 937580 030986 333694 128324 062974 581401 463899 639448 309862 951492 408885 725427 441222 638612 636561 865954 071444 169905 837582 078353 767448 026331 351687 236463 926475 207479 725485 496836 660514 523910 555897 054851 094858 708299 758772 663813 457977 060228 225846 594733 437105 878825 202187 547336 016599 407729 299133 167683 615133 616172 551397 693802 816039 551288 746100 513323 600907 892858 402124 429373 761651 146145 943400 776727 123638 706240 188753 405288 742473 310879 922222 182910 287097 557845 871405 201043 110618 169533 349848 361480 912452 815006 079407 812452 819775 488713 900991 346153 551075 957619 077896 347575 225174 481837 (829 digits), a[1585] = 9
                                                                                      A[1586]/B[1586] = 217912 980837 068983 787592 570841 148338 371325 090147 523188 292588 642732 537795 114314 731800 997800 086986 782542 764340 999071 285854 591077 857873 928896 105813 275202 220649 576168 079607 424970 936030 185212 991480 173290 662231 464759 416208 966802 283213 094818 883912 906421 723442 582509 845279 685572 389029 675041 286566 120117 896094 713831 794532 827531 326671 953122 851207 479538 783220 463412 340605 574155 856467 061076 314952 017759 843772 217394 597324 540173 929904 512731 630401 793727 964050 542078 709259 688390 946388 233564 152663 848435 762625 429332 366212 118714 422451 673674 211738 233243 039132 692172 685071 319155 271080 906310 947505 116764 441305 573778 983946 929454 716569 269528 605113 702676 843724 793546 496573 407210 870035 461492 266372 748958 955889 455797 338868 549573 123691 833717 271069 827990 090776 325650 217230 420563 590634 462369 879826 100758 205465 193406 114245 994001 738743 976301 286187 374944 118007 (828 digits)/21 179730 849120 596825 593666 102588 216922 171203 520132 786669 851604 602161 435943 307494 270583 700183 685940 508949 826655 975259 550736 007220 210280 866818 518185 254924 543511 081564 946185 784054 635929 122553 778420 684249 076963 212833 259670 915531 208821 010050 322587 439892 517648 261963 828704 691463 146313 857888 060007 758022 222709 269552 341815 990991 747374 695188 982465 836761 516189 644320 909731 568057 807862 155772 367630 603730 414947 131111 207798 433879 058223 290766 075477 487182 799610 328649 391087 259019 986213 756056 387031 310445 010066 043901 961498 042776 532088 485129 306048 522717 539366 632118 115526 871566 673258 307670 117385 924298 395605 753167 994768 380261 343406 426237 890801 564907 073270 825062 134845 275835 675569 365519 770534 344768 171272 718777 614715 229413 888015 582669 132134 025017 048125 607338 194030 403466 861203 947269 474723 732279 449781 589593 274420 889275 752391 347363 805277 242577 755365 (830 digits), a[1586] = 4
                                                                                      A[1587]/B[1587] = 706808 377363 630619 798001 496442 900184 073691 428120 372946 465745 231412 727498 904720 491476 161504 569170 661042 337355 361322 352914 270842 936104 346833 633002 675328 189487 702548 513609 594117 013652 229445 766207 202802 511236 316267 241183 014915 591612 246935 383329 561378 861488 579747 268895 333562 079954 750364 159599 947949 814952 410075 439693 498477 110537 516266 309914 215794 891562 383855 611131 228761 479731 022851 919824 450238 091135 605167 886199 836571 239154 925375 562947 977757 407137 224582 439153 922153 881973 180374 870159 939878 912470 544522 607314 550605 155675 362097 615841 183914 813799 787051 879524 961190 292793 354680 989525 200598 812270 006062 778476 561177 430260 572154 976597 364711 464480 743550 096525 305944 999875 686523 727585 401657 671985 987219 765413 218209 171934 444254 945037 115523 750165 350178 256613 939796 172523 754954 217999 069554 158713 191753 928182 727658 035376 433326 565153 048068 850785 (828 digits)/68 697198 014368 239305 651008 415583 220161 412439 820828 956753 143009 135645 013532 632803 034018 020015 465511 308542 325270 500122 732010 243639 446939 439587 278248 149265 131490 680821 104669 088146 302795 194358 149242 540029 574908 674070 803177 377013 614967 822512 434124 003538 624761 524073 451886 011969 469927 907358 308347 337041 249529 272556 664896 282838 193616 494452 672824 951507 187181 569524 595148 775617 593492 304899 181245 578639 271172 745020 859859 228112 382149 597783 723269 122062 922741 541845 228112 871918 666941 026941 824907 389312 090426 357552 479227 565435 475090 657575 465481 584752 025829 195487 514264 229833 635947 474408 045960 588934 738106 005604 497628 741691 923077 680838 101778 456372 365958 418587 181262 951145 732948 285312 716891 776777 824698 078555 027055 975339 221892 619412 597445 185669 313910 171862 943572 122853 398617 921216 236624 016613 838058 669771 169416 218903 214793 119987 763406 952907 747932 (830 digits), a[1587] = 3
                                                                                      A[1588]/B[1588] = 924721 358200 699603 585594 067284 048522 445016 518267 896134 758333 874145 265294 019035 223277 159304 656157 443585 101696 360393 638768 861920 793978 275729 738815 950530 410137 278716 593217 019087 949682 414658 757687 376093 173467 781026 657391 981717 874825 341754 267242 467800 584931 162257 114175 019134 468984 425405 446166 068067 711047 123907 234226 326008 437209 469389 161121 695333 674782 847267 951736 802917 336198 083928 234776 467997 934907 822562 483524 376745 169059 438107 193349 771485 371187 766661 148413 610544 828361 413939 022823 788314 675095 973854 973526 669319 578127 035771 827579 417157 852932 479224 564596 280345 563874 260991 937030 317363 253575 579841 762423 490632 146829 841683 581711 067388 308205 537096 593098 713155 869911 148015 993958 150616 627875 443017 104281 767782 295626 277972 216106 943513 840941 675828 473844 360359 763158 217324 097825 170312 364178 385160 042428 721659 774120 409627 851340 423012 968792 (828 digits)/89 876928 863488 836131 244674 518171 437083 583643 340961 743422 994613 737806 449475 940297 304601 720199 151451 817492 151926 475382 282746 250859 657220 306405 796433 404189 675001 762386 050854 872200 938724 316911 927663 224278 651871 886904 062848 292544 823788 832562 756711 443431 142409 786037 280590 703432 616241 765246 368355 095063 472238 542109 006712 273829 940991 189641 655290 788268 703371 213845 504880 343675 401354 460671 548876 182369 686119 876132 067657 661991 440372 888549 798746 609245 722351 870494 619200 130938 653154 782998 211938 699757 100492 401454 440725 608212 007179 142704 771530 107469 565195 827605 629791 101400 309205 782078 163346 513233 133711 758772 492397 121953 266484 107075 992580 021279 439229 243649 316108 226981 408517 650832 487426 121545 995970 797332 641771 204753 109908 202081 729579 210686 362035 779201 137602 526320 259821 868485 711347 748893 287840 259364 443837 108178 967184 467351 568684 195485 503297 (830 digits), a[1588] = 1
                                                                                      A[1589]/B[1589] = 4 405693 810166 429034 140377 765579 094273 853757 501191 957485 499080 727993 788674 980861 384584 798723 193800 435382 744140 802896 907989 718526 112017 449752 588266 477449 830036 817414 886477 670468 812381 888080 796956 707175 205107 440373 870750 941787 090913 613952 452299 432581 201213 228775 725595 410099 955892 451985 944264 220220 659140 905704 376598 802510 859375 393822 954400 997129 590693 772927 418078 440430 824523 358564 858930 322229 830766 895417 820297 343551 915392 677804 336347 063698 891888 291227 032808 364333 195418 836130 961455 093137 612854 439942 501421 227883 468183 505184 926158 852546 225529 703950 137910 082572 548290 398648 737646 470051 826572 325429 828170 523706 017579 938889 303441 634264 697302 891936 468920 158568 479520 278587 703418 004124 183487 759288 182540 289338 354439 556143 809464 889579 113932 053492 151991 381235 225156 624250 609299 750803 615426 732394 097897 614297 131858 071837 970514 740120 725953 (829 digits)/428 204913 468323 583830 629706 488268 968495 747013 184675 930445 121464 086870 811436 393992 252424 900812 071318 578510 932976 401651 862995 247078 075820 665210 463981 766023 831497 730365 308088 576950 057692 462005 859895 437144 182396 221687 054570 547192 910123 152763 460969 777263 194400 668222 574248 825699 934894 968343 781767 717295 138483 440992 691745 378157 957581 253019 293988 104582 000666 424906 614670 150319 198910 147585 376750 308118 015652 249549 130489 876078 143641 151982 918255 559045 812149 023823 704913 395673 279560 158934 672662 188340 492395 963370 242129 998283 503807 228394 551602 014630 286612 505910 033428 635434 872770 602720 699346 641867 272953 040694 467217 229504 989014 109142 072098 541490 122875 393184 445695 859071 367018 888642 666596 262961 808581 267885 594140 794351 661525 427739 515762 028414 762053 288667 493982 228134 437905 395159 082015 012186 989419 707228 944764 651619 083530 989394 038143 734849 761120 (831 digits), a[1589] = 4
                                                                                      A[1590]/B[1590] = 5 330415 168367 128637 725971 832863 142796 298774 019459 853620 257414 602139 053968 999896 607861 958027 849957 878967 845837 163290 546758 580446 905995 725482 327082 427980 240174 096131 479694 689556 762064 302739 554644 083268 378575 221400 528142 923504 965738 955706 719541 900381 786144 391032 839770 429234 424876 877391 390430 288288 370188 029611 610825 128519 296584 863212 115522 692463 265476 620195 369815 243348 160721 442493 093706 790227 765674 717980 303821 720297 084452 115911 529696 835184 263076 057888 181221 974878 023780 250069 984278 881452 287950 413797 474947 897203 046310 540956 753738 269704 078462 183174 702506 362918 112164 659640 674676 787415 080147 905271 590594 014338 164409 780572 885152 701653 005508 429033 062018 871724 349431 426603 697376 154740 811363 202305 286822 057120 650065 834116 025571 833092 954873 729320 625835 741594 988314 841574 707124 921115 979605 117554 140326 335956 905978 481465 821855 163133 694745 (829 digits)/518 081842 331812 419961 874381 006440 405579 330656 525637 673868 116077 824677 260912 334289 557026 621011 222770 396003 084902 877034 145741 497937 733040 971616 260415 170213 506499 492751 358943 449150 996416 778917 787558 661422 834268 108591 117418 839737 733911 985326 217681 220694 336810 454259 854839 529132 551136 733590 150122 812358 610721 983101 698457 651987 898572 442660 949278 892850 704037 638752 119550 493994 600264 608256 925626 490487 701772 125681 198147 538069 584014 040532 717002 168291 534500 894318 324113 526611 932714 941932 884600 888097 592888 364824 682855 606495 510986 371099 323132 122099 851808 333515 663219 736835 181976 384798 862693 155100 406664 799466 959614 351458 255498 216218 064678 562769 562104 636833 761804 086052 775536 539475 154022 384507 804552 065218 235911 999104 771433 629821 245341 239101 124089 067868 631584 754454 697727 263644 793362 761080 277259 966593 388601 759798 050715 456745 606827 930335 264417 (831 digits), a[1590] = 1
                                                                                      A[1591]/B[1591] = 15 066524 146900 686309 592321 431305 379866 451305 540111 664726 013909 932271 896612 980654 600308 714778 893716 193318 435815 129478 001506 879419 924008 900717 242431 333410 310385 009677 845867 049582 336510 493559 906244 873711 962257 883174 927036 788797 022391 525365 891383 233344 773502 010841 405136 268568 805646 206768 725124 796797 399516 964927 598249 059549 452545 120247 185446 382056 121647 013318 157708 927127 145966 243551 046343 902685 362116 331378 427940 784146 084296 909627 395740 734067 418040 407003 395252 314089 242979 336270 930012 856042 188755 267537 451317 022289 560804 587098 433635 391954 382454 070299 542922 808408 772619 717930 087000 044881 986868 135973 009358 552382 346399 500035 073747 037570 708319 750002 592957 902017 178383 131795 098170 313605 806214 163898 756184 403579 654571 224375 860608 555765 023679 512133 403662 864425 201786 307400 023549 593035 574636 967502 378550 286210 943815 034769 614225 066388 115443 (830 digits)/1464 368598 131948 423754 378468 501149 779654 408326 235951 278181 353619 736225 333261 062571 366478 142834 516859 370517 102782 155720 154478 242953 541902 608442 984812 106450 844496 715868 025975 475252 050526 019841 435012 759989 850932 438869 289408 226668 377947 123415 896332 218651 868021 576742 283927 883965 037168 435524 082013 342012 359927 407196 088660 682133 754726 138341 192545 890283 408741 702410 853771 138308 399439 364099 228003 289093 419196 500911 526784 952217 311669 233048 352259 895628 881150 812460 353140 448897 144990 042800 441863 964535 678172 693019 607841 211274 525779 970593 197866 258829 990229 172941 359868 109105 236723 372318 424732 952068 086282 639628 386445 932421 500010 541578 201455 667029 247084 666851 969304 031176 918091 967592 974641 031977 417685 398322 065964 792561 204392 687382 006444 506617 010231 424404 757151 737043 833359 922448 668740 534347 543939 640415 721968 171215 184961 902885 251799 595520 289954 (832 digits), a[1591] = 2
                                                                                      A[1592]/B[1592] = 20 396939 315267 814947 318293 264168 522662 750079 559571 518346 271324 534410 950581 980551 208170 672806 743674 072286 281652 292768 548265 459866 830004 626199 569513 761390 550559 105809 325561 739139 098574 796299 460888 956980 340833 104575 455179 712301 988130 481072 610925 133726 559646 401874 244906 697803 230523 084160 115555 085085 769704 994539 209074 188068 749129 983459 300969 074519 387123 633513 527524 170475 306687 686044 140050 692913 127791 049358 731762 504443 168749 025538 925437 569251 681116 464891 576474 288967 266759 586340 914291 737494 476705 681334 926264 919492 607115 128055 187373 661658 460916 253474 245429 171326 884784 377570 761676 832297 067016 041244 599952 566720 510809 280607 958899 739223 713828 179035 654976 773741 527814 558398 795546 468346 617577 366204 043006 460700 304637 058491 886180 388857 978553 241454 029498 606020 190101 148974 730674 514151 554242 085056 518876 622167 849793 516235 436080 229521 810188 (830 digits)/1982 450440 463760 843716 252849 507590 185233 738982 761588 952049 469697 560902 594173 396860 923504 763845 739629 766520 187685 032754 300219 740891 274943 580059 245227 276664 350996 208619 384918 924403 046942 798759 222571 421412 685200 547460 406827 066406 111859 108742 114013 439346 204832 031002 138767 413097 588305 169114 232136 154370 970649 390297 787118 334121 653298 581002 141824 783134 112779 341162 973321 632302 999703 972356 153629 779581 120968 626592 724932 490286 895683 273581 069262 063920 415651 706778 677253 975509 077704 984733 326464 852633 271061 057844 290696 817770 036766 341692 520998 380929 842037 506457 023087 845940 418699 757117 287426 107168 492947 439095 346060 283879 755508 757796 266134 229798 809189 303685 731108 117229 693628 507068 128663 416485 222237 463540 301876 791665 975826 317203 251785 745718 134320 492273 388736 491498 531087 186093 462103 295427 821199 607009 110569 931013 235677 359630 858627 525855 554371 (832 digits), a[1592] = 1
                                                                                      A[1593]/B[1593] = 55 860402 777436 316204 228907 959642 425191 951464 659254 701418 556559 001093 797776 941757 016650 060392 381064 337890 999119 715015 098037 799153 584018 153116 381458 856191 411503 221296 496990 527860 533660 086158 828022 787672 643924 092325 837396 213400 998652 487511 113233 500797 892794 814589 894949 664175 266692 375088 956234 966968 938926 954006 016397 435686 950805 087165 787384 531094 895894 280345 212757 268077 759341 615639 326445 288511 617698 430095 891465 793032 421794 960705 246615 872570 780273 336786 548200 892023 776498 508952 758596 331031 142166 630207 303846 861274 775034 843208 808382 715271 304286 577248 033781 151062 542188 473071 610353 709476 120900 218462 209263 685823 368018 061250 991546 516018 135976 108073 902911 449500 234012 248592 689263 250299 041368 896306 842197 324980 263845 341359 632969 333480 980785 995041 462660 076465 581988 605349 484898 621338 683121 137615 416303 530546 643402 067240 486385 525431 735819 (830 digits)/5429 269479 059470 111186 884167 516330 150121 886291 759129 182280 293014 858030 521607 856293 213487 670525 996118 903557 478152 221228 754917 724736 091789 768561 475266 659779 546489 133106 795813 324058 144411 617359 880155 602815 221333 533790 103062 359480 601665 340900 124359 097344 277685 638746 561462 710160 213778 773752 546285 650754 301226 187791 662897 350377 061323 300345 476195 456551 634300 384736 800414 402914 398847 308811 535262 848255 661133 754096 976649 932791 103035 780210 490784 023469 712454 226017 707648 399915 300400 012267 094793 669802 220294 808708 189234 846814 599312 653978 239863 020689 674304 185855 406043 800986 074122 886552 999585 166405 072177 517819 078566 500181 011028 057170 733724 126626 865463 274223 431520 265636 305348 981729 231967 864947 862160 325402 669718 375893 156045 321788 510015 998053 278872 408951 534624 720040 895534 294635 592947 125203 186338 854433 943108 033241 656316 622146 969054 647231 398696 (832 digits), a[1593] = 2
                                                                                      A[1594]/B[1594] = 76 257342 092704 131151 547201 223810 947854 701544 218826 219764 827883 535504 748358 922308 224820 733199 124738 410177 280772 007783 646303 259020 414022 779315 950972 617581 962062 327105 822552 266999 632234 882458 288911 744652 984757 196901 292575 925702 986782 968583 724158 634524 452441 216464 139856 361978 497215 459249 071790 052054 708631 948545 225471 623755 699935 070625 088353 605614 283017 913858 740281 438553 066029 301683 466495 981424 745489 479454 623228 297475 590543 986244 172053 441822 461389 801678 124675 180991 043258 095293 672888 068525 618872 311542 230111 780767 382149 971263 995756 376929 765202 830722 279210 322389 426972 850642 372030 541773 187916 259706 809216 252543 878827 341858 950446 255241 849804 287109 557888 223241 761826 806991 484809 718645 658946 262510 885203 785680 568482 399851 519149 722338 959339 236495 492158 682485 772089 754324 215573 135490 237363 222671 935180 152714 493195 583475 922465 754953 546007 (830 digits)/7411 719919 523230 954903 137017 023920 335355 625274 520718 134329 762712 418933 115781 253154 136992 434371 735748 670077 665837 253983 055137 465627 366733 348620 720493 936443 897485 341726 180732 248461 191354 416119 102727 024227 906534 081250 509889 425886 713524 449642 238372 536690 482517 669748 700230 123257 802083 942866 778421 805125 271875 578089 450015 684498 714621 881347 618020 239685 747079 725899 773736 035217 398551 281167 688892 627836 782102 380689 701582 423077 998719 053791 560046 087390 128105 932796 384902 375424 378104 997000 421258 522435 491355 866552 479931 664584 636078 995670 760861 401619 516341 692312 429131 646926 492822 643670 287011 273573 565124 956914 424626 784060 766536 814966 999858 356425 674652 577909 162628 382865 998977 488797 360631 281433 084397 788942 971595 167559 131871 638991 761801 743771 413192 901224 923361 211539 426621 480729 055050 420631 007538 461443 053677 964254 891993 981777 827682 173086 953067 (832 digits), a[1594] = 1
                                                                                      A[1595]/B[1595] = 132 117744 870140 447355 776109 183453 373046 653008 878080 921183 384442 536598 546135 864065 241470 793591 505802 748068 279891 722798 744341 058173 998040 932432 332431 473773 373565 548402 319542 794860 165894 968617 116934 532325 628681 289227 129972 139103 985435 456094 837392 135322 345236 031054 034806 026153 763907 834338 028025 019023 647558 902551 241869 059442 650740 157790 875738 136709 178912 194203 953038 706630 825370 917322 792941 269936 363187 909550 514694 090508 012338 946949 418669 314393 241663 138464 672876 073014 819756 604246 431484 399556 761038 941749 533958 642042 157184 814472 804139 092201 069489 407970 312991 473451 969161 323713 982384 251249 308816 478169 018479 938367 246845 403109 941992 771259 985780 395183 460799 672741 995839 055584 174072 968944 700315 158817 727401 110660 832327 741211 152119 055819 940125 231536 954818 758951 354078 359673 700471 756828 920484 360287 351483 683261 136597 650716 408851 280385 281826 (831 digits)/12840 989398 582701 066090 021184 540250 485477 511566 279847 316610 055727 276963 637389 109447 350480 104897 731867 573635 143989 475211 810055 190363 458523 117182 195760 596223 443974 474832 976545 572519 335766 033478 982882 627043 127867 615040 612951 785367 315189 790542 362731 634034 760203 308495 261692 833418 015862 716619 324707 455879 573101 765881 112913 034875 775945 181693 094215 696237 381380 110636 574150 438131 797398 589979 224155 476092 443236 134786 678232 355869 101754 834002 050830 110859 840560 158814 092550 775339 678505 009267 516052 192237 711650 675260 669166 511399 235391 649649 000724 422309 190645 878167 835175 447912 566945 530223 286596 439978 637302 474733 503193 284241 777564 872137 733582 483052 540115 852132 594148 648502 304326 470526 592599 146380 946558 114345 641313 543452 287916 960780 271817 741824 692065 310176 457985 931580 322155 775364 647997 545834 193877 315876 996785 997496 548310 603924 796736 820318 351763 (833 digits), a[1595] = 1
                                                                                      A[1596]/B[1596] = 340 492831 832985 025863 099419 590717 693948 007561 974988 062131 596768 608701 840630 650438 707762 320382 136343 906313 840555 453381 134985 375368 410104 644180 615835 565128 709193 423910 461637 856719 964024 819692 522780 809304 242119 775355 552520 203910 957653 880773 398942 905169 142913 278572 209468 414286 025031 127925 127840 090102 003749 753647 709209 742641 001415 386206 839829 879032 640842 302266 646358 851814 716771 136329 052378 521297 471865 298555 652616 478491 615221 880143 009392 070608 944716 078607 470427 327020 682771 303786 535856 867639 140950 195041 298029 064851 696519 600209 604034 561331 904181 646662 905193 269293 365295 498070 336799 044271 805549 216044 846176 129278 372518 148078 834431 797761 821365 077476 479487 568725 753504 918159 832955 656535 059576 580146 340006 007002 233137 882273 823387 833978 839589 699569 401796 200388 480246 473671 616516 649148 078331 943246 638147 519236 766390 884908 740168 315724 109659 (831 digits)/33093 698716 688633 087083 179386 104421 306310 648407 080412 767549 874166 972860 390559 472048 837952 644167 199483 817347 953816 204406 675247 846354 283779 582985 112015 128890 785434 291392 133823 393499 862886 483077 068492 278314 162269 311331 735792 996621 343904 030726 963835 804760 002924 286739 223615 790093 833809 376105 427836 716884 418079 109851 675841 754250 266512 244733 806451 632160 509839 947172 922036 911480 993348 461126 137203 580021 668574 650263 058047 134816 202228 721795 661706 309109 809226 250424 570003 926103 735115 015535 453362 906910 914657 217073 818264 687383 106862 294968 762310 246237 897633 448648 099482 542751 626713 704116 860204 153530 839729 906381 431013 352544 321666 559242 467023 322530 754884 282174 350925 679870 607630 429850 545829 574194 977514 017634 254222 254463 707705 560552 305437 227420 797323 521577 839333 074700 070933 031458 351045 512299 395293 093197 047249 959247 988615 189627 421155 813723 656593 (833 digits), a[1596] = 2
                                                                                      A[1597]/B[1597] = 813 103408 536110 499081 974948 364888 760942 668132 828057 045446 577979 754002 227397 164942 656995 434355 778490 560695 961002 629561 014311 808910 818250 220793 564102 604030 791952 396223 242818 508300 093944 608002 162496 150934 112920 839938 235012 546925 900743 217641 635277 945660 631062 588198 453742 854725 813970 090188 283705 199227 655058 409846 660288 544724 653570 930204 555397 894774 460596 798737 245756 410260 258913 189980 897698 312531 306918 506661 819927 047491 242782 707235 437453 455611 131095 295679 613730 727056 185299 211819 503198 134835 042939 331832 130016 771745 550224 014892 012208 214864 877852 701296 123378 012038 699752 319854 655982 339792 919914 910258 710832 196923 991881 699267 610856 366783 628510 550136 419774 810193 502848 891903 839984 282014 819468 319110 407413 124665 298603 505758 798894 723777 619304 630675 758411 159728 314571 307016 933505 055125 077148 246780 627778 721734 669379 420533 889187 911833 501144 (831 digits)/79028 386831 959967 240256 379956 749093 098098 808380 440672 851709 804061 222684 418508 053545 026385 393232 130835 208331 051621 884025 160550 883072 026082 283152 419790 854005 014843 057617 244192 359519 061538 999633 119867 183671 452406 237704 084537 778610 002997 851996 290403 243554 766051 881973 708924 413605 683481 468830 180380 889648 409259 985584 464596 543376 308969 671160 707118 960558 401060 004982 418224 261093 784095 512231 498562 636135 780385 435312 794326 625501 506212 277593 374242 729079 459012 659663 232558 627547 148735 040338 422778 006059 540965 109408 305695 886165 449116 239586 525344 914784 985912 775464 034140 533415 820372 938457 007004 747040 316762 287496 365219 989330 420897 990622 667629 128114 049884 416481 296000 008243 519587 330227 684258 294770 901586 149614 149758 052379 703328 081884 882692 196666 286712 353332 136652 080980 464021 838281 350088 570432 984463 502271 091285 915992 525540 983179 639048 447765 664949 (833 digits), a[1597] = 2
                                                                                      A[1598]/B[1598] = 1966 699648 905206 024027 049316 320495 215833 343827 631102 153024 752728 116706 295424 980324 021753 189093 693325 027705 762560 712503 163608 993190 046605 085767 744040 773190 293098 216356 947274 873320 151914 035696 847773 111172 467961 455232 022545 297762 759140 316056 669498 796490 405038 454969 116954 123737 652971 308301 695250 488557 313866 573341 029786 832090 308557 246615 950625 668581 562035 899741 137871 672335 234597 516290 847775 146360 085702 311879 292470 573474 100787 294613 884298 981831 206906 669966 697888 781133 053369 727425 542253 137309 226828 858705 558062 608342 796967 629993 628450 991061 659887 049255 151949 293370 764800 137779 648763 723857 645379 036562 267840 523126 356281 546614 056144 531329 078386 177749 319037 189112 759202 701967 512924 220564 698513 218367 154832 256332 830344 893791 421177 281534 078198 960920 918618 519845 109389 087705 483526 759398 232628 436807 893704 962706 105149 725976 518544 139391 111947 (832 digits)/191150 472380 608567 567595 939299 602607 502508 265167 961758 470969 482289 418229 227575 579138 890723 430631 461154 234010 057059 972456 996349 612498 335944 149289 951596 836900 815120 406626 622208 112537 985964 482343 308226 645657 067081 786739 904868 553841 349899 734719 544642 291869 535028 050686 641464 617305 200772 313765 788598 496181 236599 081020 605034 841002 884451 587055 220689 553277 311959 957137 758485 433668 561539 485589 134328 852293 229345 520888 646700 385819 214653 276982 410191 767268 727251 569751 035121 181198 032585 096212 298918 919029 996587 435890 429656 459714 005094 774141 813000 075807 869458 999576 167763 609583 267459 581030 874213 647611 473254 481374 161453 331205 163462 540487 802281 578758 854653 115136 942925 696357 646805 090305 914346 163736 780686 316862 553738 359223 114361 724322 070821 620753 370748 228242 112637 236660 998976 708021 051222 653165 364220 097739 229821 791233 039697 155986 699252 709254 986491 (834 digits), a[1598] = 2
                                                                                      A[1599]/B[1599] = 2779 803057 441316 523109 024264 685383 976776 011960 459159 198471 330707 870708 522822 145266 678748 623449 471815 588401 723563 342064 177920 802100 864855 306561 308143 377221 085050 612580 190093 381620 245858 643699 010269 262106 580882 295170 257557 844688 659883 533698 304776 742151 036101 043167 570696 978463 466941 398489 978955 687784 968924 983187 690075 376814 962128 176820 506023 563356 022632 698478 383628 082595 493510 706271 745473 458891 392620 818541 112397 620965 343570 001849 321752 437442 338001 965646 311619 508189 238668 939245 045451 272144 269768 190537 688079 380088 347191 644885 640659 205926 537739 750551 275327 305409 464552 457634 304746 063650 565293 946820 978672 720050 348163 245881 667000 898112 706896 727885 738811 999306 262051 593871 352908 502579 517981 537477 562245 380998 128948 399550 220072 005311 697503 591596 677029 679573 423960 394722 417031 814523 309776 683588 521483 684440 774529 146510 407732 051224 613091 (832 digits)/270178 859212 568534 807852 319256 351700 600607 073548 402431 322679 286350 640913 646083 632683 917108 823863 591989 442341 108681 856482 156900 495570 362026 432442 371387 690905 829963 464243 866400 472057 047503 481976 428093 829328 519488 024443 989406 332451 352897 586715 835045 535424 301079 932660 350389 030910 884253 782595 968979 385829 645859 066605 069631 384379 193421 258215 927808 513835 713019 962120 176709 694762 345634 997820 632891 488429 009730 956201 441027 011320 720865 554575 784434 496348 186264 229414 267679 808745 181320 136550 721696 925089 537552 545298 735352 345879 454211 013728 338344 990592 855371 775040 201904 142999 087832 519487 881218 394651 790016 768870 526673 320535 584360 531110 469910 706872 904537 531618 238925 704601 166392 420533 598604 458507 682272 466476 703496 411602 817689 806206 953513 817419 657460 581574 249289 317641 462998 546302 401311 223598 348683 600010 321107 707225 565238 139166 338301 157020 651440 (834 digits), a[1599] = 1
                                                                                      A[1600]/B[1600] = 4746 502706 346522 547136 073581 005879 192609 355788 090261 351496 083435 987414 818247 125590 700501 812543 165140 616107 486124 054567 341529 795290 911460 392329 052184 150411 378148 828937 137368 254940 397772 679395 858042 373279 048843 750402 280103 142451 419023 849754 974275 538641 441139 498136 687651 102201 119912 706791 674206 176342 282791 556528 719862 208905 270685 423436 456649 231937 584668 598219 521499 754930 728108 222562 593248 605251 478323 130420 404868 194439 444357 296463 206051 419273 544908 635613 009508 289322 292038 666670 587704 409453 496597 049243 246141 988431 144159 274879 269110 196988 197626 799806 427276 598780 229352 595413 953509 787508 210672 983383 246513 243176 704444 792495 723145 429441 785282 905635 057849 188419 021254 295838 865832 723144 216494 755844 717077 637330 959293 293341 641249 286845 775702 552517 595648 199418 533349 482427 900558 573921 542405 120396 415188 647146 879678 872486 926276 190615 725038 (832 digits)/461329 331593 177102 375448 258555 954308 103115 338716 364189 793648 768640 059142 873659 211822 807832 254495 053143 676351 165741 828939 153250 108068 697970 581732 322984 527806 645083 870870 488608 584595 033467 964319 736320 474985 586569 811183 894274 886292 702797 321435 379687 827293 836107 983346 991853 648216 085026 096361 757577 882010 882458 147625 674666 225382 077872 845271 148498 067113 024979 919257 935195 128430 907174 483409 767220 340722 239076 477090 087727 397139 935518 831558 194626 263616 913515 799165 302800 989943 213905 232763 020615 844119 534139 981189 165008 805593 459305 787870 151345 066400 724830 774616 369667 752582 355292 100518 755432 042263 263271 250244 688126 651740 747823 071598 272192 285631 759190 646755 181851 400958 813197 510839 512950 622244 462958 783339 257234 770825 932051 530529 024335 438173 028208 809816 361926 554302 461975 254323 452533 876763 712903 697749 550929 498458 604935 295153 037553 866275 637931 (834 digits), a[1600] = 1
                                                                                      A[1601]/B[1601] = 17019 311176 480884 164517 245007 703021 554604 079324 729943 252959 581015 832952 977563 522038 780254 061078 967237 436724 181935 505766 202510 187973 599236 483548 464695 828455 219497 099391 602198 146441 439176 681886 584396 381943 727413 546377 097867 272042 916955 082963 227603 358075 359519 537577 633650 285066 826679 518865 001574 216811 817299 652773 849662 003530 774184 447129 875971 259168 776638 493136 948127 347387 677835 373959 525219 274645 827590 209802 327002 204283 676641 891238 939906 695262 972727 872485 340144 376156 114784 939256 808564 500504 759559 338267 426505 345381 779669 469523 447989 796891 130620 149970 557157 101750 152610 243876 165275 426175 197312 896970 718212 449580 461497 623368 836437 186438 062745 444790 912359 564563 325814 481387 950406 672012 167465 805011 713478 292991 006828 279575 143819 865849 024611 249149 463974 277829 024008 842006 118707 536287 936992 044777 767049 625881 413565 763971 186560 623071 788205 (833 digits)/1 654166 853992 099841 934197 094924 214624 909953 089697 495000 703625 592270 818342 267061 268152 340605 587348 751420 471394 605907 343299 616650 819776 455938 177639 340341 274325 765215 076855 332226 225842 147907 374935 637055 254285 279197 457995 672230 991329 461289 551021 974109 017305 809403 882701 325949 975559 139332 071681 241713 031862 293233 509482 093630 060525 427039 794029 373302 715174 787959 719893 982295 080055 067158 448049 934552 510595 726960 387471 704209 202740 527422 049250 368313 287198 926811 626910 176082 778574 823035 834839 783544 457448 139972 488866 230378 762659 832128 377338 792380 189795 029864 098889 310907 400746 153708 821044 147514 521441 579830 519604 591053 275757 827829 745905 286487 563768 182109 471883 784479 907477 605984 953052 137456 325241 071148 816494 475200 724080 613844 397794 026520 131938 742087 011023 335068 980548 848924 309272 758912 853889 487394 693258 973896 202601 380044 024625 450962 755847 565233 (835 digits), a[1601] = 3
                                                                                      A[1602]/B[1602] = 38785 125059 308290 876170 563596 411922 301817 514437 550147 857415 245467 653320 773374 169668 261009 934701 099615 489555 849995 066099 746550 171238 109933 359425 981575 807321 817143 027720 341764 547823 276126 043169 026835 137166 503670 843156 475837 686537 252934 015681 429482 254792 160178 573291 954951 672334 773271 744521 677354 609965 917390 862076 419186 215966 819054 317696 208591 750275 137945 584493 417754 449706 083778 970481 643687 154543 133503 550025 058872 603006 797641 078941 085864 809799 490364 380583 689797 041634 521608 545184 204833 410463 015715 725778 099152 679194 703498 213926 165089 790770 458867 099747 541590 802280 534573 083166 284060 639858 605298 777324 682938 142337 627440 039233 396019 802317 910773 795216 882568 317545 672883 258614 766646 067168 551426 365868 144034 223312 972949 852491 928889 018543 824925 050816 523596 755076 581367 166440 137973 646497 416389 209951 949287 898909 706810 400429 299397 436759 301448 (833 digits)/3 769663 039577 376786 243842 448404 383557 923021 518111 354191 200899 953181 695827 407781 748127 489043 429192 555984 619140 377556 515538 386551 747621 609846 937011 003667 076458 175514 024581 153061 036279 329282 714191 010430 983556 144964 727175 238736 868951 625376 423479 327905 861905 454915 748749 643753 599334 363690 239724 241003 945735 468925 166589 861926 346432 931952 433329 895103 497462 600899 359045 899785 288541 041491 379509 636325 361913 692997 252033 496145 802620 990362 930058 931252 838014 767139 052985 654966 547092 859976 902442 587704 759015 814084 958921 625766 330913 123562 542547 736105 445990 784558 972394 991482 554074 662709 742607 050461 085146 422932 289453 870233 203256 403482 563408 845167 413168 123409 590522 750811 215914 025167 416943 787863 272726 605256 416328 207636 218987 159740 326117 077375 702050 512382 831863 032064 515400 159823 872868 970359 584542 687693 084267 498721 903661 365023 344403 939479 377970 768397 (835 digits), a[1602] = 2
                                                                                      A[1603]/B[1603] = 327300 311650 947211 173881 753778 998399 969144 194825 131126 112281 544757 059519 164556 879384 868333 538687 764161 353170 981896 034564 174911 557878 478703 358956 317302 287029 756641 321154 336314 529027 648185 027238 799077 479275 756780 291628 904568 764340 940427 208414 663461 396412 640948 123913 273263 663745 012853 475038 420411 096539 156426 549385 203151 731265 326618 988699 544705 261369 880203 169084 290162 945036 348067 137812 674716 510990 895618 610002 797983 028338 057770 522767 626825 173658 895642 917154 858520 709232 287653 300730 447231 784208 885285 144492 219726 778939 407655 180932 768708 123054 801556 947950 889883 519994 429194 909206 437760 545044 039703 115568 181717 588281 481017 937236 004595 604981 348935 806525 972906 104928 708880 550306 083575 209360 578876 731956 865752 079494 790427 099510 574932 014199 624011 655681 652748 318441 674946 173527 222496 708267 268105 724393 361352 817159 068048 967405 581740 117146 199789 (834 digits)/31 811471 170611 114131 884936 682159 283088 294125 234588 328530 310825 217724 384961 529315 253172 252953 020889 199297 424517 626359 467606 709064 800749 334713 673727 369677 885991 169327 273504 556714 516076 782169 088463 720503 122734 438915 275397 582125 942942 464300 938856 597355 912549 448729 872698 475978 770234 048853 989475 169744 597746 044634 842200 989040 831988 882659 260668 534130 694875 595154 592261 180577 388383 399089 484127 025155 405905 270938 403739 673375 623708 450325 489721 818335 991317 063924 050795 415815 155317 702851 054380 485182 529574 652652 160239 236509 409964 820628 717720 681223 757721 306335 878049 242767 833343 455386 761900 551203 202612 963288 835235 552918 901809 055690 253176 047826 869113 169386 196065 790969 634789 807324 288602 440362 507053 913200 147120 136290 475977 891767 006730 645525 748342 841149 665927 591585 103750 127515 292224 521789 530230 988939 367398 963671 431892 300230 779856 966797 779613 712409 (836 digits), a[1603] = 8
                                                                                      A[1604]/B[1604] = 693385 748361 202713 223934 071154 408722 240105 904087 812400 081978 334981 772359 102487 928437 997677 012076 627938 195897 813787 135228 096373 286995 067340 077338 616180 381381 330425 670029 014393 605878 572496 097646 624990 095718 017231 426414 284975 215219 133788 432510 756405 047617 442074 821118 501478 999824 798978 694598 518176 803044 230243 960846 825489 678497 472292 295095 298002 273014 898351 922661 998080 339778 779913 246106 993120 176524 924740 770030 654838 659682 913182 124476 339515 157117 281650 214893 406838 460099 096915 146645 099296 978880 786286 014762 538606 237073 518808 575791 702506 036880 061980 995649 321357 842269 392962 901579 159581 729946 684705 008461 046373 318900 589475 913705 405211 012280 608645 408268 828380 527403 090644 359226 933796 485889 709179 829781 875538 382302 553804 051513 078753 046943 072948 362179 829093 391959 931259 513494 582967 063031 952600 658738 671993 533227 842908 335240 462877 671051 701026 (834 digits)/67 392605 380799 605050 013715 812722 949734 511271 987288 011251 822550 388630 465750 466412 254471 994949 470970 954579 468175 630275 450751 804681 349120 279274 284465 743022 848440 514168 571590 266490 068432 893620 891118 451437 229025 022795 277970 402988 754836 553978 301192 522617 687004 352375 494146 595711 139802 461398 218674 580493 141227 558194 850991 840008 010410 697270 954666 963364 887213 791208 543568 260940 065307 839670 347763 686636 173724 234874 059512 842897 050037 891013 909502 567924 820648 894987 154576 486596 857728 265679 011203 558069 818165 119389 279400 098785 150842 764819 977989 098552 961433 397230 728493 477018 220761 573483 266408 152867 490372 349509 959924 976071 006874 514863 069760 940821 151394 462181 982654 332750 485493 639815 994148 668588 286834 431656 710568 480217 170942 943274 339578 368427 198736 194682 163718 215234 722900 414854 457318 013938 645004 665571 819065 426064 767445 965484 904117 873074 937198 193215 (836 digits), a[1604] = 2
                                                                                      A[1605]/B[1605] = 11 421472 285430 190622 756826 892249 537955 810838 660230 129527 423934 904465 417264 804363 734392 831165 731913 811172 487536 002490 198213 716884 149799 556144 596374 176188 389131 043452 041618 566612 223084 808122 589584 798919 010764 032483 114257 464172 207847 081042 128586 765942 158291 714145 261809 296927 660941 796512 588614 711239 945246 840329 922934 410986 587224 883295 710224 312741 629608 253833 931676 259448 381496 826679 075524 564639 335389 691470 930493 275401 583264 668684 514389 059067 687535 402046 355449 367936 070817 838295 647052 035983 446301 465861 380692 837426 572115 708592 393600 008804 713135 793252 878340 031608 996304 716601 334472 991068 224190 994983 250944 923690 690690 912632 556522 487971 801471 087262 338827 226994 543378 159190 297937 024318 983595 925754 008466 874366 196335 651291 923719 834980 765288 791185 450558 918242 589800 575098 389440 549969 716778 509716 264212 113249 348804 554582 331252 987782 853973 416205 (836 digits)/1110 093157 263404 794932 104389 685726 478840 474477 031196 508559 471631 435811 836968 991911 324724 172144 556424 472568 915327 710766 679635 583966 386673 803102 225179 258043 461039 396024 418948 820555 611003 080103 346358 943498 787134 803639 722924 029946 020327 327953 757936 959238 904619 086737 779044 007357 007073 431225 488268 457634 857386 975752 458070 429168 998560 038994 535339 947968 890296 254491 289353 355618 433308 833815 048346 011334 185493 028923 355945 159728 424314 706548 041762 905133 121699 383718 524019 201364 878969 953715 233637 414299 620216 562880 630640 817071 823449 057748 365546 258071 140655 662027 533944 875059 365528 631119 024430 997083 048570 555448 194035 170055 011801 293499 369351 100965 291424 564297 918535 114977 402688 044380 194981 137775 096404 819707 516215 819765 211064 984156 439984 540360 928121 956064 285419 035340 670156 765186 609312 744807 850305 638088 472445 780707 711027 747989 245742 935996 774784 803849 (838 digits), a[1605] = 16
                                                                                      A[1606]/B[1606] = 12 114858 033791 393335 980760 963403 946678 050944 564317 941927 505913 239447 189623 906851 662830 828842 743990 439110 683433 816277 333441 813257 436794 623484 673712 792368 770512 373877 711647 581005 828963 380618 687231 423909 106482 049714 540671 749147 423066 214830 561097 522347 205909 156220 082927 798406 660766 595491 283213 229416 748291 070573 883781 236476 265722 355588 005319 610743 902623 152185 854338 257528 721275 606592 321631 557759 511914 616211 700523 930240 242947 581866 638865 398582 844652 683696 570342 774774 530916 935210 793697 135280 425182 252147 395455 376032 809189 227400 969391 711310 750015 855233 873989 352966 838574 109564 236052 150649 954137 679688 259405 970064 009591 502108 470227 893182 813751 695907 747096 055375 070781 249834 657163 958115 469485 634933 838248 749904 578638 205095 975232 913733 812231 864133 812738 747335 981760 506357 902935 132936 779810 462316 922950 785242 882032 397490 666493 450660 525025 117231 (836 digits)/1177 485762 644204 399982 118105 498449 428574 985749 018484 519811 294181 824442 302719 458323 579196 167094 027395 427148 383503 341042 130387 388647 735794 082376 509645 001066 309479 910192 990539 087045 679435 973724 237477 394936 016159 826435 000894 432934 775163 881932 059129 481856 591623 439113 273190 603068 146875 892623 706943 038127 998614 533947 309062 269177 008970 736265 490006 911333 777510 045699 832921 616558 498616 673485 396109 697970 359217 263797 415458 002625 474352 597561 951265 473057 942348 278705 678595 687961 736698 219394 244840 972369 438381 682269 910040 915856 974291 822568 343535 356624 102089 059258 262438 352077 586290 204602 290839 149950 538942 904958 153960 146126 018675 808362 439112 041786 442819 026479 901189 447727 888181 684196 189129 806363 383239 251364 226784 299982 382007 927430 779562 908788 126858 150746 449137 250575 393057 180041 066630 758746 495310 303660 291511 206772 478473 713474 149860 809071 711982 997064 (838 digits), a[1606] = 1
                                                                                      A[1607]/B[1607] = 84 110620 488178 550638 641392 672673 218024 116506 046137 781092 459414 341148 555008 245473 711377 804222 195856 445836 588138 900154 198864 596428 770567 297052 638650 930401 012205 286718 311504 052647 196865 091834 712973 342373 649656 330770 358287 959056 746244 370025 495171 900025 393746 651465 759376 087367 625541 369460 287894 087740 434993 263773 225621 829844 181559 016823 742141 977205 045347 166949 057705 804620 709150 466233 005313 911196 406877 388741 133636 856843 040950 159884 347581 450564 755451 504225 777506 016583 256319 449560 409234 847665 997394 978745 753425 093623 427251 072998 209950 276669 213230 924656 122276 149410 027749 373986 750785 894967 949017 073112 807380 744074 748239 925283 377889 847068 683981 262708 821403 559244 968065 658198 240920 773011 800509 735357 037959 373793 668164 881867 775117 317383 638679 975988 326991 402258 480363 613245 807051 347590 395641 283617 801916 824706 640998 939526 330213 691746 004124 119591 (836 digits)/8175 007733 128631 194824 813022 676423 050290 388971 142103 627427 236722 382465 653285 741852 799901 174708 720797 035459 216347 757019 461959 915852 801438 297361 283049 264441 317918 857182 362183 342829 687618 922448 771223 313114 884093 762249 728290 627554 671310 619546 112713 850378 454359 721417 418187 625765 888328 786967 729926 686402 849074 179436 312444 044231 052384 456587 475381 415971 555356 528690 286883 054969 425008 874727 425004 199156 340796 611707 848693 175481 270430 291919 749355 743480 775789 055952 595593 329135 299159 270080 702683 248516 250506 656500 090886 312213 669199 993158 426758 397815 753190 017577 108574 987524 883269 858732 769465 896786 282227 985197 117796 046811 123856 143674 004023 351683 948338 723177 325671 801344 731778 149557 329759 975955 395840 327892 876921 619659 503112 548741 117361 993089 689270 860542 980242 538793 028499 845433 009097 297286 822167 460050 221513 021342 581870 028834 144907 790427 046682 786233 (838 digits), a[1607] = 6
                                                                                      A[1608]/B[1608] = 180 336099 010148 494613 263546 308750 382726 283956 656593 504112 424741 921744 299640 397799 085586 437287 135703 330783 859711 616585 731171 006114 977929 217589 951014 653170 794922 947314 334655 686300 222693 564288 113178 108656 405794 711255 257247 667260 915554 954881 551441 322397 993402 459151 601679 973141 911849 334411 859001 404897 618277 598120 335024 896164 628840 389235 489603 565153 993317 486083 969749 866770 139576 539058 332259 380152 325669 393693 967797 643926 324847 901635 334028 299712 355555 692148 125354 807941 043555 834331 612166 830612 419972 209638 902305 563279 663691 373397 389292 264649 176477 704546 118541 651786 894072 857537 737623 940585 852171 825913 874167 458213 506071 352675 226007 587320 181714 221325 389903 173865 006912 566231 139005 504139 070505 105647 914167 497491 914967 968831 525467 548501 089591 816110 466721 551852 942487 732849 517037 828117 571093 029552 526784 434656 164030 276543 326920 834152 533273 356413 (837 digits)/17527 501228 901466 789631 744150 851295 529155 763691 302691 774665 767626 589373 609290 942029 178998 516511 468989 498066 816198 855081 054307 220353 338670 677099 075743 529948 945317 624557 714905 772705 054673 818621 779924 021165 784347 350934 457475 688044 117785 121024 284557 182613 500342 881948 109565 854599 923533 466559 166796 410933 696762 892819 933950 357639 113739 649440 440769 743276 888223 103080 406687 726497 348634 422940 246118 096283 040810 487213 112844 353588 015213 181401 449976 960019 493926 390610 869782 346232 335016 759555 650207 469401 939394 995270 091813 540284 312691 808885 197052 152255 608469 094412 479588 327127 352829 922067 829770 943523 103398 875352 389552 239748 266388 095710 447158 745154 339496 472834 552533 050417 351737 983310 848649 758274 174919 907149 980627 539301 388233 024913 014286 894967 505399 871832 409622 328161 450056 870907 084825 353320 139645 223760 734537 249457 642213 771142 439676 389925 805348 569530 (839 digits), a[1608] = 2
                                                                                      A[1609]/B[1609] = 985 791115 538921 023704 959124 216425 131655 536289 329105 301654 583123 949870 053210 234469 139309 990657 874373 099755 886696 983082 854719 627003 660213 385002 393724 196254 986820 023289 984782 484148 310332 913275 278863 885655 678629 887046 644526 295361 324019 144433 252378 512015 360758 947223 767775 953077 184788 041519 582901 112228 526381 254374 900746 310667 325760 963001 190159 802975 011934 597368 906455 138471 407033 161524 666610 811958 035224 357210 972625 076474 665189 668061 017722 949126 533229 964966 404280 056288 474098 621218 470069 000728 097256 026940 264952 910021 745707 939985 156411 599915 095619 447386 714984 408344 498113 661675 438905 597897 209876 202682 178218 035142 278596 688659 507927 783669 592552 369335 770919 428570 002628 489353 935948 293707 153035 263596 608796 861253 243004 726025 402455 059889 086639 056540 660599 161523 192802 277493 392240 488178 251106 431380 435838 997987 461150 322242 964817 862508 670490 901656 (837 digits)/95812 513877 635965 142983 533776 932900 696069 207427 655562 500756 074855 329333 699740 451998 694893 757266 065744 525793 297342 032424 733496 017619 494791 682856 661766 914186 044506 979970 936712 206354 960988 015557 670843 418943 805830 516922 015669 067775 260236 224667 535499 763445 956074 131157 966016 898765 505996 119763 563908 741071 332888 643535 982195 832426 621082 703789 679230 132355 996472 044092 320321 687456 168180 989428 655594 680571 544849 047773 412914 943421 346496 198926 999240 543578 245421 009006 944505 060296 974243 067858 953720 595525 947481 632850 549954 013635 232659 037584 412019 159093 795535 489639 506516 623161 647419 469071 918320 614401 799222 361959 065557 245552 455796 622226 239817 077455 645821 087350 088337 053431 490468 066111 573008 767326 270439 863642 780059 316166 444277 673306 188796 467927 216270 219705 028354 179600 278784 199968 433224 063887 520393 578853 894199 268630 792938 884546 343289 740056 073425 633883 (839 digits), a[1609] = 5
                                                                                      A[1610]/B[1610] = 1166 127214 549069 518318 222670 525175 514381 820245 985698 805767 007865 871614 352850 632268 224896 427945 010076 430539 746408 599668 585890 633118 638142 602592 344738 849425 781742 970604 319438 170448 533026 477563 392041 994312 084424 598301 901773 962622 239574 099314 803819 834413 354161 406375 369455 926219 096637 375931 441902 517126 144658 852495 235771 206831 954601 352236 679763 368129 005252 083452 876205 005241 546609 700582 998870 192110 360893 750904 940422 720400 990037 569696 351751 248838 888785 657114 529634 864229 517654 455550 082235 831340 517228 236579 167258 473301 409399 313382 545703 864564 272097 151932 833526 060131 392186 519213 176529 538483 062048 028596 052385 493355 784668 041334 733935 370989 774266 590661 160822 602435 009541 055585 074953 797846 223540 369244 522964 358745 157972 694856 927922 608390 176230 872651 127320 713376 135290 010342 909278 316295 822199 460932 962623 432643 625180 598786 291738 696661 203764 258069 (838 digits)/113340 015106 537431 932615 277927 784196 225224 971118 958254 275421 842481 918707 309031 394027 873892 273777 534734 023860 113540 887505 787803 237972 833462 359955 737510 444134 989824 604528 651617 979060 015661 834179 450767 440109 590177 867856 473144 755819 378021 345691 820056 946059 456417 013106 075582 753365 429529 586322 730705 152005 029651 536355 916146 190065 734822 353230 119999 875632 884695 147172 727009 413953 516815 412368 901712 776854 585659 534986 525759 297009 361709 380328 449217 503597 739347 399617 814287 406529 309259 827414 603928 064927 886876 628120 641767 553919 545350 846469 609071 311349 404004 584051 986104 950289 000249 391139 748091 557924 902621 237311 455109 485300 722184 717936 686975 822609 985317 560184 640870 103848 842206 049422 421658 525600 445359 770792 760686 855467 832510 698219 203083 362894 721670 091537 437976 507761 728841 070875 518049 417207 660038 802614 628736 518088 435152 655688 782966 129981 878774 203413 (840 digits), a[1610] = 1
                                                                                      A[1611]/B[1611] = 14979 317690 127755 243523 631170 518531 304237 379241 157490 970858 677514 409242 287417 821687 838067 125997 995290 266232 843600 179105 885407 224427 317924 616110 530590 389364 367735 670541 818040 529530 706650 644035 983367 817400 691725 066669 465813 846828 198908 336210 898216 524975 610695 823728 201247 067706 344436 552696 885731 317742 262287 484317 730000 792650 780977 189841 347320 220523 074959 598803 420915 201369 966349 568520 653053 117282 365949 368070 257697 721286 545640 504417 238737 935193 198657 850340 759898 427042 685952 087819 456898 976814 303994 865890 272054 589638 658499 700575 704857 974686 360785 270580 717297 129921 204351 892233 557260 059693 954452 545834 806843 955411 694613 184676 315152 235546 883751 457269 700790 657790 117121 156374 835393 867861 835519 694530 884369 166195 138677 064308 537526 360571 201409 528354 188447 722036 816282 401608 303580 283728 117499 962575 987320 189710 963317 507678 465682 222443 115661 998484 (839 digits)/1 455892 695156 085148 334366 868910 343255 398768 860855 154613 805818 184638 353821 408117 180333 181601 042596 482552 812114 659832 682494 187134 873293 496340 002325 511892 243805 922402 234314 756127 955075 148930 025711 080052 700258 887964 931199 693406 137607 796492 372969 376183 116159 433078 288430 873009 939150 660351 155636 332370 565131 688707 079806 975950 113215 438950 942551 119228 639950 612813 810165 044434 654898 369965 937855 476148 002826 572763 467611 722026 507533 687008 762868 389850 586751 117589 804420 715953 938648 685360 996834 200857 374660 590001 170298 251164 660669 776869 195219 720874 895286 643590 498263 339776 026629 650412 162748 895419 309500 630677 209696 526871 069161 122013 237466 483526 948775 469631 809565 778778 299617 596940 659180 632911 074531 614757 113155 908301 581780 434406 051936 625796 822663 876311 318154 284072 272741 024877 050474 649817 070379 440859 210229 439037 485692 014770 752811 738883 299838 618716 074839 (841 digits), a[1611] = 12
                                                                                      A[1612]/B[1612] = 16145 444904 676824 761841 853841 043706 818619 199487 143189 776625 685380 280856 640268 453956 062963 553943 005366 696772 590008 778774 471297 857545 956067 218702 875329 238790 149478 641146 137478 699979 239677 121599 375409 811712 776149 664971 367587 809450 438482 435525 702036 359388 964857 230103 570702 993925 441073 928628 327633 834868 406946 336812 965771 999482 735578 542078 027083 588652 080211 682256 297120 206611 512959 269103 651923 309392 726843 118975 198120 441687 535678 074113 590489 184032 087443 507455 289533 291272 203606 543369 539134 808154 821223 102469 439313 062940 067899 013958 250561 839250 632882 422513 550823 190052 596538 411446 733789 598177 016500 574430 859229 448767 479281 226011 049087 606536 658018 047930 861613 260225 126662 211959 910347 665708 059060 063775 407333 524940 296649 759165 465448 968961 377640 401005 315768 435412 951572 411951 212858 600023 939699 423508 949943 622354 588498 106464 757420 919104 319426 256553 (839 digits)/1 569232 710262 622580 266982 146838 127451 623993 831974 112868 081240 027120 272528 717148 574361 055493 316374 017286 835974 773373 569999 974938 111266 329802 362281 249402 687940 912226 838843 407745 934135 164591 859890 530820 140368 478142 799056 166550 893427 174513 718661 196240 062218 889495 301536 948592 692516 089880 741959 063075 717136 718358 616162 892096 303281 173773 295781 239228 515583 497508 957337 771444 068851 886781 350224 377860 779681 158423 002598 247785 804543 048718 143196 839068 090348 856937 204038 530241 345177 994620 824248 804785 439588 476877 798418 892932 214589 322220 041689 329946 206636 047595 082315 325880 976918 650661 553888 643510 867425 533298 447007 981980 554461 844197 955403 170502 771385 454949 369750 419648 403466 439146 708603 054569 600132 060116 883948 668988 437248 266916 750155 828880 185558 597981 409691 722048 780502 753718 121350 167866 487587 100898 012844 067774 003780 449923 408500 521849 429820 497490 278252 (841 digits), a[1612] = 1
                                                                                      A[1613]/B[1613] = 31124 762594 804580 005365 485011 562238 122856 578728 300680 747484 362894 690098 927686 275643 901030 679941 000656 963005 433608 957880 356705 081973 273991 834813 405919 628154 517214 311687 955519 229509 946327 765635 358777 629113 467874 731640 833401 656278 637390 771736 600252 884364 575553 053831 771950 061631 785510 481325 213365 152610 669233 821130 695772 792133 516555 731919 374403 809175 155171 281059 718035 407981 479308 837624 304976 426675 092792 487045 455818 162974 081318 578530 829227 119225 286101 357796 049431 718314 889558 631188 996033 784969 125217 968359 711367 652578 726398 714533 955419 813936 993667 693094 268120 319973 800890 303680 291049 657870 970953 120265 666073 404179 173894 410687 364239 842083 541769 505200 562403 918015 243783 368334 745741 533569 894579 758306 291702 691135 435326 823474 002975 329532 579049 929359 504216 157449 767854 813559 516438 883752 057199 386084 937263 812065 551815 614143 223103 141547 435088 255037 (839 digits)/3 025125 405418 707728 601349 015748 470707 022762 692829 267481 887058 211758 626350 125265 754694 237094 358970 499839 648089 433206 252494 162072 984559 826142 364606 761294 931746 834629 073158 163873 889210 313521 885601 610872 840627 366107 730255 859957 031034 971006 091630 572423 178378 322573 589967 821602 631666 750231 897595 395446 282268 407065 695969 868046 416496 612724 238332 358457 155534 110322 767502 815878 723750 256747 288079 854008 782507 731186 470209 969812 312076 735726 906065 228918 677099 974527 008459 246195 283826 679981 821083 005642 814249 066878 968717 144096 875259 099089 236909 050821 101922 691185 580578 665657 003548 301073 716637 538930 176926 163975 656704 508851 623622 966211 192869 654029 720160 924581 179316 198426 703084 036087 367783 687480 674663 674873 997104 577290 019028 701322 802092 454677 008222 474292 727846 006121 053243 778595 171824 817683 557966 541757 223073 506811 489472 464694 161312 260732 729659 116206 353091 (841 digits), a[1613] = 1
                                                                                      A[1614]/B[1614] = 78394 970094 285984 772572 823864 168183 064332 356943 744551 271594 411169 661054 495641 005243 865024 913825 006680 622783 457226 694535 184708 021492 504050 888329 687168 495099 183907 264522 048517 158999 132332 652870 092965 069939 711899 128253 034391 122007 713263 978998 902542 128118 115963 337767 114603 117189 012094 891278 754364 140089 745413 979074 357317 583749 768690 005916 775891 207002 390554 244375 733191 022574 471576 944352 261876 162742 912428 093066 109756 767635 698315 231175 248943 422482 659646 223047 388396 727901 982723 805747 531202 378093 071659 039188 862048 368097 520696 443026 161401 467124 620217 808702 087063 830000 198319 018807 315888 913918 958406 814962 191376 257125 827070 047385 777567 290703 741557 058331 986421 096255 614228 948629 401830 732847 848219 580387 990738 907211 167303 406113 471399 628026 535740 259724 324200 750312 487282 039070 245736 367528 054098 195678 824471 246485 692129 334751 203627 202199 189602 766627 (839 digits)/7 619483 521100 038037 469680 178335 068865 669519 217632 647831 855356 450637 525228 967680 083749 529682 034315 016966 132153 639786 074988 299084 080385 982087 091494 771992 551434 581484 985159 735493 712555 791635 631093 752565 821623 210358 259567 886464 955497 116525 901922 341086 418975 534642 481472 591797 955849 590344 537149 853968 281673 532490 008102 628189 136274 399221 772445 956142 826651 718154 492343 403201 516352 400275 926384 085878 344696 620795 943018 187410 428696 520171 955327 296905 444548 805991 220957 022631 912831 354584 466414 816071 068086 610635 735853 181125 965107 520398 515507 431588 410481 429966 243472 657194 984015 252808 987163 721371 221277 861249 760416 999683 801707 776620 341142 478562 211707 304111 728382 816501 809634 511321 444170 429530 949459 409864 878157 823568 475305 669562 354340 738234 202003 546566 865383 734290 886990 310908 464999 803233 603520 184412 458991 081396 982725 379311 731125 043314 889138 729902 984434 (841 digits), a[1614] = 2
                                                                                      A[1615]/B[1615] = 109519 732689 090564 777938 308875 730421 187188 935672 045232 019078 774064 351153 423327 280887 766055 593766 007337 585788 890835 652415 541413 103465 778042 723143 093088 123253 701121 576210 004036 388509 078660 418505 451742 699053 179773 859893 867792 778286 350654 750735 502795 012482 691516 391598 886553 178820 797605 372603 967729 292700 414647 800205 053090 375883 285245 737836 150295 016177 545725 525435 451226 430555 950885 781976 566852 589418 005220 580111 565574 930609 779633 809706 078170 541707 945747 580843 437828 446216 872282 436936 527236 163062 196877 007548 573416 020676 247095 157560 116821 281061 613885 501796 355184 149973 999209 322487 606938 571789 929359 935227 857449 661305 000964 458073 141807 132787 283326 563532 548825 014270 858012 316964 147572 266417 742799 338694 282441 598346 602630 229587 474374 957559 114790 189083 828416 907762 255136 852629 762175 251280 111297 581763 761735 058551 243944 948894 426730 343746 624691 021664 (840 digits)/10 644608 926518 745766 071029 194083 539572 692281 910461 915313 742414 662396 151579 092945 838443 766776 393285 516805 780243 072992 327482 461157 064945 808229 456101 533287 483181 416114 058317 899367 601766 105157 516695 363438 662250 576465 989823 746421 986532 087531 993552 913509 597353 857216 071440 413400 587516 340576 434745 249414 563941 939555 704072 496235 552771 011946 010778 314599 982185 828477 259846 219080 240102 657023 214463 939887 127204 351982 413228 157222 740773 255898 861392 525824 121648 780518 229416 268827 196658 034566 287497 821713 882335 677514 704570 325222 840366 619487 752416 482409 512404 121151 824051 322851 987563 553882 703801 260301 398204 025225 417121 508535 425330 742831 534012 132591 931868 228692 907699 014928 512718 547408 811954 117011 624123 084738 875262 400858 494334 370885 156433 192911 210226 020859 593229 740411 940234 089503 636824 620917 161486 726169 682064 588208 472197 844005 892437 304047 618797 846109 337525 (842 digits), a[1615] = 1
                                                                                      A[1616]/B[1616] = 187914 702783 376549 550511 132739 898604 251521 292615 789783 290673 185234 012207 918968 286131 631080 507591 014018 208572 348062 346950 726121 124958 282093 611472 780256 618352 885028 840732 052553 547508 210993 071375 544707 768992 891672 988146 902183 900294 063918 729734 405337 140600 807479 729366 001156 296009 809700 263882 722093 432790 160061 779279 410407 959633 053935 743752 926186 223179 936279 769811 184417 453130 422462 726328 828728 752160 917648 673177 675331 698245 477949 040881 327113 964190 605393 803890 826225 174118 855006 242684 058438 541155 268536 046737 435464 388773 767791 600586 278222 748186 234103 310498 442247 979974 197528 341294 922827 485708 887766 750190 048825 918430 828034 505458 919374 423491 024883 621864 535246 110526 472241 265593 549402 999265 591018 919082 273180 505557 769933 635700 945774 585585 650530 448808 152617 658074 742418 891700 007911 618808 165395 777442 586206 305036 936074 283645 630357 545945 814293 788291 (840 digits)/18 264092 447618 783803 540709 372418 608438 361801 128094 563145 597771 113033 676808 060625 922193 296458 427600 533771 912396 712778 402470 760241 145331 790316 547596 305280 034615 997599 043477 634861 314321 896793 147789 116004 483873 786824 249391 632886 942029 204057 895475 254596 016329 391858 552913 005198 543365 930920 971895 103382 845615 472045 712175 124424 689045 411167 783224 270742 808837 546631 752189 622281 756455 057299 140848 025765 471900 972778 356246 344633 169469 776070 816719 822729 566197 586509 450373 291459 109489 389150 753912 637784 950422 288150 440423 506348 805474 139886 267923 913997 922885 551118 067523 980046 971578 806691 690964 981672 619481 886475 177538 508219 227038 519451 875154 611154 143575 532804 636081 831430 322353 058730 256124 546542 573582 494603 753420 224426 969640 040447 510773 931145 412229 567426 458613 474702 827224 400412 101824 424150 765006 910582 141055 669605 454923 223317 623562 347362 507936 576012 321959 (842 digits), a[1616] = 1
                                                                                      A[1617]/B[1617] = 861178 543822 596762 979982 839835 324838 193274 106135 204365 181771 515000 399985 099200 425414 290377 624130 063410 420078 283085 040218 445897 603298 906417 169034 214114 596665 241236 939138 214250 578541 922632 704007 630573 775024 746465 812481 476528 379462 606329 669673 124143 574885 921435 309062 891178 362860 036406 428134 856103 023861 054894 917322 694722 214415 500988 712847 855039 908897 290844 604680 188896 243077 640736 687291 881767 598061 675815 272822 266901 723591 691429 973231 386626 398470 367322 796406 742729 142692 292307 407672 760990 327683 271021 194498 315273 575771 318261 559905 229712 273806 550298 743790 124176 069870 789322 687667 298248 514625 480426 935988 052753 335028 313102 479908 819304 826751 382861 050990 689809 456376 746977 379338 345184 263480 106875 015023 375163 620577 682364 772391 257473 299901 716911 984316 438887 540061 224812 419429 793821 726512 772880 691534 106560 278698 988242 083476 948160 527529 881866 174828 (840 digits)/83 700978 716993 880980 233866 683757 973326 139486 422840 167896 133499 114530 858811 335449 527216 952610 103687 651893 429829 924105 937365 502121 646272 969495 646486 754407 621645 406510 232228 438812 859053 692330 107851 827456 597745 723762 987390 277969 754648 903763 575453 931893 662671 424650 283092 434194 760980 064260 322325 662945 946403 827738 552772 993934 308952 656617 143675 397571 217536 015004 268604 708207 265922 886219 777856 042949 014808 243095 838213 535755 418652 360182 128271 816742 386439 126556 030909 434663 634615 591169 303148 372853 684024 830116 466264 350618 062263 179032 824112 138401 203946 325624 094147 243039 873878 780649 467661 186991 876131 571126 127275 541412 333484 820639 034630 577208 506170 359911 452026 340649 802130 782329 836452 303181 918453 063153 888943 298566 372894 532675 199528 917492 859144 290565 427683 639223 249131 691152 044122 317520 221514 368498 246287 266630 291890 737276 386686 693497 650544 150158 625361 (842 digits), a[1617] = 4
                                                                                      A[1618]/B[1618] = 1 049093 246605 973312 530493 972575 223442 444795 398750 994148 472444 700234 412193 018168 711545 921458 131721 077428 628650 631147 387169 172018 728257 188510 780506 994371 215018 126265 779870 266804 126050 133625 775383 175281 544017 638138 800628 378712 279756 670248 399407 529480 715486 728915 038428 892334 658869 846106 692017 578196 456651 214956 696602 105130 174048 554924 456600 781226 132077 227124 374491 373313 696208 063199 413620 710496 350222 593463 945999 942233 421837 169379 014112 713740 362660 972716 600297 568954 316811 147313 650356 819428 868838 539557 241235 750737 964545 086053 160491 507935 021992 784402 054288 566424 049844 986851 028962 221076 000334 368193 686178 101579 253459 141136 985367 738679 250242 407744 672855 225055 566903 219218 644931 894587 262745 697893 934105 648344 126135 452298 408092 203247 885487 367442 433124 591505 198135 967231 311129 801733 345320 938276 468976 692766 583735 924316 367122 578518 073475 696159 963119 (841 digits)/101 965071 164612 664783 774576 056176 581764 501287 550934 731041 731270 227564 535619 396075 449410 249068 531288 185665 342226 636884 339836 262362 791604 759812 194083 059687 656261 404109 275706 073674 173375 589123 255640 943461 081619 510587 236781 910856 696678 107821 470929 186489 679000 816508 836005 439393 304345 995181 294220 766328 792019 299784 264948 118358 997998 067784 926899 668314 026373 561636 020794 330489 022377 943518 918704 068714 486709 215874 194459 880388 588122 136252 944991 639471 952636 713065 481282 726122 744104 980320 057061 010638 634447 118266 906687 856966 867737 318919 092036 052399 126831 876742 161671 223086 845457 587341 158626 168664 495613 457601 304814 049631 560523 340090 909785 188362 649745 892716 088108 172080 124483 841060 092576 849724 492035 557757 642363 522993 342534 573122 710302 848638 271373 857991 886297 113926 076356 091564 145946 741670 986521 279080 387342 936235 746813 960594 010249 040860 158480 726170 947320 (843 digits), a[1618] = 1
                                                                                      A[1619]/B[1619] = 1 910271 790428 570075 510476 812410 548280 638069 504886 198513 654216 215234 812178 117369 136960 211835 755851 140839 048728 914232 427387 617916 331556 094927 949541 208485 811683 367502 719008 481054 704592 056258 479390 805855 319042 384604 613109 855240 659219 276578 069080 653624 290372 650350 347491 783513 021729 882513 120152 434299 480512 269851 613924 799852 388464 055913 169448 636266 040974 517968 979171 562209 939285 703936 100912 592263 948284 269279 218822 209135 145428 860808 987344 100366 761131 340039 396704 311683 459503 439621 058029 580419 196521 810578 435734 066011 540316 404314 720396 737647 295799 334700 798078 690600 119715 776173 716629 519324 514959 848620 622166 154332 588487 454239 465276 557984 076993 790605 723845 914865 023279 966196 024270 239771 526225 804768 949129 023507 746713 134663 180483 460721 185389 084354 417441 030392 738197 192043 730559 595555 071833 711157 160510 799326 862434 912558 450599 526678 601005 578026 137947 (841 digits)/185 666049 881606 545764 008442 739934 555090 640773 973774 898937 864769 342095 394430 731524 976627 201678 634975 837558 772056 560990 277201 764484 437877 729307 840569 814095 277906 810619 507934 512487 032429 281453 363492 770917 679365 234350 224172 188826 451327 011585 046383 118383 341672 241159 119097 873588 065326 059441 616546 429274 738423 127522 817721 112293 306950 724402 070575 065885 243909 576640 289399 038696 288300 829738 696560 111663 501517 458970 032673 416144 006774 496435 073263 456214 339075 839621 512192 160786 378720 571489 360209 383492 318471 948383 372952 207584 930000 497951 916148 190800 330778 202366 255818 466126 719336 367990 626287 355656 371745 028727 432089 591043 894008 160729 944415 765571 155916 252627 540134 512729 926614 623389 929029 152906 410488 620911 531306 821559 715429 105797 909831 766131 130518 148557 313980 753149 325487 782716 190069 059191 208035 647578 633630 202866 038704 697870 396935 734357 809024 876329 572681 (843 digits), a[1619] = 1
                                                                                      A[1620]/B[1620] = 4 869636 827463 113463 551447 597396 320003 720934 408523 391175 780877 130704 036549 252906 985466 345129 643423 359106 726108 459612 241944 407851 391369 378366 679589 411342 838384 861271 217887 228913 535234 246142 734164 786992 182102 407348 026848 089193 598195 223404 537568 836729 296232 029615 733412 459360 702329 611132 932322 446795 417675 754659 924451 704834 950976 666750 795498 053758 214026 263062 332834 497733 574779 471071 615445 895024 246791 132022 383644 360503 712694 890996 988800 914473 884923 652795 393706 192321 235818 026555 766415 980267 261882 160714 112703 882761 045177 894682 601284 983229 613591 453803 650445 947624 289276 539198 462221 259725 030254 065434 930510 410244 430434 049615 915920 854647 404229 988956 120547 054785 613463 151610 693472 374130 315197 307431 832363 695359 619561 721624 769059 124690 256265 536151 268006 652290 674530 351318 772248 992843 488988 360590 789998 291420 308605 749433 268321 631875 275486 852212 239013 (841 digits)/473 297170 927825 756311 791461 536045 691945 782835 498484 528917 460808 911755 324480 859125 402664 652425 801239 860782 886339 758864 894239 791331 667360 218427 875222 687878 212075 025348 291575 098648 238234 152029 982626 485296 440349 979287 685126 288509 599332 130991 563695 423256 362345 298827 074201 186569 434998 114064 527313 624878 268865 554829 900390 342945 611899 516589 068049 800084 514192 714916 599592 407881 598979 602996 311824 292041 489744 133814 259806 712676 601671 129123 091518 551900 630788 392308 505667 047695 501546 123298 777479 777623 271391 015033 652592 272136 727738 314822 924332 433999 788388 281474 673308 155340 284130 323322 411200 879977 239103 515056 168993 231719 348539 661550 798616 719504 961578 397971 168377 197539 977713 087839 950635 155537 313012 799580 704977 166112 773392 784718 529966 380900 532410 155106 514258 620224 727331 656996 526084 860053 402592 574237 654603 341967 824223 356334 804120 509575 776530 478830 092682 (843 digits), a[1620] = 2
                                                                                      A[1621]/B[1621] = 16 519182 272817 910466 164819 604599 508291 800872 730456 372040 996847 607346 921825 876090 093359 247224 686121 218159 227054 293069 153220 841470 505664 230027 988309 442514 326837 951316 372670 167795 310294 794686 681885 166831 865349 606648 693654 122821 453804 946791 681787 163812 179068 739197 547729 161595 128718 715911 917119 774685 733539 533831 387279 914357 241394 056165 555942 797540 683053 307155 977675 055410 663624 117150 947250 277336 688657 665346 369755 290646 283513 533799 953746 843788 415902 298425 577822 888647 166957 519288 357277 521220 982168 292720 773845 714294 675850 088362 524251 687336 136573 696111 749416 533472 987545 393769 103293 298499 605722 044925 413697 385065 879789 603087 213039 121926 289683 757474 085487 079221 863669 421028 104687 362162 471817 727064 446220 109586 605398 299537 487660 834791 954185 692808 221460 987264 761788 246000 047306 574085 538798 792929 530505 673587 788252 160858 255564 422304 427466 134662 854986 (842 digits)/1605 557562 665083 814699 382827 348071 630927 989280 469228 485690 247196 077361 367873 308901 184621 158956 038695 419907 431075 837584 959921 138479 439958 384591 466237 877729 914131 886664 382659 808431 747131 737543 311372 226807 000415 172213 279551 054355 249323 404559 737469 388152 428708 137640 341701 433296 370320 401635 198487 303909 545019 792012 518892 141130 142649 274169 274724 466138 786487 721390 088176 262341 085239 638727 632032 987787 970749 860412 812093 554173 811787 883804 347819 111916 231441 016547 029193 303872 883358 941385 692648 716362 132644 993484 330729 023995 113215 442420 689145 492799 695943 046790 275742 932147 571727 337957 859889 995588 089055 573895 939069 286201 939627 145382 340265 924086 040651 446541 045266 105349 859753 886909 780934 619518 349527 019653 646238 319898 035607 459953 499730 908832 727748 613876 856756 613823 507482 753705 768323 639351 415813 370291 597440 228769 511374 766874 809297 263085 138616 312819 850727 (844 digits), a[1621] = 3
                                                                                      A[1622]/B[1622] = 21 388819 100281 023929 716267 201995 828295 521807 138979 763216 777724 738050 958375 128997 078825 592354 329544 577265 953162 752681 395165 249321 897033 608394 667898 853857 165222 812587 590557 396708 845529 040829 416049 953824 047452 013996 720502 212015 052000 170196 219356 000541 475300 768813 281141 620955 831048 327044 849442 221481 151215 288491 311731 619192 192370 722916 351440 851298 897079 570218 310509 553144 238403 588222 562696 172360 935448 797368 753399 651149 996208 424796 942547 758262 300825 951220 971529 080968 402775 545844 123693 501488 244050 453434 886549 597055 721027 983045 125536 670565 750165 149915 399862 481097 276821 932967 565514 558224 635976 110360 344207 795310 310223 652703 128959 976573 693913 746430 206034 134007 477132 572638 798159 736292 787015 034496 278583 804946 224960 021162 256719 959482 210451 228959 489467 639555 436318 597318 819555 566929 027787 153520 320503 965008 096857 910291 523886 054179 702952 986875 093999 (842 digits)/2078 854733 592909 571011 174288 884117 322873 772115 967713 014607 708004 989116 692354 168026 587285 811381 839935 280690 317415 596449 854160 929811 107318 603019 341460 565608 126206 912012 674234 907079 985365 889573 293998 712103 440765 151500 964677 342864 848655 535551 301164 811408 791053 436467 415902 619865 805318 515699 725800 928787 813885 346842 419282 484075 754548 790758 342774 266223 300680 436306 687768 670222 684219 241723 943857 279829 460493 994227 071900 266850 413459 012927 439337 663816 862229 408855 534860 351568 384905 064684 470128 493985 404036 008517 983321 296131 840953 757243 613477 926799 484331 328264 949051 087487 855857 661280 271090 875565 328159 088952 108062 517921 288166 806933 138882 643591 002229 844512 213643 302889 837466 974749 731569 775055 662539 819234 351215 486010 809000 244672 029697 289733 260158 768983 371015 234048 234814 410702 294408 499404 818405 944529 252043 570737 335598 123209 613417 772660 915146 791649 943409 (844 digits), a[1622] = 1
                                                                                      A[1623]/B[1623] = 37 908001 373098 934395 881086 806595 336587 322679 869436 135257 774572 345397 880201 005087 172184 839579 015665 795425 180217 045750 548386 090792 402697 838422 656208 296371 492060 763903 963227 564504 155823 835516 097935 120655 912801 620645 414156 334836 505805 116987 901143 164353 654369 508010 828870 782550 959767 042956 766561 996166 884754 822322 699011 533549 433764 779081 907383 648839 580132 877374 288184 608554 902027 705373 509946 449697 624106 462715 123154 941796 279721 958596 896294 602050 716728 249646 549351 969615 569733 065132 480971 022709 226218 746155 660395 311350 396878 071407 649788 357901 886738 846027 149279 014570 264367 326736 668807 856724 241698 155285 757905 180376 190013 255790 341999 098499 983597 503904 291521 213229 340801 993666 902847 098455 258832 761560 724803 914532 830358 320699 744380 794274 164636 921767 710928 626820 198106 843318 866862 141014 566585 946449 851009 638595 885110 071149 779450 476484 130419 121537 948985 (842 digits)/3684 412296 257993 385710 557116 232188 953801 761396 436941 500297 955201 066478 060227 476927 771906 970337 878630 700597 748491 434034 814082 068290 547276 987610 807698 443338 040338 798677 056894 715511 732497 627116 605370 938910 441180 323714 244228 397220 097978 940111 038634 199561 219761 574107 757604 053162 175638 917334 924288 232697 358905 138854 938174 625205 897198 064927 617498 732362 087168 157696 775944 932563 769458 880451 575890 267617 431243 854639 883993 821024 225246 896731 787156 775733 093670 425402 564053 655441 268264 006070 162777 210347 536681 002002 314050 320126 954169 199664 302623 419599 180274 375055 224794 019635 427584 999238 130980 871153 417214 662848 047131 804123 227793 952315 479148 567677 042881 291053 258909 408239 697220 861659 512504 394574 012066 838887 997453 805908 844607 704625 529428 198565 987907 382860 227771 847871 742297 164408 062732 138756 234219 314820 849483 799506 846972 890084 422715 035746 053763 104469 794136 (844 digits), a[1623] = 1
                                                                                      A[1624]/B[1624] = 210 928825 965775 695909 121701 234972 511232 135206 486160 439505 650586 465040 359380 154432 939749 790249 407873 554391 854247 981434 137095 703283 910522 800507 948940 335714 625526 632107 406695 219229 624648 218409 905725 557103 611460 117223 791283 886197 581025 755135 725071 822309 747148 308867 425495 533710 629883 541828 682252 202315 574989 400104 806789 286939 361194 618325 888359 095496 797743 957089 751432 595918 748542 115090 112428 420849 055981 110944 369174 360131 394818 217781 424020 768515 884467 199453 718288 929046 251440 871506 528548 615034 375144 184213 188526 153807 705418 340083 374478 460075 183859 380051 146257 553948 598658 566650 909553 841845 844466 886789 133733 697191 260289 931654 838955 469073 611901 265951 663640 200154 181142 540973 312395 228569 081178 842299 902603 377610 376751 624660 978623 930853 033635 837798 044110 773656 426852 813913 153866 272001 860716 885769 575552 157987 522408 266040 421138 436600 355048 594564 838924 (843 digits)/20500 916214 882876 499563 959870 045062 091882 579098 152420 516097 484010 321506 993491 552665 446820 663071 233088 783679 059872 766623 924571 271263 843703 541073 379952 782298 327900 905397 958708 484638 647854 025156 320853 406655 646666 770072 185819 328965 338550 236106 494335 809214 889861 307006 203922 885676 683513 102374 347242 092274 608411 041117 110155 610105 240539 115396 430267 928033 736521 224790 567493 333041 531513 643981 823308 617916 616713 267426 491869 371971 539693 496586 375121 542482 330581 535868 355128 628774 726225 095035 284014 545723 087441 018529 553572 896766 611799 755565 126595 024795 385703 203541 073021 185664 993782 657470 925995 231332 414232 403192 343721 538537 427136 568510 534625 481976 216636 299778 508190 344088 323571 283047 294091 747925 722874 013674 338484 515555 032038 767799 676838 282563 199695 683284 509874 473406 946300 232742 608069 193185 989502 518633 499462 568271 570462 573631 726992 951391 183962 313998 914089 (845 digits), a[1624] = 5
                                                                                      A[1625]/B[1625] = 248 836827 338874 630305 002788 041567 847819 457886 355596 574763 425158 810438 239581 159520 111934 629828 423539 349817 034465 027184 685481 794076 313220 638930 605148 632086 117587 396011 369922 783733 780472 053926 003660 677759 524261 737869 205440 221034 086830 872123 626214 986663 401517 816878 254366 316261 589650 584785 448814 198482 459744 222427 505800 820488 794959 397407 795742 744336 377876 834464 039617 204473 650569 820463 622374 870546 680087 573659 492329 301927 674540 176378 320315 370566 601195 449100 267640 898661 821173 936639 009519 637743 601362 930368 848921 465158 102296 411491 024266 817977 070598 226078 295536 568518 863025 893387 578361 698570 086165 042074 891638 877567 450303 187445 180954 567573 595498 769855 955161 413383 521944 534640 215242 327024 340011 603860 627407 292143 207109 945360 723004 725127 198272 759565 755039 400476 624959 657232 020728 413016 427302 832219 426561 796583 407518 337190 200588 913084 485467 716102 787909 (843 digits)/24185 328511 140869 885274 516986 277251 045684 340494 589362 016395 439211 387985 053719 029593 218727 633409 111719 484276 808364 200658 738653 339554 390980 528684 187651 225636 368239 704075 015603 200150 380351 652272 926224 345566 087847 093786 430047 726185 436529 176217 532970 008776 109622 881113 961526 938838 859152 019709 271530 324971 967316 179972 048330 235311 137737 180324 047766 660395 823689 382487 343438 265605 300972 524433 399198 885534 047957 122066 375863 192995 764940 393318 162278 318215 424251 961270 919182 284215 994489 101105 446791 756070 624122 020531 867623 216893 565968 955229 429218 444394 565977 578596 297815 205300 421367 656709 056976 102485 831447 066040 390853 342660 654930 520826 013774 049653 259517 590831 767099 752328 020792 144706 806596 142499 734940 852562 335938 321463 876646 472425 206266 481129 187603 066144 737646 321278 688597 397150 670801 331942 223721 833454 348946 367778 417435 463716 149707 987137 237725 418468 708225 (845 digits), a[1625] = 1
                                                                                      A[1626]/B[1626] = 708 602480 643524 956519 127277 318108 206871 050979 197353 589032 500904 085916 838542 473473 163619 049906 254952 254025 923178 035803 508059 291436 536964 078369 159237 599886 860701 424130 146540 786697 185592 326261 913046 912622 659983 592962 202164 328265 754687 499382 977501 795636 550183 942623 934228 166233 809184 711399 579880 599280 494477 844959 818390 927916 951113 413141 479844 584169 553497 626017 830667 004866 049681 756017 357178 161942 416156 258263 353832 963986 743898 570538 064651 509649 086858 097654 253570 726369 893788 744784 547587 890521 577870 044950 886369 084123 910011 163065 423012 096029 325055 832207 737330 690986 324710 353426 066277 238986 016796 970938 917011 452326 160896 306545 200864 604220 802898 805663 573963 026921 225031 610253 742879 882617 761202 050021 157417 961896 790971 515382 424633 381107 430181 356929 554189 574609 676772 128377 195323 098034 715322 550208 428675 751154 337444 940420 822316 262769 325984 026770 414742 (843 digits)/68871 573237 164616 270112 993842 599564 183251 260087 331144 548888 362433 097477 100929 611851 884275 929889 456527 752232 676601 167941 401877 950372 625664 598441 755255 233571 064380 313547 989914 884939 408557 329702 173302 097787 822360 957645 045914 781336 211608 588541 560275 826767 109107 069234 126976 763354 401817 141792 890302 742218 543043 401061 206816 080727 516013 476044 525801 248825 383899 989765 254369 864252 133458 692848 621706 388984 712627 511559 243595 757963 069574 283222 699678 178913 179085 458410 193493 197206 715203 297246 177598 057864 335685 059593 288819 330553 743737 666023 985031 913584 517658 360733 668651 596265 836517 970889 039947 436304 077126 535273 125428 223858 736997 610162 562173 581282 735671 481442 042389 848744 365155 572460 907284 032925 192755 718799 010361 158482 785331 712650 089371 244821 574901 815573 985167 115964 323495 027043 949671 857070 436946 185542 197355 303828 405333 501064 026408 925665 659413 150936 330539 (845 digits), a[1626] = 2
                                                                                      A[1627]/B[1627] = 957 439307 982399 586824 130065 359676 054690 508865 552950 163795 926062 896355 078123 632993 275553 679734 678491 603842 957643 062988 193541 085512 850184 717299 764386 231972 978288 820141 516463 570430 966064 380187 916707 590382 184245 330831 407604 549299 841518 371506 603716 782299 951701 759502 188594 482495 398835 296185 028694 797762 954222 067387 324191 748405 746072 810549 275587 328505 931374 460481 870284 209339 700251 576480 979553 032489 096243 831922 846162 265914 418438 746916 384966 880215 688053 546754 521211 625031 714962 681423 557107 528265 179232 975319 735290 549282 012307 574556 447278 914006 395654 058286 032867 259505 187736 246813 644638 937556 102962 013013 808650 329893 611199 493990 381819 171794 398397 575519 529124 440304 746976 144893 958122 209642 101213 653881 784825 254039 998081 460743 147638 106234 628454 116495 309228 975086 301731 785609 216051 511051 142625 382427 855237 547737 744963 277611 022905 175853 811451 742873 202651 (843 digits)/93056 901748 305486 155387 510828 876815 228935 600581 920506 565283 801644 485462 154648 641445 103003 563298 568247 236509 484965 368600 140531 289927 016645 127125 942906 459207 432620 017623 005518 085089 788908 981975 099526 443353 910208 051431 475962 507521 648137 764759 093245 835543 218729 950348 088503 702193 260969 161502 161833 067190 510359 581033 255146 316038 653750 656368 573567 909221 207589 372252 597808 129857 434431 217282 020905 274518 760584 633625 619458 950958 834514 676540 861956 497128 603337 419681 112675 481422 709692 398351 624389 813934 959807 080125 156442 547447 309706 621253 414250 357979 083635 939329 966466 801566 257885 627598 096923 538789 908573 601313 516281 566519 391928 130988 575947 630935 995189 072273 809489 601072 385947 717167 713880 175424 927696 571361 346299 479946 661978 185075 295637 725950 762504 881718 722813 437243 012092 424194 620473 189012 660668 018996 546301 671606 822768 964780 176116 912802 897138 569405 038764 (845 digits), a[1627] = 1
                                                                                      A[1628]/B[1628] = 7410 677636 520322 064288 037734 835840 589704 613038 068004 735603 983344 360402 385407 904426 092494 808049 004393 480926 626679 476720 862846 890026 488257 099467 509941 223697 708723 165120 761785 779713 948042 987577 330000 045297 949700 908782 055396 173364 645316 099929 203519 271736 212096 259139 254389 543701 601031 784694 780744 183621 174032 316671 087733 166757 173623 086986 408955 883711 073118 849390 922656 470243 951442 791384 214049 389366 089863 081723 276968 825387 672969 798952 759419 671158 903232 924935 902052 101591 898527 514749 447340 588377 832500 872189 033402 929097 996164 184960 553964 494074 094634 240209 967401 507522 638864 081121 578749 801878 737531 062035 577563 761581 439292 764477 873598 806781 591681 834300 277834 109054 453864 624511 449735 350112 469697 627193 651194 740176 777541 740584 458100 124749 829360 172396 718792 400213 788894 627641 707683 675392 713700 227203 415338 585318 552187 883697 982652 493746 006146 226882 833299 (844 digits)/720269 885475 303019 357825 569644 737270 785800 464160 774690 505874 973944 495712 183470 101967 605300 872979 434258 407799 071358 748142 385596 979861 742180 488323 355600 448023 092720 436909 028541 480567 930920 203527 869987 201265 193817 317665 377652 333987 748572 941855 212996 675569 640216 721670 746502 678707 228601 272308 023134 212552 115560 468293 992840 292998 092268 070624 540776 613373 837025 595533 439026 773254 174477 213822 768043 310616 036719 946938 579808 414674 911177 019008 733373 658813 402447 396177 982221 567165 683050 085707 548326 755409 054334 620469 383917 162684 911684 014797 884784 419438 103109 936043 433919 207229 641717 364075 718412 207833 437141 744467 739399 189494 480494 527082 593806 997834 701994 987358 708817 056251 066789 592634 904445 260899 686631 718328 434457 518109 419179 008177 158835 326476 912435 987605 044861 176665 408141 996406 292984 180159 061622 318518 021467 005076 164716 254525 259227 315285 939383 136771 601887 (846 digits), a[1628] = 7
                                                                                      A[1629]/B[1629] = 8368 116944 502721 651112 167800 195516 644395 121903 620954 899399 909407 256757 463531 537419 368048 487783 682885 084769 584322 539709 056387 975539 338441 816767 274327 455670 687011 985262 278249 350144 914107 367765 246707 635680 133946 239613 463000 722664 486834 471435 807236 054036 163798 018641 442984 026196 999867 080879 809438 981384 128254 384058 411924 915162 919695 897535 684543 212217 004493 309872 792940 679583 651694 367865 193602 421855 186106 913646 123131 091302 091408 545869 144386 551374 591286 471690 423263 726623 613490 196173 004448 116643 011733 847508 768693 478380 008471 759517 001243 408080 490288 298496 000268 767027 826600 327935 223388 739434 840493 075049 386214 091475 050492 258468 255417 978575 990079 409819 806958 549359 200840 769405 407857 559754 570911 281075 436019 994216 775623 201327 605738 230984 457814 288892 028021 375300 090626 413250 923735 186443 856325 609631 270576 133056 297151 161309 005557 669599 817597 969756 035950 (844 digits)/813326 787223 608505 513213 080473 614086 014736 064742 695197 071158 775588 981174 338118 743412 708304 436278 002505 644308 556324 116742 526128 269788 758825 615449 298506 907230 525340 454532 034059 565657 719829 185502 969513 644619 104025 369096 853614 841509 396710 706614 306242 511112 858946 672018 835006 380900 489570 433810 184967 279742 625920 049327 247986 609036 746018 726993 114344 522595 044614 967786 036834 903111 608908 431104 788948 585134 797304 580564 199267 365633 745691 695549 595330 155942 005784 815859 094897 048588 392742 484059 172716 569344 014141 700594 540359 710132 221390 636051 299034 777417 186745 875373 400386 008795 899602 991673 815335 746623 345715 345781 255680 756013 872422 658071 169754 628770 697184 059632 518306 657323 452737 309802 618325 436324 614328 289689 780756 998056 081157 193252 454473 052427 674940 869323 767674 613908 420234 420600 913457 369171 722290 337514 567768 676682 987485 219305 435344 228088 836521 706176 640651 (846 digits), a[1629] = 1
                                                                                      A[1630]/B[1630] = 15778 794581 023043 715400 205535 031357 234099 734941 688959 635003 892751 617159 848939 441845 460543 295832 687278 565696 211002 016429 919234 865565 826698 916234 784268 679368 395735 150383 040035 129858 862150 355342 576707 680978 083647 148395 518396 896029 132150 571365 010755 325772 375894 277780 697373 569898 600898 865574 590183 165005 302286 700729 499658 081920 093318 984522 093499 095928 077612 159263 715597 149827 603137 159249 407651 811221 275969 995369 400099 916689 764378 344821 903806 222533 494519 396626 325315 828215 512017 710922 451788 705020 844234 719697 802096 407478 004635 944477 555207 902154 584922 538705 967670 274550 465464 409056 802138 541313 578024 137084 963777 853056 489785 022946 129016 785357 581761 244120 084792 658413 654705 393916 857592 909867 040608 908269 087214 734393 553164 941912 063838 355734 287174 461288 746813 775513 879521 040892 631418 861836 570025 836834 685914 718374 849339 045006 988210 163345 823744 196638 869249 (845 digits)/1 533596 672698 911524 871038 650118 351356 800536 528903 469887 577033 749533 476886 521588 845380 313605 309257 436764 052107 627682 864884 911725 249650 501006 103772 654107 355253 618060 891441 062601 046225 650749 389030 839500 845884 297842 686762 231267 175497 145283 648469 519239 186682 499163 393689 581509 059607 718171 706118 208101 492294 741480 517621 240826 902034 838286 797617 655121 135968 881640 563319 475861 676365 783385 644927 556991 895750 834024 527502 779075 780308 656868 714558 328703 814755 408232 212037 077118 615754 075792 569766 721043 324753 068476 321063 924276 872817 133074 650849 183819 196855 289855 811416 834305 216025 541320 355749 533747 954456 782857 090248 995079 945508 352917 185153 763561 626605 399179 046991 227123 713574 519526 902437 522770 697224 300960 008018 215214 516165 500336 201429 613308 378904 587376 856928 812535 790573 828376 417007 206441 549330 783912 656032 589235 681759 152201 473830 694571 543374 775904 842948 242538 (847 digits), a[1630] = 1
                                                                                      A[1631]/B[1631] = 702635 078509 516645 128721 211341 575234 944783 459337 935178 839571 190478 411790 816866 978619 631953 504421 923141 975402 868411 262625 502722 060435 713194 131097 782149 347880 099358 602116 039795 063934 848723 002838 621845 598715 814420 769016 272464 147946 301459 611496 280470 388020 703146 240992 127421 101735 439417 166161 777498 241617 428869 216156 396880 519647 025731 216507 798503 433052 419428 317476 279215 271998 189729 374839 130282 115591 328786 709899 727527 425651 724055 718032 911860 342848 350139 923248 737160 168106 142269 476760 883151 137560 158061 514212 060935 407412 212453 316529 430391 102882 226880 001558 577760 847248 307034 326434 517484 557232 273555 106787 792439 625960 601033 268097 932156 534309 587574 151103 537835 519560 007878 101747 141945 593904 357703 244915 273468 307533 114880 645458 414625 883293 093490 585596 887827 497910 789552 212526 706165 107252 937462 430357 450823 741549 668069 141616 486804 856816 062342 621866 282906 (846 digits)/68 291580 385975 715599 838913 685681 073785 238343 336495 370250 460643 755061 964181 288027 940146 506938 043605 220123 937044 174370 171678 642039 254410 803094 181446 079230 538389 720019 677938 788505 599586 352802 302859 907550 863528 209103 586635 029370 563383 789191 239273 152766 725142 822135 994360 421405 003640 089125 503011 341432 940711 251062 824661 844370 298569 630637 822169 939674 505225 836799 753842 974748 663206 077876 807917 296591 998171 494383 790686 478601 699214 647915 136116 058298 005179 968002 145490 488116 141767 727615 553794 898622 858479 027099 827407 208542 114086 076675 273415 387079 439049 940401 577714 109815 513919 717698 644653 300245 742721 791427 316737 039198 358381 400778 804836 766466 199408 261062 127246 511750 054602 311921 017053 620236 114193 856568 642491 250195 709338 095950 056155 440041 724229 519522 574191 519249 399156 868796 768917 996885 539726 214447 202948 494138 674085 684350 067855 996492 136578 976334 795899 312323 (848 digits), a[1631] = 44
                                                                                      A[1632]/B[1632] = 718413 873090 539688 844121 416876 606592 178883 194279 624138 474575 083230 028950 665806 420465 092496 800254 610420 541099 079413 279055 421956 926001 539893 047332 566418 027248 495093 752499 079830 193793 710873 358181 198553 279693 898067 917411 790861 043975 433610 182861 291225 713793 079040 518772 824794 671634 040316 031736 367681 406622 731155 916885 896538 601567 119050 201029 892002 528980 497040 476739 994812 421825 792866 534088 537933 926812 604756 705269 127627 342341 488434 062854 815666 565381 844659 319875 062475 996321 654287 187683 334939 842581 002296 233909 863031 814890 217089 261006 985599 005036 811802 540264 545431 121798 772498 735491 319623 098545 851579 243872 756217 479017 090818 291044 061173 319667 169335 395223 622628 177973 662583 495663 999538 503771 398312 153184 360683 041926 668045 587370 478464 239027 380665 046885 634641 273424 669073 253419 337583 969089 507488 267192 136738 459924 517408 186623 475015 020161 886086 818505 152155 (846 digits)/69 825177 058674 627124 709952 335799 425142 038879 865398 840138 037677 504595 441067 809616 785526 820543 352862 656887 989151 802053 036563 553764 504061 304100 285218 733337 893643 338080 569379 851106 645812 003551 691890 747051 709412 506946 273397 260637 738880 934474 887742 672005 911825 321299 388050 002914 063247 807297 209129 549534 433005 992543 342283 085197 200604 468924 619787 594795 641194 718440 317162 450610 339571 861262 452844 853583 893922 328408 318189 257677 479523 304783 850674 387001 819935 376234 357527 565234 757521 803408 123561 619666 183232 095576 148471 132818 986903 209749 924264 570898 635905 230257 389130 944120 729945 259019 000402 833993 697178 574284 406986 034278 303889 753695 989990 530027 826013 660241 174237 738873 768176 831447 919491 143006 811418 157528 650509 465410 225503 596286 257585 053350 103134 106899 431120 331785 189730 697173 185925 203327 089056 998359 858981 083374 355844 836551 541686 691063 679953 752239 638847 554861 (848 digits), a[1632] = 1
                                                                                      A[1633]/B[1633] = 4 294704 443962 215089 349328 295724 608195 839199 430736 055871 212446 606628 556544 145899 080945 094437 505694 975244 680898 265477 657902 612506 690443 412659 367760 614239 484122 574827 364611 438946 032903 403089 793744 614611 997185 304760 356075 226769 367823 469510 525802 736598 956986 098348 834856 251394 459905 640997 324843 615905 274731 084648 800585 879573 527482 620982 221657 258516 077954 904630 701176 253277 381127 154062 045281 819951 749654 352570 236245 365664 137359 166226 032306 990193 169757 573436 522624 049540 149714 413705 415177 557850 350465 169542 683761 376094 481863 297899 621564 358386 128066 285892 702881 304916 456242 169528 003891 115600 049961 531451 326151 573527 021046 055124 723318 238023 132645 434251 127221 650976 409428 320795 580067 139638 112761 349264 010837 076883 517166 455108 582310 806947 078429 996815 820025 061033 865034 134918 479623 394084 952700 474903 766318 134516 041172 255110 074733 861879 957625 492776 714392 043681 (847 digits)/417 417465 679348 851223 388675 364678 199495 432742 663489 570940 649031 278039 169520 336111 867780 609654 807918 504563 882803 184635 354496 410861 774717 323595 607539 745920 006606 410422 524838 044038 828646 370560 762313 642809 410590 743834 953621 332559 257788 461565 677986 512796 284269 428632 934610 435975 319879 125611 548659 089105 105741 213779 536077 270356 301591 975260 921107 913652 711199 429001 339655 227800 361065 384189 072141 564511 467783 136425 381632 766989 096831 171834 389487 993307 104856 849173 933128 314289 929376 744656 171602 996953 774639 504980 569762 872637 048602 125424 894738 241572 618576 091688 523368 830419 163646 012793 646667 470214 228614 662849 351667 210589 877830 169258 754789 416605 329476 562267 998435 206118 895486 469160 614509 335270 171284 644211 895038 577246 836856 077381 344080 706792 239900 054019 729793 178175 347810 354662 698544 013520 985011 206246 497853 911010 453309 867107 776289 451810 536347 737532 990137 086628 (849 digits), a[1633] = 5
                                                                                      A[1634]/B[1634] = 22 191936 092901 615135 590762 895499 647571 374880 347959 903494 536808 116372 811671 395301 825190 564684 328729 486643 945590 406801 568568 484490 378218 603189 886135 637615 447861 369230 575556 274560 358310 726322 326904 271613 265620 421869 697787 924707 883092 781162 811874 974220 498723 570784 693054 081766 971162 245302 655954 447207 780278 154399 919815 294406 238980 223961 309316 184582 918755 020193 982621 261199 327461 563176 760497 637692 675084 367607 886495 955948 029137 319564 224389 766632 414169 711841 932995 310176 744893 722814 263571 124191 594906 850009 652716 743504 224206 706587 368828 777529 645368 241266 054671 070013 403009 620138 754946 897623 348353 508835 874630 623852 584247 366441 907635 251288 982894 340591 031331 877510 225115 266561 395999 697729 067578 144632 207369 745100 627758 943588 498924 513199 631177 364744 147010 939810 598595 343665 651536 308008 732591 882007 098782 809318 665785 792958 560292 784414 808289 349970 390465 370560 (848 digits)/2156 912505 455418 883241 653329 159190 422619 202593 182846 694841 282833 894791 288669 490176 124429 868817 392455 179707 403167 725229 809045 608073 377647 922078 322917 462937 926675 390193 193570 071300 789043 856355 503458 961098 762366 226121 041503 923434 027823 242303 277675 235987 333172 464464 061102 182790 662643 435354 952424 995059 961712 061441 022669 436978 708564 345229 225327 163059 197191 863447 015438 589612 144898 782207 813552 676141 232838 010535 226353 092622 963679 163955 798114 353537 344219 622104 023169 136684 404405 526688 981576 604435 056429 620478 997285 496004 229913 836874 397955 778761 728785 688700 005975 096216 548175 322987 233740 185064 840251 888531 165322 087227 693040 599989 763937 613054 473396 471581 166413 769468 245609 177250 992037 819357 667841 378588 125702 351644 409783 983192 977988 587311 302634 376998 080086 222661 928782 470486 678645 270932 014113 029592 348250 638426 622394 172090 423133 950116 361692 439904 589532 988001 (850 digits), a[1634] = 5
                                                                                      A[1635]/B[1635] = 114270 573646 794378 548246 187477 223409 953205 098111 076279 149241 237437 810235 852558 554996 987162 654046 133821 704920 525902 886754 217029 253464 138031 237383 080158 696180 522312 743060 903869 150230 974833 236751 023839 151316 676737 511834 266099 547659 412553 676828 870044 997946 884652 068733 370323 269528 974306 704372 834292 288765 926948 089835 929536 777298 036655 797763 890691 675964 747553 883447 218050 168614 480715 951201 847618 299535 759063 165577 803922 542066 165417 602417 415215 380493 729603 847549 515476 149599 607493 184348 542896 020372 525835 869244 522273 679344 922195 516261 720939 858530 129140 564808 204220 803928 552776 263977 225466 978220 722178 527369 799233 790483 310735 864507 137227 124996 055605 137471 455058 951125 527935 845423 582510 746607 072628 060499 757654 600015 847966 992289 544629 271848 010681 064428 779354 145806 032458 669358 240073 331049 068300 929455 399003 316326 172220 198737 022280 813727 839488 490317 220585 057121 (852 digits)/11 106359 908055 631178 662496 380516 036164 265769 585041 141121 308705 960755 558384 528725 252976 557175 150408 559638 817982 793420 392922 130332 380683 283868 104880 309556 413304 458190 515176 217135 171801 615462 745048 072504 340336 834289 041077 657323 094368 519663 081142 427776 611574 789288 954083 549749 625097 270927 768261 584958 652847 961145 573605 261008 273726 699405 560542 130670 505459 052104 317683 832953 140734 444894 972221 054871 015719 350699 382305 873706 682629 080846 380238 880294 357092 491691 062789 231013 102288 213433 666222 309539 233059 330755 351337 592781 798416 874948 191699 969043 085714 136087 208019 289139 249425 718384 074060 174880 369076 685588 709819 595094 345981 343879 516553 269559 034088 847908 733693 862934 198115 537140 134518 617241 207901 886542 994471 136447 194312 814585 538025 007316 772689 504307 217134 093753 664446 648750 890571 043044 042461 653000 577247 640391 169689 160901 960696 492998 600956 890720 806264 495492 303777 (854 digits), a[1635] = 5149

                                                                                      (the period has 1634 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x = the fraction whose numerator is 1 + 3 and the denominator is -1

                                                                                      A[0]/B[0] = -3/1, a[0] = -3
                                                                                      A[1]/B[1] = -8/3, a[1] = 3
                                                                                      start periodic partA[2]/B[2] = -11/4, a[2] = 1
                                                                                      A[3]/B[3] = -30/11, a[3] = 2

                                                                                      (the period has 2 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      2

                                                                                      x = the fraction whose numerator is 1 + 2 and the denominator is 0

                                                                                      Error: The denominator is zero.

                                                                                      2

                                                                                      x = the fraction whose numerator is 1 + -5 and the denominator is 3

                                                                                      The number is not real, so it does not have continued fraction expansion.

                                                                                      -2

                                                                                      x = the fraction whose numerator is 1 + 9 and the denominator is 3

                                                                                      A[0]/B[0] = 1/1, a[0] = 1
                                                                                      A[1]/B[1] = 4/3, a[1] = 3

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2

                                                                                      x = the fraction whose numerator is 1 + 9 and the denominator is 3

                                                                                      A[0]/B[0] = 1/1, a[0] = 1
                                                                                      A[1]/B[1] = 4/3, a[1] = 3

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      2

                                                                                      Numerator: The expression must not include variables

                                                                                      2

                                                                                      Square root argument: The expression must not include variables

                                                                                      2

                                                                                      Denominator: The expression must not include variables

                                                                                      2

                                                                                      Numerator: Too many arguments

                                                                                      Denominator: The expression must not include variables

                                                                                      2

                                                                                      Numerator: Syntax error

                                                                                      Denominator: The expression must not include variables

                                                                                      2

                                                                                      Numerator: Too few arguments

                                                                                      Denominator: The expression must not include variables

                                                                                      -2

                                                                                      x = the fraction whose numerator is 1 + 2 and the denominator is 3

                                                                                      The expansion in continued fraction of x = 0 + //1, start periodic part4, 8//
                                                                                      (the period has 2 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2

                                                                                      x = the fraction whose numerator is 1 + 2 and the denominator is 3

                                                                                      The expansion in continued fraction of x = 0 + //1, start periodic part4, 8//
                                                                                      (the period has 2 coefficients)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      **** QUADMOD **** -2

                                                                                      x² + 2 x + 3 ≡ 0 (mod 7)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² + 991 ≡ 0 (mod 100003)

                                                                                      1. x = 37010
                                                                                      2. x = 62993

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      5 x² + 27 x + 43 ≡ 0 (mod 100 000000 000000 000039)

                                                                                      1. x = 68 720993 702653 345029
                                                                                      2. x = 91 279006 297346 655028

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      5 x² + 27 x + 82 ≡ 0 (mod 100 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000129 (81 digits))

                                                                                      1. x = 6 339045 897043 702409 911744 212965 633350 162762 208009 946605 418937 597114 269224 814870 (79 digits)
                                                                                      2. x = 53 660954 102956 297590 088255 787034 366649 837237 791990 053394 581062 402885 730775 185202 (80 digits)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      5 x² + 27 x + 82 ≡ 0 (mod 256)

                                                                                      1. x = 174
                                                                                      2. x = 179

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      125 x² + 27 x + 82 ≡ 0 (mod 25)

                                                                                      1. x = 9

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      3 x² + 8 x + 5 ≡ 0 (mod 9)

                                                                                      1. x = 8

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      5 x² + 27 x + 82 ≡ 0 (mod 115792 089237 316195 423570 985008 687907 853269 984665 640564 039457 584007 913129 639936 (78 digits))

                                                                                      1. x = 47808 106852 003378 207128 967106 331259 870111 575948 755061 723090 335233 994286 412462 (77 digits)
                                                                                      2. x = 114300 818080 239295 385870 411905 831811 124466 402583 141727 932150 282377 084095 083443 (78 digits)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      27 x + 82 ≡ 0 (mod 115792 089237 316195 423570 985008 687907 853269 984665 640564 039457 584007 913129 639936 (78 digits))

                                                                                      1. x = 94349 109748 924307 382168 950747 819776 769331 098616 447866 995113 586969 410698 225130 (77 digits)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      73 x² + 27 x + 83 ≡ 0 (mod 65536)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      73 x² + 270 x + 83 ≡ 0 (mod 65536)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      − x² + x + 1 ≡ 0 (mod 19)

                                                                                      1. x = 5
                                                                                      2. x = 15

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      − x² + 2 x + 3 ≡ 0 (mod 105)

                                                                                      1. x = 3
                                                                                      2. x = 48
                                                                                      3. x = 24
                                                                                      4. x = 69
                                                                                      5. x = 38
                                                                                      6. x = 83
                                                                                      7. x = 59
                                                                                      8. x = 104

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² − 505 ≡ 0 (mod 361)

                                                                                      1. x = 12
                                                                                      2. x = 349

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      − x² + 505 ≡ 0 (mod 361)

                                                                                      1. x = 12
                                                                                      2. x = 349

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      − x² + 324 ≡ 0 (mod 384)

                                                                                      1. x = 270
                                                                                      2. x = 18
                                                                                      3. x = 174
                                                                                      4. x = 306
                                                                                      5. x = 78
                                                                                      6. x = 210
                                                                                      7. x = 366
                                                                                      8. x = 114

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² + 2 x + 3 ≡ 0 (mod 97)

                                                                                      1. x = 16
                                                                                      2. x = 79

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      0 ≡ 0 (mod 0)

                                                                                        The equation is satisfied by any integer x.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      7 ≡ 0 (mod 0)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      3 x + 7 ≡ 0 (mod 0)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      3 x + 9 ≡ 0 (mod 0)

                                                                                      1. x = -3

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² + 3 x + 7 ≡ 0 (mod 0)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² + 3 x + 2 ≡ 0 (mod 0)

                                                                                      1. x = -1
                                                                                      2. x = -2

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      12 x + 24 ≡ 0 (mod 120)

                                                                                      1. x = 8
                                                                                      2. x = 18
                                                                                      3. x = 28
                                                                                      4. x = 38
                                                                                      5. x = 48
                                                                                      6. x = 58
                                                                                      7. x = 68
                                                                                      8. x = 78
                                                                                      9. x = 88
                                                                                      10. x = 98
                                                                                      11. x = 108
                                                                                      12. x = 118

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      − 3 x + 6 ≡ 0 (mod 120)

                                                                                      1. x = 2
                                                                                      2. x = 42
                                                                                      3. x = 82

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      − x − 1 ≡ 0 (mod 44)

                                                                                      1. x = 43

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      23 x² + 17 x + 20 ≡ 0 (mod 128)

                                                                                      1. x = 45
                                                                                      2. x = 60

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      − 23 x² − 17 x − 20 ≡ 0 (mod 128)

                                                                                      1. x = 45
                                                                                      2. x = 60

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² + 12 ≡ 0 (mod 24)

                                                                                      1. x = 18
                                                                                      2. x = 6

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² ≡ 0 (mod 2)

                                                                                      1. x = 0

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² + 1 ≡ 0 (mod 2)

                                                                                      1. x = 1

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² + x ≡ 0 (mod 2)

                                                                                      1. x = 0
                                                                                      2. x = 1

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² + x + 1 ≡ 0 (mod 2)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² + 112 ≡ 0 (mod 128)

                                                                                      1. x = 4
                                                                                      2. x = 12
                                                                                      3. x = 20
                                                                                      4. x = 28
                                                                                      5. x = 36
                                                                                      6. x = 44
                                                                                      7. x = 52
                                                                                      8. x = 60
                                                                                      9. x = 68
                                                                                      10. x = 76
                                                                                      11. x = 84
                                                                                      12. x = 92
                                                                                      13. x = 100
                                                                                      14. x = 108
                                                                                      15. x = 116
                                                                                      16. x = 124

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² + 112 ≡ 0 (mod 243)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² + 195722 369727 ≡ 0 (mod 1 099511 627776)

                                                                                      1. x = 140133 834913
                                                                                      2. x = 409621 978975
                                                                                      3. x = 689889 648801
                                                                                      4. x = 959377 792863

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² − 1 ≡ 0 (mod 1237 940039 285380 274899 124224)

                                                                                      1. x = 1
                                                                                      2. x = 618 970019 642690 137449 562111
                                                                                      3. x = 618 970019 642690 137449 562113
                                                                                      4. x = 1237 940039 285380 274899 124223

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      11 x² + 11 x + 10 ≡ 0 (mod 121)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Quadratic coefficient: The expression must not include variables

                                                                                      Linear coefficient: The expression must not include variables

                                                                                      Constant coefficient: The expression must not include variables

                                                                                      Modulus: The expression must not include variables

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2

                                                                                      x² + 2 x + 3 ≡ 0 (mod 7)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² + 991 ≡ 0 (mod 100003)

                                                                                      1. x = 37010
                                                                                      2. x = 62993

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      5 x² + 27 x + 43 ≡ 0 (mod 100 000000 000000 000039)

                                                                                      1. x = 68 720993 702653 345029
                                                                                      2. x = 91 279006 297346 655028

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      5 x² + 27 x + 82 ≡ 0 (mod 100 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000129 (81 digits))

                                                                                      1. x = 6 339045 897043 702409 911744 212965 633350 162762 208009 946605 418937 597114 269224 814870 (79 digits)
                                                                                      2. x = 53 660954 102956 297590 088255 787034 366649 837237 791990 053394 581062 402885 730775 185202 (80 digits)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      5 x² + 27 x + 82 ≡ 0 (mod 256)

                                                                                      1. x = 174
                                                                                      2. x = 179

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      125 x² + 27 x + 82 ≡ 0 (mod 25)

                                                                                      1. x = 9

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      3 x² + 8 x + 5 ≡ 0 (mod 9)

                                                                                      1. x = 8

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      5 x² + 27 x + 82 ≡ 0 (mod 115792 089237 316195 423570 985008 687907 853269 984665 640564 039457 584007 913129 639936 (78 digits))

                                                                                      1. x = 47808 106852 003378 207128 967106 331259 870111 575948 755061 723090 335233 994286 412462 (77 digits)
                                                                                      2. x = 114300 818080 239295 385870 411905 831811 124466 402583 141727 932150 282377 084095 083443 (78 digits)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      27 x + 82 ≡ 0 (mod 115792 089237 316195 423570 985008 687907 853269 984665 640564 039457 584007 913129 639936 (78 digits))

                                                                                      1. x = 94349 109748 924307 382168 950747 819776 769331 098616 447866 995113 586969 410698 225130 (77 digits)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      73 x² + 27 x + 83 ≡ 0 (mod 65536)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      73 x² + 270 x + 83 ≡ 0 (mod 65536)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      − x² + x + 1 ≡ 0 (mod 19)

                                                                                      1. x = 5
                                                                                      2. x = 15

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      − x² + 2 x + 3 ≡ 0 (mod 105)

                                                                                      1. x = 3
                                                                                      2. x = 48
                                                                                      3. x = 24
                                                                                      4. x = 69
                                                                                      5. x = 38
                                                                                      6. x = 83
                                                                                      7. x = 59
                                                                                      8. x = 104

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² − 505 ≡ 0 (mod 361)

                                                                                      1. x = 12
                                                                                      2. x = 349

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      − x² + 505 ≡ 0 (mod 361)

                                                                                      1. x = 12
                                                                                      2. x = 349

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      − x² + 324 ≡ 0 (mod 384)

                                                                                      1. x = 270
                                                                                      2. x = 18
                                                                                      3. x = 174
                                                                                      4. x = 306
                                                                                      5. x = 78
                                                                                      6. x = 210
                                                                                      7. x = 366
                                                                                      8. x = 114

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² + 2 x + 3 ≡ 0 (mod 97)

                                                                                      1. x = 16
                                                                                      2. x = 79

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      0 ≡ 0 (mod 0)

                                                                                        The equation is satisfied by any integer x.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      7 ≡ 0 (mod 0)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      3 x + 7 ≡ 0 (mod 0)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      3 x + 9 ≡ 0 (mod 0)

                                                                                      1. x = -3

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² + 3 x + 7 ≡ 0 (mod 0)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² + 3 x + 2 ≡ 0 (mod 0)

                                                                                      1. x = -1
                                                                                      2. x = -2

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      12 x + 24 ≡ 0 (mod 120)

                                                                                      1. x = 8
                                                                                      2. x = 18
                                                                                      3. x = 28
                                                                                      4. x = 38
                                                                                      5. x = 48
                                                                                      6. x = 58
                                                                                      7. x = 68
                                                                                      8. x = 78
                                                                                      9. x = 88
                                                                                      10. x = 98
                                                                                      11. x = 108
                                                                                      12. x = 118

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      − 3 x + 6 ≡ 0 (mod 120)

                                                                                      1. x = 2
                                                                                      2. x = 42
                                                                                      3. x = 82

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      − x − 1 ≡ 0 (mod 44)

                                                                                      1. x = 43

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      23 x² + 17 x + 20 ≡ 0 (mod 128)

                                                                                      1. x = 45
                                                                                      2. x = 60

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      − 23 x² − 17 x − 20 ≡ 0 (mod 128)

                                                                                      1. x = 45
                                                                                      2. x = 60

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² + 12 ≡ 0 (mod 24)

                                                                                      1. x = 18
                                                                                      2. x = 6

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² ≡ 0 (mod 2)

                                                                                      1. x = 0

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² + 1 ≡ 0 (mod 2)

                                                                                      1. x = 1

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² + x ≡ 0 (mod 2)

                                                                                      1. x = 0
                                                                                      2. x = 1

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² + x + 1 ≡ 0 (mod 2)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² + 112 ≡ 0 (mod 128)

                                                                                      1. x = 4
                                                                                      2. x = 12
                                                                                      3. x = 20
                                                                                      4. x = 28
                                                                                      5. x = 36
                                                                                      6. x = 44
                                                                                      7. x = 52
                                                                                      8. x = 60
                                                                                      9. x = 68
                                                                                      10. x = 76
                                                                                      11. x = 84
                                                                                      12. x = 92
                                                                                      13. x = 100
                                                                                      14. x = 108
                                                                                      15. x = 116
                                                                                      16. x = 124

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² + 112 ≡ 0 (mod 243)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² + 195722 369727 ≡ 0 (mod 1 099511 627776)

                                                                                      1. x = 140133 834913
                                                                                      2. x = 409621 978975
                                                                                      3. x = 689889 648801
                                                                                      4. x = 959377 792863

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² − 1 ≡ 0 (mod 1237 940039 285380 274899 124224)

                                                                                      1. x = 1
                                                                                      2. x = 618 970019 642690 137449 562111
                                                                                      3. x = 618 970019 642690 137449 562113
                                                                                      4. x = 1237 940039 285380 274899 124223

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      11 x² + 11 x + 10 ≡ 0 (mod 121)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Quadratic coefficient: The expression must not include variables

                                                                                      Linear coefficient: The expression must not include variables

                                                                                      Constant coefficient: The expression must not include variables

                                                                                      Modulus: The expression must not include variables

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      **** QUADMOD **** -2

                                                                                      x² + 2 x + 3 ≡ 0 (mod 7)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² + 991 ≡ 0 (mod 100003)

                                                                                      1. x = 37010
                                                                                      2. x = 62993

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      5 x² + 27 x + 43 ≡ 0 (mod 100 000000 000000 000039)

                                                                                      1. x = 68 720993 702653 345029
                                                                                      2. x = 91 279006 297346 655028

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      5 x² + 27 x + 82 ≡ 0 (mod 100 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000129 (81 digits))

                                                                                      1. x = 6 339045 897043 702409 911744 212965 633350 162762 208009 946605 418937 597114 269224 814870 (79 digits)
                                                                                      2. x = 53 660954 102956 297590 088255 787034 366649 837237 791990 053394 581062 402885 730775 185202 (80 digits)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      5 x² + 27 x + 82 ≡ 0 (mod 256)

                                                                                      1. x = 174
                                                                                      2. x = 179

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      125 x² + 27 x + 82 ≡ 0 (mod 25)

                                                                                      1. x = 9

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      3 x² + 8 x + 5 ≡ 0 (mod 9)

                                                                                      1. x = 8

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      5 x² + 27 x + 82 ≡ 0 (mod 115792 089237 316195 423570 985008 687907 853269 984665 640564 039457 584007 913129 639936 (78 digits))

                                                                                      1. x = 47808 106852 003378 207128 967106 331259 870111 575948 755061 723090 335233 994286 412462 (77 digits)
                                                                                      2. x = 114300 818080 239295 385870 411905 831811 124466 402583 141727 932150 282377 084095 083443 (78 digits)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      27 x + 82 ≡ 0 (mod 115792 089237 316195 423570 985008 687907 853269 984665 640564 039457 584007 913129 639936 (78 digits))

                                                                                      1. x = 94349 109748 924307 382168 950747 819776 769331 098616 447866 995113 586969 410698 225130 (77 digits)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      73 x² + 27 x + 83 ≡ 0 (mod 65536)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      73 x² + 270 x + 83 ≡ 0 (mod 65536)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      − x² + x + 1 ≡ 0 (mod 19)

                                                                                      1. x = 5
                                                                                      2. x = 15

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      − x² + 2 x + 3 ≡ 0 (mod 105)

                                                                                      1. x = 3
                                                                                      2. x = 48
                                                                                      3. x = 24
                                                                                      4. x = 69
                                                                                      5. x = 38
                                                                                      6. x = 83
                                                                                      7. x = 59
                                                                                      8. x = 104

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² − 505 ≡ 0 (mod 361)

                                                                                      1. x = 12
                                                                                      2. x = 349

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      − x² + 505 ≡ 0 (mod 361)

                                                                                      1. x = 12
                                                                                      2. x = 349

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      − x² + 324 ≡ 0 (mod 384)

                                                                                      1. x = 270
                                                                                      2. x = 18
                                                                                      3. x = 174
                                                                                      4. x = 306
                                                                                      5. x = 78
                                                                                      6. x = 210
                                                                                      7. x = 366
                                                                                      8. x = 114

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² + 2 x + 3 ≡ 0 (mod 97)

                                                                                      1. x = 16
                                                                                      2. x = 79

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      0 ≡ 0 (mod 0)

                                                                                        The equation is satisfied by any integer x.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      7 ≡ 0 (mod 0)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      3 x + 7 ≡ 0 (mod 0)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      3 x + 9 ≡ 0 (mod 0)

                                                                                      1. x = -3

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² + 3 x + 7 ≡ 0 (mod 0)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² + 3 x + 2 ≡ 0 (mod 0)

                                                                                      1. x = -1
                                                                                      2. x = -2

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      12 x + 24 ≡ 0 (mod 120)

                                                                                      1. x = 8
                                                                                      2. x = 18
                                                                                      3. x = 28
                                                                                      4. x = 38
                                                                                      5. x = 48
                                                                                      6. x = 58
                                                                                      7. x = 68
                                                                                      8. x = 78
                                                                                      9. x = 88
                                                                                      10. x = 98
                                                                                      11. x = 108
                                                                                      12. x = 118

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      − 3 x + 6 ≡ 0 (mod 120)

                                                                                      1. x = 2
                                                                                      2. x = 42
                                                                                      3. x = 82

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      − x − 1 ≡ 0 (mod 44)

                                                                                      1. x = 43

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      23 x² + 17 x + 20 ≡ 0 (mod 128)

                                                                                      1. x = 45
                                                                                      2. x = 60

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      − 23 x² − 17 x − 20 ≡ 0 (mod 128)

                                                                                      1. x = 45
                                                                                      2. x = 60

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² + 12 ≡ 0 (mod 24)

                                                                                      1. x = 18
                                                                                      2. x = 6

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² ≡ 0 (mod 2)

                                                                                      1. x = 0

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² + 1 ≡ 0 (mod 2)

                                                                                      1. x = 1

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² + x ≡ 0 (mod 2)

                                                                                      1. x = 0
                                                                                      2. x = 1

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² + x + 1 ≡ 0 (mod 2)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² + 112 ≡ 0 (mod 128)

                                                                                      1. x = 4
                                                                                      2. x = 12
                                                                                      3. x = 20
                                                                                      4. x = 28
                                                                                      5. x = 36
                                                                                      6. x = 44
                                                                                      7. x = 52
                                                                                      8. x = 60
                                                                                      9. x = 68
                                                                                      10. x = 76
                                                                                      11. x = 84
                                                                                      12. x = 92
                                                                                      13. x = 100
                                                                                      14. x = 108
                                                                                      15. x = 116
                                                                                      16. x = 124

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² + 112 ≡ 0 (mod 243)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² + 195722 369727 ≡ 0 (mod 1 099511 627776)

                                                                                      1. x = 140133 834913
                                                                                      2. x = 409621 978975
                                                                                      3. x = 689889 648801
                                                                                      4. x = 959377 792863

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      x² − 1 ≡ 0 (mod 1237 940039 285380 274899 124224)

                                                                                      1. x = 1
                                                                                      2. x = 618 970019 642690 137449 562111
                                                                                      3. x = 618 970019 642690 137449 562113
                                                                                      4. x = 1237 940039 285380 274899 124223

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      11 x² + 11 x + 10 ≡ 0 (mod 121)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Quadratic coefficient: The expression must not include variables

                                                                                      Linear coefficient: The expression must not include variables

                                                                                      Constant coefficient: The expression must not include variables

                                                                                      Modulus: The expression must not include variables

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2

                                                                                      x² + 2 x + 3 ≡ 0 (mod 7)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² + 991 ≡ 0 (mod 100003)

                                                                                      1. x = 37010
                                                                                      2. x = 62993

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      5 x² + 27 x + 43 ≡ 0 (mod 100 000000 000000 000039)

                                                                                      1. x = 68 720993 702653 345029
                                                                                      2. x = 91 279006 297346 655028

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      5 x² + 27 x + 82 ≡ 0 (mod 100 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000129 (81 digits))

                                                                                      1. x = 6 339045 897043 702409 911744 212965 633350 162762 208009 946605 418937 597114 269224 814870 (79 digits)
                                                                                      2. x = 53 660954 102956 297590 088255 787034 366649 837237 791990 053394 581062 402885 730775 185202 (80 digits)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      5 x² + 27 x + 82 ≡ 0 (mod 256)

                                                                                      1. x = 174
                                                                                      2. x = 179

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      125 x² + 27 x + 82 ≡ 0 (mod 25)

                                                                                      1. x = 9

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      3 x² + 8 x + 5 ≡ 0 (mod 9)

                                                                                      1. x = 8

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      5 x² + 27 x + 82 ≡ 0 (mod 115792 089237 316195 423570 985008 687907 853269 984665 640564 039457 584007 913129 639936 (78 digits))

                                                                                      1. x = 47808 106852 003378 207128 967106 331259 870111 575948 755061 723090 335233 994286 412462 (77 digits)
                                                                                      2. x = 114300 818080 239295 385870 411905 831811 124466 402583 141727 932150 282377 084095 083443 (78 digits)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      27 x + 82 ≡ 0 (mod 115792 089237 316195 423570 985008 687907 853269 984665 640564 039457 584007 913129 639936 (78 digits))

                                                                                      1. x = 94349 109748 924307 382168 950747 819776 769331 098616 447866 995113 586969 410698 225130 (77 digits)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      73 x² + 27 x + 83 ≡ 0 (mod 65536)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      73 x² + 270 x + 83 ≡ 0 (mod 65536)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      − x² + x + 1 ≡ 0 (mod 19)

                                                                                      1. x = 5
                                                                                      2. x = 15

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      − x² + 2 x + 3 ≡ 0 (mod 105)

                                                                                      1. x = 3
                                                                                      2. x = 48
                                                                                      3. x = 24
                                                                                      4. x = 69
                                                                                      5. x = 38
                                                                                      6. x = 83
                                                                                      7. x = 59
                                                                                      8. x = 104

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² − 505 ≡ 0 (mod 361)

                                                                                      1. x = 12
                                                                                      2. x = 349

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      − x² + 505 ≡ 0 (mod 361)

                                                                                      1. x = 12
                                                                                      2. x = 349

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      − x² + 324 ≡ 0 (mod 384)

                                                                                      1. x = 270
                                                                                      2. x = 18
                                                                                      3. x = 174
                                                                                      4. x = 306
                                                                                      5. x = 78
                                                                                      6. x = 210
                                                                                      7. x = 366
                                                                                      8. x = 114

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² + 2 x + 3 ≡ 0 (mod 97)

                                                                                      1. x = 16
                                                                                      2. x = 79

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      0 ≡ 0 (mod 0)

                                                                                        The equation is satisfied by any integer x.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      7 ≡ 0 (mod 0)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      3 x + 7 ≡ 0 (mod 0)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      3 x + 9 ≡ 0 (mod 0)

                                                                                      1. x = -3

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² + 3 x + 7 ≡ 0 (mod 0)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² + 3 x + 2 ≡ 0 (mod 0)

                                                                                      1. x = -1
                                                                                      2. x = -2

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      12 x + 24 ≡ 0 (mod 120)

                                                                                      1. x = 8
                                                                                      2. x = 18
                                                                                      3. x = 28
                                                                                      4. x = 38
                                                                                      5. x = 48
                                                                                      6. x = 58
                                                                                      7. x = 68
                                                                                      8. x = 78
                                                                                      9. x = 88
                                                                                      10. x = 98
                                                                                      11. x = 108
                                                                                      12. x = 118

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      − 3 x + 6 ≡ 0 (mod 120)

                                                                                      1. x = 2
                                                                                      2. x = 42
                                                                                      3. x = 82

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      − x − 1 ≡ 0 (mod 44)

                                                                                      1. x = 43

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      23 x² + 17 x + 20 ≡ 0 (mod 128)

                                                                                      1. x = 45
                                                                                      2. x = 60

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      − 23 x² − 17 x − 20 ≡ 0 (mod 128)

                                                                                      1. x = 45
                                                                                      2. x = 60

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² + 12 ≡ 0 (mod 24)

                                                                                      1. x = 18
                                                                                      2. x = 6

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² ≡ 0 (mod 2)

                                                                                      1. x = 0

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² + 1 ≡ 0 (mod 2)

                                                                                      1. x = 1

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² + x ≡ 0 (mod 2)

                                                                                      1. x = 0
                                                                                      2. x = 1

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² + x + 1 ≡ 0 (mod 2)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² + 112 ≡ 0 (mod 128)

                                                                                      1. x = 4
                                                                                      2. x = 12
                                                                                      3. x = 20
                                                                                      4. x = 28
                                                                                      5. x = 36
                                                                                      6. x = 44
                                                                                      7. x = 52
                                                                                      8. x = 60
                                                                                      9. x = 68
                                                                                      10. x = 76
                                                                                      11. x = 84
                                                                                      12. x = 92
                                                                                      13. x = 100
                                                                                      14. x = 108
                                                                                      15. x = 116
                                                                                      16. x = 124

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² + 112 ≡ 0 (mod 243)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² + 195722 369727 ≡ 0 (mod 1 099511 627776)

                                                                                      1. x = 140133 834913
                                                                                      2. x = 409621 978975
                                                                                      3. x = 689889 648801
                                                                                      4. x = 959377 792863

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      x² − 1 ≡ 0 (mod 1237 940039 285380 274899 124224)

                                                                                      1. x = 1
                                                                                      2. x = 618 970019 642690 137449 562111
                                                                                      3. x = 618 970019 642690 137449 562113
                                                                                      4. x = 1237 940039 285380 274899 124223

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      11 x² + 11 x + 10 ≡ 0 (mod 121)

                                                                                      There are no solutions.

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Quadratic coefficient: The expression must not include variables

                                                                                      Linear coefficient: The expression must not include variables

                                                                                      Constant coefficient: The expression must not include variables

                                                                                      Modulus: The expression must not include variables

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      **** GAUSSIAN **** -2

                                                                                      Factors of 5 + 0 i

                                                                                      • 2 + i
                                                                                      • 2 - i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Factors of 1 + 0 i

                                                                                        No gaussian prime divides this number

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Factors of 232435 + 432 i

                                                                                      • 4 + i
                                                                                      • 54716 - 13571 i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Factors of 100 000000 000000 000045 + 23 i

                                                                                      • 1 + i
                                                                                      • 3 + 2 i
                                                                                      • 9 - 4 i
                                                                                      • 68 - 13 i
                                                                                      • 21343 + 5732 i
                                                                                      • 1 114873 899092 + 671539 450443 i
                                                                                      • -i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Factors of 120 + 0 i

                                                                                      • 1 + i
                                                                                      • 1 - i
                                                                                      • 1 + i
                                                                                      • 1 - i
                                                                                      • 1 + i
                                                                                      • 1 - i
                                                                                      • 3 + 0 i
                                                                                      • 2 + i
                                                                                      • 2 - i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Factors of 47187 + 0 i

                                                                                      • 3 + 0 i
                                                                                      • 3 + 0 i
                                                                                      • 7 + 0 i
                                                                                      • 7 + 0 i
                                                                                      • 107 + 0 i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Factors of 2 + i

                                                                                      • 2 + i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Factors of 2 + 0 i

                                                                                      • 1 + i
                                                                                      • 1 - i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Factors of 3343 + 2215 i

                                                                                      • 1 + i
                                                                                      • 2779 - 564 i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to -5 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 117653 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 11 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 1 + i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 4 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to -1 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to -1 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2Invalid parameter

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2Invalid parameter

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2Intermediate number too high (more than 200000 digits)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2Invalid parameter

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 3 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 3 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 2 + i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2

                                                                                      Factors of 5 + 0 i

                                                                                      • 2 + i
                                                                                      • 2 - i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Factors of 1 + 0 i

                                                                                        No gaussian prime divides this number

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Factors of 232435 + 432 i

                                                                                      • 4 + i
                                                                                      • 54716 - 13571 i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Factors of 100 000000 000000 000045 + 23 i

                                                                                      • 1 + i
                                                                                      • 3 + 2 i
                                                                                      • 9 - 4 i
                                                                                      • 68 - 13 i
                                                                                      • 21343 + 5732 i
                                                                                      • 1 114873 899092 + 671539 450443 i
                                                                                      • -i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Factors of 120 + 0 i

                                                                                      • 1 + i
                                                                                      • 1 - i
                                                                                      • 1 + i
                                                                                      • 1 - i
                                                                                      • 1 + i
                                                                                      • 1 - i
                                                                                      • 3 + 0 i
                                                                                      • 2 + i
                                                                                      • 2 - i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Factors of 47187 + 0 i

                                                                                      • 3 + 0 i
                                                                                      • 3 + 0 i
                                                                                      • 7 + 0 i
                                                                                      • 7 + 0 i
                                                                                      • 107 + 0 i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Factors of 2 + i

                                                                                      • 2 + i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Factors of 2 + 0 i

                                                                                      • 1 + i
                                                                                      • 1 - i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Factors of 3343 + 2215 i

                                                                                      • 1 + i
                                                                                      • 2779 - 564 i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to -5 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 117653 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 11 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 1 + i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 4 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to -1 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to -1 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2Invalid parameter

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2Invalid parameter

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2Intermediate number too high (more than 200000 digits)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2Invalid parameter

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 3 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 3 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 2 + i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      **** GAUSSIAN **** -2

                                                                                      Factors of 5 + 0 i

                                                                                      • 2 + i
                                                                                      • 2 - i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Factors of 1 + 0 i

                                                                                        No gaussian prime divides this number

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Factors of 232435 + 432 i

                                                                                      • 4 + i
                                                                                      • 54716 - 13571 i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Factors of 100 000000 000000 000045 + 23 i

                                                                                      • 1 + i
                                                                                      • 3 + 2 i
                                                                                      • 9 - 4 i
                                                                                      • 68 - 13 i
                                                                                      • 21343 + 5732 i
                                                                                      • 1 114873 899092 + 671539 450443 i
                                                                                      • -i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Factors of 120 + 0 i

                                                                                      • 1 + i
                                                                                      • 1 - i
                                                                                      • 1 + i
                                                                                      • 1 - i
                                                                                      • 1 + i
                                                                                      • 1 - i
                                                                                      • 3 + 0 i
                                                                                      • 2 + i
                                                                                      • 2 - i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Factors of 47187 + 0 i

                                                                                      • 3 + 0 i
                                                                                      • 3 + 0 i
                                                                                      • 7 + 0 i
                                                                                      • 7 + 0 i
                                                                                      • 107 + 0 i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Factors of 2 + i

                                                                                      • 2 + i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Factors of 2 + 0 i

                                                                                      • 1 + i
                                                                                      • 1 - i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Factors of 3343 + 2215 i

                                                                                      • 1 + i
                                                                                      • 2779 - 564 i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to -5 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 117653 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 11 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 1 + i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 4 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to -1 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to -1 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2Invalid parameter

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2Invalid parameter

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2Intermediate number too high (more than 200000 digits)

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2Invalid parameter

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 3 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 3 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      -2

                                                                                      Value is equal to 2 + i

                                                                                      Written by Dario Alpern. Last updated on 10 November 2024.

                                                                                      +2

                                                                                      Factors of 5 + 0 i

                                                                                      • 2 + i
                                                                                      • 2 - i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Factors of 1 + 0 i

                                                                                        No gaussian prime divides this number

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Factors of 232435 + 432 i

                                                                                      • 4 + i
                                                                                      • 54716 - 13571 i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Factors of 100 000000 000000 000045 + 23 i

                                                                                      • 1 + i
                                                                                      • 3 + 2 i
                                                                                      • 9 - 4 i
                                                                                      • 68 - 13 i
                                                                                      • 21343 + 5732 i
                                                                                      • 1 114873 899092 + 671539 450443 i
                                                                                      • -i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Factors of 120 + 0 i

                                                                                      • 1 + i
                                                                                      • 1 - i
                                                                                      • 1 + i
                                                                                      • 1 - i
                                                                                      • 1 + i
                                                                                      • 1 - i
                                                                                      • 3 + 0 i
                                                                                      • 2 + i
                                                                                      • 2 - i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Factors of 47187 + 0 i

                                                                                      • 3 + 0 i
                                                                                      • 3 + 0 i
                                                                                      • 7 + 0 i
                                                                                      • 7 + 0 i
                                                                                      • 107 + 0 i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Factors of 2 + i

                                                                                      • 2 + i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Factors of 2 + 0 i

                                                                                      • 1 + i
                                                                                      • 1 - i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Factors of 3343 + 2215 i

                                                                                      • 1 + i
                                                                                      • 2779 - 564 i

                                                                                      Time elapsed:

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to -5 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 117653 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 11 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 1 + i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 4 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to -1 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to -1 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2Invalid parameter

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2Invalid parameter

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2Intermediate number too high (more than 200000 digits)

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2Invalid parameter

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 3 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 3 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 0 + 0 i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      +2

                                                                                      Value is equal to 2 + i

                                                                                      Written by Dario Alpern. Last updated on 15 December 2024.

                                                                                      **** SUMQUAD **** diff --git a/dilog.htm b/dilog.htm index 19a85542..1c516672 100644 --- a/dilog.htm +++ b/dilog.htm @@ -18,7 +18,7 @@ - + @@ -292,7 +292,7 @@

                                                                                      Configuration

                                                                                      Source code

                                                                                      You can download the source of the current program and the old sum polynomial factorization applet from GitHub. Notice that the source code is in C language and you need the Emscripten environment in order to generate JavaScript.

                                                                                      -

                                                                                      Written by Dario Alpern. Last updated 10 November 2024.

                                                                                      +

                                                                                      Written by Dario Alpern. Last updated 15 December 2024.

                                                                                      @@ -390,8 +390,8 @@

                                                                                      Feedback form

                                                                                      "name": "Discrete logarithm calculator", "description": "Web application that finds discrete logarithms.", "image": ["https://www.alpertron.com.ar/dilog.png"], - "datePublished": "2024-11-04", - "dateModified": "2024-11-04", + "datePublished": "2024-12-15", + "dateModified": "2024-12-15", "operatingSystem": "Any", "applicationCategory": "EducationalApplication", "author": { diff --git a/ecm.c b/ecm.c index 117cada7..0f4a9ec0 100644 --- a/ecm.c +++ b/ecm.c @@ -60,16 +60,16 @@ static void duplicate(limb* x2, limb* z2, const limb* x1, const limb* z1); #define DUP 5 /* number of multiplications in a duplicate */ /* returns the number of modular multiplications */ -static int lucas_cost(int64_t multiplier, double v) +static int lucas_cost(int multiplier, double v) { int nbrMultiplications; - int64_t e; - int64_t d = multiplier; + int e; + int d = multiplier; double dr = ((double)d / v) + 0.5; int r = (int)dr; if (r >= multiplier) { - return ADD * (int)multiplier; + return (ADD * multiplier); } d = multiplier - r; e = (2 * r) - multiplier; @@ -78,20 +78,19 @@ static int lucas_cost(int64_t multiplier, double v) { if (d < e) { - int64_t tmp = d; + r = d; d = e; - e = tmp; + e = r; } if (((4 * d) <= (5 * e)) && (((d + e) % 3) == 0)) { /* condition 1 */ - int64_t tmp = ((2 * d) - e) / 3; + r = ((2 * d) - e) / 3; e = ((2 * e) - d) / 3; - d = tmp; + d = r; nbrMultiplications += 3 * ADD; /* 3 additions */ } - else if ((((4 * d) <= (5 * e)) && (((d - e) % 6) == 0)) || - ((d + e) % 2) == 0) - { /* condition 2 or condition 4 */ + else if (((4 * d) <= (5 * e)) && (((d - e) % 6) == 0)) + { /* condition 2 */ d = (d - e) / 2; nbrMultiplications += ADD + DUP; /* one addition, one duplicate */ } @@ -100,6 +99,11 @@ static int lucas_cost(int64_t multiplier, double v) d -= e; nbrMultiplications += ADD; /* one addition */ } + else if (((d + e) % 2) == 0) + { /* condition 4 */ + d = (d - e) / 2; + nbrMultiplications += ADD + DUP; /* one addition, one duplicate */ + } else if ((d % 2) == 0) { /* condition 5 */ d /= 2; @@ -133,13 +137,12 @@ static int lucas_cost(int64_t multiplier, double v) } /* computes nP from P=(x:z) and puts the result in (x:z). Assumes n>2. */ -void prac(int64_t multiplier, limb* x, limb *z) +static void prac(int multiplier, limb* x, limb *z) { - int64_t d; - int64_t e; + int d; + int e; int r; int i; - int nbrMultipl; double dr; limb* t; limb* xA = x; @@ -168,13 +171,13 @@ void prac(int64_t multiplier, limb* x, limb *z) /* chooses the best value of v */ r = lucas_cost(multiplier, v[0]); i = 0; - for (int index = 1; index < 10; index++) + for (d = 1; d < 10; d++) { - nbrMultipl = lucas_cost(multiplier, v[index]); - if (nbrMultipl < r) + e = lucas_cost(multiplier, v[d]); + if (e < r) { - r = nbrMultipl; - i = index; + r = e; + i = d; } } d = multiplier; @@ -192,9 +195,9 @@ void prac(int64_t multiplier, limb* x, limb *z) { if (d < e) { - int64_t tmp = d; + r = d; d = e; - e = tmp; + e = r; t = xA; xA = xB; xB = t; @@ -205,9 +208,9 @@ void prac(int64_t multiplier, limb* x, limb *z) /* do the first line of Table 4 whose condition qualifies */ if (((4 * d) <= (5 * e)) && (((d + e) % 3) == 0)) { /* condition 1 */ - int64_t tmp = ((2 * d) - e) / 3; + r = ((2 * d) - e) / 3; e = ((2 * e) - d) / 3; - d = tmp; + d = r; add3(xT, zT, xA, zA, xB, zB, xC, zC); /* T = f(A,B,C) */ add3(xT2, zT2, xT, zT, xA, zA, xB, zB); /* T2 = f(T,A,B) */ add3(xB, zB, xB, zB, xT, zT, xA, zA); /* B = f(B,T,A) */ @@ -451,7 +454,7 @@ static void GenerateSieve(int initial) /*******************************/ /* First step of ECM algorithm */ /*******************************/ -enum eEcmResult ecmStep1(void) +static enum eEcmResult ecmStep1(void) { int I; int P; @@ -621,7 +624,7 @@ enum eEcmResult ecmStep1(void) /******************************************************/ /* Second step (using improved standard continuation) */ /******************************************************/ -enum eEcmResult ecmStep2(void) +static enum eEcmResult ecmStep2(void) { int j; StepECM = 2; diff --git a/ecmAndroid.js b/ecmAndroid.js index 74a6fa2d..864293d4 100644 --- a/ecmAndroid.js +++ b/ecmAndroid.js @@ -32,7 +32,15 @@ function comingFromPolfact(value) let ecmFactor = getStorage("ecmFactors"); if (ecmFactor) { // Continue factoring. - value.value = ecmFactor.slice(0,ecmFactor.indexOf("=")); + let inputValue = getStorage("ecmInput"); + if (inputValue == "") + { // Old version does not have ecmInput. + value.value = ecmFactor.slice(0, ecmFactor.indexOf("=")); + } + else + { + value.value = inputValue; + } newCurveOrFactor.value = getStorage("ecmCurve"); dowork(-2); newCurveOrFactor.value = ""; diff --git a/ecmNoAndroid.js b/ecmNoAndroid.js index c569b386..acc9cf2d 100644 --- a/ecmNoAndroid.js +++ b/ecmNoAndroid.js @@ -54,6 +54,8 @@ function comingFromPolfact(value) if (search.startsWith("?q=")) { value.value = decodeURIComponent(search.substring(3)).replace(/\{/g, "(").replace(/\}/g, ")"); + setStorage("ecmFactors", ""); + setStorage("ecmCurve", ""); dowork(-2); } else @@ -61,7 +63,15 @@ function comingFromPolfact(value) let ecmFactor = getStorage("ecmFactors"); if (ecmFactor) { // Continue factoring. - value.value = ecmFactor.slice(0,ecmFactor.indexOf("=")); + let inputValue = getStorage("ecmInput"); + if (inputValue == "") + { // Old version does not have ecmInput. + value.value = ecmFactor.slice(0, ecmFactor.indexOf("=")); + } + else + { + value.value = inputValue; + } newCurveOrFactor.value = getStorage("ecmCurve"); dowork(-2); newCurveOrFactor.value = ""; diff --git a/ecmfront.c b/ecmfront.c index 656b01fb..684bb81b 100644 --- a/ecmfront.c +++ b/ecmfront.c @@ -30,9 +30,9 @@ #ifdef FACTORIZATION_APP #ifdef __EMSCRIPTEN__ -extern bool skipPrimality; extern int64_t lModularMult; #endif +extern bool skipPrimality; extern bool fromFile; extern bool lineEndingCRLF; extern BigInteger tofactor; @@ -69,12 +69,14 @@ void batchEcmCallback(char **pptrOutput, int type) } } char *ptrFactorDec = tofactorDec; + char* ptrFactorDecNoSpaces = tofactorDecNoSpaces; *ptrFactorDec = 0; + *ptrFactorDecNoSpaces = 0; NumberLength = tofactor.nbrLimbs; BigInteger2IntArray(nbrToFactor, &tofactor); - if (*nbrToFactor < 0) + if (nbrToFactor[0] < 0) { // If number is negative, make it positive. - *nbrToFactor = -*nbrToFactor; + nbrToFactor[0] = -nbrToFactor[0]; } if (type == BATCH_NO_QUOTE) { @@ -82,6 +84,8 @@ void batchEcmCallback(char **pptrOutput, int type) { *ptrFactorDec = '-'; ptrFactorDec++; + *ptrFactorDecNoSpaces = '-'; + ptrFactorDecNoSpaces++; } if (hexadecimal) { @@ -91,6 +95,9 @@ void batchEcmCallback(char **pptrOutput, int type) { Bin2Dec(&ptrFactorDec, tofactor.limbs, tofactor.nbrLimbs, groupLen); } + Bin2Dec(&ptrFactorDecNoSpaces, tofactor.limbs, tofactor.nbrLimbs, 0); + *ptrFactorDec = 0; // Add string terminator. + *ptrFactorDecNoSpaces = 0; // Add string terminator. } if (doFactorization) { @@ -721,7 +728,7 @@ EXTERNALIZE void doWork(void) { int flags; char *ptrData = inputString; - const char *ptrWebStorage; + char *ptrWebStorage; char *ptrKnownFactors; #ifdef __EMSCRIPTEN__ originalTenthSecond = tenths(); @@ -767,7 +774,6 @@ EXTERNALIZE void doWork(void) #ifndef lang lang = ((flags & 1)? true: false); #endif -#ifdef __EMSCRIPTEN__ useBlockly = false; doShowPrime = false; if ((flags & (-2)) == '8') @@ -787,7 +793,6 @@ EXTERNALIZE void doWork(void) else { // No more cases. } -#endif ptrData += 2; // Skip app number and second comma. fromFile = (*ptrData == '1'); ptrData++; @@ -803,7 +808,20 @@ EXTERNALIZE void doWork(void) ptrData++; } ptrData++; // Skip comma. - ptrWebStorage = ptrData + (int)strlen(ptrData) + 1; + ptrWebStorage = ptrData; + while (*ptrWebStorage != 0x01) + { + if (*ptrWebStorage == 0x00) + { +#ifdef __EMSCRIPTEN__ + databack("\x02Missing separator character"); +#endif + return; + } + ptrWebStorage++; + } + *ptrWebStorage = 0; // Replace separator by terminator. + ptrWebStorage++; // Skip separator. if (useBlockly) { ptrKnownFactors = NULL; @@ -818,11 +836,11 @@ EXTERNALIZE void doWork(void) } if (ptrKnownFactors != NULL) { - ptrKnownFactors++; + ptrKnownFactors++; // Skip equal sign. } if ((flags & 0x80) && (ptrKnownFactors != NULL)) { - flags = 2; // Do factorization. + flags = 2; // Do factorization. } if (useBlockly) { diff --git a/ecmfront.js b/ecmfront.js index 0d768476..7dd720e4 100644 --- a/ecmfront.js +++ b/ecmfront.js @@ -347,6 +347,7 @@ function performWork(n, valueText) let param; app = lang + n; let charNull = String.fromCharCode(0); + let charSeparator = String.fromCharCode(1); let helphelp = get("helphelp"); hide("sharediv"); showResult = true; @@ -395,7 +396,7 @@ function performWork(n, valueText) app += 6; // Convert to factorization. } param = digits + "," + app + "," + fromFile + config.substring(1) + "," + - valueText + charNull + getStorage("ecmFactors"); + valueText + charSeparator + getStorage("ecmFactors"); if (n === -1 || n === -2) { // Append new curve number typed by user. param += "," + newCurveOrFactor.value; @@ -434,6 +435,15 @@ function dowork(n) else { valueText = value.value.replace(/\u2011/g, "-"); + setStorage("ecmInput", value.value); + if (n == -2 || n == 4) + { // Automatic factorization or pressed skip test. + let ecmFactor = getStorage("ecmFactors"); + if (ecmFactor !== "") + { + valueText = ecmFactor.slice(0, ecmFactor.indexOf("=")); + } + } performWork(n, valueText); } } @@ -524,7 +534,7 @@ function popstate(event) { // End wizard. show("main"); hide("wizard"); - get("value").focus(); + value.focus(); } else if (get("blockmode").style.display == "flex") { // End blockly mode. @@ -842,13 +852,13 @@ function startUp() { generateFuncButtons("wzdfunccat", "wzdfuncbtns"); }; - get("value").onfocus = function() + value.onfocus = function() { - currentInputBox = get("value"); + currentInputBox = value; }; - get("wzdinput").onfocus = function() + wzdInput.onfocus = function() { - currentInputBox = get("wzdinput"); + currentInputBox = wzdInput; }; get("comments").oninput = function(_event) { @@ -997,7 +1007,7 @@ function startUp() updateVerbose(config.charAt(1) === "1"); comingFromPolfact(value); registerServiceWorker(); - currentInputBox = get("value"); + currentInputBox = value; generateFuncButtons("funccat", "funcbtns"); generateFuncButtons("wzdfunccat", "wzdfuncbtns"); completeFuncButtons("funcbtns"); diff --git a/expression.h b/expression.h index 46722e65..238ea359 100644 --- a/expression.h +++ b/expression.h @@ -19,8 +19,8 @@ #ifndef _EXPRESSION_H #define _EXPRESSION_H -#define COPYRIGHT_SPANISH "Hecho por Darío Alpern. Actualizado el 10 de noviembre de 2024." -#define COPYRIGHT_ENGLISH "Written by Dario Alpern. Last updated on 10 November 2024." +#define COPYRIGHT_SPANISH "Hecho por Darío Alpern. Actualizado el 15 de diciembre de 2024." +#define COPYRIGHT_ENGLISH "Written by Dario Alpern. Last updated on 15 December 2024." #include "bignbr.h" #ifdef __EMSCRIPTEN__ diff --git a/factor.c b/factor.c index 109915c6..92caba4c 100644 --- a/factor.c +++ b/factor.c @@ -69,6 +69,7 @@ int64_t Gamma[386]; int64_t Delta[386]; int64_t AurifQ[386]; char tofactorDec[MAX_LEN*12]; +char tofactorDecNoSpaces[MAX_LEN * 12]; extern int valueQ[MAX_LEN]; int nbrToFactor[MAX_LEN]; struct sFactors astFactorsMod[5000]; @@ -200,7 +201,7 @@ static int intTotient(int argument) return totient; } -int Moebius(int argument) +static int Moebius(int argument) { int moebius; int argumentDivisor; @@ -250,7 +251,7 @@ int Moebius(int argument) return moebius; } -void GetAurifeuilleFactor(struct sFactors *pstFactors, int L, const BigInteger *BigBase) +static void GetAurifeuilleFactor(struct sFactors *pstFactors, int L, const BigInteger *BigBase) { static BigInteger x; static BigInteger Csal; @@ -282,7 +283,7 @@ void GetAurifeuilleFactor(struct sFactors *pstFactors, int L, const BigInteger * } // Get Aurifeuille factors. -void InsertAurifFactors(struct sFactors *pstFactors, const BigInteger *BigBase, +static void InsertAurifFactors(struct sFactors *pstFactors, const BigInteger *BigBase, int exponent, int increment) { int Incre = increment; @@ -1625,7 +1626,7 @@ static void SaveFactors(const struct sFactors *pstFactors) oldNbrFactors = pstFactors->multiplicity; *ptrText = '8'; ptrText++; - copyStr(&ptrText, ptrInputText); + copyStr(&ptrText, tofactorDecNoSpaces); *ptrText = '='; ptrText++; for (int factorNbr = 1; factorNbr <= pstFactors->multiplicity; factorNbr++) @@ -2235,8 +2236,8 @@ void factorExt(const BigInteger *toFactor, const int *number, SaveFactors(pstFactors); #endif #ifdef FACTORIZATION_APP - if (skipPrimality) - { + if (skipPrimality && *(pstCurFactor->ptrFactor) > 100) + { // Factor is large. Skip primality assumes it is composite, so start factoring it. skipPrimality = false; result = 1; } diff --git a/factor.h b/factor.h index 0a36560e..f386999e 100644 --- a/factor.h +++ b/factor.h @@ -73,6 +73,7 @@ extern int matrixCols; extern int nbrPartials; extern char tofactorDec[MAX_LEN*12]; +extern char tofactorDecNoSpaces[MAX_LEN*12]; extern bool prettyprint; extern bool cunningham; extern bool hexadecimal; diff --git a/logdi.htm b/logdi.htm index 86da0cc0..57e3f5df 100644 --- a/logdi.htm +++ b/logdi.htm @@ -18,7 +18,7 @@ - + @@ -293,7 +293,7 @@

                                                                                      Configuración

                                                                                      Código fuente

                                                                                      Puedes bajar el código fuente del programa actual y del viejo applet de cálculo de logaritmos discretos desde GitHub. El código fuente está escrito en lenguaje C, por lo que es necesario Emscripten para generar JavaScript.

                                                                                      -

                                                                                      Escrito por Dario Alpern. Actualizado el 10 de noviembre de 2024.

                                                                                      +

                                                                                      Escrito por Dario Alpern. Actualizado el 15 de diciembre de 2024.